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Abstract

Keywords—Adaptive interpolation-based modelling, Vector Fitting, Thiele-type continued frac-

tions, ring resonators, resonant frequencies, Q-factors

Resonant frequencies and Q-factors of microwave ring resonators are predicted using interpola-

tion-based modelling.

A robust and efficient multivariate adaptive rational-multinomial combination interpolant is

presented. The algorithm models multiple resonance frequencies of a microwave ring resonator

simultaneously by solving an eigenmode problem. To ensure a feasible solution when using the

Method of Moments, a frequency dependent scaling constant is applied to the output model.

This, however, also induces a discontinuous solution space across the specific geometry and

requires that the frequency dependence be addressed separately from other physical parame-

ters. One-dimensional adaptive rational Vector Fitting is used to identify and classify resonance

frequencies into modes. The geometrical parameter space then models the different mode fre-

quencies using multivariate adaptive multinomial interpolation.

The technique is illustrated and evaluated on both two- and three-dimensional input models.

Statistical analysis results suggest that models are of a high accuracy even when some resonance

frequencies are lost during the frequency identification procedure.

A three-point rational interpolant function in the region of resonance is presented for the calcu-

lation of loaded quality factors. The technique utilises the already known interpolant coefficients

of a Thiele-type continued fraction interpolant, modelling the S-parameter response of a resona-

tor. By using only three of the interpolant coefficients at a time, the technique provides a direct

fit and solution to the Q-factors without any additional computational electromagnetic effort.

The modelling algorithm is tested and verified for both high- and low-Q resonators. The model

is experimentally verified and comparative results to measurement predictions are shown. A

disadvantage of the method is that the technique cannot be applied to noisy measurement data

and that results become unreliable under low coupling conditions.
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Opsomming

Sleutelwoorde—Aanpasbare interpolasiegebaseerde modellering, Vektor Passing, Thiele volge-

houe breukuitbreidings, ring resoneerders, resonansie frekwensies, Q-faktore

Resonansie frekwensies en Q-faktore van mikrogolf ring resoneerders word met behulp van in-

terpolasiegebaseerde modelleringstegnieke voorspel.

’n Robuuste en effektiewe multi-veranderlike aanpasbare rasionale-multinome kombinasie inter-

polant word beskryf. Die algoritme modelleer verskeie resonansie frekwensies van ’n mikro-

golf ring resoneerder gelyktydig deur die oplossing van ’n eiewaarde probleem te vind. Om

’n sinvolle oplossing te verseker wanneer die Metode van Momente gebruik word, word ’n fre-

kwensie afhanklike skaleringskonstante op die uittreemodel aangewend. Toepassing van hierdie

skaleringskonstante veroorsaak egter dat die oplossingsruimte diskontinu is oor die spesifieke

geometrie en vereis daarom dat die frekwensie afhanklikheid apart van die fisiese parameters

aangespreek word. Een-dimensionele aanpasbare rasionale Vektor Passing word gebruik om

die resonansie frekwensies te identifiseer en in modusse te kategoriseer. In die geometriese pa-

rameterruimte word die verskeie modusfrekwensies daarna met multi-veranderlike aanpasbare

multinome interpolasie gemodelleer.

Die tegniek word gedemonstreer en geëvalueer op beide twee- en drie-dimensionele intreemodelle.

Resultate verkry vanaf statistiese analise dui daarop dat modelle van ’n hoë akkuraatheid is,

selfs wanneer van die resonansie frekwensies gedurende die identifikasie algoritme verlore gaan.

’n Drie-punt rasionale interpolant funksie in die omgewing van resonansie vir die berekening van

belaste kwaliteitsfaktore word beskryf. Die tegniek gebruik die reeds bekende koëffisiënte van die

Thiele volgehoue breukuitbreidingsmodel wat die S-parameter gedrag van ’n resoneerder beskryf.

Deur slegs drie van die interpolant koëffisiënte op ’n keer te gebruik, maak die tegniek voorsiening

vir ’n direkte passing en oplossing van die Q-faktore sonder enige addisionele elektromagnetiese

berekeningskoste.

Die modelleringsalgoritme is teen beide hoë en lae Q resoneerders getoets en geverifieer. Die

model is eksperimenteel bevestig en vergelykende resultate teenoor meetvoorspellings word

getoon. ’n Nadeel van die metode is dat die tegniek nie op ruiserige meetdata toegepas kan

word nie en dat resultate onbetroubaar word onder lae koppelingstoestande.
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“That’s why scientists persist in their investigations, why we struggle so desperately

for every bit of knowledge, stay up nights seeking the answer to a problem, climb the

steepest obstacles to the next fragment of understanding, to finally reach that joyous

moment of the kick in the discovery, which is part of the pleasure of finding things

out.”

Richard P. Feynman (1918–1988)
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Chapter 1

Introduction

Microwave resonators play an important role in devices used in high-frequency communication

systems such as filters and oscillators. The successful modelling and accurate prediction of

resonator characteristics such as resonance frequencies and Q-values, are therefore becoming

increasingly important to designers of microwave devices. In order to reduce the cost of the

design of microwave circuits, computer-aided design (CAD) tools providing a first-pass success

level, are required. While circuit models and the use of simplified structures provide fairly

accurate solutions in some cases, they are limited to lower-order resonant modes and specific

ranges of dimensions. Computational electromagnetic (CEM) analysis techniques are widely

accepted to provide high-accuracy models for general microwave structures over a wide range of

frequency and/or physical dimensions. The computational effort required can, however, become

excessive, especially for large and complex structures.

An increasing need to reduce the computational effort required in the design of microwave

devices, has in recent years resulted in the development of metamodelling techniques, where

surrogate or mathematical models are calculated for specific microwave structures. Once created,

these models can be evaluated quickly, with minimal computational effort, and are therefore

fit for optimisation-based iteration. The term ‘surrogate’ encompasses any model calculated

from CEM analysis, and includes look-up tables, interpolation techniques and artificial neural

networks [1].

Since these metamodels directly fit data from CEM simulations, their model accuracy is high.

Of these models, interpolation-based metamodels have proved in recent years to be the most

computationally efficient, to require the least storage as only the interpolant coefficients are

stored, and to require the smallest amount of CEM analyses to establish a model. In addition, the

models are fast to evaluate and are well suited for circuit optimisation and statistical design [2,3].

Present interpolation-based implementations focus mainly on the modelling of system responses,

such as S-parameters, and not on derived parameters of these responses [4–11]. For microwave

1
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resonators, however, it is the derived parameters f0 and Q that are of prime importance to

designers. A typical design of a microwave filter would require the optimisation of a given

resonant circuit for required values of f0 and Q, or even multiple values of f0 and Q for dual

and triple mode filters.

When CEM techniques are used for the generation of support samples, it is of the utmost

importance to minimise the required number of samples. This can be achieved by the use of

adaptive sampling techniques where the order of the function is gradually increased until the

desired accuracy is reached. The adaptive procedure serves to find the key data points for

modelling the system quickly, with or without internal knowledge of the model itself. This

requires that a suitable error function exists and that unequally spaced support points can be

used [4, 12–14].

The aim of this dissertation is to investigate and establish adaptive interpolation-based meta-

models to successfully characterise highly resonant microwave structures using a full-wave Me-

thod of Moments (MoM) analysis.

1.1 History of Interpolation Models

The accuracy of an interpolation model depends on the ability of the basis functions to represent

the data. When computing a polynomial interpolant, the basis essentially consists of the different

orders of the polynomial. Switching from one variable to many variables is, however, not trivial.

Not only is there an extensive choice of multivariate functions, but moreover, different algorithms

yield different interpolants and apply to different applications.

While polynomial functions are often used as interpolants, rational functions yield better results

for functions containing poles and zeros in the data. Polynomial interpolation is also prone to

oscillations and an acceptable accuracy is occasionally achieved only by polynomials of intolera-

bly high degree [15]. A rational function can be constructed by calculating the explicit solution

of a system of interpolatory conditions, by starting a recursive algorithm, or by calculating the

convergent of a continued fraction [16]. In [17], Deschrijver gives an overview and comparison

of some of the most commonly used univariate rational fitting methods. These include power

series, Chebyshev polynomials of the first and second kind, orthonormal Forsythe polynomials,

Lanczos-based methods, the Cauchy method [18], Padé approximations [19], Vector Fitting

(VF) [20] and Thiele-type continued fractions [21], and are most often used to model determi-

nistic, simulation based data. Among these, the Thiele continued fractions approach and the

Vector Fitting pole-residue method were identified as the most successful in generating models

of high accuracy. The use of continued fractions as interpolants is a computationally efficient

method and gives accurate numerical results [16], although the method lacks the ability to incor-
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porate noise in the model. The Vector Fitting technique estimates residues of partial fractions,

which requires less significant digits than the coefficients of a polynomial. When combined with

least-squares methods, it therefore provides a more accurate representation for broadband solu-

tions [17]. In Chapter 3 the Thiele and Vector Fitting approaches will be discussed in greater

detail.

One of the most straightforward approaches to extending a single variable interpolant to a

multivariate interpolant was presented in 1998, where Peik [6] extended the univariate Cauchy

method to higher dimensions by setting up and explicitly solving a system of interpolatory

conditions. Since the adaptive selection of support points and model order require solving

the system numerous times, the technique is considered computationally ineffective, inaccurate

and suitable for simple models only. For higher dimensions, Peik developed a fast and stable

algorithm in which the adaptive sampling can be applied only in one dimension and all other

samples have to form a completely filled uniform or non-uniform grid of support points.

In 1999, De Geest and Dhaene [7, 22] proposed automatic parameterised model creation and a

global analytical fitting model, by separating frequency from other physical parameters. Ortho-

normal multivariate polynomials are used to build a model for the geometrical parameters at a

single frequency, and rational interpolation is used to combine these polynomials to determine

the entire parameter space. To reduce the number of support points while retaining the speed

and stability of the interpolating algorithm, Lehmensiek [16] developed techniques in 2001 based

on the Thiele-type branched continued fraction representation of a rational function. The algo-

rithms operate by using univariate adaptive sampling along a selected dimension. In this way,

while the support points do not fill the grid completely, they are being added along straight

lines passing through the multi-dimensional space. The first completely adaptive multivariate

rational interpolation model was suggested in 2003, where Lamecki [9] developed a technique

that supports the addition of sample points along all dimensions simultaneously. Compared to

previous techniques, a significant four times reduction in the number of support samples was

achieved.

Since 2003, the key difference between the various multivariate rational methods has been the

approach used to evaluate the order of the multinomials and the coefficients that define them.

In 2005, Hendrickx [23] presented a sequential design and adaptive methodology to capture the

complex input-output behaviour of the simulator in a multivariate surrogate model. The author

also introduced model quality assessment by which each model’s accuracy may be asserted. Most

recently, Cuyt [11] constructed an interpolating rational function in such a way that it minimises

both the truncation error and the amount of simulation data. The problem was reformulated in

terms of an orthogonal Chebyshev product basis, which addresses severe ill-conditioning of the

system when using the classical multinomial basis. In Chapter 6 a more in depth study on the

history of multi-dimensional models is given.
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1.2 Original Contributions

Current applications of interpolation-based techniques to the modelling of electromagnetics-

based devices focus mainly on the modelling of system responses. Designers of microwave reso-

nators are, however, more interested in the modelling of derived parameters, specifically reso-

nance frequencies and quality factors. The aim of this dissertation is to investigate and develop

the theory for adaptive interpolation-based modelling algorithms for the accurate identification

of the resonant frequencies and quality factors of microwave ring resonators. To perform CEM

analyses, an in-house Method of Moments (MoM) code is used, which was developed during

earlier research [24].

The primary original contributions of this work are [25–29]:
i) The development of a multivariate adaptive rational-multinomial combination interpolant

for the modelling of multiple resonance frequencies of a microwave ring resonator [29].

The algorithm models multiple resonance frequencies of a microwave ring resonator by sol-

ving the eigenmode problem det[Z(s,X)]. To ensure a feasible solution when using the Me-

thod of Moments, a frequency dependent scaling constant is applied to the output model.

A discontinuous solution space across the specific geometry requires that the frequency

dependence be addressed separately from other physical parameters. One-dimensional

adaptive rational Vector Fitting is used to identify and classify resonance frequencies into

modes. The geometrical parameter space then models the different mode frequencies using

multivariate adaptive multinomial interpolation. The technique was successfully verified

against two- and three-dimensional input models and utilises the following original sub-

algorithms:

(a) The development of a new adaptive sampling convergence criterion based on the posi-

tion of the roots (resonance frequencies) of the rational model [28]. A 25% reduction

in the number of support points required to accurately predict the natural frequencies

of a microwave resonator is achieved.

(b) The development of an automated process by which an identified resonance frequency

is associated with a specific mode. The technique utilises correlation of the ideal

current patterns of simplified resonator models to the actual current pattern evaluated

at the identified frequency [29].

(c) The development of a constrained grid modelling algorithm. Evaluation samples

are restricted to regions where the output parameter exists within the pre-defined

parameter space [29].

ii) A comparison of two one-dimensional adaptive rational metamodelling techniques, the

Thiele continued fraction and the Vector Fitting pole-residue methods, in their applica-

tion to predicting the resonance frequencies of the well-documented microstrip ring reso-

nator [27].
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The research involved investigation of convergence effects due to finite meshing and the

interpolation error, accuracy and pole-zeros issues in the identification of different classes

of roots, and presenting the usefulness of each technique in predicting the zeros (i.e. the

resonance frequencies) of these models.

iii) The development of a three-point rational interpolation method for the calculation of loaded

quality factors [25, 26].

A new technique for the calculation of the loaded quality factor was proposed by using

the same Thiele continued fraction rational interpolant as was calculated to model the

S-parameters. By using only three of the interpolant coefficients at a time, the Q-factors

are obtained without any additional CEM effort. In standard techniques the extraction of

quality factors is obtained by Q-circle fits on multi-frequency S-parameter data. However,

where these techniques rely on least-squares fits which normally require large numbers of

frequency points, the new technique provides a direct fit and solution to the Q-factors.

iv) The development of a frequency-dependent scaling constant [25, 26].

In order to solve for the natural frequencies of closed structures in the absence of excitation,

many CEM techniques require solution of

det[Z(s)] = 0. (1.1)

The MoM approach to solving Eq. 1.1 leads to the unique numerical problem that det[Z(s)]

evaluates to extremely small values, which also vary quite dramatically in magnitude over

frequency. Standard determinant functions are unable to accurately evaluate to such small

values, and to ensure an accurate fit, a frequency-dependent scaling constant was developed

to adjust the determinant function to values of a similar order of magnitude. Since scaling

has no effect on the position of the roots of a function, this is a perfectly viable option. In

addition, the functionality of the MoM CEM tool could now be expanded by adding an

MoM eigenmode solver.

The secondary contributions are:

i) The development of a method for finding the roots of a Vector Fitting rational model [27].

Three methods were proposed and compared to calculate pole-free solutions to the Thiele

continued fraction and Vector Fitting pole-residue models of the characteristic equation

det[Z(s)]. The VF formulation iteratively relocates its poles by calculating the zeros of

a rational scalar function. By adapting this technique of root-finding, the roots of the

rational VF interpolant can now also be calculated. This technique of root-finding has

never been applied to the problem of microwave resonators.

ii) The development of an algorithm for the extraction of the resonant frequencies from a

rational approximation of the scattering parameter magnitude plot [26].

iii) The adaptation of the boundary conditions used in the Green’s function and MoM formu-

lation to include conductor losses on infinite ground planes.
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iv) The reformulation of a MoM loading technique to allow extraction of scattering parameters.

The technique was developed for use with triangular vector basis functions and multiple

half-basis functions at each port are supported.

1.3 Overview of the Dissertation

Chapter 2 presents a brief outline of the MoM formulation that is used to perform CEM analy-

ses, while the two aspects of accurate loss calculation and efficient S-parameter extraction are

discussed in greater detail.

Chapter 3 introduces one-dimensional adaptive rational interpolation. Two techniques, Thiele

continued fraction and Vector Fitting, have been found most useful in providing models of high

accuracy. Since these algorithms are utilised in Chapters 4 and 5, a detailed exposition of the

theory on the Thiele-type and Vector Fitting methods is given.

Chapter 4 focuses on the efficient and accurate prediction of the resonant frequencies of mi-

crowave ring resonators using one-dimensional rational interpolation techniques. Two techniques

are discussed—the first approach is based on the solution of an eigenmode problem (i.e. a re-

sonator without ports) while the second method uses the S-parameter response of a resonator

coupled to input and output loads. Next, in Chapter 5, the one-dimensional Thiele-type rational

interpolant is utilised to accurately predict the quality factors of microwave ring resonators.

Chapter 6 presents the main contribution of the dissertation, namely a multi-dimensional adap-

tive rational-multinomial interpolation algorithm. The algorithm is discussed by addressing

aspects such as the metamodel definitions, a mode identification algorithm, constrained grid

modelling, suitable degree sets, model quality assessment and the selection of new sample loca-

tions. The algorithm is verified by means of two-dimensional and three-dimensional examples

and its numerical performance and accuracy is discussed.

Finally, Chapter 7 contains possible extensions to the theory presented here and a conclusion.



Chapter 2

Method of Moments (MoM)

Accurate full-wave electromagnetic models are required to account for effects such as dispersion,

surface waves, radiation and coupling in microwave structures. Among the numerical techniques

applicable to general electromagnetic problems, the MoM is widely regarded as one of the most

popular techniques for the solution of the Mixed-Potential Integral Equation (MPIE) for printed

geometries in planar layered media [30–32].

An in-house Method of Moments code, previously developed by the author [24], serves as the

basis utility with which the full-wave electromagnetic analyses are performed in this dissertation.

This chapter briefly presents the formulation used in this MoM code. Of particular importance in

the analysis of planar resonators, is the accurate calculation of losses and an efficient S-parameter

extraction technique. These two aspects are discussed in detail.

In standard MoM, the solution procedure approximates an integral equation with a system of

simultaneous linear algebraic equations in terms of an unknown current distribution In as

[Zmn(s)][In] = [Em]. (2.1)

Here Zmn is an impedance matrix varying as a function of frequency and Em is the excitation

vector. The MoM formulation uses vector-valued basis functions [33] defined over a triangular

mesh to model electric surface currents Js on conducting scatterers and magnetic surface currents

Ms on slotline interfaces. In this brief overview, however, it will be assumed that only electric

surface currents are present, which may be approximated with a series of basis functions fn as

Js(r′) ≈
N∑

n=1

Infn(r′). (2.2)

In the standard integral equation formulation the tangential electric fields should be proportional

to the total surface currents. Assuming conductor losses to be negligible, the total tangential

electric field, i.e. the sum of the incident and scattered fields, is forced to be zero on all conducting

7
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surfaces

n̂× (Ei + Es) = 0, (2.3)

where the scattered electric field Es can be computed from the potentials A, F and Φ by

Es = −jωA−∇Φ− 1
ε
∇× F. (2.4)

On substituting Eq. 2.4 (assuming F = 0 for a zero magnetic surface current) into Eq. 2.3, a

single expression for the MPIE is obtained

n̂×Ei = n̂× (jωA +∇Φ), (2.5)

where the integral equations defining the magnetic vector and electric scalar potentials are given

by

A(r) =
∫

s

¯̄GA(r|r′) · Js(r′)dS′

Φ(r) =
∫

S
GΦ(r|r′)qs(r′)dS′.

(2.6)

Here ¯̄GA and GΦ are the magnetic vector and electric scalar potential Green’s functions, and qs

is the surface charge density caused by the electric surface current density Js.

Since Eq. 2.5 is only a single equation with N unknowns, a method of weighted residuals is

enforced to obtain a set of N independent equations. With the testing function gm identical to

the basis function fn, and the symmetric product

< f ,g > =
∫

S
f · gdS, (2.7)

it follows that

< Ei,gm > = jω < A,gm > + < ∇Φ,gm >, (2.8)

which upon substitution of the current expansion terms of Eq. 2.2 reduces to the corresponding

MoM system equation (Eq. 2.1) with n = 1, 2, · · · , N and m = 1, 2, · · · , N .

The Green’s functions ( ¯̄GA and GΦ) used in the MoM analysis are those for a stratified medium

consisting of a number of dielectric layers separated by planar interfaces parallel to the xy

plane of a Cartesian coordinate system [34,35]. Each layer extends to infinity in the transverse

directions and consists of an isotropic, homogeneous material characterised by permeability µi

and permittivity εi, which may be complex if the medium is lossy. The upper- and lowermost

regions are half-spaces and extend to ±∞ in the z direction. Finally, boundary conditions allow

for the introduction of metallic/PEC ground planes at any of these interfaces.

Following a spectral domain Sommerfeld plane wave formulation, the analysis presented in [34,35]

first solves for the fields of an electric dipole in free space. The formulation then calculates the
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fields of an arbitrary directed dipole embedded in a layered medium by matching boundary

conditions across the discontinuities at the planar interfaces. Using Sommerfeld’s identity, the

free-space solution is then transformed to a summation of TE- and TM-type plane waves in the

z direction. These are characteristic of stratified media and present a convenient form to easily

match boundary conditions relating incident and reflected plane waves at the layer interfaces.

Finally, the Green’s functions for the normal components of the field are related to the Green’s

functions for the vector and scalar potentials.

2.1 Loss Considerations

Losses encountered in microwave circuits are often divided into dielectric, conduction, radiation

and surface wave losses. The first two loss factors have been dealt with extensively in the

literature and good approximations exist for the modelling of microstrip transmission lines [36,

37]. Radiation and surface wave losses are less well understood and quantitative solutions are

difficult to come by as these treatments are limited to specific circuit discontinuities [38].

The various loss contributions for a microwave resonator can be represented by Q-values of the

form

Q = 2πf0
Wmax

Pd
= (

1
Qd

+
1

Qc
+

1
Qr

+
1

Qsw
)−1, (2.9)

where f0 is the resonant frequency, Wmax is the stored energy, Pd is the average power loss in

the resonator and Qd, Qc, Qr and Qsw are the respective dielectric, conductor, radiation and

surface wave quality factors.

Treatments in [39] and [40] combined the different loss contributions into a single quantity known

as the effective loss tangent tan(δeff) to account for the total losses in the resonator

tan(δeff) =
1

Qd
+

1
Qc

+
1

Qr
+

1
Qsw

. (2.10)

According to [39], the magnitude of tan(δeff) is usually substantially larger than the substrate

loss tangent tan(δ), and also varies as a function of the substrate parameters tan(δ) and height h.

After analysing the approximations presented in [36,37,41], however, it becomes apparent that

the various loss components behave differently as functions of frequency. The dielectric at-

tenuation constant varies as a function of the relative dielectric constant εr,eff and wavelength

λg, while the conductor attenuation constant varies as a function of the effective line width

weff and surface resistance Rs of the conductor. Furthermore, according to [38], radiation be-

comes the dominant factor at higher frequencies, especially for low-impedance lines and thick

substrates with a low dielectric constant.

To increase the accuracy of the models, each loss component therefore has to be treated sepa-

rately.
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Dielectric Losses

Dielectric loss is a function of the material properties, for which typical values may be found in

the manufacturer’s data sheets as the substrate dissipation factor tan(δ). This is incorporated

into the simulation code by means of a complex permittivity

ε = ε0(ε′ − jε′′) = ε0εr(1− j tan(δ)). (2.11)

Conductor Losses

In the MPIE formulation explained above, the total tangential electric field is forced to be zero

on all conducting surfaces (Eq. 2.3). This condition assumes conductor losses to be negligible.

At higher frequencies, however, the well-known skin effect occurs because of the decay of fields

into the conductor. In this case, the current is flowing in a small surface layer and the behaviour

of the conductor is usually described in terms of the surface impedance [42]

Zs =
1 + j

σδ
, (2.12)

where the skin depth δ is given by δ =
√

2/ωµσ, with σ being the conductor conductivity.

Ideally, the value of Zs should be obtained by measurement, since conductivity depends on

the thickness and the roughness of the conducting surface. As an approximation, however, the

conductivity σ can be replaced by an effective conductivity σeff(f), which can be considerably

lower than the conductivity found in standard tables [43]. According to [44], the effective

conductivity can be calculated as

σeff(f) =
σ[

1 +
(
e(−δ/∆)

)1.6
]2 , (2.13)

where ∆ is the surface roughness. Fig. 2.1 illustrates the change in copper conductivity† as a

function of frequency and varying surface roughness.

In the MoM formulation, conductor losses on the (meshed) scatterers are accounted for by

replacing the ideal boundary condition with the Leontovich boundary condition

n̂×E = ZsJs. (2.14)

Thus, the total tangential electric field is now proportional to the total equivalent electric surface

current

n̂× (Ei + Es) = ZsJs, (2.15)

which changes the final expression for the MPIE (Eq. 2.5) to

n̂×Ei = n̂×
(

jω

∫
s

¯̄GA(r|r′) · Js(r′)dS′ +∇
∫

S
GΦ(r|r′)qs(r′)dS′

)
+ ZsJs(r). (2.16)

†Conductivity of copper: σ = 5.813× 107 S/m
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Fig. 2.1. The effective conductivity of copper as a result of surface roughness ∆.

To calculate the conductor losses associated with infinite (unmeshed) ground planes, a different

approach is required. By definition, the Green’s function formulation for planar layered media

incorporates the presence of an electric impedance wall by matching the boundary conditions

relating incident and reflected TM- and TE-type plane waves at the layer interface. These ground

planes are, however, usually treated as perfect electrical conductors (PEC) where the boundary

conditions for the total normal field components are Hnormal = 0 and Enormal = 2Eincident,

yielding reflection coefficients of RTE = −1 and RTM = 1 [35].

To include ground plane conductor losses into the model, a transmission line model is introduced

where TE-type wave reflection is matched to a voltage reflection coefficient and TM-type wave

reflection is matched to a current reflection coefficient.

From transmission line theory [45], the total voltage and current on a line can be written as the

sum of incident and reflected waves

V (z) = V +
0 e−γz + V −

0 eγz

I(z) = I+
0 e−γz + I−0 eγz,

(2.17)

where z is the direction of propagation. Also, the amplitude of the reflected voltage wave

normalised to the amplitude of the incident voltage wave, which is known as the voltage reflection

coefficient, is given by

ΓV =
V −

0

V +
0

=
ZL − Z0

ZL + Z0
, (2.18)

where Z0 is the characteristic impedance and ZL is the load impedance. Similarly, a current

reflection coefficient, giving the normalised amplitude of the reflected current wave, can be

defined as

ΓI =
I−0
I+
0

= −ZL − Z0

ZL + Z0
, (2.19)
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which is merely the negative of ΓV .

Similar to ΓV and ΓI , the reflection coefficients RTE and RTM can be computed by choosing

suitable values for Z0 and ZL. Thus, when setting Z0 equal to the intrinsic impedance of the

medium ηi =
√

µi/εi, and ZL equal to the surface impedance Zs, it follows that

RTE =
Zs − ηi

Zs + ηi

RTM = −Zs − ηi

Zs + ηi
.

(2.20)

Note that for Zs = 0, the reflection coefficients simplify to RTE = −1 and RTM = 1, which is

identical to the lossless PEC case. In the transmission line model, these reflection coefficients

correspond to that of a short circuit.

Radiation Losses

By definition, radiation losses are included in the Green’s function formulation. When the

uppermost (and/or lowermost) region of the problem geometry extends to∞ and no impedance

wall is present at the final discontinuity of the planar interfaces, the reflection coefficients RTE

and RTM are both set to zero, thus allowing the plane waves to radiate into open space. When

an electric conductor is present, however, the boundary conditions are changed to relate the

incident and reflected waves at the layer interface. This condition introduces conductor losses

as explained above, while radiation losses are suppressed.

Surface Wave Losses

A point source of current on a metallic patch radiates electromagnetic waves. Some of the waves

are diffracted and store magnetic energy, some radiate into space and contribute to the radiation

pattern of the patch, while others remain within the dielectric substrate, trapped by the total

reflection of the different interfaces. These waves are called surface waves and propagate along

a 2D interface, decaying more slowly than space (radiation) waves, which spread out within a

3D space.

Surface waves are a very important factor in the analysis of planar circuits as they reduce the

radiation efficiency of a patch and degrade the performances of the resonator [46,47]. It was found

that infinite parallel-plate ground planes in the MoM formulation introduce unwanted surface

wave modes, which are absent from finite size practical structures. To prevent propagation of

such waves, the problem geometry should be bounded by adding vertical metallic/PEC walls to

the structure.
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2.2 Scattering Parameter Extraction

In the MoM analysis of microstrip circuits, terminating ports with arbitrary loads is a problem

addressed by only a few authors [48–50]. Most recently, Liu [50] presented a simple MoM

loading technique to deal with an arbitrary load terminating a microstrip line. The loading

condition of the microstrip line is equivalent to adding a loading voltage element to the excitation

voltage vector in the MoM, and since the loading voltage satisfies Ohm’s law, the voltage can

be represented by a product of unknown currents and given loads.

In [50], the loading technique was developed for a MoM analysis using rooftop basis functions

to represent the unknown current distribution, and rectangular functions as testing functions to

obtain a set of linearly independent equations. The technique also assumes that the excitation

at each port is modelled by a single half-basis function only. In this section the technique

was reformulated for use with the Rao, Wilton and Glisson [33] vector-valued triangular basis

functions. In addition, extraction of the circuit S-parameters was introduced, with the model

subsequently also supporting multiple half-basis functions at each port.

Basis Functions

Rao, Wilton and Glisson [33] introduced a set of basis functions fn suitable for use with the

electric field MPIE and triangular patch modelling. Crucial to the construction of such vector

basis functions is that their normal components should be continuous across surface edges and

that it should be free of fictitious line or point charges. Additionally, each basis function is to be

associated with an interior or non-boundary edge of the patch model and is to vanish everywhere

except on the two triangles attached to the edge.

With In the coefficients to be determined, the electric surface current Js at point r′ on the

triangulated surfaces may be approximated as

Js(r′) ≈
N∑

n=1

Infn(r′). (2.21)

Here N = N1 where N1 is the total number of interior edges. An important characteristic of

triangular basis functions is that at a given edge, only the basis function associated with that

edge has a current component normal to the edge since all other basis currents in adjacent faces

are parallel to the edge. Furthermore, since the normal component of fn at the nth edge is unity,

each coefficient In may be interpreted as the normal component of current density flowing past

that edge.

At boundary edges, the sum of the normal components of current on opposite sides of the surface

are cancelled because of current continuity. These edges are left undefined with no contribution

to Eq. 2.21. A different approach is, however, needed to model the flow of induced currents
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through a microstrip port edge terminated in an arbitrary load. A special set of half-basis

functions is used to ensure continuity of current at these edges. These half-subsections show

similar properties to the basis functions defined on interior edges, the difference being that

continuity is now achieved between a boundary edge and a non-discretised loading element. To

account for these additional currents, Eq. 2.21 is adapted to include N = N1 + N2 coefficients

of which N2 is the number of port edges.

The physical meaning of the half-basis functions at the loading end is a change in the natural

state of the port from an open circuit to a short circuit. An arbitrary load impedance can then

easily be connected at this port for numerical simulations. When using half-basis functions at

the input source port, the excitation can be regarded as an ideal voltage source having zero

internal resistance [50].

Port Boundary Conditions

Zg

ZL

Ia

Ib

V1 I1
Ic

Id

V2I2

Vg

Fig. 2.2. Equivalent circuit and basis functions on a two-port microstrip line.

In Fig. 2.2, port 1 is the excitation source port with an internal impedance Zg and port 2 is the

loading port with a load impedance ZL. The boundary conditions at these ports are

V1 = Vg − I1Zg (2.22)

and

V2 = −I2ZL, (2.23)

where V1 and V2 are the port voltages and I1 and I2 are the total port currents.

Since the total current flowing past an edge is simply the coefficient of current density multiplied

by the edge length, and with Ia, Ib, Ic and Id the components of current density associated with

the half-basis functions defining the port edges of length `a, `b, `c and `d, the total port currents

are given by

I1 = Ia`a + Ib`b

I2 = Ic`c + Id`d.
(2.24)

When assuming a delta-gap source model and using Eq. 2.7 to compute the excitation vector,

it can be shown that

Em = < Ei
t,gm > =

∫
T+

m

Ei
t · gmdS = Vm`m, (2.25)
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where Ei
t is a voltage gap source of magnitude Vm. Therefore, a delta-gap source across the

mth port edge adds only a single non-zero entry into the excitation vector Em, the mth element,

which is equal to the magnitude of the source Vm multiplied by the edge length `m.

In Fig. 2.2, port 1 and port 2 are excited by voltages of magnitude V1 and V2 respectively. Thus,

when substituting Eqs. 2.22 and 2.23, it follows that

Ea = V1`a = (Vg − I1Zg)`a

= (Vg − (Ia`a + Ib`b)Zg)`a

Eb = V1`b = (Vg − I1Zg)`b

= (Vg − (Ia`a + Ib`b)Zg)`b

(2.26)

and

Ec = V2`c = −I2ZL`c

= −(Ic`c + Id`d)ZL`c

Ed = V2`d = −I2ZL`d

= −(Ic`c + Id`d)ZL`d.

(2.27)

With [Zmn][In] = [Em] and Em given by Eqs. 2.26 and 2.27, a new matrix equation in terms of

the original current coefficients In is found

[Zmn] +



0 0 · · · 0 · · · 0

0
. . .

...
...

...

0 0 · · · 0

0 lalaZg lalbZg 0 0
...

... lblaZg lblbZg 0 0

0 0 0 lclcZL lcldZL

0 0 · · · 0 0 0 ldlcZL ldldZL







I1

I2

...

IN1

Ia

Ib

Ic

Id


=



0

0
...

0

laVg

lbVg

0

0


. (2.28)

Scattering Parameters

Once the approximate distribution of the surface current density is found by solving Eq. 2.28

for the unknown weighting coefficients In, scattering parameters for an N -port discontinuity are

obtained by examining the current distribution on the ports. In general, N linearly independent

excitation schemes are required to evaluate an N -port network.

According to [51], the elements of the scattering matrix [S] can be determined as

Sij =
bi

aj

∣∣∣∣
ak=0 for k 6=j

, (2.29)
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where substitution of Eqs. 2.22 and 2.23 for the port voltages give the incident and reflected

waves as a function of the port currents (Eq. 2.24)

aj =
Vj + IjZj

2
√

Zj

=
Vg

2
√

Zj

bi =
Vi − IiZi

2
√

Zi
=

−Ii

√
Zi i 6= j

Vg − 2IiZi

2
√

Zi
i = j.

(2.30)

2.3 Conclusion

In this chapter the Method of Moments formulation has been briefly outlined with the focus

on two implementation aspects, namely, the accurate calculation of losses and an efficient S-

parameter extraction technique for use with planar structures.

To model losses accurately, each of the loss components (dielectric, conductor, radiation and

surface wave losses) has to be treated separately. Ground plane conductor losses were included

in the MoM formulation by matching TE- and TM-type wave reflection to transmission line

voltage and current reflection coefficients.

S-parameter extraction for Rao, Wilton and Glisson basis functions was implemented by ter-

minating a microstrip line in an arbitrary load impedance. The technique was adapted from

a simple method introduced by Liu [50] to compute the currents and voltages at the ports of

a microstrip line terminated in an arbitrary load. The technique extended the method of [50]

to work with vector-valued basis functions and to support multiple half-basis functions at each

port. Finally, the technique allows for easy computation of the S-parameters at each of the

network ports.



Chapter 3

One-Dimensional Adaptive Rational
Interpolation

Compact rational metamodels are at present widely exploited to characterise the electromagnetic

behaviour of microwave circuits in the frequency domain. Several rational interpolation and

rational approximation techniques have been proposed to calculate rational functions [17]. In

general, the rational analytic model < of the complex (frequency) variable s = σ + j2πf is

defined as a ratio of two polynomials Nζ(s) and Dν(s),

<(s) =
Nζ(s)
Dν(s)

=

ζ∑
j=0

ajs
j

ν∑
j=0

bjs
j

, (3.1)

where ζ is the order of the numerator, ν the order of the denominator, and aj and bj the

polynomial coefficients (b0 is chosen arbitrarily). The rational interpolant <(s) provides an

approximation of the system response H(s), which is valid on an interval [s0, s1].

When CEM techniques are used for the generation of the support points, it is of the utmost

importance to establish a model with the minimum number of electromagnetic evaluations. This

can be achieved using adaptive sampling methods where the order of the function is gradually in-

creased until the desired accuracy is reached. The sampling algorithm automatically determines

the optimal positions for the support points at which to perform an EM-evaluation, thereby

minimising the number of unequally spaced evaluations required to approximate the response

accurately [4, 12–14].

In [17], Deschrijver gave an overview and comparison of some univariate rational fitting methods,

which are most commonly used to model deterministic, simulation-based data. The paper fo-

cused on modelling of S-parameter transfer responses, discussing numerical conditioning and

fitting errors. Two metamodelling techniques were identified to be the most successful in gene-

17
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rating univariate rational models of high accuracy, namely, the Thiele-type continued fractions

approach [13,15] and the Vector Fitting (VF) pole-residue method [20,52]. Both techniques are

suitable for use with an adaptive sampling algorithm since they produce an error estimation in

a natural way. This chapter gives a brief description of these two methods.

3.1 Thiele-Type Continued Fractions

The use of continued fractions as rational interpolants in the design of microwave circuits was

first proposed in [13]. The rational model (Eq. 3.1) can be represented by a convergent of a

Thiele continued fraction [15]

<k(s) =
Nk(s)
Dk(s)

= H0 +
s− s0

ϕ1(s1, s0) + s− s1
ϕ2(s2, s1, s0) + · · ·

· · ·+ s− sk−1

ϕk(sk, sk−1, · · · , s0)

= H0 +
k∑

i=1

s− si−1

∣∣∣∣ϕi(si, si−1, · · · , s0)
k = 0, 1, · · · , Ns,

(3.2)

where each rational expression <k(s) is a kth order partial fraction expansion, showing increasing

accuracy as k increases, and reaching a convergent value at k = Ns. It is assumed that <(s)

exists for the function H(s) that is being modelled and a set of Ns + 1 support points (si,Hi) is

required to completely determine <(s). The interpolation function can be evaluated numerically

with three recurrence relations Nk(s), Dk(s) and ϕk where

Nk(s) = ϕk(sk, sk−1, · · · , s0)Nk−1(s) + (s− sk−1)Nk−2 k = 2, 3, · · · , Ns

Dk(s) = ϕk(sk, sk−1, · · · , s0)Dk−1(s) + (s− sk−1)Dk−2 k = 2, 3, · · · , Ns,
(3.3)

with initial conditions N0(s) = H0, N1(s) = ϕ1(s1, s0)N0 + (s− s0), D0(s) = 1 and

D1(s) = ϕ1(s1, s0). The inverse differences ϕk are the partial denominators of Eq. 3.2, and

are essentially the polynomial coefficients that define <(s). These coefficients are calculated

recursively from the support points as

ϕ1(si, s0) ≡
si − s0

Hi −H0
i = 1, 2, · · · , Ns

ϕk(si, sk−1 · · · , s0) ≡
si − sk−1

ϕk−1(si, sk−2, · · · , s0)− ϕk−1(sk−1, sk−2, · · · , s0)

i = k, k + 1, · · · , Ns; k = 2, 3, · · · , Ns.

(3.4)

Note that for k even, ζ = ν = k/2; and for k odd, ζ = (k + 1)/2 and ν = (k − 1)/2. Once

determined, <(s) is a curve passing through the support points (si,Hi) for i = 0, 1, 2, · · · , Ns.
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3.2 Vector Fitting

In [20,52], an accurate and robust algorithm, called Vector Fitting, was introduced to model the

frequency domain behaviour of linear time-invariant (LTI) systems by the rational pole-residue

expansion

<k(s) =
c1

s− a1
+

c2

s− a2
+ · · ·+ ck

s− ak
+ d

=
k∑

p=1

cp

s− ap
+ d k = P, P + 1, · · · , Np.

(3.5)

Each rational expression <k(s) approximates the measured/simulated data samples Hi at the

discrete complex frequencies si, ∀i = 0, · · · , Ns. Also, ap and cp are the poles and residues

respectively, ∀p = 1, · · · , k and d is a real constant. The Vector Fitting technique linearises the

non-linear identification problem by fixing the denominator poles. Starting with an initial guess

of k = P poles, the VF algorithm converges towards a global broadband model by relocating

the poles in an iterative way. The unknown system variables are estimated by solving two

consecutive linear least-squares fits, and it is ensured that the poles and residues are either real

or occur in complex conjugate pairs [20]. To improve the accuracy of <k(s), the number of

poles k is increased, reaching a convergent value at k = Np.

Instead of fitting <(s) directly, the ‘weighted’ spectral behaviour of the LTI system (Eq. 3.5

multiplied with an unknown rational function ϑ(s)) is approximated. Assuming that both

ϑ(s)<(s) and ϑ(s) can be approximated by rational functions using the same set of poles āp, it

follows that

[
(ϑ<)fit(s)

ϑfit(s)

]
=


Np∑
p=1

cp

s− āp
+ d

Np∑
p=1

c̃p

s− āp
+ 1

 . (3.6)

The problem can be linearised as a function of the unknowns cp, d and c̃p (the poles āp are fixed

beforehand) by multiplying the second row of the vector equation with <(s), and equating the

first and second rows (ϑ<)fit(s) = ϑfit(s)<(s). Since <(si) should equal H(si) for all frequency

samples, an overdetermined system of equations of the form Ax = b is found, which can be

solved using classical least-squares techniques.

After parameterisation of the rational model, both (ϑ<)fit(s) and ϑfit(s) can be written as a

function of their poles and zeros

[
(ϑ<)fit(s)

ϑfit(s)

]
=


∏Np

p=1(s− zp)∏Np

p=1(s− āp)∏Np

p=1(s− z̃p)∏Np

p=1(s− āp)

 . (3.7)
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From Eq. 3.7, <(s) can be calculated as

<(s) =
(ϑ<)fit(s)

ϑfit(s)
=

Np∏
p=1

(s− zp)

Np∏
p=1

(s− z̃p)

. (3.8)

Note that the initial poles are cancelled out and that the zeros of ϑfit(s) become the poles of the

approximation <(s). The zeros of ϑfit(s) are calculated by an input/output interchange from

its state equations [20,53]. To calculate the residues of <(s), Eq. 3.5 is solved as a least-squares

problem with the zeros of ϑfit(s) as the new poles of <(s) and the now unknown parameters cp

and d.

The above procedure can be applied in an iterative fashion with the poles found in the last

iteration used as the new starting poles in order for the method to converge, i.e. ϑfit(s) ≈ 1,

and the poles āp become close enough to the actual poles of <(s). A detailed analysis of the

significance of the starting pole locations can be found in [20,54].

3.3 Error Estimation and Adaptive Sampling

In general, a rational interpolant <(s) can be found that accurately models a microwave structure

over the interval [s0, s1], provided that enough support points are used. Although this method

can be useful when the data is inexpensive to simulate, it can be computationally expensive

and resource demanding when the simulation of data samples is costly. Reducing the spectral

density of the data samples becomes an option when the data behaves smoothly. However,

a higher model accuracy with even fewer samples is obtained when using adaptive sampling

techniques. Adaptive sampling automatically determines the optimal positions for the support

points at which to perform an EM-evaluation, thereby minimising the number of evaluations

required to approximate the response accurately. In addition, it does not require any a priori

knowledge of the dynamics of the function being modelled [12,13].

Both the Thiele-type and Vector Fitting metamodelling techniques are suitable for use with an

adaptive sampling algorithm, since both formulations work for unequally spaced support points

and both techniques allow for a suitable means of error estimation. For the modelling of functions

with more than one complex output parameter, the interpolation model consists of a set of Ne

interpolants (sharing the same set of support points), where each interpolant <(e)
k (s) models one

of the output parameters. Thus, following from the interpolant formulations, a natural residual

term emerges as the normalised difference between two approximating functions of different

order

Ek(s) = max

(
|<(e)

k (s)−<(e)
k−1(s)|

1 + |<(e)
k (s)|

)
e = 1, 2, · · · , Ne, (3.9)
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which provides an estimate of the maximum interpolation error over the interval of interest.

The procedure by which the adaptive sampling algorithm works is as follows§—As a first step,

support points s0, s1, and an arbitrary third support point s2 in the interval [s0, s1] are chosen.

The values of Hk at the points sk are determined by a CEM analysis. Then, by using either

the Thiele or VF formulations, the residual Ek(s) is evaluated at a large number of equi-spaced

sample points over the interval. At the maximum of the evaluated residual a new support

point (sk+1,Hk+1) is chosen and the procedure is repeated until the estimated error has been

reduced to a sufficiently low value. Upon termination, every interpolant <(e)
k (s) will satisfy the

convergence criterion.

3.4 Conclusion

In this chapter one-dimensional adaptive rational interpolation has been introduced by means

of a detailed discussion on the formulation of two models, namely, the Thiele-type continued

fraction approach and the Vector Fitting method.

The above-mentioned techniques proved to be the most useful in generating rational models of

high accuracy, and were therefore used in the application of univariate rational interpolation to

the problem of accurately predicting resonator characteristics. This is the topic of Chapters 4

and 5, with the focus in Chapter 4 on the calculation of resonance frequencies and in Chapter 5

on the calculation of Q-factors.

§For a detailed exposition on the implementation of the adaptive sampling algorithm, see [13,15].



Chapter 4

Calculation of Resonant Frequencies

The efficient and accurate prediction of the resonant frequencies of microwave resonators is of

paramount importance to designers of microwave filters and oscillators. Precision-calculation of

this parameter f0 using computational electromagnetic analysis (CEM) is however not trivial,

and standard techniques normally require analysis of a given structure using a high number of

frequency points. Adaptively sampled interpolation models can dramatically reduce the com-

putational cost of analyses, and can provide efficient and highly accurate models for microwave

structures. Present implementations focus mainly on the modelling of responses such as S-

parameters [4, 13], however, and not on the derived parameters of f0 and Q that are of prime

importance to designers of microwave resonators.

This chapter presents two techniques for the extraction of f0 from a full-wave Method of Moments

(MoM) analysis, through the fitting of adaptive rational models to highly resonant structures.

The first approach is based on the solution of an eigenmode problem (i.e. a resonator without

ports), while the second method uses the S-parameter response of a resonator coupled to input

and output loads. As an example of a resonant structure, the well-documented microwave ring

resonator will be used to discuss the techniques and verify all results obtained.

For the unloaded problem (Section 4.1), the CEM solution entails finding the zeros of the

eigenvalue equation, det[Z(s)] = 0. Conveniently, a pole-free approximation to the roots of this

function is possible when using the numerator of a rational interpolation formulation. Numerical

difficulties and the existence of improper solutions to the eigenmode function are discussed, and

convergence effects due to finite meshing are investigated by varying the maximum discretisation

size and the interpolant termination error. Also, the systematic inclusion of different components

of loss in the model and the accurate prediction of higher-order resonances are investigated and

compared to current techniques.

For the loaded problem (Section 4.2), an algorithm for the extraction of the resonant frequen-

cies from a rational approximation of the scattering parameter magnitude plot is developed, and

22
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results are compared to predictions obtained from measurements and commercial software simu-

lations. Correctness of the interpolation function, as well as asymmetries in the discretisation

causing mode splitting are also discussed.

4.1 Calculation of Resonant Frequencies by Solution of the Na-
tural Frequencies of an Unloaded Resonator

As the microwave ring resonator is the test resonator used to discuss and verify techniques

presented in this dissertation, this section starts with a brief overview of the most common

models used to calculate the resonance frequencies of the ring structure. This is followed by

advances made in the field of numerical modelling, specifically related to the prediction of

resonance frequencies.

The simplest model of a ring resonator, the straight-line approximation, was first introduced

in 1969 by Troughton [55] to measure propagation constants in microstrip, and is based on the

principle that resonance is established when the mean circumference of the ring is equal to an

integral multiple of wavelengths. This may be expressed as

2πR = nλg for n = 1, 2, 3, · · · , (4.1)

where R is the mean radius of the ring, λg is the guided wavelength, and n is the azimuthal

mode number. Since λg is frequency dependent, the resonant frequencies for different modes

can be calculated using

ω0 = 2πf0 =
nc

R
√

εr,eff
, (4.2)

where c is the speed of light in free space, and εr,eff is the static effective relative dielectric

constant. The proposed simple solution only predicts the TMn10 modes that exist when the

width of the ring is narrow and does not explain the effects of curvature on the resonant frequency

for ring widths of small impedance.

In 1971 Wolff and Knoppik [56] presented the first field analysis description of a microstrip ring

resonator based on a radial waveguide model. This magnetic-wall model method approximates

the ring as a cavity resonator with electric walls on the top and bottom and magnetic walls on

the sides (Fig. 4.1). It is assumed that there is no z-dependency (∂/∂z = 0) and that the fields

are transverse magnetic (TM) to the z direction. By taking a solution of Maxwell’s equations

in cylindrical coordinates and applying boundary conditions at Ri and Ro, the respective inner

and outer radii of the ring, the eigenvalue equation is

J ′
n(kRo)N ′

n(kRi)− J ′
n(kRi)N ′

n(kRo) = 0, (4.3)

where k is the wave number, Jn is a Bessel function of the first kind of order n and Nn is a
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Fig. 4.1. Cross section of the magnetic-wall model of a microstrip ring resonator.

Bessel function of the second kind and order n. J ′
n and N ′

n are the derivatives of the Bessel

functions with respect to the argument kR.

By solving for the roots of this characteristic equation, the resonant frequencies can be found and

full mode charts can be generated, such as presented by Wu and Rosenbaum [57]. Fig. 4.2 shows

the solution set where the resonant frequencies of the various TMnm` modes are a function of

the ring line width (2w). Here n is the azimuthal mode number, m is the root number for each n

and ` = 0, since ∂/∂z = 0. As the normalised ring width (w/R) is increased, higher-order modes

are excited. These higher-order modes are often quite closely spaced in frequency, which may

cause difficulty in successfully predicting resonator characteristics such as the quality factor.

The magnetic-wall model eliminates the error due to the mean radius straight-line approximation
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Fig. 4.2. Mode chart of a microstrip ring resonator using the magnetic-wall model.
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(Eq. 4.2) and includes the effect of curvature of the microstrip line. Wolff and Knoppik [56] found

that the influence of curvature becomes significant when the ring widths become large and the

mean radius is not well-defined. If rings of small diameter are used, the effects become even

more dramatic due to the increased curvature. Using the magnetic-wall model it can also be

shown that the microstrip ring resonator supports two degenerate orthogonal modes that coexist

independently of each other [58]. The main drawback of the model is that it does not take into

account the fringing edge fields or dispersive effects of the microstrip line.

In 1976 Owens [59] introduced an improvement on the magnetic-wall model. In this approach

the relative permittivity of the substrate is equated to a frequency-dependent effective relative

permittivity εr,eff(f) [60]; and the planar waveguide model is used to calculate a frequency-

dependent effective line width weff(f) for the parallel conducting plates [59], [61] and [45, p. 162].

To apply the planar waveguide model to the ring resonator, the inner and outer radii of the ring

are adjusted to [62]

Ri ← Ri − 0.5
(
weff(f)− 2w

)Ri

Ro

Ro ← Ro + 0.5
(
weff(f)− 2w

)
,

(4.4)

where the new model imposes the condition Ri ≥ 0. The improved model is capable of predicting

resonant frequencies with an accuracy of 0.2%.

Since 1990, full-wave electromagnetic (EM) analysis methods have been utilised to solve for

the natural frequencies of closed structures in the absence of excitation [63, 64]. For many

EM-techniques, this requires solution of Eq. 4.5

<(s) = det[Z(s)] = 0, (4.5)

where si = σi + j2πfi and i indicates the ith solution. This function can be extremely non-

linear with an infinite number of solutions, interspersed with an infinite number of poles. In

addition, very sharp non-zero local minima are often encountered. Together, this combination

of characteristics normally requires an EM-evaluation of the structure at a very high number

of closely-spaced frequencies over any given interval. This is computationally very expensive,

and still often misses sharp resonances in high-Q structures. In an attempt to trivialise this

problem a number of formulations have been reported—pole-free formulations [65], the use of a

singular-value decomposition method (SVD) [66], finding the pole-positions analytically, either

removing them [67] or searching in-between them [68], and the use of adaptive rational models,

the latter providing a very efficient solution to this problem, as models are constructed using

very small sets of support points.

In 2001, Lehmensiek [16] proposed a model-based parameter estimation technique based on a

Thiele-type continued fraction rational interpolation formulation and a Method of Lines (MoL)

analysis, to provide an accurate pole-free approximation to the roots of <(s) and to calculate
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the propagation constants of modes in quasi-TEM microwave structures. A Newton-Raphson

method utilising a zero-suppression technique was used to find the roots of <(s). This technique

is most useful, since the resulting approximation can be written as a ratio of two polynomials

and thus only the numerator needs to be solved to find the zeros of the function. Using this

technique together with a MoM analysis does, however, present a few problems.

Firstly, MoM solutions create unique numerical problems when evaluating the expression

det[Z(s)], [25, 26]. Function values are extremely small while differing by orders of magni-

tude from the start to the end of the frequency interval. To solve this, a frequency-dependent

scaling constant was developed to adjust the determinant function to values of a similar order

of magnitude across the complete frequency interval.

Secondly, the Thiele fitting function interpolates support points exactly and is incapable of

compensating for noise in the data. When a low interpolation error and smooth fit is required,

longer computational times and oversampling may result. Root-finding as proposed by Lehmen-

siek [16] is based on an iterative search algorithm, which can potentially miss one or more roots.

To improve on these shortcomings, the application of Vector Fitting (VF) to the problem of

the natural frequencies of an unloaded planar ring resonator from a full-wave MoM analysis is

investigated, and compared to the approach by Lehmensiek when applied to the same structure.

In the latter approach, the Newton-Raphson method used by [16] is replaced by a root-finding

algorithm, which computes the roots of the polynomial form of the continued fraction model

by constructing an upper-Hessenberg matrix, which is significantly faster than the Newton-

Raphson algorithm. Vector Fitting can be applied to least-squares solutions where the data

may be contaminated with noise. The Vector Fitting formulation iteratively relocates its poles

by calculating the zeros of a rational scalar function ϑ(s). Using the VF equivalent state equa-

tion representation (SER), Gustavsen [20,53] has shown that these zeros can easily be calculated

as the eigenvalues of a combination of the state matrices. This technique of root-finding has

never been applied to the problem of microwave resonators and the theory was extended to also

calculate the roots of the VF interpolant <(s), [27].

Two experimental studies are presented to support the theory. In the first study the two mo-

delling approaches are compared by analysing an unloaded microstrip ring resonator to predict

the resonance frequencies. Convergence effects due to finite meshing are investigated by varying

the maximum discretisation size and the interpolation error, the existence of different classes

of roots are explained, and the usefullness of each technique is discussed giving advantages and

disadvantages. In the second study the Thiele and VF models are tested against the straight-line

approximation, the different magnetic-wall models and commercial software, to compare accu-

racy in the predictions, model capabilities (inclusion of loss components), and the successful

prediction of higher-order resonances for ring widths of low impedance.
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4.1.1 Evaluation of det[Z(s)] [26]

The MoM approach to solving Eq. 4.5 leads to the numerical problem that the det [Z(s)]

evaluates to extremely small values, which also vary by orders of magnitude over frequency.

Standard determinant functions are unable to accurately evaluate to such small values and

to ensure an accurate fit, a frequency-dependent scaling constant is introduced to adjust the

determinant function to values of a similar order of magnitude.

Calculation of this scaling factor sf , over the frequency interval [s0, s1], relies on an alternative

algorithm for the evaluation of the det [Z(s)]. Based on the LU factorisation of the Z-matrix,

and using an IMSL Fortran 90 library routine (dlfdcg†), the determinant is returned in the useful

form [69]

det [Z(sk)] = det1,sk
× 10det2,sk (4.6)

where det1 is a complex scalar containing the mantissa of the determinant and det2 is a scalar

containing the exponent of the determinant. The value of det1 is normalised so that either

1 ≤ |det1 | < 10 or det1 = 0.

To adjust the magnitude for equal values at the start and end of the frequency interval, set

|det[Z(s0)]| × (s0)sf ≈ |det[Z(s1)]| × (s1)sf

⇒ |det1,s0 | × 10det2,s0 × (s0)sf ≈ |det1,s1 | × 10det2,s1 × (s1)sf ,
(4.7)

and presuming that |det1,s0 / det1,s1 | ≈ 1, it follows that

sf =
det2,s0 −det2,s1

log ( s1
s0

)
(4.8)

and

det
(scaled)

[Z(sk)] = det1,sk
× 10det2,sk × (sk)sf . (4.9)

Since scaling has no effect on the position of the roots of a function, this is a perfectly viable

option.

However, the multiplication of two extreme values as used in Eq. 4.9 leads to numerical ill-

conditioning. To ensure an increase in accuracy, the transformation

(sk)sf = p× 10q (4.10)

is required where the value of p is chosen consistent with scientific notation, i.e. 1 ≤ p < 10.

By taking the logarithm of Eq. 4.10, and since log(p) < 1, it follows that

q = bsf × log(sk)c, (4.11)

†dlfdcg—computes the determinant of a complex general matrix given the LU factorization of the matrix.



Chapter 4—Calculation of Resonant Frequencies 28

and thus

p = 10(sf×log(sk)−q). (4.12)

Finally, Eq. 4.9 reduces to

det
(scaled)

[Z(sk)] = det1,sk
× p× 10(det2,sk

+q+t), (4.13)

where t is chosen to normalise the exponent term (det2 +q + t)|s=s0 to zero.

Fig. 4.3 shows a plot of the real and imaginary parts of a scaled interpolant. The resonance

frequencies are found where both the real and imaginary parts are zero, which for this example

yields two natural pairs of frequencies in the region of 2.02 GHz for the TM110 mode and 4.02 GHz

for the TM210 mode. Without scaling, the determinant evaluated to (−3.5245−j0.1193)×10−1031

at 1 GHz and (−1.7672−j0.1808)×10−1190 at 5 GHz. These values differ by orders of magnitude

(10159) and yet both function values numerically have a zero magnitude. To accurately identify

the actual zeros or resonance frequencies of the determinant function within such a range of

values, scaling of the determinant is absolutely essential.
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Fig. 4.3. Real (red) and imaginary (blue) parts of a scaled interpolant.

4.1.2 Calculation of Zeros [27]

Thiele Continued Fractions

Since the approximation of <(s) can be written as a ratio of two polynomials, only the numerator,

which is pole-free by nature, needs to be solved to calculate the zeros of the function.

As a first root-finding algorithm, the first-order Newton-Raphson method used by Lehmen-

siek [16]

sm+1 = sm − α
N(sm)
N ′(sm)

(4.14)
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is applied to the numerator model of <(s).

In this method, root-finding is based on the direct evaluation of the Thiele representation. The

numerator of the rational polynomial Nk(s) can easily be calculated from Eq. 3.3. Favourable

when using gradient root-finding algorithms, the derivative of the numerator is also an analytic

function and can be calculated from

∂Nk(s)
∂s

= ϕk(sk, sk−1, · · · , s0)
∂Nk−1(s)

∂s
+ (s− sk−1)

∂Nk−2(s)
∂s

+ Nk−2(s). (4.15)

Furthermore, evaluation of both the numerator and its derivative are computationally efficient

and inexpensive tasks.

As an iterative method, the Newton-Raphson algorithm can easily reconverge to a previously

calculated root. Therefore, the zero-suppression technique [70] is used to prevent the root-finding

algorithm from calculating the same root twice. This technique requires that the derivative used

in Eq. 4.14 be transformed to

N ′(s)← ∂N(s)
∂s

−
Nr∑
i=1

N(s)
s− ξi

, (4.16)

where ξi are the Nr previously found roots. The advantage of this method, as opposed to

deflation, where the polynomial N(s) is divided by s− ξi explicitly to give a polynomial of lower

order, is that the accuracy of a new root is not sensitive to the errors incurred in calculating the

previous roots.

The Newton-Raphson method used by [16], while accurate, is however quite slow and can still

easily become trapped in local minima. Instead, the roots of the polynomial representation of

the numerator model of <(s) are computed. While being slightly less accurate for high orders of

the approximating functions, it is significantly faster. Devising recurrence formulae for Eq. 3.3,

Nk(s) can be transformed to a polynomial of the form

Nk(s) = a
(k)
0 + a

(k)
1 s + a

(k)
2 s2 + · · ·+ a

(k)
ζ sζ , (4.17)

where

a
(k)
0 = ϕk(sk, sk−1, · · · , s0)a

(k−1)
0 − sk−1a

(k−2)
0

a
(k)
i = ϕk(sk, sk−1, · · · , s0)a

(k−1)
i − sk−1a

(k−2)
i + a

(k−2)
i−1 k = 2, 3, · · · , N ;

i = 1, 2, · · · , ζ,

(4.18)

with initial values a
(0)
0 = H0, a

(0)
i = 0 for i = 1, 2, · · · , ζ; a

(1)
0 = ϕ1(s1, s0)a

(0)
0 − s0, a

(1)
1 = 1 and

a
(1)
i = 0 for i = 2, 3, · · · , ζ. Following from the continued fraction formulation, the numerator

order is ζ = b(k + 1)/2c.
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Equivalently, Eq. 4.17 with a
(k)
ζ = 1 can be reconstructed into the determinant of an upper-

Hessenberg matrix as

Nk(s) = det



s 0 0 · · 0 0 (−1)ζ−1a
(k)
0

1 s 0 0 · · 0 (−1)ζ−2a
(k)
1

0 1 s 0 · · · (−1)ζ−3a
(k)
2

· 0 1 · · · · ·
· · · · · 0 0 ·
0 · · · 1 s 0 (−1)2a(k)

ζ−3

0 0 · · 0 1 s (−1)1a(k)
ζ−2

0 0 0 · · 0 1 s + a
(k)
ζ−1


, (4.19)

or in matrix form

Nk(s) = det[sI− Ã]. (4.20)

Finding the roots of a polynomial in this form is a trivial problem where the zeros of the

polynomial Nk(s) are computed as the eigenvalues of matrix Ã.

To ensure that the root positions of <(s) are accurate and that <(s) does not miss any roots,

a high accuracy in the model is required. This demand on accuracy can cause the sampling

algorithm to produce pole-zero combinations, with the result that more zeros are calculated

than the sought-after number of jω-axis zeros describing the characteristic equation (Eq. 4.5).

Therefore, the validity of all zeros are checked against the roots of the denominator, eliminating

all zeros that are within 0.003 absolute distance to a pole. The roots of the polynomial equivalent

of the denominator are computed by using the recurrence relations of Eq. 4.18 with the order

equal to ν = bk/2c and the initial conditions a
(0)
0 = 1, a

(1)
0 = ϕ1(s1, s0) and a

(k)
i = 0 for

i = 1, 2, · · · , ν; k = 0, 1.

Vector Fitting

The Vector Fitting formulation lends itself to an elegant method for finding the zeros (and

poles) of the model <(s). Since VF by pole relocation requires calculation of the zeros of ϑ(s)

by means of an input/output interchange from its state equation [20], it is possible to exploit

this procedure to also find the zeros of <(s).

In VF, it is well-known that Eq. 3.5 can be directly converted into the form

R(s) =
y(s)
u(s)

= C(sI−A)−1B + D, (4.21)

where R(s) is the transfer response matrix, and A, B, C and D are the state space matrices

for a low-order state equation approximation [52]. Matrix A is a diagonal matrix containing the

final poles ap, B is a column vector of ones, C is a row vector containing the residues cp and D

is the real constant d.
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Now, the roots of <(s) are found where the output parameter y(s) is zero. To establish a

relation, return to the time domain state equations of Eq. 4.21

ẋ = Ax + Bu

y = Cx + Du.
(4.22)

By eliminating u from Eq. 4.22 and choosing y = 0, it follows that

ẋ = Ax + BD−1(y −Cx)

= (A−BD−1C)x,
(4.23)

which corresponds to solving the eigenproblem Ãx = sx. It follows that the zeros of <(s) are

the eigenvalues of Ã = A−BD−1C.‡

Note that in the case of a complex pair of poles, the submatrices in Ã should be modified via a

similarity transform to ensure that Ã becomes a real matrix and its complex eigenvalues come

out as perfect complex conjugate pairs [20].

No additional computation is required to find the poles of <(s) as they correspond to the diagonal

elements of matrix A, i.e the values ap.

4.1.3 Study 1—Investigation of the Effect of MoM Discretisation

The use of MoM introduces several accuracy and convergence effects due to finite meshing

of the structure. Finer discretisations yield accurate results at the expense of computational

time, while a coarser mesh solves more quickly, however, numerical defects such as noise and

oversampling can no longer be ignored. This study investigates mesh related issues surrounding

the prediction of the resonance frequencies of an unloaded microstrip ring resonator. This is

achieved by finding a compromise between the mesh fineness (computational time) and the

termination error (number of support points) of the interpolation problem. The use of both

Vector Fitting and Thiele continued fractions as rational models, and root-finding by iterative

and direct solution are investigated.

The experimental setup was selected to support fundamental TMn10 modes only. As this study

focuses primarily on issues surrounding the identification of resonance frequencies and not on the

accuracy of the actual roots as such, there is no need to model a more complex lower impedance

ring that would also include closely-spaced higher-order modes. The selected resonant structure

consists of an unloaded lossy microstrip ring resonator with mean ring radius R = 16.9 mm and

a normalised ring width w/R = 0.1. The substrate (Taconic TLY-5) has a relative permittivity

of εr = 2.2, a dissipation factor of tan(δ) = 0.0009 and a thickness of h = 0.508 mm. Several

‡In ϑ(s), D = 1 and the zeros of ϑ(s) are calculated as the eigenvalues of the matrix A−BC. This was shown
in [20,53].
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computer simulations were performed in the range [1 GHz, 9 GHz]. The structure is expected to

have four degenerate pairs of resonant frequencies in the given band. For the calculation of the

natural frequencies of this resonator, the maximum discretisation size L was set to a fraction

of the free-space wavelength at 5 GHz and 9 GHz respectively; and the interpolation error was

estimated using a residual term that emerged from the rational fitting methods as

Ek(s) =
|<k(s)−<k−1(s)|

1 + |<k(s)|
, (4.24)

which provides a relative error between the current estimate of the interpolant and the previous

estimate, i.e. before adding the last support point. Simulation results were obtained for a

variety of discretisations, including λ/10, λ/15, λ/20, λ/25, λ/30 and λ/35. For discussion,

Table 4.1 shows the results for the λ/15 and λ/35 meshings of this experiment, where the

‘Interpolation Error’ refers to the maximum value Ek in the frequency interval, obtained by the

number of support points shown in brackets. For the Thiele-type approach, both the Newton-

Raphson and the proposed polynomial root-finding techniques were implemented, and the SER

eigenvalue approach was implemented for the Vector Fitting method. A number of interesting

characteristics emerged from this study, as discussed below.

Mesh Related Issues

i) Most CEM techniques calculate two slightly different f0’s for each degenerate resonance

pair. For this example, the first four natural pairs of frequencies were found in the region

of 2.02 GHz, 4.02 GHz, 6.03 GHz and 8.02 GHz. Fig. 4.4 shows the different meshings

(λ/15 and λ/35) with the calculated current distribution at first resonance.

ii) As the mesh is refined and a higher accuracy in the model is required, the resonance

frequencies decrease in value and the dual frequencies converge to a numerically single

value.

iii) A reduction in the order of the fitting functions can be observed as the mesh is refined.

This is due to the reduction in numerical noise with increasing mesh refinement, and is far

more pronounced in the Thiele approach, as this approach interpolates the support points

exactly.

iv) The different root-finding methods predicted the roots to within 0.04% error.

Accuracy and Pole-Zero Issues

The comparison between the Thiele continued fraction and the Vector Fitting techniques has

shown that the fitting errors are comparable and highly accurate. However, if the mesh is too

coarse, the models can differ substantially from the actual response. Due to the interpolating

nature of the Thiele fitting function, which passes through the support samples, a high number

of samples is required to ensure a low interpolation error and smooth fit. This inability to

compensate for numerical noise means longer computational times, but more importantly, may

lead to oversampling. Vector Fitting, however, can be applied to least-squares solutions, where
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TABLE 4.1
Comparison of the roots calculated by using different methods to model and predict

the resonance frequencies of an unloaded lossy microstrip ring resonator.
All roots are presented in the complex frequency plane (s/(2π) = σ/(2π) + jf)× 109.

(L = Maximum Discretisation Size; Ek = Interpolation Error;
Substrate parameters for Taconic TLY-5: h = 0.508 mm, εr = 2.2, tan(δ) = 0.0009;

Ring parameters: R = 16.9 mm, w/R = 0.1)

(a) Frequency Range [1 GHz, 5 GHz].

Thiele Continued Fraction: Thiele Continued Fraction: Vector Fitting:

Interpolation Class of Newton-Raphson Method Polynomial Method SER Eigenvalue Method

Error (Ek) Zeros L < λ/15 L < λ/35 L < λ/15 L < λ/35 L < λ/15 L < λ/35

54 triangles 303 triangles 54 triangles 303 triangles 54 triangles 303 triangles

(14 samples) (13 samples) (14 samples) (13 samples) (14 samples) (15 samples)

Actual Roots -0.0023+j2.0116 -0.0023+j2.0155 -0.0023+j2.0116 -0.0023+j2.0155 -0.0027+j2.0182 -0.0001+j2.0157

(Resonant -0.0023+j2.0255 -0.0024+j2.0163 -0.0023+j2.0255 -0.0024+j2.0163 -0.0019+j2.0184 -0.0046+j2.0159

Frequencies)

0.0107+j4.0285 0.0021+j4.0186 0.0107+j4.0285 0.0021+j4.0186 -0.0103+j4.0284 -0.0052+j4.0179

-0.0204+j4.0290 -0.0119+j4.0187 -0.0204+j4.0290 -0.0119+j4.0187 0.0009+j4.0286 -0.0045+j4.0200

Roots

10−2 occurring in

(-40 dB) Pole-Zero

Pairs

Real Roots 0.6172 -8.8868

-0.2696

0.2208

10.2123

Complex

Roots

(31 samples) (14 samples) (31 samples) (14 samples) (14 samples) (16 samples)

Actual Roots -0.0023+j2.0178 -0.0026+j2.0158 -0.0023+j2.0178 -0.0026+j2.0158 -0.0027+j2.0182 -0.0064+j2.0153

(Resonant -0.0023+j2.0188 -0.0021+j2.0160 -0.0023+j2.0188 -0.0021+j2.0160 -0.0019+j2.0184 0.0017+j2.0161

Frequencies)

-0.0032+j4.0188 -0.0149+j4.0285 -0.0032+j4.0188 -0.0103+j4.0284 -0.0040+j4.0177

0.0054+j4.0285 -0.0065+j4.0190 0.0054+j4.0285 -0.0065+j4.0190 0.0009+j4.0286 -0.0057+j4.0203

Roots -0.2313+j3.0492 -0.2313+j3.0492

10−3 occurring in 0.0011+j4.2903 0.2324+j3.0493

(-60 dB) Pole-Zero -0.0021+j4.3462 0.0011+j4.2903

Pairs -0.0020+j4.3462

Real Roots 0.6172 -3.4613

-0.9760

-0.3055

0.2167

5.8454

Complex 0.0707+j4.3441

Roots -0.0666+j4.3448

(46 samples) (15 samples) (46 samples) (15 samples) (26 samples) (20 samples)

Actual Roots -0.0017+j2.0183 -0.0025+j2.0158 -0.0017+j2.0183 -0.0025+j2.0158 -0.0021+j2.0182 -0.0035+j2.0158

(Resonant -0.0029+j2.0183 -0.0022+j2.0160 -0.0029+j2.0183 -0.0022+j2.0160 -0.0025+j2.0184 -0.0012+j2.0160

Frequencies)

-0.0045+j4.0274 -0.0030+j4.0189 -0.0030+j4.0189 -0.0086+j4.0263 -0.0047+j4.0172

-0.0045+j4.0333 -0.0068+j4.0189 -0.0068+j4.0189 -0.0009+4.0305 -0.0050+j4.0207

Roots 0.2774+j2.8794 -0.2817+j2.8789 0.0472+j4.3117 -0.3254+j2.5911

occurring in -0.0023+j4.1025 0.2774+j2.8794 -0.0466+j4.3124 0.3441+j2.6028

Pole-Zero 0.0020+j4.1028

10−4 Pairs 0.0175+j4.3096

(-80 dB) Real Roots 0.2204 -6.5755

1.0485 -0.2625

1.4367 0.2062

1.1166

9.0934

Complex 0.5192+j3.9527 -1.3569+j2.2416

Roots -0.5159+j3.9573 -0.1886+j4.1061

-0.5694+j4.2534 0.1415+j4.1333

0.5779+j4.2551

-0.4717+j4.5668

0.4753+j4.5792

-0.2016+j4.8025

0.1880+j4.8134
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(b) Frequency Range [5 GHz, 9 GHz].

Thiele Continued Fraction: Thiele Continued Fraction: Vector Fitting:

Interpolation Class of Newton-Raphson Method Polynomial Method SER Eigenvalue Method

Error (Ek) Zeros L < λ/15 L < λ/35 L < λ/15 L < λ/35 L < λ/15 L < λ/35

234 triangles 896 triangles 234 triangles 896 triangles 234 triangles 896 triangles

(14 samples) (13 samples) (14 samples) (13 samples) (14 samples) (14 samples)

Actual Roots -0.0071+j6.0301 -0.0078+j6.0189 -0.0071+j6.0301 -0.0078+j6.0189 -0.0076+j6.0245 -0.0077+j6.0189

(Resonant -0.0079+j6.0331 -0.0077+j6.0322 -0.0079+j6.0331 -0.0077+j6.0322 -0.0074+j6.0385 -0.0078+j6.0322

Frequencies)

-0.0107+j8.0351 -0.0105+j8.0185 -0.0107+j8.0351 -0.0105+j8.0185 -0.0100+j8.0297 -0.0102+j8.0201

10−2 -0.0092+j8.0390 -0.0100+j8.0236 -0.0092+j8.0390 -0.0100+j8.0236 -0.0100+j8.0444 -0.0103+j8.0222

(-40 dB) Roots

occurring in

Pole-Zero

Pairs

Real Roots 0.1507 0.9794

Complex

Roots

(14 samples) (14 samples) (14 samples) (14 samples) (19 samples) (15 samples)

Actual Roots -0.0071+j6.0301 -0.0077+j6.0191 -0.0071+j6.0301 -0.0077+j6.0191 -0.0075+j6.0292 -0.0077+j6.0189

(Resonant -0.0079+j6.0331 -0.0078+j6.0321 -0.0079+j6.0331 -0.0078+j6.0321 -0.0075+j6.0339 -0.0078+j6.0323

Frequencies)

-0.0107+j8.0351 -0.0104+j8.0188 -0.0107+j8.0351 -0.0104+j8.0188 -0.0099+j8.0342 -0.0105+j8.0203

10−3 -0.0092+j8.0390 -0.0102+j8.0234 -0.0092+j8.0390 -0.0102+j8.0234 -0.0101+j8.0399 -0.0100+j8.0219

(-60 dB) Roots -0.0303+j7.8519

occurring in

Pole-Zero

Pairs

Real Roots

Complex -1.4340+j6.7123

Roots 1.3013+j6.9350

(23 samples) (18 samples) (23 samples) (18 samples) (27 samples) (19 samples)

Actual Roots -0.0074+j6.0294 -0.0077+j6.0191 -0.0026+j6.0296 -0.0077+j6.0191 -0.0056+j6.0306 -0.0077+j6.0188

(Resonant -0.0076+j6.0337 -0.0078+j6.0320 -0.0124+j6.0336 -0.0078+j6.0320 -0.0094+j6.0325 -0.0078+j6.0323

Frequencies)

-0.0099+j8.0342 -0.0101+j8.0204 0.0028+j8.0274 -0.0100+j8.0204 -0.0099+j8.0342 -0.0105+j8.0204

-0.0101+j8.0400 -0.0105+j8.0218 -0.0236+j8.0469 -0.0105+j8.0218 -0.0101+j8.0399 -0.0100+j8.0218

10−4 Roots 0.0479+j5.5481 0.0479+j5.5481 0.3050+j5.0479 0.3225+j8.1055

(-80 dB) occurring in -0.0771+j8.2493 -0.0763+j8.2492 -0.3856+j5.3637 -0.1025+j8.2091

Pole-Zero 0.0178+j5.9873

Pairs -0.0271+j7.7551

0.0060+j7.8947

Real Roots

Complex -0.9752+j7.4368 -2.1872+j6.1164

Roots 0.9165+j7.5810 1.9425+j6.4670

overdetermined equations need to be solved and data may be contaminated with noise. A

modified VF, called Vector Fitting with Adding and Skimming (VF-AS) [71], has also shown

to be capable of handling noisy data successfully and improving the convergence properties of

VF. Though this is not required in the case of very accurate EM analysis, it does broaden the

applicability of the technique significantly.

To attain the desired accuracy, the fitting function will be of a higher order than the number of

roots defining Eq. 4.5 over the interval of interest. To distinguish the actual roots (resonance

frequencies) from others, four steps of elimination are used:

i) As the interpolant is valid within a specified frequency range only, all roots outside of this

interval are assumed to be invalid and void.

ii) Roots occurring in pole-zero pairs are identified by calculating the poles of the denominator

and matching poles to zeros that are within 0.003 absolute distance of each other.

iii) Complex roots are identified as those roots where the |σ/ω| ratio is larger than 1%. Note

that the real parts of the zero values are not used to calculate loss, as the required accuracy
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(a) λ/15 mesh (54 triangles). (b) λ/35 mesh (303 triangles).

Fig. 4.4. Current distribution for TM110 mode as calculated on different meshings.

for this is extremely high. Rather, only the imaginary part is used to give the resonance

frequencies.

iv) Real roots are single-valued and have insignificant imaginary parts.

Thiele Continued Fraction—Newton-Raphson Method

In this method, root-finding is based on the direct evaluation of the Thiele representation.

Ideally, the roots of det [Z(s)] should all lie on the jω-axis. However, as numerical approxima-

tions can cause some of the zeros to shift slightly into the complex plane, the algorithm needs

to be configured to search in a narrow band around the jω-axis. In addition, zeros belonging to

pole-zero pairs need to be identified.

As an iterative search method with a finite termination criterion, it is possible for the algorithm

to miss one or more roots, especially when closely spaced. This happens regardless of a high-

precision accuracy in the model as can be seen in Table 4.1(a) for the λ/15 coarse mesh and

-60 dB interpolation error. This is quite important, as the existence of dual and triple mode

resonances are unavoidable in microwave structures and the roots should be identified correctly.

A higher-order overdetermined model naturally results in the calculation of more roots. The

effect of oversampling can be seen for the λ/15 mesh and a -80 dB error (Table 4.1(a)). Three

roots (identified as pole-zero combinations) were found in close proximity of the 4.02 GHz natural

frequency. As the model order increases, it becomes more difficult to correctly distinguish the

resonance frequencies from invalid zeros.

Thiele Continued Fraction—Polynomial Method

In this method, the need for an iterative root-finding algorithm is eliminated. The number

of computed roots is now equal to the order of the numerator and the roots may be located
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anywhere within the complex frequency plane.

The conversion from a continued fraction representation to a ratio of polynomials can incur

a loss of accuracy, especially in models of high order. Note that for the -40 dB and -60 dB

interpolation errors, both root-finding algorithms used with the Thiele-type interpolation model

predict the same resonances. However, for the -80 dB case, a large number of complex roots

in the vicinity of the TM210 resonance frequencies were predicted without finding the actual

mode frequencies. This failure is a direct consequence of the loss in quality of the polynomial

model. This can be rectified by sub-dividing the interval to ensure computation of lower order

high accuracy models.

Vector Fitting—SER Eigenvalue Method

As before, the roots can be either imaginary roots (the actual resonances), real roots or roots

occurring in complex conjugate pairs. In the final comparison the VF SER proves to be the most

robust technique, identifying all sought resonance frequencies correctly. As the VF technique es-

timates residues of partial fractions, which requires less significant digits than the coefficients of

a polynomial, the pole-residue model often provides a more accurate representation for broad-

band solutions (with fewer samples). Comparing the -80 dB results (Table 4.1(a)), the VF

least-squares approach required only 26 support points for a smooth fit while the continued

fractions model was oversampled with 46 support points. In the second higher frequency inter-

val (Table 4.1(b)) the effect of oversampling is not as dramatic and models of similar order are

required by the Thiele and VF approaches.

Conclusion

The fitting error of the Vector Fitting technique is highly accurate and quite comparable to

interpolation techniques based on continued fractions. However, when searching for the roots

of the interpolant, the SER eigenvalue method as applied to the VF model was found to be

a non-iterative and robust technique, which accurately and successfully predicts the location

of all possible resonance frequencies in the interpolation interval. Furthermore, the VF pole-

residue model compensates for numerical noise in the data by solving a system of overdetermined

equations.

4.1.4 Study 2—Investigation of the Effects of Loss

The second investigation aims to establish the effect of losses on resonance frequencies. This

investigation follows from the observation that several models, namely, the straight-line ap-

proximation [55], the different magnetic-wall models [56, 59] and the eigenmode solver of the

commercial code CST Microwave Studio Version 5 (CST), offer only limited capabilities for the

inclusion of losses in the model. Based on the MoM eigenmode analysis and either the Thiele

continued fraction or the VF rational modelling techniques, this study investigates the accuracy
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of the resonant frequencies (both fundamental and higher-order mode frequencies) of a planar

ring resonator by comparison to the mentioned models and by introducing different components

of loss in the model.

Two test structures were selected, each consisting of an unloaded planar ring resonator with

mean ring radius R = 16.9 mm. The first ring (Ring #1) was chosen to support TMn10 modes

only, with a normalised ring width w/R = 0.1. Computer simulations were performed in the

frequency range [1 GHz, 9 GHz]. To support higher-order modes, however, the normalised

ring width has to be greater than 0.2. A second low impedance ring (Ring #2) was therefore

selected with a normalised ring width w/R = 0.6. Since higher-order modes are usually more

closely spaced in frequency, simulations were only performed in the frequency range [1.5 GHz,

6.5 GHz]. The substrate parameters used in the simulations are that of Taconic TLY-5, which

TABLE 4.2
Comparison of the resonant frequencies calculated by solution of the natural

frequencies of an unloaded resonator (Ring #1) with different loss components.
All roots are presented in GHz. (Frequency range [1 GHz, 9 GHz];

L = Maximum Discretisation Size; Ek = Maximum Interpolation Error;
Substrate parameters for Taconic TLY-5: h = 0.508 mm, εr = 2.2, tan(δ) = 0.0009;

Ring parameters: R = 16.9 mm, w/R = 0.1)

(a) Lossless covered microstrip ring resonator.

Straight- Improved Thiele

Resonant Line Magnetic- Magnetic- CST Continued Fractions Vector Fitting

Mode Model Wall Model Wall Model (L < λ/35) (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 2.0175 1.9926 1.9926 2.0190 2.0190 2.0154 2.0155 2.0130 2.0179

TM210 4.0350 4.0272 4.0061 4.0195 4.0295 4.0286 4.0288 4.0264 4.0310

TM310 6.0524 6.0404 6.0192 6.0172 6.0173 6.0305 6.0436 6.0305 6.0436

TM410 8.0699 8.0530 8.0318 7.9566 8.0084 8.0328 8.0344 8.0328 8.0344

(b) Lossy covered microstrip ring resonator (dielectric losses).

Straight- Improved Thiele

Resonant Line Magnetic- Magnetic- CST Continued Fractions Vector Fitting

Mode Model Wall Model Wall Model (L < λ/35) (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 2.0195 2.0195 2.0151 2.0158 2.0142 2.0167

TM210 4.0208 4.0304 4.0275 4.0299 4.0270 4.0304

TM310 6.0187 6.0188 6.0302 6.0438 6.0304 6.0436

TM410 7.9581 8.0107 8.0325 8.0348 8.0330 8.0342

(c) Lossy covered microstrip ring resonator (dielectric and conductor losses).

Straight- Improved Thiele

Resonant Line Magnetic- Magnetic- Continued Fractions Vector Fitting

Mode Model Wall Model Wall Model CST (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 2.0142 2.0147 2.0133 2.0157

TM210 4.0260 4.0285 4.0270 4.0276

TM310 6.0286 6.0419 6.0287 6.0418

TM410 8.0304 8.0328 8.0315 8.0316

(d) Lossy microstrip ring resonator (dielectric, conductor and radiation losses).

Straight- Improved Thiele

Resonant Line Magnetic- Magnetic- Continued Fractions Vector Fitting

Mode Model Wall Model Wall Model CST (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 2.0158 2.0160 2.0158 2.0160

TM210 4.0189 4.0189 4.0172 4.0207

TM310 6.0191 6.0320 6.0188 6.0323

TM410 8.0204 8.0218 8.0204 8.0218
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has a relative permittivity of εr = 2.2, a dissipation factor of tan(δ) = 0.0009 and a thickness of

h = 0.508 mm.

Table 4.2 shows the results of this experiment for Ring #1, while Table 4.3 lists the results

for Ring #2. For the calculation of the natural frequencies of these resonators, the maximum

discretisation size L was set to λ/35 at the maximum frequency in each interval; and the in-

terpolation error Ek (Eq. 4.24) was required to be less than -80 dB across the band. The

characteristics that emerged from this study are presented below.

Accuracy and Higher-Order Modes

i) For Ring #1, the first four natural pairs of resonant frequencies were found in the region

of 2.02 GHz, 4.02 GHz, 6.03 GHz and 8.02 GHz. Fig. 4.5 shows the instantaneous surface

(a) TM110 (b) TM210

(c) TM310 (d) TM410

Fig. 4.5. Instantaneous surface currents of a microstrip ring resonator (Ring #1) at the first four
natural mode frequencies. (Substrate parameters for Taconic TLY-5: h = 0.508 mm, εr = 2.2,
tan(δ) = 0.0009; Ring parameters: R = 16.9 mm, w/R = 0.1)
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TABLE 4.3
Comparison of the resonant frequencies calculated by solution of the natural

frequencies of an unloaded resonator (Ring #2) with different loss components.
All roots are presented in GHz. (Frequency range [1.5 GHz, 6.5 GHz];
L = Maximum Discretisation Size; Ek = Maximum Interpolation Error;

Substrate parameters for Taconic TLY-5: h = 0.508 mm, εr = 2.2, tan(δ) = 0.0009;
Ring parameters: R = 16.9 mm, w/R = 0.6)

(a) Lossless covered microstrip ring resonator.

Improved Thiele

Resonant Magnetic- Magnetic- CST Continued Fractions Vector Fitting

Mode Wall Model Wall Model (L < λ/35) (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 1.9734 1.9327 2.0068 2.0075 2.0389 2.0396 2.0386 2.0399

TM210 3.6272 3.5255 3.5865 3.5936 3.6577 3.6579 3.6573 3.6583

TM310 5.0613 4.9189 4.9647 4.9686 5.0346 5.0707 5.0348 5.0711

TM020 5.3654 5.1508 5.0022 5.1400 5.3178 5.3205

TM120 6.0404 5.8576 5.8459 5.8466 5.9860 5.9869 5.9840 5.9889

TM410 6.4159 6.2521 6.2789 6.2958 6.3948 6.3954 6.3948 6.3954

(b) Lossy covered microstrip ring resonator (dielectric losses).

Improved Thiele

Resonant Magnetic- Magnetic- CST Continued Fractions Vector Fitting

Mode Wall Model Wall Model (L < λ/20) (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 1.9985 1.9998 2.0389 2.0396 2.0388 2.0397

TM210 3.5650 3.5674 3.6571 3.6585 3.6566 3.6591

TM310 4.9238 4.9295 5.0347 5.0708 5.0348 5.0707

TM020 4.9671 5.1382 5.4686 5.3196 5.4689

TM120 5.8113 5.8116 5.9851 5.9878 5.9843 5.9885

TM410 6.2147 6.2456 6.3930 6.3971 6.3938 6.3960

(c) Lossy covered microstrip ring resonator (dielectric and conductor losses).

Improved Thiele

Resonant Magnetic- Magnetic- Continued Fractions Vector Fitting

Mode Wall Model Wall Model CST (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 2.0382 2.0384 2.0381 2.0385

TM210 3.6557 3.6575 3.6564 3.6568

TM310 5.0335 5.0692 5.0334 5.0694

TM020 5.3175 5.3180

TM120 5.9842 5.9857 5.9841 5.9861

TM410 6.3927 6.3942 6.3934 6.3936

(d) Lossy microstrip ring resonator (dielectric, conductor and radiation losses).

Improved Thiele

Resonant Magnetic- Magnetic- Continued Fractions Vector Fitting

Mode Wall Model Wall Model CST (L < λ/35, Ek < −80 dB) (L < λ/35, Ek < −80 dB)

TM110 2.0373 2.0374 2.0368 2.0378

TM210 3.6222 3.6231 3.6224 3.6229

TM310 4.9969 5.0317 4.9967 5.0320

TM020 5.1868 5.1771 5.1868

TM120 5.9567 5.9571 5.9567 5.9571

TM410 6.3595 6.3600 6.3595 6.3600

currents at these resonances, which correspond to the TM110, TM210, TM310 and TM410

modes.

ii) For Ring #2, the first six natural pairs of resonant frequencies were found in the region

of 2.04 GHz, 3.62 GHz, 5.01 GHz, 5.18 GHz, 5.96 GHz and 6.36 GHz. Fig. 4.6 shows the

instantaneous surface currents at these resonances, which correspond to the TM110, TM210,

TM310, TM020, TM120 and TM410 modes. Note the presence of the higher-order modes

TM020 and TM120, which are characteristic for normalised ring widths of small impedance

(w/R > 0.2).
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iii) The CST eigenmode solver requires the ring model to be enclosed by a finite PEC bounding

box. For the purposes of comparison, where either microstrip or covered microstrip was

used, the CST cavity-modes were ignored.

iv) Ring #1 yielded accuracies of within 0.5% of the straight-line model, within 1.3% of the

magnetic-wall models and within 1% of the CST data.

v) The accuracies of the respective f0 predictions for Ring #2 varied by a slightly larger

margin than for Ring #1, but still yielded good agreement. Predictions were accurate to

within 5% of the magnetic-wall models and 3% of the CST data when omitting the TM020

results. Since the frequencies of modes TM310 and TM020 are less than 5% apart, the task

of identifying all frequencies correctly becomes a lot more difficult. Note for example that

the CST eigenmode solver predicted the dual resonance frequencies of the TM020 mode to

differ by 2.8% and 3.4% in Table 4.3(a) and (b) respectively. A separation of dual mode

frequencies that is of a similar order of magnitude than the separation in frequency for

different resonance modes can therefore lead to the incorrect identification of a specific

mode frequency. The Thiele and Vector Fitting approaches show a similar behaviour in

separating the dual frequencies of the TM020 mode. Also, these mode frequencies were

found slightly deeper into the complex plane, thereby not adhering to the identification

criterion of |σ/ω| < 1%.

vi) Even though the straight-line model yielded a good first approximation for Ring #1 where

the ring width/ring radius (w/R) is small, the model falls well short of correctly predicting

the resonance frequencies for Ring #2, where a line of low impedance was used. As such,

the mean radius is not well-defined and the influence of curvature becomes important.

Also, the model can only be used to estimate the TMn10 mode frequencies when no higher-

order modes are present. Thus, except for the prediction of the fundamental TM110 mode

frequency at 2.02 GHz, this model cannot be used to predict the resonance frequencies of

low impedance rings such as Ring #2.

Loss Components

One of the biggest advantages of using an in-house code is the possibility to access and develop

the code to satisfy specific model requirements. The effect of different loss factors on the predic-

tion of the resonant frequencies was investigated by gradually introducing dielectric, conductor

and radiation losses respectively.

The results of this investigation are shown in Tables 4.2 and 4.3 where the model in (a) is assumed

lossless∗∗ and the model in (d) includes all the components of loss. The covered microstrip ring

resonator was modelled with a PEC parallel plate structure in the MoM analysis, while the CST

eigenmode solver assumed PEC boundary conditions all-around. Dielectric losses were included

by adjusting the dissipation factor tan(δ) and conductor losses were introduced by assuming a
∗∗Losses due to travelling surface waves were neglected.
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(a) TM110 (b) TM210

(c) TM310 (d) TM020

(e) TM120 (f) TM410

Fig. 4.6. Instantaneous surface currents of a microstrip ring resonator (Ring #2) at the first six
natural mode frequencies. (Substrate parameters for Taconic TLY-5: h = 0.508 mm, εr = 2.2,
tan(δ) = 0.0009; Ring parameters: R = 16.9 mm, w/R = 0.6)
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finite surface impedance Zs, present on the ring surface.

From the analyses it was found that most of the methods do not support the inclusion of

different components of loss in their models. The straight-line approximation and the magnetic-

wall models assume an ideal problem neglecting all forms of loss, while the CST model shows an

incapability to model both conductor losses and radiation losses present in an open structure.

However, the question arises as to how important the inclusion of these components of loss is

on the accurate prediction of the resonance frequencies. The following observations were made:

i) The resonant frequencies show a decrease in value as more loss components are introduced.

ii) The inclusion of tan(δ) = 0.0009 had little effect (< 0.06%) on the value of f0. Mate-

rials with larger dissipation factors may, however, show larger deviation upon introducing

dielectric losses in the model.

iii) The inclusion of conductor losses introduced insignificant changes in f0 of less than 0.07%.

iv) The inclusion of radiation losses introduced changes in f0 of less than 0.24%.

Conclusion

The inclusion of loss in the various models does not have a significant influence on the pre-

diction of the resonant frequencies. However, these factors cannot be ignored when predicting

characteristics such as the Q-values, which of course give a direct indication of the losses in the

structure. Without introducing any additional computational effort, the more accurate model

may just as well also be used in the extraction of the resonant frequencies.

4.2 Calculation of Resonant Frequencies through Scattering Pa-
rameters of a Loaded Resonator

An alternative way of calculating resonant frequencies is to use the S-parameters of a loaded

resonator. Chang et al. [72] used a T-network in terms of equivalent impedances with a closed

form solution to analyse the ring circuit, showing accuracies of better than 0.2% with respect

to measurements of the fundamental TM110 mode. A distributed circuit model using cascaded

transmission line segments to easily incorporate any discontinuities along the ring and predict

mode splitting in asymmetric ring structures has also been used [73], but the accuracy of results

were not discussed. When using CEM analyses, S-parameter data with a high spectral density

is normally needed for the extraction of f0 and Q, as resonant structures have the distinct

property of sharp peaks and valleys, as shown in Fig. 4.8(a), which are difficult to model and

predict accurately.

This section presents two experimental studies. In the first study, the two rational modelling

approaches investigated in the modelling of an unloaded resonator (Thiele continued fractions
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Fig. 4.7. Excitation used to construct ring resonators of normalised ring width w/R = 0.1 and w/R = 0.6.

and Vector Fitting) are compared with respect to their ability to predict the resonance frequen-

cies of a loaded microwave ring resonator. The prediction of both fundamental and higher-order

resonances are investigated and results are verified against predictions obtained from commer-

cial software and measurement. In addition, a new algorithm for the extraction of the resonant

frequencies from the rational approximation of the scattering parameter magnitude plot is pro-

posed. The second study investigates the correctness of the interpolation function, by focusing

on asymmetries in the discretisation causing unwanted mode splitting.

4.2.1 Study 1—Investigation of the Accuracy of Different Model Predictions

When a loaded microstrip ring resonator is loosely coupled to its feed lines, the coupling gap

capacitances do not greatly affect the intrinsic resonant frequencies of the ring. Using this model

of loose coupling, the ring resonators of Section 4.1.4 were loaded with symmetrically arranged

feed lines as shown in Fig. 4.7. Ring #1 was excited with feed lines of length pL = 3 mm and

width pW = 1.53 mm, and a coupling gap size of g = 0.7h. However, when using the same

excitation on the lower impedance ring (Ring #2), coupling was found to be too small. To

increase the coupling, the following feed parameters were used: pL = 5 mm, pW = 1.53 mm,

α = 15◦ and g = 0.6h. This investigation focuses on the comparison of different rational meta-

models with respect to their ability to approximate the S-parameter response of a resonator

accurately before locating the resonance frequencies at the maxima of the S-parameter magni-

tude response.

Fig. 4.8(a) shows the S-parameter response of Ring #1 as calculated with the MoM code.

Using the Vector Fitting adaptive rational interpolation formulation, a response with a -100 dB

accuracy in the interpolant (Ek(f) = |<k(f)−<k−1(f)|) and only 20 support points was found.

Fig. 4.8(b) shows the comparative result when using the same number of support points, but

at equally spaced discrete frequency points. Since no additional data exist between the selected

points, this method fails to correctly predict the system response. Even if the number of discrete

evaluation points is increased to a large number, which is computationally inefficient, there is a

chance that the points of resonance will still be missed.
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(a) MoM using adaptive rational interplation.
(20 support points; Ek(f) = 10−5)
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(b) MoM using 20 discrete equally spaced support
points.

Fig. 4.8. Comparison of S21 magnitude responses obtained using an equal number of samples for the
adaptive rational interpolation formulation and the evaluation of linearly spaced discrete frequencies.

To obtain the resonant frequencies numerically from the interpolant of the S-parameters, use

is made of the fact that the interpolant can be evaluated at any frequency point with little

extra cost. An initial estimate of f0 is taken from the S-parameter plot. The interpolant is

then evaluated at a large number of equally spaced points (e.g. 100 Hz apart) around f0. The

frequency associated with the maximum magnitude then becomes the new resonant frequency.

If this frequency falls on the first or last point in the evaluated interval, the S-parameter slope

is either decreasing or increasing and the process is repeated. Otherwise, the interval includes

the correct resonance value and the spacing is decreased to 10% of the previous interval spacing,

i.e. 10 Hz. The process then repeats itself and the algorithm terminates when the frequency

spacing reaches the user defined accuracy of e.g. 0.1 Hz.

Table 4.4 shows the results of this experiment for Ring #1, while Table 4.5 lists the results for

Ring #2. The maximum discretisation size L was set to λ/35 at the maximum frequency in

each interval; and the interpolation error Ek was required to be less than -100 dB across the

band. Comments on accuracy and higher-order modes are given below.

Accuracy and Higher-Order Modes

i) As the rings are excited using colinear feed lines, only one of the dual mode frequencies

will be excited.

ii) Using the described algorithm for the extraction of the resonant frequencies from a ra-

tional approximation of the scattering parameter magnitude plot, the first four resonant

frequencies of Ring #1 were calculated as 2.02 GHz, 4.02 GHz, 6.02 GHz and 8.02 GHz,

all corresponding to the TMn10 modes.

iii) Similarly for Ring #2, five resonant frequencies were identified at 2.04 GHz, 3.62 GHz,

5.00 GHz, 5.97 GHz and 6.36 GHz, corresponding to the TM110, TM210, TM310, TM120

and TM410 modes. Note that the higher-order TM020 resonance frequency could not be
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TABLE 4.4
Comparison of the resonant frequencies calculated through scattering parameters

of a loaded resonator (Ring #1) with different loss components.
All roots are presented in GHz. (Frequency range [1 GHz, 9 GHz];

L = Maximum Discretisation Size; Ek = Maximum Interpolation Error;
Substrate parameters for Taconic TLY-5: h = 0.508 mm, εr = 2.2, tan(δ) = 0.0009;

Ring parameters: R = 16.9 mm, w/R = 0.1, g = 0.7h, pL = 3 mm, pW = 1.53 mm)

(a) Lossy covered microstrip ring resonator (dielectric and conductor losses).

Thiele

Resonant FEKO Continued Fractions Vector Fitting

Mode Measurements (L < λ/35) (L < λ/35), Ek < −100 dB) (L < λ/35), Ek < −100 dB)

TM110 2.0195 2.0214 2.0221 2.0220

TM210 4.0328 4.0331 4.0339 4.0339

TM310 6.0173 6.0352 6.0357 6.0357

TM410 8.0027 8.0246 8.0369 8.0369

(b) Lossy microstrip ring resonator (dielectric, conductor and radiation losses).

Thiele

Resonant FEKO Continued Fractions Vector Fitting

Mode Measurements (L < λ/35) (L < λ/35), Ek < −100 dB) (L < λ/35), Ek < −100 dB)

TM110 2.0046 2.0102 2.0158 2.0158

TM210 4.0102 4.0150 4.0186 4.0186

TM310 6.0040 6.0132 6.0180 6.0180

TM410 7.9918 8.0032 8.0196 8.0196

TABLE 4.5
Comparison of the resonant frequencies calculated through scattering parameters

of a loaded resonator (Ring #2) with different loss components.
All roots are presented in GHz. (Frequency range [1.5 GHz, 6.5 GHz];
L = Maximum Discretisation Size; Ek = Maximum Interpolation Error;

Substrate parameters for Taconic TLY-5: h = 0.508 mm, εr = 2.2, tan(δ) = 0.0009;
Ring parameters: R = 16.9 mm, w/R = 0.6, g = 0.6h, pL = 5 mm, pW = 1.53 mm, α = 15◦)

(a) Lossy covered microstrip ring resonator (dielectric and conductor losses).

Thiele

Resonant FEKO Continued Fractions Vector Fitting

Mode Measurements (L < λ/35) (L < λ/35), Ek < −100 dB) (L < λ/35), Ek < −100 dB)

TM110 2.0101 2.0120 2.0412 2.0411

TM210 3.6189 3.6350 3.6431 3.6432

TM310 5.0785 5.0367 5.0365 5.0366

TM020

TM120 5.8893 5.9535 6.0075 6.0074

TM410 6.3217 6.3749 6.3919 6.3919

(b) Lossy microstrip ring resonator (dielectric, conductor and radiation losses).

Thiele

Resonant FEKO Continued Fractions Vector Fitting

Mode Measurements (L < λ/35) (L < λ/35), Ek < −100 dB) (L < λ/35), Ek < −100 dB)

TM110 1.9661 1.9778 2.0397 2.0394

TM210 3.5484 3.5813 3.6222 3.6222

TM310 4.9434 4.9811 4.9963 4.9963

TM020

TM120 5.8450 5.8982 5.9661 5.9661

TM410 6.2863 6.3286 6.3590 6.3590
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Fig. 4.9. S21 magnitude response of Ring #2 demonstrating the improbability of correctly identifying
the TM020 mode frequency.

extracted from the S-parameter response as the TM310 and the TM020 modes were too

closely spaced in frequency. This is shown in Fig. 4.9 where the TM020 mode disappears

below the skirts of the more strongly coupled TM310 mode.

iv) Compared to the resonant frequencies read off the S21 magnitude responses measured

and computed with FEKO Suite 4.2, the frequencies for Ring #1 were found to agree

within 0.6% and 0.3% respectively. Also, compared to the natural frequencies found in

Section 4.1.4 Table 4.2, results were within 0.3% of the MoM and 1.0% of the CST pre-

dictions.

v) For Ring #2, the comparisons yielded accuracies of better than 3.6% and 3.0% compared

to the measured and FEKO simulated results. Larger discrepancies in the measured results

may be as a result of the finite size ground planes used in the practical structure. Compared

to the natural frequencies found in Section 4.1.4 Table 4.3, results were within 0.7% of the

MoM and 3.3% of the CST predictions.

Conclusion

Mode identification from an S-parameter response requires the finding of resonance peaks or

maxima. Similar to the extraction techniques based on the solution of an eigenmode problem,

resonance frequencies can be predicted accurately. However, finding multiple maxima using an

automated algorithm poses a far more daunting task than to identify multiple zeros, as numerical

noise effects can easily be misinterpreted as resonance frequencies. In addition, the technique

can only identify the resonance frequencies of modes that are excited and do not disappear below

the skirts of nearby modes that are more strongly coupled.
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4.2.2 Study 2—Investigation of Mode Splitting

A microstrip ring resonator is known to support two degenerate (orthogonal) modes that coexist

independently of each other. If circular symmetrical ring resonators are used with colinear

feed lines, then only one of these modes will be excited. If the coupling lines are arranged

asymmetrically (or the symmetry of the ring is disturbed), then both modes should again be

excited and the slight splitting of the modes should be easily detected [74]. A different result

was however found when analysing a symmetrical ring structure with a coarse asymmetric mesh

discretisation—an undesirable mode splitting occurred.

The test problem consisted of a microstrip ring resonator with mean ring radius R = 7.475 mm

and a normalised ring width w/R = 0.1. The dielectric substrate has a relative permittivity

of εr = 10.2 and thickness h = 0.635 mm. The coupling lines were arranged symmetrically

with a coupling gap size of g = 0.1h and the port lengths and widths were pL = 8.2 mm and

pW = 1.4328 mm respectively. No dielectric or surface losses were included in the calculations

and the problem was discretised into 87 asymmetrically spaced triangles.

Fig. 4.10(a) shows the S-parameter response around the TM110 resonant frequency for a −70 dB

and a −80 dB error in the interpolant. For the −80 dB error case, an unexpected mode split-

ting is observed, in this case traceable to a slightly assymetric MoM solution. However, this

phenomenon is absent from the −70 dB error case, where the accuracy of the fit is only slightly

worse. Using a finer symmetric discretisation of 200 triangles, mode splitting was eliminated

and only a single mode was successfully excited.

The surface current magnitudes at first resonance were analysed and plotted along symmetrical

lines around the ring. The currents, as shown in Fig. 4.10(b), are anti-metrical around the ring.

Upon mirroring one set of data around the zero position, it was found that the currents indeed
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Fig. 4.10. Mode splitting caused by slightly assymetric MoM solution.
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matched each other. Also, the differences in symmetry becomes more as one moves away from

the resonant point.

It is therefore clear that when doing this type of analysis, care has to be taken when selecting

the combination of mesh size and minimum error bound. Fortunately, in practical problems

involving loss, the simulation becomes less sensitive to a particular discretisation where splitting

becomes invisible or unnoticable below the S-parameter skirts.

4.3 Conclusion

In this chapter two univariate rational interpolation models, the Thiele-type continued fractions

and Vector Fitting pole-residue approaches, were exploited to accurately predict the resonance

frequencies of a microwave ring resonator. Calculation of this characteristic f0 was performed

using two techniques—one predicting the natural frequencies of an unloaded resonator (eigen-

mode problem) and the other using the S-parameter response of a loosely coupled loaded reso-

nator.

For the unloaded problem, the CEM solution required finding the zeros of an eigenvalue equation.

Firstly, using MoM, this required the development of a new frequency dependent scaling constant

to ensure evaluation to a viable solution to be used with interpolation techniques. Next, three

methods were proposed and compared to calculate pole-free solutions to the Thiele and Vector

Fitting models. Numerical difficulties and the existence of improper solutions to the eigenmode

function were discussed, and convergence effects due to finite meshing were investigated. Finally,

the inclusion of different components of loss in the model and the prediction of higher-order

resonances was investigated and compared to current techniques.

For the loaded problem, an algorithm for the extraction of the resonant frequencies from a

rational approximation of the scattering parameter magnitude plot was developed, and the

results were compared to predictions obtained from measurements and commercial software

simulations. Also, correctness of the interpolant and asymmetries in the discretisation causing

mode splitting was investigated and discussed.

Results suggest that resonance frequencies can be accurately predicted by modelling either an

unloaded resonator or a loosely coupled loaded resonator. To identify each one of the mode

frequencies, however, it is advised to solve the unloaded eigenmode problem using Vector Fitting

and the SER eigenvalue method of root-finding. The technique is robust, can handle noise in

the data and provides a direct solution to finding the resonance frequencies. On the contrary,

automated extraction of resonance frequencies from an S-parameter magnitude response is far

more difficult. In addition, some resonances are left unidentified as their peak response cannot be

differentiated from below the skirts of nearby, more strongly coupled, resonances. Due to ability
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of Vector Fitting to compensate for numerical noise, it is recommended to use the technique

instead of the Thiele fitting function in modelling the S-parameter response.

In Chapter 5, the univariate rational interpolant of the Thiele continued fraction will be further

exploited to accurately predict the important resonator characteristic of Q-values.



Chapter 5

Calculation of Q-Factors

The second parameter of importance for microwave resonators is the Q-value. As a measure of

the loss in a resonator, the quality factor is defined as the ratio of maximum energy Wmax stored

within a system to the power dissipated Pd in the system

Q = 2πf0
Wmax

Pd
. (5.1)

A number of methods for Q-factor measurement and calculation exist, and are usually based

on measurements of various types of system response: impedance [75–78], power [79] and S-

parameters [80–84]. For the case of an unloaded resonator enclosed in a metal cavity, the

Q-factor can most accurately be calculated by directly evaluating the definition in Eq. 5.1. The

total energy stored at resonance may be found by taking a volume integral over the squared

peak magnetic fields, and computation of the dissipated power requires integration of the squared

magnetic fields over the entire metal surface of the cavity. Even though commercial packages

successfully utilise this direct method for limited topologies, the method requires the computa-

tionally expensive use of an accurate full-wave EM evaluation of the field distribution over the

complete volume of interest. For open structures such as microstrip, the computational expense

is even greater as the volume has to now include all of the surrounding fields.

Because of the dominating effect of a resonator on circuit response in the vicinity of resonance,

many techniques for Q-factor extraction rely on the fitting of response data to simplified network

models. The simplest expression for determining the loaded quality factor of a resonator is the

3-dB “three frequencies” method as derived from a 3-element RLC equivalent circuit. The Q-

factor is a ratio of the resonant frequency to the difference between the upper and lower 3 dB

frequency points. Although often used, this expression is based on a simple approximation and

will deviate for resonators with multiple resonant points since nearby resonances will affect the

3 dB values of the particular resonance being considered.

The more popular Q determination techniques rely on a Foster network type of formulation,

where the quality factors are obtained by fitting a circle to multi-frequency S-parameter data.

50
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This is a more accurate method than the 3-dB point expression for determining Q, since all

points around the resonant frequency contribute to the definition of the circle. One of the more

successful methods, the transmission mode quality factor (TMQF) fitting procedure, was deve-

loped by Leong [84] in 2002. The technique is based on equations derived for resonators working

in the transmission mode and fractional linear circle-fitting techniques. The TMQF is of great

use in calculating Q-values from measurement. Q-factor measurement techniques have been

developed based on ideal models of resonator systems. In [84], Leong gives an overview on the

effects that may influence the S-parameters of dielectric resonators. These include noise, elec-

trical delay introduced by transmission lines, losses due to uncalibrated transmission lines and

coupling structures, impedance mismatch and crosstalk. Some of the effects can be eliminated

through a calibration procedure while other distortions need to be accounted for by adjusting

and incorporation into the model. The TMQF method was developed to address most of these

parasitic measurement effects. For a single resonator working in the transmission mode, a least-

squares solution of the system provides the Q-factors as a function of the curve parameters. The

procedure involves relating the S-parameters with the loaded quality factor QL, the coupling

coefficients β and the overall resonant frequency fL through the use of a circuit model (Fig. 5.1).

As with the calculation of f0, interpolation-based models can be used to good effect to calculate

Q-values. Applied to the TMQF fitting method, the rational interpolation model of the S-

parameter response can be used to accurately and efficiently generate multiple data samples in

the vicinity of resonance for use in the least-squares solution. These data samples are found at

no additional CEM cost. An alternative approach, based on the same Thiele rational interpolant

of the S-parameters as calculated in the previous chapter, can also be used for the prediction of

Q-factors. This new three-point rational interpolation method, which uses only three of these

Thiele coefficients at a time, provides a direct fit and solution to the Q-factors, again without

any additional CEM effort. In Section 5.2 the theory for the three-point method is developed

and verified. Advantages and problems encountered with this formulation are discussed and

comparative results with the TMQF method and measurements are shown.

5.1 Transmission Mode Quality Factor (TMQF) Technique [84]

The theory of the TMQF technique was first presented in 2002. To derive equations relating

the S-parameters to the loaded quality factor QL, the coupling coefficients β1 and β2 and the

overall resonant frequency fL, the circuit model of a transmission-mode resonator as shown in

Fig. 5.1 has been used.

The three components R0, L0 and C0 of shunt admittance Y0 represent the ideal resonator. The
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Fig. 5.1. Circuit model of a transmission resonator system.

shunt elements determine the unloaded quality factor of the system that can be described as

Y0 =
1

R0

(
1 + j2Q0

f − f0

f0

)
, (5.2)

when using the narrow-band approximation f2 − f2
0 ≈ 2f∆f . Here Q0 is the unloaded quality

factor of the ideal resonator and the resonant frequency f0 is given by

f0 =
1

2π
√

L0C0

. (5.3)

The admittances Yex1 and Yex2 are external admittances as seen towards each port of the reso-

nator

Yexp =
1

Rsp + Rc + jXsp
= Gexp + jBexp, (5.4)

where p denotes the input and output ports respectively. Resistances Rs1 and Rs2 represent

losses of coupling structures, connectors, and losses of transmission lines connected to the two

ports of the resonator, while reactances of the coupling structures are modelled by Xs1 and Xs2.

The resistance Rc represents an internal resistance of a microwave source, a load resistance and

the characteristic impedance of transmission lines at both ports.

The circuit diagram of Fig. 5.1 can be seen as a cascaded connection of three networks. The

S-parameters of the total resonator system can then be obtained from the ABCD-parameters as

S21 =
2Rc

ARc + B + CR2
c + DRc

=
2RcYex1Yex2

Yex1 + Yex2 + Y0
. (5.5)

The denominator of Eq. 5.5 is equal to the total circuit admittance YL and the resonant fre-

quency fL of the loaded resonator can be found by assuming the imaginary part of YL to be

zero

fL = f0

(
1− Bex1 + Bex2

2Q0G0

)
. (5.6)

Near resonance, the complex transmission coefficient S21 can be expressed in terms of the loaded

quality factor QL, the coupling coefficients and frequency

S21(f) ≈ 2RcYex1Yex2

G0(1 + β1 + β2)
(
1 + j2QL

f − fL

fL

) , (5.7)

where β1 and β2 are the coupling coefficients of the loaded resonator and are defined as a ratio

of the external power dissipated to power dissipated in the system

β1 =
Gex1

G0
and β2 =

Gex2

G0
, (5.8)
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and for resonators working in the transmission mode

Q0 = QL(1 + β1 + β2). (5.9)

The relationship between the reflection parameter S11 and the loaded quality factor QL is given

by

S11(f) ≈
j2QLS11d

f − fL

fL
+
(
S11d +

2RcY
2
ex1

G0(1 + β1 + β2)

)
j2QL

f − fL

fL
+ 1

, (5.10)

where S11d represents the detuned value of the reflection coefficient at the port when the fre-

quency is far from fL.

The above derivation shows that both the transmission coefficient S21 (Eq. 5.7) and the reflection

parameter S11 (Eq. 5.10) have a fractional linear form in the region of resonance

Sij =
a1t + a2

a3t + 1
, (5.11)

where t = 2(f − fL)/fL is a normalised frequency variable. A least-squares solution of the

system provides the Q-factor as a function of the complex curve parameters a1, a2 and a3, and

the loaded quality factor can be found directly as the imaginary part of a3 (QL = Im{a3}). As

a result the loaded quality factor for transmission-mode resonators can be found from either the

transmission or reflection responses. Note that a1 = 0 when working with S21.

One problem with the method in [84] is that the parameters ai are dependent on the frequency

span used. For wide spans, the order of the rational function is simply too low to fit the

curve accurately. To solve this, a reduced frequency span should be used. The effect of an

excessively wide frequency span on the Q-value of a resonator was investigated by calculating

the quality factor for decreasing frequency spans and computing an associated maximum error∑
(|(a1t + a2)/(a3t + 1)− Sij |p)/N between the S-parameter response and the fitting curve ob-

tained. Fig. 5.2 shows the results of this experiment, plotting the loaded quality factor against

error. Converged Q-factor values of 1636.0 and 1640.3 were extracted from the transmission and

reflection responses, respectively. Note that the Q-factor extracted from the transmission re-

sponse remains constant over a far wider frequency span than for the reflection response, making

Q-factor extraction from the S21 response the preferred option. When using this technique of

frequency band shrinking and error calculation, the transmission mode quality factor (TMQF)

technique was found to be a robust tool for accurate calculation of the loaded quality factors.

The TMQF method calculates the loaded quality factor QL. To fully characterise a resonator,

the unloaded quality factor Q0 (Eq. 5.9) should be determined. This requires calculation of the

coupling coefficients β1 and β2, as discussed in [84]. Under weak coupling conditions, however,

the reflection Q circles are too small to yield reliable results and the unloaded quality factor
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Fig. 5.2. Convergence results of the loaded quality factor calculated using the TMQF technique on both
transmission and reflection responses.

have to be approximated by the loaded quality factor (Q0 ≈ QL). As both coupling coefficients

are very small for this case, this does not affect the unloaded Q adversely. Also, the noise in the

reflection trace is usually significantly higher than in the transmission trace, and measurements

with low coupling result in a low SNR ratio that may affect the accuracy of the measurements.

Hence, according to [84] it is desirable to use sufficiently high levels of coupling.

In [83], an uncertainty analysis of the transmission-type measurement of Q-factors has been pre-

sented, suggesting the opposite, i.e. overcoupled resonators have considerably larger uncertainty

in Q0 than in QL, where undercoupled resonators have approximately the same uncertainty in

Q0 than in QL. Using this method of insertion-loss, the unloaded quality factor is calculated as

Q0 =
QL

1− 10−L/20
, (5.12)

where L is the insertion loss in dB at resonance. This method assumes the input and output

couplings to be identical to each other. Eq. 5.12 is widely used and generally gives accurate

results, provided the coupling is small [74]. As such, this method of approximating Q0 will be

used in this chapter.

5.2 Three-Point Rational Interpolation Method [26]

The problem with the standard TMQF fitting method is that the technique relies on least-squares

fits, which normally require a large number of frequency points in the vicinity of resonance. A

new method, using the previously calculated coefficients of the S-parameter Thiele interpolant

(Chapter 4.2), is proposed that eliminates the need for a least-squares fit. The proposed tech-

nique, called the three-point rational interpolation method, uses only three of the interpolant
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coefficients at a time, to obtain Q-factors without any additional CEM effort. The method

provides a direct fit and solution to the Q-values.

In the rational interpolation formulation, the Thiele continued fraction (Eq. 3.2) for 3 support

points, <2(f), has the form

<2(f) = H0 +
f − f0

ϕ1(f1, f0) +
f − f1

ϕ2(f2, f1, f0)

. (5.13)

In the vicinity of resonance, <2(f) can be changed into the form of <2(t), which has the exact

same form as Eq. 5.11 for the reflection response (i.e. a1 6= 0).

With t the normalised frequency variable

t = 2
f − fL

fL
(5.14)

and fL the loaded resonant frequency, it follows that

<2(t) =

[
fL(H0 + ϕ2)

2(ϕ1ϕ2 − f1 + fL)

]
t +
[
S0 +

ϕ2(fL − f0)
ϕ1ϕ2 − f1 + fL

]
[

fL

2(ϕ1ϕ2 − f1 + fL)

]
t + 1

. (5.15)

Since all the interpolant coefficients are known, the parameters a1, a2 and a3 can be extracted

directly from the reflection response and the need for a least-squares fit is eliminated. Also, the

loaded quality factor is readily available and equal to the imaginary part of parameter a3

QL = Im{a3} = Im
{

fL

2(ϕ1(f1, f0)ϕ2(f2, f1, f0)− f1 + fL)

}
. (5.16)

Since this technique uses only three of the original interpolant samples to model the S-parameter

response in the vicinity of resonance, these support points should be chosen carefully. With the

Thiele fitting function required to pass through each support sample, it follows that a support

point (fi,Hi) has the largest influence on the interpolant near the frequency fi. Hence, the

obvious choice is to select the three support samples closest to the resonant frequency fL.

Fig. 5.3 shows an example fit achieved by using the three-point interpolant. A quality factor of

QL = 937.7 was extracted, which agrees well with the values of 942.2 and 951.3 obtained using

the TMQF technique on the transmission and reflection responses respectively.

However, when using adaptive sampling there is no means of ensuring that there will indeed

be at least three support samples in close proximity of the resonant frequency. The three-point

interpolant may then differ substantially from the original model, yielding incorrect results.

Fig. 5.4 illustrates this incorrect fit, from which a loaded quality factor of QL = −146.6 was

extracted. This value is negative and not near the TMQF predictions of 1636.0 for the S21 fit

and 1640.3 for the S11 fit. To improve this method, the contribution of each and every support

point needs to be considered and incorporated into the model.
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Fig. 5.3. Three-point rational interpolation fit on S11 data at fL = 4.0461 GHz.
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Fig. 5.4. Incorrect three-point rational interpolation fit on S11 data at fL = 2.0306 GHz.

In the region of resonance, the interpolant term associated with a support point (excluding the

two points closest to fL) behaves as a constant. Therefore, the Thiele continued fraction <2(f)

was extended to include the constant Θ as evaluated at fL, to give

<2(f) = H0 +
f − f0

ϕ1(f1, f0) +
f − f1

ΘNs(fL)

, (5.17)

where Ns + 1 is the total number of support points describing S11. The constant Θ(fL) has

the same form as the original partial fraction expansion and can be evaluated using the same
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recurrence formula

Nk(fL) = ϕk(fk, fk−1, · · · , f0)Nk−1(fL) + (fL − fk−1)Nk−2(fL) k = 4, 5, · · · , Ns

Dk(fL) = ϕk(fk, fk−1, · · · , f0)Dk−1(fL) + (fL − fk−1)Dk−2(fL) k = 4, 5, · · · , Ns

Θk(fL) =
Nk(fL)
Dk(fL)

k = 2, 3, · · · , Ns,

(5.18)

but with different starting conditions N2(fL) = ϕ2(f2, f1, f0),

N3(fL) = ϕ3(f3, f2, f1, f0)N2 + (fL − f2), D2(fL) = 1 and D3(fL) = ϕ3(f3, f2, f1, f0).

Note that the interpolant passes through the point of resonance (fL,HL) and also the support

points H0 and H1. For a best fit these are selected as the two support points closest to fL. After

transforming Eq. 5.17 to the form of Eq. 5.11†, the loaded quality factor is given by

QL = Im{a3} = Im
{

fL

2(ϕ1(f1, f0)ΘN (fL)− f1 + fL)

}
. (5.19)

Fig. 5.5 plots the improved three-point solutions as calculated at the two test resonance frequen-

cies discussed in Figs. 5.3 and 5.4. The method yielded Q-values of 1662.7 at fL = 2.0306 GHz

and 949.2 at fL = 4.0461 GHz. These results are within 1.6% of the values predicted with the

TMQF least-squares fit.
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(a) fL = 2.0306 GHz.
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(b) fL = 4.0461 GHz.

Fig. 5.5. Improved three-point rational interpolation fit on S11 data.

5.2.1 Study 1—Verification of the Three-Point Method

In this study the three-point rational interpolation method is verified theoretically for both

high-Q and low-Q values. The basic ring structure selected for this test study is that of Ring #1

(R = 16.9 mm, w/R = 0.1) described in Section 4.2.1, and supports only the TMn10 modes that

are widely spaced in frequency. The three-point method computes the loaded quality factor of a

resonator. To establish high values of QL, losses were suppressed by setting tan(δ) = 0, surface

†The result is obtained by a simple interchange from ϕ2(f2, f1, f0) to ΘN (fL) in Eq. 5.15.
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roughness ∆ = 0 and assuming ideal conductors Zs = 0, leaving only radiation loss. To simulate

lower values of QL, stronger coupling was enforced by decreasing the coupling gap size to g = 0.

Tables 5.1 and 5.2 list the loaded quality factors extracted using both the least-squares TMQF

approximation and the two variants of the three-point rational interpolation method.

Quality factors QL were computed at the first four mode frequencies. In Table 5.1 the higher

Q-values agree to within 1.8%. Note that the three-point method at 2.0306 GHz predicted an

incorrect negative value of -146.6 while the improved three-point method provided a good esti-

mate of QL = 1662.7. In Table 5.2, the lower Q-values agree to within 2.7% when discarding the

value obtained at the TM110 mode frequency. Differences in the predictions at this fundamental

resonant frequency is the result of a weakened coupling, which means the reflection Q-circle is

too small to yield reliable results. Also, according to [84], the range of Q-factors measureable

with the TMQF technique is from 103 up to 107, as applied to dielectric resonators. In this

example, however, the fitting methods have been tested to predict extremely small values of Q.

It is important to realise at this point that one of the greatest disadvantages of the three-

TABLE 5.1
Comparison of loaded Q-factors (high-Q values) calculated with the Transmission

Mode Quality Factor (TMQF) technique and the three-point rational interpolation
methods.

(Substrate parameters: h = 0.508 mm, εr = 2.17, tan(δ) = 0;
Ring parameters: R = 16.9 mm, w/R = 0.1, g = 0.7h, pL = 3 mm, pW = 1.53 mm;

Surface roughness: ∆ = 0; Conductor losses: Zs = 0)

Improved

Resonant Resonant Three-Point Three-Point

Mode Frequency [GHz] TMQF Method Method

S21 S11 S11 S11

TM110 2.0306 1636.0 1640.3 -146.6 1662.7

TM210 4.0461 942.1 951.3 937.7 949.2

TM310 6.0573 780.7 788.6 798.9 794.8

TM410 8.0717 693.8 696.2 697.2 701.0

TABLE 5.2
Comparison of loaded Q-factors (low-Q values) calculated with the Transmission

Mode Quality Factor (TMQF) technique and the three-point rational interpolation
methods.

(Substrate parameters: h = 0.508 mm, εr = 2.17, tan(δ) = 0.0011;
Ring parameters: R = 16.9 mm, w/R = 0.1, g = 0, pL = 3 mm, pW = 1.53 mm;

Surface roughness: ∆ = 3.5 µm)

Improved

Resonant Resonant Three-Point Three-Point

Mode Frequency [GHz] TMQF Method Method

S21 S11 S11 S11

TM110 2.0509 3.11 3.37 3.08 2.73

TM210 4.0814 6.07 6.19 6.30 6.24

TM310 6.1351 9.20 9.27 9.64 9.49

TM410 8.1672 12.56 12.64 14.16 12.50
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point rational interpolation method is that the fitting procedure is applied to the reflection

parameter S11. As was explained in Section 5.1, the noise in the reflecion response is usually

significantly higher than in the transmission response. Also, as was seen in the previous example,

the reflection Q-circles become too small and poorly defined under weak coupling conditions to

make any meaningful predictions.

To investigate this issue, the unloaded quality factors Qu for Ring #1 (R = 16.9 mm, w/R = 0.1)

were computed while considering different coupling conditions. The results are listed in Table 5.3

for coupling gap sizes varying between g = 0 and g = 0.3h. The model includes the various

loss components with tan(δ) = 0.0011, Zs = (1 + j)/(σeffδ) and a uniform surface roughness of

∆ = 3.5 µm. A discussion on interesting characteristics that emerged from the study follows

below.

Accuracy

i) Coupling increases as frequency increases. As such, coupling is the weakest at the fun-

damental resonance frequency, resulting in the worst Q-circle fit and the least accurate

results. For g = 0 and g = 0.2h, only a single support point in close vicinity of the TM110

mode frequency was needed to establish an accurate S-parameter response, which is of

course insufficient for Q-value extraction. This means that a higher accuracy model with

more support points may be needed to correctly extract the Q-values than to generate an

accurate S-parameter response.

ii) Weaker coupling means smaller reflection Q-circles and inaccurate results. Comparing

only the TMQF predictions for the transmission and reflection responses, it is clear that

the Q-values predicted using the S21 trace remain constant as expected for Qu values while

the Q-values predicted using the S11 response increase in magnitude. Differences of up

to 14% are recorded for the g = 0.3h case. Thus, under weak coupling conditions, it is

preferable to use the transmission S21 response to compute quality factors.

iii) When comparing the S11 predictions for the TMQF technique and the improved three-

point method, the Q-values are in good agreement with a maximum difference of 5.9%.

Thus, under sufficiently high levels of coupling, the improved three-point method may be

utilised to accurately predict resonator Q-factors. This can be seen from the g = 0 (high

coupling) case where the S21 and S11 predictions are within 3% of each other.

Conclusion The three-point rational interpolation method has been verified to extract the

Q-values of both high- and low-Q resonators. Under loose coupling conditions, however, the

technique falls short of giving accurate predictions, as the reflection Q-circles are too small

to predict reasonable values. As Q-factor extractions from S21 transmission responses are more

reliable and less sensitive to the feed line coupling strength and frequency span used in the fitting

approximation, the use of the TMQF technique to extract Q-values from the S21 response is

recommended instead. In addition, it is proposed that the S-parameter interpolation model be
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TABLE 5.3
Unloaded Q-factors calculated for Ring #1 with different coupling conditions.

(Substrate parameters: h = 0.508 mm, εr = 2.17, tan(δ) = 0.0011;
Ring parameters: R = 16.9 mm, w/R = 0.1, pL = 3 mm, pW = 1.53 mm;

Surface roughness: ∆ = 3.5 µm)

(a) g = 0.

Improved

Resonant Resonant Three-Point

Mode Frequency [GHz] TMQF Method

S21 S11 S11

TM110 2.0509 151.1 163.9 132.7

TM210 4.0814 159.8 163.0 164.3

TM310 6.1351 165.7 166.8 170.8

TM410 8.1672 168.4 169.6 167.6

(b) g = 0.1h.

Improved

Resonant Resonant Three-Point

Mode Frequency [GHz] TMQF Method

S21 S11 S11

TM110 2.0248 152.7 168.1 175.9

TM210 4.0366 163.7 175.8 180.5

TM310 6.0389 171.4 183.3 185.9

TM410 8.0554 178.8 191.3 194.9

(c) g = 0.2h.

Improved

Resonant Resonant Three-Point

Mode Frequency [GHz] TMQF Method

S21 S11 S11

TM110 2.0251 152.7 172.3 221.0

TM210 4.0371 163.7 178.7 177.5

TM310 6.0397 171.2 186.0 188.8

TM410 8.0563 178.5 194.1 195.2

(d) g = 0.3h.

Improved

Resonant Resonant Three-Point

Mode Frequency [GHz] TMQF Method

S21 S11 S11

TM110 2.0253 152.6 177.7 188.8

TM210 4.0375 163.7 182.3 189.4

TM310 6.0403 171.0 189.1 183.8

TM410 8.0571 178.3 197.5 200.4

utilised to accurately and efficiently generate the large number of data samples required by the

least-squares approximation, at no additional CEM cost.

5.2.2 Study 2—Experimental Verification

Extraction of Q-values from measurement is essential when establishing the quality of the nu-

merical model used. As the Q-factor is a measure of the loss in a resonator, all components

of loss should be included in the model to accurately predict Q-values. In this study, the Q-

factors of the two ring resonators of Section 4.2.1 are investigated. These two rings, referred

to as Ring #1 (R = 16.9 mm, w/R = 0.1) and Ring #2 (R = 16.9 mm, w/R = 0.6), were

manufactured using Taconic TLY-5A substrate with manufacturer specifications of εr = 2.17
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TABLE 5.4
Comparison of unloaded Q-factors calculated from measurements and extracted with

the Transmission Mode Quality Factor (TMQF) technique and the improved

three-point rational interpolation method. (MoM parameters: tan(δ) = 0.0011;
∆ = 3.5 µm)

(a) Ring #1. (Ring parameters: R = 16.9 mm, w/R = 0.1)

Improved

Resonant Three-Point

Mode Measurements TMQF Method

S21 S21 S11 S11

TM110 145.2 151.1 163.9 132.7

TM210 149.3 159.8 163.0 164.3

TM310 157.8 165.7 166.8 170.8

TM410 179.8 168.4 169.6 167.6

(b) Ring #2. (Ring parameters: R = 16.9 mm, w/R = 0.6)

Improved

Resonant Three-Point

Mode Measurements TMQF Method

S21 S21 S11 S11

TM110 93.4 88.3

TM210 104.5 91.9 108.4 115.3

TM310 114.8 107.8 120.5 120.1

TM120 66.4 55.6

TM410 129.6 121.5 135.9 140.9

and tan(δ) = 0.0009. To extract the Q-values from measurement, a Vector Fitting model is

generated based on the measurement data. This filters out the noise from the measurement and

ensures proper calculation of the insertion loss L at resonance, as required by Eq. 5.12.

All components of loss should be included in the MoM simulation to compute Q-values ac-

curately. The loss parameters used throughout the MoM simulations were tan(δ) = 0.0011

(compared to data sheet value of 0.0009) and a uniform surface roughness of ∆ = 3.5 µm. Also,

all scatterers and ground planes were assumed lossy. The comparative results for the microstrip

resonators are listed in Table 5.4.

The predicted Q-factors (improved three-point method) are within 10.0% and 10.5% of the Q-

values extracted from the measurement traces for Ring #1 and Ring #2 respectively. Note that

the higher-order TM120 mode has a much lower Q-value than the various TMn10 modes. It was

found that coupling to these higher-order modes is a lot less than for the fundamental mode

series, which makes extraction of the Q-values at these mode frequencies using the S11 trace

less favourable. Both the TM110 and the TM120 reflection Q-circles were too small to make any

meaningful predictions. These results show that the MoM model succesfully accounts for most

components of loss. Dielectric losses are accounted for by inclusion of the substrate dissipation

factor, while conductor losses are affected by the surface roughness value used. In this open

structure, radiation losses dominate over the lesser surface wave losses to finally give Q-factors

of average value.
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5.3 Conclusion

In this chapter, the calculation of Q-values using rational interpolation models has been inves-

tigated.

A new three-point rational interpolant function in the region of resonance was proposed. This

technique utilises the already known interpolant coefficients of the S-parameter response of a

resonator, and provides a direct fit and solution to the Q-factors. A disadvantage to the method

is that the technique cannot be applied to noisy measurement data. The technique is based

on the S11 reflection parameter, which becomes ill-defined under low coupling conditions and

yields unreliable results. It is suggested that the three-point Q-extraction technique be used

with high-Q resonators instead. The more feasible solution would, however, be to utilise the

robust TMQF fitting method as applied to the S21 transmission response, but to exploit the

efficiency of a rational interpolant to gather the large number of data samples required by this

technique.



Chapter 6

Multi-Dimensional Adaptive
Interpolation

In the preceding chapters, it was shown that one-dimensional adaptive rational interpolation

techniques can be used to good effect in calculating resonance frequencies and Q-values. As the

accurate prediction of these resonator characteristics is of primary importance in the modelling

of resonators, the extension of one-dimensional interpolation techniques to multi-dimensional

interpolation techniques demands further investigation.

In recent years, the problem of creating multi-dimensional models for system responses of mi-

crowave structures from EM simulations has received considerable attention. One of the main

goals of this multi-dimensional research is to create techniques that allow the building of para-

metric models for components using as few data points as possible. Examples of techniques

which can be used to achieve this goal include look-up tables [85], artificial neural networks

(ANN) [86], circuit models and equation-based mathematical models.

Look-up tables [85] require the up-front calculation of a number of data points on a multi-

dimensional fixed grid. These data points are stored in a database of which the storage space

increases exponentially as the dimension increases. To compute values between grid points, low

order polynomial (simple linear or quadratic) interpolation techniques are often used. Hence,

these techniques can only handle mild fluctuations and have difficulty modelling the frequency

behaviour of resonant structures. In addition, the number and selection of the data points is

non-optimal and may lead to a poor model quality (undersampling) and questionable accuracy,

or a waste of computational resources (oversampling).

Techniques based on artificial neural networks [86] have the ability to handle highly non-linear

behaviour and models of high dimension, since the size of the model does not increase exponen-

tially with dimension. These techniques do however have some serious drawbacks. It is hard

to find a good suitable topology, and the number of hidden layers and nodes must be found by

63
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trial and error. In addition, frequency behaviour is difficult to model and long training times

can make the ANN difficult to apply in automated model generation procedures. Finally, there

is also no easy method to ensure quality of the ANN model.

Automatic parameterised model creation was first presented in [7, 22, 87]. In this proprietary

algorithm, called Multi-dimensional Adaptive Parameter Sampling (MAPS), a global analytical

fitting model for the scattering parameters of general planar structures is built by separating fre-

quency from other physical parameters. At selected frequency points, multi-dimensional models

are created by expanding the multivariate functions into series of orthonormal multinomials (all

using the same set of basis functions). The expansion coefficients are found by solving a system of

interpolatory conditions, and support points are added in an entirely adaptive way. Orthonormal

multinomials improve the numerical stability and efficiency of the interpolation, while the fre-

quency dependence is added by one-dimensional rational interpolation of the model’s response.

The procedure creates models with a predefined accuracy, but sampling frequency separately

from other physical parameters may result in a non-optimal number of support points.

Models can also be created in an automated fashion by interpolating EM data with multivariate

rational functions. The most straightforward approach is to extend the univariate Cauchy

method [5,18], which allows adaptive selection of support points [4] and model order, to higher

dimensions by setting up and explicitly solving a system of interpolatory conditions. These

problems involving interpolation with non-orthogonal multinomials are, however, ill-conditioned

[88] and are expensive to solve. Since the adaptive selection of support points and model order

requires solving the system a number of times, the technique is considered computationally

ineffective, inaccurate and suitable for simple models only [6]. In fact, Peik [6] shows the results

only for two-dimensional models. For higher dimensions, a fast and stable recursive Bulirsch-

Stoer algorithm [89] was developed in which the adaptive sampling can be applied only in one

dimension and all other samples have to form a completely filled uniform or non-uniform grid.

This implies that the number of full-wave analyses are high.

To reduce the number of support points while retaining the speed and stability of the interpola-

ting algorithm, Lehmensiek [8, 14, 90] developed techniques based on the Thiele-type branched

continued fraction representation of a rational function. The algorithms operate by using uni-

variate adaptive sampling along a selected dimension. In this way, while the support points

do not fill the grid completely, they are being added along straight lines passing through multi-

dimensional space. The efficiency of the algorithms was illustrated on two- and three-dimensional

models.

In 2003, Lamecki [9] showed that, despite earlier skepticism, multivariate rational interpolation

that involves setting up and explicitly solving a system of interpolatory conditions, can be

implemented in such a way that accurate high dimensional models can be created automatically
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with support points added along all dimensions (including frequency) simultaneously. Stability

and efficiency of the algorithm was achieved by using the total least-squares (TLS) [91] method

for solving the interpolation equations combined with the QR row update procedure [91] and the

monitoring of the interpolation error to detect convergence or potential instability. Compared to

the three-dimensional models presented in [8], a significant four times reduction in the number

of support points was achieved. Also, the quality of a five-dimensional model generated by the

proposed technique was demonstrated.

Since 2003, the key difference between the various multivariate rational methods has been the

approach used to evaluate the order of the multinomials and the coefficients that define them.

In 2004, Dhaene [92,93] introduced constrained metamodelling, where certain dependencies may

exist between (some of) the geometrical parameters, followed by Hendrickx [10,23] who presented

a sequential design and adaptive methodology to capture the complex input-output behaviour of

the simulator in a multivariate surrogate model. The author discusses the importance of suitable

degree sets and builds a variety of models based on the sample sets by tuning the weighting

(importance) of each variable, setting the degrees of freedom as a percentage of the number of

samples and setting polynomial/rational flags to indicate which of the input variables should

appear in the denominator. More importantly, Hendrickx introduced a model quality assessment

by which each model’s accuracy may be asserted. Most recently, Cuyt [11] constructed an

interpolating rational function in such a way that it minimises both the truncation error and

the model complexity (number of simulation data). The problem was also reformulated in

terms of an orthogonal Chebyshev product basis, which addresses the severe ill-conditioning of

the system when using the classical multinomial basis. Finally, the author also proposed that

the rational model may be computed via a fast linear block Cauchy-Vandermonde-like solver,

which can cope with the non-square block structure of the system and is as stable as Gaussian

elimination with partial pivoting.

As shown in Chapters 4 and 5, models for resonators must primarily calculate f0 and Q, and

the present techniques which model system response becomes non-optimal in calculating these

parameters. In this chapter, a new multivariate rational-multinomial combination interpolant is

proposed to model multiple mode frequencies of microwave ring resonators simultaneously [29].

Unlike most of the above modelling techniques using either the S-parameter or Y-parameter

responses of a loaded structure to build a model, the present approach is based on the solution

of an eigenmode problem or unloaded structure—the main reasons being the difficulty with which

maxima (mode frequencies) can be identified in an automated fashion, and the improbability of

correctly identifying modes that are closely spaced (Section 4.2.1).

Similar to the MAPS [7] algorithm, frequency is separated from other physical parameters.

However, even though excluding frequency from the adaptive sampling procedure may lead to

a less optimal placement of support points, it becomes a prerequisite to finding a solution to
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the proposed problem, as the complete parameter space is discontinuous across the physical

dimensions. In Section 4.1 [26], the one-dimensional calculation of resonance frequencies by

solution of the natural frequencies of an unloaded resonator was discussed. It was shown that

the technique requires finding the roots of the characteristic equation

<(s) = det[Z(s)] = 0 (6.1)

and that the determinant needs to be scaled by a frequency dependent scaling constant. For the

one-dimensional problem, this scaling factor poses no additional problems. When changing one

of the physical parameters, however, the geometry needs to be remeshed requiring a different

scaling factor and hence creates a discontinuous function across the physical parameter space.

Thus, building a (d + 1)-dimensional model describing the complete function det[Z(s,X)] be-

comes improbable. However, the crux of the proposed algorithm lies in the fact that the reso-

nance frequencies (zeros of Eq. 6.1) remain continuous across all dimensions, despite the discon-

tinuity of the complete function. Therefore, instead of modelling the (d + 1)-dimensional input

space, the frequency dependence s is modelled separately employing the single input, single out-

put adaptive rational Vector Fitting (VF) algorithm. This sampling loop is performed with the

sole purpose of identifying the various mode frequencies, and only the zeros of the interpolant

need to be entirely accurate. The d-dimensional physical dependence X is then added, building

multiple input, multiple output multinomial metamodels describing the resonance behaviour of

each of the modes.

Since Vector Fitting has proved to be a robust technique and lends itself to an elegant me-

thod for identifying the resonance frequencies correctly and accurately (Section 4.1 [27]), the

author selected VF as the technique of choice to model the frequency behaviour. For the multi-

dimensional geometrical interpolation, a combination of the methods proposed by Lamecki [9],

Hendrickx [23] and Cuyt [11] is utilised. Although the model is approximated by an expansion

in a set of multi-dimensional multinomials, any other complete set of basis functions could also

be used. For the calculation of the frequency model, a new convergence criterion applied to the

one-dimensional adaptive sampling algorithm presented by Lehmensiek [13] is introduced. Based

on the position of the roots (resonance frequencies) of the rational model det[Z(s)], convergence

is reached with a greater than 25% reduction in the number of support points required [28].

For automated mode identification, a method is proposed by which an identified resonance

frequency is associated with a known resonant mode. The technique utilises correlation of

the ideal current patterns, as created by the analytical equations describing the magnetic-wall

model [56] in free-space, to the actual current pattern evaluated at the identified frequency. This

technique has also been verified against a microwave square ring resonator.

Interpolation results are known to be valid only within the pre-defined parameter space. In

some instances, one or more of the outputs may not exist across the entire parameter space.
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To ensure that evaluation of the model is only performed in valid regions, a constrained grid

modelling approach is introduced by which a convex hull around all valid support samples is

found. This is followed by a discussion on the selection of a suitable degree set and model quality

assesment [23] across this constrained evaluation grid.

The proposed algorithm is verified by presenting results for both two- and three-dimensional

input models. Accuracy of the final model was also investigated by comparing predictions to

the analytical solution of the magnetic-wall model. In this case the magnetic-wall model was

also used to predict the resonance frequencies when building the metamodels. Accuracy of both

interpolated and extrapolated results are discussed and a Monte Carlo statistical analysis was

performed to assess the model quality across the complete parameter space. It is also shown

that the models self-compensate if the root-finding algorithm should ignore one or more of the

resonance frequencies.

6.1 The Algorithm

In this section the proposed algorithm is discussed in more detail, including a qualitative com-

parison to the multivariate rational metamodelling techniques of Lamecki [9], Hendrickx [23]

and Cuyt [11]. Since these three techniques mainly differ in their approach used to evaluate the

order of the multinomials and the coefficients that define them, they can be treated as one, when

compared to the new approach. As such, these techniques will be referred to as the standard

approach.

Probably the biggest difference to the standard approach is that the newly proposed algorithm

models a resonator without ports by solving an eigenmode problem. The standard approach

models the S-parameter response of a resonator coupled to input and output loads. Since

S-parameters are inherently rational functions, they can be modelled very efficiently using mul-

tivariate rational metamodelling techniques. However, the main aim of this dissertation is to

present a method to predict the different resonance frequencies of the various modes of a reso-

nant structure. Upon finding a model for the S-parameter response, the resonance frequencies

are still not easily found.

The following difficulties were identified when modelling the S-parameter response:

i) The arrangement of the coupling lines should be chosen carefully as the feed line arrange-

ment regulates excitation of the various modes. For some arrangements not all of the

modes are excited and thus cannot be identified.

ii) When two modes are closely spaced in frequency, the one mode (usually a higher-order

mode) may disappear below the skirts of the more strongly coupled mode and once again

cannot be identified (see Fig. 4.9).
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iii) Mode identification from the S-parameter response requires the finding of resonance peaks

(maxima). Finding maxima involves overcoming many more difficulties than finding zeros

from the unloaded eigenmode response. For example, when looking for an automated

algorithm to find multiple maxima, the effects of noise can easily be misinterpreted and

included as invalid resonances.

An advantage of the standard approach is the requirement to set up and explicitly solve only

a single system of interpolatory conditions while adding support points completely adaptively

along all of the input dimensions (including frequency) simultaneously. This would of course

yield an optimal placement of support points with a subsequent minimum number of CEM

evaluations. In the new approach, however, this is not possible. As explained in the introduction

to this technique, modelling of the (d+1)-dimensional input and single output unloaded problem

<(s,X) = det[Z(s,X)], (6.2)

requires building a model that is discontinuous across the physical parameter space, due to the

scaling factor sf which differs for each set of parameter values. This scaling factor was designed

specific for application with the MoM technique, and poses no additional numerical difficulties

in one dimension. However, when changing one of the physical parameters, the geometry needs

to be remeshed. Since the scaling factor depends on the mesh size, a new discretisation requires

recalculation of a different scaling factor and hence leads to a discontinuous function across the

physical dimensions. Fig. 6.1 illustrates this discontinuity by varying the normalised ring width

w/R.

Note that all the one-dimensional interpolants are continuous across frequency but also, and

more importantly, regardless of the complete function showing a discontinuity across w/R, the
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Fig. 6.1. Discontinuous two-dimensional model showing the real (red) and imaginary (blue) parts of
the scaled interpolants for different values of normalised ring width w/R. Note that the resonance
frequencies (zeros of the function) remain continuous across w/R.
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resonance frequencies (zeros of the function) remain continuous across the physical parameter

space. Therefore, a discontinuity in the output space lead to the suggested solution of separating

frequency from the physical dimensions. This requires execution of two adaptive sampling loops,

the first of which is a single input, single output frequency sampling loop that models

<(s) = det[Z(s)] (6.3)

at a specific geometrical input X. From this single output the zeros s0 = σ0+j2πf0 are identified

and the resonance frequencies f0 become the output parameters for the second adaptive sampling

loop. Thus, instead of constructing a model for the complete characteristic equation (Eq. 6.2)

in the second adaptive sampling loop, the resonance frequencies are now modelled as a function

of the d-dimensional physical input space X, with the mode number n describing azimuthal

variation and m describing radial variation. Thus, with multiple outputs

<(X, n,m) = f0(X, n,m). (6.4)

This second sampling loop is completely adaptive with an optimal placement of the support

points similar to the standard approaches. Figs. 6.2 and 6.3 describe the complete algorithm,

separating the adaptive rational frequency sampling loop from the adaptive multinomial geo-

metrical sampling loop. Specifics regarding this algorithm are discussed throughout the chapter.

6.2 Metamodel Definitions

Vector Fitting and Zero Calculation

Since the Vector Fitting algorithm was discussed in detail under one-dimensional adaptive ra-

tional interpolation methods (Section 3.2), only a few important equations will be repeated here

for convenience.

Vector Fitting models the frequency domain behaviour of linear time-invariant (LTI) systems

using a rational pole-residue model

<(s) =
Np∑
p=1

cp

s− ap
+ d, (6.5)

which equivalently, can also be written in the form

R(s) = C(sI−A)−1B + D. (6.6)

R(s) is the transfer response matrix, and A, B, C and D are the state space matrices for a

low-order state equation approximation. Matrix A is a diagonal matrix containing the final

poles ap and C is a row vector containing the residues cp, ∀p = 1, ..., Np. B is a column vector
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Create geometry for Xi=[Ri, (w/R)i]

Save current geometry as X[:,i]=[Ri, (w/R)i] and
the identified mode frequencies as TMnm0[n,m,i]

Use MoM to evaluate det[Z(min(sk))],
det[Z(max(sk))] and calculate the scaling factor sf

Get initial samples (k=1, 2, ..., Ns)

Adaptive sampling loop
(add new sample sk)

Convergence reached:
variation <0.25%, Nz, k constant

for 5 consecutive cycles

Use MoM to evaluate det[Z(sk)]scaled

Check variation in zeros 1,, −≠ kzkz NN
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Calculate zeros of            and              and
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Identify resonant modes using correlation to the
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Fig. 6.2. Flowchart of the adaptive rational frequency sampling and mode identification algorithm.
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Identify samples in X and F=TMnm0[n,m,:] where
F>0, i.e. the mode exists

Get initial samples Xi=[Ri, (w/R)i] (i=1, 2, ..., Nx)

Execute the adaptive rational frequency sampling
and mode identification algorithm

For each n, m in TMnm0

Set up a constrained evaluation grid

Select a suitable degree set and perform model
quality assessment

Interpolation allowed

Build 2 best multinomial models
and),,(1 mnXℜ ),,(2 mnXℜ

To few
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Save new max error and associated geometry
sample location Xi =[Ri, (w/R)i]

max error > previous max error

Find max error )||/||,||/||max(),,( 221121 ℜℜ−ℜℜℜ−ℜ=mnE X

Adaptive sampling loop
(add new sample Xi)

Next

Max error < termination criterion

Convergence reached

Done

Fig. 6.3. Flowchart of the adaptive multinomial geometrical sampling algorithm.
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of ones and D is the real constant d. Note that <(sk) approximates the measured/simulated

data samples H(sk) at the discrete complex frequencies sk, ∀k = 1, · · · , Ns.

Finding the zeros of the VF model <(s) involves a simple eigenvalue computation of a combi-

nation of the state space matrices. It was shown in Section 4.1.2 [27] that, by returning to the

time domain state equations of Eq. 6.6 and setting the output equal to zero, the roots are found

by solving

eig[A−BD−1C]. (6.7)

Note that in the case of complex pole pairs, a similarity transform applied to each of the

submatrices in Eq. 6.7 will ensure that the eigenvalues come out as perfect complex conjugate

pairs [20].

Multivariate Multinomial Method

Given multiple non-coinciding sample locations Xi ∈ Rd (input) and corresponding function

values fi (output), a function < : Rd → R is constructed, which approximates the values fi at

Xi using multi-dimensional polynomials (multinomials§) of the form

<(X) =
∑
j∈I

ajXj . (6.8)

Here, j ⊂ Nd, I is the degree set (Section 6.6 elaborates on the selection of suitable I sets)

and Xj is a shorthand notation for xj1
1 · · ·x

jd
d . Note that, for the particular application of

approximating the resonant mode frequencies, the basis functions only depend on the coordinates

X = [x1, x2, · · · , xd] with d the number of geometrical parameters.

In order to solve for the coefficients aj in Eq. 6.8, a multinomial with degrees I that approximates

the values fi at the set of data points Xi (i = 1, 2, · · · , Nx) in a least-squares sense must be found.

This requires solving a homegeneous system of Nx linear equations in N unknown coefficients

(the multi-indices in I can be given a fixed order j1, j2, · · · , jN ), each equation of the form[
Xj1

i Xj2
i · · · XjN

i

] [
aj1 aj2 · · · ajN

]T
= fi. (6.9)

In the case Nx = N , the system is square and can be inverted; otherwise, the system is overde-

termined and a least-squares technique should be utilised.

When there is just one geometrical parameter (d = 1), the multinomial reduces to a simple

polynomial and the model is expanded by increasing the degree of the polynomial. The data

points Xi consist of an initial data point distribution plus a number of additional data points

selected by an adaptive data point selection algorithm. In this technique, discussed in Section 6.6,

two interpolants of different order are constructed and compared (one for each resonant mode).

§Multinomials are linear combinations of monomials involving the product of all variables raised to different
powers.
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A point of largest mismatch for each of these modes are then identified and a new sample is

added at the point of greatest error.

As a final note it should be mentioned that the modelling error of any model depends on the

ability of the basis functions to represent the data. For highly non-linear data or when there

are discontinuities in the data, multinomials have difficulty in modelling the data accurately

without resorting to multinomials of very high degree (or using rational models instead), and

the algorithm can fail to converge. Furthermore, numerical problems may occur when the degree

of the multinomials becomes too high. It is therefore advantageous to limit the degree of the

multinomials, or to perform a model quality assessment before selecting the final model order

(Section 6.6).

6.3 Prediction of Resonance Frequencies using Error Estimation
and Adaptive Vector Fitting

In general, a rational interpolant <(s) can be found that accurately models a microwave structure

over the interval [s0, s1], provided that enough support points are used. However, to reduce

the computational expense, adaptive sampling algorithms have been introduced offering an

efficient method to establish accurate rational metamodels by automatically placing support

points at their optimal position, and thereby minimising computational effort. Previously in

[13, 15], Lehmensiek proposed an efficient adaptive frequency sampling algorithm for model-

based parameter estimation based on a Thiele-type continued fraction rational interpolation

formulation†. Convergence of this algorithm is reached when two consecutive models agree

within a specified accuracy.

In this section, the adaptive sampling algorithm is extended to ensure a faster convergence

based on the position of the actual roots or resonance frequencies of <(s). This technique is

particularly useful when applied to the problem of accurately finding the resonance frequencies

of a structure.

The process of selecting data points and building models in an adaptive way is often called

reflective exploration. Following the formulation presented in [13, 15], the reflective function

used is

Ek(s) =
|<k(s)−<k−1(s)|

1 + |<k(s)|
, (6.10)

which provides an estimate of the maximum interpolation error over the interval of interest.

The residual term Ek(s) in Eq. 6.10 shows the relative error between the current and previous

estimates of the interpolant. The standard procedure by which the adaptive sampling algorithm

works is as follows—As a first step, an initial number of support points are chosen. Then, by
†This technique was also utilised in Chapters 4 and 5.
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Fig. 6.4. Large discrepancies between the final interpolant estimates may still exist even if the resonance
frequencies have converged.

using the VF formulation, the residual Ek(s) is evaluated at a large number of equi-spaced

sample points over the interval. A new data point (sk+1,Hk+1) is selected near the maximum of

the reflective function and the procedure is repeated until the estimated error has been reduced

to a sufficiently low value (e.g. -80 dB).

Instead of this approach, a new convergence criterion is introduced, which compares the relative

position of the roots of the current and previous estimates <k(s) and <k−1(s). After each

iteration, Eq. 6.7 is solved and the actual roots (resonant frequencies) of Eq. 6.1 are identified‡.

When both estimates <k(s) and <k−1(s) predict the same number of roots Nz,k = Nz,k−1, the

relative movement of each root is compared to its previous prediction. When all the roots have

converged to within a sufficiently small variation (e.g. 0.25%), the interpolant is said to have

converged.

In some instances there may still be large differences between the final two interpolant estimates,

i.e. <k(s) may not be an entirely accurate model. However, since only predictions of the

resonance frequencies are required, which are indeed accurate, a more accurate interpolant

model is not needed. Fig. 6.4 shows a typical difference between two consecutive models. Note

that the interpolants agree closely in the regions of resonance and were found to have converged

successfully.

For automatic termination of the algorithm over a certain frequency range, it is required that

the same number of roots are predicted for 5 consecutive cycles, and that all of these roots have

satisfied the convergence criterion throughout these cycles. The observation was made that the
‡For details on the identification process used to extract the resonance frequencies from all found roots, refer

to Section 4.1.3, [27].
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TABLE 6.1
Number of samples needed to reach a specified convergence criterion together with

the number of roots identified. The Convergence % is the relative amount by which

roots in two consecutive models may vary.

(a) Ring parameters: R = 16.9 mm, w/R = 0.1; f = [1 GHz, 5 GHz].

Known Number of Roots: 4

Convergence % Number of Samples Number of Roots Found

5.0 6 2

1.0 9 3

0.5 10 3

0.25 14 4

0.1 14 4

(b) Ring parameters: R = 16.9 mm, w/R = 0.1; f = [5 GHz, 9 GHz].

Known Number of Roots: 4

Convergence % Number of Samples Number of Roots Found

5.0 7 2

1.0 7 2

0.5 7 2

0.25 13 4

0.1 14 4

(c) Ring parameters: R = 16.9 mm, w/R = 0.6; f = [1.5 GHz, 4.5 GHz].

Known Number of Roots: 4

Convergence % Number of Samples Number of Roots Found

5.0 7 1

1.0 16 4

0.5 16 4

0.25 16 4

0.1 16 4

zeros converge to accuracies far better than the required 0.25% variation while cycling through

the 5 stable intervals. An advantage to this technique is that it is fully automated and the user

does not need to know the number of resonance frequencies in advance. A disadvatage is that

the algorithm requires evaluation of at least 4 more ‘unnecessary’ EM analyses than are actually

needed.

The algorithm was verified by setting up a two-dimensional test problem consisting of an un-

loaded lossy microstrip ring resonator with mean ring radius R = 16.9 mm and different nor-

malised ring widths (w/R). The substrate has a relative permittivity of εr = 2.2, a dissipation

factor of tan(δ) = 0.0009 and thickness h = 0.508 mm. Table 6.1 shows the number of samples

required to reach a desired accuracy of the roots. When the convergence criterion is too relaxed

(> 0.25%), the interpolant model may still be too inaccurate to successfully find all the roots.

Fig. 6.5 shows this phenomenon by plotting the interpolants <6(f), <9(f), <10(f) and <14(f)

after reaching root convergences of 5.0%, 1.0%, 0.5% and 0.25% respectively. These interpolants

correspond to the results presented in Table 6.1(a) and clearly highlight, when looking at <14(f),

why fewer than the known number of roots were correctly identified using less than 14 samples.

Table 6.2 lists the reduction in the number of sample points required when using a 0.25% root

convergence criterion compared to the Lehmensiek error approach with Ek(s) < −80 dB, which
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(a) <6(f): 5.0% convergence in roots.
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(b) <9(f): 1.0% convergence in roots.
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(c) <10(f): 0.5% convergence in roots.
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(d) <14(f): 0.25% convergence in roots.

Fig. 6.5. Real (red) and imaginary (blue) parts of the scaled interpolants after reaching different con-
vergence criteria.

is needed for the same accuracy of resonance frequencies. Reductions of greater than 25% in the

number of selection points were achieved, relating directly to a substantial save in computational

effort.

6.4 Mode Identification

In this section a method is introduced by which each of the resonant frequencies identified

during the adaptive frequency sampling loop, can be associated with a known resonant mode.

While human perception has no difficulty in identifying modal field distributions, automated

mode identification is no trivial task. Since the multi-dimensional geometrical interpolation

loop needs to ‘know’ which resonant frequency belongs to which resonant mode (output) before

a model can be built, this algorithm is of the utmost importance.

The proposed solution is based on the ideal mode patterns of simplified resonator structures.
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TABLE 6.2
Reduction in the number of sample points required when using the 0.25% root

convergence criterion and the Ek(s) < −80 dB Lehmensiek [13] approach.

Number of 0.25% Convergence Ek(s) < −80 dB % Decrease

w/R Frequency [GHz] Roots Number of Samples Number of Samples in Samples

0.1 1.0–5.0 4 14 21 33.3

0.1 5.0–9.0 4 13 18 27.8

0.6 1.5–4.5 4 16 24 33.3

0.05 1.5–10.5 10 26 43 39.5

0.6 1.5–10.5 23 76 109 30.3

Thus, as an alternative to the human eye, one may use digital signal principles like cross-

correlation and a form of variance to establish which one of the ideal (known) mode patterns

agrees most with the unknown current pattern. This method is of course only useful when an

analytic field analysis solution for the resonant structure exists. One of these analytic models is

the magnetic-wall model [56], which is used to model microstrip ring resonators. When recalling

that the solution to the fields of this model must satisfy Maxwell’s equations in cylindrical

coordinates and that by setting the tangential H-fields equal to zero at the inner and outer radii

of the ring, it follows that

HR = A
jn

ωµ0R

(
Jn(kR)− J ′

n(kRo)
N ′

n(kRo)
Nn(kR)

)(
cos(nφ)− sin(nφ)

)
Hφ = A

k

jωµ0

(
Jn(kR)− J ′

n(kRo)
N ′

n(kRo)
Nn(kR)

)(
sin(nφ) + cos(nφ)

)
,

(6.11)

where HR and Hφ are the radial and azimuthal magnetic field components respectively. A is an

arbitrary constant, k is the wave number, Jn is a Bessel function of the first kind of order n and

Nn is a Bessel function of the second kind and order n. J ′
n and N ′

n are the derivatives of the

Bessel functions with respect to the argument kR. Note that both orthogonal solution sets are

included in Eq. 6.11. Also, since the surface current J is a function of the magnetic fields only

J = n̂×H, (6.12)

the electric fields are not shown here. Of even greater importance is that this model is only

used to establish the ideal mode patterns for the same geometry resonator as is used in the

CEM design. It is not important at what frequencies these patterns were computed, or which

substrate was being used, i.e. one may revert to using the simplest free-space solution without

worrying about using incorrect effective permittivity and effective width values in the magnetic-

wall model.

The correlation coefficient ρXY [i] is a normalised measure of the strength of the linear relation-

ship between two variables X and Y according to the relation [94]

rXY [i] =
n=∞∑

n=−∞
X[n]Y [n− i]

ρXY [i] =
rXY [i]√

rXX [0]rY Y [0]
i = [−∞,∞].

(6.13)
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(a) w/R = 0.05. (b) w/R = 0.6.

Fig. 6.6. Circles along which the current magnitude is computed and correlated to the ideal model.

Here rXY [i] is a second-order moment called cross-correlation, while rXX [0] and rY Y [0] are the

auto-correlation values for the respective variables X and Y . Uncorrelated data results in a

correlation coefficient of 0, while equivalent data sets have a correlation coefficient of 1.

In Fig. 6.6 a number of circular paths are shown atop two different rings of the same mean

radius (R = 16.9 mm), but with different normalised ring widths of w/R = 0.05 and w/R = 0.6,

respectively. These circles represent points at which the current magnitude will be evaluated.

Since rings of large w/R also support higher-order modes, a larger number of evaluation points

(more circles) will be used for larger normalised ring widths, according to the equation

Ncircles =
⌊
25

w

R

⌋
+ 2. (6.14)

This distribution of circles may be varied to suit specific needs. Current magnitudes calculated

along these circles are appended to form a single current variable, which is then correlated to

the analytic current values computed at the same location of points along the surface of the

ideal model.

The correlation coefficients graphs shown in Fig. 6.7 were obtained by cross-correlating the

current patterns of two of the identified resonance frequencies to various ideal mode patterns as

generated by Eq. 6.11. A cross-correlation of 99.79% identified the mode pattern in Fig. 6.7(a)

as the TM020 mode, while a 99.26% cross-correlation identified the mode pattern in Fig. 6.7(b)

as the TM510 mode. These are indeed very good correlations. Interesting to note from Fig. 6.7 is

that the correlation coefficient graph offering the best cross-correlation, has distinct differences

from the other correlation coefficient graphs. These differences are discussed below.

Firstly, when the identified mode has a variation in the φ-direction, i.e. n > 0 in TMnm0, the
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(a) TM020 mode identified with a 99.79% correlation.
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(b) TM510 mode identified with a 99.26% correlation.

Fig. 6.7. Correlation coefficient graphs obtained when correlating an unknown mode pattern to a number
of possible ideal mode patterns.

correlation coefficient shows a distinct band of variation. This effect is more clearly illustrated

in Fig. 6.8 where fewer samples were used, and was found to be typical when correlating two

cosine or sine functions of the same period (as was the case for the TM510 mode). When n = 0 in

TMnm0, the variance band phenomenon is absent. This result was expected and may be verified

by looking at Eq. 6.11 where the cosine and sine terms either disappear or become constant

when n = 0.

A second observation is that most of the correlation coefficients graphs tend to become skew

relative to their maximum value in ρXY , except for the best correlation coefficient graph, which

shows a symmetrical distribution around its maximum.
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Fig. 6.8. Band of variation found when correlating two cosine or sine functions of the same period. The
black dotted line represents a mean vector function, which we call X̄.

These two observations are mostly known as the second and third central moments in random

signal theory, the first of which was used to explore and strenghten our mode identification

algorithm. The second central moment, or better known as variance [94] for a discrete random

variable in signal theory, is given by

σ2
X = E[(X− E[X])2] =

N∑
i=1

(X[i]− E[X])2P (X[i]), (6.15)

where P (X[i]) = 1/N is the probability of the value occurring at X[i] and E[X] is the expected

or mean value of a random variable. For our purposes of calculating the variation band of the

correlation coefficient, a mean vector, instead of the mean value around the origin, had to be

introduced (shown with a dotted line in Fig. 6.8). This vector can be seen as a function running

along the mean of the variation band and will be called X̄. On substituting X̄ for E[X] into

Eq. 6.15 the band of variance can now be calculated. With the exception of the TM0m0 modes,

where this band of variance is zero, this value serves as an important second ‘opinion’ to help

associate resonant frequencies to their specific modes, especially when the correlation coefficient

does not give a convincing percentage correlation.

Tables 6.3 and 6.4 list the identified modes for two ring resonators—the first with radius

R = 16.9 mm and normalised ring width w/R = 0.05, and the second with R = 18.75 mm and

w/R = 0.6 also supporting higher-order modes. The percentage cross-correlation achieved, as

well as the band of variance for that mode, is shown together with the second highest percentage

cross-correlation and its associated band of variance. These final columns were included to show

that the identified modes are clearly recognisable and easily distinguished from the other modes.

For most modes, an exceptional correlation is achieved, with the band of variance strengthening

the selection. However, the TM710 was found to be an exception. Not only is the correlation
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TABLE 6.3
Identification of resonant modes by means of cross-correlation and variance.

(Ring parameters: R = 16.9 mm, w/R = 0.05)

Resonant 2nd Highest

Mode f0 [GHz] % Cross-Correlation Band of Variance % Cross-Correlation Band of Variance

TM110 2.0537 92.50 0.0235 83.83 0.0020

TM210 4.0986 98.61 0.0237 83.94 0.0015

TM310 6.1453 96.91 0.0224 81.28 0.0007

TM410 8.1851 99.08 0.0229 84.08 0.0011

TM510 10.2157 99.01 0.0219 81.06 0.0013

(a) TM110: 92.50% correlation. (b) TM210: 98.61% correlation. (c) TM310: 96.91% correlation.

(d) TM410: 99.08% correlation. (e) TM510: 99.01% correlation.

Fig. 6.9. Resonant modes identified using cross-correlation and variance parameters. (Ring parameters:
R = 16.9 mm, w/R = 0.05)

percentage quite low (78.15%), but it is also worse than some of the other mode correlations

achieved. Since none of these correlations are very good either (maximum of 89.30%), it was

suggested to use the band of variance instead, which indeed identified the correct resonant mode.

Figs. 6.9 and 6.10 verify the identified modes by plotting the current magnitude patterns at each

of the resonant frequencies.

It was mentioned previously that the proposed technique is limited to the availability of an

analytical field analysis model from which the ideal mode patterns can be computed. An example

is the square or meander ring resonator. In fact, so far only the annular ring resonator has the

field theory derivation for its frequency modes [74]. For square ring resonators, it is difficult
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(a) TM110: 99.64% correlation. (b) TM210: 99.74% correlation. (c) TM310: 99.68% correlation.

(d) TM020: 99.79% correlation. (e) TM120: 99.33% correlation. (f) TM410: 99.58% correlation.

(g) TM220: 99.36% correlation. (h) TM510: 99.26% correlation. (i) TM610: 97.69% correlation.

(j) TM320: 99.31% correlation. (k) TM030: 99.23% correlation. (l) TM710: 78.15% correlation.

Fig. 6.10. Resonant modes identified using correlation and variance parameters. (Ring parameters:
R = 18.75 mm, w/R = 0.6)
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TABLE 6.4
Identification of resonant modes by means of cross-correlation and variance.

(Ring parameters: R = 18.75 mm, w/R = 0.6)

Resonant 2nd Highest

Mode f0 [GHz] % Cross-Correlation Band of Variance % Cross-Correlation Band of Variance

TM110 1.8426 99.64 0.0071 87.36 0.0001

TM210 3.2716 99.74 0.0023 90.72 0.0000

TM310 4.5317 99.68 0.0019 92.03 0.0000

TM020 4.6994 99.79 0.0000 92.90 0.0000

TM120 5.3940 99.33 0.0052 88.20 0.0001

TM410 5.7557 99.58 0.0021 91.75 0.0000

TM220 6.8973 99.36 0.0058 88.97 0.0015

TM510 6.9662 99.26 0.0023 91.06 0.0001

TM610 8.1529 97.69 0.0025 90.54 0.0002

TM320 8.4844 99.31 0.0038 88.91 0.0000

TM030 9.0018 99.23 0.0000 90.30 0.0004

TM710 9.3979 78.15 0.0016 89.30 0.0000

to use the magnetic-wall model to obtain the frequency modes and field patterns because of

their complex boundary conditions. To test the scope of the proposed mode identification

technique, the ideal mode patterns of the magnetic-wall model of ring resonators were correlated

directly with the unknown current patterns found on a square ring resonator. With the mean

circumference of the square ring resonator (4l, where l is the mean length of one side) equal

to the mean circumference of the annular ring model (2πR) and the normalised ring widths

approximately equal (i.e. ws/(0.5l) ≈ w/R, where ws is half the square ring width), the cross-

correlation and band of variance parameters can be calculated as before.

Table 6.5 shows the results for the first four identified modes. The square ring resonator has a

mean side length of l = 26.52 mm and a normalised width of ws/(0.5l) = 0.05. The substrate

parameters were relative permittivity εr = 2.2, dissipation factor tan(δ) = 0.0009 and thickness

h = 0.508 mm. The ring was designed for a fundamental resonant frequency at 2.0 GHz. The

percentage cross-correlation achieved as well as the band of variance for that mode is shown

together with the second highest percentage cross-correlation and its associated band of variance.

Notice that even though the correlation percentages have slightly decreased compared to those

in Table 6.3 for an annular ring of similar normalised ring width, the modes are still clearly

identifiable. Once again, the effect of a band of variance for the TMnm0 modes with n > 0

is visible and should be taken into consideration when the correlation percentages become less

TABLE 6.5
Identification of the resonant modes of a square ring resonator by means of

cross-correlation and variance.

(Square parameters: l = 26.52 mm, ws/(0.5l) = 0.05)

Resonant 2nd Highest

Mode f0 [GHz] % Cross-Correlation Band of Variance % Cross-Correlation Band of Variance

TM110 2.0988 93.22 0.0241 83.11 0.0012

TM210 4.2371 96.75 0.0111 85.89 0.0018

TM310 6.2768 96.25 0.0187 83.22 0.0002

TM410 8.4611 92.29 0.0115 88.70 0.0036



Chapter 6—Multi-Dimensional Adaptive Interpolation 84

(a) TM110: 93.22% correlation. (b) TM210: 96.75% correlation.

(c) TM310: 96.25% correlation. (d) TM410: 92.29% correlation.

Fig. 6.11. Resonant modes of a square ring resonator identified using correlation and variance parameters.
(Square parameters: l = 26.52 mm, ws/(0.5l) = 0.05)

convincing. Fig. 6.11 verifies the identified modes by plotting the current magnitude patterns

at each of the resonant frequencies.

6.5 Constrained Grid Modelling

When building a metamodel, it is important to realise that the interpolation/approximation

model is valid only within the constraints of the parameter space. For example, when modelling

the resonant frequency behaviour of the various modes of a microwave ring resonator, it may

happen that as the geometrical parameters take on smaller dimensions, one or more of the

mode responses may exist partly outside of the defined frequency interval. Similarly, higher-

order modes TMnm0 with m > 1 do not exist for a design criterion of normalised ring width

w/R < 0.2. As a result, to avoid the algorithm from ending up in an infinite loop by not being

able to model a specific mode at a specific geometrical parameter, the various models should

only be evaluated at a constrained number of grid points within the parameters space. The

purpose of this section is to find such a constrained grid for one and two physical dimensions.

A model can be constructed in one dimension when three or more support points are present.
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Fig. 6.12. Theoretical example illustrating constrained grid evaluation in one dimension.

Setting up evaluation points in this dimension poses no specific difficulty, as the grid points

(Nw = 300) are simply spread equally between the minimum and maximum support points

for which the specific output has been identified. This is illustrated in Fig. 6.12, where three

theoretical output parameters are being modelled. From the figure it is evident that the first

two outputs should be evaluated across the entire interval x = [0, 1], while the third output

can only be evaluated properly over the interval x = [0.5, 1], even though this parameter may

possibly also exist within the interval x = [0.45, 0.5].

In two dimensions, a model can be constructed when the support points cover a non-zero area.

Setting up a constrained evaluation grid in two dimensions is, however, not as simple as in

the one-dimensional case. For each of the output parameters, the support points need to be

classified into points either belonging to the output or points already explored, the latter being

support points at which the output does not exist or falls outside of the parameter space.

This information is then utilised to construct a type of convex hull around the support points

belonging to the output. This will be illustrated more clearly by an example.

In Fig. 6.13(a) a number of support samples are shown, where the circles belong to Output #1

and the plus signs belong to Output #2. Since the circles include the entire parameter space

x1 = [0, 1] and x2 = [0, 1], no constrained grid needs to be set up and the evaluation points are

spread evenly on a 30×30 grid. The situation for Output #2 is very different and the algorithm

used to construct the constrained grid of points may be described by the following steps:

i) Identify all support points that define the output (blue plus signs) and connect these points

in order around their geometrical mean (red dot) by increasing angle (Fig. 6.13(b)). All

remaining support points are marked as points already explored (green circles).

ii) Compute the convex hull around these samples by identifying and removing all interior
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(a) Support samples for a 2D problem with two out-
puts being modelled.
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(b) Support samples ordered by increasing angle.
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(c) Convex hull around support samples with the in-
terior samples marked.
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(d) Evaluation grid constrained to convex hull.
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(e) Evaluation samples in previously explored regions
should be subtracted from constrained grid.
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(f) Constrained grid for model evaluation.

Fig. 6.13. Two-dimensional constrained evaluation grid setup as illustrated at different stages of the al-
gorithm.
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sample points. Interior samples are those support points having an outer angle of less

than 180◦ with respect to its neighbouring points. The angle is computed by walking

in a counterclockwise direction around the support samples. This procedure of removing

interior samples should be repeated until no further interior points are left (Fig. 6.13(c)).

During this identification step, the interior samples are sorted into two groups. The first

group (magenta crosses) forms part of a convex hull that includes previously explored

samples, while the second group (cyan crosses) forms part of a convex hull that has not

yet been explored. Thus, after the first iteration in the example, samples 1, 2 and 7 would

have been identified as interior samples (cyan crosses) and been moved outwards. A second

iteration is then required to identify sample 6 as a now newly introduced interior sample.

Note, however, that when removing sample 6 to complete the formation of the convex

hull, a previously explored sample ends up falling within the constrained grid area. Since

this explored sample has previously proved that the output does not exist at that specific

geometrical point we cannot include this region as part of the final convex hull. As such,

sample 6 is marked with a magenta cross for later exclusion from the convex hull.

iii) Generate an equi-spaced grid of 30× 30 evaluation points covering the entire rectangular

parameter space. Simplex theory is then utilised to eliminate all samples falling outside

of the convex hull (Fig. 6.13(d)). Basically, if the sum of the areas of the triangles formed

between each of the edges of the convex hull and a grid point, normalised to the area of

the convex hull, is greater than one, that grid point falls outside of the constrained area

and is removed.

iv) In the final computational step, evaluation samples are subtracted from the constrained

samples presently filling the convex hull. These samples belong to convex regions that

include previously explored samples that did not contribute to the output parameter. Ex-

clusion of these samples requires reinsertion of those interior samples marked with magenta

crosses. As these regions are convex in shape, samples can easily be removed using the

same simplex theory technique discussed in (iii). In the example, sample 6 is reinserted to

describe the final constrained evaluation region and exclude samples covering the convex

region shown in Fig. 6.13(e).

The final constrained evaluation grid is shown in Fig. 6.13(f).

For simplicity, but without loss of generality, a two-dimensional scenario was assumed. Even

though this has not been investigated, the proposed algorithm can, in principle, be extended to

higher dimensions.
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6.6 Suitable Degree Sets, Model Quality Assessment and Selec-
tion of a New Sample Location

When computing a polynomial interpolant, the basis consists of the different orders of the

polynomial. When switching from one to many variables, however, the situation is completely

different. Not only is there a large choice of multivariate functions, but moreover, different

algorithms yield different interpolants and apply to different situations.

In [23] two choices of degrees sets I for multinomial and rational metamodels were presented,

with the suggestion that the homogeneous set is the best choice when all input variables are of

equal importance

Ih
m =

{
(i1, · · · , id)

∣∣∣ d∑
j=1

ij ≤ m

}
. (6.16)

This set can be seen as all degrees inside a simplex with vertices at the origin and at the points

with all but one coordinate zero and one coordinate equal to m. Hendrickx [23] argued that

degree sets of this type are more natural as an interpolant or approximant remains of the same

form when the coordinate system undergoes a linear transformation.

Using an example, the homogeneous degree set in two dimensions with m = 3 is given by

Ih
3 =

{
(0, 0), (1, 0), (0, 1), (1, 1), (2, 0), (0, 2), (2, 1), (1, 2), (3, 0), (0, 3)

}
. (6.17)

In some instances, however, more sophisticated schemes are required, e.g. a weight vector may

attach some degree of importance to each coordinate axis. Similarly, the scheme can be required

to adhere to specific constraints, e.g. the degrees of two coordinate axes may not differ by more

than a given number V

Iv
m =

{
(i1, · · · , id)

∣∣∣ d∑
j=1

ij ≤ m; |ij − ik| ≤ V, ∀k = 1, 2, · · · , d
}

. (6.18)

Thus, for the example in Eq. 6.17 with V = 1, the degree set reduces to

Iv
3 =

{
(0, 0), (1, 0), (0, 1), (1, 1), (2, 1), (1, 2)

}
. (6.19)

Since finding the order of the degrees is not the main part of the calculations, m was simply

increased until a suitable number of solutions was found.

Now that the degree set has been established, the two best possible metamodels need to be

chosen to select a new sample location. Hendrickx [23] proposed a method of grid evaluation

and model quality assessment. Basically, a number of metamodels are built through the current
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support samples. Each of these models is then evaluated on a grid, after which it can easily be

cross-checked with other models by comparing all metamodels pairwise.

To assert the accuracy of each metamodel, an error matrix E is generated

Ekl =

(
1

Ng

Ng∑
i=1

∣∣∣<k(Xi)−<l(Xi)
∣∣∣2)1/2

, (6.20)

where Ekl is the root mean square error between metamodels k and l, Ng is the total number

of grid points in the full-factorial design and Xi are the grid points at which each model is

evaluated. Following from Eq. 6.20, E is symmetric with zeros on the diagonal. Also, if Ekl is

small this indicates that metamodels k and l are quite similar.

Next, all models receive a score according to the formula

1
Ql

=
∑
k 6=l

1
Ekl

, (6.21)

which identifies models that are most similar to other models. All metamodels are ordered with

respect to their Ql scores. Experiments done by Hendrickx have shown that models with a

small Ql agree better to other models than those with larger Ql values. Hendrickx also noted

that an exception to this rule occurs when two metamodels have particularly similar metamodel

parameters. In such cases, the Q’s for both of these models will be extremely small (< 1e−10)

and the models are therefore ignored.

By selecting the two best metamodels, i.e. models with lowest Q scores, and finding the position

of maximum relative error between these two models across the grid

E(X) = max

(
|<1(X)−<2(X)|

|<1(X)|
,
|<1(X)−<2(X)|

|<2(X)|

)
, (6.22)

a possible new sample location has been identified. However, since every output (resonant mode)

would require its own separate metamodel, the above procedure of model quality assessment

needs to be repeated for every output. A point of biggest mismatch for each of these modes is

then identified and a new sample is added at the point of largest error among these. Note that

adding a single support point in the parameter space would result in a sample value being added

for each output or resonant mode upon completion of the next frequency interpolation cycle.

Alternatively to the sample selection procedure implemented, other feasible techniques also exist.

Lamecki [9] suggested adding support points, one at a time, as long as the error decreases. If

the error suddenly increases, indicating poor stability of the numerical solution, the d-parameter

space is divided into 2d sub-spaces and multiple support points are introduced simultaneously,

one in each sub-space at the point of biggest interpolant mismatch. A similar procedure was

used when a cluster of support points formed.
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Hendrickx [23] suggested that multiple sample points be added in each iteration. Sample cluster-

ing would be avoided by enforcing a minimal distance between two sample points being added,

and the number of sample points added would be restricted by two bounds. This was achieved

by randomly adding or removing samples to ensure that the number of samples added in each

iteration fall within the specified lower and upper bounds. For the present technique of mo-

delling multiple resonant modes, multiple support points could also be added by introducing a

sample for each of the outputs at the point of biggest interpolant mismatch. Alternatively, a

single sample could be added by cycling through the various outputs, with each iteration using

a different resonant mode to establish a suitable location for adding a new support point to the

sample set. Note that these two techniques have not been implemented, but may be investigated

in future research.

6.7 Results

In this section a selection of two-dimensional and three-dimensional results are presented to

illustrate the proposed modelling algorithm. Computational electromagnetic (CEM) analyses

are performed with a full-wave Method of Moments (MoM) code, while the resonant structures

being modelled are all of the annular ring resonator type. More specifically, metamodels are

built for the TMnm0 resonant frequencies of an unloaded lossy microstrip ring resonator on a

Taconic TLY-5 substrate, which has a relative permittivity of εr = 2.2, a dissipation factor of

tan(δ) = 0.0009 and a thickness of h = 0.508 mm. The results are verified within the predefined

parameter space, which includes frequency and possible geometrical parameters. In the examples

presented, the geometrical space may consist of the mean ring radius R and/or the normalised

ring width w/R.

6.7.1 Study 1—Two-Dimensional Modelling, with f and R Variable

In this study, the ring structure was chosen to support only TMn10 modes with the fundamental

mode resonating between 1.5 GHz and 2.5 GHz. The test setup consisted of an unloaded

lossy microstrip ring resonator with mean ring radius interval R = [13.5 mm, 22.5 mm] and

normalised ring width w/R = 0.05, while the frequency interval was set to f = [1 GHz, 11 GHz].

The problem was initialised with Nx = 4 and Ns = 5 equi-spaced samples, where Nx is the

number of geometrical samples at which the adaptive frequency sampling loop is performed and

Ns is the number of samples in a specific frequency sampling loop. The adaptive frequency

sampling loops terminated upon reaching a 0.25% convergence or variation of the roots, while

the adaptive geometrical sampling loop terminated when all output models (the different TMnm0

resonant frequencies) reached a convergence of better than 1%, i.e. for each of the outputs the

two best quality models should agree to within 1% over the interpolation interval.
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Fig. 6.14. Two-dimensional model of a ring resonator with frequency and mean ring radius variable.
(Ring parameters: R = [13.5 mm, 22.5 mm], w/R = 0.05; f = [1 GHz, 11 GHz])

Fig. 6.14 plots the first six TMn10 mode frequencies that were successfully identified and approxi-

mated. Convergence of these models was reached within only 5 geometrical samples (Nx = 5),

while the total number of CEM analyses added up to Ns,tot = 163, with a total of Nz,tot = 56

resonant frequencies correctly identified. Note that these roots all occurred as degenerate reso-

nance pairs. Table 6.6 lists the individual number of samples Ns required by each of the adaptive

frequency sampling loops, with the number of samples increasing almost proportionally to the

number of roots identified.

Upon further analysis it was also noted that the TM710 resonance frequency was only identified

at R = 22.5 mm. Since at least three samples are required to build a metamodel, this mode is

not added to the output space and no model was constructed. Also, the dotted lines fall outside

of the constrained interpolation area and shows extrapolated model values. In some instances

the extrapolated values may be fairly accurate, as would seem to be the case for the present

example. However, in other situations these values cannot be trusted. Section 6.8 elaborates on

this topic of accuracy in the interpolation and extrapolation models.

TABLE 6.6
Number of samples required to reach convergence in each of the adaptive frequency

sampling loops.

(Ring parameters: R = [13.5 mm, 22.5 mm], w/R = 0.05; f = [1 GHz, 11 GHz])

Number of Geometrical Number of Frequency Number of Roots

Samples (Nx) R [mm] Samples (Ns) Found (Nz)

1 13.50 26 8

2 22.50 38 14

3 16.50 27 10

4 19.50 32 12

5 20.25 40 12
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6.7.2 Study 2—Two-Dimensional Modelling, with f and w/R Variable

In this study, the ring structure was chosen to support both TMn10 modes and higher-order

TMnm0 modes by varying the normalised ring width. The test problem consisted of an unloaded

lossy microstrip ring resonator with mean ring radius R = 16.9 mm and normalised ring width

interval of w/R = [0.05, 0.6], while the frequency interval was set to f = [1.5 GHz, 10.5 GHz].

The problem was initialised with Nx = 4 and Ns = 5 equi-spaced samples; the adaptive frequency

sampling loops terminated upon reaching a 0.25% convergence of the roots and the adaptive

geometrical sampling loop terminated when all output models reached a convergence of better

than 0.1% over the interpolation interval.

Fig. 6.15 shows the final interpolated (solid) and extrapolated (dotted) modelling results. Con-

vergence was reached with Nx = 12, requiring a total of Ns,tot = 590 CEM evaluations identifying

Nz,tot = 171 resonant frequencies. Table 6.7 lists the individual number of samples Ns required

by each of the adaptive frequency sampling loops, together with the number of roots identified.

In this example higher-order modes are also being modelled. Since these modes only exist for

w/R > 0.2, it was found that the samples tend to be more densely spaced in regions where

more outputs are being modelled. Also, note that in some instances (e.g. w/R = 0.4167)

the adaptive frequency sampling algorithm fails to identify some of the higher-order resonance

frequencies. This was found to happen only when the resonance frequencies of two different

modes are numerically close. However, this poses no significant problem, as the model for that

mode is simply built using less data. A disadvantage, however, might be that the constrained

region of interpolation ends up being more constrained than is actually the case (see TM020 and

TM120). Also, the algorithm might require selection of a few more geometrical samples with
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Fig. 6.15. Two-dimensional model of a ring resonator with frequency and normalised ring width variable.
(Ring parameters: R = 16.9 mm, w/R = [0.05, 0.6]; f = [1.5 GHz, 10.5 GHz])
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TABLE 6.7
Number of samples required to reach convergence in each of the adaptive frequency

sampling loops.

(Ring parameters: R = 16.9 mm, w/R = [0.05, 0.6]; f = [1.5 GHz, 10.5 GHz])

Number of Geometrical Number of Frequency Number of Roots

Samples (Nx) R [mm] Samples (Ns) Found (Nz)

1 0.0500 26 10

2 0.6000 76 21

3 0.2333 36 10

4 0.4167 58 14

5 0.3250 56 13

6 0.0556 26 10

7 0.1917 31 10

8 0.5421 66 19

9 0.4623 63 19

10 0.5075 65 19

11 0.3745 59 16

12 0.0830 28 10

the associated execution of the adaptive frequency loop before convergence is reached. Upon

termination, however, all the metamodels are accurate within the given requirements.

6.7.3 Study 3—Three-Dimensional Modelling, with f , R and w/R Variable

As a final example, a three-dimensional test problem is shown. The problem consists of an

unloaded lossy microstrip ring resonator with mean ring radius R = [15.35 mm, 18.75 mm]

and normalised ring width w/R = [0.1, 0.6], while the frequency interval was set to

f = [4.5 GHz, 9.5 GHz]. The parameter space was chosen to verify correct modelling of both

fundamental and higher-order modes. The problem was initialised with Nx = 9 (3 × 3 equi-

TABLE 6.8
Number of samples required to reach convergence in each of the adaptive frequency

sampling loops.

(Ring parameters: R = [15.35 mm, 18.75 mm], w/R = [0.1, 0.6]; f = [4.5 GHz, 9.5 GHz])

Number of Geometrical Number of Frequency Number of Roots

Samples (Nx) R [mm] w/R Samples (Ns) Found (Nz)

1 15.3500 0.10000 22 4

2 15.3500 0.35000 48 4

3 15.3500 0.60000 41 11

4 17.0500 0.10000 18 4

5 17.0500 0.35000 48 8

6 17.0500 0.60000 49 15

7 18.7500 0.10000 18 6

8 18.7500 0.35000 48 8

9 18.7500 0.60000 48 18

10 17.3431 0.58276 46 15

11 16.6397 0.58276 47 13

12 18.7500 0.35862 48 11

13 16.9913 0.48347 43 11

14 18.7500 0.49180 39 15

15 18.7500 0.22069 22 6

16 15.9362 0.51379 40 11

17 15.7017 0.22069 20 4

18 17.1086 0.15172 23 4

19 17.6948 0.41688 39 10

20 18.1638 0.18621 21 6

21 17.8121 0.43353 42 11

22 16.8741 0.53341 48 13
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(a) Metamodels of the resonance frequencies of a microstrip ring
resonator.
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Fig. 6.16. Three-dimensional model of a ring resonator with frequency, ring radius and normalised ring
width variable. (Ring parameters: R = [15.35 mm, 18.75 mm], w/R = [0.1, 0.6];
f = [4.5 GHz, 9.5 GHz])

spaced grid) and Ns = 5; the adaptive frequency sampling loop terminated upon reaching a

0.25% convergence of the roots and the adaptive geometrical sampling loop terminated when all

output models reached a convergence of better than 0.1% over the interpolation interval.

Fig. 6.16(a) shows the final interpolated results, with Fig. 6.16(b) plotting the adaptively se-

lected sample locations. Once again, the samples are arranged with a higher density in regions

where the number of outputs are more, thereby automatically working towards reaching the

interpolation goals. Convergence was reached with Nx = 22 requiring a total of Ns,tot = 818

CEM evaluations and identifying Nz,tot = 208 resonant frequencies. Table 6.8 lists the indivi-

dual number of samples Ns required by each of the adaptive frequency sampling loops, together

with the number of roots identified. Note that in this problem the frequency range was set out

of range of the TM110 and TM210 modes, emphasising that the technique is capable of working
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within restricted bounds and not limited to searching for the resonance frequencies from dc

upwards.

6.8 Accuracy of the Final Metamodels

Once a model is evaluated on a grid, it can easily be cross-checked with the reference data set at

all grid locations, to assess how well the model fits the data. In reality, however, the full dataset

will not be at hand and is computationally expensive to compute.

In this section, the analytical solution of the magnetic-wall model (instead of the MoM) is used

to obtain a set of reference data and to assess the accuracy of interpolated and extrapolated

model values within the parameter space. Note that to make a decent comparison between the

reference data and interpolation models, it is required that the magnetic-wall model also be

used to compute the resonance frequencies that are being interpolated. Accuracy tests were

performed for Studies 2 and 3 as was presented in Sections 6.7.2 and 6.7.3.

Fig. 6.17 shows the progression of an error percentage plot for the interpolated and extrapolated

model values of Study 2. Upon termination of the interpolation algorithm, 99% of the samples

agreed within 0.1% of the reference data, clearly verifying the accuracy of the interpolant models

(Fig. 6.17(a)). Interpolation models are, however, known to be accurate within the interpolation

space only. Since the interpolation area may be bounded, the accuracy of the extrapolated model

values also needs to be investigated. Fig 6.17(b) shows that even though the extrapolated data

samples are slightly less accurate, they all agree to within 2.5% of the reference data.
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0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Percentage Error

Pe
rc

en
ta

ge
 o

f 
Sa

m
pl

es

N
x
=5

N
x
=6

N
x
=7

N
x
=8

(b) Accuracy of extrapolated samples.

Fig. 6.17. Accuracy of the final metamodels over the interpolated and extrapolated regions within the
complete parameter space. Results are presented for a two-dimensional model of a ring resonator
with frequency and normalised ring width variable. (Ring parameters: R = 16.9 mm,
w/R = [0.05, 0.6]; f = [1.5 GHz, 10.5 GHz])
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(a) Accuracy of interpolated samples.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Percentage Error

Pe
rc

en
ta

ge
 o

f 
Sa

m
pl

es

N
x
=9

N
x
=13

N
x
=17

N
x
=21

N
x
=25

N
x
=29

(b) Accuracy of extrapolated samples.

Fig. 6.18. Accuracy of the final metamodels over the interpolated and extrapolated regions within
the complete parameter space. Results are presented for a three-dimensional model of a ring
resonator with frequency, ring radius and normalised ring width variable. (Ring parameters:
R = [15.35 mm, 18.75 mm], w/R = [0.1, 0.6]; f = [1.5 GHz, 9.5 GHz])

Similar results were obtained when assessing the accuracy of the three-dimensional models of

Study 3 (Section 6.7.3). Fig. 6.18(a) shows the progression of an error percentage plot as

evaluated at different stages in the model building procedure. As the number of samples (Nx)

increases, the percentage samples in the model that accurately compares with the reference

data also increases. The higher-order model also shows greater promise for extrapolating data

accurately, as 99% of the evaluated samples are within 0.5% of the reference data.

In Study 2 (Section 6.7.2), it was observed that the adaptive frequency sampling algorithm occa-

sionally fails to identify some of the higher-order resonance frequencies, especially when the re-

sonance frequencies of two different modes are numerically close. Using a statistical Monte Carlo

analysis of this same problem, it can be shown that the proposed algorithm is self-compensating,

building metamodels of high accuracy despite the absence of some zeros. Figs. 6.19(b)-(f) illus-

trate the Monte Carlo error percentage plots over the complete parameter space in the absence

of either 1, 2, 3, 4 or 5 resonance frequencies. In Fig. 6.19(a) the equivalent error percentage

plot is shown for the instance where all resonance frequencies were correctly identified. Each

Monte Carlo analysis consisted of 50 simulations and a set number of resonance frequencies

were randomly ignored while building the output metamodels. Statistically, it is evident that

most samples evaluated with the metamodels are within about 1% error of the reference data,

regardless of the number of resonance frequencies ignored. In Fig. 6.20 the statistical analysis

data of Figs. 6.19(a)-(f) is combined into a single plot in which the percentage error of model

data to reference data when the root-finding algorithm randomly ignores a set number of reso-

nance frequencies is compared. More than 80% of all samples are accurate to within 0.1% of the

reference data, while the remaining samples show a maximum error of around 0.5%. Considering

that these results include both interpolated and extrapolated (no accuracy guaranteed) values,

the accuracy of these models are typically found to be more than sufficient.
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(a) Analysis with all zeros identified.
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(b) Monte Carlo analysis ignoring 1 zero.
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(c) Monte Carlo analysis ignoring 2 zeros.
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(d) Monte Carlo analysis ignoring 3 zeros.
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(e) Monte Carlo analysis ignoring 4 zeros.
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(f) Monte Carlo analysis ignoring 5 zeros.

Fig. 6.19. Statistical analysis of the output model accuracy over the complete parameter space when
ignoring random resonance frequencies. Results are presented for a two-dimensional model of a ring
resonator with frequency and normalised ring width variable. (Ring parameters: R = 16.9 mm,
w/R = [0.05, 0.6]; f = [1.5 GHz, 10.5 GHz])
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Fig. 6.20. Comparison of the accuracy of model data to reference data when the root-finding algorithm
randomly ignores a set number of resonance frequencies. Results are presented for a two-dimensional
model of a ring resonator with frequency and normalised ring width variable. (Ring parameters:
R = 16.9 mm, w/R = [0.05, 0.6]; f = [1.5 GHz, 10.5 GHz])

Similar results are shown in Fig. 6.21 where Study 3 (Section 6.7.3) has been statistically

analysed, ignoring 5 random resonance frequencies in each of the 50 simulations performed.

Almost 90% of all evalutated samples (covering the complete parameter space) are within 0.1%

of the reference data, with the remaining 10% of samples differing from reference data by at

most 0.5%.

These results yield sufficient proof that the proposed algorithm can build models of high accu-
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(a) Monte Carlo analysis ignoring 5 zeros.
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(b) Combined statistical accuracy over the complete
parameter space.

Fig. 6.21. Statistical analysis of the output model accuracy over the complete parameter space when
ignoring 5 random resonance frequencies. Results are presented for a three-dimensional model of a
ring resonator with frequency, ring radius and normalised ring width variable. (Ring parameters:
R = [15.35 mm, 18.75 mm], w/R = [0.1, 0.6]; f = [1.5 GHz, 9.5 GHz])
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racy, even when some resonance frequencies are left unidentified in the process. The accuracy

of results have been presented over the complete parameter space including both interpolated

and extrapolated data.

6.9 Conclusion

In this chapter, an automated parameterised model generation algorithm has been presented to

model the multiple input, multiple output resonance behaviour of unloaded microwave ring reso-

nators. The frequency dependence is treated separately using adaptive rational Vector Fitting,

while the geometrical parameter space is modelled using multinomial approximation techniques.

This separation of parameters is essential as the input space of the unloaded eigenmode problem

is found to be discontinuous across the geometrical dimensions.

This chapter also presented a new convergence criterion to an existing adaptive frequency sam-

pling technique. The algorithm takes advantage of the knowledge that the resonance frequencies

of the structure need to be found accurately. As such, the algorithm terminates upon conver-

gence of these roots. A 25% reduction in the number of support points required to accurately

predict the natural frequencies of a microwave resonator is achieved.

A new automated algorithm that associates resonance frequencies with known modes has also

been illustrated. The technique relies on digital signal principles such as cross-correlation and

variance, and ideal mode patterns are computed analytically using the magnetic-wall model. It

was also shown that the technique works, without change, with square ring resonators.

Next, a constrained grid modelling approach was introduced and illustrated for both one and

two dimensions. The technique is based on finding a convex hull around all output samples,

while excluding previously explored regions where the output was found to either not exist or

fall outside of the interpolation space.

Finally, results for both two- and three-dimensional input models were presented. It was shown

that the proposed modelling algorithm can successfully model different TMnm0 resonant frequen-

cies. In addition, the technique self-compensates and builds high-accuracy models even when

the adaptive frequency sampling algorithm occasionally fails to identify some of the higher-order

resonance frequencies. The technique was further verified by investigating the accuracy of the

interpolation solution and extrapolation results by means of Monte Carlo analyses. Statistically,

more than 80% of samples modelling the complete parameter space were accurate to within 0.1%

of the reference data used.



Chapter 7

Conclusion

This dissertation has investigated interpolation-based modelling of planar microwave resonators,

which was then successfully utilised to accurately predict those resonator characteristics (f0 and

Q) that are most important for designers of microwave devices. The study on modelling of

resonance frequencies has been conducted in both one- and multi-dimensional parameter spaces,

while the study on modelling of Q-values has been performed in one dimension only.

The development of a multivariate adaptive rational-multinomial combination interpolant has

been presented. The algorithm models multiple resonance frequencies of a microwave ring reso-

nator simultaneously. Unlike most of the present multi-dimensional modelling techniques using

mostly S-parameter responses of a loaded structure to build a model, the proposed algorithm is

based on the solution of an eigenmode problem.

Modelling of the eigenmode determinant function in a MoM solution is subject to frequency

scaling and a discontinuous solution space in multiple dimensions. The proposed algorithm

addresses the frequency dimension separately from other physical parameters by solving two

consecutive adaptive sampling loops. Firstly, the zeros of a one-dimensional adaptive rational

Vector Fitting sampling loop, for a specific set of parameter values, are identified and categorised

into specific resonant modes. Each of these modes are then modelled using multi-dimensional

adaptive multinomial interpolation. Instead of modelling the complete discontinuous parameter

space, multiple models characterising the resonance behaviour for each of the resonance modes

are built.

The modelling algorithm includes a number of new sub-algorithms:

i) A new convergence criterion is applied to an existing adaptive frequency sampling tech-

nique. The algorithm terminates upon reaching root-convergence instead of the standard

technique of model-convergence, and showed a 25% reduction in the number of support

samples required to accurately predict the natural frequencies of a microwave resonator.

ii) An automated mode identification algorithm based on digital signal principles and ideal
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mode patterns of simplified resonator models was suggested. The technique clearly distin-

guishes the identified mode from other modes and was also successfully applied to square

ring resonators.

iii) A constrained grid modelling approach was developed to exclude evaluation samples from

previously explored regions, where the output was found to either not exist or fall outside

of the interpolation space.

The modelling algorithm was succesfully tested on both two- and three-dimensional input mo-

dels. Statistical analysis results suggest that the proposed algorithm can build models of high

accuracy and self-compensates when some resonance frequencies are left unidentified in the

process. The accuracy of results has been presented over the complete parameter space, inclu-

ding interpolated and extrapolated data.

The author anticipates that future extensions of this work could include the following:

i) Orthonormal multinomials are known to improve numerical stability and efficiency of the

interpolant [7]. Hence, an investigation into the use of orthonormal multinomial basis

instead of the classical multinomial basis presently implemented should be done.

ii) Application of the different sample selection criteria discussed in Section 6.6 to the pro-

posed algorithm should be investigated.

When modelling quality factors, a three-point rational interpolant function in the region of

resonance for the calculation of loaded quality factors has been proposed. The technique utilises

the already known interpolant coefficients of the S-parameter response of a resonator. By using

only three of the interpolant coefficients at a time, the Q-factors are obtained without any

additional CEM effort. In standard techniques the extraction of quality factors is obtained by

Q-circle fits on multi-frequency S-parameter data. These techniques rely on least-squares fits,

which normally require large numbers of frequency points. The new technique provides a direct

fit and solution to the Q-factors.

The modelling algorithm was successfully tested against both high-Q and low-Q resonators.

Unfortunately the technique cannot be applied to noisy measurement data and, in addition, the

technique is based on the S11 reflection parameter, which becomes ill-defined under low coupling

conditions, yielding unreliable results. The TMQF technique proves to be a far more robust

Q-factor extraction technique when applied to the transmission response. The author would

suggest using this technique instead, however, utilise interpolation-based models to efficiently

generate the S-parameter data needed to solve the least-squares problem.

In conclusion, the investigation resulted in a robust, efficient and accurate multi-dimensional

interpolation technique for the extraction of resonant frequencies. In addition, the proposed Q-

extraction technique, though not very reliable under weak coupling conditions, did verify that

interpolation techniques can be used to good effect to predict Q-values.



Bibliography

[1] A.J. Booker, J.E. Dennis, P.D. Frank, Jr., D.B. Serafini, V. Torczon, and M.W. Trosset, “A

Rigorous Framework for Optimization of Expensive Functions by Surrogates,” Structural

Optimization, vol. 17, no. 1, pp. 1–13, Feb. 1999.

[2] J.-F. Liang and K.A. Zaki, “CAD of Microwave Junctions by Polynomial Curve Fitting,”

IEEE MTT-S Digest, vol. 1, pp. 451–454, 1993.

[3] J. Carroll and K. Chang, “Statistical Computer-Aided Design for Microwave Circuits,”

IEEE Trans. on Microwave Theory and Techniques, vol. 44, no. 1, pp. 24–32, Jan. 1996.
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