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Summary

Wavelet decomposition techniques have grown over the last two decades into a powerful tool

in signal analysis. Similarly, spline functions have enjoyed a sustained high popularity in the

approximation of data.

In this thesis, we study the cardinal B-spline wavelet construction procedure based on quasi-

interpolation and local linear projection, before specialising to the cubic B-spline on a bounded

interval.

First, we present some fundamental results on cardinal B-splines, which are piecewise polynomials

with uniformly spaced breakpoints at the dyadic points Z/2r, for r ∈ Z. We start our wavelet

decomposition method with a quasi-interpolation operator Qm,r mapping, for every integer r,

real-valued functions on R into Sr
m where Sr

m is the space of cardinal splines of order m, such

that the polynomial reproduction property Qm,rp = p, p ∈ πm−1, r ∈ Z is satisfied. We then

give the explicit construction of Qm,r.

We next introduce, in Chapter 3, a local linear projection operator sequence {Pm,r : r ∈ Z}, with

Pm,r : Sr+1
m → Sr

m, r ∈ Z, in terms of a Laurent polynomial Λm solution of minimally length

which satisfies a certain Bezout identity based on the refinement mask symbol Am, which we

give explicitly.

With such a linear projection operator sequence, we define, in Chapter 4, the error space sequence

W r
m = {f − Pm,rf : f ∈ Sr+1

m }. We then show by solving a certain Bezout identity that there

exists a finitely supported function ψm ∈ S1
m such that, for every r ∈ Z, the integer shift

sequence {ψm(2 · −j)} spans the linear space W r
m. According to our definition, we then call

ψm the mth order cardinal B-spline wavelet. The wavelet decomposition algorithm based on the

quasi-interpolation operator Qm,r, the local linear projection operator Pm,r, and the wavelet ψm,

is then based on finite sequences, and is shown to possess, for a given signal f , the essential

property of yielding relatively small wavelet coefficients in regions where the support interval of

ψm(2r · −j) overlaps with a Cm-smooth region of f .

Finally, in Chapter 5, we explicitly construct minimally supported cubic B-spline wavelets on a

bounded interval [0, n]. We also develop a corresponding explicit decomposition algorithm for a

signal f on a bounded interval.
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Throughout Chapters 2 to 5, numerical examples are provided to graphically illustrate the theo-

retical results.
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Opsomming

Dekomposisietegnieke gebaseer op golfies (“wavelets”) het oor die afgelope twee dekades on-

twikkel in ’n kragtige stuk gereedskap in seinanalise. Soortgelyk geniet latfunksies ’n voortgesette

hoë gewildheid in die benadering van data.

In hierdie tesis bestudeer ons kardinale B-latfunksies, wat stuksgewyse polinome is met uniform

gespasieerde knooppunte by die diadiese punte Z/2r, vir r ∈ Z. Ons begin ons golfie dekom-

posisiemetode met ’n kwasi-interpolasie operator Qm,r wat, vir elke heelgetal r, reëlwaardige

funksies op R in Sr
m afbeeld, waar Sr

m die ruimte van kardinale latfunksies van orde m aandui,

sodat die polinoom reproduksie eienskap Qm,rp = p, p ∈ πm−1, r ∈ Z, bevredig word. Ons gee

dan die eksplisiete konstruksie van Qm,r.

Vervolgens, in Hoofstuk 3, stel ons bekend ’n lokale lineêre projeksie operator ry {Pm,r : r ∈ Z},

met Pm,r : Sr+1
m → Sr

m, r ∈ Z, in terme van ’n Laurent polinoom Λm oplossing van minimum

lengte wat ’n sekere Bezout identiteit gebaseer op die verfyningsmaskersimbool Am, wat eksplisiet

gegee word.

Met so ’n lineêre projeksie operator ry definieer ons, in Hoofstuk 4, die foutruimte ry W r
m =

{f − Pm,rf : f ∈ Sr+1
m }. Ons toon dan aan, deur ’n sekere Bezout identiteit op te los, dat

daar ’n eindig-ondersteunde funksie ψm ∈ S1
m bestaan sodat, vir elke r ∈ Z, die heelgetal skuif

ry {ψm(2 · −j)} die lineêre ruimte W r
m onderspan. Volgens ons definisie, noem ons ψm dan die

mte orde kardinale B-golfie. Die golfie dekomposisie algoritme gebaseer op die kwasi-interpolasie

operator Qm,r, sowel as die lokale lineêre projeksie operator Pm,r, asook die golfie ψm, is dan

gebaseer op eindige rye, en word getoon om, vir ’n gegewe sein f , die essensiële eienskape te

besit van om relatiewe klein golfie koëffisiënte te lewer in gebiede waar die steuninterval van

ψm(2r · −j) oorvleuel met ’n Cm-gladde gebied van f .

Ten slotte, in Hoofstuk 5, konstrueer ons minimum-ondersteunde kubiese B-latfunksie golfies

op ’n begrensde interval [0, n]. Ons ontwikkel ook ’n ooreenstemmende eksplisiete dekomposisie

algoritme vir ’n sein f op ’n begrensde interval.

Deurgaans in Hoofstukke 2 tot 5 word numeriese voorbeelde verskaf om die teoretiese resultate

grafies te illustreer.
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1. Introduction

The term wavelet was itself coined in 1982, [see [10]]. Wavelets are functions that satisfy certain

mathematical requirements and are used in representing data or functions. Approximation using

superposition of functions has existed since the early 1800’s, when Joseph Fourier discovered that

he could superpose sines and cosines to represent other functions.

For many decades, scientists have wanted more appropriate functions than the sines and cosines

which comprise the basis of Fourier analysis, to approximate choppy signals.

Wavelet analysis, in contrast to Fourier analysis, uses approximating functions that are localized

in both time and frequency space. It is this unique characteristic that makes wavelets particularly

useful, in approximating data with sharp discontinuities. The wavelet transform is a tool for

carving up functions, or data into components of different frequency, as required in signal analysis.

Over the last two decades, wavelet decomposition and reconstruction algorithms have been play-

ing an increasingly important role in signal analysis application areas such as image process-

ing, statistics and theoretical physics [see [3] and [7]]. Wavelet construction method based on

multi-resolutional analysis, in which Fourier transform methods are employed, [see [19], [2], [22],

[21]], usually require conditions like orthogonality and Riesz-stability. In particular, the so-called

Chui-Wang bi-orthogonal cardinal spline wavelets [see [4]] provide a Riesz-stable basis for the

square-(Lebesgue)-inetegrable functions on the real line. The decomposition algorithms based

on these wavelets are infinite, albeit with exponential decay, so that truncation is necessary in

practical applications.

In recent work [see [11] [17]], a new class of cardinal spline wavelets was developed, where finite

decomposition algorithms were obtained at the cost of giving up bi-orthogonality.

Our approach to wavelet decomposition in this thesis is based on the concept of quasi-interpolation

and local linear projection. We shall concentrate on the construction of cardinal B-spline wavelets,

which are special in the sense that they can be formulated explicitly, are smooth, and computa-

tionally easy to work with.

Motivated by the following statement made by Gilbert Strang in his forward to Charles Chui’s

book [2], “ . . . when students come to ask advice about their thesis, the problem is always at the

1



Section 1.1. Overview 2

boundary” , and the fact that real life data always has to do with a finite amount of data, we

study also in this thesis the construction of cubic spline wavelets on a bounded interval. These

results seem likely to extend to hold for general mth order cardinal B-splines, and we intend to

pursue this generalization in our future study.

1.1 Overview

In Chapter 2, we introduce some fundamental results on mth order cardinal B-splines which are

piecewise polynomials with uniformly spaced breakpoints at the dyadic points Z/2r, for r ∈ Z, and

from which other cardinal spline functions of the same degree are obtained by linear combination

of integer-shifts, that is, their integer-shifts form a basis for the cardinal spline space denoted

by Sr
m. We next explicitly construct a quasi-interpolant Qm,r which maps real valued functions

on R into the space Sr
m, for every r ∈ Z such that polynomials in πm−1 are reproduced. The

fundamental property of polynomial reproduction of quasi-interpolants allows a large range of

constructions in a space containing polynomials [see [5], [15] and [9]].

In Chapter 3, we characterise a local linear projection in terms of a Laurent polynomial Λm

solution to a certain Bezout identity. It is then shown how Λm can in fact be explicitly found.

Next, in Chapter 4, we define the error space sequence W r
m = {f − Pm,rf : f ∈ Sr+1

m }, and we

show that there exists a finitely supported function ψm ∈ S1
m such that the integer shift sequence

{ψm(2r · −j)} spans the linear space W r
m, for every r ∈ Z. Such a function is called a cardinal

B-spline wavelet of order m. We proceed to develop a general theory of cardinal spline wavelet

decomposition based on the quasi-interpolation operator, the projection operator and the wavelet,

to decompose any signal f defined on R.

Finally, in Chapter 5, we give an explicit formulation of the cubic spline wavelet construction and

decomposition algorithm on a bounded interval based on the methods of Chapters 2 to 4. We

show that a finite wavelet decomposition algorithm can in fact be obtained on a bounded interval

without demanding any type of stability, e.g. Riesz-stability, or orthogonality, on our generating

linear spaces. Our wavelet decomposition algorithm then uses only a finite data set. We therefore

obtain a cardinal B-spline wavelet decomposition algorithm that is local, as opposed to previous

boundary wavelet construction methods in work by Chui and De Villiers (see [6]) and Chui and
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Quak (see [8]), obtained from bi-orthogonal wavelets, and in which the decomposition algorithm

depends on all the full data set.

1.2 Notation

In this thesis, the symbol R represents the real line, the symbol N denotes the set of natural

numbers, whereas the symbol Z denotes the set of integers, and Z+ = {x ∈ Z : x ≥ 0}. We

write ⌈x⌉ for the smallest integer greater than or equal to x, ⌊x⌋ for the largest integer less than

or equal to x and C[a, b] for the set of continuous functions on a closed interval [a, b]. We write

M(R) for the set of real-valued functions on R. For k ∈ Z+, we denote by Ck(R) the subspace

of M(R) consisting of functions f such that the kth derivative f (k) is continuous on R, and

where f (0) = f . We write C(R) for C(0)(R) and C−1(R) for the space of piecewise continuous

functions in M(R).

For k ∈ Z+, we write πk for the space of polynomials of degree less than or equal to k. A function

f ∈ M(R) is called a finitely supported function if there exists a bounded interval [a, b] ⊂ R

such that f(x) = 0, x /∈ [a, b]. We write M0(R) = {f ∈ M(R) : f is finitely supported},

C0(R) = C(R) ∩M0(R), and, for k ∈ N, Ck
0 (R) = Ck(R) ∩M0(R).

We write

χ[0,1)(x) =











1, x ∈ [0, 1)

0, elsewhere.
(1.1)

The binomial coefficient is defined as

(

n

j

)

=











n!
j!(n−j)!

, j = 0, 1, . . . , n,

0, j 6= 0, 1, . . . , n,
j ∈ Z, n ∈ Z+ (1.2)

and with the convention 0! = 1.

For k ∈ Z+, the truncated power function (·)k
+ ∈ Ck−1(R) is defined by

xk
+ =











xk, x ≥ 0

0, x < 0.
(1.3)

with 00 = 1.



2. Cardinal Spline Quasi-Interpolation

2.1 Cardinal B-Splines

For m ∈ N, r ∈ Z, we consider the linear space Sr
m of cardinal splines of order m defined by

Sr
m = Sm (Z/2r) =

{

f ∈ Cm−2(R) : f |[ j

2r ,
j+1

2r ) ∈ πm−1, j ∈ Z

}

. (2.1)

We observe that the relation Sr
m ⊂ Sr+1

m , r ∈ Z holds, i.e. {Sr
m : r ∈ Z} is a nested sequence of

a linear spaces. We write Sm(Z) = S0
m (Z/20).

Definition 2.1 For m ∈ N, we define the sequence {Nm : m ∈ N} of real-valued functions on

R recursively by

Nm(x) =

∫ 1

0

Nm−1(x− t)dt, m = 2, 3, · · · , x ∈ R, (2.2)

where

N1(x) = χ[0,1), x ∈ R, (2.3)

The function Nm is called the cardinal B-spline of order m.

The following properties are proved in [1, Chapter 4]; see also [11, Theorem 1.1].

Theorem 2.2 For m ∈ N, and x ∈ R, the cardinal B-splines as defined by (2.2) and (2.3), have

the following properties:

Nm(x) =
1

(m− 1)!

m
∑

j=0

(−1)j

(

m

j

)

(x− j)m−1
+ ; (2.4)

Nm(· − j) ∈ Sm, j ∈ Z; (2.5)

Nm(x) = 0, x /∈











[0, 1), m = 1,

(0,m), m ≥ 2;
(2.6)

Nm(x) =
1

(m− 1)
[xNm−1(x) + (m− x)Nm−1(x− 1)] , m ≥ 2; (2.7)

Nm(x) > 0, x ∈ (0,m); (2.8)

4



Section 2.1. Cardinal B-Splines 5

N ′
m(x) = Nm−1(x) −Nm−1(x− 1), m = 2, 3, · · · , if m ≥ 3; (2.9)

Nm(x) = Nm(m− x), m ≥ 2. (2.10)

Graphs of the cardinal B-spline Nm for m = 2, 3, 4 are shown in Figures 2.1, 2.2 and 2.3 by

means of (2.7) together with (2.3).
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Figure 2.1: Graph of the function N2
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Figure 2.2: Graph of the function N3
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Figure 2.3: Graph of the function N4

The following result is proved in [16, Theorem 2.1]; see also [11, Theorem 1.2].

Theorem 2.3 For m ∈ N, the integer shift sequence {Nm(· − j) : j ∈ Z} of spline functions is

a basis of Sm in the sense that, for each f ∈ Sm, there exists a unique sequence {cj} ⊂ R such

that

f =
∑

j

cjN(· − j). (2.11)

The following refinement equation was proved in [1, Chapter 4]; see also [11, Theorem 1.4].

Theorem 2.4 For m ∈ N,

Nm =
1

2m−1

m
∑

j=0

(

m

j

)

Nm(2 · −j). (2.12)

If a sequence a ∈M0(Z) and a function φ ∈M0(R) with φ 6= 0 is such that

φ =
∑

j

ajφ(2 · −j), (2.13)

then (a, φ) is called a refinement pair, the function φ is called the refinable function,the sequence

a is called the refinement mask and equation (2.13) is called the refinement equation.

From Theorem 2.4, we have that, for a given integer m ∈ N, (am, Nm) is a refinement pair with

the sequence am = am,j ∈M0(Z) given by

am,j =
1

2m−1

(

m

j

)

, j ∈ Z. (2.14)
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The polynomial Am defined by

Am(z) =
m
∑

j=0

am,jz
j =

1

2m−1
(1 + z)m, z ∈ C, (2.15)

is called the cardinal B-spline refinement mask symbol of order m.

2.2 Marsden’s Identity

Since (2.1) gives the inclusion πm−1 ⊂ Sm, we know from Theorem 2.3 that, if f ∈ πm−1, there

exists a unique sequence {cj} such that (2.11) holds. We proceed to establish a result by means

of which this sequence {cj} can be explicitly calculated.

We shall rely on the following so called Marsden’s identity, (see [16, p 65]), the proof of which

we take from [11, Theorem 6.6].

Theorem 2.5 For m ∈ N, m ≥ 2, we have

(x+ t)m−1 =
∑

j

Qm(j + t)Nm(x− j), x, t ∈ R, (2.16)

where Qm is the polynomial of degree m− 1 defined by

Qm(x) =
m−1
∏

k=1

(x+ k), x ∈ R. (2.17)

Proof. Our proof is by induction on the cardinal spline order m. Using (2.4), we obtain

N2(x) =























x, x ∈ [0, 1),

2 − x, x ∈ [1, 2),

0, elsewhere,

(2.18)

according to which

N2(j + 1) = δj, j ∈ Z. (2.19)

For a fixed t ∈ R, we define the polynomial p ∈ π1 by

p(x) = x+ t. (2.20)
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Since π1 ∈ S2, it follows from Theorem 2.3 that there exists a unique sequence c ∈ M(Z) such

that

p(x) =
∑

j

cjN2(x− j), x ∈ R, (2.21)

and thus

p(k + 1) =
∑

j

cjN2(k + 1 − j) =
∑

j

cjδk,j = ck, k ∈ Z,

from equation (2.19). Hence

p(x) =
∑

j

p(j + 1)N2(x− j), x ∈ R,

and thus

(x+ t) =
∑

j

(j + 1 + t)N2(x− j), x, t ∈ R.

Therefore, the theorem holds for m = 2.

Suppose now that the theorem holds for a fixed integer m ≥ 2. Since (2.17) gives Qm+1(x) =

(x + m)Qm(x), and Qm+1(x − 1) = xQm(x), we can use (2.7) and (2.17) to deduce that, for

x ∈ R,

∑

j

Qm+1(j + t)Nm+1(x− j) =
1

m

∑

j

Qm+1(j + t) [(x− j)Nm(x− j)

+(m+ 1 + j − x)Nm(x− j − 1)]

=
1

m

[

∑

j

Qm+1(j + t)(x− j)Nm(x− j)

+
∑

j

Qm+1(j + t)(m+ 1 + j − x)Nm(x− j − 1)

]

=
1

m

[

∑

j

Qm+1(j + t)(x− j)Nm(x− j)

+
∑

j

Qm+1(j + t− 1)(m+ j − x)Nm(x− j)

]

=
1

m

∑

j

[Qm+1(j + t)(x− j)

+Qm+1(j + t− 1)(m+ j − x)]Nm(x− j)
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=
1

m

∑

j

Qm(j + t) [(j + t+m)(x− j)

+(j + t)(m+ j − x)]Nm(x− j)

=
1

m

∑

j

m(x+ t)Qm(j + t)Nm(x− j)

= (x+ t)
∑

j

Qm(j + t)Nm(x− j)

= (x+ t)(x+ t)m−1

= (x+ t)m,

from the inductive hypothesis, and thereby completing our proof. �

Corollary 2.6 For m ∈ N and n ≥ 2, we have

xl =
l!

(m− 1)!

∑

j

Q(m−1−l)
m (j)Nm(x− j), x ∈ R, l = 0, 1, . . . ,m− 1, (2.22)

Proof. Taking the lth derivative with respect to t of both sides of the identity (2.16) yields

(m− 1)!

(m− 1 − l)!
(x+ t)m−1−l =

∑

j

Q(l)
m (j + t)Nm(x− j), x ∈ R, l = 0, 1, . . . ,m− 1,

in which we set t = 0 to obtain (2.22). �

The identity (2.22) can be use to explicitly calculate the coefficients {cj : j ∈ Z} in the cardinal

B-spline series (2.11) for any polynomial f ∈ πm−1.

2.3 Explicit Recursive Formulation of an Optimally Local

Quasi-Interpolant

In our eventual wavelet decomposition algorithm, we shall require an approximation to map a

given signal f ∈ M(R) into the space Sr
m for an appropriate value of r. For this purpose, we

define, for m ≥ 2, an approximation operator Qm,r : M(R) → Sr
m, such that the polynomial

reproduction property

Qm,rp = p, p ∈ πm−1, r ∈ Z, (2.23)
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is satisfied. Such an operator is referred to as a quasi-interpolation operator. The construction

method given below is from [17, Chapter 3].

Our first step towards the construction of Qm,r is to seek, for a parameter τ ∈ R, a function

u = um,τ ∈ Sm with finite support such that

∑

j

p(j + τ)u(· − j) = p, p ∈ πm−1, τ ∈ R, (2.24)

where

u =
∑

j

ujNm(· − j), (2.25)

and {uj : j ∈ Z} ∈M0(Z).

To explicitly construct the quasi-interpolation operator Qm,r, we first observe that the condition

(2.24) holds for a fixed τ ∈ R if and only if

∑

j

(j + τ)lu(x− j) = xl, x ∈ R, l = 0, 1, . . . ,m− 1. (2.26)

Substituting (2.25) into the left-hand-side of (2.26), we obtain, for l = 0, 1, . . . ,m− 1,

∑

j

(j + τ)lu(x− j) =
∑

j

(j + τ)l
∑

k

ukNm(x− j − k)

=
∑

j

(j + τ)l
∑

k

uk−jNm(x− k)

=
∑

k

[

∑

j

(j + τ)luk−j

]

Nm(x− k). (2.27)

It follows from (2.27) and (2.22) that the condition (2.26) holds if and only if the sequence

{uj : j ∈ Z} ∈M0(Z) in (2.25) is such that

∑

k

[

∑

j

(j + τ)luk−j −
l!

(m− 1)!
Q(m−1−l)(k)

]

Nm(.− k) = 0, l = 0, 1, . . . ,m− 1. (2.28)

It follows from Theorem 2.3 that a sequence {uj : j ∈ Z} ∈M0(Z) satisfies (2.28) if and only if

∑

j

(j + τ)luk−j =
l!

(m− 1)!
Q(m−1−l)(k), l = 0, 1, . . . ,m− 1. (2.29)

A necessary condition for (2.29) to hold is obtained by setting k = 0 in (2.29) to yield

∑

j

(j + τ)lu−j =
l!

(m− 1)!
Q(m−1−l)(0), l = 0, 1, . . . ,m− 1, (2.30)
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or, equivalently,

∑

j

(j − τ)luj =
(−1)ll!

(m− 1)!
Q(m−1−l)(0), l = 0, 1, . . . ,m− 1. (2.31)

To get a minimally supported solution {uj : j ∈ Z} ∈M0(Z) of (2.31), we set

uj = 0, j /∈ {0, 1, . . . ,m− 1} , (2.32)

so that (2.31) becomes the m×m linear system

m−1
∑

j=0

(j − τ)luj =
(−1)ll!

(m− 1)!
Q(m−1−l)(0), l = 0, 1, . . . ,m− 1. (2.33)

By defining

A =















1 1 . . . 1

x0 x1 . . . xm−1

...
...

. . .
...

xm−1
0 xm−1

1 . . . xm−1
m−1















, (2.34)

where

xj = xj,τ = j − τ, j = 0, 1, . . . ,m− 1; (2.35)

u = [u0, u1, . . . , um−1]
T ; (2.36)

and

b = [b0, b1, . . . , bm−1]
T ; (2.37)

with

bl =
(−1)ll!

(m− 1)!
Q(m−1−l)

m (0), l = 0, 1, . . . ,m− 1; (2.38)

we obtain the matrix-vector formulation

Au = b (2.39)

of the m×m linear system (2.33).

To solve the linear system (2.33), we shall rely on the following result from [11, Proposition 7.1].
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Proposition 2.7 For µ ∈ N, suppose {xj : j = 0, 1, . . . , µ} are µ + 1 distinct points in R, and

suppose {dl : l = 0, 1, . . . , µ} ⊂ R. Then the (µ+ 1) × (µ+ 1) linear system

µ
∑

j=0

xl
juj = dl, l = 0, 1, . . . , µ, (2.40)

has the unique solution

uj =

µ
∑

k=0

1

k!
L

(k)
j (0)dk, j = 0, 1, . . . , µ, (2.41)

with

Lj(x) =

µ
∏

j 6=k=0

x− xk

xj − xk

, x ∈ R, j = 0, 1, . . . , µ, (2.42)

denoting the fundamental Lagrange polynomials of degree µ with respect to the point set

{x0, x1, . . . , xµ}.

Proof. Since it holds that

Lj

(

xj̃

)

= δj,j̃, j, j̃ = 0, 1, . . . , µ,

we can appeal to a standard uniqueness result in polynomial interpolation to deduce that

µ
∑

j=0

xl
jLj(x) = xl, x ∈ R, l = 0, 1, . . . , µ. (2.43)

It follows from (2.41) and (2.43) that

µ
∑

j=0

xl
juj =

µ
∑

j=0

xl
j

µ
∑

k=0

1

k!
L

(k)
j (0)dk

=

µ
∑

k=0

1

k!

[

µ
∑

j=0

xl
jL

(k)
j (0)

]

dk

=

µ
∑

k=0

1

k!

[

(

d

dx

)k

(xl)

]

x=0

dk

=

µ
∑

k=0

1

k!

l!

(l − k)!
δl,kdk

=

µ
∑

k=0

(

l

k

)

δl,kdk = dl,

which shows that the formula (2.41) satisfies (2.40).
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We see from (2.34) that A is the transpose of the (invertible) Vandermonde matrix with respect

to the m distinct point set {x0, x1, . . . , xm−1}, so that A is an invertible matrix. Hence (2.41)

does indeed give the unique solution of the linear system (2.40). �

It follows from Proposition 2.7 that the unique solution {uj = um,j : j = 0, 1, . . . ,m− 1} of the

linear system (2.33) is given by

um,j =
1

(m− 1)!

m−1
∑

k=0

(−1)kL
(k)
j (0)Q(m−1−k)

m (0), j = 0, 1, . . . ,m− 1, (2.44)

where {Lj : j = 0, . . . ,m−1} is the Lagrange fundamental polynomial sequence given by (2.42),

(2.35).

We now show that the sequence {um,j : j = 0, 1, . . . ,m− 1} defined by (2.44) and (2.32) satisfies

the condition (2.29). To this end, we use (2.31) to obtain, for l ∈ {0, 1, . . . ,m− 1} and k ∈ Z,

∑

j

(j + τ)lum,k−j =
∑

j

[k − (j − τ)]l um,j

=
∑

j

l
∑

n=0

(

l

n

)

kn(−1)l−n(j − τ)l−num,j

=
l
∑

n=0

(

l

n

)

kn(−1)l−n
∑

j

(j − τ)l−num,j

=
l
∑

n=0

(

l

n

)

kn(−1)l−n (−1)l−n(l − n)!

(m− 1)!
Q(m−1−l+n)

m (0)

=
l
∑

n=0

l!kn

n!(l − n)!

(l − n)!

(m− 1)!
Q(m−1−l+n)

m (0)

=
l!

(m− 1)!

l
∑

n=0

Q
(m−1−l+n)
m (0)

n!
kn

=
l!

(m− 1)!

l
∑

n=0

(

Q
(m−1−l)
m

)n

(0)

n!
kn

=
l!

(m− 1)!
Q(m−1−l)

m (k),

since deg (Qm) = m − 1 implies that Q
(m−1−l)
m ∈ πl and thereby showing that (2.29) is indeed

satisfied.
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Suppose now that the Lagrange fundamental polynomials given by (2.42) are given by

Lj(x) =
m−1
∑

k=0

hj,kx
k, x ∈ R, j = 0, 1, . . . ,m− 1, (2.45)

according to which

L
(k)
j (0) = k!hj,k, j, k = 0, . . . ,m− 1, (2.46)

and, similarly, let

Qm(x) =
m−1
∑

k=0

qm,kx
k, x ∈ R, j = 0, 1, . . . ,m− 1, (2.47)

so that

Q(k)
m (0) = k!qm,k, k = 0, 1, . . . ,m− 1. (2.48)

Substituting (2.46) and (2.48) into (2.44) yields

um,j =
m−1
∑

k=0

(−1)k

(

m−1
k

)hj,kqm,m−1−k. (2.49)

Moreover, since {um,j : j = 0, 1, . . . ,m−1} is the unique solution of the linear system (2.40), we

deduce that the sequence {um,j} defined by (2.49) and (2.32) is a sequence of shortest possible

length for which the condition (2.29) holds.

We have therefore established the first part of the following result.

Theorem 2.8 The function

um(x) =
2m−1
∑

j=0

um,jNm(x− j), (2.50)

where the sequence {um,j : j ∈ Z} ∈M0(Z) is given, for a fixed τ ∈ R, by (2.32) and (2.49), is

the function of shortest possible support in Sm such that the polynomial reproduction property

(2.24) holds. Moreover,

um(x) = 0, x /∈ (0, 2m− 1). (2.51)

Proof. It remains to prove the finite support property (2.51). Combining (2.25), (2.32) and

(2.6), we conclude that (2.51) is indeed satisfied. �

We next construct an optimally local quasi-interpolation operator sequence {Qm,r : r ∈ Z} from

the function u of Theorem 2.8 such that the polynomial reproduction property (2.23) is satisfied.



Section 2.3. Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant 15

For f ∈M(R) and r ∈ Z, using (2.25) we deduce that, for x ∈ R,

∑

j

f

(

j + τ

2r

)

um(2rx− j) =
∑

j

f

(

j + τ

2r

)

∑

k

um,kNm(2rx− j − k)

=
∑

j

f

(

j + τ

2r

)

∑

k

um,k−jNm(2rx− k)

=
∑

k

[

∑

j

um,k−jf

(

j + τ

2r

)

]

Nm(2rx− k). (2.52)

Suppose f ∈ πm−1, and let g = f
(

·
2r

)

, i.e. f = g(2r·), according to which g ∈ πm−1. But then

(2.52) and Theorem 2.8 yield, for x ∈ R,

∑

k

[

∑

j

um,k−jf

(

j + τ

2r

)

]

Nm(2rx− k) =
∑

j

g(j + τ)um(2rx− j) = g(2r·) = f. (2.53)

The following result is an immediate consequence of (2.52) and (2.53).

Theorem 2.9 For τ ∈ R, the operator sequence {Qm,r : r ∈ Z}, where Qm,r : M(R) → Sr
m,

r ∈ Z, as defined by

Qm,rf =
∑

j

[

∑

k

uj−kf

(

j + τ

2r

)

]

Nm(2r · −j), r ∈ Z, f ∈M(R), (2.54)

with the sequence {um,j : j ∈ Z} ∈ M0(Z) defined as in Theorem 2.8, is an optimally local

quasi-interpolation operator sequence such that the polynomial reproduction property (2.23) is

satisfied.

We have from (2.52) that the quasi-interpolation operator Qm,r, as defined by (2.54), has the

equivalent formulation

Qm,rf =
∑

j

f

(

j + τ

2r

)

um(2r · −j), r ∈ Z, f ∈M(R), (2.55)

with the function um ∈ Sm as given in Theorem 2.8.

From (2.51) and (2.55), it seems natural to choose the real number τ in the definition (2.54) of

the operator Qm,r as

τ = τ0 = m− 1, (2.56)
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i.e. τ0 is the integer closest from the left to the midpoint of the interval (0, 2m− 1) in (2.52).

By using the equations (2.17), (2.48), (2.56), (2.35), (2.42), (2.46), (2.47) and (2.51), we

obtain the following table of values for the sequence {um
j : j = 0, 1, . . . , 2m− 1} for the choice

τ = m− 1, for m = 2, 3, 4.

m {um,j}

2 {u2,0, u2,1} = {1, 0}

3 {u3,0, u3,1, u3,2} = {1
4
, 1,−1

4
}

4 {u4,0, u4,1, u4,2, u4,3} = {−1
6
, 4

3
,−1

6
, 0}

Table 2.1: The sequence {um,j : j = 0, 1, . . . , 2m− 1} for m = 2, 3, 4

We obtain the graphs of the function um(x), for m = 2, 3, 4 in Figures 2.4, 2.5 and 2.6 by using

the values of Table 2.1 in the definition (2.50).
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Figure 2.4: The function u2
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Next, we show that if a given signal f ∈M(R) is a polynomial in πm−1 on an interval, then this

polynomial is locally preserved by Qm,r.

Theorem 2.10 Suppose that, in Theorem 2.9, we choose τ = τ0 = m − 1 as in (2.56), and

suppose that f ∈ M(R) is such that there exists a bounded interval [α, β] and a polynomial

p ∈ πm−1 such that

f(x) = p(x), x ∈ [α, β]. (2.57)

Then

(Qm,rf) (x) = p(x), x ∈

[

α+
τ0 + 1

2r
, β −

τ0
2r

]

, (2.58)

for every integer r such that

r > log2

2τ0 + 1

β − α
. (2.59)

Proof. Let r denote an integer such that the inequality (2.59) is satisfied. From (2.55) and the

fact that u(x) = 0, x /∈ (0, 2τ0 + 1), we have that

(Qm,rf)(x) =

⌊2rx⌋
∑

j=⌈2rx−2τ−1⌉

f

(

j + τ0
2r

)

u(2rx− j), x ∈ R, (2.60)

and thus

(Qm,rf)(x) =

⌊2rβ−τ0⌋
∑

j=⌈2rα−τ0⌉

f

(

j + τ0
2r

)

u(2rx− j), x ∈

[

α+
τ0 + 1

2r
, β −

τ0
2r

]

. (2.61)

Observe that

α ≤
j + τ0

2r
≤ β for j = ⌈2rα− τ0⌉ , . . . , ⌊2

rβ − τ0⌋ . (2.62)

The desired result (2.58) is then a consequence of (2.61), (2.62), (2.57) and (2.23). �
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2.4 Example

We illustrate Theorem 2.10 by choosing, for m = 2, 3, 4, the function fm ∈M(R) as

fm(x) =



















































1
2

+ 1
2
sin
[

π
(

x− 1
2

)]

, x ∈ [0, 1),

1 + (x− 1)m−1, x ∈ [1, 2),

2, x ∈ [2, 3),

1 + cos [π(x− 3)] , x ∈ [3, 4),

0, x /∈ [0, 4),

(2.63)

which is shown for m = 2, 3, 4 in Figures 2.7 and 2.8.

The inequality (2.59) is here given by

r ≥ log2(2m− 1). (2.64)

Observe from (2.63) that

fm(x) = p(x), x ∈ [1, 2],

fm(x) = p̃(x), x ∈ [2, 3],

where p ∈ πm−1 and p̃ ∈ π0 ⊂ πm−1 are given by

p(x) = 1 + (x− 1)m−1

and

p̃(x) = 2.

It follows from (2.58) in Theorem 2.10 that

(Qm,rfm)(x) =











1 + (x− 1)m−1, x ∈
[

1 + m
2r , 2 − m−1

2r

]

,

2, x ∈
[

2 + m
2r , 3 − m−1

2r

]

.
(2.65)

Hence, if we choose

r =























3, m = 2,

4, m = 3,

4, m = 4,

(2.66)
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then the inequality (2.64) is satisfied, and (2.65) gives,

(Q2,3f2)(x) =











x, x ∈
[

5
4
, 16

8

]

,

2, x ∈
[

9
4
, 23

8

]

,
(2.67)

(Q3,4f3)(x) =











1 + (x− 1)2, x ∈
[

19
16
, 15

8

]

,

2, x ∈
[

35
16
, 23

8

]

,
(2.68)

(Q4,4f4)(x) =











1 + (x− 1)3, x ∈
[

5
4
, 29

16

]

,

2, x ∈
[

9
4
, 45

16

]

.
(2.69)

The results (2.67), (2.68) and (2.69) are illustrated in Figures 2.9 to 2.11, where we have used

the values of Table 2.1, (2.55), (2.50), (2.7), (2.56), (2.63). We also give the graphs of the error

functions Em,r = f −Qm,rf .

 0
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 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

f : m= 2

Figure 2.7: Graph of the function f2
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f : m= 3
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Figure 2.8: The functions f3 and f4
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q : m= 2
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Figure 2.9: The function Q2,3f and the error function E2,3f
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Figure 2.10: The function Q3,4f and the error function E3,4f
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Figure 2.11: The function Q4,4f and the error function E4,4f



3. Local Linear Projection

For a given B-spline refinement pair
(

a(m), Nm

)

and corresponding refinement space sequence

{Sr
m : r ∈ Z,m ∈ N} as defined by (2.1), our wavelet construction method will depend on the

existence of an operator sequence {Pr : r ∈ Z} with Pr : Sr+1
m → Sr

m, r ∈ Z, for which the

reproduction property

Prf = f, f ∈ Sr
m, r ∈ Z, (3.1)

holds, according to which Pr is then, for each r ∈ Z, a local linear projection on Sr
m.

The following result shows that such a projection operator sequence can be obtained by solving

a Bezout identity.

3.1 The Fundamental Bezout Identity

For a Laurent polynomial P defined by

P (z) =
∑

j

pjz
j, z ∈ C\{0}, (3.2)

we define the even part P (e) and the odd part P (o) respectively by

P (e)(z) =
∑

j

p2jz
2j and P (o)(z) =

∑

j

p2j+1z
2j+1, z ∈ C\{0}, (3.3)

so that

P (z) = P (e)(z) + P (o)(z)

P (−z) = P (e)(z) − P (o)(z)







, z ∈ C\{0}, (3.4)

and thus

P (e)(z) = P (z)+P (−z)
2

P (o)(z) = P (z)−P (−z)
2







, z ∈ C\{0}. (3.5)

Theorem 3.1 For an integer m ≥ 2 and a sequence {λj : j ∈M0(Z)}, the local linear operator

sequence {Pr : r ∈ Z}, where Pr : Sr+1
m → Sr

m, as defined by

Prf =
∑

j

[

∑

k

λ2j−kck

]

Nm(2r · −j) for f =
∑

j

cjNm(2r+1 · −j), (3.6)

23
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satisfies the reproduction property (3.1) if and only if the Laurent polynomial Λ given by

Λ(z) =
∑

j

λjz
j, z ∈ C\{0}, (3.7)

satisfies the Bezout identity

(1 + z)mΛ(z) + (1 − z)mΛ(−z) = 2m, z ∈ C\{0}. (3.8)

Proof. Let r ∈ Z be fixed, and suppose f ∈ Sr
m, i.e. there exists a sequence c ∈ M(Z) such

that f =
∑

j cjNm(2r · −j). From (2.12) and (2.14), we deduce that

f(x) =
∑

j

cj
∑

k

am,kNm(2r+1x− 2j − k)

=
∑

j

cj
∑

k

am,k−2jNm(2r+1x− k)

=
∑

k

[

∑

j

am,k−2jcj

]

Nm(2r+1x− k). (3.9)

For a sequence {λj : j ∈ Z} ∈M0(Z), it follows from (3.6) and (3.9) that

(Prf)(x) =
∑

j

[

∑

k

λ2j−k

(

∑

l

am,k−2lcl

)]

Nm(2rx− j)

=
∑

j

[

∑

l

(

∑

k

am,k−2lλ2j−k

)

ck

]

Nm(2rx− j). (3.10)

It follows from (3.9) and (3.10) that, for x ∈ R,

f(x) − (Prf)(x) =
∑

j

[

cj −
∑

l

(

∑

k

am,k−2lλ2j−k

)

cl

]

Nm(2rx− j)

=
∑

j

[

∑

l

(

δj,l −
∑

k

am,k−2lλ2j−k

)

ck

]

Nm(2rx− j). (3.11)

Since also Theorem 2.3 implies
∑

j cjN(· − j) = 0 if and only if cj = 0, j ∈ Z, we deduce from

(3.11) that the reproduction property (3.1) holds if and only if the sequence {λj : j ∈ Z} ∈M0(Z)

satisfies the condition
∑

k

am,k−2lλ2j−k = δj,l, j, l ∈ Z. (3.12)
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It remains to show that the two conditions (3.12) and (3.8) are equivalent. To this end, we use

(2.15) and (3.7) to deduce that, for j ∈ Z and z ∈ C\{0},

∑

l

∑

k

am,k−2lλ2j−kz
2l =

∑

l

∑

k

am,2k−2lλ2j−2kz
2l−2kz2k +

∑

l

∑

k

am,2k−2l+1λ2j−2k−1z
2l−2k−1z2k+1

=
∑

k

λ2j−2k

[

∑

l

am,2k−2lz
2l−2k

]

z2k

+
∑

k

λ2j−2k−1

[

∑

l

am,2k−2l+1z
2l−2k−1

]

z2k+1

=
∑

k

λ2j−2k

[

∑

l

am,2lz
−2l

]

z2k

+
∑

k

λ2j−2k−1

[

∑

l

am,2l+1z
−(2l+1)

]

z2k+1

= A(e)
m (z−1)

[

∑

k

λ2j−2kz
2k−2j

]

z2j + A(o)
m (z−1)

[

∑

k

λ2j−2k−1z
2k−2j+1

]

z2j

= A(e)
m (z−1)

[

∑

k

λ2kz
−2k

]

z2j + A(o)
m (z−1)

[

∑

k

λ2k+1z
−(2k+1)

]

z2j

= z2j
[

A(e)
m (z−1)Λ(e)(z−1) + A(o)

m (z−1)Λ(o)(z−1)
]

= z2j

[

Am(z−1) + Am(−z−1)

2

Λ(z−1) + Λ(−z−1)

2

+
Am(z−1) − Am(−z−1)

2

Λ(z−1) − Λ(−z−1)

2

]

=
1

2
z2j
[

Am(z−1)Λ(z−1) + Am(−z−1)Λ(−z−1)
]

, (3.13)

whereas
∑

l

δj,lz
2l = z2j, j ∈ Z, z ∈ C. (3.14)

It follows from (3.13) and (3.14) that, for j ∈ Z and z ∈ C\{0}, we have

∑

l

[

∑

k

am,k−2lλ2j−k − δj,l

]

z2l = z2j

[

Am(z−1)Λ(z−1) + Am(−z−1)Λ(−z−1)

2
− 1

]

. (3.15)

According to (3.15), {λj : j ∈ Z} ∈ M0(Z) is a sequence satisfying (3.12) if and only if the

corresponding Laurent polynomial Λ defined by (3.7) satisfies the Bezout identity

Am(z−1)Λ(z−1) + Am(−z−1)Λ(−z−1) = 2, z ∈ C\{0},
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or, equivalently,

Am(z)Λ(z) + Am(−z)Λ(−z) = 2, z ∈ C\{0}. (3.16)

By substituting (2.15) into (3.16), we conclude that (3.16) is equivalent to (3.8), which then

completes our proof. �

We proceed to find the Laurent polynomial Λ = Λm of shortest possible length satisfying the

Bezout identity (3.8).

3.2 The Generating Polynomial Hm

Based on results in [11] and [17], we first prove the following result with respect to a polynomial

solution H of the Bezout identity

(1 + z)mH(z) − (1 − z)mH(−z) = 2mz2⌊ 1

2
m⌋−1, z ∈ C, (3.17)

with ⌊x⌋ denoting the largest integer less than or equal to x.

Theorem 3.2 The recursion formulation

H2(z) = 1,

H2k+1(z) =
2H2k(z) − 21−2kH2k(−1)(1 − z)2k

1 + z
,

H2k+2(z) =
2z2H2k+1(z) − 2−2kH2k+1(−1)(1 − z)2k+1

1 + z
,















































, z ∈ C, (3.18)

yields a sequence {Hm : m = 2, 3, . . . , } of polynomials such that

deg (Hm) = m− 2, m = 2, 3, . . . (3.19)

and where H = Hm is the only polynomial in πm−1 satisfying the Bezout identity (3.17).

Proof. Since the numerator in the second and third lines of (3.18) both vanish at z = −1, it

follows inductively from (3.18) that {Hm : m = 2, 3, . . .} is indeed a sequence of polynomials

such that (3.19) is satisfied.
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Next, we prove by induction on m that the polynomial Hm satisfies the Bezout identity (3.17).

For m = 2, we see from first line of (3.18) that, for z ∈ C, we have

(1 + z)2H2(z) − (1 − z)2H2(−z) = (1 + z)2 − (1 − z)2 = 4z,

i.e. the polynomial H2 satisfies (3.17) for m = 2. Suppose next that, for a fixed integer k ∈ N,

it holds that

(1 + z)2kH2k(z) − (1 − z)2kH2k(−z) = 22kz2k−1, z ∈ C. (3.20)

Using the second line of (3.18), together with the inductive hypothesis (3.20), we obtain, for

z ∈ C,

(1 + z)2k+1H2k+1(z) − (1 − z)2k+1H2k+1(−z)

= (1 + z)2k
[

2H2k(z) − 21−2kH2k(−1)(1 − z)2k
]

−(1 − z)2k
[

2H2k(−z) − 21−2kH2k(−1)(1 + z)2k
]

= 2
[

(1 + z)2kH2k(z) − (1 − z)2kH2k(−z)
]

= 22k+1z2k−1 (3.21)

i.e. the polynomial H = H2k+1 satisfies the Bezout identity (3.17) for m = 2k + 1. Now we use

the third line of (3.18), together with (3.21), to deduce, for z ∈ C, that

(1 + z)2k+2H2k+2(z) − (1 − z)2k+2H2k+2(−z)

= (1 + z)2k+1
[

2z2H2k+1(z) − 2−2kH2k+1(−1)(1 − z)2k+1
]

−(1 − z)2k+1
[

2z2H2k+1(−z) − 2−2kH2k+1(−1)(1 + z)2k+1
]

= 2z2
[

(1 + z)2k+1H2k+1(z) − (1 − z)2k+1H2k+1(−z)
]

= 2z2(22k+1z2k−1)

= 22k+2z2k+1,

i.e. the polynomial H = H2k+2 satisfies the Bezout identity (3.17) for m = 2k + 2, and thereby

concluding our inductive proof of the fact that the polynomial H = Hm satisfies the Bezout

identity (3.17) for every integer m ≥ 2.

Finally, we prove that Hm is the only solution in πm−1 of the Bezout identity (3.17).

Suppose H̃m ∈ πm−1 satisfies

(1 + z)mH̃m(z) − (1 − z)mH̃m(−z) = 2mz2⌊ 1

2
m⌋−1, z ∈ C. (3.22)
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Since also

(1 + z)mHm(z) − (1 − z)mHm(−z) = 2mz2⌊ 1

2
m⌋−1, z ∈ C, (3.23)

it follows by subtracting (3.22) from (3.23) that

(1 + z)m
[

Hm(z) − H̃m(z)
]

= (1 − z)m
[

Hm(−z) − H̃m(−z)
]

, z ∈ C. (3.24)

Since the two polynomials (1 + z)m and (1 − z)m have no common factors, we deduce from

(3.24) that there exists a polynomial J(z) such that

Hm(z) − H̃m(z) = J(z)(1 − z)m, z ∈ C. (3.25)

Suppose J 6= 0. Then (3.25) gives

m− 1 ≥ deg (Hm − H̃m) = deg (J) +m ≥ m,

a contradiction. Hence J = 0, so that (3.25) yields Hm = H̃m, i.e. Hm is the only solution in

πm−1 of the Bezout identity (3.17). �

Using (3.18), we calculate in Table 3.1 the sequence {hm,j : j ∈ Z}, where we denote by

{hm,j : j = 0, 1, . . . ,m− 2} the coefficients of the polynomial Hm, i.e.

Hm(z) =
m−2
∑

j=0

hm,jz
j, z ∈ C. (3.26)

m hm,j

2 {h2,0} = {1}

3 {h3,0, h3,1} = {3
2
,−1

2
}

4 {h4,0, h4,1, h4,2} = {−1
2
, 2,−1

2
}

Table 3.1: The sequence hm,j for m = 2, 3, 4

Now let the polynomial Λm be defined by

Λm(z) = z−2⌊ 1

2
m⌋+1Hm(z), z ∈ C\{0}, (3.27)

which, together with (3.23), then yields, for z ∈ C\{0},

(1 + z)mΛm(z) − (1 − z)mΛm(−z) = z−2⌊ 1

2
m⌋+1 [(1 + z)mHm(z) − (1 − z)mHm(−z)]

= z−2⌊ 1

2
m⌋+1

[

2mz2⌊ 1

2
m⌋−1

]

= 2m,

so that the following consequence of Theorem 3.2 can now be stated.
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Corollary 3.3 For an integer m ≥ 2, the Laurent polynomial Λ = Λm, as defined by (3.27),

with the polynomial Hm obtained recursively from (3.18), is a Laurent polynomial of shortest

possible length satisfying the Bezout identity (3.8).

Combining the results of Theorem 3.1 and Corollary 3.3, we immediately get the following result.

Theorem 3.4 For an integer m ≥ 2, the sequence {λj : j ∈ Z} ∈M0(Z) defined by

λj = λm,j, j ∈ Z, (3.28)

where
∑

j

λm,jz
j = z−2⌊ 1

2
m⌋+1Hm(z), z ∈ C\{0}, (3.29)

with Hm denoting the polynomial of degree m−2 obtained recursively from (3.18), is a sequence

of shortest possible length such that the operator sequence {Pr : Sr+1
m → Sr

m, r ∈ Z}, as defined

by (3.6), satisfies the reproduction property (3.1).

Accordingly, we define, for any r ∈ Z, the projection operator Pm,r : Sr+1
m → Sr

m by

Pm,rf =
∑

j

[

∑

k

λm,2j−kck

]

Nm(2r · −j) for f =
∑

j

cjNm(2r+1 · −j), (3.30)

with the sequence {λm,j : j ∈ Z} defined by (3.29), and for which it then holds that

Pm,rf = f, f ∈ Sr
m. (3.31)

We shall also rely on the following properties of the polynomial Hm of Theorem 3.2.

A polynomial P of degree n, as given by

P (z) =
n
∑

j=0

pjz
j, with pn 6= 0, (3.32)

is said to be symmetric polynomial if it holds that

pn−j = pj, j = 0, 1, . . . , n. (3.33)

Since it holds for z ∈ C that, from (3.32) and (3.33),

znp

(

1

z

)

= zn

n
∑

j=0

pjz
−j =

n
∑

j=0

pjz
n−j =

n
∑

j=0

pn−jz
j,
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we see that the symmetry condition (3.33) has the equivalent formulation,

znp

(

1

z

)

= p(z), z ∈ C\{0}. (3.34)

The following result holds.

Proposition 3.5 For m ≥ 2, the polynomial Hm of Theorem 3.2 satisfies the following proper-

ties;

(a) If m is even, then Hm is a symmetric polynomial;

(b) Hm(0) 6= 0.

Proof.

(a) Suppose m = 2n for an integer n ∈ N, according to which it follows from (3.23) that

(1 + z)2nH2n(z) − (1 − z)2nH2n(−z) = 22nz2n−1, z ∈ C. (3.35)

By replacing z by 1
z

in (3.35), we obtain

(

1 +
1

z

)2n

H2n

(

1

z

)

−

(

1 −
1

z

)2n

H2n

(

−
1

z

)

= 22nz−2n+1, z ∈ C

and thus

(1 + z)2nH̃2n(z) − (1 − z)2nH̃2n(−z) = 22nz2n−1, z ∈ C, (3.36)

where

H̃2n(z) = z2n−2H2n

(

1

z

)

, z ∈ C. (3.37)

Since (3.19) gives deg (H2n) = 2n − 2, it follows from (3.37) that H̃2n is a polynomial,

with deg (H̃2n) = 2n − 2. But, as shown in the proof of Theorem 3.2, H = H2n is the

only polynomial in π2n−1 satisfying the Bezout identity (3.17), and thus, using also (3.37),

we get

H2n(z) = H̃2n(z) = z2n−2H2n

(

1

z

)

, z ∈ C\{0},

and it follows that H2n is a symmetric polynomial.
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(b) According to (3.19), the polynomial Hm can be formulated as

Hm(z) =
m−2
∑

j=0

hm,jz
j, z ∈ C, with hm,m−2 6= 0. (3.38)

If m = 2n for n ∈ N, then the symmetry result in (a) gives

h2n,0 = h2n,2n−2 6= 0,

from (3.38), and thus property (b) holds for even integers m.

If m = 3, we see from Table 3.1 that H3(0) =
3

2
6= 0. Next, for m = 2n+ 1, with n ≥ 2,

suppose H2n+1(0) = 0. But then there exists a polynomial H̃2n+1, with deg (H̃2n+1) =

2n− 2, such that

H2n+1(z) = zH̃2n+1(z), z ∈ C. (3.39)

Since also (3.23) yields

(1 + z)2n+1H2n+1(z) − (1 − z)2n+1H2n+1(−z) = 22n+1z2n−1, z ∈ C, (3.40)

we now substitute (3.39) into (3.40) to deduce that

(1 + z)2n+1H̃2n+1(z) + (1 − z)2n+1H̃2n+1(−z) = 22n+1z2n−2, z ∈ C. (3.41)

By setting z = 0 in (3.41), and recalling that n ≥ 2, we obtain 2H̃2n+1(0) = 0, and thus

H̃2n+1(0) = 0, i.e. there exists a polynomial ˜̃H2n+1, with deg ( ˜̃H2n+1) = 2n− 3, such that

H̃2n+1(z) = z ˜̃H2n+1(z), z ∈ C. (3.42)

By substituting (3.42) into (3.41), we obtain

(1+z)2n−1
[

(1 + z)2 ˜̃H2n+1(z)
]

−(1−z)2n−1
[

(1 − z)2 ˜̃H2n+1(−z)
]

= 22n+1z2n−3, z ∈ C.

(3.43)

Since also (3.23) gives

(1 + z)2n−1H2n−1(z) − (1 − z)2n−1H2n−1(z) = 22n−1z2n−3, z ∈ C, (3.44)

we can now subtract (3.43) from (3.44) to obtain

(1 + z)2n−1
[

4H2n−1(z) − (1 + z)2 ˜̃H2n+1(z)
]

= (1 − z)2n−1
[

4H2n−1(−z) − (1 − z)2 ˜̃H2n+1(−z)
]

, z ∈ C. (3.45)
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Since the two polynomials (1 + z)2n−1 and (1− z)2n−1 have no common factors, and since

deg (H2n−1) = deg ( ˜̃H2n+1) = 2n− 3, it follows from (3.45) that there exists a constant

c such that

4H2n−1(z) − (1 + z)2 ˜̃H2n+1(z) = c(1 − z)2n−1, z ∈ C. (3.46)

By setting z = −1 in (3.46), it follows that c = 23−2nH2n−1(−1), which we can now

substitute into (3.46) to obtain

4H2n−1(z) = (1 + z)2 ˜̃H2n+1(z) + 23−2nH2n−1(−1)(1 − z)2n−1, z ∈ C. (3.47)

Now substitute (3.47) into the third line of (3.18) with k = n− 1 to deduce that

4H2n(z) =
1

2
z2(1 + z) ˜̃H2n+1(z) +

2−2n(8z2 − 1)H2n−1(−1)(1 − z)2n−1

1 + z
, z ∈ C\{0}.

(3.48)

Since both H2n and ˜̃H2n+1 are polynomials, we deduce from (3.48) that we must have

H2n−1(−1) = 0. (3.49)

Substituting (3.49) into (3.48) yield

H2n(z) = 2z2(1 + z) ˜̃H2n+1(z), z ∈ C,

and thus

2n− 2 = deg (H2n) = 3 + deg ( ˜̃H2n+1) = 3 + (2n− 3) = 2n,

a contradiction. Hence H2n+1(0) 6= 0, and thereby completing our proof of (b). �

3.3 Example

Using Theorem 3.2, Corollary 3.3 and equations (3.28) and (3.29), we explicitly calculate the

sequence λ = λm ∈M0(Z) for m = 2, 3, 4, 5 in Table 3.2.

By choosing, respectively, cj = δj and cj = δj−1, j ∈ Z in (3.30), together with Table

3.2, we compute the functions Pm,0Nm(2·) =
∑

j λm,2jNm(· − j) and Pm,0Nm(2 · −1) =
∑

j λm,2j−1Nm(· − j) for m = 2, 3, 4. The resulting graphs are shown in Figures 3.1 to 3.3.
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m λm,j

2 {λ2,−1} = {1}

3 {λ3,0, λ3,−1} = {−1
2
, 3

2
}

4 {λ4,−1, λ4,−2, λ4,−3} = {−1
2
, 2,−1

2
}

Table 3.2: The sequences {λm,j : j ∈ Z,m = 2, 3, 4}.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1  1.5  2  2.5  3
 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1  1.5  2  2.5  3

Figure 3.1: The functions P2,0N2(2·) and P2,0N2(2 · −1)



Section 3.3. Example 34

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-1  0  1  2  3  4
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1  0  1  2  3  4

Figure 3.2: The functions P3,0N3(2·) and P3,0N3(2 · −1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-2 -1  0  1  2  3  4
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-2 -1  0  1  2  3  4  5
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4. Cardinal Spline Wavelets

With the local linear projection sequence operator {Pm,r : r ∈ Z} as in Theorem 3.4, we now

define the linear space sequence {W r
m : r ∈ Z} by

W r
m =

{

f − Pm,rf : f ∈ Sr+1
m

}

, r ∈ Z. (4.1)

Since Pm,r : Sr+1
m → Sr

m, and Sr
m ⊂ Sr+1

m , we observe from (4.1) that

W r
m ⊂ Sr+1

m , r ∈ Z. (4.2)

Hence, if for a given r ∈ Z we have f ∈ Sr+1
m , then f = g + h, where g = Pm,rf ∈ Sr

m and

h = f − Pm,rf ∈ W r
m.

A function ψm ∈ S1
m which is such that

W r
m =

{

∑

j

cjψm(2r · −j) : c ∈M(Z)

}

, r ∈ Z, (4.3)

is called the mth order cardinal B-spline wavelet generated by the local linear projection sequence

{Pm,r : r ∈ Z}.

4.1 The Wavelet Bezout Identity

To find a wavelet ψm, we first prove the following result.

Proposition 4.1 The linear space sequence {W r
m : r ∈ Z} defined by (4.1) satisfies

W r
m =

{

f ∈ Sr+1
m : Pm,rf = 0

}

, r ∈ Z. (4.4)

Proof. Let r ∈ Z be fixed and suppose that f ∈ W r
m. Then, according to (4.1), there exists a

function g ∈ Sr+1
m such that f = g−Pm,rg. From the reproduction property (3.31), the linearity

of Pm,r, and the fact that Pm,rg ∈ Sr
m, we have

Pm,rf = Pm,rg − P2
m,rg = Pm,rg − Pm,rg = 0, (4.5)

i.e. f ∈ {g ∈ Sr+1
m : Pm,rg = 0}.

35
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Suppose f ∈ Sr+1
m is such that Pm,rf = 0. Then

f = f − 0 = f − Pm,rf, (4.6)

so that, from (4.4), we have the inclusion W r
m ⊂ {f ∈ Sr+1

m : Pm,r = 0}, and thereby completing

our proof. �

Using Proposition 4.1, we can now obtain the following characterization of all finitely supported

functions ψ ∈ W 0
m. Note first from (4.2) that, if ψ ∈ W 0

m ∩M0(R), there exists a sequence

{γj : j ∈ Z} ∈M0(Z) such that

ψ =
∑

j

γjNm(2 · −j), (4.7)

and for which we define its corresponding Laurent polynomial symbol by

Γ(z) =
∑

j

γjz
j, z ∈ C\{0}. (4.8)

Our result is as follows.

Theorem 4.2 For a sequence {γj : j ∈ Z} ∈M0(Z), let the cardinal spline ψ ∈ S1
m be defined

by (4.7). Then ψ belongs to the space

W 0
m = {f − Pm,0f : f ∈ S1

m} (4.9)

if and only if the symbol Γ defined by (4.8) is given by

Γ(z) = K(z)Hm(−z), z ∈ C\{0}, (4.10)

where Hm is the polynomial of degree m − 2 defined in Theorem 3.2, and with K denoting an

arbitrary even Laurent polynomial, i.e.

K(−z) = K(z), z ∈ C\{0}. (4.11)

Proof. From (3.30) and (4.7), we have

Pm,0ψ =
∑

j

[

∑

k

λm,2j−kγk

]

Nm(· − j), (4.12)
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from which, together with Proposition 4.1 and Theorem 2.3, we see that the cardinal spline ψ in

(4.7) belongs to W 0
m if and only if the sequence {γj : j ∈ Z} ∈M0(Z) is chosen such that

∑

k

λm,2j−kγk = 0. (4.13)

Using the fact that Λm(z) =
∑

j λm,jz
j, z ∈ C\{0}, together with (4.8), we obtain, for z ∈

C\{0},

∑

j

[

∑

k

λm,2j−kγk

]

z2j =
∑

j

[

∑

k

λm,2j−2kγ2k

]

z2j +
∑

j

[

∑

k

λm,2j−2k−1γ2k+1

]

z2j

=
∑

j

[

∑

k

λm,2j−2kz
2j−2k

]

γ2kz
2k

+
∑

j

[

∑

k

λm,2j−2k−1z
2j−2k−1

]

γ2k+1z
2k+1

=
∑

j

[

∑

k

λm,2jz
2j

]

γ2kz
2k +

∑

j

[

∑

k

λm,2j+1z
2j+1

]

γ2k+1z
2k+1

= Λ(e)
m (z)Γ(e)(z) + Λ(o)

m (z)Γ(o)(z)

=
Λm(z) + Λm(−z)

2

Γ(z) + Γ(−z)

2
+

Λm(z) − Λm(−z)

2

Γ(z) − Γ(−z)

2

=
1

2
[Λm(z)Γ(z) + Λm(−z)Γ(−z)] ,

from which it follows that a sequence {γj : j ∈ Z} satisfies the condition (4.13) if and only if

the corresponding Laurent polynomial Γ, as given by (4.8), satisfies the Bezout identity

Λm(z)Γ(z) = −Λm(−z)Γ(−z), z ∈ C\{0} (4.14)

Since also Λm is given by the formula (3.27), it follows that (4.14) is equivalent to the Bezout

identity

Hm(z)Γ(z) = Hm(−z)Γ(−z), z ∈ C\{0}. (4.15)

Now observe from (3.23), together with Proposition (3.5), that the polynomials Hm(z) and

Hm(−z) have no common factors, so that we can deduce from (4.15) that there exists a Laurent

polynomial K(z) such that (4.10) holds. Also, by substituting (4.10) into (4.15), we obtain

Hm(z)K(z)Hm(−z) = Hm(−z)K(−z)Hm(z), z ∈ C\{0},
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from which it follows that (4.11) holds, and thereby completing our proof. �

The following result can now be deduced from Theorem 4.2.

Theorem 4.3 The function ψm ∈ S1
m defined by

ψm(x) =
m−2
∑

j=0

(−1)jhm,jNm(2x− j), (4.16)

where
m−2
∑

j=0

hm,jz
j = Hm(z), z ∈ C, (4.17)

with Hm denoting the polynomial of Theorem 3.2, is a minimally-supported non-trivial function

in the space W 0
m defined by (4.9), with

ψm(x) = 0, x /∈ (0,m− 1). (4.18)

Proof. Since a polynomial K(z) of minimally degree satisfying (4.11) is given by K(z) = 1,

z ∈ C, we deduce from (4.10) that

Γ(z) = Γm(z) = Hm(−z), z ∈ C, (4.19)

is a polynomial of least possible degree as described by (4.10) and (4.11) in Theorem 4.2. Writing

Γm(z) =
m−2
∑

j=0

γm,jz
j, z ∈ C, (4.20)

it follows from (4.19), (4.17) and (4.20) that

γm,j = (−1)jhm,j, j ∈ Z. (4.21)

It follows from Theorem 4.2, together with (4.7), (4.20) and (4.21) that the function ψm defined

by (4.16) is indeed a minimally supported non-trivial function in Wm.

The finite support property of (4.18) is a direct consequence of (4.16) and (2.6). �

Using (4.16) and Table 3.1, we obtain the spline-wavelets

ψ2(x) = N2(2x),

ψ3(x) =
3

2
N3(2x) +

1

2
N3(2x− 1),

ψ4(x) = −
1

2
N4(2x) − 2N4(2x− 1) −

1

2
N4(2x− 2),
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of which the graphs are shown in Figures 4.1 and 4.2.

We proceed to show that the function ψm of Theorem 4.3 satisfies the property (4.3), according

to which we will then have shown that ψm is indeed a wavelet.

4.2 The Fundamental Decomposition Result

Our fundamental decomposition result is as follows.

Theorem 4.4 For an integer m ≥ 2, let the function ψm ∈ W 0
m be defined as in Theorem 4.3.

Then, for r ∈ Z, it holds for any function f =
∑

j cjNm(2r+1 · −j) ∈ Sr+1
m that

f =
∑

j

[

∑

k

h
m,2j−k+2⌊ 1

2
m⌋−1ck

]

Nm(2r · −j)

+
1

2m−1

∑

j

[

∑

k

(−1)k

(

m

2j − k + 2
⌊

1
2
m
⌋

− 1

)

ck

]

ψm(2r · −j), (4.22)

where
∑

j

hm,jz
j =

m−2
∑

j=0

hm,jz
j = Hm(z), z ∈ C, (4.23)

with Hm denoting the polynomial of Theorem 3.2.

Remark. Observe from (4.22) that, for k ∈ Z, by choosing f = Nm(2r+1 · −k), i.e. f =
∑

l clNm(2r+1 · −l) with cl = δl,k, we obtain the decomposition result

Nm(2r+1 · −k) =
∑

j

h
m,2j−k+2⌊ 1

2
m⌋−1Nm(2r · −j)

+
(−1)k

2m−1

∑

j

(

m

2j − k + 2
⌊

1
2
m
⌋

− 1

)

ψm(2r · −j),

k ∈ Z. (4.24)

Proof of Theorem 4.4. Let r ∈ Z be fixed and suppose f =
∑

j cjNm(2r+1 ·−j) for a sequence

c ∈ M(Z). Using (3.30) and the refinement equation (2.12) for cardinal B-splines, we obtain,
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with the sequence {am,j : j ∈ Z} ∈M0(Z) defined by (2.14),

(f − Pm,rf)(x) =
∑

j

cjNm(2r+1x− j) −
∑

j

∑

k

λm,2j−kck

[

∑

l

am,lNm(2r+1x− 2j − l)

]

=
∑

j

cjNm(2r+1x− j) −
∑

j

∑

k

λm,2j−kck
∑

l

am,l−2jNm(2r+1x− l)

=
∑

j

cjNm(2r+1x− j) −
∑

l

[

∑

k

λm,2l−kck

]

∑

j

am,j−2lNm(2r+1x− j)

=
∑

j

cjNm(2r+1x− j) −
∑

j

∑

l

[

∑

k

λm,2l−kck

]

am,j−2lNm(2r+1x− j)

=
∑

j

[

∑

k

(

δj,k −
∑

l

λm,2l−kam,j−2l

)

ck

]

Nm(2r+1x− j). (4.25)

Let {ωj : j ∈ Z} denote a sequence in M0(Z). Then, using (4.16), we have

∑

j

[

∑

k

ω2j−kck

]

ψm(2rx− j) =
∑

j

∑

k

ω2j−kck

[

∑

l

γm,lNm(2r+1x− 2j − l)

]

=
∑

j

∑

k

ω2j−kck

[

∑

l

γm,l−2jNm(2r+1x− l)

]

=
∑

l

∑

k

ω2l−kck
∑

j

γm,j−2lNm(2r+1x− j)

=
∑

j

[

∑

k

(

∑

l

γm,j−2lω2l−k

)

ck

]

Nm(2r+1x− j). (4.26)

It follows from (4.25) and (4.26) that {ωj : j ∈ Z} ∈M0(Z) is such that

(f − Pm,rf)(x) =
∑

j

[

∑

k

ω2j−kck

]

ψm(2rx− j), x ∈ R, (4.27)

if and only if

∑

j

[

∑

k

(

δj,k −
∑

l

am,j−2lλm,2l−k −
∑

l

γm,j−2lω2l−k

)

ck

]

Nm(2r+1x− j) = 0, x ∈ R,

(4.28)

which holds if and only if the sequence {ωj : j ∈ Z} ∈M0(Z) satisfies the condition

∑

l

am,j−2lλm,2l−k +
∑

l

γm,j−2lω2l−k = δj,k, j, k ∈ Z. (4.29)

We proceed to show that the condition (4.29) is equivalent to a pair of Bezout identities.
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With the Laurent polynomial Ω defined by

Ω(z) =
∑

j

ωjz
j, z ∈ C\{0}, (4.30)

we use (3.7) and (4.30) to deduce that, for j ∈ Z and z ∈ C\{0}, we have

∑

k

[

∑

l

am,j−2lλm,2l−k +
∑

l

γm,j−2lω2l−k

]

zk

=
∑

l

[

∑

k

λm,2l−k(z
−1)2l−k

]

am,j−2lz
2l +

∑

l

[

∑

k

ω2l−k(z
−1)2l−k

]

γm,j−2lz
2l

=
∑

l

(

∑

k

λm,k(z
−1)k

)

am,j−2lz
2l +

∑

l

(

∑

k

ωk(z
−1)k

)

γm,j−2lz
l

= zj

[(

∑

l

am,j−2lz
2l−j

)

Λm(z−1) +

(

∑

l

γm,j−2lz
2l−j

)

Ω(z−1)

]

. (4.31)

Since also
∑

k

δj,kz
k = zj, z ∈ C,

we deduce from (4.31) that the condition (4.29) is satisfied if and only if

[

∑

l

am,j−2lz
2l−j

]

Λm(z−1) +

[

∑

l

γm,j−2lz
2l−j

]

Ω(z−1) = 1, z ∈ C\{0}, j ∈ Z, (4.32)

or equivalently,

[

∑

l

am
j−2lz

j−2l

]

Λm(z) +

[

∑

l

γm,j−2lz
j−2l

]

Ω(z) = 1, z ∈ C\{0}, j ∈ Z. (4.33)

But (4.33) holds for every j ∈ Z if and only if it holds for all even j and for all odd j. Hence,

using (2.15), we find that (4.33) is equivalent to the pair of Bezout identities

A
(e)
m (z)Λm(z) + Γ

(e)
m (z)Ω(z) = 1

A
(o)
m (z)Λm(z) + Γ

(o)
m (z)Ω(z) = 1







z ∈ C\{0}, (4.34)

i.e.,

[Am(z) + Am(−z)] Λm(z) + [Γm(z) + Γm(−z)] Ω(z) = 2

[Am(z) − Am(−z)] Λm(z) + [Γm(z) − Γm(−z)] Ω(z) = 2







z ∈ C\{0}, (4.35)
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which holds if and only if

Am(z)Λm(z) + Γm(z)Ω(z) = 2

Am(−z)Λm(z) + Γm(−z)Ω(z) = 0







z ∈ C\{0}. (4.36)

By using (2.15), (3.27) and (4.19), we find that Ω is a Laurent polynomial satisfying (4.36) if

and only if the pair of Bezout identities

z−2⌊ 1

2
m⌋+1(1 + z)mHm(z) + 2m−1Hm(−z)Ω(z) = 2m

[

1
2m−1 z

−2⌊ 1

2
m⌋+1(1 − z)m + Ω(z)

]

Hm(z) = 0







z ∈ C\{0} (4.37)

are satisfied.

The second line in (4.37) is satisfied if and only if the Laurent polynomial Ω is chosen as

Ω(z) = Ωm(z) = −
1

2m−1
z−2⌊ 1

2
m⌋+1(1 − z)m, z ∈ C\{0}. (4.38)

Substituting (4.38) into the left hand side of the first equation in (4.37) yields the expression

z−2⌊ 1

2
m⌋+1 [(1 + z)mHm(z) − (1 − z)mHm(−z)] , z ∈ C\{0}, (4.39)

which together with the Bezout identity (3.17), shows that the choice (4.38) of Ω also satisfies

the first equation in (4.37). Therefore, the pair of Bezout identities (4.37) are satisfied by a

Laurent polynomial Ω if and only if Ω is given by (4.38), according to which also, from (4.30),

we have for z ∈ C\{0} that

∑

j

ωjz
j = −

1

2m−1
z−2⌊ 1

2
m⌋+1

∑

j

(−1)j

(

m

j

)

zj

= −
1

2m−1

∑

j

(−1)j

(

m

j

)

zj−2⌊ 1

2
m⌋+1

=
1

2m−1

∑

j

(−1)j

(

m

j + 2
⌊

1
2
m
⌋

− 1

)

zj,

and thus the sequence {ωj : j ∈ Z} ∈M0(Z) satisfies the condition (4.29) if and only if

ωj = ωm,j =
(−1)j

2m−1

(

m

j + 2
⌊

1
2
m
⌋

− 1

)

, j ∈ Z. (4.40)

By combining (3.39), (3.30), (4.27) and (4.40), we see that (4.22) does indeed hold. �
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4.3 Decomposition and Reconstruction Algorithms

Given a signal f ∈M(R), we proceed to describe the cardinal B-spline wavelet decomposition of

f into detail components.

Algorithm 4.5 1. For a sufficiently large positive integer N , we set

fN = Qm,Nf (4.41)

where Qm,N is the quasi-interpolation operator as in Theorem 2.9 and with the choice

τ = m− 1. Then

fN =
∑

j

c
(N)
j Nm(2N .− j) (4.42)

with the sequence cN ∈M(Z) given by

c
(N)
j =

∑

k

uj−kf

(

k +m− 1

2N

)

. (4.43)

2. For a sufficiently small positive integer M ∈ N and using Theorem 4.4, if we define the

sequences {fr : r = N − 1, . . . , N −M} and {gr : r = N − 1, . . . , N −M} by

fr =
∑

j c
(r)
j Nm(2r.− j)

gr =
∑

j d
(r)
j ψm(2r.− j)















r = N − 1, . . . , N −M, (4.44)

where the sequences c(r) ∈ M(Z) and d(r) ∈ M(Z) are obtained recursively from (4.43)

and the equations

c
(r)
j =

∑

k hm,2j−k+2⌊ 1

2
m⌋−1c

(r+1)
k

d
(r)
j =

∑

k

(−1)k

2m−1

(

m

2j−k+2⌊ 1

2
m⌋−1

)

c
(r+1)
k



















j ∈ Z, r = N − 1, . . . , N −M (4.45)

so that fr ∈ Sr
m, r = N − 1, . . . , N −M and gr ∈ W r

m, r = N − 1, . . . , N −M , then the

decomposition result

fr+1 = fr + gr, r = N − 1, . . . , N −M (4.46)

holds.
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It follows from (4.46) that

fN = fN−M +
N−1
∑

r=N−M

gr. (4.47)

The equations (4.43) and (4.45) are known as the wavelet decomposition algorithm associ-

ated with the cardinal spline projection operator sequence {Pm,r : r ∈ Z} and the corresponding

wavelet ψm.

Once a signal has been decomposed using the wavelet decomposition algorithm (4.43) and (4.45),

and the data has been processed, we describe next how to reconstruct the signal according to

the right hand side of (4.47).

Algorithm 4.6 1. By using (4.44) and the refinement equation (2.12), we obtain, for r =

N − 1, . . . , N −M ,

fr =
∑

j

c
(r)
j

∑

k

am,kNm(2r+1.− 2j − k)

=
∑

j

c
(r)
j

∑

k

am,k−2jNm(2r+1.− k)

=
∑

k

[

∑

j

am,k−2jc
(r)
j

]

Nm(2r+1.− k) (4.48)

whereas, from (4.16),

gr =
∑

j

d
(r)
j

∑

k

(−1)khm,kNm(2r+1.− 2j − k)

=
∑

j

d
(r)
j

∑

k

(−1)khm,k−2jNm(2r+1.− k)

=
∑

k

[

∑

j

(−1)khm,k−2jd
(r)
j

]

Nm(2r+1.− k) (4.49)

2. Combining (4.48) and (4.49) and the first line of (4.44), we deduce that the desired equation

(4.46) holds if and only if the condition

∑

j

[

c
(r+1)
j −

(

∑

k

am,j−2kc
(r)
k +

∑

k

(−1)khm,j−2kd
(r)
k

)]

Nm(2r+1 · −k) = 0 (4.50)

is satisfied. Hence, if we set

c
(r+1)
j =

∑

k

am,j−2kc
(r)
j +

∑

k

(−1)khm,j−2kd
(r)
k , j ∈ Z, r = N−1, . . . , N−M, (4.51)

then (4.50), and therefore also (4.49) are satisfied.



Section 4.4. Singularity Detection Property 46

The equation (4.51) is called the cardinal spline wavelet reconstruction algorithm.

4.4 Singularity Detection Property

We proceed to prove that our decomposition algorithm defined by Algorithm 4.5 possesses the

essential property to locally detect singularities in a given signal f .

We shall rely on the following result.

Proposition 4.7 The sequence am ∈M0(Z) defined by (2.14) satisfies the condition

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

p(k) = 0, p ∈ πm−1, j ∈ Z. (4.52)

Proof. We shall prove that

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

kl = 0, j ∈ Z, l = 0, 1, . . . ,m− 1 (4.53)

which is equivalent to the condition (4.52)

Now note that, for j ∈ Z, by using also the fact that 2
⌊

1
2
m
⌋

− 1 is an odd integer, as well as

(2.13), we have

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

kl

=
∑

k

(−1)2j+2⌊ 1

2
m⌋−1−kam,k

(

2j + 2

⌊

1

2
m

⌋

− 1 − k

)l

=
∑

k

(−1)2j+2⌊ 1

2
m⌋−1−k

l
∑

q=0

(

l

q

)

(−1)qkq

(

2j + 2

⌊

1

2
m

⌋

− 1

)l−q

= −
∑

k

(−1)kam,k

l
∑

q=0

(

l

q

)

(−1)qkq

(

2j + 2

⌊

1

2
m

⌋

− 1

)l−q

= −
1

2m−1

∑

k

(−1)k

(

m

k

) l
∑

q=0

(

l

q

)

(−1)qkq

(

2j + 2

⌊

1

2
m

⌋

− 1

)l−q

= −
1

2m−1

l
∑

q=0

(−1)q

(

l

q

)(

2j + 2

⌊

1

2
m

⌋

− 1

)l−q
∑

k

(−1)k

(

m

k

)

kq. (4.54)
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Our proof will be complete if we can show that

∑

k

(−1)k

(

m

k

)

kq = 0, q = 0, 1, . . . ,m− 1, (4.55)

which, together with (4.54), then yield the desired result, (4.53).

We prove (4.55) by induction on the integer m.

Note that (4.55) holds for m = 1. Next suppose that (4.55) holds for a fixed m ∈ N. We define

Am,q =
∑

k

(−1)k

(

m

k

)

kq, q ∈ Z+.

First, note that

Am+1,0 =
∑

k

(−1)k

(

m+ 1

k

)

= (1 − 1)m+1 = 0.

Next, for q ∈ {1, 2, . . . ,m}, we have

Am+1,q =
∑

k

(−1)k

(

m+ 1

k

)

kq

=
∑

k

(−1)k (m+ 1)!

k!(m+ 1 − k)!
kq

= (m+ 1)
∑

k

(−1)k m!

(k − 1)!(m+ 1 − k)!
kq−1

= (m+ 1)
∑

k

(−1)k+1 m!

k!(m− k)!
(k + 1)q−1

= −(m+ 1)
∑

k

(−1)k

(

m

k

) q−1
∑

r=0

(

q − 1

r

)

kr

= −(m+ 1)

q−1
∑

r=0

(

q − 1

r

)

∑

k

(−1)k

(

m

k

)

kr

= −(m+ 1)

q−1
∑

r=0

(

q − 1

r

)

Am,r = 0

from the inductive hypothesis, and thereby completing our proof of (4.55). �

The result of Proposition 4.7 enables us to prove the following fundamental property of the

decomposition algorithm given by Algorithm 4.5.

Theorem 4.8 For the wavelet ψm of Theorem 4.3, if we choose f ∈ πm−1 in the decomposition

algorithm given by Algorithm 4.5, then the wavelet coefficient sequences {d(r)
j : r = N −
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1, . . . , N −M} ∈M(Z) satisfy

d
(r)
j = 0, j ∈ Z, r = N − 1, . . . , N −M. (4.56)

Proof. Let σ ∈ {0, 1, . . . ,m− 1} be fixed. It will suffice to prove our theorem for the choice

f(x) = xσ, x ∈ R. (4.57)

First, for r = N − 1, we have from (2.30), (4.43), (4.45), (4.57) and Proposition 4.7, that, for

j ∈ Z,

dN−1
j =

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

[

∑

k

uk−l

(

l + τ0
2N

)σ
]

=
σ!

2Nσ(m− 1)!

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

Q(m−1−σ)(k) = 0, (4.58)

since Q(m−1−σ) ∈ πm−1, σ ∈ {0, 1, . . . ,m− 1}.

Similarly, with the polynomial Q̃ ∈ πm−1 defined by

Q̃ =
σ!

2Nσ(m− 1)!
Q,

we deduce that, for j ∈ Z, we have

d
(N−2)
j =

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

c
(N−1)
k

=
∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

∑

l

λm,2k−lc
(N)
l

=
∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

∑

l

λm,2k−lQ̃
(m−1−σ)(l)

=
∑

k

(−1)a
m,2j+2⌊ 1

2
m⌋−1−k

[

∑

l

λm,2k−2lQ̃
(m−1−σ)(2l)

+
∑

l

λm,2k−2l−1Q̃
(m−1−σ)(2l + 1)

]

=
∑

k

(−1)a
m,2j+2⌊ 1

2
m⌋−1−k

[

∑

l

λm,2lQ̃
(m−1−σ)(2k − 2l)

+
∑

l

λm,2l+1Q̃
(m−1−σ)(2k − 2l − 1)

]
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=
∑

l

λm,2l

[

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

Q̃(m−1−σ)(2k − 2l)

]

+
∑

l

λm,2l+1

[

∑

k

(−1)ka
m,2j+2⌊ 1

2
m⌋−1−k

Q̃(m−1−σ)(2k − 2l − 1)

]

=

[

∑

l

λm,2l

]

(0) +

[

∑

l

λm,2l+1

]

(0) = 0, (4.59)

from Proposition 4.7, after having used also the fact that, since Q̃(m−1−σ) ∈ πm−1, σ ∈

{0, 1, . . . ,m− 1}, we also have Q̃(m−1−σ)(2 · −2l) ∈ πm−1, and Q̃(m−1−σ)(2 · −2l − 1) ∈ πm−1.

Repeated use of this procedure yields

d
(r)
j = 0, j ∈ Z, r = N − 3, . . . , N −M. (4.60)

Our result (4.56) then follows from (4.58), (4.59) and (4.60). �

The result of Theorem 4.8 has the following important implication with respect to the cardinal

B-spline wavelet decomposition algorithm given by Algorithm 4.5. If the signal f is locally Cm-

smooth in a certain region, so that, according to Taylors theorem, f is locally well approximated

by a polynomial in πm−1 in that region, it follows from Theorem 4.8 that, for a given r ∈ Z,

the wavelet coefficients d
(r)
j can be expected to be relatively small whenever the support interval

[

j

2r ,
j+m−1

2r

]

, as implied by (4.18), of the wavelet ψm(2r · −j), overlaps with this Cm-smooth

region of f , thereby providing localised information, at each resolution level r, on the smoothness

of f .

4.5 Example

We consider the signal f ∈ C(R) given by f = N3, so that, from (2.4), we have

f(x) =



































1
2
x2, 0 ≤ x ≤ 1,

1
2
(−2x2 + 6x− 3), 1 ≤ x ≤ 2,

1
2
(3 − x)2, 2 ≤ x ≤ 3,

0, x /∈ [0, 3),

(4.61)

as shown in Figure 4.3. Then f ∈ C1(R)\C2(R), with discontinuities in the second derivatives
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Figure 4.3: The signal f

f ′′ at x ∈ {0, 1, 2, 3, }.

We use the wavelet decomposition Algorithm 4.5 based on the cardinal B-spline of order m = 4,

the local linear projection operator sequence {Pm,r : r ∈ Z}, as given by (3.30), and where the

corresponding wavelet ψ4 according to (4.16) and Table 3.1, is given by

ψ4(x) = −
1

2
N4(2x) − 2N4(2x− 1) −

1

2
N4(2x− 2), (4.62)

as shown in Figure 4.2. The quasi-interpolant approximation f10 = Q4,10f is shown in Figure

4.4.

Next, we graph, for r = N, . . . , N −M , where N = 10 and M = 5, the functions fr and gr

as shown in Figures 4.5 to 4.9 by using (4.44), (4.45), (4.43), (4.16), (2.7) and (2.3). We see

that the singularities in the second derivatives f ′′ at x ∈ {0, 1, 2, 3} are efficiently detected by

our decomposition, with sharply defined localisation.
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Figure 4.4: The function Q4,10f
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Figure 4.5: The functions f9 and g9
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Figure 4.6: The functions f8 and g8
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Figure 4.7: The functions f7 and g7
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Figure 4.8: The functions f6 and g6
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Figure 4.9: The functions f5 and g5



5. Cubic Spline Wavelet Decomposition

on a Bounded Interval

In Chapter 4, we constructed a minimally supported cardinal B-spline wavelet ψm as a finitely

supported continuous function in S1
m. In this chapter, we show how our wavelet construction

method of Chapter 4 can be adapted to yield a cubic B-spline wavelet on a bounded interval.

5.1 Finite-Dimensional Cubic Spline Refinement Spaces

For an integer n ≥ 1 and r ∈ Z+, define the cubic spline spaces

Sr[0, n] =
{

s ∈ C2[0, n] : s|[ j

2r ,
j+1

2r ) ∈ π3, j = 0, 1, . . . , 2rn− 1
}

, (5.1)

from which it immediately follows that the nesting property

Sr[0, n] ⊂ Sr+1[0, n], r ∈ Z+, (5.2)

is satisfied.

According to a standard result in spline theory [18, Theorem 2.6], it holds for any r ∈ Z+ that

the sequence

N r
n = {N4(2

rx− j), x ∈ [0, n]; j = −3,−2, . . . , 2rn− 1} (5.3)

is a basis for Sr[0, n]. Hence

dim(Sr[0, n]) = 2rn+ 3. (5.4)

The following refinement equation holds on [0, n].

Proposition 5.1 For r ∈ Z+, it holds that

N4(2
rx− j) =

1

8

2r+1n−1
∑

k=−3

(

4

k − 2j

)

N4(2
r+1x− k), x ∈ [0, n], j = −3,−2, . . . , 2rn− 1.

(5.5)

54
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Proof. Let r ∈ Z+ be fixed. It follows from (2.12) that, for x ∈ R and j ∈ Z,

N4(x− j) =
1

8

∑

k

(

4

k

)

N4(2x− 2j − k) =
1

8

∑

k

(

4

k − 2j

)

N4(2x− k). (5.6)

Since N4 ∈ C0(R), and (2.6) holds, we have

N4(x) = 0, x /∈ (0, 4). (5.7)

Moreover, since 0 < 2x− k < 4 if and only if 2x− 4 < k < 2x, we deduce from (5.6) and (5.7)

that (5.5) does indeed hold. �

5.2 Local Linear Projection

We proceed to obtain a local linear projection operator between cubic spline refinement spaces

at successive resolution levels.

For r ∈ Z+, we seek a sequence {λr
j,k : k = −3,−2, . . . , 2r+1n − 1; j = −3,−2, . . . , 2rn − 1}

such that the linear operator Pr
n : Sr+1[0, n] → Sr[0, n] defined for x ∈ [0, n] by

(Pr
nf)(x) =

2rn−1
∑

j=−3

[

2r+1n−1
∑

k=−3

λr
j,kck

]

N4(2
rx− j), for f(x) =

2r+1n−1
∑

j=−3

cjN4(2
r+1x− j), (5.8)

satisfies the reproduction property

(Pr
nf)(x) = f(x), x ∈ [0, n], f ∈ Sr[0, n], (5.9)

so that Pr
n is then a linear projection on Sr[0, n].

To this end, let r ∈ Z+, suppose f ∈ Sr[0, n], and denote by {cj : j = −3,−2, . . . , 2rn − 1}

the sequence such that

f(x) =
2rn−1
∑

k=−3

ckN4(2
rx− k), 0 ≤ x ≤ n. (5.10)

By substituting (5.5) into (5.10) we obtain, for x ∈ [0, n],

f(x) =
1

8

2rn−1
∑

j=−3

cj

2r+1n−1
∑

k=−3

(

4

k − 2j

)

N4(2
r+1x− k)

=
1

8

2r+1n−1
∑

k=−3

[

2rn−1
∑

j=−3

(

4

k − 2j

)

cj

]

N4(2
r+1x− k). (5.11)
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It follows from (5.11) that, if the linear operator Pr
n : Sr+1[0, n] → Sr[0, n] is defined by (5.8),

with {λr
j,k : k = −3,−2, . . . , 2r+1n−1; j = −3,−2, . . . , 2rn−1} denoting an arbitrary sequence,

then, for x ∈ [0, n],

(Pr
nf)(x) =

1

8

2rn−1
∑

j=−3

[

2r+1n−1
∑

k=−3

λr
j,k

2rn−1
∑

l=−3

(

4

k − 2l

)

cl

]

N4(2
rx− j)

=
1

8

2rn−1
∑

j=−3

[

2rn−1
∑

l=−3

{

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
j,k

}

cl

]

N4(2
rx− j). (5.12)

By combining (5.10) and (5.12), we obtain the formula

(f − Pr
nf)(x) =

2rn−1
∑

j=−3

[

2r+1n−1
∑

l=−3

{

δj,l −
1

8

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
j,k

}

cl

]

N4(2
rx− j), x ∈ [0, n].

(5.13)

Since N r
n is a basis of Sr[0, n], we immediately deduce from (5.13) the following result.

Proposition 5.2 For r ∈ Z+, the linear operator Pr
n : Sr+1[0, n] → Sr[0, n], as defined by (5.8),

satisfies the reproduction property (5.9), and is therefore a linear projection on Sr[0, n], if and

only if the sequence {λr
j,k : k = −3,−2, . . . , 2r+1n − 1; j = −3,−2, . . . , 2rn − 1} satisfies the

condition

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
j,k = 8δj,l, l = −3,−2, . . . , 2r+1n− 1; j = −3,−2, . . . , 2rn− 1. (5.14)

We proceed to explicitly solve for {λr
j,k} from the linear equation (5.14).

Based on the case m = 4 of Theorem 3.4 and Table 3.2, we first prove the following result.

Proposition 5.3 For r ∈ Z+ and j = −1, 0, . . . , 2rn− 3, the sequence {λr
j,k} defined by

λr
j,k = λ4,2j−k, k = −3,−2, . . . , 2r+1n− 1, (5.15)

where

λ4,−3 = −1
2

λ4,−2 = 2

λ4,−1 = −1
2

λ4,j = 0, j /∈ {−3,−2,−1},



























(5.16)

satisfies the condition (5.14).
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Proof. Let r ∈ Z+ and j ∈ {−1, 0, . . . , 2rn− 3}. Then, if l = −3, it follows from (5.15) that

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
j,k =

−2
∑

k=−3

(

4

k + 6

)

λr
j,k =

−2
∑

k=−3

(

4

k + 6

)

λ4,2j−k.

Since 2j − k ≥ (−2) − (−2) = 0 for j ≥ −1 and k ∈ {−3,−2}, we see from (5.16) that

λ4,2j−k = 0 for j ≥ −1 and k ∈ {−3,−2}. Hence

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
j,k = 0 = 8δj,l, l = −3, j = −1, 0, . . . , 2rn− 3,

which shows that (5.14) holds for l = −3.

If l = −2, we argue as above from (5.15) to deduce that

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
j,k =

2r+1n−1
∑

k=−3

(

4

k + 4

)

λ4,2j−k

=
0
∑

k=−3

(

4

k + 4

)

λ4,2j−k

=
0
∑

k=−1

(

4

k + 4

)

λ4,2j−k

= 4λ4,2j+1 + λ4,2j. (5.17)

If j = −1, we see from (5.16) that

4λ4,2j+1 + λ4,2j = 4λ4,−1 + λ4,−2 = 4

(

−
1

2

)

+ 2 = 0, (5.18)

whereas if j ∈ {0, 1, . . . , 2rn− 3}, the last line of (5.16) gives

4λ4,2j+1 + λ4,2j = 4(0) + 0 = 0. (5.19)

It follows from (5.17), (5.18) and (5.19) that

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λj,k = 0 = 8δj,l, l = −2, j = −1, . . . , 2rn− 3,

which shows that (5.14) also holds for l = −2.

We have therefore now shown that the condition (5.14) is satisfied by the choice (5.15), (5.16)

for l ∈ {−3,−2} and j = −1, 0, . . . , 2rn− 3.
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The proof that the choice (5.15), (5.16) satisfies (5.14) for l ∈ {2rn − 2, 2rn − 1} and j ∈

{−1, 0, . . . , 2rn− 3} is similar to the above.

Next, suppose l ∈ {−1, 0, . . . , 2rn− 3}. But then (5.15) and (5.16) give

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
j,k =

2l+4
∑

k=2l

(

4

k − 2l

)

λr
j,k

=
4
∑

k=0

(

4

k

)

λr
j,2l+k

=
4
∑

k=0

(

4

k

)

λ4,2j−2l−k

=

2j−2l+3
∑

k=2j−2l+1

(

4

k

)

λ4,2j−2l−k

= −
1

2

(

4

2j − 2l + 1

)

+ 2

(

4

2j − 2l + 2

)

−
1

2

(

4

2j − 2l + 3

)

.(5.20)

For l ∈ {−1, 0, . . . , 2rn− 3} and j ∈ {−1, 0, . . . , 2rn− 3}, we have, if j = l,

−
1

2

(

4

2j − 2l + 1

)

+ 2

(

4

2j − 2l + 2

)

−
1

2

(

4

2j − 2l + 3

)

= −
1

2
(4) + 2(6) −

1

2
(4) = 8 = 8δj,l,

which shows from (5.20) that (5.14) holds if j = l. If l = j − 1, then

−
1

2

(

4

2j − 2l + 1

)

+ 2

(

4

2j − 2l + 2

)

−
1

2

(

4

2j − 2l + 3

)

= −
1

2
(4) + 2(1) −

1

2
(0) = 0,

whereas if l = j + 1, then

−
1

2

(

4

2j − 2l + 1

)

+ 2

(

4

2j − 2l + 2

)

−
1

2

(

4

2j − 2l + 3

)

= −
1

2
(0) + 2(1) −

1

2
(4) = 0,

which shows from (5.20) that (5.14) also holds for l = j − 1 and l = j + 1.

If l ≤ j − 2 or l ≥ j + 2, we have

−
1

2

(

4

2j − 2l + 1

)

+ 2

(

4

2j − 2l + 2

)

−
1

2

(

4

2j − 2l + 3

)

= −
1

2
(0) + 2(0) −

1

2
(0) = 0,

which shows that (5.14) also holds for these values of l, and thereby completing our proof. �

Our next step is to solve the linear system (5.14) for j ∈ {−3,−2} and j ∈ {2rn− 2, 2rn− 1}.

Suppose first j = −3. Then (5.14) is given by

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
−3,k = 8δ−3,l, l = −3,−2, . . . , 2rn− 1, (5.21)
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or equivalently, in matrix-vector notation,











































4 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0

4 6 4 1 0 0 0 0 · · · 0 0 0 0 0 0 0 0

0 1 4 6 4 1 0 0 · · · 0 0 0 0 0 0 0 0

0 0 0 1 4 6 4 1 · · · 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 · · · 1 4 6 4 1 0 0 0

0 0 0 0 0 0 0 0 · · · 0 0 1 4 6 4 1 0

0 0 0 0 0 0 0 0 · · · 0 0 0 0 1 4 6 4

0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 1 4





















































































λ−3,−3

λ−3,−2

λ−3,−1

λ−3,0

...

λ−3,2r+1n−4

λ−3,2r+1n−3

λ−3,2r+1n−2

λ−3,2r+1n−1











































=











































8

0

0

0
...

0

0

0

0











































.

(5.22)

We now observe that the minimally supported sequence {λr
j,k} satisfying (5.22) is the one satis-

fying








4 1 0

4 6 4

0 1 4

















λr
−3,−3

λr
−3,−2

λr
−3,−1









=









8

0

0









, (5.23)

with also

λr
−3,k = 0, k = 0, 1, · · · , 2r+1n− 1. (5.24)

The unique solution of the 3 × 3 linear system (5.23) is

{λr
−3,−3, λ

r
−3,−2, λ

r
−3,−1} =

1

2
{5,−4, 1}. (5.25)

Next, suppose j = −2. Then (5.14) is given by

2r+1n−1
∑

k=−3

(

4

k − 2l

)

λr
−2,k = 8δ−2,l, l = −3,−2, · · · , 2rn− 1, (5.26)
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or equivalently, in matrix-vector notation,











































4 1 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0 0

4 6 4 1 0 0 0 0 · · · 0 0 0 0 0 0 0 0

0 1 4 6 4 1 0 0 · · · 0 0 0 0 0 0 0 0

0 0 0 1 4 6 4 1 · · · 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 · · · 1 4 6 4 1 0 0 0

0 0 0 0 0 0 0 0 · · · 0 0 1 4 6 4 1 0

0 0 0 0 0 0 0 0 · · · 0 0 0 0 1 4 6 4

0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 1 4





















































































λ−2,−3

λ−2,−2

λ−2,−1

λ−2,0

...

λ−2,2r+1n−4

λ−2,2r+1n−3

λ−2,2r+1n−2

λ−2,2r+1n−1











































=











































0

8

0

0
...

0

0

0

0











































.

(5.27)

Analogously to the case j = −3, we see that the minimally supported sequence {λr
j,k} satisfying

(5.27) is the one that solves









4 1 0

4 6 4

0 1 4

















λr
−2,−3

λr
−2,−2

λr
−2,−1









=









0

8

0









, (5.28)

with also

λr
−2,k = 0, k = 0, 1, · · · , 2r+1n− 1. (5.29)

The unique solution of the 3 × 3 linear system (5.28) is given by

{λr
−2,−3, λ

r
−2,−2, λ

r
−2,−1} =

1

2
{−1, 4,−1}. (5.30)

Similarly, if j = 2rn − 2, the minimally supported sequence {λ2rn−2,k} satisfying the condition

(5.14) for j = 2rn− 2 is given by

{λr
2rn−2,2r+1n−3, λ

r
2rn−2,2r+1n−2, λ

r
2rn−2,2r+1n−1} =

1

2
{−1, 4,−1}, (5.31)

with

λr
2rn−2,k = 0, k = −3,−2, · · · , 2r+1n− 4, (5.32)

whereas the minimally supported sequence {λ2rn−1,k} satisfying the condition (5.14) for j =

2rn− 1 is given by

{λr
2rn−1,2r+1n−3, λ

r
2rn−1,2r+1n−2, λ

r
2rn−1,2r+1n−1} =

1

2
{1,−4, 5}, (5.33)
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with

λr
2rn−1,k = 0, k = −3,−2, · · · , 2r+1n− 4. (5.34)

We have therefore proved the following result.

Proposition 5.4 For r ∈ Z+ and j ∈ {−3,−2,−1} ∪ {2rn− 2, 2rn− 1}, the sequence {λr
j,k}

defined by (5.24), (5.25), (5.29), (5.30), (5.31), (5.32), (5.33), (5.34) satisfies the condition

(5.14).

Combining the results of Proposition 5.2, 5.3 and 5.4, we have the following result.

Theorem 5.5 For r ∈ Z+, let the linear operator Pr
n : Sr+1[0, n] → Sr[0, n] be defined for

x ∈ [0, n] by

(Pr
nf)(x) =

(

5

2
c−3 − 2c−2 +

1

2
c−1

)

N4(2
rx+ 3)

+
2rn−2
∑

j=−2

(

−
1

2
c2j+1 + 2c2j+2 −

1

2
c2j+3

)

N4(2
rx− j)

+

(

1

2
c2r+1n−3 − 2c2r+1n−2 +

5

2
c2r+1n−1

)

N4(2
rx− 2rn+ 1),

for f(x) =
2r+1n−1
∑

j=−3

cjN4(2
r+1x− j). (5.35)

Then the reproduction property (5.9) is satisfied, i.e. Pr
n is a projection on Sr

n[0, n].

5.3 The Fundamental Space Decomposition Result

For r ∈ Z+, we now define the linear subspace W r[0, n] of Sr+1[0, n] by

W r[0, n] = {f − Pr
nf : f ∈ Sr+1

n }, (5.36)

with the operator Pr
n : Sr+1[0, n] → Sr[0, n] defined by (5.35). We proceed to show that

W r[0, n] is the kernel of the operator Pr
n, as follows.

Proposition 5.6 For r ∈ Z+, it holds that

W r[0, n] = {f ∈ Sr+1[0, n] : Pr
nf = 0}. (5.37)
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Proof. Let r ∈ Z+ and suppose f ∈ W r[0, n]. Then, according to the definition (5.36), there

exists a function g ∈ Sr+1[0, n] such that

f = g − Pr
ng.

Hence, since Pr
n is a linear operator, we have that

Pr
nf = Pr

ng − Pr
n(Pr

ng) = Pr
ng − Pr

ng = 0,

after having used also the fact that Pr
ng ∈ Sr[0, n], together with the reproduction property (5.9)

of Pr
n. It follows that

W r[0, n] ⊂ {f ∈ Sr+1[0, n] : Pr
nf = 0}.

Next, suppose f ∈ Sr+1[0, n] is such that Pr
nf = 0. But then f = f − Pr

nf , and thus

f ∈ {g − Pr
ng : g ∈ Sr+1[0, n]} = W r[0, n], so that {f ∈ Sr+1[0, n] : Pr

nf = 0} ⊂ W r[0, n],

and thereby concluding our proof of (5.37). �

By using Proposition 5.6, we can now prove the following fundamental property of the linear

space W r[0, n].

Proposition 5.7 For r ∈ Z+, it holds that

Sr[0, n] ∩W r[0, n] = {0}. (5.38)

Proof. Since Sr[0, n] and W r[0, n] are both linear spaces, we have

{0} ⊂ Sr[0, n] ∩W r[0, n].

Suppose next f ∈ Sr[0, n] ∩W r[0, n]. But then f ∈ Sr[0, n], so that (5.9) gives

f = Pr
nf. (5.39)

Also, f ∈ W r[0, n], and it follows from (5.37) that

Pr
nf = 0. (5.40)

Together, (5.39) and (5.40) yield f = 0. It follows that Sr[0, n] ∩W r[0, n] ⊂ {0}, and thereby

completing our proof of (5.38). �

Recalling from the definition (5.36) that W r[0, n] is a subspace of the linear space Sr+1[0, n],

our fundamental space decomposition result is now as follows.
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Theorem 5.8 For r ∈ Z+,

Sr+1[0, n] = Sr[0, n]+̇W r[0, n], (5.41)

in the sense that, for any f ∈ Sr+1[0, n], there exist functions g ∈ Sr[0, n] and h ∈ W r[0, n]

such that f = g + h, and with g and h uniquely determined by f . Moreover, g = Pr
nf and

h = f − Pr
nf .

Proof. Let r ∈ Z+ and suppose f ∈ Sr+1[0, n]. Since Pr
n : Sr+1[0, n] → Sr[0, n], and recalling

also the definition (5.36) of W r[0, n], it follows that, if we define g = Pr
nf and h = f − Pr

nf ,

then f = g+ h, with g ∈ Sr[0, n] and h ∈W r[0, n]. Suppose g̃ ∈ Sr[0, n] and h̃ ∈W r[0, n] are

such that f = g̃+ h̃. Hence g+h = g̃+ h̃, and thus g− g̃ = h̃−h. Since Sr[0, n] and W r[0, n]

are both linear spaces, we know that g− g̃ ∈ Sr[0, n] and h− h̃ ∈W r[0, n]. But g− g̃ = h̃− h,

and thus g− g̃ ∈ Sr[0, n]∩W r[0, n] and h̃−h ∈ Sr[0, n]∩W r[0, n]. It then follows from (5.38)

that g − g̃ = 0 and h̃− h = 0, i.e. g̃ = g and h̃ = h, which completes our proof. �

The following dimension result can now immediately be deduced from Theorem 5.8.

Corollary 5.9 For r ∈ Z+, it holds that

dim (W r
n) = 2rn. (5.42)

Proof. According to a standard result from linear algrebra (see [20, Theorem 8.4.2]), it follows

from (5.41) that

dim (Sr+1
n ) = dim (Sr

n) + dim (W r
n),

and thus, from (5.4),

dim (W r
n) = (2r+1n+ 3) − (2rn+ 3) = 2rn.

�

5.4 Construction of a Wavelet Basis

In this section, we explicitly construct, for r ∈ Z+, a sequence

Wr
n = {ψr

j : j = −1, 0, . . . , 2rn− 2} (5.43)
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such that:

(a) Wr
n ⊂ W r[0, n]; (5.44)

(b) Wr
n is a linearly independent set. (5.45)

Since the set (5.43) contains precisely 2rn functions, it will then follow from (5.42) that Wr
n is a

basis for W r[0, n]. Such a sequence Wr
n is called a wavelet basis for W r[0, n], and the functions

{ψr
j : j = −1, . . . , 2rn− 2}, are called wavelets.

First, recall that a function ψ belongs to Sr+1[0, n] if and only if there exists a sequence {γj :

j = −3,−2, . . . , 2r+1n− 1} such that

ψ(x) =
2r+1n−1
∑

j=−3

γjN4(2
r+1n− j), x ∈ [0, n]. (5.46)

Moreover, we see from (5.37) that ψ ∈ W r[0, n] if and only if Pr
nψ = 0, or, equivalently, from

(5.35) and (5.46), and the fact that N r
n is a basis for Sr[0, n], if and only if the sequence {γj}

in (5.46) satisfies

5γ−3 − 4γ−2 + γ−1 = 0,

−γ2j+1 + 4γ2j+2 − γ2j+3 = 0, j = −2, . . . , 2rn− 2,

γ2r+1n−3 − 4γ2r+1n−2 + 5γ2r+1n−1 = 0,















(5.47)

or, in equivalent matrix-vector formulation,










































5 −4 1 0 0 0 0 · · · 0 0 0 0 0 0 0

−1 4 −1 0 0 0 0 · · · 0 0 0 0 0 0 0

0 0 −1 4 −1 0 0 · · · 0 0 0 0 0 0 0

0 0 0 0 −1 4 −1 · · · 0 0 0 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · −1 4 −1 0 0 0 0

0 0 0 0 0 0 0 · · · 0 0 −1 4 −1 0 0

0 0 0 0 0 0 0 · · · 0 0 0 0 −1 4 −1

0 0 0 0 0 0 0 . . . 0 0 0 0 1 −4 5
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

























































γ−3

γ−2

γ−1

γ0

...

γ2r+1n−4

γ2r+1n−3

γ2r+1n−2

γ2r+1n−1











































=











































0

0

0

0
...

0

0

0

0











































.

(5.48)

Now consider first the 3 × 4 homogeneous linear system

5γ−3 −4γ−2 +γ−1 = 0

−γ−3 +4γ−2 −γ−1 = 0

−γ−1 +4γ0 = 0















, (5.49)
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for which the general solution is given by

{γ−3, γ−2, γ−1, γ0} = {0, t, 4t, t}, t ∈ R. (5.50)

By choosing t = −1
2

in (5.50), we deduce from (5.49) and (5.48) that, for r ∈ Z+, the sequence

{γj} = {γr
−1,j} defined by

γr
−1,−2 = −1

2
, γr

−1,−1 = −2, γr
−1,0 = −1

2
,

γr
−1,j = 0, j ∈ {−3} ∪ {1, 2, . . . , 2r+1n− 1},







(5.51)

solves the linear system (5.47).

Next, we note that the 4 × 6 homogeneous linear system

5γ−3 −4γ−2 +γ−1 = 0

−γ−3 +4γ−2 −γ−1 = 0

−γ−1 +4γ0 −γ1 = 0

−γ1 +4γ2 = 0



























(5.52)

has the general solution

{γ−3, γ−2, γ−1, γ0, γ1, γ2} = {0, t, 4t, t+ s, 4s, s}, t, s ∈ R. (5.53)

By choosing t = 0 and s = −1
2

in (5.53), we deduce from (5.52) and (5.48) that, for r ∈ Z+,

the sequence {γj} = {γr
0,j} defined by

γr
0,0 = −1

2
, γr

0,1 = −2, γr
0,2 = −1

2
,

γr
0,j = 0, j ∈ {−3,−2,−1} ∪ {3, 4, . . . , 2r+1n− 1},







(5.54)

solves the linear system (5.47).

Repeated application of the above procedure yields, for r ∈ Z+, the sequence {γr
j,k : k =

−3,−2, . . . , 2r+1n− 1; j = −1, 0, . . . , 2rn− 2}, where

γr
j,2j = −1

2
, γr

j,2j+1 = −2, γr
j,2j+2 = −1

2
,

γr
j,k = 0, k ∈ {−3,−2, . . . , 2j − 1} ∪ {2j + 3, , . . . , 2r+1n− 1}, j = −1, 0, . . . , 2rn− 2







,

(5.55)

and with {γk} = {γr
j,k} satisfying the homogeneous linear system (5.47) for j = −1, 0, . . . , 2rn−

2.
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Substituting (5.55) into (5.46) yield, for r ∈ Z+, the function sequence {ψj : j = −1, 0, . . . , 2rn−

2} defined by

ψr
j (x) = −

1

2
N4(2

r+1x− 2j) − 2N4(2
r+1x− 2j − 1) −

1

2
N4(2

r+1x− 2j − 2), x ∈ [0, n],

j = −1, 0, . . . , 2rn− 2. (5.56)

Now observe from (4.16) and Table 3.2 that

ψ4(x) = −
1

2
N4(2x) − 2N4(2x− 1) −

1

2
N4(2x− 2), x ∈ R, (5.57)

and thus

ψ4(2
rx−j) = −

1

2
N4(2

r+1x−2j)−2N4(2
r+1x−2j−1)−

1

2
N4(2

r+1x−2j−2), x ∈ R, j ∈ R.

(5.58)

It follows from (5.56) and (5.58) that, for r ∈ Z+,

ψr
j (x) = ψ4(2

rx− j), x ∈ [0, n], j = −1, 0, . . . , 2rn− 2. (5.59)

Observe from (4.18) that, for r ∈ Z+,

ψ4(2
rx− j) = 0, x /∈

(

j

2r
,
j + 3

2r

)

, j ∈ R,

which, together with (5.59), gives, for r ∈ Z+,

ψr
−1(x) = 0, x /∈ [0, 2r−1) ,

ψr
j (x) = 0, x /∈

(

j

2r ,
j+3
2r

)

, j = 0, 1, . . . , 2rn− 3,

ψr
2rn−2(x) = 0, x /∈ (n− 2r−1, n] ,















x ∈ [0, n]. (5.60)

We have therefore now proved the following result.

Proposition 5.10 For r ∈ Z+, the sequence Wr
n defined by (5.43) and (5.56) satisfies the

inclusion (5.44).

We proceed to prove that Wr
n is a linearly independent set.

To this end, for a fixed r ∈ Z+, we let {d−1, d0, . . . , d2rn−2} denote a sequence such that

2rn−2
∑

j=−1

djψ
r
j (x) = 0, x ∈ [0, n]. (5.61)
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Substituting (5.56) into (5.61) yields, for x ∈ [0, n],

0 =
2rn−2
∑

j=−1

dj

[

−
1

2
N4(2

r+1x− 2j) − 2N4(2
r+1x− 2j − 1) −

1

2
N4(2

r+1x− 2j − 2)

]

= −
1

2

2rn−2
∑

j=−1

djN4(2
r+1x− 2j) − 2

2rn−2
∑

j=−1

djN4(2
r+1x− 2j − 1) −

1

2

2rn−1
∑

j=0

dj−1N4(2
r+1x− 2j),

according to which, since N r+1
n is a basis for Sr+1[0, n], it must hold that

dj = 0, j = −1, 0, . . . , 2rn− 2.

We have therefore now proved the following result.

Proposition 5.11 For r ∈ Z+, the set Wr
n defined by (5.43) and (5.56) is linearly independent.

Combining the results of Propositions 5.10 and 5.11, as well as Corollary 5.9, we have the

following.

Theorem 5.12 The sequence Wr
n defined by (5.43) and (5.56) is a wavelet basis for the set

W r[0, n].

According to (5.59), we have therefore shown that the restriction to [0, n] of the cubic spline-

wavelet sequence {ψ4(2
r · −j) : j = −1, 0, . . . , 2rn− 2}, as previously obtained in Theorem 4.3,

constitutes a wavelet basis for the space W r[0, n].

In Figures 5.1, 5.2 and 5.3, we show, for n = 6, the sequences N 0
6 ,N

1
6 and W0

6 .
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Figure 5.1: The sequence N 0
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Figure 5.2: The sequence N 1
6



Section 5.5. The Decomposition Algorithm 69

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  1  2  3  4  5  6

 j= -1
 j= 0
 j= 1
 j= 2
 j= 3
 j= 4

Figure 5.3: The sequence W0
6

5.5 The Decomposition Algorithm

According to (5.36) and Theorem 5.12, there exists, for r ∈ Z+, a unique sequence {ωr
j,k : k =

−1, 0, . . . , 2rn− 1, j = −3,−2, . . . , 2r+1n− 1} such that, for x ∈ [0, n], it holds that

(

N4(2
r+1 · −j) − Pr

nN4(2
r+1 · −j)

)

(x) =
2rn−2
∑

k=−1

ωr
j,kψ

r
k(x), x ∈ [0, n],

j = −3,−2, . . . , 2r+1n− 1. (5.62)

We proceed to explicitly calculate the sequence {ωr
j,k} in (5.62).

Let r ∈ Z+ and j ∈ {−3,−2, . . . , 2r+1n− 1} be fixed. Then we have for x ∈ [0, n] that

N4(2
r+1x− j) =

2r+1n−1
∑

k=−3

δj,kN4(2
r+1x− k)

=
2rn−1
∑

k=−1

δj,2kN4(2
r+1x− 2k) +

2rn−1
∑

k=−2

δj,2k+1N4(2
r+1x− 2k − 1), (5.63)
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and thus, from (5.35) and (5.5), it holds for x ∈ [0, n] that

(Pr
nN4(2

r+1 · −j))(x)

=

(

5

2
δj,−3 − 2δj,−2 +

1

2
δj,−1

)

N4(2
rx+ 3)

+
2rn−1
∑

k=−2

(

−
1

2
δj,2k+1 + 2δj,2k+2 −

1

2
δj,2k+3

)

N4(2
rx− k)

+

(

1

2
δj,2r+1n−3 − 2δj,2r+1n−2 +

5

2
δj,2r+1n−1

)

N4(2
rx− 2rn+ 1)

=
1

8

(

5

2
δj,−3 − 2δj,−2 +

1

2
δj,−1

) 2r+1n−1
∑

k=−3

(

4

k + 6

)

N4(2
r+1x− k)

+
1

8

2rn−1
∑

k=−2

(

−
1

2
δj,2k+1 + 2δj,2k+2 −

1

2
δj,2k+3

) 2r+1n−1
∑

l=−3

(

4

l − 2k

)

N4(2
r+1x− l)

+
1

8

(

1

2
δj,2r+1n−3 − 2δj,2r+1n−2 +

5

2
δj,2r+1n−1

) 2r+1n−1
∑

k=−3

(

4

k − 2r+1n+ 2

)

N4(2
r+1x− k)

=
1

8

(

5

2
δj,−3 − 2δj,−2 +

1

2
δj,−1

)

[

4N4(2
r+1x+ 3) +N4(2

r+1x+ 2)
]

+
1

8

2rn−1
∑

k=−2

(

−
1

2
δj,2k+1 + 2δj,2k+2 −

1

2
δj,2k+3

) 2rn−1
∑

l=−1

(

4

2l − 2k

)

N4(2
r+1x− 2l)

+
1

8

2rn−1
∑

k=−2

(

−
1

2
δj,2k+1 + 2δj,2k+2 −

1

2
δj,2k+3

) 2rn−1
∑

l=−2

(

4

2l + 1 − 2k

)

N4(2
r+1x− 2l − 1)

+
1

8

(

1

2
δj,2r+1n−3 − 2δj,2r+1n−2 +

5

2
δj,2r+1n−1

)

[

N4(2
r+1x− 2r+1n+ 2) + 4N4(2

r+1x− 2r+1n+ 1)
]

. (5.64)

Next, we use (5.56) to deduce that, for j ∈ {−3,−2, . . . , 2r+1n− 1} and x ∈ [0, n], we have

2rn−2
∑

k=−1

ωr
j,kψ

r
k(x)

=
2rn−2
∑

k=−1

ωr
j,k

[

−
1

2
N4(2

r+1x− 2k) − 2N4(2
r+1x− 2k − 1) −

1

2
N4(2

r+1x− 2k − 2)

]

= −
1

2

2rn−2
∑

k=−1

ωr
j,kN4(2

r+1x− 2k) − 2
2rn−2
∑

k=−1

ωr
j,kN4(2

r+1x− 2k − 1)

−
1

2

2rn−1
∑

k=0

ωr
j,k−1N4(2

r+1x− 2k)
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= −
1

2

2rn−1
∑

k=−1

(

ωr
j,k + ωr

j,k−1

)

N4(2
r+1x− 2k) − 2

2rn−2
∑

k=−1

ωr
j,kN4(2

r+1x− 2k − 1), (5.65)

where we have defined

ωr
j,−2 = ωr

j,2rn−1 = 0, j = −3,−2, . . . , 2r+1n− 1. (5.66)

Using also the fact that N r+1
n is a basis for Sr+1[0, n], we can now derive from (5.62), (5.64),

(5.65) and (5.66), as in (a), . . ., (g) below, the following for x ∈ [0, n] and j ∈ {−3,−2, . . . , 2r+1n−

1}.

(a) j = −3:

By equating coefficients of N4(2
r+1x+ 2), we obtain

0 −
5

16
−

1

8

[(

−
1

2

)(

4

2(−1) − 2(−2)

)]

= −
1

2
(ωr

−3,−1 + 0),

and thus

ωr
−3,−1 = −

1

8
. (5.67)

By equating coefficients of N4(2
r+1x), we obtain

0 −
1

8

[(

−
1

2

)(

4

2(0) − 2(−2)

)]

=
1

2
(ωr

−3,0 + ωr
−3,−1),

and thus

ωr
−3,−1 + ωr

−3,0 = −
1

8
, (5.68)

which, together with (5.67), yield

ωr
−3,0 = 0. (5.69)

By equating coefficients of N4(2
r+1x− 2k) with k ≥ 1, we obtain

0 −
1

8

[(

−
1

2

)(

4

2k + 4

)]

= −
1

2
(ωr

−3,k + ωr
−3,k−1),

i.e.

ωr
−3,k−1 + ωr

−3,k = 0, k ≥ 1,

which, together with (5.69), yields

ωr
−3,k = 0, k = 0, 1, . . . , 2rn− 2. (5.70)
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Hence we have, according to (5.67), (5.68) and (5.70), shown that

ωr
−3,k =











−1
8
, k = −1,

0, k = 0, 1, . . . , 2rn− 2.
(5.71)

(b) j = −2:

By equating coefficients of N4(2
r+1x+ 2), we obtain

1 −
1

8
(−2)(1) −

1

8
(2)

(

4

2(−1) − 2(−2)

)

= −
1

2
(ωr

−2,−1 + 0),

and thus

ωr
−2,−1 =

1

2
. (5.72)

By equating coefficients of N4(2
r+1x), we obtain

0 −
1

8
(2)

(

4

2(0) − 2(−2)

)

= −
1

2
(ωr

−2,0 + ωr
−2,−1),

which, together with (5.72), give

ωr
−2,0 = 0. (5.73)

Since, moreover,
(

4

2l − 2k

)

=

(

4

2l + 1 − 2k

)

= 0 for k = −2 and l ≥ 1,

it follows from (5.73), (5.63), (5.64) and (5.65) that

ωr
−2,k = 0, k = −1, . . . , 2rn− 2. (5.74)

Together, (5.72) and (5.74) yield

ωr
−2,k =











1
2
, k = −1,

0, k = 0, 1, . . . , 2rn− 2.
(5.75)

(c) j = 2r+1n− 1:

We obtain, as in (a) above,

ωr
2r+1n−1,k =











−1
8
, k = 2rn− 2,

0, k = −1, . . . , 2rn− 3.
(5.76)
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(d) j = 2n+1n− 2:

We obtain, as in (b) above,

ωr
2r+1n−2,k =











1
2
, k = 2rn− 2,

0, k = −1, . . . , 2rn− 3.
(5.77)

(e) j = −1:

By equating coefficients of N4(2
r+1x+ 2), we obtain

0−
1

8

(

1

2

)

(1)−
1

8

[(

−
1

2

)(

4

2(−1) − 2(−1)

)

+

(

−
1

2

)(

4

2(−1) − 2(−2)

)]

= −
1

2
(ωr

−1,−1+0),

and thus

ωr
−1,−1 = −

3

4
. (5.78)

By equating coefficients of N4(2
r+1x), we obtain

0 −
1

8

[(

−
1

2

)(

4

2(0) − 2(−1)

)

+

(

−
1

2

)(

4

2(0) − 2(−2)

)]

= −
1

2
(ωr

−1,0 + ωr
−1,−1)

and thus

ωr
−1,−1 + ωr

−1,0 = −
7

8
, (5.79)

which, together with (5.78), gives

ωr
−1,0 = −

1

8
. (5.80)

By equating coefficients of N4(2
r+1x− 2), we obtain

0 −
1

8

[(

−
1

2

)(

4

2(1) − 2(−1)

)

+

(

−
1

2

)(

4

2(1) − 2(−2)

)]

= −
1

2
(ωr

−1,1 + ωr
−1,0),

and thus

ωr
−1,0 + ωr

−1,1 = −
1

8
, (5.81)

which, together with (5.80), yield

ωr
−1,1 = 0. (5.82)

Now observe that
(

4

2l + 1 − 2k

)

= 0 for l ≥ 1 and k ∈ {−2,−1},
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whereas
(

4

2l − 2k

)

= 0 for l ≥ 2 and k ∈ {−2,−1},

so that we can deduce from (5.62), (5.63), (5.64), (5.65) and (5.80) that

ωr
−1,k = 0, k = 0, 1, . . . , 2rn− 1. (5.83)

Together, (5.78), (5.80) and (5.83) yield

ωr
−1,k =























−3
4
, k = −1,

−1
8
, k = 0,

0, k = 1, . . . 2rn− 2.

(5.84)

(f) j = 2r+1n− 3:

Similarly, we obtain, as in (e) above,

ω2r+1n−3,k =























−3
4
, k = 2rn− 2,

−1
8
, k = 2rn− 3,

0, k = −1, . . . , 2rn− 4.

(5.85)

(g) j = 2m, for m ∈ {0, 1, . . . , 2rn− 2}:

By equating coefficients of N4(2
r+1x− 2l − 1) for l ∈ {−1, . . . , 2rn− 2}, we obtain

δ2m,2l+1 −
1

8
(2)

(

4

2l + 1 − 2(m− 1)

)

= −2ωr
2m,l,

and thus

ωr
2m,l =

1

8

(

4

2l − 2m+ 3

)

, l = −1, . . . , 2rn− 2. (5.86)

By equating coefficients of N4(2
r+1x− 2l − 1) for l ∈ {−1,−2, . . . , 2rn− 2}, we obtain

δ2m+1,2l+1 −
1

2

[(

−
1

2

)(

4

2l + 1 − 2(m)

)

+

(

−
1

2

)(

4

2l + 1 − 2(m− 1)

)]

= −2ωr
2m+1,l,

and thus

ωr
2m+1,l = −

1

2
δ2m+1,2l+1 −

1

32

[(

4

2l + 1 − 2m

)

+

(

4

2l + 3 − 2m

)]

, l = −1, . . . , 2rn− 2.

(5.87)
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Now observe that

−
1

2
δ2m+1,2l+1 −

1

32

[(

4

2l + 1 − 2m

)

+

(

4

2l + 3 − 2m

)]

= −
1

8

(

4

2l − 2m+ 2

)

,

l = −1, . . . , 2rn− 2. (5.88)

It follows from (5.87) and (5.88) that

ωr
2m+1,l = −

1

8

(

4

2l − 2m+ 2

)

, l = −1, . . . , 2rn− 2. (5.89)

We can now combine (5.86) and (5.89) to obtain the formula

ωr
j,k = (−1)j 1

8

(

4

2k − j + 3

)

, k = −1, . . . , 2rn− 2; j = 0, . . . , 2r+1n− 4. (5.90)

Furthermore, since it holds that

(−1)−1 1

8

(

4

2k − (−1) + 3

)

=























−3
4
, k = −1,

−1
8
, k = 0,

0, k = 1, . . . , 2rn− 2,

we deduce from (5.90), (5.84) and (5.85) that,

ωr
j,k = (−1)j 1

8

(

4

2k − j + 3

)

, k = −1, . . . , 2rn− 2, j = −1, . . . , 2r+1n− 3. (5.91)

Moreover, since also

(−1)−2 1

8

(

4

2k − (−2) + 3

)

=











1
2
, k = −1,

0, k = 0, . . . , 2rn− 1,

we deduce from (5.91), (5.75) and (5.76) that

ωr
j,k = (−1)j 1

8

(

4

2k − j + 3

)

, k = −1, . . . , 2rn− 2, j = −2, . . . , 2r+1n− 2. (5.92)

Finally, since also

(−1)−3 1

8

(

4

2k − (−3) + 3

)

=











−1
8
, k = −1,

0, k = 0, . . . , 2rn− 1,

we deduce from (5.92), (5.71) and (5.76) that

ωr
j,k = (−1)j 1

8

(

4

2k − j + 3

)

, k = −1, . . . 2rn− 2, j = −3, . . . , 2r+1n− 1. (5.93)
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It follows from (5.93) and (5.62), together with Theorems 5.8 and 5.12, as well as (5.59), that

the following decomposition result holds.

Theorem 5.13 For r ∈ Z+, it holds that, if f(x) =
∑2r+1n−1

j=−3 cjN4(2
r+1x− j), x ∈ [0, n], then

f(x) = (Pr
nf)(x) +

1

8

2rn−2
∑

j=−1

[

2rn−1
∑

k=−3

(−1)k

(

4

2j − k + 3

)

ck

]

ψ4(2
rx− j), x ∈ [0, n], (5.94)

with (Pr
nf)(x) defined for x ∈ [0, n] by (5.35), and with the cubic cardinal spline-wavelet ψ4

defined by (5.57).

5.6 Cubic Spline Quasi-Interpolation on a Bounded Inter-

val

By choosing m = 4 in Theorem 2.9 and Table 2.1, we deduce that the approximation operator

Q4,r : M(R) → Sr
4 defined by

(Q4,rf)(x) =
∑

j

[

−
1

6
f

(

j

2r

)

+
4

3
f

(

j + 1

2r

)

−
1

6
f

(

j + 2

2r

)]

N4(2
rx− j), x ∈ R, (5.95)

satisfies the polynomial reproduction property

(Q4,rp)(x) = p(x), x ∈ R, p ∈ π3, (5.96)

i.e. Q4,r is a quasi-interpolation operator.

For n ∈ N, with n ≥ 1, and r ∈ Z+, we seek to construct a bounded interval quasi-interpolation

operator Qr
n : C[0, n] → Sr[0, n], where

(Qr
nf)(x) =

2rn−1
∑

j=−3

2rn−3
∑

k=−3

[

un
j,kf

(

k + 3

2r

)]

N4(2
rx− j), x ∈ [0, n], (5.97)

and where the sequence {un
j,k : k = −3, . . . , 2rn− 3; j = −3, . . . , 2rn− 1} is to be chosen in

such a way that

(Qr
np)(x) = p(x), p ∈ π3, x ∈ [0, n]. (5.98)
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To this end, following the polynomial extrapolation idea introduced in De Villiers and Rohwer, [13],

(see also [12] and [14]), we first define the Lagrange interpolation polynomials {L̃j : j = 0, 1, 2, 3}

by

L̃j(x) =
3
∏

j 6=k=0

x− k

j − k
, x ∈ R, j = 0, 1, 2, 3. (5.99)

Since
3
∏

j 6=k=0

(j − k) =
(−1)j+16
(

3
j

) , j = 0, 1, 2, 3,

it follows from (5.99) that

L̃j(x) =
(−1)j+1

6

(

3

j

) 3
∏

j 6=k=0

(x− k), x ∈ R, j = 0, 1, 2, 3. (5.100)

For f ∈ C[0, n] and r ∈ Z+, let the polynomial pr
L = pr

f,L ∈ π3 be defined by

pr
L(x) =

3
∑

j=0

f

(

j

2r

)

L̃j(2
rx), x ∈ R. (5.101)

Since (5.99) gives

L̃j(k) = δj,k, j, k = 0, 1, 2, 3, (5.102)

we see from (5.101) that, for j ∈ {0, 1, 2, 3},

pr
L

(

j

2r

)

=
3
∑

k=0

f

(

k

2r

)

L̃k(j) =
3
∑

k=0

f

(

k

2r

)

δj,k = f

(

j

2r

)

. (5.103)

Next, we define, for r ∈ Z+, the polynomial pr
R = pr

f,R ∈ π3 by

pr
R(x) =

2rn
∑

j=2rn−3

f

(

j

2r

)

L̃2rn−j (2r(n− x)) , x ∈ R. (5.104)

It follows from (5.104) and (5.102) that, for j ∈ {2rn− 3, 2rn− 2, 2rn− 1, 2rn}, we have

pr
R

(

j

2r

)

=
2rn
∑

k=2rn−3

f

(

k

2r

)

L̃2rn−k(2
rn− j) =

3
∑

k=0

f

(

2rn− k

2r

)

L̃k(2
rn− j) = f

(

j

2r

)

.

(5.105)

The following construction is analogous to the one introduced in [13].
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Theorem 5.14 For r ∈ Z+, the approximation operator Qr
n : C[0, n] → Sr[0, n] defined for

x ∈ [0, n] by

(Qr
nf)(x) =

[

−
1

6
pr

L

(

−3

2r

)

+
4

3
pr

L

(

−2

2r

)

−
1

6
pr

L

(

−1

2r

)]

N4(2
rx+ 3)

+

[

−
1

6
pr

L

(

−2

2r

)

+
4

3
pr

L

(

−1

2r

)

−
1

6
f(0)

]

N4(2
rx+ 2)

+

[

−
1

6
pr

L

(

−1

2r

)

+
4

3
f(0) −

1

6
f

(

1

2r

)]

N4(2
rx+ 1)

+
2rn−2
∑

j=0

[

−
1

6
f

(

j

2r

)

+
4

3
f

(

j + 1

2r

)

−
1

6
f

(

j + 2

2r

)]

N4(2
rx− j)

+

[

−
1

6
f

(

2rn− 1

2r

)

+
4

3
f(n) −

1

6
pr

R

(

2rn+ 1

2r

)]

N4(2
rx− 2rn− 1),(5.106)

with the polynomials pr
L = pr

f,L and pr
R = pr

f,R defined by (5.101) and (5.104), satisfies the

polynomial reproduction property (5.98).

Proof. Let p ∈ π3. Then, for r ∈ Z+ and x ∈ [0, n], it follows from (5.106), (5.103), (5.105),

(5.7), (5.95) and (5.96) that

(Qr
np)(x) =

2rn−1
∑

j=−3

[

−
1

6
p

(

j

2r

)

+
4

3
p

(

j + 1

2r

)

−
1

6
p

(

j + 2

2r

)]

N4(2
rx− j)

=
∑

j

[

−
1

6
p

(

j

2r

)

+
4

3
p

(

j + 1

2r

)

−
1

6
p

(

j + 2

2r

)]

N4(2
rx− j)

= p(x).

�

5.7 Decomposition Algorithm on a Bounded Interval

Based on our work of this chapter, we now formulate the following cubic spline wavelet decom-

position algorithm.

Algorithm 5.15 Let f ∈ C[0, n] be given.

1. For a sufficiently large value of N ∈ N, define

f(x) =
2Nn−1
∑

j=−3

cNj N4(2
Nx− j) = (QN

n f)(x), x ∈ [0, n], (5.107)
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by means of (5.106).

2. Define the sequences {f r : r = N−1, . . . ,M} and {gr : r = N−1, . . . ,M}, with M < N

and M a sufficiently small integer in Z+, by

f r(x) =
2rn−1
∑

j=−3

crjN4(2
rx− j) = (Pr

nf
r+1)(x), x ∈ [0, n], (5.108)

with Pr
n as in (5.35), and

gr(x) =
2rn−2
∑

j=−1

dr
jψ4(2

rx− j), x ∈ [0, n], (5.109)

with

dr
j =

1

8

2rn−1
∑

k=−3

(−1)k

(

4

2j − k + 3

)

cr+1
k , j = −1, . . . , 2rn− 2; (5.110)

according to which Theorem 5.13 gives

f r+1(x) = f r(x) + gr(x), x ∈ [0, n], r = N − 1, . . . , N −M. (5.111)

Since, as implied by the definition (5.1), π3 ⊂ Sr[0, n], r ∈ Z+, and (5.60) holds, we deduce

from Theorem 5.13 that local smooth polynomial-like behaviour of f in an interval I will be

detected by means of relatively small wavelet coefficients for these wavelets ψ(2rx − j) with

support intervals overlapping the interval I, as illustrated by our following example.

5.8 Example

We consider the signal f ∈ C[0, 3] defined by f(x) = N3(x), x ∈ [0, 3], i.e., as in Example 4.5,

f(x) =























1
2
x2, 0 ≤ x ≤ 1,

1
2
(−2x2 + 6x− 3), 1 ≤ x ≤ 2,

1
2
(3 − x)2, 2 ≤ x ≤ 3,

(5.112)

the graph of which is given in Figure 5.4a. Note that we have here n = 3. Then f ∈

C1[0, 3]\C2[0, 3], with discontinuities in the second derivatives f ′′ at x ∈ {1, 2}.

We use the wavelet decomposition algorithm given by Algorithm 5.15 with N = 10 and M = 5.

The quasi-interpolant approximation f10 = Q10
4 f , as defined in (5.106), is shown in Figure 5.4b.
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Figure 5.4: The signal f and approximation f10 = Q10
4 f

We plot, for r = N−1, . . . ,M , the functions f r and gr in Figures 5.5 to 5.9 by means of (5.107),

(5.108), (5.35), (5.109), (5.110), (5.56), (2.7) and (2.3).

Observe in particular from our graphs below of the wavelet component gr that, in contrast

to the analogous graphs of Example 4.5, which locally detected the discontinuities in f ′′ at

x ∈ {0, 1, 2, 3}, Figures 5.5 to 5.9 below only detect the discontinuities in f ′′ at the interior

points x = 1 and x = 2. Our decomposition algorithm therefore succeeds, as expected from our

theoretical results in this chapter, in eliminating any edge artefacts close to the endpoints x = 0

and x = 3.
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Figure 5.5: The functions f 9 and g9
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Figure 5.6: The functions f 8 and g8
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Figure 5.7: The functions f 7 and g7
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Figure 5.8: The functions f 6 and g6
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Figure 5.9: The functions f 5 and g5



Bibliography

[1] C. K. Chui. An Introduction to Wavelets. MA Academic Press, Boston, 2nd edition, (1992).

[2] C. K. Chui. A Mathematical Tool for Signal Analysis. SIAM, (1997).

[3] C. K. Chui. Wavelets: A Tutorial in Theory and Applications. SIAM, (1997).

[4] C. K. Chui and J. Z. Wang. On Compactly Supported Spline Wavelets and the Duality

Principle. Trans. Amer. Soc. 330, (1992), 903-915.

[5] Charles K. Chui and Johan M. de Villiers. Applications of Optimally Local Interpolation to

Interpolatory Approximants and Compactly Supported Wavelets. Mathematics of Compu-

tation, (1996), 99-114.

[6] Charles K. Chui and Johan M. de Villiers. Spline-Wavelets with Arbitrary Knots on a Bounded

Interval: Orthogonal Decomposition and Computational Algorithms. Communications in

Applied Analysis, (1998), 457-486.

[7] Charles K. Chui, Laura Montefusco, and Luigia Puccio. Wavelets: Theory, Algorithms, and

Application. Academic Press, Inc., San Diego, (1994).

[8] Charles K. Chui and Ewald Quak. Wavelets on a Bounded Interval. Numerical Methods of

Approximation Theory, Vol. 6, D. Braess and L. L. Schumaker, ed., (1992), 53-75.

[9] Charles K. Chui and J. Z. Wang. Quasi-Interpolation Functionals on Spline Spaces. Journal

of Approximation Theory, no. 76, (1994), 303-325.

[10] Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathe-

matics, Philadelphia, Pennsylvania, (1992).

[11] Johan de Villiers. Subdivision, Wavelets and Splines. Lecture notes, Department of Mathe-

matical Sciences, University of Stellenbosch, Stellenbosch, (2007).

[12] Johan M. de Villiers. A Convergence Result in Nodal Spline Interpolation. Journal of

Approximation Theory, Vol. 74, no. 3, (1993), 266-279.

84



BIBLIOGRAPHY 85

[13] Johan. M. de Villiers and C. H. Rohwer. A Nodal Spline Generalization of the Lagrange

Interpolant. Progress in Approximation Theorey, P. Nevai and A. Pinkus, ed., (1991), 201-

211.

[14] Johan M. de Villiers and C. H. Rohwer. Sharp Bounds for the Lebesgue Constant in Quadratic

Nodal Spline Interpolation. Approximation and Computation (R. V. M. Zahar, ed), (1994),

157-167.

[15] A. Levin. Polynomial Generation and Quasi-Interpolation in Stationary Non-Uniform Subdi-

vision. Preprint, Submitted to Elsevier Science, (2003).

[16] Charles A. Micchelli. Mathematical Aspects of Geometric Modeling. Society for Industrial

and Applied Mathematics, Philadelphia, Pennsylvania, (1995).

[17] Desiree V. Moubandjo. Polynomial Containment in Refinement Spaces and Wavelets based

on Local Projection Operators. PhD. Thesis, Stellenbosch, (2007).

[18] Gunther Nürnberger. Approximation by Spline Functions. Springer-Verlag, USA, (1989).

[19] Birgit Rohwer. A Multiresolutional Approach to the Construction of Spline Wavelets. MSc.

Thesis, Stellenbosch, (2000).

[20] Larry Smith. Linear Algebra. Springer-Verlag, New York, third edition, (1998).

[21] David F. Walnut. An Introduction to Wavelet Analysis. Birkhauser, Boston, (2004).

[22] D. X. Zhou. Stability of Refinable Functions, Multiresolutional Analysis and Haar Bases.

SIAM Journal of Math. Anal., Vol. 3, (1996), 891-904.


	Declaration
	Summary
	Opsomming
	Acknowledgements
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Overview
	Notation

	Cardinal Spline Quasi-Interpolation
	Cardinal B-Splines
	Marsden's Identity
	Explicit Recursive Formulation of an Optimally Local Quasi-Interpolant
	Example

	Local Linear Projection
	The Fundamental Bezout Identity
	The Generating Polynomial Hm
	Example

	Cardinal Spline Wavelets
	The Wavelet Bezout Identity
	The Fundamental Decomposition Result
	Decomposition and Reconstruction Algorithms
	Singularity Detection Property
	Example

	Cubic Spline Wavelet Decomposition on a Bounded Interval
	Finite-Dimensional Cubic Spline Refinement Spaces
	Local Linear Projection
	The Fundamental Space Decomposition Result
	Construction of a Wavelet Basis
	The Decomposition Algorithm
	Cubic Spline Quasi-Interpolation on a Bounded Interval
	Decomposition Algorithm on a Bounded Interval
	Example

	Bibliography

