
 

 
 
 
 
 
 
 
 

GROWTH AND SURVIVAL OF SACCHAROMYCES CEREVISIAE 
IN SOIL 

 
 
 
 
 

By 
 
 
 
 

Reinhard Bester 
 
 
 
 

Thesis presented in partial fulfillment of the requirements for the degree of Master of 
Science at the University of Stellenbosch 

 
 
 
 

Supervisor: Prof A Botha 
Co-supervisor: Prof GM Wolfaardt 

 
 
 

April 2005 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 

Declaration 
 
 
 
 
 

I, the undersigned, hereby declare that the work contained in this thesis is 
my own original work and that I have not previously in its entirety or in part 

submitted it at any university for a degree. 
 
 
 
 
 
 
 
 
 
 
 
Signed: …………………..                                 Date:………………….. 
 
 
 
 
 
 
 
 
 
 
 
 



 

SUMMARY 
 
 
Saccharomyces cerevisiae is commonly associated with the wine industry. However, this 

yeast was also isolated from soils not associated with vines. Despite the fact that              

S. cerevisiae is not perceived as an autochthonous soil yeast, its interaction with other soil 

microbiota suggests the contrary. Aside from a few in vitro studies, the fate of                  

S. cerevisiae in soil is largely unknown. This may partly be ascribed to the lack of 

reliable methods to enumerate fermentative yeasts in soil.    

 

Consequently, we evaluated an enumeration procedure for fermentative yeasts in soil, 

whereby yeast malt extract (YM) agar plates containing selective agents, were incubated 

in anaerobic jars before the colonies were enumerated. This procedure proved to be 

selective for fermentative yeasts, such as industrial strains of S. cerevisiae. We then 

commenced studying the growth and survival of S. cerevisiae in soil differing in moisture 

content and nutrient levels, using S. cerevisiae strain S92 and the genetically modified 

strain S. cerevisiae ML01, as well as two autochthonous soil yeasts, Cryptococcus 

laurentii and Cryptococcus podzolicus. The yeast strains were each inoculated into three 

series of microcosms containing sterile soil with a moisture content of ca. 30% (v/w), a 

moisture content of ca. 15% (v/w), or a moisture content of ca. 30% supplemented with 

nutrients used in agriculture. Growth of each strain was monitored for a period of 48 days 

and all the yeasts were found to grow or survive under these conditions, up until the end 

of the incubation period. Generally, the cryptococci reached larger population sizes in the 

soil than the Saccharomyces strains, which may be due to their ability to utilize a wider 

range of carbon sources and to survive in semi-arid soils. Aside from cell numbers 

observed in nutrient supplemented soil, in which S. cerevisiae ML01 reached higher 

numbers than S92, there was no significant difference between the growth and survival of 

the Saccharomyces strains. In all the microcosms, metabolic rates, as determined by 

measuring CO2 emissions from soil, reached a maximum within the first day and then 

declined over the remainder of the trial, possibly due to depletion of nutrients. 

Differences in CO2 emissions from the different series of microcosms were attributed to 



 

different metabolic rates and energy expenditure needed to maintain yeast populations 

under different conditions.  

 

Each of the above-mentioned yeasts was subsequently inoculated in a microcosm 

prepared from non-sterile soil and monitored using selective enumeration procedures. 

The Saccharomyces strains were enumerated using the above-mentioned soil dilution 

plates incubated in anaerobic jars. The presence of natural soil biota caused a decrease in 

viable yeast numbers for all strains and this was ascribed to competition with and 

predation by other soil borne organisms. Further evidence for competition and/or 

amensalism impacting on Saccharomyces populations in soil was obtained when 

monitoring co-cultures of Saccharomyces with C. laurentii 1f and C. podzolicus 3f in soil 

microcosms, revealed a significant reduction in Saccharomyces numbers during a 28 day 

incubation period.  However, when the two Saccharomyces strains were cultured in soil 

microcosms inoculated with a protistan predator, populations of both strains increased 

and remained at these high levels for the duration of the trial. These findings point to a 

possible symbiosis between Saccharomyces and the protista whereby the predators ensure 

continuous nutrient cycling within the soil microcosms.  

 

In the final part of the study, epifluorescence microscopy revealed that, similar to known 

soil cryptococci, the two Saccharomyces strains were able to form biofilms in 

oligotrophic conditions.  The results of this study showed that in the presence of natural 

soil microbes, no differences exist between the growth and survival of S. cerevisiae S92 

and S. cerevisiae ML01. Also, the findings point to a natural niche for this species 

somewhere in the soil habitat. 

 
 
 
 
 
 
 
 
 



 

OPSOMMMING 
 

Saccharomyces cerevisiae word algemeen met die wynindustrie geassosieer. Hierdie gis 

is egter ook uit grond geïsoleer wat nie met wingerd geassosieer word nie. Ten spyte van 

die feit dat S. cerevisiae nie as ‘n outogtoniese grondgis beskou word nie, dui sy 

interaksie met ander grondmikrobiota op die teendeel. Behalwe vir ‘n paar in vitro 

studies, is die lot van S. cerevisiae in grond grootliks onbekend. Dit mag gedeeltelik aan 

die gebrek aan betroubare metodes om fermenterende giste in grond te tel, toegeskryf 

word. 

 

Ons het gevolglik ‘n tellingsmetode vir fermenterende giste in grond geëvalueer waarin  

gis-mout ekstrak (GM) agar plate, bevattende selektiewe agente, in anaërobiese flesse 

geïnkubeer is voordat die kolonies getel is. Hierdie metode was selektief vir 

fermenterende giste, soos die industriële stamme van S. cerevisiae. Hierna is die groei en 

oorlewing van S. cerevisiae bestudeer in gronde met verskillende vog- en nutriëntvlakke 

deur gebruik te maak van S. cerevisiae stam S92 en die geneties gemodifiseerde stam S. 

cerevisiae ML01, asook twee outogtoniese grondgiste, Cryptococcus laurentii en 

Cryptococcus podzolicus. Die gisstamme is elk geïnokuleer in drie reekse van 

mikrokosmosse bestaande uit steriele grond met ‘n vogvlak van ca. 30% (v/w), ‘n 

vogvlak van ca. 15% (v/w), of ‘n vogvlak van ca. 30% aangevul met landbounutriënte. 

Die groei van elke stam is waargeneem vir ‘n tydperk van 48 dae en al die giste het onder 

hierdie omstandighede tot aan die einde van die inkubasietydperk gegroei of oorleef. Oor 

die algemeen het die cryptococci groter populasies in die grond gevorm as die 

Saccharomyces stamme, wat toegereken kan word aan hul vermoë om ‘n wyer reeks 

koolstofbronne te benut en om in droë gronde te oorleef. Behalwe dat S. cerevisiae ML01 

‘n hoër aantal selle in nutriënt aangevulde grond behaal het as S92, was daar geen 

beduidende verskil tussen die groei en oorlewing van die Saccharomyces stamme nie. In 

al hierdie mikrokosmosse het die metaboliese tempo, soos bepaal deur CO2 vrystellings 

vanuit grond te meet, ‘n maksimum bereik binne die eerste dag en dan het dit afgeneem 

oor die res van die toetsperiode, waarskynlik as gevolg van die uitputting van die 

nutriënte. Verskille in die CO2 vrystellings wat vir die verskillende reekse van 



 

mikrokosmosse aangeteken is, is te wyte aan die verskillende metaboliese tempo’s en 

energiegebruik benodig om gispopulasies onder verskillende omstandighede in stand te 

hou.  

 

Elk van bogenoemde giste is vervolgens geïnokuleer in ‘n mikrokosmos wat voorberei is 

van nie-steriele grond, en waargeneem deur selektiewe enumerasie prosedures toe te pas. 

Die Saccharomyces stamme is getel deur gebruik te maak van bogenoemde 

grondverdunningsplate wat in anaërobiese flesse geïnkubeer is. Die teenwoordigheid van 

natuurlike grondbiota het in alle stamme ‘n afname in lewensvatbare gisgetalle 

veroorsaak en is toegeskryf aan die kompetisie met en predasie deur ander 

grondorganismes. Verdere bewys van die impak van kompetisie en/of amensalisme op 

Saccharomyces populasies in die grond, is die beduidende afname in Saccharomyces  

getalle tydens ‘n 28 dag inkubasie tydperk, waartydens ko-kulture van Saccharomyces 

stamme met C. laurentii 1f en C. podzolicus 3f in grond mikrokosmosse ondersoek is.  

Toe die twee Saccharomyces stamme egter in grond mikrokosmosse opgekweek is wat 

met ‘n protistiese predator geïnokuleer is, het populasies van albei stamme gegroei en om 

hierdie hoë vlakke gebly tot aan die einde van die toets. Hierdie bevindings dui ‘n 

moontlike simbiose tussen Saccharomyces en die protista aan waardeur die predatore 

deurlopende nutriëntsiklering binne die grondmikrokosmos verseker.  

 

In die laaste deel van die studie toon epifluoressensie mikroskopie aan dat, net soos 

bekende grond cryptococci, die twee Saccharomyces stamme in staat is om biofilms in 

oligotrofiese omstandighede te vorm. Die resultaat van die studie toon aan dat in die 

teenwoordigheid van natuurlike grondmikrobe daar geen verskil tussen die groei en 

oorlewing van S. cerevisiae S92 en S. cerevisiae ML01 is nie. Die bevindings dui ook aan 

dat daar ‘n natuurlike nis vir hierdie spesie  iewers in die grondhabitat is. 
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MOTIVATION 
 

Saccharomyces cerevisiae is a fermentative yeast commonly associated with the wine 

industry, and has been isolated from vineyards and vineyard soil (Kurtzman and Fell, 

2000; Jolly et al. 2003). However, documented cases exist where Saccharomyces has 

been isolated from other soils (Do Carmo-Sousa 1969). Most recently, S. cerevisiae and 

Saccharomyces paradoxus were isolated from oak-associated soils, utilizing enrichment 

techniques (Sniegowski et al. 2002)  

 

Saccharomyces cerevisiae is often perceived as a fermentative yeast associated with 

habitats rich in carbohydrates, rather than an autochthonous soil yeast, but its interactions 

with soil biota during in vitro studies, suggest the contrary. S. cerevisiae has been 

implicated in a number of predator-prey interactions, serving as nutrient source for 

predatory soil yeast species (Lachance & Pang 1997; Kreger-van Rij & Veenhuis 1973), 

as well as a food source for the nematode Panagrellus redivivus (Ricci et al. 2004; 

Hechler 1970). Aside from these interactions, ethanol production by S. cerevisiae was 

found to increase the pathogenicity of the soil bacterium Acinetobacter towards the 

predacious nematode Caenorhabditis elegans (Smith et al. 2004). 

 

The findings mentioned above indicate that soil may act as habitat for S. cerevisiae, but 

relatively little is known about the interactions of this yeast within soil. Previous studies 

focused on the fate of microbes of potential use in genetic engineering, including S. 

cerevisiae, in model ecosystems such as sewage and lake water (Liang et al. 1982). A 

study conducted in 1994 tested one genetically engineered and one wild-type strain of     

S. cerevisiae under simulated environmental conditions (Fujimura 1994). However, the 

strains were only tested in a natural soil/water suspension, soil/medium suspension and in 

waste water. The fact that so little is known about the fate of S. cerevisiae in soil may 

quite possibly be due to the absence of techniques to enumerate these yeasts in soil.  

 



 

The purpose of this study was to develop a method for the isolation and enumeration of 

fermentative yeasts in soil and to determine the fate of a wild-type strain of S. cerevisiae 

(S92) and a genetically modified strain (ML01), capable of malolactic fermentation, in 

soil. The latter strain is a genetically modified commercial yeast to be used in future for 

winemaking and could potentially be released into the environment. Thus, we set out to 

develop a technique to selectively enumerate fermentative yeasts, such as S. cerevisiae, in 

soil samples (Chapter 2).  Once the enumeration technique was established, the next 

objective was to monitor the fate of the S. cerevisiae S92 and S. cerevisiae ML01 in soil 

microcosms differing in moisture content, nutrient levels and soil biota (Chapter 3). For 

comparison, two yeasts known to occur in soil (Kurtzman and Fell, 2000), i.e. 

Cryptococcus laurentii and Cryptococcus podzolicus, were included in the study. In the 

final part of the study (Chapter 4), epifluorescence microscopy was used to confirm that, 

similar to known soil cryptococci, both S. cerevisiae S92 and S. cerevisiae ML01 were 

able to produce biofilms under oligotrophic conditions in flow cells.  
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CHAPTER 1 
 
 
 
 
 

 

 



 

Introduction 

 
1.1 Soil: A microbial habitat 

 

The part of the earth’s unconsolidated surface crust, or regolith, which supports plant life, 

is known as soil (Blain Metting 1993). Soil consists of varying sized organic and 

inorganic particles, living organisms and their nonliving remains (Stotzky 1972). 

However, the bulk of the solid phase of soil consists of inorganic materials, with organic 

matter comprising only 5-20% (Blain Metting 1993). This organic matter consists of cell 

debris, soluble substances and humus, the latter resulting mainly from lignin degradation 

and microbial synthesis. It was found that the organic content of soil tends to be higher 

when low temperatures and waterlogging inhibit the degradation of plant material. 

  

The solid inorganic components of soil originate from the weathering of rock and may 

vary among different soils (Blain Metting 1993). Thus, the texture of a particular soil 

depends on the distribution of sand (particle diameter: 0.02-2mm), silt (particle diameter: 

0.002-0.02mm) and clay (particle diameter: <0.002mm) occurring in the soil, while 

classification of soil as sandy, loam or clay, depends on the fraction each component 

constitutes. The arrangement of these fractions in microscopic and larger aggregates 

defines the soil fabric and structure. The movement of soil water and exchange of gasses 

are dependant on the spatial arrangement of pores present in this fabric. Due to the 

presence of water, gasses and mineral organic particles, each pore potentially serves as a 

site where microbial activity may occur. However, the microbial species responsible for 

this activity, show remarkable heterogeneity as a result of the temporal and spatial 

heterogeneity in the physicochemical composition of soil (Kimura et al. 1998). 

 

Despite this heterogeneity in species composition, many of these microbes need organic 

carbon, which plays a pivotal role in their metabolism and ultimately originates from 

autotrophs such as plants (Wardle et al. 2004). Plants therefore impact on soil microbial 

populations.  In turn, the soil microbes indirectly regulate plant growth, by determining 



 

the availability of soil nutrients. This concept of vegetation influencing soil microbial 

communities and vice versa, has been discussed by a number of authors (Saetre & Bååth 

2000; Grayston et al. 2004). However, it was found that the organic material originating 

from plants is often not sufficient to sustain soil microbial growth (Gray & Williams 

1971; Poindexter 1981; Williams 1985). Studies performed on the rhizosphere and the 

associated microbial communities, showed that the energy flow from the roots to the soil 

often cannot sustain high metabolic activity by these soil microbial communities (Barber 

& Lynch 1979). Also, water extracts prepared from soil contained less than 2 µg/ml 

amino acids and 5 µg/ml carbohydrates (Ko and Lockwood 1976). Due to these 

properties, soil is viewed as an oligotrophic environment (Williams 1985). However, 

while soil may appear to be a harsh environment low in nutrients, the numbers and 

diversity of soil borne microbial species alone, dispel the myth of soil being an 

unfavourable environment for these organisms (Stotzky 1997). It was found that soil 

microbes are usually restricted to different microcosms, providing the necessary 

environmental factors required for colonizing, growth and survival of different microbial 

communities. Such communities may constitute a wide diversity of microbes, some of 

which may interact with eukaryotes sharing the same habitat.  Soil may therefore serve as 

habitat for archaea, eubacteria, filamentous fungi and yeasts, microalgae, protozoa, 

nematodes, invertebrates, as well as vertebrates (Blain Metting 1993). Prokaryotes, such 

as archaea and bacteria, are the most numerous organisms in soil, but their biomass may 

be similar to that of soil fungi, indicating to an equal importance within the soil 

microenvironment.  

 

The soil microbes mentioned above, may be classified by the manner in which they 

obtain energy and carbon (C) to sustain their metabolism and multiply (Blain Metting 

1993; Richards 1987). Photoautotrophs obtain energy from sunlight and utilize CO2 as 

their primary carbon source, while photoheterotrophs derive much of their carbon from 

organic compounds. Chemoautotrophs oxidize inorganic compounds and use CO2 as their 

principal carbon source. Chemoheterotrophs derive energy and carbon from organic 

compounds and include protozoa, fungi and most bacteria. One could go even further and 

classify organisms that oxidize inorganic materials as lithotrophs and their counterparts 



 

that derive reducing equivalents from organic matter as organotrophs. A simplified 

classification of soil organisms based on the nature of their energy and principal carbon 

sources within the foodweb, is depicted in Figure 1 (p 6).  

 

Considering the above, it is obvious that the composition of the microbial population in a 

particular environment is dependent on available resources (Blain Metting 1993). 

According to ecological theory, selective pressure dictates the presence of organisms able 

to survive in dense populations or populations consisting of only a few species. K- 

selection favours the organism that is able to thrive under a given set of conditions, while 

r-selection favours the organism which is able to colonize a new environment, or thrive 

under a sudden flush of nutrients. In reality, organisms may show behavioural 

characteristics associated with both selection theories, as seasonal changes may cause 

both K- and r-selection in a microbial population (Andrew & Harris 1986). Many 

microbial communities may be viewed as genetically promiscuous, due to the presence of 

plasmids and other mobile genetic elements that are associated with transduction, 

transformation and conjugation. When a fluctuation in the environment occurs, the 

microbial community response is an amalgam of the individual programmed and 

unprogrammed genetic responses. The unprogrammed responses are often due to 

insertions or deletions, which lead to the expression of a cryptic gene, which in turn may 

confer a selective advantage to the particular organism. This may explain the occurrence 

of microbes with broad metabolic potential, or the ability to degrade xenobiotic 

substrates. An example is Acinetobacter, which is able degrade a number of xenobiotic 

pollutants such as phenol, chlorinated biphenyl and benzoate, making it ideally suited for 

use in the bioremediation of environmental contaminants (Abdel-El-Haleem 2003).  

 

1.2 Interactions of soil microorganisms with their physicochemical environment 

 

The physicochemical environment in which a soil microbe or microbial population is 

found, is known as a soil microenvironment. Physicochemical properties of this 

environment may depend on the strength and composition of ions present, pH and the 

redox potential (Blain Metting 1993). Ionic strength influences the solubility of salts, 



 

electrokinetic potential, activity of soil enzymes, as well as adsorption of cells, viral 

particles and humic materials (Stotzky & Burns 1982). The soil pH range has been 

studied extensively and generally varies between 4.0 and 8.5 (Blain Metting 1993). The 

upper horizons of wetter soils are usually more acidic than the lower horizons, due to 

leaching of alkaline bases, while soil from arid and semi-arid regions tend to be alkaline. 

Soil pH influences the availability and toxicity of mineral nutrients. Iron, Mn and Zn 

become less available at pH levels above 7, while Al, Fe and Mn are toxic at pH values 

below 5. Phosphor is never readily soluble, but even less so at both low and high pH 

values (Bohn et al. 1979).  

 

In addition to influencing the availability of nutrients, soil pH also impacts directly on the 

composition of microbial populations. The microbiota of acidic soils below pH 5.5 is 

predominantly fungal, whereas bacteria favour environments with a pH ranging from 6 to 

8 (Stotzky 1972; Blain Metting 1993). This is a gross generalization however, as pH may 

vary by 2 or more units over a distance smaller than a microbial cell, due to microbial 

metabolism or other variables. In addition to changes in pH, the redox potential of a 

particular environment may vary. This variation was found to be interdependent on 

factors such as pH, temperature, microbial metabolism, water availability and the 

composition of the soil atmosphere. Under aerobic conditions microbial activity 

generates free electrons, which are transferred to free O2 during respiration. However, if 

the soil environment becomes waterlogged, the O2 will be consumed and the metabolism 

of facultative and anaerobic organisms will result in the formation of organic acids 

impacting on soil pH.    

 

From the above it is obvious that the availability of water is an important factor in soil 

microbial growth and is expressed as the water potential (Blain Metting 1993). The latter 

indicates the energy expenditure required by microorganisms to assimilate the water 

present in soil. Water potential depends on the osmotic potential of the water, adsorption 

to soil particles, capillary effects and gravity. The retention of soil water therefore 

depends on pore size, aggregate stability and minerals present in the soil. Clay soils retain 

more water than sandy soils when faced with gravitational pull, but the aforementioned 



 

leads to decreased availability of water to soil microbes. Studies have shown that in 

contrast to bacteria, yeasts and filamentous fungi are metabolically active at low water 

potentials.  

 

Water in combination with temperature has also been found to play a cardinal role in the 

rate of mineral weathering, humus formation and microbial activity (Blain Metting 1993). 

Tropical soils are approximately 15°C warmer than soils from temperate areas, resulting 

in higher microbial metabolic rates.  Temperature also impacts on the redox potential of 

the soil fabric, movement of water and diffusion of gasses (Stotzky 1972). It was found 

that when fluctuations in either water or temperature occur, seasonal variations of less 

that 7% occur in respiration and root decomposition rates (Smith 1982).  However, 

variations between 70 and 75% were observed when fluctuations in both temperature and 

water occurred. Changes in the metabolic activity of the soil microbial community 

brought about by variations in temperature may not be permanent, since experimental 

evidence showed that although slow freezing of Chernozemic Brown loam to -3°C leads 

to ca. 15% decrease in bacterial and fungal counts, these microbes are able to lay 

dormant as a result of the formation of resistant spores (Blain Metting 1993). A similar 

study showed that CO2 evolution changed only slightly under these conditions (Smith 

1982), indicating that soil microbial activity is maintained through shifts in community 

composition towards more cold tolerant types.  Evidence suggests that aerobes are more 

tolerant of freeze-thaw cycles than their anaerobic counterparts (Blain Metting 1993). On 

the other hand, mesophiles are able to survive high temperatures through sporulization 

and are more common in soil than thermophilic strains.  

 

1.3 Interactions between soil organisms 

 

Any interaction between microbes in a particular population may be viewed as 

symbioses, whether it is beneficial, detrimental, or neither (Blain Metting 1993). 

Neutralism occurs when populations have no effect on each other, whatsoever. This is 

highly improbable in a soil environment, as the soil microbes alter the environment via 

their metabolic  
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Figure 1. Classification of soil organisms based on the nature of their energy and principal carbon sources 

within the foodweb (adapted from Richards 1987). 

 

processes causing changes, such as in pH, gas ratios, nutrients and growth factors. 

Commensalism, for example, occurs when one organism is dependent on the production 

of a growth factor by another. Thus, the auxotroph is dependent on the provider, while 

the provider neither benefits, nor suffers. This interaction is seen between cellulose 

degrading fungi and other microbes unable to utilize cellulose (Trevors & Van Elsas 

1997). The cellulolytic fungi produce organic acids that serve as substrates for non-

cellulolytic microbes. Probably the best known commensalistic relationship is between 

Nitrosomonas and Nitrobacter (Gooday 1988). Nitrosomonas transforms ammonium to 

nitrite, which in turn is transformed by Nitrobacter to nitrate. The whole process is called 

nitrification and the ammonium utilized during this process is generated by bacterial 

breakdown of amino acids (Richards 1987). Another potentially advantageous 

relationship is protocooperation, where both organisms stand to benefit from their 

interaction (Blain Metting 1993). Syntrophic associations can be considered to be 

protocooperative or mutualistic. This association arises when two or more species are 

required for the successful utilization of a particular resource. In anaerobic habitats this 

association exists between fermentative organisms capable of degrading complex 



 

compounds and methanogenenic archaea. Methanogens only utilize a limited number of 

simple substrates, such as acetate, CO2 and H2, produced as the result of metabolism by 

fermentative anaerobic microbes. With the exception of isopropanol, methanogens are 

unable to metabolize compounds consisting of more than two carbons. Interestingly, by 

utilizing H2 the methanogens ensure that the partial pressure of H2 is maintained within a 

narrow range required by the fermenting microbes, which in turn provide the substrates 

for the methanogens. Another example of mutualism is lichens, which is the association 

between specific ascomycetous fungi and a certain green algae or cyanobacteria (Gooday 

1988). In such an association the phototroph provides the fungus with carbon compounds 

and vitamins, while the fungus in turn provides the phototroph with mineral nutrients and 

water (Richards 1987).  

 

Negative interaction is probably more common than positive interaction, the most 

important being the competition for limited resources (Stotzky 1972). The competition 

for carbon and energy sources, mineral nutrients, electron acceptors and space may occur 

when conditions become limiting. The sudden addition of an easily metabolizable carbon 

source to a soil microhabitat supporting organisms dependant on complex substrates, may 

firstly lead to the depletion of O2 and eventually NO3
-. This could cause competition 

between K-selected species and r-selected species, and ultimately competition among r-

selected populations of facultative denitrifiers and strictly aerobic heterotrophs. 

 

Amensalism occurs when a species is favoured by the export of metabolites, which 

adversely affect other species (Blain Metting 1993). The effect may either be direct, as in 

the production of antibiotics or inhibitors, or indirect, as when the activity of one species 

alters the environmental conditions. Whether it is streptomycin, which acts against Gram-

positive organisms, or cycloheximide, which acts against eukaryotes, antibiotic 

production aids in the competitiveness of a particular organism (Gooday 1988). Many 

protozoa, bacteria and fungi also produce autoinhibitory compounds toxic to closely 

related taxa, thus “selecting” for more fit genotypes (Blain Metting 1993).  

 



 

Parasitism and predation are further examples of negative interactions. In the strictest 

sense of the word, it is the case where one organism directly exploits the other as a food 

source. Protozoa are common predators in soil and are able to engulf particles or whole 

organisms via the process of phagocytosis (Richards 1987). Fungi and bacteria are 

usually not considered to be predators, as the cell wall prevents the uptake of solid 

particles. However, predacious fungi that trap and digest nematodes do exist. An example 

of predation among prokaryotes is the interaction between bdellovibrios and their host 

bacteria (Gooday 1988). These vibroid bacteria act as predators of Gram-negative 

bacteria, such as pseudomonads and enterobacteria.  The Bdellovibrio cells collide with 

their prey and attach to the cell surface. Through enzymatic and physical penetration, the 

cell is able to lyse a pore through the cell wall of the prey and enter the periplasmic 

space. Once inside, Bdellovibrio grows by consuming nutrients originating from its prey 

and eventually divides into a number of daughter cells, which are released into the 

environment. 

 

1.4 Yeasts associated with the soil microenvironment 

 

A group of soil microbes of which the interactions has rarely been studied in the past are 

the yeasts. Although some soil yeasts are able to survive under oligotrophic conditions 

(Kimura et al. 1998), these fungi are normally isolated from relatively nutrient rich 

environments, such as the rhizosphere (Kvasnikov et al. 1975), dung and decaying toad 

stools (Fell & Statzell-Tallman 1998). Due to the aforementioned heterogeneity in the 

physicochemical composition of soil, yeasts are distributed unevenly in this habitat, 

nevertheless yeasts have been found in soils differing in texture, pH and chemical 

composition from diverse locations all over the world (Rose 1969).  

 

Very little is known about the activity of soil yeasts in situ, as the majority of research 

has been performed in vitro, often using soil microcosms under controlled conditions 

(Botha 2005). Due to the absence of countless environmental factors when performing 

these studies, one is confronted by a fragmented image of what possibly occurs in the 

natural environment of soil yeasts. Nevertheless, we may gain some insight into soil yeast 



 

biology from the results of these in vitro studies and ecological surveys conducted with 

standard plate count techniques. Using these plate count methods, it was found that the 

most effective sampling technique for yeasts is to isolate these unicellular fungi from the 

top 2-10 cm of the soil, where they are most abundant (Di Menna 1957). This is due to 

the fact that most of the yeasts found in soil are aerobic species and therefore more 

abundant in the surface layers (Spencer & Spencer 1997). These numbers are 

consequently expressed as viable units per gram of soil (Rose 1969). While soil may only 

serve as a temporary haven for certain species, providing protection against desiccation 

and drought, it serves as an important environmental niche to others. The former are able 

to survive until they are dispersed by environmental conditions, animals and even 

growing plants.  

 

While yeasts may not be the most abundant microbes in soil, they are able to multiply in 

this often highly competitive environment, occurring sometimes at levels as high as 104 

and 105 cells/g soil. Soil yeast numbers depend on the available nutrients and 

metabolizable compounds (Spencer & Spencer 1997). These yeasts often depend on 

filamentous fungi and bacteria to degrade polymeric recalcitrant compounds to simpler 

molecules such as the hydrolytic products of lignocellulosic plant materials (Rose & 

Harrison 1987). However, the species composition of the yeast community in a particular 

environment is not solely dependant on nutrient availability, but also on the absence of 

inhibitory agents (Starmer & Phaff 1980). Antibiotic-producing strains of actinomycetes 

are able to inhibit growth of sensitive yeast strains thereby affecting the composition of a 

particular soil yeast community. 

 

Although yeasts are generally not as numerous as prokaryotes and moulds in soil, a wide 

variety of ascomycetous and basidiomycetous yeasts were found in this habitat (Spencer 

& Spencer 1997).  Nutrient rich soils were found to support a wider variety of yeasts 

species than arid nutrient poor soils. Between 25 and 50% of the yeasts in nutrient rich 

soils were able to ferment carbohydrates. Yeasts are also more numerous in the soil 

beneath fruit bearing plants, as the spoiled fruit acts as a nutrient rich yeast inoculum 

(Phaff et al. 1966). Generally, soil further from the plant contains less yeast species 



 

associated with that particular plant, as observed for oak and pine trees and their 

associated genera Saccharomyces and Schizosaccharomyces (Do Carmo-Sousa 1969). 

Both Saccharomyces cerevisiae and Saccharomyces paradoxus have recently been 

isolated from oak-associated soils (Sniegowski et al. 2002). 

 

Species belonging to the genera Cryptococcus, Debaryomyces, Lipomyces and 

Schizoblastosporion were repeatedly isolated from various soils, indicating their 

preference for this habitat (Phaff & Starmer 1987). Table 1 (pp 13-14) depicts some of 

the yeast genera associated with soil. It must, however, be noted that the ecological 

surveys of which the results are listed in Table 1 (pp 13-14), were based on the presence 

of culturable yeasts able to grow on selected isolation media. Thus, our knowledge of 

autochthonous soil yeasts is limited to the effectiveness of the isolation media used. 

 

Most soil yeasts possess a wide spectrum of metabolic activities, which enable them to 

survive in nutrient limited environments. The ability to sporulate (certain Hansenula and 

Lipomyces species) may be viewed as an additional survival mechanism, providing 

protection during dessication and drought (Rose & Harrison 1987).  Lipomyces, 

Cryptococcus and Rhodotorula produce capsules consisting of extracellular polymeric 

substances (EPS), possibly aiding survival in nutrient limited environments. Certain soil 

cryptococci are even able to form biofilms, consisting of cells embedded in EPS, when 

challenged with oligotrophic conditions in a flowcell system (Joubert et al. 2003). The 

production of EPS and formation of biofilms, is a known mechanism whereby 

microorganisms sequester and concentrate nutrients in oligotrophic environments (Decho 

1990).  

 

1.5 Role of yeasts in soil 

 

1.5.1 Mineralization 

 

Within the soil ecosystem, the flow of energy usually occurs away from plants, to 

heterotrophs further along the food chain. These organisms include microbes and 



 

macroscopic fauna (Coleman & Crossley 1996).  The primary decomposers, namely 

bacteria and fungi are able to degrade compounds derived directly or indirectly from 

plants. While yeasts are considered part of the fungal domain, the majority seem to be 

saprotrophs, contributing to the mineralization of numerous organic carbon compounds. 

A number of these yeasts are able to ferment carbohydrates, but the majority respire both 

carbohydrates and non-fermentable organic compounds (Kurtzman & Fell 2000). The 

presence of autochthonous soil yeasts (Lachance & Starmer 1998) serves to suggest that 

yeast play a role in the intricate decomposition processes taking place in soil.  

 

The majority of yeast species most frequently found in soil (Table 1, pp 13-14) are able 

to aerobically utilize L-arabinose, D-xilose and cellobiose (Kurtzman and Fell 1998). 

These are the products of the enzymatic degradation of lignocellulosic plant material by 

bacteria and moulds (Bisaria & Ghose 1981; Tomme et al. 1995). Some of these soil 

yeasts were also found to assimilate other intermediates of this degradation process, such 

as ferulic acid, 4-hydroxybenzoic acid and vanillic acid (Middelhoven 1993; Sampaio 

1999). Even so, yeasts are not considered to play a major role in the decomposition of 

organic matter, due to their relatively low numbers compared to other soil microbiota 

(Phaff & Starmer 1987).  However, in desolate habitats like the arctic zones, yeasts may 

be the dominant culturable soil microbes (Wynn-Williams 1982), hinting at a significant 

role in the decomposition process. 

 

1.5.2 Inorganic nutrient release and soil formation 

 

Some oligotrophic yeasts were found to grow on rocks above ground (Sterflinger & 

Prillinger 2001; Burford et al. 2003) and ascomycetous and basidiomycetous genera such 

as Candida, Lipomyces, Rhodotorula and Trichoderma were frequently isolated from 

rock substrates. In addition, euascomycetous taxa are found on an ever wider variety of 

rock substrates. These fungi include meristematic fungi, known as “black yeasts”. The 

latter grows yeast-like in culture and consists of the genera Aureobasidium, Exophiala, 

Hormonema, Hortaea, Lecythophora, Phaeotheca, Rhinocladia and Sarcinomyces. Their 

melanized cell walls, chlaymydospore formation and yeast-like morphology with 



 

optimum surface to volume ration, make them suited for epilithic stress conditions, such 

as UV irradiation, temperature fluctuations, variations in available water and low nutrient 

conditions. These endo- and epilithic fungi constitute a significant proportion of the 

microbial communities present on granite, gypsum, limestone, marble, sandstone and 

siliceous rock types, e.g silica, silicates and aluminosilicates. Microbial communities 

present on these rocks contribute to the weathering and consequent soil formation, as well 

as nutrient liberation from this surface (Gadd & Sayer 2000; Burford et al. 2003). Thus, 

elements present in the rock (phosphorous, sulphur and trace elements) become bio-

available. Dissolution is accomplished by the action of H+, organic acids and 

siderophores.  

 

Another manner in which yeasts impact on biological processes in soil, is through the 

production of EPS. These extracellular compounds enable soil yeasts from the genera 

Cryptococcus and Lipomyces to play a role in the formation of soil aggregates, thus 

impacting on soil structure (Bab’eva & Moawad 1973; Vishniac 1995). These aggregates 

stabilize the soil, thereby decreasing erodibility, enhancing porosity, water holding 

capacity and fertility (Bronick & Lal 2004). 

 

1.6 Yeasts interactions in soil 

 
In general, two types of habitats may occur in soil, the first is the bulk of the soil, usually 

relatively low in available nutrients; the second is the rhizosphere that usually contains 

more nutrients than the bulk of the soil. Although the type of microbial interactions 

occurring in these habitats would be similar, the microbial taxa participating in these 

interactions may differ as a result of differences in the physicochemical composition of 

the environment. 

 

1.7 Yeast interactions in the rhizosphere 

 

The rhizosphere is defined as the few millimeters of soil extending from the plant root 

into the surrounding soil (Huang & Germida 2002). This could be viewed as the interface 



 

Table 1. Yeast species most commonly isolated from soil (Botha 2005). 

Species according to 

Kurtzman and Fell 

(1998). 

Originally 

identification  

during survey 

Reference aVeg 

 

Cryptococcus  albidus 

 

Cryptococcus  

albidus 

/diffluens/ terricolus 

 

Di Menna 1965; Moawad et al. 

1986;  

Bab’eva & Azieva 1980;  

Polyakova et al. 2001 

 

F; G; T; 

V 

Cryptococcus curvatus Candida curvata Di Menna 1965; Moawad et al. 

1986. 

 

F; G; V 

Cryptococcus gastricus  Cryptococcus 

gastricus 

 

Bab’eva & Azieva 1980 T 

Cryptococcus gilvescens  Cryptococcus 

gilvescens 

 

Polyakova et al. 2001 T 

Cryptococcus  humicolus Candida humicola Di Menna 1965 

 

G; V 

Cryptococcus  laurentii Cryptococcus  

laurentii 

Babeva & Azieva 1980;  

Sláviková & Vadkertiová 2000 

 

F; T 

Cryptococcus podzolicus Candida podzolica Bab’eva & Reshetova 1975 

 

V 

Cryptococcus terreus Cryptococcus terreus Di Menna 1965 

 

G; V 

Filobasidium 

uniguttulatum 

Cryptococcus 

uniguttulatus 

Bab’eva & Azieva 1980 

 

 

T 

Cystofilobasidium 

capitatum 

 

Cystofilobasidium 

capitatum 

Sláviková & Vadkertiová 2000 F 



 

Table 1 continued 

 

Leucosporidium scottii Leucosporidium 

scottii 

 

Sláviková & Vadkertiová 2000 F 

Mrakia frigida  Candida 

curiosa/gelida 

 

Bab’eva & Azieva 1980 T 

Rhodotorula aurantiaca Rhodotorula 

aurantiaca 

 

Sláviková & Vadkertiová 2000 F 

Rhodotorula glutinis Rhodotorula glutinis Sláviková & Vadkertiová 2000;  

Moawad et al. 1986. 

 

F; V 

Rhodotorula 

mucilaginosa 

Rhodotorula 

mucilaginosa 

 

Polyakova et al. 2001 T 

Schizoblastosporion 

starkeyi-henricii 

Schizoblastosporion 

starkeyi-henricii 

 

Di Menna 1965 G 

Sporobolomyces roseus Sporobolomyces 

roseus 

 

Polyakova et al. 2001 T 

Trichosporon cutaneum  Trichosporon 

cutaneum 

Di Menna 1965; Sláviková & 

Vadkertiová 2000 

G;  F; V 

 
aGeneral type of vegetation covering the soil that was sampled; F = Forest, G = Grass, T = 

Tundra, V =  various. 

 

 

 

 

 



 

through which energy is channeled from the plant to the soil biota. It is estimated that ca. 

20 % of the carbon assimilated during photosynthesis is released via the roots into the 

soil. Due to this efflux of carbon the surrounding soil may differ from the bulk of the soil, 

with regards to pH, redox potential, as well as composition and concentration of organic 

compounds. It has been suggested that depending on soil conditions, the rhizosphere may 

select for specific microbial populations. A number of ascomycetous and 

basidiomycetous yeasts have been isolated from the rhizosphere (Table 2, pp 18-19). 

Should the redox potential of the rhizosphere decrease due to waterlogging (Huang & 

Germida 2002), some of these yeast will still be able to grow as result of fermentative 

metabolism (Table 2, pp 18-19). As in the case of other soil microbes, larger yeast 

populations are found in the rhizosphere than in the bulk of the soil not associated with 

plant roots (Moawad et al. 1986). Figure 2 (p 16) illustrates a yeast colony on the 

rhizoplane of sorghum. Yeast carbon and nitrogen sources exuded from the roots may 

contribute to the maintenance of the associated species. These exudates vary between 

plant species and under different growth conditions (Fan et al. 2001), possibly 

influencing the composition of the associated microbial populations.  

While the interactions of the yeasts in the rhizosphere may be largely unknown, a few 

documented cases hint at their role in this microhabitat. Legumes inoculated with            

S. cerevisiae showed increased nodulation and arbuscular mycorrhizal (AM) fungal 

colonization (Sing et al. 1991). Further, the hyphal growth of the AM fungus Glomus 

intraradices colonizing cucumber roots was found to benefit from the presence of bakers’ 

dry yeast (Ravnskov et al. 1999). Phosphorous uptake by the AM fungi however, 

remained unaffected. When Yarrowia lipolytica and Glomus deserticola were used as an 

inoculum for tomato plants, it was found that the mycorhizal-root colonization was 

stimulated by the presence of the yeast (Vassilev et al. 2001). Basidiomycetous soil 

yeasts were also found to stimulate AM fungal growth, with Rhodotorula mucilaginous 

stimulating hyphal lengthening during in vitro germination of Glomus mosseae and 

Gigaspora rosea (Fracchia et al. 2003). The same effect was observed when exudates 

from the yeast cultured in liquid medium were added to the spores. These exudates also 

increased the colonization of the aforementioned AM fungi. Candida valida, Rhodotorula 

 



 

 

 

 

Figure 2. Epi-fluorescence micrograph of yeast microcolony on rhizoplane of two-week- old sorghum 

seedling growing in medium of washed sand with no additional carbon source. The bar represents 10 μm 

(Botha 2005). 

 

glutinis and Trichosporon asahii were also isolated from soil and found to be antagonistic 

towards the growth of the fungal root pathogen Rhizoctonia solani (El-Tarabilly 2004). 

These yeasts were able to colonize sugar beet roots and protect the seedlings and mature 

plants from R. solani diseases in glasshouse trials. Furthermore, the three yeasts species 

exerted a synergistic effect on disease suppression and promoted plant growth.  

 

1.8 Yeast interactions known to occur in bulk soil  

 

1.8.1 Predation and yeasts 

Very little is known about the natural predators of yeasts in soil. An extensive search of 

literature produced only a few documented cases of soil organisms feeding on yeasts. 



 

Nevertheless, evidence was found that the major predators in soil, such as protozoa, 

nematodes and micro-arthropods (Bardgett & Griffiths 1997), also act as predators of 

yeasts. 

Protozoan activity is limited to the water films in soil pores (Bardgett & Griffiths 1997). 

While they only comprise a small percentage of the total biomass in soil, these 

eukaryotes may contribute up to 30% of the total net nitrogen mineralization.  Protozoa 

have an impact on the size and composition of the microbial community and the turnover 

of nutrients and microbial biomass. The majority of protozoa are thought to feed on 

bacteria, with the exception of the mycophagous (fungal feeders), predatory (feed on 

other protozoa) and saprophytic protozoa that are able to absorb soluble compounds. 

However, very little is known about their interactions with yeasts. Acanthamoeba is 

probably the most common protist found in soil (Sawyer 1989) and has been known to 

feed on yeast (Allen & Davidowicz 1990).  Benting et al. (1979) found that when they 

incubated a known soil amoeba, Acanthamoeba polyphaga, with three strains of 

Cryptococcus neoformans, the amoeba was able to phagocytose and kill these cells. After 

a period of 9 days, 99% of the Cryptococcus cells were phagocytosed. While the 

predation of yeast in soil may not be as drastic, it is likely that protozoa are able to feed 

on the yeasts occurring in this habitat. The fact that the majority of yeasts are found in the 

top 2-10 cm of soil (Di Menna 1957) and protist numbers are more numerous in the upper 

10 cm of soil, suggests that interactions between these two groups are inevitable. Like 

protozoa, nematodes require a water film to be active (Bardgett & Griffiths 1997) and 

perform the same role in the ecosystem as protozoa, which is nutrient cycling. They are 

able to feed on animal parasites, bacteria, eukaryotic cells, fauna, fungal hyphae, organic 

matter and plants.  Nematodes present in soil may be grouped according to their mouth 

parts, which dictate what they are able to feed on. Yeasts have been recorded as food 

sources (Yeates 1971) for Alaimus and Rhabditis (previously isolated from soil; Neher et 

al. 1999; Nielsen 1949), and Panagrellus (Panagrellus redivivus a known soil nematode; 

Hechler 1970; Yuen 1968). A well documented case is the interaction between the soil 

nematode Caenorhabditis elegans (Nicholas 1984), Cryptococcus laurentii (known soil  

  
 



 

Table 2.  Some yeasts species that were found to occur in the rhizosphere during a number of surveys 

(Botha 2005).  

 
Species according to 

Kurtzman and Fell 

(1998a). 

Originally 

identification during 

survey 

Reference aF 

Bullera species Bullera species De Azeredo et al. 1998 - 

Candida azyma Candida azyma De Azeredo et al. 1998 - 

Candida krusei Candida krusei Kvasnikov et al. 1975 + 

Candida maltosa Candida maltosa De Azeredo et al. 1998 + 

Cryptococcus  albidus Cryptococcus  albidus/ 

diffluens 

De Azeredo et al. 1998; Moawad 

et al. 1986; Kvasnikov et al. 1975 

- 

Cryptococcus curvatus Candida curvata Moawad et al. 1986 - 

Cryptococcus  humicolus Candida humicola Moawad et al. 1986 - 

Cryptococcus  laurentii Cryptococcus  laurentii De Azeredo et al. 1998; 

Kvasnikov et al. 1975. 

- 

Debaryomyces hansenii Debaryomyces 

hansenii/ kloeckeri 

 Torulopsis famata 

De Azeredo et al. 1998; Moawad 

et al. 1986 

v 

Debaryomyces 

polymorphus  

Debaryomyces phaffii/ 

cantarelli 

Kvasnikov et al. 1975. + 

Debaryomyces vanrijiae Debaryomyces vanriji Kvasnikov et al. 1975. v 

Fellomyces species Fellomyces species De Azeredo et al. 1998 - 

Hanseniaspora uvarum Hanseniaspora 

apiculata 

Kvasnikov et al. 1975. + 

Leucosporidium scottii Leucosporidium scottii De Azeredo et al. 1998 - 

Metschnikowia 

pulcherrima 

Metschnikowia 

pulcherrima 

Kvasnikov et al. 1975. + 

Pichia guilliermondii Pichia guilliermondii De Azeredo et al. 1998 + 

Rhodotorula glutinis Rhodotorula glutinis De Azeredo et al. 1998; Moawad 

et al. 1986 

- 

Rhodotorula minuta Rhodotorula minuta De Azeredo et al. 1998 - 

Rhodotorula 

mucilaginosa 

Rhodotorula 

mucilaginosa 

De Azeredo et al. 1998 - 



 

Table 2 continued 

 

Torulaspora delbreuckii Torulaspora 

delbreuckii 

De Azeredo et al. 1998 + 

Tremella mesenterica Tremella mesenterica De Azeredo et al. 1998 _ 

Trichosporon cutaneum  Trichosporon cutaneum Kvasnikov et al. 1975 _ 

Saccharomyces 

cerevisiae 

Saccharomyces 

cerevisiae  

De Azeredo et al. 1998 + 

Williopsis californica Hansenula californica  Kvasnikov et al. 1975 + 

Williopsis saturnus Hansenula saturnus Kvasnikov et al. 1975 + 
 

a Ability of species to ferment carbohydrates according to Kurtzman and Fell (1998); + = positive, - = 

negative, v = variable  

 

yeast, Kurtzmann and Fell 2000) and Cryptococcus kuetzingii (closely related to the soil 

yeast, Cryptococcus albidus; Kurtzmann & Fell 2000; Mylonakis et al. 2002). Under 

laboratory conditions, Caenorhabditis elegans was able to survive on both Cryptococcus 

kuetzingii and Cryptococcus laurentii as sole food source, maintaining brood sizes similar 

to when it is grown on its laboratory food source, Escherichia coli OP50. However, when 

C. elegans was cultivated on the opportunistic human pathogen periodically encountered 

in soil, i.e. Cryptococcus neoformans, it was killed by the yeast capsule and a series of 

gene products associated with mammalian virulence. Cryptococcus neoformans caused 

distention of the nematodes’ intestine when ingested, but it is not apparent whether the 

accumulation of cells led to the death of the nematode. Killing by an acapsular strain of 

C. neoformans has also been observed, where either toxins produced by the yeast, or 

toxic components of the cell wall were responsible for death. This would lead us to 

believe that C. neoformans virulence may be an environmental adaptation that evolved 

due to the interaction between this yeast and environmental predators such as free-living 

nematodes and amoebae. 

 

 An article that recently appeared in the Journal of Applied Ichthyology (Ricci et al. 

2004), mentions a low cost method for mass production of the free-living nematode, 



 

Panagrellus redivivus. It has been reported that P. redivivus is able to feed on                  

S. cerevisiae (Hechler 1970) and researchers found that they were able to culture P. 

redivivus on a monoxenic S. cerevisiae culture. As S. cerevisiae has been isolated from 

soil, it would suggest that P. redivivus would be able to feed on S. cerevisiae when both 

organisms are present in soil. Interestingly, it was found that ethanol production by            

S. cerevisiae enhanced the growth of Acinetobacter, a bacterium which may be found in 

the same habitat as the yeast (Smith et al. 2004). The ethanol led to increased 

pathogenicity of the bacterium towards the predacious nematode C. elegans. Through this 

interaction, S. cerevisiae indirectly reduces the number of predators present. Furthermore, 

researchers found that when culturing the hermaphrodite nematode Acrobeloides, with 

Pseudomonas cepacia as its food source, yeast contamination of the bacterial culture is 

necessary for reproduction of the nematode (Ikonen 2001). They did, however, state that 

heavily contaminated bacterial cultures or yeast alone, did not support nematode 

population growth.  

 

Prokaryotes may also prey on yeasts (Goto-Yamamoto et al. 1993). Yeast-lysing bacteria 

have been isolated from numerous sites in Brazil (soils, flowers, fermented foods and 

others) and screened for the ability to cause lysis of S. cerevisiae K-701. Fifty strains of 

yeast-lysing bacteria were isolated from 271 samples, all of which were Gram-positive. 

Forty six of these strains agglutinated with S. cerevisiae and caused lysis of viable cells. 

A well documented case is the lysis of the basidiomycetous yeast, Rhodotorula glutinis 

(known soil yeast, Vital et al. 2002; Yamanaka et al. 1993) by bacteria.  In another study, 

twenty-seven strains of Myxobacteria were isolated from natural environments and tested 

against a number of yeasts. All the yeasts were lysed by nearly all the myxobacterial 

strains tested. Among the yeasts screened were R. glutinis AJ 5012, Rhodosporidium 

toruloides AJ 5212, S. cerevisiae AJ 14396, Candida albicans AJ 4297, C. albidus AJ 

4297, Geotrichum candidum AJ 4884 and Candida japonica AJ 4692. The 

aforementioned species have all been isolated from soil (Kurtzmann & Fell 2000). 

Researchers found that Myxobacteria (soil bacteria, Reichenbach 1999) were able to lyse 

R. glutinis, which is known to be rather resistant to lytic enzymes, by apparently 

evacuating the cytoplasm and leaving the cell wall relatively intact. It would therefore 



 

appear that the permeability of the cell surface is disrupted in such a way that the 

intracellular ingredients (like amino acids) are excreted. This allows the Myxobacteria to 

live on organisms that have a resistant cell wall.  

 

In contrast to the role of yeasts as prey, yeasts may also act as predators themselves 

(Kreger-van Rij & Veenhuis 1973; Lachance & Pang 1997 ). The ability to penetrate and 

consume other yeasts has been observed in the type strain of Arthroascus javanensis 

(previously isolated from soil, Kurtzmann & Fell 2000) and three other filamentous yeast 

species. A number of yeasts, auxotrophic for sulphur-containing amino acids, were tested 

for predation against potential prey such as S. cerevisiae and Metschnikowia species. 

Among the potential predator yeasts tested were A.  javanensis, Pichia membranefaciens 

(isolated from vineyard soil, Kurtzmann & Fell 2000) and Saccharomycopsis fibuligera 

(previously isolated from orchard soil, Kurtzmann & Fell 2000). Both A. javanensis and    

S. fibuligera were found to be predacious (Lachance & Pang 1997), provided that the 

following three requirements were met:  Firstly, only low concentrations of complex 

nutrients had to be present in the medium. Secondly, excess organic sulphur, excreted by 

the prototrophic prey and serving as an attractant to predacious strains needed to be 

present. Thirdly, a solid surface, such as that of agar media, allowing sufficient contact 

between predator and prey needed to be present. The aforementioned requirements are 

met in soil, as soil is ultimately an oligotrophic environment, actively growing prey 

would be present in porous spaces allowing for attraction of the predator and there is a 

solid surface available on the soil particles. While auxotrophy for organic sulphur may 

seem detrimental to the yeasts in their natural environment, it may be a survival 

mechanism, as a number of toxic substances share common permeases with sulphate. 

 

From the above it is obvious that the survival of yeasts and other microbes are the result 

of interactions between different organisms, as well as interactions of the yeast with its 

chemical and physical environment.  This makes accurate predictions on the fate of 

particular yeast strains in soil very challenging. In future such predictions will become a 

necessity, especially since an ever-increasing number of genetically modified organisms 



 

are being evaluated for industrial applications and the fate of such organisms, once 

released into the environment, is being contemplated.    

 

1.9 Genetically modified organisms in the environment 

 

Considerable research has been conducted on the impact of transgenic plants and 

microbes on the environment, but the impact on the soil biota per se, has received very 

little attention (O’Callaghan 2001). This is understandable, as monitoring this ecological 

niche poses numerous challenges. Partly due to extreme variation in community 

structure, but also due to limited techniques in monitoring changes brought about by an 

external perturbation.  

 

One of the major concerns about introducing new genes into the environment, is whether 

the introduced gene can cause harm to humans, domestic or wild animals, plants and 

crops (Bailey et al. 2001). This would depend on the nature of the introduced gene and 

the possibility that it may spread, although being highly unlikely. A large number of 

pathogenic bacteria are known and their genome sequences are available. An in depth 

study of pathogenic bacteria revealed that pathogenesis requires a number of associated 

genes often found in organizational clusters on plasmids and chromosomes. As 

pathogenicity is a highly complex trait, the chances of it occurring due to a simple 

mutation are very slim. Salmonella typhimurium requires at least 10-20 genes in order to 

infect mice, with more than 100 genes expressed during infection. Of all the genes 

utilized in genetic manipulation, the greatest concern surrounds antibiotic resistance 

genes. There is due concern, as the emergence of multidrug resistant bacteria have 

increased worldwide (Dzidic & Bedeković 2003). This is mainly due to microbial 

characteristics, selective pressure from the use of antibiotics, transfer of resistance genes 

between microbes and negligence in infection control practices. Microbes posses a wide 

range of mechanisms to deal with antibiotics, the main mechanisms being the production 

of inactivation enzymes (Gold & Moellering 1996; Paterson 2001), alteration of cell-wall 

target sites, alteration of DNA gyrase targets, permeability mutations and active efflux 

(Bearden and Danziger 2001; Levy 2002), as well as ribosomal modification.  Through 



 

recombination the resistance genes can be inserted into expression cassettes and spread 

through the microbial population via horizontal gene transfer mechanisms such as 

conjugation, transduction and transformation (Dzidic & Bedeković 2003). Should 

resistance genes become localized on plasmids, they can not only be transferred to 

closely related bacteria in the same environment, but even between different bacterial 

genera. 

 

1.10 Natural mechanisms of horizontal gene transfer in prokaryotes  

 

Bacteria do not engage in sexual reproduction, as most species of eukaryotes do (Bailey 

et al. 2001). Instead they utilize a number of mechanisms to facilitate gene transfer 

between species and even higher taxonomic groups. It is also believed that gene transfer 

plays a role in DNA repair among asexual prokaryotes (Frost 1992). By promoting 

recombination between the genes of two organisms, deleterious mutations that may have 

occurred due to environmental damage may be repaired. The mechanisms whereby genes 

are transferred among prokaryotes, are summarized in Table 3 (p 31) and are                               

discussed in more detail below.  

 

1.10.1 Transformation 

 

Transformation occurs when a bacterial cell imports DNA from the surrounding 

environment and incorporates it into its own genetic material (O’Callaghan 2001). Free 

DNA may originate from dead cells, or may be actively secreted into the environment.  

The mechanism for DNA uptake varies among bacterial taxa, but generally it involves 

absorption onto the cell surface, followed by uptake via a protein channel (Bailey et al. 

2001). The specificity of this mechanism varies from the uptake of conspecific DNA 

only, to the uptake of any DNA.  A prerequisite for transformation is that the cell must be 

in a competent state and be able to take up and incorporate the foreign DNA. Competence 

was found to be greatest under intermediate nutrient conditions. Species belonging to 

bacterial genera such as Acinetobacter, Bacillus, Micrococcus and Pseudomonas are 



 

known to be naturally competent under appropriate environmental conditions. This 

behaviour could possibly accelerate the rate of adaptation by these organisms.  

 

The majority of DNA taken up is degraded by restriction nucleases, which is a 

mechanism used to protect cells against foreign DNA, i.e. viral DNA (Bailey et al. 2001). 

The host DNA is protected either by methylation or by the absence of restriction enzyme 

target sites. This mechanism promotes incorporation of DNA originating from closely 

related species. Should this DNA be taken up by another organism and not be degraded, 

incorporation into the host genome will depend on sequence homology. However, if the 

foreign DNA is able to self- replicate, as in the case of plasmids and bacteriophages, it 

can remain inside the host organism.  Thus, the foreign DNA may be potentially 

advantageous to the recipient cell and my even result in a phenotypical trait. Should the 

foreign DNA not be incorporated into the host genome, it may serve as a nutrient source 

for cellular metabolism, or provide nucleotides for DNA synthesis.   

 

1.10.2 Conjugation 

 

Conjugation is the transfer of a self-replicating mobile genetic element between bacteria 

(Frost 1992) and may occur between closely related species, different genera and even 

between bacteria differing in their Gram staining reactions (O’Callaghan 2001). A 

bacterial genome usually consists of a single chromosome, but plasmids may also be 

present (Bailey et al. 2001). The plasmid may impart a selective advantage on the host 

organism, increasing its fitness in a particular environment. Many cases of antibiotic 

resistance, resistance against toxins and environmental stresses are associated with 

plasmid-borne genes.  Plasmids not only contain the sequences needed to replicate, but 

also the genes necessary to facilitate their transfer, via conjugation, from one cell to 

another. 

 

The conjugation process entails physical contact, followed by the formation of a 

conjugative pilus (Bailey et al. 2001). Successful transfer of DNA during this process 

requires a recipient cell able to maintain the plasmid, as well as a metabolically active 



 

host and donor cell. Should a cell contain a plasmid coding for the conjugative pilus and 

another plasmid unable to do so, the latter could be transferred to a recipient cell through 

the complementary action of the former. It is possible for plasmids to move from a 

recipient cell to a donor cell, via a process known as retrotransfer (Sia 1996). Should 

homology exist between the plasmid and the host cell, recombination may occur, 

incorporating the plasmid DNA into the host genome. 

  

A Transposon is another type of genetic element which may occur either in the host 

genome or on a plasmid (Bailey et al. 2001). These mobile genetic elements code for 

their excision and incorporation elsewhere in the genome. Thus transposons are able to 

transfer DNA between chromosomes and plasmids.  

 

1.10.3 Transduction 

 

Bacteriophages consist of a DNA molecule surrounded by a protein sheath or capsid 

(Bailey et al. 2001) and have been studied in the soil rhizosphere (Ashelford et al. 2000). 

Upon contact with a susceptible host, these bacterial viruses transfer their DNA into the 

bacterial cell. Should the virus enter the lytic cycle, it will rapidly replicate and 

eventually rupture the host cell, releasing newly synthesized phages into the surrounding 

environment. Alternatively, the phage DNA may be incorporated into the host DNA 

where it would replicate as part of the bacterial genome. In the event of the phage 

carrying a beneficial gene, it could even increase the fitness of the host cell. This kind of 

replicative process of a phage and is known as lysogeny. 

 

These interactions with the host cell may lead to generalized or specialized transduction 

(Bailey et al. 2001). The former occurs when host DNA, whether it be chromosome or 

plasmid fractions, become encapsulated either along with viral DNA, or without viral 

DNA. Thus, bacterial DNA can be transferred to a new host bacterium and possibly 

incorporated into its genome. Specialized transduction on the other hand, occurs when 

viral DNA incorporated into the host genome, enters the lytic phase. During the excision 



 

process, host DNA may be excised along with the viral DNA, packaged into the capsid of 

the next generation of bacteriophages and transferred to the next host.  

 

It is not known whether barriers to horizontal gene transfer exists in eukaryotes, but such 

mechanisms do exist in their prokaryotic counterparts (Krishnapillai 1996).  A major 

mechanism is the effect of restriction enzymes on foreign DNA, which inhibits the 

incorporation of this DNA into the bacterial genome. Escherichia coli possess at least 11 

naturally occurring restriction systems (Barcus 1995). DNA molecules that are not 

destroyed are methylated, facilitating recombination into the host genome (Krishnapillai 

1996). A second barrier is the DNA mismatch repair system found in E. coli and 

Salmonella typhimurium (Matic et al. 1995). This mechanism prevents nonhomologous 

recombination between E. coli and S. typhimurium. However the error-prone SOS system 

stimulates nonhomologous recombination by triggering the RecBC-dependant SOS 

system. 

 

1.11 Natural mechanisms of horizontal gene transfer in eukaryotes 

 

Indirect evidence for horizontal gene transfer, based on non-homologous genetic 

recombination, has been found among eukaryotes and three main types of transposable 

genetic elements were suggested to be involved in these processes, i.e. transposons, 

retrotransposons and retroposons (Krishnapillai 1996).  

 

Transposons contain either perfect or imperfect terminal repeats, which transpose via a 

DNA intermediate, leading to target site duplications 8bp in size (Krishnapillai 1996). 

They show similarity to prokaryotic transposons and tend to be highly promiscuous and 

occur in hosts as diverse as fungi and vertebrates. Retrotransposons possess long terminal 

repeats and transpose via a RNA intermediate, leading to 5bp duplications. Retroposons 

generate 12bp duplications and lack the long terminal repeats found in retrotransposons.  

 

Although direct evidence for horizontal gene transfer in eukaryotes is lacking, there is 

enough circumstantial evidence to support this theory (Krishnapillai 1996). The 



 

distribution of the Tc1-mariner family of transposons among arthropods, ciliates, fungi, 

nematodes, planarians and vertebrates is a perfect example. Even though these organisms 

possess highly heterologous genomes, the transposase responsible for the transposition of 

this element is highly conserved in all these cases. Homologues of Tc1-mariner have 

been found in bacteria, making it highly improbable that this transposon originated from 

a common ancestor. Another example of horizontal gene transfer is the inverted repeat 

sequences found at the termini of 23 genetic elements present in both animal and plant 

genomes. Members of both the Ac-like (8bp duplications) and ‘CACTA’ (3bp 

duplications) families of transposable elements were found to occur in the animal and 

plant kingdoms. Furthermore, the transposases of four of the 23 elements mentioned 

above are highly conserved.  

 

1.12 Horizontal gene transfer between prokaryotes, eukaryotes and vice versa 

 

Evidence does exist to support the theory of horizontal transfer of DNA between 

prokaryotes and eukaryotes. As mentioned above, homologues of the Tc1-mariner family 

of transposons have been found both in eukaryotes and prokaryotes (Krishnapillai 1996). 

Another prime example is the gene for glyceraldehydes-3-phosphate dehydrogenase i.e. 

Gapdh (Smith et al. 1992). Escherichia coli possess two versions of this gene. The first 

was most likely acquired by an ancestor of E. coli from a eukaryote, as phylogenetic 

studies revealed that it shows more similarity to the eukaryotic sequence than to any 

prokaryotic example. The second is similar to that of the bacterial ancestor. This theory 

was substantiated when the eukaryotic form of Gapdh was found in numerous species of 

enteric bacteria. It is possible that horizontal gene transfer may have taken place in the 

gut of a eukaryotic organism, before the divergence of animals and plants.  

 

A similar example is the gene for glutamine synthetase (GS2) found in Bradyrhizobium 

japonicum, which shows great structural similarities with the eukaryotic version of the 

gene, while the alternate form, GS1, has only been found in archaea and eubacteria 

(Smith et al. 1992). As B. japonicum is associated with plants, it is plausible that transfer 

of the gene could have taken place between early plants and ancestors of this bacterium. 



 

There is an even stronger case for horizontal transfer of the gene for glucose phosphate 

isomerase in Escherichia coli, as the sequence of this gene shows 88% homology with 

that of eukaryotic glucose phosphate isomerase. The possibility therefore exists that 

somewhere in the distant past some E. coli strains lost this gene and reacquired it from a 

eukaryote. 

 

Phylogenetic studies also revealed evidence for the transfer of DNA from prokaryotes to 

eukaryotes (Smith et al. 1992). The first example is that of Fe-superoxide dismutase (Fe-

SOD) found in the protist Entamoeba histolytica. This particular dismutase shows 60% 

similarity with a number of bacterial dismutases, but only 30% similarity to those found 

in other eukaryotes. As E. histolitica feeds on bacteria, the theory of Fe-SOD being of 

bacterial origin therefore seems not be too far fetched.  

 

Further evidence for the transfer of genes from eubacteria to eukaryotes was obtained 

after sequence analysis of the genes for fructose-biphosphate aldolase (Smith et al. 1992). 

Only four class II aldolases were reported, three from eubacteria and one from the yeast 

S. cerevisiae. The yeast aldolase was found to be more similar to the E. coli aldolase than 

any of the bacterial aldolases are to each other.  Interestingly, Heinemann and Sprague 

(1989) found that a conjugative plasmid of E. coli could be transferred to S. cerevisiae 

via a process resembling conjugation, providing more evidence for the direct transfer of 

genes between these phylogenetic unrelated groups.    

 

1.13 The fate of extracellular DNA in the environment  

 

The possibility of transformation by naked DNA is dependent on the half life of the DNA 

involved as well as the physicochemical properties of the soil (Bailey et al. 2001). The 

greater majority of soil microbes possesses DNA-degradation mechanisms and may be 

responsible for the destruction of a significant fraction of extracellular DNA. Despite the 

activity of these mechanisms, notable quantities of naked DNA can still be extracted from 

soil and aquatic environments. DNA may be protected by adhesion to soil particles, but 

also by the formation of complexes with soil minerals such as clay, quartz and humic 



 

acid.  However, the latter may prevent the uptake of naked DNA by soil microbes 

(Aardema et al. 1983; Blum et al. 1997). Table 4 (p 32) lists the estimated half life of 

DNA in different environmental settings.  

 

1.14 The impact of genetically modified organisms on the native soil biota 

 

Once a GMO is released into the environment it may not only be able to multiply, but it 

may also be able to evolve under selective pressures exerted on it by the soil environment 

(De Leij et al. 1995). As previously explained, these organisms may be able to exchange 

DNA with other soil microbes using a number of different processes. Therefore, their 

genetic information has to be taken into consideration, should they be released into the 

environment. Aside from the dangers of gene transfer, the possible impact of a GMO on 

the soil microbial community should also be taken into consideration. Earlier studies 

performed in experimental environments showed detrimental effects on protozoa (Austin 

et al. 1990), increased carbon turnover (Wang et al. 1990), displacement of indigenous 

microbes of the soil rhizosphere and suppression of fungal populations in soil (Short et al. 

1990). One such study focused on the impact of a genetically modified Pseudomonas 

fluorescens and a wild-type P. fluorescens strain on the soil microbiota in the field. The 

release of both strains led to significant, yet transient, perturbations of the culturable 

microorganisms associated with the soil rhizosphere. However, no significant changes 

were found in the bulk soil away from the rhizosphere. Yeasts and other fast growing 

organisms that were unable to form resistant structures appeared to be the most sensitive 

to the release of P. fluorescens. Interestingly, the changes brought about by the modified 

P. fluorescens strain did not differ significantly from those brought about by the wild-

type strain. No changes were observed in plant growth or health. This is but one case and 

illustrates the need for field studies before each and every release of a GMO. 

 

Very little is known about the fate of genetically modified strains of the wine yeast          

S. cerevisiae in soil.  Since this species is known to occur naturally in soil (Sniegowski et 

al. 2002), it does interact with the soil biota (see: “Yeasts interactions in soil”); and as 

genetically modified strains of this species do exist and the future release thereof into the 



 

environment is inevitable, studies on the growth of genetically modified strains of           

S. cerevisiae in soil is expedient.  However, the growth and interactions of wild type        

S. cerevisiae within soil has not even been studied. As will be explained in the next 

chapter, the latter may partly be ascribed to inappropriate methods to monitor viable cells 

of this species in soil. 

  

 



 

Table 3. Some characteristics of the recognized mechanisms of horizontal gene transfer in bacteria 
(Nielsen et al. 1998). 
 

 
Mechanism of gene transfer 

 

 
Characteristic 
 

 
Transduction 

 

 
Conjugation 

 
Transformation 

 
Donor organism 
 
 

 
Bacterium infected with 
a bacteriophage 

 
Bacterium harboring a 
plasmid or conjugative 
transposon  
 

 
Any organism with 
double- stranded DNA 

 
Requirements to the 
recipient bacteriuma  

 

 
Attachment sites for 
binding of 
bacteriophage (phage 
receptors) 
 

 
Able to bind pilli from 
donor bacterium 

 
Expression of 
competence for uptake of 
DNA 
 

 
Vector 

 
Bacteriophage 

 
Plasmid or chromosome 
with an inserted plasmid 
or a conjugative 
transposon 
 

 
Free DNA 

 
Stability of vector 
DNA (in soil, water, or 
on plants)  

 
Long-term stability 
expected due to 
protection of DNA in 
the protein envelopes of 
bacteriophages 
 

 
Stability depends on the 
survival and activity of 
the donor bacterium 

 
Stability of free DNA is 
poor due to nucleases, 
chemical modifications, 
shearing or binding to 
solids 

 
Host range 
dependence 

 
Presence of phage 
attachment sites 

 
Binding of pili and 
plasmid incompatibilityb

 
Ability of DNA to 
integrate into the genome 
or recircularize into 
plasmids 
 

 
Size range of 
transferred DNA 
(average size 
transferred) 
 
 

 
 
≤ 100 kb (45 kb) 

 
 
< 100 bp to 106 kbc  
(size of bacterial 
plasmids) 

 
 
0- > 25 kb (< 100 bp- 10 
kb) 

 
Shown to occur in/on:  
 

 
Soil, plants and water  

 
Soil, plants and water  

 
Soil, plants and water  
 

 
aThe recipients must be able to stabilize the transferred DNA by either homologous/illegitimate 
recombination into the genome, or recircularization into plasmids. 
bUnless the plasmid is integrated into the bacterial genome. 
cPartial to whole genomes can be transferred if the plasmid is chromosomally integrated in the donor (e.g. 
high frequency of recombination  strains of E.coli). 



 

Table 4. Estimated DNA half life in various environments (Bailey et al. 2001). 
 

 
Location 

 
Halflife (h) 

 

 
Aquatic environment 

 

 

Waste water 0.017-0.17a

 0.23b

Freshwater  

Oligotrophic 4.2c

Eutrophic 5.5b

Marine water  

Estuarine 3.4-5.2c

 5.5b

Ocean surface  

Oligotrophic 12.8c

P limited 4.5c

Not P limited 45.0-83.0c

Marine sediment 235d

 140c

Terrestrial environment  

Soil  

Loamy sand soil 9.1e

Silty clay soil 15.1e

Clay soil 28.2e

 
aConversion of supercoiled into relaxed-circular or linear plasmid DNA. 
bLoss of hybridization signals of plasmid DNA in Southern transfers or blots. 
cLoss of acid-precipitated material (colourimetric DNA determination of 32P-labelled plasmid DNA). 
dIn dead cells degradation measured as in footnote c. 
eLoss of transformation activity of plasmid DNA. 
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CHAPTER 2 
 
 
 
 
 
 



 

A Method for the Selective Enumeration of Fermentative Yeasts  

In Soil 
 

2.1 Introduction 

 

The presence and distribution of fermentative yeasts have mostly been studied in relation 

to breweries, vineyards and winemaking (Kurtzman & Fell 1998; Jolly et al. 2003). 

During these studies a variety of selective and enumeration techniques were used to 

determine fermentative yeasts in different habitats.  Some workers used enrichment 

methods to determine the presence of yeasts, while others employed selective or 

differential agar media to enumerate yeasts in habitats associated with oenology. 

However, typical fermentative yeasts have also been found in habitats not associated with 

winemaking (Do Carmo-Sousa 1969).  For example, it was found that representatives of 

the genus Saccharomyces occur in soil. Recently, an enrichment procedure was used to 

obtain Saccharomyces cerevisiae from soil associated with oak trees (Sniegowski et. al. 

2002).  

 

The isolation from and enumeration of yeasts in soil is particularly challenging, because 

of potential contamination by a wide spectrum of filamentous fungal species in soil 

samples. To counter this contamination, enumeration plates may be prepared using highly 

selective media containing a cocktail of selected nutrients and antimicrobial agents 

(Cornelissen et al. 2003). However, some yeasts, e.g. S. cerevisiae, require a medium 

composition that also supports growth of a diversity of fungi. This complicates the 

selective enumeration of the yeast under investigation, especially in complex habitats 

such as soil.  

 

Although the fermentative ability of yeasts has been used in enrichment cultures to 

isolate these fungi (Beech & Davenport 1969), a characteristic feature not often used to 

isolate this yeast from environmental settings, is the ability to grow in an atmosphere 

containing low oxygen levels (Beech & Davenport 1969; De Jong & Put 1980).   Using 



 

plates prepared from complex media supplemented with ergosterol and Tween 80 and 

incubated in anaerobic jars, it was found that S. cerevisiae may be selectively enumerated 

among contaminating yeasts associated with the brewing industry (Longley et al. 1978). 

However, to our knowledge, complex agar media incubated in anaerobic jars has not 

been used to enumerate viable fermentative yeasts in soil.  

 

Since it is known that S. cerevisiae may exert a positive effect on legume nodulation, on 

arbuscular mycorrhizal development, and as a result of ethanol production may even 

enhance the pathogenicity of Acinetobacter species towards soil borne nematodes (see: 

Chapter 1, Yeasts interactions in soil), the occurrence of viable fermentative soil yeasts 

should be evaluated as a indicator of soil health. In addition, an ever increasing need exits 

to monitor genetically modified organisms (GMO’s) including genetically modified 

strains of S. cerevisiae, in the environment (see Chapter 1, Genetically modified 

organisms in the environment).  However, a reliable method to enumerate these yeasts in 

soil does not exist.  Consequently, we evaluated in this study an enumeration procedure 

for fermentative yeasts in soil whereby agar plates, prepared with a complex medium 

containing antibacterial agents, are incubated in anaerobic jars before the colonies are 

enumerated. 

 

2.2 Materials and Methods 

 

2.2.1 Yeasts strains  

 

Saccharomyces cerevisiae Y294, a laboratory strain; S. cerevisiae abo 5, a commercial 

brewing yeast; S. cerevisiae VIN13, a commercial wine yeasts strain (Anchor Yeast, 

South Africa); as well as S. cerevisiae S92 and a genetically modified strain originating 

from this wild-type (ML01), were used in the experimentation. S.cerevisiae ML01 is 

capable of malolactic fermentation, whereby malic acid is converted to lactic acid and 

CO2 (Redzepovic et al. 2002). The latter two strains were obtained from Lesaffre 

International, France. The strains were maintained at 4°C on agar slopes prepared with 

yeast malt extract (YM) agar (0.3% yeast extract, 0.3% malt extract, 0.5% peptone and 



 

1.6% agar), in the Culture Collection at the Department of Microbiology of Stellenbosch 

University, South Africa. Every three weeks the yeast cultures were subcultured on YM 

agar, allowed to grow for three days at 25°C and then stored aerobically at 4°C.  

 

2.2.2 Survival of yeasts incubated in anaerobic jars  

 

The viability of the yeasts selected for soil inoculation under anaerobic conditions was 

tested in the following manner. For each strain, a culture in stationary growth phase was 

obtained by cultivating the yeast at 25°C for 48 h in 250 ml conical flasks, each 

containing 30 ml YM broth. The cultures were subsequently harvested using 

centrifugation (4000 ×g; 15 min) and the resulting pellet originating from each culture 

was washed and re-suspended in sterile physiological salt solution (PSS). The 

concentration of yeasts in this suspension was enumerated using a haemacytometer. 

 

A dilution series in sterile water was prepared from each yeast suspension and spread 

plates were made using YM agar supplemented with 0.2g/l chloramphenicol and 0.5g/l 

streptomycin. The inoculated plates were incubated at 25°C for 96 h in an anaerobic 

atmosphere.  For this purpose, anaerobic jars (Oxoid, Hants in UK) were used in 

combination with gas generating kits (Anaerobic System BR0038B, Oxoid) as instructed 

by the manufacturers. A control in which spread plates were incubated in a normal 

aerobic atmosphere was included for each yeast strain. All experiments were conducted 

in triplicate. 

  

2.2.3 Enumeration of yeast strains in soil 

 

Soil was collected from a sampling site in the Western Cape, South Africa. The soil 

represents a typical soil and is a Clovelly form with an orthic A-horizon, a yellow-brown 

apedal B-horizon and a sapprolite C-horizon. After the organic matter at the surface was 

removed, the top 30 cm of soil was collected.  Approximately 100 kg soil was allowed to 

dry for 2 weeks at 30 °C, after which it was sieved (pore size 2 mm) and the whole batch 

thoroughly mixed to ensure homogeneous sub sampling.  The sieved soil had a sandy 



 

loam character with a pH of 5.02. Approximately 2 kg of the soil was sterilized using 

gamma- irradiation (25kGy min for 15 hours) and used to prepare a series of soil 

microcosms.   

 

Each yeast strain was subsequently inoculated and enumerated in the soil in the following 

manner.  A culture in stationary growth phase was obtained by cultivating the yeast at 

25°C for 48 h in 250 ml conical flasks, each containing 30 ml YM broth. The cultures 

were subsequently harvested using centrifugation (4000 ×g; 15 min), the resulting pellet 

originating from each culture was washed and re-suspended in sterile physiological salt 

solution (PSS). The concentration of yeasts in this suspension was enumerated using a 

haemacytometer and appropriate dilutions were prepared containing predetermined yeast 

concentrations that were used as inocula for soil microcosms. The soil microcosms were 

prepared from the soil sample by inoculating 10 g sub-samples contained in 50 ml glass 

jars, each with 7.5 × 105 stationary-phase cells of a different yeast strain. Distilled water 

was added to each microcosm to result in a soil moisture content of ca. 30% (v/w); 

thereafter the microcosms were incubated at 25 °C for 30 min before soil dilution plates 

were prepared. The same YM agar supplemented with chloramphenicol and streptomycin 

as described above was used to prepare the plates. The inoculated plates were incubated 

at 25°C for 96 h in the same anaerobic jars as described above, before yeasts colonies 

(0.5 – 2 mm in diameter) were enumerated using a colony counter. Uninoculated 

microcosms were included as controls in the experimentation and all experiments were 

conducted in triplicate. The experiments were subsequently repeated using microcosms 

each inoculated with 1.5 × 106 or 3.5 × 105 stationary-phase cells of each of the yeast 

strains.   

 

2.2.4 Enumeration of fermenting wild yeasts in soil samples 

 

Soil microcosms, each consisting of 10 g soil, were prepared in a similar manner as 

described above, but without the yeast inoculum. The microcosms were subsequently 

incubated at 25 °C for 7 days.  Dilution plates, prepared from YM agar supplemented 

with antibacterial agents and incubated in anaerobic jars as described above, were then 



 

used to enumerate the yeasts in each microcosm. All colonies were purified by successive 

streaking out and incubation on YM agar supplemented with 0.2g/l chloramphenicol and 

0.5g/l streptomycin at 25 °C.  

 

The fermentative ability of each isolate was determined according to the method 

described by Van der Walt and Yarrow (1984) using test tubes containing inverted 

Durham tubes suspended in a carbohydrate containing complex medium. This medium 

consisted of 2% (w/v) glucose, 0.3% (w/v) malt extract, 0.5% (w/v) bacteriological 

peptone and 0.3% (w/v) yeast extract. After inoculation, the tubes were incubated at 25 

°C for 7 days, during which period the Durham tubes were monitored for gas formation.  

 

2.3 Results and Discussion 

 

2.3.1 Survival of yeasts incubated in anaerobic jars  

 

The results obtained for each yeast cell suspension in PSS, of the plate counts conducted 

after incubation under anaerobic and aerobic conditions, as well the total counts 

determined using a haemacytometer, are depicted in Figure 1 (p 49). Interestingly, in all 

cases the total counts obtained for each of the yeast suspensions (ca. log 4.9 yeasts/ml) 

were higher than the viable plate counts. This could be explained by the fact that the 

yeasts were in stationary phase and that it is known that some microbial cells in this 

growth phase may start to lyse as a result of nutrient limitation and other growth 

inhibiting factors (Fiechter et al. 1987). When plate counts, determined after incubation 

in anaerobic jars, were compared to viable yeast counts of which the plates were 

incubated under aerobic conditions, lower counts were obtained under anaerobic 

conditions for the laboratory strain S. cerevisiae Y294. However, no significant 

difference between aerobic and anaerobic counts was observed for the genetically 

modified strain (ML01), or for the industrial strains tested (Figure 1, p 49).  Incubation 

under anaerobic conditions therefore had no significant effect on the results of plate 

counts conducted on these industrial yeast strains. It was therefore decided to evaluate 



 

this technique using plates incubated in anaerobic jars to selectively enumerate each of 

these strains in soil. 
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Figure 1. Using different enumeration methods counts were obtained for a suspension in sterile water for 

each of five Saccharomyces cerevisiae strains (i.e. Y294, abo 5, VIN13, S92 and MLO1). For each strain, 

plate counts were conducted after incubation under anaerobic (epithet, an) and aerobic (epithet, a) 

conditions. In addition, total counts (epithet, t) were made using a haemacytometer. Bars represent standard 

deviation for triplicate counts. 

 

2.3.2 Enumeration of yeasts in soil 

 

To compare the recovery and counting of yeasts mixed in soil with the enumeration of 

yeasts in a suspension of sterile water, soil microcosms containing ca. log 4.9 yeasts/g 

soil were prepared for each yeast strain. The counts subsequently obtained, using the 

anaerobic jars as incubation chambers, were compared with the results obtained when 



 

similar numbers of yeasts were suspended in sterile water (Figure 2, p 51).  It was 

concluded that the soil had no inhibitory effect on the numbers obtained for the yeast 

strains, since no significant difference was observed between the counts obtained for each 

strain regardless of whether it was suspended in sterile water or mixed into soil. No 

filamentous fungal colonies or bacterial colonies were observed that could have 

interfered with the enumeration of yeast colonies. Antibiotics were used to prevent 

growth of bacterial colonies. Furthermore, colony morphology was used to distinguish 

between yeast colonies and any bacterial colonies that may grow on the plates. 

 

To verify our technique, anaerobic plate counts were conducted on another two series of 

soil microcosms, the first inoculated with ca. log 5.2 yeasts/g soil (Figure 3, p 52) and the 

second inoculated with ca. log 4.6 yeasts/g soil (Figure 4, p 53). In all cases, lower counts 

were observed for the viable yeasts recovered from the soil than for the total numbers of 

yeasts inoculated into the soil. Since soil had no detrimental effect on the enumeration 

process (Figure 2, p 51) and anaerobic incubation of plates only impacted negatively on 

enumeration of the laboratory strain S. cerevisiae Y294 (Figure 1, p 49), the lower counts 

of viable industrial yeasts (compared to total yeast counts) obtained in these latter two 

series of soil microcosms, may again be ascribed to the fraction of non-viable cells in 

yeast populations in stationary phase. 

 

 2.3.3 Enumeration of fermenting wild yeasts in soil samples 

  

When dilution plates, prepared from YM agar supplemented with antibacterial agents and 

incubated in anaerobic jars, were used to enumerate fermenting wild yeasts in  one-week-

old soil microcosms, 100% of the yeast colonies on the plates were able to ferment 

carbohydrates in a complex liquid medium. The enumeration method may therefore also 

be used to isolated and selectively enumerate fermentative yeasts in soil. Furthermore, no 

bacterial colonies or filamentous fungal colonies were observed, demonstrating the 

selective nature of the isolation procedure.   
 

 



 

2.4 Conclusions 

 

The results indicate that the enumeration method, utilizing plate counts in combination 

with anaerobic jars, is a reliable method to enumerate fermentative yeasts, such as 

industrial strains of S. cerevisiae, in soil.  Consequently, this method was used in the 

following study to monitor growth of industrial strains of S. cerevisiae in soil under 

different environmental conditions. 
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Figure 2.  Viable yeast numbers for the five Saccharomyces cerevisiae strains (i.e. Y294, abo 5, VIN13, 

S92 and MLO1) in soil and in sterile water, obtained after incubation of dilution plates in anaerobic jars 

(epithet, an), as well as the total concentrations of the five strains (epithet, t) in the different soil 

microcosms and the suspensions in sterile water.  Bars represent standard deviation for triplicate counts.
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Figure 3. Viable yeast numbers for the five Saccharomyces cerevisiae strains (i.e. Y294, abo 5, VIN13, 

S92 and MLO1) in soil microcosms, obtained after incubation of dilution plates in anaerobic jars (epithet, 

an). The total concentration of yeasts in each microcosm was ca. 1.5 × 105 / g soil and is indicated for each 

microcosm (epithet, t).  Bars represent standard deviation for triplicate counts. 
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Figure 4. Viable yeast numbers for the five Saccharomyces cerevisiae strains (i.e. Y294, abo 5, VIN13, 

S92 and MLO1) in soil microcosms, obtained after incubation of dilution plates in anaerobic jars (epithet, 

an). The total concentration of yeasts in each microcosm was ca. 3.5 × 104 / g soil and is indicated for each 

microcosm (epithet, t).  Bars represent standard deviation for triplicate counts. 
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CHAPTER 3 
 
 
 
 
 



 

Growth of Saccharomyces cerevisiae in Soil under Different 

Environmental Conditions 
 

3.1 Introduction 

 

It is generally accepted that the fermentative yeast Saccharomyces cerevisiae usually 

occurs in man-made environments such as wineries and fermentation plants (Vaughan-

Martini & Martini 1995). In addition, it has been recovered from vineyards and vineyard 

soil, although it always occurred in relatively low numbers in the latter habitats. 

Interestingly, Saccharomyces strains were isolated in the 1950’s from soil associated with 

oak and pine trees (Do Carmo-Sousa 1969). More recently, it was demonstrated that S. 

cerevisiae and Saccharomyces paradoxus can be isolated from oak-associated soils 

(Sniegowski et al. 2002). These findings are therefore in contrast to the view of                

S. cerevisiae being a fermentative yeast associated with habitats rich in carbohydrates, 

since soil is generally viewed as an oligotrophic environment (Williams 1985). Other 

yeasts that are known to have a metabolism adapted for growth in such habitats, are 

usually perceived as autochthononous soil yeasts; e.g. members of the genera 

Cryptococcus and Rhodotorula (Phaff & Starmer 1987; Spencer & Spencer 1997; 

Kimura et al. 1998; Joubert et al. 2003).  

 

Despite S. cerevisiae not generally being perceived as an autochthonous soil yeast, in 

vitro studies indeed revealed that this yeast does interact with a range of different 

organisms originating from soil. It was shown that the nematode Panagrellus redivivus is 

able to feed on S. cerevisiae (Hechler 1970) and ultimately that P. redivivus could be 

cultured on a monoxenic S. cerevisiae culture (Ricci et al. 2004). Interestingly, it was 

found that ethanol production by S. cerevisiae enhanced the growth of Acinetobacter, a 

bacterium which may be found in the same soil habitat as the yeast (Smith et al. 2004). 

The ethanol led to increased pathogenicity of the bacterium towards the predacious 

nematode Caenorhabditis elegans. Through this interaction, S. cerevisiae indirectly 

reduces the number of its nematode predators. Yeasts were also found to act as prey of 



 

other soil organisms. A number of bacteria were isolated from Brazilian soil that was 

found to agglutinate with S. cerevisiae and cause lysis of the yeast cells (Goto-Yamamoto 

et al. 1993). The yeast S. cerevisiae has also been found to be preyed upon by other 

yeasts (Kreger-van Rij & Veenhuis 1973; Lachance & Pang 1997). Arthroascus 

javanensis and Saccharomycopsis fibuligera, both previously isolated from soil 

(Kurtzmann & Fell 2000), were found to be predacious to S. cerevisiae. During this 

process, the predatory yeasts produce outgrowths which penetrate the prey in search of 

nutrients (Kreger-van Rij & Veenhuis 1973; Lachance & Pang 1997). 

 

From the above it is apparent that S. cerevisiae does occur in soil and evidence exists that 

it is able to interact with a wide range of soil organisms. Yet, very little is known of how 

growth and survival of this yeast compares with that of so-called autochthonous soil 

yeasts such as members of the genus Cryptococcus. Survival of S. cerevisiae in 

environmental settings has previously been studied in relation to the survival of 

genetically modified strains of this yeast, for example the fate of microbial species of 

potential use in genetic engineering was studied in model ecosystems such as sewage, 

lake water and soil (Liang et al. 1982). However, the survival of S. cerevisiae was only 

monitored in sewage and waste water and no insight was gained regarding the fate of this 

organism in soil. In a later study, the fate of a genetically engineered and a wild-type 

strain of S. cerevisiae was studied under simulated environmental conditions (Fujimura et 

al. 1994). Strains were tested in a natural soil/water suspension, soil/medium suspension 

and in waste water, but growth and survival of S. cerevisiae in soil per se were not 

studied. 

 

We were interested in the growth and survival of S. cerevisiae in soil under different 

environmental conditions. Consequently, we decided to monitor the fate of S. cerevisiae 

in soil microcosms differing in moisture content, nutrient composition and the presence 

of biota. For this purpose, two strains of S. cerevisiae were studied, a wild type and a 

genetically engineered strain of which the metabolism has been changed to be capable of 

malolactic fermentation. For comparison, two yeasts known to occur in soil (Kurtzman & 



 

Fell 2000), i.e. Cryptococcus laurentii and Cryptococcus podzolicus were included in the 

experimentation. 

 

3.2 Materials and methods 

 

3.2.1 Yeast strains used 

 

Saccharomyces cerevisiae S92 and a genetically modified strain originating from this 

wild-type (ML01) were used in the study. These two strains were obtained from Lesaffre 

International, France. Cryptococcus laurentii 1a, Cryptococcus laurentii 1f, Cryptococcus 

podzolicus 5a and Cryptococcus podzolicus 3f were kindly donated by Mr O.H.J. Rhode 

who isolated these strains from virgin soil. The strains were maintained at 4°C, on agar 

slopes prepared with yeast malt extract (YM) agar, in the Culture Collection at the 

Department of Microbiology of Stellenbosch University, South Africa. Every three weeks 

the yeast cultures were subcultured on YM agar, allowed to grow for three days at 25°C 

and then stored at 4°C.  

 

3.2.2 Preparation of soil microcosms 

 

 Soil was collected from a sampling site in the Western Cape, South Africa. The soil 

represents a typical soil and is a Clovelly form with an orthic A-horizon, a yellow-brown 

apedal B-horizon and a sapprolite C-horizon (Fry 1987; Soil Classification Working 

Group 1991). After the organic matter was removed from the surface, the top 30 cm of 

soil was collected.  Approximately 100 kg soil was allowed to dry for 2 weeks at 30 °C, 

after which it was sieved (pore size 2 mm) and the whole batch thoroughly mixed using a 

concrete mixer to ensure homogeneous sub sampling.  The sieved soil, of which the 

physical and chemical properties are listed in Table 1 (p 59), had a sandy loam character 

and a pH of ca. 5.0. Approximately 2 kg of the soil was sterilized using gamma- 

irradiation (25kGy min for 15 hours) and used to prepare some of the series of soil 

microcosms.   

 



 

 
Table 1. Characteristics of the soil used. 

                         Characteristics of soil 

Unsupplemented                           Supplemented with nutrients                 

aClassification 
Sandy 

 

Sandy 
bStone (%)  7.00 7.00 

Chemical Characteristics 
  

cOrganic Carbon (%) 1.67 1.66 
dTotal Nitrogen (%) 0.11 0.096 
ePhosphorous (ppm) 6.00 35 
fCopper (ppm) 1.52 1.18 
gZinc (ppm) 2.60 2.9 
hManganese (ppm) 45.6 33.2 
iBoron (ppm) 0.24 0.64 

kExchangeable cations 
  

  Calcium (cmol kg-1) 2.51 2.94 

  Potassium (cmol kg-1) 0.37 0.33 

  Sodium (cmol kg-1) 0.08 0.06 

  Magnesium (cmol kg-1) 1.23 1.07 
lpH  (KCl).  4.8 5.1 
 

 

a Classification according to Soil Classification Working Group (1991) 
b Determined by using the hydrometer method (Van der Watt 1966).  
c Determined by using the Walkey-Black method (Nelson & Sommers 1982). 
d Determined by through digestion in a LECO FP-528 nitrogen analyser. 
eDetermined in a Bray-2 extract (Thomas & Peaslee 1973). 
f-h Determined in a di-ammonium EDTA extract (Beyers & Coetzer 1971). 
i Determined in a hot water extract according to the methods of the Fertilizer Society of South Africa (1974). 
k Determined in a 1M ammonium acetate extract (Doll & Lucas 1973). 
l Determined according to the method of McClean (1982).  
 
 
Yeast inocula for the soil microcosms were prepared in the following manner:  Yeast 

cultures in stationary growth phase were obtained by cultivating each yeast strain at 25°C for 

48 h in 250 ml conical flasks, each containing 30 ml yeast malt (YM) extract (Wickerham 



 

1951). The cultures were subsequently harvested using centrifugation (4000 ×g; 15 min) and 

the resulting pellet originating from each culture was washed and re-suspended in 

physiological salt solution (PSS). The concentration of yeasts in this suspension was 

enumerated using a haemacytometer and an appropriate dilution was prepared containing a 

predetermined yeast concentration that was used as inocula for the soil microcosms. Soil 

microcosms were prepared from the soil sample by inoculating 10 g sub-samples contained 

in 50 ml glass jars, each with 1.5 × 106 stationary-phase cells of a yeast strain. Distilled 

water was added to each microcosm resulting in a soil moisture content of ca. 30% (v/w); 

thereafter the microcosms were incubated at 25 °C in damp chambers, which consisted of a 

Petri dish containing a moistened paper towel that was enclosed in a 2 l plastic bag. While 

being incubated in the damp chambers the metabolic activity and growth of the yeasts in the 

soil microcosms were monitored.  

 

3.2.3 Preparation of soil microcosms with low moisture content  

 

To monitor the metabolic activity and growth of the yeasts in soil with a relatively low 

moisture content, microcosms were prepared in the same manner as described above, 

except that the soil moisture was adjusted to ca.14% (v/w).  

 

3.2.4 Preparation of microcosms from soil amended with nutrients  

 

Soil microcosms were prepared to monitor the metabolic activity and growth of the yeasts in 

soil amended with nutrients used for sustaining growth of agricultural crops. Consequently, 

the following nutrients were added to the sieved soil (per kg); 0.25g super phosphate; 1.25g 

calcite agricultural lime and 0.25g limestone ammonium nitrate. The chemical composition 

of the amended soil is presented in Table 1 (p 59). The soil was subsequently sterilized as 

described above using gamma-irradiation and microcosms with a soil moisture content of ca. 

30% (v/w) were prepared in the same manner as described above. 

 

 

 



 

3.2.5 Preparation of microcosms from non-sterile soil 

 

Soil microcosms were prepared to monitor growth of the yeast strains in soil in the presence 

of natural soil biota. For this purpose, microcosms containing a moisture content of ca. 30% 

(v/w), were prepared as described above, except that the sieved soil was not sterilized. 

 

3.2.6 Monitoring yeast metabolic activity 

 

The metabolic activity of the yeasts inoculated into sterile soil was periodically measured 

with: Carbon dioxide emissions using a LI 6262 infrared CO2 analyzer (LI-COR Inc., 

Nebraska). The experimental setup consisted of a controlled temperature water bath, variable 

air pump and a flow meter (Smith 2003). During analysis, a stopper was placed on each 

microcosm and fresh air was pumped through the sample for 3 minutes in order to flush CO2 

present from the headspace of each sample. Once the sample had been flushed, a second 

stopper was fitted to the microcosm, which made it possible to monitor the CO2 being 

produced. Once a CO2 concentration of 350-360 µl/l was reached, readings were taken every 

2s over a period of 100s. The data was then analyzed using Statistica 6.1 analyses software 

(Statsoft, Inc.) and converted to µmol CO2 produced/g/h.  

 

3.2.7 Monitoring growth of yeast inoculated into sterile soil 

 

 To periodically enumerate the yeasts in the microcosms, soil dilution plates using YM-

agar were prepared for each sampling interval. A spatula was used to sample one gram of 

soil from each microcosm. The Saccharomyces strains were enumerated using YM-agar 

consisting of 1% (w/v) glucose, 0.3% (w/v) malt extract, 0.5% (w/v) bacteriological 

peptone, 0.3% (w/v) yeast extract, 0.2g/l chloramphenicol and 0.5g/l streptomycin. When 

the medium was used to enumerate cryptococci, the latter component was replaced with 

0.01g/l cycloheximide. The inoculated plates were incubated for four days at 25°C before 

yeast colonies, ranging one millimeter and more in diameter, were counted. All 

experiments were conducted in triplicate. 

 



 

 

3.2.8 Monitoring yeast growth inoculated into non-sterile soil 

 

 To selectively enumerate Saccharomyces strains in the soil microcosms the same 

isolation medium was used as described above, however, the plates were incubated at 

25°C in anaerobic chambers as described in Chapter 2. Antibiotics in the isolation 

medium and anaerobic incubation ensured selective isolation of Saccharomyces strains 

(Chapter 2). The cryptococci were enumerated using the same selective conditions as 

described above. Cycloheximide and antibiotics in the isolation medium ensured the 

isolation of cryptococci.  All experiments were conducted in triplicate. 

 

3.2.9 Impact of soil cryptococci on growth of Saccharomyces 

 

 This aspect of the study was performed in gamma-irradiated soil. As described above, 

each microcosm contained 10g soil and had a moisture content of ca. 30% (v/w), but was 

inoculated with two yeast strains. Consequently, each microcosm received 7.5 × 105 

stationary-phase cells of each yeast strain. Co-inoculations of the yeasts were made in the 

following combinations: Cryptococcus laurenti 1f and Saccharomyces cerevisiae ML01; 

Cryptococcus laurenti 1f and Saccharomyces cerevisiae S92; Cryptococcus podzolicus 

strain 3f and Saccharomyces cerevisiae ML01; Cryptococcus podzolicus strain 3f and 

Saccharomyces cerevisiae S92.  

 

The microcosms were incubated at 25 °C and the numbers of each of the strains in each 

microcosm were selectively determined at different time intervals using soil dilution 

plates. The plates were incubated for four days before the colonies were counted. The 

compositions of the two isolation media used to enumerate the respective yeast from the 

co-cultures, were the same as described above, where the medium selective for the 

cryptococci contained cycloheximide instead of streptomycin. Preliminary studies 

showed that 0.01g/l cycloheximide was sufficient to inhibit growth of Saccharomyces. 

Enumeration of Saccharomyces was performed after incubation of the soil dilution plates 

in anaerobic jars, as described in Chapter 2.  



 

 

3.2.10 Impact of soil protista on growth of Saccharomyces  

 

The impact of protista on the numbers of Saccharomyces in soil was studied as follow:  

 

3.2.10.1 Preparation of sterile soil extract 

 

 One hundred grams of soil was mixed in 900ml of distilled water and allowed to settle 

for 48 hours. The supernatant was filtered (Whatman No.1) and the filtrate was 

autoclaved for 20 min at 121°C. 

 

3.2.10.2 Isolation of protista 

 

 Ten grams of soil was mixed in 90ml of distilled water and allowed to settle for 48-96 

hours. One milliliter of the supernatant was extracted from approximately three 

millimeters above the soil sediment and transferred to a 250ml conical flask. Twenty 

milliliters of sterile soil extract was then added to the conical flask, along with one 

milliliter of a suspension of S. cerevisiae, cultivated in YM-broth. The conical flask was 

incubated at 25°C and the suspension was daily monitored microscopically for the 

occurrence of a bloom in the numbers of ciliates (Tetrahymena sp.). This protistan culture 

served as inoculum for microcosms. 

 

3.2.10.3 Preparation of soil microcosms containing protista 

 

 Soil microcosms were prepared to monitor the numbers of the Saccharomyces strains in soil 

in the presence of protista. For this purpose the soil microcosms, each inoculated with 1.5 × 

106 stationary-phase yeast cells containing a moisture content of ca. 30% (v/w), were 

prepared from sterile soil as described above. In addition, each microcosm received 400µl of 

the protistan inoculum. The numbers of Saccharomyces in these microcosms were then 

monitored, using soil dilution plates incubated in anaerobic jars, as described in Chapter two. 

 



 

 

3.2.11 Analyses of data 

 

A series of statistical analyses were conducted to determine the effect of different 

environmental factors on the metabolism, growth and survival of the yeasts in soil. 

Experimental data was analyzed using ANOVA as indicated below. 

 

3.2.11.1 Effect of soil moisture content and nutrients 

 

 To determine the effect of soil moisture content and nutrient composition on growth of 

the different yeasts, viable yeast counts periodically obtained for the different series of 

soil microcosms, each prepared from sterile soil but differing in moisture content and/or 

nutrient composition, was analyzed using ANOVA. Statistica 6.1 software (Statsoft, Inc.) 

was used to perform a three-way cross classification variance analyses on the data. The 

three main components compared were yeast strains (S. cerevisiae S92; S. cerevisiae 

ML01; C. laurentii 1a; C. laurentii 1f; C. podzolicus 5a; C. podzolicus 3f), soil 

composition [moisture content ca. 30% (v/w), no additional nutrients; moisture content 

ca. 15% (v/w), no additional nutrients; moisture content ca. 30% (v/w), with additional 

nutrients] and days of observation (day 1; day 7; day 14; day 28; day 48). All two-way 

and three-way interactions were studied and found to vary significantly. Bonferroni 

multiple comparisons of these interactions were studied along with least-square estimates 

of these interactions. Subsequently, the main effect least square (LS) means plots were 

interpreted. 

 

To determine the impact of soil differing in moisture content and nutrient composition on 

the metabolic activity of the different yeast strains, the data on CO2 emissions 

periodically obtained for the different series of soil microcosms, was also analyzed using 

ANOVA. Statistica 6.1 software (Statsoft, Inc.) was again used to perform a three-way 

cross classification variance analyses on the data. The three main components compared 

were yeast strains, soil composition and days of observation (day 1; day 7; day 14; day 

28). As was done during analyses of the viable yeast counts mentioned above, two-way 



 

and three-way interactions were studied and were found to vary significantly. Also, 

Bonferroni multiple comparisons of these interactions were studied along with least-

square estimates of these interactions and the main effect least square (LS) means plots 

were interpreted. 

 

3.2.11.2 Effect of soil biota 

 

 ANOVA was applied to determine the effect of soil biota on the test yeast strains. For 

this purpose, viable yeast counts were periodically determined in different soil 

microcosms, each prepared from non-sterile soil with a moisture content of ca. 30% 

(w/v). Statistica 6.1 software (Statsoft, Inc.) was used to perform a two-way cross 

classification variance analyses on the data. The two main components compared were 

yeast strains    (S. cerevisiae S92; S. cerevisiae ML01; C. laurentii 1a; C. laurentii 1f; C. 

podzolicus 5a; C. podzolicus 3f) and days of observation (day 1; day 7; day 14; day 28; 

day 48). Bonferroni multiple comparisons of the interactions were studied along with 

least-square estimates of these interactions. Bootstrap methods were applied to analyze 

the interaction plots of the LS means when there were indications of non-normality in the 

residuals. These plots are better for interpretation in non-normal residual cases. 

 

3.2.11.3 Impact of soil cryptococci on growth of Saccharomyces 

 

 The effect of cryptococci on the growth of S. cerevisiae (and visa versa) in microcosms 

prepared from sterile soil with a moisture content of ca. 30% (v/w) and inoculated with 

ca. 7.5 × 105 cells of each yeast, was determined as follows: The viable counts obtained 

for a particular yeast in the presence of another were doubled to compare the data with 

the viable counts obtained for the particular yeast on its own in the absence of another, 

but under identical conditions (see above: Preparation of soil microcosms). The latter was 

included as controls in an ANOVA. Statistica 6.1 software (Statsoft, Inc.) was used to 

perform a two-way cross classification variance analyses on the data. The two main 

components compared for each of the yeast strains (S. cerevisiae S92; S. cerevisiae 

ML01; C. laurentii 1f; C. podzolicus 3f) were treatment with viable yeasts (S. cerevisiae 



 

S92; S. cerevisiae ML01; C. laurentii 1f; C. podzolicus 3f) and days of observation (day 

1; day 7; day 14; day 28). Bonferroni multiple comparisons of the interactions were also 

studied along with least-square estimates of these interactions. The main effect least 

square (LS) means plots were subsequently interpreted. 

 

3.2.11.4 Effect of different environmental conditions on growth of Saccharomyces 

 

 To determine the effect of different environmental conditions on growth and survival of 

Saccharomyces, the data on viable yeast counts periodically obtained for the different 

series of soil microcosms, prepared from sterile soil, but differing in moisture content 

and/or nutrient composition, prepared from non-sterile soil, and prepared from sterile soil 

but inoculated with protista, was combined and analyzed using ANOVA. Statistica 6.1 

software (Statsoft, Inc.) was used to perform a three-way cross classification variance 

analyses on the data. The three main components compared were yeast strains (S. 

cerevisiae S92; S. cerevisiae ML01), soil composition [moisture content ca. 30% (v/w), 

no additional nutrients, prepared from sterile soil; moisture content ca. 15% (v/w), no 

additional nutrients, prepared from sterile soil; moisture content ca. 30% (v/w), with 

additional nutrients, prepared from sterile soil; moisture content ca. 30% (v/w), no 

additional nutrients, prepared from non-sterile soil; moisture content ca. 30% (v/w), no 

additional nutrients, prepared from sterile soil but inoculated with protista] and days of 

observation (day 1; day 7; day 14; day 28; day 48). Two-way interactions were also 

studied, as well as Bonferroni multiple comparisons of these interactions along with 

least-square estimates of the interactions. Subsequently, the main effect least square (LS) 

means plots were interpreted.  

 

3.3 Results and Discussion 

 

3.3.1 Effect of soil moisture content and nutrients 

 

 The ability of the yeasts to grow and survive in soil with a moisture content of ca. 30% 

(v/w) with no additional nutrients, is depicted Figure 1a (p 67). Generally, all the yeasts 



 

were able to survive in the soil over a period of 48 days. Despite the microcosms being 

inoculated with the same number of cells, resulting in an initial concentration of ca. log 

5.2 yeasts/g soil, the cryptococci reached greater numbers than the Saccharomyces 

strains. This may be ascribed to the superior ability of the cryptococci to utilize available 

soil nutrients, since it is known that when a range of carbon sources are tested for 

assimilation by the two groups of yeasts, these Cryptococcus species are able to utilize 

notably more carbon compounds than S. cerevisiae (Kurtzman & Fell 2000). With the 

exception of day 48, no significant difference was observed between the numbers of the 

wild (S92) and genetically modified (ML01) Saccharomyces strains. The observed 

increase in the numbers of S. cerevisiae S92, compared to S. cerevisiae ML01, may be 

ascribed to  
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Figure 1. Viable counts of the different yeast strains periodically determined for soil microcosms prepared 

from soil differing in moisture content and nutrient composition (see Table 1 p59).  Each value represents 

the mean of three repetitions; vertical bars denote 0.95 confidence intervals. In all cases an inoculum of 

log 5.2 yeasts/g soil was used. The values obtained for day one, therefore represent growth over the 

initial 24 hours of incubation. 



 

 

differences in yeast metabolism that resulted in different interactions with the physico-

chemical environment and should be investigated further. Despite increased yeast 

numbers beyond the first day of incubation, the rate of CO2 emission from the different 

microcosms declined during this period (Figure 2a, p 69), indicating that the metabolic 

rate of all the yeasts started to decline after the first 24 hours of growth and this decline 

was maintained throughout the 28 day monitoring period. Adjustment of metabolic 

activity according to changes in soil conditions most probably contributed to the survival 

of the yeasts in this environment. Interestingly, the CO2 emission from the microcosms 

inoculated with S. cerevisiae did not reach the same levels as that of the microcosms 

inoculated with the cryptococci during the initial period of rapid growth between days 1 

and 7. This, as in the case of the superior numbers obtained by the cryptococci, may 

indicate that S. cerevisiae was not able to utilize the nutrient resources in the soil to the 

same extent as the cryptococci. 

 

As was found for the soil microcosms with a moisture content of ca. 30% (v/w), all the 

yeast strains were able to grow and survive in soil with moisture content of ca. 15% (v/w) 

(Figure 1b, p 67). However, lower numbers were generally observed in this soil with the 

lower moisture content. This is not surprising, since it is known that decreased 

availability of water may inhibit growth of soil yeasts (Vishniac 1995). The fact that 

higher numbers were also recorded in this case for the cryptococci than for S. cerevisiae, 

is expected, as semi-arid soils, low in nutrients and moisture, were mostly populated by 

cryptococci and related basidiomycetous yeasts (Spencer & Spencer 1997). The two S. 

cerevisiae strains showed nearly identical responses to low moisture conditions (Figure 

1b, p 67) and never reached numbers similar to that of the Cryptococcus strains. 

However, the CO2 emission curves from soil microcosms inoculated with the different 

yeasts all declined similarly towards the end of the monitoring period at day 28 (Figure 

2b, p 69). Interestingly, despite lower yeast numbers (Figure 1, p 67), all soil microcosms 

with the lower moisture content showed higher CO2 emission rates at day 28 (Figure 2b, 

p 69),  compared to the soil microcosms with a higher moisture content (Figure 2a, p 69). 



 

This may indicate increased metabolic rates and enhanced energy expenditure to maintain 

the  
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Figure 2. Carbon dioxide emissions periodically determined for soil microcosms, prepared from soil 

differing in moisture content and nutrient composition (see Table 1 p 59), and inoculated with different 

yeast strains.  Each value represents the mean of three repetitions; vertical bars denote 0.95 confidence 

intervals. 

 

yeast populations in soil with a lower water activity. The addition of nutrients, used for 

sustaining growth of agricultural crops, resulted in increased calcium, boron and 

phosphorous levels, as well as an increase in pH (see Table 1 p 59). Despite this increase 

in nutrient levels, the yeast population sizes generally took longer (14 days) to reach a 

maximum (Figure 1c, p 67), compared to the 7 days it took in the absence of additional 



 

nutrients, but in soil with the same moisture content (Figure 1a, p 67). Also, beyond day 

one the CO2 emission rates of the soil microcosms that received additional nutrients 

(Figure 2c, p 69) tended to be higher than the CO2 emission rates of microcosms without 

additional nutrients (Figure 2a, p 69). It seems that a higher metabolic rate and energy 

expenditure was needed for the cryptococci to reach similar numbers after a longer period 

of time, than in the absence of these additional nutrients.    

 

This apparent anomaly may be the result of the increased soil pH impacting negatively on 

nutrient availability; for example it is known that bioavailability of a number of divalent 

cations may decrease as a result of elevated soil pH (Agbenin & Olojo 2004). In contrast 

to the cryptococcal growth, growth of the Saccharomyces strains however, especially 

growth of S. cerevisiae ML01, was enhanced by the addition of nutrients, particularly 

beyond day 14 (Figure 1c, 67). The difference in growth between the two Saccharomyces 

strains and between the Saccharomyces strains and the cryptococci in these microcosms, 

may be ascribed to differences in the metabolism of these yeasts which also result in 

differences in their interactions with the chemical soil environment.  

 

3.3.2 Effect of soil biota 

 

In contrast to what was observed in the absence of other soil biota (Figure 1, p 67), the 

presence of natural soil organisms resulted in a decrease in viable numbers of all the test 

yeast strains towards the end of the incubation period (Figure 3, p 71). The decline may 

be ascribed to negative interactions with other soil biota, such as competition and 

predation (see Chapter 1).  

 

3.3.3 Impact of soil cryptococci on growth of Saccharomyces 

 

 To further investigate the negative interactions between Saccharomyces and soil 

organisms, the numbers of the two Saccharomyces strains were monitored in the presence 

of two cryptoccocci in different microcosms (Figures 4 and 5, pp 72, 73). The numbers of 

both Saccharomyces strains were significantly (p≤0.05) reduced, compared to the initial 



 

concentrations of these strains, after 14 days of co-culturing with the cryptococci in the 

microcosms. This reduction may be the result of amensalism or competition (Botha 2005)  
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Fig. 3 Viable counts of the different yeast strains periodically determined in soil microcosms, prepared 

from non-sterile soil with a moisture content of ca. 30 % (v/w).  Each value represents the mean of three 

repetitions; vertical bars denote 0.95 bootstrap confidence intervals.  
 

and there appears to be no significant difference between the Saccharomyces strains 

under these conditions. The genetically modified strain therefore seemed to have no 

competitive advantage over the wild-type under these conditions. Interestingly, the 

numbers of C. laurentii 1f took longer (28 days) before they were significantly (p≤0.05) 

reduced as a result of co-culturing with Saccharomyces strains in the microcosms (Figure 

6, p 74). However, the numbers of C. podzolicus 3f co-cultured with the Saccharomyces 

strains, increased and remained constant, during the monitoring period (Figure 7, p 75). 



 

Of the four yeast strains investigated, C. podzolicus 3f therefore seemed to the most 

competitive in co-cultures with the Saccharomyces strains. This Cryptococcus species 

occurs commonly in podzolic soils (Lachance & Starmer 1998) and in addition to its 

ability to utilize a wide diversity of carbon compounds (Fell & Statzell-Tallman 1998), it 

contains genes such the CNLAC1 gene that encodes for laccase, which is known to exert 

a negative effect on other organisms (Petter et al. 2001).  
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Figure 4. Viable numbers of S. cerevisiae S92 in microcosms prepared from sterile soil with a moisture 

content of ca. 30 (v/w) and treated with two different cryptococci.   Each value represents the mean of three 

repetitions; vertical bars denote 0.95 confidence intervals. In all cases an inoculum of log 5.2 yeasts/g soil 
was used. The values obtained for day one, therefore represent growth or the lack thereof over the 

initial 24 hours of incubation. 
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Figure 5. Viable numbers of S. cerevisiae ML01 in microcosms prepared from sterile soil with a moisture 

content of ca. 30 (v/w) and treated with two different cryptococci.   Each value represents the mean of three 

repetitions; vertical bars denote 0.95 confidence intervals. In all cases an inoculum of log 5.2 yeasts/g soil 
was used. The values obtained for day one, therefore represent growth or the lack thereof over the 

initial 24 hours of incubation. 
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Figure 6. Viable numbers of C. laurentii 1f in microcosms prepared from sterile soil with a moisture 

content of ca. 30 (v/w) and treated with two S. cerevisiae strains.   Each value represents the mean of three 

repetitions; vertical bars denote 0.95 confidence intervals. In all cases an inoculum of log 5.2 yeasts/g soil 
was used. The values obtained for day one, therefore represent growth or the lack thereof over the 

initial 24 hours of incubation. 
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Figure 7. Viable numbers of C. podzolicus 3f in microcosms prepared from sterile soil with a moisture 

content of ca. 30 (v/w) and treated with two S. cerevisiae strains.   Each value represents the mean of three 

repetitions; vertical bars denote 0.95 confidence intervals. In all cases an inoculum of log 5.2 yeasts/g soil 
was used. The values obtained for day one, therefore represent growth or the lack thereof over the 

initial 24 hours of incubation. 

 



 

 

 

 

3.3.4 Effect of different environmental conditions on growth of Saccharomyces 

 

The impact of different environmental conditions on growth and survival of 

Saccharomyces is illustrated in Figure 8 (p 78). As all the microcosms were initially 

inoculated with similar numbers of yeasts, resulting in an initial concentration of ca. log 

5.2 yeasts /g soil, it is obvious that in all cases the yeast population grew within 1 day of 

incubation. The exception was when the yeasts were incubated in the presence of other 

soil biota (Figure 8d, p 78; see also Figure 3, p 71). As already mentioned, this decrease 

may be ascribed to competition and predation by the other soil organisms. However, 

when a known group of soil predators (i.e. protista, belonging to the genus  Tetrahymena) 

were co-cultured with these yeasts, the populations of both yeast strains rapidly increased 

and remained at these relatively high levels until the end of the incubation period (Figure 

8e, p 78). This was rather unexpected, as one would expect protistan predation to cause a 

decrease in yeast numbers, since protista are known to regulate the size of the microbial 

community (Bardgett & Griffiths 1997). However, protista are also known to accelerate 

the turnover of microbial biomass and soil organic matter, and excrete nutrients. 

Consequently, protista play a pivotal role in nutrient cycling within the soil environment 

(Griffiths 1994). The plots obtained for yeast numbers in the presence of protista that 

were for most part of the incubation period higher than any of the other plots (Figure 8 

a,b, c and d; p 78), even in the presence of additional nutrients (Figure 8c, p 78), may 

therefore have been as a result of continual predation and liberation of nutrients, 

especially from senescent cells. The protista may therefore have been responsible for a 

continuous supply of nutrients to the yeast populations, thereby ensuring the yeast 

population sizes were maintained throughout the incubation period. Once again there was 

no significant difference between the Saccharomyces strains and the protistan predator 

did not exhibit a particular preference for either strain. Therefore, the nature of the 

genetic modification resulted in no competitive advantage of S. cerevisiae ML01 over the 

wild-type under these conditions. This is expected, since unlike laccase production by 



 

cryptococcal strains (Steenbergen et al. 2001), the ability to degrade malic acid is not 

associated with a negative impact on protista.  Since these yeasts were initially used as 

bait to isolate the protista, this interdependence of these two groups should be further 

investigated.  

 

3.4 Conclusions 

 

Both S. cerevisiae S92 and the genetically modified strain capable of malolactic 

fermentation, S. cerevisiae ML01, were able to grow and/or survive until the end of the 

incubation period in soil microcosms, differing in moisture content, nutrient composition 

and the presence of biota. In sterile soil, these yeasts reached smaller population sizes 

than common soil yeasts such as cryptococci, although the population sizes of both 

cryptococci and Saccharomyces were similarly reduced in the presence of other soil 

organisms. These results together with the evidence for the above-mentioned symbiosis 

between S. cerevisiae and a group of soil protista and the findings of Sniegowski et al. 

(2002) that S. cerevisiae may be isolated from soil, as well as the in vitro interactions of 

this yeast species with other soil organisms such as bacteria, nematodes and yeasts 

(Hechler, 1970; Goto-Yamamoto et al. 1993; Lachance and Pang, 1997; Smith et al. 

2004), points to a natural niche for this species somewhere in the soil habitat.  To reveal 

this niche is a challenge for future studies. 
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Figure 8. Viable counts of the Saccharomyces strains periodically determined for soil microcosms, 

prepared from soil differing in moisture content, nutrient composition, presence soil biota and presence of 

protista.  Each value represents the mean of three repetitions; vertical bars denote 0.95 confidence intervals. 

This figure represents the results obtained when the data for Saccharomyces cerevisiae was combined 

and analyzed using ANOVA. Statistica 6.1 was used to per form a three-way cross classification 

variance analyses on the data. 
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CHAPTER 4 
 
 
 
 
 



 

Biofilm Formation by Saccharomyces cerevisiae under 

Oligotrophic Conditions 

 
4.1 Introduction 

 

Previously we found that Saccharomyces cerevisiae is able to survive and grow in soil 

under varying environmental conditions (Chapter 3). In order to obtain a better 

understanding about the mechanisms employed by Saccharomyces to adapt to the 

conditions in soil, which generally is viewed as an oligotrophic environment (Williams 

1985), a variety of in vitro and in situ studies are needed.  

 

It was found that a number of soil cryptococci are able to produce extracellular polymeric 

substances (EPS) and biofilms when cultivated in flowcells irrigated with oligotrophic 

growth media (Joubert et al. 2003). Biofilm formation is a known mechanism whereby 

microorganisms sequester and concentrate nutrients while growing under nutrient limited 

conditions (Decho 1990). Figure 1 (p 87) illustrates the ability of Cryptococcus laurentii, 

a known soil yeast, to form a biofilm on soil particles under oligotrophic conditions 

(Botha 2005). Therefore, we set out to determine whether S. cerevisiae is able to form 

biofilms when faced with oligotrophic conditions as is often found in soil. For this 

purpose we used epifluorescence microscopy to determine whether S. cerevisisae, similar 

to Cryptococcus laurentii, is also able to form biofilms in flow cells when challenged 

with an oligotrophic irrigation medium.  

 

4.2 Materials and methods 

 

4.2.1 Yeast strains used 

 

Saccharomyces cerevisiae S92 and a genetically modified strain originating from this 

wild-type strain (ML01) were used in the experimentation. These two strains were 

obtained from Lesaffre International, France. Cryptococcus laurentii 1a, was kindly 



 

donated by Mr. O.H.J. Rhode who isolated it from virgin soil. The strains were 

maintained at 4°C, on agar slopes prepared with yeast malt extract (YM) agar, in the 

Culture Collection at the Department of Microbiology of Stellenbosch University, South 

Africa. Every three weeks the yeast cultures were subcultured on YM agar, allowed to 

grow for three days at 25°C and then stored at 4°C.  

 

 
 
Figure 1. Scanning electron micrograph, taken from Botha (2005), illustrating biofilm formation (b) by a 

known soil yeast, Cryptococcus laurentii, under oligotrophic conditions on sand grains (g). Also visible is a 

connective bridge (cb) formed between the sand grains as a result of excessive EPS production by the 

yeast. Sand grains with attached yeast cells were mounted onto stubs, sputter-coated with gold and viewed 

unfixed and fully hydrated with a LEO 1430 VP Scanning Electron Microscope operated at 7 kV (Photo; L. 

Joubert, Department of Microbiology, University of Stellenbosch). 

 

4.2.2 Cultivation of biofilm communities 

 

Biofilm populations were prepared in flow cells (Wolfaardt et al. 1994) by inoculating a 

six channel flow cell with the two Saccharomyces cerevisiae strains. With the peristaltic 

pump (Watson Marlow 205S) turned off, three channels were inoculated with 200 μl of a 

48 h old culture of each yeast strain, grown in yeast malt extract (YM) on a rotary shaker 



 

at 25°C.  Flow was resumed after 6 h and the yeast biofilms allowed to develop for an 

additional 72 h with an irrigation medium consisting of 2.5 mg/l sucrose and 6.7 mg/l 

Yeast Nitrogen Base (Difco) at a flow rate of 3 ml/h. 

 

4.2.3 Epifluorescent microscopy 

 

After three days, biofilms in individual flow cell channels were subjected to staining with 

the fluorescent yeast viability probe FUN-1™ from Molecular Probes. With the peristaltic 

pump turned off, the channels in the flow cell were incubated overnight with a single 

200μl pulse of 40μM FUN-1™ according to the product information sheet. Flow was 

resumed for 1h to rinse the channels, whereafter live versus dead biofilm yeasts were 

visualized microscopically.  

 

All microscopic observations and image acquisitions were performed with a Nikon 

Eclipse E400 epifluorescence microscope, equipped with a multipass filter set 

appropriate for viewing DAPI, as well as excitation/ barrier filter sets of 480/500nm and 

490/635nm. Images were captured with a Nikon Coolpix 990 digital camera mounted on 

the same microscope. In the case of the yeast viability probe FUN-1™, metabolically 

active cells were marked with fluorescent red intravacuolar structures, while dead yeast 

cells exhibit yellow-green fluorescence. 

 
4.3 Results and discussion 

 

As is the case for C. laurentii 1a (Fig 2a, p 87), both S. cerevisiae S92 (Fig 2b, p 87) and 

ML01 (Fig 2c, p 87) were able to form viable (as indicated by the FUN-1™ probe) 

biofilms under oligotrophic conditions. No notable differences were observed between 

the two Saccharomyces strains, however, the C. laurentii strain proved to be 

metabolically more active than Saccharomyces. The latter was obvious from the red 

fluorescence indicating viable Cryptococcus cells. 

 



 

This experiment demonstrated that, similar to the cryptococci, biofilm formation is one of 

the mechanisms that may be employed by S. cerevisiae to persist in oligotrophic 

environments such as soil. However, it was suggested that the survival and growth of 

yeast in soil do not to depend solely on the intrinsic abilities of the particular strain to 

maintain itself within the chemical environment (Botha 2005). Other factors than the 

ability to produce biofilms should also been studied, such as interactions with members 

of the soil microbial community. Therefore, future studies on the growth and survival of 

S. cerevisiae in flow cells under oligotrophic conditions should be conducted using mixed 

populations of soil organisms. 

 

 

 

a cb

 
Figure 2a, 2b and 2c. Flow cell biofilm formation by C. laurentii 1a (a), S. cerevisiae S92 (b) and S. 

cerevisiae ML01 (c) under oligotrophic conditions. The white bar represents ca. 10µm. Metabolically 

active cells exhibit red intravacuolar structures as revealed by staining with  FUN-1™ , while non-viable 

cells appear yellow-green. 
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CHAPTER 5 
 
 
 
 
 
 
 
 
 



 

General Conclusions and Hints on Future Research 
 
 
5.1 Conclusions and future research 
 
Saccharomyces cerevisiae is commonly associated with the wine industry and aside from 

a few in vitro studies, the fate of S. cerevisiae in soil is largely unknown. This may be 

due to the lack of reliable methods to enumerate fermentative yeasts in soil. Thus, the 

purpose of this study was to develop a method for the isolation and enumeration of 

fermentative yeasts in soil and to determine the fate of a wild-type strain of S. cerevisiae 

(S92) and a genetically modified strain (ML01), capable of malolactic fermentation, in 

soil. Included in the experiments were two autochthonous soil yeasts, Cryptococcus 

laurentii and Cryptococcus podzolicus. The following observations were made: 

 

1) Soil dilution plates, prepared from yeast malt extract (YM) agar, supplemented 

with 0.2g/l chloramphenicol and 0.5g/l streptomycin, incubated in anaerobic jars 

could be used to successfully enumerate and isolate fermentative yeasts, such as     

S. cerevisiae, from soil microcosms.   

 

2) With the exception of growth in soil supplemented with nutrients, the genetically 

modified strain of S. cerevisiae (ML01) had no metabolic advantage over the 

wild-type strain (S92) in sterile soil. Furthermore, the cryptococci appeared to be 

better suited to this environment as they are known to occur in semi-arid soils 

(Spencer & Spencer 1997) and utilize notably more carbon compounds than         

S. cerevisiae (Kurtzman and Fell, 2000)  

 

3) In the presence of the natural soil biota, the numbers of Saccharomyces in soil 

microcosms declined rapidly, probably as a result of competition and/or predation 

by the soil biota. No difference was observed between the two Saccharomyces 

strains regarding their performance under these conditions. Similarly, when 

incubated in co-culture with selected cryptococcal strains, the numbers of both 



 

Saccharomyces strains were significantly reduced in soil microcosms, possible 

due to amensalism or competition (Botha 2005). 

 

4) When the two Saccharomyces strains were cultured in soil microcosms inoculated 

with a protistan predator, populations of both strains increased and remained at 

high levels for the duration of the trial. These findings point to a possible 

symbiosis between Saccharomyces and the protista whereby the predators ensure 

continuous nutrient cycling (Griffiths 1994) within the soil microcosms. These 

findings are therefore indicative of a natural interdependency between these 

groups.  

 

5) Epifluorescence microscopy revealed that, similar to known soil cryptococci, 

Saccharomyces is able to form biofilms. Both Saccharomyces strains were able to 

form biofilms and this may be a mechanism whereby Saccharomyces sequester 

and concentrate nutrients in oligotrophic environments, such as soil.  

 

From the above results it can be concluded that S. cerevisiae S92 and the genetically 

modified strain capable of malolactic fermentation, S. cerevisiae ML01, were able to 

grow and/or survive until the end of the incubation period in soil microcosms, differing in 

moisture content, nutrient composition and the presence of biota. The genetically 

modified strain seemed to have no competitive advantage over the wild-type in the 

presence of the natural soil biota. 

 

 These observations together with indications of the above-mentioned symbiosis between 

S. cerevisiae and a group of soil protista, as well as evidence obtained from literature on 

the occurrence of S. cerevisiae in pristine soil (Sniegowski et al. 2002), and in vitro 

interactions of this yeast with other soil biota (Hechler, 1970; Goto-Yamamoto et al. 

1993; Lachance and Pang, 1997; Smith et al. 2004), indicate that soil may act as habitat 

for this species. We now have the tools to determine the role of these fermentative yeasts 

in soil ecosystems by selectively monitoring their populations in natural settings, 

subjected to seasonal changes and perturbations by man. Also, viable populations of 



 

genetically modified fermentative yeasts can selectively be monitored in natural settings. 

In addition, the interactions of fermentative soil yeast populations with the 

physicochemical environment can now be studied more effectively than in the past, 

where non-selective isolation media were the only viable option. Furthermore, 

correlations could be seeked between the number of naturally occurring fermentative 

yeasts and crop performance and/or soil fertility. 

 

5.2 References 

 
Botha A (2005) Yeasts in soil. In: Ecophysiology of Yeasts, eds. C A Rosa & G Péter. 

Springer-Verlag, Heidelberg (Accepted for publication). 

 

Goto-Yamamoto N, Sato SI, Miki H, Park YK & Tadenuma M (1993)  Taxonomic 

studies on yeast-lysing bacteria and a new species Rarobacter Incanus. J Gen Appl 

Microbiol 39: 261-272 

 

Griffiths, BS (1994) Soil nutrient flow. In Darbyshire JF (ed) Soil Protozoa. CAB 

International, Wallingford, pp. 65-91.  

 

Hechler HC (1970) Reproduction, chromosome number and postembryonic development 

of Panagrellus redivivus (Nematoda: Cephalobidae). J Nematol 2: 355-361 

 

Kurtzman CP, Fell JW (2000) The yeasts: A taxonomic study, a 4th and enlarged edition. 

Elsevier, the Netherlands. 

 

Lachance MA & Pang WM (1997) Predacious yeasts. Yeast 13: 225-232 

 

Smith MG, Des Etages SG, Snyder M (2004) Microbial synergy via an ethanol-triggered 

pathway. Mol Cell Biol 24: 3874-3884 

 



 

Sniegowski PD, Dombrowski PG, Fingerman E (2002) Saccharomyces cerevisiae and 

Saccharomyces paradoxus coexist in a natural woodland site in North America and 

display different levels of reproductive isolation from European conspecifics. FEMS 

Yeast Research 1 299-306  

 

Spencer JFT & Spencer DM (1997) Ecology: Where yeasts live. In: Spencer JFT & 

Spencer DM (Eds) Yeasts in natural and artificial habitats. Springer, Berlin, pp 33 – 58. 

 

Wolfaardt GM, Lawrence GM, Robarts JR, Caldwell SJ, Caldwell DE (1994) 

Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 

60: 434-446 

 

 

 

 

 
 


	SUMMARY
	OPSOMMMING
	ACKNOWLEDGMENTS
	MOTIVATION
	TABLE OF CONTENTSCHAPTER 1
	Introduction
	A Method for the Selective Enumeration of Fermentative YeastsIn Soil
	Growth of Saccharomyces cerevisiae in Soil under Different Environmental Conditions
	Biofilm Formation by Saccharomyces cerevisiae under Oligotrophic Conditions
	General Conclusions and Hints on Future Research

