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ABSTRACT 

The feasibility of predicting paint properties directly from the raw material formulation as well as 

the rheological data is investigated in this study. Although extensive work has been carried out on 

the prediction of paint properties in terms of the raw material data, very little research has been 

carried out on the prediction of paint properties in terms of the rheological data. Little is known 

about the relationship between fundamental rheological properties and real-world performance. 

 

The paint under investigation consists of fourteen raw materials. These raw materials interact in a 

very complex manner to produce certain desired paint properties. Evaluation of these interactions 

in terms of constitutive equations is almost impossible and the relationships between paint 

properties, raw materials and rheology can only be modelled in a statistical way. Linear 

relationships are investigated with linear parameter estimation techniques such as multiple linear 

regression. However, it has been found that many of these relationships are non-linear and that 

linear modelling techniques are no longer applicable for certain situations, e.g. at very high 

concentrations of specific raw materials. Non-linear techniques such as neural networks are used 

in these situations. 

 

The relationship between the raw materials, paint properties and rheology are evaluated using the 

following three models: 

• MODEL 1: The relationship between rheology and raw materials 

• MODEL 2: The relationship between paint properties and raw materials 

• MODEL 3: The relationship between paint properties and rheology 

 

MODEL 1 makes use of techniques such as principal component analysis and preliminary  

modelling to respectively reduce redundancy and to capture as much data as possible. MODELS 

2 and 3 make use of linear screening techniques in order to identify relevant raw materials and 

paint properties.  

 

The validity of every model is checked to ensure that predictions and interpretations are unbiased 

and efficient. MODEL 1 revealed that emulsion, extender particles, pigment, water, organic 

pigment and solvent are the six most important raw materials affecting the rheology of the specific 

paint. The rheology curves that are predicted most accurately by means of multiple linear 

regression are the “Amplitude Sweep” (AS), “3-Interval-Thixotropy-Test” (3-ITT) and the “Flow 

Curve” (FC). Non-linear rheological behaviour is encountered at high pigment volume 

concentrations (PVC) and volume solids (VS), due to the strong dependency of the rheology of 

the paint on these properties. It has been shown that neural networks perform better than multiple 

linear regression in predicting the rheological behaviour of these paint samples for which the raw 

materials vary by more than 20% from the standard formulation. On average, neural networks 
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improve predictability of the rheological parameters of these samples by 54%. The largest 

improvement in predictability is made on the rheological variable “Extra Low Frequency” value 

(CXLF), where multiple linear regression resulted in relative errors of 59%, while neural networks 

resulted in errors of only 5%. Other predictions of rheology curves where neural networks have 

shown a major improvement on predictability are the “Time Sweep” (TS) – 68% increase in 

accuracy and “Low Shear” curve (LS) – 63% increase in accuracy. The smallest increase that the 

neural network had on the predictability of a rheology curve, was a 33% increase in accuracy of 

the “Amplitude Sweep” (AS) predictions.   

 

Multiple linear regression models of MODEL 2 predict the critical paint properties of Opacity, 

Gloss, Krebs Viscosity and Dry Film Thickness with relative errors smaller than 10%. It has been 

shown that 90% of all new predictions fall within the allowable error margin set by the paint 

manufacturer. Paint properties that can be predicted with an expected error of between 10% and 

20% are Dry and Wet Burnish, Open Time and Water Permeability. Paint properties that are 

predicted the most inaccurately by  MLR, that results in errors larger than 20% are Dirt Pick-Up 

and Sagging. Non-linear techniques such as neural networks are used to predict the paint 

properties of these paint samples for which the raw materials vary by more than 20% from the 

standard formulation. The neural networks show a major improvement on the predictability of the 

paint properties for those paint samples that vary more than 20% from the standard formulation. 

On average, neural networks improve predictability of the paint properties by 47%. The largest 

improvement in predictability is made on the Wet Burnish20 prediction, where multiple linear 

regression resulted in relative errors of 66%, while neural networks resulted in errors of only 0.6%. 

Other paint property predictions where neural networks have shown a major improvement on 

predictability of 80% or more in accuracy are Gloss – 80% increase in accuracy and Dry Film 

Thickness – 81% increase in accuracy. The smallest increase that the neural network had on the 

predictability of a paint property, was a 33% increase in accuracy of the Sag predictions. MODEL 

2 makes it possible for the paint manufacturer to test tolerances around certain paint properties  

during manufacturing. 

 

Rheology is still a very under-utilised tool for explaining certain paint properties. MODEL 3 

quantified the correlation between fundamental rheological properties and real world performance 

of a paint. It has been shown that rheological measurements can be used accurately to predict 

certain critical paint properties such as Opacity, Krebs Viscosity, Dry Film Thickness and Gloss  

within the allowable error margin given by the paint manufacturer. Multiple linear regression 

models predict the paint properties of Opacity, Krebs Viscosity and Dry Film Thickness with 

relative errors smaller than 10%, with rheology as input to the model. A neural network of MODEL 

3 was developed to predict the paint properties of those paint samples that vary more than 20% 

from the standard formulation, by using rheology data as input to the model. The neural networks 

perform better than multiple linear regression in predicting the paint properties of these paint 

samples. On average, neural networks that use rheology data as input, predict the paint 

properties 49% more accurate than equivalent multiple linear regression models. The greatest 
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improvement in model predictability is for Water Permeability - 73% increase in accuracy and 

Gloss - 70% increase in accuracy. 

 

Two models MODEL 2 (raw material composition as input) and MODEL 3 (rheology data as input) 

have been developed for the prediction of paint properties. The table below shows a comparison 

between the linear models based on the average relative error that can be expected for new paint 

property predictions.  

 

MODEL 2 AND MODEL 3 PAINT PROPERTY PREDICTIONS 

Average Relative Error (%) 
Paint Property 

Model 2 Model 3 

Dry Burnish (60°) 10.7 20.0 

Wet Burnish (60°) 14.8 15.3 

Dirt Pick-Up 43.6 48.0 

Open Time 17.3 17.4 

Dry Film Thickness 6.4 7.1 

Gloss (60°) 7.2 15.3 

Hiding Power 0.8 1.5 

Krebs Viscosity 1.6 1.6 

Opacity 0.8 1.1 

Sag 43.2 38.9 

Water Permeability 14.2 12.5 

 

Akaike’s information criterion (AIC) was also used to discriminate between the linear and non-

linear models. The AIC for all three models indicate that, in general, the multiple linear regression 

models do better in condensing information compared to the neural network models of the paint 

samples for which the raw materials vary by more than 20% from the standard formulation. 

 

This study has made some major contributions in the coatings industry, such as indicating the 

feasibility of predicting paint properties in terms of both raw material data and rheological data. 

The next step is to combine the two sets of data. This could possibly lead to even more accurate 

predictions in the paint properties. Cost factors for the raw materials can also be included to 

optimise the paint composition for the lowest cost, but still with acceptable paint properties. This 

study showed the feasibility of predicting paint properties in terms of raw material data and 

rheological data for a single paint family. This study can now be used as a basis for extending the 

current understanding of paint properties in terms of raw materials and rheology, to include a 

variety of different paint families. 
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OPSOMMING 

Die uitvoerbaarheid daarvan om verfeienskappe direk vanaf ‘n roumateriaalformulasie sowel as 

die reologiese data te voorspel, word in hierdie studie ondersoek. Breedvoerige navorsing 

aangaande die voorspelling van verfeienskappe in terme van roumateriaaldata is reeds uitgevoer, 

maar relatief min navorsing is al uitgevoer aangaande die bepaling van verfeienskappe in terme 

van reologiese data. Daar is min inligting beskikbaar oor die verhouding tussen fundamentele 

reologiese eienskappe van ‘n verf en die werklike werksverrigting. 

 

Die verf wat hier ondersoek word, bestaan uit veertien roumateriale. Die roumateriale reageer op 

mekaar op ‘n besonders ingewikkelde wyse om sekere gewenste verfeienskappe tot gevolg te hê. 

Die evaluering van hierdie wisselwerkings in terme van koppelvergelykings is ‘n byna onmoontlike 

taak en die verhoudings tussen verfeienskappe, roumateriale en reologie is grootendeels 

statisties van aard. Lineêre verhoudings word deur middel van lineêre parameter 

beramingstegnieke, insluitend meervoudige lineêre regressie, ondersoek. Dit is egter gevind dat 

hierdie verhoudings grotendeels nie-lineêr van aard is en dat lineêre modelleringstegnieke nie 

toepaslik is in sekere gevalle nie, bv. in gevalle waar baie hoë konsentrasies van spesifieke rou 

materiale voorkom. In hierdie gevalle word daar van nie-lineêre tegnieke, soos neurale netwerke, 

gebruik gemaak. 

 

Die verhouding tussen die roumateriale, die verfeienskappe en reologie word geëvalueer deur 

van die volgende drie modelle gebruik te maak: 

 

§ MODEL 1: Die verhouding tussen reologie en roumateriale 

§ MODEL 2: Die verhouding tussen verfeienskappe en roumateriale 

§ MODEL 3: Die verhouding tussen verfeienskappe en reologie 

 

MODEL 1 maak van tegnieke soos hoofkomponentanalise en voorlopige modellering gebruik om 

oortolligheid te verminder en om soveel as moontlik data vas te lê. MODEL 2 en 3 maak van 

siftingstegnieke gebruik om sodoende die relevante roumateriale en verfeienskappe te 

identifiseer. 

 

Die geldigheid van die drie modelle word gekontroleer om te verseker dat voorspellings en 

interpretasies objektief en doeltreffend is. MODEL 1 toon aan dat die emulsie, aanvullerpartikels, 

pigment, water, organiese pigment en oplosmiddel die ses roumateriale is wat die grootste 

uitwerking op die reologie van die spesifieke verf het. Die drie reologiekrommes wat met die beste 

akkuraatheid deur middel van meervoudige lineêre regressie voorspel word is: die amplitude 

swaai, 3-Interval-Tiksotropie-Toets en die vloeikromme. Nie-lineêre reologiese gedrag word by 

hoë pigment volume konsentrasies en volume vastestowwe aangetref, as gevolg van die sterk 



  v 

afhanklikheid van die reologie van verf van hierdie eienskappe. Dit is bewys dat neurale netwerke 

beter resultate as meervoudige lineêre regressie lewer in die voorspelling van die reologiese 

gedrag van verfmonsters waar die hoeveelhede van rou materiale meer as 20% verskil van die 

hoeveelhede in die standaardformulasie. Die gebruik van neurale netwerke verbeter die 

voorspelbaarheid van die reologiese parameters van hierdie monsters met gemiddeld 54%. Die 

grootste verbetering word gemaak op die reologiese veranderlike “Ekstra Lae Frekwensie” 

waarde (CXLF). Meervoudige lineêre regressie het resultate met relatiewe foute van 59% gelewer, 

terwyl neurale netwerke slegs 5% foute gelewer het. Ander skattings van reologiekrommes, waar 

neurale netwerke ‘n merkwaardige verbetering op voorspelbaarheid tot gevolg gehad het, sluit die 

tydkromming – 68% verbetering in akkuraatheid - en die lae skuiwingskromme – 63% verbetering 

in akkuraatheid – in. Die kleinste verbetering wat deur die neurale netwerk bewerkstellig is, is ‘n 

33% verbetering op die akkuraatheid van die voorspelling van amplitude swaai krommes. 

 

Die meervoudige lineêre regressie modelle van MODEL 2 voorspel die kritiese verfeienskappe 

van ondeursigtigheid, glans, Krebs viskositeit en droë laag dikte met relatiewe foute kleiner as 

10%. Dit is bewys dat 90% van alle nuwe voorspellings binne die perke van die toelaatbare 

foutspelingsruimte wat deur die verfvervaardiger daargestel is, val. Die volgende verfeienskappe 

kan voorspel word met ‘n verwagte fout van tussen 10% en 20%: droë en nat glansafwerking, 

ooptyd en water permeabiliteit. Die twee verfeienskappe wat die mees onakkuraat voorspel deur 

meervoudige lineêre regressie voorspel is, met foute groter as 20%, is vuilisoptelling en sakking. 

Nie-lineêre tegnieke soos neurale netwerke word gebruik om om die verfeienskappe van hierdie 

monsters, waar die hoeveelheid roumateriale met meer as 20% van die standaardformulasie 

verskil, te voorspel. Die neurale netwerk toon ‘n merkwaardige verbetering op die 

voorspelbaarheid van die verfeienskappe vir hierdie tipe verfmonsters. Voorspelbaarheid word 

gemiddeld met 47% verbeter. Die grootse verbetering in voorspelbaarheid is dié van nat 

glansafwerking “20”, waar meervoudige lineêre regressie resultate met relatiewe foute van 66% 

gelewer het, terwyl neurale netwerke foute van slegs 0.6% verkry het. Twee ander 

verfeienskappe waarvoor neurale netwerke ‘n merkwaardige verbetering van 80% of meer op 

voorspelbaarheid gelewer het, is glans – 80% verbetering in akkuraatheid – en droë laag dikte – 

81% verbetering in akkuraatheid. Die kleinste verbetering wat neurale netwerke op die 

akkuraatheid van ‘n verfeienskap gehad het, was ‘n 33% vermeerdering in die akkuraatheid van 

die voorspelling van sakking. MODEL 2 maak dit vir die verfvervaardiger moontlik om toleransies 

rondom sekere verfeienskappe gedurende vervaardiging te toets. 

 

Reologie is tot op hede steeds ‘n baie onderbenutte stuk gereedskap wanneer dit by die 

verduideliking van sekere verfeienskappe kom. MODEL 3 het die korrelasie tussen die 

fundamentele reologiese eienskappe en die werklike werksverrigting van ‘n verf gekwantifiseer. 

Dit is aangetoon dat reologiese metings met groot akkuraatheid gebruik kan word om sekere 

kritiese verfeienskappe, soos ondeursigtigheid, Krebs viskositeit, droë laag dikte en glans te 

voorspel, binne die toelaatbare foutspelingsruimte wat deur die verfvervaardiger daargestel is. 

Meervoudige lineêre regressie modelle voorspel ondeursigtigheid, Krebs viskositeit en droë laag 
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dikte met relatiewe foute kleiner as 10%, wanneer reologiese parameters as insette vir die model 

gebruik word. ‘n Neurale netwerk van MODEL 3 is ontwikkel om die verfeienskappe van daardie 

verfmonsters waar die inhoud van roumateriale met meer as 20% van die standaardformulasie 

verskil, te voorspel deur reologie data as insette vir die model te gebruik. Die neurale netwerke 

verskaf meer akkurate resultate as meervoudige lineêre regressie wanneer dit by die voorspelling 

van die verfeienskappe van hierdie tipe monsters kom. Neurale netwerke wat reologie data as 

insette gebruik, voorspel gemiddeld verfeienskappe met 49% groter akkuraatheid in vergelyking 

met die ekwivalente meervoudige lineêre regresse modelle. Die grootste verbetering in model 

voorspelbaarheid is die voorspelling van water permeabiliteit - 73% vermeerdering in 

akkuraatheid – en glans – 70% vermeerdering in akkuraatheid. 

 

Twee modelle: MODEL 2 (roumateriaalkomposisie as invoer) en MODEL 3 (reologie data as 

invoer) is ontwikkel vir die voorspelling van verfeienskappe. Die tabel hieronder vergelyk die 

lineêre modelle op grond van die gemiddelde relatiewe fout wat verwag kan word tydens die 

voorspelling van nuwe verfeienskappe. 

 

MODEL 2 EN MODEL 3 VERFEIENSKAP VOORSPELLINGS 

Gemiddelde Relatiewe Fout (%) 
Verfeienskap 

Model 2 Model 3 

Droë glansafwerking (60°) 10.7 20.0 

Nat glansafwerking (60°) 14.8 15.3 

Vuilisoptelling 43.6 48.0 

Ooptyd 17.3 17.4 

Droë laag dikte 6.4 7.1 

Glans (60°) 7.2 15.3 

Wegsteekvermoë 0.8 1.5 

Krebs viskositeit 1.6 1.6 

Ondeursigtigheid 0.8 1.1 

Sakking 43.2 38.9 

Water permeabiliteit 14.2 12.5 

 

Akaike se Inligtingskriterium (AIK) is ook gebruik om onderskeid te tref tussen lineêre en nie-

lineêre modelle. Die AIK toon oor die algemeen vir al drie modelle aan dat meervoudige lineêre 

regressie modelle beter resultate as neurale netwerke vind, in terme van die kondensering van 

inligting, veral van daardie verfmonsters waar die hoeveelheid roumateriale met meer as 20% van 

die standaardformulasie verskil. 

 

Hierdie studie het groot bydraes tot die verfindustrie gemaak, soos byvoorbeeld ‘n aanduiding van 

die uitvoerbaarheid daarvan om verfeienskappe te voorspel in terme van beide roumateriaaldata 

en reologiese data. Die volgende stap sal die kombinasie van hierdie twee stelle data wees. Dit 
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kan moontlik lei na selfs groter akkuraatheid in die voorspelling van verfeienskappe. Koste faktore 

vir die roumateriale kan ook ingesluit word om byvoorbeeld verfkomposisie vir die laagste koste 

en aanvaarbare verfeienskappe te optimeer. Hierdie studie toon die uitvoerbaarheid daarvan om 

verfeienskappe te voorspel in terme van roumateriaaldata en reologiese data vir ‘n enkele 

verffamilie. Die studie kan nou gebruik word as ‘n basis om die huidige kennis en interpretasie 

van verfeienskappe in terme van roumateriale en reologie te verbreed deur ‘n verskeidenheid 

verffamilies daarby in te sluit. 
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1 INTRODUCTION 

1.1 BACKGROUND 
 

For many, the beauty of science lies in the aesthetical. However, for many more, the beauty of 

science lies in the opportunities it provides us. In 2005, the president of the Federation of 

Chemical Engineering identified four main objectives for the future of chemical and process 

engineering. One of these objectives was identified as [1]: 

 

“Product design and engineering with special emphasis on end-use properties of complex fluids 

and solids.” 

 

Paint is a complex fluid, i.e. it consists out of more than one chemical type. In the past, a single 

viscosity value (Krebs viscosity) was used to make certain evaluations about the paint. Paint 

scientists soon identified the shortcomings of this method: 

 

i. A single viscosity measurement only evaluated the paint under a specific condition.  

ii. The flow behaviour of paint was not only governed by viscous behaviour, but also by 

elastic behaviour, i.e. paint is viscoelastic.   

 

Recent advances in rheology (the study of flow and deformation of matter) have made it possible 

for scientists to evaluate the viscoelastic behaviour of paint over a wide range of shear conditions. 

It became evident that certain paint properties could be explained by certain viscoelastic flow 

behaviour. Paint scientists now had the tools to investigate the viscoelastic behaviour of paint, but 

the fundamental correlations between paint properties and paint rheology were still eluding the 

paint scientists.  

 

1.2 PROBLEM STATEMENT 

 

After it became apparent that rheology proved to be a useful tool in identifying certain paint 

property behaviour, albeit qualitatively, researchers such as Leskovsek, Tusar and Gasperlin 

started predicting certain paint properties in terms of the rheological behaviour. Although these 

researchers made a contribution in this field of study, their work was elementary and lacked the 

possibilities that are available today. 

 

This study is an attempt in predicting paint properties of a specific paint as accurate as possible 

by means of rheological data and advanced modelling techniques. This will enable the paint 
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chemist to link fundamental rheological properties with real-world performance.  At the same time 

an attempt is made to achieve accurate predictions regarding the rheology of the paint based on 

its raw material composition.  

 

1.3 GOALS OF THIS WORK 

 

1) The challenge exists to make better use of rheological data  to link fundamental rheological 

properties to real-world performance, which is still seen as a major challenge in the coatings 

industry. One answer to this dilemma is advanced computer techniques, which utilises the 

fundamental rheological data as the required input. 

 

2) An empirical model needs to be developed in order to link fundamental rheological 

properties to real-world performance . The challenge is to obtain paint property predictions 

that are as accurate as possible and within a specified range that is set out by the paint  

manufacturer. This model will make paint property predictions that are based on the 

rheological data possible. 

 

3) An empirical model needs to be developed that links the paint’s composition to real-world 

performance. The challenge is to obtain paint property predictions that are as accurate as 

possible and within a specified range that is set out by the paint manufacturer. This model will 

use the level of raw materials as the required input.  

 

4) An empirical model needs to be developed that links the paint’s composition to 

fundamental rheological properties. The challenge is to predict rheology curves that are as 

accurate as possible by using the level of raw materials as input to the model.  

 

1.4 THESIS LAYOUT 
 

The dissertation is written in such a way that each chapter can be read on its own, without having 

read the other chapters. Each chapter has a short introduction which highlights the background of 

the topics covered in the specific chapter, therefore some topics may overlap, although this has 

been kept to a minimum. Figure 1.1 shows a mind map of relevant topics of each chapter.  

 

 

 

 

 

 

 



  3 

Challenge Topic Chapter 

 

MAKE BETTER USE OF 

RHEOLIGICAL DATA 

 

Using principal component analysis and 

preliminary modelling techniques  
4 

 

The effect of raw materials on the rheology of 

a paint family: Identifying the most important 

raw materials 

 

4 

 

Linear modelling of rheological properties 

 

5 

LINK BETWEEN PAINT 

COMPOSITION AND PAINT 

RHEOLOGY 

 

Non-linear modelling of the rheological 

properties of paint 

 

6 

 

The effect of raw materials on paint properties: 

Identifying most important raw materials 

 

3,4 

 

Linear modelling of the relationship between 

paint properties and raw materials 

 

5 

LINK BETWEEN PAINT 

COMPOSITION AND PAINT 

PROPERTIES 

 

Non-linear modelling of the relationship 

between raw materials and paint properties  

 

6 

 

LINK BETWEEN PAINT 

RHEOLOGY AND PAINT 

PROPERTIES 

 

Linear/non-linear modelling of the relationship 

between paint properties and paint rheology 
5,6 

 

Figure 1.1 A Mind Map of Topics Covered in the Dissertation 
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2 LITERATURE REVIEW 

2.1 RHEOLOGY FUNDAMENTALS 
Rheology is the science of deformation and flow. All forms of shear behaviour can be viewed as 

lying between two extremes: the flow of ideal viscous liquids on the one hand and the deformation 

of ideal elastic solids on the other. The behaviour of all real materials, such as paint, is based on 

the combination of both the viscous and the elastic portion and therefore, it is classified as 

viscoelastic materials. 

Rheometry is the measuring technology used to determine rheological data and this includes 

technology such as the measuring systems, instruments and test and analysis methods. 

Viscoelastic materials can be investigated using rotational and oscillatory rheometers.  

The understanding of coating performance in terms of rheology is becoming very important and 

modern rheological instrumentation and measurements are assisting in achieving this goal. The 

fundamentals underlying some of the basic rheological principals are given in Appendix B 

(Chapter 9). 

2.2 PAINT RHEOLOGY 

2.2.1 RELEVANCE OF RHEOLOGY IN THE COATINGS INDUSTRY 
To a degree matched by few other areas, rheology determines the success of coatings [1]. A 

coating will usually not meet with success if the rheology is not adequate, even if all other 

properties are acceptable. Experienced formulators say that more than half the cost of new 

product development is consumed in “getting the rheology right”. Moreover, apparently “minor” 

changes in a raw material or process can cause significant and unexpected variability in product 

rheology. For all these reasons, rheological analysis is a vital and cost-effective tool for the 

coatings industry. Researchers identified the development of relationships between paint 

properties and the relevant rheological test methods as a major gap in the coatings industry [2], 

[3]. 

The large-scale move towards environmentally compliant coatings (waterborne, higher solids, 

reduced or zero volatile organic compounds (VOC’s)) has in general resulted in more complex 

rheology, while reducing the number of formulating options and at the same time generating a 

host of performance/application problems. For many years, the flow behaviour of water-borne 

paints was inferior to solvent-borne paints.  However, as a result of extensive research in order to 

comply with the latest European VOC regulations, this is no longer the case and the rheological 

performance of water-based and solvent –borne paints are comparable. For example, it has been 

recognised that control over the rheology of the paint is a key element in achieving extended open 

time and wet edge time [4].  
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When most scientists hear the word “rheology”, they immediately think of viscosity, and in fact, 

viscosity is one of the material properties that can be obtained from rheological measurements. 

However, viscosity is not a discrete measurement and depends on the conditions of 

measurement, for example the shear rate. This is indeed significant for materials such as paint, 

which is exposed to a variety of different shear rates (Figure 2.1), and hence may result in 

different apparent viscosities [5]. 

 

 

 

 

 

 

 

 

 

 

 

Time 

Figure 2.1 Shear Rate Profile over the Lifespan of a Coating 

 

Paints are specifically formulated to achieve a balance in viscoelastic behaviour. It is up to the 

paint manufacturer to develop a paint so that the viscoelastic properties correspond to the end-

use market it is designed for. The reason for this is that there is always a trade-off between some 

of the properties such as good levelling versus that of good anti-sagging behaviour, which 

requires opposing rheological behaviour. Therefore, there is no such thing as the “right” rheology 

profile. Take the rheological parameter tan δ as an example. A higher tan δ (G”/G’) implies less 

structure, more fluid-like behaviour and may therefore tend to sag more and be more susceptible 

to pigment sedimentation. On the positive side, a paint with a higher tan δ value will most probably 

level better due to the more fluid-like character. Furthermore, the behaviour of paint changes 

dramatically with changes in stress and frequency (different time scales) and it is therefore 

important to perform tests that cover a wide range of stresses and frequencies [5]. 

2.2.2 RHEOLOGY AND PAINT CHEMISTRY 

A typical high performance architectural coating has been chosen for this study. Not only does the 

physical/chemical structure of the individual components affect the final rheology profile of the 

paint, but so do the various possible interactions between the paint components. It has become a 

common task for paint formulators to balance the levels of solvent, surfactant, rheology modifiers, 

etc. on experience, due to the various possible interactions [6]. However, the interactions among 

the ingredients of the modern latex paints are so numerous and complex [7] that it almost 
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becomes impossible to predict the exact response on rheology [8]. Literature sources can only 

give a faint idea of what to expect in terms of the rheological performance.  

2.2.2.1 PIGMENTS AND EXTENDER PARTICLES 

For the specific product under investigation, pigments and extender particles increase the volume 

fraction of solids in the system and induce a more solid-like character, e.g. strong elastic, shear-

thinning behaviour. The rheological profiles can become quite complex for a paint with pigment 

volume concentrations (PVC) of between 21% and 43% [9]. The increase in solid-like character, 

or decrease in viscous contribution, decreases the open–time and therefore possibly the flow and 

levelling, but it also improves the viscosity in the high shear-rate region and supports sufficient 

film forming properties [9]. 

Interactions with rheology modifiers, dispersants and surfactant are often overlooked (mostly due 

to extremely complex adsorption/desorption behaviour at solid surfaces [7]), but have a 

substantial influence on the final coating rheology behaviour [10]. 

2.2.2.2 SOLVENTS 

Solvents that were present in most aqueous paint formulations in the past, played an important 

role in influencing the rheology of the coating [4].  Currently low VOC decorative coatings are 

manufactured without solvents such as propylene glycol. When solvent is added to paint, a major 

drop in low-shear viscosity occurs without affecting the high-shear viscosity dramatically. The 

explanation for this is that the solvent increases the solvency of the aqueous phase for the 

hydrophobes and, consequently reduces the tendency for association. This method is often used 

by paint formulators to achieve the correct balance between high and low-shear viscosities of 

commercial paints [11]. It is with the addition of solvents that attempts have been made to 

improve the open time and wet edge time of water-borne dispersion paints. The use of propylene 

glycol at levels up to 25% by weight has been used to improve open time and wet edge time [4]. It 

is also known that solvents increase the scrub resistance of the paint and that phase separation 

may occur in extreme cases, giving rise to poor gloss [7]. 

2.2.2.3 SURFACTANTS 

Surfactants are substances that reduce surface tension. Surfactant molecules act similar way as 

rheology modifiers by adsorbing onto the emulsion particles. This has a significant effect on the 

coating’s rheology profile [12]. They actually compete for sites along with the rheology modifiers, 

resulting in a lower level of association of rheology modifier. The higher the surfactant level, the 

lower the degree of association of the rheology modifier. Excess surfactant will shift the 

equilibrium strongly to displace any associative thickener adsorbed onto the latex surface with 

adsorbed surfactant [13]. This results in a considerable drop in low-shear viscosity, whilst the 

high-shear viscosity remains essentially unchanged. This is in exact agreement to prediction: non-

ionic surfactants will form more micelles of physical cross linking although the strength of each 

individual cross linked micelle will decrease somewhat [14]. The degree of viscosity drop depends 

on both the amount and type of surfactant. In aqueous paint formulations, surfactant levels as low 

as 0.1% – 0.2% can have a considerable effect on low shear viscosity [11]. Effects of surfactants 
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on the low-shear viscosity influences the gloss, hiding power and flow and levelling behaviour 

considerably [14], [11]. Inclusion of too much surfactant can result in foaming during 

manufacturing and application, and can also affect the water sensitivity of the dried film. 

Additionally, recent trends are towards lower and lower solvent levels. 

2.2.2.4 DISPERSANTS 

Dispersants are added to the coating formulation for stabilisation effects. Dispersants are 

amphiphiles: surfactant molecules of alternating hydrophobic and hydrophilic moieties. They 

stabilise the pigment and extender particles by adsorbing onto their surfaces. At the same time 

they interact with the binder dispersion and the rheology modifiers [9]. Therefore a careful 

selection is important for utilising the potential of associative thickeners [10]. The presence or 

absence of interaction between associative thickeners and pigment must be controlled carefully 

by correct selection of the dispersing agent [10]. Without the thickener interacting properly with 

the pigments, phase separation occurs on a micro scale [8] and flocculation will develop resulting 

in a loss of flow and gloss. If droplets containing separate phases of water and thickener merge 

and rise to the surface, syneresis can result. 

Practical paint experience has shown that the selection and level of the dispersant play a major 

role in the rheology of pigmented systems containing associative thickeners [14]. 

2.2.2.5 EMULSIONS 

Emulsions incorporate essential rheological properties in paint [9] and there is little doubt that the 

major viscosity contribution in a coating formulation comes from the volume fraction of the latex 

[15]. The interaction between associative thickener and latex is just as important in affecting the 

rheology profile of the paint [16]. The latex particle size and the efficiency of the associative 

rheology modifier go hand in hand. As the surface area of the latex increases, the efficiency of the 

thickener increases. It often happens that associative thickeners contribute too much to the mid- 

range viscosity when the latex particle size is small [16]. High performance emulsions tend to 

have a smaller particle size and may have the tendency to flocculate, limiting the gloss 

development in a paint [11]. 

2.2.2.6 COALESCENTS 

Coalescents enable film formation of polymer dispersions. These are strongly involved in almost 

every associative process active in the system [9] and have a significant to large effect on the 

rheological behaviour during drying and the levelling and sagging properties [17]. In general, 

addition of coalescing agents to paints leads to higher viscosities. And it is suggested by some 

[17] that a coalescent can be used as a type of rheology modifier, in addition to thickeners, 

because of its significant effect on levelling and sagging.  

2.2.2.7 DEFOAMERS 

Defoamers increase the viscosity slightly, possibly as a result of solubilisation in the micelle, 

resulting in a higher volume and more interactions between micelles [14]. 
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2.2.2.8 RHEOLOGY MODIFIERS 

Rheology modifiers (sometimes referred to as associative thickeners) are polymers which have 

been hydrophobically modified. Essentially, apart from cellulose and ASE thickeners, there exists 

two types of rheology modifiers which act by both thickening the water phase and by associating 

with other species (pigments, dispersant, emulsions and surfactants) present in the paint [11], 

[16]: 

HASE: Hydrophobically modified alkali-soluble emulsion 

HEUR: Hydrophobically modified ethylene-oxide urethanes 

Rheology modifiers affect only a part of the rheology profile of a paint and are known for affecting 

the following paint properties [11]: 

• Flow 

• Structure 

• Sag resistance 

• Spatter resistance 

• Film build 

• Brush drag 

• Brush loading 

• Open time  

In the literature [4], the main route to achieve control over the rheology of water-borne systems is 

the use of associative thickeners. These paints show thixotropic behaviour, which is desirable 

because it combines excellent flow properties with little to no sagging and good pigment stability. 

There are three main rheological criteria for evaluating thickener efficiency [4]: 

1) A thickener must have low-shear viscosities which give an aesthetically pleasing in-can image 

to the coating, non-dripping properties, good flow and levelling and minimum sagging 

tendencies. 

2) An efficient thickener must also provide adequate coating viscosity at the application shear 

rate so that the required film thickness is obtained while also minimising brush or roller drag. 

3) The extensional viscosity (elasticity) must be low so that spatter, which is caused by elastic 

strings, will be absent. 

The HEUR type (hydrophobically modified ethylene urethane oxide) is used in this specific 

formulation. Performance of HEUR type rheology modifiers can be fine-tuned in the 

developmental stage by varying the size of the hydrophobe. Molecular mass in the order of 40 

000 – 50 000 atomic units are typical. They can be thought of as “double ended surfactant 

molecules” which is a good analogy as they tend to be surfactant-like in character in some 

respects. The two ends of the molecule are very hydrophobic in nature, whilst the centre is quite 

hydrophilic. The hydrophobic groups associate with the emulsion particles through adsorption 

onto the particle surface. In addition they aggregate together in the water phase in a similar way 

to that in which surfactants form micelles. The network formation results in a major increase in 

viscosity. The network gives a uniform, stable dispersion of both pigment and emulsion particles, 

which give greater gloss potential than is possible with flocculated systems. It is obvious that the 
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surfactant properties of the rheology modifiers are very important for thickening in aqueous 

systems. 

Although the competition between rheology modifiers and surfactants for the adsorption onto the 

pigment particles can clearly be seen at the low-shear viscosity behaviour, the high shear 

viscosity is unaffected and is assumed to be dependent on the concentration of the hydrophobe 

micelles of the rheology modifiers in the water phase and not the association with other particles 

[11]. Thus it is possible to control high-shear and low-shear viscosity independently with the 

combination of surfactants and rheology modifiers. More recently developed urethane rheology 

modifiers have been designed to have slightly less tendency to associate compared with earlier 

grades and, therefore, these are able to produce paints with very Newtonian* rheology profiles, 

without the need to add surfactant or solvent [14] and therefore it is often necessary to add a low 

level of a more pseudoplastic grade of rheology modifier to avoid the tendency to sag after 

application. By careful blending of a Newtonian and more pseudoplastic grade, it is possible to 

achieve the ideal rheology profile for many different applications [16], [18], [14]. 

Gloss levels, hiding power and flow and levelling properties of a very high order are achievable 

with urethane rheology modifiers [9]. HEUR thickener types tend to make paints slightly more 

water sensitive and this results in a slight loss of adhesion and greater tendency to early blistering 

under wet conditions. However, HEUR thickeners demonstrate better scrub resistance and are 

also resistant to microbial attack. It has also been proven, with rheological measurements, that 

open time of a water-borne paint improves at increasing concentration of HEUR thickener but at 

the same time may cause water sensitivity problems [19]. Addition of HEUR thickeners results in 

higher viscosities at high shear rates which leads to good film build per application with little or no 

spatter [4]. Also, their characteristically lower viscosities at low shear rates are desirable for 

improved flow and levelling and gloss [4]. 

 

With an understanding of the associative interactions that occur, a high degree of rheology control 

is possible over all parts of the shear rate spectrum. This enables different paint application 

properties to be optimised, largely independently of one another, with a high degree of control. 

2.2.2.9 BACTERIACIDES AND FUNGICIDES 

These have almost no influence on the rheology profile of the paint [14]. 

2.2.3 RHEOLOGICAL MEASUREMENTS FOR THE STUDY OF PAINT PROPERTIES 

Currently there exist no standards for rheological evaluation of paints (not including viscosity 

measurements such as ICI viscosity or Krebs-Stormer viscosity). Rheological test methods do 

exist to investigate the rheological behaviour of the paint, many of which are only qualitative in 

nature, and these are far from standardised. These tests can be carried out in various ways and it 

is up to the rheologist performing these tests to extract as much data as possible from the 

rheology profiles. Very little work has been done in quantifying the rheological behaviour and 

                                                 
* See Chapter 9 (Appendix B: Rheology Fundamentals) for an explanation on this term 
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relating it to specific paint properties. A brief description of what is known about the relationship 

between paint properties and specific rheological test methods follows. 

 

2.2.3.1 VISCOSITY CURVE (CSR† TEST) 

This test gives information about paint behaviour over a wide range of shear rates (or shear 

stresses). A typical viscosity curve is illustrated in Figure 2.2. 
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Figure 2.2 A Typical Viscosity Curve 

 

Typical pseudoplastic behaviour is shown which is common for dispersion paints [4]. The 

following paint properties are evaluated by means of the viscosity curve: 

Ø Ease of application: This term describes paint properties such as brush and roller drag. The 

shear rates associated with the common modes of application such as brushing and rolling 

are 103 s-1 to 106 s-1. These shear rates might seem high, but are primarily the consequences 

of the thin films involved. For easy application, paints should show a decrease in viscosity with 

increasing shear rate (shear thinning behaviour) and the viscosity must be low for easy 

application at high shear rates [9]. A good viscosity for easy brush/roller application is in the 

region of 0.1 to 0.25 pascal seconds (Pa.s) [5], [19], [4]. Further insight into the interactive 

forces that are required to initiate flow during application can be obtained from the “apparent 

yield point” (or lack there of) in the low shear rate region with shear rates < 1 s-1. 

Ø Pumping and dispensing: Paint should be easy to pump. Therefore, viscosity values in the 

medium shear rate range (1 s-1 to 102 s-1) should not be too high [5]. 

                                                 
† CSR – Controlled shear rate: these type of tests are shear rate controlled under rotational 

movement 
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Ø Sagging: Sagging of paint is dependent on the viscosity of the paint at low shear rates [11]. 

Some sources state that at shear rates of 0.3 s-1 the coating will sag excessively if the 

viscosity is below 10 Pa.s [20]. 

Ø Pigment settling and instability: An idea of the degree of settling can also be estimated 

from the low-shear viscosity [11]. Water-borne dispersion coatings need to have high 

viscosities in the low shear region [9] to avoid settling and instability during storage and 

transport. There are other, more appropriate rheological ways, to investigate settling (see 

Section 2.2.3.5). 

Ø Levelling: Levelling is evaluated by looking at the viscosity values at low shear rates and 

good levelling is typically obtained when the low-shear viscosity is in the range of 25 Pa.s to 

100 Pa.s [11]. If the low-shear viscosity displays Newtonian behaviour and is low enough, flow 

and levelling allows the formation of film surfaces free of brush marks [9]. 

Ø Brush loading and roller transfer: This is the amount of paint that is “picked” up by the 

brush/roller and is affected by the medium shear rate (1 s-1 to 102 s-1) viscosity [11]. 

Ø Film thickness: Viscosity at higher shear rates (γ& > 1000 s-1) affect performance under 

brush/roller, thus affecting the film build of the paint [11] and relative high viscosities in the 

high-shear area give sufficient film thickness of the coating [9]. 

Ø Hiding power: Definite correlations between the viscosity at high shear rates (104 s-1) and the 

hiding power have been identified [15].  

 

Note that paint properties, such as sagging and levelling, are investigated more accurately by 

simulating breakdown of the structure followed by a period of rest. The flow curve does not allow 

for structural regeneration and therefore, tests that simulate structural decomposition and 

regeneration are better in investigating the paint behaviour after application (see Section 2.2.3.3 

and Section 2.2.3.7 for “Structural Decomposition and Regeneration” curves). 

 

2.2.3.2 VISCOSITY / TIME CURVE (CSR TEST) 

This test gives information about the behaviour of paint when subjected to a constant shear rate. 

A typical viscosity / time curve is illustrated in Figure 2.3. 

 



  13 

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.4

Pa·s

η

0 10 20 30 40 50 60 70 80 90 100 110 120 130s
t  

Figure 2.3 A Typical Viscosity/Time Curve at a constant shear rate 

 

Viscosity/time curves can be performed at different shear rates in order to evaluate the following 

paint properties: 

Pumping, dispensing and mixing: These actions occur at medium to high shear rates. The 

viscosity at these shear rates should not be too high to ensure that these actions are 

performed with ease [5].  

Levelling: Levelling occurs at low shear rates and the viscosity should stay low enough and not 

show a steep increase over time [1]. 

Gloss: This paint property is dependent on the low shear viscosity. Gloss deficiency is caused by 

unfavourable rheology (too high viscosity at low shear rates) which leads to poor levelling [21]. 

Sagging: Sagging occurs at low shear rates. The viscosity should stay low enough for flow and 

levelling to occur, however, after application there should not be any further decrease in 

viscosity over time [1], but rather show an increase in viscosity so that excessive sagging is 

prevented. 

 

2.2.3.3 STRUCTURAL DECOMPOSITION AND REGENERATION (CSR TEST) 

This test gives information about the behaviour of the paint when subjected to small shear rates 

directly after a period of high shear. A typical structural decomposition and regeneration 

(thixotropy) curve is illustrated in Figure 2.4. 
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Figure 2.4 A Typical Structural Decomposition and Regeneration Curve (Rotational) at a 

Constant Low Shear Rate (e.g. 1 s-1) for the 1st and 3rd Phases 

 

The following paint properties are evaluated by the regeneration curve: 

Levelling: Levelling of brush marks depends mainly on the levelling stress ( )Lτ . Levelling ceas es 

when Lτ becomes equal to the yield stress ( )yτ  [20]. Slower structure formation after high 

shear results in better flow and levelling [9]. 

Sagging: It should be noted that in order to prevent sag, the viscosity must increase rapidly after 

application of the paint, but slowly enough for levelling to occur. Typically, 30 to 300 seconds 

must be allowed for proper levelling to occur [20]. The time dependent viscosity build-up is a 

result of thixotropy. 

Film build: Film thickness depends on the degree and rate of structural recovery (the rate at 

which the viscosity increases after application) [22]. In general, one can expect that the faster 

the rate of viscosity-increase is directly after application, the greater the film thickness would 

be. 

Gloss: Gloss and levelling go hand-in-hand and unfavourable rheology after application, leads to 

poor levelling and gloss deficiencies [21]. 

Storage stability: Thixotropic behaviour supports storage stability [9]. 

 

The opposing rheological behaviour in levelling versus sagging is typical for optimal paint 

properties. After film application, the coating viscosity must remain low enough for levelling to 

occur, but then the viscosity should increase steadily to prevent sagging [23]. 
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2.2.3.4 AMPLITUDE SWEEP (CSD‡ TEST) 

This test gives information about the behaviour of paint when subjected to varying degrees of 

shear deformation. A typical amplitude sweep is illustrated in Figure 2.5. 
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Figure 2.5 A Typical Amplitude Sweep 

 

The following paint properties are evaluated by the amplitude sweep: 

Pigment settling and storage stability: Although the amplitude sweep does not reflect 

conditions at rest, it can still give good insight about the structure of the sample and the type 

of interparticular interactions that might be present. A certain yield stress ( )yτ  needs to be 

overcome before flow occurs. Yield stresses prevent settling and storage instabilities [9]. 

Flow and levelling: The existence of a yield point affects the flow and levelling behaviour, 

however, it does not necessarily lead to imperfect levelling [22]. 

Sagging: Although the amplitude sweep does not give 100% representative data about the 

structure of the sample at rest (because the amplitude sweep is not necessarily performed at 

such low frequencies that represent rest), it still gives information about the structure of the 

sample in general [1]. And in general, if G” >> G’ in the LVER then the paint is more likely to 

sag, because the sample is predominantly liquid-like in character.  

2.2.3.5 FREQUENCY SWEEP (CSD TEST) 

This test gives information about the behaviour of paint when subjected to different time scale 

deformations. A typical frequency sweep is illustrated in Figure 2.6. 

                                                 
‡ CSD - Controlled shear deformation: these type of tests are shear deformation controlled under 

oscillatory movement 
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Figure 2.6 A Typical Frequency Sweep 

 

The following paint properties are evaluated by the frequency sweep: 

Spatter: Coatings with high elongation viscosity (elastic behaviour which is characterised with the 

rheological parameter G’) form slender strings or thin fibres, which lengthen during application 

and eventually break. After breaking, the fibre snaps back onto the roller and the substrate. 

The release of energy stored in the elongated fibre results in the formation of small air-borne 

paint droplets, which produce spatter. Paint application occurs at fast rates (or short time 

scales) and the spatter behaviour can therefore be investigated at the high-frequency region 

of the frequency sweep. The frequency sweep makes it ideal to investigate the spatter 

behaviour because data about the elastic portion of the paint is obtained accurately. Spatter 

resistance is predicted by measuring the elastic modulus G’ at high frequencies [4]. If tan δ 

(G”/G’) is very small in the high frequency region, then the paint behaves predominantly 

elastic and will tend to spatter [20]. 

Stability: Data from the frequency sweep at a deformation below the critical strain ( )LVERγ  is 

used to elaborate on the material’s structure. Tan δ, the ratio of energy dissipation and 

storage mechanism (G’/G”), at low frequencies, is a key parameter for investigating storage 

stability [20]. It has been found that the optimum storage stability of a paint is obtained for 1 < 

tan δ < 1.5. [20]. Too high values of tan δ indicate predominantly viscous flow – the particles 

are only weakly associated and the inter-particle forces cannot prevent sedimentation under 

gravity. Strong inter-particle interaction however decreases the tan δ value (higher elasticity). 

The result of too low tan δ values is coalescence and the formation of large aggregates, which 

settle with time. 

Ease of application: Paint application occurs at fast rates (or short time scales) and the ease of 

application can therefore be investigated at the high-frequency region of the frequency sweep. 
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Application should be easy without the occurrence of slip (sliding of roller over surface without 

roller actually rolling) and therefore elastic behaviour should not dominate at high frequencies 

if the paint is to be applied with ease. In rheological terms, the parameter tan δ should not be 

<< 1 [1]. 

Flow and levelling: Flow and levelling can be evaluated by measuring the complex viscosity, 

( )∗η  in the low frequency region. The complex viscosity is determined from the storage (G’) 

and loss (G”) moduli. Paints with lower ( )∗η  have better flow and levelling properties. The 

complex viscosity at frequency ω  is defined by [23] as: 
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And therefore G’ and G” should be small. The behaviour of tan δ in the low-frequency region 

also plays an important role in evaluating the flow and levelling behaviour. A paint levels 

better when it is possible to flow under conditions of rest and therefore tan δ should be > 1 for 

the liquid-like character in the paint to dominate over the elastic part [1]. 

2.2.3.6 TIME SWEEP (CSD TEST) 

This test gives information about the behaviour of paint when subjected to a single time scale 

deformation to see how the viscoelastic properties change over large periods of time. A typical 

time sweep is illustrated in Figure 2.7. 
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Figure 2.7 A Typical Time Sweep 
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The literature is not clear on what application information can be obtained from the time sweep. It 

is clear though that structural changes over large time-periods can be investigated with this 

method. Therefore, it should play a role in evaluating properties such as stability and phase 

separation. 

2.2.3.7 STRUCTURAL DECOMPOSITION AND REGENERATION (CSD TEST) 

This test gives information about the behaviour of the paint when subjected to a large degree of 

deformation followed by a small degree of deformation, simulating the application of paint followed 

by a rest phase. This test is performed in the oscillatory mode and therefore the elastic (G’) and 

viscous (G”) portions of the paint can be evaluated. These parameters are very useful in 

investigating the behaviour of the paint directly after application. 
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Figure 2.8 A Typical Structural Decomposition and Regeneration Curve (Oscillatory) 

 

The ratio of the complex moduli G’ and G” is a good measure of the material’s structure. The 

crossover point (if it exists) between G’ and G” (where tan δ = 1) characterises the transition 

between fluid (viscous) and solid (elastic) behaviour. The response of tan δ in the 3rd interval (see 

Appendix B, Figure 9.20), after structural deformation, together with the occurrence of a cross-

over point can be used to investigate the following properties: 

Flow and levelling: When G” > G’, the viscous contributions dominate and the paint is movable 

enough to allow good flow and levelling [9]. However if G’ > G”, then the elastic properties are 

contributing the major part. These paints behave elastic due to high interparticular interactions 

that usually result in a yield point. A certain stress is needed for the yield point to be overcome 

before the paint starts to flow and may result in brush marks and poor levelling [9]. 

Pigment settling and storage stability: Although a too high yield point may cause brush marks 

due to poor flow and levelling, it is also this yield point that prevents pigments from settling 

and storage instabilities. 
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Sagging: A coating that sags is one that requires a long time for structural regeneration to occur 

after application [24]. As long as G” > G’ the sample has a liquid-like character and the paint 

sags. However, if the curve of G’ increases more steeply than the curve of G” so that at some 

point during the third interval G’ = G” and then G’ > G”, then the coating changes from liquid-

like character to solid like character and sagging stops [24]. 

Film thickness: The elasticity after application has an influence on the film thickness [20] and the 

faster the structure recovers, the larger the film thickness will be [22]. 

Gloss: Unfavourable rheology after application leads to poor levelling with gloss deficiencies at 

the surface of the coating [21].  

 

It can be seen from the rheological measurements and the information obtained from it, that it is 

important to consider the whole range over which the measurement is performed. This study 

combines all of the above test methods over their entire measurement ranges, to evaluate the 

paint properties. It is this thoroughness in rheological measurement for explanatory purposes, that 

is applied for the first time in such a study.  

 

2.3 MODELLING THE RELATIONSHIP BETWEEN PAINT RHEOLOGY AND 

RAW MATERIALS 

2.3.1 BACKGROUND 

Most raw materials contribute in affecting the flow behaviour of the paint. The effect of specific 

raw materials on the rheology of the paint is qualitatively well established and it has become a 

common task for paint formulators to balance the levels of raw materials until a desired Krebs § 

viscosity is obtained, based on experience [6]. However, the result only gives an optimal point in 

the formulation and not a model of the system [25]. Rheology control is important for many of the 

paint properties (levelling, spatter, sag, etc.) and therefore the effect that raw materials have on 

the rheology is very important. The effect of specific raw materials on the rheology has been 

studied extensively in practice, usually originating from a quality control perspective or identifying 

problems in paint properties caused by ill-conditioned rheological behaviour. It is therefore evident 

that the relationship between rheology and raw materials (MODEL 1) is only relevant as far as the 

relation between paint properties and rheology is concerned (MODEL 3). 

The scope of the research is extended to the region between the lowest and highest values of any 

independent variable (raw material). Modelling techniques that have been used before in the 

coatings industry to model rheological behaviour include:  

• response surface methodology [26] 

• neurofuzzy techniques [27] 

                                                 
§ Krebs viscosity is a term frequently used in quality control of coatings. It is an international term 

for expressing the medium shear viscosity of a paint at a average rotationals speed of 200 rpm 

and is often used as a specification for quality control.  
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• polynomial and neural network modelling [28], [29]. 

These techniques have almost exclusively been used for the modelling of viscosity values only 

[27], [30], [26]. This is largely due to the fact that viscosity is undoubtedly one of the most 

important properties in quality control in the coatings industry [21], [38]. However, modelling the 

rheology of paint, which entails far more than mere viscosity values has been an area of relatively 

little research and has mainly been studied by Leskovsek et al [31], [28], [29]. Leskovsek et al 

identified some of the advantages of empirical rheological modelling with linear and non-linear 

techniques: 

1. With linear equations the main effects of factors on properties can be determined. 

2. Explicit knowledge of constitutive equations and/or chemical structure of components is not 

required. 

3. The same empirical model is suitable for predicting rheological properties of Newtonian and 

non-Newtonian fluids. 

4. Neural networks can simultaneously simulate several properties. 

5. The same neural network can be used for new observations. 

However, although Leskovsek et al already identified certain advantages in the use of linear/non- 

linear techniques in the prediction of rheological properties, the following weaknesses in the work 

of Leskovsek et al are noted: 

1. Rheological modelling is performed by using only data obtained from a frequency sweep. 

Although the frequency sweep gives a lot of information about the paint properties, other 

rheological curves (parameters) also contribute in explaining the behaviour. Other rheology 

curves give extra insight and are important in contributing to more accurate model predictions. 

2. Modelling of the rheological response of the frequency is done at distinct frequencies (0.167 

Hz, 1.00 Hz and 10.00 Hz) and not as a frequency sweep of a whole curve. Th e importance of 

evaluating the frequency sweep curve at higher frequencies and using the whole curve of the 

rheological measurements (preliminary modelling) is illustrated in Section 2.2.3.5 

Initially, Gasperlin et al [32] also only used the frequency response at a specific frequency value 

(5.32 Hz) but understood the importance of using the whole curve instead and so introduced the 

technique of preliminary modelling in order to use the whole measured frequency sweep curve as 

a response to the model [33]. However, this work is related to the pharmaceutical industry and 

has not been applied in the coatings industry. Furthermore, Gasperlin et al [33] only used the 

frequency sweep. 

2.3.2 LINEAR MODELLING 

Multiple linear regression (MLR) is, in general, one of the most widely used modelling techniques. 

Other researchers [29] in the coatings industry have found it useful to express the rheological 

response ( iy ) in terms of the raw materials ( kx ) by means of the following equation: 

 

 εββββ ++⋅⋅⋅+++= kki xxxy 22110     (2.2) 
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This is a useful expression because the relative importance of each raw material on the 

rheological response is given by the regression coefficients ( kβ ) in equation 2.2. Leskovsek et al 

[29] illustrated the effect of pigment, binder, extender, matting agent and rheological additive on 

G’ at 10 Hz of the frequency sweep, by plotting the bar graph of the regression coefficients 

(Figure 2.9). 
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Figure 2.9 Values of Regression Coefficients for G' at 10 Hz from MLR [29] 

The accuracy of prediction was determined with statistical validation and it was found that, 

according to statistical evaluation, the linear equation of the type shown in equation 2.2 is not 

complex enough to describe the selected rheological responses. It was established that 

interactions between the different raw materials do play a role and that models that take 

interactions into account (higher order polynomials and neural network models) are more suitable 

for these type of modelling problems. 

Gasperlin et al [33], [34], who originally worked with Leskovsek et al, extended the rheological 

modelling techniques used in the coatings industry to that of the pharmaceutical industry. The 

observations made by Gasperlin et al in the pharmaceutical industry are closely related to that of 

the coatings industry. The influence of different ratios of individual components on the viscoelastic 

behaviour (illustrated as tan δ curves of the frequency sweep) was studied at 5.32 Hz [32]. As 

mentioned earlier, evaluating the whole rheological curve over the entire range, and not just at 

one point (e.g. 5.32 Hz), is important to extract as much information as possible. Therefore, 

preliminary modelling techniques were used successfully to represent the complex viscosity ( ∗η ) 

over the entire frequency sweep. It was also concluded that non-linear modelling techniques are 

better in prediction of rheological properties than linear models. 

A major advantage of modelling the effect of raw materials with a linear model is that the main 

effects of the raw materials on the rheology can be determined. At the same time, this also has 

the disadvantage that it does not give any information about the interactions occurring between 

the raw materials.  
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2.3.3 NON-LINEAR MODELLING 

Leskovsek et al [29], [28], [31], [35] used neural networks as non-linear modelling techniques to 

model some of the rheological properties of paint. The amount of pigment, binder, extender, 

matting agent and rheological additive were taken into account and used as input variables. The 

rheological responses included: 

1. Infinite viscosity, ∞η (flow curve) 

2. Yield point, YPτ (flow curve) 

3. Storage modulus, G’ at 0.17 Hz (frequency sweep) 

4. Storage modulus, G’ at 1.0 Hz (frequency sweep) 

5. Storage modulus, G’ at 10 Hz (frequency sweep) 

6. Loss modulus, G” at 0.17 Hz (frequency sweep) 

7. Loss modulus, G” at 1.0 Hz (frequency sweep) 

8. Loss modulus, G” at 10 Hz (frequency sweep) 

9. Sagging (determined by measuring the film thickness at which the paint exhibits sagging from 

vertical objects). 

Note from above rheological responses that only discrete points of the flow curve and frequency 

sweep were used as rheological responses. 

A back propagation feed forward ** neural network was used for training of the neural network. A 

two-layer neural network with five nodes in the input layer (corresponding to the five raw 

materials), six nodes in the hidden layer and nine nodes in the output layer (corresponding to the 

nine rheological properties) was used for modelling of the rheological properties. The architecture 

of this neural network is represented in Figure 2.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
** In feed forward neural networks, information is propagated back through the net during the 

learning process, in order to update the weights. As a result, these neural networks are also 

known as back propagation feed forward neural networks. 
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Figure 2.10 Neural Network Architecture used by Leskovsek et al 

The neural network approach for modelling of the rheological properties allows the investigation of 

each response separately or all of them together. It was found that the matting agent and the 

rheological additive affect G’ at 10 Hz the most. Differences between polynomial and neural 

network models were also observed.  

Note that the work published by Leskovsek et al [31] included empirical models for predicting the 

relationship between paint composition and rheological behaviour only at selected frequencies 

(0.17 Hz, 1.0 Hz and 10 Hz) of the frequency sweep. Gasperlin et al [34] also investigated the 

dependence of a rheological parameter, the complex viscosity ( ∗η ), on the composition of the 

system. However, the method of preliminary modelling (see Section 4.3.2 – ‘Preliminary 

modelling’) of rheological curves was introduced in this study. In other words, the entire range of 

the frequency was taken into account for modelling purposes and not only the complex viscosity 

at selected frequencies. Therefore, the complex viscosity ( ∗η ) of the frequency sweep is 

represented by the following equation: 

 

 iii f βαη +=∗ lnln       (2.3) 

 

Where α represents the slope of the preliminary model of the complex viscosity and β  

represents the offset of the preliminary model. 

A two-layer neural network (one input layer and one hidden layer) was employed with the error 

back propagation supervised learning algorithm. The learning term was 0.5 and the momentum 

term 0.9. The contents of the individual emulsion components represent the input factors while the 

responses are respectively, values of parameters iα  and iβ  of equation 2.3. Two neural 

networks were developed: one for parameters of iα and one for parameters of iβ . The 

architecture for this network is illustrated in Figure 2.11. 
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Figure 2.11 Neural Network Architecture used by Gasperlin et al 

 

The performance of the neural network was compared to that of other modelling techniques 

including linear and higher order polynomials. It was found that the most accurate values of the 

parameters iα and iβ are calculated with the two layer neural network. 

 

2.4 MODELLING THE RELATIONSHIP BETWEEN PAINT PROPERTIES AND 

RAW MATERIALS 

2.4.1 BACKGROUND 

The general relationship between raw materials and the paint properties is well known and also 

documented [36]. Table 2.1 shows the major effect a paint raw material group has in a latex paint. 
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Table 2.1 The Major Effects of Raw Materials on the Paint Properties of a Latex Paint [37] 

Raw Material Group Major effects 

Emulsion (binder) Gives Durability, gloss 

Pigments Gives Hiding, colour, opacity, hardness, 

durability, corrosion resistance 

Extenders Gives Hiding power 

Vehicle (water) During Application 

Solvents Enhances Open time, adhesion, water 

resistance 

Coalescents Provides Film formation, defoamer 

Dispersants Ensures Stability (settlement, syneresis), 

colour acceptance 

Surfactants GivesColour acceptance, stability, film 

formation 

Defoamers Prevents foaming 

Thickeners During Application 

Biocides Acts as Preservative (in-can and film) 

 

In general, the raw materials in Table 2.1 contribute mainly to the specific paint property it was 

designed for. Numerous different products are available in each of the raw material groups all add 

to the specific paint property it is designed for. However, the contribution of each individual raw 

material to the final product is unique for every paint system, and so are the models which relate 

the raw materials to the rheological and mechanical properties. In Table 2.2, Schrickel [38] 

indicates how case-specific the defoamer performance is in the qualitative relationship between 

paint type and defoamer type.  

 

Table 2.2 Defoamer Type versus Paint Type [38] 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Matt Paint ++ + + 0 ++ 

Gloss Paint 0 ++ 0 0 + 

Industrial Paint 0 + ++ + + 

  Performance: ++ very good; + good; 0 fair; -low 

  Type 1: silicone free mineral oil defoamer 

  Type 2: silicone free, pharmaceutical grade oil defoamer 

  Type 3: polysiloxane emulsion defoamer 

  Type 4: silicone oil compound 

  Type 5: polysiloxane defoamer 
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Schrickel [38] further indicates the major difference in defoamer performance when used in 

combination with different emulsions and dispersants. Only very general, straightforward 

qualitative ‘models’ can then be constructed as in Table 2.2. 

 

However, this does not mean that a model which relates the paint properties to a specific raw 

material for a specific paint system is also useless. In fact, various quantitative models have been 

developed for specific paint systems. Empirical models have identified the effect of raw materials 

on general paint properties given in Table 2.1. For example, [29] modelled the effect of raw 

materials on i) hardness, ii) elasticity, iii) impact resistance, iv) adhesion, v) chemical resistance 

and vi) gloss. In another study, [29] modelled the effect of raw materials on i) sag, ii) gloss and iii) 

levelling. [39] modelled the effect of raw materials on opacity, as well as impact resistance and 

adhesion [25], while [36] modelled syneresis and settlement. The only drawback of these models 

is that they are case-specific and comparison between models is almost impossible (see Chapter 

7 Future Work ). 

2.4.2 LINEAR MODELLING 

The researchers above used linear modelling techniques, amongst others. [29] found that linear 

models are useful in explaining the main effects on the paint properties but indicated that these 

models are not complex enough to describe the selected properties.  

Linear modelling was also used by Tusar et al [39] for determination of correlation between four 

raw materials (amount of binder, extender, additives and pigment) and the opacity. The values of 

the correlation coefficients of the MLR model were used to determine the relative importance of 

each of the raw materials. The model indicated the importance of raw materials as follows (Figure 

2.12). 
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Figure 2.12 Regression Coefficients for Opacity Model [39] 

The study also concluded that extrapolation outside the range of raw materials leads to 

incomprehensible results, stressing the importance of a comprehensive experimental design that 

will not require extrapolation of data. 
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2.4.3 NON-LINEAR MODELLING 

Tusar et al (Section 2.4.2 – Linear Modelling) extended their linear models for opacity data to non-

linear models, after it was concluded that the opacity behaves in a definite non-linear way with 

respect to the raw materials and that interaction terms definitely play a role in affecting the 

opacity. These models included higher order polynomials and neural networks [39]. It was found 

that the opacity values from the polynomial model were only accurate in a specific area of the 

experimental design while the predictions from the neural networks were accurate in the entire 

area of the selected factors. The architecture of the neural net used by Tusar et al is illustrated in 

Figure 2.13. 

 

 

 

 

 

 

 

 

 

Figure 2.13 Neural Network Architecture Used by Tusar et al [25] 

 

It can be seen that an extra input node was added to the existing four input factors. This node is 

for film thickness after it was found that the film thickness also affects the opacity drastically. A 

linear dependence between the root mean square error (RMSE)†† and the pigment was found. It 

was concluded that the neural network model was the most appropriate after analysing the errors 

between the actual and the predicted opacity values. 

 

Tusar et al also investigated the non-linear behaviour of impact resistance and adhesion with 

respect to the raw materials of a clear coat [25]. Modelling with higher order polynomials and 

neural networks were used in a comparative study. It was found that both models are necessary 

to obtain a complete picture of correlation within the system. After validating the neural network 

model with a test dataset, it was concluded that different kinds of architecture gave both good and 

bad models and therefore, that optimisation of the neural network architecture was also very 

important. The optimum neural net architecture found by Tusar et al to model the impact 

resistance and adhesion the most accurately, is illustrated in Figure 2.14. 
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Figure 2.14 Neural Network Architecture Used by Tusar et al [25] 

 

Figure 2.14 indicates that only three factors (polyester concentration, catalyst concentration and 

curing temperature) were used for model predictions. The advantage of using the specific 

architecture of Figure 2.14 (with two target nodes (impact resistance and adhesion), in a single 

neural network model) is that a general optimum for both factors is easier to locate.  

According to the statistical evaluation, the neural network were accurate in prediction of impact 

resistance but not for adhesion values. It was recommended that a new set of experiments should 

be performed under different conditions. This included a larger training set or setting the target 

values of the output nodes to a narrower band (form 0.3 to 0.7 instead from 0.1 to 0.9). The 

advantage of a neural network is that new measurements can simply be added to the “training” 

set. According to Tusar et al, the neural network architecture does not have to be changed, even 

if the new measurements change the response surface. However, all of this once again indicates 

the importance of a thorough experimental design that can prevent the necessity of post-addition 

of extra measurements. 

After statistical analysis of the neural network model, a formulation for a new clear coat was made 

based on the neural network predictions. The major advantage of obtaining a formulation in this 

way was that a formulation is available for every point (i.e. a product with exact defined 

properties) in the entire possible measurement space. This meant that the formulation could be 

easily modified for meeting the requirements and demands of the market.  

 

Although not entirely applicable to the coatings industry, neural networks have also proven to be 

useful in prediction tablet coating properties in the pharmaceutical industry. It was shown by A.P. 

Plumb [43] and Hussein et al [41] that neural networks are superior in predicting the properties of 

a previously unseen formulation and are inherently more valuable as design tools in the 

development and optimisation of pharmaceutical formulations. 
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2.5 MODELLING THE RELATIONSHIP BETWEEN PAINT PROPERTIES AND 

PAINT RHEOLOGY 
The understanding of coating performance in terms of rheology is far from complete [2]. Among 

the reasons are (a) the complexity of coating systems, which complicates the understanding of 

the role of rheology in process outcomes, and (b) difficulty in linking measured fundamental 

properties with real-world performance. Rheology has mainly been used as a quality evaluation 

mechanism, rather than a quality prediction mechanism, arising from typical problems such as: 

‘paint A spatters more than paint B, what is the difference in rheological behaviour between paint 

A and B and what causes it?’ Of course, the rheological evaluation will indicate the differences in 

rheological behaviour, but at what point is differences in rheological behaviour significant in 

affecting a paint property? One answer to the dilemma is computer simulation of coating 

processes, which utilises the fundamental rheological data as the required input. However, 

although computer modelling is perhaps the ideal approach, it has not always been readily 

accessible [2]. Many coating problems were attempted to be solved from shear viscosity and 

viscoelastic data alone [23], [5], [24], [20] obtained from rheological measurements of paints. The 

data obtained from these measurements are mostly qualitative and can only be used for 

comparison between paints.  

Modelling of product properties in terms of the rheological behaviour has been done in other 

areas of research, notably the pharmaceutical industry [32]. The pharmaceutical industry is 

technically very advanced and usually at the cutting edge of technology (due to the nature of the 

products), so the similarity between the modelling in this study and that done by others in the field 

of coatings rheology is a welcoming sign for the paint manufacturer. 

It is clear that an empirical model, which relates the paint properties to the rheology is required 

and an article in Progress in Organic Coatings, 2004 [42] stated that one of the main challenges in 

the coatings industry that still remains, is to “Develop relationships between these properties 

(rheological) and relevant paint properties”. 

 

2.6 NOMENCLATURE 

 

Abbreviations 

CSD   Controlled shear deformation 

CSR   Controlled shear rate 

HEUR   Hydrophobically modified ethylene urethane oxide rheology modifier 

LVER   Linear viscoelastic range 

PVC   Pigment volume concentration 

RMSE   Root mean square error 

VOC   Volatile organic compound 
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Symbol   Description 

f   Frequency (Hz) 

G’   Storage modulus (Pa) 

G”   Loss modulus (Pa) 

t   Time (s) 

xk   Independent variable k 

yi   Dependent variable i 

 

Greek Symbol  Description 

iα    Slope of preliminary model, (i=HS, LS, 3-ITT(rot), etc) 

iβ    Offset of preliminary model, (i=HS, LS, 3-ITT(rot), etc) 

kβ    Regression coefficient of the k’th term 

γ    Deformation or strain (%) 

LVERγ    Strain limit of the linear viscoelastic range (%) 

γ&    Shear rate (s-1) 

δ   Phase shift angle, loss angle (°) 

tan δ   Loss factor, damping factor ( - ) 

ε    Error 

η    Shear viscosity (Pa.s) 

∗η    Complex viscosity (Pa.s) 

∞η    Infinite shear viscosity (Pa.s) 

Lτ    Levelling stress (Pa) 

yτ    Yield stress (Pa) 

YPτ    Yield point in terms of stress (Pa) 

ω    Angular frequency (rad/s) 
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3 EXPERIMENTAL METHODS 

AND TECHNIQUES 

3.1 INTRODUCTION 

Research in the paint industry usually requires extensive experimental work due to the practical 

nature of the product. The experimental methods (manufacturing and test work) are often quite 

tedious and very time consuming. Therefore, it is important that the data obtained from the 

experimental work should be adequate right from the start to prevent any additional experimental 

work. Various techniques are used in this study to ensure the adequacy of the data. Among these 

are: 

i. A systematic approach of designing the experiments so that valid and objective data are 

obtained from the results (see Section 3.2 – Design of Experiment). 

ii. International standard test methods are used for the measurement of paint properties. This 

ensures uniformity in the results but also provides the advantage that conclusions and 

interpretations obtained from the data can be compared internationally. Unfortunately, up to 

date, no standard test methods exist for the evaluation of the rheological behaviour of paint. 

However, the rheological methods used in this study can be seen as a contribution in 

establishing these standards. 

iii. A scientific method is followed to ensure that the effect of process variables are minmised. 

3.2 DESIGN OF EXPERIMENTS (DOE) 
Statistical design of experiments refers to the process of planning the experiment so that 

appropriate data can be analysed by statistical methods, resulting in valid and objective 

conclusions, in other words, the statistical approach is necessary if we wish to draw meaningful 

conclusions from the data. Choosing an experimental design to accommodate constraints on the 

sample size and experimental conditions, while also considering interactions, replications and 

non-linearities, is an important first step [1]. 

Empirical models are best developed with data that is obtained from traditional statistically 

designed experiments. The conclusions rely heavily on how the data were collected and therefore 

on the manner in which the experiments were designed and performed [2]. Amongst others, two 

of the main reasons why experimental design is important, are as follows [3]: 

i. Correlated data does not favour the development of an adequate model. Most data usually 

have strong correlations somewhere within the independent variables which can be 

minimised with proper experimental design. 

ii. Experimental design ensures that the dataset fully populates the n-dimensional feasible 

region of allowable process parameters. 
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Powerful desk-top software tools now make it easier to optimise paint formulations [4]. Statistically 

based design of experiments for mixtures has proved to be a viable method for making 

breakthrough improvements in cost and performance. A software package, Design-Expert® 6.0 

from Stat-Ease, is used to generate the experimental design for two sets (screening and the 

modelling) of experiments‡‡. The screening process results in identifying the most important 

variables, which are then used for detailed modelling.  

3.2.1 DOE FOR THE SCREENING PROCESS 

Due to the complexity of the problem, a statistical screening process was required for evaluating 

the most important variables before the actual modelling could begin. These type of screening 

experiments have been successfully carried out before in the paint modelling process by other 

researchers [5]. Screening of many factors gives information about [6]: 

• What the most important factors are 

• Range of the factors 

• Curvature (non-linear behaviour) in the response 

• The next step to take. 

Screening designs provide simple models with information about dominant variables, and 

information about ranges. In addition they result in a few experiments, which means that relevant 

information is gained in only a few experiments. Special screening designs are needed in 

constrained regions or mixture problems. Mixture problems are common in the chemical industry 

[7], [8], [9], [10], because the sum of components add up to 100%. This introduces a constraint on 

the design and must be handled with special tools and models. D-optimal designs are used when 

there are constraints put on the factors [11]. Linear models are sufficient for a screening design, 

since we are only interested in the major effects [6]. 

 

Screening designs in Design-Expert® are available for mixtures with 6 to 24 components and 

allows investigation of a large number of components in a minimal number of blends. The layout 

of the design that is used for the screening of the most important variables is as follows: 

• Type: Mixture design (a type of design that is used where sum of components add up to unity) 

• Design: Constrained design space (a type of design where many different vertices are 

possible and not only those on the outer edges of the design space)  

• Algorithm type: Vertex -screening (an algorithm that uses the D-optimal algorithm to pick the 

best vertices to estimate a linear model) 

• Centroid replicates: Replicates in the centre of the design-space that provide an estimate of 

pure error. The centroids also provide an estimate of curvature. 

 

A paint formulator was consulted and it was suggested that a 20% variation in mass on the paint 

components are within practical limits and therefore the level of each variable (paint raw material) 

                                                 
‡‡ Companies such as Ciba-Geigy®, Duracell®, IBM®, Johnson & Johnson®, Mobil®, Sigma-

Aldrich® and Unilever® have used Design-Expert® as part of their experimental design. 
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was set at + 20% and -20%. The standard formula with its upper (+20%) and lower (-20%) limits 

given in Table 3.1. 

Table 3.1 Upper and Lower Limits of Paint Formulation Used in the Screening Process 

Raw Material Lower Limit (-20%) Standard Formula (%) Upper Limit (+20%) 

Water 13.23 14.14 15.73 

Soda Ash 0.12 0.15 0.18 

Fungicide 0.16 0.20 0.24 

Surfactant 0.18 0.23 0.28 

Dispersant 0.94 1.18 1.42 

Antifoamer 0.39 0.49 0.59 

Solvent 3.26 4.08 4.89 

Pigment 13.87 17.34 20.81 

Extender 9.66 12.08 14.49 

Emulsion/Binder 29.95 37.44 44.93 

Organic Pigment 7.83 9.79 11.75 

Coalescent 1.27 1.59 1.91 

Rheology Modifier 1 0.82 0.82 0.82 

Rheology Modifier 2 0.13 0.13 0.13 

 

Note the upper and lower limits of Rheology Modifier 1 and 2. These levels are kept constant, 

regardless of the +20% upper and -20% lower limits. The idea behind this is that it is already 

known that the rheology modifiers have a major influence on the rheology. The idea of the 

screening process is to determine the most important variables, therefore the levels of the 

rheology modifiers are not varied because it is already known that they play a major role in the 

rheology of the paint. 

 

There are several approaches in developing designs for constrained mixture experiments. A 

canaconical form of a quadratic mixture model as proposed by Scheffe (1958) has been used by 

other paint researchers [5] and was considered adequate to represent the variability in the 

responses of the paint properties. 

 

The constraints on the levels of the paint components, given in Table 3.1, along with the design 

layout described above, were given to Design-Expert® and the program came up with a total of 29 

runs. The variation (in % of the original formulation) of each raw material is given below for each 

of the 29 runs. Figure 3.1 to Figure 3.12 illustrates the random variation of raw material levels for 

the respective runs. The actual paint formulation is given in Chapter 10 – Appendix C. 
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Figure 3.1 Variation of Water   Figure 3.2 Variation of Soda Ash 
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Figure 3.3 Variation of Fungicide  Figure 3.4 Variation of Surfactant 
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Figure 3.5 Variation of Dispersant   Figure 3.6 Variation of Antifoamer 
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Figure 3.7 Variation of Solvent   Figure 3.8 Variation of Pigment 
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Figure 3.9 Variation of Extender   Figure 3.10 Variation of Emulsion 
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          Figure 3.11 Variation of Organic Pigment   Figure 3.12 Variation of Coalescent 

 

The vertex-screening (D-optimal algorithm) ensures that the best vertices (ratios of paint 

components) are chosen so that a linear model could be fitted to the data The linear model will 

not give much information, if any, about the interactions between the paint components and 

therefore screening only reveals the “big hitters”.  

 

3.2.2 DOE FOR MODELLING PURPOSES 
Experiments need to be performed in order to obtain data for three models. The experiments 

need to be of such nature that the correlation between: 

i) the raw materials and the rheological behaviour is obtained (MODEL 1) 

ii) the raw materials and the paint properties is obtained (MODEL 2) 

iii) the rheological parameters and paint properties is obtained (MODEL 3). 

The main objective of this study is to predict the relationships between the raw materials and the 

rheological and mechanical properties of paint. The development of an empirical model aims at 

establishing internal validity (the approximate truth about inferences regarding causal 

relationships). Empirical models rely heavily on the experimental data, therefore careful attention 

is given to the design of the experimental space.  

Various modelling techniques have been used in modelling of coating processes, ranging from 

linear [12], [13], polynomial [8] to neural networks [10], [12], [13], [14], indicating that linear as well 

as non-linear causal relationships exist. Similar relationships have also been found in preliminary 

work of this study (screening experiments). For the models under development to be of practical 

value, it is necessary that they should: 

i. establish accurate approximations regarding causal relationships (linear and non-linear) 

ii. be able to establish these approximations over a wide range of formulation possibilities (in 

other words, over the entire design space). 

Statistical design of experiments can assist in achieving these goals. There are many types of 

experimental designs such as Box-Behnken and central composite designs, which map the 

centroid and surface of the model hypervolume respectively. This study uses computer-generated 

designs with extensive internal mapping to ensure that the most accurate approximations 

regarding the causal relationships are established. The experiments are designed based on 

modified distance-based (MDB) point selection techniques. These techniques ensure that: 
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i. the chosen points are adequate to estimate the selected polynomial. This study makes use 

of the special cubic polynomial (equation 3.1) for point selection [2]. 
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The special cubic polynomial facilitates linear as well as higher order terms. Higher order 

terms will typically be necessary in a study such as this because (1) the phenomena studied 

may be complex and (2) the experimental region is the entire operability region and is 

therefore large, requiring an elaborate model. 

 

ii. the set of points are spread (approximately) evenly over the entire feasible design region.  

 

These techniques will assist in making the linear and non-linear models more adequate. However, 

non-linear models, such as neural networks, rely completely on empirical data to generalise the 

underlying trends in a system. The extent of nonlinearity or curvature are not known in advance, 

meaning that the required ability of the neural network to interpolate between the records is also 

not known. Systems with a high level of physical complexity need more data points to 

accommodate a higher degree of curvature [15]. The physical complexity of the system is not 

known in advance and therefore the number of data points required for adequate approximations 

is also not known. It is up to the computer-generated design of Design-Expert® to produce a 

number of records for the experimental design that offers extensive internal mapping of the 

hypervolume, as far as the special cubic polynomial allows. Design-Expert® uses the modified 

distance based design (MDBD). Rules of thumb do exist to establish a rough idea of the number 

of exemplars required for neural network modelling (see Section 3.2.2.2 – Sample Size).  

 

3.2.2.1 MODIFIED DISTANCE BASED DESIGN (MDBD) 

Distance based point selection chooses points from the candidate point set in a way that achieves 

maximum spread throughout the design region. The modified distance method checks each point 

as it is added to see if it estimates an additional coefficient in the model. The candidate point set 

is based on the model selected for the design. Design-Expert® offers an array of models and a 

model is chosen based on its ability to map non-linear functions the best. The point is not added 

to the design unless it contributes to coefficient determination. 

The number of data points for the experimental design is determined by the number of input 

factors for the chosen model and the number of input factors are comprised of: 

• the six most important factors as determined in the screening experiments (see Chapter 4) 

• another two factors, which are the two types of rheology modifiers that were not included in 

the screening experiments 

• a combination of the remaining six paint raw materials that do not play as important role in 

affecting the rheology (also determined from the screening analysis) 
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This results in a total of nine input factors which are used in the experimental design and Design-

Expert® then calculates that a total of 134 runs will be sufficient in determining the coefficients for 

a cubic model. However, it must be noted that a cubic model is only being used as a type of 

model to generate data points that map the design space in the most non-linear way possible 

(that is available from the Design-Expert® software). This is being done because non-linear 

models will also be used to fit the data. The level of variation (in percentage) of the nine input 

factors (the eight most important raw materials plus the combination of the remaining six raw 

materials) for each run is given in the figures below. The actual paint formulations are given in 

Chapter 10 – Appendix C. 
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Figure 3.13 Variation (%) in Emulsion Levels on Standard Formulation 

WATER

-30

-20

-10

0

10

20

Paint Samples

[%
]

 

Figure 3.14 Variation (%) in Water Levels on Standard Formulation 
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Figure 3.15 Variation (%) in Solvent Levels on Standard Formulation 
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Figure 3.16 Variation (%) in Pigment Levels on Standard Formulation 
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Figure 3.17 Variation (%) in Extender Levels on Standard Formulation 
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Figure 3.18 Variation (%) in Organic Pigment Levels on the Standard Formulation 
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Figure 3.19 Variation (%) in Rheology Modifier 1 Levels on the Standard Formulation 
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Figure 3.20 Variation (%) in Rheology Modifier 2 Levels on the Standard Formulation 
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COMBINATION 
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Figure 3.21 Variation (%) in the Combination of the six Remaining Raw Materials in the 

Standard Formulation 

3.2.2.2 SAMPLE SIZE 

It has been mentioned in Section 3.2.2 – DOE for Modelling, that the experimental design for 

modelling purposes is designed in such a way so that it assists in establishing causal 

approximations for both the linear and non-linear modelling techniques. The role of the sample 

size is of obvious concern and has always been a major issue when estimating what a sufficient 

size is for non-linear mapping such as the training of neural networks [1]. In general, the larger the 

sample size, the better the neural network performs at generalising the underlying trends [15], 

however a major problem in this study was the data acquisition process that, due to the nature of 

the coatings industry, is a tedious procedure. The size of the data sets depends on the complexity 

of the problem, the intrinsic dimensionality of the data, as well as the requisite resolution of the 

problem. An important question is “How large is large enough?” An exact answer can be obtained 

analytically [16], e.g. by means of Monte Carlo experiments, but these have limitations in that the 

results obtained pertain only to the environment in which the experiments are carried out and it is 

difficult to know whether any given data-generating mechanism is to any degree representative of 

the realistic empirical settings. Motivated by the desire to obtain distributional results, statisticians 

have developed so-called “resampling techniques” that permit accurate estimation of the sample 

distribution, but this is i) impractical in this situation and ii) the computational cost of such a 

procedure is impressive and today’s computers can not deal with the fundamental difficulty of the 

problem. Therefore, answering the question is extremely difficult and highly context dependent 

and there is no simple general answer and many rules of thumb [15]. One of these rules of thumb 

is given by Haykins [17] as: 
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From equation 3.2 it is calculated that the required size of the exemplar training set is roughly 150 

samples for MODEL 3 ( 3=p ) and 450 for MODEL 1 and MODEL 2. ( 9=p ). These estimations 

are based on no a priori knowledge about the complexity (dependence among factors) of the 

problem or the optimum network architecture and are therefore only used as a rough guide. 

 

The literature is further consulted to give more insight on the number of exemplars required for 

adequate generalisation of the neural network. Previous studies [18] indicate that 102 records 

were sufficient for a neural network comprising of eight input factors and a single hidden layer of 5 

nodes, to confidently predict the properties of a coating. Once again, this type of reference can 

only be used as an approximation. The 134 exemplars that were generated by the software of 

Design-Expert are sufficient.  

 

The fact that the ratio of the number of samples to the number of weights of the neural network 

can also be used as a varying factor, meant that manipulation of the network architecture was 

also an option for better generalisation capabilities of the neural network [19].  

3.2.2.3 PIGMENT VOLUME CONCENTRATION (PVC) AND VOLUME SOLIDS (VS) 

A dried paint film is a three-dimensional structure and many performance attributes depend 

directly upon the volume proportions of the major ingredients. Weight relationships provide less 

useful guidance, except for the primary consideration of cost. A widely accepted way of viewing 

pigment content is the pigment volume concentration (PVC) of the dry paint film. This is the 

percentage of combined pigment volumes relative to the total volume of all non-volatile 

components. 

 

 100×
+

=
PigmentofVolumeBinderofVolume

PigmentofVolume
PVC   (3.3) 

 

The percentage PVC at which there is just enough binder to bind the pigment particles is called 

the critical pigment volume concentration (CPVC) and depend on the binder type and the “binder 

demand” of the pigment. 

The volume solids (VS) is the volume of the solids material in a given volume of wet paint, 

expressed as %.  

 

 100×
+

=
VolumeTotal

PigmentofVolumeBinderofVolume
VS   (3.4) 
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The volume solids determines a very important characteristic of the paint – how much dry film 

thickness (DFT) will remain from a particular wet film application. 

 

From Figure 3.13 to Figure 3.21 it is clear that each factor varies between plus 20% and minus 

20% on the standard formulation, as chosen. This results in the pigment volume concentration 

(PVC) for the designed experiments to be well below the critical pigment volume concentration 

(CPVC) and a volume solids (VS) to be relatively low as well.  

 

It is well known that the volume solids affect the rheology of the paint and that PVC affect most 

properties of the paint and that many of them change abruptly at the CPVC [20]. Adding 

experimental data to the existing dataset of 134 data points will increase the size of the data set, 

but more importantly, will increase the information content of the data set. Experiments above the 

CPVC and with high VS will give valuable information about the system. This will also ensure that 

extrapolation outside the initial experimental region will not be necessary. Hence it is better to 

properly design an experimental space so that extrapolation is never required. The domain will 

include variable values (extreme values) that are not commonly seen during production levels. 

 

Therefore, a further 30 data points with higher PVC and VS were added to the already existing 

134 data points so that a total of 164 paint samples had to be manufactured. The PVC and VS for 

all the samples can be seen in the figures below. The actual paint formulation for these data 

points are given in Chapter 10 – Appendix C. 
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Figure 3.22 Pigment Volume Concentration of Paint Samples 

The added experiments can be seen at the upper/lower limit of the pigment volume 

concentrations as indicated in Figure 3.22. 

 

EXTRA DATAPOINTS 
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Figure 3.23 Volume Solids of Paint Samples 

The extra points can again be seen at the upper/lower limit of the volume solids as indicated in 

Figure 3.23. The extra points added for the sake of PVC and VS are included randomly to the 

experimental design.  

3.3 MANUFACTURING OF PAINT SAMPLES 

3.3.1 THE RAW MATERIALS 

An existing paint formula of a prominent South African paint company is used for investigation. 

This specific formulation has been chosen due to its unique/exceptional flow properties in the 

local market. According to experienced paint formulators this paint has “flow properties that are 

unmatched” by other paints and therefore it seemed worthwhile to investigate its rheological 

properties thoroughly. The paint consists of the following types of raw materials [24 – 35]: 

• Pigment: Rutile pigment, wets out and disperses readily in aqueous and organic media, giving 

high opacity and excellent durability  

• Extender Particles: Assist in reinforcement of paint film, reduction in the quantity of primary 

pigment, control gloss, improves durability and stability, enhances smoothness at the time of 

application 

• Organic pigment: Improves efficiency of primary pigment, offers cost reduction and 

performance improvements 

• Dispersant: Pigment dispersant, provides good gloss and hiding power. Good dispersion 

stability and film properties 

• Emulsion: Pure acrylic emulsion, which is anionically stabilised. It lends excellent water and 

chemical resistance, excellent gloss, good flow properties and the ability to interact with 

associative thickeners, low coalescent demand and excellent adhesion properties 

• Water: Forms basis/vehicle of the paint 

• Coalescent: For improvement of paint properties such as minimum film forming temperature, 

during the film drying process 

EXTRA DATAPOINTS 
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• Solvent: It has an important effect on the viscosity and stability of the coating due to its key 

property – balancing the hydrophilic-lipophilic character. 

• Antifoamer: The antifoamer offers highly effective anti-foaming effects and storage 

stabilisation. 

• Surfactant: A non-ionic surfactant is used as a wetting agent 

• Fungicide: A microbiologically active wide-spectrum biocide is used. 

• Rheology Modifiers: Two rheology modifiers are present in this paint: 

1) Thickener of type A: A nonionic HEUR thickener that is known for its almost Newtonian 

viscosity profile is used. It offers optimum film-build due to higher viscosities at high shear 

rates. Excellent water and alkali resistance is also obtainable 

2) Thickener of type B: A nonionic HEUR thickener was used in combination with that of type 

A. It thickens significantly at low shear rates and does not cause a change in viscosity at 

medium or higher shear rates. A pseudoplastic§§ rheology profile is obtained which lends 

an excellent balance between flow and sag to the paint 

 

164 paint samples were manufactured, all with varying degrees of the above mentioned raw 

materials. 

3.3.2 SAMPLE PREPARATION 
The following formulation is followed during preparation of the paint samples: 

v In a 1 litre container (A), diameter = 11 cm: 

1) Pigment 

2) Extender 

v In a 1 litre container (B), diameter = 11 cm:  

1) Water  

2) Soda Ash 

3) Fungicide 

4) Surfactant 

5) Dispersant 

6) Antifoamer 

7) Solvent 

• Place B under mixer *** and start mixer at 150 rpm 

• Add contents of A slowly to B (+/- 3 minutes) 

• Increase mixer speed to +/- 500 rpm  

• Mix for 30 minutes 

v In a 1 litre container (C), diameter = 11 cm: 

1) Emulsion 

2) Organic pigment 

                                                 
§§ See Chapter 9, Appendix B (Section 9.1 - Flow Behaviour and Viscosity) 
*** The Cowles blade is used as the impeller device, diameter = 9 cm 
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3) Water 

• Stop mixer 

• Remove B from mixer and place C under mixer 

• Start mixer at 150 rpm and add B to C (+/- 2-5 minutes) 

v Using B: 

1) Coalescent 

2) Antifoamer 

• Mix content of B with a spatula 

• Add contents of B to C (+/- 30 seconds) 

• Mix at 150 rpm 

v In a small glass beaker 

Rheology modifier of type A 

Rheology modifier of type B 

Add rheology modifier (Type A) to C 

Add rheology modifier (Type B) to C 

Increase mixing speed to +/- 200 rpm 

Mix for 10 minutes 

 

3.3.3 SCIENTIFIC METHOD 

The scientific method is a critical issue as results obtained and used in modelling work must be 

obtained scientifically and be reliable. In order to investigate the functionality of the raw materials, 

paint samples must be prepared in such a way that the processing conditions should be 

eliminated, e.g. effect of pH and the level of pigment dispersion. These processing variables are 

minimised in order to make accurate conclusions regarding the functionality of the raw materials. 

3.3.3.1 PAINT PH 

The effect of pH is minimised by ensuring that the pH of the manufactured samples are within the 

pH specifications of the standard paint formula (8.8 – 9.5)†††. The pH of all the manufactured paint 

samples are 8.8 < pH < 9.2 and therefore fall within this range and no pH adjustment was 

required. Further tests were carried out to ensure that the effect of pH within the range of 

manufactured paint samples does not have an effect on the paint properties and rheology. This 

involved measuring a paint property (opacity) and rheology of the standard paint formulation that 

has been adjusted to a range that covers the pH of the manufactured paint samples (8.8 < pH < 

9.2). The results for the opacity values of these paint samples are shown inTable 3.2. 

 

 

 

 

                                                 
††† pH of standard formulation obtained from paint manufacturer 



  49 

Table 3.2: Opacity of Standard Paint Formula at different pH’s 

 pH Opacity 

8.82 0.96 

8.99 0.96 Standard 

9.20 0.96 

  

Although the opacity values are lower than expected, they are still similar and therefore one can 

conclude that the pH variation (+/- 0.2) of the manufactured paint samples do not have a 

significant effect on the opacity.  

 

The results of the rheology measurements of the three standard paint samples at different pH’s 

are shown in          Figure 3.24.  The oscillation and rotational rheology measurements of all three 

samples are similar and no significant differences in the rheological behaviour occur. Therefore 

the pH variation (+/- 0.2) of the manufactured paint samples do not have a significant effect on the 

rheology. 
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         Figure 3.24: Rheology of Standard Paint Samples at different pH values 

 

It has been shown that the pH variation of the manufactured samples does not play a significant 

role on opacity and the rheology. 

OSCILLATION 

ROTATION 
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3.3.3.2 PIGMENT DISPERSION 

The opacity of a pigment can be related to the refractive index (RI). Other factors affecting opacity 

are the sizes of pigment particles, their distribution and the degree of dispersion achieved [36]. 

The effect of pigment dispersion on paint properties and rheology is minimised by dispersing the 

dry powder raw materials in constant ratios with respect to the water that is used in the dispersion 

phase. This is possible because water is also added in the letdown phase of the manufacturing 

process and therefore the amount of water that is added in the pigment dispersion phase can be 

chosen accordingly so that the ratio stays the same (constant) as that of the standard paint 

formulation. An example of the design of experiments of five paint samples of the dispersion 

phase is illustrated in Table 3.3. 

Table 3.3: Design of Experiments of Dispersion Phase of Paint Sample Manufacturing 

Sample ID 

Pigment 

[%] 

Water 

(dispersion) 

[g] 

Pigment+Extender 

[g] 
extenderpigment

water
+

 

Standard formula 17.3 82.3 294.2 0.280 

95 17.1 75.2 268.9 0.280 

125 20.9 91.9 328.6 0.280 

105 15.0 71.9 257.1 0.280 

150 8.7 63.71 227.6 0.280 

90 14.6 70.0 250.3 0.280 

 

Even though the level of pigment varies, the ratio of  

 

 280.0=
+ extenderpigment

water
     (3.5) 

 

stays constant throughout the sample manufacturing process. This is only an attempt in 

minimising the variance of pigment dispersion, because other factors such as the level of 

dispersant, etc also plays a role. The effectiveness of this method is investigated by measuring 

the fineness of grind (FOG) and the rheology of the pigment grind. 

 

The level of pigment dispersion is determined by measuring the FOG according to ISO 1524:2000 

which is adopted with the permission of the international organisation for standardisation. The 

FOG specification of the standard formulation is < 25 microns‡‡‡. Images that show the FOG of 

paint samples at manufactured at: 

standard level of pigment 

-20% pigment  

+20% pigment is given in Figure 3.25.  

                                                 
‡‡‡ FOG of standard formulation obtained from paint manufacturer 
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Figure 3.25: FOG of Pigment Grind at (i) Standard Pigment (ii) -20% Pigment and (iii) +20% 

Pigment Levels 

FOG < 25 micron 

FOG < 25 micron 

FOG < 25 micron 

(i) 

(iii)

(ii) 
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The standard formulation, the paint sample with +20% pigment and the paint sample with -20% 

pigment, have similar FOG values. The rheology of these pigment grinds are shown in Figure 

3.26. Similar rheological behaviour is observed in the oscillation and rotational rheology curves.  
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Figure 3.26: Rheology of Pigment Grind at Standard Pigment, -20% Pigment and +20% 

Pigment Levels 

 

It is therefore scientifically possible to compare paint samples with different levels of pigment and 

extender by ensuring that the pigment dispersion process stays the same by means of controlling 

the ratio of dry powder materials and water in the grinding phase.   

3.4 PAINT PROPERTIES 
Unlike rheological test methods, there exist many measuring techniques for measuring paint 

properties, some of them which are developed in-house by paint companies and some of which 

are combinations of standards, etc. One of the most important criteria for choosing a test method 

was that the results had to be comparable with other results. This is only obtainable by using 

standard test methods as far as possible, e.g. American Standard Test Methods (ASTM). On the 

one hand, comparable results are very important, but on the other hand, one also wants results 

that are of practical importance and can be used by the paint formulator, e.g. Coatings Research 

Group International (CRGI). This resulted in a range of different test methods. Refer to Table 3.4 

for a list of test methods used. 

 

OSCILLATION 

ROTATION 
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Table 3.4 Standard Test Methods for Evaluating Paint Properties 

Paint Property Standard Test Method 

Dry Burnish CRGI 34 

Wet Burnish CRGI 33 

Chemical Resistance NH3 CRGI 36 

Scrub Resistance CRGI 30 

Dirt Pick-Up In-house 

Open Time ASTM D1640 – 95 

Dry Film Thickness ASTM D1005 – 95 

Wet Film Thickness ASTM D1212 – 91 

Gloss ASTM D523 – 89 

Settling ASTM D869 – 85 

Hiding Power (Roller) CRGI 43 

Hiding Power (Brush) CRGI 43 

Krebs Viscosity ASTM D562 – 01 

Opacity ASTM D2805 – 96a 

Sagging ASTM D4400 – 99 

Spreading Rate CRGI 38 

Stain Removal CRGI 32 

Water Permeability ASTM D1653 – 93 

Water Resistance ASTM D870 – 02 

Adhesion ASTM D6677 – 01 

Brush Drag ASTM D4958 – 97 

Ease of Stir In-house 

Levelling ASTM D4062 – 99 

Roller Drag ASTM D4958 – 97 

Spatter  CRGI 39 

Syneresis ASTM D1849 – 95 

Microbial Attack ASTM D3274 – 95 

 

A brief description follows which states the basic principle followed in each measurement. 

v DRY BURNISH 

• Standard: CRGI 34 

• Summary: A drawdown of a paint film (175 mµ ) is allowed to age for one week at room 

temperature. A cheesecloth-wrapped sponge is used to burnish the film under controlled, 

reproducible conditions. The 85° gloss of the film is measured at several points in the path 

of the cloth-wrapped sponge, before and after burnishing. The increase in average gloss is 

reported 
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v WET BURNISH  

• Standard: CRGI 33 

• Summary: A drawdown of a paint film (175 mµ ) on a black plastic panel is allowed to age 

for one week at room temperature. A brittle brush is used to burnish the film under 

controlled, reproducible conditions. A soap solution is applied on the film whilst burnishing 

occurs. The 85° gloss of the film is measured at several points in the path of the brittle 

brush, before and after burnishing. The increase in average gloss is reported 

v CHEMICAL RESISTANCE NH3 

• Standard: CRGI 36 

• Summary: A paint film (150 mµ ) is drawn down on a glass panel and air dried for one 

week. A pool of dilute ammonium hydroxide (1.4% NH3) is placed in contact with the film 

and the film is rated for resistance to blistering and wrinkling. 

v SCRUB RESISTANCE 

• Standard: CRGI 30 

• Summary: A test film (150 mµ ) is drawn down on a black plastic scrub panel and air dried 

for one week. It is put into a Sheen® abrasion machine and scrubbed with a cleanser 

solution. The test is terminated when the film in scrub path has been completely abraded 

away. Results are reported in number of cycles to completely abrade away the film.  

v DIRT PICK-UP 

• Standard: In-house method 

• Summary: Dirt (sieved and ‘from the area’, according to the standard) is sprinkled over a 

paint film (150 mµ ) and left to stand for 30 minutes. The film is then washed to remove the 

dirt. Gloss values are taken before and after and is used to calculate the dirt collection. 

Categorical evaluation is also done to determine the degree of dirt collected on the film. 

v OPEN TIME 

• Standard: ASTM D1640 - 95 

• Summary: To determine set-to-touch time, lightly touch the test film (150 mµ ) with the tip 

of a clean finger and immediately place the fingertip against a piece of clean, clear glass. 

Observe if any coating is transferred to the glass. Report the time when no more paint is 

transferred to the glass. 

v DRY FILM THICKNESS 

• Standard: ASTM D1005 - 95 

• Summary: Close the gauge of a micrometer slowly until contact is made with the uncoated 

test panel and record the reading. Open the gage and lay the coated test panel under the 

gauge. Close the gauge slowly and take the reading. The difference in readings is the 

thickness of the film. Take average values. 

v WET FILM THICKNESS 

• Standard: ASTM D1212 - 91 
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• Summary: A draw-down (150 mµ ) of the paint is made and the wet film thickness is 

determined as quickly as possible to reduce shrinkage due to solvent loss. A gauge with a 

convex lower surface is pushed into the wet film until the centre touches the substrate. 

Read the point at which the coating first makes contact with the eccentric wheel and 

determine the mean which is considered as one reading. 

v GLOSS 

• Standard: ASTM D523 -91 

• Summary: A gloss meter makes measurements at 20, 60 and 85 degrees at the surface of 

a  dry paint film (150 mµ ). Take the average after three readings. 

v SETTLING 

• Standard: ASTM D869 85 

• Summary: Place paint in a container, close the container and hold undisturbed for shelf 

aging for six months. After six months, open the container and use spatula to determine 

the extent of portions of the paint that may have separated during storage by moving the 

spatula at the bottom of the container. Note that this is a very subjective method. 

v HIDING POWER 

• Standard: CRGI 43 

• Summary: Measure the reflectance of the paint on the black and white painted surfaces 

with a reflectance-measuring instrument. Calculate mean values of reflectance of each 

test area at four locations. 

v KREBS VISCOSITY 

• Standard: ASTM D562 - 01 

• Summary: The load required to produce a rotational frequency of 200 rpm for an offset 

paddle rotor immersed in a paint is determined.  

v OPACITY 

• Standard: ASTM D2805 – 96a 

• Summary: Measure the reflectance of the paint film (150 mµ ) on black and white hiding 

power charts with a reflectance-measuring instrument. Calculate mean values of 

reflectance of each test area at three locations. 

v SAGGING 

• Standard: ASTM D4400 - 99 

• Summary: The paint is drawn down on a non-porous surface using a special segmented 

blade. The panel is then hung in a vertical position with the stripes formed by the 

segmented blade arrayed horizontally, and the film is rated for sag tendency.  

v SPREADING RATE 

• Standard: CRGI 38 

• Summary: After the weight per volume of the test paint is determined, the coating is 

applied onto a surface of known area. The net weight of paint used is determined, then the 

spreading rate in terms of surface area per volume is calculated by conversion of the 

weight of paint to its equivalent volume. 



  56 

v STAIN REMOVAL 

• Standard: CRGI 32 

• Summary: A test film (175 mµ ) is drawn down on a scrub panel. After one week it is 

stained with specified staining media, put into a washability machine (same machine used 

for testing of burnish and scrub resistance - Sheen® Abrasion Tester) and scrubbed with a 

cleaning solution. Reflectance properties are measured with a colour computer before and 

after scrubbing. 

v WATER PERMEABILITY 

• Standard: ASTM D1653 - 93 

• Summary: The test specimen (paint film of 150 mµ  on filter paper (grade 589/1, or “fast”)) 

is sealed to the open mouth of a cup containing water, and the assembly is placed in a test 

chamber with controlled humidity. Periodic weighing of the cup is made to determine the 

rate of water vapour permeating through the paint film. 

v WATER RESISTANCE 

• Standard: ASTM D870 - 02 

• Summary: Paint coated glass panels (paint film of 150 mµ ) are partially immersed in 

water. The exposure conditions are controlled by selecting the temperature of the water.  

Water permeates the coating at rates that are dependent upon the characteristics of the 

coating and upon the temperature of the water. The time it takes for softening of the 

coating to occur is reported. 

v ADHESION 

• Standard: ASTM D6677 - 01 

• Summary: Adhesion is determined by making an “X” cut into the coating film (150 mµ ) to 

the substrate and lifting the coating with an adhesive material. Adhesion is evaluated 

qualitatively on a 0 to 10 scale. 

v BRUSH DRAG 

• Standard: ASTM D4958 - 97 

• Summary: A polyester brush (width = 50 mm) is used to apply paint on a test area. The 

degree of brush drag is evaluated subjectively and given a rating. 

v EASE OF STIR 

• Standard: In-house Method 

• Summary: The ease of stir is evaluated with a stirring apparatus and given a subjective 

rating. 

v LEVELLING 

• Standard: ASTM D4062 - 99 

• Summary: A special levelling test blade designed to lay down a film with parallel ridges 

simulating brush marks is used for applying the paint to a substrate. After allowing the 

draw-down to dry in a horizontal position, levelling of the test paint is rated by comparing 

the contrast of lightness and shadow caused by the paint ridges under the same lighting 

conditions. 
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v ROLLER DRAG 

• Standard: ASTM D4958 - 97 

• Summary: Follows the same procedure as for brush drag, except for a sheep skin roller.  

v SPATTER 

• Standard: CRGI 39 

• Summary: The paint is applied by roller to a test surface. A black plastic sheet is placed on 

a small horizontal shelf directly beneath and at a right angle to the test surface. The paint 

is applied in a certain manner and the degree of spatter is rated according to the intensity 

of the droplets that have accumulated on the black plastic sheet. 

v SYNERESIS 

• Standard: ASTM D1849 - 95 

• Summary: The paint is poured into a test tube and left to stand for six months. A visual 

evaluation is done after 6 months to determine the degree of phase separation. A 

subjective rating is given. 

v MICROBIAL ATTACK 

• Standard: ASTM D3274 - 95 

• Summary: A thin film (150 mµ ) of paint is applied to a glass panel. The panel is left to 

stand in open air conditions. A visual evaluation is done after 6 months to determine the 

degree of microbial attack on the film. 

3.5 RHEOLOGY 

3.5.1 INTRODUCTION 
The ideal situation for the paint formulator would be to adjust low, medium and high shear rate 

behaviour independently, allowing optimisation of each property in turn [21]. For coatings, the 

process of application and film formation obviously requires not only a large total deformation, but 

also a high degree of control of flow in order to achieve success. Flow cannot be controlled unless 

it can be properly measured. The objective for the applied rheologist, therefore, is to develop 

methods of rheological characterisation that (a) yield accurate data for complex fluids, and (b) are 

relatable to the critical processes that paints undergo. The latter objective requires 

characterisation methods that cover a wide range of stresses and time scales [22]. 

3.5.2 RHEOLOGICAL MEASUREMENTS 

Various types of viscometers are in common use. For example, the high-shear viscosity of paint is 

often measured with the ICI Cone and Plate viscometer, whilst for low and medium shear rate 

measurements, the Brookfield, Stormer and ICI Rotothinner viscometers are commonplace. 

These viscometers have the drawback that they are only capable of measuring single viscosity 

points. Modern sophisticated rheometers are capable of measuring various rheological 

parameters over the complete range of shear rates/deformation, allowing for the graph to be 

plotted over the entire input range. 
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3.5.2.1 RHEOMETER 

Rheolmeters are able to measure more than mere viscosity values are called rheometers. All the 

rheological properties of the paint samples were measured with a Paar Physica® Modular 

Compact Rheometer (MCR 300). The measuring drive of the rheometer is able to adjust speeds 

and to measure the torques that are generated - it is then operated in the controlled shear rate 

mode (CSR) for rotational tests or controlled shear deformation mode (CSD) for oscillatory tests. 

The rheometer is also able to adjust the torques and to measure the speed that is generated – it 

is then operated in the controlled shear stress (CSS) mode. The rheometer software carries out 

the conversion to rheological variables after identifying the measuring system and its geometrical 

dimensions.  

3.5.2.2 MEASURING SYSTEMS 

Different measuring systems are available, depending on the type of measurement that is to be 

performed. 

1) Cone and plate (CP) 

This measuring system consists of an upper cone and a lower plate. It is designed for high 

shear rates and therefore has a very narrow shear gap. The geometrical dimensions of the 

cone are determined by the cone radius R and the cone angle α (angle at which the cone is 

truncated with respect to the horizontal). The cone and plate (CP) measuring system has the 

following advantages [23]: 

• There are homogenous shear conditions present, because the shear rate is constant in 

the entire conical gap 

• Only a very small amount of the sample is required 

• Possible air bubbles are pressed out of the conical shear gap before the test starts 

• Cleaning is easy and safe. 

Disadvantages of the cone and plate (CP) measuring system are [23]: 

• It limits the maximum particle size allowed in the sample 

• For high-viscosity samples, it can cause shear even before the test has started 

• Skin formation and solvent evaporation can occur at the edge of the upper plate 

• It is recommended that CP measurements should be run at one temperature only, due to 

the strong influence of equipment-dependent thermal expansion on the narrow gap. 

Despite the many possible disadvantages, the first advantage outweighs them all and should 

be used under shearing conditions, unless conditions dictate otherwise. 

2) Plate and plate (PP) 

This measuring system consists of two plates. The surfaces of both the upper and lower plate 

are flat. The geometry of the plate is determined by the plate radius R. The plate and plate 

(PP) measuring system has the following advantages [23]: 

• Oscillatory tests within the LVER can be performed 

• It is possible to set the gap size and therefore it is possible to measure dispersions with 

relatively large particles 

• The shear rate can be changed easily by changing the gap size 
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• Temperature effects due to expansion or contraction are less pronounced using a large 

gap.  

Disadvantages of the plate and plate (PP) measuring system are [23]: 

• There is no constant shear gradient in the gap because the shear rate increase form zero 

at the centre of the plate to a maximum at the edge. This can greatly influence samples 

which are viscoelastic. However, at very low deformation values, within the LVER, this 

effect is negligible and can therefore be used for oscillatory tests. 

3.5.2.3 MEASUREMENTS 

Measurements were performed both in the rotational (CSR) and oscillatory (CSD) modes. Table 

3.5 gives a detailed description of the measurements that are performed on the paint samples. 
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Table 3.5 Rheological Measurements 

Type 
Measuring 

System 
Mode Presetting Measurement 

Flow Curve (FC) CP CSR Shear rate profile ( )tγ&  Shear stress ( )γτ &  

High Shear (HS) CP CSR 
Constant shear rate 

=γ& constant 
Shear stress ( )tτ  

Low Shear (LS) CP CSR 
Constant shear rate 

=γ& constant 
Shear stress ( )tτ  

3-ITT (rot) CP CSR Shear rate profile ( )tγ&  Shear stress ( )tτ  

Amplitude Sweep 

(AS) 
PP CSD 

( ) ( )tt A ωγγ sin⋅=  

• =ω constant 

• =Aγ variable 

deformation 

amplitude 

( ) ( )δωττ +⋅= tt A sin
 

Frequency Sweep 

(FS) 
PP CSD 

( ) ( )tt A ωγγ sin⋅=  

• ( )tωω =  

• =Aγ constant 

( ) ( )δωττ +⋅= tt A sin
 

Time Sweep (TS) PP CSD 

( ) ( )tt A ωγγ sin⋅=  

• =ω constant 

• =Aγ constant 

( ) ( )δωττ +⋅= tt A sin
 

3-ITT (osc) PP CSD 

( ) ( )tt A ωγγ sin⋅=  

• =ω constant 

• =Aγ constant 

( ) ( )δωττ +⋅= tt A sin
 

Extra Low 

Frequency Sweep 
PP CSD 

( ) ( )tt A ωγγ sin⋅=  

• =ω constant 

• =Aγ constant 

( ) ( )δωττ +⋅= tt A sin
 

 

The last three tests of Table 3.5 produced different test results although the presetting and 

measurement seemed the same. These tests differed in measurement stages and measurement 

duration.  

All the tests were performed at 25 °C and with presettings as described in Table 3.5. The cone 

and plate (CP) measuring system was used for all the tests that were performed in the controlled 

shear rate (CSR) mode. The truncated upper cone ensured that the shear rate stays constant 

across the entire radius of the cone so that a similar shear was applied to the whole paint sample. 

The plate-and-plate (PP) measuring system was used for all the tests that were performed in the 



  61 

controlled shear deformation (CSD) mode. Of all the controlled shear deformation tests, the 

amplitude sweep was performed first in order to determine the linear viscoelastic range (LVER) of 

each paint sample. The rest of the controlled shear deformation tests (Frequency Sweep, Time 

Sweep, 3-ITT and Extra Low Frequency Sweep) were all performed within the LVER ( )LVERγγ < . 

3.6 NOMENCLATURE 
 

Abbreviations 

3-ITT   Three-interval-thixotropy-test 

AS   Amplitude sweep 

ASTM   American standard test methods 

FC   Flow curve 

CPVC   Critical pigment volume concentration 

CRGI   Coatings research group international 

CSD   Controlled shear deformation 

CSR   Controlled shear rate 

CSS   Controlled shear stress 

FS   Flow curve 

HS   High shear 

LS   Low shear 

LVER   Linear viscoelastic range 

PVC   Pigment volume concentration 

TS   Time sweep 

VS   Volume solids 

XLF   Extra low frequency 

 

Symbol   Description 

E   Expected value operator 

M   Hidden layer neuron count ( - ) 

N   Size of exemplar training set ( - ) 

p   Number of components (equation 3.1); number of input nodes  

   (equation 3.2) ( - ) 

R   Cone and plate radius (m) 

t   (s) 

xi   Value of variable i 

xj   Value of variable j 

xk   Value of variable k  

y   Random variable 
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Greek Symbol  Description 

α    Cone angle ( ° ) 

iβ    Regression coefficient associated with the variable i 

ijβ     Regression coefficient associated with the interaction term of variables  

    i and j 

ijkβ     Regression coefficient associated with the interaction term of variables  

    i, j and k 

γ     Deformation (%) or strain ( 1 ) 

Aγ     Strain (%) or deformation ( 1 ) amplitude  

LVERγ     Strain at limit of the linear viscoelastic range (%) or (1) 

γ&     Shear rate (1/s) 

δ     Phase shift, loss angle ( ° ) 

ε     Error of approximation 

τ     Shear stress (Pa) 

Aτ     Shear stress amplitude (Pa) 

ω     Angular frequency (rad/s) 
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4 DATA PREPARATION 

4.1 INTRODUCTION 
It is the nature of empirical data to be noisy, poorly distributed and spotty. These issues, if not 

properly addressed, can prevent even the most sophisticated and robust methods from yielding 

stable models and reliable results. Many strategies and techniques are useful in gathering, 

cleaning up and adding value to data. However, an important point to remember is that odd 

patterns in data do not necessarily indicate that the data should be modified. These patterns may 

point to important relationships within the data and may in fact be a resource to the modeller. This 

chapter has a closer look at these patterns and its aim is to gather as much information about the 

system as possible before the actual modelling begins. However, even basic modelling 

techniques are required at this point in order to learn more about the structure of the data. 

 

Figure 4.1 shows the interactions between various generated sets of data and the models 

associated with each.  

 

 

      18 Rheological Parameters 

 

   MODEL 1 

 

 

14 Raw Materials         MODEL 3 

 

 

   MODEL 2 

 

      43 Paint Properties 

Figure 4.1 Modelling Summary 

As mentioned before, the aim of this study is to develop 3 models shown in Figure 4.1. They are: 

 

• MODEL 1: Rheological Behaviour = f (Raw Materials) 

 

• MODEL 2: Paint Properties = f (Raw Materials) 

 

• MODEL 3: Paint Properties = f (Rheology Data) 
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To be able to develop these three models a lot of data is needed. This not only requires a careful 

design of the experiments (DOE), but also extensive data preparation before the actual modelling 

process can begin. Figure 4.2 illustrates the process of data preparation that precedes the 

modelling stage. 
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Figure 4.2 Flow Diagram of Modelling Process 

DESIGN OF EXPERIMENTS - 1 

Screening Process => Section 3.2.1 

DATA ACQUISITION - 1 

DATA MANIPULATION - 1 

General data preparation => Section 4.2 

Rheological parameters => Section 4.3.1 

Preliminary modelling (rheology) => Section 4.3.2 

Redundant rheological data => Section 4.3.3 

SCREENING 

Raw materials => Section 4.4.1 

Paint properties => Section 4.4.2 

DESIGN OF EXPERIMENTS - 2 

Modelling => Section 3.2.2 

DATA ACQUISITION - 2 

DATA MANIPULATION - 2 

General data preparation => Section 4.2 

Rheological variables => Section 4.3.1 

Preliminary modelling (rheology) => Section 4.3.2 

Redundant rheological data => Section 4.3.3 

MODELLING 

Linear modelling => Chapter 5 

Non-linear modelling => Chapter 6 
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4.2 GENERAL DATA PREPARATION 

This type of data preparation is done routinely on any data set and includes:  

• Removing outliers 

Anomalous outliers can be one of the most disruptive influences on a quantitative model. An 

outlier is an extreme data point that may have an undue influence on a model and should be 

removed. Outliers are often, but not always, caused by erroneous data cases. Ninety-five 

percent of normally distributed data lies within two standard deviations of the mean [1]. 

Disregarding values outside that range is a simple method for removing outliers, which due to 

their abnormal size can have a serious effect on the model. However, not all outliers are the 

result of erroneous data. The outlier could be indicating important information – perhaps the 

process is not linear. In this study outliers are not discarded without careful examination. The 

presence of outliers plays a very important role in non-linear modelling techniques such as 

artificial neural networks (ANN) [2]. Due to the extreme flexibility of artificial neural networks, 

the presence of an outlier cannot be detected. Contrary, the outlier gets integrated into the 

artificial neural network, resulting in unreliable predictions. This is a clear weakness of ANN 

and therefore possible outliers are handled with great care. 

Recall that a further 30 data points with higher pigment volume concentration (PVC) and 

volume solids (VS) were added to the already existing 134 data points so that a total of 164 

paint samples had to be manufactured. These paint samples are added with the specific 

intention to add to the information content of the data set, because it is also known that VS 

and PVC can change the rheological character and paint properties abruptly. Therefore data 

points (rheological and paint properties) with values > 2 standard deviations were not 

considered to be outliers only if they were one of the 30 extra data points with extra high/low 

PVC and solids. These data points were kept with the hope that they would add extra 

information to the non-linear nature of the problem. An illustration of possible outliers for a 

rheological parameter is given in Figure 4.3. 
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Figure 4.3 Data Points with Possible Outliers of the 3-ITT (rot) Beta Parameter 

Most of the measured data points for this rheological parameter lie within 2 standard 

deviations from the average, except for seven of these data points, as can be seen in Figure 

POSSIBLE OUTLIERS 
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4.3. These seven data points, according to the definition given in the previous paragraph, are 

possible outliers. However, distinction needs to be made between possible outliers which can 

not add to the information content and data points which can. In this case, only paint sample 

#104 is considered to be an outlier and not the others (paint samples #137, #144, #146, #148, 

#157 and #163). These samples are not considered to be outliers, even though their values 

are larger than 2 times the standard deviations, because of their extreme high/low PVC and 

VS which may lead to abnormal rheological behaviour. The value for 3-ITT (rot) β for paint 

sample #104 is replaced with the average value of the 3-ITT (rot) β. 

Outliers in paint properties are removed on the same basis as described above. 
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Figure 4.4 Data Points with Possible Outliers in Opacity Data 

Once again, note all the possible outliers in Figure 4.4. Only paint sample #88 is considered 

to be an outlier as the others are samples with extreme high/low PVC and VS. The opacity 

value for paint sample #88 is replaced with the average opacity value. 

Figure 4.4 shows that the degree of variance in the opacity values is below expected.  The 

aspect of opacity has been the subject of much theorising and speculation as stated by 

Parsons [18]: “In common with much of paint technology, theory trails practical application 

and can only partially explain observed phenomena, but as predictive tool, it is overwhelmed 

by the complexities of real life and humbled by the simplicities of direct experimentation”. It is 

therefore difficult to give the exact reason for the low level of variance experienced for this 

specific paint. However, the opacity of paint can be related to its refractive index. Rutile 

pigment (TiO2) contributes the most to the refractive index (RI) of the paint. Other factors 

affecting opacity are the size of the pigment particles, their distribution and the degree of 

dispersion achieved. It is important to note that the only relevant size (mean, distribution and 

spacing) consideration for the pigment particles is in the final dry coating. A dry paint film is a 

three-dimensional structure and the attributes depend directly upon the volume proportions of 

the major ingredients. A widely accepted way of viewing pigment content is the pigment 

volume concentration (PVC) of the dry paint film. The low variance in opacity, even though the 

pigment is varied by +/- 20% by mass, is possibly due to the fact that the standard paint 

formulation has a high PVC and therefore changes in the level of pigment do not have a 

POSSIBLE OUTLIERS 
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significant effect on the opacity. The opacity is therefore insensitive to changes in pigment 

concentration. 

 

In total, eight data points were considered to be outliers, which is a small amount considering 

the number of measurements (3618 measurements (2412 paint property measurements and 

1206 rheological measurements).  

 

• Standardising 

Various advantages exist in standardising the data: 

Ø One of the first decisions to be taken before the application of principal component 

analysis (see Section 4.3.3 Redundant Rheological Data), concerns the data on which 

the analysis are to be performed. The presence of considerable differences among the 

variables (e.g. variables representing vastly different entities, or having different units or 

scales of measurement, etc.) result in variables with large variances. If the data is not 

standardised, the principle components will simply correspond to the original variables 

with the largest variance and little will be learnt from the data. 

Ø Neural networks perform better when data is standardised. Since correlations are 

unaffected by scaling data, it is both sufficient and convenient to deal with standardised 

variables. A standardised variable is obtained by subtracting the average value for each 

observation and dividing by the standard deviation of the observations: 

 

 
deviation  standard

avg
edstandardis x

xx
x i −

=      (4.1) 

 

The average value of a standardised variable is zero. The variance is equal to 1 and the 

covariance between standardised variables is the same as the correlations of the 

unstandardised data. 

 

• Scaling 

This is accomplished by mapping the minimum and maximum values of the actual input and 

output data linearly to the respective minimum and maximum values of the network ranges. 

This is once again important for data used in neural networks. Before data can be presented 

to a neural network, it has to be scaled to within ranges that the neural network can 

accommodate. The sigmoidal activation function produces outputs in the range of -1 to +1. 

4.3 RHEOLOGICAL DATA PREPARATION 

4.3.1 THE RHEOLOGICAL PARAMETERS 

Viscosity is undoubtedly one of the most important rheological parameters characterising paints 

[3]. This is mostly due to the historical perspective - it was easy to characterise the flow behaviour 

of paint with a single viscosity measurement. However, paints are viscoelastic materials, 
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consisting of both viscous and elastic characteristics and therefore it is more appropriate to 

characterise/model a paint considering both of these properties. Using only the viscosity value as 

a model input is no longer sufficient and other researchers have also started to model viscoelastic 

materials based on the viscous/elastic properties of the material.  

 

Knowledge of the shear stress τ, the deformation γ and the phase shift δ, allows one to completely 

describe the viscoelastic properties of a material [4]. In most rheological analyses, these 

parameters are manipulated into new parameters which are more understandable, e.g., the 

storage modulus (elastic part): 

 

 .cos' δ
γ
τ

⋅







=

A

AG       (4.2) 

 

This is a measure of the material’s elasticity (where Aτ and Aγ are the shear stress and the shear 

strain amplitudes, respectively). The loss modulus: 

 

 δ
γ
τ
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


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


=

A

AG       (4.3) 

 

is a measure of the material’s energy dissipation (viscous part). The limiting cases of δ = 0° and δ 

= 90° correspond to purely elastic and purely viscous behaviour, respectively. These moduli are 

components of the complex shear modulus, which is another useful parameter that is often used 

to express paint behaviour and is defined as: 

 

 ".' iGGG +=∗        (4.4) 

 

Researchers such as Gasperlin et al [5] and Leskovsek et al [6] used the viscous (G”) and the 

elastic (G’) part of the complex shear modulus for modelling parameters. 

 

Gasperlin et al [7] also used the ratio: 

 

 δtan
'
"

=
G
G

       (4.5) 

 

which is a measure of the ratio of elastic to viscous parts of the sample, as a model parameter for 

modelling the rheological response. From the complex shear modulus (G*) one can calculate the 

complex viscosity : 
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       (4.6) 

 

which is basically the viscosity determined in the controlled shear deformation (CSD) mode in the 

linear viscoelastic region. Gasperlin et al [3] also used the complex viscosity as a model 

parameter. 

 

The rheological parameters in equation 4.2 to equation 4.6 are all very useful because they all 

make sense. They are all manipulations of the fundamental rheological properties which are not 

always so intuitively understandable, but which could also be used for modelling purposes. 

Fundamentally, the flow behaviour can be completely described by the shear stress τ (as a 

function of shear rate), while knowledge of the shear stress (τ), the deformation (γ) and the phase 

shift (δ), allows one to completely describe the viscoelastic properties of a material [4]. See Table 

4.1 for the fundamental rheological parameters 

Table 4.1 Fundamental Rheological Parameters 

 Test Presetting Result 

Flow Properties γ&  τ  

Viscoelastic Properties ( ) ( )tt A ωγγ sin⋅=  ( ) ( )δωττ +⋅= tt A sin  

 

The model parameters are therefore the shear stress (τ) from the rotational tests (flow behaviour) 

and a combined parameter ( )δτ ⋅A from the oscillatory tests (viscoelastic behaviour). 

4.3.2 PRELIMINARY MODELLING 

It is important to measure the response of paint over as wide a range as possible in order to 

obtain a true picture of the rheology profile. A single measurement is insufficient and can be 

misleading [8]. In the past a single viscosity measurement (ICI viscosity/Krebs viscosity) was used 

to evaluate the flow behaviour of paint. However, it became apparent that even though two paints 

may display the same Krebs viscosity (Figure 4.5), they behave different in terms of certain other 

flow properties. The reason for this is that paint properties need to be evaluated at different shear 

rates on the flow curve, e.g. pigment settling at low shear rates, mixing abilities at medium shear 

rates and application properties at high shear rates. Modern rheological measuring instruments 

make it possible to measure over an entire shear rate / shear deformation range. 
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Figure 4.5 Viscosity Curve of Two Paints With the Same Krebs Viscosity [9] 

 

Preliminary modelling is used as a technique to express the entire range of rheological data 

simply by fitting a trendline to the data and then using the parameters of the trendline for further 

modelling purposes. This technique has been used with success by other researchers to model 

the complex viscosity of paint over a frequency range [3], [5]. No references have been found 

where preliminary modelling is applied to other rheological curves (besides the frequency sweep), 

but in principle it is also possible and carried out in this study. Preliminary modelling is therefore 

performed on all the rheological curves (except the ‘extra low frequency’, or XLF measurement, 

which is a single point) in the following manner.  

 

1) Calculate the natural logarithm of the rheological parameter (τ for CSR tests and τ· δ for CSD 

tests) and fit the data with a trendline. 

2) Obtain the parameters α (for the slope of the curve) and β (for the offset of the curve) 

 

Figure 4.6 illustrates a flow curve (CSR test) with  

 

 y = βxα       (4.7) 

 

as the fitted trendline and 

 

 α = 0.7336 

 β = 2.9354 

 

Same Krebs 

Viscosity 
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for the trendline parameters. 

y = 2.9354x0.7336

R2 = 0.9925
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Figure 4.6 Preliminary Modelling for a Flow Curve (CSR test) 

Previously preliminary modelling has only been applied to data obtained from the frequency 

sweep [3], [5]. In this study, the method of preliminary modelling for the extraction of α and β 

values are extended to all the rheological curves. The method of preliminary modelling is applied 

to tests performed in the CSR mode, as well as to tests that are performed in the CSD mode. 

Figure 4.7 illustrates an example for the 3-ITT (OSC) test with  

 

 y = βxα       (4.8) 

 

as the fitted trendline and 

 

 α = 0.1554 

 β = 1.886 
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Figure 4.7 Preliminary Modelling for the 3-ITT (oscillatory, CSD test) 
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The α and β values of all the rheological tests are combined to form A  and B matrices of α and β 

values respectively. The A and B matrices are used for further modelling purposes.  

The R2 values in Figure 4.6 and Figure 4.7 indicate how good the fit of the trendlines to the 

natural logarithm of the data is.  

Table 4.2 R2 Values for Preliminary Modelling (Screening and Modelling Data) 

Test Type 
2
avgR (screening data) 

29 runs 

2
avgR (modelling data) 

164 runs 

Flow Curve (FC) 0.99 0.99 

High Shear (HS) 0.86 0.97 

Low Shear (LS) 0.94 0.86 

3-ITT (rot) 0.98 0.97 

Amplitude Sweep (AS) 0.99 0.98 

Frequency Sweep (FS) 0.99 0.99 

Time Sweep (TS) 0.99 0.98 

3-ITT (osc) 0.95 0.94 

 

The high
2
avgR  values in Table 4.2 indicate that the trendlines represent the data well and that the 

α and β parameters obtained from the preliminary modelling can be used with confidence in 

further modelling steps. These parameters for the preliminary modelling are presented in 

Appendix D (for the screening rheological data) and Appendix E (for the modelling rheological 

data). Both of these appendices are in electronic format on the CD at the end of the dissertation. 

4.3.3 REDUNDANT RHEOLOGICAL DATA 

4.3.3.1 BACKGROUND 

Nine rheological tests are performed on each paint sample (see Table 3.5). Some of these tests 

are related to each other and therefore the rheological data will also be correlated to a certain 

degree and many of the data obtained from these tests will be redundant. A good example of this 

is the 3-ITT tests (rotational and oscillatory). These tests are performed in the controlled shear 

rate (CSR) test mode as well as in the controlled shear deformation (CSD) test mode, which are 

rotational and oscillatory tests respectively. Figure 4.8 shows the thixotropic behaviour of three 

different paints measured with both the 3-ITT tests. 
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Figure 4.8 3-ITT Tests: (a) Rotational (CSR) and (b) Oscillatory (CSD) 

Figure 4.8 (a) and (b) almost look identical in terms of the shape and the relative placement of the 

curves. There is a definite correlation in the measurements between the two different test types 

(rotational and oscillatory). The correlation can be quantitatively observed by the correlation 

coefficients of the preliminary model parameters, α (gradient of preliminary model) and β (offset of 

preliminary model) of the rheological measurements performed on 164 paint samples. This is 

given in Table 4.3. 

 

Table 4.3 Correlation Coefficients of 3-ITT Test Parameters (Rotational and Oscillatory) 

 
)(3 rotITT−α  )(3 rotITT−β  

)(3 oscITT−α  0.88 0.16 

)(3 oscITT−β  -0.07 0.73 
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The thixotropic behaviour obtained from these test types are highly correlated (high correlation 

coefficients between αoscillatory and αrotational as well as βoscillatory and βrotational). This seems intuitive 

because the measurements are basically of the same type and it was just the test mode 

(oscillatory vs. rotational) that differed. The high level of multicollinearity (see Chapter 8 - 

Appendix A: Glossary and Terms) is therefore obvious. However, not all collinear effects are that 

obvious and statistical techniques are required for the evaluation of multicollinearity. 

4.3.3.2 MULTICOLLINEARITY IN THE RHEOLOGICAL DATA 

Table 4.4 illustrates the level of correlation between the 18 rheological variables of the modelling 

data (164 paint samples). 
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Table 4.4 Correlation Coefficients of Rheological Parameters 

RP1 RP2 RP3 RP4 RP5 RP6 RP7 RP8 RP9 RP10 RP11 RP12 RP13 RP14 RP15 RP16 RP17 RP18
RP1 1.00
RP2 -0.07 1.00
RP3 0.73 0.16 1.00
RP4 -0.07 0.88 -0.04 1.00
RP5 0.75 0.24 0.89 0.16 1.00
RP6 0.03 -0.10 0.02 -0.10 -0.03 1.00
RP7 0.64 0.30 0.77 0.26 0.82 0.01 1.00
RP8 -0.65 -0.51 -0.80 -0.42 -0.86 0.05 -0.77 1.00
RP9 0.57 0.47 0.80 0.36 0.86 0.00 0.90 -0.83 1.00

RP10 -0.43 -0.49 -0.62 -0.39 -0.70 0.04 -0.58 0.76 -0.81 1.00
RP11 0.61 0.51 0.81 0.42 0.86 -0.01 0.79 -0.87 0.87 -0.71 1.00
RP12 -0.60 -0.48 -0.81 -0.40 -0.85 -0.01 -0.85 0.87 -0.90 0.69 -0.96 1.00
RP13 0.67 0.38 0.78 0.29 0.86 -0.02 0.63 -0.78 0.73 -0.62 0.84 -0.77 1.00
RP14 0.13 -0.05 0.15 -0.03 0.14 0.01 0.17 -0.16 0.15 -0.12 0.13 -0.16 0.12 1.00
RP15 -0.20 0.08 -0.12 0.01 -0.14 -0.01 -0.09 0.12 -0.07 0.07 -0.14 0.13 -0.12 -0.17 1.00
RP16 0.47 0.61 0.65 0.50 0.67 -0.01 0.83 -0.74 0.88 -0.61 0.78 -0.80 0.62 0.09 -0.01 1.00
RP17 0.83 0.14 0.75 0.13 0.79 0.00 0.68 -0.71 0.69 -0.52 0.79 -0.79 0.70 0.10 -0.24 0.58 1.00
RP18 0.48 0.29 0.60 0.23 0.62 0.03 0.70 -0.60 0.72 -0.47 0.64 -0.68 0.50 0.13 -0.09 0.69 0.58 1.00  

RP1= )(3 oscITT−β of )(3)(3)(3)(3 lnln oscITToscITToscITToscITT xy −−−− += βα  (4.9)  RP10= FCα  of FCFCFCFC xy βα += lnln   (4.13) 

RP2= )(3 oscITT−α of )(3)(3)(3)(3 lnln oscITToscITToscITToscITT xy −−−− += βα  (4.9)  RP11= HSα of HSHSHSHSHSHS xxy γβα ++= 2   (4.14) 

RP3= )(3 rotITT−β of )(3)(3)(3)(3 lnln rotITTrotITTrotITTrotITT xy −−−− += βα  (4.10)  RP12= HSβ  of HSHSHSHSHSHS xxy γβα ++= 2   (4.14) 

RP4= )(3 rotITT−α  of )(3)(3)(3)(3 lnln rotITTrotITTrotITTrotITT xy −−−− += βα  (4.10)  RP13= HSγ  of HSHSHSHSHSHS xxy γβα ++= 2   (4.14) 

RP5= ASβ  of ASASASAS xy βα += lnln     (4.11)  RP14= LSβ of LSLSLSLS xy βα += lnln   (4.15) 

RP6= ASα of ASASASAS xy βα += lnln     (4.11)  RP15= LSα of LSLSLSLS xy βα += lnln   (4.15) 

RP7= FSβ  of FSFSFSFS xy βα += lnln     (4.12)  RP16= TSα of TSTSTSTS xy βα +=    (4.16) 

RP8= FSα  of FSFSFSFS xy βα += lnln     (4.12)  RP17= TSβ of TSTSTSTS xy βα +=    (4.16) 

RP9= FCβ  of FCFCFCFC xy βα += lnln     (4.13)  RP18= XLFC of XLFXLF Cy =     (4.17) 
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A high level of pairwise correlation (values > 0.8) is observed in the correlation matrix. The 

advantage of the correlation matrix is that it also identifies some of the correlations between 

variables that are not that intuitive. However, multicollinearity (multiple correlations) can exist 

without being identified by the correlation matrix (pairwise correlation coefficients) and the 

statistical method of computing the condition number, C, is used to determine the level of 

multicollinearity. 

 

 
matrixn correlatio  theof eigenvalue minimum
matrixn correlatio  theof eigenvalue maximum

=C   (4.18) 

 

Large values of C indicate evidence of strong collinearity. The harmful effects of collinearity 

become strong when the values of the condition number, C, exceeds 15 [10]. 

Table 4.5 Level of Multicollinearity in Rheological Data 

 Rheology Data (Screening) Rheology Data (Modelling) 

Condition Number C [ - ] 4.48 × 106 2.67 × 106 

 

It is clear from Table 4.5 that high levels of multicollinearity (C >> 15) exist between the variables. 

Multicollinearity has a negative effect on the modelling process and should be kept at a minimum 

if possible. Principal component analysis is a useful way of preventing the negative effects that 

multicollinearity has on modelling. 

4.3.3.3 PRINCIPAL COMPONENT ANALYSIS (PCA)  ON THE RHEOLOGICAL DATA 

Both Table 4.4 and Table 4.5 indicate that multiple correlations between the rheological 

parameters exist. One can therefore expect that the dimensionality of the problem could be 

decreased significantly. A statistical technique, principal component analysis, is used to simplify 

the correlated multidimensional dataset to a dataset that is i) uncorrelated and ii) lower in 

dimension so that further analysis is simplified and more significant. A small set of uncorrelated 

variables is easier to understand and work with, compared to a large set of correlated variables. 

Principal component analysis linearly transforms a set of variables into a substantially smaller set 

of uncorrelated variables containing most of the information of the original set of variables [11]. 

Technically speaking, PCA is a linear transformation that transforms the data to a new coordinate 

system such that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the second 

coordinate, and so on. Geometric representation of the steps in PCA is illustrated in Figure 4.9 
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(a)    (b)   (c) 

             x2            x2                x2 

 

 

 

 

        x1                x1                  x1 

 

 

     x3    x3       x3 

Figure 4.9 Geometric Representation of PCA: (a) Datapoints In the Observation Space, (b) 

1st PC, (c) Plane Defined by First 2 PC’s 

 

PCA can be used for dimensionality reduction in a dataset while retaining those characteristics of 

the dataset that contribute most to its variance, by keeping lower-order principal components and 

ignoring higher order ones. Such low-order components often contain the “most important” 

aspects of the data. 

 

Principal component analysis is applied to both the screening dataset and the modelling data set 

by using the Matlab® Statistics Toolbox. 

 

Since variance forms the basis on which principal components are derived, it is necessary to 

ensure that the measured variables are at least comparable in their magnitude of variance and 

their units of measurements. Therefore, it is necessary to standardise the rheological data before 

principal component analysis is applied to the dataset.  

 

Principal Component Analysis (Screening Data) 

Principal component analysis is performed on the first set of rheological data (screening data) 

because of its high level of multicollinearity (C=4.48 × 106). The Pareto plot (Figure 4.10) 

illustrates the relative importance of each principal component (bar graph) and the cumulative 

variance explained by the principal components (line graph). 
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Figure 4.10 Pareto Plot for Principal Components of Rheological Screening Data 

Figure 4.10 shows that the 1st six principal components (PC’s) explain more than 95% of the 

variance in the data and the 1st two PC’s explain more than 80% of the variance. The 1st principal 

component is very significant and explains 70% of the variance in the data. PCA has therefore 

reduced dimensionality of the rheological dataset significantly from 18 highly correlated variables 

to just a few that explain the largest part of the variation in the rheological behaviour. 

The cumulative variance explained (line graph) shows an exponential growth in variance 

explained by each additional PC and therefore the lower order PC’s explain more of the variance. 

There is no clear ‘cut-off’ point in terms of how many PC’s to use for further modelling purposes 

but the software package suggests that extraction of the number of PC’s that explain 95% of the 

variance is satisfactory. The cumulative variance explained by the first 6 PC’s is 95.61% 

 

A scatterplot of the actual values of the 1st two transformed variables, t1 and t2 (Figure 4.11) 

illustrates that they are uncorrelated, because there is no pattern in the structure of the data. 
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Figure 4.11 Scatterlot of 1st Two Transformed Variables 

 

Principal Component Analysis (Modelling Data) 
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Figure 4.12 Pareto Plot for Principal Components of Rheological Modelling Data 

From Figure 4.12 it is clear that principal component analysis reduces the complexity of the 

rheological data considerably. In this case the 1st three PC’s explain more that 80% variance in 



  83 

the data (compared to 2 PC’s in the screening data) and 95% variance in the data is explained by 

the 1st 8 PC’s (compared to 6 PC’s in the screening data). 

The modelling data therefore requires more PC’s to explain the same amount of variance as the 

screening data. This is not surprising because the modelling data has more variance in its 

structure due to samples that have extreme PVS/VS values. 

 

A scatterplot of the values of the 1st two transformed variables, t1 and t2, indicate that there is no 

pattern in the structure and therefore one can conclude that they are uncorrelated.  
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Figure 4.13 Scatterlot of 1st Two Transformed Variables 

It is a difficult decision to make on how many PC’s to keep for further modelling purposes. In a 

model one would like to explain as much variance as possible with as few explanatory variables 

as possible. It is therefore clear that some trade-off exists in the amount of variance that is 

explained by the chosen PC’s, and the complexity of the modelling process. 

 

Principal component analysis has the following advantages: 

1. It ensures that the variables are uncorrelated, which is very useful when these variables are 

used for further modelling 

2. It reduces the dimensionality of the dataset, making modelling simpler. 

However, a major drawback of principal component analysis is that the principal components lack 

simple interpretation since each is, in a sense, a mixture of the original variables. They provide 

the possibility for improvements on estimation/prediction techniques but lack the characteristic of 

causal interpretation. 
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4.4 THE SCREENING PROCESS 

Part of the novel contribution of this study, is to model the paint properties in terms of the 

rheological behaviour of the paint (MODEL 3). The rheology can not explain the variance in all the 

paint properties and it will be useless to try and model a certain paint property that is not related to 

the rheological behaviour of the paint. In the same manner, not all raw materials affect the 

rheology of the paint and it will be useless to include these raw materials in the model. A 

screening process is used to determine: 

 

i. The most important raw materials that influence the rheology (MODEL 1) 

ii. The paint properties that are affected most by these specific raw materials (MODEL 2) 

 

Screening (Definition): Sifting through a large number of factors with the fewest number of trials 

 

Effectively, the screening process determines the most important raw materials that influence the 

rheology. Furthermore, the screening process then determines which paint properties are affected 

most by these specific raw materials that were rendered most important in influencing the 

rheological behaviour. The thought process behind the screening is shown in Figure 4.14. 

 

 

 

            B 
 

 

        A 
 

 

               C 
 

 

Figure 4.14 Methodology of Screening Process 

 

The thought process in Figure 4.14 can be summarised as follows: 

OBJECTIVE: Model the paint properties in terms of the rheological behaviour of paint (path A). 

PROBLEM: Rheology do not influence all the paint properties and the set of 43 possible paint 

properties need to be reduced to a set that is influenced by the rheological behaviour of the paint. 

Part of the problem is that the paint properties are determined by the paint formulation which is 

controlled by the level of raw materials, which also influences the rheological behaviour. 

RHEOLOGY 

DATA 

PAINT 

PROPERTIES 

RAW 

MATERIALS 
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SOLUTION: Determine the raw materials that influence the rheological behaviour (path B), so that 

the variance which occurs in the rheological data will be able to explain the variance in paint 

properties. Then, determine the paint properties which are affected by these specific raw 

materials (path C). It should then also be able to model the paint properties (in terms of the 

rheological data) that were selected by following paths B and C. 

 

There is a strong interplay between design of experiments and the regression analysis [12] and 

therefore the use of special design of experiment software was required. The software package 

Design Expert® estimated that 29 runs are sufficient to determine the linear correlations between 

the 14 raw materials and a measured property. 

The screening procedure is performed by a statistical technique called multiple linear regression 

(MLR). The regression coefficients of the MLR model indicate the relative importance of the 

regressor variables (raw materials) and are determined by the method of least squares§§§ in the 

MATLAB® environment. 

4.4.1 RAW MATERIAL SCREENING (PATH B) 

 

OBJECTIVE: Identify most important raw materials that affect the rheological data. 

 

Some raw materials play an important role in the rheology of paint (e.g. pigment and emulsion), 

while others play a less important role (e.g. fungicide and defoamer). No clean cut decisions can 

be made to the extent of influence a certain raw material has on the rheology of that paint and 

therefore a statistical technique such as MLR is used to determine the most influential raw 

materials. 

4.4.1.1 MULTIPLE LINEAR REGRESSION FOR SCREENING OF RAW MATERIALS 

Multiple linear regression (MLR) is used as the technique to determine the causal relation 

between the raw materials and the set of transformed rheological data (principal components) 

 

εββββ ++⋅⋅⋅+++= kki xxxy 22110      (4.19) 

 

Where yi = PCi and xk = level of raw material k . Transformation of the original rheological variables 

into principal components (PC’s) is: 

i) useful, because models are required only for the PC’s that explain most of the variance in 

the data and 

ii) possible, because the MLR is used to obtain a causal model that explains the relative 

importance of the raw materials and prediction or interpretation of the response is not 

required. 

                                                 
§§§ In the most general terms, the method of least squares aims at minimizing the sum of squared 

deviations of the observed values for the dependent variable from those predicted by the model. 
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The first 6 PC’s of Figure 4.10 explain 95% of the variance in the data and therefore it would be 

useful to construct 6 models, one model for each PC. The importance of each model is related to 

the amount of variance that the corresponding PC explains in the rheological data. Therefore, the 

MLR model for PC1 is much more important than the MLR model for PC6, because PC1 explains 

70% of the variance and PC6 only 2% of the variance in the rheological data. 

Figure 4.15 illustrates the model fit for the 1st principal component obtained from the MLR model. 
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Figure 4.15 Model Fit (MLR) for 1st Principal Component 

The immediate impression of Figure 4.15 is that the MLR model fits the data well because all the 

fitted datapoints lie within two standard deviations of the model. The high R2 value of 0.9598 also 

gives an indication that the model fits the data well. The goodness of the model fit is accepted 

once the validity of the model is verified (Section 4.4.1.3). 

The importance of each regressor variable (raw material) is given by the magnitude of the 

regression coefficient kβββ ⋅⋅⋅,, 21 . Figure 4.16 illustrates the relative importance (absolute 

values) of each raw material on the 1st principal component of the rheology data. 
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Figure 4.16 Relative Importance of Regression Coefficients for 1st Principal Component 

(With CNST=constant, WTR=water, SA=soda ash, FNGD=fungicide, SURF=surfactant, 

DISP=dispersant, ANTF=antifoamer, SOLV=solvent, PIGM=pigment, XTND=extender, 

EMLS=emulsion, OPIG=organic pigment, CLNT=coalescent, RM1=rheology modifier 1, 

RM2=rheology modifier 2) 

 

Multiple linear regression (MLR) models are developed for all the principal components (PC1 – 

PC18) to determine the relative importance of the raw materials on each of the principal 

components. Similar graphs for all the PC models, as that of Figure 4.15 and Figure 4.16, are 

presented in Chapter 11, Section 11.2: - Raw Materials Screening.  

The variance that each PC explains is given in Table 4.6. The table also includes the computed p-

value (significance level). The p-value approach for hypothesis testing rejects the null hypothesis 

0H if the p-value is less than α=0.05. That is, it can be said with 95% certainty that there is at 

least one variable that plays a significant role in explaining the variance. Table 4.6 shows that the 

null hypothesis 0H can be rejected for PC1, PC2 and PC16 (p-values < 0.05) with 95% certainty, 

therefore accepting these models. This implies that at least one of the raw materials contribute 

significantly to the specific model in explaining the variance. (See Section 8.3.1 of Appendix A for 

a detailed description of the null hypothesis) 
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Table 4.6 Regression Analysis for MLR (Rheology Data) 

Principal 

Component 

Variance in 

Rheological 

Data Explained 

by PC (%) 

R2 for MLR 

Model Fit 

p-value 

(significance level) 

Reject 0H          

(p < 0.05) 

PC1 70.10 0.9790 0.0000 YES 

PC2 13.33 0.9235 0.0000 YES 

PC3 5.05 0.6024 0.4185 NO 

PC4 3.12 0.6591 0.2604 NO 

PC5 2.33 0.6574 0.2657 NO 

PC6 1.69 0.3411 0.9603 NO 

PC7 1.51 0.6892 0.1885 NO 

PC8 0.94 0.5254 0.6423 NO 

PC9 0.61 0.7190 0.1287 NO 

PC10 0.42 0.5260 0.6409 NO 

PC11 0.26 0.6039 0.4142 NO 

PC12 0.22 0.5253 0.6430 NO 

PC13 0.17 0.5289 0.6339 NO 

PC14 0.09 0.6052 0.1754 NO 

PC15 0.09 0.7284 0.1126 NO 

PC16 0.04 0.8161 0.0203 YES 

PC17 0.03 0.6292 0.3410 NO 

PC18 0.01 0.6441 0.2996 NO 

 

The total average contribution of the raw materials in explaining the rheology is considered to be 

the sum of the weighted influence of each of the raw materials contributing to the 1st two principal 

components of the rheological data (PC16 is not included because of its insignificant contribution 

in explaining variance (0.04%) in the rheological data). In mathematical terms, the raw material 

contribution (RMC) in explaining the variance in rheological data can be expressed as: 

 

 

∑
=

•=
2

1i
MaterialRawPC ii

TSCOEFFICIENREGRESSIONEXPLAINEDVARIANCERMC (4.20) 

 

Graphically, the combined raw material contribution in explaining 83.43% of the variance in the 

rheological data (the 1st two principal components), is illustrated in Figure 4.17.  
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Figure 4.17 Combined Contribution of Raw Materials to 1st two Principal Components of 

the Rheological Data 

 

Therefore the relative importance of the raw materials on the rheological data is as follows: 

 

Emulsion (EMLS) > pigment (PIGM) > extender particles (XTND) > organic pigment (OPIG) > 

water (WTR) >solvent (SOLV) > coalescent (CLNT) > dispersant (DISP) > antifoamer (ANTF) > 

surfactant (SURF) > fungicide (FNGD) > soda ash (SA) > rheology modifier 1 (RM1) > rheology 

modifier 2 (RM2) 

 

Some remarks about the relative importance of the raw materials in Figure 4.17: 

• It is well known that volume solids play a major role in the rheological behaviour of paint [13]. 

Therefore it is not surprising that the model indicates that the 5 most influential raw materials 

are the emulsion, pigment, extender particles, organic pigment and water – all which 

contribute in a major way to the level of volume solids in the paint. 

• Figure 4.17 indicates that the rheology modifiers contribute the least in explaining the variance 

in the rheological data. At first this might seem strange, because it is known that rheology 

modifiers influence the rheology in a critical way. But, the fact is that the rheology modifiers 

were kept at a constant level in the screening experiment. The rheology modifiers are already 

included in the model and were not varied in the screening procedure.  

• Figure 4.17 indicates that the raw materials soda ash and fungicide have the smallest 

influence on the rheology (excluding the rheology modifiers which are ignored in this case). 

This correlates with the literature and paint scientists’ views. 

Before accepting the results in Figure 4.17, validity of the model(s) have to be established. 

4.4.1.2 EFFECT OF MULTICOLLINEARITY IN THE RAW MATERIAL SCREENING DATA  

Multicollinearity plays an important role when MLR models are used to evaluate the causal 

relationship between the explanatory variables and the fitted response. The main disadvantage of 
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multicollinearity is the increase in error of the regression coefficients. It follows that confidence in 

the regression coefficients decreases and it becomes harder to find statistically significant 

coefficients. 

A constrained mixture design is used to determine the experimental design space for the raw 

materials. These type of designs often lead to multicollinearity [14]. Design Expert automatically 

designs the experimental space so that a minimum level of collinearity exists. However, the 

constraints put onto each raw material were stringent (plus and minus 20% for each raw material 

on the standard formulation) and therefore multicollinearity is definitely expected. The level of 

multicollinearity in the raw material data is given by the condition number, C of Equation 4.18 as: 

 

 96.14=MaterialsRawC  

 

This value is still below the critical value (Ccritical = 15) where the harmful effects of multicollinearity 

are not serious [10].  

4.4.1.3 VALIDITY OF RAW MATERIAL SCREENING PROCEDURE 

The models have to be validated first before conclusions can be accepted as correct. This means 

that the validity of the assumptions that were made during MLR, needs to be checked. These 

assumptions need to be correct for the method on which MLR is based (method of least squares 

estimates) to be valid. The validity of the model is not influenced by multicollinearity but by the 

following factors [17]: 

 

1. Linearity 

Usually a scatter plot of the data gives an initial indication of the degree of linearity that is 

experienced between the response (yi) and the explanatory variables (xi). In this case a scatter 

plot of the response (PCi) against a raw material (xi) does not give much information about the 

linearity of the data because the raw materials are only varied at three different levels which make 

it difficult to determine the degree of linearity.  

However, the null hypothesis, which is a test for significance of regression to determine whether a 

linear relationship between the response and a regressor variable exists, is used. The p-values for 

the MLR models of PC1 and PC2 in Table 4.6 indicate that at least one of the variables definitely 

contributes significantly to the linear model and therefore there exists a linear relationship 

between at least one of the raw materials and the 1st two principal components. 

 

2. Mean independence 

The assumption of mean independence assumes that the independent variables are unrelated to 

the random error ε of equation 4.19. This is one of the most critical assumptions [15]. The mean 

errors, or residuals, of the models are practically zero for both MLR models (PC1 and PC2) as 

can be seen in Table 4.7.  
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Table 4.7 Mean of Residuals for MLR on PC1 and PC2 

Mean for Residuals for PC1 model -1.23 × 10-4 

Mean for Residuals for PC2 model -1.71 × 10-4 

 

The residual case order plots (RCOPLOT) in Figure 4.18 (a) and (b) for PC1 and PC2 

respectively, also indicate that the residuals are centred round zero.           
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Figure 4.18 RCOPLOT for (a) PC1 and (b) PC2 

These plots also indicate the 95% confidence intervals about the residuals, plotted as error bars. 

In plot (a) case number 1 and 3 (paint ID = 8 and paint ID = 7 respectively, indicated by �  

markers) fall outside the 95% confidence interval and are considered as outliers. In plot (b) case 

number 29 (paint ID = 14, indicated by the � marker) is considered as an outlier. 

 

3. Homoscedasticity 

It is difficult to determine from the scatter plot of residuals against each of the raw materials 

whether the variance in the residuals are independent (no systematic patterns) of the value of a 

specific raw material, because the raw materials are only varied at three different levels. 

The fitted values of PC1 and PC2 show no systematic pattern in the case order (Figure 4.19 (a) 

and (b) respectively) and therefore the residuals are independent of the run order. This is 

expected because the experiments are performed in random order. 
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Figure 4.19 Scatterplot of Residuals of (a) PC1 and (b) PC2 

4. Uncorrelated errors 

The individual contribution of each of the raw materials to the error term ε of equation 4.19 must 

be uncorrelated. It is difficult to diagnose correlated disturbances. However, it is known that the 

issue of correlated disturbances is strongly affected by the experimental design and that if the 

design space is chosen randomly that it is unlikely that correlated disturbances will be a problem 
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[15]. Design Expert randomly chooses levels of raw materials for the experimental design, as far 

as the constraints of the mixture design allows it to, and therefore it is assumed that correlated 

errors of each raw material do not occur.  

 

5. Normal disturbance 

The quantile plot of sample data for the residuals of PC1 and PC2 versus the normal standard 

quantiles is illustrated in Figure 4.20 (a) and (b) respectively. No severe deviations from normality 

(identified as a definite S-shaped curve) occur and therefore the data is drawn from a more or less 

normal distribution (indicated by the straight line). 
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Figure 4.20 QQPLOT for (a) PC1 and (b) PC2 

 

All justifications above indicate that the assumptions made during the MLR process are valid and 

therefore the conclusions that are drawn from the models are accurate. 

 

4.4.2 PAINT PROPERTY SCREENING (PATH C) 
 

OBJECTIVE: Identify the paint properties that are significantly affected by the 6 most important 

raw materials that affect the rheology the most. 

4.4.2.1 MULTIPLE LINEAR REGRESSION FOR SCREENING OF PAINT PROPERTIES  

Multiple linear regression is once again used to obtain the correlation between the paint properties 

and the 6 raw materials identified as the most influential in terms of affecting the rheological 

behaviour. These raw materials in order of importance are: 

• Emulsion 

• Pigment 

• Extender particles 

• Organic pigment 

• Water 

• Solvent 
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Figure 4.21 illustrates the model fi t for one of the 43 paint properties, Gloss 85 obtained from the 

MLR model with these 6 raw materials as predictor variables. 
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Figure 4.21 Model Fit (MLR) for Gloss 85 

Figure 4.21 illustrates that the model fits the data well. The model can explain 93.68% of the 

variance in the Gloss 85 data. Therefore, the MLR model for Gloss 85, with only 6 raw materials, 

is accurate in explaining the variance in the data. This is not surprising, because it is known that 

the levels of pigment and emulsion play major roles in the gloss of a paint [16]. Gloss is a very 

important paint property as it classifies the paint into a certain product range, e.g. high gloss, 

medium gloss (sheen), or low gloss (matt), see Figure 4.22. Gloss is strongly affected by the 

PVC. 

 

     High enamel gloss       15 

     Gloss trim 

             Semigloss     25 

 

   Interior satin     35 

          Exterior Sheen 

        45  PVC 

         Exterior flat 

       55 

 

      Interior flat      65 

       75 

Figure 4.22 Formulation Types in Terms of Pigment Volume Concentration (PVC) [13] 
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Figure 4.23 illustrates the relative importance of the raw materials on the Gloss 85 property of the 

paint as determined from the regression coefficients of the MLR model.  
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Figure 4.23 Relative Contribution of Raw Materials to Gloss 85 

Ignoring the constant of the model, the MLR model for the Gloss 85 paint property indicates that 

the emulsion has the biggest influence on the gloss value of paint, followed by pigment, organic 

pigment, water, solvent and extender. This correlates with practical experience and literature 

sources [16]. 

 

Multiple linear regression (MLR) is used to develop predictive models of all the paint properties. 

The idea is to determine which of the 43 paint properties is best predicted by the 6 raw materials 

that are used as predictor variables. Two extra predictor variables (PVC and VS) are added to the 

existing six to assist in predicting the variability in the paint properties. Multicollinearity plays a 

minor role when the main goal of the regression analysis is to predict the dependent variables 

[15], [17], [11], [10]. Therefore, even though PVC and VS are correlated with the existing 6 

predictor variables, they are added to the regression equation in order to explain more of the 

variance of each paint property. The variance in each paint property, explained by the MLR model 

is given in Table 4.8. Note that variance (R2) in each paint property is explained better with the 

inclusion of PVC and VS. However, the standard errors of the predicted paint properties may 

increase a bit, but at the moment it is only important to see which of the paint properties’ variance 

can be best explained by at least one of the regressor variables. 

The output also includes the computed p-values (called the significance level). The p-value 

approach for hypothesis testing rejects the null hypothesis 0H if the p-value is less than α=0.05. If 

p < 0.05 then there is a 95% probability that at least one of the explanatory variables is significant 

in predicting the variance in the paint property. 
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Table 4.8 Regression Analysis for MLR (Paint Properties) 

Paint Property 

R2 

(with PVC 

and VS) 

R2 

(without PVC 

and VS) 

p-value  

(with PVC 

and VS) 

p-value  

(without PVC 

and VS) 

Reject 0H **** 

(p < 0.05) 

Dry Burnish (20) 0.7091 0.6115 0.0005 0.0010 YES 

Dry Burnish (60) 0.7204 0.6413 0.0003 0.0004 YES 

Dry Burnish (85) 0.4876 0.3116 0.0554 0.1782 YES†††† 

Wet Burnish (20) 0.5434 0.5185 0.0228 0.0079 YES 

Wet Burnish (60) 0.7898 0.7474 0.0000 0.0000 YES 

Wet Burnish (85) 0.7070 0.6083 0.0005 0.0001 YES 

Chemical Resistance 

Blistering NH3 
0.2371 0.2322 0.6274 0.3889 NO 

Dirt Pick-up (delta gloss 

85) 
0.5683 0.5482 0.0146 0.0043 YES 

Open Time - Glass 0.4820 0.3552 0.0601 0.1060 YES‡‡‡‡ 

Dry Film Thickness 0.6446 0.6023 0.0029 0.0012 YES 

Wet Film Thickness 0.3429 0.2849 0.2968 0.2373 NO 

Gloss (20) 0.9514 0.9478 0.0000 0.0000 YES 

Gloss (60) 0.9821 0.9815 0.0000 0.0000 YES 

Gloss (85) 0.9475 0.9368 0.0000 0.0000 YES 

Hiding Power Roller - 

1st coat 
0.6002 0.5736 0.0078 0.0025 YES 

Hiding Power Brush - 

1st coat 
0.1379 0.0995 0.9074 0.8677 NO 

Hiding Power Roller - 

2nd coat 
0.3634 0.3309 0.2454 0.1428 NO 

Hiding Power Brush - 

2nd coat 
0.1753 0.0177 0.8191 0.9986 NO 

Krebs1 0.9386 0.9386 0.0000 0.0000 YES 

Krebs2 0.9521 0.9487 0.0000 0.0000 YES 

Krebs3 0.9333 0.9275 0.0000 0.0000 YES 

Krebs4 0.9286 0.9250 0.0000 0.0000 YES 

Opacity 0.5188 0.3515 0.0344 0.1111 YES 

Anti-sag Index 0.7452 0.7392 0.0002 0 YES 

Spreading Rate 1st 

coat 
0.1121 0.1094 0.9508 0.8368 NO 

Spreading Rate 2nd 

coat 
0.1534 0.0977 0.8743 0.8729 NO 

Stain Removal 0.2764 0.2525 0.4963 0.3251 NO 

Water Permeability 0.8594 0.8317 0.0000 0 YES 

Water Resistance 0.8053 0.6992 0.0000 0.0001 YES 

                                                 
**** The null hypothesis is rejected when p < 0.05 based on the p-values with PVC and VS 
†††† The null hypothesis is rejected even though p >0.05, because the probability of the null 

hypothesis being rejected is still relative large (94.46%, p=0.0554)  
‡‡‡‡ The null hypothesis is rejected even though p >0.05, because the probability of the null 

hypothesis being rejected is still relative large (93.99%, p=0.0601) 
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X-hatch 

Adhesion(glass) 
0.1768 0.1366 0.8150 0.7421 NO 

X-hatch 

Adhesion(panel 2A) 
0.4179 0.4010 0.1377 0.0571 NO 

Brush Drag1st coat 0.5381 0.5055 0.0250 0.0101 YES 

Brush Drag 2nd coat 0.6197 0.5721 0.0051 0.0025 YES 

Chemical 

ResistanceWater 

Softness 

0.1713 0.1350 0.8299 0.7480 NO 

Dirt Pick-up 0.3747 0.3523 0.2198 0.1100 NO 

Ease of Stir 0.8384 0.8176 0.0000 0 YES 

Fibre Levelling 1st coat 0.2025 0.1593 0.7396 0.6565 NO 

Fibre Levelling 2nd coat 0.2166 0.1685 0.6949 0.6209 NO 

Levelling (Leneta) 0.6255 0.6094 0.0045 0.0015 YES 

Roller Drag 1st coat 0.3438 0.3092 0.2944 0.1831 NO 

Roller Drag 2nd coat 0.6339 0.5938 0.0037 0.0015 YES 

Spatter 0.4987 0.3840 0.0471 0.0724 YES 

Synerisis  0.7510 0.6594 0.0001 0.0001 YES 

Scrubbs§§§§ NA NA NA NA NA 

Settlement***** NA NA NA NA NA 

Microbial Attack††††† NA NA NA NA NA 

 

All the paint properties for which the null hypothesis, 0H , gets rejected, is used for further 

modelling. Note that, as can be expected, adding PVC and VS as explanatory variables to the 

regression analysis, make the chances that “at least one explanatory variables play a significant 

role in explaining the variance in behaviour”, so much more and therefore paint properties such as 

opacity and spatter would not have been selected for further modelling (p-values > 0.05) if PVC 

and VS were not included as predictor variables.. 

 

Only paint properties with p values >> 0.05 are rejected, because p values are indications of 

probability and therefore Dry Burnish and Open Time are also selected for further modelling 

because their p values ≈ 0.05. 

4.4.2.2 EFFECT OF MULTICOLLINEARITY IN THE PAINT PROPERTY SCREENING DATA  

As indicated earlier, multicollinearity plays a minor role when the main goal of the regression 

analysis is to predict the dependent variables. Addition of PVC and VS, although adding to the 

level of collinearity, is not considered to be a problem. 

                                                 
§§§§ No variance in results: all scrubs > 10 000 cycles 
***** No variance in results: no settlement in any of the paints 
††††† No variance in results: no microbial attack notices on any of the paint films 
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4.4.2.3 VALIDITY OF PAINT PROPERTY SCREENING DATA 

(Only Gloss85 is used as an example to illustrate validity of the model. ‘Mean of residuals’, 

‘RCOPLOTS’, ‘Scatterplots of Residuals’ and ‘QQPLOTS’ for all the paint properties are given in 

Chapter 11, Appendix D) 

 

The following are evaluated to check for the validity of the models: 

 

1. Linearity 

A scatterplot of the Gloss85 values against the level of each raw material would have given a 

good indication of the level of linearity that exists between a raw material and the paint property. 

Each raw material is varied at just three levels and therefore it is difficult to spot any trends in the 

data. The null hypothesis, which tests for significance of regression, to determine whether a linear 

relationship between the response and the regressor variables exist, is used. The p-values for the 

MLR model of Gloss85 in Table 4.8 indicate that at least one of the variables (raw materials, PVC 

and VS) definitely contributes significantly to the linear model and therefore there exists a linear 

relationship between at least one of the raw materials and the Gloss85 values.  

The assumption of linearity only needs to be approximately true, because at this point, the idea of 

the models is not to be able to predict the paint properties absolutely accurate, but to see whether 

it is possible to predict a certain paint property with the set of predictor variables. 

 

2. Mean independence 

The assumption that the independent variables are unrelated to the random error ε is validated by 

the fact that the average of the residuals is 1.82 × 10-16 and for all practical purposes is equal to 

zero. The scatterplots and RCOPLOTS of Appendix D indicate that the average for all the 

residuals of the paint properties are for all practical purposes equal to zero. Therefore the 

independent variables are unrelated to the random error explained by the MLR model for each 

paint property. 

The residual case order plot (RCOPLOT) in Figure 4.24 for the Gloss85 values also indicate that 

the residuals are centred round zero. 
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Figure 4.24 RCOPLOT for Gloss85 

Figure 4.24 indicates that case number 29 can be considered as an outlier (� marker). 

 

3. Homoscedasticity 

The scatterplot of residuals against case number in Figure 4.25 indicate no systematic pattern and 

therefore the residuals are independent of the run order. 
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Figure 4.25 Scatterplot of Residuals for Gloss85 



  102 

4. Uncorrelated errors 

It is difficult to diagnose the contribution in error of each explanatory variable to the error term ε in 

the regression equation. Design Expert determines specific levels of raw materials so that errors 

are uncorrelated, as far as the constraints allow. In general, it is unlikely for errors to be correlated 

when runs are performed with random levels of variables [15]. 

 

5. Normal disturbance 
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Figure 4.26 QQPLOT for Gloss85 

 

The QQPLOT in Figure 4.26 indicates no severe nonnormality in the residual data. Nonnormality 

is identified by a definite pattern in the residual data. The tendency of the QQPLOT to bend 

slightly at the upper and lower ends is common and the plot is not grossly nonnormal. 

4.5 CONCLUSIONS 

1. The rheological parameters of shear stress (τ) from the rotational tests (flow behaviour) and a 

combined parameter ( )δτ ⋅A from the oscillatory tests (viscoelastic behaviour) are used 

successfully as input variables to the rheological model. Although these rheological variables do 

not intuitively make sense, it simplifies the modelling process and result in accurate model 

predictions. 

 

2. Preliminary modelling (the fitting of a trendline to the rheological data) accurately represents the 

rheology curves of this specific paint. The high R2 values of the trendlines (R2 > 0.94) show that 

the trendline parameters can be used with confidence to describe the rheology curve. It is only 

the trendline of the Low Shear curve which R2-value is smaller than 0.9.  
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3. Collinearity in the rheology data is abundant. This is because many of the tests determine the 

same behaviour but in a different test mode  - rotational vs oscillatory. Rheology variables that 

are the most highly correlated (correlation values > 0.9) are: 

i) FSβ and FCβ   

ii) HSα  and HSβ . 

There are 18 other correlations between rheology variable which are also considered to be high 

(>0.8). Rheology variables that are least correlated (correlation values = 0) are: 

i)  ASα and FCβ  

ii)  ASα  and TSβ . 

 

4. Principal component analysis on the highly correlated rheology data significantly reduces 

dimensionality of the dataset. Three principal components explain more than 80% of the 

variance in all the rheology data. 

 

5. The most important raw materials that affect the rheology (excluding the rheology modifiers) are 

emulsion > pigment > extender particles > organic pigment> water > solvent > coalescent > 

dispersant > antifoamer > surfactant > fungicide > soda ash. 

 

6. All paint properties change as the level of the raw materials vary. However, the level of certain 

paint properties did not vary enough for the models to explain the variance accurately. These 

paint properties are:  

• chemical resistance (NH3, H2O) 

• wet film thickness 

• hiding power (brush/roller) 

• spreading rate (1st and 2nd coat) 

• stain removal 

• adhesion 

• fibre levelling 

• roller drag (1st coat) 

    and therefore not considered for further detailed modelling. 

4.6 NOMENCLATURE 

Abbreviations 

3-ITT   Three-interval-thixotropy test 

3-ITT (osc)  Three-interval-thixotropy test in oscillatory mode 

3-ITT (rot)   Three-interval-thixotropy test in rotational mode 

ANTF    Antifoamer 

AS   Amplitude sweep 
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CLNT   Coalescent 

CNST   Constant 

CXLF    Constant of extra low frequency 

DISP   Dispersant 

EMLS   Emulsion 

FC   Flow curve 

FNGD   Fungicide 

FS   Frequency sweep 

HS   High shear 

H0   Null hypothesis 

LS   Low shear 

MLR   Multiple linear regression 

OPIG   Organic pigment 

PC   Principal component 

PIGM   Pigment 

PVC   Pigment volume concentration 

RM1   Rheology modifier 1 

RM2   Rheology modifier 2 

RMC   Raw material contribution 

SA   Soda ash 

SOLV    Solvent 

SURF   Surfactant 

TS   Time sweep 

VS   Volume solids 

WTR   Water 

XLF   Extra low frequency 

XTND   Extender 

 

Symbol    Description 

C   Condition number ( - ) 

G’   Storage modulus (Pa) 

G”   Loss modulus (Pa) 

G*   Complex modulus (Pa) 

t   Time (s) 

x    Independent variable 

y    Dependent variable 

avgx    Average value of variable 

ix    Value of variable 

deviationdardsx tan   Standard deviation of variable 
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dardisedsx tan   Standardised value of variable 

 

Greek Symbol   Description 

α    Preliminary model parameter (gradient) 

iα    Gradient of preliminary model where i=HS, LS, 3-ITT(rot), etc 

yoscillatorα    Gradient of oscillatory measurement 

rotationalα    Gradient of rotational measurement 

β    Preliminary model parameter (offset) 

iβ    Preliminary model parameter (offset) where i=HS, LS, 3-ITT(rot), etc 

yoscillatorβ    Offset of oscillatory measurement 

rotationalβ    Offset of rotational measurement 

0β    Constant associated with regression analysis 

kβ    Regression coefficient associated with variable k=1,2,3,… 

γ    Deformation [%] or strain [ - ] 

Aγ    Deformation [%] or strain [ - ] amplitude 

γ&    Shear rate [1/s] 

δ    Phase shift, loss angle [ ° ] 

ε    Error of approximation 

η    Shear viscosity [Pa.s] 

∗η    Complex viscosity [Pa.s] 

τ    Shear stress [Pa] 

Aτ    Shear stress amplitude [Pa] 

ω    Angular frequency [rad/s] 
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5 LINEAR MODELLING 

5.1 INTRODUCTION 
A linear model is based on a linear equation and the graph of the equation explaining the 

relationship between the actual and the predicted value is a straight line [1]. 

 

There is a considerable volume of literature available from coatings raw material suppliers (Rohm 

and Haas®, Huntsman®, Noveon®, etc) that describe modern paint formulating and optimisation 

methodology that involves design of experiments and basic and advanced modelling techniques 

[2], [3]. 

Figure 5.1 shows the relationship between raw materials, paint rheology and paint properties. 

Quality, as well as various paint properties is directly determined by the raw materials in the paint 

formulation (MODEL 1 and MODEL 2). Indirectly, some of the paint properties are affected by the 

rheology of the paint (MODEL 3). Interaction between the raw materials makes the use of 

constitutive equations almost impossible in explaining the paint properties. This makes models 

ideal in assisting the paint scientist to obtain an approximation of a property at any level of a raw 

material (although still within the range used in the model).  

 

 

 

    MODEL 1 

 

 

         MODEL 3 

 

 

 

    MODEL 2 

 

 

Figure 5.1 Relationship Between Raw Materials, Paint Rheology and Paint Properties 

By following the principle of Occam’s razor‡‡‡‡‡, linear modelling is a good starting point if little is 

known about the behaviour of a system. Although it is obvious that interactions occur between 

                                                 
‡‡‡‡‡ Occam’s razor states that the explanation of any phenomenon should make as few 

assumptions as possible, eliminating, or “shaving off” those that make no difference in the 

observable predictions of the explanatory hypothesis or theory. In short, when given two equally 

 

RAW MATERIALS 

 

PAINT RHEOLOGY 

 

PAINT PROPERTIES 
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raw materials, linear modelling assumes that none of them do. This is not necessarily a ‘bad’ 

thing, because a lot of information can be obtained from linear modelling: 

• The contribution each raw material makes to the rheology and paint properties 

• The level of non-linearity or the interactions between the different raw materials. 

It might also happen that a linear model is sufficient in explaining some of the paint properties 

within the allowed error margin and then more complicated models are not required.  

5.1.1 MULTIPLE LINEAR REGRESSION (MLR) 

In experimental work, it is often desirable to find whether, and by how much, the level of one 

quantity changes with changes in the level of some other quantities. One of the best ways to 

accomplish this is by the use of regression analysis.  

 

Multiple regression is a statistical method for studying the relationship between a single 

dependent variable and several independent variables [4]. 

 

There are two major uses of multiple regression, both of which are used in this study [4]: 

 

1) Causal 

In causal analysis, the independent variables are regarded as causes of the dependent variable. 

The aim is to determine whether a particular independent variable really affects the dependent 

variable, and to estimate the magnitude of that effect, if any. This type of analysis is performed in 

the screening procedure of the raw materials and the linear modelling of selected raw materials. 

Several raw materials might be related to a dependant paint property, however without running an 

experiment and collecting data, one does not know which variables will indeed be strong 

predictors of the response variable. Thus the data will be collected on all k  predictors and the 

response. Then multiple regression analysis is used to determine those predictors that are less 

effective in explaining the behaviour of the dependent variable. 

  

2) Prediction 

In the prediction study, the goal is to develop a formula for making predictions about the 

dependent variable, based on the observed values of the independent variables. Confidence in 

the predictions is also important. To account for this a 95% confidence interval for a future value 

(95% prediction interval) is constructed.  

 

In general, the response variable y may be related to k regressor variables. The model  

 

 εββββ ++⋅⋅⋅+++= kk xxxy 22110     (5.1) 

                                                                                                                                                  

valid explanations for a phenomenon, one should embrace the less complicated formulation. 

(‘entia non sunt multiplicanda praetor necessitatem’ – entities should not be multiplied beyond 

necessity) 
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is called a multiple linear regression model with k regressor variables. The parameters βj, j = 0, 1, 

…k, are called the regression coefficients and indicate the relative importance (positive or 

negative) of the relating regressor variable. In multilinear regression the regression coefficients 

are only valid if the error on the independent variables are negligible when compared with the 

error of the dependent variable. Large errors on the independent variables can result in 

inaccuracies in the model. The function is linear because no regression coefficients are raised to 

a power greater than one. Note that the error term ε is present, because individual variation will 

make it impossible to predict the response exactly accurately. This model describes a hyperplane 

in the k -dimensional space of the regressor variables { xj }. The parameter βj represents the 

expected change in response y per unit change in xj. 

Methods for estimating the parameters in multiple linear regression models are called model 

fitting. The statistical method of least squares§§§§§ is typically used to estimate the regression 

coefficients in a MLR model.  

5.1.2 MULTICOLLINEARITY AND ITS EFFECTS IN MLR 
Interpretation of the multiple linear regression equation (equation 5.1) depends implicitly on the 

assumption that the explanatory variables are not strongly interrelated [5]. The interpretation of 

the relationships between the predictor or explanatory variables and the response variable are of 

particular interest. Interest lies in the following questions: 

1. What is the relative importance of the effects of the different predictor variables? 

2. What is the magnitude of the effect of a given predictor variable on the response variable? 

3. Can any predictor variable be dropped from the model because it has little or no effect on the 

response variable? 

The interpretation of these questions may not be valid if there are strong linear relationships 

among the explanatory variables. When there is a complete absence of linear relationships 

among the explanatory variables, they are said to be orthogonal. In most regression applications, 

the variables are not orthogonal and the condition of severe nonorthogonality is referred to as 

multicollinearity [1]. 

Usually, the lack of orthogonality is not serious enough to affect the analysis. However, in some 

situations the explanatory variables are so strongly interrelated that the regression results are 

ambiguous and it can have the following effects [1]: 

1. The fact that some or all of the predictor variables are correlated among themselves does not, 

in general, inhibit the ability to obtain a good fit nor does it tend to affect inferences about 

mean responses or predictions of new observations, provided these inferences are made 

within the region of observations. 

                                                 
§§§§§ In the most general terms, the method of least squares aims at minimizing the sum of 

squared deviations of the observed values for the dependent variable from those predicted by the 

model. 
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2. The estimated regression coefficients tend to have large sampling variability when the 

predictor variables are highly correlated. As a result, only imprecise information may be 

available about the individual true regression coefficient. Many of the estimated regression 

coefficients individually may be statistically not significant even though a definite statistical 

relation exists between the response variable and the set of predictor variables. Therefore the 

effect of multicollinearity is only a minor concern for models whose primary goal is prediction. 

The effect of multicollinearity is more severe in the case of a causal model [4] and the most 

serious danger of multicollinearity is concluding that none of the collinear variables has an 

effect on the dependent variable when, in fact, any one of them alone has a very strong effect. 

Instead of looking at the significance of each variable alone, one should look at the joint 

significance of all the independent variables so that it can be determined whether at least one 

variable affects the response. 

 

Multicollinearity should be prevented by careful design of experiments so that the scientist has 

control over the values of the independent variables. Levels of the independent variables can then 

be chosen in such a way that all correlations among the predictor variables are zero. This is at 

least true for unconstrained experimental designs (no constraints are placed on the level of the 

independent variables in the experimental design), however constrained mixture designs may 

create multicollinearity. The use of pseudo components is recommended for constrained mixture 

designs with high levels of multicollinearity [6]. 

Another way that the effects of multicollinearity can be prevented is by the principal component  

approach. Principal components, which are linearly independent, are extracted form the collinear 

data and used as independent variables for the regression equation (equation 5.1). 

 

Pairwise correlation between predictor variables is often helpful; however, serious multicollinearity 

can exist without being disclosed by pairwise correlation coefficients [1], e.g. correlation between 

a group of predictor variables and a single predictor variable [2]. Therefore a better method for 

diagnosing multicollinearity is the measure of overall multicollinearity of the variables. This can be 

obtained by computing the condition number of the correlation matrix by using equation 4.18. The 

condition number will always be greater than 1. A large condition number indicates evidence of 

strong collinearity. The harmful effects of collinearity in the data become strong when the values 

of the condition number exceed 15. This value for C is determined empirically and not 

theoretically. Corrective action should always be taken when C>30 [4]. 

5.1.3 MODEL VALIDITY 

Validity of using multiple linear regression (MLR) as a modelling technique depends on whether 

certain assumptions are satisfied. There is enormous confusion about just what those 

assumptions are and there is no single set of assumptions on which everyone agrees. Some 

assumptions involve stronger conditions than others and it is not surprising that the models with 

stronger assumptions usually lead to stronger conclusions. There is also the tendency to treat all 

assumptions as equally important when in fact some are much more critical than others [4]. 



  111 

The best known standards of performance and for testing the validity of a statistical method are: 

i. Bias: A model that is unbiased is preferred. A model is unbiased if there is no systematic 

tendency to produce estimates that are either too high or too low 

ii. Efficiency: Efficiency is an estimate of how much variation there is around the true value 

and is measured by the standard error. Efficient models have standard errors that are as 

small as possible. 

Allison [4] presents five assumptions for a valid MLR model: 

1) Linearity: The dependent variable y is a linear combination of the independent variables xi,  

plus a random error ε, as is illustrated by equation 5.1. The assumptions of linearity will be 

only approximately true. 

2) Mean independence: The most important assumption that is made about ε is that its mean, or 

average value, does not depend on the independent variables xi. More specifically, it is 

assumed that the mean of ε is always zero. The assumption of mean independence assumes 

that the independent variables are unrelated to the random error ε. The assumption of mean 

independence is the most critical assumption of all because: 

• Violations can produce severe bias in the estimates 

• There are often reasons to expect violations 

• There is no way to test for violations without additional data. 

Randomisation of the experimental runs ensures that the unmeasured characteristics of the    

subjects are not related to the treatment variable and therefore if the data is produced by a 

randomised experiment, the violations are unlikely to occur. 

3) Homoscedasticity (variance independent): The variance of ε must be independent on the 

values of xi. A systematic pattern in the residuals plotted against any of the explanatory 

(independent) variables suggests an inadequate model. 

4) Uncorrelated errors: The error term ε in the linear equation of equation 5.1 is actually a 

different random variable for every individual in the sample. It can also be interpreted as the 

combined effects of all the causes of y that are not directly included in the equation. 

Assumption 4 states that the individual contribution of each independent variable to the error 

term ε must be uncorrelated with the individual contribution of any other independent variable. 

Although it is possible to diagnose correlated disturbances by examining the data, there are 

not many convenient ways to do it. Generally the issue of correlated errors is strongly affected 

by the experimental design.  

5) Normal disturbance: The error term ε must have a normal distribution. The normality 

assumption is probably the least important of the five assumptions. The criteria for 

unbiasedness and efficiency do not depend at all on this assumption. The central limit 

theorem tells us that, if the sample size is moderately large enough, the model will be a good 

approximation even if ε is not normally distributed. 

 

If all these assumptions are met, ordinary least squares (a statistical method for estimating the 

regression coefficients of MLR) has several desirable properties: 



  112 

• The assumptions of linearity (1) and mean independence (2) imply that the method of least 

squares is unbiased. 

• The additional assumptions of homoscedasticity (3) and uncorrelated errors (4) imply that the 

method of least squares is efficient. 

• The assumption of normality (5) implies that valid accurate p-values are obtained for 

hypothesis testing. 

 

As stated earlier, one of the major uses of MLR is to obtain a causal relationship between the 

predictor variables (independent variables) and the response (dependent variable). In other 

words, the relative importance of each predictor variable is important in determining a causal 

relationship between a specific predictor variable and the response. When MLR is used to 

determine the causal relationship between specific predictor variables and the response, 

multicollinearity plays an important role. A high degree of multicollinearity means that at least two 

of the independent variables in the regression equation of equation 5.1 are highly correlated. 

Multicollinearity is not a violation of any of the assumptions discussed above and it does not 

prevent the calculation of the regression coefficients. However, it does make it more difficult to 

reliably estimate the regression coefficients of those variables that are collinear. 

When the primary goal of MLR models are used for prediction purposes, then multicollinearity is 

only a minor concern [4].  

 

The following analyses can be performed on the data to investigate the validity of the assumptions 

mentioned above. 

5.1.3.1 ANALYSIS OF SIGNIFICANCE [7] 

In multiple linear regression (MLR) certain tests of hypotheses about the model parameters are 

helpful in measuring the usefulness of the model. The test for significance of regression is a test 

to determine whether a linear relationship exists between the response variable y and a subset of 

regressor variables x1,x2,…xk. The appropriate hypotheses are 
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The hypotheses in equation 5.2 are discussed in detail in Chapter 8, Section 8.3.1 The Null 

Hypothesis. 

5.1.3.2 ANALYSIS OF MODEL-FIT RESIDUALS 

Residuals can be plotted in the following ways: 

1. Plot of residuals against observations (various possibilities):  

• The plot of residuals against the fitted values should not indicate any systematic 

deviations from the response plane, nor indicate that the variance of the error terms 

varies with the level of the predicted value, thereby testing for homoscedasticity (variance 
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independence). The plot will also give an indication on the level of mean independence 

that, when the independent variables are unrelated to the random error, should tend to 

zero. 

• Residual case order errorbar plot (RCOPLOT) of confidence intervals on residuals from 

regression. The plot shows the residuals plotted in case order. The 95% confidence 

intervals about these residuals are plotted as error bars. An observation is an outlier if its 

error bar does not cross the zero reference line. The residuals should also be centered 

round zero. 

• Residual quantile-quantile plot (QQPLOT). The plot displays a quantile-quantile plot of the 

sample quantiles of the residuals versus theoretical quantiles from a normal distribution. If 

the distribution of the residuals is normal, the plot will be close to linear. 

 

2. Plot of residuals against each of the predictor variables: 

Each of these plots can provide further information whether curvature exists and therefore 

evaluate the assumption of linearity. It also evaluates the model for variance independency 

(homoscedasticity). 

 

3. Plot of residuals against interaction terms: 

Possible interaction terms not included in the model can be evaluated.  

5.1.3.3 ANALYSIS OF REGRESSION R2 STATISTIC 

The regression R2 statistic is a measure of how well the variation of the fitted values of the model 

is explained by the independent variables. The closer the R2 values are to 1, the greater is the 

variance explained by the regressor variables [8]. 

5.1.4 MODEL PREDICTABILITY 

Note that R2 values do not necessarily indicate the predictability of the model, even if R2 is high. 

Therefore model predictions need to be evaluated in different ways. Predictability of the model 

can be evaluated in two different ways: 

i. without the availability of future observations – using prediction intervals 

ii. with the availability of new observations – calculating average errors.  

5.1.4.1 ANALYSIS OF CONFIDENCE INTERVALS 

The MLR models will be used for predictive purposes in predicting the value of an observation 

that is yet to be chosen from the population. It is useful to have a 95% confidence interval 

produced by the model so that the prediction for a specific observation can be assumed accurate 

at a certain level (95%) of confidence. The prediction interval gives information on individual 

predictions of the dependent variable. That is, a prediction interval for a predicted value of the 

dependent variable gives us a range of values around which an additional observation of the 

dependent variable can be expected to be located [9]. 
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5.1.4.2 PREDICTION OF NEW OBSERVATIONS 

The predictability of the model can be evaluated by calculating the average relative error between 

model predictions and new observations.  

 

  
actual

predictedactual
errorrelative

−
=    (5.3) 

 

The "error" is the amount by which the predicted value differs from the quantity that is measured. 

 

5.2 MODEL 1: RELATIONSHIP BETWEEN PAINT RHEOLOGY AND RAW 

MATERIALS 

5.2.1 BACKGROUND 
Historically, the lack of a quantitative relationship between the raw materials and the rheology led 

to the development of rheological models [10], [11]. However, these models still have certain 

weaknesses (discussed in Chapter 2, Section 2.3.1) and the aim of this part of the study is to 

overcome these deficiencies by the following means: 

 

• Incorporation of preliminary modelling for rheological evaluation, introduced by Gasperlin et al, 

ensures that the rheological behaviour gets evaluated over the entire curve, instead of distinct 

points on the curve. This is important because a raw material may introduce different 

behaviour in different regions of the rheology curve. This has previously only been applied in 

the pharmaceutical industry and not in the coatings industry. 

• Each paint sample gets evaluated by a set of nine different rheological measurements instead 

of only one. In this manner the effect that a raw material has on the rheology becomes much 

more evident. 

The above two methods ensure that all possible effects of the raw materials on the rheology are 

captured. Incorporation of these two methods into the rheological evaluation of the paint leads to 

the eighteen rheological parameters in Table 5.1. 
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Table 5.1 Rheology Parameters from Preliminary Models 

MEASUREMENT PRELIMINARY MODEL  
RHEOLOGICAL 

PARAMETERS 

1. FLOW CURVE (FC) FCFCFCFC βγατ += &lnln  
FC

FC

β
α

 

2. HIGH SHEAR (HS) HSHSHSHSHSHS Ctt ++= βατ 2  

HS

HS

HS

C
β
α

 

3. LOW SHEAR (LS) LSLSLSLS t βατ += lnln  
LS

LS

β
α

 

4. 3-ITT (rot) )(3)(3)(3)(3 lnln rotITTrotITTrotITTrotITT t −−−− += βατ  
)(3

)(3

rotITT

rotITT

−

−

β

α
 

5. AMPLITUDE SWEEP 

(AS) 
ASASASAS βγατδ += lnln  

AS

AS

β
α

 

6. FREQUENCY SWEEP 

(FS) 
FSFSFSFS f βατδ += lnln  

FS

FS

β
α

 

7. TIME SWEEP (TS) TSTSTSTS t βατδ +=  
TS

TS

β
α

 

8. 3-ITT (osc) )(3)(3)(3)(3 lnln oscITToscITToscITToscITT t −−−− += βατδ  
)(3

)(3

oscITT

oscITT

−

−

β

α
 

9. EXTRA LOW 

FREQUENCY (XLF) XLFXLF C=τδ  XLFC  

 

The rheological parameters in Table 5.1 represent the gradient (α ) and the offset (β ) of the 

preliminary models (except for HS and XLF) fitted to the rheological data. The high R2-values of 

the preliminary models (see Chapter 4,Section 4.3.2 Preliminary Modelling, Table 4.2) indicate 

that the these models fit the data well and therefore the preliminary models can be seen as good 

representations of the whole rheological curve for each measurement. The aim is to model the 

rheological parameters in Table 5.1 as accurately as possible with the use of the main raw 

materials (determined in the screening procedure) so that a new rheological curve can be 

constructed from the α  and β  values obtained from the predicted responses. The raw materials 

that are used to construct the predictive linear models are: 

1. Emulsion (binder) 

2. Pigment 

3. Extender Pigment 

4. Organic Pigment 
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5. Water 

6. Solvent 

7. Rheology Modifier (type 1) 

8. Rheology Modifier (type 2) 

9. Combination of remaining raw materials (as a relative ratio). 

 

The first six raw materials were determined as the most important raw materials affecting the 

rheology (see Chapter 4, Section 4.4.1 Raw Material Screening). The rheology modifiers are also 

included because it is known that they influence the rheology. Although the remaining raw 

materials (coalescent, antifoamer, fungicide, soda ash, surfactant and dispersant) were 

determined as ‘less’ important, they are included as a single variable because their combined 

effect might still be important. 

 

A high level of collinearity exists between the rheological parameters (condition number, C >> 15). 

Principal component analysis reveals that more than 80% of the variance in the rheological 

behaviour is explained by the first three principal components (see Table 5.2).  

Table 5.2 Variance in Rheological Data Explained by the 1st Three Principal Components 

PRINCIPAL COMPONENT VARIANCE IN RHEOLOGICAL DATA [%] 

PC1 62.75 

PC2 13.06 

PC3 6.87 

 

Models that predict the effect of raw materials on the principal components (PC1 to PC3) would 

have simplified the modelling process considerably. Only three models, instead of eighteen would 

have been constructed. However, a major drawback of principal component analysis is that the 

principal components lack simple interpretation since each is, in a sense, a mixture of the original 

variables and reconstruction of the PC’s to the eighteen original rheological parameters is almost 

impossible (advanced statistical methods do exist but is beyond the scope of this study). In 

modern coating rheology, it is still very much standard practise to represent the rheological 

characterisation of a coating with an entire set of rheological curves ([12], [13], [14]) and not only 

a few principal rheological parameters. 

5.2.2 MULTIPLE LINEAR REGRESSION (MLR) MODELLING 
Multiple linear regression is used as a modelling technique to determine: 

i. The causal relationship between the raw materials and the rheological behaviour 

ii. The predictive relationship between the raw materials and the rheological behaviour. 

Although the causal relationship between the raw materials and the rheological behaviour is of 

great importance to the paint formulator, this study concentrates more on the predictive 

capabilities and therefore more attention is given to the predictive models.  
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5.2.2.1 MLR – CAUSAL MODEL 

It is interesting to see what the most important factors are in explaining 80% of the variance in the 

rheological data. This is illustrated in Figure 5.2 
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Figure 5.2 Relative Contribution to 80% Variance in Rheological Response  

(CNST=constant, WTR=water, PIGM=pigment, XTND=extender, SOLV=solvent, 

EMLS=emulsion, OPIG=organic pigment, RM1=rheology modifier1, RM2=rheology modifer2, 

COMB=combination.) 

 

It is interesting to note from Figure 5.2 that the five most important raw materials affecting the 

rheology, is also the five raw materials that affect the volume solids of a coating the most. The 

strong correlation between volume solids and the rheology of a coating is well known [15] and it 

confirms the findings in Figure 5.2. 

One of the recent developments in the coatings industry is towards low volatile organic 

compounds (VOC) coatings. For example, the paint under investigation is currently being 

formulated without any VOC’s (solvents) compared to solvent levels of ± 5% when the study was 

undertaken. Figure 5.2 indicates that the solvent also plays a relative important role in affecting 

the rheology. It is evident that rheology control has become very important for paints that are 

currently being manufactured. 

The effect of rheology modifiers, RM1 and RM2 is unexpectedly small. A reason for this might be 

because although one thinks of rheology modifiers as having a major effect on the rheology, they 

actually do not. The ‘basic’ rheology is set up by the five raw materials mentioned above and 

rheology modifiers are added in the manufacturing process to ‘modify’ or ‘fine-tune’ the rheology. 

The inclusion of the rest of the paint components as a variable (combination) paid off, because its 

relative importance in affecting the rheology seems significant as it affects most of the rheology to 

the same extent as RM1.  

5.2.2.2 MLR – PREDICTIVE MODEL 

Multiple linear regression (MLR) models are developed to predict the rheological behaviour in 

terms of the preliminary model parameters XLFHSFCFC C,........,,, αβα  of the rheology curves 
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given in Table 5.1. The set of nine raw materials, combined with the pigment volume 

concentration (PVC) and volume solids (VS) are used as predictor variables. For example, the 

regression model for the mean response of the gradient of the frequency sweep ( FSα ) is 

expressed as follows: 

 

 

εββββ

ββββ

ββββα

++++

++++

++++=

VSVSPVCPVCncombinationcombinatioRMRM

RMRMsolventsolventwaterwaterpigmentorgpigmentorg

extenderextenderpigmentpigmentemulsionemulsionFS

xxxx

xxxx

xxx

22

11..

0

 (5.4) 

 

The coefficients of determination (βi) are only valid if the error of the independent variables (x i) are 

negligible when compared with the error on the dependent variable (αi) The independent variables 

of equation 5.4 are fixed points and therefore their variance are negligible compared to the 

variance of the dependent variables.  

A total of 98 experimental runs (cases) are used for model fitting. The reason for using 98 

experimental runs originates from the training data set that is used to train the neural network (see  

Chapter 6, Section 6.2.2 Neural Network Modelling). The aim is to, in the end, compare the linear 

modelling techniques (MLR) to the non-linear modelling techniques (NN) and for this reason, the 

models have to be fitted/trained on the same data. 

Figure 5.3 illustrates the MLR model fit for FSα on the 98 data points. 
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Figure 5.3 Model Fit (MLR) for ALPHA (Frequency Sweep) 
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All the points lie within plus or minus two standard deviations (std. deviations) of the model and 

therefore the model seems to explain the va riance in the gradient of the frequency sweep ( FSα ) 

well. However, the model needs to be validated before definite conclusions can be drawn. 

 

Model fits are constructed for all the preliminary model parameters (See Chapter 12, Appendix E) 

5.2.3 MODEL VALIDITY 
A valid model ensures that predictions are unbiased and efficient. Multiple linear regression is 

based on certain assumptions (see Section 5.1.3 Model Validity). It is important to remember that 

some assumptions rely stronger on certain conditions than others. Stronger assumptions lead to 

stronger conclusions. Ultimately, the model is validated by the average relative error that is made 

between the actual and predicted value of unseen data. 

 

1. Linearity 

The models are based on the assumption that each raw material contributes in a linear way in 

predicting the rheology, although it is known that raw materials interact to produce certain 

rheology in the paint. These interactions might be small in comparison to the contribution of each 

raw material to the rheology, making the assumption of linearity not grossly impossible. An 

estimation of the degree of linearity can be obtained from the scatterplot of the measured 

response as a function of the predictor variable, xi (j = raw materials, PVC and VS).  
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Figure 5.4 Scatterplot of ALPHA (Frequency Sweep) with Predictor Variables 

Figure 5.4 (a) to (k) illustrate that some linear assumptions are more obvious for some of the 

predictor variables than for others, for example, the linear relationship between volume solids and 

FSα (Figure 5.4 (k)) is more evident than for pigment volume concentration and FSα (Figure 5.4 

(j)). Some of the predictor variables indicate non-linearities at the extreme high and low ranges of 
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the variable (e.g. organic pigment, Figure 5.4 (f)), however, in most cases severe curvature does 

not exist and the assumption of linearity is not grossly violated. 

Another indication that at least one regressor variable contributes significantly in explaining the 

linear relationship between the response and the regressor variables, is by rejecting the null 

hypothesis, that not one of the regressor variables is significant in explaining the variance in the 

response. The p-values in Table 5.3 (p=0.0000) indicate that there is definitely at least one 

regressor variable that plays a role in explaining the variance in the response. Therefore there 

exists at least one linear relationship between the rheological response and the raw materials.  

 

Table 5.3 Evaluation of MLR Models for Rheology Data 

Rheological 

Curve 

Model 

Parameters 
R2 p-values 

 

Flow curve 
FC

FC

β
α

 7351.0
5384.0

 0000.0
0000.0

 

High Shear 

HS

HS

HS

γ
β
α

 9100.0
8084.0
7969.0

 0000.0
0000.0
0000.0

 

Low Shear  
LS

LS

β
α

 8418.0
4288.0

 0000.0
0000.0

 

3-ITT (rot) 
)(3

)(3

rotITT

rotITT

−

−

β

α

 
8267.0
8639.0

 0000.0
0000.0

 

Amplitude Sweep 
AS

AS

β
α

 8499.0
4825.0

 0000.0
0000.0

 

Frequency Sweep 
FS

FS

β
α

 6689.0
8317.0

 0000.0
0000.0

 

Time Sweep 
TS

TS

β
α

 5508.0
6520.0

 0000.0
0000.0

 

3-ITT (osc) 
)(3

)(3

oscITT

oscITT

−

−

β

α

 
5595.0
9676.0

 0000.0
0000.0

 

Extra Low 

Frequency XLFC  4540.0  0000.0  

 

In some cases the regression models explain a lot of the variance (R2 > 0.8) in the rheological 

behaviour while in other it explains relatively little variance (R2 < 0.5). It must be remembered that 

this is not necessarily an indication of what the predictive capabilities of the models are. 
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2. Mean Independence 

The assumption of mean independence assumes that the independent variables are unrelated to 

the random error ε in equation 5.4. This is one of the most critical assumptions [4]. The scatterplot 

of residuals in Figure 5.5 also illustrates that the residuals for FSα are centred round zero. The 

calculated average value of the residuals ≈ zero for all the models (see residuals of scatterplots 

and RCOPLOTS of Chapter 12, Appendix E).  

 

3. Homoscedasticity 

The plot of residuals of FSα  in Figure 5.5 also indicates that errors occur randomly and are not 

linked to patterns in the experimental run-order. 
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Figure 5.5 Plot of Residuals for ALPHA (Frequency Sweep) 

 

4. Uncorrelated Errors 

There is no easy way to determine whether contributions in the error term ε of equation 5.4 are 

correlated. However, it has been shown that the issue of correlated disturbances is strongly 

affected by sampling design [4] and that if samples are chosen at random order from an 

experimental space, that it is unlikely that correlated disturbances will be a problem. Furthermore, 

Design Expert® (the software package used for designing experiments) estimated the set of 

experiments so that multicollinearity between variables is kept at a minimum, reducing the 

possibility of correlation between error terms. 
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5. Normal Distribution 
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Figure 5.6 QQPLOT for ALPHA (Frequency Sweep) Data 

The quantile-quantile plot of residuals in Figure 5.6 illustrates a definite S pattern which is an 

indication of nonnormality. The data points deviating form normality are either outliers or influential 

data points. It is unlikely that they are outliers as they do not occur randomly but deviate from 

normality in a definite S pattern. If these points are influential data points then a linear model is 

probably not the most adequate model. However, the assumption of normality seems valid for the 

majority of the data points. The occurrence of influential data points is not unlikely, because 

samples with extreme pigment volume concentrations (PVC) and volume solids (VS) are included in 

the design for the reason of being influential. Therefore, thirty extra samples, all with PVC and VS 

values far beyond that of the normal formula are included in the design to give insight into the paint 

properties that do not show a lot of variance in behaviour within the normal range of PVC and VS. It 

is expected that these samples show a certain degree of nonlinearity. 

 

6. Influential Data Points 

Influential data points affect the results that are included in the linear analysis. The residual case 

order errorbar plot (RCOPLOT) of confidence intervals on residuals from the MLR, indicate the 

residuals that are considered ‘abnormally’ large (in terms of a normal distribution) and which are not 

fitted accurately with the MLR model (indicated with �  in Figure 5.7). These are either outliers or 

influential data points. 
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Figure 5.7 RCOPLOT for AlphaFS with Square Markers that Indicate Outliers 

Further investigation of Figure 5.7 reveals that 5 of the 8 (63%) residuals that lie outside the 

confidence interval are of paint samples with excessive PVC/VS loadings. Paint samples with 

excessive PVC/VS only make up 17% of the sample size and therefore the 63% occurrence of 

these samples outside the confidence interval clearly indicates that PVC and VS affect the model 

fit and therefore the results. Table 5.4 indicates the occurrence of paint samples with excessive 

PVC/VS as outliers according to the confidence interval of the MLR model. 
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Table 5.4 Occurrence of Extreme PVC/VS Paint Samples Outside of Confidence Interval 

Rheology Curve Model Parameters Occurrence [%] 

Flow curve 
FC

FC

β
α

 

33 

0 

High Shear 

HS

HS

HS

γ
β
α

 

75 

80 

0 

Low Shear 
LS

LS

β
α

 

60 

33 

3-ITT (rot) 
)(3

)(3

rotITT

rotITT

−

−

β

α

 

45 

67 

Amplitude Sweep 
AS

AS

β
α

 

0 

0 

Frequency 

Sweep FS

FS

β
α

 

63 

50 

Time Sweep 
TS

TS

β
α

 

56 

33 

3-ITT (osc) 
)(3

)(3

oscITT

oscITT

−

−

β

α

 

38 

33 

Extra Low 

Frequency XLFC  
33 

 

It is evident that influential data points are abundant in all of the models. The MLR models 

struggle to fit the influential data points accurately which are most probably caused by 

nonlinearities in the data.  

 

5.2.4 RHEOLOGY PREDICTION 

Table 5.5 shows the regression coefficients used for rheology predictions. These regression 

coefficients are used in equations similar to equation 5.4 for predictions.  
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Table 5.5 Regression Coefficients for Model Parameters (MODEL 1) 

Rheology 

Curve 

Model 

Parameters 
βconstant  βpigment  βextender βwater βsolvent βemulsion βorg.pigment  βRM1 βRM2 βcombinatio βPVC βvs 

FC 

FC

FC

β
α

 
0.0352 

-0.0844 

0.9055 

-1.8202 

0.8794 

-1.8894 

-0.8425 

1.9686 

-0.2131 

0.5571 

0.5127 

-0.3461 

0.5588 

-0.6289 

0.1104 

0.0579 

0.0664 

0.0106 

-0.3581 

0.7064 

-0.9191 

1.0246 

-1.7486 

3.5326 

HS 

HS

HS

HS

γ
β
α

 

0.0004 

0.0008 

0.0148 

-2.5647 

3.3664 

-0.0105 

-2.8694 

3.5128 

-0.6727 

3.2835 

-3.5716 

1.6459 

0.9823 

-1.0529 

0.5226 

-0.4885 

0.7000 

-0.5912 

-0.8093 

1.0743 

-0.0413 

0.1539 

0.0198 

0.6174 

-0.0431 

0.0591 

0.1196 

1.1913 

-1.3508 

0.6958 

1.1759 

-1.7946 

-1.4406 

5.7951 

-6.3242 

3.3756 

LS 

LS

LS

β
α

 
0.0307 

-0.0452 

-6.1485 

-1.4435 

-5.5253 

-1.7700 

0.6149 

2.7763 

-0.0318 

0.8531 

-1.8396 

1.2870 

-2.0277 

-0.4787 

0.0477 

0.0615 

0.0516 

0.0140 

0.3792 

0.8945 

6.3514 

1.5580 

3.0137 

4.2789 

3-ITT (rot) 

)(3

)(3

rotITT

rotITT

−

−

β

α
 

0.0559 

-0.0201 

-3.0743 

-0.9564 

-2.8381 

-1.4118 

1.0983 

2.5252 

0.3051 

0.6787 

-0.5174 

0.8001 

-1.1434 

-0.3130 

-0.1685 

0.2115 

-0.2651 

0.2203 

0.5060 

0.8635 

4.1452 

0.3603 

2.4009 

4.2867 

AS 

AS

AS

β
α

 
-0.0116 

0.0354 

-0.3117 

-0.9061 

-0.8294 

-1.4392 

0.8541 

2.7113 

0.1708 

0.7193 

0.3183 

1.0282 

0.0219 

-0.4351 

0.3403 

0.3182 

0.1166 

0.1721 

0.4469 

0.9461 

-0.5676 

0.5782 

1.4255 

4.5662 

FS 

FS

FS

β
α

 
-0.1329 

-0.0430 

2.9153 

-1.4255 

3.3398 

-1.6483 

-4.3469 

2.2889 

-1.1319 

0.6066 

-2.0297 

0.4184 

1.0206 

-0.4437 

0.0080 

0.0639 

-0.0861 

0.0449 

-1.4177 

0.7231 

-3.7037 

0.9145 

-6.9758 

3.6700 

TS 

TS

TS

β
α

 
-0.0859 

0.0010 

-1.3623 

2.1882 

-1.4156 

1.4090 

1.0869 

1.3037 

0.3114 

0.2705 

0.8992 

0.3435 

-0.5828 

0.6468 

0.0193 

0.2506 

0.0146 

0.1505 

0.3100 

0.4529 

2.4447 

-3.4339 

1.8227 

1.5535 

3-ITT (osc) 

)(3

)(3

oscITT

oscITT

−

−

β

α
 

0.0034 

0.0423 

-1.8025 

3.3933 

-1.5825 

2.2488 

0.8301 

1.6057 

0.2466 

0.3008 

0.4974 

1.0647 

-0.7670 

1.1016 

-0.1485 

0.3122 

-0.0753 

0.2772 

0.2555 

0.3922 

3.5393 

-4.7101 

1.4413 

1.5693 

XLF XLFC  -0.0726 -2.4736 -2.4978 2.4159 0.6790 0.1006 -0.7137 0.0009 0.0055 0.8219 1.8860 4.1712 
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5.2.4.1 MODEL PREDICTABILITY 

The main purpose of the regression models is for prediction. The aim is to be able to construct 

rheological curves from unseen raw material data that closely resemble what the actual curve 

would have looked like. The raw materials in the regression equation 5.4 are used as predictor 

variables, VSextenderpigmentemulsion xxxx ,...,,, . Figure 5.8 and Figure 5.9 give the 95% prediction 

interval which indicates with 95% certainty where future observations for the gradient ( FSα ) and 

the offset ( FSβ ) of the frequency sweep are expected to be. 

95% PREDICTION INTERVAL

ALPHA (Frequency Sweep)

0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80

ACTUAL

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

P
R

E
D

IC
T

E
D

 

Figure 5.8 Prediction intervals of MLR model for ALPHA-values of the Frequency Sweep 

One can therefore expect that most of the future predictions from unseen raw material data would 

fall within the 95% prediction interval as indicated in Figure 5.8. However, ± 6% (5 out of 98 

samples) of predicted data points will fall outside of the 95% prediction interval. 
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Figure 5.9 Prediction Intervals of MLR Model for BETA-values of the Frequency Sweep 

Once again, although the majority of predictions for FSβ  will fall within the 95% prediction interval, 

Figure 5.9 indicates that ± 4% (4 of 98 samples) of predicted values can be expected to fall 

outside the 95% prediction interval.  

Closer inspection of these ‘outliers’ reveals something that was already suspected after evaluation 

of the RCOPLOT in Figure 5.7. That is, four of the six (67%) data points that fall outside the 95% 

prediction interval in Figure 5.8 are samples with extreme PVS/VS. In Figure 5.9 one out of four 

(25%) data points outside the 95% prediction interval has extreme PVC/VS. In both cases this is 

more than the 17% occurrence of samples with extreme PVS/VS in the design space and 

therefore it can be concluded that paint samples with extreme PVC/VS are more likely to fall 

outside of the 95% prediction interval. The RCOPLOT of Figure 5.7 has indicated that these data 

points with extreme PVC/VS lead to large residuals. Therefore, large residuals can be expected 

for points that fall outside the 95% prediction interval.  

 

All the models are presented with ‘unseen’ raw material data that have not been used in 

estimating the model fit. The ‘unseen’ raw material data fall within the same range as the fitted 

data and therefore it can be expected that the models will predict the data points in a way similar 

to the model fit and the prediction intervals. Therefore, it can be expected that the models will not 

be accurate in predicting the rheological response of samples with extreme PVC/VS. Figure 5.10 

gives the predicted FSα values against the actual FSα values of 33 ‘unseen’ samples. 
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Figure 5.10 Model Predictions for ALPHA (Frequency Sweep) for Unseen Data 

The following becomes clear under closer inspection of Figure 5.10: 

• Most of the data points (± 80%) are predicted within the 95% prediction interval 

• Seven predicted data points (± 20%) can be considered as possible outliers (outside the 

95% prediction interval) 

• Closer inspection of the data reveals that 3 of the 7 “outliers” are samples with extreme 

PVC/VS 

• The unseen data only have 4 samples with extreme PVC/VS and therefore 75% of 

samples with extreme PVC/VS is predicted as “outliers” outside the 95% prediction 

interval. The “outliers” are therefore influential data points that the linear model cannot 

predict accurately. 

 

Figure 5.11 gives the predicted FSβ values against the actual FSβ values for the 33 ‘unseen’ 

samples. 
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Figure 5.11 Model Predictions for BETA (Frequency Sweep) for Unseen Data 

The following is revealed under closed inspection: 

• Most of the data points (± 87%) are predicted within the 95% prediction interval 

• Four predicted data points (± 13%) can be considered as possible “outliers”. 

• Three of these four “outliers” (75%) are samples with extreme PVC/VS. 

 

It is clear that linear models can accurately predict the values of FSα and FSβ  as long as the raw 

materials fall in the normal plus or minus 20% range of the standard formulation. However, paint 

samples with extreme PVC/VS are influential data points which the MLR models do not predict 

accurately and non-linear modelling techniques seem to be necessary to model these points 

accurately. In Chapter 6 a comparison is drawn between the magnitude of error obtained from 

linear versus non-linear modelling techniques for the data points that are considered to be outliers 

according to the MLR models. 

5.2.4.2 MODEL ERRORS 

Average errors for the prediction of the 33 ‘unseen’ paint samples are given in Table 5.6. In 

general the MLR models predict the rheological behaviour with relative small relative errors, 

considering that inaccurate predictions of samples with extreme PVC and VS contribute 

significantly in affecting the relative error. The error will reduce considerably if the samples with 

extreme PVC/VS can also be predicted accurately. This is one of the main reasons for 

implementation of non-linear modelling (Chapter 6).  
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It is important to know whether these errors in prediction of rheological parameters are significant 

in affecting the paint performance. Unfortunately, seeing that this type of study is attempted for 

the first time, no error margins exist which state what margin of error is allowed in the rheological 

behaviour before the paint performance gets affected. This is one of the reasons why MODEL 3 is 

developed – to establish a quantitative model/scale so that these type of errors can be evaluated 

quantitatively and determine whether they are acceptable in terms of the sensitivity of the paint 

properties. 

Table 5.6 Relative Errors for Unseen Data 

Relative Error [%] 

Rheology Curve Rheological Parameter  PVC/VS included 

as predictors 

 PVC/VS excluded 

as predictors 

Flow Curve 
FC

FC

β
α

 
7.14

24.3
 

33.21
42.3

 

High Shear 

HS

HS

HS

γ
β
α

 

88.2
34.14
83.10

 

93.2
73.18
44.12

 

Low Shear 
LS

LS

β
α

 
46.15
62.51

 
45.19
86.46

 

3-ITT (rot) 
)(3

)(3

rotITT

rotITT

−

−

β

α
 

32.8
87.10

 36.8
82.14

 

Amplitude Sweep 
AS

AS

β
α

 
89.5
42.0

 
31.6
43.0

 

Frequency Sweep 
FS

FS

β
α

 
81.24

97.2
 

74.25
03.3

 

Time Sweep 
TS

TS

β
α

 
92.21
13.21

 
75.25
64.18

 

3-ITT (osc) 
)(3

)(3

oscITT

oscITT

−

−

β

α
 

41.23
03.8

 12.20
82.14

 

Extra Low Frequency XLFC  22.44  54.49  

 

It was mentioned in Chapter 4 that the inclusion of pigment volume concentration (PVC) and 

volume solids (VS) as predictor variables add to the multicollinearity of the predictor variables. It is 

known that multicollinearity does not play a major role when a regression model is used for 

prediction purposes [1], [4], [16]. In Table 5.6 it can be seen that inclusion of PVC and VS as 

predictor variables actually leads to better predictions with 14 of the 18 predicted parameters 

having smaller errors than without the inclusion of PVC and VS. 



  136 

5.2.4.3 PRACTICAL APPLICABILITY OF MODEL 

The rheological parameters obtained from the model fit can be used to predict the response to 

previously “unseen” raw material data. “Unseen” raw material data are data that is not used to 

develop the model fit, but rather to test the model parameters or to see how well the model can 

predict the rheological response given only the raw material levels. Measured and model 

predictions for the rheology curves are shown in Figure 5.12 (a) to (i). The entire model prediction 

is obtained from the predicted iα and iβ values. 

Each figure illustrates the model prediction for a paint sample with ‘normal’ variation in raw 

material levels (<20%) and a model prediction for a paint sample with ‘extreme’ variation in raw 

material levels (>20%). It is clear from all the graphs that the model predictions for ‘normal’ 

variations in raw material levels are much more accurate than for model predictions where 

extreme variations in raw material levels occur. In other words, the model is more accurate in 

predicting the rheological response for normal variations  than for extreme variations. It is clear 

that  another model is required for extreme variations. Attention to this fact is given in Chapter 6. 
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Figure 5.12 Predicted Response for Rheology Curves 

5.2.5 MODEL 1 CONCLUSIONS  
The following conclusions can be drawn from the previous discussion: 

• Rheology data is highly correlated and three principal components explain 80% of the 

variance in the rheological data that was originally characterised by 18 parameters. 

• The most important raw materials affecting the rheology are (in order of importance): 

emulsion, extender, pigment, water, organic pigment, solvent, combination of remaining 

raw materials, type 1 rheology modifier (RM1), type 2 rheology modifier (RM2).  

• Multiple linear regression (MLR) is a valid method for rheological modelling of paint. 

• Extreme PVC/VS have an effect on the predictability of the linear models. The MLR 

models predict the rheological behaviour of paint with normal ranges of raw materials 

accurately, but cannot predict the rheological behaviour of samples with extreme 

PVC/solids accurately. The rheological behaviour of paint is therefore relatively linear as 

far as the normal range (plus or minus 20% variation in a raw materials from the standard 

formulation) of raw materials is concerned, but is seems that nonlinearities start to play a 

important role at wider ranges of raw materials. Therefore, beyond the normal range of 

raw materials, linear models are not accurate in predicting the rheological behaviour. The 

use of linear models for extrapolation beyond the normal ranges can not be used 

accurately. 

• Table 5.5 gives the matrix of regression coefficients that can be used in equation 5.4 to 

predict the rheological behaviour of this specific paint. 

• The rheological behaviour of more than 80% of new paint formulations can be predicted 

with 95% confidence by using MLR, as long as the raw materials do not vary more than 

20% from the standard formulation. Different modelling techniques are required for the 

models that vary more than 20% from the standard formulation. 
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• Table 5.6 gives the error that can be expected in predicting the rheology curves by using 

MLR. The smallest error (0.42%) occurs in predicting the gradient of the amplitude sweep 

while the largest error (44.22%) can be expected in predicting the extra low frequency 

point. The rheology curves that are predicted most accurately by means of MLR are the 

amplitudes sweep, 3-ITT in the rotational mode and the flow curve. This is very good, 

because the most essential rheological information can be obtained from these curves: 

i) Amplitude Sweep: Gives information about the structure of the paint. 

ii) 3-ITT: Gives information about the way the paint behaves after it has been applied to a 

surface. 

iii) Flow Curve: Gives the basic flow behaviour of the paint over a range of shear rates. 

The rheology curves that are predicted most inaccurately by MLR are the low shear    

curve, the time sweep and the extra low frequency point. This is not a such a big concern 

because these rheology curves give less valuable information about the paint and its 

behaviour: 

i) Low Shear Curve: Gives information about the paint under low shear conditions, but 

this can also be obtained from the flow curve. 

ii) Time Sweep: Gives information of paint when subjected to long stationary periods, 

which is mostly only during storage. 

iii) Extra Low Frequency point: Gives information when subjected to very slow time-scale 

behaviour (which is usually long after application when paint is already dry).   

 

5.3 MODEL 2: RELATIONSHIP BETWEEN PAINT PROPERTIES AND RAW 

MATERIALS 

5.3.1 BACKGROUND 

The relationship between raw materials and the paint properties are well established, albeit 

qualitatively, but it is surprising to note how little quantitative modelling has been done on paint 

properties. Due to all the possible interactions between the raw materials, the effect of raw 

materials on paint properties are unique for every paint system, and the major effects in Table 5.7 

can only be used as a indication.  
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Table 5.7 Major Functionality of Raw Materials 

Raw Material Major effects 

Emulsion (binder) Durability, gloss 

Pigments Hiding, colour, opacity, hardness, durability 

Extenders Hiding power 

Vehicle (water) Application 

Solvents Open time, adhesion, water resistance 

Coalescent Film formation, defamer 

Dispersants Stability (settlement, syneresis), colour acceptance 

Surfactants Colour acceptance, stability 

Defamers Defaming 

Thickeners Application 

Biocides Preservative (in-can and film) 

 

5.3.2 MULTIPLE LINEAR REGRESSION (MLR) 
 

Multiple linear regression (MLR) is also used as a first technique to investigate the linear 

relationship between the raw materials and the paint properties. This is because i) other authors 

have successfully (to a certain extent) used linear modelling techniques such as MLR to model 

paint properties (see Chapter 2, Section 2.4.2 Linear Modelling) and ii) MLR gives a good first 

approximation of the degree of linearity that exists between the paint properties and the raw 

materials.  

 

Furthermore, the uniqueness of each paint formula makes comparison of models between this 

study and others almost impossible. The aim is therefore to develop the quantitative relationship 

(model) between the raw materials and paint properties for this specific system. It can then be 

extended to other paint systems (Chapter 7, Future Work ).  

 

In this part of the study a model is mainly developed for predictive purposes and therefore the 

causal relationship between the paint properties and the raw materials is only briefly discussed. 

 

Gloss is important in paints, particularly where high aesthetic appeal is required and in high-

quality paints [17]. The relationship between gloss and the raw materials is therefore important 

and it is this property (gloss) that is used as an example for the modelling process. The paint  

under investigation is classified as a ‘medium gloss’ paint and therefore Gloss60 (gloss measured 

at a reflectance angle of 60° ) is ideal in expressing the gloss values.  
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5.3.2.1 MLR – CAUSAL MODEL 

The degree of multicollinearity that exists between the raw materials is still acceptable (C < 15 [5]) 

for the MLR model to be used as a causal model. However, when variables such as pigment 

volume concentration (PVC) and volume solids (VS) are added, multicollinearity becomes a 

problem (C>>15) for the MLR model to explain the causal relationship between the explanatory 

variables and the paint properties. Therefore the causal relationship between Gloss60 and the 

raw materials is expressed as follows (without PVC and VS as regressor variables). 

 

 

εββ

ββββ

ββββα

++

++++

++++=

ncombinationcombinatioRMRM

RMRMsolventsolventwaterwaterpigmentorgpigmentorg

extenderextenderpigmentpigmentemulsionemulsionGloss

xx

xxxx

xxx

22

11..

060

 (5.5) 

 

Figure 5.13 illustrates the absolute values of the regression coefficients which indicate their 

importance in affecting the Gloss60 paint property. 
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Figure 5.13 Regression Coefficients (Absolute) for Gloss60 MLR Model 

(CNST=constant, WTR=water, PIGM=pigment, XTND=extender, SOLV=solvent, 

EMLS=emulsion, OPIG=organic pigment, RM1=rheology modifier1, RM2=rheology modifer2, 

COMB=combination.) 

 

The importance of each raw material in Figure 5.13 is given by its relative height. It can be seen 

that the importance of the emulsion overshadows that of the other raw materials. According to 

paint scientists, gloss is mostly affected by the combination of resin with the pigments and any or 

all of the following can cause gloss deficiency [17]: 

 

• Poor level of dispersion and the presence of very large pigment particles or pigment 

agglomerates. 

• Insufficient dispersion stability which leads to flocculation of pigment particles. 

• Pigment concentration which is too high. 
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• An unfavourable rheology that leads to poor levelling. 

 

Figure 5.13 also illustrates the importance of the emulsion, pigments (organic and inorganic), 

extender and water in affecting the gloss of the paint.  

5.3.2.2 MLR – PREDICTIVE MODEL 

Multiple linear regression (MLR) is used again to model the relationship between a specific paint 

property (Dry Burnish 20, Dry Burnish 60, etc.) and the set of 11 input variables. For example, the 

regression model for the mean response of Gloss 60 is expressed as follows: 
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Similar to equation 5.4, the independent variables of equation 5.6 are fixed points and therefore 

their variance are negligible compared to the variance of the dependent variables.  

Note that PVCx and VSx are also used as predictor variables. As mentioned earlier, the effect of 

multicollinearity is minor when the regression equation is used for predictive purposes. The model 

fit of the 98 samples can be seen in Figure 5.14 
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Figure 5.14 Model Fit (MLR) for Gloss 60 
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Figure 5.14 gives an indication of how accurate the model fits the data. Except for three extreme 

points, the model seems to fit the data well. The model assumptions need to be validated first 

before more serious conclusions can be made about the model fit and its predictions.  

 

5.3.3 MODEL VALIDITY 

The model validity is based on the same assumptions as in Section 5.2.3.  

1. Linearity 

A scatterplot of Gloss60 against each of the predictor variables (Figure 5.15 (a) to (k) gives an 

indication of the linear relationship between the gloss of the paint and each of the predictor 

variables. 
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Figure 5.15 Scatterplot of Measured Gloss60 Values Against Predictor Variables 

Linear relationships between Gloss60 and the predictor variables are evident in most of the 

scatterplots of Figure 5.15 (excluding ‘pigment’ and ‘volume solids’). The scatterplots of emulsion 

and pigment volume concentration (PVC) indicate some curvature, so do the other variables at 
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high and low concentrations, nonetheless, no severe curvature exists and linear assumptions 

seem to be a good approximation – at least for the largest part of the range (mostly the middle) of 

each predictor variable. The assumption of linearity is not grossly violated. 

 

Another indication that at least one regressor variable contributes significantly in explaining the 

linear relationship between the response and the regressor variables, is by rejecting the null 

hypothesis, that not one of the regressor variables is significant in explaining the variance in the 

response. The p-values in Table 5.8 indicate with a high level of certainty that the variance in all 

the paint properties, except ‘Open Time’ can be explained linearly by at least one of the predictor 

variables (p<0.05). Therefore there exists at least one linear relationship between the paint 

property and the raw materials. 

Table 5.8 Significance Test for Null Hypothesis 

Paint Property R2 p-values 

Dry Burnish (20) 0.3330 0.0001 

Dry Burnish (60) 0.7021 0.0000 

Dry Burnish (85) 0.5803 0.0000 

Wet Burnish (20) 0.3189 0.0003 

Wet Burnish (60) 0.4696 0.0000 

Wet Burnish (85) 0.7022 0.0000 

Dirt Pick-up (delta gloss 85) 0.5427 0.0000 

Open Time - Glass 0.1595 0.1525 

Dry Film Thickness 0.5506 0.0000 

Gloss (20) 0.8482 0.0000 

Gloss (60) 0.9266 0.0000 

Gloss (85) 0.9526 0.0000 

Hiding Power Roller - 1st coat 0.2662 0.0033 

Krebs 0.8698 0.0000 

Opacity 0.5753 0.0000 

Anti-sag Index 0.1994 0.0440 

Water Permeability 0.3096 0.0004 

 

Variance (R2) in some of the paint properties is explained well, e.g. 95.02
85 =GlossR , while 

variance in other properties is explained not that well, e.g. 33.02
20 =DryBurnishR . High R2 values do 

not necessarily mean good predictability and vice versa.  

 

2. Mean Independence 

The average value for the residuals of Gloss60 is so small (5.33 × 10-6) that the assumption of 

mean independence (that the independent variables are unrelated to the random error ε of 
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equation 5.6) can be considered as valid for the MLR model of Gloss60. Figure 5.16 also 

illustrates that the residuals of Gloss60 are centred round zero. The assumption of mean 

independence is also true for all the other models (see Chapter 12 Appendix E, Section 12.2 – 

Linear Modelling).  

 

3. Homoscedasticity 

The scatterplot of residuals against case number shows no systematic pattern and therefore the 

errors in the model are independent of the run order. 
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Figure 5.16 Scatterplot of Residuals (Gloss60) Against Case Number 

 

4. Uncorrelated Errors 

Once again, there is no easy way to determine whether contributions in the error term ε of 

equation 5.6 are correlated. However, it has been shown that the issue of correlated disturbances 

is strongly affected by sampling design [4] and that if samples are chosen at random order from 

an experimental space, that it is unlikely that correlated disturbances will be a problem. 

Furthermore, Design Expert® (the software package used for designing experiments) estimated 

the set of experiments so that multicollinearity between variables is kept at a minimum, reducing 

the possibility of correlation between error terms. 
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5. Normal Distribution 
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Figure 5.17 QQPLOT for Gloss60 Values 

The quantile-quantile plot of residuals in Figure 5.17 follows a definite S pattern which is an 

indication of nonnormality. However, the assumption of normality is not grossly violated as most of 

the points follow a normal distribution. Multiple linear regression will be able to fit the normal 

distributed points accurately but might not be that accurate in modelling the data points that deviate 

from normality. It was observed in the previous section that paint samples with extreme PVC/VS are 

classified as influential data points; therefore it is not entirely surprising that the QQPLOT of Figure 

5.17 also deviate from normality which is caused by non-linearities due to extreme PVC and VS. 

 

6. Influential Data Points 

Influential data points affect the results that are included in the analysis. The residual case order 

errorbar plot (RCOPLOT) of confidence intervals on residuals from the MLR, indicates the residuals 

that are considered abnormally large according to the 95% confidence interval. These data points 

are not fitted accurately with the MLR model (indicated with � in Figure 5.18). These are either 

outliers or influential data points. 
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Figure 5.18 RCOPLOT of Gloss60 

Closer inspection of Figure 5.18 reveals that 5 of the 6 ‘outliers’ (83%) are paint samples with 

extreme PVC/VS. These data points can be considered as influential data points that are not fitted 

well by the MLR model. This is also an indication that the linear model is unlikely to predict future 

observations with high PVC/VS accurately and that other modelling techniques should also be 

investigated for prediction capabilities of these samples.  

5.3.4 PAINT PROPERTY PREDICTIONS 

Table 5.9 shows the regression coefficients used for paint property predictions. These regression 

coefficients are used in equation 5.6.  
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Table 5.9 Regression Coefficients for Model Parameters (MODEL 2) 

Paint 

Property 
βconstant  βpigment  βextender βwater βsolvent βemulsion βorg.pigment  βRM1 βRM2 βcombinatio βPVC βvs 

Dry Burnish20 -0.1886 1.3641 1.5381 -2.8761 -0.9224 1.3205 0.5258 0.1385 0.1408 -0.9641 1.1511 -4.6903 

Dry Burnish60 -0.1021 -0.6790 -0.1986 -2.3404 -0.5528 -0.3847 -0.3481 0.0552 0.0404 -0.6865 2.9014 -2.7524 

Dry Burnish85 -0.0510 1.5127 2.1479 -2.3169 -0.5369 -2.1023 0.4650 0.0668 0.0294 -0.5995 -2.2855 -3.1479 

Wet Burnish20 -0.1509 -3.1632 -2.7861 0.04147 0.0618 1.2819 -0.8515 -0.0361 0.0885 0.0914 4.8181 1.5900 

Wet Burnish60 -0.0566 0.5149 0.6307 -1.0404 -0.3412 1.1707 0.2504 0.0267 0.0628 -0.5516 1.8681 -1.7323 

Wet Burnish85 -0.0127 1.3170 1.7709 -1.1269 -0.2299 -0.3804 0.3626 0.0835 0.0016 -0.3874 -0.8532 -1.8126 

Water 

Permeability 
0.0280 -4.1105 -4.4080 2.8334 0.8135 3.3233 -1.6200 -0.0810 0.0367 0.8422 7.5934 4.1799 

Krebs -0.0023 0.1020 -0.3053 1.6895 0.4052 0.7302 -0.0363 0.2036 0.0963 0.6534 -0.1203 2.778 

Sag -0.1502 1.8322 1.6614 -1.4499 -0.4220 -0.1677 0.4555 0.1382 0.1470 -0.3395 -1.5640 -2.0098 

Open Time 0.0899 -5.1919 -4.9833 4.9831 1.5487 -0.9808 -1.3039 -0.2783 -0.0005 1.7192 2.2522 8.1913 

Gloss20 0.0022 -7.3902 -7.3519 3.7341 1.1221 5.0901 -2.7485 -0.0156 -0.0384 1.1738 12.4546 6.6933 

Gloss60 0.0200 -6.4427 -6.6085 3.9873 -2.1874 3.3968 -2.1874 -0.0232 0.0103 1.2594 8.8941 -6.9358 

Gloss85 -0.0147 -6.6797 -6.9707 3.1959 1.0031 2.2970 -2.1667 -0.0360 0.0268 0.9844 8.9128 6.2097 

Dirt Pick-Up -0.0371 0.6210 0.2786 -0.1389 -0.0114 -2.0610 0.1700 -0.2267 0.1503 -0.0277 -3.2483 -0.1293 

Opacity 0.1341 5.9451 4.3084 -0.0047 -0.2401 1.7758 2.0301 0.1093 0.1268 -0.0297 -5.5124 1.8123 

Hiding Power -0.0204 -0.9265 -0.7332 -0.9704 -0.2646 -4.6708 -0.2787 -0.1008 -0.3318 -0.2679 -2.0018 -0.3163 

Dry Film 

Thickness 
0.2228 -15.7983 -15.2227 12.8085 3.8658 -6.2145 -3.9004 0.1074 0.1908 4.4121 4.8521 23.4258 
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5.3.4.1 MODEL PREDICTABILITY 

The regression models with their regression coefficients and corresponding predictor variables, 

VSextenderpigmentemulsion xxxx ,...,,,  are now used to predict future paint property data. Figure 5.19 

gives the 95% prediction interval which indicates with 95% certainty where future observations for 

the Gloss60 values are expected to be. 
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Figure 5.19 Actual and Model Gloss60 Values and 95% Prediction Interval 

Closer inspection of the data points reveals that four of the five (80%) outliers are samples with 

extreme PVC/VS. The RCOPLOT of Figure 5.18 has indicated that the MLR model does not fit 

the data points with extreme PVC/VS accurately and therefore it can also be expected that future 

predictions that fall outside the 95% prediction interval will mostly result in large residuals.  

Once again, the model is tested with ‘unseen’ data (data that were not used to develop the 

model). Figure 5.20 indicates that three predictions of unseen data are predicted outside the 95% 

prediction interval. Closer inspection also reveals that all three points are samples with extreme 

PVC/VS. 
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Figure 5.20 Predicted Gloss60 Values 

It is evident that the MLR model is capable of predicting the gloss property accurately as far as 

‘normal’ formulation levels of the paint is concerned. However samples with larger variations in 

the raw materials (larger than 20% on the standard formulation) are not predicted accurately with 

the linear models. Other models might perform better in predicting the gloss behaviour of paint 

samples with extreme variation in raw materials and it is worth some investigation. 

5.3.4.2 MODEL ERRORS 

The paint formulator would like to know what error margins could be expected in predicting paint 

properties with the models. Table 5.10 shows the relative error made by the models in predicting 

new paint properties. 
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Table 5.10 Relative Errors in Predicting Unseen Data 

Relative Errors 

[%] 
Paint Property 

Including Extreme Data 

Points 

Excluding Extreme Data 

Points 

Dry Burnish (20) 20.99 14.82 

Dry Burnish (60) 14.88 10.73 

Dry Burnish (85) 34.45 22.71 

Wet Burnish (20) 30.06 29.65 

Wet Burnish (60) 15.47 14.78 

Wet Burnish (85) 20.65 11.76 

Dirt Pick-up (delta gloss 85) 46.02 43.57 

Open Time - Glass 22.59 17.29 

Dry Film Thickness 9.65 6.38 

Gloss (20) 11.93 6.69 

Gloss (60) 14.50 7.23 

Gloss (85) 6.59 4.23 

Hiding Power Roller - 1st coat 1.74 0.81 

Krebs 1.67 1.57 

Opacity 1.25 0.81 

Anti-sag Index 42.16 43.15 

Water Permeability 15.80 14.24 

 

Note the difference between relative errors of paint properties with and without the influential data 

points. It is considerable less for predictions without extreme data points if one takes into account 

that influential data points from paint samples with extreme PVS/VS only make up 5% of the 

‘unseen’ data and therefore it actually increases the error significantly. 

5.3.4.3 PRACTICAL APPLICABILITY OF MODEL 

Some paint properties are critical in determining the quality of the paint. These paint properties 

have definite specifications of the variation (error) that is allowed and are given in the technical 

data sheets. For the specific paint under investigation, the critical paint properties are: 
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i. Krebs viscosity at 23° 

60
70
80
90

100
110

120
130

140

60 70 80 90 100 110 120 130

Actual [KU]

P
re

di
ct

ed
 [K

U
]

Krebs Viscosity Allowed Error Margin Series3

 

Figure 5.21 Predicted Krebs Viscosity with Allowed Error Margin 

• ±12% of predicted Krebs Viscosity values lie outside the allowed error margin. 

• 50% of the predicted Krebs Viscosity values outside of the allowed error margin have 

extreme PVC/VS. 

 

ii. Gloss 
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Figure 5.22 Predicted Gloss60 with Allowed Error Margin 

• 10% of predicted Gloss60 values lie outside the allowed error margin. 

• All three (100%) predictions for Gloss60 values outside the allowed error margin are from 

samples with extreme PVC/VS. 
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iii. Opacity 
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Figure 5.23 Predicted Opacity with Allowed Error Margin 

• 27% of predictions for Opacity values lie outside the allowed error margin, although only 11% 

are clearly erroneous. Opacity is probably the most crucial paint property and has very tight 

error margins. 

• 33% of the data points that lie outside the error margin have extreme PVC/VS and are also 

those points with the largest errors. 

 

iv.  Film thickness 
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Figure 5.24 Predicted Dry Film Thickness with Allowed Error Margin 

• ±10% of predicted Dry Film Thicknesses  lie outside the allowed error margin. 

• 75% of the data points outside the allowed error margin have extreme PVC/VS. 

 

It is clear that MLR accurately predicts these four paint properties with only ±10% of the 

predictions for Krebs Viscosity, Gloss60  and Dry Film Thickness that lie outside the allowed error 
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margin. Linear modelling is actually very accurate, taking into account that the incorrect 

predictions are mainly from samples with extreme PVC/VS.  

5.3.5 MODEL 2 CONCLUSIONS  

• Table 5.9 gives the matrix of regression coefficients that can be used in equation 5.6 to predict 

the paint properties of this specific paint. 

• The linear models are accurate in predicting the paint properties as long as raw material levels 

fall within the normal ‘plus or minus 20%’ range of the standard formulation. Another model is 

recommended for paint samples whose variation in raw materials is larger than the ‘plus or 

minus 20%’ range (samples with extreme pigment volume concentrations (PVC) and volume 

solids (VS)). 

• The paint property that is predicted most accurately by MLR is opacity. On average, an error 

of 0.81% can be expected when predicting the opacity value by using MLR when the raw 

materials vary within a range of 20% from the standard formulation. However, opacity is also 

predicted  very accurately when the raw materials vary more than 20% from the standard 

formulation. On average, errors of 1.25% can then be expected. 

• Another paint property that is also predicted accurately is the Krebs viscosity. On average, an 

error of 1.57% can be expected when predicting the Krebs viscosity by using MLR when the 

raw materials vary within a range of 20% from the standard formulation. Only slightly less 

accuracy is obtained when the predicted Krebs viscosity vary with more than 20% from the 

standard formulation , with expected errors of 1.67%. 

• Other paint properties that are predicted with less than 10% error are gloss 60 (error = 7.23%) 

and dry film thickness (error = 6.38%) 

• Paint properties that can be predicted with an expected error of between 10% and 20% are 

dry and wet burnish, open time and water permeability. 

• Paint properties that are predicted the most inaccurate by MLR, that results in errors larger 

than 20% are dirt pick-up and sagging. 

• Opacity, Krebs viscosity, gloss and dry fi lm thickness are critical paint properties that specify 

the quality of this paint. All these paint properties are predicted with an error less than 10% by 

MLR.  Furthermore, an average of 90% of predictions for these paint properties, fall within the 

allowed specifications range. 

 

5.4 MODEL 3: RELATIONSHIP BETWEEN PAINT PROPERTIES AND PAINT 

RHEOLOGY 

5.4.1 BACKGROUND 

The understanding of coating performance in terms of rheology is far from complete. The reasons 

are (a) the complexity of coatings processes, which complicates the understanding of the role of 

rheology in process outcomes, and (b) the difficulty in linking measured fundamental rheological 

properties with real-world performance. This study attempts to succeed in the second point and 
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then in future work, these links can be used for a fundamental investigation of the effect of 

rheology on the paint properties. Certain paint properties, e.g. levelling, sag, spatter, rely heavily 

on the flow and deformation behaviour (rheology) of the paint and therefore the importance of 

understanding coating performance in terms of rheology is understood. Up to now, rheology has 

only been used qualitatively in explaining the coating performance, for example, more 

pseudoplasticity usually leads to easier  application, but these type of correlations have never 

been explained quantitatively. One can also understand this, because qualitative behaviour is 

relative and can be used for comparing any two paints, while quantitative behaviour is case-

specific. However, this does not take away the relevance of a quantitative model for a specific 

paint. 

One solution to the lack of a quantitative model is computer simulation of coating processes, 

which utilises the fundamental rheological data as the required input. However, although 

computer modelling is perhaps the ideal approach, it has not always been readily accessible and 

many coating problems were attempted to be solved from shear viscosity and viscoelastic data 

from rheological measurements alone [19]. 

A major advantage of having a model that predicts the paint properties in terms of rheology, is 

that no explicit knowledge of the constitutive equations describing the chemical/physical 

interaction between the raw materials are required.  

More specific, Leskovsek et al [11], [20] and Tusar et al [21], [22] have modelled some paint 

properties in terms of the rheological behaviour, but their work have the following weaknesses: 

 

1. Single rheological measurements were used. This is an important weakness because a 

number of rheological measurements are available today to explain the coating 

performance. 

2. Single points of measurements were used to model specific paint properties. This is also an 

important weakness, because the different parts of the rheology curves assist in explaining 

different coating behaviour (e.g. low frequency range of the frequency sweep can explain the 

sedimentation behaviour of pigments while spatter behaviour is explained at the high 

frequency range of the frequency sweep). 

 

These existing weaknesses are overcome in this study by: 

1. Using a set of rheological measurements and extracting the most important data from it with 

the use of principal component analysis.  

2. Making use of preliminary modelling of the rheology curves (a method that has been used in 

the pharmaceutical industry by Gasperlin et al) to represent the whole rheology curve. 

 

The theory behind both these improvements is discussed in Chapter 4 Data Preparation. 

5.4.2 MULTIPLE LINEAR REGRESSION (MLR) 

Linear modelling techniques are used as first approximations for models, although two other 

research groups (Leskovsek et al and Tusar et al) found that non-linear modelling techniques are 
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superior. The reason for first attempting linear modelling is that (a) each paint system is unique 

and therefore behaves differently and (b) linear models are good first approximations and give a 

lot of information about the level of nonlinearity.  

5.4.2.1 MLR – CAUSAL MODEL 

The rheological data is highly collinear (the condition number C >> 15). Principal component 

analysis is used to form new linear independent variables (principal components) from the 

collinear rheological data. The drawback is that principal components lack simple interpretation 

since each is, in a sense, a mixture of the original variables. The use of MLR as a method to 

construct a causal model is therefore inappropriate, because principal components are used as 

regressor variables (there are complex statistical ways to reconstruct the original data from 

principal components but it is beyond the scope of this study). 

5.4.2.2 MLR – PREDICTIVE MODEL 

Multiple linear regression is used to model the relationship between the paint properties and the 

rheological behaviour. Three principal components explaining 95% of the variance in the 

rheological data (98 random samples) are used as predictor va riables so that the models for the 

paint properties are expressed in the following way: 

 

 εββββα ++++= 3322110Print PCPCPCPCPCPCopertyPa xxx   (5.7) 

 

Unlike the previous models, the independent variables that are used to predict the paint properties 

are stochastic and therefore the variance of the rheological variables should be substantially less 

than the variance of the measured paint properties for the predictions to be accurate. This is 

verified by repeating a single experiment 5 times to determine the variability of the paint properties 

and rheological variables. Table 5.11 gives the paint property and rheological variables with the 

largest variance.  

Table 5.11: Largest Variance of Dependent/Independent Variables 

 Variance 

Open Time 28.8 

Offset of Time Sweep (βTS) 7.8 

 

The accuracy of MLR model predictions increase when the variance of the independent variables 

are small compared to the variance of the dependent variables. There exists no quantitative 

criterion for what the ratio of variances between the independent variable (βTS) and dependent 

variable (open time) should be, but according to experts in the field of statistical modelling ******, the 

values in Table 5.11 are acceptable for accurate predictions. It has also been verified that the 

                                                 
****** Personal correspondence with Prof C Aldrich (University of Stellenbosch) 
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variance of the remaining rheological variables are small compared to the variance of the paint 

properties. 

 

The model fit for Gloss60 for 98 samples can be seen in Figure 5.25 
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Figure 5.25 Model Fit (MLR) for Gloss 60 as Predicted by Principal Components of 

Rheology Data 

Only three data points fall outside two standard deviations of the model and therefore, as a first 

approximation, it can be assumed that the model fits the data relatively well. Further analysis will 

indicate how accurate the model predicts Gloss60 of new observations. 

5.4.3 MODEL VALIDITY 

The validity of the assumptions that are made during MLR is tested below. 
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1. Linearity 
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Figure 5.26 Scatterplot of Gloss60 Against (a) PC1, (b) PC2 and (c) PC3 

Some linearity seems to exist in PC1 and PC2, although curvature is also evident at the high and 

low ends of the curves. Still, the assumption of linearity is not grossly untrue or inappropriate 

keeping in mind that the linear model will only be an approximation. 

 

2. Mean Independence 

The average value for the residuals of Gloss60 is so small (-5.66 × 10-18) that the assumption of 

mean independence (that the independent variables are unrelated to the random error ε of 

equation 5.7) can be considered as valid for the MLR model of Gloss60. Figure 5.27 also 

illustrates that the residuals are randomly cantered round zero. 

 

3. Homoscedasticity 

The scatterplot of residuals against case number (Figure 5.27) shows no systematic pattern and 

therefore the errors in the model are independent of the run order. 
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Figure 5.27 Scatterplot of Residuals for Gloss60 Model Fit 

4. Uncorrelated Errors 

It is highly unlikely that error contributions of the principal components are correlated. The 

principal components are a linear uncorrelated ‘mixtures’ of the original variables. Therefore one 

can also assume that the errors will be uncorrelated. 

 

5. Normal Distribution 
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Figure 5.28 QQPLOT for Gloss60 
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The definite S pattern at the lower quantiles is an indication of nonnormality. This gives an 

indication that that there are points which do not follow a normal distribution and that a linear 

model might not give the most accurate predictions for these points. Otherwise, the largest part of 

the curve follows a normal distribution and therefore the assumption of a normal distribution is not 

grossly untrue. 

 

6. Influential Data points 

Possible influential data points are already identified in the QQPLOT of Figure 5.28. One can 

already expect that most of these points that devi ate from normality are samples with extreme 

PVC/VS. Figure 5.29 gives a clear indication of these possible ‘outliers’ or influential data points. 

            

Figure 5.29 RCOPLOT for Gloss60 Model Fit 

All three ‘outliers’ (indicated with a �) are samples with extreme PVC/VS and therefore they can 

be considered as influential data points in affecting Gloss60. The model does not fit these 

Gloss60 values accurately and it can be expected that ‘unseen’ paint samples with extreme 

PVC/VS will not be accurately predicted either. 

5.4.4 PAINT PROPERTY PREDICTIONS 

Table 5.12 shows the regression coefficients used for paint property predictions. These 

regression coefficients are used in equation 5.7.  
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Table 5.12 Regression Coefficients for Model Parameters (MODEL 3) 

Paint Property βconstant βPC1 βPC2 βPC3 

Dry Burnish20 -0.1198 0.1168 -0.0165 -0.3294 

Dry Burnish60 0.0108 -0.1743 -0.4186 -0.3170 

Dry Burnish85 0.0256 -0.1318 -0.3644 0.0759 

Wet Burnish20 -0.1683 0.1738 0.2129 0.00873 

Wet Burnish60 -0.0173 -0.1148 -0.3470 -0.0400 

Wet Burnish85 0.0151 -0.1400 -0.4226 0.2465 

Water Permeability -0.0438 0.0077 -0.1588 -0.3423 

Krebs 0.0276 -0.3314 -0.0251 0.0675 

Sag -0.0868 -0.1379 0.0526 0.0260 

Open Time -0.0135 0.0414 -0.0865 -0.0780 

Gloss20 -0.0943 0.1903 0.3006 -0.0329 

Gloss60 -0.0923 0.2305 0.4102 -0.0755 

Gloss85 -0.0903 0.1807 0.3309 -0.3186 

Dirt Pick-Up -0.0642 0.1202 0.3327 -0.0571 

Opacity 0.1548 -0.3199 -0.0602 -0.1878 

Hiding Power 0.0155 -0.1034 -0.1790 -0.0219 

Dry Film Thickness -0.0093 0.0140 0.1281 -0.1575 

 

5.4.4.1 MODEL PREDICTABILITY 

The 95% prediction interval of Figure 5.30 indicates where future predictions are expected to be. 

Five of the 98 fitted data points lie outside the 95% prediction interval. Therefore it can be 

expected that ± 5% of future predictions will lie outside the 95% prediction interval. 
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Figure 5.30 Fitted Gloss60 Values and 95% Prediction Interval 

Four of the five data points (80%) that lie outside the allowed error margin have extreme PVC/VS 

and therefore it can be expected that ±80% of future ‘unseen’ data points that lie outside the 95% 

prediction interval are also samples with extreme PVC/VS. The RCOPLOT of Figure 5.29 has 

indicated that these data points result in large residuals that affect the model fit and therefore the 

model predictions. 

The model predictions for 33 ‘unseen’ samples can be seen in Figure 5.31. 
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Figure 5.31 Predicted Gloss60 Values and 95% Prediction Interval 

All three of the predictions outside the 95% prediction interval are samples with extreme PVC/VS. 

The RCOPLOT of Figure 5.29 has indicated that large residuals (errors) can usually be expected 

with these predictions outside the 95% prediction interval.  

5.4.4.2 MODEL ERRORS 

The previous sections indicated that large residuals can usually be expected for paint samples 

with extreme PVC/VS. Table 5.13 gives the relative error†††††† in the predicted paint properties. 

The actual and predicted data is given in Chapter 12 – Appendix E. 

 

 

 

 

 

 

 

 

 

 

                                                 

†††††† 
actual

predictedactual
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−
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Table 5.13 Relative Errors (Residuals) for Paint Properties 

Relative Errors [%] 

Paint Property Including Extreme Data 

Points 

Excluding Extreme Data 

Points 

Dry Burnish (20) 20.02 17.31 

Dry Burnish (60) 28.19 19.98 

Dry Burnish (85) 30.60 26.14 

Wet Burnish (20) 31.73 30.11 

Wet Burnish (60) 15.62 15.30 

Wet Burnish (85) 18.43 16.33 

Dirt Pick-up (delta gloss 85) 49.29 48.02 

Open Time - Glass 19.61 17.36 

Dry Film Thickness 8.87 7.11 

Gloss (20) 14.14 8.70 

Gloss (60) 23.89 15.33 

Gloss (85) 11.54 9.94 

Hiding Power Roller - 1st 

coat 

1.81 1.53 

Krebs 1.74 1.61 

Opacity 1.82 1.05 

Anti-sag Index 38.85 38.88 

Water Permeability 13.89 12.51 

 

Some of the errors in Table 5.13 might seem large. But it must be remembered, that except for 

the specifications of certain paint properties which are used for quality control, that error margins 

for many of these paint properties are very vague. An error of 20% in the Burnish value is already 

an ‘accurate’ prediction if there are no existing error margins. These error margins do not exist 

because these paint properties are not critical in quality control. Table 5.13 also indicates that the 

relative errors are smaller when extreme data points are not included in the prediction. In fact, 

they are considerably smaller if one considers the fact that samples with extreme PVC/VS only 

make up ± 10% of the ‘unseen’ sample size and that errors are calculated on an average basis. 

Therefore, as with the other models, MLR accurately predicts the responses of the paint samples 

within the normal range of raw materials (plus/minus 20% of standard formulation), but fail to 

accurately predict the response for paint samples with raw materials that vary more than 20% 

from the standard formulation (paint samples with extreme PVC/VS). A different model is required 

for paint samples whose raw materials vary more that 20%. 
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5.4.4.3 PRACTICAL APPLICABILITY OF THE MODEL 

The paint scientist will be very satisfied if the paint properties can be predicted accurately for all 

the different variations of raw materials. Certain error margins are allowed for the most critical 

paint properties that are used in quality control: 

i. Krebs Viscosity 
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Figure 5.32 Error Margin for Krebs Viscosity 

• 10% of the predicted Krebs Viscosity values lie outside the allowed error margin and can 

be seen as inaccurate predictions. 

• 50% of the inaccurate predictions are paint samples with extreme PVC/VS. 

• Four samples with extreme PVC/VS are in the ‘unseen’ sample size. The Krebs Viscosity 

for two of them (50%) is predicted inaccurately by the MLR model. 

ii. Gloss 
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Figure 5.33 Error Margin for Gloss60 

• 24% of predicted Gloss60 values lie outside the allowed error margin. 

• 38% of the inaccurate predictions are paint samples with extreme PVC/VS. 

• Four samples with extreme PVC/VS are in the ‘unseen’ sample size. Gloss60 for three of 

them (75%) is predicted inaccurately by the MLR model. 
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iii. Opacity 
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Figure 5.34 Error Margin for Opacity 

• 33% of predicted Opacity values lie outside the allowed error margin. 

• 38% of the inaccurate predictions are paint samples with extreme PVC/VS. 

• Four samples with extreme PVC/VS are in the ‘unseen’ sample size. The Opacity for 

three of them (75%) is predicted inaccurately by the MLR model. 

 

iv.  Dry Film Thickness 
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Figure 5.35 Error Margin for Dry Film Thickness 

• 18% of predicted Dry Film Thickness values lie outside the allowed error margin. 

• 67% of the inaccurate predictions are paint samples with extreme PVC/VS. 

• Four samples with extreme PVC/VS are in the ‘unseen’ sample size. The Dry Film 

Thickness for all four of them (100%) is predicted inaccurately by the MLR model. 

 

Therefore, MLR can be used confidently to predict paint propert ies from rheological data that 

originate form samples whose raw materials fall within the ‘normal’ range (plus/minus 20% 
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deviation from the standard formulation). However, inaccurate predictions can be expected for 

samples whose raw materials vary more than plus/minus 20% from the standard formulation. 

 

It was mentioned in Section 5.2.4.3 that the practical applicability of MODEL 1 is only useful when 

the quantitative relationship between the rheology and the paint properties are established 

(MODEL 3). In other words, MODEL 1 would only be useful when it can quantitatively explain 

whether the predicted differences in rheological behaviour would be significant in affecting a 

certain paint property. MODEL 3 has established this quantitative relationship between rheology 

and the paint properties. However, MODEL 3 uses the transformed rheological data, in the form of 

principal components to predict the paint properties. The principal components are basically a 

linear combination of all the rheological variablesF. Reconstruction of the rheological curves 

(working backwards from the principal components) is possible [5], but is an area of intense 

statistics that does not fall in the scope of this study, but is considered to be an area for future 

work. 

5.4.5 MODEL 3 CONCLUSIONS 

• Table 5.12 gives the matrix of regression coefficients that can be used in equation 5.7 to 

predict the paint properties from the rheological behaviour of this specific paint. 

• The paint property that is predicted most accurately by MLR and the rheological data is 

opacity. On average, an error of 1.05% can be expected when predicting the opacity 

value by using MLR and rheology data. This is the case when the raw materials vary 

within a range of 20% from the standard formulation. However, opacity is also predicted  

very accurately when the raw materials vary more than 20% from the standard 

formulation. On average, errors of 1.82% can then be expected when predicting opacity 

values of these paints. 

• Another paint property that is also predicted accurately is the Krebs viscosity. On 

average, an error of 1.61% can be expected when predicting the Krebs viscosity by using 

MLR with rheology data as predictor variables and when the raw materials vary within a 

range of 20% from the standard formulation. The Krebs viscosity of those paint samples 

that vary more than 20% from the standard formulation, can be expected to have relative 

errors of 1.74% in new predictions. 

• Another paint property that is predicted with less than 10% error by using MLR and 

rheology data, is dry film thickness (error = 7.11%). 

• Paint properties that can be predicted with an expected error of between 10% and 20% 

are dry and wet burnish, gloss 60, open time and water permeability. 

• Paint properties that are predicted the most inaccurate by MLR and the rheology data,  

that result in errors larger than 20%, are dirt pick-up and sagging. 

• Furthermore, an average of 90% of predictions for these paint properties, fall within the 

allowed specifications range. 

• For new paint samples of which the raw materials vary within 20% from the standard 

formulation, only 5% of new paint samples are predicted outside the allowable Krebs 
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viscosity error margin.  For gloss values, it is only 9%; opacity 13% and dry film thickness 

12% of new paint samples that are predicted outside the allowable error margin. These 

low values indicate that rheology data and multiple linear regression can be used as 

reliable and accurate modelling technique to predict the critical paint properties of this 

specific paint. 

5.5 MODEL INTERPRETATIONS‡‡‡‡‡‡ 

All models are developed as tools to investigate the practical implications of a change in the paint 

formulation. 

 

       MODEL 1 => rheology = f(raw materials) 

 

          MODEL 2 => paint properties = f(raw materials) 

 

        MODEL 3 => paint properties = f(rheology) 

 

Figure 5.36: Models are Used to Investigate Practical Implications 

 

The paint chemist wants to know what the practical implications are if the standard paint 

formulation changes in certain levels of raw materials. The models in Figure 5.36 can be used to 

investigate this behaviour. The following examples illustrate the use of these models to investigate 

the effect of: 

i) +2% change in pigment 

ii) +5% change in emulsion 

The effect of these changes on i) Gloss 60, ii) Krebs Viscosity, iii) Opacity iv) Film Thickness and 

v) Frequency Sweep (as an example of rheology) is illustrated in Table 5.14 

 

 

 

 

 

 

 

 

 

 

                                                 
‡‡‡‡‡‡ Model interpretations are not considered to be a fundamental part of this study. It is rather 

an indication that model predictions from the study can be used for interpretation of future 

phenomenological models. 

Old Paint 

Formulation 

New     

Paint 

Formulation 
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Table 5.14 MLR Model Predictions of Change in Standard Paint Formulation§§§§§§ 

Paint Property Standard 

Formulation 

+2% 

Pigment 

+5% 

Emulsion 

+2% Pigment 

+5% Emulsion 

Model 

Gloss 60 [-] 7.73 5.21 21.5 22.56 2 

Opacity [%] 98.33 98.90 93.97 93.83 2 

Krebs Viscosity [KU] 89 93 91 89 2 

Dry Film Thickness 

[µm] 
37 51 49 45 2 

Frequency Sweep See Figure 5.37 1 
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Figure 5.37 Frequency Sweep of Standard Paint Formulation and MLR Model Predictions 

for Formulations with Variation in Pigment and Emulsion Concentration 

 

It is well known that the level of pigment and emulsion influence all the paint properties in Table 

5.14 [17], [18]. It is interesting to interpret these model predictions and to see how they correlate 

with literature sources and basic paint chemistry. 

 

Gloss 60: 

The MLR model predicts a decrease in the gloss level with an increase in pigment concentration, 

while an increase in gloss is predicted with an increase in emulsion concentration. This prediction 

correlates with literature sources [17], [18]. According to these sources gloss of paints: 

i) decreases with an increase in pigment concentration [17], [18] 

ii) increases with an increase in emulsion levels [17] 

                                                 
§§§§§§ Model 2 predictions are based on equation 5.6 with model parameters obtained from Table 

5.9. Model 1 predictions are based on equation 5.4 with model parameters obtained from Table 

5.5. 
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According to the prediction of the MLR model, the combination of a 2% increase in pigment and 

5% increase in emulsion also leads to an increase in gloss levels.  

 

Opacity: 

In common with much of paint technology, theory trails practical application and can only partially 

explain observed phenomena, but as predictive tool, it is overwhelmed by the complexities of real 

life and humbled by the simplicities of direct experimentation [17]. 

Opacity or hiding power can be related to the refractive index of the pigment. A widely accepted 

way of viewing pigment content is the pigment volume concentration (PVC) of the dry paint film. 

 

 100×
+

=
PigmentofVolumeBinderofVolume

PigmentofVolume
PVC   (5.8) 

 

As levels of pigment are increased and the binder reduced, a pvc is reached at which there is just 

sufficient resin to coat the particles and fill the voids. This situation is obviously complicated by the 

ease of dispersion of the pigment, the ability of the resin to distribute evenly, the way the particles 

pack together, the presence of air bubbles and so on. The pigment crowding which causes 

deviations from ‘ideal’ behaviour, now causes the maximum opacity to occur at a particle diameter 

somewhat greater than the theoretical value of 220 nanometers.  

The MLR model predictions correlate with these principles. The MLR model also predicts a 

decrease in opacity with a 2% increase and a 5% increase in emulsion. As mentioned, these are 

only possible explanations to explain what might happen with the opacity values when pigment 

and emulsion levels change. 

 

Krebs Viscosity: 

The Krebs viscosity is a measure of the paint’s consistency and is generally affected by the 

volume solids (VS) of the wet paint [18]. Pigment and emulsion contribute in the following way  to 

the volume solids (VS) of a paint: 

 

 100×
+

=
VolumeTotal

PigmentofVolumeBinderofVolume
VS   (5.9) 

 

An increase in both of these raw materials (pigment and binder) will lead to an increase of the 

volume solids and therefore the Krebs viscosity can be expected to increase. This correlates with 

the model predictions. However, the model predicts no change in the Krebs viscosity if both 

pigment and emulsion are increased simultaneously. This is most likely because the resulting 

ratio of binder and pigment is similar to the original formulation and therefore the effect of 

increasing both the pigment and binder in such a ratio, is eliminated.  
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Dry Film Thickness: 

 

Surface coatings are ‘dried’ polymeric films. For latex paints, the concept of being ‘dry’ is mainly 

related to the evaporation of water, but there are also other complex mechanisms involved [17]. In 

order to produce a continuous film it is necessary that the polymer particles begin to flatten and 

coalesce. Coalescence is the flowing together of polymer particles to form a continuous film. The 

driving force for coalescence arises form the surface tension and capillary forces that develop as 

the water evaporates and the polymer particles begin to pack together. It can be visualised that 

the polymer is being forced to fill the voids vacated by the vaporising water. The better the 

polymer particles can fill the vacated voids, the denser the film will be. With a 5% increase in 

polymer there is an excess of polymer particles, after all the voids have been filled. The excess 

polymer particles will result in a thicker film. The model predicts a 12 µm increase with a 5% 

increase in emulsion. The model therefore correlates with basic principles of paint chemistry. 

 

Pigment particles provide another surface for the polymer to effectively coat. In general, the 

surface area of pigment particles will be greater than that offered by the substrate. To produce a 

solid, coherent film it is necessary that the polymer cover the total surface area of the substrate 

and pigments. A 2% increase of pigment on the standard formulation will result in a greater 

surface area but with the polymer at a constant level, the packing of the polymer and pigment 

particles are not efficient. This results in a lower density and greater film thickness. The MLR 

model predicts a increase of 14 µm in the dry film thickness with a 2% increase in pigment. 

 

According to the model the film thickness is more sensitive for a change in pigment than it is for a 

change in emulsion. A 2% increase results in a greater film thickness than a 5% increase in 

emulsion. It is therefore also interesting to look at the model prediction for a combined effect of a 

2% and 5% increase in pigment and emulsion. In this case the model predicts the smallest 

increase in dry film thickness (8 µm). As mentioned, the underlying film formation is complex and 

one can only speculate as to what is occurring. The volume solids increase with an increase in 

pigment and emulsion and therefore the resulting film is thicker because there are more solids. 

However it is not as thick as expected (combination of pigment and emulsion effect), possibly 

because the increase in pigment (surface area) is better covered with more available emulsion, 

resulting in a more dense film (lower film thickness).  

 

Frequency Sweep (Rheology) 

Rheology, a more comprehensive way to look at the flow behaviour of paint than Krebs Viscosity, 

is generally affected by the volume solids (VS) of the wet paint [18]. An increase in the frequency 

sweep indicates an inc rease in the structural strength of the paint [23]. The model predicts an 

increase in the frequency sweep, which can be related to the increase in volume solids of the 

paint. The model predictions correlate with basic rheology principles. 
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Table 5.14 only illustrates MODEL 1 and MODEL 2 predictions. MODEL 3 predictions are based 

on the measured rheology in the form of the principle components. The example given above is 

based on a variation in raw materials and therefore the rheology needs to be determined first and 

converted into principle components for MODEL 3 input. MODEL 3 input can be obtained without 

actually measuring the rheology (via MODEL 1 output) but this will lead to input that are already 

not entirely precise (because they are model predictions) and therefore the MODEL 3 predictions 

will have accumulated a lot of variance that might lead to inaccurate predictions. In other words, 

MODEL 3 needs actual rheological data for the most accurate predictions. However, the objective 

with MODEL 3 is to reduce the time spent on testing/evaluating a new paint formulation and not to 

produce a theoretical model. 

 

5.6 GENERAL CONCLUSIONS 

The following are the most important conclusions from this chapter: 

1. Multiple linear regression is an accurate modelling technique for the prediction of the 

rheological behaviour of this specific paint. Model 1 predicts the rheological behaviour with 

raw materials as input. Table 5.5 gives the matrix of regression coefficients that can be used 

in equation 5.4 to predict the rheological behaviour of 9 rheology curves. 80% of new model 

predictions will be predicted with 95% confidence. The rheology curves that are predicted 

most accurately are the amplitude sweep (AS), 3-interval-thixotropy-test (3-ITT) and the flow 

curve (FC). Average model prediction errors are given in Table 5.6. 

2. Multiple linear regression is an accurate modelling technique for the prediction of the paint 

properties of this specific paint.  Model 2 predicts the paint properties with raw materials as 

input to the model. Table 5.9 gives the matrix of regression coefficients that can be used in 

equation 5.6 to predict the paint properties (Model 2). Figure 5.38 shows that critical paint 

properties (opacity, gloss, Krebs viscosity and dry film thickness) are predicted with relative 

errors smaller than 10%. An average of 90% of predictions for these paint properties fall 

within the allowed specifications range, set out by the paint manufacturer. 

3. A novel model has been developed that predicts the paint properties with rheology data as 

input to the model (Model 3). Multiple linear regression has proven to be an accurate 

modelling technique for this purpose. Table 5.12 gives the matrix of regression coefficients 

that can be used in equation 5.7 to predict the paint properties of this specific paint. The 

strength of this model lies in the fact that a set of 9 rheology curves are combined by the use 

of principal component analysis to predict the paint properties. Figure 5.38 shows that 

accurate model predictions are obtained for the critical paint properties with relative errors 

smaller than 10% for opacity, Krebs viscosity and dry film thickness. 

4. Figure 5.38 shows that the rheological model (Model 3) is almost just as good as the raw 

material model (Model 2) in prediction of paint properties. Model 2 can be used for further 

studies in identifying a possible phenomenological model describing paint properties. The 

advantage of Model 3 is that accurate predictions can be made by measurement of the 
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rheology only, without any knowledge of the raw material composition. In these terms, it can 

be classified as a “black box” model. 

AVERAGE ERRORS OF MLR MODELS
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Figure 5.38 Relative errors in New Predictions 

(The paint property nomenclature is as follows: DB20 – Dry Burnish20, DB60 – Dry 

Burnish60, DB85 – Dry Burnish85, WB20 – Wet Burnish20, WB60 – Wet Burnish60, 

WB85 – Wet Burnish85, DPU – Dirt Pick-Up, OT – Open Time, DFT – Dry Film 

Thickness, G20 – Gloss20, G60 – Gloss60, G85 – Gloss85, HP – Hiding Power, K - 

Krebs, OP - Opacity, SAG - Sag, WP – Water Permeability). 

5. Linear models are inaccurate in prediction of rheology and paint properties of which the raw 

materials vary more than 20% from the standard formulation. Alternative models are 

required for thes e paint samples. 

 

5.7 NOMENCLATURE 
Abbreviations 

3-ITT   Three-interval-thixotropy test 

3-ITT (osc)  Three-interval-thixotropy test in oscillatory mode 

3-ITT (rot)   Three-interval-thixotropy test in rotational mode 

ANTF    Antifoamer 

AS   Amplitude sweep 

CLNT   Coalescent 

CNST   Constant 

COMB   Combination 

CXLF    Constant of extra low frequency 

DISP   Dispersant 

EMLS   Emulsion 

FC   Flow curve 

FNGD   Fungicide 

FS   Frequency sweep 
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HS   High shear 

H0   Null hypothesis 

LS   Low shear 

MLR   Multiple linear regression 

OPIG   Organic pigment 

PC   Principal component 

PIGM   Pigment 

PVC   Pigment volume concentration 

RM1   Rheology modifier 1 

RM2   Rheology modifier 2 

RMC   Raw material contribution 

SA   Soda ash 

SOLV    Solvent 

SURF   Surfactant 

TS   Time sweep 

VS   Volume solids 

WTR   Water 

XLF   Extra low frequency 

XTND   Extender 

 

Symbol    Description 

C   Condition number ( - ) 

F   Frequency (s -1) 

G’   Storage modulus (Pa) 

G”   Loss modulus (Pa) 

G*   Complex modulus (Pa) 

t   Time (s) 

x    Independent variable 

avgx    Average value of variable 

ix    Value of variable 

deviationdardsx tan   Standard deviation of variable 

dardisedsx tan   Standardised value of variable 

y    Dependent variable 

 

 

Greek Symbol   Description 

α    Preliminary model parameter (gradient) 

iα    Gradient of preliminary model where i=HS, LS, 3-ITT(rot), etc 
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yoscillatorα    Gradient of oscillatory measurement 

60Glossα    Predicted Gloss60 value 

opertyPa Printα   Value of predicted paint property 

rotationalα    Gradient of rotational measurement 

β    Preliminary model parameter (offset) 

iβ    Preliminary model parameter (offset) where i=HS, LS, 3-ITT(rot), etc 

yoscillatorβ    Intersect of oscillatory measurement 

emulsionβ    Regression coefficient associated with the emulsion 

rotationalβ    Intersect of rotational measurement 

0β    Constant associated with regression analysis 

kβ    Regression coefficient associated with variable k=1,2,3,… 

1PCβ    Regression coefficient associated with principal component 1 

γ    Deformation [%] or strain [ - ] 

Aγ    Deformation [%] or strain [ - ] amplitude 

γ&    Shear rate [1/s] 

δ    Phase shift, loss angle [ ° ] 

ε    Random error 

η    Shear viscosity [Pa.s] 

∗η    Complex viscosity [Pa.s] 

τ    Shear stress [Pa] 

Aτ    Shear stress amplitude [Pa] 

ω    Angular frequency [rad/s] 

 

5.8 REFERENCES 
1. Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W. (1996). Applied Linear Statistical 

Models, Chapter 8. Tom Casson. 

2. Noveon, Statistical Methods for Optimising Coating Formulations (2006). The Lubrizol 

Corporation© 

3. ASK Chemicals, House Paints with Improved Levelling and Excellent Brushability (2006). 

Ashland-Sudchemie-Kernfest GmbH. 

4. Allison, P. D. (1999). Multiple Regression, A Primer, Chapter 1. California, SAGE Publications 

Ltd. 

5. Chatterjee, S., Price, B. (1991). Regression Analysis by Example, Second Edition. Chapter 

1,3,7. New York, John Wiley & Sons, Inc. 



  183 

6. Engineering statistics handbook, NIST. 2006.  

(http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm) 

7. Montgomery, D. C. (2005). Design and Analysis of Experiments, Chapter 1-7. John Wiley and 

Sons Inc. 

8. Demuth, H., Beale, M., (2000). Neural network toolbox user's guide, for use with MATLAB, 

Mathworks. 

9. StatSoft (2006). Statistica 7.1. 

10.  Gasperlin, M. (1995). “Empirical modelling of rheological and mechanical properties of paint.” 

Rheology: 140. 

11.  Leskovsek, N., Tusar, M., Tusar, L. “Study of rheological properties of paints with designing of 

experiments: a neural network approach.” p. 709. Supplied by The British Library. 

12.  Hester, R. D., Squire, D. R. (1997). “Rheology of waterborne coatings.” Journal of Coatings 

Technology 69(864): 109. 

13.  Franck, A., Technical Report: Rheological characterisation of paints and coatings, p.1-6. TA 

Instruments. 

14.  Osterhold, M. (2000). “Rheological methods for characterising modern paint systems.” 

Progress in Organic Coatings 40: 131-137. 

15.  Gasperlin, M., Tusar, L., Tusar, M., Smid-Korbar, J., Zupan, J., Kristl, J. (2000). “Viscosity 

prediction of lipophilic semisolid emulsion systems by neural network modelling.” International 

Journal of Pharmaceutics 196: 37-50. 

16.  Aldrich, C. (1997). Neural Networks for the Process Industries. Unpublished Manuscript,  

Stellenbosch. 

17.  Parsons, P. (1993). Surface Coatings: Raw materials and Their Usage, Chapter 17, 24, 26, 

28, 31.  London, Chapman and Hall.  

18.  (2003). Introduction to Paint Technology. Johannesburg, SA Paint Industry Training Institute: 

1-48. 

19.  Eley, R. R. (2001). Applied Rheology, ICI Paints. Strongsville, OH 44136 

20.  Leskovsek, N., Tusar, M., Tusar, L. (1995). “Optimisation of rheological and mechanical 

properties of paint using methods of experimental design and neural network modelling 

(Polish).” p.258-259. Medvode, Ljubljana. 

21.  Tusar, L., Tusar, M., Leskovsek, N. (1995). “A comparative study of polynomial and neural 

network modelling for the optimisation of clear coat formulations.” Surface Coatings 

International 10: 427-434. 

22.  Tusar, L., Tusar, M., Barle, N., Leskovsek, N., Kunaver, M. (1995). “A study of the influence 

on hiding power of the composition of a paint and its film thickness.” Surfac e Coatings 

International 11: 473-481. 

23.  Mezger, T. (2002). The Rheology Handbook, Chapter 8. Hannover, Vincent Verlag. 

 



  184 

6 NON-LINEAR MODELLING 

6.1 INTRODUCTION 
Traditional empirical modelling is based on linear statistical techniques. Nothing in nature is 

absolutely linear, so it helps to take non-linearities into account rather than to ignore them. Non-

linear modelling is empirical or semi-empirical modelling which takes non-linearities into account. 

There are many ways of doing that, including linear regression with non-linear terms, polynomial 

regression, non-linear regression, splines, etc. Some of the new techniques based on artificial 

neural networks have advantages over the traditional methods mentioned above. Multilayer 

perceptrons, a kind of feed-forward neural network, are capable of approximating any continuous, 

first order differentiable function to any desired degree of accuracy with a single series (a single 

layer) of activation functions.  

 

Neural networks are useful mathematical techniques inspired by the study of the human brain. 

Although the brain is a very complex organ that is still largely an enigma despite considerable 

advances in neurosciences, it is clear that it operates in a massively parallel model. Unlike most 

other mathematical techniques, where knowledge is stored explicitly as rules or heuristics, neural 

networks generate their own implicit rules by learning from examples and therefore reasonable 

responses are obtained when the network is presented with incomplete, noisy or previously 

unseen inputs. 

Neural networks are computational structures consisting of large numbers of primitive process 

units connected on a massively parallel scale. These units (nodes or neurons) are relatively 

simple devices by themselves, and it is only through the collective behaviour of these nodes that 

neural networks can realise their powerful ability to form generalised representations of complex 

relationships and data structures. A basic understanding of the structure and functioning of a 

typical neural network node is therefore necessary for a better understanding of the capabilities 

and limitations of neural networks.  

 

The main advantage of modelling techniques based on the use of neural networks, is that no a 

priori assumptions with regard to the functional relationship between the inputs and the targets 

are required. This is especially applicable in the coatings industry where many of the paint 

properties (including rheology) are dependent not only on the main effects of each of the raw 

materials but also on the interactions between them. However, a priori knowledge can also be 

incorporated into the neural network model. In this study, a priori knowledge about the non-linear 

behaviour of coatings is obtained from: 
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1. Literature sources (Chapter 2) 

Other researchers ([1], [2], [3], [4]) also noted the non-linear behaviour of paint properties. 

Leskovsek et al who mostly studied the interaction between rheological behaviour and the paint 

components (similar to that of MODEL 1), modelled the rheological behaviour with both linear and 

non-linear models. It was found that non-linear techniques express the relationship between paint 

rheology and the raw materials more accurately than linear techniques. 

Gasperlin et al [5], [6] also found that the relationship between rheology and raw materials 

(MODEL 1), which was modelled with the complex viscosity, were expressed more accurately with 

non-linear techniques. Non-linear techniques included both quadratic models and neural 

networks. It was found that neural networks are superior to both the linear and quadratic models. 

They also modelled the phase behaviour of pharmaceutical creams (similar to that of MODEL 3) in 

terms of the rheological parameter tan δ more accurately with neural networks than with linear or 

quadratic models [7]. 

Tusar et al [8], [9] who modelled the relationship between the paint properties and the raw 

materials (similar to that of MODEL 2) also found that non-linear techniques such as neural 

networks were superior to both quadratic and linear models.  

 

2. Data preparation (Chapter 4) 

It was already noted in the early stages of data preparation (removing outliers) that possible 

influential data points exist which do not fall within 2 standard deviations from the average of the 

dataset. These data points were identified as samples with extreme PVC/solids and were not 

removed from the data set but were kept for the specific reason to add to the information content 

of the dataset. 

 

3. Linear modelling (Chapter 5). 

Evaluation of the linear models (scatterplots, QQPLOTS, RCOPLOTS and the prediction 

intervals) revealed that both the rheology and paint properties behave in non-linear ways for paint 

samples with higher/lower levels of PVC and solids.  

 

The three points discussed above indicate that paint properties (including rheology) behave in 

non-linear ways. In Chapter 5 it was concluded that linear models are sufficient to explain the 

paint behaviour (paint properties and paint rheology) when the raw materials are varied within the 

‘normal’ levels (plus and minus 20% from the standard formulation). However, the paint chemist 

must often extrapolate beyond the ‘normal’ levels of raw materials. The linear models produce 

inaccurate predictions (extrapolations) for the paint samples with higher/lower levels of PVC and 

VS. It should be noted that neural networks are not nearly as sensitive to ill -distributed data as 

linear modelling techniques. Neural nets can accommodate variables with distributions that 

standard linear models simply cannot cope with [10].  

Therefore, the aim of this section of work is to implement neural networks that accurately express 

the non-linear behaviour of the paint. There are various ways to optimise neural networks (neural 

network architecture, training, etc.). Although the neural networks in this study have undergone 
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some optimisation, it is not considered to be the major part of this study and therefore further 

improvement in tems of optimisation of the neural networks are possible (see Chapter 7 – Future 

Work). 

 

6.1.1 THE SINGLE NODE (NEURON) 

Each node consists of a processing element with a set of input connections, as well as a single 

output connection, as illustrated in Figure 6.1. The interaction between the nodes is characterised 

by weight values (wi) associated with the strength of the connections between the nodes. 

 

                          x0 

                   x1 

             x2 

            x3                                                               z 

 

 

 

                                    xN 

 

Figure 6.1 Model of a Single Node 

The output of the neuron can be expressed as follows: 

 z = f( N
i 1=Σ wixi) or z = f(wTx)     (6.1) 

where w is the weight vector of the neural node, defined as: 

 w = [w1, w2, w3, …, wN]      (6.2) 

and x is the input vector, defined as: 

 x = [x1, x2, x3, …,xN].      (6.3) 

 

The function f(wTx) is referred to as the activation function of the node, defined on the set of 

activation values, which are the scalar product of the weight and input vectors (equations 6.2 and 

6.3 respectively) of the node. Sigmoidal activation functions (Figure 6.2) are used widely in neural 

network applications.  

 

 

 

 

 

 

f(wTx) 



  187 

        +1                   

Z=[1-exp(-wTx)]/[1+exp(-wTx)] 

 

 

 

 

        -1 

Figure 6.2 Sigmoidal Activation Function 

These non-linear functions are popular for a variety of reasons. First of all they are continuously 

differentiable which enabled the implementation of gradient search learning algorithms. Moreover, 

in many applications continuous -valued outputs are required. 

Additional input can be defined for some nodes, i.e. x0, with associated weight w0. This input is 

referred to as a bias and has a fixed value of -1. Like the other weights w1, w2, w3,…wN, the bias 

weight is also adaptable. The use of the bias input value is sometimes necessary to enable the 

neural network to form accurate representations of process trends, by offsetting the output of the 

neural network.  

The nodes of a neural network are in reality simple processors that receive input data, operate on 

the data, and pass them on to successive nodes in the network. 

6.1.2 DEVELOPING THE NEURAL NETWORK ARCHITECTURE 

A neural network consists of interconnections of nodes. The nodes are usually divided into 

different subsets, in which all the nodes have similar computational characteristics. A distinction is 

made between input, hidden and output nodes, depending on their relation to the information 

environment of the neural network (Figure 6.3). The nodes in a particular subset (layer) are linked 

to other nodes in successive layers by means of the weighted connections discussed above. 

Multilayer neural networks can be formed by simply cascading the single-layer neural networks. 

Theoretical results indicate that a back propagation neural network with more than one hidden 

layer can approximate any continuous non-linear relationship to an arbitrary degree of accuracy 

[10]. 
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Figure 6.3 Architecture of Multilayer Neural Network 

The development of neural network models thus consists of first determining the overall structure 

of the neural network (number of layers, number of nodes per layer, types of nodes, etc.). One 

strategy of developing the architecture of a neural net model is known as the ‘top-down’ strategy. 

In this, a large complex structure is initially specified and this structure is gradually pruned down 

as indicated by the ability of the neural net to generalise on the test data. Therefore, the 

architecture of the neural network is dependent on the ability of the model to generalise. Also, the 

more complicated the underlying relationships the network has to identify, the more data would be 

needed for proper generalisation. Too small a network would prevent the net from adequate 

generalisation, while too large a net might again be unable to generalise the trends in the data, 

owing to overfitting of the training data.  

 

One method of reducing the complexity of the model is by reducing the number of input variables 

[10]. This is called principal component analysis, where the set of input variables is replaced by its 

corresponding set of principal components as discussed in Chapter 4, Section 4.3.3 Redundant 

Rheological Data.  

Once the structure of the neural network is fixed, the parameters (weights) of the neural network 

have to be determined. This is done by training of the weight matrix of the neural network. 

6.1.3 NEURAL NETWORK TRAINING 

Feed forward neural networks (FFNN) learn by repeatedly attempting to match sets of input data 

to corresponding sets of output data or target values (a process called supervised learning). The 

optimised weights constitute a distributed internal representation of the relationships between the 

inputs and the outputs of the neural network. Learning typically occurs by means of algorithms 

designed to minimise the mean square error (MSE) between the desired and the actual output of 

the network through incremental modification of the weight matrix of the network. In feed forward 

neural networks (FFNN), information is propagated back through the network during the learning 
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process, in order to update the weights incrementally. As a result, these neural networks are also 

known as back propagation neural networks. Different training algorithms are possible for back 

propagation neural networks. The faster algorithms fall into two main categories. 

1. Algorithms using heuristic techniques: 

• Variable learning rate back propagation 

• Resilient back propagation. 

2. Algorithms using numerical optimisation techniques: 

• Conjugate gradient 

• Quasi-Newton 

• Levenberg-Marquardt. 

All of these algorithms use the gradient of the performance function (MSE) to determine how to 

adjust the weights to minimise the performance. These implementations generally have the 

following characteristics, i.e. they are computationally intensive, they are massively parallel, and 

the neural networks require large computer memory. These can put serious constraints on the 

size of the network. Some algorithms are better than others to ensure that the global minimum in 

the performance is reached in the shortest time. Often, neural networks get ‘stuck’ in an area of a 

local minima, resulting in a weight matrix that does not reflect the true global minima. 

Training of the neural network is terminated when the network has learnt to generalise the 

underlying trends or relationships exemplified by the data. Generalisation implies that the neural 

networks can interpolate sensibly at points not contained in its training set. A method for 

improving generalisation is called early stopping. 

 

6.1.4 NEURAL NETWORK VALIDATION 
With early stopping, the available data is divided into three subsets. The first subset is the training 

set, which is used for computing the gradient of the performance and updating the network 

weights and biases. The ability of a neural net to generalise is influenced by three factors, i.e. 

physical complexity of the problem, the architecture of the network and the size and efficiency of 

the training set. Of these, only the latter two can be controlled. That is why so much attention is 

given to an appropriate design of experiments (see Chapter 3). The second subset is the 

validation set. The ability of the neural network to generalise is assessed by means of cross-

validation of the validation set, where the performance of the network is evaluated against a novel 

set of test data, not used during training. The error on the validation set is monitored during the 

training process. The validation error will normally decrease during the initial phase of training, as 

does the training set error. However, when the network begins to overfit the data, the error on the 

validation set will typically begin to rise. When the validation error increases for a specified 

number of iterations, the training is stopped, and the weights and biases at the minimum of the 

validation error are returned and used as model parameters for further predictions. 
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6.1.5 NEURAL NETWORK PREDICTION 

The third subset is the test set. The test error is not used during the training, but is only used once 

the net has been developed, to assess the accuracy of the model. It is also useful to plot the test 

set error during the training process. If the error in the test set reaches a minimum at a 

significantly different iteration number than the validation set error, this may indicate poor division 

of the data set. The presence of random noise can also have a significant effect on the ability of 

the neural network to discriminate between cases near decision boundaries which will lead to 

inaccuracy and poor predictions. 

 

6.2 MODEL 1: RELATIONSHIP BETWEEN PAINT RHEOLOGY AND RAW 

MATERIALS 

6.2.1 BACKGROUND 

Rheological parameters of the frequency sweep, FSα (gradient) and FSβ (offset), are used once 

again as an example to illustrate the non-linear modelling process.  The rheology curve of the 

frequency sweep is expressed as: 

 

 FSFSFSFS xy βα += lnln      (6.4) 

 

The scatterplot of the response of the frequency sweep gradient ( FSα ) against some of the 

interaction terms (Figure 6.4), gives a first (although only graphical) indication of the non-linear 

behaviour. A pattern (i.e. linear) in these figures will indicate that two terms interact in a certain 

way so that the response is no longer a result of a single factor. 
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Figure 6.4 Interaction Terms Affecting ALPHA (Frequency Sweep) 

 

Very definite patterns exist in Figure 6.4 (a) to (d) indicating pairwise interaction between some of 

the raw materials, noticeably the emulsion with other raw materials. The number of pairwise 

interactions in the 9 component system amounts to 36. Developing polynomial models with 45 (36 

pairwise interaction terms + 9 linear terms) terms make the modelling process very difficult, 

remembering that a 45-term polynomial does not even take the higher order interactions (3, 4, 

etc.) into account. Neural networks are ideal for these situations where n types of interactions are 

possible.  

6.2.2 NEURAL NETWORK MODELLING 

Neural networks are developed for prediction of the rheological parameters. Linear models 

predicted the rheological behaviour of the ‘normal’ samples relatively accurately. The aim of the 

neural networks is to predict accurately the rheology of the paint samples whose behaviour is 

non-linear. The non-linear behaviour is mostly as a result of large variations in the raw materials 

(larger than the plus/minus 20% form the standard formulation). These samples were identified in 

Chapter 5 as samples with residuals that are outside the linear regression confidence interval, as 

indicated by the RCOPLOTS of FSα  and FSβ , Figure 6.5 and Figure 6.6 respectively. 
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Figure 6.5 RCOPLOT for ALPHA (Frequency Sweep) 
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Figure 6.6 RCOPLOT for BETA (Frequency Sweep) 

The residuals that are considered as outliers are indicated in Figure 6.5 and Figure 6.6 as those 

with square markers (�). Their error bars do not cross the zero mean line. These paint samples 

vary with the following percentages from the standard formulation (Table 6.1).  
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Table 6.1 Composition of Samples with Outlier Residuals 

Paint Composition 
Case 

Number Pigment Extender Water Solvent Emulsion 
Organic 

Pigment 
RM1 RM2 Combination 

#9 FSα  20.31 9.83 3.43 15.38 15.03 0.16 18.23 5.98 8.07 

#37 FSβ  5.50 1.82 9.63 1.95 13.97 20.31 21.21 3.84 10.81 

#41 FSα  

and FSβ  
16.60 49.95 18.23 20.40 9.31 20.12 20.15 21.57 25.53 

#42 FSα  2.90 18.87 16.09 11.50 15.81 17.55 0.54 5.20 7.72 

#46 FSβ  50.01 28.37 18.17 20.39 50.08 20.11 20.01 19.25 26.14 

#47 FSα  

and FSβ  

59.84 59.96 23.48 20.03 26.21 19.74 19.91 19.91 10.03 

#51 FSβ  0.06 21.66 5.79 13.47 13.06 2.46 22.26 5.33 11.55 

#58 FSβ  20.38 0.95 2.31 16.09 16.31 17.30 0.44 0.07 0.33 

#61 FSβ  15.89 14.07 11.06 10.01 19.16 12.83 4.14 12.32 11.76 

#67 FSα  49.46 23.77 4.52 6.27 21.18 6.90 7.27 5.58 14.03 

#83 FSα  

and FSβ  
63.24 60.85 23.74 20.76 8.77 20.89 20.81 22.23 10.82 

#88 FSα  19.22 7.78 18.42 1.74 17.14 1.37 16.22 2.97 9.33 

#94 FSα  7.54 50.08 18.16 20.07 30.38 19.96 20.30 20.79 26.24 

 

Table 6.1 indicates that 6 of the 13 paint samples are samples with variations in raw materials that 

are larger than the 20% on the standard formulation. It is therefore a clear indication that the 

linear models do not model these type of paints accurately and that a non-linear model is required 

to model the samples with large residuals (based on the linear regression model). 

6.2.2.1 NEURAL NETWORK ARCHITECTURE AND TRAINING 

A neural net work is developed and trained so that the residuals of the outliers in Table 6.1 are 

minimised. The errors involved with these paint samples, based on multiple linear regression are 

given in Table 6.2. 
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Table 6.2 Outlier Errors for ALPHA (Frequency Sweep) and BETA (Frequency Sweep) 

Outlier Error of Frequency Sweep Parameters 

(Based on multiple linear regression models) Case 

Number 
FSα (MLR) 

[%] 
FSβ  (MLR) 

[%] 

#9 6.45 NA 

#37 NA 280.52 

#41 6.47 24.51 

#42 5.04 NA 

#46 NA 1239.02 

#47 6.77 67.14 

#51 NA 1118.14 

#58 NA 306.13 

#61 NA 381.87 

#67 5.78 NA 

#83 6.96 1378.32 

#88 5.61 NA 

#94 6.53 NA 

Average: 6.20 599.46 

 

The average errors of the outliers in Table 6.2 (6.20% for FSα  and 599.46% for FSβ ) are large in 

comparison with the average errors of the values that are not considered as outliers (1.43% for 

FSα and 11.15% for FSβ ). Another way to get an idea of the severity of the errors ******* associated 

with these points, can be seen in Figure 6.7 and Figure 6.8. 

 

                                                 

******* 100×
−

=
actual

predictedactual
error  
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Figure 6.7 MLR Error for ALPHA (Frequency Sweep) (in increasing order) 

 

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70 80 90 100

Paint Samples

E
rr

or
 (M

LR
) [

%
]

 

Figure 6.8 MLR Error for BETA (Frequency Sweep) (in increasing order) 

The aim of the neural network modelling is to minimise the large MLR errors as marked in Figure 

6.7 and Figure 6.8. 

 

There is not a fixed set of rules for developing the architecture of the neural network as every 

problem is unique. However, selection of specific network architecture (number of layers, number 

of nodes, etc) also depends on previous experience and knowledge of the problem. It has been 

shown that standard back propagation neural nets with one hidden layer are very versatile and 

robust in prediction of some rheological properties (Leskovsek et al ([1], [2], [3], [4]) and Gasperlin 

et al [5], [6]). Also, a ‘top-down’ strategy for developing the architecture of the model is used to 

find the optimum architecture for the neural network model. In other words, a large complex 

structure is initially specified and this structure is gradually pruned down as indicated by the ability 

of the neural net to generalise. The effect of the number of output nodes (rheological parameters) 

of the neural net can be seen in Figure 6.9 and Figure 6.10 for FSα and FSβ respectively. The aim 

is to determine the number of rheological outputs that will result in the smallest error. In Figure 6.9 

and Figure 6.10 the last ten paint samples with the largest errors are plotted for each model. 
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Figure 6.9 ALPHA (Frequency Sweep) Errors for Different Neural Net Architectures (A –

MLR, B – NN with 18 outputs; C – NN with 2 ouputs; D – NN with 1 output) 
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Figure 6.10 BETA (Frequency Sweep) Errors for Different Neural Net Architectures (A –

MLR, B – NN with 18 outputs; C – NN with 2 ouputs; D – NN with 1 output) 

In both cases the linear model (n), with moving average††††††† A, is used as reference. It is clear 

for both cases that the neural network with 18 rheological outputs (p), with moving average B, 

performs better than the linear model. Pruning the number of outputs from 18 to a neural net with 

2 ( FSα and FSβ ,¿), with moving average C, does not result in minimising the error any further 

and actually increases the error. However, pruning the net further to just one output, FSα in Figure 

6.9 and FSβ in Figure 6.10, results in the smallest errors (l), with moving average D. The network 

architecture that produces the minimum error therefore looks as follows (Figure 6.11). 

 

 

 

                                                 
††††††† The average calculated by taking each consecutive point into account. 
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Figure 6.11 Network Architecture for ALPHA and BETA (Frequency Sweep) 

Figure 6.11 shows that the neural network architecture used for the determination of a rheological 

parameter is very basic. The input to the net consists of the three principle components that 

explain 80% of the variance in the raw materials. The hidden layer consists of 3 hidden nodes 

each using the tan-sigmoidal activation function to send its summed output to a single output 

node is used for estimation of the rheological parameter. The advantage of using only one output 

node is that the specific rheological parameter can be estimated very accurately but a 

disadvantage lies in the fact that the optimum paint formulation for a combination of rheological 

parameters can not be estimated (see Chapter 7 – Future Work).  

 

It is clear from Figure 6.9 and Figure 6.10 that the neural net drastically reduces the errors of the 

paint samples with large linear (outlier) errors and that the architecture of the network has a 

significant effect in minimising the error as well. Table 6.2 can now be modified to include the 

outlier errors for FSα and FSβ  as predicted by the single output neural network (Table 6.3). 
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Table 6.3 Comparison Between Outlier Error of MLR and NN Models 

Outlier Error of Frequency Sweep Parameters 

(Based on MLR and NN models) Case 

Number 
FSα (MLR) 

[%] 
FSα (NN) 

[%] 
FSβ  (MLR) 

[%] 
FSβ  (NN) 

[%] 

#9 6.45 4.48 NA NA 

#37 NA NA 280.52 245.73 

#41 6.47 0.38 24.51 0.38 

#42 5.04 3.99 NA NA 

#46 NA NA 1239.02 198.68 

#47 6.77 0.98 67.14 9.82 

#51 NA NA 1118.14 830.97 

#58 NA NA 306.13 317.65 

#61 NA NA 381.87 330.69 

#67 5.78 1.94 NA NA 

#83 6.96 1.19 1378.32 226.83 

#88 5.61 3.23 NA NA 

#94 6.53 1.97 NA NA 

Average: 6.20 2.27 599.46 270.09 

 

The average errors of Table 6.3 indicate that the neural net (NN) performs significantly better than 

the linear model (MLR) in fitting the outlier values, although the errors are still large. Appendix E, 

Section 12.4 – Non-Linear Modelling (MODEL1) gives the ‘ACTUAL vs MODEL’ graphs for all the 

rheology parameters modelled by neural networks. Figure 6.12 illustrates the average errors of 

the outliers for each of the rheological parameters (r1 – r18). 
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Figure 6.12 Neural Net (NN) and Multiple Linear Regression (MLR) Model Errors 
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These error values of the outliers are also presented in Table 6.4 for more accurate inspection. 

 

Table 6.4 Model Errors 

RELATIVE ERROR [%] 
Rheology Curve 

Rheology 

Parameter 
ID 

 MLR  NN 

)(3 OscITT−β  r1 675.61 312.09 
3-ITT (Oscillatory) 

)(3 OscITT−α  r2 24.52 9.27 

)(3 RotITT−β  r3 27.36 14.67 
3-ITT (Rotational) 

)(3 RotITT−α  r4 41.81 32.31 

ASβ  r5 15.56 11.17 
Amplitude Sweep 

ASα  r6 0.94 0.59 

FSβ  r7 599.46 270.09 
Frequency Sweep 

FSα  r8 6.2 2.27 

FCβ  r9 38.22 24.70 
Flow Curve 

FCα  r10 19.61 7.47 

HSα  r11 22.03 12.20 

HSβ  r12 34.42 14.04 High Shear Curve 

HSγ  r13 12.48 6.54 

LSβ  r14 29.70 9.29 
Low Shear Curve 

LSα  r15 70.94 30.77 

TSβ  r16 367.06 113.71 
Time Sweep Curve 

TSα  r17 462.94 151.9 

Extra Low Frequency CXLF r18 59.71 5.01 

 

It is clear from figure Figure 6.12 and Table 6.4 that the neural networks (NN) perform significantly 

better than the multiple linear regression (MLR) models in modelling the outlier values. However, 

although the neural network models perform significantly better, some of the neural network errors 

are still relatively large, e.g. )(3 OscITT−β  =312%, FSβ = 270% and TSα =151%. This also illustrates 

the major drawback of neural networks – interpretation of results is almost impossible due to the 

complex mathematical techniques (rules) that neural network predictions are based on. It must be 

remembered that these networks are not fully optimised yet in terms of network architecture 

(number of layers, learning algorithm, etc). It has been shown that optimising the number of 



  201 

output nodes already has a significant effect in reducing the model errors. Optimisation of the 

neural network is a study in itself and is not included in the scope of this work (see Chapter 7 - 

Future Work). 

 

Therefore, although the neural networks are not fully optimised yet, the models should also 

perform better in predicting unseen data than the MLR model could not predict accurately. 

 

6.2.2.2 MODEL IMPLEMENTATION 

The neural networks are now implemented to predict the rheological parameters of 33 unseen 

paint samples. In Figure 6.13 and Figure 6.14 the error in predictions of the 33 unseen data points 

are given for FSα and FSβ  respectively. A comparison is made between multiple linear regression 

(MLR, n) and neural network (NN, l) predictions. The paint samples are placed in increasing 

order according to the MLR model error values. 
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Figure 6.13 Model Errors In Prediction of Unseen Data points for ALPHA (Frequency 

Sweep): A – MLR; D – NN with 1 output 

Although the moving average in error of the NN (D) is higher than that of the MLR model (A) in the 

first half of Figure 6.13 (up to Paint Sample 17), the much more important part of the figure is the 

latter part where the moving average D is smaller than the moving average A. It is in this part of 

the graph that the MLR model performs poorly and predicts the last seven paint samples as 

outliers (Chapter 5). It can clearly be seen that, although the neural net is not that accurate in 

predicting every single data point (first half of the figure), the NN generalises better than the MLR 

model (last half of figure) and predicts the last seven data points more accurately. The same trend 

is observed in the error values of FSβ . 
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Figure 6.14 Model Errors In Prediction of Unseen Data points for BETA (Frequency Sweep) 

(Frequency Sweep): A – MLR; D – NN with 1 output 

The same trend is followed in the error values of FSβ . The MLR model (n) predicts the last four 

paint samples of Figure 6.14 as outliers (Chapter 5). The neural net is specifically trained so that it 

will be more accurate in predicting these points. It is in this area of the graph where the NN (l) 

performs better and it is also in this area where the neural net will be used to make predictions 

about the rheology of the paint samples with extreme PVC/VS. Table 6.5 illustrates the average 

improvement in accuracy of predictions of samples that the MLR model could not predict 

accurately (as indicated as outliers in Chapter 5). 

Table 6.5 Outlier Errors of Unseen Predicted Rheology Parameters ALPHA and BETA 

(Frequency Sweep) 

Outlier Error [%] Rheology 

Parameter 

Number of 

Outliers  MLR NN 

FSα  7 8.32 4.36 

FSβ  4 157.82 25.42 

 

Clearly, the neural net performs better than multiple linear regression in predicting the rheology 

parameters of the frequency sweep for samples with extreme variations in raw materials levels.  

 

Figure 6.15 now shows an example of the entire set of rheology curves (ÿ) for a specific paint 

sample with extreme variations in raw material levels. The model predictions obtained from 

multiple linear regression (MLR) and neural network (NN) modelling are also shown. 

A 

D 
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Figure 6.15 Model Predictions (MLR vs NN) for Rheology Curves of a Paint Sample With 

Extreme Variations in Raw Materials 
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The neural network predicts the rheological response of all the rheology curves Figure 6.15 (a) to 

(i) more accurately than the multiple linear regression model. Although the neural networks do not 

predict the response entirely accurately, it is a major improvement on multiple linear regression 

models.  

 

Repeatability of the rheological measurements introduces a certain degree of uncertainty around 

a measurement. Model predictions can at most be as accurate as the band of uncertainty around 

the true value. Repeatability is within 2% for oscillatory tests and within 5% for rotational tests 

[12].  

 

6.2.3 MODEL 1 CONCLUSIONS 

It became clear after data inspection, the literature study and the linear modelling, that a certain 

level of non-linearity exists in the rheological behaviour of the paint. In Chapter 5 it was shown 

that the linear models (MLR models) could not model and predict the non-linear rheological 

behaviour accurately for paint samples of which the raw materials vary by more than 20% from 

the standard formulation. Non-linear modelling techniques such as neural networks were 

developed to overcome these inadequacies. The following are the most important conclusions: 

 

• Neural networks perform better than multiple linear regression in predicting the 

rheological behaviour of paint samples for which the raw materials vary by more than 

20% from the standard formulation. 

• Table 6.4 shows the improvement that neural networks make on the prediction of the 

rheological variables. Although some of the predictions made by the neural networks still 

result in large relative errors, the neural networks show a major improvement on the 

predictability of the rheology of those paint samples that vary more than 20% from the 

standard formulation. On average, neural networks improve predictability of the 

rheological parameters by 54%. The largest improvement in predictability is made on the 

rheological variable CXLF, where multiple linear regression resulted in relative errors of 

59%, while neural networks resulted in errors of only 5%. Other predictions of rheology 

curves where neural networks have shown a major improvement on predictability are the: 

Time Sweep Curve (TS) – 68% increase in accuracy; Low Shear Curve (LS) – 63% 

increase in accuracy. The smallest increase that the neural network had on the 

predictability of a rheology curve, was a 33% increase in accuracy of the amplitude 

sweep (AS) predictions.  

•  Although it is clear that neural networks result in significantly more accurate predictions 

for the rheological behaviour of those paint samples that vary more than 20% from the 

standard formulation, the relative errors are still large, e.g. 312% for )(3 OscITT−β  and 

270% for FSβ .  Optimisation in terms of the neural net architecture is not complete and 
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various options are available for further network optimisation (e.g. training algorithm, 

activation function, number of hidden layers, etc.) that will result in smaller relative errors. 

 

6.3 MODEL 2: RELATIONSHIP BETWEEN PAINT PROPERTIES AND RAW 

MATERIALS 

6.3.1 BACKGROUND 

In Chapter 5 the linear relationship between the paint properties and the raw materials was 

evaluated. In the same way that larger variation of raw materials resulted in a certain level of non-

linearities in the rheological behaviour, so it is expected that the paint properties will also show 

some non-linear behaviour. Preliminary indications of non-linearity (literature sources (Chapter 2), 

data preparation (Chapter 4) and linear modelling (Chapter 5)) were also identified and the need 

for other non-linear modelling techniques arose. 

 

The paint property, Gloss60, is used once again as an example to illustrate the non-linear 

modelling process. The scatterplots of the Gloss60 values against some of the interaction terms 

(Figure 6.16), give a first (although only graphical) indication of the non-linear behaviour. Any 

structure (e.g. linear) in these graphs will be an indication of non-linear behaviour. 
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                               (d) 

Figure 6.16 Interaction Terms Affecting Gloss60 

From Figure 6.16 (a) to (c) it can be concluded that the extender interactions with some of the 

other raw materials (water, solvent and rheology modifier1) play an important role in affecting the 

Gloss60 values. Figure 6.16 (d) indicates that the non-linear behaviour of the emulsion also play 

an important role. All of the above are examples of possible interactions and many more (pairwise 

and higher order) can be expected.  

 

Linear modelling of the Gloss60 values (Chapter 5) also revealed that the linear model is not 

entirely appropriate for prediction of all of the Gloss60 values. The linear model fit is illustrated in 

Figure 6.17. 
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Figure 6.17 Linear Model Fit for Gloss60 Values 

Closer inspection of Figure 6.17 reveals that the linear model fits the data points, in general 

relatively well; however, some extreme data points (indicated with the arrows) are not modelled 

accurately by the linear model. The linear model is not flexible enough to fit these data points 

accurately. The effect of the extreme data points on the model predictions can be seen in Table 

6.6. 

Table 6.6 Effect of Extreme Gloss60 Values on Model (MLR) Predictions 

Average Relative Error [%]  

 Including Extreme Data 

Points 

 Excluding Extreme Data 

Points  

Model Errors 14.50 7.23 

 

The linear model is therefore accurate in predicting Gloss60 values as long as it includes no 

extreme data points. The error of the linear model fit, more or less doubles when the extreme data 

points are included. However, the need exists for prediction of the extreme data points and 

therefore another model (non-linear) is developed for prediction of these values. A neural network 

model is developed after other researchers have indicated [8], [9], [11] that these modelling 

techniques can be used accurately to predict coating properties. 
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6.3.2 NEURAL NETWORK MODELLING 

6.3.2.1 NEURAL NETWORK ARCHITECTURE AND TRAINING 

The neural network is developed to minimise those large errors in predicted values caused by the 

linear model. These data points, considered as outliers by the MLR model can be seen in Figure 

5.18 (RCOPLOT of GLOSS60 values) of Chapter 5. Figure 6.18 also illustrates the sharp increase 

in error of the last four model predictions. 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

Paint Samples

E
rr

or
 (

M
LR

) 
[%

]

 

Figure 6.18 MLR Error for Gloss60 Values (In Increasing Order) 

The neural network, if developed adequately, should mainly minimise the errors that are encircled 

in Figure 6.18. 

 

Once again, no set of rules exists for developing the neural network architecture and initial 

selection of a specific network architecture (number of layers, number of nodes, etc) depends on 

previous experience and knowledge of the problem. To begin with, the same architecture and 

training algorithm is used to model the Gloss60 values, as that of what other researchers [8], [9] 

have used successfully in predicting certain paint properties. This is a back propagation feed 

forward neural network model with the following architecture (Figure 6.19) 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 Neural Network Architecture for Gloss60 
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Figure 6.19 shows that a relative basic neural network architecture is used for the determination 

of the paint properties. The input to the net consists of the three principle components that explain 

80% of the variance in the raw materials. The hidden layer consists of 5 hidden nodes each using 

the tan-sigmoidal activation function to send its summed output to a single output node that is 

used for estimation of the rheological parameter. A single output node corresponding to a single 

paint property will result in the most accurate prediction, but the disadvantage is once again that 

an optimum paint formulation is not found which generalises a set of paint properties the best. 

However, neural network architecture is very flexible and a set of output nodes corresponding to 

more than one paint property is possible but will need further network optimisation (see Chapter 7 

– Future Work).  

 

The first two data points that are indicated with arrows in Figure 6.17 are zoomed into in Figure 

6.20. In Figure 6.20 (b) it can be seen that the neural net is more flexible than the MLR model in 

Figure 6.20 (a). (Similar model fit graphs for all the paint properties are given in Chapter 12 - 

Appendix E (Section 12.5) 
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          b) 

Figure 6.20 Gloss60 Model (MODEL2) Fit for (a) MLR Model and (b) NN Model 

 

In Figure 6.21 a comparison is made between the error values of the linear (MLR) model and non-

linear (NN) model for the Gloss60 values. Only the last 10 data points (with increasing error 

values) are illustrated, because they are the points with the largest errors. These data points are 

not modelled accurately by the linear model and the last 6 are classified as outliers by the linear 

model. It is clear that the neural network (NN) predicts the Gloss60 values more accurately than 

the linear model (MLR), resulting in smaller error values.  
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Figure 6.21 Gloss60 Errors (MODEL2) for MLR and NN Models (last 10 data points) 

The neural network performs particularly better in the areas where the MLR model performs the 

worst (last 6 data points). In other words, the neural network generalises better than the MLR 

Error=3.21% 

Error=1.54% 
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model and is more accurate in predicting data points with extreme Gloss60 values. The MLR 

classifies the last 6 data points as ‘outliers’ with an average error of 24.85% for them while the NN 

reduces that average error of these data points to 4.87%, which is a clear improvement by the 

NN. 

 

Chapter 5 indicated that a similar pattern is followed with all the other paint properties when MLR 

models are used for modelling. That is, the MLR models do not perform well in prediction of paint 

properties that are included in the design to act as influential data points whose values are 

extreme. Figure 6.22 illustrates the relative errors associated with these extreme/influential data 

points as a result of MLR and NN modelling for all the paint properties (PP1-PP17 of Figure 6.22 

is identified in Table 6.7). 
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Figure 6.22 Comparison Between Outlier Errors 

The neural net reduces the error of all the paint properties and is therefore better in generalising 

and prediction. Table 6.7 gives the relative error values for the outliers of the paint properties as 

modelled by the MLR and NN models.  
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Table 6.7 Error Values for Outliers as Modelled by MLR and NN 

Relative Error [%] 
Paint Property ID 

Number of 

Outliers MLR NN 

'Dry Burnish 20' PP1 7 63.31 30.37 

'Dry Burnish 60' PP2 6 60.28 38.14 

'Dry Burnish 85' PP3 6 107.74 76.13 

'Wet Burnish 20' PP4 1 66.53 0.61 

'Wet Burnish 60' PP5 3 50.50 42.35 

'Wet Burnish 85' PP6 3 97.74 75.71 

'Water Permeability' PP7 6 33.06 22.32 

'Krebs' PP8 5 6.62 4.83 

'Sag' PP9 8 229.08 219.17 

'Open time' PP10 4 51.66 20.93 

'Gloss 20' PP11 6 32.01 0.95 

'Gloss 60' PP12 6 24.85 4.87 

'Gloss 85' PP13 6 10.45 6.51 

'Dirt Pick-Up' PP14 5 58.67 19.55 

'Opacity' PP15 4 6.36 3.83 

'Hiding Power' PP16 5 5.04 4.33 

'Dry Film Thickness' PP17 5 20.34 3.92 

 

The neural network makes clear improvements on the error values, however some errors are still 

unacceptably large. It must be remembered that the neural network architecture is not fully 

optimised yet and that there is still room for improvement (Chapter 7 – Future Work). However, 

the important thing to note is that a preliminary neural network architecture already predicts the 

most important paint properties more accurately. 

6.3.2.2 MODEL IMPLEMENTATION 

The neural networks are now implemented to predict the paint properties of 33 unseen paint 

samples. The error in predictions of the 33 unseen data points is given for Gloss60. In Figure 6.23 

a comparison is made between the relative error in prediction resulting form multiple linear 

regression (MLR,n) and neural network (NN,l) predictions. The paint samples are placed in 

increasing order according to the MLR model error values. 
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Figure 6.23 Model Errors in Predictions of Unseen Data points for Gloss60 

The important part of the graph is once again there where the MLR (n) model is unable to predict 

the Gloss60 values accurately, resulting in large errors (end part of the graph - paint samples 22 

to 33). In this part of the graph it is clear how the NN (l) predicts the Gloss60 values more 

accurate, resulting in smaller errors. In Figure 6.24 a comparison is made between the predicted 

values for Gloss60 of the 33 unseen paint samples obtained from MLR and NN modelling. 
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Figure 6.24 Model Predictions for Gloss60 

 

Figure 6.24 shows what improvement the neural has on prediction of the Gloss60 values. MLR 

failed to predict all the values within the allowed error margin. This is especially obvious for the 

two outliers at the low range of the Gloss60 values. The neural net is much more accurate in 

prediction of these outliers. Although the neural net results in more scatter of the data outised the 

allowed error margin, all the predicted data points fall within the allowed error margin. It is 

therefore clear that the neural net is the appropriate model to use when there are obvious outliers 

(e.g. extreme PVC/solids) in the data. This might result in a larger relative error in prediction, but 

at least there should not be any predictions that fall outside the allowed error margin.  
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The same trends can be observed for the other important paint properties (Krebs, Opacity and 

Dry Film Thickness) as can be seen in Figure 6.25 to Figure 6.27. 
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Figure 6.25 Model Predictions for Krebs Viscosity 
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Figure 6.26 Model Predictions for Opacity 
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Figure 6.27 Model Predictions for Dry Film Thickness 

 

Some of the major improvements on prediction for these paint properties has been illustrated with 

arrows in Figure 6.24 to Figure 6.27. 
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6.3.3 MODEL 2 CONCLUSIONS 

As expected, non-linearity exists in the paint properties of the specific paint. In Chapter 5 it was 

shown that the linear models (MLR models) could not model and predict the non-linear paint 

properties accurately for paint samples of which the raw materials vary by more than 20% from 

the standard formulation. Non-linear modelling techniques such as neural networks were 

developed to overcome these inadequacies. The following are the most important conclusions: 

 

• Neural networks perform better than multiple linear regression in predicting the paint 

properties of paint samples for which the raw materials vary by more than 20% from the 

standard formulation. 

• Table 6.7 shows the relative errors that can be expected when neural networks are used 

to predict paint properties for which the raw materials vary more than 20% from the 

standard formulation. Although some of the predictions made by the neural networks still 

result in large relative errors, the neural networks show a major improvement on the 

predictability of the paint properties of those paint samples that vary more than 20% from 

the standard formulation. On average, neural networks improve predictability of the paint 

properties by 47%. The largest improvement in predictability is made on the wet burnish 

20 prediction, where multiple linear regression resulted in relative errors of 66%, while 

neural networks resulted in errors of only 0.6%. Other paint property predictions where 

neural networks have shown a major improvement on predictability of more than 80% in 

accuracy, are: Gloss – 80% increase in accuracy and Dry Film Thickness – 81% 

increase in accuracy. The smallest increase that the neural network had on the 

predictability of a paint property, was a 33% increase in accuracy of the sag predictions.  

 

 

6.4 MODEL 3: RELATIONSHIP BETWEEN PAINT RHEOLOGY AND PAINT 

PROPERTIES 

6.4.1 BACKGROUND 
Another way to model the paint properties, is in terms of the rheological behaviour. The 

importance of understanding coating performance in terms of rheology is clear. Certain paint 

properties, e.g. levelling, sag and spatter rely heavily on the flow and deformation behaviour 

(rheology) of the paint.  

 

In the previous sections (Section 6.2 and 6.3), the importance of the interactions between the raw 

materials have been illustrated. These interactions are numerous and very complex and almost 

impossible to model with constitutive equations. The advantages of having a model that predicts 

the paint properties in terms of rheology is as follows: 
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i. No explicit knowledge of the constitutive equations describing the chemical/physical 

interactions between the raw materials are required. The rheological behaviour of paint 

represents the flow and deformation behaviour of all the possible interactions. 

ii. Rheology tests are relative fast and inexpensive to do and are less operator dependable 

compared to the testing procedure for many of the paint properties. Therefore if good 

correlation can be found between the rheology and certain paint properties, many of the 

time/cost consuming paint property measurements can be replaced with fast and cost 

effective rheology measurements. 

 

Although the rheology represents all the possible interactions between the raw materials, non-

linear behaviour is still present as was illustrated by the lack of the linear model to predict certain 

paint properties (Chapter 5) of influential data points. The inability of the linear MLR model to 

predict some of the extreme Gloss60 values is illustrated with arrows in Figure 6.28.  
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Figure 6.28 Linear Model Fit for Gloss60 Values (MODEL 3) 

These three points, indicated with arrows, are the same data points that the linear model in the 

previous section could not predict accurately. However, in this case, the linear model is even 

more inaccurate in modelling these three data points and the model does not even predict the 

Gloss60 values within two standard deviations of the model. 

 

Non-linear techniques are therefore developed to predict these extreme/influential data points 

more accurately. Neural networks are chosen as the preferred method for non-linear modelling, 

because of the proven success of these type of non-linear models to accurately predict the 

rheology and paint properties in terms of raw materials. Also, neural networks have been used 
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successfully in pharmaceutical research to predict the performance of creams in terms of its 

rheological behaviour [11]. 

6.4.2 NEURAL NETWORK MODELLING 

6.4.2.1 NEURAL NETWORK ARCHITECTURE AND TRAINING 

The neural network is therefore developed to minimise the large error values that the linear model 

could not predict accurately. Figure 6.29 illustrates the increase in error values as predicted by the 

MLR model. Also note the sharp increase in error of the last three model predictions.  
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Figure 6.29 Error (MLR Model) for Gloss60 Values (MODEL 3) 

A neural network is developed to predict the paint properties of the samples with large MLR errors 

more accurately, thereby reducing large error values at the end part of the graph. The neural 

network architecture is given in Figure 6.30. 

 

 

 

 

 

 

 

 

 

Figure 6.30 Neural Network Architecture for Gloss60 (MODEL3) 

The basic neural network architecture in Figure 6.30 consists of three principle components 

describing 80% of the variance in rheological behaviour as input nodes, 5 nodes  with tan-

sigmoidal activation functions in the hidden layer and a single output node for estimation of the 

paint properties. It is possible to modify the neural network architecture so that various paint 

properties can be estimated simultaneously and therefore result in a more generalised model (see 

Chapter 7 - Future Work). 
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Although the network architecture is not fully optimised yet, it already gives improvements on the 

predictions compared to that of the MLR model (Figure 6.31 (a) and (b)). The flexibility of the 

neural network is illustrated in Figure 6.31 (b). It can clearly be seen how the neural network 

model fits two outlier points more accurately than the MLR model (Figure 6.31 (a)). The neural 

network is more flexible in predicting extreme data points and drastically reduces the error 

associated with these two data points. 
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  (b) 

Figure 6.31 Gloss60 Model Fit (MODEL3) for (a) MLR and (b) NN Model 

Error=47.65% 

Error=41.99% 

Error=5.81% 

Error=4.32% 
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The neural network therefore reduces large errors in Gloss60 prediction significantly. In Figure 

6.32 a comparison is made between the errors of the last 10 data points of the multiple linear 

regression (MLR) model fit and the neural network (NN) model fit. It is clear that the neural 

network significantly reduces the errors in the part of the graph where the largest MLR errors 

occur. 
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Figure 6.32 Gloss60 Errors (MODEL3) of the MLR and NN Models (last 10 data points) 

The aim of the neural network is not only to reduce the large errors predicted by the MLR model 

(Figure 6.32), but also to predict the outliers form the MLR more accurately. Figure 6.33 illustrates 

the flexibility of the neural network which leads to a reduction in outlier error. The neural network 

results in a drop in error of the relative outlier values for all the paint properties. Even larger 

improvements in outlier error reduction can be expected when the neural network architecture is 

fully optimised (see Chapter 7 - Future Work). Values and identification of the bar graphs in Figure 

6.33 are given in Table 6.8. 
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Figure 6.33 Comparison of Outlier Errors (MODEL3) 
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Table 6.8 Error Values for Outliers as Modelled by MLR and NN 

RELATIVE ERROR [%] 
Paint Property ID 

Number of 

Outliers  MLR  NN 

'Dry Burnish 20' PP1 5 53.93 27.61 

'Dry Burnish 60' PP2 7 104.04 65.81 

'Dry Burnish 85' PP3 6 98.30 48.60 

'Wet Burnish 20' PP4 2 54.33 21.30 

'Wet Burnish 60' PP5 3 55.09 40.37 

'Wet Burnish 85' PP6 4 46.88 14.75 

'Water Permeability' PP7 5 34.30 9.31 

'Krebs' PP8 6 6.41 4.00 

'Sag' PP9 8 247.17 165.66 

'Open time' PP10 3 57.11 37.67 

'Gloss 20' PP11 3 43.45 22.55 

'Gloss 60' PP12 3 41.79 12.74 

'Gloss 85' PP13 8 39.01 19.45 

'Dirt Pick-Up' PP14 4 100.83 59.30 

'Opacity' PP15 6 6.60 2.37 

'Hiding Power' PP16 7 5.45 4.34 

'Dry Film Thickness' PP17 2 27.58 8.72 

 

The error values for sag are unexpectedly high. The prescribed ASTM technique only allows for a 

specified range of measurement values. Therefore, sag measurements above the maximum of 

this range have been rounded to the ceiling value.  

Other error values in Table 6.8 are surprisingly low, e.g. that of opacity which one does not 

directly relate to the rheology of the paint. This is most likely because the opacity of this specific 

paint is already high so that a change in the raw materials results in a relative small experimental 

range for the opacity. 

 

6.4.2.2 MODEL IMPLEMENTATION 

The neural networks are now implemented to predict the paint properties of 33 unseen paint 

samples. The Gloss60 model predictions for these paint samples are shown in Figure 6.34. 
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Figure 6.34 Gloss60 Model Predictions for Unseen Paint Samples 

 

What is clear from Figure 6.34 is how accurate the neural net is in prediction of the extreme data 

point. The neural net reduces the error of the extreme data points significantly. Figure 6.35 shows 

the error in predictions of the 33 unseen data points for their Gloss60 values. A comparison is 

made between multiple linear regression (MLR,n) and neural network (NN,l) predictions. (The 

paint samples are placed in increasing order according to the MLR model error values and do not 

follow the same order as in Figure 6.34). 

0
20
40
60
80

100
120
140
160
180

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Paint Samples

E
rr

or
 [%

]

MLR NN
 

Figure 6.35 Model Predictions in Errors of Unseen Data points for Gloss60 values 

As expected, after a more accurate model fit for the neural network than the MLR model, the 

neural network is more accurate in prediction of the unseen data points. This is especially the 

case where the MLR model predicts large errors (end part of the graph). 
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In Figure 6.36 the arrows give an indication of the improvement the neural net makes on 

prediction of Gloss60 values. The neural net is able to predict all but one of the paint samples 

within the allowed error margin – a clear improvement on the MLR model. 
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Figure 6.36 Model Predictions for Gloss60 

 

Figure 6.37 shows that the neural is even more accurate than the multiple linear regression model 

in predicting the Krebs viscosity of the paint samples, even though the MLR model already 

predicts the Krebs Viscosity of the paint samples quite accurately. Once again, the neural net 

predicts the Krebs Viscosity of only one sample outside the allowed error margin. 
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Figure 6.37 Model Predictions for Krebs Viscosity 

 

In Figure 6.38 the neural net illustrates that it is most efficient in reducing the error between the 

actual and the predicted Opacity values of the extreme opacity values (indicated with an arrow). It 

is clear that in this case the neural net should only be used when paint samples are manufactured 

with extreme levels of raw materials that might result in extreme Opacity values.  
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Figure 6.38 Model Predictions for Opacity 

 

The neural net is also more accurate than the multiple linear regression model in predicting Dry 

Film Thickness, with fewer predictions falling outside the allowed error margin compared to the 

MLR model.  
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Figure 6.39 Model Predictions for Dry Film Thickness 

 

6.4.3 MODEL 3 CONCLUSIONS 

As expected, non-linearity also exists in the paint properties of the specific paint. In Chapter 5 it 

was shown that the linear models (MLR models) could not model and predict the non-linear paint 

properties accurately for paint samples of which the raw materials vary by more than 20% from 

the standard formulation. Non-linear modelling techniques such as neural networks were 

developed to overcome these inadequacies. The following are the most important conclusions: 

 

• Neural networks perform better than multiple linear regression in predicting the paint 

properties of paint samples for which the raw materials vary by more than 20% from the 

standard formulation. 
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• Table 6.8 shows the relative errors that can be expected when neural networks are used 

to predict paint properties for which the raw materials vary more than 20% from the 

standard formulation. On average, neural networks that use rheology data as input, 

predict the paint properties for those paint samples with raw materials that vary more 

than 20% from the standard formulation, 49% more accurate than equivalent multiple 

linear regression models. The greatest improvement in model predictability is for water 

permeability (73% increase in accuracy) and gloss (70% increase in accuracy). 

• Two models have been developed that predicts the paint properties of those samples 

that vary more than 20% from the standard formulation. The first model makes use of 

raw materials as input data (MODEL 2) and the second model makes use of rheological 

data as input to the model (MODEL 3).  Table 6.9 show a comparison of the two models. 

In certain cases MODEL 3 is more accurate in predicting certain paint properties such as 

dry/wet burnish, water permeability, Krebs viscosity, sag, dry film thickness and open 

time. In other cases, MODEL 2 performs better in predicting certain paint properties such 

as open time, gloss and dirt pick-up. Table 6.9 can be used as reference to make a 

decision between which model to use for the most accurate prediction of paint properties 

for those paint samples that vary more than 20% from the standard formulation. 

 

Table 6.9 Comparison Between MODEL 2 and MODEL 3 Paint Property Predictions 

Paint Property 
MODEL 2 Error (NN) 

[%] 

MODEL 3 Error (NN) 

[%] 

'Dry Burnish 20' 30.37 27.61 

'Dry Burnish 60' 38.14 65.81 

'Dry Burnish 85' 76.13 48.60 

'Wet Burnish 20' 0.61 21.30 

'Wet Burnish 60' 42.35 40.37 

'Wet Burnish 85' 75.71 14.75 

'Water Permeability' 22.32 9.31 

'Krebs' 4.83 4.00 

'Sag' 219.17 165.66 

'Open time' 20.93 37.67 

'Gloss 20' 0.95 22.55 

'Gloss 60' 4.87 12.74 

'Gloss 85' 6.51 19.45 

'Dirt Pick-Up' 19.55 59.30 

'Opacity' 3.83 2.37 

'Hiding Power' 4.33 4.34 

'Dry Film Thickness' 3.92 8.72 
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6.5 MODEL INTERPRETATIONS‡‡‡‡‡‡‡ 

Non-linear models have been developed to predict paint properties (rheological and mechanical) 

for paint samples with extreme variations in some of the raw materials. The predictions of the 

neural networks for a paint with a 25% increase in emulsion is illustrated in Table 6.10. 

 

Table 6.10 Neural Network Model Predictions of Change in Standard Paint Formulation 

Paint Property 
Standard 

Formulation 

+25% 

Emulsion 
Model 

Gloss 60 [-] 7.73 29.4 2 

Opacity [%] 98.33 90.21 2 

Krebs Viscosity [KU] 89 115 2 

Dry Film Thickness [µm] 37 40 2 

Frequency Sweep See Figure 6.40 1 
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Figure 6.40 Frequency Sweep of Standard Paint Formulation, MLR Model Prediction for 5% 

Increase in Emulsion and NN Model Prediction for 25% Increase in Emulsion 

 

All of the neural network predictions in Table 6.10, except for the Dry Film Thickness, correlate 

with what can be expected for a large increase in emulsion. The increase in emulsion results in 

the following predictions: 

i) a large increase in gloss  

ii) a large decrease in opacity 

iii) a large increase in Krebs Viscosity 

iv)  a small increase in dry film thickness 

                                                 
‡‡‡‡‡‡‡ Model interpretations are not considered to be a fundamental part of this study. It is rather 

an indication that model predictions from the study can be used for interpretation of future 

phenomenological models. 
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v) an increase in the response (τ δ) of the frequency sweep 

 

All of the predictions above, except dry film thickness can be explained by following the basic 

principles of paint chemistry as discussed in Chapter 5, Section 5.5. The dry film thickness is 

expected to be substantially more than what the neural network predicts and the small increase in 

the predicted value of the dry film thickness can not be explained. The prediction could possibly 

be a model error. 

 

Only MODEL 1 and MODEL 2 predictions are included in the interpretation because actual 

rheology measurements are required for MODEL 3 predictions. 

 

6.6 MODEL DISCRIMINATION 
Akaike’s information criterion (AIC) developed by Hirotugu Akaike in 1971 [13] is a measure of 

goodness of fit of an estimated statistical model and is given as: 

 

 AIC = 2k – 2ln(L)      (6.4) 

 

where k  is the number of parameters in the statistical model and L is the likelihood function. AIC 

can also be written as follows [14]: 
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     (6.5) 

 

where n is the number of observations and RSS is the residual sum of squares. AIC takes the 

model complexity into account when the goodness of fit is evaluated. A lower value for AIC 

indicates better goodness of fit at the specific model complexity.  

 

The number of parameters k  for MLR are taken as the number of input variables of the regression 

model – see equation 5.4 (MODEL 1 -> k=11), equation 5.6 (MODEL 2 -> k=11) and equation 5.7         

(MODEL 3 -> k=3). The number of parameters k  for the NN’s are taken as the number of weights 

between neurons in an entire network – see Figure 6.11 (MODEL 1 -> k=12), Figure 6.19 

(MODEL 2 -> k=20) and Figure 6.30 -> k=20). Therefore an increase in the complexity of the NN 

(number of connections between neurons), can drastically increase the value of the AIC if the 

goodness of fit does not increase significantly.  

 

The values for AIC of the MLR and NN of MODEL 1 are given in Table 6.11. 
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Table 6.11: Akaike Information Criterion for Model 1 

AIC 
Rheology Curve Rheology Parameter 

MLR NN 

)(3 OscITT−β  505 526 
3-ITT (Oscillatory) 

)(3 OscITT−α  120 122 

)(3 RotITT−β  139 147 
3-ITT (Rotational) 

)(3 RotITT−α  119 122 

ASβ  527 608 
Amplitude Sweep 

ASα  122 124 

FSβ  179 175 
Frequency Sweep 

FSα  121 123 

FCβ  217 217 
Flow Curve 

FCα  110 112 

HSα  112 114 

HSβ  121 123 High Shear Curve 

HSγ  910 1051 

LSβ  192 210 
Low Shear Curve 

LSα  130 132 

TSβ  125 127 
Time Sweep Curve 

TSα  533 547 

Extra Low Frequency CXLF 135 129 

 

 

Table 6.11 indicates that, in general, the added complexity of the neural networks does not result in 

a relative increase in goodness of fit. It is only the FSβ  and CXLF parameters for which the goodness 

of fit, relative to its model complexity, increases, or AICNN < AICMLR.  

 

The values for AIC of the MLR and NN of MODEL 2 and MODEL 3 are given in Table 6.12. 
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Table 6.12: Akaike Information Criterion for Models 2 and 3 

AIC 

MODEL 2 MODEL 3 Paint Property 

MLR NN MLR NN 

Dry Burnish 20 123 140 108 141 

Dry Burnish 60 139 149 131 152 

Dry Burnish 85 125 141 115 145 

Wet Burnish 20 119 136 105 139 

Wet Burnish 60 128 144 113 144 

Wet Burnish 85 125 141 111 142 

Water Permeability 581 570 582 554 

Krebs 462 530 444 432 

Sag 468 484 456 450 

Open time 695 693 693 687 

Gloss 20 145 140 174 180 

Gloss 60 355 248 481 392 

Gloss 85 429 456 623 574 

Dirt Pick-Up 123 141 105 139 

Opacity 118 136 101 135 

Hiding Power 120 138 104 138 

Dry Film Thickness 541 470 597 496 

 

Table 6.12 indicates that, in general, the MLR models of MODEL 2 have lower values for the AIC 

(except for Water Permeability, Open Time, Gloss20/60 and Dry Film Thickness). Therefore,  

according to AIC the increase in model complexity of the neural networks relative to the complexity 

of the MLR models, does not contribute in increasing the goodness of fit (except for the 

abovementioned paint poroperties for which AICNN < AICMLR). 

 

Table 6.12 also indicates that the increase in model complexity of the neural networks of MODEL 3,  

only results in 7 models (out of 17) for which the goodness of fit, relative to its model complexity, 

increases. The paint properties for which AICNN < AICMLR are Water Permeability, Krebs Viscosity, 

Sag, Open Time, Gloss60/85, Dry Film Thickness. 

   

6.7 GENERAL CONLCLUSIONS 
Multiple linear regression models are accurate in predicting the rheology and paint properties of 

paint samples for which the raw materials do not vary more than 20% from the standard 

formulation. However, it has been shown that other modelling techniques were required for those 

paint samples that do vary more than 20% from the standard formulation. Three neural network 
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models were developed for the purpose of predicting the rheology and the paint properties of 

these paint samples more accurately. 

 

1) The neural network of MODEL 1 was developed to predict the rheology of those paint 

samples that vary more than 20% from the standard formulation, by using raw materials as 

input to the model. It has been shown that neural networks perform better than multiple linear 

regression in predicting the rheological behaviour of paint samples for which the raw materials 

vary by more than 20% from the standard formulation. On average, neural networks improve 

predictability of the rheological parameters by 54%. The largest improvement in predictability 

is made on the rheological variable CXLF, where multiple linear regression resulted in relative 

errors of 59%, while neural networks resulted in errors of only 5%. Other predictions of 

rheology curves where neural networks have shown a major improvement on predictability 

are the Time Sweep Curve (TS) – 68% increase in accuracy and Low Shear Curve (LS) – 

63% increase in accuracy. The smallest increase that the neural network had on the 

predictability of a rheology curve, was a 33% increase in accuracy of the Amplitude Sweep 

(AS) predictions.  

The Akaike information criterion (AIC) shows that multiple linear regresson models are the 

preferred models (in terms of goodness of fit versus model complexity) when predicting all of 

the rheological parameters, except  FSβ and CXLF. 

 

2) The neural network of MODEL 2 was developed to predict the paint properties of those paint 

samples that vary more than 20% from the standard formulation, by using raw materials as 

input to the model. The neural networks show a major improvement on the predictability of the 

paint properties for those paint samples that vary more than 20% from the standard 

formulation. On average, neural networks improve predictability of the paint properties by 

47%. The largest improvement in predictability is made on the wet burnish20 prediction, 

where multiple linear regression resulted in relative errors of 66%, while neural networks 

resulted in errors of only 0.6%. Other paint property predictions where neural networks have 

shown a major improvement on predictability of more than 80% in accuracy, are Gloss – 80% 

increase in accuracy and Dry Film Thickness – 81% increase in accuracy. The smallest 

increase that the neural network had on the predictability of a paint property, was a 33% 

increase in accuracy of the sag predictions.  

The Akaike information criterion (AIC) shows that neural networks are the preferred models 

when predicting Water Permeability, Open Time, Gloss20/60 and Dry Film Thickness. 

 

3) A neural network of MODEL 3 was developed to predict the paint properties of those paint 

samples that vary more than 20% from the standard formulation, by using rheology data as 

input to the model. The neural networks perform better than multiple linear regression in 

predicting the paint properties of paint samples for which the raw materials vary by more than 

20% from the standard formulation. On average, neural networks that use rheology data as 

input, predict the paint properties 49% more accurate than equivalent multiple linear 
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regression models. The greatest improvement in model predictability is for water permeability 

- 73% increase in accuracy and gloss - 70% increase in accuracy. 

The Akaike information criterion (AIC) shows that neural networks are the preferred models 

when predicting Water Permeability, Krebs Viscosity, Sag, Open Time, Gloss60/85 and Dry 

Film Thickness.  

 

4) Two models have been developed that predicts the paint properties of those samples for 

which the raw material composition varies more than 20% from the standard formulation. The 

first model makes use of raw materials as input data (MODEL 2) and the second model 

makes use of rheology data as input to the model (MODEL 3). In terms of the relative error 

between the actual and the predicted value of a paint property, MODEL 3 is more accurate in 

predicting paint properties such as dry/wet burnish, water permeability, Krebs viscosity, sag, 

dry film thickness and open time. For paint properties such as open time, gloss and dirt pick-

up, MODEL 2 performs better.  

 

5) Although it is clear that neural networks result in significantly more accurate predictions for the 

rheological behaviour of those paint samples that vary more than 20% from the standard 

formulation, some of the relative errors are still large, e.g. 312% for )(3 OscITT−β  and 270% 

for FSβ  (MODEL 1); 76% for dry burnish85 and 75% for wet burnish85 (MODEL 2); 65% for 

dry burnish60 and 59% for dirt pick-up (MODEL 3).  Optimisation in terms of the neural net 

architecture is not complete and further work in terms of network optimisation (e.g. training 

algorithm, activation function, number of hidden layers, etc.) is required that will aim at 

minimising these errors. 

 

6.8 NOMENCLATURE 
Abbreviations 

3-ITT   Three-interval-thixotropy test 

3-ITT (osc)  Three-interval-thixotropy test in oscillatory mode 

3-ITT (rot)   Three-interval-thixotropy test in rotational mode 

ANTF    Antifoamer 

AS   Amplitude sweep 

CLNT   Coalescent 

CNST   Constant 

COMB   Combination 

CXLF    Constant of extra low frequency 

DISP   Dispersant 

EMLS   Emulsion 

FC   Flow curve 

FNGD   Fungicide 
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FS   Frequency sweep 

HS   High shear 

H0   Null hypothesis 

LS   Low shear 

MLR   Multiple linear regression 

OPIG   Organic pigment 

PC   Principal component 

PIGM   Pigment 

PVC   Pigment volume concentration 

RM1   Rheology modifier 1 

RM2   Rheology modifier 2 

RMC   Raw material contribution 

SA   Soda ash 

SOLV    Solvent 

SURF   Surfactant 

TS   Time sweep 

VS   Volume solids 

WTR   Water 

XLF   Extra low frequency 

XTND   Extender 

 

Symbol    Description 

C   Condition number ( - ) 

G’   Storage modulus (Pa) 

G”   Loss modulus (Pa) 

G*   Complex modulus (Pa) 

L   Maximum likelihood 

t   Time (s) 

w   Neural network weight 

x    Independent variable 

avgx    Average value of variable 

ix    Neural network input 

deviationdardsx tan   Standard deviation of variable 

dardisedsx tan   Standardised value of variable 

y    Dependent variable 

Z   Sigmoidal activation function 
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Greek Symbol   Description 

α    Preliminary model parameter (gradient) 

iα    Gradient of preliminary model where i=HS, LS, 3-ITT(rot), etc 

yoscillatorα    Gradient of oscillatory measurement 

60Glossα    Predicted Gloss60 value 

opertyPa Printα   Value of predicted paint property 

rotationalα    Gradient of rotational measurement 

β    Preliminary model parameter (offset) 

iβ    Preliminary model parameter (offset) where i=HS, LS, 3-ITT(rot), etc 

yoscillatorβ    Offset of oscillatory measurement 

emulsionβ    Regression coefficient associated with the emulsion 

rotationalβ    Offset of rotational measurement 

0β    Constant associated with regression analysis 

kβ    Regression coefficient associated with variable k=1,2,3,… 

1PCβ    Regression coefficient associated with principal component 1 

γ    Deformation [%] or strain [ - ] 

Aγ    Deformation [%] or strain [ - ] amplitude 

γ&    Shear rate [1/s] 

δ    Phase shift, loss angle [ ° ] 

ε    Random error 

η    Shear viscosity [Pa.s] 

∗η    Complex viscosity [Pa.s] 

τ    Shear stress [Pa] 

Aτ    Shear stress amplitude [Pa] 

ω    Angular frequency [rad/s] 
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7 CONCLUSIONS AND FUTURE 

WORK 

Understanding the effect that raw materials have on paint properties is the ultimate goal of the 

paint chemist. This will enable the him to develop new paint technology that is ultimately less 

expensive, less time consuming and less labour intensive; while still retaining those fundamental 

characteristics of the paint that determines its quality. Empirical models that accurately predict 

paint properties are useful tools in obtaining this goal. The work presented in this study is an 

attempt in obtaining accurate paint property predictions, based on empirical models.  

 

Rheology plays a fundamental role in explaining certain paint properties. The relationship 

between certain paint properties and rheology is clear, but there is also underlying relationships 

between certain paint properties and the rheology that is not so clear. Advances in rheological 

measurement techniques, combined with powerful modelling techniques, make more accurate 

paint property predictions a possibility. Rheological measurement in the paint industry has 

evolved from a single viscosity measurement (1930’s) to measurements of the viscous (1970’s) 

and elastic properties (1990’s) of paint. Combining these advanced rheological measurement 

techniques with powerful modelling techniques have resulted in novel contributions in this field of 

study 

 

7.1 CONTRIBUTIONS 

 

The novel and most important contributions resulting from this study are as follows: 

 

• Historically it was easy to characterise the flow behaviour of paint with a single viscosity 

measurement and therefore this single rheological measurement has been the subject of 

numerous rheological modelling. With the advent of new rheological measurement techniques 

other modelling possibilities also surfaced and scientists began to model paint properties in 

terms of the viscoelastic behaviour. But paint properties were still being modelled by a single 

point from a single rheological measurement. This study not only uses a single rheological 

measurement to make a prediction on a certain paint property, but combines a set of nine 

rheological measurements by means of preliminary modelling techniques to make those 

predictions. This makes more sense because paint is time and shear dependent. Certain paint 

properties (e.g. levelling) develop during long time scale (low shear) conditions while other 

(e.g. spatter) during short time scale (high shear) conditions (spatter). Preliminary modelling 

has made it possible to capture the rheological response of the paint over the widest range of 

time scale and shear conditions possible. Harmful effects that are caused by redundant data 
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have been minimised by making use of principal component analysis for obtaining the 

principal components in the rheological data. The principal components were then used for 

paint property predictions. It has been shown that these preliminary modelling techniques 

are useful and contributes to accurate paint property predictions. A major drawback of 

principal component analysis is that the principal components lack simple interpretation since 

each is, in a sense, a mixture of the original variables and although these preliminary 

modelling techniques make model predictions more accurate, it makes the task of developing 

a phenomenological model more challenging. 

 

• A model has been developed for the prediction of the rheological behaviour of a 

specific paint (MODEL1). Quantitative prediction of the rheological response of new paint  

formulations are accurate, resulting in small errors between actual and predicted rheological 

responses. The predicted rheological parameters enables the paint chemist to accurately 

construct rheology curves for new paint formulations, based only on raw material composition.   

The model consists out of two parts: 

 

i) A linear model that enables the paint chemist to predict the linear correlations very 

accurately. The linear model is based on multiple linear regression and is useful to 

predict the rheology of a new paint formulation, for which the raw materials do not 

vary by more than 20% from the standard formulation.  

ii) A non-linear model that enables the paint chemist to predict the non-linear correlations 

with higher accuracy than the linear model. This model is based on neural network 

modelling techniques and is useful to predict the rheology of a new paint formulation, 

for which the raw materials vary by more than 20% from the standard formulation. 

The non-linear model significantly reduces the error between the actual and 

predicted rheological value, but still results in relative large inaccuracies for certain 

rheological parameters. Improving the accuracy of these models requires more work 

in network optimisation. 

 

• A model has been developed for the prediction of paint properties, based on the 

rheological behaviour of the specific paint (MODEL 3). Historically, other researchers have 

already succeeded in predicting paint properties based on the rheological data, but the current  

model is based on techniques that surpass those of previous models in numerous ways:  

 

i) The predictability of an entire set of paint properties have been evaluated. This 

resulted not only in obtaining accurate predictions for certain paint properties that 

intuitively depend on the rheology of the paint (e.g. Krebs viscosity), but also those 

paint properties which do not intuitively relate to the rheology (e.g. opacity).  

ii) Rheological parameters of an entire set of rheological measurements (e.g. flow curve, 

amplitude sweep, 3-ITT, etc) are used to predict paint properties. Previously, only 

single rheological parameters were used. 
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iii) The input to the model is the rheological response to a range of time-scale/shear 

conditions and not only a single point as previously used. 

iv) Paint properties are predicted by the principal components of the rheological data. 

v) All of these techniques have been combined in the development of a model that 

accurately predicts paint properties from rheological data. The model also consists 

out of two parts that are run independently. A linear model accurately predicts critical 

paint properties such as opacity, gloss, dry film thickness and Krebs viscosity, within 

the allowable error margin set out by the paint manufacturer. Nowhere in the 

literature has such a model been developed that predicts paint properties so 

accurately by means of a set of rheological parameters. This is considered to be the 

most important contribution of this work. The model predictions have the same level 

of accuracy as predictions that originate from other models that use raw material data 

as input. The current rheological model only makes use of rheology measurements 

as input to the model and no information about the paint composition is required to 

make these predictions. This is very useful when the paint composition is not known.  

The linear model is inaccurate in predicting paint properties with extreme values and 

a non-linear model has been developed to predict these paint properties more 

accurately. Although the non-linear model still results in large errors between the 

actual and predicted value, the model shows a significant increase in model accuracy 

compared to the linear model. The non-linear model is not fully optimised yet, in 

terms of network architecture, and requires more work. 

vi) The correlation between fundamental rheological properties and real world 

performance  has been quantified for a specific paint. There has always been an 

understanding that rheology can explain certain paint properties, but the problem was 

that there were no real-world correlations between rheological behaviour and paint 

properties. Interpretation of paint properties in terms of rheological behaviour has 

been quantified in this study and it is possible now to estimate the value of a specific 

paint property, by evaluating the rheology.  

 

Other smaller, yet significant contributions include: 

• Many paint properties can be explained by rheological parameters that are well defined, e.g. 

shear viscosity (η), shear modulus (G*), complex viscosity (η*), etc. These parameters are 

mere manipulations of fundamental flow and deformation behaviour. It has been shown that 

the fundamental flow and deformation behaviour can be used as accurate model input to 

predict paint properties. These fundamental rheological parameters that were used as input to 

the rheological model are the shear stress (τ) response from the rotational tests (flow 

behaviour) and a combined parameter ( )δτ ⋅A from the oscillatory tests (viscoelastic 

behaviour). These parameters have never been used before in a rheological model for 

prediction of paint properties. 
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• A screening process is successfully used for identification of the most important raw 

materials that affect the paint properties. These raw materials are then used for further 

detailed models.  

 

• Models have been developed for the prediction of paint properties in terms of the raw 

materials for the specific paint under investigation (MODEL 2). These type of models are not 

new in the coatings industry and many models exist that accurately models the relationship 

between paint properties and raw materials. However, although fundamental characteristics 

can be linked to certain raw materials, each paint property is a direct result of the paint’s raw 

material composition. A model that accurately predicts the paint properties of this specific 

paint is therefore also unique. It has been shown that the developed model is accurate in 

predicting critical paint properties such as opacity, gloss, film thickness and Krebs viscosity. 

Two independent models have been developed that deals with linear and non-linear 

correlations between the raw materials and the paint properties. The linear model makes it 

possible for the paint chemist to identify the range of levels of raw materials that result in 

acceptable tolerances around a certain paint property. Very little work has been performed on 

non-linear modelling of paint properties and even less on neural networks as tools for non-

linear modelling techniques. The neural networks are not fully optimised yet and requires 

further work in terms of network optimisation. 

 

• An extensive database of rheological/mechanical and performance properties of a 

certain paint family has been developed. This will be extremely useful for future investigations 

on this specific paint family. 

 

The contributions emanating from this study assist in a better understanding of the relationship 

between raw materials and paint properties. The models developed in this study are not able to 

explain the paint properties and rheological behaviour in a fundamental way as a 

phenomenological model would have been able to. Such phenomenological models are 

considered to be extremely complex due to all the possible interactions between raw materials. 

However, the models developed in this study form the basis of such phenomenological models – 

the relationship between raw materials, paint rheology and paint properties for this specific paint is 

now established and endless virtual correlations between these can now be accurately modelled, 

forming a data base for a future phenomenological model that can one day be tested with actual 

data.   
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7.2 CONCLUSIONS 

 

The following conclusions regarding this specific paint can be made: 

7.2.1 CONCLUSIONS BASED ON LINEAR MODELLING 
 

1) A high level of multicollinearity exists between the measured rheological parameters. This 

is proved by a condition number of C = 2.67 ×  106. Condition numbers > 15 can lead to 

inaccurate predictions. 

2) 80% of the variance in the rheological data is explained by three principal components. 

Principal components are linear transformations of the original data. 

3) A screening process based on multiple linear regression has identified the most important  

raw materials that affect the paint properties. In decreasing order of importance, the raw 

materials that affect the paint properties the most are: emulsion, pigment, extender, 

organic pigment, water and solvent 

4) A total of 43 paint properties have been evaluated. A screening process based on 

multiple linear regression identified the paint properties that are best predicted by the 6 

most important raw materials mentioned in point 3 above. These raw materials explain 

more than 80% of the variance in the following paint properties: gloss, Krebs viscosity, 

water permeability and ease of stir. Paint properties that can not be modelled accurately 

by means of MLR by at least one of these raw materials are:  chemical resistance (NH3,  

H2O),wet film thickness, hiding power (brush/roller), spreading rate (1st and 2nd coat), stain 

removal, adhesion, fibre levelling roller drag (1st coat). The variance of these paint 

properties are too small for accurate predictions. 

5) Table 5.5 gives the matrix of regression coefficients that can be used in equation 5.4 to 

predict the rheological behaviour of this specific paint. 

6) Rheology curves that are predicted most accurately by means of multiple linear 

regression and the six most important raw materials (emulsion, pigment, extender, 

organic pigment, water and solvent) are: the amplitude sweep (AS), the three-interval-

thixotropy-test in the rotational mode (3-ITT-rot) and the flow curve (FC). The rheology 

curves that are predicted least accurately are: low shear curve (LS), time sweep (TS) and 

extra low frequency point (XLF).  

7) Table 5.9 gives the matrix of regression coefficients that can be used in equation 5.6 to 

predict the paint properties of this specific paint, based on raw material data as input to 

the model. 

8) The linear models of equation 5.6 predict the critical paint properties of the paint (gloss, 

opacity, dry film thickness and Krebs viscosity) within the specified error margin set out by 

the paint manufacturer. The expected average relative error on prediction of these paint 

properties by means of multiple linear regression for new paint samples are: gloss – 

7.23%; opacity – 0.81%; dry film thickness – 6.38% and Krebs viscosity – 1.67%. 
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9) Paint properties that are predicted the most inaccurate by means of the linear models of 

equation 5.6 are dirt pick-up and sagging. 

10) Table 5.12 gives the matrix of regression coefficients that can be used in equation 5.7 to 

predict the paint properties from the rheological behaviour of this specific paint. 

11) Paint properties that are predicted most accurately by equation 5.7 are gloss, dry film 

thickness, opacity and Krebs viscosity. The following errors can be expected when using 

equation 5.7 to predict these properties for new paint samples: gloss – 15.33%; opacity – 

1.05%; dry film thickness – 7.11% and Krebs viscosity – 1.61%. 

12) Figure 7.1 shows that the rheological model (equation 5.7) is comparable to the raw 

material model (equation 5.6) when predicting paint properties of new paint samples.  

AVERAGE ERRORS OF MLR MODELS
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Figure 7.1 Relative errors in New Predictions 

(The paint property nomenclature is as follows: DB20 – Dry Burnish20, DB60 – Dry 

Burnish60, DB85 – Dry Burnish85, WB20 – Wet Burnish20, WB60 – Wet Burnish60, 

WB85 – Wet Burnish85, DPU – Dirt Pick-Up, OT – Open Time, DFT – Dry Film 

Thickness, G20 – Gloss20, G60 – Gloss60, G85 – Gloss85, HP – Hiding Power, K - 

Krebs, OP - Opacity, SAG - Sag, WP – Water Permeability). 

13) Paint property predictions based on equation 5.6 and equation 5.7 are only accurate 

when the raw materials do not vary by more than 20% from the standard formulation. 

 

7.2.2 CONCLUSIONS BASED ON NON-LINEAR MODELLING 
 

1) It has been shown that neural networks perform better than multiple linear regression in 

predicting the rheological behaviour of paint samples for which the raw materials vary by 

more than 20% from the standard formulation (MODEL 1). On average, neural networks 

improve predictability of the rheological parameters by 54%. The largest improvement in 

predictability is made on the rheological variable CXLF, where multiple linear regression 

resulted in relative errors of 59%, while neural networks resulted in errors of only 5%. 
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Other predictions of rheology curves where neural networks have shown a major 

improvement on predictability are the Time Sweep Curve (TS) – 68% increase in 

accuracy and Low Shear Curve (LS) – 63% increase in accuracy. The smallest increase 

that the neural network had on the predictability of a rheology curve, was a 33% increase 

in accuracy of the Amplitude Sweep (AS) predictions. The Akaike information criterion 

(AIC) shows that multiple linear regression models are the preferred models when 

predicting all rheological parameters, except  FSβ and CXLF. 

 

2) The neural networks that predict paint properties from the raw material composition 

(MODELL 2) show a major improvement on the predictability of the paint properties for 

those paint samples that vary more than 20% from the standard formulation. On average, 

neural networks improve predictability of the paint properties by 47%. The largest 

improvement in predictability is made on the wet burnish20 prediction, where multiple 

linear regression resulted in relative errors of 66%, while neural networks resulted in 

errors of only 0.6%. Other paint property predictions where neural networks have shown a 

major improvement on predictability of more than 80% in accuracy, are Gloss – 80% 

increase in accuracy and Dry Film Thickness – 81% increase in accuracy. The smallest 

increase that the neural network had on the predictability of a paint property, was a 33% 

increase in accuracy of the sag predictions. The Akaike information criterion (AIC) shows 

that multiple linear regression models are the preferred models when predicting any of the 

paint properties except Water Permeability, Open Time, Gloss20/60 and Dry Film 

Thickness. 

 

3) The neural networks that predict paint properties from the rheological data (MODEL 3) 

perform better than multiple linear regression in predicting the paint properties of paint 

samples for which the raw materials vary by more than 20% from the standard 

formulation. On average, neural networks that use rheology data as input, predict the 

paint properties 49% more accurate than equivalent multiple linear regression models. 

The greatest improvement in model predictability is for water permeability - 73% increase 

in accuracy and gloss - 70% increase in accuracy. The Akaike information criterion (AIC) 

shows that multiple linear regression models are the preferred models when predicting 

any of the paint properties except Water Permeability, Krebs Viscosity, Sag, Open Time, 

Gloss60/85 and Dry Film Thickness.  

 

4) Two models have been developed that predict the paint properties of those samples for 

which the raw material composition varies more than 20% from the standard formulation. 

The first model makes use of raw materials as input data (MODEL 2 - raw material 

models) and the second model (MODEL 3 - rheological model) makes use of rheology 

data as input to the model. In terms of the relative error between the actual and the 

predicted value of a paint property, the rheological model is more accurate in predicting 

paint properties such as dry/wet burnish, water permeability, Krebs viscosity, sag, dry film 
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thickness and open time. For paint properties such as open time, gloss and dirt pick-up, 

the raw material model performs better. In terms of the Akaike information criterion (AIC), 

which not only rewards goodness of fit, but also includes a penalty that is an increasing 

function of the number of estimated parameters, the neural network of the raw material 

model outperforms the neural network of the rheological model in predicting all of the 

paint properties except dry burnish85, water permeability, Krebs viscosity and sag. 

 

5) Although it is clear that neural networks result in significantly more accurate predictions 

for the rheological behaviour of those paint samples that vary more than 20% from the 

standard formulation, some of the relative errors are still large, e.g. 312% for )(3 OscITT−β  

and 270% for FSβ ; 76% for dry burnish85 and 75% for wet burnish85 (raw material 

model); 65% for dry burnish60 and 59% for dirt pick-up (rheological model).  Optimisation 

in terms of the neural net architecture is not complete and further work in terms of 

network optimisation (e.g. training algorithm, activation function, number of hidden layers, 

etc.) is required that will aim at minimising these errors. 

 

7.3 FUTURE WORK 
 

This study identified the following areas that need further work: 

 

• Empirical models that predict paint properties have been developed in this study. These 

models result in accurate predictions but do not lend themselves for accurate model 

interpretations. At the same time, a large data base of raw materials, rheology and paint 

property data have been obtained. A phenomenological model that makes use of this data 

and model predictions can be developed to establish the required fundamental behaviour that 

dictates the paint properties. 

• Paint property predictions based on rheological behaviour is currently based on the principal 

components describing most of the variance in the rheological behaviour.  However, a major 

drawback of principal component analysis is that the principal components lack simple 

interpretation since each is, in a sense, a mixture of the original variables. Future work can be 

done on these principal components, in order to break them down to a more understandable 

relationship between rheology and paint properties.   

• Non-linear models show a major improvement in predictive capabilities. However, the neural 

network models are not fully optimised yet in terms of network architecture. The major 

purpose of this study, in terms of non-linear modelling, was to illustrate the principle that 

neural networks can be used for the prediction of paint properties. Predictions that are even 

more accurate are possible with fully optimised neural network models. 

• This study has proved that both paint composition and rheological data can be used to predict 

paint properties accurately. A combined model (raw materials and rheology as input) can be 
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even more powerful in the accuracy of its predictions and the present dataset can be used to 

investigate this. 

• Optimisation techniques to manufacture paints of high quality and low cost need to be 

developed. These techniques can be based on the model predictions obtained from this study. 

Paint quality is dependent on various paint properties which all have to be optimised with the 

same paint formulation. Therefore a single model to predict a range of properties is sought 

after. An option is a model that incorporates all the models developed in this study as 

subroutines, which can then be optimised simultaneously. A universal optimum in the quality 

of a paint can then be obtained. 

• Models can be extended to include a variety of different paint families. This will require that 

similar studies need to be done on other paint families and then a comprehensive study which 

draws correlations between different paint families (e.g. solvent based and water based) can 

be undertaken. 

• Cost factors for the raw materials can be included to optimise paint composition for the lowest 

cost, but with acceptable properties. This is especially true for cheaper paint formulas where 

the profit margins are small. 

7.4 NOMENCLATURE 
 

Abbreviations 

3-ITT   Three-interval-thixotropy test 

3-ITT (osc)  Three-interval-thixotropy test in oscillatory mode 

3-ITT (rot)   Three-interval-thixotropy test in rotational mode 

ANTF    Antifoamer 

AS   Amplitude sweep 

CLNT   Coalescent 

CNST   Constant 

COMB   Combination 

CXLF    Constant of extra low frequency 

DISP   Dispersant 

EMLS   Emulsion 

FC   Flow curve 

FNGD   Fungicide 

FS   Frequency sweep 

HS   High shear 

H0   Null hypothesis 

LS   Low shear 

MLR   Multiple linear regression 

OPIG   Organic pigment 

PC   Principal component 

PIGM   Pigment 
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PVC   Pigment volume concentration 

RM1   Rheology modifier 1 

RM2   Rheology modifier 2 

RMC   Raw material contribution 

SA   Soda ash 

SOLV    Solvent 

SURF   Surfactant 

TS   Time sweep 

VS   Volume solids 

WTR   Water 

XLF   Extra low frequency 

XTND   Extender 

 

Symbol    Description 

C   Condition number ( - ) 

G’   Storage modulus (Pa) 

G”   Loss modulus (Pa) 

G*   Complex modulus (Pa) 

t   Time (s) 

x    Independent variable 

avgx    Average value of variable 

ix    Value of variable 

deviationdardsx tan   Standard deviation of variable 

dardisedsx tan   Standardised value of variable 

y    Dependent variable 

 

 

Greek Symbol   Description 

α    Preliminary model parameter (gradient) 

iα    Gradient of preliminary model where i=HS, LS, 3-ITT(rot), etc 

yoscillatorα    Gradient of oscillatory measurement 

60Glossα    Predicted Gloss60 value 

opertyPa Printα   Value of predicted paint property 

rotationalα    Gradient of rotational measurement 

β    Preliminary model parameter (offset) 

iβ    Preliminary model parameter (offset) where i=HS, LS, 3-ITT(rot), etc 
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yoscillatorβ    Intersect of oscillatory measurement 

emulsionβ    Regression coefficient associated with the emulsion 

rotationalβ    Intersect of rotational measurement 

0β    Constant associated with regression analysis 

kβ    Regression coefficient associated with variable k=1,2,3,… 

1PCβ    Regression coefficient associated with principal component 1 

γ    Deformation [%] or strain [ - ] 

Aγ    Deformation [%] or strain [ - ] amplitude 

γ&    Shear rate [1/s] 

δ    Phase shift, loss angle [ ° ] 

ε    Random error 

η    Shear viscosity [Pa.s] 

∗η    Complex viscosity [Pa.s] 

τ    Shear stress [Pa] 

Aτ    Shear stress amplitude [Pa] 

ω    Angular frequency [rad/s] 

 



  

8 APPENDIX A: GLOSSARY 

AND TERMS 

8.1 ACRONYMS AND ABBREVIATIONS 

3-ITT   Three-interval-thixotropy-test 

3-ITT (osc)  Three-interval-thixotropy test in oscillatory mode 

3-ITT (rot)   Three-interval-thixotropy test in rotational mode 

ANTF   Antifoamer 

AS   Amplitude sweep 

ASTM   American standard test methods 

CLNT   Coalescent 

CNST   Constant 

CPVC   Critical pigment volume concentration 

CRGI   Coatings research group international 

CSR   Controlled shear rate 

CSD   Controlled shear deformation 

CSS   Controlled shear stress 

CXLF   Constant of extra low frequency 

DISP   Dispersant 

EMLS   Emulsion 

FC   Flow curve 

FNGD   Fungicide 

FS   Frequency sweep 

HEUR   Hydrophobically modified ethylene urethane oxide rheology modifier 

HS   High shear 

H0   Null hypothesis 

LS   Low shear 

LVER   Linear viscoelastic range 

MLR   Multiple linear regression 

OPIG   Organic pigment 

PC   Principal component 

PIGM   Pigment 

PVC   Pigment volume concentration 

RM1   Rheology modifier 1 

RM2   Rheology modifier 2 

RMC   Raw material contribution 

RMSE   Root mean square error 



  

SA   Soda ash 

SOLV   Solvent 

SURF   Surfactant 

TS   Time sweep 

VOC   Volatile organic compounds 

VS   Volume solids 

WTR   Water 

XLF   Extra low frequency 

XTND   Extender 

 

8.2 PAINT TERMS 

Adhesion: The degree of attachment between a coating film and the underlying paint or other 

material. (www.generalpaint.com/glossary) 

 

Brush Drag: Resistance encountered when applying a coating by brush (ASTM) 

 

Burnish Resistance: The ability of a coating to resist an increase in its gloss (sheen) value after 

polishing or rubbing. (ASTM) 

 

Chemical reisistance: The ability of a coating to resist damage by chemicals. 

(www.homegarden.move.com) 

 

Dirt pick-up: The degree of dirt collection on a coating. (ASTM) 

 

Ease of Stir: The ability of a coating to resist stirring. (Plascon) 

 

Film thickness (wet and dry): The thickness of a coating applied to a substrate. (ASTM) 

 

Gloss: The relative luminous reflectance factor of a specimen in the mirror direction. (ASTM) 

 

Hiding power: The ratio of the reflectance of a film on a black substrate to that of an identical film 

on a white substrate. (ASTM) 

 

Krebs units: Values of a scale commonly used to express the consistency of paints generally 

applied by brush of roller. (ASTM) 

 

Levelling: A measure of the ability of a paint to flow out after application so as to obliterate any 

surface irregularities such as brush marks, orange peel, peaks, or craters that have been 

produced by the mechanical process of application. (ASTM) 

 



  

Microbial Attack: Degree of the presence of fungal or algal growth on a coatings. (ASTM) 

 

Opacity: The ratio of the reflectance of a film on a black substrate to that of an identical film on a 

white substrate. (ASTM) 

 

Open Time: Length of time a coating remains wet enough to allow for brushing-in at the laps; also 

called wet edge time. (ASTM) 

 

Roller Drag: Resistance encountered when applying a coating by roller. (ASTM) 

 

Sagging: Non-uniform downward flow of a wet paint film that occurs between the times of 

application and setting, resulting in an uneven coating having a thick lower edge. (ASTM) 

 

Scrub resistance: Resistance of paints to erosion caused by scrubbing. (ASTM) 

 

Settling: Degree of pigment suspension of a shelf-aged sample of paint under homogeneous 

conditions. (ASTM) 

 

Spatter: Droplets of paint that spin or mist off the roller as paint is being applied. 

(www.flexbon.com) 

 

Spreading Rate: The area covered by a unit volume of coating material. (ASTM) 

 

Stain Removal: The relative ease of removal of common stains from interior coatings by manual 

or mechanical washing with a sponge and a liquid cleanser. (ASTM) 

 

Syneresis: Degree of phase separation of a shelf-aged liquid paint that is stored under 

homogeneous conditions. (ASTM) 

 

Water Permeability (vapour): The rate at which water vapour passes through films of paint. 

(ASTM) 

 

Water Resistance: The ability of a coating to resist water (liquid) permeating through the film 

coating, causing effects such as colour change, blistering, loss of adhesion, softening or 

ebrittlement. (ASTM) 



  

8.3 STATISTICAL TERMS 

8.3.1 THE NULL HYPOTHESIS  

The following description is taken from [Montgomery*] 
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The statement 210 : ββ =H  is called the null hypothesis and 0:1 ≠jH β is called the alternative 

hypothesis. One way to report the results of a hypothesis test is to state that the null hypothesis 

was or was not rejected at a specific α-level or level of significance. Rejection of 0H implies that 

at least one of the regressor variables contributes significantly to the model and therefore it is 

customery to call the test statistic (and the data) significant when the null hypothesis 0H is 

rejected. The p-value approach has been adopted widely in practice to evaluate the null 

hypothesis (Montgomery). The p-value is defined as the smallest level of significance that would 

lead to rejection of the null hypothesis 0H . The p-value conveys much information about the 

weight of evidence against 0H , and so the decision maker can draw a conclusion at a specified 

level of significance. 0H is rejected if the p-value is less that α. 

8.3.2 MULTICOLLINEARITY  

The following definition is taken from [Applied linear statistical models] 

 

‘When the predictor variables are correlated among themselves, intercorrelation or 

multicollinearity among them is said to exist.’ 

 

The effect of multicollinearity is that estimated regression coefficients tend to vary widely from one 

sample to the next when the predictor variables are highly correlated. As a result, only imprecise 

information may be available about the individual true regression coefficients. 

The fact that some or all predictor variables are correlated among themselves does not, in 

general, inhbit our ability to obtain a good fit nor does it tend to affect inferences about mean 

responses or predictions of new observations, provided these inferences are made within the 

region of observations. Also,multicollinearity is not so serious when the main goal of the 

regression analysis is to predict the dependent variable. 

 

 

                                                      

1. * Montgomery, D. C. (2005). Design and Analysis of Experiments, John Wiley and Sons Inc. 

 



  

9 APPENDIX B: RHEOLOGY 

FUNDAMENTALS 

The following description on rheology fundamentals is compiled from various sources [1], [2], [3], 

[4]. 

9.1 FLOW BEHAVIOUR AND VISCOSITY 

The ‘Two-Plate-Model’ (Figure 9.1) is used to define some of the fundamental rheological 

parameters encountered during flow behaviour. The upper plate, with shear area A, is moved by 

the shear force F and the resulting velocity is measured. The lower plate is immovable. The 

distance h is the distance between the plates. The liquid sample is sheared in this gap. 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 The Two-Plate Model 

In all fluids there are frictional forces between the molecules and, therefore, they display a certain 

flow resistance which can be measured as viscosity. For ideal viscous (Newtonian) fluids at a 

constant temperature, the value of the ratio of the shear stress (τ) to the corresponding shear rate 

(γ& ) is a material constant. The definition of shear viscosity is: 

 

 
γ
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=        (9.1) 

 

Where the shear stress (τ) is defined as: 
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Where F is the shear force that is applied over a shear area A. The definition of the corresponding 

shear rate (γ& ) is: 

 

 
dh

dv=γ&        (9.3) 

 

Where dv  is the differential velocity between two neighbouring flowing layers and dh  the 

differential thickness of one of the individual flowing layers.  

There are two common approaches for rheological measurements; namely controlled-rate and 

controlled-stress measurements. In controlled-rate tests, the speed or the shear rate is set and 

controlled and the torsional force produced is measured. This test method is called a “controlled 

shear rate test” or “CSR” test. This test method is usually selected when specific flow velocities of 

technical processes have to be simulated (e.g. flow in pipes or particle sedimentation). In 

controlled stress tests, a stress is applied and the resulting displacement or rotational speed is 

measured. 

 

ROTATIONAL TESTS: CONTROLLED SHEAR RATE (CSR) TESTS  

 

In shear rate tests the speed or the shear rate is set and controlled. The test method with 

controlled shear rate is usually selected when specific flow velocities of technical processes have 

to be simulated. The following tests are performed in the CSR mode: 

a) Flow and viscosity curves 

 

Presetting:  Shear rate profile ( )tγ& , (Figure 9.2) 

                γ&  

 

 

 

 

 

 

 

 

 

            t  

Figure 9.2 Preset Profile: Shear Rate as a Function of Time 

 

 

 



  

Measuring result:  Flow curve ( )γτ & , (Figure 9.3) 
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Figure 9.3 Measuring Result: (1) Ideal viscous † (Newtonian) (2) Shear-thinning ‡ 

(Pseudoplastic) (3) Shear-thickening § (Dilatant) 

 

Result:  Viscosity curve ( )γη & , (Figure 9.4) 

                      η  
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                 γ&  

Figure 9.4 Result: (1) Ideal viscous (2) Shear-thinning (3) Shear-thickening 

 

When measuring at shear rates of γ&  < 1 s-1, it is important to ensure that the duration of each 

measured point is long enough. This is especially true for high-viscosity samples when tested at 

                                                      
† The shear viscosity of an ideal viscous (Newtonian) fluid is independent of the degree or 

duration of the shear load. 
‡ The shear viscosity is dependent on the degree of shear load. The flow curve shows a 

decreasing curve slope. 
§ The shear viscosity is dependent on the degree of shear load. The flow curve shows an 

increasing curve slope. 



  

very low shear rates. Otherwise start effects or time-dependent transition effects are measured, 

this means that transient viscosity instead of the desired steady-state viscosity is measured. 

Steady-state viscosity is only dependent on the applied shear rate. When γ&  > 1 s-1, transient 

effects only influence samples with pronounced viscoelastic properties. Therefore, for liquids with 

low or medium viscosities the duration of t = 5 s is sufficient in most cases for each measuring 

point. The preset duration of each measured point should decrease logarithmically as the shear 

rate increases. This method ensures that longer measuring point durations are set for lower shear 

rates than for higher ones so that time-dependant transition effects are not measured which 

usually occur at lower shear rates. Consequently, hardly any significant transient effects can be 

expected over the entire shear rate range. 

 

b) Viscosity / time curve 

Presetting:  Constant shear rate γ& , (Figure 9.5) 
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Figure 9.5 Preset Profile: Shear Rate/Time Function with Constant Shear Rate 

Measuring result:  Shear stress / time curves (Figure 9.6) 
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Figure 9.6 Measuring Result: (1) With No Change in Viscosity (2) Decrease in Viscosity 

Over Time (3) Increase in viscosity Over Time 



  

 

Result:  Viscosity / time curves, (Figure 9.7) 
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                  γ&  

Figure 9.7 Measuring Result: (1) No Change in Viscosity (2) Decrease in Viscosity (3) 

Increase in Viscosity 

 

When presetting at low shear rates, the selected measuring point duration must be long enough 

to overcome transient effects. 

 

c) Structural decomposition and regeneration (thixotropy) 

 

Presetting:  Shear rate profile ( )tγ& , (Figure 9.8) 
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Figure 9.8 Preset Profile: Shear Rate / Time Function with Three Test Intervals 

 

For measurements like this, three test intervals are preset: 



  

1) Rest phase under low-shear conditions during the time period between 0t  and 1t . The aim is 

to achieve a fairly constant viscosity ( )η  value for the whole first interval, since it is then used 

as a reference value for the third interval 

2) Load phase under high-shear conditions during the time period between 1t  and 2t  in order to 

decompose the structure of the sample 

3) Phase after removing the load under low-shear conditions during the time period between 2t  

and 3t , under the same shear conditions as in the first interval to facilitate regeneration of the 

structure. 

 

Result:  Viscosity as a function of time ( )tη , (Figure 9.9) 
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Figure 9.9 ( )tη  Curve of a Thixotropic Material Under (1) Low-shear Conditions (2) During 

Structural Decomposition and (3) During Structural Regeneration 

 

There are various methods for analysing structural regeneration, all of them which are based 

either on i) the time it takes for the structure to reach a certain degree of regeneration based on 

the 1st interval or ii) the degree of structural regeneration achieved (as a percentage) after a 

specified period of time, based on the 1st interval. 

9.2 ELASTIC BEHAVIOUR AND SHEAR MODULUS 

For elastic solids at a constant temperature, the value of the ratio of the shear stress (τ) to the 

corresponding deformation (γ) is a material constant if measured in the reversible deformation 

range (the so-called “linear-elastic range”). It is referred to as the shear modulus (G) and reveals 

information about the rigidity of a material. Oscillatory tests are performed to characterise elastic 

behaviour, which can be expressed in terms of the shear modulus. Materials with stronger 

intermolecular cohesive forces show a higher internal rigidity and therefore also a higher value of 

G. The definition of the shear modulus is: 



  

 

 
γ
τ=G        (9.4) 

 

Where the shear stress (τ) is defined in equation (9.2) and the deformation (γ) is defined as: 

 

 
h

s=γ        (9.5) 

 

With s  the deflection and h  the distance between the plates. 

9.3 VISCOELASTIC BEHAVIOUR 

The ‘Two-Plate-Model’ (Figure 9.10) is also used to explain some of the fundamental rheological 

parameters encountered during viscoelastic behaviour. The upper plate with shear area A is 

moved back and forth with shear force ±F in an oscillatory way. This causes shearing of the 

sample between the two plates. 

 

 

 

 

 

 

 

 

 

 

Figure 9.10 'Two-Plate-Model' for Viscoelastic Materials 

A viscoelastic material always shows viscous and elastic behaviour simultaneously and it is 

therefore important to understand the ideal elastic and ideal viscous responses to the oscillatory 

deformation. Ideal elastic behaviour of a solid (Figure 9.11) is characterised by immediate 

response (or no delay) in the deformation behaviour γ(t) when subjected to a shear stress τ(t), 

resulting in a phase shift angle (δ) of 0˚. 
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Figure 9.11 Ideal Elastic Behaviour of a Solid [1] 

Ideal viscous behaviour of a liquid (Figure 9.12) is characterised by a delay in the deformation 

behaviour γ(t) when subjected to shear stress τ(t), resulting in a phase shift angle (δ) of 90˚. 

 

Figure 9.12 Ideal Viscous Behaviour of a Liquid [1] 

Therefore, when real materials are subjected to oscillatory shear stress deformation, the phase 

shift angle will show a delay of 0˚ < δ < 90˚. The closer δ is to 0˚ the more elastic the material is, 

while the closer δ is to 90˚ the more viscous the material is. 

 

OSCILLATORY TESTS: CONTROLLED SHEAR DEFORMATION (CSD) TESTS  

 

The following tests are performed in the CSD mode: 

 

a) Amplitude sweep 

An amplitude sweep is an oscillatory test with variable amplitude and constant frequency values. 

Amplitude sweeps are mostly carried out for the sole purpose of determining the limit of the linear 



  

viscoelastic range (LVER, LVERγ ) but also gives information about the internal structure of the 

sample. 

 

Presetting:  Controlled shear deformation: ( ) ( )tt A ωγγ sin⋅= , with Aγ  the variable strain 

amplitude and ω = constant. (Figure 9.13) 
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Figure 9.13 Presetting: Amplitude Sweep 

 

Measuring result: Both G’ and G” are represented on the y-axis (log scale) with γ on the x-axis 

(log scale), (Figure 9.14) 
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Figure 9.14 Measuring Result: Amplitude Sweep 

 

Amplitude sweeps are used to investigate the character of the sample. In the linear viscoelastic 

range (LVER) each of the G’(γ) and G”(γ) moduli shows a constant plateau value and the structure 

of the sample is stable under this low-deformation condition. The term linear viscoelastic range 

(LVER) takes its name from the proportionality of the preset and measured parameters, and as a 

consequence, the resulting curve is a linear straight line in the diagram. It is within the LVER that 

the structure of the sample deforms reversibly, however at deformations larger than the limiting 



  

deformation ( )LVERγ , the structure deforms irreversibly. The limit of the LVER is also an indication 

of the yield point of the sample, or the stress that needs to be overcome for the sample to flow. 

Therefore, in consequent oscillatory tests, if any information regarding the structure of the sample 

needs to be determined, then care must be taken to perform these tests within the LVER 

( )LVERγγ < .  

The following relations concerning the structure of the sample are visible in the LVER: 

 

1) Gel character if G’ > G” 

Here, the elastic behaviour dominates over the viscous behaviour. The structure shows certain 

rigidity. Dispersions such as coatings that show G’ > G” in the LVER have a gel structure and 

therefore a certain form of stability. 

 

2) Liquid character if G” > G’ 

In this case, the viscous behaviour dominates over the elastic behaviour. The sample shows the 

character of a liquid in the LVER. This type of material does not remain in the stable form; they 

run or creep, although sometimes with a very low viscosity. 

It must also be remembered that amplitude sweeps do not examine the sample at rest, because 

the samples are often tested at angular frequencies that do not represent the condition at rest.  

 

b) Frequency sweep 

A frequency sweep is an oscillatory test with variable frequency and constant amplitude values. 

The importance of frequency sweeps is that the time-dependent shear behaviour is examined. 

Short-term behaviour is simulated by rapid oscillations (at high frequencies) and long-term 

behaviour is simulated by slow oscillations (at low frequencies) 

 

Presetting:  Controlled shear deformation: ( ) ( )tt A ωγγ sin⋅= , with variable angular frequency 

( )tωω =  and with Aγ = constant. (Figure 9.15) 
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Figure 9.15 Presetting: Frequency Sweep 



  

 

A frequency sweep must be performed below the limit of the LVER ( )LVERγ  and therefore an 

amplitude sweep must always be carried out first to determine this limit. 

 

Measuring result: Both G’ and G” are represented on the y-axis (log scale) with the frequency f 

on the x-axis (log scale), (Figure 9.16) 
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Figure 9.16 Measuring Result: Frequency Sweep 

 

Frequency sweeps are time tests because they simulate time-dependent behaviour. Short and 

long-term behaviour can be evaluated by investigating the high and low frequency regions 

respectively. 

A sample with a stable structure usually displays G’>G”; the elastic behaviour dominates over the 

viscous behaviour and the sample shows gel character. For a stable structure, the G’ and G” 

curves are almost parallel straight lines throughout the entire frequency range with a shallow 

slope, often with G’:G” = 10:1 up to 100:1. 

The analysis of the sample’s consistency is undertaken in the LVER at low frequencies and has 

many advantages over the conventional rotational tests where the structure of the sample is 

evaluated at low shear conditions: 

1) The measurements actually represent the sample’s structure at rest and make the evaluation 

of the results even more precise. 

2) Two rheological parameters (stress (τ) and phase shift (δ)) are measured instead of a single 

parameter (only stress (τ) as in the case of rotational tests). 

 

c) Time sweep 

In this type of oscillatory test, both the frequency and the amplitude are set at a constant value. 

Therefore constant mechanical shear conditions are given. 

 



  

Presetting:  Controlled shear deformation: ( ) ( )tt A ωγγ sin⋅= , with constant angular frequency 

( )tωω =  and with constant amplitude strain Aγ . (Figure 9.17) 
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Figure 9.17 Presetting: Time Sweep 

 

A time sweep must be performed below the limit of the LVER ( )LVERγ  as determined by the 

amplitude sweep. 

 

Measuring result:  Both G’ and G” are represented on the y-axis (log scale) with the time t on the 

x-axis (linear scale),(Figure 9.18) 
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Figure 9.18 Measuring Result: Time Sweep 

 

The test aims to determine the influence of the shear load on the phisycal properties, e.g. showing 

the change in structural strength over time. 

 

d) Structural decomposition and regeneration (thixotropy) 



  

Thixotropic behaviour means that a material shows a decrease in the structural strength during 

the load phase and shows regeneration during the rest phase. In other words, during the rest 

phase, the original structure regenerates completely in a certain period of time. 

 

Presetting: Oscillatory test with three intervals, each under constant dynamic-mechanical 

conditions. (Figure 9.19) 
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Figure 9.19 Presetting: Structural Breakdown and Regeneration 

The shear load is set at a constant value in each of the individual test intervals and this is 

achieved by keeping both the amplitude and the frequency constant in each interval. A 

measurement like this consists of three test intervals: 

1) Rest phase under low-shear conditions (within the LVER) during the time period 0t and 1t . 

The first interval is used as reference for the third interval. 

2) Load phase under high-shear conditions (outside the LVER) during the time period 1t and 2t in 

order to decompose the sample’s structure. 

3) Phase after removing the load under low-shear conditions (within the LVER) during the time 

period 2t and 3t , under the same conditions as in the first interval, to facilitate regeneration of 

the structure. 

 

 

 

 

 

 

 

 



  

Measuring result: Both G’ and G” are represented on the y-axis (log scale) with the time t on 

the x-axis (linear scale), (Figure 9.20) 
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Figure 9.20 Measuring Result: Structural Breakdown and Regeneration 

 

There are various options for the analysis (as is in the case for the rotational tests) of thixotropic 

behaviour, once again based on i) degree of structural recovery based on the 1st interval and ii) 

the time it takes for a certain structural recovery to occur. 

9.4 NOMENCLATURE 

Symbol   Description 

A   Shear area of Two-Plate Model (m2) 

h   Disance between plates of Two-Plate Model (m) 

F   Shear force (N) 

G   Shear modulus (Pa) 

G’   Storage modulus (Pa) 

G”   Loss modulus (Pa) 

s   Deflection (m) 

t   Time (s) 

t0 to t3   Different points in time (s) 

 

Greek Symbol  Description 

γ    Deformation or strain (% or 1) 

Aγ    For oscillatory tests: deformation or strain amplitude (% or 1) 

LVERγ    For amplitude tests: limiting deformation value of the LVER (% or 1) 

γ&    Shear rate (1/s) 

δ    Phase shift angle, loss angle (°) 



  

η    Shear viscosity (Pa.s) 

τ    Shear stress (Pa) 

ω    Angular frequency (rad/s) 
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10 APPENDIX C: RAW DATA 

10.1 PAINT FORMULATION (RAW MATERIALS) 

10.1.1 SCREENING 

Paint ID Water Soda Ash Fungicide Surfactant Dispersant Antifoamer Solvent Pigment Extender Emulsion
Organic 
Pigment Coalescent RM1 RM2

8 15.73 0.12 0.16 0.18 1.42 0.39 3.26 13.87 14.50 39.68 7.84 1.91 0.82 0.13

4 14.43 0.15 0.20 0.23 1.18 0.49 4.09 17.34 12.12 37.46 9.77 1.59 0.82 0.13

7 15.73 0.12 0.16 0.18 0.94 0.39 3.26 20.81 14.50 29.95 11.74 1.27 0.82 0.13

12 15.73 0.18 0.16 0.18 1.42 0.59 3.26 13.87 9.66 40.97 11.76 1.27 0.82 0.13

10 15.73 0.12 0.24 0.28 1.42 0.59 3.26 13.87 14.50 39.94 7.83 1.27 0.82 0.13

6 13.23 0.12 0.16 0.18 0.94 0.39 3.26 17.07 9.66 44.94 7.83 1.27 0.82 0.13

15 15.73 0.18 0.24 0.18 0.94 0.39 4.90 13.87 14.50 39.01 7.83 1.27 0.82 0.13

26 15.73 0.12 0.24 0.28 1.42 0.39 3.26 20.81 9.66 33.48 11.75 1.91 0.82 0.13

22 13.24 0.18 0.16 0.28 0.94 0.59 4.90 20.81 14.50 30.44 11.75 1.27 0.82 0.13

25 13.23 0.12 0.24 0.18 1.42 0.59 3.26 20.81 14.50 31.68 11.75 1.27 0.82 0.13

2 14.46 0.15 0.20 0.23 1.18 0.49 4.09 17.34 12.11 37.45 9.77 1.59 0.82 0.13

16 13.23 0.18 0.16 0.18 1.42 0.59 4.90 20.81 14.50 33.34 7.83 1.91 0.82 0.13

5 14.42 0.15 0.20 0.23 1.18 0.49 4.09 17.34 12.12 37.46 9.77 1.59 0.82 0.13

18 13.23 0.18 0.16 0.28 0.94 0.39 3.26 20.81 9.66 40.39 7.83 1.91 0.82 0.13

28 15.73 0.18 0.24 0.18 1.42 0.59 4.90 20.81 9.66 36.24 7.83 1.27 0.82 0.13

17 13.23 0.12 0.24 0.28 1.42 0.39 4.90 20.81 9.66 38.90 7.83 1.27 0.82 0.13

21 13.23 0.12 0.16 0.18 1.42 0.59 4.90 14.12 9.66 44.93 7.83 1.91 0.82 0.13

3 14.44 0.15 0.20 0.23 1.18 0.49 4.01 17.35 12.13 37.49 9.78 1.59 0.82 0.13

13 15.73 0.18 0.16 0.28 1.42 0.39 3.26 13.87 9.66 41.08 11.75 1.27 0.82 0.13

11 15.73 0.18 0.24 0.28 0.94 0.59 3.26 13.87 14.50 39.72 7.83 1.91 0.82 0.13

9 13.23 0.18 0.24 0.28 1.43 0.59 3.26 20.80 14.50 30.89 11.74 1.91 0.82 0.13

27 13.24 0.18 0.16 0.28 1.42 0.39 4.90 13.87 14.49 37.10 11.75 1.27 0.82 0.13

19 13.36 0.18 0.25 0.18 0.95 0.60 3.29 14.00 9.75 42.72 11.86 1.93 0.82 0.13

1 14.42 0.15 0.20 0.23 1.18 0.49 4.09 17.34 12.12 37.46 9.77 1.59 0.82 0.13

29 13.23 0.13 0.24 0.18 0.94 0.39 4.90 13.87 14.50 37.01 11.75 1.91 0.82 0.13

24 13.23 0.12 0.24 0.28 0.94 0.59 4.90 15.06 9.66 44.92 7.84 1.27 0.82 0.13

20 15.74 0.18 0.24 0.18 0.94 0.39 4.90 20.81 9.66 32.36 11.75 1.91 0.82 0.13

23 15.73 0.12 0.16 0.28 0.94 0.59 4.90 20.81 14.50 31.28 7.83 1.91 0.82 0.13

14 15.73 0.12 0.16 0.28 0.94 0.59 4.90 13.87 9.67 39.14 11.75 1.91 0.82 0.13  



  

10.1.2 MODELLING  

Paint ID Water Soda Ash Fungicide Surfactant Dispersant Antifoamer Solvent Pigment Extender Emulsion
Organic 
Pigment Coalescent RM1 RM2

1 18.96 0.12 0.16 0.18 0.94 0.39 3.11 16.07 9.21 40.00 8.82 1.27 0.63 0.11

2 23.28 0.14 0.18 0.21 1.09 0.45 3.75 15.54 13.22 29.03 10.62 1.47 0.89 0.13

3 21.50 0.14 0.18 0.21 1.07 0.44 3.53 18.22 10.44 31.85 10.00 1.44 0.84 0.13

4 22.06 0.13 0.18 0.20 1.04 0.43 4.21 15.81 12.68 32.40 8.61 1.41 0.72 0.12

5 22.91 0.14 0.18 0.21 1.08 0.45 4.36 18.25 11.00 28.81 10.13 1.46 0.89 0.14

6 22.52 0.17 0.22 0.25 1.30 0.54 4.30 15.80 13.45 29.51 9.13 1.76 0.91 0.14

7 19.43 0.17 0.22 0.25 1.30 0.54 4.45 16.38 11.23 32.63 10.75 1.75 0.79 0.12

8 18.76 0.15 0.21 0.24 1.22 0.50 4.50 19.84 11.37 29.78 10.89 1.64 0.77 0.12

9 21.36 0.15 0.19 0.22 1.15 0.48 3.35 13.90 9.92 38.78 8.03 1.55 0.80 0.11

10 17.70 0.12 0.16 0.18 0.93 0.39 3.20 16.53 11.30 38.41 9.07 1.25 0.64 0.12

11 17.23 0.13 0.18 0.21 1.06 0.44 3.91 13.83 9.87 42.84 7.99 1.42 0.80 0.11

12 20.22 0.14 0.18 0.21 1.09 0.45 3.17 13.16 9.39 40.76 8.99 1.46 0.66 0.11

13 22.44 0.14 0.18 0.21 1.08 0.45 3.73 19.28 12.12 28.94 8.95 1.46 0.89 0.12

14 23.85 0.17 0.22 0.25 1.30 0.54 3.81 15.78 12.71 29.49 9.12 1.76 0.88 0.12

15 20.09 0.14 0.19 0.21 1.10 0.46 4.42 19.47 13.31 29.22 9.04 1.48 0.76 0.12

16 19.79 0.17 0.23 0.26 1.35 0.56 4.50 18.34 11.65 30.53 9.73 1.82 0.94 0.13

17 18.49 0.16 0.22 0.25 1.29 0.54 3.88 19.35 13.68 30.04 9.29 1.74 0.93 0.13

18 19.15 0.14 0.18 0.21 1.08 0.45 3.14 16.23 9.30 40.39 7.54 1.45 0.63 0.11

19 17.70 0.12 0.16 0.18 0.93 0.39 3.20 16.53 11.30 38.41 9.07 1.25 0.64 0.12

20 16.25 0.13 0.17 0.19 1.00 0.41 3.29 14.49 11.62 42.30 7.89 1.35 0.79 0.11

21 20.17 0.13 0.17 0.20 1.00 0.42 3.71 13.13 9.36 40.65 8.97 1.35 0.64 0.12

22 22.78 0.14 0.18 0.21 1.09 0.45 4.38 19.31 11.07 28.99 8.97 1.46 0.85 0.12

23 15.81 0.12 0.16 0.18 0.94 0.39 3.24 16.72 9.58 41.60 9.18 1.27 0.71 0.10

24 18.86 0.14 0.19 0.22 1.12 0.47 4.20 19.94 11.43 29.93 10.95 1.51 0.92 0.12

25 20.98 0.17 0.23 0.26 1.33 0.55 3.89 17.11 11.50 30.12 11.01 1.79 0.93 0.12

26 22.84 0.14 0.18 0.21 1.08 0.45 3.72 18.58 11.01 28.83 10.54 1.46 0.84 0.12

27 18.92 0.16 0.22 0.25 1.29 0.54 4.43 19.52 12.27 29.30 10.44 1.74 0.76 0.14

28 21.80 0.14 0.18 0.21 1.07 0.44 3.68 18.97 12.97 28.48 9.61 1.44 0.88 0.14

29 16.58 0.14 0.19 0.22 1.12 0.46 3.82 13.52 10.57 41.87 9.24 1.50 0.66 0.12

30 17.93 0.17 0.22 0.25 1.30 0.54 3.80 19.59 13.40 29.41 10.75 1.75 0.76 0.13

31 18.37 0.14 0.18 0.21 1.06 0.44 3.66 18.87 12.91 32.99 8.76 1.43 0.87 0.12

32 23.77 0.16 0.22 0.25 1.29 0.53 3.76 15.60 11.84 29.14 10.66 1.73 0.90 0.14

33 22.13 0.16 0.21 0.24 1.24 0.51 4.24 16.22 12.76 31.09 8.67 1.67 0.73 0.13

34 23.65 0.16 0.22 0.25 1.29 0.53 3.76 15.58 12.19 29.11 10.65 1.73 0.76 0.12

35 21.28 0.13 0.17 0.19 0.99 0.41 3.43 14.20 12.09 35.26 9.70 1.34 0.69 0.11

36 18.79 0.17 0.22 0.26 1.32 0.55 4.01 19.86 11.39 29.82 10.90 1.77 0.81 0.12

37 24.39 0.16 0.21 0.25 1.26 0.52 4.49 15.87 11.32 29.65 9.17 1.70 0.88 0.12

38 21.44 0.13 0.17 0.20 1.00 0.42 4.04 14.31 12.18 35.53 8.27 1.35 0.82 0.13

39 20.41 0.14 0.19 0.21 1.10 0.46 3.62 13.28 9.47 41.13 7.67 1.48 0.73 0.12

40 19.68 0.14 0.18 0.21 1.08 0.45 3.15 13.08 10.83 40.51 8.48 1.45 0.64 0.12

41 21.57 0.13 0.17 0.20 1.01 0.42 3.47 14.40 12.26 35.75 8.32 1.36 0.83 0.11

42 21.25 0.16 0.22 0.25 1.30 0.54 4.44 15.71 13.37 29.36 10.74 1.75 0.76 0.14

43 19.99 0.15 0.19 0.22 1.14 0.47 4.61 16.30 12.75 30.45 11.13 1.54 0.94 0.13

44 21.73 0.14 0.19 0.22 1.13 0.47 4.54 16.06 13.67 30.01 9.28 1.52 0.92 0.12

45 22.11 0.13 0.17 0.20 1.01 0.42 3.47 14.39 10.26 35.72 9.83 1.36 0.83 0.11

46 16.89 0.15 0.20 0.23 1.15 0.48 3.46 17.86 10.24 38.56 8.29 1.56 0.83 0.11

47 18.68 0.14 0.19 0.21 1.10 0.46 3.21 13.33 11.35 41.28 7.70 1.48 0.75 0.12

48 22.15 0.14 0.18 0.21 1.07 0.45 3.69 18.12 13.03 28.60 10.06 1.45 0.74 0.12

49 19.10 0.12 0.15 0.18 0.91 0.38 3.14 16.19 9.28 40.28 8.20 1.23 0.75 0.12

50 22.33 0.14 0.19 0.21 1.10 0.46 4.26 15.66 13.33 29.26 10.70 1.48 0.76 0.12

51 21.46 0.16 0.22 0.25 1.29 0.54 4.42 19.47 11.16 29.23 9.04 1.74 0.88 0.14

52 23.65 0.16 0.22 0.25 1.29 0.53 3.76 15.58 12.19 29.11 10.65 1.73 0.76 0.12

53 22.44 0.14 0.18 0.21 1.08 0.45 3.73 19.28 12.12 28.94 8.95 1.46 0.89 0.12

54 17.51 0.14 0.19 0.22 1.11 0.46 3.24 14.28 9.60 41.67 9.19 1.50 0.77 0.12

55 16.84 0.12 0.16 0.18 0.94 0.39 3.79 13.41 11.41 41.53 9.16 1.27 0.69 0.12

56 19.80 0.12 0.16 0.18 0.92 0.38 3.72 14.79 9.40 40.80 7.61 1.24 0.76 0.12

57 15.22 0.12 0.16 0.18 0.94 0.39 3.36 16.63 11.38 41.40 8.08 1.26 0.77 0.12

58 16.32 0.13 0.17 0.19 0.99 0.41 3.21 16.57 9.49 41.22 9.09 1.33 0.77 0.12

59 19.56 0.12 0.15 0.18 0.91 0.38 3.15 13.05 11.11 40.43 8.92 1.23 0.69 0.12

60 20.23 0.12 0.16 0.18 0.93 0.39 3.35 14.12 9.49 41.22 7.69 1.26 0.77 0.10

61 22.44 0.16 0.21 0.24 1.23 0.51 3.79 19.02 10.90 28.55 10.44 1.66 0.74 0.13

62 19.02 0.12 0.15 0.18 0.91 0.38 3.66 16.12 9.24 40.11 8.17 1.22 0.63 0.12

63 19.68 0.13 0.17 0.20 1.00 0.42 3.71 13.14 11.18 40.68 7.59 1.35 0.64 0.12

64 22.14 0.16 0.21 0.25 1.27 0.53 3.70 18.50 13.08 28.70 8.88 1.71 0.75 0.13

65 21.15 0.13 0.17 0.19 0.99 0.41 3.99 14.12 12.02 35.05 9.64 1.33 0.69 0.13

66 21.36 0.14 0.19 0.22 1.11 0.46 4.46 15.79 13.44 29.50 10.79 1.49 0.91 0.14

67 18.82 0.14 0.19 0.22 1.12 0.47 3.87 18.01 13.66 29.98 10.96 1.51 0.92 0.12

68 15.40 0.14 0.19 0.22 1.10 0.46 3.23 16.12 11.40 41.46 7.97 1.49 0.71 0.12

69 15.12 0.12 0.16 0.18 0.93 0.39 3.75 16.53 11.30 41.13 8.37 1.25 0.64 0.12

70 22.70 0.16 0.22 0.25 1.28 0.53 4.21 19.24 11.02 28.88 8.93 1.72 0.75 0.12

71 16.02 0.12 0.16 0.18 0.94 0.39 3.39 14.29 11.46 41.69 9.20 1.27 0.77 0.12

72 20.85 0.14 0.18 0.21 1.07 0.44 4.12 18.15 12.41 31.73 8.43 1.44 0.71 0.13

73 23.45 0.16 0.21 0.25 1.26 0.52 4.31 15.26 10.88 31.63 9.35 1.70 0.88 0.14

74 18.13 0.12 0.16 0.18 0.95 0.39 3.82 13.51 9.63 41.83 9.23 1.27 0.68 0.10

75 18.83 0.14 0.19 0.22 1.12 0.46 3.83 13.54 9.66 41.93 7.82 1.51 0.66 0.10  

 



  

76 16.95 0.14 0.19 0.22 1.11 0.46 3.81 13.50 11.49 41.80 8.04 1.50 0.68 0.12

77 19.20 0.12 0.16 0.18 0.92 0.38 3.42 16.27 9.33 40.50 7.56 1.23 0.63 0.10

78 19.80 0.12 0.16 0.18 0.92 0.38 3.16 13.92 9.81 40.62 8.96 1.24 0.64 0.10

79 17.78 0.16 0.22 0.25 1.28 0.53 4.37 18.61 13.16 32.05 8.93 1.72 0.82 0.14

80 15.66 0.12 0.16 0.18 0.95 0.39 3.26 16.83 10.58 41.89 7.82 1.28 0.78 0.10

81 19.31 0.14 0.19 0.21 1.10 0.46 3.78 16.20 11.29 35.84 9.10 1.48 0.77 0.12

82 18.59 0.16 0.22 0.25 1.27 0.53 3.71 15.40 13.11 33.51 10.52 1.71 0.89 0.13

83 16.69 0.14 0.19 0.22 1.13 0.47 3.77 13.68 11.01 42.36 7.90 1.52 0.79 0.12

84 18.73 0.15 0.21 0.24 1.21 0.50 4.50 19.81 11.35 29.73 10.87 1.64 0.92 0.14

85 20.06 0.14 0.19 0.21 1.09 0.45 4.41 19.44 13.29 29.18 9.02 1.47 0.90 0.14

86 21.56 0.14 0.18 0.21 1.08 0.45 4.37 19.23 11.02 28.87 10.56 1.46 0.75 0.12

87 24.11 0.14 0.19 0.21 1.10 0.46 4.43 15.69 11.19 29.32 10.72 1.48 0.83 0.12

88 19.55 0.17 0.23 0.26 1.34 0.56 4.58 16.20 13.78 30.26 10.21 1.80 0.93 0.15

89 22.42 0.15 0.21 0.24 1.21 0.50 4.31 19.00 10.89 28.52 10.03 1.63 0.74 0.14

90 16.75 0.12 0.16 0.19 0.96 0.40 3.29 13.66 10.68 42.29 9.33 1.29 0.79 0.11

91 15.73 0.13 0.17 0.19 0.99 0.41 3.81 16.77 10.07 41.73 7.79 1.33 0.78 0.12

92 16.44 0.13 0.17 0.20 1.01 0.42 3.48 17.97 12.29 35.85 9.86 1.36 0.70 0.11

93 22.32 0.13 0.17 0.20 1.02 0.42 4.10 14.52 10.36 36.05 8.39 1.37 0.84 0.11

94 15.88 0.12 0.16 0.18 0.95 0.39 3.83 15.19 11.52 41.92 7.82 1.28 0.66 0.10

95 20.23 0.14 0.18 0.21 1.06 0.44 3.19 13.22 9.73 40.95 8.34 1.43 0.76 0.12

96 17.56 0.14 0.19 0.21 1.10 0.46 3.20 16.52 9.47 41.12 7.67 1.48 0.76 0.12

97 20.68 0.14 0.18 0.21 1.07 0.44 4.15 18.97 12.97 28.47 10.41 1.44 0.74 0.14

98 18.43 0.17 0.22 0.26 1.32 0.55 4.41 19.92 12.89 29.90 9.25 1.78 0.78 0.12

99 18.00 0.17 0.22 0.25 1.30 0.54 3.81 19.68 13.46 29.54 10.25 1.76 0.89 0.14

100 15.71 0.14 0.19 0.21 1.10 0.46 3.36 16.61 9.52 41.33 9.12 1.48 0.65 0.12

101 15.73 0.13 0.17 0.19 0.99 0.41 3.81 16.77 10.07 41.73 7.79 1.33 0.78 0.12

102 16.35 0.12 0.16 0.18 0.95 0.39 3.55 13.54 11.53 41.94 9.25 1.28 0.66 0.10

103 19.96 0.13 0.18 0.20 1.05 0.44 3.19 13.24 10.81 40.99 7.65 1.42 0.64 0.10

104 15.97 0.14 0.19 0.22 1.11 0.46 3.24 14.25 11.43 41.57 9.17 1.49 0.65 0.12

105 19.13 0.16 0.22 0.25 1.28 0.53 4.37 15.48 11.57 33.68 10.58 1.72 0.89 0.14

106 19.48 0.17 0.23 0.26 1.33 0.55 4.23 16.14 13.74 30.15 11.03 1.79 0.78 0.12

107 19.14 0.12 0.16 0.18 0.92 0.38 3.15 14.67 11.13 40.49 7.56 1.23 0.75 0.12

108 16.53 0.12 0.16 0.19 0.96 0.40 3.78 13.69 11.66 42.41 7.91 1.29 0.79 0.11

109 20.26 0.12 0.16 0.18 0.92 0.38 3.45 13.18 9.40 40.82 9.01 1.24 0.76 0.12

110 18.66 0.14 0.19 0.22 1.13 0.47 4.55 20.05 12.60 30.10 9.31 1.52 0.93 0.12

111 19.76 0.17 0.23 0.26 1.35 0.56 4.40 16.37 13.94 30.59 9.46 1.82 0.94 0.13

112 19.99 0.15 0.19 0.22 1.14 0.47 4.61 16.30 12.75 30.45 11.13 1.54 0.94 0.13

113 16.03 0.15 0.19 0.22 1.14 0.47 3.34 17.23 10.83 40.05 8.00 1.54 0.69 0.11

114 17.02 0.14 0.19 0.22 1.14 0.47 3.32 13.77 10.30 42.66 8.32 1.53 0.79 0.11

115 15.91 0.13 0.17 0.20 1.03 0.43 3.82 16.82 9.64 41.87 7.81 1.39 0.66 0.10

116 22.33 0.16 0.21 0.25 1.26 0.52 3.68 17.12 12.98 28.50 10.42 1.70 0.74 0.14

117 18.46 0.12 0.16 0.18 0.94 0.39 3.25 16.06 10.99 39.97 7.46 1.27 0.63 0.12

118 17.95 0.14 0.19 0.22 1.10 0.46 4.13 19.62 13.42 29.46 10.77 1.49 0.91 0.14

119 22.48 0.16 0.22 0.25 1.30 0.54 3.79 18.90 11.20 29.34 9.07 1.75 0.88 0.12

120 21.56 0.16 0.22 0.25 1.28 0.53 3.73 19.25 12.45 28.89 8.94 1.72 0.89 0.14

121 17.03 0.12 0.16 0.19 0.96 0.40 3.86 13.67 9.75 42.33 9.34 1.29 0.79 0.11

122 20.19 0.14 0.19 0.22 1.12 0.47 3.84 16.08 9.69 37.91 7.85 1.51 0.66 0.12

123 16.39 0.12 0.16 0.18 0.93 0.39 3.29 16.51 11.29 41.08 7.67 1.25 0.64 0.10

124 20.12 0.12 0.16 0.18 0.93 0.39 3.75 13.26 10.37 41.07 7.66 1.25 0.64 0.10

125 18.32 0.14 0.19 0.22 1.11 0.46 4.48 18.76 13.49 29.61 10.83 1.50 0.77 0.13

126 20.64 0.16 0.22 0.25 1.29 0.53 3.76 19.42 11.13 29.15 10.66 1.74 0.90 0.14

127 15.72 0.12 0.16 0.18 0.94 0.39 3.77 16.62 9.53 41.36 9.12 1.26 0.71 0.12

128 16.47 0.14 0.19 0.22 1.13 0.47 3.67 13.65 11.62 42.27 7.89 1.52 0.66 0.11

129 17.68 0.14 0.19 0.22 1.11 0.46 3.26 13.51 10.10 41.84 9.23 1.50 0.66 0.10

130 15.96 0.12 0.16 0.18 0.94 0.39 3.70 16.17 9.58 41.59 9.18 1.27 0.65 0.11

131 23.45 0.16 0.21 0.25 1.26 0.52 4.21 15.26 10.88 31.63 9.62 1.70 0.74 0.12

132 16.27 0.14 0.19 0.21 1.10 0.46 3.77 16.08 10.45 41.36 7.72 1.49 0.65 0.12

133 22.22 0.17 0.22 0.26 1.31 0.54 4.48 15.86 13.50 29.63 9.16 1.76 0.77 0.13

134 23.68 0.16 0.22 0.25 1.28 0.53 4.39 16.15 11.07 29.00 10.60 1.73 0.80 0.14  

 

EXTREME POINTS 



  

Paint ID Water Soda Ash Fungicide Surfactant Dispersant Antifoamer Solvent Pigment Extender Emulsion
Organic 
Pigment Coalescent RM1 RM2

1 21.88 0.17 0.23 0.26 1.34 0.56 4.63 24.59 14.66 17.70 11.11 1.80 0.93 0.15

2 23.37 0.17 0.22 0.26 1.31 0.55 4.54 14.87 16.81 24.19 10.90 1.77 0.91 0.14

3 16.63 0.15 0.20 0.23 1.17 0.49 4.04 25.42 17.71 21.76 9.70 1.58 0.81 0.13

4 16.38 0.14 0.18 0.21 1.06 0.44 3.68 25.15 9.73 31.90 8.83 1.43 0.74 0.12

5 19.98 0.14 0.18 0.21 1.09 0.45 3.76 15.63 8.46 38.72 9.03 1.47 0.76 0.12

6 24.91 0.16 0.22 0.25 1.29 0.53 4.45 18.39 5.49 30.87 10.68 1.73 0.89 0.14

7 24.65 0.15 0.20 0.23 1.15 0.48 3.99 7.76 5.41 43.92 9.58 1.56 0.80 0.13

8 19.04 0.14 0.19 0.22 1.13 0.47 3.92 17.02 14.32 31.70 9.40 1.53 0.79 0.12

9 23.16 0.17 0.22 0.26 1.32 0.55 4.55 24.19 8.55 23.28 10.93 1.77 0.92 0.15

10 12.33 0.12 0.16 0.18 0.94 0.39 3.24 20.06 17.97 34.84 7.77 1.26 0.65 0.10

11 15.53 0.11 0.15 0.18 0.90 0.37 3.12 17.82 5.77 46.62 7.48 1.22 0.63 0.10

12 13.72 0.12 0.16 0.18 0.92 0.38 3.19 14.10 17.68 39.93 7.64 1.24 0.64 0.10

13 19.10 0.13 0.17 0.20 1.03 0.43 3.56 8.11 14.00 42.50 8.55 1.39 0.72 0.11

14 10.91 0.12 0.16 0.19 0.95 0.40 3.29 26.21 18.26 29.58 7.89 1.28 0.66 0.10

15 17.16 0.11 0.15 0.17 0.88 0.37 3.06 8.12 8.11 52.62 7.34 1.19 0.61 0.10

16 25.57 0.16 0.22 0.25 1.28 0.53 4.41 7.81 12.70 33.75 10.58 1.72 0.89 0.14

17 19.79 0.14 0.19 0.22 1.11 0.46 3.83 12.20 14.16 36.35 9.18 1.49 0.77 0.12

18 20.69 0.16 0.21 0.24 1.22 0.51 4.23 20.45 13.01 26.49 10.16 1.65 0.85 0.13

19 13.84 0.12 0.16 0.18 0.92 0.38 3.18 25.35 5.89 40.38 7.63 1.24 0.64 0.10

20 25.99 0.16 0.21 0.25 1.27 0.53 4.39 12.94 5.41 35.60 10.52 1.71 0.88 0.14

21 15.18 0.12 0.15 0.18 0.91 0.38 3.13 6.65 18.54 45.30 7.51 1.22 0.63 0.10

22 26.32 0.16 0.21 0.25 1.26 0.52 4.37 12.37 4.31 37.03 10.48 1.70 0.88 0.14

23 11.90 0.12 0.16 0.18 0.94 0.39 3.25 20.73 19.26 33.23 7.80 1.27 0.65 0.10

24 15.90 0.11 0.15 0.18 0.90 0.37 3.10 17.36 4.60 47.95 7.45 1.21 0.62 0.10

25 13.72 0.12 0.16 0.18 0.92 0.38 3.19 27.07 4.72 39.93 7.64 1.24 0.64 0.10

26 23.05 0.17 0.22 0.26 1.32 0.55 4.56 15.30 18.00 22.79 10.94 1.78 0.92 0.15

27 19.68 0.12 0.16 0.18 0.92 0.38 3.20 6.36 4.43 54.91 7.67 1.25 0.64 0.10

28 23.68 0.17 0.22 0.25 1.31 0.54 4.52 25.63 4.46 25.55 10.85 1.76 0.91 0.14

29 19.34 0.17 0.22 0.25 1.31 0.54 4.52 26.83 18.69 14.48 10.84 1.76 0.91 0.14

30 24.91 0.16 0.22 0.25 1.29 0.53 4.45 6.30 17.57 30.87 10.68 1.73 0.89 0.14  

10.2 PAINT PROPERTIES 

Paint properties are given on the CD at the end of the thesis Appendix C – Raw Data/Paint 

Properties. 

10.3 RHEOLOGY DATA 

Paint properties are given on the CD at the end of the thesis Appendix C – Raw Data/Rheology. 

 



  

11 APPENDIX D: RESULTS - 

DATA PREPARATION 

(SCREENING) 

11.1 INDIRECT MODELLING OF RHEOLOGICAL DATA 

Indirect model parameters (α, β and γ) for the rheology curves of the 29 paint samples of the 

screening data is presented in electronic format on the CD at the end of the thesis (Indirect 

Modelling/Screening 

 

 

11.2 RAW MATERIAL SCREENING 

The x-axis numbering corresponds to the raw materials as follows: 

1 – constant, 2 – water, 3 – soda ash, 4 – fungicide, 5 – surfactant, 6 – dispersant, 7 – antifoamer, 

8 – solvent, 9 – pigment, 10 – extender, 11 – emulsion, 12 – organic pigment, 13 – coalescent, 14 

– rheology modifier 1, 15 – rheology modifier 2 
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11.3 PAINT PROPERTIES SCREENING 

The following are results obtained form the MLR process for the paint property screening. The 

graphs occur in the following order: i) Bar plot of regression coefficient values of raw materials 

(1=Constant, 2=Water, 3=Solvent, 4=Pigment, 5=Extender, 6=Emulsion, 7=Organic Pigment) ii) 

Model fit of data points iii) Scatterplot of residuals (standardised) and iv) RCOPLOT 

(standardised). 
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Dry Burnish (60) 
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Dirt Pick-up (delta gloss 85) 
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Open Time – Glass 
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Dry Film Thickness 
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12 APPENDIX E: RESULTS - 

MODELLING 

12.1 INDIRECT MODELLING OF RHEOLOGICAL DATA 

Indirect model parameters (α, β and γ) for the rheology curves of the 164 paint samples of the 

modelling data is presented in electronic format on the CD at the end of the thesis (Indirect 

Modelling/Modelling) 

12.2 LINEAR MODELLING (MODEL 1) 

The x-axis numbering correspond to the raw materials as follows: 

1 – constant, 2 – pigment, 3 – extender, 4 – water, 5 – solvent, 6 – emulsion, 7 – organic pigment, 

8 – rheology modifier1, 9 – rheology modifier2, 10 – combination, 11 – PVC, 12 - SOLIDS' 
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12.3 LINEAR MODELLING (MODEL 2) 

The x-axis numbering of the bar graph correspond to the raw materials as follows: 

1 – constant, 2 – pigment, 3 – extender, 4 – water, 5 – solvent, 6 – emulsion, 7 – organic pigment, 

8 – rheology modifier1, 9 – rheology modifier2, 10 – combination, 11 – PVC, 12 - VS 

 

(The model fit for tha paint properties are given as standardised values). 
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12.4 LINEAR MODELLING (MODEL 3) 
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12.5 NON-LINEAR MODELLING (MODEL 1) 

‘ACTUAL vs MODEL’ graphs are given below for each of the rheological parametes. 
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12.6 NON-LINEAR MODELLING (MODEL 2) 

Dry Burnish 20 
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12.7 NON-LINEAR MODELLING (MODEL 3) 

Dry Burnish 20 
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