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Abstract

This dissertation investigates certain key aspects of mathematical modeling of HIV and
TB epidemics in South Africa with particular emphasis on data from a single well-studied
community. Data collected over a period of 15 years (1994 to 2009) in Masiphumelele, a
township near Cape Town, South Africa are used to develop a community-level mathematical
model of the local HIV-TB epidemic. The population is divided into six compartments and
a system of differential equations is derived to describe the spread of the dual epidemic.
Our numerical results suggest that increased access to antiretroviral therapy (ART) could
decrease not only the HIV prevalence, but also the TB notification rate. We present a
modeling framework for studying the statistical properties of fluctuations in models of any
population of a similar size. Viewing the epidemic as a jump process, the method entails
an expansion of a master equation in a small parameter; in this case in inverse powers
of the square root of the population size. We derive two-time correlation functions to
study the correlation between different types of active TB events, and show how a temporal
element could be added to the definition of TB clusters, which are currently defined solely
by DNA type. We add age structure to the HIV-TB model in order to investigate the
demographical impact of HIV-TB epidemics. Our analysis suggests that, contrary to general
belief, HIV-positive cases are not making a substantial contribution to the spread of TB in
Masiphumelele. We develop an age-structured model of the HIV-TB epidemic at a national
level in order to study the potential impact of a proposed universal test and treat program
for HIV on dual HIV-TB epidemics. Our simulations show that generalized ART could
significantly reduce the TB notification rate and the TB-related mortality rate in the short
term. The timescale of the impact of ART on HIV prevalence is likely to be longer. We
study the potential impact of more conventional control measures against HIV. Guidance
for possible future and/or additional interventions emerge naturally from the results. We
advocate a reduction in intergenerational sex, based on our finding that 1.5-2.5 standard
deviation in the age difference between sexual partners is necessary to create and sustain
a major HIV epidemic. A simulation framework is developed to help quantify variance
in age-structured epidemic models. The expansion technique is generalized to derive a
Fokker-Planck equation. Directions for future work, particularly in terms of developing
methods to model fluctuations and validate mixing assumptions in epidemiological models,

are identified.



Opsomming

Hierdie proefskrif ondersoek aspekte van die wiskundige modelering van HIV en TB epi-
demies in Suid Afrika en fokus ook op 'n spesifieke gemeenskap. Data wat oor 'n periode
van 15 jaar ingesamel is (1994 tot 2009) in Masiphumelele, 'n woonbuurt naby Kaapstad,
Suid Afrika word gebruik om ’'n wiskundige model te skep wat HIV-TB in die gemeen-
skap modeleer. Die populasie word in ses kompartemente verdeel en 'n stel differensiaal
vergelykings word afgelei om die verspreiding van dié epidemies te ondersoek. Ons nu-
meriese resultate toon aan dat verhoogde toegang tot antiretrovirale behandeling (ARB)
die potensiaal het om HIV prevalensie die TB koers beduidend te laat daal. Ons ontwikkel
'n raamwerk waarmee die statistiese eienskappe van fluktuasies ondersoek kan word in enige
populasie van dieselfde grootte. Die metode ontwikkel 'n meester vergelyking vir die on-
derliggende geboorte-dood stogastiese proses en brei dit uit in terme van 'n klein parameter;
in dié geval in inverse magte van die vierkantswortel van die populasie grootte. Die twee-tyd
korrelasie funksies word afgelei, en word gebruik om die korrelasie tussen verskillende tipes
van TB episodes te bestudeer, asook om te wys hoe 'n tydselement aan die definisie van TB
groeperings gegee kan word. Dié word tans slegs d.m.v DNA tipe geklassifiseer. Ouderdom-
struktuur word aan die model toegevoeg om die demografiese impak van HIV-TB epidemies
te bestudeer. Ons analise toon aan dat, anders as wat algemeen aanvaar word, maak HIV-
positiewe gevalle nie 'n groot bydrae tot die verspreiding van TB in Masiphumelele nie. Ons
ontwikkel 'n ouderdom-gestruktureerde model van HIV-TB op nasionale vlak en gebruik die
model om die potensiéle impak van 'n universele toets- en behandel strategie op die HIV-TB
epidemies te ondersoek. Ons simulasies toon aan dat algemene ARB waarskynlik 'n groot
impak op die TB aanmeldings koers asook die TB-verwante mortaliteits koers kan hé binne
'n relatiewe kort tydperk. Die impak op HIV prevalensie sal eers oor 'n veel langer periode
duidelik word. Omns ondersoek ook die moontlikheid van meer konvensionele beheermaa-
treels. Ons ontmoedig tussengenerasie seksuale omgang, gegrond op ons bevinding dat 'n
standaard afwyking van 1.5-2.5 in die ouderdoms verskil tussen seksuele vennote, nodig is om
'n HIV epidemie van stapel te stuur en te onderhou. Ons ontwikkel 'n simulasie raamwerk
om variansie in ouderdomgestruktureerde modelle te benader. Die uitbreidingstegniek word
veralgemeen om 'n Fokker-Planck vergelyking af te lei. Ons identifiseer probleme in die on-
twikkeling van metodes om interaksie patrone en fluktuasies te modeleer in epidemiologiese

modelle as opgawe vir toekomstige werk.
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Chapter 1

Introduction to HIV and TB

epidemics

Communicable diseases provide fascinating material for mathematical modeling, and in re-
turn, modeling can offer important insights into disease control. Seen as stochastic processes,
these diseases exhibit a great deal of randomness in the timing and manner of their inva-
sion, persistence and ultimate disappearance from victim populations. They can attain
alarmingly high levels of infection relatively quickly (e.g. HIV in Sub-Saharan Africa), or
remain limited to periodic outbreaks from fairly low small endemic levels (e.g. chickenpox
or mumps). Their normal trajectory runs from individuals into the wider population. They
diffuse through social networks. Sometimes they interact with other diseases along the way.
There is an urgent societal need for a better understanding of the macro characteristics
of disease progression. Mathematical epidemiology has thus evolved into an active field of
modeling research, which makes valuable contributions to disease control and public health
decision making.

Few epidemiological scenarios are as gloomy as the one presented by HIV and Mycobac-
terium tuberculosis (MTB) in certain regions of the world [17]. A few simple facts suffice
to paint the picture: in 2005 nearly 40 million people were living with HIV and 3 million
died of AIDS [3]. Nearly 2 billion were latently infected with MTB [30]. There were 8.8
million new cases of active tuberculosis (TB). A total of 1.6 million people died of TB in
2005, including 195,000 people who were HIV [116]. The numbers increase every year.
According to a 2009 report [11] by the World Health Organization (WHO) there were 9.24
million new cases of TB (all forms) in 2006, and 9.27 million in 2007, of which 44% were
smear positive.

One of the hardest hit regions in the world is Southern Africa, and South Africa in
particular, where HIV and TB are a leading cause of death. In 2005, 5.5 million South
Africans were living with HIV (12% of the country’s population) and 285,000 developed
active TB. Among these TB cases, up to 60% were HIV., mostly due to the fact that
HIV/MTB co-infected people exhibit an increased probability of developing active TB [96,
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]. The incidence of TB in South Africa reached 600 per 100,000 per year — one of the
highest in the world. The above mentioned report [11, SA profile] estimates that the TB
burden continues to be exceptionally high in South Africa. For example, the Western Cape
region registered almost 700 per 100,000 cases of active TB in 2007.

What is going wrong? If current disease control strategies are failing to meet their targets
(which they are) there must be a problem either with the scientific basis of these strate-
gies or with their application — or both. One example is the Directly Observed Treatment,
Short-course (DOTS) strategy for TB, recommended by the WHO. Despite widespread im-
plementation of DOTS, TB notifications have exploded in recent years in many communities
across South Africa. There are ongoing debates as to whether DOTS is being applied cor-
rectly or whether it is in any case doomed to failure in a setting of very high HIV prevalence.
The situation is similar for HIV. Clinicians are now recognizing the value of modeling in
helping to identify more effective disease control strategies.

This dissertation aims to explore and unify the techniques of mathematical modeling
as applied to HIV and TB. Working in collaboration with clinicians ' in the Western Cape
region, and with access to their insights and data, the project explores some of the boundaries
of applied mathematical modeling of these diseases in Masiphumelele, a township near Cape

Town with high HIV and TB prevalence, as well as in South Africa as whole.

1.1 HIV and TB epidemics in a peri-urban community, Masi-

phumele

Masiphumelele (meaning ‘We will succeed’) is an informal settlement area in the Western
Cape. Steady immigration from the Eastern Cape since its proclamation in 1992 has led to
severe overcrowding, because the town cannot physically grow in any direction. A population
of 13,000 is now living in an area of about 1 km? which is geographically isolated from other
communities. Housing is informal and most people work in the informal sector of the greater
Cape Town region.

Research programs of the Desmond Tutu HIV Foundation at Masiphumelele continue
to generate data on the epidemiology of HIV and TB [69, |. Using their data, we can get
a picture of how HIV has ‘driven’ TB over the last two decades. TB notifications continue
to escalate in Masiphumelele despite implementation of DOTS. This occurs in the presence
of a growing HIV epidemic. The situation does not bode well for intervention in similar
townships and South Africa as a whole, because the capacity to intervene at Masiphumelele
is much greater than nationally. Treatment programs here are reaching a much greater
proportion of those in need than the national average, and yet they are still not working
satisfactorily. In Ch. 2 we develop a simple compartmental model to study dual HIV-TB

epidemics in this community. Despite, or perhaps because of its simplicity, the model can

LProf. Robin Wood leads a group of clinicians working in a community clinic built in 2000 by the Desmond
Tutu HIV Foundation
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help us to understand the impact of various control measures in dealing with the extremely
high rates of both HIV and TB.

Referring to the problem experienced by the DOTS strategy in controlling TB, as men-
tioned in Sect. 1, a recent article has reported a very high prevalence of infection with MTB
among children aged 5 to 17 in Masiphumele [$0]. The TB notification rate in the adult
population has increased by a factor of over 5 the last 15 years, yet the annual risk of infec-
tion (ARI) was reported to be roughly 4% over this period. In Ch. 4 we develop a simple
stochastic model to study whether a sharp increase in notified active TB cases has led to an
increase in the annual risk of MTB infection among schoolchildren.

Masiphumelele’s complex demographics also play a role in the spread of HIV and TB
in its population — providing yet another interesting twist to our model. The population
has grown considerably over the past decade. The age pyramid is skewed inasmuch as
there are relatively more young adults than children and older people, which may be the
result of immigration. Clinical data show that TB and HIV have become progressively more
concentrated among young adults during the last few years. We build a continuous-time
age-structured model of HIV and TB dynamics to study the shift of the HIV and TB burden

to younger age groups.

1.2 Modeling HIV and TB epidemics in South Africa

Epidemiological modeling is not just interesting mathematically; it plays a crucial role in
guiding interventions which are being discussed and implemented at the time of writing.
Recent modeling work [17] suggested that a very active program of HIV testing, with all
detected HIV, people immediately receiving ART, could be an efficient way of not only
controlling but even eradicating the HIV epidemic. With the exception of male circumcision
(an HIV control strategy which is currently taking off in South Africa following the work
of Auvert et al. [14]) HIV control measures have thus far failed. HIV prevalence continues
to grow, with high-risk groups in many communities facing unprecedented incidence of
infection. We develop an age-structured model to investigate the potential impact of a
universal test and treat strategy (UTTS) on HIV-TB dual epidemics in South Africa.

The key motivation for using ART as a prevention tool against HIV is that it reduces
viral load and infectiousness. ART could reduce HIV at a community level and possibly
eradicate it, if each infected case treated with ART caused fewer secondary infective cases.
We model different assumptions about the degree to which ART reduces infectiousness. In
Ch. 5. we study an optimistic scenario, where HIV, cases on ART are not infectious, to
investigate the impact of UTTS on the prevalence of HIV.

Our model also explores the likely impact of UTTS on TB, which is strongly linked to
HIV progression. The degree of this impact will depend on how much ART will reconstitute
the immune system of an HIV, individual. In Ch. 5. we make the optimistic assumption
that ART will revert the ‘TB parameters’ of an HIV, individual to that of someone HIV _,
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in order to investigate if the TB epidemic will revert back to its pre-HIV level.

Along with UTTS, we also study the potential impact of other control measures. The
role of intergenerational sex in creating and maintaining a persistent HIV epidemic is still
not completely understood. In Ch. 6, we develop a model with random mixing and explicit
relationship dynamics, which allows us to investigate some of the subtle consequences of

variance in the age difference between sexual partners.

1.3 Outline of this work

Chapter 2 introduces a model for TB and HIV epidemics. Similar models until now have
focused more on HIV than TB; our model has a better balance of complexity and fit to avail-
able data. The model is used as a platform for combining various sources of data on the
HIV and TB epidemics in Masiphumelele. Sensitivity analysis of the model is performed
with respect to key parameters. It shows that HIV, individuals have a short infectious
period relative to HIV_ cases. The next-generation matrix is derived and the basic repro-
ductive number (Rp) is computed for the two epidemics. The model is used to study the
impact of different interventions against HIV and TB, of which increased condom use, TB
detection rates and isoniazid preventative therapy have been shown to have a clear impact.
The model shows that the impact of increased ART on the TB burden in this community is
uncertain. Before we can tout the expected benefits of UTTS we need to achieve a greater
understanding of how much it reduces TB notification rates and HIV-related mortality, TB

reactivation and HIV transmission.

Chapter 3 adapts a technique from statistical physics to model the steady-state fluctu-
ations in a model with TB only. Continuous differential equations are often applied to
small populations such as Masiphumelele, with little time spent on understanding the un-
certainty associated with deterministic models, brought about by small-population effects.
The Fokker-Planck equation for the fluctuations in the system is used to quantify this un-
certainty. It is also used to develop a method to characterize the temporal aspects of the

‘clustering’ of active TB events.

Chapter 4 investigates the curious finding of a recent tuberculin skin test (TST) study
among schoolchildren in Masiphumelele, that the annual risk of MTB infection (ARI) has
remained relatively constant over the last 15 years. This is despite the dramatic increase in
notified TB cases, in part due to an escalating HIV epidemic. We use a binomial-chain type
model to compute the likelihood of the TST data-set. Using age-structured TB and HIV
data from Masiphumelele, and an age-structured model, we investigate whether trends in
the TB epidemic are linked to similar trends in the HIV epidemic. The reproductive value

is used to establish exactly who is making the biggest contribution to the TB epidemic.
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Chapter 5 builds on the models of Chapters 2 and 4, and develops an age-structured model
for HIV and TB epidemics in South Africa as a whole. The motivation for the model is to
inform a proposed universal test and treat strategy, aimed at not only treating individuals
already suffering from HIV, but also at using ART as a prevention tool by reducing the
infectiousness of individuals and therefore the spread of HIV. Central to these impact stud-
ies is the next-generation matrix and its largest eigenvalue (Ry), which is widely used to
estimate the impact of interventions on disease control. We generalize this method to study
age-structured populations and the infectious histories of individuals through realistic life

events.

Chapter 6 investigates the idea that variance in age separation between sexual partners
is needed for HIV to spread. If everybody always has partners of exactly the same age as
themselves, the epidemic dies out [118, p.562]. Using a hypothetical community, based on
but not a true reflection of the HIV epidemic in Masiphumelele, a two-sex model is used
to investigate this critical aspect of the spread of HIV. The model is structured according
to age and gender, and allows individuals to transition between being young, ‘eligible for
relationships’ and ‘entering relationships’ through an age-dependent partner choice. Using
a semi-Markov process, we show how Ry for HIV, i.e. its invasion criterion, varies as a
function of age separation between partners. A method is also developed to approximate
the effect of concurrent casual relationships, focussing on the impact it has on the critical

role played by age separation between partners.

Chapter 7 studies individual-based models using both analytical and stochastic simulation
techniques. It shows how a linear transition matrix of Markov processes can be used to
model a ‘sum over all histories’ of possible individual transitions. The analogous Gillespie
stochastic simulation technique allows us to sum over all possibilities while simulating the
evolution of an interacting system. A platform is designed to study partnering models and
to record the relationship network formed. It is also used to estimate some properties of
the model developed in Ch. 6, such as the number of partners infected during a lifetime.
The ‘master equation expansion’ method is used to study an age-structured model with
two genders and mass-action interaction between them. A Fokker-Planck equation is then
derived to study fluctuations in the system and is used to estimate the variance associated

with macroscopic values at equilibrium.

Appendices A list of abbreviations used in this dissertation in tabled in appendix A.
The next-generation matrix approach to modeling structured population is discussed in ap-
pendix B.1 and appendix B.2. Many of the principal ideas of applied demography are based

on the so-called characteristic equation. This equation is studied in appendix B.3.
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1.4 Publications

This dissertation was built around the following papers and presentations at conferences:

Chapter 2. Modeling the joint epidemics of TB and HIV in a South African Township.
Bacaér N., Ouifki R., Pretorius C.D., Wood R., Williams B. Journal of Mathematical Biol-
ogy. 2008 Oct;57(4):557-93.

The results of this paper were presented by C.D. Pretorius at the 38th Union World
Conference on Lung Health 8-12 November 2007, Cape Town, South Africa in a talk titled:
Modelling the joint epidemics of TB and HIV in a peri-urban community in South Africa:
What are the prospects for control?

Chapter 4. On the relationship between age, annual rate of infection, and prevalence of
Mycobacterium Tuberculosis in a South African Township. Pretorius C.D., Bacaér. N.,
Williams B., Wood R., Ouifki R. Clinical Infectious Diseases. 2009;48(7):994-6.

This paper was completed while C.D. Pretorius was visiting the Institut de Recherche
pour le Developpement (IRD) in Bondy, France. The method used in this paper for com-
puting the annual risk of MTB infection was presented by C.D. Pretorius at an invited talk
at WHO (Geneva), 25 September 2008.

Chapter 5. Modeling the potential impact on HIV and tuberculosis of a generalized access
to antiretrovirals in South Africa. Pretorius C.D., Bacaér. N., Submitted to Bulletin of
Mathematical Biology.

This paper was presented by C.D. Pretorius at a conference titled: Can we treat our
way out of the HIV epidemic. 6-8 May 2009, Stellenbosch, South Africa. The conference
was jointly hosted by VLIR, UGhent, SACEMA, UWC and AIMS.

Chapter 6. The model developed in this chapter was presented by C.D. Pretorius at
the 4th South African AIDS conference, 8-12 April 2009, Durban, South Africa, titled:

Intergenerational sex and the epidemic of HIV.

Other publications. The following papers are not directly related to this dissertation.
The first two were influential in developing ideas for modeling relevant heterogeneity in
epidemic models. They resulted from a ground-breaking male circumcision clinical trial in
Orange Farm, near Johannesburg, South Africa, performed by B. Auvert, et al. [11].

The third is an opinion piece written for the South African Medical Journal, following
the 4th South African AIDS conference, 2009. In this paper the authors question whether
scaling up the current response to the HIV epidemic will eventually limit the spread of and
eradicate HIV in Southern Africa. The argument for an early and universal test and treat

strategy for HIV is discussed.



1.4. Publications 7

e The effect of heterogeneity on HIV prevention trials. Auvert B., Sitta R., Zarca K.,
Mahiane G., Pretorius C., Lissouba P. Under preparation for: Clinical Trials.

e Mathematical Models for the co-infection by two Sexually Transmitted Agents: the
HIV/HSV-2 case. Mahiane S.G, Ndong-Nguema E.P, Auvert B., Pretorius C. Under
preparation for: Journal of the Royal Statistical Society, Series C.

e [s scaling up enough to curb the HIV epidemic in southern Africa? Delva W., Pretorius
C., Temmerman M. SAMJ. In press.



Chapter 2

Modeling joint HIV and TB
epidemics in a South African

township

We present a simple mathematical model with six compartments for the interaction between
HIV and TB epidemics. Using data from a township near Cape Town, South Africa, where
the prevalence of HIV is above 20% and where the TB notification rate is close to 2,000 per
100,000 per year, we estimate some of the model parameters and study how various control
measures might change the course of these epidemics. Condom promotion, increased TB
detection and TB preventative therapy have a clear positive effect, but there are some
difficulties in predicting the effect of ART at the population level. ART reduces the risk
of co-infected individuals on ART by up to 80%, but their life expectancy and infectious
period is also greatly increased. As a result, ART may increase TB transmission.

Detailed studies of these epidemics in a township near Cape Town have been published
recently [18, 68, 69, 71, 73, 74, 75, ]. Estimates of the TB notification rate (based on
the yearly number of TB notifications, on two population censes conducted in 1996 and in
2004, and assuming a linear population increase in between) and of the prevalence of HIV

(estimated using data from an antenatal clinic) are shown in Tab. 2.1.

Table 2.1: TB notifications per 100,000 per year and HIV prevalence (%). Data from [69,
Tab. 1].

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004
TB 580 653 913 897 982 1410 1,366 1,472 1,468
HIV 6.3 89 116 142 165 184 199 21.1 219

For the year 2005, 259 TB cases were reported among adults (aged> 15) [123]; 66% of
those who were tested for HIV were HIV . The adult population was then estimated to be
10,400 and the total population 13,000. The TB notification rate in the whole population was

8
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therefore over 259/13,000 ~ 1,992 per 100,000 per year. Moreover, in a sample population
of 762 adults, 12 had undiagnosed TB (3 HIV_ and 9 HIV.). Around 23% (174/762) of
the sample population was HIV,.. More than 80% of smear-positive TB cases receiving
treatment were cured.

In Bacaér, et al. (Tab. 2[17]) we present an extensive survey of models developed for
HIV-TB dynamics. These were not very effective in understanding HIV-TB dynamics in
real communities. The models have been of essentially two different types: either computer
simulation studies focusing on transient behavior (usually in response to intervention) of
realistic but complex models, or mathematical studies of simpler but less realistic models
focusing on steady states and their stability. All of these models not only contain many
unknown parameters but also rely on little data. The model we develop strikes a balance
between complexity and the amount of data available [17]. This chapter highlights some of
its key findings.

2.1 A model for HIV-TB epidemics

The compartmental structure of our model combines two states for HIV (HIV_ and HIV )
with three states for TB (susceptible, latent TB and active TB as in [34, 83, ). The
notations for the resulting six compartments are shown in Tab. 2.2. The subscript 1 always
refers to HIV_ individuals and the subscript 2 to HIV individuals. Compartments F, Fs,
Iy and I, represent those infected with MTB.

Table 2.2: The six compartments of the model and some notations.

S1  number of HIV_ individuals who are not infected with MTB
S2  number of HIV, individuals who are not infected with MTB
FE; number of HIV_ individuals with latent TB
L5 number of HIV, individuals with latent TB
17 number of HIV_ individuals with active TB
Is number of HIV, individuals with active TB

P total population: P=S1+ FE1+ 11 + Sy + Es + I
H HIV prevalence: H = (S2 + E2 + I)/P

The parameters of the model are shown in Tab. 2.3. The “physiological” parameters are
more or less the same for people throughout the world or at least for people living in sub-
Saharan Africa: the death rates py and uo, the TB parameters p1, ps, q1, g2, a1, a2, my and
ms. On the contrary, the “social” parameters depend on the area under study, in particular
on population density and living conditions (the transmission rates k1 and ks), access to TB
clinics (the detection rates v and v2), quality of treatment (¢; and e3), sexual habits and
local cofactors for the transmission of HIV such as other sexually transmitted diseases and
male circumcision (d), speed at which information on HIV diffuses (A) or epidemic history

(to). Estimates for most physiological parameters can be found in the medical literature.
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All “social” parameters have to be estimated from local data.

Table 2.3: The 22 parameters of the model and some extra notations (subscript 1 for HIV_

individuals, subscript 2 for HIV individuals).

B birth rate

11, o death rate of individuals who do not have active TB

ki, ko maximum transmission rate of MTB

D1, P2 proportion of new infections with fast progression to TB
q, g2 proportion of reinfections with fast progression to TB
ai, as progression rate from latent TB to active TB

81, P2 recovery rate from active TB without treatment

Y1, Y2 detection rate of active TB cases

€1, €9 probability of successful treatment for detected active TB cases
mq, mo death rate for active TB cases

d maximum transmission rate of HIV

A parameter representing behavior change

to time of introduction of HIV

Py, vh proportion with slow progression to TB: p} =1 —p1, phb =1 —po
b1, bo recovery rate from TB: by = 01 +v1 €1, bo = B2 + Y2 62
f(H) reduced transmission rate of HIV: f(H) = de

The equations of our model are:

ds

d7tl :B—Sl(k‘lfl—i-kQIQ)/P—,ulSl—f(H)HSl,

dE

0751 =M1 S1—aE) (ki i+ ko I2)/P — (a1 + ) Ex+ 01 I — f(H)H Ey
dl

dTl =P Si+qE) (ki + ke I2)/P— (b1 +mi) 1 +a1 By — f(H)H I,

for HIV_ individuals and

ds
=82kt i+ ka 1) /P — i Sy + f(H) H 5,
dE

o= Wy S2— 2 Ba)(ka Iy + k2 1) /P — (a3 + pi2) By b I + f(H) H B,
dl

dt2 = (P2 52+ @2 E2)(k1 [ + ko Ip) /P — (ba + m2) s + a2 By + f(H) H I,

(2.1)
(2.2)

(2.3)

(2.4)
(2.5)

(2.6)

for HIV, individuals. The flows between the different compartments are shown in Fig. 2.1.

Tab. 2.4 shows the correspondence we will use between some medical vocabulary and our

model. The TB notification rate is the rate at which individuals in compartments I; and I

are detected (only a fraction 1 or ey of these really move back to the latent compartments

E; and E5). The TB incidence rate is the rate at which individuals enter the compartments

I; and I, divided by the total population usually given “per 100,000 population per year”.

The MTB infection rate (the continuous-time analogue of the annual risk of infection) is the
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Figure 2.1: Flows between the compartments of the model. Here, i = (k111 + kol2)/P and

g(H) = f(H) H.

rate at which individuals in compartments S (resp. S2) move to compartments E; or [

(resp. Eq or Iz). MTB prevalence is the proportion of the total population in compartments

FEq, I, E5 or Is. TB prevalence is the proportion of the total population in compartments

I or Is. It includes active TB cases, i.e., either undiagnosed TB cases or TB cases that

have been detected but that are unsuccessfully treated.

Table 2.4: Correspondence between some medical vocabulary and the model.

TB notification rate (M1 +y212)/P
MTB infection rate (k1Ih + ka2l2)/ P
“total” TB incidence rate T = a1FE1 + asFo+

(p1S1 +p25S2 + 1 Er + @2 Eo) (k111 + kal2)

TB incidence rate T/P

MTB prevalence (E1+ L+ Ey+ 1p)/P

TB prevalence (I +1)/P

% endogenous reactivation (a1 Ey + agEs)/T

% exogenous reinfection (1 E1 + qFE2) (k111 + kol2) /T
% primary disease (p1S1 + p2S2) (k111 + kolo) /T

A number of key points should be borne in mind:

e At time ty, we assume that one HIV, person is introduced in an HIV-free steady

population where TB is endemic. We chose this first HIV case to be in state So. The

formulae for S7, F1 and I; at the endemic TB steady state will be given in Sect. 2.2.

e Age and sex are not taken into account. In particular, the model cannot distinguish

different routes of transmission of HIV, such as sexual transmission and mother-to-
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child transmission. We did not distinguish pulmonary from extra-pulmonary TB,
smear-positive (infectious) TB from smear-negative (non-infectious) TB in order to

reduce the number of compartments to a minimum.

e Drug-resistant TB is still very limited in the South African township under study. The
efficiency of BCG vaccination is also unclear. We have not included these aspects in

our model.

e In Eq. (2.1), the birth rate is assumed to be a constant independent of the number of
individuals who die of HIV and/or TB. Therefore, our model considers the evolution
of cohorts with a fixed size at birth. If on the other hand we assumed that births are
proportional to the population, then a steady-state analysis would become impossible.
The demography of the township is in fact quite complex. The population has grown
considerably over the past decade. The age pyramid is skewed with more young adults

and few children and elderly people (see Sect. 4.2.2).

e In Egs. (2.1) and (2.4), we chose the “standard form” for TB infection and reinfection
as in [10, 98, ], and not the “mass action” form used e.g. in [16, 81, 83]. With a
constant birth rate, the total population decreases as the HIV epidemic develops. If
we used the “mass action” form for TB transmission, the transmission rate would also

decrease and this would artificially slow down the TB epidemic.

e In Egs. (2.1)-(2.3), we also chose the “standard form” for the transmission of HIV as

e.g. in [98].

e We note how the equations model individuals that are unsuccessfully treated for TB.
They are counted in the TB notification rate v Iy + 2 Iz, and induce lower recovery
rates by = (1 + v1€1 and by = [ + 2 €2 among active TB cases. However, they are

not counted in a separate compartment.

2.2 Mathematical analysis

We discuss some of the highlights of the mathematical analysis of the HIV-TB model given
Egs. (2.1)-(2.6). A more detailed discussion is available in Sect. 4 [17]. Notable is the
derivation and analysis of a quadratic equation for the TB-only steady state, which shows
that a “transcritical bifurcation” in the TB-only steady state is possible only when ¢ > p;.
However, realistic values for ¢ are always less than those of p1, because a particular episode
of TB infection offers a degree of protection against future episodes (see [17, Sect. 5.3] for a
detailed discussion). This finding suggests that the parameter region with a backward bifur-
cation is a mathematical curiosity that does not occur in practice, confirming the remarks
in [76] and the conclusion suggested by [100].

The disease-free steady state with no TB and no HIV is given by S¥ = B/u; and
By =1 =Sy = Ey = I = 0. Numerically, SY = 10, 000.
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TB only

Background. The model with TB but no HIV consists only of three compartments
(S1, En, I7) satisfying Eqgs. (2.1)-(2.3) with Is =0, H =0, and P = S; + E1 + I1:

dS

ditl :B_klsljl/P_,UISla (27)
dEl /

ﬁ = (pl S1—q El) klll/P_ (a1+ﬂl) Ey +b114, (28)
dI

Analysis. Linearizing system given by Eqs. (2.7)-(2.9) near the disease-free steady state
when Sy = Fy = Iy = 0, we obtain:

dE,

5 ~kipi 1 — (a1 +p1) By + b1 14,
dI
ditl ~ klplfl — (bl + ml) Il + a1E1 .
It follows that the basic reproduction number ROTB for TB, as defined in [30], is the spectral

radius of the matrix .
0 kip} a1 + —by
0 kip1 —aq b1 +mq ’
which does not depend on the reinfection parameter ¢; and can easily be computed:

RTB _ k1 (al + p1 Nl)
aimy +mypy + piby

(2.10)

Because this formula does not depend on the reinfection parameter ¢, it is the same as [30,

Eq. (10)]. When b; = 0 and p; = 0, it is the same as the formula given in [10, §1].
HIV only

When there is no TB, system given by Eqgs. (2.1)-(2.6) reduces to

as
d—;:B—ulSl—f(H)HSl,

dSo
with H = S5/(S1 4 S2). Similar epidemic models with a contact rate depending nonlinearly
on the number of infected individuals have been studied for example in [53, 112]. A more
complicated model for HIV transmission with a contact rate depending nonlinearly on the
prevalence was used in [122]. First, linearize the second equation in Eq. (2.11) near the
disease-free steady state S; = S and Sy = 0:

dSo

% ~ —U9 Sy +f(0) Sy .
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Hence, the basic reproduction number for HIV is given by
R = f(0)/ps .

HIV and TB

The endemic TB steady state can be invaded by HIV. Linearizing system given by Eqs. (2.4)-
(2.6) near this steady state and setting

P =S{+Ei 17, si=S|/P", ei=E/P", i=0/P,  (212)
we obtain
dSs . .
e —k1S24] — po Sa + f(0) s7(S2+ E2 + I2),
% ~ ki1 (phy So — qo Eo) i — (ag + po) Ea + by I + f(0) e} (S2 + By + 1),
% ~ ky (p2 S2 + q2 B2) i1 — (b2 + m2) Iy + az By + £(0) i1 (S2 + B2 + I2) -

Therefore, the basic reproduction number T'(I)HV for HIV when introduced in a population at

HIV

the TB endemic steady state (note that ri!V is different from RHIV) is the spectral radius

of the matrix:

5] s s k1i] + po 0 0
FO) | ef el e —kipy iy kigeii+azt+pe  —by : (2.13)
noioq —kip2i]  —kigei] — a2 ba + ma

We note that this matrix is of rank 1 so the spectral radius is equal to the trace. Hence,
one gets

o = f(0) (5778, + €1 Tr, + i 7h)

where 7g,, Tp, and 77, are complex expressions with a simple interpretation. For example,
7g, is the life expectation of a person from the moment he/she enters state Sp (in the
linearized model). In particular, 7s,, 7z, and 77, are all strictly less than 1/us if mo > uo
(as should be). Therefore,

IV < REIV.

Not surprisingly, the expected number of secondary HIV-cases produced by an “average”
HIV person in a population with endemic TB is less then in a population with no TB since
active TB may shorten the life of such a person.

Similarly, the endemic steady state with HIV can be invaded by TB. Linearizing Egs. (2.2)-
(2.3)-(2.5)-(2.6) near (S1,0,0,55,0,0) and setting

P=5+S5, 5=8/P=1-H, 5%=25/P=H,
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we obtain
dE, o
ar ~ ph S (kI + ko ) — (a1 + 1) By + b ) — f(H)H Ey
% ~pi§i(kili + ke In) — (b1 +mi) 1 + a1 By — f(H)H I,
% ~ phSs (k111 + ko Ip) — (QQ+N2)E2+bQIQ+f(fI)}AIE1,
% ~ oSy (kily + ko I2) — (by + ma)Iy + ag Eo + f(ﬁ)f[[l.

It follows that the basic reproduction number rg B for TB when introduced in a population

at the HIV endemic steady state is the spectral radius of the matrix M N~!, where

0 pikisi 0 plkas
0 ks 0 ko 51
M = b1 18/} o 25A1 (2.14)
0 p/Q k132 0 p/QkQ S92
0 pekisa 0 pokeso
and A
ar+p + f(H)H —by 0 0
N — —a1 bl+m1+f(H)H 0 0
—f(H)H 0 az +p2  —by
0 —f(H)H —as ba + mo

The matrix M is the number of infections per unit time caused by different TB types (only
active cases are infective). N is a state transition matrix, with N ! representing the average
time spent in each state. It is clear that the total mumber of infections caused is captured by
MN~!. This matrix is generalized into an age-structured operator in Ch. 4, and is used to
study the relative impact of different active TB types, in settings with high HIV prevalence.

Whether 74 B is bigger or smaller than R}® seems to depend on the parameter values
chosen. Assuming realistically that ¢; < p; (so that there is no backward bifurcation for the

model with TB but no HIV), this linear stability analysis suggests the following conjecture:

e when RV < 1 and RI® < 1, the disease-free steady state is a global attractor of
system (2.1)-(2.6);

e when R%)HV > 1 and rg B <1, the HIV-endemic steady state is a global attractor;
e when ROTB > 1 and réﬂv < 1, the TB-endemic steady state is a global attractor;

e in all other cases, there is an endemic steady state with both HIV and TB, which has

to be computed numerically, and which is a global attractor.
Since R(I)HV > r(I;HVy the fourth case contains in fact only two subcases:

o RIV > 1, vdB > 1, RIB > 1 and r{'V > 1. Both the HIV-endemic and the TB-

endemic steady states exist but they are saddle points.
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° R(I){IV > 1, rgB > 1, and ROTB < 1. The HIV-endemic steady state exists but it is a
saddle point. There is no TB-endemic steady state.

2.3 Simulation and parameter estimation

0 TB notification rate (per 100,000 per year) 20 HIV prevalence (%)

2000 251

20
1500
154
10004
101

500- N

0 U T T T T 0 T T T T T T
1985 1990 1995 2000 2005 2010 2015 2020 1985 1990 1995 2000 2005 2010 2015 2020
(a) TB notifications per 100,000 (b) HIV prevalence
., _TB prevalence (%) 015 MTB infection rate (per year)
21 0.101
(adults)
11 0.051
0 T T T T T T 0.00 T T T T T T
1985 1990 1995 2000 2005 2010 2015 2020 1985 1990 1995 2000 2005 2010 2015 2020
(c) TB prevalence (d) annual risk of MTB infection

Figure 2.2: (a) Data and simulation curve for the TB notification rate. The dashed curve
shows the contribution of HIV+ individuals (only one data point). (b) Data and simulation
curve for HIV prevalence. (c) Simulation curve for the prevalence of active TB. The data
point with 95%CI corresponds to the prevalence of undiagnosed TB among adults. (d) MTB
infection rate. The model parameters can be adjusted to give an MTB infection rate of 4%
as suggested by a skin test survey in Masimpumelele performed in 2007 (see 4.1).

In Bacaér, et al. [17] we present a detailed discussion of how the parameters of our
model were either fixed from literature or estimated by fitting data from Masiphumelele.
This task was laborious since reliable data on both HIV and TB are still rare. We refer to
Bacaér, et al. [Sect. 5-6][17] for a detailed discussion of the parameter estimation approach
we took, and mention here parameters relevant to fitting to data in Masiphumelele.

The model was numerically solved with an ODE solver (Fig. 2.2). Note that in the

simulation the peak for the prevalence of HIV (Fig. 2.2(b)) occurs at about the same time
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Table 2.5: Numerical values for the parameters of the model.

HIV_ | HIV,
mortality pr o 0.02/yr  [28] p2 0.1/yr  [28]
TB mortal- | m; 0.25/yr [30] mg  1.6/yr  [30]
ity
MTB infec- | k&  11.4/yr fit ky k1 x [28]
tions 2/3
fast route m o 11% [110] p2 30% fit
slow route a;  0.0003/yr[110] az  0.08/yr [18, 96,

97]
reinfection | ¢1  0.7p; [110] @ 0.75p2  [28]
recovery B1 0.25/yr [30] B2 04/yr  [30]
detection o 0.74/yr [29, v2  3.0/yr  [29,

123] 123]
treatment g1 80% [123] g2 80% [123]
births B 200/yr [69]
contact rate | d  0.7/yr  fit
prevention A 5.9 fit

initial year to 1984 fit

as the peak for the TB notification rate (Fig. 2.2(a)). This does not seem incompatible with
data from Kenya [31, Fig. 1], which suggests a delay of several years between the rise of
HIV and the rise of TB. One reason for such a delay may be that active TB tends to appear
with a higher frequency in the late stages of HIV infection. We note, however, that the data
from Masiphumelele does not show any clear delay.

Fig. 2.2(a) shows the contribution of HIV cases to the TB notification rate. Together
with the prevalence of TB at one point in time (see Fig. 2.2(c)), these two extra constraints
should make our parameter estimates robust. However, we note that the annual risk of MTB
infection (ARI), depicted in Fig. 2.2(d) is unrealistically high. The model parameters are
slightly adjusted in Sect. 4.1 following the results (presented in 2008, after completing this
work [17]) of a tuberculin skin test survey in 2007 among schoolchildren in the community,

which suggest that the ARI has remained relatively constant over the last 15 years.

Detection rates v; and 75.  Wood et al. [123] reported 259 TB notifications among adults
(age> 15) in 2005; 66% of those who were tested for HIV were HIV . The adult population
in that year was estimated to be 10,400. Moreover, in a sample population of 762 adults, 12
had undiagnosed TB (3 HIV_ and 9 HIV, ). Therefore, we expect the following equations
to hold:

yp P~ 349 5 959, 129U ~ 10,400 x 3/762, (2.15)
o BRI~ 66% % 259, 1291t & 10,400 x 9/762. (2.16)
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This gives the estimates y; ~ 2.2 per year and 9 ~ 1.4 per year. Note however that since
the ratios 3/762 and 9/762 are small, the uncertainty is large: the 95% binomial confidence
interval for the ratios 3/762 and 9/762 are (0.08%, 1.15%) and (0.54%, 2.23%) respectively.
Using (2.15)-(2.16), the corresponding interval for ~; is (0.74, 10.6) per year, and the one for
v2 is (0.74,3.0) per year. Corbett et al. [29] suggest that 42 may be larger than ;. For our
model, we chose the lower bound of the confidence interval for v; (y; = 0.74 per year) and
the upper bound of the confidence interval for vo (2 = 3.0 per year). One motivation was
that recent unpublished data shows that the MTB infection rate in the past few years have
remained relatively constant — see Sect. 4.1. In our simulations, we found that this was only
possible with values of o that are several times higher than ;. Indeed, the great increase
in TB notifications has to be compensated by a shorter infectious period to keep the MTB
infection rate at a relatively low level.

With these choices, we obtain by = (81 + 161 ~ 0.84 per year and by = (2 + Y269 >~ 2.8
per year. For comparison, the values used for the whole of Uganda in [15] for b; and by were
both equal to 0.3 per year, but case detection is probably not as good as in Masiphumelele..

We note that the probabilities for TB to be detected are given by:

M 60%, — 2~ 60%.
mi + B1 +m ma + B2 + 72

Despite the high death rate mq, the detection probability for HIV, TB cases is the same as
for HIV_ because of the high value of «5 used here. Recall that the target set by the World

Health Organization for case detection is 70%. The average durations of disease are:

1
~ 0.92 year ~ (.23 year.
b1 +m1 Y T by +mo J
As a comparison, Corbett et al. [29] estimated the duration of (smear-positive) disease

before diagnosis to be 1.15 year and 0.17 year for HIV_ and HIV, South African gold

miners, respectively.

MTB transmission rate k;. The average TB notification rate in the decade before 1995
in South Africa, i.e. before the rise of HIV, was about 200 per 100,000 per year (see [119]
and [9, p. 184]). This is also a reasonable estimate for the township under study given the
data from Tab. 2.1. We take k; = 11.4 per year, which corresponds to a TB notification
rate of 203 per 100,000 per year.

HIV parameters d, A and ¢;. Summing the three equations (2.1)-(2.3) for HIV_ indi-
viduals and the three equations (2.4)-(2.6) for HIV, individuals, setting X1 = S1 + F1 + 11
and X9 = Sy + Es + I3, and noticing that the prevalence of HIV is H = X5 /(X1 4+ X2), we
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obtain the system

dX
dTl =B—m X1 — f(HYHX1 + (1 —my) I, (2.17)
dX
Tth = —po Xo+ FH)H X1 + (o —ma) I . (2.18)

To get a first estimation of d, A and ¢y, we neglect the terms involving I; and I» (active
TB cases form a very small proportion of the population). The resulting system involves
only X; and Xo, and it is formally the same as system (2.11) for HIV without TB. Taking
Xi1(to) = B/u1 and Xa(to) = 1, a good fit to HIV prevalence data from Tab. 2.1 is obtained
with the parameters d = 0.7/year, A\ = 5.9, and the year ¢ty = 1984 for the beginning of
the HIV epidemic. Three parameters are necessary and usually sufficient to fit any set of

increasing numbers resembling the logistic curve, as is the case here.

The parameter p; for fast progression to TB among HIV, individuals. Di Perri
et al. [35] studied an outbreak of TB among HIV individuals: after the index case, eight
people developed TB rapidly and six had a newly positive tuberculin skin test, suggesting
that 8/14 ~ 57% of newly infected HIV, individuals develop primary TB disease. Daley et
al. [32] studied a similar outbreak and found a proportion equal to 11/15 ~ 73%. However,
it is possible that only large outbreaks are studied, and that outbreaks with less cases of
primary TB disease either less notable or are not a good subject for publication. A similar
bias would occur if we based our estimate for the probability of fast progression to TB
among HIV_ individuals on reports of TB outbreaks such as the one investigated in [67],
during which 14 out of 41 newly infected individuals (34%) developed primary disease. As a
result, we vary ps in order to fit the data concerning the TB notification rate from Tab. 2.1.

For this purpose, we simulated system (2.1)-(2.6) starting from the initial condition
Sl(to) = Sik, El(to) = Eik, Il<t0) = If, Sg(t()) =1, Eg(to) =0, Ig(to) =0.

At this point all the parameters in Tab. 2.5 have already been fixed except pa. A relatively
good fit was obtained with py = 30% (plain line in Fig. 2.2(a)), i.e., nearly 3 times the
value p; for HIV_ individuals. Note that this value for ps is still lower than the ones
obtained by studying TB outbreaks among HIV individuals [32, 35]. Given the mortality
wo previously chosen for HIV individuals, the estimates for as and ps correspond to a
probability as/(as + pe) ~ 44% of progressing slowly from latent to active TB and to a
probability ps + as/(as + pue) =~ 74% of developing active TB after infection by MTB.
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2.4 Sensitivity of steady states with respect to changes in

parameter values

To study the sensitivity of the model with respect to parameters, we used numerical solutions
of the mathematical formulae of Sect. 2.2 for the steady states. First, the disease-free steady
state with no HIV and no TB is SY = 10,000. We also obtain

R®P~13, RV ~70, rg°~17, 'V ~58.

The estimate RIP ~ 1.3 is close to the range 0.6-1.2 mentioned in the review [37]. Using
national HIV prevalence data from antenatal clinics, Williams et al. [I21, | found a

RV namely 6.4 +1.6. Furthermore, note that r4

similar result for B> RIB: an “average”
person newly infected with MTB will produce more secondary cases if introduced in a
TB-free population where HIV is endemic than if introduced in a completely disease-free
population. This is mainly because this “average” person is likely to be HIV,, so its
probability of progressing to active TB and of infecting other people is high (this depends
on the numerical values of several parameters, including as, but not on the structure of the
model). Finally, rgHV is less than R(I){IV as explained in §2.2. In some sense, TB slows down
the HIV epidemic.

Fig. 2.3 shows a bifurcation diagram of the steady states in the (k1,d) parameter space
using the numerical values from Tab. 2.5 except of course for k; and d and assuming that
the ratio ko/ky is fixed. The black dot near the 2,000 per 100,000 per year level curve for
the TB notification rate corresponds to the values of k; and d in Tab. 2.5. The boundaries
between the four domains of the bifurcation diagram (“disease-free”, “HIV”, “TB”, and
“HIV4+TB”) are obtained by the solving the four equations Réﬂv =1, r(I;HV =1, ROTB =1
and rgB = 1 with respect to k1 and d. Since R(I)HV does not depend on k; and ROTB does
not depend on d, the line Réﬂv = 1 is horizontal and the line ROTB = 1 is vertical. The
line T(%HV = 1 separates “TB” from “HIV+TB”. The line rgB = 1 separates “HIV” from
“HIV+TB”.

Note in Fig. 2.3 how the level curves for the TB notification rate are distorted as they
cross the line iV = 1 from the area labeled “TB” to the area labeled “HIV+TB”. Notifica-
tion rates near the “reinfection threshold” mentioned in Sect. 2.2 (for example the 1,000 and
2,000 level curves), which seemed totally unrealistic in the absence of HIV, occur now for
smaller values of the transmission rate ky if HIV prevalence is high enough. With k; = 11.4
per year as in Tab. 2.5, the steady state TB notification rate increases from 200 to 2,000

per 100,000 per year as HIV prevalence increases from 0 to about 25%.
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Figure 2.3: Bifurcation diagram in the (k;,d) phase plane and level curves of the steady
state TB notification rate (dashed lines, 500 stands for 500 per 100,000 per year) and of the
steady state prevalence of HIV (dotted lines).

2.5 Impact of control measures

Increasing condom use

We note from Egs. (2.13)-(6.9) that r§!V is proportional to f(0) = d (the maximum trans-
mission rate of HIV) and that rg B is proportional to k; (the maximum transmission rate of
TB), the ratio ko/k; being fixed. So if d is divided by at least 7§!V (the other parameters
being kept constant), the new rgnv will be less than 1 and HIV will disappear in the long
run. Similarly, if k1 is divided by at least rgB, the new TEB will be less than 1 and TB
will disappear in the long run. In Fig. 2.3, starting from the black dot representing the real
situation, one can check that if k; is divided by rg B ~ 1.7, we move from the area labeled
“HIV+TB” to the area with HIV only. If d is divided by rf!IV ~ 5.8, we move from the
area “HIV+TB” to the area with TB only. To decrease the parameter k1, living conditions
should be changed. The parameter d decreases if more condoms are used.

Fig. 2.4 shows the impact of a sudden decrease of the HIV transmission rate d, from an
initial value d to a new value d’, on the prevalence of HIV (Fig. 2.4(b)) and also indirectly
on the TB notification rate (Fig. 2.4(a)). The impact is obviously a monotonic function of
d', as one would expect. We can check on these simulations that HIV disappears in the long
run only if d’ < d/ri!'V ~ d/5.8 (that is in the two simulations d’ = d/8 and d’ = 0 but not
when d' = d, d =d/2 or d' = d/4). If so, the TB notification rate returns finally to its level
of the beginning of the 1980’s, before HIV was introduced. The asymptotic TB notification
rate and prevalence of HIV can also be read directly from the level curves in Fig. 2.3, but

the speed at which these steady states are reached can only be seen in Fig. 2.4.
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Figure 2.4: Assuming that a sudden increase in condom use occurs in the year 2008 (the
maximum transmission rate d becomes d'). The different curves correspond from top to
bottom to d' = d, d = d/2, d = d/4, d = d/8 and d’ = 0. (a) TB notification rate. (b)
Prevalence of HIV.

Increasing TB detection

Now we consider the possibility of increasing the TB detection rates ; and 5 and increasing
the probabilities 1 and €9 of successful treatment. For the township, this could be achieved
by actively searching for TB cases instead of waiting for them to come to the TB clinic. We
note that the four parameters above enter the system of differential equations (2.1)-(2.6)
only through the combination by = (1 + 71 €1 and by = (B2 + 2 €2. However, 1 and 2 enter
in the expression of the TB notification rate (through ~1 I + 2 I3). If 7 or 9 increase,
the steady state TB notification rate may increase and will start decreasing only if v; or
are high enough. It is therefore not suitable to use the TB notification rate as a measure of
the severity of the situation when the detection rate changes. Instead, we will use the TB
incidence rate.

Fig. 2.5(a) shows the bifurcation diagram and the level curves of the steady state TB
incidence rate in the parameter space (1/71,1/72), using the numerical values from Tab. 2.5
for the other parameters. Since 73 and 72 do not enter in the formula for R{!Y, the HIV-
endemic steady state is always there. The question is: when can it be invaded by TB? This
is given by the equation rgB = 1, an implicit equation for v; and 75 shown by the thick
black line separating “HIV” from “HIV+TB” in the bottom left corner of Fig. 2.5(a). The
values for v, and 72 in Tab. 2.5 correspond to the black dot shown in the figure.

Fig. 2.5(b) shows the impact of a sudden increase in the TB detection rate ~y, for HIV
individuals. This has almost no impact on the curve for the prevalence of HIV so we do not

show it. Of course, the TB incidence decreases monotonically as the detection rate increases.
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Figure 2.5: Increasing the TB detection rate: (a) Bifurcation diagram in the phase plane
(1/71,1/72) and level curves of the TB incidence rate. (b) TB incidence rate as a function of

time, assuming that a sudden increase in the TB detection rate for HIV, individuals occurs
in the year 2008. The parameter 72 is replaced from top to bottom by 72, 2v2, 472 or 8ve.

Isoniazid preventive therapy

This control measure reduces the parameter a; if used for HIV_ individuals and the pa-
rameter ag if used for HIV, individuals. These parameters do not enter in the formula
for R}){IV, so HIV is always present and the question is whether TB can be stopped in the
presence of HIV: the threshold is given by TE]F B =1 (the corresponding curve appears in the
bottom of Fig. 2.6(a) as the level set 0). The level curves of the TB notification rate in the
diagram (aj, az) are almost horizontal (Fig. 2.6(a)). Therefore preventive therapy used for
HIV, individuals (reducing as) has a much greater impact on the TB notification rate than
if used for HIV_ individuals (reducing a;). The values for a; and ay in Tab. 2.5 correspond
to the black dot in Fig. 2.6(a) close to the 2,000 per 100,000 per year level curve.
Fig. 2.6(b) shows the impact of a sudden decrease of the progression rate ay for HIV
individuals due to isoniazid preventive therapy. Since this has almost no impact on the

curve for the prevalence of HIV, we do not show it. The steady state TB notification rate
decreases monotonically as ao decreases.

Antiretroviral treatment (ART)

ART reduces viral load and therefore also the transmission parameter d for HIV. On the
other hand, ART also increases the life expectancy of HIV, individuals by decreasing us
and mg (of course not below the natural mortality p;), which increases the number of

people living with HIV and enhances further transmission of HIV. These two effects are
antagonistic. The impact on HIV at the population level is not obvious and depends in

detail on how much each of the three parameters involved changes with ART. Besides, ART
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Figure 2.6: Isoniazid preventive therapy for HIV individuals (decreasing as): (a) Bifurca-
tion diagram in the phase plane (a1, a2) and level curves of the steady state TB notification
rate. (b) TB notification rate as a function of time. Assumption: starting in 2008, ag is
replaced from top to bottom by ag, as/2, as/4, as/8 or 0.

reduces the average rate as at which co-infected individuals develop active TB, though not
to the same level a; as HIV— MTB-infected individuals [18, 68, 70, 74], and even if “immune
reconstitution disease” may on the contrary increase as during the first few months of ART
treatment [72]. Again, the effect of ART on TB is uncertain because HIV_ individuals
under ART live longer. Quantitatively, ART was shown in studies in South Africa [18, 70]
and Brazil [21] to reduce ag by 80% , i.e., to divide ag by 5. With aa = 0.08 per year
without ART, this gives as = 0.016 per year under ART. This is still 50 times higher than
the parameter a; = 0.0003 per year for HIV_ individuals. Another report [71] mentioned
a risk 5 to 10 times higher after three years of ART compared to HIV_ individuals. We

assume furthermore that:

e 1o is divided by 2 under ART, giving pus = 0.05 per year instead of 0.1 per year, still
higher than the natural mortality pu; = 0.02 per year; the new life expectancy for
HIV, individuals under ART is 20 years;

e my is divided by 2 under ART (the new mg is 0.8 per year, compared to m; = 0.25
per year).

We determined what would happen under various assumptions for the HIV transmission
parameter d (Fig. 2.7), assuming that 100% of HIV individuals are immediately put on
ART starting in 2008, independently of their CD4 cell count (a variable which is not included
in our model anyway). This hypothesis is of course quite optimistic and would require the
entire adult population of the township to be tested for HIV. Furthermore, note that in

practice and in more realistic models, some factors may favour a delayed initiation of ART
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[75]. With our choice of parameter values, we find a decrease for the TB notification rate
even in the extreme case where ART would have no influence on the parameter d (Fig. 2.7(a),
top plain curve), a case which would lead to an increase in HIV prevalence (Fig. 2.7(b), top
plain curve).

The cases where d' = d/2 and d’ = d/4 are probably more realistic, since we expect
HIV transmission to decrease if everybody knows his/her HIV status. In such cases (and
assuming that the other parameters values have been correctly chosen), HIV prevalence
would decrease for d’ = d/4 but not for d = d/2 (Fig. 2.7(b), second and third plain
curves from the top). So the future of HIV prevalence under ART is uncertain. However,
with a progression rate as reduced by 80% and a life expectancy 1/us multiplied by 2, it
seems that ART would dramatically decrease the TB notification rate even though the new
reactivation rate for HIV, individuals would still be several times higher than the one for
HIV_ individuals.

TB notification rate (per 100,000 per year, HIV prevalence (%,
2500 (p per year) L %)
20007 o/ T
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1500+
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(a) reduction in TB notification rate (b) reduction in HIV prevalence

Figure 2.7: ART. (a) TB notification rate as a function of time. (b) HIV prevalence as a
function of time. Assumption: 100% of HIV, individuals are put on ART starting in 2008.
The parameter uy is replaced by ps/2, the parameter mo by mso/2, the parameter as by
az/5, while the parameter d is replaced either by d, d/2, d/4, d/8, or 0 (from top to bottom).
The dashed line shows the case without intervention.

2.6 Conclusions

This work provide a solid basis for modeling the simultaneous HIV and TB epidemics in
a township near Cape Town, South Africa, for which a considerable amount of data is
available. Deliberately keeping the number of parameters as small as possible enabled us to
provide a fairly complete mathematical picture of the model with HIV or TB only. We used
numerical methods to study a model of dual HIV and TB infection.

Before using the model to study the impact of interventions, we investigated the sensi-

tivity of steady-state values for TB notification rates and HIV prevalence with respect to
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key parameters. We used a bifurcation diagram of the steady states in the (TB contact
rate, HIV contact rate) space. The diagram has four domains, delineating ‘disease-free’,
‘HIV-only’, “TB-only’, and ‘HIV+TB’ epidemics. The diagram shows how steady-state TB
notification increases sharply as the prevalence of HIV increases.

Among the control measures studied, most have an obvious positive impact in controlling
the HIV or TB epidemics. This is the case for condom use, increased TB detection and
preventative treatment. The situation for ART is more complex and the impact depends
in detail on how much it reduces mortality and TB activation rates, because these rates in
turn determine the duration of an active TB episode. However, although the future for the
prevalence of HIV in Masiphumelele is uncertain, it seems that a generalized access to ART
might lead to a significant decrease of the TB notification rate.

If HIV, individuals under ART live approximately 2 times longer than the average 10
year survival time of HIV individuals with no access to ART, then one could expect the TB
incidence to be reduced by 60%. We investigated what would happen if ART were to increase
the prevalence of HIV and indirectly the incidence of TB. Even in the worst case scenario
we considered, where HIV prevalence increased as a result of ART, the TB notification rate
decreased considerably. Our understanding of the impact of ART on both the HIV and TB

epidemics will improve, as ART become more available in the Masiphumelele.



Chapter 3

Fluctuations and correlations in a
model with TB only

The system of ODEs used in Sect. 2.1 models the time evolution of the macroscopic variables
relating to TB and HIV interaction. It is an accurate macroscopic description when the pop-
ulation is ‘large’, mixes homogenously and fluctuations due to individual stochasticity are
small. However, the population modeled here consists of only 10,000 individuals and small-
population effects may limit the validity of the macroscopic equations. The method pre-
sented here can be used to help quantify uncertainty associated with macroscopic equations.
It models fluctuations as a multivariate Gaussian distribution, which can be incorporated
into a Bayesian model fitting framework.

We use a ‘system size expansion’ technique developed by Van Kampen [107, Ch. 10]
to study the stochastic process underlying Eq. (2.1)-(2.6), and to gain insight into the
statistical properties of the system’s fluctuations. A Fokker-Planck approximation for the
master equation of the system is derived. Using this equation we are able derive equations
for the variances and co-variances of the fluctuations. We also study the decay of fluctuations
near the equilibrium state. This method thus gives a handle on both the deterministic and
stochastic descriptions of the system [39, Ch. 8].

However, it must be noted that the Fokker-Planck equation (FPE) is a valid approxima-
tion to the master equation of the system in the sense of a large population size expansion
[13, Ch. 7]. Given that the population we model is not large, what we obtain is not a defini-
tive description of the statistical properties of fluctuations but an insight into how these
depend on population size. The approximation becomes more valid as population size in-
creases. The method can be used to study fluctuations and correlations of Markov processes
in a systematic way. Birth-death processes, such as the one explored in this chapter, are an
important example in population dynamics.

Recent DNA fingerprinting work in Masiphumele allows us to classify TB strains, sam-
pled from active TB cases, by their DNA type. Within the scope of commonly used epi-

demiological modeling tools, there is currently no method available for classifying temporal

27
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clusters of TB events. What is the timescale beyond which two events are not statistically
correlated, when they are of the same DNA type? We use point process theory to explore
this question. Probability density functions for TB events are derived directly from the un-
derlying dynamical model, for events that lead to active TB episodes. Using these density

functions, two-time correlation functions can be calculated.

3.1 The master equation of a TB-only model

Consider again the compartmental model of Sect. 2.1, with S, E and I representing suscep-
tible, latent and active TB cases respectively, ignoring the HIV-related part of this model.
That is, we ignore all terms with subscript 2 in Eqgs. (2.1)-(2.6), and ignore subscript 1 in

the remaining terms:

dS

— = B- I/P—

0 kSiI/P — uS

dE ,

— = (W S—qE)kI/P—(a+p) E+bl

% = (pS+qE)kI/P—(b+m)I+aFE. (3.1)

To study this system microscopically we have to derive a ‘master equation’ for the system.
This is an equation for the time-dependent transition probability of individuals who expe-
rience a finite (and small) number of events. The following equations state these events

(e5, i = 1...9) and the probability that they occur in a small time interval At:

'k
pk

P{es} = aEAt+ O(At)
Ples) — % EIAt + O(AY)
Ples} = bIAt+ O(At)
Pleg} = wuSAt+ O(AY)
P{er} = pEAt+ O(At)
P{eg} = mIAt+ O(At)
P{eg} = BAt+O(AY),

where

e We have used the same notation of the simple model presented in Sect. 2.1, dropping
the subscript 1. The total population size is now given by 2, with P used for the
probability of finding the population in a certain state.
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e e1- a susceptible becomes latently infected due to contact with an infective.

e co- a susceptible becomes actively infected due to contact with an infective.

e c3- a latently infective becomes actively infected due to natural activation.

e c4- a latently infective becomes actively infected due to exogenous reinfection.
e c5- an infective becomes susceptible through recovery.

e e4- a susceptible is removed due to death.

e e7- a latently infective is removed due to death.

e cg- an actively infected is removed due to death.

e eg- a new susceptible enters the population.

e The time interval A ¢ is small enough for only one event to occur in each time interval

of this duration.

e Each individual of each category S(susceptible), E(latently infected), I(actively in-

fected) is equally likely to experience events for that category.

Using this notation we can write the balance equation for the probability of having S sus-

ceptibles, FE latently infectives and I actively infectives as follows:

p'k pk
o G+ DI Psypan + 75+ DU = 1) Psyrmr-1
qk
o (E+ DI =) Ps gy +alB+1) Bs i
+b(I +1) Pisp-1,141) + #(S + 1) Pisy1,e0 + W(E + 1) Ps gy

+m(I +1) P p,r4+1) + QB Ps_1,.1

AL Pis.e,n

k k

We now introduce a simplifying notation which allows us to write the master equation more
compactly. Let ny = S, ng = E, ng = I, with n = (n1,n2,n3) representing the state of
the population. We also introduce ‘step operators’ (or ‘raising’ and ‘lowering’ operators),
Dy, : n; —n; +1 and D;} : n; — n; — 1. Using this notation, the master equation can be

written as:
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3.2 Expansion of the master equation

For a large population system we expect Ps g to peak around the macroscopic values
given by the macroscopic Eq. (3.1). The size of fluctuations are expected to be of the
order 972 and their effect on macroscopic equations are expected to be of the order Q~1/2,
where () is the size of the system. A systematic expansion of Ps g ; in powers of 012 was
developed by van Kampen [107, Ch. 10]. In this section we will apply this large £ expansion
technique, outlining briefly details which are elaborated in [107, Ch. 10]. An application of
this technique to a simple SIR model can be found in [27] and [89, Ch. 8.5].

Working from the assumption that Pg g 1 is peaked around macroscopic averages, with

a width of the order Q/ 2 we transform the n; to new random variables v;:

ni(t) = QS() + (1),
na(t) = QE() + Qiya(t),
na(t) = QIE) +Q2ys(t)

S(t),E(t) and I(t) are not a priori identified with averages of nj,ny and ns respectively.
However, it will emerge that they are precisely these averages [79].

The operators D,,,, D;il can be replaced by their Taylor expansions:

1 9 191 9?
o — 1402 —Q! .
D,,, = exp <\/ﬁ 8%) +Q72 m + 2!9 o + (3.2)
1 9 191 0?
-1 _ - )l —=1_0"3 ~ 01
D’ = exp( 75 ayi> 1-Q72 0 + Q!Q a0 + .. (3.3)

Using these expansions, the new probability is
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which is a time-dependent probability distribution for the fluctuations, has normalization

condition:

1= > P(nl,n2,n3,t):///‘I’(yl,y2,y3,t)dy1dy2dy3,

ni,n2,n3

and obeys a master equation of the form

v S oV .
?ﬁ——§ﬂﬂ > => T,+0(Q2), (3.5)
1=1:3 =1

dt Ayi

where T1, ..., Ty are given by:
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The macroscopic equations of the system are given by equating terms of the order Q!/2:

T5

T U(t).

-S = —BH4kIS+uS,
—E = —kp'IS+qE + aE + uE,
—1 = —kpIS — gE + bl + ml.

which are equivalent to the system of equations (3.1) we started from. The equations can

be solved numerically using the initial conditions:

Equating terms of the order Q° gives:



3.2. Expansion of the master equation 33
U (y,t) (9 0 1, (8 0\
= pk|l=——=—](S Iy ) W+ —p'k | =— —— ) SI¥
5t PR\ 50~ o (Sys +Ty1) ¥+ op 90 O
o 0 1 o 9\
+pk | — — — ) (Sys + Iy;) ¥ + k( ) ST ¥
b <8y1 6y3> (Sya +1Tn) 2"\ oy~ oy
0 1 o 9\
+gk | =— — — | (Bys + ly2) ¥+ —gk | =— — =— | EIV
q <3y2 ay3> (Eys + Iy2) 54 <8y2 8y3>
o 9 1 (8 8\
= = t-a(——--—) ET
<3y2 8y3> " 2 <8y2 8y3>
o 9 Lo 9\
+b| — — — U+ —b|———] 1T
<8y3 8y2> BET <6y3 8?/2)
o) 1 02 o) 1 02
Y —SVv v —EWv
+Ma nv+- Ma +Ma Yy W+ - Mal
192 1072
—ys ¥ —IVv+B-—— V. 3.7
+ma y3 W+ = m8y3 + > o (3.7)
From this we derive a multivariate, linear and time-dependent FPE for W:
0v(y,t) 0 1 0*w
=— A () — (y;9) + = B, i (t , 3.8
where
L+ p 0 kS
At) = —| —pkl gkl+a+pu  —p'kS+qkE —b ,
—pkl —qkl—a —pkS—qgkE+b+m
B+ kSIL+ uS —p'kSI —pkSI
B(t) = —p'kSI alE + bl + p'kSI + ¢EI + uE —alE — bl — ¢RI
—pkSI —alE — bl — gEI alE + bl + ml 4 pkSI + gIE1
Using the FPE (3.8) we can compute the moments of the fluctuations [107, Ch. 8, p. 211 |:
d
) = > Aiiy)
J
d
i) = Ek: Ak (yry;) + Ek: Aji(yiyr) + B (3.9)

By construction Y;;(t) = (y; y;), being the variance of the multivariate Gaussian ¥(y,t), is

symmetric and necessarily so is B. Using these formulae we find the ‘variational’ equations:
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d

$<y1> = (=kI—p) (1) — kS (ys) + O(Q71),
%(yﬁ = pkI(yp) + (—a — p— qkl) (y2) + (b + P'kS — gkE) (y3) + O(Q1),
d

Z\s) = PRI(y1) + (a + gRT) (y2) + (=b —m + PkS + ¢kE) (y3) + o@Q™). (3.10)

as well as equations for the variance and the co-variance of the fluctuations:

%<ylyl> = B+ S+ pkSL+ p'kSI+ 2 (—KL — 1) (y1y1) — kS (y1ys) — kS {ysy1) + O(Q73),
%(yzyﬁ = aE + bl + p'kSI + gEI + uE + p'kT (y1y2) + p'kI (y2y1) + 2 (—a — p — gkI) (yaya),
+ (b+ kS — gkE) (yays) + (b+ p'kS — gkE) (ysya) + O(Q72),
%<y3y3> = aE + bl + ml + pkSI + qEI + pkI (y1ys) + (a + gkl) (y2ys) + Pkl (ysy1) ,
+ (a + qkI) (y3y2) +2 (—b — m + pkS + ¢kE) (y3y3) + O(Q_%) ,
Cl) = —pRST4PRTun) + (K ) (yram) + (—a— o — ahT) {yrn),
+ (b+ P'kS — gkE) (y1ys) — kS (yspa) + O(Q77)
%<y1y3> = —pkSI+ pkI(y1y1) + (a + gkl) (y1y2) + (=KL — 1) (y1y3) ,
+(=b—m + pkS + gkE) (y1y3) — kS (yzys) + O(272),
%<y2y3> = —aE — bl — ¢EI + p'kI (y1Y3) + pkl (y2y1) + (a + gkT) (y212)

+ (=b —m + pkS + ¢kE) (yoy3) + (—a — p — qkI) (y2y3) ,

+ (b+ p'kS — gkE) (ysys) + O(Q7 7). (3.11)

In this way fluctuations are modeled as a multivariate Gaussian distribution, the moments of
which are given by Egs. (3.10)-(3.11). An assumption, which is not verified here, was made
that fluctuations are symmetric about the mean, and this may not be true for birth-death
processes in general. The derivation also relies on the global stability of the stationary state.
Note that the fluctuations are not correctly described by a Gaussian distribution during the
exponential growth phase of the TB epidemic. In this region, fluctuations are no longer
just of order Q2 compared to macroscopic values. However, the stability of the macroscopic

variables guarantees that fluctuations are bounded [107, Ch. 10.4].

Stochastic simulation

An equivalent description of the system can be given in terms of waiting times until compet-
ing ‘events’ that occur in the system. We identify the following time inhomogeneous Poisson

processes, identifying also their intensities a;,7 = 1...9 at time ¢:
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ap = p’Qk St)I(t),
ag = pﬁk: S(t)I(t),
a3 = aE(t),

a = P o),
as = blI(t),

ag = pS(t),

ar = pE(),

as = ml(t),

a9 = B.

Define ag as the intensity of the Poisson process corresponding to the first event:

apg — E a; .

i=1,2,3,4,5,7,8,9

We can use ag to compute the average waiting time to the next event, and use it to decide
which event it should be (on average). To this end, draw two numbers r; and ro from the
unit uniform distribution. The time to the next event is given by sampling the inverse CDF

of an exponential distribution with rate ag:

=L g <1> . (3.12)

ago r1

The event type is given by the smallest integer u for which:

u—1 u
Z ay, < roag < Zav. (3.13)
v=1 v=1

Having found 7 and u by this method, the time evolution of the system is straightforward:
total time is incremented by 7, the event is applied to update the relevant sub-population
and an age of 7 is added to each living population member. Suppose that an infection event
(u = 1oru = 2)is the next event. A susceptible person is selected at random, after which the
population counts S, E and I are updated. This is the so-called Gillespie algorithm, widely
used to simulate stochastic processes [15]. It can be shown that the Gillespie algorithm gives
‘exact’ realization of the stochastic process underlying systems given by a system of coupled
ODEs. Sect. 7.2 uses this simulation technique in a more complex model.

The Gillespie algorithm can be used to study fluctuations of the system around equilib-
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rium, using the stationary values for S, E, I in a model with TB only as initial condition.
In Fig. 3.1(a,b,c) we show a stochastic realization of a TB epidemic (without HIV) in black.
The stochastic simulation algorithm is started with the macroscopic steady state as initial
condition. This avoids the problems of non-zero extinction probabilities of the disease free
steady state, which leads to many stochastic realizations dying out. In red we show one
standard deviation of the fluctuations. Note that the size of the fluctuations are large during
the exponential growth phase, when the system undergoes a bifurcation.

It is clear that there are substantial small-population effects present in this model, and
that fluctuations are large relative to macroscopic values. The question is: what population
size will lead to relatively small fluctuations, and thus to an accurate system of macroscopic
equations? In Fig. 3.1(d) we show the ratio of the size of the stationary fluctuations in
I, with respect to the stationary size of I, plotted as a function of the total population
size. To increase the population size we raise the birth rate from 200 per year to 900 per
year. This leads to a four-fold increase in the population size. Fig. 3.1(d) illustrates the
relationship between fluctuations and population size in a model where a sub-population is

of particular interest. In this case, we focused on Iy, the category of active TB individuals.

Standard Deviation | Gaussian Approximation | Simulation
S 300 316
E 291 280
I 12 12

Table 3.1: Comparing calculation of standard deviation of fluctuations with estimation
from simulation. The Gaussian approximation to fluctuations at equilibrium is reasonably
accurate.

The expansion method used in Sect. 3 can be employed to study fluctuations in the
HIV-TB compartmental of Sect. 2.1. However, the nonlinear function of HIV prevalence

f(H), which represents the sexual contact rate, with the parametric form

fH)=de M,

leads to tedious algebraic steps in the expansion. It is possible to go through a similar
derivation to obtain a linear FPE with 6 by 6 matrices A and B. If a standard form for HIV
infection were used the algebraic steps would be easier, but then modeling the prevalence
of HIV would become challenging.

According to [15] the Gillespie algorithm gives exact realizations of stochastic processes
underlying systems given by coupled ODEs. The question arises as to whether the FPE also
provides an exact method to study fluctuations in such systems. In Tab. 3.1 a comparison
is made between the standard deviation of fluctuations as modeled by the FPE (3.7)-(3.8)
approach and by stochastic simulation. It seems that the FPE for the fluctuations in the
system gives the same description for the variance of noise around the macroscopic values,

as would be obtained from a large number of exact stochastic realizations. In Sect. 3.3 the
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Figure 3.1: (a) Macroscopic dynamics for categories S, E and I, i.e. the macroscopic state
variables, are shown in blue. The standard deviation of the fluctuations around the macro-
scopic values is shown in red. Also shown is one stochastic realization in black. Note that
the fluctuations are large during the exponential growth phase of the epidemic. During this
time, the system undergoes a phase transition. It appears that fluctuations are also growing
exponentially during this phase and the variance of fluctuations does not seem to be a useful
quantity during this phase [105]. (b) An enlarged view of the fluctuations at the stationary
state. (c¢) Fluctuations around the macroscopic values obtained by averaging five stochastic
realizations. The average of five realizations lies more or less within one standard deviation
of the mean. (d) The ratio between the size of the fluctuations in /; and macroscopic values
for I; as a function of the total population size. Compartment I is used because it is the
smallest compartment in the model and the most relevant, being the compartment of active
TB cases. This shows how the relative influence of the fluctuations decreases as a function
of total population size, and gives an idea of what population size is required to give an
accurate macroscopic description in which the influence of fluctuations will be minimal.
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clustering of active TB events in the stationary state is studied using the Fokker-Planck
description. A comparison is made with the clustering observed in stochastic realizations

obtained with the Gillespie algorithm.

Autocorrelation matrix

The average fluctuations obey:

d
%(ya t|y07 tO) = A@, t‘y(b t0> )

for the time derivative of the average value of y at time ¢, given that the value was yy at

time tg = 0. The solution is given by:

(Y, tlyo, to) = €™ - (o, t0) - (3.14)

At equilibrium, the correlation matrix dissipates according to:

(Wi0)y;(1)s = ™ (wi(0)y;(0))s

(y1y1)®  (n1y2)®  (y1ys)®
= e [ (y)® () (yoys)®
(ysy1)®  (ysy2)® (ysys)®

using the stationary values for all fluctuations at time 0. We see that fluctuations from the
equilibrium value take a long time to disappear. The slow reaction of the system results
from the slow dynamics of exponentially distributed events.

The ideas presented here are captured by Onsager’s principle (the so-called linear noise
theory), which states that the influence of fluctuations about the equilibrium state decay, on
average, according to the same macroscopic laws which govern the recovery of the macro-
scopic system to equilibrium [90, p. 532].

In Fig. 3.3 we show the dissipation of fluctuations in our TB-only model. The equilibrium
size of the fluctuations are used as initial condition in Eq. (3.14). The simulation gives as
estimate of the timescale over which fluctuations and correlations will influence the system.
We proceed with a more thorough investigation into the statistical properties of fluctuations
in this TB model.

3.3 Temporal clustering of active TB events

Data is available on the clustering of TB events. This data set comprises TB sputum samples
for which the DNA types (i.e. strains) of TB have been determined. It shows that active
TB episodes have a tendency to cluster, in the sense that a few cases of the same DNA type

are registered in a short time interval. Analysis of these TB clusters make use of statistical
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Figure 3.2: Visualization of dissipation of fluctuation near equilibrium. Note that the deriva-
tion relies on the global stability of the equilibrium state.

methods for clustered data, and ignores the fact that the TB episodes are generated by
an underlying dynamical model. We study a model with one strain of TB to focus on the
temporal aspects of TB event clustering.

Our technique for simulating realizations of the underlying stochastic process for TB
infection (see Sect. 3.2) treats TB events as Poissonian. Fig. 3.3 shows simulated active
TB events. A simulation result of all episode types, namely endogenous- or self-activation
(Fig. 3.3(a)), primary infection events (Fig. 3.3(b)) and reinfection events (Fig. 3.3(c)),
seems to show clustering. This raises the question as to whether a simulation algorithm,
such as the Gillespie method, preserves correlation measures between different events. More
specifically, whether it can be used to estimate timescales below which clustered events are
likely, and beyond which events are uncorrelated.

Fig. 3.4 shows a histogram of the waiting times between active TB events. The waiting
times to next endogenous-activation is approximately exponentially distributed with a mean
of 0.98 years. This corresponds exactly to a average waiting time of 1/ (a;(E1)s) = 0.98
where (S1)s is the stationary value of F1. The mean waiting time between simulated primary
infection events is 0.83 years, which corresponds to 1/ (p1k1(S1)s(I1)s/€2) = 0.82. Similarly,
the mean waiting time between simulated reinfection events is 0.64 years, which corresponds
to 1/ (q1k1(E1)s([1)s/2) = 0.65. The Gillespie algorithm clearly preserves the average

waiting time between events in the stationary state. However, since exponential waiting
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times correspond to Poisson processes, which produce uncorrelated events, we do not expect

the clusters seen in Fig. 3.3 to present a higher than average density of events.

Having derived a master equation description for individual TB events, we now use the

theory of point processes to study te statistical properties of active TB events. We are able

to derive a definition for the temporal elements of clustering, which includes a timescale

over which points are expected to be correlated.
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Figure 3.3: Visualization of TB endogenous-activation events as a point process.

A short overview of point process theory

80 90 100

The overview of point process theory presented here is practical and avoids most of the

underlying mathematical machinery, for which the two volume work of Daley et al. [

| and

the book of van Kampen [(6] are excellent references. The language used here will be closer

to that used for a physics approach to the problem, reviewing the work of [

The state space for a general point process consists of |

e a nonnegative integer s = 1,2, 3, ...

e for each s a set of real numbers obeying

|:

— 00 <TI << <. <7< X

].
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Figure 3.4: Distribution of simulated waiting times between active TB events.

e The state space can be thought of as the set of all sequences of points, where a state

corresponds to a particular finite sequence of points.

A probability distribution over the state space is given by a sequence of non-negative func-
tions Qs(11, 72, ..., Ts). The @ are also known as Janossy densities, and they are normalized

according to

Q0+/ dTlQ1(7'1)+/ dTl/ dTQQl(Tl,TQ)+...:1.
%) —00 1

We now stipulate that the probability measures Qs are symmetric and give equal weight to

all s! permutations of their arguments (71, 72, ..., 7s). The normalizing condition becomes
o0 1 o0
QO+Z|/ dridry...drs Qs(T1, 72, ..., Ts) = 1,
s!
s=1 -
An alternative specification of the point process is given by:

o)

fu(ti,to,.ty) = Z ( 1

—_n)!
= (s n)!

o0
/ ATpg1..d7s Qs (1, ooy bnyy Tty ooy Ts) (3.15)
—00

with the intuitive meaning that f,(1,2,...,n)dt1dts...dt, is the probability that there are
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exactly n points, one in each of the infinitesimal intervals (¢1, t14dt1), (t2, ta+dta), ..., (tn, th+
dt,,) regardless of the number of points outside these intervals. This can be deduced directly
from Eq. (3.15), where the first ¢, arguments of @) are fixed, while averaging over or
‘integrating out’ the remaining (n+1, ..., s) arguments. Note that f; represents the average
density of dots (i.e. intensity of the process).

Another class of symmetric functions can be defined in terms of the functions g,,:

fitt)) = aqi(t)
fatite) = g1(t1)gi(t2) + g2(t1, t2)
fa(ti,ta,t3) = g1(t1)g1(t2)g1(ts)

+g1(t1)g2(t1,t2) + g1(t2)g2(t1,t3) + g1(t3)ga(t1, t2)
+g3(t1,t2,t3)
falti,to,ta ta) = - (3.16)

We shall make use of the g,, to study the clustering properties of active TB events. The
reason for using the g,, functions is that they measure the degree to which events are
uncorrelated. In particular, if the events are independent, then all the g,,, m > 1 vanish. A

point process is said to ‘have the cluster property’ when [107, Ch. 2.5]:

Tli—>Hc;lo Imrm (t15 825 st + Tt + 7, o gy +7) = 0.

The function go(t1,t2) = fa(t1,t2) — f1(t1)f1(t2) represents a correlation function, and mea-
sures the degree to which the ‘joint density’ fa(t1,¢1) is larger than the average density at t;
and to. The timescale beyond which points are expected to be independent can be estimated
from go. On shorter timescales it is likely that events occur in pairs, particularly on very
short time intervals.

We derive this correlation function for events that lead to active TB episodes in a simple
TB model (i.e. one without HIV) and use it to study the clustering properties of TB events

around the stationary state.

Endogenous-activation TB events. The probability for a endogenous-activation TB

event to take place between t1 and t1 + dt; is:

fl(tl) = aEdt1
- a{QE+Q%<y2>S} dt;

= a{E+ 05 {).} dn,
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where y denotes fluctuations in the active TB events and (y)s denotes the average fluctuation
at steady state. The probability for having one event in (¢1, ¢;+dt;) and another independent
event in (tg,te + dte), with to > t1, is:

Al () = a®Q%E2 + 20205 (), + a2Qys)2 .

Next we consider fa(t1,t2)dt; dto which is the probability for having one event in (¢, +
dt;) and another possibly correlated event in the time interval (to,ts + dt2), with to > 1,

regardless of whether events occur at other points in time:

1
fa(t1,t2) = a292//{E+Q_2szz}‘l/(yz,t2|y1+v,t1)><

1
{ E4+Q72 P y1} U (y1,t1) dyid®ys, (3.17)

where U(y) is the stationary distribution for fluctuations y. The vector v = (O, Q3 , Q_%) !
is due to having one less latent and one more active TB case, after the endogenous-activation
event at t1. Note that y; and yy are 3-component vectors and the operator P; projects to
the i’th component of the vector to the right of the operator. When appearing in a subscript
in an expectation, e.g. (y;), ¢ refers to the i’th component of the vector valued y.

To reduce Eq. (3.17) multiply the first {...} factor with the second. Terms resulting from
E in the first {...} factor multiplied with the second {...} factor are independent of ys and

can easily be resolved. They are listed in the first line of the expression for fo below:

fg(tl,tg) = GZQ2E2 +GQQ%E<y2>S
+a292E// Pyy2W (yo, talyr +0,10) W (y1,t1) dPy1d>ys

+G2Q // Py ygyl‘ll (yg, t2]y1 + v, tl) 1\ (yl, tl) d3y1d3y2 . (3.18)

The second and third line of Eq. (3.18) can be reduced by means of Eq. (3.14). The integral
in the second line states the conditional average of y2, using y; + U as the initial condition
at time t1, averaged over the stationary value of y;. Using Eq. (3.14) and averaging over

the stationary distribution of y; we have:

ang/ Py eft=t) Ly 4 5} W (g, 81) dPys

We can now use the linearity of the integrand to rewrite the second line of Eq. (3.18):
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a2Q%E P, eA(t27t1)<y>S + a2QE P, oAlta—t1) 5

Similarly we can reduce the third line of Eq. (3.18):

azﬁ// Pyyoyn ¥V (ya, talyn +0,40) W (y1,t1) dPy1dya,

to

a0 P, eA(tz—t1)<y2>s + 23 P, eA(tz—t1)<y>s_

Collecting these results, and neglecting terms of order Q3 and higher, we find:

g2(ti,t2) = fa(ti,t2) — fi(t1) fi(te)
= aQQ%EP2 (eA(tz—tl) _ [) (y)s

+aPQ Py (M (), — (y)2)
+a*QF Py eAla—t1) 55

The correlation function go(t1,t2) is normalized according to [25, Ch. 3.5]:

-1
go(t1,t1 +7) = LILIIOlO ga(t1,t1 + T)} g2(t1, t1 +7),
and displayed in Fig. 3.5(a,red), along with the correlation function for primary and rein-

fection events. The pair distribution function is given by:

gQ(tavtb)
fita) fu(ty)

From Fig. 3.5(b) we see that ga(t1,t2 + 7) < g2(t1,t2) , 7 > 0. Thus, there is a tendency for

g(tmtb) =1+

endogenous-activation events to arrive in pairs (see [I11, Chp 3.7]). On a long timescale,
T — 00, it is certain that a second event will occur, but it is not correlated with the first

event.



3.3. Temporal clustering of active TB events

45

300

250

200

150

100

50

Correlation time gz(tl,tz)

1.004

1.0025

! !

20

40 60 80 100
Years

(a) correlation function

) 1.0035

1.003

1.002
7 1.0015}
1.001r

1.0005

0.9995
0

Pair distribution g(tl,tz)

20 40 60 80 100
Years

(b) pair distribution function

Figure 3.5: (a) Normalized correlation function ga(t1,%2) of endogenous-activation events
(red), primary infection event (blue) and reinfection events (green). (b) Pair distribution
function for paired endogenous-activation events.

Primary TB infection events.

place between t; and t; + dt; is:

k
filty) = =SIdt

0
= K {S+0 3 )} {1+ K

- kO {S]I +Q73S(ys), + Q72 1(y

The probability for a primary TB infection event to take

y3>s} ditq
1)s + Qfl<y1>s<y3>s} dty .

The probability for having one primary infection event in (¢, t; +dt;) and another indepen-
dent event in (tg,t2 + dt2), where to > t1, is:

Filta) falts) = K2Q2S?I2 + 2k2Q2SI(y1)s + 26205 S2(ys)

+4QE*SI{y1)s (ys)s + k
F2R202 (1) (ys)s + 2
+K (y1) 2 (y3)? .

2Q8% (y3)2 + K*QI (1)
K2Q2S(y1)s (ys) 2

The probability for having one primary infection event in (¢1,¢; + dt1) and another possibly

correlated event in the time interval (to,to + dta), with to > ¢; is:
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folti,ta) = KQ? // {SH‘FQi%SPSyQ+Qi%HP1y2+Qilply2P3y2}
xW (y2, t2|y1 + 0, t1)
X {S]I L QISP+ QI Py + QL Py Py yl} (3.19)
xW (y1,t1) d*y1d’ys,

T
where v is the vector v = <—Q_%,O, Q_%) . Upon calculation we have four terms corre-

sponding to multiplying each term in the first {...} factor with the second {...} factor:

fa(t,t2) = Z T; where,

i=1:4
T = kOS2 + k2Q2S2(ys), + k2Q2SI2(yy)s + K2QSI{y1y5)s

3
T, = k292821//y§3)\11(y2,t2\y1 +0,t1) W (y1,t1) d>yr dPys
22 (3),.(3) — 3 3
+E°QS Yo Y1 W (Y2, talyr +0,t1) U (y1,t1) dy1 d yo
2QS]I (3) (1)\:[1 = \j 3 3
+k Yoy W (Y2, talyr + 0, t1) W (y1, 1) dyr d o
2038 [ [ 3Py v &Py
+ 2 VU (yo, talyr +0,61) ¥ (y1,t1) d°v1 d°y2,
T3 = kQQ2S]I2//y§ )\I/(yg,tg‘yl —I—U,tl)\I/(yl,tl) d3y1 d3y2
2 (1), (3) — 3 3
+k~QSI Yo 'y W (Yo, tolyr + 0, 1) U (y1,t1) doy1 dye
+k:29112// Yy (ya, tolyn +0,0) U (y1,t1) dPyr dPys
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The vector v = (—Q_%,O, Q_%>T is due to having one less susceptible and one more active
TB case, after the primary infection event at t1. As before, these terms can reduced by
replacing the conditional average of yy with eA(f2—11) {y1 + v}. However, it is worth pointing
out that this wealth of terms shows how difficult it is to compute correlation functions in

non-linear systems. The last equation shows that the highest order term will be proportional
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to (y1y1y3y3). Computing higher order correlation functions, i.e. gs(ti,to,t3), will be very
tedious. The ‘Gaussian moment theorem’ can be used to reduce or eliminate some of these
terms. One of the corollaries of the Gaussian moment theorem states that correlations
like (y1y1y3) are zero. It also says that terms like (y1y1y1y3) are functions of lower order
correlation functions, viz (y;y3). Other than this tool, this large number of terms can only
be reduced by phenomenologically motivated assumptions and approximations.

If terms of order Q7 and higher are small enough to be neglected, ga2(t1,t2) can be

approximated by:

ga(ti,ta) = fa(ts,t2) — fi(t1) f1(t2)
= KQISAPy (M) 1) (y) + K208 Pyg (T (2) — (ya){ya))

FREQISEE Py (A2 — 1) () + K201 Py (27 (52) — (1) (31) )

+k2QSIP 3 (36A(t2_t1)<y1y3>s — 4(y1><y3>> + K*QST(y1y3) s

+k2QS?1 Py 22710 5 4 2QST2? Py A1) 5 (3.20)
The operator P; ; projects component %, j from a correlation matrix. I is the identity matrix.
The two-point correlation function for primary infection events is shown in Fig. 3.5(blue).
It seems to show that the correlation with a later second point is initially positive, with
possible clustering of events. The correlation then becomes negative, still allowing clustering

of events. Events then become anti-correlated (one event postpones the occurrence of the

next), until there is no form of correlation.

Reinfection TB events. The two-time correlation function for reinfection events can be

computed in exactly the same as above:

g2(t1,t2) = PO2E2 Py (eA(tz_tl) - I) (y) + ¢*QE? P33 (6A<t2_t1)<y2> - <y3><y3>)
FPQIER Py (2027 — 1) (y) + 2P Py (2027 () — (1) () )

4P QEI (127 (y1ya), — (1) (us) )
+¢?QE?] Py A2=0)5  2QREI? Py eAt2—0)5 (3.21)

The two-time correlation for reinfection events is shown in Fig. 3.5(green). It shows expo-
nentially declining correlation, and hence a possibility of clustering, over a time period of

100 years.
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3.4 Conclusions

Although deterministic approaches are widely used to model epidemics, the problem of
uncertainty (variance) associated with deterministic models has received little attention.
We used a ‘population size’ expansion technique to derive a Fokker-Planck equation for
the fluctuations in a model of TB only. Using this FPE, we derived differential equations
for the first two moments of an assumed Gaussian distribution of fluctuations around the
macroscopic variables. An alternative approach to modeling fluctuations and variance in
epidemic models is by means of stochastic simulation techniques. We used a Gillespie-type
simulation technique to produce stochastic realizations. The statistical variance over many
realizations were similar to those given by differential equations for the second moments of
the Gaussian distributed fluctuations.

One interesting result of this investigation is that fluctuations are large during the phase
transition of the epidemic. This is the stage when the epidemic loses sensitivity to its initial
conditions (i.e. how it came about) and starts its exponential growth phase. This result
suggests that when fitting the macroscopic model to data collected over the course of the
epidemic, greatest uncertainty should be attached to the macroscopic description during the
transition phase.

We showed how the expansion technique can be used to model the statistics of jump
events in nonlinear epidemic models. We developed a simple point process theory for the
occurrence of active TB episodes, comprising primary infection, re-infection and endogenous-
activation events. We used the FPE to study the temporal aspects of TB clusters, and
obtained an understanding of the timescale between active TB events: an age-independent
model implies long correlation times. The method can be used as the basis for understanding
the temporal component of TB clusters, which are currently only defined in terms of DNA
type. If the modeled intensities of active TB events are validated, then the model can be
used to warn against spurious conclusions from measured clustered data. For example, a
correlation effect may be incorrectly attributed to an infection trend, or to a particular type
of infection chain, while in reality it could be purely due to a fluctuation effect.

It is important to know if clustered active TB episodes are consistent with the dynamics
of a closed community. If they are not, and therefore require exposure to external sources of
infection to explain the observed clustering of TB events, it raises concerns for TB treatment
programs. Treating TB cases only in a particular community will not reduce its TB burden:
TB treatment programs must reach the wider community in order to be effective. One
can also question whether a mass action model can produce the observed clustering of TB
events. A model accounting for local contacts (household, schools) as well as global contacts
(e.g. in the wider community) may be essential for modeling temporally clustered active
TB events.



Chapter 4

An age-structured model of HIV
and TB in a South African

township

Guidelines for designing targeted TB interventions are desperately needed. The current
strategy is to implement DOTS, despite the fact it has failed to reduce the burden of the
TB epidemic in many of the communities where it has been tried [115]. Knowledge of the
ARI can be used to evaluate the ability of DOTS to control TB epidemics in a setting with a
high prevalence of HIV infection. An increases in the ARI in a dual HIV-TB setting is cause
for alarm, and calls for modified DOTS intervention. On the other hand, a decreasing ARI
could mean that DOTS is an effective control measure in this setting. Accurate estimates
of ARI are already part of protocols used to evaluate TB control programs. The problem
lies in improving the accuracy of these estimates.

Clinicians rely on indirect methods to estimate the ARI. In particular, they make use of
cross-sectional prevalence surveys to estimate time trends in the ARI. The most commonly
used method measures the prevalence of MTB among schoolchildren by means of TST
surveys. We use a binomial-chain type model to compute the likelihood of the recent TST
data set published in [30], which reports a very high prevalence of MTB among schoolchildren
in Masiphumelele.

Clinical data indicate that the HIV epidemic has played a role in shifting the TB epidemic
to younger age groups. In 1996-1997, the largest number of TB notifications was in the age
group 40-49. By 2004 it had shifted to the 25-30-year-olds. Introducing age structure into
the TB model of Sect. 2.1 adds a valuable layer of complexity, as it allows us to model
age-dependent TB notification and HIV prevalence data. We investigate if age-dependent
effects in the TB notification data can be reproduced by simply introducing age-dependent
mixing into the HIV dynamics. This would indicate a correlation between the rise of the
HIV and the TB epidemic.

We then build a next-generation matrix (NGM) and use it to explore the relative contri-

49
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butions that HIV_ and HIV, active TB cases are making to the TB epidemic. Knowledge
of the extent of the contribution that HIV cases are making can help guide current and
future TB control programs. If HIV, cases are making a significant contribution, then TB
control programs should arguably be structured according to CD4 count or other variables
correlated to HIV progression. If HIV, cases are not making a significant contribution,
then restructuring the DOTS program according to HIV disease staging criteria would not

significantly increase its effectiveness.

4.1 Estimating the annual risk of infection

A recent article has reported a very high prevalence of infection with MTB among children
aged 5 to 17 in a South African township [30]. It also showed that the annual risk of
tuberculosis infection (ARI) has remained at roughly 4% for the last 15 years. The results
are based on tuberculin skin tests performed in the year 2007 among 829 children aged
between 5 and 17. From such age-specific prevalences, it was possible to estimate the mean

annual risk of infection (ARI) experienced by each cohort (Tab. 4.1).

Age Mean
Category  Age Prevalence ARI
5-8 yrs 7.8 61/233 =26.2% 3.8%
9-11 yrs 10.4 70/222 = 31.5%  3.6%
12-13 yrs  13.0 107/237 =451% 4.5%
14-17yrs 151  73/139 =52.5% 4.8%

Table 4.1: TB prevalence and ARI in 2007 by age quartile for the 10mm cut-off point.
Reproduced from [80, Tab. 2].

Let ¢, denote the proportion of children aged x with a negative TST result. If these
children experienced a constant ARI a throughout their life, then ¢, would be given by
gz = (1—a)* soa= qalc/ ¥ —1. In [30], the value a is computed for four different age groups.
All the results are close to 4%. From this it could be argued that the ARI may indeed have
remained relatively constant in past 15 years.

The surprising thing is that the TB notification rate in the adult population has increased
by a factor of about 5 over the same period because of the rapid rise of HIV ([69, Tab. 1]. If
the sources of MTB have increased, why does the available data not show a corresponding
increase in the ARI? A possible explanation is that the duration of active TB episodes for
HIV, cases is short compared to that of HIV_ cases.

A comment on [30] pointed out that one should be careful when concluding that the
ARI has remained constant [92]. The author assumed on the contrary that the ARI has
been increasing each year by 10%, starting with an ARI of 1% in 1991. He claimed that
this assumption gives a good fit to the data from [30, Tab. 2].

We use both deterministic and stochastic models to relate ARI and the resulting preva-

lence of MTB. We show that one cannot definitively conclude from the data in [80] that
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the ARI has remained constant (as suggested in [80]), increased (as suggested in [92]) or

decreased. However, we show that a decreasing ARI is the most likely possibility.

Stochastic model

Let a(n) be the ARI in the year n. The probability for an individual aged = in 2007 to have

escaped infection is:

¢ = (1 —a(2006)) x (1 —a(2005)) x ... x (1 —a(2006 — z + 1)) .

If ¢, is the size of the cohort born in year m, then the probability that ¢ will be infected in
2007 is:

( c;.n )qi’”’i (1-q)",
where z = 2007 — m + 1. We use each cohort ¢, (Tab 4.2) of the prevalence data instead
of the specific cohort groupings used in [30, Tab. 2].

Fig. 4.1(a) shows the binomial distribution of the number of infected cases for a cohort
aged 7 in 2007, assuming a constant ARI of 4%. Using a(n) = a(2007) x r(*~2007) " where r is
the annual increase or decrease, we can construct a ‘confidence region’ for values of a(2007)
and r. For each choice of a(2007) and r we impose the condition that for each age group
the observed number of infected cases should not fall below the 2.5 percentile or above the
97.5 percentile, hence excluding 5% of each distribution.

Another approach is to give equal weight to all groups and to exclude the same amount
y from each of the 13 distributions, in order to exclude 5% overall. Using 1—(1—y)® = 0.05
to find y = 0.004 we see that the observed number of infected cases should not fall below
the 0.2 percentile or above the 99.8 percentile. The boundary of the first type of confidence
region is shown by the narrow (inner) dashed contour in Fig. 4.1(b). The boundary of the
second type of confidence region is shown by the wide (outer) dashed contour in Fig 4.1(b).

We can also make use of a chi-squared random variable and a standard hypothesis test
to obtain a confidence region for the ARI. From the binomial distributions for 2007 we can
compute the expectation value E, for the number of children infected with MTB in each
age group z. We also have observed values O, for the number infected in each age group
from the prevalence survey. The chi-squared variable is:

s (05 —E5)*  (Og — Eg)? (016 — Ei6)* | (017 — Eir)?

= + N +
X Es E¢ Ei6 Eq7

We have included the children aged 5 with those aged 6 and children aged 17 with those
aged 16 in the chi-squared calculation, due to small sample sizes in age groups 5 and 17.

Accordingly, their observed and expected values are added to their respective groups and the
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two degrees of freedom are deducted. A confidence region is constructed using the inverse
of the chi-square cumulative density function (CDF) with 10 degrees of freedom at a value
of 0.95. This region is depicted by a red contour in Fig. 4.1(b).

Also shown in Fig. 4.1(b) is the likelihood of observing the data set (Tab 4.2), calculated

as follows:

L= qzr,% X (1 - Q5)p5 X .. X q’f717 X (1 _ q17)P17 )

The likelihood is normalized so that the maximum value is one and the contour L = 0.05 is
shown in Fig. 4.1(b).

The results show that although a decreasing ARI is more likely given the prevalence
data, a constant or even increasing ARI cannot be ruled out. It does however rule out an
ARI increasing by 10% per year starting from 1% in 1991 (and reaching 4.6% in 2007) as
suggested in [92]. Based on this result, we adjusted a; from 0.0003/yr to 0.002/yr and k;
from 11.4/yr to 9.0/yr and found these values to give an ARI of roughly 4%.

Additional prevalence surveys are needed to verify actual trends in the ARI. Estimating
trends from this particular survey may be influenced by details of the histories of children
participating in the survey. We have assumed that all children were equally susceptible to
the sources of infection throughout their lives. However, children were eligible for the survey
if they were merely resident in the town and registered at the local school at the time of
the survey. Such uncertainties about the detailed cumulative exposure to the sources of
infection adds to uncertainty in the analysis.

In addition, an age-dependent ARI may have been acting in the community, which would
account for a relatively constant ARI in an environment of increasing exposure to MTB.
Notice that the ARI is lower for young children according to Tab. 4.2. It is unfortunately
not possible to disentangle time-dependent and age-dependent effects when estimating the
ARI from one prevalence survey.

The analysis improves our understanding of the ARI, and serves to calibrate parameters
in Ch. 2 (Tab. 2.5). Values of k; = 9.0/yr, a; = 0.002/yr and v2 = 6.0/yr, for example, can
be justified in the context of HIV-TB epidemics in Masiphumelele and would give a ARI of
roughly 4%.

age r 5 6 7 &8 9 10 11 12 13 14 15 16 17
Negative n, 1 27 66 78 62 47 43 65 63 45 15 5 1
Positive p, 0 9 18 34 30 24 16 42 65 40 19 9 5

Table 4.2: Tuberculin skin test performed in 2007
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Figure 4.1: (a) Probability distribution of the number of infected children in a cohort born
in 2000 assuming a constant ARI of 4%. (b) A constant ARI of 4% is indicated by lines
a = 0.04% and r = 1. We see that a decreasing ARI is more compatible with the prevalence
data, but that a constant or increasing ARI also lie within the ‘confidence region’, and
cannot be ruled out.

4.2 An age-structured TB and HIV model

Demography is integral to the epidemics and the tools of demography can help us understand
them better (for a review see appendix B.3). The linearized epidemic (i.e. the early epidemic,
when depletion of susceptibles can be ignored and when interactions between individuals
are linear) can usually be studied as a linear integral equation, which is analogous to the
characteristic equation of demography [15]. As a result some of the successful tools used
in demography, such as the basic reproduction number and the reproduction value, can be
adapted to epidemiology.

We present an age-structured model for HIV and TB interaction, adding age structure
to each compartment, while keeping the model as simple as possible. Age-dependence is
allowed only in the HIV submodel, while the TB dynamics (transmission and progression)
are kept independent of age. The model shows that age-dependent trends in TB notifications
can be explained by age-dependent effects in HIV transmission. The model is further used
to derive an age-structured NGM, and to show how this matrix can help us understand the
driving factors of the dual TB and HIV epidemic.

Modeling the unusual age structure of Masiphumelele

The age structure of Masiphumelele is unusual, as shown in Fig. 4.2(b). The community has
a surplus of young adults compared to children and elderly people. This is thought to be the
result of immigration, mostly from the Eastern Cape. Instead of modeling Masiphumele, we

model the age structure of a hypothetical township of which Masiphumele is a small sample.
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Figure 4.2: Parameter values: (a) Survivor function in a hypothetical population without
HIV or TB. (b) Age pyramid of the population of Masiphumelele according to 2006 census.
(c) Rate at which risky contacts are made as a function of age. (d) Distribution of partner
preference for a 30-year-old.
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This township is closed with respect to immigration. The model we present in this section
aims to capture the population dynamics of this closed population.

The ‘skewed’ age distribution of Masiphumele was taken into account when computing
aggregated HIV prevalence and TB notification rates. Our ‘sampling’ procedure can be
viewed as the process by which clinics register HIV and TB cases in the community .
This sampling process is also required to ‘maintain’ the age structure of Masiphumelele,
which has remained relatively unchanged between 1996 and 2004. The age distributions of
the hypothetical township and the actual age distribution of Masiphumele are depicted in
Fig. 4.2(a,b).

4.2.1 Model equations

Building on the model presented in Sect. 2.1, age-structure is added in a simple way to
capture an age-dependent feature of HIV infection. As in Sect. 2.1, the HIV submodel is a
one-sex model, and does not explicitly model how time since infection influences the spread of
HIV. Asin Sect. 2.1, the incidence of HIV is moderated by a response to HIV prevalence. An
age-dependent risk of contracting HIV is added, and it decreases exponentially in response
to HIV prevalence.

The HIV submodel is of course an over-simplification of HIV dynamics, and does not
include many of the known mechanisms of HIV models, such as concurrency [39, 77, 52],
commercial sex workers (CSW) [85], level of male circumcision [21], however it fits the HIV
prevalence data (structured by time and age) reasonably well. Masiphumelele does not have
many commercial sex workers, but various forms of commercial sex transactions make young
women especially vulnerable to contracting HIV. A high percentage of men are circumcised in
the community, being predominantly Xhosa—a culture where male circumcision is a custom.
We avoided all of these complexities, and included only one gender in a minimally structured
model for HIV dynamics.

The TB submodel is kept the same as in Sect. 2.1 and TB infection and progression
rates are not modeled as a function of age, although individuals age in the model. These
rates are in reality age-dependent, and the model presented shortly somewhat naive, but the
HIV-TB model presented in this section offers an explanation of how HIV and TB spreads
to younger ages. The model is stated in three parts.

For those not at risk of contracting HIV:

2The idea of modeling an ‘ordinary’ population and sampling from it using the ‘unusual’ population of
Masiphumelele was proposed by N. Bacaér, IRD, France
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(3 + 3) Solt,a) = —So(t,a) (ki Ii(t) + ko In(t)) /P() — s (t, @) Solt, a) ,

<§t+§t> Bo(ta) = (b} Solt, ) — 1 Eolt,a

—(a1+pa(t,a)) E

(5 + ;) Io(t,a) = (p1So(t,a) +qi Eo(t,a)) (ki 11(t) + ko I2(t)) /P(t)
of

)
—(bl + ml(t,a)) )

(t,a)) (k1 I (t) + ko2 I2(t)) /P(t)
o(t,a) + b1 Io(t,a),

t,a)+ a1 Eo(t,a).

For those at risk of contracting HIV:

(5 + 50) Si(ta) = =S (o (O + b2 Ealt) /P(O) - pa(t.0) 10,
_¢(taa)31(tva)
<(§t + aaa> El(t7a) = (p/I Sl(t7 ) —q B
—(a1 +p(t,a)) E
(8 + ai) Li(t,a) = (p1Si(t,a) +q Bt a)) (k1 Li(t) + k2 I2(t)) / P(t)
— (b1 +ma(t,a)) i (t) + a1 E1(t,a) — ¢(t,a)1(t, a) .

t,a)) (k1 I (t) + ko Io(t)) / P(t)

(
1(t,a) + b1 11 (t,a) — ¢(t,a)Er(t,a)

For those who are HIV+:

<§t + aaa> Sa(t,a) = Sa(t,a) (ki Ii(t) + ko I2(t))/P(t) — pa(t, a) Sa(t, a)
+¢(t,a)S1(t,a),

(5 + 52 ) Bt = (a(t.0) — a2 Bat) (s 10) + 1ot /(0
—(ag + p2(t,a)) Ea(t,a) + ba Ix(t,a) + ¢(t,a)Eq(t,a),

(5 + 50 ) Bt = (2Sa(t.0) 40 Ba(t.) (b 16) + o o) /P
(b + ma(t,a)) In(t, @) + as Ea(t, a) + é(t, )Ty (£, a) .

The boundary conditions are:

So(t,0) = pB, Ey(t,0) =0, Iy(t,0) =0,
Sl(t,()) :p,B, El(t, 0) = 0, Il(t,()) = O,
S2(t70) =0, EQ(tv 0) =0, IQ(tao) =0,

where p = 1 — p’ is the probability, assigned at birth and kept for life, that an individual
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is not at risk of getting HIV. In this simple model, TB infection and TB dynamics are not
age-dependent. In particular, the effective TB rate is calculated using total numbers of TB

cases divided by the total population (i.e. standard incidence). To this end, we define:

Il(t) = /OOO(Io(t,CL)—{—Il(t,CL))dCL,
o = | " Lt a)da,

2
i—

P(t) = Z/OOO (Si(t,a) + Ei(t,a) + Ii(t,a)) da.
=0

The risk of HIV infection ¢(t,a) is assumed to be age-dependent. The age-dependent force
of infection for HIV is based on a proportional mixing argument. It is stated in Eq. (4.1)

and is elaborated upon in Sect. 6.1.1, in a discussion about HIV dynamics.

4.2.2 Parameter values

Mortality. We assume that the survival curve (without HIV and TB) is given by S(a) =
exp(—¢a®) with ¢ = 10.7 and v = 4 (a in years). The natural mortality is then defined by
m(a) = —S'(a)/S(a). Mortality with HIV is given by ps(a) = p1(a) + 15, capturing a life
expectancy of 10 years with HIV.

TB-related mortality is assumed to be independent of age, as in Tab. 2.5. The age-
distribution in our hypothetical population is shown in Fig. 4.2(a), while the age-distribution

of Masiphumelele, according to a 2006 census in the community, is shown in Fig. 4.2(b)

Risk of contracting HIV. The force of infection for contracting HIV is formulated in
terms of an age-dependent risk of contracting HIV and an age-dependent preference for

partners:

H(a) et PO (@ B)[S2(t,)] b
J57 B(b, ) f(a,b)[S1(t,b) + Sa(t,b)] db’

¢(t,a) = F(H) (4.1)
where (3(a) is a measure of the risk of contracting HIV at age a and b — f(a,b) is the age-
distribution of partners of a person aged a. The function F(H) = e~*# | with H representing
the prevalence of HIV and A\ behavior change, reduces the transmission rate in response to
HIV. Fig. 4.2(c) depicts the following risk function:

0 if a < 15
a) = . 4.2
pla) { 5% 107° x 122 x (a — 15)2e~ 02415 if ¢ > 15 4.2
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For f(a,b) we use a normal distribution (see Fig. 4.2(d)). Although in reality men and

woman have different preferences, this risk function is sufficient for our purposes.

4.3 Simulation results

It is easy to be overconfident about epidemic models which fit available data. This confidence
can be unwarranted in models with many parameters, because good fit to data could well be
the result of the choice of structure and parameters in the model, and not of the correctness
of the model as a whole [20, Ch 6.2]. The following is a short outline of the procedure we
followed to fit the model to available data, as displayed in Fig. 4.3, in an attempt to apply
method to what is, by its very nature, an imprecise science.

The simulation (in the form of a finite difference scheme solved by Euler’s method) is
run until a demographical steady state is reached. At this point an HIV individual is
introduced, and the proportion of people at risk of contracting HIV adjusted (using p = 0.4
and the age-dependent parameters specified in Sect. 4.2.2, and A = 3) until a reasonable
fit to the aggregated HIV prevalence curve displayed Fig. 4.3(b) is found. The parameter
p influence the overall scale of the HIV epidemic, while A influences the rate at which the
prevalence curve levels off. It is worth pointing out that the steepness of the HIV prevalence
curve to the age of the index HIV case. It is also sensitive to the birth rate which have
been set to constant B = 200 newborns per year. Our motivation for this choice is that
we do a steady-state analysis. Adjusting the age-dependent risk function ((a) influences
the steepness of the initial HIV epidemic. It directly affects (by design) the spread of HIV
from older to younger age groups, and indirectly has the same effect on TB notification as
a function of age.

Having found the HIV-related parameters, a latent TB case is introduced into the com-
partment not at risk of HIV infection (Ey) and the model is run from demographical steady
state until an endemic TB steady state is reached. A 16-year-old HIV TB susceptible is
then introduced. The age-independent TB parameters specified in Tab. 2.5 give the simu-
lated epidemic curves shown in Fig. 4.3(a).

Fig. 4.3(c and d) is an attempt to fit the TB notification and HIV prevalence data when
they are disaggregated by age group and by year, as published in [69]. Fig. 4.3(c) shows
that in 1996-1997 the maximum number of TB notifications was in the age group 40-49.
Fig. 4.3(d) shows the estimated age structure of people living with HIV [123]. Since the HIV
epidemic affects young people and since HIV; people progress more rapidly from latent to
active TB, the maximum number of TB notifications has shifted to younger age groups.

In Fig. 4.3(c) there is a notable misfit between the modeled and the measured TB
notification data, particularly within younger age groups. The fit can be improved, although
not to complete satisfaction, by adjusting the age-dependent risk of contracting HIV §(a).
However, children may well experience different levels of MTB infection risk than adults.

Visual inspection of Fig. 4.3(c) also suggests that the risk of contracting TB could be age-



4.4. The next-generation matrix for an age-structured HIV-TB model 59

dependent for HIV, cases, but at this point we do not have to investigate this possibility.

The mass-action assumption used in the TB submodel is not a priori true. An obvious
next step would be to evaluate if different households are at different risk of infection. One
can also attempt to model two levels of mixing, one for local contacts (household, school,
workplace, and so on) and a lower level of risk due to mixing in the general community (a
theoretical framework for this type of mixing is developed by Ball, et al. [19]). We note
that only limited data on different TB strains, which in principle could provide an empirical
basis for mixing assumptions, are available for Masiphumelele.

With regards to TB mixing patterns, it is worth pointing out that a clustering analysis of
different TB strains, circulating in a community near Cape Town with a similar TB burden,
shows no association between age and ‘risk of being in a particular cluster’ [108]. However,
our focus in the remainder of the chapter is to study the influence of HIV, individuals in

spreading TB in the community rather than how they are contracting MTB as individuals.

4.4 The next-generation matrix for an age-structured HIV-
TB model

In this section we use the conceptual framework for building a NGM for an age-structured
TB model, adapting a general framework discussed in appendix B.1. The formulation will
be kept simple at first, and elaborated upon later, once the main ideas are illustrated.
The NGM formalism is thoroughly treated in Sect. 5.1, and applied to more sophisticated

age-structured models. Consider the following definition for the next-generation operator:

(Kep) (a) = K(a,0)p(a)da,
D(n)
where ¢(a) represents an infective distributed over some state. In this model, infectives
are distributed according to age, duration of infection, being latently or actively infected
and being HIV_ or HIV. We use the simplest formulation of the kernel K, given by the

following general form:

Fd(a+7-)

K(a,0) = $(a) /0 T h(r0) clas o+ 7) s

dr, (4.3)

with the following interpretations for the terms in the integrand:

Fy(a+T)

Foa) is the probability of escaping death 7 time units after the start of an active TB

episode at age «. This survival probability includes a factor e~ J&TT w@yda for natural
mortality and a factor e™7 (i = 1,2) for surviving active TB while HIV_ or HIV .
We make the simplifying assumption that disease-related mortality is independent of

time since infection.
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Figure 4.3: TB and HIV burden becoming more peaked at younger age groups. The data in
(a) and (b) are stratified according to age and year: 1996-1997 in red, 1998-1999 in green,
2002-2003 in blue, 2002-2003 in cyan and 2004 in magenta. (a) Aggregated number of no-
tified TB cases per 100000. (b) Aggregated number of HIV individuals. (¢) Disaggregated
number of notified TB cases per 100000. (d) Disaggregated number of HIV  individuals.
Data adapted from [69].
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e c(a,a) is an age-dependent contact rate for MTB infection, while h(7, «) is the prob-
ability of transmission, which in principle depends on the duration of (i.e. time since)
infection. In our model age does not directly influence the effective contact rate, but
influences the probability of becoming HIV,. The two contact rates are ki, ko for
HIV_ and HIV, individuals respectively, as in Sect 2.1.

e S (a) is the number of individuals, aged a, who are susceptible to TB, when the pop-

ulation is at steady state with endemic HIV.

Description of infectious episodes. To study this sequence of TB episodes, let us first
consider the category of HIV_ and smear positive I;(t,a) or smear negative F(t,a). The

recovery and activation events are modeled by:

0 0
<8t + aa> Il(t,a) = —b Il(t, a) + a1 E1<t,a) —mq Il(t,a),

0 0
(825 + 8&) El(t,a) = b Il(t,a) — a1 El(t,a) — ,U,l(t, a) El(t,a),

for HIV_ individuals, and a similar equation holds for HIV individuals. In this model, TB
progression is characterized by sequential episodes. A newly introduced infective undergoes
a series of recovery and reactivation events. The initial reinfection rate is assumed to be low
enough to be ignored. The probabilities are (conditional on survival) e 7 (i = 1,2) for HIV_
and HIV, active cases and e* 7 (i = 1,2) for HIV negative and positive latently infected
cases respectively.

Each individual undergoes, given that he survives, transitions according to the matrix

of transition rates:

and survives according to the survival matrix:

[ 0
F(r)= (O ,u1(T)> .

Collecting these ideas we see that the number of infections from the state (1, Eq) toward

susceptibles aged a, of which there are S(a) near the (TB) disease-free steady state, is:

k(a a) = M b1 P /OO eGT - f5+7 F(s) dsef f5+7 Dhiv(to+T,8) ds dr (44)
’ P \p pi)Jo ’
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where P is the size of the total population in HIV steady state and ¢, (t, a) is the force of
HIV infection acting on an individual aged a at time ¢t. The probability for an individual
aged a at ty (the year HIV is introduced into the community) to escape infection until at
least time (to + 7) is e~ J&T dnio(totr,s)ds

A general model for TB infection. Generalizing the NGM of Sect. 2.2 to model infec-

tion of between all types, we see that:

K(a,a) = /000 A(a,0,7)P(0,a,T)dr . (4.5)

A(a,0,7) models infectiousness towards susceptibles aged a of an infective in state 0, T years
into the infectious period. P(6,«,7) is the conditional probability that the infective is in
state 6 at time 7, given that he was in state a when his infectious period started. The
infective is aged o when his infectious period started (as an HIV_(I;) or HIV(I2)) and he
was introduced into a population in a disease-free steady state. Other than his age, his state
is specified by whether he is latently or actively infective, and HIV_ or HIV,. P(0,«,7) is

the solution of the following matrix equation:

2P0, 0,7) = Bl#,0,7) P(6,0,7), P(6,0,0) = 1. (4.6)
-

B(0,a,T) is a 4 x 4 time-dependent transition matrix acting on a state probability with an

initial value P(0) = I. For this model, B is given by:

B(r) =
— (a1 4 p1(b) + p'dniv(b)) b1 0 0
al — (b1 + m1 + P dniv(b)) 0 0
P’ Dhiv(D) 0 — (a2 + p2(b)) ba
0 P Phiv(D) az — (b2 + m2)

where b = a+7, p'pi (a+7) is a time-dependent risk of getting HIV and 1 (a+7) is an age-
dependent mortality, 7 years after being infected with MTB at age . Note that transitions
from one state to another are captured by off-diagonal elements of the matrix B(i,j, 7).

A(7) is a matrix of contact rates and susceptible numbers in the relevant categories:

0 pikiSi(a) 0  piksSi(a)

A(r) = 110 pikiSi(a) 0 pik2 Si(a)
Pl 0 phkiSala) 0  phky Sa(a)

0 pokiSa(a) 0 pykaSo(a)
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This matrix was previously assumed to be independent of time since infection (Sect. 2.2),
and was computed at a disease-free equilibrium value, in order to study the invasion of a
situation with endemic HIV by TB.

Numerical investigation into the properties of the NGM

Due to the time-dependence of B(t) we cannot write:
P(t) = e B p(o),
in analogy with the formula for a time-independent B:
P(t) = B P(0).

An analytical solution for P(t) can be obtained by means of a time ordered series expansion
in the time-dependent operator B(t) (e.g. a Dyson series expansion [93, ch. 4.2]). We can
approximate a numerical solution for P(6,«,7) in Eq. (4.6) by means of the discretized
transition matrix N(7;,), which remains constant over each interval A7 of a discretized time

since infection:

Pr(1h) = Br(Tn)AT Br(tn-1)AT . Br(T)Ar Pr(0),

where, dropping reference to 6 and a, P(0) is the 4 x 4 identity matrix. The NGM is
found by multiplying this by A(a, ), in the case where A(a, ) is independent of time since
infection. In the case where A(a, 0, 7) does depend on time since infection 7, the kernel K

is given by:

K(a,a) = M(7,) eBmAT P(r 1)+ A1) 802" D1 o) 4 ..
+ A(ry) BAT P(0) .

A more direct way to find P(,«,7) is to solve the ODE (4.6) directly. However, the
approach of a product of year-on-year exponential matrices fits conveniently within our

finite difference solution, which is updated at yearly intervals.

Distribution of infection period over infectious states. Taking a closer look at
Eq. (4.6) one sees that it can model the time an individual spends from when he is introduced
into a state. For example, the time spent in state ¢ at time ¢ by an individual who was
introduced into state j at time ¢ = 0, is given by the ¢’th component of the vector T" =
fg P(s)ds - P(0), where the j’th component of P(0) is 1 and the other components are zero.

The distribution of states over time since infection for a 30- and 50-year-old infective, is

shown in Fig. 4.4(a) and (b) respectively. From these figures we see that 30-year-olds spend
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more time in state Fs than in F. At 50 years the role is reversed, because of the reduced
risk of becoming HIV at age 50. It can be seen that the average time spent in an active

TB episode (the dotted blue line) is much less than one year.

The structure and spectral properties of the NGM. The structure of the NGM
is shown in Fig. 4.4(c). The reproductive value, i.e. the left eigenvector corresponding to
the largest eigenvalue, is shown in Fig. 4.4(d). Note that HIV_ individuals with active TB
make the greatest contribution to the TB epidemic. Their relative contribution decrease
between the ages 25 and 50, when they are at risk of contracting HIV. The second largest

contribution comes from HIV individuals on ART with latent and active TB.

4.5 Conclusions

We developed a stochastic binomial model for MTB infection among schoolchildren in order
to estimate the annual risk of MTB infection in Masiphumelele. Using M'TB prevalence data
from a recent TST survey among 5- to 17-year-old children in the community, we computed
binomial distributions for the number of infected children in each age group. We constructed
a confidence region for the value of the ARI in 2007, and its annual increase or decrease over
the preceding years. The likelihood of the observed data set was computed as a function of
these two parameters and its shape was compared with that of the confidence region. Our
analysis of the TST data set suggests that the ARI has most likely been decreasing over the
last 15 years. This implies that the DOTS program is in fact limiting transmission of TB
to HIV_ cases, despite a sharp rise in notified TB cases.

To investigate the role that the escalating number of TB cases who are HIV play in
spreading TB in this community, we built an age-structured model for the dual HIV and
TB epidemics. We were able to reproduce the age-dependent trends of TB notifications and
HIV prevalence in Masiphumelele, without making any of the TB parameters age-dependent.
Our model suggests that trends in TB notification follow trends in the spread of HIV. In
particular, both epidemics peak at younger ages.

We developed a next-generation operator framework in order to understand the relative
influence of different TB types on the spread of the TB epidemic. The left eigenvalue of
this matrix, associated with the largest eigenvalue Ry, is a measure of the relative influence
different infective types are making to the TB epidemic. We showed that the TB epidemic
is driven by HIV_ active TB cases. HIV cases spend too little time in the community to
make a significant contribution to the spread of TB. The next-generation operator formalism
is developed to study HIV and TB epidemics in South Africa as a whole. We focus on the
impact of a proposed universal test and treat strategy for HIV, which could potentially
reconstitute immune system health in HIV-TB co-infected individuals. This effect has the

potential of enabling DOTS to reduce the incidence of new HIV_ TB cases.



4.5. Conclusions 65

—E1
—n
---E2
---12

—E1
—n
---E2
---12

n I . .
20 25 30 35 40 a5 50 0 5 10 15 20 25 30 35 40 a5 50
Distribution of time spent (years) Distribution of time spent (years)

(a) infectious history of 30-year-old infectious history of 50-year-old

0

20 RV : : ---E
40 . . —
60 ! ---E

2
0 —_
20 0.1 2 4

1

I

40 1
60 :
0 1
20 1
40 0.05} :
60 .
1

1

1

1

1

0
20 Ca—

40 coo-

60 OP N Tl ‘ ‘

80 0 10 20 30 40 50 60 70 80
0 20 40 60 O 20 40 60 O 20 40 60 O 20 40 60 80 Age when became infected

(¢) NGM of TB infection (d) reproduction value of TB infection

Figure 4.4: (a) Infectious history of an infective who became active at age 30. (b) Infectious
history of an infective who became active at age 50. (c) The NGM. (d) The reproduction
value as the left eigenvector of the NGM corresponding to the largest eigenvalue. For these
parameter values the largest eigenvalue is Ry = 1.5. It seems to show that active HIV_
individuals are making the greatest contribution to a TB epidemic in a community with
high HIV prevalence. The contribution is reduced during the ages of 15 to 50 years when
they have a high risk of becoming HIV,, reducing their contribution to the spread of TB.



Chapter 5

An age-structured model of HIV
and TB in South Africa

In South Africa many HIV, people are never tested for HIV before they die of AIDS-related
symptoms. Many others are tested only at a late stage of HIV infection, when symptoms
are already present. Those that do have access to ART after an HIV test often already
have a very low CD4 cell count. Although ART saves lives and decreases viral load to very
low levels that are much less infectious, it is typically implemented too late in the infection
process to prevent the spread of HIV.

Recent modeling work [17] suggested that a very active program of HIV testing, with
all detected HIV people immediately receiving ART, could be an efficient way not just to
control the HIV epidemic but even to eradicate it within two decades. The model used in [17]
was relatively simple in structure and the assumptions somewhat optimistic. Nevertheless,
the modeling results were striking enough to make experts consider ART not only as a
treatment for HIV but also as a possible tool for preventing the spread of the disease, like
condoms or circumcision.

There are now more than 6 million HIV, people in South Africa alone, and more than
300,000 AIDS-related deaths occur each year in the country despite the current ART pro-
gram. ART costs at least 300 US dollars a year for each patient. Even if a universal test
and treat strategy (UTTS) could save several millions of lives, it would cost more than one
billion US dollars per year during its first decade after deployment. Funders need to be
convinced of the feasibility of such a costly project. Modeling can help produce a clearer
picture of the situation and how it could evolve.

In this chapter, building on our earlier study of a very simple HIV-TB model [17], we
investigate the advantages of the proposed strategy for the control of tuberculosis (TB),
which is the leading cause of mortality among HIV, individuals in South Africa. Whereas
until now in this project we have focused on data from a single township with exceptionally
high TB notification rates, we will now consider an imaginary ‘average’ community in which
TB and HIV statistics would be typical of South Africa at the national level. Modeling a

66
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hypothetical community is both deliberate and necessary: it is not feasible to model all 48
million South Africans. However, we have based this community on real data obtained from
antenatal clinics throughout South Africa.

The HIV submodel offers several improvements to the model of Sect. 2.1 by including age,
a variable for time since HIV infection, separate compartments for people receiving ART,
and various parameters taking into account the history of interventions against HIV. (For a
review of HIV-TB models, we refer to [17], to which one should add the more recent article
[21].) Of course, the question of which ingredients should go into the model is controversial.
There is no general agreement, for example, as to why the HIV epidemic spread so fast
in South Africa when compared to Central or Western Africa. Some think that the large
migrant male population working in mines and the associated female sex workers were a
key factor [51, 61]. Some put forward the low level of male circumcision [122]. Others
emphasize the fact that age at first marriage is relatively high in South Africa [22]. We have
avoided these difficulties in our HIV submodel, since we can already obtain, with relatively

few ingredients, a reasonable fit to age-specific HIV data from South Africa.

5.1 The next-generation matrix for structured epidemic mod-

els

The following is a generalization of the next-generation formalism, discussed in appendix B.2,
for epidemic models which account for demographical detail. This formulation will be used to
study age-structured HIV and TB epidemics. X denotes infectives, which can be structured
according to age and gender. A is an infection matrix, stating how many cases of each
susceptibility type are infected when it is assumed that the epidemic is linear, i.e. it models
the ‘early’ epidemic when susceptibles are not yet appreciably depleted. This assumption is
particularly important when modeling time since infection. It achieves an analogue of the
homogenous mixing assumption as it implies that the infectious period does not influence
the probability of making a potentially infectious contact with a susceptible [20, Ch. 8.1].
B is a matrix of transitions an infective may undergo during an infectious period.

Consider a linearized age- and infection-age structured epidemic model of the form

0X 0X 0X

54—54—? = —B(z,7) X(t,z,T) (5.1)
X(t,0,7) =0 (52)
X@@@z%%ﬁA@%ﬂX@%ﬂM@. (5.3)

We assume that there is no mother-to-child transmission. Here, X (¢, z,7) is a vector whose
components are the “infected” populations at time ¢ with age x and infection-age 7. The
square matrix A(z,y,7) is nonnegative. The square matrix B(z,7) has positive diagonal

elements and non-positive off-diagonal elements. Let C(x,7) be the transition matrix from
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age x to age x + 7, defined by

gi(xﬂ') =—-B(z+r7,7)C(x,7), C(x,0)=1,

where [ is the identity matrix. Then one can show that the “incidence” Y (¢,z) = X (¢, z,0)

satisfies the renewal equation
Y(t,z) = / / Alx,y+7,7)C(y, 7)Y (t — 1,y)dr dy . (5.4)
o Jo

Indeed, set F(t,z,7) = X(t + 7,2 + 7,7). Then

OF 0X 08X 06X
%(t,ﬂjﬂ') = (E + e + 877_>(t+7',x+7',7') =—-B(z+71,7)F(t,z,T).

So F(t,x,7) = C(x,7)F(t,z,0) = C(x, 7)Y (¢t,z). Therefore, X(t,y,7) = C(y — 7,7)Y (t —
7,y — 7). Eq. 5.3 then gives

Y (t,z) :/OOO/OyA(x,y,T)C(y—T,T)Y(t—T,y—T)dey

:/ / A('Iay?T)C(y77—77—)Y(t77—ay77—)dyd7-,
0 T

which is the same as (5.4). Looking for a solution of the form Y (t,z) = " Z(z) of (5.4), we

see that r is the unique real number such that equation

Z(x) = /OOO [/OOO Alx,y+71,7)C(y,7)e "™ dr] Z(y) dy (5.5)

has a positive solution Z(x). Finally, the basic reproduction number Ry is the spectral

radius associated with the eigenvalue problem
Ro Q(x) = / K(z,2)Q(2) dz (5.6)
0
where -
Ky) = [ Alwy+ 7.0 dr (57)
0

is the expected number of “secondary cases” aged x produced by one “primary case” that

got infected at age y.

5.2 Model equations

5.2.1 HIV submodel

We separate women (k = 1) from men (kK = 2). Let Sk(¢,z) be the density of HIV_
individuals at time ¢, aged x, and of gender k, in the sense that fyyf Sk(t,y)dy is the
number of Sy, individuals in the age interval (yi,y2). Let S} (¢, z,7) be the density of HIV
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individuals at time t, aged x, of gender k, that have been infected for 7 units of time, and
that do not receive ART. Finally let Sy (t,2) be the density of HIV individuals at time ¢,
aged x, of gender k, that receive ART. This structure is sketched in Fig. 5.1.

— HIV-

L

ART

i

HIV+

Figure 5.1: HIV structure.

Let pi(x) (vesp. pj(x,7), pj(x)) be the gender- and age-specific mortality for HIV_
(resp. HIV,, ART) individuals. Notice that mortality for HIV individuals also depends
on the time 7 since infection. Let ¢k (¢, ) be the force of infection, i.e., the rate at which
HIV_ individuals become HIV . Let g°(¢, z, 7) be the rate for starting ART, which depends
on the time 7 since infection and can change with time ¢ as access to ART improves. Let
©(t) be the mother-to-child transmission probability of HIV if the mother is HIV} but
did not receive ART before pregnancy. Let M (t) be the proportion of such women among
all pregnant women. We assume that women who received ART before pregnancy do not
transmit HIV to their children. We neglect HIV transmission as a result of breastfeeding.
Let B be the birth rate, which is assumed to be constant. With these notations, our model

is:

08y 0S,

ot " or _[¢k(ta ) + Mk(f'?)] Sk, (5.8)
os; 0S;  0S; o . N
ot + ox + or __[g (t7$77)+”k(x77)]5k7 (59)
asy oSy [, X o 3
e+ Gk = [ o) St r) dr e s, (5.10)

with k& € {1,2}, > 0, 7 > 0, with the boundary conditions:

Sk(1,0) = 2 [1 = M(1) + M)~ p(1))], (5.11)
St ,0) = dult, ) Su(t, 2), (5.12)
SH(t0,7) = gM(t) o(t) 6 (5.13)
S9(t,0) =0, (5.14)

and some initial conditions. Here d,—g stands for the “Dirac delta function”. We assumed
that half of all births are male and half are female. The system is completely specified
by defining the force of infection ¢ (¢, z) and the function M (t). Let o1 (resp. o2) be the
transmission probability of HIV per partnership from man to woman (resp. from woman

to man). Let c¢(x) be the turnover rate of sexual partners of women aged x. Women
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aged x choose a male sexual partner aged 2’ with a probability density w(z,’) such that
fooo w(z,2')dz’ =1 for all z. Let ¥(¢, x) represent the probability that a partner of a woman
aged x uses a condom. For a given age x, it is a monotone increasing function of time ¢ with
0 <¥(t,x) < 1. Set ¢*(t,x) = (1 —9(t,x)) ¢(z). We then assume that the forces of infection

for women and men are:

o1t x) = /00001 c(t, z)w(z,y) }S;ig’zi dy, (5.15)
Go(t,x) = /00002 (ty)w(y, x) iikg’z; dy , (5.16)

where we set Sy (t,2) = [(Si(t,x,7) dr and Py(t,x) = Sk(t,z) + Sj(t, ) + Sq(t, ). Notice
in Egs. (5.15)-(5.16) that individuals receiving ART are assumed to have a “normal” sexual
life and to be non-infectious. Let f(x) be the fertility of women aged z: the probability of
giving birth between age x and z+dz is f(x) dx for an infinitesimal dz. Then the prevalence

of HIV, women who did not receive ART before pregnancy among all pregnant women is

Jo f(x) Si(t,x)dx
fooof(:v) Pi(t,r)dr

Notice again that HIV status or ART is assumed not to change the fertility f(x). The use

of a constant input of births B that does not take f(x) into account may seem strange but

M(t) = (5.17)

we wanted to avoid the problem of exponential population growth, which in fact requires
geographic expansion whereas we will focus on a relatively small homogeneously mixing
population as explained below.

In summary, system Egs. (5.8)-(5.10) is an SIR-type model structured by age, time since
infection and gender. The boundary conditions (5.11)-(5.14) reflect vertical transmission of

HIV. The forces of infection (5.15)-(5.16) follow a “mass action” principle.

The basic reproduction number Ry for HIV. For simplicity, we shall neglect mother-
to-child transmission. The number of susceptibles in the disease-free steady state Sk () is
given by
T
Suta) = exp(~ [ ulo)dv) B2 (5.18)
0

We assume that the rate of starting ART is a time-independent function ¢g°(x, 7). We assume
that condom use (from the point of view of women) is a time-independent function ¥(x)

and set ¢*(z) = (1 —Y(z)) c(z). The linearized system near the disease-free steady state is
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of the form (5.1)-(5.3), as given in Sect. 5.1, with

Y Sy  B- B 0 A= 0 Ap 7
Sz 0 By Ay 0
Bk(l‘a 7-) = go(ZE? T) + MZ(% 7-) )

Aio(z,y,7) = o1 ¢"(z) w(z,y) Si(x)/Sa(y) ,
Az 1(x,y,7) = 02" (y) w(y, x) .

Ry is the spectral radius of the integral operator (5.6) with a kernel given by (5.7). With

the notations of the appendix, matrix C is a diagonal matrix whose diagonal elements are
Cr(z,7) = exp( [y Br(z +y,y) dy).

5.2.2 TB submodel

In the TB submodel we draw a distinction between individuals who are susceptible to
Mycobacterium tuberculosis (MTB)(S), who are latently infected with MTB (E), who are
actively infected with TB () and who are on treatment for TB infection (7). Let Sk (¢, x)
be the density of uninfected individuals aged = at time ¢ and of gender k. Let Ej(t,x) be
the density of individuals with latent TB, Ix(¢,x) be the density of individuals with active
TB, Ty(t,z) be the density of individuals receiving treatment for active TB. Fig. 5.2 is a

diagrammatic presentation of the model.

Figure 5.2: TB structure.

The active TB compartment [; includes all active cases: extrapulmonary cases, smear-
negative pulmonary cases and smear-positive pulmonary cases. It would not make much
difference to use three separate compartments, with a fixed percentage entering in each. We
assume a constant infectiousness at the average of the population.

Let 9 (t) be the force of infection, p(z) (resp. q(z)) the probability that primary infection
(resp. reinfection) of a person aged z leads shortly afterwards to active TB, a(z) the
reactivation rate, vy the rate at which active cases start treatment, s the rate at which
individuals stop treatment, € the probability of being cured after stopping treatment, x the
probability of still having active TB among those that are not cured after treatment. Let

m (resp. n) be the TB-specific mortality during active TB (resp. during treatment) and let
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0 be the natural recovery rate without treatment. With these notations, our model is

8Sk 8Sk
T e = oo T O+ o] S
0L , OB

W—i_ o =(1-=-x)A—¢e)sTr+ (1 —p(x))p(t) Sk + L I

= [a(=) ¥(t) + a(@) + k(@) Ex,

ol o1l

Sk Sk = (=) 5Ty + [ple) Sk + a(a) B4 (1) + ala) By
— [y + px(z) + m+ 8] I,

20t an = VI [s (@) + 0] T,

with the boundary conditions Si(¢,0) = B/2 and Ej(t,0) = I} (¢,0) = T(¢,0) = 0. Let w
be an effective contact rate including transmission probability. We assume that the force of
infection (), i.e., the rate at which individuals move out of the susceptible compartment, is
simply the product of x and of the prevalence of active TB, the latter being the probability

that the contact is with an active TB case. Therefore

. fooo(fl + Iy) dx

P(t) 2Py + Po)de

where P, = Sy + Ej, + I, + T}, is the total population of gender k.

The basic reproduction number Ry for TB. The disease-free steady state Si(x) is
again given by (5.18). Adding an additional variable 7 for the time since infection, the
linearized system near the disease-free steady state can be put in the form Eqs. (5.1)-(5.3),

as given in Sect. 5.1, with

Ey

X = X1 , B= B 0 , A= AL A sy Xp=| Ir |,
X 0 By Ay Ay T
&

—(a(z) + () B (I=x)(1—¢)s
By(z,7) = a(z) —(v + pk(2) + m + ) x(1—¢)s ;
0 ot —(s+ px(z) +n)
0 1—p(z) O _
K Sk ()
Ai(z,y,7) = x R _ .
K@y, 7) 8 p<0 ) 8 TZ(51(2) + 52(2)) da

Ry is the spectral radius of the integral operator (5.6) with a kernel given by (5.7).
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5.2.3 HIV-TB model

Combining the HIV submodel and the TB submodel, we obtain 4 x 3 x2 = 24 compartments,
as shown in Tab. 5.1. Newborns can be HIV, due to the possible vertical transmission of
HIV, but are born susceptible to MTB.

Table 5.1: Structure of the HIV-TB model

TB
susceptible | latent | active | treated
Women(l) HIV_ Sl E1 Il T1
HIV ST E} Iy Ty
ART Sy E? I3y T°
MGH(Q) HIV_ SQ E2 I2 T2
HIV S E3 13 Ts
ART S5 ES I3 Ts
The model equations for HIV_ individuals are
oS oS
2ok Tk es(t) Ty, — [cbk(t,x) +(t) + uk(m)} Sk,
ot Ox
OF OF
o T = (L) =) s(t) T+ (1= p(a)) (1) S + B 1
— [on(t, ) +q(x) () + a(z) + px(x)] By,
ol ol
Sk S = (U= ) () Ti (1) [p(e) Sk + o) By] + ala) By
— [or(t,z) + v + pr(z) + m + B] I,
oy 0Ty
9t + o v Iy — [¢k(ta$) +s(t) + p(z) + n] Ty,

with the “boundary” conditions
Si(t,0) = [1 = M(t) + M(t)(1 — o()]B/2,  Ey(t,0) = I4(t,0) = Tx(t,0) = 0.

We note that, compared to the TB submodel, we have now assumed that the rate s(t) at
which individuals stop TB treatment may depend on time. This is because we want to take

into account increased detection rates and coverage under the World Health Organization’s



5.2. Model equations 74

DOTS strategy during the 1990s. The model equations for HIV, individuals are

0 , 05} | 05

ot oz or

OE; OE: OE; . . e

% "oz | ar =(1-x)(1—¢e)s(t) Ty + (1 —p*)(t) Sy + B I
— [¢* v @) + a*(7) + ¢°(t, 2, 7) + pi(z, 7)] Ej,

=x(1—¢)s(t) T + () [p" Sk + " E] +a”(7) B}

= es(t) T} — [0(t) + ¢°(t, z,7) + pi(z, 7)] S},

oI} N or; oI}
ot ox or

— [V 4%t 2, 7) + g, T) + m* + 5] I,

oTy o1y 0Ty i . 1 s
with the “boundary” conditions

Skt x,0) = ¢r(t, x) Se(t,z),  Sg(t,0,7) = M(t) () (B/2) br=0
El(t,z,0) = ¢p(t,x) Ex(t,z), E;(t,0,7)=0,

I (t,x,0) = ¢p(t,x) I(t,z), I;(t,0,7) =0,

Ty (t,z,0) = ¢p(t,x) Ti(t,x), T5(t,0,7)=0.

Notice that the TB reactivation rate a*(7) is assumed to depend essentially on the time 7

since infection and not on the age x. Parameters v*, 8*,m*,n* are analogous to v, 3, m, n

but for HIV, individuals. Parameters p* and ¢* are analogous to p(x) and ¢(x) except that

the age dependence probably does not matter much (most HIV, individuals are adults).

The model equations for individuals receiving ART are

0SSy 0S5 &

L = [t St + ) T~ () + ()] SE

ot ox 0

OE?  OFE3 &

b+ S = [ ) Bdr + (1) (- 2) s 7 + (19 6(0) S
0

+ B I = [q° ¥ (t) + a® + p(2)] ER,

87];; 3];; - B 70 o Go o Eo o F°
St S = x (L= o) s(t) T +9(0) [° SF + ¢° Bf) + o° B
= [+ () +m® + B I,
ot¢ | OT¢ _

o * * o 70 o1 o
5 + o /Og (t,x,r)[lk+Tk}dT+7 I7 — [s(t) + px(x) +n°] T,

with the “boundary” conditions Sy (t,0) = Ey(t,0) = I2(t,0) = T¢(t,0) = 0. Notice that
individuals with active TB are assumed to get treatment against TB if they have been
chosen to start ART (the term [;° g°(t,x,7) I} dr enters the equation for 7} and not for
I}). For k € {1,2}, let Ry, = Si + Ej + Ii, + T}, be the total number of HIV_ individuals,
Ri(t,x) = [y°[S; + Ef + I + T;] dr) the total number of HIV, individuals without ART,
R} = S;+ER+I7+T} the total number of individuals receiving ART, and P, = Ry +Rj+Rj.
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We assume that the forces of HIV infection are given by

o1(t,x) = /00001 c(t, z)w(x,y) iig’z; d

po(t,x) = /00002 () w(y, x) izg’z; dy

Let P(t) be the total population at time ¢t. We assume that

K o0

[e.9]
— L+L+ I+ I3

is the TB infection rate, where p < 1 takes into account the fact that HIV TDB cases are

b(t) = 17 + I3 dT] da

less likely to have smear-positive pulmonary TB.

The basic reproduction number Rj for TB invading HIV. It is widely thought that
HIV ‘drives the TB epidemic in South Africa. The influence of HIV on TB can be studied
by formulating a next generation matrix for TB ‘invading’ HIV in endemic steady state.

The linearized system near the disease-free steady state can be put in the form (5.1)-(5.3),



5.2. Model equations

76

as given in Sect. 5.1, with

(z) (3 2) (1 0)
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0 R(1—p)S(x) 0|0 pr(1—p)Sx) 0|0 E(1—-p)Sx) 0
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Pl o REpS*(x) 0(0 pkp S*(x) 0(0 REpS*(z) 0
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where 2 = y + 7 and S(x),S*(z) and S*(x) refers to the equilibrium density of individu-
als who are HIV_, HIV, and on ART treatment respectively. P is the size of the total
population in HIV steady state.
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5.3 Parameter values

5.3.1 Demography and HIV

For the gender- and age-specific natural mortality pi(z) above 15 years of age, we used
the 1997 South African data from [1], which we smoothed somewhat to cancel out excess
mortality among adults in their 30s due to the rising HIV epidemic (Fig. 5.3(a)). We
know from [2] that infant mortality under age 1 was 43 (resp. 47) deaths per 1,000 female
(resp. male) births in 1990. We also know from [3] that under-5 mortality was 57 (resp. 63)
per 1,000 live female (resp. male) births in 1990. Between age 5 and 15, we tried to calculate
a reasonable estimate. For the age-specific fertility of women f(x), we used the data from
[102], which is given in 5-year age groups (Fig. 5.3(b)).

The assumed turnover rate of male sexual partners ¢(x) for women is shown in Fig.5.3(c),
with ¢(z) = 0 for ages under 14 years. We assume that function w(z, -), describing the choice
of the partner’s age, is a “triangular” probability distribution, i.e., equal to 0 for &’ < zpn(x)
and ' > Tmax (), with a maximum at 2’ = zop(z) and piecewise linear (Fig. 5.3(d)).

For the level of condom use ¥(¢, ), we assume that it is maximum at sexual debut (14
years) and decreases linearly with age until a certain age above which it stays constant.
The maximum of J(t, z) is assumed to increase from 0 in 1993 to 70% in 2007 and to stay
constant afterwards. The minimum is assumed to increase from 0 before 2000 to 50% in
2020 (the horizon of our simulations). The age above which condom use stays constant is
assumed to increase from 15 in 1990 to 60 in 2000. Fig. 5.4(e) shows, e.g., condom use at
ages 20, 30, 40 and 50 as a function of time. Reported condom use at last sex in the age
group 15-24 for the years 1998, 2003, 2005 and 2006 and in the age group 25-49 for the year
2005 was taken from [1], which summarizes different surveys (see data points in Fig. 5.4(e)).

We assume that the first person infected with HIV is introduced in 1985. One large HIV
survey done in 1986 showed that there was almost no HIV in South Africa at that time. We
assume that the first infected person is a woman aged 17. We assumed that the transmission
probability per partnership was oo = 45% from woman to man and o; = 90% from man to
woman. We assume that there are only B = 20 births per year in the model community.
With a median survival prior to HIV era of about 60 years, the homogeneously mixing
population consists of approximately 1,200 individuals. We note that this assumption on B
is critical to be able to reach a prevalence of HIV close to 1% in 1990 starting from just one
initial case in 1985 and with an initial doubling time of the epidemic of about 1.5 years.

We assume for simplicity that the mortality of HIV individuals is

pr (@, 7) = (@) + (1),

where v(7) is an age-independent AIDS-specific mortality. Fig. 5.4(a) shows v(7) as a
function of the time since infection 7. It gives a median survival time of 7 years. We assume
that individuals receiving ART have the same mortality as HIV_ individuals: uf(x) = px(z).

In South Africa, nevirapine became available in public hospitals in 2001. We assume
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Figure 5.3: Age-dependent parameters for the HIV-TB model for South Africa — Sect.5.2.3.
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that it reduces the mother-to-child transmission probability of HIV from 20% to 5% and
that access to nevirapine increased from 0 to 100% between 2001 and 2006 (Fig. 5.4(d)).
Fig. 5.4(c) shows the rate g§(7) at which HIV, individuals start ART as a function of time
since infection 7 in the basic scenario. ART became available in public hospitals only in
2004. We assume a progressive access A(t) to ART between 2003 and 2008 (Fig. 5.4(f)).
For UTTS, we call F' the frequency at which individuals are tested for HIV and assume that
F = 1/yr. For the implementation of the UTTS we assume a schedule C(¢) as in Fig. 5.4(f),
i.e., full implementation within the first quarter of 2010. More precisely, we assume that
the rate of starting ART is

9°(t,x,7) = A(t) g5 (1) + F C(1) U,

where U = 1 or 0 depending on whether the “universal test and treat strategy” is used or

not.

5.3.2 TB parameters before the HIV era

We choose an effective contact rate k = 10/yr, an age-dependent probability of fast pro-
gression after primary infection p(z) = 15% 6(x) with 6(x) as in Fig. 5.3(e), a probability of
fast progression after reinfection g(x) = 9% 6(x), a reactivation rate a(x) as in Fig. 5.3(f).
The coefficient 8(z) in Fig. 5.3(e) is similar to [109, Fig. 2]. Active TB cases are assumed
to suffer of a TB-specific mortality m = 0.25/yr. We also include a natural recovery rate
B = 0.25/yr. In this way, the probability of surviving from active TB without any treatment
would be 5/(m + ) = 50%, and the average length of disease without treatment would be
1/(m + ) = 2 years.

We assume that active cases are “detected”, i.e., start treatment at a rate v = 0.75/yr,
which corresponds to a case detection “rate” equal to /(v + m + 3) = 60%. The average
time spent with active TB (excluding the period under treatment) is 1/(y +m + ) ~ 0.8
years or approximately 10 months. The average length of treatment is assumed to be 18
months before DOTS and 6 months with DOTS. In South Africa, DOTS coverage increased
approximately linearly from 0 to 100% between 1996 and 2002 (Fig. 5.4(f)). Therefore we
assume that s(t) = (1 — D(t)) so + D(t) s1, where D(t) is as in Fig. 5.4(f), 1/s9 = 1.5 years,
and 1/s; = 0.5 years. Mortality during treatment is assumed to be p = 0.05/yr. We choose
a fraction of successful treatments equal to ¢ = 70%. We assume that half of unsuccessful

treatments return to the compartment with active TB: xy = 0.5.

5.3.3 Parameters related to HIV-TB interaction

We assume that the infectiousness of HIV, TB cases is p = 2/3 of that of HIV_ TB
cases. We choose p* = 30% and ¢* = 20%. The estimate for p* is substantiated by [101],
who estimated that TB incidence doubled within the first year of HIV infection, with a
further slight increase in HIV, miners for longer periods. Another study suggests that the
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Figure 5.4: Model parameters that depend on time since infection or that change over time.
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cumulative lifetime risk of MTB infection may be 5 times higher for HIV than for HIV-
individuals [120].

Keeping a natural recovery rate §* = 3 = 0.25/yr, we choose a TB-specific death rate
m* = 0.4/yr so that the probability of surviving without treatment is 5*/(m* + 5*) ~ 38%),
while the average length of disease without treatment is 1/(m* 4+ *) ~ 1.5 years. We
assumed that active cases are detected at a rate v* = 1.5/yr. The corresponding case
detection rate is v*/(v* + m* + %) ~ 70%. The average length of active TB (excluding
treatment) is 1/(v* +m* + %) ~ 0.47 years (5.5 months). We assume that mortality during
treatment for TB in HIV, individuals is p* = 0.1/yr.

We assumed that the reactivation rate with ART is a® = 0.01/yr, independently of the
stage of HIV-infection at which ART starts (this is obviously a crude assumption). Notice
that the value of a® is the same as a*(7) after 7 = 1 year of HIV-infection, but still 6 times
higher than the maximum value of the reactivation rate a(z) for HIV_ individuals. We
assumed that p® = 15%, ¢ = 10%, m® = m, ° = (3, u® = u (same mortality as HIV_
individuals), v* = v* (same detection rate as HIV individuals).

All parameter values are summarized in Tab. 5.2.

5.4 Simulation results

The model is solved numerically using a finite difference scheme and Euler’s method. As in
Sections 2.3 and 4.3, the HIV-related parameters are fitted first in a model with HIV only,
justified on the grounds that TB does not directly influence the spread of HIV.

The overall scale of the HIV epidemic is set by adjusting the transmission probability
per partnership from women to men (between 0 and 50%), assuming that the transmission
probability from men to women is twice this value. Together with a reasonable partner
turnover rate, for which our model gives about 10 lifetime partners at age 30, the model
gives a realistic logistically-shaped HIV prevalence over time. The steepness of the initial
rise is sensitive to the birth rate B, as pointed out in Sect. 5.3.1. The steepness of the
increase among 15- to 25-year-olds is sensitive to the partner turnover rate of women c(z).
The difference between the ages at which HIV prevalence peaks between men and women
is adjusted by means of the partner-choice function w(zx,y). This difference can also be at-
tributed to the difference in ages of sexual debut for women and men [50] (see also Sect. 6.2),
a dynamical effect we did not include. Adjusting these parameters to the values listed in
Tab. 5.2 gives a reasonable fit to the age-specific antenatal clinic data.

Fig. 5.5 shows the results of simulating the model with the parameter values with or
without UTTS. Fig. 5.5(a) shows the prevalence of HIV in antenatal clinics. Using data
from [10, p. 9]. Fig. 5.5(b) shows the crude death rate. The time series is the one estimated
by the US Census Bureau. Fig. 5.5(c) shows the prevalence of ART in the total population
(data obtained from [37]). For example, an estimated 488,739 individuals were receiving
ART in South Africa in November 2007, about 1% of a population of 48 million. Fig. 5.5(d)
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Table 5.2: Parameter values.

year of introduction of HIV to 1985
age of first infected case (a woman) 17 yrs
births in the community B 20/yr
mortality g () Fig. 5.3(a)
fertility f(z Fig. 5.3(b)
turnover of male sexual partners c(x) Fig. 5.3(c)
choice of male sexual partner w(z,2') Fig. 5.3(d)
reduced risk of fast progression 0(x) Fig. 5.3(e)
AIDS mortality v(T) Fig. 5.4(a)
starting rate of ART in the basic program go(T) Fig. 5.4(c)
mother-to-child transmission probability o(t) Fig. 5.4(d)
condom use U(t,x)  Fig. 5.4(e)
DOTS implementation D(t) Fig. 5.4(f)
implementation of the new strategy C(t) Fig. 5.4(f)
access to the basic ART program A(t) Fig. 5.4(f)
frequency of HIV testing in the new strategy F 1/yr
transmission probability from man to woman oy 90%
transmission probability from woman to man o9 45%
effective TB contact rate K 10/yr
self-recovery rate 16} 0.25/yr
length of treatment without DOTS 1/sp 1.5 yrs
length of treatment with DOTS 1/s1 0.5 yrs
treatment success € 70%
unsuccessful treatments with active TB X 0.5
reduced infectiousness of HIV+ TDB cases p 2/3
HIV_ HIV, ART
primary infection p(z) =15%0(x) p*=30% p° = 15%
reinfection q(z) =9%0(x) ¢ =15% ¢° =10%
reactivation a(x), Fig. 5.3(f) a*(7), Fig. 5.4(b) a®=0.01/yr
detection rate v =0.75/yr v =1.5/yr N® =¥
tb mortality m = 0.25/yr m* =0.5/yr m® =m
tb treatment mortality n = 0.05/yr n* =0.1/yr n®=n
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shows the age-specific prevalence of HIV among men in 2005.

The choice of TB parameters is guided by similar considerations as in [17]. The effective
contact rate k and the rate at which TB cases are detected for treatment ~, is adjusted to
fit the TB notification data for South Africa. Fig. 5.5(e) shows the TB notification rate
and Fig. 5.5(f) the TB-specific mortality. The data come from [11]. We do not show TB
prevalence or incidence as these statistics are not observed directly but estimated using
uncertain assumptions.

Fig. 5.6 shows the prevalence of HIV disaggregated into in 5-year age groups in women.
Notice that this prevalence coincides with the prevalence in antenatal clinics because we
assumed that f(x) is piecewise constant with 5-year age steps (Fig. 5.3(b)). The antenatal
clinic data by age group and the confidence intervals come from [10, p. 19] for the years
2005-2007, from [0, p. 8] for 2002-2003, from [5, p. 11] for 1999-2001. A national survey of
HIV prevalence [7] in 2005 gives extra data points for female age groups and the only data

points available for male age groups.
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Figure 5.5: Simulations and data. Plain line: no extra intervention. Dashed line: with

UTTS.
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Figure 5.6: Prevalence of HIV among women in 5-year age groups. Simulation and data.

is a data point from a 2005 national survey of HIV prevalence [7].
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5.5 Modeling the impacts of intervention

5.5.1 Universal testing and treatment for HIV

The basic reproduction number for HIV can be used to study the possible impact of inter-
ventions targeting the HIV epidemic. The kernel K of the next-generation operator, defined
by Eq. 5.7 in Sect. 5.2.1, is calculated with susceptibles in demographical steady state. The
age distributions of susceptible women (solid line) and men (dashed line) Si(z) are shown
in Fig. 5.7(a). If there were no condom use, no testing for HIV, and no subsequent ART, for
the whole duration of the epidemic, then computing Ry, the spectral radius of this matrix,
gives Ry = 2.00. The corresponding left-eigenfunction, which is the reproduction value (RV)
of women (solid line) and men (dashed line) in the HIV submodel, is shown in Fig. 5.7(b).
It appears that men are making the greatest contribution to the modelled HIV epidemic.
The reproduction value of women decreases from sexual debut onwards, due to a decrease
in partner turnover rate c¢(x), as shown in Fig. 5.3(c). The partner turnover rate of men
is not explicitly modelled, and the RV for men is a function the RV of women, and the
age-dependent preference women have for their partners.

This value for Ry = 2.0 is lower than our estimate of Ry = 7.0 in Masiphumelele in
Sect. 2.4 and is also lower than the value reported by Williams, et al. [118, p.562], who used
a model with no age structure. It is similar, however, to the estimate in [54], who studied
the impact of HIV disease progression on Ry of HIV. Ry = 2.0 as calculated in Sect. 5.2.1
cannot be directly compared to the value of Ry ~ 8 [118, p.562], estimated in a model
without age structure. If one adds the rows in the matrix K, one can indeed find age groups
of individuals who infect more than 8 partners of any age. Fig. 5.7(c) shows the number
of secondary infections (of al ages) caused by women (solid line) and men (dashed line) as
a function of the age at which they were infected. The averaging procedure across all age
categories, by means of the spectral radius of K, brings down considerably the ‘average’
number of secondary infections caused over an ‘average’ lifetime.

We see that Rg is a kind of average of the number of secondary cases caused by men
and women of different ages, as depicted in Fig. 5.7(c). However, the basic reproduction
number R does not have a simple interpretation for epidemic models with many infective
types. Formally Rg is the eventual growth rate of one generation infectives to the next. It
can be interpreted as the average number of secondary cases produced by a ‘typical’ index
case, once a stable distribution of infectives are reached with respect to age and time since
infection.

The average number of lifetime partners for a 14-year-old HIV_ woman, is given by:

/ c(x) e i Wy gz ~ 15, (5.19)
14

On these grounds, the partner turnover rate in the HIV submodel and a value of Ry = 2.0
is plausible.

Solving Eq. (5.5) for the growth rate numerically gives r = 0.28 per year, which gives
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doubling time of log(2) /r = 2.5 years. It should be noted that this doubling time corresponds
to the eventual per infective generation growth rate, once a stable distribution of infectives
are reached with respect to age and time since infection. This value for the doubling time is
understandably higher than a value that would be obtained by fitting an exponential curve
to the first few prevalence data points.

Ry for HIV can be used to get an idea of how generalized testing followed by immediate
ART enrolment could reduce HIV incidence at the population level. We compute and plot
Ry as a function of the rate at which HIV individuals enrol for ART and the percentage
of sexual contacts protected by condom use. Condom use is currently the HIV intervention
with widest coverage in South Africa. On the vertical axis of Fig. 5.7(d) is the degree of
condom use and on the horizontal axis is the time spent before an HIV individual tests for
HIV and enrols for ART. The time spent untreated is given by 1/ (¢ + v) years, where g°
is the rate at which HIV individuals enroll for ART, and is varied in this calculation, while
v = % /year is the rate at which HIV individuals die of HIV without treatment. This value
for p gives an average survival time of 7 years without ART, and is fixed in the simulation.

The contour line where Ry = 1 shows the relationship between these interventions and
the stability of the disease-free steady state. Note that without any ART program, i.e. where
the horizontal axis tends to 7 years, 40% condom use would have kept Ry < 1, averting a
major HIV epidemic. Further, the Ry contouring result of Fig. 5.7(d) suggests that a testing
rate of once every 2.5 years together with low levels of condom use, would have averted a

major HIV epidemic, had it been in place from the outset.

5.5.2 Increased TB detection rates

The basic reproduction number for TB only can be used to evaluate whether South Africa’s
implementation of the WHO DOTS strategy would have controlled TB, if there had been
HIV. Using the formulae for the kernel of the next-generation operator for TB at the end of
Sect. 5.2.2, and the parameter values summarized in Tab. 5.2, gives Ry = 1.5. The left eigen-
function corresponding to this eigenvalue is shown in Fig. 5.8(a). The result suggests that
active TB cases are making the largest contribution to the TB epidemic, and intervention
should target these cases first.

Ry for TB can be used to get an idea of how a DOTS program should function in
terms of treatment success ratios and case detection rates, in order to control TB in a (now
hypothetical) situation without HIV. We compute and plot in Fig. 5.8(b) Ry as function of
the percentage of cases successfully treated (vertical axis) and the average time spent with
active TB (horizontal axis), excluding the period under treatment, given by 1/(v 4+ m + f3)
years. v (detection rate) is varied in the simulation while m (TB mortality rate) and (3

(self-recovery rate) remain fixed.
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Figure 5.7: (a) Distribution of women (solid) and men (dashed) at demographical steady
state. The vertical axis denotes number of individuals. (b) The left eigenfunction (the
reproduction value) corresponding to the largest eigenvalue (the basic reproduction number)
for woman (solid) and men (dashed). (¢) The would-be impact of UTTS acting from the
start of the epidemic. (d) Number of secondary cases caused, disaggregated by age and
gender — women (solid) and men (dashed).
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5.5.3 The impact on TB of UTTS for HIV

We create a hypothetical situation in which TB invades a population where HIV has reached
endemic steady state. However, the HIV-control parameter values (condom use and ART
enrolment rate) as given by Tab. 5.2 leads to eventual eradication of HIV. Therefore, we
construct a scenario where HIV reaches an endemic steady state of 24% (see Fig. 5.9(b)).
To achieve this situation, we set the rate at which HIV, individuals test for HIV to 1/10
per year and the condom-use level constant at 10% for all age categories. The resulting
age distributions of women susceptible to HIV (blue), infected with HIV (red) and on ART
(green) are displayed in Fig. 5.9(a) in solid lines. The corresponding age distributions for
susceptible men are also shown in Fig. 5.9(a), in dashed lines.

The reproduction value of a model where individuals are tested and immediately treated,
once every ten years, on average, is shown in Fig. 5.9(c). Note that HIV_ individuals
with active TB make the greatest contribution to the TB epidemic. The second largest
contribution comes from HIV. individuals on ART with latent and active TB. We note
that the reproduction value for HIV_ active TB cases decreases between the ages of 15 and
50 years. These are the ages when they are at risk of becoming HIV ., which will reduce
the contribution they make to the TB epidemic. Fig. 5.9(d) shows the impact that testing
every year for HIV could have. The role of HIV cases on ART with latent and active TB
is reduced. A DOTS intervention in a situation of UTTS for HIV, will have the properties
of the pre-HIV DOTS program. Isoniazid preventive therapy will have a greater impact if
it is applied to HIV individuals on ART, rather than applying it to HIV_ latent TB cases.

Fig. 5.9(e) shows Ry as a function of the time an active TB case remain undetected in
the community, with HIV_ cases on the horizontal axis and HIV_ cases on the vertical axis.

In this scenario HIV individuals test every 10 years. Even though Ry is more sensitive to



5.6. Conclusions 90

changes in the detection rate for HIV cases, it is likely that detecting HIV_ cases will have
a greater impact in terms of reducing the spread of MTB. The short duration of TB disease
for HIV; cases offers little time for detection. In Fig. 5.9(f) HIV, individuals test every
year under UTT. The impact on the TB disease is that the detection time of HIV_ cases

can be extended while still having an impact in terms of reducing the spread of MTB.

5.6 Conclusions

We developed an age-structured model to evaluate the potential impact of a proposed uni-
versal test and treat (UTTS) program on the course of the HIV epidemic in South Africa.
Based on the knowledge that ART reduces viral load and thereby infectiousness of HIV .
cases, the strategy aims to use ART not only as treatment but also as prevention tool to
reduce the incidence of HIV. Our model indicates that even if all HIV cases on ART are
not at all infectious (an optimistic scenario to say the least) it will take some time to see
the impact of the proposed intervention, as measured by prevalence, should it be deployed
at a national level.

At this point we must give a word of warning about the limitations of our data and
the effect on our modeling work. Our most complete data on HIV prevalence and sexual
behavior come from women only and are collected at antenatal clinics. Our model is based
on this data - it offers a picture of HIV as seen from the ‘point of view’ of women. Further,
it is likely that if UTTS discussed above is approved, antenatal clinics will become key
players in implementing the strategy. Our model was formulated to represent HIV statistics
in South Africa at the national level. However, it is a simple matter to relate prevalence at
a national level to prevalence data collected at antenatal clinics. For this purpose we use
Eq. (5.17) which ‘weighs’ prevalence as a function of age and the age-dependent likelihood
of attending antenatal clinics.

To evaluate the potential impact of UTTS, we studied its impact on HIV prevalence. In
the absence of accurate direct measurement of incidence at a national level, we assume that
HIV prevalence will be used to monitor the immediate post-UTTS epidemic. Our modeling
result shows a drastic reduction in the crude death rate (Fig. 5.5b), returning within one
decade to pre-HIV rates, should UTTS be implemented immediately. However, our model
shows that there would not be a corresponding drastic reduction in HIV prevalence measured
in antenatal clinics (Fig. 5.5a). It is likely that health authorities will redefine ‘prevalence’
should millions of HIV individuals receive ART, in order to use prevalence as an effective
measure to monitor a post-UTTS epidemic.

The HIV submodel can be used to evaluate the impact of condom use and circumcision
among men, and ART for all, on the spread of HIV. A useful feature of the model is
that it can compare an intervention which is applied at different rates to men and women
respectively. The basic reproduction number for the population is equal to the square root

of the product of the basic reproduction numbers of women and men. An intervention that
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would impact on only one of the two factors, such as male circumcision, requires a factor of
0.75 reduction to achieve a reduction of 0.5 in Ry overall.

We also used the model to study HIV-TB dynamics at a national level, focusing on the
impact of UTTS on HIV-TB epidemics. The extent of the modeled impact depends strongly
on parameter choices for HIV-TB interaction. In particular, whether the TB epidemic will
recover to what it was in the pre-HIV era will depend on how comparable TB disease is
among HIV_ cases and HIV cases on treatment. We assumed that the primary infection
rate for HIV cases on treatment is the same as that of HIV_ individuals. Under this
assumption, UTTS can have a significant impact on the TB burden and mortality. Both
would fall significantly, as shown in Fig. 5.5(e) and Fig. 5.5(f) respectively, back to levels of
the pre-HIV era.



Chapter 6

The role of age separation in the
spread of HIV

In order to explore how age separation between partners can influence the spread of HIV,
we must consider interactions between demographical, partnering and HIV transmission
dynamics. These interactions are subtle but crucially important. The fact that HIV has an
incubation period of the same order of magnitude as the generation time of the population
means that demographical processes can influence the transmission dynamics of HIV [19,

, 41].  Conversely, HIV-mediated mortality will influence the demographical structure
of a population. It is therefore necessary to consider HIV/AIDS within the framework of
demographical models [19].

Understanding the nature of these relationships is key to investigating HIV transmission.
The spread of HIV through heterosexual contact is the dominant route of HIV transmission
in Sub-Saharan Africa [12, 99]. It has been recognized that pair formation and dissociation
play a central role in the spread of HIV and different approaches have been used to model
this dynamic [19, 59]. In models of serial monogamous relationships, the time spent either
between relationships or within relationships minimizes the potential of infected cases to
spread the disease. This effect can be significant when transmission probabilities are high, i.e.
during the acute phase of HIV infection. Susceptible cases, on the other hand, are protected
from disease if they are in a mutual monogamous relationship with another susceptible.
Models which do not account for the fact that a fraction of the population is engaged in
stable relationships will overestimate the transmission rate in a heterosexual population [19].
Therefore, our model explicitly includes relationship dynamics.

Data suggest that infectivity varies with time since infection. Measuring viral RNA
levels after seroconversion shows that viral load peaks within the weeks following infection.
If transmission probabilities are proportional to viral load, it implies high transmission
probabilities during the acute phase of infection, followed by reduced transmission during
the so-called asymptomatic phase. Thus far, time since infection has not been systematically

studied in pair formation models, although its importance has been suggested [59] (and
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references therein). To understand the impact of variable infectivity on Ry, it is necessary
to structure population models by time since infection. We do not focus on its influence
on transmission probabilities, but rather on its influence on a more fundamental aspect:
survival.

Age separation between partners in developing countries seems to be higher than in
developed countries [26], a fact which may help explain why HIV has spread much more
quickly in the former. Recent behavioral studies show that age separation between partners
may be associated with the persistence of the HIV epidemic in South Africa [63]. It could be
argued that behavioral intervention could contribute more to reducing the spread of HIV if
it discourages intergenerational sex. In this chapter we use a mathematical model to study
the extent to which variance in age difference in partner choice is necessary to establish and
maintain an epidemic.

It is believed that concurrent relationships played a crucial role in establishing a major
HIV epidemic, and that they continue to play a significant role in the persistence of the
epidemic [39]. The model we propose does not model concurrent relationships explicitly,
but approximates the influence of concurrency on the sexual network structure, by allowing
individuals to interact with ‘pairs’ of individuals in random contacts. We derive the NGM
of this model and use it to investigate if concurrency influences the criticality of variance in

the age difference between partners.

6.1 HIV spread in partnering models

Serial monogamy models

Standard SI models (as opposed to SIR models which track susceptible, infected and recov-
ered individuals) make the implicit assumption that contacts are made randomly, but in a
model with pair formation there are repeated contacts between the same individuals within
a relationship. The time spent in a monogamous loyal relationship has a quarantining effect
for susceptible couples. Furthermore, contacts restricted to relationships with one infective
(i.e. discordant relationship) or two (i.e. both partners are infected) offer a degree of pro-
tection to the community. It is useful to investigate this effect within the NGM formalism.
However, including relationship dynamics is rather difficult as one must consider all possible
relationship histories. For example, the protective effect (for the community), is greatest
when an infective is in a steady relationship during the initial (and very infectious) stage of
the infectious period.

We start from a straightforward extension of the model in appendix C, where an age-
structured partnering model is studied, introducing an extra level of indices for disease status
(0-susceptible, 1-infectious). The subscript k is used to indicate gender: k = 1 for women
and k = 2 for men. Let py;(t,a) be the number of young women and men aged a, not yet
eligible for relationships. Let pox(t,a) be the number of eligibles aged a who are susceptible

to infection and pij(t,a) the number of eligibles who are already infected. Susceptible indi-
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viduals in relationships are denoted by p.oo(t, a, b) representing the number of relationships
between a susceptible woman aged a and a susceptible man aged b, p¢ 10(t, a, b) representing
infected women in a relationship with susceptible men, p.1(t, a,b) representing susceptible
women in a relationship with susceptible men and pe11(¢, a,b) representing couples where
both partners are infected. The mortality rate for individuals aged a is modeled by p(a).
Disease related mortality rate is given by pgx(a). The rate at which young individuals aged
a mature into becoming eligible for relationships is given by ni(a). The rate at which eli-
gible woman aged a meet eligible men aged b is given by (a,b). Individuals are born at a
constant rate of B.

The model is an SI-type model structured by age and gender and tracks relationships
explicitly. Other forms of heterogeneity, e.g. in sexual activity patterns and other types of
behaviorial variation, are not explicitly modelled as these are sufficiently captured through

age dependencies (see Fig. 6.1). With these notations, the equations for the model are:

e For young men and women:

<§t * 81) pye(t,a) = —pi(a) pyr(t, a) — mk(a) pry(t,a) ,

B

pyk(t, O) = E .

e For susceptible men and women:
D 19 poltia) = —pi(a) porlt, @) + (@) pyi(t, 0)
ot da Pok\l, a - Hi\a) Por(l, a Ne(a) Pykll, a
+ / peoo(t,a,b) [o(a,b) + - (b)] db
0
+ / Pese (6 a,) [(a, b) + g (b)) b
0

_/ \I/(t,a,b,p()l,pog) db—/ \I’(t,a,b,pk/,pkn) db
0 0

—¢r(a) pox(t,a),

where k* = 2,k° = 01,k = 01, k" = 12 if k = 1 and k* = 1, k° = 10,k = 11, k" = 02
ifk=2.

e For infected men and women:
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(E(;)t 4 8aa> pik(t,a) = —pap(a)pir(t, a)

+/0<>0 peai(t,a,b')[o(a,b) + pge- (b)] db
+ /000 Peio(t, a, v) [J(a, b) + par- (b)] db

_/ \Il(t7a7b7pllap12) db — / \Il(taavbvpk’apk”) db
0 0
+¢k(&) pO,kJ(ta CL) )

where k* = 2,k° = 10,k' = 11,k" =02 if k = 1 and k* = 1,k° = 01, k' = 01, k" = 12
if k= 2.

e For couples:

(Dt,ap) Peoo(t,a,b) = —[o(a,b) + pi(a) + p2(b)] peoo(t, a,b)
+(t,a,b, po1, po2)

(Di,ap) peoi(t,a,b) = —[o(a,b) + p1(a) + paz(b)] peor(t, a,b)
—v1(a, b)peoi(t, a,b) + U(t, a, b, por, p12)

(Diap,) Pero(t,a,b) = —[o(a,b) + pai(a) + p2(b)] peo(t, a,b)
—t9(a,b)pio(t,a,b) + V(t,a,b,p11,po2)

(Drap) peai(t,ab) = —[o(a,b) + pai(a) + paz(b)] peai(t; a,b)
+1(a, b)peor(t, a,b) + Ja2(a, b)pe,10(t, a, b)

+\I/(t7 a, b7 p117p12) )

0 o o
where Dyop = (57 + 54 + 55)-

e The same function W is used for pairing eligible men and women over all disease-status

combinations:



6.1. HIV spread in partnering models 97

¥(poz,po1)(a,b) = 0. () [po2(t, a)por (t,b)]
Wor (e = 5o fua(talpn(t.0)
V(e = 50 (o (t.b)
Wpon(ed) = 5 (o (t)
Qe(t) = EQ /O oo[pok(t,a)—i-plk(t,a)] da. (6.1)

There are a number of caveats concerning the model and remarks regarding notation:

— Disease duration (i.e. the incubation period) is a crucial detail in realistic models
for studying certain aspects of HIV epidemiology, such as disease-related mor-
tality and the influence of progression on disease spread. Adding this level of
realism necessitates the use of numerical methods to study disease dynamics.
The focus of our model is to track couples where one or both partners can be
infected. Adding a variable to take account of a distribution over disease duration
adds an extra dimension to objects (usually a matrix) used in the simulation. The
object becomes too large when the many age categories (e.g. 1-80 age categories)
and many years of disease duration (e.g. 30 years) are modeled.

With age structure being our main focus, we model disease-related mortality as
independent of disease duration, by adding a constant rate to the disease free
mortality rate, see Sect. 6.1.1. This amounts to using an exponential survival

function for disease-related related mortality.

— We make the simplifying assumption of a constant birth rate, which together
with mortality can yield any desired age structure for the population. The pop-
ulation is studied at demographical steady state, which makes this assumption
less restrictive [59].

In an STD model what really matters is the rate at which new susceptibles enter
the population. Knowledge of immigrants can be combined with fertility data
to suggest a correct ‘birth rate’ although data on their disease status are rare,
especially in the demographical situations we consider. If some of the immigrants
are infectious, they will introduce a time-dependent infection intensity into the
community which will be very difficult to disentangle from age-dependent effects,
given the scarcity of data [20, Ch. 8]. For this reason we do not model immigra-

tion.

— The rate at which relationships form is determined by a harmonic mean func-

tion ¥, allowing relationships to form between all ages and disease (S,I=0,1)
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categories. The harmonic mean function to model individuals forming pairs in
steady relationships has its origin in marriage models, from demography (see ap-
pendix C). To keep things as simple as possible, we do not let the intensity of
relationship formation, x(a,b), depend on disease duration.

— A force of infection due to random casual contacts, is modeled by ¢ and ¢o for
eligible women and men respectively. The functional form used for this force of

infection is explained in Sect. 6.1.1.

Table 6.1 is a diagrammatic presentation of the overall dynamics. Individuals enter
as ‘young’, after which they ‘mature’ into eligibility. From here they may undergo a
sequence of eligible-relationship-separate-eligible cycles. The red arrow shows which
categories eligibles can infect, while the blue line shows which categories are involved

in steady-relationship infection.

Figure 6.1: A diagrammatic presentation of the partnering dynamics. YM-young men,
YF-young women, EM-eligible men, EF- eligible women, PM-partnered men, PF-partnered
women

6.1.1 Parameter values

The model of HIV dynamics is based on that of a hypothetical community. This commu-
nity is set up so as to give a realistic picture of HIV dynamics in a typical South African
township, as discussed in Sect. 4.2. Results specific to a particular township community,

like Masiphumelele, can be obtained by sampling from the hypothetical distributions in the
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model. The model does not capture the role of commercial sex workers (CSW) or concurrent
partners. Both of these processes will make age separation between partners less of a critical

factor in HIV becoming a major epidemic.

Demographical parameters

Natural mortality. We assume that the survival curve (without HIV and TB) is given
by the two-parameter function S(a) = exp(—wvia’?) with v; = 10.7 and vy = 4, with a (age)
given in years. The natural mortality is then defined by m(a) = —S’(a)/S(a). This gives a
life expectation of approximately 50 years in the absence of HIV, and the corresponding age
distribution is shown in Fig. 6.2(a). We use the same survival function for men and women.
The age distribution of the particular township community (i.e. Masiphumelele), according

to a 2006 demographical survey, is shown in Fig. 6.2(b).

Birth rate. To avoid clouding the issue with the complexities of the relationship between
relationship dynamics and a birth rate, we make the simplifying assumption that the birth
rate is constant at 200 newborns per year. As in [59], we study how HIV ‘invades’ a
population in demographical steady state, the state in which Ry is calculated, and a realistic
steady-state situation can be achieved with a constant birth rate. We use a birth fraction
of 0.5 for men and women, ignoring the fact that slightly more men are born than women.
The model does not include mother-to-child transmission, which is an important route of

intergenerational transmission of HIV in South Africa.

Sexual debut. We use a standard curve from applied demography to model the process of
maturing into eligibility for relationships. The curve depicted in Fig. C.1(b) is the cumulative

distribution of the extreme value distribution n(a) = 0.17¢~ 44112

, where a is the age of
sexual debut [57, p. 48]. We use the values a = 13 and a = 16 for the first age of eligibility
for women and men respectively.

In demographic studies this curve was originally used to model the age of eligibility for
a first marriage, and where men are generally modeled as being eligible for first marriage at
a younger age than women. We will use this function to model the process of maturing into
participation in sexual relations. For Sub-Saharan Africa, it is known that the age of first

participation for women is generally younger than for men.

Parameters related to relationship dynamics

Relationship formation. To model the ‘waiting time’ between being eligible for a rela-
tionship and participating in one, we model x(a,b) as f(a,b) * 1/w(a,b) where w(a, b) is the
average waiting time between relationships and f(a,b) is the distribution of partners. We
use a constant w(a,b) = w to adjust the intensity of relationship formation.

An ongoing behavioral study in Guguletu [62], another township near Cape Town,

recorded the age difference between 600 couples. Fig. 6.2(e) is a scatter plot which shows



6.1. HIV spread in partnering models 100

large variance in the age difference between men and women. In studies of heterosexual cou-
ples, men are mostly older than women. Fig. 6.2(e) shows that a normal distribution with
a mean of -3 years and a standard deviation of roughly 5.5 years?, fits the data reasonably
well. In this chapter we use a normal distribution with a mean of 0, as in Sect. 4.2 (see
Fig. 4.2(d)) and vary the standard deviation of this distrinution - it is the variance in age
difference between partners which is critical, not the mean of their age difference.

To model partner preference we use a normal distribution with a mean of 0 and we
adjust the standard deviation in different scenarios. We make the assumption that part-
ner preference is normally and symmetrically distributed, while noting that in reality men
generally choose younger women as partners. Our aim is to study the impact of the age
difference in relationships on establishing and maintaining HIV, and a symmetric partner

choice function is adequate for this purpose.

Relationship duration. The average duration of relationships is approximately % The
deviation from an exact exponential is due to the mortality of one of the partners within the

relationship. For the simulation depicted in Fig. 6.3 we used a value of o = 1/5 per year.

Parameters related to HIV

Fraction of individuals not at risk of contracting HIV. A feature of most epidemic
models is that simulated prevalence is too high. To remedy this we introduce a category of
individuals who are never at risk of contracting HIV. Another way of reducing the simulated
prevalence of HIV would be to adjust the risk of contracting HIV according to changes in
prevalence (see Sect. 2.1) or to increasing HIV-related mortality. The idea is that a high
prevalence of HIV or HIV-associated mortality will result in behavior change, when people
notice the burden of the epidemic. Both approaches are merely devices to address the
artificially high prevalence produced by compartmental models, and to fit prevalence data
retrospectively.

We use the former approach in this chapter, directing a fraction of newborns into a
category where they will not be at risk of HIV infection. This fraction is adjusted to achieve
the desired prevalence curve. We note however that the device is more questionable in this
setting, where we are interested in the details of HIV dynamics, than in a setting where the
influence of HIV on the TB epidemic is studied.

Transmission within discordant relationships. We define ¥;(a,b) to be the rate of
infection within a discordant relationship where the woman is aged b and the man is aged a.
In principle this rate depends on many factors: on whether the infective in the relationship
is a woman or a man, on the duration of his/her infectious period, on the duration of the
relationship, frequency of sexual contacts within the relationship, and many more.

There is evidence that HIV infectiousness is high during the first few weeks of infection

and much lower subsequently. To keep things simple we use an average infectiousness. If the
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average duration of an infectious period is T;, and the infectiousness as a time since infection

is Vg (a, b, 7), then the time-average of the infectiousness during an infectious period is [59]:

I
Vi(a,b) = T/ Im(a,b,7)dr.
i Jo

In the simulations below, we assume the average time of escaping infection within a discor-
dant relationship is constant and is approximately 2 years: ¥y = 1/2 per year. In practice,
this rate is thought to be different for male-to-female and female-to-male transmission, but
for simplicity we use the same rate in our simulations. Adjustment of this value must take
relationship dissociation rate into account (see relationship duration above), and this rate

should be appreciably lower than the infection rate within discordant relationships.

Risk of contracting HIV outside of steady relationships. An infection risk outside
of (steady) relationships can be introduced by ‘allowing’ susceptibles and infectives to make

random contacts. The force of infection for a man aged a can be modeled as [60],[13,
Ch. 11.3,13.3],[12]:

5" B®) f(a,b) pri(t,b) db

Po(t,a) = f(a) fooo B f(a,b) [p01 (t,b) +pul(t, b/)] dv’’

(6.2)

where ((a) is a measure of the risk of contracting HIV at age a, b — f(a,b) is the age
distribution of partners of a person aged a. It is an effective rate which includes a partner
turnover rate and transmission probability per casual relationship. An age-dependent part-
ner preference is built into f(a,b). This preference for casual partners could in reality be
different to the age-dependent preference for steady relationships, although in this discussion
we assumed they are identical.

The denominator in Eq. (6.2) accounts for proportionate mixing:

B(a) B(b) f(a,b) p11(t,b)
I5° BY) f(a,0) pr(t,v)dy’

(6.3)

for the rate at which men aged a meet women aged b during risky contacts. This, multiplied
with the probability that a random encounter is with an infective, p11(¢,b)/ [p()l(t, b) +
pn(t,b)], gives the rate at which susceptible men aged a make infectious contacts with
infective woman aged b. Integrating this over the ages of all women gives Eq. (6.2) for the
force of infection experienced by men aged a [56].

Fig. 6.2(c) depicts the following risk function 5(a):

0 if a < 15
5% 107° x 122 x (a — 15)2e~ 02415 if ¢ > 15



6.2. Simulation results 102

A time dependence could be built into this function to balance demand and availability
of partners [11]. Risk function ((a) is an effective contact rate, and includes a transmis-
sion probability per contact. In this case we assume that the transmission probability is
independent of age, and we absorb it in ((a).

Our formulation assumes that one contact is made with each casual partner, and leads
us to define a casual relationship as a single union initiated by a sexual contact. On the

other hand, a steady relationship allows for repeated contacts between partners.

HIV survival. We assume an average of 10 years of survival with HIV (Fig 6.2(d)). To

avoid complicating the model, we assume that

lak = px + 1/10 per year.

6.2 Simulation results

We use a deterministic finite difference scheme, updated in yearly intervals, to simulate
population dynamics. Different types of dynamics were introduced in the following sequence:

basic demography, relationship dynamics, followed by HIV infection.

Setting up the model. The population is first put into a demographical steady state
consistent with the prevailing demographic rates, as set out in Sect. 6.1.1. The timescale
associated with this steady state is of the order of a few lifetimes.

Relationship dynamics are then introduced and the model is put into a new steady state
consistent with rates associated with relationship dynamics, as set out in Sect. 6.1.1. The
timescale associated with this steady state is of the order of the duration of a relationship.
The partner separation rate is assumed to be constant and large giving relationships which
are short in duration.

At this point the epidemic is introduced by adding an infected individual into the (eli-
gible) population, and run until a new steady state (in the sense of stable age distributions)
is reached. The probability of establishing a major epidemic depends sensitively on the
denominator used in the partnering function, the age category into which the disease is in-
troduced, the average waiting time to enter steady relationships, and the level of risk allowed
for casual sex.

It is not possible to obtain a persistent epidemic in a model with serial monogamy only
(i.e. without any random contacts), when the denominator of the partnering function in-
cludes all eligibles, as in Eq. (6.1). As depicted in Fig. C.1(d) in appendix B, this choice of
denominator results in long waiting times between relationships. This, together with serial
monogamy, offers a substantial ‘protective effect’ and the epidemic dies out. Relaxing part-

ner preference (by increasing the variance of age separation in relationships) and increasing
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Figure 6.2: Age-dependent parameters in the age-structured partnering model. (e) displays
the ages of 1200 (600 couples) of men and women who were interviewed in Guguletu [62].
The solid line depicts equal ages for men and women in a relationship. (e) approximates
the distribution of age differences between partners as Gaussian.
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relationship dissociation rates, both help extend the duration of the epidemic, but it still
dies out.

One way of establishing a major epidemic is to reduce the waiting time between rela-
tionships by applying a weighting function to the eligibles in the denominator. A possible
age-dependent measure is depicted in Fig. 6.2(c). Numerical simulation confirms that a
major epidemic can be established when a appropriately weighted denominator is used in
the partnering function (6.1). The results are not realistic and are omitted.

A more realistic way of establishing a major epidemic, which adds interesting complexity
to the model, is to include a mechanism for risky behavior. We used the simple risk function
as depicted in Fig. 6.2(c). Various reasonable functions may be proposed, but it is not easy

to decide which one to use in this particular model.

Stable age structure. Fig. 6.3(a) displays the stable age distributions obtained by run-
ning the model for a few hundred years. The top figure displays the age distribution of
eligibles, with women making an earlier sexual debut than men. The middle figure shows
the age distribution of susceptibles and infective eligibles. Note the shift to the left of the
age distributions of infected women, as well as the higher peak in the age distribution of
infected women. These are both the result of women making an earlier sexual debut. The
result that female-to-male prevalence ratios can be created in a model without differential
susceptibility between males and females was previously mentioned in [50]. The difference
between the peaks of the age distribution of infected men and women can be enhanced by

making women face a higher age-dependent risk of contracting HIV (see Fig. 6.2(c)).

Equal risk for men and women. In Fig. 6.3(a,bottom) we show the prevalence of
disease as a function of age and gender. Note that the prevalence of disease is higher for
women and peaks at a lower age than for men. In this simulation we apply the same risk
function for contracting HIV to men and women. The shift between the prevalence of men
and women is the result of women making their sexual debut at a younger age, as depicted
in Fig. 6.3(a,top). It is not necessary to model a higher risk of infection for women to
obtain this result. Increasing the risk women have of contracting HIV enhances the shift in

prevalence as well as enhancing the difference in the peak.

Sampling a general population. To relate the simulation results to data from a real
community, like Masiphumelele, we sample from the simulation results from the hypothetical
population using the age distribution of Masiphumelele, which is depicted in Fig. 6.2(b).
Fig. 6.3(b) shows the prevalence trend produced by the model (in red). Viewing the township
as a sample from this wider community gives the prevalence trend pertaining to the township
(in blue). This procedure can be motivated on the basis of the township not being closed,
mixing also within the wider community. This sampling procedure is more effective than

extrapolating results obtained by modeling the unusual township to a wider population.
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Figure 6.3: Simulation of an HIV epidemic. (a) Steady-state age distributions. (b) Preva-
lence trends. Hj, (solid line) is the prevalence of women (k = 1) and men (k = 2) in a
hypothetical population. The same data in Masiphumelele is shown in the dashed line.

6.3 Age separation in partner choice and a threshold condi-

tion for HIV invasion

Age separation in relationships plays a critical role in the spread and persistence of sexually
transmitted diseases [118, p.562]. It is possible to study the role of age separation within
relationships in a linearized version of a two-sex model that includes age and time since
infection. Using the results from appendix B.2, we first build a next-generation matrix
(NGM) for an age-structured epidemic model, and then study its spectral radius, Ry, as we
vary the age separation between partners in our model (by varying the standard deviation
of an assumed normally distributed age difference between partners). A helpful example
can be found in [59], where the basic reproductive number in pair formation models was
studied. In this section we extend this method to model infection due to random contacts
and contacts within relationships. We also explore how effectively our model describes and
fits reality, a concern which was not evident in [59]. In an another paper [58], the same
author studied an iterative marriage model, modeling state transitions as a semi-Markov
process. We use a similar idea to model individuals participating in sequential relationships.

Consider the following definition for the next-generation operator (see appendix B.2 and
Sect. 4.4):

(Kp) (a) = /D ., Kaa)pe)da,

where ¢(«) represents an infective distributed over some state with domain D(«), by a
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distribution . We identify six infectious states for each age group, three each for woman
and men: eligible and not in relationships, in a relationship with a susceptible of any age,
and being in a relationship with a susceptible of a particular age. The kernel K of the

operator K can be written as:

K(a,a) = /000 A(a,0,7)C(0,c,T)dT

where A(a, 8, 7) models infectiousness towards susceptibles in state a of an infective in state
0, T years into the infectious period. C(0, «, 7) is the conditional probability that the infective
is in state 6 at time 7, given that he was in state o when his infectious period started after
he was introduced into a population in a disease-free steady state. C(6,«,7) is defined by

the following equation:

d

d—C(G,a,T) =B#,a,7)C(0,a,7), C(0,0,0) =1, (6.4)
.

where B(6,a,7) is a time-dependent transition matrix acting on a state probability with
an initial value C(0) = I, with I being the identity matrix. The transition rates in B are
duration (of state)dependent, and the individuals transitions are modeled as a semi-Markov
process [58]. Since A(a, ¢ 7') represents the number of infections made during a unit of time
since infection and T'(0, a) fo C(0, o, 7) dr is the total time spent in state 6, it is clear
that Eq. (6.4) accounts for the total number of infections during an infectious period, which
started in state a [10].

In this formulation, state refers to gender, being eligible for or partnered in relationships,
and age: a discrete and finite set of states. Using this approach, the next-generation operator
K is reformulated as a NGM. The spectral radius (Rp) of the kernel of this operator, the
matrix K, determines the stability properties of this system: when Ry > 1 the disease-
free steady state is unstable, and a major epidemic will occur. We did not perform a
mathematical study of the stability properties of this system (demography, random sexual
mixing, and steady relationship) but point out that Inaba [60] addresses the stability of the
endemic and the disease free steady states in a similar situation.

Consider first the matrix B(i, j, 7), governing transitions between being partnered and
eligible, for an infectious period starting at state j at time 7 = 0. B(i,j,7) is a 6 X 6 matrix
for an infective of a given age and has two non-zero 3 x 3 blocks: one in the upper left
section and one in the lower right section of the matrix. These sub-matrices are denoted by
Bi(i,j,7) and Ba(i, j, 7) respectively. They model transitions of an infective between eligible
and partnered states, for an infectious period starting at age j which act toward susceptible

partners aged i. More formally:
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Bl(i7j77—) 0
0 BZ(ivjvT) ,

B(iajaT) = (

where
Bl(iajaT) =
—pa(j+7)—Ri(j+71) fid2 + 0 figa + 0
Ri(j+ 1) —pa1(j +7) = figz — 0 =V 0
0 Y —par(j +7) = fige — 0

We note that:

e The age variable is discretized. In the simulations which follow we distinguish a =1 :

80 age categories.

e Bi(i,j,7) represents how the transition matrix depends on men aged i, 7 years after
she became infected at age j. Transitions from one state to another are captured by

off-diagonal elements of the matrix By (i, j, 7).

e u1(i+7) and pgr(i+7) denote disease-free and disease-related mortality, respectively.

)

We assume that the survival probability includes a factor e I 9T for natural

_ (It
mortality and a disease-related factor e ST pata) dr

e Hd7  The simplest assumption
to make is that disease related mortality is independent of disease duration. This
means that the infective faces disease-related mortality immediately after the infectious
periods starts. This gives a slightly smaller Ry than using a Weibull survival functions

gives (see Fig.6.2(d)).

e Bi(i,7,7)1,1, representing position (1,1) of the transition matrix By (4, j, 7), is the rate
at which a woman leaves the state of being eligible. This can happen due to mortality

wa1(j + 7) or due to

) 1 . .
Rl(j +T) = 972 K’l(vuj +T)p02(t7k)7

which is the rate at which she may enter a relationship with a susceptible man of any
age, where ). is the size of the total eligible pool, as given by Eq. (6.1). >  is a sum
over all age categories. This model tracks continuous distributions of individuals. In
particular, a fraction of the infected woman is partnered with each susceptible man.
The only way to track each individual in each relationship individually, is by means
of individual based models, which is the subject of Ch. 7.

e Bi(i,7,7)22 is the rate at which a woman aged (j 4 7) may leave a steady relationship
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with a susceptible partner of any age: she faces mortality i r(j+7), and a relationship

disassociation rate o, while the man faces an average mortality of:
faz =Y praz(v) Py(v,j +7) (6.5)
v

where Py (v, j + 7) is the probability that a woman aged (j + 7) is partnered with man
aged v. This probability can be computed from the relationship rate at the disease
free steady state. The probability of finding an infected woman aged (j + 7) in a

relationship with a susceptible man, after a partnering event, is given by:

U (t, po2 (i), pr1(j + 7))
> Ut po2(v),pr1(j + 7))

(6.6)

However, this level of detail will not matter if the relationship dissociation rate o is
much larger than the mortality rate, in which case ¢ will dominate the relationship

dissociation rate.
She enters the state of being in relationship with an infective at rate 19, which is the

rate at which she infects her uninfected steady partner.

e Bi(i,j,T)22 is the rate at which a woman aged (j 4 7) may leave a steady relationship

with an infected partner.

e Men undergo a similar sequence of transitions. Transitions between males and females

are not possible, explaining the blocks of zero in the matrix:

Ba(i, j,7) =
—pa2(j +7) = Ra(j +7) 1 +o fi2 + o
Ra(j+7) ~pa2(j+T) =1 —o =9 0
0 v —pa2(j+T) =1 — 0

The matrix A(4, j, 7), of infection rates, is given by:

0 0 0 A4 0 0
0 0 0 0 Ay 0
AGjn=| 0 0 0 0 0o 0 67)
Ajy 0 0 0 0 0
0 A2 0 0 0 0
0O 0 0 0 0 0

where:
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Ay = gfg) BG +7) Flird + 1) Pou(t,)
A275 = 9 [Iil(i,j + 7) poa(t, k‘)] ,
Ay = Cﬁ;& B() BU +7) £ +7) foalts )
Aso = O [ki(j+7,0) Por(t, k)], (6.8)

where the normalization factors in A(1,4) and A(4, 1) are given by

Ci(i) = > B) f(i,v)por(t,v),
Co(i) = Y Bv) fi,v) Poalt,v) -

We note that:

e Ay4 and Ass represents male-to-female transmission and A4 and Aso represents

female-to-male transmission.

e po1(t,i) and poa(t,7) are the number of susceptible eligible women and men at the

demographical steady state, the state into which HIV is introduced.

e The matrix A(i, j, 7) captures the rate at which a woman aged j infects men of age i.
In the partnered state for women, the rate As s is given by the transmission rate in a
steady relationship, ¥ multiplied by 1(7, j + 7)po2(t, k), which is the rate at which a

woman aged (j + 7) partners to a man aged i.

When calculating Ry in epidemic models, it is usually assumed that susceptibles remain
unchanged throughout the duration of the infectious period of the initial case, i.e. no
time dependence is included for the density of susceptibles. To do so seems acceptable
if the susceptible pool is large (a necessary assumption in Ry calculations) when the
initial infective is introduced, but infection within a steady relationship is an entirely
different process. However, the susceptible is clearly not susceptible for the duration
of the entire relationship and the transition matrix B (i, j, 7) accounts for the fraction

of relationship time that the susceptible escapes infection.

e In the eligible state for women the rate of infecting men aged 7, My 1, includes the
following factors: (i) for the rate at which men aged i make risky contacts (see
Fig. 6.2(c)). B(j + 7) for the rate at which women aged j 4+ 7 make risky contacts.
f(i, 7+ 7) modeling the probability of a casual contact between an infective aged j+ 7
and a susceptible aged i. The normalization factor accounts for all contacts between

susceptibles aged ¢ with partners of all ages.
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6.3.1 Numerical investigation into the properties of the NGM

We can approximate a solution for C(6, a, 7) in Eq. (6.4) by means of the discretized transi-
tion matrix N(7,), which remains constant over each interval At of a discretized time since

infection:

Cr(1n) = €BE(IAT Brlra—1)AT . (Be(m)AT ¢ () |

where, C(0) is the 6 x 6 identity matrix (dropping reference to § and «). The NGM is given
by:

K(@y) = Y Ap(r) eI Cr1) + Ag(rn1) D87 Cp(r, o) + - -
k=1,2

+ Ay (11) €5 DAT 04 (0)

A more direct way of finding C(6, o, 7) is to solve the ODE (6.4). However, the approach of
a product of year-on-year exponential matrices fits conveniently within our finite difference

solution, which is also updated at yearly intervals.

(a) infection of women by men (b) infection of men by women

Figure 6.4: (a) The top left block represents the number of eligible women infected by eligible
men who themselves became infected when eligible. The number of infections caused drops
from red toward blue. The top right block represents the number of eligible women infected
by eligible men who became infected when they were in a relationship. The bottom right
block represents the number of partnered women infected by men who became infected when
they were in a relationship. (b) A similar block representing infection of men. It is slightly
offset from the block depicted in (a), due to the different rate at which men and woman
mature into eligibility.

Structure of the NGM. Fig. 6.4(a) shows the expected number of women infected
by men. The top left block represents the number of eligible women infected by eligible

men who themselves became infected when eligible. The top right block represents the
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Figure 6.5: (a) The spectral radius of M, i.e. Ry, as a function of the standard deviation
of an assumed normally distributed partner choice function (see Fig. 6.2). The function is
plotted for o = 1,1/2,1/4,1/6 in red, green, blue and cyan respectively. For Ry to be greater
than one requires a age separation of roughly 1.5-2.5 years. (b) The result is sensitive to
the relationship dissociation rate, the relationship formation rate and to the infection rate
within relationships. (c) The same relationship between Ry and age variance in partner
choice when the risk of contracting HIV through risky contacts is increased by a factor of
1.3. A smaller variance in age difference between partners can sustain an HIV epidemic. (d)
The left eigenvector of Ry, i.e. the basic reproductive value, as a function of age at infection.
It shows the relatively smaller contribution infectives make when they are infected at an
older age.
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number of eligible women infected by eligible men who became infected when they were in
a relationship. The bottom right block represents the number of partnered women infected
by men who became infected when they were in a relationship. Regions to the left of the
dotted line in each block are zero, since children don’t participate in the epidemic.

A similar block representing the infection of men is displayed in Fig. 6.4(b). It differs
slightly from the block depicted in (a), due to the different rate at which men and woman
mature into eligibility. Note that our model parameters and the conclusions we have drawn

represent a generalized situation, and would need to be adjusted to fit specific situations.

Relationship between Ry and variance in age difference in partner choice. The
NGM represents the number of infected cases of different types (age, gender and being
eligible or in a relationship) caused by infectious cases of the same types: position (i,7) in
this matrix is the number of cases of type i caused by an infective who became infected
when in type j. The largest eigenvalue, called the spectral radius, gives Ry for this model.

We assume susceptibles to be (and to remain) in a steady state when constructing this
matrix, so the Ry we obtain is an upper estimate of its true value. This is the usual approach
in disease invasion studies, which use Ry as an invasion criteria. It could be instructive to
use simulation results to supply time-dependent susceptibility counts to the matrix, and to
repeat the study presented in this chapter for an advanced epidemic. It may be that these
results depend on the stage of the epidemic.

In Fig. 6.5 (a and b) four Ry curves are plotted as a function of standard deviation
of the normal distribution for partner choice (from here onward simply referred to as age
separation) between partners, with the average relationship lasting 1, %, %7% in red, green,
blue and cyan respectively. In Fig. 6.5(a) random mixing, between eligibles, dominates
and the relationship separation has almost no influence on Ry. In this scenario we used
parameter values of k = 5 /yr and v = 0.5 /yr respectively. The relationship state can
be made more critical by increasing the partnership formation rate and by increasing the
infection rate within relationships. If we use parameter values of k = 50 /yr and v = 2 /yr,
then infection within discordant couples happens at a rate comparable to infections outside
of steady relationships and Ry increases with an increase in the separation rate. This scenario
is shown in Fig. 6.5(b). The overall infection rate tends to one dominated by infections due
to random risky contacts when the separation rate is very high. In Fig. 6.5(c) the rate of
risky contacts outside of steady relationships is increased by a factor of 1.3, leading to age
separation playing a less critical role in disease spread.

An investigation (not displayed) indicates that a very similar Ry curve can be obtained
when the age of sexual debut is 14 years for both men and women. The R curve is only
slightly shifted, with 1.5 to 2.5 years still being a good estimate for the smallest age-difference
in relationships that would sustain an epidemic. The result is not strongly correlated to the
age difference at sexual debut. A similar finding was reported in [50], who found that

delaying sexual debut results in only a small reduction in lifetime risk of infection.
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It is often said that steady relationships protects partners from HIV infection and that
reducing the length of relationships should increase Ry, but this truism is not a prior: true.
It is possible that increasing the rate of relationship separation can decrease Ry, as reported
by [59, Fig. 2]. One critical detail is the infection rate within a discordant relationship: If
the infection rate is slow then longer-lasting relationships can actually increase Ry. Detailed
information about the age-dependent characteristics of both random mixing and discordant

relationships are required before the infection process can be completely understood.

Reproductive value. Fisher considered that each female child was given a ‘loan’ at
birth, a loan that could only be repaid by her future offspring (see appendix B.3). He then
constructed a function of age, called the reproductive value, representing the fraction of her
debt repaid by a certain age: it is exactly 1 at birth and then increases as the individual
faces mortality while making no contribution to the population size. As the individual
becomes sexually active, the reproductive value increases to a point where the woman starts
repaying her debt. In growing populations, her debt will be repaid before the oldest age of
childbearing. Examples of demographic reproductive curves are shows in Keyfitz, et al. [(5,
Ch. 8.1, p.188].

The left eigenfunction of the NGM operator K, or the left eigenvalue of the NGM matrix
K, is analogous to the fraction of debt paid back by an infective during his/her life. Our
NGM matrix is structured according to heterogeneity in our population, and we can use it
to compare the contribution different types of infectives are making to the future infected
population.

Fig. 6.5(d) shows the ‘infectious reproductive’ values of our four infectious types as a
function of age. The shape of the reproductive and depend strongly on the shape of the ‘risk’
function for contracting HIV (Fig. 6.2(c)). This risk curve resembles that of the fertility
of women as a function of age (Fig. 5.3(b)). Justification of the use of this curve can be
made on the same grounds as basing population-level HIV trends using data from antenatal

clinics, as we did in Ch. 5.

6.4 Concurrent relationships and the criticality of age sepa-

ration

It is thought that concurrent partnerships played an crucial role in the emergence and
continue to play a role in the persistence of the HIV epidemic [I13]. However, the details of
the role of concurrency in the spread of sexually transmitted diseases has thus far not been
reliably determined, and the extent of its impact on the spread of HIV has been questioned
[82]. One counter-argument hinges on the observation that HIV doubling times are relatively
long: 8-16 months is reported in [78, Tab. 3]. If concurrency were a driving factor in the
spread of an HIV epidemic in a sexual network, the observed doubling time would be much

shorter [117]. The argument is that HIV has a high initial (a few weeks) and much lower
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subsequent (a few years) infectiousness. Concurrent partners are therefore more likely to be
infected in the early part of an infectious period.

Concurrency and risk heterogeneity partly determine how interventions should be struc-
tured. Early interventions that were informed by risk-structured models and targeted risk,
sexual behavior and mixing patterns, were found to be ineffective if they did not also reduce
concurrency [39]. Although this cannot be a decisive argument regarding the importance
of concurrency in the spreading of HIV, it does appear that concurrency and risk hetero-
geneity processes produced highly complex sexual networks which can be said to exacerbate
transmission of the disease.

Understanding how sexual networks are formed is therefore vital to modeling the HIV
epidemic. The effect of concurrency could be modelled by allowing individuals to have casual
short term relationships, regardless of whether they are active in a current relationship. The
result is a network consisting of edges which can be thought of as always active, and edges
which define a network in terms of all possible partnerships that may form in a period of time
(one year, five years or a lifetime) [38]. This approach is not expected to impact much on
the critical role payed by variance in age difference between partners, since the influence of
an infective in a steady relationship closely follows that of one confined to mixing outside of
steady relationships. The difference is determined by the length of an average relationship.
The following approach sheds more light on the impact of concurrency on the threshold

behavior.

Using a modified next-generation matrix to model concurrency

In order to help focus our discussion we remove explicit steady relationship dynamics from
the model presented in Sect. 6.1. What remains is a process through which individuals
become infected through proportionate random mixing. Now suppose that in addition to
the random contact process described in Sect. 6.1.1, all individuals take part in another type
of contact process, at a slower rate.

This contact process leads to events which cause an infective to infect not only a ran-
domly encountered susceptible, but his/her susceptible partner. This introduces concurrent
triads (clusters of three) into the population, where an infectious event infects everyone in
the particular cluster. For clarity we use small clusters, where two susceptibles can be in-
fected by an infective, but the method can be generalized to included larger clusters. Using
the proportionate mixing approach of Sect.6.1.1, the force of infection faced by men aged a

becomes:
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¢2(t7a) = / B CL b pn(t b) db

ta

CQta/

/ G0
c2ta/ / B(b)3*(a) f(a,b) f(b,a’) [por(t,b)] [pr2(t, a’)] dbda’
JAC

ol

a)f(a,b)f(b,a’) [p11(t,b)] [po2(t, a’) + pra(t,a’)] dbda’

a')f(a,b)f(b,a’) [pn(t, b)] [pn(t, a’)] dbda’,

where

e The first term in ¢2(t,a) represents proportionate contacts between a man and a
woman. The second term is the risk a man faces when ‘joining’ a pair where the
woman is susceptible and the man either susceptible or infected. The third term is the
risk faced when joining an infected man and a susceptible woman. The last term is
the risk he faces when joining two infected women. In this case, the man forms a link
between the two women, and the term is not meant to model direct contact between

the two women.

e ((t,a) is a normalization factor for contacts of men aged a, at time ¢:

Os(t,a) = / B f(a, V) pri(t,b) dv/
/ / BB () fa,b)f(V,d') Pi(t,b) Pa(t,a’) db' da’
T / / B ()3 (@) f(a, ) £V ') Py (8, ) Pa(t, o) dbldal
0 0

where Py (t,b') = [po1(t,0') +p11(t,V)] and Py(t,a’) = [po2(t, a’) + pi2(t, a’)]. The first
term in the normalization factor accounts for ‘usual’ random mixing through the first
term. The second term models the number of ways in which a susceptible man can be
infected as a consequence of pairing up with all possible pairs of women and men. The
second term models the number of ways at which a susceptible man can be infected as
a consequence of pairing up with all possible pairs of women. An assumption is made
that the probability of making contact with ‘dyads’ is independent of the probability
of making contacts with ‘monads’. It is assumed that these contacts lead to infection,
and the order in which infection happens in a ‘triad’, with two susceptibles and one
infective is ignored. §*(a’) is the effective rate at which all susceptibles in a triad gets

infected.

e The rate at which triads form is given by a function (*(a,b’,a’). It is assumed

that *(a,b’,a’) factorizes into independent partner turnover rates: [*(a,b’,a’) =
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B*(a,t)3*(b',a’). The rate at which individuals make this contact (i.e. forming small

clusters) is assumed to be lower than ordinary random contacts: 5*(a) < f(a).

e The probability that a man-woman-man pairing will form is given by a function

f(a, b ad"). Tt is assumed that f(a,b’,a’) factorizes into independent partner choices:

f(av b/7 a/> = f(a7 bl)f(b/7 a/>'

e This formulation offers flexibility in including higher order clusters. The general for-

mula for the normalization factor is':

S 00 o
l;/o /0 B*(al)"'ﬂ*(ak)f(ahaQ)"'f(akfl,ak) «
[P(t’al)P(t, a2) s P(t, ak)] dal ce dak,

where S is the order of the largest cluster included. Note that the subscripts of for

men and women are omitted, to help illustrate this general form.

The basic reproduction number Ry Concurrency, in the form of triads involving an

infective and two susceptibles, is included in the contact matrix M as follows:
A Arg
Aij= ’ ’ (6.9)
A2 Azp
where
e A;; is the number of infections of suceptibles aged i, caused by infectives who got

infected when aged j. The normalization factor is Cy (resp. Co) when i = 1 (resp.
i=2).

!The formula proposed for the normalization factor is inspired by the so-called cluster expansion to model
interacting gases in statistical mechanics [38, Ch. 9]
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A1) = gff?)ff(jM)fuﬂ,wﬁm(t,i),

o 52 8@ O + 700 (1) .4
A@2,2) = T@') %jﬂ*(i)ﬂ(k)f(jm k) f (i k) Do (£, k) poa(t, )
AR = S8+ T+ 7)),

+In D2 57 (16 + TG K) Pt ) (),
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e The normalization factors C;(i) and Ca(i), at time ¢, are given by:

Ci(i) = Z B)f(v,j +7) [por(t,v)]

+ Z 55 ()8 (w) f (v, j +7) f (v, w) [Poa(t, v)] [Po1 (8, w) + Poz(t, w)] ,
Co(i) = Z B(0)f(j +7,0) [poz(t,v)]

+ Z B (0)3*(w) £ (7 + 7, 0).f (v, w) [por (£, v)] [Por (£, w) + poz(t, w)] .

e A(2,2) is the rate at which susceptible men aged i are infected by infective men who
got infected at age j, through women of all age categories, who act as ‘vectors’ in
this process. Similarly, A(1, 1) represents women infecting women through men. The
second contributions to A(1,2) and A(2,1) are the rates at which women (resp. men)

infect men (resp. women) indirectly through a third partner.

The simulation results presented in Fig. 6.6(a) are surprising. Our first conclusion, shown in
Fig. 6.6(a), concerns the effect of concurrency on the critical role played by age separation is
explored by setting 8* = 0.5, 0.73, 0.80 and 0.90 respectively. It appears that increased
numbers of clusters diminish the critical influence of age separation in the spread of the
epidemic. This result was previously found in a Reed-Frost model with ‘tunable’ clustering
23],

Secondly, it is interesting to note that concurrency can be an important factor even
when infectiousness is not modelled as dependent on time since infection. The result shows

that concurrency can be an important factor even in models with a long infectious period.
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Our third and most surprising conclusion concerns the impact of concurrency on the
doubling time of HIV. Fig. 6.6(b) is a simulation result showing prevalence as a function of
age. Here it is assumed that §* = 3. It could be anticipated that including concurrency
would drastically increase the doubling time and final prevalence of the epidemic, but our
results suggest otherwise. Prevalence as function of time is still reasonable, and can be
adjusted to fit an observed curve, even when the formation of triads happens at the same
rate as that of dyads. The normalization factor has moderated the impact of concurrency

on the prevalence curve.
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Figure 6.6: (a) Comparing the relative influence of concurrency, as approximated by the
formation of triads between individuals. The relative rate of currency, (s is varied as a
fraction of B1: B2 = 0.5041, 0.731, 0.83; and 0.95. (b) Realistic doubling time and prevalence
curves in a model where 30% of individuals participate in concurrent relationships. Hj, (solid
line) is the prevalence of women (k = 1) and men (k = 2) in a hypothetical population. The
same data in Masiphumelele is shown in the dashed line.

The influence of concurrency on Ry and doubling times is not as straightforward as it
seems and must be explored in the context of many possible transitions and histories which
can be played out in an individual’s lifetime. The value of the NGM is that it takes all

possible transitions, as given by a transition matrix, into account.

6.5 Conclusions

Attempts have previously been made to model the impact of intergenerational sex on the
spread of HIV. An interesting study is that of Hallett, et al. [50] which developed a math-
ematical model for the heterosexual spread of HIV in order to study the population-level
impact of behavioral interventions, focusing on reducing cross-generational sex and delaying
sexual debut. Their conclusions were surprising. It was found that endemic prevalence is
higher with cross-generational sex, and that female-to-male prevalence ratios can be created
in a model without differential susceptibility between males and females. In all scenarios

investigated, they found that delaying sexual debut results in only a small reduction in
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lifetime risk of infection. More surprisingly, they found that reducing cross-generational sex
has a limited effect on lifetime risk of infection if not accompanied by a reduction in the
number of risky contacts.

Our more subtle approach to modeling age difference and HIV spread indicates that, in
fact, a critical level of intergenerational sex is required to establish a major HIV epidemic
in a heterosexual population. Building on the framework used in previous chapters, we
formulated a next-generation operator and estimate Ry, the epidemic threshold criterion.
We showed that a critical level of age separation, given by roughly 1.5-2.5 years standard
deviation of a normally distributed (with zero mean) partner choice, is necessary for a major
HIV epidemic. The result is insensitive to the difference in the average age of sexual debut
for both men and women.

The result is however sensitive to the details of partnership dynamics. For example,
increasing the rate at which random contacts occur reduces the criticality of the role played
by intergenerational sex in establishing a major epidemic. Another critical aspect of the
model is the infection rate within discordant couples. To measure the relative impact of
different infectious types (classified according to age, gender, relationship type) we proposed
the use of the left eigenvector associated with the largest eigenvalue.

The influence of concurrency was modeled by a modified proportionate mixing scheme.
We first simplified the model by not including steady relationship dynamics explicitly. Then,
in additional to random casual contacts, we allowed individuals to meet pairs of individuals,
thus creating more routes of infection. We propose the use of a normalization factor which
can in principle be generalized to handle large groups of individuals. We found that adding
‘triads’ (groups of three) already increases the connectivity of the sexual network to such
an extent that the critical role played by age separation is diminished, although in many
communities it remains critical enough to warrant attention.

There is an interplay between age separation and concurrency: if a person has more
than one partner, it is likely that they will not be the same age. Concurrency can therefore
lead to variance in the age difference between partners [31]. Behavioral interventions should
aim to discourage both intergenerational sex and high partner turnover rates in order to

help control the epidemic.



Chapter 7

Deterministic and individual-based
STD models

We develop simulation and analytical tools to study variation and fluctuations in age-
structured partnering models. We noted (in Ch. 3) that macroscopic equations are approxi-
mations to population models when there are so many individuals involved that fluctuations
can be neglected. To better understand the nature of fluctuations in partnering models, we
investigate two different techniques. One is a Gillespie-type stochastic simulation technique,
which focuses on individuals [15]. The other is an analytical technique, which goes be-
yond the macroscopic approach, but does not model all the information contained in the
microscopic model. Instead, the method gives an intermediate description, modeling the
fluctuations in the system by means of a system of differential equations [103].

Information regarding life events at the individual level can be averaged to obtain a
description of dynamics at the population level, a description which may shed light on the
complexities of sexual networks and the spread of epidemics. During his lifetime an indi-
vidual experiences a number of events: birth, maturing, relationship participation possibly
a number of times and finally death, each of which can be seen as putting the individual
in a certain state. When an individual life cycle can be described as a Markov chain, we
can compute and assign probabilities to a sequence of life events. The method we use ‘sums
over all possible individual histories’.

In epidemiological models we can apply the method to the linear and early epidemic,
when susceptibles are not yet appreciably depleted. This would allow us to compute dis-
tribution for statistics and variables in models which can be compared to real-world data.
When the stochastic process is non-linear, as many interesting epidemic models are, then the
Laplace technique becomes considerably more difficult. For non-linear models, we developed
a Gillespie-type simulation platform, as well as a master equation approach.

We show how a Fokker-Planck equation (FPE) can be derived to model fluctuations in
non-linear age-structured populations. The method is based on that of van Kampen [107,

Chp 10] and models the fluctuations around macroscopic or mean-field values as proportional
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to the square root of the population size [39, Chp 8.4]. The method relies on an expansion
technique in which only the first two terms are required to formulate the FPE. Initial effort
spent in deriving a master equation and expanding it in terms of a parameter proportional
to the inverse of the size of the population, is rewarded by having differential equations for

the variance and co-variance of macroscopic variables.

7.1 Linear dynamic models and the Markov approach

Connections between the many ways of studying problems of linear population dynamics
are summarized in appendix B.3. When the population-level process is given a stochastic
individual-level description and the resulting master equation is linear, linear operator theory
comes into play in a powerful way. The linear theory discussed in this section gives a
complete description of a linear system. We see that the resolvent of an operator describes
the probabilities of all possible transitions through states, because it is essentially a series
expansion of the projection operator, where each term in the series corresponds to successive
iterates of the projection.

Let us assume a Markov process for the transition of an individual between an arbitrary

but finite set of states, obeying the following master equation [107, Chp 7]:

Pi(t) = Z{’Yz‘jpj(t) -5 Pi(t)}, (7.1)

where 7 are constant rates at which random jumps between states occur. Suppose one knows
a sequence of times at which jumps took place, as well as the levels (ig,i2,- - ) occupied

before these jumps:
0< Tilyy < T2, <o <oy, < t‘is

The probability for any level i to survive for a time 7 is e where v; = > ;. The

probability for a jump to occur between 7 and (7 + dr) is:

Yji e 1iTdr ,
hence the probability density for the particular realization is:

Yiiio eXp[_7i071]7i27i1 eXp[_%1 (TQ - Tl)] X

X’Yisi571 eXp[_’Y’£571 (TS - 7_3_1)] exp[_’yis (t - TS)] .

The solution of Eq. (7.1) is obtained by integrating this realization with respect to arbitrary

sequences of jump events, summing over all possible sequences and initial conditions. The
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derivation is done in detail by [107, Chp 7].
The highlights are as follows. First regard P; as components of a vector P and then

define matrices:

Xij(t) = e '
Yii(t) = e,

to obtain:
— o0 3 Ts Ts—1 p)
By = v+ / dr, / dy1 / dry .. / in
s=170 0 0 0
XY (t — 1) X (75 — Ts—1) X (T5-1 — Ts—2)...X (11)] - ﬁ(O) ) (7.2)

Introducing the Laplace transform changes the convolutions into products of matrices X and
Y:

P(\) = - P(0).

YO+ Y{XWP
s=1

The solution of (7.1) is thus expressed as a sum over histories (i.e. a sum over all s and
intermediate times 71, ..., 75), and is finally obtained by means of the inverse Laplace trans-

form:

. 1 c+1i00

P(t) = MY (M){1— XN} 1 dx- P(0), (7.3)

2mi c—100

where ¢ is taken to the right of all the singularities of the integrand. The asymptotic
behavior is determined by the pole of the integrand with the largest real part (compare with
appendix B.3).

The Markov process given by Eq. (7.1) can of course be studied by means of a transition

matrix:
Bi(t) = WP(t), (7.4)
where W;; = ;5 — 0i; Zj, 7j7i- The poles of the integrand in Eq. (7.3) are the eigenvalues

of W and the two approaches give equivalent descriptions of the asymptotic behavior of the

system. Furthermore, W can be expressed in terms of its resolvent [91, Chp 6]:

1
W = 7{ AR\, W) dX.
27 A=a
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where a is greater than all the eigenvalues of W and the resolvent of W is
ROAW) = Y(A){1-X(\)L.

This short excursion shows how the Laplace transform can be used to study the asymptotic
properties of a Markov process. Some non-Markov processes can also be studied using this
technique. For example, an age structured HIV model is studied by Inaba [60]. After
transforming the problem to an integral equation, the Laplace transform is used to find
the functional form of the next-generation operator. The spectrum of this operator is then
analyzed using Perron Frobenius theory and the existence of an eigenvalue with a dominant
real part is proved. In appendix B.3 we study the one dimensional renewal equation of
demography, using the same approach.

The Laplace approach leads to further insights. The framework in which the probability
distribution in Eq. (7.3) is defined allows one to compute probability generating functions,
which can be used to calculate the average time spent in each state, the correlation between
time spent in different states, and the number of times each state is entered.

There is an equivalence between the exponential of the state transition matrix and
the inverse of the resolvent of the state transition matrix. It shows that solving for the
distribution of states in a system by means of an exponential of the state transition matrix

over a time interval, takes all possible histories over the time interval into account.

7.2 Simulating age-independent partnering dynamics

The Gillespie simulation method, originally used to study reacting chemical systems’ [15], is
used to study partnering and infection models at an individual level. The algorithm provides
the following input to a simulation algorithm: (1) when will the next reaction happen, and
(2) what type of reaction will it be? Estimates for these two values (a continuous-time
estimate in the first and a reactant type in the second) are calculated by taking all current
reactants and types of interactions into account. The method is modified here and built into
a framework which can be used to track individuals in a partnering model. The method is
first applied to a Markov model where all rates are independent of age.

The method is refined to maintain a list of person objects (see Tab. 7.1) in an individual
based stochastic model. Each person object in the list contains enough information to
characterize a particular individual uniquely. During the simulation, events are scheduled
which update characteristics (or ‘fields’) of individuals in the list. Tracking the list of
person objects over time allows us to construct a realization of the stochastic evolution of
the system. From this list we extract interesting statistics regarding the underlying process.

A list of relationship objects is also maintained. Each relationship object contains infor-
mation about the man and woman participating in the relationship: what their identities
are, when the relationship formed, what their ages were when the relationship formed, and

so on. This allows us to construct a realization of the stochastic network object which un-



7.2. Simulating age-independent partnering dynamics 124

derlies the partnering model. This object is analyzed statistically to gain more insight into
partnering models.

A simple macroscopic partnering model with exponential lifetime distribution, constant
rates for linear processes (mortality, maturing from youth into eligibility) and a simple

harmonic mean partnering function, is given by the following system of coupled ODEs:

%My(t) = B — pm My(t) — nm My(2),

%Fy(t) = By Fy(t) —ny Fy(t),

GMAE) = o Melt) + 7 My (1) + [0 4+ ug] C(0) — K MﬁfiYiFjﬂt) ’
%Fe(t) = —pp Fo(t) + 1y Fy(t) + [0+ um] C(t) — KMAj(et()tszE(:()t) ’
GO0 = ~[r+mtus] €O+ Kﬁi@?fﬁw

where

e The following types of individuals are distinguished: M,, Fy;: young men and women.

M., F¢: eligible men and women. C' = {M,, F},}: partnered men and women.
e B: constant birth rate, which can be viewed as an exogenous Poisson process.

e 1: mortality, n: maturity, o: partnership dissociation rate.

o KMWEO

NOEAGE partnership formation rate.

The main point of the Gillespie algorithm is to simulate the jump events which describe the
system at a macroscopic level. It is constructive to classify the type of events in this system.
Events which create individuals can be endogenous (i.e. individuals in the population giving
birth) or exogenous (i.e. immigration). Some events move or transfer individuals between
types, such as maturing into eligibility, or becoming partnered. Others remove individuals
from the system, such as death or emigration.

The system can equivalently be described in terms of competing events. We identify the

following time-inhomogeneous Poisson processes, identifying also their intensities at time ¢:
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ay = UMy(t)a
_ g Me(t)Fe(t)
R TAC RN AR
a3 = o My(t),
ay = fim [My(t) + M.(t) + PM(t)] ,
as = nFy(t) )
_ K Me(t)Fe(t)
R AOEN AOK
a7 = 0 Fp(t) )
ag = pm [Fy(t) + Fe(t) + F,(1)]
ag = B. (7.5)

The intensities listed in Eq. (7.5) are used to compute the time to the first event and its
expected type. Define ag as the intensity of the Poisson process corresponding to the first

event:

ag = Z Qg . (76)

i=1,3,4,5,7,8,9,(2,6)

Draw two numbers r1 and ry from the unit uniform distribution. The time to the next event

is given by sampling the inverse CDF of an exponential distribution with rate ao:

ago r1

=L log <1> . (7.7)

The event type is given by the smallest integer for which:

u—1 u—1
ZavgrgaOSZaU. (7.8)
v=1 v=1

Note that in Eq.(7.6) we have grouped events 2 and 6, because a pair of individuals (one
man, one woman) is randomly chosen for the partnering event. Also note that at each step
the algorithm considers the sum of probabilities in which the system can arrive at each new
state, making it an analogue of the sum over histories considered in Sect. 7.1 (as commented
on in [106]).

Having found 7 and u by this method, the time evolution of the system is straightforward:
the event is applied to update the relevant sub-population and an age of 7 is added to
each living population member. Suppose that a partnering event (v = 2 or u = 6) is the

next event. An eligible man and woman are drawn randomly and partnered, after which
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the population counts M., F,. and M, F}, are updated. Using this method the individual

histories of suitably defined person objects can be tracked.

Defining a person object. A person object comprises fields which encapsulate the prop-
erties of an individual: gender, age, alive (or dead), number of times being eligible, number
of times being partnered, and so on.

Tab. 7.1 lists the fields of a person object:

e The Id number of the person object is used to identify the person object uniquely. It
is natural to represent the population as a list of person objects. The Id number of a

person can correspond to the person’s position in this list.

e Registering the birth date and continuously updating the age of a person makes it
possible to time stamp each life event. A calender year is the natural unit of time to
use, and events are stated as rates per year. Events over a lifetime make up the life
history of an individual. We model the histories of a large number of individuals, and

average over these histories to obtain a description for the population.

e Fields corresponding to events which may happen many times in a lifetime (e.g. being
eligible or being partnered) have counters which count the number of times the field
is entered. The relationship counter, for example, can be used to obtain a distribution

of the number of relationships experienced in a lifetime.

Field Description
1 | Id number unique identification
2 | sex l=man, 2=woman
3 | birth date calender time
4 | age chronological age
5 | relationship status 1 when in relationship, 0 if not
6 | total time in relationships
7 | young 1 when young, 0 after maturing
8 | eligible counts each entry into eligibility status
9 | partnered counts each entry into being in relationship status
10 | not alive 0 while alive

Table 7.1: Data structure of a person object

Defining a relationship object. A relationship object can similarly be defined and used
to record information about the network of relationships links. The utility of the relationship
object becomes more apparent in Sect. 7.3, when we study the relationship network of age-
structured partnering models. However, the age-independent model is ideal for discussing
the architecture and design of our simulation approach. Having laid the ground work in
a simplified model, we can focus on further design issues when studying a structured and

more complex model.
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Tab. 7.2 lists the fields of a relationship object:

e When a relationship formation event is scheduled, an eligible man and woman are
chosen randomly. A relationship object is created to record vital information about

each relationship.

e The relationship object is uniquely defined by the identity number of the man and

woman participating in it.

e The ages of the participating man and woman are recorded at the instant when the
relationship is formed. This information is used in Sect. 7.3 when we use the relation-
ship object to extract relationship paths between men and women. We then study the

age separation in these infectious links statistically.

e The number of relationships entered into by men and women is recorded. This statistic
can be used to obtain an empirical distribution of the number of relationships indi-
viduals have during their life, and can be compared to behavioral data. A complete
history of relationships can also be constructed, but real data on relationship histories

is rarely available.

e The calender times of the relationship start and end events are recorded. This infor-
mation is used to construct relationship paths that have correct time ordering. By

this we mean that each link in the path must be in chronological order.

Field Description

Id number of man

Id number of woman

age of man when relationship starts
age of woman when relationship starts
no. of relationship man had

no. of relationships woman had
calender time relationship starts
calender time relationship end

N O U W N

Table 7.2: Data structure of a relationship object

Simulation results. Fig. 7.1 presents results from a single simulation of a partnering
model in a small population. Tab. 7.3 lists the parameter values used in the simulation.
Fig. 7.1(a) shows a population history, with the partnering process initiated at year 100,
after demographical equilibrium is reached. The ratios between the numbers of men and
women in each category are determined by relationship formation (K) and dissociation (o)
rates.

To test basic functionality we verify that the simulation algorithm returns correct distri-

butions over states, as determined by hazards stated in Tab. 7.3. Fig. 7.1(b), for example,
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shows that the simulated age distribution is an exponential with a correct average of 50
years. Relationship duration is also simulated correctly, with a relationship lasting on aver-
age two years, as shown in Fig. 7.1(c). Fig. 7.1(d) shows the number of relationships men
and women are expected to have during their lifetime. The right tails of these distributions
are too long to be realistic. Constant hazards, producing exponentially distributed duration

of escaping the hazard, lead to such unrealistic distributions.

Parameter | Value Description
1 1/50 per year | natural mortality rate
un 1/15 per year | rate at which young women mature into eligibility
Nm 1/20 per year | rate at which young men mature into eligibility
o 1/2 per year | relationship dissociation rate
B 20 per year birth rate

Table 7.3: Parameter values for a simplified partnering model

7.3 Simulating age-dependent partnering dynamics

A Gillespie-type method can be used to simulate the age-structured partnering SI models.
To use this method, we have to keep track of all events in all age categories. To each age
category, we attach event rates at the average age of the category. Aging events are not
explicitly modeled. Instead, individual categories are updated each year. The partnering
model we study in this section is the same as the basic partnering model discussed in
appendix C. We model a type of infection process, by introducing an ‘labeled’ person and
‘labeling’ each person who have been in a relationship with a labeled person. We also allow
individuals who are eligible for relationships to be ‘labeled’ according the same proportionate

mixing process of Sect. 6.1.1.

Designing a simulation platform. The introduction of a continuous age variable brings
with it a potentially infinite proliferation of possible events. To handle these events, we
discretize the age variable into 80 one-year boxes. Tab. 7.4 is an index of all the possible
events that can happen in our model. The table is a simple bookkeeping or indexing system,
providing 80 event indices for each of the event types we use in our model.

The model is not a strict implementation of the SI model of Ch. 6; the process of
infection is simplified. Here we simply label individuals who have been in a steady or casual
relationship with a labeled individual. This can be seen as an infection process where being
in a relationship with an infective (i.e. labeled) individual guarantees transmission. This
mechanism is silent on the role played by time since infection on transmission probability,
but focusses instead on how relationship formation facilitates disease spread.

It is helpful to present the outline of a Gillespie implementation for age-dependent
partnering in pseudo programming language. The syntax of the ‘language’ we use in this

section is self-evident. Regarding the meaning and calculation of each event, we note that:
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Figure 7.1: (a) [top] Simulation history for men and women. [bottom]| Population history
for women. The partnering process was initiated at time ¢ = 100. (b) [top] Exponential
lifetime distribution for men. [bottom| Exponential lifetime distribution for women. (c)
[top] Distribution of time spent in distinct relationships. [bottom] Distribution of total time
spent in relationships. (d) [top] Distribution of number of relationships experienced by men.
[bottom] Distribution of number of relationships experienced by women.
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© 0 N O W
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Event Type | Event Index | Description of state transition
1:80 young man becomes eligible
81:160 eligible man to steady relationship
161:240 eligible man to casual relationship
241:241 man from steady relationship to eligible
242:242 man from casual relationship to eligible
243:322 man in any category dies
323:402 young woman becomes eligible
403:482 eligible woman to steady relationship
483:562 eligible woman to casual relationship
563:563 woman from steady relationship to eligible
564:564 woman from casual relationship to eligible
565:644 woman in any category dies
645:645 a birth event

—_
w

Table 7.4: Index to event types in an age-structured SI-type model.

e The way that events are calculated for women are naturally very similar to the way

that the corresponding events are calculated for men. In what follows we list the event
pairs, and we state a pseudo formula or in some cases pseudo algorithm to describe

how these rates are calculated for men.

Event 1,7: a[IndeX(l)] = Dm © Pym, where py,, is an array of young men in w
categories. Syntactically, the expression ® means a element-wise (or an age category-

wise) multiplication of the two arguments on both sides of the operator.

Event 2,8: In this function we have to calculate the age-dependent rates at which
eligible men enter steady relationships. The entries into the matrix a, which stores
the event rates according to the index tabulated in Tab. 7.4, are calculated in a loop

of one calculation for each age category n:

Forn = 1:w
dif = Normalpdf (I]. - (1 : W), 07 5)

pem(n) O] pem(1 : w)
>0 [Pem (V) + pes(v)]

fM(l : w) = K*dif@

am) = Y fu(v)

endfor (7.9)

where Npgr = Normalpge (n — (1 : @), 0,5) is a normal probability distribution (with
a mean of 0 and a standard deviation of 5 years) for the probability that a man aged
n will choose to partner women aged 1 : w. The partnering rate K provides a simple
way of adjusting the intensity of the partnership formation process (see Sect. 6.1.1).

far(n) is the rate at which an eligible man aged n forms relationships.
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e Event 3,9: a[Index(3)] = ¢®not labeled (pem), calculates the hazard of being infected,
for each eligible man who has not yet been labeled. ¢(n) is an average age-dependent
rate of getting labeled, calculated by the formula given by Eq. (6.2) for proportionate

mixing.

e Event 4,10: a[Index(3)] = Y~ 0 ®p,, calculates the rate at which disassociation events
happen to men in steady relationships. This is the overall rate at which relationships

dissociate and an active relationships is chosen randomly when the event is processed.

e Event 5,11: a[Index(E))] = 0 is the rate at which casual relationships disassociate.
We set it to zero, to comply with our previous definition of casual relationships being
instantaneous. This poses no problem to the Gillespie algorithm. These events will

simply never be chosen as the most likely next event.

e Event 6,12: a[Index(G)} = > fm ®My,. Here My, = Living (pym + Pem + Pc) captures

the age-dependent hazard of mortality for all living men: young, eligible or partnered.

e Event 13: a [Index(13)} = B captures the probability of a birth event occurring in the
next time interval. When the event is processed, a draw from a uniform unit interval

can be used to decide if the newborn is male or female.

A large number of age-dependent events can be calculated and managed through an ap-
propriate indexing or bookkeeping scheme. The next event type and the waiting time to
this event are calculated as before by means of Egs. (7.7) and (7.8). When the event type
is chosen, the index is used to decide which subgroup and age category to affect. This is
achieved through event processing subroutines, one corresponding to each event type.

Processing of events entails choosing a random individual from the required age and
population category. Once chosen, the state variables of each individual are updated: e.g.
indicating that an individual is now eligible for relationships, or incrementing a counter
recording how many times he or she has entered the partnered or eligible states. When
these two counters are equal (and greater than zero) the individual is eligible for steady
relationships. The event may be a death event, after which the individual will be flagged as
dead and the individual’s partners are returned to the eligible category.

Partnering and casual linking events are handled in a special way. To optimize run time,
an average rate is computed at which individuals in each age group get partnered or linked
through casual relationships. To find the correct (in an an average sense) partner for the
partnering event, the average age-dependent rate must be disaggregated into the rates at
which the individual can partner or link with partners in all age groups. A second random
draw is made to decide which age group, on average, should be partnered or linked with the
individual.

After processing each event the ages of all living individuals are incremented by the
waiting time to the most recent event. The age categories of all subgroups are recalculated

by applying a filter, one for each category, to the general population. Note the following
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trade-off: the age categories should be small so that the ‘aging error’ is small. This will
model aging correctly as a ‘flow’. At the same time the categories must be large enough
to contain enough individuals for competing events to be handled in a meaningful way [13,
Chp. 8]. We encounter the same tradeoff in Sect. 7.4.

Simulation results. The following are some of the results of simulating an age-structured
SI-type model Ch. 6. The parameter values are discussed in Sect. 6.1.1. In Fig. 7.2(a) we
show the number of men (in red) and women (blue) in the categories of young (top) and
eligible for relationships (bottom). From this we get an idea of fluctuations indifferent age
categories. Fig. 7.2(b) depicts age distributions of men and women (excluding children) at
steady state. Fig. 7.2(c) depicts empirical (histograms) relationships statistics, which can
be used to help calibrate the model to real world data. Fig. 7.2(c,top) shows the average
time a person waits to be linked in casual or steady relationship. Fig. 7.2(c, middle) depicts
the average time spent in a steady relationship. Fig. 7.2(c, bottom) is a distribution of the
total time spent in relationships in a typical lifetime. Fig. 7.2(d) depicts the lifetime number

of relationships had by men (top) and women (bottom).
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Figure 7.2: Simulation results for age-independent partnering model.
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7.4 The Fokker-Planck approximation to diffusion in two-sex

models

Non-linear age-dependent models are difficult to simulate. Software used to simulate real-
izations take a long time to develop and individual runs are often time consuming. The
Fokker-Planck approximation, the result of an expansion in inverse powers of the size of
age bins, gives ODEs for the variance and co-variance in fluctuations. These equations are
relatively straightforward to derive, once sufficient familiarity with the method is attained.
Solving ODEs for the noise is much faster than simulating stochastic realizations using a
Gillespie type method. Another advantage FPE approach is that makes connection between
both stochastic and deterministic approaches to modeling non-linear population models.
Certain non-Markov processes, for example those describing age-structured population
dynamics, can be modeled using a master equation. The approach is to make the problem
essentially Markov, by including variables responsible for the non-Markov character, which
in this case relate to the aging process. Building on an outline of the method given by van
Kampen [104] and [107, Ch. 14], we discretize the age interval to create cohorts of individuals.
There are Ny members in each cohort, which is generically labeled A. The purpose of this
section is to model the joint distribution of all cohorts in the model, P({Nx},t), as a

functional of the age-profile in the population.

The model. The model we use is based on the one of Sect. 6.1, but simplified to help
illustrate the expansion method. We remove explicit steady relationship dynamics and
simplify the functional form of the force of infection to that of mass action. Disease status
is given by subscripts 0-susceptible, 1-infectious. The subscript k is used to indicate gender:
k =1 for women and k = 2 for men. Let pyx(t,a) be the number of young women and men
aged a. Let pok(t,a) be the number of eligibles aged a who are susceptible to infection and
p1k(t, a) the number of eligibles who are already infected. The mortality rate for individuals
aged a is modeled by pux(a). Disease related mortality rate is given by ugr(a). The rate at
which young individuals aged ¢ mature into becoming eligible for relationships is given by
Nk (a). The rate at which eligible women aged a meet eligible men aged b is given by (a,b).
Individuals are born at a rate of B, and an equal fraction of men and women are born. The

equations for the model are:
e For young men and women:
0 0
— + o | p(t,a) = —ux(a) pyr(t, a) — ni(a) pry(t, a), (7.10)
ot Oa
B
pyk(t,0) = —. (7.11)

2

e For susceptible men and women:
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(5 + 50 ) Pultea) = —e(e) pon(ts ) 4 0@ e, ) — 64(0) o 712

e For infected men and women:

<88t + 88a> pik(t,a) = —pap(a)pix(t, a) + ¢ra) poi(t,a). (7.13)

The forces of infection for women (¢1) and men (¢2) are:

_ % p12(t,b)

o) = 8@ [ 60 ) B (7.14)
-~ % p11(t,b)

ootea) = B(a) [ B0 f(ab) o L] (7.15)

The forces of infection ¢; and ¢ no longer model proportionate mixing, the type of mixing
modeled by the force of infection defined in Sect. 6.1.1. Instead, we use a form of mass-action,

including the probability that a contact is with an infective.

7.4.1 The master equation.

We start by deriving the master equation of the model outlined above:

SPM).Y = YT,

i=1:5
= Z B>\27)\1 (E;;E)\l — 1) N)\l P

A2, A1

+ Z Ko\ (E/\_;E,\l — 1) N)\l P
A2,A1

+ Z T2,M1 (E)T;E)q - 1) Ny, P
A2,A1

A7 S (E;;EA1 _ 1) Ny, P

A2,A1

+ 3 Dy o (E;zl En, — 1) Ny, P, (7.16)

A2,A1

where:

e P({N,},t) is a joint probability distribution for the number of individuals in each

category.
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e T : Ty describe events which can be grouped into three categories, namely those cor-
responding to: 1) creation of individuals (birth, immigration), 2), transfer between
cohorts (aging, maturity, infection) and 3) removal from the system (death, emigra-
tion). It is convenient to model all events in this model as transfer events, even when
it does not seem appropriate for some processes. For example, birth can be modeled
at transfer from an infinite resource of individuals into the population. Mortality can
be modeled as transfer into a category keeping track of those who died. Iy, =1

when transfer from susceptible A1 to infected Ao is possible, and is zero otherwise.

e The use of just one label, namely A, to model cohorts IV is for reasons of economy of
notation. An extra label could be used to indicate whether the cohort represents men,
women, susceptibles, infections, and so on. While formulating the master equation,
these sub-types are handled by rate functions. The macroscopic equations for the
system, as well as equations for the averages and correlation between fluctuations
are derived shortly. In these derivations additional labels are introduced to represent

different categories of individuals, such as those with a different disease status.
e The operators F) and E/\_1 are ‘raising’ and ‘lowering’ operators respectively. They
increment or decrement a function g (e.g. a population) by 1:
E(g)=g+1,
E™Y(g)=g-1.

As an example of its use consider an application of the operator (E/\_;EAI) :

(E)TQIE)‘I) NAI P ({N)q?NAQa te })
N/\1+1 P ({N)\1+17 N)\Q*l) tt })

The step operators obey a useful identity [107, Chp 6.3]:

Y g Efn)=73 f(n) E" g(n), (7.17)
n=0

n=1
which we need in order to manipulate expressions featuring step operators.

The five terms in Eq. (7.16) are:

e T': This term models birth into cohort A. The birth rate B) can be proportional to V)
but here we use a constant birth rate. It is modeled as transfer from an infinite source.
When deriving the approximating FPE associated with (7.16), it will be convenient

to model all rates as transfers between suitable defined compartments.

o T5: Age-dependent mortality is modeled by py.
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e T3: 1) is the age-dependent rate at which young individuals mature into eligibility.

e T;: This term models aging as a jump process. Individuals spend an average time
of % in each category. This approximation of the aging process is accurate when the
length of the age interval is small. We have thus far discritized age into one year bins.
Age bins of one year can only be used in this approach if each age bin contains many
individuals. Hence, there is a compromise between making the age bins small enough
to model aging accurately as a jump event (with an average waiting time), while at

the same time having many individuals in the age bin.

e T5: This term corresponds to transfers from susceptible cohorts (A1) to infective co-
horts (A2) due to infection. The difficulty lies with the transfer coefficient, which is

the rate at which a susceptible individuals become infected:

N
= A A A, Ag) — .
O %:/3( 1)B(A3) f(A1, 3)N>\3+N>\3

where the number of infectives in age category A is denoted by Na.

7.4.2 Expansion of the age-structured master equation.

Master equation (7.16) can be transformed into a Fokker-Planck equation, using an expan-
sion technique. The variables Ny, i.e. the number of individuals in cohort A, is transformed

to:
Ny = Aby + Ay, (7.18)

where 6 are time-dependent functions unique to each cohort A. According to this as-
sumption, Ny is composed of a macroscopic part proportional to A and a fluctuating part,
proportional to A3. Tt is assumed that the age interval A, which defines the age interval
of each cohort, is small but not large enough to contain many population members, i.e.
that each N, is large. The distribution P ({Ny},t) is transformed into joint probability
distribution for the fluctuations II ({yx},t) [104, Sect. 8]:

P <{A0A + A%y,\} ,t) = AT ({ya}, 1) -
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In this new description, the step operators used take on the form:

Exg(yn) = g<yx+A%)
_1 0 AL 9?2
= <1+A 28+2!8y§+...)g(y>\),
Ey'g(yy) = <yA—A2>
_1 0 A1 92

Using these notations, the master Eq. (7.16) can be transformed into:

oIl do, oIl
— A2 A = T 1
t z; dt dyy i_zl;s ’ (7.19)

where

B, B, 1 ) o \?
B Z —1/2 . A1 Yy v 1/2
hoo e {A (611 Ay > Tyt <3y 6yz) [MM A yM] t

A2, A1 }
T, = /\;1 [V {A1/2 ((‘)21 - 88y2> + %A’l <;)y1 — 8(32)2} [AHM + Al/QyAl] 11,
T, = A7 AQZ;I Vrz A {A_1/2 <88y1 - (;;) - %A_l <8ay1 — 5;)2} [AGM + Al/Qy,\l} IT,
s = Y Dy Zﬁ FOu ) {To + 731}

A2, A1

) ) 1 ) o \?
A2 ( — > + AT ( - ) Aby, + AY 2y, | TI.
{ M, Oyx, 2 oyr,  Oyx, [ A y“}

The prevalence of infection in 75 in cohort A is written as:

~ ~ 1.
Nay Afy, + Azgy,
N)\S + N)\S Ae}\g + A%y/\g; + Aé}\g + A%g)\g

— 9)\3 + A ~2 y)\3 [1 o Afé y)\g + :’{)\3 + Afl y)\g + z{)\‘?, + . i|
Oxrs + O Oxs + 0 Oxrs + O

= T, +A7:T,




7.4. The Fokker-Planck approximation to diffusion in two-sex models 139

where
0
T, = — 28
Oxrs + O

((9,\3 + 0~)\3)2 7

keeping only those terms that are lower in order than A_%, which are the only terms that

contribute to the FPE derived from this master equation.

Macroscopic equation. The macroscopic equation associated with this system is ob-

tained by equating terms of order A3 on the left and right hand side of Eq. (7.19):

d _
— 0 = TR - ALl | — By ]+
d . AL pe  MA=1 e c c e
_@9’\ = Z 05 — A 051 + uab5 — 05 + A(N)O5
d ne AL pe A1 pe e e
_@QA = Z 05 — N 051 + 05 — A(N)O5,

where A(X) = >, B(N)B(r)f(A, k) (;eéfge is the force of infection experienced by individuals
in age category A. In continuous no%ation, which is the limit where A — 0, these equations

would give the following set of PDEs:

%ny(t,a) = _a%ny(t,a)—u(a)n(ta)—’?y(“)”(t’a)’ i
gt () = _aaane(t,a) —u@)n(t,a) +n'(@)n(t.a) = Bla) | B, b>n7zze(,t b?invit(tbg)) .
Batﬁe(t, a) = —gg " (a) — pla)ift,a) + fla) | AO)f (a’b)n@(,t b)a)+ ff(tbz) v

where n(a) = % is the density of individuals in age interval a. The ‘boundary’ condition
is n¥(¢t,0) = B. These equations are of naturally the same as the macroscopic Egs. (7.10)-

(7.15) we defined initially.

7.4.3 Fokker-Planck equation.

Equating terms of the order A" on the left and right hand side of Eq. (7.19) gives the

multivariate Fokker-Planck equation:
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ot o _ 9 oDy
5 = ZBAQ,/\I <8y,\ E >y>\1 +5 ZBx\z A1 <ay)\1 ay)\2> Ol

)\2,)\1 )\2 )\1
o d o a0 \?
+ Z Ko a < )y)\1H+ Z Mg, 2 ( - > 6,\11_[
Az A1 Dyr, Oy, o Oyr,  Oyx,
) ) ) o \?
+ Z UPYIN < >y)\1 + - Z M2, M < - > 9)\11_1
A2, A1 ay 8y)\ )\2 1 ay/\l ay)\g
0 o \2
Z Trz,A1 < >y)\1H+ — Z VA2, A1 ( ) 0,11
,\2 A Dyr, Oy, ,\2 ~ Oyr,  Oyr,
+ 2 [IA2 i Zﬁ (A1)B(A3)f (A1, A3) T ] <8 - >yA1H
A2\ Oyn, Oy,
2,11
I (A1) F(A1, A3) T 0,11
+AZ/\ [ A2, A1 Zﬁ 1) 1,23) T <8y,\1 &wz) A
2,11
2
1z I (A1) FOLA3) T < > O, 11. 7.20
/\227;1{ A2, Zﬂ 1) 1,A3) } Gun. Oy A (7.20)

This equation depends on time through 6y,, 7T, and 7. The solution of the FPE is a

multivariate Gaussian distribution, with the following mean and variance.

First moments. The equations for the first moments (averages) are obtained by multiply-
ing (7.20) by y, and integrating over all y. As an example of the algebra required consider
[104, Sect. 5]:

0
II
Z 77)\2 Al <ayA 6y>\1> y>\1 )

A2, A1

multiply with y,, apply (7.17) in order obtain the same form as that given by Eq. (3.8):

Z Man (Oag,0) Yr, I — Z Mt (Ox,0) Yx, 1T,
A2,A1 A2,A1

and integrate over y:

D e Wa) = D Magala) -
A A2

Repeating this for the other terms shows that the average fluctuations (y) evolves according

to:
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d Yo, A a
7<ya> = Z [Boz,)\l + A : + Mo\ + T, M1 + Ioe,/\lA ()\1)} <y>\1>
A1

A
- Z |:B>\2,a + ’YA%OC + /J/)\z,oz + 77)\2,6! + I)\27aAa(Oé):| <yo¢>

A2
T2 [le Ab(Al)} 2D [IALa Ab(@)] O, (7.21)
A1

A2

where

e The transfer rates, which define transfer matrices (B, %,,u,n,Aa,Ab), are used to

allow transfer from one compartment to another only when applicable. For example,

aging, which is approximated by the transfer term WZ*, allows transfer only from A to

v = A+ 1. Mortality is also modeled as an event which transfers individuals from one
compartment to another, which means keeping track of those who are removed from
the model.

e A%a) and A’(«) are ‘“force of infection’ terms, i.e. the rate of transfer from susceptible

to infected:

A%e) = Zﬂ(a)ﬁ(ﬁ)f(%“)e :é 7

and

0 (Ur) — én@fe) ‘

A(a) = > B@)B(K)f(a, k) 2
; (eﬁeﬁ)

e Equation (7.21) for the averages in the fluctuations y can be written in matrix form:

%<ya> = Z Aa,u <y1/> + Z (Ca,l/ 01/ (722)

where, setting ¥, = Ba,, + 72” + ttay + Nap + Loy A%(a) and AZW = Ia,,,Ab(oz), the

matrices A and C are given by:
Aa,u = 1904,1/ - 5a,1/ Z 19&,01 ,and
K

b § : b
(Ca,z/ = Aa7y - 50&,1/ An,oz :
K
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Second moments. Equations for the second moments (correlations) are obtained by mul-
tiplying (7.20) yayc, and integrating over all y. The first five lines of Eq. (7.20) are reduced
as follows. Multiply (7.20) with y, y¢ and apply (7.17):

0 0
II.
Z 19)\2,)\1 Yx, (ayk2 8y ) Ya Y¢

A2,A1

to find:

Now apply the product rule when differentiating using ByA , ayA

D g Un (rgia = Orva) U +
A2,A1

> Do Un (Orgic = Ori¢) Yoo
A2,A1

giving:

Z 790(,)\1 (y)\lyc> - Z 19)\2,a<yay(j> +
A2

A1

Z 19(,)\1 <y)\1ya> - Z 19)\2@ <yCya> .
A1

Line 6 of Eq. (7.20) introduces an unusual term (compare for example with Eq. (3.8)) in
the equation for the second moments, as it did in Eq. (7.22) for the first moments. Multiply
this line in the FPE with y, yc and apply identity (7.17):

chml (A1, Q) b, — ZL\Qa Q) ba +

Z:QM (A1, @) 0y, — E:AMA (¢, ) 0, (7.23)

where A%(a, ¢) is the matrix

S B(0) () ) SPn8E) — Onlpe). (7.24)

(6 +9)

The time evolution of the fluctuations are given by the following equation:
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d
g Walc) = > BawWye) + > AcwUayy) + Bay

+> Do A (1,) + > DeyAi(a,v), (7.25)

which is a general form of a multivariate FPE. The matrix A is defined in Eq. (7.22), the

symmetric matrix B is given by

Yo,v

B.., = |B
o,V a,u“‘ A

+ oy + Naw + Ia,uAa(a)] 9,\a ) (7.26)

and the matrix D by

Da,u = Ia,ueu - 5a,u Z I}{,CM ea .
K

Although the second line in Eq. (7.25) is not standard for FPEs, its use will result in a
symmetric variance-covariance matrix Y for the Gaussian distributed fluctuations y as long
as the matrix A®(a, ¢) is symmetric. If it is not symmetric, then the assumptions that the
noise follow a Gaussian distribution is violated. The Gaussian assumption would still hold
if A%(a,¢) defined in Eq. (7.24) is small, and it would be if 6y is large for all \.

If we define matrices Y, ¢ = (yayg) and X, ¢ = Ab(, () then Eq. (7.25) can be written

in matrix form [103, Sect. XIV]:

%Y =AY +YAT + DX + XD +B. (7.27)

The problem of understanding the properties of fluctuations in non-linear age-structured
STD model, assuming they follow a Gaussian distribution, is reduced to one of building
matrices A, B and ID. This form is particularly convenient for use in a numeric solution for

Eq. (7.25).

7.4.4 Simulation results

The Fokker-Planck approach is tested on a special case. We remove the process of first
maturing before participating in random sexual contacts. This delay is already handled
to some extent by the age-dependent risk function 5(a). We model only one gender. The
rest of the parameters u, 5, f are defined in Sect. 6.1.1. A constant birth rate of B = 200
newborns per year is assumed.

The population is divided into one-year age boxes. This means that a parameter of
A =1 is used in the expansion technique, and that there may not be a separation of scale

between the number of population members and the size of its fluctuation, as assumed in
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Eq. 7.18. However, an age interval of one year is large enough to include many population
members. It is also long compared to the typical waiting time between different events in
the model, which is of the order of a few days.

In Fig. 7.3(a) we show (in blue) total population numbers in each category at steady
state. In red we show one standard deviation of the assumed Gaussian distributed steady-
state fluctuations. Fig. 7.3(a)[bottom| shows the prevalence and its variation. It would
be interesting to compare the Fokker-Planck predicted variance, with the variance between
many stochastic realizations. The latter would require a considerable amount of time to
generate, but such a comparison would help validate both approaches.

Fig. 7.3(b) shows the correlation between the numbers of 20-year-old infective cases
and (25,30,35,40)-year-olds as a function of the standard deviation in the variance of the
age difference between partners. It shows that correlation decreases with the age differ-
ence between parters, due to an assumed assortative partner-choice function. The effect
of increasing the age difference between partners, is that it increases correlation among all
age-categories. Therefore, this method provides further insight into the criticality of the age

separation between partners in establishing a major epidemic.
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(a) variation in age groups (b) correlation between age groups

Figure 7.3: (a) [top] number of susceptibles (in blue). [middle] number of infectives (in blue).
[bottom]| prevalence (in blue). One standard deviation around subpopulation in dashed red
line. (b) correlation between infected 20-year-olds and infected 25- (in red), 30- (in green),
35- (in blue) and 40-year-olds (in cyan).

7.5 Conclusions

The master equation approach provides a flexible method for modeling fluctuations intrinsic
to small populations. When the transition coefficients in the model (e.g. birth rate, mortality

rate, relationship formation rate, and so on) are linear functions of the population state
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variables, and when the underlying stochastic process is Markov, then the process can be
studied by means of a Laplace transform technique.

We showed how the long-term behavior of the system is determined by the singularity (of
the resolvent of the transition matrix) with the largest real part. The right eigenvector cor-
responding to this eigenvalue of the transition matrix is the long-term relative distribution
of states. The exponential of an evolution or transition matrix, which we have used through-
out, in fact takes into account all possible realizations or histories of events recognized in
our models.

We adapted the Gillespie simulation approach to model age-structured partnering mod-
els, in order to validate some of the properties of the age-structured model of Ch. 6. We
computed among other statistics, distributions for the time spent waiting between relation-
ships, the lifetime-total of time spent in relationships as well as the number of lifetime steady
relationships. The model of Ch. 6 is shown to be realistic, although that particular model
is not calibrated to specific relationship data.

The Fokker-Planck approach provides an alternative method for studying fluctuations in
age-structured models. The derivation of the Fokker-Planck equations is conceptually sim-
ple, although the algebra can be tedious. In addition, some terms in the derivation may break
the symmetry requirements for Gaussian distributed fluctuations. These terms can safely
be ignored if they are small, but when they are not, the variance around macroscopic values
will not be symmetric. However, the method is systematic and leads to a Fokker-Planck
equation defined in terms of a transition and diffusion matrix, which offers transparency

and efficiency in estimating variance unequalled by stochastic simulation techniques.



Chapter 8

Conclusions

We started this work fascinated by the possibility that mathematical modeling could im-
prove our understanding of HIV and TB epidemics in South Africa. Using a unique data
set from a thoroughly studied HIV-TB epidemic in Masiphumelele (a township near Cape
Town), we developed a simple but reliable model which not only confirmed our expecta-
tions but led to an unexpected result: ART treatment has the potential to control HIV
transmission at a community level, indirectly also controlling the TB epidemic. To extend
this analysis to HIV-TB epidemics at a national level, we developed models to account for
demographical detail, adapting tools from fields as far apart as applied demography and
statistical physics. The end result can best be described as a framework for integrating
available epidemiological data, locally and nationally, with a toolkit of mathematical meth-
ods which can be continuously sharpened in accordance with the ever-changing picture of
HIV and TB in South Africa.

We first developed what is arguably the simplest realistic model for HIV and TB. It
recognizes 6 states: being HIV_ or HIV, and susceptible to TB or latently or actively
infected with TB. Its 22 parameters were methodically obtained. The result was a model
which fits the available data well, and which isolates HIV as a driving force behind increasing
TB notification rates.

The sensitivity of the model was tested with respect to changes in critical parameters,
i.e. those corresponding to non-linear terms in the model: TB transmission rates, reinfection
parameters and parameters for HIV infection. The model showed no backward-bifurcation,
which would require the reinfection rate to be higher than the primary infection rate. A
bifurcation diagram of the steady-state TB notification and HIV prevalence rates shows how
high levels of HIV can increase steady-state TB notification rates, even at fixed values for
the TB transmission rate.

Masiphumele is of an intermediate size, 10,000: bigger than a household or a school where
small-population effects are substantial, and smaller than a district or a country, where they
can be ignored. We showed that small population effects are substantial in this model of
10,000 people, and would remain so up to a population of roughly 40,000 in size. Further,

we showed that fluctuations grow (at what appears to be an exponential rate) during the
146
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exponential growth phase of the TB epidemic. This is also the phase where macroscopic
data were collected. Therefore, in addition to the various uncertainties already associated
with the model and with observational data, we argue that uncertainty associated with
finite population and transition effects should also be recognized when fitting deterministic
models to available data.

We used the Fokker-Planck description of fluctuations to model the intensities of active
TB events, for which we developed an accompanying point process theory. Using this theory,
we computed two-time correlation functions to model the timescale of correlation between
two successive active TB events. The exponentially distributed waiting times lead to longer
than expected correlation times between active TB events. This improves upon the clinical
definition of ‘clusters’ of active TB events, which currently relies only on DNA typing of TB
strains, but lacks a temporal element.

Our analysis of a recent tuberculin skin test survey among schoolchildren in 2007 suggests
that the annual risk of MTB infection in Masiphumelele is likely to be decreasing. The result,
which can and should be verified using further MTB prevalence surveys, is unexpected for a
community with an exploding number of possible sources of infection, in part due to rapid
spread of HIV. We developed an age-structured HIV-TB model and used age-disaggregated
HIV-TB data in Masiphumelele to help resolve a paradox regarding the role HIV cases play
in spreading TB. The data can be fitted reasonably well by assuming only rates in the HIV
submodel to be age-dependent, while keeping rates in the TB submodel age-independent.
The rise in the TB epidemic is clearly correlated to the rise in the HIV epidemic.

Is HIV therefore driving the TB epidemic? We constructed a hypothetical scenario where
TB ‘invades’ a population in which HIV has already reached its endemic steady state. The
reproductive value (i.e. the left eigenvector corresponding to the largest eigenvalue, Ry) of
different TB cases suggests that HIV ;. cases are not in fact making a substantial contribution.
This is due to their short infectious period. This conclusion hinges on the validity of the
mass-action mixing assumption made in the model. Should this mixing assumption be
verified empirically, our analysis suggests that simply scaling up DOTS (as opposed to
restructuring DOTS by HIV disease staging criteria) should control the TB epidemic in
Masiphumelele.

At this stage it is important to recognize the dichotomy that exists between the factors
that drive the spread of the TB epidemic and the factors behind the high TB notification
rate. Healthy individuals are responsible for the former, whereas immune-compromised
individuals are responsible for the latter. The standard DOTS program would function
well without augmentation or restructuring should an HIV intervention not only reduce the
prevalence of HIV but also reconstitute the immune system and general health of individuals.

A universal test and treat strategy would do precisely that. We therefore developed
a model to study HIV-TB dynamics at a national level, focusing on the impact of UTTS
on HIV-TB epidemics. We assumed that the primary infection rate for HIV cases on

treatment is the same as that of HIV_ individuals. The effect of the intervention would be a
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significant fall in the TB notification rate, back to levels of the pre-HIV era. Our models of
HIV-TB are tailor-made to study a test trial of UTTS in a community like Masiphumelele,
and to help guide its eventual deployment in South Africa as a whole.

The effect of generalized ART on the spread of HIV may be profound, but we did not
neglect the potential impact of conventional interventions, such as discouraging intergen-
erational sex. We developed a model which combined basic demography with dynamics of
steady relationships and risky random sexual contacts. The basic reproduction number is
computed as a function of the standard deviation of the normally distributed partner choice.
This shows that a critical level of variance in the age difference between partners of around
1.5-2.5 years is required to establish a major HIV epidemic. The relationship between Ry
and age separation depends strongly on the assumptions we make about relationship dynam-
ics. For example, concurrency and/or an increased rate of random contacts would reduce
the criticality of age separation.

A national UTTS program is likely to create renewed discussion around the issue of age
variance between partners. It is well known that more women in need of ART receive it than
men, since they are more frequently tested for HIV through antenatal programs. This is
likely to have a significant effect on partner availability, which in turn might act in synergy
with the effect of intergenerational sex. It could make young women even more vulnerable
to infection. Understanding the subtle consequences of intergenerational sex is likely to be
vital in creating an environment for an HIV-free generation. Our UTTS model for South
Africa, which is based on data from antenatal clinics, currently assumes that women on ART
do not change their sexual behavior. If data in this direction were to become available, it
would be interesting to adapt our model in order to investigate this dynamic in more detail.

Our understanding of an epidemic at the population level can be improved through
studying individual-based models. Micro-simulation techniques can shed light on relation-
ship and infection dynamics in age-structured models. We cannot identify a microscopic
system uniquely from a macroscopic description, because identity is lost in the averaging
procedure. However, when the macroscopic description is translated into a collection of
Poisson processes, we have a ‘canonical’ description at an individual level. Poisson pro-
cesses allow us to build models mechanically and simulate population dynamics. Using a
carefully designed bookkeeping device we can keep track of the histories of all the individuals
in the model, and study the histories statistically by constructing empirical distributions
(histograms).

The Fokker-Planck approach has thus far not been widely used to model fluctuations
in epidemic models. We demonstrated its use in an age-independent model for TB and an
age-structured model for HIV. This approach provides a handle on both deterministic and
stochastic epidemic modeling. Put differently, it provides a direct link between dynamical
assumptions in epidemic models and empirical data on infection events. An exiting and
largely unexplored next step in epidemiological modeling would be validation of mixing

assumptions against real data. The Fokker-Planck approach to modeling time-dependent
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trends in individual infection events is ideally suited for this purpose.

The importance of taking epidemiological modeling from the realm of the purely theoret-
ical and applying it to real-world situations cannot be overstated. Although this does limit
the range of suitable mathematical tools, it is clear that even fairly simple models based on
limited available data can lead to valuable insights. In this project we have cherry-picked
the most useful mathematical tools and applied them to the most complete data in HIV
and TB available in South Africa, in order to better understand HIV and TB epidemics
both separately and in their complex interaction with each other. This will remain a work

in progress for as long as these epidemics endure.



Appendix A

List of abbreviations

Abbreviation Description

AIDS acquired immune deficiency syndrome
ART Antiretroviral therapy

CDy T cell co-receptor

CSW commercial sex workers

DNA deoxyribonucleic acid

DOTS Directly Observed Treatment Short-course
FPE Fokker Planck equation

HIV Human immunodeficiency virus

HIV_ HIV negative

HIV . HIV positive

MTB Mycobacterium tuberculosis

NGM next-generation matrix

ODE ordinary differential equation

PDE partial differential equation

Ry basic reproduction value
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Abbreviation Description

RNA ribonucleic acid

STD sexually transmitted disease
SI Susceptible Infected

SIR Susceptible Infected Removed
TB active infection with MTB
TST tuberculin skin test

UTTS universal test and treat strategy
WHO World Health Organization
Ch. chapter

Fig. figure

Sect. section

Tab. table

Table A.1: List of abbreviations continued.



Appendix B

An introduction to population
dynamics and epidemiological

modeling

In this chapter we present certain aspects of mathematical modeling which are central
to this project, without going into too much technical detail. Recognizing and building
relevant heterogeneity into epidemiological models has become a focus of research, especially
from a theoretical point of view. The subject has remained largely theoretical because
it is not always obvious that heterogeneity is required to fit data, particularly in large
populations or in communities where exceptionally high levels of disease can mask the effect
of heterogeneity. For example, the sheer magnitude of the TB epidemic in Masiphumelele
may dwarf any age-specific difference in infection [92]. However, we found age-structure and
age- mediated heterogeneity to be vitally important in the quest for a better understanding
of the impact of HIV and TB epidemics in South Africa. We found the next-generation
matrix framework adequate for the purpose of accommodating age structure, allowing us to

calculate the basic reproduction number (Rp) in more complex and realistic models.

B.1 Compartmental models

When dealing with deterministic models it is helpful to identify compartments that would
capture relevant structure. Invariably the structure is complex, requiring many compart-
ments to capture the heterogeneities of the process. Corresponding to each compartment is
a differential equation, usually a function of time only, where the rates of change of each of
the compartments are expressed as rates of transfers in and out of compartments. A typical

system of compartments and equations for an epidemic model could be:

@(t) = (M + N —U) 2(t) (B.1)
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where M;; is the rate at which infectives of type j produce infectives of type ¢, N is a matrix
of transfers between states and U a diagonal matrix capturing mortality. It is usually
straightforward to solve this system of equations numerically, and it is often not helpful to
develop methods to solve these equations analytically. Modelers are more interested in the

stability properties of the disease-free or the endemic equilibrium point.

B.2 The basic reproduction number, R

In its simplest form in a conceptual model, Ry for communicable diseases is typically defined
as Ry = k97, where k is the rate at which infectious contacts are made, ¥ the probability
of transmission upon contact and 7 the duration of the infectious period. In models that
recognize heterogeneity the statement regards a typical infective, and to define a typical
infective one must average over the space on which it is ‘distributed’.

The following is a useful algorithm defining the next-generation matrix and Ry as de-
veloped in [36, Ch 5.2]. We make use of this formalism to study the impact of HIV on the
spread of TB (Sect. 4.4) and to study the impact of age-dependent partner choice on disease
invasion in a two-sex STD model (Sect. 6.3). A generic form of the NGM for age structured
models of infection is derived in Sect. 5.1.

Let the K (&, 1) be the expected number of new infections of type £ caused by an infective
of type 1. The individual types/states &, n are distributed over some domain D(n). These
individual states are meant to characterize each individual. A generation of infectives,

distributed over a state in D(n) according to some distribution ¢(n), is defined as:

/ ¢(n) dn (B.2)
D(n)

which is equal to the number of cases with states belonging to D(n). The next-generation
operator K, an integral operator which “maps the current generation of susceptibles onto

the next generation of such susceptibles” [36, Ch. 5], can be defined as:

(Ko) () = /D K(ematn)dn (B.3)
n

Ry is now defined to be the spectral radius of the kernel K:

Ro = limy, oo || K™= (B.4)

A short review of the spectrum of a linear operator can be found in [91]. Using this formalism

to study Eq. (B.1), for example, we see that the next-generation matrix is:
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K = / MeN-UTdr =T (N -U)™" (B.5)
0

which is simply a product of the rate of producing infectives (M) multiplied by the duration

of infection of the various infectious types, (N — U)~'. Thus:

Ry = spectral radius {M (N — U)’l} (B.6)

B.3 Mathematical demography

The linearized epidemic (i.e. the early epidemic) can usually be studied as a linear integral
equation, which is analogous to the characteristic equation of demography ([15] and [30,
Sect. 6.2] ). The correspondence is between the time since infection in epidemic models
and chronological age in demography. This means that some of the successful tools used
in demography, such as the basic reproduction number and the reproduction value, are
available as potential tools for epidemiology.

In this section we study a simple continuous-time demographical model for an age-
structured population. This is a female-only model which contains the most important
features of age-structured population systems. Using this linear model we will discuss a
few familiar techniques for solving linear problems: obtaining solutions along characteristic
lines, studying adjoining integral equations (the so-called renewal equation) and performing
Laplace transforms.

Many of the principal ideas of population dynamics can be illustrated using the following

model for age-dependent population growth:

(%(att’a) = angi;a) — u(t,a)n(t,a), (B.7)

where

e n(t,a) is the density of a population with respect to age a and time ¢.

e Age-dependent mortality is given by u(a). The probability of survival in an age interval

(a1, a2) is given by

l(a1,a2) =€ Jag wa)da” (B.8)

e Birth rate enters as a ‘boundary condition’:
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n(t,0) = B(t) = /0 " Bla)n(t,d)dd',t > 0. (B.9)

e [((a), the maternity function, is the expected number of offspring per individual aged

a, in the next time interval (¢,t + dt).

e This is a model for a single-sex self-generating population. In demographical models it
is mostly the female population that is used. This is partly because the states (mostly
age) of women are more carefully documented in birth registers than those of men,

and partly because women have a narrower fertility range (typically 15-50 years) [65].

The solution to (B.7) is given by [114]:

n(t —a,0)e”Jo #a)dd g <y
n(t,a) = a "N gt B.10
(t,a) { n(O,a—t)e_fa*t“(“)da a>t ( )
It is seen that birth rate B(t) satisfies the renewal equation [114]:
B(t) = / b(a)B(t — a)da + By (B.11)
0

where b(a) = f(a)l(a) is the maternity schedule. By is the contribution to the birth rate
from the population that existed at time ¢ = 0. For simplicity it may be assumed that

By = 0, i.e that initial population given by the second integral in (B.11) has passed away.

Exponential population growth. Assuming exponential growth, Lotka showed that

n(t,a) = e"A(a), (B.12)

and that boundary condition (B.9) implies:

1 = /0 e "*B(a)l(a") da’" = g(r), (B.13)

known as a characteristic equation for the asymptotic growth rate r. It has an infinite
number of roots for a general maternity schedule ((a)l(a) [65, Chp 7]. The asymptotic
growth rate is determined by the unique positive real root, where uniqueness follows from

the fact that g(r) is a monotonically decreasing function of . The number
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Ro = g(0) = /0 " m(a)i(a) dd, (B.14)

is called the basic reproduction number of an individual. It is the expected number of
offspring of the individual during her lifetime and is a critical parameter: whether pop-
ulation growth is positive, negative or zero (in which case the population size fluctuates
stochastically), depends on whether Ry > 1, Ry < 1 and Ry = 1 respectively.

Fisher had an insightful interpretation of (B.13). He thought that a female child is given,
at birth, a loan which she must ‘repay’ by in turn giving birth to offspring. [65, Ch. 8.1].
The probability of giving birth in the next age interval da is I(a)m(a)da. The value of this
offspring is discounted to e "*l(a)m(a)da. If the debt is 1 at birth, then:

50
1:/1 e "(a)m(a)da.

5

He then asks how much of the debt is outstanding at age x < 50. He shows that it is:

50 o l(a)
r) = e =) 22 i (a) da
Ve - [ yma)d
1

50
- = /x e~"I(a)m(a) da,
with V(0) = 1. Thus V(x) can be seen as the discounted contribution an individual aged
x makes to future generations. The reproduction value of the individual is proportional to
V(z)

V(x). Its contribution, on average, to future births is given by N

, where x is the mean

age of giving birth:

[ee)
X = / a'm(a’)l(a") da’.
0
Analysis of the birth rate. We now have a closer look at the birth rate, along the same

lines as Hoppensteadt [55, Sect. 2.2], analyzing it by means of the Laplace transform. Define

the Laplace transform:

so that (B.11) becomes:
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>

r)

B(r) = Bo(r)+ (
Bo zS(r)} .

(r)/

Hence the solution of the birth rate is given by:

(r)
1—

— o

1 r* —i00 R

“ —1
B(t) = e Bo(r) [1 - b(r)} dr. (B.15)

270 o oo

The birth rate B(t) can be written as:

e}

B(t) = > e, (B.16)

=1

where e"it

are solutions of the homogenous renewal equation (B.11). The coefficients are the
residues of the integrand of equation (B.15) evaluated at the characteristic roots (eigenval-
ues) of (B.11). The pole with the largest real part determines the asymptotic or long-time
behavior of the population age structure and the inverse Laplace transform is taken to the

right of this value.



Appendix C

A PDE partnering model

The model presented here is an extension of a model discussed in Hoppensteadt [55, Chp 2].
It is used as a starting point to combine partnering dynamics with demography. The sub-
script & is used to indicate gender: k = f for women and k = m for men. Let py(t,a) be
the number of young women and men aged a. Let pcr(t,a) be the number of women and
men aged a who are eligible to participate in relationships. Individuals in relationships are
denoted by pc(t,a,b) representing the number of relationships where the woman is aged a
and the man is aged b. The mortality rate for individuals aged a is modeled by ug(a). nx(a)
is the rate at which young individuals aged a mature into becoming eligible for relation-
ships. The rate at which eligible woman aged a meet eligible men aged b is given by (a, b).
Individuals are born at a rate of B, and an equal fraction of men and women are born.
The model is an SIR-type model structured by age and gender which tracks relationships

explicitly. With these notations, the equations are, for young men and women:

<§t + 88a> pyk(ta CL) = _,uk(a) pyk(t’a) - ﬁk(a) pkry(tv a)

For eligible men and women:

(gt + 8aa> per(t,a) = —pr(a)per(t,a) +mp(a) pyk(t’ a)
+ / " pe(ta.b)[0(a,b) + i ()] db
0
— /0 \I’(t, a, b, pehpeQ) db

For couples:
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(gt T gb) peltab) = —[0(a,b) + (@) + iy (b)) pelt, a,b)
+U(t,a,b) (C.1)

with the following boundary conditions:

pm;y(t,()) = pf;y(ta O) =
pc(t7 07 b) — pc(t7 a’ 0) =

o o)

and comments:
o pyi(t,a), per(t,a), pe(t, a,b) are non-negative functions defined for t > 0, a > 0, b > 0.

o All rates are defined as functions of age. Due to the scarcity of data it is often necessary

to use constant (age-independent) parameter values.

e All processes (birth, mortality, maturity) enter the system of equation linearly. The

essential non-linearity is due to pair formation ¥(t, a,b).

e Notice that relationship separation (due to death or divorce) adds only linear com-

plexity to the two-sex model.

e Transition rates: u- mortality, n- maturity, o- relationship dissolution rate, - birth

rate, w- oldest age we wish to consider.

e Note: da = dadb is an age interval, small enough for little variation in conditions of
the model, but large enough to contain a large number of individuals. This assumption

makes it possible to model the process as continuous [91].

e We use the same rates for mortality, birth, relationship formation and dissociation
as in Sect. 6.1.1. We use standard curve from demography to model the process
of maturing into eligibility for relationships. The curve depicted in Fig. C.1(b) is
n(a) = 0.17e~ 44116720

relationships. The values a = 13 and a = 16 are used for the first age of eligibility for

, where a is the youngest age of being eligible to participate in

men and women respectively. We use this function to model the process of maturing
into participation in sexual relations, and in South Africa it is known that the age of

first participation is generally younger for women than for men.

The two-sex model is a unresolved demographical model, despite its apparent simplicity. The
main difficulty is associated with capturing a complicated ‘marriage market’, an unknown
function of age-sex composition [91] in a simple closed form.

A widely used choice, considered to be the least flawed of the usual marriage functions

[94], is the harmonic mean of eligible men and women [64],[95]:
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(e pr) (@) = i, b) [ Pmie(t, @)pyie(t, ) } " (pm;e(t,a)) (C.2)

pm;e(tva) +pf;e(tv b) pf;e(tvb)

where k(a, b) is the rate at which couples form between a man aged a and a woman aged b,
also called the coefficient of nuptiality. The function T (Z%:) is meant to bias the harmonic
mean of eligible men and women in order to make the marriage function proportional to
whichever group is more abundant.

The harmonic mean pairing function assumes that pairs are formed within a ‘marriage
circle’, and neglects competition for eligibles from other categories. A marriage function

where pairing occurs within the whole eligible pool was proposed by [11]:

pm;e(tv CL)pf;e(t: b)
fow pm;e(ta a')da’ + fow pf;e(t, b') db

‘lj(pm;eapf;e)(av b, t) = K(a, b)

C.1 Simulation results

The use of a well-designed finite difference scheme opens up possibilities of studying part-
nering dynamics. However, each new dynamic is modeled by means of an extra dimension
in the cohort matrices, so there is a practical limit to what can be achieved. For exam-
ple, it is straightforward to track the total time spent in relationships, and hence to verify
that the correct (e.g. a constant given) distribution of relationship durations is achieved
(Fig. C.1(c)).

Subtle properties of partnering dynamics can be uncovered with a more elaborate finite
difference scheme. In Fig. C.1(d) we show the age distributions of men who experienced
1,2, ... relationships. The large age difference between the average age of these successive
distributions, especially the gap between the first and second one, demonstrates what seems
to be a fundamental limitation of using a generalized harmonic mean function to partner
eligible men and woman: the waiting time between relationships becomes very long when
all eligibles are included in the denominator of the harmonic mean function.

The implication of long waiting times between relationships, is that it is difficult to
simulate a persistent epidemic in a two-sex population where relationships form according

to a harmonic mean function of the form used in equation (C.2).
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Figure C.1: (a) Survivor function, hazard function (mortality). (b) Distribution of time
spent as young individuals. A standard curve, which is not based on a behavioral rational,
is the exponential of an exponential curve, due to Coale: n(a) = 0.17¢~4-411et30% [57, p.
48]. (c) Age distribution of population state. Young women and men (top), eligible women
and men (middle) and couples (bottom) (d) The age distribution of eligible men who have

been in their first, second, ... relationship.
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