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ABSTRACT 

 

This thesis describes the design and implementation of a video compression 

development board as a standalone embedded system.  

 

The board can capture images, encode them and stream out a video to a destination 

over a wireless link. This project was done to allow users to test and develop video 

compression encoders that are designed for UAV applications. 

 

The board was designed to use an ADSP-BF533 Blackfin DSP from Analog Devices 

with the purpose of encoding images, which were captured by a camera module and 

then streamed out a video through a WiFi module. Moreover, an FPGA that has an 

interface to a logic analyzer, the DSP, the camera and the WiFi module, was added 

to accommodate other future uses, and to allow for the debugging of the board. 

 

The board was tested by loading a H.264 BP/MP encoder from Analog Devices to 

the DSP, where the DSP was integrated with the camera and the WiFi module. The 

test was successful and the board was able to encode a 2 MegaPixel picture at 

about 2 frames per second with a data rate of 186 Kbps. However, as the frame rate 

was only 2 frames per second, the video was somewhat jerky. 

 

It was found that the encoding time is a system limitation and that it has to be 

improved in order to increase the frame rate. A proposed solution involves dividing 

the captured picture into smaller segments and encoding each segment in parallel. 

Thereafter, the segments can be packed and streamed out. Further performance 

issues about the proposed structure are presented in the thesis.    
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1. Chapter 1: Introduction 

 

The objective of this project is to design a video compression development board 

for an Unmanned Aerial Vehicle (UAV) application. This chapter covers the background 

of the main system components, namely the video compression concept and the 

camera sensors. The project requirements are also discussed in this chapter.  

 

1.1 Background 

 

1.1.1 Video Compression Concept 

 

Due to the limitation in digital video transmission bandwidth and storage space, 

digital video compression algorithms are needed to achieve lower costs and the desired 

performance. 

 

The basic idea of video compression is to remove redundancy in the video stream, so 

that the entire video can be transmitted in fewer bits [4] and [5]. 

 

A video clip consists of a series of still images or frames. There are two kind of 

redundancy in videos, namely, spatial and temporal. Spatial redundancy refers to the 

redundant information that is contained in a single frame, while temporal redundancy 

represents the redundant information across multiple frames [4], [5] and [6]. Figure 1.1 

is an overview of a generic video compression encoder [8]. 
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Figure ‎1.1: From [8]. Generic video compression Encoder. DCT is the Discrete Cosine 

Transform, VLC is the Variable-Length Coding and Q&DCT is the Quantization and Discrete 

Cosine Transform. 

 

1.1.1.1 Spatial Redundancy 

 

Spatial redundancy is also known as Intra-frame redundancy; it works similarly to 

the Joint Photographic Experts Group (JPEG) format. JPEG is a so-called lossy 

compression algorithm, which eliminates the information to which the human eye is not 

sensitive (in other words, high frequency detail), by converting frames to the frequency 

domain and removing high frequency detail. This means that some information is lost 

from the original image [4], [5] and [6]. How JPEG works is described briefly below. The 

JPEG algorithm in general consists of four steps: 

 

 Converting the RGB image format to the YCbCr format 

First, the image must be prepared for compression by being converted from Red, 

Green and Blue (RGB) to Luminance, Chrominance-Blue and Chrominance-Red 

(YCbCr). Each pixel in RGB (0-255, 0-255, 0-255) is 24 bits, and 0-255 
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represents the intensity for each colour.  Thus, in RGB there are 16 million 

different combinations of colours, most of which cannot be distinguished by the 

human eye: this implies that it is redundant information which could be omitted. It 

has been found that the human eye is more sensitive to brightness (Luminance) 

than to colours (Chrominance) [7]. Therefore, the YCbCr format separates the 

luminance (Y) that can be represented in a high resolution, from the chrominance 

(Cb and Cr), which can be subsampled.  International Telecommunication Union 

– Radiocommunications (ITU-R) BT.601 standard recommends the following 

equations for transforming RGB to YCbCr [4] and [5]: 

 

Y = 0.299(R) + 0.587(G) + 0.144(B) 

Cb = 0.564(B - Y) 

Cr = 0.713(R - Y) 

 

For Ultra eXtended Graphics Array (UXGA) video at 1600x1200 pixels, there are 

((1600x1200)x3)x8 = 46,080,000 bits in RGB form. In YCbCr luminance is 

sampled one-for-one based on RGB form; therefore, there are 1600x1200 

luminance samples. If one were to subsample the red and blue chrominance 

values by 2, there would be (800x600)x2 chrominance samples. The total 

number of bits in the YCbCr format are thus ((1600x1200) + ((800x600)x2))) x 8 

= 23,040,000 bits, which is less than 46,080,000 bits in RGB form. 

 

 Discrete Cosine Transform (DCT) 

After converting the image to YCbCr, it must be divided into small blocks, with 

each block normally made up of 8 x 8 pixels. Then, each block is transformed 

into the frequency domain using the DCT equation, based on the fact that human 

eyes are more sensitive to the information in the low frequency range than the 
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high frequency range. DCT thus identifies and separates this information from 

the rest of the information [4], [5] and [6]. 

 

 Quantization 

Many bits are omitted in this step. Quantization represents the DCT high 

frequency coefficients with fewer bits than the low frequency coefficients. 

Therefore, dequantizing the quantized block will be close but not identical to the 

original block. It has been found that, after quantization, most of the DCT high 

frequency coefficients are zeros [4], [5] and [6]. 

 

 Encoding 

Different kinds of encoding are available in the market. Two are presented here, 

namely, Run Length Coding (RLC) and Variable-Length Coding (VLC). RLC 

converts a sequence of values into a sequence of symbols (Run, Value). Value is 

the value, while Run is the count of this value (see Figure 1.2). 

 

12, 6, 0, 0, 4, 3, 0, 0, 0, 8 (1,12), (1,6), (2,0), (1,4), (1,3), (3,0), (1,8)RLC

 

Figure ‎1.2: From [9]. General RLC  

 

Different formats could be used in RLC. For example, if the input has a long run 

of zeros, as may be the case with JPEG after Quantization, then a different 

format is used: Value would be used to encode only the nonzero values, while 

Run would be used to encode the number of zeros preceding that value (see 

Figure 1.3).  
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12, 6, 0, 0, 4, 3, 0, 0, 0, 8 (0,12), (0,6), (2,4), (0,3), (3,8)RLC

 

Figure ‎1.3: RLC in JPEG 

 

The next step is VLC, which converts symbols to a series of codewords. The 

symbols that occur most frequently are encoded with a codeword consisting of 

fewer bits, while the symbols that occur less frequently are encoded with a 

codeword consisting of more bits. Therefore, with VLC the required average 

number of bits to encode a symbol is less, which leads to fewer bits for encoding 

the whole image or frame [4], [6] and [9].  

 

1.1.1.2 Temporal Redundancy 

 

Temporal redundancy is also known as Inter-frame redundancy. The three most 

popular encoded frames are introduced here, before explaining the technique that will 

be used herein to reduce Temporal Redundancy [4] and [5]: 

 

I-frames: I-frames are Intra frames; they are encoded by using information from 

the same picture, which means that only the spatial redundancy is reduced and 

not the temporal redundancy. I-frames provide random access points along the 

stream because the decoder does not need any reference frames to reconstruct 

I-frames [4], [5] and [10]. 

 

P-frames: P-frames are forward predicted frames. In other words, they can be 

predicted from the last I- or P-frame. They are encoded by comparing the present 

frame with the past frame, and the differences between them are then encoded 



 

19 
 

and transmitted. The decoder would not be able to reconstruct P-frames without 

a reference frame. P-frames provide more compression than I-frames because 

only the difference between two frames is being encoded and transmitted [4], [5] 

and [10]. 

 

B-frames: B-frames are bidirectional, in that they can be predicted from the 

previous I- or P-frame as well as from the next I- or P-frame. The encoding would 

thus need to compare both past and future frames to compute the difference 

between them and the present frame. B-frames provide the most compression of 

all three types of frames, but require more processing time [4], [5] and [10]. 

 

P-frames and B-frames are Inter frames (unlike I-frames, which are Intra frames), 

because they reduce the temporal redundancy. Prediction is the technique that is being 

used to reduce temporal redundancy. The prediction process comprises of two 

processes, namely, Motion Estimation (ME) and Motion Compensation (MC) [11]. ME 

searches for the best Motion Vector (MV) that points to a block of pixels, usually called 

macro block, in the previous or next frame that is the closest identical to the present 

macro block. Then, MC calculates the difference between the two matching MBs by 

using the above MV. The new macro block then can be processed via DCT, 

Quantization and RLC and VLC before it is transmitted across the channel, along with 

the MV [11]. 

 

High compression is achieved if ME finds the ultimate MV for all the blocks, in other 

words, if the blocks match each other closely. However, ME requires more processor 

cycles than any other step in video compression algorithms [6] and [11]. 

 

The selection of a ME technique affects the processor performance and the video 

quality. As a result, commercial available encoders keep details of how the ME is 

implemented classified [6]. 



 

20 
 

1.1.2 Camera Sensors 

  

Today, camera sensors are either Charge Coupled Devices (CCD) or 

Complementary Metal Oxide Semiconductors (CMOS).  

 

CCD sensors work by converting light into electronic charges, and then transferring 

these electronic charges to an output amplifier to convert them to voltage. The CCD 

structure consists of X number of parallel columns (parallel registers), which represent 

the CCD image area; in each column, there are Y number of pixels. The CCD structure 

also consists of Z number of serial registers, which are horizontal to the columns and 

the output amplifier at the end of the serial registers. The electron charges in the last 

pixel of each column are transferred to the serial registers. Thereafter, the electron 

charges in the serial registers are transferred one at a time to the output amplifier to 

convert them to voltage. As soon as the output amplifier has finished converting all the 

electron charges in the serial registers, then the steps are repeated, starting by 

transferring the electron charges in the next pixels to the serial registers from each 

column. CCD sensors are analogue chips because the pixels on the chip cannot be 

digitized. The step after the output amplifier is made up of a circuit that converts the 

voltage to a digital signal in the camera; once all pixels have been digitized, they can be 

stored as a single image file. The basic CCD structure is illustrated in Figure 1.4 [1] and 

[2]. 
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Figure ‎1.4: Modified from [2]. CCD structure 

 

The numbers of electrons in each pixel are affected by the intensity of light and by 

exposure time. Therefore, when both the intensity of light and the exposure time are 

high, the number of electrons will be high, and vice versa [3]. 

 

CMOS sensors have exactly the same structure as CCD sensors; except that electrons 

charges are amplified and converted to voltage inside each pixel and then transported 

across the chip (see Figure 1.5). Thereafter, an additional circuit inside the chip 

converts the voltage to a digital signal [1] and [2]. 
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Figure ‎1.5: Modified from [2]. CMOS structure 

 

CMOS sensors consume less power than CCD sensors, because they need very little 

power to transfer the voltage. As a result, even when the size of the CMOS sensor is 

increased, it consumes the same amount of power as a smaller sensor, as long as there 

is no increase in the numbers of channels [2]. A CCD sensor, however, needs power to 

transfer electronic charges across the chip; therefore, the larger the size of the sensor, 

the more power it needs (see Figure 1.6). The more power the CCD needs, the greater 

the advantage of using a CMOS sensor instead. A CCD could consume as much as 

100 times more power than an equivalent CMOS [2].  
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Figure ‎1.6: Modified from [2]. Comparison between CCD and CMOS in terms of size and power 

consumption 

 

CCD sensors create low noise images because there is less on-chip circuitry; they also 

create high quality images because of a special manufacturing process. CMOS 

sensors, however, have numerous transistors next to the photodiode, which leads to 

poor image quality “this might not be true for the past year as Sony announced their 

Exmor sensor, which uses CMOS technology and give high quality images”. 

Conversely, though, CMOS chips can be cheaply manufactured at any silicon 

production line because they use standard Integrated Circuit (IC) production technology 

whereas CCD needs special machines [2]. 
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1.2 Project Requirements 

 

The board is required to carry out three main tasks: capturing images, encoding 

them, and transmitting them over a radio link. Figure 1.7 depicts a high-level system 

block diagram. 

 

Camera 
Video 

Compression 
Encoder

Radio
Link

 

Figure ‎1.7: High-level system block diagram 

 

1.2.1 Camera and Video Compression Encoder Requirements 

 

The target UAV uses a 60  degree lens, flies at a speed of 50 km/h and at a 

height of 100 m above the ground. The camera picture size and the amount of change 

between one picture and the other have to be calculated while taking these numbers 

into consideration in order to choose the camera and to design the encoder. 

 

The picture size is measured in pixels. The more pixels make up a picture of a particular 

size, the more accurate and detailed that picture will be. Put differently, the more pixels 

make up a particular image, the smaller the pixels need to be, and thus the more 

accurate the picture will be. There are some standard picture sizes, such as eXtended 

Graphics Array (XGA), UXGA and Wide Quad eXtended Graphics Array (WQXGA). The 
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number and size of the pixels for each of these standard picture sizes had to be 

measured, before the optimal size for this project could be determined. The following 

equation was used to measure the pixel size: 

 

           
            

 
    

 
                     

 

Where H is the UAV height, D is half of the lens degree and X is the number of pixels in 

one row divided by 2 (see Figure 1.8). 



 

26 
 

10
0m

 H
ei

gh
t

60°

Number of Pixels 
(Row)

N
um

be
r o

f P
ix

el
s 

(C
ol

um
n)

tan(D (pi/180)) = X/H 

=> X = tan(D (pi/180)) x H 

=> One Pixel = (tan(D (pi/180)) x H)/X

 

Figure ‎1.8: Relationship between picture size, UAV lens degree and UAV height 

  

 XGA is (1024 (row) x 768 (column)), therefore X will be equal to 1024/2. So, one 

pixel will be (100 tan (30   

   
)) / 512 = 0.1128 m. As 0.1128 m is a large size, the 

picture will look blurry and lack detail.   

 UXGA is (1600 x 1200), therefore X will be equal to 1600/2. So, one pixel will be 

(100 tan (30   

   
)) / 800 = 0.0722 m. The picture with 0.0722 m will be clearer 

than one with 0.1128 m. 
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 WQXGA is (2560 x 1600), therefore X will be equal to 2560/2. So, one pixel will 

be (100 tan (30   

   
)) / 1280 = 0.0451 m. The picture with 0.0451 m will be 

clearer than XGA and UXGA but it will require more processing time.  

 

From visualisation, the UXGA picture from a 100 m height is acceptable. Given the 

above, the UXGA is the best option for this project because the picture quality would be 

acceptable and because it does not require high processing time.  

 

Therefore, it was decided to choose a camera that would be able to capture 2 

MegaPixel frame sizes at the quickest frames per second (fps) available and to design 

an encoder that would be able to encode 2 MegaPixel frame sizes at the quickest 

possible fps rate; this is because it was found that video jerkiness has an inverse 

relationship with the frame rate; put differently, a higher frame rate means a smoother 

video. Moreover, it was decided that a CMOS camera would be the best option, 

because cost and power consumption were more important than high quality images 

(see Section 1.1.2) and because most MegaPixel sensors use CMOS technology.  

 

From equation (1.1), one can see that the pixel size has an inverse relationship with the 

number of pixels in one row and a direct correlation with the UAV height and lens 

degree (see Figure 1.9). 
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Figure ‎1.9: Relationship between pixel size, number of pixels in one row, UAV height and UAV 

lens degree. 

 

To specify the amount of change between one picture and the other, it is necessary to 

know when a new scene appears. UXGA frames can be divided into Groups of Blocks 

(GOB), where each GOB consists of 100 macro blocks and each macro block consists 

of 16x16 pixels. Therefore, UXGA has 75 GOB and 7500 macro blocks (see Figure 

1.10) [11].  
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Figure ‎1.10: Modified from [11]. Division of UXGA 

 

The relevant mathematical calculations are presented below: 

 

1) One UXGA frame is 1600 pixels long along the X-axis, and each pixel is 0.072 m 

=> 1600(0.072) = 115.2 m. 

2) One macro block is 16 pixels long => 16(0.072) = 1.152 m. 

3) One UXGA frame has 100 macro blocks in one GOB => 115.2m = 100 macro 

blocks. 

4) The UAV flies 50 km in one hour => in one second, it flies  
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           . 

 

From the above, the following can be concluded (see Figure 1.11): 

 

 There is a new scene of 13.88 m every second. 

 The number of macro blocks that will be moved from one frame to the following 

frame in one GOB every one second is (115.2 – 13.88)/1.152 ≈ 88 macro blocks, 

and thus for the whole frame 88 x 75 = 6600 macro blocks. 

 The number of new macro blocks in one GOB every one second is 13.88/1.152 ≈ 

12 macro blocks, and thus for the whole frame 12 x 75 = 900 macro blocks. 

 

The 6600 macro blocks in the new picture would be encoded as Inter-block which 

means more compression (see Section 1.1.1.2), whereas most of the new 900 macro 

blocks would be encoded as Intra-block depending on the ME. In other words, ME 

would search for the new macro blocks in the old picture to find corresponding macro 

blocks, and most probably it will not find any unless if there was an object which has 

moved from the old picture to the new picture. Consequently, high compression rate has 

an inverse relationship with the number of the new macro blocks. 
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From all of the above, the following can be concluded: The bigger the degree of the 

lens, the bigger the area it can photograph or film. Also, the higher the UAV flies (the 

higher its altitude above the ground), the more space the lens can capture. In other 

words, a 60° lens would capture less area at a height of 100 m than at 300 m. 

Therefore, the higher the UAV flies, or the bigger the degree of the lens is, the larger the 

picture size must be. The slower or the higher the UAV flies, the less new macro block 

will be which would result in a higher compression rate and vice versa. 
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Figure ‎1.11: Time interval for a new scene 

 

1.2.2 Data Link Requirements 

 

A standard plug-and-play 2.4 GHz Wireless Fidelity (WiFi) module is required for 

this project in order to simulate the RF (Radio Frequency) part in the UAV. This will 

determine the bit rate at which the video would be transmitted over a wireless link. 
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1.3 Conclusion 

 

A background of the main components of the project and its requirements has 

been presented in this chapter. The requirements of the project can be summarised as 

follows: 

 

1. CMOS camera with a 2 MegaPixel frame size at the quickest fps 

available. 

2. An encoder that can encode a 2 MegaPixel frame size at the quickest fps 

possible. 

3. A standard plug-and-play 2.4 GHz WiFi module. 

 

The following chapters of the thesis are structured as follows: Chapter 2 looks at the 

different solutions of the problem studied herein. The design and implementation phase 

of the project are presented in Chapter 3, as well as the schematics and the layout of 

the Printed Circuit Board (PCB). Chapter 4 explains the design of the software (SW) 

and hardware (HW) debugging. The results are presented in Chapter 5. Finally, the 

conclusions and possible improvements are summarised in Chapter 6.   
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2. Chapter 2: Encoder Platform Selections 

2.1 Introduction 

 

Video compression encoders could be implemented by means of Digital Signal 

Processors (DSPs) or Field Programmable Gate Arrays (FPGAs). FPGAs can 

outperform DSPs in many ways because they are reconfigurable HW which allows the 

implementation of multiple functions in parallel. However, FPGAs are more complex to 

develop for and they are usually more expensive than DSPs. Conversely, in some 

applications, DSPs may perform slower than FPGAs because they deal with code and 

instructions, which have to be fetched and then executed. However, DSPs are easy to 

develop for and are considered less complex, therefore, if it is possible to meet the 

system requirements using a DSP rather than an FPGA, a DSP solution is usually 

preferred. 

 

Initially, the idea was to implement the video encoder in FPGA because this would 

achieve a faster compression rate than would be possible with DSP. A high 

compression rate is dependent on the success of ME and MC, and it has been found 

that processors spent most of the time executing ME and MC (see Section 1.1.1.2). 

Therefore, to save time, it was decided to implement only ME and MC and then to 

integrate these with a JPEG encoder. ME and MC were thus implemented for a 16x16 

pixel MBs, but the development stopped due to the high cost of a JPEG encoder. The 

code was designed using Actel Libero IDE v8.0 (see Appendix E.2). Video compression 

encoders are very complex to implement in FPGA and there was not enough 

information to write the encoder in VHDL (VHSIC [Very High Speed Integrated Circuits] 

Hardware Description Language). Thus, due to the complexity of implementing an 

encoder and time pressure, it was decided to look for an encoder that would be able to 

encode up to 2 MegaPixel at the quickest fps rate available. 
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2.2 Comparison of Options 

 

A few encoders written in VHDL were found. Conversely, C code encoders are 

widely available, but they are limited in the resolution that they can encode.   

 

2.2.1 Field Programmable Gate Array (FPGA) 

 

FPGA encoders are available in the market but are very expensive. For example, 

the Xilinx and CAST encoder intellectual property cores will cost US$ 20,000 and US$ 

48,000 respectively, whereas Ocean Logic will charge a five- or six-digit amount in 

Euros.   

 

2.2.2 Digital Signal Processing (DSP) 

 

Many companies provide encoders that can run on their DSPs, such as Texas 

Instruments, Freescale and Analog Devices. According to my search, up to January 

2009 Texas Instruments and Freescale had encoders that were able to encode up to D1 

(720X480) resolution only. Also, it was found that Analog Devices was the only 

company that could provide encoders with up to 5 MegaPixel frame sizes. As all Analog 

Devices encoders are available for free evaluation, one such encoder was chosen for 

this project. 

 

2.2.3 Analog Devices 

 

Analog Devices offers four video encoders: H.264 Baseline Profile (BP), H.264 

BP/ Main Profile (MP), Moving Picture Experts Group (MPEG-2) and MPEG-4 Visual. 
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H.264 BP/MP is the newer version of H.264 BP, whereas MPEG-4 Visual is the newer 

version of MPEG-2. All of these encoders have been demonstrated on ADSP-BF533, 

ADSP-BF561, ADSP-BF527 and ADSP-BF548 Blackfin DSPs. Therefore, a comparison 

has to be made between MPEG-4 visual and H.264, also known as Advanced Video 

Coding (AVC), in order to choose the most suitable encoder. Furthermore, a 

comparison between the Blackfin DSPs has to be made, in order to choose the most 

suitable DSP. 

 

2.2.4 MPEG-4 Visual and H.264 (AVC) 

 

MPEG-4 Visual (Part 2 of the MPEG-4) was standardized in 1999 by MPEG 

which is a working group of the International Organization for Standardization (ISO). 

MPEG-4 Visual is more flexible than H.264, as it provides a wide range of techniques to 

accommodate different types of applications that require high quality video such as 

Television (TV), movies, 3 Dimension (3D) and other applications [5]. 

 

Conversely, H.264 concentrates on efficiency of the compression and transmission with 

features to support reliable and robust transmission over networks. Also, one of the 

H.264 applications is streaming of live videos. H.264 (MPEG-4 Part 10) was 

standardized in 2003 by the Video Coding Experts Group (VCEG) which is a working 

group of the International Telecommunication Union-Telecommunication (ITU-T) and 

MPEG [5]. 

 

It was decided that H.264 would be more suitable for this project than MPEG-4 Visual 

because one of the features of H.264 is its transmission efficiency. Furthermore, H.264 

provides reliable and robust transmission over networks.  
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2.2.5 Overview of Analog Devices’ H.264 BP/MP Encoder 

 

The H.264 BP/MP encoder is a library, which encodes video to the H.264 video 

bit stream standard. It can take input data from a real-time video capturing device, such 

as a camera. The encoder processes a single frame at a time and produces an 

elementary bitstream for that frame. The input video format can be the YUV422 format 

progressive raw from the CMOS sensors, which is what this project requires. It supports 

I-, P- & B-frames and can encode up to a frame size of 5 MegaPixels. Furthermore, the 

frame rate can be from 2 to 30 fps, and it has the flexibility to choose between Variable 

Bit Rate (VBR) and Constant Bit Rate (CBR) control, (see Figure 2.1) [12]. 

 

 

Figure ‎2.1: From [12]. H.264 BP/MP Encoder. CABAC is the Context Adaptive Binary Arithmetic 

Coding and CAVLC is the Context Adaptive Variable Length Coding. 
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2.2.6 Blackfin DSPs 

 

ADSP-BF533 (BF533), ADSP-BF527 and ADSP-BF548 (BF548) have almost the 

same features; all of them provide up to 600 MHz processing speed. In terms of 

memory and peripherals, BF548 has the biggest on-chip memory of up to 324 Kbytes 

and it is the most peripheral-rich amongst the abovementioned DSPs [13], [14] and [15]. 

 

ADSP-BF561 (BF561) is a dual Blackfin core DSP, with each core able to operate at up 

to 600 MHz. BF561 has two independent Blackfin cores, which will result in less 

processing time than a normal Blackfin DSP.  Also, BF561 has up to 328 Kbytes on-

chip memory [16].    

 

Although BF561 is the best processor among them, it is only available in the Ball Grid 

Array (BGA) package as well as together with the other processors, except ADSP-

BF533. BF-533, however, is available in the BGA and Low-profile Quad Flat Package 

(LQFP) packages. LQFP is simpler than BGA and can be visually inspected so it is 

easier to debug. Furthermore, in most of the BGAs, bringing out the pins is not easy. 

Also, LQFP is easy to populate, whereas BGA requires very complex process to be 

populated. However, the BGA package is better from an electrical point of view and it is 

usually smaller than LQFPs. 

 

As the board constructed for the purposes of this study is a development board, it was 

decided that the LQFP package would be more appropriate. Also, the university does 

not have the facilities that guarantee the successful population of BGA packages. 

Therefore, the ADSP-BF533 was chosen as the DSP for this project. 
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2.2.7 Blackfin ADSP-BF533 Overview 

 

The 176-LQFP package of BF533 was chosen for this project. It provides a core 

clock of up to 400 MHz (CCLK), a system clock of 133 MHz (SCLK) and up to 148 

Kbytes of on-chip memory. The BF533 has an external memory controller, which 

provides a glueless connection to a bank of Synchronous Dynamic Random Access 

Memory (SDRAM), as well as up to four banks of asynchronous memory devices. The 

system peripherals include a Universal Asynchronous Receiver Transmitter (UART) 

port, a Serial Peripheral Interface (SPI) port, two Serial Ports (SPORTs), 16 General-

Purpose Input/Output (I/O) pins (GPIO), a real-time clock, a watchdog timer, and a 

Parallel Peripheral Interface (PPI). Furthermore, the BF533 has four memory-to-

memory Direct Memory Access (DMAs) and eight peripheral DMAs, and it provides the 

options of booting from either SPI or external memory (see Figure 2.2) [13]. 

 

 

Figure ‎2.2: From [13]. BF533 architecture 
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2.3 Conclusion 

 

Options have been introduced in this chapter and it was explained why Analog 

Devices’ H.264 (MPEG-4 Part 10) encoder was chosen together with the ADSP-BF533 

Blackfin DSP. In addition to the reasons discussed above, the decision was influenced 

by the fact that Analog Devices provides evaluation kits, application notes and software 

examples, which can be very useful as a starting point. 
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3. Chapter 3: Design and Implementation 

3.1 High Level Description 

 

The Analog Devices’ evaluation kit ADSP-BF533 EZ-KIT Lite was used as a 

basis for the design, but it was extensively modified to accommodate the requirements 

of this project [17]. This evaluation kit was chosen because it had demonstrated the use 

of the H.264 encoder on the Analog Devices BF533 DSP. 

 

The camera captures frames at a specified rate that is set via the DSP, before it then 

passes the data to the DSP through a PPI. The DSP encodes the incoming frames by 

using H.264 encoder software. These encoded frames are passed to the WiFi module 

through a SPI and finally the WiFi module streams the encoded frames to the host 

destination. This process has to happen in real time. Furthermore, ADM3202 was 

replaced with a USB-UART module because most of the new laptops do not have a 

UART port. Figure 3.1 illustrates the new design. Each block in Figure 3.1 is described 

in detail in this Chapter. 
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Figure ‎3.1 : System design 

 

3.1.1 Rules Followed During Schematic Design 

 

First, any input pins that were not being used were pulled low; this was done to 

protect the chips on the board. Secondly, pads were placed for any unused output pins 

which may still be useful in the future. Thirdly, one polarized capacitor of 100 uF was 

put onto each chip, and one normal capacitor of 0.1 uF was used for each Vcc pin for 

decoupling. Fourthly, 0 Ω resistors were placed between the output of the regulators 

and the rest of the board. The reason for this is that the power on the board could be 
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tested by supplying one voltage at a time. Finally, test points for the critical signals were 

placed for examination.  

 

3.1.2 DSP Block (Blackfin ADSP-BF533) 

  

The DSP block is the core of the project, and in it all system processing and 

control functions of the system are implemented. The Blackfin ADSP-BF533 is the 

selected DSP for this project (see Section 2.2.6), and the H.264 encoder was 

implemented to run on this block. 

 

The BF533 can be programmed by using the Joint Test Action Group (JTAG) port 

through the    , TMS, TCK, TDI, TDO and      signals.  The JTAG circuit was 

implemented by following the method presented in the EE-68 application note (see 

Figure 3.2) [18]. 

 

The core voltage is 1.3v, whereas the I/O voltage of the BF533 is 3.3v. Also, the BF533 

has four modes for booting by means of BMODE0 and BMODE1 pins (see Table 3.1). 

Therefore, a two-pin switch was connected to the BF533 to enable the user to choose 

the desirable boot mode (see Figure 3.2) [13] and [17]. 
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Table ‎3.1 : From [13]. BMODES 

 

  

A buck converter circuit was implemented for the BF533 to complete the power 

management system using the BF533 data sheet [13] and the EE-228 application note 

[19] (see Figure 3.2).  
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Figure ‎3.2 : DSP schematic sheet
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3.1.3 Flash Memories and SDRAM 

 

The BF533 boots from the flash memory block. Analog Devices have 

demonstrated the use of the H.264 encoder by using two PSD4256G6V (PSD) chips 

from STMicroelectronics and MT48LC32M16A2TG from Micron. Therefore, these same 

memory chips were used in this project. Furthermore, the board is intended to be used 

for development, where the PSD4256G6V can also be used as a standard flash 

memory or Static Random Access Memory (SRAM) as peripherals for the BF533 [20]. 

The MT48LC32M16A2TG SDRAM provides 64 Mbytes of storage for the BF533. 

Consequently, for the UXGA frame size with 2 bytes for each pixel, the 

MT48LC32M16A2TG can store up to 16 frames [22]. Moreover, Analog Devices also 

provides the drivers for these chips, which saved some time while writing the SW.  

  

The PSDs (Flash A and Flash B) consists of 8 Mbits flash memory, 256 Kbits SRAM 

and 3000 gates of Programmable Logic Device (PLD) including Complex PLD (CPLD) 

and Decode PLD (DPLD) [20]. The DPLD can be programmed to manage the memory 

banks instead of the BF533, and the CPLD can be programmed to manage ports A, B, 

C and D of the flash. There are six programmable Light Emitting Diodes (LED) on the 

board connected to port B in Flash A, which can be programmed by CPLD. 

Furthermore, the PSD is a full chip with In System Programmability (ISP), and with a 

built-in JTAG serial port, which allows easy testing and programming by means of a 

low-cost FlashLINK cable [20]. Port E of the PSDs is the JTAG port; six signals are 

used for the JTAG connection TMS, TCK, TDI, TDO, TSTAT and     . The JTAG 

circuit was implemented by following the steps presented in the AN1153 application 

note [21]. Also, a NAND and an inverter circuit were implemented to be able to reset the 

Flash memories from either JTAG or a reset push button (see Figure 3.3).  

 



 

47 
 

The PSDs and MT48LC32M16A2TG (SDRAM) were connected to the BF533 by means 

of an External Bus Interface Unit (EBIU). The EBIU is a 16-bit interface that provides a 

glueless connection [13]. 

 

The following signals are connected to interface BF533 with the PSDs (see Figure 3.3) 

[13], [17] and [20]: 

 

Input Signals:  

            and           : Byte enabled and data masks for Async/Sync 

access. 

        : Memory bank select. 

     : Write enable. 

     : Read enable  

 ADDR[1..19]: Address bus. 

 

Bidirectional Signals: 

 DATA[0..15]: Data bus. 

 



 

48 
 

 

Figure ‎3.3 : PSDs schematic sheet
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Each PSD has 8 Mbit of primary flash, 512 Kbit of secondary flash and 256 Kbit of 

SRAM (see Table 3.2) [20]. 

 

Table ‎3.2 : From [20]. PSD memory block size and organization 

 

 

The BF533 has four reserved asynchronous memory banks of 8 Mbit for each bank 

(see Figure 3.4) [13]. Therefore,      and      were assigned for the primary flash of 

Flash A and Flash B respectively.      was assigned for the secondary flash, and 

SRAM in the both PSDs (Flash A and Flash B) (see Table 3.3). 
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Figure ‎3.4 : From [32]. BF533 memory map 

 

Table ‎3.3 : DSP flash memory map 

Address Assigned to 

                             (    ) Primary flash of Flash A (1Mbyte) 

                             (    ) Primary flash of Flash B (1 Mbyte) 

                             (    ) Secondary flash of Flash A (64 Kbyte) 

                             (    ) SRAM of Flash A (32 Kbyte) 

                             (    ) I/O of Flash A (256 Byte) 

                             (    ) Secondary flash of Flash B (64 Kbyte) 
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                             (    ) SRAM of Flash B (32 Kbyte) 

                             (    ) I/O of Flash B (256 Byte) 

(1): These numbers are the same numbers in Flash_A.abl and flash_b.abl files in the PSD4256G_ConfigFiles folder from Analog 

Devices. The numbers have not been modified because the PSDs were configured by loading flash_a.obj and flash_b.obj files from 

the PSD4256G_ConfigFiles folder from Analog Devices, and therefore these numbers are compatible with the config files. 

 

The SDRAM block is the main memory of the system. The following signals are 

connected to interface the BF533 with the MT48LC32M16A2TG (see Figure 3.5), [13], 

[17] and [22]: 

 

Input Signals:  

            and           : Byte enabled and data mask for Async/Sync 

access. 

  SA10: Connected to address 10 pin. 

      : Row address strobe. 

      : Column address strobe. 

     : Write enable. 

     : Bank select. 

  SCKE: Clock enable. 

  CLKOUT: Connected to CLK pin. 

 ADDR[1..19]: Address bus. 

 

Bidirectional Signals: 

 DATA[0..15]: Data bus. 
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Figure ‎3.5 : SDRAM schematic sheet
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3.1.4 Camera Module Block 

 

The camera module block is responsible for taking pictures and then sending 

them to the BF533. The OV2640 camera module was chosen for this particular project 

because it uses CMOS technology and because it provides up to UXGA frame size at 

15 frames per second (fps). All of these meet the requirements of having a 2 MegaPixel 

CMOS camera (see Section 1.2.1). In addition, the OV2640 camera module can give an 

output format of YUV (422/420)/YCbCr422, which is accepted by the H.264 encoder 

(see Section 2.2.5). Lastly, the OV2640 module is available from OmniVision for a 

reasonable price. OV2640 might not be the best quality camera compared to Kodak or 

Micron cameras, but it was available and cost a reasonable price. Kodak cameras were 

expensive, whereas Micron cameras were not available. 

 

The OV2640 module is connected to the BF533 through the PPI because PPI can 

connect directly to the video encoders and video source. The PPI has up to three frame 

synchronization pins, up to 16 data pins and an input clock pin [13].  

 

All required OV2640 functions are programmable by means of the Serial Camera 

Control Bus (SCCB) [23]. By looking at the SCCB Functional Specification document 

from OmniVision, one can see that SCCB is the     protocol [24]. YUV 

(422/420)/YCbCr422 is an 8 bit output from OV2640, therefore only 8 data lines are 

connected to the BF533.  

 

The following signals are connected to interface BF533 with the OV2640 [23], [25] and 

[13] (see Figure 3.6):  
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Input Signals:  

 SIOC: SCCB serial interface clock. 

       : Reset. 

 PWDN: Power down mode enable.  

 

Bidirectional Signals: 

 SIOD: SCCB serial interface data. 

 

Output Signals: 

 VSYNC: Vertical synchronization. 

 HREF: Horizontal reference. 

 PCLK: Pixel clock. 

 Y[2..9]: Data output. 

 

As the OV2640 module runs at 24 MHz, a 24 MHz crystal chip was thus used for the 

implementation. The OV2640 circuit was implemented following the OmniVision serial 

camera control bus functional specification [23], the camera data sheet [25] and the 

BF533 data sheet [13]. 
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Figure ‎3.6 : Camera module schematic sheet
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3.1.5 WiFi Module Block 

 

The WiFi module block streams the data to the network. iW- SM2144N1-EU-0 

(Nano WiReach) from ConnectOne was chosen for this project. Nano WiReach is a 

WiFi module that connects serial devices to 802.11b/g Wireless Local Area Networks 

(LANs). Moreover, it supports up to 10 simultaneous TCP (Transmission Control 

Protocol)/UDP (User Datagram Protocol) sockets, which can be used for streaming out 

the video. NanoWiReach can be programmed by sending commands that are specified 

in the AT+i programmer’s manual document from ConnectOne which eliminates the 

need to write complex drivers. Nano WiReach is considered a plug-and-play module, 

which was particularly important for this project, given the time constraints [26] and [27]. 

 

The Nano WiReach module offers an UART interface and an SPI interface. As the 

UART interface was already being used, the Nano WiReach was connected to the 

BF533 by means of the SPI. Six signals were connected between the module and the 

BF533. BF533 was the master whereas the module was the slave, because the BF533 

sent the encoded frames to the module, which then streams them out to the host 

destination.  

 

The following signals are connected to interface BF533 with the Nano WiReach (see 

Figure 3.7): 
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Input Signals:  

 SCK: SPI CLK. 

 MOSI: Master out slave in. 

       : Chip select. 

           : Reset the module. 

 

Output Signals: 

 SPI_INT: Interrupt to inform the BF533 that the module has data on its buffer. 

 MISO: Master in slave out. 
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Figure ‎3.7 : WiFi schematic sheet
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3.1.6 UART-USB Module Block 

 

The UART-USB module block connects the BF533 UART interface to a USB 

interface. The UM232R was chosen for this purpose; it needs a single supply voltage 

range from 3.3 v to 5.25 v and the clock circuit is integrated onto the device. Moreover, 

it has both transmit and receive LED drive signals. The UM232R is also a fully 

integrated module, which means that no external components are required [28]. 

 

The following signals are connected to interface BF533 with the UM232R:  

 

Input Signals: 

 TX: UART transmit from BF533. 

 

Output Signals: 

 RX: UART receive to BF533.  

 

Two LEDs are connected to the module, one for transmitting and one for receiving. 390 

Ω resistors are connected in series with the LEDs to protect them and to give an 

acceptable brightness (see Figure 3.8). Voltage drops at TX LED and RX LED are 2.2 v 

and 2.1 v respectively, and the maximum current is 30 mA [29]: 
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Since 2.8 mA and 3 mA are less than 30 mA, they will not damage the LEDs and will 

give an acceptable brightness. 
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Figure ‎3.8 : UART-USB module schematic sheet 
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3.1.7 FPGA and Debug Connectors 

 

The FPGA was not intended to be part of the scope of this project. The FPGA 

was used to provide a simple method of debugging the board and to make provision for 

future use. Consequently, all the address and data lines, camera interface and WiFi 

interface were connected to the FPGA before being routed to the debug connectors 

through the IDT74FCT3244 and IDT74FCT62244 buffers to protect the FPGA. The 

FPGA clock can be either 27 MHz or the DSP clock out. Four memory control 

signals    ,    ,      and      were connected to be able to use the FPGA as a 

memory (see Figure 3.9). Cyclone 2 EP2C5Q208C7N from Altera was chosen because 

it was available and because it can do the required tasks of the project.  

 

For future use, the FPGA can be used for modifying the camera data signals before 

sending them to the DSP, for managing the WiFi module, or for acting as a memory. 

 

The serial configuration device EPCS1 was connected to the FPGA and a connector to 

provide in-system programming [30] and [31]. The FPGA boots from the EPCS1. 
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Figure ‎3.10 : FPGA schematic sheet
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3.1.8 Clock System 

 

The system runs on 27 MHz and 24 MHz. The DSP runs on 27 MHz. A 1-to-10 

clock driver was added to the circuit to ensure that the components receive the clock 

signal at the same time. The camera module runs on 24 MHz (see Figure 3.10). 

 

A 27 MHz clock was used as a safe starting point because the BF533 evaluation kit 

used 27 MHz [17]. It was found that 24 MHz might be better, though, because this 

means that the CCLK and SCLK of the BF533 can increase up to 384 MHz and 128 

MHz respectively, whereas a 27 MHz can increase them up to 378 MHz and 126 MHz 

respectively (see Section 2.2.7) [32]. In addition, the system would use only one crystal 

rather than two. Calculations in respect of the 24 MHz are presented in Chapter 6. 

 

A 32.768 KHz real time clock crystal was implemented in the same way as was 

specified in the BF533 data sheet [13]. 
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Figure ‎3.9 : CLKs schematic sheet
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3.1.9 Reset, Push Buttons and LEDs 

 

Four programmable push buttons, six programmable LEDs, one reset button with 

an LED and one power LED were implemented.  

 

The reset button was connected to the ADM708SAR, which is a chip that provides an 

active low debounced manual reset input and an active high and low reset output. The 

reset signal was connected to the BF533, the FPGA, the PSDs and the UART-USB 

module. The BF533 resets the rest of the components on the board, namly, SDRAM, 

OV2640 and Nano WiReach. In addition, the reset signal was connected to the LED 

through the IDT74FCT3244 buffer; for the LED to turn ON whenever the reset button is 

pushed.  

 

Six programmable LEDs were connected to Flash A, which does not provide enough 

current [20] to turn the LEDs ON, through the IDT74FCT3244 buffer to provide enough 

current to turn the LEDs ON [17]. 

 

The power LED was connected to 7 v for the LED to turn ON whenever there was 

power supplied to the board. 

 

The voltage drops at the Reset LED (colour RED), the programmable LEDs (colour 

YELLOW) and the power LED (colour GREEN) were 1.7 v, 2.1 v and 2.2 v respectively, 

and the maximum current was 30 mA [29] as per the following calculations: 
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5.9 mA, 3.3 mA and 7 mA will thus be able to turn ON the LEDs without damaging 

them. 

  

Four programmable push buttons were connected to a debouncing circuit, which is in 

the form of a low pass filter, to remove high frequency components from the mechanic 

switching of the push buttons. The push buttons were then connected to the BF533 

through an inverter and a switch to disable or enable them (see Figure 3.11) [17]. 
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Figure ‎3.10 : Push buttons and LEDs schematic sheet
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3.1.10 Regulators Block 

 

The Regulator Blocks are responsible for supplying the right voltages to the 

components. The board input voltage is 7 v, six regulators have been used to manage 

the power distribution of the system (see Figure 3.11).  

 

System input
voltage: 7 v

7 v to 5 v 
Regulator 

(IDT74FCT62244 buffers)

7 v to 3.3 v 
Regulator

(most of the 
components) 

2.5 v to 1.2 v 
Regulator
(FPGA)

7 v to 2.5 v 
Regulator

2.5 v to 1.3 v 
Regulator
(DSP and 
Camera)

5 v to 2.8 v 
Regulator 
(camera)

 

Figure ‎3.11: Power Distribution System 

 

The technique, which was used to select the regulators, was to follow a start backwards 

approach, in which we assumed that all the components that share the same voltage 

were working at the same time at the maximum current rate (which is unlikely to 

happen). Those currents were added together and a regulator was chosen that could 

supply the required voltage with the required current. 0 Ω resistors were placed between 

the output of the regulators and the rest of the board. The reason for this was to be able 

to test the power in the board by supplying one voltage at a time. 
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The maximum current ratings of each of the 3.3 v devices were calculated as follows: 

two flash memories will consume 50 mA, the SDRAM 255 mA, the FPGA 100 mA, the 

DSP 308 mA and the WiFi will consume 280 mA. Adding these currents together 

resulted in a consumption of almost 1.1 A. Therefore, the PTN78000W switching 

regulator from Texas Instruments was chosen because it can output up to 1.5 A, and 

because its input voltage can vary from 7 v to 36 v. The output voltage was set by using 

a single external resistor; it can be set to any value within the range of 2.5 v to 12.6 v. 

The required output voltage for the chips described above was 3.3 v, which lies within 

the regulator voltage range. To set the output voltage, the following equation from the 

PTN78000W data sheet was used [33]: 

 

               
      

       
     

 

Vmin and Rp are given from the data sheet. Vo equals 3.3 v, Vmin equals 2.5 v and Rp 

equals 6.49 kΩ so, Rset will equal to 79.29 kΩ. The input voltage range can be from 7 v 

to 33 v according to the PTN78000W data sheet. 7 v is the input voltage of the board, 

which lies on the voltage range of this regulator (see Figure 3.12). 

 

The core voltage of the FPGA was 1.2 v, whereas the DSP was 1.3 v and the maximum 

current rating for each was 0.5 A. Two ADP1715 from Analog Devices were chosen, 

because they can output up to 0.5 A, and because two of its common usage 

applications are for DSPs and FPGAs. The regulators output voltage was set by means 

of two external resistors; it can be set to any value within the range from 0.8 v to 5 v. 

The required output voltages were 1.2 v and 1.3 v, which lie within the output ranges of 

the regulators. The ADP1715 data sheet provided the following equation for setting the 

required output voltages [34]: 
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For the FPGA,      was 1.2 v, resulting in       being equal to a ratio of 0.5. For the 

DSP,      was 1.3 v, resulting in       being equal to a ratio of 0.625. Furthermore, the 

ADP1715 presented the following equation for calculating the power dissipation of the 

chip (see Figure 3.12) [34]: 

 

                     

 

Where    is the power dissipation,     and      are input and output voltages 

respectively, and       is the load current. Assuming that       is the maximum, which is 

0.5 A,     is 2.5 v and      is 1.2 v, then    will be equal to 0.65 w. The same applies for 

     1.3 v, where    will be 0.6 w. 0.65 w and 0.6 w are acceptable and fall within the 

limitations of the ADP1715 as per the data sheet [34]. 

 

The ADP1715 (1.3 v) and ADP1715 (1.2 v) regulators need an input of 2.5 v and the 

maximum current required from each of them is 0.5 A. Thus, a regulator that can supply 

2.5 v and 1 A was required to supply the two regulators. Therefore, the PTN78000W 

was chosen to supply the 2.5 v [33]. As a result, the PTN78000W received a 7 v input 

and will output 2.5 v for the two regulators (see Figure 3.12). 

 

The camera module requires 2.8 v and a maximum current of 10 mA. The ADP1715 

was also chosen to supply the camera.      is 2.8 v,     is 5 v and       is 10 mA, 

resulting in       being 2.5 and    being 0.022 w, which falls within the limitations of 

the ADP1715 as per the data sheet (see Figure 3.12) [34].  

 

Three IDT74FCT62244 buffers require 5 v and a maximum current rating for each is 

120 mA. In addition, the ADP1715 (2.8 v) needs 5 v and a maximum current of 10 mA. 

Adding all the currents together will result in a sum of 370 mA. Therefore, REG103-5 

from Texas Instruments was chosen because it can output up to 500 mA, because the 
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output voltage is fixed at 5 v and because the input voltage can range from           to 

15 v. The power dissipation can be calculated by using the same equation as above, 

      is 370 mA,     is 7.5 v and      is 5 v so,    will equal to 0.925 w, which is within 

the limitations (see Figure 3.12). The DDPAK package of REG103-5 was chosen due to 

the PCB heat sink configuration [35]. 

 

The input voltage of the board goes through a circuit before it enters the regulators. This 

circuit consists of a fuse for over-current protection, bulk capacitors to filter the incoming 

supply, a diode for reverse polarity, and finally a bleed resistor to discharge the 

capacitors when the board is off (see Figure 3.12). 
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Figure ‎3.12 : Regulators schematic sheet
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3.1.11 Level Translator 

 

The system does not need any level translators between the chips. All the I/O 

voltages are compatible throughout the design (see Tables 3.4, 3.5 and 3.6). 

 

Table ‎3.4 : I/O voltages between the BF533, PSDs and SDRAM 

BF533 PSD4256G6V MT48LC32M16A2TG 

                                         

                                          

                                              

                                             

 

 

Table ‎3.5 : I/O voltages between the BF533 and the camera, WiFi and UART-USB modules 

BF533 Camera Module WiFi Module UART-USB Module 

                                                              

                                                        

                                                              

                                                          

(1): They specify     = 2.2v in the original data sheet of the camera but they also specify 1.62v as minimum     in the latest data 

sheet so, at the moment it is working but there might be a risk that it will not work in a different environment.  



 

75 
 

Table ‎3.6 : I/O voltages between the BF533, FPGA, ADM708, 74LVC14A and IDT74FCT3807 

BF533 FPGA ADM708SAR 74LVC14A IDT74FCT3807 

                                                               

                       N/A                               

                                                                   

                       N/A                                     
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3.2 PCB Layout 

 

The board consisted four layers: two signal layers, a power layer and a ground 

(GND) layer (see Figure 3.13). The board was designed using Altium Designer Winter 

2009, and it was manufactured by Trax company. A top and bottom views of the final 

prototype are presented in Figure 3.14 and Figure 3.15. 

 

The following rules were followed when laying out the board: 

 

 First, the critical line length (CLL) was calculated, which meant that none of the 

tracks should exceed that length, otherwise we would have had to deal with high 

speed digital design issues. CLL was calculated by using the following equation 

[36]: 

 

     
   

   
 

 

Where  

 

   is the rise and fall time (10% to 90%).  

The BF533 is the fastest chip on the board so the calculations were based on the 

    of the BF533. The BF533 has four different driver types for the output pins, 

and each driver type has its own    . By examining the BF533 data sheet we 

assumed that the worst case for the load capacitance is 50 pF at 3.3 v. 

Therefore, when investigating the     diagrams in the BF533 data sheet, one can 

see that the worst cases are output pins of driver A (          and the 
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CLK_OUT pin, which is driver B (           .          was used to calculate 

the critical line length for all the tracks except CLK_OUT [13].  

 

S is trace velocity. Trax uses FR4 material for manufacturing the PCB and the 

typical trace velocity for FR4 is           [37]: 

 

                        
 

    
                   

 

                 
   

    
                     

 

 The critical signals, such as CLK and some of the control signals, were routed 

first, making them as short as possible [38]. 

 The buck converter circuit tracks of the BF533 had to be as short as possible and 

as thick as possible [19].  

 The GND and Vcc tracks were made as thick as possible and as short as 

possible, because they draw a lot of current (especially GND). In addition, the 

holes of their vias were made 1 mm. 

 The address and data lines were routed randomly and not next to each other to 

avoid the cross talk problems. 

 The GND layer was placed closer to the top layer because it draws more current 

than the bottom layer. 

 The decoupling capacitors were placed as close as possible to the Vcc pins. 

 The minimum track width was calculated for each track, which meant that each 

track should not be below that width, using the following equation [39]: 

 

 

 



 

78 
 

                              
                         

                                               
    

 

Where  
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Figure ‎3.13 : The top and bottom layer of the PCB design (a 0805 footprint was placed all over 

the unused space for future use) 
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Figure ‎3.14: Top view of the final prototype 
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Figure ‎3.15: Bottom view of the final prototype 

 

3.3 Conclusion 

 

The system design was depicted in this chapter in Figure 3.1. Subsequently, the 

implementation of each sub-system was described, and hardware selections were 

justified. Furthermore, this chapter listed the rules that were followed during the 

schematic design and PCB lay-out phases. Finally, a picture of the final prototype board 

was presented. In summery, the prototype board contains 29 components, 6 

connectors, 2 switches, 5 push buttons, 10 LEDs and 240 miscellaneous components 

(resistors, capacitors, inductors, diodes and fuse). The next chapter will cover the 

software design and hardware debugging. 
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4. Chapter 4: Software Design and Hardware Debugging 

 

4.1 Software Overview 

 

The structure of the SW was designed in such a way that it was as simple and 

straightforward as possible. Three main cycles were identified in the software, namely, 

camera cycles, encoding cycles and WiFi cycles. Camera cycles refer to the time it 

takes to set up DMA and PPI to start transferring the frame from the camera to SDRAM; 

encoding cycles are the time it takes to encode one frame; and WiFi cycles are the time 

it takes to transmit one frame. 

 

The software process starts by initializing the hardware. This is followed by, grabbing 

the first frame from the camera and waiting until the grabbing is done. After that, the 

encoding of the first frame starts while the second frame is being grabbed at the same 

time. Thereafter, the encoded frame is transmitted. This same process repeats for the 

second frame. In other words, while the first frame is being encoded, the second frame 

is grabbed, this happens in a ping-pong manner (see Figure 4.1). The DMA is 

responsible for grabbing the frames from the camera. 
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RESET

HW Init.

Grab frame A
(DMA)

Grab frame B
(DMA)

Encode frame A

Toggle 
LED

Transmit frame A

YESNO

Grab frame A
(DMA)

Encode frame B

Toggle 
LED

Transmit frame B

YESNO

Is grab frame 
A done?

Is grab frame 
B done?

 

Figure ‎4.1 : SW flowchart 

 

  



 

84 
 

4.1.1 Hardware Initialization 

 

Hardware initialization involves setting up all the registers that will change during 

the process (see Figure 4.2).  

 

PLL Init. EMIF Init. Camera Init. WiFi Init. Timer Init. Encoder 
Init.

Cycles 
Init.

Send Test 
PatternLEDs Init.

 

Figure ‎4.2 : Hardware initialization 

 

4.1.1.1 Phase Locked Loop (PLL) Initialization Function 

 

This sets up the core voltage of BF533 to 1.3 v, the CCLK to the maximum, 

which is 378 MHz (27 MHz   14) and the SCLK to the maximum, which is 126 MHz 

(CCLK   3).  

 

The registers programmed in this function are VR_CTL, PLL_DIV and PLL_CTL [32].  

 

4.1.1.2 External Memory Interface (EMIF) Initialization Function 

 

This sets up the registers of the EBIU to enable all the banks. It also sets up the 

registers of SDRAM refresh rate control, SDRAM memory bank control and SDRAM 

memory global control.  

 

The registers programmed in this function are EBIU_AMBCTL, EBIU_AMGCTL, 

EBIU_SDRRC, EBIU_SDBCTL and EBIU_SDGCTL [32]. 
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4.1.1.3 LEDs Initialization  

 

This sets port B of Flash A as output to turn the LEDs ON or OFF. Thereafter, the 

first LED is turned ON to indicate that BF533 has power.  

 

The registers programmed in this function are Direction and Data-Out registers of Flash 

A port B [22]. 

 

4.1.1.4 Camera Initialization Function  

 

The     protocol has to be initialised first, and BF533 must be set as a master. 

Then the power down mode of the camera must be removed by pulling the PWDN pin 

low and bringing the camera out of reset by pulling the        pin high [23].  

 

There are two different sets of register banks on the OV2640 module. Register 0xFF 

controls which sets are accessible. When register 0xFF = 00, Table 12 of the camera 

datasheet is effective. When register 0xFF = 01, Table 13 is effective. As part of the 

initialization, register 12 in Table 13 sets to 8, which initiates a system reset: this means 

that all the registers are set to factory default values, after which the chip resumes 

normal operation. Then the values of all the registers in Table 12 and 13 are set for the 

correct operation, such as setting up the size to UXGA, setting PCLK to the maximum 

etc...[25].  

 

Thereafter, DMA is initialised to transfer the frame from PPI to SDRAM. Each pixel is 

two bytes, therefore X_COUNT has to be 16 bit and X_MODIFY has to be 2 and the 

same for Y_COUNT and Y_MODIFY. Then, the PPI interface is initialised to receive a 

frame of 1600x1200 pixels.  
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The registers programmed in this function are FIO_DIR, FIO_INEN, FIO_FLAG_S, 

FIO_FLAG_C, FIO_FLAG_D, DMA0_X_COUNT, DMA0_X_MODIFY, 

DMA0_Y_COUNT, DMA0_Y_MODIFY, DMA0_PERIPHERAL_MAP, DMA0_CONFIG, 

PPI_FRAME, PPI_COUNT, PPI_DELAY and PPI_CONTROL [32].  

 

4.1.1.5 WiFi Initialization Function 

 

First, the WiFi module must be reset by pulling the            pin low and then 

bringing it out of reset by pulling the same pin high. Then, SPI is initialised by setting the 

baud rate register, control register and SPI flag register. BF533 is the master and the 

maximum SPI CLK of the WiFi module is 12 MHz. Therefore, the baud rate register 

must be set to the maximum, which is 10.5 MHz (SCLK   12) [26]. 

 

The registers programmed in this function are SPI_BAUD, SPI_CTL and SPI_FLG [32]. 

 

Thereafter, the module is configured by sending commands in a specific format as 

specified in the programmer’s manual [27]. Configuring the module means setting up 

the WiFi communication channel to Ad-Hoc mode, the destination wireless LAN Service 

Set Identifier (SSID), the IP address of the module and number of addresses to be 

allocated in the IP pool of the module. Then a UDP (User Datagram Protocol) socket 

must be opened to allow streaming and to set the remote system’s address. 

 

The WiFi module was programmed by sending the following commands 

"AT+iWLCH=1\r\n", "AT+iWLSI=!KANZ\r\n", "AT+iIPA=192.168.10.1\r\n", 

"AT+iDPSZ=1\r\n", "AT+iDOWN\r\n", "AT+iUP=2\r\n" and 

"AT+iSUDP:192.168.10.2,3139\r\n" [27].  
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4.1.1.6 Timer Initialization Function 

 

This sets up TIMER0 and the Interrupt Service Routine (ISR) for measuring 

activity, such as data throughput or frame per second; it also toggles one of the LEDs 

every second. 

 

The registers programmed in this function are TIMER0_CONFIG, TIMER0_PERIOD, 

TIMER0_WIDTH, TIMER_ENABLE, SIC_IAR0, SIC_IAR1, SIC_IAR2 and SIC_IMASK 

[32]. 

 

4.1.1.7 Encoder Initialization Function 

 

This prepares the encoder for encoding based on the step-by-step guide for 

integrating the H.264 BP/MP Encoder library into the application as described in Section 

3.2 of the H264 encoder developer’s guide document [12]. Steps 1 and 2 were 

implemented in the h264enc.c file, which include adi_h264e_codec.h and adi_codec.h 

and declare all the required buffers and variables. Steps 3 to 8 were implemented in this 

function H264_Init. They include setting up the encoder input parameters 

ADICodecConfigInputParam (where features of the encoder are enabled or disabled, 

thus affecting the quality of the video and processing cycle), setting up the memory 

blocks, setting up the MDMA (Memory DMA) configuration, calling the 

ADIH264ECodecNew() function to create a new encoder instance, configuring the 

encoder instance with input parameters, configuring the encoder video input format to 

UYVY 422 and calling the sequence header process function to process the sequence 

header before getting the header encoded from the encoder [12]. Finally, the H264_Init 

function returns the start address of the header output stream and size. 
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4.1.1.8 Send Test Pattern 

 

SMPlayer does not play the output video directly; and it was found that SMPlayer 

only starts playing the video when it has first been sending a test pattern. The UDP 

packet size is limited to 2048 bytes and normally the video output size is about 12 

Kbyte; as a result, the video is divided to 2048 bytes [27]. It seems that SMPlayer 

cannot recognise the beginning of the video, because it has been divided among the 

packets. However, the test pattern is less than 2048 bytes, along with the header that 

H264_Init function returned (see Section 4.1.1.7). Therefore, a test pattern file has to be 

streamed first via WiReach_SendUdpBuf function (more details about this function are 

presented in Section 4.1.5).   

 

The test pattern was obtained by setting the registers in the camera to send only the 

test pattern, and then transferring it to the SDRAM through the PPI. Once this was 

done, the test pattern was dumped out from the SDRAM to the “test1600x1200.txt” file. 

 

4.1.1.9 Initialization of Cycles  

 

This initialises a cycle count for the encoder, camera and WiFi module to keep 

track of how many cycles each one utilizes. Afterwords, these numbers would be 

printed out for use in calculating of the bit rate and some other values. 

 

4.1.2 Grab Frame Function 

 

This grabs frame A by setting the frame starts address, configuring and enabling 

the DMA and enabling PPI. The DMA is responsible for grabbing the frames from the 

camera. 
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The registers programmed in this function are DMA0_START_ADDR, DMA0_CONFIG 

and PPI_CONTROL [32]. 

 

4.1.3 Is Grab Frame Done Function 

 

This involves checking the DMA_IRQ_STATUS register: if it is done, then PPI 

must be disabled, returning 1, otherwise returning 0.   

 

The registers programmed in this function are DMA0_IRQ_STATUS and 

PPI_CONTROL [32]. 

 

4.1.4 Encode Frame Function 

 

This involves passing a two pointer, one for the input video frame and one for 

where the output stream should be stored. This procedure causes the library encoder 

function to be executed, based on the step-by-step guide for integrating the H.264 

BP/MP Encoder library into the application, according to Section 3.2 in the H264 

encoder developer’s guide document [12]. Steps 9 and 10 were implemented in this 

function known as H264_Encode, which assigned the input video frame to the instance 

and called the encoder to process the frame [12]. The H264_Encode function then 

returns the start address of the output stream and size.  

 

4.1.5 Transmit Frame Function 

 

The WiFi module can only send UDP packets of up to 2048 bytes. Therefore, a 

while loop was implemented to send only 2048 bytes at a time until the whole output 
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stream has been sent. This function WiReach_SendUdpBuf sends one packet of 2048 

bytes through the SPI_TDBR register and then waits for acknowledgement through the 

SPI_RDBR register. WiReach_SendUdpBuf function returns the number of bytes that 

have been sent.  

 

One WiFi command was used in this function, namly, "AT+iSSND:0,%04u:" [27] and 

two registers which were used, namly, SPI_TDBR and SPI_RDBR [32]. 

 

4.2 PSD4256G6V Software 

 

The PLDs in PSD4256G6V were programmed by installing flash_a.obj and 

flash_b.obj configuration files from the example code folder of Analog Devices. The 

Anaolg Devices folder that was used to program the PSDs are covered in Appendix E.3. 

 

4.3 Software Design Tools 

 

The tools that have been used in the project are VisualDSP++ version 5 update 7 

and ADZS-USB-ICE emulator from Analog Devices to program BF533 DSP. PSDsoft 

Express and Flash Link FL-101D from STMicroelectronics were used to program the 

PSDs. SMPlayer, which was recommended by Analog Devices, was used to play the 

output stream video [12].  
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4.4 Hardware Debugging 

 

No voltage could be measured at the output of the REG103-5 when the power 

was first connected to the board because the ENABLE pin on the REG103-5 was faultily 

grounded. To rectify this, the ENABLE pin was connected to the Vin pin [35], which led 

to the right voltages being measured at all the affected output regulators. 

 

When the regulators were connected to the rest of the board and power was applied for 

the second time, the zener diode in the buck converter circuit was burned, causing 

smoke to come out of it. This was because the footprint of the zener diode had been 

placed the wrong way around. The zener diode had to be replaced. The camera also 

became very hot because the footprint of the camera connector was the wrong way 

around, and the camera had to be replaced with a new one as well. 

 

The BF533 JTAG emulator was connected to the board with the purpose of loading an 

example application to test the SDRAM and Flash memories. The SDRAM test was 

successful. However, when an application was loaded to the BF533 to flash some LEDs 

through Flash A, it was unsuccessful. After that, flash_a.obj and flash_b.obj 

configuration files from Analog Devices were loaded into Flash A and Flash B through 

their own JTAG, but the LEDs still did not flash. All the tracks between the BF533 and 

PSDs were checked, and it was found that two control signals            and 

           were not connected. Therefore, two wires were manually placed for each 

PSD. When the code was loaded again, the test was successful. 

 

The UART-USB module was emitting considerable heat when the USB cable was first 

plugged in; this was because the footprint was the wrong way around. Unfortunately, 

the UART-USB module was a thru-hole module and thus the process of replacing the 

module was difficult and time consuming. However, as the module was not critical for 

the project, it was left out. 
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The      and      signals should not have been connected to the FPGA because 

     was reserved for Flash A and      for Flash B (see Table 3.3). The FPGA has 

15 Kbyte of memory [30]. Instead,      or      should have been connected, 

because      still has approximately 831 Kbyte left, which is more than enough for the 

FPGA. The signal      was not even used. At the moment,      could be used for the 

FPGA because Flash B is not being used.  

 

The JTAG circuit of the FPGA was not implemented, and the only way of programming 

it was through the EPCS1. This is because the FPGA JTAG signals were dropped off 

errantly and not connected (see Figure 3.12). Consequently, it is currently very difficult 

to program the FPGA, and since it is not critical for this project, the FPGA was never 

used. 

 

4.5 Conclusion 

  

In this chapter, a flow chart of the software system design was presented as well 

as a detailed description for each block. Thereafter, the PSD4256G6V software was 

explained, and the SW design tools that were used for the project implementation were 

presented. Some errors were discovered in the board design, and those were listed in 

the hardware debugging section. System testing and results will be discussed in the 

next chapter. 
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5. Chapter 5: System Testing and Results 

 

5.1 Introduction 

 

Users can adjust the quality of the video or processing time by tuning the 

numbers in the configuration parameters, which can enable or disable some of the 

features [12]. 

 

Analog Devices recommended three profiles, namely, Movie profile, Low Cost 

Surveillance profile and Surveillance profile. In the Movie profile, quality is more 

important than low processing time; in the Low Cost Surveillance profile, low processing 

time is more important than quality; and in the Surveillance profile, a trade-off between 

the two is important [12]. 

 

A sample test for each of these profiles was done to prove that the structure of the 

system was indeed working, as well as to identify any obstacles or bottlenecks, and to 

overcome these. 

 

5.2 System Tests 

5.2.1 Configuration Parameters 

 

The test was done for the UXGA frame size by setting the parameters of 

ADICodecConfigInputParam in the init_encoder_settings function. Most of the 

parameters were kept at the default values, as per the code example of Analog Devices 

except five parameters, namely, iFramerate, iBitrate, iSearchComplexity, iScdConfig 

and iRcConfig [12]: 
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 iFramerate was set to the maximum, which is 30. 

 iBitrate was set to the maximum, which is 2 Mbps. 

 

For each profile, Analog Devices suggested values for iSearchComplexity, iScdConfig 

and iRcConfig parameters. iSearchComplexity configures the complexity of the 

encoder, iScdConfig configures the scene change detector, and iRcConfig configures 

the bit rate controller [12]. 

 

5.2.2 Movie Profile Parameters 

 

iSearchComplexity was set to 0x6A1322D7, which set the motion search range 

to 64x32 and enabled the following: half pixel ME search, diagonal half pixel ME search, 

quarter pixel ME search, higher complexity ME search, alternate ME, predicted skip 

MBs, and diagonal intra4 prediction modes. It also set the maximum number of search 

depth to the default value 2 (see Appendix D) [12]. 

 

iScdConfig was set to 0x10A08932, which enables the scene change detection (see 

Appendix D) [12]. 

 

iRcConfig was set to 0x542CCF5, which sets the rate control sensitivity index to 5, the 

minimum QP (Quantization Parameter) to 15, and the maximum QP to 51, while 

disabling slice based rate control for I-frames and enabling variable GOP at scene 

change (see Appendix D) [12]. 
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5.2.3 Surveillance Profile Parameters 

 

iSearchComplexity was set to 0x6A112091, which sets the motion search range 

to 32x16 and enables and disables the following: enable half pixel ME search, disable 

diagonal half pixel ME search, disable quarter pixel ME search, enable higher 

complexity ME search, disable alternate ME, enable predicted skip MBs, and disable 

diagonal intra4 prediction modes. It also sets the maximum number of search depth to 

the default value 2 (see Appendix D) [12]. 

 

iScdConfig was set to 0x38932, which disables the scene change detection (see 

Appendix D) [12]. 

 

iRcConfig was set to 0x440CCF5, which sets the rate control sensitivity index to 5, the 

minimum QP to 15 and the maximum QP to 51, while disabling slice based rate control 

for I-frames and disabling variable GOP at scene change (see Appendix D) [12]. 

 

5.2.4 Low Cost Surveillance Profile Parameters 

 

iSearchComplexity was set to 0x6A1124D1, which sets the motion search range 

to 32x16 and sets the following: enable half pixel ME search, disable diagonal half pixel 

ME search, disable quarter pixel ME search, enable higher complexity ME search, 

enable alternate ME, enable predicted skip MBs, and disable diagonal intra4 prediction 

modes. It also sets the maximum number of search depth to the default value 2 (see 

Appendix D) [12]. 

 

iScdConfig was set to 0x38932, which disables the scene change detection (see 

Appendix D) [12]. 
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iRcConfig was set to 0x440CCF5, which sets the rate control sensitivity index to 5, the 

minimum QP to 15 and the maximum QP to 51, while disabling the slice based rate 

control for I-frames and disabling variable GOP at scene change (see Appendix D) [12]. 

 

5.2.5 Analog Devices’ Profiles Test 

 

The average encoding cycles, WiFi cycles, camera cycles and frame size of 200 

frames were printed out for each profile to be able to calculate more or less the actual 

bit rate and frame rate for each profile (see Table 5.1).  
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Table ‎5.1 : Analog Devices’ profile test results 

Movie Profile Surveillance Profile 

 

Low Cost Surveillance Profile 

 

Average Encoding Cycles 

(AEC) 

177403533 

Cycles 

 

Average Encoding Cycles 

(AEC) 

167117555 

Cycles 

 

Average Encoding Cycles 

(AEC) 

157524020 

Cycles 

 

Average WiFi Cycles 

(AWC) 

30949197 

Cycles 

 

Average WiFi Cycles 

(AWC) 

30933404 

Cycles 

 

Average WiFi Cycles 

(AWC) 

31388640 

Cycles 

 

Average Camera Cycles 

(ACC) 

399 Cycles 

 

Average Camera Cycles 

(ACC) 

401 Cycles 

 

Average Camera Cycles 

(ACC) 

401 Cycles 

 

Average Frame Size (AFS) 12102 Bytes 

 

Average Frame Size (AFS) 12063 Bytes 

 

Average Frame Size (AFS) 12310 Bytes 

 

Calculated Results: 

 

Calculated Results: 

 

Calculated Results: 
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Cycles per pixel based on 

encoding cycles  

 
   

               
  

 

92 Cycles/pel 

 

Cycles per pixel based on 

encoding cycles  

 
   

               
  

 

87 Cycles/pel 

 

Cycles per pixel based on 

encoding cycles  

 
   

               
  

 

82 Cycles/pel 

Encoding time   
   

        
0.46 Seconds Encoding time   

   

        
0.44 Seconds Encoding time   

   

        
0.41 Seconds 

fps based on encoding time 

only   
 

             
 

2.13 fps fps based on encoding time 

only   
 

             
 

2.26 fps fps based on encoding time 

only   
 

             
 

2.39 fps 

Actual time 

  
             

        

0.55 Seconds Actual time 

  
             

        

0.52 Seconds Actual time 

  
             

        

0.49 Seconds 

fps based on actual time 

  
 

           
  

1.81 fps fps based on actual time 

  
 

           
  

1.9 fps fps based on actual time 

  
 

           
  

2 fps 

Real Bit Rate        

   

                         

176 Kbps Real Bit Rate        

    

                         

185 Kbps Real Bit Rate        

    

                         

197 Kbps 

(1): UXGA frame size is 1600*1200. 

(2): CCLK = 14*27MHz . 
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It was found that the encoding cycles are dependent on the configuration 

parameters. Some features add more cycles while others add less. WiFi cycles are 

dependent on the output frame size, and thus the bigger the size, the higher the 

number of cycles, and the smaller the size, the lower the number of cycles. Camera 

cycles are more or less the same on all the profiles, because their aim is to ensure 

that the previous frame is grabbed before reconfiguring DMA and PPI to grab the 

next frame. 

 

It was also found that the input frame size is 3750 Kbytes and that the average 

output frame size is almost 12 Kbytes; therefore, the compression ratio of the 

encoder is more or less 312:1. The quality of the video was good for all the profiles, 

but very jerky because the actual frame rate was only 2 fps. It is generally 

recommended that the video frame rate is at least 6 or 7 fps to be smooth enough for 

the human eyes. There were not any significant differences in terms of video quality 

between the profiles, nor were there significant differences in terms of the speed. 

More focused testing in terms of characterising the encoder parameters would need 

to be done to acquire the optimal numbers to suit the target application, but this lies 

outside the scope of this project. 

 

It was also found that the encoding cycles consume almost 85% of the processing 

time, whereas the WiFi cycles used up 14% and the camera cycles only 0.1%, which 

is almost negligible. Therefore, to improve the actual frame rate, which would result 

in a less jerky video, the encoding cycles and WiFi cycles would have to be smaller. 

Ideas on how to improve both encoding cycles and WiFi cycles are presented in 

Chapter 6. 
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5.3 Conclusion 

 

Testing of the three main steps of the system proved that the system is 

indeed working: UXGA frames were captured, compressed and then sent through a 

radio link. Furthermore, the bottlenecks of the system were identified and defined. 

Ideas and suggestions on how to improve on these are presented in the following 

chapter. 
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6. Chapter 6: Improvements and Conclusion 

6.1 Improvements and Future Work 

  

The ideas and recommendations that are presented in this chapter focus on 

overcoming the obstacles and problems of the system; the two most important of 

these were found to be encoding time and transmitting time. Furthermore, some 

suggestions are presented with regard to improvements in the hardware.   

 

In the sections below, suggestions are first made with regard to the selection of 

future hardware; thereafter, ideas are presented on how to improve the present 

hardware and software; finally, an entirely new structure for a product that could 

really be used for an UAV is explained below.  

 

6.1.1 Hardware Selections 

  

A single 24 MHz crystal clock could have been used instead of two crystal 

clocks. 24 MHz is slightly better (see Section 3.1.8) than 27 MHz, but not 

significantly. For example, if 24 MHz had been used, then the encoding time for the 

Movie profile would be 0.461988367 seconds instead of 0.469321516 seconds (see 

Table 5.1). 

 

Also, a single 32 Megabit SPI serial flash (SST25VF032B) could have been used 

instead of two 8 Megabit PSD425. SST25VF032B has only four signals to route 

instead of 16 data lines, 19 address lines, 4 control signals and 2 memory select; 

furthermore, SST25VF032B is much cheaper and smaller than PSD425. The UART 

protocol could have been used for the WiFi module instead of SPI, and the SPI 

protocol could have been used for SST25VF032B. Conversely, the UART-USB 

module could not have been used; it is nice to have but not critical to the structure of 

the system. Therefore, the advantages of having SST25VF032B outweigh the 

advantages of the UART-USB module. 
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Using one 24 MHz clock and one 32 Megabit SPI serial flash would have resulted in 

the need for fewer components and easier routing. 

 

6.1.2 Recommended Work Using the Present Hardware and Software 

 

Encoding cycles and WiFi cycles are the main bottlenecks of the system. 

Nothing can be done about the encoding cycles because we do not have access to 

the encoder itself, except that we could have used a smaller frame. This would have 

resulted in fewer encoding cycles, which will be discussed in Section 6.1.3. 

 

The problem with the WiFi module was that the DSP could not transmit the next 

packet until it had received an acknowledgement. Using a DMA to transmit the 

encoded frame would have added software complexity, however; there would also 

not have been a significant difference or improvement because the DSP still needed 

to monitor the acknowledgements and then reconfigure the DMA.  

 

The SPORT protocol could be used to send the encoded frame to the FPGA, which 

could then send it to the WiFi module; in this way, grabbing, encoding and 

transmitting could happen in parallel. Such a new software structure would still 

consist of three main cycles, but the WiFi cycles would be limited to the time it takes 

to set up DMA and SPORT to start transferring the frame from the SDRAM to the 

FPGA, which is almost the same as the length of the camera cycles (see Figure 6.1). 

Therefore, the WiFi cycles would be more or less 400 cycles, just like the camera 

cycles. If the same test as that of the Movie profiles in Section 5.2.5 was used to test 

the new structure, then the actual time would be 0.469 seconds rather than 0.551 

seconds; the actual frame rate would be 2.13 fps rather than 1.81 fps (see Table 5.1 

and Table 6.1). In other words, the new structure would improve the speed of the 

system but not significantly. 
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Figure ‎6.1 : Recommended software structure 
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Table ‎6.1 : Movie profile with only 400 WiFi cycles 

Movie Profile 

 

Average Encoding Cycles (AEC) 177403533 Cycles 

 

Average WiFi Cycles (AWC) 400 Cycles 

 

Average Camera Cycles (ACC) 400 Cycles 

 

Average Frame Size (AFS) 12102 Bytes 

 

Expected Results: 

 

Cycles per pixel based on encoding cycles 

  
   

               
  

92 Cycles/pel 

Encoding time   
   

        0.469 Seconds 

fps based on encoding time only   
 

             
 2.13 fps 

Actual time   
             

        0.469 Seconds 

fps based on actual time   
 

           
  2.13 fps 

Real Bit Rate 

                                   

207 Kbps 

(1): UXGA frame size is 1600*1200. 

(2): CCLK = 14*27MHz . 
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The SPI protocol is already connected between the FPGA and WiFi module, but 

wires still have to be placed between the SPORT pins in the BF533 and FPGA. 

 

6.1.3 Recommended New Hardware and Software Structure 

 

In order to make the system faster, the encoding time has to be low and the 

only way to achieve this is to use smaller frames. This means that the picture must 

be divided into small pieces, using multiple DSPs to process them in parallel.  

 

The proposed new structure would have four DSPs, each with its own SDRAM, one 

FPGA, Camera and WiFi module (see Figure 6.2). Consequently, the DSPs would 

be able to boot from the FPGA using the SPI protocol, to obtain the captured frames 

from the camera using the PPI protocol, to get data in and out from the SDRAM 

using the EBIU protocol, and to send the encoded frames to the FPGA using the 

SPORT protocol. Then, the FPGA could pack all four encoded streams and send 

these to the WiFi module by means of the UART protocol. Finally, the WiFi module 

could stream the packets to the destination via the UDP protocol. 
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Figure ‎6.2 : Recommended new hardware structure 
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The UXGA frame could be divided into four strips, with each strip 1600 pixels wide 

and 300 pixels high (see Figure 6.3).  

 

1

2

3

4

300

1

1200

16001

 

Figure ‎6.3 : UXGA frame divided to four strips 

 

The UXGA frame could be stored on all four SDRAM, but each DSP can only 

process one strip. For each DSP, the width could be set to 1600 pixels and the 

height to 300 pixels in the ADICodecConfigInputParam of the encoder. The start 

address of strip one would then be sent to the encoder in DSP1, the start address of 

strip two would be sent to the encoder in DSP2 and so on. The software structure in 

each of the DSPs would be the same as the structure set out in Section 6.1.2 (see 

Figure 6.1), and thus the camera cycles and WiFi cycles would be more or less 400 

cycles. A test was done by setting the width to 1600 pixels and the height to 300 

pixels for the Movie profile in the ADICodecConfigInputParam of the encoder, using 

the present hardware and software to specify more or less the encoding cycles. For 

the results, see Table 6.2.  
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Table ‎6.2 : Movie profile output using the recommended hardware and software structure 

Movie Profile 

 

Average Encoding Cycles (AEC) 54412538 Cycles 

 

Average WiFi Cycles (AWC) 400 Cycles 

 

Average Camera Cycles (ACC) 400 Cycles 

 

Average Frame Size (AFS) 8328 Bytes 

Expected Results: 

 

Cycles per pixel based on encoding cycles  

 
   

               
  

28 Cycles/pel 

Encoding time   
   

        
0.143 Seconds 

fps based on encoding time only   
 

             
 6.94 fps 

Actual time   
             

        0.143 Seconds 

fps based on actual time   
 

           
  6.94 fps 

Real Bit Rate 

                                    

463 Kbps 

(1): UXGA frame size is 1600*1200. 

(2): CCLK = 14*27MHz . 
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It was found that the new structure would be much faster than the present structure. 

Encoding time would be only 0.143 seconds, compared to 0.469 seconds in the 

present system, and the actual frames per second would be 6.94 fps rather than 

1.81 fps.  

 

However, there are two concerns that need to be investigated in the proposed new 

structure. Firstly, the bit rate is almost 12 times the present bit rate. Secondly, it must 

be assessed how much distortion would occur between the lines that separate the 

strips and whether this is acceptable or not. 

 

In the proposed new structure, the UXGA frame could be divided into four quarters, 

rather than strips, each 800 pixels wide and 600 pixels high (see Figure 6.4). 

However, this would make it very difficult to store them in the right order in the 

SDRAM, because after the first 800 pixels, 800 pixels would have to be skipped in 

order to get to the new line.  

 

1 2

3 4

600

1

1200

16001 800

 

Figure ‎6.4 : UXGA frame divided to four quarters 
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6.2 Conclusion 

 

A development board was designed for testing real time video compression 

encoders that are designed for UAV applications, with the aim of allowing users to 

test and develop encoders before the actual design of the board that would be used 

for the UAV. 

 

The thesis began by discussing the background of the main components of the 

project, namely, camera sensors and video compression. Thereafter, the 

requirements were identified with regard to the target application, namely, the UAV. 

Chapter 2 discussed how the project should be implemented, what options were 

available, and which one would be the best in the current situation. 

 

The design and implementation were examined in Chapter 3. The chapter also listed 

the rules that were followed during the design of the schematic and the layout. The 

board mainly consists of a 2 MegaPixel camera, a 400 MHz Blackfin DSP where the 

video compression encoders would be running, two 8 Mbit flash, one 64 Mbyte 

SDRAM, an FPGA for future use and a WiFi module that simulates the radio link in 

the UAV. 

 

The software design and structure were presented in Chapter 4. Some faults, which 

were discovered during hardware and software debugging, are listed in Section 4.4. 

 

Various sample tests were done on the board by using the H.264 encoder library 

from Analog Devices; the results of these are discussed in Chapter 5. It was found 

that the board compressed 2 MegaPixel images at approximately 2 fps, and that it 

was able to stream out the video at around 186 Kbps. The quality of the video was 

good but jerky. These tests made it possible to identify the system bottlenecks, 

which were found to be encoding and transmitting times.  
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This chapter made various suggestions with regard to possible improvements on the 

present hardware and software structure. In addition, a new structure was proposed 

to overcome the bottlenecks, and to speed up the system. Concerns about the new 

structure, which would need to be investigated, were identified. 
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Appendix A: Top Level Schematic Sheet 

 

The top level schematic layout is presented in this appendix. A higher resolution PDF for all the schematic sheets and the 

original project files are included on the CD (see Appendix E). 
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Appendix B: PCB Layout 

 

The PCB manufacturing layers are presented in this appendix. A higher 

resolution PDF of all the PCB layers and the original files are included on the CD 

(see Appendix E). 

 

 

Figure B.1: Top overlay 
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Figure B.2: Top solder mask 
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Figure B.3: Top layer routing 
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Figure B.4: Ground layer 
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Figure B.5: Power layer 
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Figure B.6: Bottom layer routing (mirrored) 
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Figure B.7: Bottom solder mask (mirrored) 
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Figure B.8: Bottom overlay (mirrored) 
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Appendix C: Bill of Materials 

 

# Designator Quantity Company Description Value 
 

Part Number 

1 4R1-4R12, 4R17-4R22 18 Vishay Resistor Array(10K) 10 K 
ACASA1100A2200P500 

 
 
 
2 

C1-C15, C18-C25,C27,  
C28, C30-C44, C76-C81, 
C100, C103, C104, C110-
C112, 
C118-C120, C122-C133, 
C135 

 
 
 

69 
TDK 

Ceramic Capacitor 

 
 
 
0.1 uF 

C2012X7R1H104K 
 

 

3 C29 1 TDK Ceramic Capacitor 1 uF C2012X7R1H105K 

 
 
4 

C16, C26, C45, 
C82, C101, C105, 
C113, C121, C134, C136 

 
 

10 Vishay 

 
 
Tantalum Capacitor 

 
 
100 uF 

293D107X9016E2T 

5 C17 1 TDK Ceramic Capacitor DNP 
C2012X7R1H104K 

5 R54 1 RS Resistor DNP 
 

6 
C46-C66, C68, C70, C73, 
C138 25 TDK Ceramic Capacitor 10 nF 

C2012X7R1H103K 

7 C67, C69, C71, C74, C137 5 TDK Ceramic Capacitor 100 nF 
C2012X7R1H104K 

8 C72, C75, C87 3 Vishay Tantalum Capacitor 10 uF 
593D106X9016C2TE3 

9 C83, C84 2 AVX Ceramic Capacitor 18 pF 
08055A180JAT2A 

10 C86 1 AVX Ceramic Capacitor 1000 pF 
12065A102JAT2A 

11 C88 1 Vishay Tantalum Capacitor 0.1 uF 
TR3C107K010C0200 

12 C90, C92, C97 3 TDK Ceramic Capacitor 2.2 uF 
C1632X5R1A225K 

13 C91, C93, C98 3 TDK Ceramic Capacitor 2.2 uF 
C3216X7R1C225K 

14 C102 1 Vishay Tantalum Capacitor 4.7 uF 
293D475X9016A2TE3 

15 C114-C117 4 AVX Tantalum Capacitor 1 uF 
TAJA105K020R 

16 C160, C162 2 TDK Ceramic Capacitor 2.2 uF 
C3216X7R1C225K 

17 C161, C163 2  Vishay Tantalum Capacitor 100 uF 
TR3C107K010C0200 

18 D1 1 ZETEX Zener Diode   
ZHCS1000 

19 D2 1 Vishay Default Diode   
DO-214AA (S2A) 

20 F1 1 Mouser Fuse   
SMD250F-2 

21 JP1 (MEMs), JP3 (DSP) 2  RS Header, 7-Pin, Dual row   
 

22 JP2 (JTAG) 1  RS Header, 5-Pin, Dual row   
 

23 JP4, JP5, JP6 3  RS Header, 10-Pin, Dual row   
 

24 L1 1  TDK Inductor 10 uH 
SLF7045T-100M1R3-PF 

25 L2, L3 2  Vishay Inductor 10 uH 
 

26 PB1 (RESET), PB2-PB5 5  Panasonic Push Button   
EVQPAD04M 

 

POWER-GREEN, RESET-
RED, RXLED, TXLED, 
YELLOW1-YELLOW6 10 Mantech LEDs 

 

 

28 R99, R171 1  RS Resistor DNP 
 

 

R1, R2, R15, R28, R29, 
R31, R32, R37, R38, R48, 
R49, R51, R52, R75-R78, 
R80, R92, R106, R125-
R127, R129, R140, R151, 
R183 27 RS Resistor 10 K 

 

30 R20 1  Mouser Resistor 22 
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31 R53, R187 2  Mouser Resistor 0 
 

32 R79 1  Mouser Resistor 10 M 
 

33 
R81, R82, R85, R93, 
R116, R118 6  Mouser Resistor 33 

 

34 R94, R96 2  Mouser Resistor 30 K 
 

35 R95 1  Mouser Resistor 15 K 
 

36 R97, R101 2  Mouser Resistor 12 K 
 

37 R100 1  Mouser Resistor 7.5 K 
 

38 R104 1 Mouser Resistor 100 K 
 

39 R115, R117 2 Mouser Resistor 4.7 K 
 

40 R119, R120 2 Mouser Resistor 390 
 

41 R130-R136 7 Mouser Resistor 270 
 

42 R137 1 Mouser Resistor 680 
 

43 R139, R141, R144, R145 4 Mouser Resistor 100 
 

44 R146, R147, R148, R149 4 Mouser Resistor 0 
 

45 R170 1 Mouser Resistor 75 K 
 

47 
R180, R181, R182, 
R184, R185, R186 6 Mouser Resistor 100 K 

 

48 Res1-Res5 5 Mouser Resistor DNP 
 

49 SW1 (BMODE) 1 C&K DIP Switch   
SDA02H0BD 

50 SW7 1 C&K DIP Switch   
SDA04H0BD 

 
U1 (DSP) 1 Analog Devices 

Blackfin Embedded 
Processor 

 

ADSP-BF533 

 
U2 1 Fairchild 

P-Channel 2.5V Specified 
MOSFET 

 

FDS9431A 

53 U3 1 TI INVERTER   
SN74LVC1G125 

 
U4 1 TI 

Single 2-Input Positive 
NAND Gate 

 

SN74AHC1G00 

55 U5, U6 2 STMicroelectronics Flash Memory   
PSD4256G6V 

56 U7(SDRAM) 1 Micron SDRAM   
MT48LC32M16A2 

57 U8(FPGA) 1 Altera FPGA   
EP2C5Q208C7N 

58 U9 1 Altera 
Serial Configuration 
Devices   

EPCS1 

59 
U10(DF_CLK), 
U13(C_CLK) 2 Epson Toyocom Crystal Oscillator   

SG-8002 

60 U11 1 IDT 1:10 Clock Driver   
IDT74FCT3807 

61 U12(RTC) 1 Epson Toyocom Crystal Unit   
MC-156 

62 
U14(1.2v), U15(2.8v), 
U17(1.3v) 3 Analog Devices 

500 mA Low-Dropout 
Regulator   

'ADP1715 Adjustable 

63 U16(3.3v), U19(2.5v) 2 TI Switching Regulator   
PTN78000W-EUS 

64 U18(5v) 1 TI 
500 mA Low-Dropout 
Regulator   

REG103-5 

65 U20(CMOS) 1 Molex Camera Connector   
52437-2471 

66 U21(WiFi) 1 Molex WiFi Connector   
52991-0308 

67 U23 1 FTDI USB-Serial UART   
UM232R 

68 U24 1 
Philips 
Semiconductor 

Hex Inverting Schmitt-
Trigger   

74LVC14A 

69 U25 1 Analog Devices 
+3 V, Voltage Monitoring 
uP Supervisory Circuit   

ADM708SAR 

70 U27, U29, U31 3 IDT 16-Bit Buffer/Line Drive   
IDT74FCT162244 
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71 U28, U30, U32, U26 4 IDT 
3.3V Octal Buffer/Line 
Driver   

IDT74FCT3244 

72 U33 1 RS Power Connector   
RAPC712 

 

Table C.1: Bill of materials
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Appendix D: H.264 Encoder Developer’s Guide 

 

The parameter flags presented in this appendix are extracted from the H.264 

BP/MP encoder developer’s guide for Blackfin ADSP-BF5xx processors document 

[12].  
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Appendix E: CD Manual 

 

The root directory of the CD contains the H264 Encoder Developer Guide 

document, bill of materials in an Excel sheet format and the following folders: 

 

 Analog Devices BF533 DSP 

 Board Schematics & PCB Altium Files 

 Camera Module 

 Data Sheets 

 Schematics and PCB Layers in PDF Format 

 WiFi Module 

 Source Code 

 

The Analog Devices BF533 DSP folder contains the BF533 data sheet, hardware 

reference manual and evaluation kit manual files as well as the EE-68, EE-228 and 

EE281 application notes. 

 

The Board Schematics & PCB Altium Files folder contains all the schematic libraries, 

PCB libraries, schematic sheets and the PCB layout that which were created using 

Altium Designer Winter 2009. The project file name is 

VideoCompression_V3.PrjPcb. 

 

The Camera Module folder contains the OV2640 data sheet and the SCCB 

document. 

 

The Data Sheets folder contains all the components data sheets that were used in 

this project. 
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The Schematics and PCB Layers in PDF Format folder contains all the schematic 

sheets and PCB layers in high resolution in PDF format. 

 

The WiFi Module folder contains the Nano WiReach data sheet and AT+i 

programmers manual document. 

 

The Source Code folder contains the project C and H source code, ME and MC 

VHDL source code and the PSD4256G6V configuration files. 

 
E.1: C and H Source Code 

 

The project C and H source code resides in the KANZ folder under the Source 

Code folder. The project file name is KANZ.dpj, (see Figure E.1). 

 

 

Figure E.1: KANZ subdirectory 
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E.2: ME_MC VHDL Source Code 

 

The ME and MC VHDL source code resides in the hdl subfolder of the 

ME_MC folder, all under the Source Code folder. The project file name is 

ME_MC.prj, (see Figure E.2). 

 

 

Figure E.2: ME_MC subdirectory. 

 

E.3: PSD4256G6V Configuration Files 

 

The flash_a.obj and flash_b.obj files that were loaded onto the PSDs reside in 

Flash_A and Flash_B folders respectively under the PSD4256G_ConfigFiles folder, 

all under the Source Code folder. 

 


