an EVALUATION OF THE MINIMUM REQUIREMENTS FOR THE DESIGN OF RURAL WATER SUPPLY PROJECTS

by

MPW CHIRWA

Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Engineering (Civil) at the University of Stellenbosch

Mr J.A. Du Plessis
Supervisor

DECLARATION

I, the undersigned, hereby declare that the work contained in this thesis is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree.

Signed \qquad
Mtampha-palombo Wadonda Chirwa

Date \qquad

Abstract

In this study, the minimum standards required for the design of rural piped water supply projects as set by the Department of Water Affairs and Forestry (DWAF) are evaluated with respect to capital pipe cost using the Nooightgedacht rural water supply scheme selected as a case study. It is considered that the application of the minimum standards has a cost effect associated with it.

The main aim is to investigate in terms of cost, the feasibility of applying the minimum standards on residual pressure (10 m), demand rate ($25 \mathrm{l} / \mathrm{c} / \mathrm{day}$) and abstraction rate ($10 \ell / \mathrm{min}$) in the design of rural water supply projects as set by Department of Water Affairs and Forestry (DWAF), and to investigate the possibility of increasing the standard on demand rate to $50 \mathrm{\ell} / \mathrm{c} /$ day without incurring significant capital pipe cost in order to satisfy DWAFs' intention of increasing the demand quantity to $50 \mathrm{\ell} / \mathrm{c} /$ day as a basic level of service.

The Nooightgedacht water supply project is a gravity fed system and was considered to be representative of most gravity fed systems designed for rural water supply.

As a secondary aim, the study was carried out to investigate which system of rural water supply (conventional reticulated pipeline, hauling and borehole systems) can be cost effective to apply on the selected Nooightgedacht water supply scheme considering the economic life and cash flow budgets of each system based on the net present value cost.

Sensitivity analysis on economic factors (maintenance and operation costs, inflation rate and interest on capital redemption) was also done with the aim of establishing which economic factors affects the net present costs, of the different rural water systems, the most.

Analysis of the minimum standards with respect to cost was conducted using Wadiso $S A$ computer program as a design and analysis tool on the selected case study. Economic cost analysis of the different water supply systems was conducted using Microsoft Excel net present value tool.

The results suggest that the standards on residual pressure (10 m) and demand rate ($25 \mathrm{l} / \mathrm{c} /$ day) are feasible to be achieved at a relatively low cost and that the demand rate can be increased to $50 \mathrm{l} / \mathrm{c} /$ day without significant increase in capital pipe cost.

The standard on abstraction rate ($10 \mathrm{l} / \mathrm{min}$) proves to be too high to be achieved at relatively low capital cost. However it was further investigated that the high costs can be overcome with the use of on-site storage tanks which can be used to meet the standard of $10 \mathrm{\ell} / \mathrm{min}$. The introduction of on-site storage tanks will result in the residual pressure of 10 m not being available to the user at the tap but will nonetheless be available at the connection point which could at a later time be utilised for upgrading.

The investigation on the economic analysis proved that the conventional reticulated pipeline system is a cost effective system to use in the Nooightgedacht water project (gravity fed system) followed by hauling and lastly borehole systems.

The sensitivity analysis proved that the net present value cost of the systems is more sensitive to maintenance and operation costs, followed by interest on capital redemption, and less sensitive to inflation rate.

It is recommended that the findings of this study based on the Nooightgedacht rural water supply project could be applied to similar projects of which the Nooightgedacht is representative.

SAMEVATTING

In hierdie studie word die minimum standaarde wat benodig word vir die ontwerp van landelike watertoevoer per pyplyn soos voorgeskryf deur die Departement van Waterwese en Bosbou, evalueer, veral met betrekking tot die kapitaal koste van pype. Die Nooightgedacht landelike toevoer skema is gekies as ' n koste effek.

Die hoofdoel is om ' n ondersoek te loods in terme van koste, die haalbaarheid van die toepassing van minimum standaarde op die oorblywende druk, $(10 \mathrm{~m})$, die aanvraagkoers ($25 \ell / \mathrm{c} / \mathrm{dag}$) en die onttrekkingskoers ($10 \ell / \mathrm{min}$) in die ontwerp van die landelike toevoer projekte soos voorgeskryf deur die Departement van Waterwese en Bosbou en om ondersoek in te stel na die moontlikheid om die aanvraagkoers te vergroot to $50 \mathrm{\ell} / \mathrm{c} / \mathrm{dag}$ sonder om merkbare kapitale pyp onkostes aan te gaan en om sodoende die Departement van Waterwese se doelwit te bereik om die aanvrag hoeveelheid te vergroot tot ' n aanvraag hoeveelheid van $50 \ell / \mathrm{c} / \mathrm{dag}$ as ' n basiese vlak van diens.

Die Nooightgedacht water-voorsienings projek werk met swaartekrag en daar word gevoel dat dat die resultate wat verkry is vanaf hierdie studie van toepasing is op die ontwerp van soortgelyke swaartekrag water toevoer-sisteme waarvan hierdie gevalle studie verteenwoordigend is.

Die tweede doelwit van die studie is om ondersoek in te stel na watter sisteem van landelike water toevoer (konvensioneel netvorming pyplyn, vervoer, en boorgat sisteme) koste-effektief kan wees om toe te pas op die gekose Nooightgedacht water toevoer skema as ' n mens die ekonomiese leeftyd en kontantvloei begrotings van elke sisteem in ag neem, baseer op die netto huidige waarde koste.

Sensitiwiteitsontleding van ekonomiese faktore (instandhouding- en bedryfskoste, inflasie koerse en rente op kapitaaldelging) is ook gedoen met die doel om vas te stel watter ekonomiese faktore die huidige netto koste affekteer.

Ontleding van die minimum standaarde betreffende koste is gedoen met behulp van die Wadiso SA rekenaarprogram as ' n instrument vir ontwerp en ontleding van die gekose gevallestudie. Ekonomiese koste ontleding van die verskillende watertoevoer sisteme is gedoen met behulp van Microsoft Excel Net Present Value.

Daar is ' n oorsig van die landelike water toevoer bronne en die metodes waarvolgens die water ontwikkel word in drinkwater. Daar is ook ' n oorsig van die verskillende water distribusie sisteme, en die minimum standaarde soos voorgeskryf deur die Departement van Waterwese en Bosbou word bespreek.

Die resultate baseer op die Nooightgedacht gevalle studie bewys dat:
Daar kan aan die standaarde betreffende oorblywende druk (10 m) die aanvraagkoers ($25 \mathrm{\ell} / \mathrm{c} / \mathrm{dag}$) voldoen word teen relatiewe lae kapitaalkoste.

Dit is moontlik om die aanvraagkoers tot $50 \mathrm{l} / \mathrm{c} / \mathrm{dag}$ te verhoog sonder ' n groot vermeerdering in kapitaalkoste.

Die standaard betreffende onttrekkingskoers ($10 \ell / \mathrm{min}$) is te hoog om aan voldoen te word teen ' n ralatiewe lae kapitaalkoste. Daar is egter ook gevind dat die probleem van hoë kostes oorkom kan word deur om van stoortenke gebruik te mak en dat dan aan die standaard van $10 \ell / \mathrm{min}$ voldoen kan word. Die gebruik van stoortenke by die bron self sal beteken dat die oorblywende druk van 10 m nie beskikbaar is vir die verbruiker by die kraan nie maar wel beskikbaar is by die konneksie punt en dat dit later gebruik kan word om die sisteem op te gradeer tot ' n hoër vlak van diens.

Die konvensionele netvormige pypleiding sisteem is ' n koste effectiewe sisteem vir gebruik in die Nooightgedacht water projek (swaartekrag sisteem) gevolg deur die vervoer van water en laastens boorgate.

Die sensitiwiteits ontleding bewys dat die netto huidige waarde koste van die sisteme baseer op lewenssiklus koste baie sensitief is vir kapitaal delging.

ACKNOWLEDGEMENTS

1) I wish to thank the following people for their contributions to the project and this thesis
2) My supervisor, Mr. J.A. Du Plessis who played a key role in the guidance and development of the approach to this study to ensure the objectives are achieved, and was always available and keen to help and give advice.
3) Mr. D.E. Bosman, the internal examiner, who made valuable inputs and helped with the refinement of this thesis.
4) Mr. O. Jonker (MVD Consulting Engineers), for his guidance and assistance in using Wadiso SA computer program to design the Nooightgedacht rural pipe water supply project and evaluate the minimum standards using the program.
5) Mr. P. Ravenscroft (Maluti water) who provided valuable cost information on the different types of rural water supply systems and information on the minimum standards as set by the Department of Water affairs and Forestry (DWAF) for the design of rural piped water supply projects.
6) My parents for their loving support.

MASTER OF SCIENCE IN WATER ENGINEERING COURSES

The following courses have been successfully completed
Code Course Credits
MT02 Probability and Risk Analysis in Civil Engineering 20
MT03 Project Economics and Finance 20
MT07 Advanced Hydrology 20
W07 Rural Water Supply 13
T06 Transportation Planning 13
Thesis 160
Total 246

TABLE OF CONTENTS

DECLARATION II
ABSTRACT III
SAMEVATTING V
ACKNOWLEDGEMENTS VII
COURSE OUTLINE VIII
INDEX IX
LIST OF FIGURES XII
LIST OF TABLES. XIV
INDEX
1.0 INTRODUCTION 1
1.1 Background 1
1.2 Objectives of this study 3
1.3 Scope of study 3
1.4 Outline of study 3
2.0 LITERATURE REVIEW 5
2.1 Introduction 5
2.2 Sources of water supply 5
2.2.1 Classification 5
2.3 Groundwater sources 6
2.3.1 Background 6
2.3.2 Locating potential groundwater sources 8
2.3.3 Groundwater development 9
2.3.4 Methods used to develop drinking-water sources from groundwater. 10
2.3.4.1 Background to wells 10
2.3.4.2 Hand-dug wells 13
2.3.4.3 Driven well-points 14
2.3.4.4 Jetted wells 16
2.3.4.5 Drilled wells 17
2.3.4.6 Cable tool wells 18
2.4 Handpumps for rural water supply 20
2.5 Surface water sources 24
2.5.1. Springs and seeps 24
2.5.1.1 Development of springs into drinking water sources 26
2.5.2 Ponds and lakes 30
2.5.3 Streams and rivers 31
2.5.4 Rainwater harvesting 33
2.6 Water distribution systems 37
2.6.1 Minimum standards considered in the design of rural water supply systems. 37
2.7 Water distribution systems and factors affecting the choice of selection 42
2.7.1 Distribution of water at the source or near the source 44
2.7.2 Distribution of water away from the source 44
2.7.2.1 Hauling 44
2.7.2.2 Pipeline reticulation system 45
3.0 METHODOLOGY 62
3.1 Investigation of rural water supply relating to minimum design standards of reticulation systems and the feasibility of different supply methods 62
3.2 Description of project (Nooightgedacht water supply project) used in the analysis 64
3.3 Methodology for the evaluation of minimum standards of a pipe water supply system using Wadiso SA Version 4.0 70
3.3.1 Evaluating pressure with respect to cost 73
3.3.2 Evaluating demand with respect to cost. 76
3.3.3 Evaluating abstraction rate with respect to cost. 79
3.4 Methodology for the economic analysis of different methods of rural water supply 82
3.4.1 Methodology of cost comparison of different rural water supply systems 82
3.4.2 Methodology on sensitivity analysis of economic factors on present value cost of different water supply systems 88
4.0 RESULTS AND ANALYSIS OF FINDINGS 90
4.1 Results of the evaluation of minimum standards of piped water supply systems 90
4.1.1 Results of the effect of pressure on cost 90
4.1.2 Results on effect of demand rate on cost 98
4.1.3 Results of effect of abstraction rate on cost 104
4.2. Investigation into the use of storage tanks to achieve an abstraction rate of 10 l/min 110
4.3 Investigation into the requirements of a balancing volume to meet the instantaneous demand at peak period 114
4.4 Results of economic analysis of different rural water supply systems 116
4.4.1 Results of comparison of net present value cost 116
4.4.2 Results of sensitivity analysis of economic factors on Net Present Value cost of different rural water supply options 119
5.0 CONCLUSIONS 125
5.1 Evaluation of minimum standards of rural piped water supply systems 125
5.2 Conclusion on economic cost analysis of different rural water supply systems 127
6.0 RECOMMENDATIONS 128
6.1 Evaluation of minimum standards for rural piped water supply systems 128
6.2 Economic cost analysis of different rural water supply systems 128
7.0 REFERENCES 129

LIST OF FIGURES

Figure 2.1: Typical basic well components 11
Figure 2.2: Types of well points 15
Figure 2.3: Typical spring box 27
Figure 2.4: Typical retaining wall structure to protect a spring 28
Figure 2.5: Seep collection system 30
Figure 2.6: Flexible plastic pipe intake with float 31
Figure 2.7: Rigid pipe intake at dam 31
Figure 2.8: Riverside infiltration well intake 32
Figure 2.9: Intakes with mechanical pump 33
Figure 2.10: Example of a foul flush box 34
Figure 2.11: Example of a filter system 35
Figure 2.12: Typical ground catchment structure 36
Figure 2.13: Typical Superimposed characteristic curve of pump and pipeline Systems 50
Figure 2.14: Distribution of daily water use 55
Figure 2.15: Diagramatic representation of a loop and node 57
Figure 3.1: Schematic layout of Nooightgedacht rural water supply project 68
Figure 3.2: Flow chart of the procedure of evaluation of residual pressure 75
Figure 3.3: Flow chart of the procedure of evaluation of demand rate 78
Figure 3.4: Flow chart of the procedure of evaluation of abstraction rate 81
Figure 4.1: Relationship of minimum residual pressure with pipe cost at different demand rates 93
Figure 4.2: Portion of the relationship of minimum residual pressure with pipe cost at different demand rates 94

Figure 4.3: Relationship of corresponding percentage increases in pipe cost and pressure at $25 \ell / \mathrm{c} /$ day

Figure 4.4: Portion of relationship of corresponding percentage increases in pipe cost and pressure at $25 \mathrm{\ell} / \mathrm{c} /$ day

Figure 4.5: Relationship of maximum demand with pipe cost at different pressure values99

Figure 4.6: Portion of relationship of maximum demand with pipe cost
at different pressure values 100

Figure 4.7: Relationship of corresponding percentage increases in pipe
cost and demand rate at 10 m 102

Figure 4.8: Portion of relationship of corresponding percentage increases
in pipe cost and demand rate at 10 m 103
Figure 4.9: Relationship of maximum abstraction rate with pipe cost at different pressure values for Node 60 105
Figure 4.10: Portion of Relationship of maximum abstraction rate with pipe cost at different pressure values for Node 60 106
Figure 4.11: Relationship of corresponding percentage increases in pipe cost and abstraction rate at 10 m 108
Figure 4.12: Portion of relationship of corresponding percentage increases in pipe cost and abstraction rate at 10 m 109
Figure 4.13: Example of an on-site storage tank 113
Figure 4.14: Sensitivity analysis of pipeline option 121
Figure 4.15: Sensitivity analysis of the borehole option. 122
Figure 4.16: Sensitivity analysis of the hauling option. 123

LIST OF TABLES

Table 2.1: Typical discharge rates for taps 39

$$
\begin{aligned}
& \text { Table 2.2: Classification system for the assessment of the suitability } \\
& \text { of water for potable use }
\end{aligned}
$$

Table 3.1: Pipe and node data used for the Nooightgedacht rural water supply project 67
Table 3.2: Pipe sizes and their related costs 71
Table 3.3: Summary of pipeline lengths 72
Table 3.4: Pipe size configurations used in the Nooightgedacht water supply system and related costs 72
Table 4.1: Results of variation of minimum residual pressure with pipe cost 92
Table 4.2: Corresponding percentage increases in pressure and pipe cost 95
Table 4.3: Results of maximum demand rate at different minimum pressures 99
Table 4.4: Corresponding percentage increases in demand rate and pipe cost 102
Table 4.5: Results of maximum abstraction rate at different minimum pressure values at node 60 105
Table 4.6: Corresponding percentage increases in abstraction rate and pipe cost 107
Table 4.7: Results of Net Present Value for conventional piped water supply system 117
Table 4.8: Results of Net Present Value for borehole system 118
Table 4.9: Results of Net Present Value for hauling system 119
Table 4.10: Ranking of water systems regarding net present value (NPV) 119
Table 4.11: Net present value at different deviations from base case for pipeline Option 120
Table 4.12: Net present value at different deviations from base for borehole option 121
Table 4.13: Net present value at different deviations from base for hauling option 123

1.0 Introduction

1.1 Background

As stated in the White Paper on Water Policy (1997a) one of the overriding priorities of the South African Government is the need to make sure that all people have access to sufficient water.

In order to achieve this priority, the South African Department of Water Affairs and Forestry (DWAF) has set a basic level of service with compulsory minimum standards which have to be incorporated in the design criteria of rural water supply systems by all water service institutions (DWAF 2002).

The minimum standards which have to be incorporated in the design criteria of rural water supplies to achieve the basic level of service are defined as follows (DWAF, 2002):

- Demand rate - 25 litres per capita per day ($\ell / c / d a y$)
- Abstraction rate (Flow rate) - 10 litres per minute (ℓ / min) at the abstraction point
- Residual pressure - 10m at the abstraction point (DWAF, 1999)

It is recognized that the design of rural pipe water supply systems to meet these minimum standards has a cost effect associated with it.

Considering that water services institutions and local authorities are faced with a constraint of tight budgets, but have to meet these standards in delivering basic water services (Illemobade \& Stephenson 2003). It is important to ensure that in designing rural water supply schemes, the minimum standards can be met at a reasonable low cost so that the available funds can be used to maximize water services development.

This study, therefore, has the primary aim of evaluating the minimum standards for the design of rural water supply projects as set by $D W A F$ in order to achieve the minimum level of service in the rural areas. The evaluation of the standards is done with respect to the cost that is incurred in satisfying the minimum standards.

The study intends to investigate, using a case study, the feasibility of adopting the current minimum standards of design based on the current levels of investment and whether the investment matches the benefit that can be realised from adopting the minimum standards at a reasonable low cost.

In view of the Government's approach to allow for the progressive increase in the standards of basic service ($D W A F, 1997 a$), it is also the intention to investigate the possibility of increasing the minimum standards within acceptable levels of investment, to satisfy the limit of water usage in the rural areas where the minimum level of service uses a communal standpipe (DWAF, 1999). However it is noted that different water service levels have different minimum standards.

Different water supply systems are available with which the minimum standards are applied and these include the conventional reticulated pipeline, borehole and hauling systems. However the system chosen will have to consider different factors and among them is the economic consideration.

For a particular area, an important economic consideration is to select a feasible option for service delivery and how much each option would cost both in terms of capital, operation and maintenance costs. In most cases the government subsidises the capital cost of rural water supplies but users are expected to finance the maintenance and operation costs (Webster, 1999).

Sustainability of a chosen system is an important factor to consider in selecting a rural water supply system and this among other things is dependent on the ability of the system users to maintain and operate the system.

Therefore depending on the conditions available, the system to be selected should ensure that it will be sustainable to run in terms of operation and maintenance costs. Maintenance and operation costs should be low since the users will be willing to pay for this system over its economic life than for a system whose costs are high for the same service that they require (Webster, 1999).

It was also considered necessary therefore to carry out an economic cost analysis of the different types of water supply systems that are used in rural water supply, in addition to the evaluation of the minimum standards. This is a secondary aim of this study.

The economic analysis was done in order to obtain an indication of which type of system considering life cycle costs can be cost effective to apply in a rural community in order to ensure that lowest monetary investments are made.

It should be mentioned that the focus of this study is on evaluating pipe supply systems with respect to minimum standards that are required in design, as set by DWAF in order to ensure access to a minimum level of service.

1.2 Objectives of this study

This study has been carried out with the objective to:
a) Evaluate and recommend minimum standards used in the design of rural piped water supply projects, in order to achieve the basic level of service, with respect to cost. This is the main objective of the study.
b) Carry out an economic cost analysis of different rural water supply systems and recommend a cost effective system of supply. This is the secondary objective of the study.

1.3 Scope of study

Since the emphasis of this study is on the evaluation of minimum standards for rural pipe water supply systems certain limitations have been placed on the scope of the study, namely:

- The analysis in this study has used data from part of an existing rural water supply project which can be considered to be representative of the whole project as a case study. The project is called the "Nooightgedacht rural water supply project". The evaluation of the minimum standards used for the design of rural piped water systems and the economic analysis of different water supply systems have both been carried out using this case study.

The "Nooightgedacht water supply project" is a gravity fed system and therefore conclusions and recommendations reached from the results of this study are applicable to a gravity system and specifically to gravity systems which the Nooightgedacht case study project is representative of.

- The considerations in the selection of a rural water supply system to be used for a particular area are dependent on a number of factors in particular social, technical, economical, financial, institutional, environmental, political and legal constraints. This study considers the economic and financial issues in the economic analysis, i.e. capital costs, operation and maintenance costs.

1.4 Outline of study

In order to achieve the objectives of this study the research has been structured by dividing it into several chapters as follows:

CHAPTER 2 is a literature review which discusses:

- Different sources of water and methods by which they can be developed for rural water supply.
- The relevant water supply systems applicable in rural areas namely:
a) Wells and boreholes including types of handpumps that are appropriate for rural water supply,
b) Conventional reticulated pipeline systems
c) Hauling systems.
- The compulsory minimum standards for pipe supply systems that are currently considered in the design of rural pipe water supply projects as required by the Department of Water Affairs and Forestry in order to ensure that the minimum level of service is met.

CHAPTER 3 explains the methodologies employed in this research.
First the methodology performed in order to evaluate and analyse minimum standards for rural piped water supply systems with respect to capital cost is explained.

The methodology employed for the evaluation of the minimum standards for piped water supply systems has been done with the use of Wadiso $S A$ software which is a design and analysis tool for water distribution systems (GLS Engineering Software Ltd, 2003). Wadiso $S A$ software has been used as a tool to design and analyse the standards based on data on the "Nooightgedacht water supply project" used as a case study, and will ensure that the designed system will meet the specified standards for the piped water distribution scheme.

Secondly, the third chapter explains the methodology used in the economic analysis in order to obtain an indication of the cost effectiveness when reticulated pipeline, hauling and borehole rural water supply systems are compared.

The methodology employed in the economic analysis is based on the use of economic evaluation tools to compare these systems, in terms of their economic life and the cash flows budgeted over their economic life span, when the minimum standards are followed.

The economic analysis for reticulated pipeline, hauling and borehole supply systems was also performed using the "Nooightgedacht water supply project" as a case study whereby each type of system was considered as an option for supplying water for the project.

The comparison involved using discounting cash flow techniques such as the Net Present Value. A sensitivity analysis was also carried out to obtain an indication of the influence of economic factors on the Net Present Value cost of the different options.

CHAPTER 4 comprises the results and findings of the investigations done on both the evaluation of minimum standards of piped water supply systems and the economic analysis of the relevant rural water supply technology options.

CHAPTER 5 and 6 discuss the conclusions that have been drawn from the results and recommendations made from the conclusions.

2.0 Literature Review

2.1 Introduction

In this study on the evaluation of the minimum requirements of rural water supply projects, the literature review discusses the following:

- Water sources, namely groundwater and surface water. This is followed by a review of the different water systems that are used for the collection of water from these sources.

The different types of water systems have been reviewed according to their working principles, design, and advantages and disadvantages.

- The different common types of handpumps that are available on the market for the abstraction of groundwater for rural water supply have been summarised.

Since in most cases schemes are operated and maintained by the villagers, the handpumps summarised are those which are relevant and appropriate for village level operation and maintenance (VLOM).

- The minimum standards required in the design of a piped water distribution system.
- The conventional piped water distribution system, hauling and borehole water supply systems highlighting their working principles, advantages and disadvantages.

2.2 Sources of water supply

2.2.1 Classification

Turneaure and Russel (1947) divided sources of water into the following classes according to the general source and the method of collection:
a) Groundwater sources

- Water from shallow wells
- Water from deep and artesian wells
- Water from infiltration galleries
b) Surface water sources
- Water from springs and seeps
- Ponds and lakes
- Streams and rivers
- Rain-water harvesting from roofs

Great care should be taken in identifying sources of water supply from groundwater and surface water to make sure that the source has enough water to meet the needs of the people that it is going to serve.

In a document titled Guidelines for the Development and Operation of Community Water Supply Schemes (DWAF, 1999) it has been stated that the common cause of scheme failures is the overestimation of the availability of water from water sources. The task of identifying good water sources from groundwater and surface-water sources should therefore rather be left to qualified professional geohydrologists and hydrologists who will determine whether a source yields enough water to meet the demand of the community to be served now and in the future.

2.3 Groundwater sources

2.3.1 Background

Pearson et al (2002) has reported that approximately 75% of the fresh water on earth is fixed as ice, mainly in the polar ice caps. Of the remaining $25 \%, 24 \%$ is groundwater, and the remaining 1% is surface and atmospheric water. Thus, groundwater is the largest source of fresh water in storage on our planet, and this points to the vital importance of groundwater as a resource for fresh water supplies. However, its distribution in many parts of the world varies greatly with the distribution of suitable underground water-bearing rocks.

Groundwater is a particularly important source of fresh water supply and many communities can only be served from groundwater resources. Harvey \& Reid (2004) have attributed this to the fact that in most cases the respective population is low to justify the costs of construction, operation and maintenance of dams and treatment works, which are often required in surface water sources. It may also be that there are no suitable dam sites nearby. In such cases, the communities often have to rely on groundwater.

Groundwater is stored underground in porous layers called aquifers. These aquifers are water saturated geologic zones which have connected pores or fractures that will yield water to springs and wells, and may be visualized as underground storage reservoirs (Pearson et al, 2002).

Basically there are two types of aquifer in which groundwater is present (Pearson et al, 2002):

- Primary Aquifers. These are aquifers in which water occurs and moves principally in the pores and interstices between the rock grains, and unconsolidated or consolidated porous sediments such as loose sand and sandstones.
- Secondary Aquifers. These are aquifers in which water occurs and moves principally in the cracks between impermeable rock fractures and joints, fissures, or cavities in soluble rocks such as dolomite.

Aquifer layers can be continuous, discontinuous or mixed. According to Todd (1980) primary and secondary aquifers are classified into confined and unconfined, depending on
the presence or absence of a boundary stratum of the water table, while a leaky aquifer represents a combination of primary and secondary aquifers.

(a) Confined Aquifer

Confined aquifers occur where groundwater is confined under pressure greater than atmospheric and the upper and lower boundaries are impervious strata. Thus, the water held by such an aquifer is restricted to this aquifer only and its flow is limited within the structure of the aquifer.

When such an aquifer is penetrated water will rise above the top of the confining bed and will flow under pressure.
(b) Unconfined Aquifer

An unconfined aquifer is one in which the upper boundary is defined by the water table and the water is at atmospheric pressure. The water table varies by rising and falling in form and in slope, depending on areas of recharge and discharge, and permeability.

The stratum surrounding an unconfined aquifer is usually pervious and allows water to percolate through it.

The undulating form and slope of unconfined aquifers is due to changes in the volume of water in storage within the aquifer (Chow, 1969). This rise and fall is due to the movement and distribution of the water available within the aquifer since there are no boundaries that will limit the flow of water in or out of the aquifer.

For instance, when a well is sunk into an unconfined aquifer and water is drawn from the aquifer, the level of the water table goes down. The aquifer is able to be replenished through rainfall or recharge from adjacent aquifers or other water sources since the strata enclosing the aquifer are pervious and water from other sources is able to move through the pores of the strata into the aquifer.
(c) Leaky Aquifer

Leaky aquifers are semi-confined in that they have characteristics of both the confined and unconfined aquifers.

They are usually found where a permeable stratum is overlain or underlain by a semiconfining layer. Wells sunk in leaky aquifers do not dry out easily since there is a constant movement of water within the aquifer and also through the semi-confining layers.

The types of aquifers mentioned can be situated at any depth within the profile of the ground and they can be used as sources of water for rural water supply through the use of wells and boreholes. When wells are sunk in the ground to make use of the water of a particular aquifer, the depth at which the aquifer is located will also determine the type of well to be drilled.

Wells are categorized as shallow or deep wells (Todd, 1980). Shallow wells are generally dug where the water to be used will be abstracted at a depth of less than 15 m and deep wells
are constructed where the aquifer to be used to abstract the water is at a depth of greater than 15 m .

2.3.2 Locating potential groundwater sources

Groundwater supplies should be carefully sited, so that drilling only occurs where there is a high probability of successfully penetrating into water bearing formations (aquifers), and where these groundwater supplies can be effectively used, maintained, and protected from contamination.

It is very difficult to predict where to find the best sources of groundwater and to estimate the quantity of water which can be obtained at a particular site. Therefore careful consideration should be given to locating potential groundwater sources.

The CSIR (2000) recommend that in planning for a water supply scheme in an area, the potential sources of water should first be assessed and consideration should be given to the quantity of water available to meet present and future needs in the area as well as the health quality of the water.

If the health quality of groundwater is not suitable for human consumption, treatment is required before it can be distributed to the people. A water source should therefore be tested to ensure that it is free from disease-causing organisms and other impurities. However, often groundwater sources do not require treatment (Steel, 1960).

If groundwater supplies are not carefully sited, drilling can take place where water is not available in significant quantities to meet the water demands of the people, and in the short-term the water source will dry up. Such a situation can result in a significant amount of funds being wasted.

To ensure successful drilling, the task of locating potential groundwater supply sources and estimating the quantity of water for long-tem production can be done best by employing a well-qualified professional geohydrologist who has a better understanding of the geological and geohydrological conditions which give rise to good water supplies.

Pearson et al (2002) states that a geohydrologist can accurately locate potential water supply sources by using methods also recommended by the CSIR (2000). These methods are:

- Estimation based on previous experience
- Scientific methods
a) Estimation based on previous experience

This method can generally be used where only small boreholes or wells with yields of 200 litres per hour or less are required in unconsolidated aquifers in high rainfall areas. The history of old water wells will indicate how far down the water table drops during the dry season and will indicate how deep the water supply sources are.

A local driller who has many years of experience in a particular area may be able to achieve success without the need for further exploration.
b) Scientific methods

Scientific methods can improve greatly the chances of locating potential groundwater sources and hence provide useful information for siting and designing of boreholes and wells.

Groundwater exploration using scientific methods involves
(i) Obtaining geohydrological information.

Geohydrological information consists of geological and hydrological information.
Geological information includes types of geological formations present and their potential as aquifers, and geological features such as faults, dykes, fractures and sills.

Hydrological information includes rainfall characteristics of the area and the groundwater recharge potential from rainwater, streams and lakes in the area.

Information on geohydrology and other physical factors can be obtained from the Water Research Commission and the National Groundwater Database which is maintained by DWAF (CSIR, 2000).
(ii) Geophysical exploration techniques

Together with the geohydrological information which gives an indication as to the possible presence of underground water, an assessment of site characteristics using geophysical exploration is required to confirm the presence of water. Geophysical exploration techniques include the following:

- Electrical restitivity
- Electromagnetic methods
- Magnetic methods
- Gravimetric methods

The use of the above methods by qualified and experienced geohydrologists can lead to the successful locating and siting of potential groundwater sources.

2.3.3 Groundwater development

Different methods are used in order to abstract groundwater. Depending on the depth at which the water is found and the type of soil in the area, a method can be chosen that will enable the water to be abstracted efficiently.

It must be ensured that the method chosen will fit the type of development that is required to abstract the water and that correct development procedures are followed in order to make sure that the correct resources are used while developing the site and that funds are not wasted.

2.3.4 Methods used to develop drinking-water sources from groundwater

2.3.4.1 Background to wells

The development or abstraction of groundwater for rural drinking-water supplies is frequently done through the use of wells and boreholes equipped with a handpump (Carter et al, 1996).

A well is a hole that pierces an aquifer so that water may be pumped or lifted out. It is sunk by drilling or digging through one or more layers of soil or rock to reach an aquifer that is at least partially full of water.

The provision of wells as a method of rural water supply is considered carefully at the design stage to ensure a sustainable water supply. Harvey and Reed (2004) have recommended that the important factors to consider should be:

- Correct design
- Correct construction
- Correct development/completion

The main objectives of a good well design should be to ensure the following for a water supply borehole (NORAD \& DWAF, 2003):

- The highest sustainable water yield with proper protection from contamination
- Water that remains sediment-free to protect pumps and to prevent the silting up of boreholes
- A borehole that has a long life
- Optimum operating costs in the short and long term.

Therefore, when designing a well it is important to consider correct materials and dimensional factors to ensure good borehole performance, this amongst other factors contributes to the long life of a well.

The materials considered in design include: well head, casing and screen, filter pack, annular seal and grout (USACE, 1999). These materials constitute the basic well parts. Figure 2.1 illustrates typical well components.

Figure 2.1: Typical basic well components (United States Army Corps of Engineers, 1999)

The different components of a well are briefly discussed below
(a) Well head

The structure of a borehole should be finished with a well head. A well head is a structure built on and around the casing at ground level. It is usually made of concrete. The purpose of a well head is to provide a base for a water lifting device, to prevent contaminants from entering, to keep people and animals from falling into the well and to drain away surface water.

The well head should be built on an earthen mound 15 to 20 cm above the ground level so that water will drain away from the well.

The water lifting device can be a pump, windlass, windmill or other method of extraction. The purpose of the lifting device is to get water out of the well. Handpumps used with wells and boreholes are discussed in Section 2.4
(b) Casing

The casing consists of the solid casing and the perforated portion (NORAD \& DWAF, 2003).The solid casing is the upper section which extends between the ground level and the top of the aquifer and serves as a lining to maintain an open hole from the ground surface to
the aquifer. Its function is to seal out surface water and any undesirable groundwater and it provides structural support against caving materials surrounding the well.

When designing a casing, one should look at the casing diameter, material and the estimation of the borehole depth.
(c) Screen Section

This is the perforated section of the casing and serves as the intake portion of the casing in a well. The length of screen section is chosen in relation to the thickness of the aquifer to which the borehole has been drilled, as well as the available drawdown in the borehole.
(d) Gravel pack

Gravel packing is necessary when pumping of water from a borehole may bring fine material such as sand out of the formation into the borehole and therefore cause problems in the hydraulic performance of the borehole as well as abrasion in pumps. Therefore gravel packing is introduced to create a stable envelope of coarser and more permeable material in the annular space surrounding the borehole casing.
(e) Grout and annular seal

As stated by Todd (1980) wells should be grouted and sealed in the annular space surrounding the casing to prevent the entrance of water of unsatisfactory quality, to protect the casing from corrosion, and to stabilize caving rock formations.

After the drilling of wells, a process called well development is conducted. The basic purpose of developing a well is to agitate the finer material surrounding the well screen so that the finer materials are carried into the well and pumped out, hence improving on the well hydraulic performance during its use. Thus a new well should be developed to increase its specific capacity and prevent silting.

Development procedures are varied and include: pumping, surging, hydraulic jetting, and addition of chemicals.

Drilled wells and boreholes are classified according to their method of construction which depends on the geological formations through which they must pass and the depth to which they must reach. There are different types of wells, however in this study five types of wells that are more suited to rural water supply are reviewed (Todd, 1980):

- Hand dug wells
- Driven wells
- Jetted wells
- Bored wells
- Cable tool wells

2.3.4.2 Hand-dug wells

Hand-dug wells are water points that source water from shallow water tables and are excavated in unconsolidated and weathered rock formations such as clay, sands, gravels and mixed soils by the use of picks and shovels or hand held excavation machinery like jack hammers. Soil can be excavated out with a bucket and rope.

The volume of the water in the well below the standing water-table acts as a reservoir, which can meet demands on it during the day and should replenish itself during periods when there is no abstraction.

Depths of hand dug wells range up to 20 m deep. Wells with depths of over 30 m are sometimes constructed to exploit a known aquifer (Watt \& Wood, 1985).

For practical and economic reasons, an excavation of about 1.5 m in diameter provides adequate working space for diggers and will allow a final internal diameter of about 1.2 m after the well has been lined with casing. However, the diameter of the well will depend on the people to be served, since the larger the diameter the faster it will recharge and this also depends on the characteristics of the aquifer.

Lining (casing) of the well is done using caissoning and dig-and-line methods. According to CSIR (2000), the following materials can be used for casing the well:

- Reinforced concrete rings (Caissons)
- Curved concrete blocks
- Masonry
- Cast in-situ ferrocement
- Curved galvanized iron sections
- Wicker work (saplings, reeds, bamboo, etc)

Harvey and Reid (2004) recommend that sealing of the annular space surrounding the casing should be done by grouting with either cement or clay-based grout to prevent contamination by water draining from the surface downward around the outside of the casing into the well.

The bottom of the well should be covered by gravel or stone layer to prevent silt from being moved up as the water percolates upwards.

The land surface around the well should be raised so that surface water runs away from the well and is not allowed to pond around the outside of the well head.

A properly constructed dug well penetrating a permeable aquifer can yield 2500 to 7500 $\mathrm{m}^{3} /$ day, although most dug wells yield less than $500 \mathrm{~m}^{3} /$ day (Todd, 1980).

The advantages of hand dug wells include:

- Equipment, labour and materials are readily available
- The equipment needed is light and simple and suitable for use in remote areas
- The community can be involved in construction and this will enhance ownership
- Common construction techniques are employed
- Can act as a reservoir
- A variety of handpumps can be used and the well can still be used if the pump breaks down

The disadvantages of hand dug wells are:

- Hard work to construct and hence time consuming
- Can easily be contaminated by surface water and airborne material
- Extracting large quantities of water with motorized pumps is not feasible
- Limited depth as most dug wells are less than 20 m deep.
- They are affected by water-table changes, hence unpredictable and unreliable
- Hand digging below the water-table is difficult
- Not suitable for formations with hard rock or large boulders

Thus, hand dug wells are more suited to individual water supplies and to situations where the water can be sourced at shallow depths and the fluctuations of the water-table are such that they cannot cause the well to be dry during some periods.

It is important to identify potential problems of contamination before constructing the well so that appropriate measures to reduce the risk of contamination are taken. The well should also be employed where the use of motorized equipment will not be economical.

2.3.4.3 Driven well-points

These wells are simple to construct and more suited to domestic water supply (Todd, 1980). Stapleton (1983) stated that the soil types to which driven wells are best-suited are sand formations and silt.

The well construction consists of a series of connected lengths of pipe casing connected on its end to a driving point, slightly greater in diameter than the casing (Steel, 1960). Above the driving point is a screen through which water enters the casing.

The driving point is driven by repeated impacts into the ground until the aquifer is reached.
Driving is done using one of the following methods: a sledge hammer, a weighted driver, a driving bar or a driving weight. Selection of which method to use will depend on the depth required, the funds available and the complexity of the job.

Water enters the well through a drive point once it has been driven to the lower end of the well

Todd (1980) has indicated that for best results the diameter of driven well-points should fall in the range of 30 to 100 mm in diameter. The well can be driven to a maximum of 10 m (Pearson et al, 2002) although depths exceeding 15 m are known to be reached depending on the geology and availability of groundwater in the area (Todd, 1980).

The water table should be within 2 to 5 m of ground surface in order to provide adequate drawdown without exceeding the suction limit. Yields of driven wells are small, with discharges of about 100 to $250 \mathrm{~m}^{3} /$ day.

The well point serves as the intake of the well and the pipe is the casing.
As most suction type pumps are used to abstract water from driven wells, the water table must be near the ground surface if a continuous water supply is to be obtained.

The most common types of screens used with the well-points include: continuous slot screen, shutter or louver screen and a wrapped-on pipe screen (Water for the World, RWS 2.D.2).

The continuous slot screen consists of a triangular shaped wire wrapped around an array of rods creating slots through which water can enter. The louver type screen consists of a metal tube with slots stamped out with a metal die while a wrapped-on pipe screen consists of a perforated pipe wrapped by one or more screens. The screens are mounted on the hard steel drive point.

Figure 2.2 shows the details of the types of well-points and screens that are used.

Figure 2.2: Types of well points (Water for the World, RWS 2.D.2).

The advantages of driven well-points are:

- They are relatively inexpensive to install
- They are simple to construct since one man is able to drive the well
- They can be constructed in a short time
- Water is not essential to the construction

The disadvantages of driven well-points are:

- Hard formations cannot be penetrated and problems occur in aquifers which contain gravels
- Little may be known about the material through which the well pipe is passed. This may result in drilling a well at a site where the soil is not permeable and hence the recovery rates of the well may be low in comparison to the demand.
- They can easily be contaminated from nearby surface sources

Driven wells are therefore limited to cases where small diameter wells are needed. They can be effectively employed where the number of people available to drive the well is small, as one person can effectively drive the well.

It is important to follow the same precautionary measures of reducing the risk of contamination of the well as described under hand dug wells.

2.3.4.4 Jetted wells

Jetted wells are constructed by the cutting action which is made possible by pumping water into the hole being sunk through a casing pipe equipped with a special cutting bit at the bottom. The casing pipe is held upright by a tripod, and is attached by a hose to a pump and a supply of water (Kerr, 1989).

The pipe is manually rotated. The chopping action of the cutting bit, coupled with the jetting action of the water, causes the pipe to sink into the ground. The soil in the area surrounding the hole is removed by being forced to flow outside the pipe to the surface because of being displaced by the incoming pumped water

When the aquifer is reached, the casing pipe is lifted from the hole. If the casing pipe is to be used as the casing, the cutting bit is removed from the first section of pipe and replaced with a well screen. The casing pipe has an inside diameter large enough to carry the well point screen assembly to be fitted.

It is important to ensure that the water used in the jetting does not contaminate the aquifer.
Jetted wells are best suited to silt, sand or gravel types of soils and can be used in thick unconsolidated alluvial sands such as silted up dams or riverbeds, or coastal sands bearing fresh water (Pearson et al, 2002). Jetting is not suitable for hard rock or tight clays because the drilling bit can be damaged.

The water-table depth for which jetted wells are best suited is 2 to 5 m and the usual maximum depth to which the well is dug is 20 m . The diameter of jetted wells is in the range 40 to 80 mm and the yield of the well can be up to $150 \mathrm{~m}^{3} /$ day (Todd, 1980).

However, for practical reasons of pumping water under sufficient pressure during construction, jetted wells seldom exceed 10 m in depth (Pearson et al, 2002).
Screens for jetted wells are usually commercially, rather than locally made. The types of screens that are available include the continuous slot type, the shutter or louver type and the wrapped on pipe type of screen.

The advantages of jetted wells are:

- The equipment is simple to use and can drill fast
- It is possible to employ the method above and below the water table

The disadvantages of jetted wells are:

- Water is required for pumping
- Only suitable for unconsolidated rocks
- Boulders can prevent further drilling
- Equipment for drilling may not be locally available

Where drilling equipment and spare parts are locally available this type of method can be best employed where water is readily available for the drilling of the well. In situations where the depth of the water table is near the surface, but the depth of the well has to be deep, this method can also be employed as digging below the water table over a considerable depth can be done.

2.3.4.5 Drilled wells

Drilled wells are also called augered or tube wells. They are dug by power augering or manually rotating an earth auger which operates with cutting blades at the bottom that bore into the ground with a rotary motion and fill with soil (Water for the World, RWS 2.D.4).

The auger consists of a cylindrical steel bucket with a cutting edge projecting from an opening in the bottom. The bucket is filled by rotating it in the hole by a drive shaft of adjustable length.

The full bucket is pulled out from the ground and emptied. As the hole gets deeper, additional sections of drilling line are added. To facilitate the operating and emptying the auger, an elevated platform or tripod is constructed over the well site. When the shaft has sufficiently penetrated the aquifer, the auger is removed and the casing and well screen are lowered into the shaft.

Drilled wells should be drilled where the depth to water table is about 2 to 9 m where hand augering is involved. When using power augering the depth to the water table should be about 2 to 15 m . Drilled wells are more suited to clay, silt, sand and gravel soils.

Usually the depth to which these wells are dug is 10 to 20 m and the diameter of the well is about 100 to 150 mm (Stapleton, 1983). A casing is used to line the well. Kerr (1989)
reported that the casing can be made of clay tile, concrete, metal or PVC pipes. There are two basic methods for installing the casing:

- The well shaft is dug and the casing is lowered into place
- The casing is lowered as the shaft is dug

The method used depends on the soil conditions. If the soil is fairly firm and does not cave in, the first method can be used and if the soil tends to cave in the second method is used.

The yield of drilled wells is about 15 to $250 \mathrm{~m}^{3} /$ day for hand augured wells and that for power augered wells is 15 to $500 \mathrm{~m}^{3} /$ day (Todd, 1980).

The advantages of drilled wells are:

- It is a fast method for drilling shallow wells
- When digging, continuous soil samples are available so the water bearing layer is easily known
- They have a large diameter and hence expose a large area to the aquifer
- They are able to obtain water from less permeable materials such as very fine sand, silt or clay
- They need no de-watering during sinking
- Involve less maintenance

The disadvantages of drilled wells are:

- Only formations having enough clay to support the borehole walls can be bored
- Drilled wells can easily be contaminated since they are shallow
- They can go dry during periods of drought if the water table drops below the well bottom
- Usually augering cannot be used below the water table and cannot penetrate hard formations

Drilled wells can be sunk where the recovery rate of the well is expected to be low, such as in soils which are less permeable, since the well acts as a reservoir for water at times when water is not being drawn, and hence the risk of having the well dry during use can be minimised.

2.3.4.6 Cable tool wells

Cable tool wells are also known as percussion drilled wells and the equipment consists of a standard well drilling rig, percussion tools and a bailer. This method is used for drilling deep wells and uses a mechanism of repeatedly raising and dropping a chisel-edged bit to break loose and pulverize material from the bottom of the hole as drilling progresses (Water for the World, RWS 2.D.5).

A small amount of water is kept in the hole, so that the excavated material will be mixed with it to form slurry. Periodically the percussion bit is removed, and a bailer is lowered to remove the slurry containing the excavated material.

The bailer or bailing bucket consists of a tube with a check valve at the bottom and a bail for attaching a cable or rope to the top. The valve permits the cuttings or slurry to enter the bailer but prevents them from escaping.

When the percussion tools and drilling rig have been raised and dropped a number of times to break the soil, drilling stops, and the bailer is used to fill it with the slurry and brought to the surface for emptying. Bailing is repeated until the hole has been adequately cleaned, at which time drilling is resumed; drilling and bailing is then alternated.

If the hole is unstable, the casing is lowered and driving of the casing is alternated with drilling and bailing. In loose granular material, such as sand, bailing alone may be sufficient to remove the material from the bottom of the hole and allow the casing to be sunk.

Cable tool wells are most suited to drilling in unconsolidated and consolidated medium hard and hard rock. They are also suited for drilling to any water table depth.

The usual maximum depth of the well is in the range of 15 to 500 m in consolidated hard rock materials (Pearson et al, 2000; Todd, 1980), however greater depths can be reached with heavier equipment. The diameter range is 80 to 600 mm . The well can give a yield in the range of 15 to $15000 \mathrm{~m}^{3} /$ day (Todd, 1980).

When the aquifer is reached, it is generally drilled completely through before the casing and well screen are installed. In sandy soil, the shaft is sunk from the inside of the casing and the shaft and casing descend together.

To finish the well, an earthen mound and a concrete wellhead or apron is built for drainage. Then a pump is installed. The design of cable tool wells involves the selection of a screen. Considerations on the type of well screens are the same as those for the other types of wells already mentioned.

The advantages of cable tool wells are:

- Simple to operate and maintain
- Suitable for a wide variety of rocks
- Operation is possible above and below the water table
- It is possible to drill to deep depths
- Less water is required for drilling

The disadvantages of cable tool wells are:

- Equipment can be heavy and it is difficult to install the casing in deep holes
- Problems can occur with unstable rock formations especially in unconsolidated soils
- Expenditure on equipment is high

The percussion method can be used in many situations, allowing almost all types of materials to be penetrated. However, in unstable rock formations progress is slow.

While this method is frequently associated with large, motorized, truck-mounted equipment, it can be successfully scaled down and used with manpower, or small engines. It may be
used in conjunction with other methods when certain conditions are encountered such as hard or loose materials which make it more suitable.

This type of well should be used in situations where there is a large population of people to be served by one well since the well is able to yield a lot of water per day, and can thus meet the demand of a bigger population. It is more economical for deep water wells.

The CSIR (2000) and Pearson et al (2002) recommend that drilling of the wells using the methods of developing groundwater sources for water supply that have been mentioned should be done by reputable drilling contractors registered with the Borehole Water Association of South Africa who have the technical expertise to employ the design and drilling of the boreholes according to accepted procedures and standards.

2.4 Handpumps for rural water supply

The development of groundwater sources using wells and boreholes uses pumps which are suited to the well structure in order to bring the water to the surface. The factors to be considered in the selection of handpumps and the types of handpumps that can be used for shallow and deep wells are discussed below.

It is important to choose the correct pump for an area. How it will be used is important. It is also important that the people should be able to maintain the pump during its economic life. Choosing the wrong pump will result in inefficiency and non-sustainability.

According to Hazelton (2000) international experience has demonstrated that high failure rates are not inevitable and that hand pump installation can be transformed into an effective low cost solution through the systematic adoption of appropriate design technologies and implementation policies.

Skinner \& Shaw (1999) indicated that in cases where handpump failures have occurred this has been due to:

- The absence of a sustainable system of handpump maintenance and repair
- The installation of pumps which were not suitable for the heavy usage they received
- The use of pump components which were damaged by corrosive groundwater
- A lack of community involvement in important aspects of the project planning

Therefore when using hand pumps, it is imperative to use technologies that are low cost, appropriate to the local financial and geographic conditions, and within the technical capacity of the benefiting community to operate and maintain the pumps in order to ensure sustainability.

A key factor in overcoming handpump failures as reported and motivated by the World Bank is to adopt the Village Level Operation and Maintenance (VLOM) concept. A VLOM pump is described as one which can be operated and sustained using village level operation and maintenance (Carter et al, 1996).

This concept starts with the selection of specifically designed hand pumps. It extends to the benefits of community participation, management and ownership, and the reduction but not elimination of the rural communities' dependence on external support systems.

It is this concept that is used in a review on the currently available technologies of handpumps that can ensure low cost in terms of both installation and management and still be able to meet the expected delivery rates depending on the situation in which they are being used.

In South Africa, there are different types of pumps that are used for rural water supply which may be grouped into shallow and deep well pumps. This study has focused on the common types of handpumps that are available on the market with regard to specific conditions in which the respective pumps can be applied.

Harvey \& Reed (2004) recommend the following procedure to be followed as a guideline to selecting an appropriate handpump for an area:
(a) A thorough assessment of the groundwater conditions should be made. This should include:

- Depth of operation

Measurement of groundwater levels and seasonal variations, so that the maximum lift required of the pump is estimated. The maximum lift should be measured from at least 2 metres below the lowest recorded water level to ground level.

- Level of usage (number of users/litres to be pumped)

The number of users and corresponding flow rate required should be estimated and the yield of the borehole should be measured. Depending on the number of users the required flow rate can be estimated using the formula:

$$
\begin{equation*}
\text { Required flow rate }(\text { litres } / \mathrm{min})=\frac{1.1 \mathrm{PgW}}{60 H} \tag{2.1}
\end{equation*}
$$

where
$\mathrm{P}=$ population to be served
$\mathrm{g}=$ population growth rate if taken into account
$\mathrm{W}=$ water usage per capita per day ($\ell / \mathrm{c} /$ day $)$
$\mathrm{H}=$ Pumping period (hours)
The required flow rate is the flow rate the chosen handpump should be able to lift and the yield of the borehole must be sufficient to support this flow rate. Harvey and Reed (2004) have further recommended that if the pumps available
cannot lift this flow rate the hours of pump operation should be increased subject to the acceptance of the water users.

- Groundwater pH

Groundwater pH has an influence on the operation of a handpump in that corrosive water can shorten the useful life of a pump. In areas where corrosion of pumps can occur and lead to failure within a short time, handpumps with down-hole parts which are corrosion resistant should be chosen.
(b) A review should then be conducted of all existing pumps used in the area or country and of any policies affecting choice, such as standardization. The following points should be noted for each pump:

- Maximum lift
- Materials from which components are made
- Maximum pumping rate at required lift (i.e. depth from which water must be pumped).

These data should then be matched to the groundwater conditions assessed in step (1) above to see which pumps, if any, are capable of meeting the pumping requirements.
(c) The next step is to conduct a thorough assessment of the Operational and Maintenance requirements for each of the pumps identified. This should consider:

- Spare parts, skills and tools required
- Estimated costs of maintenance, repair and replacement over time
- Projected maintenance and management requirements over time

The performance data and operation and maintenance requirements for each of the handpump options should be compared to determine the more appropriate option. The operation and maintenance requirements for each must be matched against local operation and maintenance capability. It is therefore necessary to assess whether appropriate skills, tools, spare parts and finances are available for each remaining pump. This should be done through consultation with local communities and pump manufacturers and suppliers.
(d) The selected pump should be the one that fulfills the necessary pumping requirements and for which there is local capacity for operation and maintenance.

Selection of pumps should ensure that the handpump can easily be maintained within the area by the users so as to ensure that downtime periods are reduced. It must be kept in mind that specialist attention to fix the pump may not always be readily available.

Hazelton (2000) reported that achieving full effectiveness in choosing a technology, is a complex issue and in addition to the above considerations, it is also important to take into account government policies and environmental issues concerning health.

The factors considered above follow the VLOM concept recommended by the World Bank and United Nations Development Programme considering that most water projects are managed and maintained by the people in the rural communities.

Though pumps that conform to the VLOM concept are mentioned in this study, other pumps that have proved to be efficient in delivering service are (Hazelton, 2000; Harvey and Kayaga, 2003; Harvey and Reid, 2004):

Shallow well handpumps:

- Vergnet
- Mono
- cemo
- Bucket
- Tara
- Consallen
- Barry
- Afridev

Deep well handpumps:

- Volanta
- Bush pump
- Afridev
- cemo

- India Mark II
- India Mark III
- Vergnet
- Mono
- Consallen

A table summarizing the specific applications of each of the handpumps, indicating the depth of operation, delivery rate, advantages and disadvantages is summarized in Appendix A.

2.5 Surface water sources

Water that does not infiltrate the ground is called surface water. Surface water appears as direct runoff flowing over impermeable or saturated surfaces and then collecting in large reservoirs and streams or as water flowing from the ground to the surface openings (Water for the World, RWS 1. M).

There are four classes of surface water sources that are in common use for rural water supply which include:

- Springs and seeps
- Ponds and lakes
- Streams and rivers
- Rainfall harvesting

2.5.1. Springs and seeps

Rural communities often collect water from existing sources close to their homes. In many rural areas this is a spring. A spring or seep is water that reaches the surface from some underground water system, appearing as small water holes or wet spots on hillsides or along river banks (Water for the World, RWS 1. M).

Water from a spring is usually preferred because it is cleaner than water from the streams, and usually tastes better than water from other sources. However, even though springs come from an underground source of pure clean water, spring water often becomes contaminated once it comes out of the ground or just before it comes out of the ground.

The CSIR (2000) recommends that necessary steps should be taken in the management and protection of the whole system if the spring is to be used for water supply so that any contamination of the spring water does not occur. It is necessary to carry out a sanitary survey and water quality analysis as part of selecting a spring for domestic water supplies to find out if the water will need treatment. Springs can be protected by (Shaw, 1999):

- Clearance of vegetation above the eye of the spring
- Constructing a cut off drain to divert surface run off
- Creating a temporary diversion of spring flow in order to keep the working area dry during construction
- Protection of the spring eye by layers of impervious materials above it
- Construction of a spring box

Pearson et al (2002) has divided springs into three categories namely:

- Gravity springs
- Artesian springs
- Karst springs.

These are discussed below:

(a) Gravity Springs

Gravity springs occur where groundwater emerges at the surface because an impervious layer prevents it seeping downwards. This type usually occurs on sloping ground, although it can be found in areas that seem flat to the eye.

Gravity springs can further be subdivided into depression, contact and fracture springs.

- Depression Springs

These types of springs are formed when the land surface dips below the water table and makes contact with the water in permeable material. Any such depression will be filled with water.

According to Pearson et al (2002) a typical example is the small to medium wetland seepages that are usually seen in flat to nearly flat areas where shallow permeable soil overlies clay or impermeable bedrock. The seep occurs at the sides of the depression in horseshoe or semi circular fashion.

The yield of depression springs is good if the water table is high, but the amount of water available may fluctuate seasonally. A gravity depression spring may not be suitable for a drinking water source since it can easily dry up.

- Contact Springs

These types of springs are formed when the downward movement of underground water is restricted by an impervious underground layer such as a clay horizon and the water is pushed to the surface. This type of spring usually has a very good flow throughout the year and is a good water source.

- Fracture springs

These are formed when water comes from the ground through fractures or joints in rocks, Often the discharge is at one point and protection is relatively easy. Fracture and tabular springs also offer a good source of water for a community supply.
(b) Artesian springs

Artesian springs occur when water is trapped between impervious layers and is under pressure. There are two types of artesian springs namely fissure and artesian flow springs.

The yield from artesian springs is uniform and the flow is very nearly constant in spite of seasonal variation in rainfall and evapotranspiration over the catchment.

- Fissure Springs

Fissure springs result from water under pressure reaching the surface through a fissure or joint. Yield of fissure springs is very good. A drop in the water table during dry periods has little impact on the flow of the spring, and this source is excellent for community water supply.

- Flow Springs

Flow springs occur when confined water flows underground and emerges at a lower elevation. This type of spring occurs on the hillsides and is also a good source of water supply.

(c) Karst springs

These occur where a surface stream disappears into a sinkhole and flows underground along channels, caves and other cavities produced by the chemical and mechanical action of water on leachable or soluble rocks such as dolomite and limestone. The water finally emerges as a spring at a lower altitude elsewhere.

These types of springs also offer a good source of water supply.

2.5.1.1 Development of springs into drinking water sources

Shaw (1999) states that the main objective of spring development and protection is to provide improved water quantity and quality for water supply. Spring development activities include the construction of an intake structure, collection tank, tapstand, and retaining wall, and the provision of drainage, fencing and grassed surround.

The intake structure is located at the source of the spring (called the eye, or the point within the spring where the spring flow is concentrated and follows a stable channel), and collects the water for transfer to the collection tank (Water for the World, No RWS. 1. M).

Before a spring can be developed into a drinking water source it is necessary to measure the reliability of the spring in terms of its yield so that the flow can be measured to ascertain whether it is going to be adequate to meet the communities' water demand especially during periods of drought.

The best time to measure the flow rate of a spring is during the driest months of the year like August and September in summer rainfall areas and February and March in winter rainfall areas (CSIR, 2000). If the spring yield is very weak other supply options should be considered.

Where the yield of springs is too low to meet the water demand of the people, provision of a storage tank should be made so that the tank can fill with water during periods of no use and thereby be able to supply the demand during periods of use.

For example, Pearson et al (2002) reported that based on a demand rate of $25 \mathrm{l} / \mathrm{c} / \mathrm{day}$, a spring flow of $0.1 \mathrm{l} / \mathrm{s}$ will provide peak hour demand for only two to three families while a flow of $1 \mathrm{l} / \mathrm{s}$ will provide a peak hour demand for about 20 to 50 families without the use of
storage facilities. However, with the use of storage tanks enough water for up to 35 families and 350 families can be provided at each of the flows respectively.

The methods of developing springs as drinking water sources which act as collection chambers and hence protect the spring from contamination are:
(a) Spring boxes
(b) Simple retaining wall
(c) Seep development

(a) Spring boxes

A spring box is built to provide sanitary protection, provide storage capacity and protect the eye of the spring from blockage (Shaw, 1999.)

A spring box will collect water during the times that the spring is not in use such as at night and the water from the spring box can be fed to a storage tank or a collection point through an outlet pipe.

A spring box foundation must be installed in the impervious rock below the eye. A seal with the ground must be created to prevent water from seeping under the structure and undermining it.

Pearson et al (2002) recommend that a typical spring box should have a back wall built with an un-mortared open stone wall to facilitate inflow of the water and should lie between the water table and the impervious rock. The foundation box should be at least 50 centimetres into the impervious rock below the aquifer, and the top of the box should be higher than the position of high water table.

Stone rap and a gravel filter should be placed between the spring and the inlet. A removable cover should be placed over the box to facilitate cleaning and maintenance. Figure 2.3 illustrates a typical spring box.

Figure 2.3: Typical spring box (CSIR, 2000)

(b) Simple retaining wall

Spring protection can be carried out by building a retaining wall across the spring outlet where a gravity spring has a steeply sloping water table (steep hydraulic gradient) occurring close to the community such that every household can have easy access to the spring. The flow has to be sufficient to meet the peak demand of the community without need for storage.

This structure should be built in such a way that a small dam is created behind the retaining wall at the spring outlet and a pipe built into the wall to channel the water to a tap where consumers can collect the water.

The retaining wall should be built of rock and cement mortar or reinforced concrete. When designing the wall, it must be that the wall is of sufficient thickness and strength to withstand the pressure of the water, and that the foundation of the wall is built in stable formation below the aquifer.

The end of the pipe on the spring side should be perforated and covered by a filter pack consisting of gravel and sand. Pearson et al (2002) has recommended that as an additional option the perforated end of the pipe should be wrapped in a porous geo-fabric and that the space above the filter should be backfilled and sealed against surface contamination by a clay layer or strong plastic sheet. Figure 2.4 is a diagram illustrating a simple retaining wall used to protect a spring.

Figure 2.4: Typical retaining wall structure to protect a spring (Skinner and Shaw, 1992)

The Advantages of spring box and simple retaining walls are

- Low initial cost
- Operation and maintenance costs are lower
- They require minimum to no treatment if they have adequate sanitary protection
- Since springs are generally located on hills, a simple gravity flow delivery system can be installed
- The local community can be trained to manage the water supply system without any support from external contractors

The main disadvantage of using spring box and simple retaining walls is that the quantity of available water may change seasonally.
(c) Spring tapping by drains

If water seeps from the ground and covers an area of several square meters, collector drains may be used in order to provide more convenient and efficient water collection for rural water supply.

The basic structure should consist of pipe trenches, collection pipes, anti-seepage or cut-off walls and a spring box (Skinner and Shaw, 1992)

The pipe trenches of appropriate length and one metre wide are dug to the left and the right of the spring outlet point. The trenches should extend in depth to at least 100 mm into the impervious layer below the aquifer.

The collection pipes are perforated and covered with a geo-membrane. The pipes are then laid in the trenches covered by pebbles, gravel and sand in order to provide adequate filtration of the spring water and to transport it to the spring box (Water for the World, RWS. 1. M).

The pipe perforations should be made such that they will allow collection of sufficient water and at the same time prevent suspended matter from entering the pipes.

Pearson et al (2002) recommend that the pipes should be laid with a sufficient gradient to minimise clogging by sedimentation in spite of the filtration and that the top of the gravel pack should be at least 3 m below the ground surface for sanitary protection, otherwise it should be sealed with clay or plastic sheeting.

The anti-seepage wall can be built of rock and cement mortar, or concrete down slope of the pipes, pipe drains and seep area to trap the water for more efficient collection. The height of the wall should be above the level of the wet season watertable to prevent erosion. Figure 2.5 is an illustration of the seep development structure.

Figure 2.5: Seep collection system (Water for the World, RWS. 1. M).

The foundation of the wing walls must be built in the impervious formation below the aquifer. During construction it should be ensured that there is a good seal between the wall and the ground to prevent water seepage so that all the water is trapped to the spring box.

The spring box should be constructed at the centre of the wing walls.
The disadvantages of seep collection system

- Maintenance costs are higher as pipes often clog with soil or rocks.
- The expense and difficulty of construction usually prohibits its use.

Unless the seep supplies abundant quantities of water, this method should not be considered due to its disadvantages.

2.5.2 Ponds and lakes

Ponds and lakes exist where surface run-off has accumulated in depressions or where a dam has been built to form a reservoir (Turneaure et al, 1947).

To use water from ponds and lakes, an intake is needed and water is pumped from the source or can flow by gravity into storage. There are two methods used as an intake for the abstraction of water (Water for the World, RWS 1.C.2).

One method that is used is a flexible plastic pipe intake as shown in Figure 2.6. The flexible plastic pipe is attached to a float and anchored so that it rests between 0.5 m and 1.5 m from the surface of the water in order to keep out plants from the surface and sediments from the bottom (CSIR, 2000). The water can then be pumped through the pipe to treatment or storage.

Figure 2.6: Flexible plastic pipe intake with float (CSIR, 2000)
Where a dam has been built, the flexible plastic pipe can be attached to a rigid conduit with anti seepage collars. The conduit passes through the pond embankment to the treatment and storage tanks as shown in Figure 2.7.

Figure 2.7: Rigid Pipe Intake at Dam (Water for the World, RWS 1.C.2)
The quantity of water available from ponds and lakes may not be a problem but the quality needs to be investigated. Generally water from ponds and lakes must receive some treatment. Algae and decaying plants may give the water a taste unacceptable to the user, causing him to seek other water sources. The cost of water treatment should be carefully evaluated.

2.5.3 Streams and rivers

Streams and rivers are formed by surface run-off from rainfall. Some rivers and streams have springs as their source. The development of rivers and streams also requires an intake to be built and the intake should be sited at any point where the water can be withdrawn in sufficient quantities (CSIR, 2000).

There are three methods of developing streams and rivers into drinking water supplies:

- Infiltration wells and galleries
- Intakes connected to mechanical pumps
- Gravity flow intakes
(a) Infiltration wells and galleries

Digging or drilling a well near the banks of a stream or river is the cheapest and simplest method of development.

The well should be close enough to the river channel to collect both the water flowing underground and water seeping in through the channel by filtration as shown in Figure 2.8.

Figure 2.8: Riverside infiltration well intake (Water for the World, RWS 1.D.3)
A hand pump, windmill or power pump can be installed to extract the water and pump it through the systems. The pumping method chosen depends on the distribution system.

To increase the amount of water that can be collected by an infiltration well, infiltration galleries are constructed.

Infiltration galleries are trenches dug along the bank parallel to the stream below groundwater level or below the stream-bed itself. Tile, concrete or perforated collecting plastic pipes are placed in gravel lined trenches and connected to storage well. The gravel in the trench filters out sediment and prevents clogging of the pipes. The water is pumped from the storage well into treatment plants and the distribution storage system.

(b) Intakes with mechanical pump

A surface intake pipe in the channel is another way of drawing the water from a stream or river. Water is pumped from the stream to treatment or storage. Figure 2.9 shows an illustration of intakes with a mechanical pump.

Figure 2.9: Intakes with mechanical pump (Water for the World, RWS 1.D.3)
To use this method, a stream with stable banks and a firm bed is needed. Skilled construction workers must also be available as the structure must be sound enough to withstand the stream's current. This method requires more expertise for the laying of the pump accessories and pipes.
(c) Gravity flow intakes

Water can be conveyed to the user through a gravity flow system.
This method is suitable for sources with enough changes in elevation to allow gravity to move water from the intake to the storage tank.

The usual components of a gravity scheme are the source, main pipeline, storage and break-pressure tanks, distribution pipelines and tap stands. These components are explained in Section 2.6.

2.5.4 Rainwater harvesting

Rainwater harvesting is the immediate collection of rain-water running off surfaces upon which it has fallen directly. This definition excludes run-off from land watersheds, streams, rivers, lakes (Government of Tanzania, 1997).

The structures that are used for harvesting rain-water can be installed anywhere where a suitable area is available. In areas of little rain, rainwater catchments can be used in combination with other surface sources. There are two types of catchment systems as described by Kerr (1988):

- Roof catchments
- Ground catchments

(a) Roof catchments

Roof catchment systems offer a simple and fairly inexpensive method of providing water to individual homes.

The catchment is the roof, usually made of an impervious material such as corrugated galvanized iron sheets, asbestos sheeting or tiles. The conveyance is through a gutter and downpipe, the storage is a tank and delivery is through a tap connected to the tank. Storage can range from small containers made especially for rainwater storage purposes or for other purposes, for example oil drums, food cans, etc., up to large tanks of 150 cubic metres or more placed at ground level, or sometimes beneath it.

Because the first water to run off a roof can contain a significant amount of debris and dirt that has accumulated on the roof or gutter, treatment structures should be installed and these include a foul flush system, and a before tank filter system as shown in Figures 2.10 and 2.11 .

Figure 2.10: Example of a foul flush box (WaterAid, Rainwater Harvesting)

Figure 2.11: Example of a filter system (WaterAid, Rainwater Harvesting)
These structures are used as alternative options in order to ensure that the water that is collected is of good quality. There are also a number of processes that occur in the tank itself such as settlement, floatation and pathogen die off.

The advantages of roof catchments are:

- They can be constructed in the yard of the user if the house has a suitable roof.
- Each individual is responsible for his own system.
- Collective storage from a group of houses can be utilized in order to serve a community

The disadvantages of roof catchments are:

- Water quality is variable with rain catchments and will depend on the users' willingness to clean the roof often and disinfect the cistern occasionally.
- It is based on a finite volume of water that can be depleted if not well managed making it a poor candidate for community supply unless strong measures are taken to prevent overuse.
- It is seasonal in nature; hence there must be another water source available. This source must be able to cope with the demands of households which sometimes use rainwater harvesting, especially as the largest demand will be in dry periods.

(b) Ground catchments

This method uses a drain which is placed at the downward end of a slope of a hardened surface to collect water and deliver it to a sedimentation basin and into a storage tank.

Figure 2.12 shows a typical ground catchment system.

Figure 2.12: Typical ground catchment structure (Water for the world, RWS 1.P.5)
An area of sloping ground several hundred meters square must be cleared, graded and preferably paved to form a catchment for precipitation. A paved area is desirable to reduce losses due to evaporation and infiltration, and to reduce erosion. The water from these catchments is usually not of high quality. However, they can be used for secondary purposes such as gardening and livestock drinking.

The advantage of ground catchment is:

- It provides a fairly good quantity of water and with good storage it can meet the needs of the community.

The disadvantages of ground catchment are:

- Costly to install and must be carefully maintained
- Require large tracts of land and that may not be available in a community
- Treatment of the water for human consumption is costly
- Limited to use in areas of high rainfall

Thus, generally, in opting for any particular type of water source, one must ensure as far as practically possible that the source is reliable, that the quantity of water obtainable from it will be sufficient to meet the basic needs of the community and that the quality of the water is of acceptable standards for human consumption.

2.6 Water distribution systems

Once a water source has been identified and the intake developed using the methods described in the preceding sections, a water distribution system has to be selected in order to deliver water to the users.

Different water distribution systems are used for rural water supply. However, in designing and implementing any type of the water distribution system, all water services institutions including water services authorities have to incorporate the minimum standards required for the design of water services set for basic water supply service which are set under the provision of the South African Water Services Act (Act 108 of 1997).

DWAF has produced a booklet on Guidelines for Compulsory National Standards, and Norms and Standards for Water Services Tariffs produced in 2002, set under the regulations of the South African Water Act (Act 108, 1997), Sections 9 and 10 which sets out the guidelines for the regulation of water services in the country. The compulsory national minimum standards define the government's minimum desired basic level of water service to every community. The minimum standards are described in the following section.

2.6.1 Minimum standards considered in the design of rural water supply systems

The minimum standards are developed and implemented to protect the social and economic interests of all consumers, especially poor and vulnerable households. The objectives in coming up with minimum standards are (DWAF, 2002):

- To provide safe drinking water that will not cause ill health
- To provide a quantity of water that will ensure that the users are able to fulfill their basic water needs
- To ensure that the users spend a minimum of their time on drawing water

The minimum standards which have been determined are defined as follows (DWAF, 2002):
(a) Water demand or quantity

In South Africa, DWAF's guidelines for compulsory national standards of 2002 stipulate that (DWAF, 2002):

- The minimum standard for the quantity of water required for basic water supply services should be 25 litres per person per day ((/c/day)

This is the minimum that is set as the water quantity required for basic water supply service to be delivered to the consumer at the delivery point. This quantity is only considered to be the minimum required by an individual for direct consumption, for the preparation of food and for personal hygiene.

The author notes that in the design of bulk supply lines a minimum capacity of $60 \mathrm{\ell} / \mathrm{c} /$ day is used in order to allow for the expansion of the water supply system to include further communities at a later stage using the same water source. However, this study investigates
the effect of increasing the minimum standards at the delivery point required for the basic level of service with respect to cost.

It is one of the South African government priorities to increase the level of standards in the provision of basic water services as is stated in the White Paper (DWAF, 1997a), and the approach taken in the water services bill is to allow for a progressive increase in the standards of basic service to be assured by local government.

The document, Strategic Framework for Water Services (DWAF, 2003a) states that where sustainable, Water Services Authorities should give consideration to increasing the basic quantity of water from 25 litres per person per day, aiming for the provision of 50 litres per person per day.

Van Schalkwyk (1996) found that the range of water consumption for a street standpipe water distribution system at a distance less than 250 m is 25 to $50 \mathrm{\ell} / \mathrm{c} /$ day and it is also indicated by the CSIR (2000) that the range of water consumption for areas equipped with standpipes that are often used in rural areas within a distance of 200 m is 10 to $50 \mathrm{l} / \mathrm{c} / \mathrm{day}$.

Increasing the minimum water demand to be delivered to the consumer at the delivery point to $50 \mathrm{l} / \mathrm{c} /$ day will therefore cater for the full range of water demand in the rural areas where a standpipe is used as the minimum level of service.

It is noted that the range of consumption is different when different water distribution systems and levels of service are considered.

(b) Distance (cartage)

This standard represents the maximum distance that a person will have to cart water to his dwelling. The general consideration is that of time and effort during the carting.

In determining the minimum standard for the distance the objective is to reduce the amount of time and effort spent by an individual on carrying water to the home.

In South Africa, DWAF's guidelines for compulsory national standards of 2002 stipulate that (DWAF, 2002):

- The distance of carting water required for basic water supply should be within 200 m of a household.

In steep terrain this distance may have to be reduced to take into account the extra effort required to cart water up steep slopes. A climb of more than 60 m over a short distance should be considered as being similar to walking a distance of about 1000 m (CSIR, 2002).

An individual should spend a minimum of his time in fetching water so that the remainder of his time is spent on activities that will improve his social and economic livelihood.

(c) Flow rate (Abstraction rate)

This standard represents the minimum flow rate at which a person will abstract water from the tap. The general consideration is on time spent during the abstraction. In determining
the minimum standard for the flow rate the objective is to keep the amount of time that is spent by an individual on abstracting water to a minimum.

The maximum unit of water that can be carried by a person per trip is about 20ℓ (Carter et al, 1996). Therefore if a person has to carry this amount in one trip then the time of abstracting the water has to be kept to a minimum so that enough water required by the household can be collected within a reasonable time.

In South Africa, DWAF's guidelines for compulsory national standards of 2002 stipulate that (DWAF, 2002):

- The flow rate required for basic water supply services should be not less than 10 litres per minute.

(d) Residual pressure

This standard represents the pressure that should be available at the abstraction point where water is drawn by the users.

It represents the pressure that is required to make water flow in the system and for the upgrading of the system to an improved service level. DWAF's guidelines for the development and operation of Community Water Supply Schemes (DWAF, 1999) stipulate that:

- The residual pressure at a standpipe or tap point for community water supply should not be less than 10 m

It is further stated that a residual pressure of 5 m may be considered in site specific cases where the tap is near a reservoir or on top of a hill (CSIR, 2000; DWAF, 1999).

Different heads are known to be able to deliver a specified flow rate depending on the tap size being used as shown in the table below extracted from the CSIR (2002).

	DISCHARGE		
TAP DIAMETER	5 m head	10 m head	60 m head
15 mm	$16 \ell / \mathrm{min}$	$23 \ell / \mathrm{min}$	$54 \ell / \mathrm{min}$
20 mm	$22 \ell / \mathrm{min}$	$31 \ell / \mathrm{min}$	$70 \ell / \mathrm{min}$

Table 2.1: Typical discharge rates for taps (Assumed efficiency rate 80\%)
Since an acceptable standard discharge capacity from a standpipe is $10 \ell / \mathrm{min}$ per tap, the commonly used taps should be able to deliver the standard discharge rate at the different pressures that can be used in a rural piped water supply system.

For communal standpipes or street taps as is the case used for rural water supply the following criteria should be followed in the provision of standpipes as recommended by CSIR (2000):

- One tap required per 25 to 50 dwellings
- Maximum number of people served per water point should be 300
- Maximum number of people served per tap should be 150. Individual kiosks should supply at least 100 dwellings
- Maximum walking distance from a dwelling to a standpipe should be 200 m

(e) Quality

The desired quality of water is dependent on the use for which the water is required. The quality of water provided as a basic service should be in accordance with currently accepted minimum standards with respect to health related chemical and microbial contaminants. It should also be acceptable to consumers in terms of its potability (taste, odour and appearance).

DWAF has stipulated standards for drinking water quality that should be adhered to in the provision of drinking water services so as to ensure that the water does not cause health problems which can reduce the consumers' productivity (DWAF, 1999).

In cases where the water does not meet these standards, the water needs some form of treatment in order to make it safe for drinking.

Classification of the water quality standards has been divided into four classes: ideal (Class 0), suitable for lifetime use (Class I), suitable for interim use (Class II), and unfit for use without suitable treatment (Class III).

The classification is as shown in Table 2.2: The unit of measurement is mg / l.

Constituent	Class 0*	Class I*	Class II*	Class III*
Total dissolved salts (TDS)	$0-450$	$450-1000$	$1000-2450$	>2450
Electrical conductivity $(\mathrm{mS} / \mathrm{m})$	$0-70$	$70-150$	$150-370$	>370
Nitrate $\left(\mathrm{NO}_{3}\right)$ plus nitrite $\left(\mathrm{NO}_{2}\right)$ as N	$0-6$	$6-10$	$10-20$	>20
Fluoride	$0-1.0$	$1.0-1.5$	$1.5-3.5$	>3.5
Sulphate	$0-200$	$200-400$	$400-600$	>600
Magnesium	$0-30$	$30-70$	$70-100$	>100
Sodium	$0-100$	$100-200$	$200-400$	>400
Chloride	$0-100$	$100-200$	$200-600$	>600
pH (pH units)	$6.0-9.0$	$5.0-6.0$	$4-5$ or	<4 or >10
		$9.0-9.5$	$9.5-10$	
Iron	$0-0.1$	$0.1-0.2$	$0.2-2.0$	>2.0
Manganese	$0-0.05$	$0.05-0.1$	$0.1-1.0$	>1.0
Zinc	$0-3.0$	$3.0-5.0$	$5.0-10.0$	>10.0
Arsenic	$0-0.01$	$0.01-0.05$	$0.05-0.2$	>0.2
Cadmium	$0-0.005$	$0.005-0.01$	$0.01-0.02$	>0.02
Faecal coliforms (counts $/ 100 \mathrm{ml})$	0	$0-1$	$1-10$	>10
Potassium	$0-25$	$25-50$ slight	$50-100$ slight	>100
		taste	bitter taste	

Table 2.2: Classification system for the assessment of the suitability of water for potable use (DWAF, 1999)

*Classification system for drinking water quality, four quality classes have been defined as follows:
Class 0: This is ideal drinking water quality suitable for lifetime use. This class is essentially the same as the target water quality guideline range in the South African Water Quality Guidelines for Domestic Use ($2^{\text {nd }}$ Edition).

Class I: In this class the water quality is still safe for lifetime use, but falls short of the ideal of Class 0 where no health effects are permitted. There may be rare instances of health effects in this class, but these are usually mild, and overt health effects are almost always subclinical and difficult to demonstrate. Aesthetic effects may occur in this class.

Class II: In the concentration range defined by this class, health effects are unusual with limited short term use, but may become more common, particularly with use for many years or lifetime use. This class is that of water suitable for short term or emergency use only, but not necessarily suitable for continuous use for a lifetime.

Class III: This is the concentration range where serious health effects may be anticipated, particularly in infants or elderly people with short term use, and even more so with longer term use. The water in this class is not suitable for use as drinking water without adequate treatment to shift the water into a lower (safer) class.

(f) Assurance of supply

In South Africa, DWAF's guidelines for compulsory national standards of 2002 also recognise that reliability of a water supply also forms part of the basic minimum standard.

Thus the basic minimum standard that has been set in order to ensure an assurance of supply is that:

- Raw water should be available 98% of the time and no consumer should be denied access to basic water supply for more than seven full days in any year and these seven days must not be consecutive.

Thus, it is necessary to have an assurance of supply, since in the event of there being no steady supply of water to a rural community the risk is that the people will be forced to resort to using unprotected water sources which are a health hazard and which can amongst other things lead to lowered production in the economic lives of the people.

In order to ensure an assurance of water supply standby facilities need to be provided so that there are no long downtime periods in the event of the operational facility breaking down. A storage period of 48 hours is required in order to ensure the assurance of supply (DWAF, 1999).

Technologies in rural water systems need to be selected in such a way that they do not need highly skilled personnel to repair and maintain them when they have broken down.

These minimum standards are compulsory when considering and designing a rural pipe water supply system to satisfy the minimum level of service where a stand pipe is used.

2.7 Water distribution systems and factors affecting the choice of selection

The choice of a distribution system is based on the level of service or system of delivery required (Twort et al, 1974). According to Skinner (1992) a rural water supply distribution system should be:

- Acceptable to the community in relation to convenience, traditional beliefs and practices and also acceptable from environmental and health perspectives.
- Feasible in terms of the relevant local social, financial, technological and institutional capacity factors
- Sustainable in terms of being possible to operate reliably and to maintain in the future with the available financial, human, institutional and material resources.

In order to ensure sustainability of rural water supplies Harvey and Reed (2004) recommend that selection of the technology for water distribution should be done in consultation with both the water users and the water institutions involved.

Water users should be provided with sufficient information on the merits and demerits regarding the choice of technology. This will assist in establishing the water users' willingness and ability to manage and finance the operation and the maintenance of the distribution system on a long term basis.

Often technology choice is influenced by environmental, technical and financial factors (Harvey and Reed, 2004). Based on these factors information should be sourced on different available technologies and associated costs, operation and maintenance needs in terms of skills required and the availability of spare parts. The benefits of each option and the associated constraints should be considered.

As mentioned, the level of service required by the community also influences the type of water distribution system to be adopted.

There are two levels of service that are considered for water supply in a community (CSIR, 2000);

- Communal water systems
- Private water systems
(a) Communal water systems

A communal water system is a level of service whereby the public and the community have access to a water supply terminal installation in form of a street tap or handpump, and users have to walk and collect water in containers or buckets. The basis of the application of the minimum standards defining the basic level of service falls within this category (CSIR, 2000).

The street tap may include a storage tank. The street taps may be the ordinary type or the prepaid type which are equipped with a water meter.
(b) Private water systems

A private water system is a system whereby water is connected to individual homes in the form of house connections and yard connections.
(i) House connections

House connections are of two types:

- Full-pressure conventional house connection

Water is provided at high pressure in the house and all water use is at full pressure and unregulated flow. Water use is metered conventionally and users pay for water used per month.

- Full pressure, prepaid

Water is provided at high pressure in the house and all water use is at full pressure, and available with prior payment using prepayment tokens which activate the prepayment meter. No monthly meter reading and billing is required
(ii) Yard connections

Yard connections are also divided into two types:

- Ordinary type

Water is provided, at pressure, at a tap within the yard. No storage facilities are provided on site and there is no supply to the house.

- Yard tank

Water is provided to specifically manufactured yard tanks. The tanks can be either ground tanks or elevated roof tanks.

According to the CSIR (2000) selection of the level of service to be given to a community should depend on:

- Affordability of the system
- Selected method of cost recovery
- Unit cost to the end user
- Long term maintenance requirements

Thus, the selection criterion of a level of service to be offered to a community should be based on the relative importance of the service level to the users with regard to these factors.

The methods for the distribution of water will also be based on the location of the water source and community to be served. The relative distance between the source and the community will influence on the need for (Water for the World, RWS.4.M):

- Distribution of water at the source or near the source.
- Distribution of water away from the source.

2.7.1 Distribution of water at the source or near the source

Water for the World (RWS.4.M) have put this category as the type of water distribution which uses wells or boreholes equipped with handpumps, electric pumps or a tap system in case of a spring development which is near the community. Where a handpump is used the water is carried in buckets to the homes. Where an electric pump is used or a spring, the water can be connected to a pipeline system where it can be fed into a storage tank for use in a private water system or communal water systems.

2.7.2 Distribution of water away from the source

Under this category, there are two methods that can be used for distribution of water which are hauling and pipeline reticulation system.

2.7.2.1 Hauling

Use of a truck falls in this category. The truck may be used to haul water to the people in the rural communities and the people fetch the water from the truck in buckets.

The advantage of hauling is:

- People do not have to travel long distance to fetch water

The disadvantages of hauling are:

- It provides only minimal quantities of water
- The terrain sometimes makes hauling impossible
- It has high operation and maintenance costs

Therefore hauling should be considered an option where there are minimal quantities of water to be distributed to the users and its cost of provision does not exceed that of other options available for rural water supply.

2.7.2.2 Pipeline reticulation system

With distribution of water away from the source, a pipeline reticulation system can be used. This method uses a reticulated transmission pipeline network installed to the distribution points within the supply area and the water is abstracted at service points which have taps serving a group of people or may serve individual homes (Steel, 1960).

A source of pressure is required to move the water from the source to the point of use. This is accomplished by the use of a gravity system or a pumping main to pump the water.

There are several components that make up the distribution network of a piped water supply system as described by Twort et al (1974) these include:

- Source and intake
- Treatment works
- Main or transmission pipeline
- Storage reservoirs
- Distribution pipelines and tap stands
(a) The source and intake

The intake structure is constructed nearest to the source in order to collect water from the source and supply to a storage facility or community through a water transmission system. The selection of an appropriate intake depends on the type of source. The system to use can be a gravity flow system or a pumping system. It should be ensured that the intake has an all weather access road and is well-protected from theft and vandalism (Babbit et al, 1962)

Gravity flow and pumping systems can be used in combination in order to improve on efficiency and reduce costs

The source at the intake can be any one of the water sources that have already been discussed.
(i) Gravity flow intake

If the intake at the water source is at a higher elevation than the supply area, then a gravity flow system can be used whereby the water will flow into the distribution network under the pressure of gravity.

Design considerations for a gravity flow intake include:

I. Quantity of water required

When designing for a gravity system and all other water supply systems it should be ascertained that the yield of the source will be able to meet the total daily demand of the water users now and in the future during the economic life of the system. According to Webster (1999) the following factors should be considered in determining total daily demand required from a water source:

- Annual average daily demand.
- Population and population growth
- Water losses to be incurred in transmitting the water to the users
- Peak factors to account for the peak daily and seasonal variation in water demand
- Increase in water demand if anticipated due to change in the level of service over the project life (upgrading), e.g. upgrading from standpipe to yard connection.

The total daily water demand of the users is used to determine if the yield of the water source is sufficient to supply water safely over long periods of time and to determine the storage capacity needed to ensure that an adequate supply is available during peak demands and critical periods of water shortage.

The following equation can be used to calculate the total daily water demand required by the users:

Total daily water demand $(\ell /$ day $)=P * G A A D D * P F * D F$

And

$$
\begin{equation*}
G A A D D=\left(1+L_{F}\right) A A D D \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
P= & \text { Population of water users inclusive of population growth considerations } \\
\text { GAADD }= & \text { Gross average annual daily demand in litres per capita per day }(\ell / \mathrm{c} / \text { day }) \\
\mathrm{AADD}= & \text { Average annual daily demand in litres per capita per day }(\ell / \mathrm{c} / \text { day }) \\
\mathrm{L}_{\mathrm{F}}= & \text { Design loss factor due to unacconted-for-water loss. } 10 \% \text { is recommended } \\
& (D W A F, 1999) \\
P F= & \text { Peak daily factor } \\
\mathrm{DF}= & \text { design factor to take into account upgrading of system to a bulk supply } \\
& \text { level }
\end{aligned}
$$

The gross average daily demand takes into account the unaccounted-for-water loss in the system that will occur in transmitting the total daily demand based on the annual average daily demand.

The design factor takes into account the increase in the rate of water use when the system is upgraded. DWAF recommends a design factor of 2 to 3 to be used depending on the anticipated increase ($D W A F, 1999$).

The CSIR (2000) recommends that demographers and town planners who are best equipped with knowledge on town planning should be consulted to determine the future population of an area.

For rural water supplies DWAF recommends that a 0% population growth rate be used or as otherwise approved, due to the influence of Human Immunodeficiency Virus and Acquired Immune Deficiency Syndrome (HIV/AIDS) (DWAF, 1999). This implies that where the influence of HIV/AIDS is not present, a growth rate based on the factors that can influence population growth in the area should be used.

Therefore the total daily water demand required from the source will be determined based on the future total daily water demand if growth in the population is considered, and on the service level to be provided to the community.

II. Required Source Production (design discharge)

From the total daily water demand of the community the required source production rate or discharge in litres per second is calculated from the formula

$$
\begin{equation*}
\text { Required daily production rate }(\ell / \mathrm{s})=\frac{P * G A A D D * P F * D F}{t} \tag{2.4}
\end{equation*}
$$

Where $t=$ Period of production in seconds
DWAF recommends the period of production to be 24 hours for a continuous flow for a gravity system (DWAF, 1999). As mentioned previously, the required daily production rate is the minimum discharge that the source has to produce in order to meet the total daily demand of the water users.

The advantages of a gravity flow intake are:

- It is efficient
- It requires no additional energy where the source is located at a higher elevation than the supply area
- It is economical to operate and maintain

The disadvantages of gravity flow intake are:

- It is initially expensive to construct
- Its use is restricted to water sources at a higher elevation

Thus, the use of gravity flow systems eliminates the costs that are incurred when using a pumping system since there are no pumping costs that have to be met, the system relying solely on gravity.
(ii) Pumped water intake

If the supply area is higher than the water source, the water has to be pumped from the intake to the supply area using motorized pumps. It is necessary to ensure that the pump selected is appropriate to the head and flow capacity required.

The method of selecting an appropriate pump is to determine the system design flow and the system head (including system losses) required. From this data the pipe system curve can be plotted. The pipe system curve can then be plotted together with a pump performance curve either in series or in parallel as required, in order to establish an optimum operating point for a particular pump.

The intersection of the pump performance curve and the system curve will give the operating point of the pump. The operating point will indicate the flow output and head that the selected pump can produce. The corresponding flow output and head at the operating point can then be compared with the required pumping conditions to determine if the pump chosen will be able to operate efficiently at the pumping conditions that are required. An ideal pump selection will result in the pump operating point falling at or very near to the pump best efficiency point. The procedure is as described below.

The primary requirement is to determine a suitable pump and pipe combination for the required design discharge or water quantity. In designing for the pumping requirements the following should be considered (Twort et al, 1974):

I. Quantity of water required

This is the total daily water demand required by the users. The procedure for determining the total daily water demand is similar to that discussed under gravity flow intake and equation (2.2) can be used. However, consideration of population growth and increase in water demand should be up to the economic design life of the pump to be selected.

II. Daily pump production rate requirements (design discharge)

The daily pump production rate to be determined for the pump to be chosen is the pumping rate or discharge required to supply the total daily water demand of the users. Equation (2.4) is used for determining the daily pump production rate requirements.

However, the period of production is considered as the pumping period under which the pump will be operating. This is the period the pump will be used to supply a storage reservoir. DWAF (1999) recommend a pumping period of 20 hours per day. Pumping to supply reservoirs should be done when the electricity tariffs are low to minimise pumping costs.

III. Pumping head

The pumping head is the head to be imparted by a pump in order to deliver the required design discharge (Q) through a specific pipeline, from the water source to the highest point in the system which is usually a reservoir.

In order to move the required design discharge, the total pumping head $\left(\mathrm{H}_{\mathrm{p}}\right)$ provided by the pump must be able to overcome the static head (H) as a result of elevation differences and the headloss due to pipe friction to be incurred in the pipeline selected to deliver the water.

Pipe head losses are due to friction head loss $\left(\mathrm{h}_{\mathrm{f}}\right)$ due to the hydraulic roughness of the pipe material, and local head losses $\left(\mathrm{h}_{\mathrm{L}}\right)$ due to eddy formations generated in the fluid at pipeline bends, junctions and valves. Pipe friction head loss varies with discharge for different pipes used (Chadwick \& Morfett, 1985).

$$
\begin{align*}
& \text { Total pumping head }\left(\mathrm{H}_{\mathrm{p}}\right)=\mathrm{H}+\mathrm{h}_{\mathrm{f}}+\mathrm{h}_{\mathrm{L}} \tag{2.5}\\
& \text { And } \quad \text { Local headloss }\left(\mathrm{h}_{\mathrm{L}}\right)=\frac{K_{L} V^{2}}{2 g} \tag{2.6}
\end{align*}
$$

where $\quad \mathrm{V}=$ Velocity of flow in the pipeline
$K_{L}=$ Constant for a particular fitting with values available from literature e.g. Chadwick \& Morfett (1985)
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$

For a long pipeline the local headlosses can be neglected (Chadwick \& Morfett, 1985).

The selection of a pipe size is influenced by the pumping rate required to meet the total daily volume of water needed to supply the users, and the distance between the source and the storage facility (Water for the World, RWS 1.D.2)

For the pump daily production discharge determined using equation (2.4), and any pipe diameter that can be selected to transmit this discharge, the friction headloss $\left(\mathrm{h}_{\mathrm{f}}\right)$ to be incurred through the pipeline can be determined using the Hazen-Williams or the Darcy-Weisbach equations described under subsection (c) on Transmission Pipelines.

In order to select an optimum pump for a specific pipeline diameter, the HazenWilliams or the Darcy-Weisbach equations are used to determine the pipeline characteristics at different discharges by relating the discharge against the associated pumping head as a sum of the friction headloss and the static head. Pump and pipeline combinations, however, affect the cost of pumping (Twort et al, 1974).

The larger the pipe size the lower the pumping costs. This is because frictional losses decrease with increasing pipe size and therefore less energy is lost due to friction and the available energy is used to drive water in the system.

In order to reduce pumping costs, Chadwick \& Morfett (1985) recommend that various pipe sizes and pump alternatives should be investigated to compare power consumption requirements before an optimum pump and pipe combination that suits the given conditions can be selected.

With the total required daily discharge and the total design head determined, the optimum pump that can fit the required parameters of operation can be selected using pump characteristics which can be obtained from pump catalogues and the pipeline characteristics that have been determined for a specific pipe diameter as has been described.

The pump characteristics are described in terms of values of discharge against the associated head and efficiency at which the pump can perform. From this information a head-discharge and efficiency-discharge pump characteristics can be expressed.

For a given system (pump and pipeline size) the head-discharge and efficiencydischarge pump characteristics can be superimposed on that of the pipeline characteristics. A typical graphical representation of this representation is shown in Figure 2.13.

Figure 2.13: Typical superimposed characteristic curves for pump and pipeline systems (Chadwick and Morfett, 1985)

The point where the pipe curve and the pump curve intersect is the operating point. At this point the corresponding head and discharge can be compared with the required design discharge Q_{d} and total head H_{p} to see if the pump performance can meet the specified requirements to deliver water to a system reservoir.

The power consumption for the system at the operating point can be calculated from the equation:

$$
\begin{equation*}
P=\frac{\rho g Q_{d} H_{p}}{\eta_{p}} \tag{2.7}
\end{equation*}
$$

where $\quad P=$ Power consumption requirements for the system

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{d}}=\text { Total required design discharge }(\ell / \mathrm{s}) \\
& H_{p}=\text { Total pumping head }(\mathrm{m}) \\
& \eta_{p}=\text { Efficiency }(\%)
\end{aligned}
$$

The selected pump should be equipped with pump controls. Section H of the Guidelines for the Development and Operation of Community Water supply Schemes (DWAF, 1999) stipulates that a pump station should be complete with switch gear, pump sets, valves, and pipework housed in a specially constructed civil structure in order to ensure pump control and protection.

The advantages of pumping are:

- It provides flexibility on the location of the water source
- It is efficient

The disadvantage of pumping is:

- It is expensive as it requires a large amount of energy to run the pumps and, operation and maintenance costs are high.

It is important that pumps be equipped with pump controls to protect the pumps from damage due to surge pressures during pump start ups, pump stops and valve closures.

The flexibility in the location of the water source enables the pump system to be applicable in all situations.
(b) Water treatment works

The selection of an appropriate water treatment process is essentially determined by (DWAF, 1999):

- The raw water quality (physical and chemical).
- The prescribed final quality

The Guidelines for the Development and Operation of Community Water Supply Schemes (DWAF, 1999) recommend that the design of a water treatment process should be carried out by a suitably trained professional engineer as it is a specialist expertise. The recommended loading rates and design parameters for water treatment process units are given in Section G in the guidelines.

In circumstances where the quality of water is generally good, two simple methods of treatment are considered viable for the treatment of water for a rural water supply (Harvey and Reed, 2004): settlement and slow sand filtration. Settlement will improve the appearance of the water, but slow sand filtration, particularly when used with settlement, should give clear and bacteriologically pure water. The CSIR (2000) also recommends the use of package water treatment plants

1. Settlement

The quality of water from streams, etc, can often be significantly improved by the removal of suspended matter by simple settlement.

Most suspended particles are heavier than water (although a few may float) and will settle in quiescent conditions; very fine clay particles may not settle out at all. Most structures that hold water will function as a settlement basin. Natural or manmade ponds or lakes will suffice, but purpose-made structures which incorporate efficient inlet and outlet arrangements and facilities for silt removal are generally more effective.

Morgan (1990) recommends that the length of the settlement structures should be made about three times the width, with a practical depth of about 2 m . A capacity of 2 to 4 hours retention at maximum flow should be sufficient to remove most sand and silt. On small installations it may be better to fill the basin with stone or gravel to prevent the incoming flow from disturbing the settled solids. The sediment can then be washed out with a hose pipe.

2. Slow sand filters

According to Morgan (1990) slow sand filters consist of an open tank about 3 m deep and a filter media 1 m deep with clean sand of one size, between 0.15 mm and 0.35 mm . The filter media is supported on gravel, varying between 2 mm and 10 mm .

An under floor drainage system is required, which can be constructed of bricks, blocks or pre-cast slabs. The baffled inlet should be about 1 m above the sand and the outlet flow needs to be controlled by a weir and outlet valve.

Slow sand filters function by forming a film of bacteria and algae on the surface of the sand as the water passes through it. The rate of flow must be controlled to $2.5 \mathrm{~m}^{3}$ per m^{2} per day, or a vertical flow rate of 0.1 m per hour.

The filter must be cleaned periodically as the flow rate drops, by removing a skin of sand of 20 mm thickness at the top.

The incoming water must be of a reasonable quality, or must receive pre-treatment, to prevent the slow sand filter from blocking too quickly. It is usually necessary to have two units in parallel, so that some supply can be maintained when one unit is out of commission for cleaning.

The CSIR (2000) have reported slow sand filtration to be an economical and successful option for water treatment plants in developing areas of South Africa.

3. Package water treatment plants

These are prefabricated purification plants that are assembled on site. They may or may not require small civil construction works and piping for complete functioning. They can be used for smaller communities in rural areas and have the potential to fulfill the need for potable water.

However, attention should be given to operation and maintenance requirements as well as backup services from suppliers (CSIR, 2000).

A publication entitled Package Water Treatment Plant Selection gives guidelines on the appropriate plant type to choose for a particular size of a community (CSIR, 2000).

(c) Main or transmission pipeline

This constitutes the transmission of the water from the source or treatment works depending on the need of a treatment plant, to the supply area storage. In rocky areas the pipeline will probably be laid above ground and will be of galvanized mild steel tubing, anchored on saddles. Elsewhere the pipeline will be laid in trenches, to protect it from damage and will usually be made of uPVC or HDPE pipes.

The main or transmission pipeline design involves selecting the pipe size that will deliver the required discharge, enough to provide the storage volume that is required at the storage reservoir for a specified period of drawing in order to meet the total daily demand of the system and the instantaneous water demand.

The size of the transmission pipeline required to deliver the required discharge can be calculated using the Hazen-Williams equation (Streeter et al, 1997)

$$
\begin{equation*}
h_{f}=\frac{10.675 * L * Q^{1.85}}{C^{1.85} * d^{4.87}} \tag{2.8}
\end{equation*}
$$

where
$h_{f}=$ Head loss due to friction (m)
$\mathrm{L}=$ Length (m) of pipeline between the intake and storage reservoir including the length of fittings
$\mathrm{Q}=$ Required discharge rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$. The required discharge rate used is the result obtained for the required production rate (equation 2.4) for pumping or gravity system, depending on the system used.
$\mathrm{C}=$ Hazen-Williams roughness coefficient
$d=$ Diameter of pipe (m)
Consideration of the pipeline design should also include:

- Pipeline materials
- Cover of pipes in trenches
- Slope of the pipeline. A slope of steeper than 3% is required to avoid air pockets (DWAF, 1999)

Valves along the pipeline should be provided in order to:

- Enable the air trapped in the mainline to be released (air valves).
- Enable the main transmission line to be maintained at any point along the length of the pipeline when there is need for maintenance (isolating and scour valves).
- To protect the system from transient pressures (pressure relief valves, surge tanks and air chambers)
(d) Storage reservoirs

Storage reservoirs may be either at ground level or elevated. In a water distribution system storage reservoirs serve three main functions (Twort et al, 1974):

- To balance peaks in the water demand
- To provide emergency storage
- To ensure specified residual pressures throughout the network at all times
- Eliminate continuous pumping

Storage reservoirs are designed within the system to provide a total volume of storage equivalent to the total water demand of the area to be served.

The first step in determining storage capacity of a storage reservoir is to determine the total water demand. The procedure is the same as explained on determining the total water demand for intake requirements of a gravity flow or pumping system.

From determining the daily total water demand, the reservoir storage capacity converted into m^{3} per day can be calculated as follows:

$$
\begin{equation*}
\text { Reservoir capacity }\left(\mathrm{m}^{3}\right)=\frac{P * G A A D D * P F * D F}{1000} \tag{2.9}
\end{equation*}
$$

The final sizing of the storage capacity depends on the period of storage required. According to the Guidelines for the Development and Operation of Community Water Supply Schemes (DWAF, 1999) storage reservoirs should be designed for a storage of 48 hours at the annual average daily demand for pumping mains pumped from one source and for 36 hours at the annual average daily demand for pumping from multiple sources.

If a gravity system with a continuous supply is used the storage reservoir should be designed for a storage of 24 hours at the annual average daily demand.

The period of storage is considered in order to make sure that there is enough storage in the reservoir so that there is an uninterrupted water supply between the reservoir and the users when there is a breakdown of the system between the source and the reservoir and the system is being repaired.

The design of storage reservoirs should also include a balancing storage that is required to balance instantaneous peak periods in water demand so that there are no periods of imbalance when the reservoir is being drawn.

Twort et al (1974) has state that where a feeder pipe from the source to the storage reservoir is the only pipe that influences the required balancing storage of the tank and is situated upstream of the consumer area, the following consideration should apply:

If the feeder pipe is a large pipe with an inflow capacity (Q) which exceeds the instantaneous peak in the downstream demand, no balancing storage is required. If the feeder pipe inflow capacity is marginally lower than the instantaneous peak demand, or if the capacity of the feeder pipe is so low that it only equals the annual average daily demand rate, a balancing storage is required to supplement the feeder pipe during short periods of imbalance.

However, if the storage reservoir is situated inside or downstream of the consumer area, all the pipes in the network, and not only the feeder pipe, influence the balancing capacity of the reservoir and a balancing volume should be provided.

The balancing volume required for a storage reservoir to meet the instantaneous demand at peak periods of a given duration is calculated based on the equation:

$$
\begin{equation*}
\text { Balancing Volume }\left(\mathrm{V}_{\mathrm{x}}\right)=\text { GAADD } * \mathrm{PF} * \mathrm{X}-\mathrm{Q} * \mathrm{X} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{Q}=\text { the supply inflow into the reservoir (} \ell / \text { day }) \\
& \mathrm{X}=\text { peak period (days) }
\end{aligned}
$$

GAADD and PF are as previously defined.
The peak daily factors are used since the demand for water does not stay constant at all times but varies from the average demand rate at different times of the day and season. To account for the variation in demand from the annual average demand rate at daily peak periods, the peak daily factors are used.

As previously mentioned peak factors are used in sizing of storage reservoirs and other reticulation components to account for the magnitude of fluctuations in demand around the annual average daily demand rate during peak periods. Van Schalkwyk (1996) found that two distinct peaks occur in the daily distribution of water use. The peaks occur at about 7 to 8 am and 4 to 7 pm . Figure 2.14 shows the typical daily water demand use distribution at peak periods for a rural water supply system using a street tap adapted from Van Schalkwyk (1996).

Figure 2.14 Distribution of daily water use, percentage of total daily use (Van Schalkwyk, 1996)

Peak factors can be calculated from the equation

$$
\begin{equation*}
\text { Peak daily factor }(\mathrm{PF})=\frac{\text { Peak or Maximum Daily Demand }}{\text { Annual Average Daily Demand }} \tag{2.11}
\end{equation*}
$$

For rural pipe water supplies where a standpipe is used, a daily peak factor of 3 is recommended for reticulations in rural areas (DWAF, 1999; Van Schalkwyk, 1996). However, it is suggested that the designer should apply considerable thought in making the actual choice of peak factors to use as the ones recommended are only a guideline and are
conservative. The peak factors are used in the design of all the components of the water supply system.

On site storage tanks can be used in a situation where the peak flows cannot be satisfied at the furthest point in the system, in order to meet the required flow.

If possible storage reservoirs should be located close to the supply area in order to ensure a more even distribution of pressure and to reduce distribution pipe costs. The CSIR (2000) recommends that where a storage reservoir also serves as a service reservoir and is required to supply water at the required residual pressure to the furthest point in an area, the reservoir should be located near the centre of the supply area.

To reduce operating pressures, it is sometimes necessary to introduce intermediate storage reservoirs in the form of break pressure tanks, which are usually made of concrete or ferrocement.

If suitably sized, the intermediate storage tanks can also be used within the system for the following:

- A reduction in the size of the main storage reservoir, in terms of both balancing storage and emergency storage
- A division of the supply into smaller subsections which can be more easily managed by community organizations
- A reduction of the impact of supply breakdowns
- To ensure the economic sizing of the pipeline system where the pipeline will be sized to carry the total average daily demand. The intermediate storage tank will be sized to meet the total daily water demand including peak demands at peak periods and the balancing storage if the inflow capacity into the tank cannot meet the instantaneous demand from the consumers

(e) Distribution pipelines and tap stands

A distribution system of pipes laid in trenches, is used to distribute the water around a community. For a rural water supply system tap stands are used to serve the communities and they should be placed at positions aimed to reduce the maximum distance people have to carry water, as discussed in Section 2.6.1(b).

The transmission line is responsible of delivering water to the consumers who might be at different locations in the profile of the system. It is sized based on the instantaneous water demand at any point in time at the abstraction point rather than on a constant flow as would be used in the main transmission line.

The distribution pipeline should be designed to be able to carry the total water demand for the population to be served taking into account the average annual demand and the demand at peak periods. Therefore peak factors are used to account for the demand at peak periods.

The total water demand can therefore be determined using the equation:

$$
\begin{equation*}
\text { Total water demand }=\mathrm{P} \times \mathrm{AADD} \times \mathrm{PF} \tag{2.12}
\end{equation*}
$$

Other considerations of design for distribution pipelines are the same as those mentioned for a main or transmission pipeline in sub-section (c).

A distribution pipeline system consists of a network of interconnected pipes or loops which deliver water to consumers at different nodes as shown in Figure 2.15.

Figure 2.15 Diagramatic representation of a loop and node
The abstraction nodes are usually at different elevations. At each node, water demand is highly variable depending on the season and the population to be served at each node. However, supply must be constant (Chadwick and Morfett, 1985).

A hydraulic relationship exists in the network system amongst the elements of the distribution network. Every element is influenced by its neighbour and the entire system is interrelated in such a way that the condition of one element must be consistent with the condition of all other elements

In order to calculate the flow characteristics required in the system at each node in terms of the flow and the required residual head, taking into account the head losses throughout the pipeline system, two concepts are used (Streeter et al, 1998).

- Conservation of mass
- Conservation of energy

Referring to the node junction shown in Figure 2.15 the principle of conservation of mass dictates that the fluid mass entering the node will be equal to the mass leaving the node. Therefore the continuity equation is applied to a node (Figure 2.15) in the network using the equation:

$$
\begin{equation*}
\sum\left(q_{\text {in }}-q_{\text {out }}\right)=0 \tag{2.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& q_{\text {in }}=\text { Flow entering a node }(\ell / \mathrm{s}) \\
& q_{\text {out }}=\text { Flow leaving a node junction }(\ell / \mathrm{s})
\end{aligned}
$$

To ensure continuity in a network system, the following condition must be satisfied at each node junction:

$$
\begin{equation*}
\sum_{i=1}^{n} q_{i}=0 \tag{2.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& n=\text { is the number of pipes joined at the node. } \\
& q_{i}=\text { the discharge from each loop or pipe joining a node }
\end{aligned}
$$

In Figure 2.15 the sign convention used here sets flows into a node junction as positive and out of a junction as negative.

Referring to the loop shown in Figure 2.15 the principle of conservation of energy dictates that the difference in energy between two points must be the same regardless of the path that is taken by the water. Thus, the energy equation is applied to a loop (Figure 2.15) based on the equation:

$$
\begin{equation*}
\frac{p_{1}}{\rho g}+\frac{u_{1}^{2}}{2 g}+z_{1}+H_{E}=\frac{p_{2}}{\rho g}+\frac{u_{2}^{2}}{2 g}+z_{2}+H_{f} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{aligned}
p & =\text { Pressure head } \\
u & =\text { Velocity } \\
\rho & =\text { Density of water } \\
\mathrm{g} & =\text { Gravity acceleration constant } \\
\mathrm{z} & =\text { Elevation head } \\
\mathrm{H}_{\mathrm{E}} & =\text { Energy head gained (e.g. pumping head) } \\
\mathrm{H}_{f} & =\text { Total energy head losses }
\end{aligned}
$$

Subscripts 1 and 2 refer to any two points along the pipeline.
Within each loop the following condition must be satisfied:

$$
\begin{equation*}
\sum_{i=1}^{m} h_{f_{i}}=0 \tag{2.16}
\end{equation*}
$$

Where $\quad m=$ number of pipes in a loop
$h_{f_{i}}=$ energy loss per unit length around a loop
The equation implies that the algebraic sum of energy losses around each loop must be equal to the difference in total hydraulic grade between fixed nodes. From Figure 2.13 the sign convention sets flow and head loss as positive in the clockwise direction.

In order to balance the flow conditions and check that the proper relation is satisfied and maintained between the head loss and discharge for each pipe, an equation in pipe head loss as a function of flow is expressed as follows:

$$
\begin{equation*}
h_{f_{1}}=f\left(q_{i}\right) \tag{2.17}
\end{equation*}
$$

where $f\left(q_{i}\right)$ represents the Darcy-Weisbach or the Hazen-Williams pipe friction equations. The Hazen-Williams equation is as previously defined in equation (2.8) and the DarcyWeisbach equation is expressed as follows (Illemobade and Stephenson, 2003):

$$
\begin{equation*}
D=\left(\frac{8 \lambda L Q^{2}}{\pi^{2} g h_{f}}\right)^{0.20} \tag{2.18}
\end{equation*}
$$

where $\quad \lambda=$ Darcy-Weisbach pipe friction factor
The other parameters are as defined under the Hazen-Williams equation.
Since there is a complex network system of pipes in water distribution systems, one continuity equation must be developed for each node in the system and one energy equation must be developed for each pipe. Therefore, for a complex system the result is a set of simultaneous non-linear equations in head and discharge which cannot be solved directly.

For a network of pipes in a water distribution system a systematic approach is employed using the Hardy-Cross and Nodal methods to solve these equations and to calculate the flow and head characteristics required at different abstraction nodes.

The Hardy-Cross and Nodal methods involve the application of correction factors to the non-linear simultaneous equations to linearise them through iterative means by assuming trial values of flow or head until the system is in hydraulic balance (Chadwick and Morfett, 1985). The Newton-Raphson iterative procedure is used to determine the unknown variables at the node (head or discharge).

- Hardy-Cross method

This method essentially consists of eliminating the head losses from the energy equation and the head loss equations (Hazen-Williams or Darcy-Weisbach) to give a set of equations in discharge only. It may be applied to loops where the external discharges are known and the flows within the loop are required. Steps in the method of procedure are as follows:
(1) Assume the best distribution of flows q_{i} that satisfies continuity at the nodes by careful examination of the network in an elementary loop selected such that $\sum q_{i}=$ 0 . An elementary loop is a basic loop that forms part of the whole network system.
(2) For each pipe in the elementary loop selected, calculate the head loss $h_{f_{i}}$ from q_{i} using the Darcy-Weisbach or the Hazen-Williams and sum the net head loss such that $\sum h_{f_{i}}=0$
(3) If $\sum h_{f_{i}}=0$, then the solution is correct
(4) If $\sum h_{f_{i}} \neq 0$, then apply a correction factor ∂q to all q_{i} in the loop assumed in step (1) and return to step (2)

$$
\begin{equation*}
\partial q=-\frac{\sum h_{f_{i}}}{2 \sum \frac{h_{f_{i}}}{q_{i}}} \tag{2.19}
\end{equation*}
$$

(5) Proceed to another elementary loop within the network and repeat the correction process of step (2). Continue for all elementary loops in the network.
(6) Repeat steps (2) - (4) as many times as needed until the corrections ∂q are arbitrarily small.

- Nodal Method

This method consists of eliminating the discharges from the continuity equation and the head loss equations (Hazen-Williams or Darcy-Weisbach) to give a set of equations in head losses only. It may be applied to loops or branches where the external heads are known and the heads within the networks are required. Steps in the method of procedure are as follows:
(1) Assume values for the head $\left(H_{j}\right)$ at each junction in an elementary loop selected.
(2) Calculate q_{i} from H_{j}. For each pipe in the elementary loop selected, calculate the flow q_{i} using the Darcy-Weisbach or the Hazen-Williams and sum the net flow to satisfy the continuity equation such that $\sum q_{i}=0$
(3) If $\sum q_{i}=0$, then the solution is correct
(4) If $\sum q_{i} \neq 0$, then apply a correction factor ∂H to H_{j} and repeat the process from step (2)

$$
\begin{equation*}
\partial H=\frac{2 \sum q_{i}}{\sum \frac{q_{i}}{h_{f_{i}}}} \tag{2.20}
\end{equation*}
$$

(5) Proceed to another elementary loop and repeat the correction process of step (2). Continue for all elementary loops in the network.
(6) Repeat steps (2) - (4) as many times as needed until the corrections ∂q are arbitrarily small for each elementary loop selected.

Therefore in using the Nodal and Hardy-Cross methods, flow characteristics in complex networks systems can be calculated as required.

There are many computer programs that have been developed for the planning, optimization and modelling of water distribution systems. These programs incorporate either the Hardy-Cross or the Nodal methods in order to perform the fundamental pipe network analysis computations in order to determine the required flow characteristics in a complex pipe network system.

Some of the programs that are used include Wadiso (Water Distribution Simulation and Optimisation), Wadessy (Water Decision Support System), Epanet, WaterCad, Cybernet, H_{2} ONET, SynerGEE Water, AquaCad and KYPIPE 2. The list is not exhaustive and selection of the program to use depends on specific applications for which the program is used for and the availability of funds to purchase the program.

In this study Wadiso $S A$ is used and the program was selected because it was the same program that was used in the original design of the Nooightgedacht rural water supply project used as a case study. The computer program and how the Nodal method is used by the program to compute flow characteristics in a water distribution system are presented in Chapter 3.

3.0 Methodology

3.1 Investigation of rural water supply relating to minimum design standards of reticulation systems and the feasibility of different supply methods

This chapter discusses the design and methodology employed in order to achieve the objectives of this study. A case study project has been designed using a computer software program titled Wadiso SA Version 4.0 (GLS Engineering Software, 2003). The case study project design is based on data from a water supply project called the Nooightgedacht rural water supply project.

The strategy employed in this study in order to achieve the objectives is:
a) The use of Wadiso SA, version 4.0 (GLS Engineering Software, 2003) as a design tool to design the case study project and to evaluate minimum standards with respect to their effect on cost.

The Wadiso $S A$ computer program is a computerised hydraulic network model for evaluating the hydraulic adequacy of water distribution systems. It is used for planning, analysis and designing of water distribution network systems consisting of pipes, nodes (pipe junctions and abstraction points), pumps, valves and storage reservoirs. The hydraulic model tracks the flow of water in each pipe, the pressure at each node, and the flow of water into or out of each reservoir.

Wadiso SA relies upon the EPANet or Wadiso network solvers to determine if pipe network systems are in hydraulic balance. The network solvers are hydraulic analysis engines which employ the Nodal method as described in section 2.7.2.2 (e), to carry out the hydraulic analysis to compute the pressure and flow distributions by calculating friction head losses in pipe systems based on the Hazen-Williams or Darcy-Weisbach equations.

The Wadiso SA program allows for steady state analysis, optimisation, extended time simulation and water quality simulation of water distribution systems.

In this study evaluation of the minimum standards (residual pressure, demand rate and abstraction rate) as defined in section 2.6.1, was done using the steady state analysis tool of the program. The steady state is the condition whereby all specified demands and pressures are met at the same time and at all delivery points.

In Wadiso $S A$, the steady state analysis tool allows the user to calculate the pressure and flow distribution in pipe networks and from the calculations, systems can be analysed to determine hydraulic adequacy and reasons of bad system performance.

It was therefore possible to design a water supply system and evaluate the minimum standards with respect to cost using the steady state analysis tool by ensuring that the system is in hydraulic balance and the steady state conditions are met each time a set of minimum standards were specified.

The effect on cost was evaluated by using different pre-selected pipe network configurations for each set of standards specified during the analysis.

The minimum standards evaluated in this study are defined as follows (DWAF, 1999)

- Minimum residual pressure of 10 m at the point of delivery to consumers
- Minimum demand rate of $25 \mathrm{l} / \mathrm{c} /$ day to be available at the delivery point
- Minimum abstraction rate of $10 \ell / \mathrm{min}$ at the point of delivery to consumers

The Wadiso SA's tools were not fully utilised as pipe size configurations were preselected and all the conditions defined for the design of the water supply project could be met using the steady state analysis tool. The optimisation, extended time simulation and water quality simulation tools were therefore not used.

A description of Wadiso $S A$ model components and how it is used in the designing and balancing of water distribution systems is described in Appendix B (GLS Engineering Software, 2003). The methodology for the evaluation of the minimum standards using Wadiso $S A$ is discussed in Section 3.3.
b) Microsoft Excel discounting cash flow techniques which are economic analysis tools, were used to compare different rural water supply systems with respect to capital, operation and maintenance costs.

The economic tools that were used are the Net Present Value technique and the sensitivity analysis. The Net Present Value technique allows to convert the sum of money required for the implementation and support of the systems in terms of capital and operation and maintenance costs during the project's economic life to a net present day cost.

The sensitivity analysis is used to obtain an indication of the influence of economic factors on the net present cost of the different water supply systems.

The economic analysis was done based on the Nooightgedacht water supply project. The rural water systems that have been analysed are:

- Reticulated pipe water system
- Borehole system
- Hauling system

The consideration was that each of the rural water systems would be used in the project as a method of water supply and a comparison of each systems life cycle cost would be made. The methodology for the economic analysis is discussed in Section 3.4.

Thus, a case study on a rural water supply project is used on which the strategies of this study are employed. The case study is based on data from part of the existing Nooightgedacht rural water supply project which was considered to be representative of the whole scheme.

3.2 Description of project (Nooightgedacht water supply project) used in the analysis

The Nooightgedacht water supply project is a rural water supply scheme which benefits 33 farms situated to the north of the R311 road between Hopefield and Moorreesburg in the west coast region as shown in Appendix C. The project starts 3 km west of Moorreesburg, continuing for a further 13 km along this road, and then stretches northward towards the bulk supply line from Withoogte for another 15 km to cover an area of $195 \mathrm{~km}^{2}$.

The project will provide adequate and potable water from an existing 1000 mm diameter bulk supply line through a network of pipelines to the households on the farms. The bulk supply line runs between the Withoogte Water Treatment Works, where the water from the source i.e. the Berg river is treated, and the town of Hopefield.

The bulk supply pipeline is adequate to handle the design capacity of the Withoogte Water Treatment Works which has a capacity of $72 \mathrm{Ml} / \mathrm{day}$. The present operating capacity of the Withoogte Water Treatment Works is about $50 \mathrm{M} \ell /$ day. Water is drawn from a connection point on the existing bulk supply pipeline and is fed into the Nooightgedacht water supply network. The connection point to the Nooightgedacht water supply network is at a higher elevation than the rest of the Nooightgedacht water supply network and is able to supply the network through gravity flow.

A network of pipelines is used to distribute the water at different nodes which are connected to on-site storage tanks, with standpipes, at all farming settlements within the project area.

The full design of the project serves a population of 514 people resulting into a total water demand of $12.85 \mathrm{k} \mathrm{\ell} /$ day, based on basic water needs of $25 \mathrm{\ell} / \mathrm{c} /$ day. This required water demand represents only a very small fraction of the surplus bulk pipeline capacity of about $22 \mathrm{M} \ell /$ day, and therefore, will be able to meet the demand of Nooightgedacht water supply project. A population growth of 2.45% per annum is predicted and HIV/AIDS has no influence on the current growth rate. However the growth in the population will not have any impact on the demand capacity required from the bulk supply pipeline

The present water situation in these communities is that most farms receive water from boreholes as the main water source. However, the water is not suitable for long term consumption because of deteriorating water quality due to the very high salt and chlorine levels. During the dry periods the boreholes also frequently dry up.

The farm settlements on-site storage tanks are filled from the boreholes when the water quality permits. More often, in the dry periods the tanks are filled by a tanker, which carts the water from the town of Moorreesburg which is between 3 km and 18 km away.

The water situation in the Nooightgedacht communities therefore, called for a sustainable solution which can provide their basic water need.

As mentioned, this study focused only on a part of the existing design of the Nooightgedacht water supply project which has been considered to be representative of the whole scheme, as a case study.

In this case study the following assumptions have been made:
I. Source

- The source of water for the Nooightgedacht water supply project area is a bulk supply pipeline from the Withoogte Water Treatment Works. The Withoogte source has adequate water available for 98% of the time as required by DWAF (DWAF, 2002). The part of the water project used in this case study has 17 farm settlements and a population of 236 people.
- The source of the Nooightgedacht water supply project has been considered to be located at the connection point to the bulk supply line. Since the water source has more than enough capacity to meet the total demand of the water users it has been modelled in Wadiso $S A$ as a reservoir that will maintain at a fixed water level.
- A constant water level is maintained at the source at an elevation of 160 m with an elevation difference of 60 m between the source and the highest elevation node in the system. The pipe network is below this elevation and the reservoir is able to discharge by gravity.
- The source has been designed for a 24 hour continuous constant outflow since the system is a gravity flow system (DWAF, 1999).

II. Storage

- At the delivery nodes on-site storage tanks will be used to provide enough capacity to meet the demand of the users. Storage capacity of the tanks is for 48 hours storage to ensure an assurance of supply (DWAF, 1999) and will be designed to meet the peak daily demand and the instantaneous demand requirements.

The on-site storage tanks will be able to begin filling once the water level begins to drop in the tank and will continue to fill during the day when there is use and during the night when there is little or no use.

A peak daily factor of 3 has been used to account for peak demand at peak periods as required by DWAF (1999).

- The present population (236 people) has been used in the design. It has been assumed that the behaviour of the effect of varying the standards with respect to cost will be same irrespective of whether population growth is taken into account or not.
- Water demand is based on an average daily demand per capita for the entire network which gives the total amount of storage required per day.

For example, at an average daily demand rate of $25 \mathrm{l} / \mathrm{c} /$ day a total storage capacity of $5.9 \mathrm{~m}^{3} /$ day would be required to supply a population of 236 people.

- The demand rate is distributed among the nodes in proportions based on the populations at each delivery node.

III. Distribution

- For each evaluation, the pipe network has been designed for the present population.
- The evaluation is based on average daily demand rate, for the demand rate that is desired for each analysis

The daily average demand has been used so that the effect of increasing the demand rate can be directly observed with respect to cost as the pipe configuration changes. This will assist to determine if increasing the demand rate can create a constraint in cost if the minimum standards are to be adjusted

- The pipeline system will provide the total required capacity required over a one day period.
- The pipeline route runs parallel to the existing roadways.
IV. Connections

The project uses communal standpipes at the storage tanks at a maximum cartage of 200 m for every household. The criteria for the allocation of the communal standpipes is based on the requirement of one tap required per 25 to 50 dwelling or 150 people to be served per tap CSIR (2000). Therefore considering the populations at each centre, a single tap is provided.

Table 3.1 Pipe and node data used in the project (Nooightgedacht water supply project)

Pipe Ref ${ }^{*}$	Pipe Length (m)	$\begin{aligned} & \text { Diameter* } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	Node Ref ${ }^{*}$	Population	Elevation (m)	Description	$\begin{gathered} \text { Demand* } \\ (\ell / \mathrm{s}) \\ \hline \end{gathered}$	Minimum Residual Pressure head* (m)
1	210	variable	1		160	Source	variable	variable
2	85	variable	2		60		variable	variable
5	175	variable	3		60		variable	variable
6	1350	variable	6		60		variable	variable
10	1085	variable	10		60		variable	variable
11	2790	variable	11	7	70	Bo-Klipgat	variable	variable
14	195	variable	14		100		variable	variable
15	1955	variable	15	28	95	Vlakvlei	variable	variable
18	1140	variable	18		95		variable	variable
22	640	variable	22		100		variable	variable
23	380	variable	23		97		variable	variable
24	805	variable	24	14	100	Bakensvlei	variable	variable
26	565	variable	26		87		variable	variable
27	340	variable	27	18	95	Houmoed	variable	variable
28	455	variable	28		90		variable	variable
29	1695	variable	29	4	85	Louwsbron	variable	variable
32	425	variable	32		60		variable	variable
33	1065	variable	33		60		variable	variable
34	1560	variable	34	4	90	Uitsig	variable	variable
36	2590	variable	36	4	65	Nelskop	variable	variable
40	2950	variable	40		95		variable	variable
42	770	variable	42	14	83	Langkuil	variable	variable
43	765	variable	43	11	90	Cradock	variable	variable
44	2270	variable	45	11	103	Klipheuwel	variable	variable
45	205	variable	46		80		variable	variable
47	1900	variable	49	25	100	Driehoopsvlei	variable	variable
50	1175	variable	50	Petura	102		variable	variable
51	340	variable	51	11	105	Nooitgedacht	variable	variable
52	2815	variable	52		120		variable	variable
53	305	variable	53	25	120	Donkerskloof	variable	variable
54	750	variable	54		135		variable	variable
55	855	variable	57	7	115	Patrysvlei	variable	variable
58	2250	variable	59		110		variable	variable
60	865	variable	60	4	135	Degunst	variable	variable
61	1030	variable	63	35	120	Anyskop	variable	variable
64	1935	variable	67	14	103	Middelburg	variable	variable
68	645	variable	68		110		variable	variable
69	440	variable	69		100		variable	variable
70	625	variable	70		105		variable	variable
71	245	variable	71		83		variable	variable
Total	42640			236				

Table 3.1: Pipe and node data used for the Nooightgedacht water supply project

[^0]The location of the project area is shown in Appendix C. The schematic layout of the water supply network used in this evaluation not drawn to scale is shown in Figure 3.1.

Figure 3.1: Schematic layout of Nooightgedacht rural water supply project
Based on the program procedure for designing water distribution systems as described in Appendix B, the design of Nooightgedacht water supply system involved the input of pipe characteristics (the topology, i.e. how pipes and nodes are linked together) as well as pipe sizes and water demand characteristics at the nodes. The input data required to define the pipe characteristics was:

- Size of each pipe used in the network
- Number of each pipe assigned in the network system
- Number of nodes to which each pipe is connected on each side

The input data required to define the node characteristics was:

- Type of node
- Number assigned to each node
- Elevation of each node
- Coordinates of each node

The basic input data spreadsheets used for designing the case study project defining the pipe and node characteristics for the pipe layout as shown in Figure 3.1 and characteristics of the pipes and nodes shown in Table 3.1 are provided in Appendix D.

However, in addition to the data entered in Appendix D used to define the scheme layout, data on pipe diameter and demand rate were entered separately for different scenarios used in the study, since these were variables (as has been indicated in Table 3.1) and had to be changed for each analysis carried out. The procedure on how data on pipe diameter and demand rate were entered as variables is explained under Section 3.3.

Once the design of Nooightgedacht system was done to define the project layout using the software, it was used as a case study to evaluate the standards.

3.3 Methodology for the evaluation of minimum standards of a pipe water supply system using Wadiso SA Version 4.0

The reason for conducting this investigation is to evaluate the feasibility of the minimum standards established as a criteria to achieve the minimum level of service as set by the South African Department of Water Affairs and Forestry (DWAF) and to investigate if the minimum standards can be increased to a certain value without having significant effect on the cost of provision of a water supply service in the rural areas particularly where a gravity flow system is used.

As previously mentioned the minimum standards being evaluated in this study are defined as follows (DWAF, 1999):

- Minimum Residual Pressure of 10 m to be available at the delivery point
- Minimum Demand rate of $25 \mathrm{l} / \mathrm{c} /$ day to be provided at the delivery point
- Minimum abstraction rate of $10 \mathrm{l} / \mathrm{min}$ to be available at the delivery point

The theory that was used in this investigation was that the pressure in a pipe network changes if the diameter of the pipes in the network is changed while the head available at the reservoir is constant.

If a large pipe diameter configuration is used in a pipe network system, the node that will have the minimum residual pressure available in the system will have higher residual pressure available than if a pipe network system with a small pipe diameter configuration is used.

Another theory is that, at any pressure value that can be assigned and set as a minimum residual pressure that has to be available at any abstraction node in a water supply system, there is a maximum output or demand of water that can be abstracted from the nodes before the residual pressure falls below the set value at any of the abstraction nodes.

If the output exceeds the maximum value the residual pressure at least at one of the abstraction nodes will drop below the minimum pressure that is set.

The variations in the minimum residual pressure, and the maximum output available in a system due to the use of using different pipe configurations, result because of pipe friction head losses, change in pipe cross-sectional area, and change in the elevations of the nodes and the velocities in the pipes that are encountered for each particular case.

Small diameter pipes will have a high head loss as opposed to large diameter pipes due to increased head losses in small diameter pipes for a given discharge.

It follows that the minimum standards can be evaluated with respect to cost by fixing the minimum standards at different values and observing the hydraulic adequacy in a steady state condition as different pipe network configurations are used.

Thus, to determine the pressure and the demand and flow variations with respect to cost, Wadiso SA steady state analysis tool was employed. Wadiso SA uses the Epanet or Wadiso network solvers which are hydraulic analysis engines to determine if a system is in hydraulic balance by calculating head losses in a system and determining pressure, demand and flow distributions using the Nodal method technique.

Selection of the network solvers depends on the components of the system. Epanet analysis engine is selected when pressure sustaining valves, pressure breaker valves, throttle control valves and general purpose valves as well as pumps with multi-point curves are used in a system since the Wadiso engine does not incorporate such components, otherwise selection of the solvers is optional.

As previously mentioned, prior to simulation and balancing of the system, parameters such as pipe sizes and other pipe characteristics, consumer demands, network layout configurations, pump characteristics and node elevations must be known and are required as input data.

When the data specifying the parameters and minimum standards required is entered, the system is balanced

When the system is balanced, output from the simulation include: pipe flows, pipe headlosses, node residual pressure heads, abstraction rate at each node and velocities from pipes.

For the designed pipe system layout of Nooightgedacht water supply system, a set of different pre-selected pipe configurations was tested at different values set for the minimum standards. The pipe configurations were entered based on the pipe links defined in the design as shown in Table 3.1.

For each of the pre-selected pipe size configuration used, the standards were varied one at a time, holding the other standards constant and then investigating if the system is balanced at the specified minimum standards. The corresponding cost involved in meeting this standard was also investigated.

The cost used in the evaluation of the standards is based on the pipe sizes used in the pipe network. The candidate pipe sizes that were used were uPVC pipes. The pipes are expressed in terms of diameter size and their corresponding costs as shown in Table 3.2.

Pipe Diameter (mm)	Cost $(\mathrm{R} / \mathrm{m})$
25	8.78
50	17.73
63	27.48
75	38.14
100	64.93
150	139.43

Table 3.2: Pipe sizes and their related costs

The unit costs represent only the capital pipe cost for each pipe size and do not include excavation and installation costs, therefore where costs are indicated for pipes it must be realised that it is relative cost. To determine the total relative cost of pipes for the entire network of pipes in the system, involve multiplying the total length over which a particular pipe size is used by its cost per metre.

The pipes in Table 3.2 were used in different combinations to come up with candidate pipe configurations that were pre-selected and used in the analysis.

The pipe sizes that were used in combination in the design were used such that the main supply line from the reservoir source to the network connection (i.e. pipe numbers $1,11,14,15$ and 18) were fitted with a larger diameter size and the rest of the pipes in the distribution network to the abstraction nodes were fitted with a smaller diameter size.

The lengths of the main supply line and those of the distribution line are summarised as shown in Table 3.3:

Pipeline	Number of pipes	Total length (m)
Main supply line	5	6290
Distribution line	35	36350
Total	40	42640

Table 3.3: Summary of pipeline lengths
The pipe configurations used as a system of pipes to make up the whole network system together with their related costs are shown in table 3.4:

The author notes that there are many pipe network configurations that could be used for the project in order to evaluate the standards, however this study has limited the combinations as shown in Table 3.4 since the behaviour of results to be obtained is the same.

*Pipe network configuration (mm)	Pipe size (mm $)$ Main supply Line		Distribution line

Table 3.4: Pipeline size configuration used in the network and their related costs
The pipe configuration 50×25 refers to a pipe network with the main supply line being 50 mm and the distribution line 25 mm in diameter.

The variables used in the analysis are summarised below:

- Pipe network configurations with different diameter sizes (Table 3.4)
- Range of minimum residual head (pressure) at the critical node

The minimum residual head is the minimum head that should be available at any node of delivery in the system. The range of head values pre-selected is $5,7,10$ and 15 m and was selected arbitrarily but to include the current DWAF required minimum standard for residual pressure (10 m).

- Range of water demand rates.

A range of different demand rates was also arbitrarily pre-selected but to include the current minimum DWAF standard ($25 \mathrm{l} / \mathrm{c} /$ day) as well as the desired water demand target ($50 \mathrm{l} / \mathrm{c} /$ day). The range of values pre-selected expressed in litres per capita per day is $20,25,30,35,40,45$ and 50 .

It should be mentioned that in order to evaluate the standards using the Wadiso $S A$ program using the steady state analysis module, the program allows the user to enter the demand rate as an output required from the system at each node in order to meet the total daily water demand of the population to be served by the node.

Therefore it should be noted that throughout this study where the demand rate was entered, it was first converted to an output required at each node, based on the population at the node.

The following equation was used to convert the demand rate in litres per capita per day ($\ell / \mathrm{c} /$ day) to an output in litres per second (ℓ / s).

$$
\begin{equation*}
\text { Output }(l / s)=\frac{\text { Demand rate }(l|c| \text { day }) \times \text { Population at a node }}{86400(\mathrm{sec})} \tag{3.1}
\end{equation*}
$$

The range of standards was selected in order to obtain a general indication of the effect of the variation on standards with increasing cost. However selected values on the standards will be used to describe the findings of the study in order to describe how the objectives have been achieved.

After designing the water supply system the minimum standards being analysed were evaluated one at a time to observe the effect on each standard with varying costs.

3.3.1 Evaluating pressure with respect to cost

For the designed Nooightgedacht water supply system, in order to evaluate the effect on residual pressure with cost, the procedure that was followed involved fixing the demand rate at different pre-selected values. For each pre-selected demand rate, different pipe size network configurations as shown in Table 3.4 were analysed and upon balancing the system, an observation of the residual pressure that is available at the critical node in the system was made.

The critical node in the system is the abstraction node which has the lowest residual pressure available upon balancing the system.

The observed minimum residual pressure is compared with the cost of each pipe configuration used. The pipe cost increases as the size of the pipe configuration used increases.

The pre-selected demand rates were selected one at a time as the desired demand rate. For each selected demand rate the candidate pipe configurations were analysed to observe the minimum residual pressure available at the critical node for the chosen demand rate. The cost of each pipe configuration used at each analysis was calculated. Thus, the demand rate was fixed and the residual pressure was allowed to vary by changing the pipe configuration.

The interpretation of this procedure is that an observation is made on the effect that various pipe costs, as a result of using different pipe size configurations, have on residual pressure. The effect on pressure is interpreted by the amount of increase or decrease in the minimum residual pressure that is available at the critical node as the pipe cost changes at each demand rate assigned.

The procedure followed in order to achieve the evaluation is explained below and illustrated in Figure 3.2:

1. Set the demand rate at pre-selected values.

The pre-selected values for the demand rate are $20,25,30,35,40,45,50 \mathrm{l} / \mathrm{c} / \mathrm{day}$. These values were arbitrarily selected.
2. Select and log one of the pre-selected demand rates in the "Node Table" as an output in litres per second. The "Node table" is used to specify the flow conditions required at each node. At each node the output required for each demand rate was logged one at a time.
3. Select and \log the candidate pipe network configurations in the "Pipe/Check Valve Table" for each pre-selected demand rate. The Pipe/Check Valve table is a table which is used to specify the system data (properties) associated with each pipe.

The candidate pipe configurations were logged one at a time at each demand rate selected in step (2).
4. With the demand rate and pipe network selected, calculate the residual pressure at the nodes by balancing the system using Wadiso $S A$ network solver.
5. View results and record the minimum residual pressure available at the critical abstraction node.
6. Calculate the cost of the pipe network configuration which results in the minimum residual pressure recorded.
7. Repeat the procedure from (3) to (6) for the next candidate pipe configuration until all the configurations have been analysed at the demand rate selected in (2).
8. Log the next demand rate and repeat the procedure from (2) to (7).

Figure 3.2: Flow chart for the procedure of evaluation of residual pressure
Appendix E shows the input data spreadsheets of the pipe characteristics of the different pipe size configurations used for each demand rate used in the analysis, to determine the lowest residual pressure available to the system when each pipe size is used. Appendix F shows the input data for node characteristics at the nodes corresponding to the demand rates used in the evaluation.

3.3.2 Evaluating demand with respect to cost

The evaluation of the effect of demand on cost involved setting pressure at different preselected values considered as values that can be used as minimum pressure and, using different pipe size configurations from Table 3.4 with each of the pre-selected values of pressure, to analyse the maximum demand that can be abstracted from the system for each arrangement. The total pipe cost for each arrangement was recorded.

The pre-selected pressure values expressed in metres, were set arbitrarily at 5, 7, 10 and 15 m . The procedure followed was that the respective pre-selected pressures would be assigned as a minimum pressure to be available in the system at the critical node.

The critical node in the system is any abstraction node which will have the lowest residual pressure available. At the critical node, the residual pressure must be equal or just above the assigned minimum pressure.

If the residual pressure is below the assigned minimum residual pressure, the system is considered to have failed to meet the standards.

The minimum pressure standards that were assigned in the investigation were used in such a way that, for each pipe size combination used and minimum pressure assigned, the residual pressure at the critical node should not fall below, but should be equal or just above, the minimum pressure assigned when the maximum demand rate is logged. Thus, the residual pressure was fixed and the demand rate was allowed to vary for each of the pipe configurations used.

The maximum demand was investigated by imposing different target demand rates as an output in the "Node table" as described in Appendix B. This was a trial-and-error procedure until the maximum demand rate which causes the residual pressure to be equal or just above the assigned pressure was reached.

The effect of the variation of demand rate on cost is translated by comparing the difference in cost and the gain in demand that can be achieved moving from one pipe cost to the next as the pipe size configuration increases.

The steps followed in order to achieve the evaluation are explained below and illustrated in Figure 3.3:

1. Set minimum pressure at different pre-selected values.

The pre-selected values were $5,7,10$ and 15 m , selected arbitrarily.
2. Assign one-by-one, the pre-selected minimum pressures for analysis.
3. Select one of the candidate pipe network configurations from Table 3.4 and \log the pipe data in the "Link Table".
4. With the minimum pressure and pipe configuration selected in steps (2) and (3) respectively, assign a demand rate perceived to be the most likely maximum demand rate that can be abstracted from the system in the "Node Table".
5. With the parameters as defined in step (4), balance the system.
6. View results and investigate the residual pressure at the critical node.

The critical node is the abstraction node that will have the lowest residual pressure. The maximum demand at the critical node is the demand that causes the residual pressure to be equal or just above the assigned minimum pressure.
7. If the minimum residual pressure at the critical node is equal to the assigned minimum pressure, record the corresponding maximum demand rate.

If the minimum pressure is above or below the assigned minimum pressure, try another demand rate by repeating steps (4) to (6) until the maximum demand rate that causes the residual pressure at the critical node to be equal or just above the assigned minimum pressure is reached. Record the corresponding maximum demand rate.
8. Calculate the cost of the pipe network configuration used.
9. Select the next pipe network configuration from Table 3.4 and repeat steps (3) to (8) until all the candidate pipe configurations have been analysed for the specific minimum pressure assigned in step (2).
10. Assign the next minimum pressure and repeat steps (2) to (9) until all the assigned minimum pressures have been analysed.

Figure 3.3: Flow chart for the procedure of evaluation of demand rate
Appendix E shows the input data spreadsheets for the candidate pipe size configurations for the variation of demand for the different pressure standards that were used in the
investigation. The input data spreadsheets for the maximum demand rates used in the analysis at different pressure standards and pipe combinations is shown in appendix F .

3.3.3 Evaluating abstraction rate with respect to cost

The evaluation of the effect of abstraction rate on cost involved fixing residual pressure at different pre-selected values and using different pipe size configurations from Table 3.4 with each of the pre-selected values of pressure to analyse the maximum abstraction rate that can be abstracted from the system for each arrangement. The total pipe cost for each arrangement was recorded.

The pre-selected values of pressure expressed in metres were set at $5,7,10$ and 15 m .
In Wadiso $S A$ the abstraction rate at a node is governed by the demand rate which is expressed as an output required to satisfy the demand of the users based on the population to be served at a particular node. For the demand rate entered as an output, the abstraction rate is viewed in the "result table" as an abstraction rate that will satisfy the specified output.

Therefore in evaluating the abstraction rate, it is the demand rate that has been varied and the resulting abstraction rate that can satisfy the desired demand rate is compared with the pipe cost for each fixed pressure.

The procedure followed was that the respective pre-selected pressures were assigned one by one as minimum residual pressure to be available at the critical node in the system. At each of the assigned pressure the maximum demand rate that can be extracted from the system was investigated and the corresponding maximum abstraction rate at the critical node was observed. This procedure was carried out for all the candidate pipe configurations.

The critical node in the system is any abstraction node which will have the lowest residual pressure available. At the critical node, the residual pressure must be equal or just above the assigned minimum pressure.

If the residual pressure is below the assigned minimum residual pressure, the system is considered to have failed to meet the standards.

Therefore the minimum pressure standards that were assigned in the investigation were used such that for each pipe size combination used and minimum pressure assigned, the residual pressure at the critical node should not fall below but should be equal or just above the minimum pressure assigned when the maximum demand rate is logged.

The comparison of the effect of abstraction rate with cost is made by comparing the gain or loss in the maximum abstraction rate and the corresponding difference in cost that has to be incurred as the pipe cost increases.

The input data is the same as that used in Section 3.3.2, "evaluation of demand rate with respect to cost".

The steps followed in order to achieve the evaluation of abstraction rate are explained below and illustrated in Figure 3.4.

1. Set minimum pressure at different pre-selected values.

The pre-selected values were $5,7,10$ and 15 m and were selected arbitrarily.
2. Assign one by one the pre-selected minimum pressures for analysis.
3. Select one of the candidate pipe network configurations from Table 3.4 and \log in the "Pipe/Check valve table".
4. With the minimum pressure and pipe configuration selected in steps (2) and (3) respectively, assign a demand rate perceived to be the most likely maximum demand rate that can be abstracted from the system in the "Node Table".
5. With the parameters as defined in step (4), balance the system.
6. View results and investigate the maximum demand at the critical node.

The critical node is the abstraction node that will have the lowest residual pressure. The maximum demand at the critical node is the demand that causes the residual pressure to be equal or just above the assigned minimum pressure.
7. If the minimum residual pressure at the critical node is equal to the assigned minimum pressure, record the corresponding maximum demand rate.

If the minimum pressure is above or below the assigned minimum pressure, try another demand rate by repeating steps (4) to (6) until the maximum demand rate that causes the residual pressure at the critical node to be equal or just above the assigned minimum pressure is reached.
8. Find and record the corresponding maximum abstraction rate at the maximum demand rate.
9. Calculate the cost of the pipe network configuration used.
10. Select the next pipe network configuration from table 3.4 and repeat steps (3) to (9) until all the candidate pipe configurations have been analysed for the specific minimum pressure assigned in step (2).
11. Assign the next minimum pressure and repeat steps (2) to (10) until all the assigned minimum pressures have been analysed.

Figure 3.4: Flow chart of the procedure for the evaluation of abstraction rate

The input parameter in the "Pipe/Check valve table" of the program was the candidate pipe sizes as shown in Appendix E and the input for maximum demand rate is shown in Appendix F.

3.4 Methodology for the economic analysis of different methods of rural water supply

Economic analysis was performed using two methodologies. The methodologies were used to carry out a cost comparison of rural water supply systems and a sensitivity analysis in order to find out the economic factors that most affect the cost of the water systems.

Costs used in the analysis were calculated inclusive of labour, materials, plant and professional expenses, as close to predicted costs as possible.

The costs rely on guidelines from Cost Benchmark Guidelines (DWAF, 2003b), capital costs incurred in constructing Nooightgedacht pipe water supply project, Internet (Automobile Association of South Africa: May, 2005), personal communications and the experience of professionals in the field of rural water supply.

3.4.1 Methodology of cost comparison of different rural water supply systems

As a secondary objective, it was considered necessary to investigate which water supply system can be implemented in the rural areas in the most cost effective manner in terms of capital and operation and maintenance costs when minimum standards are adhered to.

The minimum standards that were used for the systems are the current DWAF delivery standards (DWAF, 1999):

- The minimum water demand rate designed for all the schemes is $25 \mathrm{\ell} / \mathrm{c} /$ day.
- The maximum distance of cartage of water within 200 m of a household.
- The minimum residual head designed for the conventional piped water supply system is 10 m .

The methodology that was employed in order to achieve this investigation is the use of economic tools that enable different projects to be compared in terms of investment over their economic life. The Nooightgedacht water supply scheme was used as a case study in order to carry out the analysis for each system.

In rural water supply, different systems are used as discussed in Chapter 2. The systems investigated in this study are:

- Conventional piped water supply system using gravity feed
- Supply of water using wells and boreholes
- Hauling

The analysis is based on a life cycle costing technique, comparing the methods by looking at the costs to be incurred if the systems were to be used in the Nooightgedacht water supply project.

The capital cost is based on the total construction cost of each system required for the project.

The capital cost of the pipeline in this case is the total construction cost of laying the pipes including labour and excavation that was calculated for the Nooightgedacht piped water supply project.

In analysing these systems, capital budgeting decision rules, or discounting cash flow techniques are used to assist in determining which system is an economical system to employ. Capital budgeting involves comparing the amount of cash spent today on an investment with the cash flows expected from it, or to be spent on it, in the future.

Capital budgeting decision rules are used to rank projects and to decide whether they should be accepted or rejected when investment decisions are being made.

However, future cash flows are spread over time and cannot be compared directly because money received earlier is worth more than money received later. Time value of money is an important consideration when using these economic tools and therefore discounting techniques are used to overcome this. Discounting is the mechanism used to convert future cash flows into the present equivalent value or discounted value.

The methodology that was employed in this study to carry out the cost comparison regarding different systems of rural water supply is:

1) Identifying the capital costs to be employed for each project

In identifying the capital costs for each alternative, the cost that is used in this analysis is the total sum of money required to put the system into operation at the stage when it is commissioned.
2) Evaluation and estimation of each project's relevant cash flow stream and appropriate interest rate on capital.

The cash flow stream was determined on an annual basis. This is the sum of money required annually for the maintenance and operation of each system's economic life. It was assumed that the cash flow stream will increase at the rate of 7% annually, which is equivalent to the inflation rate.

It is also assumed that the finances used to fund the projects will be borrowed funds and that the interest rate on capital redemption expected from the loan is at 10%. This is the rate at which the future cash flow must be discounted in order to find its net present value.

The basis of estimating the capital budgets and relevant cash flows for each of the systems is described below:

- Conventional Piped Water Supply System (Gravity System)

The budget and cash flow forecasts are based on the cost incurred in the construction of Nooightgedacht pipe water supply project and on the information provided in the Cost Benchmarks Guide for Water Services Development Projects and its Cost Model prepared by the Department of Water Affairs and Forestry (DWAF, 2003b).

Therefore based on the construction cost and the guidelines provided in the Cost Benchmarks Guide the following assumptions have been made in order to determine the cash flow:
> Pipe and reservoir operation and maintenance costs are estimated at 2% of the capital costs of each structure during the first year and in the succeeding years they will increase at an inflation rate of 7\% (DWAF, 2003b).
$>$ Total capital costs include the total cost of the pipeline and reservoir incurred in the construction of Nooightgedacht project. This includes professional fees, labour and excavation costs. Total capital cost is R 1534299.
$>$ The economic life of a conventional piped water supply system is assumed to be 10 years (DWAF, 2003b).

This economic life used was adopted based on the DWAF guidelines used in the Cost Benchmarks Model as the economic design horizon. However, the author takes note that practically the economic life of a conventional piped water supply system can be more than 10 years.

- Hauling

For a hauling project, a truck has to be purchased to supply water to the consumers. The truck has to make round trips to supply the consumers by moving around the area which the designed project covers.

The budget and cash flow forecasts are based on the information provided in the Automobile Association of South Africa Rates for Vehicle Operating Cost Tables, prepared by the Automobile Association of South Africa (May, 2005) and the interviews the researcher carried out with contractors to find the purchasing cost of a hauling truck and the related costs of upgrading the trucks.

The Automobile Association Vehicle Operating Cost Tables have been devised to provide users with a fair and equitable rate against which to asses vehicle performance or alternatively to enable the user to determine or exercise a fair claim for vehicle usage.

Based on the Vehicle Operating Cost Rate Tables, the following assumptions have been made for the hauling alternative:
> The truck's economic life was assumed to be 5 years. Therefore, in order to compare with the economic life of the other systems at 10 years, the replacement method was used, whereby the truck would have to be replaced after 5 years.
$>$ Two trucks are required, one operational and one on standby in order to ensure an assurance of supply. After 5 years the operational truck will be replaced with a new one and it is assumed the previous standby truck will be in usable condition and will become the operational truck. The new truck will be on standby.
$>$ After 5 years the cost of the truck will also have increased at 7% per annum.
$>$ It was assumed that the cost of employing a truck driver is R60 000 per annum and will increase by 7% per annum.
$>$ It was assumed that the truck will run on diesel, and the cost of diesel is estimated at R5.53 per litre as of August, 2005 and will also increase by 7% per annum

Capital costs were determined by looking at the cost of purchasing a truck for hauling.

The capacity of the truck is 6000ℓ. For the designed population of 236 people and fixing the demand rate at $25 \mathrm{\ell} / \mathrm{c} / \mathrm{day}, 5900 \mathrm{l} /$ day of water would be required to supply the consumers in the area.

From the schematic layout of the proposed water supply network shown in Appendix C at a scale of 1:60 000, it was calculated that the total distance around the network is 60 km and the truck would have to cover a total distance of 120 km a day, to supply the total water demand. The water supply points are situated alongside the roadway but close to the households.

From the total distance of 120 km to be covered by the truck in a day, the total distance to be covered per annum was calculated by multiplying 365 days in a year by the total distance to be covered per day. Therefore the total distance per year to be covered by the truck is 43800 km .

Total maintenance and operation costs were determined from the sum of running and fixed costs of the vehicle. Running and fixed costs were calculated using unit rates provided in the Automobile Association Rate Tables in cents per kilometre travelled.

Fixed costs include insurance, depreciation and licensing costs that are incurred by the vehicle owner irrespective of the number of kilometres travelled. Running costs are those costs that vary directly with the kilometres travelled. These are fuel, service and repairs, and tyre costs.

The unit rates for fixed costs in the Automobile Association Tables are selected based on the purchase price of the truck and the annual total distance travelled by the truck. The purchase price of the truck is R350 000. From the annual total distance to be covered of 43800 km and using the Automobile Association tables, the unit fixed cost of running the truck is R2.07 per kilometre. The rating table for fixed costs is as shown in table G1 of Appendix G

The unit rates for the running costs are selected based on the average real costs that would be incurred to maintain a vehicle with the particular engine capacity and fuel type. The average unit running cost is derived from the costs of tyres, fuel, and service and repair costs.

Table G2 in Appendix G shows the factors used to derive the unit rates of running costs. The factors are divided into columns A, B and C for: fuel, service and repairs and tyre cost factors respectively, as shown in the table. The formula used to calculate the unit rate is as shown below:

Running Cost Calculation (cents/km) $=(\mathrm{A} *$ Diesel Price in R/Litre $)+\mathrm{B}+\mathrm{C}$

The engine capacity of the truck is 3000 cc . and from table G2 in Appendix G, this falls under the engine capacity in the category $2501-3000 \mathrm{cc}$ and under this service and repair, tyre and diesel fuel factors, are $11.52,21.75$ and 18.32 respectively. Diesel cost is at R5.53 per litre (as of $3^{\text {rd }}$ August, 2005).

$$
\text { Thus, running cost rate } \begin{aligned}
(\text { cents } / \mathrm{km}) & =(11.52 * 5.53)+21.72+18.32 \\
& =\mathrm{R} 1.03 / \mathrm{km}
\end{aligned}
$$

Technically it was assumed that the truck will run 50% of the time with a full load of water. The rating tables recommend that for a loaded vehicle, running costs should be adjusted by 25% of the result calculated from the tables. The running cost rate of R1.03/km obtained from the calculation was adjusted upwards by 25% to obtain a running cost rate of R1.28/km which was used in the analysis.

The total vehicle operating and maintenance cost per kilometre is found from the sum of the fixed and running cost unit rates. From the calculated unit fixed cost of $\mathrm{R} 2.07 / \mathrm{km}$ and unit running cost of $\mathrm{R} 1.28 / \mathrm{km}$, the total vehicle unit operating cost is assumed to be $\mathrm{R} 3.35 / \mathrm{km}$

From the total annual distance of 43800 km to be covered by the truck and a total unit operation and maintenance cost of $\mathrm{R} 3.35 / \mathrm{km}$, the total operation and maintenance cost of the truck per annum is R 146730 .

- Borehole

The budget and cash flow forecasts are also based on the information provided in the Cost Benchmarks' Guide for Water Services Development Projects and its Cost Model prepared by the Department of Water Affairs and Forestry (DWAF 2003b).

Based on the guidelines provided in the cost benchmark's guide the following assumptions were made in order to determine the cash flow:
$>$ A borehole will have to be drilled at every farm settlement; this is where there is a cluster of houses within the project area. There are 17 farm settlements within the project area and therefore 17 boreholes will have to be drilled.
> Each borehole will be equipped with an electric pump and will also have a standby electric pump in order to ensure an assurance of supply.
$>$ Electricity is available throughout the year.
$>$ Each borehole will have a storage tank in which the pumped water will be stored and water from the storage tank will be distributed by a pipe supply system to the tap point where water will be abstracted.
$>$ Total capital costs for each borehole will include the costs of the following items required during the development of a borehole:

- Cost of the establishment of the drilling team
- Cost of the construction of the headworks
- Consulting fees
- Drilling costs
- Cost of borehole tests
- Reservoir cost
- Water distribution cost
- Electric pump cost
- Electricity distribution cost
> Maintenance costs for electric pump, reservoir and borehole are estimated at $4 \%, 1 \%$ and 7% of the cost of each item respectively during the first year, and in the succeeding years they will increase at the inflation rate.
$>$ The depth to the water table is assumed to be at 50 m .
$>$ Operation costs include electricity costs of pumps.
$>$ It is assumed that the boreholes yield enough water to satisfy the demand of each community.

3. Selecting a decision making rule

The decision rule that was used in this evaluation is the Net Present Value (NPV).
The Net Present Value rule is used to evaluate the cost effectiveness of the alternatives for rural water supply. The procedure that was followed to determine the best alternative using the net present value was:

- Find the present value of each year's cash flow, discounted at the project's interest on redemption cost.
- Sum the discounted cash flows calculated over each year; this sum is defined as the project's net present value.
- If the net present value is positive, the project is an economical project, while if the net present value is negative, it is not economical. If the projects all yield a positive net present value, the one with the highest net present value is chosen as the one that is the most economical, as compared to the other projects whose values are lower.

However in this study, total investment costs required during the life of a system are being considered in terms of capital, operation and maintenance costs and the intention is to establish the system that would require the least cost of investment when the water supply systems are compared

The Net Present value technique was used to bring the total sum of money required to invest in a particular project during its economic life to the present cost, and therefore the system with the lowest Net Present Value was considered as the most economical one to implement.

The equation for the calculation for the Net Present Value is based on the formula shown below, however a Microsoft excel spreadsheet was used to determine the Net Present Value based on the same formula:

$$
\begin{aligned}
N P V & =C F_{0}+\frac{C F_{1}}{(1+k)^{1}}+\frac{C F_{2}}{(1+k)^{2}}+\ldots . \ldots+\frac{C F_{n}}{(1+k)^{n}} \\
& =\sum_{t=0}^{n} \frac{C F_{t}}{(1+k)^{t}}
\end{aligned}
$$

Where:

$$
\begin{aligned}
\text { NPV } & =\text { Net Present Value } \\
C F_{t} & =\text { expected cash flow at end of year } t \\
t & =\text { period in years } \\
n & =\text { maximum period of years } \\
k & =\text { interest rate on capital redemption }
\end{aligned}
$$

In applying the Net Present Value the replacement chain method was used to compare the different projects. Consideration was given to the fact that the projects do not have equal economic lives and in analysing such projects it is assumed that the project with a shorter economic life will be replaced in order to compare the projects over an equal period of time.

The inputs that were used for the financial evaluation of each option include the estimation of the useful life of each type of option, the cash flows each option can generate over that period, and the appropriate interest rate on capital required to calculate the present value of the project's expected cash-flow stream.

3.4.2 Methodology on sensitivity analysis of economic factors on present value cost of different water supply systems

Further to evaluating piped water supply, borehole and hauling water supply systems based on Net Present Value cost, a sensitivity analysis was performed on the Net Present Value cost of the systems to analyse the economic factors to find out which one has a big investment influence on each of the systems.

The economic factors are considered as variables since they change according to how the economic climate dictates at the time when an investment is being considered and during the life of the system. The economic factors that are considered as variables in this study are:

- Maintenance and Operation (M \& O) costs
- Interest rate on capital redemption
- Inflation rate

The sensitivity analysis was therefore carried out based on the budgets that were calculated for the borehole, hauling and piped water supply systems used in the cost comparison of the water systems as explained in Section 3.4.1.

Sensitivity analysis is a technique that indicates how much Net Present Value (NPV) will change in response to a given change in an input variable while other variables are held constant.

Sensitivity analysis begins with a base-case situation which is developed using the expected values for each variable. The base-case situation is where the values used in determining the budget and cash flow are the most likely values expected to be used to draw up a budget based on the existing scenario of cost rates. The resulting Net Present Value is the base-case NPV.

In sensitivity analysis each variable is changed by several percentage points above and below the expected value, holding all other variables constant. Then a new NPV is calculated using each of these values. Finally the set of NPVs is plotted to show how sensitive the NPV is to changes in each variable.

The sensitivity of each variable to the NPV is determined from the slope of the graph. Thus the steeper the slope, the more sensitive the NPV is to changes in the variable

In this analysis the base case was considered to be the situation under which the initial budgets used in the evaluation of the water systems were determined. From the base case situation the sensitivity analysis was performed by changing the variables which were used to determine the budget and cash flow in the base-case scenario, by several percentage points.

It was assumed that these variables can increase or decrease by percentages of $10 \%, 20 \%$ and 30% in each case. In the analysis a negative percentage indicates that the value of the variable decreases by that percentage and vice-versa when the percentage is positive.

In sensitivity analysis, percentage values of the variables were used one at a time to calculate the NPV of each changed variable with other variables held constant. The calculated NPVs' are then compared to analyse their sensitivity to the changes in the variables.

4.0 Results and analysis of findings

As previously mentioned, the main purpose of evaluating the minimum standards is to determine the feasibility of adopting the current minimum standards as required by DWAF, and to investigate the effect of increasing the standards with respect to capital pipe cost, particularly where gravity fed systems are used as the case study project used is a gravity fed system. Therefore the results obtained are applicable to a situation where a gravity system is applicable.

Considering that different options are used for rural water supply systems it was also considered necessary to carry out an economic analysis on the systems to investigate which one is cost effective to use in the rural areas.

In evaluating the minimum standards with respect to pipe cost, it was possible to use Wadiso SA (GLS Engineering Software, 2003) to assign the standards at different preselected values and to vary one standard at a time while holding the other standards constant.

For each standard being varied, a value was selected from a pre-selected list and an observation was made to check if the set standards can always be satisfied at all the water abstraction nodes by balancing the system in the steady state condition each time the pipe cost is changed using pre-selected pipe configurations as shown in Table 3.4.

In the case of investigating the cost effectiveness of the water supply options, it was possible to carry out an economic analysis using Microsoft excel net present value technique to determine net present cost on budgeted cash flows over the economic life of the systems and also to carry out a sensitivity analysis on the net present cost to economic factors.

The results of this study based on the methodology explained in chapter three are presented as follows.

4.1 Results of the evaluation of minimum standards of piped water supply systems

The results of the evaluation of the minimum standards required for the design of rural pipe water supply projects are presented in this section.

4.1.1 Results of the effect of pressure on cost

In order to investigate the variation of pressure with cost, the methodology that was followed is as discussed in Section 3.3.1. The consideration was that for any pipe size configuration that can be used in the design of a water supply system, there is a minimum residual pressure up to which the system can provide without the system failing for any required output specified.

The minimum residual pressure is the lowest pressure that is available at any one of the abstraction nodes in the pipe network system and the node is described as a critical node.

The effect of the gain in pressure in relation to the pipe cost is defined by the difference in the minimum residual pressure that can be gained at the critical node by increasing the cost of the pipe. Refer to Table 3.4 under Section 3.2 for pipe size configurations used.

The difference in increase in pressure is compared with the cost that will be incurred if an increase in pressure is desired.

The input data for these results were the different types of pipe configurations and different pre-selected demand rates converted into an output required at each node in order to meet the total daily water demand of the population to be served at the node.

For each pipe network configuration used in the designed system, a demand, per capita per day, was assigned and an investigation was done to identify the minimum residual pressure that can be available in the system at the critical node. The cost to be incurred by this system to meet the set standards was recorded.

During the analysis of all the different scenarios, node 60 proved to be the critical abstraction node. Figure 3.1 is reproduced to indicate the location of node 60 .

Figure 3.1: Schematic layout of Nooightgedacht rural water supply project

The minimum pressure available at the critical node for each pipe configuration used, expressed in terms of pipe cost, are shown in Table 4.1 and also presented graphically for all the demand rates analysed.

Examples of the spreadsheet results calculated by the program for the whole system showing the available residual pressures at the nodes for the demand rate fixed at $25 \mathrm{l} / \mathrm{c} / \mathrm{day}$ are shown in Appendix H.

	Demand (l/c/day)							

Table 4.1: Results of variation of minimum residual pressure with pipe cost at node 60

From the results in Table 4.1, a superimposed graphical presentation of the minimum residual pressure available at the critical node in the system at different demand rates is shown in Figure 4.1.

Figure 4.1: Relationship of minimum residual pressure with pipe cost at different demand rates

From results in Table 4.1 and Figure 4.1 it can be seen that as the pipe cost increases due to large diameter pipes used, the minimum residual pressure at the critical node also increases up to a certain point and after that, any further increase in the cost does not result in any increase in pressure. This is evident from Figure 4.1 where the graphs are converging into a straight line approaching a limit of pressure of 25 m for all the demand rates analysed.

The increase in residual pressure is due to the reduction in friction losses each time the pipe capacity increases due to the increase in pipe size configuration. Friction losses reduce because there is less pipe friction resistance between the fluid particles and the pipe walls due to shear forces, as pipe capacity increases.

Since the residual pressure is the available pressure that remains at a node from the difference of the total energy available at a node and the total friction head loss incurred by the water in moving through the pipeline system in order to reach a node. Therefore as the friction losses decrease due to the increase in the capacity of the pipes, less work is required to move the water in the system and the difference in the available pressure increases, hence the increase in residual pressure.

However, the increase in pressure appears to approach a limit. The limit is reached because the friction head loss reduces until there is no substantial decrease in the losses in increasing
the capacity for the range of the pipe configurations used, therefore the difference in the total energy available at the node and the friction losses to be incurred remains constant and this results in the limit in residual pressure being approached.

Figure 4.2 is a graph representing a portion of the graph in Figure 4.1, showing the variation of minimum residual pressure when the pipe cost is increased at different assigned demand rates. This graph shows the first part of Figure 4.1 up to a value of R1350000.

Figure 4.2: Portion of Relationship of minimum residual pressure with pipe cost at different demand rates

From Figure 4.2, it can be seen that there is a substantial gain in pressure up to a certain value of cost and any further increase does not result in a significant gain in pressure.

It can be seen that there is significant gain in residual pressure with increasing pipe cost up to a cost of R 430675 and thereafter increasing the pipe cost and hence the pipe capacity will not result in significant gain in pressure as the pressure stays within 20 and 25 m for the demand rates and pipe configurations analysed.

Analysing the residual pressure over the range of pipe cost where we observe significant increase in residual pressure (R 350378 to R 430675) at the current minimum standard of demand of $25 \mathrm{l} / \mathrm{c} /$ day as required by DWAF (DWAF, 1999; Redbook 2000) and at the demand rate of $50 \mathrm{l} / \mathrm{c} /$ day which is the upper limit allowed by DWAF in terms of the minimum basic level of service (DWAF, 2003a).

It can be seen from Figure 4.2 that without dropping the current demand rate below 25 $\ell / \mathrm{c} /$ day we can be able to achieve a minimum residual pressure of 10 m at the abstraction point as set by DWAF at the lowest cost analysed of R 374 379. At this cost the residual pressure achieved is 15 m . If we increase the pipe cost to R 430675 a residual pressure above 20 m can be achieved.

If a demand rate of $50 \mathrm{l} / \mathrm{c} /$ day is desired to satisfy the increase in demand rate as allowed by DWAF, it can be seen from Figure 4.2 that at the lowest cost of R 374379 it is not possible to achieve a minimum residual pressure of 10 m as required by DWAF, as the pressure achieved at this cost is less than 10 m .

However, the graph also shows that with a small increase in pipe cost (R 430675) it is possible to increase the demand rate to $50 \ell / \mathrm{c} /$ day and to achieve a residual pressure above 15 m , which is above 10 m as required by DWAF.

Table 4.2 shows the percentage increase in pressure that can be gained for a corresponding percentage increase in pipe cost at different demand rates in order to show the general relationship of the increase in residual pressure with pipe cost.

The percentages reflected in the table represent the capital pipe cost and residual pressure as a percentage of the lowest capital cost option of R 374379 and the associated pressure respectively.

| Demand Rate (l/c/day) | | | | | | | | Percentage
 Increase in
 Pipe Cost
 $(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 25 | 30 | 35 | 40 | 45 | 50 | 0 | |
| Percentage Increase in Pressure (\%) | | | | | | | | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | |
| 27 | 48 | 88 | 173 | 618 | 1657 | 2140 | 1511 | |
| 28 | 51 | 92 | 182 | 651 | 1762 | 2311 | 31 | |
| 30 | 53 | 97 | 192 | 685 | 1865 | 2485 | 102 | |
| 31 | 56 | 102 | 202 | 718 | 1976 | 2653 | 118 | |
| 31 | 56 | 102 | 203 | 722 | 1987 | 2675 | 136 | |
| 32 | 57 | 104 | 205 | 731 | 2017 | 2723 | 213 | |
| 32 | 57 | 104 | 206 | 735 | 2028 | 2742 | 231 | |
| 32 | 57 | 105 | 207 | 736 | 2033 | 2749 | 334 | |
| 32 | 58 | 105 | 207 | 739 | 2041 | 2763 | 640 | |
| 32 | 58 | 105 | 208 | 740 | 2044 | 2766 | 1488 | |

Table 4.2: Corresponding percentage increases in pressure and pipe cost

Figure 4.3 shows the relationship of the percentage increases in pressure and pipe cost at a demand rate of $25 \ell / \mathrm{c} /$ day as shown in Table 4.2.

Figure 4.3: Relationship of corresponding percentage increases in pipe cost and pressure at 25 l/c/day

Figure 4.3 also shows that there is a significant percentage gain in residual pressure up to a certain percentage increase in pipe cost. Any further increase in the cost does not result in any significant percentage increase in residual pressure.

Figure 4.4 shows a portion of Figure 4.3 with pipe cost plotted up to 120% and the pressure increase plotted up to 55% to indicate the behaviour in the region where significant pressure increase is observed at a demand rate of $25 \mathrm{l} / \mathrm{c} /$ day.

Figure 4.4: Portion of Relationship of corresponding percentage increases in pipe cost and pressure at a demand rate of $25 \mathrm{l} / \mathrm{c} /$ day

Figure 4.4 indicates that a significant increase in pressure is observed up to an increase in pipe cost of 15% where a gain in residual pressure of 48% is achieved for a demand rate of $25 \mathrm{l} / \mathrm{c} /$ day. Thereafter the pressure increase is not significant and is more or less constant (between 48% and 58%).

For a 15% increase in pipe cost the cost increases from R 374379 to R 430679 indicating an increase of R 56300 and the pressure increases from approximately 15 m to 23 m indicating a 48% increase in residual pressure.

The percentage increase in pipe cost is small compared to the associated benefit realised in increasing the pipe cost.

Similarly, it can be deduced from the results in Table 4.2 that at a demand rate of $50 \mathrm{l} / \mathrm{c} /$ day a significant increase in residual pressure is observed up to an increase in pipe cost of 15%.

Although this study did not focus on evaluating the minimum velocity required in the systems, it was however noted during the analysis, that although the residual pressure was increasing with increasing pipe configurations, the velocity of flow was decreasing as the pipe configuration was increasing for a specified demand and was increasing with increasing demand rate. However the velocity achieved was below the required minimum of $0.3 \mathrm{~m} / \mathrm{s}$ as required by DWAF ($D W A F, 1999$).

Thus, based on the results it can be said that where a gravity fed system is used for rural pipe water supply then:

- At a demand rate of $25 \mathrm{\ell} / \mathrm{c} /$ day it is feasible to achieve a minimum residual pressure of 10 m at the abstraction point as required by DWAF, at a low cost.
- It is also possible to achieve higher residual pressure at a low cost without dropping the demand rate below $25 \mathrm{l} / \mathrm{c} /$ day. It has been shown that at a demand rate of $25 \mathrm{\ell} / \mathrm{c} /$ day a residual pressure of 16 m was achieved at a relative low cost.
- At a demand rate of $25 \mathrm{l} / \mathrm{c} /$ day as set by DWAF, if an increase in residual pressure is desired, then at 15% increase in pipe cost, a significant increase in residual pressure can be achieved (up to 23 m). Thus, at a small percentage increase in cost, higher residual pressures than set as minimum, can be achieved without dropping the demand rate below the minimum of $25 \ell / \mathrm{c} /$ day .
- If an increase in the demand rate of $50 \ell / \mathrm{c} /$ day is desired as aimed by DWAF then it is also possible to increase the residual pressure above the required 10 m with a small percentage increase in pipe cost. At $50 \mathrm{\ell} / \mathrm{c} /$ day it was possible to achieve a residual pressure of above 15 m with a 15% increase in pipe cost.

4.1.2 Results on effect of demand rate on cost

The investigation on demand rate involved assigning the minimum pressure at different preselected values of $5,7,10$ and 15 m one by one. When the pressure was fixed, an investigation of the maximum demand that can be abstracted from the system before the pressure falls below the minimum fixed pressure at the critical node in the system was evaluated.

The procedure for this evaluation is as described in Section 3.3.2. The input data in the program was the different pipe combinations from Table 3.4 and the demand rate. It should be noted that for the selected pressure and pipe configuration, the maximum demand rate was investigated by trial-and-error as described in Section 3.3.2.

When the pressure is fixed, and the maximum demand that can be abstracted from the system at different pipe configurations is determined, then it is possible to determine the effect of demand rate on cost as a result of increasing the pipe size configuration.

The relationship is determined by comparing the difference in gain in demand and the related costs in order to achieve this gain.

Table 4.3 shows the maximum demand rate that can be abstracted from the system at the critical node, at the assigned minimum pressures for each of the pipe size configurations used. The related costs are also shown in the table.

An example of the spreadsheet results calculated by the program, showing the residual pressure available at different nodes in the system at the maximum demand rate with the minimum residual pressure fixed at 10 m is shown in Appendix I.

Pipe Size (mm)	Pressure (m)	Pressure (m)	Pressure (m)	Pressure (m)	
	5	7	10	15	
	5	Maximum Demand $(\mathrm{I} / \mathrm{c} /$ day $)$	Maximum Demand $(\mathrm{I} / \mathrm{c} /$ day $)$	Maximum Demand $(\mathrm{I} / \mathrm{c} /$ day $)$	Maximum Demand $(\mathrm{I} / \mathrm{c} / \mathrm{day})$
50×25	38	38	33	26	374379
63×25	101	95	87	69	430675
50	119	112	103	83	492002
63×50	155	145	130	106	756007
75×50	256	241	219	177	817335
63	284	267	242	195	884386
75×63	570	398	362	290	1171747
75	687	537	486	391	1238799
100	1462	647	1381	587	471

Table 4.3: Results of maximum demand at different minimum pressure values
The results shown in Table 4.3 are illustrated graphically for the variation of demand rate with cost, at each fixed minimum pressure as shown in Figure 4.5.

Figure 4.5: Relationship of maximum demand with pipe cost at different Pressure Values

The graph shows that as the pipe system cost increases the demand that can be abstracted from the system also increases and at higher pipe cost significantly higher demand rates are achieved.
The variability in the steepness of the slopes of the graphs is due to the sudden increase in the capacity of the different pipe configurations used. As the pipe capacity increases the maximum output that can be discharged from the pipeline system increases. Therefore for a sudden increase in the pipe capacity, there is a drastic increase in the output from the pipeline system, which is evident from the steep slopes seen in the graph.

It is predicted that a gradual increase in the pipe configuration will indicate a smooth transition in the increase in demand rate and hence produce a smooth curve. However, the relationship of varying the demand rate by increasing the cost would be the same.

Figure 4.6 is a graph representing a portion of the graph in Figure 4.5, showing the behaviour of the relationship of maximum demand and pipe cost. This graph shows the first part of Figure 4.5 for the maximum demand up to $200 \ell / \mathrm{c} /$ day and the pipe cost up to a value of R 800000 considering DWAF's aim of increasing the demand rate to $50 \mathrm{\ell} / \mathrm{c} /$ day (DWAF, 2003a)

Figure 4.6: Portion of Relationship of maximum demand with pipe cost at different pressure values

Even though Figure 4.5 indicates that demand rate increases as the pipe cost increases, if we consider the part shown in Figure 4.6 it can be seen that there is a significant gain in demand with the initial increase in cost as the pipe cost increases up to R 430675 , and as the cost increases further up to R 750000 , there is no significant increase in demand.

This can be seen from the slope of the graph in that up to a pipe cost of R 430675 , the slope of the graph is steep indicating that for a small change in the pipe cost there is a big change in the maximum demand and increasing further up to R 750000 , the graph is rather flat indicating that for a big change in pipe cost there is a small change in maximum demand that can be abstracted from the system.

It can be seen that it is possible to deliver $25 \mathrm{\ell} / \mathrm{c} /$ day without dropping the residual pressure below 10 m as set by DWAF at the lowest cost analysed. It can be seen from Table 4.3 and Figure 4.6 that at 10 m a demand rate of $33 \mathrm{l} / \mathrm{c} /$ day, higher than required is achieved at a cost of R 374379 .

As proved in Section 4.1.1, Figure 4.2, it can also be proved from Figure 4.6 that it is possible to deliver a demand rate of $25 \mathrm{\ell} / \mathrm{c} /$ day as set by DWAF at a residual pressure of 15 m at the lowest cost analysed.

From Table 4.3 it is observed that at 15 m residual pressure a demand rate of $26 \mathrm{l} / \mathrm{c} /$ day can be achieved.

Considering Government's aim to increase the water quantity to $50 \mathrm{l} / \mathrm{c} /$ day on condition of an assurance of water supply (DWAF,2003a):

It is shown in Table 4.3 and Figure 4.6 that without a very high increase in capital cost it is possible to achieve a demand rate of $50 \mathrm{\ell} / \mathrm{c} /$ day, without dropping the residual pressure at 10 m as set by DWAF. Increasing the pipe cost from R 374379 to R 430675 a demand rate of $87 \mathrm{\ell} / \mathrm{c} / \mathrm{day}$, which is above $50 \mathrm{l} / \mathrm{c} /$ day, is achieved.

It can also be seen that if the residual pressure was increased to 15 m it would still be possible to deliver $50 \mathrm{\ell} / \mathrm{c} /$ day with a small increase in pipe cost. With residual pressure fixed at 15 m a demand rate of $69 \ell / \mathrm{c} /$ day was achieved.

Table 4.4 shows percentage increases in demand rate that can be gained for a corresponding percentage increase in pipe cost at different values fixed as minimum residual pressure.

The percentages reflected in the table represent the capital pipe cost and demand rate shown in Table 4.3 as a percentage of the lowest capital cost option of R 374379 and the associated maximum demand rate that can be achieved respectively.

Pressure				Percentage Increase in Pipe Cost $(\%)$
5 m	7 m	10 m	15 m	0
Percentage Increase in Demand Rate (\%)				
0	0	0	0	15
166	150	164	165	31
213	195	212	219	102
308	282	294	308	118
574	534	564	581	136
647	603	633	650	213
1008	947	997	1015	231
1400	1313	1373	1404	334
1708	1603	1679	1712	640
3747	3534	3697	3765	1488
11074	10432	10921	11135	

Table 4.4: Corresponding percentage increase in demand rate and pipe cost

Figure 4.7 shows the relationship of the percentage increases in the maximum demand rate and pipe cost at a residual pressure of 10 m as shown in Table 4.4.

Figure 4.7: Relationship of corresponding percentage increases in pipe cost and demand rate at 10 m

Figure 4.7 shows that as the percentage in pipe cost increases there is also a related percentage increase in demand rate that can be achieved.

Figure 4.8 shows a portion of figure 4.7 with percentage increase in pipe cost plotted up to 100% and demand rate increase plotted between 0% and 300%.

Figure 4.8: Portion of Relationship of corresponding percentage increases in pipe cost and demand rate at 10 m

Figure 4.8 indicates that a substantial increase in the demand rate can be achieved up to a certain point, and thereafter, an increase in pipe cost does not result into any significant increase in demand.

It can be seen that a substantial percentage increase in demand rate is observed when the pipe cost increases up to 15% and thereafter the margin of percentage gain in demand starts to diminish with increasing pipe cost when successive increments are considered. This indicates that the benefit in demand rate is not much as we keep increasing the cost over this range, even though the demand rate keeps increasing.

The graph shows that the lowest cost pipe configuration already achieves a demand rate of $33 \mathrm{l} / \mathrm{c} /$ day. A 15% increase in cost results in a demand rate of $87 \mathrm{\ell} / \mathrm{c} / \mathrm{day}$, which is above the maximum possible future demand of $50 \mathrm{\ell} / \mathrm{c} /$ day as suggested by DWAF.

The cost to be incurred in order to achieve $50 \ell / \mathrm{c} /$ day is small compared with the associated benefit that can be realised from this increment when the percentages are considered.

Thus it can be said that a high percentage increase in demand rate can be achieved with a small percentage increase in pipe cost up to a certain cost which can be considered to be reasonable but once this cost is reached, although there are significant gains in the demand rate, increasing the pipe cost much further results in the cost to be incurred to achieve the gain in demand rate being too high.

For the velocity of flow, it was also noted that as the maximum demand was increasing with increasing pipe configuration at a specific pressure, the velocity of flow at the critical node was also increasing. The velocity was however decreasing with increasing residual pressure at a specific pipe configuration. In both scenarios the velocity achieved was below the required $0.3 \mathrm{~m} / \mathrm{s}$ as required by DWAF (DWAF, 1999). The results indicate that in order to achieve high velocities at a specific residual pressure significant investment costs have to be incurred

Therefore the results indicate that for a gravity main system used for rural pipe water supply using a stand pipe:

- It is feasible to deliver $25 \mathrm{l} / \mathrm{c} /$ day at a relatively low cost without dropping the minimum residual pressure below 10 m as set by DWAF.
- At low cost, higher pressures than set as minimum, can be achieved without dropping the demand rate below the minimum of $25 \mathrm{l} / \mathrm{c} / \mathrm{day}$. It has been shown that at low cost, without dropping the demand rate below $25 \mathrm{l} / \mathrm{c} /$ day as set by DWAF, it is possible to increase the residual pressure up to 15 m .
- At a fairly small increase in pipe cost it is possible to achieve a demand rate of 50 $\ell / \mathrm{c} /$ day without dropping the residual pressure below 10 m as set by DWAF. However at this demand rate it is also possible to increase the residual pressure to 15 m.

It has been proved that with a 15% increase in pipe cost from R 374379 to R 430 675 high demand rates above $50 \mathrm{l} / \mathrm{c} /$ day were achieved.

4.1.3 Results of effect of abstraction rate on cost

Investigation into the effect of abstraction rate on cost was done by observing the maximum abstraction rate that can be achieved at the critical node, at a particular assigned pressure as the pipe cost increases. The procedure followed is as discussed in Section 3.3.3. The input data was the candidate pipe configurations and demand rates.

Results of the maximum abstraction rate at different nodes in the system, computed by the program with the residual pressure fixed at 10 m , are shown in Appendix J. The results are expressed in litres per second.

During the analysis of all the different scenarios, node 60 proved to be the critical abstraction node. The results at the critical node i.e. node 60, are presented in Table 4.5 and the abstraction rate in litres per second was converted to litres per minute (ℓ / min) as shown in the tables.

Node 60									
Pipe Size (mm)	Pressure		Pressure		Pressure		Pressure		Pipe Cost (R)
	5 m		7 m		10 m		15 m		
	Flow rate		Flow rate		Flow rate		Flow rate		
	1/s	1/min	1/s	I/min	1/s	$1 / \mathrm{min}$	1/s	1/min	
25	0.001	0.06	0.001	0.06	0.001	0.06	0.001	0.06	374379
50×25	0.004	0.24	0.004	0.24	0.003	0.18	0.003	0.18	430675
63×25	0.005	0.30	0.004	0.24	0.004	0.24	0.003	0.18	492002
50	0.006	0.36	0.006	0.36	0.005	0.3	0.004	0.24	756007
63×50	0.010	0.60	0.010	0.60	0.009	0.54	0.007	0.42	817335
75×50	0.011	0.66	0.011	0.66	0.010	0.60	0.008	0.48	884386
63	0.017	1.02	0.016	0.96	0.014	0.84	0.012	0.72	1171747
75×63	0.023	1.38	0.021	1.26	0.019	1.14	0.016	0.96	1238799
75	0.027	1.62	0.026	1.56	0.023	1.38	0.019	1.14	1626290
100	0.058	3.48	0.055	3.30	0.050	3.00	0.040	2.40	2768615
150	0.170	10.20	0.160	9.60	0.145	8.7	0.117	7.02	5945295

Table 4.5: Results of maximum abstraction rate at different minimum pressure values, at node 60

The graph shown in Figure 4.9 illustrates the results shown in Table 4.5 for the variation of abstraction rate at node 60 in litres per minute as the pipe cost is increased and the pressure fixed at different standards.

Figure 4.9: Relationship of maximum abstraction rate with pipe cost at different pressure values for node 60

The graph in Figure 4.9 indicates that, as the pipe cost increases as a result of increasing the pipe size, the abstraction rate from the system also increases, but significant abstraction rates are achieved only at a very high cost.

Figure 4.10 is a graph showing a portion of the graph in Figure 4.9, showing the behaviour of the relationship of the maximum abstraction rate and pipe cost. This graph shows the first part of Figure 4.9 up to R 850000.

Figure 4.10: Relationship of maximum abstraction rate with pipe cost at different pressure values at node 60

It can be seen in Figure 4.10 that significant benefit in abstraction rate can be realised up to a certain point in pipe cost and thereafter increasing the pipe cost does not result in any significant benefit of the abstraction rate compared with the pipe cost invested.

It is shown that benefits in abstraction rate can be realised up to a pipe cost of R 430675 as the slope of the graph in this region is steep indicating that for a small proportional increase in pipe cost we can get a relatively large increase in abstraction rate.

However if we look at the margins of increase in Table 4.5 for the region where we observe an indication of huge increase, it can be seen that the margins of increase that are achieved are very small if it was desired to achieve a high abstraction rate.

As the pipe cost increases further from R 430675 to R 750000 it can be seen that there is no huge benefit in terms of the abstraction rate as the graph appears to be flat indicating that there is a small increase in abstraction rate for a large increase in the pipe cost, for all the assigned minimum pressures.

It is shown that at a residual pressure of 10 m , for the candidate pipe configurations analysed, it was not possible to achieve an abstraction rate of $10 \mathrm{l} / \mathrm{min}$ as set by DWAF and in attempting to achieve this abstraction rate the pipe cost needs to be increased significantly. Similar behaviour is evident when the abstraction rate is analysed at a residual pressure of 15 m .

Table 4.6 shows percentage increases in abstraction rate that can be gained for a corresponding percentage increase in pipe cost for the assigned pressures.

The percentages reflected in the table represent the capital pipe cost and abstraction rate shown in Table 4.5 as a percentage of the lowest capital cost option of R 374379 and the associated maximum abstraction rate that can be achieved respectively.

Demand				Percentage Increase in Pipe Cost $(\%)$	
5 m	7 m	10 m	15 m	0	
Percentage Increase in Abstraction Rate (\%)					0
0	0	0	200	15	
300	300	300	200	31	
400	300	400	300	102	
500	500	800	600	118	
900	900	900	700	136	
1000	1000	1500	1800	1100	213
1600	2000	2200	1500	231	
2200	2500	4900	1800	334	
2600	5400	14400	3900	640	
5700	15900		11600	1488	
16900				0	

Table 4.6: Corresponding percentage increase in abstraction rate and pipe cost
Figure 4.11 shows the relationship of the percentage increases in the maximum demand rate and pipe cost at a residual pressure of 10 m as shown in Table 4.6.

Figure 4.11 shows the relationship of the corresponding percentage increases in abstraction rate and pipe cost at a residual pressure of 10 m as shown in Table 4.6.

Figure 4.11: Relationship of corresponding percentage increases in pipe cost and abstraction rate at 10 m

It can be seen from Table 4.6 and Fig 4.11 that as the percentage in pipe cost increases there is also a percentage increase in the abstraction rate that is realised.

Thus, it is noted that though Figure 4.11 indicates a huge percentage increase in the abstraction rate as the percentage in pipe cost increases, from Table 5.6 it is seen that the margin of increase in abstraction rate is small compared to the cost that is incurred in order to raise the abstraction rate by a small margin.

In order to achieve a high abstraction rate a very high cost would have to be incurred.
Figure 4.12 shows a portion of Figure 4.11 with the percentage increase in pipe cost plotted up to 100% and the abstraction rate increase plotted between 0% and 400%.

Figure 4.12: Portion of Relationship of corresponding percentage increases in pipe cost and abstraction rate at 10 m

Figure 4.12 shows that there is a significant percentage increase in flow rate up to a percentage increase in pipe cost of 15% and if the cost is increased further, the increase in the flow rate starts to diminish, indicating that if the pipe cost keeps increasing the flow rate to be achieved will not change much.

This is the reason why it is observed in Table 4.5 and Figure 4.9 that in order to obtain high flow rates at $10 \ell / \mathrm{min}$ as required by DWAF, very high pipe costs have to be incurred.

As mentioned, the margins of increases are small compared to the cost that is incurred to achieve the related gain in moving from one pipe cost to the other although the percentage increases look significant.

Considering the margins of increase, at 10 m pressure, the pipe cost increases from R 374379 to R 430675 indicating a marginal increase of R 56296 and the abstraction rate increases from $0.06 \ell / \mathrm{min}$ to $0.24 \ell / \mathrm{min}$ indicating an increase of $0.18 \ell / \mathrm{min}$. The increase in pipe cost is high compared to the gain in abstraction rate achieved. This relationship is evident in all cases of the assigned pressures.

It is noticed that the pattern of the graphs for the analysis of the demand rate and the abstraction rate is the same. This is because in both analyses pressure was fixed and the demand was allowed to vary each time the pipe configuration was changed. However the results indicate that while it is possible to achieve high values of demand rate at relatively low cost as proved in section 4.1.2, it would require high capital costs to achieve the minimum standard of $10 \mathrm{\ell} / \mathrm{min}$ required for the abstraction rate.

Based on the results for the investigation of abstraction rate it can be said that:

- Without dropping the minimum pressure below 10 m as set by DWAF, significant cost investment has to be made in order to obtain a minimum abstraction rate of 10 ℓ / min. It is thus very expensive to achieve this standard.

Thus in order to prevent the high pipe costs being incurred to achieve $10 \ell / \mathrm{min}$ the use of the on-site storage tanks could be considered at the abstraction locations in order to achieve $10 \mathrm{\ell} / \mathrm{min}$ as used in the Nooightgedacht water supply project. An investigation to evaluate the condition of achieving an abstraction rate of $10 \ell / \mathrm{min}$ at the abstraction point using storage tanks was undertaken as explained below:

4.2. Investigation into the use of storage tanks to achieve an abstraction rate of $10 \ell / m i n$

During the investigation into the use of storage tanks at the abstraction locations in order to achieve an abstraction rate of $10 \ell / \mathrm{min}$, the following assumptions were made:

Storage tank

- The capacity of the storage tank is 2000ℓ with a continuous constant water flow from the network system. Flow into the tank is controlled by the use of a ball valve in the tank which regulates the flow to prevent overflowing.
- No abstraction takes place during night time (12 hours) and the tank will therefore fill during this period. The tank capacity is sufficient to supply the total demand during the day time for a period of 12 hours.
- The head of the storage tank is 2 m .
- Exit loss coefficient at the outlet of 0.6 is used to account for exit losses at the outflow valve when water is abstracted.
- The full supply level of the tank is 1.5 m .
- Minimum supply level is 0.5 m .

Analysing at 1.5 m :
At a head of 1.5 m in the tank (full supply level), the velocity, V to be achieved by using a specific valve is calculated using the formula,

$$
V=\sqrt{2 g h}
$$

where

$$
\begin{aligned}
& V=\text { Velocity of flow in the valve }(\mathrm{m} / \mathrm{s}) \\
& \mathrm{g}=\text { gravitation acceleration constant }\left(\mathrm{ms}^{-2}\right) \\
& h=\text { head of water in the storage tank }(\mathrm{m})
\end{aligned}
$$

Therefore

$$
\begin{aligned}
V & =\sqrt{2 \times 9.81 \times 1.5} \\
& =5.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Therefore, at a velocity of $5.4 \mathrm{~m} / \mathrm{s}$, in order to achieve an abstraction rate of $10 \mathrm{\ell} / \mathrm{min}$ a minimum diameter size of valve is calculated using the continuity equation:

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \mathrm{VA}
$$

where $\mathrm{Q}=$ discharge rate
$C_{d}=$ Coefficient of discharge at the valve $=0.6$

and therefore

$$
\begin{aligned}
\mathrm{A} & =\frac{\mathrm{Q}}{C_{d} V} \\
& =\frac{(0.00017)}{(0.6)(5.4)} \\
& =0.0000525 \mathrm{~m}^{2}
\end{aligned}
$$

Using the formula $\quad \mathrm{A}=\frac{\pi d^{2}}{4}$
Where d is the diameter of the valve

We have

$$
\begin{aligned}
d & =\sqrt{\frac{(4)(0.0000525)}{\pi}} \\
d & =0.008 \mathrm{~m} \\
& =8 \mathrm{~mm}
\end{aligned}
$$

Hence, at a head of 1.5 m , the minimum diameter size of a valve to be used in order to achieve an abstraction rate of $10 \mathrm{l} / \mathrm{min}$ or $0.17 \mathrm{l} / \mathrm{sec}$ is 8 mm . The common taps used for water supply are 15 mm and 20 mm diameter taps as described in Section 2.6.1 (d).

Analysing with a 15 mm tap and a head of 1.5 m with a velocity of $5.4 \mathrm{~m} / \mathrm{s}$, the discharge rate that can be achieved is calculated using the continuity equation as follows:

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{AV} \\
& =\frac{\pi(0.6)(0.015)^{2}(5.4)}{4} \\
& =0.000572265 \mathrm{~m}^{3} / \mathrm{s} \\
& =0.57 \mathrm{l} / \mathrm{sec} \\
& =34.2 \mathrm{l} / \mathrm{min}
\end{aligned}
$$

Analysing at 0.5 m :
At a head of 0.5 m in the tank (minimum supply level), velocity, V to be achieved by using a 15 mm valve is calculated as:

$$
\begin{aligned}
V & =\sqrt{2 \times 9.81 \times 0.5} \\
& =3.13 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

At a velocity of $3.13 \mathrm{~m} / \mathrm{s}$, the discharge rate from the valve will be;

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{C}_{\mathrm{d}} \mathrm{AV} \\
& =\frac{\pi(0.6)(0.015)^{2}(3.13)}{4} \\
& =0.00033 \mathrm{~m}^{3} / \mathrm{s} \\
& =0.33 \mathrm{l} / \mathrm{sec} \\
& =20 \mathrm{l} / \mathrm{min}
\end{aligned}
$$

Therefore when the head of water in the tank drops to 0.5 m a discharge rate of $20 \mathrm{l} / \mathrm{min}$ can be obtained.

At full supply level in the tank and at minimum supply level it is still possible to maintain an abstraction rate of $10 \ell / \mathrm{min}$ as it has been seen that at a head of 1.5 m and 0.5 m draw down in the tank an abstraction rate above $10 \mathrm{l} / \mathrm{min}$ is achieved.

However the minimum head in the tank required to obtained a minimum flow of $10 \ell / \mathrm{min}$ is as shown below,

Since

$$
\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \mathrm{AV}
$$

And

$$
V=\sqrt{2 g h}
$$

Therefore

$$
\begin{aligned}
h_{\min } & =\frac{\left(\frac{\mathrm{Q}}{\mathrm{C}_{d} \mathrm{~A}}\right)^{2}}{2 g} \\
& =\frac{\left(\frac{0.00017}{(0.6)(0.00018)}\right)^{2}}{(2)(9.81)} \\
& =0.13 \mathrm{~m}
\end{aligned}
$$

at this minimum head the velocity that can be achieved is calculated as

$$
\begin{aligned}
\mathrm{V} & =\sqrt{(2)(9.81)(0.13)} \\
& =1.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

It can be seen in the investigation that if a storage tank is used, an abstraction rate of $10 \mathrm{l} / \mathrm{min}$ as required by DWAF can be achieved without having to incur very high pipe costs as shown in the results in the previous analysis on abstraction rate. It has also been shown that at a minimum head of 0.13 m in the tank required to discharge $10 \ell / \mathrm{min}$ a minimum velocity of $1.6 \mathrm{~m} / \mathrm{s}$, above $0.3 \mathrm{~m} / \mathrm{s}$ as required by DWAF can be achieved.

It should be mentioned that with this condition the other minimum standard on residual pressure will be maintained in the system at the connection point to the storage tank and therefore the head of 10 m as set by DWAF required for purposes of upgrading of the systems will still be preserved.

The storage tank that can be used at the abstraction point for rural water supply is as shown in Figure 4.13.

Figure 4.13: Example of an on-site storage tank (CSIR, 2000)
It has been proved that the demand rate above $25 \mathrm{\ell} / \mathrm{c} /$ day can be achieved. Considering that the plastic storage tanks that can be used have a capacity of 2000 , sizing of the storage volume required will depend on the populations to be served at the abstraction point in order to ensure that the required demand rate is delivered.

In communities with large populations where the capacity of one tank is not enough several tanks can be placed side by side connected to the inlet pipe in order to meet the required demand rate.

The storage capacity required should be able to provide the peak demand at peak periods. Therefore a peak factor should be multiplied with the total storage volume required in order to provide the total volume of storage that will meet the peak demand for the population to be served.

Each tank should be designed to be able to meet the instantaneous peak demand of the number of people to be served. Therefore as already discussed in Section 2.7.2.2 (d), if the rate of inflow from the inlet pipe is not sufficient to meet the instantaneous peak demand, a balancing volume has to be provided for the storage tank. The required balancing volume can be determined from the equation:

Balancing Volume $=($ Total consumption from the tank during peak period $)-($ total flow into tank during peak period)

The balancing volume will serve to equalise the difference between the total inflow capacity and the instantaneous demand at peak periods so that the tank is not drawn almost empty and people do not have to wait for the tank to fill before they can start drawing again.

4.3 Investigation into the requirements of a balancing volume to meet the instantaneous demand at peak period

For the Nooightgedacht case study, investigation of the requirements of a balancing volume to meet the demand at peak periods at the lowest cost (R 374 379) was analysed at a minimum residual pressure of 10 m as shown below:

The population at the critical node (node 60$)=4$ people
The abstraction rate from the tap of the on-site storage tank $=10 \ell / \mathrm{min}$ (proved from Section
The inflow rate into the storage tank $=0.06 \ell / \mathrm{min}$ (from Table 4.5)
Annual average daily demand rate $=25 \mathrm{\ell} / \mathrm{c} /$ day
Therefore
The total volume of water required at peak period $=$ Population x average demand x peak daily factor
$=4 \times 25 \times 3$
$=300 \ell$
At instantaneous peak demand at peak periods, with an abstraction rate of $10 \ell / \mathrm{min}$.
The time taken to satisfy the total instantaneous demand (minutes)

$$
\begin{aligned}
& =\frac{\text { total } \text { water demand }}{\text { flow rate }} \\
& =\frac{300}{10} \text { minutes } \\
& =30 \text { minutes }
\end{aligned}
$$

The inflow capacity into the storage tank at an inflow of $0.06 \mathrm{l} / \mathrm{min}$ over 30 min

$$
\begin{aligned}
& =0.06 \times 30 \\
& =1.8 \text { litres }
\end{aligned}
$$

Therefore the inflow capacity is not enough to meet the instantaneous demand over a period of 30 minutes. However, as mentioned, it is considered that there will be no abstraction for a period of 12 hours during the night during which the tank will be filling. Analysing the inflow capacity into the tank over a period of inflow of 12 hours,
the inflow capacity into the storage tank at an inflow of $0.06 \mathrm{l} / \mathrm{min}$

$$
\begin{aligned}
& =0.06 \times 12 \times 60 \\
& =43.2 \text { litres }
\end{aligned}
$$

Therefore the inflow capacity supplied over a period of 12 hours is still not enough to meet the required instantaneous demand at peak periods and a balancing volume would be required from the storage tank.

The required balancing storage volume is calculated from Equation (2.10)

$$
\begin{aligned}
\text { Balancing Volume } & =300-(0.06 \times 12 \times 60) \\
& =256.8 \text { litres }
\end{aligned}
$$

The volume required to provide storage for a period of 48 hours as required by DWAF is calculated as

$$
\begin{aligned}
& =2 \times 300 \\
& =600 \text { litres }
\end{aligned}
$$

Therefore the total volume required for the on site storage for a period of 48 hours and for the tank to be able to meet the instantaneous demand at peak period will be the sum of the 48 hour storage volume and the balancing volume to meet instantaneous demand at peak periods.

$$
\begin{aligned}
\text { Total volume } & =600+257 \\
& =857 \text { litres }
\end{aligned}
$$

Thus the $2000 l$ capacity of the on-site storage tanks is adequate to meet the total volume required at the critical abstraction node in order to provide 48 hour storage and to meet the peak demand as well as the instantaneous demand at peak periods.

However as indicated, if one storage tank is not sufficient to provide the 48 hours storage volume, two or more storage tanks could be placed side by side connected to a single supply inlet in order to provide for 48 hours storage volume.

Therefore with the provision of storage tanks it is possible to achieve the minimum standards as set by DWAF, namely: residual pressure (10 m), demand rate ($25 \mathrm{\ell} / \mathrm{c} /$ day) and abstraction rate ($10 \ell / \mathrm{min}$). These standards can be achieved at a relatively low cost.

Even if the demand rate was increased to $50 \mathrm{\ell} / \mathrm{c} /$ day, the other standards would still be met as the only thing that would be required to increase would be the total storage volume.

4.4 Results of economic analysis of different rural water supply systems

Economic analysis aimed at achieving the secondary objectives of this study. Economic analysis of the different rural water supply systems involved:

- Comparison of net present value costs of the rural water supply systems
- Sensitivity analysis of the different water supply systems

The results of each analysis are presented in this section.

4.4.1 Results of comparison of net present value cost

The methodology of budgeting considerations on the evaluation of the economic viability of the different systems of rural water supply was carried out as explained in Section 3.4.1

The results of this investigation have been presented in terms of the net present value of investment, in order to determine which system would require the lowest investment. The results are for three types of rural water delivery systems which can be alternative water supply options for the Nooightgedacht water supply project. The options are;
a) Conventional piped water supply system
b) Supply of water using wells and boreholes
c) Hauling

The results of each system are presented in the Tables 4.7, 4.8 and 4.9:

CONVENTIONAL PIPED WATER SUPPLY SYSTEM												
GENERAL DATA (Assumed)												
	Inflation rate			7.0\% per annum								
	Interest on Capital Redemption			10\%								
	Annual Pipe Maintenance Costs			2\% of Pipeline Capital Costs								
	Annual Reservoir maintenance costs			2\% of Reservoir Capital Costs								
	pte: Maintenance and Operation Costs (M \& O) will also increase by 7\% per annum from the first ye,											
Capital costs												
		Pipeline	R 1,480,770									
		Reservoir	R 53,529									
		Total	R 1,534,299									
Annual Maintenace and operation costs (M \& O)												
		Reservoir	R 1,071									
		pipeline	R 29,615									
		Total	R 30,686									
Calculations												
		Year										
		0	1	2	3	4	5	6	7	8	9	10
Capital costs (R)		1,534,299										
M \& O (R)		30,686	32,834	35,132	37,592	40,223	43,039	46,051	49,275	52,724	56,415	60,364
Cash flow (R)		1,564,985	32,834	35,132	37,592	40,223	43,039	46,051	49,275	52,724	56,415	60,364
NPV	R 1,829,384			-								

Table 4.7: Results of Net Present Value for conventional piped water supply system

Table 4.8: Results of Net Present Value for borehole system

HAULING											
GENERAL DATA											
	Inflation rate		7.0\% per annum		\square						
Interest on Capital Redemption			10\%								
	Fixed costs		$2.07 \mathrm{R} / \mathrm{Km}$								
	Running Costs		1.28 R/Km								
Total Operation and maintenance cost			3.35 R/km								
Total distance travelled			43,800 Km per annum								
Vehicle economic life			5 years								
Truck cost			R 350,000								
Cost of Employing a Driver			R 60,000 per annum								
2 vehicles required, one operational and one on standby											
Capital cost											
2 Vehicles cost				R 700,000							
				R 146,730							
Annual Operation and Maintenance costs					per annum						
Annual Drivers Salary				R 60,000	per annum						
Total Annual Operation and Maintenance Costs				R 206,730	per annum						
CALCULATIONS											
	Year										
	0	1	2	3	4	5	6	7	8	9	10
Capital costs (R)	700,000			4		490,893					
Maintenance Costs (R)	206,730	221,201	236,685	253,253	270,981	289,950	310,246	331,963	355,201	380,065	406,669
Cash flows (R)	906,730	221,201	236,685	253,253	270,981	780,843	310,246	331,963	355,201	380,065	406,669
				< 6							
NPV \quad R 2,992,780					-						

Table 4.9: Results of Net Present Value for hauling System

The resulting Net Present Values (NPV) of the different systems are listed in Table 5.10

No	System	NPV
1	Pipeline reticulation	R 1829384
2	Hauling	R 2992780
3	Borehole	R 6923464

Table 4.10: Ranking of water systems regarding Net Present Value (NPV)
It can be seen that the net present value (NPV) of the pipeline reticulation water supply option in this case a gravity fed system, has the lowest net present value of the three options and is therefore the best option.

4.4.2 Results of sensitivity analysis of economic factors on Net Present Value cost of different rural water supply options

In order to obtain an indication of the influence of economic factors on the Net Present Value of the conventional pipe water supply, borehole and hauling systems, a sensitivity analysis on Net Present Value cost of each of the systems was carried out on the following economic factors:

- Maintenance and Operation (M \& O) costs
- Interest rate on capital cost
- Inflation rate

The results of this investigation have been presented in terms of the net present value of investment when the economic factors are varied at different percentage points from the base case scenario as explained in Section 3.4.2.

The results of sensitivity analysis on the net present value for each of the economic variables at different percentage points for each system are summarised in Tables 4.11, 4.12 and 4.13. Examples of Excel spreadsheets of how the percentage points were varied for the maintenance and operation costs, interest on redemption costs and inflation rate are shown in Appendix K for the conventional piped water supply. For the other systems, the sensitivity analysis was performed using the same procedure.

(a) Conventional Piped Water Supply System

The result of the sensitivity analysis on the net present value cost of the piped water supply system as a result of varying the economic factors at different percentages from the base case is shown in Table 4.11

	Maintenance Dests NPV Base Case (\%)	Redemption Cost NPV (R)	Inflation Rate NPV (R)
-0.30	1740859	1871845	1803533
-0.20	1770367	1856644	1811824
-0.10	1799876	1842521	1820436
0	1829384	1829384	1829384
10	1858893	1817150	1838680
20	1888401	1805743	1848337
30	1917910	1795097	1858370

Table 4.11: Net Present Value at different deviations from base case for the pipeline option

Based on Table 4.11, Figure 4.14 shows a graph of the sensitivity analysis of the pipeline option to the variables.

Figure 4.14: Sensitivity analysis of the pipeline option

It can be seen from the graph in Figure 4.14 that the Net Present Value of the pipeline option is less sensitive to changes in interest rate on capital cost followed by inflation rate but very sensitive to changes in maintenance costs. For the same percentage change in the three variables the net present value is affected most by the change in maintenance costs.

(b) Borehole Water Supply System

Table 4.12 shows the results of the net present value at different deviation scenarios of the variables for the borehole option.

Deviation from Base Case	Maintenance Costs NPV (R)	Redemption Cost NPV (R)	Inflation Rate NPV $(~ R ~) ~$
-0.30	5710875	7505075	6569361
-0.20	6115071	7296858	6682926
-0.10	6519267	7103408	6800903
0	6923464	6923464	6923464
10	7327660	6755886	7050790
20	7731856	6599645	7183070
30	8136053	6453808	7320496

Table 4.12: Net Present Value at different deviations from base for the borehole option

From Table 4.12 , Figure 4.15 shows a graph of the sensitivity analysis of the borehole option to the variation of the economic factors.

Figure 4.15: Sensitivity analysis of the Borehole option
For the borehole option, the same behaviour of results that was displayed in the conventional piped water supply system is seen in the graph of Figure 4.15. It is seen that the net present value is less sensitive to inflation rate where the graph is less steep, fairly sensitive to changes in the interest rate on capital redemption as its graph tilts more than the sensitivity graph of inflation rate, and very sensitive to maintenance costs where the graph is very steep

(C) Hauling Water Supply System

Table 4.13 shows the results of the net present value at different deviation scenarios from the base case of the variation of the economic factors for the hauling option

Deviation from Base Case	Maintenance Costs NPV (R)	Redemption Cost NPV (R)	Inflation Rate NPV (R)
-0.3	2396388	3324030	2789861
-0.2	2595185	3205715	2855050
-0.1	2793983	3095523	2922660
0	2992780	2992780	2992780
1	3191577	2896875	3065505
2	3390375	2807255	3140932
3	3589172	2723419	3219162

Table 4.13: Net Present Value at different deviations from base for the hauling option

From Table 4.13, Figure 4.16 shows a graph of the sensitivity analysis of the hauling option to the variation of the economic factors

Figure 4.16: Sensitivity analysis of the hauling option

The same behaviour of results as shown for the pipeline and borehole systems is shown in the results of the hauling option. The net present value of this project is less sensitive to inflation rate, fairly sensitive to interest on redemption cost and very sensitive to maintenance costs.

For all the three water supply systems, it has been seen that out of the three economic factors analysed, it is the maintenance and operation costs that influence the net present value cost of the systems the most followed by redemption cost and lastly inflation rate.

5.0 CONCLUSIONS

Considering the findings of this study as discussed in Section 4, the following conclusions are drawn based on the study objectives:

It should be mentioned that, since the analyses in this study were carried out on a specific case study which is a gravity fed system, the findings, conclusions and objectives drawn from this study are applicable to gravity fed systems only and specifically to this case study project and scenarios which the case study can be considered to be generally representative of.

5.1 Evaluation of minimum standards of rural piped water supply systems

Based on the findings of the evaluation of the minimum standards carried out on the Nooightgedacht case study project the following conclusions can be reached for a gravity fed system:

1. Demand rate and residual pressure

- It is feasible to achieve the current standards of residual pressure and a demand rate at 10 m and $25 \mathrm{\ell} / \mathrm{c} /$ day as set by DWAF at low investment cost.
- The study indicated that for a small percentage increase in pipe cost, it is possible to increase the demand rate to $50 \mathrm{\ell} / \mathrm{c} /$ day without dropping the residual pressure below 10 m . DWAF considers a demand rate of $50 \ell / \mathrm{c} /$ day as the target for the minimum level of service on condition that there is enough assurance on the availability of water.
- It was found that, while the demand rate was increased to $50 \mathrm{l} / \mathrm{c} /$ day at a relatively small percentage increase in pipe cost, it was also possible to increase the residual pressure to 15 m .

It was shown that with a 15% increase in pipe cost a demand rate of $87 \mathrm{\ell} / \mathrm{c} /$ day could be achieved without dropping the residual pressure below 10 m . This represents a 164% increase in demand and is above the maximum possible target demand rate of $50 \mathrm{\ell} / \mathrm{c} /$ day as suggested by DWAF.

It was also shown that with a 15% increase in pipe cost, if the demand rate is fixed at $50 \mathrm{\ell} / \mathrm{c} /$ day, a residual pressure of 15 m can be achieved. Similarly fixing the residual pressure at 15 m , a demand rate of $69 \mathrm{l} / \mathrm{c} /$ day was obtained representing a 165% increase in demand rate from the initial demand obtained at this pressure.

Significant gain in demand rate was achieved by increasing the pipe cost by 15%. The increase in pipe cost is therefore justified, taking the associated benefit that can be achieved into consideration.

2. Abstraction rate

- An abstraction rate of $10 \ell / \mathrm{min}$ was found to be too high to be met at a low cost, at a residual pressure of 10 m as set by DWAF. Very high investment costs have to be incurred in order to meet this standard.

At the lowest cost case analysed at which DWAF minimum standards on the demand rate ($25 \ell / \mathrm{c} /$ day) and residual pressure (10 m) were achieved, the minimum abstraction rate ($10 \mathrm{l} / \mathrm{min}$) could not be achieved without a substantial increase in capital cost
3) On-site storage tanks

- In order to achieve the minimum abstraction rate of $10 \ell / \mathrm{min}$, storage tanks with a minimum head of 2 m , have to be used at the abstraction point. This ensures that all the standards are met at a relatively low cost.
- With the use of storage tanks, it is possible to achieve a demand rate of 25 $\ell / \mathrm{c} /$ day and a residual pressure of 10 m at the lowest cost and also satisfy the abstraction rate of $10 \ell / \mathrm{min}$.

However, a residual pressure of 10 m is not available to the end user by supplying via the tank tap, nonetheless it can be maintained at the connection point to the storage tank and could be utilised for upgrading of the system to a yard connection when the need arises.

It is generally concluded that of the three minimum standards that are required for rural pipe water supply in terms of the minimum level of service, the abstraction rate is the most critical to achieve.

The results have indicated that the current standard of residual pressure and demand rate of 10 m and $25 \mathrm{l} / \mathrm{c} /$ day respectively can be met at a low cost and this would render the systems affordable, but the current standard of flow rate at $10 \ell / \mathrm{min}$ is difficult to achieve at such a low cost. However the introduction of a storage tank in the design will ensure that the standard on abstraction rate can be met.

In line with the government's objective to increase the minimum water demand to 50 $\ell / \mathrm{c} /$ day (DWAF, 1997), it is predicted that $50 \ell / \mathrm{c} /$ day can be delivered with a small percentage increase in cost. The associated benefit that can be achieved is significant. It is therefore worthwhile to consider increasing the standard on residual pressure and demand rate for design purposes if an adequate assurance of water supply is available.

5.2 Conclusion on economic cost analysis of different rural water supply systems

Based on the results of the economic cost analysis carried out on the Nooightgedacht case study project involving a cost comparison of the water systems, and a sensitivity analysis of the economic factors that influence the net present cost of the systems, the conclusions drawn are as presented:

1. The conventional pipeline water supply system (gravity fed system) is the most economic option to consider as the cost over the life of the project is lower when compared with the other options using the net present cost when capital, operation and maintenance costs are considered.
2. The results indicate that capital expenditure should not be used in isolation to make a decision regarding cost effectiveness of preferred water supply options. The study has proved that, although hauling does have the lowest capital cost, the pipeline system still provides the lowest net present value. This is due to the very high annual maintenance and operation costs of the hauling option.
3. Therefore the low maintenance and operation costs of the pipeline system (gravity fed) indicate that the system is more sustainable than the other systems, followed by the hauling system and then the borehole system.
4. The net present cost of the three water supply options is mostly affected by the change in maintenance costs followed by the interest rate on capital redemption and lastly by change in inflation rate.

This result emphasises the need for maintenance and operation costs not be isolated in making a decision of a preferred water supply option, especially where sustainability of a preferred option in terms of financial factors is being considered.

Therefore in selecting a system to use for rural water supply, one should critically look at how the maintenance costs will vary during the economic life of the system.

6.0 Recommendations

6.1 Evaluation of minimum standards for rural piped water supply systems

For a rural gravity fed water supply system specifically one of which the Nooightgedacht case study project is representative, the following recommendations are made:

- Depending on the topography of a specific area and hence the available head, the minimum pressure of 10 m could be increased to 15 m without many cost implications.
- With an adequate assurance of a sustainable water supply available, increasing the demand rate to $50 \mathrm{l} / \mathrm{c} /$ day could be considered. At this demand rate the full range of water use for the basic level of service will be met with only a small increase in capital cost from what could be spent to meet the present standards.
- The current standard of a flow rate of $10 \ell / \mathrm{min}$ should be reconsidered because of its negative influence on capital pipe costs. As an alternative to achieving a flow rate of $10 \ell / \mathrm{min}$ and at a relatively low cost, on-site plastic storage tanks could be used.

Although $10 \mathrm{l} / \mathrm{min}$ will be obtained using on-site storage tanks the head at the supply pipe to the user might not satisfy the DWAF minimum requirement of 10 m . Nonetheless a residual pressure of 10 m will be achieved at the connection point to the storage tank which could be required for the upgrading of the system.

6.2 Economic cost analysis of different rural water supply systems

- Although each project needs to be evaluated separately, the conventional pipe reticulation proves to be the best option in the Nooightgedacht case study project and could be the best option in projects of similar scenario and should therefore be evaluated.
- The low capital hauling option proves to be very expensive due to its high maintenance and operation costs and should not be considered if alternative water sources are available.
- Maintenance and operation costs need to be calculated and evaluated carefully before any final decision is made, since the net present value proves to be extremely sensitive to changes in maintenance and operational costs.

7.0 References

(1) Automobile Association of South Africa. 2005. Automobile Association of South Africa Rates for Vehicle Operating Costs.
Site visited: August 3rd, 2003
Available: http://www.aa.co.za/live/content.php?Item ID=593
(2) Babbit H. E, Doland J.J. and Cleasby J.L. 1962. Water Supply Engineering, Sixth Edition. McGraw-Hill Book Company. (pp 22-23, 45-60)
(3) Carter R.C, Tyrrel S.F. and Howsam P. 1996. Strategies for Handpump water supply Programmes in Less Developed Countries. Journal of the Chartered Institution of Water and Environmental Management. Volume 10. No 2 (pp 130136)
(4) Chadwick A. and Morfett J. 1985 Hydraulics in civil Engineering. Allen and Unwin, London
(5) Chow, V. 1969. Handbook of Applied Hydrology. McGraw-Hill Book Company. (pp 13-17)
(6) CSIR, Building and Construction Technology. 2000. Guidelines for Human Settlement Planning and Design (The Redbook). Chapter 9. Revised 2003
(7) Department of Water Affairs and Forestry (DWAF). 1997a. White Paper on Water Policy
(8) Department of Water Affairs and Forestry (DWAF). 1997b. Minimum Standards and Guidelines for Groundwater Resource Development for the Community Water Supply and Sanitation Programme. First Edition.
(9) Department of Water Affairs and Forestry (DWAF). 1999. Guidelines for the Provision and Maintenance of Community Water Supply Schemes
(10) Department of Water Affairs and Forestry (DWAF). 2002 Guidelines for Compulsory National Standards and, Norms and Standards for Water Services Tariffs
http://www.dwaf.gov.za/Documents/Other/WS/Booklet-Guidelines to S9 and S10 regs March-2002 .doc
(11) Department of Water Affairs and Forestry (DWAF). 2003a, Strategic Framework for Water Services
(12) Department of Water Affairs and Forestry (DWAF). 2003b. Cost Benchmarks: Typical Unit Cost for Water Services Development Projects. A Guide for Local Authorities
(13) Deborah A. and Bob E. 1999. Integrated Development for Water and Sanitation, Low Cost Technology Drilling Techniques $25^{\text {th }}$ WEDC conference, Addis Ababa, Ethiopia.
(14) Fair, G.M. and Geyer, J.C. 1954. Water Supply and Waste Water Disposal. John Wiley and Sons, Inc (pp 29-30)
(15) GLS Engineering Software. 2003. Wadiso SA Software Program Version 4.0
(16) Government of Malawi. 2001. Ministry of Water Development, Design and Technical Specification for the Construction of Water Supply Facilities in Rural Areas. Technical Manual. (pp 5-23)
(17) Government of Tanzania, Ministry of Water. 1997. Design Manual for water Supply and Waste Water Disposal. Volume 1 (pp 35-38)
(18) Harvey, P.M. and Kayaga, S.M. 2003. Sustainable Handpump Projects in Africa. Report on fieldwork in South Africa. WEDC, Loughborough University, UK (pp1925) http://wedc.lboro.ac.uk/projects/proj contents/WEJWHandpumps/www/outputs/Sou thAfrica report.pdf
(19) Harvey P.A. and Reed P. 2004. Rural Water Supply in Africa: Building Blocks for Handpump Sustainability, WEDC, Loughborough University, UK
(20) Hawawini, G. and Viallet, C. 2000. Finance for executives, 2nd Edition. SouthWestern Thomson Learning. USA (pp 185-198)
(21) Hazelton, D.G. 2000. The Development of Effective Community Water supply Systems Using Deep and Shallow Well Handpumps, Report No. TT 132/00, Water Research Commission. (pp 1-15).
(22) Illemobade A.A. and Stephenson D. 2003. Generic Optimisation of Small Water Reticulation Networks using Water Decision Support System (Wadessy) Technical paper, Journal of the South African Institution of Civil Engineering, 45(4) 2003. (pp 2-9)
(23) Kerr C. 1988 Community Water Development Intermediate Technologies Publication Ltd, London. pp 72 - 93
(24) Morgan P. 1990 Rural Water Supplies and Sanitation Macmillan
(25) Norwegian Agency for Development Coorperation (NORAD) and Department of Water Affairs and Forestry (DWAF). 2003. Standard Descriptors of Boreholes. Version 1.0
(26) Pearson, L.A. Bhagwan, J. Kariuki, W. and Banda, W. 2002. Guidelines on appropriate technologies for water supply and sanitation in developing communities. Water Research Commission Report No 520/1/01,
(27) Rural water systems. Handpump option in Africa. Site visited: June 4, 2005

Available: http://www.handpump.org/
Directly available: $\mathrm{http}: / / \mathrm{www} . h a n d p u m p . o r g /$ handpump.htm
(28) Shaw R. 1999. Running Water International Technical Publications, London
(29) Skinner B.H and Shaw R.J. 1992. Protecting Springs - An Alternative to Spring Boxes Technical Brief No 34, Waterlines: Journal of Appropriate Technologies for Water Supplies and Sanitation. pp 15-18
(30) Stapleton C.K. 1983. Tube Wells and their Construction Waterlines Volume 2 No 1. IT Publications
(31) Steel E.W. 1960. Water Supply and Sewerage, Fourth Edition McGraw-Hill Book Company Inc. Tokyo
(32) Streeter V.L, Wylie B.E and Bedford K.W. 1997. Fluid Mechanics $9^{\text {th }}$ Edition McGraw-Hill Book Company
(33) Turneaure F. E. and Russel H. L. 1947. Public Water Supplies, Fourth Edition, John Wiley and Sons, Inc. (pp 32, 97)
(34) Todd, David K. 1980. Groundwater Hydrology, $2^{\text {nd }}$ Edition. John Wiley and Sons. (pp 42-44, 165-184).
(35) Twort A.C, Hoather R.C and Law F.M. 1974. Water supply $2^{\text {nd }}$ Edition, Edward Anold, London
(36) United States Army Corps of Engineers (USACE). 1999. Technical Manual EM 1110-2-142,1 Groundwater Hydrology Engineering and Design
(37) Van Schalkwyk A. 1996. Guidelines for the Estimation of Domestic Water Demand of Developing Communities in the Northern Transvaal, Water Research Commission, Report No 480/1/96. (pp 13-31)
(46) Water aid. Gravity Schemes http://www.wateraid.org.uk/site/in_depth/technology_notes/296.asp
(47) Water aid. 2004 Rainwater Harvesting http://www.wateraid.org.uk/site/in_depth/technology_notes/301.asp
(38) Water for the world. 2005. Methods of Developing Sources of Groundwater Technical note No RWS 2.M. Site Visited: May 20, 2005
Available www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws2/rws2m.pdf
(39) Water for the World. 2005. Designing Driven Wells Technical Note No RWS 2.D. 2 Site Visited: May 20, 2005.
Available: www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws2/rws2d2.pdf
(40) Water for the World. 2005. Designing Bore or Augered Wells Technical Note No RWS 2.D.4. Site Visited: May 20, 2005
Available: www.lifewater.org

Directly Available: http://www.lifewater.org/resources/rws2/rws2d4.pdf
(41) Water for the World. 2005. Designing Cable Tool Wells Technical Note No RWS 2.D.5. Site Visited: May 20, 2005

Available: www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws2/rws2d5.pdf
(42) Water for the world. 2005. Methods of Developing Sources of Surface Water Technical note No RWS 1.M. Site Visited: May 20, 2005
Available www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws1/rws1m.pdf
(43) Water for the world. 2005. Designing Intakes for Ponds, Lakes and Reservoirs Technical note No RWS 1.D.2. Site Visited: May 23, 2005
Available www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws2/rws1d2.pdf
(44) Water for the world. 2005 Designing Intakes for Rivers and Streams Technical note No RWS 1.D.3. Site Visited: May 23, 2005
Available www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws2/rws1d3.pdf
(45) Water for the world. 2005. Designing a System for Gravity Flow Technical note No RWS 4.M Site Visited: May 23, 2005
Available www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws2/rws4m.pdf
(46) Water for the world. 2005. Evaluating Rainfall Catchments Technical note No RWS 1.P. 5 Site Visited: May 23, 2005

Available www.lifewater.org
Directly Available: http://www.lifewater.org/resources/rws2/rws4m.pdf
(47) Watt S.B. and Wood M. 1985. Hand-dug wells and their Construction International Technology Publication, London
(48) Webster M.J. 1999. Effective Demand for Rural Water Supply in South Africa: Technical and financial implications of designing to meet demand. WEDC, Loughborough University, UK. http://www.wedc.lboro.ac.uk/publications/pdfs/edrwssa/edrwssa.pdf
(49) Wood M. 1994. Are Handpumps really affordable, $20^{\text {th }}$ WEDC Conference, Colombo, Sri Lanka. (pp 3)
(50) Ajay Industrial Corporation. 2004. Handpumps. http://www.ajayindcorp.com
(a) India Mark II Handpump
(b) India Mark III Handpump
(c) Afridev Handpump

APPENDIX A

HANDPUMP OPTIONS AND THEIR SPECIFIC APPLICATIONS

Type of pump	Depth of operation	Delivery rate (litres/hour)	application	Advantages	Disadvantages
Volanta	$50-80 \mathrm{~m}$ and more	240	Deep wells	- The water point can further be equipped with other water facilities like a public tap and laundry facilities - Improved hygiene around the borehole - Where large amounts are needed the pump can be equipped with a solar or diesel powered system - It is easy to install and requires low maintenance costs	- In deep water tables a problem arises when using PVC rising mains. While pumping, pressure fluctuations develop in the rising main causing the PVC pipe to contract and expand. This results in a reduction in the water discharge and eventually failure of the pipe
Bush hand pump	$10-80 \mathrm{~m}$ or more depending on cylinder size used	$\begin{gathered} 1800 \text { for } \\ 10 \mathrm{~m}-540 \text { for } \\ 60 \mathrm{~m} \end{gathered}$	Medium and Deep wells	- Low cost - One pump can serve up to 500 people - Removable parts have minimal resale value, therefore risk of theft is low - Easy to install and maintain	- Use is limited to small communities
Afridev handpump	10-45m	900-1350 depending on depth	Deep wells	- Functions well in corrosive water - It has an adjustable handle to suit various installation depths - Easy installation and low maintenance costs - Lightweight uPVC riser pipes hence easy to handle	- Spare parts easily breakdown
	45 m	720	Deep wells	- Functions well in corrosive soils - Reliable and proven community handpump - Pump can be easily adapted for use with a windmill or for motorized operation	-

India Mark II				- Easy operation and installation - Low maintenance costs - Spare parts are easily available - It is suitable for open well installations - The design provides adequate sealing of the borehole, thereby avoiding contamination by external sources	
India Mark III	45	600-900 depending on diameter of riser pipe	Deep wells	- Lower capital costs - It has an option of using a PVC or galvanized iron riser pipe depending on its use - It can be used in unlined wells - Easy maintenance	- Its use is limited to non corrosive waters
Vergnet handpump	30-100	600-1500 depending on depth of lift	Deep and shallow wells	- Low maintenance costs - Easy maintenance since all standard wear parts are at ground level - install - Can be used by a wide range of users, from young children to strong fully grown men.	- High capital costs.
Windmill pump		380-12000		- It can be used in a situation where resources are not available to pipe or haul the water nearer to the point of use - It can be used where it is beyond the capability of the village community to operate a more complicated system - It can be used where the water source has a small yield	- Risk of contamination of water when being carried home is high

$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Mono pump } & 25-60 & \begin{array}{c}\text { 9-16 } \\ \text { depending } \\ \text { on the depth } \\ \text { of well }\end{array} & \begin{array}{c}\text { Deep and } \\ \text { shallow } \\ \text { wells }\end{array} & \text { • This is a robust and durable pump } & \begin{array}{l}\text { - Difficult to maintain at village } \\ \text { community level }\end{array} \\ \hline \text { Barry pump } & 10-100 & & \begin{array}{l}\text { Medium and } \\ \text { deep wells }\end{array} & \begin{array}{l}\text { - Does not require an expesive } \\ \text { diaphragm down the hole } \\ \text { - It is simple to maintain and repair }\end{array} & \begin{array}{l}\text { - Skilled labour is required as wear } \\ \text { parts are located at the bottom of the } \\ \text { riser pipe. } \\ \text { - Wearing out of the submersible unit } \\ \text { due to rubbing against the side of the } \\ \text { borehole. }\end{array} \\ \text { - Pumping rates are lower }\end{array}\right]$

Table A1: Type of handpump options

APPENDIX B

SCHEMATIC LAYOUT SHOWING LOCATION OF NOOIGHTGEDACHT WATER SUPPLY PROJECT

APPENDIX C

DESCRIPTION AND DESIGN USING WADISO SA (VERSION 4.0)

B1.0 WADISO SA SOFTWARE

Wadiso SA version 4.0 (GLS Engineering software Ltd) was used in this study to design and carry out the hydraulic computations for the Nooightgedacht rural water supply project in order to evaluate the minimum standards with respect to capital pipe cost.
"Wadiso SA" program is a tool for designing, planning and analysis of water distribution systems. It allows for steady state analysis, optimisation, extended time simulation and water quality simulation of complex distribution systems. The program relies on the EPANET or WADISO hydraulic analysis engines which employ the nodal method to determine flow characteristics in a water distribution network system.

The nodal method uses the Hazen-Williams or the Darcy-Weisbach equations to calculate friction head losses in a distribution pipeline network. In the program, a network consists of pipes, nodes (pipe junctions and abstraction nodes), pumps, valves and storage reservoirs.

EPANET or WADISO hydraulic analysis engines models a water distribution network system as a collection of links connected to nodes and reservoirs. The links represent pipes, pumps and control valves. Thus the program is able to model and track the flow of water in each pipe, the pressure at each node, and the flow of water into or out from each node and reservoir.

The program has a CAD environment in which most of the data capturing, model editing and viewing of results can be done. The three basic modules of the program which can be used separately or in an integrated manner are:

- Steady State Simulation - this is the part of the software which calculates the level of the energy gradeline and pressure at each node, the flows and head losses in each pipe, flow and head for each pump and mode of operation for any type of valve available in a water supply pipe network. This simulation works for looped and branched networks.
- Time/Water Quality Simulation - For checking system performance and water quality over an extended period under fluctuating demand and operational conditions
- Optimization - To size pipes, pumps and storage tanks to meet certain design criteria (e.g. minimum pressures) whilst ensuring an economically optimal solution

B1.1 Steady state simulation

This is the basic module that is used in the design of a water supply scheme, which allows for the input and editing of system data and parameters, and which calculates the flow and pressure distribution in the system under specific steady state conditions.

The steady state condition assumes that all demands and pressures should be met at the same time and at all points of delivery according to the required specifications. Such calculations allow the user to analyse existing systems, to determine reasons for bad system performance and to develop improvement schemes.

B1.2 Time and water quality simulation

The time and water quality simulation module permits network simulation over a period of time. Such analysis will let the user determine reservoir water level and pressure fluctuations over extended time periods and is required in particular to determine required tank volumes.

It provides a means to simulate water demand as a function of time, to control pumps and valves through time or pressure switches, and to simulate fire flows and pipe breaks.

The water quality option allows for the tracking of a dissolved substance in the system, the tracing of a water source, or water age analysis.

B1.3 Optimisation

This module allows for the determination of future improvement needs, with the objective being to minimize capital expenditure and present worth of operational costs, while adhering to specified operational criteria. The cost trade-off between pipes and pumping costs, and pipes and storage cost are taken into account for the optimization. The optimisation routine may also provide alternative solutions, which are near optimum.

In this research the steady state simulation module has been used in the design and analysis of the network system since the pipe size configurations are pre-selected and the objective was to observe the variation of the minimum standards as the pipe configuration changes.

A set of selected values of minimum standards was fixed and a steady state condition was analysed at all the abstraction nodes as the pre-selected configurations are tested one by one on the designed system. The evaluation of the minimum requirements is therefore also based on the steady state simulation.

B2.0 Description of Wadiso SA and Design of the Nooightgedacht water supply project

The following is a description of the components of "Wadiso SA version 4" and how the program was used to design the Nooightgedacht water supply system. The design involved the setting up of the project and upon setting up the project, the entry of input parameters in the different component parts of the program was done using the steady state module.

Once the input of design data was done, the designed system was balanced using the engaged network solver(EPANET or WADISO) to calculate the friction head losses in the system and check that the specified minimum standards can be met in a steady state condition for the parameters entered.

B2.1 Setting up the project

The user interface of the program has eight items each directing the user to a different module of the programme. The items are:

- File
- Steady state
- Optimisation
- Cost data
- Time/water quality simulation
- Cad graphics
- Window
- Help

In order to carry out a design project in Wadiso $S A$, the program requires the user to set up the project settings to define the parameters and tools to be used in the analysis of the system. During the design of the project the "file" tab chosen from the user interface was used to set up the project. In setting up the project the "file" menu allowed the user to specify the job name, select a unit system, flow equation and a network solver to be used for the hydraulic computations.

In order to set up the project, "project settings" was chosen from the drop down menu of the "file tab" in order to specify the parameters that will be used in designing and balancing the network system.

In the "project settings" menu, the following project settings were defined

- Co-ordinate mode was set to ON. This mode requires the user to enable the program to use the geometric co-ordinates of the nodes to be used so that the project layout can be modelled.
- "WADISO" network solver was specified. The other solver that can be specified is the "EPANET" network solver. The network solver is the one which is used by the program to balance the system by calculating the friction head losses in a system. In balancing the system the network solver checks if the design parameters specified for the operation of the system can be met.
"EPANET" network solver is specified if the system has any nodes with emitter coefficients other than 0.0 , any pump with a multi point curve or with a relative speed > 1.0, otherwise "WADISO" network solver is specified. The system data for this project did not contain these parameters hence specifying the "WADISO" network solver.
- The Hazen-Williams flow equation was specified for use in the calculation of the friction head losses and the associated flows in the system.

The Hazen-Williams is given as:

$$
h_{f}=\frac{10.675 * L^{*} Q^{1.85}}{C^{1.85} * d^{4.87}}
$$

Where:

$$
h_{f}=\text { Head loss due to friction (m) }
$$

$$
\begin{gathered}
L=\text { Length }(\mathrm{m}) \text { of pipeline } \\
Q=\text { Required discharge rate }\left(\mathrm{m}^{3} / \mathrm{s}\right) . \\
C=\text { Hazen-Williams roughness coefficient } \\
d=\text { Diameter of pipe }(\mathrm{m})
\end{gathered}
$$

- The default diameter that was used for the system is 100 mm . The program will assume this pipe size when running the program, when no diameter is specified in the "link topology" table. Link topology is explained in section B2.2.1.1. However for this project different pipe size configurations are specified as input to evaluate the minimum standards.
- The Hazen-Williams coefficient was specified as 125.
- The unit-system used in the design was metric (SI) units. Metric units used are:

$$
\begin{aligned}
& \text { Length }=\text { metres }(\mathrm{m}) \\
& \text { Flow }=\text { litres per second }(1 / \mathrm{s}) \\
& \text { Diameter }=\text { millimetres }(\mathrm{mm}) \\
& \text { Pressure }=\text { metres }(\mathrm{m})
\end{aligned}
$$

- Description of the project.

The project was specified as "Nooightgedacht rural water supply project".

B2.2 Steady state analysis input data requirements

Upon entering the project settings, the next step in the design of the project was to enter and define the steady state analysis input data.

In order to enter data required in design for the steady state analysis, the "Steady State" module was selected from the user interface. In the drop down menu of this module three functions are displayed namely:

- Edit system data
- Balance system
- View results
"Edit system data" function allows the user to enter the input design data required to define a projects network system layout and the system data required for hydraulic computation for the steady state analysis.
"Balance system" allows the user to check the hydraulic adequacy of the system for the data entered in the "Edit system data" for the steady state condition. Balance system function engages the network solver to solve the hydraulic equations through an iterative process using the nodal method. Thus pressure and flow distributions in the system are calculated.
"View results" allows the user to view the steady state analysis results upon balancing the system allowing the user to analyse the designed system, determine reasons of bad system performance and develop improvement schemes.

To enter the data required to design the system for the steady state analysis, the "Edit system data" tab was selected from the drop down menu of the "steady state" module chosen from the user interface.

Upon selecting the "Edit system data" the "Edit system data " menu is displayed in which the input data required for designing a system is entered in spreadsheet tables selected under different tabs in this menu. The terms of the data entered in the tables selected under the different tabs and their definitions are explained below:

- Links.

These are pipes that convey water from one node to another. Flow direction is from the end with a higher hydraulic head to that at lower head. A link can also be a pipe joined to a valve or to a pump. The pipe is assumed to have a constant diameter between the two nodes it connects. The principal hydraulic input parameters for a link are:

- Start and end nodes
- Diameter
- Length
- Roughness coefficient (for determining head loss)
- Status (open, closed, or contains a check valve).

The status parameter allows pipes to implicitly contain shutoff (gate) valves and check (nonreturn) valves (which allow flow in only one direction). Pipes can be set open or closed at preset times or when specific conditions exist, such as when tank levels fall below or above certain set points, or when nodal pressures fall below or above certain values. Computed outputs for pipes will be:

- Flow rate
- Velocity
- Head loss.

The hydraulic head lost by water flowing in a pipe due to friction with the pipe walls is computed using the Hazen-Williams or the Darcy-weisbach.

- Nodes

These are the end points of links where water enters or leaves the network. One or more links connect a node to the network. In this project the nodes include the water supply points where water is abstracted by the water users within the water distribution system. The basic input data required for junctions are:

- Elevation above some reference (usually mean sea level)
- Water demand (rate of withdrawal from the network).

The output results computed for junctions at all time periods of a simulation are:

- Hydraulic head (internal energy per unit weight of fluid)
- Pressure.
- Reservoir/Tank.

This is also considered as a node with a storage capacity in "Wadiso SA" environment. It has a known water level or hydraulic grade line. The node ground elevation is the elevation of the foot of the tank.

The tank water level indicates the vertical distance from the foot of the tank to the free surface. In "Wadiso SA", the net inflow or outflow from the tank is computed by the program and therefore it cannot be assigned a flow input or flow output.

- Output.

This refers to the rate of water extraction, which is withdrawn from the system at a node. In Wadiso SA, a node with varying output cannot be assigned simultaneously a constant head.

In order to complete the design process of Nooightgedacht water supply project the design data was entered in different tables in the "system data editor" menu under the "steady state" tab of the main menu as mentioned.

B2.2.1 Data entry in the system data editors menu

The input data required for the design of the Nooightgedacht project was entered under the "system data editor" tab where several tables are selected to enter the design data.

The input system design data on the distribution system is handled by "Wadiso SA" in these different tables:

- Link (pipe) topology table
- node topology table
- pipe/CV (check valve) table
- node table
- tank table

B2.2.1.1 System topology

System topology refers to the way the various links (pipes) and nodes of the network are linked together. In order to define the projects system layout, the design of the system required the entry of system data in the "topology" section of the "systems data editors" menu. In this section the link topology data and the node topology data are entered.
a) Link topology table

The "link topology table" is accessed by selecting "links" from the "topology" tab in the "system data editor" menu. This table is for the basic data describing the links or pipes in the system. For each link in the system, the following link topology items were required

- Link number or pipe number.

The program requires the entry of a unique integer number for the link, between 1 and 100000

- Type of link.

This can be a pipe, with or without a check valve, a pump or a valve.

- The two nodes which are connected by the link and the geometric route of the link between the two nodes need to be entered.

FROM NODE, the integer number of the node on the one end of the link
TO NODE, the integer number of the node on the other end of the link

- Intermediate co-ordinates Y1, X1 to Y5, X5.

These are pairs of co-ordinates describing the geographic route of the link between the "from node" and the "to node". If none are entered, the link follows a straight line between from and to nodes.

Thus a link is defined by its link number, and the number of the two nodes it connects. The links do not need to be numbered consecutively. These inputs are entered in "link topology table"

The mentioned inputs were entered in a spreadsheet window of Wadiso $S A$ under link topology window as shown in Appendix D for input data.
b) Node topology

The "Node topology table" is accessed by selecting "Nodes" from the "topology" tab. This table is for the basic data describing the nodes in the system. The following node topology inputs were required for each node:

- Type.

The type of the node, i.e. one of the following two

- Node: which is an ordinary node at which the water pressure can fluctuate and at which an output or an input can be modelled
- Tank: this is a node representing a reservoir, storage tank or elevated tank. It has a fixed water level and therefore also a fixed pressure
- Number.

A unique integer number of the node, between 1 and 100000 . The nodes do not need to be numbered consecutively.

- Elevation.

The ground elevation of the node in height units above a datum level

- X Y co-ordinates.

The geographic location of the node.
Typical node input data that has been used in the design for the node topology is shown in Appendix D.

Once the data defining the topology of the Nooightgedacht project was entered, the next input data required was the node and link data. The node and link data describe the characteristics for the links and the nodes defined in the "Topology" section above.

Data describing the link (pipe) characteristics is entered in the "Pipe/Check Valve" table under "Link data". Data describing the node characteristics is entered in the "Node" and "Tank" tables under "Node data". "Node data" and "Link data" functions are accessed from the "system data editors" menu.

B2.2.1.2 Pipe/CV (Check valve) table

As mentioned above, this table is accessed from the "Link data" section under the "System data editors" menu. For each pipe that was defined in the "link topology table", the pipe characteristics are required. The "pipe/CV table" is used to specify the pipeline characteristics (properties) associated with each pipe. The pipe/CV input data items required for entry was as follows:

- Diameter.

This is the diameter of each pipe in the network.

- Calculated length.

This is the length calculated internally by the program, based on the geographic route of the Pipe.

- User Length.

This is an optional item, which, if entered will override the calculated length based on the geographic route of the Pipe. This feature has not been used in the design of the scheme. The lengths that have been used are the calculated lengths.

- Coefficient.

The roughness coefficient of the pipe i.e. the C-value if the Hazen-Williams flow equation is used, or the absolute roughness if the Darcy-weisbasch flow equation is selected. Selection of the flow equation is optional. The program returns the roughness coefficient that has been entered when setting up the project, and in this case the roughness coefficient was specified as 125

- Open/Closed status.

When the pipe is in the open mode it means that that section of a pipe will allow water to flow through and if it is in the closed mode, the program will assume a zero diameter for the pipe when performing the analysis i.e. the pipe will act as an isolation valve. For this project the status was put on open as all the nodes are expected to be able to supply water when the system is operational.

- Minor loss coefficient.

This is a dimensionless constant value which takes into account the head loss over the pipe, to account for bends, elbows, etc.

The six items are the minimum compulsory items required for Wadiso SA in order to perform flow and pressure calculations.

In this window the data that was entered in the "link topology" table is returned and additional information mentioned above has to be entered. In this study the diameter was a variable as different pipe size configuratios are used to investigate the effect of cost on pressure. When the "Pipe characteristics was entered the node characteristics were entered in the "Node table".

B2.2.1.3 Node table

The node table is accessed by selecting "nodes" from the "nodes data" tab, under "system data editors" menu. In this table the data that was entered in the "Node topology table" is retained and additional system data fields need to be entered. The system data fields are:

- Output.

This is the water demand at the node.

- Emitter coefficient.

This is the discharge coefficient of an emitter (e.g. sprinkler or nozzle) placed at the node. A default value of 0.0 is used if there is no emitter present.

In "Wadiso SA" the entry of the output is based on the populations of the community that will be serviced by a particular node. The output is expressed as an abstraction rate in litres per second. This is the flow rate that is required to satisfy the total daily demand of the users at each abstraction node.

For each node the value entered as output is determined by multiplying the required demand rate by the population to be served at a particular node. Since the output value is entered in litres per second, and the demand rate is expressed in litres per capita per day, the following expression was used to obtain the output value at each node for each specified demand rate or output.

$$
\text { Output }(l / s)=\frac{\text { Demand rate }(l / c / \text { day }) \times \text { Population at a node }}{86400(\mathrm{sec})}
$$

Thus for the design of the Nooightgedacht project the demand rate input was converted to an output rate based on the populations of the respective communities and the demand rate used for each analysis.

B2.2.1.4 Tank table

The "tank table" is accessed in the same way as the "Node table". The data required for entry is the tank water level and the ground elevation. The water elevation can also be specified in the ground elevation column. The information of the tank entered under "node topology" is retained in the "tank table"

During the analysis the Nooightgedacht water supply project the reservoir was assumed to be the source of the system with an infinitely large capacity and therefore to maintain a fixed water level at all times. Thus in Wadiso $S A$ the elevation of the reservoir was designated as the elevation of the free water surface i.e. the node elevation and elevation of the water surface coincide.

The data entered for the tank is as shown in Appendix D
After entering all the system data mentioned, the design procedure of the system is finished and the layout of the system network is viewed using the "CADGraphics" menu as shown in figure 3.1.

B3.0 Balancing the system

Once the system data have been entered and edited to the satisfaction of the user, the hydraulic computation of the flow and pressure can be performed. This is achieved by selecting "Steady State" from the Main Menu and then "Balance System" from its drop down menu.

Two balancing options otherwise known as network solvers are available, which are:

- Wadiso
- Epanet

If the system data contains one or more valves, any links with minor loss coefficients other than 0.0 , any node with emitter coefficient greater or less than 0.0 , any pump with a multi point curve, or any pump with a relative speed less or greater than 1.0 , then the program will automatically revert to the EPANET solver, since the Wadiso solver does not accommodate these features. The same applies if there are pumps or valves with

OFF/CLOSED status in the system. However in the analysis of this project the Wadiso balancing option was used since no valves and emitters are used in the system

The Wadiso network solver is initiated when balancing the system. A window appears, showing the progress of the flow/pressure balancing computations, iteration-by-iteration, until the predefined accuracy criteria are met.

B4.0 Viewing the balanced results for the steady state analysis

Once balanced, the system data and the results are viewed by selecting "steady state" from the main menu, and from its drop down menu select "view results".

The results are displayed as follows

- Link (pipe) data, with three options for:
- Pipes/CV: to view the Pipe/Check Valve table with results
- Pumps: to view the pump table with results
- Valves: to view the valve table with results
- Node data, with two options for:
- Nodes: to view the node table with results
- Tanks: to view the tank table with results

B4.1 Pipe/CV (Check valve) results

The Pipe/CV table is accessed by selecting "Pipe/CV" from the system results viewer menu. The Pipe/CV system data is displayed, together with the following balanced results for each Pipe/CV in the network.

- The nodes are displayed in the flow direction, From - To.
- The balanced status (open/closed/removed) of the Pipe.
- Flow rate in a pipe linking two nodes in the direction of flow.
- Velocity in a pipe linking two nodes in the direction of flow.
- Head loss over Pipe.
- Energy gradient over Pipe.
- Energy head at upstream node.
- Energy head at downstream node.
- Pressure head at upstream node.
- Pressure head at downstream node.

User fields, optimization data, time/water quality simulation data, and the water quality results also appear in the table of the balanced results.

B4.2 Node results table

The "node results table" is accessed by selecting nodes from the "system results viewers" menu. The system data is displayed together with the following balanced results for each node in the system.

- The emitter flow at the node.
- The energy grade line (EGL) head at the node.
- The residual head at the node.
- The residual pressure at the node.

User fields, optimization data, time/water quality simulation data, and the water quality results also appear in the table.

Thus with the node and pipe data from the Nooightgedacht rural water supply project defining the project layout, pipe and node characteristics it was possible to evaluate the minimum standards to satisfy the steady state conditions for any parameters fixed during each analysis.

APPENDIX C

LOCATION OF THE NOOIGHTGEDACHT RURAL WATER SUPPLY PROJECT

APPENDIX D

INPUT DATA FOR TOPOLOGY

LINK TOPOLOGY TABLE

Input data

TYPE	No	From Node	To Node	$\begin{aligned} & \mathrm{Y} 1 \\ & (\mathrm{~m}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} 1 \\ & (\mathrm{~m}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Y} 2 \\ & (\mathrm{~m}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{X} 2 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Y} 3 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} 3 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Y} 4 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} 4 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Y} 5 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} 5 \\ (\mathrm{~m}) \\ \hline \end{gathered}$
PIPE	1	1	2										
PIPE	2	2	3										
PIPE	5	3	6										
PIPE	6	6	10										
PIPE	10	10	11										
PIPE	11	2	14										
PIPE	14	14	15										
PIPE	15	14	18										
PIPE	18	18	22										
PIPE	22	22	23										
PIPE	23	23	24										
PIPE	24	23	26										
PIPE	26	26	27										
PIPE	27	26	28										
PIPE	28	28	29										
PIPE	29	28	32										
PIPE	32	32	33				,						
PIPE	33	32	34			-							
PIPE	34	34	36										
PIPE	36	36	40										
PIPE	40	40	71										
PIPE	42	42	71			41							
PIPE	43	43	71			4							
PIPE	44	46	71										
PIPE	45	46	45										
PIPE	47	46	49										
PIPE	50	46	50										
PIPE	51	50	51										
PIPE	52	50	52										
PIPE	53	52	53										
PIPE	54	52	54										
PIPE	55	54	57										
PIPE	58	54	59										
PIPE	60	59	60										
PIPE	61	59	63										
PIPE	64	63	67										
PIPE	68	63	68										
PIPE	69	68	69										
PIPE	70	69	70										
PIPE	71	22	70										

NODE TOPOLOGY TABLE

Input data

TYPE	No	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)
TANK	1	41608.785	59619.449	160
NODE	2	41684.832	59579.738	60
NODE	3	41838.137	59494.414	60
NODE	6	42976.551	58769.633	60
NODE	10	43206.449	57711.070	60
NODE	11	40230.684	62047.141	70
NODE	14	40422.926	62089.008	100
NODE	15	39166.254	63687.059	95
NODE	18	39268.738	64822.898	95
NODE	22	39909.063	64775.117	100
NODE	23	40070.000	65120.000	97
NODE	24	40709.41	64695.695	100
NODE	26	40975.656	65193.734	87
NODE	27	41044.617	64654.902	95
NODE	28	41081.301	64201.805	90
NODE	29	42718.156	64386.148	85
NODE	32	42956.480	64035.477	60
NODE	33	43508.605	65097.652	60
NODE	34	44139.660	66521.734	90
NODE	36	44388.234	69100.500	65
NODE	40	41641.988	68676.688	95
NODE	42	41374.945	70183.242	83
NODE	43	39038.203	69644.320	90
NODE	45	39189.031	69502.156	103
NODE	46	40124.359	67848.398	80
NODE	49	38080.191	69118.727	100
NODE	50	38105.000	68782.109	102
NODE	51	35361.816	68379.352	105
NODE	52	35206.309	68640.992	120
NODE	53	35765.785	67745.406	120
NODE	54	36578.992	68008.797	135
NODE	57	36688.852	65692.633	115
NODE	59	35872.203	65411.215	110
NODE	60	37318.598	64874.715	135
NODE	63	37404.902	62941.973	120
NODE	67	37963.340	64869.645	103
NODE	68	38401.652	64864.680	110
NODE	69	39026.297	64844.723	100
NODE	70	41455.762	69424.383	105
NODE	71	41608.785	59619.449	83

TANK TABLE

Input data

TYPE	No	Ground Elevation (m)	Water level (m)
Resevoir	1	160	0

APPENDIX E

INPUT DATA FOR PIPE CHARACTERISTICS OF THE PIPE CONFIGURATIONS USED IN THE SYSTEM FOR THE EVALUATION OF THE MINIMUM STANDARDS

Pipeline layout characteristics for pipe of diameter size 25 mm

TYPE	No	From Node	To Node	Diameter $($ mm $)$	Calculated Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	25	210	0	125	0	OPEN
PIPE	2	2	3	25	85	0	125	0	OPEN
PIPE	5	3	6	25	175	0	125	0	OPEN
PIPE	6	6	10	25	1350	0	125	0	OPEN
PIPE	10	10	11	25	1085	0	125	0	OPEN
PIPE	11	2	14	25	2790	0	125	0	OPEN
PIPE	14	14	15	25	195	0	125	0	OPEN
PIPE	15	14	18	25	1955	0	125	0	OPEN
PIPE	18	18	22	25	1140	0	125	0	OPEN
PIPE	22	22	23	25	640	0	125	0	OPEN
PIPE	23	23	24	25	380	0	125	0	OPEN
PIPE	24	23	26	25	805	0	125	0	OPEN
PIPE	26	26	27	25	565	0	125	0	OPEN
PIPE	27	26	28	25	340	0	125	0	OPEN
PIPE	28	28	29	25	455	0	125	0	OPEN
PIPE	29	28	32	25	1695	0	125	0	OPEN
PIPE	32	32	33	25	425	0	125	0	OPEN
PIPE	33	32	34	25	1065	0	125	0	OPEN
PIPE	34	34	36	25	1560	0	125	0	OPEN
PIPE	36	36	40	25	2590	0	125	0	OPEN
PIPE	40	40	71	25	2950	0	125	0	OPEN
PIPE	42	42	71	25	770	0	125	0	OPEN
PIPE	43	43	71	25	765	0	125	0	OPEN
PIPE	44	46	71	25	2270	0	125	0	OPEN
PIPE	45	46	45	25	205	0	125	0	OPEN
PIPE	47	46	49	25	1900	0	125	0	OPEN
PIPE	50	46	50	25	1175	0	125	0	OPEN
PIPE	51	50	51	25	340	0	125	0	OPEN
PIPE	52	50	52	25	2815	0	125	0	OPEN
PIPE	53	52	53	25	305	0	125	0	OPEN
PIPE	54	52	54	25	750	0	125	0	OPEN
PIPE	55	54	57	25	855	0	125	0	OPEN
PIPE	58	54	59	25	2250	0	125	0	OPEN
PIPE	60	59	60	25	865	0	125	0	OPEN
PIPE	61	59	63	25	1030	0	125	0	OPEN
PIPE	64	63	67	25	1935	0	125	0	OPEN
PIPE	68	63	68	25	645	0	125	0	OPEN
PIPE	69	68	69	25	440	0	125	0	OPEN
PIPE	70	69	70	25	625	0	125	0	OPEN
PIPE	71	22	70	25	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 50 mm and 25 mm used in combination

TYPE	No	From Node	To Node	$\begin{gathered} \hline \text { Diameter } \\ (\mathrm{mm}) \end{gathered}$	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	50	210	0	125	0	OPEN
PIPE	2	2	3	25	85	0	125	0	OPEN
PIPE	5	3	6	25	175	0	125	0	OPEN
PIPE	6	6	10	25	1350	0	125	0	OPEN
PIPE	10	10	11	25	1085	0	125	0	OPEN
PIPE	11	2	14	50	2790	0	125	0	OPEN
PIPE	14	14	15	50	195	0	125	0	OPEN
PIPE	15	14	18	50	1955	0	125	0	OPEN
PIPE	18	18	22	50	1140	0	125	0	OPEN
PIPE	22	22	23	25	640	0	125	0	OPEN
PIPE	23	23	24	25	380	0	125	0	OPEN
PIPE	24	23	26	25	805	0	125	0	OPEN
PIPE	26	26	27	25	565	0	125	0	OPEN
PIPE	27	26	28	25	340	0	125	0	OPEN
PIPE	28	28	29	25	455	0	125	0	OPEN
PIPE	29	28	32	25	1695	0	125	0	OPEN
PIPE	32	32	33	25	425	0	125	0	OPEN
PIPE	33	32	34	25	1065	0	125	0	OPEN
PIPE	34	34	36	25	1560	0	125	0	OPEN
PIPE	36	36	40	25	2590	0	125	0	OPEN
PIPE	40	40	71	25	2950	0	125	0	OPEN
PIPE	42	42	71	25	770	0	125	0	OPEN
PIPE	43	43	71	25	765	0	125	0	OPEN
PIPE	44	46	71	25	2270	0	125	0	OPEN
PIPE	45	46	45	25	205	0	125	0	OPEN
PIPE	47	46	49	25	1900	0	125	0	OPEN
PIPE	50	46	50	25	1175	0	125	0	OPEN
PIPE	51	50	51	25	340	0	125	0	OPEN
PIPE	52	50	52	25	2815	0	125	0	OPEN
PIPE	53	52	53	25	305	0	125	0	OPEN
PIPE	54	52	54	25	750	0	125	0	OPEN
PIPE	55	54	57	25	855	0	125	0	OPEN
PIPE	58	54	59	25	2250	0	125	0	OPEN
PIPE	60	59	60	25	865	0	125	0	OPEN
PIPE	61	59	63	25	1030	0	125	0	OPEN
PIPE	64	63	67	25	1935	0	125	0	OPEN
PIPE	68	63	68	25	645	0	125	0	OPEN
PIPE	69	68	69	25	440	0	125	0	OPEN
PIPE	70	69	70	25	625	0	125	0	OPEN
PIPE	71	22	70	25	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 63 mm and 25 mm used in combination

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	63	210	0	125	0	OPEN
PIPE	2	2	3	25	85	0	125	0	OPEN
PIPE	5	3	6	25	175	0	125	0	OPEN
PIPE	6	6	10	25	1350	0	125	0	OPEN
PIPE	10	10	11	25	1085	0	125	0	OPEN
PIPE	11	2	14	63	2790	0	125	0	OPEN
PIPE	14	14	15	63	195	0	125	0	OPEN
PIPE	15	14	18	63	1955	0	125	0	OPEN
PIPE	18	18	22	63	1140	0	125	0	OPEN
PIPE	22	22	23	25	640	0	125	0	OPEN
PIPE	23	23	24	25	380	0	125	0	OPEN
PIPE	24	23	26	25	805	0	125	0	OPEN
PIPE	26	26	27	25	565	0	125	0	OPEN
PIPE	27	26	28	25	340	0	125	0	OPEN
PIPE	28	28	29	25	455	0	125	0	OPEN
PIPE	29	28	32	25	1695	0	125	0	OPEN
PIPE	32	32	33	25	425	0	125	0	OPEN
PIPE	33	32	34	25	1065	0	125	0	OPEN
PIPE	34	34	36	25	1560	0	125	0	OPEN
PIPE	36	36	40	25	2590	0	125	0	OPEN
PIPE	40	40	71	25	2950	0	125	0	OPEN
PIPE	42	42	71	25	770	0	125	0	OPEN
PIPE	43	43	71	25	765	0	125	0	OPEN
PIPE	44	46	71	25	2270	0	125	0	OPEN
PIPE	45	46	45	25	205	0	125	0	OPEN
PIPE	47	46	49	25	1900	0	125	0	OPEN
PIPE	50	46	50	25	1175	0	125	0	OPEN
PIPE	51	50	51	25	340	0	125	0	OPEN
PIPE	52	50	52	25	2815	0	125	0	OPEN
PIPE	53	52	53	25	305	0	125	0	OPEN
PIPE	54	52	54	25	750	0	125	0	OPEN
PIPE	55	54	57	25	855	0	125	0	OPEN
PIPE	58	54	59	25	2250	0	125	0	OPEN
PIPE	60	59	60	25	865	0	125	0	OPEN
PIPE	61	59	63	25	1030	0	125	0	OPEN
PIPE	64	63	67	25	1935	0	125	0	OPEN
PIPE	68	63	68	25	645	0	125	0	OPEN
PIPE	69	68	69	25	440	0	125	0	OPEN
PIPE	70	69	70	25	625	0	125	0	OPEN
PIPE	71	22	70	25	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 50 mm .

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	50	210	0	125	0	OPEN
PIPE	2	2	3	50	85	0	125	0	OPEN
PIPE	5	3	6	50	175	0	125	0	OPEN
PIPE	6	6	10	50	1350	0	125	0	OPEN
PIPE	10	10	11	50	1085	0	125	0	OPEN
PIPE	11	2	14	50	2790	0	125	0	OPEN
PIPE	14	14	15	50	195	0	125	0	OPEN
PIPE	15	14	18	50	1955	0	125	0	OPEN
PIPE	18	18	22	50	1140	0	125	0	OPEN
PIPE	22	22	23	50	640	0	125	0	OPEN
PIPE	23	23	24	50	380	0	125	0	OPEN
PIPE	24	23	26	50	805	0	125	0	OPEN
PIPE	26	26	27	50	565	0	125	0	OPEN
PIPE	27	26	28	50	340	0	125	0	OPEN
PIPE	28	28	29	50	455	0	125	0	OPEN
PIPE	29	28	32	50	1695	0	125	0	OPEN
PIPE	32	32	33	50	425	0	125	0	OPEN
PIPE	33	32	34	50	1065	0	125	0	OPEN
PIPE	34	34	36	50	1560	0	125	0	OPEN
PIPE	36	36	40	50	2590	0	125	0	OPEN
PIPE	40	40	71	50	2950	0	125	0	OPEN
PIPE	42	42	71	50	770	0	125	0	OPEN
PIPE	43	43	71	50	765	0	125	0	OPEN
PIPE	44	46	71	50	2270	0	125	0	OPEN
PIPE	45	46	45	50	205	0	125	0	OPEN
PIPE	47	46	49	50	1900	0	125	0	OPEN
PIPE	50	46	50	50	1175	0	125	0	OPEN
PIPE	51	50	51	50	340	0	125	0	OPEN
PIPE	52	50	52	50	2815	0	125	0	OPEN
PIPE	53	52	53	50	305	0	125	0	OPEN
PIPE	54	52	54	50	750	0	125	0	OPEN
PIPE	55	54	57	50	855	0	125	0	OPEN
PIPE	58	54	59	50	2250	0	125	0	OPEN
PIPE	60	59	60	50	865	0	125	0	OPEN
PIPE	61	59	63	50	1030	0	125	0	OPEN
PIPE	64	63	67	50	1935	0	125	0	OPEN
PIPE	68	63	68	50	645	0	125	0	OPEN
PIPE	69	68	69	50	440	0	125	0	OPEN
PIPE	70	69	70	50	625	0	125	0	OPEN
PIPE	71	22	70	50	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 63 mm and 50 mm used in combination

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	63	210	0	125	0	OPEN
PIPE	2	2	3	50	85	0	125	0	OPEN
PIPE	5	3	6	50	175	0	125	0	OPEN
PIPE	6	6	10	50	1350	0	125	0	OPEN
PIPE	10	10	11	50	1085	0	125	0	OPEN
PIPE	11	2	14	63	2790	0	125	0	OPEN
PIPE	14	14	15	63	195	0	125	0	OPEN
PIPE	15	14	18	63	1955	0	125	0	OPEN
PIPE	18	18	22	63	1140	0	125	0	OPEN
PIPE	22	22	23	50	640	0	125	0	OPEN
PIPE	23	23	24	50	380	0	125	0	OPEN
PIPE	24	23	26	50	805	0	125	0	OPEN
PIPE	26	26	27	50	565	0	125	0	OPEN
PIPE	27	26	28	50	340	0	125	0	OPEN
PIPE	28	28	29	50	455	0	125	0	OPEN
PIPE	29	28	32	50	1695	0	125	0	OPEN
PIPE	32	32	33	50	425	0	125	0	OPEN
PIPE	33	32	34	50	1065	0	125	0	OPEN
PIPE	34	34	36	50	1560	0	125	0	OPEN
PIPE	36	36	40	50	2590	0	125	0	OPEN
PIPE	40	40	71	50	2950	0	125	0	OPEN
PIPE	42	42	71	50	770	0	125	0	OPEN
PIPE	43	43	71	50	765	0	125	0	OPEN
PIPE	44	46	71	50	2270	0	125	0	OPEN
PIPE	45	46	45	50	205	0	125	0	OPEN
PIPE	47	46	49	50	1900	0	125	0	OPEN
PIPE	50	46	50	50	1175	0	125	0	OPEN
PIPE	51	50	51	50	340	0	125	0	OPEN
PIPE	52	50	52	50	2815	0	125	0	OPEN
PIPE	53	52	53	50	305	0	125	0	OPEN
PIPE	54	52	54	50	750	0	125	0	OPEN
PIPE	55	54	57	50	855	0	125	0	OPEN
PIPE	58	54	59	50	2250	0	125	0	OPEN
PIPE	60	59	60	50	865	0	125	0	OPEN
PIPE	61	59	63	50	1030	0	125	0	OPEN
PIPE	64	63	67	50	1935	0	125	0	OPEN
PIPE	68	63	68	50	645	0	125	0	OPEN
PIPE	69	68	69	50	440	0	125	0	OPEN
PIPE	70	69	70	50	625	0	125	0	OPEN
PIPE	71	22	70	50	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 75 mm and 50 mm used in combination

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	75	210	0	125	0	OPEN
PIPE	2	2	3	50	85	0	125	0	OPEN
PIPE	5	3	6	50	175	0	125	0	OPEN
PIPE	6	6	10	50	1350	0	125	0	OPEN
PIPE	10	10	11	50	1085	0	125	0	OPEN
PIPE	11	2	14	75	2790	0	125	0	OPEN
PIPE	14	14	15	75	195	0	125	0	OPEN
PIPE	15	14	18	75	1955	0	125	0	OPEN
PIPE	18	18	22	75	1140	0	125	0	OPEN
PIPE	22	22	23	50	640	0	125	0	OPEN
PIPE	23	23	24	50	380	0	125	0	OPEN
PIPE	24	23	26	50	805	0	125	0	OPEN
PIPE	26	26	27	50	565	0	125	0	OPEN
PIPE	27	26	28	50	340	0	125	0	OPEN
PIPE	28	28	29	50	455	0	125	0	OPEN
PIPE	29	28	32	50	1695	0	125	0	OPEN
PIPE	32	32	33	50	425	0	125	0	OPEN
PIPE	33	32	34	50	1065	0	125	0	OPEN
PIPE	34	34	36	50	1560	0	125	0	OPEN
PIPE	36	36	40	50	2590	0	125	0	OPEN
PIPE	40	40	71	50	2950	0	125	0	OPEN
PIPE	42	42	71	50	770	0	125	0	OPEN
PIPE	43	43	71	50	765	0	125	0	OPEN
PIPE	44	46	71	50	2270	0	125	0	OPEN
PIPE	45	46	45	50	205	0	125	0	OPEN
PIPE	47	46	49	50	1900	0	125	0	OPEN
PIPE	50	46	50	50	1175	0	125	0	OPEN
PIPE	51	50	51	50	340	0	125	0	OPEN
PIPE	52	50	52	50	2815	0	125	0	OPEN
PIPE	53	52	53	50	305	0	125	0	OPEN
PIPE	54	52	54	50	750	0	125	0	OPEN
PIPE	55	54	57	50	855	0	125	0	OPEN
PIPE	58	54	59	50	2250	0	125	0	OPEN
PIPE	60	59	60	50	865	0	125	0	OPEN
PIPE	61	59	63	50	1030	0	125	0	OPEN
PIPE	64	63	67	50	1935	0	125	0	OPEN
PIPE	68	63	68	50	645	0	125	0	OPEN
PIPE	69	68	69	50	440	0	125	0	OPEN
PIPE	70	69	70	50	625	0	125	0	OPEN
PIPE	71	22	70	50	245	0	125	0	OPEN
							0		

Pipeline layout characteristics for pipe of diameter size 63 mm

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	63	210	0	125	0	OPEN
PIPE	2	2	3	63	85	0	125	0	OPEN
PIPE	5	3	6	63	175	0	125	0	OPEN
PIPE	6	6	10	63	1350	0	125	0	OPEN
PIPE	10	10	11	63	1085	0	125	0	OPEN
PIPE	11	2	14	63	2790	0	125	0	OPEN
PIPE	14	14	15	63	195	0	125	0	OPEN
PIPE	15	14	18	63	1955	0	125	0	OPEN
PIPE	18	18	22	63	1140	0	125	0	OPEN
PIPE	22	22	23	63	640	0	125	0	OPEN
PIPE	23	23	24	63	380	0	125	0	OPEN
PIPE	24	23	26	63	805	0	125	0	OPEN
PIPE	26	26	27	63	565	0	125	0	OPEN
PIPE	27	26	28	63	340	0	125	0	OPEN
PIPE	28	28	29	63	455	0	125	0	OPEN
PIPE	29	28	32	63	1695	0	125	0	OPEN
PIPE	32	32	33	63	425	0	125	0	OPEN
PIPE	33	32	34	63	1065	0	125	0	OPEN
PIPE	34	34	36	63	1560	0	125	0	OPEN
PIPE	36	36	40	63	2590	0	125	0	OPEN
PIPE	40	40	71	63	2950	0	125	0	OPEN
PIPE	42	42	71	63	770	0	125	0	OPEN
PIPE	43	43	71	63	765	0	125	0	OPEN
PIPE	44	46	71	63	2270	0	125	0	OPEN
PIPE	45	46	45	63	205	0	125	0	OPEN
PIPE	47	46	49	63	1900	0	125	0	OPEN
PIPE	50	46	50	63	1175	0	125	0	OPEN
PIPE	51	50	51	63	340	0	125	0	OPEN
PIPE	52	50	52	63	2815	0	125	0	OPEN
PIPE	53	52	53	63	305	0	125	0	OPEN
PIPE	54	52	54	63	750	0	125	0	OPEN
PIPE	55	54	57	63	855	0	125	0	OPEN
PIPE	58	54	59	63	2250	0	125	0	OPEN
PIPE	60	59	60	63	865	0	125	0	OPEN
PIPE	61	59	63	63	1030	0	125	0	OPEN
PIPE	64	63	67	63	1935	0	125	0	OPEN
PIPE	68	63	68	63	645	0	125	0	OPEN
PIPE	69	68	69	63	440	0	125	0	OPEN
PIPE	70	69	70	63	625	0	125	0	OPEN
PIPE	71	22	70	63	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 75 mm and 63 mm used in combination

TYPE	No	From Node	$\begin{gathered} \text { To } \\ \text { Node } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Diameter } \\ (\mathrm{mm}) \\ \hline \end{array}$	$\begin{gathered} \text { C. } \\ \text { Length } \end{gathered}$	$\begin{gathered} \text { U. } \\ \text { Length } \end{gathered}$	$\begin{gathered} \text { HW } \\ \text { Coefficient } \end{gathered}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Minor } \\ \text { Loss } \end{array} \\ \hline \end{array}$	Open/ Closed
PIPE	1	1	2	75	210	0	125	0	OPEN
PIPE	2	2	3	63	85	0	125	0	OPEN
PIPE	5	3	6	63	175	0	125	0	OPEN
PIPE	6	6	10	63	1350	0	125	0	OPEN
PIPE	10	10	11	63	1085	0	125	0	OPEN
PIPE	11	2	14	75	2790	0	125	0	OPEN
PIPE	14	14	15	75	195	0	125	0	OPEN
PIPE	15	14	18	75	1955	0	125	0	OPEN
PIPE	18	18	22	75	1140	0	125	0	OPEN
PIPE	22	22	23	63	640	0	125	0	OPEN
PIPE	23	23	24	63	380	0	125	0	OPEN
PIPE	24	23	26	63	805	0	125	0	OPEN
PIPE	26	26	27	63	565	0	125	0	OPEN
PIPE	27	26	28	63	340	0	125	0	OPEN
PIPE	28	28	29	63	455	0	125	0	OPEN
PIPE	29	28	32	63	1695	0	125	0	OPEN
PIPE	32	32	33	63	425	0	125	0	OPEN
PIPE	33	32	34	63	1065	0	125	0	OPEN
PIPE	34	34	36	63	1560	0	125	0	OPEN
PIPE	36	36	40	63	2590	0	125	0	OPEN
PIPE	40	40	71	63	2950	0	125	0	OPEN
PIPE	42	42	71	63	770	0	125	0	OPEN
PIPE	43	43	71	63	765	0	125	0	OPEN
PIPE	44	46	71	63	2270	0	125	0	OPEN
PIPE	45	46	45	63	205	0	125	0	OPEN
PIPE	47	46	49	63	1900	0	125	0	OPEN
PIPE	50	46	50	63	1175	0	125	0	OPEN
PIPE	51	50	51	63	340	0	125	0	OPEN
PIPE	52	50	52	63	2815	0	125	0	OPEN
PIPE	53	52	53	63	305	0	125	0	OPEN
PIPE	54	52	54	63	750	0	125	0	OPEN
PIPE	55	54	57	63	855	0	125	0	OPEN
PIPE	58	54	59	63	2250	0	125	0	OPEN
PIPE	60	59	60	63	865	0	125	0	OPEN
PIPE	61	59	63	63	1030	0	125	0	OPEN
PIPE	64	63	67	63	1935	0	125	0	OPEN
PIPE	68	63	68	63	645	0	125	0	OPEN
PIPE	69	68	69	63	440	0	125	0	OPEN
PIPE	70	69	70	63	625	0	125	0	OPEN
PIPE	71	22	70	63	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 75 mm

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	75	210	0	125	0	OPEN
PIPE	2	2	3	75	85	0	125	0	OPEN
PIPE	5	3	6	75	175	0	125	0	OPEN
PIPE	6	6	10	75	1350	0	125	0	OPEN
PIPE	10	10	11	75	1085	0	125	0	OPEN
PIPE	11	2	14	75	2790	0	125	0	OPEN
PIPE	14	14	15	75	195	0	125	0	OPEN
PIPE	15	14	18	75	1955	0	125	0	OPEN
PIPE	18	18	22	75	1140	0	125	0	OPEN
PIPE	22	22	23	75	640	0	125	0	OPEN
PIPE	23	23	24	75	380	0	125	0	OPEN
PIPE	24	23	26	75	805	0	125	0	OPEN
PIPE	26	26	27	75	565	0	125	0	OPEN
PIPE	27	26	28	75	340	0	125	0	OPEN
PIPE	28	28	29	75	455	0	125	0	OPEN
PIPE	29	28	32	75	1695	0	125	0	OPEN
PIPE	32	32	33	75	425	0	125	0	OPEN
PIPE	33	32	34	75	1065	0	125	0	OPEN
PIPE	34	34	36	75	1560	0	125	0	OPEN
PIPE	36	36	40	75	2590	0	125	0	OPEN
PIPE	40	40	71	75	2950	0	125	0	OPEN
PIPE	42	42	71	75	770	0	125	0	OPEN
PIPE	43	43	71	75	765	0	125	0	OPEN
PIPE	44	46	71	75	2270	0	125	0	OPEN
PIPE	45	46	45	75	205	0	125	0	OPEN
PIPE	47	46	49	75	1900	0	125	0	OPEN
PIPE	50	46	50	75	1175	0	125	0	OPEN
PIPE	51	50	51	75	340	0	125	0	OPEN
PIPE	52	50	52	75	2815	0	125	0	OPEN
PIPE	53	52	53	75	305	0	125	0	OPEN
PIPE	54	52	54	75	750	0	125	0	OPEN
PIPE	55	54	57	75	855	0	125	0	OPEN
PIPE	58	54	59	75	2250	0	125	0	OPEN
PIPE	60	59	60	75	865	0	125	0	OPEN
PIPE	61	59	63	75	1030	0	125	0	OPEN
PIPE	64	63	67	75	1935	0	125	0	OPEN
PIPE	68	63	68	75	645	0	125	0	OPEN
PIPE	69	68	69	75	440	0	125	0	OPEN
PIPE	70	69	70	75	625	0	125	0	OPEN
PIPE	71	22	70	75	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 100 mm

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	100	210	0	125	0	OPEN
PIPE	2	2	3	100	85	0	125	0	OPEN
PIPE	5	3	6	100	175	0	125	0	OPEN
PIPE	6	6	10	100	1350	0	125	0	OPEN
PIPE	10	10	11	100	1085	0	125	0	OPEN
PIPE	11	2	14	100	2790	0	125	0	OPEN
PIPE	14	14	15	100	195	0	125	0	OPEN
PIPE	15	14	18	100	1955	0	125	0	OPEN
PIPE	18	18	22	100	1140	0	125	0	OPEN
PIPE	22	22	23	100	640	0	125	0	OPEN
PIPE	23	23	24	100	380	0	125	0	OPEN
PIPE	24	23	26	100	805	0	125	0	OPEN
PIPE	26	26	27	100	565	0	125	0	OPEN
PIPE	27	26	28	100	340	0	125	0	OPEN
PIPE	28	28	29	100	455	0	125	0	OPEN
PIPE	29	28	32	100	1695	0	125	0	OPEN
PIPE	32	32	33	100	425	0	125	0	OPEN
PIPE	33	32	34	100	1065	0	125	0	OPEN
PIPE	34	34	36	100	1560	0	125	0	OPEN
PIPE	36	36	40	100	2590	0	125	0	OPEN
PIPE	40	40	71	100	2950	0	125	0	OPEN
PIPE	42	42	71	100	770	0	125	0	OPEN
PIPE	43	43	71	100	765	0	125	0	OPEN
PIPE	44	46	71	100	2270	0	125	0	OPEN
PIPE	45	46	45	100	205	0	125	0	OPEN
PIPE	47	46	49	100	1900	0	125	0	OPEN
PIPE	50	46	50	100	1175	0	125	0	OPEN
PIPE	51	50	51	100	340	0	125	0	OPEN
PIPE	52	50	52	100	2815	0	125	0	OPEN
PIPE	53	52	53	100	305	0	125	0	OPEN
PIPE	54	52	54	100	750	0	125	0	OPEN
PIPE	55	54	57	100	855	0	125	0	OPEN
PIPE	58	54	59	100	2250	0	125	0	OPEN
PIPE	60	59	60	100	865	0	125	0	OPEN
PIPE	61	59	63	100	1030	0	125	0	OPEN
PIPE	64	63	67	100	1935	0	125	0	OPEN
PIPE	68	63	68	100	645	0	125	0	OPEN
PIPE	69	68	69	100	440	0	125	0	OPEN
PIPE	70	69	70	100	625	0	125	0	OPEN
PIPE	71	22	70	100	245	0	125	0	OPEN

Pipeline layout characteristics for pipe of diameter size 150 mm

TYPE	No	From Node	To Node	Diameter $($ mm $)$	C. Length	U. Length	HW Coefficient	Minor Loss	Open/ Closed
PIPE	1	1	2	150	210	0	125	0	OPEN
PIPE	2	2	3	150	85	0	125	0	OPEN
PIPE	5	3	6	150	175	0	125	0	OPEN
PIPE	6	6	10	150	1350	0	125	0	OPEN
PIPE	10	10	11	150	1085	0	125	0	OPEN
PIPE	11	2	14	150	2790	0	125	0	OPEN
PIPE	14	14	15	150	195	0	125	0	OPEN
PIPE	15	14	18	150	1955	0	125	0	OPEN
PIPE	18	18	22	150	1140	0	125	0	OPEN
PIPE	22	22	23	150	640	0	125	0	OPEN
PIPE	23	23	24	150	380	0	125	0	OPEN
PIPE	24	23	26	150	805	0	125	0	OPEN
PIPE	26	26	27	150	565	0	125	0	OPEN
PIPE	27	26	28	150	340	0	125	0	OPEN
PIPE	28	28	29	150	455	0	125	0	OPEN
PIPE	29	28	32	150	1695	0	125	0	OPEN
PIPE	32	32	33	150	425	0	125	0	OPEN
PIPE	33	32	34	150	1065	0	125	0	OPEN
PIPE	34	34	36	150	1560	0	125	0	OPEN
PIPE	36	36	40	150	2590	0	125	0	OPEN
PIPE	40	40	71	150	2950	0	125	0	OPEN
PIPE	42	42	71	150	770	0	125	0	OPEN
PIPE	43	43	71	150	765	0	125	0	OPEN
PIPE	44	46	71	150	2270	0	125	0	OPEN
PIPE	45	46	45	150	205	0	125	0	OPEN
PIPE	47	46	49	150	1900	0	125	0	OPEN
PIPE	50	46	50	150	1175	0	125	0	OPEN
PIPE	51	50	51	150	340	0	125	0	OPEN
PIPE	52	50	52	150	2815	0	125	0	OPEN
PIPE	53	52	53	150	305	0	125	0	OPEN
PIPE	54	52	54	150	750	0	125	0	OPEN
PIPE	55	54	57	150	855	0	125	0	OPEN
PIPE	58	54	59	150	2250	0	125	0	OPEN
PIPE	60	59	60	150	865	0	125	0	OPEN
PIPE	61	59	63	150	1030	0	125	0	OPEN
PIPE	64	63	67	150	1935	0	125	0	OPEN
PIPE	68	63	68	150	645	0	125	0	OPEN
PIPE	69	68	69	150	440	0	125	0	OPEN
PIPE	70	69	70	150	625	0	125	0	OPEN
PIPE	71	22	70	150	245	0	125	0	OPEN

APPENDIX F
INPUT DATA AT THE NODES DEFINING THE NODE CHARACTERISTICS FOR THE DEMAND RATES USED IN THE ANALYSIS

Input node characteristics data for demand rate at $10 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emmitter Coeff $\left(\mathrm{I} / \mathrm{s} / \mathrm{m}^{\mathrm{g}}\right)$	Scenario 1()	Scenario 2()	Scenario 3()	Scenario 4()	Scenario 5()$)$
NODE	2	60	0	0	0	0	0	0	0
NODE	3	60	0	0	0	0	0	0	0
NODE	6	60	0	0	0	0	0	0	0
NODE	10	60	0	0	0	0	0	0	0
NODE	11	70	0.001	0	0	0	0	0	0
NODE	14	100	0	0	0	0	0	0	0
NODE	15	95	0.003	0	0	0	0	0	0
NODE	18	95	0	0	0	0	0	0	0
NODE	22	100	0	0	0	0	0	0	0
NODE	23	97	0	0	0	0	0	0	0
NODE	24	100	0.002	0	0	0	0	0	0
NODE	26	87	0	0	0	0	0	0	0
NODE	27	95	0.002	0	0	0	0	0	0
NODE	28	90	0	0	0	0	0	0	0
NODE	29	85	0	0	0	0	0	0	0
NODE	32	60	0	0	0	0	0	0	0
NODE	33	60	0	0	0	0	0	0	0
NODE	34	90	0	0	0	0	0	0	0
NODE	36	65	0	0	0	0	0	0	0
NODE	40	95	0	0	0	0	0	0	0
NODE	42	83	0.002	0	0	0	0	0	0
NODE	43	90	0.001	0	0	0	0	0	0
NODE	45	103	0.001	0	0	0	0	0	0
NODE	46	80	0	0	0	0	0	0	0
NODE	49	100	0.003	0	0	0	0	0	0
NODE	50	102	0	0	0	0	0	0	0
NODE	51	105	0.001	0	0	0	0	0	0
NODE	52	120	0	0	0	0	0	0	0
NODE	53	120	0.003	0	0	0	0	0	0
NODE	54	135	0	0	0	0	0	0	0
NODE	57	115	0.001	0	0	0	0	0	0
NODE	59	110	0	0	0	0	0	0	0
NODE	60	135	0	0	0	0	0	0	0
NODE	63	120	0.004	0	0	0	0	0	0
NODE	67	103	0.002	0	0	0	0	0	0
NODE	68	110	0	0	0	0	0	0	0
NODE	69	100	0	0	0	0	0	0	0
NODE	70	105	0	0	0	0	0	0	0
NODE	71	83	0	0	0	0	0	0	0

Input node characteristics data for demand rate at $15 \mathrm{l} / \mathrm{c} /$ day

		Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emmitter Coeff $\left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	Scenario 1()	Scenario 2()	Scenario 3()	Scenario 4()	Scenario 5()$)$
NODE	2	60	0	0	0	0	0	0	0
NODE	3	60	0	0	0	0	0	0	0
NODE	6	60	0	0	0	0	0	0	0
NODE	10	60	0	0	0	0	0	0	0
NODE	11	70	0.001	0	0	0	0	0	0
NODE	14	100	0	0	0	0	0	0	0
NODE	15	95	0.005	0	0	0	0	0	0
NODE	18	95	0	0	0	0	0	0	0
NODE	22	100	0	0	0	0	0	0	0
NODE	23	97	0	0	0	0	0	0	0
NODE	24	100	0.002	0	0	0	0	0	0
NODE	26	87	0	0	0	0	0	0	0
NODE	27	95	0.003	0	0	0	0	0	0
NODE	28	90	0	0	0	0	0	0	0
NODE	29	85	0.001	0	0	0	0	0	0
NODE	32	60	0	0	0	0	0	0	0
NODE	33	60	0	0	0	0	0	0	0
NODE	34	90	0.001	0	0	0	0	0	0
NODE	36	65	0.001	0	0	0	0	0	0
NODE	40	95	0	0	0	0	0	0	0
NODE	42	83	0.002	0	0	0	0	0	0
NODE	43	90	0.002	0	0	0	0	0	0
NODE	45	103	0.002	0	0	0	0	0	0
NODE	46	80	0	0	0	0	0	0	0
NODE	49	100	0.004	0	0	0	0	0	0
NODE	50	102	0	0	0	0	0	0	0
NODE	51	105	0.002	0	0	0	0	0	0
NODE	52	120	0	0	0	0	0	0	0
NODE	53	120	0.004	0	0	0	0	0	0
NODE	54	135	0	0	0	0	0	0	0
NODE	57	115	0.001	0	0	0	0	0	0
NODE	59	110	0	0	0	0	0	0	0
NODE	60	135	0.001	0	0	0	0	0	0
NODE	63	120	0.006	0	0	0	0	0	0
NODE	67	103	0.002	0	0	0	0	0	0
NODE	68	110	0	0	0	0	0	0	0
NODE	69	100	0	0	0	0	0	0	0
NODE	70	105	0	0	0	0	0	0	0
NODE	71	83	0	0	0	0	0	0	0

Input node characteristics data for demand rate at $20 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	Elevation (m)	Output (l / s)	Emmitter Coeff $\left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	Scenario 1()	Scenario 2()	$\begin{aligned} & \text { Scenario } \\ & 3() \end{aligned}$	Scenario 4()	Scenario 5()
NODE	2	60	0	0	0	0	0	0	0
NODE	3	60	0	0	0	0	0	0	0
NODE	6	60	0	0	0	0	0	0	0
NODE	10	60	0	0	0	0	0	0	0
NODE	11	70	0.002	0	0	0	0	0	0
NODE	14	100	0	0	0	0	0	0	0
NODE	15	95	0.006	0	0	0	0	0	0
NODE	18	95	0	0	0	0	0	0	0
NODE	22	100	0	0	0	0	0	0	0
NODE	23	97	0	0	0	0	0	0	0
NODE	24	100	0.003	0	0	0	0	0	0
NODE	26	87	0	0	0	0	0	0	0
NODE	27	95	0.004	0	0	0	0	0	0
NODE	28	90	0	0	0	0	0	0	0
NODE	29	85	0.001	0	0	0	0	0	0
NODE	32	60	0	0	0	0	0	0	0
NODE	33	60	0	0	0	0	0	0	0
NODE	34	90	0.001	0	0	0	0	0	0
NODE	36	65	0.001	0	0	0	0	0	0
NODE	40	95	0	0	0	0	0	0	0
NODE	42	83	0.003	0	0	0	0	0	0
NODE	43	90	0.002	0	0	0	0	0	0
NODE	45	103	0.002	0	0	0	0	0	0
NODE	46	80	0	0	0	0	0	0	0
NODE	49	100	0.006	0	0	0	0	0	0
NODE	50	102	0	0	0	0	0	0	0
NODE	51	105	0.002	0	0	0	0	0	0
NODE	52	120	0	0	0	0	0	0	0
NODE	53	120	0.006	0	0	0	0	0	0
NODE	54	135	0	0	0	0	0	0	0
NODE	57	115	0.002	0	0	0	0	0	0
NODE	59	110	0	0	0	0	0	0	0
NODE	60	135	0.001	0	0	0	0	0	0
NODE	63	120	0.008	0	0	0	0	0	0
NODE	67	103	0.003	0	0	0	0	0	0
NODE	68	110	0	0	0	0	0	0	0
NODE	69	100	0	0	0	0	0	0	0
NODE	70	105	0	0	0	0	0	0	0
NODE	71	83	0	0	0	0	0	0	0

Input node characteristics data for demand rate at $25 \mathrm{l} / \mathrm{c} /$ day

		Elevation							
TYPE	No	Output (m)	Emmitter $(\mathrm{l} / \mathrm{s})$	Coeff $\left(\mathrm{ls} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	Scenario 1()	Scenario 2()	Scenario 3()	Scenario 4()	Scenario 5()
NODE	2	60	0	0	0	0	0	0	0
NODE	3	60	0	0	0	0	0	0	0
NODE	6	60	0	0	0	0	0	0	0
NODE	10	60	0	0	0	0	0	0	0
NODE	11	70	0.002	0	0	0	0	0	0
NODE	14	100	0	0	0	0	0	0	0
NODE	15	95	0.008	0	0	0	0	0	0
NODE	18	95	0	0	0	0	0	0	0
NODE	22	100	0	0	0	0	0	0	0
NODE	23	97	0	0	0	0	0	0	0
NODE	24	100	0.004	0	0	0	0	0	0
NODE	26	87	0	0	0	0	0	0	0
NODE	27	95	0.005	0	0	0	0	0	0
NODE	28	90	0	0	0	0	0	0	0
NODE	29	85	0.001	0	0	0	0	0	0
NODE	32	60	0	0	0	0	0	0	0
NODE	33	60	0	0	0	0	0	0	0
NODE	34	90	0.001	0	0	0	0	0	0
NODE	36	65	0.001	0	0	0	0	0	0
NODE	40	95	0	0	0	0	0	0	0
NODE	42	83	0.004	0	0	0	0	0	0
NODE	43	90	0.003	0	0	0	0	0	0
NODE	45	103	0.003	0	0	0	0	0	0
NODE	46	80	0	0	0	0	0	0	0
NODE	49	100	0.007	0	0	0	0	0	0
NODE	50	102	0	0	0	0	0	0	0
NODE	51	105	0.003	0	0	0	0	0	0
NODE	52	120	0	0	0	0	0	0	0
NODE	53	120	0.007	0	0	0	0	0	0
NODE	54	135	0	0	0	0	0	0	0
NODE	57	115	0.002	0	0	0	0	0	0
NODE	59	110	0	0	0	0	0	0	0
NODE	60	135	0.001	0	0	0	0	0	0
NODE	63	120	0.01	0	0	0	0	0	0
NODE	67	103	0.004	0	0	0	0	0	0
NODE	68	110	0	0	0	0	0	0	0
NODE	69	100	0	0	0	0	0	0	0
NODE	70	105	0	0	0	0	0	0	0
NODE	71	83	0	0	0	0	0	0	0
								0	

Input node characteristics data for demand rate at $30 \mathrm{l} / \mathrm{c} /$ day

		Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emmitter Coeff $\left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	Scenario 1()	Scenario 2()	Scenario 3()	Scenario 4()	Scenario 5()
NODE	2	60	0	0	0	0	0	0	0
NODE	3	60	0	0	0	0	0	0	0
NODE	6	60	0	0	0	0	0	0	0
NODE	10	60	0	0	0	0	0	0	0
NODE	11	70	0.002	0	0	0	0	0	0
NODE	14	100	0	0	0	0	0	0	0
NODE	15	95	0.01	0	0	0	0	0	0
NODE	18	95	0	0	0	0	0	0	0
NODE	22	100	0	0	0	0	0	0	0
NODE	23	97	0	0	0	0	0	0	0
NODE	24	100	0.005	0	0	0	0	0	0
NODE	26	87	0	0	0	0	0	0	0
NODE	27	95	0.006	0	0	0	0	0	0
NODE	28	90	0	0	0	0	0	0	0
NODE	29	85	0.001	0	0	0	0	0	0
NODE	32	60	0	0	0	0	0	0	0
NODE	33	60	0	0	0	0	0	0	0
NODE	34	90	0.001	0	0	0	0	0	0
NODE	36	65	0.001	0	0	0	0	0	0
NODE	40	95	0	0	0	0	0	0	0
NODE	42	83	0.005	0	0	0	0	0	0
NODE	43	90	0.004	0	0	0	0	0	0
NODE	45	103	0.004	0	0	0	0	0	0
NODE	46	80	0	0	0	0	0	0	0
NODE	49	100	0.008	0	0	0	0	0	0
NODE	50	102	0	0	0	0	0	0	0
NODE	51	105	0.004	0	0	0	0	0	0
NODE	52	120	0	0	0	0	0	0	0
NODE	53	120	0.008	0	0	0	0	0	0
NODE	54	135	0	0	0	0	0	0	0
NODE	57	115	0.002	0	0	0	0	0	0
NODE	59	110	0	0	0	0	0	0	0
NODE	60	135	0.001	0	0	0	0	0	0
NODE	63	120	0.012	0	0	0	0	0	0
NODE	67	103	0.005	0	0	0	0	0	0
NODE	68	110	0	0	0	0	0	0	0
NODE	69	100	0	0	0	0	0	0	0
NODE	70	105	0	0	0	0	0	0	0
NODE	71	83	0	0	0	0	0	0	0

Input node characteristics data for demand rate at $35 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emmitter Coeff $\left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	Scenario 1()	Scenario 2()	Scenario 4()	Scenario 3()	Scenario 5())
NODE	2	60	0	0	0	0	0	0	0
NODE	3	60	0	0	0	0	0	0	0
NODE	6	60	0	0	0	0	0	0	0
NODE	10	60	0	0	0	0	0	0	0
NODE	11	70	0.003	0	0	0	0	0	0
NODE	14	100	0	0	0	0	0	0	0
NODE	15	95	0.011	0	0	0	0	0	0
NODE	18	95	0	0	0	0	0	0	0
NODE	22	100	0	0	0	0	0	0	0
NODE	23	97	0	0	0	0	0	0	0
NODE	24	100	0.006	0	0	0	0	0	0
NODE	26	87	0	0	0	0	0	0	0
NODE	27	95	0.007	0	0	0	0	0	0
NODE	28	90	0	0	0	0	0	0	0
NODE	29	85	0.001	0	0	0	0	0	0
NODE	32	60	0	0	0	0	0	0	0
NODE	33	60	0	0	0	0	0	0	0
NODE	34	90	0.001	0	0	0	0	0	0
NODE	36	65	0.001	0	0	0	0	0	0
NODE	40	95	0	0	0	0	0	0	0
NODE	42	83	0.006	0	0	0	0	0	0
NODE	43	90	0.004	0	0	0	0	0	0
NODE	45	103	0.004	0	0	0	0	0	0
NODE	46	80	0	0	0	0	0	0	0
NODE	49	100	0.01	0	0	0	0	0	0
NODE	50	102	0	0	0	0	0	0	0
NODE	51	105	0.004	0	0	0	0	0	0
NODE	52	120	0	0	0	0	0	0	0
NODE	53	120	0.01	0	0	0	0	0	0
NODE	54	135	0	0	0	0	0	0	0
NODE	57	115	0.003	0	0	0	0	0	0
NODE	59	110	0	0	0	0	0	0	0
NODE	60	135	0.001	0	0	0	0	0	0
NODE	63	120	0.014	0	0	0	0	0	0
NODE	67	103	0.006	0	0	0	0	0	0
NODE	68	110	0	0	0	0	0	0	0
NODE	69	100	0	0	0	0	0	0	0
NODE	70	105	0	0	0	0	0	0	0
NODE	71	83	0	0	0	0	0	0	0

Input node characteristics data for demand rate at $40 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emmitter Coeff $\left(\mathrm{I} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	Scenario 1()	Scenario 2()	Scenario 3()	Scenario 4()	Scenario 5()
NODE	2	60	0	0	0	0	0	0	0
NODE	3	60	0	0	0	0	0	0	0
NODE	6	60	0	0	0	0	0	0	0
NODE	10	60	0	0	0	0	0	0	0
NODE	11	70	0.003	0	0	0	0	0	0
NODE	14	100	0	0	0	0	0	0	0
NODE	15	95	0.013	0	0	0	0	0	0
NODE	18	95	0	0	0	0	0	0	0
NODE	22	100	0	0	0	0	0	0	0
NODE	23	97	0	0	0	0	0	0	0
NODE	24	100	0.006	0	0	0	0	0	0
NODE	26	87	0	0	0	0	0	0	0
NODE	27	95	0.008	0	0	0	0	0	0
NODE	28	90	0	0	0	0	0	0	0
NODE	29	85	0.002	0	0	0	0	0	0
NODE	32	60	0	0	0	0	0	0	0
NODE	33	60	0	0	0	0	0	0	0
NODE	34	90	0.002	0	0	0	0	0	0
NODE	36	65	0.002	0	0	0	0	0	0
NODE	40	95	0	0	0	0	0	0	0
NODE	42	83	0.006	0	0	0	0	0	0
NODE	43	90	0.005	0	0	0	0	0	0
NODE	45	103	0.005	0	0	0	0	0	0
NODE	46	80	0	0	0	0	0	0	0
NODE	49	100	0.011	0	0	0	0	0	0
NODE	50	102	0	0	0	0	0	0	0
NODE	51	105	0.005	0	0	0	0	0	0
NODE	52	120	0	0	0	0	0	0	0
NODE	53	120	0.011	0	0	0	0	0	0
NODE	54	135	0	0	0	0	0	0	0
NODE	57	115	0.003	0	0	0	0	0	0
NODE	59	110	0	0	0	0	0	0	0
NODE	60	135	0.002	0	0	0	0	0	0
NODE	63	120	0.016	0	0	0	0	0	0
NODE	67	103	0.006	0	0	0	0	0	0
NODE	68	110	0	0	0	0	0	0	0
NODE	69	100	0	0	0	0	0	0	0
NODE	70	105	0	0	0	0	0	0	0
NODE	71	83	0	0	0	0	0	0	0
									0

APPENDIX G
AUTOMOBILE ASSOCIATION OF SOUTH AFRICA RATES FOR VEHICLE OPERATING COST TABLES

To determine the total operating cost of a vehicle, you need to:

1. Establish what the vehicle's Fixed Cost value is (see Fixed Costs Table)
2. Determine the Running Cost value (see appropriate Running Costs Table)
3. Add these two figures together (Fixed Cost and Running Cost) to get the Total Vehicle Operating Cost in cents per km.

1. Fixed Costs

The Fixed Cost values (which are inclusive of VAT) include:
a) the depreciation on the vehicle's value
b) comprehensive insurance
c) the licensing of the vehicle.

Hire purchase repayments are not included in the calculation of the vehicle's Fixed Cost values.

Using the Fixed Costs Table

Select from the first column the purchase price (not the current value) you paid for the vehicle. It does not matter whether you bought it new or used.

Decide how many kilometers you travel on average each year (include both business and personal travel)

The value depicted where the row and column is the Fixed Cost value of the vehicle.

Example

If a vehicle with a purchase price of R60 000 travels an average of 20000 km per year, the Fixed Cost value will be R0.97c/km.

FIXED COSTS TABLE								
AVERAGED FIXED COST (c/km) - all costs inclusive of VAT								
PURCHASE PRICE	ANNUAL DISTANCE TRAVELLED							
(VAT incl)								
	10000 km	15000 km	20000 km	25000 km	30000 km	35000 km	40000 km	45000 km
up to R30,000	77	51	39	31	26	23	21	19
R30,001 - R50,000	130	87	65	53	44	39	35	32
R50,001 - R75,000	192	129	97	78	66	58	52	47
R75,001 - R100,000	259	173	130	105	89	78	70	63
R100,001 - R125,000	312	208	157	127	107	95	84	76
R125,001 - R150,000	376	251	189	153	129	114	101	92
R150,001 - R175,000	422	282	212	172	145	128	114	104
R175,001 - R200,000	485	324	244	198	167	147	131	119
R200,001 - R250,000	611	408	307	249	210	185	165	150
R250,001 - R300,000	706	472	355	288	243	215	191	174
R300,001 - R350,000	831	555	418	339	286	253	225	205
R350,001 - R400,000	958	640	482	390	329	291	259	236
more than R400,001	1087	726	547	443	373	330	294	267

Table G1: Fixed cost table

2. Running Costs

The Running Cost values include:
a) maintenance costs (servicing, repairs, tyres and lubrication)
b) fuel

Using the Running Cost Tables

Select the appropriate table depending on the type of vehicle and the type of fuel. (Note: ordinary vehicles include passenger cars and multi purpose vehicles (MPVs), while light commercial vehicles (LCVs) include bakkies and double-cabs with a load box.)

Select the appropriate engine capacity of the vehicle.
Multiply Column A (fuel factor) by the current fuel price in Rands per litre . The resultant figure will be in cents per kilometre .

To this, add Column B (service and repair costs) AND Column C (tyre costs).
Example
If the vehicle has an engine capacity of 1.6 and is petrol driven, choose the Running Cost Table for Petrol Vehicles and select the engine capacity 1501 - 1800.

Multiply Column A (9.97) by the current petrol price (R5.62) $=56.0314$ Add Column B (16.74) and Column C (13.71) $=73.48 \mathrm{c} / \mathrm{km}$ Round off to the nearest decimal point $=R 0.86$ cents per kilometer

Additional Running Cost adjustments

Where applicable, add the following percentages to the Running Costs only

Bakkies:

Bakkie fully loaded - add 12\%
$4 x 4$ unloaded - add 18%
4×4 fully loaded - add 25%

Trailers:

Single axle trailer - add 8\%
Double axle trailer - add 10\%

RUNNING COSTS TABLE - DIESEL LCVs			
AVERAGED RUNNING COST (c/km) - all costs inclusive of VAT			
		MAINTENANCE	
ENGINE CAPACITY (cc)	FUEL		
	Diesel Factor	Service and repair costs	Tyre costs
		(in cents)	(in cents)
	A	B	C
	7.91	17.61	9.25
<2000	12.11	23.06	12.26
$2001-2500$	11.52	21.72	18.32
$2501-3000$	13.95	31.81	19.28

Table G2: Running cost table
Running Costs calculation $(\mathbf{c} / \mathbf{k m})=(\mathrm{A}$ multiplied by diesel price in $\mathrm{R} /$ litre $)+\mathrm{B}+\mathrm{C}$

3. Total Vehicle Operating Cost

The Total Vehicle Operating Cost (measured in cents per km) is then obtained by adding the Fixed Cost value to the Running Cost value.

Example:

Add the Fixed Cost value of $97 \mathrm{c} / \mathrm{km}$ to the Running Cost value of $86 \mathrm{c} / \mathrm{km}$ and the Total Operating Cost will be R1.83 per kilometer.

RESULTS OF EFFECT OF PRESSURE ON COST

DEMAND RATE AT 25 I/c/day

Results of residual pressure with demand rate at $25 \mathrm{1} / \mathrm{c} /$ day and pipe size at 25 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{I} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.662	99.662	977.349
NODE	3	41684.832	59579.738	60	0	0	159.662	99.662	977.347
NODE	6	41838.137	59494.414	60	0	0	159.662	99.662	977.342
NODE	10	42976.551	58769.633	60	0	0	159.658	99.658	977.31
NODE	11	43206.449	57711.070	70	0.002	0	159.656	89.656	879.217
NODE	14	40230.684	62047.141	100	0	0	155.425	55.425	543.529
NODE	15	40422.926	62089.008	95	0.008	0	155.419	60.419	592.5
NODE	18	39166.254	63687.059	95	0	0	153.106	58.106	569.82
NODE	22	39268.738	64822.898	100	0	0	151.754	51.754	507.527
NODE	23	39909.063	64775.117	97	0	0	151.581	54.581	535.253
NODE	24	40070.000	65120.000	100	0.004	0	151.578	51.578	505.8
NODE	26	40709.41	64695.695	87	0	0	151.423	64.423	631.773
NODE	27	40975.656	65193.734	95	0.005	0	151.416	56.416	553.246
NODE	28	41044.617	64654.902	90	0	0	151.383	61.383	601.957
NODE	29	41081.301	64201.805	85	0.001	0	151.383	66.383	650.987
NODE	32	42718.156	64386.148	60	0	0	151.204	91.204	894.399
NODE	33	42956.480	64035.477	60	0	0	151.204	91.204	894.399
NODE	34	43508.605	65097.652	90	0.001	0	151.092	61.092	599.100
NODE	36	44139.660	66521.734	65	0.001	0	150.947	85.947	842.844
NODE	40	44388.234	69100.500	95	0	0	150.737	55.737	546.586
NODE	42	41641.988	68676.688	83	0.004	0	150.490	67.490	661.852
NODE	43	41374.945	70183.242	90	0.003	0	150.493	60.493	593.234
NODE	45	39038.203	69644.320	103	0.003	0	150.451	47.451	465.334
NODE	46	39189.031	69502.156	80	0	0	150.452	70.452	690.897
NODE	49	40124.359	67848.398	100	0.007	0	150.404	50.404	494.295
NODE	50	38080.191	69118.727	102	0	0	150.462	48.462	475.247
NODE	51	38105.000	68782.109	105	0.003	0	150.460	45.460	445.810
NODE	52	35361.816	68379.352	120	0	0	150.530	30.530	299.395
NODE	53	35206.309	68640.992	120	0.007	0	150.522	30.522	299.319
NODE	54	35765.785	67745.406	135	0	0	150.597	15.597	152.951
NODE	57	36578.992	68008.797	115	0.002	0	150.595	35.595	349.062
NODE	59	36688.852	65692.633	110	0	0	150.854	40.854	400.638
NODE	60	35872.203	65411.215	135	0.001	0	150.853	15.853	155.468
NODE	63	37318.598	64874.715	120	0.01	0	150.986	30.986	303.866
NODE	67	37404.902	62941.973	103	0.004	0	150.969	47.969	470.409
NODE	68	37963.340	64869.645	110	0	0	151.239	41.239	404.416
NODE	69	38401.652	64864.680	100	0	0	151.412	51.412	504.176
NODE	70	39026.297	64844.723	105	0	0	151.657	46.657	457.550
NODE	71	41455.762	69424.383	83	0	0	150.497	67.497	661.919

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at (50 mm with 25 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \end{gathered}$	Output (I / s)	$\begin{array}{\|c\|} \hline \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{I} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{array}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Head } \\ & (\mathrm{m}) \\ & \hline \end{aligned}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.975	99.975	980.413
NODE	3	41684.832	59579.738	60	0	0	159.975	99.975	980.411
NODE	6	41838.137	59494.414	60	0	0	159.974	99.974	980.407
NODE	10	42976.551	58769.633	60	0	0	159.971	99.971	980.374
NODE	11	43206.449	57711.070	70	0.002	0	159.968	89.968	882.282
NODE	14	40230.684	62047.141	100	0	0	159.659	59.659	585.050
NODE	15	40422.926	62089.008	95	0.008	0	159.658	64.658	634.078
NODE	18	39166.254	63687.059	95	0	0	159.486	64.486	632.387
NODE	22	39268.738	64822.898	100	0	0	159.385	59.385	582.365
NODE	23	39909.063	64775.117	97	0	0	159.212	62.212	610.09
NODE	24	40070.000	65120.000	100	0.004	0	159.209	59.209	580.637
NODE	26	40709.41	64695.695	87	0	0	159.055	72.054	706.610
NODE	27	40975.656	65193.734	95	0.005	0	159.047	64.047	628.082
NODE	28	41044.617	64654.902	90	0	0	159.014	69.014	676.793
NODE	29	41081.301	64201.805	85	0.001	0	159.014	74.014	725.823
NODE	32	42718.156	64386.148	60	0	0	158.835	98.835	969.233
NODE	33	42956.480	64035.477	60	0	0	158.835	98.835	969.233
NODE	34	43508.605	65097.652	90	0.001	0	158.723	68.723	673.934
NODE	36	44139.660	66521.734	65	0.001	0	158.578	93.578	917.679
NODE	40	44388.234	69100.500	95	0	0	158.368	63.368	621.421
NODE	42	41641.988	68676.688	83	0.004	0	158.122	75.122	736.688
NODE	43	41374.945	70183.242	90	0.003	0	158.124	68.124	668.070
NODE	45	39038.203	69644.320	103	0.003	0	158.082	55.082	540.170
NODE	46	39189.031	69502.156	80	0	0	158.083	78.083	765.733
NODE	49	40124.359	67848.398	100	0.007	0	158.036	58.036	569.131
NODE	50	38080.191	69118.727	102	0	0	158.093	56.093	550.083
NODE	51	38105.000	68782.109	105	0.003	0	158.091	53.091	520.646
NODE	52	35361.816	68379.352	120	0	0	158.161	38.161	374.231
NODE	53	35206.309	68640.992	120	0.007	0	158.153	38.153	374.156
NODE	54	35765.785	67745.406	135	0	0	158.228	23.228	227.787
NODE	57	36578.992	68008.797	115	0.002	0	158.226	43.226	423.899
NODE	59	36688.852	65692.633	110	0	0	158.485	48.485	475.475
NODE	60	35872.203	65411.215	135	0.001	0	158.485	23.485	230.305
NODE	63	37318.598	64874.715	120	0.01	0	158.617	38.617	378.703
NODE	67	37404.902	62941.973	103	0.004	0	158.600	55.600	545.246
NODE	68	37963.340	64869.645	110	0	0	158.870	48.870	479.253
NODE	69	38401.652	64864.680	100	0	0	159.043	59.043	579.014
NODE	70	39026.297	64844.723	105	0	0	159.289	54.289	532.388
NODE	71	41455.762	69424.383	83	0	0	158.129	75.129	736.755

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at (63 mm with 25 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I/s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.992	99.992	980.579
NODE	3	41684.832	59579.738	60	0	0	159.992	99.992	980.577
NODE	6	41838.137	59494.414	60	0	0	159.991	99.991	980.573
NODE	10	42976.551	58769.633	60	0	0	159.988	99.988	980.540
NODE	11	43206.449	57711.070	70	0.002	0	159.985	89.985	882.448
NODE	14	40230.684	62047.141	100	0	0	159.889	59.889	587.303
NODE	15	40422.926	62089.008	95	0.008	0	159.888	64.888	636.334
NODE	18	39166.254	63687.059	95	0	0	159.832	64.832	635.782
NODE	22	39268.738	64822.898	100	0	0	159.799	59.799	586.426
NODE	23	39909.063	64775.117	97	0	0	159.626	62.626	614.151
NODE	24	40070.000	65120.000	100	0.004	0	159.623	59.623	584.698
NODE	26	40709.41	64695.695	87	0	0	159.469	72.469	710.670
NODE	27	40975.656	65193.734	95	0.005	0	159.461	64.461	632.143
NODE	28	41044.617	64654.902	90	0	0	159.428	69.428	680.854
NODE	29	41081.301	64201.805	85	0.001	0	159.428	74.428	729.884
NODE	32	42718.156	64386.148	60	0	0	159.249	99.249	973.294
NODE	33	42956.480	64035.477	60	0	0	159.249	99.249	973.294
NODE	34	43508.605	65097.652	90	0.001	0	159.137	69.137	677.995
NODE	36	44139.660	66521.734	65	0.001	0	158.992	93.992	921.740
NODE	40	44388.234	69100.500	95	0	0	158.782	63.782	625.482
NODE	42	41641.988	68676.688	83	0.004	0	158.536	75.536	740.748
NODE	43	41374.945	70183.242	90	0.003	0	158.539	68.539	672.130
NODE	45	39038.203	69644.320	103	0.003	0	158.496	55.496	544.231
NODE	46	39189.031	69502.156	80	0	0	158.498	78.498	769.794
NODE	49	40124.359	67848.398	100	0.007	0	158.450	58.450	573.192
NODE	50	38080.191	69118.727	102	0	0	158.507	56.507	554.144
NODE	51	38105.000	68782.109	105	0.003	0	158.505	53.505	524.707
NODE	52	35361.816	68379.352	120	0	0	158.575	38.575	378.292
NODE	53	35206.309	68640.992	120	0.007	0	158.568	38.568	378.217
NODE	54	35765.785	67745.406	135	0	0	158.642	23.642	231.848
NODE	57	36578.992	68008.797	115	0.002	0	158.640	43.640	427.960
NODE	59	36688.852	65692.633	110	0	0	158.899	48.899	479.536
NODE	60	35872.203	65411.215	135	0.001	0	158.899	23.899	234.366
NODE	63	37318.598	64874.715	120	0.01	0	159.031	39.031	382.764
NODE	67	37404.902	62941.973	103	0.004	0	159.014	56.014	549.307
NODE	68	37963.340	64869.645	110	0	0	159.285	49.285	483.314
NODE	69	38401.652	64864.680	100	0	0	159.457	59.457	583.075
NODE	70	39026.297	64844.723	105	0	0	159.703	54.703	536.449
NODE	71	41455.762	69424.383	83	0	0	158.543	75.543	740.816

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at 50 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \end{gathered}$	Output (l / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{I} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { Head } \\ & (\mathrm{m}) \end{aligned}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.975	99.975	980.413
NODE	3	41684.832	59579.738	60	0	0	159.975	99.975	980.413
NODE	6	41838.137	59494.414	60	0	0	159.975	99.975	980.413
NODE	10	42976.551	58769.633	60	0	0	159.975	99.975	980.411
NODE	11	43206.449	57711.070	70	0.002	0	159.974	89.974	882.343
NODE	14	40230.684	62047.141	100	0	0	159.659	59.659	585.053
NODE	15	40422.926	62089.008	95	0.008	0	159.659	64.659	634.081
NODE	18	39166.254	63687.059	95	0	0	159.486	64.486	632.391
NODE	22	39268.738	64822.898	100	0	0	159.386	59.386	582.370
NODE	23	39909.063	64775.117	97	0	0	159.373	62.373	611.664
NODE	24	40070.000	65120.000	100	0.004	0	159.372	59.372	582.242
NODE	26	40709.41	64695.695	87	0	0	159.361	72.361	709.615
NODE	27	40975.656	65193.734	95	0.005	0	159.360	64.360	631.157
NODE	28	41044.617	64654.902	90	0	0	159.358	69.358	680.166
NODE	29	41081.301	64201.805	85	0.001	0	159.358	74.358	729.198
NODE	32	42718.156	64386.148	60	0	0	159.345	99.345	974.233
NODE	33	42956.480	64035.477	60	0	0	159.345	99.345	974.233
NODE	34	43508.605	65097.652	90	0.001	0	159.336	69.336	679.953
NODE	36	44139.660	66521.734	65	0.001	0	159.325	94.325	925.012
NODE	40	44388.234	69100.500	95	0	0	159.310	64.310	630.66
NODE	42	41641.988	68676.688	83	0.004	0	159.291	76.291	748.159
NODE	43	41374.945	70183.242	90	0.003	0	159.292	69.292	679.515
NODE	45	39038.203	69644.320	103	0.003	0	159.288	56.288	551.999
NODE	46	39189.031	69502.156	80	0	0	159.289	79.289	777.551
NODE	49	40124.359	67848.398	100	0.007	0	159.285	59.285	581.384
NODE	50	38080.191	69118.727	102	0	0	159.289	57.289	561.813
NODE	51	38105.000	68782.109	105	0.003	0	159.289	54.289	532.392
NODE	52	35361.816	68379.352	120	0	0	159.294	39.294	385.344
NODE	53	35206.309	68640.992	120	0.007	0	159.294	39.294	385.338
NODE	54	35765.785	67745.406	135	0	0	159.299	24.299	238.294
NODE	57	36578.992	68008.797	115	0.002	0	159.299	44.299	434.424
NODE	59	36688.852	65692.633	110	0	0	159.318	49.318	483.647
NODE	60	35872.203	65411.215	135	0.001	0	159.318	24.318	238.481
NODE	63	37318.598	64874.715	120	0.01	0	159.328	39.328	385.677
NODE	67	37404.902	62941.973	103	0.004	0	159.327	56.327	552.377
NODE	68	37963.340	64869.645	110	0	0	159.347	49.347	483.928
NODE	69	38401.652	64864.680	100	0	0	159.36	59.360	582.121
NODE	70	39026.297	64844.723	105	0	0	159.378	54.378	533.267
NODE	71	41455.762	69424.383	83	0	0	159.292	76.292	748.164

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at (63 mm with 50 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.992	99.992	980.579
NODE	3	41684.832	59579.738	60	0	0	159.992	99.992	980.579
NODE	6	41838.137	59494.414	60	0	0	159.992	99.992	980.579
NODE	10	42976.551	58769.633	60	0	0	159.991	99.991	980.576
NODE	11	43206.449	57711.070	70	0.002	0	159.991	89.991	882.508
NODE	14	40230.684	62047.141	100	0	0	159.888	59.888	587.302
NODE	15	40422.926	62089.008	95	0.008	0	159.888	64.888	636.334
NODE	18	39166.254	63687.059	95	0	0	159.832	64.832	635.781
NODE	22	39268.738	64822.898	100	0	0	159.799	59.799	586.424
NODE	23	39909.063	64775.117	97	0	0	159.786	62.786	615.718
NODE	24	40070.000	65120.000	100	0.004	0	159.786	59.786	586.295
NODE	26	40709.41	64695.695	87	0	0	159.774	72.774	713.668
NODE	27	40975.656	65193.734	95	0.005	0	159.774	64.774	635.21
NODE	28	41044.617	64654.902	90	0	0	159.771	69.771	684.219
NODE	29	41081.301	64201.805	85	0.001	0	159.771	74.771	733.252
NODE	32	42718.156	64386.148	60	0	0	159.758	99.758	978.285
NODE	33	42956.480	64035.477	60	0	0	159.758	99.758	978.285
NODE	34	43508.605	65097.652	90	0.001	0	159.749	69.749	684.005
NODE	36	44139.660	66521.734	65	0.001	0	159.739	94.739	929.065
NODE	40	44388.234	69100.500	95	0	0	159.723	64.723	634.713
NODE	42	41641.988	68676.688	83	0.004	0	159.705	76.705	752.212
NODE	43	41374.945	70183.242	90	0.003	0	159.705	69.705	683.568
NODE	45	39038.203	69644.320	103	0.003	0	159.702	56.702	556.052
NODE	46	39189.031	69502.156	80	0	0	159.702	79.702	781.604
NODE	49	40124.359	67848.398	100	0.007	0	159.698	59.698	585.437
NODE	50	38080.191	69118.727	102	0	0	159.703	57.703	565.866
NODE	51	38105.000	68782.109	105	0.003	0	159.702	54.702	536.445
NODE	52	35361.816	68379.352	120	0	0	159.708	39.708	389.397
NODE	53	35206.309	68640.992	120	0.007	0	159.707	39.707	389.392
NODE	54	35765.785	67745.406	135	0	0	159.713	24.713	242.347
NODE	57	36578.992	68008.797	115	0.002	0	159.713	44.713	438.478
NODE	59	36688.852	65692.633	110	0	0	159.732	49.732	487.700
NODE	60	35872.203	65411.215	135	0.001	0	159.732	24.732	242.535
NODE	63	37318.598	64874.715	120	0.01	0	159.742	39.742	389.731
NODE	67	37404.902	62941.973	103	0.004	0	159.74	56.740	556.430
NODE	68	37963.340	64869.645	110	0	0	159.761	49.761	487.982
NODE	69	38401.652	64864.680	100	0	0	159.773	59.773	586.174
NODE	70	39026.297	64844.723	105	0	0	159.792	54.792	537.321
NODE	71	41455.762	69424.383	83	0	0	159.705	76.705	752.217

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at (75 mm with 50 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (1/s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.992	99.992	980.579
NODE	3	41684.832	59579.738	60	0	0	159.992	99.992	980.579
NODE	6	41838.137	59494.414	60	0	0	159.992	99.992	980.579
NODE	10	42976.551	58769.633	60	0	0	159.992	99.992	980.578
NODE	11	43206.449	57711.070	70	0.002	0	159.992	89.992	882.512
NODE	14	40230.684	62047.141	100	0	0	159.889	59.889	587.304
NODE	15	40422.926	62089.008	95	0.008	0	159.888	64.888	636.336
NODE	18	39166.254	63687.059	95	0	0	159.832	64.832	635.783
NODE	22	39268.738	64822.898	100	0	0	159.799	59.799	586.428
NODE	23	39909.063	64775.117	97	0	0	159.795	62.795	615.806
NODE	24	40070.000	65120.000	100	0.004	0	159.795	59.795	586.386
NODE	26	40709.41	64695.695	87	0	0	159.791	72.791	713.835
NODE	27	40975.656	65193.734	95	0.005	0	159.791	64.791	635.38
NODE	28	41044.617	64654.902	90	0	0	159.790	69.790	684.405
NODE	29	41081.301	64201.805	85	0.001	0	159.790	74.790	733.438
NODE	32	42718.156	64386.148	60	0	0	159.786	99.786	978.56
NODE	33	42956.480	64035.477	60	0	0	159.786	99.786	978.56
NODE	34	43508.605	65097.652	90	0.001	0	159.783	69.783	684.336
NODE	36	44139.660	66521.734	65	0.001	0	159.780	94.780	929.466
NODE	40	44388.234	69100.500	95	0	0	159.775	64.775	635.218
NODE	42	41641.988	68676.688	83	0.004	0	159.769	76.769	752.838
NODE	43	41374.945	70183.242	90	0.003	0	159.769	69.769	684.193
NODE	45	39038.203	69644.320	103	0.003	0	159.768	56.768	556.697
NODE	46	39189.031	69502.156	80	0	0	159.768	79.768	782.249
NODE	49	40124.359	67848.398	100	0.007	0	159.766	59.766	586.106
NODE	50	38080.191	69118.727	102	0	0	159.768	57.768	566.506
NODE	51	38105.000	68782.109	105	0.003	0	159.768	54.768	537.086
NODE	52	35361.816	68379.352	120	0	0	159.770	39.770	390.004
NODE	53	35206.309	68640.992	120	0.007	0	159.769	39.769	390.002
NODE	54	35765.785	67745.406	135	0	0	159.771	24.771	242.921
NODE	57	36578.992	68008.797	115	0.002	0	159.771	44.771	439.052
NODE	59	36688.852	65692.633	110	0	0	159.777	49.777	488.147
NODE	60	35872.203	65411.215	135	0.001	0	159.777	24.777	242.982
NODE	63	37318.598	64874.715	120	0.01	0	159.781	39.781	390.112
NODE	67	37404.902	62941.973	103	0.004	0	159.78	56.78	556.82
NODE	68	37963.340	64869.645	110	0	0	159.787	49.787	488.239
NODE	69	38401.652	64864.680	100	0	0	159.791	59.791	586.346
NODE	70	39026.297	64844.723	105	0	0	159.797	54.797	537.372
NODE	71	41455.762	69424.383	83	0	0	159.769	76.769	752.84

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at 63 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Elevation (m)	Output (I / s)	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.998	99.998	980.644
NODE	3	41684.832	59579.738	60	0	0	159.998	99.998	980.644
NODE	6	41838.137	59494.414	60	0	0	159.998	99.998	980.644
NODE	10	42976.551	58769.633	60	0	0	159.998	99.998	980.641
NODE	11	43206.449	57711.070	70	0.002	0	159.998	89.998	882.573
NODE	14	40230.684	62047.141	100	0	0	159.978	59.978	588.183
NODE	15	40422.926	62089.008	95	0.008	0	159.978	64.978	637.216
NODE	18	39166.254	63687.059	95	0	0	159.967	64.967	637.109
NODE	22	39268.738	64822.898	100	0	0	159.961	59.961	588.013
NODE	23	39909.063	64775.117	97	0	0	159.948	62.948	617.307
NODE	24	40070.000	65120.000	100	0.004	0	159.948	59.948	587.884
NODE	26	40709.41	64695.695	87	0	0	159.936	72.936	715.258
NODE	27	40975.656	65193.734	95	0.005	0	159.936	64.936	636.799
NODE	28	41044.617	64654.902	90	0	0	159.933	69.933	685.808
NODE	29	41081.301	64201.805	85	0.001	0	159.933	74.933	734.841
NODE	32	42718.156	64386.148	60	0	0	159.920	99.920	979.875
NODE	33	42956.480	64035.477	60	0	0	159.920	99.920	979.875
NODE	34	43508.605	65097.652	90	0.001	0	159.912	69.912	685.596
NODE	36	44139.660	66521.734	65	0.001	0	159.901	94.901	930.654
NODE	40	44388.234	69100.500	95	0	0	159.885	64.885	636.303
NODE	42	41641.988	68676.688	83	0.004	0	159.867	76.867	753.802
NODE	43	41374.945	70183.242	90	0.003	0	159.867	69.867	685.158
NODE	45	39038.203	69644.320	103	0.003	0	159.864	56.864	557.641
NODE	46	39189.031	69502.156	80	0	0	159.864	79.864	783.194
NODE	49	40124.359	67848.398	100	0.007	0	159.860	59.860	587.027
NODE	50	38080.191	69118.727	102	0	0	159.865	57.865	567.456
NODE	51	38105.000	68782.109	105	0.003	0	159.865	54.865	538.034
NODE	52	35361.816	68379.352	120	0	0	159.870	39.870	390.986
NODE	53	35206.309	68640.992	120	0.007	0	159.869	39.869	390.981
NODE	54	35765.785	67745.406	135	0	0	159.875	24.875	243.936
NODE	57	36578.992	68008.797	115	0.002	0	159.875	44.875	440.067
NODE	59	36688.852	65692.633	110	0	0	159.894	49.894	489.289
NODE	60	35872.203	65411.215	135	0.001	0	159.894	24.894	244.124
NODE	63	37318.598	64874.715	120	0.01	0	159.904	39.904	391.320
NODE	67	37404.902	62941.973	103	0.004	0	159.902	56.902	558.019
NODE	68	37963.340	64869.645	110	0	0	159.923	49.923	489.571
NODE	69	38401.652	64864.680	100	0	0	159.935	59.935	587.763
NODE	70	39026.297	64844.723	105	0	0	159.954	54.954	538.909
NODE	71	41455.762	69424.383	83	0	0	159.867	76.867	753.807

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at (75 mm x 63 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I / s)	$\begin{aligned} & \text { Emitter } \\ & \text { Coeff } \\ & \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{aligned}$	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.998	99.998	980.644
NODE	3	41684.832	59579.738	60	0	0	159.998	99.998	980.644
NODE	6	41838.137	59494.414	60	0	0	159.998	99.998	980.644
NODE	10	42976.551	58769.633	60	0	0	159.998	99.998	980.643
NODE	11	43206.449	57711.070	70	0.002	0	159.998	89.998	882.577
NODE	14	40230.684	62047.141	100	0	0	159.978	59.978	588.183
NODE	15	40422.926	62089.008	95	0.008	0	159.978	64.978	637.216
NODE	18	39166.254	63687.059	95	0	0	159.967	64.967	637.109
NODE	22	39268.738	64822.898	100	0	0	159.961	59.961	588.013
NODE	23	39909.063	64775.117	97	0	0	159.957	62.957	617.391
NODE	24	40070.000	65120.000	100	0.004	0	159.957	59.957	587.971
NODE	26	40709.41	64695.695	87	0	0	159.953	72.953	715.419
NODE	27	40975.656	65193.734	95	0.005	0	159.953	64.953	636.965
NODE	28	41044.617	64654.902	90	0	0	159.952	69.952	685.990
NODE	29	41081.301	64201.805	85	0.001	0	159.952	74.952	735.023
NODE	32	42718.156	64386.148	60	0	0	159.948	99.948	980.145
NODE	33	42956.480	64035.477	60	0	0	159.948	99.948	980.145
NODE	34	43508.605	65097.652	90	0.001	0	159.945	69.945	685.921
NODE	36	44139.660	66521.734	65	0.001	0	159.941	94.941	931.051
NODE	40	44388.234	69100.500	95	0	0	159.936	64.936	636.803
NODE	42	41641.988	68676.688	83	0.004	0	159.930	76.930	754.423
NODE	43	41374.945	70183.242	90	0.003	0	159.930	69.930	685.778
NODE	45	39038.203	69644.320	103	0.003	0	159.929	56.929	558.282
NODE	46	39189.031	69502.156	80	0	0	159.929	79.929	783.834
NODE	49	40124.359	67848.398	100	0.007	0	159.928	59.928	587.690
NODE	50	38080.191	69118.727	102	0	0	159.929	57.929	568.091
NODE	51	38105.000	68782.109	105	0.003	0	159.929	54.929	538.671
NODE	52	35361.816	68379.352	120	0	0	159.931	39.931	391.589
NODE	53	35206.309	68640.992	120	0.007	0	159.931	39.931	391.587
NODE	54	35765.785	67745.406	135	0	0	159.933	24.933	244.505
NODE	57	36578.992	68008.797	115	0.002	0	159.933	44.933	440.637
NODE	59	36688.852	65692.633	110	0	0	159.939	49.939	489.732
NODE	60	35872.203	65411.215	135	0.001	0	159.939	24.939	244.567
NODE	63	37318.598	64874.715	120	0.01	0	159.942	39.942	391.697
NODE	67	37404.902	62941.973	103	0.004	0	159.942	56.942	558.405
NODE	68	37963.340	64869.645	110	0	0	159.948	49.948	489.824
NODE	69	38401.652	64864.680	100	0	0	159.953	59.953	587.931
NODE	70	39026.297	64844.723	105	0	0	159.959	54.959	538.957
NODE	71	41455.762	69424.383	83	0	0	159.93	76.93	754.425

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at 75 mm

TYPE	No	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emitter Coeff $\left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \text { Head } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.998	99.998	980.644
NODE	3	41684.832	59579.738	60	0	0	159.998	99.998	980.644
NODE	6	41838.137	59494.414	60	0	0	159.998	99.998	980.644
NODE	10	42976.551	58769.633	60	0	0	159.998	99.998	980.644
NODE	11	43206.449	57711.070	70	0.002	0	159.998	89.998	882.578
NODE	14	40230.684	62047.141	100	0	0	159.978	59.978	588.183
NODE	15	40422.926	62089.008	95	0.008	0	159.978	64.978	637.216
NODE	18	39166.254	63687.059	95	0	0	159.967	64.967	637.109
NODE	22	39268.738	64822.898	100	0	0	159.961	59.961	588.013
NODE	23	39909.063	64775.117	97	0	0	159.96	62.960	617.424
NODE	24	40070.000	65120.000	100	0.004	0	159.96	59.960	588.004
NODE	26	40709.41	64695.695	87	0	0	159.959	72.959	715.483
NODE	27	40975.656	65193.734	95	0.005	0	159.959	64.959	637.03
NODE	28	41044.617	64654.902	90	0	0	159.959	69.959	686.061
NODE	29	41081.301	64201.805	85	0.001	0	159.959	74.959	735.094
NODE	32	42718.156	64386.148	60	0	0	159.958	99.958	980.251
NODE	33	42956.480	64035.477	60	0	0	159.958	99.958	980.251
NODE	34	43508.605	65097.652	90	0.001	0	159.958	69.958	686.048
NODE	36	44139.660	66521.734	65	0.001	0	159.957	94.957	931.206
NODE	40	44388.234	69100.500	95	0	0	159.956	64.956	636.998
NODE	42	41641.988	68676.688	83	0.004	0	159.955	76.955	754.666
NODE	43	41374.945	70183.242	90	0.003	0	159.955	69.955	686.02
NODE	45	39038.203	69644.320	103	0.003	0	159.955	56.955	558.532
NODE	46	39189.031	69502.156	80	0	0	159.955	79.955	784.084
NODE	49	40124.359	67848.398	100	0.007	0	159.954	59.954	587.95
NODE	50	38080.191	69118.727	102	0	0	159.955	57.955	568.339
NODE	51	38105.000	68782.109	105	0.003	0	159.955	54.955	538.919
NODE	52	35361.816	68379.352	120	0	0	159.955	39.955	391.824
NODE	53	35206.309	68640.992	120	0.007	0	159.955	39.955	391.823
NODE	54	35765.785	67745.406	135	0	0	159.955	24.955	244.728
NODE	57	36578.992	68008.797	115	0.002	0	159.955	44.955	440.86
NODE	59	36688.852	65692.633	110	0	0	159.957	49.957	489.905
NODE	60	35872.203	65411.215	135	0.001	0	159.957	24.957	244.74
NODE	63	37318.598	64874.715	120	0.01	0	159.957	39.957	391.845
NODE	67	37404.902	62941.973	103	0.004	0	159.957	56.957	558.556
NODE	68	37963.340	64869.645	110	0	0	159.958	49.958	489.923
NODE	69	38401.652	64864.680	100	0	0	159.959	59.959	587.997
NODE	70	39026.297	64844.723	105	0	0	159.96	54.96	538.975
NODE	71	41455.762	69424.383	83	0	0	159.955	76.955	754.666

Results of residual pressure with demand rate at $25 \mathrm{l} / \mathrm{c} /$ day and pipe size at 100 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \end{gathered}$	Output ($1 / \mathrm{s}$)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	160.000	100.000	980.656
NODE	3	41684.832	59579.738	60	0	0	160.000	100.000	980.656
NODE	6	41838.137	59494.414	60	0	0	160.000	100.000	980.656
NODE	10	42976.551	58769.633	60	0	0	160.000	100.000	980.656
NODE	11	43206.449	57711.070	70	0.002	0	160.000	90.000	882.59
NODE	14	40230.684	62047.141	100	0	0	159.995	59.995	588.344
NODE	15	40422.926	62089.008	95	0.008	0	159.995	64.995	637.377
NODE	18	39166.254	63687.059	95	0	0	159.992	64.992	637.35
NODE	22	39268.738	64822.898	100	0	0	159.99	59.99	588.302
NODE	23	39909.063	64775.117	97	0	0	159.99	62.99	617.719
NODE	24	40070.000	65120.000	100	0.004	0	159.99	59.99	588.299
NODE	26	40709.41	64695.695	87	0	0	159.99	72.99	715.784
NODE	27	40975.656	65193.734	95	0.005	0	159.99	64.99	637.331
NODE	28	41044.617	64654.902	90	0	0	159.99	69.99	686.363
NODE	29	41081.301	64201.805	85	0.001	0	159.99	74.99	735.396
NODE	32	42718.156	64386.148	60	0	0	159.99	99.99	980.559
NODE	33	42956.480	64035.477	60	0	0	159.99	99.99	980.559
NODE	34	43508.605	65097.652	90	0.001	0	159.99	69.99	686.36
NODE	36	44139.660	66521.734	65	0.001	0	159.989	94.989	931.523
NODE	40	44388.234	69100.500	95	0	0	159.989	64.989	637.323
NODE	42	41641.988	68676.688	83	0.004	0	159.989	76.989	754.999
NODE	43	41374.945	70183.242	90	0.003	0	159.989	69.989	686.353
NODE	45	39038.203	69644.320	103	0.003	0	159.989	56.989	558.867
NODE	46	39189.031	69502.156	80	0	0	159.989	79.989	784.419
NODE	49	40124.359	67848.398	100	0.007	0	159.989	59.989	588.286
NODE	50	38080.191	69118.727	102	0	0	159.989	57.989	568.674
NODE	51	38105.000	68782.109	105	0.003	0	159.989	54.989	539.254
NODE	52	35361.816	68379.352	120	0	0	159.989	39.989	392.155
NODE	53	35206.309	68640.992	120	0.007	0	159.989	39.989	392.155
NODE	54	35765.785	67745.406	135	0	0	159.989	24.989	245.057
NODE	57	36578.992	68008.797	115	0.002	0	159.989	44.989	441.189
NODE	59	36688.852	65692.633	110	0	0	159.989	49.989	490.225
NODE	60	35872.203	65411.215	135	0.001	0	159.989	24.989	245.06
NODE	63	37318.598	64874.715	120	0.01	0	159.989	39.989	392.161
NODE	67	37404.902	62941.973	103	0.004	0	159.989	56.989	558.873
NODE	68	37963.340	64869.645	110	0	0	159.99	49.99	490.23
NODE	69	38401.652	64864.680	100	0	0	159.99	59.99	588.298
NODE	70	39026.297	64844.723	105	0	0	159.99	54.99	539.267
NODE	71	41455.762	69424.383	83	0	0	159.989	76.989	754.999

Results of residual pressure with demand rate at $25 \mathrm{1} / \mathrm{c} /$ day and pipe size at 150 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I / s)	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	160.000	100.000	980.659
NODE	3	41684.832	59579.738	60	0	0	160.000	100.000	980.659
NODE	6	41838.137	59494.414	60	0	0	160.000	100.000	980.659
NODE	10	42976.551	58769.633	60	0	0	160.000	100.000	980.659
NODE	11	43206.449	57711.070	70	0.002	0	160.000	90.000	882.594
NODE	14	40230.684	62047.141	100	0	0	159.999	59.999	588.389
NODE	15	40422.926	62089.008	95	0.008	0	159.999	64.999	637.422
NODE	18	39166.254	63687.059	95	0	0	159.999	64.999	637.418
NODE	22	39268.738	64822.898	100	0	0	159.999	59.999	588.383
NODE	23	39909.063	64775.117	97	0	0	159.999	62.999	617.803
NODE	24	40070.000	65120.000	100	0.004	0	159.999	59.999	588.383
NODE	26	40709.41	64695.695	87	0	0	159.999	72.999	715.868
NODE	27	40975.656	65193.734	95	0.005	0	159.999	64.999	637.415
NODE	28	41044.617	64654.902	90	0	0	159.999	69.999	686.448
NODE	29	41081.301	64201.805	85	0.001	0	159.999	74.999	735.481
NODE	32	42718.156	64386.148	60	0	0	159.999	99.999	980.646
NODE	33	42956.480	64035.477	60	0	0	159.999	99.999	980.646
NODE	34	43508.605	65097.652	90	0.001	0	159.999	69.999	686.448
NODE	36	44139.660	66521.734	65	0.001	0	159.999	94.999	931.613
NODE	40	44388.234	69100.500	95	0	0	159.998	64.998	637.414
NODE	42	41641.988	68676.688	83	0.004	0	159.998	76.998	755.093
NODE	43	41374.945	70183.242	90	0.003	0	159.998	69.998	686.447
NODE	45	39038.203	69644.320	103	0.003	0	159.998	56.998	558.961
NODE	46	39189.031	69502.156	80	0	0	159.998	79.998	784.513
NODE	49	40124.359	67848.398	100	0.007	0	159.998	59.998	588.381
NODE	50	38080.191	69118.727	102	0	0	159.998	57.998	568.768
NODE	51	38105.000	68782.109	105	0.003	0	159.998	54.998	539.348
NODE	52	35361.816	68379.352	120	0	0	159.998	39.998	392.249
NODE	53	35206.309	68640.992	120	0.007	0	159.998	39.998	392.249
NODE	54	35765.785	67745.406	135	0	0	159.998	24.998	245.15
NODE	57	36578.992	68008.797	115	0.002	0	159.998	44.998	441.282
NODE	59	36688.852	65692.633	110	0	0	159.999	49.999	490.315
NODE	60	35872.203	65411.215	135	0.001	0	159.999	24.999	245.15
NODE	63	37318.598	64874.715	120	0.01	0	159.999	39.999	392.25
NODE	67	37404.902	62941.973	103	0.004	0	159.999	56.999	558.962
NODE	68	37963.340	64869.645	110	0	0	159.999	49.999	490.316
NODE	69	38401.652	64864.680	100	0	0	159.999	59.999	588.382
NODE	70	39026.297	64844.723	105	0	0	159.999	54.999	539.35
NODE	71	41455.762	69424.383	83	0	0	159.998	76.998	755.093

DEMAND AT 50 1/c/day

Results of residual pressure with demand rate at $501 / \mathrm{c} /$ day and pipe size at 25 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} x \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output ($1 / \mathrm{s}$)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	158.781	98.781	968.711
NODE	3	41684.832	59579.738	60	0	0	158.781	98.781	968.703
NODE	6	41838.137	59494.414	60	0	0	158.779	98.779	968.688
NODE	10	42976.551	58769.633	60	0	0	158.767	98.767	968.569
NODE	11	43206.449	57711.070	70	0.004	0	158.757	88.757	870.408
NODE	14	40230.684	62047.141	100	0	0	143.489	43.489	426.482
NODE	15	40422.926	62089.008	95	0.016	0	143.467	48.467	475.293
NODE	18	39166.254	63687.059	95	0	0	135.121	40.121	393.453
NODE	22	39268.738	64822.898	100	0	0	130.242	30.242	296.567
NODE	23	39909.063	64775.117	97	0	0	129.619	32.619	319.879
NODE	24	40070.000	65120.000	100	0.008	0	129.607	29.607	290.340
NODE	26	40709.41	64695.695	87	0	0	129.050	42.050	412.370
NODE	27	40975.656	65193.734	95	0.01	0	129.023	34.023	333.647
NODE	28	41044.617	64654.902	90	0	0	128.905	38.905	381.521
NODE	29	41081.301	64201.805	85	0.002	0	128.903	43.903	430.543
NODE	32	42718.156	64386.148	60	0	0	128.259	68.259	669.387
NODE	33	42956.480	64035.477	60	0	0	128.259	68.259	669.387
NODE	34	43508.605	65097.652	90	0.002	0	127.854	37.854	371.215
NODE	36	44139.660	66521.734	65	0.002	0	127.331	62.331	611.251
NODE	40	44388.234	69100.500	95	0	0	126.572	31.572	309.617
NODE	42	41641.988	68676.688	83	0.008	0	125.684	42.684	418.583
NODE	43	41374.945	70183.242	90	0.006	0	125.694	35.694	350.039
NODE	45	39038.203	69644.320	103	0.006	0	125.542	22.542	221.061
NODE	46	39189.031	69502.156	80	0	0	125.546	45.546	446.651
NODE	49	40124.359	67848.398	100	0.014	0	125.373	25.373	248.824
NODE	50	38080.191	69118.727	102	0	0	125.581	23.581	231.249
NODE	51	38105.000	68782.109	105	0.006	0	125.574	20.574	201.766
NODE	52	35361.816	68379.352	120	0	0	125.826	5.826	57.131
NODE	53	35206.309	68640.992	120	0.014	0	125.798	5.798	56.859
NODE	54	35765.785	67745.406	135	0	0	126.067	0.898	8.806
NODE	57	36578.992	68008.797	115	0.004	0	126.059	11.059	108.452
NODE	59	36688.852	65692.633	110	0	0	126.995	16.995	166.661
NODE	60	35872.203	65411.215	135	0.002	0	126.993	0.872	8.551
NODE	63	37318.598	64874.715	120	0.02	0	127.471	7.471	73.263
NODE	67	37404.902	62941.973	103	0.008	0	127.408	24.408	239.363
NODE	68	37963.340	64869.645	110	0	0	128.385	18.385	180.293
NODE	69	38401.652	64864.680	100	0	0	129.009	29.009	284.475
NODE	70	39026.297	64844.723	105	0	0	129.894	24.894	244.129
NODE	71	41455.762	69424.383	83	0	0	125.709	42.709	418.827

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at (50 mm with 25 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \end{gathered}$	Output (I / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Head } \\ & (\mathrm{m}) \end{aligned}$	Pressure (Kра)
NODE	2	41608.785	59619.449	60	0	0	159.909	99.909	979.769
NODE	3	41684.832	59579.738	60	0	0	159.908	99.908	979.761
NODE	6	41838.137	59494.414	60	0	0	159.907	99.907	979.746
NODE	10	42976.551	58769.633	60	0	0	159.895	99.895	979.628
NODE	11	43206.449	57711.070	70	0.004	0	159.885	89.885	881.467
NODE	14	40230.684	62047.141	100	0	0	158.769	58.769	576.322
NODE	15	40422.926	62089.008	95	0.016	0	158.767	63.767	625.338
NODE	18	39166.254	63687.059	95	0	0	158.145	63.145	619.235
NODE	22	39268.738	64822.898	100	0	0	157.781	57.781	566.633
NODE	23	39909.063	64775.117	97	0	0	157.158	60.158	589.944
NODE	24	40070.000	65120.000	100	0.008	0	157.146	57.146	560.404
NODE	26	40709.41	64695.695	87	0	0	156.589	69.589	682.433
NODE	27	40975.656	65193.734	95	0.01	0	156.562	61.562	603.710
NODE	28	41044.617	64654.902	90	0	0	156.443	66.443	651.583
NODE	29	41081.301	64201.805	85	0.002	0	156.442	71.442	700.605
NODE	32	42718.156	64386.148	60	0	0	155.797	95.797	939.445
NODE	33	42956.480	64035.477	60	0	0	155.797	95.797	939.445
NODE	34	43508.605	65097.652	90	0.002	0	155.392	65.392	641.274
NODE	36	44139.660	66521.734	65	0.002	0	154.869	89.869	881.311
NODE	40	44388.234	69100.500	95	0	0	154.111	59.111	579.678
NODE	42	41641.988	68676.688	83	0.008	0	153.223	70.223	688.645
NODE	43	41374.945	70183.242	90	0.006	0	153.233	63.233	620.101
NODE	45	39038.203	69644.320	103	0.006	0	153.081	50.081	491.123
NODE	46	39189.031	69502.156	80	0	0	153.085	73.085	716.713
NODE	49	40124.359	67848.398	100	0.014	0	152.912	52.912	518.887
NODE	50	38080.191	69118.727	102	0	0	153.120	51.120	501.311
NODE	51	38105.000	68782.109	105	0.006	0	153.113	48.113	471.828
NODE	52	35361.816	68379.352	120	0	0	153.365	33.365	327.194
NODE	53	35206.309	68640.992	120	0.014	0	153.337	33.337	326.922
NODE	54	35765.785	67745.406	135	0	0	153.606	18.606	182.458
NODE	57	36578.992	68008.797	115	0.004	0	153.598	38.598	378.515
NODE	59	36688.852	65692.633	110	0	0	154.534	44.534	436.726
NODE	60	35872.203	65411.215	135	0.002	0	154.532	19.532	191.54
NODE	63	37318.598	64874.715	120	0.02	0	155.010	35.010	343.328
NODE	67	37404.902	62941.973	103	0.008	0	154.947	51.947	509.428
NODE	68	37963.340	64869.645	110	0	0	155.924	45.924	450.359
NODE	69	38401.652	64864.680	100	0	0	156.548	56.548	554.541
NODE	70	39026.297	64844.723	105	0	0	157.434	52.434	514.195
NODE	71	41455.762	69424.383	83	0	0	153.247	70.247	688.889

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size (63 mm with 25 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I/s)	Emitter Coeff ($\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.970	99.970	980.369
NODE	3	41684.832	59579.738	60	0	0	159.970	99.970	980.362
NODE	6	41838.137	59494.414	60	0	0	159.968	99.968	980.346
NODE	10	42976.551	58769.633	60	0	0	159.956	99.956	980.228
NODE	11	43206.449	57711.07	70	0.004	0	159.946	89.946	882.067
NODE	14	40230.684	62047.141	100	0	0	159.598	59.598	584.452
NODE	15	40422.926	62089.008	95	0.016	0	159.597	64.597	633.479
NODE	18	39166.254	63687.059	95	0	0	159.394	64.394	631.486
NODE	22	39268.738	64822.898	100	0	0	159.275	59.275	581.287
NODE	23	39909.063	64775.117	97	0	0	158.652	61.652	604.597
NODE	24	40070	65120	100	0.008	0	158.640	58.640	575.057
NODE	26	40709.41	64695.695	87	0	0	158.083	71.083	697.084
NODE	27	40975.656	65193.734	95	0.01	0	158.056	63.056	618.361
NODE	28	41044.617	64654.902	90	0	0	157.937	67.937	666.234
NODE	29	41081.301	64201.805	85	0.002	0	157.936	72.936	715.256
NODE	32	42718.156	64386.148	60	0	0	157.291	97.291	954.094
NODE	33	42956.48	64035.477	60	0	0	157.291	97.291	954.094
NODE	34	43508.605	65097.652	90	0.002	0	156.886	66.886	655.922
NODE	36	44139.66	66521.734	65	0.002	0	156.363	91.363	895.957
NODE	40	44388.234	69100.5	95	0	0	155.604	60.604	594.323
NODE	42	41641.988	68676.688	83	0.008	0	154.716	71.716	703.288
NODE	43	41374.945	70183.242	90	0.006	0	154.726	64.726	634.743
NODE	45	39038.203	69644.32	103	0.006	0	154.574	51.574	505.763
NODE	46	39189.031	69502.156	80	0	0	154.578	74.578	731.353
NODE	49	40124.359	67848.398	100	0.014	0	154.405	54.405	533.527
NODE	50	38080.191	69118.727	102	0	0	154.613	52.613	515.953
NODE	51	38105	68782.109	105	0.006	0	154.606	49.606	486.47
NODE	52	35361.816	68379.352	120	0	0	154.858	34.858	341.839
NODE	53	35206.309	68640.992	120	0.014	0	154.830	34.830	341.567
NODE	54	35765.785	67745.406	135	0	0	155.099	20.099	197.104
NODE	57	36578.992	68008.797	115	0.004	0	155.091	40.091	393.161
NODE	59	36688.852	65692.633	110	0	0	156.028	46.028	451.375
NODE	60	35872.203	65411.215	135	0.002	0	156.026	21.026	206.189
NODE	63	37318.598	64874.715	120	0.02	0	156.504	36.504	357.978
NODE	67	37404.902	62941.973	103	0.008	0	156.441	53.441	524.078
NODE	68	37963.34	64869.645	110	0	0	157.418	47.418	465.01
NODE	69	38401.652	64864.68	100	0	0	158.042	58.042	569.193
NODE	70	39026.297	64844.723	105	0	0	158.928	53.928	528.848
NODE	71	41455.762	69424.383	83	0	0	154.741	71.741	703.531

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at 50 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.909	99.909	979.769
NODE	3	41684.832	59579.738	60	0	0	159.909	99.909	979.768
NODE	6	41838.137	59494.414	60	0	0	159.909	99.909	979.767
NODE	10	42976.551	58769.633	60	0	0	159.908	99.908	979.758
NODE	11	43206.449	57711.070	70	0.004	0	159.907	89.907	881.685
NODE	14	40230.684	62047.141	100	0	0	158.769	58.769	576.320
NODE	15	40422.926	62089.008	95	0.016	0	158.767	63.767	625.336
NODE	18	39166.254	63687.059	95	0	0	158.144	63.144	619.232
NODE	22	39268.738	64822.898	100	0	0	157.780	57.780	566.630
NODE	23	39909.063	64775.117	97	0	0	157.734	60.734	595.594
NODE	24	40070.000	65120.000	100	0.008	0	157.733	57.733	566.165
NODE	26	40709.41	64695.695	87	0	0	157.692	70.692	693.244
NODE	27	40975.656	65193.734	95	0.01	0	157.690	62.690	614.771
NODE	28	41044.617	64654.902	90	0	0	157.681	67.681	663.718
NODE	29	41081.301	64201.805	85	0.002	0	157.681	72.681	712.75
NODE	32	42718.156	64386.148	60	0	0	157.633	97.632	957.443
NODE	33	42956.480	64035.477	60	0	0	157.633	97.632	957.443
NODE	34	43508.605	65097.652	90	0.002	0	157.602	67.602	662.949
NODE	36	44139.660	66521.734	65	0.002	0	157.563	92.563	907.731
NODE	40	44388.234	69100.500	95	0	0	157.507	62.507	612.979
NODE	42	41641.988	68676.688	83	0.008	0	157.441	74.441	730.008
NODE	43	41374.945	70183.242	90	0.006	0	157.441	67.441	661.370
NODE	45	39038.203	69644.320	103	0.006	0	157.430	54.430	533.773
NODE	46	39189.031	69502.156	80	0	0	157.430	77.430	759.327
NODE	49	40124.359	67848.398	100	0.014	0	157.417	57.417	563.069
NODE	50	38080.191	69118.727	102	0	0	157.433	55.433	543.608
NODE	51	38105.000	68782.109	105	0.006	0	157.432	52.432	514.183
NODE	52	35361.816	68379.352	120	0	0	157.451	37.451	367.268
NODE	53	35206.309	68640.992	120	0.014	0	157.449	37.449	367.248
NODE	54	35765.785	67745.406	135	0	0	157.469	22.469	220.346
NODE	57	36578.992	68008.797	115	0.004	0	157.469	42.469	416.472
NODE	59	36688.852	65692.633	110	0	0	157.538	47.538	466.189
NODE	60	35872.203	65411.215	135	0.002	0	157.538	22.538	221.023
NODE	63	37318.598	64874.715	120	0.02	0	157.574	37.574	368.472
NODE	67	37404.902	62941.973	103	0.008	0	157.569	54.569	535.138
NODE	68	37963.340	64869.645	110	0	0	157.642	47.642	467.206
NODE	69	38401.652	64864.680	100	0	0	157.689	57.689	565.728
NODE	70	39026.297	64844.723	105	0	0	157.755	52.755	517.343
NODE	71	41455.762	69424.383	83	0	0	157.442	74.442	730.026

Results of pressure pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at (63 mm with 50 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Output $(\mathrm{l} / \mathrm{s})$	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Head } \\ & (\mathrm{m}) \\ & \hline \end{aligned}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.970	99.970	980.369
NODE	3	41684.832	59579.738	60	0	0	159.970	99.970	980.369
NODE	6	41838.137	59494.414	60	0	0	159.970	99.970	980.367
NODE	10	42976.551	58769.633	60	0	0	159.969	99.969	980.359
NODE	11	43206.449	57711.070	70	0.004	0	159.969	89.969	882.286
NODE	14	40230.684	62047.141	100	0	0	159.598	59.598	584.454
NODE	15	40422.926	62089.008	95	0.016	0	159.597	64.597	633.481
NODE	18	39166.254	63687.059	95	0	0	159.394	64.394	631.489
NODE	22	39268.738	64822.898	100	0	0	159.275	59.275	581.291
NODE	23	39909.063	64775.117	97	0	0	159.229	62.229	610.255
NODE	24	40070.000	65120.000	100	0.008	0	159.228	59.228	580.826
NODE	26	40709.41	64695.695	87	0	0	159.187	72.187	707.906
NODE	27	40975.656	65193.734	95	0.01	0	159.185	64.185	629.433
NODE	28	41044.617	64654.902	90	0	0	159.176	69.176	678.379
NODE	29	41081.301	64201.805	85	0.002	0	159.176	74.176	727.411
NODE	32	42718.156	64386.148	60	0	0	159.128	99.128	972.106
NODE	33	42956.480	64035.477	60	0	0	159.128	99.128	972.106
NODE	34	43508.605	65097.652	90	0.002	0	159.097	69.097	677.611
NODE	36	44139.660	66521.734	65	0.002	0	159.058	94.058	922.393
NODE	40	44388.234	69100.500	95	0	0	159.002	64.002	627.641
NODE	42	41641.988	68676.688	83	0.008	0	158.936	75.936	744.670
NODE	43	41374.945	70183.242	90	0.006	0	158.936	68.936	676.031
NODE	45	39038.203	69644.320	103	0.006	0	158.925	55.925	548.434
NODE	46	39189.031	69502.156	80	0	0	158.925	78.925	773.989
NODE	49	40124.359	67848.398	100	0.014	0	158.912	58.912	577.730
NODE	50	38080.191	69118.727	102	0	0	158.928	56.928	558.269
NODE	51	38105.000	68782.109	105	0.006	0	158.927	53.927	528.845
NODE	52	35361.816	68379.352	120	0	0	158.946	38.946	381.930
NODE	53	35206.309	68640.992	120	0.014	0	158.944	38.944	381.909
NODE	54	35765.785	67745.406	135	0	0	158.964	23.964	235.007
NODE	57	36578.992	68008.797	115	0.004	0	158.964	43.964	431.133
NODE	59	36688.852	65692.633	110	0	0	159.033	49.033	480.850
NODE	60	35872.203	65411.215	135	0.002	0	159.033	24.033	235.684
NODE	63	37318.598	64874.715	120	0.02	0	159.069	39.069	383.133
NODE	67	37404.902	62941.973	103	0.008	0	159.064	56.064	549.799
NODE	68	37963.340	64869.645	110	0	0	159.137	49.137	481.867
NODE	69	38401.652	64864.680	100	0	0	159.184	59.183	580.389
NODE	70	39026.297	64844.723	105	0	0	159.250	54.250	532.003
NODE	71	41455.762	69424.383	83	0	0	158.937	75.937	744.688

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at (75 mm with 50 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.970	99.970	980.369
NODE	3	41684.832	59579.738	60	0	0	159.970	99.970	980.369
NODE	6	41838.137	59494.414	60	0	0	159.970	99.970	980.368
NODE	10	42976.551	58769.633	60	0	0	159.970	99.970	980.365
NODE	11	43206.449	57711.070	70	0.004	0	159.970	89.970	882.297
NODE	14	40230.684	62047.141	100	0	0	159.598	59.598	584.451
NODE	15	40422.926	62089.008	95	0.016	0	159.597	64.597	633.479
NODE	18	39166.254	63687.059	95	0	0	159.394	64.394	631.485
NODE	22	39268.738	64822.898	100	0	0	159.275	59.275	581.286
NODE	23	39909.063	64775.117	97	0	0	159.260	62.260	610.557
NODE	24	40070.000	65120.000	100	0.008	0	159.260	59.260	581.134
NODE	26	40709.41	64695.695	87	0	0	159.246	72.246	708.487
NODE	27	40975.656	65193.734	95	0.01	0	159.245	64.245	630.028
NODE	28	41044.617	64654.902	90	0	0	159.242	69.242	679.032
NODE	29	41081.301	64201.805	85	0.002	0	159.242	74.242	728.065
NODE	32	42718.156	64386.148	60	0	0	159.227	99.227	973.076
NODE	33	42956.480	64035.477	60	0	0	159.227	99.227	973.076
NODE	34	43508.605	65097.652	90	0.002	0	159.217	69.217	678.781
NODE	36	44139.660	66521.734	65	0.002	0	159.204	94.204	923.821
NODE	40	44388.234	69100.500	95	0	0	159.186	64.186	629.442
NODE	42	41641.988	68676.688	83	0.008	0	159.164	76.164	746.909
NODE	43	41374.945	70183.242	90	0.006	0	159.164	69.164	678.266
NODE	45	39038.203	69644.320	103	0.006	0	159.160	56.16	550.743
NODE	46	39189.031	69502.156	80	0	0	159.161	79.161	776.296
NODE	49	40124.359	67848.398	100	0.014	0	159.156	59.156	580.123
NODE	50	38080.191	69118.727	102	0	0	159.161	57.161	560.559
NODE	51	38105.000	68782.109	105	0.006	0	159.161	54.161	531.138
NODE	52	35361.816	68379.352	120	0	0	159.167	39.167	384.099
NODE	53	35206.309	68640.992	120	0.014	0	159.167	39.167	384.092
NODE	54	35765.785	67745.406	135	0	0	159.173	24.173	237.058
NODE	57	36578.992	68008.797	115	0.004	0	159.173	44.173	433.188
NODE	59	36688.852	65692.633	110	0	0	159.196	49.196	482.444
NODE	60	35872.203	65411.215	135	0.002	0	159.196	24.196	237.279
NODE	63	37318.598	64874.715	120	0.02	0	159.207	39.207	384.492
NODE	67	37404.902	62941.973	103	0.008	0	159.206	56.206	551.189
NODE	68	37963.340	64869.645	110	0	0	159.230	49.230	482.777
NODE	69	38401.652	64864.680	100	0	0	159.245	59.245	580.991
NODE	70	39026.297	64844.723	105	0	0	159.267	54.267	532.170
NODE	71	41455.762	69424.383	83	0	0	159.165	76.165	746.915

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at 63 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I/s)	$\begin{gathered} \hline \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{I} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.994	99.994	980.603
NODE	3	41684.832	59579.738	60	0	0	159.994	99.994	980.603
NODE	6	41838.137	59494.414	60	0	0	159.994	99.994	980.602
NODE	10	42976.551	58769.633	60	0	0	159.993	99.993	980.593
NODE	11	43206.449	57711.070	70	0.004	0	159.992	89.992	882.520
NODE	14	40230.684	62047.141	100	0	0	159.922	59.922	587.628
NODE	15	40422.926	62089.008	95	0.016	0	159.922	64.922	636.660
NODE	18	39166.254	63687.059	95	0	0	159.882	64.882	636.272
NODE	22	39268.738	64822.898	100	0	0	159.859	59.859	587.012
NODE	23	39909.063	64775.117	97	0	0	159.812	62.812	615.977
NODE	24	40070.000	65120.000	100	0.008	0	159.812	59.812	586.548
NODE	26	40709.41	64695.695	87	0	0	159.770	72.770	713.627
NODE	27	40975.656	65193.734	95	0.01	0	159.768	64.768	635.154
NODE	28	41044.617	64654.902	90	0	0	159.759	69.759	684.100
NODE	29	41081.301	64201.805	85	0.002	0	159.759	74.759	733.133
NODE	32	42718.156	64386.148	60	0	0	159.711	99.711	977.826
NODE	33	42956.480	64035.477	60	0	0	159.711	99.711	977.826
NODE	34	43508.605	65097.652	90	0.002	0	159.681	69.681	683.332
NODE	36	44139.660	66521.734	65	0.002	0	159.642	94.642	928.114
NODE	40	44388.234	69100.500	95	0	0	159.585	64.585	633.362
NODE	42	41641.988	68676.688	83	0.008	0	159.519	76.519	750.391
NODE	43	41374.945	70183.242	90	0.006	0	159.520	69.520	681.753
NODE	45	39038.203	69644.320	103	0.006	0	159.508	56.508	554.155
NODE	46	39189.031	69502.156	80	0	0	159.509	79.509	779.710
NODE	49	40124.359	67848.398	100	0.014	0	159.496	59.496	583.451
NODE	50	38080.191	69118.727	102	0	0	159.511	57.511	563.99
NODE	51	38105.000	68782.109	105	0.006	0	159.511	54.511	534.566
NODE	52	35361.816	68379.352	120	0	0	159.530	39.530	387.651
NODE	53	35206.309	68640.992	120	0.014	0	159.528	39.528	387.630
NODE	54	35765.785	67745.406	135	0	0	159.548	24.548	240.728
NODE	57	36578.992	68008.797	115	0.004	0	159.547	44.547	436.854
NODE	59	36688.852	65692.633	110	0	0	159.617	49.617	486.572
NODE	60	35872.203	65411.215	135	0.002	0	159.617	24.617	241.405
NODE	63	37318.598	64874.715	120	0.02	0	159.652	39.652	388.854
NODE	67	37404.902	62941.973	103	0.008	0	159.648	56.648	555.521
NODE	68	37963.340	64869.645	110	0	0	159.720	49.720	487.589
NODE	69	38401.652	64864.680	100	0	0	159.767	59.767	586.110
NODE	70	39026.297	64844.723	105	0	0	159.833	54.833	537.725
NODE	71	41455.762	69424.383	83	0	0	159.521	76.521	750.409

Results of residual Pressure with demand rate at $50 \mathrm{1} / \mathrm{c} /$ day and pipe size at (75 mm with 63 mm)

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.994	99.994	980.604
NODE	3	41684.832	59579.738	60	0	0	159.994	99.994	980.603
NODE	6	41838.137	59494.414	60	0	0	159.994	99.994	980.603
NODE	10	42976.551	58769.633	60	0	0	159.994	99.994	980.601
NODE	11	43206.449	57711.070	70	0.004	0	159.994	89.994	882.533
NODE	14	40230.684	62047.141	100	0	0	159.922	59.922	587.628
NODE	15	40422.926	62089.008	95	0.016	0	159.922	64.922	636.661
NODE	18	39166.254	63687.059	95	0	0	159.882	64.882	636.273
NODE	22	39268.738	64822.898	100	0	0	159.859	59.859	587.013
NODE	23	39909.063	64775.117	97	0	0	159.847	62.847	616.318
NODE	24	40070.000	65120.000	100	0.008	0	159.847	59.847	586.896
NODE	26	40709.41	64695.695	87	0	0	159.837	72.837	714.280
NODE	27	40975.656	65193.734	95	0.01	0	159.836	64.836	635.823
NODE	28	41044.617	64654.902	90	0	0	159.834	69.834	684.834
NODE	29	41081.301	64201.805	85	0.002	0	159.834	74.834	733.867
NODE	32	42718.156	64386.148	60	0	0	159.822	99.822	978.914
NODE	33	42956.480	64035.477	60	0	0	159.822	99.822	978.914
NODE	34	43508.605	65097.652	90	0.002	0	159.814	69.814	684.641
NODE	36	44139.660	66521.734	65	0.002	0	159.805	94.805	929.711
NODE	40	44388.234	69100.500	95	0	0	159.790	64.790	635.374
NODE	42	41641.988	68676.688	83	0.008	0	159.774	76.774	752.890
NODE	43	41374.945	70183.242	90	0.006	0	159.774	69.774	684.246
NODE	45	39038.203	69644.320	103	0.006	0	159.771	56.771	556.732
NODE	46	39189.031	69502.156	80	0	0	159.771	79.771	782.285
NODE	49	40124.359	67848.398	100	0.014	0	159.768	59.768	586.121
NODE	50	38080.191	69118.727	102	0	0	159.772	57.772	566.546
NODE	51	38105.000	68782.109	105	0.006	0	159.772	54.772	537.125
NODE	52	35361.816	68379.352	120	0	0	159.776	39.776	390.072
NODE	53	35206.309	68640.992	120	0.014	0	159.776	39.776	390.067
NODE	54	35765.785	67745.406	135	0	0	159.781	24.781	243.017
NODE	57	36578.992	68008.797	115	0.004	0	159.781	44.781	439.148
NODE	59	36688.852	65692.633	110	0	0	159.798	49.798	488.352
NODE	60	35872.203	65411.215	135	0.002	0	159.798	24.780	243.009
NODE	63	37318.598	64874.715	120	0.02	0	159.807	39.807	390.373
NODE	67	37404.902	62941.973	103	0.008	0	159.806	56.806	557.074
NODE	68	37963.340	64869.645	110	0	0	159.824	49.824	488.607
NODE	69	38401.652	64864.680	100	0	0	159.836	59.836	586.787
NODE	70	39026.297	64844.723	105	0	0	159.852	54.852	537.916
NODE	71	41455.762	69424.383	83	0	0	159.774	76.774	752.895

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at 75 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Elevation (m)	Output (I / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.994	99.994	980.603
NODE	3	41684.832	59579.738	60	0	0	159.994	99.994	980.603
NODE	6	41838.137	59494.414	60	0	0	159.994	99.994	980.603
NODE	10	42976.551	58769.633	60	0	0	159.994	99.994	980.603
NODE	11	43206.449	57711.070	70	0.004	0	159.994	89.994	882.536
NODE	14	40230.684	62047.141	100	0	0	159.922	59.922	587.628
NODE	15	40422.926	62089.008	95	0.016	0	159.922	64.922	636.660
NODE	18	39166.254	63687.059	95	0	0	159.882	64.882	636.272
NODE	22	39268.738	64822.898	100	0	0	159.859	59.859	587.012
NODE	23	39909.063	64775.117	97	0	0	159.856	62.856	616.403
NODE	24	40070.000	65120.000	100	0.008	0	159.856	59.856	586.983
NODE	26	40709.41	64695.695	87	0	0	159.853	72.853	714.443
NODE	27	40975.656	65193.734	95	0.01	0	159.853	64.853	635.989
NODE	28	41044.617	64654.902	90	0	0	159.853	69.853	685.016
NODE	29	41081.301	64201.805	85	0.002	0	159.853	74.853	734.049
NODE	32	42718.156	64386.148	60	0	0	159.850	99.850	979.184
NODE	33	42956.480	64035.477	60	0	0	159.850	99.850	979.184
NODE	34	43508.605	65097.652	90	0.002	0	159.848	69.848	684.967
NODE	36	44139.660	66521.734	65	0.002	0	159.845	94.845	930.108
NODE	40	44388.234	69100.500	95	0	0	159.842	64.842	635.875
NODE	42	41641.988	68676.688	83	0.008	0	159.837	76.837	753.512
NODE	43	41374.945	70183.242	90	0.006	0	159.837	69.837	684.867
NODE	45	39038.203	69644.320	103	0.006	0	159.837	56.837	557.374
NODE	46	39189.031	69502.156	80	0	0	159.837	79.837	782.926
NODE	49	40124.359	67848.398	100	0.014	0	159.836	59.836	586.786
NODE	50	38080.191	69118.727	102	0	0	159.837	57.837	567.182
NODE	51	38105.000	68782.109	105	0.006	0	159.837	54.837	537.762
NODE	52	35361.816	68379.352	120	0	0	159.838	39.838	390.675
NODE	53	35206.309	68640.992	120	0.014	0	159.838	39.838	390.673
NODE	54	35765.785	67745.406	135	0	0	159.839	24.839	243.587
NODE	57	36578.992	68008.797	115	0.004	0	159.839	44.839	439.719
NODE	59	36688.852	65692.633	110	0	0	159.844	49.844	488.795
NODE	60	35872.203	65411.215	135	0.002	0	159.843	24.843	243.63
NODE	63	37318.598	64874.715	120	0.02	0	159.846	39.846	390.751
NODE	67	37404.902	62941.973	103	0.008	0	159.845	56.845	557.461
NODE	68	37963.340	64869.645	110	0	0	159.850	49.850	488.860
NODE	69	38401.652	64864.680	100	0	0	159.853	59.853	586.955
NODE	70	39026.297	64844.723	105	0	0	159.857	54.857	537.963
NODE	71	41455.762	69424.383	83	0	0	159.837	76.837	753.514

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at 100 mm

TYPE	No	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Elevation (m)	Output $\text { (} \mathrm{l} / \mathrm{s} \text {) }$	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	E.G.L. (m)	$\begin{gathered} \text { Head } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.999	99.999	980.646
NODE	3	41684.832	59579.738	60	0	0	159.999	99.999	980.646
NODE	6	41838.137	59494.414	60	0	0	159.999	99.999	980.646
NODE	10	42976.551	58769.633	60	0	0	159.999	99.999	980.646
NODE	11	43206.449	57711.070	70	0.004	0	159.999	89.999	882.580
NODE	14	40230.684	62047.141	100	0	0	159.981	59.981	588.207
NODE	15	40422.926	62089.008	95	0.016	0	159.981	64.981	637.240
NODE	18	39166.254	63687.059	95	0	0	159.971	64.971	637.144
NODE	22	39268.738	64822.898	100	0	0	159.965	59.965	588.055
NODE	23	39909.063	64775.117	97	0	0	159.965	62.965	617.468
NODE	24	40070.000	65120.000	100	0.008	0	159.965	59.965	588.048
NODE	26	40709.41	64695.695	87	0	0	159.964	72.964	715.527
NODE	27	40975.656	65193.734	95	0.01	0	159.964	64.964	637.074
NODE	28	41044.617	64654.902	90	0	0	159.964	69.964	686.106
NODE	29	41081.301	64201.805	85	0.002	0	159.964	74.964	735.139
NODE	32	42718.156	64386.148	60	0	0	159.963	99.963	980.297
NODE	33	42956.480	64035.477	60	0	0	159.963	99.963	980.297
NODE	34	43508.605	65097.652	90	0.002	0	159.962	69.962	686.094
NODE	36	44139.660	66521.734	65	0.002	0	159.962	94.962	931.253
NODE	40	44388.234	69100.500	95	0	0	159.961	64.961	637.046
NODE	42	41641.988	68676.688	83	0.008	0	159.960	76.960	754.715
NODE	43	41374.945	70183.242	90	0.006	0	159.960	69.960	686.069
NODE	45	39038.203	69644.320	103	0.006	0	159.960	56.960	558.582
NODE	46	39189.031	69502.156	80	0	0	159.960	79.960	784.133
NODE	49	40124.359	67848.398	100	0.014	0	159.960	59.960	587.999
NODE	50	38080.191	69118.727	102	0	0	159.960	57.960	568.389
NODE	51	38105.000	68782.109	105	0.006	0	159.960	54.960	538.969
NODE	52	35361.816	68379.352	120	0	0	159.960	39.960	391.872
NODE	53	35206.309	68640.992	120	0.014	0	159.960	39.960	391.872
NODE	54	35765.785	67745.406	135	0	0	159.960	24.960	244.776
NODE	57	36578.992	68008.797	115	0.004	0	159.960	44.960	440.908
NODE	59	36688.852	65692.633	110	0	0	159.961	49.961	489.952
NODE	60	35872.203	65411.215	135	0.002	0	159.961	24.961	244.787
NODE	63	37318.598	64874.715	120	0.02	0	159.962	39.962	391.892
NODE	67	37404.902	62941.973	103	0.008	0	159.962	56.962	558.603
NODE	68	37963.340	64869.645	110	0	0	159.963	49.963	489.968
NODE	69	38401.652	64864.680	100	0	0	159.964	59.964	588.041
NODE	70	39026.297	64844.723	105	0	0	159.965	54.965	539.018
NODE	71	41455.762	69424.383	83	0	0	159.960	76.960	754.715

Results of residual pressure with demand rate at $50 \mathrm{l} / \mathrm{c} /$ day and pipe size at 150 mm

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Elevation (m)	Output (l / s)	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	160.000	100.000	980.658
NODE	3	41684.832	59579.738	60	0	0	160.000	100.000	980.658
NODE	6	41838.137	59494.414	60	0	0	160.000	100.000	980.658
NODE	10	42976.551	58769.633	60	0	0	160.000	100.000	980.658
NODE	11	43206.449	57711.070	70	0.004	0	160.000	90.000	882.592
NODE	14	40230.684	62047.141	100	0	0	159.997	59.997	588.370
NODE	15	40422.926	62089.008	95	0.016	0	159.997	64.997	637.403
NODE	18	39166.254	63687.059	95	0	0	159.996	64.996	637.39
NODE	22	39268.738	64822.898	100	0	0	159.995	59.995	588.349
NODE	23	39909.063	64775.117	97	0	0	159.995	62.995	617.768
NODE	24	40070.000	65120.000	100	0.008	0	159.995	59.995	588.348
NODE	26	40709.41	64695.695	87	0	0	159.995	72.995	715.833
NODE	27	40975.656	65193.734	95	0.01	0	159.995	64.995	637.38
NODE	28	41044.617	64654.902	90	0	0	159.995	69.995	686.413
NODE	29	41081.301	64201.805	85	0.002	0	159.995	74.995	735.445
NODE	32	42718.156	64386.148	60	0	0	159.995	99.995	980.610
NODE	33	42956.480	64035.477	60	0	0	159.995	99.995	980.610
NODE	34	43508.605	65097.652	90	0.002	0	159.995	69.995	686.411
NODE	36	44139.660	66521.734	65	0.002	0	159.995	94.995	931.575
NODE	40	44388.234	69100.500	95	0	0	159.995	64.995	637.376
NODE	42	41641.988	68676.688	83	0.008	0	159.994	76.994	755.054
NODE	43	41374.945	70183.242	90	0.006	0	159.994	69.994	686.407
NODE	45	39038.203	69644.320	103	0.006	0	159.994	56.994	558.922
NODE	46	39189.031	69502.156	80	0	0	159.994	79.994	784.473
NODE	49	40124.359	67848.398	100	0.014	0	159.994	59.994	588.341
NODE	50	38080.191	69118.727	102	0	0	159.994	57.994	568.728
NODE	51	38105.000	68782.109	105	0.006	0	159.994	54.994	539.308
NODE	52	35361.816	68379.352	120	0	0	159.994	39.994	392.210
NODE	53	35206.309	68640.992	120	0.014	0	159.994	39.994	392.210
NODE	54	35765.785	67745.406	135	0	0	159.995	24.995	245.111
NODE	57	36578.992	68008.797	115	0.004	0	159.994	44.994	441.243
NODE	59	36688.852	65692.633	110	0	0	159.995	49.995	490.278
NODE	60	35872.203	65411.215	135	0.002	0	159.995	24.995	245.113
NODE	63	37318.598	64874.715	120	0.02	0	159.995	39.995	392.212
NODE	67	37404.902	62941.973	103	0.008	0	159.995	56.995	558.924
NODE	68	37963.340	64869.645	110	0	0	159.995	49.995	490.280
NODE	69	38401.652	64864.680	100	0	0	159.995	59.995	588.347
NODE	70	39026.297	64844.723	105	0	0	159.995	54.995	539.315
NODE	71	41455.762	69424.383	83	0	0	159.994	76.994	755.054

APPENDIX I

RESULTS OF EFFECT OF DEMAND RATE ON COST

PRESSURE AT 10 m

Results of pressure head at pipe size of 25 mm
Maximum Demand rate $=33 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emitter Coeff $\left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	E.G.L. (m)	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.449	99.449	975.257
NODE	3	41684.832	59579.738	60	0	0	159.449	99.449	975.253
NODE	6	41838.137	59494.414	60	0	0	159.448	99.448	975.244
NODE	10	42976.551	58769.633	60	0	0	159.441	99.441	975.174
NODE	11	43206.449	57711.070	70	0.003	0	159.435	89.435	877.053
NODE	14	40230.684	62047.141	100	0	0	152.595	52.595	515.782
NODE	15	40422.926	62089.008	95	0.011	0	152.584	57.584	564.704
NODE	18	39166.254	63687.059	95	0	0	148.905	53.905	528.621
NODE	22	39268.738	64822.898	100	0	0	146.752	46.752	458.483
NODE	23	39909.063	64775.117	97	0	0	146.479	49.479	485.224
NODE	24	40070.000	65120.000	100	0.005	0	146.474	46.474	455.754
NODE	26	40709.41	64695.695	87	0	0	146.228	59.228	580.825
NODE	27	40975.656	65193.734	95	0.007	0	146.214	51.214	502.232
NODE	28	41044.617	64654.902	(90	0	0	146.167	56.167	550.804
NODE	29	41081.301	64201.805	85	0.001	0	146.166	61.166	599.833
NODE	32	42718.156	64386.148	60	0	0	145.888	85.888	842.273
NODE	33	42956.480	64035.477	60	0	0	145.888	85.888	842.273
NODE	34	43508.605	65097.652	90	0.001	0	145.714	55.714	546.361
NODE	36	44139.660	66521.734	65	0.001	0	145.482	80.482	789.251
NODE	40	44388.234	69100.500	95	0	0	145.135	50.135	491.65
NODE	42	41641.988	68676.688	83	0.005	0	144.729	61.729	605.351
NODE	43	41374.945	70183.242	90	0.004	0	144.733	54.733	536.740
NODE	45	39038.203	69644.320	103	0.004	0	144.660	41.660	408.542
NODE	46	39189.031	69502.156	80	0	0	144.662	64.662	634.111
NODE	49	40124.359	67848.398	100	0.009	0	144.585	44.585	437.232
NODE	50	38080.191	69118.727	102	0	0	144.676	42.676	418.508
NODE	51	38105.000	68782.109	105	0.004	0	144.673	39.673	389.058
NODE	52	35361.816	68379.352	120	0	0	144.783	24.783	243.039
NODE	53	35206.309	68640.992	120	0.009	0	144.771	24.771	242.919
NODE	54	35765.785	67745.406	135	0	0	144.889	9.889	96.977
NODE	57	36578.992	68008.797	115	0.003	0	144.884	29.884	293.065
NODE	59	36688.852	65692.633	110	0	0	145.313	35.313	346.299
NODE	60	35872.203	65411.215	135	0.001	0	145.312	10.312	101.128
NODE	63	37318.598	64874.715	120	0.013	0	145.525	25.525	250.309
NODE	67	37404.902	62941.973	103	0.005	0	145.498	42.498	416.765
NODE	68	37963.340	64869.645	110	0	0	145.930	35.930	352.348
NODE	69	38401.652	64864.680	100	0	0	146.206	46.206	453.124
NODE	70	39026.297	64844.723	105	0	0	146.599	41.599	407.941
NODE	71	41455.762	69424.383	83	0	0	144.739	61.739	605.453

Results of pressure head at pipe size (50 mm with 25 mm)
Maximum Demand rate $=87 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Elevation (m)	Output (1/s)	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.754	99.754	978.248
NODE	3	41684.832	59579.738	60	0	0	159.752	99.752	978.227
NODE	6	41838.137	59494.414	60	0	0	159.748	99.748	978.184
NODE	10	42976.551	58769.633	60	0	0	159.714	99.714	977.851
NODE	11	43206.449	57711.070	70	0.007	0	159.686	89.686	879.516
NODE	14	40230.684	62047.141	100	0	0	156.672	56.672	555.757
NODE	15	40422.926	62089.008	95	0.028	0	156.667	61.667	604.743
NODE	18	39166.254	63687.059	95	0	0	154.995	59.995	588.349
NODE	22	39268.738	64822.898	100	0	0	154.018	54.018	529.729
NODE	23	39909.063	64775.117	97	0	0	152.364	55.364	542.931
NODE	24	40070.000	65120.000	100	0.014	0	152.329	52.329	513.172
NODE	26	40709.41	64695.695	87	0	0	150.871	63.871	626.361
NODE	27	40975.656	65193.734	95	0.017	0	150.798	55.798	547.186
NODE	28	41044.617	64654.902	90	0	0	150.491	60.491	593.208
NODE	29	41081.301	64201.805	85	0.003	0	150.488	65.488	642.218
NODE	32	42718.156	64386.148	60	0	0	148.783	88.783	870.657
NODE	33	42956.480	64035.477	60	0	0	148.783	88.783	870.657
NODE	34	43508.605	65097.652	90	0.003	0	147.710	57.710	565.943
NODE	36	44139.660	66521.734	65	0.003	0	146.306	81.306	797.331
NODE	40	44388.234	69100.500	95	0	0	144.235	49.235	482.823
NODE	42	41641.988	68676.688	83	0.014	0	141.806	58.806	576.682
NODE	43	41374.945	70183.242	90	0.01	0	141.838	51.838	508.357
NODE	45	39038.203	69644.320	103	0.01	0	141.417	38.417	376.743
NODE	46	39189.031	69502.156	80	0	0	141.427	61.427	602.393
NODE	49	40124.359	67848.398	100	0.024	0	140.958	40.958	401.663
NODE	50	38080.191	69118.727	102	0	0	141.517	39.517	387.526
NODE	51	38105.000	68782.109	105	0.01	0	141.500	36.500	357.943
NODE	52	35361.816	68379.352	120	0	0	142.145	22.145	217.163
NODE	53	35206.309	68640.992	120	0.024	0	142.069	22.069	216.425
NODE	54	35765.785	67745.406	135	0	0	142.780	7.780	76.297
NODE	57	36578.992	68008.797	115	0.007	0	142.759	27.759	272.218
NODE	59	36688.852	65692.633	110	0	0	145.25	35.25	345.680
NODE	60	35872.203	65411.215	135	0.003	0	145.245	10.245	100.470
NODE	63	37318.598	64874.715	120	0.035	0	146.500	26.500	259.874
NODE	67	37404.902	62941.973	103	0.014	0	146.324	43.324	424.86
NODE	68	37963.340	64869.645	110	0	0	148.980	38.980	382.263
NODE	69	38401.652	64864.680	100	0	0	150.672	50.672	496.921
NODE	70	39026.297	64844.723	105	0	0	153.075	48.075	471.457
NODE	71	41455.762	69424.383	83	0	0	141.876	58.876	577.369

Results of pressure head at pipe size (63 mm with 25 mm)
Maximum Demand rate $=103 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { X } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Elevation (m)	Output (l/s)	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	E.G.L. (m)	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.900	99.890	979.600
NODE	3	41684.832	59579.738	60	0	0	159.900	99.890	979.500
NODE	6	41838.137	59494.414	60	0	0	159.900	99.880	979.500
NODE	10	42976.551	58769.633	60	0	0	159.800	99.840	979.100
NODE	11	43206.449	57711.070	70	0.008	0	159.800	89.800	880.700
NODE	14	40230.684	62047.141	100	0	0	158.500	58.500	573.600
NODE	15	40422.926	62089.008	95	0.033	0	158.500	63.490	622.700
NODE	18	39166.254	63687.059	95	0	0	157.700	62.740	615.200
NODE	22	39268.738	64822.898	100	0	0	157.300	57.290	561.800
NODE	23	39909.063	64775.117	97	0	0	155.000	57.970	568.500
NODE	24	40070.000	65120.000	100	0.016	0	154.900	54.920	538.600
NODE	26	40709.41	64695.695	87	0	0	152.800	65.830	645.600
NODE	27	40975.656	65193.734	95	0.021	0	152.700	57.720	566.100
NODE	28	41044.617	64654.902	90	0	0	152.300	62.290	610.900
NODE	29	41081.301	64201.805	85	0.004	0	152.300	67.290	659.900
NODE	32	42718.156	64386.148	60	0	0	149.900	89.900	881.600
NODE	33	42956.480	64035.477	60	0	0	149.900	89.900	881.600
NODE	34	43508.605	65097.652	90	0.004	0	148.400	58.400	572.700
NODE	36	44139.660	66521.734	65	0.004	0	146.500	81.460	798.800
NODE	40	44388.234	69100.500	95	0	0	143.600	48.640	477.000
NODE	42	41641.988	68676.688	83	0.016	0	140.300	57.330	562.300
NODE	43	41374.945	70183.242	90	0.012	0	140.400	50.370	494.000
NODE	45	39038.203	69644.320	103	0.012	0	139.800	36.780	360.700
NODE	46	39189.031	69502.156	80	0	0	139.800	59.800	586.400
NODE	49	40124.359	67848.398	100	0.029	0	139.100	39.130	383.700
NODE	50	38080.191	69118.727	102	0	0	139.900	37.930	371.900
NODE	51	38105.000	68782.109	105	0.012	0	139.900	34.900	342.300
NODE	52	35361.816	68379.352	120	0	0	140.800	20.820	204.200
NODE	53	35206.309	68640.992	120	0.029	0	140.700	20.710	203.100
NODE	54	35765.785	67745.406	135	0	0	141.700	6.725	65.950
NODE	57	36578.992	68008.797	115	0.008	0	141.700	26.700	261.800
NODE	59	36688.852	65692.633	110	0	0	145.200	35.190	345.100
NODE	60	35872.203	65411.215	135	0.004	0	145.200	10.180	99.850
NODE	63	37318.598	64874.715	120	0.041	0	147.000	26.960	264.400
NODE	67	37404.902	62941.973	103	0.016	0	146.700	43.740	428.900
NODE	68	37963.340	64869.645	110	0	0	150.400	40.370	395.900
NODE	69	38401.652	64864.680	100	0	0	152.700	52.700	516.800
NODE	70	39026.297	64844.723	105	0	0	156.000	51.000	500.100
NODE	71	41455.762	69424.383	83	0	0	140.400	57.420	563.100

Results of pressure head at pipe size of 50 mm
Maximum Demand rate $=130 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (l/s)	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	E.G.L. (m)	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.500	99.470	975.400
NODE	3	41684.832	59579.738	60	0	0	159.500	99.470	975.400
NODE	6	41838.137	59494.414	60	0	0	159.500	99.470	975.400
NODE	10	42976.551	58769.633	60	0	0	159.500	99.460	975.400
NODE	11	43206.449	57711.070	70	0.01	0	159.500	89.460	877.300
NODE	14	40230.684	62047.141	100	0	0	152.800	52.770	517.500
NODE	15	40422.926	62089.008	95	0.042	0	152.800	57.760	566.400
NODE	18	39166.254	63687.059	95	0	0	149.100	54.120	530.700
NODE	22	39268.738	64822.898	100	0	0	147.000	46.980	460.700
NODE	23	39909.063	64775.117	97	0	0	146.700	49.710	487.500
NODE	24	40070.000	65120.000	100	0.021	0	146.700	46.710	458.000
NODE	26	40709.41	64695.695	87	0	0	146.500	59.460	583.100
NODE	27	40975.656	65193.734	95	0.026	0	146.500	51.450	504.600
NODE	28	41044.617	64654.902	90	0	0	146.400	56.400	553.100
NODE	29	41081.301	64201.805	85	0.005	0	146.400	61.400	602.100
NODE	32	42718.156	64386.148	60	0	0	146.100	86.120	844.500
NODE	33	42956.480	64035.477	60	0	0	146.100	86.120	844.500
NODE	34	43508.605	65097.652	90	0.005	0	145.900	55.940	548.600
NODE	36	44139.660	66521.734	65	0.005	0	145.700	80.710	791.500
NODE	40	44388.234	69100.500	95	0	0	145.400	50.380	494.000
NODE	42	41641.988	68676.688	83	0.021	0	145.000	61.990	607.900
NODE	43	41374.945	70183.242	90	0.016	0	145.000	54.990	539.300
NODE	45	39038.203	69644.320	103	0.016	0	144.900	41.930	411.100
NODE	46	39189.031	69502.156	80	0	0	144.900	64.930	636.700
NODE	49	40124.359	67848.398	100	0.036	0	144.900	44.850	439.900
NODE	50	38080.191	69118.727	102	0	0	144.900	42.940	421.100
NODE	51	38105.000	68782.109	105	0.016	0	144.900	39.940	391.700
NODE	52	35361.816	68379.352	120	0	0	145.100	25.050	245.700
NODE	53	35206.309	68640.992	120	0.036	0	145.000	25.040	245.600
NODE	54	35765.785	67745.406	135	0	0	145.200	10.160	99.630
NODE	57	36578.992	68008.797	115	0.01	0	145.200	30.160	295.700
NODE	59	36688.852	65692.633	110	0	0	145.600	35.570	348.800
NODE	60	35872.203	65411.215	135	0.005	0	145.600	10.560	103.600
NODE	63	37318.598	64874.715	120	0.052	0	145.800	25.770	252.700
NODE	67	37404.902	62941.973	103	0.021	0	145.700	42.740	419.200
NODE	68	37963.340	64869.645	110	0	0	146.200	36.170	354.700
NODE	69	38401.652	64864.680	100	0	0	146.400	46.440	455.500
NODE	70	39026.297	64844.723	105	0	0	146.800	41.830	410.200
NODE	71	41455.762	69424.383	83	0	0	145.000	62.000	608.000

Results of pressure head at pipe size of 50 mm
Maximum Demand rate $=130 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { X } \\ (\mathrm{m}) \end{gathered}$	Elevation (m)	Output (l / s)	Emitter Coeff ($\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.500	99.470	975.400
NODE	3	41684.832	59579.738	60	0	0	159.500	99.470	975.400
NODE	6	41838.137	59494.414	60	0	0	159.500	99.470	975.400
NODE	10	42976.551	58769.633	60	0	0	159.500	99.460	975.400
NODE	11	43206.449	57711.070	70	0.01	0	159.500	89.460	877.300
NODE	14	40230.684	62047.141	100	0	0	152.800	52.770	517.500
NODE	15	40422.926	62089.008	95	0.042	0	152.800	57.760	566.400
NODE	18	39166.254	63687.059	95	0	0	149.100	54.120	530.700
NODE	22	39268.738	64822.898	100	0	0	147.000	46.980	460.700
NODE	23	39909.063	64775.117	97	0	0	146.700	49.710	487.500
NODE	24	40070.000	65120.000	100	0.021	0	146.700	46.710	458.000
NODE	26	40709.41	64695.695	87	0	0	146.500	59.460	583.100
NODE	27	40975.656	65193.734	95	0.026	0	146.500	51.450	504.600
NODE	28	41044.617	64654.902	90	0	0	146.400	56.400	553.100
NODE	29	41081.301	64201.805	85	0.005	0	146.400	61.400	602.100
NODE	32	42718.156	64386.148	60	0	0	146.100	86.120	844.500
NODE	33	42956.480	64035.477	60	0	0	146.100	86.120	844.500
NODE	34	43508.605	65097.652	90	0.005	0	145.900	55.940	548.600
NODE	36	44139.660	66521.734	65	0.005	0	145.700	80.710	791.500
NODE	40	44388.234	69100.500	95	0	0	145.400	50.380	494.000
NODE	42	41641.988	68676.688	83	0.021	0	145.000	61.990	607.900
NODE	43	41374.945	70183.242	90	0.016	0	145.000	54.990	539.300
NODE	45	39038.203	69644.320	103	0.016	0	144.900	41.930	411.100
NODE	46	39189.031	69502.156	80	0	0	144.900	64.930	636.700
NODE	49	40124.359	67848.398	100	0.036	0	144.900	44.850	439.900
NODE	50	38080.191	69118.727	102	0	0	144.900	42.940	421.100
NODE	51	38105.000	68782.109	105	0.016	0	144.900	39.940	391.700
NODE	52	35361.816	68379.352	120	0	0	145.100	25.050	245.700
NODE	53	35206.309	68640.992	120	0.036	0	145.000	25.040	245.600
NODE	54	35765.785	67745.406	135	0	0	145.200	10.160	99.630
NODE	57	36578.992	68008.797	115	0.01	0	145.200	30.160	295.700
NODE	59	36688.852	65692.633	110	0	0	145.600	35.570	348.800
NODE	60	35872.203	65411.215	135	0.005	0	145.600	10.560	103.600
NODE	63	37318.598	64874.715	120	0.052	0	145.800	25.770	252.700
NODE	67	37404.902	62941.973	103	0.021	0	145.700	42.740	419.200
NODE	68	37963.340	64869.645	110	0	0	146.200	36.170	354.700
NODE	69	38401.652	64864.680	100	0	0	146.400	46.440	455.500
NODE	70	39026.297	64844.723	105	0	0	146.800	41.830	410.200
NODE	71	41455.762	69424.383	83	0	0	145.000	62.000	608.000

Results of pressure head at pipe size (63 mm with 50 mm)
Maximum Demand rate $=219 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} x \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Elevation } \\ (\mathrm{m}) \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \text { Output } \\ (1 / \mathrm{s}) \end{array}$	$\begin{array}{\|c\|} \hline \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \\ \hline \end{array}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Head } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.500	99.540	976.200
NODE	3	41684.832	59579.738	60	0	0	159.500	99.540	976.200
DE	6	41838.137	59494.414	60	0	0	159.500	99.540	976.100
NODE	10	42976.551	58769.633	60	0	0	159.500	99.520	976.000
NODE	11	43206.449	57711.070	70	0.018	0	159.500	89.510	877.800
NODE	14	40230.684	62047.141	100	0	0	153.800	53.790	527.500
NODE	15	40422.926	62089.008	95	0.07	0	153.800	58.790	576.500
NODE	18	39166.254	63687.059	95	0	0	150.600	55.650	545.700
NODE	22	39268.738	64822.898	100	0	0	148.800	48.810	478.700
ODE	23	39909.063	64775.117	97	0	0	148.100	51.100	501.100
NODE	24	40070.000	65120.000	100	0.035	0	148.100	48.080	471.500
NODE	26	40709.41	64695.695	87	0	0	147.400	60.440	592.700
ODE	27	40975.656	65193.734	95	0.044	0	147.400	52.410	513.900
NODE	28	41044.617	64654.902	90	0	0	147.300	57.270	561.600
NODE	29	41081.301	64201.805	85	0.009	0	147.300	62.270	610.700
NODE	32	42718.156	64386.148	60	0	0	146.500	86.530	848.600
NODE	33	42956.480	64035.477	60	0	0	146.500	86.530	848.600
NODE	34	43508.605	65097.652	90	0.009	0	146.100	56.070	549.800
NODE	36	44139.660	66521.734	65	0.009	0	145.500	80.470	789.100
NODE	40	44388.234	69100.500	95	0	0	144.600	49.600	486.400
NODE	42	41641.988	68676.688	83	0.035	0	143.600	60.590	594.200
NODE	43	41374.945	70183.242	90	0.026	0	143.600	53.600	525.600
NODE	45	39038.203	69644.320	103	0.026	0	143.400	40.430	396.400
NODE	46	39189.031	69502.156	80	0	0	143.400	63.430	622.000
NODE	49	40124.359	67848.398	100	0.061	0	143.200	43.23	424.000
NODE	50	38080.191	69118.727	102	0	0	143.500	41.470	406.700
NODE	51	38105.000	68782.109	105	0.026	0	143.500	38.460	377.200
NODE	52	35361.816	68379.352	120	0	0	143.700	23.750	232.900
NODE	53	35206.309	68640	120	0.061	0	143.700	23.720	232.600
NODE	54	35765.785	67745.406	135	0	0	144.000	9.020	88.450
NODE	57	36578.992	68008.797	115	0.018	0	144.000	29.010	284.500
NODE	59	36688.852	65692.633	110	0	0	145.100	35.08	344.000
NODE	60	35872.203	65411.215	135	0.009	0	145.100	10.080	98.820
NODE	63	37318.598	64874.715	120	0.088	0	145.600	25.630	251.300
NODE	67	37404.902	62941.973	103	0.035	0	145.600	42.550	417.300
NODE	68	37963.340	64869.645	110	0	0	146.700	36.680	359.700
NODE	69	38401.652	64864.680	100	0	0	147.400	47.390	464.800
NODE	70	39026.297	64844.723	105	0	0	148.400	43.410	425.700
NODE	71	41455.762	69424.383	83	0	0	143.600	60.620	594.400

Results of pressure head at pipe size (75 mm with 50 mm)
Maximum Demand rate $=242 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Elevation } \\ (\mathrm{m}) \end{array}$	Output (I / s)	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.776	99.776	978.461
NODE	3	41684.832	59579.738	60	0	0	159.773	99.773	978.439
NODE	6	41838.137	59494.414	60	0	0	159.769	99.769	978.394
NODE	10	42976.551	58769.633	60	0	0	159.734	99.734	978.048
NODE	11	43206.449	57711.07	70	0.029	0	159.705	89.705	879.704
NODE	14	40230.684	62047.141	100	0	0	156.962	56.962	558.601
NODE	15	40422.926	62089.008	95	0.116	0	156.958	61.958	607.593
NODE	18	39166.254	63687.059	95	0	0	155.424	60.424	592.556
NODE	22	39268.738	64822.898	100	0	0	154.528	54.528	534.730
NODE	23	39909.063	64775.117	97	0	0	152.733	55.733	546.556
NODE	24	40070	65120	100	0.058	0	152.698	52.698	516.785
NODE	26	40709.41	64695.695	87	0	0	151.100	64.100	628.605
NODE	27	40975.656	65193.734	95	0.072	0	151.021	56.021	549.373
NODE	28	41044.617	64654.902	90	0	0	150.682	60.682	595.084
NODE	29	41081.301	64201.805	85	0.014	0	150.679	65.679	644.087
NODE	32	42718.156	64386.148	60	0	0	148.824	88.824	871.060
NODE	33	42956.48	64035.477	60	0	0	148.824	88.824	871.060
NODE	34	43508.605	65097.652	90	0.014	0	147.657	57.657	565.416
NODE	36	44139.66	66521.734	65	0.014	0	146.145	81.145	795.754
NODE	40	44388.234	69100.5	95	0	0	143.944	48.944	479.975
NODE	42	41641.988	68676.688	83	0.058	0	141.365	58.365	572.361
NODE	43	41374.945	70183.242	90	0.043	0	141.396	51.396	504.021
NODE	45	39038.203	69644.32	103	0.043	0	140.953	37.953	372.185
NODE	46	39189.031	69502.156	80	0	0	140.964	60.964	597.846
NODE	49	40124.359	67848.398	100	0.101	0	140.463	40.463	396.805
NODE	50	38080.191	69118.727	102	0	0	141.064	39.064	383.083
NODE	51	38105	68782.109	105	0.043	0	141.045	36.045	353.483
NODE	52	35361.816	68379.352	120	0	0	141.764	21.764	213.433
NODE	53	35206.309	68640.992	120	0.101	0	141.684	21.684	212.645
NODE	54	35765.785	67745.406	135	0	0	142.458	7.458	73.133
NODE	57	36578.992	68008.797	115	0.029	0	142.435	27.435	269.046
NODE	59	36688.852	65692.633	110	0	0	145.134	35.134	344.543
NODE	60	35872.203	65411.215	135	0.014	0	145.128	10.128	99.321
NODE	63	37318.598	64874.715	120	0.145	0	146.502	26.502	259.894
NODE	67	37404.902	62941.973	103	0.058	0	146.319	43.319	424.816
NODE	68	37963.34	64869.645	110	0	0	149.150	39.150	383.926
NODE	69	38401.652	64864.68	100	0	0	150.956	50.956	499.706
NODE	70	39026.297	64844.723	105	0	0	153.522	48.522	475.834
NODE	71	41455.762	69424.383	83	0	0	141.438	58.437	573.073

Results of pressure head at pipe size of 63 mm
Maximum Demand rate $=362 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} \mathrm{Y} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{X} \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output (I/s)	Emitter Coeff $\left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.500	99.480	975.500
NODE	3	41684.832	59579.738	60	0	0	159.500	99.480	975.500
NODE	6	41838.137	59494.414	60	0	0	159.500	99.480	975.500
NODE	10	42976.551	58769.633	60	0	0	159.500	99.470	975.500
NODE	11	43206.449	57711.070	70	0.029	0	159.500	89.470	877.300
NODE	14	40230.684	62047.141	100	0	0	152.900	52.900	518.700
NODE	15	40422.926	62089.008	95	0.116	0	152.900	57.890	567.700
NODE	18	39166.254	63687.059	95	0	0	149.300	54.300	532.500
NODE	22	39268.738	64822.898	100	0	0	147.200	47.210	462.900
NODE	23	39909.063	64775.117	97	0	0	146.900	49.940	489.700
NODE	24	40070.000	65120.000	100	0.058	0	146.900	46.930	460.300
NODE	26	40709.41	64695.695	87	0	0	146.700	59.700	585.400
NODE	27	40975.656	65193.734	95	0.072	0	146.700	51.680	506.800
NODE	28	41044.617	64654.902	90	0	0	146.600	56.630	555.400
NODE	29	41081.301	64201.805	85	0.014	0	146.600	61.630	604.400
NODE	32	42718.156	64386.148	60	0	0	146.400	86.360	846.900
NODE	33	42956.480	64035.477	60	0	0	146.400	86.360	846.900
NODE	34	43508.605	65097.652	90	0.014	0	146.200	56.180	551.000
NODE	36	44139.660	66521.734	65	0.014	0	146.000	80.960	793.900
NODE	40	44388.234	69100.500	95	0	0	145.600	50.630	496.500
NODE	42	41641.988	68676.688	83	0.058	0	145.200	62.250	610.400
NODE	43	41374.945	70183.242	90	0.043	0	145.300	55.250	541.800
NODE	45	39038.203	69644.320	103	0.043	0	145.200	42.190	413.700
NODE	46	39189.031	69502.156	80	0	0	145.200	65.190	639.300
NODE	49	40124.359	67848.398	100	0.101	0	145.100	45.110	442.400
NODE	50	38080.191	69118.727	102	0	0	145.200	43.200	423.700
NODE	51	38105.000	68782.109	105	0.043	0	145.200	40.200	394.200
NODE	52	35361.816	68379.352	120	0	0	145.300	25.310	248.200
NODE	53	35206.309	68640.992	120	0.101	0	145.300	25.300	248.100
NODE	54	35765.785	67745.406	135	0	0	145.400	10.410	102.100
NODE	57	36578.992	68008.797	115	0.029	0	145.400	30.410	298.200
NODE	59	36688.852	65692.633	110	0	0	145.800	35.810	351.200
NODE	60	35872.203	65411.215	135	0.014	0	145.800	10.810	106.000
NODE	63	37318.598	64874.715	120	0.145	0	146.000	26.010	255.100
NODE	67	37404.902	62941.973	103	0.058	0	146.000	42.990	421.500
NODE	68	37963.340	64869.645	110	0	0	146.400	36.410	357.000
NODE	69	38401.652	64864.680	100	0	0	146.700	46.670	457.700
NODE	70	39026.297	64844.723	105	0	0	147.100	42.060	412.400
NODE	71	41455.762	69424.383	83	0	0	145.300	62.260	610.600

Results of pressure head at pipe size (75 mm with 63 mm)
Maximum Demand rate $=486 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output $\text { (} \mathrm{l} / \mathrm{s} \text {) }$	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Head } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.600	99.610	976.800
NODE	3	41684.832	59579.738	60	0	0	159.600	99.610	976.800
NODE	6	41838.137	59494.414	60	0	0	159.600	99.610	976.800
NODE	10	42976.551	58769.633	60	0	0	159.600	99.590	976.600
NODE	11	43206.449	57711.070	70	0.039	0	159.600	89.570	878.400
NODE	14	40230.684	62047.141	100	0	0	154.700	54.740	536.800
NODE	15	40422.926	62089.008	95	0.156	0	154.700	59.730	585.700
NODE	18	39166.254	63687.059	95	0	0	152.100	57.070	559.700
NODE	22	39268.738	64822.898	100	0	0	150.500	50.520	495.400
NODE	23	39909.063	64775.117	97	0	0	149.500	52.500	514.800
NODE	24	40070.000	65120.000	100	0.078	0	149.500	49.480	485.200
NODE	26	40709.41	64695.695	87	0	0	148.600	61.570	603.800
NODE	27	40975.656	65193.734	95	0.097	0	148.500	53.530	524.900
NODE	28	41044.617	64654.902	90	0	0	148.300	58.340	572.100
NODE	29	41081.301	64201.805	85	0.019	0	148.300	63.330	621.100
NODE	32	42718.156	64386.148	60	0	0	147.300	87.280	855.900
NODE	33	42956.480	64035.477	60	0	0	147.300	87.280	855.900
NODE	34	43508.605	65097.652	90	0.019	0	146.600	56.620	555.200
NODE	36	44139.660	66521.734	65	0.019	0	145.800	80.760	792.000
NODE	40	44388.234	69100.500	95	0	0	144.500	49.520	485.600
NODE	42	41641.988	68676.688	83	0.078	0	143.100	60.060	589.000
NODE	43	41374.945	70183.242	90	0.058	0	143.100	53.080	520.500
NODE	45	39038.203	69644.320	103	0.058	0	142.800	39.830	390.500
NODE	46	39189.031	69502.156	80	0	0	142.800	62.830	616.200
NODE	49	40124.359	67848.398	100	0.136	0	142.500	42.550	417.200
NODE	50	38080.191	69118.727	102	0	0	142.900	40.890	401.000
NODE	51	38105.000	68782.109	105	0.058	0	142.900	37.880	371.500
NODE	52	35361.816	68379.352	120	0	0	143.300	23.290	228.400
NODE	53	35206.309	68640.992	120	0.136	0	143.200	23.240	227.900
NODE	54	35765.785	67745.406	135	0	0	143.700	8.682	85.140
NODE	57	36578.992	68008.797	115	0.039	0	143.700	28.670	281.100
NODE	59	36688.852	65692.633	110	0	0	145.200	35.200	345.200
NODE	60	35872.203	65411.215	135	0.019	0	145.200	10.200	100.000
NODE	63	37318.598	64874.715	120	0.194	0	146.000	25.980	254.800
NODE	67	37404.902	62941.973	103	0.078	0	145.900	42.880	420.500
NODE	68	37963.340	64869.645	110	0	0	147.500	37.480	367.500
NODE	69	38401.652	64864.680	100	0	0	148.500	48.500	475.600
NODE	70	39026.297	64844.723	105	0	0	149.900	44.950	440.800
NODE	71	41455.762	69424.383	83	0	0	143.100	60.100	589.400

Results of pressure head at pipe size of 75 mm
Maximum Demand rate $=587 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \end{gathered}$	Elevation (m)	Output $(\mathrm{l} / \mathrm{s})$	Emitter Coeff $\left(\mathrm{l} / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right)$	$\begin{aligned} & \text { E.G.L. } \\ & (\mathrm{m}) \end{aligned}$	$\begin{gathered} \text { Head } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.400	99.450	975.300
NODE	3	41684.832	59579.738	60	0	0	159.400	99.450	975.300
NODE	6	41838.137	59494.414	60	0	0	159.400	99.450	975.300
NODE	10	42976.551	58769.633	60	0	0	159.400	99.440	975.200
NODE	11	43206.449	57711.070	70	0.047	0	159.400	89.440	877.100
NODE	14	40230.684	62047.141	100	0	0	152.500	52.540	515.300
NODE	15	40422.926	62089.008	95	0.188	0	152.500	57.530	564.200
NODE	18	39166.254	63687.059	95	0	0	148.800	53.770	527.300
NODE	22	39268.738	64822.898	100	0	0	146.600	46.560	456.600
NODE	23	39909.063	64775.117	97	0	0	146.300	49.280	483.300
NODE	24	40070.000	65120.000	100	0.094	0	146.300	46.280	453.800
NODE	26	40709.41	64695.695	87	0	0	146.000	59.030	578.900
NODE	27	40975.656	65193.734	95	0.117	0	146.000	51.010	500.300
NODE	28	41044.617	64654.902	90	0	0	146.000	55.960	548.800
NODE	29	41081.301	64201.805	85	0.023	0	146.000	60.960	597.800
NODE	32	42718.156	64386.148	60	0	0	145.700	85.670	840.100
NODE	33	42956.480	64035.477	60	0	0	145.700	85.670	840.100
NODE	34	43508.605	65097.652	90	0.023	0	145.500	55.490	544.100
NODE	36	44139.660	66521.734	65	0.023	0	145.300	80.250	787.000
NODE	40	44388.234	69100.500	95	0	0	144.900	49.910	489.400
NODE	42	41641.988	68676.688	83	0.094	0	144.500	61.510	603.200
NODE	43	41374.945	70183.242	90	0.07	0	144.500	54.510	534.600
NODE	45	39038.203	69644.320	103	0.07	0	144.400	41.440	406.400
NODE	46	39189.031	69502.156	80	0	0	144.400	64.440	632.000
NODE	49	40124.359	67848.398	100	0.164	0	144.400	44.370	435.100
NODE	50	38080.191	69118.727	102	0	0	144.500	42.460	416.400
NODE	51	38105.000	68782.109	105	0.07	0	144.500	39.460	386.900
NODE	52	35361.816	68379.352	120	0	0	144.600	24.570	240.900
NODE	53	35206.309	68640.992	120	0.164	0	144.600	24.560	240.800
NODE	54	35765.785	67745.406	135	0	0	144.700	9.6780	94.900
NODE	57	36578.992	68008.797	115	0.047	0	144.700	29.670	291.000
NODE	59	36688.852	65692.633	110	0	0	145.100	35.100	344.200
NODE	60	35872.203	65411.215	135	0.023	0	145.100	10.100	99.000
NODE	63	37318.598	64874.715	120	0.235	0	145.300	25.310	248.200
NODE	67	37404.902	62941.973	103	0.094	0	145.300	42.280	414.600
NODE	68	37963.340	64869.645	110	0	0	145.700	35.720	350.300
NODE	69	38401.652	64864.680	100	0	0	146.000	46.010	451.200
NODE	70	39026.297	64844.723	105	0	0	146.400	41.410	406.100
NODE	71	41455.762	69424.383	83	0	0	144.500	61.520	603.300

Results of pressure head at pipe size of 100 mm
Maximum Demand rate $=12531 / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Elevation (m)	Output (I / s)	Emitter Coeff ($1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}$)	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	Head (m)	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.400	99.450	975.200
NODE	3	41684.832	59579.738	60	0	0	159.400	99.450	975.200
NODE	6	41838.137	59494.414	60	0	0	159.400	99.450	975.200
NODE	10	42976.551	58769.633	60	0	0	159.400	99.440	975.200
NODE	11	43206.449	57711.070	70	0.1	0	159.400	89.440	877.100
NODE	14	40230.684	62047.141	100	0	0	152.500	52.500	514.800
NODE	15	40422.926	62089.008	95	0.401	0	152.500	57.490	563.700
NODE	18	39166.254	63687.059	95	0	0	148.700	53.700	526.600
NODE	22	39268.738	64822.898	100	0	0	146.500	46.480	455.800
NODE	23	39909.063	64775.117	97	0	0	146.200	49.200	482.400
NODE	24	40070.000	65120.000	100	0.2	0	146.200	46.190	453.000
NODE	26	40709.41	64695.695	87	0	0	145.900	58.940	578.000
NODE	27	40975.656	65193.734	95	0.251	0	145.900	50.920	499.400
NODE	28	41044.617	64654.902	90	0	0	145.900	55.870	547.900
NODE	29	41081.301	64201.805	85	0.05	0	145.900	60.870	596.900
NODE	32	42718.156	64386.148	60	0	0	145.600	85.580	839.200
NODE	33	42956.480	64035.477	60	0	0	145.600	85.580	839.200
NODE	34	43508.605	65097.652	90	0.05	0	145.400	55.390	543.200
NODE	36	44139.660	66521.734	65	0.05	0	145.200	80.160	786.100
NODE	40	44388.234	69100.500	95	0	0	144.800	49.810	488.500
NODE	42	41641.988	68676.688	83	0.2	0	144.400	61.410	602.200
NODE	43	41374.945	70183.242	90	0.15	0	144.400	54.410	533.600
NODE	45	39038.203	69644.320	103	0.15	0	144.300	41.340	405.400
NODE	46	39189.031	69502.156	80	0	0	144.300	64.340	631.000
NODE	49	40124.359	67848.398	100	0.351	0	144.300	44.270	434.100
NODE	50	38080.191	69118.727	102	0	0	144.400	42.360	415.400
NODE	51	38105.000	68782.109	105	0.15	0	144.400	39.360	386.000
NODE	52	35361.816	68379.352	120	0	0	144.500	24.470	240.000
NODE	53	35206.309	68640.992	120	0.351	0	144.500	24.460	239.900
NODE	54	35765.785	67745.406	135	0	0	144.600	9.5810	93.960
NODE	57	36578.992	68008.797	115	0.1	0	144.600	29.580	290.100
NODE	59	36688.852	65692.633	110	0	0	145.000	35.000	343.300
NODE	60	35872.203	65411.215	135	0.05	0	145.000	10.000	98.080
NODE	63	37318.598	64874.715	120	0.501	0	145.200	25.220	247.300
NODE	67	37404.902	62941.973	103	0.2	0	145.200	42.190	413.700
NODE	68	37963.340	64869.645	110	0	0	145.600	35.630	349.500
NODE	69	38401.652	64864.680	100	0	0	145.900	45.920	450.300
NODE	70	39026.297	64844.723	105	0	0	146.300	41.320	405.200
NODE	71	41455.762	69424.383	83	0	0	144.400	61.420	602.300

Results of pressure head at pipe size of 150 mm
Maximum Demand rate $=3637 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	$\begin{gathered} Y \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} X \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Elevation } \\ (\mathrm{m}) \end{gathered}$	Output $(\mathrm{l} / \mathrm{s})$	$\begin{gathered} \text { Emitter } \\ \text { Coeff } \\ \left(1 / \mathrm{s} / \mathrm{m}^{\wedge} \mathrm{g}\right) \end{gathered}$	$\begin{gathered} \text { E.G.L. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Head } \\ & (\mathrm{m}) \end{aligned}$	Pressure (Kpa)
NODE	2	41608.785	59619.449	60	0	0	159.400	99.450	975.2
NODE	3	41684.832	59579.738	60	0	0	159.400	99.450	975.2
NODE	6	41838.137	59494.414	60	0	0	159.400	99.450	975.2
NODE	10	42976.551	58769.633	60	0	0	159.400	99.440	975.2
NODE	11	43206.449	57711.070	70	0.291	0	159.400	89.440	877.1
NODE	14	40230.684	62047.141	100	0	0	152.500	52.500	514.9
NODE	15	40422.926	62089.008	95	1.164	0	152.500	57.490	563.8
NODE	18	39166.254	63687.059	95	0	0	148.700	53.700	526.6
NODE	22	39268.738	64822.898	100	0	0	146.500	46.490	455.9
NODE	23	39909.063	64775.117	97	0	0	146.200	49.200	482.5
NODE	24	40070.000	65120.000	100	0.582	0	146.200	46.200	453.1
NODE	26	40709.41	64695.695	87	0	0	145.900	58.950	578.1
NODE	27	40975.656	65193.734	95	0.727	0	145.900	50.930	499.5
NODE	28	41044.617	64654.902	90	0	0	145.900	55.880	548
NODE	29	41081.301	64201.805	85	0.145	0	145.900	60.880	597
NODE	32	42718.156	64386.148	60	0	0	145.600	85.590	839.3
NODE	33	42956.480	64035.477	60	0	0	145.600	85.590	839.3
NODE	34	43508.605	65097.652	90	0.145	0	145.400	55.400	543.3
NODE	36	44139.660	66521.734	65	0.145	0	145.200	80.170	786.1
NODE	40	44388.234	69100.500	95	0	0	144.800	49.820	488.6
NODE	42	41641.988	68676.688	83	0.582	0	144.400	61.420	602.3
NODE	43	41374.945	70183.242	90	0.436	0	144.400	54.420	533.7
NODE	45	39038.203	69644.320	103	0.436	0	144.400	41.350	405.5
NODE	46	39189.031	69502.156	80	0	0	144.400	64.350	631.1
NODE	49	40124.359	67848.398	100	1.018	0	144.300	44.280	434.2
NODE	50	38080.191	69118.727	102	0	0	144.400	42.370	415.5
NODE	51	38105.000	68782.109	105	0.436	0	144.400	39.370	386.1
NODE	52	35361.816	68379.352	120	0	0	144.500	24.480	240.1
NODE	53	35206.309	68640.992	120	1.018	0	144.500	24.470	240
NODE	54	35765.785	67745.406	135	0	0	144.600	9.590	94.05
NODE	57	36578.992	68008.797	115	0.291	0	144.600	29.590	290.1
NODE	59	36688.852	65692.633	110	0	0	145.000	35.010	343.3
NODE	60	35872.203	65411.215	135	0.145	0	145.000	10.010	98.17
NODE	63	37318.598	64874.715	120	1.455	0	145.200	25.230	247.4
NODE	67	37404.902	62941.973	103	0.582	0	145.200	42.200	413.8
NODE	68	37963.340	64869.645	110	0	0	145.600	35.640	349.5
NODE	69	38401.652	64864.680	100	0	0	145.900	45.930	450.4
NODE	70	39026.297	64844.723	105	0	0	146.300	41.330	405.3
NODE	71	41455.762	69424.383	83	0	0	144.400	61.430	602.4

APPENDIX J

RESULTS OF EFFECT OF ABSTRACTION RATE ON COST

PRESSURE AT 10

Results of abstraction rate at pipe size of 25 mm
Demand rate $=33 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	$\begin{gathered} \hline \text { Diameter } \\ (\mathrm{mm}) \end{gathered}$	C. Length	Coeff	$\begin{aligned} & \hline \text { Minor } \\ & \text { Loss } \end{aligned}$	Open/ Closed	Balanced Status	$\begin{aligned} & \hline \text { Flow } \\ & (\mathrm{I} / \mathrm{s}) \\ & \hline \end{aligned}$	Velocity (m / s)
PIPE	1	1	2	25	210	125	0	OPEN	OPEN	0.086	0.175
PIPE	2	2	3	25	85	125	0	OPEN	OPEN	0.003	0.006
PIPE	5	3	6	25	175	125	0	OPEN	OPEN	0.003	0.006
PIPE	6	6	10	25	1350	125	0	OPEN	OPEN	0.003	0.006
PIPE	10	10	11	25	1085	125	0	OPEN	OPEN	0.003	0.006
PIPE	11	2	14	25	2790	125	0	OPEN	OPEN	0.083	0.169
PIPE	14	14	15	25	195	125	0	OPEN	OPEN	0.011	0.022
PIPE	15	14	18	25	1955	125	0	OPEN	OPEN	0.072	0.147
PIPE	18	18	22	25	1140	125	0	OPEN	OPEN	0.072	0.147
PIPE	22	22	23	25	640	125	0	OPEN	OPEN	0.032	0.066
PIPE	23	23	24	25	380	125	0	OPEN	OPEN	0.005	0.010
PIPE	24	23	26	25	805	125	0	OPEN	OPEN	0.027	0.056
PIPE	26	26	27	25	565	125	0	OPEN	OPEN	0.007	0.014
PIPE	27	26	28	25	340	125	0	OPEN	OPEN	0.020	0.041
PIPE	28	28	29	25	455	125	0	OPEN	OPEN	0.001	0.002
PIPE	29	28	32	25	1695	125	0	OPEN	OPEN	0.019	0.039
PIPE	32	33	32	25	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	25	1065	125	0	OPEN	OPEN	0.019	0.039
PIPE	34	34	36	25	1560	125	0	OPEN	OPEN	0.018	0.037
PIPE	36	36	40	25	2590	125	0	OPEN	OPEN	0.017	0.035
PIPE	40	40	71	25	2950	125	0	OPEN	OPEN	0.017	0.035
PIPE	42	71	42	25	770	125	0	OPEN	OPEN	0.005	0.010
PIPE	43	71	43	25	765	125	0	OPEN	OPEN	0.004	0.008
PIPE	44	71	46	25	2270	125	0	OPEN	OPEN	0.008	0.017
PIPE	45	46	45	25	205	125	0	OPEN	OPEN	0.004	0.008
PIPE	47	46	49	25	1900	125	0	OPEN	OPEN	0.009	0.018
PIPE	50	50	46	25	1175	125	0	OPEN	OPEN	0.005	0.010
PIPE	51	50	51	25	340	125	0	OPEN	OPEN	0.004	0.008
PIPE	52	52	50	25	2815	125	0	OPEN	OPEN	0.009	0.018
PIPE	53	52	53	25	305	125	0	OPEN	OPEN	0.009	0.018
PIPE	54	54	52	25	750	125	0	OPEN	OPEN	0.018	0.036
PIPE	55	54	57	25	855	125	0	OPEN	OPEN	0.003	0.006
PIPE	58	59	54	25	2250	125	0	OPEN	OPEN	0.021	0.042
PIPE	60	59	60	25	865	125	0	OPEN	OPEN	0.001	0.002
PIPE	61	63	59	25	1030	125	0	OPEN	OPEN	0.022	0.044
PIPE	64	63	67	25	1935	125	0	OPEN	OPEN	0.005	0.010
PIPE	68	68	63	25	645	125	0	OPEN	OPEN	0.040	0.081
PIPE	69	69	68	25	440	125	0	OPEN	OPEN	0.040	0.081
PIPE	70	70	69	25	625	125	0	OPEN	OPEN	0.040	0.081
PIPE	71	22	70	25	245	125	0	OPEN	OPEN	0.040	0.081

Results of abstraction rate at pipe size (50 mm with 25 mm)
Demand rate $=87 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	Coeff	Minor Loss	Open/ Closed	Balanced Status	Flow (I/s)	Velocity (m/s)
PIPE	1	1	2	50	210	125	0	OPEN	OPEN	0.226	0.159
PIPE	2	2	3	25	85	125	0	OPEN	OPEN	0.007	0.014
PIPE	5	3	6	25	175	125	0	OPEN	OPEN	0.007	0.014
PIPE	6	6	10	25	1350	125	0	OPEN	OPEN	0.007	0.014
PIPE	10	10	11	25	1085	125	0	OPEN	OPEN	0.007	0.014
PIPE	11	2	14	50	2790	125	0	OPEN	OPEN	0.219	0.154
PIPE	14	14	15	50	195	125	0	OPEN	OPEN	0.028	0.020
PIPE	15	14	18	50	1955	125	0	OPEN	OPEN	0.191	0.134
PIPE	18	18	22	50	1140	125	0	OPEN	OPEN	0.191	0.134
PIPE	22	22	23	25	640	125	0	OPEN	OPEN	0.085	0.174
PIPE	23	23	24	25	380	125	0	OPEN	OPEN	0.014	0.029
PIPE	24	23	26	25	805	125	0	OPEN	OPEN	0.071	0.145
PIPE	26	26	27	25	565	125	0	OPEN	OPEN	0.017	0.035
PIPE	27	26	28	25	340	125	0	OPEN	OPEN	0.054	0.111
PIPE	28	28	29	25	455	125	0	OPEN	OPEN	0.003	0.006
PIPE	29	28	32	25	1695	125	0	OPEN	OPEN	0.051	0.105
PIPE	32	32	33	25	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	25	1065	125	0	OPEN	OPEN	0.051	0.104
PIPE	34	34	36	25	1560	125	0	OPEN	OPEN	0.048	0.098
PIPE	36	36	40	25	2590	125	0	OPEN	OPEN	0.045	0.092
PIPE	40	40	71	25	2950	125	0	OPEN	OPEN	0.045	0.092
PIPE	42	71	42	25	770	125	0	OPEN	OPEN	0.014	0.029
PIPE	43	71	43	25	765	125	0	OPEN	OPEN	0.010	0.020
PIPE	44	71	46	25	2270	125	0	OPEN	OPEN	0.021	0.043
PIPE	45	46	45	25	205	125	0	OPEN	OPEN	0.010	0.020
PIPE	47	46	49	25	1900	125	0	OPEN	OPEN	0.024	0.049
PIPE	50	50	46	25	1175	125	0	OPEN	OPEN	0.013	0.026
PIPE	51	50	51	25	340	125	0	OPEN	OPEN	0.010	0.020
PIPE	52	52	50	25	2815	125	0	OPEN	OPEN	0.023	0.046
PIPE	53	52	53	25	305	125	0	OPEN	OPEN	0.024	0.049
PIPE	54	54	52	25	750	125	0	OPEN	OPEN	0.047	0.095
PIPE	55	54	57	25	855	125	0	OPEN	OPEN	0.007	0.014
PIPE	58	59	54	25	2250	125	0	OPEN	OPEN	0.054	0.109
PIPE	60	59	60	25	865	125	0	OPEN	OPEN	0.003	0.006
PIPE	61	63	59	25	1030	125	0	OPEN	OPEN	0.057	0.116
PIPE	64	63	67	25	1935	125	0	OPEN	OPEN	0.014	0.029
PIPE	68	68	63	25	645	125	0	OPEN	OPEN	0.106	0.215
PIPE	69	69	68	25	440	125	0	OPEN	OPEN	0.106	0.215
PIPE	70	70	69	25	625	125	0	OPEN	OPEN	0.106	0.215
PIPE	71	22	70	25	245	125	0	OPEN	OPEN	0.106	0.215

Results of abstraction rate at pipe size (63 mm with 25 mm)
Demand rate $=103 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	$\begin{gathered} \text { Diameter } \\ (\mathrm{mm}) \end{gathered}$	C. Length	Coeff	$\begin{array}{\|l\|} \hline \text { Minor } \\ \text { Loss } \\ \hline \end{array}$	Open/ Closed	$\begin{gathered} \text { Balanced } \\ \text { Status } \\ \hline \end{gathered}$	Flow (1/s)	Velocity (m/s)
PIPE	1	1	2	63	210	125	0	OPEN	OPEN	0.269	0.119
PIPE	2	2	3	25	85	125	0	OPEN	OPEN	0.008	0.016
PIPE	5	3	6	25	175	125	0	OPEN	OPEN	0.008	0.016
PIPE	6	6	10	25	1350	125	0	OPEN	OPEN	0.008	0.016
PIPE	10	10	11	25	1085	125	0	OPEN	OPEN	0.008	0.016
PIPE	11	2	14	63	2790	125	0	OPEN	OPEN	0.261	0.116
PIPE	14	14	15	63	195	125	0	OPEN	OPEN	0.033	0.015
PIPE	15	14	18	63	1955	125	0	OPEN	OPEN	0.228	0.101
PIPE	18	18	22	63	1140	125	0	OPEN	OPEN	0.228	0.101
PIPE	22	22	23	25	640	125	0	OPEN	OPEN	0.103	0.209
PIPE	23	23	24	25	380	125	0	OPEN	OPEN	0.016	0.033
PIPE	24	23	26	25	805	125	0	OPEN	OPEN	0.087	0.176
PIPE	26	26	27	25	565	125	0	OPEN	OPEN	0.021	0.043
PIPE	27	26	28	25	340	125	0	OPEN	OPEN	0.066	0.133
PIPE	28	28	29	25	455	125	0	OPEN	OPEN	0.004	0.008
PIPE	29	28	32	25	1695	125	0	OPEN	OPEN	0.062	0.125
PIPE	32	32	33	25	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	25	1065	125	0	OPEN	OPEN	0.061	0.125
PIPE	34	34	36	25	1560	125	0	OPEN	OPEN	0.057	0.117
PIPE	36	36	40	25	2590	125	0	OPEN	OPEN	0.053	0.109
PIPE	40	40	71	25	2950	125	0	OPEN	OPEN	0.053	0.109
PIPE	42	71	42	25	770	125	0	OPEN	OPEN	0.016	0.033
PIPE	43	71	43	25	765	125	0	OPEN	OPEN	0.012	0.024
PIPE	44	71	46	25	2270	125	0	OPEN	OPEN	0.025	0.052
PIPE	45	46	45	25	205	125	0	OPEN	OPEN	0.012	0.024
PIPE	47	46	49	25	1900	125	0	OPEN	OPEN	0.029	0.059
PIPE	50	50	46	25	1175	125	0	OPEN	OPEN	0.016	0.032
PIPE	51	50	51	25	340	125	0	OPEN	OPEN	0.012	0.024
PIPE	52	52	50	25	2815	125	0	OPEN	OPEN	0.028	0.056
PIPE	53	52	53	25	305	125	0	OPEN	OPEN	0.029	0.059
PIPE	54	54	52	25	750	125	0	OPEN	OPEN	0.057	0.115
PIPE	55	54	57	25	855	125	0	OPEN	OPEN	0.008	0.016
PIPE	58	59	54	25	2250	125	0	OPEN	OPEN	0.065	0.131
PIPE	60	59	60	25	865	125	0	OPEN	OPEN	0.004	0.008
PIPE	61	63	59	25	1030	125	0	OPEN	OPEN	0.069	0.140
PIPE	64	63	67	25	1935	125	0	OPEN	OPEN	0.016	0.033
PIPE	68	68	63	25	645	125	0	OPEN	OPEN	0.126	0.256
PIPE	69	69	68	25	440	125	0	OPEN	OPEN	0.126	0.256
PIPE	70	70	69	25	625	125	0	OPEN	OPEN	0.126	0.256
PIPE	71	22	70	25	245	125	0	OPEN	OPEN	0.126	0.256

Results of abstraction rate at pipe size of 50 mm
Demand rate $=130 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From	$\begin{gathered} \hline \text { To } \\ \text { Node } \end{gathered}$	Diameter (mm)	$\begin{gathered} \text { C. } \\ \text { Length } \end{gathered}$	Coeff	$\begin{array}{\|l\|l\|} \hline \text { Minor } \\ \text { Loss } \end{array}$	Open/ Closed	Balanced Status	$\begin{aligned} & \hline \text { Flow } \\ & (\mathrm{I} / \mathrm{s}) \end{aligned}$	Velocity (m/s)
PIPE	1	1	2	50	210	125	0	OPEN	OPEN	0.343	0.241
PIPE	2	2	3	50	85	125	0	OPEN	OPEN	0.010	0.007
PIPE	5	3	6	50	175	125	0	OPEN	OPEN	0.010	0.007
PIPE	6	6	10	50	1350	125	0	OPEN	OPEN	0.010	0.007
PIPE	10	10	11	50	1085	125	0	OPEN	OPEN	0.010	0.007
PIPE	11	2	14	50	2790	125	0	OPEN	OPEN	0.333	0.234
PIPE	14	14	15	50	195	125	0	OPEN	OPEN	0.042	0.029
PIPE	15	14	18	50	1955	125	0	OPEN	OPEN	0.291	0.204
PIPE	18	18	22	50	1140	125	0	OPEN	OPEN	0.291	0.204
PIPE	22	22	23	50	640	125	0	OPEN	OPEN	0.131	0.092
PIPE	23	23	24	50	380	125	0	OPEN	OPEN	0.021	0.015
PIPE	24	23	26	50	805	125	0	OPEN	OPEN	0.110	0.077
PIPE	26	26	27	50	565	125	0	OPEN	OPEN	0.026	0.018
PIPE	27	26	28	50	340	125	0	OPEN	OPEN	0.084	0.059
PIPE	28	28	29	50	455	125	0	OPEN	OPEN	0.005	0.004
PIPE	29	28	32	50	1695	125	0	OPEN	OPEN	0.079	0.055
PIPE	32	32	33	50	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	50	1065	125	0	OPEN	OPEN	0.079	0.055
PIPE	34	34	36	50	1560	125	0	OPEN	OPEN	0.074	0.052
PIPE	36	36	40	50	2590	125	0	OPEN	OPEN	0.069	0.048
PIPE	40	40	71	50	2950	125	0	OPEN	OPEN	0.069	0.048
PIPE	42	71	42	50	770	125	0	OPEN	OPEN	0.021	0.015
PIPE	43	71	43	50	765	125	0	OPEN	OPEN	0.016	0.011
PIPE	44	71	46	50	2270	125	0	OPEN	OPEN	0.032	0.022
PIPE	45	46	45	50	205	125	0	OPEN	OPEN	0.016	0.011
PIPE	47	46	49	50	1900	125	0	OPEN	OPEN	0.036	0.025
PIPE	50	50	46	50	1175	125	0	OPEN	OPEN	0.02	0.014
PIPE	51	50	51	50	340	125	0	OPEN	OPEN	0.016	0.011
PIPE	52	52	50	50	2815	125	0	OPEN	OPEN	0.036	0.025
PIPE	53	52	53	50	305	125	0	OPEN	OPEN	0.036	0.025
PIPE	54	54	52	50	750	125	0	OPEN	OPEN	0.072	0.051
PIPE	55	54	57	50	855	125	0	OPEN	OPEN	0.01	0.007
PIPE	58	59	54	50	2250	125	0	OPEN	OPEN	0.082	0.058
PIPE	60	59	60	50	865	125	0	OPEN	OPEN	0.005	0.004
PIPE	61	63	59	50	1030	125	0	OPEN	OPEN	0.087	0.061
PIPE	64	63	67	50	1935	125	0	OPEN	OPEN	0.021	0.015
PIPE	68	68	63	50	645	125	0	OPEN	OPEN	0.16	0.112
PIPE	69	69	68	50	440	125	0	OPEN	OPEN	0.16	0.112
PIPE	70	70	69	50	625	125	0	OPEN	OPEN	0.16	0.112
PIPE	71	22	70	50	245	125	0	OPEN	OPEN	0.16	0.112

Results of abstraction rate at pipe size ($63 \mathrm{~mm} \times 50 \mathrm{~mm}$)
Demand rate $=219 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	Coeff	Minor Loss	Open/ Closed	Balanced Status	Flow (1/s)	Velocity (m/s)
PIPE	1	1	2	63	210	125	0	OPEN	OPEN	0.579	0.257
PIPE	2	2	3	50	85	125	0	OPEN	OPEN	0.018	0.013
PIPE	5	3	6	50	175	125	0	OPEN	OPEN	0.018	0.013
PIPE	6	6	10	50	1350	125	0	OPEN	OPEN	0.018	0.013
PIPE	10	10	11	50	1085	125	0	OPEN	OPEN	0.018	0.013
PIPE	11	2	14	63	2790	125	0	OPEN	OPEN	0.561	0.249
PIPE	14	14	15	63	195	125	0	OPEN	OPEN	0.070	0.031
PIPE	15	14	18	63	1955	125	0	OPEN	OPEN	0.491	0.218
PIPE	18	18	22	63	1140	125	0	OPEN	OPEN	0.491	0.218
PIPE	22	22	23	50	640	125	0	OPEN	OPEN	0.221	0.155
PIPE	23	23	24	50	380	125	0	OPEN	OPEN	0.035	0.025
PIPE	24	23	26	50	805	125	0	OPEN	OPEN	0.186	0.130
PIPE	26	26	27	50	565	125	0	OPEN	OPEN	0.044	0.031
PIPE	27	26	28	50	340	125	0	OPEN	OPEN	0.142	0.099
PIPE	28	28	29	50	455	125	0	OPEN	OPEN	0.009	0.006
PIPE	29	28	32	50	1695	125	0	OPEN	OPEN	0.133	0.093
PIPE	32	33	32	50	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	50	1065	125	0	OPEN	OPEN	0.133	0.093
PIPE	34	34	36	50	1560	125	0	OPEN	OPEN	0.124	0.087
PIPE	36	36	40	50	2590	125	0	OPEN	OPEN	0.115	0.081
PIPE	40	40	71	50	2950	125	0	OPEN	OPEN	0.115	0.081
PIPE	42	71	42	50	770	125	0	OPEN	OPEN	0.035	0.025
PIPE	43	71	43	50	765	125	0	OPEN	OPEN	0.026	0.018
PIPE	44	71	46	50	2270	125	0	OPEN	OPEN	0.054	0.038
PIPE	45	46	45	50	205	125	0	OPEN	OPEN	0.026	0.018
PIPE	47	46	49	50	1900	125	0	OPEN	OPEN	0.061	0.043
PIPE	50	50	46	50	1175	125	0	OPEN	OPEN	0.033	0.023
PIPE	51	50	51	50	340	125	0	OPEN	OPEN	0.026	0.018
PIPE	52	52	50	50	2815	125	0	OPEN	OPEN	0.059	0.042
PIPE	53	52	53	50	305	125	0	OPEN	OPEN	0.061	0.043
PIPE	54	54	52	50	750	125	0	OPEN	OPEN	0.120	0.084
PIPE	55	54	57	50	855	125	0	OPEN	OPEN	0.018	0.013
PIPE	58	59	54	50	2250	125	0	OPEN	OPEN	0.138	0.097
PIPE	60	59	60	50	865	125	0	OPEN	OPEN	0.009	0.006
PIPE	61	63	59	50	1030	125	0	OPEN	OPEN	0.147	0.103
PIPE	64	63	67	50	1935	125	0	OPEN	OPEN	0.035	0.025
PIPE	68	68	63	50	645	125	0	OPEN	OPEN	0.270	0.190
PIPE	69	69	68	50	440	125	0	OPEN	OPEN	0.270	0.190
PIPE	70	70	69	50	625	125	0	OPEN	OPEN	0.270	0.190
PIPE	71	22	70	50	245	125	0	OPEN	OPEN	0.270	0.190

Results of abstraction rate at pipe size ($75 \mathrm{~mm} \times 50 \mathrm{~mm}$)
Demand rate $=242 \mathrm{1} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	Diameter (mm)	C. Length	Coeff	Minor Loss	Open/ Closed	Balanced Status	Flow (I / s)	Velocity (m/s)
PIPE	1	1	2	75	210	125	0	OPEN	OPEN	0.640	0.145
PIPE	2	2	3	50	85	125	0	OPEN	OPEN	0.019	0.013
PIPE	5	3	6	50	175	125	0	OPEN	OPEN	0.019	0.013
PIPE	6	6	10	50	1350	125	0	OPEN	OPEN	0.019	0.013
PIPE	10	10	11	50	1085	125	0	OPEN	OPEN	0.019	0.013
PIPE	11	2	14	75	2790	125	0	OPEN	OPEN	0.621	0.141
PIPE	14	14	15	75	195	125	0	OPEN	OPEN	0.077	0.017
PIPE	15	14	18	75	1955	125	0	OPEN	OPEN	0.544	0.123
PIPE	18	18	22	75	1140	125	0	OPEN	OPEN	0.544	0.123
PIPE	22	22	23	50	640	125	0	OPEN	OPEN	0.245	0.172
PIPE	23	23	24	50	380	125	0	OPEN	OPEN	0.039	0.027
PIPE	24	23	26	50	805	125	0	OPEN	OPEN	0.206	0.144
PIPE	26	26	27	50	565	125	0	OPEN	OPEN	0.048	0.034
PIPE	27	26	28	50	340	125	0	OPEN	OPEN	0.158	0.111
PIPE	28	28	29	50	455	125	0	OPEN	OPEN	0.010	0.007
PIPE	29	28	32	50	1695	125	0	OPEN	OPEN	0.148	0.104
PIPE	32	32	33	50	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	50	1065	125	0	OPEN	OPEN	0.148	0.104
PIPE	34	34	36	50	1560	125	0	OPEN	OPEN	0.138	0.096
PIPE	36	36	40	50	2590	125	0	OPEN	OPEN	0.128	0.089
PIPE	40	40	71	50	2950	125	0	OPEN	OPEN	0.128	0.089
PIPE	42	71	42	50	770	125	0	OPEN	OPEN	0.039	0.027
PIPE	43	71	43	50	765	125	0	OPEN	OPEN	0.029	0.020
PIPE	44	71	46	50	2270	125	0	OPEN	OPEN	0.060	0.042
PIPE	45	46	45	50	205	125	0	OPEN	OPEN	0.029	0.020
PIPE	47	46	49	50	1900	125	0	OPEN	OPEN	0.068	0.048
PIPE	50	50	46	50	1175	125	0	OPEN	OPEN	0.037	0.026
PIPE	51	50	51	50	340	125	0	OPEN	OPEN	0.029	0.020
PIPE	52	52	50	50	2815	125	0	OPEN	OPEN	0.066	0.047
PIPE	53	52	53	50	305	125	0	OPEN	OPEN	0.068	0.048
PIPE	54	54	52	50	750	125	0	OPEN	OPEN	0.134	0.094
PIPE	55	54	57	50	855	125	0	OPEN	OPEN	0.019	0.013
PIPE	58	59	54	50	2250	125	0	OPEN	OPEN	0.153	0.108
PIPE	60	59	60	50	865	125	0	OPEN	OPEN	0.010	0.007
PIPE	61	63	59	50	1030	125	0	OPEN	OPEN	0.163	0.115
PIPE	64	63	67	50	1935	125	0	OPEN	OPEN	0.039	0.027
PIPE	68	68	63	50	645	125	0	OPEN	OPEN	0.299	0.210
PIPE	69	69	68	50	440	125	0	OPEN	OPEN	0.299	0.210
PIPE	70	70	69	50	625	125	0	OPEN	OPEN	0.299	0.210
PIPE	71	22	70	50	245	125	0	OPEN	OPEN	0.299	0.210

Results of abstraction rate at pipe size of 63 mm
Demand rate $=362 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	$\begin{aligned} & \hline \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	C. Length	Coeff	Minor Loss	Open/ Closed	Balanced Status	Flow ($1 / \mathrm{s}$)	Velocity (m / s)
PIPE	1	1	2	63	210	125	0	OPEN	OPEN	0.952	0.305
PIPE	2	2	3	63	85	125	0	OPEN	OPEN	0.029	0.009
PIPE	5	3	6	63	175	125	0	OPEN	OPEN	0.029	0.009
PIPE	6	6	10	63	1350	125	0	OPEN	OPEN	0.029	0.009
PIPE	10	10	11	63	1085	125	0	OPEN	OPEN	0.029	0.009
PIPE	11	2	14	63	2790	125	0	OPEN	OPEN	0.923	0.296
PIPE	14	14	15	63	195	125	0	OPEN	OPEN	0.116	0.037
PIPE	15	14	18	63	1955	125	0	OPEN	OPEN	0.807	0.259
PIPE	18	18	22	63	1140	125	0	OPEN	OPEN	0.807	0.259
PIPE	22	22	23	63	640	125	0	OPEN	OPEN	0.362	0.116
PIPE	23	23	24	63	380	125	0	OPEN	OPEN	0.058	0.019
PIPE	24	23	26	63	805	125	0	OPEN	OPEN	0.304	0.098
PIPE	26	26	27	63	565	125	0	OPEN	OPEN	0.072	0.023
PIPE	27	26	28	63	340	125	0	OPEN	OPEN	0.232	0.074
PIPE	28	28	29	63	455	125	0	OPEN	OPEN	0.014	0.004
PIPE	29	28	32	63	1695	125	0	OPEN	OPEN	0.218	0.070
PIPE	32	32	33	63	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	63	1065	125	0	OPEN	OPEN	0.218	0.070
PIPE	34	34	36	63	1560	125	0	OPEN	OPEN	0.204	0.065
PIPE	36	36	40	63	2590	125	0	OPEN	OPEN	0.190	0.061
PIPE	40	40	71	63	2950	125	0	OPEN	OPEN	0.190	0.061
PIPE	42	71	42	63	770	125	0	OPEN	OPEN	0.058	0.019
PIPE	43	71	43	63	765	125	0	OPEN	OPEN	0.043	0.014
PIPE	44	71	46	63	2270	125	0	OPEN	OPEN	0.089	0.029
PIPE	45	46	45	63	205	125	0	OPEN	OPEN	0.043	0.014
PIPE	47	46	49	63	1900	125	0	OPEN	OPEN	0.101	0.032
PIPE	50	50	46	63	1175	125	0	OPEN	OPEN	0.055	0.018
PIPE	51	50	51	63	340	125	0	OPEN	OPEN	0.043	0.014
PIPE	52	52	50	63	2815	125	0	OPEN	OPEN	0.098	0.031
PIPE	53	52	53	63	305	125	0	OPEN	OPEN	0.101	0.032
PIPE	54	54	52	63	750	125	0	OPEN	OPEN	0.199	0.064
PIPE	55	54	57	63	855	125	0	OPEN	OPEN	0.029	0.009
PIPE	58	59	54	63	2250	125	0	OPEN	OPEN	0.228	0.073
PIPE	60	59	60	63	865	125	0	OPEN	OPEN	0.014	0.004
PIPE	61	63	59	63	1030	125	0	OPEN	OPEN	0.242	0.078
PIPE	64	63	67	63	1935	125	0	OPEN	OPEN	0.058	0.019
PIPE	68	68	63	63	645	125	0	OPEN	OPEN	0.445	0.143
PIPE	69	69	68	63	440	125	0	OPEN	OPEN	0.445	0.143
PIPE	70	70	69	63	625	125	0	OPEN	OPEN	0.445	0.143
PIPE	71	22	70	63	245	125	0	OPEN	OPEN	0.445	0.143

Results of abstraction rate at pipe size (75 mm with 63 mm)
Demand rate $=486 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	$\begin{gathered} \hline \text { To } \\ \text { Node } \\ \hline \end{gathered}$	Diameter (mm)	$\begin{gathered} \mathrm{C} . \\ \text { Length } \\ \hline \end{gathered}$	Coeff	Minor Loss	Open/ Closed	Balanced Status	$\begin{aligned} & \text { Flow } \\ & (1 / \mathrm{s}) \end{aligned}$	Velocity (m / s)
PIPE	1	1	2	75	210	125	0	OPEN	OPEN	1.281	0.290
PIPE	2		3	63	85	125	0	OPEN	OPEN	0.039	0.017
PIPE	5	3	6	63	175	125	0	OPEN	OPEN	0.039	0.017
PIPE	6	6	10	63	1350	125	0	OPEN	OPEN	0.039	0.017
PIPE	10	10	11	63	1085	125	0	OPEN	OPEN	0.039	0.017
PIPE	11	2	14	75	2790	125	0	OPEN	OPEN	1.242	0.281
PIPE	14	14	15	75	195	125	0	OPEN	OPEN	0.156	0.035
PIPE	15	14	18	75	1955	125	0	OPEN	OPEN	1.086	0.246
PIPE	18	18	22	75	1140	125	0	OPEN	OPEN	1.086	0.246
PIPE	22	22	23	63	640	125	0	OPEN	OPEN	0.488	0.216
PIPE	23	23	24	63	380	125	0	OPEN	OPEN	0.078	0.035
PIPE	24	23	26	63	805	125	0	OPEN	OPEN	0.410	0.182
PIPE	26	26	27	63	565	125	0	OPEN	OPEN	0.097	0.043
PIPE	27	26	28	63	340	125	0	OPEN	OPEN	0.313	0.139
PIPE	28	28	29	63	455	125	0	OPEN	OPEN	0.019	0.008
PIPE	29	28	32	63	1695	125	0	OPEN	OPEN	0.294	0.130
PIPE	32	32	33	63	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	63	1065	125	0	OPEN	OPEN	0.294	0.130
PIPE	34	34	36	63	1560	125	0	OPEN	OPEN	0.275	0.122
PIPE	36	36	40	63	2590	125	0	OPEN	OPEN	0.256	0.113
PIPE	40	40	71	63	2950	125	0	OPEN	OPEN	0.256	0.113
PIPE	42	71	42	63	770	125	0	OPEN	OPEN	0.078	0.035
PIPE	43	71	43	63	765	125	0	OPEN	OPEN	0.058	0.026
PIPE	44	71	46	63	2270	125	0	OPEN	OPEN	0.120	0.053
PIPE	45	46	45	63	205	125	0	OPEN	OPEN	0.058	0.026
PIPE	47	46	49	63	1900	125	0	OPEN	OPEN	0.136	0.060
PIPE	50	50	46	63	1175	125	0	OPEN	OPEN	0.074	0.033
PIPE	51	50	51	63	340	125	0	OPEN	OPEN	0.058	0.026
PIPE	52	52	50	63	2815	125	0	OPEN	OPEN	0.132	0.059
PIPE	53	52	53	63	305	125	0	OPEN	OPEN	0.136	0.06
PIPE	54	54	52	63	750	125	0	OPEN	OPEN	0.268	0.119
PIPE	55	54	57	63	855	125	0	OPEN	OPEN	0.039	0.017
PIPE	58	59	54	63	2250	125	0	OPEN	OPEN	0.307	0.136
PIPE	60	59	60	63	865	125	0	OPEN	OPEN	0.019	0.008
PIPE	61	63	59	63	1030	125	0	OPEN	OPEN	0.326	0.145
PIPE	64	63	67	63	1935	125	0	OPEN	OPEN	0.078	0.035
PIPE	68	68	63	63	645	125	0	OPEN	OPEN	0.598	0.265
PIPE	69	69	68	63	440	125	0	OPEN	OPEN	0.598	0.265
PIPE	70	70	69	63	625	125	0	OPEN	OPEN	0.598	0.265
PIPE	71	22	70	63	245	125	0	OPEN	OPEN	0.598	0.265

Results of abstraction rate at pipe size of 75 mm
Demand rate $=587 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	$\begin{gathered} \text { Diameter } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	C. Length	Coeff	$\begin{aligned} & \text { Minor } \\ & \text { Loss } \\ & \hline \end{aligned}$	Open/ Closed	Balanced Status	$\begin{aligned} & \text { Flow } \\ & (\mathrm{l} / \mathrm{s}) \end{aligned}$	Velocity (m/s)
PIPE	1	1	2	75	210	125	0	OPEN	OPEN	1.550	0.350
PIPE	2	2	3	75	85	125	0	OPEN	OPEN	0.050	0.010
PIPE	5	3	6	75	175	125	0	OPEN	OPEN	0.050	0.010
PIPE	6	6	10	75	1350	125	0	OPEN	OPEN	0.050	0.010
PIPE	10	10	11	75	1085	125	0	OPEN	OPEN	0.050	0.010
PIPE	11	2	14	75	2790	125	0	OPEN	OPEN	1.500	0.340
PIPE	14	14	15	75	195	125	0	OPEN	OPEN	0.190	0.040
PIPE	15	14	18	75	1955	125	0	OPEN	OPEN	1.310	0.300
PIPE	18	18	22	75	1140	125	0	OPEN	OPEN	1.310	0.300
PIPE	22	22	23	75	640	125	0	OPEN	OPEN	0.590	0.130
PIPE	23	23	24	75	380	125	0	OPEN	OPEN	0.090	0.020
PIPE	24	23	26	75	805	125	0	OPEN	OPEN	0.500	0.110
PIPE	26	26	27	75	565	125	0	OPEN	OPEN	0.120	0.030
PIPE	27	26	28	75	340	125	0	OPEN	OPEN	0.380	0.090
PIPE	28	28	29	75	455	125	0	OPEN	OPEN	0.020	0.010
PIPE	29	28	32	75	1695	125	0	OPEN	OPEN	0.360	0.080
PIPE	32	32	33	75	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	75	1065	125	0	OPEN	OPEN	0.360	0.080
PIPE	34	34	36	75	1560	125	0	OPEN	OPEN	0.330	0.080
PIPE	36	36	40	75	2590	125	0	OPEN	OPEN	0.310	0.070
PIPE	40	40	71	75	2950	125	0	OPEN	OPEN	0.310	0.070
PIPE	42	71	42	75	770	125	0	OPEN	OPEN	0.090	0.020
PIPE	43	71	43	75	765	125	0	OPEN	OPEN	0.070	0.020
PIPE	44	71	46	75	2270	125	0	OPEN	OPEN	0.150	0.030
PIPE	45	46	45	75	205	125	0	OPEN	OPEN	0.070	0.020
PIPE	47	46	49	75	1900	125	0	OPEN	OPEN	0.160	0.040
PIPE	50	50	46	75	1175	125	0	OPEN	OPEN	0.090	0.020
PIPE	51	50	51	75	340	125	0	OPEN	OPEN	0.070	0.020
PIPE	52	52	50	75	2815	125	0	OPEN	OPEN	0.160	0.040
PIPE	53	52	53	75	305	125	0	OPEN	OPEN	0.160	0.040
PIPE	54	54	52	75	750	125	0	OPEN	OPEN	0.320	0.070
PIPE	55	54	57	75	855	125	0	OPEN	OPEN	0.050	0.010
PIPE	58	59	54	75	2250	125	0	OPEN	OPEN	0.370	0.080
PIPE	60	59	60	75	865	125	0	OPEN	OPEN	0.023	0.010
PIPE	61	63	59	75	1030	125	0	OPEN	OPEN	0.390	0.090
PIPE	64	63	67	75	1935	125	0	OPEN	OPEN	0.090	0.020
PIPE	68	68	63	75	645	125	0	OPEN	OPEN	0.720	0.160
PIPE	69	69	68	75	440	125	0	OPEN	OPEN	0.720	0.160
PIPE	70	70	69	75	625	125	0	OPEN	OPEN	0.720	0.160
PIPE	71	22	70	75	245	125	0	OPEN	OPEN	0.720	0.160

Results of abstraction rate at pipe size of 100 mm
Demand rate $=1253 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	$\begin{gathered} \text { Diameter } \\ (\mathrm{mm}) \end{gathered}$	C. Length	Coeff	$\begin{aligned} & \hline \text { Minor } \\ & \text { Loss } \\ & \hline \end{aligned}$	Open/ Closed	Balanced Status	$\begin{aligned} & \text { Flow (} \\ & \mathrm{l} / \mathrm{s}) \end{aligned}$	Velocity (m/s)
PIPE	1	1	2	100	210	125	0	OPEN	OPEN	3.310	0.420
PIPE	2	2	3	100	85	125	0	OPEN	OPEN	0.100	0.010
PIPE	5	3	6	100	175	125	0	OPEN	OPEN	0.100	0.010
PIPE	6	6	10	100	1350	125	0	OPEN	OPEN	0.100	0.010
PIPE	10	10	11	100	1085	125	0	OPEN	OPEN	0.100	0.010
PIPE	11	2	14	100	2790	125	0	OPEN	OPEN	3.210	0.410
PIPE	14	14	15	100	195	125	0	OPEN	OPEN	0.400	0.050
PIPE	15	14	18	100	1955	125	0	OPEN	OPEN	2.800	0.360
PIPE	18	18	22	100	1140	125	0	OPEN	OPEN	2.800	0.360
PIPE	22	22	23	100	640	125	0	OPEN	OPEN	1.260	0.160
PIPE	23	23	24	100	380	125	0	OPEN	OPEN	0.2000	0.030
PIPE	24	23	26	100	805	125	0	OPEN	OPEN	1.060	0.140
PIPE	26	26	27	100	565	125	0	OPEN	OPEN	0.250	0.030
PIPE	27	26	28	100	340	125	0	OPEN	OPEN	0.810	0.100
PIPE	28	28	29	100	455	125	0	OPEN	OPEN	0.050	0.010
PIPE	29	28	32	100	1695	125	0	OPEN	OPEN	0.760	0.100
PIPE	32	32	33	100	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	100	1065	125	0	OPEN	OPEN	0.760	0.10
PIPE	34	34	36	100	1560	125	0	OPEN	OPEN	0.710	0.090
PIPE	36	36	40	100	2590	125	0	OPEN	OPEN	0.660	0.080
PIPE	40	40	71	100	2950	125	0	OPEN	OPEN	0.660	0.080
PIPE	42	71	42	100	770	125	0	OPEN	OPEN	0.200	0.030
PIPE	43	71	43	100	765	125	0	OPEN	OPEN	0.150	0.020
PIPE	44	71	46	100	2270	125	0	OPEN	OPEN	0.310	0.040
PIPE	45	46	45	100	205	125	0	OPEN	OPEN	0.150	0.020
PIPE	47	46	49	100	1900	125	0	OPEN	OPEN	0.350	0.050
PIPE	50	50	46	100	1175	125	0	OPEN	OPEN	0.190	0.020
PIPE	51	50	51	100	340	125	0	OPEN	OPEN	0.150	0.020
PIPE	52	52	50	100	2815	125	0	OPEN	OPEN	0.340	0.040
PIPE	53	52	53	100	305	125	0	OPEN	OPEN	0.350	0.050
PIPE	54	54	52	100	750	125	0	OPEN	OPEN	0.690	0.090
PIPE	55	54	57	100	855	125	0	OPEN	OPEN	0.100	0.010
PIPE	58	59	54	100	2250	125	0	OPEN	OPEN	0.790	0.100
PIPE	60	59	60	100	865	125	0	OPEN	OPEN	0.050	0.010
PIPE	61	63	59	100	1030	125	0	OPEN	OPEN	0.840	0.110
PIPE	64	63	67	100	1935	125	0	OPEN	OPEN	0.200	0.030
PIPE	68	68	63	100	645	125	0	OPEN	OPEN	1.540	0.200
PIPE	69	69	68	100	440	125	0	OPEN	OPEN	1.540	0.200
PIPE	70	70	69	100	625	125	0	OPEN	OPEN	1.540	0.200
PIPE	71	22	70	100	245	125	0	OPEN	OPEN	1.540	0.200

Results of abstraction rate at pipe size of 150 mm
Demand rate $=3637 \mathrm{l} / \mathrm{c} /$ day

TYPE	No	From Node	To Node	$\begin{gathered} \text { Diameter } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	C. Length	Coeff	$\begin{aligned} & \text { Minor } \\ & \text { Loss } \\ & \hline \end{aligned}$	Open/ Closed	Balanced Status	Flow ($1 / \mathrm{s}$)	Velocity (m/s)
PIPE	1	1	2	150	210	125	0	OPEN	OPEN	9.600	0.540
PIPE	2	2	3	150	85	125	0	OPEN	OPEN	0.290	0.020
PIPE	5	3	6	150	175	125	0	OPEN	OPEN	0.290	0.020
PIPE	6	6	10	150	1350	125	0	OPEN	OPEN	0.290	0.020
PIPE	10	10	11	150	1085	125	0	OPEN	OPEN	0.290	0.020
PIPE	11	2	14	150	2790	125	0	OPEN	OPEN	9.310	0.530
PIPE	14	14	15	150	195	125	0	OPEN	OPEN	1.160	0.070
PIPE	15	14	18	150	1955	125	0	OPEN	OPEN	8.140	0.460
PIPE	18	18	22	150	1140	125	0	OPEN	OPEN	8.140	0.460
PIPE	22	22	23	150	640	125	0	OPEN	OPEN	3.660	0.210
PIPE	23	23	24	150	380	125	0	OPEN	OPEN	0.580	0.030
PIPE	24	23	26	150	805	125	0	OPEN	OPEN	3.080	0.170
PIPE	26	26	27	150	565	125	0	OPEN	OPEN	0.730	0.040
PIPE	27	26	28	150	340	125	0	OPEN	OPEN	2.350	0.130
PIPE	28	28	29	150	455	125	0	OPEN	OPEN	0.150	0.010
PIPE	29	28	32	150	1695	125	0	OPEN	OPEN	2.200	0.130
PIPE	32	32	33	150	425	125	0	OPEN	OPEN	0.000	0.000
PIPE	33	32	34	150	1065	125	0	OPEN	OPEN	2.200	0.130
PIPE	34	34	36	150	1560	- 125	0	OPEN	OPEN	2.060	0.120
PIPE	36	36	40	150	2590	125	0	OPEN	OPEN	1.910	0.110
PIPE	40	40	71	150	2950	125	0	OPEN	OPEN	1.910	0.110
PIPE	42	71	42	150	770	125	0	OPEN	OPEN	0.580	0.030
PIPE	43	71	43	150	765	125	0	OPEN	OPEN	0.440	0.030
PIPE	44	71	46	150	2270	125	0	OPEN	OPEN	0.900	0.050
PIPE	45	46	45	150	205	125	0	OPEN	OPEN	0.440	0.030
PIPE	47	46	49	150	1900	125	0	OPEN	OPEN	1.020	0.060
PIPE	50	50	46	150	1175	125	0	OPEN	OPEN	0.560	0.030
PIPE	51	50	51	150	340	125	0	OPEN	OPEN	0.440	0.030
PIPE	52	52	50	150	2815	125	0	OPEN	OPEN	0.990	0.060
PIPE	53	52	53	150	305	125	0	OPEN	OPEN	1.020	0.060
PIPE	54	54	52	150	750	125	0	OPEN	OPEN	2.010	0.110
PIPE	55	54	57	150	855	125	0	OPEN	OPEN	0.290	0.020
PIPE	58	59	54	150	2250	125	0	OPEN	OPEN	2.300	0.13
PIPE	60	59	60	150	865	125	0	OPEN	OPEN	0.145	0.010
PIPE	61	63	59	150	1030	125	0	OPEN	OPEN	2.450	0.140
PIPE	64	63	67	150	1935	125	0	OPEN	OPEN	0.580	0.030
PIPE	68	68	63	150	645	125	0	OPEN	OPEN	4.490	0.250
PIPE	69	69	68	150	440	125	0	OPEN	OPEN	4.490	0.250
PIPE	70	70	69	150	625	125	0	OPEN	OPEN	4.490	0.250
PIPE	71	22	70	150	245	125	0	OPEN	OPEN	4.490	0.250

APPENDIX K

RESULTS OF SENSITIVITY ANALYSIS ON ECONOMIC FACTORS TO THE NET PRESENT COST OF WATER SUPPLY SYSTEMS

Maintenance cost decrease by 30%

Maintenance costs decrease by 20%

Maintenance cost decrease by 10%

Maintenance cost increase by 10%

Maintenance cost increase by 20\%

Maintenance cost increase by 30%

Cost of capital decrease by 30% for pipeline option

					CONVENTIONAL PIPED WATER SUPPLY SYSTEM							
GENERAL	A (Assumed)											
			flation rate		per annu							
	Intere	t on Capital	Redemption	7\%								
	Annu	I Pipe Mainte	nance Costs		of Pipelin	e Capital	Costs					
	Annual Rese	voir mainten	nce costs		of Reser	oir Capita	Costs					
	lote: Maintena	ce and Oper	ion Costs (M	O) will	also incre	se by 7\%	per annu	m from the	first yea			
Capital cost												
		Pipeline	R 1480770									
		Reservoir	R 53529									
		Total	R1534299									
Annual Main	enace and op	ration costs	(M \& O)									
		Reservoir	R 1071									
		pipeline	R 29615									
		Total	R 30686									
Calculations												
		Year										
		0	1	2	3	4	5	6	7	8	9	10
Capital cost	(R)	1534299										
M \& O (R)		30686	32834	35132	37592	40223	43039	46051	49275	52724	56415	60364
Cash flow (1564985	32834	35132	37592	40223	43039	46051	49275	52724	56415	60364
				-	-	\%						
NPV	R1871845											

Cost of capital decrease by 20% for pipeline option

Cost of capital decrease by 10% for pipeline option

Cost of capital increase by 10% for pipeline option

					CONVENTIONAL PIPED WATER SUPPLY SYSTEM							
GENERAL	A (Assumed)											
			flation rate		per annu							
	Intere	t on Capital	Redemption	11\%								
	Annu	Pipe Mainte	nance Costs		of Pipelin	e Capital	Costs					
	Annual Rese	voir mainten	nce costs		of Reser	oir Capita	Costs					
	lote: Maintena	e and Oper	ion Costs (M	O) will	also incre	se by 7\%	per annu	m from the	first yea			
Capital cost												
		Pipeline	R 1480770									
		Reservoir	R 53529									
		Total	R1534299									
Annual Main	enace and op	ration costs	(M \& O)									
		Reservoir	R 1071									
		pipeline	R 29615									
		Total	R 30686									
Calculations												
		Year										
		0	1	2	3	4	5	6	7	8	9	10
Capital cost	(R)	1534299										
M \& O (R)		30686	32834	35132	37592	40223	43039	46051	49275	52724	56415	60364
Cash flow (1564985	32834	35132	37592	40223	43039	46051	49275	52724	56415	60364
					-	\%						
NPV	R 1817150											

Cost of capital increase by 20% for pipeline option

					CONVENTIONAL PIPED WATER SUPPLY SYSTEM							
GENERAL	A (Assumed)											
			flation rate		per annu							
	Intere	t on Capital	Redemption	12\%								
	Annu	Pipe Mainte	nance Costs		of Pipelin	e Capital	Costs					
	Annual Rese	voir mainten	nce costs		of Reser	oir Capita	Costs					
	lote: Maintena	e and Oper	ion Costs (M	O) will	also incre	se by 7\%	per annu	m from the	first yea			
Capital cost												
		Pipeline	R 1480770									
		Reservoir	R 53529									
		Total	R1534299									
Annual Main	enace and op	ration costs	(M \& O)									
		Reservoir	R 1071									
		pipeline	R 29615									
		Total	R 30686									
Calculations												
		Year										
		0	1	2	3	4	5	6	7	8	9	10
Capital cost	(R)	1534299										
M \& O (R)		30686	32834	35132	37592	40223	43039	46051	49275	52724	56415	60364
Cash flow (1564985	32834	35132	37592	40223	43039	46051	49275	52724	56415	60364
					-	\%						
NPV	R 1805743											

Cost of capital increase by 30% for pipeline option

Inflation decrease by 30% for pipeline option

Inflation decrease by 20% for pipeline option

Inflation decrease by 10% for pipeline option

Inflation increase by 10% for pipeline option

Inflation increase by 20% for pipeline option

					CONVENTIONAL PIPED WATER SUPPLY SYSTEM							
GENERAL	A (Assum											
			flation rate	8.4\%	per annu							
	Intere	on Capital	Redemption	10\%								
	Annu	I Pipe Maint	nance Costs		of Pipeli	e Capita	Costs					
	Annual Rese	voir mainten	nce costs		of Reser	voir Capit	l Costs					
	lote: Maintena	e and Oper	on Costs (M	O) will	so incr	se by 7\%	per ann	from th	first yea			
Capital cost												
		Pipeline	R 1480770									
		Reservoir	R 53529									
		Total	R1534299									
Annual Main	enace and op	ation costs	(M \& O)									
		Reservoir	R 1071									
		pipeline	R 29615									
		Total	R 30686									
Calculations												
		Year										
		0	1	2	3	4	5	6	7	8	9	10
Capital cost	(R)	1534299										
M \& O (R)		30686	33264	36058	39087	42370	45929	49787	53969	58502	63417	68744
Cash flow (1564985	33264	36058	39087	42370	45929	49787	53969	58502	63417	68744
				-)	?						
NPV	R 1848337											

Inflation increase by 30% for pipeline option

[^0]: * Diameter, Demand and Minimum residual pressure are indicated as variables because different values of each parameter were selected in the evaluation of the minimum standads.
 \# Pipe and Node reference numbers were used based on the reference numbers on the part of the project used in this study.

