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Abstract

We investigate the suitability of applying some of the probabilistic and au-
tomata theoretic ideas, that have been extremely successful in the areas of
speech and natural language processing, to the area of musical style imita-
tion. By using music written in a certain style as training data, parameters
are calculated for (visible and hidden) Markov models (of mixed, higher
or first order), in order to capture the musical style of the training data in
terms of mathematical models. These models are then used to imitate two
instrument music in the trained style.
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Uittreksel

Hierdie tesis ondersoek die toepasbaarheid van probabilitiese en outomaat-
teoretiese konsepte, wat uiters suksesvol toegepas word in die gebied van
spraak en natuurlike taal-verwerking, op die gebied van musiekstyl na-
bootsing. Deur gebruik te maak van musiek wat geskryf is in ’n gegewe styl
as aanleer data, word parameters vir (sigbare en onsigbare) Markov mod-
elle (van gemengde, hoër- of eerste- orde) bereken, ten einde die musiekstyl
van die data waarvan geleer is, in terme van wiskundige modelle te beskryf.
Hierdie modelle word gebruik om musiek vir twee instrumente te genereer,
wat die musiek waaruit geleer is, naboots.

iii



Acknowledgements

I want to express my deepest appreciation to my supervisor, Prof. AB van
der Merwe, for his guidance, many helpful suggestions, encouragement,
making light of seemingly stressful situations, and commitment to relent-
less proofreading. I would also like to thank my family and friends for their
continuous and inspiring support. Also, to the additional proofreaders, I
am very grateful for your eye-opening comments, suggestions and commit-
ment to quality. Finally, I would like to thank all the survey participants,
everyone who helped to spread the survey to their friends and colleagues,
and especially the survey music composers for their valued input.

iv



Dedications

I would like to dedicate this thesis to my loving and supportive parents.

v



Contents

Declaration i

Abstract ii

Uittreksel iii

Acknowledgements iv

Dedications v

Contents vi

1 Introduction 1

2 Music Theory 3
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Timbre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Music Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Melody and Harmony . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Chord Progressions and Cadence . . . . . . . . . . . . . . . . . 11
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Automata and Markov Models 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Higher Order Markov Chains . . . . . . . . . . . . . . . . . . . 14
3.4 Prediction Suffix Automata . . . . . . . . . . . . . . . . . . . . 15

vi



CONTENTS vii

3.5 Prediction Suffix Trees . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . 21
3.7 Hidden Markov Model Algorithms . . . . . . . . . . . . . . . . 24
3.8 Mixed Order Hidden Markov Models . . . . . . . . . . . . . . 27
3.9 Probabilistic Finite Automata . . . . . . . . . . . . . . . . . . . 27
3.10 Final States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Literature Survey 32
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Overview of Music Generation using Sampling Methods . . . 32
4.3 Overview of Music Generation using Artificial Agents . . . . 34
4.4 Music Generation with Cellular Automata . . . . . . . . . . . 36
4.5 Music Generation using Constraints . . . . . . . . . . . . . . . 36
4.6 Music Generation with Hidden Markov Models . . . . . . . . 39
4.7 Music Generation with Prediction Suffix Trees . . . . . . . . . 43
4.8 Music Generation with Tree Languages . . . . . . . . . . . . . 48
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Music Generation with XML 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 MusicXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Style Imitation 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Filtering Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Preprocessor Step . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Extraction Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Analysis Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6 Music Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Evaluation 78
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Survey Compositions . . . . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS viii

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Conclusion 86

9 Future Work 88

Appendices 90

A Tree Languages 91
A.1 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Regular Tree Grammars . . . . . . . . . . . . . . . . . . . . . . 92
A.3 Top-Down Tree Transducers . . . . . . . . . . . . . . . . . . . . 94
A.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B The Extensible Markup Language (XML) 97
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
B.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
B.4 Styling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.5 Limitations of XSLT . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C Probability Theory 108
C.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

List of Figures 109

Nomenclature 111

List of References 113



Chapter 1
Introduction

Music is organised sound - Edgard Varèse

Music is a structured, yet creative medium, which can be considered to be
a finite set of frequencies and timing intervals. Composing music consists
mainly of the application of compositional rules, however artistic freedom
allows a composer to disregard these rules from time to time.

In this thesis we investigate whether a computer can compose music as well
as a human, taking into account that each artist is influenced by the styles
he/she listens to. We do this by dividing the composition process into sev-
eral steps, namely chord progression, melodic curve, cadence, etc. as pro-
posed by Högberg (2005). For each of these steps, we calculate parameters
for probabilistic automata from music data, and use these probabilistic au-
tomata to generate new compositions. We evaluate our system using an
online survey which includes a partial Turing test.

The focus of Chapter 5 is on porting Willow, a ranked tree-based system
for algorithmic music composition, to MusicXML, an unranked-tree-based
system, using XSL (Extensible Stylesheet Language) and DOM (Document
Object Model), instead of tree transducers. The MusicXML format is sup-
ported by over 85 musical applications (Recordare, 2007). It uses XML (Ex-
tensible Markup Language), which is a simple and very flexible text for-
mat standardised by the World Wide Web Consortium (2007a). XSL is used
for defining XML document transformations (World Wide Web Consortium,
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CHAPTER 1. INTRODUCTION 2

2007b). These transformations can be compared to tree transducers as both
of them transform tree structures.

We propose pluggable artificial intelligence elements to be added to a rule-
based system for music composition, by sampling from trained probabilistic
automata (Conklin, 2003), as is discussed in Chapter 3. Just as an artist lis-
tens to other artists and styles which influence his/her compositions, we
would like our system to learn from input compositions, and to generate
output compositions in the same style. In Chapter 6 we cover the genera-
tion of music from probabilistic automata, and the analysis that is used to
calculate their parameters. Similar systems, discussed in Chapter 4, have
been proposed and implemented by Simon et al. (2008), Conklin and Anag-
nostopoulou (2001), Dubnov et al. (2003), Triviño-Rodriguez and Morales-
Bueno (2001), and Pachet (2003).

Our music generation/imitation system (available for download at
http://superwillow.sourceforge.net) is evaluated, as discussed in Chapter
7, with a partial Turing test. In an online survey, respondents were asked
to identify the human composition, given two compositions, one composed
by a human and one generated by our system. Even though our system
failed a partial Turing test, promising results were obtained, since 36% of
respondents in an online survey incorrectly attributed music composed by
our computer system, to a human composer. Finally, Chapter 8 provides
concluding remarks and Chapter 9 discusses possible future work.

http://superwillow.sourceforge.net


Chapter 2
Music Theory

2.1 Introduction

This chapter discusses music theory starting with the notion of a musical
note. A single musical note is represented by four properties (Ottman, 1983):

- Pitch, how high or low the sound is;
- Duration or note value, how long the sound is held;
- Intensity and loudness of the note;
- Timbre, or the instrument the note is being played on.

Notes are grouped to form chords, which are in turn placed in an ordered
sequence to form a chord progression. The ordered sequence of durations of
notes in a melody or chords in a chord progression, is the rhythm of the com-
position. This chapter includes the discussion of chord progression, rhythm,
musical notation, intervals, scales, chords, chord inversions, cadences, note
duration, time signatures and tempo.

2.2 Pitch

When a string vibrates 261.63 times per second, it has a frequency of 261.63
Hz (Hertz) and a pitch of middle C. This frequency naming convention was

3



CHAPTER 2. MUSIC THEORY 4

only endorsed by the International Organization for Standardization in 1955
(Randel, 2003), and before 1955 there were several popular tuning stan-
dards. The standard piano has 88 keys and their frequencies are all related
to middle C by the formula freq(C)×2

s

12 , where freq(C) is the frequency of
middle C and s is an integer in the interval [−39, 48]. The absolute value of s
can also be regarded as the number of semitones, number of half steps or in-
terval size from the specific note to middle C. Each of these pitches has one
of the following names: C, C], D, D], E, F, F], G, G], A, A], B. Every 12 semi-
tones these pitch names repeat and the frequency doubles. This interval
size of 12 is referred to as an octave. Octave registers are used to distinguish
between pitch names at different frequencies. The octave registers for C are
denoted by CC, C, c, c1, c2, c3, c4, c5, where c1 is used for middle C. The
lowest note on the standard piano is AAA and has a frequency of 27.5 Hz.
This is where humans start to find it hard to distinguish between different
pitches (Levitin, 2006). Accidentals modify the pitch of a given note. Sharps
(]) are used to raise the pitch of a given note by one semitone or a half step,
and a flat ([), is used to lower the pitch by one semitone or a half step. This
means that C] and D[ are the same for all purposes, except in formal music
theory.

2.3 Duration

Rhythm is the variation of duration of a sequence of notes or a series of note
values. The duration of a note or note value indicates how long the note is

sounded. This is indicated using fractions, for example: whole (#), half ("),

quarter (!). A dot after a note increases the duration of a note by 50 percent.

Thus the note !• has a duration of three eighths, as shown in Figure 2.1.
When no pitch is sounded for a duration of time, this is called a rest, and
it is indicated by using a rest sign which corresponds to the duration, as
shown in Figure 2.2.

A measure divides a musical composition into equal time units specified in
terms of number of note values. The number of note values is specified by
the time signature, which consists of an upper and a lower number. The
number of beats per measure is represented by the upper number, while
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Figure 2.1: Note duration tree

Figure 2.2: Rest duration tree

the duration of a beat is represented by the lower number. For example, if
the upper number is two, there are two beats per measure, and if the lower
number is 8, the duration of a beat is an eighth. This implies that there will
be two eighths per measure. Popular time signatures include:

4
4 used in most forms of western classical and pop music;

2
2 used for marches and also in fast orchestral music;

2
4 used by polkas and sometimes marches;

3
4 used for waltzes, scherzi, minuets and some ballads.

The division provided by measures can be bypassed, by letting a note sound
or ring from one measure to another.
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Tempo of music is described in beats per minute (bpm) and affects the num-
ber of seconds a note is played. Suppose that the tempo is 120 bpm and the

time signature is
2
4. Then a beat is a quarter, there are 120 quarters played

each minute, and a quarter is played for half a second. This also means
that since there are two beats per measure, that the duration of a measure is
equal to a second. Furthermore, if the tempo is changed to 60 bpm, then an
eighth would be played for half a second. Musicians might play gradually
slower towards the end of a composition. This is called a ritardando, and
can be used to indicate that the composition is ending.

2.4 Timbre

The timbre of a note is composed of three properties:

- overtone profile;
- attack;
- flux.

When the pitch c1 is played on a standard piano, one of the strings inside the
piano vibrates at several frequencies. The smallest frequency is the defining
or fundamental frequency of c1, namely 261.63 Hz. The other frequencies,
known as overtones, are unique for each instrument. Often the frequencies
are multiples of the fundamental frequency; for example 523.55 Hz, 784.89
Hz, 1046.52 Hz, etc. Each overtone in the series has its own loudness value
relative to the loudness of the other frequencies. These frequency relations
are “programmed” in our brains so that restoration of the missing fundamental
happens when we hear for example a frequency series 220 Hz, 330 Hz, 440
Hz, 550 Hz, which misses the fundamental frequency 110 Hz (Levitin, 2006).
Thus although not present, our brain will add the missing frequency.

The attack is the initial frequencies when a note is played. On some music
instruments these frequencies have more complex relations than the over-
tone series. Flux is the way the sound changes once a note starts playing.
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Treble or G Clef Bass or F Clef

Figure 2.3: Clef Signs

c1 d1 e1 f 1 g1 a1 b1 c2

c d e f g a b c1

Figure 2.4: Staffs

2.5 Music Notation

Next we discuss music notation. Each pitch is represented on the music
staff, which consists of five parallel horizontal lines. Each line represents a
specific pitch as shown in Figure 2.4. Clef signs assign a specific pitch to a
given line. Figure 2.3 shows the most popular clef signs, the G and F clef.
The G clef assigns the G above middle C to the line encircled by its curl,
while the F clef assigns the F below middle C to the line between its two
dots. The time signature shown right of the clef in Figure 2.4 indicates that
there are four quarters in a measure.

2.6 Melody and Harmony

When listening to music, one hears a multitude of sounds at the same time,
and also one after the other. Melody can be described as notes heard in
succession while harmony as notes heard at the same time. We can also
describe melody and harmony as respectively the horizontal and vertical
movement of the music.

Scales are collections or subsets of pitches used to compose music. In other
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c1 d]1d1 f 1 g1 a1 b1 c2

2 1 2 2 2 2 1

]

Figure 2.5: C melodic minor (ascending) scale with indicated semitone intervals

words, for a composition, a scale is chosen and then mostly those pitches
are used for the composition. In a more complex composition the scale can
for example be changed midway through a composition. Even with these
exceptions, scales are still important when composing.

Example 2.6.1 (Basic scale examples) - The notes in the scales C major, D
major, C natural minor, C melodic minor and C pentatonic.

- C major : {C,D,E,F,G,A,B}
- D major : {D,E,F],G,A,B,C]}
- C natural minor : {C,D,D],F,G,G],A]}
- C melodic minor (ascending) : {C,D,D],F,G,A,B}
- C melodic minor (descending) : {C,D,D],F,G,G],A]}
- C pentatonic : {C,D,F,G,A}

In Example 2.6.1 the notes in sample scales are given. Scales are defined
by their starting pitch, called the root, and type. C major has a root key of
C and is of type major. The type of a scale defines the sequence of inter-
vals. A whole step is equal to two half steps or two semitones and has an
interval size of two. The major scale has the following sequence of steps:
{whole, whole, half, whole, whole, whole, half}. The melodic minor (as-
cending) scale has the following sequence of steps: {whole, half, whole,
whole, whole, whole, half} and is shown in Figure 2.5. Note that the melodic
minor has two forms (ascending and descending) depending on whether
the melody is approaching the root note from below or above respectively.
There are many other types of scales, for example the harmonic minor and
whole tone scales (Randel, 2003).

A melody is a sequence of notes played one after the other. It is not the ab-
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solute pitches that identify a melody, but the intervals between them. The
melodic contour or pitch profile takes into account only the positive or neg-
ative movement of the melody at every interval, in other words whether the
next pitch is higher of lower than the previous one. The melodic contour is
encoded by Parsons code as follows:

- “u” = up;
- “d” = down;
- “r” = repeat, when the next pitch is equal to the previous one;
- “*” = first pitch.

For example, Twinkle Twinkle Little Star represented by parsons code is:
*rururddrdrdrd (Parsons, 1975). In McNab et al. (2000) the melodic contour
is used to search a database of compositions. They found that using inter-
val sizes, and not just the contour, provided better results for the purpose
of music identification, since fewer intervals are required to identify a com-
position. The interval distance between C and F], called a tritone, or in the
middle ages the devil’s interval, was banned by the Roman Catholic church
(Levitin, 2006). When listening to a melody the volume does not impair
your ability to recognise the composition. Recognising the melody will also
not be affected by changing the root key.

A chord is a group of notes played at the same time. The simplest chord
is called a triad, which consists of three notes (see Figure 2.6 1). Whereas
melody is defined by horizontal intervals, the chord type is defined by ver-
tical intervals. The first (or lowest) note is called the root, followed by the
third and fifth interval. The third and fifth intervals are respectively the
third and fifth note in the major or minor scale relative to the first (root) note.
The fifth interval is the same for the major and minor triad and is called a
perfect fifth interval. The third interval for the major and minor triad is
called a major third and minor third interval respectively. The minor third
interval is three semitones, one less than the major third’s four semitones.
Another chord, the diminished triad is defined by a minor third and a di-
minished fifth interval. The diminished fifth interval is six semitones, one

1Note that we have dropped the case sensitivity of the minor roman numerals in the
rest of the thesis for ease of explanation.
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C Major D minor E minor F Major G Major A minor B diminished

I ii iii IV V vi vii◦

Figure 2.6: Some example triads

root position 1st inversion 2nd inversion

Figure 2.7: C major and its inversions

less than the perfect fifth’s seven semitones. Lastly, the augmented triad
is defined by the major third and augmented fifth (8 semitones) intervals.
There are many other types of chords, for example the dominant seventh,
major seventh, dominant eleventh, etc (Ottman, 1983). Contradictory to our
previous statement, that the notes of chord are played at the same time, an
arpeggio, also called a broken chord, is where the notes of chord are played
consecutively. This simplifies the definition of a chord to just a group of
notes.

In Figure 2.7, various versions of the C major triad is shown. These triads are
referred to as inversions of the C major triad, since the notes representing
the C major triad (C,E,G) can be played in any order and still form the C

major triad. This implies that a chord type has several sequences of vertical
intervals to choose from. A triad without its third is called a power chord.
Playing two power chords directly one after the other, is called a parallel
fifth, and does not conform to classical music theory rules (Randel, 2003).
A parallel motion is when two notes move by the same vertical interval.
The parallel fifth is when the vertical interval between the two notes is a
fifth. Any combination of vertical intervals can form a chord, but whether a
given chord fits in a composition is up to the style of music and the chords
between which the given chord is played.
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2.7 Chord Progressions and Cadence

A chord progression is an ordered sequence of chords. Chord progressions
are usually repeated a few times in a composition. For example, a verse of
music in the style of punk might have the chord progression: I→ V→ VI→
IV. This will usually be repeated four times. This repetition is representative
of a motif, a repeating and developing melodic or rhythmic idea, or the basic
component of the composition. Roman numerals are used to indicate the
chord number in the scale of the composition. In Figure 2.6 the triads of the
C major scale with their respective numerals are shown.

A cadence or a falling, as it is called in western music, is a certain sequence
of intervals or chords that end a phrase (verse, chorus, etc.). When a phrase
ends with the chord progression V → I or VII → I, it is referred to as an
authentic or perfect cadence. The chord progression VII → I is also rep-
resentative of resolving dissonance, or harmonic tension. Other types of
cadences include (Adams, 2000):

- half cadence: I→ V
- plagal cadence (Amen cadence): IV→ I
- deceptive cadence: V→ VI

Cadences give a definite ending, indicating to the listener that the piece of
music is concluding.

2.8 Conclusion

This chapter gave an introduction to music theory, covering the terminol-
ogy required for this thesis. For our music generation system we consider
compositions to be chords for the rhythm guitar or piano and a melody for
the lead.



Chapter 3
Automata and Markov Models

3.1 Introduction

Probabilistic finite automata and some of its subclasses are discussed in this
chapter. We assume a pre-existing knowledge of basic probability theory
and in particular Bayes’ theorem (see Appendix C).

3.2 Markov Chains

A Markov chain models a sequence of events by using states and transition
probabilities between states. This model adheres to the first order Markov
assumption which states:

P(qt|qt−1, qt−2, . . . , q1) = P(qt|qt−1),

where q1, . . . , qt is a set of states. Thus in a Markov chain the probability of
being in state qt, at time t, depends only on the previous state, at time t-1. A
homogeneous Markov chain, which is defined in Definition 3.2.1, adheres
to the stationarity assumption, which states that the transition probabilities
of the Markov chain are time-independent. This implies that the probability
of moving to a next state, at any time, only depends on the current state.

12
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Definition 3.2.1 (Markov chains) - A Markov chain (MC) is a 3-tuple
〈 Q,a,π 〉 where:

- Q is the state space,
- a : Q × Q→ [0, 1] is a mapping defining the probability of each transi-

tion,
- and π : Q→ [0, 1] is a mapping defining the initial probability of each

state.

The following constraints must be satisfied:

- for qi ∈ Q, ∑
qj∈Q

a(qi, qj) = 1,

- ∑
q∈Q

π(q) = 1.

One approach to estimating the transition probabilities of Markov chains is
by calculating the maximum likelihood estimate, using frequency or empir-
ical counts as in the next example.

Example 3.2.1 (Calculating the parameters of a Markov chain) - Assume that
the training sequences are two melodies (c, d, e, c, d, c, d, e, c, d) and (d, e, d,
e, c, d, c, d, e, c). This implies that the state space Q is {c, d, e}. The transition
probabilities are calculated as follows:

a(qi, qj) =
#(qi → qj)

∑
qk∈Q

#(qi → qk)
,

where #(qi → qj) is the number of times state qi is followed by state qj. Thus:

a =

 a(c, c) a(c, d) a(c, e)
a(d, c) a(d, d) a(d, e)
a(e, c) a(e, d) a(e, e)

 =

 0 1 0
2
7 0 5

7
4
5

1
5 0


and

π =
(

π(c), π(d), π(e)
)

=
(

1
2 , 1

2 , 0
)
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c1
2

d1
2

1
2
7

e5
7

4
5

1
5

Figure 3.1: A first order Markov chain

We can visualise the Markov chain as a graph where vertices represent
states and edges represent transitions as in Figure 3.1.

3.3 Higher Order Markov Chains

In contrast to Markov chains as defined in Definition 3.2.1, higher order
Markov chains have a memory length larger than one. More precisely, an
Lth order Markov chain operates under the assumption:

P(qt|qt−1, qt−2, . . . , q1) = P(qt|qt−1, . . . , qt−min(t−1,L)).

When t ≤ L, qt is a startup state, and the excessive states, qt with (t < 0), are
represented by the empty string λ. In the case of Lth order Markov chains
we use a(qt−L, . . . , qt−1, qt), instead of a(qt−1, qt), to indicate transition prob-
abilities. This results in multiple transition probabilities between states qt−1

and qt, as in Figure 3.2.

The complication introduced by higher order Markov chains can be removed
by increasing the number of states and adding a history to the states, as in
Figure 3.2. In order to transform an Lth order Markov chain to a first or-
der Markov chain, we replace the state space Q by ∪L

i=1Qi, where Qi is all
state sequences of length i. More precisely, if q′t and q′t−1 are states in a
first order Markov chain, corresponding to a given higher order Markov
chain, at times t and t-1 respectively, with q′t = (qt−L+1, . . . , qt) and q′t−1 =
(qt−L, . . . , qt−1), then we have the following:

a(q′t−1, q′t) := P(q′t|q′t−1)
= P(qt−L+1, . . . , qt|qt−L, . . . , qt−1)
= P(qt|qt−L, . . . , qt−1)
= a(qt−L, . . . , qt−1, qt).
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Figure 3.2: A second order Markov chain and its equivalent first order Markov
chain

We are thus able to convert a higher order Markov chain to an equivalent
first order Markov chain. Next we discuss prediction suffix automata which
are equivalent to mixed (variable) order Markov chains.

3.4 Prediction Suffix Automata

Conversion from higher to first order Markov chains, as discussed in the
previous section, involves moving the memory from the transitions to the
states. Mixed order Markov chains allow transitions of various memory
lengths, whereas all transitions of higher order Markov chains have the
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same memory length. Prediction Suffix Automata (PSA) represent memory
using state labels in a similar fashion to first order Markov chains obtained
from translating higher order Markov chains to their equivalent first order
Markov chains. Both mixed and higher order Markov chains represent their
memory using transitions, whereas prediction suffix automata (PSA) uses
state labels. This flexibility of memory lengths in a PSA allows us to avoid
the exponential growth associated with higher order Markov chains.

Next we define prediction suffix automata, which are equivalent to mixed
order Markov chains.

Definition 3.4.1 (Prediction suffix automata (Ron et al., 1996; Schwardt, 2007))
- A prediction suffix automata (PSA) is a 4-tuple 〈 Σ, Q, τ, p 〉 where:

- Σ is a finite input alphabet,
- Q ⊂ Σ∗ is a finite set of finite-length strings (so that λ ∈ Q) which is the

state space,
- τ : Q ×Σ→ Q, is the state transition function,
- p : Q ×Σ→ [0, 1], is the next symbol probability distribution.

The following constraints must be satisfied:

- ∑
σ∈Σ

p(q, σ) = 1 for all q ∈ Q;

- the start state q0 is the empty string λ;
- for all q ∈ Q and σ ∈ Σ, τ(q, σ) is equal to the longest suffix of qσ that

is in Q.

If in a PSA 〈 Σ, Q, τ, p 〉 the state space of the PSA contains all states of
length L, i.e. if ΣL ⊆ Q, we refer to the PSA as an L-PSA. Note that an
L-PSA is equivalent to an Lth order Markov chain. Both models limit the
maximum memory length to L.

Training an L-PSA from training sets is achieved by first training an L-PST
(see next section for the definition of a PST) and then converting the L-PST
to an equivalent L-PSA. A PSA’s transition function specifies the next state,
given the previous state and alphabet symbol, whereas a PST needs to cal-
culate the next state. This is done by appending the alphabet symbol to the
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right of the current state string and then searching for the longest suffix that
is also a state in the PST. This calculation in a PST can take L times longer
than when a PSA’s transition function is used. The PSA also has extra added
prefix states, which connects previously unreachable states to the structure.

In the next section we discuss PSTs, including training and converting a PST
to a PSA.

3.5 Prediction Suffix Trees

Definition 3.5.1 (prediction suffix trees (Ron et al., 1996; Schwardt, 2007)) -
A prediction suffix tree (PST) is a 3-tuple 〈 Σ, Q, p 〉 where:

- Σ is a finite alphabet;
- Q is the finite state space and Q ⊂ Σ∗ is a finite set of finite-length

strings with λ ∈ Q;
- p : Q ×Σ→ [0, 1], is the next symbol probability distribution.

The following constraints must be satisfied:

- ∑
σ∈Σ

p(q, σ) = 1 for all q ∈ Q;

- for all q ∈ (Q− λ) there exists s ∈ Σ and q′ ∈ Q such that q = sq’, and
q’ is the parent of q;

- the root of the tree is labelled by λ.

Ziv and Lempel (1978) developed a variable order algorithm for lossless
data compression. LearnPSA is an equivalent lossy compression algorithm.
The LearnPSA algorithm (Ron et al., 1996) is used to calculate the state space
and probability distributions of a PST. This algorithm finds all the strings
with a statistical significance, given certain input parameters for the train-
ing sequences. The algorithm’s design was motivated by the Probably Ap-
proximately Correct (PAC) learning model (Valiant, 1984). Starting at the
root node, which is represented by the empty string, the algorithm follows
a top-down approach to build a tree to which nodes are added, which ap-
pear a significant number of times in the training data and which have a



CHAPTER 3. AUTOMATA AND MARKOV MODELS 18

unique next symbol distribution when compared to shorter suffixes of the
same node. The parameters for LearnPSA are listed below:

- Σ is the input alphabet;
- L is the maximum string length allowed to label a state;
- n is the maximum number of states allowed;
- δ ∈ (0, 1) is the approximation parameter;
- and ω1, . . . , ωT are the training sequences.

The threshold values are calculated as follows:

- γ = δ
48L|Σ| , is the smoothing factor;

- Pmin = δ
2nLlog(1/γ) −

|Σ|
8n , is the minimum empirical string probability;

- α = (1 + γ|Σ|)× γ , is the minimum empirical next symbol probabil-
ity;

- β = 1 + 3γ|Σ| , is the minimum empirical next symbol probability
ratio.

Next we define the following functions:

- ηi(q, s) = the number of times the string q.s appears in the training
sequence, ωi ;

- ηi(q, ∗) = ∑
s∈Σ

ηi(q, s) ;

- p(q) = ∑T
i=1 ηi(q,∗)

(∑T
i=1 |ωi|)−T

;

- p(q, s) = ∑T
i=1 ηi(q,s)

∑T
i=1 ηi(q,∗) ,

where p(q, s) represents the frequency probabilities. These functions are
calculated for every q ∈ Σ≤L = ∪L

i=0Σi and s ∈ Σ. We need to subtract T
from the sum of the length of all training sequences in the denominator of

∑T
i=1 ηi(q,∗)

(∑T
i=1 |ωi|)−T

, since the last symbol in each training sequence does not have a
next symbol. Also, we define parent(q) to be the longest proper suffix of q.

The pseudocode for LearnPSA is given on the next page:



CHAPTER 3. AUTOMATA AND MARKOV MODELS 19

LearnPSA(Σ,L,n,δ,ω)

01 Q = {λ}

Initialise the state space to include the root state λ.

02 F = {s | s ∈ Σ and P(s) ≥ Pmin}

Initialise the frontier set of states to be considered to include every alphabet
symbol with a high enough occurrence rate in the training sequence.

03 while F 6= ∅
04 q = F.pop()

While there are states to be considered, remove the currently considered
state from the frontier.

05 f or all s ∈ Σ

06 i f p(q, s) ≥ α and p(q,s)
p(parent(q),s) ≥ β

07 Q = Q ∪ q

If the empirical next symbol probability is significant enough, according to
α, and if the state q provides significantly more statistical information about
the next symbol than its parent does, q is added to the state space.

08 F = F ∪ (Suffixes(q)−Q)
09 end i f

All suffixes of q which are not in the state space or the frontier are now also
considered as potential states.

10 end f or
11 i f |q| < L : F = F ∪ {s · q | s ∈ Σ and P(s · q) ≥ Pmin}

Consider all children of q with a high enough frequency count.

12 end while
13 p(q, s) = p(q, s)× (1− |Σ| × γ) + γ

Set the next symbol probability for every state and symbol respectively,
while taking a smoothing factor into account.
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Figure 3.3: A prediction suffix tree

Completing the suffix tree is done by adding all missing parents of the state
space. These parents inherit their next symbol probabilities from their re-
spective parents.

Example 3.5.1 - In Figure 3.3 the resulting PST is shown when the input
parameters are:

- Σ = {c, d, e}
- L = 3
- n = 10
- δ = 0.1
- ω1 = (c, d, e, c, d, c, d, e, c, d)
- ω2 = (d, e, d, e, c, d, c, d, e, c)

The suffix ec was not added to the tree, since it has the same probability
distribution as its parent c. This is the case since c is always followed by d

independent of whether its predecessor is e or d. The node de is only added
after the completion of the LearnPSA algorithm, in order to complete the
constructed tree. Note that internal nodes could have the same next symbol
distribution as their parent, in the case where they are used to complete the
tree, but this is not true for leaf nodes.
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Figure 3.4: A prediction suffix automata corresponding to the PST in Figure 3.3

Converting a PST to a PSA is achieved by adding all missing prefixes to the
state space and by constructing the transition function τ. Each state needs
all its prefixes to allow the state to be reachable in the PSA. These prefixes
inherit their transition probabilities from their longest proper suffix in the
state space. Constructing τ involves finding the destination state for each
source state and transition symbol. The destination state of a transition is
the longest suffix of the string obtained by concatenating the source state
and the transition symbol, which is also in the state space. The resulting
PSA converted from the PST in Figure 3.3 can be seen in Figure 3.4. Nodes
dc and ec are the prefixes added to complete the automaton.

PSAs are in general more compact than higher order Markov chains, since
higher order Markov chains require all states of maximum length, where in
contrast PSAs only require statistically significant states.

3.6 Hidden Markov Models

Hidden Markov models (HMMs) (Rabiner, 1990) are used to model the re-
lationship between a hidden and an observed sequence. A discrete hidden
Markov model is a Markov chain with a discrete probability distribution at
each state. These discrete probability distributions define probabilities of



CHAPTER 3. AUTOMATA AND MARKOV MODELS 22

emitting a specific alphabet symbol in a given hidden state. Thus the states
of the Markov chain are the hidden states.

Definition 3.6.1 (Discrete hidden Markov models (Dupont et al., 2005)) - A
discrete HMM is a 5-tuple 〈Σ, Q, a, b, π 〉 where:

- Σ is a finite alphabet of visible symbols;
- Q is a finite set of hidden states;
- a : Q × Q→ [0, 1] is a mapping defining the probability of transitions

between hidden states;
- b : Q×Σ→ [0, 1] is a mapping defining the emission probability of each

visible symbol at a given hidden state, also called a confusion matrix;
- and π : Q → [0, 1] is a mapping that defines the initial probability of

the hidden states.

The following constraints must be satisfied:

- for all qi ∈ Q, ∑
qj∈Q

a(qi, qj) = 1;

- for all q ∈ Q, ∑
ς∈Σ

b(q, ς) = 1;

- ∑
q∈Q

π(q) = 1.

We denote the observation and hidden state sequence by χ = χ1, . . . , χn and
s = s1, . . . , sn, respectively, where χi ∈ Σ and si ∈ Q. We use the following
notation:

π(qi) = P(s1 = qi);

a(qi, qj) = P(st = qj|st−1 = qi);

b(qj, χt) = P(χt|st = qj).

In the notation above, P(x) is the probability of an event, while P(x | y) is
the probability of an event x given that event y has occurred (see Appendix
C).

In Example 3.6.1 the observation sequence represents the chord progression
and the hidden sequence represents the melody of a given composition.
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This models the relation between two instruments, one playing chords and
the other a chordless melody. In the case where the hidden state sequence
and observation sequence are available as training data, empirical counts
can be used to calculate the parameters of the model, as for example when
using music. When this is not the case, the Baum-Welch forward-backward
algorithm is used.

Example 3.6.1 (Training an HMM using empirical counts) - The training in-
put is as follows:

χ1 I I I II II II I I II II
s1 c d e c d c d e c d
χ2 I I I I II II II II I I
s2 d e d e c d c d e c

,

where χ is the observation sequence and s is the hidden state sequence.
This implies that Σ = {I, II} and Q = {c, d, e}. The hidden state sequence
can be used as in Example 3.2.1 to determine the transition probabilities of
the underlying Markov chain,

a =

 0 1 0
2
7 0 5

7
4
5

1
5 0

 and π =
(

1
2 , 1

2 , 0
)

.

The confusion matrix, b, is also trained using counts as follows:

for all q ∈ Q and σ ∈ Σ, we have that b(q, σ) =
#(st = q and χt = σ)

#(st = q)
.

Thus:

b =

 b(c, I) b(c, I I)
b(d, I) b(d, I I)
b(e, I) b(e, I I)

 =


2
7

5
7

1
2

1
2

1 0

 .

A graphical representation of the HMM is shown in Figure 3.5, with the
discrete probabilistic distribution at each state displayed as a histogram.
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Figure 3.5: A discrete hidden Markov model with histograms defining the emission
probabilities

3.7 Hidden Markov Model Algorithms

Next we discuss algorithms applicable to hidden Markov models. The for-
ward algorithm is used to calculate the probability of a given observation
sequence. This algorithm is used when multiple models are available, and
the model which matches the observation sequence the best needs to be
selected. The solution is a dynamic programming algorithm and involves
filling in the forward matrix, α(t, qi) = P(st = qi, χt

1), where χt
1 represents

the observation sequence χ1, . . . , χt. Each cell of the forward matrix is equal
to the sum of the probabilities of all paths which lead to state qi and which
emits the specified observation sequence from time 1 to time t (see Figure
3.6). The forward matrix is calculated as follows:

α(t, qi) =


π(qi)× b(qi, χt) if t = 1;(

∑
qj∈Q

α(t− 1, qj)× a(qj, qi)
)
× b(qi, χt) otherwise.

Thus for a given model, the probability of a specific observation sequence
χT

1 is equal to ∑q∈Q α(T, q). The asymptotic running time of the forward
algorithm is O(|Q|2T).

Viterbi decoding is used to find the state sequence with the maximum likeli-
hood, given an observation sequence. The dynamic programming solution
used for Viterbi decoding is similar to the forward algorithm, but instead of
calculating the sum of all paths leading to a hidden state, the most probable
path probability leading to a hidden state is determined. The probability



CHAPTER 3. AUTOMATA AND MARKOV MODELS 25

π(c)× b(c, I)

π(d)× b(d, I)

π(e)× b(e, I)

a(c,c)

a(d,c)

a(e,c)

(
Σq∈Qa(q, c)× α(1, q)

)
× b(c, I I)

χ1 χ2

c

d

e

=I =I I

Figure 3.6: The forward algorithm

An application of the forward algorithm with observation sequence χ =
(I,II) and state space Q = {a,b,c}.

represented by each cell of the matrix δ is defined as follows:

δ(t, qi) = P(st = qi, st−1 = s∗t−1, . . . , s1 = s∗1 , χt
1),

where s∗ is the state sequence with the maximum probability, given the ob-
servation sequence. These probabilities are calculated recursively as fol-
lows:

δ(t, qi) =

{
π(qi)× b(qi, χt) if t = 1;
maxqj∈Q(δ(t− 1, qj)× a(qj, qi))× b(qi, χt) otherwise.

While calculating δ, we construct φ, which is used to store the state at time
(t - 1) in the most probable path to state qi at time t. We calculate φ, for t > 1,
as follows:

φ(t) = argmaxqj∈Q(δ(t− 1, qj)× a(qj, qi)).

After calculating δ and φ we use backtracking to find the most probable path
ι for a given observation sequence, as shown below:

ι(t) =

{
argmaxqj∈Qδ(t, qj) if t = T;

φ(t + 1, ι(t + 1)) otherwise.

The asymptotic running time of Viterbi decoding is O(|Q|2T), which is the
same as the running time for the forward algorithm.

Note that Viterbi decoding only finds the most probable hidden state se-
quence and not a probability distribution over possible hidden state se-
quences, from which possible sequences of hidden states can be selected
by taking the probability distribution into account. The A* search algorithm
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(Hart et al., 1968) is an alternative dynamic algorithm which finds the k most
probable sequences.

The backward algorithm calculates the probability of emitting a partial ob-
servation sequence χT

t+1 = χt+1, . . . , χT, given that the HMM is in the hid-
den state qi at time t, and defines β as follows:

β(t, qi) = P(χT
t+1|st = qi).

The backward matrix can be calculated by using a dynamic programming
algorithm as shown below:

β(t, qi) =


1 if t = T;

∑
qj∈Q

(a(qi, qj)× b(qj, χt+1)× β(t + 1, qj)) otherwise.

Using the transition, confusion, forward and backward matrices we can cal-
culate γ, which is the probability of transitioning from state qi to qj at time
t, given the full observations sequence χT

1 = χ1, . . . , χT (Huang et al., 2001),
as shown below for (t > 1):

γ(t, qi, qj) = P(st−1 = qi, st = qj|χT
1 )

=
α(t− 1, qi)× a(qi, qj)× b(qj, χt)× β(t, qj)

∑
qk∈Q

α(T, qk)
.

The initial probabilities, at time t = 1, is given by:

γ(t, qj) =
π(qj)× b(qj, χ1)× β(t, qj)

∑
qk∈Q

α(T, qk)
.

By using γ, we can calculate the probability ω of transitioning to the next
hidden state qj at time t, given the current hidden state qi at time (t - 1) and
the full observation sequence χT

1 = χ1, . . . , χT, as follows:

ω(t, qi, qj) = P(st = qj|st−1 = qi, χT
1 )

=
γ(t, qi, qj)

∑
qj∈Q

γ(t, qi, qj)
.
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The Markov chain determined by ω(t, ∗, ∗) can be used to generate multiple
possible hidden state sequences, given the observation sequence and the
model. This is used in our music generation system to compose a melody
given the chords.

3.8 Mixed Order Hidden Markov Models

First order HMMs consist of a first order Markov chain with a probability
distribution associated with each state of the Markov chain. More generally,
a mixed order hidden Markov model is a mixed order Markov chain with
a probability distribution associated with each state of the Markov chain.
Instead of using a mixed order Markov chain, as the base of the mixed order
hidden Markov model, we use a Prediction Suffix Automata (PSA), since
PSAs are equivalent to mixed order Markov chains. Each state of the PSA
used in a given mixed order hidden Markov model, is associated with a
probability distribution defining its emission probabilities. This probability
distribution is the same for all states in the PSA which have the same last
symbol in their respective state labels. Note that the mixed order nature of
a PSA is kept in the state labels, instead of the transitions as is the case for
mixed order Markov chains. This property makes the PSA’s transitions first
order and allows the algorithms discussed in Section 3.7, to be applied to a
our mixed order hidden Markov model. Figure 3.7 shows the PSA in Figure
3.4 with associated probability distributions. The distributions fc, fd and fe

are represented by the rows of the confusion matrix.

3.9 Probabilistic Finite Automata

Finally, we discuss Probabilistic Finite Automata (PFA), since all other au-
tomata discussed in the previous part of this chapter are PFAs. The class of
deterministic probabilistic finite automata (DPFA) is a subclass of the class
of PFA, with the property that the transition from a state, given an input
symbol, is unique (see Definition 3.9.1).

Note that all prediction suffix automata (PSA) are deterministic. The set of
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Figure 3.7: A mixed order Markov model

states of a PSA is contained in Σ∗, which is not necessarily the case for (de-
terministic or non-deterministic) PFAs. This implies that the probability dis-
tributions determined by PSAs, prediction suffix trees (PSTs) and Markov
chains, are a subset of the probability distributions determined by DPFAs,
which is in turn is a subset of the probability distributions determined by
PFAs and hidden Markov models (HMMs) (Schwardt, 2007).

Next we give the formal definition of a PFA.

Definition 3.9.1 (Probabilistic finite automata (Thollard et al., 2005)) - A prob-
abilistic finite automaton (PFA) is a 5-tuple 〈 Q,Σ,τ,π,p 〉 where:

- Σ is a finite input alphabet;
- Q is the state space;
- τ ⊆ Q× Σ×Q is a set of transitions;
- π : Q→ [0, 1] defines initial-state probabilities;
- p : τ → [0, 1] defines transition probabilities.

The following constraints must be satisfied:

- ∑
q∈Q

π(q) = 1;

- for qi ∈ Q, ∑
s∈Σ,qj∈Q

p(qi, s, qj) = 1.
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Figure 3.8: A probabilistic finite automaton

Note that a hidden Markov model can be converted to a PFA which de-
termines the same probability distribution. When converting an HMM to
a PFA, we use an identical set for Σ and the state space becomes Q′ =
Q ∪ {qstart}. We obtain the transition probability function of the PFA by
calculating it over qi ∈ Q′, s ∈ Σ and qj ∈ Q as shown below:

p(qi, s, qj) =

{
π(qj)× b(qj, s) if qi = qstart;
a(qi, qj)× b(qj, s) otherwise.

We define the initial probabilities of the equivalent PFA as π(qstart) = 1,
and all other states have intial probability zero. Figure 3.8 shows a PFA
equivalent to the HMM in Figure 3.5.

3.10 Final States

Final or acceptance states in an automaton require the automaton to be in
one of these states after the processing of a string, in order to accept the
given string. The automata described in the previous sections did not in-
clude a final state, since they only modelled strings of a fixed length. This
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implies that their distributions were normalised over strings with the same
length. For example, all the probabilities of the strings generated from the
Markov chain in Figure 3.1, of length two, sums to one, as shown below:

P(cd) = 1
2 × 1

P(dc) = 1
2 ×

2
7

P(de) = 1
2 ×

5
7

1.0

The introduction of a final state normalises the probability distribution of
generated strings over all lengths. This is necessary when generating strings
of various lengths. The definition of a probabilistic finite automata with a
final state is given below.

Definition 3.10.1 (Probabilistic finite automata with final state probabili-
ties (Thollard et al., 2005)) - A probabilistic finite automaton with final state
probabilities (FPFA) is a 6-tuple 〈 Q,Σ,τ,π,p,f 〉 where:

- Σ is a finite input alphabet;
- Q is the state space;
- τ ⊆ Q× Σ×Q is a set of transitions;
- π : Q→ [0, 1] defines initial-state probabilities;
- p : τ → [0, 1] defines transition probabilities;
- f : Q→ [0, 1] defines the final-state probabilities.

The following constraints must be satisfied:

- ∑
q∈Q

π(q) = 1

- for qi ∈ Q we have that f (qi) + ∑
s∈Σ,qj∈Q

p(qi, s, qj) = 1

The behaviour of a single acceptance state can be simulated without adjust-
ing the definitions and algorithms described in the previous sections. This
is done by appending all training sequences with a final state and emission.
This implies an implicit extension of the respective state space and alphabet.
In Figure 3.9 an FPFA equivalent to the HMM Figure 3.5 is shown.
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Figure 3.9: A probabilistic finite automaton with a final state

3.11 Conclusion

This chapter provided the required background on probabilistic automata
and hidden Markov models. Our music generation/imitation system al-
lows the user to use first, higher and mixed order Markov models. Our first
approach to music generation uses first order Markov chains, and is dis-
cussed in Chapter 5. In Chapter 6 we discuss how to use hidden Markov
models to model the relationship between the melody and harmony of a
composition.



Chapter 4
Literature Survey

4.1 Introduction

In this chapter we give survey of techniques used to generate music and
how the success of these techniques are measured. Generating music re-
quires some assumptions about the composition process, for example, it
could be a random process, a rule-based method or a statistical process.
We give an overview of music generation with statistical models (Conklin,
2003) by using sampling methods, in Section 4.2. Music generation using
genetic algorithms, agents which interact with each other, and cellular au-
tomata, are discussed in Sections 4.3 and 4.4. Next, composing chords for
a given melody is described in Section 4.5 and 4.6. Section 4.7 discusses
musical style modelling. Lastly, Willow, a tree-based music generator, is dis-
cussed in Section 4.8, followed by a summary in Section 4.9.

4.2 Overview of Music Generation using

Sampling Methods

Music generation with statistical models is done by using sampling. After
training analytical models from a composition database, the models can be
used for music composition. Context models, including finite state models,

32
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are relatively popular in music generation, since they have the following
properties:

- past events are used to predict future events, thus context models are
history based;

- the probability of a sequence of events is equal to the the product of the
probabilities of the individual events;

- generating music using sampling methods is easy.

Using sparse data to obtain a statistical model could be problematic, since
overfitting might for example occur. To solve this problem, a method of
viewpoints (Conklin and Anagnostopoulou, 2001), which interpolates be-
tween a statistical and rule-based model, is often used. The statistical model
is trained using musical pieces of the same style or sometimes only a single
piece. The other model is set up with rules based on the style of music.

There are statistical models which are not only history based, such as context-
free grammars with a statistical interpretation and non-deterministic top-
down tree transducers with added weights, but these statistical models re-
quire an existing grammar for a musical style (Högberg, 2005).

A random walk is a stochastical movement between connected states that
respects a given set of transition probabilities. One of the shortcomings of
a random walk is that the most probable path might not be chosen. This
shortcoming is obviously also the reason why a random walk approach can
generate many compositions (Ponsford et al., 1999).

Allan and Williams (2005) and Simon et al. (2008) used Viterbi decoding to
sample from hidden Markov models. Viterbi decoding finds the most prob-
able state sequence in a hidden Markov model. To find the most probable
sequence from a non-hidden first order Markov model, a dynamic program-
ming technique similar to Viterbi decoding can be used.

The more complex a model is, the more computationally expensive Viterbi
decoding becomes. When Viterbi becomes too expensive, the A* algorithm
(Hart et al., 1968) can calculate a specified number of best paths.

Repeating patterns should be discovered and preserved, for instance by
using suffix trees, which have been proven to be successful (Conklin and
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Anagnostopoulou, 2001; Ziv and Lempel, 1978). We discuss the use of pre-
diction suffix trees for music generation, in Section 4.7.

4.3 Overview of Music Generation using

Artificial Agents

4.3.1 Introduction

Rendering of extra-musical behaviour consists of creating artificial agents
and mapping their behaviour to musical events, for example a pitch or du-
ration. The musical events generated by agents have no effect on the agents
themselves. Thus the agents cannot judge or react to the music. When the
behaviour is mapped with some discretion, interesting compositions might
be generated (Miranda and Todd, 2003). Improvements can be made by
implementing musification rules, for example:

- making certain chord progressions, which are uncommon, impossible
(for instance a VII chord is seldomly used in Pop music),

- forcing the drum and piano rhythm to be the same.

4.3.2 Genetic algorithm inspired approaches

Compared to the random approaches, this approach produces music that is
in general more pleasing (Miranda and Todd, 2003). Each individual (artifi-
cial agent) produces its own music. The survival of a composition is deter-
mined by a human or an expert system looking at particular melodic and
harmonic developments. As the system evolves, individuals producing bet-
ter compositions, in terms of the opinion of the judges, are obtained. This
implies that more individuals will produce high quality compositions. This
system fails if a good human or artificial judge is not appointed. It is impor-
tant to note that this system still needs human intervention if it is the case
that an adequate artificial judge cannot be found.
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4.3.3 The cultural approach

In this approach, artificial agents produce their own music signals, which
are heard and reacted on by other agents. This might influence the compo-
sition they are singing (Todd and Werner, 1999), encourage them to mate
or encourage vigilance to defend their own territory (the details of how to
achieve this is not specified by Todd and Werner (1999)). Thus the music
produced by the agents influences their behaviour. We can thus consider
music to have a social role for the agents.

There can be different types of agents, for example composers and critics.
Critics can expect certain notes to follow others and might also give points
to those composers that are able to surprise them (Miranda, 2002). The crit-
ics use an encoded Markov chain for this evaluation. Each critic chooses one
mate, but each composer might have more than one mate. The next gener-
ation composers and critics are then created by using the qualities that are
similar in a critic and the critic’s mate.

The cultural approach could also be implemented by using robots with
voice synthesisers, hearing devices and a repertoire database. In each round
the robots are paired off and for each pair a player and an imitator is identi-
fied. The player starts the interaction by randomly choosing a composition
from its repertoire and singing it to the imitator. The imitator then chooses
the composition closest to it in its repertoire and sings it back. Next the
player determines if the composition sung back is the closest to the com-
position it sung in its own repertoire. If so, it sings the initial composition
back to give reassuring feedback. The imitator will then try to be creative,
depending on its creative willingness parameter and try to get even closer
to the composition. If the composition is not the closest, the player stops
interaction without giving reassuring feedback. A system of 5 agents pro-
duced an average of 12 compositions per agent in 5000 interactions (Todd
and Werner, 1999). Todd and Werner do not discuss the detail of the param-
eters, including the notion of creative willingness. After various rounds the
system settles into an almost fixed repertoire. This is the only system that
we are aware of that creates music by allowing music to evolve conceptually
in an artificial society.
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4.4 Music Generation with Cellular Automata

CAMUS (Miranda and Corino, 2003) is a cellular automata music generator,
and consists of two cellular automata algorithms:

- The Game of Life, and
- Demon Cyclic Space.

CAMUS allows the musician to choose his/her own rules for the game of
life. The Game of Life produces triples (3 notes). These triples are generated
by the x and y coordinates of live cells. The x and y coordinates represent
the distances between the notes. The value of the respective cell in the De-
mon cyclic space determines the instrument playing the notes. Each cell in
the Demon cyclic space has a value between 0 and (n-1). In the Demon cyclic
space any cell with value k changes its value to (k+1) modulo n, if the cell
has a neighbouring cell with a value (k+1) modulo n. The ordering and tim-
ing of the triple is determined by the neighbouring cells in the game of life
and rules selected/supplied by a musician. Ordering and timing options
include: all three notes played at the same time, the second note played
first and then the first and third note played together, the three notes played
in succession, etc. This approach gives the user an abstract handle on the
music generation process.

4.5 Music Generation using Constraints

4.5.1 Introduction

A constraint satisfaction problem consists of a set of constraints which are
imposed on a set of variables. Standard constraint satisfaction problem
solving is done by using a backtracking algorithm. Such algorithms recur-
sively assign values to variables, and if the newly assigned variable value
results in a constraint not being satisfied, the variable value is changed to
a new value. In the case where there is no possible satisfying value, the
constraint satisfaction algorithm backtracks to the previous variable. Opti-
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mising this algorithm involves forcing arc-consistency (Waltz, 1972) by re-
ducing the possible variable value domains. Two variables in a constraint
satisfaction problem are arc-consistent if for each possible value of the first
variable there exists a possible value of the second variable that will satisfy
the constraint. A constraint satisfaction problem is arc-consistent if each
allowed ordered variable pair is arc-consistent. Enforcing arc-consistency
is done by cycling through all pairs and adjusting the domains to be arc-
consistent, until no further adjustments are required. The Arc Consistency
Algorithm 3 (Mackworth, 1977) optimises this process by only reiterating
through affected pairs of previous domain adjustments.

4.5.2 Mixing Constraints and Objects to achieve Automatic

Harmonisation

BackTalk (Pachet and Roy, 1994) is a finite domain constraint solver, devel-
oped in the SmallTalk programming language, which uses backtracking and
the Arc Consistency Algorithm 3. The system MusES (Pachet and Roy, 1994)
(also developed in SmallTalk), is used in conjunction with BackTalk and was
developed to be applied to the automatic harmonisation problem. MusES
includes functions for calculating intervals, generating chords in a specific
scale and for providing all the scales a specific chord can be played in. There
are three types of constraints in the automatic harmonisation problem:

- horizontal distance constraints between notes,
- vertical distance constraints between notes,
- constraints on successive chords.

The constraint satisfaction problem is divided into two stages. The first
stage builds a constraint satisfaction problem only for the vertical and hor-
izontal distances between notes. The second stage uses the solutions from
the first problem to set up the domains for the chords. These domains are
used to solve the constraint satisfaction problem on the successive chords.
The values returned by the MusES system are all possible chords to a given
melody that adheres to the rules of harmonisation. The system provided
chords to 12 and 16 note melodies in 20 and 40 seconds respectively.
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4.5.3 Gradus

Gradus (Cope, 2004) composes a second voice accompaniment relative to a
first given voice or fixed melody. This is done by composing music which
falls inside certain constraints. These constraints or rules are created by
analysing a database of 50 compositions. Each of the compositions in the
database is a sequence of two notes played simultaneously, and follow the
compositional goals set by first species counterpoint (Randel, 2003). First
species counterpoint provides a set of goals by which students of counter-
point must compose. These compositional goals include:

- using specific vertical intervals such as thirds, fifths, sixths and octaves,
- avoiding certain parallel motions namely fifths and octaves,
- using only a certain range of horizontal intervals, and
- avoiding continuous same direction horizontal intervals.

The horizontal, vertical, continuous and parallel motions found in the database
are used to create rules. The rules are built to allow those motions found and
disallow those motions not found.

Gradus uses successful compositions to speed up future compositions. This
is done by saving templates to avoid false starts and rules are created to
avoid backtracking. Templates consist of three values:

- the interval from the first note of the melody and the seed note (the note
before the first note) of the accompaniment;

- the interval between the first and any other note in the melody which
has the largest absolute value;

- the interval between the first and the last note of the melody.

Gradus will choose the template which most closely resembles the fixed
melody and which has the most successful compositions. The first value
of this template is then used to calculate the seed note.

When composing the melody, Gradus can move only a maximum step size
of two and a minimum of one in any direction. The seed note is used to
calculate the possible first notes, from which one is randomly chosen. This
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continues for every note, using the previous note as a seed note. Motions
could occur which are not allowed by the rules. This will then require the
composition to backtrack to the previous note, where a new note will then
be chosen. In the case where there are no more notes to choose from, the
composition will backtrack again. When backtracking occurs, a rule is cre-
ated to look one step ahead. These rules consist of three values:

- the vertical interval at the first affected note;
- a list of horizontal intervals for the accompaniment;
- a list of horizontal intervals for the melody.

These rules are created to avoid backtracking and to speed up the composi-
tion process.

Gradus can only compose in C major scale, an accompaniment for a given
melody and limited first species counterpoints. This severely limits the flex-
ibility of Gradus.

4.6 Music Generation with Hidden Markov

Models

4.6.1 Introduction

Hidden Markov models are shown, in this section, to successfully model
the relation between pitches played by different voices. Allan and Williams
(2005) shows how hidden Markov models can be used to harmonise chorales.
Simon et al. (2008) complements the research by Allan and Williams (2005)
by using hidden Markov models in a system, where users provide a melody
by singing into a microphone and the system composes complementing
chords.
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4.6.2 Harmonising Chorales

In western classical music theory training, chorale harmonisation is a tra-
ditional exercise. Given a melody, the student is asked to compose three
additional lines of music, where each line is a chordless melody. The four
lines of music should illustrate that the student has an understanding of the
rules of harmonisation.

Allan and Williams (2005) trained a first-order hidden Markov model using
harmonisations composed by Johann Sebastian Bach. The data set included
382 chorales, divided between those in major and minor keys. Three fifths
of the data was used for training and two fifths for testing. The melody
notes and chords were represented by the visible states and hidden states,
respectively. The measures were divided in three or four time steps. The
Viterbi algorithm was used to predict the chord (three further notes) at each
of the time steps, given the model. A second hidden Markov model was
used to give a smoother rhythmic form, by linking notes together.

The model was used to calculate the probability of the harmonisations Bach
composed, given the respective melody lines. These probabilities were then
compared with those calculated by simpler models, such as Markov chains
between chord states. It was concluded that the hidden Markov model is
superior to the simpler models in harmonising chorales and that a higher-
order hidden Markov model would only make the data too sparse.

The generated harmonisations often had large intervals between the bass
notes, which is not desirable. These large intervals occur, because the bass
line has the most variance with respect to the melody. It was concluded that
it is problematic to model the different styles of Bach with a single model.
Also, dividing the measures into three or four time steps, implied that only
note values as small as quarter notes were taken into account. It was also
noted that cadences, which give the generated chorales harmonic closure,
were well modelled by the hidden Markov models.
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4.6.3 MySong

MySong (Simon et al., 2008) uses a hidden Markov model to generate ac-
companying chords for an input melody. The input melody is generated
by a person singing into a microphone. The chords and melody notes are
represented by the hidden and observed states respectively.

The training database includes 298 musical pieces in different styles includ-
ing Jazz, Rhythm and Blues, Pop, etc. The training data is made less sparse
by simplifying chords and transposing all pieces to the key of C. The chords
are simplified by casting them to one of five triads namely major, minor,
diminished, augmented and suspended.

The hidden states (chords) include a start and end state plus five types
of chords for each of the twelve root keys. The hidden Markov model is
trained by counting the number of times one state (chord) is followed by
another. These values are normalised at the end of training. The observed
distribution for each chord is obtained by calculating the total duration each
melody note is played with a given chord. The observed distributions are
smoothed, by adding each note to each chord for a very short duration, and
normalised at the end of training.

There are many scales, but the database is divided into pieces written in ma-
jor and minor scales respectively, by using a clustering algorithm. The clus-
tering algorithm uses musical heuristics to calculate the initial clusters. A
hidden Markov model is calculated for both clusters. Each piece assigns it-
self to cluster with the hidden Markov model which gives the highest prob-
ability for its chord sequence. After all pieces have their newly assigned
clusters, the hidden Markov models are recalculated. This process contin-
ues until no composition changes cluster.

This process results in two hidden Markov models and one set of observed
distributions. The observed distributions are not separated between major
and minor modes, since pilot testing showed no significant difference be-
tween the major and minor observed distributions. Pitch tracking is used to
calculate the pitch of the recorded voice. The pitch tracking method uses
an auto-correlation technique which is adapted not to include an octave
error correction step. The octave correction is processing intensive and is
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assumed to be irrelevant to harmonisation (Simon et al., 2008).

There is no need to extract timing information, since the melody is per-
formed with a computer generated drum beat. All generated chords have
the same fixed duration. This implies that for each fixed duration time slice,
a chord has to be chosen by the Viterbi algorithm. The log likelihood L(q, t)
is calculated for each chord q and each time slice t as shown below:

L(q, t) = log


[b(q, c) b(q, c]) . . . b(q, a]) b(q, b)]



w(t, c)
w(t, c])

...
w(t, a])
w(t, b)




,

where w(t, ∗) is created with a weight element for each musical note, which
is calculated by counting the melody notes in the time slice, and b(q, ∗) is
the observed probability vector associated with each chord.

Since there is not a specific correct chord sequence, Jazz and Happy factors
are introduced. The Jazz factor is applied to the observed log likelihoods to
generate more surprising chord sequences (Simon et al., 2008). The Happy
factor is applied by giving different weights to the minor and major hidden
Markov models as they are added together. Calculating the chord sequence
is done for each key and the key with the highest probability is chosen.

Evaluation included 26 recorded vocal melodies of about 13 to 25 seconds,
which were transcribed to MIDI, as input melodies. Musical Instrument
Digital Interface (MIDI) is an industry-standard protocol used since 1983.
Two musical experts were given 5 minutes to compose chords for each of
the input melodies using MySong, Band in a Box (PG Music Inc., 2007) and
with manual assignment. Scoring of these compositions was done by 30 vol-
unteer musicians. Each musician received two of the three compositions for
each of the 26 melodies. These compositions were randomly selected and
equally distributed for each of the six ordered pairings. They then scored
these compositions on a scale from 1 to 10, while allowing ties. The mean
scores were 6.3, 6.6 and 2.9 for MySong, manual assignment and Band in a
Box, respectively. The number of times one composition type outscored an-
other composition type in a pairing was counted. MySong performed better
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than manual assignment 95 out of the 264 times with 48 ties. MySong per-
formed better than Band in a Box, and performed similar to the approach of
using manual assignment by experts.

4.7 Music Generation with Prediction Suffix

Trees

4.7.1 Introduction

A prediction suffix tree represents a type of lossy compression, since only se-
quences which are repeated for a significant number of times are considered
when building the tree. These significant sequences are called motifs. The
prediction suffix tree learning algorithm was developed by Ron et al. (1996).
The algorithm requires a number of parameters to determine whether a se-
quence is considered when building the tree (also see Section 3.5). These
parameters are:

- the maximum length of a sequence;
- the minimum probability of a sequence occurring in the training data;
- a factor by which the conditional probability of the sequence must be

bigger than that of its suffixes.

Ziv and Lempel (1978) first used incremental parsing for lossless compres-
sion. A tree is built by parsing a sequence of alphabet symbols. A pointer to
the current node, which is initially set to the root node, is used. When pars-
ing the sequence, if the current item in the sequence is a child node of the
current node, then the current node pointer is set to the child node. Other-
wise the child node representing the current item is created and the current
node pointer is moved back to the root node, to start building a new string.

The tree structures created by incremental parsing and the prediction suffix
tree training algorithm can both be used to infer a next item, given a context.
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4.7.2 Music Generation with Prediction Suffix Trees and

Incremental Parsing

Dubnov et al. (2003) uses both incremental parsing and prediction suffix
trees to generate musical events. Their system also allows constraints on, for
example, the minimum context length required to infer the next item. These
constraints are implemented using a backtracking algorithm. The system
includes a default constraint requiring the maximum context available to
be used. This seems to cause infinite loops, which the system detects and
breaks free from, by temporarily relieving the constraint.

The tree structures are trained using MIDI files containing live performances.
The MIDI files are simplified using five adjustable preprocessing filters.
These preprocessing filters include a filter which equalises the attack time
of notes played within a specific time threshold of each other, and a filter
which reduces the duration value alphabet by equalising duration values
which are statistically close. To reduce the overall alphabet size, only the
important MIDI events are included in the training. The parameters ig-
nored for training, for instance the velocity value, are still stored in the tree
structure. These values provide human characteristics to the generated mu-
sic. The system also provides crossing over between different styles in the
generative process, if common motifs exist. The system can also be used
to create multiple instrument pieces with the help of humanly added con-
straints.

As expected from a lossless compression algorithm, incremental parsing
sometimes copies musical sequences. This gives the impression that the
style of the training data is too closely reproduced. The prediction suffix
tree training algorithm, being a lossy compression algorithm, sometimes
produces dissonant notes, which are not representative of the style. This is
most likely the result of not enough training data or a too high smoothing
factor.
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4.7.3 Music Generation with Multi-Attribute Prediction

Suffix Graphs

Each music note in a composition consists of multiple attributes including
pitch, duration, velocity, etc. Modelling the multiple attributes in a compo-
sition using a Markov chain requires a cross product of alphabets. A cross
product of alphabets also has an exponential growth effect, in the num-
ber of attributes, on the state space. The greater the state space the more
data is required to estimate the probability parameters of the model. This
problem can be alleviated by providing different memory lengths for each
attribute. The state space of mixed order Markov chains need not grow ex-
ponentially in memory length as in the case of higher order Markov chains.
Triviño-Rodriguez and Morales-Bueno (2001) propose their own model, a
multi-attribute prediction suffix graph, which resembles prediction suffix
automata. A prediction suffix tree is an example of a multi-attribute predic-
tion suffix graph with a single attribute. Each state in a multi-attribute pre-
diction suffix graph is a vector with a component for each attribute. These
components each contain suffixes of attribute values represented as strings.
Learning the model involves finding all the states with the maximum spec-
ified memory length, that appear more than a calculated bound. Instead of
adding states that are found to be significant, as described in Section 3.5, the
multi-attribute prediction suffix graph learning algorithm uses a bottom-up
approach. The prediction suffix graph is initialised with all states of maxi-
mum length and then trimmed, by removing states. As with the prediction
suffix tree approach, a parent of a state is preferred if the state does not
provide enough extra statistical significance. A parent of a state is a state
with a shorter memory length for at least one of the attributes. Lastly, the
next symbol probabilities for each attribute of each state are calculated and a
smoothing constant is added. The proposed music generation model has at-
tributes for pitch and duration. A multi-attribute prediction suffix graph is
trained for each attribute, which is then conditioned on the other attributes.

The prediction suffix graph model was evaluated by a test where 52 human
listeners, consisting of beginner and advanced music students, were asked
to listen to two compositions, one Bach choral and one computer-composed
piece of 10 measures in length. The students were asked to identify which
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one of the two was composed by Bach and which by the computer. The
listeners chose correctly 55% of the time, which when taking Hoeffding’s
bound of 12% into calculation, includes the value of 50%. This implies that
the prediction suffix graph model passed a partial Turing test.

This system has problems composing music with more than one voice
(Triviño-Rodriguez and Morales-Bueno, 2001). If multiple voices were syn-
chronous, the number of attributes could be increased to incorporate an-
other voice, but it is assumed that most compositions are asynchronous.
Musical events in a multiple voice composition occurring at different times
cannot be modelled by multi-attribute prediction suffix graphs. Further-
more, prediction suffix graph models of music can also incorporate various
other attributes, (Conklin and Anagnostopoulou, 2001) such as position in
measure and contour. Unfortunately, if too many attributes are modelled,
the danger increases of modelling a database of compositions too closely.

4.7.4 The Continuator

The Continuator (Pachet, 2003) is an interactive music style imitator. The
system receives a MIDI input stream from the user through a MIDI con-
troller (instrument with MIDI output) which is linked to a MIDI synthesiser,
and then sends a MIDI output stream back to the MIDI synthesiser. A prefix
tree is built by parsing the input stream from right to left, several times, and
adding any new prefixes to the tree. The last element of the input stream is
removed for every parse, until there are no elements left. A list of indices
are stored in every node of the tree. Each index points to the element fol-
lowing the respective prefix in the input stream. Storing the indices, instead
of the probability distributions, saves memory for short sequences, which
are typically required for interactive systems. It also allows other attributes,
for instance velocity, which are not stored in the tree, to be generated from
the original input stream. Generation of the next note only requires walking
the prefix tree, and finding the longest available prefix, and then randomly
choosing an index from the list. The next element probability is equal to the
number of times the index corresponds to the specific element, divided by
the number of indices in the list.
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The system builds four prefix trees, each requiring less accurate informa-
tion for generating the next note. The first prefix tree is built using the cross
product of the pitch, duration and velocity. The second prefix tree is built
using small pitch regions and velocity. Pitch regions group pitches which
are close to each other together. The third and fourth model is built using
small and large pitch regions respectively. This allows the system to gener-
ate notes using as much stylistic information as possible.

It could be reasoned that when a human plays chords it results in imper-
fect timing. Grouping notes with significant overlaps together fixes this
problem. The continuator provides several rhythm generation solutions.
The first uses the rhythm provided by the input stream, but after the input
stream was parsed, to treat significant overlaps. The second uses a fixed
duration for each note. The final approach is to duplicate the exact input
rhythm. This approach is not effective when the output sequence is longer
than the input sequence. The durations generated often do not fit within
the measures determined by the time signature. To fix this, notes are simply
truncated when required.

Real time generation is performed in chunks of notes. A few moments be-
fore the previously generated note(s) have finished playing, the system gen-
erates new note(s) and then the system sleeps for a fixed amount of time.

A fitness function is trained by a database of appropriate chord sequences,
allowing the continuator to play with other musicians. The fitness function
is a count of how many pitches are the same as those played by the musi-
cian, divided by the amount of pitches played by the musician. A constant
is used to model the weight of the fitness function versus the Markov prob-
ability, when calculating the probability of the next note.

A partial Turing test, which asks listeners to choose between which piece
was played by a human and which by the continuator, was passed by the
system.
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Figure 4.1: A Willow worksheet in Treebag

4.8 Music Generation with Tree Languages

4.8.1 Introduction

Wind in the Willows (Högberg, 2005), or Willow for short, uses tree languages
generated by Treebag, from regular tree grammars and tree transducers, to
generate music. We assume a pre-existing knowledge of tree languages,
in particular, regular tree grammars and top-down tree transducers (see
Appendix A). Treebag is a tree based generator for objects of various types
(Drewes, 1998). A worksheet in Treebag is a chain of various tree language
operations, which include Regular Tree Grammars (RTGs) and Tree Trans-
ducers (TDs). Willow uses such a worksheet (see Figure 4.1) which starts
with a RTG to generate the initial tree. It then uses a chain of TDs to trans-
form this tree into a musical piece. Each of these generation steps will be
discussed in the following subsections.
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Figure 4.2: Example of a Tree Generated by Willow’s AB RTG

4.8.2 AB form

The first tree language operation in this chain or assembly line is a RTG,
which generates the initial tree. The purpose of this RTG is to generate two
phrases, called A and B, respectively. It also chooses the meter or time sig-
nature and the number of measures per phrase. An example of a tree gen-
erated by this RTG is shown in Figure 4.2. The RTG selects a time signature
of 2 quarter beats per measure, and also selects two measures per phrase.

4.8.3 Chord Progression

The chord progression is the first TD applied to the initial tree generated
by the previously described RTG. The chord progression TD places chord
symbols in a specific order in parts of the tree. The effect of applying a Folk
chord progression (I → VI → IV → V) TD to a tree is shown in Figure
4.3. This chord progression TD is non-trivial, because of the difficulty of
obtaining a relationship between nodes that appear from left to right in a
tree. This TD is generated by a script to make it easier for the programmer
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Figure 4.3: Example of a tree transformed by Willow’s Chord Progression TD

to change the chord progression style.

4.8.4 Tempo

The tempo or tempo progression is achieved in a similar way to the chord
progression. It is also generated by a script, and applies various tempos
to parts of the tree. An example tempo progression could for example be:
slow→ f ast→ medium

4.8.5 Voices

This TD specifies the number of voices (different instruments) in the com-
position.
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4.8.6 Invert Voice Tempo

Two voices, each playing their own melodic line at a fast tempo, will most
probably sound cluttered (Högberg, 2005). Inverting one of their tempos
will leave the sound less cluttered. The Invert Voice Tempo TD does exactly
this.

4.8.7 Melodic Arc

We can think on an intuitive level of the melodic arc as a wave going up and
down. The melodic arc TD applies a horizontal movement to parts of the
tree. This horizontal movements have embedded rules:

- never jump more than four half steps from one note to the next;
- begin with the root of the first chord and end with the root of the last

chord for each phrase.

4.8.8 Arrange

The Arrange TD takes into account the Chord Progression, Tempo Progres-
sion and Melodic Arc and then places tones in the tree. For example, the
faster the tempo the lower in the tree the notes get placed, ensuring that
shorter notes are used in the composition.

4.8.9 Cadence

The Cadence TD applies a cadence to a specified voice. It places a chord
progression of a cadence, for example V → I, at the end of each phrase.

4.8.10 Anfang (beginning)

The Anfang TD ensures that each phrase starts with the root note of the first
chord.
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4.8.11 AABA form

Initially the tree corresponding to the composition is of the form AB. These
phrases could for example be a verse and a bridge. In order to achieve a
different form, for example AABA, phrases of the music (or subtrees) have
to be copied and moved using a TD.

4.8.12 Scale

Each composition is written in a specific scale. The scale TD determines the
scale of the composition. This TD also defines octave registers to adjust the
octave of specific voices.

4.8.13 Analysis

The Analysis TD adds a node to the top of the tree which acts as a flag for
the post processing step. The post processing step will then provide chord
symbols above the appropriate chords in the final score.

4.8.14 Accompaniment

Accompaniment is applied to the possible third voice. The applied voice
will play the triad of the chord in the chord progression, one note at a time.
A slow tempo might not allow the whole chord to be played. Thus in the
case of a slow tempo, only the root note might be played for a full measure.

4.8.15 Post Processing

After applying all the transducers mentioned above, the result is still a tree
structure. Converting this tree to music requires some post processing. Mup
(Arkkra Enterprises, 1992) is an application that can parse a text document
into a MIDI (Musical Instrument Digital Interface) file. It handles musical
notes as event messages. Willow uses a Java program to do this post process-
ing. This Java program parses the tree obtained from applying the various
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TDs, and outputs a text file. It also does some final processing on the tree
obtained as output from the tree transducers. In the input tree, all the notes
are specified after the TDs described above have been applied. These notes
specify the duration, the chord in which it is played and sometimes the po-
sition in the scale. The scale, melodic arc and chord progression still need
to be enforced on the notes. Thus in order to complete the music generation
process, these final tree operations first need to be applied. Our music gen-
eration system’s generation process is also divided into several steps, which
is based on this method described by Willow.

4.9 Summary

The music generation techniques discussed in this chapter can be divided
into the following two broad categories:

- Mapping the behaviour of agents to musical events, as discussed in
Section 4.3. This approach is for example used in CAMUS (Miranda
and Corino, 2003). The agent-based approach requires users to adjust
rules, rather than using inference.

- Sampling from statistical models to generate music, as discussed in Sec-
tion 4.2.

We discussed sampling from hidden Markov models, which is used by Si-
mon et al. (2008) and Allan and Williams (2005), and also the use of various
types of prediction suffix trees, which is an approach developed by Dub-
nov et al. (2003), Triviño-Rodriguez and Morales-Bueno (2001), and Pachet
(2003). The limitation of the prediction suffix tree methods is that they can
only compose music consisting of one voice. Two voice harmonisation can
be approached from two angles, one being to compose the chords given the
melody, as is done by Simon et al. (2008), Allan and Williams (2005), Pachet
and Roy (2001) and Cope (2004), while the reverse approach (composing the
melody given the chords) has only been attempted by Högberg (2005). Har-
monising using constraints was attempted by Pachet and Roy (2001) and
Cope (2004), and is a unique way to infer compositions from training data,
without sampling or using statistical models. Högberg (2005), Allan and



CHAPTER 4. LITERATURE SURVEY 54

Williams (2005), Miranda and Corino (2003) and Pachet and Roy (2001) all
divided their composition process into several steps. This, in many cases,
simplifies the state space by not making it the cross product of several al-
phabets. Our methodology will also:

- use hidden Markov models to harmonise two instrument music;
- use prediction suffix trees to model melody and rhythm;
- divide the composition process into several steps in order to keep the

state space manageable.



Chapter 5
Music Generation with XML

5.1 Introduction

The computer music generation system Willow, which was developed by
Johanna Högberg and described in Högberg (2005), uses a chain of vari-
ous tree language operations, in fact mainly top-down tree transductions,
in order to generate a tree which is interpreted as music. In our implemen-
tation the same principles is used, but instead of using tree transductions on
ranked trees, we use Extensible Markup Language (XML) transformations.
We assume a pre-existing knowledge of XML, in particular the Extensible
Stylesheet Language (XSL) and the Document Object Model (DOM) (see
Appendix B). These XML operations consists of XSL transformations and
the modification of XML documents by using DOM. After each of our steps
(see Figure 5.1), a valid MusicXML (Recordare, 2007) file is generated.

Although tree language operations are closely related to XML operations,
and can in fact be considered as abstractions of operations on XML docu-
ments, most computer scientists are more familiar with XML (Maneth, PhD
thesis). Being an industry standard, MusicXML is accessible to musicians
by the use of third party music notation programs. In these music notation
programs, the MusicXML file can be viewed, played and edited.

Next we briefly describe some of the open source programs and packages
that can be used to view and listen to music that is presented in MusicXML

55
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Figure 5.1: Operations

format. The pyScore package (Droettboom, 2005) adds the ability to out-
put MusicXML files in MIDI (Musical Instrument Digital Interface) format.
The extended pyScore package (Sinclair et al., 2006) can be used to convert
MusicXML to formats usable by the open source music notation software
Lilypond (Nienhuys and Nieuwenhuizen, 2008) and Guido (Kilian, 2003).
Lilypond can be used to convert MusicXML into standard music notation
in PDF (Portable Document Format) or PS (Postscript) format. Guido has
similar functionality.

5.2 MusicXML

In this section the structure of a MusicXML document will be explained by
means of examples. The following example shows a skeleton layout of a
MusicXML file, which is used as the initial file on which all operations are
applied.

Example 5.2.1 (Initial MusicXML file) - The following MusicXML document
consists of a single measure with no notes. All the XML operations de-
scribed in this chapter are applied to this initial MusicXML file.

01 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

02 <!DOCTYPE score-partwise PUBLIC

"-//Recordare//DTD MusicXML 1.0 Partwise//EN"

"/musicxml/partwise.dtd">
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Lines 01 - 02: Note that “partwise.dtd” represents scores by instrument (or
part) while “timewise.dtd” represents scores by measure. Representing the
score partwise defines the structure with all measures in each part, while
representing the score timewise defines all parts in each measure.

03 <score-partwise>

Line 03: The root element is score-partwise.

04 <work></work>

05 <identification>

06 <encoding>

07 <software>superwillow</software>

08 <encoding-description>MusicXML 1.0

09 </encoding-description>

10 </encoding>

11 </identification>

Lines 04 - 11: The identi�cation element contains metadata about the score.

12 <part-list>

13 <score-part id='P1'>

14 <part-name>Track 1</part-name>

15 </score-part>

16 </part-list>

Line 12 - 16: The score-part element contains a list of all the tracks (voices),
each represented by an id and a name.

17 <part id="P1">

Line 17: The first voice starts.

18 <measure number="1">

Line 18: Next the measure starts.
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19 <attributes>

Line 19: The attributes element is optional for the subsequent measures.

20 <divisions>4</divisions>

Line 20: The divisions element indicates the number of divisions per quarter
note. For example, if divisions element value is “1”, then the duration element
value of a quarter note is “1”. Similarly, if the divisions element value is “4”,
then a sixteenth note’s duration element value is “1”.

21 <time>

22 <beats>4</beats>

23 <beat-type>4</beat-type>

24 </time>

Line 21 - 24: The time element specifies the time signature.

25 </attributes>

26 <sound pan="8" tempo="120"></sound>

Line 25 - 26: The sound element contains playback parameters, for example
the panning of the stereo speakers and the tempo of the music.

27 </measure>

Line 27: When note elements are present, they are contained inside a measure

element.

28 </part>

29 </score-partwise>

In Example 5.2.2 on the next page a typical note element is shown. The
pitch element contains the step value which represents the key value, the
alter value which has a value of 1 for sharp and 0 for no sharp, and finally
the octave value.
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Example 5.2.2 (Note Element) - An example of a typical note element, which
is contained in a measure element.

01 <note>

02 <pitch>

03 <step>C</step>

04 <alter>0</alter>

05 <octave>4</octave>

06 </pitch>

07 <duration>16</duration>

08 <type>whole</type>

09 <notations>

10 <technical>

11 <string>5</string>

12 <fret>3</fret>

13 </technical>

14 </notations>

15 </note>

The duration value, in Example 5.2.2 above, is used in conjunction with the
divisions value as discussed in Example 5.2.1, to represent the duration of a
note. Since the value of divisions is 4 in our example, each quarter note has a
duration of 4 beats. Thus a whole note, as specified in the type element, has
a duration of 16 beats. The notation element is used to specify specific mu-
sic notation information. In this example, we use tablature notation, which
gives the fret and string played on the guitar. There have been other at-
tempts at defining music markup languages, but none of these are as pop-
ular as MusicXML. These alternatives include Wedelmusic XML, Standard
Music Description Language, eXtensible Score Language and MusiXML (Cov-
erPages, 2006).
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5.3 Operations

5.3.1 Setup

The startup MusicXML file contains one measure with no notes, and an in-
strument setup specification. The first transformations this file go through,
are the setup of the tempo and time signature of the composition. These
transformations are achieved by using XSLT. The XSLT files are generated
by Python scripts. The Python scripts set various variable values in the
XSLT file - see for example the explanation of Example 5.3.1. Instead of us-
ing Python scripts to generate XSLT, XSLT stylesheets could also call exter-
nal Python functions, which return the required variable values. Example
5.3.1 shows the core template of the XSL file used for setting the tempo.

Example 5.3.1 (Set Tempo) - XSL Template for setting the tempo

01 <xsl:template match = "sound">

This template will only be applied to the sound element and its children.

02 <xsl:element name = "sound">

The sound element is recreated.

03 <xsl:attribute name = "pan">

The pan attribute found in the sound element is recreated.

04 <xsl:value-of select="@pan"/>

The value of the old pan attribute is retrieved and placed inside the new
pan attribute.

05 </xsl:attribute>

06 <xsl:attribute name = "tempo">

The tempo attribute is recreated.
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07 <xsl:text>120</xsl:text>

The value of the tempo attribute is set. This tempo attribute value is sent to
a Python script which generates this XSL template with the required tempo
attribute value between the two “xsl:text” tags.

08 </xsl:attribute>

09 <xsl:text/>

10 </xsl:element>

11 </xsl:template>

5.3.2 Measures

Again an XSL transformation is used to create the number of measures.
XSLT does not contain loop functionality, since variable values cannot be
changed at runtime. XSLT does however support recursion (since it is a
functional language) and a for-each construct which can loop through a set
of elements. To achieve the required transformation, we define in XSLT a
variable numberofmeasures containing elements named number. Each number

element contains an id attribute. The attribute value of id starts at 2 and ends
at the number of measures we wish to create. However, cycling through the
variable element numberofmeasures is still not possible, since using XPath
expressions over variables are not possible. Fixing this, requires the num-

berofmeasures variable to be transposed to a node-set. This is possible by
using EXSLT’s (Stewart et al., 2006) node-set function (EXSLT is a commu-
nity initiative which provides extensions for XSLT). In summary, we cycle
through a generated XML tree and in the process we generate additional
measures as shown in the next example, Example 5.3.2.

Example 5.3.2 (Measures) - Adding measures using an XSL for-each loop

01 <xsl:for-each

02 select="exslt:node-set($numberofmeasures)/number">

03 <measure>

04 <xsl:attribute name = "number">
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05 <xsl:number value = "@id"/>

06 </xsl:attribute>

07 </measure>

08 </xsl:for-each>

5.3.3 Chord Progression

The chord progression is determined by the user of our software, by specify-
ing a first order Markov model. This is then used in conjunction with DOM
in order to modify the current MusicXML file. By using DOM, all notes in
the MusicXML file can be retrieved and placed in an array. While walk-
ing through the array of notes, we also walk through the chord progression
Markov model and apply the chord progression in accordance with the tran-
sition probabilities. This cannot be achieved with XSLT, since the number of
notes are not known when the XSLT file is being generated.

5.3.4 Chord Duration

Before applying the Chord Progression transformation, the Chord Duration
is applied. In popular music, chords are often played for the duration of
a whole measure, or sometimes for the duration of half a measure. This
is done by placing notes of a specified duration in the measures. These
note durations must fit inside measures as specified by the time signature.
The durations are again specified by a first order Markov model, using a
generated XSL script.

5.3.5 Voices

After the chord progression is applied, we make a copy of the current voice
(Part in MusicXML), for each voice in the final composition. This is done
with XSLT by changing the part name and id attribute for each specific voice.
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5.3.6 Rhythm Progression

The rhythm progression takes each note and divides it into notes of shorter
length and the same tone value as the original note. The sum of the lengths
of the new notes is equal to the length of the original note. The lengths are
determined by using a first order Markov model, similar to the technique
that is used to determine the chord progression and chord duration. The
only additional constraint is that the sum of the lengths of the new notes
must add up to the length of the original note. The rhythm progression
function is applied to each voice. Separately specified Markov models, pro-
ducing different rhythms, are used for each voice.

5.3.7 Melodic Arc

The melodic arc is applied to each note in the chord progression. The note
is transposed with a relative distance to its current place in the scale. This
is also implemented using a first order Markov model and by using DOM.
This function is applied to all voices except the first.

5.3.8 Accompaniment

The first voice is seen as the accompaniment voice. There are a few trans-
formation options:

- Powerchords applies an XSL transformation that replaces all notes with
their power chord representation. Power chords are often used in gui-
tar music. It uses the first and third notes of the triad and repeats the
root note in the next octave.

- Triadpiano uses XSL to replace all notes with their triad representation.
- Triadone uses DOM to apply a piano that plays the notes of a triad one

after the other.
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5.3.9 Scale Transformation

This stylesheet transforms the music piece from one scale to another. This is
done by specifying types of scales as sets of distances. Similar to the chord
progression, the first chord (root chord) is numbered as one and the remain-
der is numbered relative to the first note as shown in the next example.

Example 5.3.3 (Scale Type Definition) - XSL element used to define the ma-
jor scale type as a set of distances from the root.

01 <major>

02 <note num = "1" distance = "1"/>

03 <note num = "2" distance = "3"/>

04 <note num = "3" distance = "5"/>

05 <note num = "4" distance = "6"/>

06 <note num = "5" distance = "8"/>

07 <note num = "6" distance = "10"/>

08 <note num = "7" distance = "12"/>

09 </major>

The root note and scale type are specified for the source and destination
of the conversion. New scale types can easily be added by adding new
distance sets.

5.4 Conclusion

Using XML transformations for each composition step and MusicXML as
output, allows the user to view each step in his/her music notation program
of choice. This also allows for potential user intervention, allowing the user
to edit the MusicXML file between steps. DOM operations were found to
be more applicable for the purpose of music generation, as opposed to XSL
operations. The theoretical underpinnings of the relation between XML and
unranked trees are not discussed in this thesis.

In the next chapter we discuss how to determine probabilities from a data
set of music, as opposed to letting the user set the probabilities as in this
chapter.



Chapter 6
Style Imitation

6.1 Introduction

The act of musical composition involves a highly structured mental process.
Although it is complex and difficult to formalise, it is clearly far from being a

random activity - Dubnov et al. (2003)

Building probabilistic automata for use in our music generation/imitation
system requires the following steps: filtering, preprocessing, extracting and
analysing music data.

- A filter is used for filtering out music pieces which we are not capable
of analysing, for example a piece with a time signature change.

- The preprocessor is used for correcting assumptions that are found to
be incorrect, for example the preprocessor ensures that the duration of
the notes of each measure sums to the duration specified by the time
signature.

- The extractor collects relevant information such as chord classifications.
- The analyser creates analysis objects including (visible and hidden)

Markov models to be used for sampling.

After the music data have been analysed, the analysis objects are integrated
into different styles, from which the system can generate compositions and

65
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Figure 6.1: Our music generation/imitation system pipeline

imitate these styles, as shown in Figure 6.1.

6.2 Filtering Step

The filtering step is used to ensure that only files which pass the specified
requirements are sent to the preprocessing step. In the current implementa-
tion the filter ensures that the composition has only one consistent time sig-
nature throughout. The filter also verifies that each composition has valid
instruments and note values. The instruments and note values which are
considered to be valid, are specified in seperate XML files. These XML files
can be extended or restricted by a user. Depending on the processing power
available, the user might decide, for example, to process only compositions
with note values from a whole to an eighth.
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6.3 Preprocessor Step

The preprocessor is used to change input files so that they adhere to as-
sumptions on the music data, as required by the other components in the
music generation system. These modifications are not supposed to change
the way a piece of music is interpreted, but only to make it easier to do so.
Presently the preprocessor is only used to fill measures. When transcribing
a composition, a person might not add the implied rests at the end of each
measure. This is corrected by the preprocessor by adding rests at the end of
measures, if required. Although our system generates music without rests,
it is still the case that rests need to be accommodated in music data, since it
is rare to find a composition without any rests.

6.4 Extraction Step

6.4.1 Introduction

The extraction step obtains the relevant information from the music data by
performing the following steps:

- Transposing music data to the key of C while preserving the scale type;
- Obtaining and returning a list of classified chords from the music data;
- Obtaining and returning a list of note durations from the music data.

6.4.2 Transposing the Scale of music data

The key in which a composition is written does not influence the intervals
between notes, and thus the relationships, that will be analysed. In other
words, whether a composition is written in A or C major will not have any
effect on the interval sizes. The type of scale does, however, influence the
intervals, and thus compositions in different scale types are organised into
different groups. In order to simplify the analysis process, all compositions
are transposed to the key of C and, to achieve this, the original key is first
obtained.
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Definitions of scales, which are not included by default, can be added by a
user. Example 6.4.1 shows that each scale type is defined by a set of inter-
vals. Each of these sets of intervals forms a scale which can be transposed
to any key.

Example 6.4.1 (Scale Definitions) - Scales are defined using intervals.

<scales>

<scale name = 'major'>

<interval>1</interval>

<interval>1</interval>

<interval>1/2</interval>

<interval>1</interval>

<interval>1</interval>

<interval>1</interval>

</scale>

<scale ...

...

</scales>

Finding the scale in which a composition is composed, requires the consid-
eration of accidental notes, and a comparison between all notes in a com-
position and all possible scales. The chromatic scale contains all pitches,
but the chance that a composition is written in the chromatic scale is very
low. In general, the scale a composition is composed in contains all pitches
that appear frequently in the composition and conversely, most pitches in
the scale should appear frequently in the composition. The parameters of
our FindPossibleScales algorithm is the set of pitches found in the piece, the
frequency count of each of these pitches, and all the scales defined in an
XML file. The pitch and weight pairs, of pitches present in the composi-
tion, are sorted in ascending order according to weight. A parameter α is
used to give leeway and to allow the possibility of accidental notes in the
composition. Also, a parameter β is used to narrow down the choice of pos-
sible scales for the composition, and to exclude scales which contain more
than a certain number of pitches which are not present in the composition.
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The value β will most likely rule out the possibility of the chromatic scale,
except in the unlikely situation where all pitches in the chromatic scale are
used in the composition. The first attempt at finding a scale does not al-
low any accidentals, and all notes in the selected scale must be present in
the composition. When no scale is found, α is adjusted to give leeway, by
setting it to the next lowest frequency count. If increasing α does not yield
any possible scales, β is increased, by setting it to the index of the current
value of α in the sorted set of weights. The selection of the set of possible
scales is done by selecting scales that contain all pitches in the composition
that have a frequency higher than α. Also, the set of possible scales is re-
duced to scales for which at most β of their pitches are not present in the
composition. If the reduced set of scales is non-empty, we consider it to be
the possible scales for the composition, otherwise we increase α or β again.
When the non-empty set of possible scales is used, only one of the possible
scales must be chosen. In the current implementation, any scale from the set
of possible scales, which has a root key with the highest frequency, is cho-
sen from the possible scales. This is not completely correct, but it provides
fairly accurate results. Another possible solution is to give more weight to
the first and last chord found in a composition.

6.4.3 Extracting Chords

A user is allowed to add chords which are not included by default. All
chords are defined in the key of C, as in Example 6.4.2. Each of these chords
are transposed to the corresponding chords in other keys.

Example 6.4.2 (Chord Definitions) - Chords are defined by type in the key of
C. The C major triad (M), consisting of the notes C, E and G, is given below.

<chords>

<chord name = 'M'>

<key><step>C</step><alter>0</alter></key>

<key><step>E</step><alter>0</alter></key>

<key><step>G</step><alter>0</alter></key>

</chord>
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<chord ...

...

</chords>

All chords are retrieved from the pieces of music used as data. Each re-
trieved chord is compared to each of the previously defined chords, and in
this way classified. Some chords contain the same pitches, for example the
C augmented triad and the G] augmented triad, both contain C, E and G].
This is obviously problematic. Our system cannot distinguish between the
two options and thus randomly chooses the answer, taking into account the
root key which had the highest occurrences in the piece. It should also be
noted that chords that are arpeggiated are classified as single notes.

6.4.4 Extracting the Rhythm

The rhythm is extracted in a similar way to the method that is used to extract
chords. Instead of extracting all pitches played at the same time, the note
values (duration of notes) of the pitches are extracted. Note elements con-
tain a child chord element when they are played together with the previous
note element in MusicXML, as is illustrated in Example 6.4.3. This implies
that all the notes in a chord contain the same type (note value) and duration
value. Thus only one duration per chord is needed for the rhythm, since all
notes of a chord are sounded together. Durations of note elements with a
child chord element are not extracted for the rhythm progression, since we
only need one duration for each chord and the first note element of a chord
does not contain a chord child element.

Example 6.4.3 (A MusicXML Chord) - The chord in this example consists of
three notes.

<note>

<pitch>...</pitch>

<duration>2</duration><type>eighth</type>

...

</note>
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<note>

<chord></chord><pitch>...</pitch>

<duration>2</duration><type>eighth</type>

...

</note>

<note>

<chord></chord><pitch>...</pitch>

<duration>2</duration><type>eighth</type>

...

</note>

6.5 Analysis Step

6.5.1 Introduction

After extracting the relevant information from each MusicXML file used as
data, the extracted information is analysed to retrieve the parameters re-
quired by the XML operations discussed in Chapter 5. The tempo, scale and
time signature are simply retrieved. The Chord Duration, Chord Progression
and Rhythm Progression are all represented by first, higher or mixed order
Markov chains. The Melodic Arc is described by a first, higher or mixed or-
der hidden Markov model. The chords in the Chord Progression and Melodic
Arc are represented by Roman numerals. Generating chords require the
roman numerals to represent actual chords which are extracted by the ac-
companiment analysis. The selection of which voice is the lead and which
is the accompaniment is specified by the user, or chosen by voice analysis.

6.5.2 Voice Analysis

Choosing the accompaniment and lead voices for each piece is done by a
voice analysis algorithm. This algorithm compresses, for example using
bzip2 (Seward, 2008), each voice and calculates the ratio between the com-
pressed and real size. The voice with the largest ratio (ratio closest to one)
is assumed to have the largest information content. This voice is assumed
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to be the lead voice or voice representing the melody. Percussion voices are
excluded from this analysis. It is preferred that the voices are specified by
the user, since using compression to determine the lead and accompaniment
is not very accurate. One reason for the lack of accuracy is that the melody
might switch between voices.

6.5.3 Chord Duration Analysis

The chord duration analysis is applied to the accompaniment voice chosen
by the voice analysis. The parameters of the Markov chain for first, higher
or mixed order used to model the chord durations, are calculated by using
frequency counts. The training sets are simply lists of durations. These du-
rations are calculated by grouping and summing durations of chords which
are the same and which follow each other.

6.5.4 Chord Progression Analysis

The chord progression analysis is applied to the accompaniment voice. The
training sets which are lists of roman numerals, are used to calculate the pa-
rameters of a first, higher or mixed order Markov chain, by using frequency
counts. These roman numerals identify the root key and place of each root
key in the scale. A chord is added to the training sets only if it differs from
the previous chord.

6.5.5 Accompaniment Analysis

Each unique chord is stored as its root key and type by using its associated
roman numeral. In generation, roman numerals are generated as the chord
progression. These roman numerals are later replaced by chords from the
list, which are associated with each respective roman numeral.
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6.5.6 Rhythm Progression Analysis

The rhythm progression analysis is applied to the accompaniment and lead
voice. Again the Markov chain parameters of the Markov chain used to
model the rhythm progression, are calculated by using frequency counts.
The rests and unknown chords are excluded from the training data. This
exclusion possibly divides the training set into multiple training sets, but
only the first and last set include a start and final state respectively, since
this is where they would have been if the training set was not divided. The
alphabet of the Markov chain labels states by the duration associated with
each note.

6.5.7 Melodic Arc Analysis

The melodic arc analysis calculates the parameters of a hidden Markov
model of first, higher or mixed order, used for modelling the melodic arc,
by using empirical counts. The observed sequence is described by the ac-
companiment, while the hidden sequence is described by the melody. The
observed states are the roman numerals used by the chord progression. The
hidden alphabet is a combination of the index of the melody note in the
scale and its relation to the previous note, although it is not really hidden,
since the melody notes are available. The relation to the previous note is
represented by a plus, minus or an equal sign, depending on whether the
current note is higher, lower or equal to the previous note. Each melody
note is matched to an accompaniment chord in the observed sequence. The
chord that the accompaniment voice was playing, when the melody note
was sounded first, is chosen to be the matching chord (see Example 6.5.1).
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Example 6.5.1 (Melodic Arc Analysis) - This example shows how the music
below is analysed.

] ]

]]
]

The table below represents a composition in the scale of E major
(E, F], G], A, B, C], D]). By using this table, we can determine the matching
chord for each note.

Lead step A F A E G E
alter 0 1 0 0 1 0
octave 3 4 4 4 4 4
note value 1

8
1
8

1
4

1
8

1
8

1
4

Accompaniment roman IV V VI
root key A B C
type 5 5 5
note value 3

8
3
8

1
4

The following table represents the hidden and observed sequences retrieved
from the above composition.

observed sequence IV IV IV V V VI

hidden sequence =4 +2 +4 -1 +3 -1

6.5.8 Style Integration

All the analysis objects, namely the various Markov models and lists con-
taining the accompaniment chords and tempos, are exported to XHTML ta-
bles for the purpose of easy viewing in a web browser and editing in a text
editor. Once all music pieces are analysed, they are combined into analysis
objects representing the style of an artist and/or genre. The grouping of the
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music pieces, used as data, is left to the end user, and is achieved by the user
specifying the file structure used for the music data. This grouping is not
necessary, but grouping musical styles together will presumably emphasise
certain patterns. Conversely, grouping different styles together could also
yield interesting results, but grouping too many styles together could result
in a distribution where each note’s probability is equal, given any previ-
ous note(s). The analysis objects for the various folders cannot always be
combined, since the scale, instrument and time signature of each composi-
tion need to be taken into account. The analysis objects for the folders are
combined under the following conditions:

- Accompaniment chord sets are combined if the pieces have the same
scale and are played by the same instrument.

- Chord Progression and Melodic Arc matrices are combined if the pieces
have the same scale and are played by the same instrument.

- Rhythm Progression and Chord Duration chains are only combined if the
pieces have the same time signature. The Rhythm Progression also needs
to be of the same voice.

The tempo object is simply extended to a set of tempos. The analysis objects
which are not combined are simply added to a list.

Combining two chains is done by extending the state set to be the union
of the two state sets. Finally, the transition probabilities are summed and
normalised.

6.5.9 Conclusion

When constructing the training sets for the Chord Duration and Chord Pro-
gression, a new training set is created every time a rest or unidentified chord
is encountered. In each analysis phase which uses training sets, only the
first and last training set is appended with a start and final state respec-
tively. The analysis objects of each composition, or group of compositions,
can be used to generate new compositions by imitating the respective style,
which is explained in the next section.
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6.6 Music Generation

6.6.1 Introduction

After analysing the compositions, the analysis objects are used to generate
new compositions or to imitate the music that was used as training data.
This is achieved by using the operation sequence, as discussed in the previ-
ous chapter. Generation is not done by using the most probable sequence of
notes, but rather by sampling from the distributions obtained from the anal-
ysis. First a generation style is chosen by selecting an analysis XHTML file.
This could be done randomly or be specified by the user. Then the tempo,
time signature, scale and respective instruments are randomly chosen from
those found in the selected style.

6.6.2 Rhythm Generation

The Chord Duration and Rhythm Progression are obtained from a Markov
chain. This Markov chain generates a note value sequence that sums to a
specified duration. This is achieved by extending the state space. In addi-
tion to the original PSA state space, it includes a duration left value, which
is the duration specified minus the duration of the summed note values in
the generated sequence. The sequence is generated in such a way that at the
end of the generated sequence, the duration left value is equal to zero.

6.6.3 Carmel

Carmel (Graehl, 2008) is a finite-state transducer package. This package can
be used to sample from the distributions created by analysis of the composi-
tions used as data. Rhythm generation, as described above, uses a weighted
finite state automaton which is piped through Carmel as follows:

carmel -OQWEG 1 <wfsa>

The weights are in our case probabilities, and we thus supply Carmel with
probabilistic finite state automata as input. Chord Progression uses a prob-
abilistic finite state transducer to transform an input string. Characters in
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the input string are all the same, since it is only the length of the string that
matters. The number of characters are specific to the length of the chord
progression that needs to be generated. In Carmel the calculation is done as
follows:

echo <input_string> | carmel -OsliG 1 <wfst>

The Melodic Arc uses noisy channel decoding as described in the tutorial on
Carmel’s website (see Graehl (2008)). The hidden state transitions of the hid-
den Markov model are represented by a probabilistic finite state automata,
while the confusion matrix is described by a probabilistic finite state trans-
ducer. We do this calculation in Carmel as follows:

echo <observed_string> | carmel -IsriG 1 <wfsa> <wfst>

In all instances we use the -G flag, instead of the -k flag, in order to specify
that Carmel should generate sequences from the distribution determined by
the specified automata, instead of calculating the best paths. The fact that
we can use Carmel for some of our calculations, follows from the fact that
hidden Markov models can be converted to equivalent probabilistic finite
automata.

6.7 Conclusion

The filter, preprocessor, extractor and analyser can be seen as a pipeline,
where only compositions that are appropriate for the preprocessor are al-
lowed through by the filter, and similarly for the other consecutive compo-
nents.

The music composition software allows the user to choose the order and
mixed nature of the Markov chains used, as well as the length of the com-
position to be generated. We determined experimentally that better results
are obtained when smoothing factors are not used. Our system can thus
not always generate compositions from the provided music data. Our mu-
sic generation system allows the user to generate music in any style, given
that the user has appropriate music data which adheres to the constraints of
the system. These constraints and limitations will be discussed in the next
chapter.



Chapter 7
Evaluation

7.1 Introduction

Style imitation can be considered to be an artificial intelligence process, and
thus a partial Turing test can be applied as was done by Triviño-Rodriguez
and Morales-Bueno (2001), and Pachet (2003). They conducted a survey in
which they asked respondents to select the composition that was composed
by a human composer, given two compositions, one composed by a human
and the other by computer software. We asked a second survey question
where the respondent ranked three compositions from favourite to least
favourite. The three compositions consisted of a composition composed
by a human and two system generated compositions, one being composed
using higher and the other mixed order (visible and hidden) Markov mod-
els. To ensure fairness, the human composers were given certain constraints
which the computer system adheres to. The constraints posed to the human
composers are discussed in Section 7.2.2, while the generation of the various
computer compositions is discussed in Section 7.2.3.
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7.2 Survey Compositions

7.2.1 Introduction

Our evaluation consisted of three surveys, where each survey used music
from a different (human) composer (or composers) as data. The following
people composed music to be used in the survey:

- the author, Walter Schulze, with 4 years of keyboard playing and 8
years of guitar playing and composition experience;

- Eduard Burger, with 10 years of guitar playing and 8 years of composi-
tion experience, preferring the style of metal;

- John Charles Dalton, who has Music Theory grade 8 from the Royal
School of Music, Flute Grade 8 and Classical Guitar grade 6;

- affron5 and MindAtrophy, who are two users of the online music com-
position software, Noteflight.com (2009), with unknown music experi-
ence.

By using music composed by these composers, three styles were created:

- Schulze, which consisted of 3 compositions by the author;
- Burger, which consisted of 4 compositions by Eduard Burger; and
- Melted, which consisted of 2 compositions by John Charles Dalton and

one each of affron5 and MindAtrophy respectively.

Using such small data sets to infer music styles, could be seen as overfit-
ting of the music data, but it was not possible to amass larger data sets due
to time constraints and limits placed on the music accepted as data by our
music generation system. It is important to note that when our system gen-
erates music from one composition, there might only be one unique path
through the various Markov models. This could lead to reproducing the
input as output.

Next we discuss the constraints that were placed on every (human) com-
poser.
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7.2.2 Composition Constraints

Human composers were asked to compose pieces with two instruments,
one playing chords and the other a melody, of more or less 8 measures in
length. The Noteflight users were not asked to compose under the given
constraints, since their compositions were selected from an online database
based on the constraints. The compositions were kept short, since music
generated by Markov models do not have an overarching structure. The
lack of overarching structure, including phrases and their ordering, is more
noticeable for longer compositions. Also, the compositions composed by
the human composers had to be in the same scale and time signature. This
was required, to ensure that the compositions agree enough to be combined
for the purposes of being used as data for our generation system. The con-
straints placed on the compositions created by the human composers were
as follows:

- The time signature should be constant throughout a composition;
- The notes of a chord should be sounded at the same time and not arpeg-

giated;
- Both instruments should play without any rests;
- The compositions should conclude with a cadence;
- Notes are not allowed to sound from one measure to another;
- Only note durations from a whole to a sixteenth should be used, and

durations such as triplets are also not allowed.

The pieces composed were all in the scale of C major and all had a time
signature of four quarter beats per measure.

7.2.3 Composition Generation

A number of compositions were generated in each style from which three
compositions were chosen. One of the selected compositions was generated
using higher order (visible and hidden) Markov models and the other two
were generated by using mixed order (visible and hidden) Markov models.
One of the mixed order generated compositions was used with one of the
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human composition from which it was generated, for the purpose of con-
ducting a partial Turing test. Thus in the survey it was asked which one
of these two compositions was composed by a human. The two remain-
ing generated compositions were grouped with another human composi-
tion from which they were generated. In the survey it was asked to rank
these three compositions from favourite to least liked. The generated com-
positions were tested against the compositions used as input, since they
represent the same style of music. In this way any style bias a respondent
might have was eliminated.

The compositions generated for each style consisted of five compositions
for each Markov model memory length up to length 10 and type (higher
and mixed order). Unfortunately for the Melted style we could only gen-
erate higher order up to a memory length of two and mixed order up to
a memory length of five, due to sparseness of the music data. Thus for
the Melted style we generated 20 compositions of mixed order, which in-
cluded five compositions for each memory length from two to five, and 20
for higher order, all with a memory length of two. Therefore only 40 com-
positions were considered in the process of selecting three compositions for
the Melted style survey.

This survey was hosted on a website and completed mostly by staff and
students from Stellenbosch University and their respective friends and col-
leagues. When a respondent entered the site, he/she was assigned a ran-
dom survey. In the next section, the results from the survey are discussed.

7.3 Results

The survey was completed by 440 respondents. In Figure 7.1 the results
of the first survey question is shown. This question was setup as a par-
tial Turing test, to discover whether a human could distinguish between a
composition generated by our music generation system and a composition
composed by a human. The overall results show that more than a third of
people completing the survey made the wrong choice, which is promising.
The results obtained from the style of Burger were the most promising. The
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Figure 7.1: Turing Histogram

A Histogram representing the percentage of correct vs incorrect answers, given the
question: Which one of the two given compositions was composed by a human and

which by a computer.

interval indicated on the histogram bars was calculated by using the normal
approximation of the binomial proportion confidence interval. This indicates a
99% confidence interval for the average number of people that will answer
this question correctly. The style of Burger produced the most promising
results and the style of Schulze the worst results. This is slightly surprising,
but might be due to more interesting motifs in the compositions in the style
of Schulze.

The next survey question asked the respondents to rank three given com-
positions in the order of preference. The results are shown in Figure 7.2.
The aim was to achieve equal ratings for each of the compositions and to
show that our music generation system could compose music which is just
as pleasant as those composed by a human. Again the overall result shows
that this was not completely achieved, but promising results were obtained
with the Burger and Melted styles.
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Figure 7.2: Ranking Histogram

A Histogram representing the percentage of respondents that found a specific
composition to be their favourite.

In Figure 7.3 we show that in all styles almost half the time one of the com-
puter generated compositions was preferred over the human composition,
by the survey respondents.

Finally we did an analysis to correlate the answers of the two survey ques-
tions. In Figure 7.4 we show the result of dividing the answers to the sur-
vey into four categories. The four categories represent the combinations of
whether the human was identified correctly or incorrectly and whether the
human or a computer composition was preferred.

This analysis shows that most respondents that identified the human in-
correctly preferred a computer composition. This is especially true for the
Melted and Burger styles.
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Figure 7.3: Computer Histogram

A Histogram representing the percentage of respondents that preferred at least one
of the computer compositions over the human composition.
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The two survey questions are cross correlated into four categories.
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7.4 Conclusion

We did not evaluate compositions generated by first order Markov mod-
els, since we decided to keep the survey short and a comparison between
higher and mixed order was thought to yield more interesting results. Un-
fortunately the benefit of mixed order over higher order was not pointed
out by the survey results. We did find that mixed order was able to produce
compositions of a much higher memory length, compared to higher order.
The survey data showed that human compositions are still preferred, but
also that 68% of respondents either could not distinguish between a human
and computer composition, or preferred a computer composition over a hu-
man composition. Promising results were achieved for the style of Burger
in a partial Turing test and for the styles of Burger and Melted in the rank-
ing test, where mixed, higher and human compositions did almost equally
well.



Chapter 8
Conclusion

We investigated whether a computer could compose two-instrument music
just as well as a human. Our approach to music generation was modelled
on the assumption that artists compose music representative of a certain
style and so too it should be possible to train a computer to generate com-
positions in a certain style. The resulting music generation is a combination
of rule-based and statistical sampling methods.

Dividing the music generation process into several different operations re-
duces the state space and processing power needed for each generation step.
Also, the number of compositions the system is able to generate is increased.
For instance, the same melody can be mapped to multiple rhythms. Unfor-
tunately, the fact that the different generation steps do not take each other
into account results in failed composition attempts, for example, when the
Rhythm Progression is unable to generate note values that fit into the gener-
ated chord durations.

We have reconfirmed that hidden Markov models are well suited to model
the relationship between a melody and accompanying chords. As expected,
when we used mixed order Markov models, we were able to analyse com-
positions by using a much longer memory length compared to when we
used higher order Markov models. Interestingly enough, based on our
opinion, longer memory length did not always have a significant impact
on the quality of the compositions that our system produced.
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In our survey only 64% of respondents were correct when asked to identify
which one of two compositions was composed by a human, given that one
was composed by a human and the other by our computer system. Also,
only 46% of respondents preferred a human composition over the two com-
puter generated compositions presented with it.



Chapter 9
Future Work

Miles Davis famously described his improvisational technique as parallel to the
way that Picasso described his use of a canvas: The most critical aspect of the
work, both artists said, was not the objects themselves, but the space between
objects. In Mile’s case, he described the most important part of his solos as the

empty space between notes, the "air" that he placed between one note and the next.
Knowing precisely when to hit the next one, and allowing the listener time to

anticipate it, is a hallmark of Davis’ genius. - Levitin (2006)

This thesis lacks a proper analysis of rhythm. In particular, the following
aspects of music generation, involving rhythm, are left as future work:

- extra note attributes, for instance accentuation;
- linked notes and notes which are played over consecutive measures;
- an analysis of the relationship between the rhythms of different voices;
- generation of music with rests, where appropriate; and
- percussion.

These aspects need to be addressed throughout the music generation pipeline,
from the filtering step to the generation of new compositions.

Another major shortcoming is the limitation of generating only two voices.
This shortcoming is reflected in the lack of accuracy in detecting the lead
and accompaniment voices. A dynamic number of voices should be consid-
ered when analysing and generating compositions.

88



CHAPTER 9. FUTURE WORK 89

Furthermore:

- The theoretical underpinnings of unranked trees in relation to XML is
not discussed.

- Analysing scale changes in compositions, and a new algorithm for find-
ing scales. which gives better accuracy and considers the ascending and
descending nature of the melodic minor scale, should be implemented.

- Generating accidentals, i.e. notes not in the given scale, should be con-
sidered.

- Chord classification is naïve and needs to be improved, for instance
arpeggiated chords should be extracted as a chord and not as single
notes.

- The note ordering of chords (inversions) should be taken into account,
since certain chord inversions may sound more dissonant than others.

- Clustering can be used to group compositions together and to form
styles, instead of relying on the user to group them.

- Being able to accommodate fewer restrictions on training data.
- Other music formats, such as MIDI for example, should be supported

in the data extraction phase.
- The overhanging structure of a composition, including division into

phrases and the repitition of a theme, should be investigated.
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Appendix A
Tree Languages

A.1 Trees

A Tree is defined to be a connected acyclic graph in graph theory. In Com-
puter Science trees are usually labelled, ordered and rooted. Rooted trees
single out a node as being the root and any two connected nodes in the tree
have an inherent parent-child relationship. In an ordered tree, the children
of each node have a specific ordering.

Next we describe trees that are labelled and ranked. We denote the set of
non-negative integers by N. A ranked alphabet Σ is a finite alphabet that
is partitioned into disjoint subsets Σk, for k ∈ N. Thus Σ = ∪k∈NΣk and
Σi ∩ Σj = ∅ if i 6= j. The rank of a node is the number of children of the
given node. In labelled ranked trees each node of rank k is labelled by a
symbol in Σk. Most Extensible Markup Language (XML) documents can be
represented by unranked trees, except when links are used.

The tree in Figure A.1 has the signature {s : 2, " : 0, ! : 0}, and it describes

one measure in
4
4 time. This tree represents a quarternote followed by a

halfnote followed by a quarternote. Using the notation a[t1, . . . , tk] to denote
a tree with root node labelled by the symbol a of rank k, and with subtrees
t1, . . . , tk, and using simply a if k = 0, the tree in Figure A.1 is denoted by

s
[

s[ !, " ], !
]

. In essence one can interpret nodes labelled by s in Figure
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s

!s

"!

Figure A.1: A sample tree over the ranked alphabet {s: 2, " : 0, ! : 0 }

A.1 as a way to convert unranked trees, with notes at the leaves, to ranked
binary trees.

Definition A.1.1 (Set of trees over Σ, or TΣ) - (Drewes, 2006) Let Σ be a sig-
nature. The set TΣ of all trees over Σ is the smallest set of strings such that
t1, . . . , tn ∈ TΣ implies that f [t1, . . . , tn] ∈ TΣ, for every f ∈ Σ(n).

Note that all trees consisting of only a root node labelled by a symbol of rank
0 in Σ, is by definition in TΣ. The trees t1, . . . , tn are called direct subtrees of
f [t1, . . . , tn]. The generation of trees by grammars are discussed next.

A.2 Regular Tree Grammars

Context-free grammars, the formal equivalent of the Backus-Naur formal-
ism (Ford, 2004), are well-known to most Computer Scientists. The Backus-
Naur formalism is often used to describe the syntax of programming lan-
guages. A context-free grammar is a finite set of rules that generates a lan-
guage of strings. This formalism was proposed by Noam Chomsky (Chom-
sky, 1956). In a similar way, a regular tree grammar (RTG) is a finite set of
rules that generates a language of trees (Drewes, 2006).

Definition A.2.1 (Regular Tree Grammars (RTG’s)) - (Drewes, 2006) A reg-
ular tree grammar is a tuple G = (N,Σ,R,S) consisting of

- a finite alphabet N of nonterminals of rank 0;
- a finite output alphabet Σ, disjoint from N, whose elements are called

terminals;
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- a finite set R of rules of the form A → t, where A ∈ N and t ∈ TΣ∪N;
and

- an initial nonterminal S ∈ N.

Regular Tree Grammars generate trees by using the rules of the grammar in
a sequence of derivation steps.

Definition A.2.2 (Regular Tree Grammar Derivations) - (Comon et al., 2007)
Let G = (N, Σ, R, S) be a regular tree grammar. For trees s, s’ ∈ TΣ∪N, there
is a derivation step s⇒G s’ (or simply s⇒ s’), if:

- s is a tree which has at least one leaf node labelled by a nonterminal A.
- there is a rule A→ t ∈ R, and
- s’ is the same tree as s, except that one of the leaf nodes labelled by A is

replaced by the tree t.

A sequence t0 ⇒ t1 ⇒ · · · ⇒ tn of n derivation steps (n ∈ N) is denoted by
t0 ⇒n tn and derivations of any length by t0 ⇒∗ t. The regular tree language
generated by G, denoted by L(G), is the set of trees {t ∈ TΣ|S⇒∗G t}.

In Example A.2.1 we give an example of a derivation in an RTG.

Example A.2.1 (RTG derivations) - In this example we give an RTG which
generates the tree in Figure A.1.

N = { #̃, "̃•, "̃ }
Σ = { s : 2, # : 0, "• : 0, " : 0, ! : 0 }

R = { #̃→ # , #̃→ s
[
"̃, "̃

]
, #̃→ s

[
"̃•, !

]
, #̃→ s

[
!, "•

]
"̃• → "• , "̃• → s

[
!, "

]
, "̃→ " , "̃→ s

[
!, !

]
}

S = #̃

The RTG above can generate the tree in Figure A.1 as follows:

#̃⇒ s
[
"̃•, !

]
⇒ s

[
s
[
!, "
]

, !
]
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This is not the only tree that can be generated from this grammar. Here are
all the other possibilities:

# ; s
[
", "
]

; s
[
"•, !

]
; s
[
!, "•

]
; s
[

s
[
!, !
]

, "
]

; s
[

s
[
!, "
]

, !
]

; s
[
", s
[
!, !
]]

;

s
[

s
[
!, !
]

, s
[
!, !
]]

.

A.3 Top-Down Tree Transducers

Ranked trees, regular tree grammars and top-down tree transducers play an
essential role in the music generation system Willow (Högberg, 2005). Top-
down tree transducers are the tree analogues of string transducers. Thus a
top-down tree transducer takes a tree as input and produces a tree or noth-
ing as output. Tree transducers (TDs) have both input and output alphabets.

Definition A.3.1 (Tree transducer) - (Comon et al., 2007) A top-down tree
transducer (TD) is a tuple td = (Q, Σ, ∆, R, q0), where

- Q is a finite ranked alphabet of states, all of rank one;
- Σ and ∆ are finite ranked input and output alphabets, respectively;
- R is a finite set of rewrite rules of the form q[a[x1, . . . , xk]] → t, where

a ∈ Σ(k), q ∈ Q, and t ∈ T∆(Q(Xk));
- q0 ∈ Q, is the initial state.

We briefly explain the notation T∆(Q(Xk)) used in the definition above.
Firstly, Q(Xk) denotes the set of trees consisting of a state in Q as root
node and a variable in Xk as only child, where Xk is the set of variables
{x1, . . . , xk}. A tree t in T∆(Q(Xk)) is obtained by taking a tree s in T∆ and re-
placing (perhaps) some (or even all) of the leaf nodes of s by trees in Q(Xk).

Next we describe the mechanism with which a top-down tree transducer
td=(Q,Σ,∆,R,q0) computes output trees from input trees. Let s ∈ TΣ be an
input tree. The computation starts with the tree q0[s]. By q0[s] we mean
the tree with the state q0 as root and with the tree s as the only child of the
root node. Assume that s is given by a[t1, . . . , tk]. Next we take any rule
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in R of the form q0[a[x1, . . . , xk]] → t, where a is the label of the root node
of s, and k is the rank of a. If no such rule exists, the transducer does not
produce any output when given the input tree s. Note that in the special
case where k = 0, we have that t ∈ T∆. Since t ∈ T∆(Q(Xk)), the tree
contains possibly some of the variables x1, . . . , xk at the leaf nodes. A given
variable may also appear at more than one leaf node. When we apply the
rule q0[a[x1, . . . , xk]] → t to the tree q0s, we obtain the tree t[t1, . . . , tk]. We
denote by t[t1, . . . , tk] the tree that is obtained by replacing xi in t by tk. Note
that when we replace xi by ti in t, we obtain a tree with a state in Q above
each ti. At each node that is labelled by a state in t[t1, . . . , tk], we repeat the
rewriting process that was used at the root of q0s. We repeat this process
until we obtain a tree t in T∆. We denote the computation that takes s as
input and produces t as output by s⇒td t . Also, by td(s) we denote the set
{t ∈ T∆|q0s⇒td t}. In other words, td(s) is the set of all possible trees in T∆

that can be obtained if we start with q0s and apply the rules in R until we
obtain a tree in T∆.

In the next example we show how a given transducer transforms the tree in
Figure A.1 in such a way that it contains multiple phrases. The parents of
the leaf nodes of the trees obtained as output from the tree transducer are
also marked by pitch values.

Example A.3.1 - This example gives a non-deterministic total top-down tree
transducer which transforms the tree from Figure A.1 to have pitch and
multiple phrases. This transducer creates two copies of the input tree with
phrase as root. Next it places the pitches C, E or G on the yield of the tree,
always starting with C.
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Σ = { s : 2, # : 0, "• : 0, " : 0, ! : 0 }
∆ = { phrase : 2, s : 2, # : 0, "• : 0, " : 0, ! : 0, c : 1, e : 1, g : 1 }
Q = {START, C, E, G}

R =

{START[x1] → phrase[C[x1], G[x1]] ,
C[s[x1, x2]] → s[C[x1], E[x2]] ,
E[s[x1, x2]] → s[E[x1], G[x2]] ,
G[s[x1, x2]] → s[G[x1], G[x2]] ,
G[s[x1, x2]] → s[G[x1], C[x2]] ,

C[#]→ c[#] , C["]→ c["] , C["•]→ c["•] , C[!]→ c[!] ,

E[#]→ e[#] , E["]→ e["] , E["•]→ e["•] , E[!]→ e[!] ,

G[#]→ g[#] , G["]→ g["] , G["•]→ g["•] , G[!]→ g[!]}
q0 = START

A sample transformation of a tree with this top-down tree transducer is
shown below:

s
[

s
[
!, "
]

, !
]

⇒ START
[

s
[

s
[
!, "
]

, !
]]

⇒ phrase

[
C
[

s
[

s
[
!, "
]

, !
]]

, G
[

s
[

s
[
!, "
]

, !
]]]

⇒ phrase

[
s
[

C
[

s
[
!, "
]]

, E
[
!

]]
, s
[

G
[

s
[
!, "
]]

, C
[
!

]]]
⇒ phrase

[
s
[

s
[

C
[
!

]
, E
[
"

]]
, e
[
!

]]
, s
[

s
[

G
[
!

]
, G
[
"

]]
, c
[
!

]]]
⇒ phrase

[
s
[

s
[

c
[
!

]
, e
[
"

]]
, e
[
!

]]
, s
[

s
[

g
[
!

]
, g
[
"

]]
, c
[
!

]]]

A.4 Conclusion

This Appendix gave a short introduction to tree languages. A more detailed
introduction can be found in Drewes (2006). We discussed how trees can
be generated by regular tree grammars and transformed by top-down tree
transducers. Willow (Högberg, 2005) uses tree grammars and tree transduc-
ers to implement a rule-based system for algorithmic composition. XML
documents, which are used in our music generation system, can often be
considered as trees.



Appendix B
The Extensible Markup Language
(XML)

B.1 Introduction

XML is a syntax for trees - Wilde and Glushko (2008)

XML plays an essential role in our music generation system since MusicXML
files are used as input and produced as output. This Appendix provides
the essentials of XML that are required to understand our approach and
implementation. XML was designed to simplify the Standard Generalized
Markup Language (SGML), a language used to describe custom designed
markup languages. XML sacrifices customisability for ease of implemen-
tation when compared to SGML (CoverPages, 2002). For instance, SGML
can imply some end tags from the Document Type Definition (DTD). Thus
SGML does not require each start tag to have a matching end tag, as XML
does (Sperberg-McQueen and Burnard, 1994). XML is used to structure,
store and send data and uses a sequential notation for trees to do so (Maneth,
PhD thesis). The fundamental benefit of XML is the fact that XML doc-
uments do not have to be parsed by using a context-free grammar, since
XML documents are described with start and end tags (Maneth, PhD the-
sis). We might suspect that the reason for the excitement around XML is
simply that practitioners are catching up with methods of abstraction and
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representation via trees that are well-known in academia (Klarlund et al.,
2003). Labelled brackets are used to indicate an inner tree node. The trees
we discussed in Appendix A are all ranked trees. XML is defined as un-
ranked trees, implying that it does not specify the number of children each
type of node has. This simplifies the specification process and makes XML
more extensible.

In the next example we give an XML equivalent of the ranked tree in Figure
A.1 in Appendix A.

Example B.1.1 (a sample XML document) - This example gives an XML doc-
ument equivalent to the ranked tree described in Figure A.1 in Appendix A.

01 <!DOCTYPE measure SYSTEM "measure.dtd">

02 <measure>

03 <s>

04 <s>

05 <quarternote/>

06 <halfnote/>

07 </s>

08 <quarternote/>

09 </s>

10 </measure>

In XML it is more appropriate to describe a measure as below, since the rank
of nodes are not specified.

01 <!DOCTYPE measure SYSTEM "measure2.dtd">

02 <measure>

03 <quarternote/>

04 <halfnote/>

05 <quarternote/>

06 </measure>

Each node or rather element, as it is referred to in XML, has an opening
<Node> and closing </Node> tag (labelled bracket) which contains its chil-
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dren. A terminal element or an element with empty content can be denoted
as <Node></Node> or <Node/>.

Children of elements could be:

- Elements: For example <Parent> <Child/> </Parent>

- Text: For example <Parent>Child</Parent>

- Attributes: For example <Parent Child = "childvalue"/>

In the next section we discuss validation of XML using DTDs. This will be
followed by an explanation of parsing using DOM. Finally, we will discuss
transformation of XML documents by using Extensible Stylesheet Language
(XSL), and the limitations of XSL.

B.2 Validation

A well-formed XML document is a document which conforms to correct XML
syntax. If an XML document is not well-formed, it cannot be processed by
XML extensions such as XSLT, which we discuss later. The syntax of a valid
XML document is defined by a Document Type Definition (DTD) or XML
Schema which are similar to Regular Tree Grammars (RTGs). DTDs are not
used to generate XML documents, but rather to verify if XML documents
are valid. In Example B.2.2 the <!DOCTYPE> tag specifies phrase to be the root
element, while SYSTEM and the URL, �phrase.dtd� , specify the location of
the DTD. Example B.2.1 shows the DTD for the XML document in Example
B.2.2.

Example B.2.1 (DTD) - phrase.dtd

01 <!ELEMENT phrase (measure*)>

The first line shows the declaration of the phrase element. It indicates that
phrase elements should contain measure elements zero or more times.

02 <!ELEMENT measure (note*)>

03 <!ATTLIST measure
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04 number CDATA #REQUIRED

05 >

The measure element should also contain note elements zero or more times,
but after that measure’s attributes are specified using ATTLIST (attribute
list). It specifies an attribute with the name number and of type CDATA. It
also adds a further specification, #REQUIRED. Character data is denoted by
CDATA and #REQUIRED indicates that the specified attribute should be present
in the element.

06 <!ENTITY %full-note "(chord?, (pitch | unpitched | rest))">

Next ENTITY is encountered. This acts like a placeholder to make other ele-
ment declarations more concise and readable. It can also be used to specify
values which will only be specified after parsing. The entity’s name is full-

note and specifies a possible chord element followed by a pitch, unpitched or
rest element.

07 <!ELEMENT note (%full-note;, type?)>

In the previous line, note uses the full-note entity, in other words the ele-
ment contains a possible chord element followed by a pitch, unpitched or rest
element, followed by a possible type element.

08 <!ELEMENT pitch (step, alter?, octave)>

09 <!ELEMENT step (#PCDATA)>

10 <!ELEMENT alter (#PCDATA)>

11 <!ELEMENT octave (#PCDATA)>

12 <!ELEMENT chord EMPTY>

13 <!ELEMENT type (#PCDATA)>

In this example unpitched and rest is never specified in the DTD, but the
XML document is still well-formed, since these elements are not present. The
chord element is specified as EMPTY and will not contain any other elements
or data. The chord element specifies whether a note is part of a chord by
its presence. Finally #PCDATA, specifies parsed character data, which will be
parsed for entities and markup.
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Example B.2.2 (Valid XML) - A stripped down version of MusicXML using
phrase.dtd

01 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

02 <!DOCTYPE phrase SYSTEM "phrase.dtd">

03 <phrase>

04 <measure number="1">

05 <note>

06 <pitch><step>C</step><octave>4</octave></pitch>

07 <type>half</type>

08 </note>

09 <note>

10 <pitch><step>E</step>

11 <alter>1</alter><octave>4</octave></pitch>

12 <type>half</type>

13 </note>

14 </measure>

15 <measure number="2">

16 <note>

17 <pitch><step>G</step><octave>4</octave></pitch>

18 <type>whole</type>

19 </note>

20 </measure>

21 </phrase>

B.3 Parsing

B.3.1 Document Object Model (DOM)

The Document Object Model (DOM) defines a standard way for accessing
and manipulating XML documents (W3Schools, 2007). DOM defines almost
everything in an XML document as a node in a tree. This includes the entire
document, elements, text, attributes and comments. DOM defines functions
that can for example retrieve a handle on an element by the tag name, or
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retrieve handles on the parent or child nodes of a specified node. Each node
also has certain properties including name, value and type. Using these
handles, an XML document can be read or modified in ways similar to any
tree data structure.

B.3.2 XPath

XML Path Language (XPath) uses path expressions to select nodes in an
XML document. These path expressions are similar to those used in a com-
puter file system.

We can for example select the instrument, in the measure below, with the
XPath expression /measure/instrument.

Example B.3.1 - A measure element in an XML document

01 <measure>

02 <instrument>guitar</instrument>

03 <note pitch = "c">

04 <type value = "quarter"/>

05 </note>

06 <note pitch = "e">

07 <type value = "half"/>

08 </note>

09 <note pitch = "g">

10 <type value = "quarter"/>

11 </note>

12 </measure>

We can now retrieve the note c with the use of a predicate as follows:
/measure/note[@pitch='c']. Predicates are contained in square brackets
and are in this case used to find a node with a specific value. We can retrieve
the quarter notes by using Axes. Axes give a node-set relative to the current
node. We can for example find all the parent nodes relative to the type node
with the value quarter by using the expression:
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/measure/note/type[@value='quarter']/parent::*

XPath also has boolean and mathematical operators and over a hundred
functions for strings, numbers, dates, etc. All this makes XPath a very useful
tool for finding a node or nodes in an XML document.

B.4 Styling

The Extensible Stylesheet Language (XSL) can describe how XML docu-
ments should be displayed by transforming them to HTML, but XSL is
even more powerful. In general, it can be used to transform an XML docu-
ment specified by a schema to another XML document specified by another
schema. Thus XSL can, for example, be used to transform an XML docu-
ment to XHTML, plain text, or can even be used for simple XML queries.
Formally XSL consists of three parts: XSL Transformations (XSLT), XML
Path Language (XPath) and XSL Formatting Objects (XSL-FO). XSL Format-
ting Objects is described as an XML vocabulary for specifying formatting
semantics (World Wide Web Consortium, 2007b). Informally there is a lot of
confusion, since XSLT is often referred to as XSL and XPath is often consid-
ered as part of XSLT. XSL Transformations (XSLT) can add, remove, change
and sort elements and attributes specified by XPath. XSLT transforms XML
documents in a similar way in which tree transducers transform (ranked
and unranked) trees.

The example stylesheet given in Example B.4.1 transforms the XML docu-
ment in Example B.3.1 to the XML document in Example B.4.2. This
stylesheet in Example B.4.1 can be logically divided into the following parts:

- Lines 3 - 14: Two copies of the measure element are made and given
label attributes with a number value.

- Lines 14 - 19: The instrument element and the quarter note elements
are copied.

- Lines 20 - 33: Finally, each half note is divided into two quarter notes.



APPENDIX B. THE EXTENSIBLE MARKUP LANGUAGE (XML) 104

All the tasks are of the form shown below:

<xsl:template match = "some xpath expression"/>

"data transformation"

</xsl:template>

The template element uses an XPath expression to select the data (element,
character data, etc.) which will be transformed. Inside the template element
the actual transformation on the selected data is specified.

Example B.4.1 (XSLT document) - Used to style Example B.3.1

Lines 01 - 03: The header of the XSLT document

01 <?xml version = "1.0"?>

02 <xsl:stylesheet version = "1.0"

03 xmlns:xsl = "http://www.w3.org/1999/XSL/Transform">

Lines 04 - 13: We use the copy element to copy the selected measure element.
We copy the element twice to make two measure elements and inside each
we add a label attribute using the attribute element. Next we use the apply-

templates element, which applies all the matching templates to the newly
copied measures.

04 <xsl:template match = "measure">

05 <xsl:copy>

06 <xsl:attribute name = "label">1</xsl:attribute>

07 <xsl:apply-templates select = "node()|@*"/>

08 </xsl:copy>

09 <xsl:copy>

10 <xsl:attribute name = "label">2</xsl:attribute>

11 <xsl:apply-templates select = "node()|@*"/>

12 </xsl:copy>

13 </xsl:template>

Lines 14 - 19: A style has to be applied to instruments and notes other than
halfs, otherwise they will not be present in the transformed XML document.
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These elements do not have to change, and this is the reason for using the
copy-of operation.

14 <xsl:template match = "instrument">

15 <xsl:copy-of select = "."/>

16 </xsl:template>

17 <xsl:template match = "note/type[@value = 'quarter']">

18 <xsl:copy-of select = "parent::*"/>

19 </xsl:template>

Lines 20 - 33: Finally note elements with a type value of a half are found and
replaced by two quarter notes.

20 <xsl:template match = "note/type[@value = 'half']">

21 <xsl:element name = "note">

22 <xsl:attribute name = "pitch">

23 <xsl:value-of select = "parent::*/attribute::pitch"/>

24 </xsl:attribute>

25 <type value = "quarter"/>

26 </xsl:element>

27 <xsl:element name = "note">

28 <xsl:attribute name = "pitch">

29 <xsl:value-of select = "parent::*/attribute::pitch"/>

30 </xsl:attribute>

31 <type value = "quarter"/>

32 </xsl:element>

33 </xsl:template>

Line 34: The footer of the XSLT document.

34 </xsl:stylesheet>

Example B.4.2 (XML result) - The resulting XML document after styling the
XML document in Example B.3.1 with the XSLT stylesheet in Example B.4.1
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01 <?xml version="1.0"?>

02 <measure label="1">

03 <instrument>guitar</instrument>

04 <note pitch="c"> <type value="quarter"/> </note>

05 <note pitch="e"> <type value="quarter"/> </note>

06 <note pitch="e"> <type value="quarter"/> </note>

07 <note pitch="g"> <type value="quarter"/> </note>

08 </measure>

09 <measure label="2">

10 <instrument>guitar</instrument>

11 <note pitch="c"> <type value="quarter"/> </note>

12 <note pitch="e"> <type value="quarter"/> </note>

13 <note pitch="e"> <type value="quarter"/> </note>

14 <note pitch="g"> <type value="quarter"/> </note>

15 </measure>

B.5 Limitations of XSLT

Even with its extensive functionality, there are some transformations XSLT
simply cannot perform (Pawson, 1999). Variables are limited to having an
initial value at compile-time and cannot be changed at run-time, thus vari-
ables are immutable. This stateless execution is synonymous with func-
tional programming, where loops and mutable variables are replaced by
recursion and parameters (Harold, 2006). Restrictions that result from im-
mutable variables include:

- XPath expressions cannot be constructed using variable references;
- An XSLT file can include the contents of other XSLT files by using the
include operation, but the files to be included cannot be selected by a
conditional statement;

- The key parameter of the sort function cannot be selected at run-time.

Some other limitations include:
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- Attributes cannot be sorted, since it does not have an order as elements
do;

- XSLT was made to generate trees and not tags, thus the generation of
opening and closing tags in separate templates is impossible;

- The execution order of templates cannot be specified, since XSLT fol-
lows an event-based processing model for its template rules. This is
also a side effect of XSLT being a functional programming language,
where execution order is of low importance;

B.6 Conclusion

This Appendix gave a short overview of XML. The relationship between
XML and trees was briefly discussed. The syntax and validation of XML
using DTDs was discussed and explained with examples. Since the Mu-
sicXML input files that we use for music generation are not excessively
large, the complete XML documents can be in memory and DOM can thus
be used for parsing.



Appendix C
Probability Theory

C.1 Definitions

Definition C.1.1 (Conditional Probability) - (Ross, 2003) Assume P(F) > 0.
The conditional probability of event E occurring, given event F has oc-
curred, is denoted by P(E|F) and P(E|F) = P(E∩F)

P(F) .

Definition C.1.2 (Multiplication Rule) - (Ross, 2003) For events E1, . . . , En

with P(E1E2E3 . . . En) > 0, we have that

P(E1E2E3 . . . En) = P(E1)P(E2|E1)P(E3|E1E2) . . . P(En|E1 ∩ . . . ∩ En−1).

Definition C.1.3 (Bayes Formula) - (Ross, 2003) Assume that F1, F2, . . . , Fn

are mutually exclusive events such that ∪n
i=1Fi = S, where S is the sample

space. Then

P(Fj|E) = P(Fj∩E)
P(E)

= P(E|Fj)P(Fj)
∑n

i=1 P(E|Fi)P(Fi)
.

For more detail on probability theory, consult Ross (2003).
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