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Abstract

This work entails the improvement of an existing three dimensional pore-scale model.
Stagnant zones are included, the closure of the volume averaged pressure gradient is im-
proved and an improved calculation of pore-scale averages, using the RUC, is done for the
model to be a more realistic representative of the REV and thus of the foamlike mate-
rial. Both the Darcy and the Forchheimer regimes are modelled and a general momentum
transport equation is derived by means of an asymptotic matching technique. The RUC
model is also extended to cover non-Newtonian flow. Since metallic foams are generally
of porosities greater than 90%, emphasis is put on the accurate prediction of permeability
for these porosities. In order to improve permeability predictions for these high porosity
cases an adaptation to the RUC model was considered, whereby rectangular prisms were
replaced by cylinders. Although this adaptation appears to give more accurate permeabil-
ities at very high porosities, its implementation in a generalised model seems impractical.
The prediction of the characteristic RUC side length is discussed and results of both the
cylindrical strand model and the square strand model are compared to experimental work.
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Opsomming

Hierdie werk behels die verbetering van ’n bestaande drie dimensionele VES (verteenwoor-
digende eenheidssel) model. Voorsiening is gemaak vir stagnante sones, die berekening
van die volume-gemiddelde drukgradiënt is verbeter asook ’n verskuiwing van die VES
tydens berekeninge is gedoen ten einde die model meer verteenwoordigend van die VEV
(Verteenwoordigende eenheidsvolume) en gevolglik die sponsagtige materiaal te maak.
Die Darcy en die Forchheimer vloeiverskynsels word gemodelleer en ’n algemene momen-
tum transport vergelyking daargestel deur van ’n asimptotiese passingstegniek gebruik te
maak. Die model is uitgebrei vir nie-Newton vloei. Klem word gelê op akkurate perme-
abiliteitsvoorspelling vir porositeite groter as 90%, siende dat die porositeit van metaal
sponse gewoonlik hierdie gebied beslaan. ’n Nuwe model is ontwikkel om beter voor-
spellings vir hoë porositeite te bewerkstellig. Die reghoekige prismas van die VES word
vervang deur silinders en ’n model word ontwikkel om die permeabiliteit te voorspel. Vir
baie hoë porositeite gee hierdie model verbeterde voorspellings van permeabiliteit. Die
implementering daarvan in ’n veralgemeende model skyn egter onprakties te wees. Die
vasstelling van die karakteristieke VES-sylengte word bespreek en resultate van beide die
silindriese model, en die VES model word met eksperimentele data vergelyk.
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Nomenclature

Standard characters

a [m] Diagonal cell size

C [Pa] Absolute viscosity for power-law fluid

d [m] Linear RRUC dimension

dc [m] Linear CRUC dimension

df [m] RRUC pore width

dm [μm] arithmetic mean of strand diameter

fb [m.s−2] Gravitational acceleration

FC [m−2] Friction factor for cylinder model

FR [m−2] Friction factor for RUC model

k [m2] Hydrodynamic permeability

K [ ] Dimensionless hydrodynamic permeability

koz [ ] Kozeny constant

L [m] Predefined straight line length

Le [m] Length of tortuous flow path for displacement L

m [m] Hydraulic radius

n [ ] Power-law constant

n̂ [] Unit vector in streamwise direction

p [Pa] Pressure

pf [Pa] 〈 p 〉f = Intrinsic average fluid pressure

q [m/s] Darcy velocity, Streamwise superficial velocity

Q [m3/s] Flow rate

S [m2] Surface

Sff [m2] Fluid-fluid Interface
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Nomenclature ix

Sfs [m2] Fluid-solid Interface

Sg [m2] Sfs of Ug

S|| [m2] Sfs of U||

S⊥ [m2] Sfs of U⊥

u [m/s] Drift velocity

Uf [m3] RRUC fluid volume

Uf [m3] REV fluid volume

Ug [m3] RRUC stagnant volume

Uo [m3] RRUC volume

Uo [m3] REV volume

Us [m3] RRUC solid volume

U s [m3] REV solid volume

Ut [m3] RRUC transfer volume

U⊥ [m3] RRUC perpendicular volume

U|| [m3] RRUC streamwise volume

v [m/s] Actual velocity field

w [m/s] Streamwise channel velocity

Greek symbols

β [ ] Velocity ratio

δ [m] RRUCg solid width

ε [ ] Porosity,
Uf

Uo

η [m] Passability

μ [N · s/m2] Fluid dynamic viscosity

ρ [kg/m3] Fluid density

τ [N/m2] Local shear stress

χ [ ] Tortuosity

ψ [ ] Intrinsic streamwise volume fraction



Nomenclature x

Miscellaneous

〈 〉 Phase average operator

〈 〉f Intrinsic phase average operator

o Deviation operator

∇ Del operator

Acronyms

CRUC Cylindrical representative unit cell

REV Representative elementary volume

RRUC Rectangular representative unit cell

Subscripts

|| Parallel to streamwise direction

⊥ Perpendicular to streamwise direction

f Fluid matter

ff Fluid-fluid interface

fs Fluid-solid interface

g Stagnant

o Total solid and fluid volume

s Solid matter

t Transfer

g Granular



Chapter 1

Introduction

Cellular metallic foams have become increasingly popular for flow control and heat trans-
fer enhancement due to their intricate interfacial geometry and particularly high surface
area per unit volume. Such foams have recently become commercially available and their
use in industrial engineering processes is rapidly increasing.

Since these processes have to be optimised for maximal gain, the proper understanding
of, and knowledge about the underlying physical phenomena of fluid and gas transport
in such foams are of paramount importance. Mathematical models are thus needed to
predict and analyse such phenomena.

Du Plessis & Masliyah (1988) introduced a geometrical model characterising the mi-
crostructure of foam by the rectangular distribution of solid material in a representative
unit cell or RUC shown in Figure 1.1. This model was then improved on by Du Plessis
et al. (1994) and applied to predict the pressure drop through high porosity metallic foams
for the flow of water and glycerol with considerable success. The characteristic length, d,
of the RUC however still had to be determined experimentally.

Fourie & Du Plessis (2001) enhanced the modelling procedure of Du Plessis et al. (1994)
by developing an analytical expression for the characteristic dimension, d, of the RUC as
a function of two measurable geometrical parameters, namely cell size and porosity. A
tetrakaidecahedronal shape was introduced to approximate the geometry of a single cell.
The resulting analytical expression for the RUC-width, was

d ≈ 0.57a (1.1)

where a is the cell size. The 1994 model, however, provided a similar result by simply
using the cell size, a, of the RUC model shown in Figure 1.1. The relation between the
RUC side length, d, and the diagonal cell size, a, is

d =
a√
3

≈ 0.58a. (1.2)
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dsdf

d

Uo

Us

a

√
2d

Figure 1.1: RUC cell size, a.

The introduction of the tetradekaihedronal shape therefore appears redundant in this
respect since the relation between the characteristic side length, d, and cell size, a, could
have been determined without it. Also, the particular tetragon shape can only be used
with considerable difficulty in further generalisation of the model.

The model to be developed in this work is an extension of research done by Du Plessis
et al. (1994). This work, however, differs from the former in two ways. Firstly, following
a method applied by Lloyd et al. (2004) for two dimensions, modelling is done over all
possible RRUC’s in order to be a better representative of an REV and therefore the
foamlike material. Secondly, the RUC is modified to include stagnant regions.

The model developed in this work was already used extensively in the work to be reported
by Crosnier et al. (2006). In the present work analytical expressions for the characteristic
RUC side length, d, and the drag coefficient, cd, are developed. The present modelling
of the inertial term differs slightly from that done by Crosnier et al. (2006) and these
differences are discussed. Close correlation is achieved between the present theoretical
model and experimental data for pressure drop in high porosity aluminium (ERG) foams.

The present model is also extended for the prediction of the permeability for the discharge
of a particular non-Newtonian flow in metallic foams, (Smit et al. (2005)), (Appendix E).

In Chapter 4 an adaptation to the RUC model is considered, namely replacing the rectan-
gular prisms by cylinders, to determine the accuracy of this work in case of high porosities.



Chapter 2

Volume averaging theory

Integral calculus of continuum fields is normally used to mathematically analyse fluid
motion of a single phase fluid. In case of single phase flow phenomena in porous media
an adaptation of calculus to include two phases is necessary since the differential volume
element, dU, is required to contain both phases and cannot be assumed to shrink to zero
in the limit, as is implied in ordinary differential calculus.

During the past 30 years a general theory of volume averaging has been developed (for
more detail see e.g. Bear & Bachmat (1991), Whitaker (1996)). The main aspects of the
development needed for this study are outlined in this chapter.

2.1 General definitions in terms of an REV

At each point, ro, in the porous domain, the continuum volumetric differential element is
replaced by a representative elementary volume (REV) of finite extent and with centroid
at the particular point. It must be large enough to contain sufficient solid and fluid parts
to be statistically representative of the average geometric properties of the porous domain.
The REV must, however, also be small enough, relative to the large scale boundaries of
the porous medium, to function implicitly as a differential element.

Figure 2.1 is a schematic of an REV of volume, Uo. The solid and fluid volumes within
Uo are respectively denoted by U s and Uf , with Sfs denoting the fluid-solid surface
interface between them. That part of the boundary of Uf which is in contact with fluid
particles outside the REV is denoted by Sff .

3
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Sfs

ro

U s

Uf

O

Sff

Figure 2.1: Representative Elementary Volume relative to a fixed origin O.

The volume Uo of the REV may thus be written as:

Uo = U s + Uf . (2.1)

The fluid phase average of any quantity ψ is defined by

〈ψ〉 ≡ 1

Uo

∫∫∫
Uf

ψ dU (2.2)

and the intrinsic fluid phase average of ψ by

〈ψ〉f ≡ 1

Uf

∫∫∫
Uf

ψ dU . (2.3)

The deviation, {ψ}, of a parameter, ψ, at any point, is defined as

{ψ} ≡ ψ − 〈ψ〉f . (2.4)
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The porosity (void fraction), ε, of any foam is defined as the phase average of unity,
namely

ε ≡ 〈1〉 =
Uf

Uo

. (2.5)

The porosity is an important parameter in the mathematical description of flow in porous
media.

2.2 Velocity definitions

The actual velocity field, v, of the fluid within Uf is denoted by

v = v ñ, (2.6)

where ñ is a dimensionless unit vector field that is parallel to the actual velocity vector at
each point in Uf . The phase average of the actual velocity gives the superficial or Darcy
velocity and is defined as

q ≡ 〈 v〉 =
1

Uo

∫∫∫
Uf

v dU . (2.7)

The direction of q is called the streamwise direction and is denoted by the vector field n̂,
so that

q = q n̂. (2.8)

The intrinsic phase average of the actual velocity gives the drift velocity and is defined as

u ≡ 〈 v〉f =
1

Uf

∫∫∫
Uf

v dU = q/ε. (2.9)

This relationship was introduced by Dupuit-Forchheimer, (e.g. Carman (1937)). The
streamwise channel velocity, w, was introduced by Diedericks & Du Plessis (1995) and is
defined as

w ≡ 1

U L

∫∫∫
Uf

v dU , (2.10)
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where the streamwise volume, U L, is the volume available for streamwise displacement
of the fluid and is defined by

U L ≡
∫∫∫
Uf

ñ · n̂ dU . (2.11)

2.3 Volume averaged transport equations

For the present work the interstitial fluid is assumed to be stationary incompressible and
Newtonian. The flow is thus governed by the continuity equation,

∇ · v = 0 (2.12)

and the Navier-Stokes equation,

ρ∇· v v = ρ f
b
− ∇p + μ∇2 v. (2.13)

Volume averaging of equations (2.12) and (2.13) leads to the following averaged continuity
equation:

∇ · q = 0 (2.14)

and the averaged Navier-Stokes equation:

ρ∇· ( q q/ε) + ∇·
(
ε
〈 ◦

v
◦
v
〉

f

)
= ε ρ f

b
− ε∇pf + μ∇2 q

− 1

Uo

∫∫
Sfs

n
◦
p dS +

1

Uo

∫∫
Sfs

n · τ dS. (2.15)

If the averaged flow field, q, is assumed to be uniform and the porosity constant, equation
(2.15) reduces to

− ε∇〈p〉f =
1

Uo

∫∫
Sfs

n p dS − 1

Uo

∫∫
Sfs

μn · ∇ v dS. (2.16)

Equation (2.16) is still open in the sense that it contains the pore-scale parameters p and
∇ v which must be resolved at each point on Sfs. Closure modelling for particular porous
structures to transform equation (2.16) into an equation with only macroscopic (average)
parameters, is discussed in the next section.
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2.4 Existing model

An overview of the method followed to close equation (2.16) up until 2004 is given in the
following section. Equation (2.16) can be written in terms of the viscous stress dyad:

−ε∇〈p〉f =
1

Uo

∫∫
Sfs

np dS − 1

Uo

∫∫
Sfs

n · τ dS. (2.17)

A dimensionless criterion which determines the relative importance of inertial and viscous
effects is the Reynolds number:

Re =
Inertia forces

Viscous forces
. (2.18)

Situations in which the Reynolds number is small are called slow viscous flows. Viscous
forces arising from shearing motions of the fluid predominate over inertial forces associated
with acceleration or deceleration of fluid particles. As the Reynolds number increases the
inertial forces become more important relative to the viscous forces until the Forchheimer
regime is reached when the inertial forces predominate. At very high Reynolds numbers
the flow becomes turbulent, i.e., time dependent fluctuations occur. For the present, only
viscous flow will be taken into consideration and ”high Reynolds numbers” will refer to
the upper limit of Reynolds numbers for where the flow is still purely laminar. Typically
this limit will be in the 100-500 range, depending on the definition of Re.

2.4.1 Viscous flow

The fluid-solid interface in equation (2.17) is partitioned into parallel and transverse
regions:

−ε∇〈p〉f =
1

Uo

∫∫
S ||

n p dS +
1

Uo

∫∫
S⊥

n p dS

− 1

Uo

∫∫
S ||

n · τ dS − 1

Uo

∫∫
S⊥

n · τ dS. (2.19)

The streamwise portion of the pressure integral is zero due to symmetry cancellations.
The underlined section has no streamwise component and disappears seeing that the left
side of our equation is in the streamwise direction. For very small Reynolds numbers the
pressure difference between the transverse faces are very small. This term therefore is
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dropped and the lost information incorporated by integrating the wall shear stress over
the total solid-fluid interface. This is achieved by numerically forcing the contribution of
the transverse part into the streamwise direction, namely

−ε∇〈p〉f = − 1

Uo

∫∫
S ||

n · τ dS − n̂
1

Uo

∫∫
S⊥

n · τ · ñ dS. (2.20)

The wall shear stress, τw, is now assumed uniform and constant over the whole of Sfs,

−ε∇〈p〉f = n̂
1

Uo

∫∫
Sfs

τw dS. (2.21)

Plane Poiseuille flow is assumed for a pore width, dp, and an average interstitial velocity,
vp. In so doing equation (2.21) renders

−ε∇〈p〉f =

(
S|| + S⊥

Uo

)(
6μvp

dp

)
n̂ =

S|| + S⊥
Uo

6

dp

(χ

ε

)
μ q. (2.22)

The definition of hydrodynamic permeability is given in one dimensional form by,

k ≡ μ q

−d〈p〉f
dx

. (2.23)

Since the pressure differences only occur in the streamwise direction,

−∇〈p〉f ≡ d 〈p〉f
dx

. (2.24)

Since we have established in equation (2.22) that

−d 〈p〉f
dx

=
1

ε

S|| + S⊥
Uo

6

dp

(χ

ε

)
μ q, (2.25)

the permeability can now be written in the following closed form:

k =
Uodpε

2

6χ
(
S|| + S⊥

) . (2.26)

This expression for the permeability is general and can be applied to all porous media.
Its particular application to foamlike media is described in the following sections.
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2.5 Improved model

2.5.1 Closure modelling with an RRUC

A closure modelling procedure, that aims to approximate the porous material by imbed-
ding the average geometric characteristics of the material as found in an REV within
the smallest possible hypothetical rectangular representative unit cell (RRUC), was pro-
posed by Du Plessis & Masliyah (1988). The RRUC provides a facility to consider flow
conditions within a most elementary control volume, Uo, model of the particular porous
medium. This representation should be interpreted as a certain arrangement of solid
material to fulfil the basic requirements of the average geometry of the actual porous
structure it resembles. The RRUC is restricted to rectangular geometry and it thus gen-
erally takes on the shape of a rectangular block. The restriction to rectangular RRUC’s
is only for geometrical simplicity and may be relaxed, although with substantial increase
in algebraic complexity. The porosity of the RRUC must be the same as that of the REV
it represents, so that, analogous to equation (2.5):

ε =
Uf

Uo

. (2.27)

In Figure 2.2 the geometry of an RRUC for a foamlike material introduced by Du Plessis &
Masliyah (1988) is shown. The shaded volume represents the void part contained within
a cube of side length, d.

n̂

dsdf

d

Uo

Us

Uf

Figure 2.2: Geometry of RRUC model for an isotropic metallic foam (ε ≈ 0.2).
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The configuration in Figure 2.2 is drawn for a porosity of about 0.2. From equation (2.27)
the porosity of the model in Figure 2.2 can be expressed in terms of the RRUC parameters
as

ε =
3d2

fd − 2d3
f

d3
=

(
df

d

)2 (
3 − 2

df

d

)
. (2.28)

Here df represents the normal distance between any two facing solid surfaces in a channel.

The fundamental approach for the analytical modelling is the assumption of a rectan-
gular morphology for the interstitial solid distribution and interstitially fully developed
viscous flow between each and every pair of ”parallel plates” within the RRUC. Time-
independent, piece-wise plane Poiseuille flow is thus assumed as interstitial flow condition.
If w is the average velocity in the channel between the plates, the pressure gradient is
given by

−∇p =
12μw

(df )2
. (2.29)

2.5.2 Volume partitioning within an RRUC

At any point within the foam the RRUC is set up with one channel parallel to the
streamwise direction, n̂, for the REV at that particular point as is shown in Figure 2.3.
Since the flow in this streamwise directed channel is in the direction of q the streamwise
volume is given by

U|| ≡ d2
f (d − df ). (2.30)

The transit volume, needed to carry the fluid, in the streamwise direction, through to the
opposite side of the RRUC, is given by

Ut ≡ d3
f . (2.31)

Fluid in other channels of the RRUC may either be stagnant or it flows transverse, that
is to say, perpendicular to the streamwise direction. If we denote by U⊥ the total volume
where transverse motion takes place and by Ug the volume of stagnant regions within the
RRUC,

U⊥ + Ug = 2U|| (2.32)
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n̂

dsdf

d

Uo

U⊥

U⊥
U||

Figure 2.3: Geometry of RRUC model for an isotropic metallic foam (ε ≈ 0.2).

in magnitude and it follows that

Uf = U|| + Ut + U⊥ + Ug = 3U|| + Ut. (2.33)

From equation (2.27) the porosity can be expressed in terms of these volumes as

ε =
U|| + Ut + U⊥ + Ug

U|| + Ut + U⊥ + Ug + Us

=
3U|| + Ut

3U|| + Ut + Us

. (2.34)

A geometrical factor, the intrinsic streamwise volume fraction , ψ, which is the fraction
of the void volume that is available for streamwise transport of fluid, is defined by:

ψ ≡ Uf

U|| + Ut

=
U|| + Ut + U⊥ + Ug

U|| + Ut

. (2.35)

Since in all cases U|| + Ut + Ug = 3U||, the factor ψ may be now be evaluated as follows:

ψ =
3U|| + Ut

U|| + Ut

=
3d2

f (d − df ) + d3
f

d2
f (d − df ) + d3

f

= 3 − 2
df

d
. (2.36)

It thus follows that

df

d
=

3 − ψ

2
(2.37)
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and

ds

d
=

ψ − 1

2
. (2.38)

If the result of equation (2.38) is substituted in equation (A.6) it follows that,

ψ3 − 6ψ2 + 9ψ − 4ε = 0 (2.39)

subject to the constraint that

ψ = 1 if ε = 1. (2.40)

The solution to equation (2.39) and condition (2.40) is

ψ = 2 + 2 cos

[
4π + cos−1(2ε − 1)

3

]
(2.41)

and this expression is presented graphically in Figure 2.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

∈

ψ

ψ = 2+2cos[(4π+cos−1(2∈−1))/3]

Figure 2.4: The intrinsic streamwise volume fraction, ψ, as a function of porosity (equation
(2.41)).
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2.5.3 Surfaces of the RRUC

The fluid-solid surfaces can be written as follows in terms of the edge lengths of the
RRUC,

Sfs = 12df (d − df ). (2.42)

In substituting equations (2.37) and (2.38) into equation (2.42), it follows that,

Sfs = 3d2(ψ − 1)(3 − ψ). (2.43)

The surfaces of the streamwise volume can be expressed in terms of edge lengths as,

S|| = 4df (d − df ). (2.44)

Substituting equations (2.37) and (2.38) into equation (2.44) gives,

S|| = d2(ψ − 1)(3 − ψ). (2.45)

In the absence of stagnant regions, S⊥, is written in terms of RRUC edges as,

S⊥ = 8df (d − df ). (2.46)

Again applying equations (2.37) and (2.38) to the above, results in the following:

S⊥ = 2d2(ψ − 1)(3 − ψ) (2.47)

In the absence of stagnant volumes,

Sg = 0. (2.48)

2.5.4 Velocity relationships

Global preservation of streamwise mass flow implies that flow through the d2
f plane at

velocity, w, equals flow through the d2 plane at the Darcy velocity, q. This implies that,

wd2
f = qd2. (2.49)
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Rewriting equation (2.49) and using equation (A.6) it follows that,

w = q
d2

d2
f

=
q

ε

(
3 − 2

df

d

)
. (2.50)

Following equations (2.36) and (2.35) the streamwise channel velocity can thus be ex-
pressed as,

w =
qψ

ε
=

q

ε

Uf

U|| + Ut

. (2.51)

It thus appears that the geometrical factor, ψ, plays a fundamental role in the prediction
of permeability. Equation (2.51) holds even if there are stagnant regions in the flow
domain.

2.5.5 Volume averaging of the pressure gradient

In this section an approach similar to that of Lloyd et al. (2004) for 2D structures will
be followed to obtain closure for the pressure gradient for a three-dimensional foamlike
structure. As such it forms an elaboration of a presentation at an international conference,
Wilms et al. (2005), attached as Appendix E.

If the volume averaging is performed over an RRUC and a uniform average flow field is
assumed, the flow through a foam is governed by the continuity equation (2.12):

∇· q = 0 (2.52)

and the following form of the averaged Navier-Stokes equation (2.16):

− ∇〈p〉 =
1

Uo

∫∫
Sfs

n p dS − 1

Uo

∫∫
Sfs

n · τ dS. (2.53)

These two equations may now be ‘closed’ for a particular foam by the introduction of a
particular RRUC, resembling the average properties of the foam geometry, and within
which the surface integrals are to be evaluated.

Following Lloyd et al. (2004), the two integrals in equation (2.53) are split into streamwise
and transverse integrals, yielding
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− ∇〈p〉 =
1

Uo

∫∫
S||

n p dS +
1

Uo

∫∫
S⊥

n p dS

− 1

Uo

∫∫
S||

n · τ dS − 1

Uo

∫∫
S⊥

n · τ dS (2.54)

of which the underlined integrals are zero. In the remaining pressure integral, for each
transverse channel section, the pressure is split into a channel wall average pressure, pw,
and a wall pressure deviation, p̃w, yielding,

− ∇〈p〉 =
1

Uo

∫∫
S⊥

n pw dS +
1

Uo

∫∫
S⊥

n p̃w dS − 1

Uo

∫∫
S||

n · τ dS. (2.55)

In evaluating the perpendicular surface integrals, the integral over all possible RRUC’s
must be taken to comply with the notion that an RRUC is a proper substitute for an
REV. In other words, the integral should be done over an REV, i.e. over a number of
RUC’s randomly cut by the outer boundary of the REV. Since the pressure equation at
hand is streamwise, this will only effect integration over S⊥ planes.

In Figure 2.5 the notation followed here is shown schematically. Let the integrals over
SAA and SBB respectively denote a surface integral over a cell of which the walls cut
through solid parts as shown by the dashed lines A, and a second integral where the cell
walls do not cut though any solid as shown by the dashed lines B. The average wall
pressure integrals need to be weighed according to their relative frequency of occurrence.
This need not be done with the parallel surfaces or pressure deviation on perpendicular
surfaces, since a shift in the streamwise direction does not result in any loss of friction.
It follows that,

− ∇〈p〉 =
ds

d
· 1

Uo

∫∫
SAA

n pw dS +
d − ds

d
· 1

Uo

∫∫
SBB

n pw dS

+
1

Uo

∫∫
S⊥

n p̃w dS − 1

Uo

∫∫
S||

n · τ dS. (2.56)
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A AB B

E

F

G

U⊥ streamwise

A AB B

Ug

(a) Overstaggered array (b) Regular array

L M N

Figure 2.5: Schematic for the evaluation of surface integrals.

The underlined integral is zero since pw is from definition equal for walls E and F and
for walls L and M . The pressure deviations are caused by shear stress at the transverse
surfaces and the pressure deviation integral thus provides the streamwise effect of the
transverse integral omitted from equation (2.54). Together the last two integrals thus
equal the total pressure drop caused by all shear stresses. This allows us to write

− ∇〈p〉 =
df

d
· 1

Uo

∫∫
SBB

n pw dS +
τ||S|| + τ⊥ S⊥

Uo

n̂, (2.57)

where τ|| and τ⊥ is the wall shear stress respectively in the streamwise and transverse
channels. It should be noted here that for each RRUC in the BB-range of the foam
structure there are two transverse channels. Referring to Figure 2.6, ∇〈p〉 can be written
as follows,

∇〈p〉 =
〈p〉A − 〈p〉B

δAB

. (2.58)

Here 〈p〉A and 〈p〉B are the average pressures in the A and B RUC’s respectively and δAB

the distance between the centers of these RUC’s. Letting δp be the loss in pressure as a
result of friction on the parallel edges and applying averaging, the above can be written
as follows in terms of RUC subvolumes:

∇〈p〉 =
pw(Ug + Ut) + (pw − 1

2
δpw)U||

Uod

−
[
(pw + δpw)(Ug + Ut) + (pw + 1

2
δpw)U||

]
Uod

. (2.59)
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Simplifying and taking into account the definition of porosity, the following relationship
can be derived between ∇〈p〉 and δpw:

∇〈p〉 = −ε
δpw

d
. (2.60)

U|| U|| U||Ut Ut

Ug

Ug

Ug

Ug

ds

Ap

p + δp p p − δp

q

A B

Figure 2.6: Evaluation of average pressure gradients.

This relationship enables the remaining surface integral in equation(2.57) to be written
as follows in terms of RUC volumes:

df

d

1

Uo

∫∫
SBB

npwdS =
df

d

1

Uo

⎡⎢⎢⎢⎢⎣
∫∫

SBB
EG

npw dS +
∫∫

SBB
MN

npw dS

⎤⎥⎥⎥⎥⎦ (2.61)

=
df

d

1

Uo

[ n̂δEGpw + n̂δMNpw] (2.62)

=
df

d

1

Uo

δpw(d⊥ + dg)d (2.63)

= −dfd(d⊥ + dg)

Uo

∇〈p〉f (2.64)
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= −U⊥ + Ug

Uf

∇〈p〉 (2.65)

= −Uf − (U|| + Ut)

Uf

∇〈p〉 (2.66)

=

[
U|| + Ut

Uf

− 1

]
∇〈p〉 . (2.67)

Equation (2.57) can therefore be expressed as follows:

− ∇〈p〉 =
τ||S|| + τ⊥S⊥

Uo

n̂ +

(
U|| + Ut

Uf

− 1

)
∇〈p〉 . (2.68)

Combining the gradient of pressure terms yields

− U|| + Ut

Uf

∇〈p〉 =
τ||S|| + τ⊥S⊥

Uo

n̂, (2.69)

that is to say

− ∇〈p〉 =
Uf

U|| + Ut

· τ||S|| + τ⊥S⊥
Uo

n̂. (2.70)

If w|| and w⊥ are the channel average velocities in U|| and U⊥ respectively, the interstitial
channel average velocity ratio, β, may be defined as

β ≡ w⊥
w||

. (2.71)

The following is then obtained

− ∇〈p〉 =
S|| + βS⊥

Uo

·
(

Uf

U|| + Ut

)2

· 6μ q

εdf

(2.72)

and this leads to the gradient of the intrinsic phase average for the pressure of

− ∇〈p〉f =
S|| + βS⊥

Uo

·
(

Uf

U|| + Ut

)2

· 6μ q

ε2df

. (2.73)

The hydrodynamic permeability for any of the structures considered is thus given by

k ≡ μ q

|∇〈p〉f |
=

Uo

S|| + βS⊥
·
(

U|| + Ut

Uf

)2

· ε2df

6
(2.74)
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and the dimensionless hydrodynamic permeability by:

K ≡ k

d2
=

ε2d2

6(S|| + βS⊥)
·
(

U|| + Ut

Uf

)2

· df

d
. (2.75)

The permeability is thus expressed entirely in terms of the geometric features of the porous
domain.

2.5.6 RRUC models allowing stagnant regions

Presented in Figures 2.7, 2.8 and 2.9 are representations of three RRUC models, respec-
tively for over-staggered, fully staggered and non-staggered configurations. The hydro-
dynamic permeability, k, is to be determined for each of these as a single-valued function
of porosity only.

Over-staggered model

In case of the over-staggered model the fluid is assumed to traverse all three void channels
as is shown in Figure 2.7, without any stagnant regions.

dsdf

d

Uo

Us

in

out

U||

U⊥

U⊥

Figure 2.7: RRUC for the over-staggered foam model.

The hydrodynamic permeability and dimensionless hydrodynamic permeability for the
over-staggered case can thus be written as a function of ε and ψ as follows,

k =
ε2d2

36ψ2(ψ − 1)
(2.76)
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and

K =
ε2

36ψ2(ψ − 1)
. (2.77)

Equation (2.77) is graphically represented in Figure 2.10, to follow.

Fully staggered model

In case of the fully staggered model, one of the three void arms of the RUC contains
stagnant fluid and is thus a dead zone as is shown in Figure 2.8.

dsdf

d

Uo

Us

in

out

U||

Ug

U⊥

Figure 2.8: RRUC for the fully staggered foam model.

By applying equations (2.74) and (2.75) the hydrodynamic permeability and dimensionless
hydrodynamic permeability for the fully staggered case can be written as a function of ε
and ψ as follows,

k =
ε2d2

24ψ2(ψ − 1)
(2.78)

and

K =
ε2

24ψ2(ψ − 1)
. (2.79)
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Equation (2.79) is graphically represented in Figure 2.10, to follow.

Non-staggered model

In case of the non staggered model, the fluid only passes through one channel as is
presented in Figure 2.9.

dsdf

d

Uo

Us

in

out

U||

Ug

Ug

Figure 2.9: RRUC for the non-staggered foam model.

By applying equations (2.74) and (2.75) the hydrodynamic permeability and dimensionless
hydrodynamic permeability for the non-staggered case can be written as a function of ε
and ψ as follows,

k =
ε2d2

12ψ2(ψ − 1)
(2.80)

and hence,

K =
ε2

12ψ2(ψ − 1)
. (2.81)

In Figure 2.10 the non-dimensional permeabilities for the three levels of staggering are
shown.
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Figure 2.10: Dimensionless hydrodynamic permeability according to equations (2.77), (2.79)
and (2.81).

It is evident from Figure 2.10 that the permeability for any particular ε decreases with
staggering as is expected since an increase in staggering causes an increase in shear stress
and thus renders the foam less permeable.

2.5.7 Modelling of inertial terms

For the Forchheimer regime inertial drag effects predominate. According to Du Plessis
et al. (1994) the viscous shear stresses become insignificant in comparison to the form
drag allowing equation (2.16) to be rewritten as,

− ε∇〈p〉f =
1

Uo

∫∫
Sfs

n p dS. (2.82)



Chapter 2. Volume averaging theory 23

If the weighing procedure of Section 2.5.5 is applied, equation (2.82) becomes,

− ε∇〈p〉f =
ds

d

1

Uo

∫∫
SAA

n p dS +
d − ds

d

1

Uo

∫∫
SBB

n p dS. (2.83)

Figure 2.11 serves as a schematic for the evaluation of the surface integrals.

A AB B

E

F

KG

U⊥

Figure 2.11: Schematic for the evaluation of surface integrals.

Assuming that the pressures exerted on walls E and F of Figure 2.11 are equal, the
underlined term of equation (2.83) equals zero,

− ε∇〈p〉f =
d − ds

d

1

Uo

∫∫
SBB

n p dS. (2.84)

Under the assumption that the pressures on the transverse faces are constant, addition
would result in a constant pressure difference, Δp, allowing equation (2.84) to be expressed
as,

− ε∇〈p〉f =
df

d

1

Uo

ΔpSface n̂. (2.85)

The pressure difference term in equation (2.85) can now be modelled by applying the
Bernoulli equation. Although the Bernoulli equation in the form given here, is only
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applicable to vorticity free flow, it is used only to obtain an approximate value for the
pressure drop.

pE

ρ
+

w2
E

2
=

pK

ρ
+

w2
K

2
. (2.86)

The fluid velocity at face E is assumed to be approximately zero due to the momentum
conversion from a streamwise to a transverse direction at the surface. The pressure at K
is adjacent to section G where the pressure is constant in the absence of any fluid. We
can therefore approximate equation (2.86) as,

pE

ρ
=

pG

ρ
+

w2
K

2
. (2.87)

This results in:

pE − pG =
1

2
ρw2

K . (2.88)

For an average channel velocity of w, the pressure drop over the lee side of the circulation
area can be expressed as

−ε∇〈p〉f =
df

d

1

Uo

cdSface
1

2
ρw2. (2.89)

Here cd constitutes a drag coefficient and Sface is the surface exposed upstream. Applying
the relationship between q and w given in equation (2.51), results in the following:

−ε∇〈p〉f =
df

d

1

Uo

cdSface
1

2
ρ
q2ψ2

ε2
. (2.90)

For the over-staggered case,

Sface =
1

2
d2(ψ − 1)(3 − ψ) (2.91)

and

ψ

ε
=

4

(3 − ψ)2
. (2.92)
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Substituting equations (2.91) and (2.92) into equation (2.90) results in the following:

∇〈p〉f =
cdρq2

2d

ψ(ψ − 1)

ε3
. (2.93)

The passability for the over-staggered case can thus be written as

η ≡ ρq2

|∇ 〈p〉f |
=

2dε3

(ψ − 1)ψcd

. (2.94)

2.5.8 Derivation of a general momentum transport equation

From the definitions of permeability and passability, the pressure gradient for the viscous
and inertial regimes is respectively given by,

dp

dx

∣∣∣∣∣
Re→0

≡ μ q

k
(2.95)

and

dp

dx

∣∣∣∣∣
Re>>10

≡ ρq2

η
(2.96)

The asymptotic matching technique developed by Churchill & Usagi (1972) is applied in
order for a general momentum transport equation to be obtained. That is: an equation
able to predict not only the limit scenarios, but also the intermediate conditions. Equation
(2.95) is rewritten

dp

dx
= Goμq (2.97)

where Go = 1
k
. Equation (2.96) is rewritten as

dp

dx
= G∞μq (2.98)

where G∞ = ρq
ημ

. Let

G = ( Gs
o + Gs

∞)
1
s . (2.99)
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A general equation for momentum transport can then be written as

dp

dx
= Gμq. (2.100)

For the over-staggered case with, s = 1, the above can be written as,

dp

dx
=

(
36ψ2(ψ − 1)

ε2d2
+

cdρq

μ

ψ(ψ − 1)

2dε3

)
μ q. (2.101)

Since the characteristic length d is unknown, equation (2.101) is written as,

1

K
=

36ψ2(ψ − 1)

ε2
+

cdψ(ψ − 1)

2ε3
Reqd, (2.102)

where Reqd is defined as

Reqd =
ρqd

μ
. (2.103)
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Figure 2.12: Equation (2.102) for 3 different porosities and cd = 2.

Equation (2.102) is depicted in Figure 2.12 for a drag coefficient, cd = 2, and porosities,
ε = 0.85, 0.90, 0.95.
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2.5.9 Kozeny constant for the RUC model

The Kozeny constant, koz, is defined by Happel (1959) as

koz =
εm2

k
, (2.104)

where m is the hydraulic radius, defined for a porous medium as

m =
free volume

wetted area
. (2.105)

In the present case, the hydraulic radius for the RUC model is, m =
Uf

Sfs
, and the Kozeny

constant may therefore be expressed as

koz =
d2ε3

9K(ψ2 − 4ψ + 3)
. (2.106)

The value for koz is determined for all three RUC models. For the over-staggered model
it is,

4 ε ψ2

(−3 + ψ)2 (−1 + ψ)
. (2.107)

For the fully staggered and non-staggered model it is respectively,

8 ε ψ2

3 (−3 + ψ)2 (−1 + ψ)
(2.108)

and

4 ε ψ2

3 (−3 + ψ)2 (−1 + ψ)
. (2.109)

The Kozeny constant is determined at different porosities for each model and shown in
Table 2.1.
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Table 2.1: Kozeny Constant (koz) for the RUC model.

porosity over-staggered fully staggered non-staggered

model model model

eq. (2.107) eq. (2.108) eq. (2.109)

0.9900 11.8558 7.9039 3.9519

0.9500 7.5795 5.0530 2.5265

0.9000 6.8818 4.5879 2.2939

0.8000 6.7939 4.5293 2.2646

0.7000 7.0838 4.7225 2.3613

0.6000 7.5022 5.0015 2.5007

0.5000 8.0000 5.3333 2.6667

0.4000 8.5704 5.7136 2.8568

2.5.10 Application to non-Newtonian purely viscous flow

This section is a synopsis of work done by Smit et al. (2005), attached as Appendix D.
Smit et al. (2005) states that the shear stress for a power-law fluid is given by

τw = C
(

2n + 1

n

)n (χ

ε

)n
(

2q

(d − ds)

)n

. (2.110)

where C is the absolute viscosity for a power-law fluid and n is a power-law constant.
The tortuosity, χ, is given by

χ

ε
=

4

(3 − χ)2
. (2.111)

For the over-staggered model, ψ = χ, and equation (2.110) can be expressed as

τw = C
(

2n + 1

n

)n
(

4

(3 − ψ)2

)n (
2q

(d − ds)

)n

. (2.112)

In chapter 2, equation (2.70), the pressure gradient was expressed as follows

− ∇〈p〉 =
Uf

U|| + Ut

· S|| + βS⊥
Uo

τw n̂. (2.113)
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By substituting the expression for the wall-shear stress, equation (2.112), into equation
(2.113), the pressure gradient for power-law creep flow may then be written as

−dpf

dx
=

S|| + βS⊥
εUo

C
(

2n + 1

n

)n
(

Uf

U|| + Ut

)n+1 (
2q

dfε

)n

. (2.114)

By substituting the geometrical parameters of the over-staggered model, (Smit et al.
(2005)), into equation (2.114), the intrinsic phase average pressure may then be expressed
as,

−dpf

dx
=

24n+23(ψ − 1)

dn+1(3 − ψ)3n+1

(
2n + 1

n

)n

Cqn. (2.115)

Smit et al. (2005) showed that equation (2.115), compares favourably with experimental
data supplied by Sabiri, 1995.



Chapter 3

Viscous flow relative to arrays of
cylinders

The model, developed in Chapter 2, is based on results for flow between parallel plates.
This configuration seems feasible for foamlike media at low porosities. Metallic foams,
however, normally have porosities well above 95%, yielding the parallel plate-model less
plausible. In the search of a more appropriate ‘flow by’ model this chapter is devoted to
appropriate work in this field.

Happel & Brenner (1983) reported on flow relative to groups of cylindrical objects in
cases of high porosity. As is shown in Figure 3.1, two concentric cylinders serve as a
model for fluid moving through an assemblage of cylinders.

Fluid

a

b

Figure 3.1: Free surface model for flow relative to a cylinder in a cylindrical duct.

The inner cylinder, of radius a, resembles one of the rods in the assemblage and the outer
cylinder, of radius b, a fluid envelope with a free surface. The porosity of the model is
assumed to be the same as that of the assemblage. It is also assumed that the exact

30
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shape of the outside boundary has little influence on the flow velocity due to the high
porosity–typically above 95%. A boundary condition of no slippage along the walls of the
fluid envelope must be maintained.

Fluid

a
√

πb

Figure 3.2: Model for flow relative to a cylinder in a square duct with frictionless outer
boundary.

Figure 3.2 shows the unit cell in a square array as compared to the model for axial flow.
The cross hatched area occupied by fluid is the same for both the array and the model.
The dotted line indicates the outside frictionless boundary of the fluid envelope.

The use of this model and the application of appropriate boundary conditions facilitate
the closure of solutions to the volume averaged Navier Stokes equation. Flow is firstly
assumed to be parallel and secondly to be perpendicular to a single cylinder. These results
can then be applied to a random assemblage of cylinders by giving twice the weight to
perpendicular flow as for flow parallel to cylinders. These ratios are due to the fact that
the cylinder can be in a horizontal or vertical position when flow is perpendicular to it,
but there is only one position for which flow will be parallel to it.

3.1 Flow parallel to the cylinders

In the following analysis the original notation, as used by Happel & Brenner (1983),
will be followed to facilitate comparison. The fluid is moving through the annular space
between the cylinder of radius, a, and the fluid envelope of radius, b. The differential
equation to be solved is

∂P

∂x
=

μ

r

d

dr

(
r
du

dr

)
. (3.1)
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Here u denotes the fluid velocity in the axial, x, direction. The solution to this equation,
for constant dp

dx
, is given by

u =
1

4μ

dp

dx
r2 + A ln r + B. (3.2)

The boundary conditions are:

u = 0 at r = a (3.3)

du

dr
= 0 at r = b. (3.4)

The complete solution to equation (3.1) is then given by

u = − 1

4μ

dp

dx

[
(a2 − r2) + 2b2 ln

r

a

]
. (3.5)

The flow rate is determined as

Q = 2π
∫ b

a
ur dr =

−π

8μ

dp

dx

[
4a2b2 − a4 − 3b4 + 4b4 ln

b

a

]
. (3.6)

The Darcy velocity is given by q = Q
πb2

,

q =

dp
dx

(
a4 − 4 a2 b2 + 3 b4 − 4 b4 ln( b

a
)
)

8 b2 μ
. (3.7)

The pressure gradient in terms of q is thus given as follows,

dp

dx
=

8 b2 μ q

a4 − 4 a2 b2 + 3 b4 − 4 b4 ln( b
a
)
. (3.8)

The resulting drag per unit length on the cylinder is thus given by,

f|| =
dp

dx
π(b2 − a2) =

8 b2 (−a2 + b2) μπ q

a4 − 4 a2 b2 + 3 b4 − 4 b4 log( b
a
)

(3.9)

and the total drag in an RUC of side length, d, in the flow direction is thus given by,

F|| = f||d =
8 b2 (−a2 + b2) d μ π q

a4 − 4 a2 b2 + 3 b4 − 4 b4 log( b
a
)
. (3.10)
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3.2 Flow perpendicular to the cylinders

In order to describe the flow of fluid perpendicular to the inner cylinder we turn to the
Navier-Stokes and continuity equations, respectively given by Hughes & Gaylord (1964)
as

ρ
D v

Dt
= −∇p + μ∇2 v + 1/3μ∇(∇ · v) + 2(∇μ) · ∇ v + (∇μ) × (∇× v)

−2

3
(∇μ)(∇ · v) + κ∇(∇ · v) + (∇κ)(∇ · v) + ρF (3.11)

and

∂ρ

∂t
= −∇ · (ρ v). (3.12)

For the purposes of this work, certain assumptions are to be made. Firstly the fluid
is assumed to be incompressible, ρ is therefore constant and the equation of continuity
reduces to

∇ · v = 0. (3.13)

Secondly, it is assumed that only fluids with constant viscosity is taken into consideration
which simplifies equation (3.11) even further since, ∇μ = 0. Subsequent application of
these two assumptions renders,

ρ
D v

Dt
= −∇p + μ∇2 v + ρF . (3.14)

In all the above the operator, D
Dt

, is the time derivative along a path following the fluid
motion. Commonly known as the Stokes operator or the substantial derivative, D

Dt
, is

defined as follows:

D

Dt
=

∂

∂t
+ v · ∇. (3.15)

Equation (3.14) now becomes

ρ
∂ v

∂t
+ ρ v · ∇ v = −∇p + μ∇2 v + ρF . (3.16)

It is assumed that the flow under consideration is time independent and that the non-
linear inertial terms (i.e. v ·∇ v) can be dropped. For the time being the latter assumption
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is quite acceptable since in the low Reynolds number limit (Re −→0) only viscous drag
is present. If the body force, F, is negligible the original Navier-Stokes equation and the
equation of continuity for the above mentioned conditions is given by,

0 = −∇p + μ∇2 v (3.17)

and

∇ · v = 0, (3.18)

respectively. Since, in this section, we are considering cylinders, the vector equations
(3.17) and (3.18) are to be written in cylindrical coordinates. For this transformation it
is necessary to recap a few basics. The derivative of cylindrical unit vectors, er and eθ,
with θ, is given by

∂er

∂θ
= −eθ (3.19)

and

∂eθ

∂θ
= er. (3.20)

From the definition of the del operator, the laplace operator, ∇2, may be written in two
dimensional cylindrical coordinates as,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (3.21)

The Navier-Stokes equation is then given by,

0 = −(
∂p

∂r
er +

1

r

∂p

∂θ
eθ)

+μ

(
∂2(ver + veθ)

∂r2
+

1

r

∂(ver + veθ)

∂r
+

1

r2

∂2(ver + veθ)

∂θ2

)
. (3.22)

and the continuity equation by,

∂vr

∂r
+

vr

r
+

1

r

∂vθ

∂θ
= 0. (3.23)
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Subsequent application of equations (3.19) and (3.20) to equation (3.22) then yields the
following radial and transverse components

∂p

∂r
= μ

(
∇2vr − vr

r2
− 2

r2

∂vθ

∂θ

)
(3.24)

and

1

r

∂p

∂θ
= μ

(
∇2vθ − vθ

r2
+

2

r2

∂vr

∂θ

)
. (3.25)

The stream function is given by Happel (1959) as,

ψ =

⎛⎝F

r
+ E r +

C r3

8
+

D r
(
−1

2
+ log r

)
2

⎞⎠ sin θ (3.26)

where

C =
−8 a2 q

−a4 + b4 + 2 (a4 + b4) log(a
b
)

D =
4 (a4 + b4) q

−a4 + b4 + 2 (a4 + b4) log(a
b
)

E =
(a4 + b4) q (1 − 2 log a)

−a4 + b4 + 2 (a4 + b4) log(a
b
)

F =
a2 b4 q

−a4 + b4 + 2 (a4 + b4) log(a
b
)
. (3.27)

In cylindrical coordinates the axial stream function is defined by the relations

vr =
1

r

∂ψ

∂θ
and vθ = −∂ψ

∂r
. (3.28)

Implementing equation (3.26) yields

vr =
q cos θ (a2 (b4 − r4) + 2 (a4 + b4) r2 (− log a + log(r)))

r2
(
−a4 + b4 + 2 (a4 + b4) log(a

b
)
) (3.29)

and

vθ =
q
(
a2 b4 − 2 (a4 + b4) r2 + 3 a2 r4 + 2 (a4 + b4) r2

(
log( b

r
)
))

sin θ

r2
(
−a4 + b4 + 2 (a4 + b4) log(a

b
)
) . (3.30)
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The viscous stresses are given by

τrr = 2μ

(
∂vr

∂r

)
(3.31)

and

τrθ = μ

[
r

∂

∂r

(
vθ

r

)
+

1

r

∂vr

∂θ

]
. (3.32)

Replacing vr and vθ with equations (3.29) and (3.30), yields

τrr =
4 μ (a2 − r2) (−b4 + a2 r2) q cos θ

r3
(
−a4 + b4 + 2 (a4 + b4) log(a

b
)
) (3.33)

and

τrθ =
4 a2 μ (−b4 + r4) q sin θ

r3
(
−a4 + b4 + 2 (a4 + b4) log(a

b
)
) . (3.34)

The stress dyad for the fluid passing over the inner cylinder, radius a, is given by

σ = −p1 + τ = −prr + τrr + τrθ (3.35)

and its components are shown in Figure 3.3.

τrr + prrτrθ

(τrr + prr) cos θτrθ sin θ

b

a
X

Figure 3.3: Components of the stress diadic.
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Equations (3.24) and (3.25) are integrated and the pressure term is determined as,

p =
−4 μ (a4 + b4 + 2 a2 r2) q cos θ

r
(
−a4 + b4 + 2 (a4 + b4) log(a

b
)
) . (3.36)

The streamwise-component of the stress dyad is given by

σxx = (−prr + τrr) cos θ − τrθ sin θ. (3.37)

The drag force in the x-direction on the inner cylinder is therefore given by,

W =
∫
0

2π

σxxd θ =
−8 (a4 + b4) μπ q

−a4 + b4 + 2 (a4 + b4) log(a
b
)
. (3.38)

Written in terms of the constant, D, in equation (3.26), the above yields

W = 2πμD. (3.39)

The drag per unit length for perpendicular fluid motion is therefore given by,

f⊥ =
4 μπ q

−(−a4+b4)
2 (a4+b4)

+ log( b
a
)

(3.40)

and the drag in an RUC of side length d is,

F⊥ = f⊥d =
4 d μ π q

−(−a4+b4)
2 (a4+b4)

+ log( b
a
)
. (3.41)

3.3 Total drag on cylinders in an RUC

The total drag experienced by fluid moving through an RUC is assumed to be the sum
of the drags on the three cylinders constituting the RUC, of which one is orientated
streamwise and the other two transverse. We then define

F =
(
F|| + 2F⊥

)
= 8 d μ π q

⎛⎝ 1
a4−b4

2(a4+b4)
+ log( b

a
)

+
b2 (−a2 + b2)

a4 − 4 a2 b2 + 3 b4 − 4 b4 log( b
a
)

⎞⎠ .(3.42)



Chapter 3. Viscous flow relative to arrays of cylinders 38

The pressure gradient can be written as

d 〈p〉f
dx

=
Δ 〈p〉f

Δx
. (3.43)

Each cell has a side length, d, therefore we have:

d 〈p〉f
dx

=
〈p2〉f − 〈p1〉f

d
. (3.44)

Since the pressure on each of the cell borders is assumed constant, the average of the fluid
pressure is equal to the pressure at any point in the fluid, on the border, therefore

〈p〉f = p (3.45)

and we have

d 〈p〉f
dx

=
p2 − p1

d
. (3.46)

Subsequent application of the definition of pressure as force per unit area, results in

−d 〈p〉f
dx

=
F

dπ(b2 − a2)
. (3.47)

Here F is the net frictional force exerted by a cylinder of length, d, on the bypassing fluid.
The friction factor, denoted by F , is defined as

F ≡ 1

k
. (3.48)

Application of the definition of permeability results in

F =
− dp

dx

μq
. (3.49)

Substitution of equation (3.47) into equation (3.49) yields,

F =
F

μqdπ(b2 − a2)
. (3.50)
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Subsequently, from equation (3.42) we have,

F =

8

(
1

a4−b4

2 (a4+b4)
+log( b

a
)
+

b2 (−a2+b2)
a4−4 a2 b2+3 b4−4 b4 log( b

a
)

)
−a2 + b2

. (3.51)

3.4 Comparison between the RUC and cylindrical

models

The corresponding surface areas of the two models are equated as

πa2 = d2
s (3.52)

for the cross-sectional strand area and

πb2 = d2 (3.53)

for the lateral unit cell area. The volume of the solid material in the RUC is given as

Us = 3 d ds
2 − 2 ds

3. (3.54)

The porosity is defined as,

ε =
Uf

Uo

= 1 − Us

Uo

. (3.55)

Substitution of equation (3.54) into equation (3.55) renders

ε = 1 − 3 ds
2

d2
+

2 ds
3

d3
. (3.56)

The following expression is then obtained for ds

ds

d
=

2 + 1−i
√

3

(1+2
√−1+ε

√
ε−2 ε)

1
3

+
(
1 + i

√
3
) (

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3

4
. (3.57)
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An expression for ds is obtained from equation (3.57) which is then combined with equa-
tion (3.52) to obtain the following expression for the inner radius of the cylindrical model.

a =

d

(
2 + 1−i

√
3

(1+2
√−1+ε

√
ε−2 ε)

1
3

+
(
1 + i

√
3
) (

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3

)
4
√

π
. (3.58)

The graphs for a
d

and ds

d
against porosity are shown in Figure 3.4. The discrepancy
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a/
d,

 d
s/d

a/d, eq. (3.58)
d

s
/d, eq. (3.59)

Figure 3.4: a
d and ds

d as functions of porosity.

between the two models is due to the fact that

ds

d
=

√
π

a

d
(3.59)

and the models will thus always differ with a ratio of
√

π. In previous work the following
expression for the dimensionless friction factor, in terms of radii a and b, was obtained

F =

8 d2

(
1

a4−b4

2 (a4+b4)
+log( b

a
)
+

b2 (−a2+b2)
a4−4 a2 b2+3 b4 log( b

a
)

)
−a2 + b2

. (3.60)
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Equations (3.58) and (3.53) are substituted into the equation (3.60) rendering the follow-
ing expression for the friction factor in terms of RUC-parameters.

F =

128 π

(
1

−256+S4

2 (256+S4)
+log( 4

S
)
+

16 (16−S2)
−64 S2+S4+768 log( 4

S
)

)
16 − S2

, (3.61)

where

S = 2 +
1 − i

√
3(

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3

+
(
1 + i

√
3
) (

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3 . (3.62)

The dimensionless friction factor is defined as

F ≡ 1

K
. (3.63)

The dimensionless permeability of the cylindrical model thus is,

Kc =
1

F
(3.64)

where F is given by equation (3.61). The dimensionless permeability of the cylindrical
model is compared to that of the original RUC in Figure 3.5.
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, eqs. (3.61) and (3.63)
K

RUC
, eq. (3.65)

Figure 3.5: Comparison between the permeability predictions of the cylindrical- and the RUC–
model, (equations (3.64) and (3.65)).
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Here the dimensionless permeability for the original RUC model is

K =
ε2

36ψ2(ψ − 1)
(3.65)

and

ψ = 2 + 2 cos

[
4π + arccos(2ε − 1)

3

]
. (3.66)

The relation between the d-values for the RUC and the cylindrical model can be obtained
by determining the ratio-relation between their respective friction factors, FC and FR:

dc

dr

=

√
FC

FR

. (3.67)

The expression obtained for dc is then denoted by

dc =

4 d
√

2 π

√√√√√√ ε2

(
1

−256+G4

2 (256+G4)
+log( 4

G
)
+

16 (16−G2)
−64 G2+G4+768 log( 4

G
)

)
(16−G2) ψ2 (1+2 cos(

4 π+arccos(−1+2 ε)
3

))

3
(3.68)

where the expressions for G and ψ are

G = 2 +
1 − i

√
3(

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3

+
(
1 + i

√
3
) (

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3

ψ = 2 + 2 cos(
4 π + arccos(−1 + 2 ε)

3
). (3.69)

The cylindrical model is only valid for Newtonian flow, since this assumption was made in
determining the drag on the cylinders for perpendicular flow. The RUC on the other hand
may be generalised for the case of non-Newtonian flow. In this work, the RUC model has
been modified allowing it to predict the permeability for both the Darcy and the Forch-
heimer regime. The cylindrical model is also only valid for slow flow and generalisation
towards the inertial regime may prove extremely difficulty if not impossible.

3.5 The Kozeny constant for different cell models

The Kozeny constant, koz, was defined by Carman (1956) as:

koz ≡ εm2

K
. (3.70)
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It can be rewritten in terms of the friction factor as

koz = Fεm2 (3.71)

and was intended to be a constant value for all porous media. Equations (3.72), (3.73)
and (3.74) give the Kozeny constant for parallel, perpendicular and random orientation
flow cell models respectively as was determined by Happel & Brenner (1983):

koz || =
2ε3

(1 − ε)[2 ln(1/(1 − ε)) − 3 + 4(1 − ε) − (1 − ε)2]
, (3.72)

koz⊥ =
2ε3

(1 − ε)[ln{1/(1/ε)} − 1 − (1 − ε)2/{1 + (1 − ε)2}] (3.73)

and

koztot =
1

3
koz || +

2

3
koz⊥. (3.74)

These constants, evaluated for different fractional void volumes, are given in Tabel 3.1
and they are evidently not constant.

The solid-fluid interface, Sfs, for the cylindrical RUC model is determined as,

Sfs = 6πa(dc − 2a). (3.75)

Substituting equation (3.58) into the above and applying the definition of m =
Uf

Sfs
, and,

koz = εm2

k
renders the following expression for the Kozeny constant of the cylindrical

RUC model,

koz =

512 ε3

⎛⎝ 1
−256+(T+U)4

2 (256+(T+U)4)
+log( 4

T+U
)
+

16 (16−(T+U)2)
−64 (T+U)2+(T+U)4+768 log( 4

T+U
)

⎞⎠
9 (T + U)2

(
1 − T+U

2
√

π

)2 (
16 − (T + U)2

) (3.76)

where,

T =
1 − i

√
3(

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3

(3.77)
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Table 3.1: Kozeny constant as predicted by different cell models.

Flow through

Fractional Flow Flow Random

Void Parallel Perpendicular Orientation

Volume, ε to Cylinders, koz || to Cylinders, koz⊥ of Cylinders, koztot

eq. (3.72) eq. (3.73) eq. (3.74)

0.9900 31.0484 53.8252 46.2329

0.9000 7.3076 11.0255 9.7862

0.8000 5.2305 7.4596 6.7166

0.7000 4.4149 6.1951 5.6017

0.6000 3.9621 5.6205 5.0677

0.5000 3.6685 5.3678 4.8014

0.4000 3.4603 5.3019 4.6880

and

U = 2 +
(
1 + i

√
3
) (

1 + 2
√−1 + ε

√
ε − 2 ε

) 1
3 . (3.78)

The Kozeny constants for the RUC model and that of the cylindrical model are compared
to each other for adequately high values of ε in Table 3.2.

Table 3.2: Comparison between Kozeny constants for the RUC and the cylindrical model.

Kozeny constant, koz

ε over-staggered RUC model Cylindrical model

eq. (2.107) eq. (3.76)

0.90 6.88 7.86

0.91 6.95 8.40

0.92 7.04 9.04

0.93 7.17 9.85

0.94 7.34 10.88

0.95 7.58 12.28

0.96 7.93 14.28



Chapter 4

Improved model and experimental
results

The present model, as discussed in chapter 2, has since been adapted by Crosnier et al.
(2006). An approach similar to that of Lloyd et al. (2004) for 2D structures is followed
to model the inertial effects.

As previously discussed, the flow through a foam is governed by the following form of
the averaged Navier-Stokes equation (2.16):

− ∇〈p〉 =
1

Uo

∫∫
Sfs

n p dS − 1

Uo

∫∫
Sfs

μn · ∇v dS. (4.1)

Following Lloyd et al. (2004), the two integrals in equation (4.1) are split into streamwise
and transverse integrals, yielding

− ∇〈p〉 =
1

Uo

∫∫
S||

n p dS +
1

Uo

∫∫
S⊥

n p dS

− 1

Uo

∫∫
S||

μn · ∇ v dS − 1

Uo

∫∫
S⊥

μn · ∇ v dS (4.2)

of which the underlined integrals are zero. In the remaining pressure integral, for each
transverse channel section, the pressure is split into a channel wall average pressure, pw,
and a wall pressure deviation, p̃w, yielding,

− ∇〈p〉 =
1

Uo

∫∫
S⊥

n pw dS +
1

Uo

∫∫
S⊥

n p̃w dS − 1

Uo

∫∫
S||

μn · ∇ v dS. (4.3)

45
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In evaluating the perpendicular surface integrals, the integral over all possible RRUC’s
must be taken to comply with the notion that an RRUC is a proper substitute for an
REV. Since the pressure equation at hand is streamwise, this will only effect integration
over S⊥ planes.

A AB B

E

F

KG

U⊥

Figure 4.1: Schematic for the evaluation of surface integrals.

In Figure 4.1 is shown schematically the notation followed here. Let the integrals over SAA

and SBB respectively denote an integral over a cell of which the walls cut through solid
parts as shown by the dashed lines A, and a second integral where the cell walls do not
cut though any solid as shown by the dashed lines B. The average wall pressure integrals
need to be weighed according to their relative frequency of occurrence. This need not be
done with the parallel surfaces or pressure deviation on perpendicular surfaces, since a
shift in the streamwise direction does not result in any loss of friction. It follows that,

− ∇〈p〉 =
ds

d
· 1

Uo

∫∫
SAA

n pw dS +
d − ds

d
· 1

Uo

∫∫
SBB

n pw dS

+
1

Uo

∫∫
S⊥

n p̃w dS − 1

Uo

∫∫
S||

μn · ∇ v dS. (4.4)

The underlined integral is zero since it is assumed that pw is equal for walls E and F. The
pressure deviations are caused by shear stress at the transverse surfaces and the pressure
deviation integral thus provides the streamwise effect of the transverse integral deleted
from equation (4.2). Together the last two integrals thus equal the total pressure drop
caused by all shear stresses.
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Since the viscosity does not play a significant role in the case of very fast flow, the terms
containing it is negligible and equation (4.4) simplifies to

− ∇〈p〉 =
d − ds

d
· 1

Uo

∫∫
SBB

n pw dS +
1

Uo

∫∫
S⊥

n p̃w dS. (4.5)

The first term is treated in the same way it was done for the Darcy regime, while the
second is approximated with a drag coefficient term,

−∇〈p〉 =

(
1

ψ
− 1

)
∇〈p〉 +

cdSfaceρw2

2Uo

. (4.6)

Taking into account that Sface = 1
4
S⊥, equation (4.6) is expressible as

−∇〈p〉f =
cdρq2ψ3

8ε3

S⊥
Uo

. (4.7)

The resulting passability for Crosnier et al. (2006) then is,

ηCrosnier =
ε2 (3 − ψ) d

cdψ2 (ψ − 1)
. (4.8)

The main difference between the present model and that of Crosnier et al. (2006) is the
fact that Crosnier et al. (2006) split the pressure term into a wall average pressure, pw,
and a pressure deviation, p̃. This is done because the shear stresses, which occur in the
transverse sections, will not contribute to the streamwise component of equation (4.2) and
was thus omitted from equation (4.2). These transverse shear stresses are then manifested
through the pressure deviation,p̃. The mathematical effect that this has on the closure
modelling procedure done by Crosnier et al. (2006), is contained in the first term on the
right hand side of equation (4.6). This term is absent in the present modelling procedure
of the inertial term, as discussed in section 2.5.7. The relationship between the passability
of the present model, equation (2.94), and that of Crosnier et al. (2006), equation (4.8),
is given by,

ηcrosnier =
(3 − ψ)

2εψ
ηpresent. (4.9)

For a porosity of 94% equation (4.9) gives

ηcrosnier ≈ 0.7ηpresent. (4.10)
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These two models for the passability are depicted in Figure 4.2.

0.92 0.925 0.93 0.935 0.94 0.945
1

1.5
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∈

η/
d

Present work,  eq. (2.94)
Crosnier et al. 2005, eq.( 4.8)

Figure 4.2: Comparison between the present passibility prediction with that of Crosnier et al.
(2006) for cd = 2, (equations (2.94) and (4.8)).

Since this work is mainly concerned with the high porosity range, the models are compared
to each other for ε = 0.92 to ε = 0.95 in Figure 4.3.
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Figure 4.3: Comparison between the present passibility prediction with that of Crosnier et al.
(2006) for cd = 2 and ε > 0.92, (equations (2.94) and (4.8)).



Chapter 4. Improved model and experimental results 49

For the high porosity region, into which metallic foams normally fall, it is clear from
Figure 4.3 that the passability predictions of the Crosnier et al. (2006) model is much
lower than that of the present model. According to the Crosnier et al. (2006) model the
fluid thus moves less easily through the porous medium.

4.1 Comparison with experimental data

4.1.1 Determination of the RRUC dimension and form drag
coefficient

The permeability and the passability both depend on the d-dimension of the RUC. Finding
a method that is independent of empirical formulaes to predict d is therefore imperative
for the validation of the RUC-model.

Linear pressure drop experiments were reported by Crosnier et al. (2006). Letting M =
cd

2d
ψ(ψ−1)

ε3
and N = 36ψ2(ψ−1)μ

ε2d2 and rewriting equation (2.101) result in the following
expression for the pressure drop

1

q

dp

dx
= Mρq + N. (4.11)

The gradient and the intersection point with the vertical axes can then be read off the
empirical straight lines and the experimental values for Mexp and Nexp determined. These
values are then equated to the theoretical expressions for M and N :

Mexp =
cd

2d

ψ(ψ − 1)

ε3
(4.12)

and

Nexp =
36ψ2(ψ − 1)μ

ε2d2
. (4.13)

Equation (4.13) is rewritten and an expression for d obtained as follows:

d =

√√√√36ψ2(ψ − 1)

ε2

(
μ

N

)
exp

, (4.14)

which can also be written as

d =

√√√√(Nd2

μ

)(
μ

N

)
exp

. (4.15)



Chapter 4. Improved model and experimental results 50

An expression for the drag-coefficient, cd, is obtained in a similar manner, namely

cd = Mexp

(
cd

M

)
an

. (4.16)

Crosnier et al. (2006) studied three different metal foams: one stainless steel (PORVAIR)–
and two aluminium foams (ERG) mainly differing by the number of pores per inch.
Examples of these foams are depicted in Figure 4.5. Here only results pertaining to the
ERG foams will be discussed. The properties and characteristics of aluminium (ERG)
foams are summarised in Table 4.1.

Pressure drop experiments were done by Crosnier et al. (2006) on these foams, and the
values for Mexp and Nexp determined. Image analysis using pictures with deep focus
obtained from a microscope allowed Crosnier et al. (2006) to determine the strut diameter
distribution for all the foams. Arithmetic means for dm and root mean squares (RMS) of
the strand diameters as determined by Crosnier et al. (2006) are given in Table 4.2.

For each foam, Crosnier et al. (2006) determined the ratio, dm
d

, as can be seen in Table
4.1. The average ratio of the d-value for which a good fit was obtained with respect to
the mean strand diameter is 16.5%, (Crosnier et al. (2006)).
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Table 4.1: Properties and characteristics of aluminium foams (ERG).

Doubly staggered foam model

PPI Sheet N Thickness ε k 107 η 103 Ψ d(mm) cd dm/d

(mm) (%) (m2) (m) (eq.2.41) (eq.4.15) (eq.4.16) (%)

20 1 20 94.08 1.33 3.68 1.2959 1.6396 1.9349 16.7292

2 94.12 1.09 3.66 1.2949 1.4799 1.7659 18.5356

3 93.75 1.29 3.96 1.3045 1.6549 1.7334 16.5754

1+2 40 94.10 1.23 3.69 1.2954 1.5744 1.8582 17.4224

1+3 93.91 1.32 3.78 1.3004 1.6544 1.8559 16.5799

2+3 93.93 1.30 3.72 1.2999 1.6394 1.8739 16.7318

1+2+3 60 93.98 1.32 3.85 1.2986 1.6458 1.8305 16.6666

10 1 20 94.78 1.83 4.34 1.2769 1.8196 2.0192 17.2232

2 94.71 1.86 4.32 1.2789 1.8451 2.0350 16.9853

3 94.76 1.87 4.45 1.2775 1.8425 1.9879 17.0098

1+2 40 94.74 1.98 4.29 1.2780 1.8990 2.1188 16.5033

1+3 94.77 2.00 4.46 1.2772 1.9039 2.0527 16.4613

2+3 94.73 1.93 4.48 1.2783 1.8764 2.0017 16.7019

1+2+3 60 94.74 2.01 4.59 1.2780 1.9134 1.9952 16.3796

Table 4.2: Properties and characteristics of aluminium foams (ERG) of 20 mm thickness.

Fineness arithmetic mean of strand

diameter dm (μm)

20 ppi 274.3

10 ppi 313.4
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An analytical expression for the form drag, cd, is obtained as follows. The experimental
values for d, as given by equation (4.15), are implemented in equation (4.16). These
values for the form drag are then plotted and a quadratic fit is done on the data and the
corresponding equation recorded. For work done by Crosnier et al. (2006) and the present
procedure, these equations are respectively given by,

cd = 325.4ε2 − 595.8ε + 273.8 (4.17)

and

cd = 394ε2 − 722.6ε + 333. (4.18)

The modelling procedure of the inertial terms, used by Crosnier et al. (2006) differs from
that used in present work. Two sets of cd values are therefore plotted in Figure 4.4.

0.925 0.93 0.935 0.94 0.945 0.95 0.955
1

1.5

2

2.5

∈

c d

c
d
 Crosnier

c
d
 Wilms

325.4*x2 − 595.8*x + 273.8, eq. (4.17)
394*x2 − 722.6*x + 333, eq. (4.18)

Figure 4.4: Comparison between the drag coefficients.
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Figure 4.5: Images of foams used by Crosnier et al. (2006).

In the following figures, the present model is evaluated against data supplied by Crosnier
et al. (2006) as can be seen in Table 4.1 for cd = 2. These analytical results compare
well with the experimental data, as can be seen from Figures 4.6, 4.7, 4.8, 4.9, 4.10 and
4.11. In Figure 4.6 the corresponding pairs of the two sets of data show a high degree of
similarity.
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Figure 4.6: Comparison between experimental data (Table 4.1) and analytical model (eq.
(4.11)) for sheet 1 of a 20mm thick ERG 20 PPI foam.
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Figure 4.7: Comparison between experimental data (Table 4.1) and analytical model (eq.
(4.11)) for sheet 2 of a 20mm thick ERG 20 PPI foam.
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Figure 4.8: Comparison between experimental data (Table 4.1) and analytical model (eq.
(4.11)) for sheet 3 of a 20mm thick ERG 20 PPI foam.
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Figure 4.9: Comparison between experimental data (Table 4.1) and analytical model (eq.
(4.11)) for sheet 1 of a 20mm thick ERG 10 PPI foam.
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Figure 4.10: Comparison between experimental data (Table 4.1) and analytical model (eq.
(4.11)) for sheet 2 of a 20mm thick ERG 10 PPI foam.
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Figure 4.11: Comparison between experimental data (Table 4.1) and analytical model (eq.
(4.11)) for sheet 3 of a 20mm thick ERG 10 PPI foam.

From Table 4.3 it is notable that the drag coefficient predicted by the present model,
equation (4.18), is higher than that predicted by Crosnier et al. (2006), (equation (4.18)).
The model of Crosnier et al. (2006) is reviewed in Addendum C. For a drag coefficient
value, cd = 1.4, the pressure drop results are identical to that obtained by the present
model with a cd value of 2. A somewhat higher cd value for the present model thus
results in an almost identical predictive result. Physically this means that more drag
is to be added to the present model by increasing the cd value to better predict the
numerical values. This is to be expected since the drag in the transverse channels were
simply dropped during the modelling procedure. These drag contributions were taken
into account by means of the pressure deviation term in the Crosnier et al. (2006) model.
It is therefore concluded that the modelling adaptation for the inertial term, as introduced
by Crosnier et al. (2006) is physically more correct.

4.2 Overview of experimental data and model given

by Bhattacharya et al.

A short review of the work done by Bhattacharya et al. (2000) is given in this section.
Their work was based on the following model, developed by Du Plessis et al. (1994):

K

d2
=

ε2

36χ(χ − 1)
. (4.19)
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The method introduced by Du Plessis et al. (1994) to determine d, namely

d =
√

(
χ

3ε
)dp (4.20)

was followed. The only difference between work done by Bhattacharya et al. (2000) and
that of Du Plessis et al. (1994) for permeability prediction, is contained in the expression
used for tortuosity. The original expression for the tortuosity of the RUC-model was given
by Du Plessis et al. (1994) as

χ = 2 + 2cos

(
4π + arccos(2ε − 1)

3

)
. (4.21)

Bhattacharya et al. (2000) argued that the Du Plessis et al. (1994) model over-predicted
the permeability and suggested that this could be rectified by the derivation of a new
expression for the tortuosity, χ. It was claimed that the following expression was obtained
from Du Plessis (1992),

χ =
εd2

p

Ap

(4.22)

where, Ap = π
4
(d2

p−d2
f ), is the cross sectional area of the pore and dp is the pore diameter.

This expression is not only a typing error but was incorrectly cited from Du Plessis (1992)
since it is applied in the subsequent theory. The original expression, as was given by Du
Plessis (1992), is

χ =
εd2

Ap

. (4.23)

Bhattacharya et al. (2000) then derived an expression for χ by applying the relation,

df

dp

= 1.18

√
1 − ε

3π

1

G
(4.24)

to equation (4.22), resulting in,

1

χ
=

π

4ε

⎧⎪⎨⎪⎩1 −
⎛⎝1.18

√
(1 − ε)

3π

1

G

⎞⎠2
⎫⎪⎬⎪⎭ . (4.25)

Here G is the following geometric function particular to the foam:

G = 1 − exp (−(1 − ε)

0.04
). (4.26)
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Equations (4.22) and (4.21) are depicted in Figure 4.12.
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Figure 4.12: Comparison between the tortuosities given by equations (4.22) and (4.21).

From Figure 4.12 the expression for χ, as given by equation (4.22), increases as the poros-
ity increases. Physically, this does not make sense. The model resulting from substitution
of equation (4.22) into equation (4.19) is given by:

K =

π

(
1 − 0.147738 (1−ε)

(1−1.38879 ∗10−11 e25 ε)
2

)
ε

144

⎛⎝−1 + 4 ε

π+−2.40639 ∗1021+2.40639 ∗1021 ε

(7.20049 ∗1010−1. e25 ε)2

⎞⎠ . (4.27)

Equation (4.27) is depicted in Figure 4.13 which again does not make sense from a physical
point of view since permeability decreases with an increase in porosity. Furthermore, it
can be inferred from equations (4.21) and (4.20) that d and χ are mutually dependent
on each other. Equation (4.21) can therefore not be used to determine the determine
d since, according to equation (4.20), d is needed to obtain χ. Even though the model
derived by Bhattacharya et al. (2000) proved incorrect, their work still provided valuable
experimental data, given in Table 4.4, for the verification of the model developed in section
2.5.6 and chapter 3. Equation (4.20) is applied in order to obtain values for d and the
correlation between the models and experimental data are presented in Figure 4.14.
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Figure 4.13: Permeability predictions according to Bhattacharya et al. (2000) and equation
(4.21).
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Figure 4.14: Permeability (K) as a function of porosity: experiments vs model (equations
(2.77), (4.19) and (3.64)).

K is found to increase with ε. This seems physically plausible since the fiber diameter
decreases with increase in porosity. As a result the open cross-sectional area available for
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fluid flow increases, which reduces flow resistance. Hence K is expected to increase with
porosity. In the limiting case when ε approaches 1, the value of K should approach infinity
(since the porous medium ceases to exist and hence the effect of viscous drag tends to zero.)

The present model still seems to over-predict the permeability, but shows significant
improvement on the Du Plessis et al. (1994) model. The cylindrical RUC model seems
to predict the experimental trend best. This could be attributed to viscous shear stresses
that are replaced by a deformation of the flow field. In other words, the fact that, at high
porosities, the flow is predominantly past the cylindrical structure instead of through it.
As a result, the retardation effect on the fluid is greater at high porosities and the per-
meability growth slower for the cylindrical model. This fact suggests the development of
a future model that follows the RUC concept, but incorporates a ”flow by” configuration
with respect to the interstitial streamlines.
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Table 4.4: Characteristics of metal foam samples used for pressure drop experiments, Bhat-
tacharya et al. (2000).

Sample Porosity PPI df ∗ 103 (m) dp ∗ 103 (m) K ∗ 107

1 0.9726 5 0.5000 4.0200 2.7000

2 0.9118 5 0.5500 3.8000 1.8000

3 0.9486 10 0.4000 3.1300 1.2000

4 0.9438 10 0.4500 3.2800 1.1000

5 0.8991 10 0.4300 3.2000 0.9400

6 0.9546 20 0.3000 2.7000 1.3000

7 0.9245 20 0.3500 2.9000 1.1000

8 0.9005 20 0.3500 2.5800 0.9000

9 0.9659 40 0.2000 1.9000 0.5500

10 0.9272 40 0.2500 2.0200 0.6100

11 0.9132 40 0.2000 1.8000 0.5300

12 0.9710 5 0.5100 4.0000 2.5200

13 0.9460 5 0.4700 3.9000 2.1700

14 0.9050 5 0.4900 3.8000 1.7400

15 0.9490 10 0.3700 3.1000 1.4900

16 0.9090 10 0.3800 2.9600 1.1100

17 0.9780 20 0.3800 2.8000 1.4200

18 0.9490 20 0.3200 2.7000 1.1850

19 0.9060 20 0.3400 2.6000 0.8540

20 0.9720 40 0.2300 1.8000 0.5200

21 0.9520 40 0.2400 1.9800 0.5620

22 0.9370 40 0.2400 2.0000 0.5680
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Conclusions

The model of Du Plessis et al. (1994) is extended in this work by making provision for
the RUC boundaries to cut through both solid and fluid sections. In doing so it better
represents the REV and thus the material to be modelled. The inclusion of stagnant
regions makes provision for the scenario where void sections in the foam exist during fluid
flow. The pressure in each transverse section is also split into a wall pressure average, p,
and a pressure deviation, p̃. This pressure deviation then takes into account the pressure
loss due to shear stresses in the transverse channel sections.

This work includes a modelling procedure for the Forchheimer regime and use of an
asymptotic matching technique by Churchill & Usagi (1972) enables the construction of a
momentum equation that can predict flow for the entire range of laminar flows inclusive
of inertial effects. Following work done by Smit et al. (2005), the model is extended to
include the discharge of a particular non-Newtonian flow through metallic foams.

In this work the assumption is made that the average wall pressure on opposing walls in
the transverse sections of an RUC cutting through solid sections is equal and cancels. This
is merely an assumption, not a certainty, and should in future be investigated further by
numerical simulation. The use of cylinders showed a substantial difference in permeability
prediction. Instead of viscous shearing stress the cylinders causes a deformation of the flow
field which at high porosities increases retardation of fluid movement. Mathematically
this model is however far more complex than the original RUC-model and does not make
provision for generalisation to non-Newtonian flow since the assumption of Newton flow
was assumed during the modelling procedure.

Further modifications, which are yet to be published, have been made to the current
model by Crosnier et al. (2006). These modifications concern the modelling of the inertial
effect. The pressure term is divided into an average pressure and a pressure deviation
term. This is in effect the only difference between the work of Crosnier et al. (2006) and
the present modelling procedure.

The development of the RUC model since it was first introduced in 1988 is briefly sum-

63
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marised in Table 5.1.

At first glance, the RUC model seems to over simplify the material to be modelled.
Yet, geometrical more complicated models, such as were introduced by Fourie & Du
Plessis (2001), have not shown significant improvement or, in the case of the cylindrical
model, cannot be extended to cover non-Newtonian flow. In the absence of fudge factors
the current RUC-model provides a simple yet accurate modelling procedure for complex
structures.

Possible future work could include a numerical investigation into the flow in transverse
sections of the RUC-model in order to verify assumptions made regarding the average
wall pressure.
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Table 5.1: Development of the RUC model

Authors Development

Du Plessis & Masliyah (1988) RUC-model is introduced.

Du Plessis et al. (1994) RUC is extended to the Forchheimer regime.

The RUC side length, d, is experimentally determined.

Bhattacharya et al. (2000) Shape factor, G, is introduced.

A new expression for tortuosity is derived.

χ is defined incorrectly.

As a result, the model is faulty.

Fourie & Du Plessis (2001) A tetrakaidecahedral shape is introduced to construct an

analytical expression for d.

The model proves redundant since a similar result

is achieve by Du Plessis et al. (1994).

Lloyd et al. (2004) A pressure modelling correction is made for

two dimensional flow.

Provision is made for RUC boundaries to cut through both

solid and fluid sections and both scenarios are weighed

according to relative frequency of occurrence.

Smit et al. (2005) The RUC model is extended to non-Newtonian flow.

Present work 2005 Void sections are introduced.

Modifications by Lloyd et al. (2004) are extended

to three dimensions.

Following Crosnier et al. (2006), an analytical expression

for d is constructed.

Crosnier et al. (2006) A correction is made to the modelling procedure

for inertial flow:

The pressure is split into an average and a deviation term.
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Appendix A

A.1 Tortuosity

The tortuosity of a porous medium is loosely defined as the ratio of the average streamline
length in a domain to the actual displacement in the domain.

A B

displacement
L

Le

Figure A.1: Tortuosity of a streamline.

In Figure A.1 is shown a simple schematic illustration of the tortuosity of a streamline
being defined as the ratio of the length, Le, of a single streamline between two planes A
and B and the displacement, L, between the two planes, namely

χ =
Le

L
. (A.1)

Carman (1937) realised that the path taken by the fluid is not a straight line but tortu-
ous. The velocity inside the fluid volume therefore has to be greater than predicted by
equation (2.9) which was equated under the assumption that the path is straight. The
drift velocity, u, therefore should be multiplied by this fractional increase in path length
which, according to equation (A.1), is merely the tortuosity, χ.
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The argument can also be based on the existing model given by equation (2.10): Equation
(A.1) is a measure of the tortuosity of every streamline. If all the streamlines are taken
together the tortuosity can be rewritten as

χ =
Uf

UL

. (A.2)

From equation (2.10) it follows that

w ≡ 1

U L

∫∫∫
Uf

v dU =
Uo

U L
q =

Uf

εU L
q. (A.3)

It thus follows that

w =
χ

ε
q, (A.4)

which is the Carman adaptation, (Carman, 1937), to the Dupuit-Forchheimer relationship.
The porosity of the RRUC must be the same as that of the REV it represents, so that,
analogous to equation (2.5):

ε =
Uf

Uo

. (A.5)

In Figure A.2 is shown the geometry of an RRUC for a foamlike material introduced by
Du Plessis & Masliyah (1988).

n̂

dsdf

d

Uo

Us

Uf

Figure A.2: Geometry of RRUC model for an isotropic metallic foam (ε ≈ 0.2).
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The shaded volume represents the void part contained within a cube of side length, d.
The configuration in Figure A.2 is drawn for a porosity of about 0.2. From equation
(A.5) the porosity of the model in Figure A.2 can be expressed in terms of the RRUC
parameters as

ε =
3d2

fd − 2d3
f

d3
=

(
df

d

)2 (
3 − 2

df

d

)
. (A.6)

The assumption of piece-wise plane Poiseuille flow in each duct section suggests a bundle
of straight streamlines in each duct section.

A.1.1 Over-staggered model

In case of the over-staggered model, the fluid is assumed to traverse all three void channels
as is shown in Figure A.3.

dsdf

d

Uo

Us

in

out

U||

U⊥

U⊥

Figure A.3: RRUC for the over-staggered foam model.

The tortuosity of every streamline in the over-staggered RRUC is therefore given by

χ =
d + 2ds

d
= 1 + 2

ds

d
= 3 − 2

df

d
. (A.7)

From equation (A.6) it then follows that

χ3 − 6χ2 + 9χ − 4ε = 0. (A.8)
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Solution of equation(A.8) with boundary conditions

ε = 1 if χ = 1. (A.9)

yields by means of the Cardanic method (Appendix A.2):

χ = 2 + 2 cos

[
4π + cos−1(2ε − 1)

3

]
. (A.10)

Equation A.10 is graphically presented in Figure A.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

∈

χ

Over Staggered  (eq. (2.27))

Fully Staggered eq. (3.36)

Non−staggered (eq. (3.44))

Figure A.4: The geometric tortuosity of the metallic foam models.

A.1.2 Fully staggered model

In case of the fully staggered model, one of the three void arms of the RRUC contains
stagnant fluid and is thus a dead zone as is shown in Figure A.5. This results in a
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tortuosity of

χ =
2d − df

d
= 2 − df

d
. (A.11)

Substitution of

df

d
= 2 − χ (A.12)

into equation (A.6) yields

ε = 3 (2 − χ)2 − 2 (2 − χ)3 . (A.13)

This results in the following cubic polynomial in χ to be solved for χ

0 = χ3 − 9

2
χ2 + 6χ − 2 − 1

2
ε (A.14)

also subject to boundary condition (A.9) so that the solution for χ in the fully staggered
case according to, A.2, is:

χ =
3

2
+ cos[

1

3
arccos(2ε − 1) +

4

3
π]. (A.15)

dsdf

d

Uo

Us

in

out

U||

Ug

U⊥

Figure A.5: RRUC for the fully staggered foam model.
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Equation (A.15) is presented graphically in Figure A.4.

The expression (A.15) for the tortuosity of a fully staggered configuration can also be
obtained using the following line of reasoning:

From equation (A.11) and equation (A.7) respectively it follows that

χfully = 2 − df

d
(A.16)

and

χover = 3 − 2
df

d
. (A.17)

Writing equation (A.16) in terms of equation (A.17) and using equation (A.10) it then
follows that:

χfully = χover − 1 +
df

d
(A.18)

= χover + 2 − χfully (A.19)

=
3

2
+ cos

[
arccos(2ε − 1)

3
+

4

3
π

]
, (A.20)

again yielding equation (A.15).

A.1.3 Non-staggered model

In case of the non staggered model, the fluid only passes through one channel as is
presented in Figure A.6.

If the fluid is assumed to traverse only one of the three channels leaving the other two
stagnant, the geometric tortuosity, in terms of RRUC geometry is determined as:

χ =
d

d
= 1. (A.21)

and graphically presented in Figure A.4.
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dsdf

d

Uo

Us

in

out

U||

Ug

Ug

Figure A.6: RRUC for the non-staggered foam model.

A.2 Cardanic method of solving a cubic polynomial

The following Cardanic Method may be used to solve cubic polynomials.
Suppose the following cubic is to be solved:

x3 + a1x
2 + a2x + a3 = 0. (A.22)

Let

Q =
3a2 − a2

1

9
(A.23)

R =
9a1a2 − 27a3 − 2a3

1

54
(A.24)

S = 3

√
R +

√
Q3 + R2 (A.25)

T = 3

√
R −

√
Q3 + R2. (A.26)

Solutions to A.1 are then:

x1 = S + T − 1

3
a1 (A.27)

x2 = −1

2
(S + T ) − 1

3
a1 +

1

2
i
√

3(S − T ) (A.28)

x3 = −1

2
(S + T ) − 1

3
a1 − 1

2
i
√

3(S − T ). (A.29)
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If a1, a2, a3 are real and if D = Q3 + R2 is the discriminant, then

• one root is real and two complex conjugate if D > 0

• all roots are real and at least two are equal if D = 0

• all roots are real and unequal if D < 0.

If D < 0, computation is simplified by use of trigonometry and the following three solutions
exist, with cos Θ = R√

−Q3

Solutions if D < 0:

x1 = 2
√
−Q cos

(
1

3
Θ
)
− 1

3
a1

x2 = 2
√
−Q cos

(
1

3
Θ +

2

3
π
)
− 1

3
a1

x3 = 2
√
−Q cos

(
1

3
Θ +

4

3
π
)
− 1

3
a1.

Note:
The method described in the Mathematical handbook of Formulas and Tables by Spiegel
(1968) contains an error in the trigonometric simplification in that it omits the −a1 factor
that should be present if a correct answer is to be arrived at.
The equations ought to be:

x1 + x2 + x3 = −a1

x1x2 + x2x3 + x3x1 = a2

x1x2x3 = a3

where x1, x2, x3 are the three roots.
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B.1 Derivation of constants for the biharmonic

equation

In this section expressions for the four constants in the following equation is determined.

ψ = sin θ
[
1

8
Cr3 +

1

2
Dr(ln r − 1

2
) + Er +

F

r

]
. (B.1)

Application of definitions, vr = 1
r

∂ψ
∂θ

, and, vθ = −∂ψ
∂r

, results in the following expressions

vr = cos θ
[
1

8
Cr2 +

1

2
D(ln r − 1

2
) + E + Fr−2

]
(B.2)

and

vθ = − sin θ
[
3

8
Cr2 +

1

2
D(

1

2
+ ln r) + E − Fr−2

]
. (B.3)

The following boundary values are imposed at r = a for the cylindrical surfaces moving
rectilinearly with speed u :

vr = U cos θ (B.4)

and

vθ = −U sin θ. (B.5)

From equations (B.4) and (B.2) we have

U =
1

8
Ca2 +

1

2
D(ln a − 1

2
) + E + Fa−2, (B.6)
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and from equations (B.5) and (B.2):

U =
3

8
Ca2 +

1

2
D(

1

2
+ ln a) + E − Fa−2 (B.7)

At r = b the following boundary conditions are imposed:

vr = 0 (B.8)

and

0 =
∂vθ

∂r
+

1

r

∂vr

∂θ
− vθ

r
. (B.9)

From equations (B.8) and (B.2) it ten follows that

0 = cos θ
[
1

8
Cb2 +

1

2
D(ln b − 1

2
) + E + Fb−2

]
. (B.10)

From equations (B.9) and (B.2) it also follows that

0 = − sin θ
[
3

4
Cb +

1

2
Db−1 + 2Fb−3

]
− sin θ

[
1

8
Cb +

1

2
D(b−1 ln r − 1

2
b−1) + Eb−1 + Fb−3

]
+ sin θ

[
3

8
Cb +

1

4
Db−1 +

1

2
Db−1 ln r + Eb−1 − Fb−3

]
(B.11)

0 = − sin θ
[
1

2
Cb +

1

4
Db−1 +

1

2
D(b−1 ln b − 1

2
b−1)

−1

2
Db−1 ln b + 4Fb−3

]
(B.12)

0 =
1

2
Cb + 4Fb−3 (B.13)

0 = Cb + 8Fb−3 (B.14)

From equation (B.14) we thus have:

F = −Cb4

8
(B.15)
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Substitution of equation (B.15) into equation (B.10) yields:

0 =
1

8
Cb2 − Cb4

8
b−2 +

1

2
D(ln b − 1

2
) + E

so that

⇒ E = −1

2
D(ln b − 1

2
). (B.16)

Substitution of equations (B.15) and (B.16) into equation (B.7):

U =
3

8
Ca2 +

1

2
D(

1

2
+ ln a) − 1

2
D(ln b − 1

2
) −
(
−Cb4

8

)
a−2

=
3

8
Ca2 +

Cb4

8a2
+

1

2
D(1 + ln a − ln b) (B.17)

From equation (B.17) it now follows that:

U =
C

8

[
3a2 +

b4

a2

]
+

D

2
[1 + ln a − ln b]

So that

C =
a2

3a4 + b4

[
8U − 4D

(
1 + ln

a

b

)]
. (B.18)

Substitution of equations (B.15) and (B.16) into (B.6) yields:

U =
1

8
Ca2 +

1

2
D(ln a − 1

2
) − 1

2
D(ln b − 1

2
) +

(
−Cb4

8

)
a−2

=
1

8
Ca2 − Cb4

8a2
+

1

2
D(ln a − ln b) (B.19)

From equation (B.19) it then follows that:

U =
C

8
(a2 − b4

a2
) +

1

2
D ln

a

b
.

It follows that

C =
a2

a4 − b4

[
8U − 4D ln

a

b

]
. (B.20)
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Substitution of equation (B.18) into (B.20) yields:

a2

3a4 + b4

[
8U − 4D

(
1 + ln

a

b

)]
=

a2

a4 − b4

[
8U − 4D ln

a

b

]
,

it follows that

24 a4U − 12a4D ln
a

b
+ 8b4U − 4b4D ln

a

b
= a48U − a44D(1 + ln

a

b
) − b48U

+4b4D(1 + ln
a

b
).

Therefore

D =
4U(a4 + b4)

2 ln a
b
(a4 + b4) − (a4 − b4)

=
4U(a4 + b4)

2(a4 + b4) ln a − 2(a4 + b4) ln b − a4 + b4
(B.21)

From equation (B.20) it is then obtained that

C =
a2

a4 − b4

[
8U − 16U(a4 + b4) ln a

b

2 ln a
b
(a4 + b4) − a4 + b4

]

=
8Ua2

a4 − b4
− a2

a4 − b4

[
16U(a4 + b4) ln a

b

2 ln a
b
− a4 + b4

]

=
16Ua2 ln a

b
(a4 + b4) + 8Ua2(−a4 + b4) − a216U(a4 + b4) ln a

b

(a4 − b4)
[
2 ln a

b
(a4 + b4) − a4 + b4

]
=

−8Ua2

2 ln a(a4 + b4) − 2 ln b(a4 + b4) − a4 + b4
. (B.22)

Subsequently from equation (B.15):

F =
Ua2b4

2 ln a(a4 + b4) − 2 ln b(a4 + b4) − a4 + b4
. (B.23)

Lastly from from equation (B.16) it follows that

E =
−1

2
(ln b − 1

2
)4U(a4 + b4)

2(a4 + b4) ln a − 2(a4 + b4) ln b − a4 + b4

=
(2 ln b − 1)U(a4 + b4)

−2(a4 + b4) ln a + 2(a4 + b4) ln b + a4 − b4
. (B.24)



Appendix C
Experimental verification of model
developed by Crosnier et al. (2006)

The correlation between experimental data and the Crosnier et al. (2006) model for a
drag coefficient value, cd = 2, is depicted in Figures C.1, C.2, C.3, C.4, C.5 and C.6.
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Figure C.1: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 1 of a 20mm thick ERG 20 PPI foam.
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Figure C.2: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 2 of a 20mm thick ERG 20 PPI foam.
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Figure C.3: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 3 of a 20mm thick ERG 20 PPI foam.
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Figure C.4: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 1 of a 20mm thick ERG 10 PPI foam.
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Figure C.5: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 2 of a 20mm thick ERG 10 PPI foam.
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Figure C.6: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 3 of a 20mm thick ERG 10 PPI foam.

The correlation between experimental data and the Crosnier et al. (2006) model for a
drag coefficient value, cd = 1.4, is depicted in Figures C.7, C.8, C.9, C.10 and C.11.
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Figure C.7: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 1 of a 20mm thick ERG 20 PPI foam.



Appendix C Experimental verification of model developed by Crosnier et al. (2006) 84

0 0.5 1 1.5 2 2.5
100

200

300

400

500

600

700

800

900

ρ q

1/
q 

dp
/d

x

ERG Sheet2
exp

 ERG Sheet2
an

, eq. (4.8)

Figure C.8: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
with the inertial term given by eq. (4.8) for sheet 2 of a 20mm thick ERG 20 PPI foam.
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Figure C.9: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
with the inertial term given by eq. (4.8) for sheet 3 of a 20mm thick ERG 20 PPI foam.
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Figure C.10: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 1 of a 20mm thick ERG 10 PPI foam.
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Figure C.11: Comparison between experimental data (Table 4.1) and Crosnier et al. (2006)
model with the inertial term given by eq. (4.8) for sheet 2 of a 20mm thick ERG 10 PPI foam.
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On the modelling of non-Newtonian
purely viscous flow through high
porosity synthetic foams

Smit, G.J.F., Du Plessis, J.P. & Wilms, J.M. (2005). On the modelling of non-Newtonian
purely viscous flow through high porosity synthetic foams. Chemical Engineering Science,
60, 2815-2819.
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Modelling of flow in foamlike porous
media
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media. Proceedings of the international conference on environmental fluid mechanics,
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