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General Abstract 

Mycobacterial pathogens present a significant complication to disease control globally due to their 

resistance to numerous antibiotics. The rise in resistant strains to current chemotherapeutic 

treatments has prompted the search, development and implementation of new strategies to address 

this challenge. Harnessing the bioactivity of natural products found in the vast chemical space by 

using multi-disciplinary approaches has emerged as a promising way to discover new Tuberculosis 

drugs. This study aimed to evaluate the potential antimycobacterial activity of secondary 

metabolites from bacteria, fungi, and plants in-vitro and in-silico. In addition to mining for 

Mycobacterium tuberculosis targets, this study went further to explore other druggable targets 

associated with cancer in order to fully explain exhaustive in-silico bioactivity profiles. 

The following experiments were conducted to satisfy the aims: (i) bacteria from gold mine tailings 

were isolated and identified using 16S rRNA sequencing. The crude extracts from the bacteria 

were screened for potential activity against Mycobacterium tuberculosis (M. tb) H37Rv, 

Mycobacterium smegmatis MC2155, and Mycobacterium aurum A+ in-vitro. The active extracts 

were tentatively identified using HPLC-qTOF, GNPS, and Ms Dial. The identified compounds 

were virtually screened against Mycobacterium Pks13 and PknG. The natural compound that 

displayed high affinity was subjected to modification through multiple synthetic routes using 

reaction-driven enumeration. (ii) A total of 15 fungi compounds from fungi isolated from gold 

mine tailings were evaluated for their potential activity against M. tb PknA, PknB, PknD, and PknE 

proteins using extra precision molecular docking, molecular dynamics simulations, and molecular 

mechanics generalized born surface area (MM-GBSA) binding free energy calculation. (iii) 

Genomic DNA of one bacterial colony that showed activity against M. tb, was isolated and 
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sequenced by Illumina’s NextSeq platform. The genes responsible for producing metabolites that 

may have antimycobacterial activity were determined using antiSMASH and PARTIC. (iv) 

Predictive machine learning-based quantitative structure-activity relationship models were 

developed with a pIC50 as the dependable variable, while features extracted from compounds found 

to be active against InhA were the independent variable. Another approach in developing a 

multitargeted SMILES-based Long Short-term Memory (LSTM) based on pIC50, and small, 

skewed datasets was attempted. (v) Medicinal plant species indigenous to South Africa namely 

Schotia brachypetala, Rauvolfia caffra, Schinus molle, Ziziphus mucronate, and Senna petersiana 

were evaluated for their potential antimycobacterial activity against Mycobacterium smegmatis 

MC2155, Mycobacterium aurum A+, and M. tb H37Rv. Although the study was specific to 

mycobacteria, further exploration into  cytotoxic activity against MDA-MB 231 triple-negative 

breast cancer cells was also attempted to see if druggable targets could also be identified in 

eukaryotic cells as a test of the utility and robustness of the method. The constituents of the extracts 

possessing antimycobacterial activity were virtually screened using a rigorous Virtual Screening 

Workflow. The compounds exhibiting good binding, and ADME properties were returned and 

subjected to molecular dynamics simulations. MM-GBSA calculations were performed to evaluate 

the affinity of the selected compound/s to pantothenate kinase (PanK). 

 Crude extracts from three bacterial isolates, namely Bacillus subtilis and Bacillus licheniformis, 

exhibited activity against M. tb H37Rv, Mycobacterium smegmatis MC2155, and Mycobacterium 

aurum A+. The classes of secondary metabolites identified in this study are known to possess 

antibacterial activity. Virtual screening of the secondary metabolites against PknG and Pks13, 

returned cyclo-(L-Pro-4-OH-L-Leu) and vazabitide A with pre-MD MM-GBSA values of -42.81 
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kcal/mol and -47.62 kcal/mol, respectively. The modification of vazabitide A yielded a compound 

with a higher affinity of -85.80 kcal/mol to the Pks13, binding as revealed by the post-MD MM-

GBSA. SAMN36381076 was assigned to be  B. licheniformis whole genome analysis. The genome 

length of B. licheniformis SAMN36381076 was estimated to be 4.213156 Mb, with a G+C content 

of 46.08%, comprising 58 contigs and exhibiting an N50 length of 165,033 bp. The biosynthetic 

gene clusters identified included fengycin, butirosin A, butirosin B, schizokinen, pulcherriminic 

acid, bacillibactin, bacillibactin E, bacillibactin F, lichenicidin VK21 A1, Lichenicidin VK21 A2, 

and thermoactinoamide A. These gene clusters are known for producing secondary metabolites 

with antimicrobial activity. Furthermore, The B. licheniformis SAMN36381076 possesses genes 

that encode for six diverse antibiotic resistance mechanisms, with efflux pumps as the predominant 

mechanism of resistance. Metabolic analysis of B. licheniformis SAMN36381076 showed that the 

presence of genes involved carbohydrate degradation and assembly processes, oxyanion 

biogeochemical cycling, and nitrogen cycling.  

In-silico evaluation of fungi compounds against ser/thr kinases showed the lowest ΔGBind values 

of aurovertin D against PknA (-50.9 kcal/mol), aurovertin D against PknB (-50.7 kcal/mol), 

verticillin A against PknD (-36.8 kcal/mol), and roquefortine C against PknE (-53.4 kcal/mol). 

Molecular dynamics simulation showed that the PknD-verticillin A exhibited the highest stability. 

Furthermore, the post-MD MMGBSA ΔGBind showed that verticillin A has a high affinity for PknD 

-53.67 kcal/mol. The results indicated that verticillin A is a potential hit compound that can be

further optimized and modified to develop a potent antimycobacterial inhibitor. 

The classical machine learning models developed from logistic regression and multi-layer 

perceptron were identified to have significant performance metrics on the InhA dataset. The results 
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(- R2) from the multitarget Long Short Term Memory (LSTM) model indicated the need for 

hyperparameter tuning. However, further external validation of the two classification models is 

needed.  

In this study, the bioactive compounds present in R. caffra and S. molle showed average activity 

against M. tb H37Rv (MIC 0.25-0.125 mg/mL). Norajmaline with a docking score of -7.47 

kcal/mol, and pre-MM-GBSA of -37.64 kcal/mol was returned from the rigorous virtual screening. 

Molecular dynamics simulation and post-MD MM-GBSA revealed the stable binding of 

norajmaline to PanK (-58. 73 kcal/mol). Results from the Flow cytometry analysis of treated 

MDA-MB 231 cells revealed that the dichloromethane extracts from S. petersiana, Z. mucronate, 

and ethyl acetate extracts from R. caffra and S. molle induced higher levels of apoptosis than the 

control cisplatin.  

In conclusion, this study serves as a starting point for the in-silico discovery of potent 

antimycobacterial compounds from metallophiles (fungi and bacteria) and plants. Virtual 

screening accelerates the drug discovery process by identifying compounds that may possess 

activity, thus they can be modified to increase potency. The incorporation of a large dataset of 

compounds comprising different biological conditions but with the same endpoint can be used to 

develop robust models with exceptional generalization capabilities. 
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Opsomming 

Mikobakteriese patogene bied 'n beduidende komplikasie tot siektebeheer wêreldwyd as gevolg 

van hul weerstand teen talle antibiotika. Die toename in weerstandige stamme teen huidige 

chemoterapeutiese behandelings het aanleiding gegee tot die soektog, ontwikkeling en 

implementering van nuwe strategieë om hierdie uitdaging aan te spreek. Die benutting van die 

bioaktiwiteit van natuurlike produkte in die chemiese ruimte deur die gebruik van multidissiplinêre 

benadering het na vore gekom as 'n belowende manier om nuwe tuberkulose middels te ontdek. 

Die doel van hierdie studie was om die potensiële antimikobakteriële aktiwiteit van sekondêre 

metaboliete van bakterieë, swamme en plante te evalueer. Hierdie studie het ook die 

antikankeraktiwiteit van die plante geëvalueer. 

Die volgende eksperimente is uitgevoer om die doelwitte te vervul: (i) isolasie en identifikasie van 

bakterieë uit goudmyn uitskot deur gebruik te maak van 16S rRNA volgorde bepaling. Die ru-

ekstrakte van die bakterieë is gesif vir potensiële aktiwiteit teen Mycobacterium tuberculosis (M. 

tb) H37Rv, Mycobacterium smegmatis MC 2 155 en Mycobacterium aurum A+ in vitro . Die 

aktiewe ekstrakte is voorlopig geïdentifiseer deur gebruik te maak van HPLC- qTOF , GNPS en 

Ms Dial. Die geïdentifiseerde verbindings is virtueel gesif teen Mycobacterium Pks13 en PknG. 

Die natuurlike verbinding wat hoë affiniteit getoon het, is onderworpe aan modifikasie deur die 

gebruik van verskeie sintetiese roetes deur reaksie-gedrewe konfigurasies. (ii) 'n Totaal van 15 

swam verbindings van swamme van goudmyn uitskot is geëvalueer vir hul potensiële aktiwiteit 

teen M. tb PknA-, PknB-, PknD- en PknE-proteïene deur ekstra presiesheid molekulêre koppeling, 

molekulêre dinamika-simulasies en molekulêre meganika veralgemeende gebore oppervlak area 

(MM-GBSA) binding vry energie berekeninge. (iii) Genomiese DNA van een bakterie wat 
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aktiwiteit teen M. tb getoon het , is geïsoleer en georden deur Illumina se NextSeq platform. Die 

gene wat verantwoordelik is vir die vervaardiging van metaboliete wat antimikobakteriële 

aktiwiteit kan hê, is bepaal deur gebruik te maak van antiSMASH en PARTIC. (iv) Voorspellende 

masjienleer-gebaseerde kwantitatiewe struktuur-aktiwiteit verwantskap modelle is ontwikkel met 

'n pIC 50 as die betroubare veranderlike, terwyl kenmerke uittreksels uit verbindings wat  aktief 

teen InhA was, is as die onafhanklike veranderlike gebruik. Nog 'n benadering in die ontwikkeling 

van 'n multi-geteikende SMILES-gebaseerde lang korttermyn geheue (LSTM) gebaseer op pIC 50, 

en klein, skewe datastelle was probeer. (v) Medisinale plantspesies inheems aan Suid-Afrika, 

naamlik Schotia brachypetala , Rauvolfia caffra , Schinus molle , Ziziphus mucronate, en Senna 

petersiana is geëvalueer vir hul potensiële antimikobakteriese aktiwiteit teen Mycobacterium 

smegmatis MC 2 155, Mycobacterium aurum A+ en Mycobacterium tuberculosis H37Rv, en 

sitotoksiese aktiwiteit teen MDA-MB 231 trippel-negatiewe bors kankerselle . Die bestanddele 

van die ekstrakte wat antimikobakteriese aktiwiteit het, is virtueel gesif deur gebruik te maak van 

'n streng virtuele siftings werkvloei. Die verbindings wat goeie binding en ADME-eienskappe 

getoon het, is teruggestuur en aan molekulêre dinamika-simulasies onderwerp. MM-GBSA 

berekeninge is uitgevoer om die affiniteit van die geselekteerde verbindings vir pantotenaat kinase 

( PanK) te evalueer. 

Ru-ekstrakte van drie bakteriese isolate, naamlik Bacillus subtilis en Bacillus licheniformis, het 

aktiwiteit getoon teen M. tb H37Rv, Mycobacterium smegmatis MC 2 155 en Mycobacterium 

aurum A+. Dit is bekend dat die sekondêre metaboliete klasse wat in hierdie studie geïdentifiseer 

is, antibakteriese aktiwiteit het. Virtuele sifting van die verbindings teen PknG en Pks13, siklo-(L-

Pro-4-OH-L-Leu) en vazabitied A met pre-MD MM-GBSA  het  teruggekeer met waardes van -
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42.81 kcal/mol en -47.62 kcal/mol, onderskeidelik. Die modifikasie van Vazabitide A tot die Pks13 

binding het gelei tot 'n verbinding met 'n hoër affiniteit van -85.80 kcal/mol soos geopenbaar deur 

die post-MD MM-GBSA.  B. licheniformis SAMN36381076 is geïdentifiseer deur heelgenoom 

analise. Die genoom lengte van B. licheniformis SAMN36381076 is geskat op 4,213156 Mb, met 

'n G+C-inhoud van 46,08%, wat 58 kontigs bevat en 'n N50-lengte van 165,033 bp vertoon. Die 

biosintetiese geen groepe wat geïdentifiseer is, sluit in fengysien, butirosien A , butirosien B, 

skisokienen, pulcherriminensuur, bacillibactin , bacillibactin E , bacillibactin F, lichenicidin VK21 

A1 , Lichenicidin VK21 A2, en thermoactinoclusters. Hieride geen groepe is bekend vir produksie 

van metaboliete met antimikrobakteriële aktiwiteit. Verder beskik die B. licheniformis 

SAMN36381076 oor gene wat kodeer vir ses diverse antibiotika weerstand meganismes, met 

uitvloei pompe as die oorheersende meganisme van weerstand. Metaboliese analise van B. 

licheniformis SAMN36381076 het getoon dat die teenwoordigheid van gene koolhidraat afbraak- 

en samestellings prosesse, oksianion biogeochemiese siklusse en stikstofsiklusse ingesluit het. 

In-silico evaluering van swam verbindings teen ser/ threokinases het die laagste ΔG- bindingswaardes 

van aurovertien D teen PknA (-50.9 kcal/mol), aurovertien D teen PknB (-50.7 kcal/mol), 

vertisillien A teen PknD (-36.8 kcal/mol) getoon, en roquefortine C teen PknE (-53,4 kcal/mol). 

Molekulêre dinamika-simulasie het getoon dat die PknD-vertisillien A die hoogste stabiliteit 

getoon het. Verder het die post-MD MMGBSA ΔG Bind getoon dat vertisillien A 'n hoë affiniteit 

vir PknD -53.67 kcal/mol het. Die resultate het aangedui dat vertisillien A 'n potensiële tref 

verbinding is wat verder geoptimaliseer en aangepas kan word om 'n kragtige antimikobakteriële 

inhibeerder te ontwikkel. 
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In hierdie studie het die bioaktiewe verbindings teenwoordig in R. caffra en S. molle gemiddelde 

aktiwiteit teen M. tb H37Rv (MIC 0.25-0.125 mg/mL) getoon. Norajmaline met 'n dok telling van 

-7.47 kcal/mol, en pre-MM-GBSA van -37.64 kcal/mol is teruggekeer van die streng virtuele

sifting. Molekulêre dinamika-simulasie en post-MD MM-GBSA het die stabiele binding van 

norajmaline aan PanK (-58. 73 kcal/mol) geopenbaar. Resultate van die vloeisitometrie-analise 

van behandelde MDA-MB 231-selle het aan die lig gebring dat die dichloormetaan ekstrakte van 

S. petersiana , Z. mucronate en etielasetaat ekstrakte van R. caffra en S. molle het hoër apoptose

vlakke geïnduseer as die kontrole-cisplatien. 

Laastens, die klassieke masjienleer modelle wat uit logistiese regressie en multi-laag perseptron 

ontwikkel is, is geïdentifiseer om beduidende prestasiemaatstawwe op die InhA-datastel te hê. Die 

resultate (- R 2 ) van die multiteiken-LSTM-model het die behoefte aan hiper parameter verfynning 

aangedui. Verdere eksterne validering van die twee klassifikasie modelle is egter nodig. 

Ter afsluiting, hierdie studie dien as 'n beginpunt vir die in-silico ontdekking van kragtige 

antimikobakteriële teenmiddels van metallofiele (swamme en bakterieë) en plante. Virtuele sifting 

versnel die geneesmiddel ontdekkings proses deur verbindings te identifiseer wat aktiwiteit kan 

hê, en  aangepas kan word om hulle kragtigheid te verhoog. Die inkorporering van 'n groot datastel 

van verbindings wat verskillende biologiese toestande bevat maar met dieselfde eindpunt kan 

gebruik word om robuuste modelle met buitengewone veralgemenings vermoëns te ontwikkel. 
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General Introduction 

1.1 Challenges in Treating Tuberculosis 

Tuberculosis (TB) caused by a highly specialized human intracellular pathogen Mycobacterium 

tuberculosis (M. tb), is a severe and life-threatening infectious disease [1]. Standard chemotherapy 

treatment of drug-susceptible M. tb consists of administering a combination of first-line drugs such 

as isoniazid, ethambutol, rifampicin, and pyrazinamide, for six months with a success rate of 85 

% [2, 3]. However, the emergence of drug-resistant strains over the past two decades has become 

a critical threat to the global campaign to end TB. Multidrug-resistant (MDR-TB) M. tb strains, 

which account for 3.4 % of new TB cases globally, are resistant to at least two first-line drugs, 

which are isoniazid and rifampicin. Extensively drug resistance (XDR)- M. tb strains, on the other 

hand, are resistant to isoniazid, rifampicin, fluoroquinolone, and at least one of the three injectable 

second-line drugs [4, 5]. The emergence of drug resistance in M. tb strains is caused by genetic 

mutations to chromosomal genes associated with pro-drug activation, drug permeability, 

macromolecular target, and drug efflux. Further, metabolic adaptation to the host lung 

microenvironment and socioeconomic determinants such as poor diagnosis and limited drug 

availability, also contribute to an increase in drug-resistant strains [6]. This highlights the urgent 

requirement for developing and applying targeted strategies to address the rapid increase in drug-

resistant M. tb. New antimycobacterial agents should be compatible with current antiretroviral 

regimens, reduce treatment duration, and be effective against MDR-TB and XDR-TB. 

Additionally, antimycobacterial agents should be able to destroy M. tb at different stages of its life 

cycle, including the non-replicating latent stage [4, 7].  
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Computational strategies such as well-built statistical methods or artificial intelligence aid the 

analyses of crucial biological properties of specified functional groups and optimization of the 

chemical structures to enhance or decrease the desired endpoints. 

1.2 Rationale and justification of the study 

Drug discovery is a complex and time-consuming process involving identifying and developing 

new therapeutic drugs for numerous diseases. For many years, natural products (NPs) have served 

as a verified reference point for discovering and developing highly potent antimicrobials and 

chemotherapeutics [8, 9]. Microorganisms are known as the most prolific bio-factories of diverse 

and novel NPs that possess valuable pharmaceutical properties [10]. NPs have been structurally 

optimized through evolution to enhance the survival prospects of microorganisms in their 

respective niches. The wide variety of bioactive secondary metabolites produced by 

microorganisms, for example, fungi, actinomycetes, and myxobacteria make them prime sources 

for mining and discovery of potential novel therapeutic agents [10–12]. Noteworthy, many drugs 

in current pharmacopeias are derived from NPs. However, the antibiotic industry has experienced 

a decline in the discovery of novel bioactive drug scaffolds due to the continuous re-discovery of 

similar compounds from over-investigated ecological niches. Therefore, it is imperative to explore 

untapped natural reservoirs to discover novel bioactive small molecules. One such potential source 

is the South African gold mine tailings, which is characterized by low pH, and high metal content. 

Bacteria and fungi inhabiting the gold mine tailings possess a unique extended biosynthetic skill 

that enables them to survive under environmental stresses [13]. By harnessing the novel metabolic 

machinery of these bacteria and fungi through whole genome mining of biosynthetic functional 

gene clusters, and metabolomics, it may be possible to synthesize small bioactive molecules, thus 
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providing molecular starting points for the development of anti-TB drugs. A targeted rational 

approach to TB drug discovery involves a thorough understanding of the pathogen at a 

macromolecular level of the pathways involved in maintaining its fitness, thus, leading to 

identifying the druggable macromolecular targets. Identifying the macromolecular targets or 

pathways that are critically involved in a disease state is essential in solving XDR, and MDR TB 

[4, 14–16]. Intrinsic understanding of the target on a molecular scale is essential for example, 

investigating and elucidating the important druggable active sites on essential M. tb proteins. The 

knowledge of the macromolecular target permits us to design safe and potent anti-M. tb drugs. 

Targeting single proteins in TB drug discovery is not sufficient to tackle the MDR-TB challenges 

[17–19]. Thus, novel drugs to treat MDR-TB should have novel mechanisms of action in either or 

all of the following ways: (i) a pathogen-directed approach whereby the drugs inhibit essential M. 

tb  macromolecular targets, (ii) a host-directed approach focuses on remodeling the host’s cell 

functions to facilitate the clearance of the pathogen, thus, reducing the M. tb ’s ability to evade 

immune responses. Advancements in technologies have accelerated the discovery of lead 

compounds and designing potential drugs. Virtual screening is a computational method used in 

drug discovery during the hit-lead discovery phase that aims to identify potential hit compounds, 

i.e., molecular starting points, from large databases of compounds. Molecular dynamics (MD) 

simulations is one of the techniques used and it enables the comprehension of complex physical 

dynamics of a biological system at an atomic level, thus, revealing the hidden states of a biological 

system that cannot be detected experimentally [20, 21].  The molecular starting points are further 

validated in-vitro and in-vivo and after each iteration, the chemical properties of the scaffold are 

progressively optimized. Thus, incorporating artificial intelligence at every stage of drug design, 

including computer-aided molecular modeling and machine learning-related techniques, 
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accelerates the discovery and optimization of potent lead scaffolds that may be optimized to assist 

in fighting the drug resistance of M. tb clinical strains. In this regard, integrating metabolomics, 

in-vitro assays, MD simulations, and accurate binding free energy computation provided refined 

and possible novel mechanisms of action.  

1.3 Study Aims and Objectives 

The current study aims to identify and evaluate the antimycobacterial activity of crude extracts 

from microorganisms isolated from the South African gold mine tailings using a multi-omics 

approach.  

To achieve the above aims, the following objectives were formulated: 

1.  To isolate and purify bacteria, isolate total genomic DNA, amplify and sequence the 

16S rRNA gene, and evaluate the evolutional relationship of identified bacteria. 

2. To tentatively identify the secondary metabolites produced by bacteria and fungi using 

Liquid Chromatography-Mass Spectrometry QTOF. 

3. To evaluate minimum inhibition concentration against three Mycobacterium strains, 

namely M. smegmatis mc2 155, M. aurum A+, and M. tb H37Rv.  

4.  To virtually screen the identified compounds against M.tb macromolecular tagerts 

using molecular docking, molecular dynamics simulations and binding free energy 

computations. 

5. To sequence the whole genome of the bacteria active against M.tb and identify the 

biosynthetic gene clusters responsible for the synthesis of possible anti-TB secondary 

metabolites. 
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6. To create a QSAR model using machine learning algorithms and facilitate the precise 

screening of small bioactive molecules based on antimycobacterial activity. 

1.4 Thesis outline 

This thesis has been divided into eight chapters.  Descriptions of the chapters are as follows: 

CHAPTER 1 – General Introduction 

This chapter introduces the readers to the problem statement, rationale, justifications, aims, 

and objectives of the study. 

CHAPTER 2 –Integrating Virtual Screening to Aid Tuberculosis Drug Development- Mini-

review 

This chapter describes the current trends in Tuberculosis drug discovery. In addition, the 

integration of targeted multi-omics approach to accelerate TB drug discovery, and save 

operational costs is fully described. The manuscript from this chapter is ready for 

submission.  

CHAPTER 3 – Molecular docking, molecular dynamics simulations, and binding free energy 

studies of interactions between Mycobacterium tuberculosis Pks13, PknG, and bioactive 

constituents of extremophilic bacteria  

This chapter describes the isolation, and identification of bacteria from gold mine tailings. 

The crude extracts from the bacteria are tentatively identified and evaluated for potential 

antimycobacterial activity in-vitro and in-silico. In-silico modification of a compound 

exhibiting strong binding profile was performed. The profile of the modified compound 
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exhibited promising binding profiles, and ADME characteristics. A manuscript resulting 

from this chapter is under review in a peer reviewed journal, Heliyon (manuscript no. 

HELIYON-D-23-17664).  

CHAPTER 4 – In-silico screening of fungal secondary metabolites against Mycobacterium 

tuberculosis Ser/Thr kinases 

This chapter describes the virtual screening of compounds from fungal against M.tb 

essential proteins. The Serine/Threonine kinases were investigated as potential drug targets 

for M.tb. The study identified a compound that exhibited strong binding to the protein 

targets. A manuscript resulting from this chapter is under review in a peer reviewed journal, 

Computational Biology and Chemistry (CBAC-D-23-00802). 

CHAPTER 5 – Exploring the Metabolic Potential of Bacillus licheniformis for the Production 

of Antimycobacterial Secondary Metabolites 

This chapter describes the metabolic potential of the bacteria to produce metabolites that 

have antimycobacterial activity. Whole genome sequencing was perfomed on one of the 

isolates that exhibited antimicrobial activity. The biosynthetic gene clusters were mined 

using antiSMASH and they showed the ability of the B.lichenformis to produce bioactive 

active compounds that have antimicrobial properties. The manuscript from this chapter is 

ready for submission. 

 

CHAPTER 6 – Comparison of predictive machine learning-based quantitative structure-

activity relationship models for targeting InhA, Pks13 and MptpA 
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This chapter describes the development of machine-learning-based quantitative structure-

activity relationship models for target Mycobacterium tuberculosis InhA, Pks13 and 

MptpA. The supervised classifiers classical machine learning algorithms trained in the 

study, include Random Forest (RF), decision tree (DT), support vector machines (SVC), 

KNeighbors (KNN), logistic regression (LR), and multi-layer perceptron (MLP). 

CHAPTER 7– General conclusions and future directions  

This chapter presents the conclusions, limitations, and recommendations for future studies. 
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2.1 Abstract 

Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M. tb) and is the 

leading cause of mortality in humans. Single nucleotide polymorphisms (SNPs) and insertion-

deletions to the genes encoding enzymes that activate drugs and drug macromolecular targets drive 

the primary mode of drug resistance. Furthermore, nonreplicating M. tb contributes to the lengthy 

time required for the treatment and serves as a reservoir from which drug-resistant bacteria 

emerge. Drug-resistant strains pose a significant threat to TB control programs because these 
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strains increase the chances of relapse when the treatment regimen is no longer effective. The 

primary focus of this review is to highlight the integration of virtual screening, in-vitro and in-

vivo, in developing new strategies to address the rapid increase in drug-resistant M. tb strains. 

Keywords: Mycobacterium tuberculosis, molecular dynamics simulations, molecular docking, 

small molecules, natural products, quantitative structure-activity relationships, drug targets 

2.2 Selection of druggable essential biochemical pathway.  

Numerous serious infectious disease states are caused by an infestation of a foreign organism, with 

M. tb being one example. M. tb is exclusively transmitted through inhaling droplets infested with 

bacilli, which are either coughed or sneezed by a person with an active pulmonary infection [1]. 

Once inhaled, M. tb reaches the lung microenvironment and intimately interacts with soluble 

constituents of lung mucosa after which the pathogen-associated molecular patterns on the M. tb 

cell envelope are recognized by macrophages and other phagocytic cells. The recognition results 

in the internalization of the pathogen by the alveolar macrophages. Alveolar macrophages are the 

target cells of the tubercle bacillus infection where it adapts and exponentially proliferates for 2-3 

weeks [2].  

The delicate interplay between the tubercule and host during the first encounters determines the 

outcome of TB, that is, either progression to pulmonary infection or clearance by the host. Cell-

mediated immunity such as oxidative and inflammatory responses, autophagy, apoptosis, antigen 

processing, and presentation from M1 macrophages and M. tb-specific CD4 T cells play a 

fundamental role in fighting M. tb infection in the host [3]. M. tb encounters distinct harsh 

conditions within the macrophage environment, for instance, acidic pH, nutrient deprivation, and 
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oxidative and nitrosative stresses [4]. However, M. tb is constantly evolving diverse and unique 

mechanisms of circumventing host defenses, including preferentially targeting and inhibiting 

phagolysosome formation and manipulating host signaling pathways a hallmark of chronic 

tuberculosis [5–7].  

Studies have revealed that remediation of the disease state is often achieved by killing the tubercle 

bacillus by inhibiting its molecular machinery used for cell wall biogenesis [43], sensing external 

signals, and inhibiting the formation of the phagolysosome. Therefore, understanding the 

upregulated biochemical pathways used by viable M. tb cells to survive and to metabolically adapt 

to harsh host environments may be the key to solving the challenges faced in TB treatments. 

Essential proteins that play a critical role in driving the bio-catalysis processes in the metabolic 

pathways of M. tb may be targeted to eliminate or eradicate the bacteria. Furthermore, knowledge 

of the pathophysiology of the mycobacteria after inhibition of the targeted essential proteins is 

critical. A daring approach to obtaining potent M. tb drugs is targeting druggable essential enzymes 

whose inhibition has not yet been fully established. The probability of discovering and identifying 

an active compound against a novel target in preclinical development is estimated to be 3% but as 

for an established drug target, it is approximately 17%. Attempting to uncover a novel 

mycobacterial drug target can lead to the identification of drugs that possess novel properties that 

can potentially make a huge difference in treating drug-resistance diseases. Numerous classes of 

drugs with different modes of action are currently in development (Figure 2.1). 
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Figure 2.1. Current TB discovery efforts (accessed at https://www.newtbdrugs.org/news 

14/6/2023) 

2.3 Accelerating lead scaffolds discovery from natural products with computational tools 

Lead compounds in TB drug discovery can be acquired from a chemical space that comprises of 

astronomical volumes of bioactive compounds (approximately 1023-1060) [8]. However, high 

throughput screening of the entire chemical space to obtain TB hit compounds is basically 

impossible. In this regard, studies have zoned in on specific parts, for instance, the natural products 

portion of the chemical space, as a source of potential lead anti-TB scaffold [9, 10]. Nature is an 

excellent reservoir of novel drug precursors and approximately half of the drugs approved between 

1994 and 2007 were derived from natural products (NPs), with bacteria contributing to more than 

30 % of the approved small molecules. Actinomycetes are known to be one of the most efficient 

producers of secondary metabolites (antibiotics, siderophores, and biosurfactants) that have high 

medicinal applications [11, 12]. Studies reported the extraction and isolation of bioactive 
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metabolites from actinomycetes that have anticancer, antibacterial, antifungal, 

immunomodulating, and herbicidal properties. There are several NPs used as anti-M. tb agents in 

the current pharmacopeias, including, aminoglycosides (amikacin, streptomycin,  and kanamycin), 

ansamycin (rifamycins analogs), and peptides (capreomycin) [13, 14].  Earlier studies have also 

demonstrated anti-M. tb activity from plants and fungi [15–17]. Competition between 

microorganisms in an environmental niche leads to the evolution of metabolic processes to 

enhance the fitness of a particular microorganism, particularly, in the production of various 

secondary metabolites with a broad-spectrum antimicrobial action and different antimicrobial 

modes of action. NPs from Streptomyces sp have been investigated for their potential M. tb activity 

in an earlier study [18]. The authors revealed that compound (1) produced by Streptomyces sp 

possesses anti-M. tb activity by targeting the cell wall, D-alanine racemase (Alr) and D-alanine:D-

alanine ligase (Ddl) with a minimum inhibition concentration (MIC) of 14-900 μM (Table 2.1). 

However, mutations in various M. tb genes, including  rv3423c, rv0221, rv1403c, 

gabD2 (rv1731),  sugI (rv3331), hisC2 (rv3772), etc.,  have been reported to confer resistance to 

compound (1) [19]. In another study, compound (2) isolated from Streptomyces platensis was 

observed to inhibit M. tb KasA and KasB with a MIC of 12 μg/mL [20]. Another study reported 

the anti-M. tb activity (MIC = 0.39 µg/ml) of compound (3) isolated from Streptomyces 

pyridomyceticus [21]. The authors also revealed that the mode of action was through competitive 

inhibition of InhA of the NADH- binding site [21]. 

Table 2.1.  Natural products inhibitors of M. tb.  

N0# Compound ID Structure Activity Reference 
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1 D-Cycloserine   
NH

O

OH2N  

MIC (M. tb) =14-

900 μM 

[18] 

2 platensimycin 

N
H

O

O

OH

O

OH

OH
O

 

MIC (M. tb 

CDC1551) = 12 

μg/mL 

[20] 

3 pyridomycin 
O

O
O

HN

HO

N

O

O

NH

N

HO

O

 

MIC (M. tb H37Rv) 

= 0.39 µg/mL 

MIC (M.smeg) = 

0.78 μg/mL 

[21] 

 

The traditional “top-down” discovery of novel bioactive compounds from a pool of NPs produced 

by a microbial consortium involves: the isolation and culturing of microorganisms under favorable 

laboratory conditions to induce NP production, testing the chemotherapeutic potential of the NPs 

produced, fractionation of the NPs in the form of crude extracts, chemotherapeutic efficacy assays 

of the fractions against microbial or human disease models, and purification of active NP/s through 

multi-fractionation runs [12, 22, 23]. However, the major drawbacks of this gold standard approach 

include that it is time-consuming, expensive and often results in  re-isolation of known compounds 

produced by microbial species. Furthermore, some bioactive secondary metabolites are produced 

in trace quantities, thus, detection, purification, and bio-assaying are difficult. In addition, the 

secondary metabolites produced by bacteria or fungi under environmental micro-stressors are 

different from those synthesized under laboratory conditions [24]. Previous studies have revealed 
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that the integration of multiple omics-based strategies such as metabolomics, proteomics, 

genomics, and meta-omics (machine learning-based tools) has immensely transformed the 

discovery process from a “top-down” approach to modern multi-omics-based targeted mining. The 

production of the bioactive secondary metabolites is catalyzed by the multi-modular enzymes 

assembly that encode (BGCs) [25]. Microbial genome mining enables the deeper exploration of 

the dark chemical space comprising of cryptic BGCs that encode enzymes that are involved in 

unprecedented chemical transformations to produce novel bioactive compounds [26, 27]. The 

integration of genome mining in NP discovery has led to the identification of diverse novel NP 

biosynthetic pathways, this allows the prioritization of BGCs that encode the production of 

compounds possessing several bioactivities including anti-TB.  

Computational strategies such as well-built statistical methods or artificial intelligence aid the 

analyses of crucial biological properties of specified functional groups and optimization of the 

chemical structures to enhance or decrease the desired endpoints [28, 29]. One such strategy is 

virtual screening which is based on two approaches: ligand-based screening and structure-based 

screening. Ligand-based screening is based on the hypothesis that structural similarities to a known 

active ligand should yield similarly active compounds [30, 31]. While structure-based virtual 

screening is based on a hypothesis of the shape and charge density of the binding pocket that 

defines what features a complementary ligand should possess [32–34]. Thus, knowledge of one or 

more known inhibitors for a target or about the three-dimensional structure of the target protein is 

used in narrowing down large libraries of compounds to small sets comprising only hit compounds, 

thereby saving screening resources. This form of virtual screening is regarded as a focused screen, 

which is likely to find the scaffolds with the highest probability of binding to a target molecule.  
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QSARs models (quantitative structure activity relationship) are mathematical models constructed 

to reveal active compounds against selected specific biological targets from a chemical library [35, 

36]. In other words, it is a regression or a classification technique that quantitatively associates the 

molecular descriptors derived from chemical scaffolds and their respective endpoint. So far, 

numerous QSAR models have been created for various endpoints and diverse model constructions 

techniques, for instance, the stringency of data-processing descriptor types, learning methods, and 

evaluation metrics have been implemented to achieve this [37–40]. Some of the classical machine 

learning algorithms have been successfully implemented for developing QSAR models, for 

instance, support vector machine (SVMs), Naïve Bayesian classifiers, K-Nearest neighbors (K-

NN), Random Forest, etc. [28, 41, 42] 

2.4 Targeting Cell envelope synthesis machinery using an omics approach 

The M. tb cell envelope plays a critical role in the delicate immunomodulatory interplay between 

the bacterium and the host. The mycobacterial cell envelope is a complex permeability barrier that 

provides natural protection against various external toxins and antibiotics, osmotic protection, 

mechanical support, and virulence [43]. The envelope of M. tb consists of two distinct parts: the 

plasma membrane and the cell wall. The presence of mycolic acids in the cell wall core is of 

interest to drug discovery because it forms a hydrophobic permeability barrier which contributes 

to endogenous resistance of M. tb to many drugs [44, 45]. The biochemical pathways of the 

biosynthesis of mycolic acid constitute more than 20 different multi-enzyme complexes that are 

well-defined, and the pathway serves as an important reservoir of targets for the development of 

new TB drugs to combat drug resistance (Figure 2.2) [46].  
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Figure 2.2. Mycolic acid biogenesis pathway comprising of FAS-I and FAS-II systems that are 

critical for the survival of mycobacteria. FAS-I and FAS-II systems are responsible for the De 

novo synthesis and elongation. The enzymes involved in the catalysis include InhA (Enoyl ACP 

reductase), HadABC (β-Hydroxyacyl-ACP dehydratase), KasA and KasB (β-Ketoacyl-ACP 

synthase), MabA (β-Ketoacyl-ACP reductase), mtFabD (malonyl Co-A-ACP transacylase), and 

mtFabH (β-Ketoacyl ACP-synthase-III). Adopted from [47]. 

Several approved drugs available on the market target the mycolic acid biogenesis pathway, 

including isoniazid [48], ethionamide [49], isoxyl [50], and thiacetazone [50]. The development 

of these prodrugs was not a targeted approach; hence, they require metabolic activation from 

specific activating enzymes from M. tb such as catalase-peroxidase. However, a rise in the 

mutation of katG, kasA, and inhA genes encoding pro-drug activating enzymes complicates TB 

treatment (Table 2.2) [51] . Thus, it is crucial to develop new therapeutic agents that have a targeted 

mode of action and that do not require prior activation.  
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Table 2.2. Inhibitors of mycolic acid synthesis and genes conferring resistance to isoniazid, 

ethambutol, and ethionamide. 

 

Drug  Structure Target/s Gene/s 

involved in 

resistance 

Role References 

Isoniazid 

N

O

H
N

NH2

 

Enoyl-(acyl-carrier-

protein) reductase 

including, catalase 

peroxidase, NADH-

dependent enoyl ACP, 3-

Oxoacy ACP, βKetoacyl 

ACP) 

katG, inhA, 

kasA, Ndh, 

AhpC, niA, 

FadE24, 

FabG1 

Pro-drug conversion, 

modification 

overexpression of drug 

target due to mutations 

and altered efflux pump 

activity. 

[51] 

 

Ethambutol 

H
N

NH

OH

OH 

Arabinosyl transferase 

(inhibition of 

arabinogalactan synthesis) 

 

embA,  embB 

,embC, 

embR, rmLD, 

iniA, ubiA 

Change and 

overexpression of drug 

target; and altered efflux 

pump activity 

[48] 

[52] 

Ethionamide 

N

SH

HN

 

Inhibition of mycolic acid 

synthesis by binding to the 

ACP reductase InhA 

(disrupts cell wall 

biosynthesis) 

ethA, ethR, 

KasA, inhA 

inhA pro 

alteration and over-

expression drug target 

due mutation 

[49] 

[53] 

 

Various proteomics studies have crystallized InhA with small molecule inhibitors that can be 

accessed on the protein data bank (https://www.rcsb.org). The exploration of the active sites has 

revealed that some of the small molecule inhibitors occupy the fatty-acyl site and cofactor binding 

pocket around Tyr158 of InhA [54]. The participation of the conserved residue Tyr158 in hydrogen 

bonding is regarded to be essential in the development of some InhA inhibitors [55]. Some of these 
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small molecule inhibitors include acetamides, isatin-pyrimidine hybrid derivatives, pyrroles, 

pyrrolidine carboxamides analogs, hydrazones, triazoles, thiadiazoles, methylthiazoles, and 

thiourea-based molecules. Other studies have reported small molecules that directly target InhA, 

including arylamide, diphenyl ethers derivative, and triclosan (4) (Table 2.3). In the quest to 

discover direct InhA inhibitors, a total of 167 550 natural compounds were virtually screened using 

the Virtual Screening Workflow (VSW) in a Schrödinger suite [56]. The authors reported that 

compound (5) (Table 2.3) exhibited a good extra precision docking score, high affinity to InhA 

binding site (−109.233 kJ/mol), good pharmacokinetic profile. The highest occupied molecular 

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) analysis that describes the 

reactivity of molecules based on accepting electrons showed that compound 5 exhibited good 

structural stability [56]. Thus, the compound was regarded as a potential lead that needs further 

validation of in-vitro and in-vivo activity against M. tb. 

In a recent study by Khalifa et al. [54], the authors performed molecular hybridization of isatin-

pyrimidine analogs and yielded compound (6) (Table 2.3), which was reported to possess 

antimycobacterial activity against H37Ra (MIC = 0.12 µg/mL), MDR M. tb ATCC 35822 (MIC = 

0.48 µg/mL) and XDR M. tb RCMB 2674 (MIC = 3.9 µg/mL) [54]. Further compound (6) 

inhibited InhA with an IC50 of 0.6 ± 0.94 µM. To explore the binding mechanism, molecular 

docking, and molecular dynamics simulations were performed. The compound (6)-InhA complex 

was revealed to be a relatively stable complex and interacted with Ala198 and Ile202 residues in 

the hydrophobic pocket of InhA. Phusi et al. [33] performed virtual screening (comprising of 

Lipinski’s five rules, ADME (absorption, distribution, metabolism, and excretion), molecular 

docking, MD simulations, and ab initio fragment molecular orbital calculations) of 128 scaffolds 
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(4-hydroxy-2-pyridone derivatives) against InhA [33]. The authors observed that compound (7) 

(Table 3) exhibited hydrogen bonds with Tyr158, Thr196, and NADH of InhA and an IFIE of 

−127.0 kcal/mol, thus, proposed that it may be a potential inhibitor that tightly binds to InhA-

NADH [33]. A new class of benzimidazole and imidazoles added to ethionamide analogs that 

possess antimycobacterial activity was reported previously [57]. Amongst the analogs, (8) and (9) 

(Table 2.3), exhibited a MIC of 0.27 ± 0.05 µM and 0.35 ± 0.09 µM against M. tb H37Rv, 

respectively. Further, the efficacy of (8) and (9) was evaluated against InhA overexpressing M. tb 

strain and they showed MIC values of 0.54 ± 0.03 µM and 0.72 ± 0.19 µM, respectively. The in-

vitro assays were complemented by molecular docking studies, which provided critical 

information on the protein-ligand interaction. The docking studies revealed the predicted lowest 

energy confirmations and the types of interactions between the ligands and InhA, including 

hydrophobic, hydrogen bond, pi-pi, and pi-alkyl interactions. By incorporating virtual screening 

techniques during the lead discovery and optimization phase, researchers can efficiently identify, 

and prioritize scaffolds with interesting properties, thus, speeding up the drug discovery process 

[57].  

Table 2.3. Inhibitors of M. tb InhA 

 

N0

# 

Compound ID Structure Activity Reference 

4 triclosan   
O

OH

Cl Cl Cl 

MIC  = 14-

900 μM 

[18] 

5 Enamine 57340 

HN

F

O HO  

Binding free 

energy = 

−109.233 +/- 

84.34 kJ/mol 

[20] 
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6 (E)-4-(4-

chlorophenyl)-6-

oxo-2-(2-(2-

oxoindolin-3-

ylidene)hydrazineyl)

-1,6-

dihydropyrimidine-

5-carbonitrile 

N

NH

N
H

N

NH

ON

Cl

O

 

IC50  = 0.6 ± 

0.94 µM 

H37Ra (MIC 

= 0.12 

µg/mL) 

MDR (MIC = 

0.48 µg/mL) 

[54] 

7 NITD-916–3  

 

N
H

N
H

O
NH

O

HO

 

IFIE = 

−127.0 

kcal/mol 

[33] 

8  3i 

N

H2N

S

N

O

N

H
N OH

 

H37Rv (MIC 

= 0.27 ± 0.05 

µM 

DS = 

 −9.4

3 kcal/mol 

 [57] 

 

9 3j 

N

H2N

S

N

O

N

H
N O

 

H37Rv (MIC 

=  0.35 ± 0.09 

µM 

DS = −9.16

 kcal/

mol 

[57] 

DS = Docking score; nd = structure not available 

2.5 Targeting Pks13 

Polyketide synthase 13 (Pks13) is an essential protein in M. tb that catalyzes the final assembly 

step of mycolic acid biosynthesis to form the direct precursors of mycolic acids by the Clasein-

type condensation of a C26 α-alkyl branch and C40-60 [58, 59]. Structural proteome analysis of Pks13 

revealed that five domains are required for the condensation and release of the polyketide: N-

terminal acyl carrier protein domain (N-ACP), β-ketoacyl-synthase domain (KS), acyltransferase 

domain (AT), C-terminal acyl carrier protein domain (C-ACP), and thioesterase domain (TE) [60]. 

Thioesterase domain (TE) catalyzes the cleavage of the thioester bond to form an ester linkage 

between mycolic β-ketoester and the hydroxyl group of Ser1533 of the TE domain. Thus, 

inhibiting the activity of the TE domain of Pks13 disrupts the mycolic acid pathway, consequently, 
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the tubercule growth and reproduction are inhibited [61, 62]. Research efforts investigating 

inhibitors of Pks13-TE have identified and reported different classes, which belong to benzofuran 

derivatives [61, 62], coumestan derivatives [63, 64] and thiophenes [65]. A study by Lun et al. 

[63] investigated the antimycobacterial activity of coumestan derivatives using in-vitro assays 

along with in-silico pharmacokinetics analysis. Among the compounds assayed, compound (10) 

(Table 2.4) exhibited a minimum bactericidal concentration (MBC) of 0.0039 to 0.0078 μg/mL. 

The authors further revealed that pks13 mutants of M. tb with single nucleotide polymorphisms 

showed resistance to compound 10, thus, proving the targeting of Pks13 as the mode of action 

[63]. In this regard, compound 10 is a hit that may further be validated in-vivo and ex-vivo. 

An in-silico study screened a diverse natural product library comprising 6208 molecules against 

Pks13-TE [66]. From this screening, three compounds (11, 12, and 13 Table 2.4) were identified 

as hits. Molecular dynamics simulations showed the complexes formed with Pks13-TE were 

stable. Furthermore, the researchers computed the binding free energy (MM-GB\PBSA) (△Gbind) 

which revealed strong affinity with a mean energy of approximately −75 kcal/mol observed for all 

three compounds. The pharmacokinetic properties of the compounds were within the acceptable 

ranges, thus, the authors concluded that compounds (11, 12, and 13) can be validated in-vitro. 

A structure-activity relationship (SAR) research attempted to reduce the cardiotoxicity of a Pks13 

inhibitor compound (14, hERG IC50 = 6.9 µM) [67]. The addition of 2-oxa-6-azaspiro[3.4]octane 

to compound (14) yielded compound (15) (Table 2.4). The authors highlighted that compound (15) 

maintained the potency against Pks13 (IC50 = 0.3 µM) but reduced the efficacy against H37Rv 

(MIC = 0.67 µM). Furthermore, compound (15) exhibited reduced in-vitro cardio-toxicity but 
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remained cardio-toxic ex-vivo [67]. Thus, further structural optimization is required to reduce ex-

vivo cardiotoxicity. 

 Earlier SAR studies focused on designing a tetracyclic coumestan scaffold (10) that possessed 

antimycobacterial activity. Subsequently, this scaffold was further modified to yield 1,3-oxazine-

containing coumestan (17) (Table 2.4) [59, 64, 68]. However, it was discovered that compound 

(10) exhibited cardiotoxicity, thus, raising concerns regarding its safety profile. Thus, the 

researchers were prompted to modify the compound in order to address the cardiotoxicity. 

Compound (17) was evaluated for its antimycobacterial efficacy against various M. tb clinical 

isolates, including H37Rv, DS-TB (V4207), MDR-TB (KZN494 and V2475), and XDR-TB 

(TF274 and R506). The authors also evaluated its cardiotoxicity by testing its inhibition of the 

human ether-a-go-go-related gene (hERG) and its potential to bind to Pks13-TE. Compound (17) 

exhibited inhibitory activity against all M. tb strains, with MIC values of 0.0039 μg/mL for H37Rv, 

MDR-TB (KZN494 and V2475), and XDR-TB (TF274 and R506), and 0.0078 μg/mL for DS-TB 

(V4207). Moreover, it demonstrated an improved cardio cytotoxicity profile (IC50 > 30 μM) 

compared to compound (10) (hERG IC50 = 0.52 µM). This improved profile is attributed to the 

presence of the oxazine ring, which disrupts interactions between protonated piperidine and the 

protein side chain (Y652) [69]. Additionally, compound (17) was reported to possess a high 

affinity for Pks13-TE [69]. 

In another study conducted by Taira et al. in 2022, a virtual screening of 154,188 compounds was 

performed using molecular docking against Pks13-TE. The researchers then assessed the stability 

of the formed complexes using molecular dynamics (MD) simulations and proceeded to evaluate 

the in-vitro efficacy of the identified hit compounds [70]. Among the selected compounds, 
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compound (18) (Table 2.4) exhibited in-vitro anti-Mycobacterium smegmatis (M. smeg) IAM 

12065 activity but did not show any activity against Escherichia coli JM109 strains. Additionally, 

the authors reported that Pks13-TE-compound (18) complex was relatively stable through MD 

simulations [70] . 

Table 2.4. Inhibitors of Pks13 

N0# Compound ID Structure Activity Reference 
10 tetracyclic coumestan 

scaffold 
N

O

O
OH

HO

O

 

MBC = 

0.00389 to 

0.0078  μg/ml 

 

[63] 

11 BBB_26582140 

 

nd DS = − 11.25 
kcal/mol 
△Gbind = -75 

kcal/mol 

[66] 

12 BBD_30878599 

 

nd  

DS = − 9.87 

kcal/mol 

△Gbind = -75 

kcal/mol 

[66] 

13 BBC_29956160 
 

nd DS = − 9.33 

kcal/mol 

△Gbind = -75 

kcal/mol 

[66] 

14 TAM16 

N

HO

O

N
H

O

OH

 

H37Rv (MIC = 

0.08  µM) 

Pks13 IC50 = 

0.3 µM 

hERG IC50 = 

6.9 µM 

[67] 

15 3j 

N

O

HO O

HN
O OH

 

H37Rv (MIC = 

0.67  µM) 

 

[67] 
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10 tetracyclic coumestan 

scaffold 

 

N

HO O

OO
OH

 

(MIC = 0.0039 

μg/mL) 

hERG IC50 = 

0.52 µM 

Pks13 IC50 = 

0.3 µM 

hERG IC50 = > 

30 µM 

[59, 64, 68] 

17 oxazine-coumestan 

analog 

 

O

N

O

O

O

HO

 

H37Rv & 

MDR KZN494 

MDR V2475,  

(MIC = 0.0039 

μg/mL) 

hERG IC50 = 

0.67 µM 

Orally 

bioavailable in 

mice 

[59, 64, 68] 

18 1-[3-(2-Benzyl-4-

chlorophenoxy)propyl]-

4-ethylpiperazine 

N N

O

Cl

 

DS = -9.7 

kcal/mol 

 

IC50 (IAM 

12065) = 

8.2 μM 

 

[70] 

DS = docking score, nd = the structure was not available 

 

2.6 Targeting signal transduction machinery 

M. tb faces a wide range of harsh conditions during the parasitism of macrophages. Its survival in 

such environments heavily relies on sensing signals from the external environment through 

extracellular or intracellular sensor domains [71]. Within M. tb, Hanks-type serine/threonine 

kinases play the predominant role in phosphorylation-based transmembrane signal transduction 

[32]. This reversible phosphorylation activity of serine/threonine kinases is a broadly conserved 

mechanism of transmembrane signaling in M. tb that regulates cell physiology in response to 

external stimuli. In this regard, blocking the activity of the serine/threonine kinases in M. tb has 

significant consequences. Various metabolic processes enabling the evasion of active immune 
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surveillance are negatively affected (Table 2.5). Consequently, this inhibition results in impaired 

bacterial growth, thus, facilitates the efficient clearance of the bacteria by immune cells. Therefore, 

serine/threonine kinases are legit targets that can be targeted for developing new therapeutic agents 

aimed at combating TB [72]. 

Table 2.5. A summary of the properties and function of M. tb Serine/threonine kinase. 

Name ORF MW Regulatory role Unique 

features 

Reference 

PknA Rv0015c 45 598 Cell division - [72] 

[73] 

PknB Rv0014c 66 511 Cell division PonA domain [74] 

[73] 

PknD Rv0931c 69 514 Phosphate 

transport 

β-propeller, 

PQQ domain 

[75] 

PknE Rv1743 60 513 Membrane 

transport 

- [76] 

PknF Rv1746 50 669 Membrane 

transport 

- [77, 78] 

PknG Rv0410c 81 579 Stationary phase 

metabolism 

Trx motif, TPR 

motif 

[79, 80] 

PknH Rv1266c 66 755 Arabinan 

metabolism 

AfsK like [81] 

Pknl Rv2914c 61 806 Cell division Asn in active 

site 
[82] 

PknJ Rv2088 61 564 x - [83] 

PknK Rv3080c 119 420 Transcription, 

secondary 

metabolites 

PDZ and AAA 

domains 

[84] 

PknL Rv21176 42 803 transcription - [82] 

 

2.7 Targeting PknA and PknB  

PknB is an essential protein involved in the growth and is conserved in clinical strains of M. tb, 

thus, making it an attractive druggable target for developing anti-M. tb agents [72]. Previous 

studies identified hit and lead bio-pharmacophores, including quinazoline derivatives, pyrimidine 

derivatives, mitoxantrone, staurosporine derivatives, (E)-4-oxo-crotonamide derivatives, and 
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thiophene amide derivatives as PknB inhibitors [85]. In an earlier study, the in-vitro whole cell 

and targeted efficacy of 12000 compounds obtained from a kinase inhibitor library against M. tb 

and Corynebacterium glutamicum were evaluated [86]. The authors initially performed targeted 

inhibitory assays against the PknA and PknB. This led to the discovery of three compounds: VI-

9376 (19), VI-7777 (20), and VI-18469 (21), all of which exhibited inhibitory efficacy against M. 

tb while not inhibiting PknA. Furthermore, the structure-activity relationship (SAR) of VI-9376 

(19) revealed that it is a potential inhibitor for decaprenylphosphoryl-β-D-ribose 2′-epimerase 

(DprE1), and the nitro group is responsible for its anti-TB efficacy (Table 2.6). The authors also 

reported that the SAR optimization of VI-18469 (21) showed that the substitution of bromophenyl 

with 1-ethylpiperidine or 4-ethylmorpholine increases the cytotoxicity activity of the formed 

derivatives (Table 2.6). Additionally, the researchers suggested that VI-18469 (21) exhibits some 

structural similarity with clofazimine, which is known to possess anti-TB activity [86]. 

In a previous rational design study, Hologram and three-dimensional QSAR models accurately 

predicted quinazoline cores as contributors to high affinity and inhibitory activity against PknB 

[87]. The researchers conducted MD simulations and binding free energy computations using MM-

PBSA and MM-GBSA of quinazoline derivatives, reporting that the ligand’s affinity to the binding 

pocket of PknB was mainly influenced by the hydrophobicity nature of the quinazoline cores 

(Figure 2.3). 
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Figure 2.3. The binding properties of quinazoline and pyrimidine derivatives to the binding 

domain of PknB [87]. 

Xu and colleagues [74] performed a targeted high-throughput screening of the activity of IMB-

YH-8 (22) against PknB [74]. They revealed that compound (22) exhibited in-vitro inhibitory 

activity of M. tb (MIC (H37Rv) = 0.25 μg/ml) and the phosphorylation activity of PknB (Table 

2.6). Transcriptional analysis of M. tb treated with IMB-YH-8 showed evidence of disruption of 

the SigH pathway. Furthermore, molecular docking and thermodynamic studies (Gibbs free energy 

change (ΔG) = −6.64 kcal/mol) of IMB-YH-8 against PknB revealed favorable binding through 

hydrophobic interactions and hydrogen bonding [74]. In another study by Thongdee et al. [85], 

virtual screening of 207 369 compounds against PknB identified two hits compounds  AE-

848/42799159 (23), and AP-124/40904362 (24) which exhibited good docking scores (-10.4 

kcal/mol, and –13.3 kcal/mol) (Table 2.6) [85]. Furthermore, the hit compounds showed potent in-

vitro inhibitory activity against PknB with a MIC of 6.2 (μg/mL) [85]. 

The protein kinase (PknA) is another attractive target for the development of new potent drugs to 

combat TB. Ideally, these anti-TB agents should selectively inhibit M. tb kinases only. This review 
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aims to summarize and expand on the findings of recent studies regarding the development and 

modification of M. tb PknA inhibitors. In a previous study by Sundar et al. [88], the affinity of 

3176 FDA-approved small molecules against PknA was evaluated using virtual screening tools 

such as molecular docking, MD simulations, and binding free energy computations [88]. Three 

compounds namely, ZINC3831425 (25), ZINC3871612 (26), and ZINC1769096 (27), which 

docked to PknA, were selected for MD simulations and binding free energy calculations based on 

their docking scores against PknA -12.66 kcal/mol, -12.65 kcal/mol, and -11.78 kcal/mol (Table 

2.6). Among the three compounds, ZINC3831425 was predicted to exhibit the highest affinity 

(△Gbind) to PknA (-133.415 ± 35.109 kcal/mol) [88]. 

In research conducted by Wang et al. [72], a diverse library of 1078 compounds were screened 

against PknA and PknB domains. A quinazoline derivative compound (28) was identified as a 

promising molecular starting point for further modification and optimization. Compound (28) 

exhibited inhibition of M. tb H37Rv (MIC = 33 μM) and PknB (Ki = 150 nM) (Table 2.6). These 

findings prompted the researchers to perform further structural modification and optimization [72]. 

Through a SAR-guided approach, the authors synthesized different analogs of the compound (28) 

for further testing. Notably, one of the derivatives compounds (29), with a substituted sulfonamide 

group, exhibited increased potency against H37Rv (MIC = 4.7 μM) and dual inhibition against 

both PknA (Ki < 150 nM) and PknB (Ki = 11 nM) (Table 2.6). 

In a separate study by Carette et al. [73], the antimicrobial efficacy of a 5-substituted pyrimidine 

analog (30) was investigated. Compound (30) exhibited dual inhibition against PknA (Ki  = 0.018 

μM) and PknB (Ki = 0.004 μM) (Table 2.6). Additionally, the authors demonstrated the potency 

of compound (30) against M. tb H37Ra, with a MIC of 4.5 μM. Further investigations revealed the 
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influence of the compound (30) on the M. tb transcriptome [73]. They observed an early reduction 

in protein phosphorylation and downregulation of MtrA-regulated genes. Conversely, there was 

increased expression of the SigE regulon, ESXV1 type VII secretion system, and mycobactin 

biosynthesis. All these findings can be utilized in machine learning-based QSAR modeling for the 

discovery and synthesis of potent inhibitors of PknA and PknB, thus, accelerating the development 

of novel therapeutic agents against TB. 

Table 2.6. Inhibitors of PknA and PknB 

 

N0

# 

Compound ID Structure Activity Referenc

e 
19 VI-9376 

N
OO

N

N

Br  

H37Rv (MIC = 3.1 

μM) 

 

[86] 

20 VI-7777 

N

S

O

NN

O

 

H37Rv (MIC = 3.1 

μM) 

 

[86] 

21 VI-18469 

N

N

NH

S

Br

 

H37Rv (MIC = 

6.25 μM) 

 

[86] 
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22 IMB-YH-8 

 

O

O

O

O

 

H37Rv 

(MIC = 0.25 μg/ml

) 

 

PknB   

ΔG = 

−6.64 kcal/mol 

 [74] 

23 AE-848/42799159 

N

O

N
HO

 

DS = -10.4 kcal/mol 

 

PknB (MIC = 6.2 

μg/ml) 

[85] 

24 AP-124/40904362 

 

N

NH

HO

OH
OH

HO

 

DS = –13.3 

kcal/mol 

 
PknB (MIC = 6.2 

μg/ml) 

 [85] 

25 ZINC3831425 

HN

N N

N

O

O

O

OH

HO
OH

P

OH

O
HO  

PknA DS = -12.66 

kcal/mol 

PknA (△Gbind = -

133.415 ± 35.109 

kcal/mol 

[88] 
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26 ZINC3871612 

N

N N

N

NH2

O

OH

OH

O

P

O
PO

P

O
OO

O

O O

O

 

PknA DS = -12.65 

kcal/mol 
[88] 

27 ZINC1769096 

N

N

NH

N

OH

OH

HO
OH

O

O

 

PknA DS = -11.78 

kcal/mol 
[88] 

28 Quinazoline 

derivative 

NH

N N

Cl

H
N

N NH

 

H37Rv (MIC = 33 

μM) 

PknB (Ki = 150 nM 

[72] 

29 SCHEMBL116404

3 

N

N

NH
HN

N

S S
NH2

O

O

 

H37Rv (MIC = 4.7 

μM) 

PknA (Ki < 11 

nM) 

PknB (Ki = 11 nM) 

[72] 
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30  

N

N

NH
HN

N

S S
NH2

O

O

 

H37Rv (MIC = 4.5 

μM) 

PknA (Ki = 0.018 

μM) 

PknB (Ki = 0.004 

μM) 

 

DS = docking score 

 

2.9 Summary and future perspective in drug discovery 

Developing and deploying virtual screening approaches in drug discovery is progressively 

reducing time and costs during drug development. Therefore, it is essential to create multitasking 

QSAR models that can predict the inhibitory efficacy against multiple M. tb essential proteins 

using different conditions including MIC, Ki, IC50, (△Gbind), etc. Some studies have adopted and 

implemented the Box-Jenkins approach to capture the chemometric information while considering 

the experimental and theoretical conditions and the different drug targets [89, 90]. Meanwhile, 

other studies have introduced the construction of sophisticated QSAR models comprising 

architecture such as combining Transformer and CNN, which enables capturing of intrinsic 

chemometric data from the SMILES notations of compounds [91]. The advantage of using multi-

target virtual screening tools is filtering in the chemical space for versatile M. tb inhibitors against 

diverse essential target macromolecular structures. Biophysical data-driven approaches such as 

docking, molecular dynamics simulations, and free energy perturbation have been used to 

extensively validate the QSAR models. Lead compounds often need optimization for their activity 

against biological targets and various pharmacokinetic parameters, including ADME 
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characteristics. Predicting these properties in the early stages of drug discovery may increase the 

chances of the compound not being rejected during clinical trials. 
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Chapter 3 

Molecular docking, molecular dynamics simulations and binding free 

energy studies of interactions between Mycobacterium tuberculosis 

Pks13, PknG and bioactive constituents of extremophilic bacteria 
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3.1 Abstract 

This study aimed to evaluate the antimycobacterial efficacy of functional crude extracts from 

bacteria isolated from gold mine tailings in South Africa, using an untargeted metabolomics 

approach to identify antimycobacterial metabolites. Bacterial strains were isolated from South 

African gold mine tailings and identified using 16S rRNA sequencing. The crude extracts obtained 

from the bacteria were tested against Mycobacterium tuberculosis H37Rv, Mycobacterium 
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smegmatis MC2155, and Mycobacterium aurum A+. Untargeted HPLC-qTOF and molecular 

networking using the GNPS platform were used to identify the functional constituents present in 

extracts that exhibited inhibitory activity. A virtual screening workflow (VSW) comprising three 

molecular docking stages with increased precision was used to filter compounds that were strong 

binders to Mycobacterium Pks13 and PknG to investigate the potential mode of interaction 

between the compounds and the target proteins. The ligands returned from the VSW were 

optimised using density functional theory (DFT) at M06-2X/6-311++(d,p) level of theory and 

basis set implemented in Gaussian16 Rev.C01. The optimised ligands were re-docked against 

Mycobacterium Pks13 and PknG. Molecular dynamics (MD) simulation and molecular mechanics 

generalised born surface area (MM-GBSA) were used to evaluate the stability of the protein-ligand 

complexes formed by the identified hits. The hit that showed promising binding characteristics 

was virtually modified through multiple synthetic routes using reaction-driven enumeration. Three 

bacterial isolates, identified as Bacillus subtilis, Bacillus licheniformis, and Streptomyces 

mycarofaciens, showed significant activity against the three strains of Mycobacterium, while only 

Bacillus subtilis and Bacillus licheniformis exhibited activity against M. tuberculosis H37Rv.  The 

tentatively identified compounds from the bacterial crude extracts belonged to various classes of 

natural compounds associated with antimicrobial activity. Two compounds, namely, cyclo-(L-Pro-

4-OH-L-Leu) and vazabitide A, exhibited strong binding profiles against PknG and Pks13, with 

pre-MD MM-GBSA values of −42.8 kcal/mol and −47.6 kcal/mol, respectively. The DFT-

optimized compounds exhibited the same docking scores as the ligands optimised using the OPSL4 

force field. MD simulation and Post-MD MM-GBSA binding free energy showed that vazabitide 

A is a strong binder. Upon modification of Vazabitide A, the affinity to the Pks13 binding site 

increased to −85.8 kcal/mol, as shown by the post-MD MM-GBSA. Overall, this study revealed 

the potential use of bacterial isolates from mine tailings as sources of novel scaffolds that are useful 

in designing and optimising a new set of anti-Mycobacterium agents that can further be tested in-

vitro.  

 

3.2 Introduction  

Infectious diseases such as tuberculosis (TB) have a negative global impact and are a major cause 

of death and disability. Despite the availability of treatment, 1.5 million people die each year from 

tuberculosis [1,2]. Current TB chemotherapies in clinical use are administered over a lengthy 

period, affecting compliance with the treatment. Mycobacterium tuberculosis (M. tb) gene 

mutation, alongside an incomplete commitment to prolonged treatment regimens and co-infection 

with HIV (Human Immunodeficiency Virus), encourages the development of drug-resistant 
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strains. Therefore, it is imperative to immediately develop and explore new effective drugs to 

address the rapid increase in drug-resistant strains and reduce the duration of TB treatment [3]. 

Some taxonomically different microorganisms within environmental niches do not amicably 

interact because of limited space and resources. Researchers have reported that microorganisms 

dominate environmental niches via the strategic use of diverse arsenal systems, for instance, strain-

specific bacteriocins and broad-spectrum antimicrobials [4–6]. Therefore, understanding the 

mechanisms and driving forces employed by bacteria in antagonistic competition is essential in 

drug discovery. Studies have shown that the Bacillus genus isolated found in soil is a prolific 

biofactory of a wide range of bioactive small molecules. These include antimicrobial non-

ribosomal cyclic lipopeptides, polyketides, and discoipyrole alkaloids. Bacillus subtilis and B. 

licheniformis, in particular, have been reported to produce metabolites that inhibit the growth of 

Candida albicans, Heliobacter pylori, and M. tb [7, 8]. Meanwhile, members of the genus 

Streptomycetes genus, which are filamentous actinobacteria frequently isolated from soil, 

represent an immeasurable reservoir of novel metabolites. These compounds account for two-

thirds of agriculturally and medically essential secondary metabolites. Notable examples of wide-

spectrum antimicrobials produced by Streptomyces sp. include streptomycin, ivermectin, nystatin, 

and tetracycline [9, 10]. 

The extraction and processing of valuable minerals such as gold in the Gauteng province of South 

Africa have resulted in the deposition of large mine tailing dumps that have been recognized to be 

a source of secondary environmental contamination. Gold mine tailings are characterized by scarce 

organic matter, low pH, and high concentrations of heavy metals [11, 12]. The anthropogenic 

factors in the gold mine tailings negatively impact the ecosystem, particularly the microbial 
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communities, by acting as a selection pressure. Interestingly, the bacteria inhabiting the gold mine 

tailings have managed to withstand these extreme conditions, by modifying their metabolic and 

genomic machinery to adapt to the environmental stresses. Evidence from the whole genome 

analysis of Serratia sp. and Stenotrophomonas sp. isolated from waste-rock piles of abandoned 

gold mine indicated genomic plasticity which is driven by the acquisition of functional gene 

clusters via horizontal operon transfer [13]. Fundamentally, the transferred functional gene clusters 

enhance microbial survival fitness by expressing various unique metabolic pathways to extract 

energy from a wide array of inorganic electron donors and acceptors, thus, compensating for the 

fluctuating harsh gold mine tailings environments [14]. Another example is the spectacular 

phenotypic plasticity of some Actinobacteria, to the fluctuating tailings environment, elevates their 

potential to produce novel secondary metabolites. Thus, gold mine tailings are a unique target for 

biomining of a wide range of natural products that have a medical impact [15, 16].  

Mycobacterium tuberculosis PknG is an essential serine-threonine protein kinase that is required 

for the survival and virulence of M. tb. Protein kinase G is an attractive macromolecular druggable 

target because it is involved in regulating cell wall biosynthesis and cell division  [17, 18]. M. tb 

Pks13 is involved in the biosynthesis of mycolic acids, which are essential building blocks of the 

bacterial cell wall. Mycolic acids are important virulence factors that shield the bacterium from 

host immune defences [19]. Understanding the molecular mechanism of the interaction of 

inhibitors with Pks13 and PknG is therefore of great interest in the development of new TB 

treatments.  

Interestingly, the bioactive arsenal from extremophilic microorganisms has been structurally 

optimized throughout evolution to enhance microbial endogenous and exogenous defence systems. 
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Therefore, it is a prerequisite to identify and investigate the antimicrobial properties of the unique 

bioactive secondary metabolites that govern bacterial communities through killing [20, 21]. To 

date, there are no reports regarding the mycobacterial activity of bioactive secondary metabolites 

from bacteria isolated from South African gold mine tailings. Thus, South African gold mine 

tailings may be considered an underexplored reservoir of bacterial genomes with a promising 

potential of producing unique scaffolds with antimycobacterial activity. Therefore, the present 

study was performed to isolate bacteria from gold mine tailings to screen their metabolite crude 

extracts against M. smegmatis MC2155, Mycobacterium aurum A+, and M. tb H37Rv. The 

chemical classes present in bacterial crude extract were tentatively identified using high-pressure 

liquid chromatography coupled to a quadrupole time-of-flight high-resolution mass spectrometer 

(HPLC-qTOF) followed by molecular networking using the Global Natural Product Social 

platform. The tentatively identified compounds were virtually screened against M. tb H37Rv 

essential proteins, namely Pks13, and PknG.  

3.3 Materials and methods 

Samples of gold mine tailings were obtained from five sites located around the Germiston area, 

Johannesburg, South Africa (26º13'7.08" S, 28º29'8.64" E). At each site, 0.5 kg of sample material 

was collected at a depth of 12 cm. Samples were stored in polyethylene bags at 4 ℃ until they 

were used. 

3.3.1 Isolation of bacteria  

The culturable bacterial community available in the mine tailings samples was isolated by adding 

one gram of each soil sample to nine mL of sterile saline water (0.85% NaCl w/v) and thoroughly 
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mixed by vortexing. The upper suspension of each mixture was collected and serially diluted at a 

10-fold gradient. The bacteria were cultivated by inoculating 50 µL of the 10-fold serial dilution 

of each sample onto three types of growth media, namely nutrient agar (N.A.), Luria-Bertani agar 

(L.B.), and tryptic soy agar (TSA) [22]. The three types of growth media were used to increase the 

likelihood of isolating a broad spectrum of culturable bacteria. The plates were incubated for 24 

hours at 37℃ under aerobic conditions. Colonies were randomly picked and streaked onto fresh 

media plates to obtain pure bacterial cultures. Molecular techniques were used to identify the pure 

colonies for further identification and phylogenetic studies. 

3.3.2 Isolation of genomic DNA and Amplification of 16S rRNA gene 

The total bacterial genomic DNA was extracted from the bacterial cultures using the Quick-

DNATM Fungal/Bacterial Miniprep Kit (Zymo Research) following the manufacturer’s 

instructions. The 16S rRNA target gene was amplified by polymerase chain reaction (PCR) using 

the following., universal primers and enzymes: Forward primer (16S-27F: 

AGATTTGATCCTGGCT), reverse primer (16S-1492R: CGGTACCTTGTTGTTAC), and 

OneTaq® Quick-load® 2X Master Mix [23].The PCR amplicons were run on an agarose gel and 

extracted with a ZymocleanTM Gel DNA Recovery Kit (Zymo Research). The extracted DNA 

fragments were sequenced based on forward and reverse direction (Nimagen, BrilliantDyeTM 

Terminator Cycle Sequencing Kit V3.1, BRD3-100/1000) and purified (Zymo Research, ZR-96 

DNA Sequencing Clean-up KitTM). The purified DNA fragments were analyzed on an ABI 3500xl 

Genetic Analyzer (Applied Biosystems, ThermoFisher Scientific) for each reaction for every 

sample. The bacterial sequences were edited and aligned using MEGA X (version 10.2.6) [24]. 

The nBLAST database (http://www.ncbi.nlm.nih.gov/blast) was used to obtain closely matching 
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sequences and to create consensus sequences for each bacterial isolate. Consensus sequences were 

then used to construct a phylogenetic tree using the Maximum-likelihood method in MEGA X. 

The Bootstrap values were generated from 1000 replicates. All the bacteria isolates' 16S rRNA 

nucleotide sequences were deposited at GenBank. 

3.3.3 Secondary metabolite production  

The production of secondary metabolites was induced by growing the pure bacterial isolates in 

liquid culture (broth) as described by Uche-Okereafor et al. [25]. Briefly, a starter culture was 

prepared by inoculating a loop full of pure bacteria isolates into 50 mL of tryptic soy broth in 

Erlenmeyer flasks. The starter cultures were incubated at 37℃ for 7 days with constant shaking at 

200 revolutions per minute (rpm). An inoculum size of 5% of the starter culture was inoculated 

into 1 L fermentation broth (tryptic soy broth) for large-scale fermentation. The cultures were then 

fermented at 37℃ with constant shaking at 90 rpm for 7 days. To obtain cell debris-free crude 

extracts, the cellular debris was collected by centrifugation at 4000 rpm for 10 minutes and filtered 

through a 0.2 nm nylon filter. The cellular debris was collected by centrifugation at 4000 rpm for 

10 minutes to obtain cell debris-free crude extracts and filtered through a 0.2 nm nylon filter. The 

liquid mixtures containing bacterial secondary metabolites were then freeze-dried. The dried 

bacterial extracts were suspended in a solvent at a ratio of 100 mL of methanol to 10 grams of 

dried bacterial culture [26]. The methanolic extracts were air-dried at room temperature under a 

constant stream of air and then stored at 4℃ until further analysis.  

3.3.4 Minimum inhibition concentration evaluation  

The mycobacteria strains, namely, M. smegmatis MC2155, M. aurum A+, and M. tb H37Rv, were 

used in this study. Mycobacterium smegmatis mc2155 and M. aurum A+ were employed as 
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surrogate strains in the preliminary screening for M. tuberculosis H37Rv. These two surrogate 

strains share some genome similarities with M. tuberculosis but are non-virulent. The 

microorganisms were stored in 50% glycerol at – 80℃. Working stocks were cultured in vials 

containing Middlebrook 7H9 broth supplemented with 10% bovine albumin, catalase, dextrose, 

and sodium chloride (OADC-BBL/Becton-Dickinson, USA) and grown at 37℃ [27]. The bacterial 

crude extract stocks were prepared by dissolving the methanol crude extracts in 100% dimethyl 

sulfoxide (DMSO) and then diluted to 10% with water. The minimum inhibitory concentration 

(MIC) of the bacterial extracts was then determined through the broth microdilution technique as 

described [26]. Briefly, M. smegmatis MC2155, M. aurum A+, and M. tb H37Rv were subcultured 

in Middlebrook 7H9 broth to reach an optical density (OD) of 0.2-0.3 at 600 nm. Aliquots 100 𝜇L 

inoculum of the test organism (M. smegmatis MC2155, M. aurum A+ and M. tb H37Rv) diluted 

1:99 were pipetted into 96 well microtiter plates. The crude extracts were pipetted into the first 

wells and then serially diluted to achieve final concentrations varied from 2500 𝜇g/mL to 19.53 

𝜇g/mL. Isoniazid was used as the positive control. The plates were incubated at 37℃ for 72 hours 

for M. smegmatis MC2155 and 144 hours for M. tb H37Rv after the results were evaluated adding 

20 𝜇L of 0.015% resazurin dye as a colorimetric indicator of mycobacterial growth. The MIC was 

defined as the lowest concentration capable of inhibiting bacterial growth and all the assays were 

performed in technical and biological triplicates.  

3.3.5 LC-QTOF-MS/MS analysis 

High-resolution mass spectra were obtained using an AB Sciex® X500R QTOF coupled to an AB 

Sciex® Exion LC system. Spectral data were obtained using information-dependent acquisition 

(IDA) at a mass range of 50–1500 Da. All methods, batches, and data were processed using OS 
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Sciex® v3.1. The declustering potential was 80 V, the curtain gas (N2) was at 25 pounds per square 

inch (psi), the ion spray voltage was 5500 V, and the source temperature was 450℃ . Ion source 

gases 1 and 2 were at 45 and 55 psi, respectively. The collision energy was 10 eV for the MS scans 

and 20–50 eV for MS/MS scans. The IDA intensity threshold was 50 cycles per second. The 

aqueous mobile phase used was 1 mM ammonium formate in water, and the organic mobile phase 

was 0.5% formic acid dissolved in methanol. The gradient elution program for the organic mobile 

phase was set to start at 2% and end at 98% between 0-25 minutes, holding for 5 minutes before 

returning to 2% over 5 minutes to re-equilibrate for the next injection. The flow rate was 700 

µL/min and the run time was 35 minutes. A Kinetex® C18 column (5 µm, 100 Å, 150 mm x 6 mm) 

with a column protector was used. All solvents were sonicated for 10 minutes before use to remove 

bubbles.  

3.3.6 Data processing and Annotation 

To determine the metabolite classes, present in the three crude bacterial extracts, molecular 

networks were computed using the Global Natural Products Social Molecular Networking (GNPS) 

platform (https://ccms-ucsd.github.io/GNPSDocumentation/). A molecular network was created 

with an MS/MS fragment ion tolerance of 0.025 Da [28]. The created molecular network was 

enriched with information from in-silico structure annotations from GNPS Library Search, and 

variable Dereplicator using the GNPS MolNetEnhancer workflow 

(https://ccmsucsd.github.io/GNPSDocumentation/molnetenhancer/). The chemical class 

annotations were performed using the ClassyFire chemical ontology [29]. Furthermore, the raw 

HPLC-qTOF data was converted to a “.abf” format by ABF converter software 

(http://www.reify.cs.com/AbfConverter) and then annotated using metabolic workflow on MS-
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DIAL software version 4.24 [26, 30]. The parameters used for processing the files were as follows: 

mass range (MS1) m/z 50-1500; MS1 and MS2 tolerance of 0.01 and 0.025 respectively; [M+H] 

adducts ions with a peak height of 10,000. The tentative prediction of molecular formula and 

structure elucidation of the bacterial metabolites were processed using MS-FINDER software 

version 3.50 using the following parameters: MS1 and MS2 tolerances were set to 0.01Da; formula 

calculation with isotopic ratio tolerance was set to 20%; in-silico MS/MS fragmenter tree depth 

was set to 2; the databases selected were COCONUT(Natural product) 

(https://coconut.naturalproducts.net/), UNDP(Natural product) 

(https://github.com/DIFACQUIM/Natural-products-subsets-generation), ChEBI(Biomolecules) 

(https://www.ebi.ac.uk/), KNApSAcK(Natural product) 

(http://www.knapsackfamily.com/KNApSAcK/), PubChem(Biomolecules) 

(https://pubchem.ncbi.nlm.nih.gov/), and LipidMaps(Lipids) (https://lipidmaps.org/). To reveal 

the differences in metabolic profiles of the bacterial crude extracts, principal component analysis 

(PCA) plot was generated using Metaboanalyst 5.0 software (http://www.metaboanalyst.ca/) [30]. 

To expand the characterization of the metabolomic potential of B. subtilis, S. mycarofaciens, and 

B. licheniformis the Metaboanalyst 5.0 software was further used to perform pathway enrichment 

as described by [31]. An over-representation analysis (ORA) was implemented using 

hypergeometric testing to determine whether certain metabolite sets were overrepresented 

compared to what would have been observed by chance. Pathway topology analysis was conducted 

based on betweenness and out-of-degree centrality measures, evaluating the significance of each 

metabolite in each metabolic network. Potential targets were chosen using p-values from pathway 

enrichment analysis or impact values from pathway topology analysis, with an impact value 
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threshold of 0.10 and a negative-log p-value threshold of 10. Altered pathways were identified, 

and potential functional analysis was carried out.  

3.3.7 Virtual Screening of bacterial compounds 

The potential mechanism of action of all tentatively identified bacterial compounds was evaluated 

using the Virtual Screening Workflow in Schrödinger Release 2022-1 [32]. Briefly, the three-

dimensional crystal structures of M. tb proteins (PDB:7Q52: PknG), and (PDB: 7VJT: Pks13) 

solved with small ligands were downloaded from the Protein Data Bank (PDB) 

(https://www.rcsb.org/). The resolution for 7Q52 is 2.35 Å, while for 7VJT is 1.94 Å 

(https://www.rcsb.org/). The raw crystal structures were prepared using the Protein Preparation 

Preparation Wizard (Schrödinger Release 2022-1), as described by [32]. Hydrogen atoms were 

added, the loop region was refined, H-bond assignments were optimized, and energy was 

minimized by an OPLS-4 force field. The co-crystallized heterogeneous ligands and water were 

removed, while polar hydrogens were added. The Receptor Grid Generator module generated the 

docking receptor grid configurations for all proteins using the coordinates of the previously co-

crystallized ligands. The tentatively identified bacterial compounds were prepared by the LigPrep 

module (Schrödinger Release 2022-1) using the following parameters: energy minimised by an 

OPLS4 (Optimized Potentials for Liquid Simulations 4) force field, generated ionisation states at 

pH 7.0+2.0, and 32 multiple conformers per ligand. For Pks13, 3,8-bis(oxidanyl)-7-(piperidin-1-

ylmethyl)-[1]benzofuro[3,2-c]chromen-6-one (7IJ) was used as control inhibitor while 2-

azanyl-3-(4-fluorophenyl)carbonyl-indolizine-1-carboxamide (8ZC) was used as a control 

inhibitor for PknG. The Root Mean Square Deviation (RMSD) between the co-crystallized ligand 

and the ligand after docking was calculated to validate the docking protocol. A Virtual Screening 
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Workflow (VSW) was used to screen a library of prepared compounds to obtain a hit list [33]. The 

QikProp module (Schrödinger Release 2022-1) was used to filter compounds QikProp is a 

Schrodinger package that predicts ADME properties and filters compounds with poor ADME 

(absorption, distribution, metabolism, and excretion) properties. Further, the returned compounds 

were subjected to three docking regimes of increasing precision using the Glide module [32]. 

Briefly, the bacterial compounds were docked against drug targets using a hierarchical approach 

that employed high-throughput virtual screening (HTVS), followed by standard precision (SP), 

and ultimately extra-precision (XP). The output hit from HTVS were filtered, and only 20 % were 

selected for further SP docking. Similarly, from the SP docking outputs, only 20 % were subjected 

to XP docking. Finally, 30 % of the XP docking hits were retrieved and subjected to MMGBSA 

free energy calculations. The Gaussian 16 Rev. C01 software was used for geometry optimisation 

and frequency calculations. The DFT calculations were performed using the M06-2X level of 

theory and 6-311++G(d,p) basis set. The DFT computations were used to isolate the minimum 

energy conformation of a ligand along a potential energy surface. The compounds returned from 

the VSW and the modified compound were visualised in Gauss-view. The properties of the 

compounds were evaluated based on the 𝐸HOMO and 𝐸LUMO. The equations used for the calculations 

are as follows:  

µ =  
𝐸𝐿𝑈𝑀𝑂+𝐸𝐻𝑂𝑀𝑂

2
                                                                    (1) 

ɲ =  
𝐸𝐿𝑈𝑀𝑂−𝐸𝐻𝑂𝑀𝑂

2
                                                                    (2) 

(𝑠) =  
1

ɲ
                                                                                    (3) 
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3.3.8 Molecular dynamics simulations 

Molecular dynamics (MD) simulations in the study were performed by using the Desmond v5.3 

module implemented in the Maestro interface (Schrödinger 2022‐1 suite). A total of 6 molecular 

dynamics simulation systems were built by solvating the protein-ligand complexes with 

Transferable Intermolecular Potential 4 Point (TIP4P) explicit water molecules and placed in the 

center of an orthorhombic box with boundary dimensions of (10 Å × 10 Å × 10 Å). The systems 

were neutralized by adding counter ions and a 0.15 M NaCl solution. The MD protocol involved 

minimization, pre-production, and finally production MD steps. In the minimization step, the 

entire system was allowed to relax for 2500 steps using the steepest descent approach. Then the 

temperature of the system was raised from 0 to 300 K with a small force constant on the protein to 

restrict any drastic changes. MD simulations were performed via NPT (constant number of atoms, 

constant pressure i.e., 1.01325 bar and c, constant temperature i.e., 300K) ensemble. The Nose-

Hoover chain method was used as the default thermostat with a 1.0 ps interval and Martyna- 

Tobias-Klein as the default barostat with a 2.0 ps interval by applying an isotropic coupling style. 

Long-range electrostatic forces were calculated based on the Particle-mesh-based Ewald approach 

with the cut-off radius for columbic forces set to 9.0 Å. Finally, the system was subjected to 

production MD simulations for 200 ns for the free protein and protein-ligand complexes using the 

OPSL-4. During the simulation, the trajectories were written out every every 1000 ps.. The 

systems' dynamic behaviour and structural changes were analysed by calculating the root mean 

square deviation (RMSD) and root mean square fluctuation (RMSF).  Subsequently, the energy-
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minimized structure calculated from the equilibrated trajectory system was evaluated to investigate 

each ligand-protein complex interaction. 

3.3.9 MM-GBSA calculations 

The free energy change (∆GBind) for the interaction between the receptor and the ligand to form a 

complex was computed using Molecular Mechanics Generalized Born Surface Area (MM/GBSA) 

as the summation of different interactions according to the equation below:  

                                       ∆GBind = EComplex− [EReceptor + ELigand]                                           (4)  

In the formula provided: 

∆GBind represents the calculated relative free energy, which takes into account both ligand and 

receptor strain energy.  

EComplex represents the MM-GBSA energy of the minimised complex,  

ELigand represents the MM-GBSA energy of the ligand after it has been removed from the complex 

and allowed to relax.  

EReceptor represents the MM-GBSA energy of relaxed protein after separating it from the ligand 

[34].  

3.3.10 Reaction-based in-silico modification of the selected strong binder compound 

A virtual library generation approach was performed using the Enumeration module in 

Schrödinger. The identified strong binder for Pks13 datasets was selected as the molecular starting 

point for modification to expand the structural complexity and explore the chemical space using 

the Pathfinder (Schrödinger Release 2022-1) automated reaction-driven enumeration [35]. To 

achieve this, the compound was enumerated based on the 100 multiple synthetic routes and filtered 
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based on the similarity to the active compound, SMiles ARbitrary Target Specification (SMARTS) 

removed compounds with reactive functional groups, and Pan assay Interfering Structures 

(PAINS) properties. Regardless of some novelty properties obtained from the new library 

comprising 1000 generated molecules, it is critical to extensively evaluate their molecular 

interaction with Pks13 respectively, as well as structural profiles [35]. In this regard, the library 

created was subjected to a VSW as described in section 2.6 above. The strong binder returned from 

VSW was then subjected to MD simulation for 200 ns and binding free energy calculations as 

described in sections 2.7 and 2.8.  

3.4 Results  

3.4.1 Identification of Bacteria  

In this study, 11 bacteria were isolated and identified from gold mine tailings. The 16 S rRNA 

sequences of the bacterial isolates were compared to the GenBank sequence database information 

for species identification using BLASTn. The phylogenetic tree was constructed using the 

Maximum-likelihood in MEGA X for sequences that had high quality and showed the relationships 

among the bacteria species (Figure A3). The bacterial sequences were submitted to GenBank for 

curation and assigned accession numbers (OM182829 - OM182840) as shown in Table 3.1. A total 

of eleven identified bacteria belonging to the genera Bacillus (six), Micrococcus (two), 

Streptomyces (one), Staphylococcus (one), and Kocuria (one) were investigated for their secondary 

metabolite diversity and antimycobacterial activity. The current study also elaborates on the 

detailed antimycobacterial efficacy of crude bioactive extracts and in-silico screening for better-

targeted anti-Mycobacterium validation. A MIC below 2.5 mg/mL was considered an indicator of 

inhibitory activity. The results revealed that crude extracts from three bacterial isolates, 
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specifically B. subtilis, B. licheniformis, and S. mycarofaciens, exhibited significant activity 

against three strains of Mycobacterium, including M. smegmatis MC2155, M. aurum A+, and M. 

tb H37Rv. The crude extracts from B. subtilis exhibited the most potent efficacy against all three 

strains, with MIC values ranging from 0.3125-0.625 mg/mL, while the crude extracts from B. 

licheniformis strongly inhibited all three test strains with MIC values ranging from 1.25-2.6 

mg/mL. The crude extracts from S. mycarofaciens also exhibited strong inhibition against M. 

smegmatis MC2155 and M. aurum A+, with MIC values ranging from 0.325-2.25 mg/mL. 

Table 3.1. Minimum inhibition concentration of bacterial crude extracts against M. smegmatis 

MC2155, M. aurum A+ and M. tb H37Rv expressed in mg/mL.  

 

Sample 

ID 
Predicted identity 

Accession 

number 

MIC (mg/mL) 

M. smegmatis 

mc2155 
M. aurum A+ M. tb H37Rv 

KN1 Micrococcus luteus OM182829 >2.5 >2.5 >2.5 

KN2 Streptomyces mycarofaciens OM182830 2.5-1.25 2.5-0.325 >2.5 

KN3 Bacillus simplex OM182831 >2.5 >2.5 >2.5 

KN4 Bacillus sp. OM182832 >2.5 >2.5 >2.5 

KN5 Micrococcus luteus OM182833 >2.5 >2.5 >2.5 

KN6 Staphylococcus saprophyticus OM182834 >2.5 >2.5 >2.5 

KN7 Bacillus licheniformis OM182835 2.5-0.3125 2.5-0.625 2.5-1.25 

KN8 Kocuria rhizophila OM182836 >2.5 >2.5 >2.5 

KN10 Bacillus paralicheniformis OM182838 2.5 >2.5 >2.5 

KN11 Bacillus mobilis OM182839 >2.5 >2.5 >2.5 

KN12 Bacillus subtilis OM182840  0.1625 0. 3125 0.625-0.3125 

Control Isoniazid  0.125-0.0625 0.125-0.0625 0.125-0.0625 
†MIC stands for minimum inhibitory concentration. 

*Isoniazid was used a positive control for antimycobacterial activity. 

3.4.2 Metabolite profiling of bacterial crude extract 

Information regarding the antimycobacterial efficacy of functional crude extracts from bacteria 

isolated from South African, gold mine tailings is limited. Thus, a comprehensive untargeted 

metabolomics analysis of the bacterial crude extracts was performed to differentiate the bacteria’s 
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metabolic potential and, also, the metabolites’ influence on antimycobacterial activity. A principal 

component analysis (PCA) approach was constructed from the HPLC-qTOF data of the three 

active crude extracts against the Mycobacteria species. The secondary metabolites produced by 

the three bacteria were clearly separated and grouped into three clusters, corresponding to B. 

subtilis, B. licheniformis, and S. mycarofaciens as depicted in Figure. 3.1.A. The general pattern 

of the tentatively identified secondary metabolites across the three bacterial isolateswas relatively 

similar with the divergence being primarily attributed to the presence of organic nitrogen 

compounds and organic oxygen classes contributing to the distinction, as shown by the clustering 

in the loadings and molecular network in Figure 3.1.B and Figure 3.2. 

 
Figure 3.1. Principal component analysis (PCA) of metabolite data acquired by HPLC-qTOF of 

three bacterial crude extracts in positive ionization mode. A. PCA scores plot comparing 

metabolites present in crude extracts from B. subtilis, B. licheniformis, and S. mycarofaciens. B. 

Loading plot from PCA analysis. 
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In the current study, molecular networking was performed to tentatively identify metabolites. 

GNPS computed the network by grouping metabolites based on spectral similarities and are 

represented as clusters of different nodes as depicted in Figure 3.2 [36]. The tentatively identified 

compounds from S. mycarofaciens, B. subtilis, and B. licheniformis belong to various classes of 

natural compounds, with a high quantitative variation in the pool of compounds strongly correlated 

with antimicrobial activity in Figure 3.2 and Table A.1. Cyclic peptides which possess 

antimicrobial potential were putatively identified from S. mycarofaciens are shown in cluster F at 

mass to charge ratio (m/z) 245.128, 211.169, and 235.119 as depicted in Figure 3.2.A. Three 

classes of the tentatively identified compounds that might have contributed to the 

antimycobacterial activity were found to have molecular weights similar to cyclic lipopeptides 

produced by Bacillus sp. These included plipastatin and surfactin. In cluster A (depicted in Figure 

3.2), the nodes for various surfactin isomers were directly connected. In cluster B, a direct 

relationship was observed between plipastatin B 1 at m/z 1492.92 and Plipastatin A 2 at m/z 

1478.94, with an additional node of another plipastatin analog observed at m/z 1506.94. Cluster C 

featured a node for cyclo(L-Val-L-Pro) at m/z 197.0, which was also associated with a possible 

cyclic-peptide compound at m/z 261.17 (Figure 3.2). In cluster D shown in Figure 3.2.C the node 

at m/z 1057.1 was classified as an unknown compound, but it has an m/z that is associated with 

iturin analog (1057). In cluster E, the node with m/z 1035.63 is corresponding to a surfactin (Figure 

3.2.C). The majority of the metabolites present in the bacterial crude extracts have not been fully 

characterized and remain unknown as depicted in Figure 3.2. The classes of tentatively identified 

metabolites from the three bacterial crude extracts belong to aminocyclitol glycosides, alpha-

amino acids, and derivatives; cyclic depsipeptides, phenylpropanoids, and polyketides; 

benzenoids, organic acids, and alpha-amino derivatives; organic heterocyclic compounds, and 
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organic oxygen compounds (Table A.1). GNPS did not assign structure to the respective 

nodes.Thus, MS-FINDER was used to predict the molecular formulas (Table A.1).   

 

 

Figure 3.2. Molecular networking of bacterial crude extracts of A. S. mycarofaciens B. B. subtilis 

and C. B. licheniformis.  Unknown compounds in red are not characterized. The molecular network 

annotation indicates that unknown compounds are abundant in S. mycarofaciens, B. subtilis, and 

B. licheniformis. 
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Figure 3.2. continued. B. subtilis and C. B. licheniformis.   
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3.4.3 Characterization and functional analysis of the key metabolic pathways  

An investigation of the metabolic pathway of B. subtilis, S. mycarofaciens, and B. licheniformis 

which exhibited the strongest antimycobacterial activity was processed using MetaboAnalyst. 

Some of the pathways that were revealed from the pathway enrichment analysis; are the 

aminoacyl-tRNA biosynthesis, biosynthesis of secondary metabolites that have antimicrobial 

potential, and aminobenzoate degradation (Figure 3.3).  

 

 
Figure 3.3. Metabolic pathway analysis generated with the MetaboAnalyst based on the 

metabolites identified from the crude extracts of B. subtilis, S. mycarofaciens, and B. licheniformis. 

The pathway enrichment analysis was based on the p-values on the Y-axis, to determine the 

significance of the metabolites. The range of colors on the plot, ranging from yellow to red, 

represents the varying levels of significance of the metabolites for the enrichment analysis.  
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3.4.4 Virtual screening and binding dynamics analysis 

The RMSD of the co-crystalized and re-docked ligands of PknG and Pks13 was 0.61 and 1.19, 

respectively, as depicted in Figure A4. The tentatively identified bacterial compounds were 

subjected to VSW to identify compounds with the best binding postures and further explore their 

mode of interaction. From the Glide-XP docking outputs, eight compounds exhibited strong XP 

docking profiles to the two target proteins ranging from −8.8 kcal/mol to −11.9 kcal/mol. The 

optimised geometries of the identified bacterial compounds were derived through DFT 

calculations (as shown in Figure 3.4). To ascertain their stability, a frequency analysis was 

performed to confirm that these optimised scaffolds represent the lowest energy states, and in all 

cases, no negative frequencies were obtained. The quantum mechanics optimised scaffolds were 

re-docked and compared with the docking scores from ligands optimised using the OPLS4 force 

field. The docking scores of both quantum mechanics optimised, and OPLS4 force field optimised 

are similar, thus increasing the confidence of the docking protocol.   

 
vazabitide A 

cyclo(Pro-Leu) 

 
maculosin 

 
5'-Deoxytoyocamycin 

 
 

(3R,8aR)-3-benzyl-2,3,6,7,8,8a-

hexahydropyrrolo[1,2-

a]pyrazine-1,4-dione 

 
NPA006809 
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cyclo(2-hydroxy-Pro-R-Leu) 

 
 

cyclo-(L-Pro-4-OH-L-Leu) 

 

Figure 3.4. DFT optimised geometric structures of the identified compounds returned from the 

virtual screening workflow. 

 

The reactivity of the DFT-optimized compounds was computed using the M06-2X level of theory 

and 6-311++G (d,p) basis set. The global reactivity descriptors of the compounds calculated in this 

study, including chemical potential (µ), chemical hardness (ɲ), chemical softness (s), 

electronegativity (ꭕ), and electrophilic index (Ꞷ), are shown in Table A2. Notably, the lowest 

unoccupied molecular orbital (LUMO) is expected to accept electrons, while the highest occupied 

molecular orbital (HOMO) is an electron donor. The difference between the HOMO and LUMO 

yields an energy gap (∆𝐸). Minus LUMO computes ionisation energy. A lower energy gap (∆𝐸) 

indicates higher reactivity and is associated with a soft compound. Conversely, a higher energy 

gap (∆𝐸) implies greater stability and lower reactivity. In this study, there were only small 

differences in the energy gap (∆𝐸), ranging from 0.23 to 0.31 eV. The compound NPA006809 

exhibited the smallest energy gap (0.23 eV) and the lowest ionisation energy (0.27 eV). These 

results indicate that the compounds are soft and can interact as electron acceptors (Table A2 and 

Figure 3.5). The high docking scores also support that the compounds are reactive (Table 2). The 

LUMO surface was localized under regions where there are nitrogen rings. 
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Figure 3.5. Depiction of the HOMO-LUMO surface maps computed with M06-2X/6-311 ++ 

(d,p). ∆E is measured in eV. 
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Notably, vazabitide A exhibited the strongest XP docking score of −11.92 kcal/mol against Pks13 

and a ΔGbind of −47.6 kcal/mol (Table 3.2). However, the percentage human oral absorption of 

vazabitide A was calculated to be relatively low at 27.76 %. The visualization of the binding 

interaction between vazabitide A and Pks13 showed that the compound was anchored in the 

hydrophobic pocket of Pks13 and interacted with the protein through multiple mechanisms. The 

interactions with proximal amino acid residues included hydrogen bonding with ASN1640, 

ASP1644, and TYR1663, pi-cation interaction with TYR1674, a salt bridge with ASP1644, 

positive charge interaction with ARG1578, and ARG164, polar interactions with SER1533, 

ASN1640, HIE1664, HIS169 (Figure 3.6). The interactions collectively contributed to the 

observed ΔGbind −42.8 kcal/mol (Table 3.2). The control (7IJ) ligand exhibited a docking score of 

−8.2 kcal/mol and an MM-GBSA value of −42.0 kcal/mol. According to the HOMO-LUMO 

results, the interaction with the nitrogen rings was as expected. 

 

 

 

 

 

 

A B 
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Figure 3.6. A concise overview of the interaction of vazabitide A with Pks13. A.  2D 

representation B. 3D representation.   

For PknG, seven compounds exhibited strong XP docking scores, namely maculosin, NPA006809, 

5'-Deoxytoyocamycin, (3R,8aR)-3-benzyl-2,3,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazine-1,4-

dione, cyclo(Pro-Leu), cyclo-(L-Pro-4-OH-L-Leu), and cyclo(2-hydroxy-Pro-R-Leu) (Table 2). 

The pre-MD- MM-GBSA ΔGbind values of these compounds docked against PknG ranged from 

−34.7 kcal/mol to −42.8 kcal/mol, with cyclo-(L-Pro-4-OH-L-Leu) exhibiting the highest affinity 

of −42.8 kcal/mol (Table 3.2). To further gain knowledge into the interactions that contributed to 

the highest ΔGbind observed on PknG-cyclo-(L-Pro-4-OH-L-Leu) the complex was visualized in 

both two and three dimensions. In the active site of PknG, the hydrophobic interaction of cyclo-

(L-Pro-4-OH-L-Leu) is depicted in Figure 3.7 and it contributed to the scaffold’s high XP docking 

score. Cyclo-(L-Pro-4-OH-L-Leu) displayed multiple types of interactions with proximal amino 

acid residues, which include, hydrogen bonding with Val163 and Gly165, polar interactions with 

GLN166, negative charge interaction with GLU16, and positive interaction with LYS109 (Figure 

3.7). To gain more comprehensive insights into the binding dynamics of the two selected PknG- 

cyclo-(L-Pro-4-OH-L-Leu) and Pks13- vazabitide A complexes, MD simulations and post-MD- 

ΔGbind simulations were computed.  
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Figure 3.7. A concise superposition of the interaction of cyclo-(L-Pro-4-OH-L-Leu) with the 

binding pocket of PknG in two dimensions. A. 2D representation B. 3D representation. 

 

Considering the pre-MD binding energies obtained from VSW, two ligands (6 and 8) were selected 

for further elucidation through MD simulations (Table 3.2). MD simulations were performed for 

the protein-ligand complexes, and proteins without ligands for 200 ns, and the obtained trajectories 

were analysed to gain insight into the complexes’ interaction dynamics. The co-crystallized ligands 

were simulated for comparison. The MD simulations of the unbound PknG revealed that the 

protein’s stability decreased during 200 ns simulation as shown by the gradual increase in RMSD 

from 1.8 Å to 3.6 Å (Figure A.1). While the RMSD of Pks13 increased from 1.2 Å from 0 ns to 

25 ns and then stabilised at approximately 2.8 Å for the rest of the simulation as depicted by Figure 

A.2. During the 200 ns MD simulation of the PknG complexed with cyclo-(L-Pro-4-OH-L-Leu), 

the RMSD of PknG Cα-atoms remained relatively stable fluctuating below in the range 3.0-1.5 Å 

for the first 100 ns. However, after 100 ns, the RMSD increased slightly to 3.5 Å and remained 

constant for the rest of the simulation period (Figure 3.8A). The RMSD of cyclo-(L-Pro-4-OH-L-

A

. 
B. 
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Leu) showed that it was mostly stable throughout the simulation, except for a sudden spike 

fluctuation at 150 ns, in which the ligand slightly shifted from the designated active site and started 

interacting with the protein’s loop (Figure 3.8.A). The stability of the PknG-co-crystallized ligand 

(8ZC) complex was investigated through a 200 ns MD simulation, and the RMSD of PknG Cα-

atoms ranged from 5.6 to 3.2 Å (Figure 3.8.B), indicating that the complex was not stable during 

the simulation period. The RMSD of 8ZC ranged around 9 Å which shows that the ligand is not  

strong binder of PknG. A comparison of the RMSD values of PknG-cyclo-(L-Pro-4-OH-L-Leu) 

and the PknG-8ZC revealed that Cyclo-(L-Pro-4-OH-L-Leu) had a more favorable binding mode 

with PknG for most parts of the simulation. However, the RMSD profiles of two ligands show that 

the ligands are not strong binders of PknG. The RMSF revealed that residues 43-51, 147-152, 171-

173, and 272-277 were relatively mobile, with RMSF values above 3.0, in both the PknG-cyclo-

(L-Pro-4-OH-L-Leu) complex and PknG-8ZC complexes.  
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Table 3.2. Virtual screening of bacterial compounds against M. tb macromolecular targets (PknG and Pks13). 

Complex mol MW 

(170-

725) 

Dipole 

(1.0–

12.5) 

SASA *Qplog

S 

(− 6.5 

to 0.5) 

PSA 

(7.0–

200.0) 

Volume %Human 

Oral 

Absorptio

n 

XP 

GScorea 

(kcal/mol) 

XP 

Gscoreb 

Pre-MD- 
MM-

GBSAa 

ΔGbind 

(kcal/mol) 

Pre-MD-

MM-

GBSAb 

ΔGbind 

(kcal/mol)  

PknG-ligand 

complex 

 

 

 

Maculosin 260.29 2.96 528.5

7 

−1.09 92.29 875.01 59.48 −9.4 −9.4 −35.7 −35.7 

NPA006809 234.26 3.85 466.2

3 

−2.38 103.50 775.73 71.17 −9.4 −9.4 −39.8 −39.8 

5'-Deoxytoyocamycin 275.27 6.02 487.2

5 

−3.16 128.19 829.80 54.70 −9.3 −9.3 −38.0 −38.2 

(3R,8aR)-3-benzyl-

2,3,6,7,8,8a-

hexahydropyrrolo[1,2-

a]pyrazine-1,4-dione 

 

244.29 

 

1.80 

 

516.1

1 

 

−1.20 

 

69.75 

 

852.12 

 

72.70 

 

−9.1 

 

−9.0 

 

−41.1 

 

−41.0 

Cyclo(Pro-Leu) 210.28 1.90 458.3

9 

−0.05 69.87 764.78 68.98 −8.9 −8.9 −42.6 −42.6 

Cyclo-(L-Pro-4-OH-L-

Leu) 

226.28 3.50 473.8

5 

−0.50 88.06 789.50 64.63 −8.8 −8.8 −42.8 −42.8 

            

Cyclo(2-hydroxy-Pro-

R-Leu) 

226.26 2.14 330.8

0 

0.11 87.68 781.66 

 

61.59 −8.8 −8.5 −34.7 −35.1 

Control (8ZC)          −9.5 −9.5 −48.4 −48.4 

Pks13-ligand complex            

Vazabitide A 271.32 13.40 515.6

2 

−0.90 133.66  27.76 −11.9 −8.218 −47.6 −47.6 

Control (7IJ)        −8.2 −8.2 −42.0 −42.0 
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aLigands docked using OPLS4 force field.   bLigands docked after M06-2X/6-311++G(d,p) optimization. SASA (solvent accessible surface area). MW (molecular 

weight). SASA: Solvent Accessible Surface Area; *QplogS: Predicted Log Solubility; PSA: polar surface area 
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Figure 3.8. A. RMSD of PknG Cα-atoms and Cyclo-(L-Pro-4-OH-L-Leu) over a 200 ns 

simulation. B. RMSD for PknG Cα-atoms and the co-crystallized ligand (8ZC) over a 200 ns 

simulation. C. RMSF per residue of PknG in complex with Cyclo-(L-Pro-4-OH-L-Leu). D. RMSF 

per residue of PknG in complex with 8ZC ligand.  

 

Throughout the 200 ns simulation, the partial stability of the PknG complex with cyclo-(L-Pro-4-

OH-L-Leu) was mainly maintained by various non-covalent interactions, including hydrogen 

bonds involving LEU18, LEU21, H315, VA162, VAL163, GLY164, GLY165, LYS169, 

ARG170, and GLU214, as well as hydrophobic interactions involving LUE21, ILE85, ALA86, 

ILE93, MET160, TYR162, MET211, and ILE220. Additionally, water bridges involving ILE15, 

ASP16, PRO17, GLU19, ALA20, LEU21, ILE85, ASN102, ARG104, GLU161, TYR162, 

VAL163, GLY164, GLY165, GLU166, SER167, LYS169, ARG170, GLU187, GLU208, 

THR213, GLU214, and ILE220, as well as ionic interactions, were observed, as illustrated in 

A B 

C D 
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Figure 3.9.A. During the simulation, the ligand’s carbonyl group located at position 3 formed 

interactions with protein residues through water bridges for 43 % of the 200 ns MD simulation 

time with GLU161, and through hydrogen bonding with VAL163 for 63 % of the 200 ns MD 

simulation time. Additionally, the amide group located at position 4 of the ligand formed hydrogen 

bonding with the protein residue VAL163 as depicted in Figure 3.9B.  

 

 

 

Figure 3.9. Interaction Fraction summary of PknG-cyclo-(L-Pro-4-OH-L-Leu) contacts. This 

graph is normalized by the total simulation time. A. Interaction fraction of PknG with the ligand 

cyclo-(L-Pro-4-OH-L-Leu). B. Interactions that occurred for more than 30 % of the 200 ns MD 

simulation. 

 

The RMSD of Pks13 Cα-atoms complexed with vazabitide A gradually increased from 1.5 to 2.4 

Å for the first 50 ns and then remained stable between 2.1 and 2.4 Å up to 200 ns as illustrated in 

Figure 3.10.A. The low RMSD value below 3 Å shows that the complex was stable. In contrast, 

the co-crystallized ligand (7IJ) also formed an excellent stable complex with the RMSD averaging 

around 1.5 Å, Figure 3.10.B. The RMSF of Pks13 Cα-atoms in all two systems showed that the 

residues did not fluctuate a lot except for the mobile residues (10-20 and 170-180).  

A B 
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Figure 3.10. A. RMSD of Pks13 Cα-atoms and the vazabitide A over a 200 ns simulation. B. 

RMSD for Pks13 Cα-atoms and 7IJ over a 200 ns simulation. C. RMSF per residue of Pks13 in 

complex with the vazabitide A. D. RMSF per residue of Pks13 in complex with 7IJ. 

 

The stability of Pks13- vazabitide A complex was significantly attributed to various non-covalent 

interactions, including hydrogen bonding with key protein residues such as ASP1562, ASN1640, 

ASP1644, HIS1664, GLU1671, and TYR1674. Water bridges also critically contributed to the 

stability, involving residues such as ALA1477, SER1533, ASP1560, ALA1564, GLU1567, 

TRY1582, GLN1633, SER1636, ASN1640, ASP1644, HIS1664, ASP1666, ALA1667, PHE1670, 

GLU1671, TRY1674, and HIS1699. Ionic interactions also cumulatively enhanced stability, 

involving residues such as ASP1560, GLU1567, ASP1644, and GLU167 as depicted in Figure 

A 

C 

B 

D 
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3.11.A. Figure 11B illustrates that the amino group of vazabitide A located on position 7 forms a 

hydrogen bond with GLU1671 and ASP1644, occurring for 34 % and 98 % of the 200 ns MD 

simulation time, respectively, and engaged in electrostatic interactions with the two protein 

residues. The amide group located on position 5 of vazabitide A also formed a hydrogen bond with 

ASN1640, occurring for 77% of the 200 ns MD simulation time. Vazabitide A also formed 

intramolecular hydrogen bonds between the hydroxyl group located at position 1 and a carboxylic 

acid group located at position 14. 

 

 

 

 

 

Figure 3.11. Interaction Fraction summary of Pks13- vazabitide A contacts. This graph is 

normalized by the total simulation time. A. Interaction fraction of the vazabitide A with Pks13. B. 

Interactions that occurred for more than 30 % of the 200 ns MD simulation. 

 

Post-MD MM-GBSA binding free energy was used to determine and compare the binding 

affinities of the selected ligands against the co-crystallized ligands as controls as presented in Table 

3.3. The binding free energy of Cyclo-(L-Pro-4-OH-L-Leu) for the PknG is−21.1 kcal/mol, while 

that of the control ligand 8ZC is −31.2 kcal/mol. The binding affinity of the co-crystallized ligand 

(7IJ) for Pks13 had a favorable more negative binding free energy (−83.4 kcal/mol) than for 

A B 
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vazabitide A (−37.2 kcal/mol). The ΔGbind vdW interactions had a major contribution to the 

stability of the Pks13- vazabitide A complex. Some of the interactions that contributed to the 

stability include ΔGbind Lipophilicity, ΔGbind Solvation GB, ΔGbindHbond, and ΔGbind Coulomb as 

shown in Table 3.3.  

Table 3.3. Post-MD MM-GBSA binding free energy computation. 

Complex MM-

GBSA 

ΔGbind 

kcal/mol 

ΔGbind 

Coulomb 

kcal/mol 

ΔGbind 

Covalent 

kcal/mol 

ΔGbind  

Hbond 

kcal/mol 

ΔGbind 

Solv GB 

kcal/mol 

ΔGbind 

Lipo 

kcal/mol 

ΔGbind 

vdW 

kcal/mol 

PknG-( 

cyclo-(L-

Pro-4-OH-

L-Leu)) 

−21.1 

 

−7.6 

 

0.9 

 
−0.6 

 

8.2 

 
−5.9 

 

−16.16 

 

PknG-co-

crystallized 

(8ZC) 

−31.2 −46.9 

 

0.1 

 
−1.5 

 

54.6 

 
−9.4 

 

−28.15 

 

Pks13- 

vazabitide 

A 

−37.2 −11.4 

 

1.8 

 
−2.1 

 

18.6 

 
−10.0 

 

−34.0 

 

Pks13-co-

crystallized 

(7IJ) 

−83.4 

 

−38.8 

 

3.1 −1.9 

 

49.3 

 
−24.0 

 

−57.2 

 

 
ΔGbindvdW = van der Waals contribution; ΔbindCovalent = covalent bonding contribution; ΔGbindSolv = polar 

contribution of solvation energy; ΔGbindLipophilicity  = lipophilicity energy contribution; ΔGbindHbond = hydrogen 

bonding contribution; ΔGbindCoulomb = electrostatic interaction; ΔGbind = binding free energy. 

3.4.5 In-silico evaluation of the modified compound  

The modified compound identified by the following smiles notation 

(c1cc(Cl)c(Cl)cc1C[C@@H](N(C(=O)[C@@H]2[NH3+])C(=O)O[C@H](CC3)CCC23)CC(=O

)NCc4c[nH+]cn4CCOCC) exhibited an improved profile such as the percentage of human oral 

absorption increased to 71.28, a lower docking score −13.2 kcal/mol than the score that was 

observed for vazabitide A which was −11.9 kcal/mol. Furthermore, the modified compound 
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showed a ΔGbind of −81. 5 kcal/mol which is incredibly lower than that of vazabitide A (Table 

3.4). All the other parameters were within the acceptable range.   

Table 3.4. Virtual screening of the modified compound against M. tb Pks13. 

 

Complex 

mol 
MW 
(170-
725) 

Dipole 
(1.0–
12.5) 

SASA 
*QplogS 
(− 6.5 to 

0.5) 

PSA 

(7.0–

200.0) 

Volum
e 

%Human 
Oral 

Absorption 

XP 
GScore 

(kcal/mol) 

MM-
GBSA 
ΔGbind 

kcal/mol 

7VJT          
30040531

1 + 
41735949 

+ 
44455695 

580.51 1.72 
847.9

0 
−4.52 126.21 

1658.1
3 

71.28 −13.2 −81.5 

 

The position and chemical properties of atoms in the modified compound allow for a variety of 

interactions that contribute to stabilizing the Pks13-ligand complex as shown in Figure 3.12.B. 

The interaction of the modified compound with proximal amino acids residues of Pks13 included,  

 hydrogen bond with ASN1640, and HE1644, hydrophobic interaction with ALA1477, PRO1476, 

TYR1663, ALA1667, PHE1670, TYR1674, ILE1700, TRP1532, ILE1643, TYR1582, and 

PHE1585, polar interactions with SER1533, HIS1699, ASN1640, SER1636, GLN1633, HE1632 

and HIE1664, positive charges with ARG1641, and ARG1578, negative charges Arg1641, and 

Arg1578, pi-cation interaction with TYR1663, pi-pi stacking with PHE1670 , TYR1674 , and salt 

bridge with ASP1666 as shown in Figure 3.12.A.  
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Figure 3.12. A concise overview of the interaction of the modified compound with Pks13 in two 

dimensions. A. Superposition of the interaction of the modified compound with the binding pocket 

of Pks13. B. Modified compound. 

 

The RMSD of Pks13 Cα-atoms was computed during a 200 ns molecular dynamics (MD) 

simulation, and the results indicated that the protein Cα-atoms underwent a gradual increase in 

deviation from 0.9 Å to approximately 2.1 Å within the first 50 ns and then stabilized at 

approximately 2.1 Å up to 150 ns as shown in Figure 3.13. Subsequently, the RMSD began to 

gradually decrease to approximately 1.8 Å up to 200 ns, which revealed that the protein was stable 

throughout the MD simulation. Conversely, the ligand RMSD fluctuations were slightly above 3 

Å during the MD simulations, indicating that the ligand was mobile within the active site of the 

A B 
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protein. The RMSF of Pks13 Cα-atoms showed that the residues did not fluctuate a lot except for 

the residues (10-20 and 170-180) which were constantly moving. 

 

 

 
 

  

 

 

Figure 3.13. A. RMSD of Pks13 Cα-atoms and the modified compound over a 200 ns simulation. 

B. RMSF per residue of Pks13 in complex with the modified compound.  

 

During the 200 ns molecular dynamics simulation, the carbonyl groups at positions 4 and 9 of the 

modified compound exhibited persistent hydrogen bonding interactions with polar amino acids 

ASN1640 and GLN1633, respectively, for a substantial fraction of the simulation time as shown 

in Figure 3.14.B. Furthermore, the nitrogen atom on position 32 formed water bridges with 

ASP1644 for 40 % of the simulation time. The substituted benzene ring, bearing two chlorine 

atoms at positions 31 and 28, contributed to hydrophobic interactions with nearby amino acid 

residues, including PHE1670, PHE1585, and TYR1582, throughout the simulation period. 

Notably, the substituted benzene ring also engaged in pi-pi stacking interactions with PHE1670 

for 50 % and with PHE1585 for 45 % of the simulation duration, underscoring the aromatic nature 
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of the interaction. Overall, hydrogen bonds, hydrophobic interactions, ionic interactions, and water 

bridges influenced the stability of the protein-ligand complex.  

 

 

 

 

 

 

 
 

Figure 3.14. Interaction Fraction summary of Pks13- modified compound contacts. This graph is 

normalized by the total simulation time. A. Interaction fraction of the modified compound with 

Pks13. B. Interactions that occurred for more than 30 % of the 200 ns MD simulation. 

The modified compound exhibited a higher binding affinity to Pks13 as indicated by the  MM-

GBSA ΔGbind of −85.8 kcal/mol than co-crystallized (7IJ) and vazabitide A (Table 3.5, and Table 

3.3). The ΔGbind Coulomb and ΔGbind vdW interactions significantly contributed to the favorable 

binding energy of the Pks13-vazabitide A complex. The ΔGbind Lipophilicity of the modified 

compound increased and was more than that of the co-crystallized (7IJ) and vazabitide A. 

Table 3.5. Post-MD MM-GBSA binding free energy computation. 

A B 
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Complex 

MM-GBSA 

ΔGbind 

kcal/mol 

ΔGbind 

Coulomb 

kcal/mol 

ΔGbind 

Covalent 

kcal/mol 

ΔGbind  

Hbond 

kcal/mol 

ΔGbind Solv 

GB 

kcal/mol 

ΔGbind 

Lipo 

kcal/mol 

ΔGbind 

vdW 

kcal/mol 

Pks13-modified 

compound 
-85.8 -69.0 0.4 -1.1 64.8 -22.5 -54.5 

 
ΔGbindvdW = van der Waals contribution; ΔbindCovalent = covalent bonding contribution; ΔGbindSolv = polar 

contribution of solvation energy; ΔGbindLipophilicity  = lipophilicity energy contribution; ΔGbindHbond = hydrogen 

bonding contribution; ΔGbindCoulomb = electrostatic interaction; ΔGbind = binding free energy. 

 

3.5 Discussion 

Gold mine tailings are composed of various fractions of mineral species, for example, nonessential 

elements such as Pb, As, and essential elements such as Fe, Mg, Co, Mn, Cr, K, Cn [37]. Literature 

has shown that the acidic pH in gold tailings molecularly modifies the bioavailability and solubility 

of the heavy metals, creating an extreme environmental niche and, thus, selectively modulating 

microbial proliferation [38–40]. Therefore, the indigenous bacteria to the tailings must possess the 

molecular machinery that enables them to be intimately associated with heavy metals 

transformation and tolerate the oxidative stress caused by heavy metals [41]. Various reports have 

described the intimate interaction of Bacillus sp., Acidithiobacillus sp., Arthrobacter sp., 

Pseudomonas sp., Microbacterium sp., and Sphingomonas sp with heavy metals [38, 42, 43].  

Similar to previous reports, the bacteria in this study are actinobacteria, which are commonly found 

in different soil environments [44, 45]. Bacillus sp was the most abundant culturable bacteria from 

South African gold mine tailings.  

In accordance with the results from this report that showed that Bacillus sp isolated from the heavy 

metal-rich environment, produced multiple isomers of surfactins that possibly enhanced the 

solubilization of heavy metals (Table A1). The literature reveals that Bacillus sp., Micrococcus 
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sp., and Pseudomonas sp. are able to survive under abiotic stress [43, 46, 47]. Molecular 

mechanisms to alleviate heavy metal stress and striving in low pH in bacteria identified in this 

study are well characterize, suggesting their unique nature of metal acquisition and resistance 

determinants for inhabiting heavy metal-rich environments [41]. Fundamentally, the 

surfactins/siderophores are extracellularly secreted by Bacillus sp to facilitate the removal of heavy 

metals from surrounding environments, increase the bioavailability of water-insoluble nutrients, 

and communicate between bacterial cells as well as an antimicrobial agent [48].   

A previous study illustrated that bacterial species that are closely related and with higher 

biosynthetic gene cluster homology have a lower chance of inhibiting each other, whilst distant 

species in the same genus are likely to suppress each other more fiercely [49]. In this study, the 

crude extracts from B. licheniformis, S. mycarofaciens, and B. subtilis showed potent antimicrobial 

efficacy against M. smegmatis MC2155, and M. aurum A+., whilst B. paralicheniformis only 

showed activity against M. smegmatis MC2155. Only B. subtilis and B. licheniformis exhibited 

activity against M. tb. B. subtilis and B. licheniformis are known for producing lethal broad-

spectrum antimicrobials arsenal that inhibits Gram-positive and Gram-negative bacteria by 

downregulating peptidoglycan synthesis [50]. Our results are supported by reports from [51, 52] 

which demonstrated that B. licheniformis CG1 produced bioactive metabolites that inhibited the 

growth of M. smegmatis. 

The current study showed promising antimycobacterial activity of crude extracts from B. subtilis 

and B. licheniformis, thus, metabolite profiling was performed to tentatively identify compounds 

responsible for activity (Figure 3.2; Table A.1). Microorganisms existing in extremophilic niches 

are known to have a higher probability of producing multifarious novel bioactive chemical classes 
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[28]. Through pathway enrichment analysis several pathways associated with bioactivity were 

observed in this study, including the biosynthesis of secondary metabolites and other antibiotics 

(Figure 3.3; Table A.1). These pathways play essential roles in the production of various bioactive 

metabolites. The identification of these pathways provides valuable insights into the metabolic 

skill of bacteria from gold mine tailings and may aid in the development of novel antimycobacterial 

agents through genome mining of biosynthetic functional gene clusters. Results from this 

investigation agree with the literature that revealed that microorganisms from extreme 

environments can produce unique metabolites as was revealed by many uncharacterized 

compounds (Figure 3.2). It has been reported that the Gram-positive Bacillus genus is strongly 

associated with the production of diverse secondary metabolites, for example, nonribosomal 

polyketides, nonribosomal lipopeptides, ribosomally synthesized and post-translationally 

modified peptides, and peptide-polyketide hybrid compound [49, 53]. Findings from this study are 

consistent with reports, showing that cyclic lipopeptides, and cyclic dipeptides, for instance, 

cyclo(proline-leucine), isomers of surfactin, and cyclo(L-Leu-L-4-Hyp), iturin derivatives are 

produced by B. subtilis and B. licheniformis [52]. Surfactins, cyclo (proline-leucine), and cyclo 

(L-Leu-L-4-Hyp) produced by various Bacillus sp have been revealed to possess pronounced 

permeabilization of microbial cell membranes and anti-microbial activity against Gram-positive 

and Gram-negative bacteria [52]. 

While there is limited research specifically on the activity of the isomers of surfactin, e.g., surfactin 

C, surfactin A, and surfactin D against M. tb H37Rv, some studies have investigated the activity 

of crude extracts containing surfactin against the Mycobacteria species [52]. The current study 

agrees with the findings that revealed that multiple isomers were tentatively identified in a Bacillus 
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sp. crude extract. In addition, the crude extract from the Bacillus sp exhibited potent activity 

against M. tb H37Rv. In the current study, strong inhibition exhibited by the crude extracts of B. 

subtilis and B. licheniformis may be due to increased pore formation of the Mycobacterium cell 

membrane caused by different surfactin isoforms and other cyclic lipopeptides present in the crude 

extracts.  The synergistic effect of cyclic lipopeptides, and cyclic dipeptides may have ultimately 

contributed to the potent anti-mycobacterial efficacy against M. smegmatis MC2155, M. aurum 

A+, and M. tb H37Rv as shown by MICs from B. subtilis and B. licheniformis (Table A1).  

Interaction mapping from molecular docking and MD simulations is an important step in revealing 

the significance of ligand binding toward the stability of a protein-ligand complex and the 

inhibition of a protein target.  The HOMO-LUMO results in the study showed that the compounds 

returned from the virtual screening are soft and highly reactive, as observed by the low docking 

scores. This study investigated the contribution of non-covalent interactions to the stability of 

PknG- cyclo-(L-Pro-4-OH-L-Leu) and Pks13- vazabitide A complexes during 200 ns MD 

simulations. The results revealed that various types of non-covalent interactions, including 

hydrogen bonding, water bridges, ionic interactions, and hydrophobic interactions played a critical 

role in restricting major conformational changes of the protein-ligand complexes. According to the 

HOMO-LUMO results, the interaction with the nitrogen rings was as expected. Specifically, key 

residues, including GLU167, ASN1640, and ASP1644 formed hydrogen bonds with vazabitide A 

which occurred for more than 30 % of the 200 ns simulation time and were crucial in stabilizing 

the Pks13- vazabitide A complex. The post-molecular dynamic simulation analysis was carried 

out by calculating the protein-ligand binding free energies based on MD simulation trajectories. A 

comparison of the MM/GBSA binding free energy of vazabitide A and cyclo-(L-Pro-4-OH-L-Leu) 
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is supporting the RMSD profiles from the two Pks13 complexes which showed excellent stability 

to the co-crystallized ligand (7IJ). Vazabitide A also interacted with the SER1533 of Pks13 

thioesterase domain (TE) through water bridges.  The TE domain is acyltransferase that is 

responsible for cleaving the thioester bond and forming an ester bond between the mycolic β-

ketoester and the hydroxyl group of Ser1533 of the TE domain to form a trehalose monomycolate 

ketone. Studies have revealed that blocking the TE domain of Pks13 abolished the biogenesis of 

mycolic acids and consequently inhibits the growth of M. tb [19]. It is important to note that 

vazabitide A is a natural compound and further scaffold modification can enhance important 

properties, including affinity, toxicity, and ultimately activity. Furthermore, in this study, the 

RMSD generated from the trajectory of PknG Cα-atoms complexed with cyclo-(L-Pro-4-OH-L-

Leu) during 200 ns simulation revealed that cyclo-(L-Pro-4-OH-L-Leu) had a relatively better 

binding dynamics as compared to the co-crystallized ligand for the first 100 ns. These results shed 

light on the relatively favorable binding mode of the cyclo-(L-Pro-4-OH-L-Leu) to PknG for the 

first 100 ns.  However, the MM-GBSA free energy calculations show the control ligand (8ZC) had 

a more favorable energy profile because the binding free energy was calculated for the last 1000 

frames. The interaction analysis suggests that some of the binding characteristics may be 

conserved while others are increased during scaffold modification against Pks13. 

The carbonyl groups at positions 4 and 9 of the compound formed persistent hydrogen bonding 

interactions with polar amino acids ASN1640 and GLN1633, respectively, for a significant portion 

of the simulation time (Figure 3.12). This reveals that the electrostatic and polar interactions 

between the carbonyl groups and the amino acids were sufficiently strong and contributed to 

maintaining the stability of the Pks13-modified compound-complex. Furthermore, the substituted 
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benzene ring with two chlorine atoms contributed to the lipophilicity (Table 3.4) and binding 

affinity in the hydrophobic active site of Pks13 (Figure 3.12). The nitrogen on the imidazole ring 

at position 32 of the modified compound formed water bridges with ASP1644, highlighting the 

presence of polar interactions which played a crucial role in stabilizing the Pks13-modified 

compound complex. Literature has reported  various activities of microbial activity of the 

structural motifs with an imidazole ring.  These findings provide a different perspective on the 

developing of new antimycobacterial scaffolds with improved potency and selectivity [54–56].  

3.6 Conclusion 

The study suggests that the South African gold mine tailings niche may be a good source of fiercely 

antagonistic bacteria exhibiting antimycobacterial efficacy. As such, B. licheniformis, S. 

mycarofaciens, and B. subtilis isolated from a metal-rich niche might have the potential to inhibit 

Mycobacterium strains via the production of potent broad-spectrum functional secondary 

metabolites. Our results offer valuable insights into the metabolic pathways of B. subtilis, 

highlighting potential targets for antibiotic production. These findings may prove crucial for future 

studies in this area, advancing our understanding of this versatile microorganism and its antibiotic-

producing capabilities. These findings provide valuable insights into the interaction mapping of 

protein-ligand complexes and may have implications for the development of novel therapeutic 

agents targeting PknG and Pks13. This could help reduce expenses and save time spent on 

processes such as extraction, purification, and retesting. 
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4.1 Abstract 

The consistent development of resistance to current tuberculosis (TB) drugs poses a significant 

threat to human health, necessitating the exploration of natural products as alternative sources for 

the discovery of antimycobacterial agents. Fungi from gold mine tailings are a promising reservoir 

of bioactive compounds that may possess antimycobacterial activity. In this study, a total of 15 
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compounds tentatively identified from fungi isolated from gold mine tailings were virtually 

screened against Mycobacterium tuberculosis PknA, PknB, PknD, and PknE proteins using XP 

molecular docking and pre-molecular dynamics simulation MM-GBSA using Schrodinger. To 

evaluate protein-ligand interactions, molecular dynamics simulations were performed for the 

PknB-aurovertin D, PknA-aurovertin D, PknD-verticillin A, and PknE-roquefortine C complexes. 

Subsequently, the binding free energies of the complexes were computed. The compounds were 

ranked based on docking scores, which ranged from -3.7 kcal/mol to -7.4 kcal/mol. Notably, 

aurovertin D (-7.2 kcal/mol), aurovertin D (-6.7 kcal/mol), verticillin A (-6.5 kcal/mol), and 

roquefortine C (-6.7 kcal/mol) displayed XP docking scores for PknB, PknA, PknD, and PknE, 

respectively. Furthermore, the compounds with the lowest ΔGBind values were aurovertin D 

against PknA (-50.9 kcal/mol), aurovertin D against PknB (-50.7 kcal/mol), verticillin A against 

PknD (-36.8 kcal/mol), and roquefortine C against PknE (-53.4 kcal/mol). Notably, PknD-

verticillin A exhibited the lowest binding free energy (-53.67 kcal/mol), followed by roquefortine 

C against PknE (-53.37 kcal/mol), aurovertin D against PknA (-45.34 kcal/mol), and aurovertin D 

against PknB (-42.87 kcal/mol). The results suggest that verticillin A is a potential lead compound 

for further modification, to develop a potent antimycobacterial inhibitor. These findings pave the 

way for future target-based TB drug design and highlight the importance of natural product-

derived compounds as valuable resources for novel anti-TB agent development. 

Keywords: Tuberculosis; antimicrobial resistance; molecular docking; molecular dynamics, MM-

GBSA, binding free energy, secondary metabolites. 
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4.2 Introduction 

Mycobacterium tuberculosis (M. tb) is a pathogenic bacterium responsible for causing the 

infectious disease tuberculosis (TB) [1, 2]. Over the past two decades, TB control regimen 

cocktails have consisted of combinations of four first-line drugs, including rifampicin, isoniazid, 

ethambutol, and pyrazinamide, to treat the disease. The effectiveness of these first-line drugs is, 

however, thwarted by the emergence of drug-resistant, multidrug-resistant, and extensively-drug 

resistant TB (DR-, MDR- and XDR-TB), which poses a significant challenge to the "End TB 

Strategy" because the cases are steadily rising [3, 4]. Genetic studies have illustrated that multidrug 

resistance in M. tb is principally due to point mutations, deletions, and insertions of drug-target 

genes. In addition, the selection of resistant mutants from patients with treatment failure, the rise 

in coinfection with HIV (Human Immunodeficiency Virus) infections, and the inefficiency of the 

laboratories to rapidly identify and perform susceptibility testing of M. tb isolates also accelerates 

the spread of resistant mutants. Therefore, new, and effective TB drugs must be discovered to 

control and end the TB pandemic [5–9].  

Numerous drugs exert their life-saving effects by interacting with druggable macromolecular 

targets that play an essential role in the cells, of microorganisms, for example, nucleic acids and 

proteins. When an essential protein is inhibited by potent bioactive molecules, the downstream 

processes that are critical for the survival and virulence of the microbe are rapidly and negatively 

affected [10–12]. Fundamentally, for a viable M. tb cell to survive and maintain the genome 

integrity in a host, it constantly responds and adapts to the stressful oxidative environment. The 

powerful regulatory and adaptive mechanisms in M. tb are triggered by the post-translational 

modification of essential proteins, particularly the Serine/Threonine protein kinases (STPKs) [13, 
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14]. These STPKs function in a phosphorylation-dependent signal transduction manner by 

converting extracellular stimuli into a cellular response of multiple metabolic processes, for 

instance, transcription regulation, cell division, stress response, regulation of numerous metabolic 

pathways, and pathogenesis.  

When M. tb invades the alveoli, it is phagocytosed by macrophages as an innate defense 

mechanism [15]. However, the bacilli efficiently evade the host’s innate and adaptive immunity 

by secreting PknG into the host cytosol and phagosome lumen. PknG is an STPK that inhibits the 

exchange and recruitment of Rab7 endosomal markers, consequently preventing phagosome 

maturation and lysosome fusion. Some studies on two M. tb STPKs (PknA and PknB) have 

illustrated their roles in modulating cell division, morphogenesis, and virulence [14, 16]. M. tb 

responds to heat and oxidative stress via PknB phosphorylating RshA and SigH. Zeng et al. [17] 

revealed that the inhibition of PknB modulates SigH, thus, negatively impacting the bacterial 

transcription network. Furthermore, PknD has been associated with the regulation of osmotic stress 

via transcription. Reports of gene knockouts and inhibition of PknA further validated that depletion 

of the functions of PknA consequently results in decreased phosphorylation of Wag31, FtsZ, and 

MurD, which regulate cell division, morphology, and peptidoglycan biosynthesis [18, 19]. PknE 

has been implicated in inhibiting apoptosis in infected macrophages. In this regard, M. tb STPKs 

are undoubtedly valuable potential anti-TB targets [20]. 

Natural products have been a valuable source of mining major potent antimicrobials and 

chemotherapeutics. Microorganisms, particularly fungi, actinomycetes, and myxobacteria have 

been reported to be the principal sources of a wide array of bioactive secondary metabolites [21–

23]. In this study, it is assumed that fungi inhabiting gold mining tailings have a unique metabolic 
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potential to synthesis lethal bio-arsenal which it uses in competing with other microorganisms 

residing in the gold mine tailings. The metabolite profile and anticancer activity of small molecules 

obtained from fungi isolated from old gold mine tailings collected from Johannesburg, South 

Africa (26º13'7.08" S, 28º29'8.64"), have been previously evaluated [24]. However, this fungus’ 

small molecules have not been assessed for bioactivity against M. tb’ essential proteins. In this 

study, the small molecules library produced by Penicillum janthinellum KTMT5, Penicillium 

oxalicum KTMT4, and Acidiella americana KTMT6 was therefore virtually screened against M. 

tb druggable proteins to discover potential scaffolds that serve as molecular starting points for 

further optimization. The binding interactions were evaluated based on docking the compounds 

against potential drug targets (M. tb PknA, PknE, PknB, and PknD). The dynamic behavior of the 

top scoring ligands conformation for each respective protein was further validated by molecular 

dynamics (MD) simulations and free energy calculation.  

4.3 Materials and methods 

4.3.1 Data collection 

 Tapfuma et al. [24], isolated, identified, fermented, and extracted the potato dextrose broth 

cultures of P. janthinellum KTMT5, Penicillium oxalicum KTMT4, and Acidiella americana 

KTMT6 using ethyl acetate. The crude extract was then analyzed using tandem liquid 

chromatography-quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS), and 

secondary metabolites were identified as described by Tapfuma et al. [24]. The compounds 

depicted in Figure  4.1 were used for virtual screening. 
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4.3.2 Molecular docking 

The M. tb H37Rv proteins’ crystal structures available in the Protein Data Bank corresponding to 

PDB ID 6B2Q, 6B2P, 1RWL, and 2H34, for proteins PknA, PknB, PknD, and PknE, respectively, 

were retrieved for molecular docking. The protein preparation was performed as described by 

Baptista et al. [25] in Schrödinger Release 2021-1.   Briefly, hydrogen atoms were added, 

hydrogen-bond assignments were optimized, the loop was refined, and the OPLS-4 (Optimized 

Potentials for Liquid Simulations 4) (Optimized Potentials for Liquid Simulations) force field was 

used for energy minimization. The structural coordinates of the co-crystalized ligand (CJJ) with 

6B2Q and 6B2P were used for generating the binding site. For 1RWL, and 2H34, the Site Map 

module was used to predict the binding sites, which were then used for generating respective 

receptor grids using the Receptor Grid Generating module (Schrödinger Release 2021-1). A 

control compound 5-(6-chloro-4-((5-cyclopropyl-1H-pyrazol-3-yl) amino)quinazolin-2-yl) 

thiophene-2-sulfonamide, with dual inhibitory activity against PknA and PknB as described by 

[18] was downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov/compound/134815875).

The selected fungi compounds were also downloaded from PubChem. The compounds were 

prepared for docking using the LigPrep module (Schrödinger Release 2021-1) according to the 

following parameters: the energy was minimized by an OPLS4 force field, generate ionization 

states at pH 7.0 + 2.0, and generate multiple conformers to develop a library of compounds. The 

library created was subjected to extra-precision (XP) molecular docking calculations against the 

selected target proteins using Glide [26]. Thereafter, pre-MD MM-GBSA free energy calculations 

were computed. The compounds were then ranked according to a numerical score in kcal/mol. The 

ligands with the highest MM-GBSA score were later subjected to MD simulations.  
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Figure 4.1. Fungi compounds that were docked against M. tuberculosis  PknA, PknB, PknD and PknE. 
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4.3.3 Molecular Dynamics Simulation 

The selected docked protein-ligand complexes with the highest docking scores were subjected to 

200 nanoseconds (ns) MD simulations to further explore protein and ligand interactions, and 

stability using Desmond (Schrödinger Release 2021-1). A total of four MD systems were set up 

using Maestro (Schrödinger Release 2021-1) according to the following parameters: For each 

protein-ligand complex, an MD system was created by explicitly solvating the complex using 

TIP3P hydration model in an orthorhombic box with a buffer boundary dimension of (10 Å × 10 

Å × 10 Å). Counter ions (Na+ and Cl-) 0.15 M were added to neutralize the system and to precisely 

predict the physical properties of a realistic system. For long electrostatic forces, periodic grid 

conditions were automatically generated for Particle-mesh Ewald FFT. The entire system was 

energy minimized and equilibrated at constant pressure (1. 01325 bar) and temperature (303.15 

K). The MD simulations were performed in the NPT ensemble. The Nose-Hoover thermostat was 

used with a 1.0 ps interval and Martyna- Tobias-Klein as the default barostat with a 2.0 ps interval 

by applying an isotropic coupling style. The systems were subjected to MD simulations for 200 ns 

and the internal energy was stored for every 1000 ps of the actual frame. The structural changes 

and dynamic behavior of the protein-ligand complexes were calculated by the Simulation 

Interaction Diagram module in Maestro (Schrodinger) and represented as the root mean fluctuation 

(RMSF), and the root means square deviation (RMSD). 

4.3.4 Post-molecular Dynamics Simulation Analysis 

The post-molecular dynamic simulation analysis was carried out by calculating the protein-ligand 

binding free energies based on MD simulation trajectories. The free energy change (∆GBind) for 
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the interaction between the receptor and the ligand to form a complex is described by Molecular 

mechanics/generalized Molecular Mechanics Generalized Born Surface Area MM/GBSA as the 

summation of different interactions according to the equation below:  

∆GBind = EComplex−[EReceptor + ELigand] 

Where ∆GBind is the calculated relative free energy which includes both ligand and receptor strain 

energy. The EComplex is the MM-GBSA energy of the minimized complex, and ELigand is the MM-

GBSA energy of the ligand after removing it from the complex and allowing it to relax. EReceptor is 

the MM-GBSA energy of relaxed protein after separating it from the ligand. The MM-GBSA 

calculation was performed based on the clustering method for energy calculation. 

4.4 Results 

The molecular docking-based screening was performed to preliminarily gain an insight into the 

molecular interactions between the M. tb Ser/Thr protein kinases (PknA, PknE, PknB, and PknD) 

and the fungi metabolites as represented in Table 4.1. The Site-score and the DSCORE were used 

to rank the druggable regions of PknD, and PknE (Table B1). All the site scores for the proteins 

were above 0.9, which implies that the docking cavity regions in this study are fit enough to be 

used as docking regions (Table B1). The study revealed that all the investigated compounds could 

bind to the active sites of the PknA, PknE, PknB, and PknD and were ranked by docking scores 

(Table 4.1). The XP docking scores of all the compounds vary from -3.7 kcal/mol to -7.4 kcal/mol 

while the ∆GBind varies from 9.8 to -53.4 kcal/mol. The control ligand, 5-(6-chloro-4-((5-

cyclopropyl-1H-pyrazol-3-yl) amino) quinazolin-2-yl) thiophene-2-sulfonamide (CJJ) used in the 

study had a docking score of –11.3 kcal/mol, -11.1 kcal/mol, -5.8 kcal/mol, and -4.3 kcal/mol for 
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the proteins PknA, PknB, PknD, and PknE respectively. Aurovertin D obtained a docking score of 

-7.2 kcal/mol and -6.7 kcal/mol against PknA and PknB respectively, while verticillin A had a 

docking score of -6.5 kcal/mol against PknD, and roquefortine C exhibited -6.7 kcal/mol against 

PknE. Noteworthy, the compounds that exhibited the lowest ∆GBind on each protein are aurovertin 

D (-50.9 kcal/mol) against PknA, aurovertin D (-50.7 kcal/mol) against PknB, Verticillin A (-36.8 

kcal/mol) against PknD and roquefortine C (-53.4 kcal/mol) against PknE.  

Table 4.1. XP docking of compounds against 5 Ser/Thr kinases (PknA, PknE, PknB, and PknD). 

No. 
Tentative 

Identification 

Docking Scores (kcal/mol) 

PknA 

6B2Q 

PknB 

(6B2P) 

PknD 

(1rwl) 

PknE 

(2H34) 

  XP ∆GBind XP ∆GBind XP ∆GBind XP ∆GBind 

1 Balanol -6.4 -38.9 -4.0 -29.7 -6.7 -23.8 -4.5 -26.6 

2 
Terretrione B 

 
-4.3 -28.8 -5.7 -32.2 -5.0 -24.4 -4.7 -36.3 

3 
8-methyl-13-phenyltrideca-

4,6,8,10,12-pentaen-3-one 
-6.7 -44.6 -6.9 -49.7 -2.7 -23.3 -4.1 -43.5 

4 Phomoarcherin C -4.9 -34.5 -5.6 -34.8 -4.1 -20.5 -4.5 -22.9 

5 Rotiorinol A -4.1 -49.0 -3.6 -43.8 -0.9 -10.4 -2.9 -33.7 

6 N-Formylloline -2.3 -24.4 -4.0 -22.4 -5.2 -21.4 -4.9 -32.1 

7 Verticillin A -7.0 -48.3 -3.7 -22.6 -6.5 -36.8 -6.5 -36.9 

8 Terretonin F -4.3 -28.8 -5.9 -10.3 -3.1 -18.3 -7.2 -37.5 

9 Talaromycin A -5.1 -19.5 -6.4 -37.5 -6.5 -28.0 -6.1 -35.7 

10 Roquefortine C -4.6 -23.6 -6.3 -32.4 -3.7 -13.6 -6.7 -53.4 

11 

2,5-diamino-N-(1-amino-1-

imino-3-methylbutan-2-

yl)pentanamide 

-3.8 -10.4 -5.9 -29.7 -6.1 -33.2 -6.0 -31.2 
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Table 4.1. continued. XP docking of compounds against 5 Ser/Thr kinases (PknA, PknE, PknB, 

and PknD). 

No. Tentative 

Identification 

Docking Scores (kcal/mol) 

PknA 

(6B2Q) 

PknB 

(6B2P) 

PknD 

(1rwl) 

PknE 

(2H34) 

  XP ∆GBind XP ∆GBind XP ∆GBind XP ∆GBind 

12 Penicilloic acid -2.4 -2.5 -4.9 -10.6 -4.2 3.8 -3.5 4.0 

13 Pivampicillin -6.1 -45.6 -5.4 -39.6 -5.1 -33.27 -6.6 -37.9 

14 Penicillic acid -5.2 -6.27 -4.8 -20.4 -4.3 -15.8 -2.3 -14.8 

15 Aurovertin D -7.2 -50.9 -6.7 -50.7 -3.4 -23.8 -6.9 -49.0 

16 Benzylpenicilloic acid -6.0 -13.8 -6.0 9.8 -4.4 -18.4 -5.2 -16.6 

 Control (CJJ) -11.3 -61.9 -11.1 -59.1 -5.8 -35.3 -4.3 -41.5 

 

The two-dimensional binding poses for the ligands that exhibited the lowest ∆GBind MM-GBSA 

scores (Table 4.1) were used to visually inspect the specific nature of the intermolecular 

interactions as depicted in Figure 4.2 and Figure 4.3. Aurovertin D formed hydrogen bonds with 

several residues of PknA, namely Arg17, Lys42, Arg38, Asn99, and Lys143. Additionally, 

hydrophobic interactions with Leu18, Leu19, Ala20, Val98, Leu97, Pro102, and Gly145. 

Furthermore, polar interactions were identified with Asn99, Asn146, and Thr158. Negative 

charges were found to interact with Asp159, Glu29, and Glu101, while positive charges interacted 

with Arg17, Arg38, Kys42, and Lys143. Glycine residues (Gly22, Gly23, Gly100, and Gly145) 

also contributed to the binding, as depicted in Figure 4.2.A. Aurovertin D also interacted with 

residues of PknB through hydrophobic interactions with Leu17, Phe19, Val25, Ala38, Tyr94, 

Val95, Val98, Ala142, Met145, and Ile177. Hydrogen bonds were formed with Val95, Lys140, 

and Asn143. Positive charges interacted with Asp156, Asp138, and Asp156, while polar 

interactions were observed with Ser23, Thr99, Asn143, and Thr179 as illustrated in Figure  4.2.B. 
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Figure 4.2. Two-dimensional depictions of the compounds with the lowest pre-MD ∆GBind MM-

GBSA. A. PknA and Aurovertin D complex. B. PknB and Aurovertin D complex. 

Verticillin A engaged the active domain of  PknD through diverse types of interactions which 

include hydrogen bonds that were formed with Ser33, Gly76, and Glu201. Hydrophobic 

interactions were observed with Val31, Val74, Val115, and Val157. Positive charges were 

involved in interactions with Asp32, Asp75, Asp116, Asp158, and Glu201. Additionally, polar 

interactions were identified with Ser33, Thr117, Asn159, and Ser243. These intermolecular 

interactions are illustrated in Figure 4.3.A. Conversely, roquefortine C formed hydrogen bonds 

with PknE residues namely, Lys168, and Thr170 as shown in Figure 4.3.B. Furthermore, 

intermolecular interactions depicted in Figure 4.3.B include hydrophobic interactions through 

Leu21, Val22, Ala161, and Leu172, positive charges with Arg24, and Lys168, polar Ser162, 

Thr164, Thr165, and Thr170, negative charge interactions with Asp166 and Glu167 and glycine 
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Gly23. It is essential to fully understand molecular recognition of the ligands by PknA, PknB, 

PknD, and PknE. Thus, ligands that exhibited the lowest ∆GBind MM-GBSA for the PknA, PknB, 

PknD, and PknE (Table 4.1) were further subjected to molecular dynamics simulations to evaluate 

the structural dynamics and stability of the protein-ligand complexes during the 200 ns simulation. 

Figure 4.3. Two-dimension representation of A. Docked Verticillin A in binding pocket PknD 

B. Docked view of roquefortine C in the binding pocket of PknE.

The structural stability and fluctuations of the protein-ligand complexes and the unbound native 

proteins in this study were evaluated by performing MD simulations and measured by root-mean-

square-deviation (RMSD) and root-mean-square-fluctuation (RMSF). The RMSD and RMSF per 

residue of the target proteins Cα-atoms - ligand atoms are depicted in Figure 4.4, Figure 4.6, Figure 

4.8, and Figure 4.10. The RMSD represents the displacements of atoms at a given time during the 

simulation as compared to the reference structures obtained at the initiation of the simulation. 

During the 200 ns MD simulations, the RMSD of the unbound PknA Cα-atoms exhibited a gradual 
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increase from 1.2 to 2.4 Å within the first 30 ns, after which it stabilized (Figure A.1.A). For the 

unbound PknB, the RMSD trajectory fluctuated between 2.0 and 3.5 Å during the initial 75 ns, 

followed by a gradual reduction and stabilization around 2.8 Å (Figure A.1.C). The RMSD 

fluctuations of unbound PknD Cα-atoms remained relatively stable below 2.8 Å for the first 120 

ns, followed by slight conformational changes with deviations ranging between 2.8 and 3.2 Å from 

121 to 175 ns. Subsequently, the RMSD gradually decreased to 1.6 Å until the end of the 

simulation (Figure A.2.A). As for unbound PknE, its RMSD trajectory showed deviations ranging 

between 2.5 and 3.5 Å throughout the 200 ns simulation duration (Figure A.2.C) 

The RMSD trajectory of PknA protein Cα-atoms in complex with aurovertin D exhibited a gradual 

increase from 1.5 Å to approximately 2.3 Å within the initial 50 ns as depicted in Figure 4.4.A. 

Subsequently, the RMSD stabilized at 2.3 Å indicating relatively stable until the end of the 200 ns 

simulation. However, the RMSD of aurovertin D showed a large fluctuation between 55 to 70 ns, 

suggesting that the ligand underwent conformational change within the designed binding site, thus, 

rendering it not stable (Figure 4.4.A). In contrast, the RSMD trajectory of PknA protein Cα-atoms 

in complex with control CJJ showed a relatively stable trajectory throughout the simulation, with 

minor confirmation changes occurring between 100 ns to 125 ns, where the RMSD increased from 

2.0 Å to 2.8 Å. Subsequently, the RMSD decreased and stabilized at approximately 2.0 Å up to 

200 ns (Figure 4.4.A). Further, RMSF evaluated the flexibility of the PknA residues in the two 

complexes. The RMSF profiles of PknA showed that the protein residues were stable and with 

minimal fluctuations above 2.5 Å (Figure 4.4.B and Figure 4.4.D). Large fluctuations were only 

observed on the mobile loop at residue Gly175.   
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Figure 4.4. (A) Root-mean-square deviation (RMSD) of PknA Cα-atoms and Aurovertin D as a 

function of simulation time (200ns) (B) Root-mean-square fluctuation (RMSF) per residue of 

PknA in complex with Aurovertin D (C) RMSD of PknA Cα-atoms and control ligand (CJJ) as a 

function of simulation time (200ns) (D) RMSF per residue of PknA in complex with the control. 

Green lines show the residues in contact with the ligand.  

Visual representations were used to further understand the non-covalent molecular interactions 

between the PknA-aurovertin D complex. Figure 4.5.A illustrates the contributions of hydrogen 

bonds, hydrophobic interactions, ionic interactions, and water bridges in stabilizing the PknA-

aurovertin D complex. Noteworthy, only the hydrophobic interaction with Pro102 lasted for more 

than 30 % of the 200 ns simulation duration (Figure 4.5.B), explaining the instability observed in 

(Figure 4.4.A). 
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Figure 4.5. An overview of protein-ligand contacts over a 200 ns molecular dynamics simulation. 

A. Interaction types and fraction between PknA and Aurovertin D. B. Interaction types between 

PknA and that occurred for more than 30 % of the simulation duration.  

The RSMD trajectory of PknB Cα-atoms complexed to aurovertin D displayed a sharp increase 

from 1.5 Å to 3.0 Å within the initial 25 ns. Subsequently, the RMSD stabilized around 3.0 Å from 

25 to 100 ns. Notably, a large fluctuation was observed between 100 and 115 ns, followed by 

stabilization from 115 to 175 ns, during which the RMSD remained approximately 3.0 Å. At 175 

ns, a reduction to 2.5 Å was observed, followed by an increase to 3.0 Å from 178 to 200 ns. The 

large fluctuations of PknB indicate conformation changes during the simulation period (Figure 

4.6.A). Similarly, the RMSD of the aurovertin D revealed its structural instability, with 

fluctuations above 3.0 Å (Figure 4.6.A). A large fluctuation occurred at 100 ns, further indicating 

aurovertin D’s instability in the designated binding site. The RMSD profile of the control showed 

large fluctuations between 25 and 50 ns indicating conformations changes during this period 
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(Figure 4.6.C). Comparing the RMSD profiles of the control (CJJ) and aurovertin D complexes, 

showed that the control maintained relatively stable throughout most of the simulation with an 

RSMD range of 2.4 Å. The RMSF shows that the protein Cα-atoms were relatively stable for most 

parts of the simulation period (Figure 4.6.B and Figure 4.6.D). However, the protein residue 

Val170 and Pro83 exhibited consistent large fluctuation in both complexes, representing a highly 

mobile loop region conformational flexibility (Figure 4.6.B and Figure 4.6.D). 

 

Figure 4.6. (A) RMSD PknB Cα-atoms and aurovertin D as a function of simulation time (200ns) 

(B) RMSF per residue of PknB in complex with aurovertin D (C) RSMD of PknB Cα-atoms and 

control ligand (CJJ) as a function of simulation time (200ns) (D) RMSF per residue of PknB in 

complex with the control. The green lines indicate the residues in contact with the ligand. 

The bonds that contributed to the interaction of the PknB-aurovertin D are hydrogen bonds, 

hydrophobic interactions, ionic interactions, and water bridges (Figure 4.6.B). Aurovertin D 

engaged PknB via hydrogen bonds with Leu17, Phe19, Gly21, Ser23, Lys40, Val95, Asp96, 
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Gly97, Gly18, Gly21, Met22, Ser23, Lys40, Val95, Asp96, Gly97, Arg101, Lys140, Ala142, 

Asp156, Arg161, and Asn168. Hydrophobic contacts were observed with Leu17, Val25, Leu27, 

Ala38, Val72, Met92, Thr94, Ala142, Met145, Met155, Ile159, and Ile177. The formation of water 

bridges involved PknB residues Leu17, Phe19, Gly20, Gly21, Met22, Ser 23, Lys40, Arg43, 

Glu59, Glu93, Val95, Asp96, Gly97, Thr99, Arg101, Asp138, Lys140, Ala142, Asn143, Asp156, 

Ala160, Arg161, Ile177, and Gly178. Further, an ionic interaction occurred between aurovertin D 

and Asp96. Asp96 formed hydrogen bonds for approximately 39 % of the 200 ns simulation, 

indicating its significant contribution in stabilizing the PknB-aurovertin D complex (Figure 4.7.A). 

Notably, intramolecular hydrogen bond and hydrogen bonds mediated by water bridges (41 %) 

were also observed (Figure 4.7.A).  

Figure 4.7. Protein-ligand contacts over a 200 ns molecular dynamics simulation. A. shows the 

interaction types between PknA that occurred for more than 30 % of the simulation duration. B. 

The types of interaction and fractions which occurred between Aurovertin D and PknB.  
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The RMSD trajectory of the PknD-verticillin A complex indicated that the complex was stable 

with RMSD values consistently below 2.1 Å throughout the 200 ns simulation period as shown in 

Figure 4.8.A. The RMSD of verticillin A exhibited minimal deviation maintaining a stable 

structural state at approximately 1.6 Å from 0 to 160 ns. A slight fluctuation occurred between 

160-178 ns, suggesting a minor conformational change, and then followed by stabilization at 1.6 

Å from 178 to 200 ns (Figure 4.8.A). The RMSF of PknD bound to verticillin A shows that the 

protein residues were stable throughout the 200 ns simulation as depicted in Figure 4.7.B. In 

contrast, the RMSD of the PknD Cα-atoms complex with CJJ (control ligand) showed distinct 

dynamics. Initially, the RMSD trajectory was stable at approximately 2.0 Å from 0 to 78 ns. 

Thereafter, a large fluctuation (2.0 to 3.6 Å) occurred between 80 and 100 ns, followed by a gradual 

increase to 2.8 Å from 100 to 200 ns. In contrast, the control ligand (CJJ) exhibited a large 

fluctuation at 50 ns, resulting in the RMSD increasing from 2 Å to approximately 6 Å (Figure 

4.8.C). The RMSD revealed that the control ligand was not stable within the binding site of PknD 

as summarized in Figure 4.8.C.  
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Figure 4.8.A. RMSD of PknD Cα-atoms and verticillin A over a 200 ns simulation. B. RSMF per 

residue of PknD in complex with verticillin A. C. RSMD of PknD Cα-atoms and control ligand as 

a function of 200 ns simulation time. D. The RSMF per residue of PknD in complex with control 

ligand. The green lines indicate the residues in contact with the ligand.  

The stability of the PknD-verticillin A complex was due to a combination of hydrogen bonds, 

hydrophobic interactions, ionic interactions, and water bridges. Notably, verticillin A interacted 

with Asn159, Glu201, and Ser243.Water bridges with Val31, Asp32, Ser33, Val74, Asp75, Gly76, 

Ala77, Val115, Asp116, Thr117, Asn159, Glu201, Val241, and Ser243; and ionic interactions with 

Glu201 further enhanced the stability as shown in Figure 4.9.B. Furthermore, the most prominent 

interactions that occurred for more than 30 % of the 200 ns simulation duration between PknD-

verticillin A include, hydrogen bond interactions with ASP116 (74 %), Asn159 (33 %), Ser243 

(30 %), and Gly76 (89 %) as depicted in Figure  4.9.A. 
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Figure 4.9. An overview of the protein-ligand contacts over a 200 ns molecular dynamics 

simulation. A. The bonds that contributed to the PknD-Verticillin A. Water bridges are hydrogen 

bonds between the protein and ligand facilitated by a water molecule. B. Contacts between PknD 

and Verticillin A.  

The RMSD trajectory of PknE showed relative stability with an RMSD value of 2.5 Å within the 

initial 125 ns (Figure 4.10.A). Subsequently, the RMSD gradually increased to approximately 3.8 

Å between 125 to 150 ns, then stabilized at around 3.8 Å from 150 to 200 ns. Similarly, the RMSD 

trajectory of roquefortine C displayed a comparable pattern, with initial RMSD values of 4 Å 

within the initial 125 ns, followed by large fluctuations ranging from 4 to 8 Å between 125 and 

150 ns. The RMSD trajectory then reduced to 5 Å before increasing again to 8 Å until the end of 

the simulation (Figure 4.10.A). Analyzing the RMSF of the PknE complex with roquefortine C 

depicted in Figure 4.10., showed that most protein residues exhibited stability throughout the 

simulation. Notably, a mobile loop at residue 160 exhibited a significant fluctuation, suggesting a 

region of conformational flexibility within the complex. In contrast, the RMSD of the control 
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ligand, CJJ, exhibited a large fluctuation between 15 and 30 ns, followed by continued RMSD 

fluctuation ranging from 12 to 21 Å (Figure 4.10.C). This indicates that the control ligand was not 

stable within the designed binding pocket. Nevertheless, the RMSF of the PknE complex to control 

ligand was relatively stable as depicted in Figure 4.10.D.  

 

Figure 4.10. A. RSMD of PknE Cα-atoms and roquefortine C as a function of simulation time 

(200ns) . B. RMSF for PknE residues in complex with roquefortine C. C. RSMD of PknE Cα-

atoms and control as a function of simulation time (50ns). D. RSMF of the residues PknE in 

complex with control. The green lines indicate the residues in contact with the ligand. 

The stability of the PknE-roquefortine C complex which lasted for 125 ns was due to a combination 

of hydrogen bonds, hydrophobic interactions, ionic interactions, and water bridges. Roquefortine 

C formed hydrogen bonds with Glu64 and Ala65. Hydrophobic contacts were observed with 

Lys45, Ala65, Ala68, Leu71, Val76, Val77, Pro78, Phe82, Val91, Ala130, Ala131, Ala135 and 

Leu155. Water bridges with Lys45, Arg58, MSE61, Gln62, Glu64, Ala65, Gly69, Gln72, Glu73, 

Val77, Ile79, His80, Gly83, Try90, Ala133, Ala135, His137, Arg138 and Asp157; and ionic 
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interactions with Glu64, Ala135, Asp157 further enhanced the stability (Figure 4.11.B). 

Furthermore, the most prominent interactions that occurred for more than 30 % of the 200 ns 

simulation duration between PknE-roquefortine C include hydrogen bond interactions with Glu64 

(50 %), hydrophobic interactions with Ala65, Val76, Phe82, Val91, and Tyr890 as depicted in 

Figure 4.9.A. 

 

Figure 4.11. Protein-ligand contacts over a 200 ns molecular dynamics simulation. A. Interaction 

types between PknA and that occurred for more than 30 % of the simulation duration. B. The types 

of interaction and fractions which occurred between PknE and roquefortine C.  

Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) ΔGBind enables the accurate 

description of the thermodynamics of protein-ligand interaction. As observed from Table 4.2 of  

verticillin A had the lowest  ΔGBind against PknD of –53.67 kcal/mol, followed by roquefortine C 

against PknE (-53.37 kcal/mol), followed by aurovertin D against PknA (-45.34 kcal/mol) and 
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lastly aurovertin D against PknB (-42.87 kcal/mol). Noteworthy, verticillin A and roquefortine C 

exhibited higher affinity to PknD and PknE, respectively, more than the control ligand (CJJ).  

Table 4.2.  Binding free energy (ΔGBind) values computed by MM/GBSA. 

Complex MM-

GBSA 

ΔGbind 

kcal/mol 

ΔGBind 

Coulomb 

kcal/mol 

ΔGBind 

Covalent 

kcal/mol 

ΔGBind 

Hbond 

kcal/mol 

ΔGBind 

Solv GB 

kcal/mol 

ΔGBind 

Lipo 

kcal/mol 

ΔGBind 

vdW 

kcal/mol 

PknA-aurovertin D -45.34 

 

-10.86 

 

1.50 

 

-0.69 

 

18.60 

 

-14.02 -39.87 

PknA-control 

(CJJ) 

 

-57.69 -25.40 
 

1.58 
 

-2.45 
 

27.96 
 

-15.96 
 

-43.41 
 

PknB-aurovertin D -42.87 -13.30 

 

2.40 

 

-0.83 

 

23.89 

 

-13.29 

 

-41.72 

 

PknB-control 

(CJJ) 

 

-60.43 

 

-24.28 2.25 

 

-2.61 

 

29.38 

 

-16.91 

 

-48.14 

 

PknD-verticillin A -53.67 

 

-14.32 

 

1.76 

 

-0.68 

 

25.29 

 

-13.82 

 

-51.35 

 

PknD-control 

(CJJ) 

 

-35.33 

 

-13.84 

 

3.14 

 

-1.59 

 

18.68 

 

-8.18 

 

-32.77 

 

PknE- 

roquefortine C 

 

-53.37 

 

-5.86 

 

1.58 

 

-0.68 

 

18.24 

 

-19.20 

 

-47.27 

 

PknE-control 

(CJJ) 

-35.19 

 

-14.76 

 

2.25 

 

-1.01 

 

19.86 

 

-9.15 

 

-30.51 

 

 

4.5 Discussion 

In targeted structure-based drug design, computational modeling and the prediction of binding free 

energy play a critical role in molecular recognition and can be harnessed to innovate new lead 

design molecules with a new mode of interaction, increased efficacy, and metabolic stability. The 

knowledge derived from both a known active ligand and macromolecular drug targets may be used 

for filtering libraries of diverse compounds based on estimating the likelihood of protein-ligand 

interacting and the dynamic stability of the complex formed [27–29]. Most of the TB drugs that 
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are currently in clinical use were either mined from or derived from natural products, for example, 

capreomycin and kanamycin are from natural sources while rifampicin is a derivative of a 

rifamycin [14]. This study used a targeted virtual screening approach including molecular docking, 

MD simulations, and free-energy calculation to estimate the dynamic interaction of small 

molecules from P. janthinellum against M. tb SER/Thr protein kinases and to identify possible 

lead compounds that can potentially be subject to further modifications.  

Small bioactive molecules are known to reversibly bind to macromolecular drug targets in non-

covalent interactions with side chains of binding domain residues of the protein targets. The 

interaction between a small molecule and the protein target modulates essential biomolecular 

machinery, for instance, gene regulation and molecular recognition [30–32]. In this study, 

molecular docking was used as a preliminary predictive tool for screening different conformations 

of fungal compounds against PknA, PknE, PknB, and PknD. Aurovertin D, aurovertin D, verticillin 

A, and roquefortine C exhibited the highest pre-MD ΔGBind for PknA, PknB, PknD, and PknE 

respectively (Table 4.1). In molecular docking, the protein is rigid and does not account for all the 

entropic and enthalpic factors governing the formation of the protein-ligand complex. Thus, to 

further evaluate the interactions and dynamic behavior of the protein-ligand complexes MD 

simulations were performed.  

Early reports revealed that PknA and PknB are essential fragility points in M. tb proteome and if 

they are inhibited cellular arrest consequently occurs, thus, they are attractive macromolecular 

druggable targets [14, 16, 33]. Furthermore, Carette et al. (2018) [18] illustrated the dual inhibitory 

efficacy of CHEMBL4166160 (CJJ) against PknA and PknB. In this regard, CHEMBL4166160 

(CJJ) was selected in this research as a control ligand for comparison purposes. Aurovertins are 
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reported to be potent inhibitors of ATP hydrolysis and oxidative phosphorylation [34, 35]. This 

study investigated the stability and binding dynamics of the PknA and PknB proteins when 

complexed with aurovertin D. The RMSD trajectory result indicated the stability of the  PknA 

complexed with aurovertin D, as the RMSD fluctuations were below 3 Å throughout the simulation 

(Figure 4.4.A). However, the RMSD values of aurovertin D exceeded 3 Å, suggesting the 

instability of the ligand in the designated binding site of PknA (Figure 4.4.A). In the case, of the 

PknB-aurovertin D complex, the RMSD trajectory revealed that both the protein and the ligand 

exhibited fluctuations above 3 Å, indicating conformational changes occurring during the 200 ns 

MD simulation (Figure 3.6.A). Previous studies highlighted that non-covalent forces, which 

include, hydrophobic interactions with Leu17, Val25, Ala38, and Met92, as well as van der Waals 

interactions with Gly18, Leu17, Ala38, Glu93, Val95, Try94, Met145, and Met155 were critical 

in the inhibition of PknB [14, 16]. In this study, the binding affinity of aurovertin D to PknB was 

driven by hydrophobic interactions with Leu17, Val25, Leu27, Ala38, Val72, Met92, Thr94, 

Ala142, Met145, Met155, Ile159, and Ile177. Additionally, hydrogen bonds were identified 

between aurovertin D and specific residues including Leu17, Phe19, Gly21, Ser23, Lys40, Val95, 

Asp96, Gly97, Gly18, Gly21, Met22, Ser23, Lys40, Val95, Asp96, Gly97, Arg101, Lys140, 

Ala142, Asp156, Arg161, and Asn168. Water bridges involving Glu93, Gly18, Tyr94, and Met155 

were also observed (Figure 4.7.A). To further explore and understand the free energy differences 

that govern the protein-ligand interactions, the binding free energy (ΔGBind) was computed using 

the MM-GBSA approach. In this study, a binding affinity of -45.34 kcal/mol for aurovertin D with 

PknA and -42.87 kcal/mol with PknB (Table 4.2) was observed were both higher than the for the 

control ligand (CJJ).  
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In the same fashion as before for PknB and PknA, the RMSD, and binding free energy were 

computed for PknD-verticillin A and PknE roquefortine C complexes. The MD simulation 

revealed that the PknD-verticillin A complex maintained remarkable stability throughout the 200 

ns, as shown by low RMSD fluctuations of PknD Cα-atoms ( > 2.1 Å) (Figure 4.8.A). Notably, 

verticillin A exhibited minor fluctuations in its RMSD trajectory, signifying a stable binding pose 

in the active site of PknD (Figure 4.8.A). The computed ΔGBind value of –53.67 kcal/mol of PknD-

verticillin A further elaborated the attractive forces between the protein and ligand, which were 

mediated by a combination of van der Waals forces, Coulomb, lipophilicity, and hydrogen bonds 

(Table 4.2). In contrast, the control ligand was not a good binder to PknD, as shown by higher 

RMSD fluctuations of PknD Cα-atoms in Figure 4.8.C.  

The MD simulation of the PknE-Roquefortine C complex revealed that the complex was stable for 

the first 125 ns with RMSD of PknE ranging around 2.5 Å (Figure 4.10.A). However, after 125 

ns, the RMSD trajectory increased to approximately 3.8 Å, indicating the protein’s instability and 

conformational change during the last 75 ns. In comparison, both the PknE and the control ligand, 

CJJ, displayed relative instability as revealed by the RMSD trajectory (Figure 4.10.C). 

Roquefortine C exhibited a ΔGBind of -53.37 kcal/mol against PknE, while the control had a lower 

ΔGBind of -35.19 kcal/mol, suggesting that roquefortine C has a higher affinity to the designated 

binding site as compared to the CJJ. 

4.6 Conclusions 

In conclusion, this study employed molecular docking, molecular dynamics simulations, and 

binding free energy computations to explore the prospects of the potential use of natural products 

for targeted drug discovery against TB. Detailed results of the binding interactions and ΔGbind 
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revealed that verticillin A is a potential lead scaffold that can further be modified to enhance its 

affinity, potency, and solubility, thus, establishing a foundation for more structure-based drug 

design probes targeting PknD Ser/Thr. Integrating computational approaches in the sampling of 

natural product libraries, this study contributes to the accelerated target-based drug discovery and 

design in TB treatment. 
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Exploring the Metabolic Potential of Bacillus licheniformis for the 

Production of Antimycobacterial Secondary Metabolites 
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5.1 Abstract  

Mycobacterium tuberculosis (M. tb) presents a significant complication to disease control globally 

due to its resistance to multiple antibiotics. Therefore, the current study aimed to comprehensively 

analyze the genomic features of Bacillus licheniformis SAMN36381076, a metagenome-

assembled genome (MAG) isolated from gold mine tailings. Herein, the primary objective was to 

evaluate functional capacity for synthesizing bioactive scaffolds with potential to combat M. tb. 

The bacterial genomic DNA was isolated and sequenced using Illumina’s NextSeq platform. A 
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KBase metagenomic pipeline was used for processing, assembling the identified genomes, 

constructing a phylogenetic tree, and predicting the presence of genes associated with 

carbohydrate-active enzymes, genes associated with biochemical cycles, and nitrogen metabolism. 

The presence of antibiotic-resistance genes was evaluated using a module on PATRIC. The 

antiSMASH platform was used to determine the biosynthetic gene clusters (BGCs) present in the 

metagenome-assembled genomes (MAG). Two MAGs were identified as B. licheniformis 

SAMN36381076 and Peribacillus simplex SAMN36381075. The B. licheniformis 

SAMN36381076 MAG had an estimated genome length of 4.213156 Mb, with a G+C content of 

46.08%, comprising 58 contigs and exhibiting an N50 length of 165,033 bp. Genomic annotation 

revealed 4,613 protein-coding sequences (CDS), encompassing 1,008 hypothetical proteins and 

3,605 proteins with assigned functions, as well as 58 tRNAs. The B. licheniformis 

SAMN36381076 MAG had six diverse antibiotic resistance mechanisms, with efflux pumps as 

the predominant mechanism of resistance. A total of 13 BGCs responsible for encoding synthesis 

of diverse secondary metabolites, including fengycin, butirosin A, butirosin B, schizokinen, 

pulcherriminic acid, bacillibactin, bacillibactin E, bacillibactin F, lichenicidin VK21 A1, 

Lichenicidin VK21 A2, and thermoactinoamide A. Additionally, the B. licheniformis 

SAMN36381076 MAG harbored genes associated with encoding a wide repertoire of 

carbohydrate-active enzymes (CAZymes) involved in carbohydrate degradation and assembly 

processes. Further, the annotations revealed genes that encode enzymes responsible for oxyanion 

biogeochemical cycles and nitrogen metabolism highlighting the bacterium's adaptive capacity to 

the unstable gold mine tailings environmental conditions. This genomic-based study 

comprehensively uncovers the genomic features and functional capabilities of B. licheniformis 
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SAMN36381076 MAG, thus, providing essential knowledge to pave the way for the discovery of 

anti-M. tb natural products. 

 

Keywords: Bacillus licheniformis, genome analysis, functional annotation, protein families, 

enzymatic activities, ecological adaptability. 

5.2 Introduction 

Gold mine tailings are host to complex microbial communities that play an essential role in 

modulating nutrient cycling, heavy metal mineralization, and stabilization [1]. These below ground 

microbial communities, influence microbe-microbe and host-microbe interactions by synthesising 

a variety of specialized metabolites known as natural products [2, 3]. Earlier research has focused 

on the biogeographic patterns of microbial distribution and biogeochemical transformation of 

mineral elements [4]. A study by Courchesne et al. [5] explored the bacterial diversity in mine 

tailings and identified a microbial community comprised of Acidoferrobacterals, Bacillalles, 

Rhizobiales, Betaproteocterials, Sphingomonadales, Gaiellales, Pyrinomodales, and 

Solirubrobacterales. While other metagenomics investigations revealed that the 

Halothiobacillaceae, Acidithiobacillus, Leptospirillium, Ferrimicrobium, Actinobacteria, and 

Acidibacter family was the most abundant in mine tailings [6–8]. However, most ecological studies 

to date have focused more on microbial community succession in gold mine tailings and 

bioremediation, neglecting the metabolic potential of microorganisms that drive the colonization 

for drug discovery [3, 9].  
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Bacterial natural products are widely recognized as one of the key drivers of microbial diversity 

and composition in microenvironments (Begley et al., 2009; Parkinson et al., 2018). All the 

possible secondary metabolites encoded by microbes make up the biosynthetic chemical space. 

Exploration of the biosynthetic chemical space by using genome mining techniques will reveal the 

potential bioactive natural products that contribute to the fierce competition between different 

microorganisms. The secondary metabolites are synthesized by multidomain enzymes encoded by 

genes that tend to cluster within a genome and are known as biosynthetic gene clusters (BGCs) 

[12, 13]. Recent efforts to harness the metabolic potential of actinobacteria through microbial 

genome mining revealed the presence of 20-80 different BGCs, with many remaining silent under 

standard laboratory culture conditions [14, 15]. These untapped genes present opportunities to 

discover architecturally diverse compounds which have strong affinity towards microbial targets. 

Knowledge of the evolutionary connections, biosynthetic routes, and bioactive secondary 

metabolites guides the exploration of the microbial resources in drug discovery [16, 17]. Target-

directed genome mining, based on the notion that a bacterium must resist the self-produced arsenal 

to avoid suicide, enables the prediction of a compound’s mode of action, regardless of the unknown 

chemical structure [18, 19]. However, the major drawback lies in selecting and prioritizing the 

bacterial strains harboring the highest potential to synthesize novel bioactive molecules.  

Diverse bacterial natural products have been proven to be a reference point for the discovery of 

important chemotherapeutics used for fighting infectious diseases such as tuberculosis (TB) [4]. 

Genome sequencing data have revealed that the Bacillus subtilis group is known to produce a wide 

array of bioactive secondary metabolites in the classes which include, cyclic lipopeptides, non-

ribosomal dipeptides, terpenes, polyketides, bacteriocins, ribosomally synthesized and post-
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translationally modified lantibiotics with a wide range of pharmacological functionalities [20–22]. 

Cyclic lipopeptides are amongst the most lethal antimicrobial agents produced by B. subtilis group. 

Earlier studies reported the activity of surfactin, iturin, and fengycin analogs against antimicrobial-

resistant strains [23, 24]. A previous study exploring the anti-TB bioactive compounds reported 

that the secondary metabolites from Bacillus sp. in the B. subtilis group have shown inhibition of 

M. tb H37Rv in-vitro [22, 25]. Further, in our previous study B. licheniformis was identified using 

16s rRNA-produced crude extracts that exhibited activity against  M. tb H37Rv (Chapter 3). The 

aim of this study was to explore the potential metabolic of an enriched culture through genome-

guided mining. This step expands knowledge of the bacteria’s natural products and is an important 

step to harness the novel products which are much needed in antimycobacterial drug development.  

5.3 Materials and methods 

5.3.1 Bacteria samples 

The gold mine tailings samples were collected from five sites located around the Germiston area, 

Johannesburg, South Africa (26º13'7.08" S, 28º29'8.64" E). At each site, 0.5 kg of sample material 

was collected at a depth of 12 cm. Samples were stored in polyethylene bags at 4 ℃ until further 

processing.  Bacteria cultures were isolated and enriched as described previously in chapter 3. 

Briefly, the enriched bacteria were cultivated on Luria-Bertani agar at 37 ℃ [26]. 

5.3.2 Genomic DNA isolation and Sequencing 

Genomic DNA isolation and purification were performed using the Promega Wizard® Genomic 

DNA Purification Kit (Promega, WI, USA) according to the manufacturer’s instructions. The 

quality of the genomic DNA was quantified for concentrations 230/260- and 260/280 using a 
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Microplate Spectrophotometer (Thermo Fisher Scientific, Inc., Waltham, MA, USA). The whole-

genome sequencing was performed using Illumina’s NextSeq platform at Inqaba Biotech. Briefly, 

the genomic DNA sample was fragmented using an enzymatic approach (NEB Ultra II FS kit), 

according to the manufacturer’s instructions. The resulting DNA fragments were selected 

according to size (200 – 500bp), using AMPure XP beads. Thereafter, the fragments were end-

repaired, and Illumina-specific adapter sequences were ligated to each fragment. Each sample was 

individually indexed and subjected to a second size selection step. Samples were then quantified, 

using a fluorometric method, diluted to a standard concentration (4nM), and then sequenced on 

Illumina’s NextSeq platform, using a NextSeq 300 cycle kit, following a standard protocol as 

described by the manufacturer. 1Gb of data (2x150bp paired-end reads) were produced for each 

sample. 

5.3.3 Metagenomic assembly, binning, taxonomic and functional annotation 

The sequence data from the bacteria were processed as described previously [27, 28]. Briefly, the 

initial quality check of the raw paired-end Illumina reads in (.fastq) format was evaluated using 

FastQC (v0.11.9) [29]. To improve the overall quality of the raw reads; low-quality bases and 

adapter sequences were trimmed from the Illumina raw reads, using Trimmomatic (v0.36) [30]. 

The trimmed reads were subjected to further quality checks using FastQC (v0.11.9) [29]. 

MetaSPADES (v3.15) [31] was utilized to assemble high-quality reads into contigs. High-quality 

contigs were binned into metagenome-assembled genomes (MAGs) using MaxBin2 (v2.2.4) [32] 

and  MetaBAT2 (v1.7) . The DAS tool (v.1.1.1) [33] was used to integrate the MAGs. The quality 

of the bins was estimated based on 5 % contamination and completeness >90 %  by CheckM 

(v1.0.18) [34]. This step ensured the selection of high-quality genomic bins for downstream 
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analysis. The evolutionary and phylogenetic relationships of the assembled genomes were 

determined by SpeciesTree (v2.2.0) [35]. The assembled genomes were functionally annotated by 

Rapid Annotations using Subsystems Technology toolkit (RASTtk) (v1.073) on The 

PathoSystems Resource Integration Center (PATRIC) (http://www.patricbrc.org/) [36]. 

Antimicrobial resistance genes and mutations conferring resistance to antibiotics were determined 

by  Comprehensive Antibiotic Resistance Database (CARD v3.2.4) [37] in PATRIC (v3.6.9) 

(http://www.patricbrc.org/). Additionally, HMMER (v3.2.1) [38] was used to search for 

environmental bio-element cycling families enzymes. The genes that encode carbohydrate-active 

enzymes (CAZymes)  in the MAGs were identified and classified using CAZymes 

(CAZyDB: http://www.cazy.org/) [39]. The MAGs were deposited in NCBI and accession numbers 

were allocated.  

5.3.4 Identification of BGCs, PKS KS domain, NRPS C domain. 

The BGCs and core genes in the genome were annotated using antiSMASH v5.0.0 (https:// 

antismash.secondarymetabolites.org, accessed on 6/05/2023) [40] using relaxed detection 

strictness.   

5.4 Results 

The metagenome-assembled genomes (MAGs) of the enriched Bacillus strains were characterized 

using Illumina sequencing platforms. A total of two MAGs belonging to the genus Bacillus had 

high completeness (100 %), and low contamination, thus, a comprehensive analysis and 

comparison could be carried out (Table 1). B. simplex SAMN36381075 MAG (bin.001.) and B. 

licheniformis SAMN36381076 MAG (bin.002) were identified (Figure 5.1) with 5.90 Mb and 4.21 
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Mb genome sizes, respectively.  B. licheniformis SAMN36381076 MAG was selected and 

extracted as an assembly for further analysis.  

Table 5.1 Characteristics of the identified MAGs 

Feature Species Species 

Genome Name Bacillus licheniformis 

SAMN36381076 

Peribacillus simplex 

SAMN36381075 

Fine Consistency (%) 99.3 92.2 

Completeness (%) 100 100 

Contamination (%) 0.7 1.4 

Contig count 58 183 

DNA size (Mb) 4.21 5.90 

Contigs N50 (bp) 165033 70335 

Mean Coverage (%) 69.98 67.78 
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Figure 5.1. The phylogenetic positions of B. licheniformis SAMN36381076 MAG (bin.002) and 

B. simplex SAMN36381075 MAG (bin.001), along with their closest neighbors within the Bacillus 

genus, were determined. 

The characteristics of B. licheniformis SAMN36381076 MAG are summarized in Table 5.2 and 

Figure 5.3. Briefly, the estimated genome length of B. licheniformis SAMN36381076 was 

4.213156 Mb, with an average G+C content of 46.08 %. The N50 length, representing the shortest 

sequence length at 50 % of the genome, was 165,033 bp. The genome assembly consisted of 58 

contigs, with an L50 count of 8. Further genomic annotation identified 4,613 protein-coding 

sequences (CDS), and 58 transcribed RNA (tRNA)s. Among the CDS, 1,008 were predicted as 

hypothetical proteins, and 3,605 proteins were assigned specific functions. Functional assignments 
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included 1,070 proteins with Enzyme Commission (EC) numbers, 898 with Gene Ontology (GO) 

assignments, and 789 proteins mapped to KEGG pathways. Further, the annotation showed the 

presence of 4,398 proteins belonging to genus-specific protein families (PLFams) and 4,408 

proteins categorized under cross-genus protein families (PGFams). A circular graphical 

representation of the genome annotation is depicted in Figure 5.2.A. A total of 96 proteins were 

identified to be responsible for metabolism, 43 for protein processing, 34 for stress response, 

defense, and virulence, 30 for cellular processes, 27 for energy, 17 for DNA processing, 16 for 

membrane transport, 13 for RNA processing, four for cell envelope, three for regulation and cell 

signaling, and lastly three miscellaneous Figure 5.2.B. 

Table 5.2. Genome features of B. licheniformis SAMN36381076 

Features                                        Chromosome 

Contigs  58 

GC content 46.08 

Plasmids 0 

Contig L50 8 

Genome Length  4.21 Mb 

Contig N50 165033 

Chromosomes 0 

CDS 4613 

tRNA 58 

Partial CDS 0 

Miscellaneous RNA 0 

Repeat Regions 0 

Hypothetical proteins 1008 

Proteins with functional assignments  3605 

Proteins with EC number assignments  1070 

Proteins with GO assignments 898 

Proteins with Pathway assignments  789 

Proteins with Subsystem assignments 1298  

Proteins with PARTIC cross-genus family 

(PGfam) assignments 

4408 
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Figure 5.2. Circular genome of Bacillus licheniformis SAMN36381076 MAG. This includes, 

from outer to inner rings, the contigs, CDS on the forward strand, CDS on the reverse strand, RNA 

genes, CDS with homology to known antimicrobial resistance genes, CDS with homology to 

known virulence factors, GC content, and GC skew. The colors of the CDS on the forward and 

reverse strands represent the subsystem to which the genes belong. B. Distribution of annotated 

subsystems categories observed in B. licheniformis SAMN36381076 MAG. 

A total of 48 genes were annotated and found to have homology to the genes that are responsible 

for antibiotic resistance, 35 for a drug target, 117 for transporter, and 4 for virulence (Table 5.3). 

The blast result of antibiotic resistance genes was based on three databases, including CARD, 

NDARO, and PATRIC.  

Table 5.3. Specialty genes 

Features Source Genes 

Antibiotic resistance CARD 2 

Antibiotic Resistance NDARO 1 

Antibiotic Resistance PATRIC 45 
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Drug target  DrugBank 33 

Drug target  TTD 2 

Transporter TCDB 117 

Virulence Factor PATRIC_VF 2 

Virulence Victros 2 

 

The assembled genome of B. licheniformis SAMN36381076 was annotated to discover the AMR 

genes and corresponding AMR mechanisms (Table 5.4). In this study, a total of six distinct 

resistance mechanisms were classified under antibiotic inactivation enzyme, antibiotic target 

modifying enzyme, antibiotic target protection protein, antibiotic target replacement protein, efflux 

pump, absence of a gene, and protein-altering cell wall charge were identified (Table 5.4). These 

mechanisms of action confer resistance to antimicrobial classes, including macrolides, 

lincosamides, aminoglycosides, peptide antibiotics, multiple antibiotic resistance, tetracyclines, 

aminoglycosides, and phenicol antibiotics. Among the mechanisms, antibiotic efflux pumps were 

identified as the prominent mode of resistance. Further, several genes encoding for efflux pumps, 

such as BceA, BceB, EbrA, EbrB, and YkkCD were identified in the B. licheniformis 

SAMN36381076 MAG. The presence of these genes suggests co-resistance for antibiotics and 

putative toxic elements produced by B. licheniformis SAMN36381076, for instance, bacitracin. 

Notably, the resistance to bacitracin indicates the ability of  B. licheniformis SAMN36381076 to 

synthesize the antimicrobial peptide.  

BGCs are responsible for the synthesis of bioactive secondary metabolites which are involved in 

facilitating the competition amongst bacteria within a niche. In this study, the genome of B. 

licheniformis SAMN36381076 was analyzed and 13 BGCs associated with the biosynthesis of 

various secondary metabolites classes were identified, as depicted in Figure 5.3. These BGCs 
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encompassed diverse metabolite classes, including betalactone, terpene, thiopeptide, lasso 

peptides, RiPP recognition element (RRE)-containing, Type III Polyketide Synthase (T3PKS), 

lanthipeptide (class II), NI-siderophore, tRNA-dependent cyclodipeptide synthase (CDPS), and 

non-ribosomal peptides (NRPS). Notably, gene clusters 12.1, and 47.1 displayed 100 % amino 

acid homology to gene clusters that are known to produce Lichenicidin VK21 A1/ Lichenicidin 

VK21 A2, and thermoactinoamide A, respectively. Furthermore, gene clusters 1.1, 5.1, 13.1, 15.1, 

23.1 and 36.1 exhibited  homology 53 %, 7 %, 50 %, 60 %, and 66 %, with fengycin, butirosin 

A/butirosin B, schizokinen, pulcherriminic acid, and bacillibactin/bacillibactin E/bacillibactin F, 

respectively. Gene clusters 11.1 and 18.1 exhibited 50 % and 57 % homology with lichenysin, 

respectively. Notably, gene clusters 1.2, 7.1, and 9.1 showed no homology with known clusters in 

the MIBiG (Minimum Information about a Biosynthetic Gene cluster) database. These findings 

suggest that these clusters may encode novel metabolites within the B. licheniformis 

SAMN36381076 genome. 
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Table 5.4. Antimicrobial Resistance Genes 

AMR Mechanism Genes Product Antibiotics class 

Antibiotic inactivation 

enzyme 

CatA family 

 

Chloramphenicol O-acetyltransferase (EC 

2.3.1.28) CatA superfamily 

Phenicol antibiotics 

FosB, Fosfomycin resistance protein FosB Fosfomycin 

 

Antibiotic target modifying 

enzyme 

RlmA(II) 23S rRNA (guanine(748)-N(1))-

methyltransferase (EC 2.1.1.188) 

Macrolides, Lincosamides 

Antibiotic target protection 

protein 

BcrC Undecaprenyl-diphosphatase BcrC (EC 

3.6.1.27),  

Peptide antibiotics 

conveys bacitracin 

Antibiotic target 

replacement protein 

fabL Enoyl-[acyl-carrier-protein] reductase 

[NADPH] (EC 1.3.1.104), FabL 

Triclosan 

Efflux pump conferring 

antibiotic resistance 

BceA, 

 

Bacitracin export ATP-binding protein BceA Peptide antibiotics (bacitracin) 

BceB Bacitracin export permease protein BceB Peptide antibiotics (bacitracin) 

 

EbrA Multidrug resistance protein EbrA Multiple antibiotic resistance 

EbrB Multidrug resistance protein EbrB Multiple antibiotic resistance 

YkkCD Broad-specificity multidrug efflux pump YkkC Tetracyclines, aminoglycosides, 

phenicol antibiotics 

Gene conferring resistance 

via absence 

gidB 16S rRNA (guanine(527)-N(7))-

methyltransferase (EC 2.1.1.170) 

 

Aminoglycosides 

(streptomycin) 

Protein altering cell wall 

charge conferring 

antibiotic resistance 

GdpD 

 

Glycerophosphoryl diester phosphodiesterase 

(EC 3.1.4.46) 

Peptide antibiotics 

(daptomycin) 

MprF 

 

L-O lysylphosphatidylglycerol synthase (EC 

2.3.2.3) 

Peptide antibiotics 

(daptomycin, defensin) 

PgsA CDP-diacylglycerol--glycerol-3-phosphate 3-

phosphatidyltransferase (EC 2.7.8.5) 

Peptide antibiotics (daptomycin) 
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However, they were predicted in terpene biosynthesis (cluster 1.2), lasso peptide (gene cluster 7.1), 

and T3PKS (gene cluster 9.1).  

 

 

Figure 5.3. Predicted biosynthetic gene clusters of strain B. licheniformis SAMN36381076 MAG 

by antiSMASH. Fengycin, butirosin A, and 3 unknown metabolites were predicted with core 

biosynthetic genes.  
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Figure 5.3. continued. Predicted biosynthetic gene clusters of strain B. licheniformis 

SAMN36381076 MAG by antiSMASH. Lichenysin, bacillibactin/bacillibactin E/bacillibactin F, 
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thermoactinoamide A, Lichenicidin VK21 A1/ Lichenicidin VK21 A2, Schizokinen and 

pulcherriminic acid were predicted with core biosynthetic genes. 

In the present study, the B. licheniformis SAMN36381076 genome was found to possess a wide 

array of genes responsible for encoding numerous Carbohydrate-active enzymes (CAZy) that are 

involved in the breakdown and assembly of carbohydrate complexes. Further, the coexistence of 

genes that encode for (auxiliary activities; AA) may suggest the importance of the bacteria in initial 

lignin degradation. A total of 41 CAZyme genes were annotated in the B. licheniformis 

SAMN36381076 assembled genome (Figure 5.4). The identified genes are different families, 

which include encoding polysaccharide lyases (18), carbohydrate esterases (6), 

glycosyltransferases (10), auxiliary activities (3), and carbohydrate-binding modules (4) (Figure 

5.4.B, and Figure 5.4.C).  The genome of B. licheniformis SAMN36381076 harbors a range of 

genes that play critical roles in the biogeochemical cycle of oxyanions (nitrate, selenate, and 

sulfate) (Figure 5.4.A). Notably, cysN and cysC genes are responsible for sulfate reduction, while 

phsA gene is involved in polysulfide reduction/thiosulfate disproportionation. The genes sat, sqr, 

and sulfur_dioxygenase are associated with sulfide oxidation, and the gene soxB is involved in 

thiosulfate oxidation. Additionally, the genome of B. licheniformis SAMN36381076 also contains 

several nitrogen metabolism genes, including narG which encodes nitrate reductase, norB which 

encodes nitric oxide reductase, and nirB and nirD which encodes nitrite reductase. Evidence of 

arsenite oxidation is shown by the presence of gene encoding arsenite oxidation. 
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Figure 5.4.A. Genes responsible for encoding environmental bio-element cycling families.  B. 

Annotated CAYZmes in B. licheniformis SAMN36381076 MAG. C. Annotated CAYZmes in B. 

licheniformis SAMN36381076 MAG. 

5.5 Discussion 

In the quest to combat multi-drug-resistant pathogens, natural products have gained increased 

attention in biomedical research due to their inhibitory activity against various drug-resistant 

pathogens. Bacillus sp. are known to natively synthesize a diverse array of bioactive secondary 

metabolites encoded by BGCs. These products have demonstrated utility in medicinal, 

agricultural, and bioremediation applications [41]. Earlier reports have highlighted the 

conservation of BGCs within the Bacillus genus that are responsible for producing clade-specific 

bioactive metabolites [42]. In this study, some secondary metabolites encoded by the BGCs were 

identified as clade-specific, for instance, gene clusters 12.1, 47.1, 1.1, 11.1, 18.1, and 36.1 were 

associated with the synthesis of lichenicidin VK21 A1/ Lichenicidin VK21 A, fengycin, 
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lichenysin, and bacillibactin/bacillibactin E/bacillibactin F, respectively, are known to be produced 

by B. licheniformis. The presence of these BGCs was also observed in several other B. 

licheniformis related genome studies [19, 20, 43, 44]. Interestingly, the BGC 47.1 displayed 100  

% amino acid homology to gene clusters associated with the biosynthesis of thermoactinoamide 

A. This result aligns with studies demonstrating the acquisition of BGCs through horizontal gene 

transfer and the transferability of functional BGCs between different bacterial genomes, 

contributing to enhanced fitness [44]. 

Studies have shown that B. licheniformis is a reservoir for producing peptides  including RiPPs 

and nonribosomal peptides and ribosomally synthesized [19, 20, 44]. In this study, we annotated 

the B. licheniformis SAMN36381076 MAG to decode the potential anti-mycobacterial roles of the 

secondary metabolites. Genome annotation results in this study identified anti-microbial peptide-

related genes from the annotated BGCs, including fengycin, bacillibactin, lichenicidin, lichenysin, 

thermoactinoamide A, and pulcherriminic acid. A recent study reported that bacillibactin analogs 

which play a pivotal role in chelating ferric ions exhibited inhibitory activity against 

Mycobacterium smegmatis MTCC6 (MIC 22.15 µM) [22]. Lichenysin is a lipopeptide produced 

by B. licheniformis and is structurally similar to surfactins from B. subtilis, thus, has a similar 

mode antimicrobial mode of action against gram-positive and gram-negative bacteria [10, 45]. An 

earlier report revealed that lichenicidin exhibited inhibitory activity in gram-positive bacteria, 

including M. smegmatis [44]. The mode of action of lichenicidin is forming pores in the cell wall 

and membrane and inhibiting peptidoglycan biosynthesis [46].  

Microbial antagonism within an ecological niche is facilitated by a wide array of toxins, for 

instance, strains-specific bacteriocins and broad-spectrum antibiotics [42, 47]. In this regard, the 
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bacteria producing lethal antimicrobial agents have evolved self-protection mechanisms to avoid 

self-destruction, thus, elucidation of the mechanisms of resistance guides the discovery of putative 

bioactive products and their mode of action [48]. In this study, the antibiotic resistance 

mechanisms of B. licheniformis SAMN36381076 were classified into six categories, including 

antibiotic inactivation, antibiotic target modifying enzyme, antibiotic target protection protein, 

antibiotic target replacement protein, efflux pump, absence of a gene, and protein-altering cell wall 

charge (Table 5.5). These mechanisms are depended on the scaffolds of natural products, and their 

molecular targets. In the present study, three genes BcrC, BceA, and BceB present in B. 

licheniformis SAMN36381076 genome confer resistance to bacitracin [49]. Bacitracin is a cyclic 

dodecyl peptide known to be synthesized by B. licheniformis and is known to exhibit wide-

spectrum antimicrobial activity [50]. An earlier study by Wu et al. [20] reported that B. 

licheniformis produced bacitracin A, which possesses antimicrobial activity against gram-positive 

bacteria. Interestingly, bacitracin was reported to exhibit inhibitory activity against mycothiol 

(MSH) and ergothioneine (ERG) thiol-deficient M. tb mutants [51]. Further, the results from this 

investigation identified the presence of genes that confer resistance to peptides that possess a mode 

of activity that is similar to daptomycin, and defensins. The BGCs identified showed the presence 

of genes that encode lipopeptides that also have mechanisms of action that target the cell 

membrane similar to daptomycin, for instance, fengycin, and lichenysin.   

 Further, the results of this study showed the presence of a BGC in B. licheniformis 

SAMN36381076 with seven percent homology to genes associated with the synthesis of 

aminoglycosides in the neomycin family (butirosin A and butirosin B) (Figure 5.3), hence the 

erythromycin resistance (Table 5.5). Aminoglycoside antibiotics are medicinally essential agents 
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that have been reported to inhibit M. tb by binding to the 30S subunit of the mycobacterial 

ribosome, disrupting the reading of genetic code and subsequently leading to death [18]. Numerous 

micro-stressors within an environmental niche like gold mine tailings enhance the selection of 

bacteria with multiple defense mechanisms [36]. In this study, multi-drug resistance genes were 

detected indicating a general resilience to chemical warfare within the mine tailings and also the 

ability to produce various antimicrobials with different mechanisms of action. 

Earlier studies reported high concentrations of Cu, Cr, Cd, Pb, Sb, Ni, Zn, V, As, and sulfate in 

gold mine tailings and acid mine drainage [8, 52, 53]. Previous research revealed that B. 

licheniformis A6 was able to tolerate high concentrations of As, Co, Cd, Cr, Hg, Mn, Se, Pb, and 

Zn. Further, they demonstrated that the B. licheniformis A6 was able to oxidize arsenite into 

arsenate [54]. This study showed the presence of an arsenite oxidation gene which may be 

responsible for the oxidation of arsenite. Selenium (Se) is widespread in various rocks and can 

form complexes with iron (Fe) and manganese (Mn) oxides or hydroxides [55]. A previous study 

has reported that microbial reductive processes play an essential role in the removal of selenate 

from natural sediments. In the present study, the presence of a ygfk gene, which codes for ygfk 

reductase was identified suggesting the potential Se reduction by B. licheniformis 

SAMN36381076. In addition, nitrate reductases primarily have a high preference for the reduction 

of nitrate and have also been reported to exhibit the reduction of selenate. 

 Actinobacteria, proteobacteria, and Firmicutes are known to play critical roles in sulfate reduction 

and sulfur oxidation in various environmental niches [56]. Previous studies revealed the 

involvement of sulfate-reducing bacteria (SRB) in hydrocarbon bioremediation and the 

precipitation of heavy metals [53]. The B. licheniformis SAMN36381076 MAG contained sulfite 
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oxidation genes such as sat, sqr, and sulfur_dioxygenase. While cysN and cysC genes are 

responsible for assimilatory sulfate reduction, while phsA gene is involved in polysulfide 

reduction/thiosulfate disproportionation. Further, soxB was found in the genome, thus, indicating 

the potential of the bacteria in thiosulfate oxidation.  

Denitrification and nitrification are essential processes in the nitrogen cycle and are facilitated by 

distinct enzymes encoded by functional genes within a specific group of microorganisms [57]. 

This study revealed the potential contribution of B. licheniformis SAMN36381076 MAG to 

nitrogen cycling in gold mine tailings. The B. licheniformis SAMN36381076 MAG contains 

several nitrogen metabolism genes, for instance, narG, which encodes nitrate reductase which 

catalyzes the conversion of nitrate (NO3-) to nitrite (NO2-). Further, the presence of norB, encoding 

nitric oxide reductase, highlights the ability of B. licheniformis SAMN36381076 to reduce NO2- 

to nitric oxide (NO). In addition, nirB and nirD were present in the B. licheniformis 

SAMN36381076 MAG, and they encode nitrite reductase which catalyzes the conversion of NO2- 

to nitrous oxide (N2O) or N2. 

This study also investigated the metabolic potential of B. licheniformis SAMN36381076 MAG by 

analyzing the genes encoding carbohydrate-active enzymes (CAZYmes). In total, 41 CAZYme 

genes were identified, and categorized into different enzyme classes. These classes include 

polysaccharide lyases (18), carbohydrate esterases (6), glycosyltransferases (10), auxiliary 

activities (3) associated with polysaccharide and lignin degradation, and carbohydrate-binding 

modules (4). The presence of these CAZYmes suggests that B. licheniformis SAMN36381076 

possesses a potential metabolic capacity for the biotransformation and recombination of lignin 
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derivatives, leading to the production of bioactive aromatic compounds.  These compounds may 

have applications in the pharmaceutical industry [58, 59].  

Conclusion: 

The whole genome showed the global biosynthetic potential of B. licheniformis SAMN36381076. 

The bacteria is capable of producing potent broad-spectrum bioactive secondary metabolites that 

may be explore for their potential antimycobacterial activity.In addition, the bacteria may also be 

used for bioprocessing of lignin to produce novel aromatic compounds that may have a potential 

antimycobacterium activity. 
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6.1 Abstract  

Predictive quantitative structure activity relationship (QSAR) models are increasingly employed 

in the drug discovery process, as they facilitate the screening of large libraries of compounds. 

These computational models complement traditional in-vitro or in-vivo assays, significantly 

accelerating the drug discovery process by increasing the probability of identifying promising lead 
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compounds. In this study, the focus was on developing and comparing models using both 

molecular descriptors and an alternative approach without handcrafted molecular descriptors. 

Predictive classification models based on pIC50 values were trained using molecular descriptors. 

Additionally, Long Short-Term Memory (LSTM) neural networks to learn the intrinsic features 

from the SMILES notation of compounds with pIC50 as the dependent variable. The results 

showed that logistic regression (LR) and multi-layer perceptron (MLP) emerged as the most 

promising models, exhibiting better performance metrics including recall, AUC ROC, RMSE, and 

accuracy.  However, the LSTM model performed suboptimal (negative R2 values), suggesting the 

necessity for hyperparameter tuning to enhance its predictive capabilities. In conclusion, machine 

learning-based QSAR architectures have significant potential to accelerate the discovery of anti-

TB agents. 

6.1 Introduction  

Traditional experimental drug discovery is the most reliable way to identify therapeutic agents 

which satisfy the optimum biological and chemical properties, but it is tedious and cost-ineffective 

since the chemical space is vast [1]. On the other hand, the integration of computer-aided drug 

design (CADD), notably recognized as the fourth industrial revolution, has been paramount in 

cost-effectively accelerating drug discovery [2]. Machine learning based computational modules 

are gaining much attention in biomolecular drug discovery fields, for instance, prediction of 

molecular energy, transcriptomics, elucidation of reaction mechanisms, and molecular docking 

[3]. Fundamentally, the modules developed by machine learning carefully and efficiently address 

the challenges faced in conventional drug discovery by virtually screening large ensembles of 
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biological data, integrating heterogeneous biological data sets, using numerous statistical 

measures, and finally selecting unbiased significant predictions [4, 5]. 

Some supervised machine learning-guided algorithms are currently under development and 

deployment with the goal of identifying hit compounds from large and diverse datasets [6]. The 

primary objective of these algorithms is to predict well-defined endpoints that enable the discovery 

of compounds that target essential drug targets involved in bacterial and viral pathogenicity [7]. 

QSAR is a multidiscipline chemometrics technique, that aims to correlate compounds' properties 

with biological activities such as Ki, pIC50, pEC50, MIC, etc., or categorical biological properties 

[8].  This approach has been widely adopted by pharmaceutical companies to cost-effectively 

accelerate drug discovery [5]. For instance, Shahbaaz et al. [9] employed molecular dynamics 

simulations for the identification of inhibitors against the MmpS5-MmpL5 efflux pump, while 

Sadawi et al. [10] developed a multi-task QSAR (quantitative structure-activity relationship) tool 

for screening active compounds against different drug targets. 

Numerous classical machine learning algorithms have been successfully implemented for 

developing QSAR models, for instance, support vector machine (SVMs), Naïve Bayesian 

classifiers, K-Nearest neighbors (KNN), Random Forest (RF), e.t.c [7, 11, 12]. Earlier studies have 

reported the development of models based on fixed molecular descriptors and fingerprints, that 

encode the chemical and physical properties of compounds [13]. Molecular descriptors are the 

“fingerprint” of one molecular on the micro-level, including theoretical and experimental 

parameters such as atom numbers; chemical bonds numbers; MLI (molecular connectivity index); 

ionization constant, pKa; electric dipole moment μ; MR (molecular molar refractive index), logP 

(lipophilic parameter), etc [13, 14].  Molecular descriptors play an essential role in the formulation 
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of robust and intuitive models that may be significant in drug discovery. Another study revealed 

the occurrence of false negative results in a multitarget QSAR investigation [14]. This highlighted 

a major limitation in using encoded handcrafted features and descriptors, as they often fail to 

capture some molecular structural properties that contribute to the antimicrobial activity of 

compounds. Deep learning-based architectures, for instance, Recurrent Neural Networks (RNN), 

Long Short-Term Memory, Convolutional Neural Networks (CNN), and Transformers are 

currently being developed and implemented to address that drawback. A recent study has 

demonstrated the efficiency of Deep Neural Networks at predicting hit compounds with desired 

chemical properties [7]. A significant advantage posed by deep learning-based architectures in 

QSAR modeling is the extraction of statistical dependencies directly from chemical scaffolds 

represented as SMILES notations, 3D images, or chemical graphs [3, 15]. 

Despite the rapid attention and influence of virtual screening tools in Mycobacterium tuberculosis 

(M. tb) research, several limitations persist. Some essential target proteins that confer virulence of 

the M. tb, such as MptpA and Pks13, have relatively small datasets, and some datasets lack crucial 

physiochemical information needed for designing novel and potent M. tb inhibitors. In this study, 

machine learning classifiers were utilized to develop single-target predictive models using the 

open-source Scikit-learn ML Python library (for training and prediction). The dataset's SMILES 

representation was augmented, and Long Short-Term Memory Networks (LSTMs) were employed 

to learn intrinsic features directly from the SMILES without relying on fixed descriptors and 

fingerprints (for training and prediction) [16]. 
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6.3 Materials and methods  

6.3.1 Experimental Dataset Retrieving 

To build a meaningful predictive model, the datasets should have more than five samples 

representing both inactive and active compounds. The datasets for virtual screening were retrieved 

from the ChEMBL bioassay protocol, which comprises a comprehensive list of HTS bioassays 

involving the target M. tb H37Rv strain. The concentration required to cause 50% inhibition (IC50) 

values were assigned as the criterion to classify the bioactivity of chemical scaffolds against 

desired target proteins. A python script was used to extract all the compounds and inhibition data 

from ChEMBL that satisfy the following criteria: Bioassays reporting experimental results for M. 

tb target proteins (InhA, mPtpA, and Pks13), in the form of IC50 values [1, 13]. The dataset was 

extracted and saved into a CSV file format using a proprietary script. The retrieved datasets were 

curated as described by Fourches et al. [17]. Briefly, the datasets were curated by removing 

compounds with missing features such as SMILES, IC50 (unit of activity), and duplicates.. The 

compounds in the dataset were annotated as either active if the IC50 value is ≤ 1000 nM or inactive 

if ≥ 10, 000 nM for all the selected protein targets. The criteria used for selecting the cut-off values 

are as follows: 1. Sub-micromolar range which ensures that the potent hits are rigorously searched 

2. Prevent any excessive imbalance between the number of molecules assigned as active against 

those labeled as inactive [1]. The compounds’ structures were standardized using MolStandardize 

SMARTS-based functionality in RDKit, to ensure rigorous deduplication, performance measures, 

consistent descriptor generation, and preserving stereochemistry. Some of the filters implemented 

include removing salt/solvent components; neutralizing compounds, removal of duplicate 

compounds, and Canonical SMILES were then formalized into specific tautomers using RDKit. 
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The IC50 values were converted to PIC50. The SMILES were processed by standardizing them into 

canonical SMILES strings and those that failed to convert were discarded. RDKit Salt Stripper 

was used to desalt input compounds (that is, remove the salt/solvent components). The input 

molecules were neutralized by addition/ removal of hydrogen atoms. Only one stereoisomers in 

the class was kept because they were regarded as duplicates. Canonical SMILES were then 

formalized into specific tautomers using RDKit. The IC50 values were converted to PIC50. 

6.3.2 Feature engineering and selection 

In building QSAR models, chemicals are encoded into a set of molecular descriptors. The 

descriptors of each compound were computed as described by [13]. Briefly, 12 different classes of 

molecular descriptors were considered, which include AtomPairs 2D count, AtomPairs2D, CDK 

graph only, Chemistry Development Kit (CDK) fingerprinter, CDK extended E-state, Klekota-

Roth count, Klekota-Roth, Molecular ACCess System (MACCS), PubChem, substructure count, 

and substructure. A total of 16,095 molecular features were obtained from the InhA library and 

underwent pre-processing, which involved removing 15 % of the features with less variance. In 

the resultant dataset, highly correlated features with an r2 greater than 0.8 were grouped together, 

and only the first feature from each group was retained for model development. Significant features 

were selected and noise reduction was applied during feature selection using the recursive feature 

elimination with cross-validation (RFECV) and a logistic regression estimator. The RFECV 

method with logistic regression as the estimator and 5-fold cross-validation. A total of 18 features 

were selected to be significant for model development. 
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6.3.3 Model development  

A total of 18 types of features including (FP93, FP97, FP182, FP250, FP464, FP536, FP579, 

FP868, ExtFP33, ExtFP99, ExtFP405, ExtFP511, ExtFP566, ExtFP630, ExtFP638, ExtFP710, 

GraphFP787, and MACCSFP133) were selected as input for all the machine learning classifiers. 

The dataset was divided into a 75 % training set and a 25 % test set. Machine learning models 

were trained using six different supervised classifiers Random Forest (RF), decision tree (DT), 

support vector machines (SVC), KNeighbors (KNN), logistic regression (LR), and multi-layer 

perceptron (MLP) implemented in the scikit-learn package. The machine learning models were 

developed in Anaconda Navigator software (v 2022.05) in Jupyter Notebook IDE (v 6.4.8) with 

Python 3.10.4 64-bit. The Python modules which were used include pandas (v 1.5.2). Given the 

setbacks posed by the imbalance between the number of active and inactive compounds in mPtpA 

and Pks13 datasets, a virtual library augmentation was performed as described previously [18] 

using Python script available on https://github.com/Ebjerrum/SMILES-enumeration. Thereafter 

LSTM was used to develop a predictive regression model using the augmented datasets using the 

following parameters:  LSTM layer with 32 neurons, dropout rate of 0.5, L1 and L2 regularization 

of 0.005 and 0.01, respectively, linear activation for the Dense layer, MSE is the loss function 

used, RMSprop optimizer with a learning rate of 0.005 was used for optimizing the model, and 

ReduceLROnPlateau callback for reducing the learning rate of the optimizer [18]. 

6.3.4 Model validation 

The predictivity of the models was evaluated using the confusion matrix, which comprises the 

number of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

samples. The accuracy of the models was then computed for the test and train sets (1). The receiver 
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operating curve (ROC) AUC was also estimated for the classification models. The standard 

deviation of the residuals (RMSE) was also computed (1). The correlations (R2 values) were 

computed for the LSTM regression model.  

 

𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ (𝑌𝑖̂ − 𝑌𝑖)2𝑛

𝑖=1 /𝑛                                                                                                                   (1) 

Accuracy = (TP + TN)/ (TP + TN + FP + FN)                                                                                                             (2) 

F1–score = 2P/ (2T + FP + FN
𝑇𝑃.𝑇𝑁−𝑇𝑃.𝐹𝑁

√[(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)]
                                                                                 (3) 

Recall = True Positives / (True Positives + False Negatives)                                                              (4) 

 

6.4 Results and Discussion 

6.4.1 Chemical space analysis 

QSAR models have gained a lot of attention in the development of therapeutic drugs with the aim 

of predicting the bioactivity of compounds against macromolecular druggable targets. These 

models are known to reliably predict measured endpoints, thus, are useful in virtual screening and 

optimizing the pharmacokinetics of compounds in drug design [19]. The distribution of active and 

inactive compounds in InhA, Pks13, and MptpA was visualized before the model because the 

distribution influences the model's predictability. The two datasets Pks13 and MptpA had a highly 

unbalanced ratio of active to inactive compounds Figure 6.1. Thus, only InhA dataset was used for 

the development of classification models.  
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Figure 6.1. Exploration data analysis of the distribution of the chemical space of: A. Pks13 B. 

MptpA   

Lipinski's rule-of-five (Ro5) descriptors are widely used in drug discovery to describe the drug-

likeness based on the following parameters: octanol-water partition coefficient (log P; <5), number 

of hydrogen bond acceptors (<10), number of hydrogen bond donors (>5) and molecular weight 

(<500). In this study, the activity class (pIC50) was plotted against the Ro5 descriptors to explore 

the chemical space of the entire InhA. The results in this study agree with studies that have 

demonstrated that the Ro5 does not significantly contribute to differentiating between active and 

inactive, that is macromolecular target-ligand relationship (Figure 6.2.A, Figure 6.2.B, Figure 

6.2.D). Ro5 may be used as one of the filtering parameters as it has been successfully implemented 

in describing most of the drugs in clinical use. 
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Figure 6.2. Exploratory data analysis of the chemical space of the target InhA.  A. octanol–water 

partition coefficient (log P; < 5). B. molecular weight (<500). C. Distribution of pIC50 values for 

the InhA dataset. D. number of hydrogen bond acceptors (<10). 

6.4.2 Model evaluation 

A comparison of machine learning algorithms reveals that the RF and DT models had a consistent 

performance on both the train and test sets, which suggests that they are generalizing well and not 

overfitting. Likewise, the SCV showed the same RMSE as RF and RT on the test. The LR and 

MLP exhibited the lowest RMSE for the test, implying that they are good at classifying between 

active and inactive values. 

Table 6.1. Comparison of the RMSE the classification models 

Models Structure 
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Set RF DT 

 

SVC KNN LR MLP 

Train 0.0340 0.0340 0.0454 0.0681 0.0511 - 

Test 0.0339 0.0339 0.0339 0.0508 0.0169 0.0169 

 

The performance and generalization of the classification models were evaluated on the train set 

and test. A summary of the statistical performance of the six machine learning models based on 

Recall, F1-score, Precision, AUC ROC, and Accuracy is shown in Table 6.2. Based on these 

results, it was observed that all the models performed well on both the train and test sets.  It is 

important to note that the test set results are relatively close to the train set results, indicating that 

the models are generalizing well and are not overfitting. The Random Forest, Decision Tree, and 

Logistic Regression models exhibit high accuracy and F1-score, indicating good overall 

performance. The Multi-Layer Perceptron exhibited high accuracy, F1-score, and AUC ROC, 

implying that it can strongly classify between active and inactive capabilities (Table 6.2). In 

addition, LR is the best model based on the trade-off of all metrics used including Recall, precision, 

AUC ROC, and accuracy (Table 6.2). 

Table 6.2. Comparison of the performance of six models based on AUC-ROC, precision, 

accuracy, F1-score, and Recall.  

 

 Models Recall  F1-score precision  AUC-ROC accuracy 

RF 

 Train set 0.9780 0.9673 0.95698 0.9655 0.9659 

 Test set 0.97 0.97 0.97 0.9660 0.9661 

DT       

 Train set 0.956 0.9663 0.988505 0.9666 0.9659 
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 Test set 0.97 0.97 0.97 0.9660 0.9661 

KNN       

 Train set 0.956 0.9355 0.9158 0.93096 0.9318 

 Test set 0.95 0.95   0.95 0.9464 0.9491 

LR       

 Train set 0.945 0.9503 0.9556 0.9489 0.9488 

 Test set 0.98 0.98 0.98 0.9821 0.9830 

MLP - - - - - - 

 Test set 0.9354 0.9508 0.9667 0.9942 0.9830 

SCV       

 Train set 0.9450 0.9556 0.9663 0.9548 0.9545 

 Test set 0.97 0.97 0.97 0.9642 0.9661 

 

 

In this study, all the datasets, particularly those for Pks13 and MptpA, are small in size and skewed, 

where active compounds are heavily underrepresented compared to inactive ones, as depicted in 

Figure 6.1. Thus, if models are developed from these two datasets they will lack robustness and 

may be biased toward the majority class (inactive compounds). To address this challenge, the 

SMILES representation of compounds within all datasets was augmented. An LSTM architecture 

was employed to develop a predictive regression model using the augmented datasets. However, 

the performance of the model was found to be unsatisfactory, as shown by the negative R2 values 

(Table 6.3 and Figure 6.3). The poor performance indicates that the model needs extensive 

hyperparameter tuning to obtain satisfactory results. A study by Bjerrum (2017) reported the initial 

failure of a similar model before extensive hyperparameter tuning [18].  

Table 6.3. Evaluation metrics of the multitarget LSTM models 

 Models RMSE  R2 

InhA    

 Train set 0.2013 -0.3140 
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 Test set 0.1863 -0.4529 

Pks13    

 Train set 0.3449 -0.6664 

 Test set 0.2896 -0.9904 

MptpA    

 Train set 0.1131 -0.0080 

 Test set 0.0982 -0.0707 

 

6.6. Additional challenges and future applications 

 

Small and skewed datasets for specific unexplored drug targets are common and they have a 

negative impact on the performance of machine learning models, especially deep learning models. 

LSTM and similar deep learning architectures are well-reported in capturing intrinsic patterns in 

data, but they require large amounts of data (compounds), to perform optimally. In this study, data 

augmentation did not yield meaningful results. This may be because the model requires extensive 

hyperparameter tuning. It is important to note that this study serves as a baseline from which 

further optimization, improvement, domain applicability assessment, and external validation of the 

models can be performed. However, the LR and MLP were promising as they showed good 

performance metrics. 
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Figure 6.3. Regression plots for the augmented datasets (A) InhA, (B) shows Pks13, and (C) shows MptpA.  

 

 

(A) (B)  
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Chapter 7 

General conclusion, limitations, and future directions 

7.1 Conclusion from this study  

This research aimed to integrate multi-disciplinary strategies to accelerate the discovery of agents 

for addressing the challenges posed by Mycobacterium tuberculosis (M. tb). Many studies have 

demonstrated that natural products from plants, bacteria, and fungi possess antimicrobial and 

anticancer activities. However, the traditional top-down approach of screening and identifying 

compounds is time-consuming. In this study, crude extracts from bacteria and plants showing in-

vitro antimycobacterial activity were tentatively identified. Subsequently, the compounds were 

virtually screened against essential M. tb targets. 

Notably, the compounds verticillin A were identified as potential molecular starting points for 

developing inhibitors and PknD, respectively. Additionally, vazabitide A, tentatively identified 

from bacteria found in gold mine tailings, was structurally modified in-silico using multi-synthetic 

routes to create a potent analog with a strong affinity to PknG. These findings demonstrate the 

efficient use of in-silico approaches to tailor and discover new analogs for further in-vitro and in-

vivo evaluation. 

The study also focused on the metabolic capabilities of Bacillus licheniformis (B. licheniformis) 

SAMN36381076, which exhibited antimycobacterial activity, in an attempt to expand the chemical 

space. The results revealed that B. licheniformis SAMN36381076 possesses biosynthetic gene 
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clusters associated with the production of broad-spectrum antibiotics. Furthermore, the metabolic 

potential of B. licheniformis SAMN36381076 can be harnessed in the biotransformation of lignin 

to produce bioactive compounds with therapeutic potential. 

In addition to natural products, a machine-learning-based predictive quantitative structure-activity 

relationship (QSAR) model was developed to screen compounds with activity against InhA, 

Pks13, and MptpA. The results showed that classic machine learning algorithms like logistic 

regression and multi-layer perceptron exhibited good performance and strong discriminatory 

capabilities. Machine learning based QSAR models can significantly accelerate targeted drug 

discovery. 

Limitations  

The linking of natural products synthesised by proteins encoded by biosynthetic gene clusters, 

such as Type II PKSs and terpene synthases, is a hurdle due to the lack of collinearity between the 

genes and the products. Another limitation is some compounds are produced at very low 

concentrations, which cannot be detected by the analytic methods. A total of 8 bacterial samples 

had 16 S rRNA sequences that had good quality, thus were used for constructing a phylogenetic 

tree. The datasets from Pks13 and MptpA were small, thus creating a machine learning model 

based on that data will be biased towards the predominant class. In this study, enumeration of the 

two datasets was performed but the dataset was still small for deep learning architecture.  

Future directions 

The study demonstrated efficacy and affinity of compounds from bacteria and plants in a crude 

mixture. In-vitro whole cell and protein validation of the pure compounds identified using virtual 

screening methods will be performed. The logistic regression and multi-layer perceptron models 
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constructed in the study may be further validation and used for predictive quantitative structure 

activity relationship classification tasks. When antimicrobial agents attack M.tb, it attempts to use 

multiple compensatory mechanisms to maintain fitness. When these compensatory mechanisms 

are insufficient, the tubercule only experiences growth retardation or death. Thus, incorporating 

DualSeq technologies will accelerate drug discovery by enabling researchers to precisely 

disentangle the genome-wide transcriptome dynamics between the host and bacteria pathogens 

simultaneously after treatment. Integrating data from transcriptome and functional profiles of M.tb  

after exposure to drugs with in-silico approaches such as molecular dynamics simulations and free-

energy perturbation (FEP+) simulations increases the chances of discovering novel targets and 

new mechanisms of action. The combination of metabologenomic data from B. licheniformis 

SAMN36381076 will increases the number of novel bioactive secondary metabolites that can be 

identified.
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Appendix A 

Molecular docking, molecular dynamics simulations and binding free energy studies of interactions between Mycobacterium 

tuberculosis Pks13, PknG and bioactive constituents of extremophilic bacteria  

Table A1. Tentatively identified metabolites present in bacterial extracts. 

Sample Classification Formula Tentative Identification 
Precursor m/z 

[M+H]+ 

m/z Error 

(ppm) 

S. mycarofaciens      

 Alpha amino acids and derivatives C7H10N2O2 
cyclo-L-Prolylglycine 

 

155.0811 

 

0.000404 

 

 Alpha amino acids and derivatives 
C14H16N2O3 

 
Maculosin 261.1234 0.8334 

 Aminocyclitol glycosides C19H37N5O6 Istamycin C1 432.2802 0.7802 

 Alpha amino acids and derivatives C11H18N2O2 L,L-Cyclo(leucylprolyl) 211.1437 0.8737 

 Alpha amino acids and derivatives C14H16N2O2 cyclo-(L-Phe-L-Pro) 245.1283  

  C9H11NO3 unknown 182.0815 -1.8241 

 Alpha amino acids and derivatives C11H14N4O2 NPA006809 235.1191 -0.6317 

  C11H16N2O2 Unknown 209.1278 3.1434 

 Organic acids and derivatives C12H21N3O4 Vazabitide A 272.1614 -3.3833 

 Glycosides C12H13N5O3 5’- deoxytoyocamycin 276.1082 

 

3.3286 

 

 Organoheterocyclic C15H21N3O2 Physostigmine 276.1714 -2.7133 

  C14H25NO6 unknown 304.1762 -2.4277 

 Organic acids and derivatives C10H18N2O3 Geralcin E 215.1393 -1.3127 

 Lipids and lipid-like molecules C11H20N2O3 α-Methyldethiobiotin 229.1558 -4.9573 

 Alpha amino acids and derivatives C10H16N2O2 cyclo(L-Pro-L-Val) 197.1294 -4.8225 
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 Alpha amino acids and derivatives 

 

C11H18N2O3 

 

Cyclo(2-hydroxy-Pro-R-Leu) 227.14 -4.3386 

 Alpha amino acids and derivatives C14H16N203 
Cyclo(D-Pro-L-Tyr) 

 
261.1239 -2.0422 

 

Table A1. Tentatively identified metabolites present in bacterial extracts. Continued. 

 

Sample 

 
Classification Formula Tentative Identification 

Precursor 

 m/z 

[M+H]+ 

m/z Error 

(ppm) 

S. mycarofaciens      

 Alpha amino acids and derivatives C11H18N2O2 Cyclo(D)-Pro-(D)-Ile 211.1447 -2.8348 

 Alpha amino acids and derivatives C14H16N2O2 Cyclo(D)-Pro-(D)-Phe 245.1285 -0.1876 

 Alpha amino acids and derivatives C11H14N4O2 JBIR-75 235.1191 0.8691 

 Alpha amino acids and derivatives C19H36N2O5 Lipoxamycin 373.2704 0.7704 

 Alpha amino acids and derivatives C10H16N2O2 
2-amino-N-(2’-(cyclohex-2’’-

enyl)acetyl)acetimide 
197.1291 0.8791 

      

B. subtilis      

 Alpha amino acids and derivatives C11H18N2O3 Cyclo-(L-Pro-4-OH-L-Leu) 227.1387 1.4102 

 Alpha amino acids and derivatives C11H18N2O2 
Cyclo(proline-leucine)   

 

211.1436 

 

0.0005043 

 

 Alpha amino acids and derivatives 
C7H10N2O2 

 
cyclo-L-Prolylglycine 155.0812 

0.000304 

 

 
Indoles 

 

C11H9NO2 

 

Indole-3-acrylic acid 

 

188.0704 

 

0.000205 

 

 
Alpha amino acids and derivatives 

 

C10H16N2O2 

 

cyclo(L-Pro-L-Val) 

 

197.128 

 

0.0004542 

 

 Alpha amino acids and derivatives C14H16N2O2 cyclo-(L-Phe-L-Pro) 245.128 1.8606 
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 Cyclic lipopeptide 
C76H117N11O20 

 
Plipastatin 1505.94 4.5387 

 Cyclic depsipeptides C51H89N7O13 Surfactin A  1008.658 3.9654 

Table A1. Tentatively identified metabolites present in bacterial extracts. Continued. 

 

Sample Classification Formula Tentative Identification 
Precursor m/z  

[M+H]+ 
m/z Error (ppm) 

B. subtilis      

 Cyclic lipopeptide 
C74H114N12O20 

 
Plipastatin 1492.4058 0.6058 

 Cyclic depsipeptides C51H89N7O13 Surfactin A  1008.658 3.9654 

 Cyclic depsipeptides C53H95N7O14 Gageostatin B 1054.704 -2.8688 

 Cyclic depsipeptides C52H91N7O13 Surfactin B 1022.676 4.1201 

 Cyclic depsipeptides 
C53H94N8O12 

 
Surfactin C1 1036.69 0.3245 

 Cyclic depsipeptides C53H89N13O8 Surfactin D 1036.703 -0.0161 

(B. licheniformis)      

 Valine and derivatives C5H11NO2 L-Valine 118.0858 3.8863 

  C11H19N3O2 Unknown 226.1555 -2.2061 

 
Alpha amino acids and 

derivatives 
C12H18N4O2 Cis-cyclo-(His,Leu) 251.1511 -3.3889 

  C12H23N3O2 Unknown 242.1862 3.0860 

  C32H43N5O8 Unknown 626.3157 4.3815 

 
Alpha amino acids and 

derivatives 
C10H16N2O2 Cyclo(L-Pro-L-Val) 197.1286 -0.7434 
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  C20H33N5O7 unknown 456.2437 3.4593 

 
Alpha amino acids and 

derivatives 
C11H18N2O3 

Cyclo(4-hydroxy-R-Pro-S-
Leu) 

227.1396 -2.5697 

 
Alpha amino acids and 

derivatives 
C14H16N2O3 Cyclo(D-6-Hyp-L-Phe) 261.1232 0.6489 

 

Table A1. Tentatively identified metabolites present in bacterial extracts. Continued. 

 

Sample 
 

Formulae Classification Tentative Identity 
Precursor m/z  

[M+H]+ 
m/z Error 

(ppm) 

(B. licheniformis)      

 C11H18N2O2 
Alpha amino acids and 

derivatives 
Cyclo(Pro-Leu) 211.1446 -2.3589 

 C12H14N2O  Unknown 203.1175 1.9272 
 C10H16N2O4  Unknown 229.1181 0.8040 
 C16H29N3O6  Unknown 360.2137 -2.1935 
 C29H82N34O8  Unknown 1035.713 -0.2300 

 C11H19N5O2 
Alpha amino acids and 

derivatives 
Cyclo(D-Arg-L-Pro) 254.1624 -4.9326 

 C11H19N3O2  Unknown 226.1555 -2.2061 

 C12H18N4O2 
Alpha amino acids and 

derivatives 
Cis-cyclo-(His,Leu) 251.1511 -3.3889 

 C53H89N13O8 Cyclic depsipeptides Surfactin D 1036.703 -0.0161 

 
C53H94N8O12 

 
Cyclic depsipeptides Surfactin_C1 1036.69 0.3245 

 C52H91N7O13 Cyclic depsipeptides Surfactin B 1022.676 4.1201 

 C8H16N4O3 N-acyl-L-alpha-amino acids 
(2S)-2-acetamido-5-

guanidino-valeric acid 
217.129 2.3912 

 C14H16N2O2 Dipeptides 
(3s,8ar)-3-benzyl-1-hydroxy-
3h,6h,7h,8h,8ah-pyrrolo[1,2-

a]pyrazin-4-one 
245.1282 1.0413 

 C16H22O4 Sesquiterpenoids mochiquinone 279.1594 -1.1303 
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Figure A1. A RMSD PknG Cα-atoms over a period of 200 ns MD simulation and B RMSD for PknG Cα-atoms. 
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Figure A2. RMSD Pks13 Cα-atoms over a period of 200 ns MD simulation and B. RMSF of Pks13 Cα-atoms. 
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Figure A3. Phylogenetic position of 8 isolated bacterial strains. A maximum likelihood (ML) tree was constructed based on 16 S 

rRNA sequences of good quality.  
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Figure A4: A. The RMSD of the co-crystalized ligand (7IJ) vs the docked co-crystalized ligand. B. The RMSD of the native co-

crystalized ligand (8ZC) vs the docked co-crystalized ligand (8ZC). Green represents the native co-crystalized ligand while red 

represents docked co-crystalized ligand. 
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Table S2. Computed orbital energies of the tentatively identified bacterial compounds.  

 

 

 

 

 

 

 

 

 

 

 

chemical potential (µ), chemical hardness (ɲ), chemical softness (s), electronegativity (ꭕ) and electrophilic index (Ꞷ). 
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gap ∆𝑬 

Ionisation 
energya 
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µ ɲ s ꭕ Ꞷ 

vazabitide A −0.31 −0.02 0.29 0.31 0.02 -0.16 0.15 6.83 0.16 0.09 

Cyclo(Pro-Leu) −0.31 −0.01 0.30 0.31 0.01 -0.16 0.15 6.72 0.16 0.09 

maculosin −0.28 −0.01 0.27 0.28 0.01 -0.15 0.13 7.51 0.15 0.08 

5'-
Deoxytoyocamycin 

−0.29 −0.03 
0.26 

0.29 0.03 
-0.15 0.13 7.65 0.16 0.10 

(3R,8aR)-3-benzyl-
2,3,6,7,8,8a-
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1,2-a]pyrazine-1,4-
dione 
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0.01 -0.16 0.14 6.94 0.16 0.08 

NPA006809 −0.27 −0.04 0.23 0.27 0.04 -0.16 0.12 8.61 0.16 0.10 

Cyclo(2-hydroxy-
Pro-R-Leu) 

−0.32 −0.01 0.30 
 

0.32 0.01 -0.17 
 0.15 6.59 0.17 0.09 

cyclo-(L-Pro-4-OH-
L-Leu) 

 
−0.31 

 
−0.01 0.29 

 
0.31 

 
0.01 -0.16 0.15 6.79 0.1 0.09 
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Figure A5. LC-MS-QTOF detection of natural products. A. Base peak intensity corresponding to B. subtilis. B. Base peak intensity 

corresponding to S. mycarofaciens. C. Base peak intensity corresponding B. licheniformis. 
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Appendix B 

In-silico screening of fungi secondary metabolites against Mycobacterium tuberculosis Ser/Thr kinases 

Table B1. Site-map scores PknD and PknE. 

Protein Site score DSCORE Size Volume 

PknD 0.997 0.991 98 342.657 

PknE 1.101 1.126 154 414.001 

DSCORE-druggability score  
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Figure B1. Root-mean-square deviation (RMSD) of the native PknA Cα-atom as a function of simulation time (200ns). B. Root-

mean-square fluctuation (RMSF) per residue of PknA. C. RMSD of PknB Cα-atoms as a function of simulation time (200ns). D. 

RMSF per residue of the native PknB.  
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Figure B2. A. Root-mean-square deviation (RMSD) of PknD Cα-atoms as a function of simulation time (200ns). B. Root-mean-

square fluctuation (RMSF) per residue of PknD. C. RMSD of PknE Cα-atoms as a function of simulation time (200ns). D. RMSF per 

residue of PknE. 
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Appendix C  

In-silico and in-vitro assessments of some Fabaceae, Rhamnaceae, 

Apocynaceae, and Anacardiaceae species against Mycobacterium 

tuberculosis H37Rv and triple-negative breast cancer cells 
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C.1 Abstract 

Medicinal plants play a huge role in the treatment of various diseases in the Limpopo province 

(South Africa). Traditionally, concoctions used for treating tuberculosis and cancer are sometimes 

prepared from plant parts naturally occurring in the region, these include (but not limited to) 
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Schotia brachypetala, Rauvolfia caffra, Schinus molle, Ziziphus mucronate, and Senna 

petersiana. In this study, the aim was to evaluate the potential antimycobacterial activity of the 

five medicinal plants against Mycobacterium smegmatis MC2155, Mycobacterium aurum A+, and 

Mycobacterium tuberculosis H37Rv, and cytotoxic activity against MDA-MB 231 triple-negative 

breast cancer cells. Phytochemical constituents present in R. caffra and S. molle were tentatively 

identified by LC-TOF-MS/MS as these extracts showed antimycobacterial and cytotoxic activity. 

A rigorous Virtual Screening Workflow (VSW) of the tentatively identified phytocompounds was 

then employed to identify potential inhibitor/s of M. tb pantothenate kinase (PanK). Molecular 

dynamics simulations and post-MM-GBSA free energy calculations were used to determine the 

potential mode of action and selectivity of selected phytocompounds. The results showed that plant 

crude extracts exhibited poor antimycobacterial activity, except for R. caffra and S. molle which 

exhibited average efficacy against M. tb H37Rv with minimum inhibitory concentrations between 

0.25-0.125 mg/mL. Only one compound with a favorable ADME profile, namely, norajmaline was 

returned from the VSW. Norajmaline exhibited a docking score of -7.47 kcal/mol, while, pre-MM-

GBSA calculation revealed binding free energy to be -37.64 kcal/mol. All plant extracts exhibited 

a 50% inhibitory concentration (IC50) of < 30 mg/mL against MDA-MB 231 cells. Flow cytometry 

analysis of treated MDA-MB 231 cells showed that the dichloromethane extracts from S. 

petersiana, Z. mucronate, and ethyl acetate extracts from R. caffra and S. molle induced higher 

levels of apoptosis than cisplatin. It was concluded that norajmaline could emerge as a potential 

antimycobacterial lead compound. Validation of the antimycobacterial activity of norajmaline will 

need to be performed in vitro and in vivo before chemical modifications to enhance potency and 

efficacy are done. S. petersiana, Z. mucronate, R.caffra  and S. molle possess strong potential as 
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key contributors in developing new and effective treatments for triple-negative breast cancer in 

light of the urgent requirement for innovative therapeutic solutions. 

Keywords 

Mycobacterium tuberculosis, Schinus molle, Rauvolfia caffra, LC-MS-QTOF, virtual screening, 

molecular dynamics simulations, MM-GBSA, triple-negative breast cancer, flow cytometry, 

antioxidants,  

Abbreviations 

MM-GBSA - molecular mechanics generalized born surface area; RMSD - root mean square 

deviation; ADME - absorption, distribution, metabolism, and excretion; RMSF - root mean square 

fluctuation; LC-TOF-MS/MS - liquid chromatography-tandem quadrupole time-of-flight mass 

spectrometry; OPLS4 - optimized potentials for liquid simulations 4; NPT- isothermal isobaric 

ensemble; TIP3P – transferable intermolecular potential 3P  

C.2 Introduction 

Drug resistance in breast cancer, and the escalating spread of multidrug-resistant Mycobacterium 

tuberculosis (M. tb) strains is a major concern because it is straining the healthcare systems, 

especially that of developing countries. Current tuberculosis (TB) and cancer chemotherapies in 

clinical use have severe side effects that often result in the development of other health-related 

complications. Southern Africa is one of the heavily affected regions, due to a combination of 

various factors which include a plethora of factors usually associated with Low and Income-

Middle-Class Countries (LIMCC) including, inadequate health facilities, HIV-TB co-infection, 

and socioeconomic factors [1–3]. It is therefore critical to develop new effective communicable 
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and noncommunicable chemotherapeutic agents that will be easily accessible to marginalized 

communities [4]. 

For most people in rural areas, the traditional pharmaceutical system is complemented by modern 

treatment procedures thus, broadening the scope of healthcare solutions usually available to 

individuals in urban areas [2, 5, 6]. Comprehensive knowledge of the diverse botanical landscape 

provides a baseline for prescribing complex concoctions for treating and curing various ailments. 

Due to strong cultural beliefs in communities embracing indigenous knowledge systems, it is not 

surprising to find that ethnobotanical treatment modalities are strongly adhered to [7–9]. As such, 

various extracts derived from plants such as Schotia brachypetala, Senna petersiana, Ziziphus 

mucronata, Rauvolfia caffra, and Schinus molle, are reported to be widely used as medicinal 

remedies in these communities. Traditional therapies constituting R. caffra have been reported as 

prescriptions for the treatment of ailments such as microbial infections, malaria, diabetes, diarrhea, 

skin infections, worm infections, and coughs [10, 11]. Oils extracted from S. molle have been 

associated with nutritional, antimicrobial, anti-inflammatory, anti-depressant, astringent, 

stimulant, and anti-cancer activity [12, 13]. Extracts from the bark of Z. mucronata were shown to 

exhibit broad-spectrum antimicrobial activity [14]. Ethnobotanical knowledge can be used to 

harness the prominent plant arsenal by selecting the species of plants that are prescribed as 

antibacterial remedies.  

With the increase of drug-resistant M. tb strains, the adoption of in-silico techniques enables 

efficient and cost-effective identification of potential lead compounds that can further be 

developed into potent drugs [15].  Targeting M. tb enzymes that participate in essential 

biosynthetic pathways with bioactive phytocompounds may lead to the discovery of novel 
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scaffolds with novel mechanisms of action. M. tb pantothenate kinase (PanK) is a critical 

regulatory target that catalyzes the first and rate-limiting step of the biosynthesis of the CoA 

pathway. CoA is a crucial cofactor for the survival of the bacilli because it is vital for enzymes 

involved in lipid biosynthesis and catabolism. Lipids are essential building blocks for the cell 

envelope and serve as M. tb virulence factors [16, 17]. From this perspective, a targeted in-silico 

exploration of the ethnopharmacological derived compounds present in crude extracts against M. 

tb PanK may identify promising lead scaffolds. Herein, the study aims to evaluate the 

antimycobacterial activity of the crude extracts of S. brachypetala, S. petersiana, Z. mucronata, R. 

caffra, and S. molle and provide a detailed insight into compounds that could have complimentary 

conformational features required for binding in the PanK domain. Virtual screening workflow, 

molecular dynamics (MD) simulations, and MM-GBSA binding free energy were performed to 

reveal a new dimension on the dynamics of targeting the PanK with plant-derived ligands.  

Breast cancer, particularly the aggressive triple-negative breast cancer subtype, remains a major 

worldwide health concern [18]. It is critical to develop innovative treatment techniques against 

this subtype. The plant species selected in this study are abundant in structurally diverse secondary 

metabolites, that is, indole alkaloids, phenols, terpenoids, and flavonoids. These secondary 

metabolites are well known for possessing anticancer activity [19, 20], thus, the second aim of the 

study was to explore the antiproliferative activity of the crude extracts of S. brachypetala, S. 

petersiana, Z. mucronata, R. caffra, and S. molle against MDA-MB 231, a triple-negative breast 

cancer cell line. Understanding their antiproliferative effects could pave the way for the 

development of new therapeutic interventions for breast cancer.  
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C.3 Materials and methods 

C.3.1 Plant collection and preparation 

In this study medicinal plants were collected in Tshififi, Siambe, and Lufule villages, Vhembe 

district, Limpopo province, South Africa. A voucher specimen was identified and authenticated 

by Professor P. Tshisikhawe at the UNIVEN herbarium, (Botany Department, University of 

Venda). Plant samples were separated into leaves, bark, and roots. The different parts of the plants 

were then dried at ambient temperature in the lab for two weeks. Thereafter, they were separately 

ground into a fine powder and kept in airtight containers in the dark until use. The crude ingredients 

present in all the plant material were exhaustively extracted by dissolving ten grams of each plant 

material in 100 mL of hexane, chloroform, dichloromethane, ethyl acetate, acetone, ethanol, and 

methanol (Merck, Kenilworth, NJ; USA). The solution was shaken for 1 hour at 200 rpm. The 

supernatant was then filtered into pre-weighed bottles and the process was repeated three times. 

Thereafter, crude plant extracts were combined and dried under a fume hood at room temperature 

and then stored at 4 °C until further analysis. 

C.3.2 Antimycobacterial minimum inhibitory concentration assay 

The antimycobacterial activity was performed to evaluate the activity of the crude extracts against 

Mycobacterium smegmatis MC2155, Mycobacterium aurum A+, and M. tb H37Rv as described by 

[21]. Briefly, the Mycobacteria were cultured in Middlebrook 7H9 (Fluka M7H9) broth 

supplemented with 0.2% glycerol, 0.05% Tween 80, and 10% Middlebrook growth supplement 

OADC (oleic acid, albumin, dextrose, and catalase) at 37°C. The minimum inhibitory 

concentration (MIC) to obstruct M. smegmatis, M. aurum, and M. tb growth were determined 

following a procedure described by Eloff (1998), with a modest change for Mycobacteria. Dried 
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plant extracts were redissolved in dimethyl sulfoxide (DMSO) to a final concentration of 4 mg/mL 

which was followed by a twofold serial dilution in 96-well microtiter plates to achieve a series of 

concentrations ranging from 0.2-2 mg/mL. DMSO (negative control) and isoniazid (positive 

control).  M. smegmatis and M. aurum plates were incubated at 37°C for 72 hours, while M. tb 

plates were incubated for seven days before adding 20 µL of 0.02% resazurin. The non-pathogenic 

strains were incubated for a further four hours and M. tb for a further 24 hours. Growth inhibition 

was indicated by a constant blue resazurin color while a pink color indicated the inactivity of 

extracts against Mycobacteria. All extracts were tested in triplicate. 

 C.3.3 Tentative identification of phytochemicals 

A liquid chromatography connected to quadrupole time-of-flight with tandem mass spectrometry 

(LC-QTOF-MS/MS) was employed to identify the plant crude extracts as described Tapfuma et 

al., (2022) [21]. The system consists of a Waters Acquity ultra-performance liquid chromatography 

(U-PLC) coupled to Water Synapt G2 quadrupole time-of-flight mass spectrometer (Milford, MA, 

USA) and an Acquity photo-diode array (PDA) detector. The plant metabolites were 

chromatographically separated using a Waters UPLC BEH C18 column (1.7-µm particle size, 

2.1× 100 mm, Waters Corp) with the following elution gradient., 95 % of formic acid (0.1 % 

(v/v)) as eluent A and 5 % acetonitrile as eluent B. The spectral data were acquired at 150 to 1500 

m/z in positive centroid mode. Ionization was achieved with an electrospray source using a cone 

voltage of 15 V and capillary voltage of 2.5 kV. Nitrogen was used as the desolvation gas at 650 

L/hr and the desolvation temperature was set to 275 ℃. The raw data containing spectral data were 

converted to .abf format. The .abf files were processed by MS-Dial module (version 4.24) and MS-

Finder for tentative identification of compounds using the following parameters: error ppm < 7.0, 

[M+H]+ adducts ions, KNapSacK (http://www.knapsackfamily.com/KNApSAcK_Family/), 
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Metfrag (https://msbi.ipb-halle.de/MetFrag/), and online published databases were used for 

tentatively identifying compounds.  

C.3.4 Virtual Screening of Tentatively identified compounds 

C.3.4.1 Receptor preparation 

The raw crystal structure of M. tb pantothenate kinase (PanK) PDB:4BFX was downloaded from 

the protein data bank (https://www.rcsb.org/structure/4BFX). The structure was prepared as 

described [22] in Schrödinger (Release 2021-1) using the Protein Preparation Wizard module. 

Briefly, hydrogen atoms were added, the loop region was refined, H-bond assignments were 

optimized, and energy was minimized by an OPLS-4 force field. The coordinates of the co-

crystallized ligand (1f) [23] were used for the generation of the binding domain using the Receptor 

Grid Generating module (Schrödinger Release 2021-1).  

C.3.4.2 Ligand preparation 

The compounds were prepared as previously described [21]. Briefly, the LigPrep module [24] 

(Schrödinger Release 2021-1) was used to prepare the compounds following these parameters: 

energy minimized by an OPLS4 force field, generate ionization states at pH 7.0 +2.0, and generate 

at most 32 conformers per each ligand to develop a new set of 640 possible compounds. The 

prepared library was subjected to a molecular docking-based virtual screening.  

C.3.4.3 Structure-based Virtual Screening of Compounds 

A Virtual screening Workflow (VSW) comprised of the following modules (Schrödinger Release 

2021-1) [25]: QickProp, Lipinski’s Rule of 5 filters, high-throughput virtual screening (HTVS), 

standard precision (SP), and lastly extra-precision, which were used for screening the library of 

phytocompounds to obtain a hit list. QickProp module filtered the phytocompounds based on 
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features of ADME (absorption, distribution, metabolism, and excretion). The obtained compound 

list was further subjected to Lipinski’s rule of five filters. Using the Glide module, the returned 

compounds were subjected to three-step docking regimes with increasing precision. Briefly, the 

compounds were docked against PanK using high-throughput virtual screening (HTVS), standard 

precision (SP), and lastly extra-precision (XP). Only 20 % of the HTVS docking hits were applied 

to SP docking. Only 20% of SP docking outputs were subjected to XP docking, from which 30 % 

were retrieved as described by [26]. The pre-MM-GBSA (Molecular Mechanics, the Generalized 

Born model, and Solvent Accessibility) was performed to evaluate the free binding energy (ΔGbind) 

of the protein-ligand complex/es as described by [25]. 

C.3.5 Molecular Dynamics Simulation 

The selected poses for the PanK-phytocompound complex, PanK-control ligand (1f) complex, and 

native unbound PanK conformations were subjected to molecular dynamics (MD) simulations 

using Desmond (Schrödinger Release 2021-1) to evaluate the stability of the docked complex. A 

total of three separate MD systems were created according to the same parameters as described by 

[21]. Briefly, the protein-ligand complex was explicitly solvated by enclosing it in an orthorhombic 

TIP3P water box with the protein surface atoms 10 Å away from the box boundary. The system 

was neutralized by adding 0.15 M counter ions (Na+ and Cl-). All systems had implemented 

periodic grid conditions, long-range electrostatic interactions were generated for the particle-mesh 

Ewald method with a non-bonding cut-off distance of 12 Å. The systems were energy minimized 

and equilibrated at constant pressure and temperature (1.01325 bar and 303.15K, respectively) 

with Nose-Hoover thermostat, and Martyna-Tobias-Klein as the default barostat with a 2.0 ps 

interval by applying an isotropic coupling style. The internal energy was stored for every 1000 ps 

of the actual frame. The NPT ensemble MD simulations were performed for a duration of 50ns. 
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The stability for each complex was evaluated by computing the root-mean-square deviation 

(RMSD), and root-mean-square fluctuations (RMSF). The molecular mechanics generalized Born 

surface area (MM-GBSA) (ΔGBind) (kcal/mol) binding free energies were computed based on 

Molecular Mechanics + Implicit Solvent Energy Function [27]. 

C.3.6 Determination of cytotoxic effects of plant crude extracts 

The cytotoxic effect of plants against Triple-negative breast cancer cells (MDA-MB-231 was 

conducted as described by [28] with modifications. Triple-negative breast cancer cells (MDA-MB-

231, passage number 43) were donated by Prof Anna-Mart Engelbrecht, Stellenbosch University, 

South Africa. Briefly, cells were seeded in a 96-well plate at a density of 6 000 cells/well and left 

to attach for 24 hours. The plant crude extracts were dissolved in dimethyl sulfoxide (DMSO) to 

form a 100 mg/mL stock solution. MDA-MB-231 cells were treated with plant crude extracts 

(62.5-250 μg/mL) and cisplatin (reference drug at 3 μg/mL, Sigma Aldrich, USA) for 48 hours. 

Spent Dulbecco's Modified Eagle Media (DMEM), supplemented 10% foetal bovine serum 

(DMEM complete media) was removed and replaced with 0.5 mg/mL 3-(4,5-Dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma Aldrich, USA) dissolved in DMEM complete 

media. After four hours of incubation, MTT solution was removed, and the formazan product 

dissolved in 100 μL DMSO. Absorbance was measured at 540 nm using a microtiter plate reader 

(FLUOstar Omega, BMG Labtech, Germany) [28]. All incubations were done in a humidified 

incubator (ESCO, Vivid Air) with 5% CO2 at 37 °C. 

C.3.7 Cytotoxic effects of plant crude extracts against HepG2/C3A and Vero cell lines 

The cytotoxic effect of HepG2/C3A and Vero cells were studied as described by [29, 30] with 

modifications. In brief, Hep G2 clonal derivatives (C3A) with passage number 14 and Vero, 
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normal monkey kidney cells with passage number 11 were used to evaluate the cytotoxicity of 

plant extracts. These cells were purchased from Cellonex, South Africa by Prof Maryna van de 

Venter, Nelson Mandela University South Africa. Cells were cultured at 37°C in a humidified 

incubator with 5% CO2 in 10 cm culture dishes.  

The complete growth medium consisted of Eagles Minimal Essential Media (EMEM) 

supplemented with 10% FBS, 10% penicillin-streptomycin (penstrep), and 1x Non-Essential 

Amino Acid (NEAA), all purchased from GE Healthcare Life Science (Logan, UT, USA), were 

used to grow the HepG2 cells, a human hepatoma cell line, and DMEM supplemented with 10% 

FBS and 10% penstrep for Vero cell lines. Cells were seeded into 96-well microtiter plates at a 

density of 4 000 cells per well using their respective medium and incubated overnight at 37°C, 5% 

CO2, and 100% relative humidity to allow for cell attachment. Thereafter, cells were treated with 

100 µL aliquots of extracts at 50, 100, and 200 μg/mL concentration and 10, 20, and 40 μM 

melphalan (positive control) and incubated for a further 48 hours. After incubation, the treatment 

medium was aspirated from all the wells and 100 μL of Hoechst 33342 nuclear dye (5 μg/mL) was 

added to each well and incubated for 20 minutes at room temperature. Cells were stained with 

propidium iodide (PI) at 100 μg/mL to enumerate the proportion of dead cells within the 

population. Cells were imaged immediately after adding PI, using the ImageXpress Micro XLS 

Widefield Microscope (Molecular Devices) with a 10x Plan Fluor objective and DAPI and Texas 

Red filter cubes [29, 30]. 

C.3.8 Annexin V-FITC/PI apoptosis assay 

MDA-MB-231 cells were seeded at a density of 2.5 x 105 cells/well in a 24-well plate and 

incubated overnight at 37 °C in a humidified incubator with 5% CO2. Cisplatin (10 μM/3 μg/mL) 
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and plant crude extracts at their respective IC50 values were used to treat the cells for 48 hours at 

37 °C in a humidified incubator (ESCO, Vivid Air) with 5% CO2. Following the incubation period, 

the cells were detached by adding 80 μL of AccutaseTM for 10 minutes or until cells were detached. 

One milliliter complete media were added to each well and incubated at 37 °C in a humidified 

incubator (ESCO, Vivid Air) with 5% CO2 for an hour to allow cells to recover. The cells 

transferred to polypropylene flow cytometry tubes and harvested by centrifugation (1500 rpm) for 

5 minutes at 4°C. The pellets were washed with ice-cold DMEM complete media and centrifuged 

(1500 rpm) for 5 minutes at 4°C. The Annexin V FITC/PI apoptosis detection kit was used to stain 

the cells as per manufacturer’s instructions (Invitrogen, ThermoFisher Scientific). The pellets were 

redissolved in ice-cold 1x binding buffer. To each tube, 1 μL of Annexin V FITC and 5 μL of PI 

were added. Control tubes with single stains were also added and incubated in the dark for 15 

minutes. After incubation, 400 μL of 1x annexin-binding buffer was added and gently mixed. The 

samples were read on a BC DxFlex flow cytometer (Beckman Coulter, USA) [31]. 

C.3.9 Statistical analysis 

The statistical analysis of the behavioural data was conducted using the student t-test with 

GraphPad Prism (GraphPad Software Inc., San Diego, CA) and Microsoft Excel. The mean values 

± standard deviation (SD) was reported for all data. Statistical significance was determined at a 

significance level of p ≤ 0.05, indicating that differences with this level of probability or lower 

were considered statistically significant. 
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C.4 Results   

C.4.1 Antimycobacterial activity 

Crude extracts were extracted using seven different solvents of varying polarity. A total of 30 

extracts obtained from S. brachypetala, R. caffra, S. molle, Z. mucronata, and S. petersiana were 

evaluated for antimycobacterial activity against M. smegmatis (MC2155), M. aurum (A+), and M. 

tb (H37Rv). The MIC value of >2 mg/mL was selected as a cutoff for all Mycobacteria strains 

susceptibility. The crude extracts exhibited varying antimycobacterial activity (Table C.1, Table 

C.2, and Table C.3). All the extracts exhibited poor inhibition against M. smegmatis. In contrast, 

the control (isoniazid) showed an MIC of 0.03 mg/mL against M. smegmatis (Table C.1).  

Table C.1. Minimum inhibitory concentration (MIC) of crude plant extracts against M. 

smegmatis MC2155. 

* INH (isoniazid) was used as a positive control. 

All the crude extracts from R. caffra showed strong efficacy against M. aurum A+ (Table 7.2). 

While, hexane, chloroform, dichloromethane, ethyl acetate, acetone, and methanol extracts of S. 

Plant species  

Extracts (mg/mL) 

Hexane Chloro-

form 

Dichloro-

methane 

Ethyl 

acetate 

Acetone Ethanol Methanol INH 

S. brachypetala >2 >2 >2 >2 >2 >2 >2 - 

R. caffra >2 >2 >2 >2 >2 >2 >2 - 

S. molle >2 >2 >2 >2 >2 >2 >2 - 

Z. mucronata >2 >2 >2 >2 >2 >2 >2 - 

S. petersiana >2 >2 >2 >2 >2 >2 >2 - 

*Control - - - - - - - 0.03 

Stellenbosch University https://scholar.sun.ac.za



 
 
 

 251 

molle strongly exhibited M. aurum A+, dichloromethane and methanol crude extracts from Z. 

mucronata showed potent efficacy against M. aurum A+. While for S. petersiana only the 

dichloromethane extract strongly inhibited M. aurum A+, S. brachypetala exhibited poor 

inhibitory activity against M. aurum A+. 

Table C.2. Minimum inhibitory concentration (MIC) of crude plant extracts against M. aurum 

A+. 

Plant species 

Extracts (mg/mL) 

Hexane Chloro-

form 

Dichloro-

methane 

Ethyl  

acetate 

Acetone Ethanol Methanol INH 

S. brachypetala >2 2 >2 >2 >2 >2 >2 - 

R. caffra 0.13 0.04 0.07 0.07 0.13 0.5 0.25 - 

S. molle 0.04 0.02 0.25 0.02 0.04 >2 0.04 - 

Z. mucronata 2 2 0.04 >2 2 >2 0.25 - 

S. petersiana >2 2 0.04 >2 >2 >2 >2 - 

*Control - - - - - - - 0.03 

* INH (isoniazid) was used as a control. 

 

Crude extracts from R. caffra and S. molle were observed to possess antimycobacterial activity for 

M. tb (Table C.3). S. molle exhibited higher anti-M. tb activity (MIC = 0.125 mg/mL) than R. 

caffra (MIC = 0.25 mg/mL). R. caffra and S. molle crude extracts may possess useful bioactive 

constituents that may have the potential to serve as drug leads. Plants are undoubtedly an 

invaluable bio-factory comprised of numerous diverse bio-active ingredients. Therefore, the 

constituents present in crude extracts of R. caffra and S. molle were tentatively identified by 

untargeted LC-QTOF-MS/MS.  

Table C.3. Minimum inhibitory concentration (MIC) of crude plant extracts against M. tb 

H37Rv. 

Plant species 

 Extracts (mg/mL) 

Hexane Chloroform Dichloro-

methane 

Ethyl 

acetate 

Acetone Ethanol Methanol INH 

S. brachypetala >2 >2 >2 >2 >2 >2 >2 - 
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R. caffra >2 >2 0.25 >2 >2 >2 >2 - 

S. molle >2 >2 0.125 >2 >2 >2 >2 - 

Z. mucronata >2 >2 >2 >2 >2 >2 >2 - 

S. petersiana >2 >2 >2 >2 >2 >2 >2 - 

*Control - - - - - - - <0.31 

* INH (isoniazid) was used as a control. 

C.4.2 Tentatively Identification of phytocompounds  

The active phytoconstituents present in the R. caffra and S. molle crude extracts were tentatively 

identified using LC-MS-QTOF. Basically, the tentatively identified phytocompounds exhibited 

varied mass-to-charge ratio (m/z) values ranging from 117.1031 to 513.2248. The tentatively 

identified compounds are represented in Table C.4. The classes of constituents present in R. caffra 

were mostly alkaloids, terpenoids, indole alkaloids, and glycoalkaloids (Table C.4), while for S. 

molle the compounds present were mostly terpenoids, terpenes, sesquiterpenes, and triterpenoid 

saponins. 

Table C.4. Tentatively identified compounds present in R. caffra crude extract. 

RT 

(min) 

Peak 

height 

Precursor 

m/z 

Molecular 

formula 

Error 

ppm 

Compound Class 

2.8152 1644.42 171.1031 C9H14O3 8.9362 Boonein Terpenoid 

3.4693 7986.07 313.1922 C19H24N2O2 3.6591 Norajmaline Indole Alkaloid 

3.9888 8118.74 513.2248 C27H32N2O8 3.2305 Raucaffricine Glucoalkaloid 

4.4711 12250.83 351.1713 C21H22N2O3 2.7935 Raucaffrine Alkaloid 

4.0898 5624.79 327.2076 C20H26N2O2 2.7352 Ajmaline Alkaloid 

4.2318 2396.07 355.2032 C21H26N2O3 4.4509 Acetylnorajmaline Alkaloid 
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4.3590 2533.79 367.1664 C21H22N2O4 3.1756 Apodine Alkaloid 

4.7589 3064.10 339.1703 C20H22N2O3 -0.056 Akuammicine N-oxide Alkaloid 

4.8187 13412.6 353.1863 C21H24N2O3 0.9371 Raucaffrinoline Indole Alkaloid 

4.8710 1292.01 323.1758 C20H22N2O2 1.2253 Norpurpeline Indole Alkaloid 

5.0131 2402.98 349.1563 C21H20N2O3 4.6712 Alstonine Indole Alkaloid 

5.4280 2063.06 383.1618 C21H22N2O5 4.3115 Apodinine Alkaloid 

7.1101 1719.26 357.1816 C20H24N2O4 2.0045 Compactinervinete Alkaloid 

 

Table C.5. Tentatively identified compounds present in S. molle crude extract. 

RT 

(min) 

Peak 

height 

Precursor 

m/z 

Molecular 

formula 

Error 

ppm 

Compound Class 

5.4580 4281.99 237.1853 C15H24O2 1.6611 Aubergenone Sesquiterpene 

6.1084 3686.87 203.18 C15H22 2.8201 Beta-Spathulene Sesquiterpene 

10.6350 6452.70 471.3477 C30H46O4 1.7269 Semialatic acid Triterpene 

9.3080 3843.11 205.1953 C15H24 1.0867 Beta-Caryophyllene Terpene 

9.9397 11675.21 453.3369 C30H44O3 1.2749 Pistacigerrimone  Triterpenoid 

11.6107 1499.63 455.3534 C30H46O3 3.1360 Isomasticadienonic acid Triterpenoid 

12.0929 1943.07 457.3684 C30H48O3 1.7010 Oleanolic acid Triterpenoid saponin 

13.2405 1172.57 441.372 C30H48O2 -1.6018 28-Hydroxy-beta-

Amyrone 

Triterpenoid 

 

C.4.3 In-silico screening of the tentatively identified compounds  

The library of the tentatively identified compounds was screened by a Virtual Screening Workflow 

(VSW) (Qikprop, Lipinski’s rule of 5, HVTS, SP, and XP docking) to filter and reduce false 

positive hit compounds (Table C.6). The XP docking was performed to precisely search for the 

best protein-ligand complementarity conformation. Norajmaline was returned as a potential hit 
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from the extensive filtering stages and exhibited an XP docking score of –7.465 kcal/mol (Table 

C.7). The best-hit compound, norajmaline, returned from the rigorous VSW, exhibited zero 

violations for Lipinski’s rule of five, the percentage human oral absorption was 63.99%, Van der 

Waals surface area of polar nitrogen and oxygen atoms (PSA) was 61.53, QPlogS was –0.81 , 

Solvent accessible surface area (SASA) was 532.97, and the dipole value was 1.59. Overall, the 

ADME values were promising as they were all in the recommended ranges. The pre-MD 

simulation binding energy (ΔGBind) of norajmaline-PanK was -37.64 kcal/mol. 
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 1 

Table C.6. The predicted ADME features (SASA, dipole, Qplogs, % Human Oral Absorption and PSA), and the molecular docking 2 

XP score and Pre-MM-GBSA (ΔGBind) values of norajmaline against 4BFX. 3 

Compound 
ID 

mol MW 
(170-725) 

Dipole 
(1.0–12.5) 

SASA *QplogS 
(− 6.5 to 0.5) 

PSA 
(7.0–200.0) 

Volume %Human Oral 
Absorption 

Rule 
of 

Five 

XP 
GScore 

(kcal/mol) 

ΔGBind 
(kcal/mol) 

Norajmaline 318.46 1.59 532.97 -0.81 61.53 991.26 63.99 0 -7.47 -37.64 

*QPlogS-(Predicted aqueous solubility, log S. S in mol dm–3 is the concentration of the solute in a saturated solution that is in equilibrium with the crystalline 4 

solid.)5 
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Analyses of the best XP docked configuration depicted in Figure C.1, revealed that norajmaline 

is buried in the hydrophobic internal cavity of the protein. The main driving forces involved in 

the binding of norajmaline against amino acid residues of PanK were predicted to be 

predominantly hydrophobic interactions (Try257, Met242, Phe239, Tyr235, Ala100, Val99, 

Ile276, Met144, Ile272, Phe254, Try177, and Tyr1820). In contrast, ASN277 was involved in 

hydrogen bonding, while (Arg238, His179, and Lys147) were involved in positively charged 

interactions and polar interactions (Asn280, Asn277, and Hie145). PanK-norajmaline complex, 

unbound PanK, and PanK-control ligand (1f) complex were further subjected to molecular 

dynamics simulations and free-binding energy calculation for the complex. 

 

 

Figure C.1. Docked orientation and interaction of norajmaline with PanK residues in the 

binding site.  

MD simulations were performed to provide a comprehensive insight into the structural 

dynamics of the binding of norajmaline in the hydrophobic cavity of the PanK. Root Mean 

Square Deviation (RMSD) of the PanK-norajmaline complex and the unbound cα atoms were 
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performed to evaluate the stability of the protein-ligand complex. The RMSD profile of bound 

PanK Cα-atoms shows a steep increase in deviation from 1.6 Å at 0 ns to approximately 2.6 Å 

at 8 ns, was then maintained between 2.4 Å and 2.6 Å up to 30 ns and then gradually decrease 

to 2.3 Å up to 50 ns as depicted in Figure C.2.A. The sharp increase observed from 0 ns to 8 

ns indicates a change in PanK confirmation as it interacts with the norajmaline (Figure C.2.A). 

The Norajmaline RMSD (Figure C.2.A) was maintained at approximately 3.0 Å during the 50 

ns simulation, which illustrates the ligand was fairly undergoing slight conformational changes. 

The RMSF of PanK illustrates a large fluctuation at residues between 0 and 100, while smaller 

fluctuations were observed from residues 100-300 which were participating in interacting with 

the ligand (Figure C.2.B). According to the RMSD, the protein-ligand complex was observed 

to be stable during the 50 ns simulation (Figure C.2.A).  

 

Figure C.2. Molecular dynamics simulation of PanK complexed with norajmaline. In the 

figure, A. shows the RSMD of C-α-residues of PanK observed during a 50 ns simulation. B. 

shows the RMSF of C-α-residues of PanK, where the green lines indicate the residues of 4BFX 

in contact with the ligand during the simulation. 

The RMSD plots of native PanK Cα-atoms without a bound ligand were constant between 1.25 

Å and 2.00 Å (Figure C.3.B). The RMSF of the unbound PanK residues was below 2.5 Å 
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(Figure C.3.B). A comparison of the RMSDs of the PanK-norajmaline complex and that of the 

unbound native PanK indicated that the binding of the ligand results in changes in slight protein 

confirmation. Likewise, the RMSF of the two systems showed that smaller fluctuations were 

observed on PanK C-α-residues that interacted with the ligand's atoms (Figure C.2.B, and 

Figure C.3.B).  

 

Figure C.3. Simulated native unbound PanK. In A. the RMSD of PanK C-α-residues observed 

during a 50 ns simulation is shown. In B. the RMSF of PanK C-α-residues is shown. 

The interaction of PanK-norajmaline was mainly due to hydrogen bonds (His145, Tyr235, and 

Asn277), hydrophobic contacts (Val99, Try235, Phe239, Met242, Phe247, Phe254, Try257, 

Ile272, Ile276), ionic interactions (Tyr 182) and water bridges (His145, Lys174, Try182, 

Try257, and Asn277) (Figure C.4.A). The contacts which occurred for more than 30 % of the 

simulation time are charged (occurrence= 39%), polar interactions (occurrence= 64%), and 

hydrophobic interactions were also predominant since the ligand was in a hydrophobic pocket 

of PanK as depicted in Figure C.4.B.  
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Figure C.4 In A. the interaction fraction of residues with norajmaline is displayed. In B,the 

occurrence of the between the ligand and the PanK residues is displayed. 

 C.4.4 Post-MD simulations MMGBSA (molecular mechanics generalized born surface 

area) binding energy calculations 

The post-MD simulations binding free energy (ΔGBind) of the PanK-norajmaline complex were 

evaluated using the MMGBSA method. PanK-norajmaline complex exhibited an MMGBSA 

ΔGBind  energy of -58.73 kcal/mol (Table C.7), while the control ligand exhibited -67.70 

kcal/mol (Table C.7). The MMGBSA supports the stability of the complex as shown in RMSD 

plots (Figure C.2.).  

Table C.7.  MM-GBSA (molecular mechanics generalized born surface area) ΔGBind 

calculations 

Compound ID MM-GBSA (kcal/mol) ΔGBind 

Control ligand (1f) -67.70 

Norajmaline -58.73 
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C.4.5 Cytotoxicity effects of crude plant extracts against MDA-MB 231 cells 

The crude extracts from medicinal plants, S. brachypetala, R. caffra, S. molle, Z. mucronata, 

and S. petersiana (62.5, 125 and 250 µg/mL) were studied for their anticancer effects on MDA-

MB-321 cells, as shown in Figure C.5. Some of the intermediate polarity extracts from R. caffra 

(H2, D2 and EA2), S. molle (H3 and EA3), Z. mucronata (H4 and C4), and S. petersiana (C5 

and D5) showed over 50% inhibition at the lowest concentration (62.5 µg/mL). R. caffra (H2, 

EA2) and S. molle (H3) extracts showed inhibition of over 80% at all concentrations. All the 

medicinal plant crude extracts showed they could slow the growth of MDA-MB-231 triple 

negative breast cancer cells. The extracts that were effective (as shown in Figure C.5.) were 

studied further to find the lowest concentration where they could inhibit 50% of growth. 

 

Figure C.5.  Cytotoxicity activity of R. caffra (H2, D2 and EA2), S. molle (H3 and EA3), Z. 

mucronata (H4 and C4), and S. petersiana (C5 and D5) (62.5, 125 and 250 µg/mL) and 

cisplatin (3 µg/mL) as a control drug against MDA-MB 231 triple-negative breast cancer. 

Results represent the mean ± Standard deviation of triplicate determinations.  

C.4.6 Cytotoxic effects of plant extracts against HepG2/C3A liver and Vero monkey 

kidney cell lines. 

The crude extracts of each plant species were tested for potential cytotoxicity against 

HepG2/C3A and Vero cell lines. The distinction between these cell lines lies in the fact that 

HepG2/C3A represents a liver cell model, while Vero serves as a model for normal monkey 

kidney cells. In this study, the cytotoxicity test measured the number of live cells after treatment 
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of the two cell lines with the plant extracts. The black horizontal lines in Figure C.6.B and 

Figure C.7.B indicate half (50%) of the untreated control cells and extracts exhibiting cytotoxic 

potential are shown in Figure C.6.B and Figure C.7.B as having viable (live) cell numbers 

below the black line.  

Figure C.6. shows that R. caffra is the least toxic, followed by Z, mucronata, S. petersiana, S. 

molle and S. brachypetala, the most toxic against HepG2/C3A cells at 50 and 200 µg/mL. 

Cytotoxicity against Vero cells was also determined, and the results depict that all plant crude 

extracts appear to be less toxic against the normal cell line (Vero cell) at the lowest 

concentration (50 µg/mL) tested and S. petersiana exhibited no harmful effect at all 

concentrations tested (50-200 µg/mL). However, S. brachypetala and S. molle were toxic to 

the Vero cells at a higher concentration (100 and 200 µg/mL) (Figure C.7). All crude plant 

extracts that showed lower cytotoxicity against the HepG2/C3A and the Vero cell lines were 

further investigated by determining their IC50 values on MDA-MB 231 triple-negative breast 

cancer. 
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Figure C.6. Cytotoxicity of 5 extracts and Melphalan (10, 20, and 40 μM) as the reference 

drug against HepG2A/C3A after 48 hours of exposure. Results displayed as (A) total number 

of cells, (B) number of cells stained with Hoechst 33342 only and (C) Hoechst 33342 and PI. 
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Figure C.7. Cytotoxicity of 5 extracts and Melphalan (10, 20, and 40 μM) as the reference 

drug against Vero cells after 48 hours of exposure. Results displayed as (A) total number of 

cells, (B) number of cells stained with Hoechst 33342 only (C) Hoechst 33342 and PI. 
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C.4.7 Anti-proliferation activity of selected plant extracts against MDA-MB 231 cell line. 

Active crude plant extracts against MDA-MB 231 were chosen to be evaluated further to 

determine their 50% inhibitory concentration (IC50). Cisplatin was used as the reference drug 

and the concentrations at which the crude plant extracts were tested are as follows: 3.906, 

7.8125, 15.625, 31.25, 62.5, 125 and 250 µg/mL. The chloroform crude extract of S. petersiana 

(C5) showed the highest IC50 of 26.26 ±2.325, followed by the hexane crude extract of R. caffra 

(H2) at 8.625 ±0.163. However, the dichloromethane crude extract of S. petersiana (D5) 

showed the lowest IC50, 1.525 ±0.458, even lower than the reference drug, cisplatin (2.017 

±0.09) (Figure C.8 and Table C.8).  

 

Figure C.8. Dose-response curve of the cytotoxicity of the medicinal plants (H1, H2, D2, EA2, 

H3, EA3, H4, C4, C5, D5) and the reference control drug (Cisplatin) against MDA-MB 231 

triple-negative breast cancer cell line. Cells were treated with incubated varying concentrations 

of the selected crude extract for 48 hours, after which an MTT assay was performed. The data 

points shown represent the mean ± the standard deviation technical and biological triplicate 

repeats. The data were analysed using GraphPad Prism 8 software to obtain the IC50 

concentrations. 
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Table C.8. Summary of IC50 values of the cytotoxic effect of cisplatin and H1, H2, D2, EA2 

,H3, EA3, H4, C4, C5 and D5 crude extracts against MDA-MB 231 triple negative cancer 

cell line.  

 

 

 

 

 

 

 

 

 

 

 

 

C.4.8 Determination of mode of cell death using Annexin-V and PI staining 

The plant crude extracts that showed growth inhibitory activity against MDA-MB 231 triple-

negative breast cancer cell line were further investigated to determine the mode of cell death, 

using the Annexin V and Propidium Iodide (PI) kit (Invitrogen, ThermoFisher Scientific). 

Annexin V binds to phosphatidylserine (PS) which translocated from the inner cell membrane 

to the outer cell membrane during early apoptosis. Propidium Iodide enters dead cells via their 

compromised cell membranes and stains the nucleus of dead cells [32]. Flow cytometry was 

used to analyze the mode of cell death (Figure C.10-C.11).   

The untreated control showed a high background apoptosis of 9.26% apoptosis. Cisplatin 

(control drug) induced 16.15% and 1.12% early apoptosis and necrosis respectively, (Figure 

C.9.A), while the untreated control showed 9.26% and 0.99% early apoptosis and necrosis, 

respectively (Figure C.9.A). The plant crude extracts of R. caffra (EA2, 19.75%), S. molle 

Sample IC50 (µg/mL) p value 

Cisplatin 2.017 ±0.09 0.00435 

H1 7.425 ±0.911 0.0138 

H2 8.625 ±0.37 0.0068 

D2 6.829 ±0.37 0.0203 

EA2 7.617 ±0.755 0.0266 

H3 2.646 ±0.725 0.6516 

EA3 2. 426 ±0.141 0.7672 

H4 7.019 ±1.21 0.0375 

C4 7.227 ±0.213 0.0157 

C5 26.26 ±2.325 0.0157 

D5 1.525 ±0.458 0.7225 
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(EA3, 23.89%), Z. mucronata (C4, 24.76%) and S. petersiana (D5, 41.97) induced higher 

percentage early apoptosis than cisplatin. D5 showed the best activity against the MDA-MB 

231 cancer cells, with 41.97% early apoptosis. All extracts induced less than 2.5% necrosis 

under the condition screened (Figure C.9-C.10).
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Figure C.9A-F. Effect of crude extracts from S. brachypetala (H1), and R. caffra (H2, D2, EA2) compared to untreated control and cisplatin (positive control), 

on stained MDA-MB 231 to identify mode of cell death using flow cytometry. 
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Figure C.9.G -L. Effect of crude extracts from S. molle (H3, EA3), Z. mucronata (H4, C4), and S. petersiana (C5, D5) compared to untreated control and 

cisplatin (positive control), on stained MDA-MB to identify mode of cell death using flow cytometry.
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Figure C.10. Percentage of MDA-MB cells at early, late apoptotic and necrosis mode of death 

after being treated with S. brachypetala (H1), R. caffra (H2, D2, EA2), S. molle (H3, EA3,), Z. 

mucronata (H4, C4), S. petersiana (C5, D5), Cisplatin (CIS) on stained MDA-MB cells. 

C.5 Discussion

Plants efficiently deploy sophisticated defense mechanisms to fight infections, which renders them 

immune to numerous pathogenic microorganisms. Phytocompounds are among the arsenal used 

by plants for combating microbial infections. This study explored the phytocompounds present in 

crude extracts from S. brachypetala, S. petersiana, Z. mucronate, R. caffra, and S. molle to 

decipher their antimycobacterial activity. The crude extracts from R. caffra exhibited strong 

growth inhibitory activity against M. aurum A+ (MIC ranging from 0.02-0.5 mg/mL) (Table C.2). 

Furthermore, R. caffra dichloromethane extracts exhibited potent growth inhibition against M. tb 

H37Rv (MIC range of 0.25-0.125 mg/mL.) (Table C.3). Traditional practitioners in Limpopo use 
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R. caffra concoctions to treat a wide range of diseases. Findings in this study confirm that extracts

from R. caffra strongly inhibit M. tb as previously reported [10]. In this study, the chemical 

constituents from R. caffra extracts that might have synergistically contributed to the potent 

antimycobacterial activity were tentatively identified. Results from this study confirm the literature 

that showed that R. caffra is rich in alkaloids (Table C.4) [33]. Our study also supports a report by 

[34] which identified and isolated raucaffricine from R. caffra extracts. Extracts constituting

alkaloids have previously been investigated for pharmacological activities and have been 

discovered to exhibit potent antimicrobial efficacy [10, 35].  

In this study, crude extracts from S. molle presented strong antimycobacterial efficacy, resulting 

in high susceptibility patterns with low MIC values ranging from 0.02-0.5 mg/mL for M. aurum 

A+ and 0.25-0.125 mg/mL for M. tb H37Rv) shown in Table C.2 and Table C.3. A study by [36] 

demonstrated the inhibitory activity of extracts from S. molle against gram-positive bacteria 

(Bacillus subtilis). Another report by Bernardes et al. (2014) [37] demonstrated the significant 

susceptibility of Mycobacterium bovis BCG to the methanolic extract of S. terebinthifolius which 

belongs to the Schinus genus. To the best of our knowledge, this study is the first to report in-vitro 

anti-M. tb H37Rv activity of S. molle. In this study, tentative identification of phytocompounds 

constituting S. molle extracts showed the presence of sesquiterpene, triterpene, terpene, 

triterpenoid, and triterpenoid saponin. Our study agrees with the phytochemical profiling of S. 

molle by various studies which showed the presence of a wide array of potentially bioactive 

compounds from classes of compounds including sesquiterpenes, terpenes, and triterpenes [12, 13, 

36]. Tannins, flavonoids, steroids, and catechins have also been reported to contribute to the 

antimicrobial activity of the Schinus genus [38]. Interestingly, oleanolic acid a triterpenoid 

tentatively identified in this study (Table C.5) was shown in other reports to exhibit anti-M. tb and 
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reduce hepatotoxicity [39–42]. In addition, sesquiterpenes, terpenes, triterpenes, and triterpenoids 

that were also tentatively identified are well characterized for antimicrobial activity and may have 

contributed to the anti-M. tb activity. 

The dichloromethane and methanol extracts of Z. mucronata showed strong activity against M. 

aurum A+, with MIC values of 0.04 mg/mL and 0.25 mg/mL, respectively. However, poor efficacy 

was observed for Z. mucronate, S. brachypetala, and S. petersiana against M. tb H37Rv. Results 

in our study agree with a report by Mativandlela et al., (2008) [43] which illustrated that bark 

extracts of Z. mucronata exhibit poor activity against M. smegmatis. On the contrary, other reports 

demonstrated that a combination of the Z. mucronate leaf, bark, and root extracts exhibit potent 

activity (MIC ≤  1mg/mL) against M. tb [2, 44]. The poor activity observed against M. tb by crude 

extracts from Z. mucronate, S. brachypetala, and S. petersiana, does not completely reflect on lack 

of activity of the extracts in vivo because some of the compounds may be enzymatically activated 

or transformed in vivo. The transformed intermediates may then be potent against M. tb.  

Results from the rigorous VSW returned only one hit compound (norajmaline) (Table C.6). In 

addition, norajmaline did not violate the Rule of Five. Lipinski’s Rule of 5 defines the potential 

drug-likeness of a compound based on the relationship between physiochemical, and 

pharmacokinetics parameters active [45]. The ADME properties of norajmaline observed in this 

study were moderate but are within acceptable ranges (“Schrödinger Software Release 2015-2,” 

2015) tabulated in Table C.6. There is a high failure of drugs in the clinical phases because of poor 

pharmacokinetic properties [47, 48]. Thus, this investigation used the ADME parameters as filters 

to avoid the identification of false hits (Table C.6). The molecular docking regimes with increasing 

precision in this study were performed as a further refining stage, with the objective of obtaining 
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a hit molecule(s) based on extra-precision scores and gaining molecular insight into the binding 

mechanism. The XP docking score of norajmaline was –7.47 kcal/mol (Table C.6). Computational 

screening provides an efficient approach to identifying, characterizing, and modifying potential 

drug leads [49, 50]. 

To expand the essential knowledge about the binding dynamic trends of the phytocompound 

against M. tb PanK, molecular dynamics simulations, and ΔGBind were computed. Norajmaline 

formed a relatively stable complex with PanK with RMSD below 3 Å (Figure C.2). A comparison 

of the unbound native PanK RMSD and that of PanK-norajmaline revealed that the interaction of 

norajmaline with the residues of the binding pocket of PanK resulted in a slight structural change 

of PanK (Figure C.2, and Figure C.3). Norajmaline exhibited high affinity (ΔGBind –58.73 

kcal/mol) to the hydrophobic binding domain of PanK based on the MM-GBSA calculations 

(Table C.7). The control ligand used in this study 1f is an engineered triazole competitive inhibitor 

of PanK [23]. A comparison of the MD simulations of the 1f and norajmaline revealed that the 1f 

had a higher affinity (ΔGBind –67.70 kcal/mol) to the PanK binding pocket than the norajmaline 

(ΔGBind –58.73 kcal/mol) as shown by the post-MM-GBSA (Table C.7). For a natural product, 

norajmaline has an interestingly high affinity. The pre-MM-GBSA ΔGBind of the norajmaline-

PanK complex (–37.64 kcal/mol) is more than that of post-MM-GBSA ΔGBind –58.73 kcal/mol. 

Molecular knowledge derived from virtual screening of phytochemicals revealed that norajmaline 

may potentially competitively inhibit M. tb PanK. On the other hand, norajmaline can be further 

modified to enhance the affinity and ADME properties while at the same time enhancing activity. 

The current study investigated the cytotoxicity properties evaluated by S. brachypetala, R. caffra, 

S. molle, Z. macronata, and S. petersian indigenous to Limpopo Province, South Africa against
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MDA-MB 231 triple-negative breast cancer cell line. The hexane crude extracts of S. brachypetala 

(H1), R. caffra (H2, D2 and EA2), S. molle (H3 and EA3), Z. macronata (H4 and C4), and S. 

petersian (C5 and D5) induced >50% cell growth inhibition against the MDA-MB 231 triple-

negative breast cancer line at 62.5, 125 and 250 µg/mL. All the plant extracts had an IC50 value 

less than 30 µg/mL, which meets the criteria set by the American National Cancer Institute for a 

potent extract [51, 52]. According to these guidelines, an IC50 value less than 30 µg/mL indicates 

that the extract has the potential to effectively halt the growth of the cancer cells [51, 52]. 

Toxicological assays on medicinal plants of this study indicate that crude extracts exhibited low 

toxicity towards Vero monkey kidney cells, which agreed with previous findings of Tlphapi et al. 

(2020) [11]: they found that the R. caffra crude extract, fractions and pure compounds did not 

display any cytotoxic effects at a concentration of 50 μg/mL against HeLa cells. This is also 

supported by the observation from Sigidi et al. 2016 [53]  where S. petersiana had the lowest 

toxicity against Vero monkey kidney cells at a concentration lower than 50 µg/mL. It showed that 

these plant species could be further experimented with since they do not display toxicity against 

healthy cells. In comparison, the study by Sigidi et al. (2016) [53] found that Z. mucronata extracts 

had lower toxicity, with IC50 values ranging from 150 to 250 mg/mL against Vero monkey kidney 

and MeWo cells. Moreover, an aqueous extract of Z. mucronata was found to have lower toxicity 

against HepG2/C3A cells with an IC50 value greater than 100 μg/mL that was reported by Da Costa 

Mousinho et al. (2013) [54]. These findings reinforce the observed low toxicity of Z. mucronata 

on HepG2/C3A cells in this study (Figure C.6 and C.7).  

However, the hexane extract of S. molle showed the highest cytotoxic inhibition activity on the 

HepG2/C3A cell as reported by Nagah et al. (2021) [55] which is consistent with the results 
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obtained in this study (Figure C.6). The findings of the current study were supported by the study 

of Dzoyem et al. (2016) [44], which found that Z. mucronata and other indigenous plants were 

relatively safe compared to the positive control when tested on Vero cells. Additionally, bark 

extracts from S. brachypetala and Z. mucronata were found to be nontoxic against brine shrimp 

[44], which concurs with the results observed in this study on Vero cells (Figure C.7). Contrarily, 

Ruffa et al. (2002) [56] reported that the methanolic extract of S. molle was highly lethal to the 

human hepatoma HepG2 cell line, in contrast to extracts from other medicinal plants. This 

observation was supported by Hailan et al. (2022) [57], where nanoparticles synthesized from S. 

molle extracts were found to be highly toxic against HepG2 cells [58]. In that study, they attributed 

the high cytotoxicity of S. molle to several terpenoid compounds identified in its essential oil 

(Hailan et al. 2022). S. molle extracts are commonly used as insecticides due to their toxic 

properties [59, 60]. 

The results of this study indicate that various solvent extracts from five different plants (S. 

brachypeta, R. caffra, S. molle, Z. mucronata, and S. petersiana) have varying levels of cytotoxic 

activity against cancer cells. The IC50 values of these extracts ranged from 1.525 ± 0.458 to 26.26 

± 2.325, with the dichloromethane extract of S. petersiana (D5) and the ethyl acetate extract of S. 

molle (EA3) showing the highest potency with IC50 values of 1.525 ± 0.458 and 2.426 ± 0.141, 

respectively. Other extracts showed moderate antiproliferative activity with IC50 values ranging 

from 6.829 ± 0.37 to 8.625 ± 0.37. The control drug, cisplatin, showed potent antiproliferative 

activity with an IC50 value of 2.017 ± 0.09. It is worth noticing that the dichloromethane extract 

of S. petersiana (D5) and the ethyl acetate extract of S. molle (EA3) (2.426 ± 0.141) showed 

similar IC50 as the control drug (Figure C.8) (Table C.8). 
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The results of this study (Figure C.8 and Table C.8) are consistent with previous findings in the 

literature, which have shown that various plant extracts have antiproliferative activity against 

cancer cells. Nguefack et al. (2017) found that extracts from the root bark of Rauvolfia vomitoria, 

a close relative of R. caffra, showed significant antiproliferative activity against human breast 

cancer cells (MCF-7) [61]. Another study by Agbo et al. (2015) found that the ethanol extract 

of Ziziphus mauritiana, a close relative of Z. mucronata, showed antiproliferative activity against 

human liver cancer cells (HeLa cells) and breast cancer cells (MCF-7 cells) [62]. The IC50 values 

of the plant extracts in the present study are also similar to those reported for other plant-based 

anti-cancer agents. A study by Kim et al. (2010) found that the IC50 value of an ethanol extract 

from Scutellaria baicalensis, a traditional medicinal plant, was 2.55 ± 0.35 against human breast 

cancer [63]. Another study by Kim et al. (2012) found that the IC50 value of a methanol extract 

from Tripterygium wilfordii, another traditional medicinal plant, was 4.66 ± 0.54 against human 

leukaemia cells (HL-60 cells) through the mitochondrial pathway [64]. The results of this study 

indicate that various solvent extracts from S. brachypeta, R. caffra, S. molle, Z. mucronata, and S. 

petersiana exhibit varying degrees of antiproliferative activity against the MDA-MB 231 triple-

negative cancer cells. To the best of our knowledge, this study is the first to report the cytotoxicity 

activities of these five medicinal plants from Limpopo against MDA-MB 231 triple-negative 

breast cancer. This highlights the potential of these plant extracts as alternative sources of anti-

cancer agents against triple-negative breast cancer, but further studies are needed to confirm their 

activity and determine their potential as therapeutic agents [28]. 

Apoptosis is a type of cell death linked to cancer [65, 66] Apoptosis signalling has been used as a 

cancer therapy [65–68] The current study evaluated the apoptotic effects of various plant species 

on cancer cells using Annexin V and propidium iodide staining procedure via flow cytometry. The 
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results were presented in contour plots for apoptotic and necrotic cell death (Figure C.9 to C.10). 

Cisplatin (16.15 % apoptosis and 1.12 % necrosis) was used as a positive control and 0.25% 

DMSO as an untreated control. The study found that S. petersiana extract (D5) exhibited an early 

apoptotic stage at 41.97 % (Figure C.9.K and C.10), which is in agreement with literature that 

revealed the anticancer potential of the extracts [69]. S. brachypetala (H1) was observed to have a 

high percentage of live cells (84%) with low apoptotic and necrotic activities (7.51% and 0.29%, 

respectively) (Figure C.9.C and C.10) compared to other extracts, although phenolic compounds 

from S. brachypetala have been reported to have therapeutic effects against Alzheimer’s disease 

[70, 71] The essential oil from R. caffra was found to be effective against MCF-7 breast cancer 

cells, possibly due to its high antioxidant activity [72, 73]. S. molle extracts were reported to have 

anticancer effects on human leukaemia cells (HL-60 cells) [12] and showed toxicity to the U-937 

cell line and anti-tumour activity against human leukaemia monocyte lymphoma [73]. Silver 

nanoparticles synthesized from S. molle extracts were also observed to exhibit potential anticancer 

activity against HepG2 cells, [57]. All these findings agree with the finding from this current study. 

It is worth noting that the chloroform extracts from Z. mucronata (C4) were observed to induce 

higher late apoptotic cell death (29.79%) than the hexane extracts (H4) (22.21%) (Figure C.9.J, 

C.9.G and C.10), suggesting that compounds with anticancer activity could have intermediate or

opposite polarity [75]. It is worth noting that the findings from this current study revealed that four 

plant extracts induced higher levels of apoptosis compared to the control drug, cisplatin. The 

highest level of apoptosis was observed with the dichloromethane extract of S. petersiana (D5) at 

41.97%, followed by the chloroform extract of Z. mucronata (C4) at 24.74%, the ethyl acetates 

crude plant extracts of S. molle (EA3) at 23.89%, and R. caffra (EA2) at 19.75%. The control drug, 
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cisplatin, induced apoptosis at 16.15%. These findings suggest that the crude plant extracts tested 

in this study could potentially be used as alternative treatments for triple-negative breast cancer. 

C.6 Conclusion

Medicinal plants are an invaluable source of potent bioactive anti-mycobacterial phytocompounds. 

R. caffra and S. molle which are prescribed by traditional healers in Limpopo are potent against

M. tband assist the developing community in alleviating and treating Tuberculosis. The integration

of targeted virtual screening can rapidly and effectively be employed to identify potential lead 

compounds. Rigorous virtual screening comprising many filtering parameters reduces the chances 

of obtaining false positives. Norajmaline showed exceptionally high affinity to PanK and may be 

further modified to enhance affinity and ADME properties. This study offered a glimpse into the 

cytotoxic activities and antioxidant attributes of five selected medicinal plants from Limpopo, 

South Africa, against MDA-MB triple-negative breast cancer. The findings indicated that 

apoptosis was the form of cell death against MDA-MB triple-negative breast cancer.  

Recommendation 

The crude extracts of the plants comprise a wide variety of compounds that can further be separated 

and experimentally evaluated for anti-mycobacterial activity. Although the findings indicate that 

the selected medicinal crude plant extracts have the potential to treat triple-negative breast cancer, 

more exploration is needed to delve into the plants' mechanisms of action and isolate the bioactive 

elements responsible for the plant's anticancer properties in the in vitro study. 
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