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Abstract 

 

 

Salinity is one of the major limiting abiotic stresses on legume plant yield, leading to 

early senescence of root nodules.  This occurs because of accumulation of reactive 

oxygen species (ROS) in plant cells under salinity stress.  Concurrent with the increase in 

cellular reactive oxygen species levels is the increase in cellular antioxidants and 

corresponding antioxidant enzymes.  This feature is observed mostly in the shoots and 

roots of more tolerant genotypes compared to the susceptible genotypes.  It is accepted 

that the mechanism of plant tolerance to stress is dependent upon the response of the 

antioxidant systems.  Most studies carried out on shoot tissues suggest that scavenging 

of ROS by the plant antioxidant system is modulated by nitric oxide (NO).  However, the 

pathways by which NO mediates such antioxidant responses are not fully understood.  

For legumes, salinity stress has adverse effects on yield and this is in part due to 

inhibition of nitrogen fixation in the root nodules of the legumes, which causes severe 

nitrogen starvation in nitrogen-deficient soils. Nodules are specialized organs 

comprising of both the rhizobia and the plant tissue, hence the physiological aspects 

may vary from the findings from the leaves.  It was therefore deemed necessary to 

establish the role of NO on the nodule antioxidant system in the absence and presence of 

salinity stress. 

 

For the purposes of this study, the effect of both exogenously applied NO and 

endogenous NO on superoxide dismutase, glutathione peroxidase and glutathione 

content was determined.  The studies involved the use of nitric oxide donors like sodium 

nitroprusside (SNP) and diethylenetriamine/nitric oxide adduct (DETA/NO), their 

respective fixed controls potassium ferricyanide and diethylenetriamine (DETA), plus a 
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nitric oxide synthase inhibitor (to inhibit nitric oxide production by the enzyme nitric 

oxide synthase) on nodulated roots. 

 

The data obtained in this work points out specifically at roles played by nitric oxide in 

regulating superoxide dismutases, glutathione peroxidase and glutathione during 

salinity stress and proposes a link between nitric oxide-mediated changes in these 

antioxidant systems and salinity stress tolerance.  Both the exogenously applied and 

endogenous nitric oxide increases the enzyme activities of superoxide dismutase (SOD), 

glutathione peroxidase (GPX) and glutathione reductase (GR).  However, there is both 

time dependency and nitric oxide concentration dependency on the enzyme activities.  

The total SOD enzyme activity increases upon nitric oxide exposure and with time of 

exposure.  The individual SOD isoforms identified and studied in the root nodules all 

contribute to this increase in SOD activity upon nitric oxide treatment except for MnSOD 

I.  This increase in activity is regulated at transcriptional level as the RT-PCR results 

targeting the individual isoforms reveals an increase in transcript levels after 6 hours of 

nitric oxide treatment.  However, the CuZn SOD I isoform transcripts are reduced upon 

nitric oxide treatment.  A similar response was also observed in GPX enzyme activity in 

which nitric oxide increased the GPX activity above all the controls.  The GR enzyme 

activity exhibits an opposite response because the activity decreases with time of 

exposure to NO and concentration of NO.  

 

In order to determine the effect of NO under saline conditions, an experiment was set up 

that involved incubation of nodulated roots in solutions containing 150 mM NaCl.  The 

stressed nodules exhibited generally higher levels of enzyme activities than the non-

stressed nodules.  Furthermore, exposure to nitric oxide donor in combination with NaCl 

induced even higher activities of SOD and GPX than NaCl or nitric oxide donor alone.  
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There were also higher levels of reduced glutathione and total glutathione recorded 

under stress compared to optimal conditions.  Nitric oxide increased the concentration 

of these forms of glutathione, suggesting an improved redox status based on the 

GSH/GSSG ratios under salinity stress in the presence of nitric oxide. 

 

Attenuation of nitric oxide synthesis with L-Nω-Nitroarginine methyl ester (L-NAME) 

reverses all the recorded effects of nitric oxide on antioxidant enzymes and glutathione 

pool.  This was observed in salinity stressed nodules and non-stressed nodules.   

 

This work further establishes that NO plays a pivotal role in modulating the enzymatic 

activities through a pathway that is mediated by guanosine 3 ,5 -cyclic monophosphate 

(cGMP).  The experiment involving the inhibition of soluble guanylyl cyclase (sCG) (an 

enzyme that catalyzes the biosynthesis of cGMP), cell-permeable cGMP anaologue and L-

NAME revealed that GPx activity is modulated through a cGMP-dependent pathway and 

NO is positioned up-stream of cGMP in the pathway leading to improved GPX activity.  

Cyclic GMP also modulates the GPX activity in a concentration dependent manner. 

 

NO improves the redox status of the cell under both saline conditions and non-saline 

conditions and this effect is modulated through a cGMP-dependent pathway.  It is thus 

rational to conclude that; in the root nodules of legumes, like in other plant tissues, the 

increased accumulation of antioxidants and the increased activity of their corresponding 

enzymes, as modulated through the cGMP-dependent pathway by nitric oxide, confer 

root nodule tolerance to salinity.  This concept directly points out at an attractive 

strategy for developing legumes that are genetically improved for enhanced root nodule 

tolerance to salinity; via differential regulation of antioxidants and antioxidant enzyme 

genes in the root nodules under abiotic stress.  Towards attaining the goal for such 
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genetic improvement, experiments involving construction of an abiotic stress-

responsive and nodule-specific chimeric promoter were carried out.  By fusing the 5 -

untranslated (5 -UTR) region of the LEA gene that contains an abiotic stress-responsive 

cis-acting element (from theGmPM9 promoter) to the nodulin N23 promoter bearing the 

highly functional cluster of motifs for nodule specificity, the candidate nodule specific 

promoter that is abiotic stress responsive (ASREF/NSP) was constructed.  The construct 

harbouring this ASREF/NSP chimeric promoter was fused to the -glucuronidase (GUS) 

reporter gene so as to study the functionality of the promoter in Medigaco truncatula 

plants. The construct was delivered into the Medicago plants through Agrobacterium 

rhyzogenes mediated transformation to produce composite Medicago plants.  The 

transgenic roots have been cultured for futher manipulation and to confirm the 

functionality of the promoter. 

 

Furthermore several strategies can be deployed via the use of this chimeric promoter so 

as to enhance the nodular antioxidant system. This would involve either gene regulator-

chimeric promoter fusion or the use of a single gene approach.  As part of this work, the 

MtNOA gene homologous to AtNOAs, has been cloned from Medicago trancatula and put 

as ASREF/NSP fusion in a binary vector pBINPLUS and delivered into Medicago 

trancatula for nodule-specific and abiotic stress-induced nitric oxide synthesis.  Since 

there is no plant NOS identified to date, the possibility of the use of a regulatory gene in 

this aspect is still limited.  There are other options involving the use of the chimeric 

promoter with the individual genes encoding the antioxidant enzyme genes such as 

genes encoding SOD, GPX and the glutathione synthatase to enhance the plant 

antioxidant system during abiotic stress. 
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Chapter 1  General introduction 

 

Antioxidants encompasses those molecules that quench reactive oxygen species (ROS) 

and/or inhibit their formation (Sies, 1997), thus providing essential information on 

cellular redox homeostasis (Foyer and Noctor, 2005).  The ROS are generated as part of 

the normal cell functioning during electron transport chain in the plant cell 

mitochondria (Davies, 1995), but accumulate more under salinity stress (Møller, 2001), 

causing damage to proteins (Juszczuk et al, 2008), affecting membrane functioning 

(Ahmad et al, 2008) and thus leading to oxidative stress.  This oxidative stress leads to 

destruction of the plant cells and occurs when the antioxidant system is inefficient or 

inadequate (Foyer, 2003).   

 

On the other hand, nitric oxide, which is a diatomic molecule, is a signaling molecule 

involved in various cellular processes and in particular the abiotic stress responses of 

plants (Niell et al, 2008 & Wendehenne et al, 2005).  To be more specific, it has been 

reported that, nitric oxide interacts with antioxidants to scavenge ROS, thus protecting 

plants under stress (Niell et al, 2008).  Most of these studies, focused mainly on other 

plant tissues rather than legume nodules, reveal that nitric oxide delays ROS-induced 

cell death (Beligni et al, 2002 and Hung and Kao, 2004).  The legume root nodule is a 

symbiotic tissue which is both structurally and physiologically different from the other 

legume plant organs (Crespi and Ga´lvez, 2000). Hence one cannot assume the absolute 

similarity in antioxidant responses to stress with the rest of the plant tissues and/or 

organs.  The unique nature of nodule physiology presents an opportunity to study and 

modify the legumes for improved nitrogen use efficiency and improved productivity 

under growth-limiting environmental conditions.  
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This is part of a study relating to two major questions pertaining legume plant 

production.  Firstly, the agricultural community now expects biotechnology techniques 

that target the regulation of a number of genes at the same time.  Such transgenic plants 

are thus expected to exhibit more improved quantitative traits such as abiotic stress 

tolerance and yield (Chua & Tingey, 2006).  Secondly, in addition to the growing 

problem of soil salinisation (Söderström, 1992; Volschenk and de Villiers, 2000, and 

Machacha et al, 2000 and Karlberg & de Vries 2004.), nitrogen is one of the limiting 

nutrients in the soils to-date (Maiangwa, 2009).  Thus there is a need for development of 

plant legume genotypes with nitrogen fixing organs (root nodules) that are tolerant to 

salinity stress. 

 

This work thus contributes to the scientific knowledge on legume antioxidant responses 

to salinity and how the stress effect can be counteracted with the ultimate purpose of 

delaying nodule senescence under saline conditions.   

 

This report is divided into several chapters that are aimed at understanding the role 

played by nitric oxide in antioxidant system responses under saline conditions in the 

root nodules.  It further examines some of the possible strategies that can be deployed to 

induce salinity tolerance in the nodules through genetically controlled regulation of 

antioxidant metabolite production and antioxidant enzymes.  Hence the chapters that 

make up this study include: 

 

 Chapter 1 General Introduction 

 Chapter 2 Literature review 

 Chapter 3 Effect of nitric oxide on superoxide dismutase  in root nodules 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VRV-4JG5FBB-1&_user=613892&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=998263429&_rerunOrigin=google&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=bf89908a57ecb32bf3029babf83cef1f#vt2#vt2
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 Chapter 4 Effect of nitric oxide on glutathione peroxidase activity in root 

nodules  

 Chapter 5 Effect of nitric oxide on glutathione reductase activity in root 

nodules  

 Chapter 6 Modulation of nodule glutathione levels and redox state by nitric 

oxide 

 Chapter 7 Modulation of glutathione peroxidase activity through cGMP 

pathawy 

 Chapter 8 Construction of an abiotic stress-inducible nodule-specific 

promoter and prospects for abiotic stress tolerance  

 Chapter 9 General conclusion  
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Chapter 2   Literature review 

 

2.1.0.0.   Abiotic stress 

 

2.1.1.0.  Types of abiotic stress 

 
 

Plants often encounter a period of environmental stress, sufficient to limit plant growth 

and reproductive capacity.  This abiotic stress is one of the main detrimental factors 

affecting crop productivity worldwide.  Some examples of abiotic stresses include 

drought, dehydration, UV-B irradiation, salinity, low and high temperatures.   This work 

the will focus on salinity stress imposed on plants in the form of high NaCl 

concentration. 

 

Salinity refers to high salt concentration, within the rooting zone, to the levels that 

impair plant growth and development.  This high salt concentration decreases the 

osmotic potential of the soil solution, thus inhibiting water uptake by plant roots and 

also causes ion toxicity in plant cells.  Plants adjust to salinity stress either by limiting 

uptake of the salt, compartmentalizing the salt within specialized organelles in the plant 

cell (e.g. vacuole), or through synthesis of organic solutes that rescue the plant cells from 

ion toxicity (Jacoby, 2002).  Plants that can tolerate high salt concentrations are called 

halophytes; on the other hand glycophytes are those that will respond by synthesizing 

organic solutes (Volkmar et al, 1998). However more often than not, plants concurrently 

utilize these two coping mechanisms against high salt concentrations (Jacoby, 2006).   
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Elevated uptake of Na+ by the plant roots causes replacement of K+ and Ca+ with Na+ in 

the cell compartments where they are required (Marschner, 1995).  Consequently as Ca+ 

ions are replaced by Na+, proper cell membrane functioning may be affected, leading to 

increased cell leakage (Orcutt & Nilsen, 2000; Jacoby, 2002; Todd, 2006).  It has also 

been established the Na+ also decreases the activity of nitrate reductase, therefore 

affecting nitrogen metabolism of the cell (Orcutt & Nilsen, 2000). Hence some of the 

symptoms of NaCl toxicity would include chlorosis of the older leaves leading to necrosis 

and cell death (Xu et al, 2000; Kurniadie & Redmann, 1999).   

 

2.1.2.0.  Molecular basis of abiotic stress tolerance in plants 

 

2.1.2.1.  Sensors of abiotic stress in plant cells 
 
 

HIS Kinases (HIK) are found in all photosynthesizing organisms and are located on the 

extracellular space.  They function in perceiving abiotic stress and use a response 

regulator (re) to transduce signals to other cell compartments (Hwang et al, 2002).  

There are different HIK for different stress types, for instance HIK 33 perceives both the 

hyper-osmotic stress and cold stress; whereas salt stress is perceived by HIK 33, HIK 34 

and HIK 16.  Different classes of HIS Kinases regulate genes that are responsive to 

different types of abiotic stress (Murata & Los, 2006, review).  

 

Different sets of genes that may be simultaneously activated by the sensors may at times 

contribute to one function (Figure 2-1).   For instance, transcription of stress-responsive 

genes requires the activation of transcription factors like drought response binding 

proteins; DREB1 and DREB2.  These transcription factors are differentially induced by 
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cold and osmotic stress respectively (Knight & Knight, 2001).  However, both DREB1 

and DREB2 bind to the DRE motif of stress-inducible genes (Knight & Knight, 2001). 

 

 

Figure 2- 1 The figure illustrating DREB1 and DREB2 transcription factors as key 
components in cross talk between cold and osmotic stress.  Both transcription 
factors bind to DRE cis-acting elements found on the promoter regions of abiotic 
stress-inducible genes like rd29A from Arabidopsis.  (Adapted and modified from 
Knight & Knight, 2001) 

 

2.1.2.2.  Biochemical pathways involved in abiotic stress signaling 

 

The function of response regulators (re) is to relay the perceived signal by HIK through a 

stress signal pathway leading to physiological changes.  There are several molecules 

involved in the cascade of events leading to such physiological changes, leading to up-

regulation of transcription factors and genes responsible for acclimatization. The 

biochemical pathway leading to gene responses is not always linear but there is a 

complex cross talk between and among various pathways (Figure 2- 1 & 2- 2).  Drought 

stress and salinity stress trigger the transcription of drought response binding proteins; 

DREB 1 and DREB2 respectively and these two transcription factors bind to the DRE 
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element of the stress responsive gene.  Both MAPK and CDPK pathways function through 

the activation of the transcription factors. 

 

 

Figure 2- 2  Schematic representation of abiotic stress signaling (adapted from 
Rodríguez et al, 2005). Different signaling pathways are responsible for osmotic 
and ionic stress responses.  Both water deficit and salinity can cause osmotic 
stress but salinity also causes ionic stress.   
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2.1.2.3.  Signaling molecules 

 

Calcium (Ca+) is a secondary signaling molecule involved in most stress responses, but 

the physiological responses as a consequence of different stress are not the same.   The 

calcium signature (that is dependent upon the type of stimuli), the duration and sub-

cellular localization determines the type of the physiological response (Malho et al, 1998 

& Bush et al, 1996).  Thus manipulation of the down-stream processes in the calcium 

signaling pathway may alter the biological response of plants to the abiotic stress 

stimuli.  For instance calcium accumulation in response to cold acclimatization is of 

cytosol and intra cellular localization (Knight et al, 1996); anoxia in maize induced the 

mitochondrial calcium accumulation (Subbaiah et al, 1998).  Ca+ accumulation is 

involved in regulating various stress-regulated proteins including calmodulin, calcium-

dependent protein kinases (CDPKs) and Mitogen Activated Protein Kinase (MAPK) 

(Figure 2- 2).  

 

Several calmodulins and their isoforms are expressed differentially in response to 

abiotic stresses such as cold and heat shock (Yang and Poovaiah, 2003).  Furthermore 

there are many identified calmodulin binding proteins identified and these are known to 

bind to mammalian nitric oxide synthases (NOS) that synthesize NO from L-Arginine, a 

known stress-related molecule in plants.  Although a nitric oxide synthase has not been 

identified in plants, its activity has been detected in various plants including lupine roots 

(Cueto et al, 1996). 

 

Another class of stress signaling molecules is the calcium dependent protein kinase 

(CDPK).  It is involved in induction of stress-inducible genes.  For instance AtCDPK1 and 
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AtCDPK2 are implicated in drought and salinity stresses responses respectively (Knight 

& Knight, 2001). 

 

Mitogen activated kinases (MAPK) are serine/threonine specific protein kinases and are 

activated by phosphorylation and eventually regulate several cellular processes, 

including apoptosis (Peason et al, 2001).  The activation of MAPK occurs as a 

consequence of the stimuli activating the mitogen-activated protein kinase kinase kinase 

(MAPKKK) that activates mitogene-activated protein kinase kinase (MAPKK) which in 

turn activates MAPK.  The MAPKs have been reported to activate the genes that have 

hydrogen peroxide-responsive promoters (Knight & Knight, 2001), thus implicating 

them in functions related to oxidative stress. 

 

2.1.2.4.  Abiotic stress-responsive transcription factors 

 

DNA-binding proteins synthesized as part of the early response to abiotic stress can be 

regarded as abiotic stress-responsive transcription factors.  They bind to cis-acting 

elements in promoters of stress responsive genes and thus regulate their transcription.  

Several of these have been identified in abiotic stress signaling and include DREB1 and 

DREB2 (CBF), DREB2A, DREB2B.  These proteins, commonly known as trans-acting 

factors, bind to specific conserved motifs on the promoter region of the stress-inducible 

gene called cis-acting elements.  Expression of the transcription factors is influenced by 

stress-regulated molecules like ABA and function to up-regulate gene expression (Knight  

& Knight, 2001). 
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2.2.0.0.  Senescence and programmed cell death (PCD) 

 

2.2.1.0.  PCD definition 

 

Cell death is an integral part of plant growth and development.  During senescence the 

internal membranes of the chloroplast become disorganized and lipid globules 

accumulate in the chloroplast.  The internal components, including macro molecules get 

destroyed by the cell itself.  These macro molecules (lipids, nucleic acids, proteins and 

polysaccharides) are digested into small molecules, followed by disintegration of the 

cell.  This process is called senescence (Todd, 2006 and Chrispeels & Sadavan, 2003) and 

is a form of programmed cell death (PCD), regulated by the expression of specific genes.  

Premature senescence can occur as a result of abiotic stresses like salinity and drought. 

 

2.2.2.0.  Role of oxidative stress in senescence 

 
 

Reactive oxygen species (ROS) are often generated during photosynthesis by singlet 

oxygen formation as well as oxygen photo-reduction (Yuanbin, 2002).   Generation of 

these molecules is increased under stress.  ROS include superoxide, hydroxyl radical and 

hydrogen peroxide.  The interaction of these oxidative species with the cellular 

molecules often results in destructive oxidative stress (Todd, 2006).   ROS modifies 

various bio-molecules, causing cell death; it causes lipid peroxidation and thus damages 

lipids.  The damage of lipid membranes due to peroxidation leads to increased cell 

permeability that in turn causes cell swelling (Todd, 2006) (Figure 2-3).    
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Figure 2- 3 Cell damage caused by various forms of reactive oxygen species 
(adapted from Todd, 2006). Lipid peroxidation by hydrogen peroxide results in 
lipid membrane damage, increasing cell membrane pemearbility to both calcium 
and sodium cations.  Hydrogen peroxide also results in mitochondrial damage as 
it suppresses activities of some antioxidant enzymes.  There is futher DNA and 
protein damage as a result of accumulation of ROS. 

 

H2O2 is perceived as a signaling molecule that regulates the expression of stress-related 

genes (Rodríguez et al, 2005).  The accumulation or excessive production of H2O2, which 

can occur in the cell during stress, triggers the expression of stress genes and changes in 

the level of cellular antioxidants (Rodriquez et al, 2005.).  However there is mounting 

evidence that the destructive potential of H2O2 depends to a large extent on the ability of 

the plant antioxidant system to respond positively to the stress (Chrispeels & Sadavan, 

2003).   
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2.2.3.0.  Causes of ROS accumulation in cells 

 

The generation of ROS is induced by a number of abiotic and biotic factors.  Such factors 

include salinity, drought, UV-B, air pollutants (e.g. ozone, sulphur dioxide) (del Rio et al, 

1993), redox-active herbicides (e.g. paraquat) (Dannahue et al, 1997; Morita et al, 1999) 

and phytotoxic metals (e.g. Zn, Cu, Cd) (Foyer et al, 1994). The invasion of plant cells by 

pathogens also results in generation of ROS (Torres et al, 2006.), causing the 

hypersentive response (HR).  These bursts of ROS upon stress induction, if not 

scavenged by plant antioxidants or buffered by redox buffers (Asada, 1992 and Guo & 

Crowford, 2005), trigger cell/tissue senescence (Kubo et al, 1995; Morita et al, 1999 and 

Neil et al, 2002a & b).   

 

2.2.4.0.  Regulation of ROS accumulation in the cell by absisic acid (ABA) 

 

Absisic acid, a well known stress-related hormone, is involved in plant stress responses.  

There is evidence that ABA is involved in superoxide (Jiang & Zhang, 2001) and 

hydrogen peroxide generation (Jiang & Zhang, 2001 and Zhang et al 2001).  It has been 

established that ABA triggers ROS generation that precedes the activation of antioxidant 

enzyme activities in maize leaves, including superoxide dismutase (SOD), catalase (CAT), 

glutathione reductase (GR) and ascorbate peroxidase (APX) (Jiang & Zhang, 2002). It  

further induces the expression of genes encoding antioxidants enzymes such as Cu-Zn-

SOD, Mn-SOD, Fe-SOD involved in hydrogen peroxide generation (Kamanika et al, 1999) 

and catalase involved in scavenging of hydrogen peroxide (Guan et al, 2000). 
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2.3.0.0.  Biochemistry of nitric oxide (NO) 

 

2.3.1.0.  Enzymatic sources of NO in plants 

 

Nitric oxide is endogenously synthesized in plant cells (Guo et al, 2003 and Zhao et al, 

2007).  There are two suggested enzymatic sources of nitric oxide in plants; the nitrite-

dependent pathway and arginine-dependent pathway. 

 

Mammalian NO is synthesized ezymatically from L-Arginine in a process catalyzed by 

nitric oxide synthase (NOS).  NOS genes have been isolated in mammals and sequenced.  

The existence of NOS in plants was first detected biochemicaly in lupine roots (Cueto et 

al, 1996).  This arginine-dependent nitric oxide synthesis has also been detected in peas 

(Corpas et al, 2006).  However, no gene homologue of mammalian NOS has been 

identified and isolated to date in plants.  Several attempts have been made to isolate 

genes encoding plant NOS, but all have been unsuccessful.  AtNOS1 (Guo et al, 2003), 

which was earlier reported to be a “novel plant NOS”, was found not to have NOS activity 

(Zamojtel et al, 2006; Crowford et al, 2006) and was later concluded to be a GTPase 

(Zamojtel et al, 2006).   

 

Nitrate Reductase (NR; EC1.6.6.1) is a central enzyme in nitrogen assimilation in plants.  

It has two main forms depending of its cellular location; plasma membrane (PM-NR) and 

cytosolic (cNR) form.  It was observed more than two decades ago that NR catalyzes the 

generation of nitric oxide from nitrites (Dean et al 1986).  NR catalizes NO generation 

from nitrites in a reaction that consumes NADPH as an electron donor (Rockel et al, 

2002).  Other studies have also reported the simultaneous generation of nitrous oxide, a 

pre-cursor of peroxynitrite and NO (Dean et al, 1986).  In agreement with these findings 



42 | P a g e  
 

is the fact that NR activity using nitrites as a substrate under aerobic conditions yields 

NO and peroxynitrite (Yamasaki & Sakihama, 2000).  This NR-dependent NO generation 

is nitrite-concentration-dependent.  NO is generated from nitrites only if the nitrite 

levels exceed those of nitrates (Keiser et al, 2002).  This occurs under dark conditions or 

anoxic conditions. 

 

2.3.2.0.  Nitric oxide signaling 

 

2.3.2.1.  Introduction 

 

Nitric oxide is a highly versatile molecule involved in several metabolic processes.  Due 

to its soluble nature in both aqueous and lipid medium, it can easily diffuse through the 

cell membranes (Hakim et al, 1996).  It has a half-life of 445 seconds in aquaeous 

solutions and disappears rapidly in solutions depending on the available proportion of 

haemoglobin.  Its rate of decrease in the presence of haemoglobin is 2 x 10-5M-1 s-1.  Its 

short half-life permits it to be an effective signaling molecule (Hakim et al, 1996).  NO 

signaling is mediated through various pathways including cGMP-dependent pathaways, 

S-nitrosylation, ABA-dependent pathways, and calcium dependent pathways.  

 

2.3.2.2.  Modulation of the NO signal through cGMP-dependent pathways. 

 

NO acts through cGMP-dependent pathway by interacting with soluble guanylyl cyclases 

(Gorbe et al, 2007) and thus stimulates the synthesis of cGMP.  A novel protein with 

guanylate activity has been identified in plants although it lacks the nitric oxide-

dependent activity (Ludidi & Gehring, 2003).  Despite the fact that no protein with 

guanylate activity that is nitric oxide-dependent has been identified to date in plants, it 
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has  been established that NO functions to affect some metabolic activities through 

cGMP-dependent pathways in plants (Szmidt-Jaworska et al, 2003 and Salmi et al, 2007).  

Some of the effects of cGMP are exerted via activation of protein kinase K.  This protein 

kinase K is involved in posttranslational modifications of proteins and functions to 

regulate various cellular responses (Szmidt-Jaworska et al, 2004 & Szmidt-Jaworska et 

al, 2009) (Figure 2- 4) 

 

Figure 2- 4 Illustration of NO signaling cascade. Nitric Oxide Synthase (NOS) is 
activated by the Ca2+-calmodulin complex. NOS converts L-Arginine and oxygen to 
citrulline and NO.  Guanylate cyclase catalyzes the formation of cGMP from GTP in 
a reaction that is NO-dependent.  The PDEs are phosphodiesterases that modulate 
downstream responses to cGMP accumulation through hydrolysis of cGMP.  
Sometimes the cGMP activates protein kinases and affects cellular responses. 
(Adapted and modified from Jacobi et al 2006) 
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2.3.2.3.  Modulation of the NO signal through S-nitrosylation of proteins 

 

Nitric oxide may also be involved in regulating protein function through s-nitrosylation.  

S-nitrosylation occurs when nitric oxide reacts with the cysteine residue to form S-NO 

bonds.  This is increasingly recognized as a ubiquitous control of protein function in 

both animals and plants.  For instance, nitric oxide is thought to react with GSH to 

produce S-Nitrosoglutathione (GSNO).  GSNO functions as a bio-transporter of the NO 

group to thiols in cellular compartments to form S-nitrosothiols (SNOs) that participate 

in a nitrosation reaction (Liu et al 2001).  GSNO does not only transport NO but 

participates in regulating protein activity in processes such as resistance to pathogens 

(Belenghi B et al, 2007; Perazzolli et al, 2004 and Grennan, 2007).  This nitrosylation 

process is reversible and regulates reactive nitrogen species (RNS) and nitroso species 

quantities in the cell (Ji et al, 1999).   

 

 2.3.2.4.  Calcium-dependent pathways 

 

 Amongst various other roles, Ca2+ is involved in signal mediation of Ca2+-dependent 

protein kinase (CDPK) during early stages of plant development (Anila & Rao, 2001).   In 

order for signal transduction to occur, Ca2+ transporters, namely ATPase and H+/Ca2+ 

antiporters help transport the calcium cations through calcium channels.  Ca2+ binding 

proteins and protein kinases sense, amplify and transduce the calcium-dependent signal 

further downstream the pathway.  On the other hand there is evidence that NO usually 

accumulates in the cells in response to NaCl stress and both NO and NaCl increase the 

activity of antioxidant enzymes (Zhang et al, 2006).  Furthermore, studies on NaCl-

stressed maize seedlings revealed a signaling role for NO and this involves increasing 

the activities of vacuolar H+-ATPase and H+-PPase, which provide the driving force for 
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Na+/H+ exchange (Zang et al 2006).   This indicates that the NO signaling role under 

saline conditions may be modulated through-calcium dependent pathways. 

 

2.3.2.5.  Abscisic acid (ABA)-dependent pathways  

 

ABA is a stress-related hormone involved in several physiological responses including 

the closing of the stomata and leaf abscission.  This hormone is normally secreted in 

larger quantities in response to stress in plants.  There is increasing evidence suggesting 

a link between NO-regulated plant physiological processes and those regulated by the 

ABA pathway.  Firstly Zhao et al, (2001) demonstrated that both NO and ABA levels are 

increased under drought and that NO functions upstream of ABA since blocking the NOS 

activity also blocked ABA accumulation.  NO and gibberellic acid (GA) have also been 

found to interact with ABA upstream of the pathway that leads to vacuolation 

(disassembly of proteins in the vacuoles) of protein storage that occurs during 

programmed cell death (Paul et al, 2007 and Guo et al, 2006).  Nitrate Reductase (NR)-

dependent NO biosynthesis is also responsible for ABA mediated stomatal closure 

during dehydration (Bright et al, 2006).  

 

2.3.3.0.  The role of NO in plant growth and development 

 

Plant growth and development are affected by NO concentration.  Higher cellular NO 

concentrations are detrimental to plant health (Anderson and Mansfield, 1979).  Nitrites 

can be a source of NO under anoxic conditions in the enzymatic reaction catalized by NR 

(Morot-Gaudry et al, 2002). Under these conditions where nitrite reduction by nitrite 
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reductase is limited, NO produced from NR inhibits photosynthesis and this is thought to 

be via control of chlorophyll formation by NO (Beligni, Lamattina, 2000).   

 

Exposure of pea leaves to nitric oxide reduced the generation of endogenous ethylene, 

the hormone required in for senescence (del Rı´o et al, 2004).  NO in this case delayed 

leaf and flower senescence.   Guo et al, (2005) also confirmed the role of NO in inhibiting 

senescence. Nodule senescence is a form of programmed cell death and occurs as part of 

normal plant growth and development. However, it is not known if the observed effects 

of NO in plant tissues as described above would be similar in the complex nitrogen fixing 

nodule tissue from leguminous plants. 

 

The studies related to induction of seed germination by NO treatment (Bethke et al, 

2007; Madolo, 2003) only adds to the list of the already known effects of NO on 

promoting plant growth.  It has also been observed that NO has a role in promoting root 

growth and acting as an important player in promoting root gravitropism (Xiangyang, et 

al, 2005). 

 

2.3.4.0.  Nitric oxide and stress responses 

 

Nitric oxide is involved in modulating pathways related to plant responses to stress 

(Neil et al, 2002a; Guo et al, 2005; Wang et al, 2006).  Thus NO accumulation in the cells 

induce various processes in plants, including the expression of defense-related genes 

(Rusterueci et al, 2007), programmed cell death (PCD) (de Pinto et al, 2002) and 

stomatal closure (Niell et al, 2007).   
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NO has been established as a signaling molecule involved in plant abiotic stress 

responses (Neill et al, 2002b; Zhao et al, 2004).   Water stress in plant cells occurs as a 

consequence of several abiotic stresses in plants, including salinity, cold and drought.  

Plant leaves protect the plant from dehydration through closure of stomata upon 

receiving the drought stress stimulus.  The physiological processes leading to this 

stomatal closure in response to dehydration are modulated by nitric oxide (Bright et al, 

2006; Neil et al, 2008).  Furthermore NO is endogenously generated in plant cells in 

response to salinity stress  and this NO activates the antioxidant system of the plant, and 

thus provides protection against oxidative stress (Neill et al, 2007; Zhao et al 2004; 

Zhang Y et al, 2006).  Nitric oxide induces salt tolerance by increasing vacuolar H+-

ATPase activity and its synthesis (Zhang et al, 2006 and Zhao et al 2004).     Drought also 

increases NO generation in the cells and this NO protects cells against oxidative stress in 

the same manner as in NaCl stress (Hao, et al, 2008).  There is a detailed account on NO 

as an antioxidant and a protective molecule against abiotic stress (Neill et al, 2008). 

 

2.4.0.0.  Biochemistry of plant antioxidants 

 

2.4.1.0.  The role of Antioxidants in plants 

 

2.4.1.1.  Introduction  

 

The term ‘antioxidant’ encompasses those biological chemicals that the plant cell uses to 

counteract oxidative process.  In plants, oxidative stress occurs as a consequence of the 

accumulation of reactive oxygen species (ROS) in the cell (Ahmad et al, 2008).  Certain 

concentrations of ROS trigger expression of genes that lead to deamination of proteins, 

oxidation of DNA and initiation of senescence-related processes (Ahmad et al, 2008).  
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Since these ROS are produced as a consequence of many metabolic processes and also 

under stress conditions, the plant cell has evolved to have an array of antioxidant 

enzymes working together with redox buffers to maintain a non-toxic balance in ROS 

concentration, thereby mitigating the undesirable impact of ROS.  One of the first set of 

responses to exposure to stress is an increased generation of superoxides.  Superoxide 

leads to the activation of superoxide dismutase (SOD, EC: 1. 15.1.1).  SOD works to 

dismutate superoxide in a process that consumes NADPH under anaerobic conditions to 

produce hydrogen peroxide (McCord & Fridovich, 1969).  Hydrogen peroxide can then 

be detoxified by either catalase (CAT, EC; 1.11.1.6), glutathione peroxidase (GPx, EC: 

1.11.1.9) or ascorbate peroxidase (Figure 2-4) (MØller, 2001).  The two metabolites 

ascorbate and glutathione are also involved in detoxification of hydrogen peroxides. 

 

 

 

Figure 2- 5  Summary of antioxidant enzyme systems that are important for 
scavenging ROS in plant mitochondria (adapted and modified from Møller, 2001). 
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2.4.1.2.  Superoxide Dismutases (SOD, EC: 1. 15.1.1) 

 

Superoxides dismutases are a group of metallo-proteins that catalyze the dismutation of 

superoxide (O2-) to molecular oxygen and hydrogen peroxide (H2O2).  Copper-zinc SOD 

from bovine erythrocytes was isolated first (McCord and Fridovich, 1969), followed by 

manganese-containing superoxide dismutase that was found in prokaryotes and the 

mitochondria of eukaryotes.  Lastly, the iron-containing forms of superoxide dismutase 

were first identified in algae and E. coli.  All these forms were proved to occur in higher 

plants (Giannopolitis and Ries, 1997). In higher plants, SOD seems to be more 

concentrated in the shoots than in the roots (Giannopolitis & Ries, 1997).  CuSOD and 

ZnSODs are gycosylated tetramers that serve to protect the cell against O2- (Fridovich, 

1995).  CuZn SOD is also located in the cytosol and chloroplast (Ogawa et al, 1996).  Mn 

SOD is located in mitochondria and peroxisomes (Wolfe-Simon et al, 2006) whereas Fe 

SOD is found in the chloroplast (Salin, 1988) (Figure 2- 6). 

 

Figure 2- 6. Localization of SOD isoforms in various compartments of the plant 
cell.  SOD; Superoxide dismutase (adapted and modified from www.cellsalive.com 
02/07/09) 

http://www.cellsalive.com/
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2.4.1.3.  Catalase (CAT, EC; 1.11.1.6) 

 

Catalases (H2O2: H2O2 Oxidoreductase, EC 1.11.16) aid in decomposition of H2O2 in a 

process that yields water by aerobic organisms.  CATs are mostly heme-containing 

tetramers of about 240 kDa. However, there are exceptions of non-heme proteins 

(Switala j and. Leuwen P.C, 2002) and dimerics (Putnam et al 2002).  This group of 

enzymes has been identified in plants and is very heterogeneous.  Catalase activity has 

been detected in abundance in gycoxysomes of germinating seeds and in leaf 

peroxisomes (Weiting et al, 1990).  Little is known about the existence of these enzymes 

in roots and root nodules.  Leaves of pea plants have been reported to have only one 

isoform whereas cotyledons of germinated cotton (Gossypium hirsutum L.) have about 

five distinct isoforms (Weiting et al, 1990).  

 

Characterization of catalases from Nicotiana shows a new dimension in the 

heterogeneity of catalases.  Based on electrophoretic mobility, it has been observed that 

different catalase isoforms are activated at different stages of plant development, with 

specific inhibition of the various isoforms, indicating functional specificity (Havir & 

Mchale, 1987).  CAT activity is controlled both at transcriptional and posttranslational 

level (Ni & Trelease, 1991). 

 

2.4.1.4.  Ascorbate-Glutathione cycle Antioxidant enzymes 

 

Ascorbate peroxidase (EC: 1.11.1.11) is the most important antioxidant enzyme in the 

chloroplast.  It uses ascorbate as the reductant to scavenge H2O2 in a process that forms 

water as a by-product and dehydroascorbate (DHA) as the final product ((Møller, 2001).  

A certain level of ascorbate has to be maintained in the cell and this is done by 
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dehydroascorbate reductase (DHAR; EC 1.8.5.1) via recycling of DHA back into 

ascorbate by oxidizing reduced glutathione (GSH) (Møller, 2001).  Furthermore, 

glutathione reductase (GR; EC 1.6.4.2) recycles oxidized glutathione (GSSG) back to GSH 

in a process that uses NADPH as an electron donor (Bowler et al, 1992).  This specific 

controlled generation of metabolites (also known as redox buffers) and antioxidant 

enzymes could help to maintain the levels of ROS below toxic concentrations.  

 

2.4.1.5.  Glutathione peroxidase (GPx; EC 1.11.1.9) 

 

GPx, characterized by the possession of three conserved cysteine residues in the coding 

region, are a family of multiple isozymes involved in scavenging hydrogen peroxide 

(Rouhier & Jacquot, 2005).  Glutathione peroxidase detoxifies hydrogen peroxide and 

alkyl hydroxyls in a biochemical reaction that utilizes glutathione as a reductant.  In 

plants, several isoforms have been identified including one from Aloe vera that is 16 kDa 

(Sabeh et al, 1993) and another 22 kDa isoform from Citrus sinesis (Ben-Hayyim et al, 

1993). 

 

The GPXs in plants are not only different structurally from animal glutathione 

peroxidase but also functionally.  Animal GPx uses glutathione only as a reductant while 

the plant GPx shows an alternative pathway.  This is evidenced by glutathione 

peroxidase proteins identified in Arabidopsis thaliana and Chinese cabbage that had 

glutathione-dependent proxidase activity and showed high affinity to thioredoxin as a 

reductant (Mittler et al., 2002).  These enzymes are localized in all the plant parts and 

different cell compartments (Rouhier & Jacquot, 2005, and Lee et al, 2002).  Plant GPxs 

are responsive to ROS accumulation induced by both biotic and abiotic stress.  They also 



52 | P a g e  
 

catalyze the reduction of peroxynitrite and reactive nitrogen species (RNS) (Rouhier & 

Jacquot, 2005). 

2.4.2.0.  Antioxidants and stress-induced responses. 

 

2.4.2.1.  Redox buffer responses 

 

The ascorbate-glutathione pathway comprises two main metabolites, glutathione and 

ascorbate.  Studies show that, depending on the concentration of ROS or extent of the 

oxidative stress, the ascorbate and glutathione pool can be reduced (Foyer et al, 1994).  

For instance, the aging process is facilitated by oxidative stress and this observation is 

supported by evidence showing a decline in concentrations of ascorbate in aging leaves 

(Foyer et al, 2004).  Furthermore GSH content decreases with senescence in pea leaf 

mitochondria and this is mainly attributed to a decrease in the activity of GR. (Jimezen et 

al, 1998).  Total glutathione pool also decreases with nodule senescence (Dalton et al, 

1993; Evans et al, 1999 and Puppo et al, 2005). Early responses of GSH and ascorbate to 

abiotic stress involve an increase in transcripts of the enzymes involved in the 

biosynthesis of these metabolites, with prolonged exposure leading to senescence 

associated with a decrease in the levels of the metabolites themselves (Loscos et al, 

2008). 

 

2.4.2.2.  Antioxidant enzyme responses 

 

Various abiotic stress conditions have been studied and have been found to activate 

different antioxidant enzymes.   NaCl-induced abiotic stress triggers the plant 

antioxidant system in defense against the oxidative stress that results from exposure to 

elevated NaCl concentrations.  The activation of the antioxidant system by NaCl is tissue-
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specific (Hamed et al, 2007).  Arbona et al, (2003) demonstrated the differential 

response of both non-enzymatic and enzymatic antioxidants to different concentrations 

of salt.   It is important to note that both abiotic and biotic stress trigger the 

accumulation of ROS and hence the activation of the antioxidant system under such 

conditions. 

 

2.5.0.0.  Legume root nodules and nitrogen fixation 

 

2.5.1.0.  Introduction 
 
 

Leguminosae represent the family of plants found on both temperate and tropical 

regions, and are believed to originate in the tropics.  They range from small annuals to 

large shrubs.  The majority of the known legumes have a potential to fix nitrogen from 

the symbiotic associations with Rhizobium/Bradyrhizobium in their roots. 

 

In this symbiotic relationship, bacteria fix atmospheric nitrogen in an enzymatic 

reaction catalyzed by nitrogenase from rhizobia (Gordon et al, 1997.).   During nitrogen 

fixation in the root nodules, nitrogenase catalyzes the reduction of nitrogen to form 

hydrate (Gordon et al, 1997).  This process is costly and the energy demand for the 

reaction is satisfied by the release of chemical energy from hydrolysis of 16 molecules of 

ATP to form ADP.  Photosynthesis products, mainly glucose, are required in large 

quantities to meet this high ATP demand for nitrogen fixation.  Magnesium ions are also 

important as co-factor for nitrogenase enzyme (Gordon et al, 1997). 
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2.5.2.0.  Nodulation signals from root exudates of legumes and symbiotic 

bacteria 

 

Signal exchange leading to nodule development begins with the secretion of flavonoids 

by the plant roots in recognition of a compatible symbiosis partner.  These flavonoids act 

as signal molecules that activate the expression of specific genes in symbiotic bacteria.  

There are three main flavonoids that have been found to accumulate in roots during 

nodulation, namely; genistein, diadzein and coumestrol (Dakora, 2000).  These 

molecules are relatively similar in structure (Figure 2- 7) allowing less specificity of the 

genotypes that can be infected (Table 2- 1).  Upon recognition to the plant flavonoids, 

bacteria then respond by releasing oligosaccharides known as nodulation (NOD) factors. 

Consequently the bacteria get adsorbed to the root hair causing it to curl and engulf the 

adsorbed bacterial (Dakora, 2000).  

 

Infection begins with the formation of infection threads that penetrate the centre of the 

root cortex. In this symbiotic relationship, the bacteria provide the plant with useable 

nitrogen, while in return the bacteria benefit from plant-derived carbon supply in the 

form of sugars from the products of photosynthesis (Rawsthorne et al, 1980).   

 

 

Figure 2- 6  Chemical structures of nodule inducing molecules (flavonoids) 
(Adapted from Dakato, 2000) 
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2.5.3.0.  Classification of Legume Nodules 

 

Generally, nodules are grouped into determinate and indeterminate nodules.  This 

characterization is mainly based on the anatomy and developmental system of the 

nodules.  The indeterminate nodules have a persistent apical meristem in mature 

nitrogen fixing nodules.  Their central cortex is made up of the vascular bundles that are 

surrounded by pericycle cells and endodermis cells.  These cells continue to differentiate 

throughout the life of the nodule (Sprent, 1980 and Dakora, 2000).  On the other hand 

the determinate nodules have their central part as the active nitrogen fixing region 

enveloped by the inner cortex and also consisting of vascular bundles.  The vascular 

tissue in this case is also enveloped by pericycle cells and endodermis.  Nitrogen fixation 

occurs at the center of the cortex.  However the nodules of determinate nodules are 

spherical in shape, unlike the oval indeterminate nodules, and have a non-persistent 

meristem (Sprent, 1980 and Dakora, 2000). 

 

 

Table 2- 1 Nodulation gene-inducing molecules from root exudates of some 
tropical grain legumes belonging to Phaseoleae 

Legume species  nod-Gene inducer  Bacterial strain   Reference 
Bambara groundnut  Daidzein   Rhizobium NGR234  Dakora & Muofhe 1996 

Genistein 
Coumestrol 

Common bean   Daidzein   R.l. bv. phaseoli 4292  Dakora et al. 1993 
Genistein Hungria et al. 1991 
Coumestrol Dakora et al. 1993 

Soybean   Daidzein   B. japonicum USDA123  Kosslak et al. 1987 
Genistein 
Coumestrol 

Cowpea   Daidzein   Rhizobium NGR234 F. D. Dakora, unpublished results 
Genistein 
Coumestrol 

Kersting’s bean   Daidzein   Rhizobium NGR234 F. D. Dakora, unpublished results 
Genistein 

                                            Coumestrol 

Adapted from Dakora (2000). 
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2.5.4.0.  Nodule development and survival mechanisms 
 

2.5.4.1.  ROS signaling and antioxidant metabolism during nodulation 

 

Hérouart et al, (2002) have reviewed possible roles of ROS and NO in the nodulation 

process and in nodule development in legumes.  They suggest the occurrence of an 

oxidative burst accompanied by the increased levels of nitric oxide in the early stages of 

the infection-thread development.  In order to facilitate nodulation, the legume root 

hairs first perceive the Rhizobium spp as a virulent pathogen thus followed by oxidative 

burst.  This could possibly trigger activation of antioxidant enzymes, glutathione 

biosynthesis and the expression of genes involved in nodulation. It is thought that this 

process is modulated by nitric oxide.   

 

2.5.4.2.  Nodule biochemistry and physiology 

 

Although symbiotic nitrogen fixation contributes a lot to plant nitrogen economy, nodule 

development and survival costs the plant a large proportion of the plants’ total energy 

demand. Such demand is catered for by the product of photosynthesis of which the 

surplus products are translocated to other sink organs for storage (Nelson et al, 1984).  

There is also a need for specific regulation of oxygen in the nodules so as to protect the 

nitrogenase enzyme complex and simultaneously to provide the medium for enough 

ATP synthesis that is required for nitrogen fixation and nodule maintenance in the 

nitrogen fixing tissue (Gordon et al 1997).   The reaction for nitrogen fixation can be 

represented by equation (1) as follows: 

 

                                    (1) 
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The nitrogen fixation reaction utilizes sucrose as a source of ATP and yields ammonia as 

the first product.  Ammonia is further assimilated by incorporation into organic 

compounds like amino acids or ureides in the presence of carbon skeletons generated 

from photosynthates.  These carbon skeletons are required for transport of this fixed 

nitrogen (Rawsthorne et al, 1984).  The most common source of carbon for nitrogen 

fixation is sucrose.  The sucrose supply to the nodules is dependent upon several 

environmental factors and the photosynthesis rate in the leaves.  Glutamine and 

glutamate synthase are the main enzymes catalyzing the assimilation of ammonia in the 

root nodules.  This pathway itself yields important molecules, including amino acids and 

nucleotides (ureides) (Lancern et al, 2000).   

 
There are several environmental factors that affect nodule formation and survival.  One 

of the most studied factors is salinity.  Generally salt stress causes a decrease in plant 

growth parameters, e.g. shoots, roots and nodule biomass.  Reduced biomass in 

response to salt stress has been reported (Lopéz et al, 2007) in both the determinate 

and indeterminate nodules.  In line with these findings, (L’taiefa et al, 2006) concurs 

with the remarkable decrease in growth parameters due to salt stress, with some 

genotypes exhibiting no nodule formation under highly saline conditions.  Salah et al ( 

2008) agreed with these findings and even suggested an absolute and definite decrease 

in nodule biomass and number under stress regardless of the nodule morphology or 

genotype. 

 

The malfunctioning of the nodules under high NaCl conditions is attributed to several 

factors including nitrogenase activity, nodule conductance, nodule carbon metabolism 

and Ca+/P+ metabolism.  These factors affect the nitrogen fixation process.  Bacteria fix 
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atmospheric nitrogen into nitrates/ammonium ions in a process that requires the 

supply of oxygen by legheamoglobin and the presence nitrogenase enzyme to catalyze 

the formation of nitrates/ammonia.  The nitrogen fixation rate and amount of 

legheamoglobin are reduced under salinity (Comba et al, 1998).   With the amount of 

legheamoglobin reduced due to high salt concentrations, the oxygen conductance is 

purturbed; hence nitrogen fixation rate will be reduced.   Lopéz, et al (2007) further 

reports both morphology- and genotype-specific decreases in both nitrogenase activity 

and legheamoglobin accumulation.  Salt sensitive genotypes seem to exhibit more 

decreased nitrogen fixation rates (Ben et al, 2008).  It is further established that nodule 

stability and formation under saline condition is highly dependent on nodule oxygen 

conductance (L’taief et al, 2007 and Ben et al, 2007). 

 

High salt concentrations also perturb the sucrolytic activities, thus affecting nodule 

survival negatively.  Such stress conditions have been reported to inhibit sucrose 

synthatase and inhibits the transport of sucrose to the root nodules (Ben et al, 2008), 

decrease the activities of trehalose-6-phosphatase (TPS), trehalase (TPE) and nodule 

sucrose content (Lopéz et al, 2007).  Similar to the growth parameters and nitrogen 

fixation rate, these decreases are genotype-specific.   

 

 2.5.4.3.  Transcriptomics of nodule development 

 

Root nodule developmental stages are characterized by several polypeptides 

accumulating in a temporal and specific manner.  These polypeptides are essential for 

nodule development and function.  They are called nodulins and are categorized as early 

nodulins and late nodulins (Verma et al, 1986).  Nodulins were first identified in 

soybean (Verma et al, 1992) and their discovery led to isolation and characterization of 



59 | P a g e  
 

several nodulins.  The early nodulins are thought to be essential for infection process.  

While the late nodulins are expressed prior to nitrogenase activity and nitrogen fixation 

commencement, and are essential for nodule developmental process and nitrogen 

fixation (Verma et al, 1986).  The late nodulin genes comprise polypeptides like 

legheamoglobins, sucrose synthases and glutamate synthases.   Nodulins exist 

throughout the species of nitrogen-fixing legumes and are expressed in the nodules 

(Verma et al, 1992). 

 

Further characterization of the regulation of nodulins and their families in the 20th 

century revealed the conserved organ specific (OSE) and nodule infected cell expression 

(NICE) motifs (Metz et al, 1998 and de Bruijn et al, 1994).  These motifs include the well 

known nodule specific consensus sequences, AATGAT and CTCTT, present in all the 

nodule specific promoters (Fehlberg, at al, 2004 and Hohnjec et al, 2000).   

 

2.6.0.0.  Problem statement and objectives 

 

Drought and salinity are amongst the most detrimental factors affecting crop 

productivity.  Several approaches to improve crop tolerance to abiotic stress have been 

employed and legume crop varieties with a certain level of tolerance to stress have been 

bred, and yet the need for abiotic stress-tolerant crop development has not been met.  

There is also mounting evidence that these abiotic stress-tolerant crop genotypes, just 

like halophytes, have differential elevated activities of antioxidant enzyme activities 

under such stresses (Koca et al, 2006; Neto et al, 2005; Shivakumar et al, 2003).   In 

concurrence with these findings, there is also accumulating evidence that the 

destructive nature of ROS that accumulate in response to abiotic stress depends to a 

large extent on the response of the antioxidant system (Rodriquez et al, 2005 and Neil 
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2007). Antioxidants are the scavengers of reactive oxygen species; however the 

orchestration of events leading to the scavenging process is not fully understood, 

especially in legume root nodules. 

  

Nitric oxide is an endogenous signaling molecule involved in the regulation of stress 

responses (Yamasaki & Sakihama 2000 and Neil et al, 2008).  The abiotic stress signaling 

pathway is very complex and involves many molecules and stress responsive genes 

(Bhatnagar-Mathur et al, 2008).  In this pathway, nitric oxide functions upstream of Ca+ 

in the dehydration response pathway leading to stomatal closure (Neill et al, 2008).  NO 

has also been identified as a signaling molecule involved in plant response to salinity 

stress (Zhang et al, 2006 and Zhao et al 2004).  Despite the fact that NO is denoted as a 

ROS scavenger, protecting cells from oxidative damage (Beligni et al , 2002),  it is still 

not clear as to how NO protects root nodules against oxidative stress. Direct or indirect 

interactions of NO with antioxidants and biochemical pathway models are not well 

elucidated. 

 

Both NO and antioxidant systems are implicated in detoxification of ROS and thus 

alleviate oxidative stress and hence delay early senescence.   It was established that NO 

modifies protein functions through the cGMP pathway in mammals.  Despite the fact that 

the proteins with guanylate activity that have been identified in plants, they are 

independent of the nitric oxide (Ludidi & Gehring, 2003).  Cyclic GMP is a signaling 

molecule that is involved in plant abiotic stress responses (Donaldson et al, 2004).  

However there is no evidence established so far that links the signaling functions of NO 

in modulating the antioxidant responses in root nodules to cGMP pathway.   
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Just like any plant root tissue, root nodules are the first sensors of the abiotic stress and 

are prone to oxidative stress.   Hence development of legume plant genotypes with 

increased tolerance to abiotic stress should be of prime interest.  Development of abiotic 

stress-tolerant legumes is still an on-going process and requires rational design that 

involves regulating gene expression in the root nodules, coupled with efficient legume 

genetic transformation procedures.  Despite the significance of nodule tissue in legume 

nitrogen economy, strategies involving development of more abiotic stress tolerant 

nodules have not been employed. 

  

Nitrogen fixation at the early stages of the plant life cycle yields nitrogen that is 

important for grain yield.  On the other hand, at later stages of plant development, fixed 

nitrogen contributes more to the grain’s crude protein content (Hungira & Neves, 1987).  

Both crude protein and yield are important attributes in determining crop productivity.  

These higher yields and improved protein contents from nitrogen fixing legumes come 

with a price of a very high total ATP demand on net products of photosynthesis 

(Rawsthorne et al, 1980).  Expressing abiotic stress-regulated genes constitutively has 

often resulted in stunted plants with rather abnormal growth, reduced number of seeds 

and reduced fruit set (Bhatnagar-Mathur et al, 2008).  This might be happening as a 

consequence of increased energy demands for the plant.  Hence a potentially useful 

attempt to develop legume plants with nodules more tolerant to abiotic stress would 

involve differentially regulating the expression of stress-related genes in the nodules in 

response to abiotic stress.  However, there is no identified abiotic stress-responsive 

nodule-specific promoter currently used in biotechnology. 

 

Nitric oxide functions in plants have been elucidated to some extent, its functions and 

roles in biochemical process discovered and scrutinized (Niell et al, 2008).  However, 
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there has not been any direct role of NO linked to abiotic stress tolerance in root 

nodules, secondly the pathway in which NO affects nodule enzyme activities leading to 

abiotic stress tolerance have not been identified.  It is in this background that this work 

aims specifically at: 

1. Evaluating the effect of nitric oxide on 

a. Superoxide dismutase enzyme activity and transcripts 

b. Glutathione peroxidase activity 

c. Glutathione reductase activity 

d. Glutathione levels and redox status 

2. Establish the functionality of NO as oxidative stress protectant mediated through 

the cGMP pathway. 

3. Construct a nodule-specific promoter that is responsive to abiotic stress. 

4. Design a strategy for deferentially regulating the expression of a nitric oxide 

synthesizing gene in root nodules.  

 



63 | P a g e  
 

Referances 

 

Ahmad P, Sarwat  M and Sharma S (2008) Reactive oxygen species, antioxidants and 

signaling in plants.  Journal of plant biology 51: 167-173. 

 

Anderson L and Mansfield TA (1979) The effects of nitric oxide pollution on the 

growth of tomato. Environmental pollution 20: 113–121.   

 

Anila SV and Rao SK (2004) Calcium-mediated signal transduction in plants:   A 

perspective on the role of Ca2+ and CDPKs during early plant development.  Journal of 

plant hysiology 158: 1237–1256. 

 

Arbona V, Flors V, Jacas J, Carcia-Agustin P and Gomez-cardenas A (2003) 

Enzymatic and non enzymatic responces of Carrizo citrange, a salt-sensitive citrus 

rootstock, to different levels of salinity.   Plant cell physiology 44: 388-394. 

 

Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inze D, Delledonne 

M and Van Breusegem F (2007) Metacas-pase activity of Arabidopsis thaliana is 

regulated by S-nitrosylation of a critical cysteine residue. Journal of biological chemistry 

282: 1352-1358. 

 

Beligni MV and Lamattina L (2000) Nitric oxide stimulates seed germination and de-

etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants.   

Planta 210: 215-21. 

 



64 | P a g e  
 

Beligni MV, Fath A, Bethke PC, Lamattina L, and Jones RL (2002) Nitric Oxide Acts as 

an Antioxidant and Delays Programmed Cell Death in Barley Aleurone Layers.  Plant 

physiology 129: 1642-1650. 

 

Ben SI, Albacete A,  Andu`jar  CM, Haouala R, Labidi N, Zribia F, Martinez F,Pe´rez-

Alfoce F, Abdelly C (2009) Response of nitrogen fixation in relation to nodule 

carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress.  Journal of 

plant physiology 166: 477-488. 

 

Ben-Hayyim G, Faltin Z, Gepstein S, Camoin L, Strosberg AD and Eshdat Y (1993) 

Isolation and characterization of salt-associated protein in Citrus.  Plant science 88: 129–

140. 

 

Bethke PC,  Libourel ICL,  Aoyama N and Chung YY (2007) The Arabidopsis Aleurone 

Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and 

Necessary for Seed Dormancy.  Plant physiology 143: 1173 -1189. 

 

Bhatnagar-Mathur P, Vadez V and Sharma KK (2008) Transgenic approaches for 

abiotic stress tolerance in plants: retrospect and prospects.  Plant cell reproduction 27: 

411-424. 

 

Bowler C, Van Montangu M and Inze D (1992) Superoxide dismutase and stress 

tolerance.  Annual review of plant physiology and plant molecular biology 43: 83-116. 

 



65 | P a g e  
 

Bright J, Desikan R, Hancock JT, Weir IS and Neill SJ (2006) ABA induced NO 

generation and stomatal closure in Arabidopsis is dependent on H2O2 synthesis. The 

Plant Journal 45:  113–122. 

 

Bush DS (1995) Calcium regulation in plant cells and its role in signaling.  Annual 

review of plant physiology 46: 95–122.  

 

Comba ME, Benavides MP and Tomaro ML (1998) Effect of salt stress on antioxidant 

defence system in soybean root nodules.  Australian journal of plant physiology 25: 665 

– 671. 

 

Corpas FJ, Barroso JB, Carreras A, Vaelderrama R, Palma JM, Leon AM, Sandalio LM 

and del Rio LA (2006) Constitutive argentine-dependent nitric oxide synthase activity 

in different organs of pea seedlings during plant development.  Planta 224: 246-254. 

 

Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. Journal of 

experimental botany 57: 471-478.   

 

Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, and Mack A (2006) 

Response to Zemojtel et al.: plant nitric oxide synthase: back to square one.  Trends 

plant science 11, 526–527. 

 

Cueto M, Hernández-Perera O, Martín R, Bentura ML, Rodrigo J, Lamas S and 

Golvano MP (1996) Presence of nitric oxide synthase activity in roots and nodules of 

Lupinus albus.  FEBS Letter 398: 159–164. 

 



66 | P a g e  
 

Dakora FD (2000) Commonality of root nodulation signals and nitrogen assimilation in 

tropical grain legumes belonging to the tribe Phaseoleae.   Australian journal of plant 

physiolgy 27: 885–892. 

 

Dalton DA, Langeberg L and Treneman NC (1993) Correlation between Ascorbate-

glutathione pathway and effectiveness in legume root nodules.  Physiologia plantarum 

87: 365-370. 

 

de Pinto MC,  Tommasi F,  De Gara L (2002) Changes in the antioxidant systems as 

part of the signaling pathway responsible for the programmed cell death activated by 

nitric oxide and reactive oxygen species in tobacco...  Plant physiology 130:  698-709. 

 

Dean JV and Harper JE (1986) Nitric oxide and nitrous oxide production by soybean 

and winged bean during the in vivo nitrate reductase assay.  Plant physiology 82: 718-

723. 

 

del Rı´o LA,  Corpasa FJ, and Barrosobl JB (2004) Nitric oxide and nitric oxide 

synthase activity in plants.  Phytochemistry 65:  783–792. 

 

Fehlberg V, Vieweg MF, Dohmann EMN, Hohnjec N, Puhler A, Perlick AM and 

Kuster H (2005) The promoter of the leghaemoglobin gene VfLb29: functional analysis 

and identification of modules necessary for its activation in the infected cells of root 

nodules and in the arbuscule-containing cells of mycorrizal roots.  Journal of 

experimental botany 56: 799-806. 

 



67 | P a g e  
 

Foyer CH, Lelandais M and Kunert KJ (1994) Photo-oxidative stress in plants.  

Physiologia plantarum 92: 696-717. 

 

Foyer CH, Trebst A and Noctor G (2005) Protective and signaling functions of 

Ascorbate, glutathione and tocopherol in the chloroplast.  In: advances in photosynthesis 

and respiration: photo-protection, photo-inhibition, gene-regulation and environment 

19: Demmig-Adams, B. and Adams W.W (eds.).  Springer, Doedrecht, the Netherlands, pp 

241-268. 

 

Francis CM and Millington AJ (1965a) Isoflavone mutations in subterranean clover, 

their production, characteristics and inheritance.  Australian journal of agricultural 

research 16: 565–573. 

 

Frodovich I (1995) Superoxide radical and superoxide dismutase.  Annual review of 

biochemistry 64: 97-112. 

 

Giannololotis CN and Ries SK (1977) Superoxide dismutases; occurance in higher 

plants.  Plant physiology 59: 3009-3314. 

 

Gorbe A, Giricz Z, Huliák I, Baxter GF, Ferdinandy P (2007) NO–cGMP–PKG signalling 

pathway involved in the protection of cardiac myocytes during hypoxia/reoxygenation. 

Journal of molecular and cellular biolgy 42: supplement 1. 

 

Grennan AK (2007) Protein S-Nitrosylation: Potential targets and roles in signal 

transduction.  Plant Physiology 144: 1237–1239. 

 



68 | P a g e  
 

Guo QF and Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to 

mitochondria and protects against oxidative damage and dark-induced senescence. 

Plant cell 17: 3436 -3451. 

 

Hakim TS, Sugimori K, Camporesi EM and Anderson G (1996) Half-life of nitric oxide 

in aqueous solutions with and without haemoglobin.  Physiological measurements 17:  

267-277. 

 

Hamed KB, Castagna A, Salem E,   Ranieri E, Abdelly C (2007) Sea fennel (Crithmum 

maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant 

responses.  Plant growth regulation 53: 185–194. 

 

Hao GP, Xing Y, Zhang JH (2008) role of Nitric oxide dependence on nitric oxide 

synthase-like activity in the water stress signaling in maize seedlings. Journal of 

integrative plant biology 50: 435- 

 

Havir EA and Mchale NA (1987) Biochemical and developmental characterization of 

multiple forms of catalase in tobacco leaves.  Plant physiology 84: 450-455. 

 

Hohnjec N, Kuster H, Albus U, Frosch SC, Becker JD, Puhler A, Perlick AM and 

Fruhling M (2000) The broad bean nodulin VfENOD18 is a member of a novel family of 

plant proteins with homologies to the bacterial MJ0577.  Molecular genome and genetics 

264: 241-250. 

 

Hu X, Neill SJ, Tang Z and Cai W (2005) Nitric oxide mediates gravitropic bending in 

soybean roots.  Plant physiology 137: 663-670. 



69 | P a g e  
 

 

Hungria M and Neves CP (1987) Partitioning of nitrogen from biological fixation and 

fertilitizer in Pheseolus vulgaris.  Physiologia Plantarum 69: 55-63. 

 

Jacobi J, Elmer j, Russell k, Soundur R and Porterfield DM (2006) Nitric oxide and 

cGMP dependent signaling in Arabidopsis root growth.  Gravitational and space biology 

19: 157-158. 

 

Jacoby B (2006) Mechanisms involved in salt tolerance of plants, in Pessarakali M (eds). 

Handbook of plant and crop stress (2nd edition), 97-124. 

 

Ji, Y, Akerboom TP, Sies H and Thomas JA (1999) S-Nitro-sylation and S-

glutathiolation of protein sulfhydryls by S-nitroso glutathione.  Archives of biochemistry 

and biophysics 362: 67-78. 

 

Jiang M and Zhang J (2001) Effect of abscisic acid on active oxygenspecies, 

antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant 

and cell physiology 42: 1265-127. 

 

Jiang M and Zhang J (2002) Water stress-induced abscisic acid accumulation triggers 

the increased generation of reactive oxygen species and up-regulates the activities of 

antioxidant enzymes in maize leaves.  Journal of experimental botany 53:  2401-2410. 

 

Jimenez A, Hernandez JA, Pastori G, del Rio LA and Sevilla F (1998) The role of the of 

ascorbate-glutathione cycle  of the mitochondria and perixosomes in the senescence of 

the pea leaves.  Plant physiology 118: 1327-1335. 



70 | P a g e  
 

 

Jung BG, Lee KO, Lee SS, Chi YH, Jang HH, Kang SS, Lee K, Lim D, Yoon SC, Yun DJ, 

Inoue Y, Cho MJ, and Lee SY (2002) A Chinese cabbage cDNA with high sequence 

identity to phospholipid  hydroperoxide glutathione peroxidases encodes a novel 

isoform of thioredoxin-dependent peroxidase.  The journal of biological chemistry 277: 

12572-12578. 

 

Kaiser WM, Weiner H, Kandlbimder A, Tsai CB, Rockel P, Sonoda M and Planchet E 

(2002) Modulation of nitrate reductase: some new insights, an unusual case and a 

potentially important side reaction.  Journal of experimental botany 53: 875-882. 

 

Kaminaka H, Morita S, Tokumoto M, Masumura T, Tanaka K (1999) Differential gene 

expression of rice superoxide dismutase isoforms to oxidative and environmental 

stresses.  Free radical research 31: 219-225. 

 

Knight H, Trewavas AJ, and Knight MR (1996) Cold-calcium signaling in Arabidopsis 

involve two Cellular pools and a change in calcium signature after acclimation.  The 

plant cell 8: 489-503. 

 

Koca H, Bor M, Özdemir F, Türkan I (2007): The effect of salt stress on lipid 

peroxidation, antioxidative enzymes and proline content of sesame cultivars. 

Environment and experimental botany 60: 344–351. 

 

Kurniadie D and Redmann RE (1999) Growth and Cl accumulation in soybean 

cultivars treated with excess KCl in solution culture.  Communications in soil science and 

plant analysis 30: 699-709. 



71 | P a g e  
 

 

L’taief B,   Sifi B, Zaman-Allah M,  Drevonc  J and  Lachaala M (2007) Effect of salinity 

on root-nodule conductance to the oxygen diffusion in the Cicerarietinum–

Mesorhizobium ciceri symbiosis.  Journal of plant physiology 164: 1028-1036.  

 

Lanciern M, Gadal P and Hodges M (2000) Enzyme redundancy and importance of 2-

oxoglutarate in higher plant ammonium assimilation.  Plant physiology 123: 817-823. 

 

Liu L, Hausladen A, Zeng M, Que L, Heitman J and Stamler JS (2001) A metabolic 

enzyme for S-nitrosothiol conserved from bacteria to humans.  Nature 410: 490-494. 

 

Liu Y, Fiskum G and Schubert D (2002) Generation of reactive oxygen species by the 

mitochondrial electron transport chain.  Journal of neurochemistry 80: 780-787. 

 

Lo´pez M, Herrera-Cervera JA, Iribarne CA, Tejera NA and Lluch C (2008) Growth 

and nitrogen fixation in Lotus japonicas and Medicago truncatula under NaCl stress: 

Nodule carbon metabolism.  Journal of plant physiology 165: 641-650. 

 

Loscos J, Matamoros MA and Becana M (2008) Ascorbate and homoglutathione 

metabolism in common bean nodules under stress conditions and during natural 

senescence.  Plant physiology 146: 1282-1292. 

 

Ludidi N and Gehring C (2003) Identification of a novel protein with guanylyl cyclase 

activity in Arabidopsis thaliana.  Journal of biological chemistry 278: 6490-6494. 

 



72 | P a g e  
 

MacCord and Frodivich I (1969) An enzymatic function for erythrocuprein 

(HEMOCUPREIN).  The Journal of bioloical chemistry 244: 6049-6065, 1969. 

 

Malho R, Moutinho A, Vanderluit A and Trewavas AJ (1998) Spatial characteristics of 

calcium signalling: the calcium wave as a basic unit in plant cell calcium signaling. 

Philosophical transactions of the royal Society B: Biological Sciences 353: 1463–1473. 

 

Marschner H (1995) ‘Mineral nutrition of higher plants.' Academic Press: London. 

 

Modolo LV,  Cunha FQ,  Braga MR,  Salgado I (2002) Nitric oxide synthase-mediated 

phytoalexin accumulation in soybean cotyledons in response to the Diaporthe 

phaseolorum f. sp. meridionalis elicitor.  Plant physiology 130: 1288 – 1298. 

 

Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in plant 

science 7: 405-410. 

 

Møller IM (2001) Plant’ mitochondria and oxidative stress: electron transport, NADPH-

turnover and metabolism of reactive oxygen species.  Annual review of plant physiology 

and molecular biology 52:561–91 

 

Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T, Quillere I, Leydecker MT, 

Kaiser WM, Morot-Gaudry JF (2002) Nitrite accumulation and nitric oxide emission in 

relation to cellular signaling in nitrite reductase antisense tobacco.  Planta 215: 708–

715. 

 



73 | P a g e  
 

Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, 

Jacquot JP and Rouhier N (2006) Plant glutathione peroxidases are functional 

peroxiredoxins distributed in several subcellular compartments and regulated during 

biotic and abiotic Stresses.   Plant physiology 142: 1364–1379. 

 

Neill S (2007) Interactions between abscisic acid, hydrogen peroxide and nitric oxide 

mediate survival responses during water stress.  The New physiologist 175: 4-6. 

 

Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, 

Wilson I (2008)  Nitric oxide, stomatal closure, and abiotic stress.  Journal of 

experimental botany 59: 165-176. 

 

Neill SJ, Desikan R, Clarke A, Hancock JT (2002a) Nitric oxide is a novel component of 

abscisic acid signalling in stomatal guard cells.  Plant physiology 128: 13–16. 

Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002b) Hydrogen peroxide and 

nitric oxide as signaling molecules in plants.  Journal of experimental botany 53: 1237–

1242. 

 

Neill SJ, Desikan R, Hancock JT (2002c).  Hydrogen peroxide’ signaling.  Current 

opinion in plant biology 5: 388–395. 

 

Nelson DR, Bellville RJ, and Porter CL (1984) Role of nitrogen assimilation in seed 

development of Soybean.  Plant physiology 74: 128-133. 

 

Neto AD de A, Prisco JT, Enéas-Filho J, de Abreu CEB and Gomes-Filho E (2005)  

Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots 

http://www.biomedexperts.com/Abstract.bme/18332225/Nitric_oxide_stomatal_closure_and_abiotic_stress


74 | P a g e  
 

of salt-tolerant and salt-sensitive maize genotypes.  Journal of experimental botany 56: 

87-94. 

 

Ni W and Trelease RN (1991) Post-transcriptional regulation of catalase isozyme 

expression in cotton seeds.  Plant cell 3: 737–744. 

 

Ogawa K, Kanematsu S and Asada K (1996) Intra- and extra-cellular localization of 

"cytosolic" CuZn-superoxide dismutase in spinach leaf and hypocotyl.  Plant cell and 

physiology 37: 790-799. 

 

Orcutt DM and Nilsen ET (2000) The physiology of plants under stress: soil and biotic 

factors.' JohnWiley and Sons, Inc.: New York. 

 

Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C 

and Delledonne M (2004)  Arabidopsis non-symbiotic hemoglobin AHb1 modulates 

nitric oxide bioactivity.  Plant cell 16: 2785-2794. 

 

Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, De Felipe MR, 

Harrison J, Vanacker H, Foyer CH (2005) Legume nodule senescence: roles for redox 

and hormone signalling in the orchestration of the natural aging process. New 

phytologist 165: 683–701. 

 

Putnam CD, Arvai AS, Bourne Y and Tainer JA (2000) Active and inhibited human 

catalase structures: ligand and NADPH binding and catalytic mechanism.  Journal of 

molecular biology 296: 295–309. 

 



75 | P a g e  
 

Rawsthorne S, Minchin FR, Summerfield RJ, Cookson C and Coombs J (1980) Carbon 

and nitrogen metabolism in legume root nodules.  Phytochemistry 19: 341-355. 

 

Rockel P, Strube F, Rockel A, Wildt J and Kaiser WM (2002) Regulation of Nitric oxide 

(NO) production by plant Nitrate reductase.  Journal of experimental botany 53: 103-

110. 

 

Rodríguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress 

in plants.  Biotecnología aplicada 22: 1-10. 

 

Romero-Puertas MC, Perazzoll MI, Zago DE and Delledonne M (2004) Nitric oxide 

signalling functions in plant–pathogen interactions.  Cellular microbiology 9: 795–803. 

 

Rouhier N and Jacquot JP (2005) The plant multigenic family of thiol peroxidases.  Free 

radical biology and medicine 38: 1413 – 1421. 

 

Rusterueci C, Espunya MC, Diaz M, Chabannes M and Martinez MC (2007) S-

Nitroglutathione Reductase affords protein protection against pathogens in Arabidopsis, 

both locally and systemically.  Plant pathology 143: 1282-1292. 

 

Sabeh F, Wright T, Norton SJ (1993) Purification and characterization of a glutathione 

peroxidase from aloe vera plant.  Enzyme protein 47: 92–98. 

Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Plant 

physiology 72: 681–689. 

 



76 | P a g e  
 

Salmi ML, Morris KE, Roux SJ and Porterfield DM (2007) Nitric Oxide and cGMP 

signaling in Calcium-Dependent Development of Cell Polarity in Cerapteris richarddi.  

Plant physiology 144: 94-104. 

 

Shivakumar PD, Geetha HM, Shetty HS (2003) Peroxidase activity and isozyme 

analysis of pearl millet seedlings and their implications in downy mildew disease 

resistance.  Plant science 164: 85-93. 

 

Sprent JI (1980) Root nodule anatomy, type of export product and evolutionary origin 

in some Leguminose.   Plant cell and environment 3: 5-43. 

 

Subbaiah CC, Bush DS and Sach  MM (1998) Mitochondrial contribution to the anoxic 

Ca signal in maize suspension-cultured cells.  Plant physiology 118: 759–771. 

 

Swanson TA, Kim SI, Glucksman MJ and Mark DB (2007).  Chapter 8, the electron 

transport chain in ‘Biochemistry and molecular Biology’, edtion 4(illustrated). 

Luppincott William and Wilkins publishers. 

 

Switala J and Leuwen PC (2002) Diversity of properties among catalases.  Archives of 

biochemistry and biophysics 401: 145–154. 

 

Szmidt-Jaworska A, Jaworski K, Tretyn A and Kopcewicz J (2004)   The involvement 

of cyclic GMP in the photoperiodic flower induction of Pharbitis nil.  Journal of plant 

physiology 161: 277-284. 

 



77 | P a g e  
 

Szmidt-Jaworska A, Jaworski K, Tretyn A and Kopcewicz JAN (2004) The 

involvement of cyclic GMP in the photoperiodic flower induction of Pharbitis nil.  Journal 

of Plant Physiology 161: 277-284. 

 

Szmidt-Jaworska A, Jaworski K  and Kopcewicz J (2009) Cyclic GMP stimulates flower 

induction of Pharbitis nil via its influence on cGMP regulated protein kinase.  Plant 

Growth Regulation 57: 115-126. 

 

Torres MA, Jones JDG and Dang JL (2006) Reactive oxygen species signaling in 

response to pathogens.  Plant physiology 141: 373–378. 

 

Underson LS and Mansfield TA (1979) The effects of nitric oxide pollution on the 

growth of tomato.  Environmental pollution 20: 113-121. 

 

Verma DPS, Fortin MG, Stanley J, Mauro VP, Purohit S and Morrison N (1986) 

Nodulins and nodulin genes of Glycine max.  Plant molecular biology 7: 51-61. 

 

Verma DPS, Hu CA and Zang M (1992) Root nodule development; origin, function and 

regulation of nodulin genes.  Physiologia planturam 85: 253-265. 

 

Volkmar KM, Hu Y and Steppuhn H (1998) Physiological responses of plants to 

salinity: a review. Canadian journal of plant science 78: 19–27.  

 

Wang Y, Moreau M, Baek SH, Dzikovski B, Shapleigh JP, Crane BR and Klessig DF 

(2006) Assessing the involvement of NO and AtNOS1 in plant defense using GFP-

reporter system and NO spin trapping.   Nitric oxide 14: 2 

http://www.sciencedirect.com.ez.sun.ac.za/science?_ob=PublicationURL&_cdi=6971&_pubType=J&_auth=y&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=41b0c703273cc1b6941c7385605e63b5
http://www.sciencedirect.com.ez.sun.ac.za/science?_ob=PublicationURL&_cdi=6971&_pubType=J&_auth=y&_acct=C000032099&_version=1&_urlVersion=0&_userid=613892&md5=41b0c703273cc1b6941c7385605e63b5


78 | P a g e  
 

Weiting NI, Trelease RN and Eising R (1990) Two temporally synthesized charge 

subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase.  

Biochemical journal 269: 233-238. 

 

Xu G, Magen H, Tarchitzky J and Kafkafi U (2000) Advances in chloride nutrition of 

plants.   Advances in agronomy 68: 97-150. 

 

Yamasaki H and Sakihama Y (2000) Simultaneous production of nitric oxide and 

peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent 

formation of active nitrogen species.  FEBS Letters 468: 89-92. 

 

Yang T and Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in 

plants.  Trends in plant science 8: 505-512. 

 

Zao MG, Tian QY and Zang WH (2007) Nitric oxide synthase dependent nitric oxide 

production is associated with salt tolerance.  Plant physiology 144: 206-217. 

 

Zemojtel T, Frohlich A, Palmieri MC, Kolanczk M, Mikula I, Wyrwicz LS, Wanker EE, 

Mundlos S, Vingron M, Martasek P and Duner J (2006) Plant nitric oxide; a never 

ending story?  Trends in plant science 11: 524-525. 

 

Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen 

peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica.  

Plant, cell and environment 30: 775–785. 

 



79 | P a g e  
 

Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is 

involved in abscisic acid-induced stomatal closure in Vicia faba.  Plant physiology 126: 

1438-1448. 

 

Zhang Y, Wang L, Liu Y, Zhang Q (2006) Nitric oxide enhances salt tolerance in maize 

seedlings, through increasing activities of proton pumps and Na+/H+ antiport in the 

tonoplast.  Febs letters 224: 545-555. 

 

Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang  W (2006) Nitric oxide enhances salt 

tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ 

antiport in the tonoplast.  Planta 224: 545–555. 

 

Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX (2004) Nitric oxide functions as a 

signal in salt resistance in the calluses from two ecotypes of reed1.  Plant physiology 

134: 849-858. 

 



80 | P a g e  
 

Chapter 3   Effect of nitric oxide on superoxide dismutase 

 

 

3.1.0.0.  Introduction 

 

Superoxide dismutases (SOD, EC 1.15.1.1) represent the first line of plant defense 

against reactive oxygen species (ROS) in the array of enzymes that function to protect 

the plant cells against oxidative stress. 

For this reason SOD are classified as a chain breaking group of enzymes since they 

scavenge superoxide and they yield another form of reactive oxygen species; hydrogen 

peroxide (H202). 

 

SOD has different isoforms namely; CuZn SOD, Mn SOD and Fe SOD.  These isoforms 

have different nodule tissue localization (Rubio et al, 2004).  Classification of the SOD 

isoforms is based on their metallic cofactors and have specific functions related to 

oxidative stress.  The CuZn SOD is the most abundant isoform in the pea nodules.  They 

are located in the nodule meristerms, nitrogen fixing region, infected zone and the distal 

part of the nitrogen fixing zone.  While Mn SODs are found in the distal part of the 

nitrogen fixing zone (Rubio et al, 2004), Fe SOD has not been studied in the pea nodules, 

its activity has not been detected in the nodules  thus FeSOD may not be important in 

nodule oxidative stress related pathways (Becana et al, 1989 and Puppo et al, 1987). 

 

The sub-cellular location of the SOD isoforms also determines the function of the 

isoform.  The plastid SOD exhibit the vital role in early chloroplast development.  For 
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instance, double mutants defective in this Fe SOD in Arabidopsis exhibited the albino 

phenotype and increased sensitivity to oxidative stress caused by mythyl viologen 

(Myougu et al, 2008).  The Mn SOD located in the mitochondria of Arabidopsis functions 

to promote proper root growth and to maintain the redox balance in the plastids 

(Morgan et al, 2008).  Lastly CuZn SOD located in the chloroplast serves to protect the 

chloroplast against oxidative stress by enhancing the antioxidant system (Badawi et al, 

2003). 

 

Studies carried out so far show that the destructive nature of abiotic stress exists as a 

consequence of ROS accumulation resulting in oxidative stress.  Thus the development 

of any mechanism in plants that would inhibit excessive generation of ROS in plants or 

decrease their accumulation in response to abiotic stress may enhance plant tolerance 

to such stresses.  It was in the light of this evidence that ever since the 20th century, 

transgenic plants over-expressing different isoforms of SOD were generated and 

conferred different levels of tolerance to different abiotic stresses (van Camp et al, 1994; 

Gupta et al, 1993; Wang et al, 2004).  Furthermore, these transgenic plants with 

increased SOD activity conferred high tolerance to salinity and exhibited normal growth 

and development under saline conditions (Wang et al 2004).  Hence, one method of 

increasing plant tolerance to salt stress could involve increased SOD activity (Alscher et 

al, 2002).  It should be noted that there is differential regulation of SOD isoform 

expression in response to the type and the intensity of the stress.  For instance, FeSOD 

and Mn SOD are regulated differentially in response to different NaCl concentrations in 

the pea chloroplasts (Gomez et al, 2003). 

 

It is also noteworthy to point out that plant tissues defend themselves against oxidative 

stress through increasing the scavenging capacity of antioxidant enzymes (Gomez et al, 
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1999; Hernandez et al, 1993).  It is further observed in several plant species and other 

plant tissues that antioxidant enzyme activity (SOD included) following exposure to 

abiotic stress are modulated by nitric oxide (Neill et al, 2008).  SOD enyme activity is 

always up-regulated in response to salinity (Hernandez et al, 1993; Qiu-Fang et al, 2005; 

Slesak et al, 2003; Gomez et al, 2004 and Goreta et al, 2007).  Lastly, there is 

accumulating evidence that NO acts as a signaling molecule involved in antioxidant 

response to salinity (Li et al 2008) and protects cells against oxidative stress, as 

evidenced by delayed cell senescence in plant tissue treated with nitric oxide donors 

(Neill et al, 1999). 

 

The role of nitric oxide as a ROS scavenger is mostly established in the shoot system of 

the plants.  Nodule tissue is structurally and physiologically different from the rest of the 

legume plant.  Thus, the complex physiological nature of this tissue may suggest a 

possibility of existence of a different response mechanism to NO treatment. 

 

This chapter therefore intends to study the contribution of NO in ROS-scavenging 

processes in root nodules and to establish its effects on the various SOD isoforms.  It 

focused on determining the effect of NO on SOD enzyme activity and goes further to look 

into changes that might be brought about by NO on the transcription of these isoforms. 

 

3.2.0.0. Materials and methods 
 

3.2.1.0. Materials 
 

Medicago and pea seeds used for this work were kindly provided by Agricol 

(Brackenfell, South Africa) and all the chamicals were purchased from Sigma-Aldrich, 
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unless otherwise stated. The Rhizobium inoculum Rhizobium leguminosarum bv. Viciae 

as the commercial inoculant ‘Stimulym Peas and Vetch Inoculant’ was supplied by 

Stimuplant CC, Zwavelpoort, Pretoria; South Africa. 

 

3.2.2.0. Plant tissue generation and nitric oxide treatments 

 
Pisum sativum variety Crusader and Medicago truncatula variety Parabinga were used 

for this work.  The seeds were planted in pre-soaked vermiculite until plant emergence. 

After 6 days of initial seeding date, the seedlings were inoculated with Rhyzobium spp 

and re-planted back into the pots and watered with nitrogen free Hoagland nutrient 

solution.  The 4 weeks old plants with mature nitrogen fixing nodules were used for 

experimental purposes.   

 

For transcriptome analysis, the nodulated roots were cut from the main root system and 

immersed into 10 mM potassium phosphate buffer containing 50 µM of diethylene 

triamine/nitric oxide adduct (DETA/NO) and the negative control without any nitric 

oxide donor respectively.  The nodulated roots were left immersed in the different 

solutions for 6 hours.   

 

For enzyme activity assays on pea plants, the nodulated roots were treated in 10 mM 

potassium phosphate buffer, 50 µM diethylenetriamine (DETA, similar to DETA/NO 

except that it lacks the NO moiety), 1 mM N (G)-nitro-L- arginine methyl ester (L-NAME, 

a nitric oxide synthase inhibitor, Conners et al, 2005), 50 µM DETA/NO (a nitric oxide 

donor) for 3 hours, 6 hours and 24 hours. The nodulated root bunches were snap frozen 

emedietely in liquid nitrogen following the treatments.  A weight of 20 mg of nodules 
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from each treatment were harvested and used for protein extraction in 10 times dilution 

extraction buffer and subsequent enzyme activity assay per replicate. 

 

The treatment in M. truncatula was as follows: sodium nitroprusside (SNP) was used as 

nitric oxide donor, potassium ferrcyianide was used as fixed control and nutrient 

solution at pH 7.0 was used as a negative control.  The treatments were assigned as 

above and the nodules were harvested at intervals of 1 hour, 3 hours, 6 hours and 24 

hours. 

 

All the above mentioned treatments were undertaken under optimal plant growing 

conditions and also in 150 mM NaCl in the treatment solutions. 

 

3.2.3.0. Superoxide dismutase enzyme activity assay. 
 

The total cellular superoxide dismutases were extracted in 10 times volume of ice-cold 

20 mM HEPES buffer supplemented with 1mM EGTA as a chelating agent and 70 mM 

sucrose at pH 7.2.  The nodule tissue was mechanically homogenized for 25 seconds 

using an electrical grinder (Black and Decker, KC 9036, type1; 3.6V, 180/min, England 

SLI, 3YD).  The homogenate was then centrifuged at 4 oC using a table top centrifuge at 

2000 g for 3 minutes (Mattiazzi et al, 2002).  The supernatant was then transferred to a 

clean 1.5 ml Eppendolf tubes and kept on ice for the assay.  All the activities were carried 

out at 4 oC.  SOD activity was assayed spectrophotometrically in a reaction that 

contained 50 mM TRIS-HCl, pH 8, 0.1 diethylenetriaminepentaacetic acid (DTPA), 0.1 

mM hypoxanthine, 0.03 units xanthine oxidase per 230 µl reaction (Fridovich, 1971), 

10% volume of the protein extract and 0.25 mM WST tetrazolium salt (Tominaga et al, 

1998) and was incubated for 20 minutes at 37 oC prior to assaying.  Then the absorbance 
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of the reaction was measured at 450nm.  The SOD activity was calculated as per 

Giannoplitis and Ries (1977).  SOD activities were expressed as Units milligram of 

protein extracted. The protein content was measured from all the samples as per 

Bradford et al (1971). 

 

In order to determine the SOD activity on native polyacrylamide gels, the gels were 

stained in riboflavin-nitroblue tetrazolium salt as in Xiaojing et al (2009) with some 

modifications.    Briefly, 140 µg of total protein was separated on 8 % native-PAGE gels. 

Then the gel was stained in the a dark at room temperature in 50 mM PBS solution 

containing 0.2 % nitroblue-tetrazolium salt, 0.028 M TEMED and 2.8 X 10-5 riboflavin for 

an hour.  The staining solution was immediately rinsed to stop excessive staining.  The 

intensity of the bands was determined with densitometry using the ImageJ gel 

evaluation software.  

 

3.2.4.0.   Determination of metallic cofactor of SOD. 
 

In order to determine the specific activities of SOD isorforms, the specific inhibition 

technique of different isoforms with H2O2 and KCn was used.  The MnSOD is insensitive 

to KCn and H2O2 hence to identify the expression of Mn SOD the gels were pre incubated 

in a solution containing 6 mM potassium cyanide and 5 mM hydrogen peroxide.  Fe SOD 

is KCn insensitive and hydrogen peroxide sensitive and thus was used to identify the 

band of Fe SOD.  CuZn SOD is inhibited by both the hydrogen peroxide and potassium 

ferricianide, hence the corresponding band was identified (Rubio et al, 2004). 
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3.2.5.0. Total RNA source, RNA extraction and first strand cDNA synthesis 
 

The total RNA was extracted from both the DETA/NO treated and untreated nodules of 

peas at 6 hours of incubation.  Five different RNA extractions were done from nodules 

using QIAgen RNA extraction kit.  DNAse treatment was repeated twice using nuclease-

free DNase from invitrogen, as per manufaturers’ protocol.  First strand cDNA was 

synthesized using reverse transcriptase from Transcriptor High Fidelity cDNA Synthesis 

sample kit from Roche.  The 3’ primer for each SOD isorform was used to generate the 

first strand cDNA.  The three pea SOD isoforms whose sequences were available from 

sequence database; CuZn SOD I (chloroplastic SOD), CuZn SOD (cytosolic) and Mn SOD 

were used for this purpose (appendix B). 

 

3.2.6.0. Reverse-transcriptase-Polymerase Chain Reaction optimization 
 

Highly purified salt free primer set for target gene 1 (CuZn SOD: forward ATC CAT GCC 

TTG GGA GAC ACC A, and reverse primer, AGT CTC ATC CTC AGG GGC ACC A), target 

gene 2 (Mn SOD forward primer, TTG GAG CCT GTC ATT AGC GGC GA, reverse primer, 

ACG GCA TCG TGA AGC TGT TCG AG) and reference gene (β-TUB forward primer, TAG 

GTG GAG GAA CTG GAT CTG G, βTUB reverse primer CAA GCT GGT GAA CCG AGA GAG T) 

were generated and synthesized by Whitehead Scientific (PTY) Ltd, South Africa.  All 

SOD isoforms primers were annealed at 68 OC and β-tublin primers were annealed 58 OC.  

Polymerase chain reaction conditions were all optimized in a 96 well GeneAmp PCR 

system 9700 (applied biosystem, USA) using Taq DNA polymerase.  The various 

concentrations of MgCl2, dNTPs and primers were optimized and analyzed on 2% 

agarose gels and stained with ethedium bromide.  The optimized results were then used 

in runs for the actual PCR. 
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3.2.7.0.  Semi-quantitative polymerase chain reaction analysis of CuZn SOD 

and Mn SOD mRNA expression 

 

The PCR was carried out in a total reaction volume of fifty microlitres, containing MgCl2, 

200 µM dNTP, 0.5 µM forward and reverse primers, and 4 µl of first strand cDNA 

synthesized from 100 ng of total RNA.  The cycling conditions were as follows; first 

denaturing step for 4 minutes at 95 oC followed by 35 cycles of 95 oC for 1 minute, and 

30 seconds of annealing and extension at 72oC for 2 minutes, then the final extension at 

72oC for 6 minutes.  The primers were annealed at different temperatures; β-tublin 

primer set was annealed at 58 oC, two isoforms of CuZn SOD and Mn SOD primers were 

annealed at 68 oC.  The band intensities from the internal reference, β-tublin, were used 

to standardize the transcript levels from different treatments.  The transcripts 

intensities on the agarose gels were measured using densitometry as per ImageJ 

software. 

 

3.3.0.0.  Results 
 

3.3.1.0.  Effect of exogenous nitric oxide on SOD activity  
 

Medigaco nodules treated with 50 μM SNP exhibited increased total SOD activity across 

all time periods compared to controls and KCn treated nodules (Figure 3-1).  SNP 

showed the highest effect of SOD activity at 3 hours then remains stable until the 6th 

hour of exposure to SNP.  The SOD activity from the SNP treated nodules remains above 

the activity levels of both the FCN and control, implying that nitric oxide released from 

SNP modulates the SOD activity in this experiment by increasing the activity (Figure 3- 

1). 
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Figure 3- 1  Superoxide dismutase activities in the root nodules of Medicago 
truncatula over a period of time.  The control experiment was made up of nodules 
incubated in nitrogen-free Hoagland solution only, while in SNP treatment, 
nodules were incubated in nutrient solution supplemented with sodium 

nitroprusside at 50 µM.  In FeCn treatment, the nodules were incubated in 
potassium ferricynide at a concentration of 50 µM in nutrient solution.  The bars 
represent the mean SOD activities where n≥3, the error bars represent the 
standard errors of the means, p<0.05. 

 

A similar pattern in SOD activity in Medicago truncatula nodules is maintained by the 

treatments under saline conditions (Figure 3- 2).  However, the total SOD activities 

under saline condition are generally higher than under normal conditions.  Thus the 

salinity stress combined with exogenous NO increases SOD activity.  Unlike under 

optimal conditions (Figure 3- 1), the SOD activity in NO treatments is more or less the 

same after the 1st hour and the 3rd hour then it decreases drastically.  However, nitric 
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oxide donor treatments still have the highest SOD activities compared to all other 

treatments at 6 hours of incubation (Figure 3- 2). 

 
Figure 3- 2  Superoxide dismutase activities in the root nodules of Medicago 
trancatula subjected to different treatments in saline conditions.  The NaCl 
experiment had nitrogen free Hoagland solution supplemented with 150 mM 
sodium chloride, while NaCl+SNP had sodium nitroprusside at 50 µM  in 150 mM 
NaCl solutions, lastly NaCl + FeCn is potassium ferricynide at a concentration of 50 
µM dissolved in 150 mM NaCl.  The bars represent the mean SOD activities where 
n≥3, the error bars represent the standard errors of the means, p<0.05. 

 
 

Nitric oxide also modulates the SOD activity in Pisum sativum nodules.  Figure 3- 3 

shows an obvious effect of nitric oxide released from DETA/NO on total SOD activity.  

There is an increase in the SOD activities in the nodules subjected to NO treatment as 

compared to the negative control.  This is a steady increase until the 24th hour.  The 

phosphate buffer does not have any significant effect on SOD activities across all time 
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periods in the pea nodules in this particular experiment.  DETA/NO is a nitric oxide 

donor and releases nitric oxide in solutions at pH 7 (Murgia et al, 2004).   

 

 

 
Figure 3- 3 Superoxide dismutase activity in the root nodules of Pisum sativum 
subjected to NO treatment in 10 mM potassium phosphate buffer at pH 7.2.  
DETA/NO represents a nitric oxide donor and was administered at 50 μM.  The 
control treatment represents the nodulated roots immersed in 10 mM phosphate 
buffer.  The bars represent the mean SOD activities and the error bars represent 
the standard errors of the mean, P<0.05, n≥ 3. 

 

Salinity also increases the SOD activity in Pisum sativum as in Medicago truncatula.  

DETA/NO increases SOD activity at all time periods, however the activity decreases after 

24 hours relative to all other time periods.  Both control experiments show lower SOD 

activities compared to the DETA/NO experiments (Figure 3- 4). 
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Figure 3- 4 Superoxide dismutase activities in the root nodules of Pisum sativum 
subjected to different treatments inder salinity conditions.  DETA/NO represents 
50 µM of diethylenetriamine/nitric oxide adjunct, a nitric oxide donor; DETA 
represents 50 µM of diethylenetriamine, an analogue of DETA/NO without nitric 
oxide moiety.  NaCl is the control experiment represents 150 mM concentration of 
NaCl in 10 mM phosphate buffer. The bars represent the means of SOD activity per 
treatment and the error bars represent the standard error of the means, P<0.05; 
n≥3. 

 

3.3.2.0.  Effect of endogenous nitric oxide on SOD activity 
 

L-NAME is a nitric oxide synthase inhibitor and addition of this substance to the solution 

inhibits the activity of SOD and this inhibition is observed after 3 hours.  In this case, 

nitric oxide increases the SOD activity and its effect is reversed by L-NAME (Figure 3- 5).  

This effect is more pronounced at 6 hours of treatment.  At 24 hours of incubation, the 

difference between the control and NO-treated plants diminishes.  Seemingly there is no 
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time course-dependent increase in the SOD activity in response to DETA/NO because 

there is no significant difference between the means at different time intervals under NO 

treatment.  The SOD activity also increases in the control with time, implying that the 

incubation period in the solution also has an effect on the total SOD activity. 

 

 
Figure 3- 5  Superoxide dismutase activities in the root nodules of Medicago 
truncatula subjected to different treatments.  DETA/NO represents 50 µM of 
diethylenetriamine/nitric oxide adduct, L-NAME is a nitric oxide synthase 
inhibitor (N -Nitro-L-arginine methyl ester).  The control treatment represents 
the nodulated roots immersed in 10 mM phosphate buffer.  The bars represent the 
mean SOD activities and the error bars represent the standard errors of the mean, 
P<0.05; n≥3. 
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3.3.3.0  Effect of endogenous nitric oxide on SOD activity under salinity 

stress 

 

 

Under salinity stress, endogenous nitric oxide seems to regulate the activity of 

superoxide dismutases in a different manner.  The total SOD activity is initially increased 

above the two controls at 3 hours of treatment.  This is followed by a decrease that is 

visible after 6 hours and 24 hours.  However the decrease in SOD activity due to NOS 

inhibition does not change significantly after 6 hours.  There is a steady increase in SOD 

activity in response to 150mM NaCl treatment only (Figure 3-6). 

 

 
Figure 3- 6  Superoxide dismutase activities in the root nodules of Pisum sativum 
subjected to various treatments under salinity.  50 µM of DETA/NO, a nitric oxide 
donor, diethylenetriamine/nitric oxide adduct was used; L-NAME (N -Nitro-L-
arginine methyl ester) represents a nitric oxide synthase inhibitor and NaCl 
represents 150 mM sodium chloride.  The bars represent the mean activity of SOD 
per treatment and the error bars represent the standard errors of the means. 
P<0.05; n=3. 
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3.3.4.0.  Determination of the effect of nitric oxide on SOD isoforms 
 

The chloroplastic CuZn SOD isoform is inhibited by hydrogen peroxide and potassium 

cyanide (Xiaojing et al, 2009).  In an experiment that involved the identification of SOD 

isoforms from the nodular protein extract, only two isoforms were identified on 8 % 

native acrylamide gels.  Based on inhibition assays, two Mn SOD and two CuZn SOD 

isoforms we identified (Figure 3- 7).  Based on the separation on the native 

acrylamimide gels, the protein band corresponding to Fe SOD (based on the fact that it is 

only sensitive to hydrogen peroxide but resistant to KCN) was not observed.   

     

Figure 3- 7 Electrophoretic mobility of different SOD isozymes extracted from pea 
nodule tissue on 8% native acrylamide gels.  140 µg of total protein extracted was 
loaded on the wells.  Potassium cyanide and hydrogen peroxide were used to 
specifically inhibit different isoforms. 
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3.3.4.0.  Differential activities of individual SOD isoforms 

 

 

Figure 3- 8 Response of the four isoforms of SOD to endogeneous nitric oxide after 
6 hour of exposure to treatments.  L-NAME is a nitric oxide synthase inhibitor (L- 
arginine methyl ester) while NOC 18 represents DETA/NO 
(diethylenetriamine/nitric oxide adduct), a nitric oxide donor.  Control treatment 
represents the treatment with only the nutrient solution.  (a) CuZn SOD I isoform, 
(b) CuZn SOD II isoform ; (c ) Mn SOD I isoform and (d) is the activity resulting 
from Mn SOD II isoform.  The bars represent the integrated density as determined 
by ImageJ 1.42(rsbweb.nih.gov/ij/)software.  The data was generated from two 
replicates and two technical repeats. 

 

When supplementing the L-NAME solution with 50 µM DETA/NO so as to supply nitric 

oxide to the incubated nodules, the activities of all the two CuZn  SOD isoforms increase 

to about 300%.  However the addition of NO to L-NAME-treated nodules does not 

restore the SOD activities of the manganese SOD isoforms to levels higher than the 

controls.   This amongst other results presented in this chapter shows that endogenously 

synthesized nitric oxide increases the activity of individual pea SOD isoforms (Figure 3- 

8c and d).   

 

Pea nodules exhibit higher CuZn SOD I, CuZn SOD II and Mn SOD 2 activities when 

exposed to nitric oxide treatment in comparision to the untreated nodules.  Mn SOD I is 
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an exception in this case, with a reduced activity of about 60% compared to the control.  

CuZn SOD shows the highest contribution to total SOD activity. (Figure 3- 9) 

 

 

Figure 3- 9 Integrated pixel density of the superoxide dismutases isoforms as 
observed on 8% native acrylamide gels.  The control treatment represents the 
activity from the pea nodules incubated for 6 hours in nutrient solutions only; the 
DETA/NO is a diethylenetriamine/nitric oxide adduct and it was added at a 
concentration of 50 µM.  The bars represent the integrated pixel density as 
determined by ImageJ 1.42 (rsbweb.nih.gov/ij/) software.  The bars represent the 
intergrated pixel density value. 
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Figure 3- 10 Responses of the four isoforms of SOD to nitric oxide under saline 
conditions after 6 hours of exposure to treatments.  NaCl represents 150 mM 
sodium chloride in a nutrient solution, while DETA/NO represents 
diethylenetriamine/nitric oxide adjunct, a nitric oxide donor.  Control represents 
a treatment with only the nutrient solution.  The bars represent the integrated 
pixel density as determined by ImageJ 1.42 (rsbweb.nih.gov/ij/) software.   

 

Concerning nodule MnSOD, only the MnSOD II isoform is induced by high salinity 

conditions. Mn SOD I is highly sensitive to salt stress, and addition of the DETA/NO 

exacerbates the decrease in this SOD activity (Figure 3-10).  Addition of DETA/NO to the 

saline solution inhibits the SOD activity of all the four SOD isoforms relative to NaCl 

(Figure 3- 10). 
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Figure 3- 11  Response of the four isoforms of SOD after 6 hour of exposure to 
treatments.  L-NAME is a nitric oxide synthase inhibitor  while DETA/NO 
represents diethylenetriamine/nitric oxide adduct, a nitric oxide donor. The bars 
represent the integrated pixel density as determined by ImageJ 
1.42(rsbweb.nih.gov/ij/) software.   

 

When L-NAME is added in combination with 150 mM NaCl to the nodules, the two CuZn 

SOD isoforms exhibit reduced activity (Figure 3-11).  This effect is also observed in Mn 

SOD II.  However, Mn SOD I isoform exhibits increased activity as NO synthesis is 

inhibited in the nodules.  This is simply an indicator that unlike Mn-SOD II, Mn SOD I 

activity is not induced by nitric oxide.  The supply of nitric oxide through the addition of 

nitric oxide donor for 6 hours time period in saline solution, does not reverse the effect 

of L-NAME.  These results correspond to the total SOD enzyme activity results obtained 

in this chapter (Figure 3-11).  On the other hand addition of DETA/NO to saline nutrient 

solution reduces the activity of Mn SOD I drastically (Figure 3-11). 
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3.3.5.0.   Semi-quantitative PCR for SOD isoforms and the reference 

gene β-Tublin 

 

 

 

Figure 3- 12  Semi-quantitative RT-PCR of superoxide dismutase isoforms from 
the pea root nodules exposed to 50 µM DETA/NO in nutrient solution.  The control 
represents the treatment with nutrient solution only.  Lane 1 is the DNA molecular 
weight maker (1kb DNA ladder from fermentas).  The RT-PCR image was acquired 
with a high resolution Camera under U.V. illumination following staining of the 
2% agarose gel with ethidium bromide.  

 

The three isoforms targeted for semi-quantitative PCR were chosen based on sequence 

availability from DNA sequence databases.  The three isoforms of SOD, as shown on the 

agarose gel (Figure 3-12) were successfully detected by PCR from the nodules of pea.  

CuZn SOD I seems to be negatively regulated by nitric oxide.  Just like CuZn SOD II, Mn 

SOD transcripts are increased by treatment with nitric oxide donor (Figure 3-12). 
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3.3.5.0.   Enhancement of superoxide dismutase expression by nitric oxide 
 

 
Figure 3- 13 RT-PCR normalized densitometry results from the amplified SOD 
isoforms.  DETA/NO is a nitric oxide donor and was added at a final concentration 
of 50 µM.  In Control treatments, the nodulated roots were incubated in nutrient 
solution for six hours. 

 

The densitometry results (Figure 3.13) show that almost all the SOD isoforms from the 

pea nodules are up-regulated by nitric oxide.  With the exception of CuZn SOD I isoform, 

all other SODs are increased by NO; CuZn SOD II exhibits about 20 fold increase at the 

transcript level and Mn SOD II exhibits 10 folds increase in transcript levels compared to 

the control.   
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3.4.0.0.  Discussion 
 

The phenomenon of oxidative stress as a consequence of abiotic stress has been studied 

over decades and various components of the oxidative stress process have been 

identified.  Abiotic stress triggers accumulation of superoxide radicals and other ROS 

(Rodriquez et al, 2005).  This upsurge of ROS in response to abiotic stress is 

accompanied by induction of the antioxidant defense system.  It is therefore agreed that 

the degree of plant cell tolerance to oxidative stress is more dependent upon the 

response of the antioxidant enzymes to their accumulation, including superoxide 

dismutases (Neill et al 2007, 2008). 

 

Modulation of superoxide dismutase activity by nitric oxide 

 

The data from the biochemical assays shows a significant increase in total SOD activity 

in response to nitric oxide treatment compared to other treatments.  This increase 

concurs with the findings that nitric oxide from SNP increases antioxidant enzyme 

activities in leaves (Neill et al, 2007; Zhao et al 2004 and Zhang et al, 2006), protects the 

cells from oxidative stress by reducing lipid peroxidation (Neill et al, 2008), reducing 

monodehydroascorbate (MDA) and thus scavenging ROS.  As stated earlier, SOD 

dismutes superoxide radicals to yield hydrogen peroxide.  This accumulated hydrogen 

peroxide, more specifically in the chloroplast, inhibits the SOD activity (Perl et al, 1993; 

Tepperman & 1990).  It is thus relevant to speculate that inhibition of CuZn SOD activity 

in response to either exogenous or endogenous nitric oxide, observed at longer hours of 

incubation and even under salt stress, is due to the accumulated hydrogen peroxide 

produced with lengthy exposure to both stress and NO. 
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Effect of NaCl on total superoxide dismutase activity 

 

NaCl at higher concentration triggers NO accumulation in plant cells (Lie et al, 2008; 

Zhao et al, 2007).  It has also been established that this accumulated NO is the one 

responsible for the increased antioxidant activities in the cells (Lie et al, 2008).  NaCl is 

toxic to plant cells and causes oxidative stress; however, the degree of cell tolerance to 

salinity is still dependent upon the response of the antioxidants.  

 

Under situations of low salt tolerance, plants exhibit SOD activity that is lower than 

under situations where the cells are tolerant (Attia et al, 2009; Koca et al, 2007).  The 

data presented in this study agrees with the fact that NaCl increases the SOD activities 

above that of the controls.  Although not measured in this experiment the increased SOD 

activity under salt condition is attributed to the induction of NO biosynthesis in in 

response to NaCl (Neill et al, 2008).  The SOD activities increased under salt and even 

increased further when nitric oxide donor was added to the incubation solution.  The 

fact that this effect was reversed by addition of L-NAME suggests that nitric oxide is 

involved in modulating the activities of the SOD enzyme isoforms.   

 

The SOD response pattern was rather different in the experiments involving the 

inhibition of endogenous nitric oxide biosynthesis in the cells (Figure 3-6).  The cells 

rapidly lost the SOD activity with prolonged exposure to salt stress as compared to the 

other controls.  This SOD inhibition may be due to the increased stress as more NO is 

scavenged from the medium and more NaCl added, which results in H2O2 accumulation 

as other antioxidants like glutathione may not be synthesized in adequate amounts 

(Innocenti et al, 2007) 
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From the above experiment, an increase in SOD activity is not only observed with the 

nitric oxide and NaCl treated samples.  The untreated controls demonstrate a steady 

increase in SOD activity over time.  Unlike the treated samples there is no observed 

inhibition of SOD at any point.  This result exhibits a pattern similar to the one shown by 

the salt-only treatments.  NaCl generates ROS that activate SOD activity (Neill et al, 

2008).  In the same manner, the non-treated samples exhibit some form of stress 

response.  It should be noted that the nodules were harvested from the nodulated root 

sections that were incubated in various solutions in accordance with the experimental 

objectives and plan.  Hence, the excised roots floating in solution could be experiencing 

some stress. 

 

Identification of SOD isoforms in pea root nodules 

 

There are two SOD isoforms that have been localized in the nodule tissue and the 

composition involves two Mn and two CuZn SOD isoforms (Becana et al, 1989).  In this 

study the two Mn SOD isoforms and CuZn isoforms have also been identified on the 

native acrylamide gels (Figure 3-07).  It is important to notice a contradiction between 

the leaf SOD and nodule SOD as evidenced by the existence of only one Mn SOD isoform 

in leaves compared to nodules (del Rio et al, 2003).  The Mn SOD I in pea root nodules, 

was earlier identified through western blotting as a Rhizobium SOD, not a plant-based 

superoxide dismutase (Rubio et al, 2004).  Hence, this variation observed in the SOD 

composition from the leaves and root nodules is justified. 
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Defferential regulation of SOD isoforms from the pea nodules by nitric oxide and 

salt 

 

The Mn SOD appeared to be the most important in the pea nodules as compared to CuZn 

SOD as it is the one that is more stress-inducible.  In other plant systems, studies reveal a 

dramatic increase in different SOD isoform activities in response to abiotic stress.  For 

instance, the oxidative stress induced by NaCl induces the thylakoidal Fe SOD and CuZn 

SOD (Gomez et al, 2003).  There are also reports that drought also induces the activity of 

CuZn SOD, Mn SOD and Fe SOD in leaves (Sharma et al, 2005).  Furthermore, the dark-

induced senescence causes increase in the activities of different SOD isoforms in 

perixosomes and mitochondria of pea leaves (del Rio et al, 2003).  All isoforms increase 

in their activity directly proportional to senescence, where Mn SOD exhibits this 

increase even at transcript level (del Rio et al, 2003).  These findings concur with the 

data from this work, in which 150 mM NaCl increases the activities of all the SOD 

isoforms as observed on the native gel except for the Mn SOD II. 

 

Interestingly nitric oxide from nitric oxide donor SNP increased the activities Fe SOD 

and CuZn SOD but had no significant effect on the Mn SOD in leaf discs of mung bean 

subjected to heat shock (Yang et al, 2006).  Hence our findings support the idea that 

nitric oxide increases enzymatic activities of all SOD isoforms in the pea nodule except 

for the Mn SOD II isoform. 

 

Regulation of SOD isoform  transcripts by nitric oxide 

 

Superoxide dismutases activity is regulated at the transcriptional level.  Salt stress has 

been reported to increase the transcription of the SOD isoforms.  Kim et al, (2007) 
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reports that salt stress increased the Mn SOD and CuZn SOD but the Fe SOD transcripts 

remained unchanged.  Also, in tobacco leaves, an increase in the SOD activities is 

associated with a transient increase in the transcripts levels of the SOD isoforms 

(Kurepa et al, 1997).  A similar observation is noted in cucumber leaves where an 

increase in SOD activities is preceeded by increases in SOD isoform transcripts 

(Deeparka et al, 2006).  This data is similar to our findings that an increase in total SOD 

activity as obtained from the biochemical assays is regulated at the transcriptional level. 

 

The regulation of SOD activity at transcript level is not fully understood.  For instance, 

the CuZn SOD mRNA accumulates in cucumber leaves till 6 hours of exposure to metals 

then decreases drastically, while the corresponding protein activity escalates till 96 

hours (Deeparka et al, 2006).  Kurepa et al (1997) also reports higher transcript levels of 

SOD in younger leaves of tobacco compared to the older senescing leaves, but the 

enzymatic activity seems to be higher in the older leaves compared to the younger 

leaves.  This differential regulation of SOD transcripts was suggested to be dependent on 

protein turn-over (Scandallios et al, 1993).  Gao et al (2009) suggested the same reason 

for the decreased SOD mRNA transcripts in cucumber seedlings after 96 hours of metal 

treatment while the protein activities were escalating. 

 

In this study, Cu-Zn SOD I transcript accumulation is negatively correlated with the 

corresponding protein activities, and it may as well be regulated by the protein turn-

over.  Different transgenic plants over-expressing the SOD isoforms have also been 

developed and conferred tolerance to different abiotic stress stimuli (van Camp et al, 

1994; Gupta et al, 1993, Myougo et al, 2008 and Wang et al 2004).  Such plants exhibited 

normal and healthy plant growth.  Indeed SOD has direct physiological functions in 

plants; it functions in chloroplast development (Myougo et al, 2008). 
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3.5.0.0. Conclusion 
 

This chapter aimed at studying the role played by nitric oxide in modulating superoxide 

dismutase and how SOD responds to salt stress.  The main focus was to establish how 

NO affects enzyme activities of SOD isoforms from the pea nodule and to further study if 

the observed effect is controlled at the transcriptional level.  From the data presented 

here it is concluded that nitric oxide modulates total SOD activity.  The activities from 

the four individual SOD isoforms suggest that Mn SOD II, CuZn SOD I and CuZn SOD II 

contribute more to the total SOD activity.  Mn SOD I seems to be negatively regulated by 

nitric oxide.  Since it is a probably Rhizobium-derived SOD (Becana et al, 1989), these 

results could indicate the possible negative effect on the survival of bacteriods under a 

high level of nitric oxide concentration.  However a study investigating the viability of 

the Rhizobium bacteriods in response to nitric oxide would be required to validate this 

point. 

 

The manner in which the pea nodules respond to nitric oxide is similar to that in which 

they respond to NaCl.  This might suggest that nitric oxide is a naturally occurring 

molecule that could be used in plant nodules to help with ROS defense.  Thus application 

of biotechnology techniques involving up-regulation of nitric oxide synthesis under NaCl 

stress could possibly help increase the capacity of SOD to scavenge ROS under stress. 

 

Regulation of superoxide dismutases is at transcriptional level but it cannot be ruled out 

that it could also be post-transcriptional as well.  Mn SOD II and the two CuZn SOD 

isoform activities are regulated at the transcriptional level.  Thus, the related coding 
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sequences can be over-expressed in plants or pea nodules to enhance the nodule 

tolerance to oxidative stress. 

 

The approach with which this research was conducted has some limitations that would 

need to be considered in future research of this nature.  First, it is important to study 

this kind of enzymatic response using intact plants rather than detached nodules as this 

would minimize any stress imposed by detachment on the nodules themselves.  

Although it is evident from our results that SOD is regulated at transcriptional level, the 

study involving the transient accumulation of SOD transcripts over a period of time 

would provide a much better picture of how the transcripts increase and decrease, and 

perhaps give clarity on whether the SOD protein turn-over regulates the SOD 

transcripts. 
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Chapter 4  Regulation of glutathione peroxidase activity by 

nitric oxide 

 

4.1.0.0.   Introduction 
 

Glutathione peroxidase (GPx) belongs to a large family of peroxidases (POX) found in a 

wide range of living organisms.  It is an antioxidant enzyme and scavenges peroxides in 

a process that involves the use glutathione (GSH) (Ahmad et al, 2008) or thioredoxin 

(Mittler et al., 2002) as a reductant, yielding oxidized glutathione (GSSG) and water.  The 

GSSG is reduced back to GSH by glutathione reductase (equation 1&2) in a process that 

consumes NADPH (Ahmad et al, 2008).  

 

   …………………………..equation 1                                 

  

 ..................................equation 2 

 

Glutathione peroxidase is perceived as one of the enzymes functioning in abiotic stress 

acclimatization during salt and heavy metal toxicity stress (Mittova et al, 2004).  It also 

supports long term survival of yeast during growth under abiotic stress (Lee et al, 2007).  

Furthermore, abiotic stress tolerant plant genotypes have up-regulated gene expression 

of glutathione peroxidase that counteracts the effect of oxidative stress and this 

expression is observed after a prolonged exposure to abiotic stress (Csiszár et al, 2002).    

Glutathione peroxidase has often been used as a maker for oxidative stress tolerance 
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because of its role in oxidative stress tolerance (Caregnato et al, 2008 and Dazy et al, 

2009).    

 

Over-expression of GPx in plants induces a certain magnitude of tolerance to abiotic 

stress.  This was indicated by the reduced cell death, low levels of monodehydro-

ascorbate (MDA), and lower levels of lipid peroxidation in tobacco plants (Yoshimura et 

al, 2004).  Transgenic tobacco plants over-expressing glutathione peroxidase in the 

cytosol and chloroplast had higher tolerance to 250 mM NaCl, chilling and ROS 

generated by methylviologen (Yoshimura et al, 2004).  It is also worth noting that 

peroxidase (POX) activity is increased in the cells upon exposure to nitric oxide (Hung & 

Kao, 2004). 

 

It is now agreed that the level of GPx activity in the cells determines the readiness of the 

antioxidant system to detoxify peroxides and determines the extent of abiotic stress 

tolerance in plants (Mittova et al 2003 and Lee et al, 2007).  This chapter focuses on 

studying the regulation of the activity of glutathione peroxidase by salinity stress and 

how the activity is influenced by exogenous and endogenous nitric oxide. 

 

4.2.0.0.   Materials and methods 
 

4.2.1.0.   Plant material preparation 
 

Medicago truncatula cv. Parabinga and Pisum sativum cv. Crusader (both kindly supplied 

by Agricol, South Africa) were inoculated with Rhizobium meliloti and Rhizobuim 

leguminosarum respectively and grown on vermiculite.  Plants were germinated on 

vermiculite pre-soaked in de-ionized water.  The germinated seedlings were supplied 
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with the nitrogen-free nutrient solution consisting of 0.001 M MgSO4.7H20, 0.001 M 

potassium phosphate buffer, 0.00005 M FeEDTA, 0.001M CaCl2, 0.00005M KCl and the 

micronutrients in the proportions: 5 µM H2BO3, 2µM MnSO4,  2µM ZnSO4, 2µM 

CuSO4.2H2O and 5µM Na2MoO4.2H2O.  The pH was adjusted to 6.2 with potassium 

hydroxide.  Each pot containing a single plant was supplied with 150 ml of this nutrient 

solution after every three days.  All the plants used for this experiment were grown 

under 16 hrs of light in the growth chamber for four weeks until nodule maturity. 

 

4.2.2.0.   Experimental conditions 
 

Depending on the type of experiment, the four-week old plants were exposed to 1 hour, 

3 hours, 6 hours and 24 hours of treatment with 100 μM sodium nitroferrycyanide 

(SNP) or 50 μM Diethylenetriamine/Nitric oxide adduct (DETA/NO). SNP and DETA/NO 

are nitric oxide donors. For negative controls, plants were treated with only just nutrient 

solution. To determine if nitric oxide is required for GPx activity, some plants were 

treated with the nitric oxide synthase inhibitor N -Nitro-L-arginine methyl ester (L-

NAME). To evaluate the effect of salinity on GPx activity, the rest of the plants were 

treated with 150 mM NaCl.  In the respective treatments, the relevant compound specific 

to that treatment was added as a supplement to the nitrogen-free nutrient solution.  

Potassium ferrycyanide was used as a fixed control for SNP while DETA was used as a 

fixed control for DETA/NO. 

 

4.2.3.0.   Experimental design and data analysis 
 

The experimental designs for all the experiment was a factorial design with a two-factor 

randomized complete block Design (RCBD) with three replicates.  The treatment design 
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was a two-factor factorial design with 3 levels.   ANOVA was used to detect the total 

variation amongst the treatments. 

 

4.2.4.0   Preparation of enzyme extracts 
 

Glutathione peroxidase enzyme was extracted by homogenizing the nodule tissue in 

extraction buffer (50 mM TRIS-HCl, pH 7.6, 0.15 mM NADPH) using an electric grinder.  

The homogenate was spun at 4 0C using a bench-top centrifuge at 20 000 g for 15 

minutes. The supernatant was removed and desalted through a Sephadex G-25 column 

and used for GPx activity determination. 

 

4.2.6.0.   Determination of glutathione peroxidase enzyme activities 
 

Glutathione peroxide activity was measured as per Mittova et al, (2004), with some 

modifications.  In summary, the assay was carried out in GPx assay buffer (50 mM TRIS-

HCl, pH 7.6, 0.15 mM NADPH, 15 mM GSH, 1 unit per ml glutathione reductase, 0.95 mM 

sodium azide.  This reaction was initiated by addition of H2O2 to a final concentration of 

0.075%.  The glutathione peroxidase activity was then measured 

spectrophotometrically by following the decrease in absorbance at 340 nm.  The 

extinction coefficient of NADPH (0.00373μM-1) was used to determine the actual 

activity.  The formula used for calculating GPx activity was as follows: 

 

[(∆A340/min) ∕0.00373μM-1] × [0.19ml ∕ 0.02ml] × [dilution] = nmol/min/ml 

Where: 

∆A340 = [A340 (Time 2) – A340 (Time 1)] ∕  [ time 1(min) – Time 2(min)] 

The enzyme activity was expressed as nmol per milligram of protein. 
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4.2.7.0.   Determination of protein concentration 
 

All the protein contents in all the samples were measured as per Bradford et al, 1971. 

 

4.3.0.0.   Results 
 

4.3.1.0.   Effects of exogeneous nitric oxide on glutathione peroxidase activity 

in non-stressed legume nodules 

 

After one hour of incubating the detached M. truncatula nodules in the three different 

solutions (SNP) in nutrient solution, nutrient solution only and the potassium 

ferrycianide in nutrient solution), the SNP treated nodules exhibited no significant 

difference in glutathione peroxidase (GPx) activity from the negative control.  The 

overall GPx activity exhibited by the nodules under all the treatment conditions at this 

time point is the lowest compared to the rest of the incubation periods (Figure 4-1).  GPx 

activities at 1 hour of treatment is 500% lower compared to the third hour treatment 

and 700% lower when compared to the sixth hour treatment (Figure 4-1). 

 

The nodules show a substantial increase of GPx activity after 3 hours of incubation.  At 

this time point SNP shows higher activity (about 10% compared to negative control) and 

slightly higher compared to the fixed control, potassium ferrycianide (FeCn).    After 6 

hours of incubation, the GPx activity of the SNP-treated nodules is about 20% higher 

than the activity from the negative control.  At this time point both controls are way 

below the SNP treatment, thus indicating that nitric oxide from the SNP increases the 

activity of GPx in the root nodules of Medicago truncatula (Figure 4- 1). 
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Figure 4- 1 The time course response of glutathione peroxidase activity in M. 
truncatula root nodules to nitric oxide treatments.  SNP represents a nitric oxide 
donor treatment: sodium nitroferrycianide (FeCn) is a potassium ferrycianide 
treatment. The p value = (0.05), n ≥ 3.  The bars represent the sample means and 
the error bars represent the standard errors of the means. 

 

The SNP-treated nodules have significantly different GPx activities from the negative 

controls whereas the effect of FeCn is not significantly different from the negative 

controls. These observations indicate that the enzyme activity observed in SNP 

treatment is due to NO released from SNP and not the possible by-products of SNP 

break-down. It is thus appropriate to conclude that nitric oxide up-regulates glutathione 

peroxidase activity in M. truncatula.  The GPX activities in all the treatments increase as 

the incubation period increases (Figure 4- 1).  An increase in GPx activity in the nodules 
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that were exposed to NO treatment is initially observed after 3 hours where SNP 

treatment starts to exhibit the increased GPx activity above both controls.   

 

The one hour treatment was excluded from the pea nodule experiments because, as 

observed in Medicago experiments (Figure 4- 1), a significant difference in glutathione 

peroxidise activity in response to nitric oxide is first observed at 3 hours of incubation.   

In the case of the experiments carried out on pea nodules, the nodulated roots were 

used for treatment and the nodules were harvested after snap-freezing in liquid 

nitrogen.  In all the incubation periods the DETA/NO treatment exhibits higher GPx 

activity compared to the control (Figure 4-2). A different trend is observed after 24 

hours of incubation where there is no further increase in GPx activity compared to the 

negative control (Figure 4- 2). 

  

P. sativum nodules generally exhibited similar levels of GPx activity at all time periods as 

Medicago plants, and the activity trend becomes stable after 6 hours as there is no 

significant difference between the GPx activities for all the treatments at 6 and 24 hours 

of treatment (Figure  4- 2). 
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Figure 4- 2  The time course response of glutathione peroxidase activity in the P. 
sativum root nodules to nitric oxide treatments.  NOC 18 represents a nitric oxide 
donor treatment with Diethylenetriamine/Nitric oxide adduct. The p value = 0.05, 
n ≥ 3.  The bars represent the sample means and the error bars represent the 
standard errors of the means. 

 

4.3.2.0.  The effect of inhibition of nitric oxide synthase on GPx activity 
 

L-NAME is a nitric oxide synthase (NOS) inhibitor and has been used in both animal and 

plant systems to inhibit NOS-dependent endogenous nitric oxide synthesis.  In order to 

study the effect of NOS activity-derived nitric oxide on glutathione peroxidase activity, 

an experiment was set up that involved regulation of the endogenous synthesis of nitric 

oxide.  In this experiment, the GPx activity in nodules incubated in nutrient solution was 

compared to the one from nodules in which the nitric oxide synthesis was inhibited by 

addition of 1mM L-NAME to the incubation solution.  Further to this, a treatment was 
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also set up in which nodulated roots were incubated in the presence of 150 mM NaCl to 

induce salinity stress. 

 

 

Figure 4- 3  The effect of L-NAME on P. sativum root nodule GPx activity under non-
saline conditions after 3 hours of incubation in nutrient solution supplemented 
with 1 mM L-NAME. L-NAME is a nitric oxide synthase inhibitor. Control 
represents the negative control with nutrient solution at pH 6.2. The p value = 
(0.05), n ≥ 3.  The bars represent the sample means and the error bars represent 
the standard errors of the means 

 
 

Exposure to L-NAME treatment inhibited the activity of GPx under normal growing 

conditions, thus implicating the involvement of nitric oxide synthase-derived NO in 

activating the GPx activity (Figure 4- 3).   

 

NaCl increases cellular nitric oxide concentrations and it is thought that this generated 

NO might trigger the activities of several antioxidants enzymes (Mittova et al, 2004).  

While NaCl increases the activity of the GPx way above the values observed for 
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untreated nodules, addition of L-NAME reverses the effect of the NaCl treatment (Figure 

4- 4).  This may suggest that an increase in GPx activity observed under salinity stress is 

triggered by nitric oxide. 

 

 
Figure 4- 4   The effect of L-NAME on GPx activity under saline conditions after 6 
hours of incubation. L-NAME is a nitric oxide synthase inhibitor. Control 
represents the negative control with nutrient solution only at pH 6.2. The p value 
= 0.05, n ≥ 3.  The bars represent the sample means and the error bars represent 
the standard errors of the means 

 

4.3.3.0.  Effect of exogeneous nitric oxide on GPx activity in the nodules of 

legumes under salinity 

 

M. truncatula and P. sativum root nodules exhibit high GPx activity under 150 mM NaCl 

than under the optimal conditions (an increase of about 500% in overall GPx activity is 

observed, Figure 4- 4 & 4- 5).  The GPx activities from the negative controls are higher 
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under salt stress than under optimal conditions in both Medicago and pea.  This effect is 

observed all across the treatments in both legumes (Figure 4- 4 & 4- 5).  

 
Figure 4- 5 The time course response of glutathione peroxidase activity in 
Medicago truncatula root nodules to endogenous nitric oxide treatments.  SNP 
represents a nitric oxide donor treatment, FeCn is a potassium ferrycianide 
treatment. The p value = 0.05, n ≥ 3.  The bars represent the sample means and the 
error bars represent the standard errors of the means. 

 

In Medicago nodules treated with 150 mM NaCl, the GPx activity from SNP treatments is 

higher than both of the controls at 1 hour of incubation (Figure 4- 5).  Although the SNP 

treatment exhibits the highest GPx activity, the overall GPx activity from all the 

treatments at this time point is the highest compared to the rest of the time periods.  
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After 3 hours of incubation the overall activity declines in all the treated nodules.  The 

SNP-treated nodules exhibit an inhibition of GPx activity compared to the controls at 6 

hours of incubation (Figure 4- 5).  There is an early GPx response to SNP treatment 

followed by the decrease in activity as time approaches 3 hours and beyond.   

 

In contrast to Medicago nodules, the pea nodules exhibited an increase in GPx activity 

that peaks at 6 hours of treatment then followed by the decrease at 24 hours.  However, 

the GPx activity from the NO-treated pea nodules has remained higher than the controls 

at all time periods (Figure 4- 6).  There are differences in the GPx responses to nitric 

oxide between these two legume species under NaCl stress.   

 
Figure 4- 6  Time course response of glutathione peroxidase activity in the P. 
sativum root nodules to endogenous nitric oxide treatments.  NOC 18 represents a 
nitric oxide donor treatment with Diethyltriamine/Nitric oxide adduct. DETA is an 
analogue that does not release NO. The p value = 0.05, n ≥ 3.  The bars represent 
the sample means and the error bars represent the standard errors of the means. 
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4.4.0.0.   Discussion 
 

Glutathione peroxidase belongs to a large family of peroxidase enzymes.  These enzymes 

have a catalytic activity of scavenging peroxides in a chemical reaction that uses reduced 

antioxidant metabolites such as glutathione and thioredoxin.  

 

 This work focused on the glutathione-based antioxidant system, with specific attention 

paid to glutathione peroxidase.  Glutathione peroxidase enzyme activity has been 

reported in plants and the genes encoding these enzymes have been isolated and 

characterized (Beeor-Tzahar  et al, 1995, Mullineaux et al, 1998 and Roxas et al, 1997).  

Most importantly, glutathione peroxidase activity is increased under stress (Mittova et 

al, 2004). 

 

Effects of nitric oxide on glutathione peroxidase activity under optimal conditions  

 

In the late 20th century, it was established that NO generated from SNAP inhibits the 

activity of glutathione peroxidase from bovine serum by inactivating the cycteine 

residues (Asahi, 1995).  This kind of inhibition was both time and NO concentration 

dependent.  However with recent research findings in plant systems, NO protects maize 

plants from iron toxicity by up regulating POX and inhibiting GR activity (Sun et al, 

2007).  It is worthwhile to note that, with the higher levels of iron toxicity NO becomes 

less beneficial in increasing the POX activity (Sun et al, 2007).  In agreement with 

findings on the role of NO in up-regulating POX activity is the observation from the work 

described in this chapter in which it is shown that nitric oxide from either SNP or 

DETA/NO in pea or Medicago truncatula increases the glutathione peroxidase activity.  

Furthermore, the nitric oxide donors [N-tert-butyl-a-phenylnitrone (PBN), sodium 
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nitroprusside and 3-morpholinosydonimine] have been used and proved to protect 

leaves against oxidative stress-induced senescence caused by hydrogen peroxide (Hung 

et al, 2005). 

 

Effects of nitric oxide on glutathione peroxidase activity under salinity 

 

Higher peroxidase activities have been observed in rice seedlings exposed to several 

concentrations of NaCl (Koo et al, 2007).  This chapter shows that salt-treated nodules 

exhibit higher glutathione peroxidase activity.  It is interesting to note that with 

prolonged exposure to stress, both the nitric oxide-treated nodules and salt-stressed 

nodules exhibit reduced GPx activity.  These findings are in agreement with the 

observations made on maize seedlings under iron toxicity (Sun et al, 2007).  It is even 

more interesting to observe that despite an increase in general activity of glutathione 

peroxidase under salinity stress, the nitric oxide-treated nodules exhibit higher GPx 

activities at all time points than the other treatments in both Medicago and pea in this 

study.  Hence, it is reasonable to speculate that nitric oxide from the nitric oxide donors 

and also the nitric oxide generated from nitric oxide synthase activity up-regulates GPx 

activity and possibly increases the capacity of the nodule tissue to detoxify peroxides 

under stress. 

 

It should be noted that although nodules of the same type (morphologically, as both 

Medicago and pea form indeterminate nodules) were used for this study; different 

genotypes might have different responses to stress, nitric oxide or a combination of 

both.  It should also be noted that over-expression of glutathione peroxidase, and thus 

increased corresponding GPx activity, increases plant tolerance to NaCl stress 

(Yoshimura et al, 2004).  
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Effect of inhibition of nitric oxide synthase-dependent nitric oxide synthesis on 

glutathione peroxidase activity. 

 

From this study, it is observed that nitric oxide synthase-dependent production of nitric 

oxide is required for GPx activity under non-saline conditions.  L-NAME is a nitric oxide 

synthase inhibitor often used to inhibit the synthesis of nitric oxide from nitric oxide 

synthase.  It is thus appropriate to link the GPx activity in the cells to the effect of 

endogenous nitric oxide synthesized from nitric oxide synthase. 

 

Exposure of maize seedlings to dehydration triggers the accumulation of intracellular 

nitric oxide (Zhang et al, 2006).  Cotton calli exposed to NaCl also accumulate nitric 

oxide (Vital et al, 2008).  It is thought that this accumulated nitric oxide may modulate 

antioxidant responses and processes that lead to stomatal closure (Niell et al, 2008).  

Nitric oxide accumulating during dehydration in maize seedlings is thought to be 

generated by nitric oxide synthase, as evidenced by increased activity of this enzyme 

under dehydration stress (Hao et al, 2007).  It is therefore logical to relate the observed 

increase in activity of GPx under stress to the possible accumulation of nitric oxide in the 

nodules.  In support of a role of nitric oxide synthase-dependent (and thus NO-

dependent) modulation of GPx activity, 1 mM L-NAME reduces the GPx activity. 

 

4.5.0.0.  Conclusion 
 

In conclusion, this study shows that exogenously applied nitric oxide increases the 

activity of GPx in the root nodules of the indeterminate type.   This statement also holds 

the same for nitric oxide produced from nitric oxide synthase in these nodules.  



130 | P a g e  
 

However, future studies involving the application of NO donors/NOS inhibitors to intact 

nodulated plants instead of nodulated root systems would be more appropriate for 

studying temporal changes in GPx activity as this would minimize the likelihood of any 

influence of detachment of nodulated root systems on GPx activity.  Despite the fact that 

detaching nodulated root systems from the plant might have some influence on GPx 

activity, it should be noted that the trend with which the NO and NaCl-mediated changes 

in GPx activity occur are likely to represent true responses to these compounds. Such 

postulation is made here because all the treatments (including controls) in this study 

were subjected to the same kind of detachment of nodulated root systems and so are 

appropriately compared. 

 

There is a need to look at the effect of nitric oxide on the transcription of GPx.  Such 

knowledge would help toward developing plants with increased GPx activity so as to 

counteract the effect of abiotic stress. 
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Chapter 5  Regulation of glutathione reductase activity by 

nitric oxide 

 

 

5.1.0.0.  Introduction 
 

Glutathione Reductase (GR. E.C. 1.6.4.2) is an important player in re-generation of 

glutathione in its reduced state, thus maintaining the homeostatically favoured redox 

status of the cell.  This enzyme recycles oxidized glutathione (GSSG) back to its original 

reduced form (GSH) in a process that utilises NADPH as electron donor (Meister, 1988) 

(equation 1).  GR is encoded by the nuclear genome and it has isoforms localized in the 

chloroplast, cytosol and mitochondria of the plant cell (Torres-Franklin et al, 2008).   

           

………….........equation (1) 

 

Glutathione reductase plays an important role in plant stress tolerance as it has been 

reported that over-expression of chloroplastic glutathione reductase confers resistance 

to oxidative stress caused by chilling  temperatures in maize (Koscy et al, 1996) and 

cotton (Kornyeyev et al, 2003).  In emphasis of the significance of GR in stress tolerance, 

Foyer et al (1995) reported an enhanced antioxidant capacity in poplar as a 

consequence of chloroplastic GR over-expression.  This chloroplastic GR resulted in an 

increase in the amount of reduced ascorbate and reduced glutathione accumulating in 

the cells, the two antioxidant metabolites that are indicative of abiotic stress tolerance.  

GR over-expressed in the chloroplasts of Brassica enhanced tolerance of these plants to 

cadmium (Cd) as demonstrated by increased chlorophyll contents and reduced oxidative 
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stress (Pilon-Smits et al, 2000).  Indeed, recent studies also show that silencing of GR in 

tobacco plants exacerbate the effects of oxidative stress caused by methyl viologen (MV) 

(Ding et al, 2009). It is also interesting to observe that in rice seedlings, GR is one 

component of antioxidant system that responds to scavenge ROS under stress (Sharma 

& Dubey, 2005). 

 

However, there are other reports emphasizing the existence of GR in plants but 

suggesting that this enzyme is not important in plant responses to oxidative stress.  For 

instance, GR does not respond in any distinct pattern due to salt treatment (Mittova et 

al, 2004).  Secondly, GR over-expression in cotton was not of any advantage to 

germinating seeds under temperature stress (Manah et al, 2009).   

 

Despite the contrasting information regarding the response of glutathione reductase to 

stress, it should be noted that different plant species and tissues were used to establish 

the role of GR in stress responses.  It is therefore difficult to correlate the published data 

and draw a general conclusion regarding the function of GR in oxidative stress 

responses.  This study therefore intends to establish the response of this enzyme to 

abiotic stress and nitric oxide in the root nodules of legumes. 

 

5.2.0.0.  Materials and methods 
 

5.2.1.0.  Preparation of plant material 
 

Seeds of Medicago truncatula cv. Parabinga and Pussium sativum cv. Crusader (both 

kindly supplied by Agricol, South Africa) were inoculated with Rhizobium meliloti and 

Rhizobuim leguminosarum respectively. The seeds were germinated in vermiculite that 
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had been pre-soaked in de-ionized water and seedlings were propagated on this 

vermiculite.  The germinated seedlings were supplied with nitrogen-free nutrient 

solution consisting of 0.001 M MgSO4.7H20, 0.001 M potassium phosphate buffer, 

0.00005 M FeEDTA, 0.001M CaCl2, 0.00005M KCl and the micronutrients in the 

proportions: 5µM H2BO3, 2 µM MnSO4,  2µM ZnSO4, 2µM CuSO4.2H2O and 5µM 

Na2MoO4.2H2O.  The pH was adjusted to 6.2 with potassium hydroxide.  Each plant in a 

single pot was watered with 150 ml of this nutrient solution after every three days.  

Three weeks old nodules were used for experimental analysis.  

 

5.2.2.0  Experimental conditions 
 

Depending on the type of an experiment, four-week old plants were exposed to 1 hour, 3 

hours, 6 hours and 24 hours of treatment with 100 μM sodium nitroferrycianide (SNP) 

or  50 μM Diethylenetriamine/Nitric oxide adduct (DETA/NO).  SNP and DETA/NO are 

nitric oxide donors.  For negative controls, plants were treated with only just nutrient 

solution.  To determine if endogenously synthesized nitric oxide is required for GR 

activity, some plants were treated with the nitric oxide synthase inhibitor N -Nitro-L-

arginine methyl ester (L-NAME).  To evaluate the effect of salinity on GR activity, the rest 

of the plants were treated with 150 mM NaCl.  In the respective treatments, the relevant 

compound specific to that treatment was added as a supplement to the nitrogen-free 

nutrient solution.  

 

5.2.3.0.  Experimental design and data analysis 
 

The experimental designs for all the experiments was a factorial design with a two-

factor randomized complete block Design (RCBD) with three replicates.made up of 3 or 
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4 levels.   Analysis of variance, full replicate model, was used to partition the 

experimental error and detect the variation amongst the treatments at 95% confidence 

intervals.   

 

The nitric oxide concentration-dependency of glutathione reductase activity was 

determined by including a range of nitric oxide (5 µM, 20 µM and 50 µM) concentrations 

in which some were done in combination with 1 mM L-NAME.  The nodulated roots 

were incubated in these treatments for 2 hours and the harvesting was done at 1 hour 

intervals. 

 

5.2.4.0.  Preparation of enzyme extracts 
 

Glutathione reductase was extracted by homogenization in 10 times volume of 

extraction buffer (50 mM potassium phosphate pH 7.0, 1 mM EDTA, 0.1mM ascorbate 

and 0.1 mM glycerol.  The homogenate was then centrifuged at 13 000 rpm on a bench 

top centrifuge at 4oC for 10 min.  The supernatant was removed and desalted through a 

Sephadex G-25 column.  The resultant eluate was used for GR activity determination. 

 

5.2.5.0.  Determination of glutathione reductase enzyme activity 
 

The Glutathione Reductase activity was determined from the rate of oxidation of NADPH 

as measured by the decrease in the absorbance at 340 nm (using the extinction 

coefficient 0.00622 µM/cm-1 for NADPH) as per Rao et al (1996).  The reaction mixture 

composed of 100 mM potassium phosphate buffer, 0.2 mM NADPH, 0.5 mM GSSG and 20 

µl of enzyme extract (Lee et al 2001 and Sgherri et al, 1994).  The reaction was initiated 

by addition of 50 µl NADPH to all the wells.  Absorbance was read at 340 nm, with 
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readings taken at 30oC every minute.  The GR activity was measured as the rate of 

NADPH oxidation and was calculated using the following formulae: 

[(∆A340/min) ∕0.00373μM-1] × [0.19ml ∕ 0.02ml] × [dilution factor] = nmol/min/ml 

Where: 

∆A340 = [A340 (Time 2) – A340 (Time 1)] ∕  [ time 1(min) – Time 2(min)] 

 

5.2.6.0.  Determination of protein concentration 
 

Protein contents in all the samples were measured as per Bradford et al, 1971. 

 

5.3.0.0  Results 
 

5.3.1.0.  Effect of nitric oxide on glutathione reductase enzyme activities 

under non-saline conditions 

 

In pea nodules the GR activities were generally much higher than in M. truncatula root 

nodules. Such differences may be a consequence of differing enzyme activities amongst 

different species.  On the other hand, the nitric oxide donor used for treatment of pea 

nodulated roots, DETA/NO releases nitric oxide at higher concentration than SNP used 

in M. truncatula root nodules and has a longer half-life in solution (Hudson et al, 2001 

and Keefer et al, 1996).  Thirdly the nodules from Medicago and pea plant were exposed 

to chemicals at different states (in pea, the nodulated roots were incubated in treatment 

solutions while in Medicago the detached nodules from the roots were incubated in 

solutions), thus detaching nodules from the roots prior to incubation stage might have 

accelerated the natural senescence process due to wounding compared to the intact 

nodules.  
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Figure 5- 1  Time course response of glutathione reductase enzyme activity to 
nitric oxide in M. truncatula root nodules.  SNP represents a treatment with the 
nitric oxide donor 50 µM sodium nitroprusside, FeCn is a treatment with 50 µM 
potassium ferricianide; and control represents a treatment with no chemical 
except for nutrient solution. The p-value = 0.05%, n ≥ 3.  The bars represent the 
sample means and the error bars represent the standard errors of the means. 

 

In M. truncatula, there is no significant difference in GR activities between the nitric 

oxide treated nodules and their control counterparts initially.  After 1 hour of incubation 

in the solutions containing nutrient solution, SNP and FeCn respectively, it is observed 

that NO released from SNP does not affect the activity of glutathione reductase.  

However, after 3 hours of incubation, a significant increase in GR activity is observed in 

SNP-treated M. truncatula root nodules followed by no change in activity in the 

successive period.  While the other controls still have higher activities at these time 



141 | P a g e  
 

period compared to the 1 hour incubation, they are still lower than the activities 

observed in the SNP-treated samples (Figure 5- 1). 

 
Figure 5- 2  Time course response of glutathione reductase activity in Pisum 
sativum root nodules to nitric oxide treatment under optimal nutrient conditions.  
DETA/NO (diethylenetriamine/nitric oxide adduct) represents a nitric oxide 
donor treatment, DETA is analogue of DETA/NO without nitric oxide. The p-value 
= 0.05%, n ≥ 3.  The bars represent the sample means and the error bars 
represent the standard errors of the means. 

 

A pattern contradicting that observed in Medicago occurs in pea nodules.  The activity of 

GR from the DETA/NO-treated samples at 3 hours in this case is significantly higher than 

in the DETA treatment and not significantly different from that of the negative control.  

This does not give a clear picture of the response of GR to DETA/NO; an attribute that 

was not observed in M. truncatula root nodules.  However, the GR activity gets inhibited 

by an exposure of the nodules to DETA/NO treatment, as incubation period extends, 

suggesting the possibility of an involvement of NO in GR early responses (Figure 5- 2).    
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It is noteworthy to state that the GR activity from the untreated pea nodule has also 

declined substantially at 24 hours of incubation. 

 

5.3.2.0. Effect of nitric oxide on glutathione reductase enzyme activity under 

saline conditions 

 

Under saline conditions, GR activity is not affected by any of the treatments in M. 

truncatula root nodules.  The fixed control (FeCn), negative controls and the SNP 

treatment exhibit statistically similar values. Based on these observations, it appears 

that GR enzyme activity is not responsive to nitric oxide generated from SNP under NaCl 

stress in M. truncatula root nodules (Figure 5- 3).  
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Figure 5- 3 Time course response of glutathione reductase activity in the M. 
truncatula root nodules to nitric oxide treatments under 150 Mm NaCl.  SNP 
represents a treatment with the nitric oxide donor 50 µM sodium nitroprusside, 
FeCn is a treatment with 50 µM potassium ferricianide; and Control represents a 
treatment with no chemical except for nutrient solution. The p-value = 0.05%, n ≥ 
3.  The bars represent the sample means and the error bars represent the 
standard errors of the means. 

 

5.3.3.0. Effect of inhibition of nitric oxide synthesis on glutathione reductase 

enzyme activities  

 

When nitric oxide synthase-dependent biosynthesis of nitric oxide is inhibited in the 

nodules by exposure to 1 mM L-NAME, the GR activity decreases, and this decrease is 
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reversed by addition of diethylenetriamine/nitric oxide adduct to the incubation 

solution, resulting in activities higher than that of the control.  This statement holds true 

only at early hours (within three hours) of incubation (Figure 5-4).  Seemingly the lower 

inter cellular nitric oxide levels are required for enhanced GR experession, thus the 

response of GR to nitric oxide could be concentration dependent. For longer incubation 

periods (e.g. 6 hours), the pea nodules exhibit an inhibition of GR activity in response to 

NO treatment (Figure 5- 4).  The activities due to the fixed control are lower than the 

NO-treated nodules at least for the first two incubation periods. 

 

 
Figure 5- 4  The time course response of glutathione reductase activity in the 
Pisum sativum root nodules to endogenous nitric oxide under optimal nutrients 
conditions.  DETA/NO (diethylenetriamine/nitric oxide adduct) represents a 
nitric oxide donor treatment, DETA (diethylenetriamine) is a fixed control 
treatment. L-NAME is the nitric oxide synthase inhibitor.  The p-value = 0.05, n ≥ 3.  
The bars represent the sample means and the error bars represent the standard 
errors of the means. 
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5.3.4.0. Effect of different concentrations of nitric oxide on glutathione 

reductase enzyme activities  

 

In order to determine the NO concentration-dependency of GR activity, an experiment 

with a series of NO concentrations was set-up, the GR activities were measured in 

nodules for which DETA/NO was used as a nitric oxide donor in P. sativum root nodules 

(Figure 5- 5, 5- 6, 5- 7 & 5- 8).    It is interesting to observe that GR in pea root nodules is 

inhibited by an increase in NO concentration (Figure 5- 5 & 5- 6).  There is an observed 

decrease of about 30% after the first hour of incubation and 40% after two hours of 

incubation in the solutions containing nitric oxide donor (Figure 5-5).   

 

 
Figure 5- 5  Time course response of glutathione reductase activity in the Pisum 
sativum root nodules to different concentrations of exogenous nitric oxide 
treatments under optimal nutrient conditions.  DETA/NO 
(diethylenetriamine/nitric oxide adduct) represents a nitric oxide donor 
treatment, DETA/NO (b) represents 20µM DETA/NO concentration in the 
incubation solution; DETA/NO (c) represents 50 µM DETA/NO concentration in 
the incubation solution.  The p-value = 0.05, n ≥ 3.  The bars represent the sample 
means and the error bars represent the standard error of the means. 
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After one hour of incubation, there is no observed difference in the GR activity between 

the two DETA/NO concentrations (Figure 5-5).  However, their activities are lower than 

that of the control treatment.  After two hours of incubation in the treatment solutions, 

there was a slight change in the activities of enzyme in response to nitric oxide (Figure 

5- 6). 

 

 
Figure 5- 6  Time course response of glutathione reductase activity in the Pisum 
saivum root nodules to different concentrations of exogenous nitric oxide under 
optimal conditions.  DETA/NO (diethylenetriamine/nitric oxide adduct) 
represents a nitric oxide donor treatment, DETA/NO (b) represents 20 µM 
DETA/NO concentration in the incubation solution; DETA/NO (c) represents 50  
µM DETA/NO concentration in the incubation solution.  The p-value = 0.05, n ≥ 3.  
The bars represent the sample means and the error bars represent the standard 
errors of the means. 

 

To further investigate the effect of NO concentration on GR activity, a series of 

concentrations of DETA/NO combined with LNAME were used to treat the nodules.  

Inhibiting the synthesis of NO endogenously with L-NAME, reverses the effects of 
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DETA/NO on GR activity and this effect is more explicit after 2 hours of incubation 

period than after 1 hour (Figure 5- 7 & 5- 8).  GR activity is inhibited by 1 mM L-NAME 

while the 20 µM and 50 µM DETA/NO reverse the effect of L-NAME.    The combination 

of 1 mM L-NAME and 20 µM DETA/NO exhibits the highest GR activity after 2 hours of 

incubation in the root nodules of pea.  Furthermore, even when synthesis of NO from 

NOS-like enzyme activity is inhibited with L-NAME treatment, the different 

concentrations of DETA/NO still show concentration dependency of GR activity on nitric 

oxide (Figure 5- 7). 

 

 
Figure 5- 7  Glutathione reductase activity response in the Pisum sativum root 
nodules to different concentrations of exogenous nitric oxide treatments 
combined with an inhibitor of nitric oxide synthase under optimal nutrients 
conditions for 1 hour.  DETA/NO (diethylenetriamine/nitric oxide adduct) 
represents a nitric oxide donor treatment, DETA/NO (a) represents 5 µM 
DETA/NO concentration in the incubation solution DETA/NO (b) represents 20 µM 
DETA/NO concentration in the incubation solution; DETA/NO (c) represents 50 
µM DETA/NO concentration in the incubation solution.  L-NAME is a nitric oxide 
synthase inhibitor.  The p- value= 0.05, n ≥ 3.  The bars represent the sample 
means and the error bars represent the standard error of the means. 
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The control treatment after 1 and 2 hours of incubation exhibits higher GR activity in the 

root nodules of P. sativum compared to the rest of the treatments.  It is interesting to see 

that L-NAME alone inhibits GR activity; this is more evident after two hours of 

incubation (Figure 5- 7 & 5- 8).  The combination of L-NAME treatment with various 

concentrations of DETA/NO exhibits a distinct pattern.  The GR activities are higher at 2 

hours of incubation compared to the first hour.  The lower NO concentration exhibited 

the lowest GR activity and 20 µM DETA/NO exhibited the highest GR activity in both 

time periods.  Incubation in 50 µM DETA/NO does not result in the highest GR activity at 

the second hour although it exhibited statistically the same GR activity as in the first 

hour (Figure 5-7).  The DETA/NO treatment reverses the effect of L-NAME after 2 hours 

of incubation. 

 

 
Figure 5- 8  Glutathione reductase activity in the Pisum sativum root nodules in 
response to different concentrations of exogenous nitric oxide treatments 
combined with inhibitors of nitric oxide synthase (L-NAME) under optimal 
conditions for 2 hours.  DETA/NO (diethylenetriamine/nitric oxide adduct ) 
represents a nitric oxide donor treatment, DETA/NO (a) represents 5 µM 
DETA/NO concentration in the incubation solution DETA/NO (b) represents 20 µM 
DETA/NO concentration in the incubation solution; DETA/NO (c) represents 50 
µM DETA/NO concentration in the incubation solution.  The p-value = 0.05, n ≥ 3.  
The bars represent the sample means and the error bars represent the standard 
error of the means. 
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5.4.0.0.  Discussion 
 

Effects of nitric oxide on glutathione reductase activity under optimal growing 

conditions and NaCl stress 

 

Glutathione reductase is an antioxidant enzyme that works to recycle oxidized 

glutathione back to its reduced form.  It is a functional enzyme in plants and has been 

identified and isolated in the peroxisomes of pea leaves, shoots and roots of tomato 

(Jimenez, 1997 and Mittova, 2000). 

 

The results from this work suggests that NO affects GR activity in a concentration-

dependent manner.  Indeed, NO induces an early increase in GR activity within 3 hours 

in M. truncatula but this increase is not observed beyond this time point.  A  similar 

trend is observed in plants subjected to NaCl stress.  A similar pattern was also observed 

in tomato where salt treatment initially increased the GR activity followed by no further 

increase or decrease in GR activity in subsequent hours under salinity stress (Mittova et 

al, 2003). 

 

There are several other studies demonstrating this time and/or concentration-

dependent inhibition of glutathione reductase in response to various abiotic stresses, 

NO and heavy metal toxicity.  In maize subjected to iron deficiency, nitric oxide from SNP 

rescued the plants from oxidative stress by up-regulating other antioxidant enzymes 

while GR activity was inhibited (Sun et al, 2007), hence an inhibition that is observed in 

peas at later stages of NaCl treatment is not an isolated case.  Furthermore, Cd toxicity in 

sunflower affects some antioxidant enzymes but not GR, thus NO released from SNP 

does not cause any change in the response of the GR activity in those affected plants 
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(Laspina et al, 2005).  Also, no changes in GR activities were observed in chickpea plants 

under salt stress (Sheokand et al, 2008). Based on results from this study, GR enzyme 

activity seems to be up-regulated by abiotic stress but this increase is followed by an 

inhibition of the GR activity at all the time points. 

 

The glutathione reductase activity in Pisum sativum  follows a different trend from that 

observed in Medicago.  In P. sativum at 3 hours of incubation period and under low 

concentrations NO, there is an increase in the activity of GR but that activity drops with 

prolonged exposure to nitric oxide.  GR functions to recycle GSSG back to GSH, hence the 

decrease in GR activity under stress could occur as a consequence of a decline in cellular 

GSH available for reduction under stress, or there is a possible alternative reductant 

being used by GR under such conditions.   Over-expression of chloroplastic GR in poplar 

trees resulted in increased levels of the total glutathione pool and the GSH/GSSG ratios 

(Foyer et al, 1995).    Glutathione levels and redox status form part of successive 

chapters within this thesis.  The concentration-dependency experiments do not reveal a 

clear pattern in GR response to the concentration of NO.  Although there could be a 

concentration-dependent response, it is not necessarily a linear response since different 

concentrations of of DETA/NO do not show a linear response in GR activity. 

 

5.5.0.0.  Conclusion 
 

Data from this study suggests that GR activity is modulated by nitric oxide in Medicago 

nodules.  In pea nodules, nitric oxide causes an inhibition in GR activity that follows an 

early short-lived upsurge in this activity.  For all their similarity in nodule morphology, 

the genotypes used here exhibit differences in their natural degree of tolerance to 

abiotic stress and this could account for their varying responses to nitric oxide exposure.  
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The inconsistency in the patterns of the plants antioxidant responses to increased GR 

expression has been recorded (Foyer et al, 1995; Mittova et al, 2003 and Ding et al, 

2009).  Also the non-responsiveness of GR to different types of stresses have been 

observed (Sheokand et al, 2008; Sun et al, 2007 and Laspina et al, 2005).  Such 

differences do not follow a specific pattern, thus it is difficult to postulate any kind of a 

reason that brought about the differences in GR activities for this particular work.   

 

The most important point is that, the Medigaco and pea varieties used for this thesis are 

commercial varieties that have been bred for specific purposes.  Thus, genetic 

rearrangements have occurred during several crosses made, and could have altered the 

original biochemistry of these genotypes, that tallies with their nodule morphology.  

However, there is no conclusive data to date indicating that nodules of the same 

phenotype must have similar biochemical response patterns with regards to antioxidant 

systems. 

 

The application of knowledge on glutathione reductase in improving stress tolerance in 

plants is still in its infancy.  There is a need for more research to establish the regulatory 

role of GR to or by other antioxidant enzymes.  To make this point clearer, the study 

involving the regulation of temporal expression of this enzyme by both NO and stress in 

very early periods (minutes) would have improved our understanding of GR responses 

to NaCl and NO in this work. 
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Chapter 6  Modulation of glutathione levels and glutathione 

redox status by nitric oxide 

 

6.1.0.0.  Introduction 
 

Glutathione (GSH) is a low molecular weight tri-peptide that plays a major role in 

protecting plant cells against abiotic stress (Cossete et al, 1996).  As an antioxidant it 

protects plant cells against oxidative stress, maintains the homeostatic redox status of 

the cell and thus supports the normal health of the cell (Ding et al, 2009).  Elevation of 

GSH levels in the cells through over-expression of glutathione synthatase enhances plant 

tolerance to abiotic stress without any deleterious effect on plant growth (Zhu et al, 

1999 and Xiang et al, 2001).  The role of GSH in supporting normal growth under salt 

stress is also observed in yeast (Romero et al, 2001).  

 

Exposure of cells to abiotic stress like salinity induces not only the accumulation of 

reactive oxygen species (ROS) but also other signalling molecules like nitric oxide (NO) 

in plant cells (Neill et al, 2008).  Nitric oxide has been implicated in modulation of 

antioxidant metabolite levels/redox status and antioxidant enzyme responses under 

stress (Neill et al, 2008).  GSH synthesis is also up-regulated upon plant exposure to 

stress, an indication of its vitality during oxidative stress.  For instance, salinity induces 

the synthesis of glutathione in Brassica (Ruiz and Blumwald, 2002).  GSH is also known 

to be responsive to nitric oxide; a molecule thought to be involved in abiotic stress 

signalling (Innocenti et al, 2007).  NO affects the accumulation of GSH at the 

transcriptional level by up-regulating the transcription of glutathione synthatase and 
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consequently increasing cellular GSH levels in Medicago truncatula (Xu et al, 2009 and 

Innocenti et al, 2007). 

 

The maintenance of higher ratios of reduced glutathione against the oxidized form is 

required for the maintenance of cellular redox homeostasis under stress as well (Ding et 

al, 2009).  Reduced glutathione functions to scavenge peroxides in the ascorbate-

glutathione cycle (Shao et al, 2008).  The high levels of reduced glutathione protect the 

cells against oxidative stress (Cossett et al, 1996).  This chapter evaluates the potential 

of nitric oxide to modulate the response of the glutathione pool in the nodules of 

legumes and the probable role in remedying the oxidative stress induced by salinity. 

 

6.2.0.0.  Materials and methods 
 

6.2.1.0.  Plant material preparation 

 
 

Medicago truncatula cv. Parabinga and Pisum sativum cv. Crusader seeds (both kindly 

supplied by Agricol, South Africa) were inoculated with Rhizobium meliloti (for 

Medicago) and Rhizobium leguminosarum (for pea) and grown on vermiculite.  The 

germinated seedlings were supplied with nitrogen-free nutrient solution consisting of 

0.001 M MgSO4.7H20, 0.001 M potassium phosphate buffer, 0.00005 M FeEDTA, 0.001 M 

CaCl2, 0.00005 M KCl and the micronutrients in the proportions: 5µM H2BO3, 2 µM 

MnSO4,  2 µM ZnSO4, 2 µM CuSO4.2H2O and 5µM Na2MoO4.2H2O.  The pH was adjusted to 

6.2 with potassium hydroxide.  Each pot containing a single plant was supplied with 150 

ml of this nutrient solution after every three days.  All the plants used for this 

experiment were grown under 16hrs of light in the growth chamber for four weeks until 

nodule maturity. 
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6.2.2.0.  Experimental conditions 

 

Four-week old plants were exposed to either 1 hour, 3 hours, 6 hours or 24 hours of 

treatment with 100 μM sodium nitroferrycianide (SNP) or 50 μM 

Diethylenetriamine/Nitric oxide adduct (DETA/NO). For negative controls, plants were 

treated only with the nutrient solution. To determine if nitric oxide is required for 

regulation of glutathione levels, some plants were treated with the nitric oxide synthase 

inhibitor N -Nitro-L-arginine methyl ester (L-NAME). To evaluate the effect of salinity 

on glutathione levels, the rest of the plants were treated with 150 mM NaCl.  In the 

respective treatments, the relevant compound specific to that treatment was added as a 

supplement to the nitrogen-free nutrient solution.  Potassium ferrycyanide was used as 

a fixed control for SNP. 

 

6.2.3.0.   Experimental design and data analysis 

 

The experimental designs for all the experiment was a factorial design with a two-factor 

randomized complete block Design (RCBD) with three replicates.  Analysis of variance, 

full replicate model, was used to partition the experimental error and detect the 

variation amongst the treatments at 95% confidence intervals.   

 

6.2.4.0.  Preparation of enzyme extracts 
 

Glutathione was extracted by grinding 10 mg of nodule tissue in of 5% (w/v) 

trichloroacetic acid (TCA), followed by centrifugation for 20 minutes at 20 000 g on a 

desktop centrifuge.  The TCA was removed from the samples by extracting twice with 

two volumes of diethyl ether (Yanagida et al, 2004). 
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6.2.8.0.  Measurement of glutathione pool content 

 

The glutathione pool was determined as per Yanagida et al, 2004.  Total glutathione 

(GSSG +GSH) was determined in a 200 µL reaction mixture containing 0.25 mM NADPH, 

10 mM potassium phosphate buffer (pH 7.5) and 0.6 mM DNTB (5,5’-Dithiobis-(2-

Nitrobenzoic Acid) as per Pinto et al, 1999.  The reaction contained 20 µL of sample 

extract. 

 

In order to assay for GSSG, 40 mM N-Maleimide (NEM) dissolved in 10 mM potassium 

phosphate buffer containing 5 mM EDTA was added to the supernatant to mask the GSH 

thiol group.  The TCA and NEM were removed from the emulsion by extracting three 

times with two volumes of diethyl ether.  The reaction for both assays was initiated by 

addition of 3 Units of GR in 1 ml of the reaction.  The glutathione-reductase-DTNB 

recycling of total glutathione and oxidized glutathione was measured by monitoring 

absorbance of glutathione using a KC4 spectrophotometer from BIO-TEK (Version 2.5) 

at 412 nm for 1 minute every 2 seconds.  The GSSG amounts were extrapolated from 

GSSG and GSH standard curves with known concentrations and the GSH quantity was 

calculated as the difference between the amount of glutathione pool and GSSG.  The 

glutathione values were expressed in micromole per gram of tissue extracted (fresh 

weight). 
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6.3.0.0. Results 
 

6.3.1.0.   Effect of nitric oxide on total glutathione pool 

 

Nitric oxide from SNP triggered an increase in total glutathione levels in the nodules 

compared to the controls.  NO-treated Medicago nodules exhibited higher total 

glutathione level than the negative control (Figure 6-1). 

 

 
Figure 6- 2  Time course response of total glutathione in M. truncatula nodules to 
nitric oxide.  Control represents the solution with only nutrient solution at 
optimal growing conditions; SNP is sodium nitroprusside, a nitric oxide donor; 
NaCl represents 150 mM sodium chloride.  The total variation between the means 
was tested using ANOVA, p < 0.05 (n≥3).  The bars represent the mean 
concentrations of total glutathione and the error bars represent the standard 
errors of the means. 
 

Although there is an observed increase in glutathione levels in response to NaCl 

treatment as compared to the control treatments, addition of SNP (NO donor) to the 
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NaCl treatment increased the level further.  The same pattern is observed in P. sativum 

root nodules; DETA/NO increased the glutathione levels in the nodules.  This is observed 

throughout the time periods studied (Figure 6-2).  However, there was a general 

decrease in total glutathione with an increase in incubation period regardless of the type 

of treatment the nodules have been subjected to.  In M. truncatula there seems to be no 

difference between 3 hours and 6 hours of incubation in the levels of total glutathione 

(Figure 6-1). 

 

 
Figure 6- 3  Time course response of total glutathione of P. sativum nodules to 
nitric oxide.  Control represents the negative control solution with only nutrient 
solution at optimal growing conditions; DETA/NO represents, a nitric oxide donor, 
50 μM Diethylenetriamine/Nitric oxide adduct.  The total variation between the 
treatments was tested using ANOVA, p < 0.05 (n≥3).  The bars represent the means 
of the total glutathione concentration per gram of fresh nodule tissue and the 
error bars represent the standard errors of the means. 
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Exposure of root nodules to nitric oxide leads to an increase in total glutathione levels 

but this effect is reversed by inhibition of nitric oxide synthase activity with L-NAME 

(Figure 6-3).  There is an increase in total glutathione when the nodules are treated with 

DETA/NO following the inhibition of endogenous nitric oxide synthase activity.  

Treatment with DETA/NO reversed the inhibitory effect observed for L-NAME (Figure 6- 

3).  The negative control treatments always exhibited lower glutathione levels than the 

DETA/NO-treated nodules. 

 

 
Figure 6- 4 Time course response of total glutathione to nitric oxide in P. sativum 
nodules.  Control represents the negative control solution with only nutrient 
solution at optimal growing conditions; DETA/NO represents 50 μM 
Diethylenetriamine/Nitric oxide adduct; L-NAME represents a nitric oxide 
synthase inhibitor.  The total variation between the treatments was tested using 
ANOVA, p < 0.05 (n≥3).  The bars represent the mean total glutathione 
concentration per gram of fresh nodule tissue and the error bars represent the 
standard errors of the means. 
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6.3.2.0.  Effect of nitric oxide on reduced glutathione 
 

Glutathione is synthesized in its reduced form and it is this form that is required to 

maintain the cellular redox homeostasis.  Reduced glutathione is oxidized as it 

scavenges H2O2 in the reaction that is catalyzed by glutathione peroxidase.  Hence, under 

oxidative stress more of reduced glutathione is consumed.  From this work, the obtained 

results demonstrated that SNP and DETA/NO treatments increased the GSH content in 

the nodules (Figure 6- 4 & Figure 6- 5).  A similar pattern is observed under 150 mM 

NaCl treatment, NaCl increases the GSH content of the nodules as the levels are higher 

than under negative control treatments.  However, addition of SNP to NaCl incubation 

solution increases the GSH levels even more.  In Medicago, this pattern is observed at 

early hours of incubation period and declines with the incubation period until the point 

of no significant difference between the treatments (Figure 6- 4). 
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Figure 6- 5   Time course response of reduced form of glutathione per g of fresh 
weight of M. truncatula nodules.  Control represents the negative control solution 
with only nutrient solution at optimal growing conditions; SNP represents sodium 
nitroprusside, a nitric oxide donor; NaCl represents 150 mM sodium chloride.  The 
total variation between the means was tested using ANOVA, p < 0.05 (n≥3).  The 
bars represent the mean concentrations of reduced glutathione and the error bars 
represent the standard errors of the means. 

 
Endogenous nitric oxide has the same effect as the exogenous NO on the GSH levels.  L-

NAME reverses the effect of DETA/NO on GSH and restores its levels close to the 

negative controls levels.  While L-NAME used in combination with DETA/NO explicitly 

increases the GSH levels in the nodules at 3 hours incubation, L-NAME lowers GSH levels 

and maintains these levels at the same point throughout the experimental period 

(Figure 6- 6).  However, GSH levels from the control experiment decrease drastically 

after 24 hours incubation period. 

 



165 | P a g e  
 

 
Figure 6- 6  Time course response of reduced form of glutathione to nitric oxide in 
P. sativum nodules.  Control represents the negative control solution with only 
nutrient solution at optimal growing conditions; DETA/NO represents a nitric 
oxide donor (50 μM Diethylenetriamine/Nitric oxide adduct).  The total variation 
between the treatments was tested using ANOVA, p < 0.05 (n≥3).  The bars 
represent the mean reduced form of glutathione concentration per gram of fresh 
nodule tissue and the error bars represent the standard errors of the means. 
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Figure 6- 7 Time course response of the reduced form of glutathione on P. sativum. 
nodules to different treatments of nitric oxide.  Control represents the negative 
control solution with only nutrient solution at optimal growing conditions; L-
NAME represents a nitric oxide synthase inhibitor; DETA/NO represents 50 μM 
Diethylenetriamine/Nitric oxide adduct (a nitric oxide donor).  The total variation 
between the treatments was tested using ANOVA, p < 0.05 (n≥3).  The bars 
represent the mean reduced form of glutathione concentration per gram of fresh 
nodule tissue and the error bars represent the standard errors of the means. 

 

6.3.3.0. Effect of nitric oxide on glutathione redox status of the nodule 
 

A high ratio of GSH/GSSG is required to maintain homeostatic redox state in plant cells.  

It is observed in this study that NO does not only increase total glutathione and GSH but 

also the GSH/GSSG ratios (Figure 6- 7).  The data from P. sativum GSH/GSSG ratios show 

that DETA/NO-treated samples have higher ratios than the negative controls at all the 

time periods tested here (Figure 6- 7).  This appears to be similar to the response 
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observed in M. truncatula root nodules after 1 hour and 3 hours of incubation in the 

treatment solutions, for Medicago nodules and pea nodules (Figure 6- 8). 

 

 
Figure 6- 7 Time course response of GSH/GSSG ratios of P. sativum nodules to 
different treatments of nitric oxide.  Control represents the negative control 
solution with only nutrient solution at optimal growing conditions; DETA/NO 
represents a nitric oxide donor, 50 μM Diethylenetriamine/Nitric oxide adduct.  
The total variation between the treatments was tested using ANOVA, p<0.05 
(n≥3).  The bars represent the mean GSH/GSSG ratios and the error bars 
represent the standard errors of the means. 
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Figure 6- 8  Time course response of GSH/GSSG ratios of M. truncatula nodules to 
nitric oxide.  Control represents the negative control solution with only nutrient 
solution at optimal growing conditions; SNP represents sodium nitroprusside, a 
nitric oxide donor; NaCl represents 150 mM sodium chloride.  The total variation 
between the means was tested using ANOVA, p < 0.05 (n≥3).  The bars represent 
the mean concentrations of glutathione ratios and the error bars represent the 
standard errors of the means. 

 

 
Under salinity treatment, the nitric oxide donor SNP still increases the GSH/GSSG ratios 

high above the levels exhibited by NaCl treated samples.  Although NaCl also increased 

both the total glutathione and the GSH content of the cells in the same way NO does, the 

GSH/GSSG ratios from the NO-treated samples are much higher than those from the 

NaCl-treated nodules at least at early periods of incubation (Figure 6- 8). 
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In order to prove that the higher ratios exhibited by NO donors are due to the activity of 

nitric oxide, an experiment in which nitric oxide synthase activity is inhibited was set up.  

The results obtained showed that DETA/NO is responsible for the increased GSH/GSSG 

ratios and this effect was reversed by treatment with L-NAME.  A combined treatment in 

which L-NAME was used in simultaneous combination with DETA/NO still showed 

higher GSH/GSSG ratios than the negative controls.  This effect is more evident in the 

first 3 hours of incubation (Figure 6- 9). 

 
Figure 6- 9   Time course response of GSH/GSSG ratios on P. sativum nodules to 
nitric oxide.  Control represents the negative control solution with only nutrient 
solution at optimal growing conditions; L-NAME represents a nitric oxide synthase 
inhibitor; DETA/NO represents, a nitric oxide donor, 50 μM 
Diethylenetriamine/Nitric oxide adduct.  The total variation between the 
treatments was tested using ANOVA, p <0.05 (n≥3).  The bars represent the mean 
GSH/GSSG ratios and the error bars represent the standard errors of the means. 
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6.4.0.0.  Discussion 
 

Glutathione is tri-peptide thiol whose function is to maintain redox homeostasis in the 

cell.  Expression the enzyme/s synthesizing this molecule enhances plant tolerance to 

oxidative stress (Koscy et al, 2001).  It is in fact more interesting to note that there is no 

toxicity of this molecule in the cell.  Up-regulating glutathione levels in the cells has no 

reported cases of causing any defects on plant growth and development (Zhu et al, 1999; 

Xiang et al, 2001). 

 

In this study, it is demonstrated that, in M. truncatula, glutathione content increases 

initially with salt stress.  These findings are in accordance with the research findings 

from ground nut studies that salt induced high glutathione contents (Jain et al, 2002).  In 

addition to this is the knowledge that more stress tolerant genotypes exhibit higher total 

glutathione under stress than the genotype with lower stress tolerance.  

 

Under this study, a substantial difference in glutathione contents of salt-stressed 

nodules and non-stressed nodules is observed especially in the early hours of 

incubation.  This increase in total glutathione and GSH levels indicates that NaCl triggers 

glutathione synthesis and secondly it might increase GR activity, hence the ratios are 

altered.    Similar reports from cold stress also suggest an increase in total glutathione 

levels as a result of an increased synthesis rate (Koscy et al, 2001a).   Furthermore, a 

similar trend is observed in wheat genotypes where tolerant varieties have higher total 

glutathione synthesis rate compared to the sensitive ones (Koscy et al, 200, 2004b, c).  

The cotton plant is another model validating the view that stress tolerance in mediated 

by glutathione synthesis (Gosset et al, 1996). 
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The changes in redox state of the cell have been studied and there are supporting lines 

of evidence to the findings of this study.  A higher GSH/GSSG ratio is used as an indicator 

of a homeostatically favourable redox state.  Hence freezing-tolerant wheat cultivars 

were found to have higher GSH/GSSG ratios compared to sensitive ones (Kocsy et al, 

2001a) and these high ratios were further correlated with high heat tolerance (Koscy et 

al, 2004b).  Salt stress studied in tomato also revealed higher GSH/GSSG ratios in 

tolerant genotypes (Shalata et al, 2001).  In this study, NO treatment exhibits higher 

ratios in both legume species, and under both the salt stress and optimal conditions. 

 

Our study establishes that there are higher GSH/GSSG ratios at early hours of treatments 

in response to nitric oxide (regardless of the stress, nitric oxide-treated nodules exhibit 

the highest ratios at all the time points).  This increase is followed by a decrease in the 

entire magnitude of the ratios in the successive hours indicating a change in the redox 

state of the cells regardless of the treatment.  Similar changes in GSH/GSSG ratios have 

been observed in different plants under different abiotic stress conditions.  It is reported 

that cold stress, drought stress and salt stress result in a steady decrease in the 

GSH/GSSG ratio as the stress progresses (Szalai et al, 2009).  This kind of decrease in the 

GSH/GSSG ratio is attributed to mainly the scavenging of H202 by GSH to form 

glutathione conjugates or to further degradation of GSH.  Supporting evidence observed 

from this study shows that the GSH/GSSG ratios decrease with time regardless of the 

treatment.  The decrease in the GSH/GSSG ratios is accompanied by a decrease in both 

total glutathione and GSH content. 

 

In this work it is shown that NO-treated nodules exhibit higher GSH content, total 

glutathione and GSH/GSSG ratios at early hours of the incubation period used in both 

legume species (Medicago and pea) for this study.  An increase in these antioxidant 
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metabolites is more evident in pea nodules where DETA/NO (a nitric oxide donor) was 

used. It should be noted that although SNP is a nitric oxide donor it contributes to cell 

death at levels higher than those used for DETA/NO (Murgia et al, 2004).  Hence, with 

extended exposure to SNP more oxidative stress might occur compared to DETA/NO.  

The other contributing factor in the difference in the levels of response between the 

nodules treated with different donors would be the way nodules from different 

genotypes have been treated with the various chemicals.  In peas, the nodulated roots 

were incubated in the solutions while in M. truncatula only detached nodules were used.  

The nodules from the nodulated roots tend to survive and be actively fixing nitrogen for 

longer periods than the detached nodules; hence the detached nodules are expected to 

senesce earlier than the nodules that are still attached to roots.  One cannot rule out the 

significance of the species/genotype-dependent responses. 

 

Nitric oxide has been reported to enhance glutathione synthesis by up-regulating the 

expression of glutathione synthatase (Innocenti et al, 2007).  Glutathione is synthesized 

in an ATP-dependent two-step enzymatic reaction that first involves production of 

glutamylcysteine from L-glutamic acid and L-cysteine in a reaction that is catalyzed by 

glutamylcysteine synthatase.  Secondly, glutathione synthatase catalyses the formation 

of GSH by adding glycine to the C-terminal carboxyl group of glutamylcysteine.  It has 

also been established that NaCl triggers an increase in NO cellular content and this NO is 

involved in oxidative stress signalling (Niell et al, 2008).  Hence, it is can be argued that 

an increase in total glutathione content in response to nitric oxide treatment and salt 

treatment compared to the controls is due to nitric oxide.  It is therefore reasonable to 

speculate that NO can increase the GSH levels through increasing the synthesis rate 

(Innocenti et al, 2004) and also through increasing the reaction rate of glutathione 

reductase (Pilon-Smits et al, 2000).  It has also been shown that increased GR activity 
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elevated the cellular glutathione levels without affecting glutathione synthesis (Foyer et 

al, 1995). 

 

6.5.0.0. Conclusion 
 

In this study, it is demonstrated that both exogenous nitric oxide and endogenous nitric 

oxide modulate the levels of the total glutathione pool; cause an increase in the levels of 

reduced glutathione and thus maintain high levels of the GSH/GSSG ratios.  It is 

therefore concluded that nitric oxide improves nodule redox homeostasis.  

 

The experimental system used in this work to a certain extent imposes limitations to 

explaining the presented data in full.  Experiments based on whole plants in studying 

these responses would give a better perspective as to whether prolonged exposure of 

root nodules to nitric oxide would really protect plants against oxidative stress.  

However our findings show that NO protects nodules from oxidative stress induced by 

NaCl, through the maintenance of better homeostatic redox status. 

 

Since it has been established that nitric oxide regulates glutathione biosynthesis at the 

level of transcription, the enzymes involved in glutathione biosynthesis can be targed for 

genetic modification of plants with high gluatathione content so that they are tolerant to 

abiotic stress. 
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Chapter 7  Modulation of glutathione peroxidase activity 

by cGMP 

 

 

7.1.0.0.  Introduction 
 

Cyclic guanosine monophosphate (cGMP) is a secondary signaling molecule and was 

identified in mammals decades ago.  The cGMP pathway has been described as one of 

the means through which nitric oxide signaling is modulated.  During cGMP synthesis 

from guanosine triphosphate (GTP), nitric oxide binds to the haeme domain of the 

soluble guanilyl cyclase (sGC); an enzyme that is responsible for synthesis of cGMP from 

other GTP.  This accumulation of cGMP affects downstream biochemical processes that 

result in modification of proteins and their functions through phosphorylation (Mayer 

and Hemmens, 1997). 

 

As a secondary messenger, cGMP is involved in plant cell signaling.  The existence of 

cGMP in plants was demonstrated through mass spectroscopy in plants in the 20th 

century (Janistyn, 1983).  Additionally, the existence of the proteins with guanylate 

cyclase activity in plants further proved the existence and functionality of the cGMP 

pathway in plants (Ludidi and Gehring, 2003).   However, the identified plant proteins 

with guanylate cyclase activity were found to be independent of nitric oxide signalling 

(Ludidi and Gehring, 2003).     

 

http://www.jbc.org/search?author1=Chris+Gehring&sortspec=date&submit=Submit
http://www.jbc.org/search?author1=Chris+Gehring&sortspec=date&submit=Submit
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Even though there are no nitric oxide dependent proteins with guanylate cyclase activity 

in plants identified to date, several accounts in plant research link the nitric oxide 

signaling function to the cGMP pathway.   For instance, the control of stomatal closure 

controlled by ABA and nitric oxide in the guard cells is dependent upon modulation by 

cGMP (Niell et al, 2003).  The involvement of cGMP in osmotic stress is reinforced by 

findings showing that there is always an upsurge of intracellular cGMP upon stress 

exposure such as NaCl and heavy metal toxicity (Donaldson et al, 2004 and Palavan-

Unsal & Arisan, 2009).   

 

Apart from the osmotic responses, nitric oxide is implicated in modulating the activities 

related to plant growth and development through cGMP.  The involvement of nitric 

oxide in root gravitropism in soybean and pollen polarity in Ceratopteris richarddi, are 

all modulated through cGMP (Xu et al, 2005 and Salami et al, 2007).  Stress-induced 

generation of cGMP also seems to have an important function in regulation cation fluxes 

and thus regulating the absorption of Na+, Ca+ and K+ in the cells (Maathuis FM, 2006).   

 

Nitric oxide synthesized during stress has an important role in protecting cells against 

oxidative stress.  This important role was discussed (Niell et al, 2008) and furthermore 

the previous chapters of this thesis demonstrated it clearly by linking the protective role 

of NO during abiotic stress to antioxidant content and antioxidant enzyme activities.  

According to our knowledge to date there are no accounts that relate this modulation of 

antioxidants and enzyme activities by NO to the cGMP pathway.  Glutathione peroxidase 

is an important antioxidant enzyme functioning in the acclimatization of cells to abiotic 

stress and its activity is modulated by nitric oxide.  Hence in this work the involvement 

of the cGMP pathway in the cascade of events leading to GPx antioxidant enzyme activity 

was investigated. 
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7.2.0.0.  Materials and methods 

 

7.2.1.0  Preparation of plant material  
 

Medicago truncatula cv. Parabinga and Pisum sativum cv. Crusader seeds (both kindly 

supplied by Agricol, South Africa) were inoculated with appropriate Rhizobia and were  

germinated on vermiculite pre-soaked in de-ionized water.  The germinated seedlings 

were supplied with the nitrogen-free nutrient solution consisting of 0.001 M 

MgSO4.7H20, 0.001 M potassium phosphate buffer, 0.00005 M FeEDTA, 0.001 M CaCl2, 

0.00005 M KCl and the micronutrients in the proportions: 5 µM H2BO3, 2 µM MnSO4,  2 

µM ZnSO4, 2 µM CuSO4.2H2O and 5 µM Na2MoO4.2H2O.  The pH was adjusted to 6.2 with 

potassium hydroxide.  Each pot containing a single plant was supplied with 150 ml of 

this nutrient solution after every three days.  All the plants used for this experiment 

were grown under 16 hours of light in the growth chamber for four weeks till nodule 

maturity. 

 

7.2.2.0.  Experimental conditions 

 

Depending on the type of an experiment, four-week old plants were exposed to 1 hour, 2 

hours and 3 hours of various concentrations of 8-pCPT-cGMP (a cell-permeable 

analogue of cGMP), L-NAME (a nitric oxide synthase inhibitor) and 1H-

[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an inhibitor of the soluble guanylyl 

cyclases).   

The chemicals were dissolved in different solvents depending on their chemical stability.  

The stocks of 8-pCPT-cGMP and L-NAME were dissolved in water.  ODQ was dissolved in 

absolute ethanol.  Since L-NAME is a systemic nitric oxide synthase inhibitor, it was 

supplied to the nodulated roots 30 mins prior to other treatments.   
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7.2.3.0.  Experimental design and data analysis 

 

The randomized complete block Design (CRBD) with three replicates was adopted for 

these experiments.  The Analysis of Variance (ANOVA), and was used to partition the 

experimental error and detect the variation amongst the treatments at 95% confidence 

intervals.   

 

7.2.4.0.  Preparation of enzyme extracts 
 

Glutathione peroxidase enzyme was extracted by homogenizing nodule tissue in 10 

volumes (v/w) extraction buffer (50 mM TRIS-HCl, pH 7.6, 0.15 mM NADPH, 15 mM 

GSH) using an electric grinder.  The homogenate was spun at 40C using a bench-top 

centrifuge at 20 000 g for 15 minutes. The supernatant was removed and desalted 

through a Sephadex G-25 column and used for GPX activity determination. 

 

7.2.5.0.  Determination of glutathione peroxidase enzyme activities 
 

Glutathione peroxide activity was measured as per Mittova et al, 2004, with some 

modifications.  In summary, the assay was carried out in GPX assay buffer (50 mM TRIS-

HCl, pH 7.6, 0.15 mM NADPH, 15 mM GSH, 1 U/ml glutathione reductase, 0.95 mM 

sodium azide.  This reaction was initiated by addition of H2O2 to a final concentration of 

0.075%.  The glutathione peroxidase activity was then measured by following the 

decrease in absorbance at 340 nm.  The extinction coefficient of NADPH (0.00373μM-1) 

was used.  The formula used for calculating GPX activity was as follows: 

 

[(∆A340/min) ∕0.00373μM-1] × [0.19ml ∕ 0.02ml] × [dilution factor] = nmol/min/ml 

Where: 



182 | P a g e  
 

∆A340 = [A340 (Time 2) – A340 (Time 1)] ∕  [ time 1(min) – Time 2(min)] 

The enzyme activity was expressed as nmol per milligram of protein. 

 

7.2.7.0.  Determination of protein concentration 

 
 

All the protein contents in all the samples were measured as per Bradford et al, 1971. 

7.3.0.0. Results 
 

 

7.3.1.0. Effect of different concentrations of cGMP on glutathione peroxidase 

activity 

 

 
Figure 7- 1 Glutathione peroxidase activities in the pea nodules after incubation in 
nutrient solution, pH 7.2, supplemented with different concentrations of 8-pCPT-
cGMP (cGMP) for 1 hour.  cGMP 10 represents 10µM concentration of 8-pCPT-
cGMP; cGMP 50 represents 50 µM concentration of 8-pCPT-cGMP; cGMP 100 
represents 100 µM concentration of 8-pCPT-cGMP; while untreated represents 
just nutrient solution without 8-pCPT-cGMP. 
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Exogenously applied cGMP affects the activity of GPX in the nodules.  From Figure 7- 1, it 

is observed that 10 µM cGMP causes and increase of about 30% in GPX activity when 

compared to the untreated sample.  However, this increase is not sustained as the 

concentrations of cGMP increases; higher concentrations inhibit the activity; albeit that 

no significant difference is observed between 50 µM and 100 µM at 1 hour incubation 

period.  It can thus be speculated that additional cGMP beyond the threshold levels does 

not necessarily increase the scavenging capacity of GPx. 

 

 
Figure 7- 2  Glutathione peroxidase activities in the pea nodules after incubation 
in nutrient solution, pH 7.2, supplemented with different concentrations of 8-
pCPT-cGMP for 3 hours.  cGMP 10 represents 10 µM concentration of 8-pCPT-
cGMP; cGMP 50 represents 50 µM concentration of 8-pCPT-cGMP; cGMP 100 
represents 100 µM concentration of 8-pCPT-cGMP; while untreated represents 
just nutrient solution without 8-pCPT-cGMP. 

 

 

After 3 hours of incubation in similar solutions, the effect of different cGMP 

concentrations on nodular GPx activity at higher concentrations of cGMP is distinct from 
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that observed for the 1 hour treatment.  There is an obvious difference between 50 µM 

and 10 µM cGMP.  At 100 µM cGMP, the highest inhibition (about 50% compared to the 

untreated nodules) is observed.  Thus the functionality of cGMP as a signaling molecule 

to trigger the activity of glutathione peroxidase is concentration-dependent (Figure 7- 

2). 

 

7.3.2.0.  Modulation of the Effect of cGMP on Glutathione Peroxidase activity 

By Nitric Oxide Synthase-Dependent Nitric Oxide.  

 
 

 

Figure 7- 3  Glutathione peroxidase activities in the pea nodules after incubation 
in nutrient solution, pH 7.2 supplemented with different concentrations of 8-
pCPT-cGMP (cGMP) and 1 mM L-NAME for 3 hours.  cGMP 10 represents 10 µM 
concentration of 8-pCPT-cGMP; cGMP 50 represents 50 µM concentration of 8-
pCPT-cGMP and cGMP 100 represents 100 µM concentration of 8-pCPT-cGMP; 
while control represents just nutrient solution without any 8-pCPT-cGMP or L-
NAME. 
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Figure 7- 3 above shows that inhibition of nitric oxide synthesis by 1 mM L-NAME 

inhibits the activity of GPx when compared to the control treatment.  It is rather 

interesting to observe that addition of 10 µM cGMP reverses the inhibition and increases 

the activity to about 25% higher than the control.  However exposure of root nodules to 

50 µM cGMP does not cause a significant increase when compared to 10 µM cGMP; they 

both at this time point increase the GPx activity to about the same magnitude.   100 µM 

cGMP restores the GPX activity back to the level of the control. 

 

7.3.3.0.  Modulation of the effect of cGMP on glutathione peroxidase activity 

by soluble guanylyl cyclase. 

 
 

 
Figure 7- 4.  Glutathione peroxidase activity in pea nodules after incubation in 
nutrient solution, pH 7.2, supplemented with 100 μM 1H-[1,2,4]Oxadiazolo[4,3-
a]quinoxalin-1-one  (ODQ)  and 50 μM 8-pCPT-cGMP (cGMP). 

 



186 | P a g e  
 

When incubating the nodules in the nutrient solution supplemented with 1H-

[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), the glutathione peroxidase activity 

gets reduced compared to the control.  There is a substantial decrease of about 73%.  It 

is interesting however to note that the decrease caused by blocking the sGC is reversed 

by 50 µM cGMP.  All these observations can be summed up in one sentence: nitric oxide 

from nitric oxide synthase is required for GPx activity via interacting with sGC to 

stimulate cGMP synthesis in plant cells. 
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7.4.0.0.  Discussion 
 

The existence of a cGMP-mediated signalling pathway in plants has long been discovered 

and, though not well elucidated, there are pointers linking cGMP as a signaling molecule 

to the signaling effect of nitric oxide (Palavan-Unsal and Arisan, 2009).  Cyclic GMP up-

regulates the stress defense gene encoding phenylalanine ammonia lyase (PAL) in 

tobacco in the same manner as nitric oxide (Durner et al, 1998).  Also, the nitric oxide 

produced via synthesis by rat NOS expressed in tobacco triggers the expression of 

defense genes in a pathway that involves functioning of cGMP down stream of nitric 

oxide (Duner, 1998).  Indeed, in our study, it is observed that cGMP alone increases the 

activity of the antioxidant enzyme, glutathione peroxidase.  In the previous chapter we 

established that NO also causes the upsurge of GPx activity both under salt stress and 

under optimal growth conditions. 

 

It is further established that, just like nitric oxide (previous chapter), cGMP modulates 

the activity of GPx in a concentration-dependent manner.  There seems to be a threshold 

cGMP concentration that would stimulate the activity of GPx and thus protect plants 

against oxidative stress.   Higher concentrations of cGMP inhibit the activity of GPx 

(Figure 7- 2 & 7- 3).  In mammals, the cGMP signalling pathway modifies proteins and 

their functions in a reversible phosphorylation process (Mayer and Hemmens, 1997).  If 

this is true for plants, it is reasonable to conclude that the cellular response due to cGMP 

accumulation would be dependent upon the cGMP concentration.  It should be noted 

that this is a first attempt to establish the relationship between the cGMP concentration 

and antioxidant responses in plants. 
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It is rather interesting though that cGMP reverses the inhibition of GPx activity by L-

NAME, a nitric oxide synthase inhibitor.  Incubation of nodules in L-NAME reduces GPx 

activity compared to the control experiments. However, addition of cGMP to the L-

NAME-treated nodules reverses the effect of L-NAME.  This change is also concentration-

dependent.  Thus, if substituting NO with cGMP exhibits a similar pattern as in NO 

treatment, it could suggest that cGMP and NO function in the same pathway to modulate 

the activity of glutathione peroxidase.  Secondly, since inhibition of nitric oxide synthesis 

in the nodules causes a reduction in GPx activity, it can be concluded that NO is also 

required for GPx activity and its actions are transduced via NO-dependent stimulation of 

sGC to produce cGMP that is required for the GPx activity. 

 

Nitric oxide interacts with sGC in the cGMP pathway (Feelisch et al, 1999).  It is the 

activation of sGC that cause a rise in cGMP levels in the cell, which in turn activates 

protein kinases (Duner et al, 1998 and Wilson et al, 2008).  In this study, it is observed 

that inhibiting the sGC also inhibits the GPx activity.  However, this inhibition is reversed 

by addition of cGMP to the incubation medium.  Since the chemicals used in this study 

are cell-permeable, and  thus diffuse through the cell walls into the cell sap, it is 

reasonable to conclude that the activity of GPx in the nodules is dependent upon the 

concentration of cGMP. Indeed, the requirement of cGMP for plant signalling is not a new 

phenomenon, ODQ inhibits the transcription of stress response genes that are known to 

be up-regulated by nitric oxide and cGMP (Bowler et al, 1992). 

 

It is noteworthy though to mention that abiotic stress triggers the accumulation of cGMP 

in the cells.  For instance, NaCl stress in rice seedlings causes about 2-fold increase in 

cellular cGMP levels in the shoots and roots (Reggiani R, 1997).  This is further 

evidenced by the findings in Arabidopsis thaliana where salt and osmotic stress causes a 
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rapid increase in cellular cGMP within 5 seconds of stress induction (Donaldson et al, 

2004). 

 

Cyclic GMP has a role in metabolic pathways leading to abiotic stress responses.  It has 

been reported that exposure of Arabidopsis roots to 10 µM cGMP modulated the influx 

and efflux monovalent cations in the cells thus regulating cation transport.  

Furthermore, cGMP has been found to regulate the uptake of sodium cations in 

Arabidopsis (Maathius et al, 2001; Rubio et al, 2003 and Maathius et al, 2006). 

 

 7.5.0.0.  Conclussion 

 

Form this study, it is concluded that cGMP is a signaling molecule involved in 

modulation of GPx activity and could be involved in the maintenance of redox 

homeostasis.  Secondly, it is established that cGMP functions down stream of nitric oxide 

in the pathway that leads to regulation of glutathione peroxidase activity.  Other 

signalling roles for cGMP were reported in Ceratopteris pollen polarity studies, where 

cGMP synthesized from sGC was found to work down stream in the pathway that leads 

to gravitational response of Ceratopteris pollen (Salmi et al, 2007).  Similar findings in 

relation to cGMP were also made regarding root gravitropisim in soybean (Hu et al, 

2005).  Cyclic GMP has also been placed downstream ABA and NO in the regulatory 

pathway that leads to closing of the stomata (Niell et al, 2003).  Indeed, NO triggers the 

accumulation of cGMP in the cells (Hu et al, 2005; Durner et al, 1998). 

Identification of the pathway that leads to the sysnthesis of cGMP in plants and the 

ezymes involved would open the doors for the possibilities of engeneering plants with 

higher cGMP levels, potentially with more tolerance to abiotic stress. 
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Chapter 8  Construction of a nodule specific promoter that 

is abiotic stress-responsive and the prospects of enhancing 

salinity stress tolerance in nodules 

 

8.1.0.0 Introduction 

 

Abiotic stress causes both physiological and biochemical defects that may lead to 

deterioration of plant yield/performance (Manchanda and Garg, 2008).  In legumes, 

nodules serve as an integral source of environmentally safe, cheap and a natural soil 

nitrogen to the growing legume plant (Chrispeels and Sadava, 2003).  This sustained 

supply of nitrogen from the nodules helps to meet the plant’s nitrogen nutrient 

requirements, hence grain yield and crude grain protein content (Chrispeels and Sadava, 

2003).  Apart from natural senescence that occurs in nodules as they age (Puppo et al, 

2005& Van de Velde et al, 2006), abiotic stress induces early senescence of legume root 

nodules (Puppo et al, 2005).  Protection of nodule tissue from oxidative stress 

necessitates an urgent consideration in plant improvement programs (Puppo et al, 

2005).  

 

The significant role played by nitric oxide in modulating antioxidant responses in 

legume root nodules has been established in the previous chapters of this thesis.  In 

summary, nitric oxide improves the antioxidant capacity of root nodules and this effect 

is transcriptionally regulated as observed for superoxide dismutase (chapter 3) and 

glutathione synthesis (Innocentie et al, 2004).  Furthermore, this effect is modulated 

through cGMP (Chapter 6).  Hence, regulation of either nitric oxide synthesis in the root 
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nodules under salinity stress, or up-regulating the synthesis/activity of superoxide 

dismutase and/or glutathione synthatase would be part of novel strategies in 

developing legume crop plants with better tolerance to salinity. 

 

Constitutive expression of stress-responsive genes like dehydration response element 

binding protein (DREB) in plants has increased plant tolerance to abiotic stress, 

although sometimes it resulted in deleterious effects on other growth parameters 

(Miller J, 2007).   For instance, drought-tolerant tomato plants were obtained by over-

expressing Arabidopsis C repeat/dehydration-responsive element binding factor 1 

(CBF1) under the control of cauliflower mosaic virus (CaMV35S) promoter (Hsieh et al, 

2002).  However, these tomato plants had stunted growth.  On the other hand, when 

driving the expression of the CBF1 with abscisic acid inducible promoter; abscisic acid-

response complex (ABRC1) in tomato, an increased stress tolerance was attained 

without any deleterious effect on the yield (Lee et al, 2003).  The use of a non-

constitutive seed-specific promoter (DS10) also resulted in higher levels of expression 

and also protected the seed from heat shock without affecting the growth parameters 

(Prieto-Dapena et al 2006).  All these lines of evidence highlight the comparative 

advantage of inducible and tissue specific promoters in engineering plants for increased 

stress tolerance as opposed to constitutive expression of stress genes. 

 

Root nodule development is facilitated by chemical dialogue between specific Rhizobia 

species and specific legume root hairs prior to the root hair infection (Schumpp et al, 

2009).  This dialogue, together with the physiological and molecular changes in the 

developing nodule tissues, results in accumulation of several polypeptides, which are 

encoded by a series of genes operating in a sequential, temporal manner, called nodulins 

(Verma et al, 1992).   The nodulin genes have been isolated in the late 20th century 
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(Legocki and Verma, 1980) and their characterization revealed some conserved motifs 

in the promoter regions of such genes, demonstarting that they are responsive to 

environmental and chemical stimuli (Stougaard et al, 1990).  Such motifs include 

consensus nodule sequences, enhancers, organ specific elements, strong positive 

elements (Stougaard et al, 1990).  

 

Similarly, the plants respond to abiotic stresses such as salinity by synthesizing proteins 

that either protect plants from the immediate effects of stress (Manchanda and Garg, 

2008) or are binding factors that will help trigger the transcription of stress adaptation 

genes (Gao et al, 2007).  The abiotic stress-inducible genes are driven by promoters with 

specific regulatory elements (Yamaguchi-Shinozaki and Shinozaki, 2005 & Lee et al 

1992).   Such abiotic stress-responsive genes are classified into those that are abscisic 

acid dependent and abscisic independent (Yamaguchi-Shinozaki and Shinozaki, 2005). 

 

In this work, we attempted to design and construct a nodule-specific promoter that is 

abiotic stress-responsive to drive the expression of genes that can combat the adverse 

effects of high NaCl concentration and dehydration in the root nodules. 

 

8.2.0.0. Materials and methods 

8.2.1.0. Construction of the chimeric promoter 

8.2.1.1. Cloning of the ASREF/NSP Promoter 

 

The Abiotic Stress Response Fragment (ASREF) and Nodule Specific Promoter (NSP) 

were isolated from the genomic DNA using primers that amplify the upstream (5  of the 

transcription start site) region of GmPM9 gene (Lee et al 1992) and N23 gene (Jorgensen  
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et al, 1991), respectively, using the primer sets; 5 ASREF: 5 -gaa aag ctt gtt tat gta agc ccc 

tat tgc-3 and 3 ASREF: 5 -cat tct aga tgc aca cgt gtc agt gca g-3  for the ASREF fragment 

and 5 NSP: 5 -gat tct aga gac att ttt aaa taa taa aat aaa gc-3  and 3 NSP: 5 -cat gga tcc taa 

tta ctt ggt tac tta gct ag-3  respectively.  ProofStart TM DNA polymerase from Qiagen was 

used as per manufacture’s protocol to amplify these fragments.  ASREF and NSP primers 

were annealed at 56oC for 45 seconds and PCR yielded the DNA fragment of 175bp and 

448bp respectively (Figure 8- 1). 

 

The ASREF was first cloned as a HindIII/XbaI fragment into cloning vector pUC18 to 

produce a new plasmid pUC:AS.  NSP promoter was then cloned into pUC:AS as 

Xba/BamHI fragment form pUC:AS/NSP.  The ASREF/NSP fragment was then subcloned 

as a Hind III/ BamH I into the binary vector pBINPLUS. 

 

8.2.1.2. Construction of plant expression vectors 
 

The pBINPLUS binary vector has been modified in the lab to form a new vector with the 

-glucuronidase (GUS) reporter gene fused to the nopaline synthase (nos) terminator, 

under the control of the cauliflower mosaic virus (CaMV 35S) promoter to form a new 

plasmid; pBPGUS.  The ASREF/NSP fragment was sub-cloned following its sequencing 

into the pBPGUS as a BamHI/HindIII fragment, thus replacing the CaMV 35S promoter, 

to form the transformation vector pBAS/NSP with ASREF/NSP-GUS fusion.  The pBPGUS 

plasmid was used as the control to study the functionality of the promoter (Figure 8- 1). 

 



 

Figure 8- 1 Construction of pBAS/NSP plasmid. (Left side) origional pBPGUS plasmid; (right side)  The linearized pBAS/NSP plasmid 
after the insertion of ASREF/NSP chimeric promoter; (c) ASREF/NSP fragments with the resitriction sites flanking the two fragments 
; ASREF and NSP. CaMV-promoter represents CaMV35s promoter. 



8.2.2.0. Application of chimeric synthetic promoter technology 

 

8.2.2.1. Identification of a nitric oxide synthesizing gene in Medicago 

trancatula. 

 

The AtNOA1 has been identified and characterized in Arabidopsis thaliana as a nitric 

oxide associated gene (Guo et al, 2003).  Although the actual direct involvement of this 

gene in nitric oxide biosynthesis has been disputed, it remains unchanged that its 

increased cellular expression result in enhanced nitric oxide generation (Guo et al, 2003; 

Moreau et al, 2007 and Uicker et al, 2007).  For this reason the predicted amino acid 

sequence of the AtNOA1 (Accession number NP_190329) was used in protein homology 

searches of Medicago truncatula ESTs using tblastn from NCBI.  The protein sequence 

with the highest homology based of the probability (e-value) was taken as the best 

match and its corresponding nucleotide sequence and cDNAs (MtNOA1) were used as 

the basis for gene isolation in Medicago truncatula.  The primers for gene isolation and 

PCR were designed to amplify a full-length cDNA of the coding region of the identified 

gene (MtNOA1).   The Primer3Input, version 0.4.0, (http://www.frodo.wi.mit.edu) 

program was used to design the primer set for amplification of a full length sequence of 

MtNOA1. 

 

8.2.2.3. Analysis of the predicted MtNOA1 sequence based on web tools and 

the cloned sequence from Medicago truncatula 

  

Both the predicted cDNAs and protein sequences were aligned with the putative nitric 

oxide associated protein from snail (Huang et al, 1997) and AtNOA1 using BLAST web 
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based tools (www.ncbi.nlm.nih.gov).  Blastn was used to align the nucleotide sequences 

while the blastp was used to align the protein sequences.  Following cloning of the 

MtNOA1 PCR product into the cloning vector, the isolated DNA fragment was sequenced 

and the resulting sequence was also analyzed to verify the accuracy of the PCR. 

 

8.2.2.4. Medicago growth conditions 
 

The Medicago truncatula cv. Parabinga was planted for total RNA extraction.  Seeds were 

sterilized by washing the mechanically scarified seeds in 30% commercial bleach 

supplemented with 0.01% (V/V) tween 20 for 8 minutes.  Then the seeds were rinsed 5 

times with sterile water on the laminar flow bench.  The seed were planted in tissue 

culture tubs on basal MS medium supplemented with 3% sucrose, under a light/dark 

cycle of 16/8 hours.  Two weeks old seedlings were used for total RNA extraction.   

 

8.2.2.5. Molecular cloning and characterization of MtNOA 

  
 
The total RNA was isolated from Medicago truncatula using the RNeasy Plant Mini Kit 

(Qiagen) and the isolation procedure was as per manufacturer instructions.  The full 

length cDNA of this MtNOA1 gene was synthesized from Medicago truncatula total RNA, 

using RT-PCR as per Superscript RT Kit (Invitrogen).  First strand cDNA was synthesized 

using the MtNOA1 reverse primer.  Then the second strand cDNA was amplified in PCR 

using the High Fidelity PCR Kit (Qiagen) according to the manufacturers’ manual.  The 

following primer set was used and annealed at 55oC; forward primer 5 - GTA GGA TCC 

ATG GCT ATC TTG TTC TCT ACA ATT G-3  and reverse primer 5 -GGA GTC GAC TCA TGC 

AGA TAT CTC TAT ACT TGC-3 , with BamHI and SalI restriction sites respectively.   
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 The PCR product was ligated as a BamHI/SalI fragment in pUC18 cloning vector to form 

a pUC-MtNOA1 plasmid (Figure 8- 2).  This plasmid was perpetuated in DH5α E. coli 

bacterial cells.  The resulting clone was sequenced (Central Analytical Facility, 

Stellenbosch University) with M13 forward and reverse primers flanking the MCS region 

of the pUC18.  The sequence from the cloned fragment was analyzed and aligned with 

the predicted MtNOA1 from the NCBI database. 

 

In order to regulate the expression of NO in the nodules, MtNOA1 gene was sub-cloned 

from the pUC-MtNOA1 into pBAS/NSP-GUS plasmid, thus replacing the GUS gene, as a 

BamHI/SacI fragment (Figure8- 2).   

 

 

Figure 8- 2 Isolation of MtNOA1 from Medicago truncatula total RNA.  (1) Reverse 
transcription with the reverse primer of full length sequence of MtNOA1; (2)PCR 
reaction on the single strand cDNA; (3) Double stranded MtNOA1 product with the 
restriction sites flanking the full length sequence and (4) pUC18 cloning vector 
with polylinker  where MtNOA1 was ligated as a BamHI/SalI fragment. 
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8.2.3.0. Purification, manipulation and detection of DNA 
 
 

DNA was stored in TE buffer at –20°C.  While the total RNA extracted was resuspended 

in DNAase free DPEC water and stored at -80°C.  Plasmid DNA was purified with the 

QIAprep® Spin Miniprep kit (Qiagen, Hilden), in which an overnight culture of 5ml was 

used. DNA concentration and purity was determined spectrophotometrically using the 

NanoDrop 2000 spectrophotometer (Thermo Scientific).   

 

Enzymatic modifications of DNA were done with commercially supplied enzymes and 

buffers (Fermentas).  The incubation conditions were as suggested by the 

manufacturers. Endonucleolytic digestion was performed by different restriction  

 

enzymes, hence incubation time was dependent on the amount of DNA and enzyme 

concentration.  In general, 1 U enzyme was used to digest 1 μg DNA in an hour.  

Incubation temperatures were chosen as specified for each enzyme.   

 

T4 DNA ligase (Promega) was used for ligating the DNA fragments. For cloning the 

ASREF, NSP and MtNOA1 in the vectors, a concentration of 100-200 ng DNA with a 

vector: insert ratio of 1:1 and 1 U ligase were used in the ligation reaction.  The 

appropriate volume of buffer was used as per manufacturer instructions.  The reaction 

was incubated at 16°C overnight.  

 

The double stranded DNA fragments were separated electrophotically on 1% agarose 

gels. 1X TBE buffer was used for the electrophoresis of the DNA samples.  Following 

staining with ethidium bromide, the separated fragments were visualized on an UV 

transilluminator and photographed with a high resolution camera.  
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DNA fragments were recovered and purified from aqueous PCR reactions with the 

QIAquick® PCR Purification Kit (Qiagen).  It was extracted from the agarose gels using 

the QIAquick® Gel Extraction Kit (Qiagen, Hilden) as per manufacturer's manual. 

 

8.2.4.0 Preparation of competent bacterial cells and DNA transformation 

 

A overnight 2 ml culture was prepared by inoculating a 5 ml LB medium with a single 

colony of E. coli DH5α.  This was used to inoculate 50 ml of LB medium and the culture 

was grown overnight at 37°C with shaking at 200 rpm. The overnight culture was used 

to inoculate 300 ml LB and this new culture was grown at 37°C with shaking till the 

absorbance at 600 nm was 0.6. The bacterial culture was then transferred to sterile 

tubes and centrifuged at 2000 g at 4°C for 10 min.  The excess LB was then removed 

from the tubes by decantation and the bacterial cells were then carefully resuspended 

and washed in 50 ml of ice-cold TFB-1 buffer   and incubated on ice, then centrifuged as 

before.  The TFB-1 buffer was removed as before and this time the cells were 

resuspended in 40 ml of ice-cold TBF-11 buffer.  The resuspended cells were snap frozen 

in liquid nitrogen after preparing 300 μl aliquots in 1.5 Eppindolf tubes.  The frozen cells 

were stored at -80°C. 



 

Figure 8- 3 Construction of pBASMtNOA1 plasmid.  (a) Original pBPgus plasmid before insertion of ASREF/NSP-MtNOA1 cassette; (b) 
Linearized pBASREF/NSP_MtNOA1 plasmid; (c) ASREF/NSP cassette. CaMV-promoter represents CaMV35s promoter.



8.2.5.0 Transformation with DNA 

 

The ligated DNA fragments/plasmids were mobilized into the competent bacteria by the 

heat-shock method (Hanahan, 1983).  The competent bacteria were thawed on ice and 

then mixed gently with 10 μl of the ligation reaction or plasmid DNA. This was incubated 

for 30 minutes on ice followed by incubation for 45 seconds at 42°C on a heating block.  

The suspension was then cooled immediately on ice for 15 minutes.   About 0.5 ml of LB 

was then added to the suspension and the incubated at 37°C  for  1 hour, then plated on 

LB solid medium supplemented with appropriate antibiotics.  The cultures were grown 

overnight at 37°C in the dark.  

 

For plant transformation, ARGUA 1 Agrobacterium rhizogenes strain was used to infect 

the plant tissue.  This strain was cultured in YEP medium at 28oC overnight with shaking 

at 250rpm.  Th resulting culture was used and prepared for either transfection or for 

transformation by binary vector containing the sequences of interest.  The competent 

cells for this agrobacterium were used for plasmid transformation (Christey & Braun, 

2005).  The heat shock method was used to mobilize the binary vector into the cells 

 

8.2.6.0.  Multiplex polymerase chain reaction 

 

Multiplex PCR was carried with two primer pairs simultaneously so as to amplify the 

target fragments depending on the inserted fragment in the binary vector pBINPLUS.  

For the ASREF/GUS fragment, the primers 5 NSP, 3  GUS, 5  NPT II and 3  NPT II were 

used to amplify the NSP-GUS and NPT II gene fragments.  While for AS/NSP-MtNOA1, 

5 NSP , 3  MtNOA1, 5  NPT II and 3  NPT II were used to amplify NSP-MtNOA1 and NPT II 

gene fragments.  Lastly, for the control plasmid pBPGUS, 5 GUS, 3  GUS, 5  NPT II and 3  
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NPT II primers were used to amplify GUS and NPT II gene fragments.  The primers were 

all annealed at 56 oC.  

 

8.2.7.0.  Medicago truncatula transformation 

 

The M. truncatula cv. Jemalog seeds were scarified with concentrated sulphuric acid for 

8 minutes, then surface sterilize in 30% commercial bleach for 10 minutes, then rinsed 

with sterile water 5 to six times.  The seeds were imbibed in 10 µM BAP for 3 hours 

before placing on MS solid plates and allowed to germinate in the dark for three days. 

Hypocotyls of 3 days old seedlings were wounded several times with a needle, then co-

cultivated for 15 minutes in co-cultivation medium (bacterial culture carrying the 

plasmid of interest supplemented with 0.154 g/ 25 ml DTT, 0.40 g/25 ml L-cystein and 

100 µM acetosiringone), shaking in the dark.  The seedlings were then blotted on a 

sterile filter paper and placed on MS medium supplemented with 100 µM 

acetosyringone and incubated in the dark for 3 days.  The seedlings were then grown 

under 8/16 light/dark cycles. The three weeks old plants with well developed root 

systems were then transferred to sterile vermiculite where there have been inoculated 

with rhizobium.  On the other hand some hairy root tips were cultured in vitro in MS 

solid medium without any exogenous phytohormones for further analysis and 

inoculation with rhizobium. 
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8.3.0.0.  Results and discussion 
 

 

8.3.1.0. Construction of the abiotic stress-inducible nodule-specific promoter 

 

8.3.1.1. Cloning the abiotic stress-responsive and nodule-specific fragments  

 

The PCR results revealed a fragment size of about for 163 base pairs for the abiotic 

stress-responsive (ASREF) and 439 for the nodule-specific (NSP) (Figure 8- 4).  These 

fragments were subcloned into pUC-18 clonning vector to from a new vector: 

pUCAS/NSP.   These fragments were sequenced with M13 primers in pUCAS/NSP, and 

the sequence analysis revealed the 602 base-pair fragment, homologous to the predicted 

ASREF/NSP from the data base (Figure 8- 5).  

 

 

 

Figure 8- 4 PCR-amplified abiototic stress response element fragment from the 
soybean GmPM9 promoter (ASREF) and nodule-specific fragment with the core 
promoter from the soybean N23 gene promoter. Lane 1 is the 1kb DNA molecular 
weight maker (fermentas) MWM, lane 2 is the GmPM9 promoter fragment, ASREF 
and lane 3 is N23 promoter NSP. 
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Figure 8- 5  Restriction digestion of pUC18 ligated to ASREF/NSP fragment, with 
BamHI and SalI (A) and PCR verification of the inserted fragment with the 5  end 
primer of ASREF fragment and 3  end primer of NSP fragment.  The chimeric 
promoter has an approximate length of 600 bp based on its migration on agarose 
gels (B).  Lanes represent either the PCR product or a restriction digest reaction 
performed on the plasmid DNA extracted from individual colonies.  Lanes 2 to 
lane 5 carry the cloned fragment as verified by PCR (B).  –ve controls in (A) and 
(B) represents the restriction digest reaction without the plasmid DNA.  The 
molecular weight marker, MWM represents the 1kb DNA ladder (fermentas). 

 
 

The sequence analysis of this clone reveals a very high homology to the fragments of 

GmPM9 and N23 promoter region.  In general, the chimeric promoter has a core 

promoter with a transcription start site.  The TATA box was identified and is located at 

about 55 bases from the transcription initiation site.  There are nodule specific motifs 

concentrated 469 bases upstream of the TSS (Figure 8-7).  Since the fragment was 

cloned from soybean as in Lee et al (2000), the arrangement of cis-acting motifs is 

similar to that in Lee et al (2000), as shown in Figure 8- 6. 
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Figure 8- 6  Alignment of the predicted ASREF/NSP nucleotide sequence with the 
cloned sequences. WebSeq represents the predicted sequence based on the NCBI 
sequences and FullClone represents the nucleotide sequence of the isolated 
ligated fragments from GmPM9 and N23 genomic clones in pUC18. 

 

The chimeric promoter has the abiotic stress-inducible cis-acting element and nodule 

specific cis-acting elements.  The consensus motif for ABA inducibility, pyACGTGGC, is 

not found in this promoter hence the promoter might not respond to absisic acid.  A G-

box is located at +43 and appears in repeats that are separated by three nucleotides.   

There are also five abiotic stress response motifs concentrated in the -560 to -410 

region.  Nodule-specific motifs appear from region -170 to – 600.  Just like in the N23 

promoter, there are inverted repeats INVA and INVB that would act like enhancer 
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elements in the N23 promoter.  The presence of an A/T-rich region that may serve as an 

enhancer region for the promoter activity is also present in this promoter.  Such 

arrangements of the abiotic and nodules specific motifs in the promoter may warrant its 

activity in the nodules and under abiotic stress (Figure 8- 7). 

 

 

Figure 8- 7  Nucleotide sequence of the chimeric ASREF/NSP promoter containing 
the necessary cis-acting elements for nodule specificity and abiotic stress 
responsiveness.  All the important motifs are underlined and labelled.  The abiotic 
stress motifs are highlighted and underlined without labels. (a) represents  
enhancers, (b) represents (CA)n elements, (c) represents a G-BOX(binding site for 
Inducer of CBF expression (ICE) binding site, (d) represents nodulin cis acting 
elements, (e) represents INVA and INVB, (f) represents a nodulin motif, (g) and 
(I)represent TATA box, (h) represents ROOTMOTIFTAPBOX1 
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Figure 8- 8   Multiplex PCR of plasmid DNA from pBPGUS, pBAS:NSP-GUS and 
pBAS:MtNOA1.  pBPGUS; the primers amplifying the full length sequence of NPT II  
and GUS  gene were amplified. pBAS:NSP-GUS; the primer pairs amplifying the full 
length sequence of NPTII and nodule specific fragment (NSP) and GUS gene were 
used. pBAS:MtNOA; the primer pairs used were targeted at NPTII and secondly 
nodule-specific fragment (NSP) and MtNOA1. 

 
 

8.3.2.0  Application of chimeric synthetic promoter technology and abiotic 

stress tolerance 

 

Inducible promoters have been constructed and used to successfully drive the 

expression of transcription factors (Hsieh et al, 2002.).  Unlike the constitutive 

promoters, the inducible promoters are more efficient in driving the expression of the 

genes and do not have deleterious effect on plant growth (Miller, 2007).  In this project 

the homologue of AtNOA1 from M. truncatula has been isolated (Figure 8- 11), cloned 

into pUC18 and sequenced (Figure 8- 9 & 8- 10) and fused to ASREF/NSP promoter in 

the pBINPLUS binary vector.  This was a suspected plant nitric oxide synthase (Guo et al, 
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2003) but was later ruled out to be a small GTPase and is involved indirectly in nitric 

oxide synthesis (Crawford et al 2006 and Zemojtel et al, 2006). 

 

8.3.2.1 Identification and isolation of MtNOA1 
 

 

Table 8- 1 the table showing the list of nucleotide sequences with the highest 
homology to AtNOA1 in Medicago truncatula.  The Scores and E-value are stated. 

 

                                                           Score     E- 
Sequences producing significant alignments:                      (Bits)   Value 

 

 
gb|ABD33306.1|  Protein C4orf14 homolog, related [Medicago trunca   87.8     1e-18 
gb|ABN05857.1|  Dynamin central region; Dynamin [Medicago truncat   26.9     3.1   
gb|ABN05954.1|  Disease resistance protein [Medicago truncatula]    26.6     4.0   
gb|ABN06007.1|  Homeodomain-related [Medicago truncatula]            26.2     4.2   
gb|ABN08114.1|  Disease resistance protein; Calcium-binding EF...   26.2     4.4   
gb|ABD28508.2|  Hydroxyacid dehydrogenase/reductase; 6-phospho...  26.2     4.6   
gb|AAT48629.1|  putative auxin efflux carrier protein 9 [Medic...    26.2     5.2   
gb|ABN07977.1|  Nicotianamine synthase [Medicago truncatula]         25.4     8.5   
gb|ABD28464.1|  Ribosomal protein L30 [Medicago truncatula]          25.4     8.8  

 
 

Following the web search of AtNOA1-homolgous translated protein sequences from 

Medicago EST datasets using Blast, the protein with the highest homology appears to be 

Protein C4orf14 homolog with the accession number gb|ABD33306.1.  This is a 616 

amino acids long protein (Figure 8- 9).  It appears to have high homology to the YqeH 

protein, a GTPase.  Alignment of this retrieved sequence with AtNOA1 revealed a Score = 

87.8 bits (216), and an E-value of 1e-18, with 28% identities and a 44% similarity.  The 

cDNA corresponding to this sequence was used for primer design (cDNA accession 

number AC158502). 

 

The designed primers were used to isolate this sequence from the high quality total RNA 

extracted from Medicago leaves.  The reverse transcriptase reaction was completed and 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#124359394#124359394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=124359532&dopt=GenPept
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#124359532#124359532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=124359623&dopt=GenPept
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#124359623#124359623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=124360098&dopt=GenPept
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#124360098#124360098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=124359345&dopt=GenPept
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#124359345#124359345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=49035698&dopt=GenPept
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#49035698#49035698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=124359961&dopt=GenPept
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#124359961#124359961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Protein&list_uids=87162669&dopt=GenPept
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi#87162669#87162669
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the RT product was used to synthesize the second strand of the DNA fragment.  RT-PCR 

was successful and the fragment size of about 2 kb was visualised on the agarose gels 

following illumination with UV light (Figure 8- 11). 

 

 
Figure 8- 9   Protein sequence alignment of AtNOA1 and MtNOA1.  The query 
represents the predicted MtNOA1 sequence from the web and the sbjct represents 
web base AtNOA1 protein sequence.  MtNOA1 (query) compared to AtNOA1 
(subject) Score = 91.3 bits (225), E-value = 3e-16 Identities = 76/276 (27%), 
Positives = 128/276 (46%), Gaps = 28/276 (10%). 
 

 

8.3.2.2.  Sequence analysis of the predicted MtNOA and cloned sequence from 

Medicago truncatula. 

 

The predicated nucleotide sequence of MtNOA, based on the web tools, is 1851bp long 

and encodes 606 amino acids (Figure 8-10).  The accession number of the sequence is 

AC158502 and bears 44% homology to the AtNOA.  Just like AtNOA, it has a short stretch 

of basic lysine residues (KKKKK) at the N-terminus (Moreau et al, 2008). 
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Figure 8- 10. Alignment of protein sequences of cloned MtNOA1 and the predicted 
MtNOA1 sequence.  The query represents the amino acid chain predicted from the 
cloned nucleotide sequence from Parabinga RNA while the subject represents the 
predicted sequence from the the database. 

 
 

The predicated amino acid sequence from the cloned nucleotide sequence has high 

homology to the predicted sequence with an insertion of 13 amino acids within the 

coding region of the gene (Figure 8-10).  However, it is 632 amino acids in length.  This 

slight difference may be brought about by the genetic difference between the cultivar 
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used in the study (Parabinga) and that used in the genome sequencing (Jemalong).  This 

newly cloned sequence bears 46% homology with the AtNOA at amino acid level. 

 

 

Results (Isolate the nitric oxide synthesizing or associate gene in 
Medicago trancatula.)
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Figure 8- 10 the figure showing the isolation of MtNOA1 from total RNA extracted 
from Medicago truncatula leaves.  The copy DNA was synthesized using the 
reverse primer.  MtNOA1 has a fragment size of about 2kb. The first lane from the 
left is 1Kb DNA ladder (fermentas), the second lane is the total RNA extracted from 
the Medicago trancatula leaves, the third lane is the cDNA and fourth lane is the 
RT-PCR product synthesized using the MtNOA1 designed primers (forward and 
reverse primers). 
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8.3.3.0 Medicago truncatula transformation 

 

Medicago truncatula cv. 2HA was successfully transformed with the rhizogens carrying 

the binary vector (Figure 8- 12).  The 6 day old seedlings started to develop hairy roots 

from the infection site in tissue culture.  These root tips were successfully propagated in 

vitro (Figure 8- 12). 

 

 
 

 

Figure 8- 11  illustration of the transformation process of Medicago seedlings with 
A. rhizogens ARGUA 1 strain carrying the binary vectors.  I) Sterilized Medicago 
truncatula cv. 2HA seeds place on solid MS medium.  II) Germinated Medicago 
seeds after 3 days of germination in the dark, plated placed up-side-down; (a), (b) 
& (c) are different views of the germinated seeds on solid MS plate.  III wounded 
region of the seedling prior to co-cultivation with Agrobacterium rhizogens.  IV) 
Hairy roots development from the wounded region after 5 days of infection with 
rhizogens carrying the binary vector.  V) Hairy root tip cut from the main plant 
and placed on solid MS medium for hairy root culture. 
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8.4.0.0  Discussion 

 
 

Gene expression is regulated by cis-acting regulatory sequences found on the 5’ UTR of 

the gene.  This region has the cis acting element TATA box; generally called core 

promoter that allows the RNA polymerase to bind and initiate transcription of the 

downstream coding sequence.  The core promoter works in collaboration with other 

conserved motifs that direct the temporal and sometimes tissue specific transcription of 

the gene.  In addition to this, some promoters are chemically or environmentally 

activated.  Gene expression is thus facilitated by the presence of the specific cis-acting 

sequences that bind specific proteins often called transcription factors and consequently 

drives the gene expression upon induction (Jorgensen et al, 1991).  The promoter 

designed in this project has all the necessary cis acting sequences that are required for 

gene transcription. 

 
 

There is a suggestion that nodulin genes are regulated at the transcriptional level 

(Verma et al, 1992).  These nodule-specific genes are often driven by sequences 5  of the 

UTR of the promoter region, composed of the cis-acting elements that have been 

characterized through ‘chimeric promoter- GUS fusion’ experiments.  Indeed the 

consensus nodule specific sequence AAAGAT, CTCTT, AATAA, and CACCC have been 

identified in several nodulin genes (Sandal, Bojsen and Marker, 1987; Stougaarg et al, 

1990, Szcyglwski et al 1994, Vieweg et al, 2004 Fehlberg et al, 2005, Hohnjec N et al, 

2000, Jorgensen J. E., 1987 and Jorgensen J.E, 1991).  The motifs CTCTT and AAGAT are 

present in this chimeric promoter, together with the INVA and INVB that enhance the 

strength of the promoter in the nodules.  The nodulin genes are classified into early 

(ENOD) and late nodulins. 
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Early nodulin gene promoter regions exhibit additional motifs that are not present in 

late nodulin genes.  ENOD II genes are early nodulin genes that are involved in dialogue 

between the root hair and the bacteria prior and/or during infection (Andriankaja et al, 

2007).  The in silico analysis of the promoter region of this gene revealed a potential cis-

acting element located at 5  UTR region of the promoter.  The GC rich region termed the 

GCC box ( 5 -AGCCGCC-3  /5 -GCAGGCC-3 ) is identified as a binding site for NOD factor 

(NF) secreted by the compatible Rhizobium species in recognition of host plant roots.  

Working in conjunction with the GCC box is the potential CAAT box and HD-ZIP-like 

motif that is important for NF-induced gene expression (Andriankaja et al, 2007).  Since 

the N23 gene is a late nodulin gene, these sequences are not present in its promoter 

region.  Thus our synthetic promoter might be void of such cis-acting elements. 

 

The late nodulin genes are also well characterized.  The consensus motifs AATAA, 

AAAGAT, CTCTT and CACCC occur in the promoter region of the glutamate synthase gene 

that drives gene expression not only in the nodules but also in lateral root primordia, 

root nodule primordia and the fully mature nodules (Blanco et al 2008).  Hence, nodulin 

gene expression is not only limited to the nodules but to other plant parts as well 

(Blanco et al, 2008).  The A/T rich sequences found in promoters of nodulin genes are 

present in many plant genes and may not be responsible only for nodule specific 

expression of nodulins, hence they are denoted as organ specific elements (OSE).  These 

A/T rich regions and –CTCTT motif are rather said to be OSE than nodule specific 

(Verma, 1992, Fehlebrg et al, 2005).  Based on this background, there is a possibility that 

the synthetic promoter may drive GUS expression even in the entire rooting system.   

 

However, there are cases of nodule specific gene expression of a nodulin devoid of this 

A/T rich region (Hohnjec, 2000).   The AAAGAT motif of one nodule specific promoter 
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has been found to direct the expression of the nodulin in the central part of the nodule 

(Syszyglowski et al, 1994).  Other elements that function as enhancers of the expression 

level are important of efficient expression of the nodulin.  One such sequence is a strong 

positive element (SPE) TTTAATATT (Fehlebrg et al, 2005). 

 

The strength of a nodulin promoter is dependent upon the arrangement of the cis-acting 

elements on the 5’ UTR of the gene in the promoter region and these elements work in 

an inter-dependent manner (Jorgensen et al, 1987).  It has been found that the 

consensus sequences AAATAT and CTCTT plus the core promoter TATA box and CAAT 

box are not enough for efficient regulation of expression of a nodulin gene (Jorgensen et 

al, 1987).  This suggests the presence of other important sequences that enhance 

efficient expression of a nodulin gene within the promoter region of the nodulin gene.  

 

In the study of the N23 nodulin gene from soybean, several cis-acting elements have 

been identified and their functions characterized (Jorgensen et al, 1987).  The 

functionality of this nodule-specific promoter is dependent on the presence of the 

positive element A and B (PE-AB) and it is denoted as a nodule specific element (NSP).  

The PE-A is composed of OSE, CTCTT and NAT binding element upstream of the INVA (a 

strong positive element).  The study revealed the INVA as the core of the PE-A.  The PE-B 

is found downstream PE-A and represents a weaker element; however it is required for 

driving efficient expression of nodulin genes (Jorgensen et al, 1991 and Stougaard et al, 

1990). 

 

On the other hand, abiotic stress-responsive promoters are classified into two main 

groups; those functioning through ABA-dependent pathways and those that function via 

ABA-independent processes and their main cis-acting elements are ABRE and DRE/CRT 
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respectively (Nakashima K and Yamaguchi-Shinozaki, 2006).  ABRE requires activation 

by abscisic acid, hence ABRE regulated genes get expressed after accumulation of 

endogenous ABA.  On the other hand, DRE motifs are induced by binding of proteins, 

such as ERDI (Nakashima & Yamaguchi-Shinozaki, 2006), that are synthesized upon 

abiotic stress exposure. 

 

A single copy of ABRE element is not enough to drive the expression of the stress-

inducible gene; additional sequences, called coupling elements (CE) are also required 

(Gómez-Porras et al, 2007).  However, additional copies of the ABRE motif of the 

DRE/CRT element do often serve as coupling elements (Gómez-Porras et al, 2007).  

Unlike the ABBRE, DRE/CRT/LTRE element does not need multiple copies of the motif 

for efficient transcription of the gene.  There are other motifs working in collaboration 

with these two major cis-acting elements to drive expression of the gene either in ABA-

dependent and ABA-independent manner.  Such cis-acting elements would be MYC, MYB, 

EDR1, NAC and 2F-HD protein (Nakashima & Yamaguchi-Shinozaki, 2006; Gutha L.R. 

and Reddy A.R, 2008).  All these cis-acting regulatory sequences have been identified in 

many plant genes including late embryogenesis genes (LEA) (Yamagushi-Shinozaki & 

Shinozaki, 2005, Goerge et al, 2008).  In addition to this, the late embryogenesis gene 

from soybean (GmPM9) has been cloned and its promoter region characterized, hence 

the functional regions of the promoter for abiotic stress response induction are known 

(Lee et al 1992 & 2000).  All these ABA independent cis-acting sequences on the GmPM9 

promoter form part of the designed promoter for this project. 

 

Nitric oxide synthase activity has been detected in plants (Cueto et al, 1996).  However, 

the sequence of the gene encoding this protein has not been identified.  The AtNOA1, 

thought to be a novel plant NOS, was later discovered to be a GTPase (Sudhamsu et al, 
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2008 and Moreau et al, 2007).  However, it remains that AtNOA1 is involved in nitric 

oxide synthesis, though indirectly.  Thus is can be used to study the effect of regulated 

synthesis of nitric oxide in the root nodule.  The same gene has been used to study the 

role of nitric oxide in abiotic stress responses in Arabidopsis thaliana (Guo et al, 2003 

and Zhao et al, 2007). MtNOA1 provides an opportunity for regulating plant nitric oxide 

synthesis in the root nodules so as to enhance antioxidant capacity of the root nodules of 

legumes under abiotic stress. 

 

Over-expression of individual antioxidants in plant tissues has often protected plants 

against oxidative stress.  Superoxide dismutase has been over-expressed in plants and 

enhanced plant tolerance to stress.  This improved tolerance was also accompanied by 

an increase in activities of other antioxidants enzymes (Wang et al, 2004).  Glutathione 

reductase was also over-expressed in poplar trees.  This increase in GR transcripts also 

resulted in increased glutathione levels (Foyer et al, 1995).  These points indicate that 

there is cross-talk as well between the antioxidants and antioxidant enzymes.  Thus 

over-expression of one antioxidant actually increases the level of the others.  

Glutathione synthatase is an enzyme that is involved in synthesis of glutathione and it 

increases plant tolerance to stress (Zhu et al, 1999).  Additionally, increasing the levels 

of glutathione in the plant cells does not cause any deleterious effect on plant growth.  

Thus increasing glutathione levels is one of alternatives to regulating antioxidants in the 

nodules upon stress induction. 

 

In mammals, nitric oxide interacts with soluble guanylyl cyclase to catalyse synthesis of 

cGMP from GTP.  A plant protein with guanylate cyclase activity has been isolated in 

plants (Ludidi & Gehring, 2003), but the protein identified has no nitric oxide-dependent 
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activity (Ludidi & Gehring, 2003).  The limited knowledge on plant soluble GC again puts 

limitations in utilizing the cGMP pathway in modifying antioxidant responses. 

 

The ASREF/NSP-gene fusion described in this chapter is one approach that can be used 

to regulate the synthesis of nitric oxide in the nodules.  The antioxidant response to 

salinity in plants is mediated by nitric oxide; so is in the root nodules.  The effect of ROS 

is counteracted by antioxidants and the associated enzymes, hence the encoding genes 

for the corresponding antioxidant enzymes and metabolites can be fused to ASREF/NSP 

promoter in the root nodules to develop plants with elevated antioxidant levels and 

better tolerance to salinity.   

 

8.5.0.0  Conclusion 
 

This chapter was aimed at designing and constructing an abiotic stress-inducible 

promoter that is nodule-specific and to explore the prospects of enhancing abiotic stress 

tolerance of the nodules.  In order reach this goal the nucleotide sequences bearing the 

relevant cis-acting elements for both nodule specificity and abiotic stress induction had 

to be isolated from  soybean genomic DNA and ligated together in a specific 

arrangement that would give a potentially functional promoter under the targeted 

environment.  Secondly the objective was to build a transformation construct that would 

allow assessment of the functionally of the promoter in the nodules under abiotic stress.  

For the purposes of this chapter, the abiotic stress inducible- nodule-specific promoter 

was designed and constructed. 

 

The abiotic stress-responsive fragment has been successfully isolated from the soybean 

GmPM9 gene, so is the nodule-specific fragment from the N23 promoter region.  These 
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two fragments were fused together with the core promoter region from N23 to form a 

chimeric promoter.  This was successfully sub-cloned into the binary vector pBINPLUS 

as a GUS fusion.  The other construct, pBASMtNOA1 was also developed in which 

ASREF/NSP promoter was used to drive the expression of MtNOA1. 

 

Although the promoter construct was successfully made and should theoretically be 

functional, there is a need to evaluate its functionality by delivering the vectors into the 

plant.  The rhizogen transformation system has been initiated in Medicago truncatula cv. 

2HA.  The composite plants harbouring this ASREF/NSP-gene fusion are growing in 

tissue culture and await analysis.  This rhizogen transformation is an efficient and fast 

method that can be used to study gene expression in the roots.  However, in order to 

evaluate the effect of this transformation work, other approaches like somatic 

embryogenesis would be more relevant. 
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Chapter 9  General conclusion 

 

 

The vital role played by nitric oxide in oxidative stress responses in root nodules of 

legumes was established in this research project.  Through the strategic study of the 

effect of both the endogeneously synthesized and exogenously supplied nitric oxide on 

the superoxides dismutase, together with the enzymes and metabolites of the 

glutathione peroxidase-glutathione antioxidant system, the role played by this molecule 

was partly established.  The list of the selected candidate enzymes and metabolites for 

this study might not be enough to draw an overall solid conclusion on the behavior of 

the plant antioxidant system in response to nitric oxide.  However, the study provides a 

clearer picture as to how legume nodules respond to abiotic stress and the possible 

interventions that utilize the scavenging capacity of nitric oxide as a coping mechanism, 

in plant abiotic stress responses, that can be employed in plant legume root nodule 

improvement programs.  It should be noted that to our knowledge this is the first study 

targeting nodular antioxidant responses to NaCl and nitric oxide. 

 

From this research project, it has been established that salt/abiotic stress tolerance in 

the legume nodules involves mediation by nitric oxide in a system that triggers an 

increase in antioxidant capacity of the nodule tissue.  It is concluded that nitric oxide 

improves the redox homeostasis of glutathione pool.  However this increase in 

antioxidant capacity is not linear; different antioxidants are up regulated at different 

times, indicating a possible signal transduction network amongst the antioxidants 

(Figure 9-1). 

 



231 | P a g e  
 

 
 

Figure 9- 1  Response of GPx, GR, SOD and glutathione pool in response to 
exposure to nitric-oxide.  GSH represents the concentration of reduced 
glutathione in µmol. 

 

Generally all the antioxidants investigated in this project are modulated by nitric oxide.  

Exposure of the nodules to nitric oxide results in an early increase in the activity of the 

antioxidant enzymes that is later either followed by a general decline in the overall level 

of the antioxidant or an increase depending on the enzyme.  As illustrated in Figure 9- 1; 

GR and glutathione levels decline with time of exposure to nitric oxide, however the SOD 

and GPX levels increase.  This pattern implicates possible availability of another 

reductant that might be involved in later stages of stress responses.  However, this study 

did not go further into identifying some other plant reductacts that have been implicated 

in the glutathione peroxidase system like thioredoxin.  There is a possibility that the 

thioredoxin system takes over in scavenging ROS at later stages of nitric oxide exposure. 
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This research further establishes that some of the increases in enzyme activities are 

regulated at the transcriptional level.  Superoxide dismutase activity in the nodules of 

peas is regulated at the transcripts level.  The expression of different SOD isoforms is up-

regulated in response to exposure to nitric oxide.  The nitric oxide synthase gene has not 

been isolated in plants but such a gene can be targeted for genetically modifying legume 

nodules with increased salt tolerance. 

 

One novel finding in this work is that the effect of nitric oxide on glutathione perodixase 

in the pea nodules is modulated through the cGMP. Nitric oxide appears to be located 

upstream of cGMP in the nitric oxide/cGMP signalling network that leads to up-

regulation of glutathione peroxidase activity. The GPx activity is inhibited by the absence 

of sGC activity.  It is concluded that externally supplied cGMP increases the activity of 

GPx in the same manner as nitric oxide.  However, endogenously synthesized cGMP in 

response to nitric oxide should have been quantified to verify that NO activates GPx 

through generation of cGMP. 

 

The urgent need for enhancing abiotic stress tolerance in legumes, targeting specifically 

the nodule tissue, can be addressed via development of a stress-inducible nodule 

specific promoter driving expression of cytoprotective gens against the abiotic stress.  

By fusing the cis-acting elements from N23 late nodule gene promoter from soybean and 

stress  responsive cis-acting elements from the GmPM9 gene promoter, a late embryo 

genesis gene,  a 602 base pair long chimeric promoter has been designed  and fused to 

the GUS gene in a binary vector pBINPLUS.  This synthetic chimeric promoter was 

delivered into Medicago plants in a transformation process mediated by Rhizogens, to 

form composite plants, carrying the chimeric promoter in the roots.  This promoter can 

be used to drive the expression of antioxidant genes in the nodules.  For instance the 
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homolog of AtNOA1, which was thought to be a novel plant nitric oxide synthase, has 

been fused to the synthetic promoter.  A similar system can be employed with other 

antioxidant genes or antioxidants regulatory coding sequences.  Thus, this study 

provides the basis for enhancing legume nodule abiotic stress tolerance, with more 

emphasis on salt stress.  
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APPENDIX A 
 
 
 MEDIA FOR BACTERIAL GROWTH 

 LB (Luria-Bertani) 

 

10g tryptone 

5g yeast extract 

5g NaCl 

Adjust pH to 7.0 with 1N NaOH 

 

TY MEDIUM 

TFB-I: 

15 % glycerol (v/v) 

30 mM Calcium acetate 

100 mM RbCl 

10 mM CaCl2 

50 mM MnCl2 

Adjust pH to 5.8 with acetic acid 

2 M CaCl2 and MnCl2 stock solutions were 

prepared, autoclaved and used for this buffer 

 

TFB-II: 

15 % glycerol (v/v) 

10 mM MOPS 

10 mM RbCl 

75 mM CaCl2 
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Adjust pH to 7.0 with NaOH 

 

 BUFFERS FOR AGAROSE GEL ELECTROPHORESIS 

TE-buffer: 

10 mM Tris·Cl, pH 7.6 

1 mM EDTA 

Autoclave, store at room temperature 
 

10X TBE buffer stock 

108g  Tris 

55g Boric acid 

9.3g EDTA (pH 8.0) 

 

Dilute to 0.5X before use. 

1X TBE gives a working solution of 0.089M Tris-base/0.089M boric acid/0.002M EDTA 

 

10X loading buffer for agarose electrophoresis 

50mM NaOH 

1mM EDTA 

2.5% glycerol 

0.025% bromophenol blue 



236 | P a g e  
 

SOLUTION AND BUFFERS FOR POLYACRYLAMIDE GEL ELECTROPHORESIS 

 

Always wear latex gloves when working with acrylamide solutions.  

 

 

PROTEIN GELS 

SDS-PAGE (Laemmli-system) 

Acrylamide stock (%t=30%, %C=2.7) purchased from sigma 

 

Separating gel buffer stock 

 

45.5g Tris 

Dissolve in 250 ml ddH2O, adjust the pH to 8.8 with HCl.  Store at 4oC ( stable for several 

months). 

 

 Staking gel buffer stock 

 

15.1g Tris 

Dissolve in 250 ml of ddH2O, adjust the pH to 6.8 with HCl.  Store at 4oC (stable for 

several months).  Check the pH of the buffer each time before use and adjust with HCl 

again if necessary. 

 

2X sample treatment buffer for SDS-PAGE 

 

4.6 % (w/v) SDS 

10 % (V/V) 2-Mecaptoethanol 
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0.125 M Tris-HCl (pH6.8) 

0.01 % (w/v) bromophenol blue 

20% (v/v) glycerol 

 

Tank buffer for SDS-PAGE 

 

12% SDS-PAGE GELS 

 

H2O     

30% acrylamide mix 

1.5 M Tris (pH6.8) 

10% SDS 

10% ammonium persulfate 

TEMED 

 

10% SDS-PAGE GELS 

 

H2O     4.0ml     

30% acrylamide mix   3.3ml 

1.5 M Tris (pH6.8)   2.5ml 

10% SDS    0.1ml 

10% ammonium persulfate  0.1ml 

TEMED    0.004ml 
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NATIVE ACRYLAMIDE GELS 

 

2X sample treatment buffer for native acrylamide 

10 % (V/V) 2-Mecaptoethanol 

0.125 M Tris-HCl (pH6.8) 

0.01 % (w/v) bromophenol blue 

20% (v/v) glycerol 

 

Tank buffer for native acrylamide 

 

Tris base 3g (25 mM) 

Glycine 14.4g (192 mM) 

 In 100 mL of H20 

 

10% PAGE GELS (6ml/g) 

30 % Acrylamide 2ml 

Tris-HCl pH 8.8 1.5ml 

dH2O   2.5ml 

10 % APS  30µl 

TEMED  3µl 

(No need for a staking gel) 

 

Ribovalvin-NBT solution 

Riboflavin    1mg 

Nitro blue Tetrazolium (NBT) 2.5mg 
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APPENDIX B 

AMINO ACID AND NUCLEOTIDE SEQUENCES 

>NP_190329,AtNOA1 

MALRTLSTFPSLPRRHTTTRREPNLTVIYRNPTTSIVCKSIANSEPPVSLSERDGFAAAAPT

PGERFLENQRAHEAQKVVKKEIKKEKKKKKEEIIARKVVDTSVSCCYGCGAPLQTSDVDSPG

FVDLVTYELKKKHHQLRTMICGRCQLLSHGHMITAVGGNGGYPGGKQFVSADELREKLSHLR

HEKALIVKLVDIVDFNGSFLARVRDLVGANPIILVITKIDLLPKGTDMNCIGDWVVEVTMRK

KLNVLSVHLTSSKSLDGVSGVASEIQKEKKGRDVYILGAANVGKSAFINALLKTMAERDPVA

AAAQKYKPIQSAVPGTTLGPIQINAFVGGEKLYDTPGVHLHHRQAAVVHSDDLPALAPQNRL

RGQSFDISTLPTQSSSSPKGESLNGYTFFWGGLVRIDILKALPETCFTFYGPKALEIHAVPT

KTATAFYEAKLGVLLTPPSGKNQMQEWKGLQSHRLLQIEINDAKRPASDVAISGLGWISIEP

IRKTRGTEPRDLNEAEHEIHICVSVPKPVEVFLRPTLPIGTSGTEWYQYRELTDKEEEVRPK

WYF 

 

 

>gi|87241448|gb|ABD33306.1| Protein C4orf14 homolog, related [Medicago 
truncatula] 
MAILFSTIALPSTNVTSKLSILNNTSHSHALRHFSGNTTKRFHKASSFIAFAVKNNPTIRKT

TPRRDSRNPLLSEGRDEDEALGPICPGCGIFMQDNDPNLPGFYQQKEVKIETFSEEDYELDD

EEDDGEEEDNGSIDDESDWDSEELEAMLLGEENDDKVDLDGFTHAGVGYGNVTEEVLERAKK

KKVSKAEKKRMAREAEKVKEEVTVCARCHSLRNYGQVKNYMAENLIPDFDFDRLITTRLMNP

AGSGSSTVVVMVVDCVDFDGSFPRTAVKSLFKALEGMQENTKKGKKLPKLVLVATKVDLLPS

QVSPTRLDRWVRHRASAGGAPKLSAVYLVSSRKDLGVRNVLSFVKDLAGPRGNVWVIGAQNA

GKSTLINAFAKKEGAKVTKLTEAPVPGTTLGILRIAGILSAKAKMFDTPGLLHPYLLSMRLN

REEQKMAGQAIHVGGLARLDLIEASVQTMYVTVWASPNVSLHMGKIENANEIWNNHVGVRLQ

PPIGNDRAAELGTWKEREVKVSGSSWDVNCMDVSIAGLGWFSLGIQGEATMKLWTNDGIEIT

LREPLVLDRAPSLEKPGFWLPKAISEVIGNQTKLEAQRRKKLEDEDTEYMGASIEISA 
 

 

 

 

>(gi|62899132:c55332-54013, c53575-53408, c50792-50430) Medicago 
truncatula chromosome 7 clone mth2-73i16, complete sequence 
 
ATGGCTATCTTGTTCTCTACAATTGCACTTCCCTCCACAAACGTCACTTCCAAACTATCCAT

CTTAAACAACACTTCACATTCTCACGCACTTCGCCATTTCTCAGGTAATACTACTAAACGCT

TTCATAAAGCTTCCTCCTTTATTGCTTTTGCTGTGAAGAACAACCCCACCATAAGAAAAACC

ACTCCAAGAAGAGATAGTAGAAACCCACTTTTAAGTGAAGGTAGAGATGAAGATGAAGCTCT

TGGACCCATTTGCCCTGGTTGTGGAATTTTCATGCAAGATAATGATCCAAATCTCCCTGGTT

TTTACCAACAAAAAGAGGTAAAAATTGAAACATTTTCTGAGGAGGATTATGAATTAGATGAT

GAAGAGGATGATGGTGAAGAAGAGGATAATGGGTCAATTGATGATGAGTCTGATTGGGATTC

TGAGGAATTGGAAGCTATGTTACTTGGTGAAGAAAATGATGATAAGGTTGATTTGGATGGGT

TTACACATGCAGGTGTTGGGTATGGTAATGTTACTGAGGAGGTTTTGGAGAGGGCTAAGAAG

AAGAAGGTTTCAAAGGCTGAGAAGAAGAGAATGGCTAGGGAAGCTGAGAAGGTGAAGGAGGA

GGTTACTGTTTGTGCTAGGTGTCATTCCTTGAGAAATTATGGGCAGGTGAAGAATTATATGG

CGGAGAATTTGATACCGGATTTTGATTTCGATAGGTTGATTACTACTAGGTTAATGAATCCT

GCTGGTAGTGGTAGTTCTACTGTTGTTGTTATGGTTGTGGATTGTGTTGATTTTGATGGTTC

TTTCCCGAGAACAGCTGTGAAGTCGTTGTTTAAGGCATTGGAAGGTATGCAGGAGAATACAA

AGAAGGGTAAGAAACTGCCAAAGCTTGTTCTTGTGGCTACAAAGGTTGATCTCCTTCCGTCG

CAGGTTTCTCCGACGAGGTTGGATAGATGGGTTCGGCACCGTGCAAGTGCTGGAGGAGCGCC

TAAATTAAGCGCGGTTTATTTGGTCAGTTCTCGAAAGGATTTAGGTGTGAGGAATGTGTTGT
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CGTTTGTAAAGGATTTGGCTGGTCCTCGTGGGAATGTTTGGGTTATTGGGGCTCAAAATGCT

GGGAAGTCTACTCTGATCAATGCATTTGCGAAGAAAGAAGGAGCCAAAGTTACCAAGCTCAC

GGAAGCTCCAGTTCCTGGGACGACACTTGGGATCTTGAGGATTGCAGGAATTTTGTCAGCTA

AGGCTAAGATGTTTGATACTCCAGGGCTCTTGCATCCATATTTATTGTCGATGAGATTGAAT

CGGGAGGAACAAAAGATGGCTGGACAAGCCATACATGTTGGTGGCTTGGCAAGACTTGACCT

AATTGAAGCCTCTGTTCAAACAATGTATGTCACTGTTTGGGCATCACCAAATGTTTCTCTAC

ACATGGGAAAAATAGAAAATGCTAATGAGATTTGGAATAATCATGTTGGCGTCAGACTGCAG

CCTCCCATCGGTAATGACCGCGCAGCTGAACTAGGTACATGGAAAGAAAGGGAAGTAAAAGT

ATCTGGATCTAGTTGGGATGTCAACTGCATGGACGTATCAATAGCTGGCTTAGGTTGGTTTT

CTTTGGGTATCCAAGGTGAAGCAACCATGAAATTATGGACCAATGATGGAATTGAAATAACT

TTGAGAGAACCATTGGTACTTGACCGGGCCCCGTCCCTTGAAAAACCAGGTTTTTGGTTACC

AAAGGCTATATCTGAAGTTATTGGCAACCAAACTAAACTTGAAGCTCAAAGAAGGAAAAAAC

TTGAAGATGAAGATACAGAATACATGGGAGCAAGTATAGAGATATCTGCATGA 

 

 

SUPEROXIDE DISMUTASE ISOFORM NUCLEOTIDE SEQUENCES 

 

 

J04087.1  GI:169159 (Pea chloroplastic copper/zinc-superoxide dismutase mRNA, 
complete  cds) 
GCAACTAGCAATGGCTTCACAAACTCTCGTCTCACCTTCACCTCTCTCTTCTCACTCTCTTC

TCCGAACATCTTTCTCCGGCGTCTCCGTCAAGCTCGCTCCCCAATTCTCAACCCTTGCAACT

TCCAATTTCAAACCTCTCACCGTAGTTGCGGCTGCCAAGAAAGCCGTCTCTGTCCTTAAGGG

CACATCCGCCGTCGAAGGTGTCGTCACTCTCACTCAAGACGATGAAGGTCCAACAACAGTTA

ATGTTCGTATCACTGGCCTTACTCCAGGGCTTCATGGTTTTCACCTACATGAGTATGGTGAT

ACCACAAATGGGTGTATCTCAACAGGACCACATTTTAATCCCAACAAGTTGACACATGGTGC

TCCTGAAGATGAAATCCGTCATGCGGGTGACCTGGGAAACATAGTTGCTAATGCTGAAGGAG

TTGCAGAGGCGACAATCGTGGACAATCAGATACCACTCACTGGCCCCAATTCAGTCGTTGGA

AGAGCCTTAGTGGTTCACGAGCTTCAAGATGACCTTGGAAAGGGTGGACATGAACTTAGTTT

GAGCACTGGAAATGCTGGTGGAAGATTAGCTTGTGGTGTGGTTGGCTTGACTCCAGTATAAA

TGCTTCAATGCTTTTGCACCAGCCTTGTTATTTTAACTGATGTTTGATTTCTTCATGTTATC

CTTGTTTTATGAAGCTTTACTGTTATTTGTTTTCTTCAATTAGCAATGTAAAGATTTTAATG

TGTGAAAACATGACAGTCCTCTACTAGATAGTTTCATCATGCAGTCAGGTGTGTTTCTTCCC

TAATAAAGTTTAATTTCTG 
 

M63003.1  GI:169069 (Cu-Zn-superoxide dismutase Mrna, complete cds; cytosol) 

GGATCACATTGAACAATGGTGAAGGCTGTGGCAGTTCTTAGTAACAGTAACGAAGTCTCGGG

TACTATTAACTTCAGTCAGGAGGGAAATGGTCCAACCACTGTAACTGGAACTCTTGCTGGTC

TTAAGCCTGGCCTCCACGGCTTCCATATCCATGCCTTGGGAGACACCACAAACGGTTGCATT

TCAACTGGACCACATTTCAATCCTAATGGGAAGGAACATGGTGCCCCTGAGGATGAGACTAG

ACATGCTGGTGATCTTGGAAATATCAATGTTGGTGATGATGGAACTGTAAGCTTCACCATTA

CTGACAACCATATCCCTCTCACTGGAACAAACTCCATCATAGGAAGGGCTGTTGTTGTCCAT

GCCGATCCTGATGATCTTGGGAAAGGTGGTCACGAGCTTAGCAAAACTACTGGAAATGCTGG

TGGCAGAGTAGCTTGTGGTATTATTGGGTTGCAAGGATAGATCACTACTCTCCACTGTGCGT

GCTGTTGAAGTTTTAGAAGAATAAATTGCACTCATCCCTCTCTTGCTTGTTTAGGGTCTGAT

CTGTACTGCCGGATAATGTGTTTTTGTTTGTATTGAAATCTCAATGGCTATATGACTGCACT

TGGTGTTTAATCAGTTACTTCAGATGAAGTCTGTGGTTGTTGTCATGCTTGTTTTCAGTTTG

CAGTATGATCTTAATTCTTAAGGAGTTGGGTTTTTAATAAAAAAAAAAAAAAAAAA 
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X60170.1  GI:20901 (Pisum sativum mRNA for manganese 

superoxide dismutase 

 

 

GAATTCTAGAGTTTTTCCAGAATCTGCATTATCATCCTCTCTCTGTCTCTCTCCATGGCCGC

TCGAACCCTATTGTGCAGAAAAACCCTATCCTCCGTGCTCCGCAATGACGCAAAACCAATCG

GAGCAGCCATAGCAGCCGCATCAACTCAATCCCGCGGTTTGCATGTCTTCACGCTCCCGGAT

CTCGCTTACGACTACGGAGCTTTGGAGCCTGTCATTAGCGGCGAAATCATGCAAATCCACCA

TCAGAAACACCACCAGACTTATATTACCAACTACAACAAAGCTCTCGAACAGCTTCACGATG

CCGTTGCTAAAGCTGATACATCTACCACCGTTAAGCTCCAGAATGCCATCAAATTCAACGGC

GGAGGTCATATCAACCATTCCATTTTCTGGAAAAATCTGGCTCCTGTTAGTGAAGGAGGTGG

TGAACCACCAAAGGAATCCCTGGGCTGGGCCATTGACACCAATTTTGGATCTTTGGAAGCAT

TGATACAAAAGATTAATGCCGAAGGTGCAGCTCTTCAGGCGTCTGGATGGGTGTGGCTTGGT

CTCGACAAAGACTTGAAGAGGCTTGTGGTTGAAACCACTGCAAACCAGGACCCACTGGTGAC

TAAAGGAGCAAGTTTGGTTCCATTGCTTTGGATAGATGTTTGGGAACATGCCTACTACTTAC

AGTACAAAAATGTTAGACCAGACTATTTGAAGAACATTTGGAAAGTTATTAACTGGAAACAT

GCCAGTGAAGTATATGAGAAAGAGAGCTCTTAATCTGAAGTGCTGAAGTGCTGCTTGGTGTG

GAACTTGGGACGACAGGTTTGCAGCTTGTTTGGCAATGGAATAAATGATGTCAAGTGATGTG

AAGTGATAGATAAAACCTTCCTTTGATGTACTTAGACACTTAGAACTTGAGCAATCTGGCCG

AATAACCTTTAGAACCTTTTTTGCTTAGTAGTACTCTTTTGTTGAAAAAAAAAA 

 

 

Medicago MtNOA1 nucleotide and protein sequences as predicted 
 

  1 atg gct atc ttg ttc tct aca att gca ctt ccc tcc aca aac gtc 

        M   A   I   L   F   S   T   I   A   L   P   S   T   N   V  

     46 act tcc aaa cta tcc atc tta aac aac act tca cat tct cac gca 

        T   S   K   L   S   I   L   N   N   T   S   H   S   H   A  

     91 ctt cgc cat ttc tca ggt aat act act aaa cgc ttt cat aaa gct 

        L   R   H   F   S   G   N   T   T   K   R   F   H   K   A  

    136 tcc tcc ttt att gct ttt gct gtg aag aac aac ccc acc ata aga 

        S   S   F   I   A   F   A   V   K   N   N   P   T   I   R  

    181 aaa acc act cca aga aga gat agt aga aac cca ctt tta agt gaa 

        K   T   T   P   R   R   D   S   R   N   P   L   L   S   E  

    226 ggt aga gat gaa gat gaa gct ctt gga ccc att tgc cct ggt tgt 

        G   R   D   E   D   E   A   L   G   P   I   C   P   G   C  

    271 gga att ttc atg caa gat aat gat cca aat ctc cct ggt ttt tac 

        G   I   F   M   Q   D   N   D   P   N   L   P   G   F   Y  

    316 caa caa aaa gag gta aaa att gaa aca ttt tct gag gag gat tat 

        Q   Q   K   E   V   K   I   E   T   F   S   E   E   D   Y  

    361 gaa tta gat gat gaa gag gat gat ggt gaa gaa gag gat aat ggg 

        E   L   D   D   E   E   D   D   G   E   E   E   D   N   G  

    406 tca att gat gat gag tct gat tgg gat tct gag gaa ttg gaa gct 

        S   I   D   D   E   S   D   W   D   S   E   E   L   E   A  

    451 atg tta ctt ggt gaa gaa aat gat gat aag gtt gat ttg gat ggg 

        M   L   L   G   E   E   N   D   D   K   V   D   L   D   G  

    496 ttt aca cat gca ggt gtt ggg tat ggt aat gtt act gag gag gtt 

        F   T   H   A   G   V   G   Y   G   N   V   T   E   E   V  

    541 ttg gag agg gct aag aag aag aag gtt tca aag gct gag aag aag 

        L   E   R   A   K   K   K   K   V   S   K   A   E   K   K  

    586 aga atg gct agg gaa gct gag aag gtg aag gag gag gtt act gtt 

        R   M   A   R   E   A   E   K   V   K   E   E   V   T   V  

    631 tgt gct agg tgt cat tcc ttg aga aat tat ggg cag gtg aag aat 

        C   A   R   C   H   S   L   R   N   Y   G   Q   V   K   N  

    676 tat atg gcg gag aat ttg ata ccg gat ttt gat ttc gat agg ttg 

        Y   M   A   E   N   L   I   P   D   F   D   F   D   R   L  

    721 att act act agg tta atg aat cct gct ggt agt ggt agt tct act 

        I   T   T   R   L   M   N   P   A   G   S   G   S   S   T  

    766 gtt gtt gtt atg gtt gtg gat tgt gtt gat ttt gat ggt tct ttc 

        V   V   V   M   V   V   D   C   V   D   F   D   G   S   F  

    811 ccg aga aca gct gtg aag tcg ttg ttt aag gca ttg gaa ggt atg 

        P   R   T   A   V   K   S   L   F   K   A   L   E   G   M  
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    856 cag gag aat aca aag aag ggt aag aaa ctg cca aag ctt gtt ctt 

        Q   E   N   T   K   K   G   K   K   L   P   K   L   V   L  

    901 gtg gct aca aag gtt gat ctc ctt ccg tcg cag gtt tct ccg acg 

        V   A   T   K   V   D   L   L   P   S   Q   V   S   P   T  

    946 agg ttg gat aga tgg gtt cgg cac cgt gca agt gct gga gga gcg 

        R   L   D   R   W   V   R   H   R   A   S   A   G   G   A  

    991 cct aaa tta agc gcg gtt tat ttg gtc agt tct cga aag gat tta 

        P   K   L   S   A   V   Y   L   V   S   S   R   K   D   L  

   1036 ggt gtg agg aat gtg ttg tcg ttt gta aag gat ttg gct ggt cct 

        G   V   R   N   V   L   S   F   V   K   D   L   A   G   P  

   1081 cgt ggg aat gtt tgg gtt att ggg gct caa aat gct ggg aag tct 

        R   G   N   V   W   V   I   G   A   Q   N   A   G   K   S  

   1126 act ctg atc aat gca ttt gcg aag aaa gaa gga gcc aaa gtt acc 

        T   L   I   N   A   F   A   K   K   E   G   A   K   V   T  

   1171 aag ctc acg gaa gct cca gtt cct ggg acg aca ctt ggg atc ttg 

        K   L   T   E   A   P   V   P   G   T   T   L   G   I   L  

   1216 agg att gca gga att ttg tca gct aag gct aag atg ttt gat act 

        R   I   A   G   I   L   S   A   K   A   K   M   F   D   T  

   1261 cca ggg ctc ttg cat cca tat tta ttg tcg atg aga ttg aat cgg 

        P   G   L   L   H   P   Y   L   L   S   M   R   L   N   R  

   1306 gag gaa caa aag atg gtt gag ata cgg aag gaa ctt aaa cct cgt 

        E   E   Q   K   M   V   E   I   R   K   E   L   K   P   R  

   1351 tca tat aga att aag gct gga caa gcc ata cat gtt ggt ggc ttg 

        S   Y   R   I   K   A   G   Q   A   I   H   V   G   G   L  

   1396 gca aga ctt gac cta att gaa gcc tct gtt caa aca atg tat gtc 

        A   R   L   D   L   I   E   A   S   V   Q   T   M   Y   V  

   1441 act gtt tgg gca tca cca act gtt tct cta cac atg gga aaa ata 

        T   V   W   A   S   P   T   V   S   L   H   M   G   K   I  

   1486 gaa aat gct aat gag att tgg aat aat cat gtt ggc gtc aga ctg 

        E   N   A   N   E   I   W   N   N   H   V   G   V   R   L  

   1531 cag cct ccc atc ggt aat gac cgc gca gct gaa cta ggt aca tgg 

        Q   P   P   I   G   N   D   R   A   A   E   L   G   T   W  

   1576 aaa gaa agg gaa gta aaa gta tct gga tct agt tgg gat gtc aac 

        K   E   R   E   V   K   V   S   G   S   S   W   D   V   N  

   1621 tgc atg gac gta tca ata gct ggc tta ggt tgg ttt tct ttg ggt 

        C   M   D   V   S   I   A   G   L   G   W   F   S   L   G  

   1666 atc caa ggt gaa gca acc atg aaa tta tgg acc aat gat gga att 

        I   Q   G   E   A   T   M   K   L   W   T   N   D   G   I  

   1711 gaa ata act ttg aga gaa cca ttg gta ctt gac cgg gcc ccg tcc 

        E   I   T   L   R   E   P   L   V   L   D   R   A   P   S  

   1756 ctt gaa aaa cca ggt ttt tgg tta cca aag gct ata tct gaa gtt 

        L   E   K   P   G   F   W   L   P   K   A   I   S   E   V  

   1801 att ggc aac caa act aaa ctt gaa gct caa aga agg aaa aaa ctt 

        I   G   N   Q   T   K   L   E   A   Q   R   R   K   K   L  

   1846 gaa gat gaa gat aca gaa tac atg gga gca agt ata gag ata tct 

        E   D   E   D   T   E   Y   M   G   A   S   I   E   I   S  

   1891 gca tga 1896    

        A   *  

 

 
 


