
Thesis presented in fulfilment of the requirements for the degree of 
Master of Engineering (Chemical Engineering) in the Faculty of 

Engineering at Stellenbosch University 

Supervisor: Prof Tobi Louw 
Co-supervisor: Prof Steven Bradshaw 

December 2023 

State estimation and model-based fault detection in a 
submerged arc furnace 

by  
Isabella Kristensen 



 

  i  

DECLARATION 

By submitting this thesis electronically, I declare that the entirety of the work contained therein is my 

own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that 

reproduction and publication thereof by Stellenbosch University will not infringe any third party rights 

and that I have not previously in its entirety or in part submitted it for obtaining any qualification.  

 

December 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2023/2024 Stellenbosch University  

Stellenbosch University https://scholar.sun.ac.za



 

  ii  

ABSTRACT 

Model-based state estimators use noisy plant measurements and a process model to calculate accurate 

and timely estimates of the state variables for process monitoring, model-based fault detection, and 

model predictive control. The aim of this project was to perform model-based fault detection using state 

estimation in a complex chemical unit operation and compare the model-based fault detection to a data-

driven technique under plant-model mismatch. A system observability analysis and fault detectability 

analysis was first conducted. The performance of the various nonlinear state estimation techniques, 

namely the extended Kalman filter (EKF), the unscented Kalman filter (UKF), the particle filter (PF), and 

the moving horizon estimator (MHE), was then assessed, enabling the selection of appropriate state 

estimation techniques for model-based fault detection. Model-based fault detection was employed using 

the residuals generated from the state estimators followed by residual evaluation using PCA. The model-

based fault detection was compared to data-driven fault detection using PCA on the measurements and 

the effect of plant-model mismatch on the performance of model-based fault detection was investigated. 

A submerged arc furnace (SAF) for platinum group metal smelting was used as a case study to apply these 

techniques. 

The state observability analysis found the SAF system to be locally observable and the measured states 

to have a higher degree of observability than the unmeasured states. Upon implementation of the state 

estimation algorithms, the least observable states corresponded to states estimates with the largest 

estimation error. The fault detectability analysis identified all faults investigated to be structurally 

detectable. Upon implementation of model-based fault detection, it was concluded that the more 

structurally detectable a fault is, the better the fault detection performance.  

The investigation into state estimation in the SAF showed that the EKF, UKF, and PF display good 

estimation accuracy and fast computation times. The PF showed superior estimation accuracy under low 

process noise conditions and was selected for model-based fault detection. The EKF, being the most 

popular algorithm in literature and displaying fairly good estimation accuracy, was selected as the second 

method. The computational requirements of the MHE proved to be its greatest limitation. Investigations 

were carried out into reducing the computational load of the method using alternative singular 

perturbation SAF model with larger integration steps which halved the computational requirements. 

However, the computation times remained inappropriate for application in model-based fault detection.  

Lastly, this study found that the model-based fault detection using the PF residuals outperformed the 

model-based fault detection using the EKF residuals and the data-driven PCA method for detection of 

faulty conditions within the SAF process. Due to the sensitivity of the PF residuals resulting from the 

nature of the algorithm, this method showed exceptionally poor robustness to plant-model mismatch. 

The investigation then demonstrated that residual evaluation of the PF and EKF residuals in a reduced-

dimensional space using PCA improved the classification performance of the method when plant-model 

mismatch was present. However, when no modelling error is present, the classification of PF and EKF 

residuals showed the best performance in the original dimension space.  
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OPSOMMING 

Model-gebaseerde toestandberamers gebruik raserige aanlegmetings en ’n prosesmodel om akkurate en 

tydige beramings van die toestandveranderlikes vir prosesmonitering, model-gebaseerde foutopsporing, 

en modelvoorspellingsbeheer, te bereken. Die doel van hierdie projek was om model-gebaseerde 

foutopsporing uit te voer deur toestandberaming in ’n komplekse chemiese eenheidbedryf te gebruik en 

die model-gebaseerde foutopsporing te vergelyk met ’n data-gedrewe tegniek onder aanleg-model 

wanverhouding. ’n Sisteem waarnemingsanalise en foutopsporingsanalise is eerste uitgevoer. Die 

doeltreffendheid van die verskeie nie-liniêre toestand beramingstegnieke, naamlik die uitgebreide 

Kalman-filer (EKF), die geurlose Kalman-filter (UKF), die partikelfilter (PF), en die bewegende 

horisonberamer (MHE), is toe geassesseer, wat die keuse van gepaste toestandberamingstegnieke vir 

model-gebaseerde foutopsporing moontlik gemaak het. Model-gebaseerde foutopsporing is toegepas 

deur die residu’s gegeneer deur die toestandberamers te gebruik, gevolg deur residu-evaluasie deur PCA. 

Die model-gebaseerde foutopsporing is vergelyk met data-gedrewe foutopsporing deur PCA te gebruik 

op mates en die effek van aanleg-model wanverhouding op die doeltreffendheid van model-gebaseerde 

foutopsporing is ondersoek. ’n Onderdompelde boogoond (SAF) vir platinum-groepmetaalsmelting is 

gebruik as ’n gevalle studie om hierdie tegnieke toe te pas. 

Die toestand waarneembaarheidanalise het gevind dat die SAF-sisteem lokaal waarneembaar is en die 

gemete toestande ’n hoër graad van waarneembaarheid het as die ongemete toestande. Met 

implementasie van die toestandberamingsalgoritmes, het die minste waarneembare toestande met die 

toestandberamings met die grootste beramingsfout ooreengestem. Die foutopsporingsanalise het alle 

foute ondersoek geïdentifiseer as struktureel opspoorbaar. Met implementasie van model-gebaseerde 

foutopsporing is dit beslis dat hoe meer struktureel opspoorbaar ’n fout is, hoe beter die 

foutopspoorbaarheidsdoeltreffendheid. 

Die ondersoek in toestandberaming in die SAF het getoon dat die EKF, UKF, en PF goeie 

beramingakkuraatheid vertoon asook vinnige berekeningstye. Die PF het superior beramingakkuraatheid 

getoon onder lae geraaskondisies en is gekies vir model-gebaseerde foutopsporing. Die EKF, wat die 

populêrste algoritme in literatuur is en redelike goeie beramingsakkuraatheid toon, is gekies as die 

tweede metode. Die berekeningsvereistes van die MHE is bewys as die grootste beperking. Ondersoeke 

is uitgevoer om die berekeningslading van die metode te verminder deur alternatiewe 

verspreidingsdinamiek SAF-model met groter integrasie stappe te gebruik, om die berekeningsvereistes 

te halveer. Die berekeningstye het egter ongepas gebly vir toepassing in model-gebaseerde 

foutopsporing. 

Laastens, hierdie studie het gevind dat die model-gebaseerde foutopsporing wat die PF-residu’s gebruik, 

beter presteer het as die model-gebaseerde foutopsporing wat EKF-residu’s gebruik en die data-gedrewe 

PCA-metode vir opsporing van foutiewe kondisies binne die SAF-prosesse. As gevolg van die sensitiwiteit 

van die PF-residu’s as gevolg van die natuur van die algoritme, het hierdie metode besonder swak 

robuustheid teenoor aanleg-model wanverhouding. Die ondersoek het dan gedemonstreer dat residuele 

evaluasie van die PF- en EKF-residu’s in ’n verminderde-dimensionele spasie wat PCA gebruik, die 
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klassifikasiedoeltreffendheid van die metode verbeter het toe aanleg-model wanverhouding 

teenwoordig was. Wanneer geen modelleringsfout teenwoordig is nie, het die klassifikasie van PF- en 

EKF-residu’s die beste doeltreffendheid in die oorspronklike dimensie spasie. 
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1 

1 INTRODUCTION 

This chapter provides a brief introduction to state estimation, fault detection, and the case study of the 

submerged arc furnace used to employ state estimation and fault detection techniques for this study. 

The chapter then goes on to present the project motivation, highlighting the importance of state 

estimation and fault detection within the smelting process and provides the reader with gaps in the 

literature that parts of this study contribute to. The aims and objectives are then presented, followed by 

the project scope. Lastly, the layout of the thesis is provided.  

1.1 Background 

1.1.1 State estimation 

The state of any physical system refers to the process variables which completely define the internal 

conditions of the system (Simon, 2006). In the state-space representation of a system, the states are the 

minimum set of process variables required to fully define the response of a system to a set of inputs 

(Rowell, 2004). These state variables appear as time-dependent variables with dynamics explained by 

differential equations in the system model (Villaverde et al., 2019). State information is used to make 

judgements on the condition of the system and to enforce control over the states via state-feedback 

control (Simon, 2006). Chemical and bioprocesses present with their own unique requirements 

necessitating rapid and accurate information on the state variables.  

In chemical processes, accurate state information is essential for implementation of model-based control 

which predicts future control actions based on information on the current full state of the system (Kumar 

& Ahmad, 2012). Knowledge of the states can also be used to improve process monitoring and real-time 

optimization or for model-based fault detection which relies on state information to identify abnormal 

system behaviour.  

When accurate measurements for the full set of state variables are readily available and uncorrupted by 

noise, state estimation techniques become redundant. However, in industrial processes there often exist 

unmeasurable states due to the cost of sensors and complexity of measurements. Additionally, the 

measurements that are available tend to be corrupted by measurement noise or are intermittently 

accessible due to sensor delay. To enable the implementation of model-based control, process 

monitoring, or model-based fault detection, access to the full state information is desirable. A group of 

mathematical techniques known as state estimators can be used to estimate values for unmeasured state 

variables or used to improve upon state information given by noisy measurements of the state variables.  

Model-based state estimation, specifically model-based Bayesian state estimation, is the focus of this 

study as it is the most widely used method of state estimation for chemical and bioprocesses (Alexander 

et al., 2020). Model-based methods combine knowledge of the dynamic model with available plant 

measurements to inform the estimates of the states. Model-based Bayesian state estimation methods 

assumes that the process is stochastic, where the states and measurements are represented by random 

variables that change with time (Alexander et al., 2020). The other category of model-based state 

estimation is deterministic, such as the Luenberger observer and the asymptotic observer, which involve 
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no randomness. Non-linear state estimation methods are specifically focused on as complex industrial 

processes most often display nonlinear dynamics. The model-based non-linear Bayesian state estimators 

that will be the focus of this study are the extended Kalman filter (EKF), the unscented Kalman filter (UKF), 

the particle filter (PF), and moving horizon estimator (MHE).  

The standard Kalman filter (KF) is a model-based Bayesian state estimation technique that is the optimal 

linear state estimator (Simon, 2006). The KF was first introduced by Rudolf E. Kalman in 1960, providing 

the first state estimation algorithm with real-time application (Patwardhan et al., 2012). The popularity 

of the KF is attributed to its simplicity, reduced storage, and reduced computational effort arising from 

its recursive nature (Jin et al., 2021). As it is the optimal linear filter, application of the standard KF 

algorithm requires the state transition and measurement models in linearized form. In addition, the 

algorithm is developed based on the assumption that the state estimate distribution is Gaussian. Lastly, 

the standard KF algorithm does not enable explicit incorporation of physical constraints on the states 

(Patwardhan et al., 2012). When the system in question is approximately linear with approximately 

Gaussian state distributions, the KF is the best performing filter in terms of estimation accuracy  (Simon, 

2006). In practice, complex industrial processes often exhibit severe nonlinearities and non-Gaussian 

distributions where the KF accuracy and performance significantly deteriorates. Therefore, alternative 

filters were developed to handle nonlinearities and non-Gaussian distributions.  

The EKF and UKF are nonlinear extensions of the standard KF. The EKF and UKF apply the standard KF 

algorithm to nonlinear systems by approximating the nonlinear state transition and measurement 

models. The EKF performs local linearization around the previous state estimate to obtain a linearized 

model. The UKF approximates the multivariable integrals via an unscented transformation (Daum, 2005). 

The unscented transformation shows improved estimation accuracy as it has a reduced mean and 

covariance approximation error compared to the linearization of the EKF (Simon, 2006).   

The PF propagates the states through the nonlinear model by random sampling of state vectors known 

as particles and Monte Carlo integration. The PF then corrects the model prediction with the 

measurement via a method known as importance sampling coupled with a resampling strategy (Daum, 

2005). It does this in such a way that enables the handling of nonlinear process dynamics and 

measurements as well as non-Gaussian state distributions (Elfring et al., 2021).    

The MHE is the most recent of the four state estimation techniques, proposed by Robertson et al. in 1996. 

The MHE achieves state estimation by solving an optimization problem to obtain a horizon of state 

estimates. The advantage of the MHE over other state estimation techniques arises from its ability to 

explicitly handle constraints and nonlinear dynamics (Mesbah et al., 2011). However, these advantages 

come at the cost of significant computational effort, limiting its widespread application (Alexander et al., 

2020).   

Rapid and accurate estimates of important state variables become accessible upon implementation of 

these state estimation techniques. These state estimates can then be used for process monitoring, 

model-based process control or model-based fault detection. Model-based fault detection using state 

estimators will be investigated further in this study.   
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1.1.2 Fault detection 

Process monitoring and fault detection are essential in any industrial process. Fault detection ensures 

safe and profitable operation by rapidly alerting operators to adverse process conditions to allow for 

correction and avoid prolonged operation under sub-optimal conditions. Fault detection methods are 

often categorized as either model-based methods or process history-based methods.  

Process history-based methods construct statistical models from a set of past measurements. Data-

driven process monitoring involves assessing the system condition on-line by calculating various 

monitoring statistics for real-time measurements. The monitoring statistics measure the statistical 

probability of the new measurement belonging to the distribution defined by nominal or faulty past 

measurements. These monitoring methods can either involve calculating monitoring statistics for single 

process variables, univariate methods, or calculating monitoring statistics for multiple process variables, 

multivariate methods. Principal component analysis (PCA) is one example of a multivariate data-driven 

method that has been widely used for process monitoring applications. PCA performs feature extraction 

by constructing latent variables that account for the maximum variance in the original measurements 

(Abdi & Williams, 2010). This latent variable model can then be used in conjunction with monitoring 

statistics to assess the health of a system (Kourti, 2002). Data-driven methods require no prior knowledge 

of the system dynamics, however, they require large sets of past process variable time-series data to 

adequately train the data-driven models (Qu, 2009). 

Model-based fault detection methods also use the current measurements from the process, however, 

they additionally require fundamental process knowledge in the form of a mathematical model of the 

system. The process model is used to make predictions for the state variables under nominal conditions 

and the difference between the predicted values for the state and the current state measurement is 

known as the residual. Residual generation can be achieved via several methods. One method involves 

using state estimation where the residual is the difference between the current measurement and the 

current state estimate. The use of state estimators for the residual generation is common in literature 

with the EKF being the most popular technique for residual generation (Chang & Chen, 1995; Li & Olson, 

1991; Sunil Nag et al., 2015). Following generation of the residual is a residual evaluation procedure 

involving a decision-making process that classifies residuals as faulty or nominal. The model-based fault 

detection does not require past measurements as there is no training step in the procedure, however, 

the need for an accurate model of complex processes limits its applications in industry. 

1.1.3 Case study: submerged arc furnace  

The chosen case study for application of state estimation and fault detection techniques is a submerged 

arc furnace (SAF) used for platinum group metal (PGM) smelting. According to Nell (2004), the majority 

of the worlds PGMs are located in South Africa. PGMs are extracted from sulphide ores mainly by the use 

of six-electrode SAFs (Nell, 2004). Smelting occurs at extreme operating temperatures to enable the 

formation and subsequent separation of liquid phases. This separation collects PGMs for further 
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downstream processing.  PGM smelting is an important industrial process in South Africa and functions 

as a suitable case study for application of state estimation and fault detection techniques. 

Implementation of model-based state estimation techniques in practice relies upon having access to an 

accurate mathematical model of the process. In general, SAF models are complex models involving a large 

set of nonlinearly interacting state variables. There exist several process models of a SAF in literature. 

The model developed by Theunissen (2021) provides a simplified dynamic model of a SAF in the form of 

a system of ordinary differential equations (ODEs) developed specifically for investigating fault detection 

algorithms. This form of an explicit set of ODEs is preferred for application of state estimation 

techniques. In addition, the process model is computationally affordable, facilitating rapid generation of 

synthetic measurement data for state estimation and fault detection. Like any commercial process, the 

SAF is susceptible to faulty conditions. These include major events like furnace blowback and other 

abnormal process conditions that ultimately impact the integrity of the process. Timely and accurate fault 

detection is therefore essential for safe and profitable operation of the SAF.   

1.2 Motivation 

The need for state estimation in the smelting process is apparent. The process is highly energy intensive 

with the majority of the operating costs arising from the energy requirements (Shyamal, 2018). This drives 

the need for process control. Furthermore, the process is susceptible to disturbances and faults, which 

can be detrimental to safe and profitable operation. These conditions motivate the need for process 

monitoring and fault detection. However, there is a lack of available measurements due to the extreme 

operating conditions of the furnace (Ghobara, 2013). SAFs typically operate at a slag temperature of 1900 

K, making frequent sampling impractical. By implementing state estimation techniques, accurate and 

rapid state information becomes available, allowing for improved process monitoring and 

implementation of model-based control and model-based fault detection.   

There are limited studies in literature which compare the performance of the EKF, UKF, PF and MHE on a  

moderately complex chemical process. There have been a number of papers comparing the MHE and EKF 

(Lima & Rawlings, 2011) (Alexander et al., 2020) (Gmehllng et al., 1986) (Haseltine & Rawlings, 2003b), 

the EKF and UKF (Geetha et al., 2013), and the EKF and PF (Mansouri et al., 2013), for state estimation in 

a simple CSTR. One study compared the EKF and UKF for state estimation in the complex Tennessee 

Eastman process (Upendra & Prakash, 2013). It is evident that there is potential to gain valuable insight 

from a comparative study investigating various state estimation techniques in a complex industrial 

process. This project would entail comparison of the EKF, UKF, PF and MHE in a complex smelting process 

involving a large set of nonlinearly interacting state variables.   

Furthermore, the MHE is a fairly modern state estimation technique and remains a challenging filter to 

implement due to the lack of a general set of heuristics and large computational burden (Alexander et 

al., 2020). Comparison of the MHE to simple popular techniques such as the EKF for state estimation in a 
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complex chemical process could highlight its advantages and flaws and give insight for future 

investigations and real-world practical implementation.   

Lastly, there are limited literature studies comparing model-based and data-driven methods of fault 

detection. Yang & Rizzoni (2016) compared model-based fault detection using an unknown-input 

observer with data-driven fault detection via linear discriminant analysis. There currently exists no 

literature that directly compares process history-based fault detection methods with model-based fault 

detection using the state estimators for fault detection in a complex chemical process. In addition, this 

study provides further insights to the study done by Yang (2004), highlighting the potential benefits of 

performing residual evaluation using PCA in an attempt to control the bias-variance trade-off.  

1.3 Project aim and objectives 

The aim of this project was to investigate the use of state estimation techniques, namely the EKF, UKF, 

PF and MHE, to enable model-based fault detection and compare the model-based technique to data-

driven fault detection under plant-model mismatch. This is done for a typical and moderately complex 

unit operation by means of a suitable case study, in this case a submerged arc smelting furnace. To satisfy 

this aim, the following objectives have been identified: 

1. Assess the state observability of the SAF system to validate the state estimation in objective 2 

and conduct a fault detectability analysis by assessing structural fault parameter observability 

and performance-based fault detectability to inform the fault detection in objective 3.   

2. Estimate the observable states of the SAF system identified in objective 1 using the EKF, UKF, PF, 

and MHE, and select one or more of these techniques for model-based fault detection for 

objective 3.  

3. Assess the performance of model-based fault detection using state estimation under plant-model 

mismatch and compare the performance of the model-based method with a data-driven method.  

1.4 Project scope 

1. The model of the SAF developed by Theunissen (2021) is used to generate synthetic plant 

measurements and used as the process model in the state estimation algorithms. The validity 

and accuracy of the model are not investigated as model development does not fall within the 

scope of the project.  

2. State observability of the SAF system model is assessed to validate the application of the state 

estimation algorithms and to inform the results of the state estimation based on the degree of 

observability of the various states.  

3. The detectability of the fault parameters is assessed via a structural parameter observability 

analysis as well as a performance-based detectability analysis to inform the results of the fault 

detection.  

4. State estimation algorithms are employed using synthetic plant measurement data simulated 

using the SAF model. Data-driven and model-based fault detection of various simulated faults is 
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also carried out on synthetically generated data. Extending this application to industrial smelting 

data falls outside the scope of this project due to the practical limitations of obtaining real-world 

plant data.  

5. The performance of the state estimators for model-based fault detection are compared to a data-

driven method of PCA. The classification performance of the fault detection techniques is 

assessed. Subsequent fault isolation and diagnosis falls out of the scope of this project.  

1.5 Thesis layout 

Chapter 2 provides the reader with the necessary theory required to understand the concepts 

investigated in this study. This chapter begins with an overview of state estimation and presents the 

theoretical framework of the standard KF algorithm, which forms the basis for all the algorithms 

investigated in this study. This is followed by development of the EKF, UKF, PF and MHE algorithms. The 

chapter then goes on to discuss the concept of system observability and how to conduct an observability 

analysis for linear and nonlinear systems. The chapter then presents an in-depth review on the current 

literature pertaining to model-based fault detection methods, with focus on residual generation using 

state estimators, and data-driven fault detection, specifically exploring principal component analysis. The 

chapter concludes by introducing the concept of fault detectability, with reference to both structural fault 

detectability and its relation to parameter observability, as well as performance-based fault detectability. 

Chapter 3 presents the case study of the SAF used in objectives 1, 2, and 3 of this study. The chapter 

begins with a brief overview of the smelting process for PGM smelting. The reader is then provided with 

a description of the process model and measurement model of the SAF. The chapter also presents the 

typical faults that occur within the smelting process along with the categorization of the faults and the 

fault models for simulating these faulty conditions in the SAF.   

Chapter 4 details the approach used to conduct the state observability analysis and the fault detectability 

analysis. The chapter then presents the results of the observability and detectability analyses to address 

objective 1 of the study.  

Chapter 5 outlines the procedure for numerically implementing the EKF, UKF, PF, and MHE algorithm and 

derives appropriate tuning parameters required for implementation of the state estimation algorithms. 

The chapter then presents the results from implementation  and comparison of the performance of the 

state estimation techniques as well as selection of state estimators to use in model-based fault detection.   

Chapter 6 presents the methodology for model-based fault detection using state estimation and data-

driven fault detection using PCA used in this study. The chapter then presents the findings of the 

comparison between model-based fault detection and a data-driven method and evaluates the 

performance of the model-based method under plant-model mismatch.  

Chapter 7 summarizes the findings of each of the objectives of the study and concludes the thesis by 

presenting recommendations for practical implementations of these techniques and recommendations 

for future studies based on the findings drawn from this study.    
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2 THEORY AND LITERATURE REVIEW 

2.1 State estimation theory and literature review 

The following sections summarise the theoretical basis and relevant literature on the state estimation 

techniques investigated in this study. Section 2.1.1 provides a brief introduction to state estimation and 

outlines the broad categories of state estimators. Section 2.1.2 derives the standard KF, which forms the 

foundation for the state estimation techniques used in the remainder of this study. Sections 2.1.3 through 

2.1.6 provide a theoretical background on each of the nonlinear state estimation techniques investigated 

in this study. Section 2.1.3 details the EKF theory and relevant literature, section 2.1.4 the UKF, section 

2.1.5 the PF, and section 2.1.6 the MHE. Section 2.1.7 summarises the literature on the selection of state 

estimator tuning parameters. Section 2.1.8 briefly outlines various applications of state estimation 

techniques. Section 2.1.9 summarizes the typical methods for assessing the performance of state 

estimation techniques used in literature. Lastly, section 2.1.10 explains the negative impact of plant-

model mismatch on the performance of model-based state estimators.  

2.1.1 Introduction to state estimation 

The states of a system are the important process variables that provide critical information about the 

system conditions (Simon, 2006). In industrial processes, access to rapid and accurate state information 

is not always readily available due to limited measurements that are often corrupted by noise.  State 

estimators have been widely applied to a variety of systems to obtain real-time, accurate estimates for 

the states of the system. These state estimation techniques can be categorized into data-driven methods, 

hybrid methods, and model-based methods.  

2.1.1.1 Data-driven state estimation 

Data-driven methods of state estimation develop an understanding of the relationships between process 

variables by training on large sets of past data to develop a model that can be used to make reliable 

estimates for the states based on the current process inputs and current measurement data. Examples 

of data-driven state estimation techniques include using fuzzy logic or artificial neural networks to build 

the model of a process. In recent years, these methods have become increasingly popular in the state 

estimation space due to the increase in computational power and advancements in sensor technology 

resulting in availability of extensive sets of historical data (Jin et al., 2021). Data-driven methods of state 

estimation are ideal for systems with ill-defined process models, as variable relationships are formulated 

independently from model knowledge (Ali et al., 2015). However, the data-driven methods require 

significant computational time, require large sets of historical process data under various operating 

conditions for training, show poor performance when tested under adverse process conditions not 

included in training data, and provide inaccurate state estimates when trained on limited and noisy 

measurements (Alexander et al., 2020).   
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2.1.1.2  Hybrid state estimation 

A new type of state estimation technique has arisen in recent years, termed hybrid state estimation. A 

hybrid state estimator refers to any state estimation technique that combines the algorithms of two or 

more techniques. This can be any combination of two model-based algorithms, two data-driven methods, 

or a combination of both model-based and data-driven techniques. Hybrid estimators are used to 

augment the performance of a single estimator by improving the accuracy, robustness, or convergence, 

when the performance of that single estimator is unsatisfactory in its application. This is done by careful 

selection and incorporation of an additional estimator which resolves the limitations associated with the 

single estimator (Ali et al., 2015). Ali et al. (2015) explain in a review paper that since the introduction of 

hybrid observers to the state estimation space in the 2000s, the use of hybrid observers over single 

observers is prevalent and growing. More specifically, hybrid estimators which combine model-based and 

data-driven state estimation techniques have gained particular attention (Jin et al., 2021).  

2.1.1.3 Model-based state estimation 

Model-based methods use a dynamic model developed from first principles and noisy measurements 

from the process to make accurate estimates for states of the system. Therefore, model-based methods 

require complete and precise knowledge of the dynamic model of a system (Kravaris & Hasan, 2016). 

Model-based methods are often categorized as deterministic or Bayesian (Alexander et al., 2020). 

Deterministic methods assume that the system involves no randomness, and the output will always be 

the same for the same input and parameters. Bayesian methods assume that the process is stochastic, 

whereby the states and measurements are random variables that change with time and the final state 

estimate is solved for by calculating the conditional probability distribution using Bayes theorem (Jin et 

al., 2021). 

The two most popular deterministic state estimators are the Luenberger observer (LO) and the 

asymptotic observer (AO). The LO is limited to first-order linear systems of differential equations and 

requires highly accurate process models and initial guesses for the states (Alexander et al., 2020). The AO 

is advantageous in biochemical processes with complex process kinetics as the model simplifies the 

differential equation system to exclude the process kinetics terms. However, in application with chemical 

and biochemical processes, the AO only converges for fed-batch and continuous systems (Alexander et 

al., 2020), tends to display slow rates of convergence, and requires a large number of available measured 

variables (Dochain, 2003).   

The other category of model-based state estimators are Bayesian state estimation techniques. Within 

Bayesian state estimators, there exist two sub-categories: recursive filters and optimization-based filters. 

Recursive filters use state information from the previous estimate to estimate the current state and do 

not require all the past information. Examples of recursive Bayesian state estimators include the KF, EKF, 

UKF, and PF. The second type of Bayesian state estimator is optimization-based, whereby the state 

estimation problem is reformulated as an optimization problem using a past horizon of measurements. 

The most popular optimization-based Bayesian state estimator is the MHE (Alexander et al., 2020).  
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To develop the basic understanding of model-based state estimation theory, the standard KF algorithm 

is derived. The KF can be derived from the Bayesian state estimator or from the least squares approach. 

The KF is the optimal linear filter when the measurement and process noise is Gaussian in the Bayesian 

derivation or it is the optimal linear filter, regardless of if the noise is Gaussian or not, when derived from 

the least-squares approach (Simon, 2006). Derivation of the standard KF firstly requires an understanding 

of a state observer and state space notation. 

2.1.2 Standard Kalman Filter 

A linear discrete-time system can be represented in state space form as: 

 𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐺𝑢𝑘−1 + 𝑤𝑘−1 [ 1 ] 

 𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 [ 2 ] 

𝑥𝑘 represents the state vector at timestep 𝑘, this is a vector containing each of the state variables of the 

system. 𝑢 is the input vector containing the exogeneous input variables that arise from outside of the 

system boundaries and are therefore independent of the system itself. 𝑦𝑘 is the output vector at timestep 

𝑘 containing the observable variables which are the measurements provided by sensors on the plant. 𝐹 is 

the state transition matrix that contains the differential equations representing how the current state, 

𝑥𝑘, affects the rate of change of the state. 𝐺 is the input matrix containing the equations which explain 

the relationship between the inputs and the rate of change of the states. 𝐻 is the measurement matrix 

containing the measurement equations relating the system state variables to the measurements. 𝑤 is 

the process noise or the unknown and unmeasured plant disturbances that cause unmodelled variations 

in the states of the system. 𝑤 is a stochastic process that is partly responsible for driving the true 

underlying states of the system (Simon, 2006). 𝑣  is a stochastic process that represents the measurement 

noise that arises due to sensor inaccuracies or thermal noise within the sensor itself.  

Figure 1 shows a visual depiction of a state observer. The state observer uses the measurements from 

the real plant process and a process model to make estimates for the state variables, 𝑥̂𝑘.  

 

Figure 1: Visual depiction of a state observer. 
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The equations below represent the mathematical model of the linear discrete-time process used in the 

state observer.  

 𝑥̂𝑘 = 𝐹𝑥̂𝑘−1 + 𝐺𝑢𝑘−1 [ 3 ] 

 𝑦̂𝑘 = 𝐻𝑥̂𝑘  [ 4 ] 

It is assumed that the control inputs, 𝑢, and the measurements, 𝑦𝑘, are exactly known. It is also assumed 

that the plant dynamics are perfectly known, therefore, the system matrices 𝐹, 𝐺 and 𝐻 are used in the 

mathematical model of the state observer. 𝑥̂ represents the vector of state estimates and 𝑦̂ represent 

the vector of estimated measured variables obtained from the state observer.  

The KF is a type of state observer derived under specific system conditions: 

1) The system must represent a stochastic process. The states, 𝑥𝑘, and measurements, 𝑦𝑘, 

are time-variant random variables.  

2) The system must be linear.  

3) The process and measurement noise are zero-mean white noise with known 

covariances 𝑄 and 𝑅, respectively. 𝑤𝑘 ∼ (0,𝑄) and 𝑣𝑘 ∼ (0, 𝑅).  

The state estimates are random variables with probability density functions (pdf) that are fully defined 

by their mean,  𝑥̂, and covariance, 𝑃. The standard KF splits the state estimation procedure that occurs 

within the state observer into two steps: the prediction step and the update step (Becker, 2023). Figure 

2 is a visual representation of this procedure.  

 

Figure 2: Visual representation of the standard KF procedure, adapted from Becker (2023). 

The prediction step involves propagating the mean and covariance of the state estimates from the 

previous timestep to the current timestep. The left maroon distribution representing the state estimate 

at the previous timestep is defined by mean 𝑥̂𝑘−1
+  and covariance 𝑃𝑘−1

+ . This distribution is propagated 

to timestep 𝑘 to obtain the right maroon distribution fully defined by 𝑥̂𝑘
− and 𝑃𝑘

−. The update step 

involves updating the model prediction with the available measurement, the orange distribution with 

mean 𝑦𝑘 and covariance 𝑅𝑘. This update step results in the final state estimate distribution, 

represented by the blue distribution with mean and covariance, 𝑥̂𝑘
+ and 𝑃𝑘

+, respectively.  

The derivation of the standard KF equations can be found in appendix A.1 by the least-squares derivation 

and appendix A.2 by the Bayesian derivation. These equations are summarized below.  
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The prediction step propagates the previous state estimate through time using the linear process model 

presented in Equation 3. Equation 5 describes the propagation of the mean, 𝑥̂𝑘−1
+ , through the linear 

process model. 

 𝑥̂𝑘
− = 𝐹𝑘−1𝑥̂𝑘−1

+ + 𝐺𝑘−1𝑢𝑘−1 [ 5 ] 

The covariance is propagated using Equation 6 by propagating the covariance through the linear model 

and adding the process noise, 𝑄. Although adding additional noise to the estimate error covariance seems 

counterintuitive, given that the goal of the filter is to filter out noise, the process noise represents the 

inherent stochastic process that drives the states of the system and must be considered in the estimator 

to obtain accurate estimates (Mohan et al., 2015).  

 𝑃𝑘 = 𝐸[(𝑥𝑘 − 𝑥̅𝑘
−)(𝑥𝑘 − 𝑥̅𝑘

−)𝑇] = 𝐹𝑘−1𝑃𝑘−1
+ 𝐹𝑘−1

𝑇 + 𝑄 [ 6 ] 

The update step of the KF involves solving for the final state estimate, 𝑥̂𝑘
+, by updating the model 

prediction, 𝑥̂𝑘
−, with the current measurement, 𝑦𝑘 , using the Kalman gain, 𝐾𝑘 

 𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘(𝑦𝑘 − 𝐻𝑥̂𝑘
−) [ 7 ] 

The Kalman gain plays a crucial role in the KF algorithm as it dictates the contribution of the model 

prediction, 𝑥̂𝑘
−, and the measurement, 𝑦𝑘,  to the final state estimate, 𝑥̂𝑘

+. The Kalman gain is calculated 

as:  

 𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 [ 8 ] 

The covariance is updated via: 

 𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−(𝐼 − 𝐾𝑘𝐻𝑘)
𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇 [ 9 ] 

Most real-world systems are hybrid systems with continuous-time process dynamics and discrete-time 

measurements. A continuous-time process with discrete-time measurements and Gaussian noise is 

represented as: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑤 [ 10 ] 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 

𝑤~(0,𝑄𝑐) 

𝑣𝑘~(0, 𝑅𝑘) 

Where 𝐴 represents the state transition matrix and 𝐵 the input matrix. 𝑤(𝑡) is now a continuous-time 

white noise process with continuous-time process noise covariance 𝑄𝑐 . The discrete-time process noise 

covariance, 𝑄, can be approximated from the continuous-time process noise covariance, 𝑄𝑐, by: 

 𝑄 = 𝑄𝑐𝑇 [ 11 ] 

Where 𝑇 is the sampling time (Simon, 2006).  

The hybrid KF algorithm uses the continuous-time KF for the prediction step and the discrete-time KF for 

the update step. The continuous-time KF is derived in appendix A.3. The prediction step of the 
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continuous-time KF, and therefore the prediction step of the hybrid KF, propagates the mean and 

covariance by: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 [ 12 ] 

 𝑃̇ = −𝑃𝐶𝑇𝑅𝑐
−1𝐶𝑃 + 𝐴𝑃 + 𝑃𝐴𝑇 + 𝑄𝑐 [ 13 ] 

The update step of the hybrid KF is the same as the update step of the discrete-time KF.  

For linear systems, this standard KF gives the best estimate of the state, the minimum-variance estimate, 

if the noise is Gaussian (Sorenson, 1970). When the noise is non-Gaussian, the standard KF is the best 

linear estimator (Simon, 2010). In addition, the standard KF is an unconstrained filter, limiting its 

application in processes that require physical constraints on the states (Patwardhan et al., 2012). These 

strict assumptions limit the application of the standard KF, thus, alternative state estimation techniques 

have been developed to explicitly handle non-linear dynamics, non-Gaussian distributions, and explicitly 

implement constraints.  

2.1.3 Extended Kalman filter 

2.1.3.1 Linearized KF  

One method of applying the standard KF algorithm presented above to a nonlinear system is to linearize 

the model and then use the standard KF prediction and update steps using the linearized state transition 

and measurement matrices. The method of linearization is a Taylor series expansion around the nominal 

values, 𝑥0 and 𝑢0, based on a guess of the systems nominal trajectory.  

Let the nonlinear continuous-time system be represented by nonlinear functions 𝑓 and ℎ.  

 𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤, 𝑡) [ 14 ] 

𝑦 = ℎ(𝑥, 𝑣, 𝑡) 

𝑤~(0, 𝑄) 

𝑣~(0, 𝑅) 

Where 𝑓 represents the nonlinear dynamic equations of the system and ℎ represents the nonlinear 

measurement equations relating the state variables to the measurements.  

The Taylor series expansion of the nonlinear system is derived in appendix A.4. A first order Taylor series 

approximation, which considers the first two terms in the total Taylor series expansion, is used to linearize 

the system model: 

  𝑥̇ = 𝑓(𝑥0, 𝑢0 = 𝑢,𝑤0 = 0, 𝑡) + 𝐴∆𝑥 + 𝐵∆𝑢 + 𝐿𝑤 [ 15 ] 

 𝑦 = ℎ(𝑥0, 𝑣0 = 0, 𝑡) + 𝐶∆𝑥 +𝑀𝑣 [ 16 ] 

𝐴 =
𝜕𝑓

𝜕𝑥
|
𝑥0

            𝐵 =
𝜕𝑓

𝜕𝑢
|
𝑢0=𝑢

                  𝐿 =
𝜕𝑓

𝜕𝑤
|
𝑤0=0

                 𝐶 =
𝜕ℎ

𝜕𝑥
|
𝑥0

                  𝑀 =
𝜕ℎ

𝜕𝑣
|
𝑣0=0
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The standard KF equations can then be applied to this linearized system to estimate the states of the 

system.  

The Taylor series linear approximation is only accurate if the actual system is close to the nominal values, 

𝑥0 and 𝑢0, used in the approximation. As the system is subjected to unknown disturbances, changes in 

the input conditions, and potential modelling error, the system diverges from these nominal conditions, 

inducing significant linearization error in the estimator (Simon, 2006). The linearization error causes poor 

state estimation and potential filter divergence.   

2.1.3.2 EKF algorithm  

In the 1970s, the EKF was proposed by Bucy and Sunahara to handle state estimation in nonlinear systems 

(Bucy & Senne, 1971) (Sunahara, 1970). Nonlinear state estimation applications of the EKF quickly 

became widespread and it remains one of the most popular state estimation techniques today (Nørgaard 

et al., 2000). The EKF is based on the idea of applying the standard KF to a linearized system of equations, 

however, the EKF performs local linearization of the dynamic model and measurement equations at each 

timestep around the state estimate obtained at the previous timestep.  

The hybrid EKF algorithm is incorporated using the same equations as the hybrid KF algorithm. The 

prediction step of EKF integrates the nonlinear process model, Equation 14, to calculate the prior state 

estimate and integrates the standard continuous-time KF rate of change of covariance, Equation 13, to 

propagate the estimation error covariance. The update step of the EKF uses the standard discrete-time 

KF equations, Equations 7 through 9, to calculate the posterior state estimate and posterior estimation 

error covariance. However, the system matrices, 𝐴 and 𝐶, in these equations are obtained from the 

Jacobian of the nonlinear equations, 𝑓 and ℎ, evaluated around the previous state estimate. This 

algorithm is presented in appendix B.1.  

2.1.3.3 Advantages of the EKF 

The EKF is the simplest nonlinear state estimator, is easily implementable, and has minimal 

computational requirements. This simplicity, ease of application, and ability to rapidly estimate states, all 

contribute to the success and popularity of the EKF. However, the EKF comes with disadvantages mainly 

stemming from the crude approximation of the nonlinear model.  

2.1.3.4 Disadvantages of the EKF 

The EKF employs a first-order Taylor series approximation to linearize the model. First-order linearization 

utilizes only the first two term of the Taylor series expansion. Appendix A.4 proves that this 

approximation only follows the true mean and covariance up until the first order (Simon, 2010). If there 

exist severe nonlinearities in the process model, first-order linearization induces significant linearization 

error, potentially causing inaccurate state estimates or filter divergence (Castellanos et al., 2004). 

Linearization error is reduced by using a higher order Taylor series approximation or using an alternative 

method to propagate the mean and covariance through the nonlinear functions.  
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Another disadvantage of the EKF that has been highlighted in literature is the requirement for 

computation of Jacobian matrices for the linearization procedure (Julier & Uhlmann, 2004). However, for 

many systems this calculation of Jacobians can be done fairly easily (Laviola, 2003). Moreover, recent 

papers present techniques such as automatic differentiation or symbolic calculation of Jacobians prior to 

implementation of the filter that mitigate this aforementioned disadvantage of the EKF (Duerinckx et al., 

2015)(Tian et al., 2023).  

2.1.4 Unscented Kalman filter 

The UKF was proposed by Julier and Uhlmann in 1997 (Julier & Uhlmann, 1997). The UKF provides an 

alternative method for propagating the mean and covariance through the nonlinear model by means of 

the unscented transformation. The unscented transformation involves representing a distribution 

through deterministic sampling of samples known as sigma points and individually transforming the 

sigma points through the nonlinear function.  

2.1.4.1 Unscented transformation 

When independent Gaussian random variables are transformed through a linear function, the resulting 

random variables are also Gaussian. It is much more difficult to transform a random variable through a 

nonlinear function as the shape of the distribution changes (Ross, 2021). One method of approximating 

the mean and covariance of a nonlinearly transformed random variable is by the unscented 

transformation. The unscented transformation makes use of the principle that it is easier to transform 

single points through a nonlinear function than it is to transform an entire distribution (Li et al., 2009). To 

exploit this principle, one needs a set of points with a statistical distribution that accurately approximates 

the original distribution. The unscented transformation makes use of deterministic sampling to obtain 

this set of points.  

Deterministic sampling involves taking a small, non-random set of weighted points (Sahlberg, 2016). 

Deterministic sampling is significantly less computationally intensive than random sampling. The 

weighted mean and covariance of these deterministically sampled points is equivalent to the mean and 

covariance of the original pdf. The points are then individually transformed through the nonlinear 

function to obtain a set of transformed points with a weighted average and covariance representing the 

approximate mean and approximate covariance of the transformed distribution.  

There exist several methods for performing these unscented transformations (Simon, 2006). One of these 

methods, known as the general unscented transformation, is presented below. 

2.1.4.2 Generation of the sigma points 

Let 𝑥 represent the original state vector and 𝑥𝑖  are the sigma points, which represent a set of vectors. Let 

the mean and covariance of 𝑥 be exactly known as 𝑥̅ and 𝑃, respectively. The sigma points are generated 

as: 

 𝑥0 = 𝑥̅ [ 17 ] 
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𝑥𝑖 = 𝑥̅ + 𝑥̃𝑖       𝑖 = 1,⋯ , 2𝑛 

𝑥̃𝑖 = (√(𝑛 + 𝜅)𝑃)
𝑖

𝑇
       𝑖 = 1,⋯ , 𝑛 

𝑥̃𝑛+𝑖 = −(√(𝑛 + 𝜅)𝑃)
𝑖

𝑇
       𝑖 = 1,⋯ , 𝑛 

The number of sigma points generated is 2𝑛 + 1, where 𝑛 is the number of states, or the number of rows 

in state vector 𝑥. One of the sigma points is exactly equal to the mean. The other 2𝑛 sigma points are 

each one standard deviation away from the mean in both directions for all 𝑛 dimensions. The sigma points 

are symmetric, where half of them distributed on the positive side of the mean and the other half are 

located on the negative side of the mean.  

The matrix square root, √(𝑛 + 𝜅)𝑃, is obtained by Cholesky decomposition whereby √(𝑛 + 𝜅)𝑃 is the 

matrix square root of (𝑛 + 𝜅)𝑃 such that (𝑛 + 𝜅)𝑃 = √(𝑛 + 𝜅)𝑃
𝑇
√(𝑛 + 𝜅)𝑃 . The matrix square root is 

a matrix itself of size 𝑛 × 𝑛. The subscript 𝑖 on (√(𝑛 + 𝜅)𝑃)
𝑖

𝑇
 extracts the i’th row of the matrix square 

root and is transposed because the Cholesky decomposition of the matrix square root results in the 

transpose of the desired result. (Simon, 2006) 

2.1.4.3 Mean approximation via the unscented transformation  

Let an arbitrary non-linear function be defined as: 

 𝑧 = 𝑔(𝑥) [ 18 ] 

The sigma points, 𝑥𝑖 , are transformed through the non-linear function, 𝑔.  

 𝑧𝑖 = 𝑔(𝑥𝑖) [ 19 ] 

The approximate mean is found by weighted linear regression of the transformed sigma points (Martinez-

Cantin & Castellanos, 2005).  

 𝑧𝑎̅𝑝𝑝𝑟𝑜𝑥 = ∑ 𝑊𝑖𝑧𝑖2𝑛+1
𝑖=1  [ 20 ] 

Where the weighting coefficient is defined as: 

 𝑊0 =
𝜅

𝑛+𝜅
 [ 21 ] 

𝑊𝑖 =
1

2(𝑛 + 𝜅)
     𝑖 = 1,⋯ , 2𝑛 

𝜅  is a scaling factor that influences the higher-order moments of the mean and covariance approximation 

(Simon, 2006). For Gaussian distributions, 𝜅 = 3 − 𝑛  is appropriate as this reduces the error on the 

fourth-order term of the approximation of the mean and covariance (Ebeigbe et al., 2021) (Julier & 

Uhlmann, 2004).  

2.1.4.4 Covariance approximation via the unscented transformation  

Similarly, the approximated covariance is calculated from linear weighted regression as: 
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 𝑃𝑎𝑝𝑝𝑟𝑜𝑥 = ∑ 𝑊𝑖(𝑧𝑖 − 𝑧𝑎̅𝑝𝑝𝑟𝑜𝑥)
2𝑛+1
𝑖=1 (𝑧𝑖 − 𝑧𝑎̅𝑝𝑝𝑟𝑜𝑥)

𝑇
 [ 22 ] 

2.1.4.5 Unscented Kalman filter algorithm  

The hybrid UKF algorithm makes use of deterministic sampling and the unscented transformation during 

the prediction step and the update step of the filter. In the prediction step, sigma points are generated 

using Equation 17 based on the state estimate and covariance from the previous timestep. The unscented 

transformation is used to transform the sigma points from the previous timestep to the current timestep 

via numerical integration of the nonlinear function representing the state dynamics, 𝑓. The prior state 

estimate and estimation error covariance after the prediction step are the weighted mean, calculated 

using Equation 21, and the weighted covariance, calculated using Equation 22, of these transformed 

sigma points.  

 The update step involves deterministically sampling sigma points from the prior state estimate and prior 

estimation error covariance. The update step also involves using the unscented transformation to 

transform the sigma points through the nonlinear measurement equation, ℎ. The hybrid UKF then uses 

the standard KF update step, Equations 7 through 9, using the approximate mean and covariance from 

the unscented transformation to calculate the posterior state estimate and estimation error covariance. 

This algorithm is presented in appendix B.2.  

2.1.4.6 Advantages of the UKF 

The UKF has some advantages over other nonlinear estimation algorithms. Firstly, the UKF provides a 

more accurate method of approximation of the mean and covariance of nonlinearly transformed 

distributions compared to the EKF when the system has severe nonlinearities (Simon, 2006). Appendix 

A.5  shows that the unscented transformation approximations for the mean and covariance follow the 

true mean and covariance up until the third order (Simon, 2006). This is improvement over the first order 

approximation of the EKF and reduces the approximation error introduced in the prediction step, allowing 

for more accurate state estimates in the presence of nonlinearities. It should be noted that the superior 

approximation accuracy of the UKF is only fully exploited for highly nonlinear system models and when 

the measurement noise is significantly larger than the process noise. When the measurement noise is 

larger than the process noise, the model prediction has a significant contribution to the final state 

estimate and, thus, model approximation accuracy significantly affects the final state estimate (Qu, 

2009). The UKF also achieves this approximation without the need for the computation of Jacobians, 

which can become a complex task when system equations are not in analytical form (Simon, 2006). The 

last advantage of the UKF is its ease of parallelization as the propagation of each of the sigma points 

through the nonlinear transformation occurs independently (Mangold et al., 2009). 

2.1.4.7 Disadvantages of the UKF 

The superior estimation accuracy of the UKF comes at the cost of a slightly larger computational burden 

due to the computation of 𝑛 state estimates with the 2𝑛 + 1 sigma points. However, the computational 
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burden of the UKF is not significantly greater than the EKF due to the use of deterministic sampling of 

sigma points rather than random sampling.  

2.1.5 Particle filter 

Another popular state estimation technique developed to handle non-linear systems with non-Gaussian 

distributions is the PF. The first developments in the PF methodology were proposed in 1956 by Norbert 

Weiner, however, implementation was limited due to the large computational effort required (Wiener, 

1956). The modern PF gained attention in 1980 due to the availability of enhanced computational power.  

The PF is derived from the recursive Bayesian estimator, formulated in appendix A.2. The pdf of the state 

estimate at time 𝑘, 𝑥𝑘, given all the measurements prior to time 𝑘, 𝑌𝑘−1 = 𝑦1…𝑦𝑘−1, is represented as 

𝑝(𝑥𝑘|𝑌𝑘−1).  𝑝(𝑥𝑘|𝑌𝑘−1) is the a priori pdf obtained after the prediction step of the standard KF. The a 

priori pdf is calculated as: 

 𝑝(𝑥𝑘|𝑌𝑘−1) = ∫𝑝(𝑥𝑘|𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑌𝑘−1)𝑑𝑥𝑘−1 [ 23 ] 

The a posteriori conditional pdf, 𝑝(𝑥𝑘|𝑌𝑘), obtained after the update step of the KF, is calculated from:  

 𝑝(𝑥𝑘|𝑌𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑌𝑘−1)

∫𝑝(𝑦𝑘|𝑥𝑘 )𝑝(𝑥𝑘|𝑌𝑘−1)𝑑𝑥𝑘
 [ 24 ] 

When the state transition and measurement equations are linear and the state and measurement 

distributions are assumed to be Gaussian, the analytical solutions to these equations give rise to the 

standard KF equations, as derived in appendix A.2. However, when the system does not obey these 

assumptions, the analytical solutions are often difficult to calculate (Simon, 2006).  

The PF approximates the a priori and the a posteriori state estimate distributions by approximating the 

solutions to Equations 23 and 24. The PF algorithm involves a prediction step, for approximating the a 

priori state estimate distribution, and an update step, for approximating the a posteriori state estimate 

distribution. The PF also contains a crucial additional step called resampling.  

2.1.5.1 Prediction step 

The prediction step of the PF aims to approximate the a priori pdf via Monte Carlo integration. Monte 

Carlo integration approximates the integral of a function 𝑓(𝑥) over the density 𝑝(𝑥) using random 

samples drawn from the density (Li et al., 2014). From Equation 23, the function 𝑓(𝑥) is the model 

prediction 𝑝(𝑥𝑘|𝑥𝑘−1),. The density 𝑝(𝑥) is the a posteriori state estimate from the previous timestep 

𝑝(𝑥𝑘−1|𝑌𝑘−1). 

𝑁 random samples are drawn from the distribution, 𝑝(𝑥). The random samples are state vectors called 

particles, 𝑥𝑖  with 𝑖 = 1, … ,𝑁. The particles are distributed across the state space and the frequency of 

particles within a region approximately corresponds to the probability of the state existing within that 

region.  

Each individual particle undergoes a nonlinear transformation using the nonlinear process model, 

𝑓. Instead of transforming the entire distribution using the nonlinear function, which is numerically 
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complex, the individual particles are transformed. This results in a distribution of particles at the current 

timestep representing the a priori distribution.  

The a priori state estimate at timestep 𝑘, 𝑥̂𝑘
−, is equivalent to the mean of the set of transformed particles: 

 𝑥̂𝑘
− = ∫𝑓(𝑥)𝑝(𝑥)𝑑𝑥 ≈

1

𝑁
∑ 𝑓(𝑥𝑘,𝑖
𝑁
𝑖=1 ) [ 25 ] 

The distribution of the initial state estimate at timestep zero is assumed to be a Gaussian distribution or 

uniform distribution for example, in order to generate the initial particles for the PF algorithm. For a 

Gaussian distribution, randomly sampling is achieved by randomly generating samples around the mean 

of the state estimate with covariance equal to the state estimation error covariance. For the prediction 

step of the successive timesteps, the a posteriori particles from the previous timestep are individually 

transformed through the model prediction. Therefore, no further assumptions are made about the shape 

of the underlying distribution besides during the initialization step.  

2.1.5.2 Update step 

The next step in the PF algorithm involves approximating the a posteriori state estimate using the 

measurement at the current timestep to improve upon the a priori state estimate obtained in the 

prediction step.  

Monte Carlo integration cannot be used to approximate the a posteriori pdf, 𝑝(𝑥𝑘|𝑌𝑘), because the 

underlying distribution of this pdf is unknown. Therefore, sequential importance sampling is used to 

approximate the pdf. Sequential importance sampling is the key principle driving the PF algorithm (Li et 

al., 2014). The idea of sequential importance sampling is that the underlying distribution of the a 

posteriori pdf is assumed. This assumed distribution is referred to as the importance density. Random 

sampling using particles is used to approximate this importance density. To account for the difference 

between the true underlying pdf and the importance density, weightings are assigned to each particle 

representing the importance density.  

It is common practice in literature to choose the importance density as the a priori pdf from the prediction 

step, also known as the transition density 𝑝(𝑥𝑘,𝑖|𝑥𝑘−1,𝑖) (Elfring et al., 2021) (Patwardhan et al., 2012). 

Using the transition density as the importance density function enables simple calculation of the 

weightings assigned to each particle using the likelihood of the observation.  

For each of the a priori particles, their corresponding predicted measurement can be calculated by 

transforming each particle using the measurement equation, 𝑦̂𝑘,𝑖 = ℎ(𝑥̂𝑘,𝑖). There exists the true 

measurement at the current time step, 𝑦𝑘, which is assumed to have a Gaussian distribution. For each 

particle, the relative likelihood, 𝑞𝑖, of obtaining the true measurement, 𝑦𝑘, from the predicted 

distribution, ℎ(𝑥̂𝑘,𝑖), can be calculated. This is calculated by evaluating the pdf for the conditional 

probability of 𝑦𝑘 given 𝑥̂𝑘,𝑖.  The relative likelihood is easy to calculate for Gaussian distributions using 

the definition of a Gaussian pdf: 𝑋~𝑁(𝑋̅, 𝐶). 

 𝑝𝑑𝑓(𝑋) =
1

(2𝜋)𝑛/2|𝐶|1/2
exp (−

1

2
(𝑋 − 𝑋̅)𝑇𝐶−1(𝑋 − 𝑋̅) [ 26 ] 
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Where 𝑛 is the size of vector 𝑋. 

The relative likelihood, 𝑞𝑖, is directly proportional to the conditional pdf, 𝑝(𝑦𝑘|𝑥𝑘,𝑖
− ). Therefore, 

𝑝(𝑦𝑘|𝑥𝑘,𝑖
− ) can be calculated as:  

 𝑞𝑖 = 𝑝(𝑦𝑘|𝑥𝑘,𝑖
− )~

1

(2𝜋)
𝑛𝑦
2 |𝑅|

1
2

exp (−
1

2
(𝑦𝑘 − 𝑦̂𝑘,𝑖

− )
𝑇
𝑅−1(𝑦𝑘 − 𝑦̂𝑘,𝑖

− )) [ 27 ] 

Where 𝑛𝑦 is the number of measurements. (Simon, 2006) 

This method of using the transition density as the importance density and subsequent likelihood 

calculation is common practice. However, since the transition density fails to account for the most recent 

observation, 𝑦𝑘, the importance density may be far from the true posterior distribution and thus result 

in low likelihoods (Patwardhan et al., 2012). The transition density is an exceptionally poor assumption 

for the importance density when there exists plant model mismatch or inaccurate initial guesses (Shao 

et al., 2009). Furthermore, the transition density fails to approximate the posterior pdf when there are 

sudden changes to the system, such as disturbances or changes to the inputs (Bolić et al., 2002). 

This relative likelihood obtained from Equation 27 is the weighting assigned to each of the particles in 

the sequential importance sampling step. The weighting quantifies the accuracy of the a priori state 

estimate given the measurement. In other words, the measurement dictates how ‘good’ each of the prior 

estimates are. This method of calculating the relative likelihood makes no assumptions about the shape 

of the a priori distribution, only that the measurement distribution is Gaussian.   

The a posteriori state estimate is then calculated using these weightings. The update step of the PF 

approximates the continuous a posteriori pdf by discretizing the pdf using 𝑁 samples of 𝑥𝑘,𝑖  a priori 

particles each with a weighting 𝑤𝑘,𝑖. 𝛿𝑥𝑘,𝑖 represents the Dirac delta function, which has a value of zero 

everywhere except for at 𝑥𝑘,𝑖, and a function integral of 1.  

 𝑝(𝑥𝑘|𝑌𝑘) =
𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑌𝑘−1)

∫𝑝(𝑦𝑘|𝑥𝑘 )𝑝(𝑥𝑘|𝑌𝑘−1)𝑑𝑥𝑘
≈ ∑ 𝑤𝑘,𝑖𝛿𝑥𝑘,𝑖(𝑥𝑘 − 𝑥𝑘,𝑖)

𝑁
𝑖=1  [ 28 ] 

(Elfring et al., 2021) 

The Dirac delta function, 𝛿𝑥𝑘,𝑖(𝑥𝑘 − 𝑥𝑘,𝑖), is the limit as the covariance matrix associated with a Gaussian 

distribution goes to zero. The Gaussian distribution has a mean 𝑥̅𝑘, 𝑁~(𝑥̅𝑘, 0). 

 𝛿𝑥𝑘,𝑖(𝑥𝑘 − 𝑥𝑘,𝑖) = 𝑛(𝑥𝑘; 𝑥̅𝑘, 0) [ 29 ] 

2.1.5.3 Resampling 

The same set of particles are used in successive timesteps for the entire estimation period. After multiple 

iterations of the prediction and update steps, a phenomenon known as particle degeneracy occurs. 

Particle degeneracy occurs when the majority of the weighting is associated with only a few particles ( Li 

et al., 2014). This occurs as the measurement, or evidence term of the importance sampling, only affects 

the particles in the weighting term of the update (Abbeel, 2020). Particle degeneracy is prevalent when 

working with high-dimensional systems, when measurement noise is low, or when measurements 
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contain outliers (Wigren et al., 2018). This results in a large computational effort being used on particles 

with low likelihoods and may cause divergence of the PF (Elfring et al., 2021). This phenomenon can be 

avoided by introducing a resampling step.  

Resampling can be performed at any timestep. Resampling aims to reduce the computational effort of 

the PF by preferentially allocating memory to ‘good’ estimates with high likelihoods and discarding the 

‘bad’ estimates with low likelihoods. Resampling occurs by drawing samples from the weighted set of 

particles with replacement. This is done in a way such that particles are resampled with probability 

proportional to their weighting, resulting in preferential selection of high likelihood particles (Doucet & 

Johansen, 2008). Thus, converting weighting into frequency of particles and tightening the distribution.  

There are many resampling methods available. The most basic method of resampling is to simply draw 𝑁 

particles with replacement with the probability of a particle being drawn being equal to its likelihood. 

This is done by independently generating 𝑁 random numbers and then selecting the particle 

corresponding to this random number (Simon, 2006). This changes the distribution of the particles and 

can cause significant repetition of particles with high likelihoods in the resampled set. If this occurs and 

the new set of particles all exist far from the true state, this results in approximation error, known as 

variance.  

One method of reducing variance during resampling is by using an alternative resampling method known 

as low variance resampling or stochastic universal sampling. This is one of the preferred methods of 

resampling for the PF as it reduces the variance, is efficient, and is easy to implement (Doucet & Johansen, 

2008). A basic explanation of this method is selecting all 𝑁 particles in a sequential stochastic manner. If 

all the particles have the same weight, then resampling will result in the same particles as the original 

sample. This is achieved using the cumulative normalized likelihoods. A random number, 𝑟, is initially 

selected between 0 and 
1

𝑁
.  The low variance resampler then systematically sorts through the particles by 

adding a fixed amount, 
1

𝑁
, to 𝑟 using 𝑈 = 𝑟 +

1

𝑁
. The resampling algorithm does this until it finds the first 

particle with its cumulative likelihood greater than or equal to 𝑈 and adds this particle to the resampled 

set. This is done for all 𝑁 resampled particles.  

The low variance resampling algorithm can be written as: 

1) Generate a random number between 0 and 
1

𝑁
. 

𝑟 = 𝑟𝑎𝑛𝑑(0;𝑁−1) 

2) Generate a variable representing the likelihood of the particles. 

𝑐 = 𝑞1 

3) Generate a variable to keep track of the particle number. 

𝑖 = 1 

4) Create a loop that selects particles based on their cumulative likelihood. 

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑁  

𝑈 = 𝑟 + (𝑗 − 1)
1

𝑁
  

𝑤ℎ𝑖𝑙𝑒 𝑈 > 𝑐  
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𝑖 = 𝑖 + 1  

𝑐 = 𝑐 + 𝑞𝑖  

𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒  

𝑥𝑖
+ = 𝑥𝑖

−  

𝑒𝑛𝑑 𝑓𝑜𝑟  

(Thrun et al., 2005) 

The mean and covariance of this resampled distribution represents the updated state estimate mean and 

its covariance.  

2.1.5.4 Particle filter algorithm  

The general term ‘particle filter’ encompasses a number of state estimation methods based on 

importance sampling and Monte Carlo integration. The PF algorithm presented in appendix B.3 

summarizes the prediction, update, and resampling steps presented above. This algorithm uses the 

transition density as the proposal distribution and resampling is performed at every step. This method is 

the most common particle filtering method and is known as the bootstrap PF (Wigren et al., 2018). 

2.1.5.5 Advantages 

The PF is advantageous in its ability to handle complex, highly non-linear systems without the need for 

linear approximations (Simon, 2006). The PF also provides a unique advantage over the Kalman-based 

methods as it is a non-parametric filter, therefore, it can accurately estimate states with non-Gaussian 

and potentially multi-model distributions (Shao et al., 2009). Evidently, these advantages come at the 

cost of larger computational effort required to compute accurate state estimates. However, with modern 

computational power and ease of parallel implementation of the PF, the computational limitations of the 

filter are mostly overcome (Straka & Miroslavšimandl, 2006).  

2.1.5.6 Disadvantages 

Challenges to the practical implementation of the PF algorithm include particle degeneracy, which is 

alleviated using resampling, and sample impoverishment, which occurs as a result of the resampling. 

Other challenges of the PF include the sensitivity of the algorithm to potential noise and plant-model 

mismatch as well as the computational burden of the filter, especially for high-dimensional systems using 

a large number of particles (Elfring et al., 2021).  

2.1.5.7 Sample impoverishment  

A common issue that arises due to the resampling step of the PF is sample impoverishment. In the update 

step, the relative likelihood of each a priori particle conditioned on the measurement, 𝑦𝑘, is calculated 

based on the conditional pdf 𝑝(𝑦𝑘|𝑥𝑘,𝑖
− ) (Simon, 2006). Sample impoverishment occurs when the 

distribution of a priori particles does not significantly overlap with the measurement distribution. When 

there is not significant overlap between the pdfs, only a few particles have large likelihoods and are 

resampled. Thus, the a posteriori particles are represented by a few particles with the same value (Elfring 

et al., 2021). This is especially prevalent in the bootstrap PF when the transition density is used as the 
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importance density since the model prediction typically does not have good overlap with the 

measurements (Pardal et al., 2015). 

This becomes more of a serious issue when there are modelling errors or in the case of a poor 

initialization, causing model predictions to differ significantly from the measurements. Sample 

impoverishment is also exacerbated when the measurement noise is small as this causes a peaked 

likelihood function and inaccurate assignment of weightings (Chatzi & Smyth, 2002). Inappropriately 

small measurement noise causes fairly accurate a priori particles have small likelihoods and be excluded 

during resampling. There can also be insufficient overlap due to the presence of outlier measurements 

(Wigren et al., 2018). 

Sample impoverishment can also result from a small process noise covariance matrix, 𝑄. In the prediction 

step, a posteriori particles from the previous timestep are propagated through the nonlinear state 

transition function to obtain the a priori particles at the current timestep, where uncertainty is introduced 

by adding random process noise to the particles. When there is small value for the process noise, the 

distribution does not diversify. This results in a tight distribution of the particles and less chance of the 

particle distribution overlapping with the measurement distribution (Elfring et al., 2021).  This is 

especially prevalent in time-invariant states which remain unaltered during the prediction step and rely 

on process noise for diversification (Chatzi & Smyth, 2002). By selecting a larger value for 𝑄, also known 

as adding artificial process noise, this induces random variations in the prediction, thus, diversifying the 

particles. Essentially, this changes the importance density and has been shown to reduce the variance of 

the posterior distribution (Snyder et al., 2015).   

As mentioned in sub-section 2.1.5.3, particle degeneracy occurs when the variation among particles is 

too large. Resampling prevents particle degeneracy by ensuring low variance in the distribution of 

particles. However, this low variance induces sample impoverishment (Shao et al., 2009).Therefore, an 

important consideration when implementing the PF is to strike a balance between accuracy and variance.  

Methods for overcoming sample impoverishment include roughening, priori editing, regularized particle 

filtering, Markov chain Monte Carlo resampling, and auxiliary particle filtering (Simon, 2006). These 

methods for overcoming impoverishment inject variance into the filter and thus decrease the accuracy 

of the state estimates but ensure particle diversity. 

2.1.5.8 Robustness of the PF 

Due to the nature of the update-step of the PF algorithm and the resulting phenomenon of sample 

impoverishment, the PF has been proven to show exceptionally poor robustness to plant-model 

mismatch. When the transition density is used as the importance density, the filter becomes increasingly 

sensitive to plant-model mismatch as the importance density is solely dependent on the process model 

and not the current measurement (Chen et al., 2004). In the presence of plant-model mismatch, the 

samples from the transition density lie far from the true state. Once these samples are incorrectly located 

in the state space, the weights cannot always recover the samples as the weights of most particles tend 

to zero and resampling does not correct for the erroneous samples (Jagadeesan et al., 2011). This induces 
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sample impoverishment, resulting in lack of diversification of particles and limited expressiveness of the 

filter.  

In addition, the PF shows poor robustness to inaccurate initialization compared to other filters (Chen et 

al., 2004). The recursive calculation of particle weights and subsequent resampling step prevents 

recovery of the filter when poor initial conditions are used. These inaccurate states caused by poor 

initialization are assigned higher weights and are preferentially resampled causing potential divergence 

of the filter (Chatzi & Smyth, 2002). Once the state estimates sufficiently deviate from the true state 

values, the filter cannot always recover as the likelihood will be small for true state values and resampling 

will not move the distribution of the particles to the correct location (Rawlings et al., 2018).  

2.1.5.9 Particle number selection 

The large number of particles required for accurate state estimation in the PF is the major limitation in 

real-world application due to the excessive computational cost incurred (Alexander et al., 2020). Particle 

number selection is therefore an important consideration in the design of an efficient PF to accomplish 

good estimation accuracy without incurring an inappropriate computational burden.  

By increasing the number of particles infinitely, the posterior pdf approximation converges to the exact 

pdf (Elfring et al., 2021). Thus, the number of particles selected dictates the accuracy of the estimation 

method. A general guideline when selecting the number of particles is to consider the number of states 

being estimated. For a system with 17 state variables, using 1000 particles results in √1000
17

= 1.5 

particles per independent axis (Chen et al., 2005). However, due to the dynamic relationships between 

the states, using a lower number of particles is still viable. Problems arise when a large number of 

particles is required to accurately represent the distributions. This is exacerbated in high dimensional 

state spaces, known as the curse of dimensionality. 

The curse of dimensionality is a major drawback of the PF and limits its application in high dimensional 

estimation (Patwardhan et al., 2012). As the number of states being estimated increases, the number of 

particles required to accurately approximate the distribution increases exponentially (Shao et al., 2009). 

The curse of dimensionality is explained using the likelihood function, given by Equation 26, where 𝑛 is 

the number of state variables. As 𝑛 increases, the distribution of the likelihood narrows (Smith, 2019). 

This results in some particles with extremely large weights compared to others, inducing sample 

impoverishment during the resampling step.  

An important consideration that has been given widespread attention in literature is how to enhance the 

efficiency of PFs and ensure that the computational burden incurred is justified. There have been several 

studies which investigate on-line adaptive selection of the number of particles to improve the filters 

efficiency. A common method in literature is to monitor the sum of the non-normalized likelihoods, 

known as the likelihood approach to adaptive particle filtering (Straka & Miroslavšimandl, 2006) (Shao et 

al., 2009) (Abbeel, 2020). This method is based on the idea that the likelihoods indicate mismatch 

between the importance density and the posterior distribution (Fox, 2003). A large sum of likelihoods 

indicates a sufficient overlap between the importance density and the measurement distribution. 
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Likelihood methods aim to achieve a constant high likelihood by adaptively increasing the number of 

particles used in the algorithm when the likelihood drops below a pre-defined threshold. The goal is to 

cause sufficient overlap of the distribution by increasing the number of particles rather than increasing 

the variance of the system by injecting artificial process noise (Bolić et al., 2002).  

2.1.6 Moving horizon estimator   

In many systems, states and parameters are constrained by physical laws. This is especially prevalent in 

chemical and biochemical processes when pressures, concentrations, and mole fractions are constrained 

to non-negative values (Ungarala et al., 2007). The standard EKF, UKF and PF methodologies do not 

explicitly incorporate bounds, however, there have been methods proposed, such as truncating the 

Gaussian distribution, which constrain the states but result in poorer estimation accuracy (Patwardhan 

et al., 2012). One of the proposed solutions is to explicitly incorporate constraints using the MHE. 

The original idea of an optimization-based state estimator was proposed by Thomas (1975), however, the 

modern MHE algorithm was formally proposed by Robertson et al. (1996).  The MHE quickly gained 

interest after its proposal in 1996 and research was done into investigating its applicability and 

performance relative to other established state estimation techniques.  

The MHE is derived from the full information estimator. The optimization problem for the full information 

estimate, as derived by Haseltine & Rawlings (2003) and Larsson (2015), is available in appendix A.6. The 

full information estimate is derived from the maximum a posteriori estimate as: 

  min
𝑥0,…  ,𝑥𝑘 

||𝑥0 − 𝑥̅0||𝑃0−1
2

+∑ ||𝑦𝑗 − ℎ(𝑥𝑗)||
𝑅−1

2
𝑘
𝑗=1 + ∑ ||𝑥𝑗+1 − 𝑓(𝑥𝑗)||

𝑄−1

2
𝑘−1
𝑗=0  [ 30 ] 

The optimal full trajectory of states, { 𝑥̂0, …  , 𝑥̂𝑘 }, from timestep 0 to the current timestep 𝑘 is solved 

for by minimizing this objective function in an optimization routine. The objective function consists of 

three terms: the difference between the initial state estimate and the true value of the initial state, the 

difference between the measurement prediction using the state estimate and the actual value of the 

measurement, and the difference between next state estimate and the model prediction for the next 

state estimate. Each of the three terms are weighted according to their uncertainties. The full information 

estimate uses all available past measurements to estimate the full state trajectory { 𝑥̂0, …  , 𝑥̂𝑘 }. 

Evidently, the dimensionality of the problem quickly becomes intractable as the time increases. The MHE 

reduces this computational effort of the full information estimate by solving the optimization over a 

sliding window.  

The MHE reformulates the state estimation problem as a least-squares optimization problem by solving 

for a horizon of state estimates,  { 𝑥̂𝑘−𝐻 , …  , 𝑥̂𝑘 }, using a horizon of past measurements (Diaz et al., 

2017). The objective function of the optimization problem is given by: 

min
𝑥k−N,…  ,𝑥𝑘 

Z(𝑥̂𝑘−𝑁,𝑘) +∑ ||𝑦𝑗 − ℎ(𝑥𝑗)||
𝑅−1

2
𝑘
𝑗=𝑘−𝐻+1 +∑ ||𝑥𝑗+1 − 𝑓(𝑥𝑗)||

𝑄−1

2
𝑘−1
𝑗=𝑘−𝐻  [ 31 ] 

(Elsheikh et al., 2021) 
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The horizon length is 𝐻. The smaller the value of 𝐻, the smaller the horizon and less computational effort 

is required. A larger the value of 𝐻 means a longer horizon length, which may improve the estimation 

accuracy at the expense of increased computational effort. The remainder of the past measurements and 

predictions not included in the window are incorporated in an arrival cost, 𝑍(𝑥̂𝑘−𝑁,𝑘) (Larsson, 2015). 

The MHE collapses to the standard KF when applied to an unconstrained linear model with an infinite 

horizon length (Alexander et al., 2020).  

2.1.6.1 Arrival cost 

The arrival cost summarizes all the past information that is not included in the horizon. The arrival cost 

can be assumed zero, however, there is not guaranteed convergence and a large horizon length is 

required for accurate state estimation (Larsson, 2015). Alexander et al. (2020) used this method of 

excluding the arrival cost from the MHE cost function in a comparative analysis of the MHE. Although the 

arrival cost was ignored, the MHE still performed well, and showed superior estimation accuracy 

compared to the EKF.  

Alternatively, the arrival cost can be approximated using filtering or smoothing methods. The accuracy of 

the MHE is severely impacted by crude approximation of the arrival cost (Al-Matouq & Vincent, 2015). 

Inaccurate approximations of the arrival cost result in a biased state estimate and possibly lead to 

divergence of the estimator. This is especially prevalent when short horizon lengths are used as the 

measurement data in the horizon cannot compete with the prior information given by the arrival cost 

(Haseltine & Rawlings, 2003). The simplest and most common arrival cost approximations are filtering 

methods of approximation, which are known to be erroneous. 

Both filtering and smoothing methods define the arrival cost as: 

  𝑍(𝑥̂𝑘−𝐻,𝑘) = (𝑥̂𝑘−𝐻,𝑘 − 𝑥̅𝑘−𝐻)
𝑇
𝑃𝑘−𝑁
−1 (𝑥̂𝑘−𝐻,𝑘 − 𝑥̅𝑘−𝐻) + 𝜌𝑘−𝐻 [ 32 ] 

𝑥̂𝑘−𝐻,𝑘 is the horizons initial state estimate in the optimization routine. 𝑥̅𝑘−𝐻 is the approximated 

estimate for the initial state in the horizon and 𝑃𝑘−𝐻 is the associated covariance. 𝜌𝑘−𝐻 is an additional 

term which is used to account for overlap of measurements between the horizon and the window, used 

in the smoothing method. Therefore, 𝜌𝑘−𝐻 = 0 for all filtering methods. (Elsheikh et al., 2021)  

a) Filtering method 

The filtering method involves minimizing the difference between the initial state estimate in the horizon 

and a single approximated state estimate (Haseltine & Rawlings, 2003). The single state estimate, 𝑥̅𝑘−𝐻, 

and estimation error covariance, 𝑃𝑘−𝐻
−1 , are commonly estimated using the EKF approximation, the 

smoothed EKF approximation, or QR approximation. The EKF approximation is one of the simpler 

methods of arrival cost approximation and is used extensively in real-world applications. Other filters, 

such as the UKF, can also be used to approximate the arrival cost. More accurate approximation in 

nonlinear systems is achieved via the UKF, however, this comes at the cost of increased computational 

requirements (Qu & Hahn, 2009). Furthermore, for long horizon lengths the benefits of more accurate 
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approximations are reduced as error in the arrival cost becomes less significant as the horizon length 

increases.  

b) Smoothing method 

The smoothing method involves minimizing the difference between a trajectory of state estimates in the 

horizon and a single state estimate (Haseltine & Rawlings, 2003). Elsheikh et al. (2021) found that 

smoothing methods consistently outperform filtering methods in the presence of poor initial guesses. 

However, smoothing schemes typically require up to double the computational time compared to 

filtering schemes (Elsheikh et al., 2021).  

2.1.6.2 MHE optimization routine 

The optimization problem solves for a horizon of state estimates,  { 𝑥̂𝑘−𝐻 , …  , 𝑥̂𝑘 }. Therefore, at each 

point in time, the optimization routine must be initialized with a guess for each of the state estimates in 

the current horizon. Initialization for solving the first estimate requires a guess of the state estimates in 

the initial horizon { 𝑥̂1, …  , 𝑥̂𝐻  }.  These guesses are typically calculated using one of the other nonlinear 

state estimators such as the EKF, UKF or PF (Ramalingam, 2013). The accuracy of this initialization has a 

significant impact on the efficiency and accuracy of the optimization routine. Ramalingam (2013) found 

that initialization of the MHE algorithm with the PF outperforms initialization with the EKF in a system 

displaying a high degree of nonlinearities. 

Furthermore, several optimization algorithms can be used in the optimization routine of the MHE. 

Alexander et al. (2020) highlight the dependency of the MHE on an appropriate optimization algorithm. 

The study found that different optimization algorithms have a significant impact on both the estimation 

accuracy and, most notably, the computational time of the MHE. The study found that the MHE using the 

fmincon optimization routine achieved an average computational time of 46.2 𝑠 and the MHE using 

modSQP yielded an average computational time of 2.92 𝑠.   

2.1.6.3 Horizon length selection 

The horizon length is a critical tuning parameter in the MHE algorithm. Longer horizon lengths typically 

result in more accurate state estimates as they overcome erroneous arrival cost approximations (Al-

Matouq & Vincent, 2015). However, the computational effort of the MHE algorithm increases linearly 

with the horizon length. Therefore, the MHE can quickly become intractable for longer horizon lengths. 

Inappropriate horizon length selection results in large estimation errors, intractable computational times, 

inactive constraints on the states resulting in wasted computational effort (Al-Matouq & Vincent, 2015), 

or potential instability and filter divergence. Literature studies typically investigate the impact of 

increasing horizon length on the estimation error of the MHE. Another consideration when selecting the 

horizon length is the time constants of the states in the process model (Qu, 2009).  

a) Horizon length vs estimation error  

An optimal horizon length should be selected to achieve an appropriate balance between the estimation 

accuracy and the computational effort. Table 1 summarizes the findings from several literature studies 
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investigating the relationship between horizon length selection in the MHE and the accuracy of  the 

estimated states.   

Table 1: A summary of the results from various literature studies investigating the effect of horizon length 

on the estimation accuracy of the MHE. 

Study 
reference 

Physical process Horizon 
length 

Estimation 
accuracy 

metric 

Findings 

(Mesbah et 
al., 2011) 

Batch crystallization 
(Simulated process 
data) 

3 − 7 
(300 − 700𝑠) 

NRMSE There was a small decrease of 0.04 
in the NRMSE of the estimated state 
as the horizon length was increased 
from 300 − 700𝑠. 

(Larsson, 
2015) 

CSTR 
(Simulated process 
data) 

2 − 20 
(0.4 − 4𝑠) 

MSE The study showed surprising results 
of an initial increase in the MSE as 
the horizon length increased, 
attributed to the cost function 
approximation error inducing a large 
MSE. The MSE then decreased after 
this initial increase. 
The MSE under short horizon lengths 
of 2 was already small, 0.0043 and 
0.00428 for concentration and 
temperature state estimates, 
respectively. A horizon length of 20 
only slightly decreased this MSE to 
0.0039 and 0.00418. 

(Larsson, 
2015) 

Thermal power plant 
(Simulated process 
data) 

1 − 7 MSE The solver failed under a horizon 
length greater than 7. The majority 
of the states MSEs decreased with 
an increase in horizon length. 
However, this did not occur for all 
states and is hypothesized to be a 
result of the complexity of the 
dynamic model and sensitivity of the 
solver algorithm. 

(Qu & 
Hahn, 
2009) 

Nonisothermal CSTR 
(Simulated process 
data) 

3 − 1 
(4.2 − 14𝑠) 

MSE MSE decreased as horizon length 
increased. 

(Diaz et al., 
2017) 

Estimation of density 
and viscosity of 
mineral slurry 
(Real plant data) 

5 − 10 
(0.5 − 1𝑠) 

RMS, RSD, 
IA 

All metrics remained relatively 
constant with an increase in the 
horizon length. Some metrics 
showed an increase, therefore, the 
shortest horizon length was 
selected. 

(Ramalinga
m, 2013) 

Benchmark 
nonlinear estimation 
problem 
(Simulated process 
data) 

2 − 10 MSE The MSE of the estimated state 
decreased from 1.95 × 104 to 
1.23 × 104 as the horizon length 
increased from 2 − 10. 
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The findings from Table 1 show that typically as the horizon length increases, the estimation accuracy of 

the MHE improves. However, in more complex systems with a large set of interacting state variables, this 

is not always the case due to the complex dynamics of the system. It is evident from the studies that long 

horizon lengths are not commonly used in practice, even in simple systems estimating a small number of 

state variables. This is a result of the large computational burden incurred by long horizon lengths, that 

quickly becomes impractical for real-world application. Based on these results, the computational 

requirements of the MHE for estimation in a complex system involving a large set of state variables are 

expected to be intractable even for relatively short horizon lengths. This ultimately leads to the horizon 

length being selected purely based on the computational limitations (Al-Matouq & Vincent, 2015) (Dubois 

et al., 2018). Based on the literature findings, the horizon length should be selected as the maximum 

horizon length achievable whilst maintaining an appropriate computation time.  

b) Time constants of the dynamic model 

For a linear continuous-time system with dynamics defined by: 

  𝑥̇ = 𝐴𝑥  [ 33 ] 

The solution to Equation 33 is given by: 

  𝑥(𝑡) = exp(𝐴𝑡) 𝑥(0)  [ 34 ] 

The eigenvalues of the state transition matrix, 𝐴, give an indication of the boundness of the system 

solution and therefore explain the stability of the system (Simon, 2006).  A negative eigenvalue indicates 

the term on the RHS of Equation 33 becomes smaller with time and decreases to zero, indicating the 

system reaches a new steady state after a disturbance. A positive eigenvalue indicates the term on the 

RHS will grow exponentially. A zero eigenvalue indicates that the accumulation term on the RHS is 

independent of the state, 𝑥. Thus, the states associated with zero eigenvalues are known as integrators.  

The time constants, 𝜏, are calculated from the eigenvalues, 𝜆, of the system matrix 𝐴.  Whereby: 

  𝜏 = −
1

𝜆
  [ 35 ] 

The time constants represent the speed of the response of a system to reaching a new steady state after 

a disturbance. The smallest negative eigenvalue corresponds with the slowest time constant. Thus, the 

state variables associated with the smallest negative eigenvalue have the slowest dynamics. Conversely, 

the largest negative eigenvalue corresponds with the shortest time constant, and the associated states 

have the fastest dynamics. When solving for the exact solution of the states, both the longest time 

constant and shortest time constant should be considered. The largest time constant dictates an 

appropriate integration interval and the smallest time constant indicates an appropriate step size for 

integration.  

A system is considered to be stiff when the difference between the fastest and longest time constants is 

large. A stiff system of equations requires long integration intervals using short timesteps, making 

integration numerically sensitive and resulting in failure of the solver or the solver requiring long 

computation times. Stiff systems of equations, also known as systems with time-scale multiplicity, are a 
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common phenomenon in chemical processes (Chen et al., 2011). Stiff systems of equations not only affect 

the stability of the numerical integration method, but also have a significant impact on optimization 

routines when the cost function involves computation of the solution of stiff equations, such as in model-

predictive control and optimization-based state estimation. When the stiffness of a system is not 

considered, MPC and the MHE become ill-conditioned and potentially unstable (Yin & Liu, 2017). When 

the horizon length selected is too short, the system no longer converges (Debnath et al., 2021). Long 

horizon lengths are required to ensure the MHE algorithm stabilizes in the presence of time-scale 

multiplicity, which make the optimization problem impractical in real-world application due to the 

increased computational burden.  

Solutions have been proposed for handling stiff systems in the MHE problem, such as a distributed MHE 

proposed by Yin & Liu (2017) or a modified MHE technique using selective measurements proposed by 

Wang et al. (2017).  Debnath et al. (2021) proposed a unique technique for handling time-scale 

multiplicity by splitting the system into slow and fast dynamics and using different state estimation 

techniques to handle the two subsystems. An EKF was used to handle state estimation of the states with 

fast dynamics. The EKF rapidly computes these state estimates at the expense of reduced accuracy. 

Whilst the second subsystem has slow dynamics but requires high accuracy, therefore, the MHE is used 

for state estimation to accurately handle nonlinearities at the expensive of a larger computational effort. 

Another technique known as singular perturbation theory is a well-known technique for handling stiff 

systems in process control applications that involves reduced order modelling based on separating 

dynamics with different time-scales.   

c) Singular perturbation theory 

Singularly perturbed systems are characterized as being two-time-scale systems, where the states of the 

system can easily be separated as fast or slow based on the speed of their dynamics. A nonlinear 

singularly perturbed system can be modelled as: 

  𝑥̇𝑠 = 𝑓𝑠(𝑥𝑠, 𝑥𝑓 , 𝑢, 𝑡, 𝜀)  [ 36 ] 

  𝜀𝑥̇𝑓 = 𝑓𝑓(𝑥𝑠, 𝑥𝑓 , 𝑢, 𝑡, 𝜀)  [ 37 ] 

Where 𝑥𝑠 represent the slow states with dynamics 𝑓𝑠 . 𝑥𝑓 represent the fast states with dynamics 𝑓𝑓. The 

scalar value 𝜀 represents a small value perturbation parameter. The singular perturbation theory first 

neglects the fast dynamics by setting 𝜀 = 0. Thus, the dynamics of the fast variables are instantaneous 

and this forces the fast state variables to converge to their quasi-steady state. (Subbararn & Calise, 2001) 

 0 = 𝑓𝑓(𝑥𝑠, 𝑥𝑓 , 𝑢, 𝑡, 0)  [ 38 ] 

The singular perturbation theory then introduces the effects of the fast states within the model as 

boundary layer corrections (Garg et al., 2016).  

2.1.6.4 Advantages of the MHE  

The major advantage of the MHE lies in its ability to implicitly incorporate constraints on the states and 

handle the nonlinear equations without approximations. Haseltine & Rawlings (2003) demonstrate the 
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superior state estimation performance achieved with the MHE over the EKF for estimation of the 

concentrations in a CSTR. The study highlights that in the case where multiple steady states satisfy the 

steady-state measurement, the incorporation of constraints in the MHE prevents convergence to 

physically unrealizable states. Qu (2009) also highlight the benefits of the constrained MHE, as it 

converges to accurate estimates for state estimation in a batch reactor, whilst the EKF and UKF converge 

to physically unrealizable states.  

Furthermore, the MHE has an intrinsic robustness compared to other state estimation techniques 

(Alexander et al., 2020). The MHE has been proven to show superior robustness to erroneous initial 

conditions (Wan & Keviczky, 2010) (Haseltine & Rawlings, 2003).  

An additional advantage of the MHE relates to the system observability. The EKF is the standard KF 

applied to a linearized system, and thus, requires the system to display full linear observability to carry 

out successful state estimation. Some systems are not linearly observable as they are not observable 

based on a steady-state measurement (Haseltine & Rawlings, 2003). For these systems, process dynamics 

are required for observability. These types of systems cause the EKF to fail whilst the MHE allows for 

sufficient excitation of the states over the horizon period to induce observability in the system. In other 

words, the MHE can handle non-uniform observability when input excitation over a horizon is required 

for system observability (Wan & Keviczky, 2010).  

2.1.6.5 Disadvantages of the MHE 

The MHEs’ advantages over other filters lie in its formulation of the state estimation problem as an 

optimization problem, however, this advantage also proves to be the greatest limitation of the method. 

The computation burden of solving an optimization problem at each time step, even for short horizon 

lengths, often proves to be impractical for real-world application (Rao et al., 2001). The computational 

requirements of the MHE are typically three orders of magnitude larger than the requirements of the EKF 

(Alexander et al., 2020). For systems that require rapid state estimation, the computational time required 

for the MHE is often inappropriate. Additionally, for systems with fast process dynamics and short 

sampling times, solving an optimization problem at every time step is impractical (Campani et al., 2019).  

With the major limitation of the MHE being the computational burden, there exist many studies aimed 

at augmenting the algorithm to reduce the computational effort. Some of these methods include 

incorporating nonlinear programming algorithms (Zavala et al., 2008), careful selection of the 

optimization strategy, and reduced-order modelling (Alexander et al., 2020). The simplest solution to 

reducing computational effort of the MHE is to simplify the process model, commonly done by reduced-

order modelling. A lower-order approximation of the original process model can be used for any of the 

aforementioned filters to estimate a smaller subset of states to reduce the computational requirements 

of the filter (Simon, 2006).  However, by simplifying the original model and reducing the number of state 

estimates, this can compromise the accuracy of estimates and only obtains a small subset of state 

estimates and not the full state information. An alternative method, mentioned in sub-section 2.1.6.3, 

involves separating the system by exploiting time-scale multiplicities of the states and implementing a 
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distributed MHE (Alexander et al., 2020). This can also be used to significantly reduce the computational 

requirements of the MHE.  

Another limitation of the MHE is the lack of a general guideline on how to implement the algorithm 

(Alexander et al., 2020). The performance of the MHE in terms of estimation accuracy and computational 

effort heavily depends on the choice of an optimization method, horizon length, arrival cost 

approximation, initialization values, and constraint selection. However, the selection of these parameters 

is complex and, without a general set of heuristics, can require copious time and effort and often 

ultimately becomes a trial-and-error approach to selection.  

2.1.7 Tuning of state estimators  

Implementation of the EKF, UKF, PF, and MHE algorithms all require a common set of user-defined tuning 

parameters to be supplied to the state estimators prior to implementation. The only independent 

engineering required for implementation of the state estimation algorithms is the engineering design 

choice for the tuning parameters. These common tuning parameters are the initial state estimate, 𝑥̂0, the 

initial state estimation error covariance, 𝑃0, the measurement noise covariance matrix, 𝑅, and the 

process noise covariance matrix, 𝑄. The PF and MHE have additional tuning parameters unique to the 

algorithms, namely the number of particles in the PF and the horizon length in the MHE. These 

parameters are known as tuning parameters of the state estimator as they dictate the convergence of 

the state estimate, 𝑥̂𝑘, to the true value of the state, 𝑥𝑘, thus, dictating the state estimation performance. 

Selection of these tuning parameters should be carried out using engineering knowledge of the specific 

system and should consider the desirable characteristics of the state estimator for the specific 

application. 

2.1.7.1 Initial state estimate 

For chemical and bioprocesses, the initial state estimate, 𝑥̂0, is widely considered a non-critical tuning 

parameter as poor initialization typically only impacts the initial stages of state estimation and rarely 

shows long-term effects on the performance (Saha et al., 2011). In short time applications, initialization 

error can have more serious consequences. Although accurate initialization is desirable, the standard KF 

algorithm does not necessitate an accurate initial state estimate and convergence of the filter is 

guaranteed, irrespective of the accuracy of initial conditions (Reid, 2001). Convergence in the presence 

of initialization error is not guaranteed for nonlinear filters, thus, the accuracy of 𝑥̂0 should be more 

carefully considered in nonlinear state estimation.   

The EKFs convergence is impacted by the linearization error. Initial linearization error occurs when 𝑥̂0 is 

far from the actual initial state and the state transition matrix and measurement matrix linearized around 

𝑥̂0 do not accurately approximate the true system. For the EKF, it has been shown that as the initialization 

error increases, the state estimation error increases (Schneider & Georgakis, 2013). When the 

initialization error becomes very large, the state estimate can diverge if the EKF converges to another 

state far from the true solution (Louédec & Jaulin, 2021). For both the EKF and UKF, when poor initial 

guesses are made but remain within an acceptable range of the true state, the filters will simply take 

Stellenbosch University https://scholar.sun.ac.za



 

32 

longer to converge to the true state. However, when the initial guesses are exceptionally poor, both filters 

tend to diverge. Convergence can be proven for the PF in the presence of estimation error. However, 

when poor initial state estimates are made, the PF takes many iterations to reach the true state (Chen et 

al., 2004). When very poor initial estimates are made, the PF may diverge and never reach the true state 

(Elfring et al., 2021). In a study done by Haseltine & Rawlings (2003), several examples involving state 

estimation in batch reactors showed failure of the EKF due to poor initial guesses resulting in convergence 

to physically unrealizable states. The MHE was tested on all several examples, where it displayed more 

accurate state estimation and improved robustness against poor initial conditions resulting from the 

optimization-based nature of the method. Optimization-based algorithms show improved robustness to 

poor initialization over recursive-based methods as constraints on the states avoid divergence of the filter 

to physically unrealizable states.  

The initial state estimate should be chosen within an acceptable range of the true state to avoid poor 

estimation performance and possible divergence. The initial state estimate is usually accurate as it is can 

be obtained from the measurement at time zero or an average of off-line measurements. Additionally, 

special care should be taken when initializing unmeasured states as they are not corrected in the update 

step and are more susceptible to long-term effects of initialization error. 

2.1.7.2 Initial state estimation error covariance matrix  

In theory, the initial state estimation error covariance, 𝑃0, is calculated using Equation 39 (Schneider & 

Georgakis, 2013). 

 𝑃0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)
𝑇]  [ 39 ] 

In reality, the ground truth value of the initial state, 𝑥0, is unknown. It is typically assumed that the model 

states are uncorrelated, therefore, 𝑃0 is a diagonal matrix and the diagonal elements of 𝑃0 are guessed 

based on the confidence of the guess made for 𝑥̂0. Ensuring 𝑃0 and 𝑥̂0 are consistent with one another is 

regarded as the most important consideration when selecting 𝑃0. If 𝑥̂0 is randomly guessed, then 𝑃0 

should be large. Conversely, if 𝑥̂0 is considered accurate, then the value of 𝑃0 should be small. An 

inconsistent pair of initial conditions can result in divergence of the filters (Schneider & Georgakis, 2013). 

In a study done by Schneider & Georgakis (2013), the EKF was able to converge to the true state when 

the initial guesses were poor but consistent. When 𝑃0 and 𝑥̂0 were inconsistent, the EKF did not converge 

and the filter displayed large estimation errors. The study also found that the UKF showed marginally 

better performance than the EKF under inconsistent initialization. Studies done by Geetha et al. (2014) 

and Mangold et al. (2007) both show that the UKF displays superior estimation performance than the EKF 

under erroneous but consistent initial conditions.   

2.1.7.3 Measurement noise covariance matrix 

The measurement noise covariance matrix, 𝑅, is typically acquired prior to filter implementation via off-

line sensor calibration information (Mohan et al., 2015). A set of measurement samples are taken from 

sensors and analyzed to determine the nominal standard deviation on each measurement, 𝜎𝑚𝑒𝑎𝑠. 𝑅 is 

assumed to be a diagonal matrix with diagonal entries equal to 𝜎𝑚𝑒𝑎𝑠. It is assumed that 𝜎𝑚𝑒𝑎𝑠 is time-
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invariant, therefore, a constant 𝑅 matrix is used throughout the entire state estimation period (Schneider 

& Georgakis, 2013). 𝑅 is calculated as:  

 𝑅 = 𝑑𝑖𝑎𝑔(𝜎𝑚𝑒𝑎𝑠
2 )  [ 40 ] 

Underestimating the value of 𝑅 can result in the filter having false confidence in the measurements and 

if the measurements are noisy, the filter may diverge. A smaller value of 𝑅 results in faster convergence 

of the KF, however, the estimation error covariance remains large. The PF suffers from exacerbated 

sample impoverishment when 𝑅 is small as there is less chance of overlap between a priori particles and 

the measurements (Arulampalam & Ristic, 2000). Imtiaz et al. (2006) investigated the effects of 

measurement noise on the PF and found that there exists a conservative value for 𝑅 that maintains the 

integrity of the filter whilst avoiding excessive sample impoverishment. 

Overestimating the value of 𝑅  results in a filter that has false confidence in the model prediction and, in 

the presence of plant-model mismatch, the filter has a higher chance of divergence (Schneider & 

Georgakis, 2013). However, this makes the filter more robust to noisy measurements. In the standard KF, 

convergence is slower and the filter has a decreased bandwidth, but the estimation error covariance is 

smaller, indicating more confidence in the final state estimates (Jumaa et al., 2010). For a larger 𝑅, the 

PF is more robust to sample impoverishment as there is greater chance of overlap between the prior 

particles and the measurement.  

2.1.7.4 Process noise covariance matrix 

Careful selection of 𝑅 and 𝑄 is critical as the ratio of these tuning parameters in the gain term of Equation 

8 dictates the state estimators’ performance. As mentioned above, a fairly accurate value for 𝑅 can be 

easily selected. However, an accurate choice for 𝑄 is not as easily defined. Therefore, the process noise 

covariance matrix, 𝑄, is often considered the most critical tuning parameter (Saha et al., 2011).  

As explained in sub-section 2.1.2, the process noise represents the stochastic process partly driving the 

behaviour of the state variables. At every point in time, there is a model prediction obtained by 

propagating the previous state estimate over a specified timestep. If the process noise was not 

considered, the state behaviour over the timestep is driven by the deterministic model. The process noise 

informs the state estimator about the level of unmodelled change in the state value over the course of 

that timestep and represents the true random stochastic nature of the state (Mohan et al., 2015). 𝑄 

should account for any unmodelled disturbances and dynamics of the system (Imtiaz et al., 2006). By 

artificially injecting additional process noise, in the form of a fictitious large 𝑄, this can be used to account 

for any uncertainties in the process model that would reflect as modelling error in practice (Simon, 

2006)(Reid, 2001).  

𝑄 is usually assumed to be a constant throughout the state estimation period. The process noise between 

the states is assumed to be uncorrelated, therefore, 𝑄 is a diagonal matrix. It is common practice that 

the diagonal elements are initially chosen to be small and by trial-and-error are tuned to ensure good 

performance of the filter (Schneider & Georgakis, 2013). There exist other methods for estimating 𝑄, 

such as the method presented by Valappil & Georgakis (2004). The proposed methodology involves on-
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line computation of a time-varying, non-diagonal 𝑄 based on the covariance matrix associated with the 

parameters. The time-varying value of 𝑄 enhancing the filters robustness to modelling error and 

improves state estimation accuracy. However, an additional computational burden is expended for this 

calculation. 

Underestimating the value of 𝑄 leads to the filter having a false confidence in the model, resulting in 

divergence of the filter in the presence of plant-model mismatch. The filter has a lower bandwidth and 

tracks the model closely (Simon, 2006).Overestimating 𝑄 gives the filter an improved robustness in the 

presence of modelling errors (Reid, 2001). For large values of 𝑄, the filter has a high bandwidth and is 

more responsive filter with faster convergence (Simon, 2006)(Jumaa et al., 2010). A falsely assumed large 

𝑄 leads to false confidence in the measurements, thus, in the presence of noisy measurements, the state 

estimates display undesirable oscillatory behavior (Imtiaz et al., 2006). In the PF, a large 𝑄 results in more 

diverse particles after the prediction step. The prior density, used as the importance density in the update 

step, has a larger variance and sample impoverishment is reduced making the PF more robust to 

modelling error. Furthermore, adding artificial process noise has been proven to decreases the variance 

of the posterior distribution, therefore, the final state estimate distribution has a smaller variance (Bolić 

et al., 2002). However, there exists a bias-variance trade-off as increasing the process noise resulting in 

less accurate state-estimates by introducing off-model predictions causing bias (Wigren et al., 2018) 

(Bolić et al., 2002).  

2.1.8 Application of state estimators  

Once a state estimation algorithm has been implemented, accurate state estimates are readily available 

to the user. These state estimates can be used directly for process monitoring or in other applications 

such as model-based control and model-based fault detection.  

2.1.8.1 Model-based control 

Model predictive control is a feedback control algorithm that uses the dynamic model of a process, plant 

measurements, known inputs to the process, and knowledge of past control moves to make a prediction 

for future control actions (Kumar & Ahmad, 2012). This control algorithm requires measurements for the 

complete set of state variables, which are typically not available. This limitation is overcome using the 

state estimate to provide MPC will the full state information. The use of a state estimate in the MPC 

algorithm has been proven to show increased robustness of the controller to measurement noise, whilst 

retaining good control performance (Ricker, 1990). However, control performance can degrade under 

high process noise and plant-model mismatch (Mesbah et al., 2011).  

2.1.8.2 Model-based fault detection 

Model-based fault detection involves two steps: residual generation and residual evaluation (Rahoma, 

2021). Residuals are calculated as the difference between state predictions, made by a process model, 

and the actual values of the state, obtained from the measurements. Residuals can be generated using a 

parity space approach, observer-based approach, filter-based approach, or a parameter identification 

approach (Frank, 1990). In the filter-based approach, the residual is equivalent to the innovation term in 
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the state estimation algorithm. The innovation, 𝛾, is defined as the difference between the measurement 

at time 𝑘 and the state estimator prediction for the measurement at time 𝑘. 

 𝛾𝑘 = 𝑦𝑘 − ℎ(𝑥𝑘
−) [ 41 ] 

Based on the derivation of the EKF, the innovation sequence is zero-mean white noise with a covariance 

𝜂𝑘: 

 𝜂𝑘 = 𝐻𝑘𝑃𝑘𝐻𝑘
𝑇 + 𝑅 [ 42 ] 

(Chetouani, 2008a) 

Residual evaluation then classifies this residual signal as either nominal or faulty. Residual evaluation is 

typically achieved via statistical tests on the residuals such as CUMSUM, sequential probability ratio 

testing (SPRT), generalized likelihood ratio (GLR) hypothesis tests, weighted-sum-squared residual 

(WSSR),  𝜒2 test, and multiple hypothesis testing (Yang, 2004).  

2.1.9 State estimation performance  

The performance of a state estimation technique is typically quantified using two metrics; the average 

computation time per iteration and the estimation error (Alexander et al., 2020).  

The computation time per iteration quantifies the computational burden of the filter. The computational 

time required to obtain a state estimate is calculated as the elapsed time taken to run the state estimation 

algorithm over one timestep.  

The most popular method of quantifying the estimation accuracy in state estimation literature studies is 

with the mean squared error (MSE) (Schneider & Georgakis, 2013). The MSE represents the average 

squared error of the state estimates over the entire estimation period. Therefore, the larger the MSE, the 

poorer the filters estimation accuracy.  

The MSE is calculated as: 

 𝑀𝑆𝐸 =
1

𝑇
∑ (𝑥𝑘 − 𝑥̂𝑘)

𝑇(𝑥𝑘 − 𝑥̂𝑘)
𝑇
𝑘=1   [ 43 ] 

Where 𝑥𝑘 is the ground truth value for the state at time 𝑘 and 𝑥̂𝑘 represents the state estimate at time 

𝑘.  𝑇 is the estimation period over which the MSE is assessed. In appendix A.1 the standard KF is derived 

from the recursive least squares estimator. The optimal gain, the Kalman gain, is derived by defining 

optimality as minimizing the sum of squared estimation errors. Therefore, the optimization objective 

matches the performance measure, the MSE.  

The MSE is scale-dependent, therefore, state variables with vastly different scales of units cannot be fairly 

compared. The MSE can be normalized to account for this. Alternatively, the mean absolute percentage 

error (MAPE) can be calculated. The MAPE is scale-free metric and is more easily interpretable than the 

MSE. The MAPE is calculated as: 

 𝑀𝐴𝑃𝐸(%) =
1

𝑇
∑

|𝑥𝑘−𝑥𝑘|

𝑥𝑘

𝑇
𝑘=1 × 100  [ 44 ] 
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The absolute percentage error (APE) gives the estimation error for each of the states, 𝑥𝑘 − 𝑥̂𝑘, as a 

percentage of the ground truth value for the states. The MAPE represents the mean of the APEs over an 

estimation period,  𝑇. Similar to the MSE, the larger the MAPE, the larger the estimation error associated 

with the particular state estimate and the poorer the estimation accuracy.  

Evidently, both the MSE and the MAPE can only be calculated when the ground truth values of the states, 

𝑥𝑘, are exactly known. Therefore, the MAPE and MSE metrics cannot be calculated in industrial 

applications and are used in theoretical studies to assess and compare the performance of state 

estimation techniques.   

2.1.10 Plant-model mismatch 

Plant-model mismatch occurs when the process model differs from the real-world plant. This has a 

significant impact on any method that relies on accurate knowledge of a process model. Model-based 

state estimation exhibits significant performance deterioration in the presence of plant-model mismatch.  

Plant-model mismatch increases the estimation error associated with the prediction step in the state 

estimation algorithm as the model prediction is less accurate (Bavdekar et al., 2013). This prediction error 

negatively impacts the accuracy of the state estimates, deteriorating the performance of state 

estimators. Plant-model mismatch is a common cause of divergence in EKFs in industrial applications 

(Schneider & Georgakis, 2013). A number of studies have shown that careful tuning of the UKF enhances 

the robustness of the filter in the presence of plant-model mismatch (Geetha et al., 2014) (Mangold et 

al., 2009). A study done by Salau et al. (2014) compared a MHE and constrained EKF in the presence of 

unexpected disturbances. The study found that the MHE is more robust to plant-model mismatch as it 

solves for the optimal state estimate using a horizon of past measurements and not just the most recent 

measurement as in the recursive estimator. In literature, it has been noted that the PF shows particularly 

poor robustness to modelling error whilst the EKF and UKF maintain their performance due to the nature 

of the Kalman-update (Jagadeesan et al., 2011). The PFs lack of robustness against modelling error arises 

from the sampling step in the algorithm (Rawlings et al., 2018).  

Plant-model mismatch reflects as modelling error within the prediction step of the state estimators. 

Therefore, tuning the value of the process noise covariance supplied to the state estimator to account 

for potential modelling uncertainties has been shown to improve the robustness of filters to plant-model 

mismatch (Bavdekar et al., 2013). By inflating the value of the process noise covariance matrix or 

decreasing the magnitude of the measurement noise covariance, this induces less trust in the process 

model and more trust in the measurements and reduces the effects of plant-model mismatch on the 

estimation accuracy (Larsson, 2015).  

2.1.10.1 Simulation of plant-model mismatch 

Plant-model mismatch occurs naturally in industrial processes. For research studies that involve synthetic 

generation of plant data, plant-model mismatch can be simulated via structural uncertainty or parametric 

uncertainty (Bavdekar et al., 2013)(Shyamal, 2018)(Mesbah et al., 2011). The true plant dynamics are 

represented by some equation: 
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 𝑥𝑘+1 = 𝑓𝑝𝑙𝑎𝑛𝑡(𝑥𝑘, 𝑢𝑘 , 𝑝𝑝𝑙𝑎𝑛𝑡,𝑘) [ 45 ] 

The nonlinear model of the process used in the state estimation algorithm is: 

 𝑥𝑘+1 = 𝑓𝑚𝑜𝑑𝑒𝑙(𝑥𝑘, 𝑢𝑘, 𝑝𝑚𝑜𝑑𝑒𝑙,𝑘) [ 46 ] 

Structural mismatch occurs when the model is an oversimplified representation of the real-world process 

(Jagadeesan et al., 2011). Therefore, 𝑓𝑝𝑙𝑎𝑛𝑡 is structurally different from 𝑓𝑚𝑜𝑑𝑒𝑙 . The simulation of plant-

model mismatch via structural uncertainty is not well-documented in literature and has been shown to 

cause very large deviations in state predictions and excessive process noise.  

The most common method of simulating plant-model mismatch in state estimation literature is via 

parametric uncertainty. Parametric mismatch is caused by incorrect values for the model parameters or 

time-variant plant parameters that are falsely assumed constant in the model (Schneider & Georgakis, 

2013). Parameters used in process models are calculated based on offline measurements from the 

process. Therefore, noisy measurements or varying process conditions result in inaccurate parameter 

values (Geetha et al., 2014). Parameters that typically vary due to changing process conditions are heat 

transfer coefficients (Ferhatbegovic et al., 2012) and reaction kinetic parameters, such as the reaction 

rate constants and the activation energies (Alexander et al., 2020) (Zavala et al., 2008).  

For studies involving simulation of synthetic plant data and processes, plant-model mismatch via 

parametric uncertainty can be modelled as fixed parametric uncertainty or random variation within the 

parameters (Valappil & Georgakis, 2004).  

Fixed parametric uncertainty is modelled as: 

 𝑝𝑝𝑙𝑎𝑛𝑡 = 𝑝𝑚𝑜𝑑𝑒𝑙 ± 𝜎 [ 47 ] 

Where 𝑝𝑝𝑙𝑎𝑛𝑡 are the parameters used to generate synthetic plant data in Equation 45 and 𝑝𝑚𝑜𝑑𝑒𝑙 are 

the parameters used in the process model supplied to the state estimator in Equation 46. 𝜎 represents a 

fixed standard deviation added or subtracted from the nominal plant parameters, 𝑝𝑚𝑜𝑑𝑒𝑙 , supplied to 

the state estimator (Valappil & Georgakis, 2004).  

Alternatively, the plant parameters can vary with time. This can be modelled as: 

 𝑝𝑝𝑙𝑎𝑛𝑡,𝑘+1 = 𝑝𝑝𝑙𝑎𝑛𝑡,𝑘 + 𝑤𝑝,𝑘 [ 48 ] 

Where 𝑤𝑝,𝑘 is a white noise process such that 𝑤𝑝,𝑘~𝑁(0, 𝜎𝑝
2) (Bavdekar et al., 2013).  

A number of state estimation studies have implemented plant-model mismatch via parametric 

uncertainty. Valappil & Georgakis (2004) and Hsoumi et al. (2009) add an uncertainty of 5% to the rate 

constant, activation energy, and heat transfer coefficient in a CSTR process.  Mesbah et al. (2011) added 

parametric uncertainty of 35% to the nucleation rate and crystal growth rate parameters for state 

estimation of a seeded batch crystallization process. Shyamal (2018) added a fixed value of ±5% to the 

power factor, base mass transfer coefficient, and oxygen injection factor in an electric arc furnace model.   

Stellenbosch University https://scholar.sun.ac.za



 

38 

2.1.10.2 Simulation of process noise 

As explained in sub-section 2.1.7.4,  in the design of the state estimator careful selection of the process 

noise covariance, 𝑄, is critical. 𝑄 should account for the expected modelling errors associated with the 

specific system. 𝑄 should also reflect the true underlying process noise that represents the stochastic 

process partly driving the state dynamics. This process noise can be attributed to unmeasured 

disturbances that are not modelled in the deterministic model of the process (Bavdekar et al., 2013).  

Bavdekar (2013) presents three methods for simulating process noise within the system. The process 

noise can be modelled as unstructured noise affecting the states. Equation 45 now becomes: 

 𝑥𝑘+1 = 𝑓𝑝𝑙𝑎𝑛𝑡(𝑥𝑘, 𝑢𝑘 , 𝑝𝑝𝑙𝑎𝑛𝑡,𝑘) + 𝑤𝑠,𝑘 [ 49 ] 

Where 𝑤𝑠,𝑘 is a zero-mean white noise process such that 𝑤𝑠,𝑘~𝑁(0, 𝜎𝑠
2). 

Process noise can also enter the system through unmeasured disturbances with known sources, 𝑑.  

 𝑥𝑘+1 = 𝑓𝑝𝑙𝑎𝑛𝑡(𝑥𝑘, 𝑢𝑘 , 𝑝𝑝𝑙𝑎𝑛𝑡,𝑘, 𝑑𝑘) [ 50 ] 

𝑑𝑘+1 = 𝑑𝑘 + 𝑤𝑑,𝑘 

Where 𝑤𝑑,𝑘 is a zero-mean white noise process such that 𝑤𝑑,𝑘~𝑁(0, 𝜎𝑑
2). 

Lastly, the process noise can enter the system through the manipulated inputs, 𝑢𝑘. Where 𝑢𝑘 is the 

known or computed value of the manipulated inputs that is supplied to the state estimator model of the 

process. The true value of the manipulated inputs, 𝑚𝑘, is calculated as: 

 𝑥𝑘+1 = 𝑓𝑝𝑙𝑎𝑛𝑡(𝑥𝑘, 𝑚𝑘, 𝑝𝑝𝑙𝑎𝑛𝑡,𝑘) [ 51 ] 

𝑚𝑘 = 𝑢𝑘 + 𝑤𝑢,𝑘 

Where 𝑤𝑢,𝑘 is a zero-mean white noise process such that 𝑤𝑢,𝑘~𝑁(0, 𝜎𝑢
2). 

Bavdekar et al. (2013) simulated plant-model mismatch whilst estimating the states of a CSTR using an 

EKF by corrupting the inputs with zero-mean Gaussian noise. This was only done to the inputs used to 

generate synthetic measurements, whilst the inputs in the EKF model of the process are assumed to be 

constant. 

2.2 Observability theory and literature review  

The following  sub-section provides the reader with a comprehensive explanation of system observability. 

Section 2.2.1 highlights the importance of system observability for state estimation. Section 2.2.2 

explains the steps involved in an observability analysis for both linear and nonlinear systems. Lastly, 

section 2.2.3 describes how singular value decomposition of the observability matrix can be used to 

provide further insight into the observable and unobservable subspaces of the system.  

2.2.1 Observability and state estimation 

A system is observable if, given a time series of the outputs, the states of a system can be fully constructed 

(Ghobara, 2013). More formally defined, a system is globally observable at 𝑥0 if every 𝑥 in the open 
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neighborhood surrounding 𝑥0 is distinguishable. Whereby states 𝑥0 and 𝑥1 are distinguishable from one 

another if there exist unique outputs, 𝑦(𝑥0) ≠ 𝑦(𝑥1) (James, 1987).  

For an uncontrolled linear continuous-time system:  

 𝑥̇ = 𝐴𝑥  [ 52 ] 

 𝑦 = 𝐶𝑥  [ 53 ] 

The state observer dynamics are represented as: 

 𝑥̂̇ = 𝐴𝑥̂ + 𝐵𝑢 + 𝐾(𝑦 − 𝐶𝑥̂) [ 54 ] 

The state estimation problem is formulated by solving for a unique solution for each of the states, 𝑥, 

given the limited outputs of the system, 𝑦. Where the goal of the observer is to minimize the difference 

between 𝑦 and 𝑦̂ = 𝐶𝑥̂, using some controller with gain 𝐾. The estimation error, 𝑒, is the difference 

between the state estimate and the true state, (𝑥 − 𝑥̂). The estimation error dynamics are calculated as 

the difference between 𝑥̇ in Equation 52 and 𝑥̂̇ in Equation 54 and substituting Equation 53 for the value 

of 𝑦: 

 𝑥̇ − 𝑥̂̇ = 𝐴(𝑥 − 𝑥̂) + 𝑤 + 𝐾(𝐶𝑥 + 𝑣 − 𝐶𝑥̂) = (𝐴 − 𝐾𝐶)(𝑥 − 𝑥̂) [ 55 ] 

The rate of error decay is dictated by the eigenvalues of (𝐴 − 𝐾𝐶). If the system is observable, we can 

arbitrarily place the eigenvalues of (𝐴 − 𝐾𝐶), meaning we can control the rate of convergence of the 

estimator using 𝐾 (Bernard et al., 2022). Any unobservable eigenvalues of (𝐴 − 𝐾𝐶) are not updated in 

the update step of the state estimator. From Equation 55, it can be deduced that the estimator can only 

converge to a solution if the system is observable or in the case of unobservable modes, if all of the 

unobservable modes are stable (detectable) (Bernard et al., 2022). System observability is therefore an 

essential quality for successful state estimation (Wu et al., 2012).  

Unobservable and unstable modes results in filter instability and failure to converge to a solution 

(Southall et al., 2013). The unobservable and unstable states induce instability during the update step of 

the filter as the estimation error covariance for unobservable states is unbounded, preventing stable 

convergence to a solution (Devos et al., 2021).  

Furthermore, the degree of observability of states has implications on the performance of state 

estimators. Firstly, the observability impacts the accuracy of the state estimates as the estimation error 

covariance matrix is directly linked to the observability of the system. The largest estimation error 

covariance is associated with the least observable states (Ham et al., 1983) (Chen, 1991). Secondly, when 

a system contains states with vastly different degrees of observability, the estimation error covariance 

matrix may become ill-conditioned and no longer positive semidefinite (Simon, 2006). Ill-conditioned 

state estimation problems result in the state estimator being sensitive to measurement noise and to 

numerical inaccuracies such as round-off error (Sui & Johansen, 2011).  
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2.2.2 Observability analysis 

System observability can be tested via an observability analysis. The first step in the observability analysis 

is to construct the observability matrix. System observability is then assessed by performing a rank test 

on the observability matrix.  

2.2.2.1 Linear observability 

The observability matrix for a linear discrete-time system is derived in appendix A.7. Where 𝑂 is the 

discrete-time linear observability matrix, constructed by analyzing the measurement matrix, 𝐻, at 

different discrete time points in the system dynamics.  

 𝑂 = [

𝐻
𝐻𝐹
⋮

𝐻𝐹𝑛−1
]  [ 56 ]  

Appendix A.8 presents the derivation for the linear continuous-time observability matrix in terms of the 

continuous-time state matrix, 𝐴, and continuous measurement matrix, 𝐶.  

 𝑂 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

]  [ 57 ] 

2.2.2.2 Nonlinear observability  

For non-linear systems, deriving the observability matrix proves more difficult. In fact, there is no general 

test for observability for non-linear systems (Southall et al., 2013). The most common method of 

assessing the observability of non-linear systems is by linearizing the model around a nominal trajectory 

and performing a linear observability analysis (Huang et al., 2020)(Wu et al., 2012) (Alaeddini & 

Morgansen, 2013). Alternatively, a nonlinear observability analysis can be conducted on the observability 

matrix generated using the Lie derivatives of the continuous non-linear function.  

Sub-section 2.2.2.3 derives the linearized observability matrix and sub-section 2.2.2.4 derives the 

nonlinear observability matrix from the Lie derivatives.  

2.2.2.3 Linearized observability matrix  

For a nonlinear continuous-time system: 

 𝑥̇ = 𝑓(𝑥, 𝑢)  [ 58 ] 

 𝑦 = ℎ(𝑥)  [ 59 ] 

The linearized model is given by a first order Taylor series approximation around 𝑥0. 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐿𝑤 [ 60 ] 

 𝑦 = 𝐶𝑥 + 𝑀𝑣 [ 61 ] 

𝐴 =
𝜕𝑓

𝜕𝑥
|
𝑥0

            𝐵 =
𝜕𝑓

𝜕𝑢
|
𝑢0

                  𝐿 =
𝜕𝑓

𝜕𝑤
|
𝑤0

                 𝐶 =
𝜕ℎ

𝜕𝑥
|
𝑥0

                  𝑀 =
𝜕ℎ

𝜕𝑣
|
𝑣0

 

The linearized model is then used to obtain the local observability matrix evaluated at 𝑥0. 
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 𝑂(𝑥0, 𝑢) = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1
]  [ 62 ] 

Wu et al. (2012) explain the implications of working with a linearized model when conducting an 

observability analysis. If the linearized observability matrix is full rank, this proves local observability of 

the system and does not prove global observability. James (1987) state that a system is locally observable 

at 𝑥0 if there exists a neighborhood of 𝑥0 such that every 𝑥 in that neighbourhood has a measurable 

control, 𝑢, that result in a unique output. Thus, local observability does not prove global observability of 

the system, but rather guaranteed observability at a specific point which the linearized matrices were 

evaluated at (Chen, 1991).  

2.2.2.4 Nonlinear observability matrix  

Hermann & Krener (1977) developed a test for nonlinear observability using Lie algebra, presented in 

appendix A.9. This test is known as the observability rank condition. 

The local nonlinear observability matrix at 𝑥0 for a system with  𝑛𝑦 measurements is defined as: 

 𝑂(𝑥0, 𝑢) =

[
 
 
 
 
 
 
 
𝑑𝐿𝑓

0ℎ1
⋮

𝑑𝐿𝑓
0ℎ𝑛𝑦
⋮

𝑑𝐿𝑓
𝑛−1ℎ1
⋮

𝑑𝐿𝑓
𝑛−1ℎ𝑛𝑦]

 
 
 
 
 
 
 

  [ 63 ] 

The observability rank condition states that if the observability matrix formed from the Lie derivatives 

evaluated at 𝑥0 is full column rank, then the system is locally weakly observable at 𝑥0 (Martinelli, 2011).  

Hermann & Krener (1977) explain the relationship between the various forms of observability. Local 

observability implies local weak observability, however, the converse is not guaranteed. This means that 

a system that is found to be locally observable is always locally weakly observable. Conversely, a system 

that is locally weakly observable is not always locally observable.  

This means that if a system is found to be locally observable via the linearization method, this is a 

sufficient claim for observability. If a system is found to be locally unobservable via the linearization 

method, it should then be checked for local weak observability via the Lie derivatives.  

Aleddini & Morgansen (2013) prove this concept through multiple tests that show the nonlinear 

observability matrix constructed via the Lie derivatives tends to show higher degrees of observability 

than the linearized observability matrix. Thus, the linearized observability matrix can sometimes give 

misleading results. Another study done by Martinelli (2011) found a system to be unobservable based on 

the local definition obtained via the linearized observability matrix, however, the system was found to be 

locally weakly observable using the observability matrix constructed from the Lie derivatives.  
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The computation of Lie derivatives proves impractical for high-dimensional systems as algebraic 

computation of higher order Lie derivatives requires long computational times and sufficient memory 

(Stigter et al., 2017). This expensive computation arises when symbolic differentiation is used to calculate 

the Lie derivatives (Röbenack & Reinschke, 2000).  

2.2.2.5 Rank test 

The second step in the observability analysis involves performing a rank test on the observability matrix. 

The observability matrices for linear discrete and continuous-time systems are defined in Equations 56 

and 57, respectively. For nonlinear systems, the observability matrices are derived by linearization or the 

Lie derivatives in Equations 62 and 63, respectively. The observability matrices are defined according to 

the equation: 

 [

𝑦(0)

𝑦(1)
⋮

𝑦(𝑛 − 1)

] = 𝑂𝑥0  [ 64 ] 

The left hand side of the equation is a vector of 𝑛𝑦 × 𝑛 linear equations and 𝑥0 is vector with size 𝑛 × 1, 

containing the 𝑛 state variables. The observability matrix must have 𝑛 columns to give 𝑛 unique solutions 

for 𝑥0 in Equation 64 (Rutgers Electrical & Computer Engineering, 2007). This results in an observability 

matrix with 𝑛𝑦 × 𝑛 rows and 𝑛 columns. A system is considered observable if the rank of the observability 

matrix, the number of linearly independent columns, is equal to 𝑛.  

For the nonlinear observability matrix defined by the gradient of the Lie derivatives, the system is 

considered observable if the rank of the observability matrix is equal to 𝑛. Often the nonlinear 

observability matrix becomes full rank prior to inclusion of the (𝑛 − 1)𝑡ℎ  order Lie derivative. Therefore, 

it is common practice to recursively construct the observability matrix and test the rank after each higher-

order Lie derivative has been added (Villaverde et al., 2019).  

A system is considered unobservable if the number of linearly independent columns of the observability 

matrix is less than 𝑛. Unobservable states can arise when one of the columns consists of only zeros, 

indicating that the observation data has no measurements for the corresponding state and the dynamic 

relationships with measured states are not sufficient to achieve observability (Nakhaeinejad & Bryant, 

2011). Unobservable states can also result from the columns of the observability matrix being linearly 

dependent, meaning that column vectors can be made up of linear combinations of other column vectors 

and states are indistinguishable from one another. In practice there also exists measurement noise, 

missing measurements, and plant-model mismatch which can cause a system to become unobservable, 

especially if a system is close to unobservability (Nakhaeinejad & Bryant, 2011).  

2.2.3 Singular value decomposition  

The rank test enables classification of a system as observable or unobservable. However, this gives no 

indication of the degree of observability of the states of the system and which states may be causing 
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potential lack of observability, or if the system may be close to unobservability (Nakhaeinejad & Bryant, 

2011).  

The observability matrix can be analyzed through a matrix decomposition method known as singular 

value decomposition (SVD). SVD is performed on the discrete observability matrix. The discrete 

observability matrix contains information on how perturbations in the states manifest within the discrete 

measurements (De Santis & Di Benedetto, 2017).  

The rank of the observability matrix is assessed by analyzing the singular values obtained from SVD. 

Furthermore, Stigter & Molenaar (2015) explain that SVD acts as a ‘magnifying glass’ to further assess the 

observability by highlighting the state variables associated with the observable and unobservable 

subspaces.  

2.2.3.1 SVD procedure 

Eigenvalue decomposition is a well-known method of matrix decomposition that decomposes a square 

matrix, 𝑋, of size 𝑛 × 𝑛 into a 𝑛 × 𝑛 matrix 𝑄 with the columns corresponding to the eigenvectors, 𝑢𝑖, of 

𝑋 and a diagonal matrix Λ containing the eigenvalues, 𝜆𝑖. SVD is a method of matrix decomposition that 

is not limited to square and symmetric matrices.  

If 𝑋 is a 𝑚 × 𝑛 non-symmetric matrix, with 𝑛 column vectors.  

 𝑋 = [
| | |
𝑥1 … 𝑥𝑛
| | |

]  [ 65 ] 

𝑋𝑇𝑋 is a 𝑛 × 𝑛 symmetric matrix that can be decomposed using eigenvalue decomposition. Eigenvalue 

decomposition on 𝑋𝑇𝑋 gives the eigenvectors, 𝑣𝑖, and eigenvalues, 𝜆𝑖, where 𝑖 = 1, … , 𝑛. It is assumed 

that the eigenvectors are normalized so that 𝑣𝑖
𝑇𝑣𝑖 = 1. The vectors 𝑋𝑣𝑖 give the 𝑛 directions of stretching 

or shrinking. The set of vectors 𝑋𝑣𝑖 form an orthogonal basis for 𝑐𝑜𝑙(𝑋), the set of all linear combinations 

of columns in 𝑋. The 2-norms of the 𝑋𝑣𝑖 vectors are given by: 

 ||𝑋𝑣𝑖||
2
= 𝑣𝑖

𝑇𝑋𝑇𝑋𝑣𝑖 = 𝑣𝑖
𝑇𝜆𝑖𝑣𝑖 = 𝜆𝑖  [ 66 ] 

The singular values represent the lengths of the vectors 𝑋𝑣𝑖, given by: 

 𝜎𝑖 = √||𝑋𝑣𝑖||
2
= ||𝑋𝑣𝑖||  [ 67 ] 

The singular value decomposition of 𝑚 × 𝑛 matrix 𝑋 is given by: 

 𝑋 = 𝑈Σ𝑉𝑇   [ 68 ] 

𝑉 is a 𝑛 × 𝑛 orthonormal matrix of the eigenvectors of 𝑋𝑇𝑋. The columns of 𝑉 are 𝑣𝑖 , where 𝑖 = 1, … , 𝑛, 

and are called the right singular vectors.   

 𝑉 = [
| | |
𝑣1 … 𝑣𝑛
| | |

]  [ 69 ] 

Stellenbosch University https://scholar.sun.ac.za



 

44 

Σ is a 𝑚 × 𝑛 diagonal matrix of the singular values of 𝑋𝑇𝑋 with the rest of the rows filled with zeros to 

make it have 𝑚 rows. The singular values are ordered in descending order, 𝜎1 > ⋯ > 𝜎𝑛.  

 Σ = [

𝜎1 0 0
0 ⋱ 0
0 0 𝜎𝑛
0 0 0

] [ 70 ] 

𝑈 is a 𝑚 ×𝑚 orthonormal matrix of the vectors 𝑢𝑖, called the left singular vectors.  

 𝑈 = [
| | |
𝑢1 … 𝑢𝑚
| | |

]  [ 71 ] 

The left singular vectors 𝑢𝑖 are formed by normalizing the vectors 𝑋𝑣𝑖 by diving by the length of the 

vectors, or diving by the singular value.  

 𝑢𝑖 =
𝑋𝑣𝑖

𝜎𝑖
  [ 72 ] 

By expanding Equation 68, the original matrix 𝑋 can be written as a weighted linear combination of 𝑛 

𝑚× 𝑛 matrices. These matrices, 𝑢𝑖𝑣𝑖
𝑇, have a rank of 1 and are weighted according to their 

corresponding singular value.  

 𝑋 = 𝜎1𝑢1𝑣1
𝑇 +⋯+ 𝜎𝑛𝑢𝑛𝑣𝑛

𝑇  [ 73 ] 

Equation 73 is true when the rank of the matrix is equal to 𝑛. 

The columns of 𝑈 have the same shape and physical interpretation as the columns of 𝑋 and are arranged 

in descending order in terms of their ability to describe the variance within the columns of 𝑋.  The 

underlying patterns in 𝑋 are extracted in the matrix 𝑉. The magnitude of the singular value, 𝜎𝑖, indicates 

the corresponding left and right singular vectors, 𝑢𝑖 and 𝑣𝑖, ability to describe the information in the 

original matrix 𝑋. (Berkeley Math, 2017) 

2.2.3.2 Pre-processing data prior to SVD 

Before the observability matrix can be decomposed by SVD, the data in the matrix must first be pre-

processed. The observabilities of the states, or the row entries, need to be normalized to prevent the SVD 

being skewed towards states with larger observability entries (The Pennsylvania State University- 

Department of Statistics Online Programs, 2018). Entries in the measurement matrix, 𝐶, may falsely result 

in higher observability values due to the units of measurements. Similarly, fast dynamics can result in 

large values in the state matrix, 𝐴, that skew observabilities for rapidly changing states. Therefore, the 

system model should be scaled prior to formation of the observability matrix and subsequent SVD.  

2.2.3.3 Rank test via SVD 

SVD can be used to calculate the rank of a matrix. The rank is equal to the number of non-zero singular 

values in Σ. A singular value with a value of zero, 𝜎𝑖 = 0, has a corresponding eigenvalue of zero, 𝜆𝑖 = 0, 

and the rank of a matrix is equal to the number of non-zero eigenvalues. Therefore, the rank of 𝑋𝑇𝑋 is 

equal to the number of non-zero singular values. By the rank-nullity theorem, the rank of 𝑋𝑇𝑋 is equal 
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to the rank of 𝑋 (Bagheri, 2020). This rank test can be used to determine if a system is observable. The 

number of non-zero singular values of the observability matrix should be equal to the number of columns 

in the matrix, or number of state variables, 𝑛, to be considered full rank and therefore observable. When 

the rank is less than 𝑛, or the last few singular values are close to zero, this indicates unobservability or 

nearly unobservable directions. 

The singular values also give insight into the expected estimation error associated with the state 

variables. The smallest singular value, 𝜎𝑚𝑖𝑛, indicates how close the observability matrix is to being 

singular and corresponds with the maximum estimation error covariance. Singularity indicates 

unobservability. The largest singular value, 𝜎𝑚𝑎𝑥, is associated with the most observable direction and 

the minimum estimation error covariance. The ratio of the largest to the smallest singular values is known 

as the condition number of the matrix.  

The condition number of a matrix is defined as: 

 𝜅 =
𝜎𝑚𝑎𝑥

𝜎𝑚𝑖𝑛
 [ 74 ] 

The condition number is always ≥ 1 since the singular values are always real and nonnegative. The 

condition number indicates how close the observability matrix is to singularity, or, in other words how ill-

conditioned the matrix is. As 𝜅 → ∞, the matrix becomes closer to singularity. A smaller number close to 

1 indicates a better conditioned matrix. (Simon, 2006) 

2.2.3.4 Multivariate data analysis 

SVD is also used as a tool for multivariate data analysis by extracting underlying patterns in large sets of 

data (Wall et al., 2003). The results of SVD can have physical interpretations that can be used to analyze 

and understand patterns in the original data.  

Performing SVD on the observability matrix results in: 

 𝑂 = 𝑈Σ𝑉𝑇  [ 75 ] 

The observability matrix has 𝑚 rows, where  𝑚 = 𝑛𝑦 × 𝑛. Progressing from row 1 to row 𝑚 represents 

the observability changing ‘in time’ as the dynamics of the system progress. This can be interpreted as a 

direction of observability. The left singular vectors, 𝑢𝑖, have the same physical interpretation and 

therefore are considered the different directions of observability ordered in descending order in terms 

of their degree of observability. 

The observability matrix has 𝑛 columns representing the 𝑛 states of the system. Each right singular vector, 

𝑣𝑖, contains 𝑛 rows which correspond to the 𝑛 states in the original matrix 𝑂 (Sui & Johansen, 2011).  

The matrix Σ is a 𝑚 × 𝑛 matrix containing the singular values, 𝜎𝑖, ordered in descending magnitude. The 

magnitude of the singular value, 𝜎𝑖 , indicates to the degree of observability of the corresponding 

observable direction, 𝑢𝑖 (Nakhaeinejad & Bryant, 2011). The most observable direction is associated with 

the first and largest singular value, 𝜎1, and the least observable direction with the last and smallest 

singular value, 𝜎𝑛.    
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The observable, unobservable, and nearly unobservable directions can be analyzed in detail to 

understand which states are associated with to those directions. This is done by analyzing the column 

vector 𝑣𝑖 corresponding to the singular value 𝜎𝑖. The non-zero elements of 𝑣𝑖 indicate which columns in 

𝑂 that are linearly dependent. The columns in 𝑂 represent the states of the system.  The non-zero entries 

in 𝑣𝑖 are involved in a total correlation that contribute to the observable direction 𝑢𝑖 (Stigter et al., 2017). 

Thus, the magnitude of the entries in 𝑣𝑖 dictate the magnitude of a specific states’ contribution to the 

𝑖′𝑡ℎ observable direction.  

The non-zero elements of 𝑣𝑛  are the correlated states associated with the least observable direction. The 

observability of the states associated with the least observable direction can be improved upon by adding 

additional sensors that directly measure these states, thus, improving observability of the system 

(Nakhaeinejad & Bryant, 2011).  

2.3 Fault detection theory and literature review 

This sub-section provides a summary of the relevant literature and theory pertaining to fault detection 

in chemical processes. Section 2.3.1 gives a brief introduction to fault detection in general. Section 2.3.2 

introduces model-based fault detection, with specific focus on literature studies investigating model-

based fault detection using state estimators. Section 2.3.3  explains data-driven fault detection and 

section 2.3.4 describes the concept of combining model-based and data-driven approaches for fault 

detection. Section 2.3.5 outlines the procedure for performing principal component analysis and 

calculating various monitoring statistics. Section 2.3.6 details how fault detection performance is typically 

assessed in literature. Lastly, section 2.3.7 discusses fault detectability, with reference to both structural 

detectability and performance-based detectability. 

2.3.1 Introduction to fault detection 

Rapid and accurate detection of abnormal process conditions is essential in any industrial process to 

maintain the integrity of the process. Process variables should ideally operate between a range of 

acceptable nominal operating conditions (NOCs). However, deviation from normality is a regular 

occurrence in real-world processes and can potentially cause poor product quality, equipment 

degradation, or dangerous operating conditions that pose a risk to plant personnel. Fault detection 

methods can be categorized into two broad groupings: model-based fault detection and data-driven fault 

detection. 

2.3.2 Model-based fault detection 

Model-based approaches rely on a mathematical model of the process and include qualitative 

approaches such as causal-models and fault trees, or quantitative approaches, which involve generating 

residuals. Quantitative approaches include observers, such as the unknown-input observer, filters, such 

as the Kalman filter, parity space approaches involving consistency checks, or frequency domain 

approaches (Yang, 2004). Quantitative model-based fault detection involving residual generation via 

state estimation will be the focus of this study.  
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Li et al. (2020) provide an in-depth review of model-based fault detection techniques. The review 

highlights the availability of extensive literature studies on model-based fault detection techniques and 

laboratory-scale tests employing these methods. However, the review notes that industrial applications 

are limited. Model-based fault detection faces many challenges, mainly attributed to the difficulty of 

modelling complex dynamic processes (Alrowaie et al., 2012). Modelling error arises when the model 

driving the actual plant process differs from the model used in the model-based method. Modelling error 

can arise due to structural differences or parametric uncertainties. This mismatch between the plant and 

the process model induces large residuals under nominal conditions causing high false alarm rates and 

degrading the performance of model-based fault detection. In real-world applications, the presence of 

minor modelling uncertainties can severely degrade the fault detection performance (Tyler et al., 2000). 

Therefore, robustness to model uncertainty is one of the most important considerations in model-based 

fault detection (Gautam et al., 2019).  

2.3.2.1 Model-based fault detection using state estimation  

Within the model-based fault detection literature space, there exist several studies investigating the use 

of state estimators. Table 2 presents a summary of these studies, with specific focus on studies using the 

EKF, UKF, PF and MHE. 

Table 2: Several studies involving model-based fault detection using state estimation. 

Study reference 
Study 

application 

Residual 

generation 
Residual evaluation method 

(Gautam et al., 2019) 

Sensor incipient 

fault detection 

and isolation of 

a simulated 

nuclear power 

plant 

EKF 

The Kullback-Liebler Divergence (KLD) 
between the residual pdf from the 
current operation and a reference 

residual pdf representing NOCs is the 
fault detection statistic.  A KLD value 
greater than a pre-defined threshold 

indicates faulty behaviour. 

(Chetouani, 2004) 

(Chetouani, 2008a) 

(Chetouani, 2008b) 
 

Fault detection 

and isolation in 

an 

experimental 

CSTR   

Bank of 

EKFs; a 

single EKF 

representing 

the fault-

free model, 

and an EKF 

for each 

faulty 

condition. 

Statistical test on the mean of the 
normal law of the standardized 

innovation sequence, 𝜂𝑠̅̅ ̅̂. 

𝜂𝑠̅̅ ̅̂ =
1

𝑁
∑𝜂𝑠𝑗

𝑁

𝑗=1

 

Where 𝜂𝑠𝑘 is the standardized 
residual. 

𝜂𝑠𝑘 = (𝐻𝑘(𝑥̂𝑘
−)𝑃𝑘

−𝐻𝑘
𝑇(𝑥̂𝑘

−) + 𝑅)
−
1
2 (𝑦𝑘

− ℎ𝑘(𝑥̂𝑘
−)) 

= 𝜂𝑘
−1/2

𝛾𝑘 

𝑁 is the size of the horizon of 
past residuals. 
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Under nominal conditions, 𝜂𝑠̅̅ ̅ 
has a gaussian distribution with 

zero mean and covariance 
𝐼

𝑁
. 

Abnormal process behaviour is 

identified when 𝜂𝑠̅̅ ̅̂̅̅ ̅ ≻ 𝛼, where 𝛼 
is a pre-defined threshold. 

(Mehra & Peschon, 

1971) 

Theoretical 

development of 

innovations 

approach to 

fault detection 

and diagnosis 

KF 

The innovation sequence from the KF is 
tested by: 

1) Tests of whiteness: innovation 
sequence is assumed to be a 
white noise sequence. The 

autocorrelation function at time 
k, 𝑐𝑘, can be estimated as: 

𝑐̂𝑘 =
1

𝑁
∑(𝜂𝑗 − 𝜂̂̅)(𝜂𝑗−𝑘 − 𝜂̂̅)

𝑇
𝑁

𝑗=𝑘

 

Where 𝜂̂̅ is the sample mean: 

𝜂̂̅ =
1

𝑁
∑𝜂

𝑁

𝑗=1

 

For the sequence to be white noise, the 
autocorrelation function 𝑐̂𝑘 for k = 1,2, … 

must be normal with zero mean and 
covariance 1/𝑁. 

2) Tests on the mean of the normal 
law on the innovation sequence: 

𝜂̂̅ =
1

𝑁
∑𝜂

𝑁

𝑗=1

 

𝜂̂̅ must be zero-mean and 
covariance 1/𝑁. 

3) Tests on the covariance: 
covariance of the innovation 

sequence can be estimated by: 

𝑐̂𝑜 =
1

𝑁
∑(𝜂𝑗 − 𝜂̂̅)(𝜂𝑗 − 𝜂̂̅)

𝑇
𝑁

𝑗=1

 

This must be equal to the 
identity matrix. 

Abnormal behaviour is identified when 

these tests fail. |𝜂|̅̅ ̅̂̅
̅̅ ̅̅

≻ 1 ∙ 96𝐼/√𝑁. This is 
done at a 5% significance level to avoid 

false alarms. 

(Li & Olson, 1991) 
Fault detection 

and diagnosis in 

EKF for 

combined 
Faulty behaviour is identified when the 

difference between the estimated 
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a simulated 

nonlinear 

distillation 

process 

state and 

parameter 

estimation 

parameter and its nominal value exceeds 
a pre-defined threshold. 

(Yang, 2004) 

Fault detection 

and diagnosis in 

a simulated 

CSTR  

Bank of EKFs 

Hotellings’ 𝑇2 statistic and 𝑄 statistic 
obtained from performing PCA on the 

EKF residuals. Faulty behaviour is 
identified when these statistics exceed a 

pre-defined threshold. 

(Li & Kadirkamanathan, 

2001) 

Theoretical 

development of 

fault detection 

and isolation 

procedures 

EKF 

The weighted sum squared residual 
(WSSR) is used as the fault detection 

statistic. The residual from the EKF, 𝛾𝑘 =
𝑦𝑘 − ℎ(𝑥𝑘

−), has covariance 𝜂𝑘 =

𝐻𝑘𝑃𝑘𝐻𝑘
𝑇 +𝑅. The weighted squared 

residual at time k, 𝑙𝑘,  is: 

𝑙𝑘 = 𝛾𝑘
𝑇𝜂𝑘

−1𝛾𝑘 

The WSSR over a sliding window of 
length M at time k, 𝑑𝑘, is calculated as: 

𝑑𝑘 = ∑ 𝑙𝑗

𝑘

𝑗=𝑘−𝑀+1

 

𝑑𝑘 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 indicates faulty 
behaviour. 

(Xiong et al., 2007) 

Fault detection 

of satellite 

attitude sensor 

fault based on 

simulated 

process data 

UKF 

The standardized innovation sequence 
from the UKF is assumed to be from a 𝜒2 
distribution. Thus, faulty conditions are 

identified when the standardized 

innovation sequence 𝜂𝑠̅̅ ̅̂ exceeds a 
threshold 𝜆 selected from the statistics 

table at a specific confidence level. 

(Cornejo et al., 2010) 

Fault detection 

for DELFI-N3XT 

attitude 

determination 

system based 

on simulated 

process data 

UKF 
Faulty behaviour is identified when the 
CUMSUM of the residuals from the UKF 

exceeds a pre-defined threshold. 

(Das et al., 2014) 

Fault detection 

and isolation in 

a simulated LEO 

UKF 

The student t-statistic of each innovation 
sequence is used to detect a change in 

the mean of the innovations. Faulty 
behaviour is identified when the t-

statistic exceeds a threshold. 
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satellite planar 

model 

(Kadirkamanathan et 

al., 2001) 

(P. Li & 

Kadirkamanathan, 

2001) 

(Kadirkamanathan et 

al., 2002) 

(Souibgui et al., 2011) 

(Yin & Zhu, 2015) 

Theoretical 

development of 

particle-based 

fault detection 

methodology 

and 

implementation 

for a simulated 

nonlinear 

process 

PF 

Likelihood approach: In the update step 
of the PF algorithm, at each timepoint, 𝑘, 
a relative likelihood, 𝑞𝑖,𝑘, is calculated for 

each particle. Where 𝑖 = 1,… ,𝑁 for 𝑁 
particles. The likelihood at timepoint k is 

calculated as: 

𝐿𝑘 =
1

𝑁
∑𝑙𝑘(𝑖)

𝑁

𝑖=1

 

The decision function is the sum of log-
likelihoods over a window of width M. 

𝑑𝑘 = ∑ ln (𝐿𝑗)

𝑘

𝑗=𝑘−𝑀+1

 

Once the decision function, 𝑑𝑘, drops 
below some threshold, the observation 

at time k is classified as faulty. 

(Alrowaie et al., 2012) 

Fault detection 

and isolation 

for a simulated 

multi-unit 

chemical 

reactor and 

polyethene 

reactor system 

Bank of PFs Likelihood approach presented above. 

(Gatzke & Doyle, 2001) 

Fault detection 

and isolation 

for a simulated 

chemical 

reactor system 

MHE for 

combined 

state and 

parameter 

estimation 

Faulty behaviour is identified when the 
difference between the estimated 

parameter and its nominal value exceeds 
a pre-defined threshold. 

 

The EKF is the most popular choice of state estimator for model-based fault detection. Table 2 highlights 

a few of these studies employing the EKF for model-based fault detection. Kadirkamanathan et al. (2001) 

first proposed the idea of using the PF as opposed to the EKF for residual generation in model-based fault 

detection and replaced the WSSR residual evaluation with the likelihood from the PF algorithm. The study 

compared the EKF and PF for fault detection in a highly nonlinear system where the PF showed superior 

fault detection performance with a lower false alarm rate. This is attributed to the residual evaluation 

technique, whereby the likelihood-approach of the PF uses the entire state estimate distribution whilst 
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the EKF uses the residual generated from the approximate mean (Kadirkamanathan et al., 2001). Studies 

by Souibgui et al. (2011), Chen et. al. (2008), and Alrowaie et al. (2012)  found similar results when 

comparing fault detection using the PF and the EKF. The likelihood statistic of the PF proved to be more 

sensitive to faults than the WSSR from the EKF. Furthermore, the studies show that the EKF has a high 

false alarm rate when compared to the PF as the EKF fails to accurately estimate the highly nonlinear 

states of the process.  

Within literature, a common pitfall of the PF for residual generation in model-based fault detection has 

been identified. The standard bootstrap PF uses the transition density as the importance density and 

therefore does not account for the most recent observation. This can make the PF particularly sensitive 

to outliers and may cause divergence of the filter which compromises the fault detection (Jayaprasanth 

& Kanthalakshmi, 2018).  

2.3.2.2 Process noise covariance and fault detection performance  

One of the drawbacks of model-based fault detection using state estimators is the requirement for a 

priori tuning of the noise covariance matrices to achieve appropriate sensitivity and selectivity (Alrowaie 

et al., 2012). The measurement covariance matrix, 𝑅, is fairly easy to obtain from sensor calibration. 

Therefore, the critical tuning parameter is the process noise covariance matrix. Careful selection of 𝑄 is 

essential for fault detection performance.  

As explained in sub-section 2.1.7.4, the process noise should incorporate any expected potential plant-

model mismatch and unknown disturbances. Thus, the selection of 𝑄 should be based on engineering 

knowledge of the specific system as well as considering the specific application of the state estimator. 

For state estimation applications in model-based fault detection, the choice of 𝑄  has a direct impact on 

the fault detection performance. When 𝑄 is overestimated, this can significantly degrade fault detection 

performance when plant-model mismatch and process noise are not significant. Figure 3 shows how the 

choice of 𝑄 impacts the residual generation and thus the performance of model-based fault detection 

using state estimation when no modelling error is present.  
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Figure 3: Flowchart showing the effect of using a large Q and small Q for state estimator-based residual 

generation for fault detection. 

It has been found in literature that selecting a smaller 𝑄 enables more sensitive and faster fault detection 

as the state estimator places more trust in the model (Cornejo et al., 2010). For a small 𝑄, the state 

estimate tracks the model closely and generates large residuals in response to any off-model movement. 

Conversely, a larger value for 𝑄 results in longer detection delays as residuals are more insensitive to 

faults (Alrowaie et al., 2012). In practice modelling error is a common phenomenon. When a smaller 𝑄 is 

selected, the filter is more sensitive to faults, however, the filter shows poor robustness to modelling 

error. Thus, the false alarm rates are high in the presence of plant-model mismatch and the filter is less 

robust. An important consideration is to strike a balance between the state estimators’ sensitivity and 

the robustness (Saha et al., 2014). This is done by selecting realistic values for 𝑄, which requires 

knowledge of potential parametric and structural uncertainties within the system.  

2.3.3 Data-driven FDI 

Data-driven fault detection is a form of statistical process monitoring whereby statistical techniques are 

employed to analyse and monitor process data. Multivariate statistical process monitoring involves 

calculating statistical metrics that allow for simultaneous monitoring of many process variables. The 

statistical metrics calculated from process data enable classification of data as either nominal or faulty. 

The classifier requires training on large sets of historical data to learn nominal or faulty conditions 

(Khorasgani et al., 2018). One method of training classifiers is using past measurements under nominal 

conditions. The classifier then labels monitoring statistics deviating from this learned nominal behavior 

as faulty.  

Due to the complexity and scale of industrial operations, multivariate process monitoring typically 

involves monitoring many process variables. When fitting statistical models to this high dimensional data, 

a phenomenon known as the ‘curse of dimensionality’ occurs. The curse of dimensionality was first 

introduced by Bellman (1975). When a data set is described by many features, more parameters are 

Large Q: model uncertainty is high

State estimates lies closer to the measurement

Small residual 𝑦 − 𝑦̂

Less sensitive fault detection

Small Q: model uncertainty is high

State estimates lies closer to the model prediction

Large residual 𝑦 − 𝑦̂

More sensitive fault detection
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required to accurately define the distribution of the data. This is because the data becomes sparser with 

increasing dimension. Each of these parameters used to define the distribution has an uncertainty 

associated with them resulting in high dimensional models with high variance. These large sets of process 

variables are often correlated, resulting in analytical redundancy amongst the process data (Peng et al., 

2017).  

A method known as feature extraction is often employed prior to calculation of monitoring statistics and 

subsequent classification. Feature extraction involves generating statistically significant features 

containing meaningful process information from the measurement data to reduce the computational 

complexity, reduce redundancy, reduce the effects of noise, and avoid model overfitting (Jung & 

Sundstrom, 2019). These features are then sent to a statistical classifier which classifies the data as 

nominal or faulty. Methods such as principal component analysis (PCA), partial least squares (PLS), 

independent component analysis (ICA), and Fishers discriminant analysis (FDA) are examples of statistical 

classifiers (Rahoma, 2021). PCA is one of the most popular methods for performing feature extraction in 

multivariate process monitoring (Tong et al., 2013).  

PCA performs feature extraction by constructing uncorrelated principal components (PCs), which 

represent a multivariable linear correlation structure extracted from the original observations 

(Theunissen, 2021). The PCs are constructed in such a way to maximize the variance in the original data 

whilst minimizing the redundancy (Owen & Demirkiran, 2014). The benefits of performing PCA are widely 

acknowledged in literature. PCA achieves dimensionality reduction by reducing redundancies in the data. 

This reduces the complexity of the dataset and potentially exposes underlying simple relationships 

between variables (Owen & Demirkiran, 2014).  PCA has also been widely used as a denoising technique 

and has shown particular robustness against white noise (Spiegelberg & Rusz, 2017). These two benefits 

of PCA highlight the bias-variance trade-off that PCA aims to control with careful selection of the number 

of PCs. When performing dimensionality reduction or denoising data via PCA, the high variance of the 

model incurred due to the curse of dimensionality is reduced by selecting fewer PCs than there are 

measurements. By decreasing the variance of a model, this reduces the risk of a model overfitting and 

lacking robustness to new testing data. However, when the variance is reduced via PCA, bias is introduced 

by assuming the original observations can be accurately represented in a reduced-dimension space. This 

simplified model may be an incomplete representation of the true process and runs the risk of 

underfitting new data (Rahoma, 2021)(Kopper et al., 2020). Alternatively, when too many PCs are 

selected, the PCA model has high variance and may be modelling the noise in the process (Rahoma, 

2021).This phenomenon is known as the bias-variance trade-off.  

Further limitations of the standard PCA procedure arise from the assumptions of the method. PCA 

assumes the process variables are independent and uncorrelated in time and models the process as a 

linear, time-invariant process (Yang, 2004). Static linear PCA can be applied to nonlinear dynamic systems, 

however, the PCA model is a linear static approximation of the process  (Ku et al., 1995). An additional 

limitation of PCA lies in the interpretability of the results. The PCs of the PCA model are linear 

combinations of the original process variables, thus, interpreting real-world meaning from the latent 

variables can be difficult (Rahoma, 2021). 
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Data-driven methods of fault detection have some advantages over model-based methods in that they 

require no prior knowledge or understanding of the underlying process and therefore remain unaffected 

by modelling error. The main limitation of data-driven methods stems from the reliance on having access 

to large historical datasets. Data-driven methods require sufficient training data under various nominal 

operating conditions or correctly labelled faulty conditions (Khorasgani et al., 2018).  

2.3.4 Combining model-based fault detection and data-driven fault detection 

Both model-based fault detection and data-driven fault detection each suffer from their own unique 

shortcomings. There exists potential for hybrid techniques which combine these two approaches to fault 

detection that exploit the unique benefits of each approach and overcome the limitations. 

Khorasgani et al. (2018) define a framework for unifying model-based and data-driven methods for fault 

detection and diagnosis. This framework forms the basis of the fault detection pipeline presented in 

Figure 4. The framework divides the fault detection procedure into feature extraction followed by a fault 

decision-making step. Feature extraction takes place using data-driven techniques or model-based 

techniques. Fault decision making can be supervised, whereby classification methods use training data 

to learn fault-free and faulty classes, or unsupervised, by employing hypothesis tests, clustering, or PCA.  

 

Figure 4: Fault detection pipeline. 

There are limited literature studies which combine both model-based and data-driven method of FDI. 

Studies done by both Sheibat et al. (2014) and Khorasgani et al. (2018) use an observer for residual 

generation with a support vector machine for fault classification. Benkouider et al. (2012) use an EKF to 

generate residuals and a neural network for classification.   

Yang (2004) carry out model-based fault detection via residual generation using a state estimator, the 

EKF, and residual evaluation via PCA and monitoring of Hotelling’s T2 statistic and the Q statistic in the 

reduced space. The study explains that PCA and calculation of the monitoring statistic thresholds assume 

that observations are independent, Gaussian random variables. Measurements from a process often 

violate these conditions. Under no plant-model mismatch, the residuals from the EKF obey these 

conditions. Therefore, it is more appropriate to perform PCA on the residuals than the measurements. 

Furthermore, the study found this technique of residual evaluation provides enhanced robustness over 

other statistical tests such as tests of whiteness, mean, and covariance, as these tests are particularly 

sensitive to unknown disturbances, input variation, noise, and plant-model mismatch.  
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From Table 2,  model-based fault detection via state estimation typically involves residual evaluation 

using univariate statistical analyses of the residual such as individual t-tests or CUMSUM of each of the 

residuals. From the state estimator, there are 𝑛𝑦 innovation sequences for each of the 𝑛𝑦 measurements. 

In the univariate statistical analyses, each innovation sequence is assessed independent of the other. 

Therefore, bias is introduced by assuming there is no cross-covariance between the residuals. 

Multivariate statistical analyses such as Hotelling’s T2 statistic account for cross-covariance, however, this 

increases the variance of the model as more parameters in the covariance matrix must be assumed. 

Performing PCA and calculating multivariate monitoring statistics, such as the T2 statistic, in a reduced 

dimensional space reduces this variance as the covariance matrix is smaller. However, bias is introduced 

by assuming the model can be accurately represented in a reduced dimension space. PCA attempts to 

control this bias-variance tradeoff with careful selection of the number of PCs retained. This may be a 

more appropriate way of introducing bias into the residual evaluation step, opposed to introducing bias 

in univariate statistical analyses by assuming there is no cross-covariance between residuals.  

2.3.5 PCA  

A PCA model is constructed by training the model on a set of historical measurements from the process 

known as training data. This training dataset often represents observations from the process under 

nominal operating conditions. The training dataset is represented by the matrix 𝑋 ∈ ℛ𝑛𝑦×𝑚. Where 𝑛𝑦 

represents the number of measured process variable available at any point in time and 𝑚 is the number 

of timepoints that the training data has been collected for. The principal components (PCs), also known 

as the loadings vectors 𝑝𝑖, are computed by eigenvalue decomposition of the training data matrix.  

 𝑋𝑇𝑋𝑝𝑖 = 𝜆𝑖𝑝𝑖 [ 76 ] 

These directional loadings vectors create a hyperplane in the original 𝑛𝑦-dimension space. When 

dimensionality reduction is desired, the 𝐴 most relevant PCs are selected, where when 𝐴 < 𝑛𝑦. A typical 

rule-of-thumb in deciding an appropriate number of PCs to retain is to ensure that more than 70% of the 

total variance is explained by the PCs (Tong et al., 2013). Other methods used to select an appropriate 

number of PCs include utilizing a scree plot, cross validation, or an eigenvalue approach (Tong et al., 

2013).  

The loadings matrix, 𝑃, contains the loadings vectors 𝑝1 through 𝑝𝐴.  The loadings matrix is used to project 

the original observations into this reduced-dimensional space. The projection of observations into the 𝐴-

dimensional space is given by the scores matrix, 𝑇.  

 𝑇 = 𝑋𝑃 [ 77 ] 

Process monitoring and detection of faulty or abnormal process behavior then takes place on unseen 

data. Using the trained PCA model, each new observation vector, 𝑥𝑛𝑒𝑤 ∈ ℛ
𝑛𝑦 , is projected into the PCA 

model hyperplane. This projection is represented as the score of the new observation: 

 𝑡𝑛𝑒𝑤 ′ = 𝑥𝑛𝑒𝑤′𝑃 [ 78 ] 

Stellenbosch University https://scholar.sun.ac.za



 

56 

Each new observation is monitored via calculation of various monitoring statistics. For a new observation, 

the monitoring statistic should represent the probability that this new sample is drawn from a distribution 

generated under nominal conditions. A threshold is selected for the monitoring statistic based on typical 

statistic values obtained for nominal observations to avoid a high false alarm rate. When the monitoring 

statistic of a new observation exceeds this threshold, the new observation is classified as faulty. The most 

popular monitoring statistics used for process monitoring in conjunction with PCA are Hotelling’s T2 

statistic and the Q-statistic or squared prediction error (SPE).  

2.3.5.1 Hotelling’s T2 statistic 

For a univariate distribution, the Student’s t-statistic can be used for hypothesis testing. The Student’s t-

distribution is a normal distribution fit to the training data generated under nominal operating conditions. 

The t-statistic is calculated for each new observation, which represents the probability of that new 

observation being drawn from the t-distribution. However, the data available is often a multivariate 

distribution. Thus, an adaption of the Student’s t-statistic known as Hotelling’s T2 statistic is used for 

multivariate hypothesis testing.  

The T2 statistic is calculated using the scores, 𝑡𝑛𝑒𝑤 , of the new observations projected into the trained 

PCA model: 

 𝑇2 = ∑ (
𝑡𝑎

𝑠𝑎
)
2
 𝑎=𝐴

𝑎=1  [ 79 ] 

Where 𝐴 is the number of retained PCs, or the dimension of the hyperplane. 𝑠𝑎  is the standard deviation 

of each of the PC scores and is calculated when the model is being trained. (Dunn, 2020) 

The T2 statistic is the scaled multivariate distance from the center of the PCA model hyperplane to the 

projection of the new observation onto the hyperplane (Dunn, 2020). The T2 statistic explains the within-

plane error of the new observations or the variation of each new observation within the reduced-

dimension hyperplane (Mujica et al., 2011). A large T2 statistic indicates unusual variability, and thus, 

abnormal process conditions (Addo, 2019).  

It is assumed that all observations are from a Gaussian distribution, thus, under nominal operating 

conditions the T2 statistics for each new observation should fall within a certain distance from the mean 

of the original PCA model hyperplane (Addo, 2019). Faulty conditions are therefore identified as T2 values 

exceeding this defined threshold distance.  

2.3.5.2 Reconstruction error 

The reconstruction error is a vector perpendicular to the plane that represents the out-of-plane error of 

a new observation (Dunn, 2020). The reconstruction error is the distance between the new observation 

and the new observations perpendicular projection into the trained PCA model hyperplane. The 

perpendicular projection of the observation is known as the PCA model predicted value of the 

observation. The predicted value for each new observation is calculated as:  

 𝑥̂′ = 𝑡′𝑃′ [ 80 ] 
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The reconstruction error is defined as the difference between the actual observation and its predicted 

value: 

 𝑒 = 𝑥′ − 𝑥̂′ [ 81 ] 

The monitoring statistic is the sum of squared errors for each observation (Dunn, 2020).   

This monitoring statistic is responsible for tracking any system conditions not modelled by the trained 

PCA model (Mujica et al., 2011). Zero reconstruction error indicates that the new observation lies exactly 

on the PCA model hyperplane. An observation with a large reconstruction error is said to be inconsistent 

with the model as it lies far from the model hyperplane (Dunn, 2020). A large reconstruction error 

indicates that the observation violates the linear correlation structure of the PCA model defining nominal 

conditions (Addo, 2019). Defining the reconstruction error and its thresholds makes no assumptions 

about the shape of the underlying distribution.  

The reconstruction error tends to be a more sensitive monitoring statistic than Hotelling’s T2 statistic as 

the variance of the T2 statistic tends to be large (Mujica et al., 2011). High sensitivity of the monitoring 

statistics enables rapid detection of abnormal behavior.  

2.3.6 Fault detection performance evaluation 

2.3.6.1 Fault detection metrics 

To assess and compare the performance of various fault detection techniques, metrics must be defined 

that quantify the performance. The goal of fault detection is to correctly flag abnormal process conditions 

as faulty and NOCs as nominal. The classifier has four outcomes, a true positive (𝑇𝑃) which correctly flags 

faulty behaviour, a true negative (𝑇𝑁) where nominal behaviour is correctly identified and not flagged,  

a false positive (𝐹𝑃) where a false warning is given to nominal behaviour, and a false negative (𝐹𝑁) 

where a fault is missed. Common metrics used to assess the classification performance of a fault 

detection technique are the sensitivity, specificity, and precision(Salfner et al., 2010).    

Precision, 𝜓, is the probability of an observation correctly being classified as faulty. This is calculated as 

the number of true positive observations over the sum of true positive and false positive observations.  

 𝜓 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 [ 82 ] 

The sensitivity, 𝜑, of a classification model is the true positive rate, calculated as the number of true 

positive observations over the total number of faulty observations. Sensitivity explains the proportion of 

the truly faulty observations that were correctly identified as faulty.  

 𝜑 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 [ 83 ] 

The specificity, 𝛿, is the true negative rate, calculated as the number of true negative observations over 

the total number of nominal observations. This explains the proportion of the true nominal observations 

that were correctly identified as nominal.  

 𝛿 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 [ 84 ] 
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2.3.6.2 Receiver operating characteristic curve 

In practice, a classification model should have a balance between the sensitivity and the specificity. This 

balance is dictated by a threshold set on the monitoring statistic, such as the Hotelling’s T2 statistic or the 

reconstruction error. The threshold on the monitoring statistic defines the point at which an alarm is 

raised.  

For visualization purposes, a receiver operating characteristic, ROC, curve can be generated. A ROC curve 

is a plot of the sensitivity versus the specificity over a window of threshold values for the monitoring 

statistic. A perfect classifier would have no false positives and no false negatives, shown by the blue curve 

in Figure 5. A random classifier would be the orange curve in Figure 5. A classifier shows superior fault 

detection performance the closer it is to the perfect classifier.  

 

Figure 5: ROC curve for a perfect classification model, a random classification model, and an example of 

a real classification model. 

The area under the ROC curve, 𝐴𝑈𝐶, is a metric that incorporates both the sensitivity and specificity of 

the model over a number of threshold values and can be used to quantify the performance of a 

classification model. The random classifier has an 𝐴𝑈𝐶 = 0.5 and the perfect classifier has an 𝐴𝑈𝐶 = 1. 

Good classification performance is inferred by an 𝐴𝑈𝐶 closer to 1. The parts of the curve on the left occur 

at low thresholds for the monitoring statistic. At low thresholds, the sensitivity of the classifier is high, 

however, this can result in false alarms resulting in low specificity (Salfner et al., 2010). At high thresholds, 

the specificity is high, however, there may be a high rate of missed alarms resulting in low sensitivity. 

The selection of this threshold is specific to the real-world application of the classifier. In fault detection 

applications, the severity of the consequences of the fault being detected dictate an appropriate 

threshold. In chemical processes, faulty process conditions can have severe consequences such as 

damage to equipment, plant shutdown, environmental pollution, or dangerous operating conditions 

threatening the safety of plant personnel. Under these circumstances, thresholds should be low to ensure 
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the probability of missing a fault is low. However, this results in a common phenomenon known as alarm 

overloading, where inconsequential or false alarms overwhelm operators (Kaced et al., 2021). 

Typically for fault detection applications, low threshold values for the test statistics are not appropriate 

due to the high false alarm rates resulting in alarm overloading. It is more appropriate to exclude this 

area at low specificities from the 𝐴𝑈𝐶 metric to ensure that the models’ performance is not inflated 

(Dodd & Pepe, 2003). Dodd & Pepe (2003) proposed the partial area under the curve, 𝑝𝐴𝑈𝐶. This metric 

that excludes the low specificity area by only calculating the 𝐴𝑈𝐶 for a specific region under the ROC 

curve between defined specificities 𝛿1 and 𝛿2.   

 𝑝𝐴𝑈𝐶 = ∫ 𝜑𝑑𝛿
𝛿2
𝛿1

 [ 85 ] 

The specificities are calculated as to achieve a minimum precision, 𝜓𝑚𝑖𝑛. This minimum precision is 

defined by the user and specific to the application in question.  

The lowest specificity at which 𝜓𝑚𝑖𝑛 can be achieved is calculated as: 

 𝛿1 = 1 +
𝑇𝑃+𝐹𝑁

𝐹𝑃+𝑇𝑁
(
𝜓𝑚𝑖𝑛−1

𝜓𝑚𝑖𝑛
) [ 86 ] 

𝛿2 is always 1 as this is the maximum specificity achievable.  

For this study, the 𝑝𝐴𝑈𝐶 is used a performance metric. A higher 𝑝𝐴𝑈𝐶 is indicative of good fault 

detection performance, achieving a balance between high sensitivity and high specificity by minimizing 

false negative and false positive outcomes.  

2.3.7 Fault detectability 

Fault detectability is an essential criterion for successful detection of faulty process conditions. In 

literature, fault detectability is typically assessed in two ways: by evaluating the structural detectability 

or the performance-based detectability (Roy & Dey, 2019).  Performance-based detectability investigates 

fault detectability by considering the performance metrics achieved by a specific fault detection method 

(Basseville, 2001). Structural detectability refers to the intrinsic detectability of a fault within a specific 

model of a system, similar to observability or controllability of a system. Structural detectability is 

independent of the method of fault detection, type and size of the fault, and any disturbances or 

modelling uncertainties the system may be subject to in practice (Ding, 2008). Developing the procedure 

for conducting a structural detectability analysis requires an understanding of how the different types of 

faults manifest within systems and how these faults can be categorized.  

2.3.7.1 Fault categorization 

In literature, faults are categorized in number of ways. One common method of categorization is to define 

faults as either additive or multiplicative. This categorization of faults is based upon the manner in which 

a fault interacts with and affects the states of a system. 

The observations obtained from a physical process are the measurements via sensors. Potential faulty 

conditions reflect within these measurements. When the fault signal is obtained by adding the fault to 
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the observation, this is known as an additive fault. When the fault is multiplied by the observation signal, 

this is a multiplicative fault (Chang & Chen, 1995; Sun, 2013). An additive fault will change the expected 

value of the signal, whilst a multiplicative fault changes the covariance structure of the signal (Zhang et 

al., 2017). In the case of an additive fault, the influence the fault has on the process variables is 

independent of the value of the process variables themselves. A multiplicative fault is dependent on the 

values of the states themselves (Patton et al., 2000).  

An additive fault is an unobservable variable that influences the observed variables of the system (Patton 

et al., 2000). Additive faults can occur at the inputs, outputs, or states. An additive fault can occur at the 

inputs, via actuator drift for example, and can be modelled for a linear continuous-time system as: 

 𝑥̇ = 𝐴𝑥 + 𝐵(𝑢 + 𝑓𝐴) [ 87 ] 

Where 𝑓𝐴 represents the fault variable causing a change in the actuator.  

Additive faults can also occur at the outputs caused by sensor bias or offset. This is modelled as: 

 𝑦 = 𝐶𝑥 + 𝑓𝑆 [ 88 ] 

Where 𝑓𝑆 represents the fault variable causing a change to the sensor output.  

Lastly, additive faults can also occur as a result of abnormal disturbances to the process. A fault variable 

causing abnormal system behaviour in the process, 𝑓𝑃 , is modelled as:  

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑓𝑃 [ 89 ] 

 𝑦 = 𝐶𝑥 + 𝑓𝑃  [ 90 ] 

A multiplicative fault results in changes to the system matrices: 

 𝑥̇ = (𝐴 + ∆𝐴)𝑥 + (𝐵 + ∆𝐵)𝑢 [ 91 ] 

𝑦 = (𝐶 + ∆𝐶)𝑥 

(Ding, 2008) 

Multiplicative faults are caused by changes to the parameters of the system. Parameter values vary due 

to a change in the process operating conditions, causing changes in parameters such as reaction rates or 

activation energies (Khorasgani et al., 2014). Significant parameter deviations can also occur as a result 

of physical damage to plant equipment, causing changes to heat transfer coefficients, resistance 

coefficients, or mass transfer coefficients (Hsoumi et al., 2009). Multiplicative faults reflect within the 

system in the same manner as modelling error (Patton et al., 2000). These parameter changes can reflect 

in parameters within the state matrix, 𝐴, affecting the dynamic behavior of state variables. Parameter 

change in the control input matrix, 𝐵, affecting the state-input relationships. Lastly, parameter change 

can present within the measurement matrix, 𝐶, affecting the state-measurement relationships.  

2.3.7.2 Structural detectability 

For a specific model of a system, structural detectability investigates whether the system observables are 

able to capture the signature of the fault (Basseville, 2001). Basseville (2001) presents a review on fault 
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detectability, detailing the various methods for assessing structural detectability of faults in linear 

models. These methods include analyzing the fault-to-output incidence matrices or transfer functions, 

calculating the fault-to-noise ratio within the observed output, calculating the distance between the 

fault-free system model and the faulty system model, or by analyzing the observability or controllability 

of the state-space.  

From sub-section 2.3.7.1, the faults are categorized as an additive or multiplicative fault. Equation 87 

represents how an additive fault manifests within a linear system. This additive fault is structurally 

detectable if the fault-to-output transfer function is non-zero (Roy & Dey, 2019). An additive fault is said 

to be detectable if the system is completely observable (Basseville, 2001) (Frank, 1990). 

From Equation 91, a multiplicative fault can exist as a parameter deviation within the state matrix, 𝐴, the 

control matrix, 𝐵, or measurement matrix, 𝐶. A multiplicative fault in 𝐵 is structurally detectable if the 

input is observable and the multiplicative fault in 𝐶 is structurally detectable if the output is controllable 

(Ding, 2008).  

The multiplicative fault ∆𝐴 results from deviation of model parameters and, thus, causes changes to the 

state transition structure. The detectability of this multiplicative fault is related to the parameter 

identifiability of the fault parameters that deviate in ∆𝐴. Parameter identifiability refers to the sensitivity 

of the observable outputs of a system to potential variation in the model parameter values (Gábor et al., 

2017). Various approaches exist for investigating parameter identifiability and detectability of 

multiplicative faults (Stigter & Molenaar, 2015).  

Conducting a sensitivity analysis is a common method of assessing parameter identifiability. A parameter 

is considered unidentifiable when the sensitivity drops below a pre-defined threshold (Stigter & 

Molenaar, 2015)(Ghobara, 2013). Another method of assessing structural identifiability of a system was 

proposed by Tunali & Tarn (1987) whereby system parameters are considered identifiable if the 

augmented system of states and parameters satisfies the observability rank criterion (Stigter & Molenaar, 

2015). This means parameter identifiability can be assessed via an observability analysis by reformulating 

the state estimation problem to include unknown parameters (Martínez & Villaverde, 2020) (Anguelova, 

2004). The structural identifiability, or observability, of the parameters gives an indication of the extent 

to which specific model parameters reflect within the observables of the model. If the parameter reflects 

fault conditions, then the structural observability of the fault parameter gives an indication of the 

expected fault detectability within the measurements.  

2.3.7.3 Parameter observability  

Parameter observability refers to the ability to infer model parameters from the system outputs. The 

parameters of a model can be viewed as constant states of the system with dynamic equations of zero 

as the parameters remain constant in time, 𝜃̇ = 0. The parameters are incorporated as additional 

unknown states of the system. The augmented state-parameter vector, 𝑥𝑎𝑢𝑔, combines the vector of 

unknown states, 𝑥, and unknown parameters, 𝜃.  

 𝑥𝑎𝑢𝑔 = [
𝑥
𝜃
]   [ 92 ] 
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The state-space representation of the system is given by: 

 𝑥̇𝑎𝑢𝑔 = [
𝑥̇
𝜃̇
] = [

𝑓(𝑥, 𝜃)
0

]  [ 93 ] 

𝑦 = 𝑓(𝑥𝑎𝑢𝑔) 

Parameter identifiability is equivalent to state observability when the parameters are viewed as constant 

states of the system (Villaverde et al., 2019). A nonlinear observability-identifiability matrix is constructed 

in the same way as the observability matrix constructed in equation 63.  

 𝑂𝐼(𝑥𝑎𝑢𝑔) =

[
 
 
 
 
𝑑𝐿𝑓

0ℎ

𝑑𝐿𝑓
1ℎ

⋮

𝑑𝐿𝑓
𝑛+𝑞−1ℎ]

 
 
 
 

  [ 94 ] 

Where 𝑞 is the number of parameters incorporated as states.  

2.3.7.4 Input observability 

Input observability relates to the ability to fully construct the inputs of the system from the outputs. The 

state vector can be augmented to include the time-varying inputs, 𝑢̇.  

 𝑥̇̃ = [
𝑥̇
𝜃
𝑢̇

̇ ] = [
𝑓(𝑥, 𝜃)
0
𝑢̇

]  [ 95 ] 

The observability-identifiability matrix includes the inputs as additional state variables and is constructed 

in the same manner as in Equation 94. When the inputs are constant, the inputs are viewed as additional 

unknown constant parameters with zero dynamics. Therefore, the observability matrix is equivalent to 

the observability-identifiability matrix constructed in equation 94.  

2.3.7.5 Performance-based detectability  

When an accurate process model is not available, fault detectability cannot be assessed from a structural 

point of view. The alternative is to assess the detectability of faults using a performance-based 

methodology. Structural detectability is a necessary but not sufficient condition for practical detectability 

(Villaverde et al., 2019). This is due to structural detectability being independent of fault size, type, and 

system noise. For real-world application, conditions such as modelling uncertainties, unknown 

disturbances, or poor data quality due to measurement noise or missing data, all have a significant impact 

on the performance of fault detection procedures. Performance-based fault detectability takes these 

conditions into account as they directly assess a particular fault detection algorithms’ ability to capture 

faulty information within the observations (Basseville, 2001) (Roy & Dey, 2019). One method of 

performance-based fault detectability is to calculate the fault signal-to-noise ratio (SNR) of the 

observations.  

In a study done by Khorasgani et al. (2014), fault detectability for model-based fault detection is assessed 

using the SNR of each residual. A fault is defined as detectable if at least one of the available residuals is 

sensitive to that fault, where sensitivity is quantified by the SNR. Basseville (2001) also presents a method 
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of assessing performance-based detectability based on the fault SNR within the residuals, where high 

detectability of a fault is inferred by a large fault SNR.  

During faulty operation, the observations from a process are made up of a fault signal and noise. The 

fault signal is the true underlying deviation from nominal behavior and the noise is the random noise 

associated with the observation that arises due to both process and measurement noise. The signal-to-

noise ratio, SNR, is the ratio of the underlying signal to the noise. The fault SNR can be calculated as: 

 𝐹𝑎𝑢𝑙𝑡 𝑆𝑁𝑅 =
𝑠𝑖𝑔𝑛𝑎𝑙

𝜎𝑚𝑒𝑎𝑠
=

𝜇𝑓𝑎𝑢𝑙𝑡𝑦−𝜇𝑛𝑜𝑚

𝜎𝑚𝑒𝑎𝑠
 [ 96 ] 

Where 𝜎𝑚𝑒𝑎𝑠 represents the standard deviation of the measurement noise. The signal is the magnitude 

of the fault reflected within the measurements, calculated as the difference between the mean of the 

faulty observations, 𝜇𝑓𝑎𝑢𝑙𝑡𝑦, and the mean of the nominal observations, 𝜇𝑛𝑜𝑚. A fault 𝑆𝑁𝑅 > 1 indicates 

that the fault signal is detectable. A SNR much greater than one indicates that the underlying fault 

signature within an observation is large compared to the respective noise of that observation, implying 

high detectability. A fault 𝑆𝑁𝑅 ≤ 1 indicates that the fault cannot be reliably detected as the effect of 

noise is greater than or equal to the effect of the fault within the measurements (Khorasgani et al., 2014). 

A low SNR is indicative of either a small fault signal, whereby the fault does not significantly reflect in the 

available observations, or large noise on the observation that masks the fault signal.  
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3 CASE STUDY: SUBMERGED ARC FURNACE 

For application of state estimation techniques, a physical process needs to be selected for which there 

exists a process model and a method for obtaining historical plant data, either by simulation or from 

industrial plant measurements. For this study, a submerged arc furnace (SAF) for smelting of platinum 

group metals (PGMs) is the case study. Section 3.1 provides a brief overview of the PGM smelting process. 

Section 3.2 presents the process model of the SAF. Section 3.3 provides the measurement model used to 

generate synthetic noisy process data used for subsequent state estimation and fault detection. Lastly, 

section 3.4 details various faulty conditions that can potentially arise within the SAF, fault modelling, and 

fault categorization.  

3.1 PGM smelting process 

PGMs exist naturally in ores, primarily in the form of sulphide ores. PGMs are extracted from these ores 

in a complex series of steps. A crucial step in the extraction process is smelting. The smelting phase 

typically occurs in six-electrode submerged arc furnaces (SAFs) following comminution and flotation (Nell, 

2004).  

Incoming ore concentrate enters the SAF into a top layer of unsmelted concentrate. SAFs carry out 

smelting at high temperatures to melt and separate this ore concentrate into two liquid phases; a less 

dense oxide slag layer and a denser sulphide matte layer. In the liquid concentrate layer, the ores undergo 

desulphurization where the PGMs and base metal sulphides are converted into matte components. The 

PGM minerals sink through the slag into the matte layer (Crundwell et al., 2011). The PGM-rich matte 

phase is tapped from the SAF and undergoes conversion in a Pierce-Smith converter to further 

concentrate the PGMs. Leaching is then carried out to obtain a leach residue of concentrated PGMs 

(Jones, 2005). 

3.2 SAF process model  

There exist several process models of a SAF in literature. Theunissen (2021) explains that the available 

models are limited to steady-state models (Sheng et al., 1998) (Pan et al., 2011), models which do not 

describe the entire furnace (Eksteen, 2011), or models that are overly complex with high computational 

burden (Ritchie & Eksteen, 2011) (Bezuidenhout et al., 2009). Mesbah et al. (2011) explains that for the 

application of state estimation algorithms, a simple system of explicit ODEs is preferred to ease the 

computational burden of the state estimation problem.  A simple dynamic model that consists of explicit 

equations is desirable, especially in the case of an EKF to facilitate the computation of Jacobians. The 

model that was chosen for this study is a dynamic model of a six-electrode sulphide smelting SAF 

developed by Theunissen (2021). For a derivation of the model and model assumptions the reader is 

referred to Theunissen (2021). The model is a dynamic model of a SAF represented as a system of ODEs.  

Theunissen (2021) derived the model based on the methodology presented by Logar et al. (2012a, 2012b) 

by performing mass and energy balances over furnace zones, depicted in  Figure 6. The SAF process is a 
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continuous process whereby the ore concentrate is charged into the furnace and the slag and matte liquid 

phases are tapped from opposite sides of the furnace (Logar et al., 2012).  

 

Figure 6: Depiction of distinct zones in the SAF model, adapted from Theunissen (2021). 

The model that describes this SAF smelting process consists of a nonlinear system of equations. In state-

space representation, the model is represented as: 

 𝑥̇ = 𝑓(𝑥, 𝑢)  [ 97 ] 

With discrete-time measurements: 

 𝑦𝑘 = ℎ(𝑥𝑘)  [ 98 ] 

Equation 97 represents the nonlinear dynamics, or how the states, 𝑥, change with respect to time. The 

state dynamics are influenced by the states themselves and the inputs of the system, 𝑢.  Equation 98 

describes the nonlinear measurement equations, which describe how the measurements, 𝑦, relate to the 

state variables.  

The SAF system consists of 17 state variables that are either molar amounts or temperatures within the 

different zones of the furnace. The states of the system, 𝑥, are defined in Table 3.  

Table 3: SAF model state variables. 

Bulk concentrate zone 𝑪(𝑩) Symbol Units State 

1 Moles of slag component in 𝐶(𝐵) 𝑁𝐶(𝐵),𝑋0 𝑚𝑜𝑙 𝑥1 

2 Moles of matte component in 𝐶(𝐵) 𝑁𝐶(𝐵),𝑋𝑆 𝑚𝑜𝑙 𝑥2 

3 Moles of sulfurized matte component in 𝐶(𝐵) 𝑁𝐶(𝐵),𝑋𝑆2 𝑚𝑜𝑙 𝑥3 

4 Temperature of 𝐶(𝐵) 𝑇𝐶(𝐵) 𝐾 𝑥4 
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Smelting concentrate zone 𝑪(𝑺) 
 

  

5 Moles of slag component in 𝐶(𝑆) 𝑁𝐶(𝑆),𝑋0 𝑚𝑜𝑙 𝑥5 

6 Moles of matte component in 𝐶(𝑆) 𝑁𝐶(𝑆),𝑋𝑆 𝑚𝑜𝑙 𝑥6 

7 Moles of sulfurized matte component in 𝐶(𝑆) 𝑁𝐶(𝑆),𝑋𝑆2 𝑚𝑜𝑙 𝑥7 

8 Temperature of 𝐶(𝑆) 𝑇𝐶(𝑆) 𝐾 𝑥8 

Reaction gases in concentrate zone 𝑪(𝑹) 
 

  

9 Moles of reaction gases trapped in 𝐶(𝑅) 𝑁𝐶(𝑅) 𝑚𝑜𝑙 𝑥9 

Slag zone 𝑺 
 

  

10 Moles of slag in 𝑆 𝑁𝑆 𝑚𝑜𝑙 𝑥10 

11 Temperature of 𝑆 𝑇𝑆 𝐾 𝑥11 

Matte zone 𝑴 
 

  

12 Moles of matte in 𝑀 𝑁𝑀 𝑚𝑜𝑙 𝑥12 

13 Temperature of 𝑀 𝑇𝑀 𝐾 𝑥13 

Furnace freeboard zone 𝑮 
 

  

14 Moles of reaction gases in 𝐺 𝑁𝐺,𝑅 𝑚𝑜𝑙 𝑥14 

15 Moles of air in 𝐺 𝑁𝐺,𝐴 𝑚𝑜𝑙 𝑥15 

16 Temperature of 𝐺 𝑇𝐺  𝐾 𝑥16 

Cooling unit zone 𝑾 
 

  

17 Cooling water temperature 𝑇𝑊 𝐾 𝑥17 

 

The nonlinear function 𝑓(𝑥, 𝑢) of equation 97 represents the vector of 17 nonlinear ordinary differential 

equations that describe how each of the states change over time with respect to the states themselves, 

𝑥, and the inputs to the process, 𝑢. The 17 ODEs which describe this dynamic behavior are presented in 

Table 4 along with the supporting equations.  

Table 4: SAF model ODEs. 

 ODEs 

1 
𝑑𝑁𝐶(𝐵),𝑋𝑂

𝑑𝑡
= 𝐹𝑐ℎ𝑎𝑟𝑔𝑒𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑂 − 𝑭𝒎𝒊𝒙,𝑿𝑶 

2 

𝑑𝑁𝐶(𝐵),𝑋𝑆

𝑑𝑡
= 𝐹𝑐ℎ𝑎𝑟𝑔𝑒𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑆 − 𝑭𝒎𝒊𝒙,𝑿𝑺 + 𝒓𝑭,𝑪(𝑩)𝑽𝑪(𝑩) 
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3 

𝑑𝑁𝐶(𝐵),𝑋𝑆2
𝑑𝑡

= 𝐹𝑐ℎ𝑎𝑟𝑔𝑒𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑆2 − 𝑭𝒎𝒊𝒙,𝑿𝑺𝟐 − 𝒓𝑭,𝑪(𝑩)𝑽𝑪(𝑩) 

4 

𝑑𝑇𝐶(𝐵)

𝑑𝑡
=
𝑸𝑪(𝑺):𝑪(𝑩) + 𝑸𝑮:𝑪(𝑩) + 𝑐𝑃,𝐶(𝑇𝑐ℎ𝑎𝑟𝑔𝑒 − 𝑇𝐶(𝐵))𝐹𝑐ℎ𝑎𝑟𝑔𝑒

𝑵𝑪(𝑩)𝑐𝑃,𝐶
 

5 
𝑑𝑁𝐶(𝑆),𝑋𝑂

𝑑𝑡
= 𝑭𝒎𝒊𝒙,𝑿𝑶 − 𝑭𝒎𝒆𝒍𝒕,𝑿𝑶 

6 
𝑑𝑁𝐶(𝑆),𝑋𝑆

𝑑𝑡
= 𝑭𝒎𝒊𝒙,𝑿𝑺 − 𝑭𝒎𝒆𝒍𝒕,𝑿𝑺 + 𝒓𝑭,𝑪(𝑺)𝑽𝑪(𝑺) 

7 

𝑑𝑁𝐶(𝐵),𝑋𝑆2
𝑑𝑡

= 𝑭𝒎𝒊𝒙,𝑿𝑺𝟐 − 𝒓𝑭,𝑪(𝑺)𝑽𝑪(𝑺) 

8 

𝑑𝑇𝐶(𝑆)

𝑑𝑡
=

𝑸𝑺:𝑪(𝑺) (1 −
𝑇𝐶(𝑆)
𝑇𝐶,𝑚𝑒𝑙𝑡

) − 𝑸𝑪(𝑺):𝑪(𝑩) + (𝑇𝐶(𝐵) − 𝑇𝐶(𝑆))(𝑭𝒎𝒊𝒙𝑐𝑃,𝐶 + 𝒓𝑭,𝑪(𝑩)𝑽𝑪(𝑩)𝑐𝑃,𝐺)

𝑵𝑪(𝑺)𝑐𝑃,𝐶
 

9 
𝑑𝑁𝐶(𝑅)

𝑑𝑡
= 𝒓𝑭,𝑪(𝑩)𝑽𝑪(𝑩) + 𝒓𝑭,𝑪(𝑺)𝑽𝑪(𝑺) + 𝒓𝑪 − 𝑱𝑹𝐴 

10 
𝑑𝑁𝑆
𝑑𝑡

= 𝑭𝒎𝒆𝒍𝒕,𝑿𝑶 − 𝐹𝑡𝑎𝑝,𝑆 

11 

𝑑𝑇𝑆
𝑑𝑡

=
𝑸𝑱 + 𝑸𝑴:𝑺 +𝑸𝑾:𝑺 − 𝑸𝑺:𝑪(𝑺) + (𝑇𝐶,𝑚𝑒𝑙𝑡 − 𝑇𝑆)(𝑭𝒎𝒆𝒍𝒕,𝑿𝑶𝑐𝑃,𝑆 +𝑭𝒎𝒆𝒍𝒕,𝑿𝑺𝑐𝑃,𝑀)

𝑁𝑆𝑐𝑃,𝑆
 

12 
𝑑𝑁𝑀
𝑑𝑡

= 𝑭𝒎𝒆𝒍𝒕,𝑿𝑺 − 𝐹𝑡𝑎𝑝,𝑀 

13 

𝑑𝑇𝑀
𝑑𝑡

=
𝑸𝑾:𝑴 − 𝑸𝑴:𝑺 + (𝑇𝑆 − 𝑇𝑀)(𝑭𝒎𝒆𝒍𝒕,𝑿𝑺𝑐𝑃,𝑀)

𝑁𝑀𝑐𝑃,𝑀
 

14 
𝑑𝑁𝐺,𝐴
𝑑𝑡

= 𝑭𝒏𝒆𝒈.𝑷 − 𝑭𝒑𝒐𝒔.𝑷,𝑨 − 𝑭𝒆𝒙𝒕,𝑨 

15 
𝑑𝑁𝐺,𝑅
𝑑𝑡

= 𝑱𝑹𝐴 − 𝑭𝒑𝒐𝒔.𝑷,𝑹 −𝑭𝒆𝒙𝒕,𝑹 

16 

𝑑𝑇𝐺
𝑑𝑡

=
𝑐𝑃,𝐺[(𝑇𝐶(𝑆) − 𝑇𝐺)𝑱𝑹𝐴 + (𝑇𝑎𝑡𝑚 − 𝑇𝐺)𝑭𝒏𝒆𝒈.𝑷] − 𝑸𝑮:𝑪(𝑩)

𝑵𝑮𝑐𝑃,𝐺
 

17 

𝑑𝑇𝑊
𝑑𝑡

=
𝑐𝑃,𝑊(𝑇𝑊,0 − 𝑇𝑊)𝐹𝑊 −𝑸𝑾:𝑴 − 𝑸𝑾:𝑺

𝑁𝑊𝑐𝑃,𝑊
 

 Bulk concentrate mixing rates  

 𝑭𝒎𝒊𝒙,𝑿𝑶 = 𝑘𝑣𝑽𝑪(𝑩)𝑪𝑪(𝑩),𝑿𝑶 

 𝑭𝒎𝒊𝒙,𝑿𝑺 = 𝑘𝑣𝑽𝑪(𝑩)𝑪𝑪(𝑩),𝑿𝑺 

 𝑭𝒎𝒊𝒙,𝑿𝑺𝟐 = 𝑘𝑣𝑽𝑪(𝑩)𝑪𝑪(𝑩),𝑿𝑺𝟐 
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 Desulphurization and oxidation reaction rates 

 𝒓𝑭,𝑪(𝑩) = 𝑘𝐹𝑒
−(

𝐸𝐴,𝐹
𝑅𝑇𝐶(𝐵)

)
𝑪𝑪(𝑩),𝑿𝑺𝟐 

 𝒓𝑭,𝑪(𝑺) = 𝑘𝐹𝑒
−(

𝐸𝐴,𝐹
𝑅𝑇𝐶(𝑆)

)
𝑪𝑪(𝑺),𝑿𝑺𝟐  

 𝒓𝑪 = 𝑘𝐶𝑒
−(
𝐸𝐴,𝐶
𝑅𝑇𝑆

)
 

 Smelting equations  

 
𝑭𝒎𝒆𝒍𝒕,𝑿𝑶 =

𝑸𝑺:𝑪(𝑺)
𝑇𝐶(𝑆)
𝑇𝐶,𝑚𝑒𝑙𝑡

𝜆𝐶 + 𝑐𝑃,𝐶(𝑇𝐶,𝑚𝑒𝑙𝑡 − 𝑇𝐶(𝑆))

𝑁𝐶(𝑆),𝑋𝑂
𝑁𝐶(𝑆),𝑋𝑂 + 𝑁𝐶(𝑆),𝑋𝑆

 

 
𝑭𝒎𝒆𝒍𝒕,𝑿𝑺 =

𝑸𝑺:𝑪(𝑺)
𝑇𝐶(𝑆)
𝑇𝐶,𝑚𝑒𝑙𝑡

𝜆𝐶 + 𝑐𝑃,𝐶(𝑇𝐶,𝑚𝑒𝑙𝑡 − 𝑇𝐶(𝑆))

𝑁𝐶(𝑆),𝑋𝑆
𝑁𝐶(𝑆),𝑋𝑂 + 𝑁𝐶(𝑆),𝑋𝑆

 

 Molar flow in and out of the freeboard  

 
𝑭𝒏𝒆𝒈.𝑷 = {

𝑘𝑃𝑅(𝑃𝑎𝑡𝑚 − 𝑷𝑮)   𝑖𝑓 𝑃𝑎𝑡𝑚 ≥ 𝑃𝐺
0                               𝑖𝑓 𝑃𝑎𝑡𝑚 < 𝑃𝐺

 

 

𝑭𝒑𝒐𝒔.𝑷,𝑹 = {

𝑘𝑃𝑅𝑁𝐺,𝑅(𝑷𝑮 − 𝑃𝑎𝑡𝑚)

𝑁𝐺,𝐴 +𝑁𝐺,𝑅
   𝑖𝑓 𝑃𝐺 ≥ 𝑃𝑎𝑡𝑚

0                                        𝑖𝑓 𝑃𝐺 < 𝑃𝑎𝑡𝑚

 

 

𝑭𝒑𝒐𝒔.𝑷,𝑨 = {

𝑘𝑃𝑅𝑁𝐺,𝐴(𝑷𝑮 − 𝑃𝑎𝑡𝑚)

𝑁𝐺,𝐴 + 𝑁𝐺,𝑅
   𝑖𝑓 𝑃𝐺 ≥ 𝑃𝑎𝑡𝑚

0                                        𝑖𝑓 𝑃𝐺 < 𝑃𝑎𝑡𝑚

 

 
𝑭𝒆𝒙𝒕,𝑹 =

𝑘𝑃𝐸𝑁𝐺,𝑅(𝑷𝑮 − 𝑃𝑒𝑥𝑡)

𝑁𝐺,𝐴 + 𝑁𝐺,𝑅
 

 
𝑭𝒆𝒙𝒕,𝑨 =

𝑘𝑃𝐸𝑁𝐺,𝐴(𝑷𝑮 − 𝑃𝑒𝑥𝑡)

𝑁𝐺,𝐴 + 𝑁𝐺,𝑅
 

 Heat generation and transfer equations 

 𝑸𝑪(𝑺):𝑪(𝑩) = ℎ𝐶(𝑆):𝐶(𝐵)𝐴𝑆𝐴𝐹(𝑇𝐶(𝑆) − 𝑇𝐶(𝐵)) 

 𝑸𝑮:𝑪(𝑩) = ℎ𝐺:𝐶(𝐵)𝐴𝑆𝐴𝐹(𝑇𝐺 − 𝑇𝐶(𝐵)) 

 𝑸𝑺:𝑪(𝑺) = ℎ𝑆:𝐶(𝑆)𝐴𝑆𝐴𝐹(𝑇𝑆 − 𝑇𝐶(𝑆)) 

 
𝑸𝑱 =

𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠
2

𝑅0(1 + 𝛼[𝑇𝑆 − 𝑇𝑆,0])
 

 𝑸𝑴:𝑺 = ℎ𝑀:𝑆𝐴𝑆𝐴𝐹(𝑇𝑀 − 𝑇𝑆) 

 𝑸𝑾:𝑺 = ℎ𝑊:𝑆𝜌𝑆𝐴𝐹𝐿𝑆(𝑇𝑊 − 𝑇𝑆) 
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 𝑸𝑾:𝑴 = ℎ𝑊:𝑀𝜌𝑆𝐴𝐹𝐿𝑀(𝑇𝑊 − 𝑇𝑀) 

 Expressions used to emulate furnace blowback 

 

𝑱𝑹 =

{
 
 

 
 𝑱𝑹,𝑷𝑩𝑹 𝑖𝑓 ∆𝑷𝑪(𝑹):𝑮 ≤ 𝑐∆𝑷𝒄𝒓𝒊𝒕
𝑱𝑹,𝑪𝒉    𝑖𝑓 ∆𝑷𝑪(𝑹):𝑮 > 𝑐∆𝑷𝒄𝒓𝒊𝒕

}  𝑖𝑓 𝐽𝑅 = 𝐽𝑅,𝑃𝐵𝑅

𝑱𝑹,𝑷𝑩𝑹 𝑖𝑓 ∆𝑷𝑪(𝑹):𝑮 ≤ ∆𝑷𝒄𝒓𝒊𝒕
𝑱𝑹,𝑪𝒉    𝑖𝑓 ∆𝑷𝑪(𝑹):𝑮 > ∆𝑷𝒄𝒓𝒊𝒕

}  𝑖𝑓 𝐽𝑅 = 𝐽𝑅,𝐶ℎ

 

 
𝑱𝑹,𝑷𝑩𝑹 =

𝑘𝑃𝐵𝑅
𝑳𝑪

∆𝑷𝑪(𝑹):𝑮 

 𝑱𝑹,𝑪𝒉 = 𝑘𝐶ℎ∆𝑷𝑪(𝑹):𝑮 

 ∆𝑷𝒄𝒓𝒊𝒕 = 𝜌𝐶,𝑏𝑢𝑙𝑘𝑔𝑳𝑪 

 Total moles in the bulk concentrate, smelting concentrate, and freeboard equations 

 𝑵𝑪(𝑩) = 𝑁𝐶(𝐵),𝑋𝑂 +𝑁𝐶(𝐵),𝑋𝑆 + 𝑁𝐶(𝐵),𝑋𝑆2 

 𝑵𝑪(𝑺) = 𝑁𝐶(𝑆),𝑋𝑂 + 𝑁𝐶(𝑆),𝑋𝑆 + 𝑁𝐶(𝑆),𝑋𝑆2 

 𝑵𝑮 = 𝑁𝐺,𝑅 +𝑁𝐺,𝐴 

 Volumes of the bulk and smelting concentrate 

 
𝑽𝑪(𝑩) = (

𝑀𝑋𝑂𝑁𝐶(𝐵),𝑋𝑂 +𝑀𝑋𝑆𝑁𝐶(𝐵),𝑋𝑆 +𝑀𝑋𝑆2𝑁𝐶(𝐵),𝑋𝑆2
𝜌𝐶,𝑏𝑢𝑙𝑘

) 

 
𝑽𝑪(𝑺) = (

𝑀𝑋𝑂𝑁𝐶(𝑆),𝑋𝑂 +𝑀𝑋𝑆𝑁𝐶(𝑆),𝑋𝑆 +𝑀𝑋𝑆2𝑁𝐶(𝑆),𝑋𝑆2
𝜌𝐶,𝑏𝑢𝑙𝑘

) 

 Concentrations in the bulk and smelting concentrate 

 
𝑪𝑪(𝑩),𝑿𝑶 =

𝑁𝐶(𝐵),𝑋𝑂
𝑉𝐶(𝐵)

 

 
𝑪𝑪(𝑩),𝑿𝑺 =

𝑁𝐶(𝐵),𝑋𝑆

𝑉𝐶(𝐵)
 

 
𝑪𝑪(𝑩),𝑿𝑺𝟐 =

𝑁𝐶(𝐵),𝑋𝑆2
𝑉𝐶(𝐵)

 

 
𝑪𝑪(𝑺),𝑿𝑺𝟐 =

𝑁𝐶(𝑆),𝑋𝑆2
𝑉𝐶(𝑆)

 

 Bed height equations 

 
𝑳𝑺 =

𝑀𝑋𝑂𝑁𝑆
𝜌𝑆𝐴𝑆𝐴𝐹

 

 
𝑳𝑴 =

𝑀𝑋𝑆𝑁𝑀
𝜌𝑀𝐴𝑆𝐴𝐹
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𝑳𝑪 =

𝑉𝐶(𝐵) + 𝑉𝐶(𝑆)

𝐴𝑆𝐴𝐹
 

 Bed height control 

 

𝐹𝑐ℎ𝑎𝑟𝑔𝑒 = {
𝐹𝑐ℎ𝑎𝑟𝑔𝑒,𝑐𝑜𝑛𝑠𝑡.   for 20 000𝑠 

0  for 4 000𝑠
 

Concentrate bed height is controlled through charging cycles. The concentrate bed is charged by for 20 

000s followed by halting of charge for 4000s, followed by repeated charging and halting of charge.  

 

𝐹𝑡𝑎𝑝,𝑆 =

{
 
 

 
 𝐹𝑡𝑎𝑝,𝑆,𝑐𝑜𝑛𝑠𝑡. 𝑖𝑓 𝐿𝑆 < 𝐿𝑆,𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚  

0 𝑖𝑓 𝐿𝑆 ≥ 𝐿𝑆,𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚
}  𝑖𝑓 𝐹𝑡𝑎𝑝,𝑆 = 𝐹𝑡𝑎𝑝,𝑆,𝑐𝑜𝑛𝑠𝑡.

𝐹𝑡𝑎𝑝,𝑆,𝑐𝑜𝑛𝑠𝑡. 𝑖𝑓 𝐿𝑆 < 𝐿𝑆,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚  

0 𝑖𝑓 𝐿𝑆 ≥ 𝐿𝑆,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚
}  𝑖𝑓 𝐹𝑡𝑎𝑝,𝑆 = 0

 

Slag bed height is controlled by the slag zone tapping rate. This is done on a switch basis, whereby the 

slag bed height is controlled between and upper and lower limit.   

 

𝐹𝑡𝑎𝑝,𝑀 =

{
 
 

 
 𝐹𝑡𝑎𝑝,𝑀,𝑐𝑜𝑛𝑠𝑡. 𝑖𝑓 𝐿𝑀 < 𝐿𝑀,𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚  

0 𝑖𝑓 𝐿𝑀 ≥ 𝐿𝑀,𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚
}  𝑖𝑓 𝐹𝑡𝑎𝑝,𝑀 = 𝐹𝑡𝑎𝑝,𝑀,𝑐𝑜𝑛𝑠𝑡.

𝐹𝑡𝑎𝑝,𝑀,𝑐𝑜𝑛𝑠𝑡. 𝑖𝑓 𝐿𝑀 < 𝐿𝑀,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚  

0 𝑖𝑓 𝐿𝑀 ≥ 𝐿𝑀,𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚
}  𝑖𝑓 𝐹𝑡𝑎𝑝,𝑀 = 0

 

Matte bed height is controlled by the matte zone tapping rate. This is done on a switch basis, whereby 

the matte bed height is controlled between an upper and lower limit.   

 Pressure equations 

 
𝑷𝑮 =

𝑁𝐺𝑅𝑇𝐺
𝑉𝐺

 

 ∆𝑷𝑪(𝑹):𝑮 = 𝑷𝑪(𝑹) − 𝑃𝐺  

 
𝑷𝑪(𝑹) =

𝑵𝑪(𝑹)𝑹𝑇𝐶(𝑆)

𝜀𝐶𝑉𝐶
 

 𝑽𝑪 = 𝑉𝐶(𝐵) + 𝑉𝐶(𝑆) 

 

The input vector, 𝑢, consists of exogeneous model variables that arise from outside the system and are 

therefore unaffected by the system itself. The input variables of the smelting process are the composition 

of the incoming concentrate (𝑥𝑐ℎ𝑎𝑟𝑔𝑒), the temperature of the incoming concentrate (𝑇𝑐ℎ𝑎𝑟𝑔𝑒), the 

flowrate of the cooling water (𝐹𝑊), and the temperature of the cooling water supplied to the furnace 

(𝑇𝑊,0). For the process model used in the state estimation algorithms, these inputs are kept constant. 

Other inputs to the smelting process are the concentrate charging rate (𝐹𝑐ℎ𝑎𝑟𝑔𝑒), the matte tapping rate 

(𝐹𝑡𝑎𝑝,𝑀) and slag tapping rate (𝐹𝑡𝑎𝑝,𝑆). From Table 4, it can be seen that the flowrate of the charged 

concentrate and the flowrate of the tapped slag and matte are controlled on a switch basis based on the 
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limits placed on each bed height. Their values are either a constant flowrate, when charging/tapping is 

switched on, or zero, when charging/tapping is switched off. 

Using these ODEs, the process is simulated in MATLAB using a built-in ODE solver ode15s, chosen due to 

the stiff nature of this system of equations.  The ODE solver requires initial values for the states, presented 

in Table C.2. 

It should be noted that the process model of the SAF developed by Theunissen (2021) presented in Table 

4 displays hysteresis. There exist model equations for a ‘pre-failure’ model, before furnace blowback has 

occurred, and a ‘post-failure’ model, after blowback. The process model used within the state estimators 

will use the pre-failure model of the process where gas flux out of the furnace behaves as a packed bed 

reactor (PBR), thus 𝐽𝑅 = 𝐽𝑅,𝑃𝐵𝑅 within the differential equations in Table 4. The post-failure model 

assumes gas flux occurs via channelling 𝐽𝑅 = 𝐽𝑅,𝐶ℎ, and is used to generate synthetic measurement data 

under faulty blowback conditions.  

3.3 Measurement model  

For application of state estimation algorithms, in addition to a process model, measurements from the 

process are required. In real-world application of state estimation, these measurements will be obtained 

from the sensors on the plant. For a theoretical study, when industrial data from a real-world process is 

unavailable, the alternative is to generate synthetic measurement data via simulation using the process 

model. To generate the measurements via simulation, the measurement variables are sampled from the 

ODE solver solution at regular intervals and random noise is added to the sample to simulate 

measurement noise.  

There are 9 measured variables in the SAF smelting process. These measured variables represent typically 

available measurements in industrial SAFs. Table 5 summarizes the measured variables and presents the 

discrete measurement equations, ℎ(𝑥𝑘) from equation 98, which describe the relationship between each 

of the measurements and the state variables.  

Table 5: Measured variables from the SAF model. 

 Measurement Symbol State relationship Standard deviation 

of the 

measurement 

noise 

Unit  

𝑦1 Bulk concentrate 

temperature 

𝑇𝐶(𝐵) 𝑻𝑪(𝑩) 10  𝐾  

𝑦2 Slag zone height 𝐿𝑆 𝑀𝑋𝑂𝑵𝑺
𝜌𝑆𝐴𝑆𝐴𝐹

 
0.05  𝑚  

𝑦3 Slag zone temperature 𝑇𝑆 𝑻𝑺 19  𝐾  
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𝑦4 Matte zone height 𝐿𝑀 𝑀𝑋𝑆𝑵𝑴
𝜌𝑀𝐴𝑆𝐴𝐹

 
0.05 𝑚  

𝑦5 Matte zone temperature 𝑇𝑀 𝑻𝑴 18  𝐾  

𝑦6 Reaction gas 

concentration in freeboard 

𝐶𝐺,𝑅 𝑵𝑮,𝑹
𝑉𝐺

 
0.1 𝑚𝑜𝑙

𝑚3  

 

 

𝑦7 Freeboard pressure 𝑃𝐺  (𝑵𝑮,𝑨 + 𝑵𝑮,𝑹)𝑅𝑻𝑮
𝑉𝐺

 
2 𝑃𝑎  

𝑦8 Freeboard temperature 𝑇𝐺  𝑻𝑮 2.2 𝐾  

𝑦9 Cooling water 

temperature 

𝑇𝑊 𝑻𝑾 1 𝐾  

 

Table 5 shows that of these 9 measurements, 5 are state variables themselves. The remaining 4 

measurements are functions of the state variables and constant parameters from the process model 

𝑀𝑋𝑂 , 𝑀𝑋𝑆 , 𝜌𝑆, 𝜌𝑀 , 𝐴𝑆𝐴𝐹 ,  and 𝑉𝐺. The values for these constant parameters are presented in Table C.3. 

The measurements are sampled at specific points in the simulation time to simulate realistic 

measurement frequency. Each of the measurements have equivalent sampling rates of 10 seconds, 

corresponding to the sampling rate of the sensors at Anglo Platinum’s Polokwane smelter (Groenewald 

et al., 2018). 

The magnitude of the standard deviation of the measurement noise is estimated based on sensor 

accuracy information or by calculating the standard deviation on past measurements. Based on real-

world SAF instrumentation information obtained via confidential communication with industrial 

partners, realistic measurement noise was chosen. Table 5 presents the standard deviation associated 

with each of the measurements. Table C.4 presents these standard deviation values along with 

justification for the choice of these values.  

3.4 SAF faults  

A fault is an unobserved occurrence that manifests within or outside of a process causing abnormal 

behaviour in system variables and the dynamic relationships between variables (Patton et al., 2000). 

Faults can manifest from a variety of sources including mechanical or electrical failure of plant equipment 

such as sensors and actuators, or abnormal disturbances causing changes to the process conditions. The 

SAF is subject to numerous potential faults. The four faults that are investigated in this study are a fault 

in the flowrate of the cooling water, an extraction pressure fault, a change in the charged concentrate 

composition, and furnace blowback.  
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3.4.1 Fault modelling 

3.4.1.1 Cooling water fault 

The flowrate of cooling water is a constant input to the process. The cooling water fault is simulated as a 

sudden decrease in this input. Sidewall cooling is important in the operation of a SAF to maintain the 

integrity of the furnace lining (Jones, 2005). This abnormal disturbance in the flowrate of cooling water 

reflects within the measurement of the temperature of the cooling water, 𝑇𝑊, disrupting the process of 

cooling the sidewalls and can potentially cause structural damage to the refractory shell of the furnace.  

3.4.1.2 Extraction pressure fault 

The desulphurization and oxidation reactions occurring in the smelting process release sulphur, sulphur 

dioxide, hydrogen sulphide, and hydrogen chloride. These gases are contained in the freeboard of the 

SAF (Jones, 2005). The gauge pressure within the furnace freeboard is maintained at a slightly negative 

pressure to prevent reaction gases from escaping to the atmosphere (Thethwayo, 2010). This is achieved 

by extracting the reaction gases from the furnace and replacing the gases with air. Controlling the off-gas 

removal is necessary in smelting processes (Crundwell et al., 2011). This process is controlled by forced 

draught or forcing air flow inside the furnace via fans. The molar flowrate of the reaction gases being 

extracted from the furnace is calculated as: 

 𝑭𝒆𝒙𝒕,𝑹 =
𝑘𝑃𝐸𝑁𝐺,𝑅(𝑷𝑮−𝑃𝑒𝑥𝑡)

𝑁𝐺,𝐴+𝑁𝐺,𝑅
 [ 99 ] 

Where 𝑃𝑒𝑥𝑡  is a constant parameter of the furnace model, representing the forced draught. The 

parameter 𝑃𝑒𝑥𝑡  dictates the flowrate of reaction gases and air being extracted from the furnace due to 

the pressure difference created between 𝑃𝑒𝑥𝑡  and the pressure in the freeboard, 𝑃𝐺 . The extraction 

pressure fault is initiated via a sudden decrease in the extraction draught. In practice, a failure in the 

forced draught mechanism causes this type of fault. A sudden decrease in the extraction draught results 

in a smaller pressure difference, thus, causing an increase in the amount of reaction gases within the 

freeboard as less reaction gases are being extracted. This disrupts the pressure conditions within the 

furnace, disrupting the integrity of the smelting process and can potentially lead to excess release of 

reaction gases to the atmosphere.  

3.4.1.3 Charge composition fault 

The charge composition fault is simulated by a step change in the composition of the charging 

concentrate feed to the furnace. There is a decrease in the slag component composition in the charging 

concentrate and an increase in the matte component composition. This causes an increase in the number 

of moles of matte component and decrease in the number of moles of slag component within the 

furnace. The furnace operates at set temperature intensities to ensure optimal operating conditions for 

the specific composition of ore being processed. A decrease in the slag component favours a less energy 

intensive process as chromite formation is not as prevalent (Nell, 2004). Thus, an unmonitored change in 

the ore composition disrupts the process conditions, resulting in sub-optimal performance of the 

smelting process as energy is being wasted.  
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3.4.1.4 Furnace blowback 

When the freeboard pressure becomes greater than the atmospheric pressure outside the furnace, 

blowback occurs. A blowback, or furnace eruption, is the sudden release of the gases from the freeboard 

into the surrounding atmosphere. The hazardous gases can be harmful to nearby operators and the 

sudden release of gas and subsequent temperature drop can disrupt the process conditions within the 

furnace (Theunissen, 2021). 

The reaction gases that are generated from desulphurization and oxidation accumulate within the voids 

of the concentrate layer. Under nominal operating conditions, these reaction gases flux to the freeboard 

due to the pressure difference between the concentrate and the freeboard. Furnace blowback occurs 

when there is a buildup of pressure in the concentrate voids caused by excess accumulation of reaction 

gases within the concentrate. When the pressure in the concentrate exceeds a critical pressure, reaction 

gases from the concentrate rapidly channel into the freeboard and cause an increase in the freeboard 

pressure.  

This pressure buildup in the concentrate is caused by an increase in the number of moles of reaction 

gases in the concentrate voids, 𝑁𝐶(𝑅). Thus, an increase in 𝑁𝐶(𝑅) causes furnace blowbacks. Based on the 

dynamic equation of 𝑁𝐶(𝑅), in this study, furnace blowback is simulated via a sudden change in the 

parameters ℎ𝑆:𝐶(𝑆) and 𝑘𝑃𝐵𝑅.  

A sudden decrease in the heat transfer coefficient, ℎ𝑆:𝐶(𝑆), causes a decrease in 𝐹𝑚𝑒𝑙𝑡, the flowrate of 

melted concentrate into the slag phase. The concentrate charging rate remains constant, however, less 

concentrate melts into the slag, causing a buildup of smelting concentrate, 𝑁𝐶(𝑆). More smelting 

concentrate results in more reaction gases, 𝑁𝐶(𝑅).  

 𝑘𝑃𝐵𝑅 is the flux coefficient which dictates the reaction gas flux from the concentrate to the freeboard. A 

sudden decrease in the parameter 𝑘𝑃𝐵𝑅 causes slower movement of reaction gases to the freeboard, and 

thus, a build-up of reaction gases in the voids within the concentrate.  

Both these changes result in blowback-preceding conditions and eventual furnace blowback once 𝑁𝐶(𝑅) 

exceeds a certain level.  

The original model presented by Theunissen (2021) modelled concentrate charging on a switch basis 

based on limits placed on the concentrate bed height and modelled furnace blowback by suddenly 

increasing the concentrate bed height limits, allowing for more ore to be charged to the furnace and thus 

more gases to build up.  

The new method of modelling furnace blowback induces concentrate buildup via a sudden decrease in 

ℎ𝑆:𝐶(𝑆). When bed height limits are used to initiate concentrate charging, the concentrate will not build 

up as a result of a decrease in ℎ𝑆:𝐶(𝑆). Thus, the process model of the SAF developed by Theunissen (2021) 

is altered to facilitate this modelling of the furnace blowback. The model used in this study models the 

concentrate charging based a timed switch as opposed to a switch based on the bed height limits.  
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The values for each of the parameters under nominal operating conditions and altered faulty conditions 

are summarized in Table 6.  

Table 6: Nominal operating conditions and faulty conditions for fault simulation. 

 
Fault Nominal operation Faulty operation 

1  Cooling water fault 
𝐹𝑊 = 2400

𝑚𝑜𝑙

𝑠
 𝐹𝑊 = 1900

𝑚𝑜𝑙

𝑠
 

2 Extraction pressure fault 𝑃𝑒𝑥𝑡,𝑔𝑎𝑢𝑔𝑒 = −10 𝑃𝑎 𝑃𝑒𝑥𝑡,𝑔𝑎𝑢𝑔𝑒 = −9 𝑃𝑎 

3 Composition switch 𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑂 = 0.90 

𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑆 = 0.09 

𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑆2 = 0.01 

 

𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑂 = 0.78 

𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑆 = 0.21 

𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑆2 = 0.01 

 
4 Furnace blowback 

ℎ𝑆:𝐶(𝑆) = 0.31
𝑘𝑊

𝑚2. 𝐾
 ℎ𝑆:𝐶(𝑆) = 0.248

𝑘𝑊

𝑚2. 𝐾
 

  𝑘𝑃𝐵𝑅 = 1 × 10
−8

𝑚𝑜𝑙

𝑚. 𝑃𝑎. 𝑠
 𝑘𝑃𝐵𝑅 = 0.7 × 10

−8
𝑚𝑜𝑙

𝑚. 𝑃𝑎. 𝑠
 

3.4.2 Fault categorization 

Each of the four faults simulated in this study are categorized as additive or multiplicative faults by 

analyzing how the faults, presented in Table 6, reflect within the state dynamics of the system. The ODEs, 

presented in Table 4, are used to ascertain the dynamic relationship between the faults and the state 

variables. The results are presented in Table 7.  

Table 7: Relationship between fault parameters and state ODEs and subsequent fault categorization. 

 
Fault Dynamic equation Categorization 

1  Cooling water 

fault 
1. 

𝑑𝑇𝑊

𝑑𝑡
=

𝑐𝑃,𝑊(𝑇𝑊,0−𝑇𝑊)𝐹𝑊−𝑄𝑊:𝑀−𝑄𝑊:𝑆

𝑁𝑊𝑐𝑃,𝑊
  

 

Multiplicative in the 

state equation  

2 Extraction 

pressure fault 

1. 
𝑑𝑁𝐺,𝐴

𝑑𝑡
= 𝐹𝑛𝑒𝑔.𝑃 − 𝐹𝑝𝑜𝑠.𝑃,𝐴 −𝑭𝒆𝒙𝒕,𝑨 

𝐹𝑒𝑥𝑡,𝐴  =
𝑘𝑃𝐸𝑁𝐺,𝐴(

(𝑁𝐺,𝐴+𝑁𝐺,𝑅)𝑅𝑇𝐺
𝑉𝐺

−𝑃𝑒𝑥𝑡)

𝑁𝐺,𝐴+𝑁𝐺,𝑅
  

2. 
𝑑𝑁𝐺,𝑅

𝑑𝑡
= 𝐽𝑅𝐴 − 𝐹𝑝𝑜𝑠.𝑃,𝑅 −𝑭𝒆𝒙𝒕,𝑹 

𝐹𝑒𝑥𝑡,𝑅 =
𝑘𝑃𝐸𝑁𝐺,𝑅(

(𝑁𝐺,𝐴+𝑁𝐺,𝑅)𝑅𝑇𝐺
𝑉𝐺

−𝑃𝑒𝑥𝑡)

𝑁𝐺,𝐴+𝑁𝐺,𝑅
  

 

Multiplicative in the 

state equation 

3 Composition 

switch 

1. 
𝑑𝑁𝐶(𝐵),𝑋𝑂

𝑑𝑡
= 𝐹𝑐ℎ𝑎𝑟𝑔𝑒𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑂 −𝐹𝑚𝑖𝑥,𝑋𝑂 

2. 
𝑑𝑁𝐶(𝐵),𝑋𝑆

𝑑𝑡
= 𝐹𝑐ℎ𝑎𝑟𝑔𝑒𝑥𝑐ℎ𝑎𝑟𝑔𝑒,𝑋𝑆 −𝐹𝑚𝑖𝑥,𝑋𝑆 + 𝑟𝐹,𝐶(𝐵)𝑉𝐶(𝐵) 

Multiplicative in the 

input equation  

4 Furnace 

blowback 

1. 
𝑑𝑁𝐶(𝑆),𝑋𝑂

𝑑𝑡
= 𝑭𝒎𝒊𝒙,𝑿𝑶 −𝐹𝑚𝑒𝑙𝑡,𝑋𝑂 

𝑭𝒎𝒆𝒍𝒕,𝑿𝑶 =
ℎ𝑆:𝐶(𝑆)𝐴𝑆𝐴𝐹(𝑇𝑆−𝑇𝐶(𝑆))

𝑇𝐶(𝑆)
𝑇𝐶,𝑚𝑒𝑙𝑡

𝜆𝐶+𝑐𝑃,𝐶(𝑇𝐶,𝑚𝑒𝑙𝑡−𝑇𝐶(𝑆))

𝑁𝐶(𝑆),𝑋𝑂

𝑁𝐶(𝑆),𝑋𝑂+𝑁𝐶(𝑆),𝑋𝑆
  

Multiplicative in the 

state equation 
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2. 
𝑑𝑁𝐺,𝑅

𝑑𝑡
= 𝑱𝑹𝐴 − 𝐹𝑝𝑜𝑠.𝑃,𝑅 − 𝐹𝑒𝑥𝑡,𝑅  

𝑱𝑹 =
𝑘𝑃𝐵𝑅

𝑽𝑪(𝑩)+𝑽𝑪(𝑺)

𝐴𝑆𝐴𝐹

(
𝑁𝐶(𝑅)𝑅𝑇𝐶(𝑆)

𝜀𝐶(𝑽𝑪(𝑩)+𝑽𝑪(𝑺))
−

(𝑁𝐺,𝐴+𝑁𝐺,𝑅)𝑅𝑇𝐺

𝑉𝐺
)  

 

All four faults investigated in this study are multiplicative faults. Faults 1, 2 and 4 are multiplicative in the 

state equations, whereby the magnitude of the effect of the fault parameters is dependent on the values 

of the states themselves. The magnitude of the effect of fault 3 does not depend on the value of the 

states, however, it does depend on the value of the input, 𝐹𝑐ℎ𝑎𝑟𝑔𝑒.  
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4 OBSERVABILITY AND DETECTABILITY ANALYSIS APPROACH AND RESULTS 

The following chapter presents the methodology and results for the observability analysis of the SAF 

system and fault detectability analysis to address objective 1 of the study. Section 4.1 outlines the 

procedure used to conduct the state observability analysis and the fault detectability analysis via 

structural detectability and performance-based detectability. Section 4.2 presents the results of the 

state observability analysis to ascertain system observability and the degree of observability of the state 

variables. Section 4.3 provides the results for the fault detectability, addressing both structural 

detectability via parameter observability and the performance-based detectability using the SNR.   

4.1 Observability analysis approach 

4.1.1 Observability matrix of the SAF model  

The process model and measurement equations which define the SAF system were presented in Chapter 

3 in sections 3.2 and 3.3. The method of constructing the observability matrix for a nonlinear system by 

linearization is presented in sub-section 2.2.2.3. For this study, the linearized observability matrix is 

constructed as opposed to the nonlinear observability matrix using Lie derivatives due to the impractical 

computational expense incurred when calculating higher order Lie derivatives. Furthermore, section 

2.2.2.4 explains that local observability via linearization is a sufficient condition for observability. Under 

the circumstances that the system is found to be locally unobservable via the linearization method, it 

should then be checked for local weak observability using the nonlinear observability matrix constructed 

from the Lie derivatives.  

The SAF nonlinear system of equations is linearized around state values chosen at an arbitrary point 

representing NOCs, 𝑥𝑛𝑜𝑚.The linearization is achieved via the symbolic math toolbox in MATLAB to 

calculate the Jacobian matrices 𝐴 =
𝜕𝑓

𝜕𝑥
|
𝑥𝑛𝑜𝑚

and 𝐶 =
𝜕ℎ

𝜕𝑥
|
𝑥𝑛𝑜𝑚

. 

The linearized system of equations is then scaled using the range of NOCs as part of the data pre-

processing described in sub-section 2.2.3.2. The linearized and scaled state matrix is given by 𝐴𝑠𝑐𝑎𝑙𝑒𝑑 =

𝑆𝑥𝐴𝑆𝑥
−1 and the linearized and scaled measurement matrix is 𝐶𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑆𝑦𝐶𝑆𝑥

−1. The derivation of the 

scaled matrices is presented in appendix A.10.  

This SAF system model is as a hybrid system of equations, whereby the dynamics of the system model 

are continuous, and the measurement model is discrete.  As explained in sub-section 2.2.3, the discrete 

system model is used to analyze the degree of observability. The scaled continuous-time state matrix, 

𝐴𝑠𝑐𝑎𝑙𝑒𝑑 , is converted to the discrete-time state matrix, 𝐹, by: 

 𝐹 = 𝑒𝐴𝑠𝑐𝑎𝑙𝑒𝑑∆𝑡  [ 100 ] 

Where ∆𝑡 is the discretization step size. 

The linearized observability matrix for the SAF model is generated using the linearized and scaled 

measurement matrix, 𝐶𝑠𝑐𝑎𝑙𝑒𝑑 , and the discretized, linearized, and scaled state transition matrix, 𝐹.  This 

is done in MATLAB using the function obsv.  
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 𝑂𝑆𝐴𝐹 = [

𝐶𝑠𝑐𝑎𝑙𝑒𝑑
𝐶𝑠𝑐𝑎𝑙𝑒𝑑𝐹

⋮
𝐶𝑠𝑐𝑎𝑙𝑒𝑑𝐹

𝑛−1

]  [ 101 ]  

The SAF linearized observability matrix, 𝑂𝑆𝐴𝐹, is an 𝑚 × 𝑛 matrix. The number of rows is equal to the 

number of state variables multiplied by the number of measurement variables 𝑚 = 𝑛𝑦 × 𝑛. The number 

of columns is equal to the number of state variables, 𝑛. The SAF system has 𝑛 = 17 state variables and 

𝑛𝑦 = 9 measured variables.   

4.1.2 SVD of the observability matrix 

To assess the observability of the SAF system, SVD is performed on the observability matrix. The theory 

of SVD is presented in sub-section 2.2.3. The observability matrix is decomposed via SVD into the matrix 

of left singular vectors, 𝑈, the matrix of right singular vectors, 𝑉, and the diagonal matrix containing the 

singular values, Σ.  

 𝑂𝑆𝐴𝐹 = 𝑈Σ𝑉
𝑇   [ 102 ] 

4.1.2.1 Rank test 

The rank of the observability matrix is assessed following the theory presented in sub-section 2.2.3.3. The 

rank of the observability matrix is indicated by the number of non-zero singular values in  Σ. An observable 

system has a full rank observability matrix. Therefore, the number of non-zero singular values should be 

equal to 17 for the SAF system to be considered observable.  

4.1.2.2 Analysis of 𝑉 

According to the theory presented in sub-section 2.2.3.4, the states associated with each direction of 

observability can be assessed by analysing the elements of the right singular vectors of 𝑉. For the SAF 

system,  𝑉 is a 17 × 17 matrix composed of 17 right singular vectors, 𝑣1 through 𝑣17.  

𝑉 = [

| | |
𝑣1 … 𝑣17
| | |

] 

Each right singular vector represents an observable direction. The entries in each right singular vector, 

𝑣𝑖, indicate the corresponding states contribution to the 𝑖𝑡ℎ  observable direction.  

4.1.2.3 Generating an observability index 

The observability of the SAF system can be assessed according to the rank test outlined in sub-section 

4.1.2.1. In addition, the states that contribute to the various observable directions can be analyzed 

following the procedure outlined in sub-section 4.1.2.2. Both these analyses do not summarize the 

degree of observability of the individual states. Therefore, a single metric, which will be referred to as 

the observability index of a state, is defined for this study. This observability index is used as a qualitative 

metric to investigate the level of observability of the individual state variables for this study.  
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The entry 𝑉𝑗𝑖 represents the 𝑗𝑡ℎ  states’ contribution to the 𝑖𝑡ℎ  direction of observability. For each state, 

𝑗, an observability metric, 𝑜𝑗, can be calculated as the sum of the 𝑗𝑡ℎ  row of 𝑉, where each entry in the 

row is weighted according to a weighting 𝑊𝑖.  

 𝑜𝑗 = ∑ 𝑊𝑖
𝑖=𝑛
𝑖=1 𝑉𝑗𝑖            𝑗 = 1,… , 𝑛  [ 103 ] 

The weightings, 𝑊𝑖, are calculated using the singular value, 𝜎𝑖, corresponding to the observable direction 

𝑖. The singular values are normalized to ensure the sum of all the weightings is equal to 1. The smallest 

weighting will be closest to zero and corresponds to the smallest singular value associated with the least 

observable direction. The largest weighting will be closest to 1 and will be associated with the largest 

singular value and thus most observable direction.  

 𝑊𝑖 =
𝜎𝑖

∑ 𝜎𝑖
𝑛
1

           𝑖 = 1,… , 𝑛  [ 104 ] 

The largest 𝑜𝑗  is associated with the most observable state and the smallest 𝑜𝑗  with the least observable 

state.  

4.1.3 Observability-identifiability matrix of the SAF 

Based on the categorization of faults in this study, as presented in Section 3.4.2, all four faults investigated 

are categorized as multiplicative faults. Faults 1, 2, and 4 are multiplicative in the states and structural 

fault detectability is assessed via parameter observability. Fault 3 is multiplicative in the input and 

structural fault detectability is assessed via input observability. As described in section 2.3.7.2, structural 

fault detectability is assessed by parameter and input observability by constructing the observability-

identifiability matrix. For this study, as described in section 3.2, the inputs 𝐹𝑊 and  𝑥𝑐𝑜𝑛𝑐 are constant 

variables, therefore, time-varying inputs do not need to be accounted for in the observability-

identifiability analysis.  

The state vector was augmented to include all 17 state variables and the 5 fault parameters and inputs, 

presented in Table 6, as additional unknown states.   

𝑥̃ =

[
 
 
 
 
 
 
 
𝑥1
⋮
𝑥17
ℎ𝑆:𝐶(𝑆)
𝑘𝑃𝐵𝑅
𝐹𝑊
𝑃𝑒𝑥𝑡
𝑥𝑐𝑜𝑛𝑐 ]

 
 
 
 
 
 
 

 

An observability analysis is carried out on this augmented state system. The same procedure is followed 

as presented in section 4.1.1. The linearized observability-identifiability matrix for the SAF model is 

generated using the linearized and scaled measurement matrix, 𝐶𝑠𝑐𝑎𝑙𝑒𝑑 , and the discretized, linearized, 

and scaled state transition matrix, 𝐹.  Where the additional states, the 5 fault parameters and inputs, 

have zero dynamics in 𝐹.  

𝑥̇̃ = [
𝑥̇
𝜃̇
] = [

𝐹(𝑥, 𝜃)
0

] 
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 𝑂𝐼,𝑆𝐴𝐹 = [

𝐶𝑠𝑐𝑎𝑙𝑒𝑑
𝐶𝑠𝑐𝑎𝑙𝑒𝑑𝐹

⋮
𝐶𝑠𝑐𝑎𝑙𝑒𝑑𝐹

𝑛−1

]  [ 105 ]  

The procedures followed in sub-sections 4.1.2.2 and 4.1.2.3 will be repeated for the observability-

identifiability matrix to evaluate each of the fault parameters level of observability. This level of 

observability corresponds to the level of structural detectability of the fault parameters.  

4.2 State observability results 

The linearized observability matrix is decomposed via SVD. The singular values obtained from SVD of the 

observability matrix are plotted on a logarithmic plot in Figure 7.  

 

Figure 7: Logarithmic plot of singular values from SVD of the linearized observability matrix. 

The results show that there exist 17 non-zero singular values. Therefore, the system is considered fully 

observable as the number of non-zero singular values is equal to the number of states in the system. It 

should be noted that the last few singular values are particularly small, indicating poor observability of 

the last few observable directions. 

When the singular values are plotted on a logarithmic scale, system unobservability is visualized by a 

sudden gap in the plot when the singular values differ by orders of magnitude (Stigter et al., 2017). Figure 

7  shows relatively similar magnitudes for the first 8 singular values, 𝜎1 − 𝜎8. There is a sudden decrease 

in the magnitude at 𝜎9 and the magnitude of the singular values  steadily decrease thereafter. Although 

there is a small gap between 𝜎8 and 𝜎9 and the subsequent singular values,  Figure 7  does not display 

the characteristic large gap indicating system unobservability. Therefore, although the last few singular 

values are close to zero, the system is classified as observable.  

These results are further corroborated by analysing the groups of correlated states associated with the 

directions of observability with small singular values. This is done by analysis of the right singular vectors. 

Figure 8 represents a heatmap of the right singular vectors obtained from SVD of the linearized 

observability matrix.   
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Figure 8: Heat map of right singular vectors of the linearized observability matrix.  

A heatmap of the right singular vectors, 𝑣1 through 𝑣17, is used to visualize the states correlated with the 

various directions of observability. The rows of the heatmap represent the 17 observable directions, with 

the first row being the most observable direction and the last row being the least observable direction. 

The columns of the heatmap represent the  17 state variables. Each block 𝑖𝑗 in the heatmap is coloured 

according to the magnitude of the correlation of the state/column 𝑗 to the observable direction/row 𝑖.   

From Figure 8, it can be seen that state variables 𝑁𝐶(𝐵),𝑋𝑂, the number of moles of slag component in 

the bulk concentrate, and 𝑁𝐶(𝐵),𝑋𝑆, the number of moles of matte component in the bulk concentrate, 

are strongly correlated with the smallest singular value and the least observable direction.  From Figure 

8, states 𝑁𝐶(𝑆),𝑋𝑂, the number of moles of slag component in the smelting concentrate, and 𝑁𝐶(𝑅) , the 

number of moles of reaction gases trapped in the concentrate, are strongly associated with the second 

smallest singular value. Therefore, the states 𝑁𝐶(𝐵),𝑋𝑂, 𝑁𝐶(𝐵),𝑋𝑆, 𝑁𝐶(𝑆),𝑋𝑂, and 𝑁𝐶(𝑅) are the states that 

cause the system to exist close to unobservability. However, Figure 8 indicates these states are also 

associated with other, more observable, directions. This further confirms the system is indeed 

observable.  

From Figure 8, the states contributing to the most observable direction can also be inferred. It is expected 

that states that are directly or indirectly measured should be associated with the most observable 

directions. State 𝑇𝐶(𝐵), the temperature of the bulk concentrate, is associated with the most observable 

direction, and states 𝑁𝑆, the number of moles of slag in the slag zone, and 𝑁𝑀 ,   the number of moles of 

matte in the matte zone, are associated with the second most observable direction. From the 
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measurement equations presented in Table 5, it can be seen that these states are directly or indirectly 

measured. The other measured states, 𝑇𝑆, 𝑇𝑀,𝑁𝐺,𝑅, 𝑁𝐺,𝐴 and 𝑇𝐺  are all associated with more observable 

directions. State 𝑇𝑊, the temperature of the cooling water, is one of the less observable measured 

variables. This is due to the fact that although 𝑇𝑊 is directly measured, the state is not involved in dynamic 

equations of the other states. The observability matrix considers both the measurement matrix, but also 

the state transition matrix which explains dynamic relationships amongst the state variables. More 

observable measured states, such as 𝑁𝑆 and 𝑁𝑀, are measured and involved in a number of dynamic 

equations with other measured variables, thus, making them more observable.  

The observability index described in section 4.1.2.3 is calculated for each of the 17 state variables from 

the SVD of the linearized observability. The results are presented in Table 8, with the states ordered from 

most observable to least observable. Additionally, the ratio of the observability index of the current state 

to previous state in the table is calculated.  

Table 8: Observability index for each of the state variables obtained from the linearized observability 

matrix. 

Ranking 
(𝒊) State 𝒐𝒊 

Ratio 
𝒐𝒊

𝒐𝒊−𝟏
  

1 𝑇𝐶(𝐵) 0.2608 -  

2 𝑁𝑀 0.2176 0.8342  

3 𝑁𝑆 0.2059 0.9464  

4 𝑇𝑆 0.1813 0.8803  

5 𝑇𝑀 0.1646 0.9080 Measured states 

6 𝑇𝐺  0.1279 0.7772  

7 𝑁𝐺,𝐴 0.1186 0.9275  

8 𝑁𝐺,𝑅 0.0664 0.5594  

9 𝑇𝑊 0.0610 0.9195  

10 𝑁𝐶(𝑅) 0.0024 0.0393  

11 𝑁𝐶(𝑆),𝑋𝑂 0.0018 0.7321  

12 𝑁𝐶(𝐵),𝑋𝑂 0.0014 0.8033  

13 𝑇𝐶(𝑆) 0.0012 0.8264 Unmeasured states 

14 𝑁𝐶(𝑆),𝑋𝑆 0.0010 0.8449  

15 𝑁𝐶(𝐵),𝑋𝑆 0.0009 0.9220  

16 𝑁𝐶(𝑆),𝑋𝑆2 0.0002 0.2315  

17 𝑁𝐶(𝐵),𝑋𝑆2 0.0001 0.4728  

 

The results presented in Table 8 provide a summary of the results obtained in section Error! Reference 

source not found. by analysis of Figure 8. This confirms that the measured state variables are more 

observable than the unmeasured states. The sudden jump between the eighth and ninth singular values 

seen in Figure 7 is also reflected in Table 8. The ratio, 
𝑜𝑖

𝑜𝑖−1
, suddenly drops at the tenth ranking. This 

sudden drop in the ratio is caused by a sudden significant decrease in the observability index between 

the measured states and the unmeasured states. Table 8 also highlights the significant drop in the ratio 

at the 16th ranking. This indicates that the level of observability significantly decreases for states 
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𝑁𝐶(𝐵),𝑋𝑆2  and 𝑁𝐶(𝑆),𝑋𝑆2, the sulphurized matte compoents in the bulk concentrate and the smelting 

concentrate, respectively.   

4.3 Fault detectability results 

4.3.1 Structural fault detectability  

Figure 9 shows the logarithmic plot of the singular values obtained from SVD of the observability-

identifiability matrix. Figure 9 displays the characteristic large gap in the singular values between the 21st 

and 22nd singular values indicating that the observability-identifiability matrix is rank deficient.  

 

Figure 9: Logarithmic plot of singular values from SVD of the observability-identifiability matrix. 

Figure 10 shows the heatmap of the right singular vectors obtained from SVD of the observability-

identifiability matrix. For simplicity, the figure excludes the contributions of the state variables 𝑥1 through 

𝑥17 and only shows the fault parameter contributions to the observable directions.  

 

Figure 10: Heatmap of the right singular vectors of the observability-identifiability matrix.  

Stellenbosch University https://scholar.sun.ac.za



 

84 

Figure 10 shows that parameter 𝑃𝑒𝑥𝑡  contributes to the tenth, eleventh, fourteenth and fifteenth 

observable directions. Fault parameter ℎ𝑆:𝐶(𝑆) is associated with the twelfth, fourteenth, and eighteenth 

observable directions. Fault 𝐹𝑊 is associated with the thirteenth observable direction. Fault 𝑥𝑐𝑜𝑛𝑐  is 

associated with the second to least observable direction. Lastly, fault parameter 𝑘𝑃𝐵𝑅  is associated with 

the least observable direction. From Figure 9, the last singular vector can be assumed to have a value of 

zero due to the gap in the singular values, thus, indicating system unidentifiability. Upon analysis of the 

null space basis vector, the parameter involved in a total correlation causing system unidentifiability is 

only parameter 𝑘𝑃𝐵𝑅.  

The results in Figure 10 are supported by calculating the observability index for each of the fault 

parameters, presented in  

Table 9.  

Table 9: Fault parameter scaled observability indices. 

Ranking (𝒊) State 𝒐𝒊 
Ratio 

𝒐𝒊

𝒐𝒊−𝟏
 

1 𝑥10 0.2412  

2 𝑥4 0.2382 0.9873 

3 𝑥12 0.2276 0.9557 

4 𝑥13 0.2144 0.9422 

5 𝑥11 0.1842 0.8589 

6 𝑥15 0.1158 0.6288 

7 𝑥16 0.0968 0.8356 

8 𝑥14 0.0680 0.7027 

9 𝑥17 0.0556 0.8183 

10 𝑥3 0.0058 0.1035 

11 𝑥9 0.0044 0.7640 

12 𝑥5 0.0032 0.7284 

13 𝑃𝑒𝑥𝑡  0.0024 0.7484 

14 𝑥1 0.0023 0.9723 

15 𝑥6 0.0017 0.7261 

16 𝑥8 0.0015 0.8985 

17 𝑥2 0.0015 0.9956 

18 ℎ𝑆:𝐶(𝑆) 0.0007 0.4847 

19 𝑥7 0.0006 0.7955 

20 𝐹𝑊 0.0004 0.6625 

21 𝑥𝑐𝑜𝑛𝑐  0.0002 0.5565 

22 𝑘𝑃𝐵𝑅 4.34E-07 0.0020 
 

The characteristic gap seen in Figure 9 is reflected as a small ratio, 
𝑜𝑖

𝑜𝑖−1
, at the 22nd ranking in Table 9 

indicating that the observability index suddenly decreased. The fault parameter 𝑘𝑃𝐵𝑅 is unidentifiable 

and therefore structurally undetectable. However, due to the identifiability of parameter ℎ𝑆:𝐶(𝑆), the 

blowback fault is still considered structurally detectable.  

Stellenbosch University https://scholar.sun.ac.za



 

85 

According to the observability analysis, it can be concluded that the 𝑃𝑒𝑥𝑡  fault is the most structurally 

detectable. The blowback fault is the second most structurally detectable due to the change in parameter 

ℎ𝑆:𝐶(𝑆). The fault in 𝐹𝑊 is the third most structurally detectable. Lastly, the least structurally detectable 

fault is the fault in 𝑥𝑐𝑜𝑛𝑐.  

4.3.2 Performance-based fault detectability 

A fault SNR is calculated for each observation for each of the four faults investigated using equation 96 

presented in sub-section 2.3.7.5. In data-driven fault detection, the observation is the measurement from 

the process. In model-based fault detection, the observation is the residual generated by the EKF or the 

PF.  The SNR for each observation for each of the four faults is presented in Figure 11. From these results, 

the performance-based detectability for each fault detection method for each respective fault can be 

ascertained.  

 

Figure 11: Fault SNR for each residual/measurement for each of the faults. 

The faults are first compared to one another. Figure 11 shows that blowback fault has the highest SNR in 

the 𝐶𝐺𝑅 observation. The blowback fault also reflects as large signals within a number of different 

observations including 𝐿𝑠, 𝑇𝑠, and 𝑇𝑀. The extraction pressure fault has the second largest SNR in the 𝐶𝐺𝑅 
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observation. The cooling water flowrate fault shows a smaller SNR and the fault mainly reflects within 

the 𝑇𝑤 observation. The charging composition fault reflects in a number of observations, each with 

relatively small SNRs.  

From this analysis, the blowback fault is the most detectable, followed by the extraction pressure fault 

and the cooling water fault. The charge composition fault is the least detectable based on the 

performance-based detectability. These results are similar to those obtained by the structural 

detectability analysis in section 4.3.1. However, structural detectability indicates the extraction pressure 

fault is the most structurally detectable and the blowback fault the second most.  

From Figure 11, the fault detection methods can also be compared. The PF residual shows consistently 

good performance-based detectability for all four faults with consistently higher SNRs than the EKF and 

measurement observations. The EKF residual shows comparable detectability to the PF residual for the 

cooling water fault and better performance than the measurement for the charge composition fault. The 

measurement used for data-driven fault detection shows superior performance-based fault detectability 

than the EKF residual for the extraction pressure fault and the blowback fault.  

This performance-based assessment of the fault detectability is dependent on the type and size of the 

fault, as well as the specific method of obtaining the faulty signal, either via the measurements or 

residuals from state estimators. This method also considers the effect of measurement noise on the 

detectability of the faults within the observations. It should be noted that in real-world applications there 

may exist unknown fault modes or disturbances that manifest within the measurements. Furthermore, 

labelled historical data may not be available for each individual fault mode. Therefore, the SNR cannot 

always be calculated for each individual fault mode in practice.  
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5 STATE ESTIMATION APPROACH AND RESULTS 

The following chapter outlines the approach and results in fulfillment of objective 2 of the study: 

implement the EKF, UKF, PF, and MHE for estimation of the states in the SAF smelting process to enable 

selection of one or more state estimation methods to be used in model-based fault detection. Section 

5.1 outlines the methodology for implementation of the four state estimation techniques. Section 5.2 

presents the results obtained from using the state estimation algorithms to estimate the states of the 

SAF. This section highlights and compares the performance of each of the state estimation methods 

investigated, allowing for selection of the most appropriate technique/s for application in model-based 

fault detection.  

5.1 State estimation approach 

The following section describes the approach used to meet the second objective of this study. Sub-section 

5.1.1 describes the numerical implementation of the state estimation techniques in MATLAB. Sub-section 

5.1.2 outlines the metrics that are used to evaluate the performance of the state estimation techniques. 

Sub-section 5.1.3, 5.1.4, and 5.1.5 derive appropriate values for the tuning parameters required for 

implementation of the state estimation algorithms for this study.  

5.1.1 State estimation algorithms 

The four state estimation algorithms investigated in this study, the EKF, UKF, PF, and MHE, are employed 

for estimation of the 17 state variables of the SAF system, presented in Table 3. From section 3.3, a new 

measurement is obtained from the SAF process every 10 𝑠. Therefore, a new state estimate for each of 

the state variables is calculated every 10 𝑠.  

The EKF algorithm explained in sub-section 2.1.3.2 and presented in appendix B.1, the UKF algorithm 

detailed in sub-section 2.1.4.5 and presented in appendix B.2, and the standard bootstrap PF algorithm 

in sub-section 2.1.5.4 and appendix B.3, are implemented in MATLAB using the code presented in  
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Appendix D – MATLAB code. The MHE is implemented in MATLAB using the nonlinear programming 

solver fminunc with the optimization algorithm sqp to solve for a horizon of state estimates based on the 

objective function presented in sub-section 2.1.6.  

The prediction step of the algorithms involves propagating the state estimate from the previous timestep 

to the next timestep using the nonlinear model representing the dynamics of the system. For this study, 

the nonlinear dynamics are represented by the model equations presented in Table 4. The solution for 

the a priori state estimate is calculated in MATLAB by propagating the previous state estimate 10 seconds 

ahead to the next timestep using ode15s. 

The update step of the algorithms involves updating the a priori state estimate with the current 

measurement. This involves transforming the a priori state estimate through the measurement equations 

presented in Table 5.  

Each algorithm requires tuning parameters that are defined prior to implementation. The common tuning 

parameters required for each algorithm are the initial state estimate, initial state estimate error 

covariance, measurement noise covariance matrix, and process noise covariance matrix. An additional 

parameter is required for the PF, the number of particles. Additional parameters for the MHE are the 

horizon length, as well as any constraints on the state variables. Placing constraints on the state estimates 

is important when the system is operating close to physically unrealizable values of the states. For the 

SAF model, the 17 state variables being estimated are molar amounts and temperatures. Nonnegative 

molar amounts would be an example of an appropriate physically motivated constraint. However, the 

range of NOCs for of the SAF do not lie close to this physical constraint. Furthermore, upon 

implementation of the unconstrained nonlinear filters, the EKF, UKF, and PF, the state estimates do not 

converge to any physically unrealizable solutions. Therefore, for this study the constraints are omitted 

from the MHE optimization algorithm.  

5.1.2 Performance evaluation 

Based on the theory presented in sub-section 2.1.9, for this study the metric used to quantify the 

estimation accuracy of each state estimator is the MAPE, calculated as: 

 𝑀𝐴𝑃𝐸(%) =
1

𝑁
∑

|𝑥𝑘−𝑥𝑘|

𝑥𝑘

𝑁
𝑘=1 × 100  [ 106 ] 

The state estimates, 𝑥̂𝑘, are obtained from each state estimation algorithm. The ground truth values, 𝑥𝑘, 

are the underlying true values for the states obtained during the generation of synthetic measurement 

data.  

The MAPE provides a scale-free and more interpretable value for the estimation accuracy. However, it 

should be noted that the objective function of the state estimators (the squared error) does not match 

the performance metric (the MAPE). Moreover, the MAPE calculated when the true value of the state, 

𝑥𝑘, goes to zero is a meaningless value and should be ignored. This is not relevant for this study as the 

furnace does not operate under conditions resulting in a value of zero for any of the state variables.  
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The computational burden of the filters is quantified by the average elapsed time taken to obtain each 

state estimate. This is obtained directly from MATLAB using the tic and toc functions. Evidently, the 

computational times are specific to this study and the hardware used. The hardware used in this study is 

Apple MacBook Pro M1 8 GB.  

5.1.3 Tuning parameters 

5.1.3.1 Filter initialization 

As per the theory described in sub-sections 2.1.7.1 and 2.1.7.2, each filter is initialized with a guess for 

the initial state estimate and the initial estimation error covariance matrix. The most important 

consideration is to ensure that the initial state estimate and estimation error covariance are consistent 

with one another.  

For this study, the ground truth initial conditions, 𝑥0, of the system are exactly known and presented in 

Table C.2. Therefore, the initial state estimate tuning parameter, 𝑥̂0, is based on this ground truth value. 

Realistic initialization error is simulated by adding some error to the initial ground truth values of the 

states.   

 𝑥̂0 = (1.01)𝑥0  [ 107 ] 

Where the initial state estimates differ from the ground truth initial conditions by 1% of the initial ground 

truth values.  

The initial estimation error covariance matrix is selected to be consistent with the initial state estimate 

using the equation: 

 𝑃0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)
𝑇]  [ 108 ] 

Where the initial estimation error covariance is a diagonal matrix with elements on the diagonal equal to 

the variance of the initial state estimate error.  

As explained in sub-section 2.1.6.2, the MHE optimization routine requires an initial guess for the state 

estimates over the entire initial horizon length. This is often achieved via another nonlinear state 

estimator. For this study, the EKF is used to supply the MHE optimization routine with the guesses for the 

initial horizon of state estimates. This EKF is initialized with 𝑥̂0 and 𝑃0 presented above.  

5.1.3.2 Measurement noise covariance matrix 

The measurement noise covariance matrix supplied to the state estimators in this study is calculated from 

the standard deviation of the measurements as described in sub-section 2.1.7.3.  

 𝑅 = 𝑑𝑖𝑎𝑔(𝜎𝑚𝑒𝑎𝑠
2 )  [ 109 ] 

Where 𝜎𝑚𝑒𝑎𝑠 is the standard deviation used to generate synthetic measurement data found in Table 5. 

As explained in sub-section 2.1.7.3, in practice the measurement noise is fairly easy to obtain from sensor 

information or data. Thus, for this study the measurement noise covariance supplied to the state 

Stellenbosch University https://scholar.sun.ac.za



 

90 

estimator is assumed exactly equal to the measurement noise covariance on the synthetically generated 

measurements.  

5.1.3.3 Process noise covariance matrix 

For this study, the process noise covariance matrix, 𝑄, is assumed to be a constant diagonal matrix. The 

diagonal elements are selected based on knowledge of the process model, considering potential variation 

in the parameters and inputs that impact model accuracy. 

Table 4 summarizes the dynamic equations used to make the model predictions for the SAF model. The 

parameters and inputs involved in the dynamics of each state variable should be considered when 

choosing an appropriate process noise associated with each state. Another important consideration is 

the presence of unmeasured state variables. The variances associated with unmeasured states need to 

be appropriately selected, as too large values can cause divergence of the state estimator. Lastly, each of 

the state estimation algorithms calculate the final state estimate based on the ratio of process noise to 

measurement noise. Thus, when selecting the process noise, the magnitude of the measurement noise 

should also be considered.  

Table B.1 summarizes the process model uncertainties and measurement uncertainties for each of the 

17 state variables. The state variables are all molar amounts or temperatures. From Table B.1, most of 

the molar amounts have process noise with a standard deviation of 100 𝑚𝑜𝑙𝑠. This is chosen to reflect 

the parametric uncertainty of the kinetic parameters and heat transfer coefficients. Based on literature 

studies presented in sub-section 2.1.10.1, expected parameter deviation ranges between  5 − 35% of 

the parameter original value. This level of parametric uncertainty in the model equations reflects as a 

standard deviation of about 100 𝑚𝑜𝑙𝑠 within the molar amount state variables over the timestep of 10 𝑠.  

The molar amount state variables with a larger standard deviation of the process noise of 1000 𝑚𝑜𝑙𝑠 are 

𝑁𝐶(𝐵),𝑋0, 𝑁𝑆 and 𝑁𝑀 . This added uncertainty is attributed to the potential variation in the inputs, whereby 

small variation in the charging and tapping flowrates or the charging composition causes a large variation 

in the model prediction. 𝑁𝐶(𝐵),𝑋𝑆 and 𝑁𝐶(𝐵),𝑋𝑆2 are also affected by potential variation in the charging 

rate and composition, however, these molar mounts are significantly smaller than 𝑁𝐶(𝐵),𝑋0 and are not 

as greatly affected by input variation.  

All temperature state variables have process noise with standard deviations of 1 𝐾. This uncertainty is 

attributed to the parametric uncertainty of the heat transfer coefficients. Relatively large variation in the 

heat transfer coefficients does not cause significant variation in the model prediction of the temperatures 

over a timestep of 10 𝑠. The model prediction of 𝑇𝐶(𝐵) is further affected by inputs to the process, 

however, variation in these inputs also does not cause significant variation in the state. 𝑇𝑊 is affected by 

the input of the flowrate of cooling water, however, input variation is not expected to cause significant 

variation, thus, a standard deviation of the process noise of 1 𝐾 is selected.  

Additionally, Table B.1 compares the process noise with the measurement noise for measured state 

variables. The level measurements have a large degree of uncertainty associated with them due to the 

inaccuracies of the measurement method. The concentration of reactions gases has a much smaller 
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measurement uncertainty compared to the process model uncertainty arising from parametric 

uncertainty.  

The last measurement that must be considered is the freeboard pressure measurement. The pressure in 

the freeboard is calculated from 𝑁𝐺,𝐴, 𝑁𝐺,𝑅, and  𝑇𝐺 . The standard deviation of the pressure measurement 

noise is 2 𝑃𝑎 and during NOCs the pressure remains relatively constant. The pressure in the freeboard is 

very sensitive to small changes in the state variables, 𝑁𝐺,𝐴, 𝑁𝐺,𝑅, and  𝑇𝐺 . Thus, it is important that the 

process noise associated with these parameters is not too large as this reflects as unrealistic model 

predictions for 𝑃𝐺 . This is especially important in the PF algorithm during the likelihood calculation. Upon 

implementation of the PF algorithm using the process noise in Table B.1, unacceptably small likelihoods 

are calculated due to the large differences between the measurement 𝑃𝐺  and the model predicted value 

for 𝑃𝐺 , causing fairly accurate particles to be assigned low weightings. Thus, smaller process model 

uncertainty values are selected for 𝑁𝐺,𝐴, 𝑁𝐺,𝑅, and  𝑇𝐺  to ensure appropriate performance of the PF. Table 

10 summarizes the final values for the process model uncertainties used in the process noise covariance 

matrix supplied to the state estimators.  

The standard deviations associated with the process noise as discussed above refer to the continuous-

time process noise, or the expected random variation in the state variables over a specified timestep of  

∆𝑡 = 10𝑠. Table 10 converts these values to the standard deviation of the variation of the state variable 

per second.  

Table 10: Final process model uncertainty for each of the state variables.  

State Standard deviation 
of the process noise 

Unit 

𝑁𝐶(𝐵),𝑋0 100 𝑚𝑜𝑙/𝑠 

𝑁𝐶(𝐵),𝑋𝑆 10  𝑚𝑜𝑙/𝑠 

𝑁𝐶(𝐵),𝑋𝑆2 10  𝑚𝑜𝑙/𝑠 

𝑇𝐶(𝐵) 0.1 𝐾/𝑠 

𝑁𝐶(𝑆),𝑋0 10 𝑚𝑜𝑙/𝑠 

𝑁𝐶(𝑆),𝑋𝑆 10  𝑚𝑜𝑙/𝑠 

𝑁𝐶(𝑆),𝑋𝑆2 0.1 𝑚𝑜𝑙/𝑠 

𝑇𝐶(𝑆) 0.1   𝐾/𝑠 

𝑁𝐶(𝑅) 10  𝑚𝑜𝑙/𝑠 

𝑁𝑆 100  𝑚𝑜𝑙/𝑠 

𝑇𝑆 0.1   𝐾/𝑠 

𝑁𝑀 100  𝑚𝑜𝑙/𝑠 

𝑇𝑀 0.1   𝐾/𝑠 

𝑁𝐺,𝐴 0.01  𝑚𝑜𝑙/𝑠 

𝑁𝐺,𝑅 0.01  𝑚𝑜𝑙/𝑠 

𝑇𝐺  0.01   𝐾/𝑠 

𝑇𝑊 0.1   𝐾/𝑠 
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The standard deviations of the process noise associated with each state variable, presented in Table 10, 

represent the realistic magnitudes of the noise incurred when significant plant-model mismatch is 

expected in the form of parametric uncertainty and unknown disturbances in the inputs. As highlighted 

in sub-section 2.3.2.2, when no or modelling errors occur in reality, an overestimated value for 𝑄 

significantly degrades the accuracy of the state estimates. For this study, two scenarios will be assessed; 

the performance of state estimators when supplied a large process noise, presented in Table 10, to assess 

the impact that an overestimated value for 𝑄 has on the performance of the state estimators. The second 

scenario assessed is the performance of state estimators using a smaller process noise covariance matrix 

constructed using standard deviations of the process noise of 1% of the values presented in Table 10. 

This small value of Q is a more accurate representation of the system simulated in this study when no 

plant-model mismatch is simulated.  

5.1.4 Number of particles in the PF 

The method used to select the number of particles for this study is based on the likelihood approach to 

adaptive particle filtering described in sub-section 2.1.5.9. For this study, the method presented for on-

line adaption of the number of particles is employed for particle number selection purposes prior to 

implementation of the filter, rather than on-line adaption during filter operation. The number of particles 

in the final PF algorithm remains constant during operation and is chosen a priori using the following 

selection procedure: 

1) Initiate the PF with 𝑁 = 10 particles.  

2) At each timestep calculate the sum of non-normalized loglikelihoods. The likelihood is 

calculated in the PF algorithm in the update step using Equation 27.  

𝑞𝑖 =
1

(2𝜋)
𝑛𝑦
2 |𝑅|

1
2

exp (−
1

2
(𝑦𝑘 − 𝑦̂𝑘,𝑖

− )
𝑇
𝑅−1(𝑦𝑘 − 𝑦̂𝑘,𝑖

− ) 

The log-likelihood is log (𝑞𝑖) and the sum of log-likelihoods is calculated as the sum of all the log-

likelihoods of each of the 𝑁 particles.  

∑log (𝑞𝑖)

𝑛

𝑖=1

 

 This is done over a specified time period on a set of test measurements. 

3) Repeat the procedure with double, 2𝑁, the number of particles on the same set of test 

measurements. 

4) Repeat this entire procedure on an additional 9 set of test measurements to smooth the results.  

As the number of particles increases, the log-likelihood should increase, indicating improved filter 

performance as the distribution can be more accurately approximated and there exist more significant 

overlap between the measurement distribution and the prior distribution. As the particle number 

continues to increase, the log-likelihood increase begins to flatten. This creates a scenario whereby 

additional computational effort, incurred by increasing the number of particles, yields progressively 
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smaller benefits. Therefore, the ‘best performing’ PF is selected as the number of particles that results in 

a mean log-likelihood within 10% of the mean log-likelihood obtained using the previous number of 

particles. This threshold of 10% dictates the point whereafter there is no significant benefit in increasing 

the number of particles further and the increased computational burden is no longer justified. The final 

particle number selection is the number of particles achieving a mean log-likelihood within one standard 

deviation of the ‘best performing’ number of particles.  

Figure 12 depicts the results from the implementation of this procedure in a boxplot of the sum of the 

log-likelihoods obtained using various numbers of particles in the PF algorithm. 

 

Figure 12: Smoothed boxplot of the sum of the log-likelihood versus the number of particles. 

Figure 12 shows that as the number of particles doubles, the log-likelihood increases. As the number of 

particles continues to double, the log-likelihood begins to flatten. The mean log-likelihood using 160 

particles is within 10% of the mean log-likelihood using 80 particles. Thus, 160 particles is considered 

the ‘best’ performing PF. The PF model that achieves a mean log-likelihood that falls within one standard 

deviation of the 160 particle model is the 80 particle model. It can be concluded that the appropriate 

number of particles for this system is 80 particles. In the PF algorithm presented in sub-section 2.1.5.4, 

𝑁 = 80.  

5.1.5 MHE horizon length  

As per the literature review on the MHE horizon length selection presented in sub-section 2.1.6.3, the 

two methods for selecting an appropriate horizon length are to evaluate the estimation error at different 

horizon lengths and to consider the time constants of the dynamic model. Both these methods are 

employed.  
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5.1.5.1 Time constants of the SAF model  

The SAF system is linearized around the initial values presented in Table C.2 to obtain the linearized state 

transition matrix, 𝐴. Eigen decomposition is performed on 𝐴 to obtain the eigenvalues of the system. 

Table 11 presents the eigenvalues ordered from the largest negative value to the smallest negative value 

with the corresponding time constants ordered from shortest time constant to longest time constant.  

 

 

Table 11: Eigenvalues and corresponding time constants of the linearized SAF model. 

Eigenvalue Time constant (s) 

-286.32 3.49E-03 

-0.63 1.59 

-0.24 4.14 

-0.21 4.81 

-0.01 73.76 

-2.96E-03 337.77 

-1.38E-03 724.26 

-1.17E-03 854.64 

-5.84E-04 1.71E+03 

-3.67E-04 2.73E+03 

-2.51E-04 3.99E+03 

-2.16E-04 4.64E+03 

-1.63E-04 6.13E+03 

-4.88E-05 2.05E+04 

-3.99E-06 2.50E+05 

0.00 - 

0.00 - 

 

From Table 11, all the eigenvalues of the system are negative, with the exception of the last two 

eigenvalues being calculated as very small negative numbers and approximated as zero eigenvalues. The 

largest negative eigenvalue is exceptionally large compared to the other eigenvalues, with a 

corresponding time constant of 3.49 × 10−3 𝑠, indicating very fast state dynamics. The first four 

eigenvalues have relatively fast dynamics of less than 5 𝑠. Thereafter, the eigenvalues are very small 

negative numbers, resulting in long time constants indicating slow state dynamics.  

The states associated with each eigenvalue are analyzed using the entries in the corresponding 

eigenvectors. Figure 13 shows the state variables that contribute to the last two eigenvalues, the zero 

eigenvalues.  
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Figure 13: Elements of the eigenvectors associated with the last two eigenvalues of 𝐴. 

From Figure 13, the states associated with the zero eigenvalues are 𝑥10 and 𝑥12, the number of moles in 

the slag zone and the matte zone, respectively. These are the integrator states, whose dynamics do not 

depend on the states themselves and are therefore not self-regulating. The rate of change of 𝑥10 is 

dependent on the smelting rate of the slag component, which is dictated by the state variables in the 

smelting concentrate zone and the slag tapping rate, which is an input to the process that is externally 

controlled. Similarly, the rate of change of 𝑥12 is dependent on the smelting rate of matte component 

and the matte tapping rate. The rate of change of these states do not directly depend on the states 

themselves.  

Figure 14 is a plot of the entries in the eigenvectors associated with the first and second eigenvalues.  
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Figure 14: Elements of the eigenvectors associated with the first and second eigenvalues of 𝐴. 

From Figure 14, states 𝑥14, 𝑥15, and 𝑥16 are associated with the first and second eigenvalues and 

therefore have the fastest dynamics. These states are the number of moles of reaction gases in the 

freeboard 𝑁𝐺,𝑅, the number of moles of air in the freeboard 𝑁𝐺,𝐴,, and the temperature in the furnace 

freeboard 𝑇𝐺 , respectively. These exceptionally fast gas dynamics can be explained by analysis of the SAF 

model ODEs in Table 4 and the initial model conditions of Table C.2. The exceptionally fast dynamics 

associated with the gases compared to the slow dynamics within the concentrate, matte, and slag regions 

of the furnace are due to the significantly smaller molar amounts of gases within the freeboard compared 

to the large molar amounts of liquid within the other zones.  

Upon analysis of the time constants of the SAF process model, the first eigenvalue in Table 11 is a large 

negative eigenvalue with a corresponding exceptionally small time constant. The last few eigenvalues of 

Table 11 are small with corresponding long time constants. It is evident that there is an inherent stiffness 

in the system equations. The system stiffness is exacerbated by the exceptionally fast gas dynamics. This 

SAF system displays characteristics of a singularly perturbed system due to this presence of time-scale 

multiplicity. Handling of time-scale multiplicity using singular perturbation theory is explained in sub-

section 2.1.6.3 c.  

Sub-section 2.1.6.3 b explains the implications of working with a stiff system of equations. Longer horizon 

lengths are required in the MHE algorithm to ensure stability and convergence, thus, resulting in a high 

computational burden. Several literature studies, presented in sub-section 2.1.6.3 b, propose modified 
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MHE algorithms for handling stiff systems of equations in an attempt to reduce the computational burden 

of the MHE.  

Analysis of the computational requirements of the MHE algorithm employed for state estimation of the 

SAF states highlights that the greatest computational load stems from the integration in the prediction 

step. During the prediction step, a trajectory of predicted state estimates is obtained by integrating the 

system of ODEs over 10 𝑠. This integration is performed multiple times in the optimization routine. The 

built-in MATLAB solver ode15s used in the prediction step is designed to handle stiff ODEs using an 

adaptive step-size. During this relatively short integration interval of 10 𝑠, the solver does not have 

sufficient time to adapt the step size and a large computational effort is incurred due to the small 

integration time steps.  

The proposed method for reducing the computational requirements of the MHE for this study involves 

targeting the greatest computational load in the optimization procedure, the integration. An alternative 

integration method, Runge-Kutta RK4 step, is used between timepoints with a larger specified timestep 

of 5 𝑠. This significantly reduces the computational time spent in the prediction step. However, the 

solution does not converge for states with dynamics that are significantly faster than this specified 

timestep of 5 𝑠. Therefore, a reduced order model of the system needs to be identified based on the 

different time-scale multiplicities of the states. For this study, an alternative model based on singular 

perturbation theory is developed.  

5.1.5.2 MHE singular perturbation model  

The process model of the SAF supplied to the MHE is divided into two subsystems based on the time-

scale multiplicity of the system and singular perturbation theory presented in sub-section 2.1.6.3 c. The 

system is split by the speed of the dynamics into states with fast dynamics and states with slow dynamics. 

The speed of the dynamics is classified according to the step size taken by the solver. If the time constant 

is shorter than the step size, the dynamics are considered fast. Conversely, if the time constant is longer 

than the step size, the dynamics are considered slow.  The states corresponding to short time constants 

are identified from the eigenvectors corresponding to the largest eigenvalues, these are the fast states, 

𝑥𝑓. The remaining states are the slow states, 𝑥𝑠. Based on the analysis of the time constants of the 

dynamic model presented in sub-section 5.1.5.1, the fast states of the singular perturbation model are: 

𝑥𝑓 = 𝑥14, 𝑥15, 𝑥16 

The remaining states are the slow states: 

𝑥𝑠 = 𝑥1 → 𝑥13, 𝑥17 

The original nonlinear SAF system dynamics are represented by: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) + 𝑤 [ 110 ] 

The system dynamics are split into fast and slow dynamics according to: 
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𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
[
𝑥𝑠
𝜀𝑥𝑓

] = [
𝑓𝑠(𝑥𝑠, 𝑥𝑓)

𝑓𝑓(𝑥𝑠, 𝑥𝑓)
] + [

𝑤𝑠
𝑤𝑓
] [ 111 ] 

𝑤𝑠~(0, 𝜎𝑠
2) 

𝑤𝑓~(0, 𝜎𝑓
2) 

Whereby the dynamics and the process noise are separated based on the speed of the dynamics of the 

states. The slow states have dynamics from the original SAF model. The perturbation parameter, 𝜀, is set 

to zero as the fast dynamics are assumed to run in quasi-steady state. This enables the use of the RK4 

method with larger step sizes to be used in the integration step. Thus: 

 𝑓𝑓(𝑥𝑠, 𝑥𝑓) = 0 [ 112 ] 

During the prediction step, the fast states remain constant, 𝑥𝑓,𝑘+1
− = 𝑥𝑓,𝑘

+ . The slow states have their 

original dynamics and original process noise variance. To account for the inaccurate prediction of fast 

states, the variance of 𝑤𝑓 is chosen to be exceptionally large. This induces uncertainty in the process 

model for the fast states, and the state estimate is biased towards the measurement. 

𝜎𝑓,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = [0.01 0.01 0.01] 

𝜎𝑓,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = [10 10 0.1] 

The singular perturbation model using a RK4 step in the prediction step is employed to reduce the 

computational effort of the MHE. This singular perturbation model makes accurate predictions for the 

slow states but poor predictions for the fast states. However, these poor predictions of the fast states 

are rectified for in the update step. Alternative approaches such as reduced-order modelling degrade the 

prediction accuracy for all states and/or reduce the number of states estimated.  

State estimation using the MHE to estimate the 17 state variables of the SAF is performed using the 

original SAF model and ode15s for the prediction step and the singular perturbation model with RK4 for 

the prediction step. State estimation is performed using varied horizon lengths in the MHE algorithm. 

Table 12 shows the average computational times achieved by the MHE using both models under various 

horizon lengths.  

Table 12: Average computational times for the MHE using the original model and the singular 

perturbation model at various horizon lengths. 

Horizon length 

Average computational time per estimate (s) Ratio of average 

computational time 

(original/modified) Original model 

Singular perturbation 

model 

2 7.70 4.43 1.7 

3 27.15 18.60 1.5 

4 62.01 36.74 1.7 

5 93.83 76.11 1.2 
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6 126.49 105.54 1.2 

7 173.19 170.92 1.0 

8 233.22 204.43 1.1 

9 297.02 318.06 0.9 

10 385.63 413.99 0.9 

 

Table 12 shows the average computational time per estimate is significantly reduced when using the 

singular perturbation model with the RK4 step at short horizon lengths, with the singular perturbation 

model being 1.5 − 1.7 times faster than the original model using ode15s. However, for horizon lengths 

longer than 7, the singular perturbation model requires comparable computational times to the original 

model. The average computational time per estimate at longer horizon lengths becomes intractable for 

both models. Therefore, the horizon length selection is ultimately limited by the computational effort.  

The estimation accuracy of the models is also compared by calculating the MAPE of the 17 state 

estimates. Figure 15 illustrates the MAPE for each of the state estimates across different horizon lengths 

achieved by the MHE using both the singular perturbation model and the original model.  
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Figure 15: MAPE of the state estimates under different horizon lengths achieved by the MHE using a 

singular perturbation model and RK4 prediction step and the MHE using the original model with ode15s 

prediction step. 

For state estimates 𝑥̂3, 𝑥̂7, 𝑥̂9, 𝑥̂14, and 𝑥̂15, the singular perturbation model results in notably larger 

MAPEs than the original model over all horizon lengths. Most of the state estimates show an overall 

decrease in MAPE for an increase in horizon length for both models. However, this is not always a 

consistent decrease between each horizon length increase. As explained by Larsson (2015), this is 

attributed to the complex dynamic relationships between variables and cost function approximation 

error. For the state estimates that do show a decrease in MAPE, increasing the horizon length results in 

marginally better estimation accuracy at the cost of a significant increase in computational effort. 

Therefore, the horizon length is selected based on achieving an acceptable computational time, rather 

than striving for the highest estimation accuracy.  

A horizon length selection of 4, corresponding to a horizon time of 40 𝑠, is ultimately selected. This is 

based on the significant improvement in computation time achieved using the singular perturbation 

model at this horizon length, seen in Table 12. This reduced computational time justifies the loss of 

estimation accuracy seen in Figure 15.  

5.2 State estimation results  

This section presents the results obtained to address objective 2 of the study. Sub-section 5.2.1 presents 

the results from investigating the state estimation performance using a larger process noise appropriate 

for robust state estimation. Section 5.2.2 presents the results from evaluating state estimation 

performance using a smaller process noise covariance that is more appropriate for model-based fault 

detection applications. These results facilitate selection of state estimation techniques for performing 

model-based fault detection to facilitate objective 3 of the study. 

5.2.1 State estimation performance under large process noise  

The EKF, UKF, PF, MHE using the original process model with ode15s prediction step and the MHE using 

the singular perturbation model with RK4 prediction step, were used to estimate the 17 states of the 

SAF. The state estimation algorithms use the large process noise covariance presented in Table 10 of sub-

section 5.1.3.3. Table 13 presents the MAPE for the state estimates generated by the EKF, UKF, PF, and 

MHE.  

Table 13: MAPEs of the state estimates generated for EKF, UKF, PF and MHE. 

State 

MAPE (%) 

EKF UKF PF MHE (original model) 
MHE (singular perturbation 

model) 

𝑁𝐶(𝐵),𝑋0 0.599 0.003 0.814 0.001 0.003 

𝑁𝐶(𝐵),𝑋𝑆 0.094 0.004 0.190 0.002 0.004 

𝑁𝐶(𝐵),𝑋𝑆2 4.872 1.242 20.504 0.127 2.645 

𝑇𝐶(𝐵) 0.147 0.077 0.094 0.055 0.381 
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𝑁𝐶(𝑆),𝑋0 0.148 0.032 0.044 0.016 0.054 

𝑁𝐶(𝑆),𝑋𝑆 0.085 0.033 0.084 0.016 0.057 

𝑁𝐶(𝑆),𝑋𝑆2 5.583 1.295 23.551 0.250 2.795 

𝑇𝐶(𝑆) 0.078 0.011 0.165 0.013 0.073 

𝑁𝐶(𝑅) 7.219 2.084 4.951 0.181 1.331 

𝑁𝑆 0.049 0.002 0.129 0.001 0.004 

𝑇𝑆 0.184 0.124 0.085 0.113 0.246 

𝑁𝑀 0.061 0.004 0.053 0.002 0.005 

𝑇𝑀 0.266 0.116 0.227 0.111 0.212 

𝑁𝐺,𝐴 0.763 0.342 0.470 0.062 1.141 

𝑁𝐺,𝑅 3.450 1.402 2.275 0.193 5.845 

𝑇𝐺  0.137 0.077 0.087 0.054 0.162 

𝑇𝑊 0.204 0.094 0.134 0.082 0.103 

 

Table 13 shows that for each respective state estimation technique, the largest MAPE is associated with 

the state estimates 𝑁𝐶(𝐵),𝑋𝑆2, 𝑁𝐶(𝑆),𝑋𝑆2, 𝑁𝐶(𝑅), and 𝑁𝐺,𝑅. Based on the state observability analysis results 

presented in chapter 4 sub-section 4.2, states 𝑁𝐶(𝐵),𝑋𝑆2, 𝑁𝐶(𝑆),𝑋𝑆2, 𝑁𝐶(𝑅) are associated with directions 

with poor observability. Therefore, it can be ascertained that there is a link between the degree of 

observability of the states and the expected estimation accuracy associated with the state estimates.  

The MHE using the original model displays the best state estimation performance in terms of the 

estimation accuracy, with all 17 state estimates achieving the lowest MAPEs compared to the other five 

estimators investigated. The MHE using the singular perturbation model has an elevated MAPE for some 

state estimates, resulting in larger MAPEs than the original MHE and the UKF. The UKF displays good 

estimation accuracy, having relatively small MAPEs for all estimated states. The EKF displays larger MAPEs 

than the UKF and MHE for all estimates state variables. The PF exhibits the poorest estimation accuracy 

of the five methods investigated.  

Similar results have been found in literature, namely Chatzi & Smyth (2002) found that the UKF 

outperforms the PF. This is explained by the selection of relatively large values for the process noise 

covariance to account for any potential plant-model mismatch. The PF algorithm is sensitive to high 

values for the process noise covariance supplied to the estimator. The optimal importance density can 

be accurately approximated by the transition density only under small process noise (Arulampalam & 

Ristic, 2000). When high process noise is selected for the PF, particle degeneracy is reduced, however, 

this has been proven to come at the cost of increased bias (Wigren et al., 2018). Therefore, the higher 

MAPEs associated with the PF estimates are explained by this increased bias.   

Table 14 presents the results for the average computational time per estimate for each of the state 

estimation techniques.  
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Table 14: Average computational time per estimate achieved by each state estimation technique. 

Average 
computational 

time (s) 
EKF UKF PF 

MHE (original 
model) 

MHE (singular 
perturbation 

model) 

0.21 0.36 0.87 75.51 41.00 

 

According to Table 14,  the EKF, UKF, and PF require short average computation times per estimate, whilst 

both MHE techniques have considerably larger computational requirements. These computational times 

for the MHE are comparable to other literature studies. For example, a study done by Alexander et. al. 

(2020) used the MHE with a horizon length of 30 to estimate the concentrations, 3 state variables, in a 

simple batch reactor and required an average computational time per estimate of 42𝑠.  

In fulfillment of objective 3 of the study, it is necessary to select one or more state estimators for 

incorporation in the model-based fault detection algorithm. This selection is based on the above 

performance evaluation of the four techniques. It is evident that the computational requirements of the 

MHE, using both the original model and the singular perturbation model, are inappropriate for fault 

detection purposes. Therefore, the choice lies between the EKF, UKF, and PF. The computational times 

of these three methods are comparable. The UKF achieves the most accurate state estimates, whilst the 

PF displays the highest estimation error. Further investigation of the EKF, UKF, and PF, using a smaller 

process noise covariance matrix is conducted.  

5.2.2 State estimation performance under small process noise  

For the purposes of objective 2 of this study, the performance of the various state estimators is assessed 

under no plant-model mismatch. Therefore, the larger process noise covariance matrix is an over 

estimation of the true process noise covariance, thus, the performance of the state estimators is 

significantly degraded. The EKF, UKF, and PF algorithms using a smaller process noise covariance were 

used to estimate the 17 states of the SAF.  This smaller process noise covariance is equivalent to 1% of 

the large process noise covariance presented in Table 10 of sub-section 5.1.3.3. This value for 𝑄 is more 

appropriate for this application, as no plant-model mismatch is simulated.  

Figure 16 summarizes the findings of the performance evaluation in a boxplot of the MAPEs of the state 

estimates generated by the EKF, UKF, and PF under the smaller process noise versus the computational 

times.   
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Figure 16: Boxplot of the MAPEs obtained for the state estimates versus the average computational time 

required for the EKF, UKF, and PF under low process noise. 

The MAPEs achieved by all three filters are significantly lower than the MAPEs obtained under high 

process noise conditions presented in Table 13. This is expected, as the investigations are carried out 

under zero modelling error. Thus, the overestimated large process noise degrades estimation accuracy 

of state estimators in the presence of no plant-model mismatch. The results presented in Figure 16 show 

that all three filters display comparable performance obtaining relatively low MAPEs for all state 

estimates. This shows that the state estimates converge to close to the same value for all three algorithms 

under low process noise. Thus, all three filters are able to accurately track the model. The PF obtains the 

lowest average MAPE (black cross), displaying slightly superior estimation accuracy under low process 

noise. The slightly superior performance of the PF can be attributed to the PFs ability to approximate the 

severe nonlinearities of the system more accurately.   

The EKF is selected as one of the state estimation techniques for model-based fault detection. This choice 

is based on the literature review on model-based fault detection presented in sub-section 2.3.2.1 and the 

performance evaluation results presented above. The literature consensus is that the EKF is the most 

widely used state estimator in general and in model-based fault detection using state estimators. The 

results above highlight the simplicity of EKF algorithm as it has the lowest computational times. 

Furthermore, the results illustrate the comparative, and sometimes superior, estimation accuracy 

achieved by the EKF compared to the more complex nonlinear filters.  

Stellenbosch University https://scholar.sun.ac.za



 

104 

The PF is the second state estimation technique selected for model-based fault detection. The PF is 

selected over the UKF as it achieves superior estimation accuracy under small process noise, shown by 

Figure 16. The PF is also unique in its ability to handle non-Gaussian state distributions.  
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6 FAULT DETECTION APPROACH AND RESULTS 

The following chapter addresses objective 3 of this study: comparing model-based fault detection using 

the state estimation techniques identified in objective 2 to a data-driven method of fault detection and 

assessing the impact of plant-model mismatch on the performance of the model-based method. Section 

6.1 outlines the approach used to complete this objective and section presents 6.2 the results in 

fulfilment of objective 3 of this study.  

6.1 Fault detection approach 

This section outlines the procedure used in this study to conduct model-based fault detection using state 

estimation and data-driven fault detection in order to complete objective 3. Sub-section 6.1.1 details the 

procedure for conducting model-based fault detection. Sub-section 6.1.2 presents the methodology used 

to implement data-driven fault detection. Lastly, sub-section 6.1.3 details how plant-model mismatch is 

simulated for this study.  

6.1.1 Model-based fault detection methodology 

Figure 17 summarizes the procedure for performing model-based fault detection used in this study.  

 

Figure 17: Model-based fault detection methodology. 

Based on the state estimation results, presented in sub-section 5.2.2, the EKF and the PF are identified 

as appropriate state estimation techniques for model-based fault detection. The literature review 
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presented in sub-section 2.3.2 explains that model-based fault detection involves a residual generation 

step and a residual evaluation step. From Figure 17, residual generation in this study uses the EKF and PF 

to generate residual signals. The EKF and PF are supplied a smaller process noise covariance matrix 

constructed using process noise uncertainties of 1% of the values presented in Table 10. This residual 

generation step is followed by a residual evaluation step.  

The residual evaluation procedure adopted in this study is based on the idea proposed by Yang (2004) 

presented in sub-section 2.3.4. Figure 17 shows that the residuals from the EKF and PF are evaluated by 

projecting the residuals into the reduced dimension-space defined by a PCA model. Following the theory 

presented in sub-section 2.3.4, PCA attempts to control the bias-variance tradeoff in the residual 

evaluation step.  

The PCA models are trained on residuals generated by the EKF and PF under NOCs, following the PCA 

procedure outlined in sub-section 2.3.5. The trained PCA models can be constructed using various 

numbers of retained PCs, ranging from 1 to the maximum 9. The maximum number of PCs is equal to the 

number of residuals in the original feature space, which is 9 for the SAF process as there are 9 measured 

variables. When all 9 PCs are retained, the reduced PCA model is simply equivalent to the original model 

and no dimensionality reduction has taken place. 

The PCA model is tested on new residuals. New residuals are generated by the EKF and PF under both 

nominal and faulty conditions. The EKF and PF process models are the nominal models of the SAF, 

therefore, under faulty measurements the residuals should be large. The four faulty conditions outlined 

in sub-section 3.4.1, namely a fault in the flowrate of the cooling water, a fault in the extraction pressure, 

a fault in the composition of the furnace charge, and furnace blowback, are simulated in the synthetically 

generated measurements supplied to the state estimators. These new residuals from the EKF and PF are 

then projected into the reduced-dimensional space defined by their respective trained PCA models. 

Monitoring statistics are calculated for each residual projected in the reduced dimensional space and the 

monitoring statistics are used in the fault decision-making step, whereby statistic values exceeding a pre-

defined threshold are classified as faulty.  

The EKF is formulated based on an assumption that the states and measurements, and therefore the 

residuals, have approximately Gaussian distributions. Based on the theory presented in sub-section 

2.3.5.1, the T2 statistic thresholds are defined based on the assumption that observation data is 

approximately Gaussian. The EKF residuals are evaluated using Hotelling’s T2 statistic, presented in sub-

section 2.3.5.1,  to capture the within-plane error of the PCA model and the reconstruction error, as 

presented in sub-section 2.3.5.1, to capture the out-of-plane error of the PCA model. If the underlying 

distribution is not approximately Gaussian, the EKF may display poor estimation accuracy and the T2 

statistic thresholds of the distribution may be inaccurate.  

The PF is a non-parametric state estimator that makes no assumptions about the underlying distribution 

and is therefore able to approximate non-Gaussian state distributions more accurately than the EKF. An 

alternative monitoring statistic to the T2 statistic is defined to measure the within-plane error of PF 

residuals in the PCA model that does not make assumptions about the shape of the distribution of 
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residuals. This alternative statistic is the relative likelihood of the particles, 𝑞𝑖. The reconstruction error 

captures the out-of-plane error of the PF residuals in the PCA model as it makes no assumptions about 

the shape of the underlying distribution and the likelihood captures the within-plane error of the PCA 

model.  

6.1.1.1 Relative likelihood monitoring statistic 

a) Relative likelihood in the original feature space: 

Following the PF algorithm presented in sub-section 2.1.5.4, at each timestep 𝑘, there exist 𝑁 particles 

representing the a priori state estimates, 𝑥𝑘,𝑖
− . Each sample is transformed with the nonlinear 

measurement equation ℎ and the transformed particles are represented as ℎ(𝑥𝑘,𝑖
− ). Each transformed 

particle within measurement space represents a Gaussian distribution with covariance 𝑅. The sum of the 

Gaussians represents the prior distribution in the measurement space.  

At each timestep there is also a measurement, 𝑦𝑘. The relative likelihood that the measurement is drawn 

from the Gaussian distribution defined by the predicted measurement, ℎ(𝑥𝑘,𝑖
− ), is calculated as: 

 𝑞𝑖~
1

(2𝜋)𝑛𝑦/2|𝑅|1/2
exp (

−(𝑦𝑘−ℎ(𝑥𝑘,𝑖
− ))

𝑇
𝑅−1(𝑦𝑘−ℎ(𝑥𝑘,𝑖

− )) 

2
) [ 113 ] 

(Pardal et al., 2015) 

Since each of the particles represents a sample from a distribution, the likelihood at timestep 𝑘 is solved 

for using Monte Carlo integration: 

 𝐿𝑘 =
1

𝑁
∑ 𝑞𝑖
𝑁
𝑖=1  [ 114 ] 

The likelihood 𝐿𝑘 , is calculated for each new observation, 𝑦𝑘, for each timestep 𝑘. The monitoring statistic 

is the log-likelihood.  

b) Relative likelihood in the reduced-dimension feature space: 

At each timestep, the residual from the PF can be obtained for each particle as 𝑟̅𝑘,𝑖 = 𝑦𝑘 − ℎ(𝑥̅𝑘,𝑖
− ). The 

residual can be transformed into the reduced-dimension space defined by trained PCA model using the 

loadings vector, 𝑃: 

 𝑟𝑘,𝑖,𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑃′𝑟𝑘,𝑖 = 𝑃′ (𝑦̅𝑘 − ℎ(𝑥̅𝑘,𝑖
− )) [ 115 ] 

The original measurement noise covariance matrix used in the PF algorithm, 𝑅, can be transformed into 

the measurement noise covariance matrix in the reduced space: 

 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑃
𝑇𝑅𝑃 [ 116 ] 

The relative likelihood in a reduced-dimension space is calculated as: 

 𝑞𝑖,𝑟𝑒𝑑𝑢𝑐𝑒𝑑~
1

(2𝜋)𝐴/2|𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑|
1/2 exp (

−(𝑟𝑘,𝑖,𝑟𝑒𝑑𝑢𝑐𝑒𝑑)
𝑇
𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑
−1 (𝑟𝑘,𝑖,𝑟𝑒𝑑𝑢𝑐𝑒𝑑) 

2
) [ 117 ] 

Where 𝐴 is the number of PCs retained.  
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The likelihood in the reduced-dimension space is calculated as:  

 𝐿𝑘,𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =
1

𝑁
∑ 𝑞𝑖,𝑟𝑒𝑑𝑢𝑐𝑒𝑑
𝑁
𝑖=1  [ 118 ] 

The monitoring statistic is the log of this likelihood in the reduced space.  

6.1.2 Data-driven fault detection methodology 

The data-driven fault detection methodology used in this study is summarized in Figure 18.  

 

Figure 18: Data-driven fault detection methodology. 

Synthetically generated measurements generated under NOCs are used to train the PCA model. New 

synthetically generated measurements at each timepoint 𝑘, 𝑦𝑘,  are projected into the reduced 

dimension space defined by the trained PCA model.  The 𝑇2 statistic and reconstruction error are 

calculated for each new measurement and used in the fault decision-making step to classify 

measurements as nominal or faulty.  

6.1.3 Plant-model mismatch 

In fulfillment of objective 3 of this study, the effect of potential plant-model mismatch on the 

performance of the model-based fault detection using state estimation is investigated. Figure 19 depicts 

how plant-model mismatch is simulated in this study:  
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Figure 19: Depiction of the physical implementation of plant-model mismatch used in this study. 

For this study, the SAF process dynamics presented in sub-section 3.2 represent the nonlinear function 𝑓 

and the measurement equations presented in sub-section 3.3 represent the nonlinear function ℎ. The 

SAF process model using 𝑓 and ℎ is used to generate synthetic measurements with the addition of 

synthetic measurement noise 𝑣. The generated measurements are sent to the state estimation algorithm 

along with the same SAF process model functions 𝑓 and ℎ. When there is no plant-model mismatch, both 

the measurement generator and the state estimator are supplied with the same constant inputs, 

𝑢𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and nominal model parameters, 𝑝𝑛𝑜𝑚𝑖𝑛𝑎𝑙. 

One method of simulating plant-model mismatch used in this study is where uncertainty enters the 

system via unknown disturbances within the measured inputs. Similar to the methodology outlined in 

Bavdekar (2013) and presented in sub-section 2.1.10.2, the state estimator uses known constant inputs, 

𝑢𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, in the process model. However, the measurements are generated with inputs that vary 

stochastically, 𝑢𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 .  

The other method involves simulating plant-model mismatch via parametric uncertainty. The 

measurements are generated with the true nominal parameter values, 𝑝𝑛𝑜𝑚𝑖𝑛𝑎𝑙, whilst the state 

estimator SAF model uses alternative model parameters, 𝑝𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛.   

6.1.3.1 Parametric uncertainty 

In the SAF model, parameters such as reaction kinetic parameters, gas flux constants, and the heat 

transfer coefficients are possible sources of parametric uncertainty. For this study, parametric 

uncertainty is simulated via fixed parametric uncertainty by adding a constant offset, 𝜎, to the original 

parameter value, 𝑝𝑛𝑜𝑚𝑖𝑛𝑎𝑙. 

 𝑝𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 = 𝑝𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ± 𝜎 [ 119 ] 

The parameter chosen to simulate plant-model mismatch is the mixing constant, 𝑘𝑉, which dictates the 

rate of mixing between the smelting and bulk concentrate. The degree of modelling error is varied by 

increasing the fraction 
𝑘𝑉,𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛

𝑘𝑉,𝑛𝑜𝑚
, where 𝑘𝑉,𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 is the incorrect parameter supplied to the state 
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estimator and 𝑘𝑉,𝑛𝑜𝑚 is the true parameter value. The fraction 
𝑘𝑉,𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛

𝑘𝑉,𝑛𝑜𝑚
  is varied from 1, when there 

is no modelling error, to 5, when there is significant modelling error. 

6.1.3.2 Stochastic variation in the inputs 

For this study, stochastic variation in the inputs is simulated via an autoregressive (AR-1) process. The AR-

1 model is given by: 

 𝑢𝑡 = 𝛽1 + 𝜌𝑢𝑡−1 + 𝜀𝑡 ,      𝑡 = 1,… , 𝑇  [ 120 ] 

The error term, 𝜀𝑡, is a white noise process with zero mean and variance 𝜎2. When 𝜌 = 0, then 

𝑐𝑜𝑣(𝑢𝑡 , 𝑢𝑡−1) = 0, and there is no time dependence between lagged values of 𝑢. When 𝜌 > 0 then the 

covariance between 𝑢𝑡 and 𝑢𝑡−1 is positive, thus implying there is autocorrelation within the 𝑢 data. 

When 𝜌 < 0 then the covariance between 𝑢𝑡 and 𝑢𝑡−1 is negative, which is an uncommon phenomenon 

in AR processes. When 𝜌 = 1 or 𝜌 = −1, the process is no longer stable, thus −1 < 𝜌 < 1.  

The expected value of the 𝑢 data is given by: 

 𝐸(𝑢𝑡) =
𝛽1

1−𝜌
 [ 121 ] 

The variance of the 𝑢 data is given by: 

 𝑉𝑎𝑟(𝑢𝑡) =
𝜎2

1−𝜌2
 [ 122 ] 

(Brockwell & Davis, 2016) 

The input selected for simulation of stochastic variation is the flowrate of the charging concentrate, 

𝐹𝑐ℎ𝑎𝑟𝑔𝑒.The expected value of the AR-1 model is the constant input value used in the model supplied to 

the state estimator. The expected value of 𝐹𝑐ℎ𝑎𝑟𝑔𝑒 is 410 𝑚𝑜𝑙/𝑠.  The value of 𝜌 is chosen to be 0.8. An 

appropriate standard deviation is selected as a percentage of the expected value of the input variable.  

 𝑉𝑎𝑟(𝑢𝑡) = 𝐸(𝑢𝑡) × (𝑢𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) [ 123 ] 

The 𝜎 value of the AR model is calculated as: 

 𝜎 = √𝑉𝑎𝑟(𝑢𝑡)(1 − 𝜌2) [ 124 ] 

The value for 𝛽1 in the AR model is calculated as: 

 𝛽1 = 𝐸(𝑢𝑡)(1 − 𝜌) [ 125 ] 

The degree of modelling error is varied by increasing the size of the standard deviation used to simulate 

the stochastic input. The standard deviation is varied as a percentage of the expected value of the input. 

For this study, the user-defined percentage is varied between 1 − 20%.  

6.2 Fault detection results  

This chapter addresses objective 3 of the study. Model-based fault detection is performed using the state 

estimation techniques identified in objective 2, the EKF and PF, and residual evaluation using PCA 
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outlined in section 6.1.1. The performance of the model-based methods are compared to the PCA data-

driven method outlined in section 6.1.2. The PCA models built on the EKF residuals, PF residuals, and the 

measurements are evaluated in section 6.2.1. Section 6.2.2 presents a comparison of the model-based 

fault detection performance and the data-driven method under no plant-model mismatch and under 

varying degrees of plant-model mismatch.  

6.2.1 PCA model evaluation  

Following the model-based fault detection approach presented in sub-section 6.1.1, PCA is used in the 

residual evaluation step. PCA is also used in the data-driven fault detection methodology, presented in 

sub-section 6.1.2. For both model-based and data-driven fault detection, the PCA model is trained on 

nominal observations.  

Figure 20 is a scree plot of the cumulative variance explained by each number of retained PCs for each of 

the trained PCA models. The three PCA models correspond to the three fault detection methods 

investigated: the model-based fault detection using the EKF residuals, model-based fault detection using 

the PF residuals, and data-driven fault detection using the measurements. 

 

Figure 20: Scree plot of cumulative variance explained for each number of retained PCs for each trained 

PCA model corresponding to each method of fault detection investigated. 

Figure 20 shows that the variance explained in the PCA models trained on the residuals from the PF and 

EKF are more spread out over the PCs than the model trained on the measurements. In fact, the PCA 

model trained on the residuals has PCs with equivalent variance. This indicates that all the PCs are equally 

important for explaining the variation in the original data, thus, all the PCs should be retained in the PCA 

model. This highlights an important property of the state estimators in that they perform data whitening. 
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The residual, or innovation term, generated from the state estimators is often referred to as the 

’whitening’ step of the filter (Bar-Shalom et al., 2001). The measurement sequence from the process is 

non-white and at each point in time the measurements are often correlated with each other. By 

generating the innovation term, this performs data whitening on the measurement sequence to form the 

zero-mean white noise residual sequence, where the residuals are uncorrelated with each other (Reid, 

2001).  

Figure 20 also shows that the PCA model trained on the measurements has a larger percentage of the 

variance explained with fewer PCs. Based on a typical desired total variance explained of 70-80%, the 

data-driven method trained on the measurements only required 4 PCs to capture this variance. For both 

model-based methods trained on the residuals, 7 PCs are required to capture this same percentage of 

variance.  

Using these trained PCA models, the three fault detection methods are evaluated on unseen testing data 

consisting of both nominal and faulty operating conditions for each of the four faults investigated. Figure 

21 shows the 𝑝𝐴𝑈𝐶 obtained using each of the appropriate monitoring statistics for each method and 

varying number of PCs retained in the PCA model.  

 

 

Figure 21: pAUC obtained at varying number of PCs retained for each test statistic for each fault 

investigated. 
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In blue lines in Figure 21 represent the 𝑝𝐴𝑈𝐶 obtained by the data-driven method using the 

reconstruction error (points) and the T2 statistic (asterisks). Based on Figure 21, the fault detection 

performance of the data-driven method is most notably poor for faults 1 and 3. For detection of faults 2 

and 4, the data-driven method performs best using the reconstruction error and retaining 7 PCs. This 

highlights the importance of PCA as a fault detection technique as, without dimensionality reduction and 

retaining all 9 PCs, the performance of the data-driven technique is significantly worse than the 

performance whilst working in the reduced-dimensional space.  

A common trend is seen in both model-based methods, where the highest 𝑝𝐴𝑈𝐶 is obtained using the T2 

statistic of the EKF residual and the likelihood statistic of the PF residual for a maximum number of 

retained PCs. Apart from fault 1 likelihood statistic of the PF residual, where the highest 𝑝𝐴𝑈𝐶 is achieved 

whilst retaining 6 PCs. In general, the model-based fault detection performs best using the likelihood or 

T2 statistic as monitoring statistics in the original dimension space. 

The goal of PCA is dimensionality reduction, whereby reconstruction of the original observations in a 

reduced dimension space is achieved with preferably minimal bias. PCA extracts the major sources of 

variation in the data.  When data is subject to high noise to signal ratios, whereby noise variance is large 

compared to signal variance, this can cause significant bias in the PCA model (Spiegelberg & Rusz, 2017). 

This bias is due to the signal being spread out over several PCs.  

PCA is employed as a residual evaluation technique in the model-based fault detection in an attempt to 

control the bias-variance trade-off. The residuals from a state estimator are independent of the process 

operating condition and, thus, under NOCs and no modelling error, the residuals are essentially only noise 

(Spiegelberg & Rusz, 2017).  In the data-driven method, the measurement includes noise from the 

process, however, it also captures the dynamic movements of the system. Under NOC, the residual from 

the state estimators has a stronger noise-to-signal ratio than the measurements due to the large number 

of noisy directions. When the PCA model is built using the residuals, this causes high bias in the model, 

seen in Figure 20  as the variance being spread out over many PCs. This results in the trends seen in Figure 

21, whereby the model-based methods perform best when retaining the maximum number of PCs, 

indicating important variation is contained in all the residuals.  

With respect to the data-driven method, with the PCA model trained and tested on the measurements, 

the best fault detection performance occurs utilizing a PCA model retaining 7 PCs out of the maximum of 

9 PCs. Therefore, the purely data-driven method also shows a tendency for better performance when 

retaining a relatively high number of PCs. This can be attributed to the fact that the system in question 

has limited measurements relative to the number of state variables with no repeated measured states. 

This implies that the measurements are not necessarily correlated. Therefore, retaining a high number 

of the PCs results in better fault detection performance.  
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6.2.2 Comparison of fault detection techniques  

6.2.2.1 No plant-model mismatch 

Figure 22 depicts the ROC curves generated for the three fault detection methods for each of the four 

faults investigated under no plant-model mismatch.  

 

Figure 22: ROC curves generated for the data-driven method and the model-based methods using the 

EKF residuals and PF residuals for each of the four faults investigated. 

The results show that the model-based method using the PF residuals consistently outperforms both the 

data-driven method and the model-based method using the EKF residuals for all four faults investigated. 

The model-based method using the EKF residuals outperforms the data-driven method for faults 1 and 

3, where the data-driven method shows exceptionally poor performance.  

In both model-based methods, the residuals only capture off-model movement of the system, 

heightening the sensitivity of the model-based fault detection to small changes in the process conditions. 

Small changes in the system caused by faults 1 and 3 clearly reflect as off-model movement within the 

residuals. In the measurements, the small changes in the system conditions arising from faults 1 and 3 

are masked by dynamic movement of the system and the measurement noise. Thus, making the fault 

detection performance of the model-based methods superior to the data-driven method for detection of 

faults 1 and 3. When there is significant change in the process conditions, as in the case of faults 2 and 4, 
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the measurements deviate significantly, resulting in good fault detection performance of the data-driven 

technique.  

Considering the performance of all three fault detection techniques, in general the highest 𝑝𝐴𝑈𝐶𝑠 are 

obtained for detection of fault 4 and the second highest for detection of fault 2. Fault 1 shows lower 

𝑝𝐴𝑈𝐶𝑠 obtained for all three methods and fault 3 shows the lowest 𝑝𝐴𝑈𝐶𝑠, indicating the poorest fault 

detection performance. As expected, these results directly correlate with the findings of the structural 

detectability analysis in section 4.3.1 and the performance-based fault detectability in section 4.3.2. The 

more structurally detectable the fault, the better the fault detection performance. In addition, the larger 

the SNR of an observation, the better the fault detection performance.  

Section 4.3.1 assessed the structural detectability of the SAF model used in the EKF and PF algorithms. 

This structural detectability is model-dependent. Thus, there may exist some other model structures of 

the SAF process which gives rise to higher detectability of the faults. The data-driven method of fault 

detection does not make use of the known process model, but instead learns a model based on historical 

data from the process. This model learnt by the data-driven method may have higher or lower structural 

fault detectability compared to the model used in the model-based methods. The results presented in 

Figure 22 indicate that the structural detectability of faults 1 and 3 are particularly low for the model 

learnt by the data driven method. Whilst faults 2 and 4 show similar structural detectability to the model 

used in the model-based fault detection.  

6.2.2.2 Plant-model mismatch: Parametric uncertainty in 𝑘𝑉  

The effect of parametric uncertainty in 𝑘𝑉  on the performance of the model-based and the data-driven 

fault detection can be seen in Figure 23 and Figure 24 for each of the four faults investigated.  
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Figure 23: 𝑝𝐴𝑈𝐶 at varied degrees of modelling error simulated via parametric uncertainty in the 𝑘𝑉  

parameter for the three fault detection methods and the four faults investigated.  

Figure 23 shows the effect of increasing modelling error on the 𝑝𝐴𝑈𝐶 obtained for each fault detection 

method. This assesses the fault detection performance at high specificities as only the partial area of the 

ROC curve is calculated. As expected, the data-driven method of fault detection remains unaffected by 

the parametric modelling error. The performance of both model-based methods significantly 

deteriorates as the modelling error increases, except in the case of fault 1 where the performance 

remains relatively constant even under high modelling error. Both model-based methods show similar 

behavior, displaying significant performance degradation at first, however, as the degree of modelling 

error increases, the 𝑝𝐴𝑈𝐶 begins to plateau.  
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Figure 24: ROC curves generated using the EKF residuals, PF residuals, and measurements under varying 

degrees of modelling error. 

Figure 24 shows the effect of modelling error on the entire ROC curve. Contrary to the results seen in 

Figure 23, the performance of the model-based techniques in detection of fault 1 is in fact degraded by 

modelling error. This cannot be observed from Figure 23 alone as the 𝑝𝐴𝑈𝐶 only accounts for the area 

of high specificity in the ROC curve. Fault detection of fault 1 is most significantly affected at high 

sensitivities and low specificities, where the test statistic threshold is low. This is because the modelling 

error induces large residuals under fault-free conditions. The effects of fault 1 are mainly reflected in the 

𝑇𝑤 residual. This residual remains mostly unaffected by the modelling error, thus, good performance at 

high specificities is maintained even under large parametric uncertainty, resulting in the fairly unaffected 

𝑝𝐴𝑈𝐶 seen in Figure 23.  

Model-based fault detection performance for the detection of faults 2, 3 and 4 is significantly impacted 

by modeling error as the residuals which reflect these faults are directly impacted by the error in 𝑘𝑉. For 

faults 3 and 4, the effect of modelling error can be seen at the flattening of the ROC curve in the low 

specificity regions caused by poor performance at low thresholds due to the large residuals generated 

under fault-free operation.  
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The performance degradation of the model-based method under modelling error is most notable for fault 

2. This can be seen as the ROC curve flattening under both high and low thresholds. This is explained by 

analysis of Figure 11. Successful detection of fault 2 relies mostly on the 𝐶𝐺,𝑅 residual signal generated 

by the EKF and the PF. For faults 3 and 4, the fault is reflected in a number of other residuals. Parametric 

uncertainty in 𝑘𝑉  significantly affects the 𝐶𝐺,𝑅 residual, thus, the faulty signal in the residual is masked by 

the modelling error, resulting in significant performance degradation in the detection of fault 2 seen in 

both Figure 23 and Figure 24.  

Figure 24 further exposes another finding that cannot be deduced from Figure 23 alone. The performance 

degradation due to plant-model mismatch for the PF residuals is worse than the EKF residuals. This can 

be seen for detection of faults 1, 2, and 3, where the ROC curve generated from the PF residuals flattens 

more under modelling error than the ROC curve generated from the EKF residuals. Significant flattening 

of the curve at low thresholds is due to the PF having large residuals under fault-free conditions attributed 

to the filters lack of robustness to modelling error.  

6.2.2.3 Effect of plant-model mismatch on the best performing number of PCs retained 

Figure 25 presents the 𝑝𝐴𝑈𝐶 obtained for each monitoring statistic for each number of PCs retained, 

under varying degrees of plant-model mismatch.  
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Figure 25: The pAUC obtained under varying degrees of modelling error by the test statistics for each 

number of retained PCs. 
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The blue line in Figure 25 represents the best performing data-driven method for each of the faults 

investigated, which remains unaffected by varying degrees of parametric uncertainty. Figure 25 shows 

that for detection of faults 1 and 3, the model-based methods, even under significant modelling error, 

consistently outperform the data-driven method. Although the model-based method using PF residuals 

likelihood statistic performance degrades considerably below the data-driven method under modelling 

error, the reconstruction error maintains good performance. For detection of faults 2 and 4, at any 

modelling error greater than 2
𝑘𝑉

𝑘𝑉,𝑛𝑜𝑚
, the 𝑝𝐴𝑈𝐶 obtained by both model-based methods drops below 

the 𝑝𝐴𝑈𝐶 obtained by the data-driven method.  

The orange line represents the model-based EKF method, showing the 𝑝𝐴𝑈𝐶 obtained using the T2 

statistic (asterisks) and reconstruction error (points) under varying degrees of plant-model mismatch. In 

general, the T2 monitoring statistic results in the highest 𝑝𝐴𝑈𝐶 for this method. For detection of faults 1, 

2, and 3, as the modelling error increases, the T2 statistic begins to perform better whilst retaining less 

PCs than under no modelling error. The reconstruction error consistently performs best when retaining 

1 PC under all degrees of modelling error.  

The model-based fault detection using the PF residuals is represented by the green line in Figure 25, 

showing the 𝑝𝐴𝑈𝐶 obtained using the likelihood statistic (asterisk) and reconstruction error (point) under 

varying degrees of plant-model mismatch. Under no modelling error, the likelihood statistic achieves the 

highest 𝑝𝐴𝑈𝐶 in the detection of all four faults. Under modelling error, the likelihood statistic suffers the 

greatest performance degradation out of all the monitoring statistics. For all four faults investigated, as 

modelling error increases, the performance of the likelihood statistic over all possible number of retained 

PCs begins to flatten and the best performance occurs when less PCs are retained. As the likelihood 

suffers under increased modelling error, the reconstruction error becomes the best performing 

monitoring statistic for fault detection using the PF residuals. For detection of faults 1, 3, and 4, the 

highest 𝑝𝐴𝑈𝐶 is obtained by the reconstruction error when 1 PC is retained under all degrees of 

modelling error. For detection of fault 2, the reconstruction error achieves the highest 𝑝𝐴𝑈𝐶 when 

retaining 1 PC under no modelling error. However, under plant-model mismatch, the highest  𝑝𝐴𝑈𝐶 is 

achieved whilst retaining 7 − 8 PCs.  

It can be concluded that, in general, when significant modelling error is expected, the T2 statistic should 

be the statistical measure of choice for model-based fault detection using the EKF residuals and the 

number of PCs selected should explain at least 70% of the variance. For model-based fault detecting using 

the PF residuals, if large degrees of plant-model mismatch are expected then the reconstruction error 

should be used as a monitoring statistic in a reduced-dimension space retaining 1 PC.   

6.2.2.4 Plant-model mismatch: stochastic variation in the inputs 

Figure 26 highlights the effect of another type of modelling error, stochastic variation in the input 𝐹𝑐ℎ𝑎𝑟𝑔𝑒, 

on the performance of the various fault detection algorithms.  
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Figure 26: pAUC at varied degrees of modelling error simulated by stochastic variation in 𝐹𝑐ℎ𝑎𝑟𝑔𝑒 for the 

three fault detection methods and four faults investigated. 

This type of plant-model mismatch not only influences the performance of model-based fault detection, 

but also impacts the data-driven fault detection as the measurements are now affected by stochastic 

variation in the inputs to the process. However, Figure 26 shows that the performance of the data-driven 

fault detection remains fairly unaffected in the presence of stochastic variation in the inputs, with the 

exception of fault 2, which shows an overall decrease in the 𝑝𝐴𝑈𝐶 as stochastic variation increases. The 

model-based fault detection using both the PF and EKF residuals shows performance degradation under 

plant-model mismatch in the detection of fault 3, fault 4, and, most notably, fault 2.  

6.2.2.5 Discussion of the results 

Based on the background presented in sub-section 2.3.6, the two important metrics in the assessment of 

the performance of fault detection methods are the sensitivity and specificity. In model-based fault 

detection using state estimation, the classification performance is dictated by the ability of the residual 

to clearly reflect faulty process conditions as large residuals and nominal conditions as small residuals.  

The accuracy of the state estimate plays an important role in achieving high specificity. The various state 

estimation techniques have different methods of handling the nonlinear approximation of the model 

prediction and measurement equations. For highly nonlinear models, the PF achieves more accurate 

state estimates than the EKF due to the superior accuracy of the nonlinear approximation. Accurate state 
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estimates ensure that the residuals remain small under nominal conditions and are not inflated due to 

any potential approximation error.  

The sensitivity of the model-based fault detection is dictated by the sensitivity of the residual to any off-

model movement caused by faulty conditions. Conversely, the residual should be insensitive to off-model 

movement caused by unknown disturbances and modelling error to prevent false alarms. The more 

robust a state estimation algorithm is to plant-model mismatch, the less sensitive the method is to faulty 

conditions and the poorer the fault detection performance.   

Sub-sections 2.1.5.8 and 2.1.10 highlight the PFs known lack of robustness to plant-model mismatch 

compared to Kalman-based filters such as the EKF. The lack of robustness of the PF to modelling error is 

further amplified due to the small process noise covariance used to generate the residuals, exacerbating 

sample impoverishment in the PF. This lack of robustness of the PF algorithm to plant-model mismatch 

can be seen in the ROC curves in Figure 24. The model-based fault detection using the PF residuals shows 

worse performance at low thresholds than the EKF residuals due to the large PF residuals generated 

under nominal conditions.  

Under no modeling error, the superior performance of the model-based fault detection using the PF 

residuals is attributed to this sensitivity resulting from the nature of the proposal distribution and the 

update-step of the PF algorithm. The bootstrap PF, used in this study, involves using the importance 

density as the proposal distribution in the prediction step and performing a resampling step at each 

iteration. The importance density is independent of the observations, thus, the bootstrap PF can often 

lead to loss of information in the observations (Theodoridis, 2020). Furthermore, the resampling step 

introduces significant sample impoverishment that is exacerbated by the small process noise covariance 

matrix. This leads to a loss of diversity among the particles. The culmination of these effects results in 

particles with observation information being assigned low weights and not resampled during the 

resampling step. Thus, the PF estimates track the model closely and do not carry significant information 

on the observations. Although this makes the PF less robust to modelling error, this ensures that large 

residuals are generated when there is any off-model movement caused by faulty conditions, making the 

PF more sensitive to faults and displaying superior fault detection performance. The Kalman-based 

update of the EKF ensures robustness against modelling error, however, this robustness comes at the 

cost of a reduced sensitivity to faulty conditions. This explains the consistently superior performance of 

the model-based fault detection using the PF residuals compared to the EKF residuals seen in Figure 21 

through to Figure 26.  
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7 CONCLUSIONS AND RECOMMENDATIONS 

The focus of this project was to perform model-based fault detection using state estimators and compare 

the performance of the model-based methods in the presence of plant-model mismatch to a data-driven 

method. Three objectives were defined in order to complete this aim. Objective 1 was to conduct an 

observability analysis to assess the state observability to validate state estimation and asses the fault 

detectability to inform the fault detection. Objective 2 was to employ the EKF, UKF, PF and MHE for state 

estimation and compare the performance of these nonlinear estimators to decide which are the most 

appropriate state estimators to use in model-based fault detection. Objective 3 was to carry out the 

model-based fault detection using the state estimators identified in objective 2, and compare the 

performance of the model-based fault detection under plant-model mismatch to a data-driven approach 

to fault detection.  The case study used in this investigation is a SAF for PGM smelting.  

An observability analysis on the SAF system was first conducted. State observability was assessed to 

validate the use of the state estimation algorithms which require a fully observable system. Fault 

detectability was evaluated to ascertain the structural detectability and performance-based detectability 

of each of the faults investigated in this study. The key findings from the observability analysis for the 

state observability and fault detectability are presented in sections 7.1 and 7.2, respectively.  

State estimation was then employed using an EKF, UKF, PF and MHE to estimate the 17 state variables of 

the SAF model. The four nonlinear state estimation techniques were compared in terms of their 

computational requirements and estimation accuracy to determine the most appropriate techniques for 

application in model-based fault detection. Conclusions drawn from these results are presented in 

section 7.3.  

Model-based fault detection was then performed using the residuals generated by the EKF and the PF 

and residual evaluation using PCA. The performance of these model-based methods were compared with 

the performance of a data-driven method using PCA on the measurements. Conclusions drawn from this 

comparative analysis are summarized in section 7.4. The performance of the model-based methods 

under plant-model mismatch was assessed and the key findings are presented in section 7.5.  

Sections 7.6 and 7.7 provide recommendations for employing these nonlinear state estimation 

techniques in practice and recommended areas of interest for future work.  

7.1 State observability 

The SAF system model was found to be locally observable based on the observability analysis conducted 

on the nonlinear observability matrix linearized around typical operating conditions. This investigation 

found that the measured states of the system have a higher degree of observability than the unmeasured 

states of the system. However, due to the complex dynamic interactions between unmeasured state 

variables and measured state variables, the unmeasured states are all observable. This validated the use 

of the subsequent state estimation algorithms for estimating the states of the SAF system. In addition, 

the degree of observability of state variables informed the results of the subsequent state estimation, 
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whereby the less observable state variables had larger estimation errors associated with the state 

estimates.    

7.2 Fault detectability 

This investigation formalized the relationship between structural detectability of faults and parameter 

and input observability. Assessing the structural detectability of the faults gave an indication of the SAF 

models inherent ability to reflect fault parameters within the limited observables, irrespective of fault 

size, noise, and fault detection procedure. The four faults investigated in this study were all found to be 

structurally detectable by conducting a parameter observability analysis on the fault parameters used to 

simulate the faults of interest.  

The performance-based detectability analysis used the SNR of fault observations to assess the 

detectability of each of the faults for each fault detection technique. The performance-based 

detectability further confirmed all four faults are detectable as each fault resulted in observation signals 

with sufficient SNR for detection. In addition, the residuals generated by the PF showed superior 

detectability seen by higher SNRs than the residuals generated by the EKF and the measurements from 

the process.  

The results of the fault detectability analysis explained the results achieved upon implementing the 

model-based fault detection. The SAF models inherent ability to reflect faulty parameters, quantified by 

the structural detectability, directly corresponds to the performance results of the model-based fault 

detection. Superior fault detection performance resulted from more structurally detectable faults and 

less structurally detectable faults showed poorer fault detection performance of the methods 

investigated.  

7.3 State estimation 

By reviewing the relevant literature on nonlinear state estimation, the EKF is the preferred nonlinear 

state estimation algorithm due to its simplicity and ease of implementation. It is generally accepted that 

the MHE has limited applications due to the inappropriate computational requirements, exacerbated by 

long horizon lengths and the lack of a set of general heuristics to guide its implementation. This 

investigation corroborates the findings in literature, with the computational requirements of the MHE 

being orders of magnitude greater than the EKF, UKF, and PF. In an attempt to decrease the 

computational burden of the MHE, an alternative singular perturbation model of the SAF was supplied 

to the MHE to enable the use of larger step sizes in the integration step of the filter. This successfully 

halved the computational time per estimate at the cost of significant deterioration of the estimation 

accuracy. Although the computational requirements were halved, the computational effort of the MHE 

remains inappropriate for use in model-based fault detection.  

As expected, the MHE using the original model demonstrated superior performance in terms of the 

estimation accuracy, followed by the UKF, the MHE using the singular perturbation model, and the EKF. 

The PF displayed the poorest estimation accuracy due to sensitivity of the algorithm in the presence of a 

relatively large process noise covariance supplied to the state estimation algorithms. In accordance with 
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the literature, all four state estimation techniques showed degraded estimation accuracy when the 

process noise covariance is large. The estimation accuracy improved significantly using a small process 

noise covariance matrix, where the PF showed superior estimation accuracy over both the UKF and the 

EKF. This is attributed to the PFs ability to handle nonlinear approximations more accurately than the EKF 

and UKF.  

It was ultimately concluded that the EKF and the PF were the two most appropriate nonlinear state 

estimation techniques for application in model-based fault detection. The EKF was selected due to the 

popularity of the method as it was the easiest to implement, had the quickest computation time per 

estimate, and showed good estimation accuracy in estimating the states of the SAF. The PF was selected 

as it showed the best state estimation accuracy under small process noise used in model-based fault 

detection. Furthermore, the PF has the unique ability to handle non-gaussian distributions.  

7.4 Model-based fault detection versus data-driven fault detection 

This investigation found that the model-based fault detection using the PF residuals outperformed both 

the model-based fault detection using the EKF residuals and the data-driven fault detection using the 

measurements for all faults investigated. The superior performance of the PF compared to the EKF is 

attributed to the high sensitivity of PF residuals to faults.  

The model-based methods tend to outperform the data-driven method for less detectable faults, namely 

the fault in the charging concentrate composition and the cooling water flowrate fault. These faults cause 

small deviations in the process conditions, which reflect as small changes in the measurements that are 

masked by measurement noise and dynamic movements of the process conditions. The residuals of the 

model-based fault detection only reflect off-model movement, thus, small changes in process conditions 

are easily detected as changes in the residuals. For the extraction pressure fault and furnace blowback, 

there are significant deviations in the measurements, thus, the data-driven method showed better fault 

detection performance. However, the model-based method using the PF residuals still outperformed the 

data-driven method for detection of these faults.  

PCA models were developed for each method investigated. In general, the PCA model for the data-driven 

method should retain 7 PCs and use the reconstruction error as a test statistic for fault detection. The T2 

statistic should be used for the EKF residuals and the likelihood for the PF residuals. If there is no expected 

plant-model mismatch, the residuals show the best fault detection performance when all the PCs are 

retained, thus, indicating PCA should not be performed as part of the residual evaluation step.  

7.5 Model-based fault detection performance under plant-model mismatch 

This investigation showed that both model-based fault detection methods performance significantly 

deteriorates under plant-model mismatch simulated by both parametric uncertainty and unmodelled 

variation in the inputs. The PF displays poorer robustness to plant-model mismatch than the EKF, 

attributed to the higher sensitivity of the method to off-model movements of the system.  
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If plant-model mismatch is expected, the EKF and PF residuals should be evaluated in a reduced-

dimensional space using PCA. The EKF residuals in the presence of modelling error showed the best fault 

detection performance using the T2 statistic and retaining 7 PCs (78% of the variance explained). The PF 

residuals under modelling error showed the best fault detection performance using the reconstruction 

error and the 1 retained PC.  

It was concluded that using PCA for residual evaluation in model-based fault detection enhances the 

performance of the model-based fault detection in the presence of plant-model mismatch. However, 

when there exists no modelling error, the best classification of the residuals occurs in the original-

dimension space.  

7.6 Recommendations for application of nonlinear state estimation techniques 

The following recommendations are based on the key findings and conclusions of this investigation.  

For state estimation of a nonlinear system, if the system is locally linearly observable, the EKF should be 

used for nonlinear state estimation due to the simplicity and reduced computational requirements of the 

method. If the system is not linearly observable, then the MHE must be employed to induce system 

observability via input excitation. The observability of the states gives insight to the estimation error 

covariance, or uncertainty, associated with the state estimates. Less observable states are expected to 

have a larger estimation error associated with the state estimates.  

For practical implementation of the MHE, the computational burden of the filter will always be its 

greatest limitation. Thus, horizon length should be selected as the longest horizon length that maintains 

an appropriate computational time per estimate. For a stiff system of equations or system with time-

scale multiplicity, using a singular perturbation model in the MHE significantly decreases the 

computational requirements of the algorithm. The singular perturbation model separates the slow and 

fast states, where the fast states are assumed constant in the prediction step to enable larger step sizes 

in the integration. This is corrected in the update step by assigning a large process noise to the fast states.  

Lastly, when carrying out fault detection, when an accurate model of a process is available, model-based 

fault detection using state estimation should be employed over a basic data-driven fault detection 

technique using PCA. When significant plant-model mismatch is expected, the residual evaluation in the 

model-based fault detection should employ PCA, as working in a reduced-dimensional space has been 

proven to lessen the effects of modelling error. Prior to implementation of the fault detection algorithms, 

a fault detectability analysis should be carried out. Structural detectability of faults via a parameter 

observability analysis gives an idea of the process models inherent ability to reflect fault conditions in the 

outputs. Thus, the results of the structural fault detectability analysis can inform the fault detection.  

7.7 Recommendations for future work 

The following recommendations highlight potential future investigations based off the results of this 

study. 
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The model-based state estimation techniques and subsequent fault detection were applied to simulated 

data for this study. There would be great value in future work that extends these techniques to a process 

with an accurate model and industrial data to examine the real-world applicability of these methods.   

For nonlinear state estimation, it is recommended that a future study investigate further reducing the 

computational requirements of the MHE to enable application of the MHE for model-based fault 

detection. Potential augmentations of the procedure include employing the singular perturbation model, 

but using the EKF to estimate the fast states and a MHE to estimate the slow states.  

In this investigation, the model-based fault detection techniques were compared to a basic data-driven 

technique using linear PCA. It is recommended that the model-based techniques be compared to other 

more advanced data-driven techniques, such as nonlinear PCA via the kernel method or more advanced 

techniques such as using auto-encoders.  

For the residual evaluation step, this study investigated projecting the residuals from the state estimators 

into a reduced-dimensional space defined by a PCA model. This study found that under no modelling 

error, the residuals are essentially white noise, thus, all PCs are important and PCA provides no benefits 

to the residual evaluation step. Future investigations could involve investigating other residual evaluation 

techniques such as independent component analysis, ICA.  

The last recommendation for a future investigation would be to combine data-driven and model-based 

fault detection. The data-driven PCA runs on the measurements in parallel to model-based fault detection 

using the state estimation residuals. This ensures maintained fault detection performance in the presence 

of plant-model mismatch, as the data-driven method should detect faulty condition. When the model is 

accurate, the state estimator residuals should accurately detect faulty conditions.  
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APPENDIX A – DERIVATIONS  

A.1 Least-squares derivation of the standard KF 

The standard Kalman filter algorithm derivation is based on the derivation presented by Simon (2006).  

The linear discrete-time system is represented by Equations 126 and 127. The standard form of the linear 

recursive estimator is represented by Equation 128.  

 𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 [ 126 ] 

 𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 [ 127 ] 

 𝑥̂𝑘 = 𝑥̂𝑘−1 + 𝐾𝑘(𝑦𝑘 −𝐻𝑥̂𝑘−1) [ 128 ] 

For the Kalman filter derivation, the process and measurement noises are white, zero-mean, 

uncorrelated, and the variances are known. 

𝑤𝑘~(0,𝑄𝑘) 

𝑣𝑘~(0, 𝑅𝑘) 

𝐸[𝑤𝑘𝑤𝑗
𝑇] = 𝑄𝑘𝛿𝑘−𝑗  

𝐸[𝑣𝑘𝑣𝑗
𝑇] = 𝑅𝑘𝛿𝑘−𝑗  

Whereby 𝛿𝑘−𝑗  is the Kronecker delta function. 

𝛿𝑘−𝑗 = {
1, 𝑘 = 𝑗
0, 𝑘 ≠ 𝑗

 

The Kalman filter is derived by finding the optimal value for the gain matrix 𝐾 in the linear recursive 

estimator that minimizes the sum of the variances of the estimation errors. The estimation error is 

represented as:  

 𝜖𝑥,𝑘 = 𝑥𝑘 − 𝑥̂𝑘 [ 129 ]  

With the variance of the estimation errors is the estimation error squared.  

 𝜖𝑥,𝑘
2 = (𝑥𝑘 − 𝑥̂𝑘)

2 [ 130 ]  

The estimation error mean can be computed as the expected value of the estimation error. 

 𝐸(𝜖𝑥,𝑘) = 𝐸(𝑥 − 𝑥̂𝑘) [ 131 ] 

Equations 126 and 128 are substituted into Equation 131 to obtain: 

 𝐸(𝜖𝑥,𝑘) = 𝐸(𝑥 − 𝑥̂𝑘−1 −𝐾𝑘(𝐻𝑘𝑥 + 𝑣𝑘 − 𝐻𝑥̂𝑘−1)) [ 132 ] 

= 𝐸(𝜖𝑥,𝑘−1 +𝐾𝑘𝐻𝑘(𝑥 − 𝑥̂𝑘−1) − 𝐾𝑘𝑣𝑘) 

= (𝐼 − 𝐾𝐾𝐻𝑘)𝐸(𝜖𝑥,𝑘−1) − 𝐾𝑘𝐸(𝑣𝑘) 

The estimation error covariance represents the uncertainty in the state estimates. The estimation error 

covariance, 𝑃, is defined as: 
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 𝑃 = 𝐸(𝜖𝑥,𝑘𝜖𝑥,𝑘
𝑇 ) [ 133 ] 

Equation 132 is substituted into Equation 133 and simplified using the knowledge that the measurement 

noise is zero-mean, meaning 𝐸(𝑣𝑘) = 0. 

 𝑃 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)
𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇 [ 134 ] 

The optimization problem aims to achieve a state estimate, 𝑥̂𝑘, equal to the actual value of the state, 𝑥𝑘. 

Therefore, the loss function of the optimization problem must be chosen to satisfy this goal. The loss 

function, 𝐽𝑘 is the expected value of the sum of variances of the estimation errors at time 𝑘.  

 𝐽𝑘 = 𝐸 [(𝑥1 − 𝑥̂1,𝑘)
2
] +  ⋯+ 𝐸 [(𝑥𝑛 − 𝑥̂𝑛,𝑘)

2
] [ 135 ] 

= 𝐸(𝜖𝑥1,𝑘
2 +⋯+ 𝜖𝑥𝑛,𝑘

2 ) 

= 𝐸(𝜖𝑥,𝑘
𝑇 𝜖𝑥,𝑘) = 𝑇𝑟𝑃𝑘  

The loss function 𝐽𝑘 must be minimized by adjusting the value of 𝐾𝑘. Therefore, the derivative of 𝐽𝑘 with 

respect to 𝐾𝑘 needs to be set equal to zero and 𝐾𝑘 can be solved for. 

 
𝜕𝐽𝑘

𝜕𝐾𝑘
= 2(𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(−𝐻𝑘

𝑇) + 2𝐾𝑘𝑅𝑘 [ 136 ] 

0 = 2(𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(−𝐻𝑘
𝑇) + 2𝐾𝑘𝑅𝑘 

𝐾𝑘 = 𝑃𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 +𝑅𝑘)
−1

 

Solved via the chain rule,  
𝜕𝑇𝑟(𝐴𝐵𝐴𝑇)

𝜕𝐴
= 2𝐴𝐵. 

This Kalman gain is substituted into the state observer equation to obtain the update step of the Kalman 

filter.  

 𝑥̂𝑘 = 𝑥̂𝑘−1 + 𝐾𝑘(𝑣𝑘) [ 137 ] 

𝐾𝑘 = 𝑃𝑘−1𝐻𝐾
𝑇(𝑆𝑘)

−1 

Where: 

 𝑣𝑘 = 𝑦𝑘 − 𝐻𝑥̂𝑘−1 [ 138 ] 

And 𝑆𝑘 is the innovation covariance:  

 𝑆𝑘 = 𝐻𝑘𝑃𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 [ 139 ] 

The covariance is updated in the update step using Equation 134.  

Equation 137 represents the update step of the standard Kalman filter.  

The way in which the states and covariances propagate through time can be derived by taking the 

expected value for both sides of Equation 126. The expected value of the right-hand-side of Equation 126 

is given by Equation 141. The expected value, and thus the mean, of 𝑥𝑘 is represented by 𝑥̅𝑘. The expected 

value of the constant, 𝐺𝑘−1𝑢𝑘−1, is simply itself. The expected value of the noise, 𝑤𝑘−1, is zero as 𝑤 

represents a zero-mean random variable.  
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 𝐸(𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1) = 𝐹𝑘−1𝑥̅𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 0 [ 140 ] 

 𝑥̅𝑘 = 𝐸(𝑥𝑘) = 𝐹𝑘−1𝑥̅𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 [ 141 ] 

Using Equations 126 and 141: 

 (𝑥𝑘 − 𝑥̅𝑘)(𝑥𝑘 − 𝑥̅𝑘)
𝑇 = (𝐹𝑘−1(𝑥𝑘−1 − 𝑥̅𝑘−1) + 𝑤𝑘−1) (⋯ )

𝑇 [ 142 ] 

Therefore, the covariance can be computed as:  

 𝑃𝑘 = 𝐸[(𝑥𝑘 − 𝑥̅𝑘)(𝑥𝑘 − 𝑥̅𝑘)
𝑇] = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1

𝑇 + 𝑄𝑘−1 [ 143 ] 

The process noise, 𝑄, is added to this covariance as it represents the uncertainty in the process model 

which must be considered during the propagation of the state. Equations 141 and 143 represent the 

prediction step of the standard Kalman filter.  

A.2 Bayesian derivation of the standard KF 

A basic introduction to random variables is given to understand the Bayesian derivation of the Kalman 

filter. A stochastic process involves random variables changing over time. The systems that will be used 

for the entirety of the study are assumed to be stochastic processes with random variables of the state, 

𝑥, and the measurements, 𝑦, changing over time. A random variable is a representation of a set of 

outcomes as a set of real numbers. The properties of random variables include the probability distribution 

function (PDF), which can be defined for a random variable 𝑋 and a nonrandom variable or constant 𝑥 

as: 

 𝑃𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) [ 144 ] 

Another property of a random variable is its probability density function (pdf) which is defined as: 

 𝑝𝑋(𝑥) =
𝑑𝑃𝑋(𝑥)

𝑑𝑥
  [ 145 ] 

The joint pdf of two random variables is 𝑝𝑋𝑌(𝑥, 𝑦). The joint pdf is symmetrical, therefore, 𝑝𝑋𝑌(𝑥, 𝑦) =

𝑝(𝑦, 𝑥). 

Some important probability rules that are used in the derivation of the Bayesian filter and the subsequent 

derivation of the Kalman filter are the Chain Rule, Marginalization, and Bayes Rule.  

The Chain Rule, also known as the fundamental rule, is a way to write the joint pdf of two random 

variables in terms of the conditional pdf and the marginal pdf: 

 𝑝(𝑥, 𝑦) = 𝑝(𝑥|𝑦)𝑝(𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑦)  [ 146 ] 

(Brownlee, 2019) 

Marginalization is a property of the joint pdf whereby the marginal distribution of 𝑥 and 𝑦 can be written 

in terms of the joint pdf.  

 𝑝(𝑥) =  ∫ 𝑝(𝑥, 𝑦)𝑑𝑦
∞

−∞
  [ 147 ] 
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𝑝(𝑦) =  ∫ 𝑝(𝑥, 𝑦)𝑑𝑥
∞

−∞

 

Bayes rule can be defined as: 

 𝑝(𝑥|𝑦) =
𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑦)
=

𝑝(𝑥,𝑦)

𝑝(𝑦)
 [ 148 ] 

(Simon, 2006) 

By marginalization and the Chain rule, Bayes rule can be written as: 

 𝑝(𝑥|𝑦) =
𝑝(𝑥,𝑦)

∫ 𝑝(𝑥,𝑦)𝑑𝑥
∞

−∞

=
𝑝(𝑦|𝑥)𝑝(𝑥)

∫ 𝑝(𝑦|𝑥 )𝑝(𝑥)𝑑𝑥
∞

−∞

 [ 149 ] 

Bayesian filter derivation 

A discrete-time system can be described by: 

 𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘, 𝑤𝑘) [ 150 ] 

 𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘) [ 151 ] 

The underlying model in the Bayesian filter is the Markov model which makes use of the Markov 

assumption and the output independence assumption. The Markov assumption states that the current 

state, 𝑥𝑘, is conditionally dependent on only the state in the previous time step, 𝑥𝑘−1, and is therefore 

conditionally independent of all other past states (Bickel et al., 1996). This can be written in terms of the 

conditional pdf as: 

 𝑝(𝑥𝑘|𝑥0:𝑘−1, 𝑌𝑘−1) = 𝑝(𝑥𝑘|𝑥𝑘−1) [ 152 ] 

Similarly, the output independence assumption states that the measurement at any time step, 𝑦𝑘, 

depends solely on the state at that particular timestep, 𝑥𝑘, and is independent of any other states. 

  𝑝(𝑦𝑘|𝑥0:𝑘−1, 𝑌𝑘−1) = 𝑝(𝑦𝑘|𝑥𝑘) [ 153 ] 

(Jurafsky & Martin, 2021) 

This means that when modelling the dynamics of the state, and when modelling the state-measurement 

relationship, all past values of the state besides 𝑥𝑘−1, and all past measurements besides 𝑦𝑘, do not need 

to be considered (Elfring et al., 2021). 

In the prediction step of the filter, a pdf of the current state, 𝑥𝑘, given all the measurements prior to time 

𝑘, needs to be computed. This is the conditional pdf of 𝑥𝑘 given 𝑌𝑘−1 = 𝑦1, 𝑦2,⋯ 𝑦𝑘−1, which is 

represented as 𝑝(𝑥𝑘|𝑌𝑘−1). To derive the equation for the conditional pdf of 𝑥𝑘 given 𝑌𝑘−1, Bayes rule 

and marginalization need to be used. By marginalizing out the previous states, 𝑥𝑘−1, the prediction step 

can be computed as: 

 𝑝(𝑥𝑘|𝑦1:𝑘−1) = ∫𝑝[(𝑥𝑘, 𝑥𝑘−1)|𝑌𝑘−1]𝑑𝑥𝑘−1 [ 154 ] 

Via the Chain rule: 

 𝑝(𝑥𝑘|𝑦1:𝑘−1) = ∫𝑝[𝑥𝑘|(𝑥𝑘−1, 𝑌𝑘−1)]𝑝[𝑥𝑘−1|𝑌𝑘−1]𝑑𝑥𝑘−1 [ 155 ] 
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Using the Markov assumption that 𝑝[𝑥𝑘|(𝑥𝑘−1, 𝑌𝑘−1)] = 𝑝(𝑥𝑘|𝑥𝑘−1): 

 𝑝(𝑥𝑘|𝑦1:𝑘−1) = ∫𝑝[𝑥𝑘|𝑥𝑘−1]𝑝[𝑥𝑘−1|𝑌𝑘−1]𝑑𝑥𝑘−1 [ 156 ] 

This is the a priori pdf. 

The update step of the filter involves obtaining the current state estimate using all the measurements, 

including the measurement at the current time. This is the conditional pdf of 𝑥𝑘 given 𝑌𝑘. The conditional 

pdf is derived from Bayes rule as: 

 𝑝(𝑥𝑘|𝑌𝑘) =
𝑝(𝑌𝑘|𝑥𝑘)𝑝(𝑥𝑘)

∫ 𝑝(𝑌𝑘|𝑥𝑘 )𝑝(𝑥𝑘)𝑑𝑥𝑘
∞

−∞

 [ 157 ] 

Via the Chain rule, the numerator can be rewritten as: 

 𝑝(𝑥𝑘|𝑌𝑘) =
𝑝(𝑌𝑘|𝑥𝑘, 𝑌𝑘−1)𝑝(𝑌𝑘−1|𝑥𝑘)𝑝(𝑥𝑘)

∫ 𝑝(𝑌𝑘|𝑥𝑘 )𝑝(𝑥𝑘)𝑑𝑥𝑘
∞

−∞

 [ 158 ] 

According to the output dependence assumption 𝑝(𝑦𝑘|𝑥𝑘, 𝑌𝑘−1) = 𝑝(𝑦𝑘|𝑥𝑘), then: 

 𝑝(𝑥𝑘|𝑌𝑘) =
𝑝(𝑌𝑘|𝑥𝑘)𝑝(𝑌𝑘−1|𝑥𝑘)𝑝(𝑥𝑘)
∫ 𝑝(𝑌𝑘|𝑥𝑘 )𝑝(𝑥𝑘)𝑑𝑥𝑘
∞

−∞

 [ 159 ] 

From Bayes rule we know that: 

 𝑝(𝑥𝑘|𝑌𝑘−1) =
𝑝(𝑌𝑘−1|𝑥𝑘)𝑝(𝑥𝑘)

𝑝(𝑌𝑘−1)
 [ 160 ] 

Therefore, 

 𝑝(𝑥𝑘|𝑌𝑘−1)𝑝(𝑌𝑘−1) = 𝑝(𝑌𝑘−1|𝑥𝑘)𝑝(𝑥𝑘) [ 161 ] 

This can be substituted into Equation 147 and cancelling out the 𝑝(𝑌𝑘−1) term in the numerator and 

denominator gives: 

 𝑝(𝑥𝑘|𝑌𝑘) =
𝑝(𝑌𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑌𝑘−1)

∫ 𝑝(𝑌𝑘|𝑥𝑘 )𝑝(𝑥𝑘|𝑌𝑘−1)𝑑𝑥𝑘
∞

−∞

 [ 162 ] 

This is the a posteriori pdf.  

(Lambert, 2018) 

Kalman filter derivation from Bayesian filter 

The analytical solutions for the a priori state estimate and a posteriori state estimation in Equations 156 

and 162, respectively, can only be computed for linear systems with Gaussian distributions of the initial 

state estimate 𝑥0, process noise 𝑤𝑘 and measurement noise 𝑣𝑘 (Simon, 2006). The analytical solution for 

the state estimates under these conditions is equivalent to the Kalman filter equations.  

In the prediction step of the Bayesian filter, the a priori pdf was obtained as Equation 156. To compute 

the analytical solution for this equation, two assumptions need to be made: 

1) The a posteriori pdf from the previous time step, 𝑝(𝑥𝑘−1|𝑦1:𝑘−1), is Gaussian with a known 

mean, 𝑥̂𝑘−1, and a known covariance, 𝑃𝑘−1.  

𝑥𝑘−1~𝑁(𝑥̂𝑘−1, 𝑃𝑘−1) 
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2) The linear process model is given by: 

 𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 [ 163 ] 

𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 

Where the noise terms are Gaussian, zero-mean noise with known covariance: 

𝑤𝑘~𝑁(0,𝑄𝑘) 

𝑣𝑘~𝑁(0, 𝑅𝑘) 

The analytical solution also requires the known property of random variable transformations. When a 

scalar value, 𝛼, is added to a Gaussian random variable 𝑧1~𝑁(𝜇1, 𝜎1
2), the resulting random variable is: 

 𝑧 = 𝑧1 + 𝛼 ~(𝜇1 + 𝛼, 𝜎1
2) [ 164 ] 

The scalar is simply added to the mean and the covariance remains the same as the original random 

variable.  

The other property involves two independent Gaussian random variables 𝑧1~𝑁(𝜇1, 𝜎1
2) and 

𝑧2~𝑁(𝜇2, 𝜎2
2) who undergo a linear transformation 𝑧 = 𝐵1𝑧1 +𝐵2𝑧2. The resulting random variable 𝑧, 

is a Gaussian random variable: 

 𝑧~(𝐵1𝜇1 + 𝐵2𝜇2, 𝐵1𝜎1
2𝐵1

𝑇 + 𝐵2𝜎2
2𝐵2

𝑇) [ 165 ] 

Therefore, the linear transformation of 𝑥𝑘−1 and 𝑤𝑘−1 through Equation 163 results in a Gaussian 

random variable 𝑥𝑘 with a mean calculated by adding the scalar quantity 𝐺𝑘−1𝑢𝑘−1 and adding the mean 

of 𝑤𝑘−1 , which is zero, to the mean of the original random variable: 

𝑥̂𝑘 = 𝐹𝑘−1𝑥̂𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 0 

This equation is equivalent to the Equation 5 derived earlier in the Kalman filter derivation from least 

squares.  

The covariance of the random variable 𝑥𝑘 is calculated as: 

𝑃𝑘 = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1
𝑇 +𝑄𝑘−1 

This is the same as Equation 6 derived earlier.  

In the update step of the Bayesian filter, the a posteriori pdf was obtained by Equation 162. To compute 

the analytical solution for this equation, a known property of the conditional distributions of Gaussian 

random variables needs to be understood. This property states that if two Gaussian random variables 

have the joint probability density function: 

[
𝑥
𝑦]~𝑁 ([

𝜇𝑥
𝜇𝑦
] , [
𝑃𝑥𝑥 𝑃𝑥𝑦
𝑃𝑦𝑥 𝑃𝑦𝑦

]) 

Then the conditional density of 𝑥 given 𝑦 is: 

𝑝(𝑥|𝑦) = 𝑁(𝑥;  𝜇𝑥 + 𝑃𝑥𝑦𝑃𝑦𝑦
−1(𝑦 − 𝜇𝑦), 𝑃𝑥𝑥 − 𝑃𝑥𝑦𝑃𝑦𝑦

−1𝑃𝑦𝑥  
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From the prediction step we have the random variable 𝑥𝑘~𝑁(𝑥̂𝑘, 𝑃𝑘). Now, the conditional density of 𝑥𝑘 

given 𝑦𝑘−1 is: 

 [
𝑥
𝑦] | 𝑦𝑘−1~𝑁 ([

𝑥̂𝑘
𝐻𝑘𝑥̂𝑘

] , [
𝑃𝑘 𝑃𝑘𝐻𝑘

𝑇

𝐻𝑘𝑃𝑘 𝐻𝑘𝑃𝑘𝐻𝑘
𝑇 +𝑅𝑘

]) [ 166 ] 

From the property above, the conditional density of 𝑥𝑘 given 𝑦𝑘 can be calculated as: 

 𝑝(𝑥𝑘|𝑦𝑘) = 𝑁(𝑥; 𝜇𝑥 + 𝑃𝑥𝑦𝑃𝑦𝑦
−1(𝑦 − 𝜇𝑦), 𝑃𝑥𝑥 − 𝑃𝑥𝑦𝑃𝑦𝑦

−1𝑃𝑦𝑥)   [ 167 ] 

The mean is calculated as: 

 𝑥̂𝑘 = 𝑥̂𝑘−1𝐾𝑘(𝑦𝑘 − 𝐻𝑥̂𝑘−1)  [ 168 ] 

With 𝐾𝑘 = 𝑃𝑘−1𝐻𝐾
𝑇(𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

. This is equivalent to the Kalman filter update equation.  

The covariance is calculated as: 

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)
𝑇 +𝐾𝑘𝑅𝑘𝐾𝑘

𝑇   [ 169 ] 

Equivalent to the Kalman filter update equation.  

(Gurajala et al., 2021) 

A.3 Continuous-time KF 

The following derivation of the continuous-time Kalman filter equations is based on the derivation 

presented by Simon (2006).  

The linear continuous-time system can be represented by: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑤   [ 170 ] 

𝑦 = 𝐶𝑥 + 𝑣 

𝑤~(0,𝑄𝑐) 

𝑣~(0, 𝑅𝑐) 

Where 𝐴 represents the state transition matrix, 𝐵 represents the input matrix, and 𝐶 represents the 

measurement matrix.   

The exact solution of the continuous-time linear system is given by: 

 𝑥(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0) + ∫ 𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏
𝑡

𝑡0
  [ 171 ] 

Assuming that 𝐴(𝜏), 𝐵(𝜏), and 𝑢(𝜏) remain constant over the integration period. Let 𝑡 = 𝑡𝑘 , a discrete 

time point, and 𝑡0 = 𝑡𝑘−1. With ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1 and 𝛼 = 𝜏 − 𝑡𝑘−1. 

 𝑥(𝑡𝑘) = 𝑒
𝐴∆𝑡𝑥(𝑡𝑘−1) + 𝑒

𝐴∆𝑡 ∫ 𝑒−𝐴𝛼𝑑𝛼 𝐵𝑢(𝑡𝑘−1)
∆𝑡

0
  [ 172 ] 
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𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 

Whereby 𝐹 = 𝑒𝐴∆𝑡  and 𝐺 = 𝐹 ∫ 𝑒−𝐴𝜏𝑑𝜏 𝐵
∆𝑡

0
= 𝐹[𝐼 − 𝑒−𝐴∆𝑡]𝐴−1𝐵. This uses the Taylor series expansion, 

𝑒𝑋 = ∑
𝑋𝑗

𝑗!
∞
𝑗=0 , considering the first two terms of the expansion. If 𝐴 is invertible, then: 

 ∫ 𝑒−𝐴𝜏𝑑𝜏 = ∫ ∑
(−𝐴𝜏)𝑗

𝑗!
𝑑𝜏 ≈ [𝐼 − 𝑒−𝐴∆𝑡]𝐴−1∞

𝑗=0
∆𝑡

0

∆𝑡

0
  [ 173 ] 

The continuous-time system is discretized, for small time steps of ∆𝑡, as: 

 𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐺𝑢𝑘 + 𝑤𝑘 [ 174 ] 

 𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  [ 175 ] 

𝐹 ≈ (𝐼 + 𝐴∆𝑡) 

𝐺 ≈ 𝐵∆𝑡 

𝐻 = 𝐶 

𝑤𝑘~(0,𝑄)      𝑄 = 𝑄𝑐∆𝑡 

𝑣𝑘~𝑁(0, 𝑅)      𝑅 =
𝑅𝑐
∆𝑡

 

The estimation error covariance from Equation 143 can be rewritten for a small sampling time of ∆𝑡 by 

substituting the approximation for 𝐹 and 𝑄.  

 𝑃𝑘+1
− = (𝐼 + 𝐴∆𝑡)𝑃𝑘

+(𝐼 + 𝐴∆𝑡)𝑇 + 𝑄𝑐∆𝑡 [ 176 ] 

= 𝑃𝑘
+ + (𝐴𝑃𝑘

+ + 𝑃𝑘
+𝐴𝑇 +𝑄𝑐)∆𝑡 + 𝐴𝑃𝑘

+𝐴𝑇∆𝑡2 

Substituting in the value of 𝑃𝑘
+ from Equation 134 gives: 

 𝑃𝑘+1
− = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘

− + 𝐴𝑃𝑘
+𝐴𝑇∆𝑡2 + [𝐴(𝐼 − 𝐾𝑘𝐶)𝑃𝑘

− + (𝐼 − 𝐾𝑘𝐶)𝑃𝑘
−𝐴𝑇 + 𝑄𝑐]∆𝑡 [ 177 ] 

Subtract 𝑃𝑘
− from both sides and divide by ∆𝑡. Then take the limit as ∆𝑡 → 0 to obtain the continuous-

time covariance update equation.  

The discrete-time Kalman gain is given in Equation 136. From this, it can be derived that: 

𝐾𝑘
∆𝑡
= 𝑃𝑘

−𝐶𝑇 (𝐶𝑃𝑘
−𝐶𝑇 +

𝑅𝑐
∆𝑡
)
−1

÷ ∆𝑡 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇∆𝑡 + 𝑅𝑐)
−1 

lim
∆𝑡→∞

𝐾𝑘
∆𝑡
= 𝑃𝑘

−𝐶𝑇𝑅𝑐
−1 

Which allows for the following equation to be derived. 

 𝑃̇ = −𝑃𝐶𝑇𝑅𝑐
−1𝐶𝑃 + 𝐴𝑃 + 𝑃𝐴𝑇 + 𝑄𝑐 [ 178 ] 

This is the continuous-time differential Riccati equation for propagation of the error covariance through 

time. Solving Equation 178 gives the priori error covariance at time 𝑘, 𝑃(𝑘∆𝑡) = 𝑃𝑘
− (Simon, 2006).  
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A.4 First order Taylor series approximation of a nonlinear function 

The following proof is based on the derivation of the approximation error of a first order Taylor series 

approximation presented by Simon (2006).  

For a continuous-time, nonlinear dynamic model of a system that is represented as: 

 𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤, 𝑡) [ 179 ] 

𝑦 = ℎ(𝑥, 𝑣, 𝑡) 

𝑤~(0, 𝑄) 

𝑣~(0, 𝑅) 

The Taylor series expansion of a single variable, 𝑥, around a nominal point, 𝑥0, can be expressed as: 

 𝑓(𝑥) = 𝑓(𝑥0) +
𝜕𝑓

𝜕𝑥
|
𝑥0
(𝑥 − 𝑥0) +

𝜕𝑓2

𝜕𝑥2
|
𝑥0
(𝑥 − 𝑥0)

2 +
𝜕𝑓3

𝜕𝑥3
|
𝑥0
(𝑥 − 𝑥0)

3 +⋯ [ 180 ] 

= 𝑓(𝑥0) +
𝜕𝑓

𝜕𝑥
|
𝑥0

(∆𝑥) +
𝜕𝑓2

𝜕𝑥2
|
𝑥0

(∆𝑥)2 +
𝜕𝑓3

𝜕𝑥3
|
𝑥0

(∆𝑥)3 +⋯ 

But for small values of ∆𝑥, this can be approximated as: 

 𝑓(𝑥) ≈ 𝑓(𝑥0) +
𝜕𝑓

𝜕𝑥
|
𝑥0
(∆𝑥) [ 181 ] 

This approximation only uses the first order of the Taylor series expansion, only considering the first two 

terms of the total Taylor series expansion.  

The linearization of Equation 179 by a first order Taylor series expansion around a nominal control, 𝑢0, 

nominal state, 𝑥0,  nominal output, 𝑦0 and nominal noise, 𝑤0 and 𝑣0, results in: 

 𝑥̇ ≈ 𝑓(𝑥0, 𝑢0, 𝑤0, 𝑡) +
𝜕𝑓

𝜕𝑥
|
𝑥0
(𝑥 − 𝑥0) +

𝜕𝑓

𝜕𝑢
|
𝑢0
(𝑢 − 𝑢0) +

𝜕𝑓

𝜕𝑤
|
𝑤0
(𝑤 −𝑤0) [ 182 ] 

= 𝑓(𝑥0, 𝑢0, 𝑤0, 𝑡) + 𝐴∆𝑥 + 𝐵∆𝑢 + 𝐿∆𝑤 

 𝑦 ≈ ℎ(𝑥0, 𝑣0, 𝑡) +
𝜕ℎ

𝜕𝑥
|
𝑥0
(𝑥 − 𝑥0) +

𝜕ℎ

𝜕𝑣
|
𝑣0
(𝑣 − 𝑣0) [ 183 ] 

= ℎ(𝑥0, 𝑣0, 𝑡) + 𝐶∆𝑥 + 𝑀∆𝑣 

Further assumptions made are that the nominal noise values have an expected value equal to zero, 

therefore, ∆𝑤(𝑡) = 𝑤(𝑡) and ∆𝑣(𝑡) = 𝑣(𝑡). It is also assumed that the control input, 𝑢(𝑡), is perfectly 

known, so 𝑢0(𝑡) = 𝑢(𝑡). If the control input is not known perfectly, then the control is expressed as 

𝑢0(𝑡) + ∆𝑢(𝑡) where the nominal value is known and ∆𝑢(𝑡) is a zero-mean random variable.  

The approximation error of the first order Taylor series approximation can be calculated using a general 

nonlinear equation 𝑧 = 𝑔(𝑥). The nonlinear equation, 𝑧 = 𝑔(𝑥), can be expanded in the Taylor series 

around 𝑥̅ as: 
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 𝑧 = 𝑔(𝑥̅) + 𝐷𝑥̅̃ℎ +
1

2!
𝐷𝑥̃
2ℎ + ⋯ [ 184 ] 

The mean of 𝑧 can be computed as: 

 𝑧̅ = 𝑔(𝑥̅) + 𝐸 [𝐷𝑥̃ℎ +
1

2!
𝐷𝑥̃
2ℎ + ⋯] [ 185 ] 

Where 𝐷𝑥̃ = (𝑥 − 𝑥̅)
𝜕𝑔

𝜕𝑥
|
𝑥̅

. We know 𝐸[𝐷𝑥̅𝑔] = 𝐸[(𝑥 − 𝑥̅)
𝜕𝑔

𝜕𝑥
|
𝑥̅
].  But 𝐸[(𝑥 − 𝑥̅)] = 0.  

Likewise, the expected values of third order moments will always be zero since 𝐸[(𝑥 − 𝑥̅)] = 0. 

Therefore, the true mean of 𝑧 is: 

 𝑧̅ = 𝑔(𝑥̅) +
1

2!
𝐸[𝐷𝑥̅

2𝑔] +
1

4!
𝐸[𝐷𝑥̅

4𝑔] + ⋯ [ 186 ] 

By performing first order linearization of 𝑧 = 𝑔(𝑥), the approximated mean is: 

 𝑧̅ = 𝑔(𝑥̅) + 𝐸[𝐷𝑥̅𝑔] [ 187 ] 

Therefore, the linear approximation for the mean propagation is only correct up until the first order.  

Similarly, the true covariance of the random variable 𝑧 is given as: 

 𝑃𝑧 = 𝐸[(𝑧 − 𝑧̅)(𝑧 − 𝑧̅)
𝑇] [ 188 ] 

= 𝐸[𝐷𝑥̃𝑔(𝐷𝑥̃𝑔)
𝑇] + 𝐸 [

𝐷𝑥̃𝑔(𝐷𝑥̃
3𝑔)

𝑇

3!
+
𝐷𝑥̃
2𝑔(𝐷𝑥̃

2𝑔)
𝑇

2! 2!
+
𝐷𝑥̃
3𝑔(𝐷𝑥̃𝑔)

𝑇

3!
] + 𝐸 [

𝐷𝑥̃
2𝑔

2!
]𝐸 [

𝐷𝑥̃
2𝑔

2!
]

𝑇

+⋯ 

= 𝐻𝑃𝐻𝑇 + 𝐸 [
𝐷𝑥̃𝑔(𝐷𝑥̃

3𝑔)
𝑇

3!
+
𝐷𝑥̃
2𝑔(𝐷𝑥̃

2𝑔)
𝑇

2! 2!
+
𝐷𝑥̃
3𝑔(𝐷𝑥̃𝑔)

𝑇

3!
] + 𝐸 [

𝐷𝑥̃
2𝑔

2!
] 𝐸 [

𝐷𝑥̃
2𝑔

2!
]

𝑇

+⋯ 

The linear approximation for the covariance is 𝑃 ≈ 𝐻𝑃𝐻𝑇, which is only the first term of the true 

covariance.  

A.5 Unscented transformation  

The approximate mean using the unscented transformation is given by:  

 𝑧𝑎̅𝑝𝑝𝑟𝑜𝑥 = ∑ 𝑊𝑖𝑦𝑖2𝑛
𝑖=1  [ 189 ] 

Where the weighting coefficient is defined as: 

 𝑊0 =
𝜅

𝑛+𝜅
 [ 190 ] 

𝑊𝑖 =
1

2(𝑛 + 𝜅)
     𝑖 = 1,⋯ , 2𝑛 

If 𝜅 = 0, then the sigma point representing the mean has zero weighting and the 2𝑛 sigma points have 

equal weightings. For Gaussian distributions, 𝜅 = 3 − 𝑛 reduces the approximation error of the 

unscented transformation by minimizing the fourth order difference between the true mean and 

covariance and the approximate mean and covariance (Ebeigbe et al., 2021).  

When 𝜅 = 0, the approximate mean can be expanded to: 
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 𝑧𝑎̅𝑝𝑝𝑟𝑜𝑥 = 𝑔(𝑥̅) +
1

2!
𝐸[𝐷

𝑥̃𝑖
2 𝑔] +

1

2𝑛
∑ (

1

4!
𝐷
𝑥̃𝑖
4 𝑔 +

1

6!
𝐷
𝑥̃𝑖
6 𝑔 +⋯)2𝑛

𝑖=1  [ 191 ] 

The true mean is given by equation 186. Thus, the unscented transformation mean approximation 

matches the true mean up until the third order.  

The unscented transformation covariance approximation is given by: 

 𝑃𝑎𝑝𝑝𝑟𝑜𝑥 = ∑ 𝑊𝑖(𝑧𝑖 − 𝑧𝑎̅𝑝𝑝𝑟𝑜𝑥)
2𝑛
𝑖=1 (𝑧𝑖 − 𝑧𝑎̅𝑝𝑝𝑟𝑜𝑥)

𝑇
 [ 192 ] 

This can be expanded to:  

𝑃𝑎𝑝𝑝𝑟𝑜𝑥 = 𝐻𝑃𝐻
𝑇 + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

The unscented transformation covariance approximation matches the true covariance up until the third 

order (Simon, 2006).  

A.6 Full information estimator  

The following derivation is based on the derivation for the full information estimator presented by 

Larsson (2015) and the derivation presented by Haseltine & Rawlings (2003).  

To derive the full information estimator, the maximum a posteriori (MAP) estimate must first be defined. 

The MAP estimate aims to find the most likely values for the state trajectory { 𝑥̂0, …  , 𝑥̂𝑁 } based on the 

set of past measurements. This is done by finding the values of { 𝑥0, …  , 𝑥𝑁 } that maximize the objective 

function 𝑝(𝑥0,… , 𝑥𝑁|𝑦0, … , 𝑦𝑁), which is the pdf of 𝑥 conditioned on 𝑦.  

  { 𝑥̂0, …  , 𝑥̂𝑁 } = max
𝑥0,…  ,𝑥𝑁 

𝑝(𝑥0,… , 𝑥𝑁|𝑦0,… , 𝑦𝑁) [ 193 ] 

This MAP estimate can be rewritten as a minimization: 

  max
𝑥0,…  ,𝑥𝑁 

𝑝(𝑥0,… , 𝑥𝑁|𝑦0, … , 𝑦𝑁) = min
𝑥0,…  ,𝑥𝑁 

− log 𝑝(𝑥0,… , 𝑥𝑁|𝑦0, … , 𝑦𝑁) [ 194 ] 

Using Bayes rule and the Markov property, the objective function 𝑝(𝑥0,… , 𝑥𝑁|𝑦0, … , 𝑦𝑁) can be 

rewritten as: 

   𝑝(𝑥0, … , 𝑥𝑁|𝑦0,… , 𝑦𝑁) = 𝑝(𝑥0)∏ 𝑝(𝑦𝑘|𝑥𝑘)∏ 𝑝(𝑥𝑘+1|𝑥𝑘)
𝑁−1
𝑘=0

𝑁
𝑘=1  [ 195 ] 

Therefore, the MAP estimate can be rewritten as: 

  min
𝑥0,…  ,𝑥𝑁 

− log 𝑝(𝑥0) − ∑ log 𝑝(𝑦𝑘|𝑥𝑘)
𝑁
𝑘=1 − ∑ log 𝑝(𝑥𝑘+1|𝑥𝑘)

𝑁−1
𝑘=0  [ 196 ] 

Assuming that the system consists of process dynamics and measurements defined by: 

 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑤𝑘) [ 197 ] 

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘) 
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𝑤𝑘~(0,𝑄) 

𝑣𝑘~(0, 𝑅) 

The probabilities in Equation 196 can be written as: 

  log 𝑝(𝑦𝑘|𝑥𝑘) = 𝑝(𝑣𝑘) [ 198 ] 

  log 𝑝(𝑥𝑘+1|𝑥𝑘) = 𝑝(𝑤𝑘) [ 199 ] 

Assuming the measurement noise is Gaussian, zero-mean with covariance 𝑅, the probability of the 

measurement noise is given by:  

 𝑝(𝑣𝑘) =
1

(2𝜋)𝑛/2|𝑅|1/2
exp (−

1

2
(𝑣𝑘 − 𝑣𝑘̅̅ ̅)

𝑇𝑅−1(𝑣𝑘 − 𝑣𝑘̅̅ ̅) [ 200 ] 

Taking the logarithm of both sides yields: 

 − log 𝑝(𝑣𝑘) =
1

2
𝑣𝑘
𝑇𝑅−1𝑣𝑘 [ 201 ] 

Similarly for the process noise, assuming the process noise is Gaussian, zero-mean with covariance 𝑄: 

 − log 𝑝(𝑤𝑘) =
1

2
𝑤𝑘
𝑇𝑄−1𝑤𝑘 [ 202 ] 

The logarithm of the probability of the initial state is given as: 

 − log 𝑝(𝑥0) =
1

2
(𝑥0 − 𝑥̅0)

𝑇𝑃0
−1(𝑥0 − 𝑥̅0) [ 203 ] 

Substituting these back into the MAP estimate in Equation 196 Gives the full information estimate: 

  min
𝑥0,…  ,𝑥𝑘 

||𝑥0 − 𝑥̅0||𝑃0−1
2

+∑ ||𝑦𝑗 − ℎ(𝑥𝑗)||
𝑅−1

2
𝑘
𝑗=1 + ∑ ||𝑥𝑗+1 − 𝑓(𝑥𝑗)||

𝑄−1

2
𝑘−1
𝑗=0  [ 204 ] 

A.7 Linear discrete-time observability matrix  

The observability matrix is derived for the following linear discrete-time system (Dahleh et al., 2011): 

 𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝐺𝑢𝑘  [ 205 ] 

 𝑦𝑘 = 𝐻𝑥𝑘  [ 206 ] 

To test system observability, the observability of states, 𝑥, from the available measurements, 𝑦, is 

checked at time zero to time 𝑛 − 1. This is done up until time 𝑛 − 1 as it is assumed that a maximum 

number of 𝑛 measurements is needed to fully reconstruct the 𝑛 dimensional state vector (Rutgers 

Electrical & Computer Engineering, 2007).  

 𝑦0 = 𝐻𝑥0  [ 207 ] 

 𝑦1 = 𝐻𝑥1 = 𝐻𝐹𝑥0   

 𝑦2 = 𝐻𝑥2 = 𝐻𝐹𝑥1 = 𝐻𝐹
2𝑥0  
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 ⋮  

 𝑦𝑛−1 = 𝐻𝑥𝑛−1 = 𝐻𝐹
𝑛−1𝑥0  

If the initial state, 𝑥0, is known, then the state at any other point in time can be solved for using Equation 

205. In other words, to fully construct the states of the system, the only value that is required is the initial 

state. Therefore, a system is observable if the initial state can be derived from the outputs. The 

relationship between the outputs, 𝑦, and the initial state, 𝑥0, is written as: 

 [

𝑦1
𝑦2
⋮

𝑦𝑛−1

] = 𝑂𝑥0  [ 208 ] 

Where 𝑂 is defined as: 

 𝑂 = [

𝐻
𝐻𝐹
⋮

𝐻𝐹𝑛−1
]  [ 209 ]  

A.8 Linear continuous-time observability matrix  

A continuous-time linear system is represented by the following system equations.  

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢  [ 210 ] 

 𝑦 = 𝐶𝑥  [ 211 ] 

Using Equation 210, the state at any time can be solved for from the state at time zero.  

 𝑥(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑥(𝑡0)  [ 212 ] 

The observability at different time points can be assessed by taking the time derivatives of the 

observation at time zero.  

 𝑦(𝑡0) = 𝐶𝑥(𝑡0)  [ 213 ] 

 𝑦̇(𝑡0) = 𝐶𝑥̇(𝑡0) = 𝐶𝐴𝑥(𝑡0)  

 ⋮  

 𝑦(𝑛−1)(𝑡0) = 𝐶𝑥
(𝑛−1)(𝑡0) = 𝐶𝐴

𝑛−1𝑥(𝑡0)  

This derivation results in the same observability matrix as in Equation 209, however, the state and 

measurement matrices are now in continuous form.  

 𝑂 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1
]  [ 214 ] 

The observability matrix for continuous-time linear systems can also be derived from the Lie derivatives 

of the linear function.  

Firstly, the definition of a Lie derivative is established. For a smooth scalar function ℎ(𝑥) of the 𝑛 × 1 state 

vector 𝑥, the gradient of the function is given by: 

 𝑉̅ℎ =
𝜕ℎ

𝜕𝑥
= [

𝜕ℎ

𝜕𝑥1
 
𝜕ℎ

𝜕𝑥2
 ⋯

𝜕ℎ

𝜕𝑥𝑛
]     [ 215 ] 
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For a vector function 𝑓 of the 𝑛 × 1 state vector 𝑥 forms a vector field that spans over 𝑥 ∈ ℝ𝑛. The 

gradient of the vector field is given by the Jacobian matrix: 

 𝑉̅𝑓 =
𝜕𝑓

𝜕𝑥
=

[
 
 
 
 
 
𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
⋯

⋮
𝜕𝑓𝑛

𝜕𝑥1

⋮
𝜕𝑓𝑛

𝜕𝑥2

⋱
⋯

    

𝜕𝑓1

𝜕𝑥𝑛
𝜕𝑓2

𝜕𝑥𝑛

⋮
𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 
 
 

 [ 216 ] 

The Lie derivative is the derivative of a scalar function along a vector field, which is the dot product of the 

two vectors. The two vectors are the gradient of ℎ and the vector function 𝑓. 

 𝐿𝑓ℎ = 𝑉̅ℎ ∙ 𝑓 = ∑
𝜕ℎ

𝜕𝑥𝑖

𝑛
𝑖=1 𝑓𝑖 [ 217 ] 

= [
𝜕ℎ

𝜕𝑥1
 
𝜕ℎ

𝜕𝑥2
 ⋯

𝜕ℎ

𝜕𝑥𝑛
] [

𝑓1(𝑥)

𝑓2(𝑥)
⋮

𝑓𝑛(𝑥)

] 

The Lie derivative is a scalar value. (Hedrick & Girard, 2005) 

The first order Lie derivative of ℎ with respect to 𝑓 is the time derivative of ℎ (Paradowski, 2021). From 

the chain rule, the time derivative of ℎ is the gradient of ℎ multiplied by the function 𝑓: 

 ℎ̇ =
𝜕ℎ

𝜕𝑥
(
𝜕𝑥

𝜕𝑡
) = 𝑉̅ℎ ∙ 𝑓 = 𝐿𝑓

1ℎ [ 218 ] 

Higher order Lie derivatives can be defined as: 

 𝐿𝑓
0ℎ = ℎ [ 219 ] 

𝐿𝑓
1ℎ = 𝑉̅ℎ ∙ 𝑓 

𝐿𝑓
2ℎ = 𝑉̅[𝐿𝑓

1ℎ] ∙ 𝑓 

⋮ 

𝐿𝑓
𝑛ℎ = 𝑉̅[𝐿𝑓

𝑛−1ℎ] ∙ 𝑓 

(Nasir, 2020) 

The linear continuous-time system. Let ℎ(𝑥) = 𝐶𝑥 and 𝑓(𝑥) = 𝐴𝑥. Therefore, 𝑉̅ℎ =
𝜕ℎ

𝜕𝑥
= 𝐶. Then the Lie 

derivatives can be calculated as: 

 𝐿𝑓
0ℎ = ℎ = 𝐶𝑥 

 𝐿𝑓
1ℎ = 𝑉̅ℎ ∙ 𝑓 = 𝐶𝐴𝑥 

𝐿𝑓
2ℎ = 𝑉̅[𝐿𝑓

1ℎ] ∙ 𝑓 = 𝑉̅[𝐶𝐴𝑥] ∙ (𝐴𝑥) = 𝐶𝐴2𝑥 

⋮ 

𝐿𝑓
𝑛ℎ = 𝐶𝐴𝑛−1𝑥 
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The observability matrix is the gradient of the Lie derivatives with respect to 𝑥:  

 𝑂 =

[
 
 
 
 
𝑑𝐿𝑓

0ℎ

𝑑𝐿𝑓
1ℎ

⋮
𝑑𝐿𝑓

𝑛−1ℎ]
 
 
 
 

  [ 220 ] 

Which corresponds to: 

 𝑂 = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1
]  [ 221 ] 

(Nasir, 2020) 

A.9 Nonlinear continuous-time observability matrix  

Based on the work done by Hermann & Krener (1977).  

For a nonlinear system defined by: 

 𝑥̇ = 𝑓(𝑥, 𝑢)  [ 222 ] 

 𝑦 = ℎ(𝑥)  [ 223 ] 

Let there exist two initial conditions, 𝑥0 = 𝑧
1 and 𝑥0 = 𝑧

2. The trajectories of the states through a 

nonlinear function are given by 𝜑(𝑡, 𝑧1) and 𝜑(𝑡, 𝑧2), respectively. The states, 𝑧1 and 𝑧2, are 

distinguishable if the output mapping of the trajectories are not equal.  

 ℎ(𝜑(𝑡, 𝑧1)) ≠ ℎ(𝜑(𝑡, 𝑧2))    [ 224 ] 

If all pairs of 𝑧1 and 𝑧2 are distinguishable then a system is globally observable. The system is locally 

weakly observable when the unique initial conditions 𝑧1 and 𝑧2 have unique outputs 𝑦1 ≠ 𝑦2. 

To verify the output mapping of the trajectories are not equal, a Taylor series expansion of the output 

can be used. 

 𝑦 = ℎ(𝜑(𝑡, 𝑥)) = ∑
𝑡𝑘

𝑘!
(𝐿𝑓
𝑘ℎ)(𝑥0)

∞
𝑘=0   [ 225 ] 

The coefficients in this expansion are the Lie derivatives.  

To prove that 𝑦1 ≠ 𝑦2 for initial conditions 𝑧1 and 𝑧2, it must be proven that: 

 (𝐿𝑓
𝑘ℎ)(𝑧1) ≠ (𝐿𝑓

𝑘ℎ)(𝑧2)   𝑘 = 0,1, … ,∞  [ 226 ] 

This is a system of infinite nonlinear equations which can be summarized in an observability mapping 

defined by 𝐺(𝑥). 

 𝐺(𝑥) = [

𝐿𝑓
0ℎ(𝑥)

⋮
𝐿𝑓
∞ℎ(𝑥)

] [ 227 ] 

The Jacobian of this observability mapping is given by 𝑑𝐺 and Hermann & Krener prove that the system 

is locally weakly observable if the rank of 𝑑𝐺 = 𝑛. 
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This derivation of the Lie derivative of the output function, ℎ, along the vector field, 𝑓, assumes that the 

time derivatives of the control variable are zero and thus the control inputs are constant. To take into 

account time-varying control inputs, the extended Lie derivative can be defined.   

The local observability matrix at 𝑥0 for constant input variables, 𝑢, when there exists a single 

measurement is: 

 𝑂(𝑥0, 𝑢) =
𝜕𝑙(𝑥0)

𝜕𝑥
|
𝑥=𝑥0

 [ 228 ] 

𝑙(𝑥0, 𝑢) =

[
 
 
 
 
𝐿𝑓
0ℎ1

𝐿𝑓
1ℎ1
⋮

𝐿𝑓
𝑛−1ℎ1]

 
 
 
 

 

For 𝑛𝑦 measurements where ℎ(𝑥) = [

ℎ1
ℎ2
⋮
ℎ𝑝

], then the local observability matrix at 𝑥0 is defined as: 

 𝑂(𝑥0, 𝑢) =

[
 
 
 
 
 
 
 
𝑑𝐿𝑓

0ℎ1
⋮

𝑑𝐿𝑓
0ℎ𝑛𝑦
⋮

𝑑𝐿𝑓
𝑛−1ℎ1
⋮

𝑑𝐿𝑓
𝑛−1ℎ𝑛𝑦]

 
 
 
 
 
 
 

  [ 229 ] 

A.10 Scaling a linear continuous-time system of equations  

A linear continuous-time system is represented by: 

 𝑥̇ = 𝐴𝑥 [ 230 ] 

 𝑦 = 𝐶𝑥 [ 231 ] 

The unscaled vector of states, 𝑥, is a vector containing the 𝑛𝑥  states.  

 𝑥 = [

𝑥1
⋮
𝑥𝑛𝑥

] [ 232 ] 

The unscaled vector of measurements, 𝑦, is a vector containing the 𝑛𝑦 measurements.  

 𝑦 = [

𝑦1
⋮
𝑦𝑛𝑦

] [ 233 ] 

The scaled vector of states, 𝑥̃, and scaled vector of measurements, 𝑦̃, are calculated using the range of 

the NOCs of the system.  

 𝑥̃ = 𝑆𝑥(𝑥 − 𝑥𝑚𝑖𝑛) [ 234 ] 

 𝑦̃ = 𝑆𝑦(𝑦 − 𝑦𝑚𝑖𝑛) [ 235 ] 
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 𝑆𝑥 =

[
 
 
 

1

𝑥1,𝑚𝑎𝑥−𝑥1,𝑚𝑖𝑛
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝑥𝑛𝑥,𝑚𝑎𝑥−𝑥𝑛𝑥,𝑚𝑖𝑛]
 
 
 

 [ 236 ] 

 𝑆𝑦 =

[
 
 
 
 

1

𝑦1,𝑚𝑎𝑥−𝑦1,𝑚𝑖𝑛
⋯ 0

⋮ ⋱ ⋮

0 ⋯
1

𝑦𝑛𝑦,𝑚𝑎𝑥−𝑦𝑛𝑦,𝑚𝑖𝑛]
 
 
 
 

 [ 237 ] 

Equation 234 is rearranged to give 𝑥 = 𝑆𝑥
−1𝑥̃ + 𝑥𝑚𝑖𝑛 , with the time derivative of this equation being 

𝑑𝑥

𝑑𝑡
= 𝑆𝑥

−1 𝑑𝑥̃

𝑑𝑡
. This is substituted into Equation 230 to give the linearized and scaled dynamic model 

equation: 

 𝑥̇̃ = 𝑆𝑥𝐴𝑆𝑥
−1𝑥̃ + 𝑆𝑥𝐴𝑥𝑚𝑖𝑛 [ 238 ] 

Equation 235 is rearranged to give 𝑦 = 𝑆𝑦
−1𝑦̃ + 𝑦𝑚𝑖𝑛 and substituted into Equation 231 to give the 

linearized and scaled measurement equation: 

 𝑦̃ = 𝑆𝑦𝐶𝑆𝑥
−1𝑥̃ [ 239 ] 
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APPENDIX B – STATE ESTIMATION ALGORITHMS 

B.1. Extended Kalman filter algorithm  

For a nonlinear hybrid system represented by: 

 𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤, 𝑡) [ 240 ] 

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘) 

Initialize the filter with an initial guess for the state estimation and estimation error covariance at time 

𝑘 = 0.  

 𝑥̂0
+ = 𝐸(𝑥0) [ 241 ] 

𝑃0
+ = 𝐸[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑇] 

For each successive timestep 𝑘:  

Prediction step 

1) Integrate the state estimate using the continuous process model Equation 240. 

Integration occurs from timestep 𝑘 − 1 to timestep 𝑘. 

𝑥̇ = 𝑓(𝑥̂𝑘−1
+ , 𝑢, 𝑡) 

The integration is initialized using the a posteriori state estimate from the previous time 

step, 𝑥̂𝑘−1
+ . The state estimate at time 𝑘 at the end of the integration period represents 

the a priori state estimate, 𝑥̂𝑘
−.  

2) The covariance is integrated from timestep 𝑘 − 1 to 𝑘 using Equation 13. This propagates 

the covariance through the continuous model. 

𝑃̇ = 𝐴𝑃 + 𝑃𝐴𝑇 + 𝐿𝑄𝐿𝑇  

The integration is initialized using the a posteriori estimation error covariance from the 

previous time step, 𝑃𝑘−1
+ . The estimation error covariance at time 𝑘 at the end of the 

integration period represents the a priori estimation error covariance, 𝑃𝑘
−.  

The system matrices in the ODE have been linearized around the a posteriori state 

estimate from the previous time step, 𝑥̂𝑘−1
+ .  

𝐴 =  
𝜕𝑓

𝜕𝑥
|
𝑥𝑘−1
+

 

𝐿 =  
𝜕𝑓

𝜕𝑤
|
𝑥𝑘−1
+

 

Update step 

The standard KF equations from the discrete KF are used in the update step of the EKF.  

3) The Kalman gain is calculated using Equation 8.  
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𝐾𝑘 = 𝑃𝑘
−𝐻𝐾

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 +𝑀𝑘𝑅𝑘𝑀𝑘
𝑇)
−1

 

Where 𝐻𝑘  and 𝑀𝑘  are the partial derivates evaluated at the a priori state estimate, 𝑥̂𝑘
−. 

𝐻𝑘 = 
𝜕ℎ

𝜕𝑥
|
𝑥𝑘
−

 

𝑀𝑘 = 
𝜕ℎ

𝜕𝑣
|
𝑥𝑘
−

 

4) The a posteriori state estimate is calculated using Equation 7.  

𝑥̂𝑘
+ = 𝑥̂𝑘

− +𝐾𝑘(𝑦𝑘 − ℎ(𝑥̂𝑘
−, 𝑣𝑘)) 

5) The a posteriori covariance is calculated using Equation 9.  

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

−(𝐼 − 𝐾𝑘𝐻𝑘)
𝑇 +𝐾𝑘𝑅𝑘𝐾𝑘

𝑇  

(Simon, 2010) 

B.2. Unscented Kalman filter algorithm  

For a nonlinear hybrid system represented by: 

 𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤, 𝑡) [ 242 ] 

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘) 

Initialize the filter with an initial guess for the state estimation and estimation error covariance at time 

𝑘 = 0.  

 𝑥̂0
+ = 𝐸(𝑥0) [ 243 ] 

𝑃0
+ = 𝐸[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑇] 

 

For each successive timestep 𝑘:  

Prediction step  

1) Calculate the sigma points using Equation 17. The sigma points are generated based on 

the known mean, the a posteriori state estimate from the previous time step, and the 

known covariance, the a posteriori estimation error covariance from the previous time 

step, 𝑥̂𝑘−1
+  and 𝑃𝑘−1

+ , respectively. 

𝑥̂𝑘−1
0 = 𝑥̂𝑘−1

+  

𝑥̂𝑘−1
(𝑖) = 𝑥̂𝑘−1

+ + 𝑥̃(𝑖)       𝑖 = 1,⋯ , 2𝑛 

𝑥̃(𝑖) = (√(𝑛 + 𝜅)𝑃𝑘−1
+ )

𝑖

𝑇

       𝑖 = 1,⋯ , 𝑛 

𝑥̃(𝑛+𝑖) = −(√(𝑛 + 𝜅)𝑃𝑘−1
+ )

𝑖

𝑇

       𝑖 = 1,⋯ , 𝑛 

𝜅 = 𝑛 − 3, as the state estimate distribution is assumed to be approximately Gaussian.  
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2) Propagate each of the sigma points from timestep 𝑘 − 1 to timestep 𝑘 using the non-

linear state transition equation, 𝑓, to obtain the 𝑖 transformed state vectors, 𝑥̂𝑘
𝑖 .  

𝑥̇ = 𝑓(𝑥𝑘−1
𝑖 , 𝑢, 𝑡) 

The integration is initialized with the a posteriori sigma points from the previous timestep 

𝑥𝑘−1
𝑖 . The transformed sigma points at timestep 𝑘 at the end of the integration period 

represents the a priori state estimate sigma points, 𝑥̂𝑘
𝑖 −. 

3) Calculate the approximate mean and covariance via weighted linear regression to 

obtain the a priori state estimate at timestep 𝑘, 𝑥̂𝑘
−.  

𝑥̂𝑘
− = 𝑊𝑖∑𝑥̂𝑘

𝑖

2𝑛

𝑖=1

 

𝑊0 =
𝜅

𝑛 + 𝜅
 

𝑊𝑖 =
1

2(𝑛 + 𝜅)
     𝑖 = 1,⋯ , 2𝑛 

4) Calculate the a priori estimation error covariance using weighted linear regression and 

adding in the process noise.  

𝑃𝑘
− = 𝑊𝑖∑(𝑥̂𝑘

𝑖 − 𝑥̂𝑘
−)

2𝑛

𝑖=1

(𝑥̂𝑘
𝑖 − 𝑥̂𝑘

−)𝑇 + 𝑄𝑘−1 

Update step  

5) Calculate the sigma points based on the a priori state estimate and covariance from the 

prediction step, 𝑥̂𝑘
− and 𝑃𝑘

−. Alternatively, the same sigma points from the time-update 

section can be used.  

6) Transform each of the sigma points using the nonlinear measurement equation, ℎ. This 

obtains 𝑖 vectors, which represent the transformed predicted measurements, 𝑦̂𝑘
𝑖 .  

𝑦̂𝑘
𝑖 = ℎ(𝑥̂𝑘

𝑖 , 𝑡𝑘) 

7) Calculate the approximate mean of the predicted measurement at timestep 𝑘 using 

weighted linear regression.  

𝑦̂𝑘 = 𝑊
𝑖∑𝑦̂𝑘

𝑖

2𝑛

𝑖=1

 

8) Calculate the approximate covariance of the predicted measurements, adding in the 

measurement noise covariance.  

𝑃𝑦𝑦 = 𝑊
𝑖∑(𝑦̂𝑘

𝑖 − 𝑦̂𝑘)

2𝑛

𝑖=1

(𝑦̂𝑘
𝑖 − 𝑦̂𝑘)

𝑇 + 𝑅𝑘  
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9) Calculate the cross covariance between the a priori state estimate and the predicted 

measurement at timestep 𝑘.  

𝑃𝑥𝑦 = 𝑊𝑖∑(𝑥̂𝑘
𝑖 − 𝑥̂𝑘

−)

2𝑛

𝑖=1

(𝑦̂𝑘
𝑖 − 𝑦̂𝑘)

𝑇  

10) Calculate the Kalman gain, the a posteriori state estimate, and the a posteriori 

estimation error covariance at timestep 𝑘 using the standard KF update equations.  

𝐾𝑘 = 𝑃𝑥𝑦𝑃𝑦𝑦
−1 

𝑥̂𝑘
+ = 𝑥̂𝑘

− +𝐾𝑘(𝑦𝑘 − 𝑦̂𝑘) 

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝑃𝑦𝑦𝐾𝑘
𝑇 

(Simon, 2006) 

B.3. Bootstrap particle filter algorithm  

For a nonlinear hybrid system represented by: 

 𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤, 𝑡) [ 244 ] 

𝑦𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘) 

Initialization: 

Assume that the initial state estimate at time 𝑘 = 0.  can be accurately approximated by a Gaussian 

distribution with a mean equal to the guess for the initial state estimate and covariance equal to the 

guess for the initial state estimation error covariance. Randomly generate 𝑁 particles on the basis of 

this pdf. The distribution of the initial state estimate has a mean and covariance: 

𝑥̂0
+ = 𝐸(𝑥0) 

𝑃0
+ = 𝐸[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑇] 

The particles generated are denoted as: 

𝑥̂0,𝑖
+     (𝑖 = 1,⋯ , 𝑁) 

For each successive timestep 𝑘:  

Prediction step 

1. Perform the prediction step by propagating each particle from the previous time 

step using the nonlinear function, 𝑓: 

      𝑥̇ = 𝑓(𝑥𝑘−1,𝑖
+ , 𝑢, 𝑡) 

The integration is initialized with the a posteriori particles from the previous timestep 

𝑥̂𝑘−1,𝑖
+ . The transformed particles at timestep 𝑘 at the end of the integration period 

represents the a priori particles, 𝑥̂𝑘,𝑖
− . 
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The process noise is incorporated within the prediction step by randomly sampling 

𝑤𝑘−1
𝑖   from the known pdf of 𝑤𝑘−1 and adding this to the nonlinear transformation 

of each particle.  

 Update step 

1. Calculate the predicted measurements corresponding to each a priori particle using 

the function ℎ𝑘 : 

𝑦̂𝑘,𝑖
− = ℎ𝑘(𝑥̂𝑘,𝑖

− ) 

2. The relative likelihood of each particle is calculated using Equation 27: 

𝑞𝑖 =
1

(2𝜋)
𝑛𝑦
2 |𝑅|

1
2

exp (−
1

2
(𝑦𝑘 − 𝑦̂𝑘,𝑖

− )
𝑇
𝑅−1(𝑦𝑘 − 𝑦̂𝑘,𝑖

− )) 

3. Scale the relative likelihoods to ensure the sum is equal to 1: 

𝑞𝑖 =
𝑞𝑖

∑ 𝑞𝑗
𝑁
𝑗=1

 

 Resampling step  

1. Carry out resampling according to the low variance resampling algorithm presented 

in sub-section 2.1.5.3 to obtain the  a posteriori particles 𝑥𝑘,𝑖
+  (𝑖 = 1,⋯ , 𝑁). 

2. Calculate the mean and covariance of the new distribution using the algebraic 

mean and covariance of the a posteriori particles: 

𝑥̂𝑘
+ =∑𝑥𝑘,𝑖

+

𝑁

𝑖=1

 

𝑃𝑘
+ = 𝐶𝑂𝑉(𝑥𝑘,𝑖

+ ) 
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Table B.1: Process model uncertainty and measurement uncertainty associated with each of the states 

State Unit 
Process model 
uncertainty 

Associated 
measurement 

Measurement standard 
deviation 

Conversion of 
measurement 
unit to state 
unit 

𝑁𝐶(𝐵),𝑋0 𝑚𝑜𝑙 ±1000 𝑚𝑜𝑙𝑠       

𝑁𝐶(𝐵),𝑋𝑆 𝑚𝑜𝑙 ±100 𝑚𝑜𝑙𝑠       

𝑁𝐶(𝐵),𝑋𝑆2 𝑚𝑜𝑙 ±100 𝑚𝑜𝑙𝑠       

𝑇𝐶(𝐵) 𝐾 ±1  𝐾 𝑇𝐶(𝐵) ±10.36 𝐾   

𝑁𝐶(𝑆),𝑋0 𝑚𝑜𝑙 ±100 𝑚𝑜𝑙𝑠       

𝑁𝐶(𝑆),𝑋𝑆 𝑚𝑜𝑙 ±100 𝑚𝑜𝑙𝑠       

𝑁𝐶(𝑆),𝑋𝑆2 𝑚𝑜𝑙 ±1  𝐾       

𝑇𝐶(𝑆) 𝐾 ±1  𝐾       

𝑁𝐶(𝑅) 𝑚𝑜𝑙 ±100 𝑚𝑜𝑙𝑠       

𝑁𝑆 𝑚𝑜𝑙 ±1000 𝑚𝑜𝑙𝑠 𝐿𝑆 ±0.05 𝑚  6 × 105 𝑚𝑜𝑙𝑠 

𝑇𝑆 𝐾 ±1  𝐾 𝑇𝑆 ±19.03 𝐾   

𝑁𝑀 𝑚𝑜𝑙 ±1000 𝑚𝑜𝑙𝑠 𝐿𝑀 ±0.05 𝑚  8× 105  𝑚𝑜𝑙𝑠 

𝑇𝑀 𝐾 ±1  𝐾 𝑇𝑀 ±17.55 𝐾   

𝑁𝐺,𝐴 𝑚𝑜𝑙 ±100 𝑚𝑜𝑙𝑠       

𝑁𝐺,𝑅 𝑚𝑜𝑙 ±100 𝑚𝑜𝑙𝑠 𝐶𝐺,𝑅 ±0.1
𝑚𝑜𝑙

𝑚3   15 𝑚𝑜𝑙𝑠 

𝑇𝐺  𝐾 ±1  𝐾 𝑇𝐺  ±2.2 𝐾   

𝑇𝑊 𝐾 ±1  𝐾 𝑇𝑊 ±1 𝐾   
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APPENDIX C – SUBMERGED ARC FURNACE MODEL  

Table C.1: SAF model symbols and subscripts  

SAF model symbols 

𝐶  Concentration 𝑚𝑜𝑙/𝑚3  

𝐹  Molar flow 𝑚𝑜𝑙/𝑠  

𝐽  Molar flux 𝑚𝑜𝑙/𝑚2 ∙ 𝑠  

𝐿  Length 𝑚  

𝑁  Molar amount 𝑚𝑜𝑙  

𝑃  Pressure 𝑃𝑎  

𝑄  Heat transfer 𝑘𝑊  

𝑟  Reaction rate 𝑚𝑜𝑙/𝑠  

𝑅  Resistivity 𝑉2/𝑘𝑊  

𝑇  Temperature 𝐾  

𝑉  Volume 𝑚3  

𝜈  Volume transfer 𝑚3/𝑠  

Subscripts 

𝐴  Air component  

𝐶(𝐵)  Bulk concentrate zone 

𝐶(𝑅)  Reaction gases in the concentrate zone 

𝐶(𝑆)  Smelting concentrate zone 

𝐺  Furnace freeboard zone 

𝑀  Matte zone 

𝑅  Reaction gas component  

𝑆  Slag zone 

𝑊  Copper cooling unit zone 
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𝑋𝑂  Slag component 

𝑋𝑆  Matte component  

𝑋𝑆2  Sulphurized matte component  

 

Table C.2: Initial values for the state variables  

State variable Initial value Unit 

𝑁𝐶(𝐵),𝑋0 8.894 × 105  𝑚𝑜𝑙 

𝑁𝐶(𝐵),𝑋𝑆 5.536 × 105  𝑚𝑜𝑙 

𝑁𝐶(𝐵),𝑋𝑆2 1035 𝑚𝑜𝑙 

𝑇𝐶(𝐵) 1036 𝐾 

𝑁𝐶(𝑆),𝑋0 7.714 × 105  𝑚𝑜𝑙 

𝑁𝐶(𝑆),𝑋𝑆 5.593 × 105  𝑚𝑜𝑙 

𝑁𝐶(𝑆),𝑋𝑆2 1.069 𝑚𝑜𝑙 

𝑇𝐶(𝑆) 1379 𝐾 

𝑁𝐶(𝑅) 555 𝑚𝑜𝑙 

𝑁𝑆 1.113 × 107  𝑚𝑜𝑙 

𝑇𝑆 1903 𝐾 

𝑁𝑀 6.603 × 106  𝑚𝑜𝑙 

𝑇𝑀 1755 𝐾 

𝑁𝐺,𝑅 1082.570 𝑚𝑜𝑙 

𝑁𝐺,𝐴 702.990 𝑚𝑜𝑙 

𝑇𝐺  1024 𝐾 

𝑇𝑊 311 𝐾 

 

Table C.3: Model parameters  

Parameter  Symbol Value Unit 

Molar masses: 

Freeboard gas molar mass 𝑀𝐺  29 ∙ 10−3 𝑘𝑔 ∙ 𝑚𝑜𝑙−1 
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Lumped slag molar mass 𝑀𝑋𝑂 72 ∙ 10−3 𝑘𝑔 ∙ 𝑚𝑜𝑙−1 

Lumped matte molar mass 𝑀𝑋𝑆  88 ∙ 10−3 𝑘𝑔 ∙ 𝑚𝑜𝑙−1 

Sulphurised matte molar mass 𝑀𝑋𝑆2 120 ∙ 10−3 𝑘𝑔 ∙ 𝑚𝑜𝑙−1 

Densities 

Bulk concentrate density 𝜌𝐶 1600 𝑘𝑔 ∙ 𝑚−3 

Liquid slag density 𝜌𝑆 2960 𝑘𝑔 ∙ 𝑚−3 

Liquid matte density 𝜌𝑀 4800 𝑘𝑔 ∙ 𝑚−3 

Heat of fusion: 

Concentrate heat of fusion 𝜆𝐶 133 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 

Heat capacities: 

Concentrate heat capacity 𝑐𝑃,𝐶 75 ∙ 10−3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 

Liquid slag heat capacity 𝑐𝑃,𝑆 99 ∙ 10−3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 

Liquid matte heat capacity 𝑐𝑃,𝑀 78 ∙ 10−3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 

Freeboard heat capacity 𝑐𝑃,𝐺 30 ∙ 10−3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 

Cooling water heat capacity 𝑐𝑃,𝑊 75 ∙ 10−3 𝑘𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 

Reaction activation energies: 

Desulphurization reaction 

activation energy 
𝐸𝐴,𝐹 150 ∙ 103 𝐽 ∙ 𝑚𝑜𝑙−1 

Electrode oxidation activation 

energy  
𝐸𝐴,𝐶 120 ∙ 103 𝐽 ∙ 𝑚𝑜𝑙−1 

Rate constants: 

Concentrate mixing constant 𝑘𝑣 2 ∙ 10−4 𝑠−1 

Freeboard-to-atmosphere 

pressure constant 
𝑘𝑃𝑅 7 𝑚𝑜𝑙 ∙ 𝑃𝑎−1 ∙ 𝑠−1 

Freeboard extraction pressure 

constant 
𝑘𝑃𝐸 3 𝑚𝑜𝑙 ∙ 𝑃𝑎−1 ∙ 𝑠−1 

Desulphurization rate constant 𝑘𝐹 1 ∙ 105 𝑠−1 

Electrode oxidation rate 

constant 
𝑘𝐶  1.25 ∙ 104  𝑚𝑜𝑙 ∙ 𝑠−1 
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Packed bed reactor flux 

constant 
𝑘𝑃𝐵𝑅 10−8 

       

𝑚𝑜𝑙 ∙ 𝑚−1 ∙ 𝑃𝑎−1

∙ 𝑠−1 

Channelling flux constant 𝑘𝐶ℎ  2 ∙ 10−6 

       

𝑚𝑜𝑙 ∙ 𝑚−1 ∙ 𝑃𝑎−1

∙ 𝑠−1 

Furnace dimensions: 

Bath area 𝐴 300 𝑚2 

Bath perimeter 𝜌𝑆𝐴𝐹  80 𝑚 

Freeboard volume 𝑉𝐺  150 𝑚3 

Heat generation/transfer constants: 

Electrode voltage 𝑉𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒  120 𝑉 

Joule heating constant 𝛼 3 ∙ 10−4 
       

𝑉2 ∙ 𝑘𝑊−1 ∙ 𝐾−1 

Reference slag resistance 𝑅0 0.21 
       

𝑉2 ∙ 𝑘𝑊−1 

Reference slag temperature 𝑇𝑆,0 1900 𝐾 

Heat transfer coefficient 

between smelting and bulk 

concentrate  

ℎ𝐶(𝑆):𝐶(𝐵) 2.75 ∙ 10−2 
       

𝑘𝑊 ∙ 𝑚−2 ∙ 𝐾−1 

Heat transfer coefficient 

between freeboard and bulk 

concentrate 

ℎ𝐺:𝐶(𝐵) 5.5 ∙ 10−2 
       

𝑘𝑊 ∙ 𝑚−2 ∙ 𝐾−1 

Heat transfer coefficient 

between slag and smelting 

concentrate 

ℎ𝑆:𝐶(𝑆) 3.1 ∙ 10−1 
       

𝑘𝑊 ∙ 𝑚−2 ∙ 𝐾−1 

Heat transfer coefficient 

between liquid matte and slag 
ℎ𝑀:𝑆 8.5 ∙ 10−2 

       

𝑘𝑊 ∙ 𝑚−2 ∙ 𝐾−1 

Heat transfer coefficient 

between cooling units and 

liquid slag  

ℎ𝑊:𝑆  7 ∙ 10−3 
       

𝑘𝑊 ∙ 𝑚−2 ∙ 𝐾−1 
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Heat transfer coefficient 

between cooling units and 

liquid matte 

ℎ𝑊:𝑀 2.7 ∙ 10−2 
       

𝑘𝑊 ∙ 𝑚−2 ∙ 𝐾−1 

Cooling water constants: 

Cooling water flowrate 𝐹𝑊 2400 
       

𝑚𝑜𝑙 ∙ 𝑠−1 

Moles of cooling water 𝑁𝑊 104 
       

𝑚𝑜𝑙 

Cooling water inlet 

temperature 
𝑇𝑊,0 300 

       

𝐾 

Charging and tapping constants: 

Flowrate of the charged 

concentrate 
𝐹𝑐ℎ𝑎𝑟𝑔𝑒,𝑐𝑜𝑛𝑠𝑡. 410 𝑚𝑜𝑙/𝑠 

Flowrate of the tapped slag 𝐹𝑡𝑎𝑝,𝑆,𝑐𝑜𝑛𝑠𝑡. 400 𝑚𝑜𝑙/𝑠 

Flowrate of the tapped matte 𝐹𝑡𝑎𝑝,𝑀,𝑐𝑜𝑛𝑠𝑡. 100 𝑚𝑜𝑙/𝑠 

Lower slag bed height limit 𝐿𝑆,𝑙𝑜𝑤𝑒𝑟  0.1 𝑚 

Upper slag bed height limit 𝐿𝑆,𝑢𝑝𝑝𝑒𝑟 0.2 𝑚 

Lower matte bed height limit 𝐿𝑆,𝑙𝑜𝑤𝑒𝑟  0.04 𝑚 

Upper matte bed height limit 𝐿𝑆,𝑢𝑝𝑝𝑒𝑟 0.08 𝑚 

Other constants: 

Universal gas constant 𝑅 8.314 𝐽 ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 

Gravitational acceleration 

constant 
𝑔 9.81 𝑚 ∙ 𝑠−2 

Concentrate bed void fraction 𝜀𝐶  0.4 − 

Atmospheric pressure 𝑃𝑎𝑡𝑚  8101325 𝑃𝑎 

Extraction pressure 𝑃𝑒𝑥𝑡  8101315 𝑃𝑎 

Concentrate charging 

temperature 
𝑇𝑐ℎ𝑎𝑟𝑔𝑒  700 𝐾 

Concentrate melting 

temperature 
𝑇𝑚𝑒𝑙𝑡  1500 𝐾 

Atmospheric temperature 𝑇𝑎𝑡𝑚  300 𝐾 
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Table C.4: Standard deviation of the measurement noise for each of the measurements  

Measurement Standard deviation Unit Justification 

𝑇𝐶(𝐵) 10  𝐾 

The temperature of the bulk concentrate is not 

usually measured. Based on the noise 

associated with the other temperature 

measurements, the noise is selected as 1% of 

the NOC.  

𝐿𝑆 0.05  𝑚 

The slag height is measured by on-plant 

personnel by hand using a sounding pole. 

Measurement noise is large due to human 

error.  

𝑇𝑆 19  𝐾 

The temperature of the slag is measured using a 

pyrometer. These pyrometers usually have an 

accuracy of 1% of the NOC of the slag.  

𝐿𝑀 0.05 𝑚 

The matte height is measured by on-plant 

personnel by hand using a sounding pole. 

Measurement noise is large due to human 

error. 

𝑇𝑀 18  𝐾 

The temperature of the matte is measured 

using a pyrometer with accuracy of 1% of the 

NOC.  

𝐶𝐺,𝑅 0.1 

𝑚𝑜𝑙

𝑚3  

 

Based on industrial values, it can be safely 

assumed that the noise on the concentration of 

reaction gases measurement is 5% of the NOC. 

𝑃𝐺  2 𝑃𝑎 

The pressure in the freeboard is measured using 

a pressure transmitter.  The relative accuracy of 

the pressure transmitter is usually between 

±2 𝑃𝑎.  

𝑇𝐺  2.2 𝐾 

Instrumentation information on the 

temperature readings of the freeboard in 

industrial application indicate that the 

uncertainty is 2.2 𝐾.  

𝑇𝑊 1 𝐾 
Instrumentation information on the 

temperature readings of the cooling water in 
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industrial application indicate that the 

uncertainty is ±1 𝐾. 
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APPENDIX D – MATLAB CODE 

D.1. Implementation of the state estimation algorithms   

The main script is presented for numerical implementation of the state estimation algorithms, the EKF, 

UKF, PF, and MHE, in MATLAB, to estimate the states of the SAF smelting process. 

%% Generate the synthetic measurement data and ground truth values 

tDuration = 1.5;  % Measurement simulation time, days 

seed = 1;         % seed the rng to ensure repeatability of measurements 

percentage = 0;   % percentage of stochastic variation in Fcharge 

faultindex = 0;   % for obtaining faulty measurements 

                  % = 1; Cooling water flowrate step change at t = 1 day 

                  % = 2; Pext step change at t = 1 day 

                  % = 3; Concentrate composition step change at t = 1 day 

                  % = 4; Blowback fault at t = 1 day 

[y, meas_info, x_ground_truth, t_ground_truth] = SAF_measurements(tDuration, ...  

                                                 faultindex, percentage, seed);  

% Measurement data stored in y matrix, the rows represent the ny measured variables and the      

% columns are the measurements in time simulated for tDuration 

% The measurement field, variance, and sampling rate is stored in meas_info 

% Ground truth values of the state variables stored in x_ground_truth with corresponding         

% timepoints in t_ground_truth 

ny = size(y,1);            % Number of measured variables  

N_meas = meas_info.TCB.T;  % s, Measurement period  

                           % This defines how often the state estimate is updated 

 

%% Define the state estimation tuning parameters 

% Initialization tuning parameters 

[N,T] = variableInitialization;          % State variable initial values  

x_0 = state2ode(N,T);                    % Convert structure to vector  

percentage_error = 1;                    % Percentage initialization error 

xhat_0 = x_0+x_0*(percentage_error/100); % Initial state estimates 

nx = length(xhat_0);                     % Number of states being estimated 
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P0 = eye(length(xhat_0)).*((x_0-xhat_0)*(x_0-xhat_0)'); % Initial estimation error covariance 

 

% Noise covariance matrices 

for i = 1:length(meas_info.fields) 

    current = meas_info.(meas_info.fields{i});  

    MeasNoise(i) = sqrt(current.var);          % Measurement noise standard deviation 

end 

R = eye(ny).* MeasNoise.^2;                    % Measurement noise covariance matrix 

 

% Select the SAF model  

% Model type = 0: original SAF model, uses ode15s in the integration step 

% Model type = 1: singular perturbation SAF model, uses RK4 in the integration step  

model_type = 0; 

 

% Larger process noise is selected for objective 2: implementing the state estimation algorithms 

if model_type == 0 

    ProcNoise_objective2 = [100,10,10,0.1,10,10,1,1,10,100,0.1,100,0.1,0.01,0.01,0.01,0.1];  

    % process noise standard deviation 

end 

if model_type == 1 

    % Larger process noise associated with states with fast dynamics (x14, x15, x16) in the 

    % singular perturbation model  

    ProcNoise_objective2 = [100,10,10,0.1,10,10,0.1,0.1,10,100,0.1,100,0.1,10,10,0.1,0.1];  

end 

ProcNoise = ProcNoise_objective2; 

 

% Smaller process noise selected for objective 3: performing model-based fault detection using   

% the state estimators  

if faultindex > 0 

    ProcNoise_objective3 = 0.01.*ProcNoise_objective2;  

    % Process noise for objective 3 is 1% of the process noise used in objective 2 

    ProcNoise = ProcNoise_objective3; 
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end 

Q = eye(nx).*ProcNoise.^2; % Process noise covariance matrix  

 

% Particle filter  

n = 80; % number of particles  

 

% Moving horizon estimator 

horizon_length = 4; % horizon length  

 

 

%% State estimation 

estimationlength = size(ny,2); % Specify number of state estimates being estimated  

                               % For this example, the number of state estimates is equal  

                               % to the number of measurements obtained 

% Extended Kalman filter  
 

[xhat_EKF, P_EKF, inn_EKF] = EKF(estimationlength,N_meas,xhat_0,P0,R,Q,y,model_type); 

% Unscented Kalman filter  

[xhat_UKF, P_UKF, inn_UKF] = UKF(estimationlength,N_meas,xhat_0,P0,R,Q,y,model_type); 

% Particle filter  

[xhat_PF, P_PF, inn_PF,vhat_matrix] = PF(estimationlength, N_meas, xhat_0, P0 , R, Q,  y, ...  

                                         n, model_type); 

% Moving Horizon Estimator   

[xhat_MHE, PArray, innArray] = MHE(estimationlength, xhat_0, P0, R, Q, y, ... 

                                   N_meas, horizon_length, model_type); 

 

The following functions are the EKF, UKF, PF, and MHE algorithms.  

Function inputs  

EKF, UKF, PF and MHE functions 

estimationlength 

Specify the length of the state estimation period by the number of state 

estimates obtained at the end of the simulation.   

N_meas 

Specify the measurement sampling rate. This dictates the timepoints at 

which state estimates are obtained at. For this study, the measurement 

sampling rate is 10𝑠, thus, a state estimate will be obtained every 10𝑠.  
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xhat_0 Initial state estimates. 

P0 Initial state estimation error covariance matrix.  

R Measurement noise covariance matrix. 

Q Process noise covariance matrix.  

y 

Matrix of measurement data. Number of rows is equal to number of 

measured variables. Number of columns is equal to number of timepoints 

at which measurement data was generated for.  

model_type 

Select the model type. Model type 0 is the original SAF model. Model type 

1 is the SAF model with singular perturbation.  

PF function  

n Specify the number of particles in the PF. 

MHE function  

horizonlength Specify the horizon length used in the MHE algorithm.  

Function outputs 

EKF, UKF, PF, and MHE 

xhatArray 

Matrix containing the state estimates. Number of rows is equal to number 

of state variables. Number of columns is the number of state estimates 

obtained, this is equal to the estimationlength.  

PArray 

Matrix containing the diagonal elements of the estimation error covariance 

matrix corresponding to the estimation error of the state estimates 

obtained at each timepoint. Number of rows is equal to the number of state 

variables. Number of columns is equivalent to the estimationlength.  

innArray 

Matrix containing the innovation/residual term at each timepoint. Number 

of rows is equivalent to the number of measured variables. Number of 

columns is equivalent to the estimationlength-1, as there is no innovation 

term at timepoint 0 as there is no measurement available at timepoint 0.   

PF 

vhat_matrix 

Three-dimensional matrix containing the innovations for each of the 

particles at each timestep. The number of elements in the first dimension is 

equal the number of measured variables. The number of elements in the 

second dimension is equal to the number of particles. The number of 

elements in the third dimension is equal to the estimationlength-1.  
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%% EKF algorithm 

function [xhatArray, PArray, innArray] = EKF(estimationlength,N_meas,xhat_0,P0,R,Q,y,model_type) 

    % Generate the storage matrices 

    xhatArray = [xhat_0]; % Array of state estimates 

    PArray = [diag(P0)];  % Array of state estimate error covariances (vector form) 

    innArray = [];        % Array of innovation terms 

     

    % Initialize the SAF model 

    [mode, options, p] = SAF_model_initialization(estimationlength); 

     

    % Derive the system Jacobians 

    x = sym('x',[17 1]) ; % Generate state variable symbols and store them in the vector 'x' 

    syms c m s;           % Generate the input symbols and store them in the structure input 

    input.c = c;          % Furnace charging input 

    input.m = m;          % Matte tapping input 

    input.s = s;          % Slag tapping input 

    input.chargetime = mode.chargetime; % Charging timepoints  

    input.stoptime = mode.stoptime;     % Halting of charge timepoints 

    % State transition Jacobian 

    f = furnaceModelODEs(x,p,input,0,model_type);  

    dfdx = jacobian(f,x); 

    % Measurement Jacobian 

    h = hfunc(x',p); 

    dhdx = jacobian(h,x); 

     

    % Initialize the state estimator 

    xhatpos = xhat_0;               % initial state estimate 

    P0_vec = reshape(P0, [], 1);    % initial state estimation error covariance in vector form 

    Ppos = P0_vec;                   

     

   % Calculate the state estimate at each timestep 

   timesteps = 0 : N_meas : estimationlength*N_meas; % Define the time points in seconds  
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                                                     % at which the state estimates are 

                                                     % calculated at based on the measurement 

                                                     % sampling rate ‘N_meas’ 

    for i = 1 : estimationlength  

        % PREDICTION STEP 

        % Calculate the a priori state estimate from the model prediction 

        tStart = timesteps(i); % Define the start of the integration period 

        tEnd = timesteps(i+1); % Define the end of the integration period 

        [xhatneg, mode] = SAF_prediction(tStart, tEnd, xhatpos, xhatpos, p, mode, options, ... 

                                         model_type);  % Prior state estimate 

     

        % Calculate the prior covariance matrix  

        A = linA(x, c, m, s, dfdx, xhatneg, mode); % Transition matrix linearized around  

                                                   % the prior state estimate 

        solP = ode45(@(t,P_vec) P_ODE(A, P_vec, Q), timesteps(i:i+1), Ppos); % Propagate the 

                                                                             % covariance 

        Pneg = solP.y(:,end);                               % Prior covariance (vector form) 

        Pnegmatrix = reshape(Pneg, sqrt(length(Pneg)), []); % Prior covariance (matrix form) 

     

        % UPDATE STEP 

        H = double(subs(dhdx,x,xhatneg));         % Linearized measurement matrix 

        K = Pnegmatrix*H'*inv(H*Pnegmatrix*H'+R); % Kalman gain  

        yhat = hfunc(xhatneg,p);                  % Measurement prediction 

        inn = y(:,i)-yhat;                        % Innovation term 

        xhatpos = xhatneg + K*(inn);              % Posterior state estimate 

        Pposmatrix = (eye(size(Pnegmatrix))-K*H)*Pnegmatrix*(eye(size(Pnegmatrix))-K*H)'+K*R*K'; 

                                           % Posterior estimation error covariance (matrix form) 

        Ppos = reshape(Pposmatrix, [], 1); % Posterior estimation error covariance (vector form) 

        chol(Pposmatrix); % Check positive definiteness of posterior estimation error 

 

        % Store the state estimate, estimation error covariance, and the innovation term 

        xhatArray = [xhatArray xhatpos]; 
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        PArray = [PArray diag(Pposmatrix)]; 

        innArray = [innArray inn];   

    end 

end 

 

% 'linA' computes the linearized state matrix, A, linearized around the prior state estimate     

% 'xhatneg'  

function A = linA(x, c, m, s, dfdx, xhatneg, mode) 

    A = subs(dfdx,x,xhatneg); 

    A = subs(A,[c, m s], [mode.c,mode.m,mode.s]); 

    A = double(A); 

end 

 

% 'P_ODE' computes the rate of change in the estimation error covariance matrix for the         

% prediction step of the EKF covariance propagation  

function dpdt = P_ODE(A, P_vec, Q) 

        P_mat = reshape(P_vec, sqrt(length(P_vec)), []); % reshape the P vector into a matrix 

        dpdtmat = A*P_mat + P_mat*A' + Q;                % rate of change of P wrt time 

        dpdt = reshape(dpdtmat, [], 1);                  % reshape the dpdt matrix into a vector 

end 
 
 

%% UKF algorithm 

function [xhatArray, PArray, innArray] = UKF(estimationlength,N_meas,xhat_0,P0,R,Q,y,model_type) 

    % Generate the storage matrices 

    xhatArray = [xhat_0]; % Array of state estimates 

    PArray = [diag(P0)]; % Array of state estimate error covariances (vector form) 

    innArray = [];       % Array of innovation terms 

     

    % Initialize the SAF model  

    [mode, options, p] = SAF_model_initialization(estimationlength); 

     

    % Initialize the state estimator 
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    xhatpos = xhat_0;    % Initial state estimate 

    Ppos = P0;           % Initial state estimation error covariance 

    nx = length(xhat_0); % Number of state variables 

    ny = size(y,1);      % Number of measurement variables 

     

    % Generate the sigma point weights 

    k = nx-3; 

    Ws = []; 

    Ws(1) = k/(nx+k); 

    for i = 2: 2*nx+1 

        Ws(i) = 1/(2*(nx+k)); 

    end 

     

   % Calculate the state estimate at each timestep 

   timesteps = 0 : N_meas : estimationlength*N_meas; % Define the time points in seconds  

                                                     % at which the state estimates are 

                                                     % calculated at based on the measurement 

                                                     % sampling rate (N_meas) 

     for j = 1 : estimationlength 

        % PREDICTION STEP 

        % Generate the sigma points for the prediction step 

        root_pred = chol((nx+k)*Ppos); 

        xsigma(:,1) = xhatpos; % The first sigma point is equal to the posterior state estimate 

                               % from the previous timestep ‘xhatpos’ 

        for i = 2 : nx + 1 

            xsigma(:,i) = xhatpos + root_pred(i-1,:)';  

            xsigma(:,i+nx) = xhatpos - root_pred(i-1,:)'; 

        end 

 

        % Transform the sigma points in the prediction step 

        xsimganeg = []; 

        for i = 1 : 2 * nx + 1 
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            tStart = timesteps(j); % Define the start of the integration period 

            tEnd = timesteps(j+1); % Define the end of the integration period 

            [xsigmaneg(:,i), mode] = SAF_prediction(tStart, tEnd, xsigma(:,i), xhatpos, p, ...  

                                     mode, options, model_type);  % SAF model prediction 

        end 

         

        % Calculate the prior state estimate from the weighted sum of the prior sigma points 

        xhatneg = zeros(nx,1); 

        for i = 1: 2*nx + 1 

            xhatneg = xhatneg + Ws(i) * xsigmaneg(:, i); % Prior state estimate 

        end 

     

        % Calculate prior estimation error covariance  

        Pneg = zeros(nx,nx); 

        for i = 1 : 2*nx+1 

            Pneg = Pneg + Ws(i) * (xsigmaneg(:,i) - xhatneg) * (xsigmaneg(:,i) - xhatneg)'; 

        end 

        Pneg = Pneg + Q; % Prior state estimation error covariance 

         

        % Calculate the innovation term   

        yhat = hfunc(xhatneg,p);   % Measurement prediction  

        inn = y(:,j)-yhat;         % Innovation   

        innArray = [innArray inn]; % Store the innovation  

 

        % UPDATE STEP 

        % Generate the sigma points for the update step  

        root_update = chol(nx*Pneg);   

        xsigma_update(:,1) = xhatneg; % The first sigma point is equal to the prior state estimate 

                                      % ‘xhatneg’ 

        for i = 2 : nx+1 

            xsigma_update(:,i) = xhatneg + root_update(i-1,:)'; 

            xsigma_update(:,i+nx) = xhatneg - root_update(i-1,:)'; 
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        end 

     

        % Transform the sigma points using the measurement function ‘hfunc’ 

        ysigma = []; 

        for i = 1 : 2*nx + 1 

            ysigma(:,i) = hfunc(xsigma_update(:,i),p); % Predicted measurements 

        end 

     

        % Calculate the approximate mean of the predicted measurements using the weighted 

        % sum of the transformed sigma points  

        yhat = zeros(ny,1); 

        for i = 1 : 2*nx + 1 

            yhat = yhat + Ws(i) * ysigma(:, i);  

        end 

     

        % Calculate the approximate covariance of the predicted measurements 

        Py = 0; 

        Pxy = zeros(nx,1); 

         for i = 1 : 2*nx+1 

            Py = Py + Ws(i) * (ysigma(:,i) - yhat) * (ysigma(:,i) - yhat)'; 

            Pxy = Pxy + Ws(i) * (xsigma_update(:,i) - xhatneg) * (ysigma(:,i) - yhat)'; 

         end 

        Py = Py + R; % Add the measurement noise covariance  

     

        % Kalman update  

        K = Pxy * inv(Py);                       % Kalman gain  

        xhatpos = xhatneg + K * (y(:,j) - yhat); % Posterior state estimate 

        Ppos = Pneg - K * Py * K';               % Posterior estimation error covariance 

        chol(Ppos);                              % Check the positive definiteness 

 

        % Store the final state estimate and estimation error covariance 

        xhatArray = [xhatArray xhatpos]; 
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        PArray = [PArray diag(Ppos)]; 

     end 

end 
 
 

 

%% PF algorithm 

function [xhatArray, PArray, innArray, vhat_matrix] =  ...  

                                        PF(estimationlength,N_meas,xhat_0,P0,R,Q,y,n,model_type) 

    % Generate the storage matrices 

    xhatArray = [xhat_0]; % Array of state estimates 

    PArray = [diag(P0)]; % Array of state estimate error covariances (vector form) 

    innArray = [];       % Array of innovations  

    vhat_matrix = [];    % 3D matrix of innovations of each particle at each timestep 

 

    % Initialize the SAF model  

    [mode, options, p] = SAF_model_initialization(estimationlength); 

     

    % Initialize PF by generating n particles on the basis of the initial pdf 

    xhatpos = []; 

    for i = 1 : n 

        xhatpos(:,i) = xhat_0 + sqrt(P0) * randn(length(xhat_0),1);  

    end 

     

    % Calculate the state estimate at each timestep 

    timesteps = 0 : N_meas : estimationlength*N_meas; % Define the time points in seconds  

                                                      % at which the state estimates are 

                                                      % calculated at based on the measurement 

                                                      % sampling rate (N_meas) 

     for j = 1 : estimationlength 

        % PREDICTION STEP 

        xhatneg = []; 

        vhat = []; 
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        % Transform each of the particles through the process model prediction  

        for i = 1 : n  

            tStart = timesteps(j); % Define the start of the integration period 

            tEnd = timesteps(j+1); % Define the end of the integration period 

            [xhatneg(:,i), mode] = SAF_prediction(tStart, tEnd, xhatpos(:,i), ... 

                           xhatArray(:,j), p, mode, options,model_type);  % Model prediction 

            xhatneg(:,i) = xhatneg(:,i)+ sqrt(Q)' * randn(length(xhat_0),1);  

            % Add random process noise to the model predictions of the particles  

            yhat(:,i) = hfunc(xhatneg(:,i),p);   % Obtain the predicted measurement 

            vhat(:,i) = abs(y(:,j) - yhat(:,i)); % Innovation of individual particles 

        end 

        vhat_matrix(:,:,j) = vhat;     % Store the particle innovations 

        xhatmean_neg = mean(xhatneg'); % Prior state estimate is the mean of the prior particles 

        % Calculate and store the innovation 

        inn = y(:,j)-hfunc(xhatmean_neg,p);  

        innArray = [innArray inn];  

 

        % UPDATE STEP 

        % Calculate the relative likelihood for each of the n particles 

        qsum = 0; 

        q_Arr = []; 

        for i = 1 : n 

            q = (( inv((det(R)^0.5) * (2*pi)^(length(yhat)/2)) ) * ... 

                ( exp((-vhat(:,i)'*inv(R)*vhat(:,i))*0.5) )); 

            q_Arr = [q_Arr q];  % Store the relative likelihood of each particle 

            qsum = qsum + q;    % Sum of the relative likelihoods of the particles 

        end 

     

        % Normalize the relative likelihood 

        qnorm = []; 

        for i = 1 : n 

            qnorm(:,i) = q_Arr(:,i)/qsum; 
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        end 

     

        % Low Variance Resampling 

        r = rand*(1/n);     % Generate a random number between 0->1/n 

        w = qnorm(:,1);     % Initialize with the first particles likelihood 

        z = 1;              % Tracks the particle number in the original sample (xhatneg) 

        q = 1;              % Tracks the elements in the new sample (xhatpos) 

     

        for m = 1:n 

            U = r + (m - 1)/n;      % Ensures we move through the particles systematically  

            % While loop adds the relative likelihoods until the cumulative relative likelihood 

            % is greater than U 

            while U > w    

                z = z + 1;          % z keeps track of the particle number 

                w = w + qnorm(:,z); % w is the cumulative likelihood 

            end 

            % Once w > U, the particle z from the previous sample (xhatneg) gets added to the 

            % new sample (xhatpos) 

            xhatpos(:,q) = xhatneg(:,z);   

            q = q + 1; % Move to the next element in the new sample 

        end 

 

        % Calculate the mean and covariance of the particles 

        xhatmean = mean(xhatpos'); % Mean of the particles represents the posterior state  

                                   % estimate 

        P = diag(var(xhatpos'));   % Covariance of the particles represents the posterior state  

                                   % estimation error covariance 

        chol(P);                   % Check the positive definiteness 

 

        % Store the final state estimate, estimation error covariance, and innovation term 

        xhatArray = [xhatArray xhatmean'];  

        PArray = [PArray diag(P)]; 
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     end 

 end 
 
 

%% MHE algorithm 

function [xhatArray, PArray, innArray] = ...   

                           MHE(estimationlength,xhat_0,P0,R,Q,y,N_meas,horizonlength,model_type) 

    % Generate the storage matrices 

    xhatArray = []; % Array of state estimates 

    PArray = [];    % Array of state estimation error covariances 

    innArray = [];  % Array of innovation terms 

    xk_matrix = []; % Matrix of state estimate trajectories at each timestep 

 

    % Initialize the SAF model  

    [mode, options, p] = SAF_model_initialization(estimationlength); 

     

    % Initialize the MHE 

    % 1. Initialize the EKF 

    % The EKF is used to approximate the estimation error covariance, Pplus, used in the  

    % arrival cost calculation in the MHE optimization 

    % Derive the system Jacobians 

    x = sym('x',[17 1]) ; % Generate state variable symbols and store them in the vector 'x' 

    syms c m s;           % Generate the input symbols and store them in the structure input 

    input.c = c;  

    input.m = m; 

    input.s = s; 

    input.chargetime = mode.chargetime; 

    input.stoptime = mode.stoptime; 

    % State transition Jacobian 

    f = furnaceModelODEs(x,p,input,0,0); 

    dfdx = jacobian(f,x); 

    % Measurement Jacobian 

    h = hfunc(x',p); 
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    dhdx = jacobian(h,x); 

 

    % 2. Create structure of parameters for the MHE objective function 

    p_MHE.n = length(xhat_0);     % number of states 

    p_MHE.m = horizonlength;      % horizon length 

    p_MHE.Q_inv = inv(Q);         % inverse of the process noise covariance 

    p_MHE.R_inv = inv(R);         % inverse of the measurement noise covariance 

    p_MHE.yk = y;                 % matrix of measurements 

    p_MHE.N_meas = N_meas;        % measurement sampling rate 

    p_MHE.p = p;                  % SAF model parameters 

    p_MHE.options = options;      % SAF model options 

    p_MHE.mode = mode;            % SAF modes 

    p_MHE.modeltype = model_type; % SAF model type 

    p_MHE.xprev = xhat_0;         % Initialize the model prediction with xhat0 

 

    % 3. Initialize the optimization routine 

    % Create vector of initial guesses of the state trajectory in the first 

    % horizon using the EKF state estimates,  

    % Pass the horizon length as the estimationlength to the EKF 

    % Always use original model (model_type = 0) for EKF as the computational requirements of the  

    % EKF are small  

    [xk_guess, P_guess] = EKF(p_MHE.m,N_meas,xhat_0,P0,R,Q,y,0); % EKF state estimates 

    xk_guess = xk_guess(:,2:end);            % Remove the state estimate at time zero 

    p_MHE.xinit = xk_guess(:,1);              % Matrix of initial state estimates in first horizon 

    xk_guess = reshape(xk_guess,[],1);       % Reshape to vector of initial guesses 

    % Initialize the EKF used to approximate the arrival cost with the state estimate and  

    % estimation error covariance EKF guesses 

    Ppos = eye(length(xk_guess)).*P_guess(:,2); % Set the initial EKF estimation error covariance 

    xk_initial = xk_guess(:,1);                 % Set the initial EKF state estimate  

 

 

    for i = 0:1:estimationlength-p_MHE.m 
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        % Create the timesteps used in the prediction step 

        p_MHE.timesteps = (i*N_meas):N_meas:(p_MHE.m*N_meas+i*N_meas); 

 

        % EKF ARRIVAL COST APPROXIMATION 

        % Use the EKF to calculate Ppos in the arrival cost approximation:  

        % Prediction step of the EKF: Calculate the prior estimation error covariance matrix  

        A = linA(x, c, m, s, dfdx, xk_initial, mode); % Transition matrix linearized around the 

                                                      % first state estimate in the previous  

                                                      % horizon  

        solP = ode45(@(t,P_vec) P_ODE(A, P_vec, Q), p_MHE.timesteps(1:2), reshape(Ppos,[],1));  

        % Propagate the estimation error from the first timestep in the previous horizon 

        % to the first timestep in the current horizon  

        Pneg = solP.y(:,end);                               % Prior covariance (vector form) 

        Pnegmatrix = reshape(Pneg, sqrt(length(Pneg)), []); % Prior covariance (matrix form) 

        % Update step of EKF: Update the estimation error covariance 

        H = double(subs(dhdx,x, xk_guess(1:p_MHE.n))); % Linearized measurement matrix 

        K = Pnegmatrix*H'*inv(H*Pnegmatrix*H'+R);      % Kalman gain  

        Ppos = (eye(size(Pnegmatrix))-K*H)*Pnegmatrix*(eye(size(Pnegmatrix))-K*H)'+K*R*K';   

        % ‘Ppos’ is the estimation error covariance associated with first state estimate in  

        % the current horizon 

        p_MHE.P_inv = inv(Ppos); % Use the inverse of Ppos in the optimization routine in the  

                                 % arrival cost approximation 

        PArray = [PArray diag(Ppos)]; % Store the estimation error covariance 

        chol(Ppos);                   % Check Ppos is positive semidefinite  

 

        % OPTIMIZATION 

        % Perform the optimization using fminunc 

        opts = optimset('MaxIter', 10000,'MaxFunEvals', 10000, 'Algorithm', 'sqp'); 

        [xk, fval] = fminunc(@(xk) optimfunc(xk, p_MHE), xk_guess, opts);  

 

        % STORE THE RESULTS  

        xk = reshape(xk,p_MHE.n,p_MHE.m);  % Reshape the vector to a matrix representing the 
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                                           % ‘n’ state estimates over the horizon length ‘m’ 

        xk_matrix(i+1,:,:) = xk;           % Store the matrix of state trajectories 

        xk_final =  xk(:,end);             % Use the last state estimate in the current horizon  

                                           % as the final state estimate (the output from the  

                                           % MHE function) 

        xhatArray = [xhatArray xk_final];  % Store the last state estimate  

        % Store the innovation term 

        yhat = hfunc(xk_final, p_MHE.p); % Prediction of last measurement in horizon 

        measurement = p_MHE.yk(:,p_MHE.timesteps(end)/p_MHE.N_meas); % Measurement at last  

                                                                     % timepoint in the  

                                                                     % current horizon  

        inn = measurement - yhat; % Innovation term 

        innArray = [innArray inn]; 

 

        % INITIATE THE FILTER FOR THE NEXT TIMESTEP  

        xk_initial = xk(:,1); % Store the first state estimate in current horizon  

                              % used to initialize the EKF arrival cost approximation 

         % Obtain the mode of first state estimate in the current horizon for the EKF  

        [~,mode] = SAF_prediction(p_MHE.timesteps(1),p_MHE.timesteps(2)+N_meas, ... 

                   xk_initial, xk_initial, p_MHE.p, p_MHE.mode, p_MHE.options, p_MHE.modeltype); 

        p_MHE.mode = mode; % Use this mode in linearization of A in next horizon 

 

        % Create the vector of guesses for the next state trajectory 

        % Obtain the last guess in the trajectory from the model prediction 

        % Always use original model (model type 0) for this guess 

        xk_guess_end = SAF_prediction(p_MHE.timesteps(end),p_MHE.timesteps(end)+N_meas, ... 

                                  xk_final, xk_final, p_MHE.p, p_MHE.mode, p_MHE.options, 0); 

        % Delete the first state estimate in the current horizon  

        xk(:,1) = [];  

        % Form the trajectory of guesses in the next horizon from the state estimate trajectory 

        % in the current horizon and the last guess ‘xk_guess_end’ from the model prediction 

        xk_guess = [xk xk_guess_end(:,end)];  
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        p_MHE.xinit = xk_guess(:,1);         

        xk_guess = reshape(xk_guess, [], 1); % Vector of initial guesses for optimization  

        p_MHE.xprev = xk_initial; % Initialize the model prediction in the next optimization  

    end 

end 

 

% Objective function of the MHE algorithm  

function J = optimfunc(xk_vec, p_MHE) 

    % Convert the vector of state estimates, xk, to a matrix 

    xk = reshape(xk_vec,p_MHE.n,p_MHE.m);   

 

    % Calculate the sum of the model prediction errors in the current horizon 

    sum1 = 0; 

    xpred_prev = p_MHE.xprev; % Initialize the first model prediction with the first state 

                              % estimate from the previous horizon  

    for i = 1:1:p_MHE.m 

        [fx_k, mode] = SAF_prediction(p_MHE.timesteps(i),p_MHE.timesteps(i+1), ... 

                   xpred_prev, xpred_prev, p_MHE.p, p_MHE.mode, p_MHE.options, p_MHE.modeltype); 

        p_MHE.mode = mode; 

        diff1 = xk(:,i)-fx_k(:,end); % Difference between the model prediction for the state and  

                                     % the state estimate 

        normdiff1 = diff1'*p_MHE.Q_inv*diff1; % Weight the difference with the process noise  

        sum1 = sum1 + normdiff1; % Sum of the model prediction errors in the horizon  

        xpred_prev = xk(:,i); % Initialize the next model prediction with the previous estimate  

    end 

 

    % Calculate the sum of measurement errors in the current horizon  

    sum2 = 0; 

    for i = 1:1:p_MHE.m 

        hx_k = hfunc(xk(:,i), p_MHE.p); % Predicted measurement 

        measurementyk = p_MHE.yk(:,p_MHE.timesteps(i+1)/p_MHE.N_meas); % True measurement 

        diff2 = p_MHE.yk(:,p_MHE.timesteps(i+1)/p_MHE.N_meas) - hx_k; % Difference between the    
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                                                                      % predicted and true  

                                                                      % measurements 

        normdiff2 = diff2'*p_MHE.R_inv*diff2; % Weight the difference with the measurement noise  

                                              % covariance  

        sum2 = sum2 + normdiff2; % Sum of measurement prediction errors in the horizon  

    end 

 

    % Arrival cost  

    diff3 = xk(:,1) - p_MHE.xinit; % Difference between the first optimized state estimate in 

                                   % the horizon and the guess for the initial state estimate 

    normdiff3 = diff3'*p_MHE.P_inv*diff3; % Weight the initialization error with the EKF 

                                          % estimation error covariance  

 

    % Sum of the normalized differences 

    J = sum1+sum2+normdiff3; 

end 
 
 

The supporting functions for the state estimation algorithms include ‘hfun’ below that transforms a 

vector of states variables, ‘x’, into a vector of measurement predictions, ‘ypred’, using the nonlinear 

measurement equations.  

function ypred = hfunc(x,p) 

    ypred(1) = x(4); % K, Temperature of the bulk concentrate measurement 

    ypred(2) = (p.M.XO*x(10))/(p.D.S*p.dim.A); % m, Slag zone height measurement 

    ypred(3) = x(11); % K, Temperature of the slag measurement 

    ypred(4) = (p.M.XS*x(12))/(p.D.M*p.dim.A); % m, Matte zone height measurement 

    ypred(5) = x(13); % K, Temperature of the matte measurement 

    ypred(6) = x(15)/p.dim.V; % mol/m^3, Concentration of reaction gases in the furnace  

                              % freeboard measurement 

    ypred(7) = (x(15)+x(14))*x(16)*(p.other.R/p.dim.V); % Pa, Pressure in the furnace freeboard   

                                                        % measurement 

    ypred(8) = x(16); % K, Temperature in the freeboard measurement 

    ypred(9) = x(17); % K, Temperature of the cooling water measurement 
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    ypred = ypred';  

end 

 

The function ‘SAF_model_initialization’ initializes the SAF model. The period over which state estimation 

takes place, ‘estimationlength’, is passed to the function. The function initializes the SAF process model 

with initial values for the modes of the furnace, stored in the structure ‘mode’, the event function is  

stored in ‘options’, and the model parameters are stored in the structure ‘p’. ‘mode’ contains the 

substructures ‘chargetime’ and ‘stoptime’ for controlling the timed charging of the furnace. The model 

initializes the sub-structure ‘c’ that controls charging with a ‘1’, indicating the furnace model is being 

charged upon initialization. The substructures ‘m’ and ‘s’ are initialized with a ‘0’, indicating there is no 

tapping of matte or slag phase upon model initialization.  

function [mode, options, p] = SAF_model_initialization(estimationlength) 

    % Set the initial charging/tapping modes 

    tcharge = 20500; % s, charging period  

    tstop = 4000;    % s, period of no charging  

    imax = estimationlength*24*3600/(tstop+tcharge); 

    imax = ceil(imax); 

    icharge = []; 

    istop = []; 

    for i = 1:imax 

        icharge(i) = i*tcharge + i*tstop; 

        istop(i) = i*tcharge + (i-1)*tstop; 

    end 

    mode.chargetime = icharge; % s, time points at which charging occurs 

    mode.stoptime = istop;     % s, time points at which charging stops 

    mode.c  = 1;              % Model initializes with concentrate being charged 

    mode.m  = 0;              % Model initializes with matte not being tapped 

    mode.s  = 0;              % Model initializes with slag not being tapped 

    p = parameters;           % Load model parameters and store in 'p' 

    options = odeset('Events',@(t,y) eventFcn(y,p),'AbsTol',1e-3,'RelTol',1e-4); 

end 
 
 

The function ‘SAF_prediction’ is used to carry out the prediction step in each of the state estimator 

algorithms. The prediction step involves propagating the current vector of states ‘x_current’ from 
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timestep ‘tStart’ to timestep ‘tEnd’. The model parameters, ‘p’, and event function, ‘options’, are passed 

to the model as well.  

 

For the EKF and MHE, the input state vector ‘x_mean’ is equal to the input state vector ‘x_current’. For 

the PF and the UKF, the input ‘x_current’ is the state vector representing a single particle or single sigma 

point. Each particle or sigma point at the current timestep ‘tStart’ is individually propagated through the 

function ‘SAF_prediction’. To ensure that all particles and sigma points at a single timestep undergo the 

same inputs (charging and tapping conditions), the mean of the particles or sigma points at the current 

timestep is passed to the function to calculate the appropriate mode.  

 

The last input to the function is ‘model_type’. When ‘model_type’ is 0, the original furnace model ODEs 

are used and the ODE is solved using the function ‘ode15s’. When ‘model_type’ is 1, the furnace singular 

perturbation model is used. The solver used to solve the ODEs of the singular perturbation model is RK4 

integration with a larger specified integration step size of 5𝑠. This is used in the MHE optimization 

prediction step to reduce the computational effort of the MHE algorithm.  

 

The function ‘SAF_prediction’ outputs a vector of states ‘x_pred’ representing the state solution at the 

timepoint ‘tEnd’ and a structure of modes ‘mode’ representing the furnace mode at ‘tEnd’.  

function [x_pred, mode] = SAF_prediction(tStart, tEnd, x_current, x_mean, p, mode, options, ... model_type) 

    tScope = [tStart tEnd]; 

    % Calculate the appropriate furnace mode at the beginning of the integration period  

    profilevar = ode2profile(x_mean',p); 

    if mode.m == 1 

        if profilevar.L.M < 0.3 

        mode.m = 0; 

        end 

    end 

    if mode.m == 0 

        if profilevar.L.M > 0.5 

        mode.m = 1; 

        end 

    end 

    if mode.s == 1 

        if profilevar.L.S < 0.7 

        mode.s = 0; 

        end 
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    end 

    if mode.s == 0 

        if profilevar.L.S > 1.1 

        mode.s = 1; 

        end 

    end 

 

    if model_type == 0 

    % Original SAF model ODEs are used with the solver ‘ode15s’ 

        while tStart < tEnd 

            solx = ode15s(@(t,x) furnaceModelODEs(x,p,mode,t,model_type),tScope, ...  

                                 x_current,options); 

            % The solver stops if t reaches tEnd or if an event function is triggered 

            tStart = solx.x(end);      % Update tStart with the last timepoint in the solution 

            tScope = [tStart tEnd];    % Update tScope 

            x_current = solx.y(:,end); % Update x_current with the last solver solution 

            if isempty(solx.ie) == 1 

            solx.ie = 0; 

            end 

            % Update the modes of the furnace  

            ieSize = size(solx.ie,2); 

            for ii = 1:ieSize 

             g = solx.ie(ii); 

                switch g 

                 case 1 

                   mode.s = 0; 

                 case 2 

                   mode.s = 1; 

                 case 3 

                   mode.m = 0; 

                 case 4 

                 mode.m = 1; 
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                end 

            end 

        end  

        % The solution ‘xpred’ at tEnd is given by the last solver solution in solx.y  

        x_pred = solx.y(:,end);   

    end 

 

    if model_type == 1 

    % Singular perturbation model ODEs are used with RK4 integration 

        dt = 5;                 % s, Specified step size  

        tspan = tStart:dt:tEnd; % Integration timepoints  

        xvec(:,1) = x_current;  % Initial model prediction  

        for i = 2:length(tspan) 

            % Calculate the appropriate furnace mode for the start of the integration period  

            profilevar = ode2profile(xvec(:,i-1)',p); 

            if mode.m == 1 

                if profilevar.L.M < 0.3 

                mode.m = 0; 

                end 

            end 

            if mode.m == 0 

                if profilevar.L.M > 0.5 

                mode.m = 1; 

                end 

            end 

            if mode.s == 1 

                if profilevar.L.S < 0.7 

                mode.s = 0; 

                end 

            end 

            if mode.s == 0 

                if profilevar.L.S > 1.1 
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                mode.s = 1; 

                end 

            end 

            t = tspan(i); 

            xk = xvec(:, i-1); % Set the initial state values for the RK4 step 

            % Using a RK4 step 

            k1 = furnaceModelODEs(xk,           p,mode,t,model_type); 

            k2 = furnaceModelODEs(xk + dt/2*k1, p,mode,t,model_type); 

            k3 = furnaceModelODEs(xk + dt/2*k2, p,mode,t,model_type); 

            k4 = furnaceModelODEs(xk + dt*k3,   p,mode,t,model_type); 

            xnew = (xk + dt/6*(k1 + 2*k2 + 2*k3 + k4))';     

            xvec(:, i) = xnew; % Store the vector xnew in the solution xvec 

        end 

        % The solution ‘xpred’ at tEnd is given by the last solver solution in xvec  

        x_pred = xvec(:,end);  

    end 

end 

 

The following functions represent the SAF process model ODEs used as the process model in the state 

estimation algorithms.  This is the furnace model ODEs and related MATLAB code written and presented 

by Theunissen (2021), with slight variations to the model structure to accommodate the furnace 

blowback simulated for this study.  

The ‘model_type’ is an input to the furnaceModelODEs function. This specifies whether the original 

model is used, model_type =  0, or the singular perturbation model is used, model_type = 1.  

% Compute the rate of change in state variables 

function dx = furnaceModelODEs(x,p,mode,t,model_type) 

    % The column vector, 'x', of state variables are stored in the structures ‘N’ and ‘T’ 

    [N,T] = ode2state(x); 

    [N,V,C,L,P] = state2derived(N,T,p); 

     

    % Heat generation and transfer expressions are contained in 'Q' structure 

    Q = heatGenerationTransfer(T,L,p); 

    % Mass transfer expressions are contained in the 'F' structure.  
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    F = concentrateCharging(mode,t);   % Computes the concentrate charging rate 

    F = matteSlagTapping(mode,F);      % Computes the matte/slag tapping rate 

    F = concentrateMixing(V,C,p,F); % Computes the rate of bulk and smelting concentrate mixing 

    F = concentrateMelting(Q,T,N,p,F); % Computes the concentrate melting rate 

    F = gasFlow(P,N,p,F);       % Computes the rate gas exchange rate 

    J = gasFlux(P,L,p);   % Computes the reaction gas flux rate through concentrate 

    r = reactionRates(T,C,p);  % Computes the rate at which reaction gases are formed 

    dN = molarChange(F,r,J,V,p,model_type); % Computes rate of change in molar state variables 

    dT = temperatureChange(T,Q,N,F,r,J,V,p,model_type); % Computes temperature rate of change 

    dx = state2ode(dN,dT); % Converts 'dN' and 'dT' to columnvector, 'dx' 

end 

 

% Compute the concentrate charging rate 

function F = concentrateCharging(mode,t) 

    % Simulate charging flowrate to the furnace 

    for i = 1:length(mode.stoptime) 

    if (t>mode.stoptime(i)) && (t<=mode.chargetime(i)) 

        mode.c = 0; % Specify times when charging must stop, otherwise charge the furnace 

    end 

    end 

    F.charge.total = 410*mode.c; % Total concentrate charging rate, mol/s. 

    F.charge.XO  = F.charge.total*0.90; % Slag component flowrate, mol/s 

    F.charge.XS  = F.charge.total*0.09; % Matte component flowrate, mol/s 

    F.charge.XS2 = F.charge.total*0.01; % Sulphurized matte component flowrate, mol/s 

end 

 

% Compute the matte and slag tapping rates 

function F = matteSlagTapping(mode,F) 

    F.matteTap = 100*mode.m; % Matte tapping rate, mol/s. 

    F.slagTap = 400*mode.s;  % Slag tapping rate, mol/s. 

end 
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% Compute the rate of transfer from the bulk to smelting concentrate 

function F = concentrateMixing(V,C,p,F) 

    kv = p.k.V*(V.CB/V.CS); % 'kv' increases if the volume ratio between the 

                            % bulk- and smelting concentrate increases. This 

                            % avoids numerical instability when the amount of 

                            % smelting concentrate reaches zero, with bulk 

                            % concentrate remaining. 

    F.mix.total = kv*V.CB*(C.CB.XO+C.CB.XS+C.CB.XS2); % Total transfer rate, mol/s 

    F.mix.XO    = kv*V.CB*C.CB.XO; % Transfer rate of slag, mol/s 

    F.mix.XS    = kv*V.CB*C.CB.XS; % Transfer rate of matte, mol/s 

    F.mix.XS2   = kv*V.CB*C.CB.XS2; % Transfer rate of sulphurized matte, mol/s 

end 

 

% Compute the rate at which slag and matte components melt from the smelting concentrate 

function F = concentrateMelting(Q,T,N,p,F) 

    F.melt.XO = Q.S2CS*((T.CS/p.other.Tmelt)^2)/(p.fus.C-p.cP.C*(p.other.Tmelt-T.CS))*... 

                    N.CS.XO/(N.CS.XO+N.CS.XS); % Slag melting rate, mol/s. 

    F.melt.XS = Q.S2CS*((T.CS/p.other.Tmelt)^2)/(p.fus.C-p.cP.C*(p.other.Tmelt-T.CS))*... 

                    N.CS.XS/(N.CS.XO+N.CS.XS); % Matte melting rate, mol/s. 

end 

 

% Compute the rate of heat generation in the slag zone 

function Q = heatGenerationTransfer(T,L,p) 

    Q.J = (p.Q.Velectrode^2)/(p.Q.R0*(1+p.Q.alpha*(T.S-p.Q.T0))); % Heat generation rate, kW 

    Q.CS2CB = p.Q.hCS2CB*p.dim.A*(T.CS-T.CB); % Heat transfer from smelting-bulk concentrate, kW 

    Q.G2CB  = p.Q.hG2CB*p.dim.A*(T.G-T.CB); % Heat transfer from freeboard-bulk concentrate, kW 

    Q.S2CS  = p.Q.hS2CS*p.dim.A*(T.S-T.CS); % Heat transfer from slag-smelting concentrate, kW 

    Q.M2S   = p.Q.hM2S*p.dim.A*(T.M-T.S); % Heat transfer from matte-slag, kW 

    Q.W2S   = p.Q.hW2S*p.dim.p*L.S*(T.W-T.S); % Heat transfer from cooling units-slag, kW 

    Q.W2M   = p.Q.hW2M*p.dim.p*L.M*(T.W-T.M); % Heat transfer from cooling units-matte, kW 

end 
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% Computes the desulphurization and electrode oxidation reaction rates in the bulk and smelting 

% concentrate zones 

function r = reactionRates(T,C,p) 

    r.F.CB = p.k.rF*exp(-p.EA.F/(p.other.R*T.CB))... 

                *C.CB.XS2; % Desulphurization in bulk concentrate, mol/s 

    r.F.CS = p.k.rF*exp(-p.EA.F/(p.other.R*T.CS))... 

                *C.CS.XS2; % Desulphurization in smelting concentrate, mol/s 

    r.C    = p.k.rC*exp(-p.EA.C/(p.other.R*T.S)); % Electrode oxidation, mol/s 

end 
 
 

During nominal operation of the furnace, the furnace freeboard pressure remains fairly constant. The 

furnace freeboard gauge pressure remains negative, thus, there is molar flow of atmospheric air into the 

furnace and extraction of air and reaction gases due to the pressure difference created between 𝑃𝑒𝑥𝑡  and 

𝑃𝐺 . When the reaction gases buildup in the concentrate and the pressure buildup becomes too high, 

there is a sudden channelling of reaction gases to the freeboard and the furnace freeboard gauge 

pressure becomes positive. As the furnace freeboard pressure becomes positive, air and reaction gases 

flow out of the furnace during a phenomenon known as blowback. Therefore, under nominal operation 

the flowrate of gases out of the freeboard due to blowback is assumed to be zero and the reaction gas 

flux from the concentrate to the furnace is assumed to always behave as a PBR.  

% Compute the molar exchange rate between the freeboard and the atmosphere 

function F = gasFlow(P,N,p,F) 

    F.negP   = p.k.PR*(p.other.Patm-P.G); % Air drawn into the furnace, mol/s 

    F.posP.R = 0; % Reaction gases blown out of the furnace during blowback, mol/s 

    F.posP.A = 0; % Air blown out of the furnace during blowback, mol/s 

    fExt = p.k.PE*(P.G-(p.other.Pext)); % Total rate of freeboard gas extraction, mol/s 

    F.ext.R  = fExt*N.G.R/(N.G.R+N.G.A); % Reaction gas extraction, mol/s 

    F.ext.A  = fExt*N.G.A/(N.G.R+N.G.A); % Air extraction, mol/s 

End 

% Compute the reaction gas flux from the concentrate bed to the furnace freeboard 

function J = gasFlux(P,L,p) 

    J = (P.CR-P.G)*p.k.PBR/L.C; % Unruptured bed behaves as a PBR, mol/m^2.s 

end 

 

For model_type =  0, the original ODEs for the states with the fast dynamics are used. For the singular 

perturbation, model_type = 1, the states with fast dynamics, namely the number of moles of air in the 
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freeboard ‘N.G.A’, the number of moles of reaction gas in the freeboard ‘N.G.R’, and the temperature in 

the freeboard ‘T.G’, are assumed to have zero dynamics. This is to enable to use of a large integration 

step size in the RK4 integration step.  

% Compute rate of change in state variable molar amounts 

function dN = molarChange(F,r,J,V,p,model_type) 

    dN.CB.XO  = F.charge.XO-F.mix.XO; % Bulk concentrate slag, mol/s 

    dN.CB.XS  = F.charge.XS-F.mix.XS+r.F.CB*V.CB; % Bulk concentrate matte, mol/s 

    dN.CB.XS2 = F.charge.XS2-F.mix.XS2-r.F.CB*V.CB; % Bulk concentrate sulphurized matte, mol/s 

    dN.CS.XO  = F.mix.XO-F.melt.XO; % Smelting concentrate slag, mol/s 

    dN.CS.XS  = F.mix.XS-F.melt.XS+r.F.CS*V.CS; % Smelting concentrate matte, mol/s 

    dN.CS.XS2 = F.mix.XS2-r.F.CS*V.CS; % Smelting concentrate sulphurized matte, mol/s 

    dN.CR = r.F.CB*V.CB+r.F.CS*V.CS+r.C-J*p.dim.A; % Reaction gases in concentrate bed, mol/s 

    dN.S  = F.melt.XO-F.slagTap; % Change in slag zone, mol/s 

    dN.M  = F.melt.XS-F.matteTap; % Change in matte zone, mol/s 

 

    if model_type == 0; 

        % Original SAF model  

        dN.G.A = F.negP - F.posP.A - F.ext.A; % Change in air in freeboard, mol/s 

        dN.G.R = J*p.dim.A - F.posP.R - F.ext.R; % Change in reaction gases in freeboard, mol/s 

    end 

    if model_type == 1; 

        % Singular perturbation model assumes states with fast dynamics have zero dynamics  

        dN.G.A = 0; % Change in air in freeboard, mol/s 

        dN.G.R = 0; % Change in reaction gases in freeboard, mol/s 

    end 

end 

 

% Compute rate of change in state temperature variables 

function dT = temperatureChange(T,Q,N,F,r,J,V,p,model_type) 

    % Bulk concentrate temperature change, K/s: 

    dT.CB = (Q.CS2CB+Q.G2CB+p.cP.C*(p.other.Tcharge-T.CB)*F.charge.total)/... 

            (N.CB.total*p.cP.C); 
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    % Smelting concentrate temperature change, K/s: 

    dT.CS = (Q.S2CS*(1-(T.CS/p.other.Tmelt)^2)-Q.CS2CB+(T.CB-T.CS)*... 

            (F.mix.total*p.cP.C+r.F.CB*V.CB*p.cP.G))/(N.CS.total*p.cP.C); 

    % Slag temperature change, K/s: 

    dT.S  = (Q.J+Q.M2S+Q.W2S-Q.S2CS+(p.other.Tmelt-T.S)*... 

            (F.melt.XO*p.cP.S+F.melt.XS*p.cP.M))/(N.S*p.cP.S);   

    % Matte temperature change, K/s: 

    dT.M  = (Q.W2M-Q.M2S+(T.S-T.M)*F.melt.XS*p.cP.M)/(N.M*p.cP.M); 

    % Cooling units temperature change, K/s: 

    dT.W  = (p.cP.W*(p.water.T0-T.W)*p.water.F-Q.W2M-Q.W2S)/(p.water.N*p.cP.W); 

 

    if model_type == 0; 

        % Original SAF model  

        % Freeboard temperature change, K/s: 

        dT.G  = (p.cP.G*((T.CS-T.G)*J*p.dim.A+(p.other.Tatm-T.G)*F.negP)-Q.G2CB)/... 

                        (N.G.total*p.cP.G); 

    end 

    if model_type == 1; 

        % Singular perturbation model assumes states with fast dynamics have zero dynamics  

        % Freeboard temperature change, K/s: 

        dT.G  = 0; 

    end 

end 

 

The event function used to initiate the SAF model solver differs from the event function used in the plant 

simulation as there is no blowback event. Therefore, the only events that stop the solver are slag and 

matte tapping.  

% 'eventFcn' is used to halt the ode solver when matte/slag tapping should be started or stopped  

function [threshold,isterminal,direction] = eventFcn(y,p) 

    [N,T] = ode2state(y); 

    [~,~,~,L,~] = state2derived(N,T,p); 

    % The ode solver also stops when the slag height exceeds its thresholds: 
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    threshold(1,1) = L.S - 0.7; % Height of slag goes below 0.1 m 

    threshold(2,1) = L.S - 1.1; % Height of slag goes above 0.2 m 

    % The ode solver also stops when the matte height exceeds its thresholds: 

    threshold(3,1) = L.M - 0.3; % Height of matte goes below 0.04 m 

    threshold(4,1) = L.M - 0.5; % Height of matte goes above 0.08 m 

     

    % If isterminal(i) = 1 when threshold(i) crosses 0, then the ode solver 

    % stops. This happens for each threshold. 

    isterminal(1,1) = 1; 

    isterminal(2,1) = 1; 

    isterminal(3,1) = 1; 

    isterminal(4,1) = 1; 

     

    % direction(i) determines if threshold(i) should be crossed by decreasing 

    % or increasing values for the ode solver to be stopped: 

    direction(1,1) = -1; % Slag level goes below lower threshold 

    direction(2,1) = 1;  % Slag level goes above upper threshold 

    direction(3,1) = -1; % Matte level goes below lower threshold 

    direction(4,1) = 1;  % Matte level goes above upper threshold 

end 
 
 

 

D.2. Simulation of synthetic measurement data and ground truth state values  

The following function and supporting sub-functions are used to generate the measurement data for the 

measured variables and the ground truth values of the state variables. The following code represents the 

ODEs and related MATLAB code written and presented by Theunissen (2021), with slight variations to the 

model structure to accommodate the furnace blowback simulated for this study. 

Function inputs  

tDuration Duration in days which synthetic measurement data is generated for. 

faultindex 

Specify which system condition the measurements are generated under.  

0:  Nominal conditions 

1: Initiate fault 1, step change in the flowrate of cooling water, at time = 1 day 
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2: Initiate fault 2, step change in the extraction pressure, at time = 1 day 

3: Initiate fault 3, step change in the charge composition, at time = 1 day 

4: Initiate fault 4, furnace blowback, at time = 1 day 

stochastic_percentage 

Specify percentage of stochastic variation for simulation of plant-model 

mismatch via stochastic variation in the input 𝐹𝑐ℎ𝑎𝑟𝑔𝑒 

seed 

Seed the random number generated to allow for reproducibility of 

measurement data 

Function outputs 

meas_data 

Matrix containing synthetically generated measurements. Number of 

columns in measurement data is equivalent to number of measured variables. 

Number of rows is equivalent to number of measurements generated over 

the period tDuration.  

meas_info 

Structure containing information about the measurements. 

measurement_info.data: contains the underlying state variable data used to 

generate each measurement. 

measurement_info.var: contains the variance of the measurement noise. 

measurement_info.T: contains the sampling rates of each measurement. 

x_true Ground truth values of the state variables. 

t_true Time points at which ground truth values, x_true, were obtained at.  

 

function [meas_data, meas_info, x_true, t_true] = SAF_measurements( tDuration, ... 

                                                  faultindex, stochastic_percentage, seed) 

%% 1. Model setup 

tStart = 0;               % Start time of simulation (s) 

tEnd = tDuration*24*3600; % End time of simulation (s) 

tScope = [tStart, tEnd];  % Simulation time scope (s) 

rng(seed);                % Seed the rng  

p = parameters;           % Load model parameters and store in 'p' 

options = odeset('Events',@(t,y) eventFcn_plant(y,p),'AbsTol',1e-3,'RelTol',1e-4); % Set solver 

                                                                                   % options 

 

%% 2. Variable initialization and memory pre-allocation 
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[N,T] = variableInitialization; % State variable initial values are stored in N and T 

x0 = state2ode(N,T);            % Vector of initial states 

m = size(x0,1);                 % dimension of pre-allocated memory 

n = 1e7;                        % dimension of pre-allocated memory  

% Create the structure 'mode' for controlling the inputs 

% Substructure m controls matte tapping 

mode.m  = 0; % Model initializes with no matte tapping 

% Substructure s controls slag tapping 

mode.s  = 0; % Model initializes with no slag tapping  

% Substructure bb controls if furnace bed is ruptured, initiating furnace blowback 

mode.bb = 0; % Model initializes with no furnace blowback 

% Substructure c, chargetime, and stoptime control the concentrate charging 

mode.c  = 1; % Model initializes with concentrate charging 

tcharge = 20500; % s, Specify the time length of charging  

tstop = 4000;    % s, Specify the time length of no charging  

imax = ceil(tEnd/(tstop+tcharge)); % Maximum time index for duration of simulation 

for i = 1:imax 

    icharge(i) = i*tcharge + i*tstop;   % Specify timepoints of charging 

    istop(i) = i*tcharge + (i-1)*tstop; % Specify timepoints of stopping charge 

end 

mode.chargetime = icharge;  

mode.stoptime = istop; 

 

odeVariables = zeros(n,m); % stores ODE solution 

tSimulated = zeros(n,1);   % stores times which ODEs are solved at 

j = 1;                     % index for pre-allocated memory 

odeVariables(j,:) = x0;    % store initial values as first entry in odeVariables 

 

%% 3. Fault initialization 

% Step change in the cooling water flowrate 

fault.coolWat.time = 10;  % Time at which step change occurs 

fault.coolWat.mag = -500; % Magnitude of cooling water flowrate change (mols/s) 
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if faultindex == 1 

    % Simulate the fault after 1 day of operation 

    fault.coolWat.time = 1;    

end 

% Step change in the extraction pressure  

fault.extPres.time = 10; % Time at which step change occurs 

fault.extPres.mag = 1;   % Magnitude of extraction pressure change (Pa) 

if faultindex == 2 

    % Simulate the fault after 1 day of operation 

    fault.extPres.time = 1;    

end 

% Step change in the composition of the charging concentrate 

fault.concCharge.time = 10;  % Time at which step change occurs 

fault.concCharge.mag = -0.12; % Fraction by which slag component composition  

                              % changes in charged concentrate 

if faultindex == 3 

    % Simulate the fault after 1 day of operation 

    fault.concCharge.time = 1;   

end 

% Simulate furnace blowback via step change in blowback parameters 

fault.blowbackparameter.time = 10;  % Time at which parameter deviation occurs 

fault.blowbackparameter.mag1 = 0.7; % Fraction parameter 1 deviation 

fault.blowbackparameter.mag2 = 0.8; % Fraction parameter 2 deviation 

if faultindex == 4 

    % Simulate the fault after 1 day of operation 

    fault.blowbackparameter.time = 1;   

end 

 

%% 4. Simulate stochastic variation in the input Fcharge 

mean_charge = 410; % Specify mean value for input Fcharge 

% Define the p, B1, and standard deviation values in the AR1 model 

p_charge = 0.8;  
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B1_charge = mean_charge*(1-p_charge);  

var_charge = ((stochastic_percentage/100)*mean_charge)^2; 

stddev_charge = sqrt(var_charge*(1-p_charge^2)); 

t_Fcharge = linspace(0,tDuration*24*3600); 

s_Fcharge(1) = mean_charge; 

for i = 2:length(t_Fcharge) 

    s_Fcharge(i) = B1_charge + p_charge*s_Fcharge(i-1) + stddev_charge*randn; 

end 

% Define the stochastically varying Fcharge as a function of time  

Fcharge = griddedInterpolant(t_Fcharge, s_Fcharge);  

 

%% 5. ODE solution 

% The ODE is solved for from tStart to tEnd, storing the ODE solution in 'odeVariables' and the  

% time points of the solution in 'tSimulated'. 

while tStart<tEnd 

% 'ode15s' solves the SAF model within the span specified by 'tScope' using 

% the initial values in 'xi'. The 'furnaceModelODEs' subfunction is used in 

% the 'ode15s' solver. The output generated by 'ode15s' is in 'yout'.  

% 'ie'is the number of the specific event triggered, as given in the 'eventFcn' 

% subfunction. 

[tout,yout,~,~,ie]= ode15s(@(t,x) furnaceModelODEs_plant (x, p, mode, t, fault,  Fcharge), ...   

                                  tScope, x0, options); 

% 'ode15s' stops if 'eventFcn' is triggered or 'tEnd' is reached. 

% If 'tEnd' is reached, ie will be empty. '0' is assigned to ie to allow 'switch' to work. 

if isempty(ie) == 1 

    ie = 0; 

end 

 

% Update 'tStart', 'x0' and 'tScope' 

tStart = tout(end); 

tScope = linspace(tStart, tEnd, (tEnd-tStart)/10); 

x0 = yout(end,:)'; 
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% The values in 'yout' and 'tout' are assigned to 'odeVariables' and 'tSimulated' 

nSample = size(yout,1)-2; 

odeVariables(j+1:j+nSample,:) = yout(2:end-1,:); 

tSimulated(j+1:j+nSample,:) = tout(2:end-1,:); 

% Update index variable j 

j = j+nSample; 

 

% If two events specified in the event funtions are triggered 

% simultaneously, then ie is a rowvector with entries specifying which 

% events were triggered. A for loop cycles through these entries.    

ieSize = size(ie,2); 

for i = 1:ieSize 

    g = ie(i); 

    switch g 

     case 1 

        mode.s = 0; 

     case 2 

        mode.s = 1; 

     case 3 

        mode.m = 0; 

     case 4 

        mode.m = 1; 

     case 5 

        mode.bb = 1; 

     case 6 

        mode.bb = 0; 

    end 

end 

end 

 

%% 6. Data cleanup 
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% Remove unused pre-allocated memory 

idxDelete = [(j+1):n]'; 

odeVariables(idxDelete,:) = []; 

tSimulated(idxDelete) = []; 

dataProfile = ode2profile(odeVariables); 

simulationData.time = tSimulated/(24*3600); 

simulationData.data = dataProfile; 

% Store ground truth state values and the timepoints they are obtained at  

x_true = odeVariables; 

t_true = tSimulated; 

 

%% 7. Generate measurements 

% Create measurement structures: 

%  fields: names of measurements 

%  var:    assume gaussian noise with variance "var" 

%  T:      sampling rate of measurement (s) 

meas_info.fields = {'TCB','LS','TS', 'LM', 'TM', 'CGR', 'PG', 'TG', 'TW' }; 

meas_info.TCB = struct('data', simulationData.data.T.CB, 'var', (x0(4)*(1/100))^2, 'T', 10); % K 

meas_info.LS = struct('data', simulationData.data.L.S, 'var', (0.05)^2, 'T', 10); % m 

meas_info.TS = struct('data', simulationData.data.T.S, 'var', (x0(11)*(1/100))^2, 'T', 10); % K 

meas_info.LM = struct('data', simulationData.data.L.M, 'var', (0.05)^2, 'T', 10); %  m 

meas_info.TM = struct('data', simulationData.data.T.M, 'var', (x0(13)*(1/100))^2, 'T', 10); %  K 

meas_info.CGR = struct('data', simulationData.data.C.G.R, 'var', 0.1^2, 'T', 10); % mol/m^3 

meas_info.PG = struct('data', simulationData.data.P.G, 'var', 2^2, 'T', 10);    %  Pa 

meas_info.TG = struct('data', simulationData.data.T.G, 'var', 2.2^2, 'T', 10);    %  K 

meas_info.TW = struct('data', simulationData.data.T.W, 'var', 1^2, 'T', 10);    %  K 

% Record the measurements 

y = Measurements_SAF(tSimulated, meas_info); 

% Save measurement data 

meas_data = y; 
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The function ‘Measurements_SAF’ is used to generate the measurements from the solver solution. A 

matrix of measurements ‘y’ containing the timeseries data of the measured variables is the output of this 

function.  

% This function uses the measurement structure to generate a set of measured values 

function y = Measurements_SAF(t, meas) 

    % For each measurement field 

    for i = 1:length(meas.fields) 

        current = meas.(meas.fields{i}); % Current measurement 

        values = current.data + sqrt(current.var)*randn(size(t)); % Add random noise with  

                                                                  % with variance ‘var’ 

        times = [0 + current.T : current.T : t(end)]'; % Specify the measurement time points 

        times(times<min(t)) = []; % This ensures that 'tInterp' only contains entries at which 

                                  % 'tSimulated' can be interpolated. 

        interp_values = interp1(t, values, times, 'nearest'); % Interpolate  

        y(:,i) = interp_values; 

    end 

end 

 

The functions used to generate the SAF process ODEs are presented below. These represent the true 

underlying ODEs that drive the SAF plant process. The ‘plant’ ODEs differ from the process model ODEs 

used in the state estimation algorithms.  

%% Furnace ODE subfunctions 

% Compute the rate of change in state variables 

function dx = furnaceModelODEs_plant(x,p,mode,t,fault,Fcharge) 

    % The column vector, 'x', of state variables are stored in the structures ‘N’ and ‘T’ 

    [N,T] = ode2state(x); 

    [N,V,C,L,P] = state2derived(N,T,p); 

    % Heat generation and transfer expressions are contained in 'Q' structure 

    Q = heatGenerationTransfer_plant(T,L,p,t,fault); 
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    % Mass transfer expressions are contained in the 'F' structure.  

    F = concentrateCharging_plant(mode,t,fault,Fcharge);% Computes the concentrate charging rate 

    F = matteSlagTapping_plant(mode,F); % Computes the matte/slag tapping rate 

    F = concentrateMixing_plant(V,C,p,F); % Computes bulk and smelting concentrate mixing rate 

    F = concentrateMelting_plant(Q,T,N,p,F); % Computes the concentrate melting rate 

    F = gasFlow_plant(P,N,p,F,fault,t);       % Computes the rate gas exchange rate 

    J = gasFlux_plant(P,L,p,mode,t,fault); % Computes reaction gas flux rate through concentrate 

    r = reactionRates_plant(T,C,p);  % Computes the rate at which reaction gases are formed 

    dN = molarChange_plant(F,r,J,V,p); % Computes the rate of change in molar state variables 

    dT = temperatureChange_plant(T,Q,N,F,r,J,V,p,fault,t); % Computes temperature rate of change  

    dx = state2ode(dN,dT); % Converts 'dN' and 'dT' to columnvector, 'dx' 

end 

 

The plant is subject to potential stochastic variation in the concentrate charging flowrate. This differs 

from the process model used in the state estimation algorithm, which assumes ‘Fcharge.total’ is constant. 

Furthermore, the plant is subject to faulty conditions. Simulation of fault 3, a sudden change in the 

charging composition, is simulated below.  

% Compute the concentrate charging rate 

function F = concentrateCharging_plant(mode,t,fault,Fcharge) 

    % Simulate the potentially stochastically varying charging flowrate to the furnace 

    for i = 1:length(mode.stoptime) 

        if (t>mode.stoptime(i)) && (t<=mode.chargetime(i)) 

            mode.c = 0; % Specify times when charging must stop, otherwise charge the furnace 

        end 

    end 

    F.charge.total = Fcharge(t)*mode.c; % Total concentrate charging rate, mol/s. 

    f1 = 0.9; % Slag composition in charging concentrate 

    f2 = 0.09; % Matte composition in charging concentrate 

     

    % Simulate fault 3: sudden change in the charging composition 

    if t > fault.concCharge.time*24*3600 

        f1 = 0.9 + fault.concCharge.mag; % Slag composition in charging concentrate 
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        f2 = 0.09 - fault.concCharge.mag; % Matte composition in charging concentrate 

    end 

    F.charge.XO  = F.charge.total*f1; % Slag component flowrate, mol/s 

    F.charge.XS  = F.charge.total*f2; % Matte component flowrate, mol/s 

    F.charge.XS2 = F.charge.total*0.01; % Sulphurized matte component flowrate, mol/s 

end 

 

% Compute the matte and slag tapping rates 

function F = matteSlagTapping_plant(mode,F) 

    F.matteTap = 100*mode.m; % Matte tapping rate, mol/s. 

    F.slagTap = 400*mode.s;  % Slag tapping rate, mol/s. 

end 

 

% Compute the rate of transfer from the bulk to smelting concentrate 

function F = concentrateMixing_plant(V,C,p,F) 

    kv = p.k.V*(V.CB/V.CS); % 'kv' increases if the volume ratio between the 

                            % bulk- and smelting concentrate increases. This 

                            % avoids numerical instability when the amount of 

                            % smelting concentrate reaches zero, with bulk 

                            % concentrate remaining. 

    F.mix.total = kv*V.CB*(C.CB.XO+C.CB.XS+C.CB.XS2); % Total transfer rate, mol/s 

    F.mix.XO    = kv*V.CB*C.CB.XO; % Transfer rate of slag, mol/s 

    F.mix.XS    = kv*V.CB*C.CB.XS; % Transfer rate of matte, mol/s 

    F.mix.XS2   = kv*V.CB*C.CB.XS2; % Transfer rate of sulphurized matte, mol/s 

end 

 

% Compute the rate at which slag and matte components melt from the smelting concentrate 

function F = concentrateMelting_plant(Q,T,N,p,F) 

    F.melt.XO = Q.S2CS*((T.CS/p.other.Tmelt)^2)/(p.fus.C-p.cP.C*(p.other.Tmelt-T.CS))*... 

                    N.CS.XO/(N.CS.XO+N.CS.XS); % Slag melting rate, mol/s. 

    F.melt.XS = Q.S2CS*((T.CS/p.other.Tmelt)^2)/(p.fus.C-p.cP.C*(p.other.Tmelt-T.CS))*... 

                    N.CS.XS/(N.CS.XO+N.CS.XS); % Matte melting rate, mol/s. 
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end 

 

% Computes the desulphurization and electrode oxidation reaction rates in the bulk and smelting 

% concentrate zones 

function r = reactionRates_plant(T,C,p) 

    r.F.CB = p.k.rF*exp(-p.EA.F/(p.other.R*T.CB))... 

                *C.CB.XS2; % Desulphurization in bulk concentrate, mol/s 

    r.F.CS = p.k.rF*exp(-p.EA.F/(p.other.R*T.CS))... 

                *C.CS.XS2; % Desulphurization in smelting concentrate, mol/s 

    r.C    = p.k.rC*exp(-p.EA.C/(p.other.R*T.S)); % Electrode oxidation, mol/s 

end 

 

The plant is also subject to another faulty condition, furnace blowback due to a buildup of reaction gases 

within the concentrate. To simulate furnace blowback, the heat transfer coefficient between the slag and 

smelting concentrate is suddenly decreased to simulate a decrease in the melting rate and therefore 

buildup of concentrate. This is simulated below.  

% Compute the rate of heat generation in the slag zone 

function Q = heatGenerationTransfer_plant(T,L,p,t,fault) 

    Q.J = (p.Q.Velectrode^2)/(p.Q.R0*(1+p.Q.alpha*(T.S-p.Q.T0))); % Heat generation rate, kW 

    Q.CS2CB = p.Q.hCS2CB*p.dim.A*(T.CS-T.CB); % Heat transfer from smelting-bulk concentrate, kW 

    Q.G2CB  = p.Q.hG2CB*p.dim.A*(T.G-T.CB); % Heat transfer from freeboard-bulk concentrate, kW 

    Q.S2CS  = p.Q.hS2CS*p.dim.A*(T.S-T.CS); % Heat transfer from slag-smelting concentrate, kW 

    Q.M2S   = p.Q.hM2S*p.dim.A*(T.M-T.S); % Heat transfer from matte-slag, kW 

    Q.W2S   = p.Q.hW2S*p.dim.p*L.S*(T.W-T.S); % Heat transfer from cooling units-slag, kW 

    Q.W2M   = p.Q.hW2M*p.dim.p*L.M*(T.W-T.M); % Heat transfer from cooling units-matte, kW 

    % Simulate fault 4: furnace blowback  

    if t > fault.blowbackparameter.time*24*3600 

        Q.S2CS  = p.Q.hS2CS*(fault.blowbackparameter.mag2)*p.dim.A*(T.S-T.CS);  

    end 

end 

 

In the simulation of the SAF plant, when the freeboard gauge pressure becomes positive, reaction gases 

and air are blown out of the furnace during furnace blowback. In the process model used in the state 
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estimators, these are always assumed to be zero. In addition, fault 2, a sudden change in the extraction 

pressure, is simulated in the plant as seen below.  

% Compute the molar exchange rate between the freeboard and the atmosphere 

function F = gasFlow_plant(P,N,p,F,fault,t) 

    F.negP   = p.k.PR*(p.other.Patm-P.G); % Air drawn into the furnace, mol/s 

    % Reaction gases blown out of the furnace , mol/s 

    F.posP.R = p.k.PR*(P.G-p.other.Patm)*(P.G>=p.other.Patm)*N.G.R/(N.G.R+N.G.A); 

    % Air blown out of the furnace, mol/s 

    F.posP.A = p.k.PR*(P.G-p.other.Patm)*(P.G>=p.other.Patm)*N.G.A/(N.G.R+N.G.A);  

    fExt = p.k.PE*(P.G-(p.other.Pext)); % Total rate of freeboard gas extraction, mol/s 

    % Simulate fault 2: sudden change in Pext 

    if t > fault.extPres.time*24*3600 

        fExt = p.k.PE*(P.G-(p.other.Pext+fault.extPres.mag));  

    end 

    F.ext.R  = fExt*N.G.R/(N.G.R+N.G.A); % Reaction gas extraction, mol/s 

    F.ext.A  = fExt*N.G.A/(N.G.R+N.G.A); % Air extraction, mol/s 

end 

 

In the plant model, reaction gas buildup within the concentrate causes pressure in the concentrate to 

exceed the critical pressure and the reaction gas flux occurs in a channeling motion due to the ruptured 

concentrate bed. This phenomenon is simulated within the plant model. In the process model used in the 

state estimation algorithms, the flux is always assumed to behave as a PBR. Furthermore, to simulate 

furnace blowback the flux coefficient, ‘J_pbr’, is suddenly decreased to reduce the movement of gases 

out of the concentrate to simulate a buildup of gases within the concentrate layer.  

% Compute the reaction gas flux from the concentrate bed to the furnace freeboard 

function J = gasFlux_plant(P,L,p,mode,t,fault) 

    J_pbr = (P.CR-P.G)*p.k.PBR/L.C; % Unruptured bed behaves as a PBR, mol/m^2.s 

    % Simulate fault 4: furnace blowback 

    if t > fault.blowbackparameter.time*24*3600 

        J_pbr = (P.CR-P.G)*p.k.PBR*(fault.blowbackparameter.mag1)/L.C; 

    end 

    J_ch  = (P.CR-P.G)*p.k.Ch; % Flux channels when bed is ruptured, mol/m^2.s 

    J = J_pbr*(mode.bb==0)+J_ch*(mode.bb==1); % The output of this function depends on whether  

Stellenbosch University https://scholar.sun.ac.za



 

212 

                                              % or not the concentrate bed is ruptured 

    J = J*(J>=0); % 'J' is either positive or zero 

end 

 

% Compute rate of change in state variable molar amounts 

function dN = molarChange_plant(F,r,J,V,p) 

    dN.CB.XO  = F.charge.XO-F.mix.XO; % Bulk concentrate slag, mol/s 

    dN.CB.XS  = F.charge.XS-F.mix.XS+r.F.CB*V.CB; % Bulk concentrate matte, mol/s 

    dN.CB.XS2 = F.charge.XS2-F.mix.XS2-r.F.CB*V.CB; % Bulk concentrate sulphurized matte, mol/s 

    dN.CS.XO  = F.mix.XO-F.melt.XO; % Smelting concentrate slag, mol/s 

    dN.CS.XS  = F.mix.XS-F.melt.XS+r.F.CS*V.CS; % Smelting concentrate matte, mol/s 

    dN.CS.XS2 = F.mix.XS2-r.F.CS*V.CS; % Smelting concentrate sulphurized matte, mol/s 

    dN.CR = r.F.CB*V.CB+r.F.CS*V.CS+r.C-J*p.dim.A; % Reaction gases in concentrate bed, mol/s 

    dN.S  = F.melt.XO-F.slagTap; % Change in slag zone, mol/s 

    dN.M  = F.melt.XS-F.matteTap; % Change in matte zone, mol/s 

    dN.G.A = F.negP - F.posP.A - F.ext.A; % Change in air in freeboard, mol/s 

    dN.G.R = J*p.dim.A - F.posP.R - F.ext.R; % Change in reaction gases in freeboard, mol/s 

end 

 

% Compute rate of change in state temperature variables 

function dT = temperatureChange_plant(T,Q,N,F,r,J,V,p,fault,t) 

    % Bulk concentrate temperature change, K/s: 

    dT.CB = (Q.CS2CB+Q.G2CB+p.cP.C*(p.other.Tcharge-T.CB)*F.charge.total)/... 

            (N.CB.total*p.cP.C); 

    % Smelting concentrate temperature change, K/s: 

    dT.CS = (Q.S2CS*(1-(T.CS/p.other.Tmelt)^2)-Q.CS2CB+(T.CB-T.CS)*... 

            (F.mix.total*p.cP.C+r.F.CB*V.CB*p.cP.G))/(N.CS.total*p.cP.C); 

    % Slag temperature change, K/s: 

    dT.S  = (Q.J+Q.M2S+Q.W2S-Q.S2CS+(p.other.Tmelt-T.S)*... 

            (F.melt.XO*p.cP.S+F.melt.XS*p.cP.M))/(N.S*p.cP.S);   

    % Matte temperature change, K/s: 

    dT.M  = (Q.W2M-Q.M2S+(T.S-T.M)*F.melt.XS*p.cP.M)/(N.M*p.cP.M); 
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    % Freeboard temperature change, K/s: 

    dT.G  = (p.cP.G*((T.CS-T.G)*J*p.dim.A+(p.other.Tatm-T.G)*F.negP)-Q.G2CB)/... 

            (N.G.total*p.cP.G); 

    % Cooling units temperature change, K/s: 

    dT.W  = (p.cP.W*(p.water.T0-T.W)*p.water.F-Q.W2M-Q.W2S)/(p.water.N*p.cP.W); 

    % Simulate fault 1: sudden change in the flowrate of cooling water 

    if t > fault.coolWat.time*3600*24 

        Fcool = p.water.F + fault.coolWat.mag; 

        dT.W  = (p.cP.W*(p.water.T0-T.W)*Fcool-Q.W2M-Q.W2S)/(p.water.N*p.cP.W); 

    end 

end 
 
 

The last fault the plant is subject to is a sudden decrease in the flowrate of cooling water. This is simulated 

below. None of the aforementioned faults are modelled in the process model equations supplied to the 

state estimation algorithms.  

% Compute rate of change in state temperature variables 

function dT = temperatureChange_plant(T,Q,N,F,r,J,V,p,fault,t) 

    % Bulk concentrate temperature change, K/s: 

    dT.CB = (Q.CS2CB+Q.G2CB+p.cP.C*(p.other.Tcharge-T.CB)*F.charge.total)/... 

            (N.CB.total*p.cP.C); 

    % Smelting concentrate temperature change, K/s: 

    dT.CS = (Q.S2CS*(1-(T.CS/p.other.Tmelt)^2)-Q.CS2CB+(T.CB-T.CS)*... 

            (F.mix.total*p.cP.C+r.F.CB*V.CB*p.cP.G))/(N.CS.total*p.cP.C); 

    % Slag temperature change, K/s: 

    dT.S  = (Q.J+Q.M2S+Q.W2S-Q.S2CS+(p.other.Tmelt-T.S)*... 

            (F.melt.XO*p.cP.S+F.melt.XS*p.cP.M))/(N.S*p.cP.S);   

    % Matte temperature change, K/s: 

    dT.M  = (Q.W2M-Q.M2S+(T.S-T.M)*F.melt.XS*p.cP.M)/(N.M*p.cP.M); 

    % Freeboard temperature change, K/s: 

    dT.G  = (p.cP.G*((T.CS-T.G)*J*p.dim.A+(p.other.Tatm-T.G)*F.negP)-Q.G2CB)/... 

            (N.G.total*p.cP.G); 

    % Cooling units temperature change, K/s: 
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    dT.W  = (p.cP.W*(p.water.T0-T.W)*p.water.F-Q.W2M-Q.W2S)/(p.water.N*p.cP.W); 

    % Simulate fault 1: sudden change in the flowrate of cooling water 

    if t > fault.coolWat.time*3600*24 

        Fcool = p.water.F + fault.coolWat.mag; 

        dT.W  = (p.cP.W*(p.water.T0-T.W)*Fcool-Q.W2M-Q.W2S)/(p.water.N*p.cP.W); 

    end 

end 
 
 

The event function used in the solver that solves for the plant state values differs from the event function 

used in the state estimation algorithm prediction step. For the plant simulation, the solver must stop 

when slag or matte tapping occurs or when furnace blowback occurs.  

 

% 'eventFcn' is used to halt the ode solver when matte/slag tapping should be started or stopped % and when furnace blowback 

occurs 

function [threshold,isterminal,direction] = eventFcn_plant(y,p) 

    [N,T] = ode2state(y); 

    [~,V,~,L,P] = state2derived(N,T,p); 

    delPcrit = p.D.C*p.other.g*L.C; 

    delP = P.CR - P.G; 

     

    % The ode solver also stops when the slag height exceeds its thresholds 

    threshold(1,1) = L.S - 0.7; % Height of slag goes below 0.1 m 

    threshold(2,1) = L.S - 1.1; % Height of slag goes above 0.2 m 

    % The ode solver also stops when the matte height exceeds its thresholds 

    threshold(3,1) = L.M - 0.3; % Height of matte goes below 0.04 m 

    threshold(4,1) = L.M - 0.5; % Height of matte goes above 0.08 m 

    threshold(5,1) = delP - delPcrit*4; % Pressure in the freeboard goes above pcrit 

    threshold(6,1) = delP - delPcrit*1; % Pressure in the freeboard goes below pcrit 

     

    % If isterminal(i) = 1 when threshold(i) crosses 0, then the ode solver stops 

    isterminal(1,1) = 1; 

    isterminal(2,1) = 1; 
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    isterminal(3,1) = 1; 

    isterminal(4,1) = 1; 

    isterminal(5,1) = 1; 

    isterminal(6,1) = 1; 

     

    % direction(i) determines threshold(i) should be crossed by decreasing or increasing values 

    direction(1,1) = -1; % Concentrate level goes below lower threshold 

    direction(2,1) = 1;  % Concentrate level goes above upper threshold 

    direction(3,1) = -1; % Slag level goes below lower threshold 

    direction(4,1) = 1;  % Slag level goes above upper threshold 

    direction(5,1) = 1;  % Reaction gases in concentrate goes above critical P 

    direction(6,1) = -1; % Reaction gases in concentrate goes below critical P 

end 
 
 

The remaining supporting functions are used in both the plant simulation and the process model supplied 

to the state estimation algorithms.  

% Store the initial state variable values in structures 'N' and 'T' 

function [N,T] = variableInitialization 

    N.CB.XO  = 889392;  % Initial slag in bulk concentrate, mol 

    N.CB.XS  = 553568; % Initial matte in bulk concentrate, mol 

    N.CB.XS2 = 1035;      % Initial sulphurized matte in bulk concentrate, mol 

    T.CB = 1036; % Initial bulk concentrate temperature, K 

     

    N.CS.XO  = 771358;  % Initial slag in smelting concentrate, mol 

    N.CS.XS  = 559284; % Initial matte in smelting concentrate, mol 

    N.CS.XS2 = 1.0687;      % Initial sulphurized matte in smelting concentrate, mol 

    T.CS = 1379; % Initial smelting concentrate temperature, K 

     

    N.CR     = 555; % Initial reaction gas in concentrate bed, mol 

     

    N.S      = 11127185; % Initial liquid slag, mol 

    T.S  = 1903; % Initial slag zone temperature, K 
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    N.M      = 6602984; % Initial liquid matte, mol 

    T.M  = 1755; % Initial matte zone temperature, K 

     

    N.G.A    = 1082.57;  % Initial air in freeboard, mol 

    N.G.R    = 702.99;     % Initial reaction gas in freeboard, mol 

    T.G  = 1023.8;  % Initial freeboard temperature, K 

     

    T.W  = 311;  % Initial cooling units temperature, K 

End 

 

% Load model parameters and store them in structure ‘p’ 

function p = parameters 

    % Molar masses, kg/mol 

    p.M.G   =  30e-3; % Reaction gases/air 

    p.M.XO  =  72e-3; % Lumped slag components 

    p.M.XS  =  88e-3; % Lumped matte components 

    p.M.XS2 = 120e-3; % Lumped sulfurized components 

     

    % Densities, kg/m^3 

    p.D.C = 1600; % Concentrate density 

    p.D.S = 2960; % Slag density 

    p.D.M = 4800; % Matte density 

     

    % Heat of fusion, kJ/mol 

    p.fus.C = 133; % Concentrate heat of fusion 

    % Heat capacity, kJ/mol.K 

    p.cP.C =  75e-3; % Concentrate heat capacity 

    p.cP.S =  99e-3; % Slag heat capacity 

    p.cP.M =  78e-3; % Matte heat capacity 

    p.cP.G =  30e-3; % Reaction gases/air heat capacity 

    p.cP.W =  75e-3; % Cooling water heat capacity 

Stellenbosch University https://scholar.sun.ac.za



 

217 

    % Activation energy, J/mol 

    p.EA.F =  150e3; % Desulphurization reaction 

    p.EA.C =  120e3; % Electrode oxidation reaction 

    % Rate-determining constants 

    p.k.V   = 2e-4;   % Concentrate mixing constant 

    p.k.PR  = 7;      % Freeboard- to atmosphere flow constant, mol/Pa.s 

    p.k.PE  = 3;      % Freeboard extraction pressure flow constant, mol/Pa.s 

    p.k.rF  = 1.0e5;  % Desulphurization rate constant, 1/s 

    p.k.rC  = 1.25e4; % Electrode oxidation rate constant, mol/s 

    p.k.PBR = 1.0e-8; % PBR flux constant, mol/m.Pa.s 

    p.k.Ch  = 2e-6;   % Channeling flux constant, mol/m^2.Pa.s 

    % Furnace dimensions 

    p.dim.A = 300; % Bath area, m^2 

    p.dim.p = 80;  % SAF perimeter, m 

    p.dim.V = 150; % Freeboard volume, m^3 

    % Heat generation & transfer constants 

    p.Q.Velectrode = 120;     % Electrode voltage, V 

    p.Q.alpha      = 0.0003;  % Joule heating constant, V^2/kW.K 

    p.Q.R0         = 0.21;    % Slag resistivity at 1900 K, V^2/kW 

    p.Q.T0         = 1900;    % Base slag temperature, K 

    p.Q.hCS2CB     = 0.0275;  % Heat transfer coefficient between smelting- and 

                              % bulk concentrate, kW/m^2.K 

    p.Q.hG2CB      = 0.055;   % Heat transfer coefficient between freeboard and 

                              % bulk concentrate, kW/m^2.K 

    p.Q.hS2CS      = 0.31;    % Heat transfer coefficient between slag and  

                              % smelting concentrate, kW/m^2.K 

    p.Q.hM2S       = 0.085;   % Heat transfer coefficient between matte and 

                              % slag, kW/m^2.K 

    p.Q.hW2S       = 0.007;   % Heat transfer coefficient between cooling units 

                              % and slag, kW/m.K 

    p.Q.hW2M       = 0.027;   % Heat transfer coefficient between cooling units 

                              % and matte, kW/m.K 
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    % Other constants 

    p.other.R = 8.314; % Universal gas constant, J/mol.K 

    p.other.g = 9.81;  % Gravity acceleration, m/s^2 

    p.other.e = 0.4;   % Concentrate bed voidage 

    p.other.Patm = 101325; % Atmospheric pressure, Pa 

    p.other.Pext = 101315; % Extraction pressure, Pa 

    p.other.Tcharge = 700; % Concentrate charge temperature, K 

    p.other.Tmelt = 1500;  % Concentrate melting temperature, K 

    p.other.Tatm  = 300;   % Atmosphere temperature, K 

    % Cooling water constants 

    p.water.F  = 2400;  % Cooling water flowrate, mol/s 

    p.water.N  = 10000; % Cooling water molar amount, mol 

    p.water.T0 = 300;   % Cooling water temperature, K 

end 

 

%% 11. Representation subfunctions 

% Convert a column vector of state variables, x, to structures ‘N’ and ‘T’ 

function [N,T] = ode2state(x) 

    N.CB.XO  = x(1); 

    N.CB.XS  = x(2); 

    N.CB.XS2 = x(3); 

    T.CB     = x(4); 

    N.CS.XO  = x(5); 

    N.CS.XS  = x(6); 

    N.CS.XS2 = x(7); 

    T.CS     = x(8); 

    N.CR     = x(9); 

    N.S      = x(10); 

    T.S      = x(11); 

    N.M      = x(12); 

    T.M      = x(13); 

    N.G.A    = x(14); 

Stellenbosch University https://scholar.sun.ac.za



 

219 

    N.G.R    = x(15); 

    T.G      = x(16); 

    T.W      = x(17); 

end 

% Convert state variables stored in ‘N’ and ‘T’ to various process variables 

function [N,V,C,L,P] = state2derived(N,T,p) 

    N.CB.total = N.CB.XO + N.CB.XS + N.CB.XS2; 

    N.CS.total = N.CS.XO + N.CS.XS + N.CS.XS2; 

    N.G.total  = N.G.A + N.G.R; 

     

    V.CB = (p.M.XO*N.CB.XO+p.M.XS*N.CB.XS+p.M.XS2*N.CB.XS2)/p.D.C; 

    V.CS = (p.M.XO*N.CS.XO+p.M.XS*N.CS.XS+p.M.XS2*N.CS.XS2)/p.D.C; 

    V.C = V.CB+V.CS; 

     

    C.CB.XO  = N.CB.XO/V.CB; 

    C.CB.XS  = N.CB.XS/V.CB; 

    C.CB.XS2 = N.CB.XS2/V.CB; 

    C.CS.XS2 = N.CS.XS2/V.CS; 

     

    L.S = p.M.XO*N.S/(p.D.S*p.dim.A); 

    L.M = p.M.XS*N.M/(p.D.M*p.dim.A); 

    L.C = (V.CB+V.CS)/p.dim.A; 

     

    P.G  = N.G.total*p.other.R*T.G/p.dim.V; 

    P.CR = N.CR*p.other.R*T.CS/(p.other.e*V.C); 

end 

% Convert structure of state variables to column vector to use in ODE solver 

function dx = state2ode(dN,dT) 

    dx(1,1) = dN.CB.XO; 

    dx(2,1) = dN.CB.XS; 

    dx(3,1) = dN.CB.XS2; 

    dx(4,1) = dT.CB; 
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    dx(5,1) = dN.CS.XO; 

    dx(6,1) = dN.CS.XS; 

    dx(7,1) = dN.CS.XS2; 

    dx(8,1) = dT.CS; 

    dx(9,1) = dN.CR; 

    dx(10,1) = dN.S; 

    dx(11,1) = dT.S; 

    dx(12,1) = dN.M; 

    dx(13,1) = dT.M; 

    dx(14,1) = dN.G.A; 

    dx(15,1) = dN.G.R; 

    dx(16,1) = dT.G; 

    dx(17,1) = dT.W; 

end 

% Convert matrix of ODE data generated by 'ode15s' to a structure of process variables 

function profileVariables = ode2profile(odeVariables) 

    g = odeVariables; 

    f.N.CB.XO  = g(:,1); % Slag in bulk concentrate, mol 

    f.N.CB.XS  = g(:,2); % Matte in bulk concentrate, mol 

    f.N.CB.XS2 = g(:,3); % Sulphurized matte in bulk concentrate, mol 

    f.T.CB     = g(:,4); % Bulk concentrate temperature, K 

    f.N.CS.XO  = g(:,5); % Slag in smelting concentrate, mol 

    f.N.CS.XS  = g(:,6); % Matte in smelting concentrate, mol 

    f.N.CS.XS2 = g(:,7); % Sulphurized matte in smelting concentrate, mol 

    f.T.CS     = g(:,8); % Smelting concentrate temperature, K 

    f.N.CR     = g(:,9); % Reaction gases in concentrate, mol 

    f.N.S      = g(:,10); % Liquid slag, mol 

    f.T.S      = g(:,11); % Liquid slag temperature, K 

    f.N.M      = g(:,12); % Liquid matte, mol 

    f.T.M      = g(:,13); % Liquid matte temperature, K 

    f.N.G.A    = g(:,14); % Air in freeboard, mol 

    f.N.G.R    = g(:,15); % Reaction gases in freeboard, mol 
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    f.T.G      = g(:,16); % Freeboard gas temperature, K 

    f.T.W      = g(:,17); % Cooling units temperature, K 

     

    p = parameters; 

     

    f.N.CB.total = f.N.CB.XO + f.N.CB.XS + f.N.CB.XS2; % Total bulk concentrate, mol 

    f.N.CS.total = f.N.CS.XO + f.N.CS.XS + f.N.CS.XS2; % Total smelting concentrate, mol 

    f.N.G.total  = f.N.G.A + f.N.G.R; % Total freeboard gas, mol 

     

    % Bulk concentrate volume, m^3: 

    f.V.CB = (p.M.XO*f.N.CB.XO+p.M.XS*f.N.CB.XS+p.M.XS2*f.N.CB.XS2)/p.D.C; 

    % Smelting concentrate volume, m^3: 

    f.V.CS = (p.M.XO*f.N.CS.XO+p.M.XS*f.N.CS.XS+p.M.XS2*f.N.CS.XS2)/p.D.C; 

    f.V.C = f.V.CB+f.V.CS; % Total concentrate volume, m^3 

     

    f.C.CB.XO  = f.N.CB.XO./f.V.CB;  % Bulk concentrate slag concentration, mol/m^3 

    f.C.CB.XS  = f.N.CB.XS./f.V.CB;  % Bulk concentrate matte concentration, mol/m^3 

    f.C.CB.XS2 = f.N.CB.XS2./f.V.CB; % Bulk concentrate sulphurized matte concentration, mol/m^3 

    f.C.CS.XS2 = f.N.CS.XS2./f.V.CS; % Smelting conc sulphurized matte concentration, mol/m^3 

    f.C.G.R    = f.N.G.R/p.dim.V;    % Freeboard reaction gas concentration, mol/m^3 

     

    f.L.S = p.M.XO*f.N.S/(p.D.S*p.dim.A); % Slag liquid level, m 

    f.L.M = p.M.XS*f.N.M/(p.D.M*p.dim.A); % Matte liquid level, m 

    f.L.C = (f.V.CB+f.V.CS)/p.dim.A;      % Concentrate bed thickness, m 

     

    f.P.G  = f.N.G.total*p.other.R.*f.T.G/p.dim.V; % Freeboard pressure, Pa 

    f.P.CR = f.N.CR*p.other.R.*f.T.CS... 

                  ./(p.other.e.*f.V.C); % Reaction gas in concentrate pressure, Pa 

     

    f.Q.S2CS  = p.Q.hS2CS*p.dim.A*(f.T.S-f.T.CS); % Heat transfer from slag to concentrate, kW 

    % Heat generated in slag zone, kW: 

    f.Q.J     = (p.Q.Velectrode^2)./(p.Q.R0*(1+p.Q.alpha*(f.T.S-p.Q.T0))); 

Stellenbosch University https://scholar.sun.ac.za



 

222 

    % Concentrate smelting rate, mol/s: 

    f.F.melt.total = f.Q.S2CS.*(f.T.CS/p.other.Tmelt)./(p.fus.C-p.cP.C*(p.other.Tmelt-f.T.CS)); 

    % Electrode oxidation rate, mol/s: 

    f.r.C  = p.k.rC*exp(-p.EA.C./(p.other.R*f.T.S)); 

     

    profileVariables = f; 

end  
 
 

D.3. Implementation of model-based and data-driven fault detection  

The main script is presented for performing the fault detection using the state estimates obtained via the 

script in appendix D.1. However, now the measurements are generated using any of the faulty conditions 

below: 

faultindex = ; % for obtaining faulty measurements 

                % 1 = Cooling water flowrate step change at t = 1 day 

                % 2 = Pext step change at t = 1 day 

                % 3 = Concentrate composition step change at t = 1 day 

                % 4 = Blowback fault at t = 1 day 
 
 

And the smaller process noise covariance is employed for generating the state estimates.  

if faultindex > 0 

    ProcNoise_objective3 = 0.01.*ProcNoise_objective2;  

    % Process noise for objective 3 is 1% of the process noise used in objective 2 

    ProcNoise = ProcNoise_objective3; 

end 

 

The EKF and PF are used to generate the innovation terms. The innovation terms represent a sequence 

of residuals from the state estimators.  

% Extended Kalman filter  

[xhat_EKF, P_EKF, inn_EKF] = EKF(estimationlength,N_meas,xhat_0,P0,R,Q,y,model_type); 

% Particle filter  

[xhat_PF, P_PF, inn_PF,vhat_matrix] = PF(estimationlength,N_meas,xhat_0,P0,R,Q,y,n,model_type); 
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The three fault detection methods investigated are 1) model-based fault detection using the EKF 

residuals, 2) model-based fault detection using the PF residuals, and 3) data-driven fault detection using 

the measurements. Select the FDI method to select the corresponding dataset.  

% Investigate the performance three fault detection methods: 

% FDI_method 1: Model-based fault detection via EKF residuals & PCA 

% FDI_method 2: Model-based fault detection via PF residuals & PCA 

% FDI_method 3: Data-driven fault detection via measurements & PCA 

FDI_method = ; 

 

% Datasets for each method are: 

% 1: inn_EKF (residuals from the EKF) 

% 2: inn_PF (residuals from the PF) & vhat_matrix (residuals from each 

% particle of the PF) 

% 3: y (measurements) 

if FDI_method == 1 

    X = inn_EKF; 

end 

if FDI_method == 2 

    X = inn_PF; 

end 

if FDI_method == 3 

    X = y'; 

end 
 
 

Split the datasets into training data, ‘Xtrain’, and testing data, ‘Xtest’ using the ‘DataSeparation’ function. 

For the model-based fault detection using the PF residuals, the individual particle innovation sequences 

stored in ‘vhat_matrix’ are split into testing data ‘vhat_matrix_test’. The ‘DataSeparation’ function also 

calculates the minimum specificity, ‘minSpec’, required to obtain a minimum precision of 95%, and 

creates logic vectors ‘iNominal’, containing 1’s at nominal conditions in the test data and 0’s elsewhere, 

and ‘iFault’, containing 1’s at faulty conditions in the test data and 0’s elsewhere.  

[Xtrain, Xtest, minPrec, minSpec, iNominal, iFault, vhat_matrix_test] = DataSeparation(X, ... 

                                                               N_meas, vhat_matrix, FDI_method); 
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function [Xtrain, Xtest, minPrec, minSpec, iNominal, iFault, vhat_matrix_test] = ... 

                                              DataSeparation(X, N_meas, vhat_matrix, FDI_method) 

    % Specify the training data set: 

    % Train the PCA model on data generated under nominal conditions 

    traintime = 0.5*3600*24; % s, time at which training set ends 

                             % PCA models are trained on residuals/measurements generated under  

                             % nominal conditions for half a day of data 

    itrain = traintime/N_meas; % index at which training set ends 

    Xtrain = X(2000:itrain,:); % Training data set 

                               % Start training at index 2000 to avoid large residuals generated 

                               % due to initialization error of the filters  

     

    % Specify the test data set: 

    faulttime = 1*3600*24;     % s, all faults are simulated at time 1 day in this study 

    ifault = faulttime/N_meas; % index at which fault is simulated 

    Xtest = X(itrain:end,:);   % Test data set consists of 0.5 days of nominal data and 0.5 days  

                               % of faulty data 

    vhat_matrix_test = []; 

    if FDI_method == 2 

        vhat_matrix_test = vhat_matrix(:,:,itrain:end); % If PF residuals are the test data, the  

                                                        % vhat_matrix obtained from the PF  

                                                        % algorithm is used to calculate the  

                                                        % likelihood monitoring statistic 

        % ‘vhat_matrix_test’ represents the residuals obtained for individual particles at each 

        % timepoint in the test data set 

    end 

     

    % Specify the faulty and nominal indices in test data set and store them in logic vectors 

    t = 1:size(Xtest,1); 

    iFault= sin(pi*t/(ifault-itrain) < 0; % Generate a 1 at each timestep the fault is  

                                          % occurring, otherwise generate a zero 

    iNominal = ~iFault;                   % Generate a 1 at each timestep that nominal conditions  
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                                         % are occurring, otherwise generate a zero 

    minPrec = 0.95; % User-specified minimum precision of 95% 

    F = sum(iFault);   % Total number of faulty observations 

    N = sum(iNominal); % Total number of nominal observations 

    minSpec = 1+(F/N)*((minPrec-1)/minPrec); % Minimum specificity required for minPrec 

end 
 
 

Train the PCA models using the function ‘PCA_Model’. The trained PCA models are represented by the 

PCs contained in the loadings matrix, V. The PCA models can be constructed by retaining one through 

‘rmax’ PCs. 

Function inputs  

X 

Matrix consisting of the training data. For FDI method 1 and 2, the 

training data consists of residuals from the EKF and PF, respectively, at 

the timepoints for which the training data was acquired. For FDI 

method 3, the training data consists of the measurements from the SAF 

process at the timepoints for which the training data was acquired.   

r Indicates the maximum number of retained PCs.  

Function outputs 

V 

Loadings matrix of the trained PCA model.  The columns of the loadings 

matrix represent each PC.  

mu 

Vector containing the training data means for each residual/measured 

variable. 

sig 

Vector containing the training data standard deviation for each 

residual/measured variable.  

T Scores matrix of the trained PCA model.  

sa 

Vector containing the variance of the training scores for each number 

of PCs retained. 

cumvar 

Vector containing the cumulative variance explained by each of the 

PCs.  

 

rmax = size(X,2); % specify the maximum number of retained PCs 

[V,mu,sig,T,sa,cumvar] = PCA_Model(Xtrain,rmax); % derive PCA model 
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function [V,mu,sig,T,sa,cumvar] = PCA_Model(X,r) 

    mu = mean(X,1);  % Calculate mean of data set 

    sig = std(X,1);  % Calculate standard deviation of data set 

    S = (X - mu)./sig; % Standardize data set 

    C = (S')*S;      % Compute the correlation matrix  

    [P,D] = eig(C);  % Compute the eigenvectors which represent the PCs  

    D = diag(D);     % Eigenvalues of PCs 

    [sigma,i] = sortrows(D,'descend'); % Sort eigenvalues from largest to smallest 

    P = P(:,i);   % Sort corresponding eigenvectors  

    V = P(:,1:r); % Loadings matrix retaining r PCs 

    T = Z*V;      % Scores matrix 

    % Calculate the variance of the training scores 

    for a = 1:r 

        sa(a) = var(T(:,a));   

    end 

    % Calculate the cumulative variance explained for each retained PC 

    vari = (sigma./sum(sigma))*100; % percentage variance explained 

    cumvar = cumsum(vari);          % cumulative percentage variance explained 

end 

 
 

The fault detection performance of the PCA models is tested using the test data, Xtest. Each of the PCA 

models, retaining 1 through ‘rmax’ PCs are investigated. The appropriate monitoring statistics are 

calculated for each data entry in Xtest. The specificity and sensitivity are obtained using various threshold 

values for the monitoring statistic. The threshold value defines the minimum value that a monitoring 

statistic must be to flag the statistic as faulty. The partial area under the ROC curve is calculated from a 

ROC curve generated from the specificities and sensitivities obtained by varying the threshold of the 

monitoring statistic. The 𝑝𝐴𝑈𝐶 is used to evaluate the fault detection performance. 
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% For each number of retained PCs in the PCA model 

for r = 1:rmax 

    % For all FDI methods, the reconstruction error represents the out-of-plane error of the  

    % PCA model 

    % Calculate the reconstruction error using the PCA model defined by the PCs 1:r calculated  

    % from the loadings matrix V(:,1:r) 

    E(:,r) = ReconstructionErrorPCA(Xtest,V(:,1:r),mu,sig); 

    % Calculate the specificity and sensitivity obtained at various thresholds for the  

    % reconstruction error  

    [specificity_E(:,r),sensitivity_E(:,r)] = SpecificitySenstivity(E(:,r), ...  

                                              iFault,iNominal); 

    % Calculate the partial area under the ROC curve generated using the specificities and  

    % sensitivities calculated above 

    pAUC_E(r) = PartialAUC(specificity_E(:,r),sensitivity_E(:,r),minSpec);  

 

    % For FDI_method 1, model-based fault detection using the EKF residuals and FDI_method 3, 

    % data-driven fault detection using the measurements, the within-plane error of the PCA  

    % model is assessed via Hotelling’s T2 statistic 

    if FDI_method == 1 | FDI_method == 3 

        % Calculate Hotelling’s T2 statistic using the PCA model defined by the PCs 1:r 

        T2(:,r) = HotellingsT2PCA(Xtest,V(:,1:r),mu,sig,sa(1:r)); 

        % Calculate the specificity and sensitivity obtained at various thresholds for 

        % Hotelling’s T2 statistic  

        [specificity_T2(:,r),sensitivity_T2(:,r)] = SpecificitySenstivity(T2(:,r), ...  

                                                    iFault,iNominal); 

        % Calculate the partial area under the ROC curve generated using the specificities and  

        % sensitivities calculated above.  

        pAUC_T2(r) = PartialAUC(specificity_T2(:,r),sensitivity_T2(:,r),minSpec); 

    end 

 

    % For FDI_method 2, model-based fault detection using the PF residuals, the within-plane 

    % error of the PCA model is assessed using the likelihood monitoring statistic 
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    if FDI_method == 2 

        % Calculate the likelihood using the PCA model defined by the PCs 1:r 

        likelihood(:,r) = LikelihoodPCA(vhat_matrix_test,V(:,1:r),R); 

        % Calculate the specificity and sensitivity obtained at various thresholds for 

        % the likelihood monitoring statistic  

        [specificity_likelihood(:,r),sensitivity_likelihood(:,r)] =  ...    

                             SpecificitySenstivity(likelihood(:,r),iFault,iNominal); 

        % Calculate the partial area under the ROC curve generated using the specificities and  

        % sensitivities calculated above.  

        pAUC_likelihood(r) = PartialAUC(specificity_likelihood(:,r), ...  

                             sensitivity_likelihood(:,r),minSpec);  

    end 

end 

 

For all three fault detection methods investigated, the out-of-plane error of the PCA model is quantified 

using the reconstruction error. For the model-based fault detection using the EKF residuals and the data-

driven fault detection, the within-plane error of the PCA model is captured by Hotelling’s T2 statistic. For 

the model-based fault detection using the PF residuals, the within-plane error is quantified using the 

likelihood statistic.  

Function inputs  

X 

Matrix consisting of the test data. For FDI method 1 and 2, the test data 

consists of residuals from the EKF and PF, respectively, at the timepoints for 

which the test data was acquired. For FDI method 3, the test data consists 

of the measurements from the SAF process at the timepoints for which the 

test data was acquired.   

V 

Loadings matrix of the trained PCA model.  The columns of the loadings 

matrix represent each PC retained.  

mu 

Vector containing the training data means for each residual/measured 

variable. 

sig 

Vector containing the training data standard deviation for each 

residual/measured variable.  

sa 

Vector containing the variance of the training scores for each number of PCs 

retained. 
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vhat_matrix 

Three dimensional matrix from the PF state estimation algorithm containing 

the innovations for each of the particles at each timestep. The number of 

elements in the first dimension is equal the number of measured variables. 

The number of elements in the second dimension is equal to the number of 

particles. The number of elements in the third dimension is equal to the 

number of timesteps which the test data is obtained at.  

R Measurement noise covariance matrix.  

Function outputs 

E 

Vector containing the reconstruction errors calculated for each sample in 

the test data, X.  

T2 

Vector containing Hotelling’s T2 statistic calculated for each sample in the 

test data, X. The T2 statistic is calculated in the reduced-dimensional space 

defined by the trained PCA model represented by the PCs in V.  

likelihood 

Vector containing the -log of the sum of likelihoods calculated for each 

sample of particles from the PF contained in the test data, vhat_matrix. The 

likelihoods of each particle are calculated in the reduced-dimension space 

defined by the trained PCA model represented by the PCs in V.  

 

function E = ReconstructionErrorPCA(X,V,mu,sig) 

    S = (X - mu)./sig;      % Standardize the test dataset 

    Sr = S*V*(V');        % Reconstruct the data set using the PCs 

    e = S-Sr;             % Difference between the PCA model prediction for the observations 

                          % and the true observations 

    e2 = e.^2;            % Squared difference  

    E = sum(e2’); % Calculate reconstruction error as the sum of the squared diff 

end 

 

function T2 = HotellingsT2PCA(X,V,mu,sig,sa) 

    S = (X - mu)./sig; % Standardize the test data set 

    T_test = S*V;    % Calculate the scores matrix for test data 

    % For each data point, i, in test data set:  

    for i = 1:size(T_test,1) 

       T2(i) = sum((T_test(i,:)./sa).^2); % Hotelling's T2 statistic 
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    end 

end 

 

function likelihood = LikelihoodPCA(vhat_matrix,V,R) 

% vhat_matrix is 3D matrix of the residuals for each particle of the PF  

% 1st dimension = Measurement variables 

% 2nd dimension = Particles 

% 3rd dimension = Test data points 

    % For each test data point j  

    for j = 1:size(vhat_matrix,3) 

        vhat = vhat_matrix(:,:,j); 

        qsum = 0; 

        % For each particle calculate the likelihood in the reduced-dimension 

        % space defined by the trained PCA model represented by the loadings 

        % matrix V 

        for i = 1 : size(vhat) 

            R_reduced = V'*R*V; % Covariance matrix in reduced space 

            vhat_reduced = V'*vhat(:,i); % Residual in reduced space  

            q = (( inv((det(R_reduced)^0.5) * (2*pi)^(size(V,2)/2)) )... 

                * ( exp((-(vhat_reduced)'*inv(R_reduced)*vhat_reduced*0.5)) )); 

            % Likelihood in reduced space  

            qsum = qsum + (q); % Sum of likelihoods  

        end 

        likelihood(j) = -log(qsum); % Negative log of sum of likelihoods 

    end 

end 
 
 

Additional functions for calculating the specificity, sensitivity, and the partial area under the curve are 

presented below.  

Function inputs  
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monitoring_statistic 

Vector  containing the monitoring statistics (reconstruction error, 

Hotelling’s T2 statistic, or the likelihood statistic) obtained for each new 

sample in the test data.    

iFault 

Vector containing 1’s where faulty conditions are present in the test 

data and 0’s where nominal conditions are present.  

iNominal 

Vector containing 1’s where nominal conditions are present in the test 

data and 0’s where faulty conditions are present. 

minSpec The minimum specificity required to achieve a precision of 95%.  

Function outputs 

specificity  Vector containing the specificities calculated by varying the threshold 
defining the monitoring statistic as faulty. 

sensitivity 

Vector containing the sensitivities calculated by varying the threshold 

defining the monitoring statistic as faulty. 

pAUC 

The partial area under the ROC curve defining the area under the curve 

where a minimum precision of 95% is achieved.   

 

function [specificity,sensitivity,nThresh] = SpecificitySenstivity(... 

                                             monitoring_statistic, iFault, iNominal) 

    nThresh = 500; % The number of thresholds investigated 

    % Calculate monitoring statistic value that categorizes observation as faulty at each  

    % threshold value 

    ms = (repelem(monitoring_statistic,1,nThresh)-linspace(0,100,nThresh))>=0;  

    % For each threshold value: 

    TP = sum(ms(iFault,:),1);    % Number of true positives 

    TN = sum(~ms(iNominal,:),1); % Number of true negatives 

    FP = sum(ms(iNominal,:),1);  % Number of false positives 

    FN = sum(~ms(iFault,:),1);   % Number of false negatives 

    F = TP + FN;   % Total number of faulty observations 

    N = FP + TN; % Total number of nominal observations 

    specificity = TN./N;   % Specificity  

    sensitivity = TP./F;   % Sensitivity 

end 
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function pAUC = PartialAUC(specificity,sensitivity,minSpec) 

    nThresh = 300; % Number of threshold points evaluated 

    % ROC evaluated between the minSpec required for minPrec and the maxSpec = 1: 

    pSpec = linspace(minSpec,1,nThresh); 

    [~,idx] = unique(specificity); % Indices of the unique specificities 

    pSens = interp1(specificity(idx),sensitivity(idx),pSpec); % Sensitivities required 

   % for minPrec 

    pAUC = trapz(pSpec,pSens)/(1-minSpec); % Partial area under the curve 

end 
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