
 1 

An Algorithm for Fast Optimal Latin Hypercube Design of Experiments 

Felipe A. C. Viana
1
 

University of Florida, Gainesville, FL 32611, USA 

Gerhard Venter
2
 

Stellenbosch University, Matieland, Stellenbosch 7602, South Africa 

and 

Vladimir Balabanov
3
 

The Boeing Company, Seattle, WA 98204, USA 

This paper presents the Translational Propagation algorithm; a new method for 

obtaining optimal or near optimal Latin hypercube designs without using formal 

optimization. The procedure requires minimal computational effort with results virtually 

provided in real time. The algorithm exploits patterns of point locations for optimal Latin 

hypercube designs based on the pφ  criterion (a variation of the maximum distance 

criterion). Small building blocks, consisting of one or more points each, are used to recreate 

these patterns by simple translation in the hyperspace. Monte Carlo simulations were used 

to evaluate the performance of the new algorithm for different design configurations where 

both the dimensionality and the point density were studied. The proposed algorithm was also 

compared against three formal optimization approaches (namely random search, genetic 

algorithm, and enhanced stochastic evolutionary algorithm). It was found that (i) the 

distribution of the pφ  values tends to lower values as the dimensionality is increased; and (ii) 

the proposed translational propagation algorithm represents a computationally attractive 

strategy to obtain near optimum Latin hypercube designs up to medium dimensions. 
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I. Introduction 

Design optimization usually requires a large number of potentially expensive simulations. Advancements in 

computational hardware and algorithms have not alleviated much of the resulting computational crunch because of 

the ever increasing appetite for improved modeling of physical processes and more detailed optimization [1]. To 

reduce the computational cost, surrogate models, also known as meta-models, are often used in place of the actual 

simulation models [2]-[7]. Surrogate-based design optimization begins by identifying locations in the design space 

where simulations will be conducted. This process of identifying locations in the design space is known as design of 

experiments (DOE) [8], [9]. Response data (often via numerical simulations) is collected at these locations and one 

or more candidate surrogate models are fitted to the data [10]-[12]. Finally, one or more of the candidate models are 

selected for calculating responses (and to facilitate objective and constraint calculation during the optimization 

process) at points in the design space where the actual responses are not yet available. 

It is well known among designers that the quality of fit, which often defines the performance of the surrogate 

model during optimization and design space exploration strongly depends on the design of experiments (point 

location and density) [13], [14]. By quality of fit, the authors imply the discrepancy (in a general sense) between the 

actual response and the value predicted by the corresponding surrogate model.  There exist many measures for the 

quality of fit, depending on the particular problem under consideration [14], [15]. 

A design of experiment with pn  points and vn  variables is usually written as a p vn n×  matrix 

1 2,  ,  ,  
p

T

n
 =   

X x x x… , where each row 1 2,  ,  ,  
vi i i in

x x x =   
x …  represents a sample and each column 

represents a variable. Within the design and analysis of computer experiments, the Latin hypercube design (LHD) 

proposed by McKay et al. [16] and Iman and Conover [17], is very popular. The LHD presents advantages such as: 

(i) the number of samples (points) is not fixed; (ii) orthogonality of the sampling points (a design is orthogonal if the 

inner product of any two columns is zero [3], [18]); and (iii) the sampling points do not depend on the surrogate 

model that will be constructed. A LHD with pn  points is constructed in such a way that each of the vn  variables is 

divided into pn  equal levels and that there is only one point (or sample) at each level. A random procedure is used 

to determine the point locations. Figure 1 shows two examples of LHDs with 2vn =  and 16pn = . Since the LHD 

is constructed using a random procedure, there is nothing preventing a design that has poor space filling qualities, as 
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the extreme case illustrated in Figure 1-(a). A better choice is shown in Figure 1-(b), where the points are more 

uniformly distributed in the domain. 

 

  

(a) Ill-suited LHD with 2vn =  and 16pn = . (b) Reasonable LHD with 2vn =  and 16pn = . 

Figure 1: Examples of Latin hypercube designs. 

The optimization of the space-filling qualities of the Latin hypercube design is a challenging problem that has 

resulted in a number of research publications [19]-[28]. One interpretation of the space filling property is to consider 

a vn -dimensional sphere around each design point in the experimental design. The larger the radius of the smallest 

sphere that does not cross the boundary of the design space, the better the space filling property of the design. 

Optimizing the point location in a Latin hypercube design to improve the uniformity of the point distribution, 

typically by maximizing the radius of the smallest sphere, results in an Optimal Latin hypercube design. Such 

designs are usually obtained from time consuming combinatorial optimization problems, with search space of the 

order of ( )! vn

pn . For example, to optimize the location of 20 samples in 2 dimensions, the algorithm has to select 

the best design from more than 10
36

 possible designs. If the number of variables is increased to 3, the number of 

possible designs is more than 10
55

. Researches have proposed various optimization algorithms and objective 

functions to solve this problem. Table 1 summarizes some strategies found in the literature. As for the computational 

time, Ye et al. [22] reported several hours on a Sun SPARC 20 workstation for generating an optimal Latin 

hypercube with 25 points for 4 variables. Jin et al. [25] reported minutes on a PC with a Pentium III 650 MHZ CPU 

for generating an optimal Latin hypercube with 100 points for 10 variables. Section IV shows a comparison of 

different optimization methods for obtaining optimal LHDs with contemporary computing power. 

Due to its popularity, the  pφ  criterion was selected as a performance measure in this paper. Minimizing pφ  

leads to the maximization of the point-to-point distance in the design (see [21] and [25] for details). Mathematically: 
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where p  is a positive integer, pn  is the number of points in the design and ijd  is the  inter-point distance between 

all point pairs in the design. The general inter-point distance between any point pair ix  and jx  can be expressed as 

follows: 
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∑x x  (2) 

In the present work,  50p =  and 1t =  are used following the suggestions of Jin et al. [25]. 

Table 1: Approaches for constructing the optimal Latin hypercube design. 

Researchers Year Algorithm Objective functions 

Audze and Eglājs [19] 1977 Coordinates Exchange Algorithm Potential Energy 

Park [20] 1994 
A 2-stage (exchange- and Newton-type) 

algorithm 

Integrated mean squared error and 

entropy criteria 

Morris and Mitchell [21] 1995 Simulated annealing pφ  criterion 

Ye et al. [22] 2000 Columnwise–pairwise pφ  and entropy criteria 

Fang et al. [23] 2002 Threshold accepting algorithm Centered 2L -discrepancy 

Bates et al. [24] 2004 Genetic algorithm Potential energy 

Jin et al. [25] 2005 
Enhanced stochastic evolutionary 

algorithm 
pφ  criterion, entropy and 2L  

discrepancy 

Liefvendahl and Stocki 

[26] 
2006 

Columnwise-pairwise and genetic 

algorithms 

Minimum distance and Audze- Eglājs 

functions 

van Dam et al. [27] 2007 Branch-and-bound algorithm 1-norm and infinite norm distances 

Grosso et al. [28] 2008 
Iterated local search and simulated 

annealing algorithms pφ  criterion 

 

Figure 1-(b) shows what point locations one can expect to obtain if the pφ  criterion is used to generate a LHD 

with 2vn =  and 16pn =  (although other criteria may also lead to the same distribution of points).  

In this work, the Translational Propagation algorithm is presented for obtaining optimum or near optimum Latin 

hypercube designs. This algorithm requires minimal computational effort and does not use formal optimization. The 

aim is to solve the optimization problem in an approximate sense, i.e., to obtain a good Latin hypercube quickly, 

rather than finding the best possible solution. The algorithm exploits simple translation of small building blocks 

(consisting of one or more points) in the hyperspace. The obtained LHD is referred to as TPLHD (a Latin hypercube 
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design obtained via the Translational Propagation algorithm). In general, the obtained TPLHD could be useful by 

themselves as optimum or near optimum Latin hypercube designs, or as an initial guess for numerical 

implementations based on some optimization algorithm. 

The rest of the paper is organized as follows. Section II describes the translational propagation algorithm for 

obtaining Latin hypercube designs. Section III describes the numerical experiments used in this study. Section IV 

presents the results and discussion. Finally, the paper is closed by recapitulating salient points and concluding 

remarks. 

II. Latin Hypercube via Translational Propagation Algorithm 

A. Basic Algorithm 

The proposed approach is based on the idea of constructing the optimal vn -dimensional Latin hypercube design 

from a fairly small vn -dimensional seed design.  The simple example of a 16 2×  (i.e., sixteen points in two 

dimensions) Latin hypercube design is used to explain the methodology. Figure 2 shows some possible two-

dimensional seed designs. While there is no limitation on the number of points for the seed design, the seed design 

can be as simple as just a single point (1 vn×  design). For simplicity, the seed of Figure 2-(a) is seed used in the 

16 2×  Latin hypercube example. 

 

 
 

 
 

(a) 1x2 seed design. (b) 2x2 seed design. (c) 3x2 seed design. (d) 4x2 seed design. 

Figure 2: Example of seed designs for 2 variables. 

In order to construct a Latin hypercube design of pn  points from a seed design of sn  points, the design space is 

first divide into a total of bn  blocks such that: 

  .
p

b

s

n
n

n
=  (3) 

Equation (3) means that each dimension is partitioned into the same number of divisions,  dn , calculated by: 
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In the example of the 16 2×  Latin hypercube design (i.e. 16pn =  and 2vn = ), considering 1sn =  (seed 

design selected from Figure 2-(a)), one obtains 16bn =  and 4dn =  from Eqs. (3) and (4). 
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Figure 3: 16 2×  Latin hypercube mesh divided into blocks (4 divisions in each dimension results in 16 

blocks). The left-lower block is the first one to be picked in the algorithm. 

Next, each block is filled with the previously selected seed design. Figure 3 shows the division of the design 

space for the 16 2×  Latin hypercube design and which of the blocks is the first one to be picked in the algorithm. 

Figure 4 illustrates the process step by step. First, the seed design is properly scaled and placed at the origin of the 

first block, as shown in Figure 4-(a). Next, the block with the seed design is iteratively shifted by 
p d
n n  levels in 

one of the dimensions. Every time that the seed design is shifted, a new point is added to the experimental design. 

Figure 4-(b) shows the first shift of the seed design (chosen to be in the horizontal direction). To preserve the Latin 

hypercube property of only a single point per level; Figure 4-(b) shows that there also has to be a one-level shift in 

the vertical direction. In the general case, a displacement vector is built for each accounting for the shifting in the 

dimension of interest (horizontal direction in the example) as well a shift in all other dimensions to preserve the 

Latin hypercube properties (vertical direction in our example). The shifting process continues in one of the 

dimensions until all the divisions in this dimension are filled with the seed design as illustrated in  Figure 4 (a-d). In 

the next step, the current set of points (newly filled division) is used as a new seed design and the procedure of 
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shifting the seed design is repeated in the next dimension.  Figure 4 (e-g) illustrates the shifting procedure in the 

vertical direction.  

 

    
(a) Step 1 

 

(b) Step 2 

 

(c) Step 3 

 

(d) Step 4 

 

   
(e) Step 5 (f) Step 6 (g) Step 7 

Figure 4: Process of creating the 16 2×  enhanced Latin hypercube design. Figure 4-(a) illustrates the initial 

placement of the seed. Figure 4-(b) to (d) shows the translation of the seed in the horizontal direction (which 

is accompanied by a one-level vertical displacement to preserve Latin hypercube properties). Figure 4-(d) also 

represents the newly created “seed” that will be translated in the vertical direction. Figure 4-(e) to (g) 

illustrates the translation in the vertical direction (which is accompanied by horizontal displacement of one 

level). 

The biggest advantage of this approach is that there are no calculations to perform. All operations can be viewed 

as a simple translation of the seed designs in the vn -dimensional hypercube. Although efficient for generating large 

designs, the algorithm proposed up to now fails to provide flexibility for the total number of points in the final Latin 

hypercube design. The approach presented so far is limited in the sense that Eqs. (3) and (4) must hold. The next 

section describes a strategy to overcome this limitation and generate designs with arbitrary number of points. 

B. Generating experimental designs of any size 

To generate a Latin hypercube design with any number of points, the first step is to generate a TPLHD that has 

at least the required number of points using the algorithm described above. If this design contains the required 

number of points, the process is completed. Otherwise, an experimental design larger than the required is created 
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and a resizing process is used to reduce the number of points to the desired one. The points are removed one-by-one 

from the initially created TPLHD by discarding the points that are the furthest from the center of the hypercube and 

reallocating remaining points to fill the whole design (preserving the Latin hypercube properties). In the proposed 

algorithm removing the points furthest from the center does not reduce the area of exploration. After removing the 

points, the final design is rescaled to cover the whole design space.  

To illustrate the approach, consider the example where a 12 2×  Latin hypercube is created using the one point 

seed of Figure 2-(a) (i.e., 1sn = ). From Eqs. (3) and (4), 
1

3.46vn

d pn n= ≅  does not result in an integer number 

in this case. Rounding 3.46dn ≅  up would give 4dn =  and the next largest design that can be constructed is the 

16 2× , as illustrated in Figure 4. The resizing process begins with first calculating the distance between each of the 

sixteen points and the center of the design space. To create a 12 2×  design out of a 16 2×  one, the four points 

furthest from the center have to be removed. In practice, this means the points of the original TPLHD have to be 

ranked according to the distance from the center of the design space. The suggested resizing algorithm, computes 

these distances only one time, during the very first iteration. When a point is removed, the levels occupied by its 

projection along each of the dimensions have to be eliminated. This ensures the Latin hypercube property that only a 

single point is found at any of the levels. Figure 5 illustrates the resizing process step by step. The number of points 

in the design actually shrinks but the final design still represents samples over the same design space. Figure 5-(a) 

shows that in the 16 2×  design the points in the left-bottom and right-top corners are equally far from the center. 

Due to symmetry, it is not important which of the points will be removed first. The top-right point is removed first, 

Figure 5-(a); and the bottom-left one is removed next, Figure 5-(b). Figure 5-(c) might be the best illustration of how 

the algorithm guarantees the Latin hypercube properties because it is the first time that an internal level is removed. 

Removing a point is as simple as eliminating it from the experimental design. However, as illustrated in Figure 6, 

this would leave empty levels (breaking the Latin hypercube requirements). The correct implementation of the 

resizing algorithm (see Figure 5-(c)) takes care of this limitation by also eliminating the levels that the point used to 

occupy. In Figure 5-(c) this means that the three points on the right would move to the left (occupying the empty 

level that was in between the points). Next, the remaining points are scaled to cover the original design space. The 

scaling is as simple as the mapping of the remaining points to the design space of interest such that the lower and 

upper bounds are sampled by one of the points of the design (i.e., simple unidirectional scaling of all points). After 
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each step, a new near optimum Latin hypercube is obtained with one point less. The process continues until the 

12 2×  design is achieved. Removing points/levels part of the algorithm reduces the number of points of the 

experimental design, while preserving the Latin hypercube requirements. On the other hand, the resizing part makes 

the experimental design to fit in the original design space again. 

 

 
(a) Step 1. 

 

 
(b) Step 2. 

 

 
(c) Step 3. 

 

 
(d) Step 4. 

Figure 5: Process of creating a 12 2×  enhanced Latin hypercube design from a 16 2×  design. 

C. Seed designs 
Using the described algorithm, one can create different instances of the TPLHD by changing the seed design, as 

illustrated by Figure 7 for the 16 2×  TPLHD. As it is not known beforehand which seed design will lead to the best 
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design in terms of the pφ  criterion, one would not know what seed design to use. However, this might be a positive 

feature of the algorithm. First, it is possible that the different designs are comparably good (when looking at the pφ  

criterion). Second, due to the low cost of the algorithm (as we will show in the next sections), it pays to create 

instances of the Latin hypercube with different seeds and then pick the best one according to the pφ  criterion. 

 

 
Figure 6: Wrong step of the resizing algorithm. 
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 (a) From 1-point seed. (b) From 2-points seed. (c) From 3-points seed. (d) From 4-points seed. 

Figure 7: 16 2×  TPLHD obtained with different seeds. 

Because of the shifting process, the number of levels in a block is greater than the number of points in the seed 

design. This means that when creating design starting from seeds with more than one point ( 1sn > ) it is necessary 

to reshape them to fit into one block of the TPLHD. Figure 8 illustrates this idea with the design of a 16 2×  

TPLHD starting from a 4 2×  seed (i.e., 4sn = ). Figure 8-(a) shows the initial 4 2×  seed (that respects the Latin 

hypercube properties). It is necessary to insert as many empty levels between two consecutive projections of points 

as the number of division in a given directions, as shown in Figure 8-(b). This way, at the end of the shifting 
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process, there will be only one point per level (see Figure 8-(c)). The next section reviews the implementation of 

what was described so far. 

 

 

  

(a) Original seed. 
(b) Seed reshaped to fit in one block 

of the TPLHD. 

(c) Seed design filling different 

blocks of the TPLHD.  

Figure 8: Illustration of the reshaping of the seed design. 

D. Summary of the algorithm 

The proposed algorithm is inspired by the optimization of the pφ  criterion penalizing designs with close points 

(due to 50p =  and 1t =  in Eq. (1)). Good Latin hypercube designs are expected to be obtained because the 

minimum distance is fixed at the level of seed design. This is particularly clear for large number of points in low 

dimensions. Figure 9 illustrates the Translational Propagation algorithm. The input parameters are the initial seed 

design s , the number of points in the seed design, sn , number of points of the desired Latin hypercube design, pn , 

and the number of variables, vn . pn
∗  and dn

∗  are the number of points and number of divisions of the first TPLHD 

to be created. While pn  can assume any value, pn
∗  is such that Eq. (3) returns an integer number of blocks bn . The 

first step is to check whether or not a bigger experimental design is needed. The number of divisions, dn , and its 

rounded up value, dn
∗ , are compared. If d dn n∗ > , Eqs. (3) and (4) does not hold and the number of points in the 

TPLHD to be created, pn
∗ , is greater than the desired, pn . Next, the seed design is reshaped to fit in one block of the 

TPLHD (Section II.C), and a TPLHD of pn
∗  points is created (Section II.A). Finally, if p pn n∗ > , the TPLHD 

previously obtained is resized such that it will have pn  points (Section II.B). X is the final TPLHD (with pn  

points). 

Appendix A gives the MATLAB implementation of the different building blocks of the translational propagation 

algorithm. 
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III. Numerical Experiments 

To illustrate the effectiveness of the proposed TPLHD, a set of configurations that covers the typical application 

range of the LHD is considered. The experimental designs vary from only two to twelve variables as summarized in 

Table 2. For each number of variables, three cases representing small, medium and large number of design points 

were considered. The number of design points was calculated relative to the number of coefficients in a full 

polynomial model for the specified number of variables. The small designs have two times more points than the 

number of coefficients in a full quadratic polynomial model, while the large designs have twenty times more points 

than the number of coefficients in the same model. The medium designs have two times more points than the 

number of coefficients in a full cubic polynomial model.  

 

 
Figure 9: Flowchart of the Translational Propagation algorithm. 

 

 



 13 

Table 2: Latin hypercube design configurations considered. 

No. of points No. of 

variables Small designs Medium designs Large designs 

2 12 20 120 

4 30 70 300 

6 56 168 560 

8 90 330 900 

10 132 572 1320 

12 182 910 1820 

 

The influence of the initial seed used to construct the TPLHD was studied first. For this study, different TPLHDs 

were generated using seeds with one to five points. The designs were then compared using the values of the pφ  

criterion. Next, the efficiency of the proposed algorithm in approximating the optimal LHD was studied. For this 

study, an estimate of the range of the pφ  criterion for the LHDs proposed in Table 2 is created based on Monte 

Carlo simulation plus the results from 100 simulations of three different Latin Hypercube optimization techniques. 

The Monte Carlo simulation created 200,000 random LHDs for the configurations proposed in Table 2 (this is 

possible because the Latin hypercube algorithm allows for the creation of different designs based on a random 

number generator). The three different Latin Hypercube optimization techniques used in the study are: 

1. The Enhanced Stochastic Evolutionary algorithm (ESEA) of Jin et al. [25]: set with maximum number of 

twenty iterations (but each simulation was allowed to run at most five iterations without improvement of 

the objective function). 

2. The Genetic algorithm (GA) implementation of Bates et al. [24]: set with maximum number of fifty 

iterations (but each simulation was allowed to run at most twenty iterations without improvement of the 

objective function). 

3. The native MATLAB function lhsdesign [30]: using the maxmin criterion (maximization of the minimum 

distance) and two hundred iterations. With these settings, the MATLAB lhsdesign function selects the best 

LHD from two hundred randomly created designs.  The maxmin criterion is used to select the best design. 

The settings for both GA and ESEA were based on a few trials for the design with 560 points and six variables. 

All simulations were conducted using an Intel Core 2 Quad CPU Q6600 at 2.40GHz, with 3GB of RAM running 

MATLAB 7.6 (R2008a) under Windows XP. The SURROGATES toolbox [29] was used to execute the TPLHD, 

ESEA, and GA algorithms under MATLAB [30]. 
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Instead of showing only the pφ  criterion as defined in Eq. (1), a normalized version, pφ
� , is also presented for 

easier comparison: 

 
( )

( ) ( )

min
 ,

max min

p p

p

p p

φ φ
φ

φ φ

−
=

−
�  (5) 

where ( )max pφ  and ( )min pφ  are the maximum and minimum values of pφ  found in the generated DOEs 

(including both the TPLHDs and the Monte Carlo simulations); which means that 0 1pφ≤ ≤� . 

Using the Monte Carlo simulations and the optimization results, it is possible to estimate the range of variation 

of pφ  values and thus make a judgment if a specific design represents a substantial improvement or not. The pφ
�  

criterion makes the comparison of the distributions of different designs easier. Although it eliminates the sense of 

absolute magnitude (because of the normalization), it permits identifying if the distributions are towards the low or 

high values of the pφ  criterion. 

IV. Results and Discussion 

Table 3 shows the values of the pφ  criterion for TPLHDs obtained using different initial seed designs for design 

configurations of Table 2. From these results, it can be concluded that no single seed size is always the best (even 

considering designs with the same number of variables). For example, the single point seed is the best for the 

12 2×  and 20 2×  designs, while the two-point seed is the best for the 120 2×  design. However, there might be 

cases where different seeds are equally competitive. As illustration, this is the case for the 30 4×  design, where the 

four-point and five-point seeds produce designs with nearly the same pφ  criterion. These two observations together 

with the fact that no time consuming optimization is required in the translational propagation algorithm suggests that 

it is possible to create several instances of the TPLHDs (based on different initial seeds) and select the design of 

choice based on the pφ  criterion. Table 3 also shows that an increase in dimensionality seems to favor the single 

point seed. The reason is that in higher dimensions a seed with multiple points acts like a cluster of points, hurting 

the pφ  criterion (this effect is less evident in lower dimensions). 
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Table 3: pφ  criterion, defined in (1), ( 50p = , 1t = ) for TPLHD constructed from different seeds (the best 

TPLHD is shown in bold face). 

Seed size No. of 

variables 

No. of 

points 1 2 3 4 5 

2 12 2.8 2.9 3.8 3.7 3.8 

2 20 4 4.8 4.9 5 4 

2 120 11.0 9.4 12.6 13.4 13.8 

4 30 1.9 1.8 1.8 1.6 1.6 

4 70 2.7 5.0 2.9 2.0 2.1 

4 300 7.2 13.6 6.2 3.6 4.0 

6 56 1.7 2.1 1.8 3.7 1.7 

6 168 3.1 6.0 2.4 2.9 2.5 

6 560 3.2 11.7 5.3 7.9 3.6 

8 90 1.6 3.4 2.6 5.9 1.9 

8 330 3.7 4.6 3.1 3.0 2.5 

8 900 4.7 16.4 4.6 2.7 2.6 

10 132 1.6 3.7 3.9 6.6 3.5 

10 572 2.0 8.8 4.0 3.1 2.9 

10 1320 4.2 6.1 3.5 3.9 3.1 

12 182 1.7 11.3 3.1 1.9 2.6 

12 910 2.0 16.8 3.2 3.1 2.4 

12 1820 2.1 17.8 3.7 3.4 2.4 

 

Table 4 shows detailed statistics regarding the pφ  criterion with data obtained during the Monte Carlo and 

optimization simulations (the 5th percentile is added to give information about the lower values of pφ ). For up to six 

variables, TPLHD delivers exceptionally good designs (within five percent of the best designs for most of the cases). 

For eight to twelve variables, TPLHD is not attractive anymore (with designs located within the last quartile of the 

pφ  criterion distribution). The reader will notice that for ten variables the maximum value of pφ  drops when 

coming from 572 to 1320 points (contrarily from the trend of the other design configurations). This is because it is 

difficult to estimate this value for high dimensional cases (even with total of more than 200,000 simulations). On the 

other hand, the percentile information establishes the trend of increasing pφ  with the number of points. Since the 

algorithm was heuristically developed based on the visual observation of the patterns generated by the optimal LHD 

in two and three dimensions according to the pφ  criterion, it is of no surprise that the efficiency is harmed when the 

dimensionality increases. The range of the pφ  criterion varies with different design configurations and can also be 

very large (for example, the range for the 120 2×  design is 52.9). Thus, only the normalized pφ  criterion, pφ
� , is 

used from this point on. 
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Table 4: TPLHD and statistics about the pφ  criterion, defined in (1), ( 50p = , 1t = ) for each studied 

configuration. Bold faces show when TPLHD offers the best design. TPLHD performs very well up to 6 

dimensions. 

Percentiles No. of 

variables 

No. of 

points 
TPLHD Min 

5 25 50 75 
Max Range 

2 12 2.8 2.3 3.7 5.5 5.6 5.6 5.7 3.4 

2 20 4.0 3.4 6.4 9.5 9.6 9.7 10.0 6.6 

2 120 9.4 9.4 40.2 59.5 60.3 60.8 62.3 52.9 

4 30 1.6 1.5 2.3 2.9 3.2 3.7 7.4 5.9 

4 70 2.0 2.0 3.8 4.9 5.8 6.9 17.3 15.3 

4 300 3.6 3.4 8.6 11.1 13.0 15.7 74.8 71.3 

6 56 1.7 1.0 1.5 1.8 2.0 2.3 7.9 6.9 

6 168 2.4 1.3 2.4 2.8 3.2 3.6 23.9 22.6 

6 560 3.2 1.8 3.7 4.4 4.9 5.7 32.9 31.1 

8 90 1.6 0.9 1.1 1.2 1.3 1.5 5.9 5.0 

8 330 2.5 1.4 1.6 1.8 2.0 2.2 9.7 8.3 

8 900 2.6 1.8 2.1 2.4 2.7 3.0 16.3 14.5 

10 132 1.6 0.7 0.8 0.9 1.0 1.1 6.6 5.8 

10 572 2.0 1.0 1.2 1.3 1.4 1.5 8.8 7.8 

10 1320 3.1 1.3 1.4 1.6 1.7 1.9 6.1 4.8 

12 182 1.7 0.6 0.7 0.7 0.8 0.8 11.3 10.7 

12 910 2.0 0.8 0.9 1.0 1.1 1.1 16.8 16.0 

12 1820 2.1 0.9 1.0 1.1 1.2 1.3 17.8 16.9 

 

Figure 10 illustrates the box plots of the pφ
�  criterion for each of the studied configurations. A box plot shows 

the full data range on the y-axis. A box is defined by lines at the lower quartile (25%), median (50%), and upper 

quartile (75%) values. Lines extend from each end of the box for a distance of 1.5 times the inter-quartile range or 

until the data limit is reached. The data points falling outside this 1.5 times the inter-quartile range represent outliers 

that are shown using “+” symbols. Figure 10 shows that the distribution of pφ
�  tends to lower values as the 

dimensionality of the problem grows. It does not necessarily mean that the LHD fills the space better; after all, the 

sparsity of the points severely increases with the number of variables. However, this behavior suggests that the 

probability of generating a design in the lower levels of the pφ
�  increases with the dimensionality. The following 

conclusions can thus be drawn from the numerical experimentation: 

• In low dimensions: the optimum LHD is an outlier located in the lower region of the pφ  values; making it 

difficult to be obtained. 
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• In high dimensions: most of the LH designs are in the lower region of the pφ
� ; making it difficult to 

distinguish the optimal LHD (obviously according to this criterion only) and other several good 

representations of the LHD. 

Figure 10 makes clear that the TPLHD represents a better approximation of the optimum LHD in low to medium 

dimensions (up to six variables) and thus we will focus only on the designs with up to six variables. 

Table 5 allows a comparison between the TPLHD and the mean out of 100 simulations of three different 

optimization techniques: (i) the Enhanced Stochastic Evolutionary algorithm (ESEA) of Jin et al. [25]; (ii) the 

Genetic algorithm (GA) implementation of Bates et al. [24]; and (iii) the native MATLAB function lhsdesign [30]. 

TPLHD was obtained by generating five candidates from different seeds and then picking the best one according to 

the pφ  criterion (which means that Table 5 shows the time needed to generate all five candidates. Appendix B 

shows the discussion on the number of points that needs to be allocated in each of the cases; which directly impacts 

the computational cost). Results in Table 5 reinforce that TPLHD offers very good solutions; with most of the 

designs presenting 0pφ =
� . This means that TPLHD found the best result of the set of all simulations (including the 

Monte Carlo and all optimization ones). As for the computational cost, the TPLHD design is superior in most of the 

cases, or in the worst case matches the best time of the traditional optimization techniques. Clearly, the point density 

has a dramatic impact on the optimization techniques (especially ESEA and GA). For instance, for the ESEA with 

six variables, moving from 56 to 560 points makes the computational cost change from two seconds to a little more 

than 18 minutes. The lhsdesign MATLAB function tends to suffer less, since it can be seen as a Monte Carlo 

simulation with only 200 samples (200 is the number of iterations that lhsdesign was allowed to run). Still, in six 

dimensions, when moving from 56 to 560 points the computational cost of the lhsdesign increases more than 100 

times. 
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(a) Low to medium dimensions. 

 
(b) Medium to high dimensions. 

Figure 10: Boxplots of the pφ
�  criterion, defined in (5), ( 50p = , 1t = ), where circles indicate the best 

TPLHD. TPLHD represents a good solution in low to medium dimensions. pφ
�  ranges from 0 to 1. 

Table 5 gives the impression that increasing the number of variables (no matter the point density) made the three 

optimization techniques to improve their own performance (in terms of the pφ
�  criterion). Considering the pφ

�  

criterion of the designs with four and six variables, TPLHD and any of the optimization techniques would offer 

designs that are below 0.1. Then, the computational cost would leave only TPLHD and the lhsdesign as competing 

strategies. However, a closer look at the distributions of the pφ
�  criterion shows that TPLHD is the best choice. 

Figure 11 contrasts the box plot of the pφ
�  criterion with the values found by TPLHD and the 0.1 threshold of 

lhsdesign. Because the distributions tends to lower values, the 0.1 threshold is a bad value for the 300 4×  design 

and is a marginal to undesired value in 6 dimensions. It is clear that TPLHD offers a better design (not mentioning a 

faster solution). 
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Table 5: Performance comparison between TPLHD and the median out of 100 simulations of different 

optimization techniques. ESEA is the implementation of the Enhanced Stocastic Evolutionary algorithm of 

Jin et al. [25]. lhsdesign is a native MATLAB function. GA refers to the Genetic algorithm implementation of 

Bates et al. [24]. pφ
� , defined in (5), ranges from 0 to 1. 

No. of variables 2 4 6 

No. of points 12 20 120 30 70 300 56 168 560 

TPLHD 0.1 0.1 0 0 0 0 0.1 0 0 

ESEA 0.2 0.1 0.1 0 0 0 0 0 0 
GA 0.2 0.3 0.3 0.1 0.1 0 0 0 0 pφ

�  

lhsdesign 0.5 0.5 0.6 0.1 0.1 0.1 0.1 0. 0.1 

TPLHD 0≅  0≅  0.1 0≅  0≅  0.7 0≅  0.5 2 

ESEA 0≅  0.2 13 0.3 3 173 2 34 1096 

GA 0.4 0.9 24 4 17 275 19 143 1509 

Time 

(sec) 

lhsdesign 0≅  0≅  0.2 0≅  0.1 1.8 0.1 1.0 13 

 

 

Figure 11: Boxplots of the pφ
�  criterion between 0 and 0.5 for the four and six dimensional designs. pφ

�  is 

defined in (5), ( 50p = , 1t = ) and ranges from 0 to 1. Circles indicate the TPLHD. 

One of the reasons for the poor performance of the TPLHD in high dimensions might be the existence of the 

directionality property of TPLHD.  Because of the way the points are created in TPLHD, they tend to be stretched 

along one direction.  Even the optimal LHD (obtained with ESEA or GA for example) from Figure 1-(b) may be 

considered as having points placed in a preferred direction (close to 45 degrees). Goel et al. [14] discussed that a 

single criterion for generating design of experiments may lead to large deteriorations in other criteria. In the 

proposed algorithm, the pφ  criterion is used and the directionality of the resulting Latin hypercube designs (for both 

the TPLHD and the designs obtained with traditional optimization) is a clear loss. There has been work on the 

optimization of the space-filling properties of the LHD while preserving low correlation between variables. Cioppa 

and Lucas [31] presented an algorithm that improves the space-filling properties of LHD at the expense of inducing 

small correlations between the columns in the design matrix. However, authors warned that the approach is 



 20 

computationally prohibitive. Hernandez [32] presented an extensive study on a set of methodologies to create design 

matrices with little or no correlation (including saturated nearly orthogonal LHDs). Franco et al. [33] discussed a 

radar-shaped statistic for identifying the directionality property in a DOE (especially efficient in low dimension).  

However there has been little research on how to employ this statistic for improving DOE and not just for 

identifying the directionality in an existing DOE, the directionality statistic was not employed to improve existing 

DOE in this paper. Nevertheless, the focus of this research is the translational propagation algorithm as a cheap 

alternative to traditional optimization of the Latin hypercube designs based on the pφ  criterion. 

Other, more general questions arise in higher dimensions: it is not clear what is the meaning of space-filling 

designs and the relative cost of any optimization strategy of experimental designs. The sparsity of the data may 

make it difficult to judge whether designs given by the optimization of the Latin hypercube are in fact space-filling 

designs. Even if they are, considering plots such as those in Figure 10, the computational cost of strategies like 

TPLHD may end up being very close to random search (such as in lhsdesign). It may happen that in higher 

dimensions it is not worth investing much in time consuming optimization (few iterations of random search may 

provide satisfactory results). In spite of that, authors intend to investigate the potential of the radar-shaped statistic in 

to improve the TPLHD properties. 

V. Conclusions 

A methodology for creating Latin hypercube designs via translational propagation algorithm (TPLHD) is 

proposed. The approach is based on the idea that a simple “seed design” with a few points can be used as a building 

block to construct a near optimal Latin Hypercube design (LHD). The main advantage of the proposed methodology 

is that it requires virtually no computational time. The approach was tested on eighteen different experimental 

design configurations with varying dimensionality and point density. Monte Carlo simulations were used to support 

the analysis of the algorithm’s performance. For these cases it was found that: 

• Based on the Monte Carlo simulations, the probability of randomly generating good designs in terms of the 

pφ  criterion (i.e. designs with low values of pφ ) increases with the dimensionality. This does not mean 

that the designs will fill the space better, it only means that designs tends to be equally competitive. This 

fact makes computationally cheap strategies such as random search attractive in high dimensions. 
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• It was found that for the low dimensional cases (up to six variables) the TPLHD approximates the optimal 

LHD (using pφ  criterion) very well.  In higher dimensions (eight to twelve variables), the TPLHD does not 

approximate the optimum solution well anymore. 

As the time for generating the TPLHD is very small, in small to medium dimensions it is recommended to 

generate several TPLHDs (using seed designs with different number of points) and to pick the best one according to 

the pφ  criterion. 
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Appendix 

A. MATLAB implementation of the Translational Propagation algorithm 

Table 6 to Table 9 give the MATLAB code of our implementation of the translational propagation algorithm. 

For simplicity, the levels of the Latin hypercube are represented by integer values. This means that each of the 

points of the created Latin hypercube design can assume values from one to the number of points. The created Latin 

hypercube needs to be properly scaled to the design space of interest. Table 6 gives the main function; which has as 

input parameters the number of points, pn , and variables, vn , of the desired Latin hypercube design, as well as the 

seed design, s , and its number of points, sn . The points in the seed design initially assume values from one to the 

sn . Lines 9 to 17 of the algorithm shown in Table 6 illustrate how to take care of the size of the Latin hypercube to 

be created using the translational propagation algorithm. At first, a Latin hypercube observing Eqs. (3) and (4) is 

created; even if it means creating a design bigger than required. The seed design is then properly placed into the first 

block of to be filled by the algorithm (line 19). Line 43 is the call for the function that creates the initial Latin 

hypercube design. If necessary, the design is then resized to the initially set configuration. Table 7 gives the 

implementation of the reshaping of the seed design (see Section II.C). Table 8 illustrates the body of the 

translational propagation algorithm. Lines 16 to 18 show how to create the displacement vector that is used to 

translate the seed in the hyperspace. Finally, Table 9 presents the implementation of the resizing process. Lines 8 to 
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15 show how we reduce the initially large Latin hypercube to the pn  initially set. Lines 18 to 30 present how to 

restore the Latin hypercube condition of one point per level to the remaining points. 

Table 6: MATLAB implementation of the translational propagation algorithm. The created design ranges 

from one to the number of points. The algorithm works with integer indexes for each point. ( )ceil x  is the 

MATLAB function that rounds the elements of x  up to the nearest integers. ( )ones ,m n  is the MATLAB 

function that creates an m -by-n  matrix of ones. See Table 7 for details about reshapeSeed. See Table 8 

for details about createTPLHD. See Table 9 for details about resizeTPLHD. ( )vertcat ,A B  is the 

MATLAB function that performs the vertical concatenation of matrices A and B. 

1: function X = tplhsdesign(np, nv, seed, ns) 

2: % inputs: np – number of points of the desired Latin hypercube (LH) 

3: %         nv – number of variables in the LH 

4: %         seed – initial seed design (points within 1 and ns) 

5: %         ns – number of points in the seed design 

6: % outputs: X – Latin hypercube created using the translational 

7: %          propagation algorithm 

8:  

9: % define the size of the TPLHD to be created first 

10: nd = ( np/ns )^( 1/nv ); % number of divisions, nd 

11: ndStar = ceil( nd ); 

12: if (ndStar > nd) 

13:     nb = ndStar^nv; % it is necessary to create a bigger TPLHD 

14: else 

15:     nb = np/ns; % it is NOT necessary to create a bigger TPLHD 

16: end 

17: npStar = nb*ns; % size of the TPLHD to be created first 

18:  

19: % reshape seed to properly create the first design 

20: seed = reshapeSeed(seed , ns, npStar, ndStar, nv); 

21:  

22: % create TPLHD with npStar points 

23: X = createTPLHD(seed, ns, npStar, ndStar, nv); 

24:  

25: % resize TPLH if necessary 

26: npStar > np; 

27: if (npStar > np) 

28:     X = resizeTPLHD(X, npStar, np, nv); 

29: end 

30: return 
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Table 7: MATLAB implementation of the reshapeSeed function. ( )ones ,m n  is the MATLAB function 

that creates an m -by-n  matrix of ones. ( )round x  is the MATLAB function that rounds the elements of X to 

the nearest integers. 

1: function seed = reshapeSeed(seed , ns, npStar, ndStar, nv) 

2: % inputs:  seed   – initial seed design (points within 1 and ns) 

3: %          ns     – number of points in the seed design 

4: %          npStar – number of points of the Latin hypercube (LH) 

5: %          nd     – number of divisions of the LH 

6: %          nv     – number of variables in the LH 

7: % outputs: seed   – seed design properly scaled 

8:  

9: if ns == 1 

10:     seed = ones(1, nv); % arbitrarily put at the origin 

11: else 

12:     uf = ns*ones(1, nv); 

13:     ut = ( (npStar / ndStar) - ndStar*(nv - 1) + 1 )*ones(1, nv); 

14:     rf = uf - 1; 

15:     rt = ut - 1; 

16:     a = rt./rf; 

17:     b = ut - a.*uf; 

18:     for c1 = 1 : ns 

19:         seed(c1,:) = a.*seed(c1,:) + b; 

20:     end 

21:     seed = round(seed); % to make sure that the numbers are integer 

22: end 

23:  

24: return 

 



 24 

 

Table 8: MATLAB implementation of the createTPLHD function. ( )ones ,m n  is the MATLAB function 

that creates an m -by-n  matrix of ones. ( )length a  is the MATLAB function that returns the number of 

entries in the vector a . ( )vertcat ,A B  is the MATLAB function that does the vertical concatenation of the 

matrices A  and B . 

1: function X = createTPLHD(seed, ns, npStar, ndStar, nv) 

2: % inputs:  seed   – initial seed design (points within 1 and ns) 

3: %          ns     – number of points in the seed design 

4: %          npStar – number of points of the Latin hypercube (LH) 

5: %          nd     – number of divisions of the LH 

6: %          nv     – number of variables in the LH 

7: % outputs: X      – Latin hypercube design created by the translational 

8: %                   propagation algorithm 

9: % we warn that this function has to be properly translated to other 

10: % programming languages to avoid problems with memory allocation 

11:  

12: X = seed; 

13: d = ones(1, nv); % just for memory allocation 

14: for c1 = 1 : nv  % shifting one direction at a time 

15:     seed = X;     % update seed with the latest points added 

16:     d(1 : (c1 - 1))   = ndStar^(c1 - 2); 

17:     d(c1)             = npStar/ndStar; 

18:     d((c1 + 1) : end) = ndStar^(c1 - 1); 

19:     for c2 = 2 : ndStar % fill each of the divisions 

20:         ns = length(seed(:,1)); % update seed size 

21:         for c3 = 1 : ns 

22:             seed(c3,:) = seed(c3,:) + d; 

23:         end 

24:         X = vertcat(X, seed);  

25:     end 

26: end 

27: return 
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Table 9: MATLAB implementation of the resizeTPLHD function. ( )ones ,m n  is the MATLAB function 

that creates an m -by-n  matrix of ones. ( )zeros ,m n  is the MATLAB function that creates an m -by-n  

matrix of zeros. ( )norm x  is the MATLAB function that computes the vector norm ( ( )2ix∑ ). ( )min x  is 

the MATLAB function that finds the smallest element in x. ( )sort a  is the MATLAB function that sorts the 

vector a  in the ascending order, returning the sorted and the index vectors. ( )sortrows X, COL  is the 

MATLAB function that sorts the matrix X  based on the columns specified in the vector COL . 

isequal(A, B)  is the MATLAB function that returns logical 1 (TRUE) if arrays A and B are the same size 

and contain the same values, and logical 0 (FALSE) otherwise. 

1: function X = resizeTPLHD(X, npStar, np, nv) 

2: % inputs:  X      – initial Latin hypercube design 

3: %          npStar – number of points in the initial X 

4: %          np     – number of points in the final X 

5: %          nv     – number of variables 

6: % outputs: X      – final X, properly shrunk 

7:  

8: center   = npStar*ones(1,nv)/2; % center of the design space 

9: % distance between each point of X and the center of the design space 

10: distance = zeros(npStar, 1);  

11: for c1 = 1 : npStar 

12:     distance(c1) = norm( ( X(c1,:) - center) ); 

13: end 

14: [dummy, idx] = sort(distance); 

15: X = X( idx(1:np), : ); % resize X to np points 

16:  

17: % re-establish the LH conditions 

18: Xmin = min(X); 

19: for c1 = 1 : nv 

20:     % place X in the origin 

21:     X = sortrows(X, c1); 

22:     X(:,c1) = X(:,c1) - Xmin(c1) + 1; 

23:     % eliminate empty coordinates 

24:     flag = 0; 

25:     while flag == 0; 

26:         mask = (X(:,c1) ~= ([1:np]')); 

27:         flag = isequal(mask,zeros(np,1)); 

28:         X(:,c1) = X(:,c1) - (X(:,c1) ~= ([1:np]')); 

29:     end 

30: end 

31: return 
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B. Number of points allocated before resizing the TPLHD 

As discussed in Section II, the number of points that needs to be allocated for a given configuration of the 

TPLHD is dictated by Eqs. (3) and (4). In the most general cases, a resizing process needs to be used. Thus, the total 

number of points initially generated dictates the computational cost of the TPLHD algorithm. Table 10 shows the 

number of points allocated before the resizing process for each of the configurations studied in this paper. It can be 

observed that the more variables, the more points are discarded. This confirms the fact that design strategies based 

on the domain subdivision (the translational propagation algorithm is an example) tend to have poor performance as 

dimensionality increases. 

Table 10: Size of the TPLHD created before the resizing process for each seed size. The final best TPLHD is 

shown in bold face. 

Seed size No. of 

variables 

No. of 

points 1 2 3 4 5 

2 12 16 18  12  16  20  

2 20 25 32  27  36  20  

2 120 121  128  147  144  125  

4 30 81  32  48  64  80  

4 70 81  162  243  324  80  

4 300 625  512  768  324  405  

6 56 64  128 192  256  320  

6 168 729  1458 192  256  320  

6 560 729  1458  2187  2916  3645  
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