
 1

An Algorithm for Fast Optimal Latin Hypercube Design of Experiments

Felipe A. C. Viana
1

University of Florida, Gainesville, FL 32611, USA

Gerhard Venter
2

Stellenbosch University, Matieland, Stellenbosch 7602, South Africa

and

Vladimir Balabanov
3

The Boeing Company, Seattle, WA 98204, USA

This paper presents the Translational Propagation algorithm; a new method for

obtaining optimal or near optimal Latin hypercube designs without using formal

optimization. The procedure requires minimal computational effort with results virtually

provided in real time. The algorithm exploits patterns of point locations for optimal Latin

hypercube designs based on the pφ criterion (a variation of the maximum distance

criterion). Small building blocks, consisting of one or more points each, are used to recreate

these patterns by simple translation in the hyperspace. Monte Carlo simulations were used

to evaluate the performance of the new algorithm for different design configurations where

both the dimensionality and the point density were studied. The proposed algorithm was also

compared against three formal optimization approaches (namely random search, genetic

algorithm, and enhanced stochastic evolutionary algorithm). It was found that (i) the

distribution of the pφ values tends to lower values as the dimensionality is increased; and (ii)

the proposed translational propagation algorithm represents a computationally attractive

strategy to obtain near optimum Latin hypercube designs up to medium dimensions.

Keywords: Design of Computer Experiments; Experimental design; Latin Hypercube Sampling;

Translational Propagation Algorithm.

1
 (Corresponding author) Research Assistant, Dept. of Mechanical and Aerospace Engineering, fchegury@ufl.edu.

2
 Professor, Dept. of Mechanical and Mechatronic Engineering, gventer@sun.ac.za.

3
 Structural Analysis Engineer, v.o.balabanov@gmail.com.

 2

I. Introduction

Design optimization usually requires a large number of potentially expensive simulations. Advancements in

computational hardware and algorithms have not alleviated much of the resulting computational crunch because of

the ever increasing appetite for improved modeling of physical processes and more detailed optimization [1]. To

reduce the computational cost, surrogate models, also known as meta-models, are often used in place of the actual

simulation models [2]-[7]. Surrogate-based design optimization begins by identifying locations in the design space

where simulations will be conducted. This process of identifying locations in the design space is known as design of

experiments (DOE) [8], [9]. Response data (often via numerical simulations) is collected at these locations and one

or more candidate surrogate models are fitted to the data [10]-[12]. Finally, one or more of the candidate models are

selected for calculating responses (and to facilitate objective and constraint calculation during the optimization

process) at points in the design space where the actual responses are not yet available.

It is well known among designers that the quality of fit, which often defines the performance of the surrogate

model during optimization and design space exploration strongly depends on the design of experiments (point

location and density) [13], [14]. By quality of fit, the authors imply the discrepancy (in a general sense) between the

actual response and the value predicted by the corresponding surrogate model. There exist many measures for the

quality of fit, depending on the particular problem under consideration [14], [15].

A design of experiment with pn points and vn variables is usually written as a p vn n× matrix

1 2, , ,
p

T

n
 =   

X x x x… , where each row 1 2, , ,
vi i i in

x x x =   
x … represents a sample and each column

represents a variable. Within the design and analysis of computer experiments, the Latin hypercube design (LHD)

proposed by McKay et al. [16] and Iman and Conover [17], is very popular. The LHD presents advantages such as:

(i) the number of samples (points) is not fixed; (ii) orthogonality of the sampling points (a design is orthogonal if the

inner product of any two columns is zero [3], [18]); and (iii) the sampling points do not depend on the surrogate

model that will be constructed. A LHD with pn points is constructed in such a way that each of the vn variables is

divided into pn equal levels and that there is only one point (or sample) at each level. A random procedure is used

to determine the point locations. Figure 1 shows two examples of LHDs with 2vn = and 16pn = . Since the LHD

is constructed using a random procedure, there is nothing preventing a design that has poor space filling qualities, as

 3

the extreme case illustrated in Figure 1-(a). A better choice is shown in Figure 1-(b), where the points are more

uniformly distributed in the domain.

(a) Ill-suited LHD with 2vn = and 16pn = . (b) Reasonable LHD with 2vn = and 16pn = .

Figure 1: Examples of Latin hypercube designs.

The optimization of the space-filling qualities of the Latin hypercube design is a challenging problem that has

resulted in a number of research publications [19]-[28]. One interpretation of the space filling property is to consider

a vn -dimensional sphere around each design point in the experimental design. The larger the radius of the smallest

sphere that does not cross the boundary of the design space, the better the space filling property of the design.

Optimizing the point location in a Latin hypercube design to improve the uniformity of the point distribution,

typically by maximizing the radius of the smallest sphere, results in an Optimal Latin hypercube design. Such

designs are usually obtained from time consuming combinatorial optimization problems, with search space of the

order of ()! vn

pn . For example, to optimize the location of 20 samples in 2 dimensions, the algorithm has to select

the best design from more than 10
36

 possible designs. If the number of variables is increased to 3, the number of

possible designs is more than 10
55

. Researches have proposed various optimization algorithms and objective

functions to solve this problem. Table 1 summarizes some strategies found in the literature. As for the computational

time, Ye et al. [22] reported several hours on a Sun SPARC 20 workstation for generating an optimal Latin

hypercube with 25 points for 4 variables. Jin et al. [25] reported minutes on a PC with a Pentium III 650 MHZ CPU

for generating an optimal Latin hypercube with 100 points for 10 variables. Section IV shows a comparison of

different optimization methods for obtaining optimal LHDs with contemporary computing power.

Due to its popularity, the pφ criterion was selected as a performance measure in this paper. Minimizing pφ

leads to the maximization of the point-to-point distance in the design (see [21] and [25] for details). Mathematically:

 4

1
1

1 1

 ,
p p
n n p

p
p ij

i j i

dφ

−

−

= = +

 
 =  
  
∑ ∑ (1)

where p is a positive integer, pn is the number of points in the design and ijd is the inter-point distance between

all point pairs in the design. The general inter-point distance between any point pair ix and jx can be expressed as

follows:

 ()

1

1

, , 1 or 2 .
vn t

t

ij i j ik jk

k

d d x x t
=

 
 = = − = 
  
∑x x (2)

In the present work, 50p = and 1t = are used following the suggestions of Jin et al. [25].

Table 1: Approaches for constructing the optimal Latin hypercube design.

Researchers Year Algorithm Objective functions

Audze and Eglājs [19] 1977 Coordinates Exchange Algorithm Potential Energy

Park [20] 1994
A 2-stage (exchange- and Newton-type)

algorithm

Integrated mean squared error and

entropy criteria

Morris and Mitchell [21] 1995 Simulated annealing pφ criterion

Ye et al. [22] 2000 Columnwise–pairwise pφ and entropy criteria

Fang et al. [23] 2002 Threshold accepting algorithm Centered 2L -discrepancy

Bates et al. [24] 2004 Genetic algorithm Potential energy

Jin et al. [25] 2005
Enhanced stochastic evolutionary

algorithm
pφ criterion, entropy and 2L

discrepancy

Liefvendahl and Stocki

[26]
2006

Columnwise-pairwise and genetic

algorithms

Minimum distance and Audze- Eglājs

functions

van Dam et al. [27] 2007 Branch-and-bound algorithm 1-norm and infinite norm distances

Grosso et al. [28] 2008
Iterated local search and simulated

annealing algorithms pφ criterion

Figure 1-(b) shows what point locations one can expect to obtain if the pφ criterion is used to generate a LHD

with 2vn = and 16pn = (although other criteria may also lead to the same distribution of points).

In this work, the Translational Propagation algorithm is presented for obtaining optimum or near optimum Latin

hypercube designs. This algorithm requires minimal computational effort and does not use formal optimization. The

aim is to solve the optimization problem in an approximate sense, i.e., to obtain a good Latin hypercube quickly,

rather than finding the best possible solution. The algorithm exploits simple translation of small building blocks

(consisting of one or more points) in the hyperspace. The obtained LHD is referred to as TPLHD (a Latin hypercube

 5

design obtained via the Translational Propagation algorithm). In general, the obtained TPLHD could be useful by

themselves as optimum or near optimum Latin hypercube designs, or as an initial guess for numerical

implementations based on some optimization algorithm.

The rest of the paper is organized as follows. Section II describes the translational propagation algorithm for

obtaining Latin hypercube designs. Section III describes the numerical experiments used in this study. Section IV

presents the results and discussion. Finally, the paper is closed by recapitulating salient points and concluding

remarks.

II. Latin Hypercube via Translational Propagation Algorithm

A. Basic Algorithm

The proposed approach is based on the idea of constructing the optimal vn -dimensional Latin hypercube design

from a fairly small vn -dimensional seed design. The simple example of a 16 2× (i.e., sixteen points in two

dimensions) Latin hypercube design is used to explain the methodology. Figure 2 shows some possible two-

dimensional seed designs. While there is no limitation on the number of points for the seed design, the seed design

can be as simple as just a single point (1 vn× design). For simplicity, the seed of Figure 2-(a) is seed used in the

16 2× Latin hypercube example.

(a) 1x2 seed design. (b) 2x2 seed design. (c) 3x2 seed design. (d) 4x2 seed design.

Figure 2: Example of seed designs for 2 variables.

In order to construct a Latin hypercube design of pn points from a seed design of sn points, the design space is

first divide into a total of bn blocks such that:

 .
p

b

s

n
n

n
= (3)

Equation (3) means that each dimension is partitioned into the same number of divisions, dn , calculated by:

 6

 ()
1

 .vnd bn n= (4)

In the example of the 16 2× Latin hypercube design (i.e. 16pn = and 2vn =), considering 1sn = (seed

design selected from Figure 2-(a)), one obtains 16bn = and 4dn = from Eqs. (3) and (4).

16

2

1

16

4

p

v

s

b

d

n

n

n

n

n

=

=

=

=

=

Figure 3: 16 2× Latin hypercube mesh divided into blocks (4 divisions in each dimension results in 16

blocks). The left-lower block is the first one to be picked in the algorithm.

Next, each block is filled with the previously selected seed design. Figure 3 shows the division of the design

space for the 16 2× Latin hypercube design and which of the blocks is the first one to be picked in the algorithm.

Figure 4 illustrates the process step by step. First, the seed design is properly scaled and placed at the origin of the

first block, as shown in Figure 4-(a). Next, the block with the seed design is iteratively shifted by
p d
n n levels in

one of the dimensions. Every time that the seed design is shifted, a new point is added to the experimental design.

Figure 4-(b) shows the first shift of the seed design (chosen to be in the horizontal direction). To preserve the Latin

hypercube property of only a single point per level; Figure 4-(b) shows that there also has to be a one-level shift in

the vertical direction. In the general case, a displacement vector is built for each accounting for the shifting in the

dimension of interest (horizontal direction in the example) as well a shift in all other dimensions to preserve the

Latin hypercube properties (vertical direction in our example). The shifting process continues in one of the

dimensions until all the divisions in this dimension are filled with the seed design as illustrated in Figure 4 (a-d). In

the next step, the current set of points (newly filled division) is used as a new seed design and the procedure of

 7

shifting the seed design is repeated in the next dimension. Figure 4 (e-g) illustrates the shifting procedure in the

vertical direction.

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

(e) Step 5 (f) Step 6 (g) Step 7

Figure 4: Process of creating the 16 2× enhanced Latin hypercube design. Figure 4-(a) illustrates the initial

placement of the seed. Figure 4-(b) to (d) shows the translation of the seed in the horizontal direction (which

is accompanied by a one-level vertical displacement to preserve Latin hypercube properties). Figure 4-(d) also

represents the newly created “seed” that will be translated in the vertical direction. Figure 4-(e) to (g)

illustrates the translation in the vertical direction (which is accompanied by horizontal displacement of one

level).

The biggest advantage of this approach is that there are no calculations to perform. All operations can be viewed

as a simple translation of the seed designs in the vn -dimensional hypercube. Although efficient for generating large

designs, the algorithm proposed up to now fails to provide flexibility for the total number of points in the final Latin

hypercube design. The approach presented so far is limited in the sense that Eqs. (3) and (4) must hold. The next

section describes a strategy to overcome this limitation and generate designs with arbitrary number of points.

B. Generating experimental designs of any size

To generate a Latin hypercube design with any number of points, the first step is to generate a TPLHD that has

at least the required number of points using the algorithm described above. If this design contains the required

number of points, the process is completed. Otherwise, an experimental design larger than the required is created

 8

and a resizing process is used to reduce the number of points to the desired one. The points are removed one-by-one

from the initially created TPLHD by discarding the points that are the furthest from the center of the hypercube and

reallocating remaining points to fill the whole design (preserving the Latin hypercube properties). In the proposed

algorithm removing the points furthest from the center does not reduce the area of exploration. After removing the

points, the final design is rescaled to cover the whole design space.

To illustrate the approach, consider the example where a 12 2× Latin hypercube is created using the one point

seed of Figure 2-(a) (i.e., 1sn =). From Eqs. (3) and (4),
1

3.46vn

d pn n= ≅ does not result in an integer number

in this case. Rounding 3.46dn ≅ up would give 4dn = and the next largest design that can be constructed is the

16 2× , as illustrated in Figure 4. The resizing process begins with first calculating the distance between each of the

sixteen points and the center of the design space. To create a 12 2× design out of a 16 2× one, the four points

furthest from the center have to be removed. In practice, this means the points of the original TPLHD have to be

ranked according to the distance from the center of the design space. The suggested resizing algorithm, computes

these distances only one time, during the very first iteration. When a point is removed, the levels occupied by its

projection along each of the dimensions have to be eliminated. This ensures the Latin hypercube property that only a

single point is found at any of the levels. Figure 5 illustrates the resizing process step by step. The number of points

in the design actually shrinks but the final design still represents samples over the same design space. Figure 5-(a)

shows that in the 16 2× design the points in the left-bottom and right-top corners are equally far from the center.

Due to symmetry, it is not important which of the points will be removed first. The top-right point is removed first,

Figure 5-(a); and the bottom-left one is removed next, Figure 5-(b). Figure 5-(c) might be the best illustration of how

the algorithm guarantees the Latin hypercube properties because it is the first time that an internal level is removed.

Removing a point is as simple as eliminating it from the experimental design. However, as illustrated in Figure 6,

this would leave empty levels (breaking the Latin hypercube requirements). The correct implementation of the

resizing algorithm (see Figure 5-(c)) takes care of this limitation by also eliminating the levels that the point used to

occupy. In Figure 5-(c) this means that the three points on the right would move to the left (occupying the empty

level that was in between the points). Next, the remaining points are scaled to cover the original design space. The

scaling is as simple as the mapping of the remaining points to the design space of interest such that the lower and

upper bounds are sampled by one of the points of the design (i.e., simple unidirectional scaling of all points). After

 9

each step, a new near optimum Latin hypercube is obtained with one point less. The process continues until the

12 2× design is achieved. Removing points/levels part of the algorithm reduces the number of points of the

experimental design, while preserving the Latin hypercube requirements. On the other hand, the resizing part makes

the experimental design to fit in the original design space again.

(a) Step 1.

(b) Step 2.

(c) Step 3.

(d) Step 4.

Figure 5: Process of creating a 12 2× enhanced Latin hypercube design from a 16 2× design.

C. Seed designs
Using the described algorithm, one can create different instances of the TPLHD by changing the seed design, as

illustrated by Figure 7 for the 16 2× TPLHD. As it is not known beforehand which seed design will lead to the best

 10

design in terms of the pφ criterion, one would not know what seed design to use. However, this might be a positive

feature of the algorithm. First, it is possible that the different designs are comparably good (when looking at the pφ

criterion). Second, due to the low cost of the algorithm (as we will show in the next sections), it pays to create

instances of the Latin hypercube with different seeds and then pick the best one according to the pφ criterion.

Figure 6: Wrong step of the resizing algorithm.

S
ee

d

T
P

L
H

D

 (a) From 1-point seed. (b) From 2-points seed. (c) From 3-points seed. (d) From 4-points seed.

Figure 7: 16 2× TPLHD obtained with different seeds.

Because of the shifting process, the number of levels in a block is greater than the number of points in the seed

design. This means that when creating design starting from seeds with more than one point (1sn >) it is necessary

to reshape them to fit into one block of the TPLHD. Figure 8 illustrates this idea with the design of a 16 2×

TPLHD starting from a 4 2× seed (i.e., 4sn =). Figure 8-(a) shows the initial 4 2× seed (that respects the Latin

hypercube properties). It is necessary to insert as many empty levels between two consecutive projections of points

as the number of division in a given directions, as shown in Figure 8-(b). This way, at the end of the shifting

 11

process, there will be only one point per level (see Figure 8-(c)). The next section reviews the implementation of

what was described so far.

(a) Original seed.
(b) Seed reshaped to fit in one block

of the TPLHD.

(c) Seed design filling different

blocks of the TPLHD.

Figure 8: Illustration of the reshaping of the seed design.

D. Summary of the algorithm

The proposed algorithm is inspired by the optimization of the pφ criterion penalizing designs with close points

(due to 50p = and 1t = in Eq. (1)). Good Latin hypercube designs are expected to be obtained because the

minimum distance is fixed at the level of seed design. This is particularly clear for large number of points in low

dimensions. Figure 9 illustrates the Translational Propagation algorithm. The input parameters are the initial seed

design s , the number of points in the seed design, sn , number of points of the desired Latin hypercube design, pn ,

and the number of variables, vn . pn
∗ and dn

∗ are the number of points and number of divisions of the first TPLHD

to be created. While pn can assume any value, pn
∗ is such that Eq. (3) returns an integer number of blocks bn . The

first step is to check whether or not a bigger experimental design is needed. The number of divisions, dn , and its

rounded up value, dn
∗ , are compared. If d dn n∗ > , Eqs. (3) and (4) does not hold and the number of points in the

TPLHD to be created, pn
∗ , is greater than the desired, pn . Next, the seed design is reshaped to fit in one block of the

TPLHD (Section II.C), and a TPLHD of pn
∗ points is created (Section II.A). Finally, if p pn n∗ > , the TPLHD

previously obtained is resized such that it will have pn points (Section II.B). X is the final TPLHD (with pn

points).

Appendix A gives the MATLAB implementation of the different building blocks of the translational propagation

algorithm.

 12

III. Numerical Experiments

To illustrate the effectiveness of the proposed TPLHD, a set of configurations that covers the typical application

range of the LHD is considered. The experimental designs vary from only two to twelve variables as summarized in

Table 2. For each number of variables, three cases representing small, medium and large number of design points

were considered. The number of design points was calculated relative to the number of coefficients in a full

polynomial model for the specified number of variables. The small designs have two times more points than the

number of coefficients in a full quadratic polynomial model, while the large designs have twenty times more points

than the number of coefficients in the same model. The medium designs have two times more points than the

number of coefficients in a full cubic polynomial model.

Figure 9: Flowchart of the Translational Propagation algorithm.

 13

Table 2: Latin hypercube design configurations considered.

No. of points No. of

variables Small designs Medium designs Large designs

2 12 20 120

4 30 70 300

6 56 168 560

8 90 330 900

10 132 572 1320

12 182 910 1820

The influence of the initial seed used to construct the TPLHD was studied first. For this study, different TPLHDs

were generated using seeds with one to five points. The designs were then compared using the values of the pφ

criterion. Next, the efficiency of the proposed algorithm in approximating the optimal LHD was studied. For this

study, an estimate of the range of the pφ criterion for the LHDs proposed in Table 2 is created based on Monte

Carlo simulation plus the results from 100 simulations of three different Latin Hypercube optimization techniques.

The Monte Carlo simulation created 200,000 random LHDs for the configurations proposed in Table 2 (this is

possible because the Latin hypercube algorithm allows for the creation of different designs based on a random

number generator). The three different Latin Hypercube optimization techniques used in the study are:

1. The Enhanced Stochastic Evolutionary algorithm (ESEA) of Jin et al. [25]: set with maximum number of

twenty iterations (but each simulation was allowed to run at most five iterations without improvement of

the objective function).

2. The Genetic algorithm (GA) implementation of Bates et al. [24]: set with maximum number of fifty

iterations (but each simulation was allowed to run at most twenty iterations without improvement of the

objective function).

3. The native MATLAB function lhsdesign [30]: using the maxmin criterion (maximization of the minimum

distance) and two hundred iterations. With these settings, the MATLAB lhsdesign function selects the best

LHD from two hundred randomly created designs. The maxmin criterion is used to select the best design.

The settings for both GA and ESEA were based on a few trials for the design with 560 points and six variables.

All simulations were conducted using an Intel Core 2 Quad CPU Q6600 at 2.40GHz, with 3GB of RAM running

MATLAB 7.6 (R2008a) under Windows XP. The SURROGATES toolbox [29] was used to execute the TPLHD,

ESEA, and GA algorithms under MATLAB [30].

 14

Instead of showing only the pφ criterion as defined in Eq. (1), a normalized version, pφ
� , is also presented for

easier comparison:

()

() ()

min
 ,

max min

p p

p

p p

φ φ
φ

φ φ

−
=

−
� (5)

where ()max pφ and ()min pφ are the maximum and minimum values of pφ found in the generated DOEs

(including both the TPLHDs and the Monte Carlo simulations); which means that 0 1pφ≤ ≤� .

Using the Monte Carlo simulations and the optimization results, it is possible to estimate the range of variation

of pφ values and thus make a judgment if a specific design represents a substantial improvement or not. The pφ
�

criterion makes the comparison of the distributions of different designs easier. Although it eliminates the sense of

absolute magnitude (because of the normalization), it permits identifying if the distributions are towards the low or

high values of the pφ criterion.

IV. Results and Discussion

Table 3 shows the values of the pφ criterion for TPLHDs obtained using different initial seed designs for design

configurations of Table 2. From these results, it can be concluded that no single seed size is always the best (even

considering designs with the same number of variables). For example, the single point seed is the best for the

12 2× and 20 2× designs, while the two-point seed is the best for the 120 2× design. However, there might be

cases where different seeds are equally competitive. As illustration, this is the case for the 30 4× design, where the

four-point and five-point seeds produce designs with nearly the same pφ criterion. These two observations together

with the fact that no time consuming optimization is required in the translational propagation algorithm suggests that

it is possible to create several instances of the TPLHDs (based on different initial seeds) and select the design of

choice based on the pφ criterion. Table 3 also shows that an increase in dimensionality seems to favor the single

point seed. The reason is that in higher dimensions a seed with multiple points acts like a cluster of points, hurting

the pφ criterion (this effect is less evident in lower dimensions).

 15

Table 3: pφ criterion, defined in (1), (50p = , 1t =) for TPLHD constructed from different seeds (the best

TPLHD is shown in bold face).

Seed size No. of

variables

No. of

points 1 2 3 4 5

2 12 2.8 2.9 3.8 3.7 3.8

2 20 4 4.8 4.9 5 4

2 120 11.0 9.4 12.6 13.4 13.8

4 30 1.9 1.8 1.8 1.6 1.6

4 70 2.7 5.0 2.9 2.0 2.1

4 300 7.2 13.6 6.2 3.6 4.0

6 56 1.7 2.1 1.8 3.7 1.7

6 168 3.1 6.0 2.4 2.9 2.5

6 560 3.2 11.7 5.3 7.9 3.6

8 90 1.6 3.4 2.6 5.9 1.9

8 330 3.7 4.6 3.1 3.0 2.5

8 900 4.7 16.4 4.6 2.7 2.6

10 132 1.6 3.7 3.9 6.6 3.5

10 572 2.0 8.8 4.0 3.1 2.9

10 1320 4.2 6.1 3.5 3.9 3.1

12 182 1.7 11.3 3.1 1.9 2.6

12 910 2.0 16.8 3.2 3.1 2.4

12 1820 2.1 17.8 3.7 3.4 2.4

Table 4 shows detailed statistics regarding the pφ criterion with data obtained during the Monte Carlo and

optimization simulations (the 5th percentile is added to give information about the lower values of pφ). For up to six

variables, TPLHD delivers exceptionally good designs (within five percent of the best designs for most of the cases).

For eight to twelve variables, TPLHD is not attractive anymore (with designs located within the last quartile of the

pφ criterion distribution). The reader will notice that for ten variables the maximum value of pφ drops when

coming from 572 to 1320 points (contrarily from the trend of the other design configurations). This is because it is

difficult to estimate this value for high dimensional cases (even with total of more than 200,000 simulations). On the

other hand, the percentile information establishes the trend of increasing pφ with the number of points. Since the

algorithm was heuristically developed based on the visual observation of the patterns generated by the optimal LHD

in two and three dimensions according to the pφ criterion, it is of no surprise that the efficiency is harmed when the

dimensionality increases. The range of the pφ criterion varies with different design configurations and can also be

very large (for example, the range for the 120 2× design is 52.9). Thus, only the normalized pφ criterion, pφ
� , is

used from this point on.

 16

Table 4: TPLHD and statistics about the pφ criterion, defined in (1), (50p = , 1t =) for each studied

configuration. Bold faces show when TPLHD offers the best design. TPLHD performs very well up to 6

dimensions.

Percentiles No. of

variables

No. of

points
TPLHD Min

5 25 50 75
Max Range

2 12 2.8 2.3 3.7 5.5 5.6 5.6 5.7 3.4

2 20 4.0 3.4 6.4 9.5 9.6 9.7 10.0 6.6

2 120 9.4 9.4 40.2 59.5 60.3 60.8 62.3 52.9

4 30 1.6 1.5 2.3 2.9 3.2 3.7 7.4 5.9

4 70 2.0 2.0 3.8 4.9 5.8 6.9 17.3 15.3

4 300 3.6 3.4 8.6 11.1 13.0 15.7 74.8 71.3

6 56 1.7 1.0 1.5 1.8 2.0 2.3 7.9 6.9

6 168 2.4 1.3 2.4 2.8 3.2 3.6 23.9 22.6

6 560 3.2 1.8 3.7 4.4 4.9 5.7 32.9 31.1

8 90 1.6 0.9 1.1 1.2 1.3 1.5 5.9 5.0

8 330 2.5 1.4 1.6 1.8 2.0 2.2 9.7 8.3

8 900 2.6 1.8 2.1 2.4 2.7 3.0 16.3 14.5

10 132 1.6 0.7 0.8 0.9 1.0 1.1 6.6 5.8

10 572 2.0 1.0 1.2 1.3 1.4 1.5 8.8 7.8

10 1320 3.1 1.3 1.4 1.6 1.7 1.9 6.1 4.8

12 182 1.7 0.6 0.7 0.7 0.8 0.8 11.3 10.7

12 910 2.0 0.8 0.9 1.0 1.1 1.1 16.8 16.0

12 1820 2.1 0.9 1.0 1.1 1.2 1.3 17.8 16.9

Figure 10 illustrates the box plots of the pφ
� criterion for each of the studied configurations. A box plot shows

the full data range on the y-axis. A box is defined by lines at the lower quartile (25%), median (50%), and upper

quartile (75%) values. Lines extend from each end of the box for a distance of 1.5 times the inter-quartile range or

until the data limit is reached. The data points falling outside this 1.5 times the inter-quartile range represent outliers

that are shown using “+” symbols. Figure 10 shows that the distribution of pφ
� tends to lower values as the

dimensionality of the problem grows. It does not necessarily mean that the LHD fills the space better; after all, the

sparsity of the points severely increases with the number of variables. However, this behavior suggests that the

probability of generating a design in the lower levels of the pφ
� increases with the dimensionality. The following

conclusions can thus be drawn from the numerical experimentation:

• In low dimensions: the optimum LHD is an outlier located in the lower region of the pφ values; making it

difficult to be obtained.

 17

• In high dimensions: most of the LH designs are in the lower region of the pφ
� ; making it difficult to

distinguish the optimal LHD (obviously according to this criterion only) and other several good

representations of the LHD.

Figure 10 makes clear that the TPLHD represents a better approximation of the optimum LHD in low to medium

dimensions (up to six variables) and thus we will focus only on the designs with up to six variables.

Table 5 allows a comparison between the TPLHD and the mean out of 100 simulations of three different

optimization techniques: (i) the Enhanced Stochastic Evolutionary algorithm (ESEA) of Jin et al. [25]; (ii) the

Genetic algorithm (GA) implementation of Bates et al. [24]; and (iii) the native MATLAB function lhsdesign [30].

TPLHD was obtained by generating five candidates from different seeds and then picking the best one according to

the pφ criterion (which means that Table 5 shows the time needed to generate all five candidates. Appendix B

shows the discussion on the number of points that needs to be allocated in each of the cases; which directly impacts

the computational cost). Results in Table 5 reinforce that TPLHD offers very good solutions; with most of the

designs presenting 0pφ =
� . This means that TPLHD found the best result of the set of all simulations (including the

Monte Carlo and all optimization ones). As for the computational cost, the TPLHD design is superior in most of the

cases, or in the worst case matches the best time of the traditional optimization techniques. Clearly, the point density

has a dramatic impact on the optimization techniques (especially ESEA and GA). For instance, for the ESEA with

six variables, moving from 56 to 560 points makes the computational cost change from two seconds to a little more

than 18 minutes. The lhsdesign MATLAB function tends to suffer less, since it can be seen as a Monte Carlo

simulation with only 200 samples (200 is the number of iterations that lhsdesign was allowed to run). Still, in six

dimensions, when moving from 56 to 560 points the computational cost of the lhsdesign increases more than 100

times.

 18

(a) Low to medium dimensions.

(b) Medium to high dimensions.

Figure 10: Boxplots of the pφ
� criterion, defined in (5), (50p = , 1t =), where circles indicate the best

TPLHD. TPLHD represents a good solution in low to medium dimensions. pφ
� ranges from 0 to 1.

Table 5 gives the impression that increasing the number of variables (no matter the point density) made the three

optimization techniques to improve their own performance (in terms of the pφ
� criterion). Considering the pφ

�

criterion of the designs with four and six variables, TPLHD and any of the optimization techniques would offer

designs that are below 0.1. Then, the computational cost would leave only TPLHD and the lhsdesign as competing

strategies. However, a closer look at the distributions of the pφ
� criterion shows that TPLHD is the best choice.

Figure 11 contrasts the box plot of the pφ
� criterion with the values found by TPLHD and the 0.1 threshold of

lhsdesign. Because the distributions tends to lower values, the 0.1 threshold is a bad value for the 300 4× design

and is a marginal to undesired value in 6 dimensions. It is clear that TPLHD offers a better design (not mentioning a

faster solution).

 19

Table 5: Performance comparison between TPLHD and the median out of 100 simulations of different

optimization techniques. ESEA is the implementation of the Enhanced Stocastic Evolutionary algorithm of

Jin et al. [25]. lhsdesign is a native MATLAB function. GA refers to the Genetic algorithm implementation of

Bates et al. [24]. pφ
� , defined in (5), ranges from 0 to 1.

No. of variables 2 4 6

No. of points 12 20 120 30 70 300 56 168 560

TPLHD 0.1 0.1 0 0 0 0 0.1 0 0

ESEA 0.2 0.1 0.1 0 0 0 0 0 0
GA 0.2 0.3 0.3 0.1 0.1 0 0 0 0 pφ

�

lhsdesign 0.5 0.5 0.6 0.1 0.1 0.1 0.1 0. 0.1

TPLHD 0≅ 0≅ 0.1 0≅ 0≅ 0.7 0≅ 0.5 2

ESEA 0≅ 0.2 13 0.3 3 173 2 34 1096

GA 0.4 0.9 24 4 17 275 19 143 1509

Time

(sec)

lhsdesign 0≅ 0≅ 0.2 0≅ 0.1 1.8 0.1 1.0 13

Figure 11: Boxplots of the pφ
� criterion between 0 and 0.5 for the four and six dimensional designs. pφ

� is

defined in (5), (50p = , 1t =) and ranges from 0 to 1. Circles indicate the TPLHD.

One of the reasons for the poor performance of the TPLHD in high dimensions might be the existence of the

directionality property of TPLHD. Because of the way the points are created in TPLHD, they tend to be stretched

along one direction. Even the optimal LHD (obtained with ESEA or GA for example) from Figure 1-(b) may be

considered as having points placed in a preferred direction (close to 45 degrees). Goel et al. [14] discussed that a

single criterion for generating design of experiments may lead to large deteriorations in other criteria. In the

proposed algorithm, the pφ criterion is used and the directionality of the resulting Latin hypercube designs (for both

the TPLHD and the designs obtained with traditional optimization) is a clear loss. There has been work on the

optimization of the space-filling properties of the LHD while preserving low correlation between variables. Cioppa

and Lucas [31] presented an algorithm that improves the space-filling properties of LHD at the expense of inducing

small correlations between the columns in the design matrix. However, authors warned that the approach is

 20

computationally prohibitive. Hernandez [32] presented an extensive study on a set of methodologies to create design

matrices with little or no correlation (including saturated nearly orthogonal LHDs). Franco et al. [33] discussed a

radar-shaped statistic for identifying the directionality property in a DOE (especially efficient in low dimension).

However there has been little research on how to employ this statistic for improving DOE and not just for

identifying the directionality in an existing DOE, the directionality statistic was not employed to improve existing

DOE in this paper. Nevertheless, the focus of this research is the translational propagation algorithm as a cheap

alternative to traditional optimization of the Latin hypercube designs based on the pφ criterion.

Other, more general questions arise in higher dimensions: it is not clear what is the meaning of space-filling

designs and the relative cost of any optimization strategy of experimental designs. The sparsity of the data may

make it difficult to judge whether designs given by the optimization of the Latin hypercube are in fact space-filling

designs. Even if they are, considering plots such as those in Figure 10, the computational cost of strategies like

TPLHD may end up being very close to random search (such as in lhsdesign). It may happen that in higher

dimensions it is not worth investing much in time consuming optimization (few iterations of random search may

provide satisfactory results). In spite of that, authors intend to investigate the potential of the radar-shaped statistic in

to improve the TPLHD properties.

V. Conclusions

A methodology for creating Latin hypercube designs via translational propagation algorithm (TPLHD) is

proposed. The approach is based on the idea that a simple “seed design” with a few points can be used as a building

block to construct a near optimal Latin Hypercube design (LHD). The main advantage of the proposed methodology

is that it requires virtually no computational time. The approach was tested on eighteen different experimental

design configurations with varying dimensionality and point density. Monte Carlo simulations were used to support

the analysis of the algorithm’s performance. For these cases it was found that:

• Based on the Monte Carlo simulations, the probability of randomly generating good designs in terms of the

pφ criterion (i.e. designs with low values of pφ) increases with the dimensionality. This does not mean

that the designs will fill the space better, it only means that designs tends to be equally competitive. This

fact makes computationally cheap strategies such as random search attractive in high dimensions.

 21

• It was found that for the low dimensional cases (up to six variables) the TPLHD approximates the optimal

LHD (using pφ criterion) very well. In higher dimensions (eight to twelve variables), the TPLHD does not

approximate the optimum solution well anymore.

As the time for generating the TPLHD is very small, in small to medium dimensions it is recommended to

generate several TPLHDs (using seed designs with different number of points) and to pick the best one according to

the pφ criterion.

Acknowledgments

Authors would like to thank everybody at Vanderplaats Research and Development, Inc. (VR&D) for the

encouragement and support. This work was started when authors were employed by VR&D in various positions.

Appendix

A. MATLAB implementation of the Translational Propagation algorithm

Table 6 to Table 9 give the MATLAB code of our implementation of the translational propagation algorithm.

For simplicity, the levels of the Latin hypercube are represented by integer values. This means that each of the

points of the created Latin hypercube design can assume values from one to the number of points. The created Latin

hypercube needs to be properly scaled to the design space of interest. Table 6 gives the main function; which has as

input parameters the number of points, pn , and variables, vn , of the desired Latin hypercube design, as well as the

seed design, s , and its number of points, sn . The points in the seed design initially assume values from one to the

sn . Lines 9 to 17 of the algorithm shown in Table 6 illustrate how to take care of the size of the Latin hypercube to

be created using the translational propagation algorithm. At first, a Latin hypercube observing Eqs. (3) and (4) is

created; even if it means creating a design bigger than required. The seed design is then properly placed into the first

block of to be filled by the algorithm (line 19). Line 43 is the call for the function that creates the initial Latin

hypercube design. If necessary, the design is then resized to the initially set configuration. Table 7 gives the

implementation of the reshaping of the seed design (see Section II.C). Table 8 illustrates the body of the

translational propagation algorithm. Lines 16 to 18 show how to create the displacement vector that is used to

translate the seed in the hyperspace. Finally, Table 9 presents the implementation of the resizing process. Lines 8 to

 22

15 show how we reduce the initially large Latin hypercube to the pn initially set. Lines 18 to 30 present how to

restore the Latin hypercube condition of one point per level to the remaining points.

Table 6: MATLAB implementation of the translational propagation algorithm. The created design ranges

from one to the number of points. The algorithm works with integer indexes for each point. ()ceil x is the

MATLAB function that rounds the elements of x up to the nearest integers. ()ones ,m n is the MATLAB

function that creates an m -by-n matrix of ones. See Table 7 for details about reshapeSeed. See Table 8

for details about createTPLHD. See Table 9 for details about resizeTPLHD. ()vertcat ,A B is the

MATLAB function that performs the vertical concatenation of matrices A and B.

1: function X = tplhsdesign(np, nv, seed, ns)

2: % inputs: np – number of points of the desired Latin hypercube (LH)

3: % nv – number of variables in the LH

4: % seed – initial seed design (points within 1 and ns)

5: % ns – number of points in the seed design

6: % outputs: X – Latin hypercube created using the translational

7: % propagation algorithm

8:

9: % define the size of the TPLHD to be created first

10: nd = (np/ns)^(1/nv); % number of divisions, nd

11: ndStar = ceil(nd);

12: if (ndStar > nd)

13: nb = ndStar^nv; % it is necessary to create a bigger TPLHD

14: else

15: nb = np/ns; % it is NOT necessary to create a bigger TPLHD

16: end

17: npStar = nb*ns; % size of the TPLHD to be created first

18:

19: % reshape seed to properly create the first design

20: seed = reshapeSeed(seed , ns, npStar, ndStar, nv);

21:

22: % create TPLHD with npStar points

23: X = createTPLHD(seed, ns, npStar, ndStar, nv);

24:

25: % resize TPLH if necessary

26: npStar > np;

27: if (npStar > np)

28: X = resizeTPLHD(X, npStar, np, nv);

29: end

30: return

 23

Table 7: MATLAB implementation of the reshapeSeed function. ()ones ,m n is the MATLAB function

that creates an m -by-n matrix of ones. ()round x is the MATLAB function that rounds the elements of X to

the nearest integers.

1: function seed = reshapeSeed(seed , ns, npStar, ndStar, nv)

2: % inputs: seed – initial seed design (points within 1 and ns)

3: % ns – number of points in the seed design

4: % npStar – number of points of the Latin hypercube (LH)

5: % nd – number of divisions of the LH

6: % nv – number of variables in the LH

7: % outputs: seed – seed design properly scaled

8:

9: if ns == 1

10: seed = ones(1, nv); % arbitrarily put at the origin

11: else

12: uf = ns*ones(1, nv);

13: ut = ((npStar / ndStar) - ndStar*(nv - 1) + 1)*ones(1, nv);

14: rf = uf - 1;

15: rt = ut - 1;

16: a = rt./rf;

17: b = ut - a.*uf;

18: for c1 = 1 : ns

19: seed(c1,:) = a.*seed(c1,:) + b;

20: end

21: seed = round(seed); % to make sure that the numbers are integer

22: end

23:

24: return

 24

Table 8: MATLAB implementation of the createTPLHD function. ()ones ,m n is the MATLAB function

that creates an m -by-n matrix of ones. ()length a is the MATLAB function that returns the number of

entries in the vector a . ()vertcat ,A B is the MATLAB function that does the vertical concatenation of the

matrices A and B .

1: function X = createTPLHD(seed, ns, npStar, ndStar, nv)

2: % inputs: seed – initial seed design (points within 1 and ns)

3: % ns – number of points in the seed design

4: % npStar – number of points of the Latin hypercube (LH)

5: % nd – number of divisions of the LH

6: % nv – number of variables in the LH

7: % outputs: X – Latin hypercube design created by the translational

8: % propagation algorithm

9: % we warn that this function has to be properly translated to other

10: % programming languages to avoid problems with memory allocation

11:

12: X = seed;

13: d = ones(1, nv); % just for memory allocation

14: for c1 = 1 : nv % shifting one direction at a time

15: seed = X; % update seed with the latest points added

16: d(1 : (c1 - 1)) = ndStar^(c1 - 2);

17: d(c1) = npStar/ndStar;

18: d((c1 + 1) : end) = ndStar^(c1 - 1);

19: for c2 = 2 : ndStar % fill each of the divisions

20: ns = length(seed(:,1)); % update seed size

21: for c3 = 1 : ns

22: seed(c3,:) = seed(c3,:) + d;

23: end

24: X = vertcat(X, seed);

25: end

26: end

27: return

 25

Table 9: MATLAB implementation of the resizeTPLHD function. ()ones ,m n is the MATLAB function

that creates an m -by-n matrix of ones. ()zeros ,m n is the MATLAB function that creates an m -by-n

matrix of zeros. ()norm x is the MATLAB function that computes the vector norm (()2ix∑). ()min x is

the MATLAB function that finds the smallest element in x. ()sort a is the MATLAB function that sorts the

vector a in the ascending order, returning the sorted and the index vectors. ()sortrows X, COL is the

MATLAB function that sorts the matrix X based on the columns specified in the vector COL .

isequal(A, B) is the MATLAB function that returns logical 1 (TRUE) if arrays A and B are the same size

and contain the same values, and logical 0 (FALSE) otherwise.

1: function X = resizeTPLHD(X, npStar, np, nv)

2: % inputs: X – initial Latin hypercube design

3: % npStar – number of points in the initial X

4: % np – number of points in the final X

5: % nv – number of variables

6: % outputs: X – final X, properly shrunk

7:

8: center = npStar*ones(1,nv)/2; % center of the design space

9: % distance between each point of X and the center of the design space

10: distance = zeros(npStar, 1);

11: for c1 = 1 : npStar

12: distance(c1) = norm((X(c1,:) - center));

13: end

14: [dummy, idx] = sort(distance);

15: X = X(idx(1:np), :); % resize X to np points

16:

17: % re-establish the LH conditions

18: Xmin = min(X);

19: for c1 = 1 : nv

20: % place X in the origin

21: X = sortrows(X, c1);

22: X(:,c1) = X(:,c1) - Xmin(c1) + 1;

23: % eliminate empty coordinates

24: flag = 0;

25: while flag == 0;

26: mask = (X(:,c1) ~= ([1:np]'));

27: flag = isequal(mask,zeros(np,1));

28: X(:,c1) = X(:,c1) - (X(:,c1) ~= ([1:np]'));

29: end

30: end

31: return

 26

B. Number of points allocated before resizing the TPLHD

As discussed in Section II, the number of points that needs to be allocated for a given configuration of the

TPLHD is dictated by Eqs. (3) and (4). In the most general cases, a resizing process needs to be used. Thus, the total

number of points initially generated dictates the computational cost of the TPLHD algorithm. Table 10 shows the

number of points allocated before the resizing process for each of the configurations studied in this paper. It can be

observed that the more variables, the more points are discarded. This confirms the fact that design strategies based

on the domain subdivision (the translational propagation algorithm is an example) tend to have poor performance as

dimensionality increases.

Table 10: Size of the TPLHD created before the resizing process for each seed size. The final best TPLHD is

shown in bold face.

Seed size No. of

variables

No. of

points 1 2 3 4 5

2 12 16 18 12 16 20

2 20 25 32 27 36 20

2 120 121 128 147 144 125

4 30 81 32 48 64 80

4 70 81 162 243 324 80

4 300 625 512 768 324 405

6 56 64 128 192 256 320

6 168 729 1458 192 256 320

6 560 729 1458 2187 2916 3645

References

[1] Venkataraman S, and Haftka RT, Structural optimization complexity: what has Moore’s law done for us?, Structural and

Multidisciplinary Optimization, Vol. 28, No. 6, pp. 375-387, 2004.

[2] Sacks J, Welch WJ, Mitchell TJ, and Wynn HP, Design and Analysis of Computer Experiments, Statistical Science, Vol. 4

(4), pp. 409-435, 1989.

[3] Simpson TW, Peplinski JD, Koch PN, and Allen JK, Meta-models for computer based engineering design: Survey and

recommendations. Engineering with Computers, Vol. 17, No. 2, pp. 129-150, 2001.

[4] Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, and Tucker, PK, Surrogate-based analysis and optimization,

Progress in Aerospace Sciences, Vol. 41, pp. 1-28, 2005.

[5] Simpson TW, Toropov V, Balabanov V, and Viana FAC, Design and Analysis of Computer Experiments in

Multidisciplinary Design Optimization: a Review of How Far We Have Come – or Not, in: Proceedings of the 12th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, Canada, September 10-12, 2008. AIAA

2008-5802.

[6] Kleijnen JPC, Design and analysis of simulation experiments, Springer Verlag, 2007.

[7] Forrester AIJ and Keane AJ, Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, Vol. 45,

No. 1-3, pp. 50-79, 2009.

[8] Montgomery DC, Design and analysis of experiments, John Wiley & Sons, 2004.

[9] Simpson TW, Lin DKJ, and Chen W, Sampling Strategies for Computer Experiments: Design and Analysis, International

Journal of Reliability and Applications, Vol. 2, No. 3, pp.209-240, 2001.

[10] Viana FAC, Haftka RT, and Steffen V., Multiple surrogates: how cross-validation errors can help us to obtain the best

predictor, Structural and Multidisciplinary Optimization, available online (DOI: 10.1007/s00158-008-0338-0).

 27

[11] Viana FAC and Haftka RT, Using Multiple Surrogates for Metamodeling, 7th ASMO-UK/ISSMO International Conference

on Engineering Design Optimization, Bath, UK, July 7-8, 2008.

[12] Samad A, Kim K, Goel T, Haftka RT, and Shyy W, Multiple surrogate modeling for axial compressor blade shape

optimization, Journal of Propulsion and Power, Vol. 24, N. 2, pp. 302-310, 2008.

[13] Giunta AA, Wojtkiewicz SF, Eldred MS, Overview of modern design of experiments methods for computational

simulations. 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA-2003-0649, 6–9 January 2003.

[14] Goel T, Haftka RT, Shyy W, and Watson LT, Pitfalls of using a single criterion for selecting experimental designs,

International Journal for Numerical Methods in Engineering, Vol. 75, No. 2, pp. 127–155, 2008.

[15] Myers RH and Montgomery DC, Response Surface Methodology. Process and Product Optimization using Designed

Experiments, John Wiley and Sons, 1995.

[16] McKay MD, Beckman RJ, and Conover WJ, A Comparison of Three Methods for Selecting Values of Input Variables from

a Computer Code, Technometrics, Vol. 21, pp. 239-245, 1979.

[17] Iman RL, and Conover WJ, Small sample sensitivity analysis techniques for computer models, with an application to risk

assessment, Communications in Statistics, Part A. Theory and Methods, Vol. 17, pp. 1749-1842, 1980.

[18] Kleijnen JPC, Sanchez SM, Lucas TW, and Cioppa TM, A user’s guide to the brave new world of designing simulation

experiments, INFORMS Journal on Computing, Vol. 17, No. 3, pp. 263-289, 2005.

[19] Audze P and Eglājs V, New Approach for Planning out of Experiments, Problems of Dynamics and Strengths, Vol. 35,

1977, pp. 104-107, Riga, Zinatne Publishing House (in Russian).

[20] Park JS, Optimal Latin-hypercube designs for computer experiments. Journal of Statistical Planning and Inference, Vol.

39, pp. 95–111, 1994.

[21] Morris MD, and Mitchell TJ, Exploratory designs for computational experiments, Journal of Statistical Planning and

Inference, Vol. 43, pp. 381-402, 1995.

[22] Ye KQ, Li W, and Sudjianto A, Algorithmic construction of optimal symmetric latin hypercube designs. Journal of

Statistical Planning and Inference, Vol. 90, pp. 145-159, 2000.

[23] Fang KT, Ma CX, and Winker P, Centered L2-discrepancy of random sampling and Latin hypercube design and

construction of uniform designs, Mathematics of Computation, Vol. 71, pp. 275-296, 2002.

[24] Bates SJ, Sienz J and Toropov VV, Formulation of the optimal Latin hypercube design of experiments using a permutation

genetic algorithm, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA-

2004-2011, Palm Springs, California, Apr. 19-22, 2004.

[25] Jin R, Chen W, and Sudjianto A, An Efficient Algorithm for Constructing Optimal Design of Computer Experiments,

Journal of Statistical Planning and Inference, Vol. 134, pp. 268-287, 2005.

[26] Liefvendahl M and Stocki R, A study on algorithms for optimization of Latin hypercubes, Journal of Statistical Planning

and Inference, Vol. 136, No. 9, pp. 3231-3247, 2006.

[27] van Dam E, Husslage B, den Hertog D, Melissen H, Maximin Latin hypercube designs in two dimensions, Operations

Research, Vol. 55, No. 1, pp.158-169, 2007.

[28] Grosso A, Jamali A, and Locatelli M, Finding maximin Latin hypercube designs by Iterated Local Search heuristics,

European Journal of Operational Research, Vol. 197, No.2, pp. 541-547, 2009.

[29] Viana FAC, SURROGATES ToolBox, http://fchegury.googlepages.com, 2009.

[30] Mathworks contributors, 2008, MATLAB® The language of technical computing, Version 7.6.0.324 R2008a, The

MathWorks Inc.

[31] Cioppa TM and Lucas TW, Efficient nearly orthogonal and space-filling Latin hypercubes, Technometrics, Vol 49, No. 1,

pp. 45-55, 2007.

[32] Hernandez AS, Breaking Barriers to Design Dimensions in Nearly Orthogonal Latin Hypercubes, PhD Thesis, Naval

Postgraduate School, Monterey, CA, USA, 2008.

[33] Franco J, Carraro L, Roustant O, and Jourdan A, A radar-shaped statistic for testing and visualizing uniformity properties in

computer experiments, Proceedings of the Joint ENBIS-DEINDE 2007 Conference: Computer Experiments versus Physical

Experiments, Turin, Italy, April 11-13, 2007.

