PySUNDIALS: Providing python bindings to a robust suite of
mathematical tools for computational systems biology

by

James Gilmour Dominy

Thesis presented in partial fulfilment of the requirements for
the degree of

Master of Science

at the University of Stellenbosch

Study leaders:

Prof J.-H.S. Hofmeyr (supervisor) Prof J. M. Rohwer (co-supervisor)

March 2009

Declaration

By submitting this thesis electronically, I declare that the entirety of the
work contained therein is my own, original work, that I am the owner of the
copyright thereof (unless to the extent explicitly otherwise stated) and that I
have not previously in its entirety or in part submitted it for obtaining any
qualification.

Copyright (© 2009 University of Stellenbosch
All rights reserved.

Abstract

A Python package called PySUNDIALS has been developed which provides
an interface to the suite of nonlinear differential/algebraic equation solvers
(SUNDIALS) using ctypes as a foreign function interface (FFI). SUNDIALS is
a C implementation of a set of modern algorithms for integrating and solving
various forms of the initial value problem (IVP). Additionally, arbitrary root
finding capabilities, time dependent sensitivity analysis, and the solution of
differential and algebraic systems are available in the various modules provided
by SUNDIALS. A significant focus of the project was to ensure the python
package conforms to Python language standards and syntactic expectations.

Multiple examples of the SUNDIALS modules (CVODE, CVODES, IDA and
KINSOL) are presented comparing PySUNDIALS to C SUNDIALS (for verifica-
tion of correctness), and comparing PySUNDIALS to various other comparable
software packages. The examples presented also provide benchmark compar-
isons for speed, and code length. Specific uses of the features of the SUNDIALS
package are illustrated, including the modelling of discontinuous events using
root finding, time dependent sensitivity analysis of oscillatory systems, and
the modelling of equilibrium blocks using a complete set of implicit differential
and algebraic equations.

PySUNDIALS is available as open source software for download. It is being
integrated into the systems biology software PySCeS as an optional solver set,
on an ongoing basis. A brief discussion of potential methods of optimization
and the continuation of the project to wrap the parallel processing modules
of SUNDIALS is presented.

ii

Opsomming

'n Python pakket genaamd PySUNDIALS is ontwikkel om 'n koppelfase te
verskaf na die SUNDIALS stel van oplossers vir stelsels van nie-lineére differ-
ensiaal/algebraiese vergelykings; hierdie pakket maak gebruik van ctypes as
vreemde funksie koppelfase (FFI). SUNDIALS is a C implementering van 'n
stel moderne algoritmes vir die integrasie en oplos van verskillende vorms van
beginwaarde probleme (IVP). Aanvullend daartoe is die volgende beskikbaar
in die verskeie modules van SUNDIALS: arbitrére vind van wortels en tyd-
afhanklike sensitiwiteitsanalise. 'n Belangrike fokus van die projek was om te
verseker dat die pakket voldoen aan die taalstandaarde en sintaktiese vereistes
van Python.

Veelvoudige voorbeelde van die SUNDIALS modules (CVODE, CVODES,
IDA en KINSOL) word verskaf ter vergelyking van PySUNDIALS en C SUN-
DIALS (vir verifiéring van korrektheid) en ook om PySUNDIALS te vergelyk
met verskeie ander sagteware pakkette. Die voorbeelde verskaf ook begin-
puntvergelykings ten opsigte van spoed en lengte van kode. Spesifieke toepass-
ings van die SUNDIALS pakket word geillustreer, soos die modellering van
diskontinuiteite deur gebruik van die vind van wortels, tyd-afhanklike sensiti-
witeitsanalise van ossilerende sisteme, en die modellering van ewewigsblokke
deur gebruik van implisiete algebraiese en differensiaalvergelykings.

PySUNDIALS is beskikbaar as oopbronsagteware. Dit word tans geinte-
greer in die sisteembiologie sagtewarepakket PySCeS as 'n opsionele stel van
oplossers. Die potensiéle metodes vir optimisering van PySUNDIALS en die
inkorporering van die parallele modules van SUNDIALS word kortliks bespreek.

iii

Contents

Declaration

Contents

List of Figures

List of Tables

Listings

Stylistic Conventions

Acknowledgements

1 Background

2

1.1 Systems biology models and nonlinear dynamics
1.2 The goals of systems biology
1.3 The rise of Python as a scientific programming language
1.4 Languages competing with Python in scientific programming . .
1.5 The SUNDIALS package
1.6 The need for Python interfaces to SUNDIALS
1.7 PySUNDIALS e
Implementation
2.1 Implementation overview
2.2 The foreign function interface (ctypes)
2.3 Structural differences in code layout between SUNDIALS and
PySUNDIALS source
2.4 Pythonification
2.5 Difficulties
2.6 Integration with NumPy
2.7 Availability of PySUNDIALS

iv

iv

vi

vii

viii

ix

12
19
22
23
25
25

Contents v

3 Results 44
3.1 CVODEexamples 44
3.2 Using CVODES to analyse changes in sensitivities in transient

states ... oL 50
3.3 IDAexamples 53
34 AKINSOLexample 55
3.5 Benchmark comparisons 56
3.6 The Whole Cell Model: A complex example 60

4 Discussion and conclusion 63
4.1 The integration of SUNDIALS into PySCeS. 63
4.2 Future worko 64
4.3 SUMMATY . . . v v et e e e e 67

A Code listings 69

B Abridged PySUNDIALS Documentation 104
B.1 Imtroduction. 104
B.2 Installation 104
B.3 Configuration L 106
B.4 Using PySUNDIALS 106

Bibliography 120

List of Figures

1.1
1.2
1.3
14

2.1

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12

3.13
3.14
3.15

3.16
3.17

Two mechanisms for coupling reactions.
An example of moiety conservation.
The four structural motifs of metabolic networks.
A worked example.o

Mustration of the Python data model.

Example 1 - A simple model with a moiety conservation cycle and
abranch.

A comparison of results between LSODA and CVODE for example 1.

Example 2 - A branched chain.
Concentration and rates over time for example 2.
Comparing biomodels reference image and PySCeS for example 3. .
Species sensitivities to variation in Vs against time for example 1. .
Example 4 - The Brusselator.
Species sensitivities to variation in k; against time in example 3.
Comparison of CVODE and IDA concentrations over time for ex-

Example 5 - Linear chain with an equilibrium block.
Comparison of time courses for example 5.
Parameter scan of steady state concentrations and fluxes of exam-

ple 1 varying Vo from O to 5.
The minimal whole cell model.
Whole cell model reference figure 4a.
Veyt, Smem, and surface-volume ratio (x) displaying an oscillatory

growth pattern. oL oo L
Whole cell model reference figure 4c.
Oscillatory growth shown in P, L, M, Pemn and Liep. - - - o - . .

vi

NoRNUURNGURE V]

List of Tables

1.1

3.1
3.2
3.3
3.4

A Comparison of features provided by available software. 18
Parameter values used for example 1. 46
Parameter values used for example 2. 48
Parameter values used for example 5. 54
Comparative execution times and code lengths between C and Python. 58

vii

Listings

1.1 N.Vector additionin C. 26
1.2 NVector addition using PySUNDIALS 26
2.1 Tllustrative example of matrix access using PySUNDIALS 32
2.2 Tllustrative example of vector operations in C using SUNDIALS 33
2.3 Output from Listing 2.2 34

2.4 Tllustrative example of vector operations using PySUNDIALS . . 34
2.5 Declaration and nomination of a callback function using ctypes 35
2.6 Declaration and nomination of a callback function using Py-

SUNDIALS 37
2.7 The assignment “gotcha” in callback functions 40
2.8 NumPy integration demonstration. 42
3.1 Output of moiety_branch-kinsol.py 56
3.2 Output of moiety_branch-hybrd.py 56
4.1 Using CVODEin PySCeS. 63
4.2 Event syntax in PySCeS model files 64
A.1 moiety_branch.psc oL 69
A.2 moiety_branch-lsoda-independent.py 70
A.3 moiety_branch-cvode-independent.py 71
A.4 branched_events-cvode.py 73
A5 zeilinger.psc 76
A6 zeilinger.py 81
A.7 moiety_branch-cvodes-independent.py 82
A.8 brusselator-cvodes.py o 85
A9 moiety_branch-ida.py 88
A .10 linear_equilibrium-cvode-independent.py 90
A.11 linear_equilibrium-ida.py 92
A.12 moiety_branch-kinsol.py 94
A.13 moiety_branch-hybrd.py 96
A .14 moiety_branch-kinsol-paramscan.py 97
A.15 MWC_wholecell 2b.psc 99
ATI6 MWCLSODApY . - . o o o o e 100
Ad17betabR.py o o o 101

viii

Stylistic Conventions

This document maintains a number stylistic conventions to increase clarity
and legibility.

e Names of software packages, or parts thereof, are presented in sans-serif,
e.g. “PySUNDIALS”.

e When variable names, type names, or small snippets of code are re-
ferred to in text they are presented in mono spaced font, e.g. “import
pysces”, or “when a is set to”.

e URL’s are presented in mono spaced font always beginning with a proto-
col specification, e.g. http://www.google.com or svn://pysundials.
sourceforge.net

ix

http://www.google.com
svn://pysundials.sourceforge.net
svn://pysundials.sourceforge.net

Acknowledgements

e Prof. J.H.S. Hofmeyr for supervision
e Prof. J. Rohwer for co-supervision

e Dr. B. G. Olivier for assistance with PySCeS and the provision of PySCeS
model files

e Andrew Dalke for in depth technical help regarding Python and ctypes
internals

e The National Bioinformatics Network (NBN) for funding

Chapter 1

Background

1.1 Systems biology models and nonlinear
dynamics

“Systems biology” is a poorly defined term, loosely describing the interdis-
ciplinary study of whole biological systems. Although there is no consensus
on the term’s precise meaning, Wikipedia (2008) lists multiple general appli-
cations of the term as identified within the scope of the biological sciences.
The first is the study of interactions between biological components, such as
enzymes and metabolites in metabolic pathways, and how these interactions
form emergent systemic behaviours (Snoep and Westerhoff, 2005; Hofmeyr,
2007).

The second usage defines systems biology to be the opposite of traditionally
reductionist scientific approaches, which have been used to successfully isolate
and characterise components of biological systems, but yield little knowledge
about the behaviour of the system as a whole. Systems biology in this sense,
refers to the integration of knowledge acquired from reductionist methods,
using equally scientifically rigorous methods, to form knowledge about the
system as whole. (Sauer et al., 2007; Noble, 2006)

Thirdly, the term refers to those techniques and methods that treat whole
systems experimentally. Given the objective of modelling interactions in a bi-
ological system, experimental techniques that collect large amounts of quanti-
tative data about a system as a whole, such as those used in high-throughput
biology, are differentiated from those techniques dealing with an individual
component of the system. (Kholodenko et al., 2005)

For the purposes of this text we consider the first case. More specifically,
we understand ”systems biology” to mean the investigation of the nature and
properties of intracellular reaction and interaction networks by the creation
and manipulation of mathematical models thereof.

Chapter 1. Background 2

1.1.1 The properties of metabolic pathways

To understand how such models are structured, let us first consider the gen-
eral biological properties of metabolic networks. Metabolic networks consist
of a network of chemical reactions that interact by means of shared metabolite
pools, such that one reaction’s product is the substrate of another reaction.
Reactions may interact via other mechanisms, in the form of regulatory loops.
Such feedback or feed-forward loops are due to binding of effectors to enzymes,
and are therefore not due to mass action. Metabolic networks bear large sim-
ilarities to electrical or hydrodynamic networks, which are also models of flow
through a system. However, chemical, and hence biochemical, networks have
the unique structural property of stoichiometry, being the fixed ratios in which
metabolites react with one another for a given reaction. The stoichiometry of
a system fundamentally influences the distribution of flow through the system
in ways not found in other flow networks.

The simplest situation of biochemical relevance is where one reaction is
coupled to another when its product is used as the only substrate of another
reaction (See Figure 1.1a). Such couplings can be joined together to form
linear chains of reactions which represent the conversion of one metabolite to
another through a number of intermediates.

a. A—B—Z

X-Z X

Figure 1.1: Two mechanisms for coupling reactions.

Individual reactions need not necessarily be coupled in a ‘linear’ manner, as
a single reaction may consume multiple substrates, and likewise might produce
multiple products. Two such reactions can be coupled via multiple shared
metabolite pools (See Figure 1.1b), each of which shares a common chemical
moiety (X in the figure). The stoichiometry of the system dictates that the
total mass of the molecules that share this common moiety remains invariant,
forming a moiety conserving subnetwork.

A common biological example of this is phosphorylation of a compound X
by ATP, producing ADP and the phosphorylated product (X-P) (see Figure
1.2). For the reaction to continue, ATP must be replenished by the phospho-
rylation of ADP to produce ATP, which would involve at least one additional

Chapter 1. Background 3

ADP-P ADP

Figure 1.2: An example of moiety conservation.

substrate (Y-P) to provide the phosphate and produce one additional prod-
uct (Y). The total amount of the moiety ADP, whether free or bound to an
additional phosphate in the form of ATP, remains constant.

b HH/HH

N

c. i H/A\H
~_

L T~
~
d. f>

N

Figure 1.3: The four structural motifs that comprise a metabolic network: a. The
linear chain, b. The branched chain, ¢. The loop, either parallel (i) or anti-parallel
(it), and d. The cycle.

Given these two fundamental methods of linking reactions together, we
can now discuss higher level structural properties of metabolic networks. The
most obvious structure is the linear pathway of reactions (Figure 1.3a), where
two or more reactions are chained together by mutual metabolite pools.

Additionally, multiple reactions might consume the same substrate, form-
ing a branch (Figure 1.3b) in the pathway. Similarly, multiple reactions might
produce the same product, joining two initially separate pathways into one,
allowing the formation of a parallel loop (Figure 1.3¢;). Anti-parallel loops
(Figure 1.3¢;;) are formed when one side branch eventually produces a metabo-
lite that is consumed by a reaction occurring before the branch point. Anti-

Chapter 1. Background 4

parallel loops differ from the final motif, the cycle (Figure 1.3d), in that their
branch and join points are formed by multiple reactions either consuming or
producing the same metabolite, respectively. Cycles, in contrast, have en-
try and exit points formed by reactions that produce or consume multiple
metabolites.

It is important to remember that although we visualise a pathway as a
series of arrows and boxes, implying a spatial relationship between reactions,
that no such spatial relationship exists. A reaction that exists within a given
physically bounded compartment occurs throughout that compartment. In
cases where diffusion processes are slow compared to the elements of interest in
the system, we cannot assume that a given metabolite is uniformly distributed
throughout the volume, and we must model their diffusion explicitly, as in
Rudiger et al. (2007) and Boderke et al. (2000). For the most part though,
diffusion is rapid compared to metabolite production, and one can assume that
metabolites are distributed evenly throughout any compartment in which they
are present, a situation analogous to the engineering concept of a “well stirred
reactor”.

1.1.1.1 Equilibrium state

Chemical networks as a whole can be in three states. The first is a state of
equilibrium, where the individual chemical pools have values that do not vary
over time because each reaction is in chemical equilibrium, i.e. the net rate
of each reaction is zero. Such systems can only be thermodynamically closed,
meaning there is no transfer of mass into or out of the system. These systems
are of almost no biological relevance, except as useful reference states, e.g.,
for judging how far a reaction system is out of equilibrium.

1.1.1.2 Steady state

Far more interesting is an open system through which a flow of mass occurs.
Such systems tend to a final state in which the metabolite pools are time-
invariant in size, but the reaction rates are nonzero; the system is said to be
in steady state. The steady state itself is theoretically asymptotic, although
in practice it is possible to treat a system as being in a steady state. Many
systems do not achieve steady state, instead having metabolite concentrations
that oscillate with constant period and amplitude and not settling to time-
invariant values. Such metabolites are described as being in a “limit cycle”.
A system may have a single steady state, which will be reached regard-
less of initial concentrations, or multiple steady states. The particular steady
state achieved by systems with multiple steady states depends not only on the
parameters of the system, such as maximal enzyme activities or equilibrium
constants, but also on the initial concentrations of the system, i.e. its history.
Steady states may be stable to various degrees, and in various ways. Struc-

Chapter 1. Background 5

tural stability refers to the fact that a particular system has a set of steady
states that exists in a smooth continuum. Infinitesimal changes made to a pa-
rameter of the system alter the steady state of the system in a proportionally
infinitesimal manner. Conversely, a structurally unstable steady state occurs
at a discontinuity where a small change in a parameter will produce a finite
jump to a new steady state; a typical example is a hysteretic system.

1.1.1.3 Transient state

A system can also be in a state of change or progression, such that its metabo-
lite concentrations fluctuate and its reaction rates are nonzero. These systems
are either described as being in the “transient state”, as they are changing
state over time. They may be progressing toward a steady state, either from
a set of initial conditions, or after the perturbation of a steady state. They
might be between steady states after a change in a system parameter, or they
may simply be chaotic.

1.1.2 Mathematical models of metabolic networks

A full kinetic model of a reaction network is in actuality a hierarchical collec-
tion of smaller models. Each individual reaction is its own model. We model
the coupling of reactions via shared metabolites with a higher level model.

1.1.2.1 Modelling an individual reaction

At the lowest level, we have mathematical models representing individual
reactions. Various methods of modelling a single reaction exist. We can use
the first principles methods of mass action modelling, in which a reaction is
broken down into elementary chemical steps. Consider the reaction

A+B=C (1.1)

The biological nature of the systems we investigate means the majority of
the reactions being modelled are enzyme catalysed. If we assume this reaction
is enzyme catalysed by some enzyme (E) using a random binding mechanism,
then we can break the reaction down into explicit elementary chemical steps
of association, isomerisation, and dissociation (Equations 1.2-1.5, 1.6, and 1.7
respectively).

Chapter 1. Background 6

E+A=E-A (1.2)
E-A+B=E-A B (1.3)
E+B=E-B (1.4)
E-B+A=E-A B (1.5)
E-A-B2E.C (1.6)
E-CRE+C (1.7)

These chemical equations are very simple to model mathematically. Each
of these chemical equations represents a reversible reaction, and the mathe-
matical expression of the reaction rate thus requires two terms, one for each
direction of the reaction. Each term expresses the rate of the reaction in
a particular direction in terms of concentrations and mass action constants.
The combining of both directions into a single equation may lead to a negative
value, which necessitates the definition of a particular direction of the reaction
as forward, i.e. the positive direction.

o1 = kg [E]A] - ki [E - A] (1.8)
vg = kog|E - A][B] — ky[E - A- B] (1.9)
v3 = k3| E|[B] — ks, [E - B (1.10)
vi = kas|E - BJ[A] - ky[E- A-B] (1.11)
vs = kss[E - A-B] — ks, [E - O] (1.12)
v = kegE - C] — ke [E][C] (1.13)

Using mass action kinetics leads to a model with very simple kinetics, but
a large number of reactions, and hence a large number of ordinary differential
equations (ODEs).

Chapter 1. Background 7

% = —v] — Uy (1.14)
% = —vy — U3 (1.15)
% =] — V2 (1.16)
% =v3 — Uy (1.17)
dE;;tlB = Vg + Vg — Vs (1.18)
% = U5 — Vg (1.19)
% _ (1.20)
CiTLtC = v — V] — U3 (1.21)

If we assume a steady state, and set these ODEs to zero, we can derive a
steady state rate law for the individual enzyme catalysed reaction. Thus, the
second method of modelling an individual reaction is introduced, namely the
rate law. The rate law method provides a satisfactory aggregate model of each
of the mass action step involved in a reaction, as a single steady-state rate
law. Rate laws, or rate equations, are nonlinear functions of substrate, product
and effector concentrations, which are system variables, and constants, such as
maximal enzyme activity (Vinae = keat[F]), kinetic constants (K s, K;, etc), or
equilibrium constants (K.,4). Constants are either fundamental rate constants
as used in the King-Altman form (King and Altman, 1956), or statistically
derived phenomenological constants as used in, for example, the Cleland form
(Cleland, 1967).

A variety of rate equations exist to model the kinetic behaviours exhib-
ited by various enzymes, including the Michaelis-Menten equation (Equation
1.22) (Michaelis and Menten, 1913), its reversible form (Equation 1.23), the
reversible Hill equation (Equation 1.24) (Hofmeyr and Cornish-Bowden, 1997;
Hanekom, 2006) and the Monod-Wyman-Changeux equation (Equation 1.25)
(Monod et al., 1965).

y
wege B
(] [B], [A]IB]

y Ik’ R e’ BT el
T K. T Ks T Kaks

where V} is the forward limiting velocity and K 4, Kp and K¢ are the Michaelis

v= (1.22)

Chapter 1. Background 8

constants.
14 (€]
SR VR 12 B % IR 129
KA KB KAKB KC’
Vi VA% N A
_ Ao.5Bo.s <[A] B Keq> <A0.5 Bos 00.5)
- (A O\ /B, e\, (1A [B] e €1Y)"
b (AO.5+C'0.5) * <Bo.5+00.5) " (Ao.s B +00.5) _2(<16;04.5)>)

where Ag s, Bogs and Cy 5 are half-saturation concentrations and h is the Hill
coefficient.

V [C] [A] | [B] | [A[B] _[C]\"""
_mh@““@ﬁ@*m*m*mm*m)
(BB A Y

K. Ky KiKp Ke

v

(1.25)

where Ly = Ty/Ro, K4, Kp and K¢ are the intrinsic binding constants and
n is the number of subunits.

The validity of an overall model relies on appropriate rate equations being
chosen for each reaction represented in the model. The reversible Michaelis-
Menten equation is an appropriate choice for reactions displaying non-cooperative
binding, but for reactions displaying cooperative binding, the Monod-Wyman-
Changeux or reversible Hill equations are appropriate choices.

Another possible method, developed by Savageau (1969) and known as
the power-law method, aggregates even further, combining all reactions that
produce a particular metabolite into a single power-law rate equation, and
all reactions that consume that same metabolite into another power-law rate
equation. This ensures that the differential equation expressing change in
concentration over time for a single metabolite will never contain more than
two terms. This method makes the model mathematically more tractable,
allowing for an analytical solution of the steady-state equations, but has the
disadvantage that it bears little discernible relationship to the original biolog-
ical system.

For our purposes, the rate law method provides a middle ground both
sufficiently tractable and whose relationships with biological and chemical
mechanisms are comparatively easy to infer. Given models of individual reac-
tions, we must now explore methods of linking these reaction models together.
The change in time of a given metabolite amount can be represented by an
ordinary differential equation, which is the summation of all rate equations in

Chapter 1. Background 9

which the metabolite appears as substrate or product, such that rate equa-
tions which model reactions that produce the metabolite are positive, and
those rate equations that consume the metabolite are negated. Thus, for a
given metabolite, its ODE represents the overall change in amount of that
metabolite within the entire system over time. In the case of a moiety conser-
vation, one metabolite’s system variable is defined in terms of its partner or
partners, not requiring an ODE in and of itself, but rather a simple algebraic
equation describing the conservation relationship independent of time. As the
total amount of the shared component is conserved, we can mathematically
express the conservation relationship depicted in Figure 1.2 as

¢c= ATP + ADP (1.26)

where c is a constant equal to the sum of the initial values of AT P and ADP.

1.1.2.2 A worked example

A description of the complete kinetic model of a reaction network is best de-
scribed with an accompanying worked example. To this purpose we introduce
the system depicted in Figure 1.4. This system uses reversible Michaelis-
Menten kinetics for all reactions, and the rate equations and ODEs that form
the model are listed below (Equations 1.27 - 1.34).

25— {ax
Xo—[1}+5:
NEless51%

Figure 1.4: A worked example consisting of a simple single branch system.

Vi [S1]
KX10,1 <[XO] B Ke;1>

V1 = [X()] [Sﬂ (127)
bt Kx,1 * Kg, 1
Vo [S2]
Vo = K2 <[Sl] } Keq@) (1.28)
L T |

Ks 2 Kg,2

Chapter 1. Background 10

= 1.29
V3 s [Sl] N [53] ()
KS1,3 K53,3
Vi [X4]
S _
KS'2,4 <[2] Keq,4>
Vyqg = (130)
L4 o Xl
Ks,u Kxyu
Vs [X5]
S _
KS3,5 <[3] Keq,5>
vs = (1.31)
14 [S3] " [X5]
K53,5 KX5 5
dSh
2L — 209 — 1.32
dt V1 V2 VU3 (3)
dSs
e 1.
i (%) V4 (33)
dsS
7; = V3 — Vs (134)

1.1.2.3 The kinetic model of a reaction network

A complete kinetic model of a reaction network is simply the set of all its
ODEs. We can neatly express these ODEs in matrix notation in the form

ds

where s is a vector of species, or metabolite, concentrations, IN is a matrix
reflecting the stoichiometry of the system, and v is a column vector of the
rate equations. From the worked example we would have

U1

s 1 -2 -1 0 0 vy
Z=Nv=|0 1 0 -1 0 Vs (1.36)

00 1 0 —1]] v

s

The stoichiometry matrix (IN) consists of rows, one for each metabolite,
and columns, one for each reaction. An entry in the matrix indicates the num-
ber of molecules of that row’s metabolite that react in the column’s reaction.
Positive numbers indicate that the metabolite is produced by the reaction,

Chapter 1. Background 11

negative numbers indicate consumption, and zero indicates non-participation.
The rate equations themselves are placed in a column vector (v) called the
rate vector, in an order corresponding to the columns in the stoichiometry
matrix of the reactions they govern. Multiplying the stoichiometry matrix by
the rate vector produces a vector of ODEs (%) describing the entire model.

Where moiety conservation is encountered, where a (sub)set of ODEs are
linearly dependent, a single ODE from the set is chosen as dependent and can
be omitted. As an example, consider, briefly, the system outlined in Figure
1.2. The system is composed of two ODEs,

dATP

dt = V2 — U1 (1.37)
dADP

dt = V1 — V3 (1.38)

Simple visual inspection suffices to determine that

dADP dATP
=0 1.39
dt + dt ()
from which it follows that

ADP + ATP = ¢ (1.40)

where c is constant.
Any one of the ODEs can be designated the dependent ODE and replaced
by Equation 1.40.

1.1.2.4 Time hierarchy of reactions on the system border

Open systems are formed by clamping the concentration values of metabolites
on the borders of the system, known as external metabolites, creating con-
stant sources and sinks. This amounts to the assumption that these external
metabolites are well-buffered by very fast reactions outside the system.

1.1.2.5 Modelling multiple compartments

One should note briefly that it is possible to model systems with multiple phys-
ical compartments that separate the pool of a particular metabolite physically.
In this case, models consider two or more separate pools of the same metabo-
lite, one in each compartment. Despite being chemically identical, the model
treats the separated pools as different metabolites.

Chapter 1. Background 12

1.2 The goals of systems biology

Mathematically, the models described earlier fall into the category of initial
value problems (IVP), wherein we have a system describing changes in a collec-
tion of variables from some time point to another time point shortly thereafter.
We must however provide initial values for these variables. Apart from simply
creating models of metabolic networks, let us review the goals and common
problems we wish to solve in the field of systems biology.

1.2.1 Behaviour in time

Observation of the time dependent behaviour of a system is a common goal
in systems biology. Fortunately, a simple numerical integration over time
can produce plots of fluctuating metabolite levels. Unfortunately, metabolic
networks are often considered stiff systems, and many software integrators
may struggle to integrate complex networks. In addition, we wish to observe
the system over time whilst being able to introduce discontinuous events, such
as major fluctuations in variable values or even changes in parameter values.

1.2.2 Finding steady state fluxes and metabolite levels
A system is in steady state when its net flux is zero, i.e.

ds
— Nv =0 1.41
g v (1.41)

Solving this system requires a nonlinear solver, which in turn requires the
reduction of the system to a set of independent algebraic equations. Alterna-
tively, numerical integration can performed until such time as a steady state
can be inferred from the insignificantly small changes in metabolite levels over
time. Often the latter method is required to provide a usable set of initial
conditions for the nonlinear solver, or when the former method proves unable
to solve a complex system. It would be convenient to be able to specify mod-
els directly as a set of possibly dependent differential and algebraic equations,
and use a solver capable of dealing with systems of differential and algebraic
equations.

1.2.3 Stoichiometric analysis

Investigation of the stoichiometry of a metabolic network can identify flux
relationships in the steady state, as well as conservation relationships. One
method for finding both these relationships starts by augmenting the stoi-
chiometry matrix (N) with an identity matrix of dimension equal to the num-

Chapter 1. Background 13

ber of metabolites (I,,), in which each column represents a single metabolites
change in time, to form N|I,,.

1 -2 -1 0 0100
NIL,=|0 1 0 -1 001 0 (1.42)
00 1 0 —-1/00 1

Gaussian elimination is then used to reduce N|I,,, to row echelon form,
yielding (N|I,;,)’. In our example, the matrix is already in row echelon form.

1.2.3.1 Identifying steady state flux relationships using the
system kernel

If we split (N|I,;,)" into its original constituent matrices, we have the trans-
formed stoichiometry matrix N’ and the transformed identity matrix I'. Plac-
ing these in the equation

N'v =TI'd (1.43)

where d is a column vector of the metabolite time derivatives, we can set the
right hand side to zero to represent the steady state, where all those derivatives
are zero.

N'J=0 (1.44)

where J now refers to a vector of steady-state fluxes.

The pivots of N’ identify a valid set of columns which are dependent fluxes,
meaning each of these can be expressed as a linear combination of the remain-
ing independent fluxes. Equation 1.45 demonstrates our continuing example,
with the pivots identified in bold face. In this system, fluxes J; and J5 are
independent.

1 -2 -1 0 0
N=|0 1 0 -1 0 (1.45)

Multiplying N’ by a vector of fluxes, which we use instead of rates since
we are dealing with the steady state, we obtain

J1

1 -2 -1 0 0 Jo
0=NJ=|0 1 0 -1 0 J3 (1.46)

0 0 1 0 -1 Jy

J5

Expressing each flux in terms of only independent fluxes we obtain the steady
state flux relationships of the system.

Chapter 1. Background 14

J1 =20+ J3=2J4+ Js5 (1.47)
Jo=Jy (1.48)
J3=Js (1.49)
Ji=J4 (1.50)
Js = Js (1.51)

Putting Equations 1.47 to 1.51 into a matrix form we find a valid kernel
matrix (K) for the system.

i 2 1
Jo 10

Jsl =10 1 lﬂ :Klﬂ (1.52)
Jy 1 o| L7 5

Js 0 1

1.2.3.2 Identifying conservation relationships using the link
matrix

Identifying conservation relationships involves finding the dependent and in-
dependent metabolite variables, i.e. seeking out those variables which can
be expressed completely in terms of other metabolites. The worked example
introduced in Section 1.1.2.2 contains no conservation relationships so we will
fall back on the ATP/ADP example illustrated in Figure 1.2. We give (N|I)
for this example, and (N|I)’

| v1 w2 | ATP ADP

NI= ATP|-1 1 1 0 (1.53)
ADP| 1 —-1| 0 1
‘ vl 02 ‘ ATP ADP
(NI)) = ATP| -1 1 1 0 (1.54)
ADP| 0 0 1 1

Each zero row of N’ identifies one linear dependency among the ODEs,
given by the corresponding row of I’, the columns of which refer to the ODEs.

dADP dATP

a T Ta

which yields the conservation relationship ATP 4+ ADP = c obtained previ-
ously.

One of the ODEs is chosen as dependent and the corresponding row in N is

deleted to give the reduced stoichiometric matrix Ng. If, in our example, ADP

is chosen as dependent then we can, using the linear constraint on the ODEs,

0 (1.55)

Chapter 1. Background 15

construct a matrix L, called the link matrix, that captures the relationship
between N and Ng, namely N = LNpg:

l_ll _11] = l_ﬂ] -1 1 (1.56)

1.2.4 Metabolic control analysis

The analysis and quantification of the control exerted on the variable concen-
trations and rates through the system by various system parameters both at
steady state and over time, is a well developed framework, similar to that used
in electrical engineering (Ingalls, 2004), known as metabolic control analysis
(MCA) (Kacser and Burns, 1973; Heinrich and Rapoport, 1974), a concise
summation of which can be found in Hofmeyr (2001).

1.2.5 A brief overview of software tools

The mathematical solutions to most of our problems exist already, and are
well developed. As such any general mathematical toolbox software provides
abstracted computational solutions. Software such as Mathematica (Wolfram,
1991), Matlab (Gilat, 2004), and its open source competitor, GNU Octave
(Eaton, 2002), can thus be considered software tools for the systems biology
field. Scientific library packages such as the Linear Algebra Package (LAPACK)
(Anderson et al., 1999) and SciPy (Jones et al., 2001), offer similar capabilities
for the development of custom software tools. But, the general nature of these
tools makes the specification of a model tedious and overly complex, and
often requires detailed knowledge of the underlying mathematics combined
with some skill in programming. The more focused software tools actually
perform most of their computation using these toolboxes or libraries, but
provide automated creation of the required custom scripts by parsing less
complex model description files.

1.2.5.1 Systems biology software history

Some of the earliest uses of computers in the enzyme kinetics field were of ana-
logue computers by Hommes (1962), Walter and Morales (1964) and Walter
(1966) in the establishment of the range of validity of the quasi-steady-state-
assumption implied by the use of Michaelis-Menten kinetics. As digital com-
puters rapidly replaced analogue ones and FORTRAN became widely available
(See Section 1.3.1) more generalised mainframe software packages for systems
biology, although the term did not yet exist, were developed (Curtis, 1976;
Roman and Garfinkel, 1978).

With the prevalence of home microcomputers rising, modelling software
able to run on these scaled down architectures was developed, including META-
MOD (Hofmeyr and van der Merwe, 1986), SCoP (Kootsey et al., 1986), and

Chapter 1. Background 16

later SIMFIT (Holzhutter and Colosimo, 1990), and CONTROL (Letellier et al.,
1991).

The advent of modern 32-bit protected mode architectures brought about
the creation of a set of modelling applications regarded as formative in the

field of computational systems biology, including Metamodel (Cornish-Bowden
and Hofmeyr, 1991), Scamp (Sauro, 1993), and Gepasi (Mendes, 1993).

1.2.5.2 Current tools

At the time of writing, a large variety of software tools has been developed by
various groups around the world, most providing a common subset of abilities
but ultimately designed to specialise in a particular form of analysis. Some
of the more popular and recent ones are discussed briefly, and tabular com-
parison of their features is presented in Table 1.1. A similar comparison of
available software, dealing with fewer individual tools but in greater depth
was performed by Pettinen et al. (2005).

CoPaSi: The COmplex PAthway SImulator (Hoops et al., 2006) is descended
from Gepasi, and available free for non-commercial use from http://
www.copasi.org. CoPaSi provides a both a command line option for
batch processing of models, and a graphical user interface (GUI) for
interactive model design and analysis.

Jarnac: Jarnac (Sauro, 2000) is the direct descendent of Scamp, also devel-
oped by Sauro. It is essentially an interpreter for a powerful model
description and manipulation language. The language has both descrip-
tive elements, allowing the specification of a model, and procedural ele-
ments which allow programatic manipulation and analysis of the model.
The language is similar to BASIC in many respects, and common pro-
gramming constructs such as loops, conditionals and sub-routines are
available. Jarnac implements both stochastic and deterministic mod-
elling frameworks, and can be extended via user defined functions and
modules. It is available for download from http://www.sys-bio.org.

ScrumPy: ScrumPy (Poolman, 2006) provides an interactive command line
prompt via the Python interpreter. It is capable of both kinetic and
structural modeling, but focuses on structural analysis of large (genome-
scale) networks. Because it is offered as a collection of utilities, it is
readily extensible. ScrumPy is available under the GNU General Public
License (GPL) from http://mudshark.brookes.ac.uk/ScrumPy.

iBioSim: iBioSim (Myers et al., 2008) is a recently released GUI tool primar-
ily developed for the analysis of genetic circuits. iBioSim consists of a
collection of inferior tools, meaning “executed subordinate to” and not a
reference to their quality. Although the majority of these tools deal with

http://www.copasi.org
http://www.copasi.org
http://www.sys-bio.org
http://mudshark.brookes.ac.uk/ScrumPy

Chapter 1. Background 17

the creation, inference, and analysis of genetic circuits, iBioSim is also
capable of modelling metabolic networks. iBioSim can be downloaded
from http://www.async.ece.utah.edu/iBioSim.

SBMLOdesolver: The SBML ODE Solver Library (SOSLib) (http://wuw.
tbi.univie.ac.at/"raim/odeSolver is a programming library with a
command line interface written in C. It is capable of time dependent
sensitivity analysis.

MathSBML: MathSBML http://sbml.org/Software/MathSBML is a Math-
ematica module which provides an interface for loading SBML (See Sec-
tion 1.2.6) files as Mathematica models. Once the model is loaded the
full set of Mathematica features can be used, and several convenience
functions are provided to make common tasks such as time simulation
easy.

SBToolbox2: The Systems Biology Toolbox (Schmidt and Jirstrand, 2006)
is a Matlab package that provides an interface to SBML and various
systems biology tools within the Matlab framework.

Roadrunner: Roadrunner is a compiled C# program that runs as a background
service. It accepts models and requests for analyses and serves the re-
sults.

JWS Online: The Java Web Simulation Project (JWS) Online (Olivier and
Snoep, 2004) is both a software tool, and an online repository of pub-
lished and curated models. Using a downloadable Java applet and Web-
Mathematica as a computational back end, JWS Online facilitates online
kinetic modelling. JWS Online can be used at http://jjj.biochem.
sun.ac.za.

PySCeS: The Python Simulator for Cellular Systems (Olivier et al., 2005) is
a command line driven software tool that is run as a Python module,
allowing easy extension. It provides a modular collection of tools and
automates their use to allow numerical analysis and exploration of ki-
netic models. The user may specify which solvers/integrators to use,
and can plot or export resulting data. As the entire model is available
for introspection in the running Python interpreter, all data and results
can be accessed in a programmatic manner, either interactively using
the Python interactive command line, or in an automated manner, by
running a saved script. PySCeS is distributed under a BSD opensource
licence, and is available from http://pysces.sourceforge.net.

http://www.async.ece.utah.edu/iBioSim
http://www.tbi.univie.ac.at/~raim/odeSolver
http://www.tbi.univie.ac.at/~raim/odeSolver
http://sbml.org/Software/MathSBML
http://jjj.biochem.sun.ac.za
http://jjj.biochem.sun.ac.za
http://pysces.sourceforge.net

Chapter 1. Background 18

o
S .2
= o S
£ S =
g £ >
IS E =
O g ﬁ ?
= A 8 = =
e 2} ’g R o g % =]
= 3z 9 Z A 4 = 2
T - = =
~+~ o
o o B o 7 © @ T & B < & 37
195) it o Q o QO gl Q s} Q & =
= < Z g 197}] o8 o o) < &)
5 & 2 & g2 8 = 8 3B 45 & pe
Q »n - < Q = — = = 5] > 37
O > 8 m O e = < B <
.z 2252 F 222 73:F 2
-
E S EE L3 5222 E B8 %
E o B B = =2 ©n.;m ;»m n =H 9 o
CoPaSi| ¢ e e e e o ° e o o o
Jarnac | ¢ e e e e e ° . o o
ScrumPy | ¢ o o o o @ °
iBioSim | o e e o o °
SBMLOdesolver | o o . ° °
MathSBML | ¢ e e o o ° o o
SBToolbox2 | ¢ e e o o ° o o
Roadrunner | o o e o o ° °
JWS Online | o o e o o
PySCeS | o o e o o ° e T e

Table 1.1: A comparison of features provided by available software: A more ex-
haustive list of systems biology software can be found at http://sbml.org/SBML_
Software_Guide/SBML_Software_Matrix along with a similar matrix comparison of
features. Only SBML compatible software is recorded. T Soon to be implemented.

1.2.6 Model interchange and SBML

Given the multitude of available software tools for systems biology one could
be led to believe that a modeller has a cornucopia of choice, but, sadly, this
is not the case. No single tool is capable of solving all of our stated problems,
and indeed when trying to solve a particular problem one is often forced
to use a particular software tool. There are times where one has two or
more separate aims for the same model, but each requires a different software
package. Different software packages use different model specification formats,
and indeed a given format for a particular software package may not be capable
of specifying one’s model in its entirety. The problem of being forced to
hand code the same model for multiple tools, led to the development of the
community driven Systems Biology Markup Language (SBML) (Hucka et al.,
2003). SBML is an eXtensible Markup Language (XML) derived language,
designed to describe models independently of any specific software tool, and
independent of any solution implementations. A software library developed in

http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix

Chapter 1. Background 19

conjunction with the language specification provides a mechanism for software
tools to both export and import models to and from an SBML file, facilitating
the transfer of models between software tools. As such SBML has become the
de facto standard for model interchange.

Although a particular software tool may not implement all the features
in a given model, it is free to ignore those features, meaning a single model
description is sufficient for achieving both original aims.

1.2.7 Systems biology frameworks

Examining Table 1.1 it is evident that no single tool is sports every feature, and
certainly not every tool performs every task well. In an attempt to mitigate
these problems, and to provide some level of automation to the use of SBML,
systems biology frameworks are being developed.

BioSPICE: BioSPICE (http://biospice.sourceforge.net) is an open source
framework that provides integrated use of a large collection of specific
tools. The BioSPICE tool set concentrates on spatio-temporal modelling.
This project is no longer developed or maintained.

SBW: The Systems Biology Workbench (http://sbw.sourceforge.net) is
another framework that treats other software tools as 'modules’, such
as Jarnac and Roadrunner for most of the computation, and metatool
(Pfeiffer, 1999) for the determination of elementary modes. The details
of file formats and data marshalling are managed by SBW. Many mod-
ules serve as user friendly graphical front ends to more complex back end
modules, as is the case with JDesigner being used to graphically design
models for analysis with Jarnac.

Virtual Cell: Virtual Cell (Loew and Schaff, 2001) is a framework with a dif-
ferent aim to SBW and BioSPICE. It focuses heavily on spatial mod-
elling of diverse cellular structures consisting of multiple compartments
of varying sizes. Coupled with this focus is a strong set visualisation
components.

Other frameworks include ECell (http://www.e-cell.org) and BioUML
(http://www.biouml.org), which function in much the same way as BioSPICE
and SBW.

1.3 The rise of Python as a scientific programming
language
1.3.1 A brief history of scientific computing

Scientific programming dates back to the 1950’s with the creation of the first
FORTRAN compiler (Backus et al., 1957), which opened the arena of scien-

http://biospice.sourceforge.net
http://sbw.sourceforge.net
http://www.e-cell.org
http://www.biouml.org

Chapter 1. Background 20

tific computation to scientists who had no formal experience or education in
programming. Formerly, scientific applications were hand written in assembly
code for the exact hardware on which they would be run. This was an ardu-
ous task and required extensive knowledge of the intimate working details of
the processor used to execute the code. The portability of FORTRAN code
entrenched FORTRAN as the language of choice in the scientific community,
aided in large part by its speed of execution, which was only slightly slower
than hand coded assembly when a good compiler was used, and ease of coding,
when compared to assembly language.

In the early 1990’s, with the advent of reasonably priced powerful desktop
personal computers, the scientific computing community expanded rapidly.
As these computers grew in power the complexity and scale of problems that
could be solved grew with them. The demand for high performance, generic,
flexible, and reliable libraries that abstracted the implementation details of
code patterns common to many fields, such as linear algebra algorithms, in-
creased relative to the complexity of the problems being tackled (Drummond
et al., 2005).

The result was a move towards the use of C/C++ (Kernighan and Ritchie,
1978; Stroustrup, 1986) for performance oriented libraries of high complexity
and general nature (Hindmarsh et al., 2005). C and C++ offered language
features like pointers, dynamic memory allocation, and were more structured
in nature than FORTRAN. These features allowed for better performance, im-
plementation of parallel algorithms, which were becoming increasingly attrac-
tive as component costs came down in price, and far greater modularization
of code, and hence greater code flexibility and reusability. Altogether, co-
operative development of complex high performance software was easier in
C/C++ than, the then standard, FORTRAN-77. FORTRAN-90, although an
official standard at that point in time, suffered from a lack of stable compil-
ers. Unfortunately, the very language features that made C/C++ attractive
incur additional syntactic overhead, and in the case of memory management
a heavy semantic overhead, making C/C++ comparatively difficult to master.

1.3.2 Python as a scientific programming language

Python (http://www.python.org) is an interpreted, object-oriented, proce-
dural programming language developed by Guido van Rossum. It features a
clean syntax, enforced indentation style, is highly structured and highly ex-
pressive, meaning fewer lines of code are needed to accomplish a particular
task. The language offers a comprehensive set of basic data types, as well as
advanced high level data structures such as lists and dictionaries (associative
arrays). Being an interpreted language means there is no compilation step in
the testing cycle, and it is not necessary to learn additional meta-language
idioms required to compile and link a newly written program.

http://www.python.org

Chapter 1. Background 21

Python runs on a wide variety of platforms, making programs written in
Python extremely portable. Python code can even be executed on some cell-
phones (http://opensource.nokia.com/projects/pythonfors60)! Python
comes with an interactive interpreter, which facilitates easy and quick explo-
ration of the basic language as well as the numerous modules provided with
the standard Python library.

Python has an active user community, allowing newcomers to the language
to obtain assistance in a variety of ways, including extensive online documen-
tation (http://docs.python.org), a wiki containing tutorials and cookbook
solutions for common tasks, an interactive IRC channel (irc://freenode.
org/#python), and the usual plethora of books from the introductory (van
Rossum, 2003a; Maruch and Maruch, 2006) to the advanced (van Rossum,
2003b; Lutz, 2006; Martelli, 2003).

Perhaps one of the strongest indications of Python’s easy learning curve,
is its increasing adoption as a language of instruction not only in computer
science itself (Downey et al., 2002; Gauld, 2000; Zelle, 2003), but also as an
educational tool in more traditional sciences (Urner, 2004).

Python boasts an impressive standard library capable of dealing with com-
mon programming tasks, inter alia date and time manipulation, networking,
multi threaded and multi processor programming, database access, XML pars-
ing, and web based programming. The majority of the standard library is
implemented in C and hence provides exemplary performance, despite being
available to Python programmers as standard Python modules via Python’s ex-
tension interface. For those libraries not available in the standard library, and
not implemented in Python, the language offers built in methods for extend-
ing the language by building extension modules in C which are then readily
available to Python as standard Python modules.

However, scientific programming is no introductory or common task, of-
ten involving the use of complex, highly optimised algorithms. It is here
that Python shines, through the inclusion of two Python packages: NumPy
(http://numpy.scipy.org), and Scientific Python, known as SciPy (Jones
et al., 2001). NumPy provides efficient support for arrays of arbitrary dimen-
sion and homogeneous type, and a strong suite of linear algebra functions to
act on them. SciPy, which depends on NumPy, provides a collection of generic
scientific utilities including ODE solvers, nonlinear solvers, integrators, general
mathematical functions not provided by the standard Python math module,
genetic algorithms, and more. Like the standard library modules, much of
SciPy is implemented in lower level compiled languages such as C/C++ or
FORTRAN, thus providing excellent performance whilst still benefiting from
the higher level nature of the Python language. Accompanying the code re-
sources provided by NumPy and SciPy, there there are books dedicated to
scientific programming in Python (Langtangen, 2004; Kiusalaas, 2005).

http://opensource.nokia.com/projects/pythonfors60
http://docs.python.org
irc://freenode.org/#python
irc://freenode.org/#python
http://numpy.scipy.org

Chapter 1. Background 22

1.4 Languages competing with Python in scientific
programming

Python is not the only high level language available for scientific computing.
The Practical Extraction and Reporting Language (PERL), originally written
by Larry Wall and available from (http://www.perl.org) has a firm hold
in the traditional bioinformatics world of nucleic acid and protein sequences
analysis, due in great part to its syntactically convenient, if somewhat arcane,
string manipulation features and tightly integrated regular expression usage.
Despite the existence of many large software projects written in PERL, many in
the bioinformatics arena such as BioPERL (http://www.bioperl.org/wiki/
Main_Page) and BioMart/ENSEMBL (http://www.ensembl.org), its use is
commonly restricted to its original purpose, i.e. string processing and file
handling in server administration, and CGI scripting; Both of which benefit
from the same string processing convenience that the bioinformatics world
uses.

Other languages worth mentioning include Ruby and R. Ruby (http://
www.ruby-lang.org/en), written by Yukihiro Matsumoto, is loosely based on
a combination of PERL, Smalltalk and others. It is a mature general purpose
scripting language, that is quickly increasing in popularity due in large part
to the Ruby on Rails web development framework. Scientific computing in
Ruby is, however, still somewhat immature. Ruby features a complete set of
bindings for the GNU Scientific Library (http://www.gnu.org/software/gsl),
and an equivalent to NumPy in the form of the NArray library. Nevertheless,
the nature of these bindings is still imperative in style, and considered to
be poorly integrated with the Ruby language stylistically. Ongoing efforts on
the part of the SciRuby project (http://sciruby.codeforpeople.com) are
rapidly correcting this problem. The Internet abounds with a series of blog
posts, mailing list threads and forum comments discussing the various merits
and drawbacks of Ruby compared to Python. While the zealotry common to
such online discussions clouds the issue, the sane consensus is that Ruby and
Python are substantially equivalent, that is equivalent in substance, specifically
power and expressiveness, but that they differ greatly in style, making the
selection of preferred language for a particular project a matter of personal
choice rather than one of technical merit.

R (http://www.r-project.org) is not a general purpose programming
language. R is a mature, open source, software package that aims to be com-
patible with the proprietary statistical software package S. S, and hence R,
are implemented as command line interpreters of a statistical language. The
language specialises in simply expressed methods for data retrieval, from file
or networked resources, analysis, and visualisation, and is self-described as
a “strongly functional language”. Extensive scientific computing support is
provided with the basic package. Specialised algorithms or other packages are

http://www.perl.org
http://www.bioperl.org/wiki/Main_Page
http://www.bioperl.org/wiki/Main_Page
http://www.ensembl.org
http://www.ruby-lang.org/en
http://www.ruby-lang.org/en
http://www.gnu.org/software/gsl
http://sciruby.codeforpeople.com
http://www.r-project.org

Chapter 1. Background 23

actively developed by a large community and made available via the Compre-
hensive R Archive Network (CRAN), which is modelled on the TEX (CTAN)
and PERL (CPAN) package distribution networks, respectively. R also sup-
ports the dynamic runtime loading of shared library files obeying both C and
FORTRAN calling conventions.

1.5 The SUNDIALS package

The SUite of Nonlinear DIfferential/ALgebraic equation Solvers (SUNDIALS)
(Hindmarsh et al., 2005) is a collection of robust time integrators and nonlinear
solvers written in C under a BSD style open-source license. Parts of the suite
are descended from ODEPACK (Hindmarsh, 1983). SUNDIALS focuses on
flexibility, requiring minimal information from the user, thus facilitating easy
and quick incorporation into existing code, but allowing the user to specify
as much information as they desire, via a collection of optional function calls.
Users are able to specify their own data structures for use with the solvers
and can easily incorporate their own linear solvers and preconditioners where
necessary. SUNDIALS is available as C source code for download from https:
//computation.llnl.gov/casc/sundials/main.html and for Matlab users,
an interface plugin known as SundialsTB is available too.

1.5.1 The N_Vector

SUNDIALS offers multiple integrator and solver modules, introduced shortly,
all of which are capable of being run in parallel or serial. All these modules rely
on a common abstraction called the N_-Vector. ' This abstraction is two-fold.
It is a conceptual abstraction of the problem domain, for example specifying
metabolite concentrations as a vector of values. Additionally, all parallel code
is encapsulated within the specific vector operations, making the N_Vector
a code abstraction, providing a uniform application programming interface
(API) to the other modules for vector and matrix storage and operations,
regardless of whether the underlying implementation is serial or parallel.

1.5.2 CVODE

CVODE is an integrator for stiff and nonstiff systems of ODEs given in the
explicit form y' = f(t,y) (Cohen and Hindmarsh, 1996), i.e. initial value
problems. CVODE uses variable-order, variable-step multi-step methods, and
offers Adams-Moulton formulas for the solution of nonstiff problems, and

'We refer to a C data structure in the original SUNDIALS code as N_Vector (with the
underscore) as this is the actual type name from the code. To differentiate we refer to
the Python wrapper class in PySUNDIALS as NVector (without the underscore), which is
the actual class name in the PySUNDIALS code. The underscore was dropped to maintain
consistency with accepted Python naming schemes.

https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html

Chapter 1. Background 24

Backward Differentiation Formulas in fixed-leading coefficient form for stiff
systems. CVODE is regarded as the next generation of the LSODA solver
(Petzold and Hindmarsh, 1997; Pettinen et al., 2005). The approximate solu-
tion of the nonlinear system resulting from each integration step can be found
using various versions of Newton iteration, or functional iteration, in the case
of nonstiff systems. For large systems, the user can supply a preconditioner
for use with a Krylov solver.

CVODE also provides root finding functionality, whereby a user can specify
an arbitrary number of functions, which are evaluated at each internal time
step during integration. If at any point, one of these functions evaluates
to zero, the integrator stops prematurely, returning the time the function
evaluated to zero. This powerful feature allows the specification of various
model constraints, and facilitates the inclusion of discontinuous events.

1.5.3 CVODES

CVODES (Serban and Hindmarsh, 2005) is an integrator for stiff and nonstiff
initial value problems of the form y' = f(t,y, p), where p is a vector of problem
parameters. CVODES provides both forward and adjoint sensitivity analysis
capabilities. CVODES implements a superset of CVODE’s functionality.

Forward sensitivity analysis can be used when the gradients of many out-
puts with respect to few parameters need to be calculated, whereas adjoint
analysis is more practical in the case of large numbers of parameters, but only
a few gradients need to be calculated.

1.5.4 IDA

IDA (Hindmarsh, 2000) is a module for the solution of of differential-algebraic
equation (DAE) systems in the form F(t,y,3") = 0. It was derived from an
earlier DAE solver (DASPK) which was written in Fortran?. IDA allows the
direct specification of a system with algebraic equations, which can be used
to specify models with algebraic constraints, or to specify models without the
need to reduce the system to a set of strictly independent ODEs.

1.5.5 KINSOL

KINSOL is a nonlinear solver for algebraic systems using Newton-Krylov solver
technology. It has been reimplemented in C, based on the Fortran package
NKSOL, written by Brown and Saad (1990). It is intended for use on large
systems and supplies only iterative methods to solve resulting linear systems.

2Naming schemes for various Fortran standards are inconsistent. In this text, we refer
to all versions of FORTRAN up to FORTRAN-77 in uppercase, as was standard at the time.
More recent versions have been referred to mixed case, and uppercase. We choose to use
the title case, and most common form, for all versions subsequent to FORTRAN-77

Chapter 1. Background 25

1.6 The need for Python interfaces to SUNDIALS

SUNDIALS is a robust modern suite of solvers that is being widely adopted
(Modin et al., 2005) by the physics and applied mathematics communities
(Forster et al., 2002). It is still under active development, and sports a large
and active community of users (mailto:sundials-users@llnl.gov). Still
the adoption of this suite is slow in fields where computer science does not form
an integral part of the undergraduate curriculum, due to lack of experience
with compiled languages like C. The biological sciences are a prime example
of this, although CVODE is beginning to see increasing use in the systems
biology field in software packages such as Jarnac, SBMLOdesolver, SBToolbox2
and Roadrunner. In addition, the SUNDIALS suite provides a set of integrators
and solvers accessible in a consistent manner and which collectively have more
features than competitors.

As Python becomes a more popular language for scientific computing, its
need for interfaces to scientific software such as SUNDIALS increases. While
SUNDIALS is freely available in C, its use by Python programmers is impeded
by the complexities of interfacing C and Python code. It is hoped that a Python
interface for SUNDIALS would prove useful to the scientific community as a
whole, not just the systems biology field.

The production of a Python interface to SUNDIALS was initially conceived
as an extension to PySCeS, aiming to extend its functionality.

1.7 PySUNDIALS

PySUNDIALS is a collection of Python modules, wrapping each of the SUNDI-
ALS components. Wrapping means the creation of a set of translation mech-
anisms that exist between code written in one language and code written in
another language. The wrappers are conceptualised as a layer surrounding, or
wrapping, some code, and facilitating the use of that code by code in another
language. PySUNDIALS aims to be more than a thin wrapping layer, and
provides a number of convenience features in addition to simple translation.

PySUNDIALS presents its users with a collection of objects that act in
ways familiar to them as Python programmers, a so-called “pythonic” inter-
face. This is done by taking care of tedious and error prone programming
activities, such as memory management, automatically, through the use of
class constructors and finalisation. Data structures such as the SUNDIALS
N_Vector are provided as classes that act as Python sequences, a pseudo-type
referring to all classes that implement certain common operations on ordered
collections. The various matrix types used by SUNDIALS are wrapped as se-
quences of sequences, apparent to the user as uniformly dense, regardless of
the underlying storage mechanisms, and of uniform majority.

mailto:sundials-users@llnl.gov

0O Uk WN

1
2
3

Chapter 1. Background 26

In SUNDIALS C code, operations applied to N_Vectors are called as explicit
functions with explicit parameters (Listing 1.1).

Listing 1.1: N_Vector addition in C
N_Vector a, b, result;
a = N_VNew_Serial(3);

b = N_VNew_Serial(3);
result = N_VNew_Serial (3);

NV_Ith_S(a,0)
NV_Ith_S(a,1)

1;
2;

NV_Ith_S(a,2) 3
NV_Ith_S(b,0) = 3
NV_Ith_S(b,1) =

2;
NV_Ith_S(b,2) 1;

N_VAdd_Serial(a,b,result);

N_VDestroy_Serial(a);
N_VDestroy_Serial(b);
N_VDestroy_Serial (result);

This means that the result vector must either be explicitly declared and
have memory allocated, and then later freed, or one of the operand vectors
stores the result, i.e. result is the same variable as either a or b. Python takes
a different approach, preferring “inline” operators (Listing 1.2), in addition
to transparently creating a new object, result, and managing its destruction
automatically via garbage collection.

Listing 1.2: NVector addition using PySUNDIALS

a NVector ([1,2,3])
b NVector ([3,2,1])
result = a+b

PySUNDIALS implements both Python features via operator overloading,
meaning Python users need not fear inadvertently modifying operands, nor
concern themselves with mundane and error prone management of memory
for potentially throw away values.

Python functions may be called by SUNDIALS, and are known as callback
functions. Callback functions need to be “reverse” wrapped to make them
callable by the integrator, or solver as the case may be. This reverse wrap-
ping is performed implicitly and transparently by PySUNDIALS, when the
SUNDIALS modules are informed which functions to use as callbacks.

Together, these behaviours form a Python module that acts cleanly, and in
an expected manner, keeping in theme with the goals of the Python language.

Chapter 2

Implementation

2.1 Implementation overview

In this chapter the software package PySUNDIALS is introduced and its imple-
mentation details expounded upon. PySUNDIALS is a hand-coded collection
of Python modules that accesses the SUNDIALS shared libraries. Various tech-
nologies to enable the linking and use of these shared libraries are investigated.
The differences in source code layout and structure between PySUNDIALS and
C SUNDIALS, which result from the use of compiled libraries, are enumerated
and explained. A major focus of these differences, on which we elaborate,
is the development of a Python style syntax for what are, in essence, C data
structures. This process is known as “pythonification”. Difficulties encoun-
tered during the development of PySUNDIALS are considered, and the solu-
tions used, if any, are introduced. Finally we briefly explain methods provided
for integration with NumPy and SciPy, being the major scientific library for
Python.

2.2 The foreign function interface (ctypes)

2.2.1 The purpose and functionality of a foreign function
interface

A foreign function interface (FFI) is a software mechanism facilitating the
calling of routines, or the use of services, written in one language (the guest
or foreign language, from a piece of code written in another language (the
host language). It should be pointed out that this is different from remote
method invocation (RMI) or remote procedure calling, in which one process
communicates with another via some form of inter-process communication,
e.g. XML-RPC. An FFI interfaces between two languages within a single
process. There are a number of complexities that arise from the interfacing of
two languages.

27

Chapter 2. Implementation 28

Even though running on the same hardware, code written in different
languages may represent primitive data types differently. These differences
may be as simple as using more or fewer bytes to store the same information,
to larger differences where the data is placed in memory, and the order of bytes
used to store multi byte data, known as “endianness”. Complex data types
often have completely different meta-data storage mechanisms, such as the
difference between null-terminated strings, a la C/C++, and length indexed
strings (Pascal).

Most languages allow for the creation of new types, usually compounded
from the languages’ primitive types. One language may treat these non-
primitive types as a separate class, whereas another might treat all types
identically, regardless of origin.

Similarly, host and guest languages may call subroutines with parameters
or arguments in different orders, or more fundamentally different ways. The
method a particular language chooses is called its calling convention. Often
arguments are placed on a stack, in which case the order of placement is the
sole difference, but some languages may not use the stack directly, instead
forming a complex data type instance from the arguments and placing only a
reference to that instance on the stack. This is especially true for interpreted
or weakly typed languages.

Memory management differs significantly from one language to another.
Lower level languages often leave memory management to the programmer,
whereas middle to high level languages can implement garbage collection
mechanisms. Where the host and guest languages use disparate memory man-
agement systems, they may come into conflict. One language may attempt
to automatically manage memory for a given object but do so incorrectly be-
cause the object is created by the other language, and memory management
meta-data, such as reference counting or ownership semantics, is not available
to the automated system. If, for example, the host language uses garbage
collection, it might attempt to discard an object created by the guest lan-
guage and passed to the host language, because the guest language does not
notify the garbage collector correctly that the object is still in use. Contrarily,
manual memory management code might legitimately destroy an object, but
when linked with code from another language which automates memory man-
agement, the legitimacy of this action might be invalidated, unless express
notification is given to the automatic management processes. As an example,
the guest language part of the program is a library, which under normal cir-
cumstance can discard a particular object. When used as a guest language,
the host language might be given references to the object by the FFI, which
the guest language knows nothing about, and thus cannot modify or discard
correctly when the true object is destroyed. This leaves an invalid reference
to a discarded object in the host language.

Thus, the functionality of a foreign function interface is three fold:

Chapter 2. Implementation 29

1. The FFI manipulates system memory directly and translates data types
between host and guest conventions. Some FFIs may additionally pro-
vide type translation for user-specified types, although this is not always
the case.

2. The FFI inserts translation routines at the entry and exit points of sub-
routines to perform reordering or other necessary translations of calling
conventions.

3. The FFI makes guest code available to the host either at compile time,
in which case the FFI serves as an assistant to the compilers working on
each language, mediating symbol lookups, type translation, and calling
convention differences eventually resulting in a single unified link. Al-
ternatively, the FFI performs these actions at runtime by loading a pre
compiled guest binary file into memory, and linking it into the running
host process.

2.2.2 A comparison of foreign function interface technologies

A number of FFI technologies exist for the Python language. We will briefly
explore each of them, and then explain the reasons for the ultimate choice of
ctypes in PySUNDIALS.

Python C API: The Python language supplies a C application programmer’s
interface (API) which can be used to make code written in C available
as a Python extension module. Whilst built into Python, and thus ex-
tremely portable, this method requires writing large amounts of C code
by hand, and is error prone and complex. In addition, documentation
is sketchy, in particular regarding the creation of user specified callback
mechanisms.

Boost.Python: Boost is a collection of libraries intended for eventual inclu-
sion into the C++ standard. Boost.Python (http://www.boost.org/
doc/1ibs/1_37_0/1ibs/python/doc/index.html) is one of these li-
braries and is designed to allow “seamless interoperability between C++
and the Python programming language” (http://www.boost.org/doc/
1ibs/1_37_0/1libs/python/doc/index.html). It is well documented,
provides a mechanism for user specified callbacks, is extremely flexible,
and has a code generator for automated wrapper generation.

However, it is designed for C4++ rather than C, is overly complex com-
pared to other solutions, despite the code generator, which relies on
GCC-XML, which is highly sensitive to gcc versions, and did not run
correctly on the author’s machine.

weave: weave (http://www.scipy.org/Weave) is a Python package from the
SciPy collection, but also available as a standalone package, which allows

http://www.boost.org/doc/libs/1_37_0/libs/python/doc/index.html
http://www.boost.org/doc/libs/1_37_0/libs/python/doc/index.html
http://www.boost.org/doc/libs/1_37_0/libs/python/doc/index.html
http://www.boost.org/doc/libs/1_37_0/libs/python/doc/index.html
http://www.scipy.org/Weave

Chapter 2. Implementation 30

the inline inclusion of C code. It is very simple to use, but is designed
only for short snippets of C code to be included, not for wrapping entire
libraries. It functions by automatically compiling and creating the spec-
ified snippets into Python extension modules, and caching these modules
for future use. It requires that the user has a C compiler.

SWIG: The Simplified Wrapper and Interface Generator (SWIG) (http://
www.swig.org/) is a multi-language automated wrapper generator that
provides a compile time FFI to C/C++ for a variety of languages in-
cluding Python. It is well documented, and for simple cases the most
easy and convenient method of creating Python wrappers of C libraries.
Our use case is complicated by the requirement of callback capabilities,
which require user intervention in the form of hand coded section to
specify callback function types.

instant: instant (http://heim.ifi.uio.no/ kent-and/software/Instant/
doc/Instant.html) is a small Python module that functions very sim-
ilarly to weave, except that its underlying compilation mechanism is
based on SWIG, rather than on a pure C compiler. Until very recently
it has only been available for POSIX style operating systems, and hence
was rejected as an FFI choice for PyYSUNDIALS.

Pyrex: Pyrex (http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/)
is a language specifically designed for the creation of Python extension
modules. Syntactically is is a hybrid between C and Python, tending
toward the higher level Python side. It is a compiled language, with the
generated output being a Python extension module. Sections of code
that do not involve Python variables or functions are automatically con-
verted to C and compiled. As it lacks a code generator, it is more suited
to the creation of new extension modules, rather than the wrapping of
already extant libraries. When the PySUNDIALS project was started,
Pyrex was a new project, still undergoing significant development. It
was considered too unstable for use.

ctypes: ctypes (http://www.python.org/doc/2.5.2/1ib/module-ctypes.html)
is a Python module that is part of the Python standard library from
version 2.5 onwards. It provides methods to load shared libraries dy-
namically and link them into the running Python process. Functions
and symbols exported by these loaded libraries can then be accessed
via a specialised class instance that results from the loading of the li-
brary. Type conversion for primitive types such as strings, floats and
integers is automatic, and more complex types can be defined. Where
more complex types are used, either as function parameters or returned
by a function in the guest library, these types must be specified. Type
specification of complex parameter or return types is done via a simple

http://www.swig.org/
http://www.swig.org/
http://heim.ifi.uio.no/~kent-and/software/Instant/doc/Instant.html
http://heim.ifi.uio.no/~kent-and/software/Instant/doc/Instant.html
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.python.org/doc/2.5.2/lib/module-ctypes.html

Chapter 2. Implementation 31

mechanism of setting attributes of the library’s class instance. Using
ctypes requires only Python code and is comparatively simple to use. A
code generator is available, but again, it requires GCC-XML which would
not run correctly on the author’s machine.

SWIG and ctypes were the front runners in the choice of an FFI for PySUNDI-
ALS. ctypes was chosen over SWIG for the following reasons:

1. ctypes was more familiar to the author.

2. ctypes coding is done entirely in Python; Other technologies involved
either learning a new language, or a considerable amount of coding in
C, leading to slower development time.

3. ctypes is a built-in module from Python 2.5 onwards, and so does not
create additional dependencies for PySUNDIALS.

4. callback functions, which are a central working mechanism of SUNDI-
ALS, are significantly simpler to implement in ctypes than in SWIG.

5. SWIG automation, although a potent labour saving device, generates
a wrapper interface that closely resembles the original C code being
wrapped. Substantial effort is required to wrap the wrappers to provide
a more pythonic interface.

2.3 Structural differences in code layout between

SUNDIALS and PySUNDIALS source

The source layouts of SUNDIALS and PySUNDIALS differ significantly. SUN-
DIALS source contains separate header files for each matrix storage mechanism
(dense, banded, or parallel banded) in a subdirectory shared between each of
the four main modules. In turn each module has its own subdirectory with
a header file for the module itself, and one for each available linear solver for
that module. However when compiled all these separate sources are linked
together into six shared libraries, one for each module, one for the serial im-
plementation of the N_Vector, and one for the parallel.

PySUNDIALS matches the compiled/linked structure of SUNDIALS rather
than the source structure, as the shared libraries cannot be separated into their
original source components by ctypes post compilation, and it is these that
ctypes loads. A single shared library must therefore be treated as a single unit.
PySUNDIALS, thus, consists of one module for each shared library, namely
cvode, cvodes, ida, kinsol, and nvecserial. The parallel implementation
of the N_Vector has not yet been wrapped.

0O Uk WN

Chapter 2. Implementation 32

2.4 Pythonification

2.4.1 NVectors, dense matrices and banded matrices

The N_Vector type in SUNDIALS contains many meta-data items for use by
the solver(s) that will be accessing any N_Vector variables. However, to the
programmer, an N_Vector is simply an ordered list of real numbers, and could
in an abstract sense be represented equally well as an array or a Python list.
The Python language, although dynamically typed, provides abstract mech-
anisms for classing similar types together. These mechanisms are known as
protocols, and PySUNDIALS has implemented the NVector wrapper class us-
ing the sequence protocol. Any class or type in Python implementing the
sequence protocol must implement

e an ordered collection of elements

e a subscription operator that returns a specific element, or returns a
specified range of elements as a new sequence of the same type

e assignment by subscription or range subscription
e a length operator which returns the number of items in the sequence

Thus, to a programmer already familiar with Python, an NVector behaves
exactly like a Python list. Examples of these syntactic differences can be
found in Listings 2.2 and 2.4.

Just as N_Vectors can be expressed as Python lists, the various matrix
types in SUNDIALS, dense and banded, can be thought of in the abstract
sense as lists of lists. This introduces the familiar problem of choosing a
majority form (row or column) for the matrix, determining which list (inner or
outer) represents what. SUNDIALS attempts to conform to the mathematical
convention of row majority, but implementation details in the memory layout
of banded matrices make this impossible. SUNDIALS provides a remedy in
the form of macros that provide row major accessors. Macros are a language
feature of the C language not present in Python. PySUNDIALS instead provides
Python classes for the various types of matrices, each of which implements the
functionality of the C macros in the overloading of the subscription operators
for the class (See Listing 2.1), providing a consistent row major matrix set,
that acts identically to a Python list of lists.

Listing 2.1: Illustrative example of matrix access using PySUNDIALS

>>> from pysundials import cvode
>>> Md = cvode.DenseMat (3,3)
>>> for r in range(3):

for ¢ in range(3):

Md[r][c] = rx*c

>>> Md
0.000000 0.000000 0.000000

© 00O U WN -

OO W W W WWNDDDNDNDNDNDNDDNDNDN M = e
DU R WNFRF OO UER WNFR, OO UUR WN~O

Chapter 2. Implementation 33

0.000000 1.000000 2.000000
0.000000 2.000000 4.000000

Although SUNDIALS provides a comprehensive set of vector operations for
the N_Vector type, inter alia: vector addition, inner product, scalar product;
these operations are provided as functions, and not operators. The C lan-
guage does not allow operator overloading. PySUNDIALS provides the same
operations using operator overloading, yielding a syntax more familiar both
to mathematicians and Python programmers. These overloaded operators call
the underlying SUNDIALS functions rather than duplicating their function-
ality in pure Python, hence maintaining performance. Where a SUNDIALS
vector operator function might require the prior declaration of an auxiliary
N_Vector for the purposes of temporary storage of the result of the operation,
PySUNDIALS automates this process by creating new NVector objects within
the overloaded operator wrapper function, which are then returned as the re-
sult. This has the additional advantage of conforming to the Python language
convention of having operators return newly created objects, to be assigned
to a variable or discarded according to the programmer’s wishes.

Listing 2.2: Illustrative example of vector operations in C using SUNDIALS

#include <stdio.h>
#include <nvector/nvector_serial.h>

int main(int argc, char **argv) {
N_Vector u, v, w;

u = N_VNew_Serial(5);
NV_Ith_S(u,0) = 0;

NV_Ith_S(u,1) =
NV_Ith_S(u,2) =
NV_Ith_S(u,3) =
NV_Ith_S(u,4) =

’
s

s

W N e

)

v = N_VNew_Serial(5);
NV_Ith_S(v,0) = 1;
NV_Ith_S(v,1) = -1;
NV_Ith_S(v,2) 1;
NV_Ith_S(v,3) -1;
NV_Ith_S(v,4) 1;

w = N_VNew_Serial (5);

N_VScale_Serial(-1,v,w); // unary negation

printf ("%3.1f,%3.1f,%3.1£,%3.1f,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

N_VAddConst_Serial(v,1,w); //scalar addition

printf ("%3.1£,%3.1£,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

N_VLinearSum_Serial(1,u,1,v,w); //vector addition

printf ("%3.1f,%3.1f,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

—_
O © 00O U WN

N O U W N

Chapter 2. Implementation

>>>
>>>
>>>
>>>
>>>
>>>
[-1

N_VAddConst_Serial(v,-1,w); //scalar subtraction

printf ("%3.1£,%3.1£,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

N_VScale_Serial(-1,v,w); // wector subtraction

N_VLinearSum_Serial(i,u,1l,w,w);

printf ("%3.1£,%3.1£,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

N_VScale_Serial(2,v,w); // scalar multiplication

printf ("%3.1f,%3.1£,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

N_VProd_Serial(u,v,w); // element wise multiplication

printf ("%3.1£,%3.1£,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

N_VScale_Serial(1/2.0,v,w); // scalar division

printf ("%3.1£,%3.1£,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

N_VDiv_Serial(u,v,w); // element wise division

printf ("%3.1£f,%3.1£,%3.1£,%3.1£,%3.1f\n",
NV_Ith_S(w,0), NV_Ith_S(w,1), NV_Ith_S(w,2),
NV_Ith_S(w,3), NV_Ith_S(w,4));

printf ("%g\n", N_VDotProd_Serial(u, v)); //inner product
N_VDestroy_Serial (u);

N_VDestroy_Serial(v);
N_VDestroy_Serial (w);

Listing 2.3: Output from Listing 2.2

NONNE O -

Listing 2.4: Illustrative example of vector operations using PySUNDIALS

from pysundials import nvecserial

=]
|

nvecserial.NVector ([0,1,2,3,4])
v = nvecserial.NVector ([1,-1,1,-1,1])

-v # unary negation

.0, 1.0, -1.0, 1.0, -1.0]

34

Chapter 2. Implementation 35

>>>

>>> v+1 # scalar addition

[2.0, 0.0, 2.0, 0.0, 2.0]

>>>

>>> w = u+v # vector addition

>>> w

[1.0, 0.0, 3.0, 2.0, 5.0]

>>> w is u # w 1s mnewly created NVector
False

>>> w is v # w 1s mnewly created NVector
False

>>>

>>> v-1 # scalar subtraction
[0.0, -2.0, 0.0, -2.0, 0.0]

>>>

>>> u-v # wector subtraction
[-1.0, 2.0, 1.0, 4.0, 3.0]

>>>

>>> v*2 # scalar multiplication
[2.0, -2.0, 2.0, -2.0, 2.0]

>>>

>>> ux*v # element wise multiplication
[0.0, -1.0, 2.0, -3.0, 4.0]

>>>

>>> v/2 # scalar division

[0b.5, -0.5, 0.5, -0.5, 0.5]

>>>

>>> u/(2*v) # element wise division
[0.0, -0.5, 1.0, -1.5, 2.0]

>>>

>>> u.dotproduct (v) # inner product

2.0

2.4.2 Callback functions

Because C is a statically typed language, its functions are also typed. A func-
tion’s type is determined by the type and order of parameters it takes. Python,
being a dynamically typed language, does not enforce the number or type of
parameters passed to a function, and within the interpreter itself, Python func-
tions all have a single argument, which is a Python tuple of arguments, and
potentially an additional dictionary if the function takes keyword arguments.
This makes Python functions unsuitable as callback functions without some
form of wrapping. Using ctypes, the function type of the callback must first
be defined in Python, specifying the return type of the function, and the types
and order of parameters it expects (See Listing 2.5, lines 1-5). Defining a
function type performs two tasks. Firstly, a type class is created, whose ob-
jects are instantiated as wrappers to pure Python functions, and have methods
to translate the C parameters received into a Python tuple, then passing said
tuple on to the actual Python function, and similarly translating the returned
Python object into a C typed value. Secondly, the type can be used to cast
any Python function into a C function pointer of appropriate function type at
the time of nomination of the function as a callback.

0O~ O Ui W

Chapter 2. Implementation 36

Listing 2.5: Declaration and nomination of a callback function using ctypes

CVRhsFn = ctypes.CFUNCTYPE(ctypes.c_int,
realtype,
ctypes .POINTER(nvecserial._NVector),
ctypes .POINTER (nvecserial._NVector),
ctypes.c_void_p)

def f(t, Cy, Cydot, f_data):
y = cvode.NVector (Cy)
ydot = cvode.NVector (Cydot)
ydot [S2] = R2(y) - R1(y)
ydot [S1] = Ri1(y) - R3(y) - R4(y)

return O

cvode.CVodeMalloc (
cvode_mem,
CVRhsFn (f),
0.0,

Y
cvode.CV_SS,
1.0e-8,
1.0e-12

The nominated Python function must still be able to deal with C typed
parameters (Listing 2.5, lines 8-91), expect where ctypes is capable of perform-
ing automatic type translation, which is only the case for integers, floating
point numbers, and strings. In the case of PySUNDIALS, users will be writing
these callback functions. It is unreasonable to expect the user to have to deal
with type translation of complex compound data types such as N_Vectors,
or various matrix types, in their callback functions. Instead, PySUNDIALS
creates anonymous functions that create an additional wrapper around the
ctypes created wrapper, which automate the process of these additional type
translations. N_Vectors, and the various matrix types used by SUNDIALS are
wrapped in PySUNDIALS classes of appropriate type, providing manipulation
of the underlying data as described in Section 2.4.1.

Those PySUNDIALS wrapper functions that require a function as a param-
eter create an anonymous wrapper function of appropriate type, making this

'Cy and Cydot are in this case crude ctypes mappings to the underlying C N_Vector
structure. Lines 8 and 9 also use the PySUNDIALS NVector class constructor in a non-
intuitive way, constructing the class around an already existing ctypes data structure, rather
than creating a new class. When the objects y and ydot go out of scope the NVectors
are garbage collected, and one would expect this to deallocate the memory storage of the
underlying C N_Vector structure. However, this is not the case. Where an NVector is
constructed around an already extant N_Vector, only the NVector class is destroyed, not
deallocating the C data storage. This behaviour is intended, but since it is inconsistent with
the behaviour expected from NVectors operating under normal circumstances, it is hidden
from the user.

0O Uk WN

Chapter 2. Implementation 37

process transparent to the user. Thus a user need simply specify a Python
function, and all the rest is done automatically.

Listing 2.6: Declaration and nomination of a callback function using PySUNDIALS
def f(t, y, ydot, f_data):

ydot [82] R2(y) - R1(y)

ydot [S1] R1(y) - R3(y) - R4(y)

return O

cvode.CVodeMalloc (
cvode_mem,
f,
0.0,

Yy
cvode.CV_SS,
1.0e-8,
1.0e-12

2.4.3 Memory management

In SUNDIALS, data used by the solver, N_Vectors and all matrices must be
dynamically allocated. Not being a garbage collected language, C leaves the
programmer to allocate and deallocate this memory. While SUNDIALS pro-
vides a set of functions for allocation and deallocation which enforce the usage
of correct types, the SUNDIALS programmer must still write the code to man-
age memory (Listing 2.2, lines 5, 7, 14, 21, and 71-73).

Python is an object oriented language, and PySUNDIALS wraps each SUN-
DIALS C structure which requires memory management with a class, allowing
us to use the classes constructor and finalizer to manage memory. Construc-
tors are called whenever a Python object is instantiated, allowing the object
to call the underlying SUNDIALS allocation function to acquire the requisite
memory. Similarly, when objects in Python are garbage collected, their final-
izers are called, allowing any required deallocation functions to be called. As
object instantiation in Python is as simple as assigning a variable a value, the
entire memory management process of underlying SUNDIALS memory struc-
tures is made transparent to the user, reducing the potential for memory leaks
or similar bugs.

2.4.4 Error handling

The C language has no error handling mechanism built in. When an error
state is encountered, a C programmer is free to ignore it, or flag the particular
state in any way they see fit. There are two conventions for error handling in

Chapter 2. Implementation 38

C. Functions that encounter an error state will usually return a value indicat-
ing error, usually being a value that is not in the valid range of the function.
For those functions whose valid range matches or exceeds the range of the
function’s return type, a particular value from the return type’s range is re-
served and this value is returned as an error flag whilst a global variable is
simultaneously set to a value indicating the exact nature of the error. This
means that a C programmer must be prepared to check the return values of
each function call that might encounter an error condition, and write code to
handle the error value each time this is done. SUNDIALS tends to use the first
convention, whereby any SUNDIALS function that could encounter an error
will indicate this in its return value. A SUNDIALS user must capture each
function call’s return value and check it for an error condition. To compli-
cate matters, some errors are recoverable, while others are not. SUNDIALS
functions indicate success by returning 0, recoverable errors by returning a
positive value, and fatal errors using a negative value.

Python uses exceptions to handle errors. When an exception is raised, if not
specifically handled by the programmer, it will halt the program, as opposed
to C programs continuing blithely on. PySUNDIALS captures the results of
SUNDIALS functions in their respective wrapper functions and translates fatal
error results into exceptions, returning all other results as normal. The use
of the word “error” to describe recoverable errors is a misnomer in the case
of a number of SUNDIALS functions, and these would better be described as
“situations of interest”, e.g. the root of a specified function was found prior
to the specified output time, or the system reached a steady state. Hence,
the PySUNDIALS user remains responsible for checking the return value for
recoverable errors, and handling them appropriately. Regardless, the burden
of error checking is reduced, as it is only required for those functions from
which situations of interest may arise, and not for every function which might
cause an error.

2.5 Difficulties

2.5.1 The assignment idiom “gotcha”
2.5.1.1 The C data model

Being both a statically typed and compiled language, C requires that variables
be declared in advance of their usage. The declaration serves to inform the
compiler of the scope, type, and hence size, of the variable. It also reserves
space in memory for the variable, and binds the name of the variable to that
particular reserved address in memory. Assignments to the variable alter the
contents of memory at the bound address.

Chapter 2. Implementation 39

2.5.1.2 The Python data model

Python uses a fundamentally different data model to C. Python maintains a
mapping between variable names and values, each kept in separate tables.
When a variable is assigned a value in Python, an object representing that
value is first created in the values table, then the variable name is created
in the names table, and associated with the value object. If a reassignment
occurs, the new value is created as an object in the values table, and the
original variable name simply associated with the new value. If no variable
names are associated with the old value anymore, or more specifically, nothing
references that value, it is discarded. It is important to note that the new value
assigned is a different object using different memory space, and that in the
course of reassignment the association to the original value’s object is lost and
potentially cannot be reacquired (See Figure 2.1).

>>> a = cvode.NVector([0,0,0])

Names Values
a——+ NVector([0,0,0])

>>> b = cvode.NVector([1,1,1])

Names Values
a——+ NVector([0,0,0])
b ——— > NVector([1,1,1])

>>> a = a+b

Names Values

a Neetor{fo56561>—
b %% NVector([1,1,1])
™ NVector([1,1,1])

Figure 2.1: An illustration of the Python data model: Note that a’s original object
is destroyed on reassignment (a = a+b), and that a’s new object and b’s object are
not the same object in memory, despite having equivalent value.

2.5.1.3 The problem

Each of the SUNDIALS modules work by integrating or solving a given right
hand side function. SUNDIALS cannot not know in advance what this function
will be, as it is supplied by the user. The user must therefor nominate a par-
ticular function, i.e. they must inform SUNDIALS of the name of the function.
The function nominated must be of a particular type. SUNDIALS passes two
N_Vectors, amongst other variables, as parameters to the nominated function.
The first represents the current state of the system in time, and the second is
a container vector into which the new state of the system should be placed.
Strictly speaking, the SUNDIALS N_Vector is a pointer to data structure, and

0O Utk WN -

©

Chapter 2. Implementation 40

thus modification to the passed parameters via indirection modifies the con-
tents of the data structure pointed to. If the pointer were to be reassigned a
different value, the nominated function would no longer modify the N_Vector
SUNDIALS uses, but the C language syntax is clear as to which is being mod-
ified, the pointer or the pointed to structure. Similarly, the strict typing of
the C language would prevent the assignment of an entire array of values to
the pointer itself, only allowing the assignment to the indirected pointer.

However in Python, this type protection does not exist. Consider what
would seem the intuitive syntax for assignment to the result vector (ydot) in
function £1 of Listing 2.7. This assignment creates a new NVector, discarding
the reference to the original ydot without altering its value.

Often this is not a problem, e.g., if the callback function explicitly de-
scribes the system by assigning to individual elements of the NVector using
subscription, as in function £2. The use of subscription in the assignment
maintains the reference to the original ydot NVector, modifying its value.

Listing 2.7: The assignment “gotcha” in callback functions
def fi1(t, y, ydot, f_data):

ydot = cvode.Nvector ([R2(y) - R1(y), R1(y) - R3(y) - R4(y)1)
return O

f_data):
R2(y) - Ri(y)
R1(y) - R3(y) - R4(y)

def f2(t, y, ydot
ydot [S2]
ydot [S1]
return O

def f3(t, y, ydot, f_data):
ydot[:]1 = cvode.Nvector ([R2(y) - R1(y), Ri(y) - R3(y) - R4(y)1)
return O
The alternative to assigning each element is to assign to the entire NVector
using slice notation, which acts in the same way as element-wise assignment
(function £3). This is potentially counter-intuitive to the Python programmer,
and could be a source of many difficult to diagnose bugs in user programs. In-
deed, this issue was a major source of bugs during the development and testing
of PySUNDIALS. However, due to the nature of the Python data model, the
only solution is clear documentation explaining the problem and the solution.

2.5.2 Garbage collection of callback wrapper functions

As explained in Section 2.4.2, functions nominated as callback functions have
dynamically generated wrapper functions which perform complex type trans-
lation. This generation takes place inside the wrapper function around the
SUNDIALS function in which callback nomination takes place. Dynamically
generated type translation wrappers hence exist in the local scope, meaning
they are garbage collected upon return from the function which performs call-
back nomination. This means the type translation wrapper function may no
longer be available for execution at the time the callback is actually called.

Chapter 2. Implementation 41

The solution is to keep at least one reference to these dynamically gener-
ated functions in a list in the module scope, which will prevent their garbage
collection. Ideally, when the function being wrapped goes out of scope, the
dynamically generated functions should be discarded too, i.e. their references
should be removed from the list, but the Python language provides no way to
hook the destruction of a function, as functions are not objects and have no
finalizers.

Python objects can be made to act like functions, becoming callable ob-
jects, and this led us to consider requiring users to implement their callback
functions as callable objects derived from a common base class whose finalizer
would handle the removal of the reference to the appropriate wrapper. It was
decided, however, that this would make matters more complex for users of Py-
SUNDIALS. The majority of callback functions would be in the global scope
regardless, meaning they are only discarded at the end of the program, ob-
viating the need to monitor function destruction. The overhead of references
being kept beyond their necessary lifespan is minimal, meaning this method
is only a needless addition of complexity, and hence was not implemented.

2.5.3 Determining the size of realtype

SUNDIALS can be compiled to use one of three precision levels, namely single,
double or extended, referring to the native C floating point types. The specific
type chosen is aliased within the SUNDIALS code as realtype. When ctypes
loads the shared library, it must map the realtype type to a specific C type,
i.e. one of single, double or extended. The ctypes module does not provide a
mechanism for mapping the extended type, but more importantly, ctypes has
no way of determining what size realtype was chosen. The size cannot be
determined prior to the mapping, and the mapping cannot take place prior
to the size determination. PySUNDIALS provides an auxiliary shared library
written in C code which includes the SUNDIALS header files, providing a
compile time determination of the size of the realtype. When PySUNDIALS
is installed, this library is compiled against the SUNDIALS shared libraries
and provides a single function that returns the size of the realtype.

2.5.4 Precision differences

Whilst the output of PySUNDIALS is nearly identical to SUNDIALS, precision
differences do exist. These differences arise from the calculations performed
in callback functions, i.e. those calculations performed in Python. Although
ctypes uses the same number of bits to store a floating point number as C
would, a compiled C program will often perform a series of calculations on a
particular value and leave that value in a hardware register. Depending on the
hardware, the register may be wider than the C standards definition for the
width of the appropriate type of floating point number, hence rounding error is

0O Utk WN

Chapter 2. Implementation 42

reduced (Monniaux, 2008). When performing the same series of calculations
in Python however, even if performed in a C function called via ctypes, the
result is likely to be truncated on function return as it passes out of the
hardware register and into RAM. This is guaranteed to happen if the value
is stored in a Python variable before being passed on to the next calculation.
Hence PySUNDIALS demonstrates more rounding error than, and hence a
slight precision difference to, SUNDIALS.

2.6 Integration with NumPy

With NumPy being the standard for numeric computation in Python, it is
envisaged that many users of PySUNDIALS will want to use NumPy’s ex-
tensive features to manipulate their NVectors. The NVector class offers a
method, asarray, which yields a NumPy array, of appropriate shape and data
type, that is constructed around the underlying C data storage. The returned
NumPy array and the NVector both share the underlying memory area, mean-
ing modifications to one are reflected in the other. This allows NVectors to
be used by NumPy and SciPy, with the simple use of their asarray methods.

The reverse operation, that of constructing an NVector around a NumPy
array, is as simple as instantiating the NVector using the array as a parame-
ter. It should be noted that the instantiated NVector is a copy of the array,
and does not share the same memory. This behaviour was deliberately imple-
mented as it conforms to the pythonic behaviour of that syntax where other
types or classes are used.

Listing 2.8: NumPy integration demonstration
Python 2.5.2 (r252:60911, 0Oct 31 2008, 13:49:23)
[GCC 4.1.2 (Gentoo 4.1.2 p1.0.2)] on linux?2
Type "help", "copyright", "credits" or "license" for more information.
>>> from pysundials import nvecserial

>>> v = nvecserial.NVector ([0,1,2,3,4])

>>> a = v.asarray()

>>> a #a is a numpy array
array([0., 1., 2., 3., 4.1)

>>> a[2] = a[2]%2 #a 1is mutable

>>> a

array([0., 1., 4., 3., 4.1)

>>> v #v reflects changes to a
[0.0, 1.0, 4.0, 3.0, 4.0]

>>> v[0] = -1

>>> a #a reflects changes to v
array([-1., 1., 4., 3., 4.1)

>>>

2.7 Availability of PySUNDIALS

PySUNDIALS is available for download as a Python source distribution, and
a Windows 32-bit binary distribution from the PySUNDIALS homepage at

Chapter 2. Implementation 43

http://pysundials.sourceforge.net. The package is released under an
MIT style licence as open source software. PySUNDIALS has been successfully
compiled and run on Windows and various flavours of Linux, including Gentoo
(32 and 64-bit), Mandriva, and Ubuntu (32 and 64-bit).

PySUNDIALS is still considered to be in beta testing phase, although, at
the time of writing, the first release candidate is available. PySUNDIALS ver-
sion numbers may seem at first misleading, considering the project is still in
beta. PySUNDIALS major versions are tied to the SUNDIALS version whose
header files they match. Currently, only one major version exists, namely
PySUNDIALS 2.3.0, which wraps the SUNDIALS 2.3.0 shared libraries. Mi-
nor version numbers are used to track modifications to PySUNDIALS without
changes in the underlying SUNDIALS code. An example of a complete version
specification would be pysundials-2.3.0-rcl.

Complete documentation is distributed with both the source and binary
distributions, and is also available online at the project homepage. It should
be pointed out that the PySUNDIALS documentation is best used in conjunc-
tion with the original SUNDIALS documentation. The PySUNDIALS docu-
mentation highlights the differences between SUNDIALS and PySUNDIALS,
and contains a complete function reference. Mathematical considerations and
general help on usage of the SUNDIALS modules as a framework are covered
thoroughly only in the original SUNDIALS users’ guides. The PySUNDIALS
function reference is available in a running Python interpreter via the Python
docstring mechanism.

http://pysundials.sourceforge.net

Chapter 3

Results

In this chapter we present a selection of simple usage examples of PySUNDI-
ALS, chosen to illustrate the features of SUNDIALS and demonstrate the ease
of use of PySUNDIALS. We show at least one example of each SUNDIALS mod-
ule, after which we discuss the performance and coding differences between
SUNDIALS and PySUNDIALS. The SUNDIALS source package contains a com-
prehensive set of example scripts, which have been reimplemented in Python
using PySUNDIALS, both as code examples for users of PySUNDIALS and as a
testing and benchmarking suite. The PySUNDIALS examples produce identi-
cal output to their SUNDIALS equivalents, bar precision differences, verifying
correctness of the PyYSUNDIALS code. The differences discussed between SUN-
DIALS and PySUNDIALS are based on comparisons from the example sets, as
they offer a sufficiently large sample size from which to work. The PySUNDI-
ALS versions of the SUNDIALS examples are available as part of the source
distribution of PySUNDIALS, and the source code for the examples presented
in this chapter can be found in the appendices.

3.1 CVODE examples

3.1.1 A simple test model

Ezample 1 uses CVODE to solve a simple reaction network containing a branch
and a moiety-conservation cycle, taken from Hofmeyr (2001). A schematic
representation of the model is given in Figure 3.1. This model will be used as
an example for each of the other SUNDIALS modules as a basis for comparison
between modules and verification that results produced are correct. We will
first enumerate the equations and parameter values for the model, before
demonstrating that the results obtained using CVODE are identical to those
obtained using LSODA in PySCeS.

44

Chapter 3. Results 45

Figure 3.1: FEzample 1 - A simple model with a moiety conservation cycle and a
branch.

We introduce the model’s kinetics with the following four rate equations.

)%}
— ([Xol[|S
oy — Kx,1Ks,1 ([Xol52]) (3.1)
1+ [Xo] n [So)] n [Xo][S2]
Kx,1 Ksy,i Kxg1Ks,1
V5
— ([.S5]|X
vy — Kg, 2K x40 (1Ss]1X6]) (3.2)
14 [S3] [X6] [S3][X] '
Ks,o Kxgo Kgy2Kx2
V3[S1]
= o7 3.3
BT S+ Ks, 5 (3:3)
Vi[S1]
= =t 3.4
v [S1] 4+ Kg, 4 (34)

The model consists of three ODEs, two of which are independent, and one
dependent.

dsS;

ﬁ == Ul - ’03 - U4 (35)
s
d7t2 = V2 — V1 (36)
ds _ V] — V2 (3.7)

dt

Chapter 3. Results 46

Parameter Value
i 1
Vs 10
Vs 1
Vi 1
KXO,I 1
Kg, 1 1
Kg, 2 1
Kxg 0 1
Kg, 3 1
K51’4 1
[Xo] 1
[X4] 1x 10712
[X5} 1 x 10712
[Xe] 1
[X7] 1x 10712

c [S2]init + [Ss]init

Table 3.1: Parameter values used for example 1.

We will choose Equation 3.7 as our dependent ODE. This means we can
substitute S3 = ¢ — Sz (where ¢ is a constant equal to the sum of the initial
values of Sy and S3) into Equation 3.2 yielding

Va
m ((c—1[52])[X6])
(c=152) , [Xel (c—[Sa))[Xl
Kgs, 2 Kxg 2 Kg, 0K x, 2

Figure 3.2 shows a side by side comparison of the plots of the concentra-
tions of the three species over time, using LSODA and CVODE, initialised with
concentrations of 1, 0.7 and 0.3 for Sy, S2, and S3 respectively. Clearly, the
results are identical, which is a reassuring confirmation that the PySUNDI-
ALS CVODE implementation is working correctly. Source code listings of the
programs that produced these two images can be examined in the Appendices.

Vo = (3.8)

1+

3.1.2 A more complex model including events

Ezample 2 demonstrates the modeling of discontinuous events, with possibly
delayed actions, using the CVODE root finding routines. Again, the reaction
network is a simple one, consisting of three species (Figure 3.3). The system
is described with the following equations:

Chapter 3. Results 47

PySCeS/LSODA PySUNDIALS/CVODE

Figure 3.2: A comparison of results between LSODA and CVODE for example 1.
LSODA results were produced using PySCeS, from Listings A.1 and A.2. CVODE
results produced from Listing A.3

s {3k
Xo— 1],
Nal-ss— 51X

Figure 3.3: Ezample 2 - A branched chain.

v [54]
) 7KX10,1 ([Xo] - Kg;)

S R (39)
bt Kx,1 * Ks, 1
\%! [Sa]
T |
Ks, 2 Ks,p2
V3 [X4]
_ Kas ([52] - K6q73> (3.11)
I R €1 '
Ks,3 Kx,3
V4 [S3]
V4 = Ks1 4 <[S1] - Keq,4> (3.12)
! 14 [51] N [S3] '

Chapter 3. Results 48

Parameter | Value
Vi 8.0
Vs 2.0
V3 2.0
Vy 4.0
Vs 4.0
Kxyn 1.0
Kg, 1 1.0
Kg, 2 1.0
Ks, 2 1.0
Kg, 3 1.0
Kx, .3 1.0
Kg, 4 1.0
Kg, 4 1.0
Kx, 5 1.0
Ks, 5 1.0
Keg 1.0
Kego 1.0
Keg s 1.0
Kega 1.0
Keg s 1.0
[Xo] 5.0
[X4] 0
[Xe] 0

Table 3.2: Parameter values used for example 2.,

% [X5]
Ko (W - K>

V5 = [53} [X5] (313)
1+ +
Ks,5 Kx;p5

ds

ditl =v —vy— 1y (3.14)
dSo
UL, 1
dt (%) VU3 (3 5)
dSs
E = V4 — V5 (316)

Starting with the parameters listed in Table 3.2, the committing step of
the X5 (lower) branch has a higher rate (v4) than that of the X4 upper branch
(v2). At t = 2 two events trigger. The first event sets both V5 and V3 to 4,
which quickly equalises vy and v4. The second event is delayed by a second
before it takes effect, and at ¢t = 3, V4 and V5 are both set to 2. The resulting
concentration and rate plots can be seen in Figure 3.4.

Chapter 3. Results 49

PySUNDIALS/CVODE

M
o
T
|
I
W
!

Concentration
[
u
.

=
o
T
|

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

Figure 3.4: Concentration and rates over time for example 2. Results produced by
Listing A.4.

3.1.3 A real world biological model

Ezample 3 is model number 96 from the biomodels database (Le Novre et al.,
2006). It is a model of the circadian clock of Arabidopsis (Zeilinger et al.,
2006). A PySCeS model file was created and run. This is our first example
of using PySUNDIALS from within PySCeS. PySCeS detects the presence of
events in the model file, and automatically selects CVODE as the back end
integrator. The biomodels reference image was created using MathSBML. The
results were compared to the reference results on biomodels, which can be
seen at http://www.ebi.ac.uk/biomodels-main/simulation-result.do?
uri=publ-model.do&mid=BIOMDO000000096. For convenience the reference
image is given in Figure 3.5, alongside the results from PySCeS, although the
image quality is quite poor. The oscillation evident is caused by two cycling
events. Event one triggers when time (in hours) exceeds the number of hours
at the end of the current day, i.e. 24 for day 1, 48 for day 2. Event one
advances the current day by one, and turns on light. Event two triggers when
time is between “midday” and “midnight”, i.e. time modulus 12 is between
12 and 24. Event two simply turns off light.

http://www.ebi.ac.uk/biomodels-main/simulation-result.do?uri=publ-model.do&mid=BIOMD0000000096
http://www.ebi.ac.uk/biomodels-main/simulation-result.do?uri=publ-model.do&mid=BIOMD0000000096

Chapter 3. Results 50

o PySCeS Simulation (zeilinger.psc) Sat, 13 Dec 2008 04:15:58

cYm

oY 8

.
g
Oa
&3
.
cTm 2
.
.
Q 0 490 00 510 520 3 540 550

5 530
Time (3600.0 x second x 10+*0.0)**1.0

Figure 3.5: Comparing biomodels reference image and PySCeS for example 3. The
biomodels reference result is in the left pane, and the PySCeS result is in the right
pane. The PySCeS/PySUNDIALS results match the reference results. Right pane
results produced from Listings A.5 and A.6.

3.2 Using CVODES to analyse changes in
sensitivities in transient states

The CVODES module adds sensitivity analysis capabilities to CVODE, and we
use it to analyse the sensitivities of two systems.

3.2.1 Analysing sensitivities prior to the achievement of a
steady state

We use example 1 described in Section 3.1.1 for our first demonstration of
sensitivity analysis. We plot the sensitivities of S; and Sy to changes in the
parameter V5. Parameters remain identical to those in Table 3.1. Results can
be seen in Figure 3.6.

3.2.2 Analysing sensitivities in oscillatory systems

To further illustrate the convenience and power of CVODES, we will examine
an autocatalytic, oscillating chemical reaction. Ezample 4, the “Brusselator”,
is a well studied, classic oscillatory system (Lefever et al., 1988). A schematic
representation of the system can be seen in Figure 3.7, and it is mathematically
described with the following set of equations:

vy =k x A (3.17)

vy = ky x [X]? * [Y] (3.18)

Chapter 3. Results

51

o o =
o » o

o

Concentration
I

Figure 3.6: Species sensitivities to

variation in Vo against time for erxample 1.

Results produced from Listing A.7.

Figure 3.7: Example 4 - The brusselator.

vy = ks [X]« B (3.19)

vg = kg * [X] (3.20)

Chapter 3. Results 52

dX

% =v1+vy —v3— v4 (321)
Y
(iTt = V3 — V2 (3.22)

A, B, D, and E are constant concentrations and are set at 0.5, 3.0, 0, and
0 respectively. The results shown in Figure 3.8 were produced with k; through
k4 at values of 1.

Concentration

ORRNWARUG W

(=)
)
o

40

oo
o
o
o

6000
4000
2000

—2000
—=4000

|
=]
o
[=]
[=]

|
o]
=]
o
=]

HORNMNWS
o

0G|yl

Figure 3.8: Species sensitivities to variation in ki against time in example 3. The
top panel depicts concentration time courses. The middle panel shows sensitivities
of concentrations over time to variation in k1. The bottom panel depicts the same
sensitivities on a log|y| axis. Values on this axis have their absolute values logged,
and then their original sign restored. Using this transformation allows us to visualise
the trends of small scale changes in sensitivities otherwise masked by the extreme
peaks and troughs of the middle panel. Results produced by Listing A.8.

The period of oscillation is dependent on ki. This explains the slow in-
crease in sensitivities over time, as the two systems (each with a different
value for k1) diverge. Our results demonstrate the usefulness of time depen-
dent sensitivity analysis as a tool for the analysis for systems which do not
reach a steady state, especially oscillatory systems where period is influenced
by parameters.

Chapter 3. Results 53

3.3 IDA examples
3.3.1 Using IDA to solve a system with a moiety-conserved
cycle

To illustrate the use of IDA for solving DAE systems where moiety conserva-
tions are represented by algebraic equations, we once again turn to example 1.
However, we use a three species system and Equation 3.2 instead of Equation
3.8. We also add the implicit algebraic equation specifying Ss

0=5Sy+S53—¢ (3.23)

IDA requires that all equations, including the ODEs, be specified implicitly.
Hence, Equations 3.5 and 3.6 therefore become

dsSh

= v —v3— vy — —t 24

0=wv1 —v3— 14 7 (3.24)
ds

O:vg—vl—d—; (3.25)

Figure 3.9 shows identical results to our initial CVODE example.

PySUNDIALS/CVODE PySUNDIALS/IDA

Concentration

Figure 3.9: Comparison of CVODE and IDA concentrations over time for example
1. IDA produces identical results to CVODE with a reduced ODE system.

3.3.2 Using IDA to solve systems with equilibrium blocks

For the second IDA example (Ezample 5) we introduce a new model consisting
of a simple three species linear reaction chain (See Figure 3.10). Reactions one
and four use reversible Michaelis-Menten kinetics, but reactions two and three
form an equilibrium block. This forms a system of differential and algebraic
equations, described as follows:

Chapter 3. Results

Xo[1 5125 {3} 51 {a]-x4

54

Figure 3.10: FEzample 5 - A linear chain with an equilibrium block formed from

reactions 2 and 3.

Parameter Value
% 1.0
Kxya 1.0
Ks 1 1.0
Keg 1.0
Vi 1.0
Kg, 4 1.0
Kx, 4 1.0
Kega 1.0
Xo 1.0
X4 1 x 102
Keg2 0.9
Keg3 0.75

Table 3.3: Parameter values used for example 5.

Wi [S1]
X, - 2
v KXo,l <[0] Keq,l
L=

X S
ORI
Kx, Ks, 1
Vi [X4]

Sal —
s — K53,4 <[3] Keq,4
! - [S3] N [X4]
Ks,a Kx,u
dS
0=wv1 —vq4— ditl

0251 X Kqu—SQ
OZSQ X Keq73—53

(3.26)

(3.27)

(3.28)

(3.29)
(3.30)

Figure 3.11 shows the concentration levels over time for example 5. For the
purposes of comparison we also present the same system as run in CVODE, but
with the algebraic equations removed, and used only post solution to generate

Chapter 3. Results 55

values for S5 and S3. This reduced system consists of the same single ODE;,
but Equation 3.27 is changed to

Va ([sl]Keq,gKeq,s— [X“])

Kg,a Keqa
vy = —2% o (3.31)
14 [S1]Keq2Keq3 N [X4]
Ks, 4 Kx, 4
PySUNDIALS/CVODE PySUNDIALS/IDA

entr
o
£
Concentration

Figure 3.11: Comparison of time courses for example 5, demonstrating identical
results between CVODE and IDA.

The results are as expected. The IDA results match the CVODE results.
It can clearly be seen that Sy and S3 maintain their respective equilibrium
relationships throughout the time course.

While the demonstration of identical results between the CVODE and IDA
solutions might lead one to think IDA is unnecessary, it should be noted that
the recasting of a system to remove algebraic equations is not necessarily
trivial, or always possible to automate. Methods exist to detect conservation
relationships, but these methods do not identify equilibrium relationships. It
may be easy for the human eye to differentiate an algebraic equation from
a differential, but this is not the case for a computer program. Thus IDA is
appealing, in that it obviates the need for the human modeler to recast their
models for use without algebraic equations.

3.4 A KINSOL example

Following the pattern established, we use Example 1 as our first KINSOL
example. Identical parameters are used. Being a nonlinear solver, the resulting
output is a listing of vector of steady state concentrations and derived fluxes.
We compare the results of using KINSOL (Listing 3.1), to the results obtained

—_

—_

O © 00O U WN -

O © 00U WN -

Chapter 3. Results 56

by using HYBRD (Listing 3.2!), the current default nonlinear solver of PySCeS.
Code listings for this example can be found in Listings A.12 and A.13.

Listing 3.1: Output of moiety_branch-kinsol.py

Steady-state species concentrations

S2_ss = 9.4882e-01
Sl_ss = 1.3858e-01
S3_ss = 5.1179e-02

Steady-state fluxes

J_R1 = 2.4343e-01
J_R2 = 2.4343e-01
J_R3 = 1.2172e-01
J_R4 = 1.2172e-01

Listing 3.2: Output of moiety_branch-hybrd.py

Steady-state species concentrations

S2_ss = 9.4882e-01
S1_ss = 1.3859e-01
S3_ss = 5.1179e-02

Steady-state fluxes

J_R1 = 2.4343e-01
J_R2 = 2.4343e-01
J_R3 = 1.2172e-01
J_R4 = 1.2172e-01

Modifying Listing A.12 by adding a simple loop and some plotting code we
can perform parameter scans, the results of which are shown in Figure 3.12.

3.5 Benchmark comparisons

The SUNDIALS source is distributed with a comprehensive selection of exam-
ple programs for parallel, serial and FORTRAN implementations. Thirty-three
of these examples have been translated into Python for use with PySUNDIALS,
and they collectively serve as both a test suite for PySUNDIALS and as ex-
ample code for potential PySUNDIALS users to learn from, or adapt to their
own uses. The thirty-three examples that have been translated include every
SUNDIALS example using the serial N_Vector and written exclusively in C.
The FORTRAN and mixed C and FORTRAN examples were not translated;
the FORTRAN interface of SUNDIALS is not wrapped by PySUNDIALS, and
the underlying C code suffices. The parallel N_-Vector based examples will
be translated when the parallel N_-Vector has been successfully wrapped. We
have used these translated examples as a benchmark suite as they provide a
comprehensive usage of SUNDIALS features, and are cross-disciplinary in na-
ture. They also form a sample set large enough to allow us to draw conclusions
about behaviour and performance.

1Only pertinent output has been listed, output generated by the line “import pysces”
has been removed

Chapter 3. Results 57

PySUNDIALS/KINSOL

£ 1.0 .
EOS _______..f———_Sl_
E [._-"r-— - = S’.\ i
8 ,"” S
S 061 LT -e-s 55|
] ;.z_

S04l L |

- s

v s

%0'2_ // - B

8 I —

rd

% 0.05 1 > 5 i 5
A

» 4

i --

= 2

g Al

b

n o Jy
= 4

©

17

9

& i

5

Figure 3.12: Parameter scan of steady state concentrations and fluzes of example 1
varying Vo from 0 to 5. Results produced by Listing A.1/

3.5.1 Size and performance comparison of C and Python
examples

Each example program was run as both the compiled C version and the Python
version, and their execution timed. Each example was run in series on the
same machine. The machine used for benchmarking was an AMD Opteron
Dual Core 64-bit CPU with 1Gb memory, running at 2.2Ghz per core. The
machine was left undisturbed throughout the benchmarking process, which
used only one core, leaving system and background services to use the second
core, so as to interfere as little as possible with the process. Despite these
efforts, execution times presented are meant to be taken in a relative context,
and are not necessarily indicative of execution times on any other system. The
results of the benchmarking are presented in Table 3.4.

From these results it seems that the C source code examples are on average
three times longer than their Python equivalents but run nearly 300 times
faster, and in the worst cases a whole three orders of magnitude faster. Closer
inspection reveals a different story. The ratios of code length form a reasonably
normal distribution, so we can accept the mean reduction in code length when
coding in Python, but the same cannot be said of the ratios of execution

Chapter 3. Results

Execution Time (s) Code Length (lines)
C Python Python/C C Python C/Python
cvbanx 0.019 0.332 17.474 438 139 3.15
cvdenx | 0.016 0.245 15.312 | 370 73 5.07
cvdenx_uw | 0.016 0.263 16.438 393 84 4.68
cvdirectdem 0.046 1.431 31.109 777 352 2.21
cvkrydem _lin 0.308 27.07 87.890 | 749 339 221
cvkrydem_pre | 0.632 151.308 239.411 | 1136 578 1.97
cvkryx 0.101 7.175 71.040 534 300 1.78
cvkryx_bp | 0.217 12.01 55.346 | 660 227 291
cvsadjbanx | 0.723 6.287 8.696 | 551 231 2.39
cvsadjdenx | 0.032 0.549 17.156 | 662 200 3.31
cvsadjkryx_int | 14.899 5531.52 371.268 | 1348 605 2.23
cvsadjkryx_pnt | 17.936 2497.13 139.225 | 1346 611 2.20
cvsbanx 0.02 0.333 16.650 438 135 3.24
cvsdenx | 0.017 0.251 14.765 | 370 73 5.07
cvsdenx_uw | 0.017 0.271 15.941 | 393 84 4.68
cvsdirectdem 0.045 1.48 32.889 | 7177 352 221
cvsfwddenx 0.021 0.565 26.905 622 235 2.65
cvsfwdkryx | 0.779 76.511 98.217 | 922 415 2.22
cvsfwdnonx 0.04 1.61 40.250 | 517 209 2.47
cvskrydem_lin 0.309 26.216 84.841 | 750 339 2.21
cvskrydem_pre | 0.632 148.111 234.353 | 1136 578 1.97
cvskryx | 0.102 7.197 70.559 | 534 301 1.77
cvskryx_bp 0.22 11.17 50.773 660 227 291
idabanxl | 0.023 0.941 40.913 | 404 135 2.99
idabanx2 1.612 153.451 95.193 | 671 245 2.74
idadenx | 0.016 0.265 16.562 | 399 98 4.07
idakrydem_lin 0.027 1.348 49.926 | 586 193 3.04
idakryx | 0.021 0.765 36.429 | 547 186 2.94
kinbanx 0.04 1.171 29.275 | 394 112 3.52
kindenxl | 0.014 0.215 15.357 | 492 168 2.93
kindenx2 | 0.014 0.2 14.286 | 434 162 2.68
kinkrydem _lin 0.073 2714 3717.808 | 892 330 2.70
kinkryx | 0.083 265.326 3196.699 | 791 294 2.69
mean = 271.786 mean = 2.903

Table 3.4: Comparative execution times and code lengths between C and Python.

Chapter 3. Results 59

times. There are some clear outliers in this set. Glancing over the table,
we notice that any example using Krylov techniques appears to have a high
execution times in Python. As the C and Python versions of the example
algorithms are identical, this is quite surprising, and indeed it is not the use
of Krylov techniques that causes such excessive execution times, but rather
the complexity of the callback functions. Specifically, those examples that
perform additional function calls, or looping within their right-hand side or
preconditioning callback functions suffer heavily. This is due in large part to
Python’s inherent cost in calling functions or using variables outside the local
scope, both of which cause a non-constant time lookup. For simple cases, the
performance difference is more in the region of a single order of magnitude,
rather than the two to three orders of magnitude for average to worst case.
Still, the performance penalty of using PySUNDIALS remains a real concern,
and solutions need to be sought.

3.5.2 Contrasting the use of CVODE and LSODA in PySCeS

PySCeS, up to version 0.6.9, uses the SciPy interface to LSODA as its default
ODE solver. PySCeS has a framework that allows new solvers to be plugged
in with relative ease, and PySUNDIALS CVODE has been successfully incor-
porated. We will compare LSODA to CVODE in the specific context of being
used as PySCeS back end solvers.

Both LSODA and CVODE, along with the other modules in ODEPACK and
SUNDIALS respectively, are executed in a similar manner. They both take a
nominated function and evaluate it as the right hand side of an ODE system.
This is done within the scaffolding of a user implemented driving loop, which
steps the solver from initial state to the next desired output point along the
domain of the independent variable, usually time. This method of execution
allows the solvers to exit prior to the desired output point being reached in
the case of error, or other notification, such as the roots of a specified function
being found. The user is then able to attempt recovery, in the case of an error,
or otherwise handle any notifications and proceed normally.

The SciPy interface to LSODA encapsulates the driving loop mechanism
within a single function, removing this control from the user, or in the case of
PySCeS, from the controlling program. While the SciPy interface allows a set
of desired output points to be specified, no advanced functionality, such as root
finding or error recovery can be implemented via this interface. One additional
implication of this interface revolves around required maximum step sizes. If
a single step in a particular solution requires an increase in step size, due to
failure to converge, it only becomes apparent when the entire solution fails.
At this point, the maximum step size must be increased for all steps, and the
solution from scratch. This incurs a heavy performance penalty.

PySUNDIALS leaves the driving loop to the user or controlling program to
construct and execute. This allows access to features such as root finding, and

Chapter 3. Results 60

the adjustment of step size for a single time step, without having to restart
the solution entirely. Once difficult steps have been passed, maximum step
size can again be reduced to optimal levels, speeding up the solution again.

3.6 The Whole Cell Model: A complex example

As our last example of CVODE use, we will reproduce the minimal whole cell
model by Surovstev et al. (2007) (See Figure 3.13 for a schematic represen-
tation). This model is an attempt to simulate cell division as an internally
produced mechanism, as opposed to modelling cell triggered by an event set
by the modeller.

Figure 3.13: The minimal whole cell model. N represents nutrients external to the
cell. M is the metabolome, P is the proteome and L is the lipidome. P, and
L.pem are those parts of the proteome and lipidome embedded in the cell membrane.
Veyt is the cytosolic volume. Sp,ep, is the surface area of the cell membrane.

At first we attempt to reproduce the results using PySCeS and LSODA
(See Listings A.16 and A.15). LSODA fails. Though rare, there are some
models which LSODA cannot handle, but CVODE can, and this appears to
be one of them. Next the model was recast into an amount based system,
rather than the original concentration based system, and was hand coded us-
ing the PySUNDIALS CVODE module in an attempt to reproduce the results
of Surovstev et al. (2007). We refer to figures 4a and 4c of the Surovstev paper
as a means to provide a rapid visual method of comparison between results.
Our results are presented in Figures 3.15 and 3.17 respectively. Parameters,
initial values and equations can be found in Listing A.17. A complete set of
parameters could not be found in the paper itself, or the supplementary mate-
rials, as a significant portion of the paper is dedicated to parameter discovery
and optimisation. The parameters used were were obtained by communication
with the authors.

Chapter 3. Results

Figure 3.14: Reference figure 4a from Surovstev et al. (2007).

2.6
2.4
2.2

Am(-m

r
er‘ 4

2.0

1.5

1.0
5.3 1

5.0

4.7 1

e

25 50

PySUNDIALS/CVODE

7D

100

V.

eyt

e

61

Figure 3.15: V., Smem, and x displaying an oscillatory growth pattern. This figure
is a reproduction of Figure 3.14. Cytosolic volume (V) and Cell membrane (Syem,)
surface area are scaled against their initial values, hence their increasing tendency
over time. Vi, = 1 represents the unitary volume of a single cell. x is the ratio
between V. and Sy,em. Results produced by Listing A.17.

Chapter 3. Results 62

: —

g g— =]

= \ / - —~

8 — T~

§ — I:’I'I'|E'I'I'|
.-""'_,-ﬂ"'"—-'- -\-_\"""\ _j//_!_‘l‘l‘n?l‘l‘l
0 25 50 75 100

ic) Time, min

Figure 3.16: Reference figure 4c from Surovstev et al. (2007). Each plot is on its
own y-axis.

1.10
1.05 B
100k
0.95
0.90
0.85

0.005

0r0 976—1 20 40 60 80 100 120

mem

0.004
0.003
0.002

0.001
0.00016
0.00014
0.00012
0.00010
0.00008
0.00006
0.000040 y : y y

049.999¢—120 40 60 80 100 120

Figure 3.17: Oscillatory growth shown in P, L, M, Ppem and Lpen. This figure is
a reproduction of Figure 3.16 using multiple three separate y-axes, which is sufficient
to visually depict oscillation in all five species. Results produced by Listing A.17.

Chapter 4

Discussion and conclusion

4.1 The integration of SUNDIALS into PySCeS

The integration of PySUNDIALS into PySCeS has already started. As of
PySCeS release 0.6.9, users can select CVODE as a back end integrator in
preference to LSODA, although LSODA remains the default choice, except
where models specify events, multiple compartments or rate rules.

Listing 4.1: Using CVODE in PySCeS

>>> import pysces

>>> m = pysces.model(’branched_moiety’)
>>> m.doLoad ()

Parsing file: /home/sirlark/Pysces/psc/moiety_branch.psc

Info: "X4" has been initialised but does not occur in a rate equation
Info: "X5" has been initialised but does not occur in a rate equation
Info: "X7" has been initialised but does not occur in a rate equation

Calculating L matrix done.
Calculating K matrix done.

>>> m.mode_integrator

>LSODA”’

>>> m.mode_integrator = ’CVODE’

>>> m.doSimPlot ()

CVODE time for 21 points: 0.0830161571503
ylist empty plotting all data vs (0)

>>>

The PySCeS input file syntax has been extended to support time depen-
dent event specification, following the framework described in the SMBL L2V1
specification. Each event must be given an identifier, a trigger condition, a
delay time, and specify what should be done, in the form of a set of assign-
ments. The assignments are executed when the trigger condition is true, or

63

Chapter 4. Discussion and conclusion 64

in the case of a nonzero delay, when the specified amount of time has elapsed
since the trigger condition was true.

Listing 4.2: Event syntax in PySCeS model files
Event: eventl, _TIME_ > 10 and A > 150.0, 0 {

Vi = Vixvfact
V2 = V2xvfact
}

Presently the PySCeS developers are working on the inclusion of IDA,
with KINSOL and CVODES integration to follow. Although PySCeS already
has mechanisms for handling systems of differential and algebraic equations,
the integration of the PySUNDIALS IDA module offers the potential to make
dealing with systems much simpler. Presently, moieties are identified, and only
independent ODEs are used during system solution. For equilibrium blocks,
forcing functions must be used, and PySCeS does not currently support SBML
constraints. The use of a DAE solver such as IDA would obviate the need for
these workarounds.

4.2 Future work

4.2.1 Exploring various technologies as optimization
techniques

The poor performance of PySUNDIALS needs to be addressed. Profiling the
slower running PySUNDIALS examples indicates that the NVector class would
be a good candidate for optimization, especially the subscription methods, as
most PySUNDIALS programs spend a significant amount of time manipulating
NVectors. The subscription methods are already as optimal as they can be
made in pure Python, and the next step would involve refactoring the NVector
class into a Python extension module coded in pure C. The PySUNDIALS
examples make no use of NumPy though, which distorts the profile results
somewhat. It is expected that PySUNDIALS will be used in conjunction with
NumPy more often than not. Using NumPy means that getting and setting
individual elements of NVectors via their subscription methods occurs far less
often, most operations being performed at the whole vector or matrix level.
A NumPy matrix multiplication into a NumPy array sharing memory with an
NVector is far faster than assigning each element of the NVector a value in
turn.

Still, the major areas of concern lie not in PySUNDIALS itself, but rather
in the user defined callback functions. This leaves much of the burden of
optimization on the user, although a number of technologies exists that might
ease this burden.

Chapter 4. Discussion and conclusion 65

4.2.1.1 The psyco module

Of most interest is the Python module psyco (http://psyco.sourceforge.
net), which functions somewhat like a just-in-time (JIT) compiler for Python
code. psyco can be used to selectively optimize blocks of code, as opposed to
the entire program. With only a few extra lines of Python code, approximately
one per function (or code block) to be optimized, standard Python code can
be modified to use psyco. Often optimizing an entire program creates so
much overhead, that the performance gains are obviated. The performance
gains from doing this are highly dependent on the nature of the code being
optimized, as some code constructs are more easily optimized than others, and
some not at all. The psyco documentation claims performance gains are in
the range of one to two orders of magnitude (http://psyco.sourceforge.
net/introduction.html), although in our experience, albeit limited to very
cursory investigation, performance gains are more often in the range of 3 to
8 fold. The psyco module can also function in tandem with a Python profiler,
dynamically identifying code bottlenecks during runtime, and selecting those
code blocks as candidates for optimization. We have not tested this technique
yet. Of course optimization always comes at a trade off, and in psyco’s case,
the trade off is speed for memory. Psyco’s memory overhead is admittedly
high, proportional to the amount of Python code being rewritten by psyco.
Further disadvantages are that pscyo only works on intel i386 or compatible
CPU’s, and that it is not a standard Python module. The nature of psyco and
Python however makes it possible for PySUNDIALS to use psyco if available,
with relatively minimal code modification.

4.2.1.2 Pylnline, weave, and instant

Pylnline (http://pyinline.sourceforge.net), weave and instant all work in
a similar manner, facilitating the inclusion of small sections of code written
in other languages, into a Python program. As such, they all suffer from the
drawback that their use requires the user of PySUNDIALS to know C. Avoid-
ing the need to code in C was one of the reasons PySUNDIALS was developed
in the first place, and so we have a catch-22 situation. Additionally, Pylnline’s
last release was in 2001 and it seems to be a dead project, whilst instant re-
quires SWIG. Of these three options, weave, being part of SciPy, remains the
most attractive. Despite the requirement of coding in C using one of these
technologies being seen as a drawback, the amount of code which would be
required in C would be so small that they would be likely to avoid the more
complicated parts of C coding, namely dynamic memory management and er-
ror handling. Coding a simple loop in C is not significantly more complex than
the same in Python, and if called often can provide a significant performance
boost.

http://psyco.sourceforge.net
http://psyco.sourceforge.net
http://psyco.sourceforge.net/introduction.html
http://psyco.sourceforge.net/introduction.html
http://pyinline.sourceforge.net

Chapter 4. Discussion and conclusion 66

4.2.1.3 Pure Python optimization techniques

Ultimately, the user of PySUNDIALS is left to make sure their callback func-
tions run optimally. Guido van Rossum, Python’s creator, has written a short
but very helpful essay (http://www.python.org/doc/essays/list2str) cov-
ering optimization techniques in the Python language specifically. It is likely
that many of these pointers will be absorbed into the PySUNDIALS docu-
mentation, after being recast into examples more specific to PySUNDIALS. As
always, the general guidelines for optimization are language independent and
work in Python too:

e Don’t optimize unless you know you need to, and where you need to.

e A better algorithm will always outperform an optimized slower algo-
rithm.

e Unroll your loops and inline your code

The last is especially helpful in Python, as function calls are very expensive
due to the function name lookup cost.

4.2.2 Wrapping the parallel N_Vector structure

A portion of SUNDIALS remains unwrapped. The SUNDIALS N_Vector exists
in both serial and parallel form, both of which implement the exact same
computational functionality. Despite the lack of a parallel N_Vector wrapper,
the serial wrapper provides the complete set of SUNDIALS features. The
SUNDIALS parallel implementation uses the Message Passing Interface (MPI)
(http://www.mpi-forum.org/). Many Python MPI implementations exist,
including:

MPI 4 Python: MPI 4 Python is part of the SciPy project, and offers a com-
plete MPI implementation, featuring optimized support for transfer of
NumPy arrays. Any picklable Python object can be sent or received.
(http://mpidpy.scipy.org)

pypar: At first look pypar seems very simple and easy to use. It is available as
a Python extension module. It is capable of passing any Python object
as a message, and it handles any marshalling or serialisation required
automatically. It is not a complete MPI implementation though. (http:
//datamining.anu.edu.au/~ole/pypar)

pyMPI: MPI Python, or pyMPI, is a standalone Python interpreter which incor-
porates “a large subset of MPI functions”. This functionality is accessi-
ble through a built in module, mpi. (http://pympi.sourceforge.net)

http://www.python.org/doc/essays/list2str
http://www.mpi-forum.org/
http://mpi4py.scipy.org
http://datamining.anu.edu.au/~ole/pypar
http://datamining.anu.edu.au/~ole/pypar
http://pympi.sourceforge.net

Chapter 4. Discussion and conclusion 67

The successful wrapping of the SUNDIALS parallel N_Vector requires a
thorough investigation into the various merits and deficiencies of each Python
MPI implementation. Once an appropriate implementation has been selected,
the actual wrapper code needs to be written. One additional complexity re-
mains, however. If two compatible NVector modules exist in PySUNDIALS,
a method must be provided for the user to choose which one should be used.
Python does not allow parameters to be passed on module import, and modules
do not have access to a program’s global scope, so no method exists of inform-
ing one of the higher level modules (cvode, cvodes, ida, or kinsol) which
NVector module to use. Although not ideal, one way around this problem is
to require that the higher level modules are initialised for parallel use, which
would serve the dual purpose of switching from the serial NVector module to
the parallel one, and initialising MPI.

4.3 Summary

We have argued that a Python interface to SUNDIALS is necessary, on ac-
count of SUNDIALS, and especially the CVODE module, becoming a de facto
standard in scientific computing, gradually replacing ODEPACK and LSODA
respectively. SUNDIALS is the more advanced suite, and provides the major
advantages of allowing user intervention during the integration process and
a better adaptive step size routine. The suite provides a variety of modules
geared towards the solution of different problems but remains accessible by
providing a consistently organised collection of functions and data structures.
A Python interface to SUNDIALS is desirable because the C language is time
consuming to code in, has a much steeper learning curve, and incurs much
code overhead in the form of memory management and error handling.

PySUNDIALS provides the desired Python interface, not only to CVODE,
but to the entire suite. It facilitates reduced coding times of, on average, two
thirds. In addition to bare bindings, PySUNDIALS implements an interface
consisting of a set of classes that act like similar Python built in objects.
NVectors behave like lists, and matrix objects like lists of lists. PySUNDIALS
is currently at the end of its beta development phase, with release candidate
1 being available for download, and is confirmed to run on both windows and
unix derivative operating systems. Testing on the Apple Macintosh has been
delayed pending hardware availability. PySUNDIALS will be moved out of
beta once evidence of community testing and involvement becomes available,
and any bugs found are resolved. At this point, it is hoped that PySUNDIALS
can become a module of SciPy.

Interoperability with SciPy and NumPy is an important concern, consid-
ering that these packages are the mainstay of scientific computing in Python.
PySUNDIALS provides convenient and easy interoperability mechanisms, as
an NVector can be used as a drop in replacement for a NumPy array by the

Chapter 4. Discussion and conclusion 68

use of its asarray method. NumPy arrays can be converted to NVectors with
equal ease. As NumPy arrays are the foundational data type of SciPy, these
two conversion mechanisms provide all that is required to use SciPy, NumPy
and PySUNDIALS in conjunction with one another.

Using PySUNDIALS, the capabilities of PySCeS have been extended, and
they now include SMBL events. With the integration of the PySUNDIALS IDA
module, differential and algebraic equation systems and SMBL constraints will
become features of PySCeS, leading to a more feature rich, robust software tool
for computational systems biology. The integration of the rest of PySUNDIALS
will provide time dependent sensitivity analysis capabilities through CVODES
and an additional robust nonlinear solver in the form of KINSOL.

0O Utk WN -

O W W W W WWWNhNDNDDDDNDDNDNDNDNDN e e =
NO U WNRFRFOOONDDUUR WNRFR,OOOITDUUR WNRFROO©

Appendix A

Code listings

Note that some listings may have been altered to fit print format. Where line
continuations were required, trailing backslashes are used. In Python code this
does not affect the running of the code, but in PySCeS model files it may.

Listing A.1: moiety_branch.psc

#Small system with a branch and a moiety using simplified kinetics

#From Hofmeyr

FIX: X0 X4 X5
R1:

X0 + S2
R2:

X6 + S3
R3:

S1 = X4
R4 :

(2001)

X6 X7

S1 + S3

V1i*X0*S2/K1_X0*K1_S2/(1 + X0/K1_X0 + S2/K1_S2 + X0*S2/K1_X0*K1_S2)

X7 + {1.0}s2

V2*S3*xX6/K2_S3*K2_X6/(1 + S3/K2_S3 + X6/K2_X6 + S3%X6/K2_S3*xK2_X6)

V3xS1/(S1 + K3_81)

{1.0}s1
V4xS1/(S1 + K4_S1)

X5

#External Metabolites

X0
X4
X5
X6
X7

=1

[
O = O O

.0

O O O O

#System Paramters

Vi
V2
V3

V4 =

K1
K1
K2

= 1.

0

10.0

1.
1.
_X0 =
_52 =

_83 =

0
0

e e

o O o

69

38
39
40
41
42
43
44
45

© 00O Ut WN -

Appendix A. Code listings 70

K2_X6 = 1.0
K3_81 = 1.0
K4_S1 = 1.0

#Initial Concentrations

S1 = 1.0
S2 = 0.7
S3 = 0.3

Listing A.2: moiety_branch-lsoda-independent.py

import pysces
from matplotlib import pyplot

m = pysces.model(’moiety_branch’)
m.doLoad ()
m.doSim(end=5, points=51)

pyplot.title(’PySCeS/LSODA’)
pyplot.xlabel(’t’)
pyplot.ylabel (’Concentration’)

results = m.data_sim.species.transpose ()

pyplot.plot(
m.sim_time, results[1], k-7,
m.sim_time, results[0], ’k--’,
m.sim_time, results[2], ’k-.°

)

pyplot.legend ((’S_1’, *S_2°, ’$S_3%$’))

pyplot.show ()

0O~ O Ut W

Appendix A. Code listings

Listing A.3: moiety_branch-cvode-independent.py

from pysundials import cvode
import ctypes
from matplotlib import pyplot

Vi = 1.0
V2 = 10.0
V3 = 1.0
V4 = 1.0
K1_X0 = 1.0
K1_82 = 1.0
K2_83 = 1.0
K2_X6 = 1.0
K3_581 = 1.0
K4_S1 = 1.0
X0 = 1.0
X4 = 1.0e-12
X6 = 1.0e-12
X6 = 1.0
X7 = 1.0e-12
S1 =0
52 =1
#S3 = 2
def R1(y):
return (V1/(K1_X0*K1_S2)*(X0*y[S2]1))/\
(1 + XO/K1_X0 + y[S2]1/K1_S2 +\
(X0*xy[S2])/(K1_X0*K1_S2))
def R2(y):
return (V2/(K2_S3*K2_X6))*((icsum-y[S2])*X6)/\
(1 + (icsum-y[S2])/K2_8S3 + X6/K2_X6\
+ (((icsum-y[S82])*X6)/(K2_S3*K2_X6)))
def R3(y):
return (V3*y[S1]1)/(y[S1] + K3_S1)
def R4(y):
return (V4xy[S1])/(y[S1] + K4_s1)
def f(t, y, ydot, f_data):
ydot [82] = R2(y) - R1i(y)
ydot [S1] = R1(y) - R3(y) - R4(y)
return O
y = cvode.NVector ([1.0, 0.7])
icsum = 0.7 + 0.3 #setting the initial sum of the conservation

cvode_mem =

cvode.CVodeCreate (cvode.CV_BDF,
cvode.CVodeMalloc (cvode_mem, f,

0.0, vy,

cvode.CVDense (cvode_mem, 2)

results =

([,

0, o,

t = cvode.realtype (0.0)
results [0] . append (t.value)
results [1].append(y[S1])
results [2]. append (y[S2])

results [3].append ((icsum-y[S2]))

cvode.CV_NEWTON)
cvode.CV_SS,

1.0e-8,

1.0e-12)

Appendix A. Code listings 72

iout = 1
tout = 0.1
while iout <= 50:
ret = cvode.CVode(
cvode_mem,
tout,
v
ctypes.byref (t),
cvode.CV_NORMAL
)
if ret != O:
print "CVODE_Error: %i"%(ret)
break
results [0].append(tout)
results [1].append(y[S1])
results [2].append (y[S2])
results [3]. append ((icsum-y[S2]))
iout += 1
tout += 0.1
pyplot.title(’PySUNDIALS/CVODE’)
pyplot.xlabel(’t’)
pyplot.ylabel (’Concentration’)
pyplot.plot(
results [0], results[1], k-,
results [0], results[2], ’k--’,
results [0], results[3], ’k-.°
)
pyplot.legend ((’sS_1°, ’$s_2%’, ’>$5_3%’))
pyplot.show ()

0O~ O Ut W

Appendix A. Code listings

Listing A.4: branched_events-cvode.py

from pysundials import cvode
import ctypes
from matplotlib import pyplot

Vi

El_
E2_
E2_
E2_

X0
X4
X6
S1
S2
S3

def

def

def

def

def

= 8.0

NN

Trigger_t
Trigger_t
Delay_t =
Activate_t

[ure

.0

[
o o

o
= O

R1(y):
return

R2(y):
return

R3(y):
return

R4 (y):
return

R5(y):
return

None

(V1/K1_X0)*(X0-(y[S11/Kleq))/\
(1+(X0/K1_X0)+(y[S11/K1_S1))

(V2/K2_81)x(y[S11-(y[S2]1/K2eq))/\
(1+(y[S11/K2_S1)+(y[S2]1/K2_S82))

(V3/K3_S2)*(y[S2]-(X4/K3eq))/\
(1+(y[S2]1/K3_82)+(X4/K3_X4))

(V4/XK4_S1)*(y[S11-(y[S31/Kdeq))/\
(1+(y[S11/K4_S1)+(y[S3]1/K4_83))

(V4/K5_83)*(y[S3]-(X6/K5eq))/\
(1+(y[S31/K5_S3)+(X6/K5_X6))

Appendix A.

Code listings

def f(t, y, ydot, f_data):
ydot [S1] = R1(y)-R2(y)-R4(y)
ydot [S2] = R2(y)-R3(y)
ydot [83] = R4(y)-R5(y)
return O
def g(t, y, gout, g_data):
gout [0] = t - E1_Trigger_t
gout [1] = t - E2_Trigger_t
if E2_Activate_t is not None:
gout [2] = t - E2_Activate_t
else:
gout [2] = 1
return O
y = cvode.NVector ([1.0, 1.0, 1.0])

cvode_mem =

cvode.CVodeCreate (cvode.CV_BDF, cvode.CV_NEWTON)

cvode.CVodeMalloc (cvode_mem, f, 0.0, y, cvode.CV_SS, 1.0e-6,
cvode.CVodeRootInit (cvode_mem, 3, g, None)
cvode.CVDense (cvode_mem, 3)

results = (

t = cvode.r
results [0].
results [1]
results [2]
results [3]
results [4]
results [5]
results [6]

iout =1
tout = 0.01
while iout

v, 1, o, a, , o,

ealtype (0.0)
append (t.value)

.append (y[S1])
.append (y[s21)
.append (y[S31)
.append (R1(y))
.append (R2(y))
.append (R4 (y))

<= 1500:

ret = cvode.CVode (
cvode_mem,
tout,
Yy
ctypes.byref (t),
cvode.CV_NORMAL
)
if ret == cvode.CV_ROOT_RETURN:
roots = cvode.CVodeGetRootInfo (cvode_mem, 3)
if roots[0] == 1:
V2 = 4
V3 = 4
if roots[1] == 1:
E2_Activate_t = t.value + E2_Delay_t
if roots[2] == 1:
ve = 2
Vs = 2
elif ret != O:

print "CVODE_Error:, %i"%(ret)
break

results [0] . append (tout)
results [1].append(y[S1])
results [2].append(y[S2])
results [3].append (y[S3])

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

Appendix A. Code listings

pyplot.
pyplot.
pyplot.
pyplot.
pyplot.

pyplot.

pyplot.
pyplot.

pyplot.
.plot(

pyplot

pyplot

pyplot.

results [4] . append (R1(y))
results [5] . append (R2(y))
results [6].append (R4 (y))

iout += 1
tout += 0.01

figure (1)

subplot (211)

title (’PySUNDIALS/CVODE’)

ylabel (’Concentration’)

plot(
results [0], results[1], ’k-’,
results [0], results[2], ’k--’,
results [0], results[3], ’k-.°

legend ((’$S_18%°, ’$S_28%°, ’$s_3%’))

subplot (212)
xlabel (’t’)
ylabel (’Rate’)

results [0], results[4], ’k-’,
results [0], results[5], ’k--’,
results [0], results[6], ’k-.°

.legend ((’v_1°, *$v_2%’, >$v_4%$’))

show ()

75

0O~ O Ut W

Appendix A. Code listings 76

Listing A.5: zeilinger.psc
Generated by PySCeS 0.6.9 (2008-12-03 07:52)

Keywords

Description: Zeilinger2006_PRR7 -PRR9light-Y
Modelname: Zeilinger2006_PRR7_PRR91light_Y
Output_In_Conc: True

Species_In_Conc: True

GlobalUnitDefinitions
UnitVolume: litre, 1.0, 0, 1
UnitLength: metre, 1.0, 0, 1
UnitSubstance: mole, 1.0, -9, 1
UnitArea: metre, 1.0, 0, 2
UnitTime: second, 3600.0, O, 1

Compartments
Compartment: cytoplasm,

1.0
Compartment: nucleus, 1.0,

, 3
3
Reactions
R16:
$pool > cXm
nucleus*(n3*pow(cTn,d)/(pow(gé,d)+pow(cTn,d)))
R16 has modifier(s): cTn

R17:
cXm > $pool
nucleus*(m9*cXm/(k7+cXm))

R14:
cTc > $pool
cytoplasm*((lmax-1d)*mb+m6)*(cTc/(k5+cTc))

R15:
cTn > $pool
nucleus*((lmax-1d)*m7+m8)*(cTn/(k6+cTn))

R12:
cTc > cTn
cytoplasm*r3*cTc

R13:
cTn > cTc
nucleus*r4*xcTn

R10:
cTm > $pool
nucleus*m4*cTm/(k4+cTm)

R11:
$pool > cTc
cytoplasm*p2*cTm

R11 has modifier(s): cTm

R18:
$pool > cXc
cytoplasm*p3*cXm

R18 has modifier(s): cXm

R19:
cXc > cXn

Appendix A. Code listings 77

cytoplasm*rb*cXc
R38:

cP7n > $pool

nucleus*mi18*cP7n/(k16+cP7n)
R39:

$pool > cP9m

(1ld*q4*cPn+n7*1d+n8)*pow (cLln,k)/(pow(gl0,k)+pow(cln,k))
R39 has modifier(s): cPn cLn

R34:
$pool > cP7c
cytoplasm*p6*xcP7m

R34 has modifier(s): cP7m

R35:
cP7c > cP7n
cytoplasm*r9*cP7c

R36:
cP7n > cPT7c
nucleus*r10*cP7n

R37:
cP7¢ > $pool
cytoplasm*ml7*cP7c/(k15+cP7c)

R30:
$pool > cPn
nucleus*(1lmax-1d)*p5

R32:

$pool > cP7m

nucleus*né*pow (cLn,j)/(pow(g9,j)+pow(cln,j))
R32 has modifier(s): cLn

R33:
cP7m > $pool
nucleus*mi16*cP7m/(k14+cP7m)
R4 :
$pool > cLc
cytoplasm*pl*cLm
R4 has modifier(s): cLm

R5:
cLc > cLn
cytoplasm*rl*cLc
R6:
cln > clLc
nucleus*r2*clLn
R7:
cLc > $pool
cytoplasm*m2*cLc/(k2+cLc)
R1:

$pool > cLm
nucleus*1ld*ql*cPn
R1 has modifier(s): cPn

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

Appendix A. Code listings

R2:

$pool > clm
nucleus*(nl*xpow(cXn,a)/(pow(gl,a)+pow(cXn,a)))*
(pow (g7 ,h)/(pow (g7 ,h)+pow(cP7n,h)))*
(pow(g8,1i)/(pow(g8,i)+pow(cP9n,1i)))

R2 has modifier(s): cXm cP7n cP9n

R3:

R42:

R8:

R9:

clm > $pool
nucleus*ml*clLm/(kl+cLm)

cP9c > cP9n
cytoplasm*rill*xcP9c

cln > $pool
nucleus*m3*cLn/(k3+cLn)

$pool > cTm
nucleus*(n2*pow(c¥Yn,b)/(pow(g2,b)+pow(cYn,b)))
*(pow(g3,c)/(pow(g3,c)+pow(cln,c)))

R9 has modifier(s): cYn cLn

R43:

cP9n > cP9c
nucleus*r12*cP9n

R31b:

cPn > $pool
nucleus*q3*1d*cPn

R31la:

R45:

R44:

R41:

cPn > $pool
nucleus*mi5*cPn/(k13+cPn)

cP9n > $pool
nucleus*m21*cP9n/(k19+cP9n)

cP9c > $pool
cytoplasm*m20*cP9c/(k18+cP9c)

$pool > cP9c
cytoplasm*p7*cP9m

R41 has modifier(s): cP9m

R40:

R29:

R28:

cP9m > $pool
nucleus*m19*cP9m/(k17+cP9m)

cYn > $pool
nucleus*mld*xcYn/(k12+cYn)

cYc > $pool
cytoplasm*mi3*cYc/(k1l1l+cYc)

78

Appendix A. Code listings

186

187 R27:

188 cYn > cYc

189 nucleus*r8*cYn

190

191 R26:

192 cYc > cYn

193 cytoplasm*r7*xcYc

194

195 R25:

196 $pool > cYc

197 cytoplasm*p4d*cYm

198 # R25 has modifier(s): cYm

199

200 R24:

201 cYm > $pool

202 nucleus*m12*xcY¥Ym/(k10+cYm)
203

204 R23:

205 $pool > c¥Ym

206 nucleus*(ld*q2*cPn+(1ld*n4+n5)*pow(gh,e)/
207 (pow(gh,e)+pow(cTn,e)))*(pow(g6,f)/(pow(g6,f)+pow(cln,f)))
208 # R23 has modifier(s): cTn cLn cPn
209

210 R22:

211 cXn > $pool

212 nucleus*mll*xcXn/(k9+cXn)
213

214 R21:

215 cXc > $pool

216 cytoplasm*milO*cXc/(k8+cXc)
217

218 R20:

219 cXn > cXc

220 nucleus*r6*cXn

221

222 # Event definitions
223 Event: event_0000001, operator.le(Day_in_hours-_TIME_,0), 0.0
224 A

225 1d =1
226 Day_in_hours = Day_in_hours + 24
227 }

228 Event: event_0000002, (operator.le(Day_in_hours-_TIME_,12) \
229 and operator.gt(Day_in_hours-_TIME_,0)), 0.0

230 {

231 1d =0

232}

233

234 # Fixed species
235

236 # Variable species
237 cXm@nucleus = 0.652

238 cLm@nucleus = 0.1114
239 cLn@nucleus = 0.2366
240 cPn@nucleus = 0.0

241 cYm@nucleus = 0.2992
242 cYn@nucleus = 17.4355
243 cXc@cytoplasm = 2.4188
244 cLc@cytoplasm = 0.0731

245 cYc@cytoplasm = 49.2611
246 cP9c@cytoplasm = 0.734
247 cPT7c@cytoplasm = 0.0266

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

Appendix A. Code listings

cXn@nucleus = 14.7289
cTc@cytoplasm = 5.2235
cTm@nucleus = 3.6732
cTn@nucleus = 4.5333
cP9n@nucleus = 1.1162
cP7m@nucleus = 0.0204
cP7n@nucleus 1.5103
cP9m@nucleus = 0.002

Parameters
n3 = 0.6703

d = 1.0164
g4 = 11.3625
m9 = 2.6345
k7 = 8.6873
lmax = 1.0
1d = 1.0

m5 = 9.3024
m6 = 10.899
k5 = 16.9133
m7 = 0.7527
m8 = 13.7459
k6 = 43.7049
r3 = 29.4222
r4 = 33.6178
m4 = 8.5185
k4 = 4.0551
p2 = 1.0494
p3 = 8.583
r5 = 27.818
mi8 = 8.671
k16 = 42.4837
q4 = 7.4548
n7 = 0.0833
n8 = 2.0738
k = 3.3953
gl0 = 5.6855
p6 = 6.7738
r9 = 31.0318
ri0 = 0.4557

ml7 = 5.4062
k15 = 49.4094
p5 = 0.5

né = 11.3117
j = 2.5579

g9 = 14.5219
mi6 = 9.531
k14 = 50.9418

pl = 1.2294
rl = 31.5166
r2 = 9.1138
m2 = 10.4609
k2 = 32.7881
ql = 7.9798
ni = 2.3023
a = 2.2802

gl = 16.3389
g7 = 0.4444

h = 2.2116
g8 = 11.0459
i = 1.1065

ml = 8.0568

80

Appendix A. Code listings

310 k1 = 22.3951
311 ri11 = 34.6266
312 m3 = 12.7853
313 k3 29.0823
314 n2 = 7.5433
315 b = 3.1075
316 g2 = 16.7487
317 g3 = 11.5922
318 ¢ = 1.6808
319 ri12 = 22.838
320 q3 = 1.0
321 mi15 = 1.2
1.2

322 k13 =

323 m21 = 0.028
324 k19 = 26.5795
325 m20 = 3.4152
326 k18 = 16.2407
327 p7 = 10.4532
328 m19 = 6.1155
329 k17 = 18.6089
330 m14 = 3.2581
331 k12 = 23.2876
332 mi3 = 6.8544
333 k11 = 48.5862
334 r8 = 25.8963
335 r7 = 9.1917
336 p4 = 14.6828

337 m12 = 8.4753
338 k10 = 16.1162
339 q2 = 2.5505

340 n4 = 1.5293
341 n5 = 2.6296
342 g5 = 0.5061

343 e = 1.4943

344 g6 = T7.8469

345 f = 1.9491

346 mi11 = 7.9066

347 k9 = 14.605

348 m10 = 9.2511

349 k8 = 13.4324

350 r6 = 4.2863

351 Day_in_hours = 24.0

Listing A.6: zeilinger.py
mod = pysces.model(’zeilinger’)
mod.doLoad ()
mod.doSimPlot (550,5500,plot=[’cTm’,’cYm’])
pysces.plt.setRange(’x’,480,550)

=W N =

0O~ O Ut W

Appendix A. Code listings

Listing A.7: moiety_branch-cvodes-independent.py

from pysundials import cvodes

from

pysundials import nvecserial

import ctypes
from matplotlib import pyplot

#V1
#V2

#V3 =

#V4

K1_XO0
K1_S2 =
K2_8S3 =
K2_X6 =

K3_8
K4_S
X0 =
X4 =
X5 =
X6 =
X7 =

S1 =
s2 =
Vi =
V2 =
V3 =
V4 =

class UserData(ctypes.Structure):

PUse

def

def

def

def

def

data
data
data
data

1 =
1 =

L i « Y e)

fields

Cp’,

]

[

cvodes.realtype*4)

rData = ctypes.POINTER(UserData)

Ri(y, p):

return (p[V1]/(K1_X0*K1_S2)*(X0*y[S2]1))/\
(1 + X0/K1_X0 + y[S2]1/K1_S2 + (XO0*y[S2])/(K1_X0%K1_S2))

R2(y, p):

return (p[V2]/(K2_8S3*K2_X6))*((icsum-y[S2])*X6)/\

(1 + (icsum-y[S2]1)/K2_S3 + X6/K2_X6\
+ (((icsum-y[S2]1)*X6)/(K2_S3%K2_X6)))

R3(y, p):

return (p[V3]*y[S1])/(y[S1] + K3_S1)

R4(y, p):

return (p[V4l*y[S1])/(y[S1] + K4_S1)

f(t, y, ydot,

ydot [S2]
ydot [S1]

return O

= UserData ()
.plvi]l = 1.0
.plv2] = 10.0
.p[V3] = 1.0

R2(y,
R1(y,

f_data):
data = ctypes.cast(f_data,

data.p)
data.p)

- Ri(y,
- R3(y,

data.p)
data.p)

PUserData).contents

- R4(y,

data.p)

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

Appendix A. Code listings 83

data.p[V4] = 1.0

y = cvodes.NVector ([1.0, 0.7])
icsum = 0.7 + 0.3 #setting the initial sum of the conservation

cvodes_mem = cvodes.CVodeCreate(cvodes.CV_BDF, cvodes.CV_NEWTON)
cvodes.CVodeMalloc (

cvodes_mem,

f,

0.0,

Yy

cvodes .CV_SS,

1.0e-8,

1.0e-12
)
cvodes.CVodeSetFdata(cvodes_mem, ctypes.pointer (data))
cvodes.CVDense (cvodes_mem, 2)

yS = nvecserial.NVectorArray ([([0]*2)]*4)
cvodes.CVodeSensMalloc (cvodes_mem, 4, cvodes.CV_SIMULTANEOUS, yS)

#So this bit below might seem like magic, but it’s fairly straight
#forward. This particular line doesn’t look like the exzample
#cusfwddenz.py because we are not suplying our own sensitivity
#function.

#CVodeSetSensParams exzpects four parameters
#(for more detail see p. 111 of the CVODES user gutde)
1. the cvodes memory object

2. a pointer to the array of parameter wvalues which MUST be passed

through the user data structure (so CVODES knows where the walues
are and can peturb them, presumably)

3. an array (i.e. list) of scaling factors, one for each parameter

for which sensitivies are to be determined

4. an array of integers (either 1 or 0), where a 1 indicates the

respective paramter value should be used in estimating

sensistivities

cvodes.CVodeSetSensParams (cvodes_mem,
data.p, #we have four system parameters (The four VMaxz’s)
[11%4, #they should all be scaled by 1, <i.e. unscaled,
[1]1*4 #they all contribute to the estimation of sensitivities

results = ([1, [1, 00, (1, [0, [D)

t = cvodes.realtype (0.0)
results [0] . append (t.value)
results [1].append(y[S1])

results [2].append (y[S2])

results [3].append ((icsum-y[S2]))
results [4].append (yS[V2][S1])
results [5]. append (yS[V2]1[S2])

iout =1
tout = 0.05
while iout <= 80:
ret = cvodes.CVode(cvodes_mem,
tout,
Y
ctypes.byref (t),

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Appendix A. Code listings

pyplot.
pyplot.
pyplot.
pyplot.

)

pyplot.

pyplot

pyplot.
pyplot.

pyplot.

pyplot.

cvodes .CV_NORMAL
)
cvodes.CVodeGetSens (cvodes_mem, t, yS)
if ret != O:
print "CVODE_Error:, %i"%(ret)
break
results [0] . append (tout)
results [1].append(y[S1])
results [2] . append(y[S2])
results [3]. append ((icsum-y[S2]))
results [4] . append (yS[V2][S1])
results [5].append (yS[V2][S2])

iout += 1
tout += 0.05

figure (1)
subplot (211)
ylabel (’Concentration’)

plot (
results [0], results[1], ’k-’,
results [0], results[2], ’k--’,

results [0], results[3], ’k-.°

legend ((’S_1°, ’S_28°, ’$S_3%$’))

.subplot (212)

xlabel (’t’)

plot(
results [0], results[4], ’k-’,
results [0], results[5], ’k--"

legend ((’$\delta, ,S_1/dV_2%’, ’$\delta,S_2/dV_2$’))

show ()

84

0O~ O Ut W

Appendix A. Code listings 85

Listing A.8: brusselator-cvodes.py

from pysundials import cvodes
from pysundials import nvecserial
import ctypes

import math

from matplotlib import pyplot

Mmoo W=
I

O O wo

coouw

class UserData(ctypes.Structure):
fields = [
(’p’, cvodes.realtype*4)
]
PUserData = ctypes.POINTER(UserData)

def R1(y, k):
return k[0]*A

def R2(y, k):
return k[1]*y[0]*y[0]*y[1]

def R3(y, k):
return k[2]*y[0]*B

def R4(y, k):
return k[3]*y[0]

def f(t, y, ydot, f_data):
data = ctypes.cast(f_data, PUserData).contents

ydot [0] = R1(y,data.p)+R2(y,data.p)-R3(y,data.p)-R4(y,data.p)
ydot [1] R3(y,data.p)-R2(y,data.p)

return O

data = UserData()
data.p[0] = 1.0

data.p[1] = 1.0
data.pl[2] = 1.0
data.p[3] = 1.0

y = cvodes.NVector ([3.0, 3.0])

cvodes_mem = cvodes.CVodeCreate(cvodes.CV_BDF, cvodes.CV_NEWTON)
cvodes.CVodeMalloc (

cvodes_memnm,

f,

0.0,

y’

cvodes .CV_SS,

1.0e-8,

1.0e-12
)
cvodes.CVodeSetFdata(cvodes_mem, ctypes.pointer (data))
cvodes.CVDense (cvodes_mem, 2)

yStmp = [cvodes.NVector ([0,0,0,0]),
cvodes.NVector ([0,0,0,0]),

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

Appendix A. Code listings 86

cvodes .NVector ([0,0,0,0]),
cvodes.NVector ([0,0,0,0])

]

yS = nvecserial.NVectorArray ([([0]*2)]%*4)

cvodes.CVodeSensMalloc (cvodes_mem, 4, cvodes.CV_SIMULTANEOUS, yS)

#So this bit below might seem like magic, but it’s fairly straight
#forward. This particular line doesn’t look like the example
#cvsfwddenz.py because we are not suplying our own sensitivity
#function.

#CVodeSetSensParams exzpects four parameters
#(for more detail see p. 111 of the CVODES user guide)
1. the cvodes memory object

2. a pointer to the array of parameter values which MUST be passed

through the user data structure (so CVODES knows where the walues
are and can peturb them, presumably)

3. an array (t.e. list) of scaling factors, ome for each parameter

for which sensitivies are to be determined

4. an array of integers (either 1 or 0), where a 1 indicates the

respective paramter value should be used in estimating

sensistivities

cvodes.CVodeSetSensParams (cvodes_mem,
data.p, #we have four system parameters (The four k’s)
[1]1*4, #they should all be scaled by 1, %i.e. unscaled,
[11%x4 #they all contribute to the estimation of sensitivities

results = (01, (1, (1, [0, 01, 0O, [

t = cvodes.realtype (0.0)
results [0].append (t.value)
results[1].append(y[0])
results [2].append (y[1])
results [3].append(yS[0][0])
results [4]. append (yS[0][1])
results [5].append (yS[0][0])
results [6].append (yS[0][1])

iout =1

tout = 0.01

while iout <= 9999:

ret = cvodes.CVode(cvodes_mem,

tout,
Yo
ctypes.byref (t),
cvodes .CV_NORMAL

)
cvodes.CVodeGetSens (cvodes_mem, t, yS)
if ret != 0:
print "CVODE_Error:_ %i"%(ret)
break

results [0].append (t.value)
results [1] . append (y[0])
results [2] . append (y[1])
results [3].append (yS[0][0])
results [4].append (yS[0][1])
if ys[0]l[0] < O:
results [6].append (-math.logl0 (abs (yS[0][0]1)))
else:

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Appendix A. Code listings 87

pyplot.
pyplot.
pyplot.
pyplot.

pyplot.

pyplot.
pyplot.

pyplot.

pyplot.
.ylabel (’$log_{10}Iyl$’)

pyplot

pyplot.
pyplot.

pyplot.

pyplot.

results [5]. append (math.logl10 (abs (yS[0][0])))
if ys[0][1] < oO:

results [6].append(-math.log10 (abs(yS[0][1]1)))
else:

results [6].append(math.logl0(abs(yS[0]1[1]1)))

iout += 1
tout += 0.01

figure (1)

subplot (311)

ylabel (’Concentration’)

plot(
results [0], results[1], ’k-’,
results [0], results[2], ’k--7,

legend ((’X°, *Y’))
subplot (312)
plot (
results [0], results[3], ’k-’,
results [0], results[4], ’k--’,
legend ((’$\delta, X/dk_1$’, ’$\delta,Y/dk_1$’))
subplot (313)
xlabel (’t?)
plot (
results[0], results[5], ’k-’,
results [0], results[6], ’k--’,

legend ((’$\delta X/dk_1$’, ’$\delta,¥Y/dk_1$’))

show ()

0O~ O Ut W

Appendix A. Code listings

Listing A.9: moiety_branch-ida.py

from pysundials import ida

import ctypes

from matplotlib import pyplot
Vi = 1.0
V2 = 10.0
V3 = 1.0
vde = 1.0
K1_X0 = 1.0
K1_82 = 1.0
K2_S3 = 1.0
K2_X6 = 1.0
K3_S1 = 1.0
K4_S1 = 1.0
X0 = 1.0
X4 = 0
X6 = 0
X6 = 1.0
X7 = 0
S1 =0
s2 =1
S3 = 2
def R1(y):
return (V1/(K1_XO0*K1_82)*(X0*xy[S21))/\
(1+X0/K1_X0+y[S2]1/K1_82+(X0*y[S2])/(K1_X0*K1_S2))
def R2(y):
return (V2/(K2_S3%*K2_X6))*(y[S3]1*X6)/\
(1+y[S3]/K2_S3+X6/K2_X6\
+ ((y[s31*Xx6)/(K2_S3*K2_X6)))
def R3(y):
return (V3*y[S1])/(y[S11+K3_S1)
def R4(y):
return (V4x*xy[S1])/(y[S1]1+K4_S1)
def f(t, yy, yp, rr, data):
rr[0] = R1(yy)-R3(yy)-R4(yy)-yplo]
rr[1] = R2(yy)-Ri(yy)-ypl[1]
rr[2] = yy[1l+yy[2]-1
return O
yy = ida.NVector ([1.0, 0.7, 0.3])
yp = ida.NVector ([0.1, 0.9, 0.05])
mem = ida.IDACreate ()

ida.IDAMalloc(mem, f, 0.0, yy, yp, ida.IDA_SS, 1.0e-8, 1.0e-12)
ida.IDADense (mem, 3)

res

t =

results [0].
results [1].
results [2].
results [3].

ults

= ([

, 00, 11, I

ida.realtype (0.0)

append (t.value)
append (yy[S11)
append (yy [82])
append (yy [831)

Appendix A. Code listings

iout =
tout =

1
0.1

while iout < 50:

pyplot.
pyplot.
pyplot.
pyplot.

pyplot.
pyplot.

ret = ida.IDASolve(
mem ,
tout,
ctypes.byref (t),
vy

YP»
ida.IDA_NORMAL

)

if ret != 0:
print "IDA_Error
break

cuhi"%(ret)

results [0] . append(t.value)
results [1].append(yy[S1])
results [2].append (yy[S2])
results [3]. append (yy[S3]1)

iout += 1
tout += 0.1

title (’PySUNDIALS/IDA’)
xlabel (’t?)
ylabel (’Concentration’)
plot(

results [0], results[1],

results [0], results[2],
results [0], results[3],
legend ((’S_1>, ’$s_2%°,
show ()

k-7,
‘k--,
Tk-.?

’$5_.3%7))

89

0O~ O Ut W

Appendix A.

from pysund

Code listings

Listing A.10: linear_equilibrium-cvode-independent.py

ials import cvode

import ctypes
from matplotlib import pyplot

import sys

Vi = 1.0

K1_X0 = 1.0
K1_81 = 1.0
Kleq = 1.0

K2 = 0.9
K3 = 0.75

V4 = 1.0
K4_S3 = 1.
K4_X4 = 1
K4eq = 1.0

X0 = 1.0

X4 = 1.0e-12

S1 =0
S2 =1
S3 = 2

def R1(y):

return (V1/K1_X0)*(X0-(y[S11/Kleq))/\
(1+(X0/K1_X0)+(y[S1]1/K1_S1))

def R4(y):

return (V4/K4_S3)*(y[S1]1*K2*K3-(X4/Kdeq))/\
(1+(y[S11%K2%K3/K4_S3)+(X4/K4_X4))

def f(t, y,

ydot, f_data):

ydot [0] = R1(y)-R4(y)
return O

y = cvode.NVector ([1])

cvode_mem =

cvode.CVodeCreate (cvode.CV_BDF,

cvode.CVodeMalloc (
cvode_mem,

f,
0.0
Yy

>

cvode .CV_SS,
1.0e-8,
1.0e-12

)

cvode.CVDense (cvode_mem, 1)

results = (

t = cvode.r
results [0]
results [1]
results [2]
results [3]

iout = 1
tout 0.1

m, o, mo,

ealtype (0.0)

.append (t.value)
.append (y[S1])
.append (y [S1]*K2)
.append (y [S1]1*K2%K3)

cvode.CV_NEWTON)

Appendix A. Code listings 91

while iout < 100:

pyplot.

pyplot.
.ylabel (’Concentration’)

pyplot

pyplot.

pyplot.
pyplot.

ret = cvode.CVode(
cvode_mem,
tout,
v
ctypes.byref (t),
cvode.CV_NORMAL
)
if ret != 0:
print "CVODE_Error: %i"%(ret)
break
results [0].append (t.value)
results [1].append(y[S1])
results [2] . append (y[S1]%K2)
results [3]. append (y[S1]1*K2%*K3)

iout += 1
tout += 0.1

title (’PySUNDIALS/CVODE’)
xlabel (’t?)

plot (
results [0], results[1], ’k-’,
results [0], results[2], ’k--’,
results [0], results[3], ’k-.°

legend ((’S_18°, ’S_28°, ’$5.3%’))
show ()

0O~ O Ut W

Appendix A. Code listings 92

Listing A.11: linear_equilibrium-ida.py
from pysundials import ida
import ctypes
from matplotlib import pyplot
import sys

Vi = 1.0

K1_X0 = 1.0
K1_81 = 1.0
Kleq = 1.0

K2 = 0.9
K3 = 0.75

V4 = 1.0
K4_S3 = 1.
K4_X4 = 1
K4eq = 1.0

X0 = 1.0
X4 = 1.0e-12

S1 =0
S2 =1
S3 = 2

def R1(y):
return (V1/K1_X0)*(X0-(y[S1]/Kleq))/(1+(X0/K1_X0)+(y[S1]/K1_S1))

def R4(y):
return (V4/K4_S3)*(y[S3]1-(X4/K4eq))/(1+(y[S31/K4_S3)+(X4/K4_X4))

def f(t, yy, yp, rr, data):
rr [0] = R1(yy)-R4(yy)-ypl[O]
rr[1] = yy[0]l*K2-yy[1]
rr[2] = yy[11*K3-yy[2]
return O

vy ida.NVector ([1, 0, 0])
yp ida.NVector ([0, O, 0])
£(0, yy, yp, yp, None)

mem = ida.IDACreate ()
ida.IDAMalloc(mem, f, 0.0, yy, yp, ida.IDA_SS, 1.0e-8, 1.0e-12)
ida.IDADense (mem, 3)

ida.IDASetId(mem, ida.NVector ([1,0,0]1))
ida.IDACalcIC(mem, ida.IDA_YA_YDP_INIT, 0.1)

results = ([1, [1, [1, [1)

t = ida.realtype(0.0)
results [0] . append (t.value)
results [1].append(yy[S1])
results [2] . append (yy [S1]*K2)
results [3].append (yy [S1]1*K2*K3)

iout =1
tout = 0.1
while iout < 100:
ret = ida.IDASolve (mem,
tout ,

Appendix A. Code listings

pyplot.
pyplot.
pyplot.
pyplot.

pyplot.
pyplot.

ctypes.byref (t),

Yy
P>
ida.IDA_NORMAL

)

if ret != 0:
print "IDA_Error
break

u%i%(ret)

results [0].append(t.value)
results [1].append(yy[S1])
results [2] . append (yy[S2]1)
results [3].append (yy[S3]1)

iout += 1
tout += 0.1

title(’PySUNDIALS/IDA’)
xlabel (’t?)
ylabel (’Concentration’)
plot(
results [0], results[1],
results [0], results[2],

results [0], results[3],
legend ((’S_1’, ’$s_2%°,
show ()

k-7,
‘k--7,
Tk-.?

’$S_387))

93

0O~ O Ut W

Appendix A. Code listings 94

Listing A.12: moiety_branch-kinsol.py

from pysundials import kinsol
import ctypes
from matplotlib import pyplot

Vi
V2
V3
Va4
K1i_
K1_
K2_
K2_
K3_
K4 _
X0
X4
X5
X6
X7

S1
S2
#S3

def

def

def

def

def

u =

s =

icsum

= 1.0
= 10.0
= 1.0
= 1.0
X0 = 1.0
S2 = 1.0
s3 = 1.0
X6 = 1.0
S1 = 1.0
S1 =1.0
= 1.0
= 1.0e-12
= 1.0e-12
= 1.0
= 1.0e-12
=0
=1
=2
R1(y):
return (V1/(K1_XO0*K1_82)*(X0*xy[S21))/\
(1 + X0/K1_X0 + y[S21/K1_S2 + (X0*y[S2]1)/(K1_XO*K1_S2))
R2(y):
return (V2/(K2_83*K2_X6))*((icsum-y[S2]1)*X6)/\
(1 + (icsum-y[S2])/K2_83 + X6/K2_X6\
+ (((icsum-y[S2]1)*X6)/(K2_S3*K2_X6)))
R3(y):
return (V3*y[S1]1)/(y[S1] + K3_S1)
R4 (y):

return (V4x*xy[S1])/(y[sS1] + K4_s1)

f(u, fval, f_data):

fval[S2] = R2(u) - R1(u)
fval[S1] = R1(u) - R3(u) - R4(uw)

return O

kinsol.NVector ([1.0, 0.7])
template = kinsol.NVector ([0, 0])
kinsol.NVector ([1, 11)

= 0.7 + 0.3 #setting the initial sum of the comservation

kin_mem = kinsol.KINCreate ()

kinsol.KINMalloc (kin_mem, f, template)

kinsol.KINDense (kin_mem, 2)

kinsol .KINSol(kin_mem, u, kinsol.KIN_LINESEARCH, s, s)

pri
pri
pri
pri
pri
pri

nt
nt
nt
nt
nt
nt

"Steady-state species concentrations"
"S2_ssy=uh-4e"%h(ul1])
"S1_ssy=p%-4e"%(ul0])
"S3_ssyu=uh-4e"%(icsum-ul1])

"Steady-state, fluxes"

Appendix A. Code listings

print "J_R1i,=y%.4e"%(R1(u))
print "J_R2yu=y%.4e"%(R2(u))
print "J_R3yu=_%.4e"%(R3(u))
print "J_R4y=yu%.4e"%(R4(u))

=W N =

Appendix A. Code listings

Listing A.13: moiety_branch-hybrd.py

import pysces

m = pysces.model(’moiety_branch’)
m.doLoad ()

m.doStateShow ()

96

0O~ O Ut W

Appendix A. Code listings

Listing A.14: moiety_branch-kinsol-paramscan.py

from pysundials import kinsol

imp

ort ctypes

from matplotlib import pyplot

Vi
V2
V3
Va4
K1i_
K1_
K2_
K2_
K3_
K4 _
X0
X4
X5
X6
X7

S1
S2
#S3

def

def

def

def

def

u =
tem
s =
ics

kin

res

whi

s O R
o O = O

X0 =
52 =
S3 =
X6 =
S1 =
S1 =

e e
O O O O OO

= 1.0e-12
= 1.0e-12
= 1.0

= 1.0e-12

=0
1
=2

R1(y):
return

R2(y):
return

R3(y):
return

R4 (y):
return

f(u, fval,

(V1/(K1_XO*K1_S2)*(X0*y[521))/\
(1 + XO/K1_X0 + y[S21/K1_S2 + (X0*y[S2])/(K1_X0%K1_S2))

(V2/(K2_83*K2_X6))*((icsum-y[82])*X6)/\
(1 + (icsum-y[S2])/K2_83 + X6/K2_X6\
+ (((icsum-y[S2]1)*X6)/(K2_S3*K2_X6)))

(V3xy[s1]1)/(y[s1] + K3_S1)

(Vaxy[s1]1)/(y[s1] + K4_s1)

f_data):

fval[S2] = R2(u) - R1(u)
fval[S1] = R1(u) - R3(u) - R4(uw)

return

0

kinsol.NVector ([1.0, 0.7])
plate = kinsol.NVector ([0, 0])
kinsol.NVector ([1, 11)
um = 0.7 + 0.3 #setting the initial sum of the conservation

_mem = kinsol.KINCreate ()
kinsol.KINMalloc (kin_mem, f, template)
kinsol.KINDense (kin_mem, 2)

ults = ([],

le V2 <= b5:

kinsol.

o, 0o, 0, mo, mo, o,

KINSol (kin_mem, u, kinsol .KIN_LINESEARCH, s, s)

results [0] . append (V2)
results [1].append (ul[0])
results [2] . append (ul1])

97

Appendix A. Code listings

pyplot.
pyplot.
pyplot.
pyplot.
pyplot.

pyplot.

pyplot.
pyplot.

pyplot.
.plot(

pyplot

pyplot.

pyplot.

results [3].append (icsum-ul1])

results [4] . append (R1(u))
results [5] . append (R2(u))
results [6].append (R3(u))
results [7].append (R4 (u))
V2 += 0.1

figure (1)
subplot (211)

title (’PySUNDIALS/KINSOL’)
ylabel (’SteadyState Concentration’)

plot(
results [0], results[1],
results [0], results[2],
results [0], results[3],

legend ((’S_1°, ’$s_2%’,

subplot (212)
xlabel (?V_2°)
ylabel (’Steady State Flux

results [0], results[4],
results [0], results[5],
results [0], results[6],

results [0], results[7],
legend ((>J_18°, *$J_2%°,
show ()

k-7,
‘k--7,
Tk-.?

’$S_387))

”)

k-7,
Tk--",
Tk-.?
kL ’

’$J_3%7,

*$J_4%°))

98

0O~ O Ut W

Appendix A. Code listings 99

Listing A.15: MWC_wholecell_2b.psc

Modelname: MWC_wholecell2b
Description: Surovtsev whole cell model

Species_In_Conc: True
Output_In_Conc: True

GlobalUnitDefinitions
UnitVolume: litre, 1.0, -3, 1
UnitSubstance: mole, 1.0, -6, 1
UnitTime: second, 60, 0, 1

Compartment: Vcyt, 1.0, 3
Compartment: Vout, 1.0, 3
Compartment: Mem_Area, 5.15898, 2

FIX: N

Ri1@Mem_Area: N = M
Mem_Area*kl*(Pmem)*(N/Vout)

R2@Vcyt: mlxM = P
R2@Vcyt: {244}M = P # ml
Veyt*xk2x (M)

R3Q@Vcyt: m2*M = L
R3@Vcyt: {42}M = L # m2
Veyt*k3* (M) * (P)**2

R40@Mem_Area: P = Pmem
Mem_Areaxk4*(P)

R5@Mem_Area: L = Lmem
Mem_Area*xk5* (L)

RateRule: Vecyt {(1.0/Co)*(R1()+(1-m1)*R2()+(1-m2)*R3()-R4()-R5())}
RateRule: Mem_Area {(sigma_P)*R4() + (sigma_L)*R5()}

Co = 3.07e5 # uM p_env/(R*T)

ml = 244

m2 = 42

sigma_P = 0.00069714285714285711

sigma_L = 0.00012

tracking functions
'F S_V_Ratio = Mem_Area/Vcyt
'F Mconc = (M)/M_init
'F Lconc = (L)/L_init
'F Pconc = (P)/P_init

'F Mem_Area_scaled = Mem_Area/Mem_Area_init
!'F Vcyt_scaled = Vcyt/Vcyt_init
'F sigma_test = sigma_P*Pmem + sigma_L*Lmem

'F Co_test = M + L + P

nnn

As it turns out if one wants to use <thing>_init in a rule and have this
translated via Core2 to SBML or PSC, you *have* to explicitly initialise
it as a paramter. This also goes for the parameter you are setting with
the rule.

NOTE: PySCeS will work as it generated the init attributes autoamtically
but then they should be regarded as ’internal’ attributes that are not

62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

T W N~

Appendix A. Code listings

exported.

nun

M_init = 199693.0
L_init = 102004

P_init = 5303

Vcyt_init = 1.0
Mem_Area_init = 5.15898

Mconc = 1.0
Lconc = 1.0
Pconc = 1.0
Mem_Area_scaled = 1.0

Vcyt_scaled = 1.0
S_V_Ratio = 5.15898
sigma_test = 1.0
Co_test = 3.07eb

N@Vout = 3.07eb

Pmem@Mem_Area 37.38415

Lmem@Mem_Area = 8291.2350678770199

M@Vcyt 199693.0
LeVcyt 102004
P@Vcyt = 5303

k1 = 0.00089709

k2 = 0.000182027

k3 = 1.7539e-010

k4 = 5.0072346e-005
k5 = 0.000574507164

Listing A.16: MWC_LSODA .py

import pysces

m = pysces.model (’MWC_wholecell_2b’)

m.doLoad ()
m.mode_integrator=’LS0DA’
m

.doSimPlot (end=100, points=1001)

100

0O~ O Ut W

Appendix A. Code listings

from
impo
from

Listing A.17: betabR.py

pysundials import cvode
rt ctypes
matplotlib import pyplot

#Constants

k1 =
k2 =
k3 =
k4 =
k5 =
NO =
Ccyt
sigm
ml =
m2 =
sigm

0.89709e-3
0.182027e-3
0.17539e-9
0.50072346e-4
0.574507164e-3
307000
0 = 307000

al. = 120e-6

244

42

aP = (sigmalL*mil)/m2

#indices into wvector

def

def

def

def

def

def

t =

#ing

R1(y):
return y[A]l*k1*NO*y[Pmem]/y[A]

R2(y):
return y[V]xk2xy[M]/y[V]

R3(y):
return y[V]*xk3x(y[M]/y[V])*x(y[P]/y[V])=*=2

R4 (y):
return y[Al*k4xy[P]/y[V]

RE(y):
return y[Al*k5xy[L]/y[V]

f(t, y, ydot, f_data):
ydot [P] = R2(y)-R4(y)
ydot [L] = R3(y)-R5(y)
ydot [M] = R1(y)-m1*R2(y)-m2*R3(y)
ydot [Pmem] = R4(y)
ydot [Lmem] = R5(y)

ydot [V] = (R1(y)-(m1-1)*R2(y)-(m2-1)*R3(y)-R4(y)-R5(y))/CcytO

ydot [A] = sigmaL*R5(y)+sigmaP*R4(y)
return O
cvode.realtype (0)

tial conditions

Pinit = 5303
Linit = 102004
Minit = 199693

Pmem
Lmem

init = 192.86408217
init = 41871.0515

Ainit = 5.15898

Appendix A. Code listings

Vinit = 1

y = cvode.NVector ([
Pinit,
Linit,
Minit,
Pmeminit,
Lmeminit,
Vinit,
Ainit

D

cvode_mem = cvode.CVodeCreate(cvode.CV_BDF, cvode.CV_NEWTON)
cvode.CVodeMalloc (cvode_mem, f, 0.0, y, cvode.CV_SS, 1.0e-8, 1.0e-12)
cvode.CVDense (cvode_mem, len(y))

results = (01, (1, (1, (0, (1, 01, 00, 00, [D)

t = cvode.realtype (0.0)
results [0] . append (t.value)

results [1].append (y[P]1/(Pinit*y[V]))

results [2] . append (y[L]/(Linit*y[V]))

results [3].append (y[M]/(Minit*y[V]))

results [4]. append (y[Pmem]*Ainit/(Pmeminit*y[A]))
results [5].append(y[Lmem]l*Ainit/(Lmeminit*y[A]))
results [6].append (y[Al/y[V])

results [7].append (y[A]/Ainit)

results [8].append (y[V]/Vinit)

tstop = 120.0
npoints = 1200
iout =1
tout = tstop/npoints
while iout < npoints:
ret = cvode.CVode (
cvode_mem,
tout,
vy
ctypes.byref (t),
cvode.CV_NORMAL
)
if ret != O:
print "CVODE_Error:_ %i"%(ret)
break

results [0] . append(t.value)

results [1].append (y[P1/(Pinit*y[V]))

results [2].append (y[L]1/(Linitxy[V]))

results [3].append (y[M]/(Minitxy[V]))

results [4].append (y[Pmem]*Ainit/(Pmeminitxy[A]))
results [5].append(y[Lmem]*Ainit/(Lmeminit*y[A]))
results [6].append(y[Al/y[V])

results [7].append (y[Al/Ainit)

results [8].append (y[V]/Vinit)

iout += 1
tout = iout * tstop / npoints

pyplot.figure (1)

pyplot.subplot (211)
pyplot.title(’PySUNDIALS/CVODE’)
pyplot.ylabel (’V_{cyt}, A_{mem}’)

102

Appendix A. Code listings 103

124 pyplot.plot(

125 results [0], results[7], ’k--’,
126 results [0], results[8], k-,

127)

128 pyplot.legend ((’V_{cyt}’, ’A_{mem}’))
129

130 pyplot.subplot (212)

131 pyplot.ylabel (’χ’)

132 pyplot.xlabel(’t’)

133 pyplot.plot(

134 results [0], results[6], k-,
135)

136

137 pyplot.figure(2)

138 pyplot.subplot (311)

139 pyplot.plot(

140 results [0], results([1], ’k-’,
141 results [0], results[2], ’k--’,
142 results [0], results[3], ’k-.°
143)

144 pyplot.legend((’P’, ’L’, ’M’))

145

146 pyplot.subplot (312)
147 pyplot.plot(

148 results [0], results[4], ’k-’
149)

150 pyplot.legend((’P$_{mem}$’,))

151

152 pyplot.subplot (313)

153 pyplot.xlabel(’t’)

154 pyplot.plot(

155 results [0], results[5], ’k-’
156)

157 pyplot.legend ((’L$_{mem}$’,))

158 pyplot.show ()

Appendix B

Abridged PySUNDIALS

Documentation

B.1 Introduction

PySUNDIALS is a python package providing python bindings for the SUNDI-
ALS suite of solvers. It is being developed by the triple ‘J’ group at Stellen-
bosch University, South Africa. While python bindings for SUNDIALS will
hopefully be generally useful in the computational scientific community, they
are being developed with the specific aim of providing a robust underlying
numerical solver capable of implementing models conforming to the Systems
Biology Markup Language specification (version 2), including triggers, events,
and delays. As such the development process is partially driven by the con-
tinuing parallel development of PySCeS.

This documentation serves to introduce and act as a reference for Py-
SUNDIALS. As such it focuses on the differences in behaviour between Py-
SUNDIALS and SUNDIALS. If you wish to know more about the underlying
mathematical considerations, or wish a more in depth discussion of how to go
about using SUNDIALS in general, the SUNDIALS documentation is the place
to start. We assume a basic knowledge of initial value problems and their
computational solutions on the part of the reader.

B.2 Installation

B.2.1 Prerequisites
PySUNDIALS requires the following:

e a working copy of SUNDIALS installed with shared libraries compiled

e Python v2.4 with the ctypes module, OR Python v2.5 or higher

104

Appendix B. Abridged PySUNDIALS Documentation 105

The python packages numpy and scipy are recommended but not neces-
sary.

B.2.2 From Source

The latest release version of PySUNDIALS can be download at
http://sourceforge.net/projects/pysundials, or alternatively, the very
latest (potentially non-functional) version via anonymous svn using the com-
mand:

$ svn co https://pysundials.svn.sourceforge.net/svnroot\
/pysundials pysundials

B.2.2.1 On Linux/BSD or other POSIX

Download and untar the complete SUNDIALS suite.

$./configure --enable-shared

$ make && make install

Download and untar PySUNDIALS

Change to the directory where you unpacked PySUNDIALS

$ python setup.py install

B.2.3 On Windows using MSys/MinGW

e Download and untar the complete SUNDIALS suite somewhere inside
MSys.

Do not run aclocal, autoconf, or autoheader, or the makefiles will break!

$./configure --enable-shared

$ make && make install

Download and untar PySUNDIALS

Change to the directory where you unpacked PySUNDIALS

$ python setup.py -c mingw32 install

If you receive a compile time error when executing the final command,
which complains about missing sundials_conf.h, or other missing .h files,
set the CPATH environment variable to point to the directory containing the
sundials include directories, for example:

http://sourceforge.net/projects/pysundials

Appendix B. Abridged PySUNDIALS Documentation 106

$ CPATH=/local/include python setup.py -c mingw32 install

Note that using MSys presents unique problems being a hybrid environ-
ment. We recommend using MSys only to compile and install PySUNDI-
ALS/SUNDIALS, not for use as an environment in which to run PySUNDI-
ALS. Having followed the above instructions, the SUNDIALS shared libs will
be in %MSYSRO0T%/usr/local/lib/, and end with -<digit>.exe. On older
versions of MSys/MinGW, the .exe extension may be left off.

B.3 Configuration

PySUNDIALS uses ctypes to link the required SUNDIALS libraries directly
into the running python process. In order to do this, it needs to know
where to find those shared libraries. On Linux/BSD systems, this is usu-
ally auto detected, as library locations are standard, however on windows
systems, the final location and even naming convention of the shared library
files is compiler dependent. If PySUNDIALS cannot find the SUNDIALS Ii-
braries, please locate them yourself, and specify their locations in a file named
~/.pysundials/config (Linux/BSD), or HOMEPATH%\pysundials\config (Win-
dows). If PySUNDIALS cannot find this configuration file in your home direc-
tory, it will seek it in the same directory it was installed in, i.e.
$PYTHONROOT/site-packages/pysundials/config.

In the “config” file, anything following a hash (including the hash itself)
is considered a comment. Each line specifies the location of a required library
in the form:

library = path

Where library is one of c, aux, nvecserial, nvecparallel, cvode, cvodes,
ida, or kinsol, and path is the complete path of the appropriate library file.
c, aux, and nvecparallel are optional; the first two being generally auto-
detected, and the second only required if you will be using PySUNDIALS in
parallel with MPI.

You can find a sample config file for both posix and mingw32 systems in
the doc subdirectory of the PySUNDIALS distribution.

B.4 Using PySUNDIALS

B.4.1 Importing PySUNDIALS modules

There are five PyYSUNDIALS modules available for general use; One for each of
the SUNDIALS modules, namely cvode, cvodes, ida, and kinsol. The fifth
is the nvecserial module, which you may wish to use in conjunction with
CVODES for it’s convenience functions for dealing with sensitivity analysis
data structures. To import one of these modules use:

Appendix B. Abridged PySUNDIALS Documentation 107

from pysundials import module_name

where module_name is the name of the module you wish to use.

B.4.2 NVectors

The fundamental data type of SUNDIALS, and hence PySUNDIALS is the
NVector. PySUNDIALS implements the NVector class in a manner that closely
resembles a python list. Creating an NVector is a simple case of class instan-
tiation:

>>> from pysundials import nvecserial
>>> v = nvecserial.NVector([1, 2, 3])
>>> v

[1.0, 2.0, 3.0]

When instantiating an NVector, simply pass a sequence (tuple, list, numpy
array, another NVector, etc...) to the constructor. The contents of the se-
quence determine the length of the NVector (which remains immutable for
its lifetime) and the initial value of the NVector. NVector objects can be
subscripted or sliced like normal python lists.:

>>> v[1]

2.0

>>> v[2] = 4
>>> v

[1.0, 2.0, 4.0]
>>> v[0:2]
[1.0, 2.0]
>>> v[0:2]
>>> v
[-1.0, -2.0, 4.0]

(-1, -2)

Operators act intuitively on NVectors too,

e + and - perform scalar or vector addition or subtraction respectively,
depending on operands.:

>>> w = nvecserial.NVector([1,2,-4])

>>> v+1

[0.0, -1.0, 5.0]
>>> v+w

[0.0, 0.0, 0.0]
>>> v-w

[-2.0, -4.0, 8.0]

Appendix B. Abridged PySUNDIALS Documentation 108

e * performs scalar or element-wise multiplication depending on operands.:

>>> y*x2

[-2.0, -4.0, 8.0]
>>> vy

[-1.0, -4.0, -16.0]

e / performs scalar or element-wise division depending on operands.:

>>> v/2
[-0.5, -1.0, 2.0]
>>> v/w
[-1.0, -1.0, -1.0]
>>> v/v

(1.0, 1.0, 1.0]

e and a variety of object methods perform more complex operations in-
cluding dot product and various norms. See the reference section for a
complete list

An NVector object can be used as a numpy array by using its asarray
method. Note how changes to the array affect the NVector and wice versa.:

>>> import numpy

>>> a = v.asarray()

>>> a

array([-1., -2., 4.1)]
>>> a[0] =0

>>> a

array([0., -2., 4.1)]
>>> v

[0.0, -2.0, 4.0]

>>> v[1] =0

>>> a

array([0., 0., 4.1)]

The NVector class is exported to each of the main PySUNDIALS modules,
so there is rarely a need to import nvecserial.:

>>> from pysundials import cvode
>>> v = cvode.NVector([1,2,3])
>>> v

[1.0, 2.0, 3.0]

Appendix B. Abridged PySUNDIALS Documentation 109

B.4.3 CVODE

Programs using CVODE will generally conform to a certain skeleton layout.
The example used here serves to illustrate this skeleton layout, and is neither
complete, nor representative of SUNDIALS/PySUNDIALS complete set of ca-
pabilities. Please see the function reference or SUNDIALS documentation for
more information.

1. Import the cvode and ctypes modules.:

from pysundials import cvode
import ctypes

2. Define your right-hand side function. This function must take exactly
four parameters. The first parameter will be the current value of the
independent variable (usually time). The second parameter will be an
NVector containing the current values of the dependent variables. The
third parameter is an NVector whose elements must be filled with the
new values of the dependent variables. The fourth parameter is a pointer
to any arbitrary user data you may have specified, otherwise None. This
function essentially defines your ODE system. For example, a simple
problem consisting of three variables and having the following ODZEs:

® V] =T9—T1
® V) =T1—1T9

® U3 =71 —T3—T4

(where r; is a function of the independent variable and the current values
of the dependent variables) would have the following RHS function:

def f(t, y, ydot, f_data):
ydot[0] = r2(t,y) - ri(t,y)

ydot[1] = ri(t,y) - r2(t,y)
ydot[2] = ri(t,y) - r3(t,y) - r4(t,y)
return O

3. Define any optional functions such as a Jacobian approximation, error
weight and/or root finding functions. See function reference for details
on parameters and returns.:

def rootfind(t, y, gout, g_data):
gout [0] = y[0] - 0.5
gout[1] = y[1] - 0.5
return 0

Appendix B. Abridged PySUNDIALS Documentation 110

4.

10.

Initialise an NVector with the initial conditions.:
y = cvode.NVector([0.7, 0.3, 0.0])

Create a CVODE object.:
cvode_mem = cvode.CVodeCreate(lmm, iter)

(where Imm is on of cvode.CV_ADAMS or cvode.CV_BDF, and iter is one
of cvode.CV_NEWTON or cvode.CV_FUNCTIONAL)

Allocate integrator memory, set the initial value of the independent vari-
able, and set tolerances. Absolute tolerances may be an NVector of the
same size as y in which case cvode.CV_SV should be used, or a scalar
value applying to all (cvode.CV_SS).:

abstol cvode.NVector([1.0e-8, 1.0e-14, 1.0e-6])
reltol = cvode.realtype(1l.0e-4)
cvode.CVodeMalloc(cvode_mem, £, 0.0, y, cvode.CV_SV,
reltol, abstol)

Set any optional inputs using CVSet* ().

Choose a linear solver and set the problem size, i.e. number of variables.
The available linear solvers are CVDense, CVBand, CVDiag, CVSpgmr,
CVSpbcg, and CVSptfqmr.:

cvode.CVDense(cvode_mem, 3)

Set any optional linear solver inputs using cvode.CV<solver>Set*.

Optionally initialise root finding passing the CVODE object, the number
of roots to find, a vector of size equal to the number of roots, and
a pointer to any optional user data you want available in your root
finding function. The root finding function should populate a vector of
root values, generally using implicit algebraic equations. If any of those
values are zero the integrator pauses, returning cvode.CV_ROOT_RETURN
to indicate that at least one root has been found.:

cvode.CVodeRootInit (cvode_mem, 2, rootfind, None)

Appendix B. Abridged PySUNDIALS Documentation 111

11. Advance the solution in time, calling cvode.CVode for each desired out-
put time step. Each call to cvode.CVode specifies the desired time for
the next stop (tout) and the current conditions (y). On return, y will
contain the new conditions, and t will contain the time at which the
integrator stopped. t, which must be of type realtype and passed into
cvode.CVode by reference, can be different from tout if roots are found,
or errors encountered. The last parameter specifies how CVODE should
step. See the SUNDIALS documentation for more details.:

t = cvode.realtype(0)
tout = 0.4
while tout < 0.4x%(10%*12):
flag = cvode.CVode(cvode_mem,
tout,
bR
ctypes.byref (t),
cvode.CV_NORMAL
)
print (t, y)
if flag == cvode.CV_ROOT_RETURN:
rootsfound = cvode.CVodeGetRootInfo(cvode_mem, 2)
print rootsfound
elseif flag == cvode.CV_SUCCESS:
tout *= 10
else:
break

B.4.4 CVODES

Programs using CVODES will generally conform to a certain skeleton layout
very similar to that of CVODE. Our layout here provides an example for
simple calculation of sensitivities using forward sensitivity analysis. CVODES
is capable of adjoint sensitivity analysis to. See the function reference or the
SUNDIALS documentation for information of how to uses these alternative
methods.

1. Import the cvodes module, the nvecserial module, and the ctypes mod-
ule:

from pysundials import cvodes
import nvecserial
import ctypes

2. Define a structure to hold your parameters for which you wish to calcu-
late sensitivities as well as any optional user data.:

Appendix B. Abridged PySUNDIALS Documentation 112

class UserData(ctypes.Structure):
fields = [
(’p’, cvodes.realtypex4)
]
PUserData = ctypes.POINTER(UserData)

3. Define your right-hand side function. This function must take exactly
four parameters. The first parameter will be the current value of the
independent variable (usually time). The second parameter will be an
NVector containing the current values of the dependent variables. The
third parameter is an NVector whose elements must be filled with the
new values of the dependent variables. The fourth parameter is a pointer
to any arbitrary user data you may have specified, otherwise None. This
function essentially defines your ODE system. For example, a simple
problem consisting of three variables and having the following ODES:

® V1 =T9—1T
® V) =T1—1T9
® U3 =171 —T3—T4
(where r; is a function of the independent variable, the current values of

the dependent variables and the parameter set) would have the following
RHS function.:

def f(t, y, ydot, f_data):
data = ctypes.cast(f_data, PUserData).contents

ydot[0] = r2(t,y,data.p) - ri(t,y,data.p)
ydot[1] = ri(t,y,data.p) - r2(t,y,data.p)
ydot[2] = ri1(t,y,data.p) - r3(t,y,data.p)\

- r4(t,y,data.p)
return O

4. Define any optional functions such as a Jacobian approximation, error
weight and/or root finding functions. See function reference for details
on parameters and returns.:

def rootfind(t, y, gout, g_data):
gout [0] = y[0] - 0.5
gout[1] = y[1] - 0.5
return O

5. Initialise an NVector with the initial conditions.:

Appendix B. Abridged PySUNDIALS Documentation 113

10.

y = cvodes.NVector([0.7, 0.3, 0.0])
Create a CVODE object.:
cvode_mem = cvodes.CVodeCreate(lmm, iter)

(where Imm is on of cvodes.CV_ADAMS or cvodes.CV_BDF, and iter is
one of cvodes.CV_NEWTON or cvodes.CV_FUNCTIONAL)

Allocate integrator memory, set the initial value of the independent vari-
able, and set tolerances. Absolute tolerances may be an NVector of the
same size as y in which case cvodes.CV_SV should be used, or a scalar
value applying to all (cvodes.CV_SS).:

abstol = cvodes.NVector([1.0e-8, 1.0e-14, 1.0e-6])

reltol = cvodes.realtype(l.0e-4)

cvodes.CVodeMalloc(cvode_mem, f, 0.0, y, cvodes.CV_SV,
reltol, abstol)

Set any optional inputs using CVSet*().:
cvodes.CVodeSetFdata(cvode_mem, ctypes.pointer(data))

Choose a linear solver and set the problem size, i.e. number of variables.
The available linear solvers are CVDense, CVBand, CVDiag, CVSpgmr,
CVSpbcg, and CVSptfqmr.:

cvodes.CVDense (cvode_mem, 3)

Set sensitivity system options by first creating an NVectorArray of dimen-
sions v by p, where v is the number of variables, and p is the number of
parameters for which sensitivities will be calculated.:

yS = nvecserial.NVectorArray([([0]*2)]*4)

Next call cvodes.CVodeSensMalloc to allocate and initialise required
memory for sensitivity analysis, passing the CVODE object, the number
of parameters, the desired method (cvodes.CV_SIMULTANEQUS,
cvodes.CV_STAGGERED, or cvodes.CV_STAGGERED1), and the NVectorAr-
ray.:

cvodes.CVodeSensMalloc(cvodes_mem, 4,
cvodes.CV_SIMULTANEQOUS, yS)

Appendix B. Abridged PySUNDIALS Documentation 114

Next we have to inform CVODES which parameters are going to be used
for sensitivity calculations by calling cvodes.CVodeSetSensParams, which
expects four parameters (for more detail see p. 111 of the CVODES user
guide).

a) the CVODES memory object

b) a pointer to the array of parameter values which MUST be passed
through the user data structure (so CVODES knows where the val-
ues are and can perturb them, presumably)

c) an array (i.e. list) of scaling factors, one for each parameter for
which sensitivities are to be determined

d) an array of integers (either 1 or 0), where a 1 indicates the respective
parameter value should be used in estimating sensitivities

for example:

cvodes.CVodeSetSensParams (cvodes_mem,
data.p, #we have four system parameters (The four VMax’s)
[1]1*4, #all are scaled by 1, i.e. unscaled,
[11*4 #all contribute to estimation of sensitivities

11. Set any optional linear solver inputs using cvodes.CV<solver>Set*.

12. Optionally initialise root finding passing the CVODE object, the number
of roots to find, a vector of size equal to the number of roots, and
a pointer to any optional user data you want available in your root
finding function. The root finding function should populate a vector of
root values, generally using implicit algebraic equations. If any of those
values are zero the integrator pauses, returning cvodes.CV_ROOT_RETURN
to indicate that at least one root has been found.:

cvodes.CVodeRootInit(cvode_mem, 2, g, None)

13. Advance the solution in time, calling cvodes.CVode for each desired
output time step. Each call to cvodes.CVode specifies the desired time
for the next stop (tout) and the current conditions (y). On return, y
will contain the new conditions, and t will contain the time at which
the integrator stopped. t, which must be of type realtype and passed
into cvodes.CVode by reference, can be different from tout if roots are
found, or errors encountered. The last parameter specifies how CVODE
should step. See the SUNDIALS documentation for more details.:

Appendix B. Abridged PySUNDIALS Documentation 115

t = cvodes.realtype(0)
tout = 0.4
while tout < 0.4%(10%%12):
flag = cvodes.CVode(
cvode_mem,
tout,
Y
ctypes.byref (t),
cvodes.CV_NORMAL
)
cvodes.CVodeGetSens (cvodes_mem, t, yS)
print (t, y, yS)
if flag == cvodes.CV_ROOT_RETURN:
rootsfound = cvodes.CVodeGetRootInfo(cvode_mem, 2)
print rootsfound
elseif flag == cvodes.CV_SUCCESS:
tout *= 10
else:
break

B.4.5 |IDA

Programs using IDA will generally conform to a certain skeleton layout. The
example used here serves to illustrate this skeleton layout, and is neither
complete, nor representative of SUNDIALS/PySUNDIALS complete set of ca-
pabilities. Please see the function reference or SUNDIALS documentation for
more information.

1. Import the ida and ctypes modules.:

from pysundials import ida
import ctypes

2. Define your right-hand side function. This function must take exactly
five parameters. The first parameter will be the current value of the
independent variable (usually time). The second parameter will be an
NVector containing the current values of the dependent variables. The
third parameter will be an NVector containing dy/dt. The fourth pa-
rameter is an NVector whose elements must be filled with the new values
of the dependent variables. The fifth parameter is a pointer to any arbi-
trary user data you may have specified, otherwise None. This function
essentially defines your ODE system, and must do so in implicit form for
both differential and algebraic equations. Additionally, those variables

Appendix B. Abridged PySUNDIALS Documentation 116

determined by algebraic relations should appear strictly after those de-
termined by differential equations in the dependent variable vector. For
example, a simple problem consisting of three variables and having the
following ODES (note the rearrangement of the order of differential and
algebraic equations compared to previous examples):

® VU1 =71 —T3—T4
® VU =T2—T1

e U3 =171 —T9

(where r; is a function of the independent variable and the current values
of the dependent variables) would have the following RHS function:

def f(t, yy, yp, rr, data):
rr[0] = ri(yy)-r3(yy)-rd(yy)-ypl0]

rr[1] = r2(yy)-ri(yy)-ypl[1]
rr[2] = yyl[1l+yy[2]-1
return O

3. Define any optional functions such as a Jacobian approximation, error
weight and/or root finding functions. See function reference for details
on parameters and returns.:

def rootfind(t, y, gout, g_data):
gout [0] = y[0] - 0.5
gout[1] = y[1] - 0.5
return O
4. Initialise an NVector with the initial conditions.:
yy = ida.NVector([0.7, 0.3, 0.01)
5. Initialise another NVector with the initial derivative conditions.:
yp = ida.NVector([r1(yy)-r3(yy)-r4(yy),r2(yy)-ri(yy),1-yy[1])
6. Create an IDA object.:
ida_mem = ida.IDACreate()
7. Allocate integrator memory, set the initial value of the independent vari-
able, and set tolerances. Absolute tolerances may be an NVector of the

same size as y in which case ida.IDA_SV should be used, or a scalar
value applying to all (ida.IDA_SS).:

Appendix B. Abridged PySUNDIALS Documentation 117

10.
11.

12.

abstol ida.NVector([1.0e-8, 1.0e-14, 1.0e-6])

reltol = ida.realtype(1l.0e-4)

ida.IDAMalloc(ida_mem, f, 0.0, yy, yp, ida.IDA_SV,
reltol, abstol)

Set any optional inputs using IDASet* ().

Choose a linear solver and set the problem size, i.e. number of vari-
ables. The available linear solvers are IDADense, IDABand, IDASpgnmr,
IDASpbcg, and IDASptfqmr.:

ida.IDADense(ida_mem, 3)

Set any optional linear solver inputs using ida.IDA<solver>Set*.

Optionally initialise root finding passing the IDA object, the number
of roots to find, a vector of size equal to the number of roots, and
a pointer to any optional user data you want available in your root
finding function. The root finding function should populate a vector of
root values, generally using implicit algebraic equations. If any of those
values are zero the integrator pauses, returning ida.IDA ROOT_RETURN
to indicate that at least one root has been found.:

ida.IDARootInit(ida_mem, 2, rootfind, None)

Advance the solution in time, calling ida.IDASolve for each desired
output time step. Each call to ida.IDASolve specifies the desired time
for the next stop (tout) and the current conditions (y). On return, y
will contain the new conditions, and t will contain the time at which
the integrator stopped. t, which must be of type realtype and passed
into ida.IDASolve by reference, can be different from tout if roots are
found, or errors encountered. The last parameter specifies how IDA
should step. See the SUNDIALS documentation for more details.:

t = ida.realtype(0)
tout = 0.4
while tout < 0.4%(10%x12):
flag = ida.IDASolve(
ida_mem,
tout,
ctypes.byref (t),

Yy
P>

Appendix B. Abridged PySUNDIALS Documentation 118

ida.IDA_NORMAL
)
print (t, yy)
if flag == ida.IDA_ROOT_RETURN:
rootsfound = ida.IDAGetRootInfo(ida_mem, 2)
print rootsfound
elseif flag == ida.IDA_SUCCESS:
tout *= 10
else:
break

B.4.6 KINSOL

Programs using KINSOL will generally conform to a certain skeleton layout.
The example used here serves to illustrate this skeleton layout, and is neither
complete, nor representative of SUNDIALS/PySUNDIALS complete set of ca-
pabilities. Please see the function reference or SUNDIALS documentation for
more information.

1. Import the kinsol and ctypes modules.:

from pysundials import kinsol
import ctypes

2. Define your right-hand side function. This function must take exactly
three parameters. The first parameter will be an NVector containing
the current values of the dependent variables. The second parameter is
an NVector whose elements must be filled with the new values of the
dependent variables. The third parameter is a pointer to any arbitrary
user data you may have specified, otherwise None. This function essen-
tially defines your ODE system and must do so using strictly linearly
independent equations. For example, a simple problem consisting of
three variables and having the following ODES:

® VI =T1—T3—T4
® Uy =712 —T]

® V3 =T1—T2

(where r; is a function of the independent variable and the current val-
ues of the dependent variables) would have the following RHS function,
ignoring v3 because it is linearly dependent with wvo:

def f(u, fval, f_data):

Appendix B. Abridged PySUNDIALS Documentation 119

10.

11.
12.

fval[S2] = R2(u) - Ri(u)
fval[S1] = R1(u) - R3(u) - R4(w)
return O

Define any optional functions such as a Jacobian approximation, and/or
error weight functions. See function reference for details on parameters
and returns.

. Initialise an NVector with an initial guess.:

u = kinsol.NVector([1.0, 0.7]1)

Initialise a template NVector of the same size as your dependent variable
vector.:

template = kinsol.NVector ([0, 0])

Initialise a scaling vector or vectors as necessary. See function reference
for kinsol.KINSol for more details:

s = kinsol.NVector([1, 11)

Create a KINSOL object.:
kin_mem = kinsol.KINCreate()

Allocate solver memory, and set the RHS function and size of the system
using the template vector.:

kinsol.KINMalloc(kin_mem, f, template)

Set any optional inputs using KINSet* ().

Choose a linear solver and set the problem size, i.e. number of vari-
ables. The available linear solvers are KINDense, KINBand, KINSpgmr,
KINSpbcg, and KINSptfqmr.:

kinsol.KINDense (kin_mem, 2)

Set any optional linear solver inputs using kinsol.KIN<solver>Set*.

Solve the problem by calling kinsol.KINSol, passing the KINSOL mem-
ory object, the vector with the initial guess, the globalisation strategy
(one of kinsol.KIN_NONE or kinsol.KIN_LINESEARCH), and two scaling
vectors, u_scale and f scale. In our case no scaling is applied via the
repeated use of the scaling vector s (/1,1]):

kinsol.KINSol(kin_mem, u, kinsol.KIN_LINESEARCH, s, s)

Bibliography

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz,
J. D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D., 1999. LA-
PACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 3rd Edition. 15

Backus, J., Beeber, R., Best, S., Goldberg, R., Haibt, L., Herrick, H., Nelson, R.,
Sayre, D., Sheridan, P., Stern, H., Ziller, I., Hughs, R., Nutt, R., 1957. Fortran
automatic coding system. In: Proceedings of the Western Joint Computer Confer-
ence. Los Angeles, CA. 19

Boderke, P., Schittkowski, K., Wolf, M., Merkle, H. P., 2000. Modeling of diffusion
and concurrent metabolism in cutaneous tissue. J Theor Biol 204 (3), 393-407. 4

Brown, P. N., Saad, Y., 1990. Hybrid Krylov methods for nonlinear systems of equa-
tions. STAM J Sci Stat Comp 11, 450. 24

Cleland, W. W., 1967. The statistical analysis of enzyme kinetic data. Advan Enzymol
Relat Areas Mol 29, 1-32. 7

Cohen, S. D., Hindmarsh, A. C., 1996. CVODE, a stiff/nonstiff ODE solver in C.
Comput Phys 10 (2), 138-143. 23

Cornish-Bowden, A., Hofmeyr, J.-H. S.,; 1991. MetaModel: a program for modelling
and control analysis of metabolic pathways on the IBM PC and compatibles. Com-
put Appl Biosci 7 (1), 89-93. 16

Curtis, A. R., 1976. FACSIMILE—-a computer program for simulation and optimiza-
tion. Biochem Soc T 4 (2), 364-71. 15

Downey, A. B., Elkner, J., Meyers, C., 2002. How to Think Like a Computer Scientist:
Learning with Python. Green Tea Press, http://www.greenteapress.com. 21

Drummond, L. A., Hernandez, V., Marques, O., Roman, J. E.; Vidal, V., 2005.
A Survey of High-Quality Computational Libraries and Their Impact in Science
and Engineering Applications. Vol. 3402 of Lecture Notes in Computer Science.
Springer, Berlin, pp. 37-50. 20

Eaton, J. W., 2002. GNU Octave Manual. Network Theory Limited, Bristol. 15

Forster, H., Schrefl, T., Suess, D., Scholz, W., Tsiantos, V., Dittrich, R., Fidler, J.,
2002. Domain wall motion in nanowires using moving grids (invited). J Appl Phys
91, 6914. 25

120

Bibliography 121

Gauld, A., 2000. Learn to Program Using Python: A Tutorial for Hobbyists, Self-
Starters, and All Who Want to Learn the Art of Computer Programming. Addison-
Wesley Professional. 21

Gilat, A., 2004. MATLAB: An Introduction with Applications 2nd Edition. Wiley
Publishing Inc., New Jersey. 15

Hanekom, A., 2006. Generic kinetic equations for modelling multisubstrate reactions
in computational systems biology. Master’s thesis, University of Stellenbosch. 7

Heinrich, R., Rapoport, T., 1974. A linear steady-state treatment of enzymatic chains.
general properties, control, and effector strength. Eur J Biochem 42, 89-95. 15

Hindmarsh, A., 1983. ODEPACK, A Systematized Collection of ODE Solvers. In:
Stepleman, R. e. a. (Ed.), Scientific Computing: Applications of Mathematics and
Computing to the Physical Sciences. Vol. 1 of IMACS Transactions on Scientific
Computing. North-Holland, Amsterdam, Netherlands; New York, U.S.A., pp. 55—
64. 23

Hindmarsh, A. C.,; 2000. The PVODE and IDA algorithms. Tech. rep., Lawrence
Livermore National Lab., California. 24

Hindmarsh, A. C., Brown, P. N.; Grant, K. E., Lee, S. L., Serban, R., Shumaker,
D. E., Woodward, C. S., 2005. SUNDIALS: Suite of nonlinear and differential/al-
gebraic equation solvers. ACM T Math Software 31 (3), 363-396. 20, 23

Hofmeyr, J.-H. S., 2001. Metabolic control analysis in a nutshell. In: Proceedings of
the 2nd International Conference on Systems Biology. p. 291300. 15, 44

Hofmeyr, J.-H. S., 2007. The biochemical factory that autonomously fabricates it-
self: A systems-biological view of the living cell. In: Boogerd, F. C., Bruggeman,
F., Hofmeyr, J.-H. S., Westerhoff, H. V. (Eds.), Systems Biology: Philosophical
Foundations. Elsevier, Ch. 10, pp. 217-242. 1

Hofmeyr, J.-H. S.,; Cornish-Bowden, A., 1997. The reversible Hill equation: how
to incorporate cooperative enzymes into metabolic models. Comput Appl Biosci
13 (4), 377-385. 7

Hofmeyr, J.-H. S., van der Merwe, K. J., 1986. METAMOD: software for steady-state
modelling and control analysis of metabolic pathways on the BBC microcomputer.
Comput Appl Biosci 2 (4), 243-249. 15

Holzhutter, H. G., Colosimo, A., 1990. SIMFIT: a microcomputer software-toolkit for
modelistic studies in biochemistry. Comput Appl Biosci 6 (1), 23-28. 16

Hommes, F., 1962. The integrated Michaelis-Menten equation. Arch Biochem Biophys
96, 28-31. 15

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,
Mendes, P., Kummer, U., 2006. COPASI-a COmplex PAthway SImulator. Bioin-
formatics 22 (24), 3067. 16

Bibliography 122

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., , the rest
of the SBML Forum:, Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden,
A., Cuellar, A. A., Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. L.,
Hedley, W. J., Hodgman, T. C., Hofmeyr, J.-H. S.,; Hunter, P. J., Juty, N. S,
Kasberger, J. L., Kremling, A., Kummer, U., Novere, N. L., Loew, L. M., Lucio,
D., Mendes, P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R.., Nielsen,
P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D.,
Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang, J., 2003. The systems
biology markup language (SBML): a medium for representation and exchange of
biochemical network models. Bioinformatics 19 (4), 524-531. 18

Ingalls, B. P., 2004. A frequency domain approach to sensitivity analysis of biochem-
ical systems. J Phys Chem B 108, 1143-52. 15

Jones, E., Oliphant, T., Peterson, P., et al., 2001. SciPy: Open source scientific tools
for Python.
URL http://www.scipy.org/ 15, 21

Kacser, H., Burns, J. A.; 1973. The control of flux. Symp Soc Exp Biol 32, 65-104.
15

Kernighan, B. W., Ritchie, D. M., 1978. The C programming language, 1st Edition.
Prentice-Hall, Englewood Cliffs, NJ. 20

Kholodenko, B., Bruggeman, F., Sauro, H., 2005. Systems Biology. Springer, Berlin,
pp. 143-159. 1

King, E. L., Altman, C., 1956. A schematic method of deriving the rate laws for
enzyme-catalyzed reactions. J Phys Chem 60 (10), 1375-1378. 7

Kiusalaas, J., 2005. Numerical Methods in Engineering with Python. Cambridge Uni-
versity Press. 21

Kootsey, J., Kohn, M., Feezor, M., Mitchell, G., Fletcher, P., 1986. SCoP: An in-
teractive simulation control program for micro- and minicomputers. B Math Biol
48 (3), 427-441. 15

Langtangen, H. P., 2004. Python Scripting for Computational Science, 1st Edition.
Springer, Berlin. 21

Le Novre, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li,
L., Sauro, H., Schilstra, M., Shapiro, B., 2006. BioModels Database: a free, cen-
tralized database of curated, published, quantitative kinetic models of biochemical
and cellular systems. Nucleic Acids Res 34, D689-D691. 49

Lefever, R., Nicolis, G., Borckmans, P., 1988. The brusselator: it does oscillate all
the same. J Chem Soc Farad T 1 84 (4), 1013-1023. 50

Letellier, T., Reder, C., Mazat, J.-P., 1991. CONTROL - software for the analysis of
control of metabolic networks. Comput Appl Biosci 7, 383-390. 16

Loew, L. M., Schaff, J. C., 2001. The Virtual Cell: a software environment for com-
putational cell biology. Trends Biotechnol 19 (10), 401-406. 19

http://www.scipy.org/

Bibliography 123

Lutz, M., 2006. Programming Python, 3rd Edition. O’Reilly Media, Inc., California.
21

Martelli, A., 2003. Python in a Nutshell, 1st Edition. O’Reilly Media, Inc., California.
21

Maruch, S., Maruch, A., 2006. Python For Dummies. Wiley Publishing Inc., New
Jersey. 21

Mendes, P., 1993. GEPASI: a software package for modelling the dynamics, steady
states and control of biochemical and other systems. Bioinformatics 9 (5), 563-571.
16

Michaelis, L., Menten, M., 1913. Der Kinetik der Invertinwirkung. Biochem Z 49,
333-369. 7

Modin, K., Fritzson, D., Fhrer, C., Sderlind, G., 2005. A new class of variable step-
size methods for multibody dynamics. In: Multibody Dynamics 2005, ECCOMAS
Thematic Conference. Madrid. 25

Monniaux, D., 2008. The pitfalls of verifying floating-point computations. ACM T
Progr Lang Syst 30 (3), 1-41. 42

Monod, J., Wyman, J., Changeux, J. P., 1965. On the nature of allosteric transitions:
A plausible model. J Mol Biol 12, 88-118. 7

Myers, C., Barker, N., Kuwahara, H., Madsen, C., Nguyen, N., 2008. IBioSim: Myers
research group.
URL http://www.async.ece.utah.edu/iBioSim/ 16

Noble, D., 2006. The Music of Life. 1

Olivier, B. G., Rohwer, J. M., Hofmeyr, J.-H. S., 2005. Modelling cellular systems
with PySCeS. Bioinformatics 21 (4), 560-1. 17

Olivier, B. G., Snoep, J. L., 2004. Web-based kinetic modelling using JWS Online.
Bioinformatics 20 (13), 2143-4. 17

Pettinen, A., Aho, T., Smolander, O.-P., Manninen, T., Saarinen, A., Taattola, K.-
L., Yli-Harja, O., Linne, M.-L., 2005. Simulation tools for biochemical networks:
evaluation of performance and usability. Bioinformatics 21 (3), 357-363. 16, 24

Petzold, L., Hindmarsh, A., 1997. LSODA (Livermore Solver of Ordinary Differential
Equations). Computing and Mathematics Research Division, Lawrence Livermore
National Laboratory, Livermore, CA. 24

Pfeiffer, T., 1999. METATOOL: for studying metabolic networks. Bioinformatics
15 (3), 251-257. 19

Poolman, M. G., 2006. ScrumPy: metabolic modelling with Python. Systems Biol
153 (5), 375-8. 16

Roman, G. C., Garfinkel, D., 1978. BIOSSIM—a structured machine-independent bi-
ological simulation language. Comput Biomed Res 11 (1), 3-15. 15

http://www.async.ece.utah.edu/iBioSim/

Bibliography 124

Rudiger, S., Shuai, J. W., Huisinga, W., Nagaiah, C., Warnecke, G., Parker, I.,
Falcke, M., 2007. Hybrid stochastic and deterministic simulations of calcium blips.
Biophys J 93 (6), 1847-1857. 4

Sauer, U., Heinemann, M., Zamboni, N., 2007. GENETICS: Getting closer to the
whole picture. Science 316 (5824), 550-551. 1

Sauro, H. M., 1993. SCAMP: a general-purpose simulator and metabolic control
analysis program. Bioinformatics 9 (4), 441-450. 16

Sauro, H. M., 2000. Jarnac: A system for interactive metabolic analysis. In: Ani-
mating the Cellular Map: Proceedings of the 9th International Meeting on Bio-
ThermoKinetics. Stellenbosch University Press. ISBN 0-7972-0776-7. 16

Savageau, M. A., 1969. Biochemical systems analysis. ii. the steady-state solutions
for an n-pool system using a power-law approximation. J Theor Biol 25 (3), 370-9.
8

Schmidt, H., Jirstrand, M., 2006. Systems Biology Toolbox for MATLAB: a com-
putational platform for research in systems biology. Vol. 22. Oxford Univ Press.
17

Serban, R., Hindmarsh, A. C., 2005. CVODES, the sensitivity-enabled ODE solver
in SUNDIALS. In: Proceedings of IDETC/CIE. 24

Snoep, J., Westerhoff, H., 2005. From isolation to integration, a systems biology
approach for building the Silicon Cell. In: Systems Biology. Springer, Berlin, pp.
13-30. 1

Stroustrup, B., 1986. The C++ Programming Language, 3rd Edition. 20

Surovstev, I. V., Morgan, J. J., Lindahl, P. A.; 2007. Whole-cell modeling framework
in which biochemical dynamics impact aspects of cellular geometry. J Theor Biol
244 (1), 154-166. 60, 61, 62

Urner, K., 2004. Python in the mathematics curriculum. In: PyConDC2004. Wash-
ington, D.C. 21

van Rossum, G., 2003a. An Introduction to Python. Network Theory Ltd., Bristol.
21

van Rossum, G., 2003b. The Python Language Reference Manual. Network Theory
Ltd., Bristol. 21

Walter, C., 1966. Quasi-steady state in a general enzyme system. J Theor Biol 11 (2),
181-206. 15

Walter, C. F., Morales, M. F., 1964. An analogue computer investigation of certain
issues in enzyme kinetics. J Biol Chem 239 (4), 1277-1283. 15

Wikipedia Contributors, 2008. Systems biology. Revision 250433403.
URL http://en.wikipedia.org/w/index.php?title=Systems_biology\
&01did=250433403 1

http://en.wikipedia.org/w/index.php?title=Systems_biology\&oldid=250433403
http://en.wikipedia.org/w/index.php?title=Systems_biology\&oldid=250433403

Bibliography 125

Wolfram, S., 1991. Mathematica: a system for doing mathematics by computer. Ad-
dison Wesley Professional, Redwood City, CA. 15

Zeilinger, M. N., Farr, E. M., Taylor, S. R., Kay, S. A., III, F. J. D., 2006. A novel
computational model of the circadian clock in arabidopsis that incorporates prr7
and prr9. Mol Syst Biol 2 (58). 49

Zelle, J. M., 2003. Python Programming: An Introduction to Computer Science.
Franklin Beedle & Associates, Wisonville, OR. 21

	Declaration
	Contents
	List of Figures
	List of Tables
	Listings
	Stylistic Conventions
	Acknowledgements
	Background
	Systems biology models and nonlinear dynamics
	The goals of systems biology
	The rise of Python as a scientific programming language
	Languages competing with Python in scientific programming
	The SUNDIALS package
	The need for Python interfaces to SUNDIALS
	PySUNDIALS

	Implementation
	Implementation overview
	The foreign function interface (ctypes)
	Structural differences in code layout between SUNDIALS and PySUNDIALS source
	Pythonification
	Difficulties
	Integration with NumPy
	Availability of PySUNDIALS

	Results
	CVODE examples
	Using CVODES to analyse changes in sensitivities in transient states
	IDA examples
	A KINSOL example
	Benchmark comparisons
	The Whole Cell Model: A complex example

	Discussion and conclusion
	The integration of SUNDIALS into PySCeS
	Future work
	Summary

	Code listings
	Abridged PySUNDIALS Documentation
	Introduction
	Installation
	Configuration
	Using PySUNDIALS

	Bibliography

