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SUMMARYSUMMARYSUMMARYSUMMARY    

 
The discrimination between wine yeast strains as well as between their fermented wines 
has been investigated in this pilot study.  The study was divided in two parts, the first to 
investigate the discrimination between wines fermented with five different 
Saccharomyces cerevisiae yeast strains, analysed by gas chromatography (GC) and 
Fourier transform infrared spectroscopy (FTIR) and the second part to investigate 
discrimination between wine yeast strains in different liquid media and in dried form 
using FTIR in transmission and attenuated total reflectance (ATR) modes. 
 

Wines from three cultivars (Clairette Blanche, Pinotage and Cabernet Sauvignon) 
that were fermented by five Saccharomyces cerevisiae yeast strains (VIN13, WE372, 
VIN13-EXS, VIN13-PPK and ML01) were analysed by GC and FTIR.  This analysis was 
done on individual sample sets that consisted of the wines of each of the mentioned 
cultivars and also on samples drawn throughout the ageing process of these wines.  The 
data obtained were analysed by PLS-Discrimination (PLS-discrim), a chemometric 
method.  Using the data from both the analytical methods, discrimination was observed 
between wines fermented with different yeast strains in each of the two vintages (2005 
and 2006) for all the cultivars.  When combining the data from the two vintages no 
discrimination could be observed between the fermented wines.  The discrimination of 
the fermented wines was found to be similar when using data from GC and FTIR, 
respectively.  Since analysis with FTIR is considerably faster than analysis by GC, it 
would be recommended that FTIR is used for future studies of similar nature.  
Combining the samples into one set consisting of wines fermented with commercial wine 
yeast strains and wines fermented from closely related wine yeast strains (the parental 
strain and two genetically modified versions thereof (VIN13, VIN13-EXS and VIN13-
PPK), those fermented with closely related stains did not show good discrimination from 
each other.  Discrimination was found between wines fermented with genetically 
modified (GM) wine yeast strains and those fermented with non-GM wine yeast strains.  
This was done on a limited number of yeast strains and a larger study is needed to 
confirm these results.  As this is the first study of this nature and differences seen could 
be as result of the different phenotypes. 
 

It was shown that it is possible to use both FTIR-transmission and FTIR-ATR 
(attenuated total reflectance) to discriminate between different wine yeast strain 
phenotypes.  It was shown that when using FTIR-transmission there is discrimination 
between yeast samples suspended in yeast-peptone-dextrose (YPD) and in water.  
Dried yeast samples could be discriminated when the yeast samples were in a granular, 



 

powder form or in a pellet form, using FTIR-ATR.  It was possible to discriminate 
between the closely related yeast strain phenotypes using FTIR-ATR.   
  

In this pilot study it was shown that there can be discriminated between different wine 
yeast strains and also between the wines fermented with different wine yeast strains.  It 
is recommended that further studies be conducted to refine and expand the study.



 

 

OPSOMMINGOPSOMMINGOPSOMMINGOPSOMMING    

 
In hierdie loods studie is die onderskeiding van wyngiste en hul gegisde wyne getoets.  
Die studie is verdeel in twee ondersoeke, die eerste deel handel oor die onderskeiding 
tussen wyne wat gegis is met vyf verskillende Saccharomyces cerevisiae wyngiste wat 
geanaliseer is met gaschromatografie (GC) en Fourier transform infrarooi (FTIR) 
spektroskopie en die tweede handel oor die onderskeiding van wyngiste in gedroogde 
vorm en in verskillende vloeistof media wat deur midddel van FTIR in transmissie 
funksie en in verswakte totale weerkaatsing (ATR) funksie.  
 

Wyne van drie kultivars (Clairette Blanche, Pinotage en Cabernet Sauvignon) wat 
gegis is deur vyf Saccharomyces cerevisiae gisrasse (VIN13, WE372, VIN13-EXS, 
VIN13-PPK en ML01) is geanaliseer met behulp van GC en Fourier transform (FTIR).  ‘n 
Kemometriese tegniek, Parsiële kleinste kwadrate discriminant analiese (PLS-Discrim), 
is gebruik om die data te analiseer.  Deur gebruik te maak van die data van GC en FTIR 
is daar onderskeiding gevind tussen die wyne wat gegis is met die verskillende wyngiste 
vir elk van die twee oesjare (2005 en 2006) vir al die kultivars.  Daar is egter geen 
onderskeiding gevind tussen die wyne nadat die data van die twee oesjare saamgevoeg 
is nie.  Deur gebruik te maak van onderskeidelik GC en FTIR data, is daar in die 
kemometriese analiese geen verskil gevind in hul vermoë om tussen die wyne te 
onderskei nie.  Verder is die analiese met behulp van FTIR aansienlik vinniger as met 
GC en dit word voorgestel dat die analiese in toekomstige studies met FTIR gedoen 
word.  Die samevoeging van wyne wat gegis is met kommersiële gisrasse en na-
verwante gisrasse (dit is gisrasse wat geneties gemanipuleer (GM) is van dieselfde 
oorspronklike gisras en die oorspronklike gisras (VIN13-EXS, VIN13-PPK en VIN13)) in 
dieselfde datastel, het tot gevolg gehad dat daar nie goeie onderskeiding was tussen die 
die wyne van na-verwante gisrasse nie.  Dit is verder gevind dat daar onderskeiding was 
tussen wyne wat gegis is met GM en nie-GM wyngiste.  Aangesien hierdie die eerste 
studie van sy soort is en die gistings gedoen is met betreklik min giste kan die 
onderskeiding moontlik wees as gevolg van verskillende phenotipes.  Dit is dus 
noodsaaklik om verdere studies te onderneem om die resultate te bevestig. 

 
Daar is ook bevestig dat dit moontlik is om FTIR in transmissie en in ATR  funksie te 

gebruik om tussen verskillende wyngis fenotipes te onderskei.  Onderskeiding is gevind 
tussen wyngisrasse wat in gis-peptoon-dekstrose en water gesuspendeer is en 
geanaliseer is deur FTIR in transmissie funksie.  Deur gebruik te maak van FTIR-ATR is 
daar onderskeiding gevind tussen verskillende gedroogte giste in korrel, verpoeierde en 



 

tablet vorm.  Dit was moontlik om onderskeid te tref tussen na-verwante gisras 
fenotipes. 

 
Aangesien hierdie loods studie gewys het dat daar wel onderskeid getref kan word 

tussen verskillende wyngiste en wyne wat gegis is met verskillende wyniste, moet 
verdere ondersoeke gedoen word om die studie te verfyn en te vergroot. 
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This thesis is presented as a compilation of five chapters.  Each chapter is introduced 
separately and is written according to the style of the journal South African Journal of 
Enology and Viticulture to which Chapter 3 and Chapter 4 will be submitted for 
publication. 
 
 
Chapter 1  General Introduction and Project Aims 
   
Chapter 2  Literature Review  
  The use of chemometrics in oenology 
   
Chapter 3  Research Results 
  Discrimination between wines fermented by different yeast strains: a 

feasibility study comparing mid infrared spectroscopy with gas 
chromatography 

   
Chapter 4  Research Results 
  The use of Fourier transform infrared (FTIR) spectroscopy for yeast strain 

phenotype discrimination 
   
Chapter 5  General Discussion and Conclusions 
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1.1 INTRODUCTION 

Due to increasing globalisation, the food and beverages that we consume can come 
from anywhere in the world.  So it is understandable that consumers want information 
about the products they consume.  This can be related to nutritional value, origin, 
ingredients, possible allergens or other food related issues.  Many producers share this 
concern and strive to deliver food conforming to high quality standards and protect their 
products against producers misrepresenting food for economic benefit.  Around the 
world this has led to an ongoing process of introducing legislation to protect food quality 
as reviewed by Reid et al. (2006). 
 

In order to provide the necessary information and comply with legislation many 
analytical techniques have been formulated to deal with issues regarding the 
authentication of food products and the prediction of quality related parameters.  
Techniques used include spectroscopy (UV, NIR, MIR, visible, Raman), isotopic 
analysis, chromatography, electronic nose, polymerase chain reaction, enzyme-linked 
immunosorbent assay and thermal analysis (Reid et al., 2006). 

 
Modern instrumentation generates huge amounts of data for analysed samples that 

need to be interpreted for authentication or prediction purposes.  The amounts of data 
that need processing led to the introduction of chemometrics with the improvements in 
computing capacity, as early as the 1970’s, when chemometrics was used to predict the 
protein content for wheat (Williams, 2001).  Since then chemometrics has found 
applications in many food and beverage related industries.  In the wine industry it has 
been shown that, with the use of chemometrics, wines can be discriminated by cultivar, 
using Fourier transform infrared spectroscopy (FTIR) in conjunction with UV-visible 
spectroscopy and near infrared spectroscopy (NIR) in conjunction with visible 
spectroscopy (Edelmann et al., 2001; Cozzolino et al., 2003); as well as vintage using 
only FTIR (Palma and Barroso, 2002).  Infrared spectroscopy has the advantage of 
being fast, non-destructive, and is particularly characterised by simplicity with regard to 
sample preparation. 

 
For the first part of the study analysis were done using FTIR and GC.  FTIR was 

chosen on the grounds that it can give a chemical fingerprint of the very complex matrix 
of a wine.  As mentioned previously, analysis time and sample preparation for FTIR is 
also fast.  GC was chosen on the basis that it has already been used to quantify aroma 
components in wine produced by different yeast species and strains (Romano et al., 
2003).  Quantitative information from the GC can also be used for discrimination.  
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To discriminate between wines fermented with different yeast strains, a route of DNA 
extraction could be followed.  Even though it is possible to isolate DNA from wine, it is 
quite difficult as wine is usually clarified and filtered (Ribéreau-Gayon et al., 2000) 
largely reducing available DNA.  There are further drawbacks with DNA extraction, as 
the extraction of DNA is a timely process (from overnight precipitation up to two weeks) 
(Savazzini and Martinelli, 2006).  The extraction of DNA from wine is poor and 
amplification of DNA is difficult due to interference from tannins, polysaccharides and 
polyphenols present in the wine (Siret et al., 2000; Savazzini and Martinelli, 2006).  
 

FTIR has been used for the identification and discrimination of bacteria as far back 
as the 1950’s and 1960’s (Naumann et al., 1991).  With the advancement of infrared 
instrumentation, more powerful computers and advanced algorithms for multivariate data 
analysis and pattern recognition, FTIR as a tool has become widely accepted and used 
in the identification of microbes (Mariey et al., 2001).  FTIR can be seen as a rapid, 
whole organism fingerprint approach (Naumann et al., 1991; Zhao et al., 2006) that  can 
be used in conjunction with chemometrics for identification purposes (Maquelin et al., 
2002).  For reliable discrimination it is very important that FTIR measurements are 
reproducible and there are several factors that can influence this, including cell cycle, 
growth stage of the cells, growth conditions, sampling and sample preparation (Maquelin 
et al., 2002). 

 
Due the successful application of FTIR in the identification of microorganisms, it was 

of interest to see if FTIR could be used for discrimination of wine yeast strains used in 
the second part of the study.  The study was conducted with the use of FTIR in 
transmission and ATR modes.  In this study FTIR was used for the first time to 
discriminate between yeast strains used specifically for wine making.  
 

In this exploratory study, the effectiveness of FTIR and GC in conjunction with 
chemometrics was assessed for its ability to discriminate wines that were fermented with 
different strains of Saccharomyces cerevisiae.  The use of FTIR in transmission mode 
and in ATR mode was investigated to discriminate between wine yeast strains.  In order 
to determine the influence of sample presentation, the yeast strains were prepared and 
presented to the instruments in different ways i.e., in liquid medium (yeast-peptone 
dextrose and water) and in dried form (granular, powder and pellet). 

1.2 AIMS 

The specific aims and approaches of this study were: 
(i) to use PLS-discriminaton as a chemometric method;  
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(ii) to evaluate ability of mid infrared spectroscopy (MIR) and GC as instrumental 
techniques to discriminate between wines fermented with five (VIN13, WE372, 
VIN13-EXS, VIN13-PPK and ML01) different Saccharomyces cerevisiae yeast 
strains; 

(iii) to compare the resulting discrimination using GC and MIR data respectively; 
(iv) to evaluate the effectiveness of FTIR in transmission mode to discriminate 

between two Saccharomyces cerevisiae strains (VIN13 and WE372) 
suspended in YPD and water; 

(v) to evaluate the effectiveness of FTIR in attenuated total reflectance (ATR) 
mode to discriminate between five Saccharomyces cerevisiae active dried 
wine yeast strains (ADWY) (Maurivin B, AWRI R2, NT7, and VIN13), 
presented to the ATR in granulated, powder and pellet form; and  

(vi) to evaluate the effectiveness of FTIR in attenuated total reflectance (ATR) 
mode to discriminate between five Saccharomyces cerevisiae yeast strains, 
prepared from liquid cultures and presented to the ATR in powdered form. 

1.3 LITERATURE SITED 
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2.1 INTRODUCTION  

Naes et al. (2002) defines chemometrics as “the use of statistical and mathematical 
procedures to extract information from chemical (and physical) data. 
 

Chemometrics is widely used in the food industry, but why?  The answer to this 
question has to do with the advancement of technology.  Due to increased 
computational capacity of modern digital computers and smaller and more reliable 
electronics, analytical instruments have become much more powerful.  People struggle 
without the help of computers to interpret the mass of data generated by analytical 
instruments.  Handling of these large amounts of data, which is mostly of a multivariate 
nature, is done by using chemometrics.  An example would be a typical FTIR spectrum 
that can have over a thousand variables.  There are several chemometric software 
packages which are also dependant on the advancement of digital technology to utilise 
the processing capacity to full measure. 
 

The use of chemometrics in the food, feed and beverage sciences is closely related 
to the increased application of near infrared (NIR) spectroscopy in wheat industry, where 
it was already used in the early 1970’s (Williams, 2001).  Since then chemometrics has 
found applications in many food related industries and with the use of many different 
types of analytical instruments.  The field of chemometrics is constantly expanding with 
new techniques to improve survey data analysis, classification, prediction, discrimination 
or to improve pre-processing of data.  Many of these chemometric advances can be 
found in the two pre-eminent journals in the field of chemometrics, namely Journal of 
Chemometrics (Wiley) and Chemometrics and Intelligent Laboratory Systems (Elsevier).  
Research results applying chemometrics to different food and beverage related areas 
can also be found in many subject-specific journals. 
 

In the food and beverage industry, chemometrics in combination with various 
analytical techniques is used for authentication of products and prediction of quantitative 
parameters.  Prediction of quantitative sample parameters is done through a multivariate 
calibration model using multivariate analytical output from an analytical instrument and is 
validated with known reference values.  Calibrations must span the entire range of 
expected values for any sample that might be encountered in routine analysis (Wetzel, 
1998).  The predictive ability of a chemometric calibration would usually be used in 
quality control (QC) for a fast prediction of some or many quality related parameters that 
would normally involve long, destructive and complicated analysis.  
 

Various analytical instruments are used in routine predictive analysis, but one of the 
most frequently used analytical techniques is NIR spectroscopy.  NIR was used in the 
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wheat industry for prediction of protein content using a regression models, which has 
since become a kind of role model archetype for applied studies in multivariate 
calibration (Williams, 2001).  This approach of prediction through a multivariate 
calibration is now part of many commercial NIR instruments supplied by Buchi, FOSS 
and other analytical instrument suppliers.  NIR has also been used for prediction of 
water content in milk powder (Reh et al., 2004), NaCl concentration in sausage (Ellekjær 
et al., 1993), protein and other parameters in feed soybean (Edney et al., 1994), to 
mention just a few NIR applications.  Some other instruments used for quality control 
prediction are X-ray spectroscopy for measuring metals in tea (Manhas Verbi Pereira et 
al., 2006).  Mid-Infrared (MIR) spectroscopy to predict chemical parameters of European 
Emmental cheeses produced during summer (Karoui et al., 2006) and FT-Raman 
spectroscopy for the simultaneous determination of fructose and glucose in honey 
(Batsoulis et al., 2005). 
 

Another area where chemometrics is frequently used is in authentication (Reid et al., 
2006).  Authenticity is defined as “worthy of belief as conforming to fact or reality; 
trustworthy; genuine” (Longman, 1982).  Generally, foodstuffs are either of animal or 
plant origin and for reliable authentication, parameters should be used that do not 
undergo significant alteration during processing (Luthy, 1999).  In authentication studies 
the aim is to group products together in order to highlight the products that have been 
altered by addition of a cheaper, but similar substance; products that are mislabelled or 
to identify the origin of the products. 
 

Authentication is a rapidly expanding area and is mainly driven by legislation that 
protects the status of products or where food safety is a concern.  A summary of 
systems used in the European Union for protection of food product origin can be found 
in Reid et al. (2006).   
 

A wide variety of analytical instrumentation is used in authentication of foodstuffs.  
For authentication purposes the speed of analysis is not always the most important 
factor.  Some of the analytical instrumentation currently in use for authentication 
includes spectroscopy (UV, NIR, MIR, visible, Raman), isotopic analysis, 
chromatography, electronic nose, polymerase chain reaction, enzyme-linked 
immunosorbent assay and thermal analysis (Reid et al., 2006), while a new modality 
would be the electronic tongue (Legin et al., 2003).  The theory and principles of the 
various analytical instruments falls outside this review, but can be found in Principles of 
instrumental analysis (Skoog et al., 2007).  Some recent reviews in the field of food 
quality control include Reid et al., 2006); Martinez et al., 2003); Tzouros and 
Arvanitoyannis, 2001); Wilson and Tapp, 1999) and Downey, 1998).  A comprehensive 
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review regarding quality control methods for wine authenticity was done by 
Arvanitoyannis et al. (1999).   

2.2 BASIC STATISTICS USED IN CHEMOMETRICS 

The following section gives a brief description of some of the basic statistics concepts 
used in chemometric analysis of results as used in the review that follows.  The 
description is by no means intended to be comprehensive.  The formulas and 
descriptions dealt with in this section were assembled from chemometric textbooks by 
Esbensen (2002), Naes et al. (2002) and Spiegel (1972), respectively. 

2.2.1 STANDARD DEVIATION, s  

The standard deviation, s, is the root mean square of deviation from the mean of a set of 
n numbers, it is denoted by s and is defined by 
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Where: 

 yi is item i in the set 
 Y  is the mean of the number set 

2.2.2 ROOT MEAN SQUARE ERROR OF PREDICTION (RMSEP) 

RMSEP is the prediction error estimate expressed in the original units of measure.  
RMSEP is defined as the square root of the mean of the squared differences between 
the predicted and measured reference values. 
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Where: 
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iy  is the predicted value for item i in the set 

 yi is the measured reference value for item i in the set 
 n is the number of samples in the set 
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2.2.3 BIAS 

Bias is the mean difference between the predicted and the measured reference values 
for all the samples in a validation set.  Bias is a measure of the overall accuracy of a 
prediction model. 
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Where: 

 �
iy  is the predicted value for item i in the set 

 yi is the measured reference value for item i in the set 
 n is the number of samples in the set 

2.2.4 STANDARD ERROR OF PREDICTION, SEP 

SEP also known as standard error of performance is the standard deviation of residuals 
(difference between the predicted value and the reference value).  It gives an indication 
of the variation of precision of the predicted values for several samples.  It can also be 
described as the scatter around the regression line and is expressed as when corrected 
for bias 
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Where: 

 �
iy  is the predicted value for item i in the set 

 yi is the measured reference value for item i in the set 
 n is the number of samples in the set 
 

If there is no bias, i.e. there are no differences between the mean values of the 
training and validation sets, the SEP is the same as the RMSEP. 

2.2.5 COEFFICIENT OF DETERMINATION, r2  

The coefficient of determination is the ration of the explained variation to the total 
variation.  If there is no explained variation the ratio is 0 and if all the variation is 
explained the ration is 1.  In all other cases the ratio is between 0 and 1.   
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The correlation coefficient, r, is given by 
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Where: 

 Ypred is the predicted value 
 Y  is the mean of the number set 
 Y is the reference value 
 

By substituting with equations for standard deviation (2.2.1), RMSEP (2.2.2) SEP, 
total variance (equation not shown), (2.2.3) can be written as 
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It is clear that the coefficient of determination, r2 then becomes 
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2.3 WIDELY USED CHEMOMETRIC TECHNIQUES 

Prediction of quantitative parameters of samples is very important in QC.  If a sample is 
analysed for only one property, say colour, at a single wavelength to predict ripeness, a 
univariate regression would be used to establish a calibration model for future prediction 
of ripeness.  If, however, a single sample is analysed for many quantitative or qualitative 
parameters, for example the NIR spectrum of a sample to predict ripeness as well as 
many other properties, a multivariate calibration approach would be appropriate 
(Esbensen, 2002).  Output from many modern analytical instruments, including those for 
on-line process analytical technology (PAT) purposes, demands use of multivariate 
regression models for future prediction (McLennan and Kowalski, 1995; Bakeev, 2005). 
 

Unsupervised chemometric classification is made up of a group of techniques used 
to identify any internal data structure in a set; this general data analysis operation can 
be termed pattern cognition.  These methods are used where there is no prior 
knowledge, or only very little knowledge available, pertaining to the data at hand.  It is 
also used when a lot of information is available for a given data set, but to investigate 
any groupings and/or trends not hypothesised before.  Generic cluster analysis is often 
done by principal component analysis (PCA, see below for explanation), or by 
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Figure 2.1: Outline of chemometrics methods discussed 

hierarchical techniques (also called cluster analysis methods) where a hierarchical 
pattern of distances between samples and agglomerated groups of samples are 
investigated to delineate patterns and clusters in the data set.  Hierarchical techniques 
lead to dendograms which are a visual representation of the clustering process 
(Esbensen, 2002; Naes et al., 2002). 
 

Supervised classification (sometimes known loosely as discriminant analysis) 
performs a higher-level data analysis, pattern recognition, by which new samples are 
analysed regarding their similarity (or dissimilarity) with regard to a set of known classes 
(groups, clusters).  Supervised techniques establish rules for when and how future 
unknown samples will be classified into such pre-determined classes. 

 
Figure 2.1 outlines the chemometric methods discussed in this section. 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

2.3.1 MULTIVARIATE REGRESSION METHODS 

2.3.1.1 Multiple linear regression (MLR) 

MLR is an extension of a univariate regression with the difference being that in MLR one 
y-variable is regressed against several x-variables by least squares fitting (of the y-
variable deviations).  The critical drawback of this method is that all x-variables must be 
linearly independent, i.e. no significant X-variable collinearity is allowed.  Outliers (those 
observations or variables which are abnormal compared to the major part of the data) 
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can also pose a serious threat to the accuracy of MLR (Esbensen, 2002; Naes et al., 
2002). 

2.3.1.2 Partial least-squares (PLS) regression 

PLS relates a single (also called PLS1), or many (also called PLS2), y-variables to a set 
of x-variables.  In PLS regression each of the components or latent variables is 
calculated by maximising the covariance between the y-variable(s) and linear 
combinations of all x-variables, called the scores.  In contrast to MLR, when employing a 
PLS method for regression, x-variable sets can show a high level of correlation or 
collinearity without the regression being affected, as is the case in many spectroscopic 
techniques.  A set of PLS components is found, the first of these delineating that 
variation in the X-data which is most relevant to predicting the y-variable(s).  The 
coordinates of the objects projected onto the new space are called scores.  The loading 
weights of the X-variables signify how much each x-variable has in common with the y-
variable for each component.  As with PCA (see below), the scores and loading weights 
are usually presented graphically, presenting an optimised base for their interpretation 
(Esbensen, 2002). 

2.3.1.3 Principal component regression (PCR) 

PCR is a two step process, the first step which consists of a PCA on the x-variable set, 
to reduce dimensionality.  In the second step, a standard MLR is performed using these 
principal component scores as the x-variable set (Esbensen, 2002). 

2.3.1.4 Locally weighted regression (LWR) 

LWR is used when dealing with non-linearities in data sets.  LWR is based on PCR and 
assumes that there are local linearities in the data that can be utilised.  For each new 
predicted sample, the x-variable set is projected down on the first couple of principal 
components (PC’s).  The calibration samples which are closest to the predicted sample 
are identified in this reduced dimensional space.  Using only a few PC’s and the local 
samples, a standard least squares solution is found.  In this way a new calibration is 
performed on a local subset of calibration samples for each new prediction sample.  As 
long as the number of samples in each local calibration and the number of PC’s is small, 
there should not be any computational problems with this method (Naes et al., 2002).  

2.3.2 UNSUPERVISED CLASSIFICATION TECHNIQUES 

2.3.2.1 Principal component analysis (PCA) 

PCA optimally describes a data set in an original n-dimensional space by deriving a new 
set of underlying compound variables that are orthogonal to each other, while 
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minimising the loss of important data.  The new variables can be thought of as linear 
combinations of all original X-variables.  The first of these PC’s is covering as much of 
the primary variation in the data as possible, with the second carrying the next highest 
fraction variance in a plane orthogonal to the first.  The coordinates of the objects in the 
new space are termed object scores.  Loadings are the coefficients by which the original 
variables must be multiplied to obtain the PC’s.  The numerical value of the loading is an 
indication of how much the variable has in common with a PC.  The scores and loadings 
are usually graphically represented (Esbensen, 2002). 
 

PCA is normally used to identify hidden patterns in a data set without knowing 
anything about the data beforehand.  PCA is described as the “workhorse” of 
multivariate data analysis as almost all analysis is preceded, or should be, by a PCA to 
reveal possible data structure (Massart et al., 1988; Esbensen, 2002). 

2.3.2.2 Cluster analysis (CA) 

Clustering in CA involves the measurement of either the distance or the similarity 
between objects (or variables).  The distance measures selected are most often the 
Euclidean distance or Mahalanobis distance.  The objects are then clustered in terms of 
their distance or similarity hierarchy  (Naes et al., 2002). 

2.3.2.3 Hierarchal cluster analysis (HCA) 

HCA groups objects in clusters on the basis of inter-object distances in high dimensional 
space.  The results are shown in a dendrogram, which may be used to detect groups of 
similar individuals (Esbensen, 2002). 

2.3.2.4 Ward’s hierarchical clustering 

Ward’s method produces spherical clusters of roughly the same size.  Using a pre-
selected measure of similarity or distance, objects are clustered together.  Starting with 
n groups each containing one object, this method is a so-called bottom-up approach.  
Two objects are combined to form a single cluster.  A new object is then either added to 
the cluster or combined with another object to form a new cluster.  This is continued until 
all objects belong to a cluster.  Once a cluster is formed it cannot be split, it can only join 
with another cluster.  Ward’s method will join two groups when it will minimise the Error 
Sum of Squares.  Due to the agglomerative nature of Ward’s method, the cluster centres 
change each time a new object is added.  This might mean that by the end of the 
process some objects are no longer in the correct cluster (Ward, 1963). 
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2.3.3 SUPERVISED CLASSIFICATION METHODS (DISCRIMINA NT ANALYSIS) 

2.3.3.1 PLS discrimination (PLS-DISCRIM, PLS-DA) 

PLS-DA uses PLS regression to model the differences and thereby discriminate 
between classes (2 or more).  This is done by assigning a dummy variable for each 
class.  For a specific class a sample will be assigned +1 when it belongs to that class 
and -1 if it does not belong to that class.  This system of +1 and -1 is used if there are 
only two classes and a PLS1 regression model is used.  If there are more than two 
classes, a PLS2 regression will have to be used where each object has several dummy 
variables assigned to it, one for each class category.  For example, if an object belongs 
to class 2 in a four-class problem it will have a variable set designation as follows: [-
1;+1;-1;-1] (Esbensen, 2002). 

2.3.3.2 Soft independent modeling of class analogy (SIMCA) 

Soft independent modelling of class analogy (SIMCA) is a classification method based 
on individual PCA modelling of each class which can discriminated in the data.  A PCA 
model is built on the training data for each known class of objects.  Each PCA model will 
have its own optimum number of PC’s as each class’s data structure might be different 
from another.  New samples are classified according to the class to which PCA model it 
fit best fits by calculating its distance to each PCA model in turn – then selecting the 
smallest.  A new sample may also be classified as “not belonging to any” of the set of 
known classes; this option allows for detection of new types of samples, or of new 
aggregate patterns which is one of the most valuable assets of data analysis (Esbensen, 
2002; Naes et al., 2002). 

2.3.3.3 Linear discriminant analysis (LDA), Canonic al discriminant analysis (CDA) 

LDA is very similar to CDA (also known as Fisher’s Linear Discriminant analysis).  LDA 
creates scatter plots from information found along the direction in multivariate space that 
separates groups as much as possible.  Allocation rules can then be defined from the 
difference in groups.  LDA first seeks a direction that maximises the difference between 
the groups’ means as compared with the within-group variance.  When there are only 
two groups this direction finding is the same for CDA and LDA.  The line that defines the 
direction of maximum difference is called the canonical variate or linear discriminant 
function (LDF).  CDA is used when there are more than two classes.  The second LDF 
will describe the direction where the next best discrimination is and so on.  For more 
than two classes the maximum number of LDF’s is one less than the number of classes.  
The major drawback of these methods are that it assumes that covariance of the 
different classes are identical (Esbensen, 2002; Naes et al., 2002). 
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2.3.3.4 K-nearest neighbours (KNN) 

KNN classifies a new object by calculating its distance from each of the other objects in 
a training set.  The K nearest neighbours (typical values for K are 3 or 5, chosen for 
performance optimisation) are found and the unknown is classified as belonging to the 
group that has the most members amongst these neighbours.  This approach has the 
advantage of making no assumptions about the shapes of the groups at all.  For more 
than two groups a tie-breaking situation might occur.  An often used tie-braking rule is 
simply to use the nearest neighbour as indicator (Naes et al., 2002). 

2.3.4 NEURAL NETWORKS 

2.3.4.1 Artificial neural networks (ANN)) 

An ANN consists of a nodes-net of information processing elements called neurones, 
which are connected together.  They acquired ‘‘knowledge’’ by the calibration of the net, 
tested by the prediction of unknown input vectors which are not included in the 
calibration set.  Generally, an ANN is organised into a hierarchy of layers: The first layer 
is the input layer with a node for each input variable, the output layer consist of a node 
for each variable to be determined – also encompassing a series of one or more hidden 
layers, between the input and the output layers, consisting of a given number of nodes.  
Each of the input nodes is connected to each of the hidden nodes and each of the 
hidden nodes is connected to each output node.  Therefore, the signals are propagated 
from the input layer through the hidden layer(s) to the output layer.  The contributions 
from all nodes are multiplied by constants (called weights) and added before the output 
of a node is determined by a nonlinear transfer function.  Among the most popular 
nonlinear transfer function is the sigmoid function.  The adequate functioning of a neural 
network strongly depends on the manner the signals are propagated through the net.  
The weights play a critical role in this propagation and a proper setting of these weights 
is essential.  Usually, this setting is not known a priori and the weights are initially given 
randomly.  The process of adapting the weights to an optimum set of values is called 
training, learning or calibration of the net.  A representative training set is iteratively 
presented to the input of the neural network and the difference between the desired 
solution (target) and the net calculated one (output) is used to adapt the weights step-
by-step, according to the learning algorithm.  This difference, or error, is back-
propagated from output to input of the network for a new iteration to correct the weights 
until the network error converges to an estimated level initially assigned (Naes et al., 
2002; Penza and Cassano, 2004a). 
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2.3.4.2 Kohonen artificial neural network (KANN) 

The Kohonen artificial neural network (K-ANN), also known as the self organising map 
(SOM), is based on a non-interconnected, single layer of neurons, usually arranged in a 
two-dimensional hexagonal or rectangular grid.  Responses are usually at the top of this 
grid.  Underneath the top layer is a column of cells, each cell representing a descriptor.  
Each of the cells have a weight vector, the number of elements in this vector is equal to 
the number of variables in the input object (this can be a spectrum or chromatogram). 
The term “self-organising” refers to the fact that the map is trained without supervision.  
During the learning of the network, each sample from a predetermined training set is 
presented to the network in a random order.  For each sample, the distance between the 
sample and every column of weights is calculated.  The column with the minimum 
distance is considered the winning neuron.  The weights of this neuron are modified so 
that at the following cycle the distance of the same sample from the winning neuron 
shall be smaller.  A similar correction is applied to the neurons in the neighbourhood of 
the winner.  This correction decreases with the distance.  Usually the distance at which 
the correction takes place decreases during the learning phase.  At the beginning the 
entire network is affected by every correction while in the last cycles only the winner 
neuron is corrected.  Similarly, at the beginning, the learning rate and the amount of 
correction introduced is larger than in the latter cycles.  The final result is a map, the first 
layer, where the most similar samples are in the same cell or next to one another.  The 
weights give an insight into the reason for the clustering of the objects.  Due of this, 
analysis of the first layer provides information on the similarity of the samples while the 
analysis of the weights provides information on the reason for their similarity (Kohonen, 
1989; Marengo et al., 2002). 

2.3.5 VALIDATION 

When using chemometric methods to predict quantitative parameters or when creating 
models for future discrimination of unknown samples, it is crucial to use proper model 
validation.  Validation offers a prediction error estimate based on the calibration of a 
multivariate model.  Proper validation of a multivariate model can also prevent over-
fitting or under-fitting of data.  There are three basic types of validation: leverage 
corrected validation, cross validation and independent test set validation.  A 
comprehensive explanation of the types of validation is presented by Esbensen (2002).  
A short summary follows. 

2.3.5.1 Independent test set validation 

Independent test set validation is the best possible validation method to use in creating 
multivariate models (Esbensen, 2002).  For these methods two completely independent 
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sets of data is required with known reference values.  The two sets must be independent 
but similar with regards to processing conditions and the way the samples were taken 
and analysed.  Both sets must be as similar, to any future samples that will be taken, as 
possible.  The one set of data will then be used to create the calibration and the other to 
validate the model. 

2.3.5.2 Cross validation 

In this method of validation only one set of data is available for both the calibration and 
validation of a model.  If only a few objects are available to build a calibration model then 
the so called leave-one-out or full cross validation is used.  One object is taken out of a 
data set and the rest of the objects are used for the calibration model.  The object left 
out is then used to validate the model.  This process is continued until all objects were 
used as validation objects.  The average of all the validation errors is then used as a 
measure of model accuracy. 
 

It is obvious that full cross validation will result in an over optimistic model and that it 
might have no relation to any future data sets.  This type of validation can also be 
extended into using segments of the data as calibration and validation sets.  The 
optimum in accuracy being a two segmented cross validation where a data set is split in 
half and one half is used as calibration set and the other as validation set and then 
turning the two sets around (Esbensen, 2002). 

2.3.5.3 Leverage corrected validation 

This is a very quick and easy method, but results in a highly over optimistic model.  
Leverage measures the effect an individual object has on the model.  The further an 
object is from the model centre the higher its leverage on the model.  Leverage 
correction increases the weight of samples lying far from the model.  Leverage 
correction is used early on in the modelling process when dealing with identifying 
outliers in the calibration data set.  This method of validation should never be used for 
finalised models (Esbensen, 2002). 

2.4 AUTHENTICATION IN THE FOOD INDUSTRY 

As chemometrics has a big part of its origin in the food industry (Williams, 2001), a vast 
amount of research has been done in this field.  This has led to the application of the 
same thought processes in other fields.  What has been done in the food industry has 
had a big impact on how chemometrics has been applied in the wine industry.  It is 
therefore imperative to look at some combinations of chemometrics and instrumental 
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analysis in the food industry.  In the following paragraphs some of the instrumental and 
chemometric approaches used in the food industry are described. 
 

In a recent review Reid et al. (2006) describe recent technological advances for the 
determination of food authenticity.  The review covers various analytical instruments and 
accompanying chemometric evaluations.  In a review by Fugel et al. (2005), quality and 
authenticity control of fruit purees, fruit preparations and jams with various analytical 
instruments and multivariate methods are discussed. 
 

The effectiveness of the analysis of stable isotope ratios (13C/12C and 15N/14N) in 
fractions of lamb meat, measured by isotope ratio mass spectrometry was evaluated by 
Piasentier et al. (2003) as a method of authenticating feeding and geographical origin 
using canonical discriminant analysis (CDA).  They were able to correctly classify 79.2% 
of samples based on country of origin and 91.7% based on feeding regime using cross-
validation for both predictions. 

 
Downey and Beauchene (1997) used NIR spectroscopy and selected chemometric 

techniques (PLS, FDA, SIMCA) to detect whether meat that has been frozen was 
substituted for fresh meat.  Using meat drip samples that went through freeze-thaw 
cycles, they found that in a NIR spectral range of 1100 to 2498 nm the best separation 
was obtained by FDA.  
  

Using chemical profiling methods, Anderson and Smith (2005) were able to 
determination the geographical origin (Iran, Turkey and USA) of pistachios.  As part of 
the chemical profiling they made use of inductively coupled plasma atomic emission 
spectrometry (ICP-AES) for elemental analysis (Ba, Be, Ca, Cu, Cr, K, Mg, Mn, Na, V, 
Fe, Co, Ni, Cu, Zn, Sr, Ti, Cd, and P) and to analyse for inorganic anions and organic 
acids (selenite, bromate, fumarate, malate, selenate, pyruvate, acetate, phosphate, and 
ascorbate) they used capillary electrophoresis (CE).  Bulk carbon and nitrogen isotope 
ratios were elucidated using stable isotope MS.  The discrimination involved was 
achieved using CDA and PCA with accuracies of 95% and higher.  
 

HPLC polyphenolic profiles of apple pulp, peel or juice provide enough information to 
develop classification criteria for establishing the technological grouping of apple 
cultivars (bitter or non-bitter) by using supervised pattern recognition procedures (LDA, 
KNN, SIMCA, PLS and multilayer feed forward ANN).  In all cases for peel, pulp and 
juice 100% recognition and prediction were achieved (Alonso-Salces et al., 2004). 
 

Bortoleto et al. (2005) describes an innovative technique based on X-ray scattering 
applied to classify complex organic matrices of different vegetable oils.  They used PCA 
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to discriminate between extra virgin olive oil from other olive oils and also to indicate the 
adulteration of extra virgin olive oil with soybean oil.  The main reason for discrimination 
is attributed to the total lack of water in extra virgin olive oil. 
 

Detection of Roundup Ready™ Soybeans by NIR spectroscopy with reasonable 
accuracy was achieved by Roussel et al. (2001).  Chemometric techniques included 
Partial Least Squares (PLS), Locally Weighted Regression (LWR), and Artificial Neural 
Networks (ANN).  Locally Weighted Regression using a database of approximately 8000 
samples, provided the most accurate classification model (93% accuracy), while ANN 
and PLS methods provided classification accuracies of 88% and 78%, respectively. 
 

The application of FTIR to identify possible adulteration of olive oils was adopted by 
Tay et al. (2002). Single-bounce attenuated total reflectance (ATR) measurements were 
made on pure olive oil as well as olive oil samples adulterated with varying 
concentrations of sunflower oil.  Discriminant analysis was used to classify oil samples 
and PLS was used for the determination of concentration levels of the adulterant.  Full 
cross-validation for the PLS model resulted in a R2 of 0.974. 
 

Karoui et al. (2005) investigated the potential of mid-infrared and intrinsic 
fluorescence spectroscopy for determining the geographic origin of different French and 
Swiss hard cheeses.  By applying FDA to the MIR data only 80% correct classification 
was achieved.  Using fluorescence spectroscopy 100% correct classification was 
achieved. 
 

Determination of the geographic origin (Japan or China) of Welsh onions (Allium 
fistulosum L.) was conducted by Ariyama et al. (2004).  They used flame atomic 
absorption spectroscopy, inductively coupled plasma atomic emission spectrometry 
(ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) for elemental 
analysis of 20 elements (Na, P, K, Ca, Mg, Mn, Fe, Cu, Zn, Sr, Ba, Co, Ni, Rb, Mo, Cd, 
Cs, La, Ce, and Tl) together with LDA and SIMCA for classification.  LDA provided a 
correct classification of 93% and SIMCA a correct classification of 91%. 
 

A recent paper by Cordella et al. (2005), describes the development of an effective 
anionic chromatographic method (HPAEC-PAD) for honey analysis and the detection of 
adulteration with various industrial bee-feeding sugar syrups. Discrimination between 
authentic and adulterated honeys was done by LDA (96.5% correct classification) and to 
quantify the adulteration levels PLS analysis (R2 using three components was 0.962) 
was used. 
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The above citations are only a few examples where different analytical instrumental 
output was combined with chemometric methods to authenticate food related products 
for various attributes. 

 
In the sections that follow, an overview of the various combinations of 

instrumentation and chemometric approaches referred to in specific research articles 
related to wine will be given.  Groups of research articles will be combined under a 
heading (in italic) that describes the type of instrument or instruments that were used in 
the research articles. 

2.5 PREDICTION OF CHEMICAL PARAMETERS OF WINE 

In the prediction of chemical parameters important to the oenological process, NIR and 
FTIR spectroscopy can be used.  Both these types of analytical methods have the 
advantage of being fast in the analysis of a sample, typically less than 2 minutes per 
sample.  The techniques are non-destructive and require minimal sample preparation, 
usually degassing and filtration only.  Multiple chemical parameters are predicted 
simultaneously from the spectrum generated of the sample.  The potential drawback of 
both these methods are that the predicted values are only as good as the models used, 
leaving the possibility for inferior calibration with the user.  Upon reflection, this is a 
necessary prerequisite for any scientific endeavour of course – calibration must be the 
sole responsibility of the analyst/data analyst. 
 

There are today excellent commercially available NIR and FTIR instruments which 
are dedicated to wine analysis in wine quality control laboratories.  The Thermo Electron 
Corporation (Madison, Wisconsin) markets the Nicolet™ Antaris™ FT-NIR analyser.  
The analyser is able to predict properties for a wine, including density, ethanol content 
and °Brix.  FOSS (Foss Electric, Denmark; http://ww w.foss.dk) markets the Winescan 
FT120 FTIR instrument.  The Winescan comes pre-loaded with global calibrations for 
red, white and rose wines.  The Winescan also offers the possibility for user created 
calibrations. 

 
Some of the instrumental techniques and applications are discussed below. 

 
NIR 
Garcia-Jares and Médina (1997) used NIR reflectance with 19 interference filters for the 
simultaneous determination of ethanol, glycerol, fructose, glucose and residual sugars in 
botrytised-grape sweet white wines.  By using a PLS model, predicted results compared 
well with other chemometric techniques like multiple linear regression (MLR), step wise 
regression (SWR) and principal component regression (PCR).   
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NIR spectroscopy was used by Cozzolino et al. (2004) to predict concentrations of 

malvidin-3-glucoside, pigmented polymers and tannins in red wine.  They used 32 
commercial red wines, totalling 495 samples, spanning two vintages, two grape varieties 
(Cabernet Sauvignon and Shiraz), two types of fermenters, two yeast strains and three 
different fermentation temperatures.  A monochromator instrument was used to scan 
samples in transmission mode (400 to 2500 nm).  The calibration was built using the 
NIR data as X and HPLC reference data (Y) with a PLS regression model; cross 
validation was used.  A R2 of greater than 0.8 was achieved.  This was considered to be 
a rapid alternative method for prediction of red wine phenolics. 
 

A feasibility study by Urbano-Cuadrado et al. (2004), they used NIR reflectance 
spectroscopy in wineries for determination of the 15 oenological parameters.  The 
calibration and validation sets were built using 180 samples from six Spanish wine 
regions, three wine types, seven grape varieties and a mix of young and aged wines.  
Calibrations for ethanol, volumic mass, total acidity, pH, glycerol, colour, tonality and 
total polyphenol index was established using PLS regression and cross validation.  R2 
values higher than 0.80 was achieved.  Good correlations was also found for lactic acid, 
but less than desirable correlations for volatile acidity, malic acid, tartaric acid, gluconic 
acid, reducing sugars and SO2 all with R2 in the range 0.43 to 0.71. 
 

Arana et al. (2005) were able to predict solids content of two varieties of Spanish 
grapes (Chardonnay and Viura) with NIR reflectance spectroscopy (800 to 500 nm).  
They found reasonable correlation coefficients, but that each variety needed its own 
PLS calibration using full cross-validation.  Coefficients of determination for Chardonnay 
and Viura were 0.75 and 0.70 respectively.  
 
NIR and FTIR 

Urbano-Cuadrado et al. (2005) used NIR (400 to 2500 nm) and FT-IR (800 to 3000 
cm−1) independently and in combination to evaluate the prediction capability for several 
oenological parameters including alcoholic degree, volumic mass, total acidity, glycerol, 
total polyphenol index, lactic acid and total SO2.  It was found that NIR in general yielded 
better results, but when NIR and FTIR were combined, concentrations for glycerol and 
total SO2 were even better determined.  Calibrations were built using PLS regression 
and cross validation. 
 
FTIR 
Schneider et al. (2004) used FTIR to determine the glycosidic precursors responsible for 
varietal aroma in non-aromatic grapes.  The only rapid test for glycoconjugates is the 
red-free glycosyl glucose method in which glucose is measured after acid hydrolysis, but 
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can only quantify total glycoconjugates.  Samples (n=39) were collected at different 
maturity stages to be representative of the glycoside variability from Northwest France.  
Calibration models for the most relevant aroma glycoconjugates (C13-norisoprenoidic 
and monoterpenic glycoconjugates) for Muscadet wines were established using PLS 
regression with predictive errors of 14% and 15%, respectively.   
 

Coimbra et al. (2005) found that by pre-treatment of FTIR spectra (1200 to 800 cm-1) 
of red and white wine extracts with orthogonal signal correction (OSC) it was possible to 
quantify mannose polysaccharide from mannoproteins using PLS1 regression for 
calibration. 

 
Nieuwoudt et al. (2004) developed a general calibration model with FTIR for 

predicting glycerol in wine (reducing sugar content < 30 g/L, alcohol > 8% v/v) with a 
SEP of 0.40 g/l.  They further also developed a calibration model for special late harvest 
and noble late harvest wines (reducing sugar content 31-147 g/L, alcohol > 11.6% v/v) 
with a SEP of 0.65 g/L. 

 
Various calibrations were developed by Urtubia et al. (2004) to monitor the complete 

fermentation process for glucose, fructose, glycerol, ethanol, malic acid, tartaric acid, 
succinic acid, lactic acid, acetic acid and citric by FTIR.  The calibration models were 
built using PLS regression on Cabernet Sauvignon fermentations.  Average error of 
prediction was 4.8% with malic acid the worst at 8.7%.  Due to the low number of 
samples it was found that the calibrations were less good once external validation was 
used on fermentations of other varieties (test set validation).  
 

Cocciardi et al. (2005) showed that single bounce attenuated reflectance (SB-ATR) 
FTIR performs better than FT-NIR and is comparable to transmission FTIR.  PLS 
calibration (72 samples) with independent test validation (77 samples) using SB-ATR-
FTIR for 11 wine parameters showed good correlation coefficients except for citric acid, 
volatile acid and SO2. 
 
E-nose 
Maciejewska et al. (2006) showed that it is possible to follow a wine fermentation by 
using an array of partial selective gas sensors.  They extracted the first PC and 
correlated it with ethanol content and volatile acidity with a high correlation coefficient 
and to a lesser degree also found a correlation with ethyl acetate.  This study found a 
strong relationship between the first PC of the sensor array and human sensory patterns 
for the progression of the fermentation.  
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2.6 DISCRIMINATION OF WINES BASED ON ORIGIN 

Sensory and analytical, (GC, HPLC)  
Sivertsen et al. (1999) set out to discriminate wine (n=22) from four wine areas in France 
by using chemical analysis and sensory data.  Chemical analysis was conducted by 
HPLC, GC and official analytical methods and included major acids, alcohols, esters, 
pH, total phenols and colour.  Sensory analysis was done with 17 attributes.  PCA was 
done and followed by CDA using the score matrix from the PCA to classify the wines in 
groups according to the four regions.  It was found that the best classification was 
achieved by using chemical analysis data (81.8% correct classification) and the use of 
sensory data resulted in a distinctly less good classification (63.6% correct 
classification).  The worse performance of the sensory data was attributed to a lack in 
good descriptors and an untrained panel. 
 

Kallithraka et al. (2001) managed to classify 33 red Greek wines in two regions of 
Greece, Northern Greece and Southern Greece.  They also used both chemical and 
sensorial data, but included mineral analysis by ICP as well.  Using only PCA they could 
not discriminate between origin when using all instrumental and sensorial data.  
Clustering using PCA was successful when they used sensorial and anthocyanin data 
alone.  The use of anthocyanins proofed to be a crucial factor in the discrimination of red 
wines while phenols and minerals were not as useful.  
 
AA, analysis, chromatography, phenolic  
By using stepwise linear discriminant analysis (S-LDA) on 12 analytical parameters for 
wine, Perez-Magarino et al. (2002) was able to classify rose wines into one of three 
Spanish  protected designation of origin (PDO).  They found that after samples were 
analysed for elemental composition by atomic absorption spectrometry, phenolics, 
colour measurements and classical wine parameters (ethanol, acidity), that ethanol and 
calcium were the most important parameters for discrimination as ranked by their 
statistical F values. 
 

Arozarena et al. (2000) determined 20 analytical parameters for 66 wines making 
use of standard methods including GC-FID for volatile components.  With the utilisation 
of factor analysis they were able to classify the wines into the two Spanish production 
areas where the originated from.  By employing stepwise discriminant analysis they 
were able to get 92% of a proper test set of wines correctly classified. 
 
Nuclear magnetic resonance (NMR) 
Brescia et al. (2002) studied 41 red wines from Southern Italy.  By using PCA and HCA 
they showed the presence of the three regional clusters and correct classification with 
DA on the two datasets of chemical data (chromatographic, routine analysis, ICP-AES) 
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and 1H-NMR data.  This showed that 1H-NMR can be used for authentication of Italian 
wines in a much faster fashion than traditional techniques such as ICP-AES, routine 
analysis and chromatographic techniques. 
 
NIR  
Arana et al. (2005), used NIR (800 to 500 nm) reflectance data in combination with CDA 
to classify grapes of the same variety into two Spanish growing regions. 
 
Mass Spectrometry (MS) 
Headspace Mass Spectrometry (HS-MS) was applied by Marti et al. (2004) to red wines 
from two geographically close Catalonian growing areas.  By variable selection they 
were able to show discrimination of the two growing areas using PCA and SIMCA. 
 
Inductively coupled plasma (ICP)  
Classification of 53 wines from four of the most important Bohemian (Czech Republic) 
regions according to their origin was undertaken by Sperkova and Suchanek (2005), 
with the use of ICP-MS and ICP-OES.  The sample set consisted of red and white wines 
and 14 different varietals.  In total 27 elements were determined.  Clustering was 
observed when a PCA was performed on the elemental data and nearly 100% correct 
classification was achieved in a DA model for all regions.  It was found that using the 
elemental variables represented by Al, Ba, Ca, Co, K, Li, Mg, Mn, Mo, Rb, Sr and V and 
element ratios Sr/Ba, Sr/Ca and Sr/Mg achieved best discrimination.  They also found 
that discrimination was independent of vintage. 
 

Coetzee et al. (2005) showed that ICP-MS in combination with stepwise discriminant 
analysis or pairwise discriminant analysis can successfully discriminate between wines 
from 3 South African wine regions.  It was shown that by using 20 (Li, B, Mg, Al, Si, Cl, 
Sc, Mn, Ni, Ga, Se, Rb, Sr, Nb, Cs, Ba, La, W, Tl, and U) of the 40 analysed elements 
which showed a difference in their means across the three regions, discrimination was 
achieved. 

 
Elemental analysis by ICP-MS and ICP-OES was used by Thiel et al. (2004) to 

discriminate between wines from four wine regions in Germany.  Discriminant analysis 
was used with a training set of 88 known samples and this led to a correct classification 
of 88.6%.  This was achieved after selection of variables (by means of analysis of 
variance) that is not influenced by climate and winemaking practices, namely As, B, Be, 
Cs, Li, Mg, Pb, Si, Sn, Sr, Ti, W, and Y. 
 
ICP-OES, ICP-MS, IRMS, NMR, FTIR  
Gremaud et al. (2004) used a variety of analytical instruments (ICP-OES, ICP-MS, 
IRMS, NMR and FTIR) to authenticate geographical origin of Swiss wines.  It was 
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showed by using a LDA model that the sampled wines could be categorised into the four 
wine regions within Switzerland.  It was also found that elemental analysis was 
independent of vintage. 
 
E-tongue 
The use of an electronic tongue was investigated by Riul et al. (2004) for the 
classification of red wines.  By using the output from impedance spectroscopy with the 
electronic tongue in a PCA, they could discriminate 6 clusters of red wines by different 
producers.  By employing an ANN on the sensing data they were able to discriminate 
different clusters even if different storage conditions were used.  
 
Capillary electrophoresis (CE)  
Nunez et al. (2000) made use of CE to discriminate between Spanish wines from three 
wine regions (Ribeira Sacra and 2 non-Ribeira Sacra).  Discrimination could be achieved 
by the analysis of 25 wines using 6 trace metals (Na, K, Ca, Mg, Mn and Li) determined 
by CE.  Various chemometric discriminating methods (LDA, KNN and SIMCA) gave 
roughly the same results of above 90% recognition of Ribeira Sacra wines. 
 
FTIR 
Picque et al. (2005) used FTIR on dried Gamay wine extracts to determine their origin 
from three French wine regions by applying PLS discrimination.  On average 85% of the 
test set wines were correctly classified. 
 
HPLC  
Rodriguez-Delgado et al. (2002) used HPLC to discriminate between 55 red wine 
samples from five production areas on the Canary Islands (Spain).  The differentiation 
was achieved using LDA. 
 
GC-MS 
Marengo et al. (2002) found that by applying PCA, HCA and KANN (Kohonen artificial 
neural network) to volatile components (analysed with GC-MS) from 68 Italian wine 
samples they could discriminate wines from different vintages.  

2.7 DISCRIMINATION OF WINE BASED ON THEIR VARIETAL  

Standard oenological analysis 
Arozarena et al. (2000) used standard oenological parameters and GC-FID analysis in 
conjunction with stepwise discriminant analysis (SDA) to discriminate seven Spanish 
varietals (Graciano, Tempranillo, Grenache, Carignan, Merlot, Ruby Cabernet and 
Cabernet Sauvignon).  SDA performed much better than factor analysis which gave no 
discrimination except for Ruby Cabernet. For wines from the test set, 85% were correctly 
classified using SDA. 
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A combination of conventional oenological parameters, alcohols and esters was 

used by Aleixandre et al. (2002) to discriminate four varietal wines from Spain.  In total 
91 wines were analysed from two vintages and represented Cabernet Sauvignon, 
Tempranillo, Monastrell, and Bobal varietals.  Discriminant analysis (DA) using the first 
two discriminant functions correctly classified 100% of wines from the 1994 vintage and 
correctly classified 95% of the 1995 vintage.  
 
NMR 
Kosir and Kidric (2002) used the signals of seven amino acids in Slovenian white wines 
obtained form one-dimensional 1H NMR to discriminate between varietals.  They only 
analysed 10 wines from the varietals Chardonnay, Welsch Riesling, Sauvignon and 
Riesling.  Samples were clustered using Ward’s hierarchical clustering method with 
Euclidean distances. 
 
PTR-MS 
Four wine varietals (two red and two white) were discriminated by Boscaini et al. (2004) 
using a method based on proton transfer reaction mass spectrometry (PTR-MS).  This 
method analyses the volatile organic compounds present in the headspace of the wine.  
PCA was used on MS data and this resulted in the clustering of the four varietals. 
 
GC-FID, GC-MS 
Pet'ka et al. (2001) used the volatile composition, determined by GC-FID and GC-MS to 
classify Slovak white wines.  The three varietals investigated were Welschriesling, 
Grüner Veltliner and Müller Thurgau.  A final discrimination was achieved using 10 
volatile components and LDA as a chemometric tool. 
 
NIR 
NIR reflectance (800 to 500 nm) was used by Arana et al. (2005) to discriminate 
between two white varietals from Spain based on the analysis of their juice.  They found 
it possible to discriminate Viura from Chardonnay grapes using Canonical discriminant 
analysis with overall success of 97.2%. 
 
Vis-NIR 
The combination of visible and NIR spectroscopy was used by Cozzolino et al. (2003) to 
discriminate between wines made from two varietals (Chardonnay and Riesling).  They 
used a total of 269 samples divided in to sets, one used as a training set and the other 
as a validation set (test set).  Initially outliers were removed by studying the results from 
PCA on all samples.  PLS-DA correctly classified 100% of Riesling and 96% of 
Chardonnay samples from the validation set. 
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FTIR-ATR 
By using FTIR-ATR, Edelmann et al. (2001) was successful in discriminating between 
38 Austrian red wines (Cabernet Sauvignon, Merlot, Pinot Noir, Blaufränkisch 
(Lemberger), St. Laurent, and Zweigelt).  By making use of dried phenolic extracts from 
the wines combined with a SIMCA classification 97% of the wines in their test set was 
correctly classified. 
 
FTIR, E-nose, UV 
Three fast analytical instruments (FTIR, E-nose and UV spectrometry) were compared 
by Roussel et al. (2003a) to discriminate white grape musts from France.  A total of 138 
samples were analysed from three varietals (Sauvignon, Mauzac and Colombard) and 
another group of mixed varietal musts.  By applying PLS-DA to the data it was shown 
that FTIR analysis resulted in the best discrimination with 9% incorrectly classified, this 
after a Genetic Algorithm pre-processing of the data. 
 

Roussel et al. (2003b) used data-fusion from aroma sensors, FT-IR and UV 
spectrometry based on Bayesian inference to classify white grape varieties.  The 107 
samples represented Sauvignon, Mauzac, Colombard and a fourth class made up of 35 
samples of various other white varieties from the south of France.  This approach 
delivered significantly better classification results that the individual instruments.  The 
error in classification was 4.7% compared to 9.6% for FTIR, the best of the individual 
instruments using PLS-DA with full internal cross-validation.   
 
E-tongue 
Riul et al. (2004) used a conducting polymer based e-tongue to discriminate between 
red wines.  Impedance spectroscopy was used as detection method and using PCA 
distinct clustering of the wines was observed.  Using an ANN 100% recognition of the 
wines was achieved. 
 
E-nose 
Marti et al. (2004) used HS-MS as an electronic nose (e-nose) to discriminate between 
Catalonian red varietals.  Wines made from Cabernet Sauvignon, Tempranillo and 
Merlot was used in the study.  By using PCA on selected variables the found acceptable 
discrimination for the 1999 and 2001 vintage and partial overlap between clusters in 
2000.  The pattern of classification was also different for each vintage. 
 

Penza and Cassano (2004a) used a four sensor e-nose attempting to classify nine 
Italian wines by using ionic conductivity, pH and alcohol content.  They found that PCA 
did not give sufficient discrimination and with the use of ANN the also did not get a high 



 29 

rate of correct classification.  They concluded that the technique might be refined by 
using more parameters and increase the number of sensors in the e-nose. 

 
A surface acoustic wave (SAW) sensor array, an e-nose, has been developed by 

Santos et al. (2005) in order to discriminate six Spanish wines coming from four different 
grape varieties (Tempranillo and Grenache, Airén and Malvar).  LDA separated the 
clusters of different varietals and a probabilistic neural network (PNN) predicted with an 
error rate of 14%. 

2.8 DETECTION OF ADULTERATION IN WINES  

SNIF-NMR, IRMS 
Ogrinc et al. (2003) used SNIF-NMR (site-specific natural isotopic fractionation nuclear 
magnetic resonance) and IRMS (isotope-ratio mass spectrometry) to test the detection 
power of isotopic measurements for detection of adulteration of wine ethanol with beet 
and sugar ethanol.  They also found that proving the authenticity of a certain wine is only 
possible when the results are compared with a reference (non-adulterated) sample from 
a data bank of the same vintage from the same region. 
 

Kosir et al. (2001) explore the use of SNIF-NMR and IRMS methods in combination 
with PCA, KANN (Kohonen artificial neural network) and cluster analysis for detection of 
chaptalisation of Slovak wines.  They also compare chemometric methods to find the 
optimal one for the discrimination between groups of wines of natural and enriched 
wines.  They found that the best discrimination was achieved using KANN after 
combining both methods. 
 

In 1990, site-specific natural isotopic fractionation nuclear magnetic resonance 
(SNIF-NMR) was recognised by the European Community as an official method of 
displaying the characterisation of wine [The Commission of the European Communities 
33 (1990) L 272]. 
 
NIR 
NIR (1110 to 2500nm) was used by Sáiz-Abajo (2005) to detect adulteration of wine 
vinegar by ethanol and molasses vinegar.  They examined the influence of Orthogonal 
Signal Correction (OSC) on the classification ability of models generated.  Using 96 
vinegar samples and by employing OSC the classification improved significantly against 
no pre-processing. 
 
Flow injection analysis (FIA) 
A FIA system to evaluate adulteration of alcoholic beverages by water and ethanol was 
investigated by Da Costa et al. (2004) based on the measurement of the Schlieren effect 
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(gradients of refractive index).  Using SIMCA models they were able to identify 100% of 
laboratory adulterated samples and 95% of actual adulterated samples.  The advantage 
of this system is that it does not use and reagents. 
 
E-nose 
Penza and Cassano (2004b) used the responses from a multisensor array from wines 
tested by headspace sampling to recognise adulterated Italian wines.  Samples were 
adulterated with methanol, ethanol and other wines of the same colour.  A multisensor 
array has been used to generate the chemical pattern of the volatile compounds present 
in the wine samples.  These responses were analysed with PCA and ANN.  The cross-
validated ANN correctly classified 93% of samples. 

2.9 DISCRIMINATING WINES ACCORDING TO VINTAGE  

GC, ICP, amino acids 
The analysis of Italian wines for amino acid content, volatile content and metal ions was 
used by Seeber et al. (19910 to discriminate between different vintages.  The used PCA 
as a feature selection tool and then used LDA for discrimination with an overall 
successful classification rate of 97.2%.  
 
Chemical analysis 
Giaccio and Del Signore (2004) used chemical analysis of 17 different chemical 
parameters to classify wines from the Abruzzo region in Italy according to their vintage.  
Wine samples (156 samples) were collected over three vintages from different origins 
within the region.  By using LDA they were able to classify the wines according their 
vintage with 100% success. 

2.10 CONCLUSION 

There is an important general lesson to be found in the above results.  A wide swath of 
instrumental, chemical and physical approaches have been evaluated, many with 
excellent results, though by no means all, the unavoidable publication bias towards 
positive results notwithstanding.  Many combinations of classical statistical methods of 
data analysis, as well as data analytical chemometric approaches, would appear to work 
well in general.  However, it is easy to draw too hasty, positive conclusions when 
employing the optimistic cross validation approach (segmented or full i.e. leave-one-
object-out alternatives), which will necessarily lead to an overly optimistic, and hence 
unrealistic, prediction performance assessment (Esbensen, 2002), the only responsible 
approach is proper test set validation. 
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It is clear that there are as many methods for the prediction of parameters and 
authentication of wine as there are analytical instruments available.  As consumer 
awareness regarding food safety increase and producer protection of their processes 
spread, more methods for authenticity will become available.  The methods of high value 
will be those that are fast and can be automated with little or no human intervention.  
With more requirements placed on food quality speed of analysis and the ease of data 
processing will become more important.  With the advancements in analytical 
instrumentation and chemometric software this will be possible. 

2.11 ABBREVIATIONS USED 

ANN  artificial neural networks 
ATR  attenuated total reflectance 
CDA  canonical discriminant analysis 
CE  capillary electrophoresis 
CA  cluster analysis 
E-nose  electronic nose 
E-tongue  electronic tongue 
EC   European Council 
FIA  flow injection analysis 
FTIR Fourier transform infrared 
FT-IR  Fourier transform infrared 
FT-Raman  Fourier transform Raman  
GC-FID  gas chromatograph – flame ionising detector 
GC-MS  gas chromatograph – mass spectrometry 
GC  gas chromatography 
GM  genetically modified 
GMO  genetically modified organism 
HS-MS  headspace mass spectroscopy 
HCA  hierarchal cluster analysis 
HPLC  high performance liquid chromatography 
HPAEC-PAD  high-performance anion exchange chromatography with pulsed  

amperometric detection 
ICP  inductively coupled plasma 
ICP-AES  inductively coupled plasma atomic emission spectrometry 
ICP-MS  inductively coupled plasma mass spectrometry 
ICP-OES  inductively coupled plasma–optical emission spectroscopy 
IRMS  isotopic ratio mass spectrometry 
KNN  K-nearest neighbours 
KANN  Kohonen artificial neural network 
LDA  linear discriminant analysis 
LDF  linear discriminant function 
LWR  locally weighted regression 
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MIR mid-infrared 
MLR  multiple linear regression 
NIR  near infrared 
NMR  nuclear magnetic resonance 
OSC  orthogonal signal correction 
PLS   partial least-squares 
PLS-DISCRIM  PLS discrimination 
PLS-DA  PLS discrimination 
PCA  principal component analysis 
PCR  principal component regression 
PC  principal components 
PDO   protected designation of origin 
PDO  protected designation of origin 
PGI   protected geographical indication  
PTR-MS  proton transfer reaction mass spectrometry 
QC  quality control 
SOM  self organising map 
SNIF-NMR  site-specific natural isotopic fractionation nuclear magnetic resonance 
SIMCA  soft independent modeling of class analogy 
SWR  step wise regression 
S-LDA  stepwise linear discriminant analysis 
TSG  traditional specialty guaranteed 
UV  ultra violet 
Vis-NIR  visible – near infrared 
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Abstract  
Wines from three cultivars (Clairette Blanche, Pinotage and Cabernet Sauvignon) that 
were fermented by five Saccharomyces cerevisiae yeast strains (VIN13, WE372, VIN13-
EXS, VIN13-PPK and ML01) were analysed using gas chromatography (GC) and 
Fourier transform infrared spectroscopy (FTIR).  The data obtained were analysed by 
PLS-Discrim, a chemometric method.  Using the data from both the analytical methods, 
discrimination was observed between wines fermented with different yeast strains in 
each of the two vintages (2005 and 2006) for all the cultivars.  When combining the data 
from the two vintages no discrimination could be observed between the fermented 
wines.  The discrimination of the fermented wines was found to be similar when using 
data from GC and FTIR, respectively.  Since analysis with FTIR is considerably faster 
than analysis by GC it is recommended that FTIR be used for future studies of a similar 
nature.  The combination into one sample set of wines fermented with commercial wine 
yeast strains and wines fermented from closely related wine yeast strains (the parental 
strain and two genetically modified versions thereof (VIN13, VIN13-EXS and VIN13-
PPK)), wines fermented with closely related stains did not show good discrimination 
between each other.  Discrimination was found between wines fermented with 
genetically modified (GM) wine yeast strains and those fermented with non-GM wine 
yeast strains.  This was done on a limited number of yeast strains and a larger study is 
needed to confirm these results as this is the first study of this nature and differences 
seen could be as result of the different phenotypes. 
 
 
 
 
 
 
 
Keywords:   Wine discrimination; FTIR; Mid-infrared spectroscopy; GC-FID; 
Chemometrics; PLS-discrim; Saccharomyces cerevisiae yeast; GMO 
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3.1 INTRODUCTION 

Today, consumers constantly want to know more about the food they consume.  It is the 
consumers right to know about the nutritional value, the origin, the ingredients, possible 
allergens and many more facts about a specific food product’s safety.  These issues are 
not only limited to consumers, but are shared by many producers.  Producers not only 
want to deliver the highest quality foods but also want to protect their products against 
unscrupulous producers who would want to misrepresent the food they are selling to 
gain economic advantage.  This has led to a plethora of laws protecting food (Reid et al., 
2006).  Most countries around the world have legislation in place to regulate additives, 
production processes, labelling and other aspects relating to food safety.  A recent 
addition to legislation concerns the use of genetically modified foodstuffs (European 
Commission, 2003a, European Commission, 2003b).   
 

To ensure adherence to all legislation and consumer demands for food safety the 
field of food authentication is growing rapidly.  New analytical methods are continuously 
developed to prove adherence in a faster and more reliable way.  The most rapid 
techniques include those that utilise near-infrared (NIR) and Fourier transform infrared 
(FTIR) technology.  These methods are usually combined with chemometric techniques 
(Arvanitoyannis et al., 1999; Tzouros and Arvanitoyannis, 2001; Reid et al., 2006).  
Infrared spectroscopy, in its broader sense, is widely used in the food (Scotter, 1997; 
Wilson et al., 2001; Cerna et al., 2003) and beverage (Engelhard et al., 2004; Duarte et 
al., 2004) industries for routine quality control and authentication.  In the wine industry it 
has been shown that wines can be discriminated by cultivar, using FTIR in conjunction 
with UV-visible spectroscopy and NIR in conjunction with visible spectroscopy 
(Edelmann et al., 2001; Cozzolino et al., 2003); as well as vintage using only FTIR 
(Palma and Barroso, 2002).  Infrared spectroscopy has the advantage that it is fast, non-
destructive, and is particularly characterised by simplicity with regard to sample 
preparation.  An apparent disadvantage would be that it is an indirect analytical method 
and predicts only through chemometric multivariate calibration.  In order to create a 
suitable calibration model, a representative calibration data set is required that covers 
the full range of all properties and features met with when making analytical chemical 
prediction based on (FTIR, NIR) spectra.  The predicted values will always only be as 
good as the particular set of reference samples used to build the model.  All these, and 
several other essential aspects of multivariate calibration (including the critical issue of 
proper validation), are covered adequately in standard textbooks (Martens and Naes, 
1998; Esbensen, 2002). 
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It is well known that yeast has an important influence on wine quality and 
composition.  Approximately 95% of sugar in must is converted to ethanol and CO2, 1% 
is converted to cellular material and the remaining 4% to other end products (Boulton et 
al., 1995).  The major volatile products of fermentation are the alcohols, higher alcohols, 
esters, organic acids and aldehydes (Lambrechts and Pretorius, 2000).  Gas 
chromatography (GC) in combination with a Flame ionising detector (FID) and mass 
spectrometry (MS) is used to identify and quantify the volatile products while some of the 
non-volatile components can be determined with high pressure liquid chromatography 
(HPLC) or other chromatography techniques.  Under the same conditions each yeast 
species’ growth is characterised by a specific metabolic activity that will lead to the final 
concentration of flavour compounds in the wine.  Within a species different stains of 
yeast may also be characterised by specific metabolic activity (Romano et al., 2003a) 
and the ratios of 2,3-butanediol and acetoin isomers were used to discriminate wines 
according to the yeast used in inoculated fermentations (Romano et al., 2003b).  
Different phenotypes within non-Saccharomyces yeast species were discriminated by 
using the secondary products formed by the yeast during fermentation (Romano et al., 
1997). GC and HPLC analysis has the drawback of sample preparation and analysis 
time being time consuming. 
 

Since the introduction of commercial genetically modified (GM) food and feed, 
legislation has followed and aimed to control all aspects of research, risk assessments, 
production, labelling and transport of gene-modified organisms (GMO) (Anonymous, 
2003).  The new legislation was a combined result from end-consumer pressure groups 
as well as environmental and health groups with the aim to provide a fully transparent 
overview of modern biotechnology.  These groups demand that consumers be able to 
exercise their right to choose food on an informed and reliable basis.  In order to comply 
with this type of legislation it is necessary to develop fast and reliable techniques to 
identify genetically modified events in plant and other products. 
 

Due to international economic competition, through globalisation and a rapidly 
growing consumer demand towards higher quality wine, the ancient art of winemaking 
has entered the era of modern biotechnology.  Saccharomyces cerevisiae strains are 
developed with bio-preservation abilities and to improve fermentation and processing of 
wine and must (Pretorius and Bauer, 2002).  ML01 (Springer Oenologie, 
www.lesaffreyeastcorp.com) received GRAS (Generally Accepted as Safe) status on 
June 30th 2003 by the United States Food and Drug Administration.  This signalled the 
first commercial release of a GM wine yeast. In the United States only voluntary labelling 
of GM foodstuff is required, while the EU-market has adopted a stringent zero 
acceptance policy (Anonymous, 2003).  South Africa currently follow a similar GMO 
policy as the United States where labelling of GMO products are voluntary. 
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At the end of fermentation, wine is usually clarified from any residual yeast and other 
suspended matter and may also undergo filtration before bottling (Ribéreau-Gayon et 
al., 2000).  This will lead to a significant reduction of residual DNA, whether it originates 
from micro-organisms or from the grapes.  It has been shown, however, that it is still 
possible to extract Vitis vinefera DNA from must and wine (Siret et al., 2000; Faria et al., 
2000; Siret et al., 2002; Garcia-Beneytez et al., 2002; Leopold et al., 2003; Savazzini 
and Martinelli, 2006).  It has also been shown that S. cerevisiae DNA can be extracted 
from both must, young and older wine (Leopold et al., 2003; Savazzini and Martinelli, 
2006).  Recovered yeast DNA were amplified by PCR, or real-time PCR, and compared 
to a reference standard (Leopold et al., 2003; Savazzini and Martinelli, 2006).  Real-time 
PCR is the technique of choice in quantification and specific detection of transgenic 
DNA (Higuchi et al., 1992; Higuchi et al., 1993; Klein, 2002).  It has been proposed that 
the S. cerevisiae endogenous ScRPS3 gene be applied as a genotype referee and gene 
copy number standard used for quantification with real-time PCR (Savazzini and 
Martinelli, 2006). This technique unfortunately has several drawbacks; extraction of DNA 
is a timely process (from overnight precipitation up to two weeks) (Savazzini and 
Martinelli, 2006) and it suffers from poor extraction and amplification of DNA due to 
interference from tannins, polysaccharides and polyphenols present in the wine or must 
(Siret et al., 2000; Savazzini and Martinelli, 2006) 

 
The objective of this study is firstly to evaluate ability of FTIR and GC as instrumental 

techniques to discriminate between wines fermented with different S. cerevisiae yeast 
strains.  A second objective is to compare the resulting discrimination using GC and 
FTIR data respectively.  The discriminatory technique used in this study will be PLS-
discrim.  This study is of an exploratory nature. 

3.2 MATERIALS AND METHODS 

3.2.1 CULTIVARS 

Clairette Blanche, Pinotage and Cabernet Sauvignon were used to represent cultivars of 
both dry white and dry red wine styles.  The Clairette Blanche grapes of both 2005 and 
2006 harvest were sourced from the KWV Grondves farm outside Stellenbosch, South 
Africa.  Pinotage grapes of the 2005 harvest were sources from the Stellenbosch region 
and for the 2006 harvest from the Zevenwacht Estate outside Kuilsriver, Stellenbosch 
area.  Cabernet Sauvignon grapes were sourced from Fort Simon (Bottlery district, 
Stellenbosch) in 2005 and from the Stellenbosch University experimental farm, 
Welgevallen, in Stellenbosch in 2006. 
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3.2.2 YEAST 

Five S. cerevisiae yeast strains (Tabel 3.1) were used from the freeze culture collection 
of the Institute of Wine Biotechnology (Stellenbosch University).  Two strains are 
commercially available non-genetically modified (non-GM) strains (VIN13 and WE372).  
The two genetically modified (GM) strains are recombinant strains of VIN13.  VIN13-
EXS (Strauss, 2003), secretes enzymes (endo-β-1-4 glucanase coded by END1, endo-
β-1-4 xylanase coded by XYNC) to enhance colour extraction while VIN13-PPK 
(Strauss, 2003) secretes enzymes (pectin lyase coded by PELE, polygalacturonase 
coded by PEH1) to enhance clarification and reduce viscosity.  The commercial GM 
yeast, ML01 (currently only available in the United States of America and Canada), was 
also included in the study.  ML01 performs alcoholic fermentation and malolactic 
fermentation without the need of lactic acid bacteria.  The modified ML01 strain contains 
the Schizosaccharomyces pombe malate transporter gene and the Oenococcus oeni 
malolactic enzyme gene under the S. cerevisiae PGK1 promoter and terminator signals. 
Simultaneous expression of both genes triggers complete L-malate utilisation by the 
recombinant S. cerevisiae strain.  
 

All yeast strains were streaked out on yeast-peptone-dextrose (YPD) plates from 
freeze cultures and incubated at 30°C for 48 hours.   A single colony was picked and 
inoculated in a 10 mL YPD liquid culture.  Liquid cultures were grown overnight at 30°C 
on a rotating wheel.  Cultures were then inoculated into 1 L YPD flasks and grown at 
30°C for 48 hours.  Yeast was centrifuged at 8665xg  (Sorvall RC 5C, Germany; GSA 
rotor) for 3 minutes.  The supernatant was discarded and the pellet washed twice with 
deionised water.  The washed pellet was re-suspended in deionised water.  In order to 
ensure that yeast was inoculated into the must at a final concentration of ~3x106 
cells/mL, the yeast suspension was divided into 50 mL aliquots. 

3.2.3 MICROVINIFICATION 

Standard wine making techniques were employed for microvinification. 

3.2.3.1 Clairette Blanche 

Grapes were crushed and de-stemmed.  Free run juice was separated from berries in a 
basket press.  SO2 (from potassium metabisulfite, Laffort, France; 30 ppm final 
concentration) was added to the juice before the juice was left overnight at 15°C for 
solids to settle out.  Clear juice was siphoned off and split into volumes of 4 L aliquots for 
fermentation in 4.5 L glass bottles.  Di-amino phosphate (DAP) (Laffort, France, 70 ppm 
final concentration) and yeast to a final concentration of ~3x106 cells/mL were added to 
each fermenter.  During the 2006 harvest a commercial liquid pectolytic enzyme 
(Pectazina H, Dal Cin Gildo spa, Italy; final concentration 0.01 g/L) was added to half of 
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the fermentations done with VIN13, WE372, VIN13-EXS and VIN13-PPK.  This was 
done to mimic the enzymes secreted by VIN13-EXS and VIN13-PPK.  Fermentation was 
completed at 15°C and the fermentation was tracked by daily weighing of each 
fermenter.  Fermentation was considered complete once there was no weight loss after 
three consecutive days and confirmed by determining residual sugar using mid-infrared 
spectroscopy (Winescan FT120, FOSS Electric, Denmark).  Upon completion of 
fermentation, bentonite (Microcol, Laffort, France; final concentration 0.7 mg/L) was 
added for protein stabilisation.  Wine was cold stabilised at 4°C for two weeks.  After 
stabilisation and clarification, wine was racked off the bentonite and yeast lees and 
bottled in 750 mL bottles with screw cap closures and stored at 4°C.  Replicate 
fermentations were done for each yeast strain (Table 3.1). 

3.2.3.2 Pinotage 

Pinotage grapes were crushed and de-stemmed.  Free run juice was separated from 
berries and split in equal volumes and combined with equal weight of crushed berries.  
SO2 (from potassium metabisulfite, Laffort, France; 30 ppm final concentration in 2005 
and 2006), di-amino phosphate (DAP) (70 ppm final concentration in 2005 and 2006) 
and yeast to a final concentration of ~3x106 cells/mL were added to each fermenter.  
During the 2006 harvest a commercial colour extraction enzyme (Rapidase Excolor, 
DSM, Netherlands; final concentration 2 g/hL) was added to half of fermentations made 
with VIN13 and WE372 to mimic enzymes secreted by two of the GM yeasts (VIN13-
EXS, VIN13-PPK).  Primary fermentation was done in 10 L buckets at 25°C until the 
sugar concentration in the must was less than 3°B.  Grapes were pressed in a basket 
press and pressed wine was transferred to 4.5  L glass bottles fitted with airlocks.  
Fermentation was deemed complete when there was no weight loss for three 
consecutive days.  During the 2005 harvest malolactic fermentation occurred naturally in 
some of the fermentations.  During the 2006 harvest the wine was inoculated with a 
commercial malolactic starter culture (Lalvin VP-41, Lallemand, France, final 
concentration 1 mg/L) at the pressing stage.  After completion of alcoholic and malolactic 
fermentation, free SO2 levels were checked (KI/KIO3 titration, Metrohm, Switzerland) 
and adjusted to 40 ppm (free SO2).  The wine was raked off lees and put into cold 
stabilisation (4°C).  After cold stabilisation wine s were racked of the fine lees and bottled 
in 750 mL bottles with screw cap closures.  Replicate fermentations were done for each 
yeast strain (Table 3.1). 

3.2.3.3 Cabernet Sauvignon 

Cabernet Sauvignon wine was prepared as described for Pinotage.  The number of 
replicate fermentations for each yeast strain is shown in Table 3.1. 
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3.2.4 EXPERIMENTAL PLAN 

Fig. 3.1 sets out the experimental plan for the study conducted during the 2005 and 
2006 vintages. 

3.2.4.1 2005 vintage 

Four yeast strains were used, VIN13, VIN13-EXS, VIN13-PPK, WE372.  Fermentations 
for Clairette Blanche and Pinotage were done with VIN13, VIN13-EXS and VIN13-PPK.  
For both Clairette Blanche and Pinotage sixteen independent fermentations were done 
with VIN13, ten independent fermentations with VIN13-EXS and ten and nine 
independent fermentations respectively with VIN13-EXS.  For Cabernet Sauvignon 
fifteen independent fermentations were done with VIN13, ten independent fermentations 
with VIN13-EXS and VIN13-PPK whereas eight fermentations were done with WE372. 

3.2.4.2 2006 vintage 

For Clairette Blanche four yeast strains (VIN13, VIN13-EXS, VIN13-PPK, WE372) were 
used.  For each yeast strain, sixteen independent fermentations were carried out.  

Table 3.1: Summary of yeast strains used for fermentation, cultivars inoculated and the number of independent 
fermentations done for each cultivar. 

S. cerevisiae 
strain used 
for 
fermentation  

GM 
status 

Genotype/Description Source/Reference Year Cultivar  inoculated No of 
ferment
ations 

2005 Clairette Blanche 16 
 Pinotage 16 
  Cabernet Sauvignon 15 

2006 Clairette Blanche 16 
 Pinotage 31 

VIN13 Non-GMO Commercial strain Anchor Yeast Bio-
Technologies (SA) 

  Cabernet Sauvignon 32 
2005 Cabernet Sauvignon 8 
2006 Clairette Blanche 16 

 Pinotage 31 

WE372 Non-GMO Commercial strain Anchor Yeast Bio-
Technologies (SA) 

  Cabernet Sauvignon 32 
2005 Clairette Blanche 10 

 Pinotage 10 
  Cabernet Sauvignon 10 

2006 Clairette Blanche 16 
 Pinotage 16 

VIN13-EXS GMO ura3::ADH1P-MFα1S-
END1-TRP5T-ADH1P-
XYNC-ADH2T 

Strauss, 2003 

  Cabernet Sauvignon 16 
2005 Clairette Blanche 10 

 Pinotage 9 
 Cabernet Sauvignon 10 

2006 Clairette Blanche 16 
 Pinotage 16 

VIN13-PPK GMO ura3::ADH1P-MFα1S-
PELE-TRP5T-ADH1P- 
MFα1S-PEH1- TRP5T 

Strauss, 2003 

  Cabernet Sauvignon 16 
2006 Cabernet Sauvignon 32 ML01 GMO Commercial GM strain Springer Oenology 

      



 46 

Furthermore, for each yeast strain used, half of the fermentations were treated with a 
commercial pectolytic enzyme preparation (see sections 3.2.3.1 and 3.2.3.2). 
 

For Pinotage fermentations four yeast strains (VIN13, VIN13-EXS, VIN13-PPK, 
WE372 were used and for fermentations of Cabernet Sauvignon five yeast strains 
(VIN13, VIN13-EXS, VIN13-PPK, WE372, ML01) were used.  Two independent sets of 
fermentations were carried out.  The second set of fermentations for each cultivar was 
started two days after the start of the first set of fermentations.  This second set of 
fermentations was used as an independent test set for chemometric validation 
purposes.  The second set of fermentations was carried out under the same conditions 
as the first set of fermentations, i.e. yeast suspensions, enzymes, nutrient additions and 
further treatments during the fermentations.  In order to simulate the secretion of the 
enzymes from the genetically modified yeasts, commercial pectolytic enzyme 
preparations were added to half of each set of fermentations done with a specific yeast 
strain (except for VIN13-EXS and VIN13-PPK). 

3.2.5 WINE SAMPLING 

The sampling procedure was carried out to ensure that samples were representative 
according to the Theory of Sampling (TOS).  Sampling liquids, in this case wine, are 
several orders of magnitudes less complicated than with slurries (must, pulp) (Petersen 
et al., 2005; Petersen and Esbensen, 2005). 
 

The first set of Clairette Blanche samples for 2005 (sample set 2005A) was taken 
three months after completion of alcoholic fermentation and the second set of samples 
(sample set 2005B) was taken eight months after completion of alcoholic fermentation.  
In 2006 the first set of samples (sample set 2006A) was taken two months after 
completion of alcoholic fermentation. 
 

The first set of Pinotage samples in 2005 (sample set 2005A) was taken four months 
after completion of alcoholic fermentation and the second set of samples (sample set 
2005B) was taken nine months after completion of alcoholic fermentation.  In 2006 the 
first set of samples (sample set 2006A) was taken one week after completion of 
alcoholic fermentation, while the second set (sample set 2006B) was taken one month 
after completion of alcoholic fermentation and the third set (sample set 2006C) was 
taken two months after completion of alcoholic fermentation. 
 

The first set of Cabernet Sauvignon samples (sample set 2005A) was taken three 
months after completion of alcoholic fermentation and the second set (sample set 
2005B) was taken seven months after completion of alcoholic fermentation.  In 2006 the 
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first set of samples (sample set 2006A) was taken two months after completion of 
alcoholic fermentation, while the second set (sample set 2006B) was taken two and a 
half months after completion of alcoholic fermentation and the third set (sample set 
2006C) was taken four months after completion of alcoholic fermentation. 

 
Samples were taken at different times during the ageing of the wines in order to 

study the effect that the ageing of a developing wine has on the ability to discriminate 
the wines fermented with different yeast strains.  For red wines, the first set of samples 
was taken before the inoculation of malolactic starter cultures after pressing but before, 
in some instances, the completion of alcoholic fermentation.  This resulted in varying 
levels of residual sugars.  The last sample sets taken for the 2006 red wines were taken 
after the completion of malolactic fermentation (MLF). 
 

After vigorous shaking, a 50 mL sample was extracted from the centre of each bottle 
and transferred to a 50 mL Corning tube.  If samples were not analysed immediately 
they were stored at 4°C for no mare than a month.  
 

Samples (50 mL each) were taken from each of the fermentation replications for each 
of the fermentations done with the different yeast strains.  
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Style    Wine type    Cultivar    Year   Sample set   Yeast  
               
              VIN13 

            2005A   VIN13-EXS 

             After AF  VIN13-PPK 

         2005        

                VIN13 

              2005B   VIN13-EXS 

   White     CB        6 mnths after AF    VIN13-PPK 

                 

                VIN13 

           2006     2006A   WE372 

             After AF  VIN13-EXS 

               VIN13-PPK 

                

               VIN13 

             2005A   VIN13-EXS 

              After AF  VIN13-PPK 

           2005        

                 VIN13 

               2005B   VIN13-EXS 

              6 mnths after AF   VIN13-PPK 

Dry wine                  

       PN          VIN13 

               2006A   WE372 

                After AF  VIN13-EXS 

                  VIN13-PPK 

                   

                  VIN13 

            2006     2006B   WE372 

               After pressing  VIN13-EXS 

                 VIN13-PPK 

                  

                 VIN13 

               2006C   WE372 

              After MLF  VIN13-EXS 

    Red             VIN13-PPK 

                

               VIN13 

             2005A   WE372 

              After AF  VIN13-EXS 

                VIN13-PPK 

          2005        

                 VIN13 

               2005B   WE372 

              6 mnths after AF   VIN13-EXS 

                VIN13-PPK 

                 

                VIN13 

       CS          WE372 

             2006A   VIN13-EXS 

              After AF  VIN13-PPK 

                ML01 

                 

                VIN13 

                WE372 

          2006     2006B   VIN13-EXS 

             After pressing  VIN13-PPK 

               ML01 

                

               VIN13 

               WE372 

             2006C   VIN13-EXS 

            After MLF  VIN13-PPK 

              ML01 

Figure 3.1 :  Experimental layout         
CB: Clairette Blanche; PN: Pinotage; CS: Cabernet Sauvignon; AF: Alcoholic fermentation 
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3.2.6 INSTRUMENTAL 

3.2.6.1 Fourier transform infrared (FTIR) analysis 

Infrared analysis was carried out in the mid-infrared region (MIR, 5011 to 929 cm-1 at 4 
cm-1 intervals) with a WineScan FT120 instrument (Foss Electric, Denmark). All samples 
were degassed to remove excess CO2.  Each sample was analysed in duplicate, each 
spectrum composed by the average of twenty scans after being Fourier transformed.  
Foss Zero Liquid S-6060 (WineScan FT120 Reference Manual) was analysed before 
wine samples to facilitate correction for the specific background spectrum (especially 
water) present in the wine matrix.  The final spectra were generated based on the ratio 
of the individual sample spectrum to the zero solution spectra at each recorded 
wavelength.   FTIR data are recorded as absorbencies as a function of wavenumber 
(cm-1). 

3.2.6.2 Gas chromatography (GC-FID) 

GC-FID analysis was done on a HP 6890 Series (Agilent Technologies, USA) 
instrument.  Samples were analysed for the 25 compounds listed in Table 3.2.  Samples 
for the GC-FID were prepared by extracting 5 mL wine with 1 mL diethyl ether (Merck, 
South Africa) after adding 10 mg/L internal standard (4-methyl-2-pentanol, Fluka, Sigma-
Aldrich, South Africa).  Samples were sonicated for five minutes before centrifugation for 
three minutes at 4000 rpm (Heraeus MULTIFUGE 3S, Germany).  Organic phase were 
dried on anhydrous sodium sulphate before transferred to a vial insert and capped.  The 
GC-FID program used is shown in Table 3.3. Samples were analysed in triplicate and 
integrated on HP ChemStation (Rev A.07.01, Hewlett-Packard 1999) software. 
 

 
 

Table 3.2: List of components analysed by GC-FID 
 
2-Phenyl Ethanol 2-Phenylethyl Acetate Acetic Acid Butanol 

Butyric Acid Decanoic Acid Diethyl Succinate Ethyl Acetate 

Ethyl Butyrate Ethyl Caprate Ethyl Caprylate Ethyl Hexanoate 

Ethyl Lactate Hexanoic Acid Hexanol Hexyl Acetate 

Isoamyl Acetate Isoamyl alcohol Isobutanol Iso-Butyric Acid 

Iso-Valeric Acid Methanol Octanoic Acid Propanol 

Propionic Acid Valeric Acid   
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Table 3.3 : GC instrumental parameters 
 
Oven Program  
Initial temperature 33°C 
Initial time  17 min 
Ramp  12°C/min to 240°C, hold for 5min 
  
Front inlet  
Injection volume 3µl 
Mode Split 
Split ratio 15:1 
Split flow 49.5ml/min 
Injection temperature 200°C 
Initial pressure 84.5kPa 
Flow mode Constant flow 
Column flow 3.3ml/min 
  
Column  
Type DB-FFAP, 60mx0.32mmx0.5umf.t 
  
Detector  
Temperature 250°C 
H2 flow 30ml/min 
Air flow 350ml/min 
Make up flow N2 30ml/min 

3.2.7 CHEMOMETRIC DATA ANALYSIS 

Corrected (time and date stamps and other non-spectral data were removed from the 
raw data) FTIR spectra were imported in the Unscrambler software (version 9.2, Camo 
PROCESS AS, Oslo, Norway) for PLS-discrimination. 
 

Pre-processing was carried out on all spectra.  The second derivative was employed 
using the Savitzky-Golay algorithm (Savitzky and Golay, 1964) with five data points left – 
and right, using a second-order polynomial fit. The second order derivatives were used 
to compensate for baseline shifts, to remove possible minor scattering effects and for 
peak sharpening to bring out small peaks and changes in slope.  Finally the data were 
mean centred and standardised by dividing each column in the data matrix with the 
standard deviation of each variable (wavenumber).  This combined treatment is termed 
auto-scaling in chemometrics (Esbensen, 2002). 
 

Although a spectral range of 930 to 4992 cm-1 was recorded, a reduced spectral 
range was used (965 to 1582 cm-1 and 1698 to 2971 cm-1).  The two regions, 1582 to 
1698 cm-1 and 2971 to 3627 cm-1 contain water absorption bands (Patz et al., 2004) 
while the region from 3627 to 4992 cm-1 is close to the near infrared region and lead to a 
noisy signal in the Winescan. 
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3.2.7.1 PLS2-discriminant analysis 

PLS2-discriminant analysis was used for discriminating between fermentations with 
the different yeast strains.  A dummy classification variable, Y, is created representing 
each of the five yeast strains used in the fermentations.  A value of +1 was assigned to a 
sample when it was fermented with a specific yeast, and -1 if the specific yeast was not 
used.  An example would be where a wine is fermented with VIN13, but not by WE372, 
VIN13-EXS, VIN13-PPK or ML01 then the Y-variable vector would be [+1,-1,-1,-1,-1].  
PLS2-discrimination models are created for each sample set, set out in Fig. 1, with this 
classification variable set serving as five Y-variables throughout (or reduced when the 
discrimination issues are simpler, see below for each model).  The X-variables for all 
these models were either the pre-treated FTIR spectra or GC data respectively.  These 
PLS2-discrimination models are used to analyse the data structure of the experimental 
data.  If more robust prediction models are needed in future for wines fermented with 
each individual strain, PLS1-discrimination models need to be created. 
 

Contrary to conventional PLS-regression models in which the Y-variables are on a 
rational scale (so-called numeric variables, e.g. analyte concentration), for PLS-discrim 
models we are often only interested in the so-called “Predicted vs. Measured plot” 
because of the visual gap between predicted values centred on +1 and -1 respectively.  
The conventional prediction statistics (slope, r2, RMSEP) have little meaning in this case 
(the prediction “model” is essentially a straight line connecting two points), these 
statistics are only of value when the reader has direct visual access to the Predicted vs. 
Measured plots. It is the gap centred on “0” which carries the essential discrimination 
information related to the classes modelled by the dummy Y-variables.  This gap must 
be centred on “0”, lest the Predicted vs. Measured plot has been corrupted (often by ill-
informed alternative scaling and/or specific pre-transformations) (Personal 
communication, Esbensen, K.H., 8 August 2007). 
 

Interest is often only in the specific decomposition of the X-space alone, as guided 
by the Y-discrimination information assigned via the set of dummy variables (Esbensen, 
2002). In this case, where there is no interest in prediction, no serious validation of the 
model is necessary and a simple leverage correction can be used.  When interpreting X-
space score plots, the score unit employed corresponds to a standard deviation of the 
variance along the specific component in question (Esbensen, 2002).  

3.2.7.2 PLS1-discriminant analysis 

PLS1-discriminant analysis was used to discriminate between non-genetically 
modified (non-GM) yeast fermentations and genetically modified (GM) yeast.  A dummy 
variable was created representing either commercial non-genetically modified (non-GM) 
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yeast (signified by: -1) and genetically modified (GM) yeast (signified by: +1).  These 
dummy variables were then modelled on the FTIR spectra (X-variables).  A separate 
PLS-discrimination model was created for each sample set as set out in Fig. 3.1.  

3.2.7.3 Chemometric output 

Focus will only be on the specific discrimination features in the model 
documentations, especially the so-called “scores plot” and the “predicted vs. measured” 
validation plot. 

The scores plot is a projection onto a particular sub-space, allowing optimal 
appreciation of the inter-sample relationships in two- or thee dimensions instead of the 
full variable FTIR-space (or GC-space).  In this plot, assessment of the discrimination 
between the samples take place in precisely the two or three dimensions representing 
the largest variance differences between all samples, which is also maximally correlated 
to the [-1, +1] dichotomy in the Y-space, (Esbensen, 2002). 

 
The “predicted vs. measured” validation plot summarises the prediction 

performances of the particular PLS-models.  When a significant, centred, gap in the Y-
direction has been obtained by a properly validated (prediction, the larger this gap, the 
more consistent and reliable the discriminations. 

 
Loading plots were not evaluated due to the pre-processing of the FTIR spectra.  

The fact that PLS2-discrimination was used meant that a high loading at a specific 
wavenumber or GC component for one Y-dummy variable might have a low loading for 
another Y-dummy variable.  In order to optimise variable selection for wine 
fermentations with a specific yeast, a PLS1-discrim analysis should be performed.  
 

Some of the other features that can be visualised as well are the fractions X- and Y-
variance modelled respectively.  These graphical illustrations are the result from 
validation of the prediction power of the PLS-discrim models; validation is also used for 
determination of the optimal number of PLS-components in the model.  Validation of a 
PLS-model forms a major issue in chemometrics, this merits serious attention and is 
discussed in full detail in Esbensen, 2002 The only two acceptable validation procedures 
for reliable assurance regarding prediction consistency and significance are:  
 
1) 2-segment cross-validation (simulation of test set validation based on a large training 

set) 
2) Test set validation (universally the optimal prediction validation) 
 

Full description of PLS-regression can be found in the pre-eminent chemometric 
textbook of Martens and Naes (1998). 
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Each analysis of individual sample sets in the results section will indicate the type of 

validation used. 

3.3 RESULTS AND DISCUSSION 

3.3.1 DISCRIMINATION BETWEEN WINES FERMENTED WITH DIFFERENT YEAST 
STRAINS 

Results from each cultivar will be presented to allow tracking of discrimination from a 
single sample set for a year through to looking at the cultivar over the two vintages.  
Each individual sample set of wines within a cultivar over the two vintages was 
evaluated to establish if any discrimination could be found between the wines that were 
fermented with the different yeast strains.  Then the sample sets for each vintage was 
combined and evaluated to establish if the same discrimination can be observed that 
was seen in the separate sample sets within the singular vintage.  This would indicate if 
changes in composition of the wine as it aged would change the discrimination of yeast 
strains.  Lastly the two vintages will be combined to evaluate if the discrimination 
patterns, if any, follow through vintages.  If the yeast strains can be discriminated for the 
sample set that span the two vintages, it could possibly be expanded to cover more 
vintages. 
 

Due to the fact that fermentations done in the 2005 vintage was of an exploratory 
nature to establish if any discrimination was possible for the different yeast strains, no 
test set of fermentations was available here.  This exploratory nature of the data analysis 
therefore has no need for a predictive function to test the strength of models created.  In 
this particular case leverage correction was therefore used as validation method, but 
only the score plots are shown in the results below.  For the 2006 vintage, two sets of 
independent fermentations were done with Pinotage and Cabernet Sauvignon, one set 
of which to be used as test set during validation.  As FTIR and GC were used to obtain 
chemical fingerprints of the wine matrix no attention was given to the interpretation of 
the spectra or individual chromatograms.   

3.3.1.1 Clairette Blanche 

Fig. 3.2 represents a summary of the experimental layout for the wines made with the 
cultivar Clairette Blanche.  It covers the two vintages, the independent sample sets 
drawn from the wines and the yeast used to ferment the musts with.  In none of the 
sample sets an independent set of fermentations were produced that could serve as a 
test set for validation.  Leverage correction was used in all the PLS2 discrimination 
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Figure 3.3:  Score plot for Clairette Blanche sample 
set 2005A using only FTIR data.  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(3) 

(2) (1) 

models, but below only the resulting full-model score plots are presented. A summary of 
results are presented in Table 3.4 at the end of the section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.1.1 Discrimination of wines in sample set 200 5A 

The sample set was analysed by FTIR.  The 
FTIR data was used as X-variables.  Fig. 3.3 
shows the resulting score plot. 
 

Three clusters of objects that represent 
wines fermented with the three yeasts used 
can be distinguished in tight clusters spread 
far apart.   
 
 
 

3.3.1.1.2 Discrimination of wines in sample set 200 5B 

The sample set was analysed using FTIR spectroscopy and gas chromatography. 
 

Fig. 3.4a shows the score plot of the data set where FTIR data were used.  Three 
tight clusters spread far apart can be seen representing wines fermented with the three 
different yeast strains. 
 

Fig. 3.4b shows the score plot of the data set where only GC data was used.  Three 
clusters can be seen. 

  Cultivar      Year     
Sample 

set    Yeast    
             
          VIN13   
        2005A   VIN13-EXS   
         After AF  VIN13-PPK   
     2005          
            VIN13   
          2005B    VIN13-EXS   
  CB        6 mnths after AF    VIN13-PPK   
              
           VIN13   
      2006     2006A   WE372   
        After AF  VIN13-EXS   
          VIN13-PPK   
                      
           
Figure 3.2: Experimental layout for wines made with cultivar Clairette Blanche. 
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Figure 3.6:  Score plot for Clairette Blanche sample 
set 2005A and 2005B using only FTIR data..  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(3) 

(1) 

(2) 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.1.3 Discrimination of wines in sample set 200 6A 

In 2006 fermentations were done with an extra yeast (WE372).  The sample set was 
analysed using FTIR spectroscopy and gas chromatography. 
 

The score plot using FTIR data is shown in Fig. 3.5a.  Four tight clusters can be seen 
representing wines fermented with the four yeast strains used. 
 
Using GC data, the score plot can be seen in Fig. 3.5b.  Four tight clusters can be seen 
representing wines fermented with the four yeast strains used. 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.1.4 Discrimination of wines for 
combined 2005 data 

The score plot in Fig. 3.6 show the combined 
data from sample sets 2005A and 2005B 
using FTIR data and therefore looking at the 
effect of ageing across the vintage.  Three 
distinct clusters can be seen. 

Figure 3.5a:  Score plot for Clairette Blanche 
sample set 2006A using only FTIR data.  
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (3);  
o - VIN13-PPK (4) 

(4) 
(1) 

(3) 

(2) 

Figure 3.5b:  Score plot for Clairette Blanche 
sample set 2006A using only GC data.  
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (3);  
o - VIN13-PPK (4) 

(2) 

(3) 

(4) 

(1) 

Figure 3.4b:  Score plot for Clairette Blanche sample 
set 2005B using only GC data.  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(2) 

(3) 

(1) 

Figure 3.4a:  Score plot for Clairette Blanche 
sample set 2005B using only FTIR data.  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(1) 

(3) 

(2) 
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Figure 3.7:  Score plot for Clairette Blanche 
sample set from 2005 and 2006 using only FTIR 
data.  
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1) 

(1) (2) 

 

3.3.1.1.5 Discrimination of wines for combined data  for 2005 and 2006 

The score plot in Fig. 3.7 was produced using 
only FTIR data.  Two clusters are evident, the 
one is wines fermented with WE372 (added in 
2006) and the other contains wines fermented 
with yeast strains VIN13, VIN13-EXS and 
VIN13-PPK.  The score plot of wines 
fermented with yeast strains VIN13, VIN13-
EXS and VIN13-PPK (not shown), after 
leaving out WE372, show no clustering of 
fermented wines. 
 
 
Table 3.4: Results summary for Clairette Blanche     
Set Validation Data 

used 
Yeast used Result Comment Type Discrim Fig. 

2005A leverage FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters tight clusters, far 
apart, 3 yeasts 

score yes 3 

2005B leverage FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters tight clusters, far 
apart, 3 yeasts 

score yes 4 

2005B leverage GC VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters 3 yeasts score yes 5 

2006A leverage FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

4 clusters tight clusters, 4 
yeasts 

score yes 6 

2006A leverage GC VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

4 clusters tight clusters, 4 
yeasts 

score yes 7 

2005A, 
2005B 

leverage FTIR VIN13,VIN13-
EXS,VIN13-
PPK 

3 clusters tight clusters, far 
apart, 3 yeasts 

score yes 8 

2005, 
2006 

leverage FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

2 clusters WE372 vs. rest score yes 9 

3.3.1.2 Pinotage 

Fig. 3.8 represents a summary of the experimental layout for the wines made with the 
cultivar Pinotage.  It covers the two vintages, 2005 and 2006, the independent sample 
sets drawn from the wines and the yeast used to ferment the musts with.  During the 
2005 vintage no fermentations were done to compile a test set and therefore leverage 
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Figure 3.9:  Score plot for Pinotage sample set 2005A 
using only FTIR data.  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(3) 

(2) 

(1) 

correction was used as validation method in the PLS2 models.  For the 2006 vintage, a 
separate set of fermentations was done that could be used as a test set during 
validation.  This test set used the same grapes, but was de-stemmed and crushed two 
days after the first set of fermentations, using the same yeast but prepared 
independently.  This second set of fermentations was used for test set validation, unless 
otherwise specified.  A summary of results are presented in Table 3.5 at the end of the 
section. 
 

                      
  Cultivar    Year   

Sample 
set   Yeast    

             
          VIN13   
        2005A   VIN13-EXS   
         After AF  VIN13-PPK   
      2005          
            VIN13   
          2005B    VIN13-EXS   
         6 mnths after AF   VIN13-PPK   
              
  PN          VIN13   
         2006A   WE372   
          After AF  VIN13-EXS   
            VIN13-PPK   
               
            VIN13   
      2006     2006B   WE372   
         After pressing  VIN13-EXS   
           VIN13-PPK   
              
           VIN13   
         2006C   WE372   
        After MLF  VIN13-EXS   
          VIN13-PPK   
                      
           
Figure 3.8: Experimental layout for wines made with cultivar Pinotage. 

3.3.1.2.1 Discrimination of wines in sample set 200 5A 

The sample set was analysed using FTIR.  
Figure 3.9 shows the resulting score plot.  
Three clusters of objects that represent wines 
fermented with the three yeasts strains can be 
distinguished. 
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Figure 3.10a:  Score plot for Pinotage sample set 
2005B using only FTIR data.  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(2) 

(3) (1) 

Figure 3.10b:  Score plot for Pinotage sample set 
2005B using only GC data.  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(1) 

(2) 
(3) 

Figure 3.11:  Score plot for Pinotage sample set 
2006A using only FTIR data.  
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (3);  
o - VIN13-PPK (4) 

(1) 

(4) 

(2) 
(3) 

3.3.1.2.2 Discrimination of wines in sample set 200 5B 

The sample set was analysed using FTIR spectroscopy and gas chromatography. 
 

Using only the FTIR data, the resulting score plot is shown in Fig. 3.10a.  Three tight 
clusters, spread far apart, representing the wines fermented with the three yeast strains 
used. 
 

Fig. 3.10b shows the score plot of the data set where only GC data was used.  Three 
clusters, spread far apart can be seen, although the clusters are not as tight. 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.2.3 Discrimination of wines in sample set 200 6A 

Even though a test set was available for 2006 
fermentations, only the first set of fermentation 
in the 2006A sample set was analysed with 
FTIR.  Leverage correction was used as 
method of validation. 
 

Fig. 3.11 shows the score plot for the FTIR 
data.  Four clusters can be observed, spread 
far apart, representing the wines fermented 
with the four different yeasts. 

3.3.1.2.4 Discrimination of wines in sample set 200 6B 

As can be seen from the score plot in Fig. 3.12a using FTIR data only there are two 
clusters, the one is wines fermented with WE372 and the other is the wines fermented 
with yeast strains VIN13, VIN13-EXS and VIN13-PPK. 
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Fig. 3.12b show the Predicted vs. Measured plot for wines fermented with WE372 
against the other three wines.  Discrimination can be observed by looking at the vertical 
gap between the two groups.  The Predicted vs. Measured plots (not shown here) for 
the other wines show no discrimination. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To get some more insight in the possible discrimination of VIN13, VIN13-EXS and 
VIN13-PPK a new PLS2-Discrim was done with the removal of all fermentations done 
with WE372.  Fig. 3.13a shows the resulting score plot.  Two clusters can be seen, the 
one represent wines fermented with VIN13-PPK, the other show the wines fermented 
with VIN13 and VIN13-EXS.  Fig. 3.13b shows the Predicted vs. Measured plot for 
VIN13-PPK against the other two yeasts.  No discrimination can be observed even 
though a vertical gap is present; this is due to the predicted values that are positive in 
value for some of the wines fermented with VIN13 and VIN13-EXS.  The Predicted vs. 
Measured plots (not shown here) for the other wines also show no discrimination. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.2.5 Discrimination of wines in sample set 200 6C 

The sample set was analysed using FTIR spectroscopy and GC. 
 

Figure 3.12b:  Predicted vs. Measured plot for 
the Pinotage sample set 2006B using only FTIR 
data for prediction of WE372.  Test set validation. 

Figure 3.12a:  Score plot for Pinotage sample set 
2006B using only FTIR data.  Test set validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1) 

(2) 

(1) 

Figure 3.13b:  Predicted vs. Measured plot for 
the Pinotage sample set 2006B using only FTIR 
data for prediction of VIN13-PPK after all 
samples produced from WE372 was removed.  
Test set validation. 

Figure 3.13a:  Score plot for Pinotage sample set 
2006B using only FTIR data.  Test set validation.  
WE372 samples removed from sample set 2006B. 
o - VIN13 (1); o - VIN13-EXS (1); o - VIN13-PPK (2) 

(1) 

(2) 
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Figure 3.14a:  Score plot for Pinotage sample set 
2006C using only FTIR data.  Test set validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (3) 

(3) 
(1) 

(2) 

Figure 3.14b:  Predicted vs. Measured plot for 
the Pinotage sample set 2006C using only FTIR 
data for prediction of WE372.  Test set validation.   

Figure 3.14c:  Predicted vs. Measured plot for 
the Pinotage sample set 2006C using only FTIR 
data for prediction of VIN13-PPK.  Test set 
validation.   

Figure 3.15a:  Score plot for Pinotage sample set 
2006C using only GC data.  Test set validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (3) 

(2) 

(1) 

(3) 

Fig. 3.14a shows the score plot of the 
data set where only FTIR data were used.  
There are two clusters representing wines 
fermented with WE372 and the other with 
wines fermented with yeast VIN13, VIN13-
EXS and VIN13-PPK.  VIN13-PPK can 
almost be seen as occupying a separate 
cluster with only a small overlap with VIN13 
and VIN13-EXS. 
 

There is good discrimination on the 
Predicted vs. Measured plot for WE372 (Fig. 3.14b) and VIN13-PPK (Fig. 3.14c) using 
the data from all the wines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.15a shows the score plot of the data 
set where the GC data were used.  There are 
three clusters.  One cluster representing 
wines fermented with WE372, one 
representing wines fermented with VIN13-
PPK and the other representing wines 
fermented with VIN13 and VIN13-EXS.  This 
discrimination can also be seen in the 
Predicted vs. Measured plots for wines 
fermented with WE372 (Fig. 3.15b) and 
VIN13-PPK (Fig. 3.15c).   
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Figure 3.16:  Score plot for Pinotage combined 2005 
sample sets using only FTIR data.  Test set validation. 
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(2) 

(3) 

(1) 

Figure 3.17b:  Predicted vs. Measured plot for all 
Pinotage 2006 sample sets using only FTIR data 
for prediction of wines fermented with WE372.  
Test set validation.  Overlap between objects of 
WE372 and the rest of the objects can be seen. 

Figure 3.17a:  Score plot for Pinotage for all 2006 
sample sets using only FTIR data.  Test set 
validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (3) 

(2) 

(1) 

(3) 

 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.2.6 Discrimination of wines for combined 2005  data 

Fig. 3.16 shows the score plot for the 
combination of 2005 sample sets using FTIR 
data.  Three clusters are observed but with 
some overlap.  The Prediction vs. Measured 
plots (not shown) does not show any 
discrimination. 

3.3.1.2.7 Discrimination of wines for 
combined 2006 data 

Fig. 3.17a shows the score plot for the 
combined 2006 sample sets using FTIR 
data.  There are three clusters, one of wines fermented with WE372, one of wines 
fermented with VIN13-PPK and one of wines fermented with VIN13 and VIN13-EXS.  
There is some overlap between all of these clusters and this is confirmed by the 
Predicted vs. Measured plots (not shown) with no gap between groups.  The Predicted 
vs. Measured plot is shown in Fig. 3.17b of wines fermented with WE372.  There is 

Figure 3.15b:  Predicted vs. Measured plot for 
the Pinotage sample set 2006C using only GC 
data for prediction of WE372.  Test set validation.   

Figure 3.15c:  Predicted vs. Measured plot for 
the Pinotage sample set 2006C using only GC 
data for prediction of VIN13-PPK.  Test set 
validation. 
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significant overlap and it is clear that no discrimination can be found between wines 
fermented with WE372 and the rest. 

3.3.1.2.8 Discrimination of wines for combined data  for 2005 and 2006 

Fig. 3.18a shows the score plot of the combined sample sets of 2005B and 2006C using 
FTIR data and leverage correction as validation method.  Two clusters can be seen, one 
with wines fermented with WE372 (only used in 2006), the second of wines fermented 
with VIN13-PPK but overlapping with wines fermented with VIN13 and VIN13-EXS.  
 

Fig. 3.18b shows the score plot of the combined sample sets of 2005B and 2006C 
using GC data and leverage correction as validation method.  Three clusters can be 
seen, the first of wines fermented with WE372 (only used in 2006), the second of wines 
fermented with VIN13-PPK and the other a combination of wines fermented with VIN13 
and VIN13-EXS. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3.5: Results summary for Pinotage 
Set Validation Data 

used 
Yeast used Result Comment Type Discrim Fig. 

2005A leverage FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters 3 yeast score yes 11 

2005B leverage FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters tight clusters, far 
apart, 3 yeast 

score yes 12 

2005B leverage GC VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters clusters spread 
out, far apart 

score yes 13 

2006A leverage FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

4 clusters spread far apart, 
4 yeast 

score yes 14 

2006B test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

2 clusters WE372 vs. 
(VIN13, VIN13-
EXS,VIN13-PPK) 

score yes 15 

 

Figure 3.18a:  Score plot for Pinotage sample sets 
for 2005 and 2006 using only FTIR data.  
Leverage correction. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (3) 

(2) 

(3) 

(1) 

Figure 3.18b:  Score plot for Pinotage sample sets 
for 2005 and 2006 using only GC data.  Leverage 
correction. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (3) 

(2) 

(3) 

(1) 



 63 

Table 3.5: Results summary for Pinotage (continued) 
Set Validation Data 

used 
Yeast used Result Comment Type Discrim Fig. 

2006B test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

WE372 vs. rest   P v M yes 16 

2006B test FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

2 clusters VIN13-PPK vs. 
AX, only some 
overlap between 
VIN13 and 
VIN13-EXS 

score yes 17 

2006B test FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

VIN13-PPK vs. 
rest 

  P v M no 18 

2006C test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

2 clusters WE372 vs. 
(VIN13, VIN13-
EXS,VIN13-
PPK), VIN13-
PPK small 
overlap with 
(VIN13, VIN13-
EXS) 

score yes 19 

2006C test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

WE372 vs. rest   P v M yes 20 

2006C test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

VIN13-PPK vs. 
rest 

  P v M yes 21 

2006C test GC VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

3 clusters WE372, VIN13-
PPK, (VIN13, 
VIN13-EXS) 

score yes 22 

2006C test GC VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

WE372 vs. rest   P v M yes 23 

2006C test GC VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

VIN13-PPK vs. 
rest 

  P v M yes 24 

2005A, 
2005B 

test FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters Cluster overlap 
each other 

score no 25 

2006A, 
2006B, 
2006C 

test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

3 clusters Cluster WE372, 
cluster VIN13-
PPK, cluster 
(VIN13, VIN13-
EXS)with overlap 
between all 

 score no 26 

2006A, 
2006B, 
2006C 

test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

WE372 vs. rest no discrimination P v M no 27 

2005B, 
2006C 

leverage FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

2 clusters WE372, VIN13-
PPK overlap 
(VIN13, VIN13-
EXS) 

score yes 28 

2005, 
2006 

leverage GC VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

3 clusters WE372, VIN13-
PPK, (VIN13, 
VIN13-EXS) 

score yes 29 
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3.3.1.3 Cabernet Sauvignon 

Fig. 3.19 shows the experimental layout for the wines made with Cabernet Sauvignon.  
It covers the two vintages, 2005 and 2006, the independent sample sets drawn from the 
wines and the yeast used to ferment the musts with. 
 

During the 2005 vintage no fermentations were done to compile a test set and 
therefore leverage correction was used as validation method in the PLS2 models.  For 
the 2006 vintage, a separate set of fermentations was done that could be used as a test 
set during validation.  This test set used the same grapes, but was de-stemmed and 
crushed two days after the first set of fermentations, using the same yeast but prepared 
independently.  This second set of fermentations was used for test set validation, unless 
otherwise specified. 
 

A summary of results are presented in Table 3.6 at the end of the section. 
 

                      
  Cultivar    Year   

Sample 
set   Yeast    

             
          VIN13   
        2005A   WE372   
         After AF  VIN13-EXS   
           VIN13-PPK   
     2005          
            VIN13   
          2005B    WE372   
         6 mnths after AF   VIN13-EXS   
           VIN13-PPK   
              
           VIN13   
  CS          WE372   
         2006A   VIN13-EXS   
          After AF  VIN13-PPK   
            ML01   
               
            VIN13   
            WE372   
      2006     2006B   VIN13-EXS   
         After pressing  VIN13-PPK   
           ML01   
              
           VIN13   
           WE372   
         2006C   VIN13-EXS   
        After MLF  VIN13-PPK   
          ML01   
                      
           
Figure 3.19: Experimental layout for wines made with varietal Cabernet 
Sauvignon.  
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3.3.1.3.1 Discrimination of wines in sample set 200 5A 

Fig. 13.20a shows the score plot for sample set 2005A using FTIR data and leverage 
correction.  A cluster containing wines fermented with WE372 can be seen while there is 
some pattern in the rest of the objects.  There is a group of wines fermented with VIN13 
on the positive side of the Z axis.  Another group containing wines fermented with 
VIN13-EXS and VIN13-PPK is on the negative side of the Z axis.  Once the wines 
fermented with WE372 are removed form the sample set we can see three clusters in 
Fig. 13.20b.  The three clusters represent wines fermented with VIN13, wines fermented 
with VIN13-EXS with an overlap with wines fermented with VIN13-PPK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.3.2 Discrimination of wines in sample set 200 5B 

Fig. 13.21a shows the score plot for sample set 2005B using FTIR data and leverage 
correction.  A cluster containing wines fermented with WE372 can be seen while there is 
no pattern in the rest of the objects.  Once the wines fermented with WE372 are 
removed form the sample set we can see three clusters in Fig. 13.21b.  The three 
clusters represent wines fermented with VIN13, wines fermented with VIN13-EXS and 
wines fermented with VIN13-PPK. 
 
 
 
 
 
 
 
 
 
 

Figure 13.20a:  Score plot for Cabernet Sauvignon for 
sample set 2005A using only FTIR data.  
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (3);  
o - VIN13-PPK (3) 

(3) 

(1) 
(2) 

Figure 13.20b:  Score plot for Cabernet Sauvignon 
for sample set 2005A using only FTIR data.  WE372 
samples removed from sample set 2005B.  
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

(3) 

(2) 

(1) 

Figure 13.21a:  Score plot for Cabernet Sauvignon 
for sample set 2005B using only FTIR data.  
o – VIN13 (1); o – WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1) 

(1) 

(2) 

Figure 13.21b:  Score plot for Cabernet Sauvignon 
for sample set 2005B using only FTIR data.  Yeast B 
samples removed from sample set 2005B.  
o – VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (3) 

 

(3) 

(2) 
(1) 
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Figure 13.23a:  Score plot for Cabernet Sauvignon for 
sample set 2006A using only FTIR data.  Test set 
validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1); o - ML01 (3) 

(1) 

(2) 

(3) 

Figure 13.23c:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006A sample set using 
only FTIR data for prediction of wines fermented 
with ML01.  Test set validation. 

Figure 13.23b:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006A sample set using 
only FTIR data for prediction of wines fermented 
with WE372.  Test set validation. 

Fig. 13.22 shows the score plot for 
sample set 2005B using GC data and 
leverage correction.  Four clusters 
representing wines fermented with VIN13, 
WE372, VIN13-EXS and VIN13-PPK can be 
seen. 
 
 
 
 
 

3.3.1.3.3 Discrimination of wines in sample set 200 6A 

Fig. 13.23a shows the score plot for sample set 2006A using FTIR data and test set 
validation.  There are three clusters spread far 
apart in score space.  The three clusters 
represent wines fermented with WE372, ML01 
and a cluster containing wines fermented with 
VIN13, VIN13-EXS and VIN13-PPK. 
 

Fig. 13.23b shows the Predicted vs. 
Measured plot to illustrate the discrimination 
between wines fermented with WE372 and 
the other.  The Predicted vs. Measure plot in 
Fig. 13.23c shows the discrimination 
between wines fermented with ML01 against 
the others.  Both have good discrimination with a wide gap between groups. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 13.22:  Score plot for Cabernet Sauvignon 
for sample set 2005B using only GC data.  
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (3);  
o - VIN13-PPK (4) 

(3) 

(2) 

(1) 

(4) 
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Figure 13.24a:  Score plot for Cabernet 
Sauvignon for sample set 2006B using only FTIR 
data.  Test set validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1); o - ML01 (3) 

(2) 

(3) 

(1) 

After removing wines fermented with WE372 and ML01 it can be seen in Fig. 13.23d 
that wines fermented with VIN13 and VIN13-EXS form one cluster and wines fermented 
with VIN13-PPK form another.  

The Prediction vs. Measured plot in Fig. 13.23e shows that there is no discrimination 
between wines fermented with VIN13-PPK and those fermented with VIN13 and VIN13-
EXS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.3.4 Discrimination of wines in sample set 200 6B 

The score plot for sample set 2006B using 
FTIR data and test set validation is shown in 
Fig. 13.24a.  Three clusters can be seen, 
representing wines fermented with WE372, 
ML01 and the other cluster wines fermented 
with VIN13, VIN13-EXS and VIN13-PPK. 
 

The Predicted vs. Measured plots of wines 
fermented with WE372 and ML01 are shown 
in Figs. 13.24b and 13.24c.  Good 
discrimination is obtained between wines 
fermented with WE372 and the rest.  Wines 
fermented with ML01 also show good discrimination from the rest of the wines. 
 

When the wines fermented with WE372 and ML01 were removed from the sample 
set, no discrimination could be seen between wines fermented with VIN13, VIN13-EXS 
and VIN13-PPK (plots not shown). 
 
 
 

Figure 13.23e:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006A sample set using 
only FTIR data for prediction of wines fermented 
with VIN13-PPK.  WE372 and ML01 samples 
removed from sample set 2006A.  Test set 
validation. 

Figure 13.23d:  Score plot for Cabernet Sauvignon 
for sample set 2006A using only FTIR data.  WE372 
and ML01 samples removed from sample set 
2006A.  Test set validation. 
o - VIN13 (1); o - VIN13-EXS (1); o - VIN13-PPK (2) 

(1) (2) 
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Figure 13.24b:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006B sample set using 
only FTIR data for prediction of wines fermented 
with WE372.  Test set validation. 

Figure 13.24c:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006B sample set using 
only FTIR data for prediction of wines fermented 
with ML01.  Test set validation. 

Figure 13.24d:  Score plot for Cabernet Sauvignon 
for sample set 2006B using only GC data.  Test set 
validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1); o - ML01 (3) 

(2) 

(3) (1) 

Figure 13.25a:  Score plot for Cabernet 
Sauvignon for sample set 2006C using only FTIR 
data.  Test set validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1); o - ML01 (3) 

(2) 

(1) (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13.24d shows the score plot for sample set 2006B using GC data and test set 

validation.  The clusters are not as clearly 
defined as for the FTIR data.  The three 
clusters for wines fermented with WE372, 
wines fermented with ML01 and wines 
fermented with VIN13, VIN13-EXS and 
VIN13-PPK can still be seen, even though 
there is some overlap between clusters. 
 

The Predicted vs. Measured plots for the 
wines fermented with WE372 and ML01 (not 
shown) indicate that there will be overlap 
between the different clusters.  

3.3.1.3.5 Discrimination of wines in sample set 200 6C 

Fig. 13.25a shows the score plot for sample 
set 2006C using FTIR data and test set 
validation.  There are three tight clusters 
spread far apart, representing wines 
fermented with WE372, wines fermented with 
ML01 and wines fermented with VIN13, 
VIN13-EXS and VIN13-PPK.  In the Predicted 
vs. Measured plots in Figs. 13.25b and 
13.25c, discrimination is achieved with large 
vertical gaps between the different wines 
fermented with WE372 and ML01 and the 
other wines. 
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Fig. 13.25d shows the score plot after the wines fermented with WE372 and ML01 

were removed from the sample set.  There are two clusters, one containing wines 
fermented with VIN13 and another with wines fermented with VIN13-EXS and VIN13-
PPK. 

 
The Predicted vs. Measured plot in Fig. 13.25e shows the discrimination between 

wines fermented with VIN13 and the rest of the wines, with a wide vertical gap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.3.6 Discrimination of wines for combined 2005  data 

No clusters could be seen in the score plot of the combined 2005 data (score plot not 
shown). 

3.3.1.3.7 Discrimination of wines for combined 2006  data 

The score plot for the combined data for 2006 using FTIR data is shown in Fig. 13.26a.  
Three clusters can be seen, one with wines fermented with WE372, one with wines 

Figure 13.25b:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006C sample set using 
only FTIR data for prediction of wines fermented 
with ML01.  Test set validation. 

Figure 13.25c:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006C sample set using 
only FTIR data for prediction of wines fermented 
with WE372.  Test set validation. 

Figure 13.25e:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006C sample set using 
only FTIR data for prediction of wines fermented 
with VIN13.  WE372 and ML01 samples removed 
from sample set 2006C.  Test set validation. 

Figure 13.25d:  Score plot for Cabernet Sauvignon for 
sample set 2006C using only FTIR data.  Test set 
validation.  WE372 and ML01 samples removed from 
sample set 2006C. 
o - VIN13 (1); o - VIN13-EXS (2); o - VIN13-PPK (2) 

(1) (2) 
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Figure 13.27:  Score plot for combined sample set 
Cabernet Sauvignon 2005B and 2006B using only 
FTIR data.  Leverage correction used. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1); o - ML01 (3) 

(3) 

(2) 

(1) 

Figure 13.26a:  Score plot for Cabernet Sauvignon 
for all 2006 sample sets using only FTIR data.  Test 
set validation. 
o - VIN13 (1); o - WE372 (2); o - VIN13-EXS (1);  
o - VIN13-PPK (1); o - ML01 (3) 

(3) 

(1) 
(2) 

fermented with ML01 and the other wines 
fermented with VIN13, VIN13-EXS and 
VIN13-PPK. 

 
 
 
 
 
 
 
 
 
Figs. 13.26b and 13.26c show the Predicted vs. Measured plots for wines fermented 

with WE372 and ML01, but shows that there is overlap between the clusters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1.3.8 Discrimination of wines for combined 2005  and 2006 data 

With the combining of the FTIR data for the 
two vintages, sample set 2005B and 2006B 
and using leverage correction, three clusters 
can be seen in Fig. 13.27.  These clusters 
represent wines fermented with WE372, 
wines fermented with ML01 and a 
combination of wines fermented with VIN13, 
VIN13-EXS and VIN13-PPK. 
 

Using GC data only a cluster containing 
wines fermented with ML01 could be 
observed (score plot not shown). 

Figure 13.26c:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006 sample sets using 
only FTIR data for prediction of wines fermented 
with ML01.  Test set validation. 

Figure 13.26b:  Predicted vs. Measured plot for 
the Cabernet Sauvignon 2006 sample sets using 
only FTIR data for prediction of wines fermented 
with WE372.  Test set validation. 
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Table 3.6: Results summary for Cabernet Sauvignon  
Set Validation Data used Yeast used Result Comment Type Discrim Fig. 
2005A leverage FTIR VIN13, 

WE372, 
VIN13-EXS, 
VIN13-PPK 

3 clusters WE372, VIN13 
overlap 
(VIN13-EXS, 
VIN13-PPK) 

score yes 31 

2005A leverage FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters VIN13, VIN13-
EXS overlap 
VIN13-PPK 

score yes 32 

2005B leverage FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

1 cluster only WE372 
cluster, no 
pattern in rest 

score yes 33 

2005B leverage FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

3 clusters VIN13, VIN13-
EXS and 
VIN13-PPK 
clusters, close 
together 

score yes 34 

2005B leverage GC VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK 

4 clusters VIN13, 
WE372, 
VIN13-EXS 
and VIN13-
PPK clusters 

score yes 35 

2006A test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

3 clusters WE372, ML01, 
(VIN13, VIN13-
EXS, VIN13-
PPK) 

score yes 36 

2006A test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

WE372 vs. 
rest 

  P v M yes 37 

2006A test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

ML01 vs. 
rest 

  P v M yes 38 

2006A test FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

2 clusters VIN13-PPK, 
(VIN13-EXS, 
VIN13-PPK) 

score yes 39 

2006A test FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

VIN13-PPK 
vs. rest 

  P v M no 40 

2006B test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

3 clusters WE372, ML01, 
(VIN13, VIN13-
EXS, VIN13-
PPK) 

score yes 41 

2006B test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

WE372 vs. 
rest 

wide gap P v M yes 42 

2006B test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

ML01 vs. 
rest 

wide gap P v M yes 43 

2006B test GC VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

3 clusters WE372, ML01, 
(VIN13, VIN13-
EXS, VIN13-
PPK) 

score yes 44 
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Table 5: Results summary for Cabernet Sauvignon (continued)  
Set Validation Data used Yeast used Result Comment Type Discrim Fig. 
2006C test FTIR VIN13, 

WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

3 clusters WE372, ML01, 
(VIN13, VIN13-
EXS, VIN13-
PPK) 

score yes 45 

2006C test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

ML01 vs. 
rest 

wide gap P v M yes 46 

2006C test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

WE372 vs. 
rest 

wide gap P v M yes 47 

2006C test FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

2 clusters VIN13, (VIN13-
EXS, VIN13-
PPK) 

score yes 48 

2006C test FTIR VIN13, 
VIN13-EXS, 
VIN13-PPK 

VIN13 vs. 
rest 

wide gap P v M yes 49 

2006A, 
2006B, 
2006C 

test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

3 clusters WE372, ML01, 
(VIN13, VIN13-
EXS, VIN13-
PPK) 

score yes 50 

2006A, 
2006B, 
2006C 

test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

WE372 vs. 
rest 

  P v M no 51 

2006A, 
2006B, 
2006C 

test FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

ML01 vs. 
rest 

  P v M no 52 

2005B, 
2006B 

leverage FTIR VIN13, 
WE372, 
VIN13-EXS, 
VIN13-PPK, 
ML01 

3 clusters WE372, ML01, 
(VIN13, VIN13-
EXS, VIN13-
PPK) 

score yes 53 
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Figure 13.28b:  Score plot for Pinotage 
combined 2005 sample sets using only FTIR 
data.  Leverage correction.  Clear discrimination 
between the two sample sets is observed. 
o - VIN13; o - VIN13-EXS; o - VIN13-PPK 

2005A 
2005B 

Figure 13.28a:  Score plot for Clairette Blanche 
sample sets from 2005A and 2006B using only 
the GC data.  Leverage correction.  WE372 
removed from sample set. 
o - VIN13; o - VIN13-EXS; o - VIN13-PPK 

2006A 

2005B 

Figure 13.28d:  Score plot for Cabernet Sauvignon 
for all 2005 sample sets using only FTIR data.  
Leverage correction.  Clustering between the 
different sample sets can be observed with very 
good discrimination between 2005A and 2005B. 
o - VIN13; o - WE372; o - VIN13-EXS;  
o - VIN13-PPK 

2005B 

2005A 

Figure 13.28c:  Score plot for Pinotage for all 2006 
sample sets using only FTIR data.  Test set 
validation.  Clustering between the different sample 
sets can be observed with very good discrimination 
between 2006B and 2006C. 
o - VIN13; o - WE372; o - VIN13-EXS;  
o - VIN13-PPK 

TIME 

2006C 

2006B 

2006A 

3.3.2 EFFECT OF AGEING OF WINES ON DISCRIMINATION 

In Fig. 13.28a, using GC data from the 2005B and 2006A sample sets for Clairette 
Blanche and leverage correction we can see two clusters representing wines samples at 
the two different times during the year. 
 

Fig. 13.28b show the combined 2005A and 2005B Pinotage sample sets using 
leverage correction and FTIR data.  Two clusters are formed representing wines from 
the 2005A sample set and the 2005B sample set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using FTIR data for the combined 2006A, 2006B and 2006C Pinotage sample sets 
and test set validation, three clusters can be discriminated in Fig. 13.28c.  The clusters 
represent wines from the 2006A, 2006B and 2006C sample sets. 

 
Fig. 13.28d shows the score plot for the combined sample sets of 2005 using FTIR 

data and leverage correction.  The two clusters represent the wines from the two 
samples sets.  
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Figure 13.28e:  Score plot for Cabernet 
Sauvignon for all 2006 sample sets using only 
FTIR data.  Test set validation. 
o - VIN13; o - WE372; o - VIN13-EXS;  
o - VIN13-PPK; o - ML01 

2006A 

2006A 

2006A 
2006B, 
2005C 

2006B, 
2005C 

2006B, 
2005C 

 

The combined data for 2006 using FTIR 
data and test set validation in the score plot 
shown in Fig. 13.28e does not show clustering 
for each sample set.  There are two clusters 
for wines fermented with WE372, one cluster 
representing wines from sample set 2006A 
and the other wines from sample sets 2006B 
and 2006C.  The pattern is repeated for wines 
fermented by WE372 and wines fermented by 
VIN13, VIN13-EXS and VIN13-PPK.  It could 
be seen as 2006A wines to the top right and 
2006B and 2006C towards the bottom left. 
 

3.3.3 DISCRIMINATION BASED UPON NON-GM VS. GM YEAST  STRAIN USED FOR 
FERMENTATION 

A special case of discriminating wines based on the yeast used for fermentation would 
be to discriminate between wines fermented with non-genetically modified (non-GM) 
yeast and wines fermented with genetically modified (GM) yeast.  In an attempt not to 
repeat all the plots covered in the preceding text only two cased will be reviewed. 

3.3.3.1 PLS-DISCRIM data analysis of Clairette Blan che 

Fig. 13.29a illustrates that discrimination is possible between GM-wines and non-GM-
wines for the 2005 vintage model fermentations of Clairette Blanche. An excellent 
discrimination can be observed using either two or three PLS-components, based on 
FTIR spectroscopy only.  
 

Fig. 13.29b demonstrates similar features for discrimionation between GM-wines and 
non-GM-wines for the case of the 2006 harvest. For this vintage a larger FTIR-
complexity of the data (two sub-groups discernable both for GM- and for non-GM-wines) 
necessitates four PLS-components for the discrimination, which is otherwise fully 
comparable to that for for 2005 however.  The sub-groups are clusters of the individual 
groups of yeast.  VIN13 and WE372 form the LARGER non-GM wine group while 
VIN13-EXS and VIN13-PPK form the LARGER GM-wine group. 
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Fig. 13.29b. Clairette Blanche (2006 harvest). Top right panel: 3-D score plot.  Bottom right 
panel: Predicted vs. measured validation (based on 2-segment cross validation). Clear 
discrimination gap between GM and non-GM predictions (+1 and -1 clusters respectively).  
Two-segmented cross-validation indicates 5 significant components.  87% Y-variable 
modelled, using 82% X-variance (FTIR data). 
o – GM wines; o – non-GM wines 
 

Fig. 13.29a. Clairette Blanche (2005 harvest). Top right panel: 3-D score plot.  Bottom right 
panel: Predicted vs. measured validation (based on 2-segment cross validation). Clear 
discrimination gap between GM and non-GM predictions (+1 and -1 clusters respectively).  
Two-segmented cross-validation indicates 2 significant components.  94% Y-variable 
modelled, using 59% X-variance (FTIR data). 
o – GM wines; o – non-GM wines 
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3.3.3.2 PLS-DISCRIM data analysis of Cabernet Sauvi gnon 

As is evident from Fig. 13.30a, there is an excellent discrimination between GM-wines 
and those fermented by non-GM yeast for 2005 Cabernet Sauvignon. Four PLS-
component are needed for this performance, all are statistically significant as per the 
validation (lower left panel). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For 2006 the most stringent validation was used, independant test set validation.  In 
Fig. 13.30b, a completely independent data set is used for the performance evaluation. 
Discrimination for Cabernet Sauvignon (2006) still comes through in a quite acceptable 
fashion. Prediction (of GM-discrimination in the case) cannot be tested in a more 
realistic sense that by this test set validation scenario (Esbensen, 2002). 
 
 
 
 
 
 
 
 
 
 

Fig. 13.30a. Cabernet Sauvignon (2005 harvest). Top right panel: 3-D score plot.  Bottom 
right panel: Predicted vs. measured validation (based on 2-segment cross validation). An 
excellent discrimination gap between GM and non-GM predictions (+1 and -1 clusters 
respectively).  Two-segmented cross-validation indicates 4 significant components.  87% Y-
variable modelled, using 82% X-variance (FTIR data). 
o – GM wines; o – non-GM wines 
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3.4 DISCUSSION 

3.4.1 DISCRIMINATION BETWEEN WINES FERMENTED WITH DIFFERENT YEAST 
STRAINS 

When test set validation is used only objects from the calibration set is used to create 
the score plot and the test set objects are passively projected into this score space.  
When leverage correction is used and all objects are combined and no objects are kept 
out of the calibration, the score plot will be created using all the objects and therefore 
use a larger data set.  When using leverage correction on combined calibration and test 
sets it has been shown (score plots not shown) that for some of the sample sets 
discrimination was possible between wines fermented with the closely related yeast 
strains. 

3.4.1.1 Clairette Blanche 

A tabulated summary of the results from wines fermented from Clairette Blanche grapes 
can be seen in Table 3.4. 
 

Fig. 13.30b. Cabernet Sauvignon (2006 harvest). Top right panel: 3-D score plot.  Bottom 
right panel: Predicted vs. measured validation (N.B. test set validation). Again highly 
acceptable discrimination gap between GMO and non-GMO predictions (+1 and -1 clusters 
respectively).  Validation indicates 4 significant components.  90% Y-variable modelled, 
using 73% X-variance (FTIR data). 
o – GM wines; o – non-GM wines 
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For the FTIR data in the 2005A and in the 2005B sample sets good discrimination 
are achieved as seen by the tight clusters that are spread far apart in the score space. 
 

Discrimination is possible using GC data in the 2005B sample set.  Clusters are not 
as compact but no overlap is observed. 
 

In the 2006A sample set using FTIR data good discrimination is achieved.  
Fermentations done with WE372 and VIN13-PPK is spread far from each other with the 
fermentations done with VIN13 and VIN13-EXS lies in between the fermentation made 
with WE372 and VIN13-PPK, but the fermentations with VIN13 and VIN13-EXS are still 
in separate clusters.   
 

Using GC data for the 2006A sample set good discrimination is achieved with all the 
fermentation forming clusters that does not overlap with the others. 
 

When combining the FTIR data from the two sample sets for 2005, good 
discrimination is achieved between the fermentations done with the three yeast strains.  
It seems possible that the fermentations done with VIN13 and VIN13-PPK are closer in 
terms of chemical composition than that of wines fermented with VIN13-EXS. 
 

By combining the FTIR data of all the sample sets across the two vintages, 2005 and 
2006, we can see if it is possible to discriminate between the fermentations done with 
the different yeasts also in successive years.  This is important to create a successful 
model that could be used for prediction of the yeast used for a specific fermentation.  
The fermentations done with VIN13, VIN13-EXS and VIN13-PPK in 2005 and 2006, 
cluster together and seem to be more similar in chemical composition than those 
fermentations done with WE372 in 2006.  The fact that wines fermented with VIN13, 
VIN13-EXS and VIN13-PPK cluster together for 2005 and 2006 could possibly indicate 
that the difference in chemical composition between wines fermented with WE372 and 
that of wines fermented with VIN13, VIN13-EXS and VIN13-PPK are bigger than the 
differences between the two vintages.  It is further interesting that once fermentations 
done with WE372 are removed that no pattern can be seen in the fermentations.  This 
could be due to the relative small differences in the genetic make-up of VIN13, VIN13-
EXS and VIN13-PPK and that a small change in must composition could lead to 
different gene expression. 

3.4.1.2 Pinotage 

A tabulated summary of the results from wines fermented from Pinotage grapes can be 
seen in Table 3.5 at the end of section 3.3.1.2. 
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For the FTIR data in the 2005A sample set, good discrimination is achieved.  The 

cluster containing wines fermented with VIN13-PPK is lying a bit further away from the 
two clusters of wines fermented with VIN13 and VIN13-EXS. 
 

Using FTIR data in the 2005B sample set, discrimination is good with tight clusters 
that are apart wide apart in the score space.  The fermentations done with VIN13-EXS 
and VIN13-PPK seem to lie closer together which could indicate that their chemical 
compositions are closer to each other. 
 

The GC data for the 2005B sample set also give good discrimination between the 
wines fermented with the three yeast stains.  The clusters are not as tightly pack as the 
ones where FTIR data was used. 
 

Using FTIR data in the 2006A sample set, good discrimination between the wines 
fermented with the four yeast strains are achieved.  The four clusters are spread apart in 
score space. 
 

Using FTIR data in the 2006B sample set we can only discriminate between wines 
fermented with WE372 and the rest of the wines.  By further inspecting the cluster 
contaning wines fermented with VIN13, VIN13-EXS and VIN13-PPK we can see that 
there is a pattern of wines fermented with VIN13-PPK clustering together.  Wines 
fermented with VIN13 and VIN13-EXS show some overlap.  As before it can be 
speculated that the wines fermented with VIN13, VIN13-EXS and VIN13-PPK are more 
similar in chemical composition than those fermented with WE372.  This could be 
attributed to their similarity in genotype.  Using the additional set of fermentations as a 
test set in validation, we can see that the model is successful in discriminating the wines 
fermented with WE372 from the rest. 
 

When wines fermented with WE372 is removed from sample set 2006B we can only 
discriminate between wines fermented with VIN13-PPK and the rest, while there seem 
to be no discrimination between wines fermented with VIN13 and VIN13-EXS.  This 
would suggest that the wines fermented with VIN13 and VIN13-EXS are very similar in 
chemical composition.  Using the test set for validation of the model does not perform 
very well in predicting the wines fermented with VIN13-PPK, showing some overlap 
between the two groups. 
 

For the FTIR data in the 2006C sample set wines fermented with WE372 can be 
discriminated from wines fermented with VIN13, VIN13-EXS and VIN13-PPK.  In the 
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group of wines that was fermented with VIN13, VIN13-EXS and VIN13-PPK, those 
fermented with VIN13-PPK can be separated from the rest with a small overlap with the 
wines fermented with VIN13 and VIN13-EXS.  The clusters are not as tight as seen in 
sample sets 2006A and 2006B.  Using the additional set of fermentations as a test set in 
validation, we can see that the model is successful in discriminating the wines fermented 
with WE372 from the rest.  Discrimination can also be seen between wines fermented 
with VIN13-PPK and the rest although the vertical gap is not as big as with wines 
fermented with WE372. 
 

Using GC data in sample set 2006C discrimination shows the same pattern as with 
the FTIR data.  Using the GC data the clusters of wines fermented with WE372 and 
VIN13-PPK are lying slightly further away from the cluster containing wines fermented 
with VIN13 and VIN13-EXS when using FTIR data.  This is confirmed in the Predicted 
vs. Measured plots.  In the cluster containing the wines fermented with VIN13 and 
VIN13-EXS, no pattern can be distinguished.  This could be due to a very similar 
chemical composition of these wines. 
 

When combining the FTIR data from the two sample sets for 2005, no clear 
discrimination between the wines fermented with the three yeast strains can be seen.  
There is a pattern though in that the wines can be seen as three poorly defined clusters.   
 

Even though there are no clear discrimination between the wines fermented with the 
four yeast strains there are three overlapping clusters which have similar patterns to 
those in the individual sample sets.  There is a cluster with very little overlap containing 
wines fermented with WE372, there is a cluster with little overlap containing wines 
fermented with VIN13-PPK and another cluster that contains wines fermented with 
VIN13 and VIN13-EXS with small overlap with the rest.  Using the test set for validation 
the model does not perform very well in predicting the wines fermented with WE372, 
showing overlap between the two groups. 
 

By combining the FTIR data of all the sample sets across the two vintages we can 
see if it is possible to discriminate between the fermentations done with the different 
yeasts in successive years.  This is important to create a successful model that could be 
used for prediction of the yeast used for a specific fermentation. 
 

As with Clairette Blanche, the fermentations done with VIN13, VIN13-EXS and 
VIN13-PPK in 2005 and 2006 cluster together and could possibly be explained to be 
more similar in chemical composition than those fermentations done with WE372 in 
2006.  The fact that wines fermented with VIN13, VIN13-EXS and VIN13-PPK cluster 
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together for 2005 and 2006 could possibly indicate that the difference in chemical 
composition between wines fermented with WE372 and that of wines fermented with 
VIN13, VIN13-EXS and VIN13-PPK are bigger than the differences between the two 
vintages.  As with the analysis of the individual sample sets, it appears that wines 
fermented with VIN13-PPK cluster together with some overlap with the wines fermented 
with VIN13 and VIN13-EXS.  This separation of wines fermented with VIN13-PPK is 
much clearer using GC data. 

3.4.1.3 Cabernet Sauvignon 

A tabulated summary of the results from wines fermented from Pinotage grapes can be 
seen in Table 3.6 at the end of section 3.3.1.3. 
 

In the 2005A sample set and using the FTIR data there is discrimination between the 
wines fermented with WE372 and the rest.  In the other cluster there is grouping of 
wines fermented with VIN13 and wines fermented with VIN13-EXS and VIN13-PPK, 
there is some overlap between these two groups.  As with most of the sample sets that 
include wines fermented with WE372 we can see that it forms a separate cluster away 
from the rest.  Once the wines fermented with WE372 are removed from the sample set, 
the wines fermented with VIN13 form a separate cluster.  Looking at the wines 
fermented with VIN13-EXS and VIN13-PPK there is overlap but it seems that there 
might be a pattern of the same wines grouping together. 
 

Using FTIR data in the 2005B sample wines fermented with WE372 is in a separate 
cluster from the rest of the wines.  It is not a very tight cluster and the wines are not very 
far from the rest of the wines.  The same pattern as in the 2005A sample set can be 
seen in the clustering of wines fermented with VIN13, VIN13-EXS and VIN13-PPK.  With 
the removal of the wines fermented with WE372 there is better separation between the 
wines fermented with the remaining three yeasts.  This separation is better than in the 
2005A sample set. 
 

When using The GC data from sample set 2005B there is separation between all the 
wines fermented with the four different yeast strains.  The wines fermented with WE372 
create a very compact cluster, with the exception of two wines.  It is not even necessary 
to remove the wines fermented with WE372 to see clustering of the wines fermented 
with VIN13, VIN13-EXS and VIN13-PPK. 
 

Using FTIR data from the 2006A sample set very good discrimination was achieved 
between wines fermented with WE372, wines fermented with ML01 and the wines 
fermented with VIN13, VIN13-EXS and VIN13-PPK.  The three clusters are tight and 
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spread far apart.  The model is also very stable in prediction using the second set of 
fermentations as a test set in the validation process, thereby confirming the good 
discrimination seen in the score space.  This good discrimination could possibly be 
explained by the differences in genotype and resulting phenotypes that result in different 
chemical compositions of the wines.  A possible explanation for the grouping of the 
wines fermented with VIN13, VIN13-EXS and VIN13-PPK closely together is that their 
chemical profiles are very similar.  This could mean that the insertion of the two foreign 
genes that resulted in VIN13-PPK and VIN13-EXS did not result in such a big difference 
in the chemical composition compared to that of the other two yeast strains. 
 

When removing wines fermented with WE372 and ML01 from sample set 2006B 
wines fermented with VIN13-PPK separates from wines fermented with VIN13 and 
VIN13-EXS.  Using the second set of fermentations as test set for validation the model 
does not perform well in discriminating wines fermented with VIN13-PPK from the rest 
as indicated by some wines having predicted values of less than 0.  This could be 
explained by possible differences between the two sets of fermentations done for 
calibration of the model and the validation of the model.  These differences were never 
analysed. 
 

Similar results were obtained for the 2006B sample set using FTIR data as was seen 
in the 2005A sample set.  There was good discrimination between wines fermented with 
WE372, wines fermented with ML01 and wines fermented with VIN13, VIN13-EXS and 
VIN13-PPK.  Using the second set of fermentations the model performed well in 
discriminating the wines fermented with WE372 and ML01 from the rest of wines. 
 

Using the GC data in the 2006B sample set the discrimination was not as good as 
when the FTIR data was used.  Using test set validation, the model also could not 
discriminate between the group of wines fermented with ML01 from the others. 
 

The same results are achieved for the 2006C sample set using FTIR data as in the 
2006A and 2006B sample sets.  Whereas in the 2006A and 2006B sample sets there 
were no discrimination possible when wines fermented with WE372 and ML01 were 
removed, in the 2006C sample set discrimination between wines fermented with VIN13 
and wines fermented with VIN13-EXS and VIN13-PPK could be seen.  The model using 
test set validation also result in good discrimination between the wines fermented with 
VIN13 an the rest of the wines.  A possible explanation could be that this is due to the 
change in chemical composition of the wines as they age.  
 

Using the FTIR data in the combined sample sets of 2005 no patterns could be 
observed in the data. 
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For the combination of the 2006 sample sets and using the FTIR data the same 

patterns as seen in the individual sample sets can be seen, three clusters representing 
the wines fermented with WE372, ML01 and a combination of wines fermented with 
VIN13, VIN13-EXS and VIN13-PPK.  When using test set validation the model cannot 
discriminate between the groups of wines and show overlap. 
 

Combining the 2005B and 2006B sample sets and using FTIR data, there are 
separate clusters for the wines fermented with WE372, wines fermented with ML01 and 
a combination of VIN13, VIN13-EXS and VIN13-PPK.  Only wines fermented with ML01 
can be discriminated from the rest of the wines when GC data are used. 

3.4.2 EFFECT OF AGEING OF WINES ON DISCRIMINATION 

Using GC data from the 2005B and 2006A sample sets for Clairette Blanche, two 
clusters can be seen representing wines samples from the two vintages. 
 

In order to look at the effect that ageing had on the wines the score spaces that were 
used for discriminating the wines fermented with the different yeast strains were turned 
in the 3D space to reveal the structure.  In most cases the resulting discrimination could 
possibly be explained by the chemical changes occurring during the maturation of red 
wine in terms of polymerisation, oxidation and other chemical reactions (Ribéreau-
Gayon et al., 2000). 
 

Unlike the combined 2005 data for Cabernet Sauvignon, the combined data for 2006 
using FTIR data does not show clustering for each sample set.  The difference between 
the 2006A and the other two sample sets could very likely be attributed by the fact that 
the wines from 2006A sample set was sampled almost two months before the others 
and that it has not undergone secondary malolactic fermentation. 

3.4.3 DISCRIMINATION BASED UPON NON-GM VS. GM YEAST  STRAIN USED FOR 
FERMENTATION 

With exception of this Cabernet Sauvignon 2006A sample set, all sample sets show 
good discrimination between wines fermented with non-GM and GM yeast when looking 
at score plots for each PLS1-discrimination model (results not shown).  Discrimination 
between wines fermented with non-Gm and GM yeast is not good when looking at the 
combined sample sets for 2005 and for the samples sets of 2006 when using FTIR data.  
More data is needed to further look at the possibility of using FTIR data for 
discrimination combining vintages. 
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3.5 CONCLUSIONS 

Regarding the first objective of this study, it can be stated that the possibility exist for 
using FTIR and GC for the discrimination of wines fermented with different yeast strains 
within each cultivar.  Generally the discrimination for each sample set in a specific year 
shows the same discrimination in the alternative year.  When combining the sample sets 
for a specific year, discrimination is still possible between wines fermented from non-
similar yeast.  In most cases it is also possible to discriminate between the different 
sample sets taken at different times within a vintage.   

 
The second objective of the study resulted in discrimination of wines fermented with 

different yeast strains by using FTIR or GC data.  The results showed that FTIR is 
outperforming GC with certain sample sets and vice versa for other sample sets.  
Overall the discrimination with FTIR or GC data was the same.  Discrimination was also 
tested by using PLS2-discrimination with FTIR and GC data combined.  This 
combination of data did not significantly increase discrimination between wines 
fermented with different yeasts.  With the time saving benefits of FTIR it would perhaps 
be beneficial investigating this as technique of preference in further studies. 
 

It is clear that more data is needed to draw further conclusions regarding the 
discrimination of wines fermented with closely related yeast strains (VIN13, VIN13-EXS 
and VIN13-PPK).   
 

In none of the chemometric analysis of the wines did the addition of a commercial 
enzyme show to have any difference in the discrimination ability.  It can therefore be 
speculated that the influence of enzyme addition is limited. 
 

When looking at the PLS1-discrim results for discrimination of the GM and non-GM 
fermented wines, the FTIR technique could lead to a possible fast authentication 
technique when screening wines for the European Union market to ensure no GM 
material is used.  In order for this possibilty to be developed into an accepted method 
however, much more work would be needed to establish reliable, robust models.  A 
comprehensive industry-wide calibration must include all major S.A. cultivars as well as 
further variance-inducing factors, such as maturation of wine, origin of grapes and other 
factors that could affect the wine.  This will no doubt be a considerable project, but the 
entire foundation has been worked out for the first time in this study. 
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3.6 FUTURE STUDIES 

The present feasibility study prediction models can easily be extended to any number of 
additional cultivars needed or wished for.  To further improve the robustness, wines 
made from employing different process technologies, blending of cultivars and mixtures 
of yeasts should also be included.  The study should also be extended to include the 
use of Near Infrared technology which is widely used in the food and beverage industry 
for very fast, on-line process analytical chemistry (PAC) applications. 
 

A related advantage is that the S.A. wine industry will be able to monitor processes 
based on at-line NIR or FTIR Process Analytical Technologies (PAT) (McLennan and 
Kowalski, 1995, Bakeev, 2005). There are also numerous promising potentials and 
perspectives for a new generation approach to on-line process sampling in the industrial 
winemaking arena (Esbensen et al., 2006), which is intimately connected to PAT. 
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Abstract 
In this study FTIR was used in transmission and in attenuated total reflectance (ATR) 
modes to discriminate between phenotypes of Saccharomyces cerevisiae yeast.  Both 
FTIR modes resulted in positive discrimination between phenotypes and between 
closely related genetically modified yeast.  The FTIR-ATR was conducted by using a 
Type IIa diamond crystal.  Further work is required in sample preparation and more 
yeast strains should be included in the FTIR-transmission studies to validate the PLS-
discrimination models. 
 
Keywords:   Mid-infrared spectroscopy; FTIR-ATR, FTIR-transmission, Chemometrics; 
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4.1 INTRODUCTION 

Fourier transform infrared (FTIR) spectroscopy has been used for the identification and 
discrimination of bacteria as far back as the 1950’s and 1960’s, but was not pursued as 
a viable method due to the limitations of available technology at the time (for an in depth 
review see Naumann et al., 1991b).  With the advancement of infrared instrumentation, 
more powerful computers and advanced algorithms for multivariate data analysis and 
pattern recognition, FTIR as a tool has become more widely acceptable and used 
(Mariey et al., 2001). 
 

The use of FTIR spectroscopy in biological systems is based on the amount of 
infrared energy absorbed by the infrared active molecules in a sample.  The absorption 
leads to increased vibrations in the highly polar bonds of functional groups.  The 
resulting absorption, transmission or reflection spectrum gives information about the 
total biochemical composition of a sample regarding the molecular composition (Zhao et 
al., 2006).  FTIR can be seen as a rapid, whole organism fingerprint approach (Zhao et 
al., 2006; Naumann et al., 1991b).  These spectral fingerprints can be highly specific 
and can be used as a measure of the phenotype of an organism in taxonomic 
classification (Timmins et al., 1998b), down to the strain and  serogroup/serotype level 
(Ngo Thi et al., 2000). 

 

The spectral fingerprint of the whole cell is made up of several components.  There 
are two major components of the cell, namely the cell membranes (cell wall and 
cytoplastic membrane) which mainly consist of lipids and polysaccharides and the 
cytoplast which mainly consist of nucleic acids and proteins (Naumann, 1998; Yu and 
Irudayaraj, 2005).  There is some general agreement on the spectral absorption bands 
for identification of the different components (Maquelin et al., 2002; Yu and Irudayaraj, 
2005), but there is still uncertainty of the exact regions for the different components.  
Table 4.1  list spectral absorption for components in the infrared region (Maquelin et al., 
2002).  For protein structure analysis the amide-Ι band, arising from the peptide 
backbone, is mostly used (Wolkers and Oldenhof, 2005).  The FTIR spectra of bacteria 
are mostly dominated by the amide-Ι and amide-ΙΙ bands of the various proteins and 
oligo- and polysaccharides of the cell wall (Naumann et al., 1995). 
 

For identification and characterisation of microorganisms by FTIR it is not necessary 
to identify the bands and their intensities of the different components in the spectra.  The 
whole fingerprint can be used in conjunction with chemometrics for identification 
purposes (Maquelin et al., 2002).  Data analysis can be made more effective by using 
only the 1440-720cm-1 area of the spectra as this covers the mixed region of proteins 
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and fatty acids, the polysaccharides present in the cell wall, and the “true” chemical 
fingerprint region where the various bands can not be assigned to specific functional 
groups (Oust et al., 2004a). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To ensure the generation of good quality data it is very important that FTIR 
spectroscopy measurements are reproducible.  There are several factors that can 
influence the reproducibility including cell cycle, growth stage of the cells, growth 
conditions, sampling and sample preparation.  It is vital that all these parameters are 
controlled (Maquelin et al., 2002).  It has been shown that FTIR spectra are robust 
against small changes in bacterial growth conditions and that larger variations in the 
growth medium influenced the separation of strains (Oust et al., 2004a).  The physical 
state of a sample, for example during the preparation of KBr pellets (such as hydration, 
pressure it was exposed to, grinding and mixing) can have a severe influence on FTIR 
results (Wolkers and Oldenhof, 2005; Naumann, 1998).  A standard protocol for sample 

Table 4.1: Assignment of absorbance bands in the IR spectra of microbial 
cells (Maquelin et al., 2002) 

Frequency (cm-1)  Assignmenta  

3500 O–H str of hydroxyl groups  

3200 N–H str (amide A) of proteins  

2955 C–H str (asym) of –CH3 in fatty acids  

2930 C–H str (asym) of >CH2  

2918 C–H str (asym) of >CH2 in fatty acids  

2898 C–H str of C–H in methine groups  

2870 C–H str (sym) of –CH3  

2850 C–H str (sym) of >CH2 in fatty acids  

1740 >C=O str of esters  

1715 >C=O str of carbonic acid  

1680– 1715  >C=O in nucleic acids  
1695, 1685, 1675  amide Ι  band components resulting from antiparallel pleated 

sheets and β-turns of proteins  

1655 amide Ι of α-helical structures 

1637 amide Ι of β-pleated sheet structures  

1550– 1520  amide ΙΙ 1515 ‘‘tyrosine’’ band  

1468 C–H def of >CH2  

1400 C=O str (sym) of COO- 

1310– 1240  amide ΙΙΙ band components of proteins  

1250– 1220  P=O str (asym) of >PO2
- phosphodiesters  

1200– 900  C– O, C–C str, C–O–H, C–O–C def of carbohydrates 

1090– 1085  P=O str (sym) of >PO2
-  

720 C–H rocking of >CH2  

900– 600  “fingerprint region”  
a str=stretching; def=deformation; sym=symmetric; asym=asymmetric. 



 92 

preparation that is used by several groups has been published (Maquelin et al., 2002) 
after it was first proposed by Naumann et al., 1991a).   
 

FTIR has been used to differentiate, classify and identify Lactobacilli (Oust et al., 
2004a; Oust et al., 2004b), Listeria strains (Lin et al., 2004), sulphate and thiosulphate 
reducing bacteria (Rubio et al., 2006), Candida (Essendoubi et al., 2005; Tintelnot et al., 
2000; Timmins et al., 1998a), Saccharomyces cerevisiae (Wenning et al., 2002; 
Timmins et al., 1998b) and Streptomyces spp. (Zhao et al., 2006). 
 

The aim of the study was to evaluate the effectiveness of FTIR in transmission mode 
and FTIR in ATR (attenuated total reflectance) mode to discriminate between different 
Saccharomyces cerevisiae strains.  For the FTIR in transmission mode, the 
discrimination of yeast strains was investigated where yeast samples were suspended in 
a yeast-peptone-dextrose (YPD) medium and in a water medium.  For the FTIR in ATR 
mode, the discrimination of yeast strains were investigated with active dried wine yeast 
(ADWY) in a powder from and in a pellet form and with powdered dried yeast made from 
liquid cultured yeast. 

4.2 MATERIALS AND METHODS 

4.2.1 INSTRUMENTATION  

4.2.1.1 FTIR - transmission analysis 

Infrared analysis was carried out in the mid-infrared region (MIR)( 5011 to 929 cm-1 at 4 
cm-1 intervals) with a WineScan FT120 instrument (Foss Electric, Denmark).  Samples 
are pumped through a CaF2-lined cuvette with an optical path length of 37 µm.  Samples 
are preheated to 40°C in a heater block before anal ysis.  Each sample was analysed in 
duplicate, each spectrum was composed by the average of twenty scans after being 
Fourier transformed.  Foss Zero Liquid S-6060 (WineScan FT120 Reference Manual) 
was analysed before samples to facilitate correction for the specific background 
spectrum (especially water) present.  The final spectra were generated by rationing the 
individual sample spectrum by the zero solution spectra at each recorded wavelength. 
FTIR data were recorded as absorbencies as a function of wavenumber (cm-1). 

4.2.1.2 FTIR - ATR analysis 

Infrared analysis was carried out in the mid-infrared region (MIR)(4000 to 650 cm-1 at 4 
cm-1 resolution) with a NEXUS 670 FT-IR (Thermo Electron, USA) instrument.  The 
spectrometer equipped with a Ge-on-KBr beamsplitter and DTGS/CsI detector, was 
continuously purged with UHP nitrogen gas (AFROX, South Africa).  The spectrometer 
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was fitted with a Smart Golden Gate Single Reflection Diamond ATR sampling 
accessory featuring a type ΙΙa diamond.  Using the Smart Golden Gate accessory, 
samples require little or no preparation with the only requirement being that the sample 
must be in optimal contact with the diamond.  Uniform contact is achieved by using a 
self-levelling anvil with a sapphire tip that can exert pressures up to 17.6 kg/cm2.  
Properties of the type ΙΙa diamond are listed in Table 4.2 (Anonymous, 2002).  Fig. 4.1 
shows the %transmittance spectrum for the Type ΙΙa diamond with the spectral bands at 
2600 to 1600 cm-1.  Each sample spectrum is composed by the average of twenty scans 
after being Fourier transformed.  No ATR path length correction was done as spectra 
were not used for quantification.  The operating and data manipulation was performed 
with the basic OMNIC (Thermo Electron Inc., San Jose, CA, USA) software package for 
spectroscopy.  Residual water or CO2 absorptions were removed by spectral subtraction 
with the OMNIC spectroscopy software.  Background scans were performed after every 
fifth sample scan. 
 
 
Table 4.2:  Type ΙΙa diamond specification (Anonymous, 2002) 

Transmission Range 4500 to 2500 cm-1 & 1667 to 33 cm-1 
Refractive Index 2.4 
% Transmittance (thickness) 70% @ 1 mm thickness 
Cleaning Agents alcohol, acetone, H2O 
Solubility In Water (100g H2O @25°C) insoluble 
Density g/cm3 3.51 
Solvents Which Attack K2Cr2O7, conc H2SO4 
Max Temp In Air [°C] 750 
Melting Point [°C] 3500 
Hardness [kg/mm2] (Knoop #): 7000 
Composition crystalline carbon, single crystal 
Crystal Class cubic 
pH Range 1-14 
Depth of Penetration* 2.01 
* Assumes a 45 degree crystal and 1000 cm-1 with a sample refractive index of 1.5 
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4.2.2 YEAST STRAINS AND GROWTH CONDITIONS 

In order to test the differences between YPD autoclaved in different autoclaves, YPD 
broth was made-up and autoclaved in two different autoclaves at 120°C for 15min.  
Yeast was cultivated, as described earlier, and was diluted with YPD to achieve a final 
OD600 of 0.6 and 1.1 respectively.   
 

S. cerevisiae yeast strains were taken from the freeze culture collection of the 
Institute of Wine Biotechnology, Stellenbosch University.  For the use with FTIR-
transmission, VIN13 and WE372 yeast strains and for the use with FTIR-ATR, VIN13, 
VIN13-EXS, VIN13-PPK, VIN13-DLG29 and VIN13-DLG30 were used for the 
experiments (Table 2).  For the experiments using FTIR-ATR, different production 
batches were also used, see Table 4.3 for the production batch numbers. 
 

Strains were streaked out on YPD agar plates (1% yeast extract, 2% peptone, 2% 
dextrose, 2% agar, Biorad, South Africa) from freeze cultures and incubated at 30°C for 
48 hours.  A single colony was picked and inoculated in a 10 mL YPD liquid (1% yeast 
extract, 2% peptone and 2% dextrose, Biorad, South Africa) culture.  Liquid cultures 
were grown for 48 hours at 30°C on a rotating wheel .  At least five independent repeats 
of each strain were grown for each experiment. 
 
 
 
 
 
 
 

Figure 4.1: %Transmittance spectra for Type ΙΙa 
diamond (Anonymous, 2002) 
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Table 4.3:  Yeast strains used in this study 
S. cerevisiae 
strain  

Batch 
number 

Type a Genotype/Description Source/Reference 

VIN13 n/a Freeze Commercial diploid strain Anchor Yeast Technologies (SA) 

VIN13-EXS n/a Freeze ura3::ADH1P-MFα1S-END1-
TRP5T-ADH1P-XYNC-ADH2T 

Strauss, 2003 

VIN13-PPK n/a Freeze ura3::ADH1P-MFα1S-PELE-
TRP5T-ADH1P- MFα1S-PEH1- 
TRP5T 

Strauss, 2003 

VIN13-DLG29 n/a Freeze ILV2::TEF1P-XYN2-ADH2T Louw, 2004 

VIN13-DLG30 n/a Freeze ILV2::ADH1P-MFα1S-END1-
TRP5T 

Louw, 2004 

WE372 n/a Freeze Commercial strain Anchor Yeast Bio-Technologies (SA) 

VIN13 V4-26J ADWY Commercial strain Anchor Yeast Bio-Technologies (SA) 

VIN13 V5-59D ADWY Commercial strain Anchor Yeast Bio-Technologies (SA) 

WE372 V4-41 ADWY Commercial strain Anchor Yeast Bio-Technologies (SA) 

WE372 V5-46D ADWY Commercial strain Anchor Yeast Bio-Technologies (SA) 

WE372 V5-47D ADWY Commercial strain Anchor Yeast Bio-Technologies (SA) 

NT7 V1-30 ADWY Commercial strain Anchor Yeast Bio-Technologies (SA) 

AWRI R2 412113 ADWY Commercial strain AB Mauri (Australia) 

Maurivin B 516106 ADWY Commercial strain AB Mauri (Australia) 

a: Freeze – Freeze culture, 60% Glycerol; ADWY – Active Dried Wine Yeast 

4.2.3 SAMPLE PREPARATION 

4.2.3.1 Samples for FTIR transmission 

Samples were presented to the FTIR in two liquid mediums, YPD and H2O respectively. 
 

Preparations of yeast suspended in YPD were made.  Optical density at 600nm 
(OD600) was measured (Helios Beta, Thermo Electron Corp, England) for the yeast 
cultured in YPD.  Samples were diluted into 25 mL YPD to achieve a predetermined (05 
and 1.0) OD600 value.  Using Formula 4.1, the volume of cultured yeast suspension 
needed to be diluted in YPD to achieve the desired OD600 was calculated: 
 

i
i f

d

OD
V V

OD
= •          (4.1) 

 Where 
  Vi = volume needed of cultured yeast suspension 
  Vf = final volume of yeast suspension at desired OD600 
  ODi = initial measured OD600 of cultured yeast suspension 
  ODd = desired OD600 of the final yeast suspension 
 
The diluted 25 mL samples of yeast suspended in YPD were used for FTIR analysis. 
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Preparations were made of yeast suspended in de-ionised water.  The 10 mL liquid 

cultures were concentrated by centrifugation at 2320xg for 30 seconds (Eppendorf 
5415D, Hamburg Germany).  The pellets were then resuspended and washed three 
times in sterile de-ionised water.  The washed pellet was resuspended in 1 mL sterile de-
ionised water.  The resuspended yeast was then added to 25 mL sterile de-ionised 
water.  After the dilution the OD600 was determined (Helios Beta, Thermo Electron Corp, 
England).  The way the dilution was done resulted in a wide range of OD600 values; the 
statistics is shown in Table 4.4. 
 

Table 4.4: Statistics for Low and High OD yeast/water data sets 

Yeast Average 
OD600 

Min Max Std n 

VIN13 2.09 0.93 2.63 0.52 41 
WE372 1.98 0.86 2.55 0.56 29 
Min: minimum OD600; Max: maximum OD600; Std: standard deviation; n: number of samples 

4.2.3.2 Samples for FTIR-ATR 

Samples were prepared from Active Dried Wine Yeast (ADWY) and from liquid cultures.  
Samples were presented in two forms, as hydraulically pressed pellets and as fine 
powders. 

4.2.3.2.1 Active Dried Wine Yeast (ADWY) 

ADWY is packaged in granular form in vacuum sealed packs.  Granules were crushed in 
an onyx mortar and pestle and then ground down to a fine powder, this sample 
preparation was repeated independently on two different days.  The powder was 
presented to the ATR crystal of the FTIR instrument.  Powder was also pressed into 
pellets.  A powder sample of roughly 0.1g was weighed off and transferred to a stainless 
steel holder (13 mm inside diameter).  The holder was placed in a hydraulic press and 
evacuated with an attached vacuum pump.  A pressure of about 10000 kg (roughly 7500 
kg/cm2) was applied for two minutes.  The pellet was presented to the ATR crystal.  To 
ensure that cracking of the pellet was minimised a Perspex holder was placed around 
the pellet. 

4.2.3.2.2 Yeast from liquid cultures 

For these experiments five yeast strains were used, namely VIN13 and four genetically 
modified stains of VIN13.  Two of these strains (VIN13-PPK and VIN13-EXS) have each 
two foreign genes inserted into their genome while the other two strains (VIN13-DLG29 
and VIN13-DLG30) each only have one foreign gene inserted into their genome.  The 
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potential of PLS-discrimination will be tested by the selected five strains as they closely 
related in terms of genetic make-up. 
 
The 10 ml liquid yeast cultures, cultured as described earlier, were concentrated by 
centrifugation at 2320xg for 30 sec (Eppendorf 5415D, Hamburg Germany).  The pellets 
were resuspended in sterile de-ionised water after which it was washed three times in 
sterile de-ionised water.  The washed pellet was resuspended in 1 mL sterile de-ionised 
water and transferred to a Petri dish.  The yeast suspension was dried overnight at 
55°C.  The resulting dried yeast flake was ground t o a fine powder in an onyx mortar 
and pestle.  The powder was presented to the ATR crystal of the FTIR instrument.  

4.2.4 CHEMOMETRIC DATA ANALYSIS 

Corrected (time and date stamps and other non-spectral data were removed from the 
raw data) FTIR spectra were imported in the Unscrambler software (version 9.2, Camo 
PROCESS AS, Oslo, Norway) for PLS-discrimination. 

 
Pre-processing was carried out on all spectra.  The second derivative was employed 

on FTIR transmission and FTIR ATR spectra using the Savitzky-Golay algorithm 
(Savitzky and Golay, 1964) with five data points left – and right, with a second-order 
polynomial fit. The second order derivatives were used to compensate for baseline 
shifts, to remove possible minor scattering effects and for peak sharpening to bring out 
small peaks and changes in slope.  Finally the data were mean centred and 
standardised by dividing each column in the data matrix with the standard deviation of 
each variable (wavenumber).  This combined treatment is termed auto-scaling in 
chemometrics (Esbensen, 2002). 
 

Data analysis on spectra from the FTIR-ATR work was done on a reduced spectral 
region (1440 to 720 cm-1) after an initial survey of the data of the full spectral range 
(4000 to 650 cm-1).  The reduced spectral region covers the mixed region of proteins 
and fatty acids, the region covering polysaccharides present in the cell wall, and the 
“true” chemical fingerprint region where the various bands can not be assigned to 
specific functional groups (Oust et al., 2004a). 
 

PLS2-discriminant analysis was used for discriminating between the different yeast 
strains.  A dummy Y variable was created to represent each of the yeast strains used.  A 
value of +1 was assigned to a sample when it belonged to a specific yeast class and -1 
if it did not belong to that class.  These PLS2-discrimination models were used to 
analyse the data structure and not for prediction; due to this leverage correction was 
used as a validation method. 
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PLS1-discriminant analysis was used with data generated with FTIR-transmission 
where only two yeast strains were used, VIN13 and WE372.  A dummy Y variable was 
created representing either WE372 (signified by: -1) and VIN13 (signified by: +1).   
 

Full description of PLS-discrimination can be found in standard chemometric 
textbooks (Esbensen, 2002, Martens and Naes, 1998).  

4.3 RESULTS AND DISCUSSION 

4.3.1 DISCRIMINATION OF YEAST STRAINS BY USING FTIR -TRANSMISSION 

4.3.1.1 Suspended in YPD 

Fig. 4.2a shows the score plot for the PLS2-discrim done with samples of YPD broth and 
cultivated yeast at the two indicated OD600 values.  Leverage correction was used as 
validation method.  The samples of YPD broth form one cluster which indicates that the 
different treatments in different autoclaves did not have a significant effect on the 
clustering of these samples.  It is therefore possible that preparation of YPD is not of 
major importance as long as the same procedure for make up is followed.  The first PLS 
component (PC1) describes the change in optical density of the samples, and those with 
a low OD located to the right and those samples with higher OD to the left of PC1.  The 
second PLS component (PC2) describes the yeast strain, and VIN13 located to the 
positive end and WE372 located to the negative end, YPD broth, which is the diluting 
medium for the two yeast strains, located on the zero line between the groups of the two 
yeast strains. 
 

Fig. 4.2b represents a three dimensional view of the first three PLS components 
(PC1, PC2, PC3) in the score space shown in Fig. 2, but rotated to reveal new features 
in the data.  Three clusters can be identified representing samples of YPD broth, VIN13 
samples and WE372 samples, respectively. 
 
 
 
 
 
 
 
 
 
 

Figure 4.2a: PLS2-Discrim score plot for yeast 
scanned in FTIR-transmission in YPD as liquid 
medium.  Objects represent YPD (●,●) with no 
yeast (1); VIN13 (●) (2) and WE372 (●) (3) at OD600 
0.6; VIN13 (●) (4) and WE372 at OD600 1.1 (●) (5). 

(4) (2) 

(5) 
(3) 

(1) 

Figure 4.2b: PLS2-Discrim score plot for yeast 
scanned in FTIR-transmission in YPD as liquid 
medium.  Samples have OD600 of 0.6 and 1.1.   
o – YPD (1); o - VIN13 (2); o - WE372 (3) 

(1) 

(3) 
(2) 
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Figure 4.3: PLS1-discrim score plot for yeast 
scanned in FTIR-transmission in H2O as liquid 
medium.  Leverage correction used. OD values 
between 0.86-2.63.   
o VIN13 (1); o WE372 (2) 

(1) 

(2) 

If future prediction models must be created, a PLS1-discrimination model for each 
yeast strain must be created, while test set validation must be used. 

4.3.1.2 Suspended in water 

Data of generated spectra for five independent sets of experiments, done on different 
days were combined for the data analysis.     
 

Fig. 4.3 shows the score plot for the PLS1-
discrim with leverage correction as a method of 
validation.  There are two clusters representing the 
diluted samples of VIN13 and the diluted samples 
of WE372.  It appears that the optical density of the 
samples does not play an important part in the 
discrimination of the samples of the two yeast 
strains, as both groups of yeast contain a range of 
samples with different optical densities. 
 

4.3.2 DISCRIMINATION OF YEAST USING FTIR-ATR 

4.3.2.1 Active dried wine yeast (ADWY) 

Fig. 4.4a shows the score plot of the PLS2-discrim for all ADWY samples (see Table 
2).  Leverage correction was used as validation method.  There are seven clusters of 
samples representing Maurivin B, AWRI R2, NT7, VIN13 produced in 2004, VIN13 
produced in 2005, WE372 produced in 2004 and the combined two batches of WE372 
produced in 2005, respectively.  For both VIN13 and WE372 there are separate clusters 
for the different production years.  A possible explanation for this could be that there 
were slight differences and variations in the production processes that could result in 
different phenotypes of the different yeasts.  If future prediction models must be created, 
a PLS1-discrimination model for each yeast strain must be created, while test set 
validation must be used. 

Fig. 4.4b shows the score plot of the discrimination of the yeast strains using the 
yeast strains as Y-variables, it is the same score plot as  presented in Fig. 4.4a, the 
samples are identified by the way they were presented to the ATR crystal (either 
granular, pellet or powder).  It can be observed that within the clusters there is no 
pattern of how the samples were presented to the ATR crystal.  The different forms of 
sample presentation did not have an effect on the discrimination of the different yeasts, 
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Figure 4.5: PLS2-Discrim score plot for yeast scanned 
in FTIR-ATR as a powder.  Leverage correction used.   
● – VIN13 (1); ● – VIN13-EXS (2); ● – VIN13-PPK (3);  
● – VIN13-DLG29 (4); ● – VIN13-DLG30 (5)  

(2) (5) 

(4) 

(3) 

(1) 

Figure 4.4b: PLS2-Discrim score plot for ADWY 
yeast scanned in FTIR-ATR with different 
presentation forms.  Leverage correction used.  
o – granuals; o – pellet; o – finely ground powder 
(1) Maurivin B; (2) AWRI R2; (3) NT7;  
(4) WE372 (Bx 1, 2004); (5) WE372 (Bx 2, 
2005); (5) WE372 (Bx 3); (6) VIN13 (Bx 1, 
2004); (7) VIN13 (Bx 2, 2005)  

(1) 

(2) 

(7) 

(3) 
(4) 

(6) 

(5) 

Figure 4.4a: PLS2-Discrim score plot for ADWY 
yeast scanned in FTIR-ATR with different 
presentation forms.  Leverage correction used.  
o – Maurivin B (1); o – AWRI R2 (2); o – NT7 (3);  o 
– WE372 (Bx 1, 2004) (4); o – WE372 (Bx 2, 2005) 
(5); o – WE372 (Bx 3) (5); o – VIN13 (Bx 1, 2004) 
(6);  o – VIN13 (Bx 2, 2005) (7) 

(1) 

(2) 

(7) 

(3) 
(4) 

(6) 

(5) 

with the exception of granular samples in the WE372, Bx 1 (2004) cluster, which shows 
some separation from the powdered samples in the cluster. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.2.2 Yeast from liquid cultures 

Fig. 4.5 shows the score plot of five 
yeast strains.  Leverage correction 
was used as a method of validation.  
There are five clusters, each 
representing each of the five yeast 
strains used.  Discrimination of the 
five yeast strains are possible when 
using FTIR-ATR as analytical 
instrument and using yeast in a 
powder form as sample presentation 
to the ATR crystal. 

 
 

4.4 CONCLUSIONS 

It was shown in this study that it is possible to use both FTIR-transmission and FTIR-
ATR to discriminate between different yeast strain phenotypes.  It was shown that when 
using FTIR-transmission there is discrimination between yeast samples when the yeast 
was suspended in YPD and in water.  Dried yeast samples could be discriminated when 
the yeast were in a granular, powder form or in a pellet form, using FTIR-ATR.  It was 
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possible with FTIR-ATR to discriminate between the closely related yeast strain 
phenotypes.   
 

FTIR-transmission and FTIR-ATR are both fast techniques and these methods could 
be employed in fast screening of yeast phenotypes in a laboratory environment.  With 
slight modifications to instrumentation to fit into a production area, these methods could 
be applied at-line or even in-line in a yeast production process to ensure consistency in 
product purity and quality through the application PAT (Process Applied Technology). 
 

For the general discrimination of yeast based on their chemical fingerprint, the type 
ΙΙa is a suitable crystal to use in FTIR-ATR.  Comparative analysis with other available 
ATR crystals (germanium, zinc selenide, etc.) should also be investigated for suitability 
as some of them have lower absorption in the amide Ι and ΙΙ regions (Anonymous, 
2002) and are generally cheaper. 

 
Future work should also include FTIR-ATR work that compares yeast collected off 

agar plates in a dry and wet state.  Further work is also needed in the standardisation of 
the methods and quantification of the robustness of sample preparation. 
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5.1 CONCLUSION 

The study conducted in Chapter 3 was concerned with the discrimination of wines of 
three cultivars fermented with different wine yeast strains.  It was found that it is indeed 
possible to discriminate between wines fermented with different yeast stains, using FTIR 
or GC, for individual sample sets taken during the ageing process of the wines.  For the 
two vintages covered by this study it was observed that the discrimination obtained in 
each vintage was similar.  It was however not possible to see this same discrimination 
when the data of the two vintages were combined.  The discrimination of the fermented 
wines was found to be similar when using data from GC and FTIR, respectively and 
analysis with FTIR is considerably faster than analysis by GC.  For future studies of 
similar nature it would be recommended that FTIR is used.  It was also possible to 
discriminate wines fermented with specific tailored genetically modified yeast and wines 
fermented with non-genetically modified yeasts.  This was only performed on a very 
small sample set and should be further investigated as this is the first study of this 
nature and differences seen could be as result of the different phenotypes.    
 

Chapter 4 dealt with the study of discriminating wine yeast strains using FTIR and 
different sample presentations.  It was found that it was possible to discriminate between 
wine yeast strains using FTIR in transmission mode as well as in attenuated total 
reflectance (ATR) mode.  It proved possible to use transmission mode to discriminate 
between wine yeast strains suspended in different liquid media, water and yeast-
peptone-dextrose (YPD).  In ATR mode it possible to discriminate between dry yeast 
samples presented in a granular form, in a pellet form and in a powder form.  This 
highlighted the importance of a standardised protocol for further studies. 

5.2 INDUSTRIAL IMPORTANCE 

If a need in industry arises that would require the discrimination between wines that was 
fermented with different wine yeast strains, a calibration must be created that would 
satisfy all the requirements of the specific need, some of these requirements might 
include a range of commercial yeasts, some or all major S.A. cultivars, variance-
inducing factors, such as maturation of wine, origin of grapes, blending, etc.  With a 
larger study that should include the available commercial GM wine yeast and other GM 
yeast strains that could potentially be commercialised, the FTIR technique could lead to 
a possible fast discrimination technique when screening wines for the European Union 
market to ensure no GM material is used.  The establishment of such a calibration will 
not be trivial and might make such an approach uneconomical. 
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Through the application of process applied technology (PAT) (McLennan and 
Kowalski, 1995), possible application in the yeast production process could be to use 
FTIR technology at-line or even in-line to ensure product purity and consistency.  
Depending on the stage of the process where the application of the FTIR technology is 
needed, there might be a requirement for modification of the available instrumentation.  
Further studies should also be undertaken to ensure that the optimum sample 
presentation is used for an industrial application.  
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