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Abstract

In this thesis, we study the numerical approximation of indefinite integrals with

algebraic or logarithmic end-point singularities. We show the derivation of the

two quadrature formulas proposed by Haber based on the sinc method, as well

as, on the basis of error analysis, by means of variable transformations (Single and

Double Exponential), the derivation of two other formulas: Stenger’s Single Ex-

ponential (SE) formula and Tanaka et al.’s Double Exponential (DE) sinc method.

Important tools for our work are residue calculus, functional analysis and Fourier

analysis from which we state some standard results, and give the proof of some of

them. Next, we introduce the Paley-Wiener class of functions, define the sinc func-

tion, cardinal function, when a function decays single and double exponentially,

and prove some of their interesting properties. Since the four formulas involve a

conformal transformation, we show how to transform from the interval (−∞, ∞)

to (−1, 1).

In addition, we show how to implement the four formulas on two computa-

tional examples which are our test problems, and illustrate our numerical results

by means of tables and figures. Furthermore, from an application of the four

quadrature formulas on two test problems, a plot of the maximum absolute er-

ror against the number of function evaluations, reveals a faster convergence to the

exact solution by Tanaka et al.’s DE sinc method than by the other three formulas.

Next, we convert the indefinite integrals (our test problems) into ordinary dif-

ferential equations (ODE) with suitable initial values, in the hope that ODE solvers

such as Matlabr ode45 or Mathematicar NDSolve will be able to solve the result-

ing IVPs. But they all failed because of singularities in the initial value. In sum-

mary, of the four quadrature formulas, Tanaka et al.’s DE sinc method gives more

accurate results than the others and it will be noted that all the formulas are appli-

cable to both singular and non-singular integrals.
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Opsomming

In hierdie tesis bestudeer ons die numeriese benadering van onbepaalde integrale

met algebraı̈ese of logaritmiese eindpunt-singulariteite. Ons toon die afleiding van

die twee kwadratuurformules voorgestel deur Haber gebaseer op die sinc-metode,

asook, gebaseer op foutanalise, deur middel van veranderlike-transformasie (En-

kel-en Dubbel-Ekponensiaal), die afleiding van twee ander formules: Stenger se

Enkel-Eksponensiaal (SE) formule en Tanaka et al. se Dubbel-Ekponensiaal (DE)

sinc-metode. Belangrike gereedskap vir ons werk sluit in residu-rekene, funk-

sionaalanalise en Fourier-analise waarvan ons sommige standaard- resultate toon,

sommige met bewys. Daarna stel ons die Paley-Wiener klas van funksies bek-

end, definieer die sinc-funksie, die kardinaalfunksie, wanneer ’n funksie enkel-

en-dubbel-eksponensiaal verval, en bewys sommige van hulle interessante eien-

skappe. Aangesien die vier formules ’n konforme transformasie insluit, wys ons

hoe om die interval (−∞, ∞) na (−1, 1) te transformeer.

Verder toon ons aan hoe om die vier formules te implementeer op twee voorbeel-

dberekenings wat ons toetsprobleme is en illustreer ons numeriese resultate deur

middel van tabelle en figure. Verder, van ’n toepassing van die kwadratuurfor-

mules op twee toetsprobleme, toon ’n grafiek van die maksimum absolute fout

teen die aantal funksie-evaluasies ’n vinniger konvergensie na die presiese oploss-

ing in die geval van Tanaka et al. se DE sinc-metode as by die ander drie formules.

Volgende doen ons die omskakeling van die onbepaalde integrale (ons toets-

probleme) na gewone differensiaalvergelykings (GDV) met geskikte beginvoor-

waardes, in die hoop dat GDV-oplossers soos Matlabr ode45 of Mathematicar

NDSolve die gevolglike probleem sal kan oplos. Hulle misluk egter almal weens

singulariteite in die beginvoorwaardes. Ter opsomming, van die vier formules

gee Tanaka et al. se DE sinc-metode meer akkurate resultate as die ander en dit

sal opgemerk word dat al die formules toepasbaar is op beide singuliere en nie-

singuliere integrale.
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Chapter 1

Introduction

By trying often and often, the monkey learns to jump from tree to tree.

Nigerian proverb.

An indefinite integral of a function f (x) is a function F(x) whose derivative

F′(x) = f (x) on a certain interval of the x-axis [14]. We assume that f (x) is analytic

in a simply connected domain D [17] which we shall define shortly.

When we talk of indefinite integrals in the parlance of Numerical Analysis, we

mean integrals in which the upper limit of integration is a variable [7],

F(x) =
∫ x

c
f (u) du. (1.1)

This thesis will be restricted to computing the numerical indefinite integrals of

integrals in which the lower limit of integration c = −1, and in which the upper

limit is x for −1 < x < 1, using the sinc method. A treatment of other indefinite

integrals over such intervals as (0, x): 0 < x < ∞ and (−∞, x) using the double

exponential formulas is given by Muhammad and Mori [21].

Next, we introduce some notations used in this thesis.
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Definition 1.1. 1. The notation

f (x) ∼ g(x), x → a

which is read ” f (x) is asymptotic to g(x) as x → a ”, means

lim
x→a

f (x)

g(x)
= 1.

2. The notation

f (x) = o(g(x)), x → a

which is read ” f (x) is of order less than g(x) as x → a ”, means

lim
x→a

f (x)

g(x)
= 0.

3. The notation

f (x) = O(g(x)), x → a

which is read ” f (x) is of order not exceeding g(x) as x → a ”, means

lim
x→a

f (x)

g(x)
= L < ∞.

Alternatively, when the limits do not exist, we say f (x) = O(g(x)) as x → a if

there exists a positive real number A independent of x such that

| f (x)| ≤ A|g(x)|,

for x sufficiently small/large [1].
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1.1 The Sinc Function

The word ”sinc” is an abbreviation of the phrase ”sine cardinal” [34]. The sinc

function sinc(x) arises frequently in Fourier transforms. It is an even function

with zeros at kπ for k = ±1,±2, · · · , lim
x→±∞

sinc(x) = 0. Gearhart and Shultz [9]

describe it as a well-behaved function and also gives some of its properties.

Definition 1.2. The sinc function is defined in [18] as

sinc(x) =







sin πx
πx , x 6= 0

1, x = 0.

(1.2)

From the definition above, it is possible to write the complex integral represen-

tation [34] for x 6= 0,

sinc(x) =
sin(πx)

πx

=
eiπx − e−iπx

2iπx

=
1

2iπx

[
eiwx

]π

−π

=
1

2π

∫ π

−π
eiwx dw.

The sinc function has strong relationships with the sine integral. The next section

illustrates such relationships.
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1.1.1 The Sine Integral

The sine integral is defined in equation (5.2.1) in [2] as

Si(x) =
∫ x

0

sin u

u
du

=
∫ x

0
sinc(u) du

=
π

2
+ si(x),

(1.3)

where, from [2]

si(x) = −
∫ ∞

x

sin u

u
du. (1.4)

The sine integral satisfies the symmetry relation Si(−x) = − Si(x), which means

that it is an odd function. For positive values of x, we find the Maclaurin series of

sin x
x and, integrating term wise, we have

Si(x) = x − x3

3.3!
+

x5

5.5!
− x7

7.7!
+ · · ·

=
∞

∑
i=1

(−1)i−1x2i−1

(2i − 1)(2i − 1)!
. (1.5)

This series cannot be evaluated efficiently for large values of x, due to computer

round-off error.

For x ≥ π, Haber [11] used the following procedure instead for calculating

values of the sine integral: Let n = ⌊x/π⌋ and τ = x − nπ, where

Si(x) = Si(nπ) +
∫ nπ+τ

nπ

sin t

t
dt

= πσn + (−1)n
∫ τ

0

sin w

nπ + w
dw. (1.6)

The σn in (1.6) is related to the sine integral by the following relation:
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σn =
1

π
Si(nπ) and σ−n = −σn, (1.7)

Si(x) =
π

2
− f (x) cos x − g(x) sin x. (1.8)

From [2], f (x) and g(x) are shown to be asymptotic expansions, given by

f (x) ∼ 1

x

(

1 − 2!

x2
+

4!

x4
− 6!

x6
+ · · ·

)

;

g(x) ∼ 1

x2

(

1 − 3!

x2
+

5!

x4
− 7!

x6
+ · · ·

)

. (1.9)

Substituting x = nπ in (1.8) and (1.9), and using the relation (1.7), we have

Si(nπ) ∼ π

2
− (−1)n

nπ

[

1 − 2!

n2π2
+

4!

n4π4
− · · ·

]

; (n → ∞). (1.10)

Let n be a positive integer that is greater than zero. From [2], Si(nπ) are maximum

and minimum values of Si(x) if n is odd and even respectively.

σn ∼ 1

2
+

(−1)n+1

nπ2

[

1 − 2!

n2π2
+

4!

n4π4
− · · ·

]

. (1.11)

Another method of finding σn is to integrate [11]

σn =
1

2
− 1

π

∫ ∞

nπ

sin t

t
dt (1.12)

by parts to give

∫ ∞

nπ

sin t

t
dt =

cos nπ

nπ
−
∫ ∞

nπ

cos t

t2
dt.

By continuing to integrate
∫ ∞

nπ
cos t

t2 dt and subsequent integrands by parts, we ob-
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tain

∫ ∞

nπ

sin t

t
dt =

cos nπ

nπ
− 2! cos nπ

(nπ)3
+

4! cos nπ

(nπ)4
+ · · ·

+
(2i)! cos nπ

n2i+2π2i+2
+ (2i + 1)! cos nπ

∫ ∞

nπ

cos t

t2i+2
dt.

Substitution of this into (1.12) yields

σn =
1

2
+ (−1)n+1

(
1

nπ2
− 2!

n3π4
+ · · ·

+
(−1)i(2i)!

n2i+1π2i+2
+

(−1)i(2i + 1)!

π

∫ ∞

nπ

cos t

t2i+2
dt

)

. (1.13)

A question that arises is: what value of n will give σn to a desired accuracy? Haber

[11] gave an answer to this, suggesting that if we truncate (1.11) at the (Y − 1)st

term, where

Y =

⌊

nπ

2

√

1 +
1

4n2π2
+

1

4

⌋

, (1.14)

we will get σn as accurate as the asymptotic expansion.

We can obtain the relation (1.7) from (1.12) by using (1.4) as follows

σn =
1

2
− 1

π

∫ ∞

nπ

sin t

t
dt

=
1

2
+

1

π
si(nπ)

=
1

2
+

1

π
[Si(nx) − π

2
]

=
1

π
Si(nπ).

We can approximate the integral in (1.6) numerically by using a 9-point Gauss-

Legendre quadrature formula [11] while the σn’s can be computed by the method

described above.

A knowledge of their analytic derivation as presented above is worthwhile;
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but at this stage of software development Si(x) values can be easily computed by

”one-liners” with numerical software like octave. Consequently, σn values can be

obtained using (1.7).

1.2 Problem Statement

When one wants to evaluate a definite integral numerically with a constant step

size h over an infinite interval (−∞, ∞), i.e.

I =
∫ ∞

−∞
f (u) du, (1.15)

in which the integrand f (u) is analytic over (−∞, ∞), the first thing that comes to

mind is the uniformly divided trapezoidal formula [31]

I = h
∞

∑
k=−∞

f (kh). (1.16)

Such a formula is not useful for evaluating integrands with algebraic or logarith-

mic singularities at one or both ends of the interval of integration.

It appears that ordinary differential equation (ODE) solvers in software pack-

ages like Matlabr ode45 and Mathematicar NDSolve can be used to solve (1.1),

but we shall show that they are insensitive to singularities.

The purpose of this thesis is to derive the two quadrature formulas for numer-

ical indefinite integration using the sinc method given by Seymour Haber [11], in

which the integrands decay single exponentially. We will show, on the basis of

error analysis and by means of the variable transformations, Double Exponential

(DE) and Single Exponential (SE), the derivation of the Double Exponential sinc

method ([32],[31],[21]) and SE formulas respectively. Finally, we shall look at the

relative performances of all four quadrature formulas by plotting the logarithm of
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the maximum absolute error against the number of function evaluations on two

test problems.

The two integrands that shall be considered have algebraic or logarithmic in-

tegrable singularities at the lower bound of integration. Constraints of time and

space prevent a discussion of the Clenshaw-Curtis scheme ([5], [7], [8], [12]) in

approximating the indefinite integral.

1.3 Overview

In approximating F(x) =
∫ x
−1 f (u)du, we shall make two basic transformations:

single exponential transformation w = φ(z) = tanh
z

2
and double exponential

transformation w = φ1(z) = tanh
[π

2
sinh(z)

]
, which map (−∞, ∞) to (−1, 1).

After the transformation, we will then use the well-known trapezoidal formula in

part to derive the four quadrature formulas.

Let the given integral be

I =
∫ d

c
f (x) dx. (1.17)

Throughout the analysis, we shall be making variable transformations of the form

x = φ(u) where φ(−∞) = c, φ(∞) = d (1.18)

to (1.17) so as to change the interval from (c, d) to (−∞, ∞)

I =
∫ ∞

−∞
g(u) du; (1.19)

hence, after the transformation, we have

I =
∫ d

c
f (x) dx =

∫ ∞

−∞
f (φ(u))φ′(u) du. (1.20)
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One or both of the endpoints c and d in the original integral can be finite [31]. We

now apply the trapezoidal rule (1.16) to obtain the quadrature formula,

I = h
∞

∑
k=−∞

f (φ(kh))φ′(kh), (1.21)

bearing in mind that the infinite sum must be truncated in actual computations.

With the above foundation laid, we start by giving the mathematical tools that

will be used in deriving the four quadrature formulas in chapter 2, which are fun-

damental results from analytic functions, calculus of residues, functional analysis

and Fourier series analysis. From this, we prove that the sequence of sinc functions

forms an orthonormal set.

In chapter 3, we define the cardinal function and give some of its interesting

properties. Next, we define the Paley-Wiener class of functions. This is followed

by the analysis leading to the derivation of Haber’s formulas A and B, given in

[11], which we start by using the calculus of residues mentioned in chapter 2 to

integrate the contour integral (3.13). Furthermore, we will discuss the conformal

transformation w = φ(z) = tanh(
z

2
) which maps the interval (−∞, ∞) to (−1, 1).

Haber’s conditions A1 − A5, A′
1 − A′

5, which will be stated in order of relevance,

are needed to achieve our aim. In addition, we prove a main result, Lemma 3.1,

the integral of S(k, h, u) from −∞ to x, which is crucial in establishing Haber’s

formulas. This result is also useful in chapter 4.

In chapter 4, we present the analysis leading to the derivation of Stenger’s ([27],

[32]) SE formula on the basis of error analysis and show how to find the param-

eters for computing the step size h. Furthermore, in an attempt to find explicit

expressions for the step size used in Tanaka et al.’s DE sinc method (Tanaka et al.

formula), we need the function spaces H∞(Dc, ω) which we introduce, followed

by the derivation, on the basis of error analysis Tanaka et al.’s formula .
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Since the step sizes depend on the values of c and α, which are numbers de-

scribing the behaviour of the integrand, we show in chapter 5, how they can be

found using two computational examples. The numerical results are presented by

means of tables and figures.

In addition, in chapter 6, we show how to convert the indefinite integrals (our

test problems) into ODEs with suitable initial values in the hope that mathematical

software packages like Matlabr ode45 will be able to solve the resulting IVPs.

They fail, however, since the integrands have algebraic or logarithmic singularities

at the initial value (lower end-point).

In conclusion, after comparing the maximum errors for 376 different values of

the upper variable between (−1, 1) for various values of N the number of func-

tion evaluations of the four quadrature formulas, we conclude by recommending

Tanaka et al’s formula for the numerical solution of indefinite integrals because of

its relative accuracy.



Chapter 2

Preliminaries

He who asks questions never gets lost.

Nigerian proverb.

This chapter begins by providing some well known properties of analytic functions

such as the calculus of residues that will be used later to derive Haber’s formula.

Some useful results from functional analysis are given without proof, as well as

some results from Fourier analysis, with proofs where necessary, with the view to

find the Fourier transform of sinc(u/h). The chapter concludes by stating Parse-

val’s theorem and introducing the Paley-Wiener class of functions.

2.1 Analytic Functions

Some definitions and theorems that will help in understanding the sinc function

will be discussed in this section.

Given that R is the set of real numbers, we denote the set of complex numbers

by C. We define a complex number as z = x + iy, such that x, y ∈ R, i =
√
−1 and

the set of complex numbers C = {x + iy : x, y ∈ R}. We shall denote the extended

complex plane by C = C ∪ {∞} [18].
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Definition 2.1. (Half-planes) The upper half-plane is the set of all points z = x + iy

such that y > 0, the lower half-plane is y < 0, x > 0 is the right half-plane and x < 0 is

the left half-plane [17].

Definition 2.2. The general equation of a circle of radius ρ and center a is given by

|z − a| = ρ. (2.1)

Equation (2.1) is the set of all z whose distance |z − a| from the centre is ρ. Its interior,

often called an open circular disk, is given by |z − a| < ρ and the exterior is given by

|z − a| > ρ. The interior plus the circle itself, i.e. |z − a| ≤ ρ, is called a closed circular

disk.

Remark 2.1. An open circular disk |z − a| < ρ is often called a neighbourhood of a.

Definition 2.3. (Interior Point). A point a is called an interior point of a set S, if we can

find a ρ neighbourhood of a, all of whose points belong to S.

Definition 2.4. (Open Sets) An open set S is a set which consists only of interior points

[23].

Definition 2.5. An open set S ⊆ C is said to be connected if it cannot be written as the

union of two disjoint open sets A and B such that both A and B intersect S [18]. It is said

to be simply connected if the complement of S with respect to the extended complex plane

i.e. C \ S is connected.

Definition 2.6. A domain D is an open connected set.

Definition 2.7. A complex function f is said to be differentiable with respect to z at z0 ∈ C

if

f ′(z0) = lim
∆z→0

f (z0 + ∆z) − f (z0)

∆z
, (2.2)
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exists. By letting z = z0 + ∆z, we have ∆z = z − z0, and (2.2) becomes

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
. (2.3)

Definition 2.8. A function f is said to be analytic [17] in a domain D if it is defined and

differentiable at all points of D. It is said to be analytic at a point z = z0 in D if it is

analytic in a neighbourhood of z0, and entire [23] if it is analytic everywhere in the finite

plane (everywhere except at infinity).

Theorem 2.1. (Cauchy Integral Theorem) If f is analytic in a domain D and C is a

simple closed contour in D [13], then

∫

C
f (z) dz = 0. (2.4)

The most important consequence of Cauchy’s integral theorem is Cauchy’s in-

tegral formula. We shall state the following theorems without proof. The proofs

can be found in [23].

Theorem 2.2. (Cauchy’s Integral Formula) Let f be analytic within and on a simple

closed contour C [13]. Then, for any point z0 in the interior of C,

f (z0) =
1

2πi

∫

C

f (z) dz

z − z0
, (2.5)

where C is positively oriented. Positively oriented means

1

2πi

∫

C

dz

z − z0
= 1.

Geometrically speaking, C is transversed in a counterclockwise direction.

Theorem 2.3. (Morera’s Theorem) If f is a continuous function in D and for every
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simple closed contour [18] C in D

∫

C
f (z) dz = 0,

then, f is analytic in D.

Theorem 2.4. (Laurent’s Theorem) If f is analytic inside and on the boundary of the

annular-shaped [23] region R bounded by two concentric circles C1 and C2 with centre at

z0 and respective radii r1 and r2 (r1 > r2), then for all z ∈ R,

f (z) =
∞

∑
n=0

an(z − z0)
n +

∞

∑
n=1

a−n

(z − z0)n
(2.6)

where

an =
1

2πi

∫

C1

f (z) dz

(z − z0)n+1
, n = 0, 1, 2, . . . (2.7)

a−n =
1

2πi

∫

C2

f (z) dz

(z − z0)−n+1
, n = 1, 2, . . . (2.8)

We say that a function f is singular or has a singularity at a point z = z0 if f (z)

is not analytic (perhaps undefined) at z = z0, but every neighbourhood of z = z0

contains points at which f (z) is analytic [17]. We also say that z = z0 is a singular

point of f (z).

The series
∞

∑
n=1

a−n

(z − z0)n
is called the principal part of f (z) at the singular point

z = z0 [13], while
∞

∑
n=0

an(z − z0)
n is the analytic part [23] of the Laurent series. The

series (2.6) is called the Laurent series expansion of f (z).



2.2 Residues 15

Types of Singularities

Assuming that the principal part of the Laurent series has a finite number of terms,

i.e. of the form [17]

a−1

z − z0
+

a−2

(z − z0)2
+ · · ·+ a−m

(z − z0)m
, a−m 6= 0. (2.9)

then one can classify the isolated singularities of f (z) at z = z0 into three, namely

1. From (2.9), if a−m 6= 0, we say that z = z0 is a pole of order m. It is a simple

pole if m = 1. More generally, if z = z0 is a pole of f (z), then lim
z→z0

f (z) = ∞.

2. Whenever f (z) is undefined at z = z0, but lim
z→z0

f (z) exists, then z0 is called a

removable singularity.

3. Any singularity that is not a pole or removable singularity is called an essen-

tial singularity. In addition, if z = z0 is an essential singularity of f (z), the

principal part of the Laurent series expansion has infinitely many terms [23].

2.2 Residues

The coefficient a−1 of the first negative power
1

z − z0
of (2.6) is called the residue

of f (z) at z = z0 and we shall denote it by

a−1 = Res( f , z0). (2.10)

In (2.8), the formula is the same as substituting n = 1, so that

a−1 =
1

2πi

∫

C
f (z) dz.

There are other methods of finding the Laurent series without the use of inte-
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gral formulas for the coefficients. We can find a−1 by one such method and then

use the formula for a−1 to evaluate the integral:

∫

C
f (z) dz = 2πia−1. (2.11)

We shall use the Laurent series to show that f (z) = sinc(z) =
sin πz

πz
is analytic

and has a removable singularity at z = 0 :

f (z) =
sin πz

πz
=

1

πz

(

πz − (πz)3

3!
+

(πz)5

5!
− (πz)7

7!
+ · · ·

)

,

=

(

1 − (πz)2

3!
+

(πz)4

5!
− (πz)6

7!
+ · · ·

)

.

The coefficient of the first negative power of z is 0. Thus, a−1 = Res( f , 0) = 0, for

all n > 0, a−n = 0, and from (2.11) we have

∫

C
f (z) dz =

∫

|z|=ρ

sin πz

πz
dz = 0.

From our definition of a removable singularity, the sinc function is not defined at

z = 0, lim
z→0

f (z) = 1, where it is analytic and hence entire.

If f (z) has a pole of order m at z = z0, the residue is given by

Res( f , z0) =
1

(m − 1)!
lim
z→z0

{
dm−1

dzm−1

[
(z − z0)

m f (z)
]
}

. (2.12)

Suppose f (z) has a simple pole, f (z) =
p(z)

q(z)
, where p and q are analytic at z0

with p(z0) 6= 0, q(z0) = 0 and q′(z0) 6= 0, then f (z) has a pole of order one and

Res( f , z0) =
p(z0)

q′(z0)
. (2.13)

Theorem 2.5. (Residue Theorem) Let f be analytic inside a simple closed path C and on
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C, except for finitely many singular points z1, z2, · · · , zn inside C. Then the integral of

f (z) taken counterclockwise around C equals 2πi times the sum of the residues of f (z) at

z1, z2, · · · , zn.
∫

C
f (z) dz = 2πi

n

∑
i=0

Res( f , zi). (2.14)

2.2.1 Conformal Mapping

An analytic function f is said to be conformal at a point z0 in a domain D if

f ′(z0) 6= 0. If f ′(z) 6= 0 for all z ∈ D, then f is called a conformal mapping on D.

The geometrical interpretation of this is that, for a complex function

w = f (z) = u(x, y) + iv(x, y), where z = x + iy, if the angle of intersection of the

curves C1, C2 at z0 in the z plane is equal in magnitude and in sense to the angle

of intersection of the curves C′
1 = f (C1), C′

2 = f (C2) at w0, in the w plane, then the

mapping is conformal at z0.

For a thorough understanding of the analytic properties of the sinc function, we

shall discuss its Fourier series and transforms. In order to understand this, how-

ever, it is first necessary to list some well known results from functional analysis.

2.3 Results from Functional Analysis

Definition 2.9. Let p > 0, the class of functions f (x) which are measurable and for which

| f (x)|p is integrable [6] over [a, b] is known as Lp[a, b]1. Lp[a, b] is defined for p ≥ 1 by

|| f ||p =

(∫ b

a
| f (x)|p dx

) 1
p

< ∞, (2.15)

and it forms a normed linear space. Here || f || is the norm of f with the following properties:

1. || f || ≥ 0 (positivity).

1We write L(R) if the interval [a, b] is the entire real line.
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2. || f || = 0 ⇐⇒ f = 0 (definiteness).

3. ||α f || = |α||| f ||, where α is a scalar (homogeneity).

4. || f + g|| ≤ || f || + ||g|| (triangle inequality).

The distance between f ∈ Lp[a, b] and g ∈ Lq[a, b] is given by:

|| f − g||p =

(∫ b

a
| f (x) − g(x)|p dx

) 1
p

. (2.16)

Its triangle inequality is the Minkowski’s inequality for integrals [6]

(∫ b

a
| f (x) + g(x)|p dx

) 1
p

≤
(∫ b

a
| f (x)|p dx

) 1
p

+

(∫ b

a
|g(x)|p dx

) 1
p

. (2.17)

Definition 2.10. (Hölder’s Inequality) For p > 1, if f ∈ Lp[a, b] and g ∈ Lq[a, b]

where
1

p
+

1

q
= 1, then f g ∈ L[a, b] and

∣
∣
∣
∣

∫ b

a
f (x)g(x) dx

∣
∣
∣
∣
≤
(∫ b

a
| f (x)|p dx

) 1
p
(∫ b

a
|g(x)|q dx

) 1
q

. (2.18)

In particular, for p = q = 2 we have the Cauchy-Schwartz inequality:

∣
∣
∣
∣

∫ b

a
f (x)g(x) dx

∣
∣
∣
∣
≤
(∫ b

a
| f (x)|2 dx

) 1
2
(∫ b

a
|g(x)|2 dx

) 1
2

. (2.19)

We define an inner product space thus:

Definition 2.11. Let X be a linear space. A function (., .) : X × X 7→ C is called an inner

product space if, for all f , g, h ∈ X

(i). (f+g, h)=(f, h)+ (g, h) (linearity).

(ii). ( f , g) = (g, h) (Hermitian symmetry).
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(iii). (α f , g) = α( f , g) ∀ α ∈ C (left-homogeneity).

(iv). ( f , g) ≥ 0, ( f , g) = 0 ⇐⇒ f = 0 (positivity).

The bar in (ii) above denotes a complex conjugate.

Definition 2.12. A complete, linear, inner product space X with norm

|| f ||2 = ( f , f ) =
∫ b

a
| f (x)|2 dx,

and an inner product defined by

( f , g) =
∫ b

a
f (x)g(x) dx,

is called a Hilbert space.

Definition 2.13. A set S of elements {αi}n
i=1 of an inner product space contained in a

Hilbert space H is orthonormal if

δij = (αi, αj) =







1, i = j;

0, i 6= j.

2.4 Results from Fourier Analysis

A function is said to be periodic if it is defined for all real x and if there is a positive

number p (called the period) such that

f (x + p) = f (x), ∀ x. (2.20)
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2.4.1 Trigonometric Series

The importance of Fourier Analysis is to represent a function which is periodic by

a trigonometric series.

f (x) = a0 + c1 sin(x + α1) + c2 sin(2x + α2) + · · · + cn sin(nx + αn) + · · ·

= a0 +
∞

∑
n=1

cn sin(nx + αn). (2.21)

Here a0 is a constant, the |cn|’s are the amplitude of the compound sine term and

the αn’s are the auxiliary angles for all n = 1, 2, · · ·

cn sin(nx + αn) = cn cos αn sin nx + cn sin αn cos nx

By letting an = cn cos αn and bn = cn sin αn, we have

cn sin(nx + αn) = an sin nx + bn cos nx.

f (x) = a0 +
∞

∑
n=1

(an sin nx + bn cos nx). (2.22)

The constants a0, an, bn are referred to as Fourier coefficients and n is a positive

integer.

2.4.2 Fourier Series Expansion

Let f (x) be a periodic function with period 2π and integrable over a period. Then

the form (2.22) is called the Fourier series expansion of f (x).

The Fourier coefficients are determined from f (x) using Euler’s formulas. We

shall state the following theorems without a proof but the proof can be found in

[17].
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Theorem 2.6. (Euler Formulas) The Fourier coefficients are defined by

a0 =
1

2π

∫ π

−π
f (x) dx. (2.23)

an =
1

π

∫ π

−π
f (x) cos nx dx, n = 1, 2, 3, · · · (2.24)

bn =
1

π

∫ π

−π
f (x) sin nx dx, n = 1, 2, 3, · · · (2.25)

Often, the period of the function may not be p = 2π but p = 2T, for example.

2.4.3 Functions of any Period p = 2T

The Fourier series of a function f (x) of period p = 2T is given by

f (x) = a0 +
∞

∑
n=1

(

an cos
nπ

T
x + bn sin

nπ

T
x
)

. (2.26)

The Fourier coefficients of f (x) are given by the Euler formulas:

a0 =
1

2T

∫ T

−T
f (x) dx. (2.27)

an =
1

T

∫ T

−T
f (x) cos

nπ

T
x dx, n = 1, 2, 3, · · · . (2.28)

bn =
1

T

∫ T

−T
f (x) sin

nπ

T
x dx, n = 1, 2, 3, · · · . (2.29)

We shall derive expressions for the complex Fourier series in the next section.

2.5 Complex Fourier Series

The Fourier series (2.22) can be expressed in complex form. By replacing the x in

(2.22) by nx,

einx = cos nx + i sin nx. (2.30)
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e−inx = cos nx − i sin nx. (2.31)

Adding (2.30), (2.31) and then dividing by 2 yields

cos nx =
einx + e−inx

2
. (2.32)

In a similar way, subtracting (2.30) from (2.31) and dividing both sides by 2i we

obtain,

sin nx =
einx − e−inx

2i
. (2.33)

But we know that
1

i
= −i, thus from (2.22)

an cos nx + bn sin nx = an
(einx + e−inx)

2
+ bn

(einx − e−inx)

2i

=
(an − ibn)

2
einx +

(an + ibn)

2
e−inx.

Let a0 = d0, dn =
an − ibn

2
and en =

an + ibn

2
. Substituting these into the above

equation, (2.22) becomes:

f (x) = d0 +
∞

∑
n=1

(dneinx + ene−inx) (2.34)

Using (2.24) and (2.25)

dn =
an − ibn

2
=

1

2π

∫ π

−π
f (x)(cos nx − i sin nx) dx (2.35)

=
1

2π

∫ π

−π
f (x)e−inx dx. (2.36)
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Similarly,

en =
an + ibn

2
=

1

2π

∫ π

−π
f (x)(cos nx + i sin nx) dx (2.37)

=
1

2π

∫ π

−π
f (x)einx dx. (2.38)

By letting en = d−n, and substituting it in (2.34)

f (x) = d0 +
∞

∑
n=1

(dneinx + d−ne−inx)

then replace the −n in the second sum by m

f (x) = d0 +
∞

∑
n=1

dneinx +
−1

∑
m=−∞

dmeimx (2.39)

=
∞

∑
n=−∞

dneinx; n = 0,±1,±2, · · · (2.40)

where dn =
1

2π

∫ π

−π
f (x)e−inx dx.

Equation (2.39) is called the complex Fourier series of f (x). The dn are called

the complex Fourier coefficients of f (x).

We then extend (2.39) to functions of period p = 2T:

f (x) =
∞

∑
n=−∞

dne

inπx

T , with dn =
1

2T

∫ T

−T
f (x)e

−
inπx

T dx. (2.41)

Next we will seek to give some useful results from Fourier transforms that will

help us in our derivation of the formula for numerical indefinite integration using

the sinc function.
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2.6 Fourier Integral

In the previous section, we derived expressions for the real and complex Fourier

series for f (x). In this section, we shall build on that foundation. We call a repre-

sentation [17] of the form

f (x) =
∫ ∞

0
[A(u) cos ux + B(u) sin ux] du, (2.42)

the Fourier integral of f (x), where

A(u) =
1

π

∫ ∞

−∞
f (v) cos uv dv, B(u) =

1

π

∫ ∞

−∞
f (v) sin uv dv. (2.43)

If f (x) is piecewise continuous in every finite interval, has both a left- and right-

hand derivative at every point and if the integral

lim
a→−∞

∫ 0

a
| f (x)|dx + lim

b→∞

∫ b

0
| f (x)|dx =

∫ ∞

−∞
| f (x)|dx, (2.44)

exists, then f (x) can be represented by a Fourier integral (2.42). At any point of

discontinuity of f (x), the value of the Fourier integral is the average of the left-

and right-hand limits of f (x) at that point.

2.6.1 Fourier Cosine and Sine Integrals

For odd and even functions, the Fourier integral is simple. If f (x) is an even func-

tion, then B(u) in (2.43) equals 0 and

A(u) =
2

π

∫ ∞

0
f (v) cos uv dv. (2.45)
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The Fourier integral (2.42) then becomes the Fourier cosine integral

f (x) =
∫ ∞

0
A(u) cos ux dx. (2.46)

Similarly, if f (x) is odd, then in (2.43), A(u) = 0 and

B(u) =
2

π

∫ ∞

0
f (v) sin uv dv, (2.47)

then

f (x) =
∫ ∞

0
B(u) sin ux dx. (2.48)

This is referred to as the Fourier sine integral.

2.6.2 Fourier Cosine and Sine Transform

Now we will consider the real and complex Fourier cosine and sine transforms.

We start with the real Fourier cosine and sine transforms:

For an even function, from (2.45), we set A(u) =

√

2

π
f̂c(u) where f̂c(u) is called

the Fourier cosine transform of f (x). By (2.43), with v = x,

f̂c(u) =

√

2

π

∫ ∞

0
f (x) cos ux dx (2.49)

and

f (x) =

√

2

π

∫ ∞

0
f̂c(u) cos ux du. (2.50)

We call f (x) above the inverse Fourier cosine transform of f̂c(u). With this, we

are now in a position to define the Fourier cosine transform [17] as the process of

obtaining the transform f̂c from f .

For an odd function f (x), with B(u) and f (x) as defined in (2.47) and (2.48)

respectively, we let B(u) =

√

2

π
f̂s(u). The f̂s(u) is called the Fourier sine transform
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of f (x). With v = x in (2.43) and our definition of B(u) above, we have

f̂s(u) =

√

2

π

∫ ∞

0
f (x) sin ux dx; (2.51)

and

f (x) =

√

2

π

∫ ∞

0
f̂s(u) sin ux du. (2.52)

(2.52) is called the inverse Fourier sine transform of f̂s(u).

2.6.3 Fourier Integral in Complex form

Recall from (2.42) and (2.43) that f (x) =
∫ ∞

0 [A(u) cos ux + B(u) sin ux] du, where

A(u) =
1

π

∫ ∞

−∞
f (v) cos uv dv, B(u) =

1

π

∫ ∞

−∞
f (v) sin uv dv. We substitute A and

B into f (x) to give

f (x) =
1

π

∫ ∞

0

∫ ∞

−∞
f (v)[cos uv cos ux + sin uv sin ux] dv du.

From the trigonometric identities cos uv cos ux + sin uv sin ux = cos(uv − ux),

therefore f (x) becomes

f (x) =
1

π

∫ ∞

0

∫ ∞

−∞
f (v) cos(uv − ux) dv du (2.53)

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (v) cos(uv − ux) dv

]

du. (2.54)

Note the change in the interval of integration for u and the 1
2 . Since sin x is an odd

function, it implies that

1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (v) sin(uv − ux) dv

]

du = 0. (2.55)
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Moreover,

f (v) cos(uv − ux) + i f (v)sin(uv − ux) = f (v)[cos(uv − ux) + i sin(uv − ux)

= f (v)eiu(v−x),

from Euler’s formula eix = cos x + i sin x. By adding the integrand in (2.53) and i

times the integrand in (2.55), and using the above identity,

f (x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (v)eiu(v−x) dv du (2.56)

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f (v)eiuv dv

]

e−iux du. (2.57)

The expression in the bracket with v = x is called the Fourier transform of f , i.e.

f̂ (u) =
∫ ∞

−∞
f (x)eiux dx, (2.58)

and

f (x) =
1

2π

∫ ∞

−∞
f̂ (u)e−iux du, (2.59)

is called the inverse Fourier transform of f̂ (u). It is important since it can be used

to recover a function from its Fourier transform, a technique we shall apply shortly.

Definition 2.14. We define the characteristic function of a set S by

χS(x) =







1, x ∈ S;

0, x /∈ S.

Example 2.1. We want to use some results derived in this section to write the Fourier

expansion for f (x) = e−izx, z ∈ C and x ∈
(−π

h
,

π

h

)

, h > 0, f (x) = f (x + T)

where T =
2π

h
[18].
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Using (2.41), we have

dn =
1

2T

∫ T

−T
f (x)e−

inπx
T dx

=
h

2π

∫ π
h

− π
h

e−izxe−inhx dx

=
h

2π

∫ π
h

− π
h

e−ix(z+nh) dx

=
h

2π

[
1

−i(z + nh)
e−ix(z+nh)

] π
h

− π
h

=
h

2π

[
1

(z + nh)i
{ei π

h (z+nh) − e−i π
h (z+nh)}

]

=
h

π

sin π
h (z + nh)

z + nh

= sinc

(
z + nh

h

)

.

Substituting this into (2.41) we have the Fourier expansion for f (x)

f (x) = e−izx =
∞

∑
n=−∞

einhx sinc

(
z + nh

h

)

. (2.60)

In our bid to derive the formula for numerical integration given by Haber [11],

we shall find the Fourier inverse transform of

χ⋆

[− π
h , π

h ](x) =







1
2 , x ∈ (−π

h , π
h )

χ(− π
h , π

h ), x ∈ R\{−π
h , π

h },

(2.61)

given in [18], where, for h > 0, χ(− π
h , π

h ) is the characteristic function of the interval

(−π
h , π

h ). Our intention actually is to find the Fourier transform of sinc(u
h ).
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To do this, we shall use formula (2.59)

1

2π

∫ ∞

−∞
χ⋆

[− π
h , π

h ](x)e−iux dx =
1

2π

∫ ∞

−∞
χ(− π

h , π
h )(x)e−iux dx

=
1

2π

∫ π
h

− π
h

e−iux dx

=
1

2πiu
[e

iπu
h − e−

iπu
h ]

=
sin πu

h

πu

=
1

h
sinc

u

h
.

(2.62)

Using (2.58) we have

∫ ∞

−∞
sinc

u

h
eixu du = hχ⋆

[− π
h , π

h ](x). (2.63)

Using definition (2.61) and for x = ±π
h , we have, from the above,

∫ ∞

−∞
sinc

u

h
e±

iπu
h du =

h

2
.

By substituting u = ξ − t, t ∈ C, we find that

∫ ∞

−∞
sinc

u

h
eixu du = e−ixt

∫ ∞

−∞
sinc

ξ − t

h
eixξ dξ

∫ ∞

−∞
sinc

ξ − t

h
eixξ dξ = heixtχ⋆

[− π
h , π

h ](x).

(2.64)

Next, we state, not with a proof, but with an illustrative example, Parseval’s Theo-

rem given in [18].

Theorem 2.7. (Parseval’s Theorem) If f and g are in L2(R), then

∫ ∞

−∞
f (u)g(u) du =

1

2π

∫ ∞

−∞
f̂ (x)ĝ(x) dx,

where the bars denote complex conjugates.
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Example 2.2. With

f (u) = sinc

(
u − kh

h

)

and

g(u) = sinc

(
u − mh

h

)

we shall apply Parseval’s Theorem to show that the set

{
1

h1/2
sinc

(
u − kh

h

)}∞

k=−∞

is an orthonormal set.

From Parseval’s Theorem,

∫ ∞

−∞
sinc

(
u − kh

h

)

sinc

(
u − mh

h

)

du =
1

2π

∫ ∞

−∞
f̂ (x)ĝ(x) dx

=
h2

2π

∫ ∞

−∞
eikhxe−imhxχ⋆

[− π
h , π

h ](x) dx.

Equation (2.64) was used to obtain the last equality.

Therefore

∫ ∞

−∞
sinc

(
u − kh

h

)

sinc

(
u − mh

h

)

du =
h2

2π

∫ π
h

− π
h

e−ixh(m−k) dx

=
h sin[π(m − k)]

π(m − k)

= h sinc(m − k)

= hδkm, (2.65)

where δkm is the Kronecker delta function. Thus, we have proved that the set

{
1

h1/2
sinc

(
u − kh

h

)}∞

k=−∞

is an orthonormal set from definition (2.13).
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If the Fourier transform of f , i.e. f̂ ( f ) ∈ L2(−π
h , π

h ) and

f (z) =
1

2π

∫ π
h

− π
h

f̂ (x)e−izx dx, (2.66)

then from Morera’s Theorem (2.3) f is an entire function. By taking the absolute

values of (2.66)

| f (z)| =
1

2π

∣
∣
∣
∣

∫ π
h

− π
h

f̂ (x)e−izx dx

∣
∣
∣
∣

≤ 1

2π
eπ|z|h

∫ π
h

− π
h

| f̂ (x)|dx

≤ Keπ|z|h.

(2.67)

We comment here that if a function f is entire, satisfies (2.67) (of exponential

type π
h ) and if, in addition, f ∈ L2(R), then it has a Fourier transform [18]. The

converse of this is given in the Paley-Wiener Theorem. The proof of this can be

found in [27].

Theorem 2.8. (Paley-Wiener Theorem) Assume that f is entire and f ∈ L2(R). If

there are positive constants K and h such that for all z ∈ C

| f (z)| ≤ Keπ|z|h, (2.68)

then

f̂ ∈ L2(−π

h
,

π

h
)

and

f (z) =
1

2π

∫ π
h

− π
h

f̂ (x)e−ixz dx. (2.69)



Chapter 3

Interpolation and Quadrature

Whenever life tries to get you down, you have to greet it with a smile. There is

nothing more contagious than a positive attitude.

Nigerian proverb.

In this chapter, we shall start with the definition of the cardinal function since it is

an infinite series that involves the sinc function. We shall list some characteristics

of the Paley-Wiener class of functions in the form of theorems and we shall discuss

in greater detail the steps leading to the derivation of Haber’s formulas A and B,

which involves the conformal transformation from the interval (−∞, ∞) to (−1, 1)

via the transformation w = φ(z) = tanh
z

2
.

3.1 The Cardinal function

McNamee, Stenger and Whitney [20] describe the cardinal function as a “func-

tion of royal blood whose distinguished properties set it apart from its bourgeois

brethren”.

Definition 3.1. Let f be a function which is defined on the real line R. Then the formal
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series
∞

∑
k=−∞

f (kh)S(k, h, x), (3.1)

is called the cardinal series of the function f with respect to a positive step size h. If the

series (3.1) converges, we denote its sum by C( f , h, x), and the function C( f , h, x) is called

the cardinal function (or Whittaker cardinal function) of the function f [20]. Where

S(k, h, x) = sinc

(
x − kh

h

)

=







sin[(π
h )(x − kh)]

(π
h )(x − kh)

, x 6= kh;

1, x = kh,

(3.2)

is the k′th sinc function with step size h, evaluated at x. Kearfott [16] calls (3.2) the

interpolation property of the sinc function.

The truncated cardinal series is given by

C(M, N, f , h, x) =
N

∑
k=−M

f (kh)S(k, h, x),

and in general N 6= M. But as we are assuming that the functions we shall be

dealing with are symmetric [18], hence N = M, and the truncated series can be

written as

C(N, f , h, x) =
N

∑
k=−N

f (kh)S(k, h, x). (3.3)

Interesting properties of the cardinal function are presented in Theorem 3.3 and

Corollary 3.1.

Definition 3.2. Let h be a positive constant, then the Paley-Wiener class of functions

(denoted by B(h)) is the family of entire functions f such that on the real line f ∈ L2(R)
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and in the complex plane, f is of exponential type
π

h
, i.e.

| f (z)| ≤ Keπ|z|h, K > 0.

We give a property of the Paley-Wiener class of functions B(h) below.

Theorem 3.1. If f ∈ B(h), then for all z ∈ C

f (z) =
1

h

∫ ∞

−∞
f (u) sinc

(
u − z

h

)

du. (3.4)

Proof: We prove this by an interchange in the order of integration [24]. From

Theorem (2.8), with (2.59)

f (z) =
1

2π

∫ π
h

− π
h

f̂ (x)e−ixz dx

=
1

2π

∫ π
h

− π
h

[∫ ∞

−∞
f (u)eiux du

]

e−ixz dx

=
1

2π

∫ ∞

−∞
f (u)

[∫ π
h

− π
h

eix(u−z) dx

]

du

=
∫ ∞

−∞
f (u)

[

eiπ(u−z)/h − e−iπ(u−z)/h

2πi(u − z)

]

du

=
1

h

∫ ∞

−∞
f (u) sinc

(
u − z

h

)

du.

Below is another example of functions belonging to the Paley-Wiener class of

functions given in [18].

Theorem 3.2. If g ∈ L2(R), then c ∈ B(h), where

c(z) =
1

h

∫ ∞

−∞
g(u) sinc

(
u − z

h

)

du. (3.5)
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Proof: We shall use the result of Theorem 2.7 and equation (2.64):

c(z) =
1

2πh

∫ ∞

−∞
ĝ(x)ĝ

(

sinc

(
u − z

h

))

(−x) dx

=
1

2πh

∫ ∞

−∞
he−ixzχ⋆

[− π
h , π

h ](x)ĝ(x) dx

=
1

2π

∫ π
h

− π
h

ĝ(x)e−ixz dx.

By taking the absolute value of the above expression for c(z), one discovers that

c(z) is of exponential type
π

h
in L2(R) and entire.

We are now in a position to derive an exact interpolation and quadrature for-

mula for functions in B(h). These can be found in the theorem below, coupled with

all the results obtained earlier.

Theorem 3.3. Let f ∈ B(h), then for all z ∈ C [18],

f (z) =
∞

∑
k=−∞

f (kh) sinc

(
z − kh

h

)

(3.6)

f (kh) means evaluating f (x) at x = kh,

f (kh) =
1

h

∫ ∞

−∞
f (u) sinc

(
z − kh

h

)

du. (3.7)

Moreover, according to [27]

lim
N→∞

∫ N

−N
f (x) dx = lim

N→∞
h

N

∑
k=−N

f (kh). (3.8)

Proof: From the Paley-Wiener Theorem 2.8, since f ∈ B(h),

f (u) =
1

2π

∫ π
h

− π
h

e−iux f̂ (x) dx. (3.9)



3.1 The Cardinal function 36

With reference to (2.41), f̂ (x) has a Fourier series expansion of the form

f̂ (x) =
∞

∑
k=−∞

dkeikhx, −π

h
< x <

π

h

where

dk =
h

2π

∫ π
h

− π
h

f̂ (x)e−ikhx dx = h f (kh). (3.10)

The last equality was arrived at from (3.9). Thus

f̂ (x) =
∫ ∞

−∞
f (u)eixudu =







h
∞

∑
k=−∞

f (kh)eikhx , −π

h
< x <

π

h

0, |x| >
π

h
,

(3.11)

and with this, (3.9) becomes

f (x) =
h

2π

∫ π
h

− π
h

e−iux
∞

∑
k=−∞

f (kh)eikhx du

=
h

2π

∞

∑
k=−∞

f (kh)
∫ π

h

− π
h

e−iu(x−kh) du

=
∞

∑
k=−∞

f (kh) sinc

(
x − kh

h

)

.

We can obtain (3.7) by substituting z = kh into equation (3.4). To obtain (3.8), we

let x = 0 in (3.11) and then the result follows.

The corollary below is from (1.10.2) in [27].

Corollary 3.1. If f ∈ B(h), then for x ∈ R,

∫ ∞

−∞
f (u)eixu du =







h
∞

∑
k=−∞

f (kh)eikhx , −π

h
< x <

π

h

0, |x| >
π

h
.

(3.12)

Having defined the cardinal function, and having mentioned some character-
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istics of the Paley-Wiener class of functions, we can now begin to derive Haber’s

formulas.

3.2 Derivation of Haber’s Formula A

We shall start from the contour integral [18]

G(z) =
∫

Bk,ε

g(z) dz, (3.13)

where

g(z) =
sin

πx

h
f (z)

(z − x) sin
πz

h

.

Let h and c be positive constants. From [18] we are given that for each positive

integer k, Bk,ε is the rectangular contour with vertical sides x = ± (2k + 1)h

2
and

horizontal sides y = ±(c − ǫ):

Bk,ε =

{

z = x + iy : −
(

2k + 1

2

)

h < x <

(
2k + 1

2

)

h, |y| < (c − ε)

}

.

We assume that

A1 f is analytic in the strip |y| < c.

The assumption A1 above is the same as Haber’s condition H1 in [11].

The real number x [11] is less than or equal to kh in absolute value. The singu-

larities of g(z) in (3.13) are z = x and z = kh, where k is all integers between −n
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and n. From our earlier study of residues, using formula (2.13) we have at z = kh

Res(g, kh) =
sin(πx

h ) f (kh)
[
(z − x) sin(πz

h )
]′

z=kh

=
sin(πx

h ) f (kh)
[
sin(πz

h ) + π
h (z − x) cos(πz

h )
]

z=kh

=
sin(πx

h ) f (kh)
[
sin(πk) + π

h (kh − x) cos(πk)
]

=
(−1)kh sin(πx

h ) f (kh)

π(kh − x)

= −h sin (π(x − kh)/h) f (kh)

π(x − kh)

= − f (kh) sinc

(
x − kh

h

)

.

Thus

Res(g, kh) = − f (kh) sinc

(
x − kh

h

)

. (3.14)

The residue at z = x is given by

Res(g, x) = f (x). (3.15)

For the singularities, the Residue Theorem 2.5 yields

G(z) = 2πi

[

Res(g, x) +
n

∑
k=−n

Res(g, kh)

]

= 2πi

[

f (x) −
n

∑
k=−n

f (kh) sinc

(
x − kh

h

)]

.

Making f (x) the subject, we have

f (x) =
n

∑
k=−n

f (kh) sinc

(
x − kh

h

)

+
sin πx

h

2πi

∫

Bk,ε

f (z) dz

(z − x) sin πz
h
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and

f (x) =
n

∑
k=−n

f (kh) sinc

(
x − kh

h

)

+ Rk,ε(x);

Rk,ε(x) =
sin πx

h

2πi

∫

Bk,ε

f (z) dz

(z − x) sin πz
h

. (3.16)

The above equation holds for x = ±nh, |n| ≤ k and for all x ∈ [−kh, kh].

Haber [11] also gave another condition

A2 for a small positive ε, each of the integrals
∫ ∞

−∞
| f (x − i(c − ε))|dx and

∫ ∞

−∞
| f (x + i(c − ε))|dx exists, and is bounded in ε;

and

A3 for each small positive ε, the integral
∫ c−ε

ε−c | f (x + iy)|dy is a bounded

function of x.

The next section contains some useful identities.

3.3 Sinc Approximation on a Strip

We shall begin this section with the basic and fundamental definitions that will be

used.

Definition 3.3. Let Dc be an infinite strip domain, as illustrated in Figure 3.1, of width

2c, given in [18] by

Dc = {z ∈ C : z = x + iy,−c < y < c}. (3.17)

Let f ∈ Bp(Dc) be the set of functions that are analytic in Dc, with 1 ≤ p < ∞ [26],

that satisfy
∫ c

−c
| f (x + iy)|dy → 0 as x → ±∞. (3.18)
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and

Np( f ,Dc) = lim
y→c−

{(∫ ∞

−∞
| f (x + iy)|p dx

) 1
p

+

(∫ ∞

−∞
| f (x − iy)|p dx

) 1
p

}

< ∞.

(3.19)

For p = 1, this is trivial and we shall write B1(Dc) as B(Dc).

iy

Dc

kh
x

c

Figure 3.1: The figure above shows the infinite strip [18] Dc of width 2c.

The following theorem was proved in [18] (Theorem 2.13) and it gives an inter-

polation result in Bp(Dc).

Theorem 3.4. Given that f ∈ Bp(Dc) with p = 1 or 2 and h > 0, then

ξ(x) ≡ f (x) − C( f , h, x) = f (x) −
∞

∑
k=−∞

f (kh) sinc

(
x − kh

h

)

=
sin πx

h

2πi
R( f , h, x), (3.20)

where

R( f , h, x) =
∫ ∞

−∞

{
f (u − ic−)

(u − x − ic−) sin π(u−ic−)
h

− f (u + ic−)

(u − x + ic−) sin π(u+ic−)
h

}

du.

(3.21)
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In addition, if f ∈ Bp(Dc), and p = 1 or 2, the infinity norm becomes

|| f − C( f , h)||∞ ≤ Np( f ,Dc)

2 p
√

πc sinh πc
h

= O(e−
πc
h ). (3.22)

Proof: To prove this, we let ym = c − 1
m and define the domain Lm ⊂ Dc by

Lm =

{

z ∈ C : z = u + iy, |y| < ym, |u| <
(2m + 1)h

2

}

.

We denote the boundary by ∂Lm. Note that, from the application of the Residue

Theorem to G(z) in (3.13) and (3.16),

Rm(x) =
sin πx

h

2πi

∫

Lm,ε

f (z) dz

(z − x) sin πz
h

= f (x) −
m

∑
k=−m

f (kh) sinc

(
x − kh

h

)

. (3.23)

Taking limits

lim
m→∞

Rm(x) = ξ(x).

Integrating around the rectangular box yields

2πi

sin πx
h

Rm(x) =
∫ ym

−ym

f (2m+1
2 h + iy)i dy

(2m+1
2 h − x + iy) sin

[

π(2m+1
2 h + iy)/h

]

+
∫ −ym

ym

f (− 2m+1
2 h + iy)i dy

(− 2m+1
2 h − x + iy) sin

[

π(− 2m+1
2 h + iy)/h

]

+
∫ 2m+1

2 h

− 2m+1
2 h

f (u − iym) du

(u − x + iym) sin [π(u − iym)/h]
(3.24)

+
∫ − 2m+1

2 h

2m+1
2 h

f (u + iym) du

(u − x + iym) sin [π(u + iym)/h]
,

but
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∣
∣
∣
∣

sin (π {±(2m + 1)h/2 + iy} /h)

∣
∣
∣
∣
=

∣
∣
∣
∣

sin((2m + 1)πh/2) cos(πiy/h)

+ cos((2m + 1)πh/2) sin(πiy/h)

∣
∣
∣
∣

= |±(−1)m cosh(πiy/h)|

= |cosh(πiy/h)|

≤ 1. (3.25)

We used the trigonometric identities sin(ix) = i sinh x, cos(ix) = cosh x, and

∣
∣± (2m + 1)h/2 − x

∣
∣ ≤

∣
∣± (2m + 1)h/2 + iy − x

∣
∣. (3.26)

With the help of (3.25) and (3.26) we obtain

∣
∣
∣
∣
∣
∣

∫ ym

−ym

f ((2m + 1)h/2 + iy)i dy

(2m+1
2 h − x + iy) sin[π

{
2m+1

2 h + iy
}

/h]

∣
∣
∣
∣
∣
∣

≤
∫ ym

−ym

∣
∣
∣
∣
∣
∣

f (2m+1
2 h + iy)i

(2m+1
2 h − x + iy) sin[π

{
2m+1

2 h + iy
}

/h]

∣
∣
∣
∣
∣
∣

dy

≤ 1
∣
∣
∣

2m+1
2 h − x

∣
∣
∣

∫ ym

−ym

∣
∣
∣
∣
f

(
2m + 1

2
h + iy

)∣
∣
∣
∣

dy. (3.27)

Equation (3.27) tends to 0 as m → ∞, which comes from condition (3.18). A similar

argument holds for the second integral on the right-hand-side of (3.24).

With this, we have succeeded in proving that the integrals over the vertical side

of Lm are zero.

Next, we equate (3.23) and (3.24):
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ξ(x) = lim
m→∞

Rm(x)

= f (x) −
∞

∑
k=−∞

f (kh) sinc

(
x − kh

h

)

=
sin πx

h

2πi
lim

m→∞

∫ 2m+1
2 h

− 2m+1
2 h

{
f (u − iym)

(u − x + iym) sin [π(u − iym)/h]

− f (u + iym)

(u − x + iym) sin [π(u + iym)/h]

}

du

=
sin πx

h

2πi

∫ ∞

−∞

{
f (u − ic−)

(u − x + ic−) sin [π(u − ic−)/h]

− f (u + ic−)

(u − x + ic−) sin [π(u + ic−)/h]

}

du

=
sin πx

h

2πi
R( f , h, x). (3.28)

Thus, we have been able to prove that the integrals over the horizontal sides with

c− = c − ε are:

R± =
∫ ∞

−∞

f (u ± i(c − ε)) du

(u − x ± i(c − ε)) sin
u±i(c−ε)

h

. (3.29)

We prove (3.22) inductively for p = 1, 2, and then generalise.

When p = 1, taking the absolute values of (3.28) together with definition (3.19),

|ξ(x)| =

∣
∣
∣
∣

sin πx
h

2πi

∫ ∞

−∞

f (u ± ic−)

(u ± x + ic−) sin [π(u ± ic−)/h]
du

∣
∣
∣
∣

≤ 1

2πc sinh πc
h

∫ ∞

−∞

{
| f (u + ic−)| + | f (u − ic−)|

}
du

=
N1( f ,Dc)

2πc sinh πc
h

,

we establish (3.19) for p = 1. We then used these trigonometric identities in the

proof:
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sin(π(u ± ic)/h) = sin(πu/h) cos(±(πic)/h) ± cos(πu/h) sin(±(πic)/h)

= sin(πu/h) cosh(πc/h) ∓ i cos(πu/h) sinh(πc/h) (3.30)

| sin(π(u ± ic)/h)| ≥ sinh(πc/h) and c ≤ |u − x ± ic|.

When p = 2, we have to take the absolute value of (3.28) again, and obtain

|ξ(x)| ≤ 1

2πc sinh πc
h

∫ ∞

−∞

{∣
∣
∣
∣

f (u + ic−)

(u − x + ic−)

∣
∣
∣
∣
+

∣
∣
∣
∣

f (u − ic−)

(u − x − ic−)

∣
∣
∣
∣

}

du.

An application of the Cauchy-Schwartz inequality (2.19) to the integrals above

yields

∫ ∞

−∞

∣
∣
∣
∣

f (u ± c−)

u − x ± ic−

∣
∣
∣
∣

du ≤
(∫ ∞

−∞
| f (u − x ± ic−)|−2 du

) 1
2
(∫ ∞

−∞
| f (u ± ic−)|2 du

) 1
2

.

Making the substitution q =
u − x

c−
, du = c−dq,

∫ ∞

−∞

du

|u − x ± ic−|2 =
∫ ∞

−∞

du

(u − x)2 + {c−}2

=
1

c2

∫ ∞

−∞

du
(

u−x
c

)2
+ 1

=
1

c2

∫ ∞

−∞

cdq

1 + q2

=
1

c
tan−1 q|∞−∞

=
π

c
,

and hence

∫ ∞

−∞

∣
∣
∣
∣

f (u ± c−)

u − x ± ic−

∣
∣
∣
∣

du ≤
√

π

c

(∫ ∞

−∞
| f (u ± ic−)|2 du

) 1
2

.
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Thus

|ξ(x)| ≤ 1

2π sinh
(

πc
h

)

√
π

c

(∫ ∞

−∞
| f (u ± ic−)|2 du

) 1
2

,

and using definition (3.19),

|ξ(x)| ≤ N2( f ,Dc)

2
√

(πc) sinh
(

πc
h

) .

Similar expressions can be obtained for p = 3, 4, · · · and from (3.22) we conclude

that

||ξ(x)||∞ = sup
x∈R

| f (x) − C( f , h, x)|

≤ Np( f ,Dc)

2 p
√

πc sinh
(

πc
h

)

≤ 2Np( f ,Dc)
p
√

πc
e−

πc
h (3.31)

provided h ≤ 2πc
ln 2 .

Table 3.1: The values of σk, as required in Lemma 3.1

k σk k σk

1 0.589489872236 2 0.451411666790
3 0.533093237618 4 0.474969669884
5 0.520107164191 6 0.483205217498
7 0.514415997123 8 0.487374225058
9 0.511230152637 10 0.489888171154

11 0.509195742008 12 0.491568351669
13 0.507784657813 14 0.492770209375
15 0.506748694472 16 0.493672415178
17 0.505955907917 18 0.494374552834
19 0.505329710440 20 0.494936499571

The following Lemma was proved by Stenger ([27], pages 172-173). It contains
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Table 3.2: The values of γk, as required in Lemma 3.1

k γk k γk

0 0.589489872236 11 0.017627390340
1 0.138078205446 12 0.016216306144
2 0.081681570828 13 0.015014448438
3 0.058123567735 14 0.013978485097
4 0.045137494308 15 0.013076279294
5 0.036901946694 16 0.012283492739
6 0.031210779626 17 0.011581355084
7 0.027041772065 18 0.010955157606
8 0.023855927579 19 0.010393210869
9 0.021341981483 20 0.009886107733

10 0.019307570854 21 0.009426192219

an important identity that will help us derive Haber’s formula A.

Lemma 3.1. (Main Result) Let h > 0, k ∈ Z, x ∈ R and set

J(k, h, x) =
∫ x

−∞
S(k, h, x) dx, (3.32)

where S(k, h, x) is as defined in (3.2). Then, for x ∈ R,

|J(k, h, x)| ≤ 1.1h. (3.33)

Proof: We set

I(ξ) =
1

π

∫ ξ

−∞

sin u

u
du. (3.34)

If we let k = ξ (for any k ∈ R), then we have

I(k) =
1

2
+ σk, (3.35)

where

σk =
∫ k

0

sin πu

πu
du, alternatively σk =

∫ kπ

0

sin u

u
du, (3.36)
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γk =
1

π

∫ π

0

sin u

kπ + u
du. (3.37)

From the definition of σk,

lim
k→∞

σk =
1

2
.

Using τ = ξ − kπ, k ∈ Z, 0 ≤ τ < π, ξ ≥ 0. Then, from (3.34):

I(ξ) =
1

π

∫ kπ+τ

−∞

sin u

u
du.

If k = 0,

I(ξ) =
1

π

∫ τ

−∞

sin u

u
du

=
1

π

[∫ 0

−∞

sin u

u
du +

∫ τ

0

sin u

u
du

]

=
1

2
+

1

π

∫ τ

0

sin u

u
du. (3.38)

When k > 0, we change the interval of integration in the last two steps below from

u = [kπ, kπ + τ] to q = [0, τ] by the transformation q = u − kπ

I(ξ) =
1

π

∫ kπ+τ

−∞

sin u

u
du

=
1

π

[∫ 0

−∞

sin u

u
du +

∫ kπ+τ

0

sin u

u
du

]

=
1

π

[
π

2
+
∫ kπ

0

sin u

u
du +

∫ kπ+τ

kπ

sin u

u
du

]

=
1

2
+ σk +

1

π

∫ τ

0

sin(kπ + q)

kπ + q
dq

=
1

2
+ σk +

(−1)k

π

∫ τ

0

sin q

kπ + q
dq. (3.39)

Now substitute u = πkh+th
π into (3.34) with du = h

π dt. The upper limit becomes

ξ = πkh+th
π , t = π(ξ−kh)

h while the lower limit remains unchanged.
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I(ξ) =
h

π

∫ π(ξ−kh)
h

−∞

sin πkh+th
π

πkh + th
dt

= hI

[

π

(
ξ − kh

h

)]

.

Changing ξ to x gives

J(k, h, x) = hI

[

π

(
x − kh

h

)]

. (3.40)

Using (3.32), (3.38) and (3.40), we can write

∫ x

−∞
S(k, h, x) = J(k, h, x)

= hI

[

π

(
x − kh

h

)]

= h

[
1

2
+

1

π

∫ π(x−kh)
h

0

sin u

u
du

]

= h

[
1

2
+

1

π
Si

(
πx − πkh

h

) ]

. (3.41)

Taking the absolute value of (3.41),

|J(k, h, x)| = h

∣
∣
∣
∣
I

[

π

(
x − kh

h

)]∣
∣
∣
∣

= h

∣
∣
∣
∣

[
1

2
+

1

π
Si

(
πx − πkh

h

)]∣
∣
∣
∣

≤ h

(
1

2
+

1

π
max
t∈R

| Si(t)|
)

= h

(
1

2
+

1

π
Si(π)

)

≤ 1.0895h,

which establishes (3.33).
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The lemma below is from Haber’s paper [11].

Lemma 3.2. Assuming that f satisfies A1, A2 and A3, then

f (u) =
∞

∑
k=−∞

f (kh) sinc

(
u − kh

h

)

+
sin πu

h

2πi
(R− − R+), ∀ u ∈ R. (3.42)

Conditions A1 and A2 are not very explanatory, because if one wants to change

to the interval (−1, 1) one needs simpler conditions. We integrate (3.42) with re-

spect to u in the following manner:

∫ x

−C
f (u) du =

∞

∑
k=−∞

f (kh)
∫ x

−C
sinc

(
u − kh

h

)

du

+
1

2πi

{ ∫ x

−C
sin

πu

h

∫ ∞

−∞

f (v − i(c − ε))

(v − u − i(c − ε)) sin
π(v−i(c−ε))

h

dv du

−
∫ x

−C
sin

πu

h

∫ ∞

−∞

f (v + i(c − ε))

(v − u + i(c − ε)) sin π(v+i(c−ε))
h

dv du

}

, (3.43)

where

G± =
∫ x

−C
sin

πu

h

∫ ∞

−∞

f (v ± i(c − ε))

(v − u ± i(c − ε)) sin π(v±i(c−ε))
h

dv du.

Haber [11] points out that the interchange of integration and summation is pos-

sible by imposing the following condition on f :

A4 a constant α > 0 exists such that for all x ∈ R, f (x) = O(e−α|x|) as

|x| → ∞.

The order of integration in G± can be exchanged, since

∫ −B

−∞

f (v ± i(c − ε)) dv

(v − u ± i(c − ε)) sin π(v±i(c−ε))
h

tends to zero as B → ∞, uniformly for u ∈ [−C, x]. The same holds for the integral
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from B to ∞. The inner integral that is left

∫ x

−C

sin πu
h du

v − u ± i(c − ε)
= O(h).

uniformly on C, v, u and ε. We can deduce from other identities already encoun-

tered that 1

∣
∣
∣
∣
sin

π(v ± i(c − ε))

h

∣
∣
∣
∣
≥ sinh

π(c − ε)

h

≥ 1

2
e

π(c−ε)
h ,

and then

|G±| ≤ Khe−
π(c−ε)

h

∫ ∞

−∞
| f (v ± i(c − ε))|dv.

If C is allowed to tend to infinity and ε to zero in (3.43), using (3.41) and (3.40),

∫ x

−∞
f (u) du = h

∞

∑
k=−∞

f (kh)

(
1

2
+

1

π
Si

(
πx − πkh

h

))

+ O(he−
πc
h ) (3.44)

as h → 0. By making use of condition A4 and the boundedness of the sine integral,

∫ x

−∞
f (u) du = h

N

∑
k=−N

f (kh)

(
1

2
+

1

π
Si

(
πx − πkh

h

))

+ O(he−
πc
h ) + O(e−αNh/h), (3.45)

as h → 0 and Nh → ∞. To obtain the step size h, we equate the magnitude of the

O terms as follows:

exp(−πc/h) = exp(−αNh).

1If x and y are real, then | sin(x + iy)| = [sinh2 y + sin2 x]
1
2 ≥ sinh |y| [25].
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Taking the logarithm of both sides, we have

h =

√
πc

αN
. (3.46)

The next theorem summarises what we have done so far. The statement of this

was given in [11] without a proof.

Theorem 3.5. If f satisfies A1, A2, A3 and A4, and h =
√

πc
αN , then

∫ x

−∞
f (u) du = h

∞

∑
k=−∞

f (kh)

(
1

2
+

1

π
Si

(
πx − πkh

h

))

+ O(
√

Ne−
√

πcαN), (3.47)

as N → ∞ uniformly for x ∈ R.

3.4 Transformation Via Conformal Mapping

The bulk of this section will be devoted to transforming the interval in (3.47) from

(−∞, x] to (−1, 1), using conformal mapping. In addition, we shall end up with

the analysis given by Haber in [11] to derive his formula A.

3.4.1 Approximation over (−1, 1)

Let φ : (−∞, ∞) 7→ (−1, 1) and ψ : (−1, 1) 7→ (−∞, ∞) such that

w = φ(z) = tanh
z

2
, z = φ−1(w) = ψ(w). (3.48)

It follows from the exponential form of tanh z that

tanh
z

2
=

e
z
2 − e−

z
2

e
z
2 + e−

z
2

= w.
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Cross-multiplying and making z the subject of the formula gives

ψ(w) = z = log

(
w + 1

1 − w

)

, ψ′(w) =
2

1 − w2
. (3.49)

We define the domain as given in [19] for ρ ∈ (0, π
2 ] by

D = [{z : |z + i cot ρ| < cosec ρ}] ∩ [{z : x + iy, y ≥ 0}]

∪ [{z : |z − i cot ρ| < cosec ρ}] ∩ [{z : x + iy, y ≤ 0}]. (3.50)

Furthermore, Lunding and Stenger [19] considered

Γ = {z ∈ D : ψ(z) ∈ (−∞, ∞)} = {x : −1 ≤ x ≤ 1}, (3.51)

and

g(x) = (1 − x2)β, β ≥ 0, (3.52)

which are very useful in understanding Haber’s analysis.

Our next theorem is found in [19] and gives a clear picture of g used in Haber’s

conditions A′
1, A′

2, A′
3 and A′

5 which we will encounter shortly. The proof of this

is based on the lemmas preceding it. However, we do not intend to prove all the

lemmas leading to the proof, but shall use the statement and figure in the theorem

and prove the most cogent lemmas.

Theorem 3.6. Let ψ be as in (3.49), s a positive integer, g as defined in (3.52), with β ≥ s.

Assume
f ψ′
g ∈ B(D), where D is the shaded region in Figure (3.2), B(D) is the family of

all functions which are analytic in D, and there exists positive constants K, α such that,

for all x ∈ [−1, 1],

| f (x)/g(x)| ≤ K(1 − x2)α. (3.53)

Let N be a positive integer, h =
√

πc/αN, and
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D
−1 1

c

c

(0,−i cot ρ)

cosec ρ

Figure 3.2: The region D from [19] and [26].

xk = tanh
kh

2
, k ∈ Z. (3.54)

If f (n) exist on [−1, 1], then

| f (n)(x) − C(N, f , g, ψ, h, x)(n)| ≤ KN
n+1

2 e−
√

πcαN, (3.55)

holds for all x ∈ [−1, 1] and for n = 0, · · · , s, where K is a constant depending on s, ρ, f

and α.

Lemma 3.3. Let g be as defined in (3.52), and β a positive integer. If i is any positive

integer, there exists a constant K depending on β and i, such that, for all x ∈ (−1, 1),

|g(i) (x)| ≤ K(1 − x2)β−i. (3.56)

Proof: Applying Leibnitz’s rule to (3.52),

g(i)(x) =
di

dxi
(1 − x2)β =

i

∑
k=0

(
i

k

)

[(1 + x)β](k)[(1 − x)β](i−k)

=
i

∑
k=0

(
i

k

)

(−1)kβ(β − 1) · · · (β − k + 1)(1 + x)β−k

× β(β − 1) · · · (β − i + k + 1)(1 − x)β−i+k;
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but for x ∈ [−1, 1], |1 + x| ≤ 2, |1 − x| ≤ 2 and for 0 ≤ k ≤ i,

(1 + x)β−k(1 − x)β−i+k =
(1 − x2)β−i(1 − x)k(1 + x)i

(1 + x)k

≤ 2i(1 − x2)β−i,

and

|g(i)(x)| ≤
i

∑
k=0

(
i

k

)

2i|β(β − 1) · · · (β − k + 1)||β(β − 1) · · · (β − i + k + 1)|

× (1 − x2)β−i

≤ K(1 − x2)β−i.

Lemma 3.4. Let i, k be positive integers with i ≥ k and ψ(x) = log
(

1+x
1−x

)

. Then, for all

x ∈ (−1, 1),

|ψ(i)(x)[ψ′(x)]k−i | ≤ K(1 − x2)−k, (3.57)

where K is a constant depending only on i and k.

Proof: We use (3.49) with

ψ′(x) =
2

1 − x2
=

1

1 − x
+

1

1 + x
.

Further,

[ψ′(x)]i =
2i

(1 − x)i(1 + x)i
,

for i ≥ 1

ψi(x) =

[
(−1)i−1

(1 + x)i
+

1

(1 − x)i

]

(i − 1)!,
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so that

ψ(i)(x)

[ψ′(x)]i
=

(i − 1)!

2i

[

(−1)i−1(1 − x)i + (1 + x)i
]

.

By taking the absolute value of the above, bearing in mind that |1 − x| ≤ 2, |1 +

x| ≤ 2 on [−1, 1] and ψ′(x) > 0 for all x ∈ (−1, 1),

|ψ(i)(x)| ≤ 2(i − 1)![ψ′(x)]i.

By multiplying both sides of the above inequality with [ψ′(x)]k−i , we obtain (3.57).

Next we proceed to Haber’s analysis. Taking z = x + iy, and w = t + iv, φ maps

the entire −∞ < x < ∞ monotonically to −1 < t < 1. With y = ρ for −π < ρ < π,

each horizontal line is now a circular arc going from w = −1, through w = i tan
ρ

2

to w = +1 (see Figure 3.2 and Appendix A).

It is part of a circle with centre at (0,−i cot ρ) and radius cosec ρ. Haber [11]

states that a vertical line segment z = x + iy, −ρ < y < ρ, (ρ < π) becomes a

circular arc of which the centre and radius are

e2x + 1

e2x − 1
sgn(x) and

2

ex − e−x
sgn(x), (3.58)

respectively, while from [4]

sgn(x) =







−1, if x < 0;

0, if x = 0;

1, if x > 0.

(3.59)

The strip |y| < c (c < π) is mapped conformally to Φc, whose boundary is made

up of two circular arcs that are the images of the lines |y| = c. The vertical width of
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Φc is 2 tan
c

2
, Φ π

2
is the unit disk and Φπ is the whole w−plane (−∞,−1) ∪ (1, ∞)

on the t axis.

Using the change of variables t = φ(u), and subsequently −1 = φ(−∞),

v = φ(x), x = φ−1(v) = log

(
1 + v

1 − v

)

, we can write

∫ x

−∞
f (u) du =

∫ v

−1
g(t) dt, (3.60)

and using f (u) = g(φ(u))φ′(u):

∫ x

−∞
f (u) du =

∫ v

−1
g(t) dt =

∫ φ−1(x)

−∞
g(φ(u))φ′(u) du,

so that Haber’s formula A from (3.47) becomes

∫ v

−1
g(u) du = h

N

∑
k=−N

g(φ(kh))φ′ (kh)

(
1

2
+

1

π
Si

(
πφ−1(v) − πkh

h

))

+ O(
√

Ne−
√

πcαN). (3.61)

Haber’s conditions H1 and H4, which are the same as our own A1 and A4, can

be translated into the conditions

A′
1 g is analytic on Φc.

and

A′
4 there is a constant α > 0 such that for t ∈ R, g(t) = O((1 − t2)α−1) as

t → −1 and t → +1 from inside (-1, 1).

Furthermore, we can write the integral in condition A3 as

∫

Lx,ε

|g(w) dw|,
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where Lx,ε is the image of the line segment z = x + iy, |y| < c − ε under φ.

From (3.58) it is an arc of a circle whose radius and centre are 2e−|x| + O(e−2|x|)

and ±1 + O(e−2|x|) respectively. As w tends to ±1 from inside Φc, if we require of

g that g(w) = O(|1 − w2|−1) as w → ±1, then A3 would be satisfied. But we shall

require the stronger condition

A′
3 there is a constant α > 0 such that g(w) = O(|1 − w2|α−1) as w tends to

±1 from inside Φc.

Let Mb be the image under φ of the line y = b and Mb,β, β > 0 be the part of Mb

that lies outside circles of radius β and center ±1. With the above, we can write the

integrals in A2 as
∫

M±(c−ε)

|g(w) dw|. (3.62)

In [11], it was also assumed that

A′
2 for small β, the integrals

∫

M±(c−ε),β
|g(w) dw| are bounded in ε for ε ∈

(0, c).

To check whether A′
2 holds for a given g in which A′

1 and A′
3 holds, Haber [11]

considered singularities of g at points on the boundary of Φc except at t = ±1. In

addition, if c′ > 0 such that c′ < c, then A′
2 will hold with c′ instead of c. This

leads us to the next two theorems, which can be found in [11]. They summarise

the above analysis and give us Haber’s formula A (3.64).

Theorem 3.7. If g is analytic in Φc for some positive c ≤ π, and g(w) = O(|1−w2|α−1)

for some α > 0 as w → ±1 from inside Φc, then

∫ v

−1
g(t) dt = h

N

∑
k=−N

g(φ(kh))φ′(kh)

(
1

2
+

1

π
Si

(
πφ−1(v) − πkh

h

))

+ O(
√

Ne−
√

πc′αN), (3.63)
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holds uniformly in [−1, 1], where c′ is any number in (0, c) and h =

√

πc′

αN
.

Theorem 3.8. If 0 < c ≤ π, α > 0, and g satisfies conditions A′
1, A′

2 and A′
3, then

∫ v

−1
g(t) dt = h

N

∑
k=−N

g(φ(kh))φ′(kh)

(
1

2
+

1

π
Si

(
πφ−1(v) − πkh

h

))

+ O(
√

Ne−
√

πcαN), (3.64)

holds uniformly in [−1, 1].

3.5 Derivation of Haber’s Formula B

The driving force behind formula B is that, instead of calculating general values of

the sine integral (Si) as in formula A, we shall only use the values of Si(kπ), k ∈ Z.

The latter can be calculated easily, as will be shown by the numerical experiments.

Haber’s formula B involves working within the context of integrals over R. We

start by setting

F(x) =
∫ x

−∞
f (u) du, (3.65)

and F is approximated by an interpolation formula that makes use of evaluations

of F at integral multiples of h, the step size.

The formula for the interpolation can be derived from Lemma 3.2 by truncating

the sum at k = ±N and bounding the remainder at the point of truncation. In

(3.29), the numerator is once Lebesgue measurable on the real line, i.e. L1(R). As

already shown in our earlier analysis in the previous section, |u − x ± i(c − ε)| ≥ c

which means that it is bounded away from zero and uniformly in x, u. Moreover,

we have shown earlier that | sin
π(v±i(t−ε))

h | ≥ Ke
π(c−ε)

h uniformly in x, where K

does not depend on ε. So that |R±| = O(e−
πc
h ) as h → 0. If we impose condition
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A4 on f ,

f (u) =
N

∑
k=−N

f (kh) sinc

(
u − kh

h

)

+ O(e
−πc

h ) + O(e−αNh/h),

as h → 0, N → ∞ as in (3.45). This leads us to the next Lemma:

Lemma 3.5. If f satisfies A1, A2, A3 and A4, then

f (u) =
N

∑
k=−N

f (kh) sinc

(
u − kh

h

)

+ O(
√

Ne−
√

πcαN),

holds uniformly on (−∞, ∞), where h is as defined in (3.46).

This motivates the next theorem from [18], which gives the norm of the error

estimates.

Theorem 3.9. Assume that f ∈ Bp(Dc), (p = 1 or 2), α, γ are positive constants and

K is such that

| f (x)| =







K exp(−α|x|), x ∈ (−∞, 0)

K exp(−γ|x|), x ∈ [0, ∞).
(3.66)

Then choose h =
√

πc
αN ≤ 2πc

ln 2 for the truncated cardinal series C(N, f , h, x). Conse-

quently,

|| f (x) − C(N, f , h, x)||∞ ≤ K1

√
N exp(−

√
πcαN) (3.67)

where K1 is a constant which depends on p and c.

Proof: The proof is simple, as it uses the sum to infinity of a geometric series.
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We shall start by

∣
∣
∣
∣

−(N+1)

∑
k=−∞

f (kh)S(k, h, x)

∣
∣
∣
∣
≤

∞

∑
k=N+1

| f (−kh)|

≤ K
∞

∑
k=N+1

e−αkh

= K

{

e−αh(N+1)

1 − e−αh

}

= Ke−αNh

{
1

eαh − 1

}

≤ K

αh
e−αNh. (3.68)

Similarly, we obtain

∣
∣
∣
∣

∞

∑
k=N+1

f (kh)S(k, h, x)

∣
∣
∣
∣
≤ K

γh
e−αNh, (3.69)

from (3.31) with the inequality for h above and taking the absolute value of (3.20),

we have

| f (x) − C(N, f , h, x)| ≤
∞

∑
k=N+1

| f (−kh)| +
∞

∑
k=N+1

| f (kh)| + 2Np( f , Dc)
p
√

πc
e−πc/h.

From (3.68) and (3.69), it is easily seen that

| f (x) − C(N, f , h, x)| ≤
[

K

α
+

K

γ
+

2Np( f , Dc)
p
√

πc

√
πc

αN

]√
α

πc

√
Ne−

√
πcαN

≤
[

K

α
+

K

γ
+

2Np( f , Dc)
p
√

πc

√
πc

α

]√
α

πc

√
Ne−

√
πcαN

≤ K1

√
Ne−

√
πcαN.
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Let F(z) [11] be defined as

F(z) = F(x + iy) =
∫ x

−∞
f (u) du +

∫ y

0
f (x + iv) dv, (3.70)

where z is in the strip |y| < c. F does not satisfy A4 and this makes it impossible

to apply Lemma 3.5 on it. But f satisfies A4, F(x) = I + O(e−α|x|) as x → ∞, with

I defined as I =
∫ ∞

−∞
f (u) du.

Let η be an auxiliary function, e.g. η(z) =
eαz

eαz + 1
, which satisfies A1 and the

condition

A5 for α > 0 as in A4, η(x) = O(e−α|x|) as x → −∞ and η(x) = 1 + O(e−α|x|)

as x → +∞.

Next, we introduce

F⋆(z) = F(z) − Iη(z). (3.71)

F⋆ satisfies A1 and A4. It was suggested in [11] that F⋆ should be made to satisfy

conditions A2, A3 and, to do this, we require that f and η′ satisfy the stronger

condition

A3a for any small ε > 0, the function Yε(x) =
∫ c−ε

ε−c
| f (x + iy)|dy is bounded

and Yε(x) ∈ L(R). Furthermore,
∫ ∞

−∞
Yε(x) dx is bounded in ε,

instead of A3.

We shall show that F⋆ now satisfies A2 and A3. It follows from (3.71) and (3.70)
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that

∫ ∞

−∞
|F⋆(x + i(c − ε))|dx

=
∫ ∞

−∞

∣
∣
∣
∣
F⋆(x) dx +

∫ c−ε

0
( f (x + iy) − Iη′(x + iy)) dy

∣
∣
∣
∣

dx

≤
∫ ∞

−∞
|F⋆(x)|dx +

∫ ∞

−∞

∫ c−ε

0
| f (x + iy)|dy dx

+ |I|
∫ ∞

−∞

∫ c−ε

0
|η′(x + iy)|dy dx.

An application of Lemma 3.5 to F⋆ leads to the Lemma below:

Lemma 3.6. Assume that f satisfies A1, A2, A3 and A4, η satisfies A1 and A5, η′ satisfies

A3a, with h as defined in (3.46) and

F(x) =
∫ x

−∞
f (u) du and I =

∫ ∞

−∞
f (u) du. (3.72)

Then

F(x) =
N

∑
k=−N

F(kh) sinc

(
x − kh

h

)

+ I

(

η(x) −
N

∑
k=−N

η(kh) sinc

(
x − kh

h

))

+ O(
√

Ne−
√

πcαN), (3.73)

with

I = h
N

∑
m=−N

f (mh).

Theorem 3.5 was used to replace F(kh) by

F(kh) =
∫ kh

−∞
f (u) du = h

N

∑
m=−N

f (mh)

(
1

2
+

1

π
Si(π(k − m))

)

.
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Thus, by expanding (3.73) without the big O term,

F(x) = h
N

∑
k=−N

N

∑
m=−N

f (mh)

(
1

2
+

1

π
Si(π(k − m))

)

sinc

(
x − kh

h

)

+ I

(

η(x) −
N

∑
k=−N

η(kh) sinc

(
x − kh

h

))

=
h

2

N

∑
k=−N

N

∑
m=−N

f (mh) sinc

(
x − kh

h

)

+
h

π

N

∑
k=−N

N

∑
m=−N

f (mh) Si(π(k − m)) sinc

(
x − kh

h

)

+ h
N

∑
m=−N

f (mh)

(

η(x) −
N

∑
k=−N

η(kh) sinc

(
x − kh

h

))

.

After collecting like terms with the help of (1.7), (3.73) now reads [11]:

Theorem 3.10. Assume that f satisfies A1, A2, A3a and A4, η satisfies A1 and A5 and η′

satisfies A3a. Then

∫ x

−∞
f (u) du = h

N

∑
k=−N

N

∑
m=−N

f (mh)σk−m sinc

(
x − kh

h

)

+ h
N

∑
m=−N

f (mh)

(

η(x) −
N

∑
k=−N

(

η(kh) − 1

2

)

sinc

(
x − kh

h

))

+ O((
√

N)3e−
√

πcαN), (3.74)

holds uniformly for −∞ < x < ∞, where h is as defined in (3.46).

3.5.1 Haber’s Formula B

Formula B can be derived by the change of variables w = φ(z) = tan
z

2
and by

setting f (u) = g(φ(u))φ′(u) with ϕ(w) = η(φ−1(w)). Multiplying the numerator
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and denominator of η by e−αx, we will have

ϕ(w) = η(ψ(w))

= η

(

log

(
w + 1

1 − w

))

=
1

1 + exp
(

−α log
(

w+1
1−w

))

=
1

1 +
(

1−w
w+1

)α

=
(w + 1)α

(w + 1)α + (1 − w)α
.

It follows from our previous analysis that conditions A′
1 and A′

3 on g imply A2, A3a

and A4 on f , while A′
1 on η is equivalent to A1 on f . Consequently, A′

1 on ϕ is the

same as condition A1 on η. The condition A5 on η holds if we require that

A′
5 ϕ is continuous on [−1, 1] and ϕ(−1) = 0, ϕ(1) = 1.

In addition, ϕ satisfies a Hölder condition on [−1, 1] of order α.

For A3a to hold on η, Haber imposed A′
3 on ϕ′; conditions A′

3 for ϕ′ and A′
5 for

ϕ imply the Hölder condition for ϕ. We conclude with this theorem from [11].

Theorem 3.11. If 0 < c ≤ π, α > 0, g satisfies conditions A′
1, A′

2 and A′
3, ϕ satisfies A′

1

and A′
5, and η′ satisfies A3. Then (3.75) holds uniformly in [−1, 1], and I⋆ is defined by

(3.76).

A close look at A′
5 and the choice of the functions ϕ =

w + 1

2
satisfies the con-

ditions for all c and for any α ≤ 1, and the function ϕ =
−w3 + 3w + 2

4
satisfies the

conditions for all c for any α ≤ 2, since ϕ′(−1) = ϕ′(1) = 0. To avoid the condition

A′
2, Haber states that we should replace c′ by c in the error term. He presents this

in the form of a theorem, which is Haber’s formula B .

Theorem 3.12. If 0 < c ≤ π, α > 0 and
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1. g is analytic in Φc and g(w) = O(|1 − w2|α−1) as w → ±1 from the interior or

inside Φc;

2. ϕ is analytic in Φc and ϕ(−1) = 0, ϕ(1) = 1; ϕ′(w) = O(|1 − w2|α−1) as

w → ±1 from inside Φc,

then

∫ v

−1
g(t) dt = h

N

∑
k=−N

N

∑
m=−N

g(φ(mh))φ′(mh)σk−m sinc

(
φ−1(v) − kh

h

)

+ I⋆

(

ϕ(v) −
N

∑
k=−N

(

ϕ(φ(kh)) − 1

2

)

sinc

(
φ−1(v) − kh

h

))

(3.75)

+ O((
√

N)3e−
√

πcαN),

holds uniformly on [−1, 1], c′ ∈ (0, c), h =
√

πc′
αN and

I⋆ = h
N

∑
m=−N

g(φ(mh))φ′(mh). (3.76)

If
∫ 1
−1 g(t) dt = 0, then I⋆ may be replaced by zero.

3.6 Computational Considerations

We shall consider two cases for the computation of the double sum in (3.75)-on the

one hand for a single value of v and on the other hand for several values.

The double sum in (3.75) involves computing 2N + 1 values of sine in the sinc

function, but because k is an integer we can simplify matters.

sinc

(
φ−1(v) − kh

h

)

=
h sin

(
πφ−1(v)

h − πk
)

πφ−1(v) − πkh

=
h

π

(−1)k sin
πφ−1(v)

h

φ−1(v) − kh
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Thus, we can write

h
N

∑
k=−N

N

∑
m=−N

g(φ(mh))φ′(mh)σk−m sinc

(
φ−1(v) − kh

h

)

=
h2

π
sin

πφ−1(v)

h

N

∑
k=−N

N

∑
m=−N

(−1)kσk−m

φ−1(v) − kh
g(φ(mh))φ′(mh), (3.77)

which uses only one sine evaluation. It follows that (3.75) involves more calcula-

tion than (3.63) because of the double sum. If we are to approximate the integral

for many values of v, we write the double sum as

h2

π
sin

πφ−1(v)

h

N

∑
k=−N

Zk

φ−1(v) − kh
, (3.78)

where

Zk =
N

∑
m=−N

(−1)kσk−mg(φ(mh))φ′(mh). (3.79)

The Zk are independent of v, which allows us to calculate Zk first before each new

value of v, which requires the calculation of a single sum. The simplification makes

Haber’s formula B faster than A when several values of the indefinite integral

are needed. It should also be noted that each value of v requires only a sine, a

logarithm and two simple sums for B, and 2N + 1 new values of the sine integral

for A.

However, developments in software has circumvented the above simplifica-

tions, since sinc values can be computed easily by typing sinc(x) in Matlabr or

octave.

One thing that is noteworthy is that the parameters α and c have to be chosen

to ”normalise” the functions in such a way that,

∫ 1

−1
|g(t)|dt = 1. (3.80)
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It also becomes clear as remarked in Haber ([10], p. 148, [11]) that most of the

abscissas φ(kh) are very close to ±1 because, as |kh| → ∞,

tanh
kh

2
= ±1 + O(e−|kh|). (3.81)

It might not be possible to evaluate integrands that contain factors such as (1 − x),

because the integrand may be infinite at ±1. This computational pitfall can be

avoided by studying the function φ′(x) f (φ(x)).



Chapter 4

Indefinite Integration on (−∞, ∞)

For the Lord gives wisdom, and from His mouth come knowledge and under-

standing.

Proverbs 2:6.

This chapter shall be devoted to the derivation of the quadrature formulas given

by Tanaka et al. in [32]. The formulas will be derived on the basis of error analysis.

One of the formulas is based on Stenger’s [27] Single Exponential (SE) transfor-

mation, and the other is based on the Double Exponential (DE) transformation of

Takahasi and Mori [31]. We introduce the function spaces H∞(Dc, ω) and give

some important results with a view to obtaining an expression for the step size of

Tanaka et al.’s [32] DE sinc method.

4.1 Stenger’s SE Formula

Before proceeding to the derivation of Stenger’s SE formula, a definition is pro-

vided of single exponential transformation and the family of analytic functions

Lα(Dc) and Mα(Dc) are introduced.

Definition 4.1. (Single Exponential Transformation) A function f is said to decay
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single exponentially [22] with respect to the conformal map φ (as in Chapter 3), if there

exist positive constants α and K such that

| f (φ(x))φ′(x)| ≤ K exp(−α|x|) for all x ∈ R, (4.1)

and any φ that satisfies (4.1) is called a single exponential transformation.

Definition 4.2. Let α, β be positive numbers, and Lα,β(Dc) denote the family of functions

f that are analytic in Dc [27], such that for some constants K > 0, and all z ∈ Dc , we

have

| f (z)| ≤ K
eαz

(1 + |ez|)α+β
. (4.2)

Let α ∈ (0, 1], β ∈ (0, 1], c ∈ (0, π), and Mα,β(Dc) denote the family of functions in

which v is holomorphic in Dc, which has finite limits at a and b [28], such that f ∈

Lα,β(Dc), where f is defined by

f = v − ℓv, (4.3)

and

ℓv(z) =
v(a) + eφ(z)v(b)

1 + eφ(z)
. (4.4)

Stenger ([28], p. 383, 387) suggests that, in approximating integrals over various

intervals, one should select a mapping φ that gives a one-to-one transformation of

(a, b) onto the real line and that provides a conformal mapping of the region D

on which the integrand is analytic onto Dc. He also illustrates that for problems

that involve approximating functions that decay exponentially in at least one of

the points at ±∞, we take φ(z) = z, so that (4.3) reduces to

f (x) = v(x) − [v(−∞) + exv(∞)]

(1 + ex)
, (4.5)

by replacing z with x.



4.1 Stenger’s SE Formula 70

Remark 4.1. For the sake of notation, we shall write Lα(Dc) for Lα,α(Dc) and Mα(Dc)

for Mα,α(Dc).

For all real x, after simplifying (4.2) we have

1

22α
e−α|x| ≤ eαx

(1 + eαx)2α
≤ e−α|x|. (4.6)

Let α′, c′ be positive numbers, and f a given function. Throughout this section, our

assumption is that f ∈ Lα′(Dc′).

Define v, V for τ > 0 by

v(z) = f (z) − τ

2 cosh2(τz)

∫ ∞

−∞
f (u) du,

= f (z) − τ

2
sech2(τz)

∫ ∞

−∞
f (u) du, (4.7)

where V(z) =
∫ z
−∞

v(t) dt. Integrating
τ

2
sech2(τt) with respect to t and using the

exponential forms of tanh,

τ

2

∫ z

−∞
sech2(τt) dt =

1

2
tanh(τt)

∣
∣
∣
∣

z

−∞

=
e2τz

e2τz + 1

=
eτz

eτz + e−τz

=
eτz

2 cosh(τz)
,

from which we arrive at

V(z) =
∫ z

−∞
f (u) du − eτz

2 cosh(τz)

∫ ∞

−∞
f (u) du. (4.8)
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Stenger [27] points out that we set

c = min
(

c′,
π

2τ
− ε
)

, α = min(α′, τ), (4.9)

with ε ∈ (0, π
2τ ), but otherwise ε is an arbitrary positive number.

Next we shall define some important operators used for indefinite integration

and the sinc interpolation. The definition below is from [32] (p. 657).

Definition 4.3. For a function f defined on a complex region containing the real line, we

define the following operators

I(v, z) =
∫ z

−∞
v(u) du, (4.10)

C(N, h, v, z) =
N

∑
k=−N

v(kh)S(k, h, z), (4.11)

C(v, h, z) = lim
N→∞

C(N, h, v, z), (4.12)

N ∈ Z, h ∈ R, N and h are positive.

The series of Lemmas about to be stated and proved are important in order to

understand the proof of the main result for the Single Exponential formula given

by Tanaka et al. [32].

For the proof of the first two Lemmas, we make the following preliminary re-

mark: since α ∈ (0, α′), then for all x ∈ R, we have

eα′x

(1 + ex)2α′ ≤
eαx

(1 + ex)2α
. (4.13)

Lemma 4.1. Let f satisfy the conditions of Theorem 4.1, v and V be as defined in (4.7)

and (4.8) respectively. Then v and V belong to Lα(Dc).

Proof: First, we set out to prove that v ∈ Lα(Dc). To do this, we have
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τ

2 cosh2(τz)

∫ ∞

−∞
f (u) du ∈ Lα(Dc) from the statement of Theorem 4.1, f ∈ Lα(Dc)

and from (4.7), (4.9). This shows that v ∈ Lα(Dc). With V as defined in (4.8), it is

holomorphic1 on Dc. Since f ∈ Lα(Dc), z ∈ Dc with ℜz = x, from (4.6) it can be

deduced that f (x + iy) ≤ Ke−α|x| and

∣
∣
∣
∣

∫ ∞

−∞
f (u) du

∣
∣
∣
∣
≤
∣
∣
∣
∣
K
∫ ∞

−∞
e−α|u| du

∣
∣
∣
∣

=
2K

α
e−α|u|

∣
∣
∣
∣

∞

0

=
2K

α
.

Assuming that x ≤ 0, since
∫ ∞

−∞
f (u) du does not depend on the path for any

remaining path on Dc, let us choose a path depending on a positive number L,

L > −x. The path will be divided into three: the first, from −∞ to −L, the second

a vertical line segment from −L to −L + iy and, lastly, a horizontal line segment

from −L + iy to x + iy.

Let us use (4.6) to evaluate
∫ z
−∞

f (u) du thus:

∣
∣
∣
∣

∫ z

−∞
f (u) du

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫ −L

−∞
f (u) du

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ −L+iy

−L
f (u) du

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ x+iy

−L+iy
f (u) du

∣
∣
∣
∣
.

Starting with

∣
∣
∣
∣

∫ −L

−∞
f (u) du

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫ −L

−∞
Ke−α|u| du

∣
∣
∣
∣

= K
∫ −L

−∞
eαu du

=
K

α
e−αL,

1synonymous with analytic
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we find that

∣
∣
∣
∣

∫ −L+iy

−L
f (u) du

∣
∣
∣
∣
≤
∣
∣
∣
∣

∫ −L+iy

−L
| f (u)|du

∣
∣
∣
∣

≤ |iy| max
u∈[−L,−L+iy]

| f (u)|

= K|y|e−αL,

and

∣
∣
∣
∣

∫ x+iy

−L+iy
f (u) du

∣
∣
∣
∣
≤ K

∣
∣
∣
∣

∫ x+iy

−L+iy
e−α|u| du

∣
∣
∣
∣

≤ K

∣
∣
∣
∣

∫ x+iy

−L+iy
e−α|x| dx

∣
∣
∣
∣

=
K

α
(e−α|x| − e−αL),

so that
∣
∣
∣
∣

∫ z

−∞
f (u) du

∣
∣
∣
∣
≤ K

α
e−αL + K|y|e−αL +

K

α
(e−α|x| − e−αL).

By letting L tend to ∞, |
∫ z
−∞

f (u) du| ≤ K
α e−α|x|.

Let z = x + iy ∈ Dc, ℜz = x ≤ 0 and ℑz = y, and using the exponential form

of cosh(τz), i.e. cosh(τz) = (eτz + e−τz)/2 after some algebra using the identities

cosh(ix) = cos x and sinh(ix) = i sin x.

∣
∣
∣
∣

eτz

cosh(τz)

∣
∣
∣
∣
=

2e2τx

√

(e2τx − 1)2 + 4e2τx cos2(τy)

≤ 2e2τz

2eτx cos(τy)

=
eτz

cos(τy)

≤ eαx

sin(αε)

since 0 < α ≤ τ and |y| < c ≤ π

2τ
− ε <

π

2τ
. Then, from (4.8) and the left-hand
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side of (4.6) we have

|V(z)| ≤ K

α
e−α|x| +

K

α

eαx

sin(αε)

≤ K

α

(

1 +
1

sin(αε)

)

e−α|x|

≤ 2K

α

(

1 +
1

sin(αε)

)
e−α|x|

(1 + ex)2α
.

This shows that V(z) ∈ Lα(Dc) and thus completes the proof.

We shall state the Lemma below, the proof of which can be found in [26] and

the result of which will be used in the proof of the Lemma following it.

Lemma 4.2. If β, u, ξ ∈ R, β 6= 0 and

w(h, u, β, ξ) =
1

2πi

∫ ξ

−∞

sin(πx/h) dx

u − x − iβ
, (4.14)

then

|w(h, u, β, ξ)| ≤ h

4|β| . (4.15)

The following result then holds.

Lemma 4.3. Let w(h, u, β, ξ) be as defined in (4.14). If we let

δ(v, h, x) =
∫ x

−∞

{

v(u) −
N

∑
k=−N

v(kh)S(k, h, u)

}

du, (4.16)

then for every x ∈ R

δ(v, h, x) =
∫ ∞

−∞

{
w(h, u, c, x)v(u − ic−)

sin[π(u − ic)/h]
− w(h, u,−c, x)v(u + ic−)

sin[π(u − ic)/h]

}

du. (4.17)
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Moreover, if N1(v,Dc) is as defined in (3.19), then for x ∈ R,

|δ(v, h, x)| ≤ hN1(v,Dc)

4c sinh(πc/h)
. (4.18)

Proof: We can deduce from Lemma 4.1 that v ∈ Lα(Dc) and v ∈ B(Dc). Bor-

rowing a cue from (3.20),

δ(v, h, x) =
∫ x

−∞

sin(πz/h)

2πi

∫ ∞

−∞

{
v(u − ic−)

(u − z − ic) sin[π(u − ic)/h]

− v(u + ic−)

(u − z + ic) sin[π(u + ic)/h]

}

du dz

=
1

2πi

{ ∫ x

−∞

sin(πz/h) dz

u − z − ic

∫ ∞

−∞

v(u − ic−) du

sin[π(u − ic)/h]

−
∫ x

−∞

sin(πz/h) dz

u − z + ic

∫ ∞

−∞

v(u + ic−) du

sin[π(u + ic)/h]

}

=
∫ ∞

−∞

{
w(h, u, c, x)v(u − c−)

sin[π(u − ic)/h]
− w(h, u,−c, x)v(u + c−)

sin[π(u + ic)/h]

}

du.

Taking absolute values and using (4.15),

|δ(v, h, x)| ≤
∫ ∞

−∞

∣
∣
∣
∣

w(h, u, c, x)v(u − c−)

sin[π(u − ic)/h]

∣
∣
∣
∣

du +
∫ ∞

−∞

∣
∣
∣
∣

w(h, u,−c, x)v(u + c−)

sin[π(u + ic)/h]

∣
∣
∣
∣

du

≤ h

4|c| sinh(πc/h)

[ ∫ ∞

−∞
|v(u − ic−)| + |v(u + ic−)|

]

du

=
hN1(v,Dc)

4c sinh(πc/h)
.

The result below holds from [27] and it will be applied in the proof of Theorems

4.1 and 4.8.

Lemma 4.4. For the norm operator of C(N, h), defined as

||C(N, h)||∞ = sup
| f (x)|≤1

{

sup
x∈R

∣
∣
∣
∣

N

∑
k=−N

f (kh)S(k, h, x)

∣
∣
∣
∣

}

, (4.19)
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we have

||C(N, h)||∞ ≤ sup
x∈R

N

∑
k=−N

∣
∣
∣
∣

sinc

(
x − kh

h

)∣
∣
∣
∣

≤ 2(3 + log N)

π
. (4.20)

With the above results, we are now in a position to state and proof the follow-

ing main result, which gives us an error for the Single Exponential formula from

which we can obtain the SE formula through a variable transformation. The pre-

sentation of the proof given in this thesis is more detailed and comprehensive than

the original proof given in [27].

Theorem 4.1. (Main Result) Let f ∈ Lα′(Dc′), let τ be a positive number with c and α

as defined in (4.9), 0 < ε <
π
2τ . Let I(k) be as defined in (3.35), and h as defined in (3.46),

N is a positive integer. Then there exists a positive constant K that is independent of N,

such that

sup
x∈R

∣
∣
∣
∣

∫ x

−∞
f (u) du − eτx

2 cosh(τx)
h

N

∑
m=−N

f (mh)

− h
N

∑
k=−N

{
N

∑
m=−N

I(k − m)

[

f (mh) − τ

2 cosh2(τmh)
h

N

∑
k=−N

f (kh)

]}

S(k, h, x)

∣
∣
∣
∣

≤ K
√

Ne−
√

πcαN. (4.21)

Proof: We shall first show, using the notations (4.7) and (4.10) to (4.12), that the

following relations hold uniformly for x ∈ R,

|I(v, x) − C(N, h, I(C(N, v, h, x), x), x)| ≤ K
√

Ne−
√

πcαN, (4.22)
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where K does not depend on N.

|I(v, x)− C(N, h, I(C(N, v, h, x), x), x)|

≤ |I(v, x)− C(N, h, I(v, x), x)| + |C(N, h, I(v, x), x) − C(N, h, I(C(v, h, x), x), x)|

+ |C(N, h, I(C(v, h, x), x), x) − C(N, h, I(C(N, v, h, x), x), x)|.

Let ν1(x) = I(v, x)− C(N, h, I(v, x), x),

ν2(x) = C(N, h, I(v, x), x) − C(N, h, I(C(v, h, x), x), x) and

ν3(x) = C(N, h, I(C(v, h, x), x), x) − C(N, h, I(C(N, v, h, x), x), x). Since I(v, x) =

V and from Lemma 4.1 we have V ∈ Lα(Dc).

Consequently, from Theorem 3.9 we obtain

|ν1(x)| ≤ K1

√
Ne−

√
παcN. (4.23)

Similarly, from Lemma 4.3

|I(v, x) − I(C(v, h, x), x)| ≤ K2he−
πc
h ,

and

|ν2(x)| = |C(N, h, I(v, x), x) − C(N, h, I(C(v, h, x), x), x)|

≤ ||C(N, h)||∞ sup
x∈R

|I(v, x) − I(C(v, h, x), x)|

≤ 2K3
(3 + log N)

π
he−

πc
h

= 2K3

√
πc

αN

(3 + log N)

π
e−

√
παcN

≤ K5
log N√

N
e−

√
παcN, (4.24)

where K5 does not depend on N.
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To obtain an estimate for ν3(x), we get v ∈ Lα(Dc) from Lemma 4.1, which

means that there exists a constant K8 such that |v(kh)| ≤ K8e−α|k|h, k ∈ Z. Also,

from the result of Lemma 3.1,

|I(C(v, h, x), x) − I(C(N, v, h, x), x)| =

∣
∣
∣
∣

∫ x

−∞
∑

|k|>N

v(kh)S(k, h, u) du

∣
∣
∣
∣

=

∣
∣
∣
∣ ∑
|k|>N

v(kh)J(k, h, x)

∣
∣
∣
∣

≤ sup
x∈R

|J(k, h, x)| ∑
|k|>N

|v(kh)|

≤ 1.1h ∑
|k|>N

|v(kh)|

≤ 1.1hK6 ∑
k=N+1

e−α|k|h

= 2.2hK6
e−αh

1 − e−αh
e−αNh

≤ 2.2K6

α
e−αNh,

with h =

√
πc

αN
and

|ν3(x)| = |C(N, h, I(C(v, h, x), x), x) − C(N, h, I(C(N, v, h, x), x), x)|

≤ ||C(N, h)||∞ sup
x∈R

|I(C(v, h, x), x) − I(C(N, v, h, x), x)|

≤ 4.4(3 + log N)

απ
K6e−

√
παcN

≤ K7(log N)e−
√

παcN. (4.25)

By adding together (4.23), (4.24) and (4.25), we obtain (4.22).
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The inequality (4.22) can now be used to establish (4.21), as shown below.

I(v, x) =
∫ x

−∞
f (u) du − eτx

2 cosh(τx)

∫ ∞

−∞
f (u) du

=
∫ x

−∞
f (u) du − eτxh

2 cosh(τx)

N

∑
m=−N

f (mh) (4.26)

also,

C(N, v, h, x) =
N

∑
m=−N

v(mh)S(m, h, x)

I(C(N, v, h, x), x) =
∫ x

−∞

N

∑
m=−N

v(mh)S(m, h, t) dt

and

C(N, h, I(C(N, v, h, x), x), x)

=
N

∑
k=−N

[ ∫ kh

−∞

N

∑
m=−N

v(mh)S(m, h, t) dt

]

S(k, h, x)

=
N

∑
k=−N

[ N

∑
m=−N

v(mh)
∫ kh

−∞
S(m, h, t) dt

]

S(k, h, x)

= h
N

∑
k=−N

[ N

∑
m=−N

v(mh)

{
1

2
+

1

π
Si

(
πkh − πmh

h

)}]

S(k, h, x)

= h
N

∑
k=−N

[ N

∑
m=−N

v(mh)

{
1

2
+

1

π
Si(π(k − m))

}]

S(k, h, x)

= h
N

∑
k=−N

[ N

∑
m=−N

v(mh)I(k − m)

]

S(k, h, x)

= h
N

∑
k=−N

[ N

∑
m=−N

I(k − m)

(

f (mh) − τh

2 cosh2(τmh)

N

∑
k=−N

f (kh)

)]

S(k, h, x),

(4.27)
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where

I(k − m) =
1

2
+

1

π
Si(π(k − m))

=
1

2
+
∫ k−m

0

sin πu

πu
du.

By subtracting equation (4.27) from (4.26) and taking the supremum over all x ∈ R,

we obtain (4.21).

It will be observed that the above result has not been transformed into (−1, 1).

Thus, in ways analogous to those in Chapter 3, we make the variable transforma-

tion w = φ(z) = tanh
z

2
. This paves the way for the following fundamental result

from [32], which also helps us to find the parameters.

4.1.1 Finding the Parameters

Theorem 4.2. Let αg and cg be positive numbers. Using the variable transformation

u = φ(t), the transformed function g(t) = f (φ(t))φ′(t) ∈ Lαg(Dαg), then there exists a

positive number K independent of N, such that

sup
−1<x<1

∣
∣
∣
∣

∫ x

−1
f (u) du −

[
exp[τφ−1(x)]

2 cosh(τφ−1(x))
h

N

∑
k=−N

f (φ(kh))φ′(kh)

+ h
N

∑
k=−N

{ N

∑
m=−N

I(k − m)

(

f (φ(mh))φ′(mh)

− τ

2 cosh2(τmh)
h

N

∑
k=−N

f (φ(kh))φ′(kh)

)}

S(k, h, φ−1(x))

]∣
∣
∣
∣

≤ K
√

N exp(−(πα′
gc′gN)1/2), (4.28)
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with

α′
g = min(αg, 2τ),

c′g = min

(

cg,
π − 2τεc

2τ

)

, (4.29)

h =

√

πc′g
α′

gN
,

and εc is any number such that c′g > 0.

From (4.29) one will observe that

α′
gc′g ≤ min(αgcg, π − 2τεc), (4.30)

where τ =
αg

2
, (4.31)

because it reduces the estimated error and gives us what Tanaka et al. call the best

SE formula .

From the above theorem, we can now deduce Stenger’s formula, which Tanaka

et al. call the SE formula,

∫ x

−1
f (u) du =

[
exp[τφ−1(x)]h

2 cosh(τφ−1(x))

N

∑
k=−N

f (φ(kh))φ′(kh)

+ h
N

∑
k=−N

{ N

∑
m=−N

I(k − m)

(

f (φ(mh))φ′(mh)

− τh

2 cosh2(τmh)

N

∑
k=−N

f (φ(kh))φ′(kh)

)}

S(k, h, φ−1(x))

]

, (4.32)

with the step size given by (4.29).

We shall be taking a close look at the function space H∞(Dc, ω), as it will give

us expressions for the error estimates of the sinc approximation and, most impor-

tantly, will help us in the derivation of the step size h for computing Tanaka et al.’s

formula .
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4.2 Function Spaces

We shall give the definition of the function space H∞(Dc, ω) as presented by Sug-

ihara ([30], [29]). H∞(Dc, ω) represents the space of analytic functions in the strip

region Dc about the real axis. H∞(Dc, ω) spaces are characterized by the decay rate

of their elements (functions), and parametrised by ω in the neighbourhood of in-

finity [30]. The space was used by Sugihara [30] in the context of optimal quadra-

ture in establishing the ”meta-optimality” of the double exponential quadrature

formulas.

Definition 4.4. Let ω(z) be a non-vanishing function defined on the region Dc. If f :

Dc → C is a function, the space H∞(Dc, ω) can be defined as

H∞(Dc, ω) = { f : f (z) is analytic in Dc, and || f || < +∞}, (4.33)

where the norm is

|| f || = sup
z∈Dc

| f (z)/ω(z)|. (4.34)

With the above definition, we have, for z ∈ Dc,

| f (z)| ≤ || f |||ω(z)|, (4.35)

which means that f ∈ H∞(Dc, ω) decays like ω(z) as z → ∞ in Dc. If ω(z) decays

single exponentially, the function in H∞(Dc, ω) will decay single exponentially,

and if ω(z) decays double exponentially, the function in H∞(Dc, ω) will decay

double exponentially.
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4.2.1 Error Estimates

Let E sinc
N,h (H∞(Dc, ω)) denote the error norm in H∞(Dc, ω) for the sinc approxima-

tion formula given by

E sinc
N,h (H∞(Dc, ω)) = sup

|| f ||≤1

{

sup
x∈R

∣
∣
∣
∣
f (x) −

N

∑
k=−N

f (kh)S(k, h, x)

∣
∣
∣
∣

}

, (4.36)

and let Emin
N,h (H∞(Dc, ω)) be the minimum error norm in H∞(Dc, ω) taken over the

family of all N− point quadrature formulas [29]

∫ ∞

−∞
f (x) dx ≈

r

∑
k=0

wk−1

∑
l=0

βkl f (l)(αk), (4.37)

where αk ∈ Dc, βkl ∈ C, N = w1 + w2 + · · ·+ wr and

Emin
N,h (H∞(Dc, ω)) = inf

1≤r≤N
inf

{wi}r
i=1

N

inf
αkl

{

sup
|| f ||≤1

{

sup
x∈R

∣
∣
∣
∣
f (x)−

r

∑
k=1

wk−1

∑
l=0

βkl f (l)(αk)

∣
∣
∣
∣

}}

.

(4.38)

If B(Dc) is as given in Definition 3.3, the following theorems give the optimality re-

sults of the sinc approximation in H∞(Dc, ω). The first theorem applies to the case

where ω(z) decays single exponentially, which means that the integrand decays

single exponentially, while the second theorem applies when ω(z) decays double

exponentially, in which case the integrand also decays double exponentially [29].

Theorem 4.3. Suppose that ω(z) satisfies the following conditions

1. ω(z) ∈ B(Dc),

2. ω(z) is non-vanishing at any point in Dc, and

3. the decay rate of ω(z) on the real axis satisfies

α1 exp(−(τ|x|)µ) ≤ |ω(x)| ≤ α2 exp(−(τ|x|)µ), x ∈ R,



4.2 Function Spaces 84

where α1, α2, β are positive constants and µ ≥ 1.

Then

E sinc
N,h (H∞(Dc, ω)) ≤ Kc,ω N

1
µ+1 exp

(

−
(

πcτN

2

) µ

µ+1
)

, (4.39)

where the step size h is chosen as

h = (πc)
1

µ+1 (τN)−
µ

µ+1 ,

Kc,ω is a constant depending on c and ω.

Theorem 4.4. Suppose that ω(z) satisfies the following conditions:

1. ω(z) ∈ B(Dc),

2. ω(z) is non-vanishing at any point in Dc, and

3. the decay rate of ω(z) on the real axis satisfies

α1 exp(−τ1 exp(λ|x|)) ≤ |ω(x)| ≤ α2 exp(−τ2 exp(λ|x|)), x ∈ R,

where α1, α2, τ1, τ2 are positive constants.

Then

E sinc
N,h (H∞(Dc, ω)) ≤ K′

c,ω exp

(

− πcλN

2 log(πcλN/(2τ2))

)

, (4.40)

where K′
c,ω depends on c and ω.

Sugihara [30] remarks that it is good to consider the case where ω(z) decays

double exponentially. The following theorem will shed more light on this case.

Theorem 4.5. There exists no function ω(z) that satisfies the conditions (1), (2) in Theo-

rems 4.3, 4.4 and the decay rate of ω(z) on the real axis is

ω(x) = O(exp(−τ exp(λ|x|))), as |x| → ∞,
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where τ > 0 and λ >
π

2c
.

To prove Theorems 4.3 and 4.4, we shall state and prove Lemma 4.6, which

gives upper estimates for the error norm of the sinc approximation formula with-

out specifying h. But first the following important result is needed.

Lemma 4.5. If ω(z) satisfies condition 1 and 2 in Theorem 4.3, then, for any h > 0,

E sinc
N,h (H∞(Dc, ω)) ≤ exp(−πc/h)N1(ω, Dc)

πc(1 − exp(−2πc/h))
+ ∑

|k|>N

∣
∣ω(kh)

∣
∣. (4.41)

Proof: Using the inequality (4.35) and condition 1 from Theorem 4.3 on ω(z),

ω(z) ∈ B(Dc) means that any f (z) ∈ H∞(Dc, ω) also belongs to B(Dc). Since we

have established that f (z) ∈ B(Dc), using the error estimate of the sinc approxi-

mation formula gives

sup
x∈R

∣
∣
∣
∣
f (x) −

N

∑
k=−N

f (kh)S(k, h, x)

∣
∣
∣
∣
≤ sup

x∈R

∣
∣
∣
∣
f (x) −

∞

∑
k=−∞

f (kh)S(k, h, x)

∣
∣
∣
∣

≤ exp(−πc/h)N1( f , Dc)

πc(1 − exp(−2πc/h))
+ ∑

|k|>N

∣
∣ f (kh)

∣
∣,

but | f (kh)| ≤ || f |||ω(kh)|, N1( f , Dc) ≤ || f ||N1(ω, Dc) and, taking the supremum

of norm one of both sides, we will have (4.41).

Lemma 4.6. If ω(z) satisfies all the conditions in Theorem 4.3, then for any h > 0,

E sinc
N,h (H∞(Dc, ω)) ≤ exp(−πc/h)N1(ω, Dc)

πc(1 − exp(−2πc/h))
+

2α2 exp(−(τhN)µ)

µ(τh)µNµ−1
, (4.42)

and

E sinc
N,h (H∞(Dc, ω)) ≤ exp(−πc/h)N1(ω, Dc)

πc(1 − exp(−2πc/h))
+

2α2 exp(−τ2 exp(λhN))

τ2λh exp(λhN)
. (4.43)
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Proof: We shall use condition 3 of Theorem 4.3 on ω(z) to give an estimate for

the second term on the right-hand side of equation (4.41).

1. Needed in Theorem 4.3

∑
|k|>N

|ω(kh)| ≤ 2α2

∞

∑
k=N+1

exp(−(τkh)µ)

≤ 2α2

∫ ∞

N
exp(−(τkh)µ) dx

≤ 2α2

µ(τhN)µ

∫ ∞

N
µ(τh)µxµ−1 exp(−(τhx)µ) dx

=
2α2 exp(−(τhN)µ)

µ(τh)µNµ−1
.

Substituting this back into (4.41) we obtain (4.42).

2. Needed in Theorem 4.4

∑
|k|>N

|ω(kh)| ≤ 2α2

∞

∑
k=N+1

exp(−τ2 exp(λkh))

≤
∫ ∞

N
exp(−τ2 exp(λhx)) dx.

=
2α2 exp(−τ2 exp(λhN))

τ2λh exp(λhN)

≤ 2α2

τ2λh exp(λhN)

∫ ∞

N
τ2λh exp(λhx) exp(−τ2 exp(λhx)) dx

=
2α2 exp(−τ2 exp(λhN))

τ2λh exp(λhN)
.

A similar substitution of the last expression above into (4.41) yields (4.43).

Next, we shall attempt to obtain an expression for the step size h for a given N as

obtained from [30] and use it to obtain the upper estimate for E sinc
N,h given in Lemma

4.6.
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1. Needed in Theorem 4.3

To find h, we equate the magnitude [29] of the first and second terms on the

right-hand side of equation (4.42) to obtain

exp(−πc/h) = exp(−(τhN)µ). (4.44)

Taking the logarithm to base e of both sides, πc
h = (τhN)µ , πc = hµ+1τµNµ,

and hence

h = (πc)
1

µ+1 (τN)−
µ

µ+1 . (4.45)

Substituting this into the first and second terms of (4.42), we have

exp(−πc/h)N1(ω, Dc)

πc(1 − exp(−2πc/h))
≤ K1 exp(−(πcτN)

µ

µ+1 )

≤ K′
1 exp

(

−
(

πcτN

2

) µ

µ+1
)

.

Similarly,

2α2 exp(−(τhN)µ)

µ(τh)µNµ−1
≤ K2N

µ

µ+1 exp(−(πcτN)
µ

µ+1 )

≤ K′
2N

µ

µ+1 exp

(

−
(

πcτN

2

) µ

µ+1
)

.

Adding the two terms above gives us the E sinc
N,h (H∞(Dc, ω)) in Theorem 4.3.

2. Needed in Theorem 4.4

The same argument follows for obtaining

exp(−πc/h) = exp(−τ2 exp(λhN))

from (4.43). Taking the logarithm to base e of both sides we have log(πcλN/τ2) =
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log h + γhN, hence the only h that solves the equation is

h =
log(πcλN/τ2)

λN
+ O

(
log log(πcλN/τ2)

λN

)

, N → ∞.

We follow Sugihara [30] in choosing

h =
log(πcλN/τ2)

λN
, (4.46)

which is the expression for the step size of Tanaka et al.’s quadrature formula that

we wanted to derive.

Substituting this into the right-hand side of (4.43) we have

exp(−πc/h)N1(ω, Dc)

πc(1 − exp(−2πc/h))
≤ K3 exp

(

− πcλN

log(πcλN/τ2)

)

≤ K′
3 exp

(

− πcλN

2 log(πcλN/τ2)

)

and

2α2 exp(−τ2 exp(λhN))

τ2λh exp(λhN)
=

2α2 exp(−πcλN)

πcλ log(πcλN/τ2)

≤ K4
exp(−πcN/2)

log N
.

Adding these together we have (4.40). Hence we have completed the proof of the

upper estimates for the error norm of the sinc approximation formula and have

also found an expression for the step size for Tanaka et al.’s quadrature formula.

Next, we strive to achieve our second goal in this chapter.
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4.3 Derivation of Tanaka et al.’s Formula

Definition 4.5. Let c be a positive number, Dc a strip region in C as in Definition 3.3,

then the function space B(Dc) is defined as

B(Dc) = { f : f is analytic in Dc, N1( f ,Dc) < ∞} (4.47)

where

N1( f ,Dc) = lim
ε→0

∫

∂Dc(ε)
| f (z)||dz|, (4.48)

Dc(ε) = {z ∈ C : |x| <
1

ε
, |y| < c(1 − ε)}. (4.49)

Definition 4.6. Let b be a real number such that b ∈ (0, π
2 ) and let the fan-shaped domain

Fb be defined as

Fb =

{

z ∈ C :
(π − 2b)

2
< arg z <

π

2

}

.

We need the following two theorems- the first one by Phragmén-Lindelöf and

the second by Montel given in [15] but stated as propositions in [32], to prove

Lemmas 4.9 and 4.10.

Proposition 4.1. Let f be analytic in Fb and continuous in D̄b. Then, if

| f (z)| ≤ S, ∀ z ∈ F̄b, (4.50)

there exists a < 0 such that

f (reiψb) = O(ear), r → ∞, (4.51)
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where ψb = π−2b
2 . Then there exists S′ > 0, such that, for all z ∈ Fb,

| f (z)| ≤ S′ exp

(
a|z| cos(arg z)

cos ψb

)

. (4.52)

Proposition 4.2. Let f be analytic and bounded in {z ∈ C : x > b, y1 ≤ y ≤ y2}. If

f (z) → a as x → ∞, y = y3, then for a fixed y3 such that y1 < y3 < y2, f (z) converges

uniformly to a as x → ∞ with respect to y such that y1 < y < y2.

We restate Lemma 4.3 in this fashion.

Lemma 4.7. Let f ∈ B(Dc), then

|I( f , x) − I(C(h, f , x), x)| ≤ hN1( f ,Dc)

4c sinh πc
h

. (4.53)

The following fundamental result then holds from [32].

Theorem 4.6. Assume that f satisfies the following:

f ∈ B(Dc); (4.54)

| f (x)| ≤ α exp(−τ exp(λ|x|)), ∀ x ∈ R, (4.55)

for some positive numbers α, τ, λ and c. Then, there exists a positive number K indepen-

dent of N, such that

sup
x∈R

| f (x) − C(N, f , h, x)| ≤ K exp

[ −πcλN

log(πcλN/τ)

]

, (4.56)

where

h =
log(πcλN/τ)

λN
. (4.57)

The above result can be applied to obtain the result in the next theorem.
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Theorem 4.7. If f satisfies (4.54) and (4.55),

I f ∈ B(Dc), (4.58)

|I( f , x)| ≤ α exp(−τ exp(λ|x|)), ∀ x ∈ R, (4.59)

for some positive numbers α, τ, λ and c, then there exists a number K independent of N,

such that

sup
x∈R

|I( f , x) − C(N, h, I(C(N, f , h, x), x), x)| ≤ K exp

[ −πcλN

log(πcλN/τ)

]

, (4.60)

where h is as defined in (4.57).

The assumptions about Theorems 4.6 and 4.7 were stated in terms of f and I f ,

but it is better to state the assumptions in terms of the integrand f . We give the

general case, which does not involve the condition lim
x→∞

I( f , x) = 0, in Theorem

4.9, but the theorem below, which was stated with a proof in [32] includes the

condition lim
x→∞

I( f , x) = 0.

Theorem 4.8. If f satisfies (4.54), (4.55) and

∫ ∞

−∞
f (u) du = 0, (4.61)

then for any ε, ε ∈ (0, c), there exists a positive number Kε, independent of N such that

sup
x∈R

|I( f , x) − C(N, h, I(C(N, f , h, x), x), x)| ≤ Kε exp

[ −π(c − ε)λN

log(π(c − ε)λN/τ)

]

,

(4.62)

with h given by

h =
log(π(c − ε)λN/τ)

λN
. (4.63)
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Proof: Let c′′ = c − ε and

c1(x) = I( f , x)− C(N, h, I( f , x), x)

c2(x) = C(N, h, I( f , x), x) − C(N, h, I(C( f , h, x), x), x)

c3(x) = C(N, h, I(C( f , h, x), x) − C(N, h, I(C(N, f , h, x), x), x), (4.64)

then

|I( f , x) − C(N, h, I(C(N, h, f , x), x), x)| ≤

|I( f , x) − C(N, h, I( f , x), x)| + |C(N, h, I( f , x), x) − C(N, h, I(C( f , h, x), x), x)|

+ |C(N, h, I(C( f , h, x), x), x) − C(N, h, I(C(N, f , h, x), x), x)|. (4.65)

For c1(x), we shall use Lemma 4.10 and Theorem 4.6 with (4.56):

|c1(x)| ≤ K1 exp

[ −πc′′λN

log(πc′′λN/τ)

]

. (4.66)

Applying Lemma 4.7 to

|I( f , x) − I(C(h, f , x), x)| ≤ hN1( f ,Dc)

4c sinh πc
h

≤ K2he−
πc
h , (4.67)

K2 is independent of h and, from Lemma 4.4 and especially (4.19),

|c2(x)| = |C(N, h, I( f , x), x) − C(N, h, I(C( f , h, x), x), x)|

≤ ||C(N, h)||∞ sup
x∈R

|I( f , x) − I(C( f , h, x), x)|

≤ 2(3 + log N)

π
K2he−

πc
h

= K2
2(3 + log N)

π

log(πc′′λN/τ)

λN
exp

[ −πcλN

log(πc′′λN/τ)

]

≤ K3
(log N)2

N
exp

[ −πcλN

log(πc′′λN/τ)

]

. (4.68)
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The constant K3 is independent of N. Moreover, using (3.33) of Lemma 3.1

|I(C( f , h, x), x) − I(C(N, f , h, x), x)| =

∣
∣
∣
∣

∫ x

−∞
∑

|k|>N

f (kh)S(k, h, u) du

∣
∣
∣
∣

=

∣
∣
∣
∣ ∑
|k|>N

f (kh)J(k, h, x)

∣
∣
∣
∣

= sup
x∈R

|J(k, h, x)| ∑
|k|>N

| f (kh)|

≤ 1.1h ∑
|k|>N

α exp(−τ exp(λ|kh|))

= 2.2αh
∞

∑
k=N+1

exp(−τ exp(λkh))

≤ 2.2αh
∫ ∞

N
exp(−τ exp(λhu)) du

≤ 2.2αh

τλh exp(λhN)

∫ ∞

N
τλh exp(λhu)

× exp(−τ exp(λhu)) du

=
2.2α exp(−τ exp(λhN))

τλ exp(λhN)

=
2.2α exp(−πc′′λN)

τλ exp
(

log(πc′′λN/τ)
)

=
2.2α exp(−πc′′λN)

πc′′λ2N
. (4.69)

Similarly,

|c3(x)| = |C(N, h, I(C, f , h, x), x), x) − C(N, h, I(C(N, f , h, x), x), x)|

≤ ||C(N, h)||∞ sup
x∈R

|I(C( f , h, x), x) − I(C(N, f , h, x), x)|

≤ K4
log N

N
exp(−πc′′λN). (4.70)

Recall that c′′ = c − ε. Then adding (4.66), (4.68) and (4.70) yields
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sup
x∈R

|I( f , x) − C(N, h, I(C(N, f , h, x), x), x)| ≤ K1 exp

[ −πc′′λN

log(πc′′λN/τ)

]

+ ≤ K3
(log N)2

N
exp

[ −πcλN

log(πc′′λN/τ)

]

+ K4
log N

N
exp(−πc′′λN)

≤ Kε exp

[ −π(c − ε)λN

log(π(c − ε)λN/τ)

]

.

Let ε be an arbitrary positive number and set c′ =
2c − ε

2
.

Lemma 4.8. If the conditions (4.54) and (4.55) hold, then there exists a positive number

S(c′) dependent on c′, such that

| f (z)| ≤ S(c′), ∀ z ∈ D̄c. (4.71)

Proof: For a fixed z ∈ D̄c′ , the following inequality was obtained by Cauchy’s

integral formula [32]:

| f (z)| ≤ 2

π(c(1 − ν)− |y|)
∫

∂Dc(ν)
| f (ξ)||dξ|, (4.72)

with Dc(ν) as defined in (4.49) and ν being a small positive number. Then

| f (z)| ≤ lim
ν→0

2

π(c(1 − ν) − |y|)
∫

∂Dc(ν)
| f (ξ)||dξ|

=
2N1( f ,Dc)

π(c − |y|)

≤ 4N1( f ,Dc)

π(c − c′)
,

which establishes (4.71).
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The next lemma is an immediate consequence of the above result.

Lemma 4.9. If f is analytic in D̄c′ , if (4.55) and (4.71) hold, and if we set

B(λ, c′, y) = [cos(λ|y|) − cot(λc′) sin(λ|y|)]τ, (4.73)

then

| f (z)| ≤ S′ exp(−B(λ, c′ , y) exp(λ|x|)), (4.74)

for all y such that −c′ ≤ y ≤ c′.

Proof: We follow Tanaka et al. [32] in considering the case where (x, y) is in the

first quadrant of D̄c′ .

ic′

0

z ξ

arg ξ =
π

2
− λc′

Fλc′

ξ = β(z)

0

Figure 4.1: Conformal transformation diagram

We begin by defining the conformal map β as

ξ = β(z) = exp(λz + i(π − 2λc′)/2)

and set g(ξ) = f (β−1(ξ)). Let z = x + iy and Fλc′ be as shown in Figure 4.1.

Proposition 4.1 can then be applied on g.

It is easily seen that g is analytic in Fλc′ and continuous in the closure of Fλc′ ,

except at the origin, i.e. F̄λc′ −{0}. From (4.71) and using the fact that f is bounded

in D̄c, lim
x→±∞

f (x) = 0 and Proposition 4.2 guarantees the continuity of g at the

origin. Hence, we have shown that g is analytic in Fλc′ and continuous in F̄λc′ .
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Moreover, from (4.71) and the continuity of g in F̄λc′ , we have

|g(ξ)| = | f (z)| ≤ S(c′), ∀ ξ ∈ F̄λc′ . (4.75)

From

1 ≤ |ξ|, ⇒ |ξ| = eλx = eλ|x|

and (4.55) with arg ξ =
π − 2λc′

2
,

g(ξ) = O(exp(−τ exp(λ|x|))) = O(exp(−τ|ξ|)), |ξ| → ∞. (4.76)

Thus, g has satisfied all the assumptions of Proposition 4.1 and

|g(ξ)| ≤ S′ exp

[− cos(arg ξ)

cos(π−2λc′
2 )

τ|ξ|
]

. (4.77)

By transforming the above result to the z plane, with a in (4.52) replaced by −τ, as

in the above,

| f (z)| ≤ S′ exp

[− cos(
π−2λ(c′−y)

2 )

cos(π−2λc′
2 )

τ exp(λ|x|)
]

= S′ exp

(− sin(λ(c′ − y))

sin(λc′)
τ exp(λ|x|)

)

(4.78)

= S′ exp(−B(λ, c′ , y) exp(λ|x|)), x, y ≥ 0,

for all z in D̄c ∩ z.

This motivates the following result for functions that decay double exponen-

tially.

Lemma 4.10. If f is analytic in D̄c under the conditions (4.61) and (4.74), there exists
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α′ > 0 such that

I f ∈ B(Dc′′), (4.79)

|I( f , x)| ≤ α′ exp(−τ exp(λ|x|)). (4.80)

Proof: The proof of this theorem has two steps. In the first step we shall consider

three cases. To start with, we shall estimate the value of
∫ z
−∞

f (ξ) dξ where z =

x + iy ∈ Dc′′ .

Case one: x < 0, y ≥ 0, using (4.78)

∣
∣
∣
∣

∫ z

−∞
f (ξ) dξ

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ x

−∞
f (v) dv +

∫ y

0
f (x + iu)i du

∣
∣
∣
∣

≤
∫ x

−∞
| f (v)|dv +

∫ y

0
| f (x + iu)|du

≤ S′
[ ∫ x

−∞
exp(−τ exp(−λv)) dv

+
∫ y

0
exp

{− exp(−λx) sin(λ(c′ − u))τ

sin λc′

}

du

]

. (4.81)

Considering the two terms in (4.81) separately,

S1(x) =
∫ x

−∞
exp(−τ exp(−λv)) dv

≤
∫ x

−∞
exp(−λv) exp(−τ exp(−λv)) dv

=
1

τλ

∫ x

−∞
τλ exp(−λv) exp(−τ exp(−λv)) dv

=
1

τλ
exp(−τ exp(−λx))

=
1

τλ
exp(−τ exp(λ|x|)). (4.82)

For the second term on the right-hand side of (4.81) we shall make use of λ ≤
π

2c′
, c > c′ > c′′ ≥ u ≥ 0 and sin(λ(c′ − u)) ≥ 2λ(c′ − u)

π
. Thus
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S2(x) =
∫ y

0
exp

{− exp(−λx) sin(λ(c′ − u))τ

sin λc′

}

du

≤
∫ y

0
exp

{−2τ exp(−λx)(λ(c′ − u))

π sin λc′

}

du

≤
∫ 2c′−ε

2

0
exp

{−2τ exp(−λx)(λ(c′ − u))

π sin λc′

}

du

=
π exp(λx) sin λc′

2τλ
exp

{−2τ exp(−λx)(λ(c′ − u))

π sin λc′

}∣
∣
∣
∣

2c′−ε
2

0

=
π exp(λx) sin λc′

2τλ

[

exp

{−τλε exp(λ|x|)
π sin λc′

}

− exp

{−2τλc′ exp(λ|x|)
π sin λc′

}]

. (4.83)

Hence

|I( f , x)| ≤ S1(x) + S2(x). (4.84)

Case two: When x ≥ 0, y ≥ 0

∣
∣
∣
∣

∫ z

−∞
f (ξ) dξ

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ x

−∞
f (v) dv +

∫ y

0
f (x + iu)i du

∣
∣
∣
∣

=

∣
∣
∣
∣
−
∫ ∞

x
f (v) dv +

∫ y

0
f (x + iu)i du

∣
∣
∣
∣

≤
∫ ∞

x
| f (v)|dv +

∫ y

0
| f (x + iu)|du (4.85)

An application of (4.74) to the above will give us a similar bound as in (4.82) and

(4.83).

Case three: When y < 0, the bounds for
∫ z

−∞
f (ξ) dξ should be symmetric

about the x-axis, hence we have the same bounds as in (4.82) and (4.83).

The second step follows from the result of step 1 in the case where y = 0,
∣
∣
∣
∣

∫ z

−∞
f (ξ) dξ

∣
∣
∣
∣
≤
∫ x

−∞
| f (v)|dv ≤ O(exp(−τ exp(λ|x|))), proving (4.80).

For us to compute N1(I( f ,Dc′′)) in proving (4.79), we shall define the bound-
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ary of integration as

{

z ∈ C : −
(1

ν

)
≤ x ≤

(1

ν

)
, −c′′(1 − ν) ≤ y ≤ c′′(1 − ν)

}

.

Integrating round the contour, yields

|I( f , z)| ≤

Ia(ν)
︷ ︸︸ ︷
∫ c′′(1−ν)

−c′′(1−ν)
|I( f ,−(1/ν) + iy)|dy +

Ib(ν)
︷ ︸︸ ︷
∫ c′′(1−ν)

−c′′(1−ν)
|I( f , (1/ν) + iy)|dy

+

Ic(ν)
︷ ︸︸ ︷
∫ (1/ν)

−(1/ν)
|I( f , x − ic′′(1 − ν))|dx +

Id(ν)
︷ ︸︸ ︷
∫ (1/ν)

−(1/ν)
|I( f , x + ic′′(1 − ν))|dx .

(4.86)

Note that (4.84) holds for all z ∈ Dc′′ . Hence

|I( f , z)| ≤ Ia(ν) + Ib(ν) + Ic(ν) + Id(ν)

≤ 4c′′
(
S1(1/ν) + S2(1/ν)

)
+
∫ (1/ν)

−(1/ν)
(S1(x) + S2(x)) dx. (4.87)

But S1(x) = O(exp(−τ exp(λ|x|))), S2(x) = o(exp(−λ|x|)), and this implies that

I( f , z) is bounded as ν → 0. Therefore, I f ∈ B(Dc′′), proving (4.79).

On the basis of the discussion preceding Theorem 4.7, we present the general

case, in which (4.61) is not assumed. We consider

v(z) = f (z) − ω
∫ ∞

−∞
f (u) du, (4.88)

where ω is normalised such that
∫ ∞

−∞
ω(u) du = 1. Then

∫ ∞

−∞
v(u) du = 0. (4.89)
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In order to apply Theorem 4.7 to v, Tanaka et al. [32] suggest that we choose ω in

such a way that (4.54) and (4.55) are satisfied for some α, τ, λ and c. They chose

ω(z) =
d

dz

[
tanh(P sinh(Qz)) + 1

2

]

=
PQ cosh(Qz)

2 cosh2(P sinh(Qz))
, (4.90)

parametrized by P and Q. They also introduced the notation

s(z) = ω(z)
∫ ∞

−∞
f (u) du. (4.91)

The decay rates of ω and v, and the function space that contains them are stated in

the Proposition 4.4 and Lemma 4.12. The results are useful for finding the param-

eters of Tanaka et al.’s formula (4.112).

Upon applying Theorem 4.6 to v, and from the assumptions (4.54) and (4.55) on

f , we obtain the following fundamental result:

Theorem 4.9. If f satisfies

f ∈B(Dc f
), (4.92)

| f (x)| ≤α f exp(−τf exp(λ f |x|)), ∀ x ∈ R, (4.93)

for some positive numbers α f , τf , λ f and c f , then for any ε ∈ (0, cv) there exists a positive

number Kε, independent of N, such that

sup
x∈R

∣
∣
∣
∣

∫ x

−∞
f (u) du −

[
tanh(P sinh(Qz)) + 1

2

∫ ∞

−∞
f (u) du

+ h
N

∑
k=−N

{ N

∑
m=−N

σk−m

(

f (kh) − ω(mh)
∫ ∞

−∞
f (u) du

)}

S(k, h, x)

]∣
∣
∣
∣

= sup
x∈R

|I( f , x) − {I(s, x) + C(N, h, I(C(N, h, v, x), x), x)}|

≤ Kε exp

[ −π(cv − ε)λv N

log(π(cv − ε)λv N/τv)

]

, (4.94)
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where

h =
log(π(cv − ε)λv N/τv)

λvN
, (4.95)

τv, λv and cv are as defined in (4.118), (4.119) and (4.120) respectively.

In actual computations,
∫ ∞

−∞
f (u) du should be replaced by h

N

∑
k=−N

f (kh). We

need the following proposition and lemma in other to understand the proof of

Theorem 4.10.

Proposition 4.3. If f satisfies (4.92) and (4.93) for some α f , τf and c f , then we have, for

a constant K independent of N,

∣
∣
∣
∣

∫ ∞

−∞
f (u) du − h

N

∑
k=−N

f (kh)

∣
∣
∣
∣
≤ K exp

[ −2πc f λvN

log(π(cv − ε)λv N/τv)

]

, (4.96)

where h is as defined in (4.95).

Lemma 4.11. Let h be as defined in (4.95), then

I(ω, x) − C(N, h, I(C(N, ω, h, x), x), x) = O(log N), (N → ∞). (4.97)

Proof:

|I(ω, x) − C(N, h, I(C(N, h, ω, x), x), x)|

≤ |I(ω, x)− C(N, h, I(ω, x), x)| + |C(N, h, I(ω, x), x) − C(N, h, I(C(h, ω, x), x), x)|

+ |C(N, h, I(C(h, ω, x), x), x) − C(N, h, I(C(N, h, ω, x), x), x)|. (4.98)

The second and third terms on the right-hand side of (4.98) are bounded, us-

ing a similar technique to those used in (4.68) and (4.70). Also, from the fact that

sup
x∈R

|I(ω, x)| is finite and, using similar arguments to those in (4.70), it will be dis-

covered that the first term on the right hand side of (4.98) is bounded by K log N

for some K.
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The following fundamental result then holds.

Theorem 4.10. Assuming that all the assumptions in Theorem 4.9 hold, then the following

estimate holds for some K′
ε:

sup
x∈R

∣
∣
∣
∣

∫ x

−∞
f (u) du −

[
tanh(P sinh(Qx)) + 1

2
h

N

∑
k=−N

f (kh)

+ h
N

∑
k=−N

{ N

∑
m=−N

σk−m

(

f (kh) − PQ cosh(Qmh)

2 cosh2(P sinh(Qmh))
×

h
N

∑
k=−N

f (kh)

)}

S(k, h, x)

]∣
∣
∣
∣

≤ K′
ε exp

[ −π(cv − ε)λv N

log(π(cv − ε)λvN/τv)

]

. (4.99)

Proof: Let s̄N = ωh
N

∑
k=−N

f (kh) and v̄N = f − s̄N , then the quadrature formula

(4.99) can be written as

I(s̄N , x) + C(N, h, I(C(N, h, v̄N , x), x), x), (4.100)

and the difference between (4.99) and (4.94) can be expressed as

I(s̄N − s, x) + C(N, h, I(C(N, h, v̄N − v, x), x), x). (4.101)

Thus, in order to prove (4.99), it suffices to show that

I(s̄N − s, x) + C(N, h, I(C(N, h, v̄N − v, x), x), x)

= o

(

exp

[ −π(cv − ε)λv N

log(π(cv − ε)λv N/τv)

])

,
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which can be derived from Proposition 4.3 and Lemma 4.11:

|I(s̄N − s, x) + C(N, h, I(C(N, h, v̄N − v, x), x), x)|

= |I(ω, x) + C(N, h, I(C(N, h, ω, x), x), x)|
∣
∣
∣
∣

∫ ∞

−∞
f (u) du − h

N

∑
k=−N

f (kh)

∣
∣
∣
∣

≤ K′ log N exp

[ −2πc f λvN

log(π(cv − ε)λvN/τv)

]

= o

(

exp

[ −π(cv − ε)λv N

log(π(cv − ε)λvN/τv)

])

.

4.4 Analysis of Tanaka et al.’s Formula

In this section, we shall be concerned with the analysis of the formula for numerical

indefinite integration on the finite interval [−1, 1], having considered the infinite

interval in the previous section. We shall do this by transforming the interval in

the last section from (−∞, ∞) to (−1, 1), using DE transformation.

4.4.1 Double Exponential Transformation

In approximating F(x) =
∫ x

−1
f (u) du, −1 < x < 1, we shall make a double

exponential transformation, u = φ1(t) in line with Mori
(
[21], [31]

)
, using

φ1(t) = tanh
[π

2
sinh t

]
, (4.102)

giving

φ′
1(t) =

π cosh t

2 cosh2(π
2 sinh t)

, (4.103)
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which maps the entire real line (−∞, ∞) to (−1, 1), i.e. φ1(t) satisfies







−1 = φ1(−∞) = tanh
[

π
2 sinh(−∞)

]
;

1 = φ1(∞) = tanh
[

π
2 sinh(∞)

]
.

(4.104)

To find the inverse, let u = tanh
[π

2
sinh t

]
,

π

2
sinh t = tanh−1 u,

t = sinh−1

(
2

π
tanh−1 u

)

. Alternatively, using tanh x =
ex − e−x

ex + e−x
= u, x =

tanh−1 u, cross-multiplying and taking loge of both sides, we have x =
1

2
log

(
1 + u

1 − u

)

,

thus
π

2
sinh t =

1

2
log

(
1 + u

1 − u

)

and

t = φ−1
1 (u) = sinh−1

[
1

π
log

(
1 + u

1 − u

)]

= sinh−1

[
2

π
tanh−1 u

]

. (4.105)

With the above analysis one can now define a double exponential transformation

and decay.

Definition 4.7. A function f is said to decay double exponentially [22] if there exist posi-

tive constants α and K, such that

| f (x)| ≤ K exp(−α exp(|x|)) for all x ∈ R. (4.106)

Alternatively, a function f is said to decay double exponentially with respect to the confor-

mal map φ1, if there exist positive constants α and K, such that

| f (φ1(x))φ′
1(x)| ≤ K exp(−α exp(|x|)) for all x ∈ R. (4.107)

Thus, any φ1 satisfying (4.107) is called a double exponential transformation [22].
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Consequently, we have

∫ x

−1
f (u) du =

∫ φ−1
1 (x)

−∞
f (φ1(t))φ′

1(t) dt.

With the expression above, (4.99) can now be re-written as (4.110) below. Paving

way for the next theorem which gives an expression for the estimate of the error

on the interval (−1, 1).

Theorem 4.11. Using the variable transformation u = φ1(t), the transformed function

g(t) = f (φ1(t))φ′
1(t) satisfies

g ∈B(Dc f
), (4.108)

|g(x)| ≤αg exp(−τg exp(λg|x|), (4.109)

for positive numbers αg, τg, λg and cg. Then, for any ε ∈ (0, cv̂), there is a positive number

K
′′
ε , independent of N, such that

sup
−1<x<1

∣
∣
∣
∣

∫ x

−1
f (u) du −

[
tanh(P sinh(Qφ−1

1 (x))) + 1

2
h

N

∑
k=−N

f (φ1(kh))φ′
1(kh)

+ h
N

∑
k=−N

{ N

∑
m=−N

σk−m

(

f (φ1(mh))φ′
1(mh)

− PQ cosh(Qmh)

2 cosh2(P sinh(Qmh))
h f (φ1(mh))φ′

1(mh)

)}

× sinc

(
φ−1

1 (x) − kh

h

)]∣
∣
∣
∣

≤ K
′′
ε exp

[ −π(cv̂ − ε)λv̂ N

log(π(λv̂ − ε)λv̂ N/τv̂)

]

, (4.110)

where v̂ and h are defined as

v̂ = g − s, h =
log(π(λv̂ − ε)λv̂ N/τv̂)

λv̂N
, (4.111)
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and where P, Q , λv̂, τv̂ and cv̂ are as defined in either (4.124) to (4.128) or (4.129) to

(4.132), with f and v replaced by g and v̂ respectively.

Tanaka et al.’s formula can now be deduced from (4.110) above as:

∫ x

−1
f (u) du =

tanh(P sinh(Qφ−1
1 (x))) + 1

2
h

N

∑
k=−N

f (φ1(kh))φ′
1(kh)

+ h
N

∑
k=−N

{ N

∑
m=−N

σk−m

(

f (φ1(mh))φ′
1(mh)

− PQ cosh(Qmh)

2 cosh2(P sinh(Qmh))
h f (φ1(mh))φ′

1(mh)

)}

S(k, h, φ−1
1 (x)).

(4.112)

4.4.2 Determining the Parameters

Our choice of the parameters P and Q is without any restriction (we are free to

choose them), but with the intention of minimising the error in (4.99) for a given

integrand f . The determination of the set of parameters (P, Q) should be such that

they give the maximum value of λvcv, and choosing among the maximizers [32]

(P, Q) that make τv as large as possible. Bear in mind that τv, λv and cv are to be

determined from P and Q using the results in Proposition 4.4 and Lemma 4.12.

The following propositions and the explanations that follow help one to deter-

mine the parameters.

Proposition 4.4. Let τω, λω and cω be determined as

τω =







P − ετ , λω = Q, cω = π−2Qεc
2Q , P ∈ (0, π

2 );

P − ετ , λω = Q, cω =
sin−1( π

2P )−Qεc

Q , P ≥ π
2 ;

(4.113)
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where ετ and εc are positive numbers such that τω > 0 and cω > 0. Then we have

ω ∈ B(Dcω ), (4.114)

|ω(x)| ≤ αω exp(−τω exp(λω |x|)), ∀ x ∈ R. (4.115)

Lemma 4.12. Let τf , λ f and c f be constants such that

f ∈B(Dc f
), (4.116)

| f (x)| ≤ α f exp(−τf exp(λ f |x|)), ∀ x ∈ R. (4.117)

If τω, λω and cω are constants as defined in (4.113), then for

τv =







τf , λ f < λω

τω, λ f > λω

min(τf , τω), λ f = λω

(4.118)

λv = min(λ f , λω) (4.119)

cv = min(c f , cω) (4.120)

we have

v ∈B(Dcv) (4.121)

|v(x)| ≤αv exp(−τv exp(λv|x|)), ∀ x ∈ R. (4.122)

Proposition 4.5. If f satisfies the conditions (4.92) and (4.93) and f 6= 0, then λvcv ≤ π

2
.

To start with, we want to emphasise that (4.119) and (4.120) imply that

λvcv ≤ λ f c f , (4.123)
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where λ f c f ≤
π

2
. We shall divide the argument into two cases, depending on the

value of λ f c f .

First Case: λ f c f <
π

2

P =
π

2 sin λ f c f
− εP, (4.124)

Q = λ f , (4.125)

where εP, is any positive number such that P >
π

2
. Then

λv = min{λ f , Q} = λ f , (4.126)

cv = min

{

c f ,
arcsin π

2P − 2εcQ

Q

}

= min

{

c f ,
1

λ f
arcsin

[
π sin λ f c f

π − 2εP sin λ f c f

]

− εc

}

= min

{

c f ,
1

λ f
arcsin

[
sin λ f c f

1 − (2εP/π) sin λ f c f

]

− εc

}

= c f . (4.127)

Because εP and εc are very small, λvcv in (4.123), attains the upper bound λ f c f ,

which is obtained when λv = λ f and cv = c f , which means that P ∈
(
0,

π

2

)
or

P ∈
(

π

2
,

π

2 sin λ f c f

)

.

τv = min

{

τf ,
π

2 sin λ f c f
− (εP + ετ)

}

, (4.128)

ετ > 0 such that τv > 0.
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Second Case: λ f c f =
π

2

Since λvcv ≤ λωcω <
π

2
, one cannot attain the upper bound λ f c f if λ f c f =

π

2
in

(4.123). But we can make λvcv arbitrarily close to
π

2
with

P =
π

2
, Q = λ f , (4.129)

from which

λvcv = min

{

λ f , Q

}

min

{

c f ,
π − 2εcQ

2Q

}

= λ f min

{

c f ,
π − 2εcQ

2Q

}

=
π − 2εcQ

2
. (4.130)

λv = λ f , (4.131)

cv =
π − 2εcλ f

2λ f
, (4.132)

where ετ and εc are positive numbers such that τv > 0 and cv > 0.

From (4.92) and (4.93), Tanaka et al. [32] pointed out that the assumption on f

is that it decays double exponentially only on the real line. Stenger’s assumption

[27] is that f decays not only single exponentially on the real line but also on the

strip region Dc, i.e. f ∈ Lα(Dc) for α, c > 0 and Lα(Dc) satisfies

| f (z)| ≤ K
e|αz|

(1 + |ez|)2α
, ∀ z ∈ Dc, K > 0. (4.133)



Chapter 5

Computational Examples

He who wants to eat honey that is embedded inside the rock cannot afford to

look anxiously at the edge of his axe.

Nigerian proverb.

In this chapter, we shall be applying the four quadrature formulas derived in chap-

ters 3 and 4 to find numerical approximations to two test problems. In doing this,

we shall attempt to show how the parameters for finding the step size h for each of

the formulas can be obtained. We shall also illustrate using figures, the actual form

of the error by plotting the actual error against v in each case for each of the formu-

las, as well as plotting the error against φ−1(v). This stretches out the ends of the

interval −1 < v < 1 so that the true behaviour of v near the end-point singularities

is shown more clearly.

The chapter concludes with a performance evaluation and an analysis of the

results. The octave and gnuplot codes used for each of the computations and

figures respectively can be found in Akinola [3].
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5.1 Implementing Haber’s Formula A

Example 5.1. Let us use formula (3.64) to approximate the integral below:

∫ v

−1

1

π
√

1 − x2
dx. (5.1)

Let us first find the values of the parameters α and c, bearing in mind that they are to be

chosen so that the functions are ”normalised”. To find α, we shall use condition A4 with

φ(x) = tanh
x

2
, φ′(x) =

1

2
sech2 x

2
:

f (φ(x)) =
1

π
√

1 − tanh2 x
2

=
1

π sech x
2

f (φ(x))φ′(x) =
1

2π cosh x
2

| f (φ(x))φ′(x)| =

∣
∣
∣
∣

1

2π cosh x
2

∣
∣
∣
∣

= O(e−
1
2 |x|), |x| → ∞, (5.2)

which implies that α = 1
2 . From Theorem 3.8, we can choose 0 < c ≤ π and, for this

example, we chose c = π. We used 376 values of v, which are

V = −0.999,−0.998,−0.997, · · · ,−0.9;−0.89,−0.88,−0.87, · · · , +0.96;

+ 0.911, +0.912, +0.913, · · · , +0.999.

We plugged these values of v, α, c into (3.64), we present results by Figure 5.1, Figure 5.2

and Table 5.1.

Figure 5.1 shows some oscillations that increase toward the endpoint singu-

larities (±1), but the behaviour towards ±1 is shown clearly in Figure 5.2. From

Figure 5.1, it is quite difficult to see the maximum absolute value of the error of

applying Haber’s formula A, thus we decided to plot Figure 5.3 (v ∈ [−0.8,−1]) to
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Figure 5.1: The error against v for
∫ v

−1

1

π
√

1 − x2
dx, N = 25, using Haber’s for-

mula A.
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Figure 5.2: The error against φ−1(v) for
∫ v

−1

1

π
√

1 − x2
dx, N = 25, using Haber’s

formula A.

show that it occurs at v = −0.87.
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Figure 5.3: The error against v for
∫ v
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1

π
√

1 − x2
dx, N = 25, using Haber’s

formula A.

Example 5.2. Let us use formula (3.64) to approximate the integral below:

1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx. (5.3)

We shall do this by finding the value of α, using condition A4 with φ(x) = tanh
x

2
,

φ′(x) =
1

2
sech2 x

2
, so that

f (φ(x)) =
1

4 log 2
log

(
1 + tanh x

2

1 − tanh x
2

)

.
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After some algebra using the exponential form of tanh
x

2
, one obtains

f (φ(x)) =
1

4 log 2
log ex =

x

4 log 2

f (φ(x))φ′(x) =
x

4 log 2
× 1

2
sech2 x

2

=
x

8 log(2) cosh2 x
2

=
x

2 log(2)(e
x
2 + e−

x
2 )2

| f (φ(x))φ′(x)| ≤ O(e−|x|), |x| → ∞. (5.4)

As in Example 5.1, 376 values of v were used with α = 1. These values of v, α, c were

substituted into (3.64), results are presented by Figures 5.4 and 5.5 as well as Table 5.2.
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Figure 5.4: The error against v for
1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx, N = 25, using

Haber’s formula A.

A close look at Figure 5.4 shows a dying oscillation as v tends to ±1, which

means that the maximum absolute value of the error decreases towards the end-
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Figure 5.5: The error against φ−1(v) for
1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx, N = 25, using

Haber’s formula A.

points. The maximum absolute value of the error for Haber’s formula A on the

integrand
1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx occurs at v = 0, as shown in Figure 5.4.

5.2 Implementing Haber’s Formula B

We shall try to implement Haber’s Formula B on the integrals (5.1) and (5.3). From

Haber’s condition A4, they both decay single exponentially. The same analysis is

applicable to the two integrals in the previous section, the only difference being

that we use an auxiliary function ϕ(x) =
x + 1

2
.

Example 5.3. From the right-hand side of equation (5.2), with α =
1

2
, c = π and using

the auxiliary function ϕ(x) =
x + 1

2
, we substituted these values into (3.75), which is

Haber’s Formula B. Table 5.1 shows the values of N used and the maximum error. (See

also Figures 5.6 and 5.7).

The oscillations in Figure 5.6 are higher around v = 0 and decreases towards
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±1. From Figure 5.8, we can see that the maximum absolute value of the error

occurs at v = −0.18.
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Figure 5.6: The error against v for
∫ v

−1

1

π
√

1 − x2
dx, N = 36, using Haber’s for-

mula B.

Example 5.4. From the right-hand side of equation (5.4), with α = 1, c = π and using

the auxiliary function ϕ(x) =
x + 1

2
, we then substituted these values into (3.75), which

is Haber’s Formula B. The results are tabulated in Table 5.2 and illustrated by Figure 5.9

and Figure 5.10.

As can be seen in Figure 5.9, the oscillations decreases towards the endpoints,

but Fig 5.10 stretches the original figure like an ”ideal spring”. The maximum

absolute error occurs at v = 0.

5.3 Implementing the SE Formula

We shall use the integral in Examples 5.1 and 5.2 (they decay single exponentially)

to implement the Single Exponential Formula.
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Example 5.5. As already shown with Example 5.1, we can deduce that α f =
1

2
, and using
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Figure 5.9: The error against v for
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4 log 2
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log
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(4.31), one will find that τ =
1

4
, α′

f = min

(
1

2
, 2(

1

4
)

)

=
1

2
, c′f = min(c f , 2π − εc) =

π − ε when εc = ε. Substituting these values into (4.29) we have that

h =

√

2π(π − ε)

N
.

These values are then plugged into the SE formula (4.54), as are the 376 values of v (see

Table 5.1, Figure 5.11 and Figure 5.12).

By looking at Figure 5.11 we find that the oscillations increase toward ±1. We

plotted the figure with the gnuplot histeps option, because the other options did

not join the point v = 0 with the other points, which is why the figure appears

different to the other figures. A plot within the interval [−1,−0.9], similar to that

in Figure 5.3, shows that the maximum absolute value of the error occurs at

v = −0.933.
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Figure 5.11: Error against v for
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−1
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√

1 − x2
dx, N = 64, using the SE formula.

Example 5.6. From our analysis of the integral in Example 5.2,
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Figure 5.12: Error against φ−1(v) for
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π
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1 − x2
dx, N = 64, using the SE for-

mula.

1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx, we will take α f = 1, and from (4.29) and (4.31) we use

τ =
1

2
, c′f = π − εc = π − ε, when εc = ε, α′

f = min(1, 1) = 1:

h =

√

π(π − ε)

N
.

The values obtained above, with the step size, are then substituted into (4.54) (Refer to

Table 5.2, Figure 5.13 and Figure 5.14).

Figure 5.13 shows that the maximum absolute value of the error occurs at v = 0.

It also shows that the maximum absolute error decreases towards ±1.
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Figure 5.13: Error against v for
1

4 log 2
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log
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formula.

5.4 Implementing Tanaka et al.’s Formula

Example 5.7. We want to use formula (4.112) to approximate the integral in Example 5.1

with φ1(x) = tanh

(
π

2
sinh x

)

.

f (x) =
1

π
√

1 − x2
= O(|1 − x2|)− 1

2 ; (x → ±1)

f (φ1(x))φ′
1(x) =

1

π
√

1 − tanh2(π
2 sinh x)

π cosh x

2 cosh2(π
2 sinh x)

=
cosh x

2 sech(π
2 sinh x) cosh2(π

2 sinh x)

=
cosh x

2 cosh(π
2 sinh x)

| f (φ1(x))φ′
1(x)| = O(exp(−π

4
exp |x|)); (x → ±∞).

Comparing this with the right-hand side of the expression | f (x)| ≤ α f exp(−τf exp(λ f |x|)),



5.4 Implementing Tanaka et al.’s Formula 122

-2.4e-10

-2.3e-10

-2.2e-10

-2.1e-10

-2e-10

-1.9e-10

-1.8e-10

-1.7e-10

-1.6e-10

-8 -6 -4 -2  0  2  4  6  8

E
rr

or

"single2err.dat" using 2:3

φ−1(v)

Figure 5.14: Error against φ−1(v) for
1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx, N = 64, using

the SE formula.

one finds that

τf =
π

4
, λ f = 1; c f =

π

2Q
− εc =

π

2
− εc;

and using (4.124) to (4.128), Q = λ f = λv = 1, τv =
π

4
, cv =

π

2
− εc;

P =
π

2 sin(π
2 − εc)

− εP; εP > 0 ∋ P > 0. (5.5)

For any small εc, sin
(π

2
− εc

)
≡ 1 and P may be close to

π

2
, thus P =

π

2
− ε must be

chosen when εP = ε and, making the appropriate substitutions,

h =
log(π(cv − ε)λv N/τv)

λvN
=

log((2π − 8ε)N)

N
.

(Refer to Table 5.1, Figure 5.15 and Figure 5.16). Figure 5.15 displays no oscilla-

tions and, in contrast to the other figures, we see a clustering around zero, except
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at v = 0.911, which is the maximum absolute value of the error and at v = −0.25.
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Example 5.8. We want to use formula (4.112) to approximate the integral

1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx. (5.6)

We illustrate how to obtain the parameters below.

f (φ1(x))φ′
1(x) =

1

4 log 2
log

(
1 + tanh(π

2 sinh x)

1 − tanh(π
2 sinh x)

)
π cosh x

2 cosh2(π
2 sinh x)

=
π log(exp(π sinh x)) cosh x

8 log 2 cosh2(π
2 sinh x)

=
π2 sinh x cosh x

8 log 2 cosh2(π
2 sinh x)

| f (φ1(x))φ′
1(x)| = O(exp(−π

2
exp(|x|))), x → ±∞.

Thus | f (φ1(x))φ′
1(x)| decays double exponentially with τf =

π

2
, λ f = 1. Using (4.124)

to (4.128), P =
π

2
, λv = 1, τv = min

{
π

2
,

π

2
− (εP − ετ)

}

= min

{
π

2
,

π

2
− 2ε

}

=

π

2
− 2ε, cv =

π

2
− εc =

π

2
− ε and

h =
log(π(cv − ε)λv N/τv)

λvN
=

log πN

N
.

A closer look at Figure 5.17 shows a clustering or increase in the error towards

+1. Figure 5.18, which is supposed to stretch the plot so that we can see the be-

haviour towards the end-points, does not really help. So for us to trully see the

maximum value of the error v = 0.994, and the behaviour towards +1, we plotted

Figure 5.19, on the interval [0.9, 1].
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Tanaka et al.’s formula.

-1e-14

 0

 1e-14

 2e-14

 3e-14

 4e-14

 5e-14

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

E
rr

or

"tanaka2err.dat" using 2:3

φ−1(v)

Figure 5.18: The error against φ−1(v) for
1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx, N = 49, us-

ing Tanaka et al.’s formula.



5.5 Performance Evaluation and Analysis of Results 126

-1e-14

 0

 1e-14

 2e-14

 3e-14

 4e-14

 5e-14

 0.93  0.94  0.95  0.96  0.97  0.98  0.99  1

E
rr

or

v-axis

"tanaka2err.dat" using 1:3
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5.5 Performance Evaluation and Analysis of Results

After deriving and showing how to implement the four quadrature formulas for

numerical approximation to indefinite integrals based on the sinc method in chap-

ters 3 and 4, and in the earlier part of this chapter, this section will be concerned

with the assertion of the performances of the methods on the computational ex-

amples. This will be done by comparing the maximum absolute errors of the four

quadrature formulas. In each table, ”Max. Error” represents the maximum ab-

solute value of the error of the approximation for the values of v for which the

integral was evaluated, and N represents the number of function evaluations.

From Table 5.1, we discover that, for N ≥ 81, there was a blow up for Haber’s

formulas A and B for the reason given in the final paragraph of section 3.6. This

blow up is illustrated in Figure 5.20 by the vertical line going downwards at N =

64. In addition, one can see that Tanaka et al.’s formula gives the most accurate

results as N becomes larger. However, Stenger’s SE formula perform better than
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Max. Error
N Haber’s A Haber’s B SE Tanaka

1 5.92e-02 1.08e-01 7.15e-02 2.88e-01
4 5.80e-03 1.70e-02 5.37e-03 1.08e-02
9 6.67e-04 2.09e-03 4.37e-04 1.07e-04

16 7.58e-05 2.36e-04 4.90e-05 2.84e-07
25 8.45e-06 2.63e-05 5.25e-06 1.78e-10
36 9.34e-07 2.90e-06 5.78e-07 2.97e-11
49 1.03e-07 3.18e-07 6.29e-08 2.97e-11
64 1.13e-08 3.48e-08 6.89e-09 2.97e-11
81 7.51e-10 2.97e-11

100 1.08e-10 2.97e-11

Table 5.1: The maximum error of the formulas on
∫ v

−1

1

π
√

1 − x2
dx.

the Haber’s formulas and did not blow up at N = 64.

Max. Error
N Haber’s A Haber’s B SE Tanaka

1 1.67e-01 1.67e-01 1.66e-01 2.24e-01
4 1.06e-02 1.06e-02 1.06e-02 9.83e-03
9 6.01e-04 6.01e-04 6.03e-04 6.18e-05

16 3.35e-05 3.35e-05 3.38e-05 8.13e-08
25 1.77e-06 1.77e-06 1.79e-06 3.54e-11
36 9.10e-08 9.10e-08 9.25e-08 5.39e-14
49 4.55e-09 4.55e-09 4.65e-09 5.43e-14
64 2.24e-10 2.24e-10 2.30e-10 5.43e-14
81 1.08e-11 1.08e-11 1.12e-11 5.41e-14

100 5.20e-13 5.20e-13 5.40e-13 5.42e-14

Table 5.2: The maximum error of the formulas on
1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx.

A close look at Table 5.2 shows that Tanaka et al.’s formula gives more accurate

results than the other formulas as well as a faster convergence to the exact solution.

Figure 5.21 shows that the maximum absolute errors for the other three formulas

coincide, indicating that they give almost the same results to a certain degree of

accuracy on the integral
1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx.
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Chapter 6

ODE Solvers

What an old man sees while stooping, a child cannot see even if he climbs a

tree.

Nigerian proverb

This chapter asks and answers the question: Can one convert the indefinite integral

to an ordinary differential equation (ODE) with suitable initial conditions? If yes,

why bother with the derivation of the formulas for numerical indefinite integra-

tion instead of using software packages such as Matlabr ode45 and Mathematicar

NDSolve to solve the initial value problem? Finally, the chapter ends with a conclu-

sion as well as recommendation for further study.

6.1 Initial Value Problems

In this section, we shall illustrate how to transform the indefinite integrals in our

test problems into an ODE. Let I be a finite interval and f an integrable function

that is defined on I. The integral from any fixed number [33] c ∈ I to another
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number x ∈ I then defines a new function F, whose value at x is

F(x) =
∫ x

c
f (u) du. (6.1)

For each x that one inputs, there is a well-defined numerical output, which is the

definite integral of f from c to x.

Equation (6.1) can be used to show a connection between integrals and deriva-

tives. For a continuous function f , the Fundamental Theorem of Calculus illus-

trates that F is a differentiable function of x, of which its derivative is f itself. For

all x ∈ R,

d

dx
F(x) =

d

dx

∫ x

c
f (u) du = f (x). (6.2)

Hence the corresponding initial value problem becomes F′(x) = f (x), F(−1) = 0.

This is now stated in the form of a theorem [33] without proof:

Theorem 6.1. If f is continuous on [c, d], then F(x) =
∫ x

c f (u) du is continuous there

and differentiable [33] on (c, d), and its derivative is f (x):

F′(x) =
d

dx

∫ x

c
f (u) du

= f (x). (6.3)

In summary, F(x) =
∫ x
−1 f (u) du satisfies the initial value problem

F′(x) = f (x), F(−1) = 0.
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Applying the above theory to the integrals in question, we have

y(x) =
∫ x

−1

1

π
√

1 − v2
dv

d

dx
y(x) =

d

dx

∫ x

−1

1

π
√

1 − v2
dv

y′(x) =
1

π
√

1 − x2

dy

dx
=

1

π
√

1 − x2
; y(−1) = 0.

But using mathematical software such as Mathematicar NDSolve, Matlabr ode45,

octave lsode, we could not obtain any solution, since at x = −1, the function has

an algebraic singularity.

Similarly, for the initial value problem

dy

dx
=

1

4 log 2
log

(
x + 1

1 − x

)

; y(−1) = 0,

it was not possible to obtain any solution because of the logarithmic singularity.

Therefore, the answer to the question posed at the beginning of this chapter is in

the affirmative, but numerical software packages cannot be used to solve the initial

value problems because the integrands in our test problems have singularities.

We remark that though ODE solvers failed in solving the resulting IVPs, we can

carry out DE transformations in line with Nurmuhammad et al. [22] to solve them.

Nurmuhammad, Muhammad and Mori [22] employed the technique of trans-

forming the differential equation into a Volterra integral equation. Once this is

done, the integral equation can now be solved using Tanaka et al.’s formula [32].

This involves solving a system of linear and non-linear algebraic equations of

which the solution gives approximate solution to the differential equation. The
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DE variable transformation technique involved has the advantage of giving accu-

rate results [22] for IVPs with end point singularities as well as stiff problems.

6.2 Conclusions

We have succeeded in the main aim of this thesis: which was to show the analysis

leading to the derivation of the four quadrature formulas for numerical indefinite

integration using the sinc method. We have also showed how to implement the

four quadrature formulas on two computational examples.

Due to the improvement in software development, one can simply type Si(x)

in octave to compute the values of the sine integral, as opposed to using the al-

gorithm given in the appendix of Haber’s paper [11]. We have also showed the

justification of the expression for the step size h =
√

πc/αN, used to approximate

integrands that decay single exponentially. In addition, after the integrals have

been converted to differential equations, we have illustrated the failure of existing

numerical ODE solvers in solving the resulting differential equations, due to the

presence of algebraic or logarithmic singularities.

During the course of this thesis, we have isolated any form of discussion about

the rate of convergence of the formulas due to space and time. This thesis has also

been silent on which of the formulas is faster. However, we mention in passing that

Haber’s formula A, which involves one single sum evaluation will be the fastest.

To sum up: one attribute of a good numerical scheme/formula is accuracy as

the number of function evaluations increases. With that in mind, and as shown

by the tables and figures in chapter 5, the Double Exponential sinc method pro-

posed by Tanaka, Sugihara and Murota [32] is the most accurate for the numerical

approximation of indefinite integrals of functions with or without singularities.
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6.3 Recommendations for Further Study

A major pitfall of the quadrature formulas studied in this thesis is that the step

size h used in the computation is a function of c and α, which are real numbers

that depend on the behaviour of the integrand. It therefore will be interesting to

consider finding another expression for h without necessarily depending on the

behaviour of the integrand.

A further interesting study would be to look at how one would approximate the

integrals in which the upper limit of integration is a polynomial or a transcendental

function or a combination of these.

It is yet to be shown how the formulas studied in this thesis perform in com-

parison with the Clenshaw-Curtis quadrature scheme ([5], [7], [8], [12]).

An extension of the four quadrature formulas discussed in this thesis to the

numerical approximation of singular multidimensional integrals is another topic

for further study.



Appendix A

The Transformation w = tanh

(
z

2

)

We present a picture of the transformation w = tanh

(
z

2

)

, with z = x + iy, w =

t + iv. Let us call the shaded region S = {−π < ℑz < π}, ℜz > 0. We start

−π

π

z

Figure A.1: Strip bounded by horizontal lines y = −π, y = π and the y axis.

by considering the boundary line of S, z = u − iπ, 0 ≤ u < ∞. This maps

to w = ∞, since w = tanh

(
u − iπ

2

)

=

tanh

(
u

2

)

− i tan

(
π

2

)

1 − i tanh

(
u

2

)

tan

(
π

2

) . In a similar

fashion, z = u + iπ maps to w = ∞. The vertical line x = 0,−π < y < π,

u ∈ (−∞, ∞) maps to w = tanh

(
iu

2

)

= i tan

(
u

2

)

, implying that t = 0 and

v = tan

(
u

2

)

. Since the horizontal lines y = ±π map to infinity, we have to

consider the line y = 0, from which we obtain w = tanh

(
u

2

)

, thus t = tanh

(
u

2

)

and v = 0.
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Analytic Solutions

Here we present the analytic solutions to our test problems.

∫ v

−1

1

π
√

1 − x2
du =

1

π

(

sin−1(v) +
π

2

)

. (B.1)

Using the technique of integration by parts, let u = log

(
1 + x

1 − x

)

,

du =
2

(1 − x)(x + 1)
and dv = dx, hence v = x. Employing the technique of

partial fraction decomposition,
1

(1 − x)(x + 1)
=

1

2(1 − x)
+

1

2(x + 1)
. For −1 <

v < 1,

∫

log

(
1 + x

1 − x

)

dx = x log

(
1 + x

1 − x

)

− 2
∫

dx

(1 − x)(x + 1)

= x log

(
1 + x

1 − x

)

−
∫ [

1

1 − x
+

1

x + 1

]

dx

1

4 log 2

∫ v

−1
log

(
1 + x

1 − x

)

dx =
1

4 log 2

[(

(x + 1) log(x + 1) + (1 − x) log(1 − x)

)∣
∣
∣
∣

v

−1

]

=
1

4 log 2

[

log(1 + v)(1+v) + log(1 − v)(1−v) − 2 log 2

]

.

(B.2)
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[8] S. Filippi, Angenäherte Tschebyscheff-Approximation einer Stammfunktion-eine



BIBLIOGRAPHY 137

Modifikation des Verfahrens von Clenshaw and Curtis, Numerische Mathematik 6

(1964), 320–328.

[9] W. B. Gearhart, and H. S. Shultz, The Function sinx
x , The College Mathematics

Journal 21 (1990), no. 2, 90–99.

[10] S. Haber, The Tanh Rule for Numerical Integration, SIAM Journal of Numerical

Analysis 14 (1977), no. 4, 668–685.

[11] , Two Formulas for Numerical Indefinite Integration, Mathematics of Com-

putation 60 (1993), no. 201, 279–296.

[12] J. P. Imhof, On the Method for Numerical Integration of Clenshaw and Curtis, Nu-

merische Mathematik 5 (1963), 138–141.

[13] S. O. Iyahen, Introduction to Complex Analysis, first ed., Osaruwa Educational

Publications, Benin City, 1998.

[14] F. Ayres Jr, Theory and Problems of Differential and Integral Calculus in SI Metric

Units, first and second ed., Schaum’s Outline Series, Singapore, McGraw-Hill

Book Company, 1981.

[15] R. P. Boas Jr., Entire Functions, Academic Press, New York, 1954.

[16] R. B. Kearfott, A Sinc Approximation for the Indefinite Integral, Mathematics of

Computation 41 (1983), no. 164, 559–572.

[17] E. Kreyszig, Advanced Engineering Mathematics, eighth ed., John Wiley & Sons,

Inc., New York, 1999.

[18] J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equa-

tions, SIAM Philadelphia, 1992.



BIBLIOGRAPHY 138

[19] L. Lundin and F. Stenger, Cardinal-Type Approximation of a Function and its

Derivatives, SIAM Journal of Mathematical Analysis 10 (1979), no. 1, 139–160.

[20] J. McNamee, F. Stenger, and E. L. Whitney, Whittaker’s Cardinal Function in

Retrospect, Mathematics of Computation 25 (1971), no. 113, 141–154.

[21] M. Muhammad and M. Mori, Double Exponential Formulas for Numerical In-

definite Integration, Journal of Computational and Applied Mathematics 161

(2003), 431–448.

[22] A. Nurmuhammad, M. Muhammad, and M. Mori, Numerical Solution of Initial

Value Problems Based on the Double Exponential Transformation, Publications of

the Research Institute for Mathematical Scineces, Kyoto University 41 (2005),

937–948.

[23] M. R. Spiegel, Schaum Outline Series of Complex Analysis, Schaum Publishing

Company, New York, July 1964.

[24] F. Stenger, An Analytic Function which is an Approximate Characteristic Function,

SIAM Journal of Numerical Analysis 12 (1975), no. 2, 239–254.

[25] , Approximations Via Whittaker’s Cardinal Function, Journal of Approxi-

mation Theory 17 (1976), 222–240.

[26] , Numerical Methods Based on Whittaker Cardinal or Sinc Functions, SIAM

Review 23 (1981), no. 2, 165–224.

[27] , Numerical Methods Based on Sinc and Analytic Functions, Springer-

Verlag, New York, 1993.

[28] , Summary of Sinc Numerical Methods, Journal of Computation and Ap-

plied Mathematics 121 (2000), 379–420.



BIBLIOGRAPHY 139

[29] M. Sugihara, Optimality of the Double Exponential Formula, Functional Analysis

Approach, Numerische Mathematik 75 (1997), 379–395.

[30] , Near Optimality of the Sinc Approximation, Mathematics of Computa-

tion 72 (2002), no. 242, 767–786.

[31] H. Takahasi and M. Mori, Double Exponential Formulas for Numerical Integra-

tion, Publications of the Research Institute for Mathematical Sciences, Kyoto

University 4 (1974), no. 3, 721–741.

[32] K. Tanaka, M. Sugihara, and K. Murota, Numerical Indefinite Integration by Dou-

ble Exponential Sinc Method, Mathematics of Computation 74 (2004), no. 250,

655–679.

[33] M. D. Weir, F. R. Giordano, and J. Hass, Thomas’ Calculus, International

eleventh ed., ch. 5, pp. 358–361, Pearson Addison Wesley, Boston, 2005.

[34] E. W. Weisstein, Sinc Function, From MathWorld–A Wolfram Web Resource,

http://mathworld.wolfram.com/SincFunction.html.



Index

Si, 4

si, 4

sinc approximation, 3

Mathematicar NDSolve, iii, 7, 132

Matlabr ode45, iii, 7, 10, 132

octave lsode, 132

octave, 7

amplitude, 20

analytic, 13, 37

asymptotic, 5

auxiliary angles, 20

cardinal function, 32

cardinal series, 33

Cauchy Integral Theorem, 13

Cauchy’s Integral Formula, 13

Cauchy’s integral formula, 94

Cauchy-Schwartz inequality, 18

Cauchy-Schwartz inequality, 44

Clenshaw-Curtis, 134

concentric, 14

conformal map, 69

conformal Mapping, 17

conformal mapping, 52

connected, 12

contour, 13

contour integral, 37

convergence, 133

differentiable, 12, 131

discontinuity, 24

disk, 12

Double Exponential, 68

entire, 13

entire function, 31

essential singularity, 15

Euler’s formulas, 20

exponential type, 31

extended complex plane, 12

fan-shaped, 89

finite plane, 13

Fourier Analysis, 19

Fourier coefficients, 20, 21

Fourier cosine, 25

Fourier integral, 24

Fourier series, 36



INDEX 141

Fourier transform, 27

Fourier transforms, 23

Function Spaces, 82

functional analysis, 17

Fundamental Theorem of Calculus, 131
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