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Abstract 

The increase in the prescription and use of glucocorticoids (GCs) to treat various diseases and 

resulting decrease in bone density and development of osteoporosis is of growing concern. 

Glucocorticoid-induced osteoporosis (GCIO) is a relatively under-researched disease with the 

mechanism by which GCs affect bone metabolism not yet fully delineated. This holds especially 

true for the early events in bone development. The negative effects of GCs are predominantly seen 

in osteoblasts, the cells responsible for bone formation, in that GCs diminish both the numbers and 

function of osteoblastic cells.  

 

Osteoblast precursor cell proliferation is crucial to ensure the existence of a healthy pool of 

osteoblastic cells needed to form new bone after bone resorption by osteoclasts. Previously, it was 

shown that GCs reduce the proliferation of immortalised osteoblastic cell lines. In addition, early 

immortalised preosteoblasts were more sensitive to GCs than their mature counterparts. However, 

these cells have corrupted cell cycles; therefore, primitive primary mesenchymal stromal cells 

(MSCs) were used in this study to examine the effect of GCs on the mitogen-induced proliferation 

of early osteoblast precursor cells (naïve MSCs and preosteoblasts) using the synthetic GC, 

dexamethasone (Dex).  

 

Mitogenic conditions established for naïve rat mesenchymal stromal cells (rMSCs) indicated that 

mild (5% FBS) stimulation is sufficient to induce proliferation, whereas a higher FBS concentration 

(20% FBS) was mitogenic in primary preosteoblasts. It was also found that pharmacological doses 

of Dex drastically decreased the mitogen-induced proliferation of both naïve rat MSCs (rMSCs) and 

preosteoblasts. Mitogen-activated protein kinase (MAPK) signalling pathways, such as ERK1/2, 

govern cell proliferation. GCs have been shown to decrease the activity of ERK1/2, which is 

associated with decreased proliferation in osteoblastic cells. In the present study, western blot 

analysis showed that Dex reduced the proliferation-associated shoulder of the ERK1/2 activity 

profile in both naïve rMSCs and preosteoblasts. Moreover, the ERK1/2 signalling pathway was 

shown to be essential for mitogen-stimulated growth of naïve rMSCs and preosteoblasts as the 

MEK1/2 inhibitor, U0126, inhibited mitogen-induced proliferation. Using western blot analysis, it 

was shown that, after mitogen administration, ERK1/2 activity exhibited a typical proliferation 

profile, which was blocked by U0126. 

 

Protein tyrosine phosphatases (PTPs) dephosphorylate and inactivate ERK1/2. Utilising sodium 

vanadate, an inhibitor of PTPs, in vitro phosphatase assays revealed that PTP activity was the 
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predominant phosphatase activity present in naïve rMSCs and preosteoblast lysates after 

concomitant mitogen and Dex stimulation. The mRNA of the dual specificity phosphatase, MKP-1, 

was rapidly (within 30 minutes) upregulated after mitogen and Dex administration in both naïve 

rMSCs and preosteoblasts. However, the protein expression pattern of MKP-1 did not correspond to 

the mRNA induction, suggesting that the MKP-1 protein could be subjected to rapid degradation. 

These findings suggest that MKP-1 could possibly be involved in the GC regulation of mitogen-

induced proliferation of early osteoblast precursor cells, but closer investigation is needed to fully 

elucidate this role. In addition, the involvement of other PTPs should not be excluded and warrants 

further investigation.  

 

During the course of the present study, it was found that strong mitogenic stimulation with 20% 

FBS led to oncogene-induced senescence (OIS). Flow cytometry analysis revealed the presence of 

two populations in naïve rMSCs preparations and DNA content analysis was consistent with that of 

cells undergoing OIS. These results indicated that the more primitive osteoblast precursor cells 

(naïve rMSCs) are more responsive to mitogens than their mature counterparts (preosteoblasts). In 

addition, it was found that the magnitude of ERK1/2 activation was increased in naïve rMSC after 

strong mitogenic stimulation, indicating that naïve rMSCs are still highly sensitive to stimulation 

with strong mitogens. 

 

In summary, these findings show that Dex decreased the proliferation of naïve rMSCs and 

preosteoblasts concomitantly with a decrease in ERK1/2 activity. In addition, Dex upregulated 

MKP-1 mRNA, but the same effect was not seen on the MKP-1 protein levels. Therefore, this 

suggests that PTP/s other than MKP-1 could be responsible for the inactivation of ERK1/2 by Dex, 

leading to decreased proliferation in naïve rMSCs and preosteoblasts. Further identification of PTPs 

that regulate osteoblast precursor cell numbers and function could lead to the elucidation of the 

mechanism through which GCs act to negatively influence bone density. This will improve our 

insights into the pathogenesis of GCIO and aid in the identification of therapeutic targets which can 

be exploited to develop new agents to treat osteoporosis.  

    

 

 

 

 

 

 

 

University of Stellenbosch http://scholar.sun.ac.za



iv 

 

Opsomming 

Die toename in voorskrifte en gebruik van glukokortikoïede (GKs) om verskillende siektes te 

behandel en die gevolglike afname in been digtheid, is kommerwekkend. Glukokortikoïed 

geïnduseerde osteoporosis (GKIO) is „n relatief min genavorste siekte waarvan die meganisme 

waardeur GKs been-metabolisme affekteer nog nie ten volle ontrafel is nie. Dit is veral waar ten 

opsigte van die vroeë stadia in beenontwikkeling. Die negatiewe uitwerking van GK‟s word 

oorwegend in osteoblaste, die selle wat verantwoordelik is vir beenformasie, waargeneem, waar 

GKs beide die getalle en funksie van osteoblaste verminder.    

 

Osteoblast voorloper-sel proliferasie is belangrik vir die handhawing van „n gesonde poel 

osteoblastiese selle wat benodig word om nuwe been te vorm na beenresorpsie deur osteoklaste. 

Daar is gevind dat GKs proliferasie van verewigde preosteoblastiese sellyne verminder en dat jong 

verewigde preosteoblaste meer sensitief is vir GKs as hul meer volwasse ekwivalent. Die selle se 

selsiklusse is egter gekorrupteer en daarom was primitiewe primêre rot mesenkiem stromaselle 

(rMSCs) in hierde studie gebruik om die effek van GKs op mitogeen-geïnduseerde proliferasie van 

vroeë osteoblasvoorloperselle (naïwe MSC en preosteoblaste) deur die sintetiese GK, 

deksametasoon (Dex), te bestudeer.  

 

Mitogeniese kondisies vir naïwe rMSCs het getoon dat matige (5% FBS) stimulasie voldoende is 

om proliferasie te induseer, terwyl „n hoë FBS konsentrasie (20% FBS) mitogenies was in primêre 

preosteoblaste. Daar is ook gevind dat farmokolgiese dosisse Dex die mitogeen-geïnduseerde 

proliferasie van beide naïwe rMSCs en preosteoblaste verminder. Die mitogeen-geïnduseerde 

protein kinase (MAPK) pad beheer selproliferasie. Die ekstrasellulêre gereguleerde kinase pad 

(ERK1/2) is voorheen as die hoofpad wat MBA 15.4 and MG 63 proliferasie beheer geïdentifiseer.  

Daar is gewys dat GKs die aktiwiteit van ERK1/2 verlaag en proliferasie van die selle verminder.  

In die huidige studie het western blot analise gewys dat Dex die proliferasie geassosieerde 

skoueraktiwiteit van die ERK1/2 aktiwiteitsprofiel in beide naïwe rMSCs en preosteoblaste 

verminder. Die noodsaaklike rol van ERK1/2 pad in mitogeen-gestimuleerde groei van die selle is 

bevestig deur die MEK1/2 inhibitor, U0126, wat die mitogeen-geïnduseerde proliferasie geïnhibeer 

het. Western blot analise het gewys dat die ERK1/2 aktiwiteit na mitogeen toediening „n tipiese 

proliferasie profile toon wat deur U0126 geblokkeer word. 

 

University of Stellenbosch http://scholar.sun.ac.za



v 

 

Protein tirosien fosfatases (PTPs) defosforileer and inaktiveer ERK1/2.  In vitro fosfatase bepalings 

met natrium vanadaat, „n inhibitor van PTPs, het bevestig dat PTP die predominante fosfatase 

akitiwiteit is in naïwe rMSCs en preosteoblaste lisate is na gelyktydige mitogeen en Dex stimulasie. 

 

Die mRNA van die dubbele spesifisiteits fosfatase, MKP-1, is vinnig (binne 30 minute) 

opgereguleer is na mitogeen en Dex toediening in beide naïwe rMSCs en preosteoblaste. Die 

proteinekspressie van MKP-1 het egter nie met die mRNA ekspressie ooreengestem nie, wat 

suggereer dat die MKP-1protein blootgestel is aan vinnige degradasie. Hierdie bevindings stel voor 

dat MKP-1 moontlik „n rol speel in die GC-regulering van mitogeen-geïnduseerde proliferasie van 

vroeë osteoblast voorloperselle maar verdere ondersoek is nodig om die rol ten volle te verklaar.   

Die betrokkenheid van ander PTPs moet egter nie uitgesluit word nie en regverdig verdere studie.  

 

Die huidige studie het bevind dat sterk mitogeniese-stimulasie met 20% FBS tot onkogene- 

geïnduseerde selgroeistilte (senescence) (OIS) lei. Vloeisitometriese analise het die 

teenwoordigheid van twee afsonderlike populasies getoon in die naïwe rMSCs preparate en die 

DNA inhoud was verenigbaar met die van selle wat OIS ondergaan.  Die bevindinge stel voor dat 

die meer primatiewe osteoblast voorloperselle (naïwe rMSCs) is meer vatbaar vir mitogene-

stimulasie as hul volwasse ekwivalente (preosteoblaste).  Ook is gevind dat die mate van ERK1/2 

aktivering hoër was in naïwe rMSCs, selfs na sterk mitogeniese stimulasie wat daarop dui dat naïwe 

rMSCs steeds hoogs sensitifief is vir stimulasie met sterk mitogene. 

 

In opsomming, dui die bevindinge dat Dex die proliferasie van naïwe rMSCs en preosteoblaste 

onderdruk wat met „n verlaging van ERK1/2 aktiwiteit gepaard gaan.  Verder, het Dex, MKP-1 

mRNA opgereguleer maar die effek is nie op die proteinvlak waargeneem nie.  Dit suggereer dat 

PTP/s anders as MKP-1 verantwoordelik kan wees vir die Dex inaktivering van ERK1/2 wat die 

proliferasie van naïwe rMSCs en preosteoblaste onderdruk. 
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Figure 3.8: Flow cytometry analysis revealed two cell populations with different cell cycle phase 

distributions present in naive rMSCs cultures.naïve rMSCs cultures after PMA exposure.  

 

Figure 3.9: BrdU pulse-labelling of mitogen-stimulated rMSCs shows different cell cycle phase 

distributions.  
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Figure 7.1: Protein tyrosine phosphatases are the major class of phosphatases present after 

mitogenic induction and are up-regulated by Dex in naïve rMSCs and preosteoblasts. 
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Bone formation and bone homeostasis: 

regulation of osteoblast development and the 

effects of glucocorticoids on osteoblast 

proliferation 

 

1.1 Chapter Outline 

A brief background for the presented work and a literature review on various aspects of the 

regulation of bone metabolism is included in this chapter. An overview on bone homeostasis, which 

covers key sections on the composition structure and function of bone; the cellular compartments 

within bone and the maintenance of the skeleton through bone remodeling, is incorporated. 

Signalling networks regulating osteoblast development are outlined, with focus on the ERK1/2 

signalling pathway; the role of the ERK1/2 signalling pathway in osteoblast development; as well as 

regulation of ERK1/2 activity by phosphorylation and dephosphorylation. This includes the 

phosphatase regulation of ERK1/2 activity by MKP-1 and the action of MKP-1 in osteoblasts. The 

aims and strategies employed in this study are discussed.  

 

1.2 Background 

Glucocorticoid-induced osteoporosis (GCIO) is fast becoming a major medication-related disease. 

This could be ascribed to increased prescription and use of glucocorticoids (GCs) to treat a wide 

range of pathophysiological conditions, such as pulmonary diseases (like asthma), renal diseases, 

rheumatologic disorders (such as rheumatoid arthritis and lupus), inflammatory bowel disease and 

transplant rejection (Cohen and Adachi, 2004; Dore, 2010). GCIO shares many similarities with 

involutional and postmenopausal (age- and hormone-related) osteoporosis (Tamura et al., 2004; 

Compston, 2010). However, GCIO also has distinct characteristics (Tamura et al., 2004; Compston, 

2010). In contrast to age-related osteoporosis, GCIO occurs in two phases: a characteristic rapid 

increase in initial bone breakdown by osteoclasts followed by a prolonged decrease in osteoblast 

development and reduced new bone formation by osteoblasts (Canalis, 1996; Canalis and Giustina, 

2001; Compston, 2010). Bone histomorphometric studies show the major cause of GC-induced 

bone loss is due to the suppression of bone formation (Chavassieux et al., 1993; Lo, V et al., 1995; 
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Dalle et al., 2001). Even though GCs influence other types of bone cells like osteoclasts, the 

detrimental consequences of these steroid hormones are primarily seen in osteoblasts, the bone 

forming cells (Canalis, 1996; Canalis et al., 2004; Kalak et al., 2009). The effect of GCs on 

osteoblast development and bone formation will be addressed in Section 1.5.  

 

The decrease in bone formation leads to a decreased bone density, which could culminate an 

increase in fracture risk during the GC treatment period (Canalis, 1996; Canalis and Giustina, 2001; 

Compston, 2010). Therefore, continued long term and high dose GC treatment can cause bone loss, 

resulting in reduced bone density (van Staa et al., 2002; van Staa et al., 2003) and decreased bone 

strength, which may ultimately lead to bone fractures (Canalis et al., 2004). In patients that are 

chronically exposed to GCs, 30% to 50% exhibit reduced bone mineral density (BMD) and develop 

vertebral fractures (Lukert and Raisz, 1990; van Staa et al., 2000a; Kalak et al., 2009). The extent of 

bone loss in these patients is correlated with the dose and duration of GC treatment (van Staa et al., 

2000b). Interestingly, it was shown that although fracture risk increased within only 3-6 months 

after commencement of GC therapy, it decreased with cessation of GC therapy (van Staa et al., 

2002).  

 

Much work has been done to fully understand the cellular and molecular aspects of bone 

development and metabolism. However, the mechanism through which GCs exert their negative 

effects on bone is not yet completely understood. Therefore, a better understanding of the 

mechanisms through which GCs affect bone formation and homeostasis at a cellular and molecular 

level is needed. Furthermore, the effect of GCs on osteoblast precursor cell and younger osteoblasts 

is under-researched. The aim of the work presented here is to elucidate the mechanism through 

which GCs affect the development and thus the function of osteoblast precursor cells.  
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1.3 Literature Review 

1.3.1 Bone Homeostasis 

1.3.1.1 The function, composition and structure of bone 

Bone is a vital, highly specialised organ, composed of mineralised connective tissue which 

performs biological, chemical and mechanical functions. The main functions of bone are to provide 

protection of the vital organs and to serve as a structural support to which muscles and tendons are 

attached to facilitate movement (Loveridge, 1999; Harada and Rodan, 2003; Rubin and Rubin, 

2009). About 99% and 85% of the human body‟s total calcium and phosphorus, respectively, as 

well as other minerals are retained within bone, therefore making it a substantial mineral reservoir 

(Loveridge, 1999; Marks and Odgren, 2002; Rubin and Rubin, 2009). In addition, the bone marrow 

compartment is enveloped by bone, which also plays a role in the regulation of haematopoiesis 

(Marks and Odgren, 2002; Harada and Rodan, 2003; Rubin and Rubin, 2009).  

 

Moreover, bone is rigid and strong, whilst retaining a measure of elasticity. These features are 

necessary for bone to fulfil its protective as well as structural roles (Marks and Odgren, 2002). The 

elasticity, firmness and strength of bone are determined by the composition and structure (Marks 

and Odgren, 2002; Seeman and Delmas, 2006). Therefore, factors negatively affecting these bone 

characteristics could compromise the integrity of the skeleton. Bone density, often referred to as 

bone mineral density (BMD) and bone quality, together influence bone strength (Lees, 1981; 

Felsenberg and Boonen, 2005; Boivin et al., 2009; Bouxsein and Seeman, 2009). BMD is defined as 

the amount of mineral per square centimetre bone and can be measured using various quantitative 

techniques including dual energy X-ray absorptiometry (DXA) (Kanis, 1994a; Kanis et al., 1994b). 

However, BMD is a measurement of the mineral content and area of bone but not the quantity and 

quality (Oleksik et al., 2000). Bone quality includes characteristics of bone composition and 

structure that ultimately play a role in bone strength. These include bone turnover, 

microarchitecture, mineralisation and microdamage. Various techniques are used to measure these 

aspects such as histomorphometry (bone turnover and microarchitecture), spectroscopy 

(mineralisation) and histology (microdamage) (Compston, 2006). As stated previously, DXA is 

used to measure bone quantity. The risk of fractures is dependent on bone strength (Mazziotti et al., 

2006; Sipos et al., 2009; Compston, 2010). Therefore, it is important that the quality of bone is 

preserved. The World Health Organisation (WHO) classification of osteoporosis, using DXA 

measurements, is a BMD of the spine or proximal femur of 2.5 standard deviations or more below 
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normal peak bone mass (the mean BMD of a young, 20 year old, healthy Caucasian woman, which 

could also be used for the diagnosis of osteoporosis in men) (Kanis, 1994b; World Health 

Organization, 2003; Mazziotti et al., 2006).  

 

Bone can be divided into three basic compartments. Firstly, an organic matrix, comprised of 

collagenous and non-collagenous proteins, forms a major part of bone (Marks and Odgren, 2002). 

This organic phase comprise 30% of total bone volume (Mistry and Mikos, 2005; Bueno and 

Glowacki, 2011). Type I collagen is the predominant organic matrix protein, constituting 

approximately 90% to 95% of the organic matrix, whereas non-collagenous proteins such as 

osteopontin, osteocalcin and bone sialoprotein represent only 5% (Marks and Odgren, 2002; 

Crichton, 2008). The second part of bone is the inorganic or mineral phase, which is the major 

constituent at 70% of total bone volume and includes a 10% water component (Mistry and Mikos, 

2005; Bueno and Glowacki, 2011). In addition, the mineral phase is composed of at least 43% of 

calcium and phosphate ions. These ions are found in the form of hydroxyapetite (Ca10(PO4)5(OH)2), 

which hardens the organic matrix upon deposition. Thirdly, bone also has a cellular compartment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The hierarchy of bone structure.   

The different levels of bone structure organisation are illustrated: (A) Macrostructure, (B) microstructure, (C) sub- 

microstructure, (D) nanostructure and (E and F) sub-nanostructure.  

 

As stated earlier, bone surrounds the bone marrow which house cells from haematopoietic origin 

such as leukocytes, erythrocytes, thrombocytes and osteoclasts as well as stromal (stem) cells and 

Modified from Rho et al. (1998). 
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stromal-derived cells such fibroblasts, adipocytes and osteoblasts. In addition, bone is also richly 

supplied with blood vessels and nerve cells (Hurrell, 1937; Parfitt, 2000; Proff and Romer, 2009). 

The main types of cells found within bone itself are osteoblasts, osteoclasts, bone lining cells and 

osteocytes, which will be discussed further in section 1.3.1.2.   

 

The basic architecture of bone is complex and highly structured, which is evident at the different 

levels of bone organisation (Fig. 1.1). Two types of bone can macroscopically be identified; cortical 

(compact) and cancellous (trabecular or spongy) bone (Fig. 1.1 A) (Rho et al., 1998; Rubin and 

Rubin, 2009). The differences between these two bone types can be seen in both structure and 

function. On lower levels of organisation (microstructure), cortical bone consists of densely packed 

collagen fibrils which form concentric lamellae (Fig. 1.1 F). Groups of 4 to 8 lamellae are then 

organised into osteons (Fig. 1.1 E-B) (Rho et al., 1998). This hierarchical structure contributes to 

the mechanical and protective function of cortical bone. In contrast, cancellous bone, which 

provides a more metabolic function, has less regular structural organisation and appear porous due 

to the marrow-filled cavities (Rho et al., 1998; Marks and Odgren, 2002). Flat bones such as 

calvaria in the skull, have a layered structure, much like a sandwich, where a thin layer of 

cancellous bone functions to reinforce a compact cortical envelope (Rho et al., 1998; Rubin and 

Rubin, 2009). Furthermore, long bones such as the femur form a compact tube of cortical bone 

which surrounds porous cancellous bone in the centre (Rho et al., 1998; Rubin and Rubin, 2009). 

Bone also contains a complex system of different canals (or canaliculi), for example the Haversian 

canals found in the centre of osteons (Fig. 1.1 C), which functions as reinforcement to provide 

ultimate strength (Rho et al., 1998; Rubin and Rubin, 2009). These features provide bone with 

maximal strength, whilst retaining minimal mass, to facilitate movement. 

 

Bone strength is positively influenced by mechanical loading, although, numerous other factors 

negatively impact on bone strength (Robling et al., 2006; Rubin and Rubin, 2009). Such factors 

include aging, hormonal imbalances, certain metabolic diseases, as well as chronic and prolonged 

GC treatment, all of which decrease BMD (Canalis et al., 2004; Sipos et al., 2009; Compston, 

2010). Reduced BMD could result in an increased propensity of bone fractures, which is 

characteristic of skeletal disorders like osteoporosis (Canalis et al., 2004; Sipos et al., 2009; 

Compston, 2010). 

                                

University of Stellenbosch http://scholar.sun.ac.za



6 

 

1.3.1.2 The cellular compartmentalisation of bone 

Bone cells have different origins and, upon certain signals, progenitor cells undergo a process of 

progressive differentiation to give rise to mature, functioning cells. As stated previously, besides the 

haematopoietic and vasculature-related cells, the main types of cells found in bone are: (i) 

osteoclasts, the cells which break down the mineralised bone matrix, (ii) osteoblasts, the cells which 

are responsible for new bone formation, (iii) lining cells found on quiescent bone surfaces and (iv) 

osteocytes, which are old osteoblasts embedded in the mineralised bone matrix (Marks and Odgren, 

2002; Rubin and Rubin, 2009). Despite having individual functions, these bone cells function in 

concert to regulate bone homeostasis. To maintain the equilibrium in bone, osteoclasts and 

osteoblasts function together in temporary cellular units known as the basic muticellular units 

(BMUs) (Parfitt, 1994). While the origin, development and function of the four major types of bone 

cells will be reviewed, the focus however, will be on osteoblast development and function.    

 

1.3.1.2.1 The origin, development and function of osteoclasts 

Osteoclasts are one of the major cell types found in bone. Mature osteoclasts are multinucleated, 

giant cells which, when activated, are able to breakdown (resorb) bone for calcium (Ca
2+

) 

mobilisation. Activated osteoclasts are the principal cells in the body capable of bone resorption 

(Vaananen and Zhao, 2002; Roodman, 2006).  

 

The earliest osteoclast precursor cells are the granulocyte-macrophage colony-forming units (CFU-

GM) (Fig. 1.2) (Kurihara, 1990; Kurihara et al., 1991; Menaa et al., 2000). Research showed that 

osteoclasts can also develop from a more mature type of monocyte precursor cell, designated CFU-

M (Fig. 1.2) (Kerby et al., 1992). Other cells found in the bone marrow, like T and B lymphocytes, 

marrow stromal cells and osteoblasts are involved in osteoclast differentiation and activation 

(Prockop, 1997; Phinney et al., 1999; Roodman, 2006). These cells secrete various cytokines and 

chemokines in the bone marrow milieu, such as IL-6 (Roodman, 1992) and IL-11 (Girasole et al., 

1994), to stimulate, or IL-4 (Shioi et al., 1991; Lacey et al., 1995) and interferon  (Lacey et al., 

1995) to inhibit osteoclast formation and activity. Besides the ability to resorb bone, the mature 

osteoclast phenotype is characterised by the expression of osteoclast-related proteins such as 

tartrate-resistant acid phosphatase (TRAP) (Scheven et al., 1986; Lamp and Drexler, 2000; Kaunitz 

and Yamaguchi, 2008), Cathepsin K (Li et al., 1995; Zhao et al., 2009) and H-ATPase (Wang et al., 

1992a; Yuan et al., 2010).  
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Figure 1.2: The stages of osteoclast development.  

The various stages in osteoclast development as well as the respective growth factors and hormones involved are 

depicted. Abbreviations: CFU-GM colony forming unit-granulocyte-macrophage; CFU-M colony forming unit-

macrophage;  IL-6 interleukin-6; IL-11 interleukin-11;  M-CSF macrophage colony stimulating factor; NFB nuclear 

factor  OPG osteoprotegerin; PTH parathyroid hormone; PTHrP parathyroid-related protein; RANK receptor 

activator of nuclear factor  ; RANKL receptor activator of  nuclear factor   ligand.;  1-25- (OH)2D3 vitamin D3 

 

 

During conditions of bone resorption, such as bone remodeling and microfracture repair, osteoclast 

precursor cells are recruited from the haematopoietic compartment (Schneider and Relfson, 1988; 

Udagawa et al., 1990; Kurihara, 1990; Menaa et al., 2000). Lineage restriction of these precursor 

cells towards the myeloid phenotype is determined by the transcription factor (TF), PU.1 (Fig. 1.2) 

(Teitelbaum et al., 1997; Henkel et al., 1996), which plays a key role in osteoclast formation and 

differentiation (Fig. 1.2) (Tondravi et al., 1997). Research has shown that PU.1
 (-/-)

 mice are 

osteopetrotic (hard, dense bone) and devoid of osteoclasts and macrophages (Tondravi et al., 1997). 

This thus indicates that there is a restriction point in the differentiation of osteoclasts and 

OPG 

Adapted from M.Steinbeck in Gilbert (2010).  
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macrophages from a common precursor cell, and highlights the importance of PU.1 at this stage. 

Moreover, it was shown that PU.1 mRNA is detectable at all stages of osteoclast differentiation, 

progressively increasing as early osteoclasts reach maturity (Tondravi et al., 1997). Furthermore, 

PU.1 also regulates the expression of various osteoclast-specific proteins, by binding to specific 

promoters or enhancers of the encoding genes of these proteins (Matsumoto et al., 2004; Partington 

et al., 2004; Kwon et al., 2005). Such transcriptional targets of PU.1 include the Receptor Activator 

of Nuclear factor B (RANK) (Kwon et al., 2005), Cathepsin K (Matsumoto et al., 2004) and 

TRAP (Partington et al., 2004).  

 

Primitive osteoclast precursor cells proliferate and then differentiate into committed osteoclast 

precursors such as pre-osteoclasts, which have lost their proliferative capability (Roodman, 2006). 

The development of mononuclear cells into pre-osteoclasts is regulated by macrophage colony-

stimulating factor or M-CSF (Fig. 1.2) (Lorenzo et al., 1987; Lee et al., 1994), which is secreted by 

stromal cells/osteoblasts to regulate osteoclast precursor proliferation, differentiation and survival 

(Tanaka et al., 1993; Felix et al., 1990; Woo et al., 2002).  The binding of M-CSF to its receptor, c-

fms, triggers the expression and activation of other TFs like c-fos and microphtalmia-associated 

transcription factor (Mitf). c-fos regulates the differentiation of committed precursors toward the 

osteoclast lineage rather than towards that of the macrophage (Grigoriadis et al., 1994; Wang et al., 

1992b; Matsuo et al., 2000). Moreover, M-CSF/c-fms binding also regulates the expression of the 

receptor of another osteoblast-secreted factor necessary for osteoclast differentiation, namely 

receptor activator of nuclear factor   ligand or RANKL (Cappellen et al., 2002).  

 

RANKL is a member of tumour necrosis factor (TNF) receptor family which is expressed on the 

membrane of osteoblastic cells and plays a major role in osteoclastogenesis (Fig. 1.2) (Anderson et 

al., 1997; Simonet et al., 1997; Tsuda et al., 1997; Wong et al., 1997; Lacey et al., 1998; Yasuda et 

al., 1998). Osteotrophic factors such as vitamin D3 (Kitazawa and Kitazawa, 2002; Kitazawa et al., 

2003), parathyroid hormone (PTH) (Lee and Lorenzo, 1999; Fu et al., 2002), IL-1 (Wei et al., 2005) 

and IL-6 (Palmqvist et al., 2002) induce the expression of RANKL on the membrane of osteoblasts. 

It is known that cell-cell contact between osteoblast and osteoclast is required for osteoclastogenesis 

(Suda et al., 1999). This contact is achieved when RANKL binds to the cognate RANK receptor 

expressed on the membranes of pre-osteoclasts and osteoclasts (Fig. 1.2) (Nakagawa et al., 1998; 

Hsu et al., 1999). Binding of RANKL to RANK stimulates the differentiation and fusion of pre-

osteoclasts into immature multinucleated osteoclasts (Li et al., 1999; Li et al., 2000). These 

immature osteoclasts are quiescent and must be activated to render them capable of bone resorption 

(Scheven et al., 1986; Takahashi et al., 1994; Burgess et al., 1999; Roodman, 2006). Factors like 
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RANKL (Fuller et al., 1998; Matsuzaki et al., 1998; Lacey et al., 1998; Burgess et al., 1999) and IL-

1 (Suda et al., 1999; Fox et al., 2000) can activate these immature osteoclasts to form bone 

resorbing osteoclasts. Osteoprotegerin (OPG) is another member of the TNF receptor superfamily 

also secreted by stromal cells/osteoblasts (Simonet et al., 1997; Tan et al., 1997; Tsuda et al., 1997). 

Interestingly, the RANKL/RANK interaction can be blocked by OPG which acts as a soluble decoy 

receptor of RANKL (Simonet et al., 1997; Tsuda et al., 1997). The RANKL/OPG interaction leads 

to the inhibition of osteoclast formation and activation (Simonet et al., 1997; Tsuda et al., 1997).  

 

Osteoclasts are activated upon attachment to the bone extracellular matrix via protein-protein 

interactions involving integrins and matrix proteins such as osteopontin and bone sialoproteins 

which are rich in arginine-glycine-aspartic acid (RGD) regions (Vaananen et al., 2000; Ross and 

Teitelbaum, 2005). This integrin-mediated activation of osteoclasts involves the cytoskeletal 

reorganisation and polarisation of the cell (Lakkakorpi and Vaananen, 1991; Vaananen et al., 2000). 

These changes result in the formation of unique bone resorption structures which give activated 

osteoclasts a distinct appearance: giant cells with podosomes which are swiftly constructed and 

deconstructed to facilitate osteoclast movement across the bone surface (Horne et al., 2005; Gil-

Henn et al., 2007). Upon attachment to the bone matrix, the osteoclastic actin microfilaments 

reorganise into a ring-like structure to form the sealing zone, which surrounds the ruffled border to 

contain the acidic resorption area (Lakkakorpi and Vaananen, 1991; Vaananen et al., 2000). This 

isolates the area of resorption, thus stopping diffusion of factors released by resorption, as well as 

any aberrant digestion of bone. The ruffled border is formed when acidified vesicles, containing 

matrix metalloproteinases (MMPs) and Cathepsin K, move along microtubules and fuse with the 

cell membrane (Vaananen and Zhao, 2002; Clarke, 2008). By means of H
+
 APTases and chloride 

channels, H
+
 ions and proteases are secreted in the space between the osteoclast and the bone matrix 

(Baron, 1995; Vaananen and Zhao, 2002; Clarke, 2008). This leads to acidification only of the area 

under the ruffled border, resulting in the dissolution of mineral and digestion of the organic matrix 

to form resorption lacunae (Baron, 1995; Vaananen and Zhao, 2002; Clarke, 2008). Removal of the 

degraded bone material from the resorption site occurs through endocytosis into the osteoclasts, 

transportation through the cell (transcytosis) and secretion through the osteoclast membrane (either 

through exocytosis or via channels and pumps) (Salo et al., 1997; Nesbitt and Horton, 1997). The 

released mineral and organic factors can then be utilised elsewhere in the body, for example, Ca
2+

 

signalling can influence the activities of other cell types such as osteoblasts.  
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1.3.1.2.2 The origin of osteoblasts 

Mesenchymal stromal cells give rise to a number of cell types, amongst which are osteoblasts 

(Friedenstein, 1990; Prockop, 1997; Owen, 1998). The lineage restriction of mesenchymal and 

primitive osteoblast progenitor cells is controlled by transcription factors such as Msx2 (homologue 

of the Drosophila muscle segment homeobox gene) (Dodig et al., 1999; Liu et al., 1999; Satokata et 

al., 2000; Wilkie et al., 2000), Dlx5 (distal-less homeobox 5) (Ryoo et al., 1997; Newberry et al., 

1998; Acampora et al., 1999), Runx 2 (Runt related protein x2) (Ducy et al., 1997; Komori et al., 

1997; Otto et al., 1997; Mundlos et al., 1997) and Osx (Osterix) (Nakashima et al., 2002) (Fig.1.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Schematic representation of the stepwise differentiation regime of osteoblasts from mesenchymal 

stromal cells to mature osteoblasts. 

The hypothesised osteoblastic differentiation stages, with decreasing proliferative capabilities are depicted. The 

postulated positions of well-established transcription factors are indicated in blue, whilst characterised osteoblast-

specific proteins are indicated in red. Abbreviations: ALP alkaline phosphatase; BSP bone sialoprotein; Col I collagen 

I; Dlx5 distal-less homeobox 5; OCN osteocalcin 
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Osteoblast differentiation from mesenchymal progenitor cells occurs via a regimented and stepwise 

program (Fig. 1.3) (Aubin and Liu, 1996; Aubin and Triffitt, 2002; Franceschi, 1999). Attempts to 

elucidate the initial cellular and molecular events, mediating the transition of mesenchymal stromal 

cell into mature osteoblasts, have identified at least seven transition stages during osteoblastic 

differentiation (Aubin and Liu, 1996; Candeliere et al., 1999; Liu et al., 2003). However, this 

differentiation program, especially the early differentiation stages involving the more primitive 

osteoblast precursor cells, is not yet fully delineated. 

 

 

Figure 1.4: Schematic diagram of the cell cycle, illustrating the cell cycle phases. 

The cell cycle phases are indicated as follows: G0 (specified in text box), G1 (blue); S phase (green); G2 (orange) and 

M phase (red). The dotted lines represent the cell cycle checkpoints as indicated. Respective cyclin homologues are 

indicated in varying shades of yellow to red, cyclin-dependent kinase homologues are indicated in shades of green 

whilst cyclin-dependent kinase inhibitors are indicated in varying shades of blue. Abbreviations: Cdk cyclin-

dependent kinase; E2F elongation factor 2; Rb retinoblastoma protein 

 

1.3.1.2.3 Osteoblast differentiation and function 

As elucidated from in vitro studies of nodule formation, which only results from cells with a mature 

osteoblast phenotype, osteoblast differentiation can be divided into three phases: (i) the proliferation 

stage of osteoblast progenitor cells, such as MSCs and preosteoblasts; (ii) extracellular matrix 

deposition and maturation and (iii) mineralization (Stein et al., 1990; Lian and Stein, 1995; Aubin 

Adapted from (Lloyd et al., 1999) 
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and Triffitt, 2002). These differentiation stages are characterised by specific proteins and the 

appearance of these proteins define the osteoblastic phenotype, which are therefore used as 

osteoblastic markers.  

 

1.3.1.2.3.1 Proliferation of osteoblast progenitor cells 

Maintenance of Ca
2+

 balance and normal bone density requires that bone is constantly removed and 

replaced. Bone homeostasis is governed by the total number of cells and function of both 

osteoclasts and osteoblasts. Therefore, bone formation by osteoblasts is the result of the net amount 

of cells available, which is modulated by the rate of mitogenesis, differentiation, transdifferentiation 

of progenitor cells into other cell types, and cell death. Cellular expansion is essential to maintain 

functional osteoblast populations in order to replace bone that is resorbed by osteoclasts. As stated 

previously, this proliferative period of osteoblast precursor cells is an integral early part of the 

differentiation regime towards a mature osteoblast phenotype. 

 

Various systemic hormones and growth factors regulate osteoblast biology. Systemic hormones, 

like parathyroid hormone (PTH) (Hock et al., 1989; Bringhurst and Strewler, 2002; Hock et al., 

2002), growth hormone (GH) (Verhaeghe et al., 1996; Rosen and Rackoff, 2001; Rosen and 

Bilezikian, 2001), insulin (Hickman and McElduff, 1989; Thomas et al., 1996; Verhaeghe and 

Bouillon, 2002) and glucocorticoids (Pockwinse et al., 1995; Chang et al., 2006; Kalak et al., 2009), 

play an important role in regulating bone cell function by affecting osteoblasts directly. However, 

hormones can also affect osteoblast replication and function through altering the synthesis, activity 

or binding of growth factors (GFs) (Conover and Rosen, 2002; Canalis and Rydziel, 2002). Local 

growth factors, such as insulin-like GFs (IGF-I and IGF II) (Mohan et al., 1990; Durham et al., 

1994; Conover and Rosen, 2002), platelet-derived growth factors (PDGF) (Betsholtz et al., 1986; 

Graves et al., 1989; Rydziel et al., 1992; Canalis and Rydziel, 2002), fibroblast growth factors 

(FGF) (basic and acidic) (Globus et al., 1989; Hurley et al., 1994; Mehrara et al., 1998; Rice et al., 

2000) and bone morphogenetic proteins (BMPs) (Urist et al., 1982; Urist et al., 1984; Rosen and 

Wozney, 2002), are not only synthesised by osteoblasts, but by non-osteoblastic cells such as 

fibroblasts and are stored in the extracellular matrix (ECM) (Globus et al., 1989; Hurley et al., 

1994; Rosen and Wozney, 2002). During bone remodeling, these local growth factors are liberated 

from the ECM (Hauschka et al., 1986; Mohan and Baylink, 1991; Mackie, 2003). The released GFs 

regulate bone formation by modulating osteoblast proliferation and differentiation in an autocrine 

and paracrine fashion (Mohan and Baylink, 1991; Lian and Stein, 1995; Mackie, 2003). 
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Importantly, the proliferative capability of osteoblastic cells diminishes concomitantly with an 

increase in differentiation (Fig.1.3) (Aubin and Liu, 1996; Franceschi, 1999). The decrease in the 

proliferation of mature osteoblasts occurs due to the down-regulation of the cell cycle, which 

normally accompanies the onset of differentiation (Stein and Lian, 1993; Lian and Stein, 1995). It 

was shown that the BMP-4 induction of MG63 osteoblasts differentiation occurred via the up-

regulation of the cyclin-dependent kinase (cdk) inhibitors, p21
Cip1

 and p27
Kip1

, inhibiting cell cycle 

progression (Fig. 1.4) (Chang et al., 2009). In addition, p27
Kip1

 was also found to be involved in the 

differentiation of ROS 17/2.8 (Fig. 1.4) (Drissi et al., 1999). Therefore, less differentiated osteoblast 

precursor cells, such as MSCs and preosteoblasts, proliferate, in contrast to their mature 

counterparts, which are post-mitotic (Fig. 1.3) (Strauss et al., 1990; Suva et al., 1993; Franceschi, 

1999).  

 

Furthermore, primary osteoblasts, isolated from rat calvaria, when grown in vitro, formed distinct 

multilayered foci referred to as nodules (Stein et al., 1990; Lian and Stein, 1993; Lian and Stein, 

1995). It was observed that osteoblast cell proliferation first stopped within these individual nodules 

(Stein et al., 1990; Stein and Lian, 1993); this decline in proliferation is seen as an essential 

transition step in osteoblast differentiation (Stein and Lian, 1993; Lian and Stein, 1993).  

 

1.3.1.2.3.2 Bone extracellular matrix formation and  maturation  

The deposition of the ECM by osteoblasts into the resorption pit formed by osteoclasts occurs 

before mineralisation. The ability to deposit the highly defined matrix, called osteoid, is a hallmark 

of differentiated osteoblasts. Shortly after the decrease in proliferation, proteins related to a more 

advance osteoblastic phenotype are expressed (Owen et al., 1990; Pockwinse et al., 1992; Stein and 

Lian, 1993). For instance, the enzyme activity and mRNA expression of alkaline phosphatase 

(ALP), which is essential for bone mineralisation, are dramatically increased (Stein et al., 1990; 

Stein and Lian, 1993). In addition, increased expression of histone H2B, a differentiation-specific 

histone, has also been observed (Collart et al., 1992; Lian and Stein, 1993; Lian and Stein, 1995). 

This second period in the osteoblastic differentiation pathway further involves an alteration in the 

constituents and organisation of the ECM (Stein and Lian, 1993; Lian and Stein, 1995). For 

example, Type I collagen (Col I) fibrils are converted into collagen fibres via hydroxylation of 

lysine and proline residues. These hydroxylysine residues are subsequently crosslinked via aldehyde 

formation, as catalysed by lysyl oxidases, and leads to the stabilisation of collagen fibrils (Siegel, 

1974; Rossert and de Combrugghe, 2002). After fibre formation, collagen interacts with non-

collagenous matrix proteins, such as fibronectin, and proteoglycans, such as decorin (Fisher and 
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Termine, 1985; Fisher et al., 1989; Hedbom and Heinegard, 1989). These proteins bind to collagen 

fibres and contribute to collagen fibre maturation (Hedbom and Heinegard, 1989). Moreover, these 

modifications render the ECM capable of mineralisation, a process where Col I fibres act as 

scaffolds for the calcification of osteoid by osteoblasts (Stein and Lian, 1993; Lian and Stein, 1995). 

When fetal rat calvaria cells were differentiated in vitro into mature osteoblasts, it was found that, 

as cells advance toward the mineralisation phase, all cells stained positive for ALP (Lian and Stein, 

1995). ALP hydrolyses phosphomonoesters to release inorganic phosphate (Pi), hence providing Pi 

for the mineralisation of the ECM (Fernley, 1971; Harris, 1989; Orimo, 2010). In addition, the 

expression of the collagenase 3 gene (also known as MMP-13) is also increased in this post-

proliferative stage and is maximally expressed in mature osteoblasts (Shalhoub et al., 1992). This is 

important as MMP-13 plays a role in ECM degradation and hence collagen turnover during ECM 

organisation and maturation by osteoblasts (Gerstenfeld et al., 1987; Stein and Lian, 1993).   

 

1.3.1.2.3.3 Mineralisation of bone ECM 

The onset of mineralization defines the third period of osteoblast development. Genes encoding 

other bone-related proteins, such as osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin 

(OCN), are increased concomitantly with bone nodule mineralization (Stein and Lian, 1993; Lian 

and Stein, 1995). Interestingly, OPN is expressed at 25% of maximal levels during the proliferative 

stage and is maximally induced only during mineralization (Stein and Lian, 1993; Lian and Stein, 

1995; Aubin, 1998; Aubin, 2001). The expression profile of BSP is biphasic, initially occurring 

transiently and then again upon osteoblast maturation (Aubin, 1998; Aubin, 2001). OCN is the 

matrix protein that is only expressed in the final stages of differentiation, simultaneously appearing 

with mineralization (Stein and Lian, 1993; Lian and Stein, 1995; Aubin, 1998; Aubin, 2001). 

Importantly, as ascertained by genetic and molecular studies, these bone-related proteins play an 

essential role in the development of a mature osteoblastic phenotype, which is the ability to deposit 

and mineralise osteoid (Narisawa et al., 1997; Fedde et al., 1999; Gordon et al., 2007). In turn, fully 

functioning osteoblasts are crucial for optimal bone remodeling and hence bone formation. In the 

case of ALP, a lack of alkaline phosphatase in man causes hypophosphatasia, a genetic disease 

which leads to disrupted bone mineralization and osteomalacia (bone softening) (Whyte, 1994; 

Whyte, 2008). In addition, homozygous deletion of ALP in mice (ALP 
(-/-)

) also results in severe 

hypophosphatasia, exhibiting hypomineralization, demonstrating a role for ALP in bone cell 

mineralisation and bone formation (Narisawa et al., 1997; Fedde et al., 1999). Moreover, 

overexpression of BSP, another protein essential for mineralization, in the immortalised MC 3T3E1 
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mouse preosteoblast cell line and in primary rat osteoblasts led to an increase in osteoblast-

associated gene expression, calcium incorporation and nodule formation (Gordon et al., 2007). 

Conversely, inhibition of BSP expression using short hairpin RNA (shRNA) resulted in attenuation 

of osteoblast-linked gene expression and decreased nodule formation (Gordon et al., 2007). These 

results demonstrate that BSP is an essential ECM protein capable of promoting osteoblast 

differentiation and ECM mineralisation (Gordon et al., 2007).  

 

The cellular endpoint of osteoblast function is the mineralization of the secreted osteoid. Although 

this process has been well-studied, the mechanism of mineralization is not yet completely 

understood. The most favoured proposed mechanism of bone mineralization involves deposition via 

small, lipid bilayer membrane-bound spheres called matrix vesicles (MVs) (Anderson, 2003; Golub, 

2009; Orimo, 2010). MVs originate through polarised budding from the plasma membrane of 

chondrocytes, odontoblasts and osteoblasts and are deposited within the ECM (Glaser and Conrad, 

1981; Hayashi and Nagasawa, 1990; Anderson, 1995; Xiao et al., 2007). It is noteworthy that the 

phospholipid content of MV membranes differs from that of the original plasma membrane (Glaser 

and Conrad, 1981; Hayashi and Nagasawa, 1990; Anderson, 1995; Xiao et al., 2007; Golub, 2009). 

The membrane of MVs contains several phospholipids, like phosphatidylserine (Peress et al., 1974; 

Wuthier, 1975), which effectively binds calcium (Ca
2+

), various annexins (Balcerzak et al., 2003), 

Ca
2+

 ATPase (Takano et al., 1986; Anderson, 1995), carbonic anhydrase (Anderson, 1995) and 

alkaline phosphatase (Hoshi et al., 1997; Miao and Scutt, 2002; Balcerzak et al., 2003). These 

acidic proteins, phosphatases, ion transporters and channels function to regulate Ca
2+

 and Pi levels 

within the MVs as well as in the extracellular spaces (Anderson, 1995; Montessuit et al., 1991; 

Roberts et al., 2007). The ratio between Ca
2+

 and Pi above a certain threshold determines 

hydroxyapetite (Ca10(PO4)5(OH)2) crystal formation within the MVs (Orimo, 2010). Enlarged 

hydroxyapeptite crystals are released into the extracellular space by rupturing MV membranes 

(Balcerzak et al., 2003; Ozawa et al., 2008; Orimo, 2010). The concept of heterogenous nucleation, 

where critical nucleation sites other than calcium phosphate nuclei, such as MVs, aid 

hydroxyapeptite crystal formation, has been proposed as the most probable method of bone 

mineralization (Glimcher, 1981; Golub, 2009). This mechanism requires an organic or inorganic 

nucleation initiation site, which guides the subsequent formation of the inorganic hydroxyapetite 

matrix of bone (Glimcher, 1981; Golub, 2009). Although still a point of contention, it is proposed 

that MVs could most likely serve as such a primary nucleation site (Wuthier, 1989; Boyan et al., 

1990; Anderson, 1995).  
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Mineralization of the ECM is a complex process and although much headway has been made in 

elucidating such mechanisms, much work still needs to be done to better our understanding of this 

biological process.    

 

1.3.1.2.4 Bone lining cells and osteocytes  

Once mature osteoblasts have completed their osteoid deposition cycle, they can undergo a number 

of cellular fates: some undergo programmed cell death (apoptosis), whilst others are either 

transformed into bone lining cells or osteocytes (Jilka et al., 1998; Manolagas, 2000).   

 

Bone lining cells are flat, non-proliferative cells that cover the quiescent bone surfaces, that is, bone 

which is not undergoing formation, nor resorption (Jilka et al., 1998; Marks and Odgren, 2002). Not 

much is known concerning the functions of these cells. However, it has been proposed that bone 

lining cells are able to revert into an osteoblastic phenotype under certain conditions (Dobnig and 

Turner, 1995; Leaffer et al., 1995; Marks and Odgren, 2002). Therefore, bone lining cells could 

possibly serve as a precursor cell reservoir for osteoblasts. Another putative function for bone lining 

cells is the regulation of bone remodeling through BMU activation in response to stimuli from 

osteocytes and hormones (Rodan and Martin, 1981; Matsuo and Irie, 2008; Sims and Gooi, 2008).  

 

Osteocytes are located regularly at sites within the hardened bone matrix or newly deposited osteoid 

in spaces, called lacunae, and canals, referred to as canaliculi (Marks and Odgren, 2002; Knothe 

Tate et al., 2004; Noble, 2008). Osteocytes are the most abundant cell type in bone (Marks and 

Odgren, 2002; Knothe Tate et al., 2004; Noble, 2008). Like bone lining cells, osteocytes are also 

post-mitotic cells and represent the terminal differentiation stage of osteoblasts (Marks and Odgren, 

2002; Noble, 2008). Osteocytes have cytoplasmic/pseudopod-like processes that give them a 

dendritic appearance (Palumbo, 1986; Nijweide et al., 2002). The bodies of osteocytic cells are 

housed within the lacunae, whereas the dendrites are found in the canaliculi (Bonewald, 1999; 

Nijweide et al., 2002). The dendritic protrusions of osteocytes serve as channels for metabolic 

exchange (Baud, 1968; Plotkin et al., 2002; Knothe Tate, 2003). More importantly, they connect 

osteocytes to each other as well as to other bone cells, such as lining cells and osteoblasts (Palumbo 

et al., 1990; Marks and Odgren, 2002; Knothe Tate et al., 2004). Together with the gap junctions 

between adjacent osteocyte processes, these systems form intercellular communication networks 

between osteocytes (Doty, 1981; Knothe Tate, 2003; Knothe Tate et al., 2004). The connection of 

all these bone cells within the lacunocanalicular system in bone is referred to as a functional 

syncytium (Aarden et al., 1994; Nijweide et al., 2002; Knothe Tate, 2003). The lacunocanalicular 
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system, housing the syncytium of gap junctions, is filled with extracellular fluid and various 

proteoglycans (Knothe Tate, 2003). Therefore, the osteocyte syncytium consists of an intracellular 

system of lacuna connected to canaliculi as well as an extracellular network of fluid-saturated 

proteoglycans (Knothe Tate, 2003; Knothe Tate et al., 2004). These dendritic processes also appear 

to directly connect osteocytes with the bone marrow (Kamioka et al., 2001). Therefore, osteocytes 

could possibly function to recruit cells such as osteoclast precursors and MSCs from this 

compartment (Kamioka et al., 2001; Zhao et al., 2002; Heino et al., 2004).  

 

The elucidation of osteocyte function is far from complete. To date, a number of osteocyte 

functions have been proposed, primarily involving the control of bone formation and resorption 

(Noble, 2008). It has been demonstrated that osteocytes regulate bone formation by producing 

factors that inhibit the activity of osteoblasts (Noble, 2008). For example, sclerostin is produced by 

osteocytes and is a negative modulator of osteoblast activity and hence bone formation (van 

Bezooijen et al., 2005). It has also been proposed that osteocytes might support osteoclast 

recruitment and function through a mechanism involving either (i) the loss of anti-resorptive signals 

or (ii) the acquisition of pro-resorptive signals, leading to heightened bone resorption (Noble, 2008). 

Such anti-resorptive factors secreted by osteocytes include oestrogen-stimulated TGF-Osteocytes 

may also increase the expression of endothelial cell nitric oxide synthase (ecNOS) and, 

consequently, the anti-resorptive factor, nitric oxide (NO) (Heino et al., 2002; Loveridge et al., 

2002). In addition, it has also been shown that osteocytes produce factors such as RANKL and M-

SCF that stimulate osteoclast generation from progenitors (Zhao et al., 2002).  Therefore, by 

producing factors that promote osteoclast differentiation and activation, osteocytes could stimulate 

bone resorption. Moreover, osteocyte apoptosis has also been suggested as a mechanism to induce 

osteoclastic resorption (Noble, 2003; Noble, 2008). It has long been proposed that osteocytes 

function as sensors for mechanical strain or increased load as part of the adaptive response of bone 

to maintain bone health (Aarden et al., 1994; Burger and Klein-Nulend, 1999; Knothe Tate et al., 

2004). The mechanisms through which osteocytes execute this function include the production or 

modification of factors such as prostaglandin E2 (PGE2), IGF-1 and Col I as well as mineral 

transport (Lean et al., 1995; Rawlinson et al., 1995; Sun et al., 1995; Ajubi et al., 1996). According 

to Noble (2008), despite osteocytes being the most copious cells in bone, they are the least 

researched. However, research is ongoing to determine the full scope of osteocytes as local 

regulators of bone turnover.  
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1.3.1.3 Bone Remodeling 

Adult bone continuously undergoes remodeling in an asynchronous, cyclic manner throughout the 

skeleton, to maintain a healthy bone structure. Bone remodeling is activated in response to various 

signals. These include calcium imbalances, mechanical stress, fracture repair, bone cell turnover, 

hormones, cytokines and local growth factors (Parfitt, 1994; Datta et al., 2008). Aberrant bone 

remodeling can cause metabolic bone diseases, such as osteopetrosis and osteoporosis (Parfitt, 

1994; Seeman and Delmas, 2006; Sims and Gooi, 2008). Normal bone remodeling requires that the 

delicate balance between bone resorption by osteoclasts and new bone synthesis by osteoblasts is 

sustained. Osteoclasts and osteoblasts form the executors of bone remodeling, known as the basic 

multicellular unit (BMU) (Frost, 1963; Parfitt, 1984; Parfitt, 1994; Buenzli et al., 2010). A fully 

functional BMU consists of a set of osteoclasts at the front, separated by a source of blood supply 

from a set of osteoblasts at the rear, a nerve supply and related extracellular matrix (Parfitt, 1994; 

Jilka, 2003). In addition, BMUs are temporary cellular formations which function as independent 

entities throughout bone remodeling events (Parfitt, 1994). As referred to in section 1.3.1.2.4, 

osteocytes and bone lining cells are also involved in the initiation of bone remodeling (Rodan and 

Martin, 1981; Zhao et al., 2002; Noble, 2003; Matsuo and Irie, 2008).  

 

Bone remodeling is a complex cellular process. In short, once the bone remodeling program is 

initiated, the collagenous membrane of the inner lining of the cortex (called the endosteum) is 

digested by matrix metalloproteinases (MMPs) (Parfitt et al., 1996; Parfitt, 2002). This process is 

followed by mononuclear osteoclast recruitment from the bone marrow, their subsequent fusion to 

form multinuclear osteoclasts, and activation of differentiated osteoclasts (as described in section 

1.3.1.2.1) (Engsig et al., 2000; Teitelbaum, 2000; Sims and Gooi, 2008). Activated osteoclasts then 

break down the underlying bone surfaces and remove the resultant minerals as outlined in section 

1.3.1.2.1 (Baron, 1995; Vaananen and Zhao, 2002; Sims and Gooi, 2008). After the resorption by 

osteoclasts, the resorption pits are cleaned and bone formation starts in the “reversal phase”, which 

involves mononuclear cells, suggested to be either haematopoietic phagocytes or bone lining cells 

(Tran Van et al., 1982; Everts et al., 2002; Sims and Gooi, 2008). This reversal phase concludes the 

resorption process possibly by not only cleaning the resorption pit, but by the modification of the 

bone surface through developing a “reversal line” (Tran Van et al., 1982; Everts et al., 2002). 

Following the “reversal phase”, osteoblasts precursor cells are recruited to the resorption cavity 

from the bone marrow, possibly by factors released during resorption, and these cells are driven to 

expand and differentiate (as stated in sections 1.3.1.2.2 and 1.3.1.2.3). New osteoid, consisting, of 

collagenous and non-collagenous proteins, is then deposited by these osteoblasts in the resorption 
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cavity (see section 1.3.1.2.3.3) (Salo et al., 1997; Nesbitt and Horton, 1997). This extracellular 

matrix eventually becomes calcified to form bone (Balcerzak et al., 2003; Ozawa et al., 2008; 

Orimo, 2010).  

 

The activity of osteoclasts and osteoblasts in the BMU is coupled (Frost, 1964; Parfitt, 1982; Sims 

and Gooi, 2008). This means that the amount of bone replaced by osteoblasts is the same as the 

amount of bone initially removed by osteoclasts (Frost, 1964; Parfitt, 1982; Sims and Gooi, 2008). 

The precise coupling mechanism between the activities of osteoclasts and osteoblasts is not yet fully 

understood. However, it is suggested to involve osteoclast-and osteoblast-derived factors as well as 

cell-cell contact between these cell types (Sims and Gooi, 2008). It was shown that ephrinB2, a 

ligand located on the membrane of osteoclasts, interacts with the corresponding receptor, EphB2, 

found on the surfaces of osteoblasts, to regulate osteoblast differentiation and bone formation (Zhao 

et al., 2006). Moreover, it was also illustrated that if the negative signal comes from the osteoblast, 

osteoclast differentiation is inhibited (Zhao et al., 2006).  

 

The lifespan of osteoclasts and osteoblasts is approximately 2 weeks and 3 months, respectively 

(Manolagas, 2000). An active BMU, however, has an extended lifespan of between 6 and 9 months 

(Manolagas, 2000), as there is cell turnover within the unit. Consequently, the efficient functioning 

of the BMU is dependent on the continuous supply of precursor cells for both osteoclasts and 

osteoblast. Not only is this important for BMU origination (initiation of BMU formation), but also 

for advancement of the BMU on the bone surface. The net amount of functional osteoclasts and 

osteoblasts is thus determined by the constant replenishment of new cells as well as their average 

lifetime within the BMU. This highlights the need for continuous replacement of osteoclasts and 

osteoblasts in the BMU, throughout bone remodeling. Moreover, it has been demonstrated that 

osteoclasts and osteoblasts regulate their own development as well as that of each other, through 

intricately regulated intercellular communication networks. The primary focus of the work 

presented in this thesis is osteoblast development; hence, further discourse will concentrate on the 

signalling pathways regulating the development of osteoblasts.  

 

 

1.4 Signalling pathways regulating osteoblast development 

As stated before, bone homeostasis is controlled by the balance between osteoclastic bone 

resorption and osteoblastic bone formation. Osteoblast precursor cells undergo multiple stages of 

differentiation, coinciding with alterations in gene transcription and appearance of osteoblast-
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related proteins, to ultimately become mature osteoblasts capable of forming bone. In addition, 

osteoblast precursor cells like stromal cells and preosteoblasts, receive certain stimuli to activate or 

inhibit the differentiation program towards a mature phenotype. Extracellular and intracellular 

signals are received by osteoblastic cells through appropriate receptors. These signals are then 

relayed, amplified and integrated via cascades of interacting proteins called signal transduction 

pathways to alter gene and protein expression and metabolism.  

 

A number of protein signal transduction pathways involved in osteoblastic development have been 

characterised. For example, the wingless (wnt)/-catenin pathway (or canonical wnt pathway) has 

been found to, through various mechanisms, be involved in aspects of osteoblast biology for 

instance it (i) regulates stromal cell renewal (Reya and Clevers, 2005), (ii) stimulates preosteoblasts 

proliferation (Bodine et al., 2004), (iii) induces osteoblastogenesis (Bodine et al., 2004; Bennett et 

al., 2005) and (iv) inhibits apoptosis of osteoblasts and osteocytes (Kato et al., 2002). Another 

signalling pathway recognized to modulate osteoblast differentiation is the transforming growth 

factor TGF-BMP/SMAD pathway (Nohe et al., 2003; Nohe et al., 2004), through the 

regulation and interaction with osteoblast-related TFs such as Runx2 (Lee et al., 2000; Yang et al., 

2003; Phimphilai et al., 2006) and Osx (Lee et al., 2003). Moreover, the wnt/-catenin and the 

TGF-BMP/SMAD pathways can also regulate osteoblast development through cross-talk with 

each other (Nakashima et al., 2005; Guo and Wang, 2009) as well as other pathways such as the 

mitogen-activated protein kinase (MAPK) signal transduction pathways (Sowa et al., 2002; Hay et 

al., 2009; Kilian et al., 2010). Three MAPK signalling pathways, namely the c-Jun N-terminal 

kinase/stress-activated protein kinase (JNK/SAPK), p38 MAP kinase and the extracellular signal-

regulated kinase (ERK1/2 ; also known as p44/p42 ERK) signalling cascades, have been 

extensively characterised in numerous cell types and cellular responses (Seger and Krebs, 1995; 

Robinson and Cobb, 1997; Krens et al., 2006; Keshet and Seger, 2010). MAPK signalling pathways 

have been shown to regulate many aspects of osteoblast development (Jaiswal et al., 2000; Suzuki 

et al., 2002; Engelbrecht et al., 2003; Mehrotra et al., 2004; Horsch et al., 2007; Ortuno et al., 

2010). 

 

Findings indicate that p38 MAPK is involved in the regulation of osteoblast differentiation (Suzuki 

et al., 1999; Suzuki et al., 2002; Ortuno et al., 2010) rather than proliferation (Suzuki et al., 2002). 

p38 MAPK was found to facilitate the BMP-2-induced differentiation of MC3T3-E1 preosteoblasts 

through the phosphorylation of the osteoblast-related TF, osterix (Osx) (Ortuno et al., 2010). 

Phosphorylation of Osx led to enhanced recruitment of transcriptional coactivators such as p300 to 
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the promoter region of the BSP gene (Ortuno et al., 2010). Also in MC3T3-E1 preosteoblasts, p38 

MAPK was shown to regulate activity of the bone marker, ALP, after adrenalin and BMP-2 

stimulation (Suzuki et al., 1999; Guicheux et al., 2003). In addition, results indicate that p38 MAPK 

is involved in the migration of MC3T3-E1 preosteoblasts, a response which is essential for bone 

remodeling and fracture repair (Mehrotra et al., 2004). Furthermore, p38 MAPK was found to 

regulate the Ca
2+

-stress response elicited by the bone matrix protein, dentin matrix protein (DMP), 

to stimulate osteoblast-specific gene expression and differentiation (Eapen et al., 2010).  

 

Although some findings show that JNK could be involved in the proliferation of osteoblastic cells 

(Mehrotra et al., 2004; Suzuki et al., 2002), other results indicate that JNK is involved in the 

regulation of late differentiation responses in osteoblasts (Guicheux et al., 2003; Matsuguchi et al., 

2009). JNK was shown to play a role in the expression of late osteoblastic markers such as OCN 

and BSP in response to differentiation stimuli such as BMP-2, ascorbic acid /-Glycerophosphate 

and fetal calf serum (Suzuki et al., 2002; Guicheux et al., 2003; Matsuguchi et al., 2009). Therefore, 

it appears that JNK regulates the later stages of osteogenesis. A role for JNK in the PDGF-induced 

migration of MC3T3-E1 has also demonstrated (Mehrotra et al., 2004).  

 

The formation of microvasculature during bone remodeling is essential for processes such as 

osteoblast recruitment, growth factor synthesis and delivery as well as coupling of bone resorption 

and formation (Parfitt, 2000). JNK has been shown to regulate the FGF2-stimulated synthesis of 

vascular endothelial growth factor (VEGF), which promoted angiogenesis (Kato et al., 2010). 

Moreover, it was shown that JNK regulates the TGF-suppression of the ECM protein, 

nephronectin, which is an adhesion molecule involved in osteoblast differentiation (Miyazono et al., 

2007). This is in accordance with the findings of Jaiswal et al. (2000), where JNK activation 

occurred 13 to 17 days into the differentiation program of hMSCs and was associated with ECM 

production and Ca
2+

 deposition.  

 

Despite findings that these individual MAPKs have distinct roles (Suzuki et al., 2002; Guicheux et 

al., 2003), evidence indicates that p38, JNK and ERK1/2 MAPKs are also involved in crosstalk to 

regulate osteoblast differentiation (Sowa et al., 2002; Kato et al., 2010; Kilian et al., 2010). 

However, the precise role of ERK1/2 in osteoblast development is controversial (Schindeler and 

Little, 2006). Several studies show that ERK1/2 stimulates osteoblast differentiation (Lai et al., 

2001; Xiao et al., 2002; Kaiser and Chandrasekhar, 2003; Miraoui et al., 2009; Peng et al., 2009), 

whereas others demonstrate that this pathway is inhibitory (Chaudhary and Avioli, 2000; Higuchi et 

al., 2002; Kono et al., 2007). Further discourse will concentrate on the ERK1/2 signalling pathway 
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and how ERK 1/2 is proposed to regulate osteoblast development. The regulation of ERK1/2 

activity will be discussed, including the regulation of ERK1/2 dephosphorylation by phosphatases 

such as MAPK phosphatase-1 (MKP-1).   

 

1.4.1 The ERK1/2 signalling pathway 

Activation of the ERK1/2 signalling cascade occurs when ligands such GFs (EGF, IGF) (Marshall, 

1995; Zhang et al., 1995; Vincent and Feldman, 2002; Qiao et al., 2004) or differentiating factors 

(for instance BMP-2 and integrin 21) (Higuchi et al., 2002; Xiao et al., 2002; Barberis et al., 

2000), bind to the corresponding receptors, resulting in receptor activation. ERK1/2 is activated in a 

signalling cascade by receptor tyrosine kinases (RTKs) (van der Geer et al., 1994; Weiss and 

Schlessinger, 1998) and by G-coupled protein receptors (GPCRs) (Gudermann et al., 1997; 

Gudermann et al., 2000; van et al., 1996) as depicted in Fig.1.5. Following RTK activation, adaptor 

proteins such Grb2 bind to the activated RTKs and interact with the guanine exchange factor, Sos, 

which is consequently recruited to the plasma membrane (Fig. 1.5) (Egan et al., 1993; Li et al., 

1993; Buday and Downward, 1993; Langlois et al., 1998; Skolnik et al., 1993). Here the Grb2-Sos 

complex drives the exchange of GDP for GTP on the small GTP binding protein, Ras, thereby 

leading to Ras activation (Fig. 1.5) (Waters et al., 1995; Aronheim et al., 1994; Avruch et al., 1994). 

Activated Ras then binds to and consequently activates the mitogen-activated protein kinase kinase 

kinase (MAP3K), Raf, which then phosphorylates and thereby activates the mitogen-activated 

protein kinase kinase (MAP2K), MEK1/2, by phosphorylating the serine residue in the MEK 

activation loop (Fig. 1.5) (Kyriakis et al., 1992; Moodie et al., 1993; Vojtek et al., 1993; Avruch et 

al., 1994; Zheng and Guan, 1994). Upon activation, MEK phosphorylates the MAPK, ERK1/2, on 

adjacent threonine and tyrosine residues in the ERK1/2 activation loop, leading to ERK1/2 

activation and nuclear translocation (Fig. 1.5) (Crews et al., 1991; Crews and Erikson, 1992; Crews 

et al., 1992). In turn, activated ERK1/2 can phosphorylate and regulate cytoplasmic-, membrane-

associated-, and nuclear proteins such as p70RSK (p70 ribosomal S6 kinase), EGF receptor and 

numerous transcription factors, such as c-myc and Ets1 and Elk-1 (Murphy et al., 2002; Zhang and 

Liu, 2002; Murphy and Blenis, 2006). These ERK1/2 targets then regulate the downstream cellular 

and molecular events to culminate in the appropriate metabolic and physiological responses, such as 

proliferation, differentiation and survival.                                  
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Figure 1.5: The ERK 1/2 signalling pathway.  

Activation of the ERK1/2 pathway via RTKs and GPCRs is illustrated. For further details refer to text. Abbreviations: 

cAMP cyclic adenosine monophosphate; ERK1/2 extracellular signal-regulated kinase; GPCR G-coupled protein 

receptors; MKP-1 MAPK phosphatase; RTK receptor tyrosine kinase; Sos son-of-sevenless  

 

1.4.2 Role of the ERK1/2 signalling pathway in osteoblast development 

The ERK1/2 pathway is considered to be the major regulator of proliferative responses in many cell 

types in response to growth factors and mitogens (Zhang and Liu, 2002; Katz et al., 2007; Assoian 

and Schwartz, 2001). With regard to osteoblasts, studies using pharmacological inhibitors of the 

ERK1/2, JNK and p38 MAPK pathways demonstrated that ERK1/2 was the main pathway 

regulating proliferation in immortalised human (MG-63) and mouse preosteoblast (MBA-15.4 and 

MC3T3-E1) cell lines (Horsch et al., 2007; Mehrotra et al., 2004). However, the role of ERK1/2 in 

osteogenesis is contentious; as findings that ERK1/2 acts as an antagonist of osteogenesis have also 

been reported (Schindeler and Little, 2006).  It has been shown that elevated ERK1/2 signalling, as 
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elicited by concomitant stimulation with GFs (EGF and FGF) and osteogenic factors (ascorbic acid, 

-glycerophosphate and BMP-2), prevented the osteogenic differentiation of several osteoblastic 

cell lines including MC 3T3-E1, MG 63 and bone marrow cells (Higuchi et al., 2002; Xiao et al., 

2002). Therefore, increased GF-induced ERK1/2 activity can be associated with decreased 

osteoblast differentiation. Furthermore, inhibition of the ERK1/2 pathway by using pharmacological 

inhibitors such as U0126 and PD98059 resulted in improved differentiation of osteoblasts in culture 

(Higuchi et al., 2002; Xiao et al., 2002).  

 

However, there is growing support for the theory that ERK1/2 is an agonist of osteoblast 

differentiation (Lai et al., 2001; Xiao et al., 2002; Kaiser and Chandrasekhar, 2003; Miraoui et al., 

2009; Peng et al., 2009). The treatment of human MSCs with osteogenic stimulants like ascorbic 

acid and -Glycerophosphate resulted in osteogenic differentiation of these cells which coincided 

with the sustained activation of ERK1/2 (Jaiswal et al., 2000). In C2C12 mouse myoblasts and 

MC3T3-E1 preosteoblasts, the activation of ERK1/2 was shown to be essential for BMP-2 

stimulated osteoblastic differentiation (Gallea et al., 2001; Higuchi et al., 2002). Similar in vitro 

studies showed that constitutive expression of MEK1, the kinase upstream of ERK1, expedited the 

differentiation of murine calvarial cells and augmented in vivo bone development in mice, whilst 

dominant negative MEK1 impeded bone formation (Ge et al., 2007). Reports also show that 

ERK1/2 regulated the BMP-2-stimulated induction of osteoblast-specific genes such as Runx2, 

OCN and BSP as well as osteogenesis of MC3T3-E1 cells (Xiao et al., 2002). Moreover, it was 

reported that ERK1/2 induced osteogenesis through the phosphorylation of the master regulator of 

osteoblast differentiation, Runx2 (Ge et al., 2007; Xiao et al., 2002). Furthermore, a role for 

ERK1/2 in the expression of 1, v3 and v5 integrins and adherence of human osteoblasts to 

the ECM has been described (Lai et al., 2001). However, it has been shown that ERK1/2 is involved 

in the downregulation of the type I procollagen gene in response to FGF-2, PDGF- (the 

homodimer of PDGF- subunit) and okadaic acid (a phosphoserine/threonine-specific protein 

phosphatase inhibitor and ERK1/2 activator) (Chaudhary and Avioli, 2000). However, it has also 

been demonstrated that ERK1/2 is a negative regulator of matrix mineralization in MC3T3-E1 

preosteoblasts as well as in mice (Kono et al., 2007).  

 

In conclusion, it therefore appears that ERK1/2 regulates early events in the osteogenic 

differentiation program such as proliferation, Runx2 transcription and migration and adherence of 

osteoblastic cells to the ECM, but inhibits later differentiation events such ECM synthesis and 

mineralisation.   
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1.4.3 Regulation of ERK1/2 activity 

1.4.3.1 Proliferation versus differentiation 

The regulation of cell proliferation by ERK1/2 is multifaceted and intricate. Most of the work to 

elucidate ERK1/2 function in proliferation has been done on cells such as PC12 cells 

(pheochromocytoma cells) and fibroblasts (Dobrowolski et al., 1994; Gotoh et al., 1990; Nguyen et 

al., 1993; Marshall, 1995; Balmanno and Cook, 1999; Ebisuya et al., 2005). Not only is ERK1/2 

activation a requirement for cell cycle progression and hence, cell proliferation, but the duration, 

magnitude and subcellular location of the ERK1/2 signal are also determinants of cellular outcome 

(Marshall, 1995; Ebisuya et al., 2005). An example of how the duration of ERK activation affects 

cellular fate is evident when quiescent fibroblasts are stimulated with thrombin or PDGF (platelet-

derived growth factor); a sustained rather than transient activation of ERK1/2 is necessary for S 

phase entry and proliferation (Dobrowolski et al., 1994; Balmanno and Cook, 1999). In addition, 

EGF and thrombin-mimicking peptide (TMP) elicits transient ERK1/2 activation, which is 

insufficient for S phase entry and thereby inhibits cell cycle progression and proliferation (Vouret-

Craviari et al., 1993; Murphy et al., 2002). In contrast to fibroblasts, when PC12 cells are treated 

with NGF (nerve growth factor) ERK activation is sustained and results in neuronal differentiation, 

whereas when they are treated with EGF, transient ERK activation is elicited, causing cells to 

proliferate (Gotoh et al., 1990; Nguyen et al., 1993; Marshall, 1995; Ebisuya et al., 2005). 

 

Cell fate is also determined by the level of ERK1/2 activity (Shaul and Seger, 2007a). Modest 

ERK1/2 activation induces the expression of cyclin D1 and cyclin E, leading to the formation and 

accumulation of the active CDK complexes needed for cell cycle progression (Ebisuya et al., 2005). 

On the contrary, various studies have shown that strong ERK1/2 activation results in cell cycle 

arrest, rather than cell cycle progression (Sewing et al., 1997; Woods et al., 1997; Roovers and 

Assoian, 2000). A possible reason for this phenomenon is that elevated levels of ERK1/2 activity 

regulate the transcription and post-transcriptional modification of the CDK inhibitor, p21
waf

 

(Coleman et al., 2003). The induction of p21
waf 

decreases CDK activity, which ultimately causes G1 

arrest (Coleman et al., 2003).  

 

The subcellular location of ERK1/2 also contributes to the cellular outcome, as ERK1/2 can move 

between the cytoplasm and nucleus. In quiescent cells, ERK1/2 is mostly found in the cytoplasm 

(Ebisuya et al., 2005; Shaul and Seger, 2007b; Yao and Seger, 2009). Although it has been reported 

that ERK1/2 can bind to the nuclear pore complex , ERK1/2 is mostly retained in the cytoplasm 

through binding to either MEK or MKP-3 (MAPK phosphatase 3) (Fukuda et al., 1996; 
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Matsubayashi et al., 2001; Whitehurst et al., 2002; Karlsson et al., 2004). Activated ERK1/2 

dissociates from MEK or MKP-1, translocates to the nucleus and phosphorylates its nuclear targets, 

such as the transcription factors Elk-1 (Janknecht et al., 1993; Gille et al., 1995) and Ets1 (Yang et 

al., 1996; Slupsky et al., 1998; Foulds et al., 2004). It has been shown that nuclear translocation of 

ERK1/2 is essential for proliferation of fibroblasts and differentiation of PC12 cells (Robinson et 

al., 1998; Brunet et al., 1999).  

 

Various mechanisms regulating the duration, levels as well as cellular compartmentalisation of 

ERK1/2 have been proposed (Marshall, 1995; Ebisuya et al., 2005). However, it is clear that 

different mitogens elicit different ERK1/2 activation profiles. In addition, these diverse ERK1/2 

induction profiles are important in the determination of the cellular outcome elicited by these 

factors.   

 

1.4.3.2 Phosphatase regulation of ERK1/2 activity 

As cited before, the duration and magnitude of the ERK1/2 signal, as well as sub-cellular 

compartmentalisation of activated ERK1/2 are determinants of the cellular outcomes following 

specific stimulation (Marshall, 1995; Ebisuya et al., 2005). Therefore, attenuation of ERK1/2 

activity will impede these cellular outcomes. Inactivation of activated ERK1/2, like other MAPKs, 

such as JNK and p38 MAPK, occurs through dephosphorylation of specific amino acids in the 

activation loops (Hunter, 1995; Keyse, 2000; Saxena and Mustelin, 2000; Keyse, 2008b). In the 

case of activated ERK1/2, the dephosphorylation of tyrosine and threonine residues in the ERK 

activation loop leads to inactivation of this particular MAPK (Hunter, 1995; Keyse, 2000; Saxena 

and Mustelin, 2000; Keyse, 2008b). This removal of phosphates from specific residues is catalysed 

by protein phosphatases.  

 

ERK1/2 dephosphorylation, and consequent inactivation, is catalysed by at least two classes of 

phosphatase enzymes: serine/threonine phosphatases such as PP2A and PP2C (Sontag et al., 1993; 

Wang et al., 2003; Friedman and Perrimon, 2006) or protein tyrosine phosphatases (PTPs) such as 

SHP-1 and SHP-2 (Shi et al., 2000; Zhang et al., 2004; Nakata et al., 2011). In addition, a subclass 

of PTPs, known as the dual-specificity phosphatases (DUSPs), which include the MAP kinase 

phosphatases (MKPs), is also capable of phosphate removal from activated ERK1/2 (Owens and 

Keyse, 2007; Keyse, 2008b; Patterson et al., 2009). These MKPs particularly dephosphorylate both 

threonine and tyrosine residues in the ERK1/2 activation loop (Owens and Keyse, 2007; Keyse, 

2008b; Patterson et al., 2009).  
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MKPs are capable of dephosphorylating p38 MAPK, JNK and ERK1/2 (Owens and Keyse, 2007; 

Keyse, 2008b; Patterson et al., 2009). However, although this dual-specificity phosphatase subclass 

is able to remove phosphates from the major MAPKs, MKPs vary in substrate specificity for 

different MAPKs (Owens and Keyse, 2007; Keyse, 2008b; Patterson et al., 2009). MKP isotypes 

also differ in tissue specificity, sub-cellular compartmentalisation and induction by extracellular 

stimuli (Keyse, 1998; Reffas, 2000). For example, MKP-3 is a cytoplasmic MKP which displays 

preference to ERK1/2 and ERK5 as substrates (Groom et al., 1996; Mourey et al., 1996; Muda et 

al., 1996a; Muda et al., 1996b). Moreover, MKP-3 shuttles between the cytoplasm and the nucleus 

and also serves as an anchor for ERK1/2 in the cytoplasm (Karlsson et al., 2004). It has, therefore, 

been suggested that MKP-3 may play a part in the regulation of the cytoplasmic localisation of 

ERK1/2 (Karlsson et al., 2004).  

 

Dissimilar to MKP-3, MKP-1 is a nuclear MKP, which was first identified as an immediate early 

gene with a rapid induction pattern elicited by stimulation with growth factors (Charles et al., 1993; 

Noguchi et al., 1993), heat shock (Keyse and Emslie, 1992) and oxidative stress (Keyse and Emslie, 

1992). In early in vitro studies done in fibroblasts, it was demonstrated that the temporal induction 

profile of MKP-1 after stimulation was similar to that of ERK1/2 (Alessi et al., 1993; Sun et al., 

1993; Zheng and Guan, 1993). These in vitro studies showed that purified recombinant MKP-1 

dephosphorylated and therefore attenuated ERK1/2 (Alessi et al., 1993; Sun et al., 1993; Zheng and 

Guan, 1993). However, the cellular regulatory role of MKP-1 appears to be complex. It was later 

demonstrated that MKP-1 exhibited an enhanced specificity towards JNK and p38 MAPK, instead 

of ERK1/2 under physiological conditions in T-cells (Chu et al., 1996; Dorfman et al., 1996; 

Franklin and Kraft, 1997). In addition, findings also revealed that MKP-1 inactivated JNK and p38 

MAPK more efficiently than ERK1/2 in vitro (Chu et al., 1996; Dorfman et al., 1996; Franklin and 

Kraft, 1997). Furthermore, it was shown that MKP-1 deficient mice developed normally and are 

fertile (Dorfman et al., 1996). Moreover, ERK1/2 activation, cell growth and c-fos expression in 

fibroblasts from these mice lacking MKP-1 were unaltered (Dorfman et al., 1996). This is in 

contradiction to the general acceptance that MKP-1 is considered to be the primary phosphatase that 

deactivates ERK1/2 in immortalised preosteoblasts (see section 1.4.3.4) (Engelbrecht et al., 2003; 

Horsch et al., 2007). 
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1.4.3.3 Regulation of MKP-1 activity 

MKP-1 expression and activity are tightly regulated at multiple levels. MKP-1 mRNA expression is 

up-regulated by growth factors (Charles et al., 1993; Noguchi et al., 1993; Engelbrecht et al., 2003), 

hormones (Clark, 2003; Sarkozi et al., 2007; Datta et al., 2010), oxidative stress (Keyse and Emslie, 

1992; Tournier et al., 1997; Xu et al., 2004), hypoxia (Laderoute et al., 1999; Seta et al., 2001) and 

heat stress (Keyse and Emslie, 1992; Gorostizaga et al., 2004; Gorostizaga et al., 2005). Induction 

of MKP-1 expression after stimulation with growth factors, heat shock and oxidative stress is a 

result of ERK1/2 activation (Keyse and Emslie, 1992; Charles et al., 1993; Noguchi et al., 1993). In 

addition, transcription factors such as AP-1 (c-Fos, c-Jun and ATF2) (Laderoute et al., 1999; 

Casals-Casas et al., 2009; Kristiansen et al., 2010) and NF-B (Wang et al., 2008) have been shown 

to associate with the MKP-1 promoter to induce MKP-1 transcription. Importantly, MKP-1 gene 

expression is also under control of the ligand-activated GC receptor (Kassel et al., 2001; Shipp et 

al., 2010). MKP-1 has thus emerged as a major molecular target of GCs in many cell types (Kassel 

et al., 2001; Roger et al., 2005 and Nicoletti-Carvalho et al., 2010). As with many genes, it has been 

found that the phosphorylation and acetylation of histone H3 leads to chromatin changes at the 

MKP-1 locus, resulting in heightened association of RNA polymerase II to the MKP-1 gene 

promoter, thereby increasing gene transcription (Li et al., 2001).  

 

MKP-1 mRNA is regulated at a post-transcriptional stage by binding of various RNA-binding 

proteins such as embryonic lethal abnormal vision (ELAV) Hu-antigen R (HuR) (Kuwano et al., 

2008; Lin et al., 2008), TTP (tristetraprolin or zinc finger protein 36) (Lin et al., 2008) and nuclear 

factor 90 (NF90) (Kuwano et al., 2008) resulting in increased mRNA stability. Moreover, HuR and 

NF90 have opposing effects on MKP-1 mRNA translation: whereas HuR binding leads to increased 

translation, NF90 is associated with translational repression of the MKP-1 transcript (Kuwano et al., 

2008). Binding to substrates, such as ERK1/2, via the MAPK-binding (MKB) domain, enhances the 

catalytic activity of MKP-1 (Slack et al., 2001). The modulation of MKP-1 protein levels plays an 

important role in the sustained activation of ERK1/2 (Lin et al., 2003). It is important to note that 

the MKP-1 protein is directly phosphorylated by ERK1/2 (Brondello et al., 1999) and indirectly by 

p38 MAPK via MAPKAP (MAPK activating protein) kinase (Hu et al., 2007). This consequently 

leads to the stabilisation of the MKP-1 protein, which is then protected against ubiquitin-mediated 

degradation (Brondello et al., 1999; Hu et al., 2007). In addition, MKP-1 mRNA is also modulated 

post-transcriptionally by microRNA (miRNA) (Zhu et al., 2010). It was recently shown in 

macrophages that MKP-1 is a direct target of miRNA-101 (Zhu et al., 2010). However, this has not 

yet been tested in osteoblastic cells.  
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This tight, multi-tiered control of MKP-1 expression and activity emphasises the intricacy of this 

dual-specificity phosphatase in the regulation of MAPK signalling. Furthermore, it also highlights 

that MKP-1 should be expressed at the appropriate levels and time in response to the specific 

stimuli.  

 

1.4.3.4 The action of MKP-1 in osteoblasts  

Overexpression of MKP-1 resulted in the inhibition of immortalised preosteoblast proliferation 

(Horsch et al., 2007). In the preosteoblast cell lines, murine MBA-15.4 and human MG-63, it has 

been shown that Dex up-regulated MKP-1 mRNA expression by 10-fold within 30 minutes, 

remaining at elevated levels for up to 24 hours (Engelbrecht et al., 2003). Moreover, a correlation 

was found between Dex-induced MKP-1 protein expression and attenuation of ERK1/2 

phosphorylation after mitogen stimulation (Engelbrecht et al., 2003; Horsch et al., 2007). Results of 

an in vitro phosphatase assay illustrated that MKP-1 dephosphorylates mitogen-induced ERK1/2 

and that ERK1/2, not JNK or p38 MAPK, regulates immortalised preosteoblast proliferation 

(Horsch et al., 2007). Therefore, these findings offer a possible mechanism for the modulation of 

the proliferation of osteoblasts. However, very little is known about the effects of GCs on the 

proliferation of primary osteoblast precursor cells, such as MSCs and early preosteoblasts, by GCs.  

  

1.5 Effects of GCs on bone formation and bone homeostasis 

The naturally occurring GC, cortisol, regulates a number of physiological processes, such as 

metabolism (glucose, protein and fat), stress reactions, immune responses (anti-inflammatory and 

immunosuppressive) as well as bone formation (Schoneveld et al., 2004; McEwen, 2008; Chrousos 

and Kino, 2009). However, these responses are elicited by low, physiological levels of cortisol 

(McEwen, 2008; Chrousos and Kino, 2009). In contrast, continuous, elevated levels of endogenous 

GCs, such as cortisol, may lead to pathophysiologic conditions such as hypercorticism; as in the 

case of Cushing‟s syndrome (Cushing, 1994; Mancini et al., 2004; Kaltsas and Makras, 2010). 

Severe osteoporosis is a secondary clinical consequence of such hypercorticism (Cushing, 1994; 

Mancini et al., 2004; Kaltsas and Makras, 2010).  

 

A variety of synthetic GCs have been developed that mimic the actions of endogenous GCs 

(Vayssiere et al., 1997; Newton, 2000; Simons, Jr., 2008). These include short-acting GCs such as 

hydrocortisone and cortisone, intermediate-acting GCs, such as prednisone and prednisolone and 

long-acting GCs, such as dexamethasone and betamethasone (Zoorob and Cender, 1998; Axelford, 
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2001). Similar to high levels of endogenous cortisol, these GC derivatives also have adverse effects 

on the body at high doses (Canalis, 1996; Canalis and Giustina, 2001; Dore, 2010). The long term 

exposure to synthetic GCs also results in pathophysiologic conditions such as osteoporosis (Canalis, 

1996; Canalis and Giustina, 2001; Dore, 2010). As stated previously, the incidence of GCIO is 

rapidly rising, possibly due to increased prescription and use of synthetic GCs to treat numerous 

pathophysiologic conditions such pulmonary diseases, rheumatologic disorders and inflammatory 

diseases (Dore, 2010; Cohen and Adachi, 2004).  

 

1.5.1 Synthesis of endogenous GCs 

Endogenous GCs, such as cortisol, are synthesised in the adrenal glands and expression is regulated 

by the hypothalamic-pituitary-adrenal (HPA) axis (Chrousos, 1995; Newton, 2000): the 

hypothalamus is stimulated by conditions such as inflammation, pain and stress to release 

corticotrophic releasing hormone (CRH), which in turn stimulates the pituitary gland to synthesise 

and release adrenocorticotropic hormone (ACTH) (Chrousos, 1995; Newton, 2000). ACTH then 

provokes the adrenal cortex to produce GCs such as cortisol (Chrousos, 1995; Newton, 2000). 

Derived from cholesterol, GCs are lipophylic and are thus able to cross the plasma membrane of 

cells.  

 

1.5.2 The mechanism of action of GCs 

The action of GCs is predominantly mediated by the glucocorticoid receptor (GR), belonging to the 

nuclear receptor family, but is retained as a multi-protein complex in the cytoplasm (Scherrer et al., 

1990; Hutchison et al., 1992; Hutchison et al., 1994; Newton, 2000). This modular protein complex 

consists of two heat shock protein 90 (Hsp90) molecules and other proteins acting as molecular 

chaperones and co-chaperones, which are dissociated after ligand binding (Scherrer et al., 1990; 

Hutchison et al., 1992; Hutchison et al., 1994; Newton, 2000). The cytoplasmic retention of the GR 

is terminated only after the ligand has diffused through the plasmamembrane and bound to the 

receptor, after which the ligand-receptor (GC-GR) complex translocates to the nucleus to effect 

changes in gene expression of GC-responsive genes (Newton, 2000; Schoneveld et al., 2004). The 

GC-GR complex binds to regions known as GC response elements or GREs in GC-responsive 

genes as homodimers and only after dimerisation of two GC-GR complexes (Newton, 2000; 

Schoneveld et al., 2004). Transactivation or transrepression of the gene then occurs (Newton, 2000; 

Schoneveld et al., 2004).  
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At least four types of GREs have been identified that mediate the GC transcriptional regulation: 

simple GREs and GRE half sites (GRE1/2s), which are involved in activation of gene expression, 

negative GRE (nGRE) that repress gene transcription and tethering GRE which has a dual inhibition 

or activation function in gene expression (Sakai et al., 1988; Schoneveld et al., 2004). These direct 

actions of GCs on gene expression are referred to as the genomic effects of GCs (Cato et al., 2002; 

Makara and Haller, 2001). Another mode of genomic effect of GCs have been described which does 

not involve DNA-protein interaction, but rather protein-protein interactions with proteins such as 

TFs, for example AP-1 (activating protein-1) (Cato et al., 1992; Konig et al., 1992) or NF-De 

Bosscher et al.. The genomic effects of GCs are proposed to take approximately 30 minutes 

to 1 hour for initiation, but may last many hours, even days (Makara and Haller, 2001; Cato et al., 

2002). However, GCs may have more rapid effects, which occur within a few seconds to minutes 

and are referred to as non-genomic effects (Croxtall et al., 2000; Liu et al., 2005). The responses 

elicited through this GC mechanism of action are insensitive to transcriptional inhibitors and are 

thus unlikely to be due to a principal transcription mechanism (Croxtall et al., 2000).  It has been 

reported that the non-genomic effects of GCs may be mediated, at least in part, by a membrane-

associated GR (Chen et al., 1999; Gametchu et al., 1993; Buttgereit et al., 2004). The described 

non-genomic effects of GCs include activation of phosphatidylinositol 3-kinase (PI3K) (Hafezi-

Moghadam et al., 2002), MAPKs (p38, JNK and ERK1/2) (Caelles et al., 1997; Qiu et al., 2001; Li, 

2001; Caelles et al., 2002) and c-src (Croxtall et al., 2000; Wong et al., 2002).  

 

GCs action can be regulated at a pre-receptor level and involve the activation or inactivation of the 

circulating GC by target tissues or cells and is catalysed by two isoforms of 11-hydroxysteroid 

dehydrogenase (11-HSD) (Stewart and Krozowski, 1999). The type I isoform, 11-HSD1, mainly 

catalyses the formation of the active cortisol in man and is found in tissues that express high levels 

of the GR, such as the liver and adipose tissue (Tannin et al., 1991). It appears that 11-HSD1 

functions to increase the concentration of cortisol in these tissues (Tannin et al., 1991). In contrast, 

the 11-HSD2 isoform converts active cortisol into inactive cortisone (Albiston et al., 1995). 11-

HSD2 is mainly located in tissues with high levels of mineralocorticoid receptor (MR) such as the 

kidney and colon, as GCs can bind to the MR with the same specificity as aldosterone and the 

function of 11-HSD2 is to prevent the binding of cortisol to the MR (Albiston et al., 1995).  

GCs regulate diverse cellular functions such as bone formation (remodeling), and also regulate cell 

proliferation and differentiation, including that of osteoblasts (Bellows et al., 1990; Stein and Lian, 

1993; Eijken et al., 2006). The effects of GCs on bone homeostasis are discussed next and will 

include a discussion on the role of GCs in osteoblast development.  
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1.5.3 Effects of GCs on bone homeostasis 

In an epidemiological study, van Staa et al. (2002) demonstrated that the dose and duration of 

exogenous GCs treatment of patients led to changes in BMD that was accompanied by the increase 

incidence of bone fractures. The fracture risk, however, was decreased with cessation of GC use 

(van Staa et al., 2002). It was proposed that GCs targeted the bone architecture, rather than BMD, 

because fractures still occurred at BMDs that were considered relatively normal (van Staa et al., 

2002). The micro-architecture of bone ensures maximal strength to facilitate the supportive and 

structural functions of bone. GCs influence remodelling of this architecture at several levels, 

leading to altered bone resorption by osteoclasts as well as bone formation by osteoblasts. This 

ultimately leads to a disturbance of bone homeostasis and bone loss as in the case of osteoporosis. 

Moreover, GCs affect bone remodelling through both indirect and direct actions.  

  

1.5.3.1 Indirect actions of GCs on bone remodelling 

GCs act ubiquitously in the body and therefore can affect several systems, including those 

regulating bone remodeling. For example, prednisone inhibits the secretion of growth hormone by 

the pituitary gland in response to GH-releasing hormone (Kaufmann et al., 1988). This affects the 

growth of a multitude of cell types which mitotically respond to GH. GCs also negatively regulate 

other hormones that are secreted by the pituitary gland, such as ACTH (Dallman et al., 1987; 

Antoni and Dayanithi, 1990; Clark et al., 1990), luteinizing hormone (LH) (Sakakura et al., 1975; 

D'Agostino et al., 1990) and follicle-stimulating hormone (FSH) (Hsueh and Erickson, 1978; 

D'Agostino et al., 1990). In addition, GCs inhibit the synthesis of oestrogen and testosterone by the 

gonads (Manelli and Giustina, 2000; Boling, 2004). Furthermore, GCs affect calcium and 

phosphorous transport, parathyroid function and vitamin D metabolism. Patients that were subjected 

to supra-physiological doses of GCs exhibit impaired gastrointestinal absorption of calcium, 

increase renal excretion of calcium and phosphorous and elevated serum levels of PTH (Luckert 

and Raisz, 1990; Baxter, 2000). Therefore, the impairment of the synthesis and secretion of these 

hormones, although indirectly, contribute to the catabolic effect of GCs on bone. However, 

predominantly, GCs exert direct effects on bone, through affecting the cells responsible for bone 

homeostasis.  

 

1.5.3.2 Effects of GCs on osteoclasts 

GCs have multiple, direct actions on osteoclasts too, by mechanisms which are not yet fully 

understood. It was initially postulated that GCs increase osteoclast function, since GCs stimulated 
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the expression of the osteoclast differentiation factors, RANKL and M-CSF, but inhibited the 

production of the decoy soluble RANKL receptor, OPG, by osteoblasts (Rubin et al., 1998; 

Hofbauer et al., 1999). Histomorphometric data shows that bone formation, as well as resorption, 

was affected in patients treated with GCs (Prummel et al., 1991; Weinstein, 2001). Later studies 

showed that Dex repressed the development of TRAP-positive multinucleated osteoclasts through 

the down-regulation of 3 integrin (Kim et al., 2006b). However, low levels of Dex have also been 

shown to be stimulatory to osteoclastogenesis, possibly through down-regulating factors that is 

inhibitory to osteoclast formation such as interferon– (IFN) (Takuma et al., 2003). This could 

account for the increase in osteoclast numbers at the onset of GC-induced bone loss (Takuma et al., 

2003). In addition, GCs could modulate osteoclast function via elevated recruitment or activation of 

quiescent pre-osteoclasts (Defranco et al., 1992). Contrary to this, in vitro as well as in vivo 

evidence show that GCs decrease the number of osteoclast progenitor cells, whilst promoting the 

survival of mature osteoclasts (Weinstein et al., 2002; Jia et al., 2006; Kim et al., 2006a).  It was 

found that GCs inhibit the osteoclastic cytoskeletal reorganisation, essential for osteoclast function, 

through attenuating the activation of the guanine exchange factor, Vav3 (Kim et al., 2006a). This 

then leads to the inhibition of the activation of the small GTPase, Rac, an essential factor for the 

rearrangement of the cytoskeleton (Kim et al., 2006a). Moreover, GCs were found to repress the 

stability and distribution of osteoclast microtubules, which are required for the organisation of the 

osteoclastic cytoskeleton (Kim, 2010). Therefore, although controversial, it appears that GCs may 

inhibit the resorptive function of osteoclasts through several mechanisms. It has also been proposed 

that, in relation to bone remodelling, decreased bone resorption, caused by excess GCs, may 

inadvertently result in decreased recruitment and activation of osteoblasts, thus leading to reduced 

bone formation (Kim, 2010).  

 

1.5.3.3 GC effects on MSCs, osteoblasts and osteocytes 

Low levels of GCs are needed for the differentiation of osteoblast progenitor cells into mature 

osteoblasts for normal bone maintenance (Pockwinse et al., 1995; Chang et al., 2006; Kalak et al., 

2009). GCs, at physiological concentrations induce the expression of certain osteoblast-specific 

proteins such as alkaline phosphatase, osteocalcin and osteopontin (Subramaniam et al., 1992; 

Pockwinse et al., 1995). Contrary to this, higher doses and sustained use of GCs have detrimental 

effects on osteoblastic bone formation (Chevalley et al., 1996; Engelbrecht et al., 2003; Canalis et 

al., 2007; Kalak et al., 2009). GCs affect osteoblast development and function in a stage-specific 

manner (Pockwinse et al., 1995; Ishida and Heersche, 1998; Smith et al., 2000; Pierotti et al., 2008). 

Findings show that osteoblasts further down the differentiation pathway are less sensitive to GCs 
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than immature osteoblasts (McCulloch and Tenenbaum, 1986; Tenenbaum and Heersche, 1986; 

Jonsson et al., 1997; Engelbrecht et al., 2003).  

 

Numerous studies found that GCs decrease the proliferation of MSCs, the progenitor cells of 

osteoblasts (Fried et al., 1993; Fried and Benayahu, 1996; Shur et al., 2005; Akavia et al., 2006; 

Chang et al., 2006). Moreover, findings show that GCs increased the commitment of these MSCs to 

the osteoblastic lineage (Cooper et al., 1999; Beloti and Rosa, 2005). The lineage commitment was 

associated with the increased expression of osteoblastic markers such as alkaline phosphatase, 

(Fried and Benayahu, 1996; Akavia et al., 2006; Chang et al., 2006). FHL2 (Four and half LIM 

protein 2) is a LIM-domain protein which was found to regulate the early stages of osteogenic 

differentiation of human and murine MSCs (Hamidouche et al., 2008). It was reported that Dex 

upregulated the expression of FHL2 and that FHL2 interacts with -catenin to activate the Wnt-

signalling pathway, leading to increased expression of Runx2, a pivotal factor for differentiation in 

these cells (Hamidouche et al., 2008). Dex was also shown to potentiate the effects of BMP-2, 

which is an inducer of osteoblast proliferation and differentiation, by inducing the expression of 

osteoblast-specific mRNAs, such as ALP, Runx2, OCN, OPN and BSP, in MSCs (Rickard et al., 

1994; Jager et al., 2008). These actions of GCs on MSCs thus promoted the osteogenic 

differentiation of MSCs.  

 

Similar to naïve MSCs, GCs were found to decrease the proliferation of both preosteoblasts (Wong 

et al., 1990; Cheng et al., 1994; Jonsson et al., 1997; Engelbrecht et al., 2003) and osteoblasts 

(O'Brien et al., 2004). A possible mechanism for this inhibitory effect on in vivo osteoblast 

replication is that GCs may interfere with the synthesis and actions of systemic hormones and 

growth factors involved in bone cell development (Giustina and Wehrenberg, 1992; Giustina et al., 

2008). For example, systemic hormones such as growth hormone (GH) and insulin have been 

shown to have anabolic effects on bone (Philippe and Missotten, 1990; Giustina and Wehrenberg, 

1992; Lambillotte et al., 1997; Giustina et al., 2008) and stimulate the proliferation of various 

primary and immortalised osteoblastic cells (Morel et al., 1993; Kassem et al., 1993; Salles et al., 

1994; Thrailkill et al., 1997; Yang et al., 2010). However, Giustina and Werhenberg (1992) showed 

that GCs inhibit the secretion of growth hormone by the pituitary gland. In addition, it was 

demonstrated that the secretion of insulin by pancreatic -cells was also perturbed by GCs, which 

could lead to decreased insulin available for bone anabolism (Philippe and Missotten, 1990; 

Lambillotte et al., 1997). The in vitro actions of these systemic hormones are likely governed by the 

respective receptors expressed on osteoblastic cells. Evidence exist that osteoblasts express 

receptors for insulin (Nilsson et al., 1994; Thomas et al., 1996a) and GH (Nilsson et al., 1994; 
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Slootweg et al., 1997). Therefore, another possible way in which the effects of GCs on osteoblastic 

cells could be modulated is by the negative regulation of hormone receptor expression (Thomas et 

al., 1996b). An example of this is a study by Thomas et al. (1996b) who showed that Dex reduced 

the expression of insulin receptors in UMR106 osteoblasts. GCs could also attenuate osteoblastic 

cell proliferation by interfering with the proliferative activities of local GFs produced by osteoblasts 

such as IGF-I, IGF II and TGF- (Delany et al., 2001; Canalis, 2005; Giustina et al., 2008). It was 

shown that GCs differentially regulate the expression and activity of IGF-I, IGF-binding proteins 

and TGF- in osteoblasts (Delany et al., 2001).  

 

 GCs could also alter osteoblastic cell proliferation by influencing cellular and molecular processes 

distal of hormones, GFs and receptors, such as osteoblast signalling pathways. As reported earlier, 

the ERK1/2 MAPK pathway was shown to be the primary signalling pathway involved in 

modulating the proliferation of preosteoblasts and osteoblasts (Engelbrecht et al., 2003; Horsch et 

al., 2007). It was shown that Dex reduced the mitogen-stimulated ERK 1/2 activation in MBA 15.4 

preosteoblasts and MG63 osteoblasts (Hulley et al., 1998; Engelbrecht et al., 2003; Horsch et al., 

2007). Additionally, GCs could negatively affect the cell cycle of osteoblasts through modulating 

various cell cycle-related proteins. For example, the GC-induced attenuation of osteoblast 

proliferation was linked to the decreased expression of the cell cycle-related proteins: CDK4, CDK6 

and cyclin D3 (Rogatsky et al., 1997). Furthermore, it was shown that increased transcription of cdk 

inhibitors also contributed to the decreased proliferation caused by GCs in osteoblastic cells 

(Rogatsky et al., 1997). Similarly, GCs could adversely impact on the transcription and translation 

of other proteins required for the regulation of cell proliferation such as transcription factors, like 

E2F-1 and c-Myc (Rogatsky et al., 1997).  

 

GCs affect osteoblast differentiation in a number of ways as well. Administration of Dex to 

proliferating cultures of fetal rat calvarial cells induced various morphological changes: cells 

became cuboidal and differentiated cells situated within nodules, decreased in size by almost one- 

third compared to control cells (Pockwinse et al., 1995). The transcription and translation of several 

osteoblast-related proteins were also found to be affected by GCs. For instance, it was found that 

cortisol down-regulated the expression of Col I and 1 integrin (Delany et al., 1995).  In addition, 

high levels of Dex (10
-6

 M) resulted in the inhibition of OCN mRNA expression through the 

repression of the Egr/Knox20 binding-enhancer protein in MC3T3-E1 osteoblasts (Mikami et al., 

2007). In contrast, lower levels (10
-8

 M) of Dex were found to increase the expression of OCN 

(Stromstedt et al., 1991; Heinrichs et al., 1993; Mikami et al., 2007). Low Dex doses also 

upregulated the expression of other late osteoblastic markers such as BSP (Ito et al., 2007) and OPN 
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(Leboy et al., 1991; Shalhoub et al., 1992). This is an example of the divergent impact that different 

concentrations of GCs, such as Dex, might have on osteoblast differentiation. Therefore, it seems 

that high doses of GCs negatively regulate the expression of ECM proteins in bone cells, whilst low 

GCs dosages stimulate the expression of such proteins. Furthermore, the transcription of the 

collagenase III gene, the gene product of which is responsible for the catabolism of Col I in bone, is 

increased by cortisol (Delany et al., 1995). The breakdown of Col I, which is the major constituent 

of bone, could lead to reduced osteoblast differentiation and function by reducing calcification and 

thus bone formation. Moreover, it was found that GCs decreased the terminal differentiation of 

osteoblastic cells (Ito et al., 2007). GCs, such as cortisol, were also shown to increase the apoptosis 

of osteoblastic cells, including osteocytes (Weinstein et al., 1998; O'Brien et al., 2004). 

 

In summary, these findings indicate that GCs have a negative impact on the proliferation of MSCs 

as well as more differentiated osteoblasts. Whilst lower concentrations of GCs induce the 

expression of osteoblast-related ECM protein to increase bone formation, higher doses are 

detrimental to the bone ECM and decrease bone formation. Attenuation of the formation and 

activity of these ECM proteins results in decreased osteogenic differentiation and therefore inhibit 

terminal osteoblast differentiation and function. Osteoblasts also negatively regulate 

osteoclastogenesis by producing the soluble decoy receptor of RANKL, osteoprotegerin (OPG) 

(Simonet et al., 1997; Tsuda et al., 1997). It was found that GCs decrease the expression of OPG, 

whilst increasing the levels of RANKL in human osteoblasts (Hofbauer et al., 1999). Therefore, 

GCs could increase bone resorption by osteoclasts as well. Although this seems contradictory to the 

findings in Section 1.3.3.1, it could account for the rapid initial increase in bone resorption seen in 

the onset of GCIO (Canalis, 1996; Canalis and Giustina, 2001; Compston, 2010).  

 

Notably, the cellular and molecular mechanisms regulating the adverse effects of GCs on bone 

homeostasis has not yet been fully elucidated. As cited before, the primary targets for the negative 

effects of GCs on bone homeostasis, are the osteoblasts. Decreased osteoblast proliferation and 

differentiation, as caused by excess and prolonged treatment of GCs, ultimately leads to reduced 

bone formation, which then translates into diminished bone strength and development of GC-

induced osteoporosis (GCIO). In the light of increased use of GCs to treat various diseases such as 

asthma, rheumatoid arthritis and autoimmune diseases, it is essential to investigate how early 

osteoblast precursor cells such as MSCs and preosteoblasts are affected under conditions that 

promote GCIO. Elucidation of signalling events that occur during osteoblast proliferation upon GC 

exposure will improve insights into the pathogenesis of GCIO and aid in the identification of novel 
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anti-osteoporotic agents. These could then be developed into to therapies, especially ones which are 

anabolic to bone, and can be used to treat GCIO.  

 

1.6 Aims and Strategies of this study 

The aim of the current research was to investigate the involvement of protein tyrosine phosphatase 

(PTP) activity and expression as part of the mechanism through which GCs exert their negative 

effects on osteoblast precursor cells. To this end, two types of osteoblast precursor cells were 

employed, namely: naïve rat adipose-derived mesenchymal stromal cells (rMSCs) and 

preosteoblasts derived from these rMSCs. Subcutaneous adipose tissue-derived mesenchymal 

stromal cells are very similar to bone marrow-derived stromal cells and are obtained with ease from 

more abundant tissue sources in higher quantities (Zuk et al., 2002; Dicker et al., 2005; Boquest et 

al., 2006). Moreover, these pluripotent rMSCs can be induced to differentiate, amongst other cell 

types, into an osteoblastic phenotype. Mesenchymal stromal cells isolated from adipose tissue can 

therefore be used as an experimental model to study the effects of GCs on osteoblast precursor 

cells.  

 

In order to achieve the goals of this study, the strategies outlined below were followed: 

 The effects of GCs on naive rMSCs and primitive preosteoblasts, by using the synthetic 

glucocorticoid, dexamethasone (Dex), were tested in this study by examining the mitogen-

induced proliferation of cells early in the differentiated process.  

 

 To establish the involvement of the ERK1/2 pathway in the regulation of mitogen-

stimulated proliferation of rMSCs and preosteoblasts, the ERK1/2 pathway was inhibited in 

this study downstream of MEK1/2 using the pharmaceutical inhibitor, U0126. The 

activation of the ERK1/2 signalling pathway after mitogen stimulation was tested by 

western blot analysis. Since ERK1/2 is activated via phosphorylation, antibodies raised 

against phosphorylated (active) ERK1/2 (at residues Thr202 and Tyr204) were used to 

examine the extent of ERK1/2 phosphorylation. The degree of phosphorylation was used to 

infer the level of ERK1/2 activation.   

 

 The involvement of protein tyrosine phosphatases (PTPs) in the Dex down-regulation of 

mitogen-induced ERK1/2 activity was investigated. This was achieved by completing 

phosphatase activity assays after mitogen stimulation, with and without Dex administration. 

It was hypothesised that by inhibiting the Dex-induced PTP activity with a PTP-specific 
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inhibitor such as vanadate, the contribution of PTPs to the total phosphatase activity can be 

determined, as it has been shown that vanadate inhibits GCIO in rats (Hulley et al., 2002). It 

was theorised that by inhibiting the Dex-induced PTP activities with vanadate, the 

attenuation of proliferation by Dex could be lifted. The possible involvement of the dual 

specificity phosphatase, MKP-1, in regulating the Dex responses in primary naïve rMSCs 

and primary preosteoblasts was investigated. MKP-1 mRNA abundance was assessed using 

quantitative real-time polymerase chain reaction (RT-qPCR), whilst the protein expression 

was examined using western blot analysis employing MKP-1-specific antibodies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of Stellenbosch http://scholar.sun.ac.za



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

 

 

 

 

 

University of Stellenbosch http://scholar.sun.ac.za



 

 

39 

Materials and Methods 

 

2.1 Materials 

Sodium pentobarbitone (Eutha-naze) was obtained from Bayer (Pty) Ltd (Isando, RSA). Fetal 

bovine serum (FBS) (originating from France) was purchased from Gibco™, whilst collagenase 

type I was bought from Worthington Biochemical Corporation (Lakewood, New Jersey, USA). 

Trypsin-versene mixture, penicillin and streptomycin antibiotic mixture, as well as Hank‟s buffered 

salt solution was obtained from Lonza, Biowhitaker ® (Walkersville, MD, USA). Anti-BrdU-FITC 

conjugated antibodies and 7-AAD were obtained from BD Biosciences (BD®, California, USA).  

Cell culture plasticware was purchased from either Greiner Bio-One (Cellstar ®, Frickenhausen, 

Germany) or Corning Incorporated (Corning ®, NY, USA). The U0126, SV Total RNA isolation 

system and ImProm-II
TM

 reverse transcriptase were obtained from Promega (Madison, WI, USA). 

The RNAeasy Mini kit for total RNA isolation was procured from Qiagen (CA, USA). Tritiated 

thymidine (TRK 120 methyl-[
3
H]-thymidine), para-nitrophenylphosphate (pNPP), horseradish 

peroxidase (HRP)-linked anti-rabbit IgG secondary antibody (from donkey, #NA934), enhanced 

chemiluminescent (ECL
TM

) western blotting detection reagents and Hyperfilm
TM 

ECL high 

performance ECL
TM

 film were all purchased from General Electric Healthcare (Buckinghamshire, 

UK). Biotrace
TM

 PVDF membrane (0.45 µM) for western blotting was purchased from Pall Life 

Sciences (Pensacola, Florida, USA). Primary anti-p44/42 MAPK (#9102) and anti-phospho-p44/42 

(# 9101) antibodies were bought from Cell Signaling Technology (Beverly, MA, USA). LumiGLO 

reserve chemiluminescent substrate kit was obtained from KPL laboratories (Gaithersburg, 

Maryland, USA). Primers were procured from Integrated DNA Technologies Incorporated (IDT) 

and Metabion (Roche Diagnostics Corporation, IN, USA). Ready-gel scintillation fluid was 

purchased from Beckman Coulter (Chino, CA, USA). Dulbecco‟s modified Eagle‟s medium 

(DMEM), sodium orthovanadate (VO4), sanguinarine chloride (SC), BrdU and all other chemicals 

were obtained from Sigma (St. Louis, MO, USA). Liquid solvents were procured from Merck 

Chemicals (Pty) Ltd (South Africa). 
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2.2 Methods 

2.2.1 Cell culture conditions 

2.2.1.1 Isolation of rat mesenchymal stromal cells (rMSCs) from adipose tissue 

The protocol for isolating rat mesenchymal stromal cells (rMSCs) from adipose tissue was adapted 

from the method of Huang et al. (2002). Male, wild type Wistar rats, aged between 12 to 14 weeks, 

with average weights ranging between 250 g and 300 g were used in this study. Rats were housed in 

an AAALAC (Association for Assessment and Accreditation of Laboratory Animal Care) facility. 

Handling of laboratory animals was in accordance with the ethical guidelines of the University of 

Stellenbosch. The initial ethical clearance number for this project was N04/08/126 and was later 

changed to N08/06/163. Rats were sacrificed by intraperitoneal injection with 100 mg/kg sodium 

pentobarbitone. Immediately after euthanasia, subcutaneous fat from the inguinal fat pouch was 

excised, the surface sterilised briefly by immersion in 70 % (v/v) ethanol and placed in holding 

medium (Supplement A1.1.). Prior to digestion with collagenase type I, the surface area was 

increased by slicing fat tissue into small cubes (approximately 2 mm x 2 mm) using a sterile scalpel 

blade. Fat tissue cubes were divided into two equal aliquots and placed in 10 ml of collagenase type 

I enzyme mixture (Supplement A1.4.) and digested at 37 
o
C with gentle agitation for 20-30 minutes. 

Cells were subjected to centrifugation at 2, 500 x g for 10 minutes to separate the stromal fraction 

containing stromal cells (rMSCs) from non-digested adipose tissue and cellular debris. Cell pellets 

were then washed twice with PBS (Supplement A1.4.). These cells were designated as passage 0 

(P0) cells. P0 cells were plated using a 1: 4 dilution in expansion media (Supplement A1.2.). Cells 

were grown at 37 
o
C with 5% CO2 and 80%-90% humidity. At 24 and 72 hours after initial plating, 

media was removed, cells were rinsed briefly with PBS (Supplement A1.4.) and expansion media 

(Supplement A1.2.) was changed. All media used contained 10 mg/ml penicillin and 10 mg/ml 

streptomycin. All FBS used was heat inactivated at 56 
o
C for 30 minutes to inactivate the 

complement and stored at -20 
o
C for subsequent use. 

 

2.2.1.2 Cell growth and maintenance 

rMSCs were liberated from the plate for sub-culture by washing cells in pre-warmed PBS 

(Supplement A1.4.), followed by the addition of  1 ml of 1x trypsin -versene mixture (Lonza) per 

100 mm cell culture dish for 2 minutes. Trypsin was then immediately inactivated with 2 ml of 

complete growth medium (Supplement A2.). Cells were plated at a 1: 5 dilution in complete growth 
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medium (Supplement A2.) and grown at 37 
o
C with 5% CO2 and 80%-90% humidity. Passage 2 

(P2) cells were used for all experiments in this study.  

 

2.2.1.3 Differentiation of rMSCs into an osteoblastic phenotype 

Osteoblast differentiation was induced by adding osteogenic medium (OM) (Supplement A3.3.) to 

confluent P2 cells which were not subjected to serum starvation. For the initial characterisation of 

rMSCs differentiated into an osteoblastic phenotype, cells were differentiated for a maximum of 28 

days (Chapter 4). For subsequent experiments, however, rMSCs were differentiated using OM for 

only 7 days (Chapter 4). Osteogenic media (Supplement A3.3.) was changed every 2 to 3 days 

according to the methods of Jaiswal et a., 1997 and Doi et al., 2002. 

 

2.2.1.4 Induction of mitogenesis in naïve rMSCs and preosteoblasts 

Mitogenesis was induced by treating quiescent naïve rMSCs in 1% FBS with 5%; 10% and 20% 

(v/v) FBS. The PKC activator, PMA (100 ng/ml) was also used as a mitogen, with treatment 

occurring in media containing 1% (v/v) FBS. Treatment with 0.1% (v/v) DMSO served as solvent 

control for PMA.  Mitogenic stimulation of quiescent naïve rMSCs was performed for 24 hours, 48 

hours and 72 hours. Preosteoblasts were treated with mitogens for only 24 hours.  

 
 

2.2.1.5 Chemical treatment and pharmaceutical inhibitors used 

The synthetic glucocorticoid, dexamethasone (Dex), was used at concentrations of 1 µM, 100 nM, 

10 nM, 5 nM and 1 nM. Cells were challenged with Dex for only 24 hours. Ethanol at a 

concentration of 0.1% (v/v) was used as a solvent control. Table 2.1 displays all inhibitors used in 

this study with their relevant concentrations used. Inhibitors were added to naïve rMSCs and 

preosteoblasts for a period of 24 hours.  

 
Table 1: displays the pharmaceutical inhibitors used in this study.  

 

 

 

 

Inhibitor Abbreviation 

used 
Type of inhibitor Final concentrations 

used 

 
U0126 U0126 MEK 10 µM, 5 µm and 1 µM 

 
Sodium orthovanadate VO4 PTP 10 µM, 5 µM, 2.5 µM, 1 

µM, 100 nM and 10 nM 
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2.2.2 Cell proliferation assay using [
3
H] thymidine incorporation 

Cells were cultured in 24-well plates for all proliferation assays (adapted from Hulley et al., 1998; 

Cave, 1966). During the last 4 hours of incubation, after mitogen or chemical treatments, 2µCi /ml 

of [
3
H]-labelled thymidine (specific activity = 25 Ci/mmol) was added to each well. Cells were then 

incubated at 37 
o
C with 5% CO2 and humidity between 80% and 90% for the remainder of the 

treatment period. Incorporation of [
3
H]-labelled thymidine into newly synthesized DNA was 

terminated by placing the culture plate on ice for 2 minutes. After removing the medium, cells were 

washed twice with ice-cold PBS (Supplement A1.4) and the cell culture plate was placed at -80 
o
C 

for 1 hr to aid cell lysis. Cells were thawed at room temperature (RT) before the addition of 500 µl 

of lysis solution (Supplement B1.) and then incubated at room temperature for 1 hr. The cell culture 

plate wells were rinsed with 350 µl of lysis solution and pooled with corresponding cell lysates. 

Cell lysates were then transferred to 2ml microfuge tubes. In order to precipitate acid-insoluble 

DNA and proteins, 500 µl of ice-cold 50% (w/v) TCA (trichloroacetic acid) was added to the 

lysates. This was followed by incubation at 4 
o
C overnight. Cell precipitates were spun in a bench 

top centrifuge at 4 
o
C for 15 minutes at 15, 000 x g to pellet DNA and proteins. Pellets were washed 

with 500 µl of 10 % (w/v) ice-cold TCA and subjected to centrifugation at 4 
o
C for 5 minutes at 

15,000 x g. The supernatant fractions were then discarded, ensuring that the pellets were as dry as 

possible. Pellets were resuspended in 500 µl of 0.1 N NaOH and incubated at RT for 1 hr with 

intermittent vortexing. Scintillation samples were prepared by adding 8 ml of Ready-gel 

scintillation (Beckman Coulter) fluid to 350 µl of each sample. These samples were clarified by the 

addition of 600 µl of glacial acetic acid and mixed by inversion. The amount of [
3
H]-labelled 

thymidine incorporation into DNA was determined by counting radioactive decay on a LS5000TD 

scintillation counter (Beckman Coulter) for 5 minutes per sample. Results were displayed as values 

in counts per minute (cpm).  

 

2.2.3 Cell cycle analysis using propidium iodide  

The method of Vindelov et al. (1983) was adapted for cell cycle analysis of rMSCs employing flow 

cytometry. Culture medium was aspirated, the cells were washed twice with PBS (Supplement 

A1.4), followed by incubation in the presence of 1x trypsin-versene for 2 minutes. Trypsinisation 

was stopped using 2 ml of complete growth media (Supplement A2.). Cell suspensions were then 

transferred to 15 ml tubes and spun for 5 minutes at 2, 500 x g at RT. Cell pellets were washed 

twice with PBS (Supplement A1.4.), resuspended in 200 µl citrate buffer (Supplement B2.1.) and 

stored at -20 
o
C for subsequent use.  
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Cell nuclei were isolated by incubating cell suspensions in 1.8 ml of solution A (Supplement B2.3.) 

at RT for 10 minutes. Cell suspensions were then incubated in 1.5 ml of solution B (Supplement 

B2.4.) at RT for 10 minutes, with occasional inverting to inactivate trypsin and digest RNA. 

Isolated nuclei were subsequently stained with 1.5 ml of solution C (Supplement B2.5.) for 10 

minutes on ice. Flow cytometry was performed using a FACSCalibur instrument from Beckton 

Dickinson Biosciences. 

 

2.2.4 BrdU flow cytometry analysis 

Cells were grown in 100 mm cell culture dishes and pulse-labelled with 20 µM 5-bromo-2‟-

deoxyuridine (BrdU) for the last hour of mitogenic stimulation at 37 
o
C and 5% CO2. The cells were 

liberated from the cell culture dish by adding 1 ml of 1x trypsin-versene mixture (Lonza) to each 

dish for 2 minutes. To remove excess medium, cells were then washed with PBS (Supplement 

A1.4.) and subjected to centrifugation at 2, 500 x g for 5 minutes. The cell pellet was resuspended 

in 1 ml of fixative solution (Supplement B3.1.) and incubated at 4 
o
C overnight. Fixed cells were 

subjected to centrifugation at 2, 500 x g for 5 minutes and washed in 1 ml of PBS containing 1% 

(w/v) Glycine. So as to partially digest DNA, cells were incubated with 1 ml of DNAse I digestion 

solution (Supplement B3.2.) at 37 
o
C for 30 minutes. Subsequently, cells were washed in 1 ml PBS 

(Supplement A1.4.) and pelleted by centrifugation at 2, 500 x g for 5 minutes. The cell pellet was 

resuspended in 40 µl anti-BrdU-FITC incubation solution (Supplement B3.3.) and incubated at RT 

for 30 to 45 minutes. After incubation, the cells were washed with 1 ml PBS (Supplement A1.4.) 

containing 0.1% (w/v) BSA and pelleted by centrifugation at 2, 500 x g for 5 minutes. Cells were 

then resuspended in 1 ml PBS (Supplement A1.4.) and incubated with 5 µl 7-AAD (0.05 µg/µl) for 

10 minutes directly before analysis by flow cytometry using a FACSCalibur instrument from 

Beckton Dickinson Biosciences. 

 

2.2.5 Alkaline phosphatase (ALP) extraction and enzyme activity measurement 

This protocol was adapted from Merchant-Larios et al. (1985). Cells were grown in 100 mm cell 

culture dishes prior to ALP enzyme extraction. After rMSCs were differentiated into an osteoblastic 

phenotype for 7 days, the culture medium was aspirated and cells were washed twice with PBS 

(Supplement A1.4.). Cells lysates were prepared by the addition of 800 µl of ice-cold ALP 

extraction solution (Supplement B3.1.) to each cell culture dish. After incubation at room 

temperature for 2 minutes, a rubber policeman was used to scrape cells off the dishes. Cell 

suspensions were transferred to pre-chilled 1.5 ml microfuge tubes and spun at 15, 000 x g for 15 
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minutes at 4 
o
C in a benchtop centrifuge to pellet cellular debris. Supernatants were transferred to 

pre-chilled 1.5 ml microfuge tubes and 1 µl of ice-cold butanol was added for every 5 µl of 

supernatant.  After butanol addition, supernatants were vortexed for 30 sec and mixed for 45 

minutes at 4 
o
C using a rotating wheel. Subsequent to centrifugation at 15, 000 x g for 1 hr at 4 

o
C, 

the aqueous phase was transferred to pre- chilled 2 ml microfuge tubes. A volume of 450 µl ice-

cold acetone was added to 750 µl of cell lysate (aqueous phase) before centrifugation at 15, 000 x g 

for 30 minutes at 4 
o
C, to precipitate ALP fractions. Pellets were resuspended in 20 µl ALP 

extraction buffer without PMSF (Supplement B3.1.) and stored at -20 
o
C until analysis.  

 

ALP extracts were thawed on ice for ALP enzyme activity measurements. A volume of 170 µl 

glycine assay buffer (Supplement B3.2.) was added into each well of a 96-well plate, followed by 

the addition of 10 µl of cell extract and 20 µl of pNPP (paranitrophenylphosphate) substrate 

solution (Supplement B3.3.) was added. The OD405nm was then measured every 2 minutes for the 

duration of 20 minutes using a Synergy
TM

 HT microtiter plate reader and analysed with KC4 v3.3 

software (Bio-Tek® Instruments, Inc., Vermont, USA). The cell extracts and BSA standards were 

diluted in water (1:1) for the Bradford protein determination since the ALP extraction buffer was 

incompatible with the Bradford reagent. The activity of ALP was calculated as: 

 A (U/ml) = (OD405nm/min.)(assay volume in ml)(dilution factor) 

 

 ( of pNPP at 405 nm)(lysate volume in ml)  , where  

 OD405nm/min. = difference in OD405nm over 1 minute, here taken as: 

 (OD405nm at 20 min – OD405nm at 4 min)/ 16, because the reaction was consistently linear between 4 

minutes and 20 minutes,  

Assay volume = 0.2 ml,  

Dilution factor = 1, cell extracts are used undiluted,  

 of Pnpp at 405 nm (millimolar extinction coefficient of Pnpp at 405 nm) = 18.5 

Lysate volume = 0.01 ml.  

ALP activity was expressed as Activity (units/ mg protein) = units per ml/mg per ml protein. 

     

2.2.6 Phosphatase activity assay using pNPP hydrolysis 

This phosphatase activity protocol was adapted from Engelbrecht et al. (2003). After aspiration of 

cell growth medium, cells were washed twice with PBS (Supplement A1.4.). Cell protein lysates for 

the pNPP hydrolysis assay were prepared by the addition of 250 µl protein lysis buffer (Supplement 

B4.1.) to cells. Cells from 8 cell culture dishes (100 mm) were pooled. Following this, cell 

suspensions were sonicated for 3 x 10 sec (at an amplitude of 20 microns peak to peak) and spun for 
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10 minutes at 15, 000 x g in a benchtop centrifuge to pellet cellular debris. Supernatant fractions 

were placed in pre-chilled 1.5 ml microfuge tubes and stored at -20 
o
C for subsequent use.   

 

Protein determination was performed using the Bradford protein assay (Supplement B4.2.) 

(Bradford et al., 1976). Quantities of total protein of 25, 50, 100, 150 and 200 µg were used to 

measure phosphatase activity, in a volume of 200 µl of pNPP assay buffer (Supplement B4.2.).  A 

volume of 50 µl of pNPP substrate solution (Supplement B4.3.) was added to each assay well in a 

96-well plate and incubated for 1 hr at 37 
o
C. Reactions were stopped using 50 µl of 5N NaOH and 

OD405 was measured using a Synergy
TM

 HT microtiter plate reader and analysed using KC4 v3.3 

software (Bio-Tek® Instruments, Inc., Vermont, USA). One unit of phosphatase activity was 

defined as a change in 1 OD unit/ hour at 405 nm.  

 

2.2.7 Senescence-associated -galactosidase (SA-- Gal) staining and protein 

activity assay 

The senescence-associated -galactosidase activity assay was adapted from the method of Dimri et 

al., (1995). Cells were grown in 24-well cell culture plates. Subsequent to the removal of the cell 

culture medium from cells, cells were washed three times with 1 x PBS (Supplement A1.4.). Cells 

were next fixed in 500 µl fixative solution (Supplement B6.1.) at RT for 5 minutes and washed 

twice with PBS (Supplement A1.4.). A volume of 2 ml SA--Gal staining solution (Supplement 

B6.2.) was added to the fixed cells. After incubation at 37 
o
C for 24 hr, the stain solution was 

removed and dishes were washed twice with PBS (Supplement A1.4.). An Olympus Cell ® system 

attached to an IX-81 inverted fluorescence microscope equipped with an F-view-II cooled CCD 

camera (Soft Imaging Systems) was used to observe cells. Image acquisition was performed using a 

Xenon light source (MT-20, Cell ®) with a 360 nm excitation filter and a UBG triple band pass 

emission filter, a 10x UPlanFLN objective and the Cell® imaging software. SA--Gal activity was 

expressed as [number of senescent positive cells counted]/ [total number of cells counted] X 

100. 

  

2.2.8 MTT assay 

Mitochondrial activity was determined using the adapted method of Mosmann et al. (1983). Cells 

were cultured in 24-well plates and incubated in complete growth medium (Supplement A2.1.) 

containing 100 µl of 5 mg/ml MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) 

(Supplement B6.) at 37 
o
C for 3 hours. The medium was then removed and cells were washed with 
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PBS (Supplement A1.4.). The coloured formazan product was solubilised with 500 µl DMSO per 

well, of which 250 µl was used to measure MTT reduction at OD570nm. Optical density was 

measured using a Synergy
TM

 HT microtiter plate reader, utilising KC4 v3.3 software (Bio-Tek® 

Instruments, Inc., Vermont, USA). Results displayed are given as [OD570nm of sample]/ [OD570nm 

of basal growth control] X 100. 

         

2.2.9 Protein Methods 

2.2.9.1 Total protein extraction  

Undifferentiated rMSCs cells were grown until 80% confluent in 100 mm cell culture dishes before 

mitogenic stimulation for 2 minutes, 5 minutes, 10 minutes, 1 hour, 2 hours and 4 hours prior to 

protein extraction. Preosteoblasts were grown as indicated in Section 2.2.1.3 prior to protein lysate 

preparation. Cell culture plates were placed on ice and the culture medium was removed. Cells were 

washed once with PBS (Supplement A1.4.) and once with wash buffer (Supplement C1.1.) to 

remove excess medium. Total protein were extracted by the addition of 250 µl of ice-cold protein 

lysis buffer (Supplement C1.2.) to cells and incubated on ice for 2 minutes. A rubber policeman was 

used to detach cell from the plates. Cell suspensions were sonicated for 3 x 10 sec (at an amplitude 

of 20 microns peak to peak) and spun at 15, 000 x g at 4 
o
C for 10 minutes in a benchtop centrifuge 

to pellet cellular debris. Supernatant fractions were transferred to pre-chilled 2 ml microfuge tubes 

for subsequent use as protein cell lysates.  

 

2.2.9.2 Protein gel electrophoresis 

Protein concentrations were determined using the Bradford protein assay (Supplement B4.3.) 

(Bradford, 1976). Fifteen to eighty micrograms of total protein from cellular lysates were separated 

and resolved by electrophoresis on a SDS-PAGE gel (Supplement C2.; Laemmli, 1970), at 150V 

for 15 minutes to allow proteins to move into separating gel and then further for 2 hours at 180 V.  

 

2.2.9.3 Western Blotting 

A Bio-Rad Mini-PROTEAN
®

 3 (Bio-Rad Laboratories, CA, USA) tank system was used for protein 

transfers. Proteins were transferred onto 0.45 µM Biotrace
TM

 PVDF membranes (Pall Life Sciences, 

Pall Corporation, Florida, USA) at 30 V overnight with cooling using an ice-pack. After protein 

transfer, membranes were briefly placed in 100% methanol and dried for 15 minutes to enhance 
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protein binding. Protein loading and transfer efficiency were assessed by staining membranes with 

Ponceau S solution (Supplement C3.2.) for 5 minutes and washing with water until the background 

was clear. Membranes were blocked for at least 1hr at RT with blocking buffer (Supplement C3.4.). 

Blocked membranes were washed three times for 10 minutes with TBS-T (Supplement C3.3.) 

before overnight incubation with primary antibodies (a dilution of 1: 1000 for both total p44/42 

ERK and phospho-p44/42 ERK) at 4
o
C. Prior to incubation with HRP-conjugated secondary 

antibodies (at a dilution of 1: 4000) membranes were washed three times for 10 minutes with TBS-

T (Supplement C3.3.). Immuno-responsive proteins were visualised by incubation with enhanced 

chemiluminescence (ECL
TM

) solution, after which membranes were exposed to Hyperfilm
TM

 ECL. 

Immuno-reactive protein bands were visualised by photographic development of the film. Films 

were scanned on a ScanMaker 8700 scanner using ScanWizard
TM

 Pro software (Microtek 

International Inc., Taiwan). ImageJ 1.42q was used for densitometry to quantify the intensity of the 

immuno-responsive protein bands on the scanned images. MKP-1 immuno-responsive bands were 

visualised using the LumiGLO reserve chemiluminescent substrate kit from KPL laboratories 

(Gaithersburg, Maryland, USA). For densitometry analysis, membranes were scanned with a 

Chemidoc imager (Bio-Rad, CA, USA) and quantification of MKP-1 and total p44/42 ERK protein 

levels was performed using the Quantity One® software from Bio-Rad (Ca, USA).  

 

2.2.10 Nucleic Acid methods 

2.2.10.1 Total RNA extraction 

Total RNA was extracted using the Qiagen RNAeasy Mini kit (Qiagen, CA, USA) and the SV Total 

RNA isolation system (Promega, Madison, WI, USA) according to the manufacturer‟s instructions. 

Determination of total RNA concentrations was carried out using a ND-1000 NanoDrop® 

spectrophotometer (NanoDrop® Technologies, DE, USA).  

 

2.2.10.2 RNA gel electrophoresis 

Total RNA samples were subjected to electrophoresis on 1% (w/v) agarose/formaldehyde gels 

(Supplement D2.1.) ran in MOPS buffer (Supplement D2.3.) for 30 minutes at 70 V to assess the 

integrity and quality of RNA. These samples were prepared for electrophoresis by adding equal 

volumes of RNA sample application buffer (Supplement D2.2.) to 1 µg of total RNA. Prior to 

electrophoresis, RNA samples were denatured at 65 
o
C for 10 minutes and instantly placed on ice. 
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Gels were visualised and the image recorded on a Vacutec G: Box gel documentation system whilst 

using GeneSnap software (Syngene, Synoptics Ltd, Beacon House, Cambridge, UK). 

 

2.2.10.3 cDNA synthesis 

Possible residual genomic DNA was removed from the total RNA samples by treatment with 

DNase I (Promega, Madison, WI, USA) according to manufacturer‟s instructions. One microgram 

of DNase I treated total RNA was used in a two–step cDNA synthesis protocol. In the first step of 

the cDNA synthesis, 0.5 µg of poly-dT primers (IDT) was annealed to the RNA at 70 
o
C for 5 

minutes in the presence of RNAsin RNAse inhibitor (according to manufacturer‟s 

recommendations; Promega, Madison, WI, USA). During the second step, Improm-II
TM

 reverse 

transcriptase (Promega, Madison, WI, USA) was used for first strand synthesis by incubation of the 

RNA/ poly-dT mixture at 42 
o
C for 1 hr. cDNA samples were stored at -20 

o
C for subsequent use.  

 

2.2.10.4 Quantitative real time PCR (RT-qPCR) protocol 

RT-qPCR was performed on a Rotor-Gene
TM

 3000 real time thermal cycler (Corbett Research) 

using Rotor-Gene
TM

 version 6.1.7.1 software (Corbett Research) for data acquisition and analysis. 

The sequences of the primers used to amplify the reference gene (RG) and genes of interest (GOI), 

the sizes of expected amplicons, as well the respective annealing temperatures used to amplify each 

amplicon are displayed in Supplement E.  

 

The RT- qPCR assay was carried out in three PCR parameter protocol steps:  

(i) activation program at 95 
o
C for 10 minutes;  

(ii) PCR program for 40 cycles entailing denaturation at 95 
o
C for 3 sec, annealing for 10 sec (see 

Supplement E for respective annealing temperatures) and extension at 72 
o
C  allowing for 66 base 

pairs/ sec (see Table 2.2 for amplicon size); and  

(iii) melting curve program with ramping from 72 
o
C to 95 

o
C, rising 1 

o
C/sec each step with 5 sec 

waiting between steps.  

Each experiment employing RT-qPCR was carried out on triplicate biological samples that were 

each again assayed in triplicate. A dilution series was used as standard curve for each assay. The 

level of gene transcription of respective GOIs was quantified using the relative quantification 

method in which the relative abundance of GOIs was normalised to the relative expression levels of 

the RG, ARBP. The relative expression ratio of a GOI was calculated employing the amplification 
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efficiency (E) and quantification cycle (Cq) deviation (∆Cq control - ∆ Cq sample) of an unknown 

sample relative to a control (Pfaffl, 2001). The following formula was used:  

Relative GOI expression ratio = (EGOI) 
∆C

q
 (control – sample)

 / (ERG)
 ∆ C

q
 (control- sample)

.  

 

In addition, where indicated, the REST 2008 software program (© 2008 Corbett Research Pty Ltd 

and Michael W. Phaffl) was employed to calculate the relative transcript abundance of MKP-1. RT-

qPCR amplicons were analysed on 1.5% (w/v) agarose gels using TBE (Supplement D2.4.) as the 

electrophoresis buffer and gels were run at 100 V for 1 hr. Agarose gels were visualised and 

photographed using a Vacutec G: Box gel documentation system (Syngene, Synoptics Ltd, Beacon 

House, Cambridge, UK) utilising GeneSnap Software (Syngene, Synoptics Ltd, Beacon House, 

Cambridge, UK).   

  

2.2.11 Statistical analysis 

Results were statistically analysed using GraphPad Prism 4 (GraphPad Software, Inc.) by a one-way 

ANOVA test with a Bonferroni post-hoc test to compare all groups. Lower case letters were used to 

denote statistical differences, that is, different letters represented significant differences between 

data sets, whereas the identical letters indicated no statistical differences between groups. Where 

indicated, a three-way ANOVA analysis was performed to correct for individual animals, time and 

treatments. In addition, where specified, a Student‟s t-test was performed when only two data sets 

were compared. Differences between treatment groups were considered statistically significant at 

P< 0.05.  
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Characterisation of the mitogenic response of 

osteoblast precursor cells derived from rat 

adipose tissue 
 

 

 

3.1. Introduction 

Although various mouse, rat and human primary and immortalised cell lines have been used widely 

to study different aspects of osteoblastogenesis (Hughes and Aubin, 1997), the cellular mechanism 

governing the early proliferative phase of osteoblastogenesis, is not yet clearly understood. As 

outlined in Section 1.3.1.2.3.1, during the proliferative stage, osteoblast precursor cells replicate to 

expand cell numbers, which is crucial to form bone cell nodules. In the current section of this work, 

the proliferative response of primary naïve rMSCs was determined using different mitogens. This 

was done to establish the mitogenic conditions that induced rMSCs to proliferate, as this aspect of 

these primary stromal cells has not yet been characterised. Primary cells were utilised since many of 

the immortalised osteoblastic cell lines are osteosarcomas, which might harbour chromosomal 

abnormalities, cell cycle irregularities, altered gene expression, changes in receptor expression and 

modified signalling pathways. Standard protocols are available for isolating MSCs from murine, rat 

and human adipose tissue (Zuk et al., 2002; Yu et al., 2010; Lopez and Spencer, 2011; Yu et al., 

2011).  

 

Proliferating cells accurately duplicate their DNA and divide to render two daughter cells by means 

of a regimented, sequential process referred to as the cell cycle. This cellular process consists of 

four phases, namely: (i) the G1 (Gap1) phase during which cells grow and prepare for DNA 

synthesis, (ii) S phase where DNA synthesis occurs, (iii) G2 phase, a cell growth stage known as 

Gap 2 during which cells prepare for mitosis and (iv) M phase where mitosis and cell division 

occurs (illustrated in Fig. 1.4). At least two checkpoints exist where DNA quality is assessed before 

entry into the DNA synthesis and mitotic phases of the cell cycle (Fig. 1.4). If for example DNA 

damage occurs before these checkpoints, cells stop replicating and undergo cell cycle arrest. During 

this restricted stage, cells either repair the damaged DNA or undergo cell senescence or apoptosis 

(Schmitt et al., 2007). Cell proliferation was quantified by measuring DNA synthesis employing 

methyl-tritium labelled thymidine ([
3
H]dT) incorporation into DNA. This widely used technique is 
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sensitive, reliable and is considered the classical, “gold standard” method for measuring 

proliferation.  

 

Using flow cytometry, the cell cycle distribution of rMSCs stimulated with mitogens was also 

assessed. Two different methods were employed in the flow cytometric analysis evaluating the 

DNA content and cell cycle phase distribution of rMSCs after mitogenic stimulation for 24 hours. 

Firstly, the vital dye, propidium iodide (PI), was used to examine the DNA content of these cells. 

Secondly, to unify the [
3
H]dT proliferation assay findings and the PI cell cycle analysis, rMSCs 

were pulse-labelled for the last hour of the 24 hours of mitogenic stimulation with BrdU, which was 

detected using FITC-labelled antibodies. In order to discern the G0/G1 and G2/M phases of the cell 

cycle, total DNA content was determined using 7-AAD staining, as BrdU is only incorporated into 

actively dividing cells, that is, the S phase. The reason for choosing 7-AAD is that minimal spectral 

overlap occurs between 7-AAD and FITC (according to the manufacturer‟s notes). PI was detected 

using the FL-2 detector and a 585/42 filter with wavelength range of 564 nm to 606 nm. For FITC 

detection, the FL-1 detector was used with a 530/30 filter which detect light ranging from 515 nm to 

545 nm. The FL-3 detector with a 670 LP filter which detects light up to 670 nm was used for 7-

AAD detection. The recording of aggregates, defined as cells or isolated nuclei stuck to one another 

or which pass the flow cytometer laser simultaneously, results in distorted cell cycle data. For 

example, aggregates of two G1 cells, also known as doublets, may exhibit the same DNA content as 

one G2/M cell which contains duplicated DNA during mitosis. The percentage of cells interpreted to 

be in the G2/M phase would then be inaccurately high. Therefore, to ensure the accuracy and 

reproducibility of cell cycle data, cell aggregates were excluded from acquired data. Another 

parameter of flow cytometry data quality which must be considered is the percentage co-efficient of 

variation (% CV) of the G1 peak, which is specified by the ratio of 
standard deviation

/mean x 100. By 

convention, a low % CV is an indication of good quality data. In this study, isolated nuclei were 

used for PI staining, instead of whole cells, to ensure that low % CVs, minimal clumping and good 

quantitative staining were obtained. In order to minimise the occurrence of aggregates and to 

maximise the acquisition of single nuclei, recorded events were gated during acquisition using the 

Cell Quest Pro software. The pulse FL-2 width (FL2-W) versus FL2-area (FL2-A) dot plots were 

used to identify aggregates. A minimum of 25 000 gated events were recorded during flow 

cytometry data acquisition. The fluorescence data acquired during this study was considered 

acceptable because the percentage of CVs of <7% were obtained for all samples investigated 

(Shankey et al., 1993; Brotherick et al., 1998). In addition, the percentage aggregates as well as the 

amount of debris detected were overall low. These statistical parameters are indicated on the 

respective FL2-Area DNA histograms constructed using ModFit® and displayed in Addendum F.  
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Mitochondrial activity was examined using the MTT (3-(4, 5-dimethylthiazolyl)-2, 5-

diphenyltetrazolium bromide) assay. MTT is reduced to a colour product, formazan, by all 

metabolically active cells and is therefore a measure of cell viability. Although the MTT assay is 

also sometimes used as a measure for cell replication, the major disadvantage of the MTT reduction 

assay is that it is not restricted to mitotic cells. In this application of the MTT assay, an increase in 

MTT staining indicates an increase in viable, active cell number, inferring that cell proliferation has 

occurred. However, it gives no indication of cellular turnover, as increased proliferation may be 

accompanied by increased apoptosis leading to a static number of viable cells. Changes in 

proliferation would therefore not be seen. The advantage of using [
3
H]dT incorporation is that the 

isotope-labelled nucleotide will only be incorporated into actively-dividing cells, thus measuring the 

rate of DNA synthesis at that time. The amount of radio-labelled nucleotide incorporation during 

the S phase is directly proportional to the amount of actively dividing cells.  

 

 

3.2 Results 

3.2.1 Naïve rMSCs exhibit delayed proliferation in response to high 

concentrations of FBS and are non-responsive to PMA  

Cellular proliferation in undifferentiated rMSCs was examined by treating cells with known 

mitogens, namely either the phorbol ester, PMA (phorbol 12-myristate 13-acetate) or a high 

concentration fetal bovine serum (FBS), which is a mixture of various growth factors 

(Gstraunthaler, 2003 and Brunner et al., 2010). Mitogenesis was examined every 24 hours over a 

course of 72 hours. 

 

Before mitogenic induction, the concentration of serum was reduced to 1% overnight to synchronise 

the cell cycle in all cells. FBS concentrations lower than 1% FBS was not used, as these resulted in 

increased cell death by apoptosis (data not shown). Hence, 1% FBS was used as basal growth 

control to determine the level of proliferation elicited by mitogenic stimulation. FBS concentrations 

(v/v) of 5%, 10% and 20% were used to induce mitogenesis. The concentration of 100 ng/ml was 

used for PMA stimulation, whilst 0.1% DMSO was employed as negative control to determine 

whether the solvent that PMA was dissolved in had any adverse effect on cell proliferation.    

 

It was found that rMSC proliferation decreased with increasing FBS concentration after 24 hours of 

mitogen treatment, with 5% FBS exhibiting the highest proliferative response of 3.1-fold after 24 
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hours (Fig. 3.1 A). Compared to basal growth levels, mitogenic treatment with 10% FBS elicited a 

2.3-fold increase in proliferation at 24 hours, whilst 20% FBS resulted in a 1.5-fold increase.   

 

Although phorbol esters are generally considered to be strong mitogens, PMA-induced mitogenesis 

was only 1.2-fold higher than that of the 1% FBS basal control (Fig. 3.1 A), and this rate persisted 

over the 72 hours of the experiment (Fig. 3.1 C). These were not significantly different from 

control. As expected, the DMSO solvent control exhibited a similar mitogenic response to the 1% 

FBS control at all time points (Fig. 3.1). At 48 hours after stimulation, 10% FBS produced the 

greatest mitogenic response (Fig. 3.1 B). The highest level of proliferation induced by 20% FBS 

was seen after 72 hours of stimulation (Fig. 3.1 C). It is noteworthy that after 72 hrs in culture, cells 

treated with 10% FBS and 20% FBS were visually confluent. Cells treated with 5% FBS were near 

confluent, whereas cells treated with 1% FBS and PMA did not reach confluency. 

 

When the relative proliferation per mitogenic treatment was plotted over a timespan of 72 hours, it 

was seen that proliferation stimulated by 5% FBS significantly declined by 48 hours (Fig. 3.1 D), 

whilst that elicited by 20% FBS steadily, but significantky increased up to 72 hours (Fig. 3.1 D).  

Although 10% FBS had a significant effect on rMSC proliferation, maximal stimulation at this 

concentration was seen at 48 hours (Fig. 3.1 D). PMA showed a proliferation rate similar to that of 

the basal control (C) and the DMSO solvent control (Fig. 3.1 D). The decrease in proliferation 

observed after 72 hours of 5% FBS stimulation is not likely to be due to contact inhibition at 

confluency since naïve rMSCs grown for 7 days post confluency still proliferated, although beit at a 

slower rate (see Fig. 4.1). After careful observation, no morphological changes were seen when 

cells were treated with 1% FBS as serum deprivation can stimulate myoblast differentiation in 

stromal cells (Zhang et al., 1999; Hubé et al., 2011).  This could be an indication that differentiatin 

into a myogenic lineage did not occur as myotubule formation was not observed.  
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Figure 3.1.: Strong mitogenic stimulation of naïve rMSCs leads to delayed proliferation after 24 hrs. 

Cells were grown to 50% confluency and serum starved in 1% FBS for 24 hrs. For mitogenic stimulation, cells were 

treated with either: FBS (at concentrations indicated), 100 ng/ml PMA or 0.1% DMSO for 24 (A), 48 (B) and 72 hrs 

(C). 1% FBS was used as basal growth control and is designated C. The change in proliferation over 72 hours for each 

of the cell treatments is shown in D. DNA synthesis was measured by incorporation of [
3
H] thymidine ([

3
H] dT) for the 

last 4 hrs of incubation.  Data of an individual experiment is shown, where n = 3 and is representative of experiments 

repeated at least three times, where each repeat represents an individual animal. Results displayed are the mean cpm ± 

S.E.M., where P<0.05 was seen as a statistically significant difference using the One-way Anova with Bonferonni post-

hoc test. Statistically significant differences are indicated by different lower case letters. Data bars with the same letter 

above are not statistically different. Abbreviations: C control; cpm counts per minute; DMSO dimethyl sulfoxide; 

FBS fetal bovine serum; hrs hours; ns not significant; PMA phorbol 12-myristate 13-acetate;vs versus 
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3.2.2 Oncogene-induced senescence and G0/G1 cell cycle restriction contributes 

to low proliferation levels after 24 hours of strong mitogenic stimulation 

The weak proliferative response of undifferentiated rMSCs to strong mitogenic stimulation after a 

period of 24 hours may be attributed to various reasons. These could be (i) compromised cell 

viability, which was assessed with the MTT mitochondrial activity assay (Fig. 3.2), (ii) 

hypermitogenic stimulation leading to oncogene-induced senescence (OIS), which was examined 

using the senescence-associated -Gal (SA--Gal) assay (Fig. 3.3) or (iii) cell cycle arrest as 

determined by propidium iodide staining of isolated nuclei (Fig. 3.7, Fig. 3.8, Table 3.1 and 3.2) or 

bromodeoxy- uridine (BrdU) pulse-labelling of whole cells (Fig.3.9 and Table 3.3).  

 

3.2.2.1 Mitochondrial activity of rMSCs after 24 hours of mitogenic exposure 

The MTT reduction assay revealed an increase in formazan production in naïve rMSCs to 

increasing concentrations of FBS; with 20% FBS exhibiting the highest formazan levels (Fig. 3.2). 

The 1% FBS control was set as a 100%. The low FBS concentration of 5% evoked a 27% (SD± 

0.057) increase in mean formazan crystal formation compared to the control, whereas 10% FBS and 

20% elicited a 44% (SD± 0.042) and 71% (SD± 0.029) increase, respectively. Contrary to FBS, 

PMA, although normally a powerful mitogen, did not elicit a similar response; instead, formazan 

levels were only increased by 5% compared to the control. However, this increase was significantly 

different from controls (1% FBS) (Fig. 3.2). Based on the premise that the degree of formazan 

conversion indicated metabolic activity levels, these results suggest that strong mitogenic 

stimulation resulted in higher levels of metabolic activity compared to the control. It can also be 

concluded that the viability of rMSC was not adversely affected by potent mitogens after 24 hours. 

This finding is in contrast with proliferation data (Fig 3.1 A) showing that rMSC proliferate less 

when stimulated with strong mitogens such as 20% FBS and PMA for 24 hours. A possible reason 

for this discrepancy may be that rMSCs were undergoing oncogenic-induced senescence (OIS), a 

cellular process characterised with an increase in metabolic activity and a decrease or cessation in 

cell proliferation (Dimri et al., 1995; Campisi, 2001).    
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Figure 3.2: Naïve mesenchymal stromal cell mitochondrial activity is not dramatically reduced after strong 

mitogenic stimulation for 24 hrs.  

Cells were grown until 50% confluent and serum starved in 1% FBS for 24 hrs before the addition of either FBS (at 

concentrations indicated), 100 ng/ml PMA or 0.1% DMSO (used as negative control) for an additional 24 hrs.  Basal 

proliferation was elicited by treatment with 1% FBS. Mitochondrial activity was assessed using the MTT mitochondrial 

activity assay (2.2.7 in Methods). Data is presented as % mitochondrial activity compared to control (1% FBS). The 

experiment was repeated three times, with data being similar for each repeat (animal). Results displayed is a 

representative experiment and are shown as the mean % ± S.D, where n=3. Statistically significant differences (P<0.05) 

(One-way Anova with Bonferonni post-hoc test) are specified by different lower case letters. Abbreviations: C control; 

DMSO dimethyl sulfoxide; FBS fetal bovine serum; MTT 3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium 

bromide; PMA phorbol 12-myristate 13-acetate 

 

 

3.2.2.2 Oncogene-induced senescence is observed after rMSCs were stimulated 

with strong mitogens for 24 hours 

Elevated -Gal (-galactosidase) activity is a hallmark of senescent cells (Dimri et al., 1995; 

Campisi, 2001) and was used to examine the level of senescence exhibited by naïve rMSCs after 24 

hours of strong mitogenic stimulation (Fig. 3.3 A). Cells may undergo senescence under inadequate 

culture conditions such as nutrient deficiency (Mathon and Lloyd, 2001; Tang et al., 2001). These 

low nutrient conditions were achieved by exposing cells to 1% FBS for 48 hours (serum reduction 

for 24 hours and a further 24 hours while mitogenic treatments had effect). Under these conditions 
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of 48 hr serum depletion, 22% of cells counted exhibited elevated levels of -Gal activity (Fig. 3.3 

B). Cells stimulated with 5% FBS, the concentration which elicited the highest rMSC proliferation 

after 24 hours, displayed a lower level of -Gal activity (8.3 %) compared to the 1% FBS positive 

control (Fig. 3.3 B). In addition, the mean percentage of -Gal positive cells obtained with 10% 

FBS (7.1 %) were not significantly different from 5% FBS (8.3 %) (Fig. 3.3 B). Moreover, 20% 

FBS and PMA, the cell treatments which resulted in low levels of proliferation of rMSCs after 24 

hours of stimulation, showed the highest levels of -Gal activity (Fig. 3.3 B). In the case of 20% 

FBS, a mean percentage of 17.1% of cells showed -Gal activity, whereas PMA treatment caused 

increased -Gal activity in 24.7% of cells. These results demonstrate that strong mitogenic 

stimulation of naïve rMSCs led to increased -Gal activity, suggesting that these cells exhibited 

cellular senescence. 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                     

Figure 3.3: Strong mitogenic stimulation of rMSCs leads to increased SA--Gal activity.   

Hemi-confluent cells were serum starved in 1% FBS for 24 hrs before mitogenic stimulation with either FBS (at 

concentrations indicated) or 100 ng/ml PMA.  Oncogenic-induced senescence was examined using the SA--Gal 

activity assay. 1% FBS, which mimicked nutrient deficient conditions, was used as positive control for this assay.  Cells 

were effectively exposed to 1% FBS for 48 hrs. Hoechst nuclear stain was used as counterstain to determine the total 

amount of cells per field of view. (A) Image overlay of transmission and counterstained images (the scale is 0.2 mm as 

indicated at the bottom of the image), depicting senescent positive (indicated by arrows) and negative cells 

(background; light blue cells). (B) Percentage of senescent positive cells with the total amount of cells counted specified 

above the columns. The experiment was repeated once (n=4), with similar trends exhibited. Statistically significant 

differences (P<0.05) (One-way Anova with Bonferonni post-hoc test) are indicated by different lower case letters. Data 

that were not statistically significantly different are indicated by similar lower case letters. Abbreviations: C control; 

DMSO dimethyl sulfoxide; FBS fetal bovine serum; PMA phorbol 12-myristate 13-acetate; SA--Gal senescence-

associated -galactosidase  
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3.2.2.3 Flow cytometric analysis of the DNA content and cell cycle phase 

distribution of rMSCs after 24 hour mitogenic stimulation 

In order to further investigate the lack of proliferative response in naïve rMSCs to PMA and 20% 

FBS after 24 hr incubation (as seen in Section 3.2.1), flow cytometric analysis using propidium 

iodide (PI) and bromodeoxyuridine (BrdU) were used to examine the distribution of the cell cycle 

phases. The light scatter properties (forward scatter vs side scatter) of two independent experiments 

are depicted in Fig. 3.4 and Fig. 3.5. Naïve rMSCs grown in 1% FBS were used as negative growth 

control. Although no difference in cell size, shape and granularity was observed when using phase 

contrast light microscopy, analysis of the light scatter properties of the isolated nuclei indicated the 

presence of two nucleic populations in rMSCs cultures (Fig. 3.4 and Fig. 3.5). These two 

populations were identified using the autogating tool of the FlowJo® software as guideline, to 

reduce possible subjectivity during flow cytometry data analysis. Based on the FSC characteristics 

of the isolated nuclei, two main populations of different sizes were observed (Fig. 3.4 and Fig. 3.5); 

whereas the SSC data showed that the two major populations were also divergent in cell granularity 

(Fig. 3.4 and Fig. 3.5). The presence of two populations of nuclei, suggests the occurrence of two 

cell types in rMSC cultures of different size and complexity. These two populations were 

designated population 1 and population 2, respectively. Population 1 represented smaller cells with 

more condensed nuclei, whilst population 2 signified larger cells which have more granular nuclei 

(Fig. 3.4 and Fig. 3.5).   
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Figure 3.4: Flow cytometry analysis revealed two populations of isolated nuclei present in naïve rMSCs cultures. 

Semi-confluent cells were serum starved in 1% FBS for 24 hrs before mitogenic stimulation with either FBS (at concentrations indicated) or 100 ng/ml PMA. Nuclei were isolated as 

described in section 2.2.7. A FACSCalibur flow cytometer was used to acquire data. FlowJo software was used for light scatter data analysis. Diagrams A1 – A4 and B1  – B4 

specify the respective density plots of two independent experiments measuring light scatter properties (FSC vs SSC) of rMSCs stimulated for 24 hrs with mitogens, where n modelled 

cells > 25 000. Cell populations were gated (populations are encircled) and the percentage of cells present in each population is specified. The respective treatments are indicated at the 

top of the graphs.  Abbreviations: FBS fetal bovine serum; FSC forward scatter; SSC side scatter 
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Figure 3.5: Flow cytometry analysis of the two cell populations in naïve rMSCs cultures after PMA exposure. 

Semi-confluent cells were subjected to serum reduction using 1% FBS for 24 hrs before stimulation with 100 ng/ml 

Isolated cell nuclei were stained with propidium iodide. Fluorescence data was acquired using a FACSCalibur flow 

cytometer. The density plots of SSC (y-axis) vs FSC (x-axis) of the two independent experiments labelled A5 and B5 

are illustrated. The total modelled events were > 25 000. Cell populations were gated (populations are encircled) and the 

percentage of cells present in each population is marked. Abbreviations: FSC forward scatter; PMA phorbol 12-

myristate 13-acetate; SSC side scatter 

 

 

It was found that the rMSC cultures stained with the DNA binding dye, Hoechst 33258, under basal 

and mitogenic conditions, contained nuclei of two different sizes and granularity as seen 

microscopically, although these cells were all fibroblastic in appearance and therefore 

morphologically indistinguishable when viewed by phase contrast light microscopy (Fig. 3.6). This 

agrees with the flow cytometry light scatter results which indicated the occurrence of two 

populations of nuclei in rMSCs cultures, irrespective of mitogenic induction (Fig. 3.4 and Fig. 3.5). 

Figure 3.6 illustrates the presence of smaller, more condensed nuclei (white arrows) as well as 

larger, more granular nuclei (green arrows) present in rMSCs cultures. The occurrence of two types 

of nuclei again infers the presence of two cell populations present in rMSC cultures. 
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Figure 3.6: Hoechst nuclear staining of rMSC nuclei revealed the presence of large and small nuclei populations. 

Hemi-confluent cells were serum starved in 1% FBS for 24 hrs before mitogenic stimulation with either 20% FBS. 

Hoechst nuclear stain was used to examine rMSC nuclei. The white arrows specify the smaller, more condensed nuclei, 

whilst the green arrows represent the larger, more granular nuclei. Images were obtained using an Olympus Cell ® 

system attached to an IX-81 inverted fluorescence microscope equipped with an F-view-II cooled CCD camera (Soft 

Imaging Systems). Image acquisition was performed using a Xenon light source (MT-20, Cell ®) with a 360 nm 

excitation filter and a UBG triple band pass emission filter, a 10x UPlanFLN objective and the Cell® imaging software. 

 

In order to determine whether the cells in populations 1 and 2 were undergoing cell division, the 

FL2 area (channel for PI fluorescence) was plotted against the side scatter (SSC; indication of 

granularity), specifically to identify the G0/G1 and G2/M phases in these populations (Fig. 3.7 and 

Fig.3.8). In accordance with the results shown in Fig 3.4 and Fig. 3.5, two discrete populations were 

again identified (Fig. 3.7 and Fig. 3.8). Analysis of the FL-2 area versus SSC area density plots 

revealed that both populations, irrespective of mitogenic stimulation, were undergoing cell cycle 

events and were not just quiescent (Fig. 3.7 and Fig. 3.8). Figures 3.7 (A1 – A4; B1 – B4) and Fig. 

3.8 (A5; B5), illustrates the G0/G1-, S- and G2/M cell cycle phases, respectively designated as 

regions i, ii and iii, of each of the identified populations. For closer examination of the cell cycle 

phase distribution of the nuclei present in populations 1 and -2, cell cycle analysis was performed 

using ModFit® software and gated (addenda F1 – F20). Importantly, the relevant debris areas were 

included in the gated regions to ensure accurate modelling using Modfit®. For example, upon 

gating the smaller, less granular population, the debris surrounding the smaller population was 

included for accurate cell cycle modelling using the Modfit® software (as shown in addendum F). 

Similarly, the debris surrounding the bigger, more granular population was included in the relevant 

regions to ensure accurate cell cycle modelling as exclusion of the debris region would lead to 

inaccurate data interpretation (addendum F). The relevant statistical parameters are shown in the 

colour coded tables, with the colour coding keys indicate at the bottom of the tables (addenda F1 – 

F20). 
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Figure 3.7: Flow cytometry analysis revealed two cell populations with different cell cycle phase distributions present in naïve rMSCs cultures. 

Semi-confluent cells were serum starved with 1% FBS for 24 hrs before mitogenic stimulation with either FBS (at concentrations indicated) or 100 ng/ml PMA. Isolated cell nuclei 

were stained with propidium iodide and fluorescence data was acquired using a FACSCalibur flow cytometer. In figures A1 – A5 and B1 –B5 the density plots of SSC (y-axis) vs 

FL-2 area (x-axis) of two independent experiments, where n modelled events > 25 000, are illustrated. The respective treatments are indicated at the top of the graphs. Regions specified as 

i, ii, and iii represent the G0/G1, S and G2/M phases of the cell cycle, respectively. Abbreviations: FBS fetal bovine serum; SSC side scatter; FL-2 area fluorescence channel for PI 
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Figure 3.8: Flow cytometry analysis revealed two cell populations with different cell cycle phase distributions 

present in naive rMSCs cultures after PMA exposure.  

Hemi-confluent cells were subjected to serum reduction using 1% FBS for 24 hrs before stimulation with 100 ng/ml 

PMA. Isolated cell nuclei were stained with propidium iodide. Fluorescence data was acquired using a FACSCalibur 

flow cytometer. The density plots of SSC (y-axis) vs FL-2 area (x-axis) of the two independent experiments labelled A5 

abnd B5 are illustrated. The total modelled events were > 25 000. Regions indicated as i, ii, and iii represent the G0/G1, 

S and G2/M phases of the cell cycle, respectively. Abbreviations: PMA phorbol 12-myristate 13-acetate; SSC side 

scatter; FL-2 area fluorescence channel for PI 

 

 

The cell cycle analysis of rMSCs subjected to mitogenic stimulation for 24 hours, using Modfit®, 

revealed that each of the observed populations in rMSC cultures displayed different cell cycle 

distributions (Addenda F1–F20). The greatest percentage of cells in population 1, irrespective of 

mitogenic induction, was observed in the G0/G1 phase of the cell cycle (Table 3.1). This suggests 

that these cells are either in a quiescent state or perhaps undergoing senescence. rMSCs subjected to 

limited GFs (1% FBS) and the potent mitogen, PMA, in both experiments, exhibited the highest 

percentages of cells in the G0/G1. In addition, cells grown in the presence of high concentrations of 

GFs, like 20% FBS, displayed the least amount of cells in this phase (Table 3.1). All treatments 

resulted in a portion of population 1 cells in S phase, with 20% FBS showing the highest number of 

cells present in this phase (Table 3.1). A fraction of cells in population 1, irrespective of treatment, 

were also observed in G2/M, again with 20% FBS treatment resulting in the highest percentage of 

cells in  the G2/M phase (Table 3.1). These results suggest that treatment of rMSCs with 20% FBS 

may possibly be restricted at the G2/M block in the cell cycle, because proliferation is low in these 

cells (as seen in Section 3.2.1; Fig. 3.1 A).  
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Table 3.1 displays the cell cycle phase distribution of Population 1 (% cells). 

 

 

 

 

 

 

 

 

Like cells in population 1, the majority of cells in population 2 were also restricted in the G0/G1 cell 

cycle phase (Table 3.2), suggesting that these cells are either quiescent or possibly in a senescent 

state. As seen in Table 3.2, a lesser amount of rMSCs in population 2 were observed in the S phase 

and G2/M phase of the cell cycle. Although the amount of cells observed in the S phase after 20% 

FBS stimulation were similar in both experiments, the percentage of cells in the G2/M phase 

differed considerably (12.79 vs 0.58) (Table 3.2). The reason for the discrepancy is unknown.  

 

Table 3.2 displays the cell cycle phase distribution of Population 2 (% cells). 

 

 

 

 

 

 

 

 

These findings indicate that after 24 hours of mitogen stimulation (for all mitogens tested), the 

majority of cells, irrespective of size and granularity, are in the G0/G1 cell cycle phase. In addition, 

under all experimental conditions, a portion of rMSCs were found to be in the S-phase of the cell 

cycle. This indicates the percentage of cells that are actively undergoing DNA replication after 24 

hours of basal growth and mitogenic stimulation. Therefore, it is the DNA synthesis and hence 

proliferation of this portion of cells that is measured during the [
3
H]dT proliferation assay.  

However, the cell cycle distributions of rMSCs subjected to 20% FBS treatment do not correlate 

with the [
3
H]dT proliferation assay results obtained after 24 hours. Although the highest portion of 

cells were seen in the S phase after 20% FBS stimulation, rMSCs stimulated with 20% FBS 

mounted a weak proliferative response (50% of the control) after 24 hours, but this increased after 
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72 hours (Fig. 3.1 A and C). This thus indicates that these cells could be restricted at the G1/S 

boundary of the cell cycle.  

 

 

In order to reconcile the [
3
H]dT proliferation assay findings with the PI DNA content analysis, 

rMSCs were pulse-labelled with BrdU for 1 hr. The BrdU fluorescence data are displayed in Fig. 

3.9 as density plots where FL3-H was plotted against the FL1-H using the FlowJo® software. Since 

BrdU is only incorporated into DNA of actively dividing cells, that is cells in the S phase, the DNA 

binding dye, 7-AAD (7-Aminoactinomycin D), was also used to measure total DNA content in 

order to identify the G0/G1 and G2/M cell populations. To accurately analyse the distribution of the 

cell cycle phases using the FL3-H (anti-BrdU-FITC channel) versus FL1-H (7-AAD channel) zebra 

plots, the debris regions were excluded from the analysis by gating the area surrounding the G0/G1-, 

S- and G2/M cell cycle phases. This debris region was designated as R (Fig. 3.7 and Fig. 3.8). The 

cell cycle phases were demarcated as regions i, ii and iii, corresponding in that order to the G0/G1-, 

S- and G2/M cell cycle phases (Fig. 3.7 and Fig. 3.8).    

 

The amount of cells present in each cell cycle phase was expressed as percentages of the gated 

region, R and displayed in Table 3.3.It is noteworthy that because the total number of cells in the 

gated region R was used as opposed to the amount of the cells in the regions i, ii and iii, the total 

percentage of the cell phases for each treatment does not amount to 100%. Since 1% FBS was used 

to synchronise the cell cycle of naïve rMSCs prior to mitogenic stimulation, cells subjected to 1% 

FBS showed the largest amount of cells in G0/G1 and almost none in the S phase. This is in 

agreement with the [
3
H]dT proliferation results where 1% FBS was used as basal growth condition 

(Fig. 3.1 A). rMSCs were treated with 10% FBS to simulate normal growth conditions and results 

revealed that 52% of these cells were found in the G0/G1, with moderate amounts observed in the S 

– and G2/M phases. Although the majority of cells for all treatments were found in the G0/G1 cell 

cycle phase, cells subjected to 5% FBS treatment had the least amount of cells in G0/G1 (Table 3.3). 

In addition, cells treated with 5% FBS exhibited a modest amount of cells in S phase and the 

highest percentage of cells in the G2/M cell cycle phase (Table 3.3), suggesting that this portion of 

cells are actively synthesising DNA and undergoing mitosis. This finding is in agreement with the 

[
3
H]dT proliferation data in Fig. 3.1 A, where 5% FBS elicited the greatest proliferative response 

after 24 hours of stimulation.  
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Figure 3.9: BrdU pulse-labelling of mitogen-stimulated rMSCs shows different cell cycle phase distributions.  

Semi-confluent cells were serum starved in 1% FBS for 24 hrs before mitogenic stimulation with either FBS (at 

concentrations indicated) or 100 ng/ml PMA. Cells were then pulse-labelled with BrdU for 1 hr before cell fixation.  

Fixed cells were stained with 7-AAD for 5 min before fluorescence data acquisition using a FACSCalibur flow 

cytometer. Figures A – E display the zebra density plots of FL3-(H) area (x-axis) versus FL1-H (y-axis), where n modelled 

events > 25 000, are illustrated. The respective treatments are indicated at the top of the graphs. Regions specified as i, ii, 

and iii represent the G0/G1, S and G2/M phases of the cell cycle, respectively and was gated using FlowJo® software. 

Abbreviations: BrdU bromodeoxyuridine; FBS fetal bovine serum; FITC Fluorescein isothiocyanate; FL1 

fluorescence channel for BrdU-FITC; FL1 fluorescence channel for 7-AAD; H height; PMA phorbol 12-myristate 13-

acetate; 7-AAD 7-Aminoactinomycin D; R debris region  
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Table 3.3 displays the cell cycle phase distribution (% cells) of rMSCs using BrdU staining. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compared to the PI cell cycle data, BrdU pulse-labelling revealed that 20% FBS also exhibited the 

highest percentage of cells in the S phase of the cell cycle (Table 3.3). In addition, the amount of 

cells observed in the G2/M phase after 20% FBS stimulation, was the least, compared to other cell 

treatments (Tale 3.3). In accordance with the PI cell cycle data, these findings suggest that naïve 

rMSCs may experience S-phase restriction after 24 hours of stimulation with 20% FBS and not 

progressing to the mitotic phase of G2/M.  A possible reason for this could be that these cells were 

under the restriction of the intra-S-phase checkpoint (Kastan and Bartek, 2004; Houtgraaf et al., 

2006).  

 

Cells treated with PMA also had most of the cells in G0/G1, virtually none in S phase and a 

moderate amount in G2/M (Table 3.3). It appears that 1% FBS and PMA elicited comparable cell 

cycle phase distributions and this is in agreement with proliferation data where these treatments 

resulted in similar proliferation levels (Fig. 3.1 A). In contrast to PMA, 20% FBS elicited slight, but 

significant proliferation when compared to the 1% FBS negative growth control (Fig. 3.1 A). 

However, this small response of cells to 20% FBS was much lower than that evoked by 5% FBS 

(Fig. 3.1 A). In conjunction with this proliferation data, it appears that the cell cycle phase 

distribution of cells treated with 20% FBS were also considerably different to 1% FBS and PMA 

(Table 3.3), suggesting a possible difference in mechanism of senescence between these treatments. 

 

In addition, even though the levels of senescence elicited by 1% FBS, 20% FBS and PMA were not 

statistically significantly different, the level of senescence caused by 20% FBS was slightly less 

than that of 1% FBS and PMA (Fig. 3.3). This illustrates a possible difference between the cellular 

mechanism resulting in reduced proliferation and senescence elicited by 1% FBS, 20% FBS and 

PMA. Moreover, 1% FBS and PMA were observed to be stronger inducers of senescence than 20% 

FBS (Fig. 3.3).  
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3.3 Discussion  

Mesenchymal stromal cells derived from adipose tissue present an original model to study various 

aspects of bone cell development. Analysis of the light scatter properties of whole rMSCs using 

flow cytometry has shown that the isolation method used in this thesis produces a homogenous cell 

population of rMSCs (Dr. H Sadie- van Gisjen, unpublished data). Moreover, it was also found that 

these cells were positive for the stromal cell surface marker, CD90 and negative for the 

haematopoietic cell surface antigen, CD45 (personal communication, Dr. H Sadie- van Gisjen). 

These results, together with the ability of these adherent rMSCs to form calcified bone nodules (see 

Fig. 4.3) and adipocytes (Ogawa et al., 2004; Lopez and Spencer, 2011), suggests that the rMSCs 

used in this study were multipotent, mesenchymal stromal cells. Although the presence and absence 

of more cell surface antigen markers still needs to be tested, these findings are in accordance with 

the minimum criteria for classification of multipotent MSC as outlined by Dominici et al. (2006).  

 

Since little is known about the proliferation of these adipose-derived stromal cells, various 

mitogenic conditions were used to ascertain the proliferative response of rMSCs to known mitogens 

such as fetal bovine serum (FBS) and PMA (Fig. 3.1 A, B and C). It was hypothesised that 

stimulation of rMSCs with increasing concentrations of FBS would result in an increased 

proliferative cellular response. The results obtained was contrary to this hypothesis, in that the 

lower FBS concentration of 5% elicited the greatest proliferative response in naïve rMSCs, whilst 

the higher FBS concentration of 20% FBS and PMA resulted in proliferation similar to the 1% FBS 

growth control after 24 hours (Fig. 3.1 A). These findings suggest that potent mitogenic stimulation, 

such as 20% FBS and PMA, hindered the proliferation of naïve rMSCs. In the case of 20% FBS, 

proliferation is only increased after 72 hours compared to the other mitogenic treatments, whilst 

PMA remained unchanged at this time (Fig. 3.1 C). A number of possibilities could explain the lack 

of proliferation seen after strong mitogenic stimulation in Fig. 3.1. One such suggestion is that the 

mitogens present in FBS such as FGF-1 (Lee and Blaber), IGF-I (Goodrich et al., 2006) and VEGF 

(Kleinheinz et al., 2010) have relatively short biological half lives. This could lead to stunted 

signaling events and end responses such as proliferation due to the metabolisation of mitogens 

during extended time in culture. PMA, on the other hand, has a half life ranging between 8 hours to 

24 hours, depending on cell type and dosage (Berry et al., 1978; O‟Brien et al., 1980). Earlier 

results have shown that even if FBS was replaced daily over a 72 hour period, 5% FBS still elicited 

the highest rate of proliferation and that 20% still showed decreased proliferation in rMSCs up to 48 

hours (data not shown). PMA is known to cause inactivation of biological responses (Berry et al., 

1978; O‟Brien and Saladik, 1978) and the inhibition of rMSCs proliferation after PMA treatment is 

in accordance with these findings. Another possibility is decreased cellular sensitivity due to 
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receptor downregulation, since these high concentrations of mitogens persisted for long time 

periods (Bouvier et al., 1989; Dale et al., 2002).  

 

It is also known that hypermitogenic stimulation of some cell types could result in stunted growth in 

an anti-oncogenic response known as oncogenic-induced senescence (OIS) (Dimri et al., 1995; 

Campisi, 2001). This response could likely explain the attenuated rMSC proliferation after strong 

mitogenic stimulation like 20% FBS and PMA. Several findings corroborate this deduction. Firstly, 

the increase in formazan formation by enhanced metabolic activity, as seen in the MTT assay, 

suggests that strong mitogenic stimulation of rMSCs result in heightened mitochondrial activity and 

metabolism (Fig. 3.2). The increased metabolic activity evoked by 5% FBS and 10% FBS 

(proliferating conditions) after 24 hours may be ascribed to the increase in metabolism associated 

with mitotic cell division (Chambard et al., 2007). Seeing that PMA provoked a metabolic response 

similar to the 1% FBS control, but dissimilar to that of 20% FBS, it is likely that the mechanism 

responsible for low proliferation after 20% FBS and that elicited by PMA could be different. 

Secondly, the senescence-associated -gal (SA--Gal) assay showed that the portion of cells 

undergoing senescence after 24 hours of strong mitogenic stimulation were significantly increased, 

with 17% and 25% senescent positive cells being present after 20% FBS and 100 ng/ml PMA 

treatment, respectively (Fig. 3.3 B). Taken together, the lack of proliferation and increased 

metabolic activity observed in naïve rMSCs suggest that OIS could be a contributing factor to the 

lack of cell growth seen after 24 hours of incubation with excessive quantities of mitogens. Thirdly, 

closer investigation using flow cytometry showed two populations within the cultures of distinct 

size and granularity (Fig. 3.4 and Fig. 3.5). Flow cytometry histograms showed a shoulder on the 

G0/G1 and G2/M peaks of in rMSCs preparations (data not shown). This profile of DNA content is 

characteristic of senescent cells. Lastly, heterochromatin is a chromatin form in which the DNA is 

extremely condensed and is a hallmark of senescent cells (Narita et al., 2003). The analysis of the 

fluorescence intensity of Hoechst 33258 stained cells also suggests the presence of two cell 

populations in rMSCs preparations (Fig. 3.6). Although differences in the morphology of unstained 

cells could not be distinguished using phase contrast microscopy, the difference in fluorescence 

intensity seen in Fig. 3.6 could indicate differential uptake of the Hoechst 33258 stain by these 

nuclei, possibly reflecting different DNA condensation states. As the Hoechst 33258 stain binds to 

the minor groove of the DNA double helix, especially AT rich sequences (Cesarone et al., 1979), it 

is probable that the brightly stained nuclei represent a cell population of which the DNA backbone 

is more accessible to the DNA dye. Consequently, the diffusely stained nuclei would represent a 

cell population with more compacted DNA, thereby making the DNA basepairs less accessible to 
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the Hoechst 33258 stain and resulting in weak staining. Therefore, it is likely that the cells of these 

nuclei were possibly undergoing OIS, characterised by nuclear condensation.  

 

DNA content analysis revealed that, for all mitogenic conditions tested, the majority of cells, 

regardless of size and granularity, are in the G0/G1 cell cycle phase, thereby suggesting that these 

cells were either in a quiescent state or conceivably undergoing senescence (Tables 3.1 to 3.3). 

Findings indicate that treatment with 20% FBS possibly hindered the S phase transition into G2/M 

of rMSCs after 24 hours, since this cell treatment exhibited the highest S-phase content compared to 

other cell stimulants (Table 3.3). This indicates that these cells were restricted to these cell cycle 

phases. Since quantification of cells in the S phase represent the percentage of cells that are 

undergoing DNA synthesis after 24 hours of mitogenic stimulation, it is therefore the proliferation 

of this fraction of cells that is measured during the [
3
H]dT proliferation assay. Flow cytometry 

results also suggest that the mechanisms by which 20% FBS and PMA induce senescence in rMSCs 

after 24 hr could be different. A likely means could be that PMA might induce cell growth arrest at 

the G0/G1 mitotic checkpoint before entry into the S-phase, thus explaining the G0/G1 restriction of 

rMSCs treated with PMA (Fig. 3.9 E). In addition, G0/G1 restriction could also possibly also 

indicate cell differentiation or apoptosis. In contrast, 20% FBS stimulation could lead to a cell cycle 

arrest before the commencement of mitosis, thereby possibly justifying the moderate amount of 

cells restricted to the S-phase of the cell cycle (Fig. 3.9 D). This could conceivably be due to 

blockage at the intra-S-phase checkpoint as part of a DNA damage response (Schmitt et al., 2007), 

possibly caused by reactive oxygen species due to the high concentration of FBS (20%) used (Chen 

and Ames, 1994; Brar et al., 1999; Chae et al., 2000). The mechanism underlying this S-phase 

blockage could possibly include delayed replication fork progression; replicarion fork stalling or 

collapse as well as abberent DNA repair systems (Sancar et al., 2004; Ben-Yehoyada et al., 2007).  

 

 

To conclude, mild mitogenic stimulation such as 5% FBS elicited a good proliferative response in 

these cells. On the contrary, strong mitogens such as 20% FBS and PMA did not stimulate the 

proliferation of naïve rMSCs over 24 hours as 5% FBS, possibly due to some cells undergoing 

senescence. However, increased proliferation after 20% FBS was seen after 72 hours, indicating 

that this mitogenic stimulation had a delayed replication period. Hence, the conditions that stimulate 

mitogenesis in naïve rMSCs were established. The following section of the current work will cover 

the characterisation of preosteoblasts derived from these naïve stromal cells.    
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Characterisation of rMSCs differentiated into 

an osteoblastic phenotype 
 

 

4.1 Introduction 

The aim of this section of the research was to identify cells in an early osteoblastic stage in order to 

study the effects of GCs on mitogen-induced proliferation of preosteoblasts. Differentiation of naïve 

rMSCs was induced using osteogenic media (OM) containing ascorbic acid, -glycerophosphate 

and dexamethasone (Supplement A3.3) (Digirolamo et al., 1999; Colter et al., 2001; Deliloglu-

Gurhan et al., 2006a; Deliloglu-Gurhan et al., 2006b). The inclusion of ascorbic acid in the 

osteogenic media is necessary for the stimulation of collagen synthesis and maturation (Franceschi, 

1999). It is an important co-factor for the hydroxylation of the pro-collagen chains and subsequent 

triple helix formation, secretion and collagen fibril assembly (Franceschi, 1999). -

glycerophosphate is employed as an exogenous phosphate source to aid mineralization, whereas 

GCs, in this case dexamethasone, are required in low doses to promote bone nodule formation 

(Bellows et al., 1990). GCs regulate nodule formation by modulating the expression of gene-

products necessary for the maturation, organisation and mineralisation of the ECM (Leboy et al., 

1991; Stromstedt et al., 1991; Shalhoub et al., 1992; Subramaniam et al., 1992; Heinrichs et al., 

1993; Ito et al., 2007; Mikami et al., 2007). The selection criteria for preosteoblasts were that these 

cells must still proliferate and express early osteoblastic phenotype markers. Consequently, rMSCs 

were differentiated for 7 days in osteogenic medium before proliferation and the expression of early 

osteoblastic markers were assessed. In addition, to assess the ability of these adipose tissue-derived 

rMSCs to form mineralized bone nodules and therefore osteogenesis, was assessed by staining for 

calcium deposition using Alizarin Red after 28 days in culture. 

 

The ability of early osteoblast precursor cells such as preosteoblasts to proliferate and replenish 

depleted osteoblasts in the BMU is paramount to the maintenance of a balanced osteoblastic 

population and hence maintenance of healthy bone. The cell cycle is progressively down-regulated 

as MSCs differentiate into mature bone forming cells, which leads to a reduction in the proliferative 

potential in more differentiated cells (Aubin and Liu, 1996; Franceschi, 1999).  Down-regulation of 

the cell cycle is due to a reduction in the expression of cell cycle-regulating proteins as well cell 

growth related genes such as CDKI, c-fos and c-jun (Aubin and Liu, 1996; Franceschi, 1999). This 
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post-proliferative stage is also characterised by the synthesis and maturation of the collagen-

containing extracellular matrix and the accompanied expression of osteoblast-related proteins 

(Aubin and Triffitt, 2002), which marks the attainment of the osteoblastic phenotype. Furthermore, 

the response of these osteoblastic cells to growth factors diminishes, which could be attributed to 

the decrease in the expression of specific growth factor receptors, decreasing the proliferative 

capacity of these cells (Chien et al., 2000; Picton et al., 2000; Mizuno et al., 2005). This is seen in 

MC 3T3 E1 cells where the amount of EGF receptors decreased during the differentiation into 

mature osteoblasts (Chien et al., 2000). These authors also showed that the more mature ROS 

osteoblastic cell line, which highly expressed the late osteoblast markers Col I, ALP, BSP and 

OCN, did not respond to EGF treatment (Chien et al., 2000). Therefore, an objective of this part of 

the study was also to test whether preosteoblasts derived from rMSCs were capable of responding 

to growth factor stimulation. FBS is a cocktail of growth factors and was used at a concentration of 

20% (v/v) to induce preosteoblast proliferation. This FBS concentration was determined by a dose 

response, where 20% FBS elicited the highest cell proliferation of partially osteogenic differentiated 

cells compared to 5% FBS and 10% FBS (data not shown).  

 

 

 

4.2 Results 

4.2.1 Characterisation of early osteoblastic phenotype marker expression in 

rMSCs differentiated for 7 days 

Naïve rMSCs were grown to confluency and differentiated with osteogenic medium (described in 

Section 2.2.1.3 and Supplement A3.3.) before total RNA was extracted and converted into cDNA 

(explained in Section 2.2.10) to serve as template for RT-qPCR to study the relative mRNA 

expression of early osteogenic markers. The early osteoblast-related genes used to assess the 

development of the preosteoblast phenotype in rMSCs differentiated with OM for 7 days were 

Runx2, Msx2, Osx and ALP. Runx2 (Ducy et al., 1997; Komori et al., 1997; Otto et al., 1997; 

Mundlos et al., 1997), Msx2 (Dodig et al., 1999; Liu et al., 1999; Satokata et al., 2000; Wilkie et al., 

2000) and osterix (Nakashima et al., 2002) are transcription factors that controls the restriction of 

mesenchymal stromal cells to the osteogenic lineage, whereas ALP is needed for bone 

mineralisation (Stein et al., 1990; Stein and Lian, 1993). To determine the relative gene expression 

of the respective genes of interest (GOIs), the relative abundance of these GOIs was normalised to 

the expression levels of the ARBP reference gene and expressed using arbitrary units. 
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Results showed that all of the early transcripts studied were present 7 days after the induction of 

osteogenic differentiation (Fig. 4.1 A-C). In addition, the relative transcript abundance of Msx2 and 

ALP osteogenic markers were significantly increased after 7 days of osteogenic differentiation (Fig. 

4.1 B and D). These results suggest that early osteogenic markers are present at varying quantities 

in rMSCs differentiated into an osteogenic phenotype for 7 days and that these cells may be 

classified as preosteoblasts.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  rMSCs differentiated for 7 days with osteogenic medium express genes associated with early 

osteogenic stages.   

Cells were grown to confluency before induction of osteoblastic differentiation using OM (10 mM glycerol-2-

phosphate, 50 µM ascorbic acid and 10 nM Dex) for 7 days. Confluent naïve rMSCs grown in DMEM/10% FBS for 7 

days were used as a growth control. The transcript abundance of Runx2 (A), Msx 2 (B), Osx (C) and ALP (D) was 

measured using RT-qPCR. Data of three independent experiments are given. For RT-qPCR analysis, three biological 

replicates per experiment (N=3) were assayed in triplicate. Results displayed are the mean ± S.D and are shown relative 

to the control, which was set to 1. Statistically significant differences were calculated using the Student t-test and are 

indicated by * (P<0.01) and ** (P<0.001) above the bar graph. Abbreviations: ALP alkaline phosphatase; C control; 

Dex dexamethasone; Msx 2 muscle segment homeobox 2; OM osteogenic medium; Osx osterix; Runx2 runt-related 

transcription factor 2 
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4.2.2 ALP enzyme activity is increased in preosteoblasts after 7 days  

To further assess the preosteoblast phenotype of rMSCs differentiated for 7 days in OM, the activity 

of the ALP protein was assessed. In accordance with the literature (Lian and Stein, 1995; Aubin, 

1998; Aubin and Triffitt, 2002), ALP protein activity was significantly increased in differentiated 

preosteoblasts compared to the undifferentiated growth control (Fig. 4.2). This result demonstrates 

that rMSCs cultured in OM for 7 days display a preosteoblast phenotype with the increase in ALP 

activity being indicative of differentiation. 

 

 

 

 

 

 
 

 
Figure 4.2: rMSCs differentiated for 7 days with osteogenic medium exhibits increased ALP protein activity.  

Cells were grown to confluency before induction of osteoblastic differentiation using OM (10 mM glycerol-2-

phosphate, 50 µM ascorbic acid and 10 nM Dex) for 7 days. Confluent naïve rMSCs grown in growth medium for 7 

days were used as growth control. ALP activity was measured using the Pnpp hydrolysis assays (refer to Section 2.2.5). 

Data of six independent experiments are given, with each sample done in triplicate. Results displayed are the mean ± 

S.D., where P<0.001 was seen as a statistically significant difference using the paired Student t-test. Statistically 

significant differences are indicated by * above the bar graph. Abbreviations: ALP alkaline phosphatase; C control; 

OM osteogenic medium  

 

4.2.3 Naïve rMSCs differentiated into an osteoblastic phenotype forms 

mineralised bone nodules after 28 days in culture 

The endpoint of the osteogenic differentiation pathway is the formation of calcified bone nodules. 

To determine whether stromal cells derived from rat adipose tissue could differentiate into a mature 

bone phenotype and thus form calcified nodules, naïve rMSCs were grown until confluent, after 

which osteogenic differentiation was induced using osteogenic medium (refer to Section 2.2.1.3 and 

Supplement A3.3.) for 28 days with media changes occurring every 2 to 3 days. 
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Cells grown in complete growth medium (Supplement A2.) were employed as negative calcification 

controls (Fig.4.3). Employing light microscopy, nodule formation was observed 28 days after 

induction of osteogenic differentiation and nodules were stained with Alizarin Red to detect 

calcification. The presence of calcified bone cell nodules were observed in cells cultured in 

osteogenic medium for 28 days (Fig.4.3 B), but not in cells grown in complete growth medium 

(Supplement A2.) (Fig.4.3 A). These results indicate that upon osteogenic induction, naïve rMSCs 

differentiate into mineralised bone cell nodules, which is a feature of functional, mature osteoblasts.  

 

 

                     
 

 

Figure 4.3: Osteogenic differentiation of naïve rMSCs culminates in calcified nodules after 28 days ex vivo.  

Confluent naïve rMSCs grown in complete growth medium for 28 days were used as a negative calcification control 

(A). Naïve rMSCs were grown to confluency before induction of osteoblastic differentiation using OM (10 mM 

glycerol-2-phosphate, 50 µM ascorbic acid and 10 nM Dex) for 28days (B). Calcified nodules were detected by staining 

cells with Alizarin Red.  Mineralised nodules are indicated with black arrows. This image was kindly provided by Dr. 

H. Sadie- van Gijsen from the Endocrinology and Metabolism Unit at University of Stellenbosch. Abbreviations: OM 

osteogenic medium  

 

4.2.4 rMSCs differentiated with osteogenic medium for 7 days exhibits reduced 

cell proliferation  

In order to investigate the degree of proliferation exhibited by rMSCs differentiated into a 

preosteoblast phenotype, confluent naïve MSCs were treated with osteogenic medium for 7 days. 

Although the proliferation of these preosteoblasts was significantly decreased in comparison to the 

growth and ethanol solvent controls, preosteoblasts proliferation was not ablated (Fig. 4.4). This 

decrease in proliferation after induction of osteogenic differentiation is in agreement with findings 

from Aubin and Liu (1996) and Franceschi (1999).  
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After 7 days post-confluency rMSCs were able to replicate (Fig. 4.4), demonstrating the high 

proliferative capability of these osteoblast precursor cells. Since the osteogenic medium contained 

Dex dissolved in ethanol, confluent naïve rMSCs were subjected to growth medium containing 

0.1% (v/v) ethanol for 7 days, as a solvent control. It was found that the proliferative response 

elicited by the ethanol solvent control was not significantly different from the growth control (Fig.  

4.4). Therefore, naïve rMSCs differentiated in osteogenic medium for 7 days express early 

osteoblastic markers and are still able to proliferate after induction of osteogenic differentiation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: rMSCs differentiated for 7 days with osteogenic medium display decreased cell proliferation. 

Cells were grown to confluency before induction of osteoblastic differentiation using OM (10 mM glycerol-2-

phosphate, 50 µM ascorbic acid and 10 nM Dex) for 7 days.  Confluent naïve rMSCs grown in growth medium for 7 

days were used as growth control. As solvent control, confluent naïve rMSCs were grown in the presence of 0.1% (v/v) 

EtOH for 7 days. DNA synthesis was measured by incorporation of [
3
H] thymidine ([

3
H]dT) for the last 4 hrs of 

incubation. Data shown is representative of an individual experiment, where n = 3. The experiment was repeated at least 

four times, where each repeat represents an individual animal. Results displayed are the mean cpm ± S.E.M., where 

P<0.05 was seen as a statistically significant difference using the One-way Anova with Bonferonni post-hoc test. 

Statistically significant differences are indicated by different lower case letters. Data bars with the same letter above are 

not statistically different. Abbreviations:  C control; cpm counts per minute; d day/s; EtOH ethanol; OM osteogenic 

medium 

 

 

G
ro

w
th

 C

E
tO

H
 C O

M

0

5

10

15

20

25

30

35

40
a

a

b

Cell Treatment

P
ro

li
fe

ra
ti

o
n

(x
 1

0
3
c
p

m
)

University of Stellenbosch http://scholar.sun.ac.za



77 

 

4.2.5 Preosteoblasts display a modest increase in proliferation after 24 hours of 

mitogenic stimulation 

Confluent naïve rMSCs were differentiated in osteogenic medium for 7 days before 24 hours of 

mitogenic stimulation using 20% FBS. As the osteogenic medium contained 10 nM Dex that was 

dissolved in 0.1% (v/v) ethanol, naïve rMSCs were cultured in complete growth medium 

(Supplement A.2.) containing this concentration of ethanol and was used as solvent control. In 

addition, these cells were also used as negative differentiation control. After 7 days in culture, cells 

exposed to ethanol in the growth medium still proliferated (Fig. 4.5). The proliferative ability of 

preosteoblasts differentiated in osteogenic medium for 7 days was dramatically reduced and was 

employed as a control of basal growth (Fig. 4.5). It was found that preosteoblasts stimulated with 

20% FBS for 24 hours exhibited a statistically significant increase in proliferation compared to cells 

grown in osteogenic medium alone (Fig. 4.5). This finding indicates that preosteoblasts, 

differentiated for 7 days, can be driven to proliferate by a strong mitogenic stimulant, such as 20% 

FBS.  

 

 

 

 

 
 

 

 

Figure 4.5: rMSCs differentiated with osteogenic medium for 7 days exhibit increased proliferation upon 

stimulation with 20% FBS.  

Cells were grown to confluency before induction of osteoblastic differentiation using OM (10 mM glycerol-2-

phosphate, 50 µM ascorbic acid and 10 nM Dex) for 7 days. The proliferative potential of confluent rMSCs was 

monitored by growing naïve stem cells in complete growth medium for 7 days. Confluent naïve rMSCs were grown in 

the presence of 0.1% (v/v) ethanol for 7 days and was used as solvent control. Mitogenesis of differentiated cells was 

induced by 24 hour stimulation with 20% FBS. DNA synthesis was measured by incorporation of [
3
H] thymidine 

([
3
H]dT) for the last 4 hrs of incubation. Data shown is representative of an individual experiment, where n = 3. The 

experiment was repeated at least four times. Each repeat experiment represents an individual animal. Results displayed 

are the mean cpm ± S.E.M., where P<0.05 was seen as a statistically significant difference using the One-way Anova 

with Bonferonni post-hoc test. Statistically significant differences are indicated by different lower case letters. 

Abbreviations:  C control; cpm counts per minute; d day/s; EtOH ethanol; OM osteogenic medium 

E
tO

H
  C O

M

O
M

 +
 2

0%
 F

B
S

0

15

30

45

60

75 a

b

c

Cell Treatment

P
ro

li
fe

ra
ti

o
n

(x
 1

0
3
 c

p
m

)

University of Stellenbosch http://scholar.sun.ac.za



78 

 

4.3 Discussion 

The aim of this chapter was to differentiate primary naïve rMSCs into a preosteoblastic phenotype 

and to characterise the mitogenic potential of such cells. The selection criteria for preosteoblasts 

were that cells should still exhibit proliferative capacity, although early bone markers are expressed. 

Naïve rMSCs differentiated for 7 days in osteogenic medium expressed the early osteoblasts 

markers Run x2, Msx 2, osterix and ALP (Fig. 4.1 A – D). In addition, ALP protein activity was 

significantly elevated in these cells (Fig. 4.2). Moreover, these osteogenic differentiated cells still 

proliferated when stimulated with mitogens. Therefore, naïve rMSCs differentiated for 7 days using 

osteogenic medium fulfilled the requirements for preosteoblasts, and Fig.4.4). The mitogenic 

potential of 7 day differentiated preosteoblasts diminished along the differentiation program as seen 

in Fig. 4.4, but however, these cells could be stimulated using a high concentration of FBS (20% 

FBS) (Fig. 4.5). This suggests that these preosteoblasts still express the relevant growth factor 

receptors needed to mount such a proliferative response, even though this proliferation is 

considerably stunted. The degree of [
3
H] thymidine ([

3
H]dT) incorporation varied between 

experiments and is particularly evident when comparing Fig. 4.4 and Fig.4.5. This discrepancy 

could be attributed to biological differences as the cells originated from different animals for these 

experiments. Technical reasons such as batch variations of [
3
H] thymidine ([

3
H]dT) could also be 

plausible. 

 

The biological endpoint of osteoblast differentiation is the formation of mineralised bone nodules. It 

was fundamental to discern whether these naïve rMSCs could develop into mature, functioning 

osteoblasts. Results demonstrate that the differentiated cells used in this part of the study were 

preosteoblasts, which are capable of forming calcified bone nodules (Fig. 4.3). In agreement with 

the literature, findings showed that the proliferative ability of rMSCs diminished upon induction of 

osteogenic differentiation (Fig. 4.4) (Aubin and Liu, 1996; Franceschi, 1999).  

 

In summary, osteogenic differentiation of naïve rMSCs for 7 days was sufficient to obtain 

preosteoblasts that could still proliferate; a prerequisite for this work. The next section of the current 

investigation will deal with the effects of GCs on the mitogen-induced proliferation of naïve rMSCs 

and preosteoblasts.  

University of Stellenbosch http://scholar.sun.ac.za



 

 

 

 

 

 

 

 

 

Chapter 5 

 

 

 

University of Stellenbosch http://scholar.sun.ac.za



79 

 

Glucocorticoid regulation of mitogen-induced 

proliferation in osteoblast precursor cells 
 

5.1 Introduction 

Together with apoptosis, osteoblastogenesis ensures that a healthy population of osteoblast 

precursors exist that can differentiate into osteoblasts to counteract the bone resorption by 

osteoclasts. The balanced actions of osteoclasts and osteoblasts, in turn, govern bone homeostasis. 

Any disturbance in this balance could lead to irregular bone formation such as decreased bone 

density, as in the case of osteoporosis after prolonged and high doses of GCs.  

 

The effect of GC exposure on the proliferation of mitogen-stimulated osteoblast precursor cells, 

such as primary rMSCs and early preosteoblasts, was studied. It was previously found that Dex 

inhibited the mitogen-induced proliferation of immortalised MBA 15.4 preosteoblasts and MG 63 

osteoblasts (Hulley et al., 1998; Engelbrecht et al., 2003; Horsch et al., 2007). However, the effects 

of GCs have not been fully tested in primary osteoblast precursor cells, such as naïve rMSCs and 

early preosteoblasts.  

 

The synthetic GC, Dex was used in this study because other synthetic GC derivatives, like the more 

widely prescribed prednisolones, exhibit less specificity to the GC receptor (GR) (Buttgereit et al., 

1999). Furthermore, Dex has negligible binding to the mineralocorticoid receptor (MR) compared 

to other GCs and the relative potency of Dex is higher at equivalent doses than prednisolone, 

prednisone and methylprednisolone, in vivo and in vitro  (Buttgereit et al., 1999). Dexamethasone is 

classified as a long-acting GC with a biological half life of 36 to 54 hours (Singh et al., 1994; 

Zoorob and Cender, 1998; Axelford, 2001). However, little is known about the in vitro kinetics of 

this GC. As a result of a long half life, Dex could effect chronic activation of signaling pathways 

rather than acute signaling mechanisms (Lasa et al., 2002). Pharmacological doses of Dex, such as 

1µM and 100 nM, were used to emulate in vivo serum concentrations which occur during GC-

induced osteoporosis (Ishida and Heersche, 1998).  
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5.2 Results 

5.2.1 Dex dramatically retards mitogen-stimulated rMSC proliferation  

Naïve rMSCs were initially pre-treated with 1 µM Dex for 24 hours, prior to mitogenic stimulation 

using 5% FBS (48 hours Dex) (Fig. 5.1 A). However, the proliferation of these rMSC was severely 

impaired by 1 µM Dex pre-treatment with a mean percentage decrease in proliferation of more than 

90% was observed under both basal (1% FBS, Fig. 5.1 A) and mitogenic conditions (5% FBS) (Fig. 

5.1 A), indicating that naïve rMSCs are extremely sensitive to proliferative inhibition by Dex. Due 

to the high sensitivity of rMSCs to 1 µM Dex pre-treatment, a dose response was performed where 

Dex was concomitantly administered with mitogens to rMSCs (Fig. 5.1 C and D). It was found that 

the mean percentage drop in proliferation was not statistically different for Dex pre-treated cells and 

cells concomitantly treated with both 5% FBS and 1 µM Dex (Fig. 5.1 A and C). Therefore, for 

subsequent proliferation experiments using Dex, Dex was simultaneously added with other 

treatments to rMSCs (for example 5% FBS).  

 

Under basal proliferative conditions, all Dex concentrations used, severely impaired rMSC 

proliferation compared to both control media (1% FBS and EtOH C, where ethanol is added to the 

media to compensate for the addition of solvent to the Dex treated samples ) (Fig. 5.1 B). Even the 

low Dex concentration of 1 nM resulted in a significant decrease in the proliferation of slow 

growing rMSCs. Contrary to expectation, the EtOH solvent control elicited a statistically significant 

increase in proliferation compared to the 1% FBS control (Fig. 5.1 B).  

 

In order to examine the effect of Dex on mitogen-stimulated proliferation, mitogenesis was induced 

with either 5% FBS treatment for 24 hours or 20% FBS for 72 hours (Fig. 5.1 C and D). These 

concentrations induced the highest mitogenic response for their respective time points (Fig. 3.1 A 

and C). All Dex concentrations used caused a statistically significant drop in 5% FBS-induced 

proliferation compared to both the control media (5% FBS and 0.1% EtOH) (Fig. 5.1 C). Dex at 1 

nM evoked a 50 % decrease in mitogen-induced proliferation (Fig. 5.1 C) and, therefore, this 

concentration was used in subsequent experiments since the reduction in proliferation caused by the 

higher Dex concentrations was too excessive to see subtle changes during subsequent co-incubation 

experiments. As expected, the EtOH solvent control displayed a statistically equivalent proliferation 

response to the 5% FBS control media, while a very strong mitogenic response was elicited by 20% 

FBS after 72 hours (Fig. 5.1 D). Although incubation with 1 µM, 100 nM and 10 nM Dex caused a 

decrease in 20% FBS-induced rMSC proliferation, 1 nM Dex did not exhibit a statistically 
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significant decrease (Fig. 5.1 D). The EtOH vector control exhibited a similar proliferative response 

as the 20% FBS control media (Fig. 5.1 D). These results indicate that Dex dramatically decrease 

mitogen-induced proliferation in rMSCs. In addition, the magnitude of reduction in proliferation 

caused by Dex is less upon stronger mitogenic stimulation such as 20% FBS (Fig. 5.1 D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Dex impairs naïve rMSC proliferation under basal and mitogenic conditions. 

rMSCs  were grown to 50% confluency and serum starved in 1% FBS for 24 hrs. Cell proliferation was assessed using 

[
3
H] dT incorporation during DNA synthesis. (A) rMSCs were pre-treated 1 µM Dex for 24 hrs before 24 hr mitogenic 

stimulation with 5% FBS. 1% FBS served as negative control. (B) Naïve rMSCs were treated with either 1% FBS or 

simultaneous with 1% FBS and Dex for an additional 24 hrs. C denotes 1% FBS as control media. (C) rMSCs were 

treated with either 5% FBS or concomitantly with 5% FBS and Dex for an additional 24 hrs where C denotes 5% FBS 

as control. (D) rMSCs were treated with 20% FBS for 72 hrs prior to challenge with Dex for another 24 hrs, where C 

denotes 20% FBS as control. 0.1% ethanol was used as solvent control. [
3
H]dT was incorporated into DNA for the last 

4 hrs of incubation. Results displayed are the mean cpm ± S.E.M., where P<0.05 was seen as a statistically significant 

difference using the One-way Anova with Bonferoni post-hoc test. Statistically significant differences are specified by 

different lower case letters. These experiments were repeated at least three times. Each experimental replicate represents 

an individual animal. Abbreviations: C control; cpm counts per minute; Dex dexamethasone; EtOH ethanol; FBS fetal 

bovine serum  
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5.2.2 Mitogen-induced proliferation of preosteoblasts is reduced by 

dexamethasone 

In order to assess the effect of GCs on mitogen-stimulated growth of preosteoblasts, 1 µM of Dex 

was administered concomitantly with mitogenic exposure of preosteoblasts, since lower Dex 

concentrations, such as 1 nM, did not reduce preosteoblast proliferation sufficiently (Fig. 5.1 B, C 

and D). A concentration of 20% FBS was used to mitogenically stimulate preosteoblast cells for 24 

hours as this concentration elicited a significant increase in preosteoblast proliferation compared to 

5% FBS and 10% FBS (data not shown). As ethanol was the solvent for Dex, confluent naïve 

rMSCs were cultured in growth medium containing 0.1% (v/v) ethanol for 7 days and was 

designated a solvent control (Fig. 5.2). These cells still proliferated (Fig. 5.2). Preosteoblasts 

displayed the characteristic reduction in proliferation and were used as negative growth control 

(Fig. 5.2). Dex decreased the proliferation of cells differentiated in OM by 45% (Fig. 5.2). The 

proliferation of mitogen-stimulated preosteoblasts was reduced by 33% after Dex administration for 

24 hours (Fig. 5.2). These results show that Dex markedly reduces the proliferation of 

preosteoblastic cells grown under osteogenic and mitogen conditions (Fig. 5.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Dex markedly reduced mitogen-stimulated proliferation of preosteoblasts after 24 hours. 

Confluent rMSCs were induced to differentiate into osteoblasts using OM (DMEM containing 10% FBS, 10 mM 

glycerol-2-phosphate, 50 µM ascorbic acid and 10 nM Dex) for 7 days. The proliferative potential of confluent rMSCs 

was tested by growing rMSCs in complete growth medium (Supplement A2.) and EtOH for 7 days. A concentration of 

1 µM Dex was used to treat cells grown under basal conditions (OM containing 10% FBS) or mitogenic stimulation 

(OM supplemented with 20% FBS). DNA synthesis was measured by incorporation of [
3
H] thymidine ([

3
H]dT) for the 

last 4 hrs of incubation. Data shown is representative of an individual experiment, where n = 3. The experiment was 

repeated at least four times where each repeat represents an individual animal. Results displayed are the mean cpm ± 

S.E.M. P<0.05 was seen as a statistically significant difference using the One-way Anova with Bonferonni post-hoc 

test. Statistically significant differences are indicated by different lower case letters. Results that are not statistically 

different are indicated by the same letter above the data bars. Abbreviations:  C control; cpm counts per minute; Dex 

dexamethasone; DMEM Dulbecco‟s minimal essential medium; EtOH ethanol; OM osteogenic medium 
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Also, comparing concomitant OM plus Dex with OM only and OM plus Dex and 20% FBS, it can 

be seen that the addition of 20% FBS to Dex treated cells attenuates the GC-induced inhibition of 

proliferation (Fig. 5.2). Therefore, 1 µM Dex does not totally inhibit the capacity of preosteoblasts 

to respond to mitogenic stimuli.  

 

5.3 Discussion  

The objective of the research outlined in this chapter was to examine how GCs affect mitogen-

induced proliferation in early osteoblast precursor cells. The mitogenic conditions for naïve rMSCs 

were established in Chapter 3, whereas that of preosteoblasts derived from these stromal cells were 

determined in Chapter 4.  

 

The results of this study indicate that Dex attenuates the mitogen-stimulated proliferation of both 

primary naïve rMSCs and preosteoblasts. Pre-treatment of primary naïve rMSCs with 1 µM Dex for 

24 hours severely impaired mitogen-stimulated proliferation in these cells. Basal (1% FBS) rMSC 

proliferation was also attenuated by all Dex concentrations tested. Mitogen-stimulated proliferation 

was significantly decreased in naïve rMSCs after concomitant Dex and mitogen stimulation (5% 

FBS for 24 hours and 20% FBS for 72 hours). Basal (OM) and mitogen-stimulated (20% FBS) 

proliferation of preosteoblasts were also significantly decreased by 24 hour administration of 1 µM 

Dex. This is in accordance with the response of immortalised preosteoblastic cell lines to this 

pharmacological dose of Dex (Hulley et al., 1998; Engelbrecht et al., 2003 and Horsch et al., 2007). 

When confluent naïve rMSCs were grown for 7 days in ethanol, significant proliferation was still 

observed; suggesting that these cells were not undergoing contact inhibition at this stage. 

Additionally, the concentration of Dex which elicited a 50% inhibition of proliferation was 

identified. This Dex concentration of 1 nM is considered to be near a physiological dose of 

glucocorticoids (Ishida et al., 1995; Naves et al., 2011) and was used in subsequent phosphatase 

experiments (see Chapter 7, Fig. 7.2). It was hypothesised that the fraction of phosphatases active 

during a 50% proliferative response would be sufficient for the subsequent phosphatase inhibitory 

studies to avoid possible toxic levels at which the phosphatase inhibitor vanadate would be used 

(see Chapter 7).  

 

The inhibition of mitogen-induced proliferation of these cells due to Dex was ascertained. The next 

section of the current work deals with the signal transduction events, specifically the role of the 
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ERK 1/2 MAPK signalling cascade, in the Dex inhibition of proliferation in naïve rMSCs and 

preosteoblasts. 
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The ERK1/2 MAPK signalling pathway 

regulates the mitogen-induced proliferation in 

osteoblast precursor cells and is attenuated by 

Dexamethasone 

 

6.1 Introduction 

The importance of osteoblast precursor cell proliferation in osteoblastogenesis is discussed in 

Section 1.1.2.3.1. It is known that the ERK1/2 signalling pathway regulates growth factor and -

mitogen-induced cell proliferation in various cell types including osteoblasts (Zhang and Liu, 2002; 

Katz et al., 2007; Assoian and Schwartz, 2001). With the use of pharmaceutical inhibitors to the 

ERK1/2, JNK and p38 MAPK pathways, it has been demonstrated that ERK1/2 is the main 

proliferative pathway in immortalised human MG-63 and mouse MBA-15.4 and MC3T3-E1 

preosteoblast cell lines (Mehrotra et al., 2004; Horsch et al., 2007). Under proliferative conditions, 

ERK1/2 was found the be induced in two phases; a rapid peak phase lasting between 2 minutes and 

30 minutes and a prolonged, sustained phase persisting for several hours in a number of cell types, 

including preosteoblasts (Meloche et al., 1992; Meloche, 1995; Talarmin et al., 1999; Engelbrecht 

et al., 2003). This biphasic induction of ERK1/2 activity is considered a proliferative profile for 

most cell types (Marshall, 1995; Ebisuya et al., 2005). The aim of this current research was to 

establish whether the ERK1/2 signal transduction cascade plays a role in the regulation of mitogen-

induced proliferation in naïve rMSCs and primary preosteoblasts. This was achieved by testing the 

effect of the pharmaceutical MEK1/2 inhibitor, U0126, on mitogen-induced proliferation in these 

cells. The mitogenic conditions established in Chapter 3 (see Fig. 3.1) and Chapter 4 (see Fig. 4.5), 

were used to elicit cellular proliferation. To determine the ERK1/2 activation profile after mitogenic 

stimulation in naïve rMSCs and preosteoblasts, western blot analysis was performed employing 

antibodies raised against phosphorylated ERK1/2 protein. Examination of the expression of total 

ERK1/2 protein was used to ensure equal loading of protein samples. 

 

GCs, including synthetic derivatives such as Dex, have been shown to be anti-mitogenic in 

osteoblasts (Hulley et al., 1998; Smith et al., 2002; Engelbrecht et al., 2003; Horsch et al., 2007).  It 

has been shown that Dex reduces the mitogen-induced proliferation in MBA-15.4, MC 3T3-E1 and 

MG-63 preosteoblasts (Hulley et al., 1998; Smith et al., 2002; Engelbrecht et al., 2003; Horsch et 
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al., 2007). The mechanism of GC action involves both transcriptional-dependent as well as 

transcriptional–independent events (Schoneveld et al., 2004; Liu et al., 2005). GCs such as Dex 

exert their anti-proliferative effects through the modulating the expression of genes that either 

activate or inactivate mitogenic signalling pathways such as ERK1/2. This also provides a possible 

mechanism for the deleterious effects of GCs on bone. The effect of Dex on ERK1/2 activation was 

assessed by looking at the ERK1/2 phosphorylation levels after 1 hour pre-treatment with 1 µM 

Dex, followed by mitogenic stimulation (Engelbrecht et al., 2003). A time period of 1 hour pre-

treatment was used to allow the effects of Dex on gene expression. Densitometry was used to 

quantify the level of ERK1/2 phosphorylation and thus ERK1/2 activation.  

 

6.2 Results 

6.2.1 U0126 treatment of rMSCs and primary preosteoblasts results in 

decreased mitogen-induced proliferation 

In order to investigate the involvement of ERK1/2 in the regulation of rMSC and primary 

preosteoblast proliferation, the pharmaceutical MEK1/2 inhibitor, U0126, was used to block the 

ERK1/2 pathway downstream of MEK. Naïve rMSCs were grown until 50% confluent and serum 

starved for 24 hours. Mitogenesis in naïve rMSCs was induced by using 5% FBS (24 hours) and 

20% FBS (72 hours). These conditions were used because 5% FBS evoked maximal proliferation in 

naïve rMSCs after 24 hours, whilst 20% FBS (strong stimulant) showed delayed proliferation and 

elicited maximal growth only at 72 hours (as seen in Section 3.2.1; Fig. 3.1). Therefore, to assess 

the effect of U0126 on mitogen-induced naïve rMSC proliferation, mitogen and U0126 treatment 

were done concomitantly: 5% FBS plus U0126 for 24 hours and 20% FBS along with U0126 for 72 

hours. For the stimulation with 20% FBS for 72 hours, culture medium containing U0126 was 

replenished after 48 hours to ensure that U0126 was active. Preosteoblasts were obtained by 

differentiating confluent rMSCs for 7 days in osteogenic medium (Supplement A3.3.) and 

mitogenesis was evoked by stimulation with 20% FBS for 24 hours. U0126 was used at 

concentrations of 10 µM, 5 µM, 1 µM and 100 nM.  Cells grown in DMSO at a concentration of 

0.1% (v/v) served as a solvent control.  

 

Results showed that treatment of naïve rMSCs with high U0126 concentrations (10 µM and 1 µM) 

led to a significant decreased in proliferation under basal (1% FBS) and mitogenic conditions (5% 

FBS) after 24 hours of stimulation (Fig. 6.1 A and B).  
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Figure 6.1: The pharmaceutical inhibitor of MEK 1/2, U0126, blocks mitogen-induced proliferation of naïve 

rMSCs and primary preosteoblasts. 

 
Cells were grown to 50% confluency, serum starved in medium containing 1% FBS (A). Mitogenesis was elicited using 

5% FBS for 24 hrs (B) and 20% FBS for 72 hrs (C) (as indicated above bar graphs).  Alternatively, cells were 

differentiated for 7 days in OM media (Supplement A3.3.) and stimulated for with 20% FBS (D). U0126 treatment 

occurred concurrently with mitogenic stimulation at indicated concentrations and time. 0.1% DMSO was used as 

solvent control. DNA synthesis was measured by incorporation of [
3
H] thymidine ([

3
H]dT) for the last 4 hrs of 

incubation.  Data of an individual experiment is shown, where n = 3 and is representative of experiments repeated at 

least three times, with similar results obtained in the different experiments. Results displayed are the mean cpm ± 

S.E.M., where P<0.05 was seen as a statistically significant difference using the One-way Anova with Bonferonni post-

hoc test. Statistically significant differences are indicated by different lower case letters. Data bars with the same letter 

above are not statistically different. Abbreviations: C control; cpm counts per minute; DMSO dimethyl sulfoxide; 

FBS fetal bovine serum; hrs hours; OM osteogenic medium 
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Conversely, a lower concentration of U0126 (100 nM) had no pronounced effect (Fig. 4.1 A and B). 

U0126 significantly attenuated naïve rMSCs proliferation after strong mitogenic stimulation (20% 

FBS) for 72 hours (Fig. 6.1 C). However, the different doses of U0126 (10 µM, 5 µM and 1 µM) 

used concomitantly with 20% FBS for 72 hours did not elicit a dose response as no difference was 

found between these treatments.  

 

Proliferation of preosteoblasts cultured for 24 hours in 20% FBS with U0126 was significantly 

reduced compared to cells solely cultured in media containing 20% FBS (Fig. 6.1 D). These results 

suggest that U0126 effectively reduced naïve rMSCs and preosteoblasts mitogen-induced 

proliferation, thereby indicating the involvement of the ERK1/2 signalling pathway in this process.  

 

6.2.2 U0126 effectively blocks mitogen-induced ERK1/2 activation in rMSCs 

In order to determine the extent of inhibition caused by U0126 on mitogen-induced ERK1/2 

activation, semi-confluent naïve rMSCs were serum starved for 24 hours and subjected to 30 

minutes of 10 µM U0126 pre-treatment prior to mitogenic stimulation using 5% FBS. Engelbrecht 

et al. (2003) showed that mitogen-induced proliferation of MBA 15.4 preosteoblasts was 

accompanied by ERK1/2 activation. Furthermore, peak ERK1/2 activation in mitogen-stimulated 

MBA 15.4 preosteoblasts with 20% FBS occurred between 2 minutes and 30 minutes, after which 

activity declined to a plateau after 1 hour (Engelbrecht et al., 2003). To represent the peak-and 

shoulder stages of ERK1/2 activation, cells were stimulated with 5% FBS for 5 minutes and 1 hour. 

In order to confirm the MEK1/2 inhibitory effects of U0126 on both the peak-and plateau, cells 

were also treated concomitantly with 5% FBS and 10 µM U0126 for 24 hours.  

 

It was found that U0126 effectively attenuates both 5 minutes and 1 hour ERK1/2 phosphorylation 

in naïve rMSCs after stimulation with 5% FBS (Fig. 6.2 A), thereby suggesting that under these 

conditions, U0126 effectively inhibits ERK1/2 peak and shoulder activity. U0126 also effectively 

blocked ERK1/2 phosphorylation after 24 hours of mitogen stimulation (Fig. 6.2 B). Therefore, in 

conjunction with the ablation of mitogen-induced rMSC proliferation by U0126 (Fig. 6.1), these 

results indicate the possible involvement of ERK1/2 in mediating proliferation in these cells. 
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Figure 6.2: U0126 attenuates mitogen-induced ERK1/2 activation efficiently. 

Naïve rMSCs were grown until 80% confluent and serum starved in 1% FBS for 24 hrs. (A) Cells were pretreated with 

10 µM U0126 prior to mitogenic stimulation with 5% FBS or (B) concomitantly treated with 5% FBS and 10 µM 

U0126. Cell lysates (as outlined in Materials and Methods, Section 2.2.8.1) were prepared at indicated times. An 

amount of 20 µg of total proteins was resolved by SDS PAGE after which proteins were transferred onto a PVDF 

membrane. The degree of ERK phosphorylation/ activation was examined by using anti-phospho-ERK1/2 (active 

ERK1/2) antibodies. To ensure equal protein loading, duplicate membranes were blotted using anti-ERK1/2 (total 

ERK1/2) antibodies. Densitometry was used to analyse ERK1/2 phosphorylation and quantified utilising the ImageJ 

software. A representative blot of two experimental repeats is shown. Each repeat experiment represents an individual 

animal. Similar trends were observed between repeat experiments. Results are expressed as ratios of pERK1 integrated 

intensity/ERK1 integrated intensity (left graph) or pERK2 integrated intensity/ERK2 integrated intensity (right graph). 

The product of the mean pixel intensity and the band area was termed integrated intensity. Data is expressed in arbitrary 

units which was normalised to the time points specified on the respective graphs and set at 1.   
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6.2.3 A typical proliferative ERK1/2 induction profile is obtained upon growth 

factor stimulation of naïve rMSCs and preosteoblasts 

To further investigate the involvement of the ERK1/2 MAPK cascade in the regulation of mitogen-

induced proliferation of naïve rMSCs and preosteoblasts, the level of ERK1/2 phosphorylation and 

hence ERK1/2 activation was investigated after addition of mitogens. Cells were cultured until 80% 

confluent with subsequent serum reduction (1% FBS) for 24 hours for cell cycle synchronisation 

(Fig. 6.3 A) or grown until confluent before induction of differentiation using OM (Supplement 

A3.3.) for 7days (Fig. 6.3 B). Since 5% FBS stimulation resulted in increased proliferation in naïve 

rMSCs after 24 hours (Fig. 3.1), this concentration of FBS was used as a mitogen in these cells. 

Proliferation of preosteoblasts was stimulated when treated with 20% FBS, as seen in Fig. 4.2. 

Consequently this concentration of FBS was used to examine the proliferative induction profile of 

ERK1/2 in preosteoblasts (Fig. 6.3 B).  

 

Basal ERK1/2 levels were assessed using the unstimulated controls, designated as time 0 (Fig. 6.3 

A and B). Total ERK1/2 and phospho-ERK1/2 levels were compared in order to determine ERK 

activation (Fig. 6.3 A and B). The results showed that peak phosphorylation after mitogenic 

induction using 5% FBS was obtained between 2 minutes to 30 minutes for both ERK isoforms in 

naïve rMSCs (Fig. 6.3 A). Although a decrease in ERK1/2 phosphorylation was observed from 30 

minutes until the end of the assay after stimulation with 5% FBS, ERK1/2 remained phosphorylated 

up to 4 hours (Fig. 6.3 A). In the case of preosteoblasts, maximum ERK1/2 activation occurred at 5 

minutes, dropping further at 30 minutes (Fig. 6.3 B). ERK1/2 remained phosphorylated at reduced 

levels up to 4 hours (Fig. 6.3 B). A slight difference in the ERK1/2 activation profile was observed 

when comparing naïve rMSCs and preosteoblasts. This difference in ERK1/2 induction could be 

ascribed to the presence of differentiating factors in preosteoblast cell cultures upon mitogenic 

stimulation. No observable basal ERK1 phosphorylation was found and barely discernable levels of 

phospho-ERK2 were seen under basal conditions. Furthermore, the magnitude of peak ERK1 and 

ERK2 phosphorylation was similar whereas ERK2 showed slightly higher phosphorylation levels at 

1h, 2h and 4h following mitogenic induction. These findings indicate that ERK1/2 is 

phosphorylated and hence, activated, after mitogenic stimulation of naïve rMSCs and primary 

preosteoblasts.  
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Figure 6.3:  An ERK1/2 activation profile characteristic of proliferating cells is observed in naïve rMSCs and 

preosteoblasts after 5% FBS and 20% FBS stimulation. 

Naïve rMSCs were cultured to 80% confluence, serum starved in 1% FBS for 24 hrs and treated with 5% FBS to elicit 

mitogenesis (A). Alternatively, confluent rMSCs were differentiated in OM (Supplement A3.3.) for 7 days prior to 

mitogenic stimulation with 20% FBS (B). Cell lysates were prepared (see Materials and Methods, Section 2.2.8.1) at 

indicated times after the addition of mitogen and 20 µg of total proteins was resolved by SDS polyacrylamide gel by 

electrophoresis. Proteins were then transferred onto a PVDF membrane. To determine the extent of ERK 

phosphorylation and thus activation, membranes were probed with anti-phospho-ERK1/2 (active ERK1/2) antibodies 

and compared to bands seen using antibodies against total ERK1/2 proteins. ERK1/2 phosphorylation was quantified by 

densitometry and ImageJ 1.42q software. The blot shown is representative of at least three (for rMSCs) and two (for 

preosteoblasts) independent experiments, where each experiment represents an individual animal which showed similar 

trends of ERK1/2 activation. Results are expressed as ratios of pERK1 integrated intensity/total ERK1 integrated 

intensity (left graph) or pERK2 integrated intensity/total ERK2 integrated intensity (right graph) and normalised to the 

5 min time point, which was set at 1. Integrated density was calculated as the product of mean pixel intensity and area 

of the immunoresponsive band.  

0 

t0 2' 5' 10' 30' 1h 2h 4h
0.00

0.25

0.50

0.75

1.00

1.25

Time

p
E

R
K

1
/E

R
K

1

(n
o

rm
a
li

s
e
d

 t
o

  
5
' 
5
%

 F
B

S
)

(a
rb

it
ra

r 
u

n
it

s
)

t0 2' 5' 10' 30' 1h 2h 4h
0.00

0.25

0.50

0.75

1.00

1.25

Time

p
E

R
K

2
/E

R
K

2

(n
o

rm
a
li

s
e
d

 t
o

 5
' 
5
%

 F
B

S
)

(a
rb

it
ra

ry
 u

n
it

s
)

A 

pERK1 

pERK2 

ERK1 

ERK2 

0 2’ 5’ 10’ 30’ 1h 2h 4h Time 

Naïve rMSCs stimulated with 5% FBS 

B Primary preosteoblasts stimulated with 20% FBS 

0 2' 5' 10' 30' 1h 2h 4h
0.00

0.25

0.50

0.75

1.00

Time

p
E

R
K

1
/E

R
K

1

(n
o

rm
a
li
s
e
d

 t
o

 5
' 
2
0
%

 F
B

S
)

(a
rb

it
ra

ry
 u

n
it

s
)

Ost C 2' 5' 10' 30' 1h 2h 4h
0.00

0.25

0.50

0.75

1.00

Time

p
E

R
K

2
/E

R
K

2

(n
o

rm
a
li

s
e
d

 t
o

 5
' 
2
0
%

 F
B

S
)

(a
rb

it
ra

ry
 u

n
it

s
)

2’ 5’ 10’ 30’ 1h 2h 4h 
pERK1 

pERK2 

ERK1 

ERK2 

Time 

University of Stellenbosch http://scholar.sun.ac.za



92 

 

6.2.4 Strong mitogenic stimulation leads to elevated ERK1/2 phosphorylation 

levels 

As strong mitogenic stimulation elicited only a weak proliferative response in naïve rMSCs (Fig. 

3.1 A) and strong ERK1/2 activation has previously been associated with cell cycle arrest (Sewing 

et al., 1997; Woods et al., 1997; Roovers and Assoian, 2000), the ERK1/2 phosphorylation profile 

was examined after stimulation of rMSCs with 20% FBS or PMA. Cells were grown until 80% 

confluent and the serum was reduced until 1% FBS before cultures were subjected to concentrations 

of mitogens that results in proliferation (5% FBS) and growth arrest (20% FBS and 100 ng/ml 

PMA). In order to directly compare the results, lysates were blotted on the same membranes. 

Phospho-ERK1/2 was compared to total ERK1/2 to assess ERK1/2 activation.  

 

The results showed that 5% FBS elicited a similar proliferative ERK1/2 activation profile as 

observed in Fig. 6.2 B, with peak ERK1/2 activity seen between 2 minutes and 30 minutes and 

reduced, but sustained activity after 30 minutes (Fig. 6.4 A and B). Contrary to 5% FBS 

stimulation, ERK1 activation peaked between 10 minutes and 30 minutes, after which decreased but 

sustained ERK1 activation was seen, following 20% FBS treatment (Fig. 6.4 A). In addition, the 

magnitude of ERK1 phosphorylation observed at 30 minutes, 2h and 4h was higher than that 

elicited by 5% FBS (Fig. 6.4 B).When comparing the level of activation of ERK2 elicited by 20% 

FBS to that of 5% FBS, ERK2 levels only dropped after 4h subsequent to 20% FBS treatment, but 

was still higher than that of 5% FBS (Fig 6.4 B). In addition, maximum ERK1 activity brought 

about by PMA was seen between 2 minutes to 5 minutes, dropping at 10 minutes and then again at 

2h and 4h (Fig. 6.4 A and B). Maximum ERK2 phosphorylation was found at 5 minutes, decreasing 

after 30 minutes. These findings indicate that 5% FBS, 20% FBS and PMA may elicit different 

ERK1/2 activation profile, thereby providing a possible explanation for the divergent cellular 

proliferation obtained (Fig. 3.1.1). The ERK2 phosphorylation profile elicited by 20% FBS was 

found to be significantly (P < 0.0211) higher than that of 5% FBS and PMA. Overall, the 20% FBS 

response was 1.54 times higher (SE=0.58) than that of 5% FBS and 1.3 times higher (SE=0.58) than 

that of PMA. However, ERK1 phosphorylation was higher for 20% FBS than 5% FBS and PMA, 

but did not reach significance (P < 0.7) over the time period.  
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Figure 6.4: The magnitude of ERK1/2 phosphorylation is increased after strong mitogenic stimulation of naïve 

rMSCs. 

Naïve rMSCs were grown until 80% confluent and serum starved in 1% FBS for 24 hrs. Cells were then stimulated with 

mitogens as indicated and cell lysates (as outlined in Materials and Methods, Section 2.2.8.1) were prepared at specified 

times. An amount of 20 µg of total proteins was resolved by electrophoresis on a SDS polyacrylamide gel and then 

transferred onto a PVDF membrane. The amount of ERK phosphorylation/ activation was examined by using anti-

phospho-ERK1/2 (active ERK1/2) antibodies, followed by stripping the membrane to compare to total ERK1/2 . The 

short mitogenic treatments are shown in (A), whilst the longer stimulations are exhibited in (B). Analysis of ERK1/2 

phosphorylation was performed using densitometry with ImageJ software to quantify the intensity of immunoresponsive 

bands. A representative blot of three experimental repeats is shown. Each repeat experiment represents an individual 

animal. Similar trends were observed between repeat experiments. A three-way ANOVA statistical analysis was done to 

determine the effects of 5% FBS, 20% FBS and PMA on ERK1/2 phosphorylation in naïve rMSCs over a time span of 

4h in the three repeats experiments. The test was corrected for time, treatment and independent repeats. Results were 

considered significantly different at (P < 0.05). Results are expressed as ratios of pERK1 integrated intensity/total 

ERK1 integrated intensity (C) or pERK2 integrated intensity/total ERK2 integrated intensity (D). Integrated density is 

defined as mean pixel intensity X area of bands. Data is expressed in arbitrary units, which were normalised to the time 

points specified on the respective graphs and set at 1.   
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6.2.5 Dexamethasone decreases mitogen-induced ERK activation  

In order to determine the effect of Dex on mitogen-induced ERK1/2 activation in rMSCs and 

primary preosteoblasts, cells were pre-treated with 1 µM Dex for 1h prior to mitogenic stimulation 

with 5% FBS or 20% FBS, respectively. Before experimental treatments, rMSCs were grown until 

80% confluent and serum starved in 1% FBS, whereas confluent cells were differentiated with OM 

media (Supplement A3.3.) for 7 days and designated as time 0 (t0). 

 

ERK1/2 was phosphorylated to a greater extent in naïve cells pre-treated with 1 µM Dex for 1h and 

stimulated with 5% FBS for 2 minutes and 5 minutes compared to cells stimulated with mitogen 

only (Fig. 6.5.1 A). Even though a drop in the levels of phospho-ERK1/2 was observed at 10 

minutes in cultures treated with 5% FBS, an even greater drop in ERK1/2 phosphorylation was seen 

in Dex pre-treated cells at this time point (Fig. 6.5.1 A and B). This decrease in ERK1/2 

phosphorylation persisted up to 4h, after which ERK1/2 activity diminished further (Fig. 6.5.1 B). 

Although mitogen-stimulated ERK activity was clearly decreased after the addition of Dex, it did 

not reach significance (three-was ANOVA statistical analysis, which corrected for time, treatment 

and individual experimental repeats, N=2, where P<0.9 and P<0.2 for ERK1 and ERK2, 

respectively). This is most likely due to the low number of repeat experiments; however, due to 

time constraints, no additional experiments could be undertaken. 

 

The mitogen-induced ERK1/2 activation profile of preosteoblasts is different from naïve rMSCs 

(Fig. 6.5.1 and Fig. 6.5.2). A decrease in ERK1 activity was observed after 10 minutes of mitogenic 

stimulation in the Dex treated cells. The lower actitivity after Dex treatment was further sustained in 

ERK2 (Fig. 6.5.2). Therefore, a general decrease in ERK1/2 activity was seen when preosteoblasts 

are treated with GCs, however, significance (three-way ANOVA statistical analysis, N=2, where P 

<0.8 and P<0.6 for ERK1 and ERK2, respectively) was not obtained over a time span of 4 hours. 

Similar to rMSCs, this could possibly be attributed to the low number of replicate experiments, 

which, due to time constraints, could not be repeated.  
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Figure 6.5.1: rMSCs pre-treated with 1 µM Dex for 1h exhibits reduced prolonged ERK1/2 activity. 

Semi-confluent naïve rMSCs were serum starved in 1% FBS for 24 hrs. Cells were stimulated with 5% FBS as 

indicated and lysates prepared at indicated times (as outlined in Materials and Methods, Section 2.2.8.1). Cells 

incubated in 1% FBS were used as negative control and designated as t0.  An amount of 20 µg of total proteins was 

resolved by electrophoresis on a SDS polyacrylamide gel. Proteins were subsequently transferred onto a PVDF 

membrane. The degree of ERK phosphorylation/ activation was examined by using anti-phospho-ERK1/2 (active 

ERK1/2) antibodies. The short mitogenic treatments are shown in (A), whilst the longer stimulations are exhibited in 

(B). To ensure equal protein loading, stripped membranes were blotted using anti-ERK1/2 (inactive ERK1/2) 

antibodies. Densitometry was used to analyse ERK1/2 phosphorylation and quantified utilising the ImageJ software. A 

representative blot of two experimental repeats (N=2) is shown. Each repeat experiment represents an individual 

animal. Similar trends were observed between repeat experiments. Results are expressed as ratios of pERK1 

intensity/ERK1 intensity (C) or pERK2 intensity/ERK2 intensity (D). Data is expressed in arbitrary units which was 

normalised to the time points specified on the respective graphs and set at 1.   
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Figure 6.5.2: Preosteoblasts pre-treated with 1 µM Dex for 1h shows decreased ERK1/2 activity. 

Confluent rMSCs were cultured in OM (Supplement A3.3.) for 7 days before 1h pre-treatment with 1 µM Dex. Cells 

were then stimulated with 20% FBS as indicated and cell lysates were prepared at the indicated times (see Materials and 

Methods, Section 2.2.8.1). An amount of 20 µg of total proteins was resolved by SDS PAGE, after which proteins were 

transferred onto a PVDF membrane. The amount of ERK phosphorylation/ activation was examined by using anti-

phospho-ERK1/2 (active ERK1/2) antibodies. The western blots of the short mitogenic treatments are shown in (A), 

whereas the longer stimulations are displayed in (B). Stripped membranes were blotted using anti-ERK1/2 (inactive 

ERK1/2) antibodies to check that proteins were loaded in equal amounts. ERK1/2 phosphorylation was analysed using 

densitometry and quantified using ImageJ software. A representative blot of two experimental repeats (N=2) is shown. 

Each repeat experiment represents an individual animal. Similar trends were observed between repeat experiments. 

Results are expressed graphically as ratios of pERK1 integrated intensity/ total ERK1 integrated intensity (C) or pERK2 

integrated intensity/ total ERK2 integrated intensity (D). Integrated intensity was defined as the product of the mean 

pixel intensity and the area of the immunoresponsive bands. Data was normalised to the 5 min time point and then set at 

1 in arbitrary units.    
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6.3 Discussion 

It was previously shown that mitogen-induced proliferation of osteoblastic cells like the MBA 15.4, 

MG63 and RobC26 cell lines, was mainly regulated by the ERK1/2 signalling cascade (Mehrotra et 

al., 2004; Horsch et al., 2007). An increase in ERK1/2 activity followed by enhanced proliferation 

was observed in these osteoblastic cell lines (Hulley et al., 1998; Engelbrecht et al., 2003; Horsch et 

al., 2007). Therefore, the aim of the research outlined in this chapter was to examine whether the 

ERK1/2 signal transduction pathway plays a role in the regulation of the mitogenic response of 

naïve rMSCs and primary preosteoblasts originating from these stromal cells. Furthermore, it was 

previously observed that Dex decreased the mitogen-induced proliferation of the MBA 15.4, MG63 

and RobC26 cell lines and that this reduction was likely to be caused by a reduction in ERK1/2 

activation (Hulley et al., 1998; Engelbrecht et al., 2003; Horsch et al., 2007).  In consequence, the 

effect of Dex on the mitogenic activation of ERK 1/2 in rMSCs and preosteoblasts was investigated.   

 

The involvement of the ERK1/2 signalling pathway in the modulation of growth factor-stimulated 

cell growth was established using the pharmaceutical inhibitor, U0126, which blocks signal 

transduction downstream of MEK1/2. U0126 successfully blocked the mitogen-induced 

proliferation of rMSCs and preosteoblasts, thereby indicating that ERK1/2 activation is required for 

the proliferative response of these cells (Fig 6.1). The ERK1/2 activation profile after mitogenic 

stimulation was also ascertained. A typical proliferative profile, with a swift peak, persisting 

between 2 minutes and 30 minutes and a prolonged lower-activity shoulder stage, lasting for a few 

hours, were obtained for both rMSCs and preosteoblasts after growth factor stimulation (Fig. 6.3 A 

and B) (Meloche et al., 1992; Meloche, 1995; Talarmin et al., 1999; Engelbrecht et al., 2003). The 

degree of U0126 (10 µM, 5 µM and 1 µM) inhibition was assessed in order to examine the 

relationship between ERK activity and proliferation. It was observed that U0126 effectively 

diminishes ERK1/2 activity during peak (5 minutes) as well as shoulder (1 hr) activity (Fig. 6.2). 

Moreover, U0126 attenuated the mitogen-stimulated proliferation in both rMSCs and preosteoblasts 

(Fig. 6.1), suggesting that ERK1/2 is essential for proliferation in these cells.  

 

Marshall et al. (1995) suggested that both the duration and magnitude of ERK1/2 activation 

contributes to cellular fate. Since 20% FBS and PMA, which are considered powerful proliferative 

agents, did not elicit the expected mitogenic response in naïve rMSCs, the extent of ERK1/2 

phosphorylation and hence activation was determined (Fig. 6.4 A). Subsequent to incubation with 

these mitogens, it was found that stimulation resulted in strong ERK1/2 activation (20% FBS; Fig. 

6.4 A and B) as well as lasting ERK1/2 induction (PMA, Fig. 6.4 A and B).  It has previously been 

University of Stellenbosch http://scholar.sun.ac.za



98 

 

found that over-stimulation of ERK1/2 could lead to cell growth arrest and oncogenic senescence 

(Tuveson et al., 2004; DeNicola and Tuveson, 2009). This mechanism of strong ERK1/2 activation 

without proliferation could also be due to oncogenic-induced senescence in naïve rMSCs after 

incubation with 20% FBS and PMA.  

 

As mitogenic stimulation of rMSCs and preosteoblasts has previously been associated with elevated 

ERK1/2 activation (Hulley et al., 1998; Engelbrecht et al., 2003; Horsch et al., 2007; Smith et al., 

2002), which was abrogated by GCs, the effect of Dex on the ERK1/2 activation profile was 

assessed. rMSCs and preosteoblasts were pre-treated with a pharmaceutical dose of Dex (1 µM) for 

1 hr before mitogenic stimulation. This pre-incubation was done to allow time for transcription to 

occur, propagating the non-genomic and the genomic effects of Dex. In accordance with the 

literature, Dex swiftly decreased the activity of both ERK isoforms starting at 10 minutes after 

mitogenic stimulation (therefore Dex exposure was 1h 10 minutes) and lasting up to 4 hours (that is 

total Dex exposure was 5 hours; Fig. 6.5.1). This time period is in agreement with the findings of 

Engelbrecht et al. (2003), where ERK1/2 activity was reduced within 2 hours. In addition, the 

genomic effects of GCs are seen only after approximately 30 minutes to 1 hour and could last up to 

several hours and days (Makara and Haller, 2001; Cato et al., 2002). Therefore, these findings 

suggest that a plausible mechanism for the anti-proliferative effect of Dex on rMSCs and 

preosteoblasts could be the transcriptional regulation of protein expression in the ERK1/2 pathway, 

other than the ERK1 and ERK2 proteins (Engelbrecht et al., 2003).  Possible candidates for such 

transcriptional regulation could be proteins located upstream or downstream from the ERK1/2 

proteins. 

 

The MAPK signalling pathway is regulated through phosphorylation. Phosphorylation of 

constituent proteins in this cascade, by protein kinases, leads to the activation of ERK1/2. 

Therefore, induction of protein kinase activity regulates the ERK1/2 protein signalling cascade. 

Conversely, the inactivation of ERK1/2 is executed by phosphatases via dephosphorylation of 

various key kinases in this specific pathway. Hence, up-regulation of protein phosphatases could be 

a potential mechanism by which GCs down-regulates the activity of ERK1/2.  In the next chapter 

the role of phosphatases, in particular protein tyrosine phosphatases, in the regulation of the 

ERK1/2 signal transduction pathway after activation by mitogens is examined.   

 

 

 

 

University of Stellenbosch http://scholar.sun.ac.za



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

 

 

 

 

 

 

 

University of Stellenbosch http://scholar.sun.ac.za



99 

 

The role of the protein tyrosine phosphatase, 

MKP-1, in the Dex-regulation of mitogen-

induced proliferation in osteoblast progenitor 

cells 
 

7.1 Introduction 

 As seen in Section 6.3.1, ERK1/2 was found to regulate mitogen-stimulated osteoblast precursor 

replication. Seeing that the ERK1/2 signalling pathway is regulated through phosphorylation, the 

degree of phosphatase activity induced upon mitogen and concomitant mitogen and Dex administration 

was determined. Phosphatase activity was assessed using a p-Nitrophenyl phosphate (pNPP) hydrolysis 

assay. This colorimetric assay is based on the catalytic ability of phosphatases to hydrolyze the pNPP 

substrate to the product, p-nitrophenol. The chromogenic product is then detected 

spectrophotometrically at A405nm, with an increase in the yellow colour product of the pNPP hydrolysis 

reaction being indicative of increased phosphatase activity. Mitogen-activated ERK1/2 phosphorylation 

and hence activation has previously been shown to be attenuated by Dex in immortalised cell lines 

(Hulley et al., 1998; Engelbrecht et al., 2003; Horsch et al., 2007). Since ERK1/2 inactivation occurs 

via tyrosine and threonine dephosphorylation, the contribution of protein tyrosine phosphatases to the 

induction of total (gross) phosphatase activity after mitogenic and Dex stimulation was determined in 

rMSCs and preosteoblasts. To achieve this, vanadate was used to block PTP activity whilst the residual 

phosphatase activity, which could possibly be ascribed to serine/threonine phosphatases, was measured 

using pNPP hydrolysis. It was hypothesised that because ERK activation is essential for proliferation 

and ERK is exquisitely regulated by tyrosine phosphorylation, that, if the PTP activity induced by 

concomitant mitogen and Dex stimulation was inhibited by vanadate, the Dex-induced impairment of 

osteoblast precursor cell proliferation would be restored. Therefore, the effect of vanadate on the Dex-

induced attenuation of proliferation in naïve rMSCs and preosteoblast proliferation was assessed. As 

MKP-1 was previously shown to regulate ERK1/2 activity in immortalised MBA 15.4 preosteoblasts 

(Horsch et al., 2007), the mRNA and protein abundance of MKP-1 was examined in rMSCs and 

primary preosteoblasts using quantitative real-time PCR (RT-qPCR) and western blot analysis, 

respectively.  
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7.2 Results 

7.2.1 Vanadate decreases protein tyrosine phosphatase activity induced after 

mitogen and Dex treatment 

 

In order to examine the induction of phosphatase activity in rMSCs, cells were first grown until 80% 

confluent and then subjected to 24 hr serum deprivation at 1% FBS to synchronise the cell cycle of 

cells before the pNPP assay. In the case of preosteoblasts, confluent rMSCs were differentiated with 

osteogenic medium (OM) for 7 days to induce the osteoblastic phenotype. Mitogenic cell treatments 

with 5% FBS (Fig. 7.1 B and C) or 20% FBS (Fig. 7.1 D) and concomitant mitogen and Dex lasted for 

24 hours, before protein lysates were prepared. Cells treated with 1% FBS (Fig. 7.1 A and C) or 

osteogenic medium (designated as OM C) (Fig. 7.1 D) were used to determine basal phosphatase 

activity levels. This work was based on the premise that increased formation of the yellow p-

nitrophenol product of the pNPP hydrolysis reaction indicates elevated phosphatase activity. Before 

inhibitor studies were performed, various concentrations of the phosphatase-containing lysates were 

used to determine the reaction limiting conditions, such as the amount of enzyme and substrate used 

(Fig. 7.1 A and B).  It was found that the hydrolysis reaction peaked at 150 µg of protein lysates under 

both basal and mitogen-stimulated conditions and reached a plateau thereafter (Fig. 7.1 A and B). 

Therefore, 150 µg of protein was used in subsequent phosphatase assays.   

 

A considerable amount of p-nitrophenol and hence phosphatase activity was observed under basal (1% 

FBS) and mitogenic conditions (5% FBS and 20% FBS), which was increased after the addition of 1 

µM Dex (Fig. 7.1 C and D). These findings indicate the presence of Dex-inducible phosphatases in 

non-stimulated (1% FBS) as well as mitogenic treated rMSCs and preosteoblasts. Vanadate at 10 µM 

and 1 µM was then used to examine the contribution of PTPs to the total phosphatase activity. Basal 

and mitogen-induced phosphatase activity was reduced by 80% at 10 mM vanadate, whereas 1 mM 

caused a 50% drop in phosphatase activity under these conditions (Fig. 7.1 C and D). Since the degree 

of vanadate inhibition was so severe, it can be postulated that PTPs constitute the main fraction of 

phosphatases active under these basal and mitogenic condition.  
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Figure 7.1: Protein tyrosine phosphatases are the major class of phosphatases present after mitogenic induction and 

are up-regulated by Dex in naïve rMSCs and preosteoblasts. 

Semi-confluent rMSCs which were serum starved for 24 hrs (A and B) or confluent rMSCs differentiated into an 

osteoblastic phenotype for 7 days (C) were used for the pNPP hydrolysis assay to measure phosphatase activity at pH 7 (as 

outlined in Materials and Methods, Section 2.2.5). Protein lysates were prepared (see Materials and Methods, Section 2.2.5). 

The limiting enzymatic conditions for optimal phosphatase activity after 24 hrs of incubation in 1% FBS (A) and 5% FBS 

(B) was then established. Cells were treated with 1% FBS (A and C) or osteogenic medium (OM C) (D) to determine basal 

phosphatase levels. A concentration of 150 µg of total protein was consequently used to assess phosphatase activity (C and 

D).  The optical density was measured at 405 nm using a Synergy
TM

 HT microtiter plate reader and data was analysed with 

KC4 v3.3 software (Bio-Tek® Instruments, Inc., Vermont, USA). Data shown are the means± standard deviation of two 

independent experiments where n=3. Statistically significant differences are indicated as * (P<0.05), ** (P<0.005) and *** 

(P<0.0005) on the line graphs or as lower case letters on the bar graphs. Abbreviations: Dex dexamethasone; OD optical 

density; mM millimolar; nM nanomolar;  OM C osteogenic control; pNPP paranitrophenylphosphate; VO4 vanadate 
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7.2.2 Vanadate partially rescues the Dex-induced inhibition of proliferation in 

rMSCs and preosteoblasts 

As seen in Sections 5.2.1 and 5.2.4, respectively, Dex inhibits mitogen-induced proliferation in rMSCs 

and preosteoblasts, and is accompanied by a Dex-induced decrease in mitogen-stimulated ERK1/2 

activity (Section 6.3.3). Since ERK1/2 activity is regulated by protein tyrosine phosphatases (PTPs) 

(Section 1.4.3.2) and vanadate decreased PTP activity in Dex-stimulated fractions (Fig. 7.1), the effect 

of vanadate on the Dex-induced reduction of proliferation in rMSCs and preosteoblasts was assessed. 

Naïve rMSCs were grown until 50% confluent and serum starved with 1% FBS for cell cycle 

synchronisation or confluent cells were differentiated into preosteoblasts using OM (as described in 

Section 2.2.1.3 and Supplement A3.3.). Cell proliferation was stimulated using 5% FBS (naïve rMSCs) 

or 20% FBS (preosteoblasts) as a mitogenic treatment, whilst basal growth conditions were assessed 

with 1% FBS or OM (Supplement A3.3.).  

 

A proliferation assay was done to assess the dose response of vanadate under basal and mitogenic 

conditions to determine the effect of vanadate on rMSCs proliferation. It was found that 10 µM and 5 

µM vanadate, reduced rMSC proliferation even after mitogenic stimulation with 5% FBS; this could 

possibly be attributed to cytotoxicity (data not shown). Cells treated with 10 µM vanadate detached 

from the culture dish and had a blebbed appearance, typical of cells undergoing cell death, when 

examined using light microscopy (data not shown). Under basal conditions, 1 µM vanadate was 

proliferative compared to the 1% FBS control (Fig. 7.2 A and B), whereas after 5% FBS stimulation, 

cells exhibited similar proliferation levels (Fig. 7.2 C and D). Therefore, 1 µM of vanadate was used 

subsequently. To accurately assess the effect of vanadate on the Dex-inhibition of proliferation in 

rMSCs, a 50% drop in proliferation was required. This allowed any small change in proliferation to 

easily be noticed as extreme inhibition might require high concentrations of vanadate to alleviate the 

effects of high Dex doses; these concentrations of vanadate, in turn, may be cytotoxic. Since naïve 

rMSCs are extremely sensitive to Dex (Fig. 5.1), two low Dex concentrations (1 nM and 5 nM) were 

tested to elicit a 50% decrease in proliferation. In non-stimulated rMSCs, that is under basal 

proliferation, administration of 1 nM and 5 nM Dex resulted in severely reduced mitogenesis (Fig. 7.2 

A and B), whilst an approximately 50% reduction was obtained under mitogenic conditions (Fig. 7.2 C 

and D). It was shown that 1 µM vanadate partially, but significantly, restored the Dex-induced 

inhibition of rMSC proliferation to basal growth control levels (Fig. 7.2 A, B, C and D). 
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Figure 7.2: Vanadate moderately restores the Dex-mediated impairment of proliferation in naïve rMSCs and preosteoblasts. 

Hemi-confluent rMSCs were serum deprived using 1% FBS or confluent rMSCs were differentiated into an osteoblastic phenotype using OM (Supplement A3.3.). For 

mitogenic stimulation, cells were treated with either 5% FBS (C, D) or 20% FBS (F) for 24 hrs. 1% FBS (A, B) or OM (E, F) were used as basal growth controls. Cells 

were treated with either: 1 nM or 5 nM for rMSCs and 1 µM Dex for preosteoblasts to diminish cell proliferation. Vanadate was used at a dose of 1 µM. DNA synthesis 

was measured by incorporation of [
3
H] thymidine ([

3
H] dT) for the last 4hrs of incubation.  Data of an individual experiment is shown, where n = 3 and is representative 

of experiments repeated at least three times. Each repeat represents an individual animal. Results displayed are the mean cpm ± S.E.M., where P<0.05 was seen as a 

statistically significant difference using the One-way Anova with Bonferonni post-hoc test. Statistically significant differences are indicated by different lower case 

letters. Data bars with the same letter above are not statistically different. Abbreviations: C control; cpm counts per minute; Dex dexamethasone; FBS fetal bovine 

serum; VO4 vanadate 
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Similar to rMSCs, 1 µM vanadate also significantly increased the proliferation of preosteoblasts under 

basal (OM) and mitogen-induced (20% FBS) conditions (Fig. 7.2 E and F). Furthermore, 1 µM Dex 

caused a significant decrease in preosteoblast proliferation under both basal and mitogenic conditions 

and vanadate was found to partially, but significantly; restore this Dex-induced inhibition (Fig. 7.2 E 

and F). Therefore, taken together, these results suggest that vanadate-sensitive phosphatases, possibly 

PTPs, are partly responsible for the Dex-induced reduction of proliferation in rMSCs and 

preosteoblasts. One other plausible explanation for the vanadate stimulated proliferation could be that 

vanadate might induce kinase activity as well inhibits PTPs (Kadota et al., 1987a; Kadota et al., 1987b; 

Fantus et al., 1989; Heffetz et al., 1990; Elberg et al., 1994). 

 

7.2.3 Vanadate elicits a typical proliferative ERK1/2 activation profile in rMSCs 

Since 1 µM vanadate treatment of osteoblast precursors caused a significant increase in proliferation 

(Fig. 7.2) and ERK1/2 activation is essential for proliferation (Fig. 6.1), the involvement of the ERK1/2 

mitogenic pathway in vanadate-induced proliferation was assessed. The MEK1/2 inhibitor, U0126, was 

employed to block the ERK1/2 cascade in order to discern the involvement of ERK1/2 in vanadate-

stimulated proliferation. The activation profile of the ERK1/2 proteins was also examined using 

western blotting after vanadate. rMSCs were grown to a density of 80% and serum starved for 24 hours 

to synchronise the cell cycle of these cells, before vanadate stimulation. For the proliferation assay, 

cells were treated with 1 µM vanadate for 24 hours, cells lysed and proteins analysed at specified time 

points.   

 

Results showed that 1 µM vanadate evoked significantly more rMSC proliferation under basal and 

mitogenic conditions, compared to the controls (Fig. 7.3.1). U0126 inhibited vanadate-induced 

proliferation to control levels, thereby indicating the involvement of ERK1/2 in regulating this 

response. Moreover, vanadate induced an ERK1/2 activation profile that is characteristic of 

proliferating cells (Fig. 7.3.2), further demonstrating the involvement of ERK1/2 in regulating rMSCs 

proliferation as stimulated by vanadate.  
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Figure 7.3.1: ERK1/2 activity is required for vanadate-induced rMSCs proliferation. 

Cells were grown to 50% confluency, serum starved in medium containing 1% FBS for 24 hrs. U0126 treatment occurred 

concurrently with VO4 stimulation. 1% FBS was used as basal growth controls (A) and 5% FBS was used as mitogenic 

stimulation (B). DNA synthesis was measured by incorporation of [
3
H] thymidine ([

3
H] dT) for the last 4 hrs of incubation.  

Data of an individual experiment is shown, where n = 3 and is representative of experiments repeated at least three times, 

where each repeat represents an individual animal. Results displayed are the mean cpm ± S.E.M., where P<0.05 was seen as 

a statistically significant difference using the One-way Anova with Bonferonni post-hoc test. Statistically significant 

differences are indicated by different lower case letters. Data bars with the same letter above are not statistically different. 

Abbreviations: cpm counts per minute; FBS fetal bovine serum; VO4 vanadate 
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Figure 7.3.2: A characteristic proliferative ERK1/2 activation pattern is evoked by vanadate in naïve rMSCs. 

Naïve rMSCs were grown until a cell density of 80% and serum starved in 1% FBS for 24 hrs. Cells were then incubated 

with 1µM VO4 and cell lysates were prepared at specified times (as outlined in Materials and Methods, Section 2.2.8.1). 1% 

FBS was used as a negative control and designated as t0.  An amount of 20 µg of total proteins was resolved by 

electrophoresis on a SDS polyacrylamide gel. Proteins were transferred onto a PVDF membrane. The amount of ERK 

phosphorylation/ activation was determined by using anti-phospho-ERK1/2 (active ERK1/2) antibodies. To ensure equal 

protein loading, stripped membranes were probed using anti-ERK1/2 (inactive ERK1/2) antibodies. Analysis of ERK1/2 

phosphorylation was performed using densitometry. ImageJ software was used to quantify the intensity of 

immunoresponsive bands. A representative blot of three experimental repeats is shown. Each repeat experiment represents 

an individual animal. Similar trends were observed between repeat experiments. Results are expressed as ratios of pERK1 

integrated intensity/ERK1 integrated intensity (left graph) or pERK2 integrated intensity/ERK2 integrated intensity (right 

graph). Integrated density is defined as the mean pixel intensity multiplied by the area of bands. Data is given in arbitrary 

units which was normalised to t0 and set at 1.   
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7.2.4 The mRNA of the dual-specific phosphatase, MKP-1, is up-regulated by FBS 

and Dex in rMSCs and preosteoblasts 

As determined in Section 7.1, the predominant phosphatase class active under basal and mitogenic 

conditions in rMSCs and preosteoblasts were sensitive to vanadate, thereby suggesting the involvement 

of protein tyrosine phosphatases (Fig. 7.1). Moreover, vanadate enhanced cell growth as well as 

moderately restored the Dex-induced attenuation of mitogen-stimulated cell proliferation (Fig. 7.2). In 

addition, it was shown that ERK1/2 was required for the proliferative response of vanadate and that 

vanadate elicited a characteristic proliferative ERK1/2 activation profile (Fig. 7.3). These results 

suggest that one or more vanadate responsive phosphatases are most likely involved in the Dex 

regulation of rMSC and preosteoblast proliferation under mitogenic conditions.  

 

 

Previous it has been found that the mRNA and protein of the nuclear dual-specificity PTP, MKP-1, are 

up-regulated by Dex and inhibit preosteoblast proliferation after mitogen stimulation. Furthermore, 

overexpression of recombinant MKP-1 in these immortalised cells led to decreased preosteoblast 

proliferation (Engelbrecht et al., 2003; Horsch et al., 2007). This indicates the involvement of MKP-1 

in the Dex regulation of preosteoblast proliferation. A further role for MKP-1 in the modulation of 

preosteoblast proliferation was illustrated when it was found that MKP-1 dephosphorylated mitogen-

induced ERK1/2 after Dex treatment (Horsch et al., 2007), thereby leading to ERK1/2 inactivation and 

resulting in decreased cell proliferation. The expression profile of MKP-1 was therefore examined in 

naïve rMSCs and preosteoblasts. 

 

 

Naïve rMSCs were grown until 80% confluent and serum starved in 1% FBS for cell cycle 

synchronisation. Preosteoblasts were generated by differentiating confluent rMSCs with OM 

(Supplement A3.3.) for 7 days. Cell treatments involved the mitogenic stimulation of naïve rMSCs 

with 5% FBS and preosteoblast cells with 20% FBS, or concomitant mitogen and 1 µM Dex 

administration to both cell types. RNA was isolated and reverse transcribed into cDNA, which was 

used as a template in the RT-qPCR to examine the relative abundance of MKP-1 transcripts. ARBP 

was used as reference gene. 
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Data showed that serum stimulation and 1 µM Dex in combination with serum rapidly increased the 

abundance of MKP-1 mRNA in naïve rMSCs and preosteoblastic cells, although to different 

magnitudes (Fig. 7.4.1 A, B and Fig. 7.4.2 A, B). A decrease in the amount of serum-and Dex-induced 

MKP-1 mRNA was generally observed after 30 min in both cell types (Fig. 7.4.1 A, B and Fig. 5.4.2 

A, B). When examining the effect of Dex alone in naïve rMSCs, it was seen that MKP-1 mRNA 

slightly increased at 30 min. However, at 1h and 2h, MKP-1 mRNA levels significantly different 

(P<0.001) compared to the control were observed, peaking at 2h (Fig. 7.4.1 C). Contrary to this, in 

preosteoblasts, Dex caused an elevation in MKP-1 mRNA levels between 1h and 4h, reaching a 

maximum at 2h, which was significantly different (P<0.001) compared to the control (Fig. 7.4.2 C). 

These results suggest that Dex treatment results in an increase in MKP-1 mRNA in naïve rMSCs and 

preosteoblasts.  
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Figure 7.4.1: MKP-1 mRNA is rapidly up-regulated by 5% FBS and 1 µM Dex in naïve rMSCs. 

Semi-confluent rMSCs were serum starved by using 1% FBS before mitogenic stimulation. Cell stimulation entailed 

treatment with 5% FBS (A) or simultaneous 5% FBS and 1 µM Dex (B, C) treatment at specified times. 1% FBS were used 

as negative induction control and used as untreated control for transcript abundance determination. Total RNA was isolated 

at the given times and converted into cDNA using reverse transcription with ImpromII reverse transcriptase. cDNA was 

used as RT-qPCR templates to determine the relative abundance of MKP-1 transcripts. ARBP was utilised as reference gene 

for data normalisation. Data of an individual experiment is displayed as mean ± standard error, where n = 3 and is 

representative of experiments repeated at least three times, where each repeat represents an individual animal. Results 

displayed are the relative expression as determined using the REST 2008 software program and expressed as [MKP-1]treated/ 

[MKP-1]untreated. *** denotes statistical significant different data (P<0.001) compared to controls, which were set to 1. It is 

worthy to note that (C) depicts a bar graph where the data is expressed as a ratio of [MKP-1]5% FBS and 1 µM Dex (treated) / 

[MKP-1]5%FBS (untreated) to determine the effect of Dex on MKP-1 mRNA expression. Abbreviations: ARBP acidic 

ribosomal phosphoprotein; C control; h hour 
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Figure 7.4.2: MKP-1 mRNA is up-regulated by 20% FBS and 1 µM Dex in preosteoblasts. 

Confluent rMSCs were differentiated into an osteoblastic phenotype for 7 days using OM. Cell stimulation entailed 

treatment with 20% FBS (A) or concomitant 20% FBS and 1 µM Dex (B, C) treatment at indicated times. Osteogenic 

medium was used as negative induction control and used as untreated control to determine the relative transcript quantity of 

MKP-1 transcripts. Total RNA was isolated at the specified times. cDNA templates were produced using ImpromII reverse 

transcriptase. ARBP was employed as reference gene for RT-qPCR data normalisation. Data of an individual experiment, 

where n = 3, is displayed. This data is representative of experiments repeated at least three times and is expressed as mean ± 

standard error. Each repeat corresponds to an individual animal. Results displayed are the relative expression as determined 

using the REST 2008 software program. Data is expressed as [MKP-1]treated/ [MKP-1]untreated. *** denotes statistical 

significant different data (P<0.001) compared to controls, which were set to 1. Please note that (C) illustrates a graph where 

the data is expressed as a ratio of [MKP-1]20% FBS and 1 µM Dex (treated) / [MKP-1]20%FBS (untreated) to determine the effect of Dex 

on MKP-1 mRNA expression.  
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7.2.5 MKP-1 protein is up-regulated by FBS and Dex 

The aim of this investigation was to determine the effect of Dex on the MKP-1 protein expression 

levels in naïve rMSCs and preosteoblasts. Hence, 80% confluent naïve rMSCs were serum starved 

using 1% FBS before mitogenic and Dex exposure commenced. In addition, confluent rMSCs were 

treated with osteogenic medium for 7 days to induce osteogenic differentiation, prior to exposure to 

mitogen and Dex. 

 

 To fully activate the genomic responses of Dex, cells were pre-treated with 1 µM Dex for 1h prior to 

mitogenic stimulation with 5% FBS (naïve rMSCs) and 20% FBS (preosteoblasts) for 5 minutes, 30 

minutes, 2 hours and 4 hours, after which whole cell protein lysates were prepared. The short time 

periods (5 minutes and 30 minutes) represented peak ERK1/2 activity, whereas the longer time (2 hr 

and 4 hr) points represented the shoulder of ERK1/2 activity. MKP-1 levels from non-stimulated cells 

were examined utilising 1% FBS and osteogenic medium as negative controls, which were designated 

as t0.  

 

In order to determine MKP-1 protein levels, MKP-1 densitometry data were normalised to both total 

ERK1/2 isoforms. Findings showed that in naïve rMSCs, Dex caused a slight, although not statistically 

significant, increase in MKP-1 protein expression levels compared to the 5% FBS treatment, 

irrespective of the ERK1/2 isoform used for normalisation. This increase occurred at 30 minutes after 

mitogenic exposure (hence 1 hour and 30 minutes exposure to Dex) and continued up to 4 hours (that is 

5 hours exposure to Dex; Fig. 7.5 A). In contrast, MKP-1 protein abundance was elevated after 2 hours 

of mitogenic stimulation (that is 3h of Dex exposure) and lasted up to 4 hours in preosteoblasts (Fig. 

7.5 B). In addition, Dex did not have a major effect after 5 minutes of mitogenic stimulation in either 

cell type (Fig. 7.5). A three-way ANOVA analysis showed that Dex has no statistical effect (P<0.9 for 

both total ERK1 and total ERK2) on mitogen-stimulated MKP-1 protein expression in naïve rMSCs 

and preosteoblasts.  
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Figure 7.5: FBS and Dex increases the MKP-1 protein abundance in naïve rMSCs and preosteoblasts. 

(A) Naïve rMSCs were grown until 80% confluent and serum starved in 1% FBS for 24 hrs. Cells were pre-treated with 1 µM Dex for 1 hr prior to mitogenic stimulation 

with 5% FBS or (B) Confluent rMSCs were induced to differentiate into preosteoblasts using osteogenic medium. After 7 days of culturing in OM, preosteoblasts were 

pre-treated with 1 µM Dex before exposure to 20% FBS as mitogenic stimulation. Cell lysates (as outlined in Materials and Methods, Section 2.2.8.1) were prepared at 

t0, 5‟, 30‟, 2 hrs and 4hrs after mitogen administration. An amount of 80 µg of total proteins was resolved by SDS PAGE and proteins were subsequently transferred 

onto a PVDF membrane. The level of MKP-1 protein was determined by using anti-MKP-1 antibodies. To ensure equal protein loading, membranes were stripped using 

0.2 N NaOH and reprobed with anti-total ERK1/2 antibodies. Immuno-responsive bands were visualised using the LumiGLO reserve chemiluminescent substrate kit 

from KPL laboratories (Gaithersburg, Maryland, USA). For densitometry, blots were photographed using a ChemiDoc Universal Hood II imager (Bio-Rad, CA, USA).  

Quantification of MKP-1 and t-ERK1/2 protein levels was performed utilising the Quantity One® software from Bio-Rad (Ca, USA). A representative blot of at least 

four experimental repeats is shown. Each repeat experiment represents an individual animal. Similar trends were observed between repeat experiments. Results are 

expressed as ratios of MKP-1 integrated intensity/tERK1 and MKP-1 integrated intensity/tERK2. A three-way ANOVA was done to determine the effect of Dex over a 

time span of 5 hours on mitogen-induced MKP-1 expression and statistical significance was considered at (P<0.05). This analysis was adjusted for the four individual 

experiments. Data is expressed in arbitrary units which was normalised to the time points specified on the respective graphs and set at 1.   
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7.3 Discussion 

The purpose of this work was to determine if protein tyrosine phosphatase (PTP) expression and 

activity may play a role in the Dex modulation of mitogen-induced proliferation resulting from 

ERK1/2 activation. It has previously been found that preosteoblast proliferation evoked by 

mitogens was mainly regulated by the ERK1/2 pathway in immortalised osteoblastic cell lines 

(Hulley et al., 1998; Horsch et al., 2007). This MAPK signalling cascade is regulated by 

phosphorylation (Marshall, 1995; Ebisuya et al., 2005), with activation of the ERK1/2 protein being 

via kinase-mediated phosphorylation, whereas inactivation arises from dephosphorylation executed 

by phosphatases (Hunter, 1995; Keyse, 2000; Saxena and Mustelin, 2000; Keyse, 2008b).  

 

ERK1/2 dephosphorylation and therefore, inactivation, is regulated by two types of phosphatases: 

Serine/Threonine (Ser/Thr) phosphatases, which remove phosphates from serine and threonine 

residues, and Protein Tyrosine Phosphatases (PTPs) which dephosphorylate tyrosine residues. An in 

vitro phosphatase assay based on pNPP hydrolysis to p-nitrophenol was used to measure total 

phosphatase activity. A substantial amount of p-nitrophenol, the hydrolysis product of phosphatase 

activity, was detected under basal (1% FBS) and mitogenic (5% FBS) conditions (Fig. 7.1 A), 

indicating that there is phosphatase activity under these conditions in rMSCs. Moreover, following 

Dex exposure of rMSCs under basal and growth factor stimulated conditions, a significant 

additional increase in phosphatase activity was observed (Fig.7.1 A). This result suggests the 

presence of Dex-inducible phosphatases (proteins) under these conditions. Furthermore, the amount 

of 150 µg of total protein lysate was determined to be the optimal concentration to use in this assay 

before the reaction becomes limiting (Fig. 7.1 A).    

 

The protein tyrosine phosphatase inhibitor, vanadate (sodium orthovanadate), was used to 

determine the proportion of protein tyrosine phosphatases active after mitogen and concomitant 

mitogen and Dex exposure in rMSCs and preosteoblasts (Fig. 7.1 C and D). The concentrations of 

vanadate used in the in vitro phosphatase assay were either high (10 mM) or moderate (1 mM). 

Higher concentrations of vanadate was used in the in vitro phosphatase assays to ensure efficient 

inhibition of PTPs, because unlike proliferation assays where high doses were toxic to osteoblast 

precursor cells, the phosphatase assay used cell lysates and cytotoxic effects are irrelevant (Fig. 7.2 

A and D). It was found that 10 mM vanadate effectively prevented the formation of p-nitrophenol 

in naïve rMSCs and preosteoblasts, thereby suggesting that phosphatase activity in these cell types 

after mitogenic stimulation, as well as after Dex exposure, was inhibited (Fig. 7.1 B and C). In 

addition, 1 mM vanadate inhibited approximately 50% of phosphatase activity under both basal and 

University of Stellenbosch http://scholar.sun.ac.za



113 

 

mitogenic conditions, in naïve rMSCs and preosteoblasts (Fig. 7.1 B and C). These results indicate 

that vanadate-sensitive phosphatases are present and active in rMSCs and preosteoblasts under these 

conditions and that a large proportion of these phosphatases are protein tyrosine phosphatases. This 

result is in accordance with the findings of Engelbrecht et al. (2003), where vanadate inhibited up to 

70% of cytosolic phosphatases in fast growing immortalised MBA 15.4 preosteoblasts, thereby 

indicating that PTPs are the main active phosphatase group in these cells.  

 

Table 7.1: Dex inhibition of naïve rMSCs and preosteoblasts proliferation rescue by vanadate.  

 

Cell Type 
Cell Culture Conditions 

% Dex inhibition 

compared to control 

% VO4 rescue 

compared to control 

Naïve rMSCs 1% FBS/ 1 nM Dex 65 % 110 % 

1% FBS/ 5 nM Dex 76 % 46 % 

5% FBS/ 1 nM Dex 57 % 18 % 

5% FBS/ 5 nM Dex 38 % 16 % 

Preosteoblasts Ost/ 1 µM Dex 37 % 44% 

20% FBS/ Ost/ 1 µM Dex 75 % 21 % 

 

Osteoblast precursor proliferation elicited by mitogens is attenuated by Dex in immortalised cells 

(Hulley et al., 1998; Engelbrecht et al., 2003). This reduction in proliferation was linked to 

increased inactivation of ERK1/2 via dephosphorylation by protein tyrosine phosphatases (PTPs) 

(Engelbrecht et al., 2003; Horsch et al., 2007). It was therefore hypothesised that by inhibiting PTP 

activity using vanadate, the attenuation of rMSC and primary preosteoblast growth factor-

stimulated proliferation by Dex may be lifted. The percentages of Dex inhibition on the 

proliferation in naïve rMSCs and preosteoblasts together with the percentage vanadate rescue are 

shown in Table 7.1. It was found that vanadate significantly, though not necessarily totally, reversed 

the Dex-induced inhibition of proliferation in naïve rMSCs and preosteoblasts (Fig. 7.2 and Table 

7.1). The largest percentage recovery by vanadate (110%) was seen when Dex inhibition of the 

proliferation of naïve rMSCs was restored by 65%. Moreover, 1 µM vanadate was shown to elicit a 

proliferative response compared to basal growth controls in both rMSCs and preosteoblasts, which 

might account for the „rescued‟ proliferation exerted by vanadate (Fig. 7.2). Closer investigation 

into the resulting proliferative response by vanadate revealed that this response was dependent on 

ERK1/2, since U0126 abolished naïve rMSCs proliferation after 1 µM vanadate under basal and 

mitogenic conditions (Fig. 7.3.1). Moreover, when the effect of vanadate on the activation of 

ERK1/2 was investigated, a characteristic proliferative ERK1/2 activation pattern was obtained in 

rMSCs (Fig. 7.3.2).  
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It was previously found that Dex up-regulated the mRNA and protein expression of the dual- 

specificity MAPK phosphatase, MKP-1 in human and mouse immortalised osteoblast cell lines 

(Engelbrecht et al., 2003; Horsch et al., 2007). The importance of MKP-1 in the negative regulation 

of mitogen-induced osteoblast proliferation and concurrent ERK activation was illustrated by 

Horsch et al. (2007): this investigation showed that MKP-1 is an exclusive Dex-inducible PTP, 

which is capable of preferentially dephosphorylating ERK1/2 in MBA 15.4 and MG-63 cell lines 

(Horsch et al., 2007). Moreover, it was found that overexpression of MKP-1 not only leads to 

ERK1/2 dephosphorylation, but also inhibits osteoblast proliferation (Horsch et al., 2007). 

Additionally, in human MG-63 preosteoblasts, knock-down of MKP-1 blocked Dex-stimulated 

ERK1/2 dephosphorylation (Horsch et al., 2007); therefore the abundance of MKP-1 mRNA and 

protein after mitogen and Dex exposure was examined to compare the effect of Dex on MKP-1 

expression in naïve rMSCs and preosteoblasts.  

 

In rMSCs, both Dex and 5% FBS caused a significant increase in MKP-1 mRNA at 30 minutes 

(Fig. 7.4.1 A and B). This early mRNA induction is in accordance with the postulation that MKP-1 

is an immediate early gene (Kwak and Dixon, 1995; Brondello et al., 1997; Brondello et al., 1999). 

Moreover, a significant decline in the abundance of MKP-1 mRNA was observed after 1 h, to near 

basal levels at 8 hours for both mitogen –and –Dex stimulation in rMSCs (Fig. 7.4.2 A and B). 

However, when the net effect of Dex on MKP-1 mRNA expression was determined by subtracting 

the 5% FBS from the 5% FBS + 1 µM Dex response, that is [MKP-1]5% FBS+Dex - [MKP-1]5% FBS, it 

was observed that MKP-1 mRNA was significantly elevated at 1h after exposure of Dex (Fig. 7.4.1 

C). MKP-1 mRNA levels peaked 2 hours after Dex administration, after which a steady decline was 

observed up to 8 hours (Fig. 7.4.1 C). Similarly to rMSCs, MKP-1 mRNA was also increased at 30 

minutes after 20% FBS mitogenic stimulation, as well as after concurrent Dex and mitogen 

treatment in preosteoblasts (Fig. 7.4.2 A and B). Yet, the net effect of Dex on MKP-1 mRNA in 

preosteoblasts was different to that in rMSCs (Fig. 7.4.2 C). Although MKP-1 mRNA levels were 

raised at 1hr, a significant increase compared to controls was only seen 2 hours after Dex 

administration in preosteoblasts (Fig. 7.4.2 C). These results suggest that the Dex regulation of 

MKP-1 mRNA expression in rMSCs and preosteoblasts is temporally different. Moreover, these 

results are in agreement with the findings of Engelbrecht et al. (2003), where MKP-1 mRNA was 

elevated at 30 minutes post-Dex administration and is expressed up to 24 hours in mouse and 

human immortalised preosteoblast cell lines.  

 

The effect of Dex on MKP-1 protein expression was subsequently examined. rMSCs and 

preosteoblasts were pre-treated for 1 hr with 1 µM Dex to induce the genomic response elicited by 
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Dex, giving time for protein expression. MKP-1 protein levels were normalised to both isoforms of 

total ERK1/2 and similar induction patterns were obtained regardless of the ERK1/2 isoform used 

for normalisation, in naïve rMSCs and preosteoblasts (Fig. 7.5 A and B). Results showed that, 

similarly to the mRNA levels, MKP-1 protein expression was induced by both FBS and Dex in 

rMSCs as well as preosteoblasts, reaching peak levels at 3 hours post Dex exposure (Fig. 7.5 A and 

B). In rMSCs, Dex exposure caused a slight raise in MKP-1 protein levels after 1 hour and 30 

minutes compared to 5% FBS (Fig. 7.5 A). However, there was no significant difference between 

5% FBS and 5% FBS + Dex at any time point again. A similar expression profile was elicited by 

Dex in preosteoblasts and maximum expression only occurred at 3 hours (Fig. 7.5 B).  

 

As expected there is a lag between MKP-1 mRNA and protein expression elicited by Dex (Fig. 

7.4.1; Fig 7.4.2 and Fig. 7.5). In naïve rMSCs, Dex caused a gradual increase in MKP-1 mRNA, 

which peaked at 2 hours and drastically declined to below baseline levels after 4 hours (Fig. 7.4.1 

C), whereas protein expression reached maximal levels at 3 hours, declining sharply after 6 hours 

(Fig. 7.5). Consequently, it is likely that Dex regulates MKP-1 expression through transcriptional 

mechanisms.  

 

The MKP-1 protein induction pattern of Dex did not differ from that elicited by 5% FBS, with the 

expected Dex-induced MKP-1 protein levels not being more pronounced compared to the 5% FBS 

stimulation in naïve rMSCs. One possible explanation for this phenomenon is that Dex not only 

enhances the protein synthesis but also the degradation of the MKP-1 protein. The MKP-1 protein is 

normally swiftly degraded by the 26S proteasome and consequently MKP-1 has been designated as 

a high turnover protein (Brondello et al., 1997). Inhibition of proteosomal degradation increased 

MKP-1 protein levels by 10 to 20 fold in human and mouse preosteoblasts (Engelbrecht et al., 

2003) and these more stable proteins then lead to better detection. Moreover, phosphorylation of 

MKP-1 on Ser
359

 and Ser
364

 increases protein stability (Brondello et al., 1995; Brondello et al., 

1999) and it is thus likely that MKP-1 phosphorylation is attenuated by Dex. Indeed, MKP-1 is a 

target of ERK1/2 phosphorylation (Brondello et al., 1995; Brondello et al., 1999). Since ERK1/2 

activation is inhibited by Dex, especially the shoulder activity (after 1 hour) (Fig. 6.5.1), this could 

explain the lack of MKP-1 protein detection in naïve rMSCs after 1 hour of pre-incubation with 

Dex (Fig. 7.5 A). Moreover, a sharp decline in MKP-1 protein levels was also seen after 3 hours, 

which corresponds to the decrease in ERK1/2 shoulder activity (Fig. 6.5.1). 

 

Similar Dex-induced MKP-1 mRNA and protein expression profiles were obtained for 

preosteoblasts compared to that of naïve rMSCs (Fig. 7.5). In comparison to naïve rMSCs, Dex 
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rapidly induced MKP-1 mRNA in preosteoblasts, with peak levels seen after 1 hour and then 

gradually declining. Peak MKP-1 protein was also exhibited after 3 hours of Dex stimulation, which 

sharply decreased up to 6 hours (Fig. 7.5 B). Even though a slightly dissimilar mRNA expression 

profile was obtained for preosteoblasts in comparison to naïve rMSCs, the discrepancy between 

mRNA and protein expression could also be attributed to post-transcriptional mechanisms and 

protein instability.  

 

The elucidation of a possible role for MKP-1 in the GC regulation of the proliferation of naïve 

rMSCs and preosteoblasts using specific pharmacological MKP-1 inhibitors such as sanguinarine 

chloride and triptolide was attempted (data not shown). Low concentrations (1 nM to 5 nM) of 

sanguinarine chloride and triptolide did not have any effects on basal and mitogen-induced 

proliferation in naïve rMSCs and preosteoblasts. Contrary to this, both these MKP-1 inhibitors were 

extremely toxic to naïve rMSCs and preosteoblasts above these concentrations resulting in 

extensive cell death (data not shown).  

 

 

In summary, the vanadate inhibition studies revealed that PTPs are involved in the Dex regulation 

of mitogen-induced proliferation in naïve rMSCs and preosteoblasts. MKP-1 was identified as the 

likely candidate in immortalised preosteoblast cell lines. Therefore, the expression of MKP-1 

mRNA and protein was examined in naïve rMSCs and preosteoblasts. Ultimately, no difference in 

protein expression elicited by mitogens and Dex was observed in both cell types. It is thus probable 

that MKP-1 does not mediate the Dex-induced decrease in rMSCs-and preosteoblast proliferation. 

However, MKP-1 is a high turnover protein and the true effect of Dex on MKP-1 protein expression 

needs to be determined by using proteosomal inhibitors to prevent protein breakdown. Furthermore, 

it appears that the negative effects of Dex on rMSC and preosteoblast proliferation could also be 

regulated by another PTP/s.  
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Conclusion and Future Work 
 

The rMSC experimental model used in this study is unique. These naïve stromal cells can be 

differentiated into preosteoblasts and can effectively be used to study the effects of GCs on early 

osteoblast precursor cell proliferation.   

 

 

 

Figure 8.1: Proposed model for the Dex regulation of mitogen-induced proliferation in naïve rMSCs and 

preosteoblasts. Arrows depict activation and blunt arrows specify inhibition.  

 

A proposed mechanism of action for the GC regulation of naïve rMSCs and preosteoblast 

proliferation is depicted in Fig. 8.1. Moderate concentrations of mitogens, such as 5% FBS and 10% 

FBS, led to cell proliferation in naïve rMSCs and preosteoblasts, whereas high concentration of 

20% FBS was observed to be predominantly mitogenic in preosteoblasts. The ERK1/2 signalling 

pathway was found to be integrally involved in the regulation of mitogen-induced proliferation in 

rMSCs and preosteoblasts, as cell proliferation was effectively blocked by U0126 and mitogen-

induced proliferation coincided with the activation of the ERK1/2 mitogenic pathway in both cell 

types. However, strong mitogenic stimulation of naïve rMSCs resulted in inhibition of proliferation, 

possibly due to oncogene-induced senescence (OIS) and led to hyperactivation of ERK1/2, which is 

a hallmark of OIS. In addition, two cell populations were identified in the rMSCs preparations after 

incubation in 20% FBS and it is likely that the smaller population of cells with condensed 

chromatin were undergoing OIS. In order to circumvent the possible occurrence of senescent cells 

in the initial stage of MSC preparation, isolation could in future be performed using 5% FBS or 

10% FBS instead of 20% FBS. Alternatively, cells that were expanded in culture medium 

VO4 

GC (Dex) 

     PTP 

  U0126 Cell proliferation 

Mitogenic stimulation 

   ERK  

Strong mitogenic stimulation 

             ERK  

OIS 
S-phase arrest 
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containing 20% FBS could be sorted according to size and granularity using FACS before being 

subcultured into higher cell passages or commencement of experiments.   

 

After rMSC isolation, pharmacological doses of GCs administered to naïve cells and preosteoblasts 

caused a drastic decrease in mitogen-induced proliferation. It was hypothesised that a possible 

molecular mechanism for this GC action could be that Dex hinders naïve rMSC and preosteoblast 

proliferation by inhibiting the mitogen-induced activation of ERK1/2, through the function of 

MKP-1. The presence of Dex-inducible phosphatases under basal and mitogenic conditions was 

demonstrated, the majority of which were likely to be PTPs, since VO4 inhibited a considerable 

fraction of the phosphatase activities under these conditions. Vanadate marginally rescued the Dex-

inhibition of mitogen-induced osteoblast precursor cell proliferation, a response which was 

dependent on ERK1/2 and again suggested the involvement of PTPs in the Dex regulation of 

osteoblast precursor cell proliferation. Dex was shown to differentially regulate MKP-1 mRNA 

expression in naïve rMSCs and preosteoblasts, which increased after 30 minutes and lasted up to 2 

hours in the respective cell types post Dex administration. This finding suggests that Dex could 

regulate MKP-1 expression through transcriptional mechanisms. Dex was then found to increase 

MKP-1 protein abundance after 1 and a half hours in naive rMSCs and preosteoblasts. However, 

contrary to expectations, Dex did not significantly increase MKP-1 protein expression above that of 

mitogenic stimulation. This could possibly be explained by the rapid degradation of the MKP-1 

protein by the 26S proteasome, where a negative feedback loop exist between ERK1/2 and MKP-1 

with MKP-1 phosphorylation by ERK1/2 stabilising the MKP-1 protein. Decreased ERK1/2 protein 

phosphorylation would destabilise the MKP-1 protein, rendering detection of changes in expression 

difficult. However, another explanation is that one or more other PTPs mediate the 

dephosphorylation of ERK1/2 protein after the administration of GCs, resulting in the subsequent 

reduction in proliferation. Interestingly, the effects of mitogen stimulation on MKP-1 mRNA and 

protein induction over time were not taken into account previously (Engelbrecht et al., 2003); even 

though it was known that MKP-1 mRNA is induced by growth factors (Charles et al., 1993; 

Noguchi et al., 1993; Engelbrecht et al., 2003) and hormones (Clark, 2003; Sarkozi et al., 2007; 

Datta et al., 2010). Engelbrecht et al (2003) only looked at a single point of MKP-1 mRNA and 

protein induction in immortalised MBA 15.4 preosteoblasts after stimulation with 10% FBS, which 

is the standard growth condition of these cells. Therefore, the effect of Dex on the mitogen-

stimulated induction of MKP-1 mRNA and protein could be similar to the results in the present 

study, although this still needs to be determined.  
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Studies have shown that stimulation of mesenchymal stromal cells with mitogens such as EGF and 

basic FGF resulted in increased proliferation, which was linked to the activation of the ERK1/2 

signalling pathway (Tamama et al., 2006; Solmesky et al., 2010). However, little is known about 

the mechanism of the ERK1/2 regulation in MSCs, especially protein deactivation by phosphatases. 

Even though MKP-1 was identified as the prime candidate for regulating ERK1/2 activity after 

mitogenic stimulation in the MBA 15.4 and MC3T3-E1 immortalised preosteoblast cell lines 

(Engelbrecht et al., 2003; Horsch et al., 2007; Datta et al., 2010), results of the present study 

indicate that this is not likely in naïve rMSCs and suggests the involvement of other PTPs. MKP 

isoforms, such as MKP-2,-3,-4 and MKP-X, have been shown to also dephosphorylate ERK1/2 

(Owens and Keyse, 2007; Junttila et al., 2008; Keyse, 2008a).  Moreover, MKP-2 and MKP-3 are 

expressed in MBA 15.4 and UMR106 osteoblastic cells (Engelbrecht et al., 2003; Homme et al., 

2004), suggesting that these MKPs could potentially regulate ERK1/2 activity and osteoblast 

precursor cell proliferation. In addition, PTPs, such as the neuronal PTP-SL and STEP (Pulido et 

al., 1999; Zuniga et al., 1999) as well as the hematopoietic PTP, LC-PTP/He-PTP (Oh-hora et a., 

1999; Saxena et al, 1999), are capable of dephosphorylating ERK1/2. Homologues of these tissue-

specific PTPs could possibly be present in osteoblastic cells, which could then regulate ERK1/2 and 

thus proliferation of osteoblast precursor cells. Therefore, it is evident that redundancy exists in the 

PTP regulation of ERK1/2 activity and hence in osteoblast precursor cell proliferation that is 

modulated by GCs. This thus warrants further investigation into the molecular mechanisms 

employed by GCs to regulate early osteoblast proliferation.   
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Addendum A 
This section contains all the media, buffers and mixtures used for cell culture.  

 

A1. Media, buffers and mixes used to isolate rMSCs 

A1.1. Holding media 

DMEM (pH 7.5) supplemented with 10 µg/ml penicillin and 10 µg/ml streptomycin 

containing no added FBS. 

 

A1.2. Expansion media 

DMEM (pH 7.5) supplemented with 10 µg/ml penicillin and 10 µg/ml streptomycin 

containing 20% FBS (v/v) FBS. 

 

A1.3. Collagenase I enzyme mixture 

0.75 mg/ ml Collagenase type I  

(stock solution is 7.5 mg/ ml (w/v) in Hank’s basic salt solution (HBSS)  

1.5% (v/v) BSA  

(stock solution is 10% (w/v) in 1 x PBS) 

The mixture is made up to volume with HBSS.  

 

A1.4. PBS (phosphate buffered saline) 

134 mM NaCl 

2.7 mM KCl 

10 mM Na2PO4 

1.8 mM KH2PO4 

Before autoclaving, the pH was adjusted to 7.4.  

 

A2. Complete growth medium 

DMEM (pH 7.5) supplemented with 10 µg/ml penicillin and 10 µg/ml streptomycin 

containing 10% (v/v) FBS.  

 

A.3. Media, buffers and mixes used for cell treatments 

A3.1. Basal growth medium 

DMEM (pH 7.5) supplemented with 10 µg/ml penicillin and 10 µg/ml streptomycin 

containing 1% (v/v) FBS was utilised as basal growth medium.  

 

A3.2. Mitogenic induction using FBS 

DMEM (pH 7.5) supplemented with 10 µg/ml penicillin and 10 µg/ml streptomycin 

containing either 5% (v/v) FBS, 10% (v/v) FBS or 20% (v/v) FBS was used to induce 

mitogenesis. These media is designated as DMEM/5% FBS, DMEM/10% FBS and 

DMEM/20% FBS, respectively.  

 

A3.3. Osteogenic differentiation medium (Ost) 

10% (v/v) FBS 

10 mM glycerol-2-phosphate 

50 µM ascorbic acid 

10 nM Dex 

Differentiation medium is made to volume with DMEM (pH 7.5).  
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A4. Chemicals used for tissue culture treatments 

 

A4.1. Phorbol 12-myristate 13- acetate (PMA) 

A stock solution of 2 mg/ml PMA in DMSO was prepared and aliquots were stored at -20 
o
C. All dilutions were made in DMSO. The DMSO vehicle concentration did not exceed 

0.1% (v/v) in all experiments.  

 

A4.2. Dexamethasone (Dex) 

Dexamethasone was prepared at a stock concentration of 10 mM in absolute ethanol and 

stored at – 20 
o
C. All dilutions were carried out in absolute ethanol and the final vehicle 

concentration did not exceed 0.1% (v/v) in all experiments, unless otherwise indicated.  

 

A4.3. Sodium orthovanadate (VO4) 

VO4 was prepared at a stock concentration of 100 mM, boiled for 5 min after which the pH 

was adjusted to 10.  Aliquots were stored at -20 
o
C. Prior to use, all aliquots were diluted 

with sterile Millipore water at pH 10 and boiled just before commencement of cell 

treatments.  

 

A4.4. Phenylarsine oxide (PAO) 

A stock solution of 20 mM PAO was prepared in DMSO with heating at 37 
o
C for 5 min. 

PAO aliquots were stored at – 20 
o
C. All dilutions were in DMSO, the concentration of 

which did not exceed 0.1% (v/v) for all PAO treatments.  

 

A4.5. Wortmannin (WM) 

WM was prepared at a stock concentration of 5 mM in DMSO and aliquots were stored at 

– 20 
o
C. DMSO was used for all WM. The DMSO vehicle concentration did not exceed 

0.1% (v/v) for all WM treatments.  

 

A4.6. Sanguinarine chloride (SC) 

A 5 mM stock solution of SC was prepared in absolute ethanol and stored at – 20 
o
C. All 

SC dilutions were made in absolute ethanol, the final concentration of which did not 

exceed 0.1% (v/v) in all SC, unless otherwise indicated.   
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Addendum B 
Buffers and solutions utilised in all assays are included in this section.  

 

B1. Solutions used for the cell proliferation assay using [
3
H] thymidine incorporation  

 

B1. Lysis solution 

0.1% (w/v) SDS 

0.1% (w/v) NaOH 

 

 

B2. Buffers and solutions employed in the cell cycle analysis using propidium iodide  

(PI)  

 

B2.1. Citrate buffer 

250 mM sucrose, 

40 mM trisodium citrate 

0.05% (v/v) DMSO 

The buffer is used at pH 7.6. 

 

B2.2. Stock Solution 

3.4 mM trisodium citrate 

0.1% (v/v) nonidet P40 

1.5 mM spermine tetrahydrochloride 

0.5 mM Tris (pH 7.6) 

Note: Solutions A, B and C are all prepared in stock solution.  

 

B2.3. Solution A 

30 µg/ml Trypsin was dissolved in stock solution and the pH adjusted to 7.6. This solution 

was stored at -20 
0
C for subsequent use.  

 

B2.4. Solution B 

500 µg/ml Trypsin inhibitor 

100 µg/ml Ribonuclease A  

These components were dissolved in stock solution and the pH adjusted to 7.6. This 

solution was stored at 4 
0
C for subsequent use. 

 

B2.5. Solution C 

416 µg/ml PI 

1.16 mg/ml Spermine tetrahydrochloride  

These chemicals were dissolved in stock solution and the pH adjusted to 7.6.  The storage 

tubes were wrapped in foil due to the light sensitivity of Propidium iodide. This solution 

was stored at -20 
0
C for subsequent use. 
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B3. Buffers and solutions employed in the cell cycle analysis using 5-

Bromo-2’-deoxyuridine 

 
B3.1. Fixative Solution 

1% Paraformaldehyde 

0.05% Nonidet P40/ Igepal 

These components were made up with PBS (A1.4.).  

 

B3.2. DNAse I digestion solution 

20 µl Anti-BrdU- FITC antibody (BD 347583) 

1 mg/ml DNAse I 

0.005 M CaCl2 

0.01 M MgCl2 

These components were dissolved in PBS (A1.4.).  

 

B3.3. Anti-BrdU-FITC Incubation Solution 

Anti-BrdU-FITC 

0.1% BSA 

0.05% Nonidet/Igepal 

These components were mixed in PBS. The component indicated in italics was added to 

the solution just before use. A volume of 20 µl anti-BrdU-FITC antibody was added to 20 

µl of incubation solution.  

 

 

B4. Buffers and solution used for alkaline phosphatase (ALP) extraction and enzyme 

activity measurement 

 

B4.1. ALP extraction solution 

10 mM Tris, pH 7.2 

1% Triton X-100 

2 mM PMSF 

 

B4.2. Glycine assay buffer 

1.11 M Glycine 

11.1 mM ZnCl2  

11.5 mM MgCl2 

The pH of the glycine assay buffer is adjusted to 10.4 at 37 
o
C. 

 

B4.3. Pnpp substrate solution for ALP assay 

60 mM Pnpp in 1.5 mM MgCl2 

Note: The Pnpp substrate solution was wrapped in foil due to light sensitivity and kept on 

ice to prevent spontaneous loss of the terminal phosphate. 
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B5. Buffers and solutions used in the Pnpp hydrolysis assay for phosphatase activity 

 

B5.1. Total protein extraction buffer for Pnpp hydrolysis assay for phosphatase 

activity 

50 mM Tris-HCl; pH 7.5 

1 mM EDTA 

0.1% (v/v) Triton X-100 

1 mM PMSF 

10 µg/ml leupeptin 

10 µg/ml pepstatin 

2 µg/ml aprotinin 

Prior to addition of leupeptin, pepstatin and aprotinin, the pH of the protein extraction 

buffer was adjusted to 7.5. The components indicated in italics were all added to the 

extraction buffer just before use.  

 

B5.2. Bradford colour reagent 

10% (w/v) Coomassie Brilliant Blue G-250 

10% (v/v) 85% Phosphoric acid 

5% (v/v) 95% Ethanol 

This solution was filtered twice using Whatman filter paper before storage and kept in an 

airtight container wrapped in foil.  

 

B5.3. Pnpp assay buffer  

50 mM Tris-HCl, pH 7.5 

1 mM EDTA 

10 mM DTT 

1 mM PMSF 

5 mM Levamisole 

 

B5.4. Pnpp substrate  

60 mM pNPP 

50 mM Tris-HCl ( pH7.5) 

1 mM EDTA 

10 mM DTT 

1 mM PMSF 

5 mM Levamisole  

 

B6. Solution used for the Senescence-associated -galactosidase (SA--Gal) staining  

B6.1. Fixative solution  

2% (v/v) formaldehyde 

0.2% (v/v) gluteraldehyde 

The fixative solution was prepared in 1 x PBS (see above). 

 

B6.2. SA--Gal staining solution  

40 mM Sodium phosphate/ citrate buffer; pH 6 

5 mM Potassium ferrocyanide 

5 mM Potassium ferricyanide 

150 mM NaCl 

2 mM MgCl2 
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B7. MTT mitochondrial activity assay stock solution 

A 5 mg/ml MTT stock solution was prepared in 1 x PBS (see above), filter sterilised and 

stored at 4 
o
C. To prevent degradation of light-sensitive MTT, stock solution tubes were 

wrapped in tin foil prior to storage.  
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Addendum C 

This segment includes all buffers and solutions used for total protein extraction, SDS 

PAGE and immunoblotting. 

  

C1. Protein lysis buffer (pH 7.5) 

0.1% (v/v) Triton X-100 

50 mM Tris (pH 7.5) 

120 mM NaCl 

5 mM EDTA 

1 mM EGTA  

5 mM NaF 

20 µM -glycerophosphate 

2 mM Na3VO4 

1 mM PMSF 

10 µg/ml leupeptin 

10 µg/ml aprotinin 

10 µg/ml pepstatin 

 

The pH of the protein extraction buffer was adjusted to 7.5 prior to addition of leupeptin, 

pepstatin and aprotinin. The components indicated in italics were all added to the 

extraction buffer just before use.  

 

 

C2. Protein gel electrophoresis 

 

C2.1. 4% Stacking12% separating SDS-PAGE gel 

Stacking gel      Volume added  

distilled water       3.375 ml 

Bisacrylamide (30: 0.8% w/v)    975 µl    

1M Tris (pH 6.8)      625 µl 

20% SDS       25 µl 

10% (w/v) Ammonium persulphate    25 µl   

TEMED       10 µl 

 

Seperating gel     Volume added 

distilled water       3.350 ml 

Bisacrylamide (30: 0.8% w/v)    4.0 ml   

1M Tris (pH 8.8)      2.5 ml 

20% SDS       50 µl 

10% (w/v) Ammonium persulphate    50 µl   

TEMED       10 µl 

 

C2.2. 5x SDS PAGE Sample application buffer 

225 mM Tris-Cl (pH 6.8) 

50% (v/v) Glycerol 

5% (w/v) SDS 

0.05% (w/v) bromophenol blue 

250 mM dithiothretol (DTT) 

C2.3. SDS PAGE running buffer 

30 mM Tris base 
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384 mM Glycine 

0.1% (v/v) SDS 

 

 

C3. Protein transfer and immunoblotting 

  

C3.1. Protein transfer buffer 

30 mM Tris base 

384 mM Glycine 

10% (v/v) Methanol 

 

C3.2. Ponceau S Stain  

0.2% (w/v) Ponceau S in 5% (v/v) glacial acetic acid.  

 

C3.3. TBS-T 

10 mM Tris 

150 mM NaCl 

Prior to autoclaving, the pH was adjusted to 7.5.  

0.1% (v/v) Tween-20 

 

C3.4. Blocking Buffer 

5% (w/v) fat-free milk powder in TBS-T  
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Addendum D 

 

This section includes all buffers and solutions used for nucleic acid analysis. 

 

D1.  10x MOPS buffer  

200 mM MOPS 

0.05 M sodium acetate 

0.001 M EDTA 

The pH was adjusted to 7.5 before autoclaving.  

 

 

D2. RNA gel electrophoresis 

 

D2.1. 1% Agarose / Formaldehyde gel 

1.5 % (w/v) Agarose 

5% (v/v) Formaldehyde 

1 x MOPS 

 

 

D.2.2. RNA sample application buffer 

33.75% (v/v) Formaldehyde 

0.25% (w/v) bromophenol blue 

10% (v/v) glycerol 

40 mM MOPS 

10 mM sodium acetate 

200 nM EDTA 

Note: RNA sample application buffer is added in equal quantities to sample volumes.  

        

D2.3. MOPS running buffer 

20 mM MOPS 

5 mM sodium acetate 

0.1 mM EDTA 

 

D2.4. TBE  

127 mM Tris 

42.37 mM Boric acid 

1.2 mM  EDTA

University of Stellenbosch http://scholar.sun.ac.za



                                                                                                             167 

Addendum E 
All primers used for QRT-PCR are listed below. 

 

Primers for QRT-PCR 

 

E.1. Reference gene employed for normalisation 

Gene name:    ARBP (acidic ribosomal phosphoproteins)  

Forward primer:   5‟ – AAA GGG TCC TGG CTT TGT CT – 3‟ 

Reverse primer:   5‟ – GCA AAT GCA GAT GGA TCG – 3‟ 

Annealing temperature:  52 
o
C 

Amplicon size:   149 

Reference:    van Wijngaarden et al., 2007 

 

E.2. Bone markers studied 

 

Gene name:   cbfa I (Core-binding factor -1)/  

or Runx2 (Runt-related transcription factor 2) 

Forward primer:   5‟- GAT GAC ACT GCC ACC TCT GA -3‟ 

Reverse primer:   5‟- ATG AAA TGC TTG GGA ACT GC -3‟ 

Annealing temperature:  53 
o
C 

Amplicon size:   118 

Reference:    Liu et al., 2004 

 

Gene name:    Msx 2  

Forward primer:   5‟- TCA CCA CGT CCC AGC TTC TAG -3‟ 

Reverse primer:   5‟- AGC TTT TCC AGT TCC GCC TCC -3‟ 

Annealing temperature:  58 
o
C 

Amplicon size:   202 bp 

Reference:    Kuroda et al., 2005 

 

Gene name:               osterix 

Forward primer:   5‟- AGC GAC CAC TTG AGC AAA CAT -3‟ 

Reverse primer:   5‟- GCG GCT GAT TGG CTT CTT CT -3‟ 

Annealing temperature:  53 
o
C 

Amplicon size:              121 bp  

Reference:    Matsubara et al., 2008 

 

E.3. Protein tyrosine phosphatase studied 

Gene name:    MKP-1 (mitogen-activated protein kinase phosphatase 1) 

Forward primer:   5‟- CTG CTT TGA TCA ACG TCT CG -3‟ 

Reverse primer:   5‟- AAG CTG AAG TTG GGG GAG AT -3‟ 

Annealing temperature:  50 
o
C 

Amplicon size:   301 

Reference:    Price et al., 2004 
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Addendum F 
This part is comprised of the FL-2 Area DNA histograms used to analyse the cell cycle phase 

distributions of the two nuclei populations identified in Experiments A and –B. Data was 

analysed using the software program, Modfit®. The relevant statistical parameters are given in 

colour coded tables where the colour code keys are indicated below the respective tables. The 

relevant density plots were used to demarcate the population of interest before the respective FL-

2 Area DNA histograms were generated for cell cycle analysis.  
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