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Abstract

Background: We have studied sperm structure and motility in a eusocial rodent where reproduction is typically
restricted to a single male and behaviourally dominant queen. Males rarely compete for access to the queen
during her estrus cycle, suggesting little or no role for sperm competition.

Results: Our results revealed an atypical mammalian sperm structure with spermatozoa from breeding, subordinate
and disperser males being degenerate and almost completely lacking a “mammalian phylogenetic stamp”. Sperm
structure is characterized by extreme polymorphism with most spermatozoa classified as abnormal. Sperm head
shapes include round, oval, elongated, lobed, asymmetrical and amorphous. At the ultrastructural level, the sperm
head contains condensed to granular chromatin with large open spaces between the chromatin. Nuclear
chromatin seems disorganized since chromatin condensation is irregular and extremely inconsistent. The acrosome
forms a cap (ca 35%) over the anterior part of the head. A well defined nuclear fossa and neck with five minor sets
of banded protein structures are present. The midpiece is poorly organized and contains only 5 to 7 round to oval
mitochondria. The flagellar pattern is 9+9+2. A distinct degenerative feature of the tail principal piece is the
absence of the fibrous sheath. Only 7% motile spermatozoa were observed which had exceptionally slow
swimming speeds.

Conclusion: In this species, sperm form has simplified and degenerated in many aspects and represents a
specialised form of degenerative orthogenesis at the cellular level.

Background
Sperm competition is the norm in the animal kingdom
and in many taxa, such as amphibians, snakes, passerine
birds and mammals [1-3], sperm structure and function
can be correlated with the level of sperm competition
[3-7]. Gomendio and Roldan [6] found that in promis-
cuous species of primates and muroid rodents which
experience a high degree of sperm competition, there
tends to be an increase in sperm length compared to
species where there is less sperm competition. A subse-
quent analysis of 100 species of rodents supported this
latter conclusion [8] and Anderson and Dixson [9] have

clearly found a positive correlation between volume of
the sperm midpiece and sperm competition. Tourmente
et al. [3] showed that an increase in the level of sperm
competition in snakes is correlated with an increase in
sperm length and that this elongation is largely
explained by increases in midpiece length. In snakes, the
midpiece contains structures which, in other taxa, are
present in the remainder of the flagellum, suggesting
that it may integrate some of its functions. Pitnick et al.
[10], however, cautioned in a review that several studies
have shown no relationship in terms of sperm length
and sperm competition in mammals [11-13].
Spermatozoa with more rapid swimming speeds have

a fertilizing advantage during sperm competition in the
Atlantic salmon [14], mallards [15], domestic poultry
[16] and mammals [7] as evaluated by means of
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computer aided semen analysis (CASA). Anderson et al.
[17] showed that the mitochondrial membrane potential
was not only higher but better maintained in chimpan-
zee spermatozoa (high sperm competition) compared to
human spermatozoa (low sperm competition). Maree
[18] produced similar results when comparing sperm
mitochondrial membrane potential in humans and three
species of Old World monkeys. Apart from these inves-
tigations on sperm function and those on sperm mor-
phometry mentioned above, no studies on sperm
competition in mammals have included data on poten-
tial differences at the sperm ultrastructural level. More-
over, few studies have compared the structure and
function of spermatozoa in promiscuous versus eusocial
mammals (monogamous), largely because the latter mat-
ing strategy is so rare.
Naked mole-rats (Heterocephalus glaber) are one of

only two eusocial mammals [19-21] with reproduction
typically restricted to a single female (queen) and male
within large colonies of 40-90 individuals [19,20,22].
Although not strictly monogamous, as multi-paternity
has been recorded for this species [23], most other males
and all other females (subordinates) are reproductively
suppressed. This restriction of breeding to a small subset
of the entire population (queen and 1-3 breeding males)
possibly presents a low risk for sperm competition and it
is predicted to have shaped the structure (simple) and
motility (slow) of spermatozoa in this species.
Here we describe the sperm structure of breeding,

subordinate and disperser male naked mole-rats using
light and electron microscopy (scanning and transmis-
sion). The sperm motility of these naked mole-rats has
been studied by means of CASA to establish baseline
parameters. This data was used to test the hypothesis
that levels of male intrasexual competition may influ-
ence the structure and motility of spermatozoa. We pre-
dict that in naked mole-rats with limited intrasexual
competition amongst males, sperm head length, mid-
piece length and tail length will be shorter when com-
pared to promiscuous species. It is further predicted
that breeders will have better sperm quality than subor-
dinates since the latter are reproductively suppressed.

Results
Sperm structure: Light microscopy
A typical naked mole-rat spermatozoon is characterized
by an irregular shaped head, a neck, a poorly defined
midpiece and a tail. The most striking feature emerging
from the micrographs is the large amount of poly-
morphism encountered, particularly in terms of sperm
head shape (Figure 1). Consequently, sperm structure
varies markedly with sperm head shape, including
round, oval, elongated, slightly lobed, severely lobed and
asymmetrical heads. There are several further variations

that could only be described as irregular or amorphous
(Figure 1). Due to this variation in sperm head shape, it
was difficult to statistically determine differences
between the breeders, subordinates and dispersers in
terms of sperm morphology. However, there did not
appear to be any striking difference in the type of sperm
head abnormalities encountered in these three groups of
males and no significant differences (p > 0.05) were
found in their sperm morphometry. Jointly, the basic
morphometric dimensions such as length, width and
perimeter (Table 1) indicate that the naked mole-rat has
very small spermatozoa relative to other mammals.

Figure 1 Bright field microscopy of naked mole-rat
spermatozoa stained with SpermBlue and showing evident
sperm polymorphism. a) normal spermatozoon; b) compressed
head; c) lobed head and curled tail; d) cone-shaped head; e) double
macro-heads; f-h) multi-lobed elongated heads; g) head without
acrosome; i) micro-head; j) amorphous head; k) apparent nuclear
vacuoles representative of fragmentation. MP = midpiece, ACR =
acrosome.

Table 1 Sperm morphometry parameter measurements*
(average ± SD) of the sperm head, midpiece and tail

Parameter Measurement

Head:

Length (μm) 3.98 ± 0.35

Width (μm) 2.25 ± 0.15

Area (μm2) 7.47 ± 0.92

Perimeter (μm) 11.52 ± 0.81

Ellipticity 4.27 ± 0.35

Elongation 0.27 ± 0.04

Midpiece:

Length (μm) 1.09 ± 0.10

Width (μm) 1.09 ± 0.11

Area (μm2) 1.10 ± 0.19

Perimeter (μm) 4.25 ± 0.38

Tail:

Length (μm) 28.06 ± 3.13

*Data are combined for breeders, subordinates and dispersers.
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Light microscopy of the midpiece revealed a very
small and irregularly shaped structure (length and width
approximately 1.09 μm). The midpiece closely adheres
to the sperm head and often exhibits irregular borders.
It was accordingly sometimes difficult to distinguish the
midpiece from the posterior part of the head, particu-
larly the neck. The average tail length is 28.06 μm (SD
± 3.13) and the tail appears to have an even diameter
throughout. Although the end piece of the tail is not
well defined and apparently short, there appears to be
very few tail abnormalities.

Sperm structure: Scanning and transmission electron
microscopy
There were no clear ultrastructural differences among
spermatozoa from the cauda epididymis, vas deferens or
ampulla.

Sperm head
Figure 2a represents a typical multi-lobed sperm head as
viewed by scanning electron microscopy (SEM). The

surface morphology reveals an irregular sperm head and
small midpiece. The acrosome is poorly defined and dif-
ficult to discern by SEM.
Figures 2b-h are transmission electron micrographs

depicting the details of the different components of the
spermatozoa. Figure 2b shows all the major components
of a naked mole-rat spermatozoon in longitudinal sec-
tion. In this figure the head is multi-lobed, the midpiece
is small and the tail is homogenously thin. The head
consists of granular chromatin that is not fully con-
densed and in almost all spermatozoa large intra-nuclear
spaces are evident which appears to be dispersed chro-
matin. Figure 2c presents two sperm heads that appears
severely fragmented. Figure 2d shows a very simple
acrosome (acrososmal cap) that covers 30-40% of the
head area.

Neck
The basal plate is connected to the nucleus by means of
longitudinal satellite fibres. While the nuclear fossa is
well defined, the capitulum, an electron dense structure,

Figure 2 Scanning and transmission electron micrographs of naked mole-rat spermatozoa. a) Scanning electron micrograph of a typical
multi-lobed sperm head, b-h) Transmission electron micrographs of naked mole-rat spermatozoa sectioned in different planes: b) Longitudinal
section almost similar to spermaozoon in (a) showing irregular arranged chromatin, small midpiece and thin tail; c) Two sperm heads showing
severe fragmentation and small midpiece; d) Sperm head containing a simple acrosomal cap; d-e) Proximal centriole with capitulum and
striations of cross banded structures; f) Transverse to oblique section of anterior part of midpiece showing mitochondria with tubular-like cristae,
some cross banded structures and distal centriole; g) Axoneme (9+2 microtubules) surrounded by nine outer dense fibres in midpiece; h) Only
axonome in tail principal piece without a fibrous sheath. ACR = acrosome, HEAD = sperm head, FRG = fragmented sperm head, CAP =
capitulum, PC = proximal centriole, CBS = cross banded structures, DC = distal centriole, MIT = mitochondria, MP = midpiece. Scale bars: a, b, c
= 1 μm; d, e, f = 0.5 μm; g, h = 0.25 μm.
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is poorly developed. There are two dominant and five
smaller cross banded structures emerging from the capi-
tulum and running longitudinally towards the midpiece
(Figures 2d and 2e). The two dominant cross banded
structures each forms two additional cross banded
structures lower down in the neck/midpiece. There are
accordingly a total of nine cross banded structures (each
exhibiting about 12 cross striations) that eventually con-
nect with the outer nine dense fibres surrounding the 9
+2 microtubules (axoneme) (Figures 2d-f). These nine
cross banded structures furthermore connect with the
outer nine fibres close to the distal centriole. Just below
the capitulum and surrounded by the cross banded
structures is a clearly demarcated proximal centriole
(Figures 2d and 2e) which is 90° orientated in terms of
its central axis to the distal centriole. The distal cen-
triole (Figure 2f) gives rise to the axoneme, which typi-
cally has the 9+2 microtubule arrangement.

Midpiece
The shape of the midpiece varies greatly and both SEM
(Figure 2a) and TEM (Figures 2b-f) confirmed the light
microscopic observations (Figure 1). In both transverse
and longitudinal sections, the irregularity of the mid-
piece is demonstrated. There appears to be five to seven
mitochondria present which reveal two major forms.
The one form is elongated and the other oval to spheri-
cal. The cristae mitochondriales have a spherical or
wavy form (Figures 2d-f) and conform to the orthodox
state. In the midpiece, the 9+9+2 pattern of the axo-
neme and the outer dense fibres can be seen (Figure
2g). The nine outer dense fibres approximately have the
same diameter. Other structures in the midpiece include
various vesicles of different size and shape (Figure 2e).
These may represent some of the byproducts of sper-
miogenesis and are apparently not discarded as part of
the contents of the cytoplasmic droplet.

Tail
There is not a defined annulus demarcating the poster-
ior part of the sperm midpiece and the start of the prin-
cipal piece of the tail. The principal piece of the tail
contains the 9+9+2 axonemal-outer dense fibre config-
uration as in the midpiece and shown in Figures 2f and
2g. Surprisingly, there is no outer fibrous sheath incor-
porating dense fibres three and eight to form two longi-
tudinal columns. Consequently, the ribs of the fibrous
sheath in the principal piece connecting the longitudinal
columns are also lacking in naked mole-rat spermatozoa
(Figure 2h). Towards the end of the tail, the outer dense
fibres are closely associated with the outer doublets of
the axoneme. The end piece is not clearly demarcated
but only has the axoneme (no dense fibres) and no addi-
tional fibres on its outside.

Sperm concentration and sperm motility
Sperm concentration varied from as little as 5 × 106/ml
to about 100 × 106/ml with an average of 43.0 × 106/ml
(SD ± 45.2) (Table 2). No significant differences (p >
0.05) were found in the sperm concentration of bree-
ders, subordinates and dispersers. The volume of the
fluid within each ampulla was approximately 5 μl and
accordingly the maximum number of spermatozoa in
both ampullae was estimated in the region of about 1
million spermatozoa and at least 50 000 when the
queen was in estrus. However, it was difficult to deter-
mine sperm concentration accurately due to the pre-
sence of abundant vesicles within the semen that were
slightly larger than the sperm heads. Thus, these men-
tioned values represent maximum estimates for sperm
concentration.
Table 2 shows the combined sperm motility data for

the fifteen males since there was no significant differ-
ences (p > 0.05) found among the three groups (bree-
ders, subordinates and dispersers). The total percentage
sperm motility was low and varied from 1-15% (average
7.3% SD ± 6.7). The average kinematic parameters of
these spermatozoa were representative of slow swim-
ming sperm (VCL = 35.5 μm/s SD ± 6.7) with fairly
good progression (STR = 60.6% SD ± 10.8) and low lin-
earity (LIN = 44.4% SD ± 9.5). However, the range for
VCL varied between 15-68 μm/s. It appeared that the
faster the spermatozoa swim, the greater was the ampli-
tude of lateral head displacement (ALH). The overall
effect was that fast swimming spermatozoa had a lower
linearity than slow swimming spermatozoa but the fast
spermatozoa swim more vigorously (large head and tail
oscillations). Figures 3a-c depict representative examples
of the motility patterns and kinematic parameters of
fast, medium and slow moving spermatozoa among this
characteristic “slow” swimming population. Furthermore,

Table 2 Sperm kinematic parameter measurements*
(average ± SD) captured at 50 frames/second

Parameter Measurement

Motility (%) 7.3 ± 6.7

Concentration (×106/ml) 43.0 ± 45.2

VCL (μm/s) 35.5 ± 6.7

VSL (μm/s) 16.3 ± 6.3

VAP (μm/s) 26.1 ± 5.9

LIN (%) 44.4 ± 9.5

STR (%) 60.6 ± 10.8

WOB (%) 73.0 ± 4.4

ALH (μm) 0.5 ± 0.4

BCF (Hz) 4.9 ± 5.3

*Data are combined for breeders, subordinates and dispersers.

VCL = curvilinear velocity, VSL = straight-line velocity, VAP = average path
velocity, LIN = linearity, STR = straightness, WOB = wobble, ALH = amplitude
of lateral head displacement, BCF = beat cross frequency.
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the fast swimming spermatozoa represented 0-1% of all
motile sperm, the medium swimming spermatozoa 3-5%
and the slow swimming population 93-96%. Hence, the
low average VCL of 35 μm/s can be explained by the
fact that the majority of motile spermatozoa had a low
VCL and accordingly swim sluggishly.

Discussion
A typical mammalian spermatozoon consists of a head
partly covered by an acrosome, a neck and a flagellar-
like tail. The head of the mammalian spermatozoon is
ovate, ensiform or falciform and dorsoventrally flattened.
The neck typically consists of the connecting piece and
the centriole [24]. The mammalian sperm tail contains
an axonemal complex of microtubules and a further
nine outer dense fibers to complete the 9+9+2 pattern
[25]. In the midpiece of the mammalian spermatozoon,
the axoneme and outer dense fibers are enclosed by a
long sheath of mitochondria. The mitochondria itself
are elongated and arranged around the core of the
sperm tail in a helical fashion. The number of mito-
chondrial gyres varies between mammalian species, with
the relatively short midpiece of the human consisting of
about 15 gyres, whereas the exceptionally long midpiece
of several rodent species contain as many as 300 gyres
[24]. In the principal piece of the flagellum, the axone-
mal-outer dense fiber complex is surrounded by the
fibrous sheath, which is divided into several transverse
ribs along the length of the principal piece [26].

The spermatozoa of naked mole-rats in this study
deviate markedly from that of virtually all mammals.
The sperm head surface is extremely irregular and often
form small or large lobes with a high percentage of
either dispersed chromatin or so-called nuclear vacuoles.
The lobed nucleus in particular appears to be degener-
ate compared to that of most mammals. Together these
morphological attributes would result in most naked
mole-rat spermatozoa being classified as “abnormal”.
Importantly, these attributes are not considered to be a
major consequence of inbreeding as the individuals used
in this study originate from colonies in a captive popula-
tion that include both inbred and outbred pedigrees and
a low mean level of inbreeding (F = 0.163) [27]. The
high inbreeding coefficient reported in a previous study
(F = 0.45) among four wild-caught colonies of naked
mole-rats in Kenya [28], can be due to the fact that
three of these colonies were collected within 5 km of
each other. New colonies of naked mole-rats are usually
formed by fissioning and thus neighbouring colonies
could have a recent common maternal ancestor [23,29].
The neck of the naked mole-rat spermatozoon con-

tains a poorly developed capitulum which gives rise to
five banded columns. In most mammals and particularly
in rodents, however, the capitulum represents a large,
solid and well developed structure [26]. The well defined
midpiece of most mammalian species, particularly in
terms of the highly organized helical/non-helical
arrangement of mitochondria, is replaced in the naked
mole-rat by a small and generally disorganized midpiece.
The midpiece length is the shortest of all mammals so
far recorded (± 1 μm) [30] and the total number of
mitochondria (± 7) is also among the lowest for any
mammalian species [26]. Furthermore, the mitochondria
are randomly dispersed and their form varies even
within the same sperm midpiece. Accordingly, the mid-
piece of naked mole-rat spermatozoa appears to show
various degenerate features.
The greatest deviation from the mammalian pattern in

the naked mole-rat spermatozoon is the structure of the
principal piece of the sperm tail. In this species, there is
no apparent difference found in the size of the nine
outer dense fibers surrounding the axoneme. However,
in many mammalian species the outer dense fibers
numbered 1, 5 and 6 are distinctly larger than the other
six fibers and some species also have a larger fiber in
position 9 [26]. Although the 9+9+2 pattern persists in
naked mole-rat spermatozoa, there is no fibrous sheath
present. One of the main suggested functions for the
fibrous sheath is to provide structural support/strength
to the tail beating rapidly in a viscous medium as
encountered in the female reproductive tract [26,31].
Structurally these deviations in the principal piece thus

Figure 3 Three representative sperm motility patterns of
naked mole-rat spermatozoa recorded at 50 frames/second.
Red line = VCL, blue line = VSL and green line = VAP. The
kinematic data for each track is shown on its immediate right (cut
off values based on VCL (μm/s) = Fast > 45 > Medium > 35 Slow).
VCL = curvilinear velocity, VSL = straight-line velocity, VAP =
average path velocity, LIN = linearity, STR = straightness, WOB =
wobble, ALH = amplitude of lateral head displacement, BCF = beat
cross frequency.
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represent further simplified and possibly degenerative
features of the naked mole-rat spermatozoon.
Sperm structure has been extensively used as a tool to

assist in both taxonomic and phylogenetic studies and
more recently as an indicator of relative sperm competi-
tion. For example, van der Horst et al. [32] showed that
acrosome structure and shape can be used to distinguish
among four very closely related ferret species. Breed
[33,34] has furthermore shown that sperm head struc-
ture is related to phylogenetic relationships in rodents
in addition to their phylogenetic derivation (primitive
versus advanced structures). However, despite the fact
that certain species’ spermatozoa may be derived or
have become more specialized or simplified, one seldom
encounters the situation where there is such a large
variability in sperm form within a given species as
observed in the naked mole-rat. Human sperm provides
a rare example of sperm polymorphism and in human
clinical spermatology, any deviation in sperm structure
from normal is defined as abnormal according to the so
called Strict Criteria [35]. Thus, in this study we
revealed that, similar to humans, naked mole-rat sper-
matozoa have a high degree of polymorphism.
An important question that emerges is: which of these

“polymorphic” spermatozoa are normal or abnormal and
how does sperm morphology affect their ability to ferti-
lize an oocyte? During standard semen analysis proce-
dures, the normality of sperm morphology is an
important characteristic in determining the fertilizing
potential of spermatozoa [35,36]. In many mammalian
species (natural populations) a relatively high percentage
of spermatozoa in the ejaculate are morphologically nor-
mal (> 80%) [37]. In most of these species the level of
sperm competition is high and it can be assumed that
there is strong selection pressure to produce a high per-
centage of spermatozoa that are structurally and func-
tionally normal [38]. The end result is that most
spermatozoa have an almost equal chance of fertilizing
an oocyte.
Previous studies which mentioned the existence of

variation in male fertility of some mammalian species,
still reported a relatively high percentage of morphologi-
cally normal sperm, e.g. 77% (range 12-97%) in natural
populations of red deer [39] and 76% (range 6-91%) in
adult dogs [40]. Even the endangered black-footed ferret
(Mustela nigripes), which is exposed to a high degree of
inbreeding, had 68% normal spermatozoa in the breed-
ing season [41]. Interestingly, in humans who typically
have a low risk of sperm competition, males with more
than 15% normal spermatozoa is regarded as fertile
according to Strict Criteria [42] and the lower reference
limit for normal forms is 4% [35]. Preliminary results
from our laboratory have shown that the naked mole-
rat has only few normal spermatozoa (± 5-15%, data not

shown). Thus, most of the polymorphic spermatozoa in
humans and naked mole-rats are apparently abnormal
and accordingly not variations of normal spermatozoa.
Consequently, sperm competition would appear to be

extremely unlikely in naked mole-rats and there seems
to be no need to produce perfectly formed and highly
motile sperm. Parker [43] emphasized this principle by
mentioning that the production of high quality, error
free spermatozoa is costly and that there will be selec-
tion against it if the costs are not equal to or out-
weighed by the benefits (fertilizing the oocyte). Thus, in
the absence of sperm competition, there may be little
benefit in investing energy on the quality of sperm pro-
duction [44]. However, when there is a high risk of
sperm competition, every sperm counts and selection
will favour the production of high quality spermatozoa
[10]. Further evidence for the absence of sperm compe-
tition in the naked mole-rat is entrenched in its sperm
structure. Both the short midpiece and short tail (± 28
μm) of naked mole-rat spermatozoa is typical of mam-
mals with a low risk of sperm competition [8,9,45]. The
possible effect of a lack of sperm competition on the
size and structure of spermatozoa is indirectly empha-
sized by Lijfeld et al. [46] who reported that an
increased risk of sperm competition selects for longer
spermatozoa and reduces between-male and within-
male variation in the sperm length in passerine birds.
However, another factor contributing to the small size
of naked mole-rat spermatozoa could be this species’
lower metabolic rate [47]. Recent studies on the effect
of metabolic rate on sperm size [48,49] have shown that
there is a positive relationship between the mass-specific
metabolic rate and the total sperm length of both
eutherian and marsupial mammals and that species with
a lower mass-specific metabolic rate produce uniformly
small spermatozoa [48,49].
Despite the fact that few of the naked mole-rat sper-

matozoa are structurally and physiologically normal (e.g.
motile), the breeding males in this study were all produ-
cing healthy litters of pups prior to their removal. This
suggests that they are capable of producing sufficient
normal spermatozoa available to fertilize multiple
oocytes. The relatively high average sperm concentration
found in the current study was probably due to the fact
that a very high sperm concentration (100 × 106/ml)
was measured in only one male and therefore skewed
the data. However, for most males the sperm concentra-
tion varied between 5-50 × 106/ml and the lower limit
of the current study is comparable to the 1.8-8.6 × 106

spermatozoa in one half of naked mole-rat reproductive
tract previously reported by Faulkes et al. [50]. This low
average concentration of spermatozoa in the naked
mole-rat could be another effect of the absence of
sperm competition and is consistent with the theory
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that an increase in sperm competition will increase the
number of sperm produced by a male [4]. An extreme
case of this phenomena is found in the yellow seahorse
(Hippocampus kuda), a species which also lacks sperm
competition, where the testes only contain about 300
spermatozoa [51] and results in a sperm:egg ratio com-
parable to that of the social insects [52].
The degenerative structural state of both the midpiece

and the tail could possibly explain the poor motility of
naked mole-rat spermatozoa. The kinematic parameters
clearly showed that there was both low percentage moti-
lity as well as sluggish moving spermatozoa. The low
percentage motile spermatozoa recorded in the current
study (7.3%) were similar to the 5% motile spermatozoa
reported by TB Hildebrandt [personal communication].
Although Faulkes et al. [50] also found relatively low
percentage motile spermatozoa in naked mole-rats (<
50%), they reported a significantly lower sperm concen-
tration and lower percentage motile spermatozoa in sub-
ordinates relative to breeders, which were not evident
from the current study. The spermatozoa in the current
study were swimming at an average curvilinear velocity
of 35 μm/s, which may well be the lowest recorded for
any mammalian species. In other social mole-rats of the
same family (Bathyergidae), the average sperm velocity
is 148 μm/s and a high percentage of sperm motility is
evident [53]. Even humans, who have a high percentage
of abnormal spermatozoa, typically have more than 60%
motile sperm and they swim with an average velocity of
about 90-120 μm/s [18,54,55]. The slow swimming
speed of naked mole-rat spermatozoa could thus be the
result of both the short tail, which beats with a lower
force, and the small midpiece with few mitochondria,
which may generate less energy for motility.
Another aspect that requires attention is how much

simplification or degeneration is present in naked mole-
rat spermatozoa? Part of the answer may be found by
looking at sperm structure in the monotremes such as
the platypus. Here typical mammalian sperm features
are maintained and the fibrous sheath of the principal
piece of the tail is well developed [56]. In contrast, mar-
supial spermatozoa seem to share sperm characteristics
with the sauropsids rather than mammals and therefore
reflect a more primitive condition. However, even in
this instance the fibrous sheath is a typical feature of
the principal piece of the tail. The absence of this fea-
ture in naked mole-rat spermatozoa when compared to
the primitive mammals accordingly supports the view
that this is a degenerative feature in naked mole-rats
and not a primitive or simplified feature. Naked mole-
rat spermatozoa seem to be derived from ancestral
rodent sperm with a hooked acrosome. Breed [34] con-
cluded in his study on rodent spermatozoa that, “as the
hook-shaped sperm head and long sperm tail occur

across the muroid subfamilies, as well as in the hetero-
myid rodents, it is likely to be the ancestral condition
within each of the subfamilies with the various forms of
non-hooked sperm heads, that are sometimes associated
with short tails, being highly derived states”. The low
number and disorganized nature of the mitochondria in
the midpiece of naked mole-rat spermatozoa also
appears to show degenerate features rather than simpli-
fication. When a spermatozoon has simplified, there is
usually great order in terms of its organization (e.g. tele-
ost sperm) and contrasts sharply with the situation in
naked mole-rats.
We evoke the term ‘degenerative orthogenesis’ [57]

to describe the degenerate appearance and poor moti-
lity of naked mole rat spermatozoa. According to
Gould [57] (also [58] and [59]), Wilhelm Haacke
devised the word “orthogenesis” which means “straight
(line) generation” and subsequently “orthogenesis
denotes the claim that evolution proceeds along
defined and restricted pathways” [57]. In this context
Gould [57] based his interpretation on dissecting the
work of some eminent evolutionists of their time
[58,60-63]. While it is considered as a formalist theory
standing against the central Darwinian principle, it has
been interpreted in a broader context by many [64,65].
It is particularly Gould [57] that supports a modern
use of processes/concepts generally described as salta-
tions (discontinuous evolution, constraints) and chan-
nels (internally generated pathways) and includes
orthogenesis to understand evolutionary change within
the Darwinian framework. These notions above repre-
sent two sides of Gould’s conviction that the internal
structure of an organism can set and constrain the
pathways of change [57].
Degenerate animals often have a simpler anatomy

than primitive and non-degenerate animals, such as in
Lepas [65]. De Villiers [65] furthermore emphasized that
it is not only the individual animal of a species that is
sensitive to stimuli from the environment, but also the
embryo and larvae. For example, de Villiers [65] indi-
cated that, in vertebrate embryos, there appears to be a
delayed development of certain openings and tracts due
to the pressure of assimilated yolk inherited from their
ancestors. Accordingly gametes would also be exposed
and respond to various stimuli and undergo changes.
However, the authors, in agreement with de Villiers
[65], do not suggest that all these changes are palinge-
netic but rather kenogenetic. Morphological degenera-
tion is not a new concept and Eimer [62] referred to
this as an environmental impetus of a balance between
internal and external forces. However, it was viewed in a
narrow formalist context which was difficult to analyze
scientifically [66] and therefore required interpretation
in a broader framework.
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Most structures in naked mole-rat spermatozoa clearly
became degenerate, such as components of the head,
midpiece, neck and rest of the flagellum. It is important
to draw a clear distinction between sperm degenerative
features due to inbreeding and those due to the absence
of sperm competition. Pure inbreeding degeneration in
sperm structure may partly include features such as
sperm DNA fragmentation [67] and sperm morphology
abnormalities (abnormal size and shape of the head,
midpiece and tail) [67-70]. Degenerative changes due to
virtually no sperm competition, however, involve a vast
simplification in features, for example the absence of the
fibrous sheath in the principal piece of the tail (a funda-
mental mammalian sperm structural feature [26]), an
abbreviated midpiece with few simplified mitochondria
and a poorly developed capitulum in the sperm neck.
To our knowledge, this is the first study to describe the
presence of such “degenerative features” in a mamma-
lian spermatozoon.
Hence, in naked mole-rat spermatozoa it appears both

inbreeding and the absence of sperm competition may
have contributed to abnormal sperm features but that
the degenerative features mentioned above represent
very specific absence or modification of structures such
as the midpiece and tail. It is possible that natural selec-
tion forces operated, but that simplification in sperm
structure was primarily driven by the lack of sperm
competition. This apparent absence of sperm competi-
tion was followed by a morphological degeneration of
sperm structures, representing a process of degenerative
orthogenesis, and is largely based on their reaction to
the internal environment. There does not appear to be
any advantage or adaptation in this degeneration of
sperm structures and the spermatozoa simplified or
degenerated to such an extent that it is on a path of no
return. In this investigation our interpretation is in line
with Gould [57] who considers these older formalist
concepts in a broader context in assisting to understand
the theoretical base of evolution within a Darwinian fra-
mework. Furthermore, our research presents a unique
finding that evolutionary processes such as degenerative
orthogenesis may occur right up to the cellular level
and not only in the individual or embryo as was pre-
viously shown.

Conclusions
It is hypothesized that naked mole-rat spermatozoa have
evolved in response to a lack of sperm competition
amongst males who are selected for mating by a beha-
viourally omnipotent queen. Consequently, there was
limited selection pressure on spermatozoa and hence
they became degenerative. It is surprising that despite
the degenerative features and reduced sperm motility,
these spermatozoa are nevertheless capable of fertilizing

many ova [71] (up to 27 pups in a litter [72]). It is pos-
sible that selection pressures in the female to produce a
large number of high quality oocytes may compensate
for the poor sperm quality. In addition, the oocyte may
be specialized in mechanisms that select for the best
spermatozoa and may represent sperm selection at the
level of female cryptic choice as suggested by Snook
[73]. If our hypothesis is accepted, it will imply a bal-
ance between developmental facets being selected for in
terms of a “limit” to poor sperm quality (degenerative
orthogenesis) versus developmental pressure for the
selection of not only high quality oocytes but also
oocytes which can select for the best quality
spermatozoa.

Methods
Animals used
The study population, initiated with wild-caught foun-
ders from various localities in Kenya, has been main-
tained since 1981 in custom built facilities at the
University of Cape Town, South Africa. Husbandry
details have been described previously by Jarvis [72]. A
total of 15 male naked mole-rats (Heterocephalus glaber)
were used in this study, including 5 breeders, 5 subordi-
nates and 5 dispersers. Breeders were adult males that
regularly consorted (naso-anal grooming) with the
queen and were observed copulating with the queen
during the estrus period. Subordinate males were also
adult males but they were never observed to consort or
copulate with the queen. Dispersers were subordinate
males in the colony that had strong dispersal tendencies
and if presented with foreign conspecifics would consort
readily with them [74]. Pedigrees have been constructed
for all individuals in this captive population [27] and
inbreeding coefficients for the individuals, sourced from
10 captive colonies, ranged from F = 0 (outbred, dam
and sire from geographically disparate parts of Kenya)
through to F = 0.5 (highly inbred, inbreeding between
siblings) with a mean F = 0.163 ± 0.158 SD. The queens
that were mated by the five breeding males in this study
all produced healthy, viable offspring with the last litter
produced prior to removal of the males having a mean
size of 10.2 ± 0.8 pups.
Ethical clearance for the study was obtained from both

the University of Cape Town (2005/V7/JOR) and the
University of the Western Cape (ScR1RC2007/3/30).

Collection and staining of spermatozoa
Animals were removed from their burrow system and
anaesthetized with halothane by putting a mask over the
head. Surgical anaesthesia was attained within five min-
utes. The entire reproductive system was dissected out
and put into Ham’s F10 medium (Invitrogen, Cape
Town, South Africa) at 28°C (to coincide with body
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temperature of naked mole-rats). This lower tempera-
ture margin of the Ham’s F10 medium did not have an
influence on the pH of the medium (pH remained
between 7.6-7.7). Spermatozoa were obtained from the
cauda epididymis, vas deferens and enlarged ampulla.
Sperm smears were stained with SpermBlue (Microptic
S.L., Barcelona, Spain) according to van der Horst and
Maree [75] and Maree et al. [76]. A Nikon E50i micro-
scope (IMP, Cape Town, South Africa) fitted with a 100
× oil immersion objective was used to observe the
sperm smears and spermatozoa were photographed with
a digital fire wire Basler 312fc colour camera (Microptic
S.L., Barcelona, Spain). Images were captured with the
Cell counter module of the Sperm Class Analyzer (SCA)
version 4.1 (Microptic S.L., Barcelona, Spain). Detailed
measurements of the different sperm components (head,
midpiece, tail) were performed using the image analysis
system analySIS FIVE (Wirsam, Cape Town, South
Africa). In this instance, a high resolution camera
(Olympus Astra 20) fitted onto a Zeiss Photomicroscope
III (Zeiss, Cape Town, South Africa) and a 100 × oil
immersion objective were used.

Scanning and electron microscopy
Representative small pieces of epididymis, vas deferens
and ampulla tissue were fixed in 2.5% phosphate buf-
fered glutaraldehyde and 1% osmium tetroxide in phos-
phate buffer. The material was subsequently routinely
processed for scanning and transmission electron micro-
scopy (TEM). For scanning electron microscopy (SEM),
tissue was dehydrated with an alcohol series and then
dried using the critical point drying method, coated
with gold and viewed using a Hitachi X650 40 kV scan-
ning electron microscope (Protea Technologies, Johan-
nesburg, South Africa). For TEM, material was
dehydrated using alcohol and propylene oxide and then
embedded in Spurr’s medium. A diamond or glass knife
was used to cut silver sections that were mounted onto
copper grids. A Jeol JEM 1011 transmission electron
microscope (Advanced Laboratory Solutions,

Johannesburg, South Africa) at 80 kV was used to pro-
vide detailed micrographs of spermatozoa for subse-
quent description. All images were captured digitally as
either ‘jpeg’ or ‘tiff’ files.

Sperm concentration and sperm motility
The contents of one or both ampullae were emptied
into 10-20 μl Ham’s F10 medium containing 3% bovine
serum albumin at 28°C. Five micro litres of this sample
was withdrawn using a micro pipette and a Leja “cham-
ber” slide (20 μm deep and 5 μl volume) (Leja Products
B.V., Nieuw Vennep, The Netherlands) was filled. The
Leja slide was placed onto a temperature controlled
stage of the Nikon E50i microscope (set at 28°C). A 10
× negative phase contrast objective in conjunction with
a phase contrast condenser was used to study sperm
motility by means of the Motility/Concentration module
of the SCA system, version 4.1 (Microptic S.L., Barce-
lona, Spain) at 50 frames/second. The SCA system mea-
sures the percentage motility and eight kinematic
parameters as indicated in Table 3. The SCA cut-off
values for fast, medium and slow swimming spermato-
zoa were based on curvilinear velocity (VCL) = Fast >
45 > Medium > 35 > Slow. The SCA system also accu-
rately determines the sperm concentration of a sample
when using the above mentioned Leja slide (calibrated
against a Neubauer hemacytometer).

Statistical analysis
MedCalc, Version 7 (Mariakerke, Belgium) was used for
all statistical analyses. Descriptive statistics was used for
calculation of averages and standard deviations (SD).
Comparisons of sperm morphometry parameters were
performed using either Anova or unpaired T-tests
among the different groups and p < 0.05 was considered
significant.
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Parameter Unit Description

Motility % Total motility

Concentration ×106/ml Number of spermatozoa

VCL μm/s Curvilinear velocity along actual swimming path
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LIN % Linearity of a curvilinear path, expressed as VSL/VCL

STR % Straightness, expressed as VSL/VAP

WOB % Wobble, expressed as VAP/VCL

ALH μm Amplitude of lateral head displacement

BCF Hz Beat cross frequency based on VCL crossing VAP per second
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