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Abstract

Speech enhancement is the process of removing background noise from speech signals. The

equivalent process for images is known as image denoising. While the Fourier transform is

widely used for speech enhancement, image denoising typically uses the wavelet transform.

Research on wavelet-based speech enhancement has only recently emerged, yet it shows

promising results compared to Fourier-based methods. This research is enhanced by the

availability of new wavelet denoising algorithms based on the statistical modelling of

wavelet coefficients, such as the hidden Markov tree.

The aim of this research project is to investigate wavelet-based speech enhancement from

a statistical perspective. Current Fourier-based speech enhancement and its evaluation

process are described, and a framework is created for wavelet-based speech enhancement.

Several wavelet denoising algorithms are investigated, and it is found that the algorithms

based on the statistical properties of speech in the wavelet domain outperform the classical

and more heuristic denoising techniques. The choice of wavelet influences the quality of the

enhanced speech and the effect of this choice is therefore examined. The introduction of a

noise floor parameter also improves the perceptual quality of the wavelet-based enhanced

speech, by masking annoying residual artifacts. The performance of wavelet-based speech

enhancement is similar to that of the more widely used Fourier methods at low noise

levels, with a slight difference in the residual artifact. At high noise levels, however, the

Fourier methods are superior.
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Opsomming

Spraaksuiwering is die proses waardeur agtergrondgeraas uit spraakseine verwyder word.

Die ekwivalente proses vir beelde word beeldsuiwering genoem. Terwyl spraaksuiwering in

die algemeen in die Fourier-domein gedoen word, gebruik beeldsuiwering tipies die golfie-

transform. Navorsing oor golfie-gebaseerde spraaksuiwering het eers onlangs verskyn, en

dit toon reeds belowende resultate in vergelyking met Fourier-gebaseerde metodes. Hierdie

navorsingsveld word aangehelp deur die beskikbaarheid van nuwe golfie-gebaseerde sui-

weringstegnieke wat die golfie-koëffisiënte statisties modelleer, soos die verskuilde Markov-

boom.

Die doel van hierdie navorsingsprojek is om golfie-gebaseerde spraaksuiwering vanuit ‘n

statistiese oogpunt te bestudeer. Huidige Fourier-gebaseerde spraaksuiweringsmetodes

asook die evalueringsproses vir sulke algoritmes word bespreek, en ‘n raamwerk word

geskep vir golfie-gebaseerde spraaksuiwering. Verskeie golfie-gebaseerde algoritmes word

ondersoek, en daar word gevind dat die metodes wat die statistiese eienskappe van spraak

in die golfie-gebied gebruik, beter vaar as die klassieke en meer heuristiese metodes. Die

keuse van golfie bëınvloed die kwaliteit van die gesuiwerde spraak, en die effek van hi-

erdie keuse word dus ondersoek. Die gebruik van ‘n ruisvloer parameter verhoog ook

die kwaliteit van die golfie-gesuiwerde spraak, deur steurende residuele artifakte te ver-

berg. Die golfie-metodes vaar omtrent dieselfde as die klassieke Fourier-metodes by lae

ruisvlakke, met ’n klein verskil in residuele artifakte. By hoë ruisvlakke vaar die Fourier-

metodes egter steeds beter.
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Chapter 1

Introduction

Speech enhancement is the process of removing background noise from speech signals.

This noise can vary from light microphone noise to the heavy background noise of speech

in windy conditions. A lot of research has been done on developing different speech

enhancement algorithms, most of these in the Fourier domain [7, 9, 23, 24, 40, 42, 55, 58,

59, 60], of which [60] gives a basic overview.

Image denoising is a very similar process, where noise, such as speckle, is removed from

an image. Wavelet-based image denoising [11, 14, 18, 19, 20, 21, 49, 48, 47] has proven to

be very successful.

Little research has been done on wavelet-based speech enhancement, all of which is very

recent [3, 4, 13, 27, 35, 50], yet it shows promising results when compared to Fourier-based

methods. None of these algorithms explicitly attempt to capture the statistical properties

of the wavelet coefficients of speech.

The aim of this research project is to investigate wavelet-based speech enhancement,

specifically from a statistical point of view, and then to compare this with Fourier-based

speech enhancement.

1.1 The denoising problem

A basic understanding of the general denoising problem is first required. Let x[n] be a

discrete-time clean signal and d[n] a noise signal. If the noise is considered to be additive,

then the noisy signal is represented by the additive observation model,

y[n] = x[n] + d[n] . (1.1)

1



Figure 1.1 shows how y[n] represents the observed noisy signal at time index n, x[n]

represents the unobserved clean signal and d[n] represents the noise, uncorrelated with

the clean signal. The goal of the noise removal process is to form an estimate x̂[n] of the

clean signal x[n] based on the observed signal y[n].

Observable

Noise
Removal

Unobservable

Process

y[n]

d[n]

x[n] x̂[n]

Figure 1.1: The block diagram of signal enhancement in the case of additive noise.

The noise removal process is generally called signal denoising. It is also called an estimator,

because it forms an estimate x̂[n] of the underlying signal x[n]. In the case where x[n] is

a speech signal, the noise removal process is referred to as speech enhancement.

1.2 A generalised denoising system

Any denoising system consists of two basic parts, namely a noise estimation process and

a denoising algorithm, and they are described below.

1.2.1 Noise estimation

In most real-world problems, the noise signal is not directly known and has to be esti-

mated. In image denoising, the noise has to be estimated from the noisy image itself.

In speech enhancement, the noise is estimated from the portions of the sound recording

which do not contain speech and therefore only consist of noise. Noise estimation in

speech is therefore less of a problem than in images and is also more accurate. The better

the noise estimate, the better the performance of the denoising system will be.

There are many types of noises that occur in real-world speech enhancement problems.

Examples include the noise inside a car, helicopter or aeroplane cockpit, the noise in-

side an office or factory, the noise of a cooling or heating fan, and even the noise from
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other speakers in the vicinity of the speaker under analysis. Several recordings of real-

world noise sources have been made and are used for standard speech enhancement tests.

These recordings are readily available on the Internet [30, 54] and include white Gaussian,

speech babble (recordings of multiple speakers speaking simultaneously), car, helicopter,

F16 cockpit, factory and office noises. The noise that occur in real-world problems is

generally broadband in nature, implying that it is localised in neither time nor frequency

and therefore difficult to remove [57]. Most research is done on the enhancement of speech

corrupted by broadband noise, of which White Gaussian noise (WGN) is a good ex-

ample.

If the noise is stationary (i.e. if its statistical character does not change over time),

it follows that its estimated spectrum is constant over time. If it is non-stationary but

changes its characteristics relatively slowly, it can be modelled as quasi-stationary. The

noise is hereby assumed to be stationary within the time-span of two consecutive noise

spectral estimates.

The noise in this research is therefore assumed to be additive, independent and identically

distributed, stationary and white Gaussian, which are conditions typically used in most

speech enhancement research.

The noise estimation process usually uses an algorithm that estimates the noise spectrum.

For the purpose of this study, white Gaussian noise is generated and then added to the

clean signal to produce the noisy signal. The noise spectrum can therefore be directly

calculated from the noise, instead of being estimated from the real-world data. The

desired global signal-to-noise ratio, which is of the form 10 log10 (σ2
x/σ

2
d) in decibels, is

first specified. By scaling the noise to unity variance and therefore setting σ2
d = 1, the

variance of the clean signal σ2
x is computed and then used to scale the clean signal. Adding

these scaled signals, as in Figure 1.1, the noisy signal then has the required global signal-

to-noise ratio. This removes the effect of the noise estimation algorithm on the final result,

and thereby focuses attention on the performance of the denoising algorithm.

1.2.2 The denoising algorithm

Figure 1.2 shows the flowchart of the noise removal process. The denoising algorithm is

the basic mechanism of denoising. It relies on the noise estimate and is comprised of three

parts:

1. Forward transformation. In the forward transformation step, the noisy signal

y[n] is transformed into coefficients of a certain domain. Current state-of-the-art
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Transformation Transformation

Estimation
Noise

x̂[n]y[n]

σ̂2
d

Denoising algorithm

Forward InverseAttenuation

Figure 1.2: The flowchart of a generalised denoising system.

image denoising is done in the wavelet domain [11, 14, 18, 19, 20, 21, 49, 48, 47],

whereas current speech enhancement is generally done in the short-time Fourier

domain [7, 9, 23, 24, 40, 42, 55, 58, 59, 60], although recent research has been

done in the wavelet domain [50], the wavelet packet domain [3, 4, 13, 27] and the

multitaper spectral domain [35].

2. Attenuation. The attenuation step is where the actual denoising is done. The

noisy coefficients are attenuated by using a suppression rule (in Fourier-based speech

enhancement) or a shrinkage function (in wavelet-based denoising) to form an esti-

mate of the coefficients of the clean signal. This makes use of the noise estimate.

3. Inverse transformation. The inverse transform of the attenuated coefficients

renders the estimated clean signal x̂[n].

1.3 Literature study

This study investigates wavelet-based speech enhancement algorithms and compares them

with Fourier-based speech enhancement algorithms. It therefore requires knowledge of the

following fields of research:

� Fourier-based speech enhancement.

� Wavelet-based signal/image denoising.

� Wavelet-based speech enhancement.
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A short description of these fields is given below as well as a brief history of each, which

highlights a selection of important papers in each domain.

1.3.1 Fourier-based speech enhancement

Speech enhancement algorithms make the assumption that speech is quasi-stationary, i.e.

stationary within a short time-frame of analysis [36]. Speech is therefore denoised on a

timeframe-by-timeframe basis. Each time-frame is transformed to the Fourier domain

where the Fourier coefficients represent the signal as a number of frequency bins. Each

bin is then classified as containing either signal or noise. If the bin predominantly rep-

resents the underlying signal, it is left unattenuated. If it contains mainly noise, it is

shrunk towards zero. The inverse of this frame-by-frame Fourier transform produces the

enhanced speech. A residual noise artifact typically encountered in Fourier-based speech

enhancement is the so-called “musical noise” artifact [9]. Musical noise consists of tonal

components at random frequencies. It has an unnatural structure and is perceptually

annoying [55]. Important papers of Fourier-based speech enhancement are given below.

1978 — Lim and Oppenheim [40] proposed a speech enhancement method based on

an iterative estimation of all-pole speech parameters. It uses a maximum

a posteriori (MAP) estimate under the assumption that the speech signal is the

response of an all-pole process.

1984 — Ephraim and Malah [23] derived a minimum mean-square error estimator (the

MMSE STSA algorithm) as an extension of the maximum likelihood estimator

of McAulay and Malpass [42]. It assumes that the Fourier coefficients of

the clean signal and the noise may be modelled as statistically independent,

zero-mean, Gaussian random variables.

1985 — Ephraim and Malah [24] derived the minimum mean-squared error log-spectral

amplitude estimator (the MMSE-LSA algorithm). This algorithm is similar

to [23], except that it minimises the mean-squared error of the log-spectra,

instead of the spectra.

1991 — Hansen and Clements [31] further enhanced the all-pole model of Lim and

Oppenheim [40] by introducing spectral constraints to ensure more speech-like

formant trajectories.
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1994 — Cappé [9] presented a study of the Ephraim-Malah MMSE STSA algorithm [23],

demonstrating how this algorithm succeeds in eliminating the “musical noise”

phenomenon.

1999 — Virag [55] proposed a subtractive-type algorithm which is based on masking

properties of the human auditory system. It leads to a significant reduction of

the unnatural structure of the residual noise.

2001 — Wolfe and Godsill [58, 59, 60] proposed three alternative suppression rules to

the Ephraim-Malah suppression rule by using alternative Bayesian approaches.

These suppression rules exhibit almost identical behaviour to that of the

Ephraim-Malah suppression rule, but are computationally more efficient and

yield a more intuitive interpretation.

1.3.2 Wavelet-based signal/image denoising

Unlike the Fourier transform, which represents the signal in frequency bins, the wavelet

transform yields a multiresolution representation of the signal with fine frequency reso-

lution at low frequencies and fine time resolution at high frequencies. This represents

real-world signals such as images more compactly. The idea behind wavelet-based denois-

ing is similar to that of Fourier-based speech enhancement, as coefficients are classified as

representing either signal or noise, and attenuated accordingly. A brief history of wavelet-

based denoising follows below.

1992 — Donoho and Johnstone [18] proposed wavelet shrinkage in the form of the

RiskShrink algorithm. A mean-squared error (MSE) or “risk” approach is taken

to obtain a threshold value for the soft shrinkage function (see Section 5.3).

Wavelet coefficients with values above this threshold are attenuated only a little,

whereas coefficients below this threshold are shrunk to zero.

1992 — Donoho and Johnstone [18] also proposed the VisuShrink algorithm, which

uses the “universal” threshold for the soft shrinkage function. This threshold

is a function of the signal length. VisuShrink results in an almost “noise-free”

reconstruction, which is visually very smooth on images.
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1994 — Donoho and Johnstone [19] proposed the SureShrink and HybridSure algo-

rithms. Stein’s Unbiased Risk Estimate (SURE) [26] is computed for each

possible threshold value. SureShrink uses the threshold that minimises this

risk. HybridSure, which is specifically designed for signals with sparse wavelet

coefficients, uses a combination of SureShrink and VisuShrink.

1997 — Chipman, Kolaczyk and McCulloch [11] proposed an algorithm which is a

wavelet shrinkage approach that uses Bayesian priors. It is based on the “com-

pression” property of wavelet coefficients, which implies that wavelet coefficients

tend to have a non-Gaussian distribution. The prior of each coefficient consists

of a mixture of two Gaussian distributions with different standard deviations.

The parameters are chosen adaptively according to the resolution level of the

coefficients, typically shrinking high resolution (frequency) coefficients more

heavily.

1998 — Crause, Nowak and Baraniuk [14] proposed the Hidden Markov Tree (HMT)

algorithm. They identified two “secondary” properties of wavelet coefficients of

real-world signals, namely clustering and persistence, which imply that adjacent

coefficients tend to have similar values. The HMT algorithm uses a two-state,

zero-mean tree-structured Hidden Markov Model framework to capture the

non-Gaussian statistics of the individual coefficients. This is similar to [11],

but also captures the inter-coefficient dependencies (clustering and persistence).

Crause et al. report superior denoising performance over the above-mentioned

algorithms. The algorithm, however, suffers from a large number of model

parameters and uses a computationally intensive Expectation-Maximisation

algorithm.

1999 — Romberg [47] introduced a simpler model than the standard HMT algorithm [14],

that attempts to capture the same statistical properties. It uses even further

“tertiary” properties of wavelet coefficients of images, namely exponential decay

across scale and strong persistence at finer scales. Within this framework,

Romberg proposed an algorithm that uses a fixed set of parameters for the

denoising of normalised grey-scale images. This is referred to as the universal

Hidden Markov Tree (uHMT) algorithm. It produces results similar to the

HMT algorithm on images, in spite of its comparative simplicity.
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1999 — Wavelet-based image denoising frequently exhibit visual artifacts, usually in

the form of “ringing” around edges. Ringing typically occurs when excessively

long wavelet filters are used. Romberg, Choi and Baraniuk [49] proposed a

more computationally intensive shift-invariant version of the uHMT, which uses

circular rotation to reduce the ringing artifact.

2002 — Romberg, Choi, Baraniuk and Kingsbury [48] proposed using the HMT algo-

rithm [14] on the complex wavelet transform. The complex wavelet transform

has near shift-invariance and an improved angular resolution over the discrete

wavelet transform. This method outperforms even the computationally expen-

sive redundant uHMT algorithm [49], owing to its underlying transform.

1.3.3 Wavelet-based speech enhancement

Speech can be divided into two very different types of signals, namely voiced speech,

such as vowels, and unvoiced speech, such as consonants [36]. Because voiced speech

is produced by the oscillation of the vocal chords it is periodic in nature. The Fourier

domain is well suited for such signals, and is widely used in speech applications such as

phoneme recognition. Unvoiced sounds, however, are generally not periodic in nature

and the Fourier domain may not be the best way to model such signals for denoising

purposes. The success of wavelet-based signal/image denoising has led researchers to in-

vestigate the potential of wavelet-based speech enhancement which include using either

the wavelet transform or the wavelet packet transform. The latter decomposes the signal

into a larger number of subbands and produces a multiresolution framework that can have

finer frequency resolution at high frequencies than the standard wavelet-transform [56].

Wavelet-based speech enhancement is similar to Fourier-based speech enhancement, but

instead of calculating the Fourier transform of every consecutive frame, the wavelet trans-

form is used. A selection of important wavelet-based speech enhancement papers is given

below.
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1997 — Seok and Bae [50] proposed a speech enhancement algorithm which thresholds

the coefficients of speech in the wavelet domain. Thresholding speech in the

wavelet domain can easily eliminate sections of speech, though, especially

when denoising the noise-like unvoiced sounds [3, 4, 50]. The algorithm uses

voiced/unvoiced detection to solve this problem. Unvoiced sections of speech

are denoised by only attenuating the coefficients of the highest resolution level,

whereas all coefficients are attenuated with voiced sounds. Seok and Bae

report promising results on the cepstral distance distortion measure, despite the

simplicity of the algorithm.

2001 — Bahoara and Rouat [3, 4] proposed a novel speech enhancement algorithm

by using a time-adaptive threshold in a 16-subband uniform wavelet packet

domain. The threshold is computed by applying an approximated Teager

energy operator on the wavelet packet coefficients. The Teager energy op-

erator is a nonlinear operator capable to extract the signal energy based on

mechanical and physical considerations. This operator enhances coefficients

that represent signal information among those that represent noise. This

function is then modified to compute time-adaptive thresholds. Bahoara and

Rouat report that their algorithm improves the global SNR more than the

Ephraim-Malah MMSE STSA algorithm [23], even under heavy noise conditions.

2001 — Cohen [13] proposed an algorithm which uses a weighted Wiener filter to

attenuate the coefficients of a non-uniform 84-subband redundant wavelet

packet transform. The subband spacing approximates the bark frequency scale,

which is a perceptual frequency scale generally used for audio compression

purposes. The a priori SNR is estimated by a variation of the Ephraim-

Malah decision-directed estimate [23]. Compared to Fourier-based speech

enhancement, the algorithm leads to better results on the segmental signal-

to-noise ratio distortion measure [33] and lower residual noise of enhanced speech.
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2003 — Fu and Wan [27] proposed a method which uses Fourier-based and wavelet-based

denoising techniques in a series combination. The Ephraim-Malah MMSE STSA

speech enhancement algorithm [23] is used as a pre-processing step to eliminate

some noise while still retaining speech quality. This enhanced speech signal

is then transformed into the wavelet packet domain by using an 18-subband

critical-band decomposition, similar to the decomposition in [13]. Time- and

frequency-adaptive thresholds are computed for each subband and time frame by

using a variation of the universal threshold (see Section 5.4). Denoising is done

with a variation of the Ephraim Malah suppression rule [23]. Fu and Wan state

that combining Fourier-based and wavelet-based denoising techniques eliminates

a reasonable amount of “musical” noise while still retaining speech quality. The

algorithm also shows promising results on the segmental signal-to-noise ratio

distortion measure [33].

2003 — Hu and Loizou [35] proposed a different approach which also combines short-time

spectral attenuation (STSA) and wavelet-based denoising techniques. Unlike

the above-mentioned wavelet-based algorithms [3, 4, 13, 27, 50], which threshold

the wavelet coefficients of the time signal, this algorithm denoises the log

multitaper spectra [53]. The multitaper spectra have good bias and variance

properties [53]. These spectral signals are then transformed to the wavelet

domain, denoised with SureShrink [26] (see Section 5.5) and then finally inverse

transformed back into the log multitaper spectral domain. Wavelet denoising

of the log multitaper spectra leads to even better (low-variance) spectral

estimates. These refined spectra are then used in an STSA speech enhancement

algorithm, which is a variation of Wiener filtering (see Section 2.2.1). The

actual speech denoising is done in the multitaper spectral domain, whereas the

wavelet-based denoising step is only used to get more refined spectral estimates,

which makes this algorithm an STSA speech enhancement algorithm. Hu and

Loizou showed that their algorithm has little “musical” noise and it also pre-

serves speech quality better than the Ephraim-Malah MMSE-LSA algorithm [24].

1.3.4 This study in perspective

The main investigation of this study involves the Hidden Markov Tree (HMT) algo-

rithm [14]. Since the Hidden Markov Tree algorithm is very successful in denoising

the Donoho-Johnstone test set [10, 11, 14] and also in denoising images, it is of spe-

cific interest. The algorithm attempts to capture the statistical properties of the wavelet

coefficients. This is something that has been exploited in wavelet-based image/signal

10



denoising [11, 14, 49, 48, 47] and image compression [51, 52], but not yet in speech en-

hancement.

The statistical properties of speech in the wavelet domain therefore need to be investi-

gated. It is expected that certain phonemes, such as stops and voiced phonemes, have

non-Gaussianity, clustering and persistence. It is not known how strong these properties

are for speech. It is also of interest to what extent the HMT algorithm is capable of

capturing these properties of speech signals. Other statistical techniques, namely Wiener

filters [44] and Gaussian Mixture Models (GMMs) [14], are also implemented to aid the

investigation. A Hidden Markov Model (HMM) denoising algorithm has been proposed by

Crause et al. [14]. This algorithm is implemented in this study as a speech enhancement

algorithm and it specifically attempts to capture the clusters found in wavelet coefficients.

These statistical algorithms are not as sophisticated as the HMT algorithm and differ in

their approach to capture some of these statistical properties. As the level of the noise

increases, it reduces the presence of these properties. It is therefore expected that these

statistical algorithms will not yield desirable results under heavy noise conditions.

Although most wavelet-based speech enhancement is done in the wavelet packet domain [3,

4, 13, 27], this domain does not provide a natural binary tree structure in the time-

frequency tiling view, which is a requirement for the HMT algorithm. Since the Wiener,

GMM and HMM methods denoise each resolution level independently, they can easily be

implemented in the wavelet packet domain, which will then be closely related to [3, 4,

13, 27]. For purposes of comparison, all methods in this study are implemented in the

wavelet domain. This study is therefore closely related to that of [50], although no explicit

voiced/unvoiced decisions or speech presence detection is done. The thresholds are rather

chosen according to the statistical information of the wavelet coefficients of each frame,

which suits the frame whether it is voiced/unvoiced or speech/silence.

1.4 Objectives

The objectives of this study are:

� To implement the HMT for speech denoising.

� To implement a Hidden Markov Model (HMM) denoising algorithm, which attempts

to capture the clustering property of wavelet coefficients.

� To develop a framework for wavelet-based speech enhancement algorithms in which

the Wiener, GMM, HMM and HMT algorithms are compared to each other.
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� To choose a good wavelet for speech enhancement according to objective distortion

measures and informal subjective listening tests.

� To choose the best frame size for the statistical speech enhancement algorithms.

� To compare statistical wavelet-based speech enhancement algorithms with Fourier-

based techniques.

1.5 Contributions

The following contributions are made in this study:

� HMTs are used for speech denoising for the first time.

� A novel implementation of a wavelet-based Hidden Markov Model (HMM) denoising

algorithm is done. This algorithm was proposed by Crause et al. [14], but it was

not implemented, nor was it used in any experiments. It is found that the HMM al-

gorithm outperforms the state-of-the-art Hidden Markov Tree [14] algorithm on the

Donoho-Johnstone Doppler test signal. The Doppler signal in the wavelet domain

does not have strong persistence, but has a single prominent cluster within each

resolution level. Although these properties are not generally found in real-world im-

ages, they are typical of seismic, radar and sonar signals. The HMM algorithm also

has an advantage over the HMT algorithm in that it can easily be implemented in

the wavelet packet domain, which is becoming a popular domain for wavelet-based

speech enhancement.

� The choice of wavelet has an influence on the quality and residual noise of the

enhanced signal. No research has been found on this subject. In this study, ex-

periments are done to choose a good wavelet for speech enhancement according to

objective distortion measures and subjective listening tests. The Discrete Meyer

and higher order Symlet (Herrmann order m ≈ 20) wavelets are found to be the

best wavelets for speech enhancement.

� No algorithms have been proposed that explicitly attempt to capture the statistical

properties of speech in the wavelet domain. This is investigated in this study by

using four similar algorithms, namely Wiener, GMM, HMM and HMT, which all

attempt to capture some of these properties. It is found that these properties are

not as strong in speech as in images and therefore the statistical algorithms should

only be used under light noise conditions. It is however possible that these models

are not sufficient to fully capture the properties of the wavelet coefficients of speech.
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� Very little speech enhancement is done in the wavelet domain, because of its poor

frequency resolution. Segments of speech can easily be eliminated, which leads

to gaps in the speech spectrogram and hence poor speech quality. It is found in

this study that this effect leads to problem segments on the Itakura-Saito distortion

measure, which is addressed by introducing a noise floor parameter in the algorithms.

This eliminates these problem segments and also enhances perceived speech quality.

1.6 Overview of this study

This study consists of a theoretical discussion and an experimental analysis.

1.6.1 Theory

Chapter 2 discusses Fourier-based speech enhancement. The short-time spectral attenu-

ation (STSA) approach is currently the most widely used speech enhancement method.

Chapter 3 discusses the evaluation process of speech enhancement, which includes objec-

tive distortion measures and subjective listening tests. Chapter 4 discusses wavelet theory

and filter bank design. This requires knowledge of how wavelets are designed by using filter

banks and the properties of the different wavelets. The statistical properties of real-world

signals in the wavelet domain are also discussed here. Chapter 5 describes wavelet-based

denoising methods, which include the classical wavelet shrinkage algorithms (VisuShrink,

SureShrink and HybridSure) and also the statistical methods (Wiener, GMM, HMM and

HMT).

1.6.2 Experiments

In Chapter 6 a framework is designed for wavelet-based speech enhancement in which the

algorithm parameters are experimentally chosen. The Wiener, GMM, HMM and HMT

algorithms are also compared to each other. In Chapter 7 an experimental comparison

between wavelet-based and Fourier-based speech enhancement is done.
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Chapter 2

Current STSA speech enhancement

2.1 Short-time spectral attenuation (STSA)

Short-time spectral attenuation is currently the most widely used speech enhancement

technique. As described in Section 1.2, STSA consists of three steps, namely forward

transformation, attenuation and inverse transformation. Figure 2.1 shows the flowchart

of STSA speech enhancement and all such algorithms use this framework. These steps

are described below and because the difference between the various STSA algorithms lies

in the attenuation step, it is described in more detail in Section 2.2.

Transform Transform

Estimation
Noise

x̂[n]
Attenuation

y[n]

σ̂2
d

ISTFTSuppression rule

|X̂k|

STFT

InverseFourier magnitude

angle

Figure 2.1: The flowchart of short-time spectral attenuation (STSA) speech

enhancement. The forward transformation is the short-time Fourier transform (STFT)

and the inverse transformation is the inverse short-time Fourier transform (ISTFT).
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2.1.1 Forward transformation

In correspondence to Section 1.2.1, the noise d[n] is assumed to be additive, therefore the

noisy signal is given, as in (1.1), by

y[n] = x[n] + d[n] . (2.1)

STSA is Fourier-based and the forward transformation step is the short-time Fourier

transform (STFT) of overlap-add analysis [36]. This is a process where an utterance of

speech is separated into frames of short time-duration. These can be overlapping frames

if a correctly-chosen time-window is multiplied by the time-frame. Each individual frame,

which is assumed to be stationary, is then transformed into the Fourier domain where the

analysis is done.

Because the Fourier transform is a linear transform, the coefficients Yk can be written

as [60]

Yk = Xk +Dk . (2.2)

STSA analysis is frame-based and (2.2) describes the Fourier coefficients of the current

frame. These quantities are complex, with a magnitude and a phase component. The

subscript k = 0, 1 . . . K − 1 is an integer that indexes each of the K frequency bins

associated with the Fourier coefficients. Because the Fourier transform is symmetric for

real data, a length N frame results in K = N/2 bins for even N and K = N/2 + 1 bins

for odd N .

In this research, the data has a sampling frequency of FS = 8 kHz. The chosen frame

size is 32 ms, resulting in N = 256 Fourier coefficients and K = 128 frequency bins.

Half-overlapping Hanning windows are used to reduce spectral leakage. These are widely

used parameters [23, 55, 58, 59, 60].

2.1.2 Attenuation step

The attenuation step of STSA speech enhancement uses a suppression rule to form a

spectral estimate |X̂k| of Xk by using |Yk| and σ̂2
d. The attenuation step is applied to

the magnitude only, leaving the phase unchanged. Ephraim and Malah [23] proved that

the noisy phase ∠Yk is the optimal output phase. The difference in STSA algorithms lies

within this step and it is described in Section 2.2.
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2.1.3 Inverse transformation

The spectral estimate X̂k is inverse-transformed to obtain the reconstruction of the time

domain signal. The inverse short-time Fourier transform converts the Fourier coefficients

of the individual time-frames back into the time-domain, whereafter they are added to cre-

ate an utterance similar to the original [36]. Perfect reconstruction is possible, depending

on the amount of overlapping and the time-window used.

2.2 Attenuation

The elements of Xk and Dk are modelled as independent, zero-mean, complex Gaussian

random variables [60]. The respective clean and noise variances for the kth bin are

σ2
x(k) = E [ |Xk|2] and σ2

d(k) = E [ |Dk|2] and in real-world speech enhancement both of

these has to be estimated. The different STSA algorithms are given in terms of these

variances and are described below.

2.2.1 The different STSA algorithms

The attenuation step of STSA methods consists of three parts, namely computing the a

posteriori SNR γk, estimating the a priori SNR ξk and applying a suppression rule Hk.

Figure 2.2 shows that γk is first calculated, then ξk is estimated, and finally the suppression

rule is applied.

1. Computing the a posteriori SNR γk

The a posteriori signal-to-noise ratio is not a signal-to-noise ratio in the classical

sense. It is actually the ratio of the noisy signal power to the noise power, i.e.

“clean signal + noise”

“noise”
.

It is observed and calculated as

γk =
R2

k

σ2
d(k)

, (2.3)

where Rk = |Yk| is the magnitude of the kth bin noisy Fourier coefficient.
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σ2
d

γk

Suppression Rule

ξ̂k
|Yk| |X̂pf

k |

|X̂k|

Figure 2.2: The flowchart of the STSA attenuation step. The parameters γk and ξ̂k are

first computed. The spectral estimate of the previous frame |X̂pf
k |, is only used with the

Ephraim-Malah decision-directed ξk estimate. The suppression rule attenuates |Yk| to

yield |X̂k|.

2. Estimating the a priori SNR ξk

The a priori signal-to-noise ratio is in the usual form of

“clean signal”

“noise”
.

It is the unobserved signal-to-noise ratio of bin k, given by

ξk =
σ2

x(k)

σ2
d(k)

. (2.4)

Because σ2
x(k) is unobserved, it is estimated by estimating ξk directly. Two methods

to estimate ξk are investigated:

� Maximum Likelihood ξk estimation, and

� the Ephraim-Malah decision-directed ξk estimate.

These ξk estimates are described in detail in Section 2.2.2.
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3. Applying a suppression rule Hk

A suppression rule is a nonnegative real-valued gain Hk applied to each bin k of the

observed signal spectrum Yk. It forms an estimate |X̂k| of the the original spectrum

by multiplying Hk with |Yk|,

|X̂k| = Hk |Yk| . (2.5)

The intermediate variable νk is found in the suppression rules and it is a combination

of γk and ξk given by [60],

νk =
ξk

1 + ξk
γk . (2.6)

From the substitution of (2.3) and (2.4) into (2.6), νk can be written as

νk =

[
σ2

x

σ2
d + σ2

x

]
R2

k

σ2
d

, (2.7)

which can be interpreted as a scaled Wiener shrinkage rule.

Different suppression rules that have been proposed, all in terms of γk, ξk and νk,

are:

� Power Spectral Subtraction [42],

Hk =

√
ξk

1 + ξk
. (2.8)

� The Wiener suppression rule [42],

Hk =
ξk

1 + ξk
. (2.9)

� Maximum Likelihood Envelope Estimation [42],

Hk =
1

2
+

1

2

√
ξk

1 + ξk
. (2.10)

� Ephraim-Malah MMSE amplitude suppression rule [23],

Hk =

(√
νk

γk

)(√
π

2

)
exp

(
−νk

2

) [
(1 + νk) I0

(νk

2

)
+ νk I1

(νk

2

)]
. (2.11)

� Joint MAP amplitude and phase suppression rule [58, 59, 60],

Hk =
ξk +

√
ξ2
k + 2(1 + ξk)

ξk

γk

2(1 + ξk)
. (2.12)
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� MAP amplitude suppression rule [58, 59, 60],

Hk =
ξk +

√
ξ2
k + (1 + ξk)

ξk

γk

2(1 + ξk)
. (2.13)

� MMSE spectral power estimator [58, 59, 60],

Hk =

√
ξk

1 + ξk

(
1 + νk

γk

)
. (2.14)

Any ξk estimate can be used with any suppression rule. Certain combinations of these two

are generally used together. Spectral subtraction techniques usually use the maximum

likelihood ξk estimate. The widely used Ephraim-Malah speech enhancement algorithm

uses the Ephraim-Malah MMSE amplitude suppression rule with the Ephraim-Malah

decision-directed ξk estimate [23].

2.2.2 Estimating the a priori signal-to-noise ratio

Maximum likelihood ξk estimation

The maximum likelihood estimation approach is used to estimate the unknown σ2
x(k) from

Yk which has a given probability density function f(Yk) [42]. The parameter σ2
x(k) is the

variance of the kth spectral bin of the frame under analysis. The following derivation is

taken from [42]. Only the current frame is used to estimate ξk. The observed spectral

component Yk is assumed to be a zero-mean complex Gaussian random variable. The vari-

ance of Yk is defined as σ2
y, therefore its real and imaginary parts are also Gaussian [42]

with variance σ2
y/2. The probability density function for Yk is,

f(Yk) =

(
1

πσ2
y(k)

)
exp

[
− |Yk|2
σ2

y(k)

]
. (2.15)

The noise is assumed to be independent and identically distributed (iid), as described in

Section 1.2.1. Since the signal and noise components are independent, the noisy variance

σ2
y(k) may be written as [42]

σ2
y(k) = σ2

x(k) + σ2
d(k) . (2.16)

Substituting (2.16) into (2.15) leads to

f(Yk) =

(
1

π [σ2
x(k) + σ2

d(k)]

)
exp

[
− R2

k

[σ2
x(k) + σ2

d(k)]

]
. (2.17)
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By maximising f(Yk) with respect to σ2
x(k), the maximum likelihood estimate of σ2

x(k)

can be found to be

σ̂2
x(k) = R2

k − σ2
d(k) . (2.18)

Dividing both sides of (2.18) by σ2
d(k) leads to the ξk estimate

ξ̂k = γk − 1 . (2.19)

The maximum likelihood ξ̂k estimate (2.19) can be interpreted as being a signal-to-noise

ratio which is estimated by subtracting the noise from the noisy observation as follows:

“signal”

“noise”
=

“signal+noise”

“noise”
− 1.

The Ephraim-Malah decision-directed ξk estimate

Ephraim and Malah [23] proposed a different approach to estimate the a priori SNR ξk.

For the current analysis frame, the decision-directed a priori SNR estimate ξ̂k is given by

a geometric weighting of the SNR in the previous frame, |X̂pf
k |2/σ2

d(k), and the current

frame (R2
k − σ2

d(k))/σ
2
d(k) and is given as

ξ̂k = α
|X̂pf

k |2
σ2

d(k)
+ (1− α) max [γk − 1, 0 ], α ∈ [ 0, 1). (2.20)

The term |X̂pf
k |2 is the spectral estimate of the previous frame.

The parameter α is a forgetting factor and is suggested by Ephraim and Malah to be

α = 0.98. This results in a residual noise which is colourless and much less annoying than

the musical noise obtained with the maximum likelihood ξk estimate [23].

The proposed initial conditions [23] are given by

ξ̂k(0) = α + (1− α) max [ 0, γk(0)− 1] . (2.21)

The term ξ̂k(0) is the estimated a priori SNR of the first frame and γk(0) the a posteriori

SNR of the first frame. The initial conditions are chosen to minimise the initial transition

effects in the enhanced speech [23].
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Chapter 3

Evaluation of speech enhancement

3.1 Introduction

A speech enhancement algorithm can be viewed as successful if it

1. suppresses perceivable background noise,

2. preserves or enhances perceived signal quality, and

3. produces a residual artifact which is perceptually acceptable.

Speech enhancement evaluation attempts to quantify these properties. This is no trivial

task, since the performance of speech enhancement is influenced by the specific type of

noise, the global SNR, the noise estimation, the algorithm framework and the algorithm

parameter settings [33]. Although significant progress has been made in speech enhance-

ment in recent years, the evaluation of the process has not yet been standardised. Hansen

and Pellom [33] proposed a standardisation, which involves the speech enhancement of a

standard speech database. They suggest using the 192 sentences of the TIMIT Core test

set1, downsampled to FS = 8 kHz, with a set of different noise types. The evaluation of

enhanced speech is done by using different objective distortion measures and subjective

listening tests.

1See Appendix B.
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3.2 Objective quality measures

A speech distortion measure is a single nonnegative number, that mathematically de-

scribes the quality and intelligibility of enhanced speech compared to the original speech.

Objective evaluation also has the difficult task of quantifying the various residual arti-

facts. Any such objective measure has to correlate with subjective listening tests. It is

difficult to satisfy all of these requirements with a single distortion measure.

Objective speech quality measures are computed on a frame-by-frame basis, with d(x, x̂)

the distortion between clean frame x[n] and the denoised frame x̂[n] with n = 1, 2, . . . , N

and N being the number of samples in the frame.

Objective evaluation is only applicable in a laboratory environment where the original

signal is available. The experimental setup is shown in Figure 3.1.

Denoising

Clean Frame Noisy Frame Denoised Frame

d[n]

Noise

x̂[n]

Objective
Evaluation

x[n] y[n]

d(x, x̂)

Figure 3.1: The flowchart of objective speech enhancement evaluation.

The distortion measure must be subjectively meaningful in the sense that a difference in

the measure corresponds to a difference in perceived quality and intelligibility.

A common distortion measure is the mean-square error (dMSE). It is widely and success-

fully used in image denoising [47] and is given by

dMSE =
1

N

N−1∑
n=0

(x[n]− x̂[n])2 . (3.1)

Because dMSE is a subtractive measure, smaller values correspond to better quality. A

large dMSE distortion, however, does not necessarily imply poor speech quality. For

example, a “shh” sound is essentially a white noise process and any typical waveform

would sound the same, although the dMSE will be large [29]. The MSE is therefore not a

good distortion measure for speech.
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There is a wide range of objective measures specifically designed for speech evaluation.

Of these the segmental signal-to-noise ratio distortion measure dSEGSNR, described in

Section 3.2.1, and the Itakura-Saito measure dIS, described in Section 3.2.2, are the most

widely used and these are therefore chosen to be the objective measures used in this

research, as in [31, 37, 55].

Figure 3.2 shows how the frame-based dSEGSNR varies over time for noisy speech compared

to clean speech. Since speech signals vary over time, due to the sequence of phonemes,

the impact of background distortion will also vary.
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Figure 3.2: (a) Clean speech signal, “She had your dark suit in greasy wash water all

year”. (b) Noisy speech (5 dB global SNR), corrupted with white Gaussian noise.

(c) The segmental signal-to-noise ratio distortion measure dSEGSNR compares the clean

and noisy speech. The values vary significantly over time. Phonemes with higher energy

are far less effected by the noise.

A global objective measure is the average value of all the frame-based distortion measures.

The global objective measures are calculated by using only the speech segments (i.e.

discarding the distortion values of the silent regions just before and after the utterance)

and discarding the worst 5% of the measures as proposed in [33].
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3.2.1 Segmental signal-to-noise ratio dSEGSNR

The overall signal-to-noise ratio can be computed as

dSNR = 10 log10

∑M−1
m=0 x

2[m]∑M−1
m=0 {x[m]− x̂[m]}2

dB, (3.2)

with x[m] the clean utterance and x̂[m] the enhanced utterance. The indexm = 0, 1, . . . ,M−
1 is a sample counter with M being the number of samples within the whole sentence.

The dSNR measure, however, is of little value as an objective measure of speech quality

because of the non-uniform impact of noise on enhanced speech quality, which can be seen

in Figure 3.2(c). The dSNR measure also correlates poorly with subjective tests [33].

The frame-based segmental signal-to-noise ratio, however, is a reasonable measure of

speech quality. The segmental signal-to-noise ratio distortion measure is computed for

each analysis frame and is given as [33]

dSEGSNR(x, x̂) = 10 log10

∑N−1
n=0 x

2[n]∑N−1
n=0 {x[n]− x̂[n]}2

dB, (3.3)

with x[n] the clean frame and x̂[n] the denoised frame under analysis. The index n =

0, 1, . . . , N − 1 is the sample counter with N being the number of samples within the

frame.

The dSEGSNR is typically in the range −10 dB to 35 dB, with a higher dSEGSNR corre-

sponding to better performance. Frames with an SNR estimate above 35 dB do not differ

perceptually from the clean frame, therefore an upper limit of 35 dB is set for frames

with a value higher than this. Frames during periods of silence tend to have very large

negative dSEGSNR values. This is similarly not a true reflection of perception, and a lower

limit of −10 dB is set for dSEGSNR values below this.

The global segmental signal-to-noise ratio dSEGSNR is calculated by averaging the frame-

based dSEGSNR(x, x̂) distortion measures (3.3) [33]

dSEGSNR =
1

K

K−1∑

k=0

dSEGSNR(xk, x̂k) . (3.4)

The index k = 1, 2, . . . , K is a frame counter with K being the number of frames in

the utterance. The clean and denoised signals xk and x̂k are that of frame number k. It

should be noted that the overall signal-to-noise ratio (3.2) differs from the global segmental

signal-to-noise ratio (3.4), which is an average of logarithmic (dB) values.
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3.2.2 Itakura-Saito distortion measure dIS

The Itakura-Saito distortion measure, dIS, is based on the LP power spectrum, which

models the human speech production system. It describes the spectral matching proper-

ties of linear prediction and is influenced by the similarity or difference between the LP

power spectra of the clean and denoised frames [29]. It is, as with the dSEGSNR measure,

calculated on a frame-by-frame basis, where dIS(x, x̂) denotes the Itakura-Saito distortion

between clean frame x[n] and denoised frame x̂[n]. The global dIS distortion is the average

of the frame-based measures and is calculated similar to (3.4).

The Itakura-Saito distortion is derived in Appendix A and can be written as

dIS(x, x̂) =
aT

d Rcad

aT
d Rdad

+ ln
σ2

d

σ2
c

− 1 , (3.5)

or, as given in [33], as

dIS(x, x̂) =

[
σ2

c

σ2
d

] [
aT

d Rcad

aT
c Rcac

]
+ ln

σ2
d

σ2
c

− 1 . (3.6)

It should be noted that (3.5) and (3.6) is a comparison between a clean frame and a

denoised frame of speech. Therefore, subscripts c and d refer to the clean and denoised

frames, respectively. Variables σ2, a and R are taken from the “autocorrelation method”

of short-term linear prediction analysis [15]. Variable σ2 is the prediction error power

or all-pole gain. The matrix R is the autocorrelation matrix in its Toeplitz form and

a = [1 a1 a2 . . . aP ]T is the linear prediction coefficient vector with P the order.

The Itakura-Saito distortion measure penalises a mismatch in formant locations [37]. By

looking at (3.6) it is seen that if ac ≈ ad and σ2
c ≈ σ2

d then dIS(x, x̂) ≈ 0, which implies

low dIS values for frames with similar LP power spectra. High dIS values therefore imply

that the denoised speech is of poor quality compared to the original speech. Errors in

the location of spectral valleys do not contribute as heavily as a mismatch in formant

peaks [37].

The dIS measure is subjectively meaningful [29] and correlates well with subjective mea-

sures [37]. The typical range of dIS values is from 1 to 10 with lower dIS values corre-

sponding to better performance. Frames containing non-speech might have unrealistically

high distortion values and should not be incorporated. Hansen and Pellom [33] suggested

discarding the highest 5% of the dIS values in computing the global dIS distortion measure.

The Itakura-Saito measure is implemented in this study by using the software of Pel-

lom [45]. Half-overlapping frames of 32 ms are used. The frames first get shifted to have
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a zero mean. Each frame is then multiplied with a Hanning window to reduce spectral

leakage. A linear prediction filter order of P = 10 is used.

3.3 Subjective listening tests

Two different types of subjective evaluation are done in this study, namely formal listening

tests and informal listening tests.

3.3.1 Informal listening tests

Informal listening tests are done throughout this study. It consists of listening to a few

sentences of denoised speech and then commenting on its quality, intelligibility and resid-

ual artifacts. The purpose of informal tests is to support the objective evaluation when

designing the different denoising algorithms. The sentences used for informal listening

tests are shown in Appendix B.3.

3.3.2 Formal listening tests

For the formal tests, an independent evaluator listens to two different denoised versions

of a sentence and then chooses which of the two he prefers. This process, referred to

as a trial, is repeated for a number of sentences and evaluators. The end result is a

set of preference counts, which indicate how many times a specific model was preferred

to another model. These preference counts are then combined to form overall rankings

for the different denoising algorithms. The formal listening tests are used to compare

different algorithms with each other. The experimental setup for these tests is described

in Appendix B.4.

3.4 Denoising artifacts

As described in Chapter 1.1, speech enhancement may be viewed as

1. forward transformation, transforming the noisy signal into a particular domain,

2. attenuation, attenuating the noisy coefficients, and
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3. inverse transformation, inverse-transforming these back to the time domain.

STSA speech enhancement algorithms generally produce two main undesirable effects,

namely “musical” residual noise and speech distortion.

The attenuation step is a process which attempts to decompose the noisy coefficients into

their signal and noise components. The clean signal coefficients are estimated from this

classification. Algorithms will inevitably classify certain components incorrectly. These

mistakes lead to different artifacts when they are transformed back to the time domain.

3.4.1 Musical noise

Musical noise is a frequently encountered residual noise artifact of STSA techniques [9]. If

noise coefficients are incorrectly classified as signal coefficients, the actual sinusoidal basis

functions are transformed back to the time domain. This results in isolated short-time

windowed sinusoids. Musical noise is tonal components at random frequencies, has an

unnatural structure and is perceptually annoying.

3.4.2 Speech distortion

At low signal-to-noise ratios it is difficult to suppress noise without introducing speech

distortion and therefore decreasing intelligibility [55]. Speech is distorted if the coefficients

containing signal energy are incorrectly attenuated. This happens if the enhancement

algorithm mistakes signal components for noise components. Although typically not as

annoying as “musical” noise, speech distortion can impair intelligibility.

3.4.3 The trade-off

Most STSA algorithms have parameters that can be set to find the best trade-off between

musical noise and speech distortion. For example, the α parameter of the Ephraim-Malah

decision-directed ξk estimate fulfils this role (see Section 2.2.2). Ephraim and Malah [23]

propose α = 0.98 as subjectively the best value. This results in higher speech distortion,

but lower musical noise. Lower α values, however, lead to better dSEGSNR and dIS values,

because the speech distortion is lower at the cost of higher musical noise.
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Chapter 4

Wavelet theory and filter bank

design

4.1 Introduction

The wavelet transform is a linear transform with a hierarchical or multiresolution struc-

ture. It exists in one-dimensional form for analysing signals, and two-dimensional form

for use with images. It has a continuous and discrete version. The latter, known as

the discrete wavelet transform (DWT), is especially simple to implement, owing to its

connection with filter banks.

4.2 Wavelet filter banks

The DWT is found by passing the data iteratively through a filter bank as shown in

Figure 4.1. The output signal of each decomposition filter is downsampled by a factor of

two to create the wavelet coefficients of the wavelet domain. The inverse discrete wavelet

transform (IDWT) is found by upsampling with a factor of two and then filtering. The

following sections are based on [52].

The decomposition bank shares the lowpass and highpass filters, LD and HD. Similarly,

the reconstruction bank shares LR and HR. Each different wavelet has its own corre-

sponding set of four filters. It seems unbelievable that perfect reconstruction is possible,

since signal information is being thrown away in the downsampling step. However, by

correctly designing the four filters to be wavelet filters, perfect reconstruction is achieved.
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Figure 4.1: The discrete wavelet transform and inverse transform filter banks. The

decomposition filter bank is on the left and the reconstruction filter bank is on the right.

The dotted region in the middle is the wavelet domain.

4.3 Designing the wavelet filters

The basic components of the DWT are FIR filters, upsamplers and downsamplers. To

design the wavelet filters, the individual transfer functions of the components are first

derived.

4.3.1 The wavelet filters

Wavelet filters are finite impulse response (FIR) filters, which are described by its impulse

response. If the input to the filter is an impulse, the output sequence or impulse response

is given by {h0 h1 h2 · · · hL−1}, with L being the length of the filter. These numbers

are also known as filter coefficients. In the z-domain, shown in Figure 4.2, the filter is

described by the transfer function H(z) = h0 + h1z
−1 + h2z

−2 + · · ·hL−1z
L−1. The filter

is called a FIR filter, because its response to an impulse is of finite duration.

A(z)
H(z)

B(z)

Figure 4.2: The FIR filter H(z), with A(z) the input and B(z) the output.

If A(z) is the input and H(z) the filter transfer function, then the output B(z) is merely

a multiplication of A(z) and H(z) in the z-domain,

B(z) = A(z)H(z) . (4.1)
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4.3.2 The downsampler

The downsampler, shown in Figure 4.3, discards every second sample of the incoming

sequence. The output sequence B(z) now has half the number of samples compared to

the input sequence A(z).

2
A(z) B(z)

Figure 4.3: The downsampler discards every second sample of the input A(z), to

produce the output B(z).

If the input sequence (even length N) is,

A(z) = a0 + a1z
−1 + a2z

−2 + a3z
−3 + · · ·+ aN−1z

N−1, (4.2)

and the output sequence (length N/2) is,

B(z) = a0 + a2z
−1 + a4z

−2 + a6z
−3 + · · ·+ aN−2z

−(N−2
2

), (4.3)

then the output of the downsampler can be written as

B(z) =
A(
√
z ) + A(−√z )

2
. (4.4)

The discarding of samples leads to aliasing in the frequency domain, and in general it is

not possible to determine A(z) from B(z).

4.3.3 The upsampler

The upsampler, shown in Figure 4.4, inserts a zero between every two elements of the

incoming sequence. Now the output sequence B(z) has twice as many samples as the

input sequence A(z).

2
A(z) B(z)

Figure 4.4: The upsampler inserts a zero between every sample of the input A(z), to

produce the output B(z).

If the input sequence (length N) is,

A(z) = a0 + a1z
−1 + a2z

−2 + a3z
−3 + · · ·+ aN−1z

N−1, (4.5)
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and the output sequence (length 2N) is,

B(z) = a0 + 0z−1 + a1z
−2 + 0z−3 + · · ·+ aN−1z

−2(N−1), (4.6)

then the output of the upsampler can be written as

B(z) = A(z2). (4.7)

4.3.4 The two-channel filter bank

The basic building block of the DWT is the two-channel filter bank shown in Figure 4.5.

Perfect reconstruction of the DWT, shown in Figure 4.1, is trivial if it is found for the two-

channel filter bank. Carefully designing the FIR filters achieves perfect reconstruction.

2 2

22

(1) (2) (3) (4)

(5)

Y(z)X(z)

H

H F (z)

F (z)

0

1

(z)0

(z)1

Figure 4.5: The two-channel filter bank, with H0 the lowpass decomposition filter, H1

the highpass decomposition filter, F0 the lowpass reconstruction filter and F1 the highpass

reconstruction filter.

Using the individual transfer functions from (4.1), (4.4) and (4.7) and following Figure 4.5,

the transfer function of the two-channel filter bank is derived. The signals at various stages

of the filter bank are given below:

At (1) : X(z)H1(z)

At (2) : 1
2

[
X(
√
z)H1(

√
z) +X(−√z)H1(−

√
z)

]

At (3) : 1
2

[
X(z)H1(z) +X(−z)H1(−z)

]

At (4) : 1
2
F1(z)

[
X(z)H1(z) +X(−z)H1(−z)

]

Similarly,

At (5) : 1
2
F0(z)

[
X(z)H0(z) +X(−z)H0(−z)

]
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Therefore,

Y (z) =

Distortion︷ ︸︸ ︷
1
2

[
H0(z)F0(z) +H1(z)F1(z)

]
X(z)

+ 1
2

[
H0(−z)F0(z) +H1(−z)F1(z)

]
X(−z)

︸ ︷︷ ︸
Aliasing term

(4.8)

The “transfer function” of the two-channel filter bank (4.8) lies at the heart of the filter

design. The system will be a wavelet system if

1. the filters are regular, and if

2. the two-channel filter bank yields perfect reconstruction.

4.3.5 Regularity

The system has to be regular to be a wavelet system. This entails ensuring that H0(z)

is actually a lowpass filter and H1(z) a highpass filter. The most basic requirement for

regularity is for a highpass filter to fail to pass DC. This is achieved by making the filter

coefficients of the highpass filter sum to zero. Alternatively, the lowpass filter should have

zeros at z = −1. The number of zeros at z = −1 determine the order of regularity with

a higher order of regularity resulting in filters with a flatter magnitude response.

4.3.6 Perfect reconstruction

The filters of the two-channel filter bank are designed so that the filter bank as a whole

has perfect reconstruction, i.e.

Y (z) = z−KX(z). (4.9)

The delay term z−K introduces a delay of K samples. It should be noted that a delay

still yields perfect reconstruction, since the output sequence can be circularly rotated to

produce the input sequence. The requirements for perfect reconstruction are therefore to

set the aliasing term in (4.8) to zero and the distortion term to a delay:

� aliasing term = 0,

� distortion term = z−K .
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Setting the aliasing term to zero

By setting the aliasing term of (4.8) to zero, the aliasing cancellation requirements are

derived,

F0(z) = H1(−z) and F1(z) = −H0(−z). (4.10)

The lowpass reconstruction filter F0(z) and the highpass decomposition filter H1(z) are

equal in length and flipped versions of each other. The effect of the minus sign in H1(−z)
is to flip the frequency response of the filter around the imaginary axis in the complex

z-plane. This changes the highpass filter into its equivalent lowpass filter. Similarly, the

lowpass decomposition filter H0(z) and the highpass reconstruction filter F1(z) are equal

in length and flipped versions of each other.

The new two-channel filter bank incorporates the aliasing cancellation requirements and

is shown in Figure 4.6. Now only the two lowpass filters, H0(z) and F0(z), have to be

designed, compared to the four filters of Figure 4.5. The filters H1(z) and F1(z) are com-

puted from H0(z) and F0(z) by using the aliasing cancellation requirements in (4.10).

Y(z)

2

2 2

2 (z)0F

(−z)0F 0(−z)H
X(z)

−1

(z)0H

Figure 4.6: The new two-channel filter bank with the aliasing cancellation requirements

incorporated.

Setting the distortion term to be a delay

The two lowpass filters are designed by setting the distortion term of (4.8) to a delay, and

by setting the aliasing term to zero. This results in

H0(z)F0(z) +H1(z)F1(z) = 2z−K , (4.11)

Substituting the aliasing cancellation requirements from (4.10) into (4.11) yields

H0(z)F0(z)−H0(−z)F0(−z) = 2z−K . (4.12)
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Developing the DWT now results in designing filters to satisfy (4.12). A solution to this is

called the biorthogonal solution. This is a general solution since there are two unknowns

namely H0(z) and F0(z).

With hi the coefficients of H0 and fi those of F0(z
−1) the regularity requirement of both

filters are given by [52]

N−1∑
i=0

(−1)ihi = 0 ,

N−1∑
i=0

(−1)ifi = 0 and
N−1∑
i=0

hi =
√

2 . (4.13)

For perfect reconstruction hi and fi must satisfy [52]

N−1∑
i=0

hifi = 1 and
N−1∑
i=0

hifi+2k = 0 for k 6= 0 . (4.14)

Biorthogonal filters can be designed so that

� filters are symmetric,

� filters are maximally flat, or

� filters are a trade-off between being symmetric and having minimum phase.

4.3.7 Spectral Factorisation

For perfect reconstruction with delay K, (4.12) has to be satisfied. Spectral factorisation

can be used to do this, by defining

P (z) = H0(z)F0(z). (4.15)

Now perfect reconstruction is achieved if

P (z)− P (−z) = 2z−K . (4.16)

Polynomial P (z) is first computed and then factorised as in (4.15). For perfect recon-

struction P (z) is a polynomial with even powers of z only, except for a single odd power

z−K with a coefficient of 1. Therefore, with ci the coefficients of the polynomial, P (z) can

be written as

P (z) = · · ·+ c4z
4 + c2z

2 + c0 + c−2z
−2 + c−4z

−4 + · · ·+ 1z−K . (4.17)

Perfect reconstruction can easily be verified for odd K by substituting (4.17) into (4.16).
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Since linear phase is important, P (z) is further restricted to be a symmetric halfband

lowpass filter. Now P (z) has the form [34]

P (z) = z−K

[
1 +

∑
i

pi

(
z−2i+1 + z2i−1

)
]

where K is odd. (4.18)

An additional restriction is for P (z) to have a maximum order of regularity. This implies

that P (z) should have the maximum number of zeros at z = −1.

Herrmann [34] proposed a solution to design P (z) by first choosing the Herrmann order m

and then finding a polynomial Pm(x) given as

Pm(x) = (1− x)m

m−1∑
ν=0

(
m− 1 + ν

ν

)
xν (4.19)

If Pm(x) has been chosen, the maximally flat symmetric lowpass filter P (z) may be found

with the transformation

x =
1

2

(
1− 1

2

(
z + z−1

))
. (4.20)

All Herrmann filters satisfy (4.18) and hence (4.16). The Herrmann filter P (z) has 4m−2

zeros in total. The filter has 2m zeros at z = −1 and there are 2m− 2 remaining zeros.

The first few maximally flat symmetric halfband filters are given in Table 4.1.

Table 4.1: Maximally flat symmetric halfband filters of Herrmann

orders m = 1 to m = 4.

m P (z)

1 1
2
(1 + z−1)2

2 1
16

(1 + z−1)4(−1 + 4z−1 − z−2)

3 1
256

(1 + z−1)6(3− 18z−1 + 38z−2 − 18z−3 + 3z−4)

4 1
2048

(1 + z−1)8(−5 + 40z−1 − 131z−2 + 208z−3 − 131z−4 + 40z−5 − 5z−6)

Spectral factorisation is described by using an example of P (z) with a Herrmann order of

m = 6, so that

P (z) =
1

524288
(1 + z−1)12




−63 + 756z−1 − 4067z−2 + 12768z−3

−25374z−4 + 32216z−5 − 25374z−6

+12768z−7 − 4067z−8 + 756z−9 − 63z−10


 . (4.21)

Factorising P (z) into its roots leads to the pole-zero plot in the z-plane shown in Fig-

ure 4.7. The black dots indicate the zeros of P (z).
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Figure 4.7: The Pole-zero plot of maximally flat symmetric lowpass filter P (z) with a

Herrmann order of m = 6.

Now that P (z) is chosen, the problem of spectral factorisation described by (4.15) involves

dividing the roots of P (z) between H0(z) and F0(z). A few special cases are investigated,

which leads to designing wavelets of a certain wavelet family.

The Daubechies wavelet family

The Daubechies wavelets are obtained by choosing both H0(z) and F0(z) to be maximally

flat. Looking at Table 4.1, all the Herrmann filters have an even number (2m) of zeros

at z = −1. These zeros are evenly divided between H0(z) and F0(z) to make them both

maximally flat. The remaining zeros are divided between H0(z) and F0(z) by assigning

the zeros inside the unit circle to the lowpass decomposition filter H0(z), thereby making

it minimum phase. This causes F0(z) to receive the zeros outside the unit circle. This is

shown in Figure 4.8 for a Herrmann order of m = 6, where the zeros of H0(z) and F0(z)

are indicated with black dots.

This choice results in the following properties of Daubechies wavelets:

� Both H0(z) and F0(z) are maximally flat filters.

� H0(z) is a minimum phase filter, while F0(z) is maximum phase.

� Each zero z and its complex conjugate z stay together, which ensures real-valued
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Figure 4.8: The Daubechies 6 wavelet filters in the z-plane. (a) Lowpass decomposition

filter H0(z). (b) Lowpass reconstruction filter F0(z).

filter coefficients.

� Both H0(z) and F0(z) are even length filters.

� H0(z) and F0(z) have the same lengths.

� The zeros of H0(z) are the inverses of the zeros of F0(z).

� The filter coefficients {h0} are formed by reversing the filter coefficients {f0} in time.

� Each Herrmann order produces one unique set of filters.

The Biorthogonal wavelet family

The Biorthogonal wavelets are obtained by choosing both H0(z) and F0(z) to be sym-

metric, and thus having linear phase. Linear-phase filters preserve the position of signal

details. Any combination of zeros at z = −1 can be given to H0(z) and F0(z), as long

as both receive at least one zero at z = −1 to satisfy regularity. The remaining zeros of

symmetric halfband filters come in groups of four, i.e. if the filter has a zero at z, it will

also have zeros at z (complex conjugate), z−1 (inverse) and z−1 (inverse of the complex

conjugate). For the filters to have real coefficients, zeros z and z must stay together. For

the filters to be symmetric, zeros z and z−1 must stay together. Real-valued zeros come

in groups of two, z and z−1, which also have to stay together. Any group of four (or two)

zeros can be given to either H0(z) or F0(z), as long as the zeros within these groups stay

together, to ensure real-valued coefficients and linear phase.
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The Biorthogonal wavelets used in this denoising research project are all chosen to have a

short lowpass decomposition filter H0(z) and a longer lowpass reconstruction filter F0(z)

and can be used with any Herrmann order m. The longer lowpass reconstruction filter

results in better smoothing [52]. Both filters are regular, but F0(z) has a much higher

order of regularity and therefore has a flatter response than H0(z).

� The Biorthogonal 1 wavelet family.

The zeros of P (z) are divided between H0(z) and F0(z) so that H0(z) is a short

filter with only one zero at z = −1. The lowpass reconstruction filter F0(z) receives

all the other zeros at z = −1 and all the remaining zeros of P (z). An example of

Biorthogonal 1 wavelet filters in the z-plane, with a Herrmann order of m = 6, is

shown in Figure 4.9. The Biorthogonal 1 wavelets with Herrmann orders m = 1, 2

and 3 are the Matlab [41] “rbio1.1”, “rbio1.3” and “rbio1.5” wavelets.

� The Biorthogonal 2 wavelet family.

This family is similar to the Biorthogonal 1 wavelet family, except that H0(z) has

two zeros at z = −1, and F0(z) has ten zeros at z = −1, for m = 6. F0(z) also

receives all the remaining zeros of P (z). The Biorthogonal 2 wavelets with Herrmann

orders m = 2, 3, 4 and 5 are the Matlab [41] “rbio2.2”, “rbio2.4”,“rbio2.6” and

“rbio2.8” wavelets.

� The Biorthogonal 3 wavelet family.

This family is similar to the Biorthogonal 1 and Biorthogonal 2 wavelet families,

except that H0(z) has three and F0(z) has nine zeros at z = −1, for m = 6. The

Biorthogonal 3 wavelets with Herrmann orders m = 2, 3, 4 and 5 are the Matlab [41]

“rbio3.1”, “rbio3.3”,“rbio3.5” and “rbio3.7” wavelets.

The Biorthogonal wavelets used in this study have the following properties:

� Both H0(z) and F0(z) are symmetric, and therefore linear-phase filters.

� The filters H0(z) and F0(z) do not have to have the same lengths.

� Each zero z and its complex conjugate z stay together, which produces real-valued

filter coefficients.

� Each zero z and its inverse z−1 stay together, which produces linear-phase filters.

� There are many different choices of wavelet filters with the same Herrmann order.
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Figure 4.9: The Biorthogonal 1 wavelet filters in the z-plane. (a) Lowpass

decomposition filter H0(z). (b) Lowpass reconstruction filter F0(z).

The Symlet wavelet family

The Symlet wavelets are obtained by choosing H0(z) to be a trade-off between linear phase

and minimum phase and F0(z) to be a trade-off between linear phase and maximum phase.

The zeros of P (z) at z = −1 are evenly divided between H0(z) and F0(z) so that both

can be maximally flat filters.

Symlets are produced by

� evenly dividing the remaining groups of four zeros of P (z) between H0(z)

and F0(z), and

� if there are any real-valued zeros, which will come in groups of two, the

group is split between H0(z) and F0(z).

An example of the Symlet wavelet filters for a Herrmann order of m = 6 is shown in

Figure 4.10.

Symlet wavelet filters have the following properties:

� Both H0(z) and F0(z) are maximally flat filters.

� Both H0(z) and F0(z) are almost symmetric.

� Each zero z and its complex conjugate z stay together, which ensures real-valued

filter coefficients.
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Figure 4.10: The Symlet 6 wavelet filters in the z-plane. (a) Lowpass decomposition

filter H0(z). (b) Lowpass reconstruction filter F0(z).

� Real-valued zeros z and their inverses z−1 do not stay together and are split between

H0(z) and F0(z).

� Both H0(z) and F0(z) are even length filters.

� H0(z) and F0(z) have the same lengths.

� Each Herrmann order produces one unique set of filters.

The Haar wavelet

There is only one Haar wavelet, which results from a Herrmann order of m = 1. The

Herrmann filter P (z) has only two zeros, both at z = −1, which are divided between

H0(z) and F0(z).

Choosing the Herrmann filter with a order of m = 1

P (z) =
1

2
(1 + z−1)2 , (4.22)

results in

H0(z) =
1√
2
(1 + z−1) and F0(z) =

1√
2
(1 + z−1) . (4.23)

Figure 4.11 shows the Haar wavelet filters in the z-plane.
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Figure 4.11: The Haar wavelet filters in the z-plane. (a) Lowpass decomposition

filter H0(z). (b) Lowpass reconstruction filter F0(z).

The Haar wavelet filters have the following properties:

� Both H0(z) and F0(z) are maximally flat.

� Both H0(z) and F0(z) are symmetric.

� The filters H0(z) and F0(z) are the exact same filter.

The Discrete Meyer wavelet

The Discrete Meyer wavelet, found in the MathWorks Wavelet Toolbox [41], is a FIR

filter approximation of the Meyer wavelet. The discrete version has compact support in

the time domain, unlike the original Meyer wavelet[22, 38]. Algorithms for implementing

the Discrete Meyer wavelet transform are described in the thesis of Kolaczyk [38], but the

MathWorks Wavelet Toolbox uses an algorithm described in a French book by Abry [1].

Figure 4.12 shows that the magnitude response of a Discrete Meyer wavelet filter has a

steep cut-off gradient and is almost maximally flat in the bandpass region. Because it is an

approximation of the Meyer wavelet which is symmetric [41], its phase response is almost

linear. The Discrete Meyer wavelet has an equivalent Herrmann order of m ≈ 31 and is,

because of the above-mentioned qualities, almost an ideal halfband filter, in comparison

to other wavelets which generally have much shorter filter lengths.
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Comparing the wavelet filters

The following wavelets are compared:

� The Haar wavelet (Herrmann order of m = 1).

� The Daubechies 6 wavelet (Herrmann order of m = 6).

� The Symlet 6 wavelet (Herrmann order of m = 6).

� The Biorthogonal 1 wavelet (Herrmann order of m = 6).

� The Discrete Meyer wavelet (which is equivalent to a Herrmann order of m ≈ 31)

Figure 4.12 shows the magnitude response of the lowpass reconstruction filters F0(z) of

the different wavelets.
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Figure 4.12: (a) The magnitude response of the F0(z) filter of the different wavelets.

(b) A closer look at the bandpass region.
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The sampling frequency in Figure 4.12 is chosen to be FS = 8 kHz. The gain in dB is

shown twice, in Figure 4.12(a) to investigate the cut-off gradient and in Figure 4.12(b) to

examine the flatness of the bandpass region.

Figure 4.12(a) shows that the Discrete Meyer filter has the steepest cut-off gradient, while

the Haar wavelet has a gradual cut-off gradient. The Daubechies and Symlet filters have

the exact same magnitude response, and differ only in their phase response.

Figure 4.12(b) shows that the Daubechies and Symlet wavelet filters have a maximally flat

magnitude response, whereas the Biorthogonal filters are not nearly flat. The Discrete

Meyer filter is almost maximally flat with a ripple clearly visible. Although the Haar

wavelet filter is maximally flat, it is a poor halfband filter because of its short length.

4.4 Decomposition levels

This section describes how wavelet coefficients can be interpreted in terms of the number

of decomposition levels. The DWT, as shown in the Figure 4.1, splits the data a number

of times into a highpass and a lowpass version. This is called the number of decompo-

sition levels J . The wavelet transform yields perfect reconstruction for any number of

decomposition levels. A different number of decomposition levels does however lead to

different wavelet coefficients and this is discussed below.

4.4.1 Full wavelet decomposition

The maximum number of decomposition levels is JMAX = log2N , withN the total number

of wavelet coefficients (equal to the number of samples in the signal). Figure 4.13(a) shows

an example of the full decomposition tree of a discrete-time signal with the maximum

number of decomposition levels J = JMAX . The wavelet decomposition tree corresponds

directly to the decomposition filter bank in Figure 4.1. The length of the example discrete-

time signal is 16, which is halved after every decomposition because of downsampling.

A full decomposition results in one scaling coefficient (SC). Figure 4.13(b) shows the

corresponding time-frequency view of the coefficients. A full decomposition results in one

binary tree of coefficients, which spans the total time-length of the original signal.
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Figure 4.13: (a) The full wavelet decomposition with the maximum number of

decomposition levels J = JMAX . The length of the original signal is 16, which is halved

after every decomposition. There is one scaling coefficient (SC). (b) The time-frequency

tiling view of the DWT shown in (a) consists of one tree.

4.4.2 J-level decomposition

The number of binary trees of coefficients T depend on the chosen number of decompo-

sition levels J and the total number of wavelet coefficients N , and is calculated as

T =
N

2J
=

2JMAX

2J
. (4.24)

If the original signal is a time signal, the chosen number of decomposition levels J deter-

mine the time-span of each tree of coefficients.

Figure 4.14(a) shows an example of a wavelet decomposition with two decomposition

levels. The number of scaling coefficients corresponds directly to the number of trees of

coefficients, therefore there are four scaling coefficients according to from (4.24) and also

a forest of four trees of coefficients as shown in Figure 4.14(b). Each tree only spans a

quarter of the time-length of the original signal.

The time-frequency tiling views (Figures 4.13(b) and 4.14(b)) are constructed from the

wavelet decomposition trees (Figures 4.13(a) and 4.14(a)), by using a resolution index j =

0, 1, . . . , J − 1 and the scaling coefficients (SC). The number of wavelet coefficients are

therefore equal to the number of samples in the discrete-time domain.
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Figure 4.14: (a) This wavelet decomposition is two levels deep (J = 2), resulting in

four scaling coefficients. (b) The time-frequency tiling view of the DWT shown in (a)

consists of a forest of four trees.

Note that the highest two resolution levels in Figure 4.13(b) and 4.14(b) are exactly the

same coefficients. Introducing more levels of decomposition only changes the coefficients

of the lower resolution levels. The surface areas of the tiles in the time-frequency view of

Figure 4.13(b) and Figure 4.14(b) are equal because as time resolution increases, frequency

resolution decreases. Figures 4.13(a) and 4.14(a) show that, independent of the number

of decomposition levels, the original signal must have a length which is a power of two.

4.4.3 The decomposition of speech

Speech enhancement algorithms such as STSA techniques are frame-based, where each

consecutive frame is transformed into the Fourier domain. It is necessary to develop

a frame-based framework for wavelet-based speech enhancement. This is developed in

Section 6.3.

It should be noted that the frames should not be windowed as with Fourier-based tech-

niques. This is because of the multiresolution representation of the DWT, which has a

fine time resolution at high resolution levels. We are looking for an equivalent to non-

overlapping, rectangular windowed frames.
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Frame-by-frame full decompositions

One way to do a frame-based DWT on speech, similar to the frame-based Fourier tech-

niques, is to divide the time signal into frames, which are then fully decomposed (J =

JMAX) to create a tree of coefficients for every frame.

However, this will create unwanted edge-effects within the DWT of each segment. These

edge-effects are introduced in the filtering step, because of the discontinuities associated

with any form of extension. Because the methods analysed in this study rely on statistics,

the edge-effects will influence the signal/noise classification of the algorithms. Attenuating

the edge-effects is also not an option, as this disrupts the perfect reconstruction of the

IDWT and leads to distortion. This method, however, can be implemented in real-time,

where the frames are streamed to the denoising algorithm.

Decomposition of a whole sentence

Another method to create a frame-based DWT for speech is to take the DWT of the

whole sentence (zero-padded to have a length which is a power of two) with a chosen

number of decomposition levels smaller than the maximum number, J < JMAX . This

results in a forest of trees of coefficients as shown in Figure 4.14(b) which are consecutive

non-overlapping trees. This is equivalent to non-overlapping frames.

Since the DWT is computed on the whole sentence, the only place where edge-effects

are introduced is at the beginning and end of the sentence. The sentence can easily be

chosen to begin and end with silence. Edge-effects are not noticeable in almost zero-

valued signals such as these silent regions. Edge-effects are therefore not a factor in

such speech enhancement. This method, however, cannot be implemented in real-time,

because it requires future knowledge of the sentence. Wavelet-based speech enhancement

in this study is implemented by using the decomposition of a whole sentence because of

the importance of statistics rather than real-time implementation.

4.5 Statistical properties of the DWT

The wavelet coefficients can be viewed in two ways. The first view is to see the coefficients

as a wavelet function which is the output of the DWT and the second view is to sort the

coefficients in a time-frequency tiling view. These are shown in Figure 4.15 and described

below.
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Figure 4.15: The different views of the wavelet transform of a typical real-world signal.

(a) The Bumps signal from the Donoho-Johnstone software. (b) The wavelet function

view. (c) The time-frequency tiling view.

The Donoho-Johnstone [16] Bumps test signal, viewed as a time signal and shown in

Figure 4.15(a), is used as an example for this discussion. The Daubechies 4 (Herrmann

order m = 4) wavelet is used in a full decomposition DWT. The test signal has a length

of 1024 samples which leads to J = 10 resolution levels (j = 0, 1, . . . , 9).

The wavelet function is shown in Figure 4.15(b). The highest resolution level is shown to

the right of the rightmost dotted line. This resolution level contains half of the wavelet

coefficients and represents the entire time-length of the signal. It is a filtered version of the

original time signal. The other resolution levels, which is seen between the dotted lines,

have a similar interpretation. Wavelet coefficients within a resolution level are filtered

and compact versions of the original time signal. It is clearly seen that coefficients from

higher resolution levels have much lower values than that of low resolution levels.

The time-frequency tiling view is shown in Figure 4.15(c). It should be noted that the

time-frequency tiling view has a resolution level (or scale) axis instead of the normal

frequency axis. This makes more sense, since the frequency responses of wavelet filters

typically overlap. This is seen in Figure 4.12, where for example the Haar wavelet filters

are far from being ideal symmetric halfband filters. Each resolution level can, however,

be associated with a certain frequency band. All resolution levels in Figure 4.15(c) are,

for viewing purposes, incorrectly displayed with equal widths. The coefficients are also

normalised within resolution level, for displaying purposes.

The wavelet coefficients of real-world signals share certain properties. The description

thereof is based on [14] and [47]. The DWT of real-world signals typically has the following

two primary properties:

47



� P1 Locality:

Each wavelet atom (basis function) ψi is localised in time (or spatial location)

and frequency. This can be seen in Figure 4.15(c), where each block (wavelet

coefficient) is localised in time and frequency (resolution level).

� P2 Multiresolution:

The wavelet atoms ψi are shrunk or expanded to analyse the signal at a nested

set of resolution levels. The atoms are shifted within each resolution level. This

allows the DWT to match both short-duration and long-duration signal compo-

nents at specific time locations. The DWT representation is narrow-band at low

frequencies with longer time intervals. At high frequencies it is wide-band with

shorter time intervals. The bandwidth of adjacent resolution levels differs with

one octave. Figure 4.15(c) shows how the time resolution increases at higher

frequencies.

Properties P1 and P2 lead to a natural arrangement of the wavelet coefficients in a binary

tree structure1. The wavelet coefficients of real-world signals can be modelled as random

variables, which tend to have certain properties. Looking at the individual coefficients,

the third primary property of the DWT is deduced.

� P3 Compression: The DWT compresses real-world signals, therefore the wavelet

coefficients tend to be sparse. There are a large number of small coefficients, and

a small number of large coefficients. The wavelet coefficients are therefore non-

Gaussian in nature (the histogram of a coefficient over a number of observations

tend to be more peaky and heavy-tailed than a Gaussian density). Looking at

Figure 4.15(b) the small number of large coefficients can be seen, especially at

higher resolution levels.

An assumption can be made that the wavelet coefficients tend to be decorrelated. Al-

though it is a fair assumption to view the DWT as a decorrelator, the transform cannot

completely decorrelate a signal. A residual dependency structure remains between the

coefficients, implying that they are not statistically independent.

This results in the secondary properties of the DWT. These describe the intercoefficient

dependencies.

1In the 2-dimensional DWT of images, P1 and P2 lead to a quad-tree structure with 3 sub-bands
representing horizontal, vertical and diagonal edges [47].
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� S1 Clustering: If a coefficient is large/small, its neighbouring coefficients within

the same resolution level also tend to be large/small. These clusters are clearly seen

in Figure 4.15(b).

� S2 Persistence: Coefficients tend to propagate across scale. If a parent coefficient

is large/small, its children coefficients also tend to be large/small. Figure 4.15(c)

shows that large coefficients tend to have a pyramid shape. This type of structure

in the time-frequency tiling view implies persistence.

Compression P3, clustering S1 and persistence S2 are the basic properties that Shapiro [51]

captured in his revolutionary zerotree wavelet image compression technique2. This algo-

rithm captures both the non-Gaussian statistics of the individual wavelet coefficients and

the intercoefficient dependencies in compressing images.

Both the primary and secondary properties of the DWT are utilised in the different de-

noising techniques. Even the most basic denoising method of zeroing coefficients below a

certain threshold makes use of the compression property. Highly computationally inten-

sive training algorithms (such as the Hidden Markov Tree method) have been developed

to capture persistence.

Different state-of-the-art wavelet denoising techniques, which make use of these properties

in one way or the other, are investigated in the following chapter.

2The JPEG2000 image compression standard is based on this [39].
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Chapter 5

Wavelet-based signal denoising

5.1 General signal denoising

This chapter is concerned with wavelet-based denoising techniques. Wavelet-based denois-

ing is widely used for image denoising. This research, however, investigates wavelet-based

speech denoising. The current wavelet-based denoising techniques for general signals are

now described, and these are applied to speech in Chapter 6.

As described in Section 1.2, wavelet-based denoising consists of three steps, namely for-

ward transformation, attenuation and inverse transformation. All wavelet denoising meth-

ods are described by this framework and they differ only in the attenuation step.

Analysis

Estimation
Noise

x̂[n]
SynthesisAttenuation

y[n]

σ̂2
d

Shrinkage function

w θ̂

DWT IDWT

Figure 5.1: The flowchart of wavelet-based signal denoising.
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5.1.1 Forward transformation

The noise d[n] is assumed to be additive, therefore the observed signal is modelled as in

(2.1) as

y[n] = x[n] + d[n] , (5.1)

or in vector notation,

y = x + d , (5.2)

where vectors y = {y[n]}N−1
n=0 , x = {x[n]}N−1

n=0 and d = {d[n]}N−1
n=0 represent the noisy,

clean and noise discrete-time signals respectively, with N the length of the signals. The

enhanced signal x̂[n] is represented by x̂ in vector notation. The noise d[n] is assumed

to be zero-mean Gaussian noise. It is also assumed to be statistically independent and

identically distributed (iid).

The forward transformation or analysis step of wavelet-based denoising is the discrete

wavelet transform (DWT). The real-valued vector w containing the noisy wavelet coeffi-

cients can be computed by multiplying orthogonal matrix W with the noisy signal y,

w = Wy . (5.3)

This process of computing the wavelet coefficients (the DWT) is described in Chapter 4.

Because the DWT is a linear transform [11],

w = Wx + Wd

= θ + σdWz ,
(5.4)

with θ the clean (unobserved) wavelet coefficients, σd the standard deviation of the noise

and z a vector of zero-mean unity variance Gaussian noise.

The noisy coefficients (5.4) can be written in a “signal” plus “noise” form [11], as

w = θ + σdz
? . (5.5)

Here z? is also a zero-mean unity variance Gaussian noise process which is still uncorre-

lated with θ.

5.1.2 Attenuation step

The aim of wavelet-based denoising is to estimate the unobserved clean signal θ. The

attenuation step of wavelet-based denoising takes the form of a shrinkage function. It
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forms an estimate θ̂ of the clean wavelet coefficients from w and σ̂2
d. The attenuation step

is described in detail in Section 5.2.

5.1.3 Inverse transformation

The inverse transformation or synthesis step is the inverse discrete wavelet transform

(IDWT). It reconstructs the estimated clean signal from the modified coefficients θ̂, as

x̂ = WT θ̂ . (5.6)

The matrix WT represents the IDWT which is described in Chapter 4.

5.2 Attenuation

A noisy signal is transformed into the wavelet domain, where the coefficients are atten-

uated on an individual basis, as shown in Figure 5.2. Large coefficients are assumed to

contain mostly signal energy and are left unattenuated. Coefficients that are sufficiently

small will typically be the noise components and are muted. The different denoising tech-

niques make use of the properties of the wavelet coefficients of real-world signals which

are described in Section 4.5.

Shrinkage
Function
Parameters

Shrinkage Function

σ̂2
d

w

θ̂

Figure 5.2: The flowchart of the wavelet-based attenuation step.

Figure 5.2 shows that the attenuation step of wavelet-based denoising is twofold. The first

step is to calculate the shrinkage function parameters via a denoising rule. The second

step is to alter the noisy wavelet coefficients w with the shrinkage function. Different

shrinkage functions are described in Section 5.3, whereafter the shrinkage rules, namely
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VisuShrink, SureShrink, HybridSure, Wiener, GMM, HMM and HMT are described in

Sections 5.4 to 5.10.

5.3 The shrinkage functions

A shrinkage function forms an estimated clean coefficient θ̂i from each noisy wavelet

coefficient wi,

θ̂i = Θ(wi) . (5.7)

Four shrinkage functions are investigated1, namely the hard, soft, one-slope and two-slope

shrinkage functions, and they are shown in Figure 5.3.

Hard shrinkage function ΘH(w)

The hard shrinkage function has a threshold parameter λ and is given by [26]

ΘH(w) =

{
w, |w | > λ

0, |w | ≤ λ
. (5.8)

Wavelet coefficients with a magnitude below the threshold λ are therefore zeroed, while

the rest are left unchanged.

Soft shrinkage function ΘS(w)

The soft shrinkage function has a threshold parameter λ and is given by [26]

ΘS(w) =

{
sign(w) (|w | − λ), |w | > λ

0, |w | ≤ λ
. (5.9)

It is similar to the hard version, except that large coefficients are also attenuated.

1Other shrinkage functions include the Semisoft and the Garrote shrinkage functions [26].
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Figure 5.3: (a) The hard shrinkage function ΘH(w) with threshold λ. (b) The soft

shrinkage function ΘS(w) with threshold λ. (c) The one-slope shrinkage

function Θ1L(w). (d) The two-slope shrinkage function Θ2L(w) is an interpolation

between the two dotted line slopes.
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One-slope shrinkage function Θ1L(w)

This shrinkage function scales the coefficients by σ2
x

σ2
d+σ2

x
. It therefore has a signal variance

parameter σ2
x and a noise variance parameter σ2

d and is given by

Θ1L(w) =

[
σ2

x

σ2
d + σ2

x

]
w . (5.10)

It does not distinguish between large and small coefficients, but suppresses all coefficients

based on the signal-to-noise ratio.

Two-slopes shrinkage function Θ2L(w)

This shrinkage function forms a smooth interpolation between two lines with slopes
σ2

S

σ2
d+σ2

S
and

σ2
L

σ2
d+σ2

L
. The slopes are based on the signal-to-noise ratios for large and small

coefficients. This shrinkage function can be seen as a softer version of the hard shrink-

age function, with parameters that are based on statistics rather than heuristics. The

two-slope shrinkage function is given by

Θ2L(w) =

[
PS(w)

σ2
S

σ2
d + σ2

S

+ PL(w)
σ2

L

σ2
d + σ2

L

]
w . (5.11)

The parameters PS(w) and PL(w) are posterior probabilities and can be interpreted as

the probability of a coefficient to be either small or large. Their computation differ in

each statistical algorithm, such as the GMM, HMM and HMT.

By looking at Figure 5.3(d) it is seen that the posterior probabilities determine the inter-

polation between the two lines. A shrinkage function with a small PS(w), which implies

a large PL(w), will increase the width of the interval about zero where the shrinkage

function clings to the line with the smaller slope [11].

Small and large coefficients are represented by parameters σ2
S and σ2

L, respectively. These

parameters and the noise variance σ2
d determine the slopes of the two lines. If there is little

difference between small and large coefficients, the two-slope shrinkage function approx-

imates the one-slope shrinkage function. The two-slope shrinkage function is therefore

specifically designed for signals that have a significant difference between small and large

coefficients.
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5.3.1 Using the shrinkage functions

The different denoising algorithms each use specific shrinkage functions. VisuShrink and

SureShrink use either the hard or soft shrinkage function. Wiener denoising uses the

one-slope shrinkage function, whereas the GMM, HMM and HMT denoising algorithms

use the two-slope shrinkage function.

In practice, the noise is assumed to have unity variance in order to simplify the shrinkage

function thresholds, and therefore noisy coefficients w must be scaled properly. Based on

the representation in (5.5), this is implemented as

θ̂ = σ̂d Θ(w/σ̂d) . (5.12)

The input to the shrinkage function in (5.12) is the scaled noisy coefficients w/σ̂d, while

its output is multiplied by σ̂d to yield the estimated clean coefficients θ̂ [26].

5.4 VisuShrink

The standard VisuShrink denoising algorithm [18] uses the soft threshold function and a

single threshold for all resolution levels. The universal threshold for a length N signal is

given as

λ =
√

2 lnN . (5.13)

This threshold is used for all resolution levels higher than the low-frequency cut-off level,

j0, which implies that coefficients in levels j < j0 are left unattenuated [18].

VisuShrink is an estimator that achieves low variance at the expense of bias [11]. The

VisuShrink estimator uses a global threshold and does not reduce the mean-square error

as much as adaptive thresholding techniques such as SureShrink, which uses separate

thresholds for each resolution level [8, 25].
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5.5 SureShrink and HybridSure

SureShrink and HybridSure [19] are very similar, since both choose a threshold value λ

that minimises Stein’s Unbiased Risk Estimate (SURE) [25, 26]. This threshold λ depends

on the resolution level.

Based on the form of (5.5), the estimated clean wavelet coefficient vector θ̂ can be written

as the sum of the observed noisy wavelet coefficient vector w and a general RN → RN

function g(w) = {gi(w)}N
i=1 [25]:

θ̂ = Θ(w) = w + g(w) . (5.14)

Stein showed that for almost any shrinkage function Θ(w) and assuming unity variance

noise (σ̂2
d = 1), the expected loss/risk is estimated as

E
{ ‖Θ(w)− θ ‖2

2

}
= N + 2{∇·g(w)}+ E

{ ‖g(w)‖2
2

}

with ∇·g(w) ≡
N−1∑
i=0

∂gi

∂wi

.
(5.15)

The formula for SureShrink depends on the chosen shrinkage function and the noise

estimate. The soft shrinkage function is used in the following derivation. Recall from (5.9)

that the soft shrinkage function can be written as

ΘS
i (wi) =

{
wi − λ · sign(wi), |wi| > λ

0, |wi| < λ

}
. (5.16)

From (5.14),

gi(wi) =

{
−λ · sign(wi), |wi| > λ

−wi, |wi| < λ

}
⇒ ∂gi

∂wi

=

{
0, |wi| > λ

−1, |wi| < λ

}
(5.17)

‖gi(wi)‖2
2 =

{
λ2, |wi| > λ

|wi|2 , |wi| < λ

}
= {min(|wi| , λ)}2 . (5.18)

Substituting this into (5.15) yields

E
{ ‖Θ(w)− θ ‖2

2

}
= SURE(w, λ), with

SURE(w, λ) = N − 2{(number of wi) : |wi| ≤ λ} (5.19)

+
N−1∑
i=0

{min(|wi| , λ)}2 .
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SureShrink uses a different threshold for each resolution level. This threshold, λj, is

chosen as the value that minimises SURE(wj, λ), with wj being the wavelet coefficients

of resolution level j. The threshold is computed as

λj = arg minλ≥0 SURE(wj, λ) . (5.20)

SureShrink implies using this threshold in the soft shrinkage function ΘS(wj) on each

resolution level.

If the wavelet coefficients within a resolution level are sparse, SureShrink performs poorly [25].

This usually occurs at high resolution levels where coefficients contain primarily noise.

Therefore the sparseness of the resolution level has to be checked first.

The specific resolution level is labelled as being sparse if

1

Nj

Nj∑
i=1

[(
wi

σ̂d

)2

− 1

]
6 (log2Nj)

3
2

√
Nj

. (5.21)

Here Nj is the number of wavelet coefficients within the resolution level.

The HybridSure algorithm addresses this problem by

� using SureShrink (5.20) for resolution levels that are not sparse, and

� using VisuShrink (5.13) for resolution levels that are sparse.

5.6 Wavelet-based Wiener denoising

The wavelet-based Wiener denoising algorithm2 models the wavelet coefficients as Gaus-

sian random variables. The algorithm is implemented here as a resolution level dependent

one-slope shrinkage function. The first step is to estimate σ2
j;y, the variance of the noisy

coefficients of resolution level j, as [25]

σ̂2
j;y =

1

Nj

Nj∑
i=1

w2
i , (5.22)

with variable i = 1, 2, . . . , Nj referring to the wavelet coefficients within resolution level j,

and Nj = 2j the number of coefficients within resolution level j.

2The wavelet-based Wiener denoising algorithm is similar to the Wiener suppression rule which is
derived in [58, 59, 60].
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The clean variance σ2
j;x is estimated, as in [14], by subtracting the noise variance σ̂2

d from

the noisy variance σ̂2
j;y, as follows

σ̂2
j;x = max

(
σ̂2

j;y − σ̂2
d, 0

)
. (5.23)

Denoising is done via the one-slope shrinkage function by using Wiener filtering, as

Θ1L(wi) =
σ̂2

j;x

σ̂2
j;x + σ̂2

d

wi . (5.24)

5.7 Statistical models in the wavelet domain

The wavelet-based Wiener denoising method models the wavelet coefficients as Gaussian

random variables. Since they typically contain a mixture of small and large values, the

coefficients should be more accurately described by non-Gaussian statistics.

The dependencies between wavelet coefficients are completely characterised by the joint

probability density function f(w) of all the wavelet coefficients w = {wi}. This complete

joint density function has two major drawbacks. It is computationally intractable and it

cannot be estimated robustly [14].

On the other extreme, it is simple to model the coefficients as statistically independent

with f(w) =
∏

i f(wi) but it disregards the inter-coefficient dependencies.

The aim of a good statistical model is to capture only the key dependencies. The secondary

properties of the DWT, described in Section 4.5, are the natural candidates. Clustering

(S1) suggests that coefficients can have strong dependencies within resolution levels [14].

Persistence (S2) implies that wavelet coefficients are statistically dependent along the

branches of the binary wavelet tree [48].

Three statistical models are described which capture the non-Gaussian statistics of wavelet

coefficients. Two of these also model the key dependencies. The Gaussian Mixture Model

(GMM) models the coefficients as non-Gaussian and independent. The Hidden Markov

Model (HMM) models the coefficients as non-Gaussian and having clusters within the

resolution levels. The Hidden Markov Tree Model (HMT) models the coefficients as non-

Gaussian, having clusters within the resolution levels and having persistence across scale.
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5.7.1 The hidden state variable

Each of the statistical methods (GMM, HMM and HMT) uses the concept of a hidden

state variable si associated with each of the wavelet coefficients wi. Figure 5.4 shows the

wavelet coefficient (black dot) wi as the real-valued observation, wi ∈ R. The hidden state

variable (white dot) si is unobserved and can only take on discrete values, si ∈ 1, 2, . . . ,M ,

where M is the possible number of states.

si

wi

Figure 5.4: Associated with each wavelet coefficient (black dot) wi is a hidden state

variable (white dot) si.

The statistical methods in this study assume two possible states for each wavelet coef-

ficient, namely small (S) and large (L). The value of the state variable si influences the

assumed density function of the coefficient wi.

5.7.2 The low-resolution cut-off level j0

The scaling coefficient and the coefficients from lowest resolution levels j < j0 are typically

not zero-mean and should not be shrunk towards zero [8, 14]. These coefficients are

relatively noise free and are therefore used in their unprocessed form in the IDWT of the

synthesis step [14]. In this study, the low-resolution cut-off level is chosen as in [14] to be

j0 = 3, which implies that the scaling coefficient and resolution levels j = 0, 1 and 2 are

not attenuated.

5.8 Gaussian Mixture Models (GMMs)

5.8.1 The GMM structure

Crause et al. [14] discuss an Independent Mixture (IM) model, where the wavelet coeffi-

cients are modelled as independent random variables. The IM model is implemented here

as a Gaussian Mixture Model and is shown in Figure 5.5. The GMM algorithm attempts

to capture the compression P3 property of real-world wavelet coefficients by modelling
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them as being non-Gaussian. The coefficients are assumed to have a similar distribution

within each resolution level, which is described by a two-state zero-mean Gaussian Mix-

ture Model. This is an improvement on the Wiener denoising algorithm, described in

Section 5.6, which models the coefficients with a single Gaussian density. A binary tree

of coefficients is denoised by using a different GMM model for each resolution level.

i=1 j=0

j=1

j=2

j=3

i=2 i=3

i=4 i=5 i=6 i=7

i=8 i=9 i=10 i=11 i=12 i=13 i=14 i=15

Figure 5.5: The GMM associates a hidden state variable (white dot) with each

coefficient (black dot). There are no connections between the hidden states, because they

are modelled as being independent.

The GMM uses an indexing scheme as shown in Figure 5.5.

� The index i = 1, 2, . . . , 2J − 1 refers to all coefficients within the binary tree, apart

from the scaling coefficient, with J being the number of resolution levels.

� The index j = 0, 1, . . . , J − 1 refers to the J resolution levels.

� The index Lj = 2j is the leftmost index of resolution level j, and Rj = 2j+1 − 1 is

the rightmost index of resolution level j.

� The set [j] = {Lj, Lj + 1, . . . , Rj} is defined as all values of index i within the

resolution level j.

� The size of the set [j] is Nj = 2j, which is the number of wavelet coefficients within

resolution level j.

� The operator j = `(i) determines the resolution level j associated with index i.
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5.8.2 Modelling the GMM non-Gaussianity

The non-Gaussianity is modelled by associating a discrete hidden state variable si ∈
{1, 2, . . . , M} with each coefficient, where M is the number of possible states. Each

state is associated with a Gaussian probability density function. Coefficient wi therefore

has M conditional probability density functions,

f(wi|si = m,M) =

(
1

2πσ2
i;m

) 1
2

exp

[
−(wi − µi;m)2

2σ2
i;m

]

= g
(
wi;µi;m, σ

2
i;m

)
.

(5.25)

The vector M contains the model parameters and is described in Section 5.8.3. The

parameters µi;m and σ2
i;m are the mean and variance of the Gaussian distribution, with i

the wavelet coefficient index and m the state of the hidden state variable si. The function

g(·) refers to the Gaussian distribution function and is defined in (5.25).

The state variable si also has an associated probability mass function (pmf) P (si = m),

with
∑M

m=1 P (si = m) = 1. This pmf can be described as the probability that state

variable si is in state m. The marginal pdf f(wi) of coefficient wi is approximated by the

Gaussian mixture,

f(wi) =
M∑

m=1

P (si = m)f(wi|si = m). (5.26)

A two-state zero-mean Gaussian mixture model is an appropriate approximation of the

non-Gaussian statistics of real-world wavelet coefficients [14]. This is because of the

compression property of the DWT (P3). Most wavelet coefficients are small and are

therefore in a small state (si = S). These coefficients are responsible for a Gaussian

distribution with a small variance σ2
i;S . The few large coefficients are in a large state

(si = L). These coefficients are responsible for a Gaussian distribution with a large

variance σ2
i;L . From this definition, the Gaussian parameters have the following properties:

• σ2
i;L > σ2

i;S

• µi;m = 0 , for all i and m, and

• P (si = S) + P (si = L) = 1 for all i.

(5.27)

The set of possible states {1, 2, . . . , M} is therefore replaced by the more intuitive set

{S, L}. The conditional pdfs f(wi|si = {S, L}) are shown in Figure 5.6(a) and (b).
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Figure 5.6: (a) The small-state conditional pdf f(wi|si = S). (b) The large-state

conditional pdf f(wi|si = L). (c) The two-state Gaussian mixture model f(wi) (thick

line) is a good approximation of real-world wavelet coefficients (histogram). The

histogram is that of resolution level 7 of the Bumps signal decomposed with the

Daubechies 20 wavelet.

Figure 5.6(a) shows an example of a small -state low-variance (σ2
i;S) Gaussian conditional

pdf f(wi|si = S) of the set of coefficients wi for i ∈ [j]. Figure 5.6(b) shows the cor-

responding large-state conditional pdf f(wi|si = L). Figure 5.6(c) shows a comparison

between the marginal pdf f(wi) from (5.26) and the histogram of real-world coefficients.

This pdf has a large peak at zero (because of the large number of small wavelets) and

heavy tails (because of the small number of large wavelets).

5.8.3 The GMM model parameters

Because the GMM models the wavelet coefficients as two-state zero-mean Gaussian inde-

pendent random variables, the model parameters can be chosen as

• P (si = L) for all i, and

• σ2
i;m for all i and m.

This results in three independent parameters per wavelet coefficient, P (si = L), σ2
i;S and

σ2
i;L, which makes it difficult to train the model. The number of parameters can be reduced

by assigning the above parameters per resolution level instead of per coefficient.

The GMM model parameters for each modelled resolution level j = j0, j0 + 1, ..., J − 1

are therefore chosen as:

� Pj(L) where Pj(m) = P (si = m) with j = `(i) and m ∈ {S, L}. It is the

probability mass function for state variables si within resolution level j. Parameter

Pj(S) is calculated from (5.27) as Pj(S) = 1− Pj(L).
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� σ2
j;m with m ∈ {S, L}. It is the variance parameters of the conditional probability

density functions in (5.25) for resolution level j.

These parameters are grouped into a model parameter vector

M =
{
Pj(L), σ2

j;S, σ
2
j;L

}
, with j = 0, 1, . . . , J − 1 . (5.28)

Because the parameters are tied within resolution level, the GMM model has two variance

parameters σ2
j;S and σ2

j;L and one probability parameter Pj(L) per resolution level. As

discussed in Section 5.7.2, coefficients within resolution levels j < j0 are left unattenuated.

The GMM is therefore effectively only trained on J ′ = J− j0 resolution levels. Parameter

J ′ is referred to as the effective number of resolution levels. The GMM thus has 3J ′

parameters in total.

5.8.4 Training the GMM

The GMM algorithm views the wavelet coefficients within each resolution level as different

observations of the same model. An Expectation-Maximisation (EM) algorithm is used

to train the GMM, and its flowchart is shown in Figure 5.7. A description of each of the

steps in the block diagram follows.

Initialise the GMM model M

Because the component pdfs are assumed to have zero means, a sophisticated initialisation

algorithm such as binary-split or K-means, which focuses on the component means, is

inappropriate. Initialisation is dependent on the resolution level j in accordance with the

GMM model definition.

The initial probabilities are set to be equal, as

Pj(S) = 0.5

Pj(L) = 0.5

}
for all j. (5.29)

The variance parameters are initialised from the noisy variance σ2
j;y of resolution level j,

which is calculated using (5.22) as [12]

σ2
j;S = σ2

j;y/2

σ2
j;L = 2 σ2

j;y

}
for all j. (5.30)

This ensures that σ2
j;S starts off smaller than σ2

j;L.
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E-step

Training Complete

State probabilities

M-step

Initialise model: M

M = M̂

Update model: M̂

Figure 5.7: The flowchart of the Expectation-Maximisation (EM) algorithm for

Gaussian Mixture Models (GMMs).
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GMM likelihood determination

The probability density function of each observed wavelet coefficient wi given the modelM
is

f(wi|M) =
∑

m∈{S,L}
Pj(m) g

(
wi; 0, σ

2
j;m

)
, with j = `(i). (5.31)

GMM state probabilities

The probability that the ith wavelet coefficient is in state m, given its observed value wi

and the GMM model M is given by

P (si = m|wi,M) =
Pj(m) g

(
wi; 0, σ

2
j;m

)

f(wi|M)
, with j = `(i). (5.32)

This posterior probability is used in the shrinkage rule to discriminate between large and

small coefficients and is also used in the EM training algorithm.

Updating the GMM model parameters

The model parameters are updated in the M-step of training, based on the posterior state

probabilities and the coefficient values, as follows:

P̂j(m) =
1

Nj

∑

i∈[j]

P (si = m|wi,M) (5.33)

σ̂2
j;m =

∑
i∈[j] P (si = m|wi,M)w2

i∑
i∈[j] P (si = m|wi,M)

(5.34)
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Convergence

The GMM training is done independently for each resolution level. Let wj be the wavelet

coefficients on resolution level j, while Mj represents the GMM parameters associated

with this level. The log-likelihood of the coefficients wj, given the model Mj, is given

by log f(wj|Mj) =
∑

i∈[j] log f(wi|Mj), since the coefficients are assumed to be indepen-

dent. With Expectation-Maximisation training, each iteration produces an increase in

log-likelihood, which is the difference of the log-likelihoods of the current and previous

iterations,

Increase in log-likelihood = log f(wj|Mk
j )− log f(wj|Mk−1

j ) . (5.35)

Variable k refers to the training iteration index.. Vector Mk
j is the model parameters of

the current iteration, whereas Mk−1
j is the model parameters of the previous iteration.

As the EM algorithm converges to a local optimum, the difference in the log-likelihood

decreases. Training is stopped when the difference falls below 10−5, as in [12].

5.8.5 GMM denoising

The GMM uses the two-slope shrinkage function to denoise a corrupted signal. As de-

scribed in Section 5.8.4, the parameters of the shrinkage function are based on the unob-

served clean signal. In practice, however, these parameters have to be estimated from the

observed noisy data. The GMM model is therefore first trained on the noisy data. The

clean GMM model is then estimated from the noisy model, which leads to the shrinkage

function parameters3.

The noisy model

My =
{
Pj;y(L), σ2

j;S;y, σ
2
j;L;y

}
with j = 0, 1, . . . , J − 1 , (5.36)

is trained on the noisy wavelet coefficients.

The model M for the estimated clean speech is derived from this noisy model. The clean

variance parameters are estimated by subtracting the estimated noise variance σ̂2
j;d from

the variances of the noisy model. These variance parameters cannot be negative and are

therefore calculated as [14]

σ2
j;S = max(σ2

j;S;y − σ̂2
j;d, 0) , and

σ2
j;L = max(σ2

j;L;y − σ̂2
j;d, 0) .

(5.37)

3This is also the case with HMM and HMT denoising which are described in Sections 5.9.5 and 5.10.5.
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The parameters σ2
j;S and σ2

j;L are the small and large Gaussian variance parameters of the

clean model. The clean probability Pj(L) is assumed to be unaffected by the noise [14],

therefore Pj(L) = Pj;y(L). The GMM model parameter vector for the underlying clean

speech is therefore

M =
{
Pj(L), σ2

j;S, σ
2
j;L

}
, with j = 0, 1, . . . , J − 1 . (5.38)

These clean GMM parameters are used in the two-slope shrinkage function, so that the

clean wavelet coefficients are estimated as

Θ2L(wi) =

[
Pj(S)

σ2
j;S

σ̂2
j;d + σ2

j;S

+ Pj(L)
σ2

j;L

σ̂2
j;d + σ2

j;L

]
wi . (5.39)

Pj(S) = P (si = S|w,M) and Pj(L) = P (si = L|w,M) with j = `(i) are the probabil-

ities that the state variable si associated with coefficient i is in a small or large state,

respectively. The noise variance estimate σ̂2
j;d is pre-estimated for each resolution level

and is computed as described in Section 1.2.1. The two-slope shrinkage function in (5.39)

is based on the weighted Wiener shrinkage rule derived in Section 5.6. The GMM is

expected to be more accurate than Wiener denoising, as long as the underlying data has

a zero-mean non-Gaussian nature.

5.9 Hidden Markov Models (HMMs)

5.9.1 The HMM structure

Crause et al. [14] proposed a Hidden Markov Chain Model, where the hidden state vari-

ables si are connected horizontally within each resolution level. Although proposed in [14],

the implementation of the algorithm is novel in this study. The Hidden Markov Model

is shown in Figure 5.8 with the state variables connected with first-order Markovian de-

pendencies in a horizontal chain. This model treats the wavelet coefficients as dependent

within the resolution level, but independent from scale to scale. The coefficients are mod-

elled using a Hidden Markov Model (HMM) structure within each scale. This is shown

on the left of Figure 5.8, where the two possible states, small and large, are connected

in an ergodic structure. In practice, the wavelet-based HMM consists of a number of

independent hidden Markov models, which depends on the number of resolution levels.

The indexing of the coefficients wi and the state variables si uses the same notation as

that of the GMM, described in Section 5.8.1.
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Figure 5.8: The HMM associates a hidden state variable (white dot) with each wavelet

coefficient (black dot). The hidden state variables are connected horizontally to capture

clustering. The two-state ergodic HMMs, used to model the coefficients within each

resolution level, are shown on the left.

5.9.2 Modelling the HMM non-Gaussianity

The HMM models the non-Gaussian statistics in the wavelet domain in the same manner

as the Gaussian Mixture Model. This is described in detail in Section 5.8.2.

5.9.3 The HMM model parameters

The HMM models the wavelet coefficients as two-state zero-mean Gaussian random vari-

ables, with a Markovian dependency structure within the resolution levels. The model

parameters are defined for all resolution levels and given as [46]:

� πj(L) where πj(m) = P (sLj
= m), m ∈ {S, L} and

∑
m={S,L} πj(m) = 1. The

parameter πj(m) is the initial state distribution, which is the probability for the

leftmost coefficient to be in state m.

� a
(j)
mn = P (si+1 = n|si = m) with m,n ∈ {S, L}, a(j)

mn ≥ 0,
∑

n={S,L} a
(j)
mn = 1, and

j ∈ `(i). The parameter a
(j)
mn is the state transition probability that the given state

si = m is succeeded by state si+1 = n in resolution level j.
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� σ2
j;m with m ∈ {S, L}. The parameter σ2

j;m is the Gaussian variance parameter of

the conditional distribution f(wi|si = m) of (5.25) with j = `(i).

These parameters are grouped into a model parameter vector

M =
{
πj(L), a(j)

mn, σ
2
j,m

}
, with n,m ∈ {S, L} and j = 0, 1, . . . , J − 1 . (5.40)

The HMM has five parameters per resolution level, which are the two parameters from

σ2
j;m and, because probabilities sum to one, the one parameter from πj(m) and the two

from a
(j)
mn. The HMM is effectively only trained on J ′ resolution levels, as with the GMM.

The model M therefore has 5J ′ parameters in total.

5.9.4 Training the HMM

The HMM algorithm is similar to the GMM algorithm. It is level dependent and each

wavelet coefficient within the resolution level is seen as a different observation. An

Expectation-Maximisation (EM) algorithm is used in a forward-backward manner to train

the HMM. This is known as Baum-Welch re-estimation [5, 43, 46].

The flowchart of the EM algorithm for HMMs is shown in Figure 5.9. Each block in the

flowchart is described in detail in the following section, which describes the training of an

HMM model for a specific resolution level.

Initialise the model M

Initialisation is similar to the GMM method and also dependent on the resolution level.

The initial state distributions are set to be equal for all states, as

πj(m) = 0.5 for m ∈ {S, L}. (5.41)

The initial probabilities are also set to be equal, as

a(j)
mn = 0.5 for m,n ∈ {S, L}. (5.42)

The initial variance parameters are computed as for GMMs in Section 5.8.4, based on the

noisy variance σ2
j;y as [12]

σ2
j;S = σ2

j;y/2

σ2
j;L = 2 σ2

j;y

}
for all j. (5.43)

As for GMMs, this ensures that σ2
j;L > σ2

j;S.
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Figure 5.9: The flowchart of the Expectation-Maximisation (EM) algorithm for Hidden

Markov Models (HMMs).
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HMM forward variable α

The forward variable α is computed by moving from left to right within the resolution

level. For each coefficient index i = Lj, Lj + 1, . . . , Rj, define the forward variable as

αi(m) = f
(
wLj

, wLj+1, . . . , wi, si = m|M)
. (5.44)

This is the probability of the partial set of wavelet coefficients from coefficient wLj
to wi

and state variable si = m, given the model M [46].

Forward step: Computing α’s

Initialisation:

αLj
(m) = πj(m)g(wLj

; 0, σ2
j;m) , with m ∈ {S, L} . (5.45)

For all i = Lj, Lj + 1, . . . , Rj − 1 with j ∈ `(i), compute:

αi+1(n) =


 ∑

m∈{S,L}
αi(m)a(j)

mn


 g(wi+1; 0, σ

2
j;n) , with n ∈ {S, L} . (5.46)

HMM backward variable β

For each coefficient index i = Lj, Lj + 1, . . . , Rj − 1, define the backward variable as

βi(m) = f(wi+1, wi+2, . . . , wRj
|si = m,M) . (5.47)

This is the probability of the partial set of wavelet coefficients from wi+1 to the rightmost

coefficient wRj
, given state si = m and the model M [46].

Backward step: Computing β’s

Initialisation:

βRj
(m) = 1 , for m ∈ {S, L} . (5.48)

For all i = Rj − 1, Rj − 2, . . . , Lj with j ∈ `(i), compute:

βi(m) =
∑

n∈{S,L}
a(j)

mnβi+1(n)g(wi+1; 0; σ2
j;n) , for m ∈ {S, L} . (5.49)
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HMM likelihood determination

Let wj be the wavelet coefficients {wLj
, wLj+1, . . . , wRj

} on resolution level j. The prob-

ability density function (pdf) of the observed coefficients wj given the model M is [46],

f(wj|M) =
∑

m∈{S,L}
αi(m)βi(m) , with j = `(i) . (5.50)

Since αi(m) accounts for the partial observation sequence wLj
to wi and state variable

si = m, while βi(m) accounts for the remainder of the observation sequence wi+1 to wRj

given state si = m, the pdf f(wj|M) has the same value for any chosen i ∈ [j]. It is

typically computed by setting i = Rj.

HMM state probabilities

For all i ∈ [j] and m ∈ {S, L}, compute:

P (si = m|wj,M) =
αi(m)βi(m)

f(wj|M)
. (5.51)

For all i = Lj, Lj + 1, . . . , Rj − 1 and m,n ∈ {S, L}, compute:

P (si = m, si+1 = n|wj,M) =
αi(m)a

(j)
mnβi+1(n)g(wi+1; 0, σ

2
j;n)

f(wj|M)
. (5.52)

Updating the HMM model parameters

π̂j(m) = P (sLj
= m|wj,M) (5.53)

â(j)
mn =

Rj−1∑
i=Lj

P (si = m, si+1 = n|wj,M)

Rj−1∑
i=Lj

P (si = m|wj,M)

(5.54)

σ̂2
j;m =

∑
i∈[j] P (si = m|wj,M)w2

i∑
i∈[j] P (si = m|wj,M)

(5.55)
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5.9.5 HMM denoising

HMM denoising is similar to GMM denoising. It also estimates the underlying model

parameters from the noisy data and uses the two-slope shrinkage function

Θ2L(wi) =

[
P (si = S|wj,M)

σ2
j;S

σ2
d + σ2

j;S

+ P (si = L|wj,M)
σ2

j;L

σ2
d + σ2

j;L

]
wi , (5.56)

with j = `(i). The clean HMM variance parameters are estimated by subtracting the

estimated noise variance σ̂2
j;d from the variances of the noisy model, as with GMMs in

(5.37). The state probabilities of the noisy model are directly used for the clean model as

in [14].

The posterior state probabilities, P (si = m|wj,M), should be more accurate and refined

than in the case of the GMM, as long as the HMM describes the data better, in which

case the HMM should also improve denoising.

5.10 Hidden Markov Trees (HMTs)

5.10.1 The HMT structure

The Hidden Markov Tree (HMT) framework is proposed by Crause, Nowak and Bara-

niuk [14]. It uses a tree-structured Expectation-Maximisation (EM) algorithm to train the

model. Once the model is trained, the HMT forms an estimate of f(w) which attempts to

capture compression (P3), clustering (S1) and persistence (S2). The compression property

of the DWT leads to non-Gaussian statistics of the individual wavelet coefficients. The

HMT capture this in the same manner as GMMs and HMMs, by associating a discrete

hidden state variable with each coefficient, which leads to modelling the coefficient as a

Gaussian mixture. Again the two-state zero-mean assumption is made, which is described

in Section 5.8.2. Persistence and clustering are captured by using the natural tree struc-

ture of the wavelet coefficients. The hidden state variables are connected with first-order

Markovian dependencies in a binary tree structure, shown in Figure 5.10.

An abstract indexing scheme, shown in Figure 5.10, is used within the HMT framework.

This is similar to that of the GMM and HMM and is summarised below:

� The index i = 1, 2, . . . , 2J − 1 refers to all coefficients within the binary tree, apart

from the scaling coefficient, with J being the number of resolution levels.
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Figure 5.10: The HMT associates a hidden state variable (white dot) with each wavelet

coefficient (black dot). The hidden state variables are connected, with first-order

Markovian dependencies (solid lines), in a binary tree structure to capture clustering

and persistence. The two-state HMT model, used to model all coefficients, is shown on

the left.

� The total number of coefficients in the binary tree is N = 2J − 1.

� The indices i = 2j, 2j + 1, . . . , 2j+1 − 1 form the set [j], which still represents the

indices within resolution level j, as with GMMs and HMMs.

� The number of coefficients in [j] is Nj = 2j.

� The function j = `(i) returns the resolution level j of index i, as with GMMs and

HMMs.

Figure 5.11 shows that both node i and i+ 1 share the same parent node p(i) = p(i+ 1).

Node i has two children, represented by the set of indexes c(i). This binary tree structure

is imposed on the hidden state variables and directly corresponds to the natural time-

frequency tiling view of the wavelet coefficients. The node with no ancestor is the root

node. The scaling coefficient sits above the root node and is not modelled within the

HMT framework4. The root node corresponds to the coefficient representing the lowest

4The scaling coefficient is typically left unaltered in wavelet-based denoising and is therefore not
included in the model [14].
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Figure 5.11: The binary tree of connected state variables. The white dots are the state

variables, and the connecting lines represent the Markovian dependencies. The parent

p(i) and child c(i) notation is shown.

frequency band. Nodes with no children are the leaf nodes and correspond to the highest

frequency band.

Clustering is captured by using the fact that each node, apart from the leaf nodes, has two

child nodes5. The children share the same transition probabilities, allowing the model to

capture clustering between these two child nodes. State variables si and si+1 are dependent

due to their joint interaction with their parent state variable sp(i) [14]. This method

of capturing clustering is different from the HMM. The HMT allows two neighbouring

children coefficients to share statistical information, whereas the HMM uses first-order

Markovian dependencies within the resolution levels.

5.10.2 Modelling the HMT non-Gaussianity

The HMT models the non-Gaussian statistics in the wavelet domain in a similar manner

to GMMs and HMMs and this is described in Section 5.8.2.

Tying within scale

It is important to notice that in both image denoising and frame-based speech enhance-

ment, there is only a single set of observed wavelet coefficients. This is the tree shown in

Figure 5.10, or a two-dimensional version thereof in the case of images. Ideally, we would

5The 2-dimensional DWT, used for images, results in each node having 4 children. This is because of
its quad-tree structure, as opposed to the binary tree structure of the 1-dimensional DWT.
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like to have many such trees as training data, all with similar statistical properties. In our

case, however, only one tree of coefficients is available as training data and therefore some

form of averaging is needed to train the model. The coefficients within each resolution

level are assumed to have similar statistical properties. An extra statistical averaging

process is used to tie the coefficients within each resolution level. This averaging step is

done when updating the model parameters in (5.77) and (5.80) and this is referred to as

tying within scale [14].

5.10.3 The HMT model parameters

From the two-state zero-mean Gaussian mixture model of the individual coefficients and

the Markovian binary tree structure on the hidden states, the HMT model parameters

are,

� π(L) where π(m) = P (s1 = m), m ∈ {S, L} and
∑

m∈{S,L} π(m) = 1. The

parameter π(m) is the state probability of the root node and is interpreted as the

probability that the root node si is in state m.

� εmn
i,p(i) = P (si = m|sp(i) = n) with m,n ∈ {S, L}, εmn

i,p(i) ≥ 0 and
∑

n∈{S,L} ε
mn
i,p(i) = 1.

The parameter εmn
i,p(i) is the conditional probability that state variable si is in state

m, given that its parent state variable sp(i) is in state n. Since the root node has no

parent, εmn
1,p(1) is undefined and can be taken as 0. The transition probability is tied

within scale, changing the parameter to εmn
(j) = εmn

i,p(i) for j = `(i).

� σ2
j;m with m ∈ {S, L}. The parameter σ2

j;m is the Gaussian variance parameter of

the conditional distribution f(wi|si = m) of (5.25) with j = `(i) (i.e. associated

with resolution level j).

These parameters are grouped into a model parameter vector

M =
{
π(L), εmn

(j) , σ
2
j,m

}
, with n,m ∈ {S, L} and j = 0, 1, . . . , J − 1. (5.57)

The HMT model M has 2J variance parameters σ2
j;m. Because probabilities sum to

one, there are 2(J − 1) state transition probabilities εmn
(j) and the single π(L) parameter.

The HMT therefore has 2J + 2(J − 1) + 1 = 4J − 1 parameters, where J is the total

number of resolution levels. This differs from the HMM, which has 5J ′ parameters, and

the GMM, which has 3J ′ parameters. Unlike the GMM and HMM, the HMT is trained

on all resolution levels (j = 0, 1, . . . , J − 1), but coefficients within resolution levels

j < j0 are left unattenuated.
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5.10.4 HMT training via the EM algorithm

Unlike the GMM and HMM methods which are trained per resolution level, the HMT

training is done on the whole binary tree of coefficients. An Expectation-Maximisation

algorithm [14] is used in an upward-downward manner to train the HMT. The flowchart

of the EM algorithm for HMTs is shown in Figure 5.12. Each block in the flowchart is

described in the following section.

Training Complete

E-step

M-step

Up step: Compute β’s

Down step: Compute α’s

Likelihood determination

N

Y

Converge?

State probabilities

Initialise model: M

Update model: M̂

M = M̂

Figure 5.12: The flowchart of the Expectation-Maximisation (EM) algorithm for

Hidden Markov Trees (HMTs).
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Initialise the model M

The initialisation follows that of [12]. The state distribution of the root node s1 is set to

be equal for all states, as

π(m) = 0.5 for all m ∈ {S, L}. (5.58)

The initial state transition probabilities are also set to be equal, as

εmn
i,p(i) = 0.5 for all m,n ∈ {S, L}. (5.59)

The variance parameters are initialised as for GMMs and HMMs in Section 5.8.4, based

on the noisy variance σ2
j;y as

σ2
j;S = σ2

j;y/2

σ2
j;L = 2 σ2

j;y

}
for all j. (5.60)

As with GMMs and HMMs, this ensures that σ2
j;L > σ2

j;S.

E-step of the HMT

The EM algorithm for HMMs, described in Section 5.9.4, uses a forward-backward algo-

rithm on the coefficients of each resolution level. The HMT training algorithm is similar

to this, but it uses an upward-downward algorithm which involves all the wavelet coef-

ficients. The forward-backward algorithm uses intermediate variables α and β. Both of

these are based on partial sets of observations. The intermediate variables for the upward-

downward algorithm of HMTs also use partial sets of wavelet coefficients. These sets are

arranged in a tree structure, which corresponds to the HMT model definition, and are

shown in Figure 5.13.

The subtree of observed coefficients with its root at node i is defined as Ti. The subtree

Ti shown in Figure 5.13(c) contains coefficient wi and all its descendants. Thus, T1 shown

in Figure 5.13(a) is the entire tree of observed wavelet coefficients, apart from the scaling

coefficient which is not modelled. Also Tp(i), shown in Figure 5.13(b), is the partial set

containing coefficient wp(i) and all of its descendants. The notation Tp(i)\i indicates the

set of observed wavelet coefficients obtained by removing the subtree Ti from Tp(i) and is

shown in Figure 5.13(d). Similarly, T1\i and T1\p(i) are shown in Figures 5.13(e) and (f),

respectively.
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(a) (b) (c)

(f)(e)(d)

T1 TiTp(i)

T1\i T1\p(i)Tp(i)\i

Figure 5.13: The different sets of wavelet coefficients used for HMT training (black

dots). (a) T1, the whole set of observed wavelet coefficients, apart from the scaling

coefficient. (b) Tp(i), the set of coefficients including wp(i) and all its descendants. (c) Ti,

the set of coefficients rooted at i.(d) Tp(i)\i, the set of coefficients obtained by

excluding Ti from Tp(i). (e) T1\i, all coefficients apart from Ti. (f) T1\p(i), all coefficients

apart from Tp(i).

80



HMT upward (β) variables

Three intermediate β variables are used in the upward step of the EM algorithm for

HMTs. For each subtree Ti with i = 1, 2, . . . , N and for all states m ∈ {S, L}, define the

conditional likelihood

βi(m) = f(Ti|si = m,M), (5.61)

which is the likelihood of partial set Ti, given state si = m and model M, and

βi,p(i)(m) = f(Ti|sp(i) = m,M), (5.62)

which is the likelihood of partial set Ti, given parent state sp(i) = m and model M, and

βp(i)\i(m) = f(Tp(i)\i|sp(i) = m,M), (5.63)

which is the likelihood of partial set Tp(i)\i given parent state sp(i) = m and the model M.

These are calculated from the leaf nodes upwards to the root node. The likelihoods

βi,p(i)(m) and βp(i)\i(m) are undefined for i = 1.

Up step: Computing the β’s

Initialisation: For all leaf nodes (i ∈ [j] ; j = J − 1) calculate

βi(m) = g(wi; 0, σ
2
j;m), with m ∈ {S, L} . (5.64)

Moving upwards in resolution levels (j = J − 2, J − 3, . . . , 1)

and for all i ∈ [j], compute

βp(i)(m) = g(wp(i); 0, σ
2
j−1;m)

∏

i∈c(p(i))

βi,p(i)(m) , (5.65)

βi,p(i)(m) =
∑

n∈{S,L}
εnm
i,p(i)βi(n) , and (5.66)

βp(i)\i(m) =
βp(i)(m)

βi,p(i)(m)
. (5.67)

The term i ∈ c (p(i)) in (5.65) refers to the set containing index i and all of its siblings.

HMT downward (α) variables

For each subtree T1\i with i = 1, 2, . . . , N and for all states m ∈ {S, L}, compute the joint

density

αi(m) = f(si = m,T1\i|M), (5.68)
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which is the likelihood of the partial set T1\i and that state variable si is in state m, given

the model M.

Down step: Computing the α’s

Initialise: For the root node (i = 1; j = 0), compute

α1(m) = π(m), with m ∈ {S, L}. (5.69)

For each resolution level, moving downwards (j = 1, 2, . . . J − 1)

and for all i ∈ [j], compute

αi(m) =
∑

n∈{S,L}
εmn
i,p(i) αp(i)(n) βp(i)\i(n) . (5.70)

M-step of the HMT

HMT likelihood determination

The likelihood f(w|M) determines how well the given HMT model M describes the

observed wavelet coefficients w. It is calculated with the help of the intermediate α

and β variables, similar to the HMM algorithm, and is used during training to test for

convergence. The likelihood of w is

f(w|M) = f(T1|M) =
∑

m∈{S,L}
f(si = m,w|M) . (5.71)

HMT likelihood determination

f(w|M) =
∑

m∈{S,L}
αi(m)βi(m) (5.72)

The pdf f(w|M) has the same value for any chosen i ∈ {1, 2, . . . , N}, because αi(m)

accounts for the partial observation sequence T1\i and βi(m) accounts for the partial

observation sequence Ti, therefore incorporating all possible state paths for any chosen i.

It is computed in this project by using the root node i = 1 as in [12].

HMT posterior state probabilities

Because of the first-order Markovian dependencies within the binary tree structure, the

sets T1\i and Ti are independent given si = m [14]. From this independence and the chain
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rule of probability calculus, the state probabilities are calculated. The non-Gaussianity

of the individual coefficients is modelled by using the conditional density

f(si = m,T1|M) = αi(m)βi(m) . (5.73)

The inter-coefficient dependencies are modelled by the conditional density

f(si = m, sp(i) = n, T1|M) = αp(i)(n)βp(i)\i(n)βi(m)εmn
i,p(i) . (5.74)

Here variable αp(i)(n) accounts for the observed set T1\p(i) shown in Figure 5.13(f). Vari-

able βp(i)\i(n) accounts for the set Tp(i)\i shown in Figure 5.13(d) and variable βi(m) han-

dles the observations Ti shown in Figure 5.13(c). All possible state paths are therefore

taken into account.

Now Bayes’ rule is applied to (5.73) and (5.74) to produce the following conditional

probabilities:

HMT conditional probabilities

P (si = m|w,M) =
αi(m)βi(m)

f(w|M)
(5.75)

P (si = m, sp(i) = n|w,M) =
αp(i)(n) βp(i)\i(n) βi(m) εmn

i,p(i)

f(w|M)
(5.76)

Updating the HMT model parameters

By tying across scale, the model M is updated as follows:

Updating the HMT model parameters

π̂(m) = P (s1 = m|w,M) (5.77)

Pj(m) =
1

Nj

∑

i∈[j]

P (si = m|w,M) (5.78)

ε̂mn
(j) =

1
Nj

∑
i∈[j] P (si = m, sp(i) = n|w,M)

Pj−1(n)
(5.79)

σ̂2
j;m =

∑
i∈[j]w

2
iP (si = m|w,M)∑

i∈[j] P (si = m|w,M)
(5.80)
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5.10.5 HMT denoising

HMT denoising is similar to the GMM and HMM denoising process. It estimates the

clean model parameters from the noisy data and uses the two-slope shrinkage function

Θ2L(wi) =

[
P (si = S|w,M)

σ2
j;S

σ2
d + σ2

j;S

+ P (si = L|w,M)
σ2

j;L

σ2
d + σ2

j;L

]
wi , (5.81)

with j = `(i). The clean HMT variance parameters are estimated by (5.37), as with

GMMs and HMMs. The posterior state probabilities of the noisy model are directly

used for the clean model, as with HMMs and following [14]. HMT denoising is expected

to outperform HMM and GMM denoising if the wavelet coefficients have persistence in

addition to sparseness and clustering.

5.11 Performance comparison of wavelet denoising

algorithms

Chipman et al. [10, 11] did an experiment to compare the performance of different denois-

ing algorithms. The same experiment was done by Crause et al. [14] and it can therefore

be used as a benchmark denoising experiment. It uses the four Donoho-Johnstone stan-

dard test signals [19], namely Bumps, Blocks, Doppler and HeaviSine, which all contain

elements typically found in real-world signals such as images. These signals are 1024

samples in length and are generated with Donoho and Johnstone’s WaveLab software

package [16]. White Gaussian noise is generated and added to the test signals to create

noisy signals with a global signal-to-noise ratio of 17 dB6. Different algorithms are used

to denoise 1000 noisy realisations of each signal. The mean-square error (3.1), is used

to evaluate the denoised signals [14]. Averaging the 1000 measures results in a single

measure for each of the algorithms and test signals.

This experiment, referred to as the Donoho-Johnstone benchmark experiment, is recreated

here to evaluate VisuShrink, SureShrink, HybridSure and the GMM, HMM and HMT

algorithms. The four test signals and their respective wavelet transforms are shown in

Figures 5.14 to 5.17 and the mean-square error results are shown in Table 5.11.

The VisuShrink and SureShrink results in Table 5.11 are in good agreement with that of

Chipman et al. [10, 11] and the GMM and HMT results mirror that of Crause et al. [14].

6A global signal-to-noise ratio of 17 dB is constructed by adding white Gaussian noise with power
σ2

n = 1 to the test signals.
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Figure 5.14: Bumps and its wavelet coefficients (using the Daubechies 4 wavelet).
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Figure 5.15: Blocks and its wavelet coefficients (using a Haar wavelet).
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Figure 5.16: Doppler and its wavelet coefficients (using a Daubechies 8 wavelet).
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Figure 5.17: HeaviSine and its wavelet coefficients (using Daubechies 8 wavelet).

Table 5.1: The mean-square error results of the Donoho-Johnstone

denoising experiment.

mean-square error
Algorithm

Bumps Blocks Doppler HeaviSine

Noisy Signal 1 1 1 1

VisuShrink 1.6304 0.6837 0.4873 0.1203

SureShrink 0.7348 0.5125 0.4400 0.2863

HybridSure 0.4795 0.2122 0.2339 0.0945

GMM 0.3383 0.1084 0.1780 0.0981

HMM 0.2616 0.1115 0.1155 0.0984

HMT 0.2715 0.0802 0.1421 0.0861
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Because the noise is randomly generated, the Donoho-Johnstone benchmark experiment

cannot be exactly recreated, which accounts for this small difference in results.

By examining the mean-square error results, shown in Table 5.11, the following observa-

tions are made:

� In most cases the algorithms have lower mean-square error values than that of the

noise, implying that the algorithms successfully denoised the test signals. The only

exception is VisuShrink on Bumps, which indicates that VisuShrink tends to remove

too much high frequency content [11].

� The GMM, HMM and HMT algorithms outperform the classical and more heuristic

Donoho and Johnstone methods. It is deduced that the explicit modelling of the

non-Gaussianity is responsible for this enhancement.

� The HMT algorithm performs best on Blocks and HeaviSine. These are signals with

strong persistence which can be seen in Figures 5.15 and 5.17. Because the HMT is

designed to capture persistence, it performs best on such signals.

� Crause et al. [14] showed that significant mean-square error gains can be achieved by

exploiting wavelet-domain dependencies via the HMT model. Table 5.11 shows that

the HMM algorithm performs best on Bumps and Doppler and therefore outperforms

the state-of-the art HMT mean-square error results. These novel results imply that

the HMT model is not completely successful in its attempt to capture clustering

and that the HMM is more successful in denoising these types of signals.

The HMM significantly improves the mean-square error results of the Doppler test

signal. Figure 5.16 shows that the Doppler signal has only a single cluster of coef-

ficients within each resolution level. The superior mean-square error results imply

that the HMM successfully captures these single clusters. Figure 5.16 also shows

that the vertical alignment of the Doppler coefficients between neighbouring res-

olution levels is not as strong as, say, that of Bumps or Blocks, indicating that

the Doppler signal does not have strong persistence in the wavelet domain. These

qualities of the Doppler signal explains the inferior HMT results.

The Blocks signal, on which the HMT algorithm excels, is representative of so-called

“punctured smooth” signals typically found in real-world images [47]. The Doppler

signal, however, is more representative of signals found in seismic, radar and sonar

signals.. The HMM algorithm is therefore a better candidate than the HMT for

denoising these signals.
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It should also be noted that a signal-to-noise ratio of 17 dB is considered to be a low noise

level. In speech enhancement experiments, the SNR typically ranges from 0 dB to 10 dB

which are much higher noise levels. The statistical denoising algorithms are expected

to perform poorer at high noise levels, where the statistical properties of the underlying

clean signal is not as apparent as at low noise levels.
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Chapter 6

Wavelet-based speech enhancement

6.1 Introduction

Wavelet-based speech enhancement is investigated, implemented and evaluated in this

chapter. Section 6.2 investigates the potential of the different wavelet-based denoising

algorithms for speech enhancement. This is done in Section 6.2.1 by first classifying

speech into five different groups of phonemes with roughly similar statistics, namely vow-

els, nasals, semivowels, stops and fricatives. An experiment is then done in Section 6.2.2

on these phoneme groups in which the denoising algorithms are evaluated for their speech

enhancement potential. A framework for wavelet-based speech enhancement is developed

in Section 6.3 and the various parameters used throughout this research project are dis-

cussed in Section 6.3.1. In Section 6.4 the Wiener, GMM, HMM and HMT denoising

algorithms, which are described in Sections 5.6 to 5.10, are implemented as speech en-

hancement algorithms. In Section 6.5.1 a noise floor parameter is investigated, which

allows the enhanced speech to have a residual white noise artifact, which is perceptu-

ally pleasing and masks unwanted artifacts. Section 6.6 investigates the effect of using

different wavelets for speech enhancement. Speech enhancement is frame-based, and the

best frame size is chosen in Section 6.7. To complete the design of wavelet-based speech

enhancement, the best algorithm is chosen in Section 6.8.

6.2 Denoising of speech segments

The Donoho-Johnstone denoising experiment [11, 14] investigates the potential of wavelet-

based algorithms for denoising of signals such as images. It uses four benchmark test
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signals, namely Bumps, Blocks, Doppler and HeaviSine. It was shown in Section 5.11,

where the experiment was recreated, that HMT and HMM denoising perform well on

the Donoho-Johnstone test signals. HMT denoising also works well on images [14, 47],

because it captures the statistical properties of images in the wavelet domain. Real-world

images are typically punctured smooth signals. The slowly varying localised shades are

the smooth parts, while the less frequent abrupt changes in colour or shade form the

punctured parts. This is reminiscent of the Blocks signal in the Donoho-Johnstone set, on

which HMT denoising excelled. The question arises if wavelet-based denoising algorithms

such as HMT and HMM denoising also work well on speech signals, which are typically

not punctured smooth.

An experiment similar to the Donoho-Johnstone denoising experiment is done in Sec-

tion 6.2.2, which investigates the potential of wavelet-based denoising algorithms for

speech enhancement. Speech can be divided into different groups of phonemes. It is

assumed that the phonemes within these groups have roughly similar statistical proper-

ties. The experiment uses five phoneme groups as test signals, namely vowels, nasals,

semivowels, stops and fricatives.

In noisy speech, the signal-to-noise ratio of each frame varies dramatically from frame

to frame, as shown in Figure 3.2. Certain phonemes, such as nasals, typically have a

much lower segmental signal-to-noise ratio than phonemes such as vowels. The phonemes

are therefore scaled in this experiment so that all segments have the same signal-to-noise

ratio, creating an experimental setup which is similar to the Donoho-Johnstone denoising

experiment. Because the test signals are short speech segments, the experiment is a

simplified version of real speech enhancement. Although it is not the same as real speech

enhancement, similar results are still expected.

6.2.1 The phoneme groups

The chosen five phoneme groups, with their TIMIT phoneme labels [28], are given in

Table 6.2.1 and correspond to those used in [31].

An example of each phoneme group is shown in the time domain and the wavelet domain

in Figures 6.1 to 6.5. The time-domain view gives an indication of the harmonic content,

the noise content and the abrupt changes of the different phoneme groups. The time-

frequency tiling view of the wavelet domain gives an indication the statistical properties

of the wavelet coefficients of the different phoneme groups.
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Table 6.1: The five different phoneme groups with their corresponding

TIMIT phoneme labels.

Phoneme group TIMIT phoneme labels

Vowels iy, ih, eh, ey, ae, aa, aw, ay, ah, ao,
oy, ow, uh, uw, ux, er, ax, ix, axr, ax-h

Nasals m, n, ng, em, en, eng, nx

Semivowels l, r, w, y, el

Stops b, d, g, p, t, k

Fricatives s, sh, z, zh, f, th, v, dh, jh, ch
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(a) (b)

Figure 6.1: (a) Vowels in the time domain have a strong harmonic content, but also

high frequency components. (b) The wavelet domain shows them to have some degree of

persistence and also clusters of almost equal lengths within the resolution levels.
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Figure 6.2: (a) Nasals in the time domain have a very strong harmonic content and is

almost sinusoidal. (b) Nasals in the wavelet domain have equal length clusters within

certain resolution levels.
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Figure 6.3: (a) Semivowels in the time domain have harmonic and noise components.

(b) Semivowels in the wavelet domain have persistence hidden in the more dominant

white noise coefficients.
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Figure 6.4: (a) Stops in the time domain are signals with abrupt changes. (b) Stops in

the wavelet domain have persistence.
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Figure 6.5: (a) Fricatives in the time domain are almost white. (b) Fricatives in the

wavelet domain are also very white.

6.2.2 The speech-segment denoising experiment

This experiment is similar to the Donoho-Johnstone denoising experiment [11, 14] done

in Section 5.11, except that 100 different segments within each phoneme group are used

instead of a single Donoho-Johnstone test signal. The speech signals are taken from the

TIMIT speech database [28], which contains high-quality speech recorded at FS = 16 kHz.

The recordings are downsampled to have a sampling frequency of FS = 8 kHz, which is the

most prevalent choice in speech enhancement research [33]. Phonemes vary in duration

but a typical length is in the order of 32 ms. A data set for each phoneme group is

created by extracting speech segments, which are 256 samples (32 ms) in length, from

the recordings of the speakers in the TIMIT24WGN set1. The beginning, middle and end

sections of each phoneme are included in the database of segments. White Gaussian noise

is generated and added to each segment to create 100 noisy segments from each phoneme

group, where each segment has an SNR of 10 dB. A full wavelet decomposition is done

on each segment using the Discrete Meyer wavelet filters which are popular in current

wavelet-based speech enhancement [8, 13].

The algorithms under investigation are those described in Sections 5.4 to 5.10 and are

listed below:

� HMT - Hidden Markov Tree denoising.

� HMM - Hidden Markov Model denoising.

� GMM - Gaussian Mixture Model denoising.

1See Appendix B.
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� WIE - Wiener denoising.

� SURE - SureShrink.

� HYB - HybridSure.

� VISU - VisuShrink.

� NSY - The un-enhanced original noisy segments.

The dMSE, dSEGSNR and dIS objective measures, which are widely used [14, 33] and

described in Sections 3.2, 3.2.1 and 3.2.2, are used to evaluate the performance of the

algorithms on the five phoneme groups. The noisy segments (NSY) are also evaluated

and used as a benchmark, where the denoising algorithms are expected to outperform the

noisy results.

The dMSE measure views the difference between the clean and enhanced time signals as

an error signal, whereas the dSEGSNR measure views this difference as a noise signal and

uses it to compute the signal-to-noise ratio. Both measures are computed in the time

domain and yield similar results which are shown in Tables 6.2 and 6.3.

Table 6.2: The mean-square error dMSE evaluation of speech segments from different

phoneme groups. Lower dMSE values correspond to better performance.

Phoneme Mean-square error dMSE

group HMT HMM GMM WIE SURE HYB VISU NSY

Vowels 0.534 0.534 0.544 0.552 0.817 0.656 1.166 1

Nasals 0.504 0.502 0.517 0.542 0.865 0.728 0.896 1

Semivowels 0.480 0.477 0.493 0.504 0.719 0.566 1.115 1

Stops 0.732 0.718 0.767 0.872 0.994 0.805 2.651 1

Fricatives 0.794 0.787 0.807 0.820 0.994 0.871 3.392 1

The following conclusions can be made from the dMSE and dSEGSNR evaluation:

� All algorithms, apart from VisuShrink, outperform the original noisy signal. The

poor performance of VisuShrink implies that the universal threshold is too high for

speech signals. The values of most wavelet coefficients of especially fricatives, stops

and vowels are below this threshold and therefore made zero. This leads to the poor

performance of VisuShrink and implies that the wavelet coefficients of speech are

not as sparse as that of images, for which the universal threshold is designed.
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Table 6.3: The segmental signal-to-noise ratio dSEGSNR evaluation of speech segments

from different phoneme groups. Higher dSEGSNR values correspond to better

performance.

Phoneme Segmental signal-to-noise ratio dSEGSNR

group HMT HMM GMM WIE SURE HYB VISU NSY

Vowels 12.703 12.715 12.578 12.364 11.384 11.778 8.507 10.532

Nasals 12.467 12.492 12.331 11.787 10.591 11.148 10.165 9.870

Semivowels 12.901 12.935 12.787 12.601 11.399 12.339 9.716 9.880

Stops 11.077 11.146 10.853 10.073 9.985 10.643 5.913 9.952

Fricatives 10.894 10.930 10.883 10.799 10.375 10.569 5.244 10.335

� The HMM algorithm performs the best on all phoneme groups, with the HMT algo-

rithm performance only slightly inferior to that of the HMM. This is similar to the

experiment done in Section 5.11, where the dMSE results of the HMM outperformed

that of the HMT on Bumps and Doppler, which are signals with stronger cluster-

ing (property S1) than persistence (property S2). Because the HMM outperforms

the HMT, it can be deduced that persistence is not as strongly present in speech as

in images.

� The GMM method does not perform as well as the HMT and HMM methods, but

outperforms the Wiener method. Because the HMT, HMM and GMM model the

non-Gaussianity of wavelet coefficients, it is deduced that the coefficients of speech

signals do have a degree of sparsity (property P3).

� HybridSure is similar to SureShrink, apart from an extra step that checks the sparse-

ness of the wavelet coefficients [25]. HybridSure performs better than SureShrink,

which also implies that the wavelet coefficients of speech do possess some sparsity.

� The statistical methods, namely HMT, HMM, GMM and Wiener, all significantly

outperform the classical techniques, namely SureShrink, HybridSure and VisuShrink.

Certain phonemes, such as fricatives, contain signal energy which is very noisy and

similar to white noise. The classical wavelet-based denoising techniques classify

these coefficients as noise and attempt to denoise this vital part of speech signals.

The statistical methods use the data itself to set the parameters of the shrinkage

functions and therefore retain the noisy components of speech.
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The dIS measure compares the spectra of the clean and enhanced signals, as opposed to

the dMSE and dSEGSNR measures which operate in the time domain. The results of the

dIS measure are shown in Table 6.4.

Table 6.4: The Itakura-Saito dIS evaluation of speech segments from different phoneme

groups. Lower dIS values correspond to better performance.

Phoneme Itakura-Saito distortion dIS

group HMT HMM GMM WIE SURE HYB VISU NSY

Vowels 0.501 0.499 0.524 1.391 7.539 937 1060 0.777

Nasals 0.498 0.580 0.552 1.956 0.590 4677 11967 0.756

Semivowels 1.097 1.374 1.490 25.098 33.21 1591 2191 1.537

Stops 0.027 0.026 0.026 0.033 0.037 0.029 0.956 0.038

Fricatives 0.052 0.049 0.052 0.058 0.067 2.485 4.267 0.082

The dIS evaluation yield the following results:

� Only the HMT, HMM and GMM methods outperform the noisy signals for all

phonemes.

� The performance of Wiener, SureShrink, HybridSure and VisuShrink on vowels,

nasals and semivowels is very poor. The dIS distortion values are typically in the

order of 0-10 [55], which implies that these high dIS values, such as the dIS = 11967

for VisuShrink on nasals, are unrealistically high. The dIS values on these phonemes

imply a great loss in characteristic information and can only result if the enhanced

signal is totally different from the clean signal. This effect is referred to as “problem

segments” and is further investigated in Section 6.5.

� While performing only slightly inferior on vowels, stops and fricatives, the HMT

significantly outperforms the HMM and GMM on nasals and semivowels. The HMT

is therefore the best method according to the dIS measure.

� It is expected that stops have strong persistence (property S2) and that the HMT

would therefore excel on them. The HMT, HMM and GMM, however, perform

equally well on stops. This implies that the persistence property of stops is not as

strong as would be expected. Although stops are signals with abrupt changes, they

are not punctured smooth image-like signals which have strong persistence. This is

confirmed by the dMSE and dSEGSNR results.
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� Fricatives are very noisy with wavelet coefficients that are not sparse. This is verified

by the fact that the HMT, HMM and GMM methods, which capture sparseness,

perform very similar to the Wiener method which models the coefficients as Gaus-

sian.

All three objective measures, shown in Tables 6.2, 6.3 and 6.4, confirm that the HMT,

HMM and GMM algorithms perform the best over all phoneme groups. The Wiener

method performs surprisingly well, considering its simplicity compared to the above-

mentioned three methods.

It is suggested that HMT, HMM, GMM and Wiener denoising methods should be chosen

as speech enhancement algorithms rather than SureShrink, HybridSure and VisuShrink.

These last three algorithms are concluded to be inferior speech enhancement algorithms

and are therefore not investigated any further.

6.3 The experimental framework

A general framework for wavelet-based speech enhancement and evaluation is discussed

below. Several different aspects are pointed out in boldface; a selection must be made in

each case when doing speech experiments.

Figure 1.1 suggests that two data sets are needed, namely a speech database containing

high quality speech sentences, and a noise database containing realisations of various

noise types. The noise may also be generated but then the experiment is not reproducible.

The noisy speech is created by adding the noise to the clean sentences, which can now

be assumed to contain additive noise. Depending on the power of the speech and noise

signals, the noisy speech has a global signal-to-noise ratio (SNR), which is usually

expressed in decibels (dB).

Figure 5.1 shows the flowchart of wavelet-based speech enhancement with the analysis

step being the DWT. Decomposition is done by using a particular set of wavelet filters,

which should be chosen according to the specific class of signals that is denoised (which

is speech in this case). The DWT also requires choosing the number of decomposition

levels, which determines the size of the binary trees of coefficients and also the number

of resolution levels.

The attenuation step of wavelet-based denoising, shown in Figure 5.2, requires choos-

ing a denoising algorithm and its corresponding shrinkage function, which is used to
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attenuate the noisy coefficients. The denoising algorithms can be optimised for certain ap-

plications by setting various parameters. The synthesis step of wavelet-based denoising

is the IDWT and produces the estimated speech sentences.

The objective evaluation process of speech enhancement methods, which is shown in Fig-

ure 3.1, involves comparing the estimated speech with the clean speech by using various

distortion measures. Subjective evaluation involves informal listening tests, which im-

ply listening to the enhanced speech and commenting on the various denoising artifacts

which the objective measures cannot highlight. In some experiments these are accompa-

nied by formal listening tests, which involve several listeners expressing preferences for

the models involved.

6.3.1 Experimental setup

All speech enhancement experiments in this research project use the framework discussed

in Section 6.3. The chosen baseline experimental setup is discussed below:

� Speech database: Sentences from the TIMIT speech database [28] are used as the

clean speech. Speech enhancement research is widely done on speech with a sampling

frequency of FS = 8 kHz [33] and therefore the recordings are downsampled from

FS = 16 kHz by discarding every second sample.

� Noise database: This study investigates wide-band noise reduction, therefore

white Gaussian noise (WGN) is chosen from Hansen’s “Additive noise sources” [30]

as the noise type used. This is a single WGN file with FS = 8 kHz which is added to

every sentence in the TIMIT data set and it allows results to be reproduced, unlike

generated noise.

Two sets of sentences are used in this research and are listed in Appendix B. The train-

ing set contains 24 sentences and is assumed to be large enough to determine the vari-

ous model parameters. The training set corrupted with additive WGN is referred to as

the TIMIT24WGN set. The test set suggested by [33] contains 192 sentences from the

TIMIT core test set. The test set corrupted with additive WGN is referred to as the

TIMIT192WGN set.

� Global signal-to-noise ratio: The noise and the clean speech can be scaled to

produce different global signal-to-noise ratios. The silent sections before and af-

ter each sentence are included in the computation of the global SNR as was done

in [32, 33]. The noise levels can be roughly categorised as follows:
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– High noise levels : −5 dB to 0 dB global SNR.

– Moderate noise levels : 5 dB to 10 dB global SNR.

– Low noise levels : 15 dB to 20 dB global SNR.

The statistical wavelet-based speech enhancement algorithms are expected to suffer

at high noise levels where statistics are dominated by the noise. A moderate noise

level of 10 dB is therefore assumed to be a good baseline global SNR.

In Section 6.2.2 it was suggested that the HMT, HMM, GMM and Wiener algorithms are

superior speech enhancement algorithms compared to the classical methods. They are

implemented as described in Sections 5.6 and 5.8 to 5.10. The following parameters of

wavelet-based speech enhancement are investigated:

� The algorithm parameters: The HMT, HMM, GMM and Wiener algorithms

can be modified to include a residual noise floor parameter β. This introduces a

perceptually pleasant artifact in the estimated speech and is further investigated in

Section 6.5.1.

� The wavelet filters: The specific wavelet used in the DWT has an effect on the

estimated speech. Denoising with different wavelets are investigated in Section 6.6

where a good wavelet for speech is suggested, amongst a set of commonly used

wavelets.

The Discrete Meyer wavelet can be expected to be a good wavelet for speech en-

hancement, because its lowpass filters are close to being ideal half-band lowpass

filters in the bandpass and cut-off gradient regions and they have almost linear

phase as described in Section 4.3.7. It is also used in current wavelet-based speech

enhancement research [8, 13].

� The number of decomposition levels: The number of decomposition levels

constrains the size of the analysis frames. The duration of these frames should be

chosen for quasi-stationary conditions to hold and is investigated in Section 6.7.

An eight-level wavelet decomposition of speech with FS = 8 kHz results in 32-ms

analysis segments (256 samples per segment) if implemented as described in Sec-

tion 4.4.3. This is deemed a good choice because it yields the maximum number

of training data, while the segments are still within the quasi-stationary range of

speech. It is also used in current speech enhancement methods [23, 55, 58, 59, 60].

� The different algorithms: The HMT, HMM, GMM and Wiener denoising meth-

ods model the wavelet coefficients of speech signals with different approaches. They

99



are evaluated in Section 6.8 to find the superior algorithm for speech. The HMT

and HMM algorithms are concluded to be the superior wavelet-based algorithms for

speech enhancement, and based on the experiments done in Section 6.2.2, the HMT

is chosen as the baseline algorithm.

The following evaluation process is followed:

� The distortion measures: The dIS and dSEGSNR distortion measures are cho-

sen because they are widely used [33], and they are implemented as described in

Chapter 3. Global distortion measures are computed on the

– speech-only sections, by disregarding the non-speech segments at the beginning

and end of each recording, and on the

– phoneme groups, by first denoising the whole sentence and then using the

TIMIT phoneme labels to average the distortion values of the phonemes within

the particular phoneme group.

� Informal listening tests: It is necessary to comment on the enhanced speech

of different techniques because the denoising artifacts cannot be fully represented

by the distortion measures [33]. Two different denoising techniques which yield

equivalent objective scores may sound completely different. Two TIMIT sentences

are used for subjective evaluation and they are identified in Appendix B.3.

� Formal listening tests: Two formal listening tests are done in this study. The first

is a comparison between the different wavelet-based speech enhancement algorithms,

done in Section 6.8.2. The second is a comparison between the wavelet-based HMT

algorithm and the Fourier-based Ephraim-Malah algorithm, done in Section 7.3.4.

The experimental setup for these tests are discussed in Appendix B.4.

6.4 Wavelet-based speech enhancement experiments

The wavelet-based HMT, HMM, GMM and Wiener denoising algorithms are, as suggested

in Section 6.2.2, implemented as speech enhancement algorithms.

A denoising experiment is done on the TIMIT24WGN set. White Gaussian noise is added

to the clean speech to create noisy sentences with a global signal-to-noise ratio of 10 dB

each. The Discrete Meyer wavelet is used in an eight-level wavelet decomposition, which

leads to 32 ms non-overlapping segments. The four algorithms are used to denoise each

sentence and are implemented in the framework described in Section 6.3.
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6.4.1 Objective evaluation

The global dSEGSNR evaluation on the speech-only sections for the different algorithms

are shown in Table 6.5 and the following is deduced from the dSEGSNR evaluation:

Table 6.5: Objective dSEGSNR evaluation of the speech-only sections.

Algorithm Speech-only dSEGSNR

HMT 9.545

HMM 9.477

GMM 9.416

Wiener 9.357

Noisy 6.196

� All four algorithms clearly enhance speech compared to the un-enhanced (Noisy)

version.

� The HMT clearly performs the best. This is to be expected because the HMT cap-

tures non-Gaussianity, clustering and persistence in wavelet coefficients. The HMM

performs slightly worse, because it only captures non-Gaussianity and clustering.

This is in contrast with the dSEGSNR evaluation of the speech-segment experiment

of Section 6.2.2, where the HMM slightly outperformed the HMT. This is ascribed

to the artificial scaling of the speech-segments, where all segments had a SNR of

10 dB. In real speech enhancement, certain segments have a much lower SNR, which

does not necessarily suit the HMM algorithm.

� The GMM performance is not as good as that of the HMM and HMT, because,

although it models the non-Gaussianity of coefficients, it disregards intercoefficient

dependencies.

� The Wiener method performs the least successfully, because it disregards non-

Gaussian statistics and intercoefficient dependencies. However, its performance of

dSEGSNR = 9.357 does not differ much from the HMT performance of dSEGSNR =

9.545. When listening to the enhanced speech, the difference in dSEGSNR of 0.2 is

perceptually barely detectable.

� Not shown in Table 6.5 are the evaluation results of the algorithms with no training

and initial conditions as described in Sections 5.8.4, 5.9.4 and 5.10.4. In this case the

HMT, HMM and GMM methods all yield a distortion value of dSEGSNR = 9.190. In
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all three cases, the algorithm performance improves with fully trained models. This

verifies that the model parameters are correct and more accurate if fully trained.

The dIS evaluation on the speech-only sections for the five different phoneme groups are

shown in Table 6.6.

Table 6.6: Objective dIS evaluation of the speech-only sections and of the different

phoneme groups. Lower dIS values correspond to better performance.

Algorithm
dIS

Speech Vowels Nasals Semivowels Fricatives Stops

HMT 1.440 0.547 7.568 5.832 1.676 3.190

HMM 1.274 0.581 9.358 3.565 1.348 3.798

GMM 1.035 0.517 2.336 2.138 1.194 2.143

Wiener 13.115 1.268 1024 64 4.547 68

Noisy 1.031 0.660 2.406 1.470 0.911 1.222

The following observations are made from the dIS evaluation:

� None of the four algorithms show an improvement over the un-enhanced signal on

the speech-only sections.

� On a phoneme level, only the HMT, HMM and GMM methods show an improve-

ment, and only on vowels. Nasals and semivowels seem to be extremely distortion-

prone, which was also experimentally found in Section 6.2.2.

� Not shown in Table 6.6 is the evaluation of the HMT, HMM and GMM methods with

no training, which yields dIS = 0.493 on the speech-only sections. This is a definite

enhancement compared to the noisy dIS = 1.031. According to the dIS measure, full

training leads to speech distortion, whereas the dSEGSNR measure from Table 6.5

indicates enhancement. This contradiction is further investigated in Section 6.5.

6.4.2 Subjective evaluation

The dSEGSNR measure shows that the HMT algorithm performs slightly better than the

other algorithms, while the dIS measure, in contrast, shows results with significant differ-

ences between the various algorithms. By listening to the enhanced speech, the differences

between the algorithms can be evaluated subjectively.
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The two sentences for subjective listening tests2 are enhanced under the same conditions

as for the objective evaluation. The wavelet-based Wiener method, and the HMT, HMM

and GMM algorithms with both full and no training are investigated.

The following observations are made from informal listening tests:

� There is perceptually no difference between the enhanced speech of the fully trained

HMT, HMM and GMM methods. There is, however, a slight difference, which is

barely detectable, between the Wiener method and the other three algorithms. This

correlates with the dSEGSNR results, which also show similar performance for the

different algorithms, with Wiener being slightly inferior. It also shows that the

dissimilar dIS results are not a true reflection of the similar performance of the

different algorithms.

� There is also no perceptual difference between the enhanced speech of the HMT,

HMM and GMM algorithms implemented with no training. This is to be expected,

because these algorithms use the same initial conditions and are expected to produce

enhanced speech that is almost identical.

� The enhanced speech of the HMT, HMM and GMM algorithms with no training

has a residual noise artifact which is perceptually noisier than that of the fully

trained models. This agrees with the dSEGSNR results, which yielded a distortion of

dSEGSNR = 9.190 for no training and dSEGSNR = 9.545 for the fully trained HMT

model. The subjective evaluation suggests that fully trained models outperform

those with no training. This is again in contrast with the dIS evaluation which

yielded superior results for no training.

� The enhanced speech of the HMT, HMM, GMM and Wiener has an annoying resid-

ual artifact. It can be described as a stuttering, scratchy and uneven artifact and is

referred to as the wavelet-based residual artifact. The multiresolution representation

of the wavelet coefficients and the particular wavelet in use are responsible for its

unique sound.

From the objective and subjective evaluation it is clear that the dIS distortion values do

not agree with the dSEGSNR distortion values and subjective evaluation. A closer look at

why the dIS performance is poorer with full training is necessary and this is discussed in

Section 6.5.

2See Appendix B.3.
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6.5 The dIS problem segments

Figure 6.6 shows an example of how the dIS distortion values for enhanced speech vary over

time. The sentence was corrupted with additive white Gaussian noise and had a global

SNR of 10 dB before fully trained HMT enhancement. Most phonemes have low dIS

values, whereas certain segments are considered to be problem segments with extremely

high dIS values. This is verified in Table 6.6, where nasals and semivowels seem to be

more sensitive to full training.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

M
ag

ni
tu

de

time (s)

s ui t i n g r ea s y w a sh

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

5

10

15

20

time (s)

Ita
ku

ra
−

S
ai

to
 d

is
to

rt
io

n

Figure 6.6: (a) A part of a TIMIT sentence, corrupted with 10 dB white Gaussian

noise and enhanced with the fully trained HMT method. The speaker is

timit/train/dr1/fcjf0 and the sentence is sa1.wav (She had your dark suit in greasy wash

water all year). (b) The Itakura-Saito distortion values show problem segments when

evaluating enhanced speech.
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Figure 6.7 shows an example of the time signals, the Linear Prediction Coefficient (LPC)

spectra3 and the wavelet functions of a problem segment. The clean, noisy and enhanced

signals are shown. The segment is taken from the example in Figure 6.6 and is demarcated

by the vertical dotted lines.
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Figure 6.7: The time segments, LPC responses and wavelet functions of a clean, noisy

and enhanced problem segment.

The clean, noisy and denoised time waveforms are shown in Figure 6.7(a),(d) and (g)

respectively. Inspection of these three waveforms verifies that the denoised segment does

not differ that much from the original, as confirmed by the dSEGSNR measure.

3Linear prediction is a popular analysis method for speech [15]. It fits a low-order all-pole filter to
a speech frame, based on its autocorrelation. The transfer function of this filter, known as the LPC
spectrum, is a smoothed version of the power spectrum of the speech frame, and typically characterises
the vocal tract configuration of the speaker.
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The second column shows the LPC spectra of the corresponding segments. The clean seg-

ment, Figure 6.7(b), clearly shows formant activity in the higher frequency regions. The

noisy spectrum, Figure 6.7(e), indicates that the additive noise dampens these spectral

peaks and valleys such that the formants are barely detectable. The denoised spectrum,

Figure 6.7(h), shows how the higher frequencies are almost completely cut out. The dif-

ference between the clean and denoised LPC spectra in the high frequency regions gives

rise to the high level of dIS distortion.

The third column shows the wavelet functions of the clean, noisy and denoised segments.

A closer look at the highest resolution level (to the right of the last dotted line) is necessary.

The clean wavelet function, Figure 6.7(c), shows signal activity in the highest resolution

level. The noisy wavelet function, Figure 6.7(f), clearly shows that the noise energy in

the highest resolution level is dominant over the signal energy. The denoised wavelet

function, Figure 6.7(i), shows that the highest resolution level is made almost zero. The

characteristic signal coefficients shown in Figure 6.7(c) are eliminated.

The problem segments are now identified as speech segments which have formant frequen-

cies (characteristic signal information) of low energy inside the higher resolution levels.

When these resolution levels contain coefficients which are meaningful but have small

values, they are referred to as problem resolution levels.

The HMT is trained on the noisy coefficients and models the distribution of the noisy

coefficients of each resolution level j with a small and a large variance parameter, namely

σ2
j;S;y and σ2

j;L;y. The noise, which has an estimated Gaussian distribution of σ̂2
j;d, smoth-

ers the relatively small signal coefficients inside these problem resolution levels and is

completely dominant as shown in Figure 6.7(f). This is in contrast with the HMT model

definition, which assumes that large coefficients represent signal energy and small coeffi-

cients represent noise. Because the noise overpowers the signal coefficients, the observed

noisy coefficients have a nearly Gaussian distribution with a variance almost equal to the

noise variance. The HMT tries to model this single Gaussian distribution (variance ≈ σ̂2
j;d)

using two Gaussian components (variances σ2
j;S;y and σ2

j;L;y), which end up having almost

equal variance parameters which are also almost equal to the noise variance, therefore

σ2
j;S;y ≈ σ2

j;L;y ≈ σ̂2
j;d.

The clean HMT model has variance parameters σ2
j;S and σ2

j;L and they are estimated from

the noisy HMT model as given in (5.37), as

σ2
j;S = max(σ2

j;S;y − σ̂2
j;d, 0)

σ2
j;L = max(σ2

j;L;y − σ̂2
j;d, 0) .

(6.1)
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The variance parameters of the clean model will therefore approximate zero, with σ2
j;S ≈ 0

and σ2
j;L ≈ 0. It is important to notice that the variance parameters σ2

j;S and σ2
j;L are level

dependent and they represent the distribution of all wavelet coefficients within resolution

level j.

From the weighted Wiener-based shrinkage rule (5.81), given as

Θ2L(wi) =

[
P (si = S|w,M)

σ2
j;S

σ̂2
j;d + σ2

j;S

+ P (si = L|w,M)
σ2

j;S

σ̂2
j;d + σ2

j;L

]
wi , (6.2)

all estimated coefficients θ̂i within the problem resolution level will approximate zero,

therefore

Θ2L(wi |wi ∈ problem resolution level) ≈ 0 . (6.3)

The problem resolution levels are usually the higher levels, which also contain most of the

wavelet coefficients. If, for example, the highest resolution level is a problem level, then

half of the wavelet coefficients within the segment will be shrunk to zero and character-

istic signal information will be completely cut out. This characteristic signal information

is, however, of very low magnitude and barely audible. The extremely high dIS distor-

tion values are therefore not representative of the small loss in speech quality, for which

moderate dIS distortion values would be expected.

It should be noted that STSA techniques, which denoise in the Fourier domain, analyse

the signal with far more frequency bins. For the example shown in Figure 6.7, STSA

would use 64 frequency bins just for the highest resolution level (which is only one bin in

wavelet-based methods). It is therefore not disastrous to zero a single bin in STSA speech

enhancement, because this will only shrink one coefficient to zero. The high dIS values of

problem segments are therefore more of a problem in wavelet-based speech enhancement

because the higher resolution levels of the DWT correspond to very wide frequency bands.

6.5.1 The spectral floor parameter β

Berouti et al. [6] introduced a spectral floor in power spectral subtraction speech enhance-

ment [42], which masks the “musical” residual noise artifact [23, 55]. It implies that the

estimated variance can never be lower than a spesified threshold value. Therefore, the

use of a spectral floor overestimates the spectral variance [23].

Using a noise floor in wavelet-based speech enhancement might also prove useful. The

purpose of denoising is to eliminate noise, whereas a noise floor, by contrast, reinserts some
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residual noise into the enhanced speech. The aim of this noise is to mask the annoying

wavelet-based residual artifact while remaining barely audible itself. This involves a

compromise in selecting the value of the noise floor.

One way to implement a noise floor is to introduce a floor parameter β into (6.1) which

estimates the variance parameters of the clean HMT model as follows:

σ2
j;S = max(σ2

j;S;y − σ̂2
j;d, β)

σ2
j;L = max(σ2

j;L;y − σ̂2
j;d, β) .

(6.4)

In Section 6.5 it was shown that the variance parameters of the noisy HMT model for

problem resolution levels have values σ2
j;S;y ≈ σ2

j;L;y ≈ σ̂2
j;d. By using (6.4) with β > 0, the

shrinkage function Θ2L(wi) of problem segments can never be zero. By looking at (6.2),

coefficients from problem resolution levels are not shrunk as much as when using no noise

floor (β = 0) and therefore the characteristic signal coefficients with small values and

their surrounding noise coefficients are kept.

Using a noise floor in wavelet-based speech enhancement is a smoothing process. It proves

to be perceptually appealing and also produces satisfactory dIS distortion values.

6.5.2 Objective evaluation of the floor parameter

An experiment is done which objectively investigates the effect of using a floor parameter

β. Introducing a noise floor is expected to improve the dIS performance. However, it

also increases the residual noise power in the enhanced signal and therefore decreases the

segmental signal-to-noise ratio dSEGSNR. The goal of this experiment is to find the opti-

mum value for β which produces satisfactory performance on both the dIS and dSEGSNR

distortion measures.

The same experimental setup of Section 6.4 is used here, except that different values of

parameter β are investigated. The HMT, HMM, GMM and Wiener algorithms are used

to denoise the TIMIT24WGN set with a global SNR of 10 dB. The algorithms are imple-

mented with floor parameter values of β = {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The performance

of the HMT, HMM and GMM algorithms with no training and initial conditions as de-

scribed in Sections 5.8.4, 5.9.4 and 5.10.4 are also investigated for different values of β.

Because initialisation is the same for all three algorithms, they produce almost the same

distortion measure values if they are not trained. The dIS and dSEGSNR distortion values

of the speech-only sections are shown in Figure 6.8.
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Figure 6.8: The global distortion measures of the different algorithms for different

values of β. (a) The dIS results. (b) The dSEGSNR results.

The dIS evaluation in Figure 6.8(a) shows:

� Setting β = 0 is equivalent to the results shown in Table 6.6, which shows poor dIS

performance with full training.

� As β increases, the dIS performance drastically improves. With β > 0.2 the dIS of

all four algorithms are almost equal to the favourable dIS distortion of no training.

� With β > 0.2 the dIS measures of the HMT, HMM and GMM algorithms are nearly

equal.

� The Wiener performance with β > 0.2 is only slightly inferior to that of the other

three algorithms.

� With β > 0.2 the dIS values of all four algorithms converges to a local minimum.

The value of β should be chosen to lie within this region.
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� Distortion values with β > 0.5 are not shown in Figure 6.8(a) but become less de-

sirable, eventually reaching dIS = 1.031 at β = 1 (cf. Table 6.6), which is equivalent

to no denoising.

The dSEGSNR evaluation, shown in Figure 6.8(b), highlights the following:

� As β increases, the dSEGSNR performance of all algorithms drop. By using no noise

floor and therefore setting β = 0, the results shown in Table 6.5 are obtained and

it is shown here to produce the best dSEGSNR performance.

� At β = 0.2 the gradient of the dSEGSNR curves becomes steeper, which implies

little difference in dSEGSNR performance with the floor parameter within the range

0 < β < 0.2. Setting β > 0.2 noticeably decreases the dSEGSNR performance.

� The performance ranking of the various algorithms is the same for all values of β,

with the HMT being the superior algorithm, the HMM performing slightly worse,

the GMM performing even less satisfactory and the Wiener method being the least

desirable. The difference in the performance of the four algorithms is relatively

small, however.

� The fully trained HMT, HMM and GMM algorithms noticeably improve the dSEGSNR

performance when compared to a model without training. With no training, the

non-Gaussian distribution is not correctly estimated by the HMT, HMM and GMM

initial parameters. Also, the state transition probabilities of the HMT and HMM

models are not utilised.

From the dIS and dSEGSNR evaluation of enhancing speech with a global signal-to-noise

ratio of 10 dB, the best floor parameter is chosen as β = 0.2. This choice results in

satisfactory and stable dIS values with only a slight drop in dSEGSNR values. The question

arises whether β = 0.2 is also a good choice at different global signal-to-noise ratios.

An experiment is done which is similar to the previous experiment, where the effect of the

floor parameter is investigated. The HMT method is used to denoise the TIMIT24WGN

set at global signal-to-noise ratios of 0 dB and 20 dB. The dIS and dSEGSNR results are

shown in Table 6.7 and 6.8.

The dIS and dSEGSNR evaluation at 0 dB and 20 dB also shows β = 0.2 to be a good

choice for the floor parameter.
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Table 6.7: The Itakura-Saito dIS evaluation of HMT speech enhancement using

different noise floors at different SNRs.

SNR
Speech-only dIS dIS

β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 NSY

0 dB 9.200 1.305 1.153 1.143 1.189 1.251 2.268

20 dB 0.242 0.208 0.185 0.174 0.168 0.165 0.319

Table 6.8: The segmental signal-to-noise ratio dSEGSNR evaluation of HMT speech

enhancement using different noise floors at different SNRs

SNR
Speech-only dSEGSNR dSEGSNR

β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5 NSY

0 dB 2.612 2.543 2.359 2.106 1.830 1.556 -2.279

20 dB 17.490 17.494 17.491 17.480 17.464 17.444 16.086

6.5.3 LPC evaluation of the floor parameter

The effect of the floor parameter β on the LPC spectrum with a fully trained HMT

model is evaluated here. Figure 6.9 shows the LPC spectra associated with different noise

floors for the same problem segment as shown in Figure 6.7. The top row is taken from

Figure 6.7 for comparison purposes. The clean spectrum is superimposed onto the noisy

and enhanced spectra in Figure 6.9(b)-(f). A closer fit with the clean spectrum results in

better enhancement and thus lower dIS values.

The clean LPC spectrum in Figure 6.9(a) shows significant peaks (formant frequencies)

and valleys. Especially note the two peaks in the higher frequency region. The noisy LPC

spectrum in Figure 6.9(b) shows the effect of additive broadband noise. The spectrum

becomes flatter as the noise dampens the peaks and valleys.

Figure 6.9(c) shows the LPC spectrum with β = 0. There is a big difference between

the enhanced and clean spectra in the high frequency region and the dIS penalises such a

mismatch in formant location. The magnitude of the enhanced spectra in this region is

in the order of −30 dB, which implies very little signal energy. The dIS is thus especially

harsh on an enhanced spectrum of very low magnitude, and this results in the high dis-

tortion of dIS = 4.4. Note, however, that although the magnitude is small, the peaks and

valleys are more noticeable than in any of the other enhanced spectra. This observation
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Figure 6.9: (a) The clean LPC response. (b) The noisy LPC response. (c)-(f) The

denoised LPC response, with β increasing from 0 to 0.5.

implies that the dIS measure is not necessarily the most accurate way to evaluate speech

enhancement.

Figure 6.9(d)-(f) show that as β increases from β = 0.1 to β = 0.5, the magnitude of the

higher frequencies increases (which is good), while the peaks and valleys gets dampened

(which is bad). From an LPC viewpoint, setting β = 0.2 is a good trade-off between these

two factors, where the matching of the enhanced and clean spectra seems to be best. The

experiment done in Section 6.5.2, which investigate the objective measures, verifies this.

6.5.4 Subjective evaluation of the floor parameter

By subjectively listening to the enhanced speech, the effect of different noise floors is

evaluated. The aim of the investigation is to subjectively find the noise floor which masks

the annoying residual artifact without being too annoying itself.

The two sentences for subjective listening tests4 are enhanced under the same conditions as

the objective evaluation in Section 6.5.2, based on the HMT algorithm. Different values for

the floor parameter are investigated and chosen from the set β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

4See Appendix B.3.
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From informal listening tests the following observations are made:

� Setting β = 0 results in speech enhancement with no noise floor. The wavelet-based

residual artifact is very scratchy and stuttering and therefore perceptually annoying.

� By setting β = 0.1, the residual artifact is still very annoying and the noise floor

barely detectable.

� Setting β = 0.2 introduces a slight noise floor in the enhanced speech. The noise

floor is slightly audible but it masks the annoying residual artifact. The new artifact

sounds like white noise and is perceptually pleasing.

� Setting β ≥ 0.3 results in a noise floor which is audible and even disturbing. This

defeats the purpose of denoising.

From the informal listening tests, a noise floor of β = 0.2 is preferred over no noise floor.

This confirms the objective and LPC evaluation results of Sections 6.5.2 and 6.5.3.

6.6 Choosing a good wavelet

The choice of the wavelet filters can have a large effect on speech enhancement, since it

determines the decomposition and reconstruction filter banks used. Experiments are done

with a variety of discrete wavelet filters to answer the question: “Which wavelet produces

the best speech enhancement?”

Different wavelet families are investigated, all of which are described in Section 4.3.7 and

given below:

� The Daubechies wavelet family

The Daubechies wavelet family consists of several wavelets (or sets of wavelet filters)

which are distinguished by their Herrmann order. Daubechies wavelets have maxi-

mally flat filters of equal lengths, but do not have linear phase. Daubechies wavelets

are used by Seok et al. [50] in their wavelet-based speech enhancement approach,

which is similar to the approach of this research project.

� The Symlet wavelet family

The Symlet wavelet family is similar to the Daubechies family and also consists of

several wavelets of differing Herrmann order. The filters are maximally flat, of equal

lengths and have almost linear phase. Symlet wavelets are expected to outperform
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Daubechies wavelets when denoising with the HMT algorithm, because linear phase

preserves the location of signal details and therefore enhances persistence. Symlets

are suggested by [25] for image denoising and are used by [35] in speech enhancement.

� The Biorthogonal wavelet families

There are several Biorthogonal wavelet families which are determined in spectral

factorisation filter design by the distribution of the remaining zeros. The Biorthog-

onal wavelets used in this study have linear phase which enhances persistence and

are therefore good for HMT denoising. The Biorthogonal 1, Biorthogonal 2 and

Biorthogonal 3 families are investigated because they have short highpass and long

lowpass reconstruction filters, which was shown to be favourable for image compres-

sion [52]. There are several wavelets within each Biorthogonal family, as determined

by their Herrmann order.

� The Haar wavelet

The Haar wavelet is a single wavelet which is the Daubechies, Symlet and Biorthog-

onal 1 wavelet with a Herrmann order of m = 1. It is the most basic wavelet because

its lowpass filters only have a single zero at z = −1. The Haar wavelet is expected to

be inferior to the other wavelets because the filters are far from being ideal halfband

filters, as shown in Figure 4.12.

� The Discrete Meyer wavelet

The Discrete Meyer wavelet is a single wavelet which is not designed by spectral

factorisation but can be viewed, from its filter lengths, to have an equivalent Her-

rmann order of m ≈ 31. The Discrete Meyer wavelet filters are close to being ideal

in the bandpass and cut-off gradient region (see Figure 4.12). The Discrete Meyer

wavelet is used by [8, 13] in wavelet-based speech enhancement.

An experiment is done which investigates the performance of different wavelets. The same

experimental setup as described in Section 6.3.1 is used, where the noisy TIMIT24WGN

set with a global SNR of 10 dB is enhanced with the HMT algorithm with a floor parame-

ter of β = 0.2. This experiment is done for each of the investigated wavelets and results in

a single distortion value for both the global dIS and dSEGSNR measures. The Daubechies,

Symlet, Biorthogonal 1, Biorthogonal 2 and Biorthogonal 3 wavelet families are investi-

gated by choosing the Herrmann order from the setm ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25}.
This produces twelve wavelets per family, from which a distortion curve is generated for

each of the five families. Because there is only one Haar and Discrete Meyer wavelet,

enhancing speech with them produces only a single dIS and dSEGSNR distortion value.

The dIS and dSEGSNR distortion measures are implemented as described in Chapter 3 and
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the results are shown in Figures 6.10 and 6.11.

6.6.1 The Itakura-Saito distortion (dIS) evaluation
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Figure 6.10: The Itakura-Saito dIS evaluation of different wavelet families with

different filter orders. The Itakura-Saito distortion of the noisy speech is dIS = 1.031.

From Figure 6.10, which shows the dIS distortion, the following observations are made:

� All wavelets clearly enhance speech because it outperforms the noisy distortion value

of dIS = 1.031 which is not shown in Figure 6.10.

� For most wavelets, the quality of enhanced speech starts to converge from a Her-

rmann filter order of m > 10. As the Herrmann order increases, the wavelet filters

become closer to being ideal halfband filters and therefore perform better.
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� The Haar wavelet does not perform as well as the higher-order Daubechies, Symlet

and Biorthogonal 1 wavelets. This is because the Haar wavelet has a Herrmann

order of m = 1 and is therefore not an ideal halfband filter.

� The Daubechies and Symlet wavelets show similar performance, which is expected

as they are very similar wavelets.

� The Biorthogonal 1 wavelet performance is superior to that of all other wavelets used

in this study. These filters have a short highpass and a long lowpass reconstruction

order. In image compression, the short highpass filter avoids ringing, whereas the

long lowpass filter produces good smoothing [52]. According to the dIS measure,

these are also qualities wanted for speech enhancement. It should be noted that

the Biorthogonal 1 filter is not maximally flat (see Figure 4.12) and its satisfactory

performance is surprising.

� The Biorthogonal 2 wavelet performance is inferior to that of the Biorthogonal 1

wavelet, and the Biorthogonal 3 wavelet performs even worse. The Biorthogonal 2

and Biorthogonal 3 wavelet filters deviate from being halfband filters, which leads

to an increase in errors in the reconstruction step of the DWT. Their magnitude

responses are also not nearly flat, which further induces errors.

� The Discrete Meyer wavelet performs slightly less desirably than the higher-order

Daubechies and Symlet wavelets and significantly more poorly than the Biorthogo-

nal 1 wavelet. This is unexpected, since the Discrete Meyer wavelet filters are closer

to being ideal in the bandpass and cut-off gradient regions. Figure 4.12(a) shows

that the magnitude response of the Discrete Meyer wavelet filters is more distorted

in the stopband region, compared to that of the Daubechies, Symlet and Biorthog-

onal 1 wavelets. This may be the reason for the poorer performance of the Discrete

Meyer wavelet on the dIS measure.

6.6.2 The segmental signal-to-noise ratio (dSEGSNR) evaluation

By looking at the dSEGSNR results shown in Figure 6.11 and comparing it to the dIS

results of Figure 6.10, the following observations are made:

� All wavelets, as with the dIS evaluation, drastically improve on the noisy distortion

of dSEGSNR = 6.196 which is not shown in Figure 6.11.

� Apart from the Biorthogonal 1 family (which performs worse on dSEGSNR) and the

Discrete Meyer wavelet (which shows superior dSEGSNR performance), the dIS and
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Figure 6.11: The segmental signal-to-noise ratio dSEGSNR evaluation of different

wavelet families with different filter orders. The noisy dSEGSNR = 6.196.

dSEGSNR results show similar performance for the different wavelets.

� The Biorthogonal 1 wavelet does not perform as well on the dSEGSNR measure as on

the dIS measure. This is ascribed to the magnitude response of the Biorthogonal 1

filters which is not nearly flat in the bandpass region. A residual noise is introduced

if coefficients are wrongfully attenuated. This noise can be further amplified because

of resonant peaks (non-flatness) in the magnitude response of synthesis filters. The

poor dSEGSNR performance is ascribed to this enlargement in the residual noise

power which lowers the signal-to-noise ratio.

� The Discrete Meyer dSEGSNR performance is the best of all the wavelets. This is

because its magnitude response is almost maximally flat in the bandpass region and

it has the steepest cut-off gradient. This produces the smallest residual noise power

and hence the best dSEGSNR results.
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� The Discrete Meyer and high-order Daubechies and Symlet wavelets significantly

outperform the Biorthogonal wavelets. This shows the importance of using filters

with a magnitude response which is very flat in the bandpass region.

� Only Symlet wavelets show an increase in quality as the Herrmann order increases

with m > 10. The performance of Daubechies wavelets converges, whereas the

Biorthogonal performance decreases.

As the Herrmann order increases, the magnitude response of the maximally flat

Daubechies and Symlet wavelet filters approximates an ideal halfband response.

Symlets still have a nearly linear phase response, whereas the Daubechies phase

response become more non-linear. Symlet wavelets are superior to Daubechies

wavelets at high Herrmann orders because they preserve persistence, which the

HMT utilises.

The magnitude response of Biorthogonal filters becomes more distorted with higher

Herrmann orders, which introduces more noise and explains the decrease in dSEGSNR

quality.

6.6.3 Subjective evaluation

Enhancing speech with different wavelets produces different noise artifacts which are not

necessarily captured by the objective measures. Listening to the enhanced speech is a

good way to evaluate how perceptually annoying these artifacts are.

The two sentences for subjective listening tests5 are enhanced under the same conditions

that yielded the distortion curves of Figures 6.10 and 6.11. A Herrmann order of m = 15

is used for the Daubechies, Symlet, Biorthogonal 1, Biorthogonal 2 and Biorthogonal 3

wavelet families. Using these wavelets and also denoising with the Haar and Discrete

Meyer wavelets lead to denoising with seven different wavelets.

Informal listening tests show that a difference in dIS of more than 0.05 and in dSEGSNR

of more than 0.5 can be perceived by the ear. Certain wavelets have similar residual

artifacts and three such groups can clearly be detected, which is also apparent in the dIS

and dSEGSNR distortion curves.

The three groups are given below in rank of perceptual preference, with the best listed

first. The results of the informal listening tests are compared to that of the objective

5See Appendix B.
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evaluation.

1. The Daubechies/Symlets/Discrete Meyer group

The enhanced speech using the Daubechies, Symlets and Discrete Meyer wavelets

are indistinguishable to the ear. The residual artifact sounds like white noise which

is perceptually pleasing. This agrees with both the dIS and dSEGSNR distortion

measures, where these three wavelets produced similar results. This group is per-

ceptually the most pleasing and is preferred above the other wavelets.

2. The Biorthogonal wavelets

The enhanced speech using Biorthogonal wavelets share the same type of artifact,

which sounds like coloured noise with a strong high frequency content. This artifact

is perceptually more annoying than that of the Daubechies/Symlets/Discrete Meyer

group.

The residual noise level of the Biorthogonal 2 wavelet is noticeably higher than

that of the Biorthogonal 1 wavelet. The Biorthogonal 3 wavelet has the highest

perceived noise level. This agrees with both the dIS and dSEGSNR results, where the

same pattern is clearly seen.

The Biorthogonal 1 wavelet has the best dIS values, which is in contrast with this

subjective test and the dSEGSNR results, where the Daubechies/Symlets/Discrete

Meyer group is superior. This observation verifies the fact that good performance

is dependent on both objective measures, which indicates that the Biorthogonal 1

wavelet is not a favourable choice.

3. The Haar wavelet

The enhanced speech using the Haar wavelet sounds very scratchy and by far the

worst of all the families. The residual artifact of the Haar wavelet is a blocky, step-

like signal which can clearly be heard and is very annoying. This does not show up

in the objective evaluation, where the Haar wavelet is given moderate ratings.

6.6.4 A good wavelet for speech

From the objective and subjective evaluation, it is clear that the Haar wavelet and the

Biorthogonal wavelets are inferior to the Daubechies/Symlets/Discrete Meyer group. Al-

though the Daubechies and Symlet wavelets are perceptually indistinguishable, Symlets

outperform Daubechies on the dSEGSNR objective measure, and are therefore superior to

them.
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Perceptually there is little difference between the Discrete Meyer and Symlet wavelets.

Symlets slightly outperform the Discrete Meyer wavelet on the dIS measure, whereas

the Discrete Meyer wavelet has superior dSEGSNR results. Therefore there are little to

choose between the high-order (m ≈ 20) Symlets and the Discrete Meyer wavelet. The

Discrete Meyer wavelet is used by both Bron [8] and Cohen [13] in recent wavelet-based

speech enhancement research, which leads to its choice as the best wavelet amongst those

considered for speech enhancement.

6.7 Choosing the best frame size

A signal is called stationary if its statistical properties do not change over time [36].

Speech signals are not stationary because speech consists of a sequence of phonemes each

having different properties. However, it is reasonable to assume that sections of phonemes

are stationary [36]. The quasi-stationary assumption states that segments of speech are

stationary within a frame of analysis. Most speech processing applications therefore use

a short-time approach based on frames of speech, with the frame size chosen to satisfy

the quasi-stationary assumption.

In STSA speech enhancement, which is Fourier-based, a longer frame size produces higher

frequency resolution, which is desirable. The frame size must, however, be short enough

to be inside the quasi-stationary range. Most STSA speech enhancement algorithms use

a frame size of 32 ms for speech sampled at FS = 8 kHz as in [23, 55, 58, 59, 60]. Shorter

frame sizes may be used at higher sampling frequencies, such as the 25.6-ms frame size

for FS = 10 kHz speech used in [40]. Both of these lead to 128 frequency bins per frame,

which provides fine enough frequency resolution for speech enhancement.

In addition to the quasi-stationary requirement of Fourier-based speech enhancement,

the statistical wavelet-based speech enhancement algorithms such as the HMT, HMM

and GMM also need enough training data to produce accurate models. The amount

of training data decreases as the analysis frame becomes shorter, which places a lower

limit on the frame size. If the frame is too long, the segment cannot be assumed to be

stationary and information from neighbouring phonemes will be used to model a phoneme

with completely different statistical characteristics.

An experiment is done which investigates the effect of using different frame sizes. The

TIMIT24WGN with a global SNR of 10 dB is enhanced with the HMT algorithm and

implemented as described in Section 6.3.1. The wavelet transform restricts the frame

size to be a power of two, as seen in Section 4.4.3. The sampling frequency therefore
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plays a role in choosing the frame size. Enhancing speech with FS = 8 kHz leads to a

possible frame size within the set {8ms, 16ms, 32ms, 64ms, 128ms, 256ms, 256ms} for

this experiment. Speech enhancement based on a frame size outside this set is expected

to perform poorly, since a shorter frame size implies very little training data and a longer

frame size suffers from non-stationarity.

Table 6.9 shows the dSEGSNR evaluation of the enhanced speech by using different frame

sizes. The speech-only sections (Speech) and the different phoneme groups are evaluated.

Table 6.9: The segmental signal-to-noise ratio dSEGSNR evaluation of HMT speech

enhancement using different frame sizes.

Segment size
dSEGSNR

Speech Vowels Nasals Semivowels Fricatives Stops

64 (8 ms) 9.098 13.110 4.613 12.925 2.998 2.433

128 (16 ms) 9.312 13.228 4.974 13.097 3.364 2.825

256 (32 ms) 9.501 13.335 5.387 13.259 3.641 3.107

512 (64 ms) 9.559 13.364 5.547 13.319 3.717 3.190

1024 (128 ms) 9.422 13.212 5.431 13.122 3.619 3.117

2048 (256 ms) 9.266 13.047 5.279 12.896 3.421 3.002

Noisy 6.211 11.248 -0.766 10.045 -0.255 -1.806

The dSEGSNR distortion values show that the optimum frame size for all phoneme groups is

64 ms. This is slightly unexpected compared to a 32-ms frame size, since 64-ms frames may

include neighbouring coefficients, whereas 32-ms frames are unlikely to contain more than

one phoneme. The larger amount of training data with 64-ms frames is likely responsible

for the superior dSEGSNR distortion values.

It should be noted that the performance of 32-ms frames is only slightly inferior to 64-

ms frames, which still makes it a good choice. Frame sizes of 8 ms and 16 ms are too

short and produce very little training data. The model parameters cannot be trained

accurately and therefore result in poor performance. Frame sizes of 128 ms and 256 ms

are too long and result in the analysis of non-stationary signals. The model parameters are

incorrectly trained based on coefficients from neighbouring phonemes. These inaccurate

model parameters lead to the poorer performance. It is therefore concluded that a 64-ms

frame size is the best choice for speech with FS = 8 kHz.
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6.8 Choosing the best algorithm

The statistical properties of wavelet coefficients of real-world signals are discussed in

Chapter 4.5. It would be interesting to see how successful the HMT, HMM and GMM

methods are at capturing the statistical properties of speech in the wavelet domain. It is

not a trivial task to quantify these properties or measure to what extent these properties

are present in speech signals. However, some indication of their presence is found by

examining the denoising performance of statistical wavelet-based techniques that exploit

these properties.

The four statistical techniques, namely HMT, HMM, GMM and basic Wiener, are em-

ployed. Table 6.10 indicates how the different algorithms capture the statistical properties

of wavelet coefficients.

Table 6.10: The four statistical wavelet-based speech enhancement algorithms each

exploit the indicated statistical properties of the wavelet coefficients of speech.

Method Sparsity (P3) Clustering (S1) Persistence (S2)

Wiener No No No

GMM Yes No No

HMM Yes Yes No

HMT Yes Yes Yes

6.8.1 Objective evaluation

An experiment which uses the framework discussed in Section 6.3.1 is done which investi-

gates the different algorithms over different global signal-to-noise ratios. The TIMIT24WGN

set is enhanced with the Wiener and fully trained HMT, HMM and GMM algorithms at

global SNRs of −5 dB, 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. An eight-level Discrete

Meyer wavelet transform is used, resulting in 32 ms non-overlapping analysis segments.

Figures 6.12 and 6.13 compare the dSEGSNR and dIS performance between the Wiener,

GMM, HMM and HMT speech enhancement algorithms over a range of global signal-

to-noise ratios. It is found that the distortion values are very close to each other and

therefore the Wiener method is used as a reference and the difference in dSEGSNR and dIS

between the HMT, HMM and GMM methods and the Wiener method is shown.
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Figure 6.12: Comparative segmental signal-to-noise ratio dSEGSNR evaluation of the

speech-only sections using the Wiener, GMM, HMM and HMM algorithms.

The dSEGSNR evaluation in Figure 6.12 shows two definite regions:

� Low noise levels (Global SNR > 5 dB).

At low noise levels, most of the signal coefficients are large and most noise coefficients

are small, which satisfies the HMT, HMM and GMM modelling assumptions. The

non-Gaussianity and intercoefficient dependencies of speech in the wavelet domain

can be detected by the HMT, HMM and GMM algorithms.

The HMT, HMM and GMM methods outperform the Wiener method, which indi-

cates that they do succeed in capturing non-Gaussianity. The HMT and HMM

methods also outperform the GMM method, which implies that clustering and

persistence are present. The HMT, however, only slightly outperforms the HMM

method, which implies that persistence is not as strong in speech as might be ex-

pected. The above-mentioned observations agree with Table 6.10, where algorithm

performance is expected to become more satisfactory as it captures more statistical

properties.

It should be noted that the differences between the algorithms are very small and

barely audible, which suggests that the sparsity, clustering and persistence proper-

ties of speech in the wavelet domain are not very strong.

� High noise levels (Global SNR < 5 dB).

At high noise levels Wiener denoising outperforms the more computationally inten-

sive statistical methods. Under these conditions, most of the large coefficients result

from noise instead of from the clean signal. The observed noisy coefficients become

more Gaussian and the intercoefficient dependencies are also lost.

The less satisfactory dSEGSNR performance of the HMT, HMM and GMM methods

at high noise levels can be ascribed to the statistical methods attempting to find
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patterns within the noise. The non-linear shrinkage function allows the HMT, HMM

and GMM methods to incorrectly keep the large coefficients (which is noise in this

case) and to attenuate the small coefficients (which might be signal coefficients).

The Wiener method is based on linear shrinkage and all coefficients are shrunk by

using a single multiplier. This is more desirable for the denoising of signals with a

Gaussian distribution.

The dIS evaluation in Figure 6.13 shows the following:
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Figure 6.13: Comparative Itakura-Saito dIS evaluation of the speech-only sections

using the Wiener, GMM, HMM and HMM algorithms.

� The HMT, HMM and GMM methods outperform the Wiener method for nearly

all global signal-to-noise ratios. This differs from the dSEGSNR results, which show

superior performance only for global SNRs higher than 5 dB. The dIS results do

however suggest that the HMT, HMM and GMM methods are better at preserving

perceived speech quality than the Wiener method.

� The HMT, HMM and GMM dIS performances are almost equal. The capturing of

intercoefficient dependencies does not show up on the dIS distortion measure.

The dIS and dSEGSNR evaluation suggests that the HMT method is the best wavelet-

based speech enhancement algorithm to use amongst those evaluated, but only with global

signal-to-noise ratios of 5 dB and higher. The HMM method, which is a simpler model

than the HMT, is only slightly inferior to the HMT method on the dSEGSNR measure and

is also suggested to be superior to the GMM and Wiener methods. For SNRs of 5 dB and

lower the Wiener method should be used.
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6.8.2 Formal subjective evaluation

A formal subjective evaluation is done to compare the different wavelet-based denoising

algorithms, as described in Appendix B.4. Because the objective evaluation done in

Section 6.8.1 suggests that the wavelet-based denoising methods are more suited for low

noise levels, we do the formal listening test on noisy speech recordings with a signal-to-

noise ratio of 10 dB.

The results of the listening test are shown in Table 6.11. The four statistical denoising

algorithms (HMT, HMM, GMM and Wiener) are compared. The original clean (CLN)

and un-enhanced noisy (NSY) signals are also included, to serve as reference. The re-

sults show the number of times (out of 48 trials) that the method shown on the left in

Table 6.11 is preferred to the method shown on top. Statistically significant preferences

(at 5% significance level) are indicated in boldface, following the procedure described in

Appendix B.4. The coarse model scores in the rightmost column of Table 6.11 are used

to rank the algorithms.

Table 6.11: The listening test results show the number of times (out of 48) that a row

method is preferred to a column method. Significant preferences are shown in boldface.

The total number of times that a method is preferred is shown in the Total column.

Preferred CLN HMT WIE HMM GMM NSY Total

CLN - 47/48 46/48 48/48 48/48 47/48 236/240

HMT 1/48 - 25/48 22/48 29/48 43/48 120/240

WIE 2/48 23/48 - 25/48 29/48 40/48 119/240

HMM 0/48 26/48 23/48 - 25/48 43/48 117/240

GMM 0/48 19/48 19/48 23/48 - 37/48 98/240

NSY 1/48 5/48 8/48 5/48 11/48 - 30/240

The following observations can be made:

� All the algorithms significantly improve the un-enhanced noisy signal, since their

outputs are preferred to the noisy signal in nearly all the trials. We can therefore

safely say that the wavelet-based algorithms enhance noisy speech.

� The original clean signal is significantly preferred to all other signals, being preferred

in 236 of the 240 trials. This shows that there is still room for improvement of the

denoising algorithms.
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� The differences between the HMT, HMM, GMM and Wiener algorithms are not

statistically significant. Based on this test, these algorithms can be considered to

be indistinguishable. The near-equal preference counts indicate that the evaluators

were indecisive in their choices between these algorithms.

� Although not quite significant, the GMM algorithm appears to have worse quality

than the rest of the wavelet-based methods. This difference can only be confirmed

by expanding the listening test to include more evaluators and sentences.

6.9 Conclusions

Experiments were done on a few aspects of wavelet-based speech enhancement, namely

the denoising of speech-segments, the floor parameter, the wavelet, the frame size and

a comparison between different algorithms. The conclusions of these experiments are

summarised below.

6.9.1 Denoising of speech-segments

Speech signals are divided into five different groups of phonemes which contain similar

statistics, namely vowels, nasals, semivowels, fricatives and stops. In Section 6.2.2 an

experiment, similar to the Donoho-Johnstone denoising experiment [11, 14], was done on

speech segments from these phoneme groups. It was found that the statistical algorithms,

namely Wiener, GMM, HMM and HMT denoising, are superior to the classical methods,

namely VisuShrink, SureShrink and HybridSure. These statistical methods have the most

potential to be implemented as speech enhancement algorithms.

6.9.2 The noise floor parameter

The wavelet domain represents the signal in octave frequency bands, and does not have

the fine frequency resolution of the Fourier domain. This results in a classical problem of

speech enhancement in the discrete wavelet transform (DWT), where segments of speech

are easily eliminated when attenuating wavelet coefficients. This creates gaps in the

speech spectrogram and thus high speech distortion. It was shown in Section 6.5 that this

effect clearly shows up in the Itakura-Saito dIS distortion measure, where these gaps in

the spectrogram are represented by extremely high sporadic distortion values. By using
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a noise floor, these dIS problem segments are eliminated, while the noise floor also masks

residual noise artifacts.

The effect of the floor parameter β was investigated objectively in Section 6.5.2, subjec-

tively in Section 6.5.4 and from an LPC viewpoint in Section 6.5.3. From the above-

mentioned experiments, the floor parameter is chosen to be β = 0.2.

6.9.3 The wavelet

The specific wavelet used in the DWT and IDWT is of importance. Although perfect

reconstruction is possible for all wavelets, the chosen wavelet influences the following:

1. The statistical properties of the wavelet coefficients.

An example of this is wavelet filters with linear phase. These filters preserve persis-

tence (property S2), because they preserve the alignment of the coefficients across

resolution levels. Such filters should be used when denoising with the HMT algo-

rithm, which attempts to utilise persistence.

2. The type of residual artifact.

Wrongfully attenuated wavelet coefficients result in a residual noise which is directly

characterised by the form of the wavelet itself. An example of this is the Haar

wavelet. It is a blocky wavelet and results in a perceptually annoying “scratchy”

residual artifact.

3. The level of the residual noise.

Wavelet filters which are not maximally flat in the bandpass region, enhance wrong-

fully attenuated coefficients, and hence the level of the residual noise. Biorthogonal

wavelet filters are examples of such filters.

By taking the above-mentioned factors into account, it is suggested in Section 6.6 that

the Discrete Meyer or higher-order Symlet wavelets (Herrmann order ≈ 20) should be

used for speech enhancement.

6.9.4 The frame size

Speech enhancement is frame-based and the effect of different frame sizes was investigated

in Section 6.7. A long frame size leads to more training data and therefore more accurate

model parameters. If the frame size is too long, the speech frame cannot be assumed to
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be stationary. It is experimentally shown that the best frame size for speech sampled at

FS = 8 kHz is 64 ms, although a 32-ms frame size is also a good choice.

6.9.5 Comparing HMT, HMM, GMM and Wiener speech en-

hancement

Because the HMT algorithm is a good image denoising algorithm [14, 47] and because it

attempts to capture all three statistical properties (sparsity, clustering and persistence),

it was expected to outperform the other denoising methods. It is, in contrast, shown in

Section 6.8, that the objective evaluation of the HMT, HMM and GMM algorithms show

similar results and subjectively there is very little difference between them. The HMT,

HMM and GMM algorithms are suggested to be good speech enhancement algorithms,

but only when the global signal-to-noise ratio is not too low (or the noise level not too

high).
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Chapter 7

Comparing STSA with HMTs on

speech

7.1 Introduction

In this chapter the statistical wavelet-based speech enhancement algorithms developed in

Chapter 6 are compared to the current state-of-the-art Fourier-based STSA techniques

discussed in Chapter 2. A widely-used STSA technique is the Ephraim-Malah MMSE

STSA algorithm [23], which is chosen as representative of the Fourier-based techniques.

The algorithms are evaluated by objective measures and subjective listening tests, as

described in Chapter 3.

In Section 7.2 a noise floor is introduced into the Ephraim-Malah algorithm. The noise

floor parameter β and the Ephraim-Malah decision-directed weighting factor α is objec-

tively and subjectively evaluated and chosen in Sections 7.2.1 and 7.2.2, respectively.

The Ephraim-Malah algorithm and the wavelet-based algorithms are experimentally com-

pared with each other in Section 7.3. In Section 7.3.1 global objective measures are used

for the comparison. In Section 7.3.2 the algorithms are compared on a phoneme group

level. The Ephraim-Malah algorithm and the wavelet-based algorithms are subjectively

compared in Section 7.3.3. In Section 7.4 the conclusions of this chapter are briefly sum-

marised.
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7.2 The Ephraim-Malah algorithm

The standard Ephraim-Malah speech enhancement algorithm [23] is implemented by using

the Ephraim-Malah MMSE amplitude suppression rule described in Section 2.2.1 and the

Ephraim-Malah decision-directed ξk estimate described in Section 2.2.2.

One way to mask the musical noise artifact of STSA speech enhancement based on the

power spectral subtraction rule [42], is to use a noise floor which overestimates the a

priori SNR [23]. A noise floor may also be introduced in the Ephraim-Malah algorithm by

inserting a floor parameter β into the Ephraim-Malah decision-directed ξk estimate (2.20).

The new a priori SNR estimate is given as

ξ̂k = α
|X̂pf

k |2
σ2

d(k)
+ (1− α) max [γk − 1, β ], α ∈ [ 0, 1) . (7.1)

Using (7.1) with β > 0, the a priori SNR is overestimated in the case where γk < β + 1.

It is also seen in (7.1) that the algorithm has two parameters, namely a weighting factor

α and a noise floor parameter β, that has to be chosen before implementation. The

weighting factor is suggested by Ephraim and Malah [23] to be α = 0.98, which they

found to produce the least annoying residual artifact. The floor parameter β should be

large enough to mask the musical noise, but also small enough to produce only a slight

residual noise floor.

7.2.1 Objective evaluation of the Ephraim-Malah algorithm

An experiment is done which investigates the effect of the weighting factor α and the

noise floor parameter β on objective distortion measures. The aim of this experiment is

to find the combination of α and β which produces the most desirable distortion values.

The TIMIT24WGN set, with a global SNR of 10 dB, is enhanced with the Ephraim-Malah

algorithm using half-overlapping 32 ms frames and Hanning windows as in [23]. The

weighting factor, which has a range of α ∈ [ 0, 1), is chosen from set α ∈ {0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98}. Because the floor parameter cannot be too large, it is

chosen to be in the set β ∈ {0, 0.05, 0.1, 0.2}. The dIS and dSEGSNR distortion measures

(see Section 3.2) are used to evaluate the speech-only sections of the enhanced speech.

By choosing a certain noise floor and then changing the value of α, a distortion curve is

gained for each value of β.

The dIS and dSEGSNR evaluation results are shown in Figure 7.1.
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Figure 7.1: Objective evaluation of the Ephraim-Malah algorithm by using different

values for α and β. (a) Itakura-Saito distortion (dIS). (b) Segmental signal-to-noise

ratio distortion (dSEGSNR).

Choosing α objectively

Distortion curves for the weighting factor α are created for each of the investigated noise

floor values (β ∈ {0, 0.05, 0.1, 0.2}) and for both objective measures. These curves, which

are shown in Figure 7.1, all have a similar form and yield the same conclusions in terms

of the choice of α.

The dSEGSNR measure indicates a suitable choice of the weighting factor within the range

0.2 ≤ α ≤ 0.5, while the dIS measure shows desirable performance when 0.1 ≤ α ≤ 0.4.

The weighting factor is therefore objectively chosen as α = 0.3.

Setting α = 0 is equivalent to the maximum likelihood ξk estimation approach described in
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Section 2.2.2. From especially the dSEGSNR evaluation it can be seen that as α increases,

the Ephraim-Malah decision-directed approach outperforms the maximum likelihood ap-

proach. The weighting factor α should therefore not be too small.

For high values of the weighting factor (α > 0.7), the a priori SNR ξk is mainly estimated

from the previous frame of analysis and the observed SNR of the current frame is neglected.

The distortion measures show that this leads to high speech distortion and the weighting

factor α should therefore not be too large.

Choosing β objectively

As the noise floor increases from β = 0 to β = 0.2, the dSEGSNR measure shown in

Figure 7.1(b) decreases, which imply an increase in distortion. This is expected, as a

higher noise floor leads to a higher noise power and hence a smaller signal-to-noise ratio.

The best dSEGSNR performance is therefore obtained with no noise floor (β = 0).

On the other hand, the dIS measure, shown in Figure 7.1(a), shows unfavourable per-

formance with no noise floor. This is related to the discussion on dIS problem segments

of wavelet-based denoising in Section 6.5, where characteristic information from certain

frequency bands are shown to be eliminated.

Setting β = 0.05 barely reduces the dSEGSNR performance but it shows a dramatic increase

in dIS performance as these values become smaller. This observation clearly shows that the

dIS distortion measure is especially harsh on certain frames, as described in Section 6.5.

It also gives an indication of the masking effect, where a slight noise floor, which is barely

audible (seen by the nearly equal dSEGSNR performance), masks the musical noise artifact

(seen by the great difference in the dIS performance).

With β = 0.1, the dIS distortion values show a slight increase in performance, whereas

the dSEGSNR distortion values become less desirable, indicating that the noise floor is on

the verge of being too high.

With β = 0.2, the noise floor is too high and the dSEGSNR performance shows a dramatic

decrease with little gain in dIS performance. As mentioned in Section 6.5.4, an excessive

noise floor level defeats the purpose of denoising because the residual artifact becomes

very noisy.

According to the dIS and dSEGSNR distortion measures, the noise floor parameter should

therefore be chosen to be in the range 0.05 ≤ β ≤ 0.1.
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7.2.2 Subjective evaluation of the Ephraim-Malah algorithm

In Section 7.2.1 the weighting factor α and the noise floor parameter β of the Ephraim-

Malah algorithm were objectively investigated. Two experiments are done here which

investigate the subjective effect of these two parameters, via informal listening tests.

Choosing α subjectively

From the objective evaluation in Section 7.2.1 it was suggested that α = 0.3 should be

used, whereas Ephraim and Malah [23] subjectively suggests a totally different value,

namely α = 0.98.

The effect of the weighting factor is evaluated by enhancing the two sentences for sub-

jective evaluation1. The noisy sentences are corrupted with WGN to have a global SNR

of 10 dB and are then enhanced by the Ephraim-Malah algorithm. Enhancement is done

without a noise floor (β = 0), because the various residual artifacts, which a noise floor

would mask, are of interest here.

The following values for the weighting factor α are implemented and evaluated:

� With α = 0, the musical noise residual artifact is strong and very annoying.

� With α = 0.98, the residual noise is colourless and much less annoying than with

α = 0, which was also found by Ephraim-Malah in [23]. Although there is barely

any “musical” noise, the enhanced speech is distorted and sounds very “hollow” (as

if spoken into a bottle) and therefore results in a reduction in speech quality.

� Setting α = 0.3 produces high speech quality but also a level of musical noise. The

musical noise is less annoying than with α = 0, however.

The weighting factor α can therefore be seen as a parameter which creates a trade-off

between musical noise and “hollow” speech distortion. Comparing this to the objective

evaluation of Section 7.2.1, it is seen that satisfactory dIS and dSEGSNR performance

correspond to high speech quality but also a certain level of “musical” noise.

1See Appendix B.
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Choosing β subjectively

The aim of using a noise floor is to set its level such that it masks musical noise while

being only slightly audible itself.

The two sentences for subjective evaluation are again corrupted with WGN to have a

global SNR of 10 dB. These are then enhanced with the Ephraim-Malah algorithm,

using a weighting factor of α = 0.3 and varying the floor parameter within the set

β ∈ {0, 0.05, 0.1, 0.2}.

The informal listening tests show that a noise floor parameter of 0.05 ≤ β ≤ 0.1 is

successful in masking musical noise. This corresponds to the objective evaluation of

Section 7.2.1.

7.3 Comparing Fourier-based and wavelet-based speech

enhancement

In this section the Fourier-based Ephraim-Malah MMSE STSA [23] algorithm and the

statistical wavelet-based algorithms (Wiener, GMM, HMM and HMT) are compared with

each other.

It is expected that the Ephraim-Malah algorithm will outperform the wavelet-based meth-

ods because of its finer frequency resolution and its smoother half-overlapping analysis

technique.

The wavelet transform represents the signal in octave frequency bands, some of which

are very large compared to that of the Fourier domain. Although the poor frequency

resolution of the wavelet domain is not optimal for speech enhancement, the wavelet

domain has a fine time resolution in the larger frequency bands. The wavelet-based

algorithms might therefore perform better than Fourier-based algorithms on segments

of speech which change abruptly, which may increase intelligibility. The Fourier-based

and wavelet-based speech enhancement methods are also expected to have very different

residual artifacts.

The algorithms are implemented with a noise floor parameter. The HMT algorithm

uses an eight-level discrete Meyer wavelet decomposition, which results in 32-ms non-

overlapping analysis frames. The wavelet-based floor parameter of βW = 0.2 is im-

plemented in (6.4). These parameters are chosen from the experiments done in Sec-
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tions 6.5.2 to 6.5.4. The Ephraim-Malah algorithm is implemented as in Section 7.2, with

a weighting factor of α = 0.3 and a noise floor parameter of βF = 0.05.

The Itakura-Saito dIS and segmental signal-to-noise ratio dSEGSNR measures are used as

objective evaluation. The objective evaluation is done in two parts, as suggested by [33]:

1. In Section 7.3.1 global distortion measures are computed for a range of different

global signal-to-noise ratios. This evaluates algorithm performance under different

noise levels.

2. In Section 7.3.2 distortion measures are computed for the five different phoneme

groups. This evaluates algorithm performance on a phoneme level.

7.3.1 Global objective measures

In this experiment global distortion measures are calculated over a range of global SNRs

to investigate how the algorithms perform under different levels of noise.

The four statistical wavelet-based speech enhancement algorithms, namely Wiener, GMM,

HMM and HMT (see Sections 5.6 to 5.10), are compared to the Ephraim-Malah MMSE

STSA algorithm [23]. The wavelet-based algorithms are not expected to perform well

under high noise levels. This is because the observed signal loses its non-Gaussianity

and inter-coefficient dependencies, which the statistical algorithms (HMT, HMM and

GMM) attempt to capture. The wavelet-based algorithms might perform satisfactory

and even outperform the Ephraim-Malah algorithm for medium to low noise levels, where

the model definition of the wavelet-based algorithms correspond to the statistics of the

observed signal.

The TIMIT192WGN set2, which contains 192 sentences with global signal-to-noise ratios

in the set {−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB}, is enhanced using the Ephraim-

Malah algorithm and wavelet-based algorithms, all having parameter values as described

in Section 7.3.

Figures 7.3.1 and 7.3.1 show the dSEGSNR and dIS global objective evaluation of the differ-

ent algorithms over a range of global signal-to-noise ratios. Because the performance of the

wavelet-based algorithms are very similar, the difference between the wavelet-based meth-

ods and the Ephraim-Malah algorithm is also shown (in Figures 7.3.1(b) and 7.3.1(b)) to

2See Appendix B.
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visually enlarge the differences between them. It should also be noted that the segmen-

tal signal-to-noise ratio of the noisy speech (dotted line) in Figure 7.3.1(a) differs from

the global signal-to-noise ratio (y-axis) because the dSEGSNR measure is averaged in the

log-domain rather than the linear domain.

−5 0 5 10 15 20
−10

−5

0

5

10

15

20

Global SNR

d S
E

G
S

N
R

Ephraim−Malah
HMT
Noisy speech

−5 0 5 10 15 20

−0.5

0

Global SNR

∆ 
d S

E
G

S
N

R

Ephraim−Malah
HMT
HMM
GMM
Wiener

(b)

(a)

Figure 7.2: (a) The global dSEGSNR evaluation over a range of global signal-to-noise

ratios. Higer dSEGSNR values imply better performance. (b) The wavelet-based

algorithms relative to the Ephraim-Malah algorithm

The following observations are made from the dSEGSNR and dIS experimental results:

� Both the Ephraim-Malah and the wavelet-based algorithms clearly enhance speech

for all noise levels. As the noise level decreases (which is an increase in global

SNR) the algorithms perform only slightly better than the unprocessed noisy signal.

This is expected since additive WGN of low magnitude does not distort speech

significantly.

� The most interesting observation is that the wavelet-based methods outperform the

Ephraim-Malah algorithm on the dIS measure (lower is better), whereas the opposite
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Figure 7.3: (a) The global dIS evaluation over a range of global signal-to-noise ratios.

Lower dIS values imply better performance. (b) The wavelet-based algorithms relative to

the Ephraim-Malah algorithm

is true for the dSEGSNR measure (higher is better), which shows the Ephraim-Malah

algorithm to be superior. It is deduced that the Ephraim-Malah algorithm reduces

the noise strongly (seen from the superior dSEGSNR results) at the cost of speech

quality (seen from the inferior dIS results). Because of the poor frequency resolution

of the wavelet domain, the wavelet-based algorithms need a larger noise floor to

retain speech quality. In this experiment, the noise floor is chosen to produce the

best trade-off between noise reduction and speech quality from the experiments done

in Sections 6.5 and 7.2.

� At low noise levels (15 dB to 20dB) the Ephraim-Malah algorithm only slightly out-

performs the wavelet-based methods on the dSEGSNR measure, whereas the wavelet-

based methods outperform the Ephraim-Malah algorithm on the dIS measure. This

shows that the wavelet-based methods are able to detect the non-Gaussianity and

inter-coefficient dependencies of the unobserved clean signal. It implies that the
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HMT, HMM and GMM methods are superior to the Ephraim-Malah algorithm in

retaining speech quality at low noise levels.

� As the noise level increases from moderate to high levels (decrease in global SNR),

the Ephraim-Malah method starts to noticeably outperform the wavelet-based meth-

ods on the dSEGSNR measure, while their dIS values are almost equal. This is ex-

pected, since the inter-coefficient dependencies and non-Gaussian statistics of the

underlying clean signal become less apparent.

� The dSEGSNR distortion measure shows that the HMT and HMM algorithms perform

better that the Wiener and GMM algorithms at low noise levels. This difference

is very small, however. The HMT, HMM and GMM perform equally well on the

dIS distortion measure. This is unexpected, since a bigger difference between the

performance of these algorithms would be expected.

From the global objective measures it is deduced that the HMT and HMM algorithms

perform similarly, are slightly superior to the GMM algorithm and outperforms the Wiener

algorithm. The persistence and clustering of speech coefficients are not strong and only

present at low noise levels. It may also be argued that the statistical methods are not

suitable to capture the type of clustering and persistence found in speech coefficients.

The main conclusion, however, is that the Ephraim-Malah algorithm reduces more noise

than the wavelet-based methods, although the latter produces better speech quality at

low noise levels.

7.3.2 Phoneme class objective measures

In this experiment the algorithm performance is evaluated on a phoneme group level.

Speech is divided into the five phoneme groups described in Section 6.2.1, namely vowels,

nasals, semivowels, fricatives and stops.

Because the Fourier domain uses sinusoidal basis functions, it is suitable to represent

signals which have a harmonic nature. Such signals are represented by only a few large

Fourier coefficients. It is expected that speech enhancement in the Fourier domain will

perform well on harmonic phonemes such as nasals and semivowels. The wavelet domain

has a multiresolution representation and it is therefore expected that the wavelet-based al-

gorithms might outperform the Fourier-based Ephraim-Malah algorithm on non-harmonic

phonemes such as fricatives and stops.

The TIMIT192WGN set with a global signal-to-noise ratio of 10 dB is enhanced with the
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Ephraim-Malah and HMT algorithms, with parameter values as described in Section 7.3.

By using the TIMIT phoneme labels, a single global objective measure is computed for

each of the five phoneme groups.

The dSEGSNR and dIS distortion values are shown in Tables 7.1 and 7.2. The Speech

columns refer to the global distortion measures for the speech-only sections which corre-

spond to Figures 7.3.1 and 7.3.1. The number of analysis frames are shown in brackets.

Table 7.1: The phoneme group dSEGSNR evaluation of the Ephraim-Malah, HMT and

noisy speech for the TIMIT192WGN set with a global SNR of 10 dB.

dSEGSNR (# of Frames)

Algorithm (55075) (27227) (4516) (5904) (11860) (3752)

Speech Vowels Nasals Semivow. Fric. Stops

Ephraim-Malah 10.232 14.107 5.957 13.270 3.735 2.963

HMT method 9.698 13.425 5.249 12.321 3.621 2.951

Noisy speech 6.320 11.045 -0.961 8.788 -0.167 -1.870

Table 7.2: The phoneme group dIS evaluation of the Ephraim-Malah, HMT and noisy

speech for the TIMIT192WGN set with a global SNR of 10 dB.

dIS (# of Frames)

Algorithm (55075) (27227) (4516) (5904) (11860) (3752)

Speech Vowels Nasals Semivow. Fric. Stops

Ephraim-Malah 0.672 0.496 1.045 0.773 0.799 0.922

HMT method 0.574 0.429 1.002 0.776 0.567 0.696

Noisy speech 1.109 0.797 2.484 1.738 0.924 1.240

Tables 7.1 and 7.2 highlight the following:

� Both the Ephraim-Malah and wavelet-based methods clearly enhance speech for all

phoneme groups. This is seen by comparing algorithm performance with that of the

unprocessed noisy speech.

� The dSEGSNR values of Table 7.1 show that the Ephraim-Malah algorithm clearly

outperforms the wavelet-based methods on nasals and semivowels, whereas the per-

formance of fricatives and stops are very similar. This is to be expected, since nasals
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and semivowels are phonemes with a high harmonic content which suits the Fourier-

based Ephraim-Malah algorithm. The wavelet-based algorithms have wavelets as

basis functions, which are not ideal to model harmonic signals.

� The dIS values of Table 7.2 show that the wavelet-based algorithms outperform the

Ephraim-Malah algorithm on fricatives and stops, whereas the performance of nasals

and semivowels are very similar. The wavelet-based algorithms perform better on

non-harmonic signals such as stops, which are signals with abrupt changes, and

fricatives, which are essentially white.

� In the case of vowels, the wavelet-based methods perform better according to dIS,

whereas the Ephraim-Malah algorithm perform better according to dSEGSNR. Be-

cause vowels are far more frequent than any of the other phoneme groups, this

pattern is also seen in the performance of the speech-only sections. This obser-

vation confirms the experimental discussion of Section 7.3.1, which states that the

Ephraim-Malah algorithm eliminates more noise than the wavelet-based algorithms,

but at the cost of speech quality.

The conclusion is made that Fourier-based algorithms perform better on harmonic-type

phonemes, such as nasals and semivowels, while the wavelet-based algorithms are more

suitable for phonemes which are not harmonic in nature, such as stops and fricatives.

However, this is only true for low noise levels (global SNR > 5 dB) which suit the wavelet-

based algorithms.

7.3.3 Subjective evaluation

To comment on the residual artifacts of the Fourier-based and wavelet-based algorithms,

it is necessary to make a subjective comparison. It is also a good way to investigate the

level of background noise and speech distortion.

An informal subjective listening test is done, where the two sentences for subjective

evaluation are corrupted by WGN to have a global SNR of 10 dB, and enhanced with the

Ephraim-Malah MMSE STSA algorithm and the HMT algorithm. The algorithms use

the parameters as chosen in Section 7.3.

From the informal listening tests, there are three main differences between the algorithms:

1. Their residual artifacts.

2. Their level of noise reduction and speech quality.
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3. Their capability to enhance voiced and unvoiced phonemes.

The residual artifacts

The residual artifacts of the two types of algorithms differ greatly.

The Ephraim-Malah MMSE STSA algorithm is Fourier-based, and its residual artifact

is the “musical” noise commonly observed in STSA techniques. The residual noise is

random sinusoids spanning the total length of a frame.

The wavelet-based HMT algorithm has no “musical” noise, but rather a “scratchy” artifact

because of its multiresolution decomposition. The residual noise consists of actual wavelets

of variable time spans, depending on the resolution level.

Noise reduction and speech quality

The Ephraim-Malah MMSE STSA algorithm reduces more noise than the HMT algo-

rithm. This is because of the finer frequency resolution of the Fourier domain compared

to the wavelet domain. The HMT algorithm requires a large noise floor parameter, com-

pared to the Ephraim-Malah MMSE STSA algorithm, to retain speech quality.

Voiced and unvoiced sounds

The wavelet-based HMT algorithm leads to crisper unvoiced sounds compared to the

Ephraim-Malah MMSE STSA algorithm. This is due to the multiresolution framework

of the wavelet domain.

The voiced phonemes are of higher quality with the Fourier-based Ephraim-Malah MMSE

STSA algorithm than with the HMT algorithm. This is because of the fine frequency

resolution of the Fourier domain, which represents harmonic signals more compactly than

the wavelet domain.

7.3.4 Formal subjective evaluation

A formal subjective evaluation is done to compare the wavelet-based HMT denoising

algorithm [14] with the Fourier-based Ephraim-Malah algorithm [23], as described in
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Appendix B.4. The listening test formed part of the test described in Section 6.8.2 and

all recordings therefore have a signal-to-noise ratio of 10 dB.

The results of the listening test are shown in Table 7.3. The two algorithms Hidden

Markov Tree (HMT) and Ephraim-Malah (STSA) are compared. The original clean

(CLN) and un-enhanced noisy (NSY) signals are also included, to serve as reference.

The results show the number of times (out of 48 trials) that the method shown on the left

in Table 7.3 is preferred to the method shown on top. Statistically significant preferences

(at 5% significance level) are indicated in boldface, following the procedure described in

Appendix B.4. The coarse model scores in the rightmost column of Table 7.3 are used to

rank the algorithms.

Table 7.3: The listening test results show the number of times (out of 48) that a row

method is preferred to a column method. Significant preferences are shown in boldface.

The total number of times that a method is preferred is shown in the Total column.

Preferred CLN HMT STSA NSY Total

CLN - 47/48 47/48 47/48 141/144

HMT 1/48 - 27/48 38/48 66/144

STSA 1/48 21/48 - 35/48 57/144

NSY 1/48 10/48 13/48 - 24/144

The following observations can be made:

� The results found in Section 6.8.2 are verified in this experiment, where all the

algorithms significantly improve the un-enhanced noisy signal and the original clean

signal is significantly preferred to all other signals.

� The difference between the HMT and STSA algorithms is not quite statistically

significant. Based on this test, these algorithms can be considered to be equivalent,

although the HMT algorithm appears to be slightly more preferred to STSA. This

difference can only be confirmed by expanding the listening test to include more

evaluators and sentences.

7.4 Conclusions

In this chapter the parameters for the Ephraim-Malah algorithm are chosen and this algo-

rithm is then compared to the statistical wavelet-based speech enhancement algorithms.
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The parameters for the Ephraim-Malah algorithm are chosen in Section 7.2. The noise

floor parameter is selected as 0.05 ≤ β ≤ 0.1 and the weighting factor as α = 0.3, based

on objective distortion measures. These values are then subjectively verified and it is also

seen that the weighting factor α produces a trade-off between “musical” noise and speech

distortion.

The Ephraim-Malah algorithm and the wavelet-based algorithms are compared in Sec-

tion 7.3. From the experiments using global objective measures in Section 7.3.1, it is

deduced that the HMT and HMM algorithms perform almost equally well and slightly

better than the GMM algorithm. These wavelet-based methods does not reduce the noise

as much as the Ephraim-Malah algorithm, but they retain speech quality better under

light noise conditions. In Section 7.3.2 the algorithms are compared on a phoneme group

level. The Fourier-based Ephraim-Malah algorithm performance is superior on harmonic-

type phonemes, such as nasals and semivowels, while the wavelet-based algorithms are

more suitable for phonemes which are not harmonic in nature, such as stops and frica-

tives. The subjective evaluation in Section 7.3.3 shows that the Ephraim-Malah algorithm

has a “musical” noise residual artifact, whereas the wavelet-based algorithms produce a

“scratchy” residual artifact.
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Chapter 8

Conclusions

The conclusions of the theoretical and experimental research done in this study are dis-

cussed in this chapter. Section 8.1 briefly summarises the conclusions of the experiments

done in this study. Several differences between speech enhancement and image denoising

are discussed in Section 8.2. Recommendations for future research are given in Section 8.3.

8.1 Conclusions of this study

The wavelet-based Hidden Markov Model (HMM) [14] denoising algorithm is implemented

in Chapter 5. We propose that the HMM denoising algorithm outperforms the state-of-

the-art Hidden Markov Tree [14] algorithm on the Donoho-Johnstone [19] Doppler test

signal. Although the Doppler signal is not representative of typical images, it is similar

to seismic, radar and sonar signals.

In Chapter 6, different wavelet-based speech enhancement algorithms were investigated.

The statistical speech enhancement algorithms, namely Wiener, GMM, HMM and HMT,

are superior to the classical methods, namely VisuShrink, SureShrink and HybridSure.

The use of a noise floor eliminates problem segments and also masks residual noise ar-

tifacts. The noise floor is suggested to be β = 0.2. The specific wavelet used in the

wavelet transform influences the statistical properties of the wavelet coefficients, the type

of residual artifact and the level of the residual noise. It is suggested that the Discrete

Meyer or higher-order Symlet wavelets (Herrmann order ≈ 20) should be used for speech

enhancement. The best frame size for speech sampled at FS = 8 kHz is 64 ms. This pro-

duces the maximum amount of training data while still being within the quasi-stationary

range of speech. It is found that the HMT, HMM and GMM algorithms yield similar
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results for speech enhancement and should only be used under light noise conditions.

In Chapter 7, wavelet-based speech enhancement is compared to standard Fourier-based

speech enhancement. It is found that the Fourier-based algorithms outperform the wavelet-

based methods in very noisy conditions (global SNR < 5 dB). At low noise levels,

the Fourier-based algorithms perform better with harmonic-type phonemes, whereas the

wavelet-based algorithms are more suitable for phonemes which are not harmonic in na-

ture. The Fourier-based Ephraim-Malah MMSE STSA algorithm [23] produces “musical”

noise, whereas the wavelet-based methods produce speech with a “scratchy” residual noise.

8.2 Speech enhancement vs image denoising

There are a number of differences between speech enhancement and image denoising:

� Speech signals are one-dimensional, whereas images are two-dimensional.

� A whole image is denoised in a single step, whereas speech enhancement is frame-

based, which implies a separate denoising step for each frame.

� The typical global SNR differs between noisy speech signals and images.

� Statistical properties of the wavelet coefficients of speech signals and images differ.

This raises a few questions:

1. Is there enough training data in a speech frame to train the parameters of statistical

models accurately?

2. Are the HMT, HMM and GMM suitable models to capture the statistical properties

of the wavelet coefficients of speech?

3. Is the global SNR found in speech enhancement problems too low to capture the

statistical properties?

These questions are answered in the following sections.
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8.2.1 The training data of speech vs images

Because speech signals are one-dimensional and the enhancement process is frame-based,

there is far less training data available for speech enhancement than for image denoising.

For example, a frame of speech containing 256 samples results in 256 wavelet coefficients.

The highest resolution level contains 128 samples, the second highest resolution level

contains 64 samples, and so forth. In a 256 × 256 image, the highest resolution level

contains 128 × 128 = 16384 samples and the second highest resolution level contains

64×64 = 4096 samples. Clearly, the two-dimensional image yields far more training data

compared to a one-dimensional speech frame. Although HMT denoising works well for

images, it may be argued that there is too little training data for the statistical speech

enhancement algorithms to have accurate model parameters.

It is, however, shown in Section 5.11 that the statistical HMT and HMM methods are still

the superior wavelet-based denoising algorithms for the Donoho-Johnstone test signals.

These signals are one-dimensional and contain a mere 1024 samples, which is similar to a

speech frame. Because of this, it is deduced that there is enough training data in a speech

frame, at least at the higher resolution levels. It is also expected that the statistical

algorithms will perform better if the speech signals are recorded at a higher sampling

rate.

8.2.2 Statistical properties of speech vs images

The HMT, HMM and GMM methods focus on three main statistical properties of wavelet

coefficients, namely sparsity, clustering and persistence. It is concluded in Section 6.8 that

these properties are not as strongly present in speech as in images. However, under light

noise conditions these properties have enough presence to be useful.

Figure 8.1 shows the clean Blocks signal, its wavelet decomposition and the time-frequency

tiling view of the wavelet coefficients, compared to that of clean voiced speech. The

Blocks signal from the Donoho-Johnstone test signals [16] is a so-called “punctured smooth

signal”, a quality typically associated with images. The example of voiced speech is from

the TIMIT [28] sentence “timit/train/dr1/fcjf0/sa1.wav”. The three wavelet properties

are discussed separately below.
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Figure 8.1: The Blocks signal compared to voiced speech. (a) The Blocks signal.

(b) Wavelet function of Blocks (Haar wavelet decomposition). (c) Time-frequency tiling

view of the coefficients of Blocks (normalised across scale). (d) An example of voiced

speech. (e) Wavelet function of voiced speech (Discrete Meyer wavelet decomposition).

(f) Time-frequency tiling view of the coefficients of voiced speech (also normalised).

Sparsity

It is seen in Figure 8.1(b) that the coefficients of Blocks are very sparse. There are a

small number of large coefficients and a large number of small coefficients, with the large

coefficients evenly spread around zero. This leads to the zero-mean, two-state model of

the GMM, HMM and HMT algorithms. Figure 8.1(e) shows coefficients of voiced speech.

These coefficients do have a non-Gaussian distribution, but they are not as sparse as those

of Blocks.

Clustering

The HMT algorithm attempts to capture clustering by averaging statistical information

over pairs of two neighbouring wavelet coefficients. The HMM algorithm is more sophisti-

cated in its attempt to capture clustering. It models first-order Markovian dependencies

within each resolution level.

It is seen in Figure 8.1(b) that the clusters of Blocks are of short duration and large in

magnitude compared to surrounding coefficients. The clusters of voiced phonemes differ

greatly from that of the Blocks signal (or the typical image). These clusters, which are
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seen in Figure 8.1(e), are spread over a large number of coefficients and they are very noisy.

Their spacing is also related to the fundamental pitch period. This is seen by comparing

the six pitch pulses of Figure 8.1(d) with the six clusters in the highest resolution level

(to the right of the last dotted line) of Figure 8.1(e).

Certain properties of the clusters found in voiced speech cannot be captured by the HMT

algorithm, but are utilised by the HMM algorithm. This ability can be understood from

its two-state ergodic model, shown in Figure 8.2.

S L

aSL

aLLaSS

aLS

Figure 8.2: The two-state ergodic model of the HMM, with the two states, small and

large, and the state probabilities shown.

If both the self-loop transition probabilities aSS and aLL are large, the HMM effectively

describes coefficient sequences containing consecutive runs of large and small coefficients.

The strength of aLL gives an indication of the cluster length (number of consecutive large

coefficients), while aSS describes the spacing between clusters (number of consecutive

small coefficients). This inherent ability to model periodic clusters can explain why the

HMM is more suitable than the HMT for describing the clusters found in speech.

Persistence

From Figure 8.1(c) and (f) it is seen that persistence of voiced speech is not as strong

as that of Blocks (or images). However, the persistence of speech does coincide with the

pitch pulses, as seen by comparing Figure 8.1(d) with Figure 8.1(f).

8.2.3 The typical global SNR of speech vs images

In the Donoho-Johnstone denoising experiment (see Section 5.11), which is a standard test

for wavelet denoising algorithms, the global signal-to-noise ratio is approximately 17 dB.

Speech enhancement research focuses more on denoising speech which is corrupted with

a high level of noise (global SNR in the order of 0 dB). Speech enhancement is therefore

a more difficult problem, since it implies denoising under heavier noise conditions. The
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high noise levels reduce the presence of the statistical properties of the underlying clean

speech signal. It is found in Section 6.8 that the statistical methods should only be used

when enhancing speech corrupted by light noise, with a global SNR of 5 dB and higher.

8.3 Future research

8.3.1 Domain recommendations

The wavelet packet domain has recently proved to be successful in speech enhance-

ment [3, 4, 13, 27]. It has a multiresolution structure with many possible decompositions,

ranging from the wavelet decomposition (which is a special case of the wavelet packet

decomposition) to the uniform decomposition (which is closely related to the Fourier do-

main). A critical-band wavelet packet decomposition, which approximates a Bark or Mel

scale, has also been successfully used [3, 4, 13]. The GMM and HMM wavelet-based

speech enhancement methods developed in this study can easily be implemented in a

critical-band wavelet packet domain. The HMT algorithm cannot be implemented in the

wavelet packet domain, because it needs a binary tree structure in the time-frequency

view of the coefficients, which only the wavelet domain provides.

It is suggested that the GMM and HMM could be used to exploit the non-Gaussianity

and clustering of the coefficients of the wavelet packet domain. A problem with this is

that the wavelet packet domain has a finer frequency resolution than the wavelet domain,

and therefore provides less training data per resolution level. The redundant bark-scaled

wavelet packet domain of Cohen [13] yields more training data for each resolution level

and might therefore be a better transform for the statistical methods.

8.3.2 Sampling rate

All the experiments in this study are done on speech recordings with a sampling rate

of FS = 8 kHz, because it is the practice in most research done on speech enhance-

ment [23, 55, 58, 59, 60]. However, this is not the only standard used in speech research.

Other popular sampling rates include 16 kHz as used in TIMIT [28], 20 kHz as used by

Bagshaw [2], and the Compact Disc (CD) rate of 44.1 kHz.

Since a higher sampling rate increases the amount of training data for the GMM, HMM

and HMT algorithms, they might perform even better. It is recommended that exper-
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iments should be done with speech signals recorded at a higher sampling rate than the

FS = 8 kHz used in this study.

8.3.3 Clusters of speech

It is suggested that future research should use more sophisticated methods to model

the clusters found in speech. Because the speech-like clusters are very noisy, as seen in

Figure 8.1(e), the following suggestions are made for the HMM algorithm in either the

wavelet domain or the wavelet packet domain:

� Use an HMM with higher-order Markovian dependencies to account for the speech-

like clusters, which are noisy and spread over a large number of coefficients.

� Train the HMM model on a smooth lowpass version of the observed coefficients and

then use this model to attenuate the observed noisy coefficients.

� Enhance the clusters with the Teager energy operator as in [3, 4] and then train the

HMM model on these altered coefficients.

8.3.4 Pitch tracking

As seen in Figure 8.1(d) and (f), the persistence in the wavelet domain coincides with the

fundamental period of voiced speech. The frame-based HMT algorithm can be used to

extract the position of the pitch pulses by using the persistence property of the coefficients.

The HMT model could be trained on the clean speech signal, which will then enable the

use of the HMT conditional probabilities, (5.75) and (5.76). The conditional probability

P (si = L|w,M) is the probability that a coefficient is large, whereas the probability

P (si = L, sp(i) = L|w,M) gives an indication of the persistence of large coefficients. It

is expected that the wavelet coefficients for which these probabilities are high, represent

the position of the pitch pulses. The HMT can therefore be used as the basis of a pitch

tracker.
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Appendix A

The Itakura-Saito distortion measure

The Itakura-Saito distortion measure [29, 33] dIS is calculated on a frame-by-frame basis,

where dIS(x, x̂) denotes the Itakura-Saito distortion between clean frame x[n] and denoised

frame x̂[n].

The all-pole (or LP or AR) model of the current frame under analysis models the power

spectral density of the frame as [29]

f(ω) =
σ2

|A(ejω)|2 , (A.1)

where f(ω) is referred to as the linear prediction (LP) power spectrum. It is a non-negative

even function of ω, which is the normalised frequency ranging from −π to π, where π

corresponds to half the sampling frequency FS/2. The polynomial A(ejω) =
∑P

k=0 ake
−jk ω

with a0 = 1 is the transfer function of the linear prediction analysis filter of order P and

the term σ2 is the all-pole gain or prediction error power [15].

The Itakura-Saito distortion measure dIS describes the spectral matching properties of

linear prediction. It is influenced by the similarity or difference between the LP power

spectrum of the clean frame

fc(ω) =
σ2

c

|Ac(ejω)|2 , (A.2)

and the LP power spectrum of the denoised frame

fd(ω) =
σ2

d

|Ad(ejω)|2 . (A.3)

The Itakura-Saito distortion is given as [29]

dIS(x, x̂) =

∥∥∥∥
fc(ω)

fd(ω)
− ln

fc(ω)

fd(ω)
− 1

∥∥∥∥
1

. (A.4)
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The L1-norm in (A.4) is [29]

‖g(ω)‖1 =
1

2π

∫ π

−π

|g(ω)| dω . (A.5)

Using (A.5) and noting that for any real u, u− lnu− 1 ≥ 0, the dIS measure in (A.4) can

be written as

dIS(x, x̂) =
1

2π

∫ π

−π

{
fc(ω)

fd(ω)
− ln

fc(ω)

fd(ω)
− 1

}
dω . (A.6)

The prediction error power σ2 can be written as [29]

σ2 = exp

{
1

2π

∫ π

−π

ln [f(ω)] dω

}
. (A.7)

Substituting (A.7) into (A.6) leads to

dIS(x, x̂) =
1

2π

∫ π

−π

fc(ω)

fd(ω)
dω + ln

σ2
d

σ2
c

− 1

=
1

2π

∫ π

−π

σ2
c |Ad(e

jω)|2
σ2

d |Ac(ejω)|2 dω + ln
σ2

d

σ2
c

− 1

(A.8)

The autocorrelation vector r = [rxx(−P ) . . . rxx(−1) rxx(0) rxx(1) . . . rxx(P )] is used

to create the autocorrelation matrix R, as

R =




rxx(0) rxx(1) · · · rxx(P )

rxx(−1) rxx(0) · · · rxx(P − 1)
...

...
. . .

...

rxx(−P ) rxx(−P + 1) . . . rxx(0)




(A.9)

The linear prediction coefficient (LPC) vector is given as

a = [a0 a1 . . . aP ]T . (A.10)

A Toeplitz matrix, such as Rc, can be written in a Toeplitz form Tc(ad) which is associated

with the LP power spectrum fc(ω) [29]

Tc(ad) =
1

2π

∫ π

−π

∣∣Ad(e
jω)

∣∣2 fc(ω)dω

=
1

2π

∫ π

−π

∣∣Ad(e
jω)

∣∣2 σ2
c

|Ac(ejω)|2 dω

= aT
d Rcad .

(A.11)
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Using (A.11), the Itakura-Saito in (A.8) can be written as

dIS(x, x̂) =
aT

d Rcad

σ2
d

+ ln
σ2

d

σ2
c

− 1 . (A.12)

Because [15, p328]

σ2
c = aT

c Rcac and σ2
d = aT

d Rdad , (A.13)

the Itakura-Saito distortion can also be written as

dIS(x, x̂) =
aT

d Rcad

aT
d Rdad

+ ln
σ2

d

σ2
c

− 1 , (A.14)

or, as given in [33], as

dIS(x, x̂) =

[
σ2

c

σ2
d

] [
aT

d Rcad

aT
c Rcac

]
+ ln

σ2
d

σ2
c

− 1 . (A.15)

159



Appendix B

The TIMIT database

B.1 The TIMIT192WGN core test set

The TIMIT core test set is defined in [28] to be 192 sentences from the /timit/test/

directory in the database. The data contains sentences from 24 speakers, two male and

one female, from each dialect region. The set contains all si and sx sentences from the

speakers shown in Table B.1. When white Gaussian noise is added to these sentences, the

data set is referred to as the TIMIT192WGN set.

Table B.1: The TIMIT core test set are 192 selected sentences from /timit/test/.

It includes all si and sx sentences from the shown speakers.

Region Female Male

dr1 felc0 mdab0 mwbt0

dr2 fpas0 mtas1 mwew0

dr3 fpkt0 mjmp0 mlnt0

dr4 fjlm0 mlll0 mtls0

dr5 fnlp0 mbpm0 mklt0

dr6 fmgd0 mcmj0 mjdh0

dr7 fdhc0 mgrt0 mnjm0

dr8 fmld0 mjln0 mpam0
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B.2 The TIMIT24WGN training set

The TIMIT24WGN training set used in this study is similar to the TIMIT core test set.

It is a smaller set and contains the 24 sentences from the /timit/train/ directory which

are shown in Table B.2.

Table B.2: The TIMIT training set are 24 selected sentences from /timit/train/.

Region Female Male

dr1 fcjf0/si1027 mcpm0/si1194 mdac0/si1261

dr2 faem0/si1392 marc0/si1188 mbjv0/si1247

dr3 falk0/si1086 madc0/si1367 makb0/si1016

dr4 falr0/si1325 maeb0/si1411 marw0/si1276

dr5 fbjl0/si1552 mbgt0/si1341 mchl0/si1347

dr6 fapb0/si1063 mabc0/si1620 majp0/si1074

dr7 fblv0/si1058 madd0/si1295 maeo0/si1326

dr8 fbcg1/si1612 mbcg0/si2217 mbsb0/si1353

B.3 Informal listening tests

The two sentences used for informal listening tests are read by a male and female speaker

from the TIMIT database. They both utter the sentence “She had your dark suit in

greasy wash water all year”. The filenames containing the sentences are given below:

� Female: timit/train/dr1/fcjf0/sa1.wav

� Male: timit/train/dr1/mcpm0/sa1.wav

B.4 Formal listening tests

For the formal listening tests, an evaluator listens to two different denoised versions of a

sentence and then chooses which of the two she prefers. This process, referred to as a trial,

is repeated for several sentences and evaluators, to improve the statistical significance of

the test results.
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We use 42 sentences from 14 different speakers taken from the TIMIT192WGN set. The

speakers are 7 males and 7 females from dialect regions dr1 to dr7, that are listed in

the second and third columns of Table B.1. The 42 sentences used for the formal sub-

jective evaluation consist of the 3 si recordings of each of these 14 speakers. We use 24

independent evaluators (18 male and 6 female) to listen to these sentences.

Each trial contains a sentence denoised by two different algorithms, referred to as a

model pair. In order to keep the test unbiased, it is necessary to evaluate each possible

combination of denoising algorithms. Two listening tests were done, as described in

Sections 6.8.2 and 7.3.4. The first test compared 6 models (i.e. HMT, HMM, GMM,

Wiener, noisy speech and clean speech), which implies 15 possible model pairs. The second

test compared 4 models (i.e. HMT, Ephraim-Malah, noisy speech and clean speech), which

results in another 6 model pairs.

The ordering of a model pair is relevant. When listening to two consecutive recordings,

the last recording tends to have a greater impact on the listener. This potential bias can

be removed by including both orderings of each model pair in the test.

Each evaluator therefore performs 2 × (15 + 6) = 42 trials, in random order. For each

trial, he listens to the two versions of the sentence (without knowing which two algorithms

performed the denoising), and decides which version he prefers. Each pair of models is

ultimately evaluated in 48 trials (24 evaluators times 2 orderings per pair). The number

of these trials in which a specific model was preferred to the other, is referred to as a

preference count for that model. The output of the listening test is a set of preference

counts, two per model pair.

Since each trial involves a yes/no decision, it is easy to quantify the statistical significance

of the test results, based on the binomial distribution [44, p. 52]. If the outputs of the

two denoising algorithms in a model pair are really equivalent for listeners, the preference

counts associated with this pair ought to be binomially distributed, with N = 48 and

p = 0.5. The probability that the counts lie outside the range [17...31] is less than 5%

under this assumption. If a preference count is therefore observed to lie outside this

range, the hypothesis of equivalent models is rejected (at a significance level of 5%) and

the observed preference is considered to be statistically significant.

The overall ranking of a model can be estimated by summing all the preference counts for

that model. This gives an indication of how many times the given model was preferred to

the rest of the models in the test. However, it is difficult to assign statistical significance

to this ranking, and it should therefore be interpreted as a rough indicator only.
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