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Abstract

Speech enhancement is the process of removing background noise from speech signals. The
equivalent process for images is known as image denoising. While the Fourier transform is
widely used for speech enhancement, image denoising typically uses the wavelet transform.
Research on wavelet-based speech enhancement has only recently emerged, yet it shows
promising results compared to Fourier-based methods. This research is enhanced by the
availability of new wavelet denoising algorithms based on the statistical modelling of

wavelet coefficients, such as the hidden Markov tree.

The aim of this research project is to investigate wavelet-based speech enhancement from
a statistical perspective. Current Fourier-based speech enhancement and its evaluation
process are described, and a framework is created for wavelet-based speech enhancement.
Several wavelet denoising algorithms are investigated, and it is found that the algorithms
based on the statistical properties of speech in the wavelet domain outperform the classical
and more heuristic denoising techniques. The choice of wavelet influences the quality of the
enhanced speech and the effect of this choice is therefore examined. The introduction of a
noise floor parameter also improves the perceptual quality of the wavelet-based enhanced
speech, by masking annoying residual artifacts. The performance of wavelet-based speech
enhancement is similar to that of the more widely used Fourier methods at low noise
levels, with a slight difference in the residual artifact. At high noise levels, however, the

Fourier methods are superior.
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Opsomming

Spraaksuiwering is die proses waardeur agtergrondgeraas uit spraakseine verwyder word.
Die ekwivalente proses vir beelde word beeldsuiwering genoem. Terwyl spraaksuiwering in
die algemeen in die Fourier-domein gedoen word, gebruik beeldsuiwering tipies die golfie-
transform. Navorsing oor golfie-gebaseerde spraaksuiwering het eers onlangs verskyn, en
dit toon reeds belowende resultate in vergelyking met Fourier-gebaseerde metodes. Hierdie
navorsingsveld word aangehelp deur die beskikbaarheid van nuwe golfie-gebaseerde sui-
weringstegnieke wat die golfie-koéffisiénte statisties modelleer, soos die verskuilde Markov-

boom.

Die doel van hierdie navorsingsprojek is om golfie-gebaseerde spraaksuiwering vanuit ‘n
statistiese oogpunt te bestudeer. Huidige Fourier-gebaseerde spraaksuiweringsmetodes
asook die evalueringsproses vir sulke algoritmes word bespreek, en ‘n raamwerk word
geskep vir golfie-gebaseerde spraaksuiwering. Verskeie golfie-gebaseerde algoritmes word
ondersoek, en daar word gevind dat die metodes wat die statistiese eienskappe van spraak
in die golfie-gebied gebruik, beter vaar as die klassieke en meer heuristiese metodes. Die
keuse van golfie beinvloed die kwaliteit van die gesuiwerde spraak, en die effek van hi-
erdie keuse word dus ondersoek. Die gebruik van ‘n ruisvloer parameter verhoog ook
die kwaliteit van die golfie-gesuiwerde spraak, deur steurende residuele artifakte te ver-
berg. Die golfie-metodes vaar omtrent dieselfde as die klassieke Fourier-metodes by lae
ruisvlakke, met 'n klein verskil in residuele artifakte. By hoé ruisvlakke vaar die Fourier-

metodes egter steeds beter.
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Chapter 1

Introduction

Speech enhancement is the process of removing background noise from speech signals.
This noise can vary from light microphone noise to the heavy background noise of speech
in windy conditions. A lot of research has been done on developing different speech
enhancement algorithms, most of these in the Fourier domain [7, 9, 23, 24, 40, 42, 55, 58,

59, 60], of which [60] gives a basic overview.

Image denoising is a very similar process, where noise, such as speckle, is removed from
an image. Wavelet-based image denoising [11, 14, 18, 19, 20, 21, 49, 48, 47] has proven to

be very successful.

Little research has been done on wavelet-based speech enhancement, all of which is very
recent [3, 4, 13, 27, 35, 50], yet it shows promising results when compared to Fourier-based
methods. None of these algorithms explicitly attempt to capture the statistical properties

of the wavelet coefficients of speech.

The aim of this research project is to investigate wavelet-based speech enhancement,
specifically from a statistical point of view, and then to compare this with Fourier-based

speech enhancement.

1.1 The denoising problem

A basic understanding of the general denoising problem is first required. Let x[n] be a
discrete-time clean signal and d[n] a noise signal. If the noise is considered to be additive,

then the noisy signal is represented by the additive observation model,

y[n] = x[n| +d[n] . (1.1)



Figure 1.1 shows how y[n] represents the observed noisy signal at time index n, z[n]
represents the unobserved clean signal and d[n] represents the noise, uncorrelated with
the clean signal. The goal of the noise removal process is to form an estimate &[n] of the

clean signal x[n] based on the observed signal y[n].

Noise 4 [n]
Removal | ——"7 »=
Process

Observable

Unobservable

Figure 1.1: The block diagram of signal enhancement in the case of additive noise.

The noise removal process is generally called signal denoising. It is also called an estimator,
because it forms an estimate #[n| of the underlying signal x[n]. In the case where z[n] is

a speech signal, the noise removal process is referred to as speech enhancement.

1.2 A generalised denoising system

Any denoising system consists of two basic parts, namely a noise estimation process and

a denoising algorithm, and they are described below.

1.2.1 Noise estimation

In most real-world problems, the noise signal is not directly known and has to be esti-
mated. In image denoising, the noise has to be estimated from the noisy image itself.
In speech enhancement, the noise is estimated from the portions of the sound recording
which do not contain speech and therefore only consist of noise. Noise estimation in
speech is therefore less of a problem than in images and is also more accurate. The better

the noise estimate, the better the performance of the denoising system will be.

There are many types of noises that occur in real-world speech enhancement problems.
Examples include the noise inside a car, helicopter or aeroplane cockpit, the noise in-

side an office or factory, the noise of a cooling or heating fan, and even the noise from



other speakers in the vicinity of the speaker under analysis. Several recordings of real-
world noise sources have been made and are used for standard speech enhancement tests.
These recordings are readily available on the Internet [30, 54] and include white Gaussian,
speech babble (recordings of multiple speakers speaking simultaneously), car, helicopter,
F16 cockpit, factory and office noises. The noise that occur in real-world problems is
generally broadband in nature, implying that it is localised in neither time nor frequency
and therefore difficult to remove [57]. Most research is done on the enhancement of speech
corrupted by broadband noise, of which White Gaussian noise (WGN) is a good ex-

ample.

If the noise is stationary (i.e. if its statistical character does not change over time),
it follows that its estimated spectrum is constant over time. If it is non-stationary but
changes its characteristics relatively slowly, it can be modelled as quasi-stationary. The
noise is hereby assumed to be stationary within the time-span of two consecutive noise

spectral estimates.

The noise in this research is therefore assumed to be additive, independent and identically
distributed, stationary and white Gaussian, which are conditions typically used in most

speech enhancement research.

The noise estimation process usually uses an algorithm that estimates the noise spectrum.
For the purpose of this study, white Gaussian noise is generated and then added to the
clean signal to produce the noisy signal. The noise spectrum can therefore be directly
calculated from the noise, instead of being estimated from the real-world data. The
desired global signal-to-noise ratio, which is of the form 10log;, (02/02) in decibels, is
first specified. By scaling the noise to unity variance and therefore setting o3 = 1, the
variance of the clean signal o2 is computed and then used to scale the clean signal. Adding
these scaled signals, as in Figure 1.1, the noisy signal then has the required global signal-
to-noise ratio. This removes the effect of the noise estimation algorithm on the final result,

and thereby focuses attention on the performance of the denoising algorithm.

1.2.2 The denoising algorithm

Figure 1.2 shows the flowchart of the noise removal process. The denoising algorithm is
the basic mechanism of denoising. It relies on the noise estimate and is comprised of three

parts:

1. Forward transformation. In the forward transformation step, the noisy signal

y[n] is transformed into coefficients of a certain domain. Current state-of-the-art
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Figure 1.2: The flowchart of a generalised denoising system.

image denoising is done in the wavelet domain [11, 14, 18, 19, 20, 21, 49, 48, 47|,
whereas current speech enhancement is generally done in the short-time Fourier
domain [7, 9, 23, 24, 40, 42, 55, 58, 59, 60|, although recent research has been
done in the wavelet domain [50], the wavelet packet domain [3, 4, 13, 27] and the

multitaper spectral domain [35].

2. Attenuation. The attenuation step is where the actual denoising is done. The
noisy coefficients are attenuated by using a suppression rule (in Fourier-based speech
enhancement) or a shrinkage function (in wavelet-based denoising) to form an esti-

mate of the coefficients of the clean signal. This makes use of the noise estimate.

3. Inverse transformation. The inverse transform of the attenuated coefficients

renders the estimated clean signal z[n].

1.3 Literature study

This study investigates wavelet-based speech enhancement algorithms and compares them
with Fourier-based speech enhancement algorithms. It therefore requires knowledge of the

following fields of research:

e Fourier-based speech enhancement.
e Wavelet-based signal /image denoising,.

e Wavelet-based speech enhancement.



A short description of these fields is given below as well as a brief history of each, which

highlights a selection of important papers in each domain.

1.3.1 Fourier-based speech enhancement

Speech enhancement algorithms make the assumption that speech is quasi-stationary, i.e.
stationary within a short time-frame of analysis [36]. Speech is therefore denoised on a
timeframe-by-timeframe basis. Each time-frame is transformed to the Fourier domain
where the Fourier coefficients represent the signal as a number of frequency bins. Each
bin is then classified as containing either signal or noise. If the bin predominantly rep-
resents the underlying signal, it is left unattenuated. If it contains mainly noise, it is
shrunk towards zero. The inverse of this frame-by-frame Fourier transform produces the
enhanced speech. A residual noise artifact typically encountered in Fourier-based speech
enhancement is the so-called “musical noise” artifact [9]. Musical noise consists of tonal
components at random frequencies. It has an unnatural structure and is perceptually

annoying [55]. Important papers of Fourier-based speech enhancement are given below.

1978 — Lim and Oppenheim [40] proposed a speech enhancement method based on
an iterative estimation of all-pole speech parameters. It uses a maximum
a posteriori (MAP) estimate under the assumption that the speech signal is the

response of an all-pole process.

1984 — Ephraim and Malah [23] derived a minimum mean-square error estimator (the
MMSE STSA algorithm) as an extension of the maximum likelihood estimator
of McAulay and Malpass [42]. It assumes that the Fourier coefficients of
the clean signal and the noise may be modelled as statistically independent,

zero-mean, Gaussian random variables.

1985 — Ephraim and Malah [24] derived the minimum mean-squared error log-spectral
amplitude estimator (the MMSE-LSA algorithm). This algorithm is similar
to [23], except that it minimises the mean-squared error of the log-spectra,

instead of the spectra.

1991 — Hansen and Clements [31] further enhanced the all-pole model of Lim and
Oppenheim [40] by introducing spectral constraints to ensure more speech-like

formant trajectories.



1994 — Cappé [9] presented a study of the Ephraim-Malah MMSE STSA algorithm [23],
demonstrating how this algorithm succeeds in eliminating the “musical noise”

phenomenon.

1999 — Virag [55] proposed a subtractive-type algorithm which is based on masking
properties of the human auditory system. It leads to a significant reduction of

the unnatural structure of the residual noise.

2001 — Wolfe and Godsill [58, 59, 60] proposed three alternative suppression rules to
the Ephraim-Malah suppression rule by using alternative Bayesian approaches.
These suppression rules exhibit almost identical behaviour to that of the
Ephraim-Malah suppression rule, but are computationally more efficient and

yield a more intuitive interpretation.

1.3.2 Wavelet-based signal/image denoising

Unlike the Fourier transform, which represents the signal in frequency bins, the wavelet
transform yields a multiresolution representation of the signal with fine frequency reso-
lution at low frequencies and fine time resolution at high frequencies. This represents
real-world signals such as images more compactly. The idea behind wavelet-based denois-
ing is similar to that of Fourier-based speech enhancement, as coefficients are classified as
representing either signal or noise, and attenuated accordingly. A brief history of wavelet-

based denoising follows below.

1992 — Donoho and Johnstone [18] proposed wavelet shrinkage in the form of the
RiskShrink algorithm. A mean-squared error (MSE) or “risk” approach is taken
to obtain a threshold value for the soft shrinkage function (see Section 5.3).
Wavelet coefficients with values above this threshold are attenuated only a little,

whereas coefficients below this threshold are shrunk to zero.

1992 — Donoho and Johnstone [18] also proposed the VisuShrink algorithm, which
uses the “universal” threshold for the soft shrinkage function. This threshold
is a function of the signal length. VisuShrink results in an almost “noise-free”

reconstruction, which is visually very smooth on images.



1994 —

1997 —

1998 —

1999 —

Donoho and Johnstone [19] proposed the SureShrink and HybridSure algo-
rithms. Stein’s Unbiased Risk Estimate (SURE) [26] is computed for each
possible threshold value. SureShrink uses the threshold that minimises this
risk. HybridSure, which is specifically designed for signals with sparse wavelet

coefficients, uses a combination of SureShrink and VisuShrink.

Chipman, Kolaczyk and McCulloch [11] proposed an algorithm which is a
wavelet shrinkage approach that uses Bayesian priors. It is based on the “com-
pression” property of wavelet coefficients, which implies that wavelet coefficients
tend to have a non-Gaussian distribution. The prior of each coefficient consists
of a mixture of two Gaussian distributions with different standard deviations.
The parameters are chosen adaptively according to the resolution level of the
coefficients, typically shrinking high resolution (frequency) coefficients more

heavily.

Crause, Nowak and Baraniuk [14] proposed the Hidden Markov Tree (HMT)
algorithm. They identified two “secondary” properties of wavelet coefficients of
real-world signals, namely clustering and persistence, which imply that adjacent
coefficients tend to have similar values. The HMT algorithm uses a two-state,
zero-mean tree-structured Hidden Markov Model framework to capture the
non-Gaussian statistics of the individual coefficients. This is similar to [11],
but also captures the inter-coefficient dependencies (clustering and persistence).
Crause et al. report superior denoising performance over the above-mentioned
algorithms. The algorithm, however, suffers from a large number of model
parameters and uses a computationally intensive Expectation-Maximisation

algorithm.

Romberg [47] introduced a simpler model than the standard HMT algorithm [14],
that attempts to capture the same statistical properties. It uses even further
“tertiary” properties of wavelet coefficients of images, namely exponential decay
across scale and strong persistence at finer scales. Within this framework,
Romberg proposed an algorithm that uses a fixed set of parameters for the
denoising of normalised grey-scale images. This is referred to as the universal
Hidden Markov Tree (uHMT) algorithm. It produces results similar to the

HMT algorithm on images, in spite of its comparative simplicity.



1999 — Wavelet-based image denoising frequently exhibit visual artifacts, usually in
the form of “ringing” around edges. Ringing typically occurs when excessively
long wavelet filters are used. Romberg, Choi and Baraniuk [49] proposed a
more computationally intensive shift-invariant version of the uHMT, which uses

circular rotation to reduce the ringing artifact.

2002 — Romberg, Choi, Baraniuk and Kingsbury [48] proposed using the HMT algo-
rithm [14] on the complex wavelet transform. The complex wavelet transform
has near shift-invariance and an improved angular resolution over the discrete
wavelet transform. This method outperforms even the computationally expen-

sive redundant uHMT algorithm [49], owing to its underlying transform.

1.3.3 Wavelet-based speech enhancement

Speech can be divided into two very different types of signals, namely voiced speech,
such as vowels, and unvoiced speech, such as consonants [36]. Because voiced speech
is produced by the oscillation of the vocal chords it is periodic in nature. The Fourier
domain is well suited for such signals, and is widely used in speech applications such as
phoneme recognition. Unvoiced sounds, however, are generally not periodic in nature
and the Fourier domain may not be the best way to model such signals for denoising
purposes. The success of wavelet-based signal/image denoising has led researchers to in-
vestigate the potential of wavelet-based speech enhancement which include using either
the wavelet transform or the wavelet packet transform. The latter decomposes the signal
into a larger number of subbands and produces a multiresolution framework that can have
finer frequency resolution at high frequencies than the standard wavelet-transform [56].
Wavelet-based speech enhancement is similar to Fourier-based speech enhancement, but
instead of calculating the Fourier transform of every consecutive frame, the wavelet trans-
form is used. A selection of important wavelet-based speech enhancement papers is given

below.



1997 —

2001 —

2001 —

Seok and Bae [50] proposed a speech enhancement algorithm which thresholds
the coefficients of speech in the wavelet domain. Thresholding speech in the
wavelet domain can easily eliminate sections of speech, though, especially
when denoising the noise-like unvoiced sounds [3, 4, 50]. The algorithm uses
voiced /unvoiced detection to solve this problem. Unvoiced sections of speech
are denoised by only attenuating the coefficients of the highest resolution level,
whereas all coefficients are attenuated with voiced sounds. Seok and Bae
report promising results on the cepstral distance distortion measure, despite the

simplicity of the algorithm.

Bahoara and Rouat [3, 4] proposed a novel speech enhancement algorithm
by using a time-adaptive threshold in a 16-subband uniform wavelet packet
domain. The threshold is computed by applying an approximated Teager
energy operator on the wavelet packet coefficients. The Teager energy op-
erator is a nonlinear operator capable to extract the signal energy based on
mechanical and physical considerations. This operator enhances coefficients
that represent signal information among those that represent noise. This
function is then modified to compute time-adaptive thresholds. Bahoara and
Rouat report that their algorithm improves the global SNR more than the
Ephraim-Malah MMSE STSA algorithm [23], even under heavy noise conditions.

Cohen [13] proposed an algorithm which uses a weighted Wiener filter to
attenuate the coefficients of a non-uniform 84-subband redundant wavelet
packet transform. The subband spacing approximates the bark frequency scale,
which is a perceptual frequency scale generally used for audio compression
purposes. The a priori SNR is estimated by a variation of the Ephraim-
Malah decision-directed estimate [23]. Compared to Fourier-based speech
enhancement, the algorithm leads to better results on the segmental signal-

to-noise ratio distortion measure [33] and lower residual noise of enhanced speech.



2003 —

2003 —

1.3.4

Fu and Wan [27] proposed a method which uses Fourier-based and wavelet-based
denoising techniques in a series combination. The Ephraim-Malah MMSE STSA
speech enhancement algorithm [23] is used as a pre-processing step to eliminate
some noise while still retaining speech quality. This enhanced speech signal
is then transformed into the wavelet packet domain by using an 18-subband
critical-band decomposition, similar to the decomposition in [13]. Time- and
frequency-adaptive thresholds are computed for each subband and time frame by
using a variation of the universal threshold (see Section 5.4). Denoising is done
with a variation of the Ephraim Malah suppression rule [23]. Fu and Wan state
that combining Fourier-based and wavelet-based denoising techniques eliminates
a reasonable amount of “musical” noise while still retaining speech quality. The
algorithm also shows promising results on the segmental signal-to-noise ratio

distortion measure [33].

Hu and Loizou [35] proposed a different approach which also combines short-time
spectral attenuation (STSA) and wavelet-based denoising techniques. Unlike
the above-mentioned wavelet-based algorithms [3, 4, 13, 27, 50|, which threshold
the wavelet coefficients of the time signal, this algorithm denoises the log
multitaper spectra [53]. The multitaper spectra have good bias and variance
properties [53]. These spectral signals are then transformed to the wavelet
domain, denoised with SureShrink [26] (see Section 5.5) and then finally inverse
transformed back into the log multitaper spectral domain. Wavelet denoising
of the log multitaper spectra leads to even better (low-variance) spectral
estimates. These refined spectra are then used in an STSA speech enhancement
algorithm, which is a variation of Wiener filtering (see Section 2.2.1). The
actual speech denoising is done in the multitaper spectral domain, whereas the
wavelet-based denoising step is only used to get more refined spectral estimates,
which makes this algorithm an STSA speech enhancement algorithm. Hu and
Loizou showed that their algorithm has little “musical” noise and it also pre-
serves speech quality better than the Ephraim-Malah MMSE-LSA algorithm [24].

This study in perspective

The main investigation of this study involves the Hidden Markov Tree (HMT) algo-

rithm [14]. Since the Hidden Markov Tree algorithm is very successful in denoising

the Donoho-Johnstone test set [10, 11, 14] and also in denoising images, it is of spe-

cific interest. The algorithm attempts to capture the statistical properties of the wavelet

coefficients. This is something that has been exploited in wavelet-based image/signal
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denoising [11, 14, 49, 48, 47] and image compression [51, 52|, but not yet in speech en-

hancement.

The statistical properties of speech in the wavelet domain therefore need to be investi-
gated. It is expected that certain phonemes, such as stops and voiced phonemes, have
non-Gaussianity, clustering and persistence. It is not known how strong these properties
are for speech. It is also of interest to what extent the HMT algorithm is capable of
capturing these properties of speech signals. Other statistical techniques, namely Wiener
filters [44] and Gaussian Mixture Models (GMMs) [14], are also implemented to aid the
investigation. A Hidden Markov Model (HMM) denoising algorithm has been proposed by
Crause et al. [14]. This algorithm is implemented in this study as a speech enhancement
algorithm and it specifically attempts to capture the clusters found in wavelet coefficients.
These statistical algorithms are not as sophisticated as the HMT algorithm and differ in
their approach to capture some of these statistical properties. As the level of the noise
increases, it reduces the presence of these properties. It is therefore expected that these

statistical algorithms will not yield desirable results under heavy noise conditions.

Although most wavelet-based speech enhancement is done in the wavelet packet domain [3,
4, 13, 27|, this domain does not provide a natural binary tree structure in the time-
frequency tiling view, which is a requirement for the HMT algorithm. Since the Wiener,
GMM and HMM methods denoise each resolution level independently, they can easily be
implemented in the wavelet packet domain, which will then be closely related to [3, 4,
13, 27]. For purposes of comparison, all methods in this study are implemented in the
wavelet domain. This study is therefore closely related to that of [50], although no explicit
voiced /unvoiced decisions or speech presence detection is done. The thresholds are rather
chosen according to the statistical information of the wavelet coefficients of each frame,

which suits the frame whether it is voiced/unvoiced or speech/silence.

1.4 Objectives

The objectives of this study are:

e To implement the HMT for speech denoising.

e To implement a Hidden Markov Model (HMM) denoising algorithm, which attempts

to capture the clustering property of wavelet coefficients.

e To develop a framework for wavelet-based speech enhancement algorithms in which
the Wiener, GMM, HMM and HMT algorithms are compared to each other.

11



e To choose a good wavelet for speech enhancement according to objective distortion

measures and informal subjective listening tests.
e To choose the best frame size for the statistical speech enhancement algorithms.

e To compare statistical wavelet-based speech enhancement algorithms with Fourier-

based techniques.

1.5 Contributions

The following contributions are made in this study:

e HMTs are used for speech denoising for the first time.

e A novel implementation of a wavelet-based Hidden Markov Model (HMM) denoising
algorithm is done. This algorithm was proposed by Crause et al. [14], but it was
not implemented, nor was it used in any experiments. It is found that the HMM al-
gorithm outperforms the state-of-the-art Hidden Markov Tree [14] algorithm on the
Donoho-Johnstone Doppler test signal. The Doppler signal in the wavelet domain
does not have strong persistence, but has a single prominent cluster within each
resolution level. Although these properties are not generally found in real-world im-
ages, they are typical of seismic, radar and sonar signals. The HMM algorithm also
has an advantage over the HMT algorithm in that it can easily be implemented in
the wavelet packet domain, which is becoming a popular domain for wavelet-based

speech enhancement.

e The choice of wavelet has an influence on the quality and residual noise of the
enhanced signal. No research has been found on this subject. In this study, ex-
periments are done to choose a good wavelet for speech enhancement according to
objective distortion measures and subjective listening tests. The Discrete Meyer
and higher order Symlet (Herrmann order m =~ 20) wavelets are found to be the

best wavelets for speech enhancement.

e No algorithms have been proposed that explicitly attempt to capture the statistical
properties of speech in the wavelet domain. This is investigated in this study by
using four similar algorithms, namely Wiener, GMM, HMM and HMT, which all
attempt to capture some of these properties. It is found that these properties are
not as strong in speech as in images and therefore the statistical algorithms should
only be used under light noise conditions. It is however possible that these models

are not sufficient to fully capture the properties of the wavelet coefficients of speech.
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e Very little speech enhancement is done in the wavelet domain, because of its poor
frequency resolution. Segments of speech can easily be eliminated, which leads
to gaps in the speech spectrogram and hence poor speech quality. It is found in
this study that this effect leads to problem segments on the Itakura-Saito distortion
measure, which is addressed by introducing a noise floor parameter in the algorithms.

This eliminates these problem segments and also enhances perceived speech quality.

1.6 Overview of this study

This study consists of a theoretical discussion and an experimental analysis.

1.6.1 Theory

Chapter 2 discusses Fourier-based speech enhancement. The short-time spectral attenu-
ation (STSA) approach is currently the most widely used speech enhancement method.
Chapter 3 discusses the evaluation process of speech enhancement, which includes objec-
tive distortion measures and subjective listening tests. Chapter 4 discusses wavelet theory
and filter bank design. This requires knowledge of how wavelets are designed by using filter
banks and the properties of the different wavelets. The statistical properties of real-world
signals in the wavelet domain are also discussed here. Chapter 5 describes wavelet-based
denoising methods, which include the classical wavelet shrinkage algorithms (VisuShrink,
SureShrink and HybridSure) and also the statistical methods (Wiener, GMM, HMM and
HMT).

1.6.2 Experiments

In Chapter 6 a framework is designed for wavelet-based speech enhancement in which the
algorithm parameters are experimentally chosen. The Wiener, GMM, HMM and HMT
algorithms are also compared to each other. In Chapter 7 an experimental comparison

between wavelet-based and Fourier-based speech enhancement is done.
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Chapter 2

Current STSA speech enhancement

2.1 Short-time spectral attenuation (STSA)

Short-time spectral attenuation is currently the most widely used speech enhancement
technique. As described in Section 1.2, STSA consists of three steps, namely forward
transformation, attenuation and wnverse transformation. Figure 2.1 shows the flowchart
of STSA speech enhancement and all such algorithms use this framework. These steps
are described below and because the difference between the various STSA algorithms lies

in the attenuation step, it is described in more detail in Section 2.2.

Noise
Estimation
63
y[n] Fourier magnitude Attenuation ’Xk:‘ Inverse j[n]
Transform Transform -
STFT Suppression rule ISTFT
angle

Figure 2.1: The flowchart of short-time spectral attenuation (STSA) speech
enhancement. The forward transformation is the short-time Fourier transform (STFT)

and the inverse transformation is the inverse short-time Fourier transform (ISTFT).
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2.1.1 Forward transformation

In correspondence to Section 1.2.1, the noise d[n] is assumed to be additive, therefore the

noisy signal is given, as in (1.1), by
y[n] = x[n| +d[n] . (2.1)

STSA is Fourier-based and the forward transformation step is the short-time Fourier
transform (STFT) of overlap-add analysis [36]. This is a process where an utterance of
speech is separated into frames of short time-duration. These can be overlapping frames
if a correctly-chosen time-window is multiplied by the time-frame. Each individual frame,
which is assumed to be stationary, is then transformed into the Fourier domain where the

analysis is done.

Because the Fourier transform is a linear transform, the coefficients Y, can be written
as [60]

Yo = Xy + Dy, . (2.2)

STSA analysis is frame-based and (2.2) describes the Fourier coefficients of the current
frame. These quantities are complex, with a magnitude and a phase component. The
subscript £ = 0,1... K — 1 is an integer that indexes each of the K frequency bins
associated with the Fourier coefficients. Because the Fourier transform is symmetric for
real data, a length N frame results in & = N/2 bins for even N and K = N/2 + 1 bins
for odd N.

In this research, the data has a sampling frequency of Fg = 8 kHz. The chosen frame
size is 32 ms, resulting in N = 256 Fourier coefficients and K = 128 frequency bins.
Half-overlapping Hanning windows are used to reduce spectral leakage. These are widely
used parameters [23, 55, 58, 59, 60].

2.1.2 Attenuation step

The attenuation step of STSA speech enhancement uses a suppression rule to form a
spectral estimate |X;| of X by using |Yi| and 2. The attenuation step is applied to
the magnitude only, leaving the phase unchanged. Ephraim and Malah [23] proved that
the noisy phase £Y}, is the optimal output phase. The difference in STSA algorithms lies

within this step and it is described in Section 2.2.
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2.1.3 Inverse transformation

The spectral estimate X, is inverse-transformed to obtain the reconstruction of the time
domain signal. The inverse short-time Fourier transform converts the Fourier coefficients
of the individual time-frames back into the time-domain, whereafter they are added to cre-
ate an utterance similar to the original [36]. Perfect reconstruction is possible, depending

on the amount of overlapping and the time-window used.

2.2 Attenuation

The elements of X, and Dy are modelled as independent, zero-mean, complex Gaussian
random variables [60]. The respective clean and noise variances for the kth bin are
02(k) = E[|X.|?] and o%(k) = E[|Dk[?] and in real-world speech enhancement both of

these has to be estimated. The different STSA algorithms are given in terms of these

variances and are described below.

2.2.1 The different STSA algorithms

The attenuation step of STSA methods consists of three parts, namely computing the a
posteriori SNR, v, estimating the a priori SNR &, and applying a suppression rule Hy.
Figure 2.2 shows that v, is first calculated, then & is estimated, and finally the suppression

rule is applied.

1. | Computing the a posteriori SNR %‘

The a posteriori signal-to-noise ratio is not a signal-to-noise ratio in the classical

sense. It is actually the ratio of the noisy signal power to the noise power, i.e.

“clean signal + noise”

“noise”
It is observed and calculated as
Ve = Ri
o;(k)

(2.3)

where R = |Y| is the magnitude of the k'h bin noisy Fourier coefficient.
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Figure 2.2: The flowchart of the STSA attenuation step. The parameters v, and fk are
first computed. The spectral estimate of the previous frame |X,ij|, 1s only used with the

Ephraim-Malah decision-directed & estimate. The suppression rule attenuates |Yy| to
yield | Xy).

2. |Estimating the a priori SNR@

The a priori signal-to-noise ratio is in the usual form of

“clean signal”
“noise”

It is the unobserved signal-to-noise ratio of bin k, given by

& = aé(k) . (2.4)

Because 02(k) is unobserved, it is estimated by estimating & directly. Two methods

to estimate & are investigated:

e Maximum Likelihood &, estimation, and

e the Ephraim-Malah decision-directed & estimate.

These &, estimates are described in detail in Section 2.2.2.
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3. | Applying a suppression rule H, k‘

A suppression rule is a nonnegative real-valued gain Hy, applied to each bin & of the
observed signal spectrum Yj. It forms an estimate |X k| of the the original spectrum

by multiplying Hy with |Yy/,
| Xe| = Hy [Vi] - (2:5)

The intermediate variable v, is found in the suppression rules and it is a combination

of v and & given by [60],

_ &
1+ &

Z Yk - (2.6)

From the substitution of (2.3) and (2.4) into (2.6), v can be written as

vy = [“—2} i (2.7)

o2+ 02 a_g ’

which can be interpreted as a scaled Wiener shrinkage rule.

Different suppression rules that have been proposed, all in terms of ~;, & and v,
are:

Power Spectral Subtraction [42],

H, = . (2.8)

e The Wiener suppression rule [42],

&
He= 13 (2.9)

e Maximum Likelihood Envelope Estimation [42],

Ho= 1y (2.10)

1 1
2 2\ 14¢&

Ephraim-Malah MMSE amplitude suppression rule [23],

= (Y2) (5 e (<) [ 10 () 1 ()] 210

Ve 2 2

Joint MAP amplitude and phase suppression rule [58, 59, 60],

&+ /8 +2(1+ &)
- 2(1 + &) ' 21

k
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e MAP amplitude suppression rule [58, 59, 60],

B £k+\/§2+(1+§k)§—’;

2016 (2.13)

Hy,

e MMSE spectral power estimator [58, 59, 60],

B S (14w
e [ (1) o

Any &, estimate can be used with any suppression rule. Certain combinations of these two

are generally used together. Spectral subtraction techniques usually use the maximum
likelihood &, estimate. The widely used Ephraim-Malah speech enhancement algorithm
uses the Ephraim-Malah MMSE amplitude suppression rule with the Ephraim-Malah

decision-directed & estimate [23].

2.2.2 Estimating the a prior: signal-to-noise ratio
Maximum likelihood ¢, estimation

The maximum likelihood estimation approach is used to estimate the unknown o2 (k) from
Y, which has a given probability density function f(Y) [42]. The parameter o%(k) is the
variance of the kth spectral bin of the frame under analysis. The following derivation is
taken from [42]. Only the current frame is used to estimate &,. The observed spectral
component Y is assumed to be a zero-mean complex Gaussian random variable. The vari-
ance of Y}, is defined as 05 , therefore its real and imaginary parts are also Gaussian [42]

with variance 05 /2. The probability density function for Y} is,

105 = () = |~ o | (2.5

The noise is assumed to be independent and identically distributed (iid), as described in

Section 1.2.1. Since the signal and noise components are independent, the noisy variance

o7 (k) may be written as [42]

o2(k) = o2(k) + o3 (k) . (2.16)

Substituting (2.16) into (2.15) leads to

_ 1 ex - Rz
f¥) = (w [o2(k) + oﬁ(kn) P [ [03(k) + 03 ()]

(2.17)
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By maximising f(Y;) with respect to o2(k), the maximum likelihood estimate of o2(k)

can be found to be

62(k) = R — o3(k) . (2.18)

xT

Dividing both sides of (2.18) by (k) leads to the & estimate
Se="m—1. (2.19)

The maximum likelihood ék estimate (2.19) can be interpreted as being a signal-to-noise
ratio which is estimated by subtracting the noise from the noisy observation as follows:
“signal”  “signal+moise”

— —1.
“noise” “noise”

The Ephraim-Malah decision-directed &, estimate

Ephraim and Malah [23] proposed a different approach to estimate the a priori SNR &.
For the current analysis frame, the decision-directed a priori SNR estimate ék is given by
a geometric weighting of the SNR in the previous frame, |XP'|2/o2(k), and the current

frame (R? — 02(k))/o2(k) and is given as
6 = oI
og(k)

The term |X,§f|2 is the spectral estimate of the previous frame.

+ (1 —a)max [y —1,0], «€[0,1). (2.20)

The parameter « is a forgetting factor and is suggested by Ephraim and Malah to be
a = 0.98. This results in a residual noise which is colourless and much less annoying than

the musical noise obtained with the maximum likelihood & estimate [23].

The proposed initial conditions [23] are given by

~

&(0) =a+ (1 — a)max[0,7,(0) — 1] . (2.21)

The term &,(0) is the estimated a priori SNR of the first frame and ~;(0) the a posteriori
SNR of the first frame. The initial conditions are chosen to minimise the initial transition

effects in the enhanced speech [23].
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Chapter 3

Evaluation of speech enhancement

3.1 Introduction

A speech enhancement algorithm can be viewed as successful if it

1. suppresses perceivable background noise,
2. preserves or enhances perceived signal quality, and

3. produces a residual artifact which is perceptually acceptable.

Speech enhancement evaluation attempts to quantify these properties. This is no trivial
task, since the performance of speech enhancement is influenced by the specific type of
noise, the global SNR, the noise estimation, the algorithm framework and the algorithm
parameter settings [33]. Although significant progress has been made in speech enhance-
ment in recent years, the evaluation of the process has not yet been standardised. Hansen
and Pellom [33] proposed a standardisation, which involves the speech enhancement of a
standard speech database. They suggest using the 192 sentences of the TIMIT Core test
set!, downsampled to Fg = 8 kHz, with a set of different noise types. The evaluation of
enhanced speech is done by using different objective distortion measures and subjective

listening tests.

1See Appendix B.
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3.2 Objective quality measures

A speech distortion measure is a single nonnegative number, that mathematically de-
scribes the quality and intelligibility of enhanced speech compared to the original speech.
Objective evaluation also has the difficult task of quantifying the various residual arti-
facts. Any such objective measure has to correlate with subjective listening tests. It is

difficult to satisfy all of these requirements with a single distortion measure.

Objective speech quality measures are computed on a frame-by-frame basis, with d(z, z)
the distortion between clean frame z[n| and the denoised frame #[n| withn =1,2,..., N

and N being the number of samples in the frame.

Objective evaluation is only applicable in a laboratory environment where the original

signal is available. The experimental setup is shown in Figure 3.1.

Noise
d[n]
Clean Frame Noisy Frame Denoised Frame
z[n] Nl g ln]
L
Objective d(z, )
Evaluation

Figure 3.1: The flowchart of objective speech enhancement evaluation.

The distortion measure must be subjectively meaningful in the sense that a difference in

the measure corresponds to a difference in perceived quality and intelligibility.

A common distortion measure is the mean-square error (dysg). It is widely and success-
fully used in image denoising [47] and is given by
N-1

1 L2
dysp = 5 > (xln] = &[n])* . (3.1)

n=0

Because dy;sg is a subtractive measure, smaller values correspond to better quality. A
large dj;sp distortion, however, does not necessarily imply poor speech quality. For
example, a “shh” sound is essentially a white noise process and any typical waveform
would sound the same, although the dy g will be large [29]. The MSE is therefore not a

good distortion measure for speech.
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There is a wide range of objective measures specifically designed for speech evaluation.
Of these the segmental signal-to-noise ratio distortion measure dsgpgsnyr, described in
Section 3.2.1, and the [takura-Saito measure dg, described in Section 3.2.2, are the most
widely used and these are therefore chosen to be the objective measures used in this
research, as in [31, 37, 55].

Figure 3.2 shows how the frame-based dsggsnyr varies over time for noisy speech compared
to clean speech. Since speech signals vary over time, due to the sequence of phonemes,

the impact of background distortion will also vary.

20
Clean speech
o 101 T
©
=2
3 0 .
&
_10 - -
_20 1 1
0 1 (a 2 3
20
Noisy speech (5dB
L 10/ Y sp (5dB) |
=)
2
5 0 1
g
_10 - -
-20 L |
0 1 (b) 2 3
20
Distortion measure
Z 10 T
n
o}
w
<’ of M 7]
-10
0

©

time (s)

Figure 3.2: (a) Clean speech signal, “She had your dark suit in greasy wash water all
year”. (b) Noisy speech (5 dB global SNR), corrupted with white Gaussian noise.

(c) The segmental signal-to-noise ratio distortion measure dspgsnr compares the clean

and noisy speech. The values vary significantly over time. Phonemes with higher energy

are far less effected by the noise.

A global objective measure is the average value of all the frame-based distortion measures.
The global objective measures are calculated by using only the speech segments (i.e.
discarding the distortion values of the silent regions just before and after the utterance)

and discarding the worst 5% of the measures as proposed in [33].
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3.2.1 Segmental signal-to-noise ratio dsposnvr

The overall signal-to-noise ratio can be computed as

d 101 S Ml g (3.2)

sNr = 1U10g;q = - ) :
Yo {lm] — &[m]}’

with z[m] the clean utterance and &[m| the enhanced utterance. The indexm =0,1,..., M—

1 is a sample counter with M being the number of samples within the whole sentence.
The dsnyr measure, however, is of little value as an objective measure of speech quality
because of the non-uniform impact of noise on enhanced speech quality, which can be seen

in Figure 3.2(c). The dgyr measure also correlates poorly with subjective tests [33].

The frame-based segmental signal-to-noise ratio, however, is a reasonable measure of
speech quality. The segmental signal-to-noise ratio distortion measure is computed for

each analysis frame and is given as [33]

27]::01 2*[n]

> no A@ln] = &[n]}’

with z[n] the clean frame and Z[n| the denoised frame under analysis. The index n =

dspasnr(r, ) = 10log, dB, (3.3)

0,1,...,N — 1 is the sample counter with N being the number of samples within the

frame.

The dsgpgsnr is typically in the range —10 dB to 35 dB, with a higher dspgsnygr corre-
sponding to better performance. Frames with an SNR estimate above 35 dB do not differ
perceptually from the clean frame, therefore an upper limit of 35 dB is set for frames
with a value higher than this. Frames during periods of silence tend to have very large
negative dspasnr values. This is similarly not a true reflection of perception, and a lower

limit of —10 dB is set for dgpggnr values below this.

The global segmental signal-to-noise ratio dsggsng is calculated by averaging the frame-

based dspgsnr(z, ) distortion measures (3.3) [33]

K—1
1 .
dsEGsNR = 17 ; dseasnr(Tr, Tk) - (3.4)
The index £ = 1,2,..., K is a frame counter with K being the number of frames in

the utterance. The clean and denoised signals x; and Z; are that of frame number k. It
should be noted that the overall signal-to-noise ratio (3.2) differs from the global segmental

signal-to-noise ratio (3.4), which is an average of logarithmic (dB) values.
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3.2.2 Itakura-Saito distortion measure d;g

The Itakura-Saito distortion measure, d;g, is based on the LP power spectrum, which
models the human speech production system. It describes the spectral matching proper-
ties of linear prediction and is influenced by the similarity or difference between the LP
power spectra of the clean and denoised frames [29]. Tt is, as with the dspgsnyr measure,
calculated on a frame-by-frame basis, where d;g(z, ) denotes the Itakura-Saito distortion
between clean frame z[n| and denoised frame Z[n]. The global d;¢ distortion is the average

of the frame-based measures and is calculated similar to (3.4).

The Itakura-Saito distortion is derived in Appendix A and can be written as

~ ag; Rc ag

d[s(l‘,l’) = m + lng — 1, (35)

or, as given in [33], as

. 0?1 [alR.a, o2

It should be noted that (3.5) and (3.6) is a comparison between a clean frame and a
denoised frame of speech. Therefore, subscripts ¢ and d refer to the clean and denoised
frames, respectively. Variables 02, a and R are taken from the “autocorrelation method”

2 is the prediction error power

of short-term linear prediction analysis [15]. Variable o
or all-pole gain. The matrix R is the autocorrelation matrix in its Toeplitz form and

a=|[layay ... ap]’ is the linear prediction coefficient vector with P the order.

The Itakura-Saito distortion measure penalises a mismatch in formant locations [37]. By
looking at (3.6) it is seen that if a. ~ az and 02 ~ 03 then djs(x, ) ~ 0, which implies
low d;g values for frames with similar LP power spectra. High d;s values therefore imply
that the denoised speech is of poor quality compared to the original speech. Errors in
the location of spectral valleys do not contribute as heavily as a mismatch in formant
peaks [37].

The d;s measure is subjectively meaningful [29] and correlates well with subjective mea-
sures [37]. The typical range of d;g values is from 1 to 10 with lower d;s values corre-
sponding to better performance. Frames containing non-speech might have unrealistically
high distortion values and should not be incorporated. Hansen and Pellom [33] suggested

discarding the highest 5% of the d;g values in computing the global d;g distortion measure.

The Itakura-Saito measure is implemented in this study by using the software of Pel-

lom [45]. Half-overlapping frames of 32 ms are used. The frames first get shifted to have

25



a zero mean. Each frame is then multiplied with a Hanning window to reduce spectral

leakage. A linear prediction filter order of P = 10 is used.

3.3 Subjective listening tests

Two different types of subjective evaluation are done in this study, namely formal listening

tests and informal listening tests.

3.3.1 Informal listening tests

Informal listening tests are done throughout this study. It consists of listening to a few
sentences of denoised speech and then commenting on its quality, intelligibility and resid-
ual artifacts. The purpose of informal tests is to support the objective evaluation when
designing the different denoising algorithms. The sentences used for informal listening

tests are shown in Appendix B.3.

3.3.2 Formal listening tests

For the formal tests, an independent evaluator listens to two different denoised versions
of a sentence and then chooses which of the two he prefers. This process, referred to
as a trial, is repeated for a number of sentences and evaluators. The end result is a
set of preference counts, which indicate how many times a specific model was preferred
to another model. These preference counts are then combined to form overall rankings
for the different denoising algorithms. The formal listening tests are used to compare
different algorithms with each other. The experimental setup for these tests is described

in Appendix B.4.

3.4 Denoising artifacts

As described in Chapter 1.1, speech enhancement may be viewed as

1. forward transformation, transforming the noisy signal into a particular domain,

2. attenuation, attenuating the noisy coefficients, and
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3. inverse transformation, inverse-transforming these back to the time domain.

STSA speech enhancement algorithms generally produce two main undesirable effects,

namely “musical” residual noise and speech distortion.

The attenuation step is a process which attempts to decompose the noisy coefficients into
their signal and noise components. The clean signal coefficients are estimated from this
classification. Algorithms will inevitably classify certain components incorrectly. These

mistakes lead to different artifacts when they are transformed back to the time domain.

3.4.1 Musical noise

Musical noise is a frequently encountered residual noise artifact of STSA techniques [9]. If
noise coefficients are incorrectly classified as signal coefficients, the actual sinusoidal basis
functions are transformed back to the time domain. This results in isolated short-time
windowed sinusoids. Musical noise is tonal components at random frequencies, has an

unnatural structure and is perceptually annoying.

3.4.2 Speech distortion

At low signal-to-noise ratios it is difficult to suppress noise without introducing speech
distortion and therefore decreasing intelligibility [55]. Speech is distorted if the coefficients
containing signal energy are incorrectly attenuated. This happens if the enhancement
algorithm mistakes signal components for noise components. Although typically not as

annoying as “musical” noise, speech distortion can impair intelligibility.

3.4.3 The trade-off

Most STSA algorithms have parameters that can be set to find the best trade-off between
musical noise and speech distortion. For example, the a parameter of the Ephraim-Malah
decision-directed & estimate fulfils this role (see Section 2.2.2). Ephraim and Malah [23]
propose o = 0.98 as subjectively the best value. This results in higher speech distortion,
but lower musical noise. Lower « values, however, lead to better dspasnyr and drs values,

because the speech distortion is lower at the cost of higher musical noise.
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Chapter 4

Wavelet theory and filter bank

design

4.1 Introduction

The wavelet transform is a linear transform with a hierarchical or multiresolution struc-
ture. It exists in one-dimensional form for analysing signals, and two-dimensional form
for use with images. It has a continuous and discrete version. The latter, known as
the discrete wavelet transform (DWT), is especially simple to implement, owing to its

connection with filter banks.

4.2 Wavelet filter banks

The DWT is found by passing the data iteratively through a filter bank as shown in
Figure 4.1. The output signal of each decomposition filter is downsampled by a factor of
two to create the wavelet coefficients of the wavelet domain. The inverse discrete wavelet
transform (IDWT) is found by upsampling with a factor of two and then filtering. The

following sections are based on [52].

The decomposition bank shares the lowpass and highpass filters, Lp and Hp. Similarly,
the reconstruction bank shares Lp and Hgr. Each different wavelet has its own corre-
sponding set of four filters. It seems unbelievable that perfect reconstruction is possible,
since signal information is being thrown away in the downsampling step. However, by

correctly designing the four filters to be wavelet filters, perfect reconstruction is achieved.
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Decomposition Reconstruction

WAVELET
DOMAIN

- Output

Figure 4.1: The discrete wavelet transform and inverse transform filter banks. The
decomposition filter bank is on the left and the reconstruction filter bank is on the right.

The dotted region in the muiddle is the wavelet domain.
4.3 Designing the wavelet filters

The basic components of the DWT are FIR filters, upsamplers and downsamplers. To
design the wavelet filters, the individual transfer functions of the components are first

derived.

4.3.1 The wavelet filters

Wavelet filters are finite impulse response (FIR) filters, which are described by its impulse
response. If the input to the filter is an impulse, the output sequence or impulse response
is given by {hg hy hy -+ hr_1}, with L being the length of the filter. These numbers
are also known as filter coefficients. In the z-domain, shown in Figure 4.2, the filter is
described by the transfer function H(z) = ho + hyz7! + hoz™2 + - - hp_12L71. The filter
is called a FIR filter, because its response to an impulse is of finite duration.

A(2) H(2) B(2)

Figure 4.2: The FIR filter H(z), with A(z) the input and B(z) the output.

If A(z) is the input and H(z) the filter transfer function, then the output B(z) is merely

a multiplication of A(z) and H(z) in the z-domain,

B(z) = A(2)H(2) . (4.1)
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4.3.2 The downsampler

The downsampler, shown in Figure 4.3, discards every second sample of the incoming
sequence. The output sequence B(z) now has half the number of samples compared to

the input sequence A(z).

A(2) B(2)

(19
Q2

Figure 4.3: The downsampler discards every second sample of the input A(z), to

produce the output B(z).

If the input sequence (even length N) is,
Alz)=ag+ a1z Haz 2 dagz 3 - Fay_ 12V (4.2)

and the output sequence (length N/2) is,

M)

B(z) =ag+asz "t +asz 2+ agz P+ +ay 022 ), (4.3)

then the output of the downsampler can be written as

The discarding of samples leads to aliasing in the frequency domain, and in general it is

(4.4)

not possible to determine A(z) from B(z).

4.3.3 The upsampler

The upsampler, shown in Figure 4.4, inserts a zero between every two elements of the
incoming sequence. Now the output sequence B(z) has twice as many samples as the

input sequence A(z).

A(2) B(2)

)
(2

Figure 4.4: The upsampler inserts a zero between every sample of the input A(z), to

produce the output B(z).

If the input sequence (length N) is,
A(z) =ag+ a1z Haz 2+ agz 3 - Fay_12V (4.5)
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and the output sequence (length 2N) is,
B(z)=ag+0z ' +az7 2 +02% + -+ an_12 20D, (4.6)

then the output of the upsampler can be written as

4.3.4 The two-channel filter bank

The basic building block of the DWT is the two-channel filter bank shown in Figure 4.5.
Perfect reconstruction of the DW'T, shown in Figure 4.1, is trivial if it is found for the two-

channel filter bank. Carefully designing the FIR filters achieves perfect reconstruction.

(1) ) ©) 4
H 1( Z) l @ i ...... @ l Fl( Z) L

& e
H(@) (12w (12— R [
(5)

Figure 4.5: The two-channel filter bank, with Hy the lowpass decomposition filter, Hq
the highpass decomposition filter, Fy the lowpass reconstruction filter and Fy the highpass

reconstruction filter.

Using the individual transfer functions from (4.1), (4.4) and (4.7) and following Figure 4.5,
the transfer function of the two-channel filter bank is derived. The signals at various stages

of the filter bank are given below:

At (1) X(2)Hi(z2)

M@ XD + X(—VE) Hi(—y)

At (3):  L[X(2)Hi(2) + X(—2)Hi(—2)]

At (4):  LF(2)[X(2)Hi(2) + X(—2)Hi(—2)]
Similarly,

At (5):  1Fy(2)[X(2)Ho(2) + X(—2z)Ho(—2)]
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Therefore,

Distortion

- ™~

Y(z) = 3Ho(2)Fo(2) + Hi(2)Fi(2)| X(2)

+ H[H(=2)R(2) + (2R ()] X(=2) (48)

J

Aliasing term

The “transfer function” of the two-channel filter bank (4.8) lies at the heart of the filter

design. The system will be a wavelet system if

1. the filters are regular, and if

2. the two-channel filter bank yields perfect reconstruction.

4.3.5 Regularity

The system has to be regular to be a wavelet system. This entails ensuring that Hy(z)
is actually a lowpass filter and Hj(z) a highpass filter. The most basic requirement for
regularity is for a highpass filter to fail to pass DC. This is achieved by making the filter
coefficients of the highpass filter sum to zero. Alternatively, the lowpass filter should have
zeros at z = —1. The number of zeros at 2 = —1 determine the order of regularity with

a higher order of regularity resulting in filters with a flatter magnitude response.

4.3.6 Perfect reconstruction

The filters of the two-channel filter bank are designed so that the filter bank as a whole
has perfect reconstruction, i.e.

Y(z) =25 X(2). (4.9)

The delay term 2z~ % introduces a delay of K samples. It should be noted that a delay
still yields perfect reconstruction, since the output sequence can be circularly rotated to
produce the input sequence. The requirements for perfect reconstruction are therefore to

set the aliasing term in (4.8) to zero and the distortion term to a delay:

e aliasing term = 0,

e distortion term = 2K,
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Setting the aliasing term to zero

By setting the aliasing term of (4.8) to zero, the aliasing cancellation requirements are

derived,
Fo(z) = Hi(—2) and Fi(z) = —Hy(—=2). (4.10)

The lowpass reconstruction filter Fy(z) and the highpass decomposition filter H;(z) are
equal in length and flipped versions of each other. The effect of the minus sign in H;(—z)
is to flip the frequency response of the filter around the imaginary axis in the complex
z-plane. This changes the highpass filter into its equivalent lowpass filter. Similarly, the
lowpass decomposition filter Hy(z) and the highpass reconstruction filter F(z) are equal

in length and flipped versions of each other.

The new two-channel filter bank incorporates the aliasing cancellation requirements and
is shown in Figure 4.6. Now only the two lowpass filters, Hy(z) and Fy(z), have to be
designed, compared to the four filters of Figure 4.5. The filters H;(z) and Fi(z) are com-

puted from Hy(z) and Fy(z) by using the aliasing cancellation requirements in (4.10).

Fo(-2) —(12) (12— Ho(-2)
X(2) o Y(2)
Ho@) —(12) (12— Fo(2)

Figure 4.6: The new two-channel filter bank with the aliasing cancellation requirements

incorporated.

Setting the distortion term to be a delay

The two lowpass filters are designed by setting the distortion term of (4.8) to a delay, and

by setting the aliasing term to zero. This results in
Ho(Z)Fo(Z) + Hl(Z)Fl(Z) = QZ_K, (411)
Substituting the aliasing cancellation requirements from (4.10) into (4.11) yields

Hy(2)Fy(2) — Ho(—2)Fy(—2) = 2275 . (4.12)
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Developing the DWT now results in designing filters to satisfy (4.12). A solution to this is
called the biorthogonal solution. This is a general solution since there are two unknowns
namely Hy(z) and Fy(2).

With h; the coefficients of Hy and f; those of Fy(2~!) the regularity requirement of both
filters are given by [52]

(=1)’h; =0 (=1)'f;=0 and hi=V?2. (4.13)

For perfect reconstruction h; and f; must satisfy [52]

N-1 N-1
d hifi=1 and > hifiar=0 for k#0. (4.14)
=0 =0

Biorthogonal filters can be designed so that
e filters are symmetric,
e filters are maximally flat, or

e filters are a trade-off between being symmetric and having minimum phase.

4.3.7 Spectral Factorisation

For perfect reconstruction with delay K, (4.12) has to be satisfied. Spectral factorisation
can be used to do this, by defining

P(z) = Ho(2)Fy(z). (4.15)
Now perfect reconstruction is achieved if
P(z) — P(—2) = 227X, (4.16)

Polynomial P(z) is first computed and then factorised as in (4.15). For perfect recon-
struction P(z) is a polynomial with even powers of z only, except for a single odd power
2~ % with a coefficient of 1. Therefore, with ¢; the coefficients of the polynomial, P(z) can

be written as
P(z)= e+ +o+eoz P ozt o+ 127K (4.17)
Perfect reconstruction can easily be verified for odd K by substituting (4.17) into (4.16).
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Since linear phase is important, P(z) is further restricted to be a symmetric halfband
lowpass filter. Now P(z) has the form [34]

P(z)=z"" |1+ Zpi (272 + z2i_1)] where K is odd. (4.18)

An additional restriction is for P(z) to have a maximum order of regularity. This implies

that P(z) should have the maximum number of zeros at z = —1.

Herrmann [34] proposed a solution to design P(z) by first choosing the Herrmann order m

and then finding a polynomial P,,(x) given as

Po(z) = (1 —x)mmi:l (m_VHV)xV (4.19)

v=0
If P,,(z) has been chosen, the maximally flat symmetric lowpass filter P(z) may be found
with the transformation

z = % (1—%(2—1—21)) : (4.20)

All Herrmann filters satisfy (4.18) and hence (4.16). The Herrmann filter P(z) has 4m —2
zeros in total. The filter has 2m zeros at 2 = —1 and there are 2m — 2 remaining zeros.

The first few maximally flat symmetric halfband filters are given in Table 4.1.

Table 4.1: Mazimally flat symmetric halfband filters of Herrmann

orders m =1 to m = 4.

P(z)

m
1| 2(1+271)?

2 | c(l4+2H4(-1+42z71 - 272
3

4

se(1+271)5(3 18271 + 38272 — 18273 + 327%)

(14 271)3(=5 + 40271 — 131272 + 20822 — 1312~% + 40275 — 5279)

Spectral factorisation is described by using an example of P(z) with a Herrmann order of
m = 6, so that
—63 + 756271 — 4067272 4+ 1276823
(1427H" —253742~% 4 3221627° — 2537427F . (4.21)
+12768277 — 406728 + 756279 — 632710

P pr—
(2) = 534288

Factorising P(z) into its roots leads to the pole-zero plot in the z-plane shown in Fig-
ure 4.7. The black dots indicate the zeros of P(z).
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Figure 4.7: The Pole-zero plot of mazimally flat symmetric lowpass filter P(z) with a

Herrmann order of m = 6.

Now that P(z) is chosen, the problem of spectral factorisation described by (4.15) involves
dividing the roots of P(z) between Hy(z) and Fy(z). A few special cases are investigated,

which leads to designing wavelets of a certain wavelet family.

The Daubechies wavelet family

The Daubechies wavelets are obtained by choosing both Hy(z) and Fy(2) to be maximally
flat. Looking at Table 4.1, all the Herrmann filters have an even number (2m) of zeros
at z = —1. These zeros are evenly divided between Hy(z) and Fy(z) to make them both
maximally flat. The remaining zeros are divided between Hy(z) and Fy(z) by assigning
the zeros inside the unit circle to the lowpass decomposition filter Hy(z), thereby making
it minimum phase. This causes Fy(z) to receive the zeros outside the unit circle. This is
shown in Figure 4.8 for a Herrmann order of m = 6, where the zeros of Hy(z) and Fy(2)
are indicated with black dots.

This choice results in the following properties of Daubechies wavelets:

e Both Hy(z) and Fy(z) are maximally flat filters.
e Hy(z) is a minimum phase filter, while Fy(z) is maximum phase.

e Fach zero z and its complex conjugate z stay together, which ensures real-valued
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Figure 4.8: The Daubechies 6 wavelet filters in the z-plane. (a) Lowpass decomposition
filter Hy(2). (b) Lowpass reconstruction filter Fy(z).

filter coefficients.

Both Hy(z) and Fy(z) are even length filters.
e Hy(z) and Fy(z) have the same lengths.
e The zeros of Hy(z) are the inverses of the zeros of Fy(z).

The filter coefficients {ho} are formed by reversing the filter coefficients { fo } in time.

e Each Herrmann order produces one unique set of filters.

The Biorthogonal wavelet family

The Biorthogonal wavelets are obtained by choosing both Hy(z) and Fy(z) to be sym-
metric, and thus having linear phase. Linear-phase filters preserve the position of signal
details. Any combination of zeros at z = —1 can be given to Hy(z) and Fy(z), as long
as both receive at least one zero at z = —1 to satisfy regularity. The remaining zeros of
symmetric halfband filters come in groups of four, i.e. if the filter has a zero at z, it will
also have zeros at z (complex conjugate), 2~ (inverse) and z~! (inverse of the complex
conjugate). For the filters to have real coefficients, zeros z and Z must stay together. For

! must stay together. Real-valued zeros come

the filters to be symmetric, zeros z and z~
in groups of two, 2z and z~!, which also have to stay together. Any group of four (or two)
zeros can be given to either Hy(z) or Fy(z), as long as the zeros within these groups stay

together, to ensure real-valued coefficients and linear phase.
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The Biorthogonal wavelets used in this denoising research project are all chosen to have a

short lowpass decomposition filter Hy(z) and a longer lowpass reconstruction filter Fy(z)

and can be used with any Herrmann order m. The longer lowpass reconstruction filter

results in better smoothing [52]. Both filters are regular, but Fy(z) has a much higher

order of regularity and therefore has a flatter response than Hy(z).

The Biorthogonal 1 wavelet family.

The zeros of P(z) are divided between Hy(z) and Fy(z) so that Hy(z) is a short
filter with only one zero at z = —1. The lowpass reconstruction filter Fy(z) receives
all the other zeros at z = —1 and all the remaining zeros of P(z). An example of
Biorthogonal 1 wavelet filters in the z-plane, with a Herrmann order of m = 6, is
shown in Figure 4.9. The Biorthogonal 1 wavelets with Herrmann orders m = 1, 2
and 3 are the Matlab [41] “rbiol.1”, “rbiol.3” and “rbiol.5” wavelets.

The Biorthogonal 2 wavelet family.

This family is similar to the Biorthogonal 1 wavelet family, except that Hy(z) has
two zeros at z = —1, and Fpy(z) has ten zeros at z = —1, for m = 6. Fy(z) also
receives all the remaining zeros of P(z). The Biorthogonal 2 wavelets with Herrmann
orders m = 2,3, 4 and 5 are the Matlab [41] “rbio2.2”, “rbio2.4” “rbio2.6” and

“rbin2.8” wavelets.

The Biorthogonal 3 wavelet family.

This family is similar to the Biorthogonal 1 and Biorthogonal 2 wavelet families,
except that Hy(z) has three and Fy(z) has nine zeros at z = —1, for m = 6. The
Biorthogonal 3 wavelets with Herrmann orders m = 2, 3, 4 and 5 are the Matlab [41]
“rbio3.1”7, “rbio3.3”,“rbio3.5” and “rbio3.7” wavelets.

The Biorthogonal wavelets used in this study have the following properties:

Both Hy(z) and Fy(z) are symmetric, and therefore linear-phase filters.
The filters Hy(z) and Fy(z) do not have to have the same lengths.

Each zero z and its complex conjugate Z stay together, which produces real-valued

filter coefficients.
Each zero z and its inverse 27! stay together, which produces linear-phase filters.

There are many different choices of wavelet filters with the same Herrmann order.
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Figure 4.9: The Biorthogonal 1 wavelet filters in the z-plane. (a) Lowpass
decomposition filter Hyo(z). (b) Lowpass reconstruction filter Fy(z).

The Symlet wavelet family

The Symlet wavelets are obtained by choosing Hy(2) to be a trade-off between linear phase
and minimum phase and Fy(z) to be a trade-off between linear phase and maximum phase.

The zeros of P(z) at z = —1 are evenly divided between Hy(z) and Fy(z) so that both

can be maximally flat filters.

Symlets are produced by

e evenly dividing the remaining groups of four zeros of P(z) between Hy(z)

and Fy(z), and

e if there are any real-valued zeros, which will come in groups of two, the

group is split between Hy(z) and Fy(z).

An example of the Symlet wavelet filters for a Herrmann order of m = 6 is shown in

Figure 4.10.

Symlet wavelet filters have the following properties:

e Both Hy(z) and Fy(z) are maximally flat filters.

e Both Hy(z) and Fy(z) are almost symmetric.

e Fach zero z and its complex conjugate z stay together, which ensures real-valued

filter coefficients.
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Figure 4.10: The Symlet 6 wavelet filters in the z-plane. (a) Lowpass decomposition
filter Hy(2). (b) Lowpass reconstruction filter Fy(z).

Real-valued zeros z and their inverses z~! do not stay together and are split between

Hy(z) and Fy(z2).

Both Hy(z) and Fy(z) are even length filters.
e Hy(z) and Fy(z) have the same lengths.

Each Herrmann order produces one unique set of filters.

The Haar wavelet

There is only one Haar wavelet, which results from a Herrmann order of m = 1. The

Herrmann filter P(z) has only two zeros, both at z = —1, which are divided between

Hy(z) and Fy(z).

Choosing the Herrmann filter with a order of m =1

P(z) = %(1 + 2712, (4.22)
results in
Ho(2) = ~—(14=Y) and  Fp(z) = —=(1 4+ 271) . (4.23)

V2 V2

Figure 4.11 shows the Haar wavelet filters in the z-plane.
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Figure 4.11: The Haar wavelet filters in the z-plane. (a) Lowpass decomposition
filter Hy(2). (b) Lowpass reconstruction filter Fy(z).

The Haar wavelet filters have the following properties:

e Both Hy(z) and Fy(z) are maximally flat.
e Both Hy(z) and Fy(z) are symmetric.

e The filters Hy(z) and Fy(z) are the exact same filter.

The Discrete Meyer wavelet

The Discrete Meyer wavelet, found in the MathWorks Wavelet Toolbox [41], is a FIR
filter approximation of the Meyer wavelet. The discrete version has compact support in
the time domain, unlike the original Meyer wavelet[22, 38]. Algorithms for implementing
the Discrete Meyer wavelet transform are described in the thesis of Kolaczyk [38], but the
MathWorks Wavelet Toolbox uses an algorithm described in a French book by Abry [1].

Figure 4.12 shows that the magnitude response of a Discrete Meyer wavelet filter has a
steep cut-off gradient and is almost maximally flat in the bandpass region. Because it is an
approximation of the Meyer wavelet which is symmetric [41], its phase response is almost
linear. The Discrete Meyer wavelet has an equivalent Herrmann order of m ~ 31 and is,
because of the above-mentioned qualities, almost an ideal halfband filter, in comparison

to other wavelets which generally have much shorter filter lengths.
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Comparing the wavelet filters

The following wavelets are compared:

e The Haar wavelet (Herrmann order of m = 1).

The Daubechies 6 wavelet (Herrmann order of m = 6).

The Symlet 6 wavelet (Herrmann order of m = 6).

The Biorthogonal 1 wavelet (Herrmann order of m = 6).

e The Discrete Meyer wavelet (which is equivalent to a Herrmann order of m = 31)

Figure 4.12 shows the magnitude response of the lowpass reconstruction filters Fy(z) of

the different wavelets.

Figure 4.12: (a) The magnitude response of the Fy(z) filter of the different wavelets.
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(b) A closer look at the bandpass region.
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The sampling frequency in Figure 4.12 is chosen to be Fg = 8 kHz. The gain in dB is
shown twice, in Figure 4.12(a) to investigate the cut-off gradient and in Figure 4.12(b) to

examine the flatness of the bandpass region.

Figure 4.12(a) shows that the Discrete Meyer filter has the steepest cut-off gradient, while
the Haar wavelet has a gradual cut-off gradient. The Daubechies and Symlet filters have

the exact same magnitude response, and differ only in their phase response.

Figure 4.12(b) shows that the Daubechies and Symlet wavelet filters have a maximally flat
magnitude response, whereas the Biorthogonal filters are not nearly flat. The Discrete
Meyer filter is almost maximally flat with a ripple clearly visible. Although the Haar

wavelet filter is maximally flat, it is a poor halfband filter because of its short length.

4.4 Decomposition levels

This section describes how wavelet coeflicients can be interpreted in terms of the number
of decomposition levels. The DW'T, as shown in the Figure 4.1, splits the data a number
of times into a highpass and a lowpass version. This is called the number of decompo-
sition levels J. The wavelet transform yields perfect reconstruction for any number of
decomposition levels. A different number of decomposition levels does however lead to

different wavelet coeflicients and this is discussed below.

4.4.1 Full wavelet decomposition

The maximum number of decomposition levels is Jy;ax = log, N, with N the total number
of wavelet coefficients (equal to the number of samples in the signal). Figure 4.13(a) shows
an example of the full decomposition tree of a discrete-time signal with the maximum
number of decomposition levels J = Jy;ax. The wavelet decomposition tree corresponds
directly to the decomposition filter bank in Figure 4.1. The length of the example discrete-
time signal is 16, which is halved after every decomposition because of downsampling.
A full decomposition results in one scaling coefficient (SC). Figure 4.13(b) shows the
corresponding time-frequency view of the coefficients. A full decomposition results in one

binary tree of coefficients, which spans the total time-length of the original signal.
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Figure 4.13: (a) The full wavelet decomposition with the maximum number of
decomposition levels J = Jyax. The length of the original signal is 16, which is halved
after every decomposition. There is one scaling coefficient (SC). (b) The time-frequency

tiling view of the DWT shown in (a) consists of one tree.

4.4.2 J-level decomposition

The number of binary trees of coefficients 7" depend on the chosen number of decompo-

sition levels J and the total number of wavelet coefficients IV, and is calculated as

N 2JImax

=57 = . (4.24)

T 57

If the original signal is a time signal, the chosen number of decomposition levels J deter-

mine the time-span of each tree of coefficients.

Figure 4.14(a) shows an example of a wavelet decomposition with two decomposition
levels. The number of scaling coefficients corresponds directly to the number of trees of
coefficients, therefore there are four scaling coefficients according to from (4.24) and also
a forest of four trees of coefficients as shown in Figure 4.14(b). Each tree only spans a

quarter of the time-length of the original signal.

The time-frequency tiling views (Figures 4.13(b) and 4.14(b)) are constructed from the
wavelet decomposition trees (Figures 4.13(a) and 4.14(a)), by using a resolution index j =
0,1,...,J — 1 and the scaling coefficients (SC). The number of wavelet coefficients are

therefore equal to the number of samples in the discrete-time domain.
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Figure 4.14: (a) This wavelet decomposition is two levels deep (J = 2), resulting in
four scaling coefficients. (b) The time-frequency tiling view of the DWT shown in (a)

consists of a forest of four trees.

Note that the highest two resolution levels in Figure 4.13(b) and 4.14(b) are exactly the
same coefficients. Introducing more levels of decomposition only changes the coefficients
of the lower resolution levels. The surface areas of the tiles in the time-frequency view of
Figure 4.13(b) and Figure 4.14(b) are equal because as time resolution increases, frequency
resolution decreases. Figures 4.13(a) and 4.14(a) show that, independent of the number

of decomposition levels, the original signal must have a length which is a power of two.

4.4.3 The decomposition of speech

Speech enhancement algorithms such as STSA techniques are frame-based, where each
consecutive frame is transformed into the Fourier domain. It is necessary to develop
a frame-based framework for wavelet-based speech enhancement. This is developed in
Section 6.3.

It should be noted that the frames should not be windowed as with Fourier-based tech-
niques. This is because of the multiresolution representation of the DW'T, which has a
fine time resolution at high resolution levels. We are looking for an equivalent to non-

overlapping, rectangular windowed frames.
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Frame-by-frame full decompositions

One way to do a frame-based DW'T on speech, similar to the frame-based Fourier tech-
niques, is to divide the time signal into frames, which are then fully decomposed (J =

Juax) to create a tree of coefficients for every frame.

However, this will create unwanted edge-effects within the DWT of each segment. These
edge-effects are introduced in the filtering step, because of the discontinuities associated
with any form of extension. Because the methods analysed in this study rely on statistics,
the edge-effects will influence the signal /noise classification of the algorithms. Attenuating
the edge-effects is also not an option, as this disrupts the perfect reconstruction of the
IDWT and leads to distortion. This method, however, can be implemented in real-time,

where the frames are streamed to the denoising algorithm.

Decomposition of a whole sentence

Another method to create a frame-based DWT for speech is to take the DWT of the
whole sentence (zero-padded to have a length which is a power of two) with a chosen
number of decomposition levels smaller than the maximum number, J < Jyax. This
results in a forest of trees of coefficients as shown in Figure 4.14(b) which are consecutive

non-overlapping trees. This is equivalent to non-overlapping frames.

Since the DWT is computed on the whole sentence, the only place where edge-effects
are introduced is at the beginning and end of the sentence. The sentence can easily be
chosen to begin and end with silence. Edge-effects are not noticeable in almost zero-
valued signals such as these silent regions. Edge-effects are therefore not a factor in
such speech enhancement. This method, however, cannot be implemented in real-time,
because it requires future knowledge of the sentence. Wavelet-based speech enhancement
in this study is implemented by using the decomposition of a whole sentence because of

the importance of statistics rather than real-time implementation.

4.5 Statistical properties of the DW'T

The wavelet coefficients can be viewed in two ways. The first view is to see the coefficients
as a wavelet function which is the output of the DWT and the second view is to sort the
coefficients in a time-frequency tiling view. These are shown in Figure 4.15 and described

below.
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Figure 4.15: The different views of the wavelet transform of a typical real-world signal.
(a) The Bumps signal from the Donoho-Johnstone software. (b) The wavelet function

view. (c¢) The time-frequency tiling view.

The Donoho-Johnstone [16] Bumps test signal, viewed as a time signal and shown in
Figure 4.15(a), is used as an example for this discussion. The Daubechies 4 (Herrmann
order m = 4) wavelet is used in a full decomposition DWT. The test signal has a length
of 1024 samples which leads to J = 10 resolution levels (7 = 0,1,...,9).

The wavelet function is shown in Figure 4.15(b). The highest resolution level is shown to
the right of the rightmost dotted line. This resolution level contains half of the wavelet
coefficients and represents the entire time-length of the signal. It is a filtered version of the
original time signal. The other resolution levels, which is seen between the dotted lines,
have a similar interpretation. Wavelet coefficients within a resolution level are filtered
and compact versions of the original time signal. It is clearly seen that coefficients from

higher resolution levels have much lower values than that of low resolution levels.

The time-frequency tiling view is shown in Figure 4.15(c). It should be noted that the
time-frequency tiling view has a resolution level (or scale) axis instead of the normal
frequency axis. This makes more sense, since the frequency responses of wavelet filters
typically overlap. This is seen in Figure 4.12, where for example the Haar wavelet filters
are far from being ideal symmetric halfband filters. Each resolution level can, however,
be associated with a certain frequency band. All resolution levels in Figure 4.15(c) are,
for viewing purposes, incorrectly displayed with equal widths. The coefficients are also

normalised within resolution level, for displaying purposes.

The wavelet coefficients of real-world signals share certain properties. The description
thereof is based on [14] and [47]. The DWT of real-world signals typically has the following

two primary properties:
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e P1 Locality:
Each wavelet atom (basis function) 1); is localised in time (or spatial location)
and frequency. This can be seen in Figure 4.15(c), where each block (wavelet

coefficient) is localised in time and frequency (resolution level).

e P2 Multiresolution:
The wavelet atoms 1; are shrunk or expanded to analyse the signal at a nested
set of resolution levels. The atoms are shifted within each resolution level. This
allows the DW'T to match both short-duration and long-duration signal compo-
nents at specific time locations. The DW'T representation is narrow-band at low
frequencies with longer time intervals. At high frequencies it is wide-band with
shorter time intervals. The bandwidth of adjacent resolution levels differs with
one octave. Figure 4.15(c) shows how the time resolution increases at higher

frequencies.

Properties P1 and P2 lead to a natural arrangement of the wavelet coefficients in a binary
tree structure!. The wavelet coefficients of real-world signals can be modelled as random
variables, which tend to have certain properties. Looking at the individual coefficients,
the third primary property of the DWT is deduced.

e P3 Compression: The DWT compresses real-world signals, therefore the wavelet
coefficients tend to be sparse. There are a large number of small coefficients, and
a small number of large coefficients. The wavelet coefficients are therefore non-
Gaussian in nature (the histogram of a coefficient over a number of observations
tend to be more peaky and heavy-tailed than a Gaussian density). Looking at
Figure 4.15(b) the small number of large coefficients can be seen, especially at

higher resolution levels.

An assumption can be made that the wavelet coefficients tend to be decorrelated. Al-
though it is a fair assumption to view the DWT as a decorrelator, the transform cannot
completely decorrelate a signal. A residual dependency structure remains between the

coefficients, implying that they are not statistically independent.

This results in the secondary properties of the DWT. These describe the intercoefficient

dependencies.

In the 2-dimensional DWT of images, P1 and P2 lead to a quad-tree structure with 3 sub-bands
representing horizontal, vertical and diagonal edges [47].
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e S1 Clustering: If a coefficient is large/small, its neighbouring coefficients within
the same resolution level also tend to be large/small. These clusters are clearly seen
in Figure 4.15(b).

e S2 Persistence: Coefficients tend to propagate across scale. If a parent coefficient
is large/small, its children coefficients also tend to be large/small. Figure 4.15(c)
shows that large coefficients tend to have a pyramid shape. This type of structure

in the time-frequency tiling view implies persistence.

Compression P3, clustering S1 and persistence S2 are the basic properties that Shapiro [51]
captured in his revolutionary zerotree wavelet image compression technique?. This algo-
rithm captures both the non-Gaussian statistics of the individual wavelet coefficients and

the intercoefficient dependencies in compressing images.

Both the primary and secondary properties of the DW'T are utilised in the different de-
noising techniques. Even the most basic denoising method of zeroing coefficients below a
certain threshold makes use of the compression property. Highly computationally inten-
sive training algorithms (such as the Hidden Markov Tree method) have been developed

to capture persistence.

Different state-of-the-art wavelet denoising techniques, which make use of these properties

in one way or the other, are investigated in the following chapter.

2The JPEG2000 image compression standard is based on this [39].
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Chapter 5

Wavelet-based signal denoising

5.1 General signal denoising

This chapter is concerned with wavelet-based denoising techniques. Wavelet-based denois-
ing is widely used for image denoising. This research, however, investigates wavelet-based
speech denoising. The current wavelet-based denoising techniques for general signals are

now described, and these are applied to speech in Chapter 6.

As described in Section 1.2, wavelet-based denoising consists of three steps, namely for-
ward transformation, attenuation and inverse transformation. All wavelet denoising meth-

ods are described by this framework and they differ only in the attenuation step.

Noise
Estimation
04
é A
yln] Analysis hud Attenuation Synthesis L
DWT Shrinkage function IDWT

Figure 5.1: The flowchart of wavelet-based signal denoising.
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5.1.1 Forward transformation

The noise d[n| is assumed to be additive, therefore the observed signal is modelled as in

(2.1) as

yln] = zln] +d[n] (5.1)
or in vector notation,

y=x+d, (5.2)

where vectors y = {y[n]}2), x = {z[n]} and d = {d[n]}=} represent the noisy,
clean and noise discrete-time signals respectively, with N the length of the signals. The
enhanced signal Z[n] is represented by X in vector notation. The noise d[n| is assumed
to be zero-mean Gaussian noise. It is also assumed to be statistically independent and
identically distributed (iid).

The forward transformation or analysis step of wavelet-based denoising is the discrete
wavelet transform (DWT). The real-valued vector w containing the noisy wavelet coeffi-

cients can be computed by multiplying orthogonal matrix W with the noisy signal y,
w=Wy. (5.3)

This process of computing the wavelet coefficients (the DWT) is described in Chapter 4.

Because the DWT is a linear transform [11],

w = Wx + Wd

(5.4)
=0+o,Wz,

with 0 the clean (unobserved) wavelet coefficients, o4 the standard deviation of the noise

and z a vector of zero-mean unity variance Gaussian noise.

The noisy coefficients (5.4) can be written in a “signal” plus “noise” form [11], as
w=0+042". (5.5)

Here z* is also a zero-mean unity variance Gaussian noise process which is still uncorre-

lated with 0.

5.1.2 Attenuation step

The aim of wavelet-based denoising is to estimate the unobserved clean signal 8. The

attenuation step of wavelet-based denoising takes the form of a shrinkage function. It
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forms an estimate @ of the clean wavelet coefficients from w and 2. The attenuation step

is described in detail in Section 5.2.

5.1.3 Inverse transformation

The inverse transformation or synthesis step is the inverse discrete wavelet transform

(IDWT). It reconstructs the estimated clean signal from the modified coefficients 6, as
x=W7'o . (5.6)

The matrix W7 represents the IDWT which is described in Chapter 4.

5.2 Attenuation

A noisy signal is transformed into the wavelet domain, where the coefficients are atten-
uated on an individual basis, as shown in Figure 5.2. Large coefficients are assumed to
contain mostly signal energy and are left unattenuated. Coefficients that are sufficiently
small will typically be the noise components and are muted. The different denoising tech-
niques make use of the properties of the wavelet coefficients of real-world signals which

are described in Section 4.5.

o3
W Shrinkage
Function
Parameters
Shrinkage Function =

Figure 5.2: The flowchart of the wavelet-based attenuation step.

Figure 5.2 shows that the attenuation step of wavelet-based denoising is twofold. The first
step is to calculate the shrinkage function parameters via a denoising rule. The second
step is to alter the noisy wavelet coefficients w with the shrinkage function. Different

shrinkage functions are described in Section 5.3, whereafter the shrinkage rules, namely
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VisuShrink, SureShrink, HybridSure, Wiener, GMM, HMM and HMT are described in
Sections 5.4 to 5.10.

5.3 The shrinkage functions

A shrinkage function forms an estimated clean coefficient 6; from each noisy wavelet

coefficient w;,

0; = O(w;) . (5.7)

Four shrinkage functions are investigated!, namely the hard, soft, one-slope and two-slope

shrinkage functions, and they are shown in Figure 5.3.

Hard shrinkage function O (w)

The hard shrinkage function has a threshold parameter \ and is given by [26]

@H(w):{w’ [wi>X 2 (5.8)

0, |w|<A

Wavelet coefficients with a magnitude below the threshold A\ are therefore zeroed, while

the rest are left unchanged.

Soft shrinkage function ©%(w)
The soft shrinkage function has a threshold parameter A and is given by [26]

o5 (w) :{ sign(w) (| w| =), [w] >\ 59)

0, |w|<A

It is similar to the hard version, except that large coefficients are also attenuated.

LOther shrinkage functions include the Semisoft and the Garrote shrinkage functions [26].
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Figure 5.3: (a) The hard shrinkage function O (w) with threshold X. (b) The soft
shrinkage function ©°(w) with threshold \. (c¢) The one-slope shrinkage
function ©(w). (d) The two-slope shrinkage function ©2“(w) is an interpolation

between the two dotted line slopes.
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One-slope shrinkage function ©'*(w)

2 . .
+2— . It therefore has a signal variance
o510z

parameter o2 and a noise variance parameter o2 and is given by

This shrinkage function scales the coefficients by

2

@M(w):{ s }w. (5.10)

2 2
o5+ 03

It does not distinguish between large and small coefficients, but suppresses all coefficients

based on the signal-to-noise ratio.

Two-slopes shrinkage function ©%F(w)

This shrinkage function forms a smooth interpolation between two lines with slopes

2 2
02(1502 and 02‘202 . The slopes are based on the signal-to-noise ratios for large and small
d S d L

coefficients. This shrinkage function can be seen as a softer version of the hard shrink-

age function, with parameters that are based on statistics rather than heuristics. The

two-slope shrinkage function is given by

2 2
02 (w) — | p s P o 5.11
(W> S(W) 02 T O’% ./ L(W) 0_2 4 O'% w ( )

The parameters Pg(w) and Pp(w) are posterior probabilities and can be interpreted as
the probability of a coefficient to be either small or large. Their computation differ in
each statistical algorithm, such as the GMM, HMM and HMT.

By looking at Figure 5.3(d) it is seen that the posterior probabilities determine the inter-
polation between the two lines. A shrinkage function with a small Ps(w), which implies
a large Pp(w), will increase the width of the interval about zero where the shrinkage

function clings to the line with the smaller slope [11].

Small and large coefficients are represented by parameters o and o7, respectively. These
parameters and the noise variance o2 determine the slopes of the two lines. If there is little
difference between small and large coefficients, the two-slope shrinkage function approx-
imates the one-slope shrinkage function. The two-slope shrinkage function is therefore
specifically designed for signals that have a significant difference between small and large

coefficients.
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5.3.1 Using the shrinkage functions

The different denoising algorithms each use specific shrinkage functions. VisuShrink and
SureShrink use either the hard or soft shrinkage function. Wiener denoising uses the
one-slope shrinkage function, whereas the GMM, HMM and HMT denoising algorithms

use the two-slope shrinkage function.

In practice, the noise is assumed to have unity variance in order to simplify the shrinkage
function thresholds, and therefore noisy coefficients w must be scaled properly. Based on

the representation in (5.5), this is implemented as
6=5,0(w/64) . (5.12)

The input to the shrinkage function in (5.12) is the scaled noisy coefficients w/d,, while

its output is multipli