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ABSTRACT  

The grain chinch bug (GCB), Macchiademus diplopterus (Distant) (Hemiptera: 

Lygaeidae) is a key quarantine pest of South African export fruit and is endemic to the 

Western Cape Province. The pest is troublesome in the drier wheat growing areas 

where it disperses from wheat in summer to find sheltered sites in which to aestivate. 

Aestivating adults can end up contaminating export fruit. The aim of the study was to 

gather more knowledge on the chemical ecology and shelter-seeking behaviour of the 

GCB. The involvement of pheromones in the aggregation behaviour of GCBs is yet to 

be fully elucidated. Further investigating the chemical ecology of the GCB in order to 

optimize its pheromone trapping was the primary focus of the first research chapter in 

this study. Headspace volatile compounds were identified from active bugs through 

gas chromatography-mass spectrometry (GC-MS) analysis. A total of 14 volatile 

compounds were identified from males and females in varying concentrations. For 

both sexes pooled, tridecane, (E)-2-hexanal and (E)-2-octenal were the three main 

components; (E)-2-hexenol, (E)-2-octenol, decanal and pentadecane were in medium 

amounts, while decanoic acid, dodecane, hexadecanal, hexanal, icosane, nonanal 

and tetradecanoic acid were minor components. The efficacy of synthetic lures using 

previously identified aggregation pheromone components, and sex pheromone 

volatile components (identified in present study) was studied in combination with 

modified traps using rubber septa dispensers in a field trial. There was no significant 

difference (P > 0.05) between insects caught in the sex pheromone baited traps and 

the aggregation pheromone baited traps. Traps caught low numbers of GCBs 

compared to the level of orchard infestation indicated by the amount of bugs that were 

found sheltering in corrugated cardboard bands tied around tree trunks. The 

corrugated cardboard bands showed a significant difference in the number of bugs 

sheltering between bands placed at bottom and top positions (0.5m and 1.5m above 

ground respectively) on the trees, at site 1 (P = 0.0058), site 2 (P < 0.0169) and site 4 

(P < 0.0496) with the exception of site 3 (P > 0.4115). Cardboard band position 

influenced catches, as more bugs were found in bottom bands. This can be used 
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advantageously in optimising innovative trap placements in the future in order to 

improve catches. In the second research chapter investigations into the behavioural 

responses of GCBs to visual objects were conducted. This was done to increase 

knowledge on how this behaviour can lead to the development of control measures 

such as the use of coloured traps of different shapes. Behavioural responses of GCBs 

to different shapes presented in their visual space indicated that there was a significant 

difference (P = 0.0001) in the choice of shape. Vertical/upright rectangular shapes had 

the highest number of GCB visits. GCBs responded to upright rectangles of different 

colours.Black and red rectangles were not significantly different (P > 0.05) from each 

other but were both significantly different (P = 0.0001) from green and yellow 

rectangles, off-target and sedentary insects. Vertical rectangles of two different colour 

patterns (black & white) and (red & white) did not show any significant difference (P > 

0.153) in the number of GCB visits. Both black & white and red & white vertical stripes 

were significantly different (P = 0.0001) from off-target and sedentary insects. This 

indicates that GCBs were equally responsive to both colour patterns. These results 

indicate that GCBs exhibit a positive scototactic reaction towards dark upright 

surfaces. Information generated from this study will facilitate the development of pre-

harvest monitoring and management measures against GCBs, using pheromone traps 

and physical barriers that prevent GCBs from dispersing into fruit orchards at the 

wheat to fruit orchard interface. This can help to reduce fruit contaminations, ultimately 

lowering the rejection risk of export fruit from South Africa. 
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OPSOMMING  

Die graanstinkluis, Macchiademus diplopterus (Distant) (Hemiptera: Lygaeidae), is ’n 

belangrike kwarantynplaag van Suid-Afrikaanse uitvoervrugte en is endemies aan die 

Wes-Kaapprovinsie. Die plaag is ’n probleem in die droër graanbougebiede waar dit 

in die somer van graan versprei om skuilplekke te vind om in ’n somerrusperiode in te 

gaan. Volwasse insekte in hierdie somerrusperiode kan uitvoervrugte besmet. Die 

doel van hierdie ondersoek was om meer kennis oor die chemiese ekologie en 

skuilpleksoekende gedrag van die graanstinkluis te versamel. Daar moet nog 

afdoende bewys van die betrokkenheid van feromone by die aggregasiegedrag van 

graanstinkluise gevind word. Verdere ondersoek van die chemiese ekologie van die 

graanstinkluis om die feromoonlokval te optimaliseer was die primêre fokus van die 

eerste navorsingshoofstuk van hierdie studie. Vlugtige organiese verbindings in die 

bodamp van saamgetrosde stinkluise is deur gaschromatografie-massaspektrometrie 

(GC-MS)-ontleding geïdentifiseer. Altesaam 14 vlugtige verbindings is van mannetjies 

en wyfies in wisselende relatiewe konsentrasies geïdentifiseer. Vir albei geslagte was 

tridekaan, (E)-2-heksanaal en (E)-2-oktenaal die drie hoofkomponente; (E)-2-

heksenol, (E)-2-oktenol, dekanaal en pentadekaan was in mediumhoeveelhede 

teenwoordig terwyl dekanoësuur, dodekaan, heksadekanal, heksanaal, ikosaan, 

nonanal en tetradekanoësuur mindere komponente was. Die doeltreffendheid van 

sintetiese lokmiddels deur gebruik van voorheen geïdentifiseerde aggregasie-

feromoonkomponente en seksferomoon vlugtige komponente (in die huidige studie 

geïdentifiseer) is in ’n praktiese toets bestudeer in kombinasie met gemodifiseerde 

lokvalle deur gebruik van rubberseptahouers.  Daar was geen beduidende verskil (P 

> 0.05) tussen insekte wat in die lokvalle met seksferomoon-lokmiddels en lokvalle 

met aggregasieferomoon-lokmiddels gevang is nie. Lokvalle het klein getalle stinkluise 

gevang in vergelyking met die vlak van boordinfestering wat aangedui word deur die 

hoeveelheid luise wat gevind is in riffelkartonstroke wat om boomstamme gebind is.  

Daar was ’n beduidende verskil tussen die aantal luise wat in die riffelstroke onderom 

en bo-om die bome gebind is (0.5m en 1.5m bo die grond), in terrein 1 (P = 0.0058), 
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terrein 2 (P < 0.0169) en terrein 4 (P < 0.0496), met die uitsondering van terrein 3 (P 

> 0.4115). Die posisie van die riffelkartonstroke het die vangste beïnvloed aangesien 

meer luise in die onderste stroke gevind is. Dit kan voordelig aangewend word deur in 

die toekoms innoverende lokvalplasings te optimaliseer ten einde vangste te verbeter. 

In die tweede navorsingshoofstuk is gedragsresponse van graanstinkluise op visuele 

voorwerpe ondersoek. Dit is gedoen om kennis uit te brei oor hoe hierdie gedrag tot 

die ontwikkeling van beheermaatreëls soos die gebruik van gekleurde lokvalle in 

verskillende vorms kan lei. Gedragsreaksies van stinkluise op verskillende vorms wat 

in hulle gesigsveld aangebied word het getoon dat daar ’n betekenisvolle verskil (P = 

0.0001) in die keuse van vorm was.  Vertikale/regop reghoekige vorms het die grootste 

aantal besoeke gehad. Stinkluise het teenoor regop reghoeke van verskillende kleure 

gereageer. Die reaksie op swart en rooi reghoeke was nie beduidend verskillend (P > 

0.05) van mekaar nie, maar albei het aansienlik verskil (P = 0.0001) van dié van groen 

en geel reghoeke, buiteteiken- en sedentarye insekte. Vertikale reghoeke van twee 

verskillende kleurpatrone (swart & wit) en (rooi & wit) het geen beduidende verskil (P 

> 0.153) in die aantal besoeke getoon nie. Swart & wit sowel as rooi & wit vertikale 

strepe het aansienlik verskil (P = 0.0001) van buiteteiken- en sedentarye insekte. Dit 

dui daarop dat graanstinkluise ewe goed op albei kleurpatrone gereageer het. Hierdie 

resultate dui daarop dat graanstinkluise ’n positiewe skototaktiese reaksie teenoor 

donker, regop vlakke toon. Inligting uit hierdie studie sal die ontwikkeling van vooroes-

monitering en -bestuursmaatreëls teen die graanstinkluis fasiliteer deur gebruik van 

feromoon-lokvalle en fisieke grense wat stinkluise verhinder om na vrugteboorde by 

die graan-tot-vrugteboord-koppelvlak te versprei. Dit kan help om vrugtebesmettings 

te verminder, wat uiteindelik die afkeuringsrisiko van uitvoervrugte uit Suid-Afrika sal 

verminder.  
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CHAPTER 1 

LITERATURE REVIEW 

1.1 Introduction  

The grain chinch bug (GCB), Macchiademus diplopterus (Distant) (Hemiptera: 

Lygaeidae) is an important quarantine pest of deciduous fruit in South Africa. It mainly 

affects the South Western Cape Province which is the centre of commercial fruit 

production in the country. It is a pest that does not feed on fruit but due to a migratory 

shelter-seeking behaviour seen in adults during aestivation, the GCBs can be found 

sheltering in fruit commodities destined for export. GCB is endemic to South Africa 

and consequently, a pest of phytosanitary concern that if left uncontrolled can 

negatively impact the export fruit market of the Western Cape. 

GCB populations fluctuate between seasons in affected areas, such as Ceres 

(Addison 2004). This is linked to prevailing weather conditions and is dependent on 

photoperiod, temperature and humidity levels. High GCB populations are more 

prevalent in drier areas experiencing low minimum temperatures and low relative 

humidity levels (Johnson & Addison 2008). The pest feeds and reproduces in winter 

on grasses and small grain crops, such as wheat (Slater & Wilcox 1973; Sweet 2000). 

It feeds on host plants through sucking sap, a trait common to other Lygaeidae species 

(Solbreck 1979; Dingle et al. 1980; Solbrech & Sillen-Tullberg 1981; Schuh & Slater 

1995).  

The seasonal life cycle of the GCB includes a period of aestivation, a state of 

dormancy entered at adult stage in early summer. At the onset of aestivation the insect 

seeks out shelter sites in which to aestivate (Giliomee 1959; Annecke & Moran 1982; 

Sweet 2000). This stage in the life cycle of the GCB coincides with the ripening and 

harvesting of many deciduous fruit cultivars. Orchards and vineyards near to wheat 
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fields, become infested with GCBs during the migration period. This begins at the 

onset of summer from around October to November.  

The harvesting of wheat is a major cause of GCB dispersal from wheat to fruit orchards 

where they coincidentally find shelter in fruit cavities of ripening fruit (Annecke & Moran 

1982). Adult GCBs are known to hide in concealed fruiting structures such as in the 

calyx and stalk end of pome, stone and citrus fruit. The insects have inadvertently 

been exported within various fruit commodities to international markets causing 

consignment rejection problems for the local fruit producers. 

1.2 Pest history on host plants 

The GCB is a sap sucking pest of grain crops such as wheat, barley, oats and other 

wild grasses (Matthee 1974; Annecke & Moran 1982). According to Sweet (2000) the 

natural host plants for this pest are within the plant family Poaceae and these include 

longflowered veldtgrass Ehrharta longiflora, panic veldtgrass E. erecta, common wild 

oat Avena fatua, and annual meadow grass Poa annua. When feeding on preferred 

host plants they normally aggregate and cause wilting of the plants, before the plants 

dry and die (Sweet 2000; Summers et al. 2010; pers. obs.).  

In South Africa, reports of severe economic losses in wheat fields as a result of GCB 

damage dates back as far as the late 19th century in the Touws River area in the 

Western Cape (Smit 1964). The arrival of the agricultural revolution in the past century 

brought with it a breakthrough in the management of GCBs in wheat using synthetic 

pesticides. This was attributed to the availability and registration of systemic 

insecticides that were adopted from European countries and chemical companies that 

extended their markets into Africa. Currently there are several pesticides available for 

use on grain crops and are being used in wheat pest control programmes. GCBs are 

now considered an occasional pest of wheat in the Western Cape (ARC 2014).  

Stellenbosch University  https://scholar.sun.ac.za



   

3 

 

1.3 Pest history on fruit commodities 

The GCB has for some time presented serious economic challenges for South African 

fruit exporters. There are numerous consignment rejection reports for fruit exported to 

the United Kingdom dating back to the 1920’s (Malumphy et al. 2012). Initially it was 

thought that GCBs were feeding on the fruit, but later it became clear that bugs were 

only sheltering on the fruit and did not feed (Annecke & Moran 1982). GCBs have no 

specific fruit targets, but can be found on all fruit types including stone and pome fruit, 

table grapes and citrus within the Western Cape area (Johnson & Addison 2008).  

As a result of fruit rejections and the concurrent loss of income to the fruit industry, 

research is presently focused on finding effective and reliable monitoring and 

management methods as a solution to the GCB pest problem. This is crucial for 

reducing the risk of fruit carton contaminations with GCBs in the future. This mitigates 

the rejection that would result when South African fruit consignments are refused 

and/or destroyed by the receiving export markets. Innovative and effective control 

measures will also be required to stop the spread of the insect into new areas where 

it does not occur. Care should thus be taken to ensure that potential pests are not 

spread to new areas through exportation and importation of agricultural produce. 

1.4 Quarantine status and interception history of pest 

There are strict trade requirements and regulations governing the export of fruit that 

need to be adhered to in order to achieve successful business with international 

markets (Wakgari & Giliomee 2004). The high risk of exporting GCB contaminated fruit 

to export markets has led to the classification of the insect as a key phytosanitary pest 

of South African export fruit. One of the first positive interception incidences of GCBs 

on South African export fruit was recorded in England on peaches in 1923, followed 

by an interception on nectarines at Newcastle docks in 1960 (Malumphy et al. 2012). 

On one occasion, GCBs reportedly survived cold storage treatment of -0.5º C for 8 
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weeks on stone fruit in transit from South Africa, and live insects were intercepted in 

England (Myburgh & Kriegler 1967; Malumphy 2011).  

GCB has been detected in England on more than 14 occasions in association with 

fresh produce imported from South Africa, especially on peaches (Malumphy et al. 

2012). One of the most significant findings to date was in February 2011 where 

hundreds of live bugs were found in a shipped consignment of fresh peaches from 

South Africa (Malumphy 2011; Malumphy et al. 2012). The consignment was 

destroyed soon after detection. Other reports also mention that in the 2006/07 season 

more than 50% of locally produced table grapes were rejected at several international 

markets due to GCB infestation (Johnson & Addison 2008). The GCB can easily hide 

in crevices and cavities, a factor which increases the demand for the development of 

novel species specific control methods for this pest. At present, the pest continues to 

affect South African export fruit thereby increasing the quarantine concern (Malumphy 

& Reid 2007). 

1.5 Classification of the grain chinch bug, Macchiademus diplopterus  

The GCB, Macchiademus diplopterus belongs to order Hemiptera, one of the largest 

insect orders and a very important group in agriculture as many insects of economic 

importance occur within this group (Smit 1964; Sweet 2000). Members in this order 

are terrestrial or aquatic and they pass through incomplete metamorphosis with their 

nymphs developing wing pads without pupating (Scholtz & Holm 2008). The GCB goes 

through five nymphal stages of development in its life cycle before turning into an adult 

(Fig. 1.1).  
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Fig. 1.1. The developmental stages of the grain chinch bug (Insecta: Hemiptera: Heteroptera: 

Lygaeidae) showing the five nymphal stages before reaching adult stage (Source: Shetlar & Andon 

2011). 

As a result of the many different morphological forms of insects in this order, its 

classification is complex (Scholtz & Holm 2008). The various hemipteran species 

possess piercing and sucking mouthparts, enabling them to extract plant sap from 

plants or blood from animals (Hansell 1984; Schuh & Slater 1995; Scholtz & Holm 

2008). The GCB belongs to suborder Heteroptera which has members that feed on 

green plants (phytophagous) by the use of stylet shaped mandibles and maxillae also 

called juice extracting mouth parts (Sweet 1979). Their fore wings consist of a basal 

hardened portion and a distal membranous portion, making it a Hemiptera (Scholtz & 

Holm 2008). Members of suborder Heteroptera possess two paired wings, the 

forewings being different in texture and venation than the larger hind wings, hence the 

term ‘Hetero’ which means different (Smit 1964; Burdfield-Steel & Shuker 2014).  

All species of the Heteroptera have compound eyes, but often have, two or no ocelli. 

The GCB only has compound eyes. A segmented antenna is also a common feature 

for all the Heteroptera species with the number of segments varying within the group. 

One of the common characteristics of these insects is their ability to reproduce 

prolifically. They have attained pest status in agriculture by virtue of huge numbers 

which results in enormous crop damage (Smit 1964; Sweet 2000; Summers et al. 

2010). The GCB is classified in the family Lygaeidae which are the ‘true bugs’ and 

Stellenbosch University  https://scholar.sun.ac.za



   

6 

 

sometimes are incorrectly referred to just as ‘bugs’ (Smit 1964). Members of this family 

are generally called seed bugs, stilt bugs, ground bugs or milkweed bugs because of 

where they live and feed (Burdfield-Steel & Shuker 2014). These insects have a rich 

evolutionary background but many attributes of their ecology are not fully known. 

Members of family Lygaeidae are generally small measuring between 1 mm to 12 mm 

average size (Aldrich et al. 1997). These are sometimes called lygaeids and are all 

infamous for causing substantial economic losses to wheat and other grain crops (Smit 

1964; Sweet 2000).  

Distinguishing lygaeids from other Heteroptera using morphological features is very 

challenging since they are highly polyphyletic exhibiting a complex morphology 

(Weirauch & Schuh 2011). Initially the GCB was classified by Slater (1977) in the 

genus Atrademus. Prior to this, the GCB belonged to the genus Blissus which was its 

former name used in old literature (Schaefer & Panizzi 2000) before Slater & Wilcox 

(1973) erected the genus Macchiademus in which it is placed at present. The GCB is 

classified as an indigenous South African species. Four other closely related species 

were also placed in the genus Macchiademus (Schaefer & Panizzi 2000). All five 

species are considered indigenous to the South Western Cape of South Africa. Herring 

(1973) once described the GCB as similar to the chinch bug Blissus leucopterus found 

in North America. However, the GCB was found to be distinctively thinner and longer 

than B. leucopterus (Schaefer & Panizzi 2000). Malumphy (2011) stated that it 

resembled Ischnodema sabuleti a British blissid species.  

The GCB is the most economically important among the five species grouped in genus 

Macchiademus. It is known to be locally distributed in the Touws River, Citrusdal, 

Porterville, Piketberg and Ceres areas. The GCB attacks wheat, barley, oats and wild 

grasses as the main hosts. Furthermore, the GCB is macropterous with long wings 

capable of flight which gives it a migrating advantage over the other four brachypterous 

species with reduced forewing length (Slater & Wilcox 1973; Schuh & Slater 1995). 

The GCB has the potential to find new host plants with ease. In summer it can be 

found sheltering out of sight under loose bark of trees or on fruit (Fig. 1.2a & b). The 
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ability to fly and crawl enables the species to migrate readily into new areas, including 

the ability to disperse to distant aestivation sites (Slater & Wilcox 1973). This 

characteristic, in addition to the cold hardiness of the GCB, exacerbates the quarantine 

concern of the pest.  

 

Fig. 1. 2. GCBs aggregating under loose bark of blue gum tree (Eucalyptus globulus) during aestivation 
(a), and GCB on the shoulder depression of a nectarine fruit while seeking shelter for aestivation during 
early summer season (b). 

1.6 Basic biology and seasonal life cycle 

The GCB is a small black insect between 4 mm to 8 mm in size and has shiny white 

wings when fully mature. It goes through five wingless nymphal stages before reaching 

adulthood by gaining wings. When fully mature the adult develops four to five 

membranous markings (veins) on the forewings. The female GCB lays its eggs either 

in ground crevices or in host plant leaf sheaths (Matthee 1974). The eggs are laid in 

clusters and a female produces not less than 100 eggs in a lifetime (Sim 1965; Matthee 

1974; McLain 1989). Egg development takes on average one and half months before 

nymphs emerge. The nymphs mature into adults within 6 weeks. When fully grown 

and mature, the female GCB is usually a few millimetres larger than the male (Slater 

& Baranowski 1978) (Fig. 1.3).  
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Fig. 1.3. Adult GCBs, female (above) and male (below) with distinctive light brown markings (veins) 

on the membranous portion of the hind wings. The female has a larger, bulging abdomen than the 

male which is slender throughout its body length. 

Although the female has a wider, more rounded and larger abdomen it also has a 

well-defined depression running down along the centre on the ventral side of the 

abdomen (Schaefer & Panizzi 2000). The depression contains the ovipositor which 

protrudes at an angle from the body with its pivot at the distal tip of the abdomen 

when laying eggs, as shown in Fig. 1.4a & b. 

 

 

Fig. 1.4. (a) Adult female GCB ventral view of abdomen with arrow indicating the position of the 

ovipositor depression. (b) Female GCB penetrating grass leaf sheath with ovipositor during the egg 

laying season in winter. 
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The GCB has thrived for a long time under the Mediterranean climate characterised 

by a short rainy and cold winter in South Africa, feeding and reproducing on wheat 

and grass host plants (Sweet 2000; Malumphy et al. 2012). The females lay eggs 

during the winter time, from early May to late August in the Western Cape Province 

of South Africa (Sweet 2000). It is this new generation that will seek aestivation sites 

and migrate from the wheat into nearby fruit orchards after the harvest of wheat from 

October to November each year, coinciding with fruit ripening (Annecke & Moran 

1982).   

 

1.7 Aestivation as a survival strategy  

Insects survive resource limited seasons by aestivating. They do so in either a 

quiescent or diapaused mode depending on their ecology and physiology. These 

modes of dormancy are triggered by changes in environmental factors such as 

temperature, moisture and photoperiod length which facilitates entry into dormancy in 

many arthropods (Morris 1976; Taylor & Taylor 1977; Eber & Brandl 1994). These 

factors differ significantly between summer and winter seasons thereby inducing 

diapause in due course (Tauber & Tauber 1970; Masaki 1980; Tauber et al. 1986; 

Garcia et al. 1990; Hodek & Okuda 1997; Narung & Merritt 1999; Zhu & Tanaka 2004). 

The three environmental factors mentioned above work in combinations, but 

temperature alone sometimes controls aestivation in many insects (Lamb et al. 2007).  

Quiescence: When insects are in a quiescent state, they can tolerate extreme high 

or low temperatures and water scarcity, and are able to survive the adverse conditions 

that become a hindrance to the insect’s normal life cycle (Dingle 1972). They arrest 

their own metabolic functions in order to survive the adverse conditions. Insects may 

in some instances do this over very long periods of time (Dingle et al. 1980). 

Quiescence is common in insects that occur in arid regions that sometimes have to go 

for several seasons without water. When the hindrance is removed the insects are 

able to immediately resume metabolic functions and development. They start from 

where they were physiologically, before they experienced the limiting factors.   
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Diapause: This mode of dormancy is similar to hibernation where the insects prepare 

themselves by reducing metabolic rates and increasing protection by covering their 

bodies. Some insect species such as the blackfly Prosimulium mysticum larvae protect 

themselves by spinning cocoons during their pupal stage (Mansingh & Steele 1973). 

They prepare for the upcoming unfavourable seasonal conditions allowing them to 

survive throughout dormancy. Some insects migrate to special sites were they 

aestivate. This is a form of diapause common in hemipteran and lepidopteran species 

(Resh & Carde 2003).  

Some insect species such as the black and red bug, Lygaeus equestris and the seed 

bug, Lygaeus simulans undergo reproductive diapause in which they only go into the 

state of diapause as adults (Solbreck & Kugelberg 1972). The timing and pattern of 

their migratory flights is strongly influenced by weather conditions such as wind speed, 

temperature and length of photoperiod in autumn. They migrate into hibernation sites 

of favourable conditions where they can survive the winter (Solbreck 1979; Dingle et 

al. 1980). The adult Bogong moth Agrotis infusa of Australia migrates from the flat 

lands to mountains where they aggregate in cracks found on rocks (Resh & Carde, 

2003). Similarly, the GCB migrates from wheat and grass to find shelter sites. This 

may be under loose bark of shrubs and trees, or in instances where fruit orchards are 

close by, inside fruit cavities. Understanding the migratory and aggregating behaviour 

of the GCB, and the signalling communication behind these behaviours may shed light 

on ways towards development of management options to control this pest.  

1.8 Major signaling modes in insects 

There are various channels of signal communication in insects and the most dominant 

pathways are olfactory, auditory and visual (Kerkut & Gilbert 1985). Many insects 

achieve communication by investing in the use of smells or odours as much as they 

would depend on sound and vision. The use of odour, sound and visual channels of 

signal communication in insects contributes towards the diverse behaviour systems 

demonstrated across many arthropod species. Both flying and crawling insects are 
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mainly known to use odour signals in orienting themselves towards resources 

essential for their survival (Otte & Cade 1976; Kennedy 1977; Payne et al.1986; Law 

et al. 2004). In general, insects also release odorous pheromone compounds in 

various forms such as alcohols, aldehydes or hydrocarbons that emanate from 

different parts of the insect body (Otte 1977; Rockstein 1978). The released chemical 

compounds play a major role as part of the olfactory communication operations in 

insects and are mediated through wind diffusion thereby relying on wind currents.  

These chemical compounds transmit pheromone signal responses which are attained 

by organisms through accurately sensing discrete chemical components from suitable 

sources (Pureswaran et al. 2004; Wright & Smith 2004; Pureswaran & Borden 2005). 

The attraction functions of pheromones rely on the central nervous system which is 

the main pathway through which insects regulate their behaviour, but the endocrine 

system also plays a major role as an assisting pathway (Johnston et al. 1965; Demirel 

2007). These two systems work together especially in instances where pheromones 

transmit their characteristics for a long period of time. An example is illustrated by the 

fire ant Solenopsis Invicta that lays a trail by depositing scented chemicals on the 

ground from a food source towards the nest. By so doing it leaves a trail of long lasting 

pheromones for other fellow workers to follow until they reach the food source (Weaver 

1978). 

Insect pheromones can either be species specific or may work across different species 

(Cox 2004), in which case they are known as allelochemicals, such as kairomones 

and allomones (Howse 1998). Aldrich (1988) found that Heteroptera release certain 

odours through metathoracic and dorsal abdominal scent glands that they use as anti-

predator pheromones. Insects have relied on releasing such types of pheromones 

when facing danger (Haynes & Birch 1985; Demirel 2007). In some cases these same 

pheromones are used for social communication within species (Moraes et al. 2008). 

Pheromones can also be released as isolates or mixtures of several compounds and 

are of numerous benefits to the insects as they provide an energy efficient 

communication channel (Shorey & McKelvey 1977).  
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Mixtures of several components provide the insect with pheromones of different 

attractive characteristics which are utilised within insect mating activities and also 

other social schemes across all ecological systems (Byers 2012). Some pheromone 

chemical components are highly volatile and are extremely difficult to isolate and to 

identify (Weaver 1978). Despite the isolation challenges, researchers have taken 

advantage of sex and aggregation pheromones by adopting them into Integrated Pest 

Management (IPM) strategies whereby traps incorporating active chemicals are used 

to catch insects for surveillance and monitoring (Grout et al. 1998). Due to analytical 

techniques that were introduced in the late 20th century such as gas chromatography, 

isolating pheromone components became more manageable, mostly requiring less 

than 100 individuals to isolate sex or aggregation pheromone compounds (Blum et al. 

1971; Klun et al. 1973).   

The term ‘sex pheromone’ is widely used to describe the active volatile compounds 

that animals use in initiating mating, which also act as aphrodisiacs (Beroza 1970). 

Sex pheromones are released from female sternal glands in Macrotermes annandalei, 

Pseudacanthotermes spiniger and Reticulitermes termite species (Buchli 1960; Stuart 

1969; Clement 1982; Bordereau et al. 1991). Sex pheromones are used to attract 

males for copulation by females (Tamaki 1972). They are also equally used by the 

males to prepare the female for mating and such behavior can be classified into mating 

partner search models. Search models depend on the gender of the insect releasing 

the sex pheromone to attract the opposite sex. Male search models are the most 

common among numerous insect species (Jacobson et al. 1970; Silverstein 1970; 

Roelofs et al 1975; Read & Haines 1976; Kerkut & Gilbert 1985). In the male search 

models, the female members are the ones that release sex pheromones thereby 

attracting males for mating (Byers 2006; Kerkut & Gilbert 1985). An example of a male 

search model is that of the female Lygaeidae predatory species Geocoris punctipes 

that produces pheromones that stimulate searching behaviour in males (Miller 2005). 

In female search models, males release pheromones attracting females for mating.  

An example of a female search model is that of the dried bean beetle, Acanthoscelides 
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obtectus which releases the sex pheromone that attracts the females (Halstead 

(1973).  

In some instances attraction pheromones have an effect on both the male and the 

female sexes (Borden 1985). When this happens they are called aggregation 

pheromones because they do not only attract the opposite sex but both sexes are 

attracted (Byers 2012). Also, apart from aggregation pheromones there also exists 

another chemical signalling system in Lygaeidae species which depends on cuticular 

hydrocarbons (Burdfield-Steel & Shuker 2014). The entire chemical communication 

system may provide more insights into the diversity of chemical compounds that are 

at work in these insect species in different seasons. Aggregation and communication 

pheromones of Lygaeidae have been suggested to play a key role in initiating and 

maintaining a number of social behaviors in many of the various species in this family 

(Solbreck & Kugelberg 1972; Aller & Caldwell 1979; Solbreck & Sillen-Tullberg 1990; 

Miller 2005). Hibernating and aggregating groups of insects across many Lygaeidae 

insects such as Oncopeltus fasciatus and Spilostethus pandurus that feed on host 

plants in groups are all social behaviours kept together by aggregation pheromones 

(Root & Chaplin 1976; Aller & Caldwell 1979; Dingle et al. 1980). A list of the various 

pheromone components of Lygaeidae which are released for attraction and defence 

are listed in Table 1.1.  

Understanding insect chemical compounds gives us the opportunity to manipulate 

different behavioural activities in insects (Aldrich et al. 1999). Advantageously, sex and 

aggregation pheromones can be utilised in pest control agroecosystems for 

monitoring, trapping, or mating disruption practices (Aldrich 1988; Grout et al. 1998). 

Olfactory communication studies therefore provide insights into manipulating insect 

behaviour through the use of pheromones.  
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Table 1.1. Compounds detected in the pheromones of several species of Lygaeidae. 

Species Compounds from Metathoracic scent glands Defence substances References 

Lygaeus kalmii (E)-2-Hexenyl acetate, (E)-2,4-Hexadienyl acetate, (E)-2,5-
Hexadienyl acetate, (E)-2-Heptenyl acetate, (E)-2-Octenyl 
acetate, (E)-2,7-Octadienyl acetate, (E)-2-Hexenyl butyrate, 
(E,E)-2,4-Octadienyl acetate, (E)-2-Hexen-1-ol, (E)-2-
Hexenal, (E)-2-Octenal, (E)-4-oxo-2-Hexenal, (E)-4-oxo-2-
Octenal 
 

 (Aldrich et al. 
1999) 
 

Oncopeltus 
cingulifer 

(E)-2-Hexenyl acetate, (E,E)-2,4-Hexadienyl acetate, (E)-2,5-
Hexadienyl acetate, (E)-2-Heptenyl acetate, (E)-2-Octenyl 
acetate, (E,Z)-2,6-Octadienyl acetate, (E,E)-2,6-Octadienyl 
acetate 
 

 (Aldrich et al. 
1999) 
 

Oncopeltus 
fasciatus 

(E)-2-Hexenyl acetate, (E,E)-2,4-Hexadienyl acetate, (E)-2,5-
Hexadienyl acetate, (E)-2-Heptenyl acetate, (E)-2-Octenyl 
acetate, (E)-2,7-Octadienyl acetate, (E,Z)-2,6-Octadienyl 
acetate, (E,E)-2,6-Octadienyl acetate, (E)-2-Hexenal, (E,E)-
2,4-Hexadienal, (E)-2-Octenal, (E)-2,7-Octadienal, (E,Z)-2,6-
Octadienal, (E,E)-2,6-Octadienal,2-Octenal 
 

2-Isobutyl-3- 
methoxypyrazine 
 

Aldrich et al. 
(1999, 1997), 
(Games & 
Staddon 1973) 
 

Oncopeltus 
unifasciatellus 

 

(E)-2-Hexenyl acetate, (E,E)-2,4-Hexadienyl acetate, (E)-2,5-
Hexadienyl acetate, (E)-2-Heptenyl acetate, (E)-2-Octenyl 
acetate, (E)-2,7-Octadienyl acetate, (E,Z)-2,6-Octadienyl 
acetate, (E,E)-2,6-Octadienyl acetate, (E)-2-Hexenal, (E,E)-
2,4-Hexadienal, (E)-2-Octenal, (E)-2,7-Octadienal, (E,Z)-2,6-
Octadienal, (E,E)-2,6-Octadienal, 
 

 (Aldrich et al. 
1999) 
 

Spilostethus 
rivularis 

(E)-2-Octenyl acetate, (E)-2-Hexenyl acetate, 3- 
Methylbutyl acetate, 3-Methyl-2-butenyl acetate, 2- 
Phenylethanol acetate, (E,E)-2,4-Hexadienyl acetate 

 (Staddon et al. 
1985) 
 

Geocoris 
punctipes 

(E)-2-Octenyl acetate, (E)-2-Hexenyl acetate, (E)-2- 
Octenal, (E)-2-Hexenal, (E)-4-oxo-2-Hexenal, (E)-2- 
Decenal 
 

 (Marques et al. 
2000) 
 

Geocoris varius (E)-2-Hexenal, (E)-2-Decenal, Tridecane  (Yamashita & 
Kanehisa 
1979) 
 

Neacoryphus 
bicrucis 

(E,E)-2,4-Hexadienyl acetate, (E)-2-Octenyl acetate, 2- 
Phenylethanol acetate, (E)-2-Hexenal, (E)-2-Octenal, 
(E)-4-oxo-2-Hexenal, (E)-4-oxo-2-Octenal, (E,E)-2,4- 
Hexadienyl acetate, 2-Phenylethanol acetate 
 

 Aldrich et al. 
(1999, 1997) 
 

Oxycarenus 
hyalinipennis 

(Z,E)-3,7,11-Trimethyl-1,3,6,10-dodecatetraene, (E)-2- 
Octenyl acetate, (E)-2-Octenal, 2,6,6-Trimethylbicyclo 
[3.1.1]hept-2-ene, 1-Methyl-4-(1-methylethenyl)- 
cyclohexene, 2-Hexenal, 1,3,3-Trimethyl-2-oxabicyclo 
[2.2.2.]octane, (E)-2-Hexenyl acetate, 2-Octenal, (E)-4- 
oxo-2-Hexenal, 2-Octenyl acetate, (E)-4-oxo-2-Octenal 
 

 (Knight et al. 
1984), 
(Olagbemiro & 
Staddon 
1983) 
 

Tropidothorax 
cruciger 

(E)-2,7-Octadienyl acetate, (E)-2-Octenyl acetate  (Aldrich et al. 
1997) 
 

(Extracted from Burdfield-Steel & Shuker 2014). 
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Manipulating insect behaviour does not solely rely on the use of pheromones, but on 

visual signal functions as well. Insect visual signals are therefore an important channel 

of communication to consider when developing trapping systems against insect 

species that possess sight. Vision in insects depends on the type of eyes that the 

insect carries. The insect’s head may carry two compound eyes or sometimes three 

simple eyes called, ocelli. (Smithers 1982). The ocelli are regarded as organs that 

detect changes in light intensity as they consist of a single lens and would provide very 

poor images if they were to be used for sight. The compound eye is composed of many 

single standing units within it called, ommatidia (Smithers 1982). These are made up 

of an outer lens and inner light receptors that form a complex called a facet. Each facet 

carries its own image and several facets converge images on one part of the eye 

enabling the eye to focus and depict a single image. (Smithers 1982; Chapman 1998).  

Insects have easily been associated with good colour vision because of the way they 

interact with the inflorescence and other colourful parts of plants. On the contrary, 

many insects simply differentiate variances in reflected light rather than discriminating 

actual colours (Smithers 1982; Segura et al. 2007). True colour vision has only been 

demonstrated in very few insect species as it demands the use of complicated 

methods that require training of the animal (Menzel & Backhaus 1991). Insect vision 

is mostly focused and concentrated at the far left of the spectrum closer to violet and 

ultra violet colours (Fig. 1.5). 
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Fig. 1.5. Electromagnetic spectrum showing the range where visible light is perceived, measured in 

nanometres. (Source: www.euhou.net 2015). 

Insects do not see red and other colours that are on the far right of the spectrum (650-

700 nm) and usually associate colours close to red with the dark contrast colours on 

the far left of the spectrum (350 nm-400 nm) (Chapman 1998). This is because their 

vision is limited in that range. The ecological significance of colour attraction and 

avoidance is very crucial in creating trapping tools for pest control purposes.  

There is lack of literature on colour vision and attraction in true bugs in general. There 

has not yet been enough research on the subject of visual perception and orientation 

behaviour in Lygaeidae species except for other insect species. One example of 

studies involving visual perception is the case of the striped ambrosia beetle, 

Trypodendron lineatum which is known to become photopositive to blue and green 

light before they select for hosts during the dispersal season (Atkins 1966). Other bark 

beetles are attracted to traps resembling host trees according to the perceived hue or 

form during dispersal (Atkins 1966; Lindgren et al. 1983).  

1.9 Orientation behaviour in insects   

There exists for insects, an action that involves the movement of the insect body or 

head towards the direction of objects presented in the local visual field. Such 

expressed arrangement of body and head is called orientation reaction (Jeanrot et al. 

1981). Many insects express this orientation behaviour when detecting cues 
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associated with the location of hosts, facilitating the catching of prey, finding shelter or 

escaping danger. The Southern Hawker dragonfly larvae, Aeschna cyanea fixes its 

eyes on its prey by turning the body and head towards moving small objects until a 

complete full view of the prey is achieved (Baldus 1926; Friedrichs 1931). The spider, 

Arctosa variana exhibits an escape behaviour northwards finding shelter towards all 

dark objects while guided by the sun’s position (Papi & Tongiorgi 1963).  

A few external stimuli may produce huge behavioural responses in insect species 

more than in larger animals because they lack an equivalent physiological 

sophistication (Hansell 1984). Other neurological and physiological mechanisms 

undoubtedly exist in the insect physiology enabling them to regulate or modify sensory 

stimuli to give various complex behavioural responses (Davis 1976; Turlings et al. 

1993). Several insect species exhibit complicated behavioural reactions by orienting 

towards volatile substances secreted by plant species as well (Kerkut & Gilbert 1985). 

Some insects with efficient foraging abilities learn and locate food sources by following 

complex species specific signals from different hosts (Papaj & Prokopy 1989; 

Dempster et al. 1995; Stireman 2002; Dudareva et al. 2004).  

At a given time an insect may be found to physically orient towards a source of stimuli 

and the term ‘taxis’ can be added to the name of the source of signal, giving rise to 

the nomenclature of several taxis reactions. The response in which insects would 

move towards light for example, would be recognised as positive phototaxis and when 

they move against the light, negative phototaxis (Fraenkel & Gunn 1961). In other 

cases the insect moves towards dark areas (positive scototaxis) or against dark 

(negative scototaxis) (Atkins et al. 1987). Phototactic and scototactic behavioural 

studies in juice-sucking insects Culicidae and Muscidae (Allan et al. 1987) and 

Glossinidae (Green & Cosens 1983) revealed more about their visual ecology, thereby 

improving their control (Green 1986; Allan et al. 1987). Insects such as cockroaches 

Periplaneta americana make use of thermoreceptors on their antenna to locate food 

and shelter, this reaction is known as thermotaxis (Gordh & Headrick 2001). The 

temperature receptors of the hemipteran Rhodnius prolixus are a vital tool for its 
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survival in finding food, shelter hosts. Host finding is also assisted through thermotaxis 

in the braconid wasp Coeloides brunneri, which positively moves towards the source 

of heat to find a host (Gordh & Headrick 2001).  

Signalling and modes of communication in the GCB, as well as orientation behaviour 

towards profiles in finding shelter resources essential for its survival, need to be 

investigated. Better understanding of these aspects of GCB biology may provide us 

with pathways of manipulation leading to the adoption of innovative and efficient 

management and control strategies against the pest in the future.   

1.10 Study objectives 

The overall aim of the project was to gain a better understanding of GCB chemical 

ecology and visual perception associated with the shelter-seeking behaviour exhibited 

during aestivation. Ultimately, pheromone-based monitoring and trapping strategies, 

as well as visual attraction mechanisms were assessed with the focus of developing 

pre-harvest management techniques aimed at reducing the risk of infestations in 

export fruit orchards.  

The specific objectives were: 

1) To isolate and identify the sex pheromone compounds in both sexes of M. 

diplopterus during the active season.  

2) To evaluate methods for trapping GCBs using a previously identified aggregation 

pheromone lure, as well as a sex pheromone lure in field trials.  

3) To evaluate the orientation behaviour of the shelter-seeking GCBs towards shapes 

of different colours in a localised visual field.  
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CHAPTER 2 

DEVELOPMENT AND EFFICACY OF SYNTHETIC LURES USING 

AGGREGATION AND SEX PHEROMONE CONSTITUENTS FOR 

TRAPPING THE GRAIN CHINCH BUG, Macchiademus diplopterus 

2.1 INTRODUCTION 

The grain chinch bug (GCB), Macchiademus diplopterus (Distant) (Hemiptera: 

Lygaeidae) seeks shelter and aggregates in large numbers during aestivation, 

suggesting that individuals release an aggregation pheromone that attracts their kin. 

The shelter-seeking behaviour leads them to finding shelter on different kinds of fruit 

that are in close proximity to wheat and other host plants. The presence of this 

endemic insect pest on export fruit poses a serious phytosanitary concern for countries 

importing fruit from South Africa. The use of pesticides is not recommended especially 

during the period of fruit harvest when the GCB is seeking shelter. Since pheromone 

mediated techniques are used in Integrated Pest Management (IPM) to control pests 

in orchards, it would be worthwhile considering the same approach against the GCB. 

Developing a pheromone based GCB monitoring and management program is a vital 

strategy of control that anchors on the principle of using insect pheromones. Examples 

of successful IPM strategies include lure mediated monitoring and trapping 

mechanisms which are crucial in reducing the use of environmentally unfriendly 

chemicals (Jones 1998). Sex pheromone facilitated monitoring techniques are 

common for assessing insect populations for quarantine pests such as false codling 

moth, Thaumatotibia leucotreta, codling moth, Cydia pomonella and vine mealybug, 

Planococcus ficus, among others (Pringle et al. 2003; Walton 2003; Walton & Pringle 

2004). 
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Insect mating systems are known to be driven by pheromones that are laden with 

attractive utilities, which may be characterised as sex pheromones if they act only on 

the opposite sex or aggregation pheromones if they act on both sexes (Byers 2012). 

Identified sex attractant pheromones of the Spanish moon moth, Graellsia isabellae 

assisted in the development of field tools for detecting and monitoring the populations 

of this endangered species. The highly attractive female sex pheromone was a 

breakthrough that allowed detailed assessments of this species’ conservation status 

(Millar et al. 2010).  

Attraction pheromones from stink bug families such as Pentatomidae have been used 

for developing general lures as they elicit responses across several insect species. 

Synthetic analogues based on Pentatomidae family pheromone structures have been 

used as bait for capturing several tachinid parasitoids of stink bugs such as Euclytia 

flava and Gymnosoma par flies (Aldrich & Zhang 2002). This provided more 

knowledge on how tachinids utilise sex pheromones of the stink bugs to orient to 

potential hosts in a predator and host relationship that was not yet understood (Dietrick 

& Van Den Bosch 1957; Pickett et al. 1996; Aldrich & Zhang 2002). Cross attraction 

of brown marmorated stink bug, Halyomorpha halys to the sex pheromone of another 

stink bug, Plautia stali has also been reported (Sugie et al. 1996; Tada et al. 2001).     

Research by Addison (2004) focused on the potential of using seven different general 

stink bug aggregation pheromones including those from Pentatomidae, for the 

attraction of GCBs in orchards. These pheromones were used in wing traps with the 

aim of eliciting attraction in trapping GCBs, but was unsuccessful. This supports the 

assumption that there is probably species specificity when it comes to pheromone 

functions in GCBs. It is suspected that in several species of Lygaeidae the variety of 

chemicals produced attract conspecifics only (Games & Staddon 1973; Aldrich 1988; 

Aldrich et al. 1997; Aldrich et al. 1999).  

Oliver et al. (1996) extracted three major chemical compounds from the scent glands 

of GCBs. These were tridecane, (E)-octenal and (E)-1-hexenel. The authors described 

Stellenbosch University  https://scholar.sun.ac.za



   

34 

 

these chemical compounds as defence secretions without pheromonal attraction 

capabilities.  Okosun (2012) found that aggregation pheromone components of GCBs 

isolated from aestivating females, showed some attraction in both sexes during 

laboratory bioassays. Aggregation of the large milkweed bug, Oncopeltus fasciatus 

and the small milkweed bug, Lygaeus kalmia nymphs, are examples where such 

behaviour is known to be mediated by aggregation pheromones in Lygaeidae (Aller & 

Caldwell 1979). In addition, cuticular hydrocarbons such as tridecane have also 

exhibited attraction in many Lygaeidae species (Kather & Martin 2012). 

The aggregation pheromone compounds for some true bug species play two different 

roles as they are attractive at low concentrations, but are repellent at high 

concentrations. Examples include the three compounds (E)-2-hexenal, (E)-2-octenal 

and tridecane which stimulate alarm behaviour at high concentrations and attractive 

behaviour at low concentrations in Nezara viridula (Lockwood & Story 1986), 

Dysdercus fasciatus and Dysdercus cingulatus (Farine 1993). These insects use the 

same pheromone compounds but in different concentrations for either aggregation 

attraction or for alarm behaviour.   

The observed behaviour of GCB in feeding on plants in aggregated groups during their 

reproductive phase, and then aggregating in shelter sites during their aestivation 

phase, may be based on the use of the same attractive volatile compounds for 

communication, in both winter and summer, but in different concentrations and ratios. 

The optimisation of a GCB pheromone trapping system has the potential to assist in 

the management of GCBs, as a pre-harvest control tool in fruit orchards. If developed, 

such a system may be implemented within an IPM program for monitoring and 

controlling the pest effectively. No identified sex pheromones have so far been 

reported in the GCB. In this study, the aim was, firstly, to isolate and identify volatile 

compounds produced by active female GCBs during winter, for the purpose of 

formulating a synthetic pheromone lure referred to as the ‘sex pheromone lure’ 

henceforth. Secondly, the efficacy of this lure was tested for eliciting the attraction of 

GCBs into traps.  
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2.2 MATERIALS AND METHODS 

2.2.1 Sex pheromone lure experiments  

2.2.1.1 Collection of active GCBs from host plants 

Adult GCBs were collected from the foliage of wheat plants using scoop nets. 

Collections were carried out once every fortnight during the 2014 winter season (June 

to September) in Ceres (34.16ºS, 19.05ºW) and Piketberg (32.52ºS, 18.47ºE) areas 

in the Western Cape. The insects were collected between 8h00 and 13h00, as they 

were observed moving from the bottom of wheat plants to the top foliage during this 

time (Fig. 2.1). The contents of the scoop nets were transferred into sterilized 500 ml 

glass jars with aluminium foil covered screw caps. The foil was used to prevent the 

absorption of pheromones from the insects into the rubber seal on the jar lid. The 

insects were transported to the laboratory immediately after collection for sex 

determination. 

 

 

Fig. 2.1. Grain chinch bugs scattered on top foliage of wheat plants during the mid-day period in the 

late winter season. 
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2.2.1.2 Sex determination of bugs in the laboratory  

Sex determination was done by examining the ventral side of the abdomen under a 

microscope (Leica L2, model /PN MDG33 /10 450 123, Leica Microsystems, 

Singapore). Distinct morphological differences between male and female adult GCBs 

can be seen on the abdomen (Fig. 2.2). Females have a ‘Y’ shaped mark at the distal 

end of a bulging abdomen on the ventral side. Males have a crescent shaped mark at 

the distal tip of a slender abdomen on the ventral side.  

 

Fig. 2.2. Image showing the abdominal markings (highlighted in black) on the ventral side of adult 

grain chinch bugs, which are unique to each gender and are used in combination with body size to 

distinguish males (above) from females (below). 

2.2.1.3 Volatile organic compound sample collection 

Males and females were placed in separate glass vials containing 20 insects each and 

used for qualitative and quantitative headspace analysis of the volatile organic 

compounds (VOCs) trapped from the insects’ effluvium or gaseous emissions. The 

VOCs that make up the putative sex pheromone were collected using a high capacity 

(high sensitivity) sample enrichment probe (SEP) (Burger et al. 2011), consisting of a 

thin rod of inert material carrying a 30 mm sleeve of 0.64 mm i.d x 1.19 mm o.d 
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polydimethylsiloxane (PDMS) rubber tubing at its lower end. The upper, sharpened, 

end of the inert rod was furnished with a vial cap and septum in such a way that the 

vial could be closed for sample collection. The lower end of the SEP, carrying the 

rubber sleeve, was introduced into the vial with insects, the vial was closed and the 

sample collection (enrichment) was allowed to proceed for 2 h at 30 ºC.  

2.2.1.4 Gas chromatograph mass spectrometry (GC-MS) analysis  

After sample collection, the vial’s septum and cap were installed on the SEP with the 

injector cap and septum of the Carlo-Erba QMD 1000 GC-MS instrument (Milan, Italy) 

equipped with a ZB-5MS column (Phenomenex, USA). The PDMS sleeve of the SEP 

was introduced into the instrument’s injector, following the directions in Burger et al. 

(2011), where the VOCs were desorbed from the rubber sleeve and were flushed into 

the capillary column, for separation and subsequent analysis by low resolution electron 

ionization mass spectrometry (GC-EIMS). The flow rate of helium gas was kept at 1 

ml/min. The column oven temperature was programmed from 40 ºC to 280 ºC at 4 

ºC/min. Mass spectra were recorded at 70eV.  

The data were used to plot reconstructed total ion chromatograms (TICs) from the 

mass spectra of the constituents of the putative pheromone. The identity of the 

compounds was assigned by comparison of their respective mass spectral data, with 

data from the reference libraries of National Bureau of Standards (1990) and National 

Institute of Standards and Technology (2005), by calculating Retention Index (RI) in 

relation to n-alkanes from C11-C18, considering the EI-MS mass fragmentation 

pattern, and by comparison with authentic synthetic reference compounds previously 

identified from other organisms in this group. The quantitative data were obtained by 

integration peaks in the TICs using the Laboratory-Base software of the GC-MS 

instrument.  
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2.2.1.5 Sex pheromone lure formulation 

In the present study, the female VOCs were chosen for lure formulation. The choice 

of using female extracted putative pheromones was supported by a previous study 

carried out with live GCBs in behavioural bioassays. The study revealed that both GCB 

sexes showed attraction to odours emitted by females more than those from males in 

a four-arm olfactometer (Okosun 2012). All putative female pheromone constituents 

identified from the GC-MS analysis were commercially available and were mixed 

according to the concentration of the major constituent, tridecane. A 3-µl solution of 

the mixed synthetic compounds was put in a 2 ml glass vial before exposing a natural 

elastic rubber strip (32 mm x 3 mm x 1 mm) to the mixture for a 24 h period to take up 

these compounds by dissolution in the rubber.   

To determine the rate of desorption of these compounds from the rubber strip, it was 

again placed in a glass vial (140 mm x 20 mm) with a Teflon-faced screw top and this 

time exposed to a SEP for 18 h at 25 ºC, as was described before for collections from 

insects. The volatile compounds taken up (enriched) in the SEP’s rubber sleeve were 

analyzed as described above to ensure uptake and ultimate release of the volatiles 

from the rubber strips. For field use, rubber strips (10 mm x 10mm x 2 mm) were 

prepared and impregnated as before using 1-µl solution of the mixture of synthetic 

compounds. The impregnated rubber strips were then kept under airtight conditions in 

glass vials until they were used in field experiments. As in the previous study by 

Okosun (2012), who formulated a synthetic aggregation pheromone lure, all data were 

normalized with respect to tridecane = 100 for the sex pheromone formulation.    

2.2.2. Field trapping experiments 

Four field sites were chosen in historically high GCB areas (Johnson & Addison 2008). 

The aggregation pheromone lure formulated by Okosun (2012), as well as the sex 

pheromone lure formulated in the present study, were tested in modified delta traps 

using rubber dispensers. Since the field experiments were started during the 

transitional phase before the bugs enter into full aestivation, the potential of attraction 
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by the sex pheromone was assessed as well. The delta traps were modified using 

cardboard strips placed inside traps to increase the opportunity for GCB to shelter. 

Previously, Okosun (2012) tested the formulated aggregation pheromone using delta 

traps and discovered that the bugs were sheltering in the walls of the traps. Their need 

for shelter may be useful in improving pheromone trap catches. Regrettably, no 

behavioural bioassays were carried out in the present study before testing the 

formulated sex pheromone in the field experiments. This was due to the limited time 

between lure formulation and the season of GCB migration from host plants into 

orchards.  

2.2.2.1 Study area  

All field experiments were conducted in the Ceres valley located almost 170 km north 

east of Cape Town. Two farms located within historically high GCB areas were chosen 

in the Warm Bokkeveld area in Ceres (Fig. 2.3). The two farms, Vadersgawe and 

Eselfontein, were separated by a 12 km distance.  
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Fig. 2.3. Map of the Western Cape of South Africa showing where the field study was conducted 

during the 2014/15 trapping season in the Ceres area, encircled with yellow dash lines on map. 

(Source: sacarrental.com 2015). 

All the pheromone lure trapping experiments were carried out in orchards that were 

adjacent to wheat fields. Two sites where allocated per farm: site 1 and site 2 where 

on Vadersgawe and site 3 and site 4 on Eselfontein. Site 1 was a block of ‘Forelle’ and 

‘Packham’ pears, and site 2 was a block of ‘Summer fire’ nectarines and ‘Sweet 

December’ peaches next to each other. Site 3 was a block of ‘Sweet December’ 

peaches, and site 4 was a block of ‘Western sun’ peaches. 

2.2.2.2 Experimental lay out and monitoring of traps in the field  

Yellow delta traps (210 mm x 180 mm x 100 mm) (Chempack®, Simondium, Paarl, 

South Africa) with corrugated cardboard strips (for extra shelter) or with sticky pads 

were used to test the response of GCBs to the formulated aggregation pheromone 

and sex pheromone lures in the field. Either one of the two lures was applied per trap 

modified with cardboard strips (Fig. 2.4a) as well as per trap with sticky pad (Fig. 2.4b). 

Four different trap and lure combinations were applied during the field trial and were 
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replicated three times. A total of 12 yellow delta traps were hung at each site which 

were combinations of the following; aggregation pheromone lure and sticky pads (AS), 

aggregation pheromone lure and corrugated cardboard strips (AC), sex pheromone 

lure and sticky pads (SS), sex pheromone lure and corrugated cardboard strips (SC). 

The traps were hung every third tree, approximately 10 m apart from each other in the 

peripheral row facing wheat fields at each of the four sites. Trap placements were 

randomized in each row at each site and were positioned at shoulder height approx. 

(1.5 m) above ground. 

 

Fig. 2.4. (a) Modified delta trap incorporating corrugated cardboard strips and (b) delta trap with sticky 

pad. The rubber dispensers were hung on the roof of each delta trap. 

A single pheromone baited rubber dispenser was secured to the top interior of each 

delta trap, hanging free from walls, allowing the dissemination of lure by the wind in all 

directions. The pheromone baited dispensers created from white natural rubber were 

attached to nickel plated heavy duty 30 mm paper clips (Bantex (Pty) Ltd, South Africa) 

(Fig. 2.5). Dispensers with different lures were handled separately to avoid cross 

contamination before being hung inside delta traps on trees. 
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Fig. 2.5. Pheromone baited rubber dispenser attached to paper clip used in the delta traps. 

 

In addition to using corrugated cardboard bands in modified delta traps, bands were 

also tied around tree trunks within the same experimental rows used to hang traps. 

Bands tied around tree trunks have previously been used in GCB monitoring surveys 

(Addison 2004; Johnson & Addison 2008). In this study, bands were tied at bottom 

and top positions in the trees to assess potential positional effect. The bottom bands 

were 50 cm above the ground (Fig. 2.6) and the top bands were at shoulder height 

approx. 1.5 m above the ground. The monitoring of GCBs through the use of 

corrugated cardboard bands was carried out to ascertain the level of GCB infestation 

in the test orchards. It was also important for determining the distribution of bugs along 

tree height when searching for sheltering sites.  
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Fig. 2.6. Corrugated cardboard band tied around tree trunk at bottom position for inspecting GCB 

numbers in orchards during the 2014/15 trapping period in Ceres. 

Inspection of traps and bands were carried out after every 10 days from October 2014 

to January 2015 yielding 8 collections in total. Cardboard strips, sticky pads, 

pheromone lures and corrugated cardboard bands tied around tree stems were 

inspected and the number of GCBs caught in traps and bands recorded. Components 

were also replaced at each inspection day.     

2.2.3 Statistical analysis 

All data collected from field experiments was analysed using SAS Enterprise Guide 

2014. Shapiro-Wilk test was used to test for normality on all data. Bartlett’s or Levene’s 

test was used to test for differences in variance across all applied treatments 

throughout the four sites. In the case where data did not follow a normal distribution, 

non-parametric data analysis was done using the non-parametric equivalent of the t-

test for two independent samples (Wilcoxon rank-sum test, the Mann-Whitney U test). 

Significant differences in the average catch between the two different band positions 

(bottom and top) throughout all four sites for the 2014/15 trapping period was tested 

using the same tools. 
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2.3 RESULTS  

2.3.1 GCB sex pheromone lure composition 

A number of volatile organic compounds, represented by peaks on total ion 

chromatograms (TICs) produced during GC-MS analysis, were identified from the 

headspace samples collected from active female (Fig. 2.7) and active male (Fig. 2.8) 

GCBs. Identities were only assigned to a few compounds on the TICs shown here to 

simplify the graph and avoid congestion. These two examples portray the typical TICs 

that were generated during the active season. The highest peak (100%) on the TICs 

for both active females and active males represented the volatile organic compound, 

tridecane. A total of 14 volatile compounds were identified from both genders, with 

substantial quantitative variations between male and female compositions (Table 2.1). 

Based on relative concentrations, tridecane, (E)-2-hexenal and (E)-2-octenal were 

present as main components (>120). Tridecane was high in both sexes, while the other 

two compounds were only main components in males. (E)-2-Hexenol, (E)-2-octenol, 

decanal and pentadecane were present in median relative concentrations (50 to 120).  

Of the four median compounds, only decanal was substantially higher in females. 

Hexanal, hexadecanal, nonanal, dodecane, decanoic acid, tetradecanoic acid and 

icosane were minor compounds (<50), slightly higher in males as well, except for 

nonanal, decanoic acid and icosane which were marginally higher in females.The 

identified volatile components from the female gender blended together in formulating 

the lure were mixed according to their natural relative concentrations with respect to 

tridecane = 100 (Table 2.1). The sex pheromone lure formulated from female secretion 

was composed of known major chemical irritants ((E)-2-hexenal and (E)-2-octenal) in 

low amounts. No male sex pheromone lure was formulated.  
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Fig. 2.7. Total ion chromatogram of identified compounds extracted from headspace samples of active 

female grain chinch bugs.  The peaks are numbered according to the retention time in seconds at the 

apex of each peak. These numbers divided by 60, thus correspond to the retention time of the peaks in 

minutes. 

 

 

Fig. 2.8. Total ion chromatogram of identified compounds extracted from headspace samples of active 

male grain chinch bugs.  The peaks are numbered according to the retention time in seconds at the 

apex of each peak. These numbers divided by 60, thus correspond to the retention time of the peaks in 

minutes. 
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Table 2.1. Quantitative composition of the secretions of female and male GCBs obtained by GC-MS 

analysis during the active winter season, and the composition of lure formulated using synthetic 

analogues of the natural compounds. 

Volatile compounds Relative composition of 
secretions a 

Quantitative composition of 
lure (µl) 

 Female Male Female 

Hexanal  15 * 26 * 3.38 

(E)-2-Hexenal  24 * 144 * * * 5.41 

(E)-2-Hexenol  11 * 56 * * 2.47 

(E)-2-Octenal  9 * 278 * * * 2.03 

(E)-2-Octenol  7 * 53 * * 1.58 

Nonanal  42 * 32 * 9.46 

Dodecane  6 * 42 * 1.35 

Decanal  87 * * 45 * 19.59 

Tridecane  444 * * * 455 * * * 100 

Decanoic acid  38 * 5 * 8.56 

Pentadecane   24 * 116 * * 5.41 

Hexadecanal  11 * 20 * 2.48 

Tetradecanoic acid  23 * 27 * 5.18 

Icosane 28 * 9 * 6.31 

a The relative compositions of the constituents identified in the effluvium of the insects were obtained 

by integration of the peaks in the TICs of the secretions. Relative composition, * * *, main compound 

(>120); * *, median compound (50 to 120); *, minor compound (<50). 
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2.3.2 Field trapping trial 

Throughout the trapping period the highest total number of bugs caught at any 

particular site, irrespective of trap type, was 561. This occurred at site 2, which also 

yielded the highest number of bugs per trap type with 160 recorded for AS traps 

followed by 155, 125 and 115 for SS, AC and SC traps, respectively (Fig. 2.9). Site 1, 

which was on the same farm, (Vadersgawe), as site 2, yielded the lowest total number 

of bugs caught throughout the trapping period – only 53. Of these, 38 were caught in 

SS traps. Total numbers of GCBs caught throughout the trapping season at site 3 and 

4, on Eselfontein farm, were 140 and 335 respectively. At both these sites the highest 

numbers of GCBs were caught in AC traps (80 bugs at site 3 and 110 at site 4). 

 

Fig. 2.9. Total number of grain chinch bugs caught per trap per site during the 2014/15 trapping period 

in Ceres. The trap and lure combinations applied were; aggregation pheromone lure + cardboard strips 

(AC) and aggregation pheromone lure + sticky pad (AS), sex pheromone lure + cardboard strips (SC) 

and sex pheromone lure + sticky pad (SS). 
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Although there was a difference in the total number of bugs present at the different 

sites, there was no significant difference (F (4; 4) = 2.18, P > 0.05) between the mean 

number of GCBs caught per trap type, irrespective of the site, throughout the 2014/15 

trapping period (Table 2.2). All trap types yielded a mean of less than 100 bugs per 

trap throughout the trapping period.  

Table 2.2. The mean GCB trap catches for aggregation pheromone lure + sticky pad (AS), aggregation 

pheromone lure + cardboard strips (AC), sex pheromone lure + sticky pad (SS) and sex pheromone 

lure + cardboard strips (SC) collected from the four experimental field sites during the 2014/2015 

trapping period in Ceres. 

Trap & lure combination Mean trap catch ±Std. error 

AS 62.25 a 37.67 

AC 82.50 a 25.82 

SS 78.75 a 30.89 

SC 48.50 a 25.48 

* Figures followed by the same letter are not significantly different at (P > 0.05).  

The cardboard bands tied around the trunks of trees in the same orchards as those 

with traps, indicated that there were much higher numbers of GCBs present in 

orchards at the time of the trial, than was indicated by the traps, suggesting that the 

traps were very poor at attracting GCBs. The total number of bugs found sheltering in 

the cardboard bands positioned at the top and bottom of sample trees at each site are 

shown in Fig. 2.10.   
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Fig. 2.10. Total number of grain chinch bugs sheltering in the corrugated cardboard bands placed at 

the top and bottom positions on sample tree trunks at each site tested during the 2014/15 trapping 

period in Ceres. 

Site 2 had the highest number of GCBs sheltering in corrugated cardboard bands tied 

around tree trunks for the entire trapping period. A total of 1085 bugs were collected 

from bands at this site, while 358 were collected at site 1, which was on the same 

farm. Site 4 also yielded high numbers of GCBs in bands with a total of 878, while site 

3 which was on the same farm, only yielded 109 GCBs in total. This was the lowest 

number recorded for total band counts at any particular site.  

The total numbers of bugs found sheltering in bands at the different sites is an 

indication of the potential trap catch that was exposed to the pheromone baited traps 

at each site. At site 1, traps caught a total of 52 compared to 358 bugs found in bands, 

which was 6 times less than what the traps could potentially have caught during the 

trapping period. Half the potential catch was recorded in traps at site 2, with 561 bugs 

compared to 1085 found in bands. At site 3 trap catches were slightly more than 

cardboard band numbers, with a difference of just 31 bugs. Site 4 traps caught 335 
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while bands had 878 bugs, indicating more than double the number of bugs in bands 

than in pheromone traps.  

A preference for sheltering position on trees was observed from the numbers of bugs 

sheltering in cardboard bands tied at the top and bottom of tree trunks (Table 2.3). 

Significantly more bugs were found sheltering in cardboard bands positioned at the 

bottom of the tree trunk in Site 1 (P = 0.0058), Site 2 (P < 0.0169) and Site 4 (P < 

0.0496), compared to those tied on top. There was no significant difference (P > 

0.4115) in the number of bugs found sheltering in cardboard bands at the top and 

bottom of the tree trunk in Site 3. This indicates that bugs preferred sheltering in bands 

on bottom of trees more than they preferred sheltering in bands on top positions.  

Table 2.3. Median scores of grain chinch bugs sheltering in corrugated cardboard bands at two tree 

trunk positions in each of the four experimental sites tested during the 2014/15 trapping period in Ceres. 

Site Band position on tree Median catch 

1 Top 13.66a 

 Bottom 23.33b 

2 Top 14.31a 

 Bottom 26.69b 

3 Top 19.92a 

 Bottom 17.08a 

4 Top 15.06a 

 Bottom 21.94b 

*Figures followed by the same letters are not significantly different (P > 0.05).  
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2.4 DISCUSSION 

Tridecane was the most abundant volatile compound identified in aestivating GCBs 

from previous studies by Oliver et al. (1996) and Okosun (2012), as well as in the 

active bugs used in this study. Tridecane is a waxy cuticular hydrocarbon that has 

been reported to play an important role in water retention physiology and preventing 

desiccation of the insect body during aestivation (Burdfield-Steel & Shuker 2014). 

Tridecane has also been reported to work synergistically with other volatile 

compounds such as (E)-2-hexenal, undecane and dodecane as irritants in many true 

bugs (Whitman et al. 1990; Gunawardena & Herath 1991; Aldrich 1996; McBrien & 

Millar 1999) or deterrents for chemical defense in the stink bug, Cosmopepla 

bimaculata (Krall et al. 1999). The cuticular components tridecane, hexyl acetate and 

(E)-2-decanal also have fungicidal roles (Jackson 1983; Surender et al. 1987; Sosa-

Gomez et al. 1997).  

Hexanal, (E)-2-hexenal and tridecane were identified by Okosun (2012) as the most 

attractive aggregation pheromone compounds to both males and females, (E)-2-

hexenal being the most attractive to males during behavioural bioassays. Oliver et al. 

(1996) looked for attraction chemicals in the GCB and discovered the same three 

compounds, among a few others, but could not prove their attraction capabilities. The 

insects displayed behaviour synonymous with alarm responses when exposed to 

these compounds and the authors concluded that they were not attraction 

pheromones, but defensive pheromones.  

There were common volatile compounds in the present study that have previously 

been identified in aestivating males and females. However, these compounds were 

not retested in sex attraction bioassays, which would have helped in their 

characterization in the present study as was done in the previous study by (Okosun 

2012). The compounds in their varying compositions identified by Okosun (2012) 

were, tridecane in the highest amounts, (E)-2-hexenal, (E)-2-octenol and (E)-2-octenal 

in median amounts, (E)-2-hexenol in low amounts and hexanal in trace concentrations. 
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In the present study, four compounds were identified in median amounts and these 

were (E)-2-hexenol, (E)-2-octenol, decanal and pentadecane. Out of these four 

compounds only decanal was higher in females than in the males. The majority of the 

compounds identified in females were minor components, supposedly of the putative 

sex pheromone which are hexanal, nonanal, dodecane, hexadecanal, tetradecanoic 

acid, decanoic acid and icosane. 

The main components, other than tridecane, found in active GCBs in this study, were 

(E)-2-hexenal and (E)-2-octenal, which were both high in males compared to females. 

These two compounds are known to be main components of stink bug defensive 

secretions, and their role as defensive chemicals has been revealed in several other 

studies involving defense secretions in Heteroptera species (Farine et al. 1993; Aldrich 

et al. 1993; Leal et al. 1994; Krall et al. 1999; Baldwin et al. 2014). These two 

aldehydes are of an acrid nature and are known to be major components of stink bug 

defensive secretions with increased efficiency when blended with tridecane (Farine et 

al. 1993; Krall et al. 1999).  

Everaerts et al. (2010) suggested that tridecane is probably a wetting agent that 

facilitates the dissolving and evaporation of other compounds, and therefore plays an 

important role in aggregation. This means that tridecane may play a synergistic role in 

the efficient functioning of either sex, aggregation or even defense pheromones. This 

school of thought disqualified the use of male volatile compounds in formulating the 

putative sex pheromone lure leading to the use of female volatile compounds instead 

in this study. Also, since sex pheromones are produced by one gender to attract the 

other (Farine et al. 1993), leading to the assumption that the behaviour was a result of 

a pheromone used by females for attraction of males for mating.  

The two aldehydes (E)-2-hexenal and (E)-2-octenal are major pheromone 

components of the defensive scent of the black stink-roach, Platyzosteria 

novaeseelandiae (Benn et al. 1977). They have also been reported by Jacobs et al. 

(1989) as major components of the metathoracic scent glands in the bugs, 
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Thaumastella namaquensis and Thaumastella elizabethae. Interestingly, (E)-2-

hexenal was found to have a dual role in the southern green stink bug, Nezara viridula 

were it was attractive at low concentration and repellent at high concentration 

(Lockwood & Story 1986). In the present study, (E)-2-hexenal was found in low 

concentration in females and could have contributed as a trace component of the 

female sex pheromone. According to Okosun (2012), (E)-2-hexenal alone attracted 

the most males in aggregation pheromone bioassays conducted on GCBs and it was 

in median to low relative concentrations.   

Lofstedt et al. (2008) reported that a synthetic bait containing two alcohols heptanol 

and nonanol extracted from female caddisfly, Molanna angustata, were attractive to 

males and gave the highest trap catches in the field. However, trap catches reduced 

when nonanol which was the main component of the pheromone was mixed with non-

alcohol compounds of the same secretion. Hexadecanal is an unsaturated aldehyde 

and is also a component of the sex pheromones of many moth species (Daimon et al. 

2012; McElfresh & Millar 1999; Uehara et al. 2016). These two compounds may 

contribute to the sex pheromone in GCBs, but might have been masked by other 

compounds present. According to Farine et al. (1993) insect secretions are continually 

inclusive of trace or minute components and the drawback with such components is 

that their significance may always be neglected even though their effects may still be 

detected. These compounds may potentially contribute to the discovery of attractive 

volatile compounds from the female GCBs and may be candidates for future work on 

GCB response to attraction pheromones.   

In the present study, four compounds were identified for the first time in various 

proportions in active adult GCBs. There were nonanal, decanal, decanoic acid and 

icosane. Nonanal and decanal have been identified before as airborne aggregation 

pheromone components mediating aggregation in the common bed bug, Cimex 

lectularius (Siljander et al. 2008). Torto et al. (1996) identified hexanal, octanal, 

nonanal, decanal and decanoic acid as components of an aggregation pheromone in 

fifth instar nymphs of the desert locust, Schistocerca gregaria after testing a synthetic 
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mixture in laboratory bioassays. The authors also proved that the pheromone was 

produced by both males and females supporting previous work by Obeng-Ofori et al. 

(1993).  

There was an increased relative concentration of volatile compounds noticed in males 

more than in females during the active season. The reason for this could have been 

that the male gender produces a strong emission of the defensive volatile compounds 

during the active season. This is highly likely as most of the compounds found in higher 

proportions in males have been reported to play alarm and defensive roles in other 

Hemiptera insects (Farine et al. 1993). The compounds (E)-2-hexenal and (E)-2-

octenal have been reported to be the major constituents of scent gland secretions 

causing alarm and defensive behaviour in the bedbug, Cimex lectularius (Levinson et 

al. 1974). Eight volatile compounds were discovered in the secretions of a Hemipteran 

bedbug, Dysdercus intermedius which also displays aggregation behaviour. The 

mixture had dodecane, tridecane, pentadecane, hexanal, (E)-2-hexenal, 4-keto-2-

hexenal, (E)-2-octenal and 4-keto-2-octenal (Calam & Youdeowei 1968). This mixture 

is common in other Hemiptera and Pentatomidae species secretions comprising 

mainly of the irritants, hexanal, and octenal in high amounts. These irritants are 

common in stinkbug species such as Eurydema rugosa, Eurydema pulchra and 

Nezara viridula (Ishiwatari 1974).  

Regrettably no individual volatile compounds isolated from active GCBs were tested 

under laboratory conditions in behavioural bioassays in the present study unlike in the 

previous aggregation studies by Oliver et al. (1996) and Okosun (2012). This was a 

result of limited time between formulating the lure and running the laboratory 

bioassays, before conducting the field trials. This would have assisted in finding the 

most attractive compounds from females, prior to formulating the sex pheromone lure 

and testing it under field conditions. Characterisation of individual compounds 

identified from GCB headspace samples would have been beneficial if it had been 

carried out beforehand as it is vital in improving the attractiveness of a formulated lure. 

Chemical ecology research has shown that either gender in some insect species can 
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make use of several blended compounds in creating sex pheromones (Roelofs & 

Carde 1977; Kochansky et al. 1989; Carde 1990).  

There is a possibility that the chemical compounds isolated from GCBs may also be 

contact or short range pheromones that only elicit attraction at very close range. The 

efficacy of GCB volatile compounds may have diminished at this time as a result of 

weak or contact pheromones with poor diffusion propensity in the field, thereby 

reducing the effective insect response to lured traps. This will need to be reviewed in 

future trials. An example of contact pheromones is that of the fruit fly, Drosophila 

melanogaster whose attractive hydrocarbons work as short distance pheromones 

(Everaerts et al. 2010) and are only effective at close range for mating. Lygaeidae are 

known to recognize their kin using either aggregation compounds or cuticular 

hydrocarbons in different seasons (Aller & Cardwell 1979). 

Rigorous trials need to be carried out preferably for more than two seasons using the 

two synthetic pheromone lures in order to comprehensively test their efficacy.  

Analyses of male and female secretions carried out over a total period of 5 years from 

a previous investigation and the present study, varied greatly regarding the 

quantitative compositions of the volatile emissions trapped from the headspace of the 

active insects. This is a result of the different methods of extracting volatile compounds 

used, and also the different periods in which the investigations were carried out. Of 

the 14 components identified in the active GCB secretions in the present study, four 

compounds have not been described before as either aggregation or defense 

pheromone constituents in Lygaeidae. Quantities of nonanal, decanoic acid and 

icosane varied insignificantly between males and females except for decanal which 

was higher in females. This suggests that the GCBs secrete a mixture of volatile 

compounds that may always be present in both gender but, in various concentrations 

according to the season, as expected under normal pheromone function dynamics. If 

one or all compounds identified here are found to be attractive components of the sex 

pheromone, they may be used in various ways to control and monitor GCBs. One 
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method would be to divert the bugs into traps using the sex pheromone lure during 

their reproductive phase, before they start migrating to aestivation sites. 

In the present study not more than 2500 bugs were found sheltering in bands. The 

total number of GCBs in orchards was relatively low during the 2014/15 trapping 

season in Ceres as compared to other previous studies. Addison (2004) used 

corrugated cardboard bands to inspect the seasonal occurrence of GCBs in Ceres for 

three years in pear orchards and caught more than 1000 GCBs per band per site on 

average during the investigation period. Johnson & Addison (2008) recorded a total 

number of more than 6000 bugs in a nectarine orchard in Ceres caught during a single 

season in bands. In another study an average number of more than 8000 bugs per 

site were caught in bands in Ceres (Okosun 2012). On this occasion, the number of 

bugs caught during the recent field trial indicated a generally low GCB orchard 

infestation level, in comparison to what has been found in other studies also using 

cardboard bands. 

The number of bugs in bands tied around the tree trunks showed there was a 

sheltering preference, as more bugs sheltered in bottom bands as compared to top 

bands. This indicates that the shelter seeking behaviour of GCBs is influenced by their 

preference for sheltering sites on the bottom of trees. However, this does not mean 

they do not seek shelter on higher positions in the tree canopy since a considerable 

number were caught in the top bands. This could only be an indicator of the conditions 

that attract the bugs to stay at the bottom of tree canopy. One challenge is that insects 

may not only be attracted to chemical compounds but may also respond to other 

sources of stimuli under field conditions. Insects may respond to temperature and 

humidity among other environmental factors which may influence where they go. One 

of the reasons could be the cool, moist and shady conditions that are usually 

associated with the bottom of tree canopy in orchards. Since more GCBs were caught 

in bottom bands in orchards it would be useful to consider placing baited traps on the 

bottom parts of trees rather than on top in order to catch more bugs in the future. This 
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is crucial to consider when designing traps in the future for efficient placement of traps 

to catch more bugs.  

A complex mixture of volatiles have so far been identified from analyzing secretions 

from M. diplopterus carried out over the past few years during both winter and summer 

seasons. The previous studies and the present investigation have provided widely 

comprehensive results as far as the quantitative compositions of the secretions of 

male and female insects are concerned. Future studies must now focus on 

characterizing individual components identified from the female secretion. This will 

bring us closer towards a full understanding of the individual compounds and the roles 

they play during the active season. Modifying the concentration of both lures in future 

investigations may improve GCB trapping. This can be achieved by increasing lure 

concentrations and retesting what distance the pheromones would be carried by the 

wind. From this study we saw that the abundance of GCBs was higher at lower levels 

of the tree trunk in the cardboard bands. In this study, delta traps were hung at 1.5m, 

the same height as the higher bands on the tree trunks and we now know that the 

potential catch is lower at that height. Hanging the lured traps lower down the tree 

trunk could increase trapping of GCBs.  

To conclude, this investigation into the volatile compounds produced by active GCBs, 

and their potential in trapping adult bugs in the field has contributed to our growing 

knowledge of the chemical ecology of this agricultural pest, and highlighted important 

considerations that must be taken into account as we endeavour to develop a practical 

monitoring system and ultimately provide pre-harvest management options for a key 

phytosanitary pest of South African export fruit.
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CHAPTER 3 

BEHAVIOURAL ORIENTATION OF THE SHELTER-SEEKING GRAIN 

CHINCH BUG, Macchiademus diplopterus TO VISUAL TARGETS IN 

AN ARENA 

3.1 INTRODUCTION 

Like many organisms (insects and higher animals) which employ migration skills as a 

strategy to escape various environmental challenges, adult grain chinch bugs (GCB) 

Macchiademus diplopterus (Distant) (Hemiptera: Lygaeidae) are known to migrate in 

search of shelter when  host plants, such as wheat and other grain crops are harvested 

in the summer season (Myburg & Kriegler 1967). For many migrating insect species, 

adverse conditions such as high temperatures and drought may come along as a 

result of changes in the local environment or due to the onset of a new season. The 

migrating insects may move long distances or simply move a few kilometres into new 

habitats to survive immediate ecological or seasonal changes. Some insects make 

use of complicated navigational techniques that may depend on natural maps and 

compasses and in some cases magnetic cues and polarised light (Mouritsen & Frost 

2002; Stalleicken et al. 2005).  

Once migration has begun, feeding and reproduction activities come to a halt or are 

suspended for a while depending on the species (Kennedy 1985). Migrating organisms 

also have the potential to choose where to settle and this behaviour is known as habitat 

selection (Huntingford 1984; Carde 2000; Merlin et al. 2012). The distribution of a 

species after migration is also limited by the behaviour of members choosing their 

habitats. This behaviour may be influenced by food or predator risk leading individuals 

into dense habitats (Hilden 1965; Verner 1975; Bechard 1982; Wywialowski 1987).  

Stellenbosch University  https://scholar.sun.ac.za



   

67 

  

In insects, host profile or habitat acceptance during shelter selection depends on 

completing a series of multiple sensory processes (Atkins et al. 1987). These multiple 

sensory signals contribute towards modifying insect behaviour leading to the adoption 

of suitable body orientation positions (Rowell & Reichert 1985). The influence of 

learning and inherited choices in selecting habitats are not yet known in many insects 

(Rolstad et al. 2000). To a larger extent, environmental cues are usually adopted and 

used in decision making while landscape and terrain forms are likewise utilised in 

selecting sheltering sites. Visual and olfactory cues have been used by many foraging 

insect species in evaluating their surroundings with the additional use of taste sensory 

channels (Lanier 1983; Fawcett & Johnstone 2003). It is known that certain terrestrial 

insects such as the desert locust, Schistocerca gregaria and Lymantria caterpillars are 

capable of utilising visual information of tree trunk arrangement when orienting in their 

habitats (Vinson 1998). They achieve this through discriminating different plant types 

and forms that are synonymous with their host habitats (Vinson 1984; Rolstad et al. 

2000; Olson et al. 2003).  

Multiple laboratory experiments have used wood crickets Nemobius sylvestris to show 

that terrestrial visual signals aid in orientating in their natural environment using similar 

cues such as tree stem formations (Campan & Gautier 1975; Beugnon 1982). Similar 

experiments proved that the visual behaviour of N. sylvestris was a result of positive 

scototaxis, which involves the movement towards low reflection targets (Campan & 

Medioni 1963; Campan & Lacoste 1971). The spider, Arctosa variana, shows an 

escape reaction in its natural environment towards the direction of dark objects guided 

by the position of the sun (Papi & Tongiorgi 1963). It reacts to signals from terrestrial 

structures such as a horizon silhouetted against the sky assisting it to orientate 

towards river banks (Campan & Gautier 1975).  

Foraging insects are known to use the most accurate, easy and readily available 

terrestrial structures for directions, an action which mainly relies on visual cues 

(Thorsteinson 1960). Insects are likely to use the most important indicators such as 

shape, colour, arrangement and magnitude of habitat in locating hosts for shelter or 
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food, despite having poor eye resolution (Honegger 1981; Michaud & Mackauer 1994; 

Hoffmeister et al. 1999; Fischer et al. 2003; Lobdell et al. 2005). Multimodal cues have 

been investigated in wood boring beetles that demonstrated strong visual preferences 

enabling them to distinguish between hosts and non-hosts (Campbell & Borden 2005).  

Since GCBs start searching for sheltering sites before entering into aestivation, the 

aim of this study was to determine whether they orientate themselves towards certain 

visual profiles. This follows after Campan & Gautier (1975) who suggested that insects 

living in low contrast environments have the ability to orient using visual landmarks 

that they learn to use from the beginning of life. Orientation responses to these various 

targets and how they may induce positive visual reactions in adult GCBs is not yet 

known. Therefore, in this chapter I look at visual behavioural orientation responses of 

GCBs to gain an understanding of how this behaviour may play a role in influencing 

where to seek shelter during the aestivation season. The objective was to test their 

visual preferences towards four different shapes of different colours. This is crucial as 

it contributes to an insightful understanding of the GCB shelter-seeking behaviour. 

Understanding how GCBs select shelter sites may be used in creating visually 

attractive targets for development of effective traps. Effective traps would assist in the 

development of GCB monitoring and management practices, to assist in reducing fruit 

infestations and thereby diminishing the rejection of South African export fruit by 

importing countries.  
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3.2 MATERIALS AND METHODS 

3.2.1 Insect collection  

Aestivating adult GCBs were collected from sheltering sites under the bark of blue 

gum trees Eucalyptus globulus during the period January to March 2015, in areas 

surrounding Malmesbury (33.45ºS,18.73ºE) and Wellington (33.38ºS,18.59ºE) in the 

Western Cape, South Africa. Insects were brushed from bark and trees into ventilated 

plastic containers. Loose bark from blue gum trees were placed inside the collection 

containers to provide shelter for the insects. Insects were immediately transported to 

the laboratory and kept in the plastic containers at ambient temperature until use. 

Experiments were conducted within 7 days of collection.   

3.2.2 Behavioural response to visual cues experiments 

Behavioural response experiments were conducted in a test arena constructed of 

Perspex material in the form of a square measuring 50 cm x 50 cm x 30 cm (Fig. 3.1). 

It was covered on the outside with a sheet of white paper around all the four sides and 

the arena floor. This was done to limit the vision of the insects to targets inside the 

arena. The lid of the arena was designed to fit tightly to the arena to prevent the escape 

of insects. The centre point on the floor of the arena was marked as the insect release 

point.   
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Fig. 3.1. Test arena constructed of Perspex material with all four sides and floor covered with a sheet 

of white paper. 

The behavioural response of adult GCBs to visual cues was tested in three successive 

experiments. The first experiment tested their response to black silhouettes of four 

different shapes; rectangle, square, triangle and circle. The second experiment tested 

responses to four different colours (black, red, green and yellow) on rectangular 

shaped silhouettes (preferred shape from the previous experiment). The final 

experiment tested responses to a vertical striped pattern in two different combined 

colours (preferred colours in the colour preference experiment).  

All experiments were conducted inside a laboratory which was illuminated with 

fluorescent lights (2500 lux at height 3 m) resembling the natural sunlight. The lights 

provided an even coverage of the entire room and the experiments were conducted at 

room temperature (22-26 ºC) at relative humidity conditions of 65-75 %. Within the 

arena paper silhouettes were used as targets representing the different visual 

profiles/landmarks found in the natural environment. Targets were cut from 1 mm thick 

paper sheets to equal relative sizes according to area (cm2). In the behavioural 

response to different shapes, rectangular, square, triangular and circular targets were 

cut from black paper and a shape was affixed to the centre of each inner wall in upright 

position, with the base of the shape touching the arena floor (Fig 3.2).  
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Fig. 3. 2. The test arena showing only three of the black shapes (circular shape not shown here) and 

how they were firmly affixed to the middle of walls inside the arena before insects were introduced. 

 

For response to different colours, targets were cut from black, red, green and yellow 

paper and affixed to the inner walls (Fig 3.3). 

 

 

 

 

 

 
Fig. 3.3. The placement of vertical rectangle shapes of different colours on inner walls of arena showing 
only three of the four coloured shapes (red shape not shown here). 
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To test the response to vertical stripes of black and white, as well as red and white 

colour patterns, the two targets were affixed next to each other on one wall, leaving 

the other 3 walls of the arena blank (Fig 3.4). 

 

Fig. 3.4. The placement of vertical stripes of black and white, red and white colour patterns and how 

they were affixed next to each other on one wall inside the arena. 

Each run in a behavioural response experiment was carried out by releasing 20 insects 

into the centre of the arena. The lid was placed on the arena and the insects were 

exposed to targets within the arena for a period of 30 min. After each exposure period 

the position of the insects inside the arena was recorded. Insects that were at the 

targets or within a 5 cm radius of a target were recorded as being on-target. Insects 

that had moved from the centre of the arena, but were not at or close to a target, were 

recorded as being off-target, and insects that did not move from the centre were 

recorded as sedentary. Once insect positions were recorded, insects were removed 

and the arena was rotated at 900 in a clockwise direction to cancel any directional 

influence on further experiments, and the inner walls of the arena were cleaned using 

70% ethanol. Insects already used were not retested to minimise the effects of 

previous experience. As a control run, no target was presented inside the arena and 

the position of insects after 30 min was recorded. Response to shape experiments 

were repeated 8 times (N = 160), response to colour 16 times (N = 320) and response 
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to vertical striped colour pattern 12 times (N = 240). Four control experiments were 

carried out using 80 insects for each response experiment.     

3.2.3 Statistical Analysis  

Statistical analysis of data was based on SAS’s general linear models procedure (SAS 

Enterprise Guide 2014). Shapiro-Wilk test was used to test for normality of data for all 

experiments. In the case where the data were not normally distributed non-parametric 

data analysis was performed using Kruskal-Wallis test with multiple comparison tests 

for pairwise comparisons. Significant means were separated using the Bonferoni t-test 

at P = 0.05.  

3.3 RESULTS 

3.3.1 GCB responses to shapes  

In the experiments testing the behavioural response of adult GCBs to four shapes in 

the arena, the rectangle had the highest number of insects visiting with 33.15%, 

followed by the square with 16.88%.  A moderate 13.75% of the insects visited the 

triangle, while another 13.75% also moved from the centre but did not go to any 

particular shape and were recorded as off-target. The circle attracted 11.88% of the 

insects while 10.63% of the insects did not move from the centre of the arena and 

remained sedentary (Fig 3.5).  
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Fig. 3.5. Mean and percentage number of insects (±S.E) recorded as sedentary, off-target and on-
target visiting the four shapes affixed to walls of arena in the GCB behavioural response to shape 
experiments. Means with the same letter are not significantly different (α = 0.05). N= 160. 

Significantly more insects (P = 0.0001) visited the rectangle shape and settled there 

more than they did for the other three shapes. There was no significant difference (P 

> 0.05) between insects visiting the square, triangle and circle targets or off-target and 

sedentary insects.  

3.3.2 GCB responses to colour  

Using the preferred shape, as observed in the previous experiment, the influence of 

colour on the GCB responses was tested, and the number of insects visiting each 

coloured rectangle were recorded (Fig 3.6). The results indicated that 39.07% of the 

insects preferred orienting towards red rectangle targets while 34.69% chose black 

rectangles. Green rectangle targets had 10.94% of the visits, while 6.25% of the 

insects went off-target or remained sedentary in the middle of the arena. Yellow targets 

had the least number of insects visiting them with only 3.44% choosing this colour. 
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Fig. 3.6. Mean and percentage number of insects (±S.E) recorded as sedentary, off-target and on-

target insects visiting the rectangular targets of four different colours in the GCB behavioural response 

to colour experiments. Means with the same letter are not significantly different (α = 0.05). N = 320. 

Insect visits to black and red rectangle targets were not significantly different (P > 

0.150) from each other, but both were significantly different (P = 0.0001) from the rest 

of the other coloured rectangle targets. The results show that GCBs oriented more 

towards the two dark contrasting colours, black and red, during these experiments.  

3.3.3 GCB responses to striped colour patterns 

Responses to striped patterns using the two preferred colours seen in the previous 

experiment, red and black, were tested using vertical stripes of black and white, and 

red and white and the mean number of insects visiting each pattern were recorded 

(Fig 3.7). The black and white pattern had the highest number of visits with 41.25 % 

compared to the red and white pattern with 36.25 % of the visits. Only 13.75% of the 

insects went off-target, while 8.75% remained sedentary in the centre of the arena.  
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Fig. 3.7. Mean and percentage number insects (±S.E) recorded as sedentary, off-target and on-target 

insects visiting each striped colour pattern. Means with the same letter are not significantly different (α 

= 0.05). N = 240. 

There was no significant difference (P > 0.153) between insects visiting the black and 

white pattern and the red and white pattern, but both striped patterns were significantly 

different (P = 0.0001) from insects that went off-target and those that remained 

sedentary. This indicates that GCBs were equally responsive to both black and white, 

as well as the red and white stripes during the experiments. This illustrates the 

possibility of a similar influence of the two dark contrasting colour patterns in inducing 

attraction reactions in GCBs when placed as targets in an arena. 

Both the dark and upright striped rectangles tested in either of the two colour patterns, 

black and white and red and white, triggered an equally positive scototactic reaction 

in GCBs. Both colour patterns induced the insects to orient and move towards the dark 

upright striped shapes. Control experiments were carried out without targets presented 

inside the arena and the GCBs showed no particular direction preference in their 

movements. More than 90% of the insects stayed mostly in the middle of the arena 

floor away from the walls (results not shown). This indicated that bugs oriented 

towards certain directions only when there were targets in sight.      
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3.4 DISCUSSION 

Aestivating GCB adults exhibit positive scototactic behaviour when presented with 

different visual cues. GCBs had a tendency to move towards vertical rectangular 

shaped targets more than square, triangle or circle targets, and bugs oriented more 

towards dark vertical surfaces by preferring to move towards black and red rectangle 

shapes, more than they did for green and yellow rectangle shapes. A similar level of 

attraction to both black and red, with or without vertical white stripes, is also indicative 

of positive scototaxis. Insects do not see red, but rather, are known to see colours 

more at the far left of the light spectrum, close to violet (Chapman 1998). The GCBs 

probably saw red as dark colour. Although the results from this study were not always 

overwhelming in the numbers of bugs observed as preferring one target over another, 

the differences were significant, indicating preference.  

The present study is comparable to the visual fixation responses observed in the 

wood-cricket, N. sylvestris, whose scototactic orientation was described by Jeanrot et 

al. (1981). Their work measured the effectiveness of the different areas of the eye 

comparing the responses of insects to dark visual targets. They demonstrated that 

black stripes induced strong visual orientation in crickets placed on a horizontal plane 

facing upright targets. Additionally, Jeanrot et al (1981) observed that the ability to 

move heads freely in the wood-cricket enlarges their effective visual field by almost 20 

o towards rectangular black visual targets. Campan & Gautier (1975) also showed that 

black and white bars induced N. sylvestris to orient towards vertical targets more than 

they responded to similar horizontal targets. The same is true for M. diplopterus which 

responded positively towards all dark vertical rectangle targets in this study. A possible 

explanation for target preference behaviour observed in both species, M. diplopterus 

and N. sylvestris, concerns the habitats they live in , and being surrounded by wood 

landmarks of dark tree trunks that are vertically oriented. Visual terrestrial cues 

provided by such landmarks have been revealed to be used by N. sylvestris to guide 

its orientation (Campan & Gautier 1975). The similarity in visual appearance of 
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landmarks between these two species’ environments is reasonable enough to assume 

a similar orientation reaction to vertical objects.  

In a study involving the field cricket, Acheta domesticus, scototactic responses were 

tested towards various shaped targets in an arena using a compensatory treadmill and 

it was seen that the crickets oriented towards horizontal dark targets (Atkins et al. 

1987). However, vertical targets induced little positive orientation and this may also be 

related to its natural environment which is mainly composed of horizontal features 

such as rocks and cracks. The appearance of the environment influences the 

preference for targets (Atkins et al. 1987). Anderson (1989) stated that species from 

shady habitats usually orient towards familiar silhouettes that resemble areas with 

vegetation cover such as bushes and trees.  

The level of visual responses observed in GCB and attraction to vertical dark objects, 

may be a reflection of commonality with their natural habitat when surrounded by a 

variety of other trees including blue gum trees. These vegetation structures provide 

vertical dark visual images from the position of GCBs in the wheat fields. These dark 

structures become their targets for seeking shelter sites when migrating from 

harvested wheat fields at the onset of aestivation. Some insect species such as the 

wandering spider, Cupiennius salei are able to make such strict direction choices due 

to the enhanced attractiveness of large vertical images that supply huge stimulus 

changes on the retina of the eye (Kaps & Schmid 1996). Vertical contours and inclined 

surfaces are known to trigger strong visual attraction signals that compel the insect to 

follow the direction of the visual stimulus (Lanier 1983; Lindgren 1983; Anderson 1989; 

Finch & Collier 2000; Campbell & Borden 2005).  

Two species of bark beetles, Dendroctonus psedotsugae and Ips paraconfusus utilize 

visual cues with the aid of two photoreceptors that react to blue light at a maximum 

flux of (450 nm) and green light at a maximum flux of (520 nm) (Groberman & Borden 

1982). These bark beetles are also known to orient their bodies toward suitable shelter 

by making use of vertical stem silhouettes (Lanier 1983; Finch & Collier 2000). The 
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mountain pine beetles, D. ponderosae (Schonherr 1977) and Trypodendron lineatum, 

are both attracted to traps of dark colours such as black, brown and red and not yellow 

and white (Dubbel et al. 1985). Stacked black funnel traps create vertical silhouettes 

that resemble host tree conifers and are used in trapping most coniferophagous 

beetles (Lindgren 1983; Campbell & Borden 2005).  

The findings from this study are encouraging and present a platform for further work 

on visual attractants of various forms for the GCB. This increases our knowledge and 

understanding of its visual orientation behaviour and how this influences the selection 

of sheltering sites at aestivation. This provides a good starting point for the 

development of novel management strategies against the phytosanitary pest. Dark 

rectangular shaped traps placed on the wheat-to-fruit orchard interface may help to 

reduce fruit infestations in orchards. For the South African fruit producers, this 

contributes towards lowering the risk of suffering fruit consignment rejections in the 

export market. 
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CHAPTER 4 

GENERAL DISCUSSION 

The grain chinch bug is a quarantine pest that infests export fruit and as a result, 

threatens to negatively impact international trade in fruit products from South Africa. 

This study is an addition to a limited number of studies looking at mitigating the GCB 

pest problem that confronts the export fruit industry. The objectives of the study were 

to develop methods for GCB trapping using pheromone lures and modified traps, as 

well as better understand orientation behavior during aestivation. This was conducted 

by testing a previously identified aggregation pheromone lure, as well as a newly 

formulated sex pheromone lure in a field trapping trial using modified traps that 

incorporate shelter (Chapter 2); and by testing the visual responses of GCBs to shapes 

of different colours in a localized visual field in an effort to better understand their visual 

orientation behavior for the development of suitably attractive traps (Chapter 3). This 

chapter interprets the findings from both chapter 2 and chapter 3 and also provides 

recommendations for future research. 

The present study compared the aggregation pheromone and tested the sex 

pheromone as well, using modified traps incorporating sheltering components, but was 

unsuccessful in attracting significant numbers of GCBs in these traps. This may be 

due to the fact that pheromone volatile compounds become unstable when 

impregnated into rubber septa dispensers in field experiments. This might have 

reduced their efficacy in dispensing, as in the case of the stink bug, Chlorochora sayi 

(Millar et al. 2010). Weather agents such as wind speed, humidity and temperature 

influence the rate of lure release under field conditions and may lead to poor lure 

attraction.  

The compounds hexanal, (E)-2-hexenal, (E)-2-hexenol and tridecane, identified as the 

constituents of both the aggregation pheromone (Okosun, 2012) and the sex 

pheromone, in the present study, were identified before as defensive secretions by 
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Oliver et al. (1996). (E)-2-octenal and (E)-2-octenol were also previously identified by 

Okosun (2012) as part of the aggregation pheromone. Some of the major chemicals 

identified by Oliver et al. (1996) which were tridecane, (E)-2-octenal, (E)-2-hexenal  

and hexanal have been reported to stimulate alarm and aggregation reactions in true 

bug species including the cabbage bug, Eurydema rugose and the southern green 

stink bug, Nezara viridula (Ishiwatari 1976; Lockwood & Story 1985). It is most likely 

that GCBs use the same compounds as aggregation, sex or defence pheromones, but 

in different concentrations and ratios for various roles according to season.  

Attraction pheromones present in GCBs, may be short distance or contact 

pheromones. This can be supported by the evidence from laboratory bioassays 

conducted by Okosun (2012) that showed some attraction in both sexes by the female 

pheromone compounds hexanal, (E)-2-hexenal and tridecane. These compounds 

however, did not elicit attraction under field conditions in a field trial that followed the 

laboratory assessments. The main reason for this is more likely due to the presence 

(E)-2-hexenal and (E)-2-octenal in relative concentrations high enough to inhibit the 

attraction capability of other compounds such as nonanol and decanal. The present 

study contributed to our knowledge around the pheromone compounds in GCBs by 

identifying four more volatile compounds found in GCBs during the active season: 

nonanal, decanoic acid and icosane which were found in marginally higher proportions 

in females than in males, and decanal, which was substantially higher in females. 

These volatile compounds may in the future be used in formulating an attractive sex 

pheromone lure to increase our ability to optimize the trapping of GCBs.  

Cuticular hydrocarbons such as tridecane may also be used in optimizing GCB 

trapping. Tridecane was found in the highest quantities in samples collected in this 

study, and all previous GCB chemical ecology work reported here. Such hydrocarbons 

are waxy compounds which provide protection from desiccation and function on the 

cuticle assisting species to discriminate each other (Kather & Martin 2012). Insects 

also use these hydrocarbons to identify mating partners and to know where they have 

been by recognizing their own scent (Everaerts et al. 2010). A good example is that of 
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the cricket, Gryllodes sigillatus that recognizes its former mating partners by the scent 

it leaves on them after mating (Weddle et al. 2012). In Drosophila melanogaster flies, 

hydrocarbons work as short distance or contact pheromones (Everaerts et al. 2010).  

In addition to the use of scents, the importance of shelter in soliciting attraction 

responses in aestivating GCB is highly evident as reported by Addison (2004), 

Johnson & Addison (2008) and Okosun (2012). They all found high numbers of bugs 

caught in cardboard bands tied around tree trunks during GCB orchard abundance 

inspections. As such, the use of modified traps in the present study was intended to 

improve trap catches since the insects exhibit a strong shelter seeking behavior. 

Despite using the modified traps, no improved trap caches were noticed in baited 

traps. This could be as a result of the size, position, shape and colour of traps used in 

the field trial which may not have been attractive to the bugs.  

GCBs exhibit a preference for dark vertical shapes when seeking shelter. This 

attraction towards dark vertical objects suggests that the development of traps of a 

suitable dark and vertical nature would be more efficient in trapping the bugs. The 

GCB has a tendency to move toward low reflecting areas before they go against 

gravity when they reach the target. This could be due to the perception of images 

under a simple nervous system which is highly responsible for vertical silhouette 

preference in many insect species seeking shelter (Lanier 1983; Muller 2010). Low 

reflecting objects are considered attractive due to the contrast perceived at the edges 

of a vertical silhouette (Smith 1993). Further investigations of this potential for 

attraction needs to be tested in the field. Only a few investigations have been carried 

out on visual discrimination for sheltering sites especially for true bug species 

(Campbell & Borden 2006).  

This study has also shown the influence of other cues associated with the shelter 

seeking behaviour of the GCB during the aestivation period, such as moisture and 

temperature. The bugs might be attracted to areas that offer conducive moisture and 

low temperature levels, such as found under cardboard bands tied around trees. 
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Similar to what was found by Addison (2004), Johnson & Addison (2008) and Okosun 

(2012), more GCBs were sheltering under cardboard bands tied around tree stems in 

the present study.  

Given the new knowledge on GCB chemical ecology and visual behavior, as well as 

understanding GCB bio-ecology, future research should focus on using cropping 

systems in combination with pheromone baited traps and physical barriers against the 

GCB in order to control it effectively. These management tactics have been used 

successfully before, against three green stink bugs of cotton, namely: Euschistus 

servus, N. viridula and Chinavia hilaris. The strategic placement of soybean trap crops, 

stink bug pheromone baited traps and synthetic physical barriers between peanut and 

cotton fields achieved a reduction of stink bug densities in cotton (Tillman et al. 2015). 

Hokkanen (1991) describes trap cropping as a strategy for managing dispersing insect 

pests by using an attractive plant to harbor the pest thereby reducing the chances of 

entry into crop fields. The GCBs are known to disperse into fruit orchards at the wheat 

to fruit orchard interface which offers an opportunity to evaluate the impact of trap 

crops and physical barriers at these interfaces preventing the entry of the bugs into 

fruit orchards. 

For example, providing a dense stretch of wheat crop on the periphery of fruit orchards, 

may trap and delay GCBs from entering into orchards until fruit is removed from trees. 

Similarly, dark coloured vertical barriers placed at the periphery of wheat fields may 

help in trapping GCBs preventing them from reaching fruit orchards. These innovative 

vertical traps can be made from affordable materials such as paper or plastic. Vertical 

object discrimination is a beneficial evolutionary mechanism that offers an insect the 

opportunity to find a vertical more secure hiding place (Campbell & Borden 2005) and 

this behaviour can be manipulated in order to trap the pest. Combining both methods 

may improve the effectiveness of these solutions. If an attractive pheromone is 

formulated in the future, both trapping crops and physical barriers may be used in 

combination with the pheromone to achieve better results.  
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The findings from this study edifies the development of novel monitoring methods 

against the GCB. The gathered knowledge on the chemical and visual ecology of the 

pest is a step forward in the development of appropriate and effective traps in the 

future. Ultimately, this will help in reducing the risk of exporting GCB contaminated 

fruit to those markets importing fruit from South Africa. 
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