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Abstract

Classical formulations model belief revision as a deterministic process. Under certain circumstances,
the process may have more than one outcome, which suggests that belief revision is non-deterministic
instead. Representations exist that model belief revision in either format, and for both formats there
are axiom schemes that determine whether the representation is in fact a belief revision process.

Although the axiom scheme for the non-deterministic case generalises that of the deterministic case,
both schemes entail that all of the beliefs held by an agent are affected by new information, which
is perhaps unintuitive. Rather, one may consider that belief revision should be local, with beliefs
only affected if the new information is pertinent to them. We approach the problem of belief revision
from the standpoint that it is local and non-deterministic, and the purpose and contribution of this
dissertation is the development of a topological framework with which to model belief revision in
this manner.



Opsomming

Geloofshersiening word gewoonlik as ’n deterministiese proses voorgestel. Meer as een uitkoms mag
bestaan vir verskeie omstandighede, wat aandui dat die proses liewer nie-deterministies van aard is.
Beide die gevalle word deur aksiomaskemas gereguleer, en die aksiomas vir die nie-deterministiese
geval veralgemeen dié van die deterministiese geval.

Albei aksiomaskemas stipuleer, miskien onintuïtief, dat alle gelowe van ’n agent deur die nuwe in-
formasie geaffekteer word. ’n Beter metode is dat net daardie gelowe waarvoor die nuwe informasie
toepaslik is geaffekteer word. Ons benader die probleem van geloofshersiening uit die standpunt dat
dit lokaal en nie-deterministies is, en die doel en bydrae van hierdie proefskrif is dus die ontwikkel-
ing van ’n topologiese raamwerk waarmee ons geloofshersiening op hierdie manier kan voorstel.
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Chapter 1

A Survey of Belief Revision

Over time, an agent will accumulate a store of beliefs about its environment. When it encounters new
information about this environment, we can certainly expect it to change its beliefs to be consistent
with the new information in case some of its beliefs are invalidated. The mechanism of this change is
not straightforward, as there are many technical difficulties to overcome. The problem has attracted
much attention as a result, culminating in the publication of the seminal works [1] and [30] ([31]),
with a very large body of subsequent research that covers a wide variety of innovative approaches
to the problem.

Within this body of research, two kinds of belief change are generally distinguished [6, 26, 30], viz.
belief update and belief revision. Many researchers feel that the distinction between update and
revision is not clear (compare [32, 6]), so for our work we shall concentrate on belief revision. In this
chapter, we present an overview of three different approaches to belief revision, after which we are
able to describe what it is that we aim to accomplish through our work. We proceed as follows.

Chapter Guide:

Section 1.1: Belief, Knowledge and Acceptance. In this section, we summarise some contemporary
views on what it means to believe, know or accept something. It is important to understand
these concepts because they help to shape our expectation of what should happen when beliefs
change to accommodate new information.

Section 1.2: Different Approaches to Belief Revision. Belief revision can be viewed as a transition
between different states of affairs. In this section we describe three approaches to modelling
these transitions. The first approach models belief revision as a functional operation and is set
out in [1]. The second approach, proposed in [11], refines the approach of [1] to account for
relevance. In the third approach, described in [36], belief revision is modelled as a relational
operation.

Section 1.3: The Aims of Our Work. We now use the ideas of the preceding sections to formulate
our thesis. We describe what it is that we intend to accomplish and contribute, and present an
overview of the remainder of our work.

1



2 CHAPTER 1. A SURVEY OF BELIEF REVISION

1.1 Belief, Knowledge and Acceptance

To believe something entails that there is an agent that holds the given belief, and that there is some-
thing that this agent believes, the content of the belief. Traditionally, this content is a proposition
expressed in some chosen language [45]. Belief then refers to the representation held by an agent
of the truth value of a proposition [24]. This truth value is independent of its representation, for a
proposition can be false even though an agent believes it to be true. The beliefs held by an agent are
then just the propositions that it considers to be true.

We may treat this set of beliefs as a state of affairs or as a possible world, as conceived of by the
agent. Many contemporary philosophers then characterise belief as the implicitly modal concept of
a propositional attitude [45]. A propositional attitude is an opinion about or a disposition towards a
proposition or the state of affairs in which that proposition is true. It is often expressed as “A(x, φ)”,
where A is the propositional attitude, x is an individual and φ is a sentence that expresses the propo-
sition. For example, “James is hopeful that there is enough food for everyone” has “James” as x, “is
hopeful that” as A and “there is enough food for everyone” as φ.

The subject of knowledge and what it means to say that “x knows that φ” is studied in a broad-
ranging field of philosophy called epistemology. It encompasses questions such as “What is knowl-
edge?” and “How do people acquire knowledge?”, and probes distinctions between “knowing how”
and “knowing that”. We shall concern ourselves only with “knowing that”.

The nature and definition of knowledge are elusive, even intractable (compare [51]), and debates
on the subject are beset by controversy. Much of the controversy stems from the formulation of
knowledge as justified true belief, where “x knows that φ” if and only if φ is the case, x believes that
φ and x is justified in believing that φ [51]. This formulation was criticised famously in [21] through a
suite of counterexamples known as the “Gettier Problems”, which illustrate situations where a belief
may be justified and true yet not count as knowledge.

In a typical counterexample, a belief held by an agent coincides with the true situation by chance.
This justified, true belief is then falsely classified as knowledge. For example, based on [51], suppose
that Jack believes the false proposition p, “Mary owns a Ford”. Suppose further that Jack infers
proposition q, “either Mary owns a Ford or John is in Barcelona”. Since p entails q, Jack is justified
in believing q. If John just happened to be in Barcelona, q would be true, and Jack would hold a
justified, true belief. However, Jack has no evidence for the whereabouts of John, so his justified true
belief cannot be regarded as knowledge.

Since publication of the Gettier problems, much debate around the nature of knowledge has focussed
on finding a suitable clause to add to the original formulation of knowledge as justified true belief
that will “de-gettierise” it. Nevertheless, the nature of knowledge remains at large. In particular,
with regard to the debate about the nature of knowledge, [51] expresses the opinion that

“One way to respond to the intractability of the debate is to acknowledge that there simply is not
one concept of knowledge for which there is an analysis that has any chance of meeting with broad
assent. Rather, we might conclude that, when we use the word ‘knowledge’, we have sometimes
one concept and at other times another concept in mind.”

However we wish to characterise knowledge, it seems reasonable that what is false cannot be known
(compare [51]) – a statement such as “Roald Dahl wrote ‘Pride and Prejudice’ ” is false, so it is not
something that one could claim to know. Furthermore, it is nearly universally accepted that knowl-
edge implies belief, and it is taken as a contradiction to claim to know something without believing
it (compare p118 in [43] and also [53]).
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From [45], acceptance is taken to be under the voluntary control of the subject more so than belief and
is more directly linked to a particular action and context. One can believe something without accept-
ing it, and also accept something without believing it. For example, given evidence that supports a
theory but is not known to be completely decisive, a scientist may choose to accept or disregard the
theory, and furthermore may do so without needing to believe it (a similar version of this example
can be found in [18] ([19])).

In contrast, suppose that Bill needs to climb a ladder to clean the gutters around his house. He may
genuinely believe that the ladder is stable and can support his weight, but out of concerns for safety
he does not accept this to be so until he has properly checked the ladder. Thus Bill believes that the
ladder is safe without accepting it to be so (a similar example to this can be found in [45]).

To accept something seems to involve a choice to cease enquiry and treat the matter as settled at least
until new evidence becomes available. Literature on the subject is generally not clear how acceptance
relates to knowledge and belief. For example, can one know something without accepting it? If
knowledge is always believed, then because we can believe something without accepting it, arguably
we can also know something without accepting it. To illustrate, one could know that air travel is safe
without accepting it because accidents can happen. Yet, one cannot know something without its
being the case, so to know something seems to involve our acceptance of it also.

From our brief overview of belief, knowledge and acceptance, many of the difficulties we encounter
are yet mired in active though apparently intractable debate. In the study of belief change however,
several advances have been made through the innovative approaches taken by different researchers,
and in the next section we shall examine some of these approaches in more detail.

1.2 Different Approaches to Belief Revision

Generally, two kinds of belief change are distinguished [6, 26], viz. belief update, where the beliefs
of an agent are modified in response to changes in its environment, and belief revision, where the
beliefs of an agent are modified when it receives new information about its unchanged environment.

For both kinds of belief change, there is the pervasive intuition that a body of beliefs should undergo
minimal changes to accommodate new information (compare [42] however, where even this widely
accepted notion is questioned). In [1], the authors propose a suite of postulates, known as the “AGM
Postulates”, which formalise this notion of minimal change for the case of belief revision and which
have become the dominating paradigm for reasoning about belief revision. The authors of [30] ([31])
have similarly proposed a collection of postulates, known as the “KM Postulates”, that regulate the
operation of belief update.

Many researchers feel that the distinction between update and revision is not clear (compare [32])
and that belief update contains elements of belief revision as well (compare [6]). On the one hand,
differences between the operations make them largely incompatible, so that one cannot be treated as
a special case of the other [26]. On the other hand, in [6] the author provides an example to show that
belief update can also contain elements of belief revision, and then exhibits semantics for a model
that seeks to unify the two types of belief change.

In view of the similarities between belief update and belief revision, we shall concentrate on belief
revision only. Belief revision is sometimes further characterised in terms of the related operations of
contraction and expansion, whereby a piece of information is removed from (resp. added to) a body
of beliefs. In general, revision is regarded as combining these operations (compare [35]), so in our
work we will not additionally study expansion and contraction.
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A belief revision operation may be thought of as a transition from one state of affairs to another,
and in the rest of this section we examine three approaches to modelling these transitions. The
first approach models belief revision as a functional operation and is described in [1]. The second
approach, proposed in [11], refines the approach of [1] to account for relevance. The third approach
models belief revision as a relational operation, and is described in [36].

1.2.1 The Functional Approach

Under the functional approach, a belief revision operation ∗ is a function that takes a deductively
closed set K of beliefs and formula φ to the deductively closed set K ∗ φ of beliefs. The authors of [1]
propose that the properties of ∗ and the new beliefs K ∗ φ are governed by the postulates A1 – A8,
the AGM Postulates, listed below.

To formulate these postulates, we fix a propositional though not necessarily finitary language L. The
well-formed formulae of L are constructed by application of the binary connectives ∧ (AND) and ∨
(OR) and the unary connective ¬ (NOT) in the standard manner, and we collect these formulae in
the set ΦL. We fix a set-to-set function Cn that maps a set Φ of well-formed formulae of L to the set Ψ
of formulae that can be deduced from Φ. We denote a contradiction in ΦL by ⊥, and the entailment
relation by `L. A theorem of the language is then a formula φ such that `L φ. We take Cn({⊥}) = ΦL.
A set K of formulae is then consistent if Cn(K) 6= Cn({⊥}) = ΦL (compare Definition 3.9(ii) and p115
in [12]), otherwise it is inconsistent. A belief set K is a set of formulae expressed in L that is closed
under deduction, i.e. K = Cn(K).

The AGM postulates may then be formulated as follows (compare [1] and [20]):

A1: K ∗ φ is a belief set

A2: φ ∈ K ∗ φ

A3: K ∗ φ ⊆ Cn(K ∪ {φ})

A4: If ¬φ 6∈ K then Cn(K ∪ {φ}) ⊆ K ∗ φ

A5: K ∗ φ = Cn({⊥}) if and only if `L ¬φ

A6: If `L φ ↔ ψ then K ∗ φ = K ∗ ψ

A7: K ∗ (φ ∧ ψ) ⊆ Cn((K ∗ φ) ∪ {ψ})

A8: If ¬ψ 6∈ K ∗ φ then Cn((K ∗ φ) ∪ {ψ}) ⊆ K ∗ (φ ∧ ψ)

The last two axioms enforce a coherence on ∗ by imposing a lower- and upper bound on the outcome.
Taking K ∗ (φ ∧ ψ) to mean the (iterated) revision (K ∗ φ) ∗ ψ, from Axiom A3 we then have that
K ∗ (φ∧ψ) ⊆ Cn((K ∗φ)∪{ψ}), which is just the belief set formed when we first revise by φ and then
add ψ to the outcome. This set serves as an upper bound for the outcome of the revision. Axiom A8
is then simply a rewriting of Axiom A4, with the belief set Cn((K ∗ φ)∪ {ψ}) now serving as a lower
bound for the outcome.

Axiom A2 has been questioned in [18] ([19]) because as a consequence, an agent can no longer choose
not to believe what it has just been told. A further criticism by [18] ([19]) is that, although the new
information is believed by the agent, the axioms do not stipulate whether the agent then knows the
new information in the sense of Section 1.1. The AGM postulates also do not restrict the structure of
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φ beyond that it should be a (well-formed) formula of L. Thus, as in [18] ([19]) we may ask how an
agent should revise its beliefs with a logical constant such as ⊥ (falsum), or whether it should accept
⊥ without question.

A more fundamental difficulty, questioned in works such as [18] ([19]), [25] and [11], is that a col-
lection of beliefs must be deductively closed. This requirement raises problems of computational
complexity because, for example, determining the logical consequences of a collection of beliefs may
be an infinite task. It also forces us to account for all the beliefs of an agent during a revision, rather
than only those relevant to the new information. The philosophical fidelity of the requirement is
questioned because, for example, an agent must then know all the consequences of its beliefs – we
might believe that global warming is occurring, but how could we know all the consequences of this
belief?

Several contemporary approaches to belief revision seek to handle the problem of deductive closure
by appeal to the notion of paraconsistency, where a logic is paraconsistent if its entailment relation `
is not “explosive”, i.e. for any well-formed formulae φ and ψ, it is not the case that {φ,¬φ} ` ψ. An
agent can then reason using smaller, locally consistent sets of beliefs. In the next section, we present
such an approach to belief revision.

1.2.2 The B-Structures Approach

In this section, we describe the B-structures model of [11] in more detail, beginning with an overview
of the language-splitting model of which B-structures are a natural extension. We follow directly the
exposition given in [11], and most of the results, definitions and examples presented here may be
found there. Our purpose here is only to present the model of [11], so definitions and results are
generally introduced without further comment or proof. To avoid notational overloading in the rest
of our work, we have adapted the notation used in [11] to match our conventions.

Let L = {p1, p2, . . . , pn, true, false} be a finite propositional language, where the pi are propositional
atoms and true and false are logical constants. As before, let ΦL denote the set of well-formed formu-
lae of L formed by applying the binary connectives ∧ (AND) and ∨ (OR) and the unary connective ¬
(NOT) in the standard manner. For any non-empty subset P ⊆ L, we shall call ΦP a subject. Symbols
such as p, q and r stand for propositional atoms, while Greek letters such as φ and ψ stand for arbi-
trary well-formed formulae in ΦL. For a set X ⊆ ΦL of formulae, Cn(X) represents the closure of X
under logical consequence. The set X is consistent if Cn(X) 6= ΦL, and a theory of L if X = Cn(X).
We use the letter T , possibly subscripted, to denote a theory. The revision of T with φ is denoted by
T ∗ φ, and T u φ is taken to mean Cn(T ∪ {φ}) where φ is joined to T without regard for consistency.

We begin with the idea that the language L can be split into sub-languages relative to a given theory
T . Definition 1.1 may be compared to Definition 2 in [11].

Definition 1.1. Let L = {L1, L2, . . . , Ln} be a family of (mutually disjoint) subsets of L, and let
T be a theory of the language L. Then L1, . . . , Ln split L relative to T if and only if for each i in
1, 2, . . . n there exists φi ∈ ΦLi such that T = Cn({φ1, φ2, . . . , φn}). The family L separates T into
T1, T2, . . . , Tn such that for each i = 1, 2, . . . , n, Ti ⊆ ΦLi . We call L a T -splitting (of L) and say that
T is generated by the Ti expressed in each sub-language Li. Given a language L′ ⊆ L, we say that
T is confined to ΦL′ if T = Cn(T ∩ ΦL′).

A T -splitting {L1, L2, . . . , Ln} of L thus partitions T into T1, T2, . . . , Tn such that each Ti is confined
to the subject ΦLi (compare also pp4–5 in [39]). It is possible for one T -splitting to refine another. The
notion of refinement set out in Definition 1.2 is based on Definition 20.1 in [56].
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Definition 1.2. Let L and L′ be families of subsets of L such that
⋃L =

⋃L′. We say that L refines
L′ if for every L ∈ L there is L′ ∈ L′ with L ⊆ L′.

The extent to which one T -splitting may refine another is limited, and the existence of this limit is
captured by Lemma 1.3 (compare Lemma 1 in [11], a proof of which may be found in [39]).

Lemma 1.3. Let T be a theory of the language L. There exists a unique T -splitting L of L such that for every
T -splitting L′, L refines L′.

The finest T -splitting of L allows us to represent the beliefs of an agent in terms of a collection of
disjoint subjects, so subjects are not combined unnecessarily. In turn, the subject matter of a belief
φ ∈ ΦL is determined by the set of propositional atoms of L from which it is generated. Lemma 1.4
corresponds to Lemma 2 in [11], while Definition 1.5 is adapted from Definition 3 in [11].

Lemma 1.4. Let φ be a formula of a finite propositional language L. There exists a smallest language Lφ ⊆ L
with which φ can be expressed. That is, there is Lφ ⊆ L and a formula ψ ∈ ΦLφ

such that φ ⇔ ψ, and for any
other L′ ⊆ L for which there is ψ′ ∈ ΦL′ such that φ ⇔ ψ′, Lφ ⊆ L′.

Definition 1.5. Let φ be a formula of a finite propositional language L. The subject matter of φ is the
smallest language, denoted Lφ, of a formula that can be used to express φ. Two formulae φ and ψ of
L are relevant to each other if Lφ ∩ Lψ 6= ∅.

Remark 1.6. The formulae φ = p ∧ (q ∨ ¬q) and ψ = r ∧ (q ∨ ¬q) appear to be relevant to each
other because they share the propositional atom q. However, they are not because Lφ = {p} and
Lψ = {r}. Definition 1.5 thus prevents two formulae from being relevant to each other in a trivial
way. The authors of [11] concede that a sharing of propositional atoms is inadequate as a formulation
of relevance because it will not capture all of the nuances of meaning that usually attend the notion.

Suppose that we have a theory T and a T -splitting L = {L1, L2, . . . , Ln} of L, and that we are given
the new information φ. Informally, to find which formulae in T are affected by φ, we compare Lφ

with each Li in L to determine if φ is relevant to Ti. The T -splitting L, however, must be such that
φ can be expressed by at least one sub-language in L, which leads us to the following notion of
compatibility (compare Definition 4 in [11]).

Definition 1.7. Given a theory T , a finite propositional language L and a formula φ of L, let LT
φ be

the smallest language such that Lφ ⊆ LT
φ and {LT

φ , L \ LT
φ} is a T -splitting of L. We say that Lφ is

compatible with the T -splitting {LT
φ , L \ LT

φ} of L.

The language LT
φ may be formed as the smallest union of elements of the finest T -splitting of L by

which φ can be expressed. To illustrate, suppose that T = Cn({p ∨ q, r, s}) is a theory of a finite
propositional language L = {p, q, r, s}, and let α = q ∨ r. Then {{p, q}, {r}, {s}} is a T -splitting of
L, Lα = {q, r}, LT

α = {p, q, r} and {{p, q, r}, {s}} is a T -splitting of L with which Lα is compatible
(compare the example on p5 in [11]).

The members of a T -splitting L of a given language L need not be disjoint since two subjects may
share propositional atoms. Furthermore, two theories confined to (different) members of L may
be consistent of their own but inconsistent when considered jointly. We then have the idea of lo-
cal consistency versus global inconsistency, which brings us to the notion of a belief structure, or
B-structure. A B-structure is defined in three parts, motivated by the interplay between local consis-
tency and global inconsistency. Definitions 1.8, 1.10 and 1.11 correspond respectively to Definitions
7, 8 and 9 in [11].



1.2. DIFFERENT APPROACHES TO BELIEF REVISION 7

Definition 1.8. A B-structure on L is a set B = {(Li, Ti)}i∈I where I = {1, 2, . . . , n}, L =
⋃

i∈I Li

and for each i ∈ I , Ti is a consistent, finitely axiomatisable theory in Li. For each i ∈ I , Γi is a set of
explicit beliefs of an agent, expressed in the language Li, such that Ti = Cn(Γi).

Remark 1.9. In Definition 1.8, the Γi are often referred to as belief bases. A belief base is a set of
beliefs that is not necessarily deductively closed, and its elements are viewed as more basic beliefs in
that the full beliefs Ti of the agent about the subject ΦLi

can be recovered as Cn(Γi) (compare [25]).
The beliefs in Γi and Ti are respectively called explicit and implicit beliefs.

A B-structure is a natural extension of a T -splitting of L. Each (Li, Ti) implicitly pairs a subject
covered by a particular language with a deductively closed, consistent theory about that subject. The
join of the theories is not guaranteed to be consistent, however, so a B-structure captures the idea
that we are “reasonably rational” agents [11]. Inconsistencies arise when for some i, j ∈ I , Ti and
Tj offer divergent views on the truth of some formula φ ∈ ΦL. In this case, Li and Lj must share at
least the propositional letters contained in φ and to cater for this overlap, [11] introduces a controlled
form of overlap called a k-partition.

Definition 1.10. Let L be a finite propositional language, and let {Li}i∈I , where I = {1, 2, . . . , n}, be a
family of sub-languages of L such that L =

⋃
i∈I Li. Then, for 1 ≤ k ≤ n, {Li}i∈I is a k-partition of L

if any propositional symbol p ∈ L occurs in at most k of the sub-languages Li.

Given the overlap determined by a k-partition, the notion of m-consistency captures the extent to
which the beliefs held by an agent are coherent in the presence of global inconsistency.

Definition 1.11. Let B = {(Li, Ti)}i∈I , where I = 1, 2, . . . , n, be a belief structure on a finite proposi-
tional language L. Then, for 1 ≤ m ≤ n, B is m-consistent if any m of the Ti are jointly consistent.

The approach to the global inconsistency taken in [11] differs from paraconsistent approaches such
as in [25] because it allows full use of classical propositional logic within each subject, but resorts
to a multi-valued logic when reasoning with the combined subjects. To show how an agent uses a
B-structure to perform reasoning actions such as answering queries, the authors use a 4-valued logic
with truth values T = {⊥, true, false,>}. These values indicate, respectively, a lack of information,
truth, falsity and inconsistency. The assignment vB : ΦL −→ T described in Definition 1.12 then tells
us whether a particular formula follows from a given B-structure (compare Definition 10 in [11]).

Definition 1.12. Let B = {(Li, Ti)}i∈I , where I = {1, 2, . . . , n}, be a B-structure on a finite proposi-
tional language L. Let φ be a formula of L and let Lφ be the smallest sub-language of L with which
φ can be expressed. Let Γφ =

⋃{Γi | Li ∩ Lφ 6= ∅}. We define vB : ΦL −→ T such that if Γφ is
consistent, then

i) if Γφ ` φ, then vB(φ) = true,

ii) if Γφ ` ¬φ, then vB(φ) = false, and

iii) vB(φ) = ⊥ otherwise

and if Γφ is inconsistent, then vB(φ) = >.

Several possibilities for belief revision over a B-structure are given in [11]. Each method, however,
retains the spirit of AGM-style belief revision, and the proposed belief revision operations are thus
still modelled as functions. In particular, with what is referred to as “Option B Revision” in [11],
theories that are affected by new information are merged. Thus, if φ is an item of new information
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and Lφ is the smallest language of φ, we again let Γφ =
⋃{Γi | Li∩Lφ 6= ∅}, so that Tφ = Cn(Γφ). We

then replace all languages Li for which Li∩Lφ 6= ∅with the combined language
⋃{Li | Li∩Lφ 6= ∅},

and we replace the corresponding Ti with Tφ ∗ φ, the revision of Tφ with φ. In the authors’ opinion,
although this approach is reasonable in most situations, it has the disadvantage of bringing about
a progressive “lumping together” of the different languages, belief bases and theories (see p18 in
[11]).

Consider now an agent with beliefs {p, q, p ∧ q}, where p and q are propositional atoms. If the agent
is then told that ¬p ∨ ¬q is the case, one could reasonably expect that p ∧ q is discarded. However,
should the agent reject p or q? There are then two possible outcomes, depending on whether the agent
discards p or q. The functional approach to belief revision does not permit such non-determinism,
and in the next section, we describe a more recent approach that allows for more than one outcome
by using relations to model belief revision.

1.2.3 The Relational Approach

In [36], the authors provide an AGM-style axiomatisation for relational belief revision and develop
a belief revision relation using what are called epistemic entrenchments. Informally, an epistemic
entrenchment captures how strongly an agent might believe a particular statement or, equivalently,
how willing the agent might be to retract the statement when given new information. The exposition
in [36] is fairly detailed, and we present here only the highlights of the work.

First, let us fix a sentential language L with atomic sentences, typically denoted by letters such as
p and q, the logical constant ⊥ (falsum), the binary logical connectives ∧ and ∨, the unary logical
connective ¬, possibly some non-classical n-ary logical connectives, and parentheses. The logical
connectives→ and↔ can be defined in terms of ¬, ∨ and∧ as with a classical propositional language,
and the well-formed formulae of the language are given by

φ ::= ⊥ | p | ¬φ | φ ∧ ψ | φ ∨ ψ

If cn is an n-ary logical connective and φ1, . . . , φn are well-formed formulae then cn(φ1, . . . , φn) is
also a well-formed formula. The set Φ is the smallest set to contain all well-formed formulae.

A logic L of L is a subset of Φ that is closed under modus ponens and contains all tautologies of the
language. For any set Γ of sentences and any logic L, we define a consequence operator CL

n such
that CL

n (Γ) is the smallest set of sentences that is closed under modus ponens and contains Γ ∪ L. If
φ ∈ CL

n (Γ), we call φ an L-consequence of Γ and write Γ `L φ. The logic L is consistent if L 6= Φ,
and Γ is L-consistent if CL

n (Γ) 6= Φ. A set G of sentences is an L-theory if G = CL
n (G). The set G

of sentences is L-maximal if G is L-consistent and for any set H of sentences, if G ⊆ H and H is L-
consistent, then G = H . We use the letters such as G and H to denote an L-theory and TL to denote
the set of all such L-theories.

Next, we fix a consistent logic L of the languageL, and take the L-theory G to be the set of beliefs held
by an agent. From Definition 3.1 in [36], an epistemic entrenchment for G is then a binary relation
≤e⊆ Φ× Φ such that for φ, ψ, γ ∈ Φ,

E1: If φ ≤e ψ and ψ ≤e γ then φ ≤e γ

E2: If φ `L ψ then φ ≤e ψ

E3: If φ ≤e ψ and φ ≤e γ then φ ≤e ψ ∧ γ

E4: If ⊥ 6∈ G then φ 6∈ G if and only if φ ≤e ⊥



1.2. DIFFERENT APPROACHES TO BELIEF REVISION 9

E5: If > ≤e φ then `L φ, where > = ¬⊥

Certainly, φ ≤e φ, and together with Axiom E1, ≤e is then a quasi-order. The agent does not have
an opinion on sentences outside of G, i.e. it neither believes nor disbelieves them. Under Axiom E4,
such sentences are less entrenched than anything that the agent does believe, and in this way, ≤e

may be extended to all the well-formed formulae of Φ. Correspondingly, by Axiom E5 any theorem
of the language is more entrenched than anything that the agent does believe.

Remark 1.13. Axioms E1–E5 are adapted from the original epistemic entrenchment postulates pre-
sented in [20]. Let L be a language that is closed under application of the logical connectives ∧, ∨, ¬
and →, and let T be a consistent theory in L. By [20], an epistemic entrenchment ≤e relative to T is
then a binary relation on the well-formed formulae of L such that

EE1: For all φ, ψ, γ ∈ L, if φ ≤e ψ and ψ ≤e γ then φ ≤e γ

EE2: For all φ, ψ ∈ L, if φ `L ψ then φ ≤e ψ

EE3: For all φ, ψ ∈ L, φ ≤e φ ∧ ψ or ψ ≤e φ ∧ ψ

EE4: If T 6= L then φ 6∈ T if and only if φ ≤e ψ for all ψ ∈ L

EE5: If φ ≤e ψ for all φ ∈ L, then `L ψ

An important difference between the two sets of axioms is that, from EE3, an L-consistent theory T is
totally ordered by ≤e, whereas with the E axioms it is not. Axiom E2 (EE2) has also been questioned
in [14]. There, the idea is that a conditional statement such as φ `L ψ (or equivalently `L φ → ψ)
represents a “regularity” such as an “empirical law” that governs the functioning of an environment.
The study reported on in [14] found that participants were more likely to disbelieve the conditional
when faced with contradictory information than they were to give up belief in the antecedent or
consequent. Lindström et al. (in [36]) and also Gärdenfors and Makinson (in [20]) seem to prefer that
an agent should give up φ and ψ rather than `L φ → ψ.

The authors of [36] then use ≤e to define subsets of Φ called fallbacks, which effectively are formed
as filters relative to ≤e (compare p44 in [13]). Fallbacks contained in G are seen as “sub-theories”
of G, obtained by retracting certain formulae from G and only retaining those that are at least as
entrenched as certain formulae in the fallback.

Given a formula φ, a fallback H ⊆ G is called φ-permitting if ¬φ 6∈ H . It is a maximal φ-permitting
fallback for G if for any fallback K ⊆ G with H ⊂ K, ¬φ ∈ K. Relational revision is then defined in
terms of the fallbacks of G. Informally, when the agent is given the new information φ, it chooses a
maximal φ-permitting fallback of G and simply adds φ to it. The set of revised beliefs then contains
the logical consequences of this new set. A set H of formulae is then a possible revision of G with
φ if either ¬φ ∈ L and H = Φ or there exists a maximal φ-permitting fallback K of G such that
H = CL

n (K ∪ {φ}). The existence of such a fallback is established by appeal to Zorn’s Lemma
(compare the proof of Proposition 3.47).

Note that [36] does not indicate how the new information is incorporated into the epistemic entrench-
ment ≤e. Furthermore, because we may have φ, ψ ∈ G such that neither φ ≤e ψ nor ψ ≤e φ, the
revision H is not expected to be unique so the operation that takes G to H given φ is now relational
rather than functional. A belief revision relation Rφ that revises some theory G with the information
φ is then taken to obey the axioms listed below (compare Definition 4.2 in [36]), for which G and H
are any two L-theories and φ and ψ are formulae in Φ:
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R1: There exists H ∈ TL such that H ∈ Rφ(G)

R2: If H ∈ Rφ(G), then φ ∈ H

R3: If ¬φ 6∈ G and H ∈ Rφ(G), then H = CL
n (G ∪ {φ})

R4: If ¬φ 6∈ L and H ∈ Rφ(G), then ⊥ 6∈ H

R5: If `L φ ↔ ψ, then H ∈ Rφ(G) if and only if H ∈ Rψ(G)

R6: If H ∈ Rφ(G) and ¬ψ 6∈ H , then CL
n (H ∪ {ψ}) ∈ Rφ∧ψ(G)

R7: If H ∈ Rφ(G) and for all K ∈ TL we have that if K ∈ Rφ∨ψ(G) then ¬φ 6∈ K, then there
exists K ∈ TL such that K ∈ Rφ∨ψ(G) and H is given by CL

n (K ∪ {φ})

We shall call these axioms the LR postulates. Observe that if Rφ determines a function, the LR pos-
tulates revert to the AGM postulates as listed in Section 1.2.1.

The authors of [36] then show that belief revision relations can be derived from an epistemic en-
trenchment ≤e on the set G of beliefs held by the agent. The pair (L, {Rφ}φ∈Φ) is called a belief
revision system, and is taken to be representable if, given any L-theory G, an epistemic entrench-
ment ≤e on G can be recovered from it. The authors also demonstrate that not every belief revision
system is representable because the axioms listed above are not strong enough to exclude belief revi-
sion relations for which the changes are not minimal (compare pp17–19 in [36]).

In this section, we presented three approaches to the problem of belief revision. We would now like
to take some of these ideas forward, and in the next section we present an overview of what it is that
we intend to do in this dissertation.

1.3 The Aims of Our Work

We would like to model belief revision as a relational operation that is local in scope, acting on some
rather than all of the beliefs of an agent. Although the B-structures approach described in Section
1.2.2 is local in scope, belief revision over a B-structure is nonetheless modelled as a function. We
therefore propose to adopt the B-structures approach of [11] and extend it to the more general case
presented in [36], where the belief revision operation is modelled as a relation.

To combine these two approaches, we require a framework in which to model belief revision as a
local, non-deterministic operation, and our goal in this dissertation is to develop such a framework.
As we saw from Section 1.2.2, subjects play an important role in the formulation of a B-structure, so
it is here that we begin our development.

1. We take a subject S to be the smallest set to contain all of the well-formed formulae that arise from
the application of a finite set of connectives to a countable set L of propositional atoms.

For ease of exposition, the model of [11] was developed over a finite set of propositional atoms. The
authors point out, however, that most of the results in [11] also hold for the countable case. We
can extend their model by deriving S from countably many propositional atoms instead, since L
then contains placeholders for facts about S that are known about as well as those that must still be
discovered. An agent can then learn new facts about S by itself or from other agents. We can thus
also extend the model of [11] by including, for any p ∈ L, the possibility that an agent does not know
about p, so it can neither believe nor disbelieve p.
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In [36], a belief revision relation was derived from a quasi-order called an epistemic entrenchment.
A quasi-order on a set can be regarded as a property. Points that are “higher up” in the order then
exhibit the property more strongly than those that are “lower down” (compare the positive and
negative properties of Chapter 5 in [8]). By replacing an epistemic entrenchment with an unspecified
quasi-order, restricted by additional conditions if necessary, we can extend the model of [36] to obtain
a more general version of relational belief revision where formulae are ordered by how strongly they
exhibit a given property. This leads us to the next step in our development.

2. We use an external component to induce a quasi-order ≤S⊆ S × S on the members of S.

This approach is more flexible than if we defined the order directly on S, because the order is then
not intrinsic to S as in [36] but sits outside of it and provides a “view” or opinion of it. The structure
of the external component induces the order, and we can define this structure down to arbitrary
detail, independently of S. By using more than one external component, different orders can then be
induced on S, and the structure of each component can vary independently from that of the others.
Thus, we can again extend the model of [36] and compare formulae by how strongly they exhibit
several different properties rather than just one.

A given B-structure bears a semblance of uniformity because its sub-languages all stem from the
same parent language. For example, in each subject reasoning is conducted with the same logic, so
each subject enjoys the same expressive and deductive capability as other subjects. It may not be
appropriate for all the subjects to employ the same logic, since a particular subject might be better
modelled by a different logic than the other subjects. We address this concern by developing a logic
for each subject of the B-structure. In the process we are again able to extend [11]. The next step in
our development is thus to derive a logic on S.

3. We use an external component to develop a logic on S, and we use the logic to develop a family of
belief revision relations.

To develop the logic on S, we appeal to the idea of “preservation of degrees of truth”, as described in
[16]. By using the same external component as for step 2, we are able to construct a logic for which
the notion of logical consequence has a pleasing interaction with the order ≤S .

In a restricted sense, the B-structures model of belief revision may be considered as a top-down
approach, where we seek to solve the problem of belief revision on a set T of beliefs by dividing T
into smaller sets and performing revision within each set as needed. In our case, we do the reverse
by taking a family of subjects, each independently developed with its own order and family of belief
revision relations, and combining them into a single, unified structure. To effect the combination, we
appeal to the theory of manifolds, which leads us to the next step.

4. We use a structure called a manifold to combine the subjects into a single, unified structure.

Manifold theory seeks to formalise how complex topological spaces can be constructed from simpler
ones with well-known and accessible structure. The resulting space then “locally” resembles the
simpler spaces. For manifolds, the simpler spaces are usually Rn, which has the advantage that one
can confer properties such as smoothness on a manifold.

In our case, we deal with entities such as propositions so the local structure is more likely to resemble
an ordered set or a logic, and notions like smoothness may no longer be appropriate. If we are to
apply manifold theory to combine the given subjects, we will need to drop the requirement that
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a manifold should resemble Rn locally. To this end, we appeal to the very general definition of a
manifold in terms of sheaf theory provided in [52].

Chapter Outline:

Chapter 2: A Framework for Belief Revision. In this chapter, we develop the framework needed
for our model of relational belief revision. We provide a model of a subject (step 1) and the ex-
ternal structure and technique by which a quasi-order is induced on it (step 2). We are then able
to define the manifold that we shall use to combine a family of subjects into a single structure
(step 4). The model is developed generally, without reference to any particular context, and the
specialisations required for relational belief revision are provided in Chapters 3 and 4.

Chapter 3: Disposition and Logic. In Section 1.1, we described how belief can be characterised as
a propositional attitude, which is a disposition towards a particular proposition or a state of
affairs in which that proposition is true. Intuitively, these dispositions can be held to differing
degrees, and we exploit this feature to specialise the external structures of step 2. We then
develop the logic referred to in step 3.

Chapter 4: Belief Revision by Disposition. With the framework of Chapter 2 and the specialisation
and logic of Chapter 3, we can now develop a family of belief revision relations in the style of
[36] (step 3). To illustrate how the framework we have provided can be applied to related areas
of research, we also provide a worked example that is based on an account of belief presented
in [44].

In closing, we quote from [29] (page XX):

“Abstract algebra cannot develop to its fullest extent without the infusion of topological ideas, and
conversely if we do not recognise the algebraic aspects of the fundamental structures of analysis
our view of them will be one-sided.”

Of this quote, algebraic topology stands as an example where answers to algebraic questions are
sought from a topological vantage point, while answers to topological questions are explored through
algebraic images of topological spaces. It is common in mathematics to use results from one field to
answer questions in another. This, together with the idea from the theory of emergence (see for ex-
ample [27]) that complex and even unexpected behaviour can arise from the combination of simpler
behaviours, served as primary motivation for our approach to the problem.

Work along these lines, viz. the deconstruction of a given structure into simpler structures and the
reconstruction of a particular structure from a collection of structures (although without recourse to
manifold theory), has been done in [48] to model the action of concurrent, cooperating systems. In
a certain sense, the language-splitting model of [11], as it evolves under the action of some belief
revision operation, can be seen as a collection of cooperating systems, and thus we are led to ask
whether a similar investigation as in [48] could not also be carried out for belief revision. This brings
us to the central hypothesis of our work, viz. the idea that

Mathematical structures with which to study and translate between global and local behaviour can
be applied to model the process of belief revision as a local, non-deterministic operation.

The development of a framework in which to model belief revision in this way is the goal and con-
tribution of this dissertation, and provides an affirmative response in support of our hypothesis.



Chapter 2

A Framework for Belief Revision

In this chapter, we construct the framework that we will use to model belief revision as a local, non-
deterministic operator. We develop the framework generally and without reference to a particular
context, deferring the specialisations required for relational belief revision to Chapters 3 and 4.

The framework is presented as a manifold that is constructed from a family of topological spaces,
each equipped with a quasi-order. The universe of each space is the carrier set of an algebra, and the
quasi-order is induced on the space by a family of homomorphisms to a second algebra that bears a
partial order. The manifold is then constructed in such a way that it inherits a quasi-order from the
topological spaces in the given family.

The approach that we use to build the manifold relies on techniques and constructions from the field
of sheaf theory. Our presentation of these techniques is derived from [52] and many of the definitions
and results listed in this chapter may be found there, although we have adapted the notation to suit
our needs better. Several concepts in sheaf theory have their origins in category theory, and although
not many category theoretic concepts are used in this chapter, the interested reader may nonetheless
refer to works such as [37] and [38]. We proceed as follows.

Chapter Guide:

Section 2.1: Introduction to Sheaf Theory. In this section, we present the concepts from sheaf the-
ory that we will need to develop our framework. We introduce presheaves and sheaves as
structures indexed by the open sets of a topological space. We then discuss the stalks of a
presheaf, by which we can describe the behaviour of a presheaf at a point in the underlying
space.

Section 2.2: Ordered Relational Algebraic Spaces. Using the work of the preceding section, we now
construct a topological space that bears a quasi-order. The quasi-order is derived from an ex-
ternal component in the form of an algebra together with a partial order, and is conferred on
the space by means of a sheaf for which the data over each open set of the topology simulates
the algebraic and relational structure of the external component.

Section 2.3: Ordered Relational Algebraic Manifolds. The work of Section 2.2 allows us to con-
struct a manifold from a family of topological spaces, each equipped with a quasi-order. The
definition of a manifold that we provide is an adaptation of the sheaf-theoretic definition of a
manifold given in [52], and allows the manifold to inherit an order from the family of topo-
logical spaces. We conclude by setting out a construction procedure for the manifolds we have
defined.

13
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2.1 Introduction to Sheaf Theory

Here and elsewhere, if X is a set together with a topology, we write ΩX for the topology and refer
to (X, ΩX) as “the (topological) space X”. We use the notation [X −→ Y ] to denote the family of
all functions with domain X and codomain Y , and we write f : X −→ Y : x 7→ f(x) (for example,
f : R −→ R : x 7→ x2 + 3) to indicate the domain, codomain and action of a function f . Given
f ∈ [X −→ Y ], we write f|U to denote the restriction of f to U ⊆ X . Similarly, if R ⊆ X × X is a
binary relation on X , we write R|U to mean R ∩ U × U , the restriction of R to U . We follow [56] and
write f(U) rather than f [U ] to mean {f(x) | x ∈ U}.

2.1.1 Presheaves and Sheaves

Definition 2.1 is based on Definition 1.1.1 and Definition 2.2 on Definitions 2.1.1, 2.1.3 and 2.1.4 in
[52] (for which please compare 1.3(ii) on p171 in [29]).

Definition 2.1. Let X be a topological space. A presheaf F of sets on X is given by two pieces of
information, viz.

i) For each U ∈ ΩX , a set F (U) called the set of sections of F over U

ii) For U, V ∈ ΩX with V ⊆ U , a restriction map ρU
V : F (U) −→ F (V ) such that

a) The restriction map ρU
U is the identity map on F (U)

b) For U, V, W ∈ ΩX with W ⊆ V ⊆ U , ρU
W = ρV

W ◦ ρU
V

In our work, we shall use presheaves of sets on a given topological space almost exclusively , and
unless otherwise indicated, any presheaf that we use may be assumed to be a presheaf of sets on the
given space.

A presheaf is called a sheaf if its sections are compatible in the following sense.

Definition 2.2. Let X be a topological space, and for any U ∈ ΩX let {Ui}i∈I be an open cover of U
with U =

⋃
i∈I Ui. Let F be a presheaf of sets on X . We call F a monopresheaf of sets on X if and

only if F is such that for any s, s′ ∈ F (U),

∀i ∈ I.[ρU
Ui

(s) = ρU
Ui

(s′)] ⇒ s = s′

Let {si}i∈I be a family of sections over the Ui with si ∈ F (Ui) for each i ∈ I . If for any i, j ∈ I we
have

ρUi

Ui∩Uj
(si) = ρ

Uj

Ui∩Uj
(sj)

and there exists a section s in F (U) such that ρU
Ui

(s) = si for each i ∈ I , then F satisfies the
glueing condition on U . A monopresheaf of sets on X that satisfies the glueing condition on X is
called a sheaf of sets on X .

We may also consider the restriction of a presheaf F on a space X to some U ∈ ΩX . Definition 2.3
and Corollary 2.4 arise from Exercise 3 in Chapter 2 of [52].

Definition 2.3. Let F be a presheaf on a topological space X . For any U ∈ ΩX , the restriction F|U of F
to U is defined such that for any V ∈ ΩX with V ⊆ U , F|U (V ) = F (V ). Accordingly, the restriction
maps for F|U are obtained by restricting the family of restriction maps for F to those maps ρV

W for
which V, W ∈ ΩX and W ⊆ V ⊆ U .
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Corollary 2.4. If F is a presheaf (resp. sheaf) on a topological space X and U ∈ ΩX , then F|U is a presheaf
(resp. sheaf) on U , where U has the relative topology.

Proof. From Definition 2.1, if F is a presheaf on X , then for any U ∈ ΩX , F|U is a presheaf on U ,
where U has the relative topology. From Definition 2.3, if F is a sheaf on X then F|U satisfies the
monopresheaf and glueing conditions of Definition 2.2 and hence is a sheaf on U .

Given more than one presheaf on X , we can translate between them via presheaf morphisms. Defi-
nition 2.5 is based on Definition 1.5.1 in [52].

Definition 2.5. Let F and G be two presheaves on a topological space X . A presheaf morphism from
F to G is a map h : F −→ G that assigns to each U ∈ ΩX a map hU : F (U) −→ G(U) such that for
any U, V ∈ ΩX with V ⊆ U ,

hV ◦ ρU
V = %U

V ◦ hU

where ρU
V and %U

V are the restriction maps for F and G respectively. If f : F −→ G and g : G −→ H
are two presheaf morphisms, their composition g ◦ f is defined by

(g ◦ f)(U) = gU ◦ fU : F (U) −→ H(U)

A presheaf morphism h : F −→ G is an isomorphism of presheaves if and only if there is a presheaf
morphism g : G −→ F such that h ◦ g = idG and g ◦ h = idF , where, if H is a presheaf on X and
U ∈ ΩX , idH : H −→ H is given by idH(U) = idH(U), the identity map on H(U).

In Definition 2.5 we have used the notion that two sets A and B are isomorphic if there is a bijection
between them (compare p171 in [34]). We shall use this idea in the next proposition, which is based
on Proposition 1.5.2 in [52] and gives us further insight into isomorphisms of presheaves. The proof
of this result is given in [52], so we will not repeat it here.

Proposition 2.6. Let F and G be presheaves on a topological space X and let f : F −→ G be a presheaf
morphism from F to G. Then the following are equivalent:

i) f is an isomorphism of presheaves

ii) for every U ∈ ΩX , fU : F (U) −→ G(U) is bijective

iii) for every U ∈ ΩX , fU : F (U) −→ G(U) is an isomorphism

In the more general case, we translate between presheaves on two different spaces. As before, the
morphism should respect the restriction maps. One difference is the direction of the morphism – for
two presheaves on different spaces the morphism operates from the codomain to the domain of the
continuous function. The reason for this is that an open set in the domain of the function does not
necessarily map to an open set in its codomain.

We first consider the image of a presheaf under the action of a continuous function. Definition 2.7 is
adapted from the construction numbered 3.7.1 in [52].

Definition 2.7. Let X and Y be topological spaces, let F be a presheaf on X and let k : X −→ Y be a
continuous function. The direct image of F by k is the presheaf k∗F on Y obtained by setting

(k∗F )(U) = F (k←(U)) (U ∈ ΩY )
%U

V = ρ
k←(U)
k←(V ) (U, V ∈ ΩY, V ⊆ U)

where ρ and % are the restriction maps for F and k∗F respectively.
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As may be expected, if f : F −→ G is a morphism of presheaves on X , then a corresponding
morphism k∗f : k∗F −→ k∗G is induced on Y by k. Proposition 2.8 tells us that the structure on the
sets of sections of a sheaf is not affected by the formation of a direct image. It is reproduced from
Proposition 3.7.3 in [52], and is readily established. We have set the proof out in more detail than was
provided in [52].

Proposition 2.8. Let X and Y be topological spaces, and let k : X −→ Y be a continuous function. If F is a
sheaf on X , then k∗F is a sheaf on Y .

Proof. Let F be a sheaf on X . For V ∈ ΩY , let {Vi}i∈I be an open cover of V with V =
⋃

i∈I Vi. Set
U = k←(V ) and Ui = k←(Vi), so that {Ui}i∈I is an open cover of U with U =

⋃
i∈I Ui. Let s, t ∈ F (U).

Then because F is a monopresheaf,

∀i ∈ I.[ρU
Ui

(s) = ρU
Ui

(t)] ⇒ s = t

where ρ is the restriction map for F . From Definition 2.7, for any U, V ∈ ΩY with V ⊆ U we have
%U

V = ρ
k←(U)
k←(V ) where % is the restriction map for k∗F . Hence, noting that s, t ∈ k∗F (V ),

∀i ∈ I.[ρU
Ui

(s) = ρU
Ui

(t)] ⇔ ∀i ∈ I.[%V
Vi

(s) = %V
Vi

(t)]

from which we have
∀i ∈ I.[%V

Vi
(s) = %V

Vi
(t)] ⇒ s = t

so that k∗F is a monopresheaf (Definition 2.2). Satisfaction of the glueing condition of Definition 2.2
by k∗F follows similarly, and hence k∗F is a sheaf on Y .

A presheaf morphism that takes place relative to a continuous function k is given in terms of a k-
morphism. Definition 2.9 is adapted from Definition 3.7.8 in [52], which was specialised to presheaves
of abelian groups.

Definition 2.9. Let X and Y be topological spaces, let k : X −→ Y be a continuous function, and let
F and G be presheaves on X and Y respectively. A morphism f : G −→ F relative to k (or simply, a
k-morphism) is given by a collection of maps f(U, V ) : G(V ) −→ F (U) for any U ∈ ΩX and V ∈ ΩY
with U ⊆ k←(V ) and subject to the condition that for any U ′ ∈ ΩX and V ′ ∈ ΩY with U ′ ⊆ U and
V ′ ⊆ V we have

ρU
U ′ ◦ f(U, V ) = f(U ′, V ′) ◦ %V

V ′

where ρ and % denote the restriction maps for F and G respectively.

Intuitively, a k-morphism f : G −→ F is determined by f(k←(V ), V ) for any V ∈ ΩY (compare
Proposition 3.7.10 in [52]), because by setting V ′ = V in Definition 2.9, for any U ⊆ k←(V ) we get

ρ
k←(V )
U ◦ f(k←(V ), V ) = f(U, V )

From Definition 2.5, the family of maps of the form f(k←(V ), V ) : G(V ) −→ F (k←(V )) determines
a presheaf morphism f0 : G −→ k∗F , so we are justified in thinking of a k-morphism from G to
F as a presheaf morphism from G to k∗F . By Proposition 3.7.10 in [52], this presheaf morphism is
uniquely determined by the given k-morphism. As may be expected, a k-morphism f : G −→ F is
an isomorphism of presheaves if k is a homeomorphism and f0 : G −→ k∗F is an isomorphism of
presheaves (compare Proposition 4.1.7 in [52]).

Remark 2.10. Given presheaves F and G on the topological spaces X and Y respectively, a k-
morphism from G to F is sometimes expressed as a pair (k, h) in which k : X −→ Y is a continuous
function and h is a presheaf morphism from G to k∗F (compare p132 in [40]). For further informa-
tion, please also compare paragraph 1.8 on p174 in [29], Section 3.7 and Proposition 4.1.7 in [52] and
pp1425-1427 in [28].
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We may also consider the local structure of a presheaf, in the following sense. From 9K in [56] and
p24 in [34], we have the following.

Definition 2.11. Let X and Y be topological spaces. A continuous map k : X −→ Y is a local
homeomorphism if every x ∈ X has a neighbourhood U such that k(U) ∈ ΩY and k|U : U −→ k(U)
is a homeomorphism.

Definition 2.12 may be compared to Definition 4.3.6 in [52].

Definition 2.12. Let F and G be presheaves on the topological spaces X and Y respectively, and let
k : X −→ Y be a local homeomorphism. Then F and G are locally isomorphic as presheaves if every
x ∈ X has an open neighbourhood U such that

i) k(U) ∈ ΩY and k|U : U −→ k(U) is a homeomorphism

ii) There exists an isomorphism f0 : G|k(U) −→ (k|U )∗(F|U ) of presheaves.

A k-morphism f : G −→ F is a local isomorphism of presheaves if k : X −→ Y is a local homeomor-
phism and whenever U ∈ ΩX is such that k(U) ∈ ΩY and k|U : U −→ k(U) is a homeomorphism,
(fU )∗ : G(U) −→ k∗F (U) is an isomorphism.

In this section, we introduced presheaves and sheaves as structures that are indexed by the open sets
of a topological space. To examine the data provided by the presheaf at a point in the space, we need
some means of describing the behaviour of the presheaf at that point. To this end, in the next section
we introduce the notion of the stalk of a presheaf.

2.1.2 The Stalks of a Presheaf

Informally, given a presheaf F on a topological space X , the behaviour of F at a point x ∈ X can be
isolated by examining sufficiently small neighbourhoods of x. The idea is that if the neighbourhood
of x is small enough, the behaviour of F on the neighbourhood should be the same as its behaviour
at the point. This leads us to the idea that we should determine some form of “limit” of F as the
neighbourhoods around x become smaller and smaller.

To set this limit up, we begin with the notion of a directed set (compare Section 1.3 in [52]). Given an
ordered set (P,≤), we denote the sets of lower and upper bounds in P of Q respectively by Ql and
Qu, for any Q ⊆ P . From [13] we have the following (Definition 7.7; compare Definition 11.1 in [56]).

Definition 2.13. Let Q be a non-empty subset of an ordered set P . Then Q is said to be directed if,
for every x, y ∈ Q there is z ∈ Q with z ∈ {x, y}u. Equivalently, Q is directed if and only if for every
finite subset F of Q there is z ∈ Q such that z ∈ Fu.

From Definition 1.3.1 in [52], we define a directed system of sets as follows.

Definition 2.14. A direct system of sets is a pair U = (U ,F) where U = {Ui}i∈I is a family of sets
indexed by a directed set (I,≤) and F is a set of maps of the form fij : Ui −→ Uj , with fij ∈ F if and
only if i ≤ j in I . The maps fij in F satisfy the conditions

i) for any i ∈ I , fii = idUi , the identity function on Ui

ii) for any i, j, k ∈ I with i ≤ j ≤ k, fik = fjk ◦ fij
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Definition 2.15 is based on Definition 1.3.4 in [52].

Definition 2.15. Let U = (U ,F) be a direct system of sets, with U = {Ui}i∈I . A target for U is
a pair (V, {gi : Ui −→ V }i∈I) where V is a set and for any i, j ∈ I with i ≤ j, gi = gj ◦ fij . A
direct limit for U is a target (X, {hi : Ui −→ X}i∈I) for U satisfying the universal property that for
any target (V, {gi : Ui −→ V }i∈I) for U there is a unique map fXV : X −→ V such that for any i ∈ I ,
gi = fXV ◦ hi.

A direct limit may be characterised as follows (Theorem 1.3.8 in [52]).

Proposition 2.16. Let U = (U ,F) be a direct system of sets, with U = {Ui}i∈I and F = {fij : Ui −→ Uj}
where fij ∈ F if and only if i ≤ j in I . Let V = (V, {gi : Ui −→ V }i∈I) be a target for U such that

i) for any v ∈ V there is i ∈ I such that v ∈ gi(Ui)

ii) if i, j ∈ I and ui ∈ Ui and uj ∈ Uj , then

gi(ui) = gj(uj) if and only if ∃k ∈ I.[i, j ≤ k and fik(ui) = fjk(uj)]

Then V is a direct limit for U.

It can be shown that any two direct limits of a direct system are isomorphic, and this is done in
Proposition 1.3.6 in [52]. We can therefore speak of the direct limit of a direct system, and we denote
this limit by lim−−→

i∈I
Ui. It can also be shown that every direct system of sets has a direct limit (compare

Theorem 1.3.10 in [52]).

Given a presheaf F on a set X , fix x ∈ X and let Ux = {U ∈ ΩX | x ∈ U}. The pair

U = ({F (U)}U∈Ux , {ρU
V : F (U) −→ F (V ) | U, V ∈ Ux and V ⊆ U})

is then a direct system of sets, since for each U ∈ Ux, ρU
U = idU and for U, V, W ∈ Ux with W ⊆ V ⊆ U ,

ρU
W = ρV

W ◦ ρU
V . From this observation, we may make the following definition, based on Definition

1.4.1 [52] and paragraph 1.5 on p172 in [29].

Definition 2.17. Let X be a topological space, and let F be a presheaf on X . The stalk of F at a point
x ∈ X is the direct limit

Fx = lim−−→
U3x

F (U)

of the sets F (U) as U ranges over the open neighbourhoods of x. If s ∈ F (U) for some neighbourhood
U of x, we write sx for the image of s in Fx and call it the germ of s at x. For any U ∈ ΩX and
s ∈ F (U), we write [s] to mean the set {sx | x ∈ U}.

Propositions 2.18 and 2.19 correspond to Propositions 1.4.2 and 2.3.1 in [52]. The proofs are supplied
in [52], so we will not reproduce them here.

Proposition 2.18. Let F be a presheaf on a topological space X . Then,

i) Each germ t ∈ Fx arises as t = sx for some s ∈ F (U), where U is an open neighbourhood of x

ii) For two germs sx, tx ∈ Fx, (with s ∈ F (U) and t ∈ F (V ) say),

sx = tx ⇔ ∃W ∈ ΩX | W ⊆ U ∩ V.[ρU
W (s) = ρV

W (t)]

Proposition 2.19. Let F be a sheaf on a topological space X . Then for any U ∈ ΩX and s, t ∈ F (U),

s = t ⇔ ∀x ∈ U.[sx = tx]
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2.2 Ordered Relational Algebraic Spaces

In this section, we develop a topological space that is equipped with a quasi-order. Sets that carry
an algebraic and relational structure play a central role in the derivation of this order, and it is with
these that we begin our development.

2.2.1 Relational Algebraic Structures

We shall use the following notion of an algebra. Definitions 2.20 and 2.21 are based on Definitions
1.2, 1.3, 2.1 and 6.1 in Chapter II of [10].

Definition 2.20. A language or type of algebras is a non-empty set F of function symbols. Each
member f of F is assigned a non-negative integer n called the arity or rank of f , and f is called
an n-ary function symbol . The set of all n-ary function symbols in F is denoted by Fn. A function
symbol with arity 0 is called a nullary function symbol .

Definition 2.21. Let F be a language of algebras.

1. An algebra of type F is a pair A = (A,F ) where A is a non-empty set and F is a family of
operations on A indexed by the language F such that for each n-ary function symbol f in F
there is an n-ary operation fA : An −→ A on A. The set A is called the universe, domain or
carrier set of A, and each operation fA in F is called a fundamental operation of A.

2. If A and B are two algebras of type F , a function g : A −→ B is a homomorphism from A to B
if for each n-ary function symbol f ∈ F and x1, x2, . . . , xn ∈ A we have

g(fA(x1, x2, . . . , xn)) = fB(g(x1), g(x2), . . . , g(xn))

If g is surjective, then B is called a homomorphic image of A, and g is called an epimorphism.
If g is bijective (injective), then g is an isomorphism (embedding) from A to B.

A nullary function symbol gives rise to a nullary operation. If fA : An −→ A is a nullary operation
(n = 0) it is customary to define A0 = {∅}, in which case the operation is written as fA(∅) and
is thought of as an element of A (compare Definition 1.1 in Chapter II of [10]). We shall adopt the
convention that nullary functions are preserved by homomorphisms. That is, if A and B are two
algebras of type F , f ∈ F is a nullary operation and g : A −→ B is a homomorphism from A to B,
then g(fA(∅)) = fB(∅).
To simplify our notation, we shall write f for fA when doing so causes no confusion. Some texts
prefer to write F as a list of arities so that, for example, F = {2, 2, 1} signifies an algebra with three
function symbols of arity 2, 2 and 1 (see Example 3.3(iii) on p68 in [12] for an example of where this
notation is used). We will sometimes use notation such as F = {+, ∗,−} = {2, 2, 1} to indicate that
+ and ∗ are binary function symbols, while − is a unary function symbol.

We shall use the following notion of a relational structure. The definitions of isomorphism and
homomorphism given here are adaptations of Definitions 2.1 and 6.1 of Chapter II in [10] to the
relational case.

Definition 2.22. Let A be a non-empty set.

1. A relational structure is a pair A = (A,RA) where RA is a binary relation over A.
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2. If A = (A,RA) and B = (B, RB) are relational structures, a function g : A −→ B is a homo-
morphism from A to B if for any a, b ∈ A,

aRAb ⇒ g(a)RBg(b)

If g is surjective, then B is called a homomorphic image of A, and g is called an epimorphism. If
g is bijective (injective), then g is an isomorphism (embedding) from A to B if for any a, b ∈ A,

aRAb ⇔ g(a)RBg(b)

We shall also be interested in sets that carry both an algebraic and relational structure.

Definition 2.23. Let F be a language of algebras.

1. A relational algebraic structure of type F is a triple A = (A, F, RA), where (A,F ) is an algebra
of type F and (A,RA) is a relational structure.

2. If A = (A,F, RA) and B = (B, G, RB) are relational algebraic structures of type F , then a func-
tion g : A −→ B is a homomorphism (epimorphism, isomorphism, embedding) from A to B if
it is a homomorphism (epimorphism, isomorphism, embedding) from (A,F ) to (B,G) and from
(A,RA) to (B,RB).

To simplify our exposition, we shall abbreviate the term “relational algebraic structure of type F” to
“r-algebra (of type F)”, taking the language to be F if this causes no confusion. Thus, where more
than one r-algebra is listed, they may all be assumed to be of the same type F if their types are not
explicitly mentioned.

Following Definition 1.1.1 in [52], a topological space can be equipped with an r-algebraic structure
by means of a sheaf for which

i) for each open set, the corresponding set of sections has an r-algebraic structure, and

ii) the restriction maps are homomorphisms of r-algebraic structures

To equip the given space with the structure of a particular r-algebra, we specialise this idea by ap-
pealing to the notion of an r-algebra simulation. Definition 2.24 may be compared to Definition 4.1.1
in [52].

Definition 2.24. Let A be an r-algebra.

1. An A-simulation is a pair (B, f) where B is an r-algebra and f : A −→ B is a homomorphism
from A to B called the structure map.

2. If (B, f) and (C, g) are A-simulations, a function h : B −→ C is a morphism of A-simulations
from B to C if h is a homomorphism from B to C such that g = h ◦ f .

To illustrate, let A = (A,≤A) be a partially ordered set that is also a lattice. We may then write A
as the r-algebra (A,∧A,∨A,≤A), of type {∧,∨}. Let U be a non-empty set, and consider the family
F = [U −→ A] of functions from U to A. Setting F = (F,∧F,∨F,≤F ), we define ∧F,∨F and ≤F for
F in terms of ∧A,∨A and ≤A such that for any r, s, t ∈ F ,

t = r ∧F s if and only if ∀x ∈ U.[t(x) = r(x) ∧A s(x)]
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t = r ∨F s if and only if ∀x ∈ U.[t(x) = r(x) ∨A s(x)]
r ≤F s if and only if ∀x ∈ U.[r(x) ≤A s(x)]

Then F = (F,∧F,∨F,≤F ) is an r-algebra of type {∧,∨}, inheriting this property via the pointwise
application of ∧A,∨A and ≤A. The map f : A −→ F : a 7→ h, where h(x) = a for all x ∈ U , is a
homomorphism from A into F, and (F, f) is then an A-simulation. We shall develop this example
further in Section 2.2.2 (see Proposition 2.29).

Intuitively, if A and B are r-algebras and (C, f) is an A-simulation, then if there is a homomorphism
h : A −→ B from A to B, (C, f) can be expressed as a B-simulation (C, g). All we require is
an epimorphism h0 : B −→ h(A) from B to B|h(A) such that h0|h(A) = idh(A), together with a
homomorphism g0 : h(A) −→ C from B|h(A) to C such that f = g0 ◦ h. From Theorem 6.5 in [10], the
composition of two homomorphisms is again a homomorphism, so the function g : B −→ C with
g = g0 ◦ h0 is a homomorphism from B to C and (C, g) is then a B-simulation. We will exploit this
idea in Section 2.3.2.

From Definitions 1.1.1, 2.1.4 and 1.5.1 in [52], we then have the following.

Definition 2.25. Let A be an r-algebra and X a topological space.

1. A presheaf of A-simulations over X is a presheaf F of sets on X such that

i) For each U ∈ ΩX , F (U) is an A-simulation

ii) For each U, V ∈ ΩX with V ⊆ U , the restriction map ρU
V : F (U) −→ F (V ) is a morphism

of A-simulations from F (U) to F (V )

A sheaf of A-simulations on X is a presheaf of A-simulations over X that satisfies the mono-
presheaf and glueing conditions of Definition 2.2.

2. If F and G are two presheaves of A-simulations over X then a morphism of presheaves of
A-simulations from F to G is a presheaf morphism f : F −→ G such that for each U ∈ ΩX ,
fU : F (U) −→ G(U) is a morphism of A-simulations from F (U) to G(U).

Intuitively, if F is a presheaf (sheaf) of A-simulations over X , then for any U ∈ ΩX , F|U is a presheaf
(sheaf) of A-simulations over U , where U has the relative topology.

Given an r-algebra A, a direct system of A-simulations is a direct system

U = ({Ui}i∈I , {fij : Ui −→ Uj}i,j∈I)

in which each Ui is an A-simulation and all of the fij are morphisms of A-simulations (compare
Definition 2.14, and also Definition 1.3.11 in [52]). A target for U is a pair (V, {gi : Ui −→ V }i∈I)
such that V is an A-simulation and each gi is a morphism of A-simulations. The notion of a direct
limit for a direct system of A-simulations may be phrased similarly (compare Definition 2.15, and
also Definition 1.3.14 and Remark 1.3.15 in [52]).

As before, two direct limits for a direct system of A-simulations are naturally isomorphic (compare
Proposition 1.3.16 in [52]), and may be characterised similarly to Proposition 2.16 (compare Theorem
1.3.18 in [52]). Furthermore, it can be shown that any direct system of A-simulations has a direct
limit (compare the construction 1.3.19 and Theorem 1.3.20 in [52]), from which we deduce that the
stalk of a presheaf of A-simulations at a given point is also an A-simulation. This then establishes
the following result.

Proposition 2.26. Let A be an r-algebra, let X be a topological space and let F be a presheaf of A-simulations
over X . For any x ∈ X , the stalk Fx of F at x is an A-simulation.
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For Definition 2.27, we have adapted Definitions 4.1.2 and 4.1.6 and Proposition 4.1.7 in [52] from
rings to the case of A-simulations. In Definition 2.27(2), we have used the idea that a k-morphism
g : G −→ F relative to a continuous function k : X −→ Y , where F and G are presheaves on
the topological spaces X and Y respectively, may be thought of as a morphism g0 : G −→ k∗F of
presheaves on Y (compare the discussion following Definition 2.9).

Definition 2.27. Let A be an r-algebra of type F .

1. A relational algebraic space of type F over A is a pair (X,H) where X is a topological space
and H is a sheaf of A-simulations over X . The sheaf H is called the structure sheaf of (X, H).

2. A morphism f : (X,G) −→ (Y, H) of relational algebraic spaces of type F over A is given by
a continuous function k : X −→ Y together with a k-morphism g : H −→ G of sheaves of
A-simulations, or (equivalently) a morphism g0 : H −→ k∗G of sheaves of A-simulations on Y .
The morphism f is an isomorphism of relational algebraic spaces of type F over A, and (X,G)
and (Y,H) are isomorphic as relational algebraic spaces of type F over A if k is a homeomor-
phism and g (equivalently g0) is an isomorphism of sheaves of A-simulations.

As before, we shall abbreviate “relational algebraic space of type F” to “r-algebraic space (of type
F)”, omitting the type F of the underlying r-algebra A if this causes no confusion. If more than one
r-algebraic space is listed without mention of their respective types, all of the spaces may be assumed
to be of typeF . By abuse of terminology, we shall usually write “X is an r-algebraic space (over A)”.

In the next section, we show how, by appeal to sheaf theory, we can construct an order and a topology
on a set from an r-algebra.

2.2.2 Ordered Spaces over a Relational Algebraic Structure

In this section, we introduce the idea of an ordered r-algebra of typeF , which is an r-algebra in which
the relation on the carrier set is a quasi-order. This order is then used to induce a quasi-order on a
given topological space via the A-simulations of Definition 2.24. We then extend the derivation of
the order to the case where we have a set with only an algebraic structure, and we are then able to
derive both an order and a topology on the set.

The topological structure is derived so as to have a well-defined interaction with the order. This
interaction is necessary for the work we shall need to complete in Section 2.3. In turn, the order is
needed for us to equip the given set with a logic, which we shall do in Section 3.2.

We begin with the idea of an ordered r-algebra.

Definition 2.28. Let F be a language of algebras.

1. An ordered r-algebra of type F is an r-algebra (A,F,≤A) of type F , where ≤A is a quasi-order
on A. A bounded r-algebra of type F is a structure (A,F,0A,1A,≤A) where (A,F,≤A) is an
ordered r-algebra of type F and 0A,1A ∈ A are two constants such that 0A ≤A x ≤ 1A for any
x ∈ A. The element 1A is called top, and 0A is called bottom.

2. If A = (A,F,0A,1A,≤A) and B = (B,F,0B ,1B ,≤B) are bounded r-algebras of type F , a func-
tion f : A −→ B is a homomorphism (epimorphism, isomorphism, embedding) from A to B if
it is a homomorphism (epimorphism, isomorphism, embedding) from (A,F,≤A) to (B,F,≤B)
such that f(0A) = 0B and f(1A) = 1B .
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Definitions 2.24, 2.25 and Proposition 2.26 may be extended to the case of a bounded r-algebra. All
that is required is that the applicable morphisms should additionally preserve the top and bottom
elements. In view of Definition 2.20, we shall treat the constants 0A and 1A in a bounded r-algebra
A = (A,F,0A,1A,≤A) as the constants 0A and 1A that arise from nullary function symbols 0,1 ∈ F .
By the convention established after Definition 2.21, preservation of the top and bottom elements of a
bounded r-algebra by the morphisms of Definitions 2.24 and 2.25 is then standard.

Let us now presuppose a bounded r-algebra A = (A,F,0A,1A,≤A) of typeF in which≤A is a partial
order.

Proposition 2.29. Let U be a non-empty set, and let U = ([U −→ A], F,≤U ) be an r-algebra of type F such
that

i) For any nullary function symbol f ∈ F , if fA = af then fU = vf , where for all x ∈ U , vf (x) = af .

ii) For any n-ary function symbol f ∈ F , for n ≥ 1,

v = fU(v1, v2 . . . , vn) ⇔ ∀x ∈ U.[v(x) = fA(v1(x), v2(x) . . . , vn(x))]

where v1, v2 . . . , vn ∈ [U −→ A].

iii) For all u, v ∈ [U −→ A],
u ≤U v ⇔ ∀x ∈ U.[u(x) ≤A v(x)]

and let f : A −→ U : a 7→ v, where v(x) = a for all x ∈ U . Then ([U −→ A], F, v0, v1,≤U ) is a bounded
r-algebra of type F , and (U, f) is an A-simulation.

Proof. From Definition 2.28, U is an ordered r-algebra of type F . For ≤U as defined, it follows that
v0 ≤U u ≤U v1 for any u ∈ [U −→ A]. Hence U is bounded and so ([U −→ A], F, v0, v1,≤U ) is a
bounded r-algebra of type F . Finally, the given function f defines a homomorphism of r-algebras
from A to U, so that (U, f) is an A-simulation.

Now let (X, H) be an r-algebraic space over A such that for each U ∈ ΩX , H(U) = [U −→ A]. Take
any x ∈ X and U ∈ ΩX with x ∈ U . Then H(U) provides a set of functions that can be used to assign
a member of A to x. In this sense, we can think of w ∈ H(U) as interpreting x in A, and of U as
providing the context in which x is given this interpretation. If in addition we think of the members
of H(U) as states of affairs, then w represents a state of affairs where, given the context U , x is given
a particular interpretation in A. In this sense, w indicates what x might mean in terms of A, given the
context U .

In view of the work we shall need to complete in Chapter 3, given a state v of affairs, we shall be
interested in those states of affairs that preserve the interpretation given to x by v in the context
U . Informally, by this we mean that for w ∈ H(U), w(x) should be “close by” v(x) (compare the
discussion following Definition 3.21). To provide a formal notion of what it means to be “close by”
within A, let us presuppose a set-to-set function CA : P(A) −→ P(A) on A. Typically, CA will be a
closure operator on A. We shall then be interested in those w ∈ H(U) such that w(x) ∈ CA({v(x)}).
Definition 2.30 may be compared to Definition 2.4 in [12] and also the identity (5) in [16].

Definition 2.30. For x ∈ X and S ⊆ X , let U ∈ ΩX be such that x ∈ U and S ⊆ U , and let
v, w ∈ H(U). We say that, given the context U ,
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i) w satisfies x relative to v if and only if w(x) ∈ CA({v(x)}), and we write w |=v x and call w a
model of x relative to v. If x has a model relative to v, then x is satisfiable relative to v otherwise
it is a contradiction relative to v. If every w in H(U) satisfies x relative to v then x is called a
tautology relative to v.

ii) w satisfies S relative to v if and only if w(S) ⊆ CA({v(S)}), and we write w |=v S and call w a
model of S relative to v. We say that S is consistent relative to v if it has a model relative to v,
otherwise it is inconsistent relative to v.

We refer to v as the reference interpretation.

As a notational convenience, we suppress the letter v in the subscripting and assume that satisfaction
is determined relative to a given reference interpretation v. The context U ∈ ΩX will be allowed to
range over the open sets of X , however.

For U ∈ ΩX and x ∈ U , let us define

Wx,U = {w ∈ H(U) | w |=v x}

We shall think of Wx,U as the meaning of x (relative to v) given the context U . By extension, for S ⊆ U
we define

WS,U = {w ∈ H(U) | w |=v S}
and we take WS,U to be the meaning of S (relative to v) given the context U .

We can order the members of X by comparing the values assigned to them by their meanings, inde-
pendently of any context.

Definition 2.31. For x, y ∈ X and S, T ⊆ X , we define ≤0⊆ X ×X to be such that

x ≤0 y if and only if ∀U ∈ ΩX | x, y ∈ U.∀u ∈ Wx,U ∪Wy,U .[u(y) ∈ CA({u(x)})]

We define the order of A-entrenchment ≤e⊆ X ×X to be the transitive closure of ≤0. That is,

x ≤e y if and only if ∃x1, x2, . . . , xn ∈ X.[x ≤0 x1 ≤0 x2 ≤0 . . . ≤0 xn ≤0 y]

Correspondingly, we define ≤↑0⊆ P(X)× P(X) such that

S ≤↑0 T if and only if ∀U ∈ ΩX | S, T ⊆ U.∀u ∈ WS,U ∪WT,U .[u(T ) ⊆ CA(u(S))]

and we define ≤↑e as the transitive closure of ≤↑0 so that

S ≤↑e T if and only if ∃X1, X2, . . . , Xn ∈ P(X).[S ≤↑0 X1 ≤↑0 X2 ≤↑0 . . . ≤↑0 Xn ≤↑0 T ]

As before, if A is understood, we shall refer to the order of A-entrenchment as just the order of
entrenchment.

From Definition 2.31, ≤e is a quasi-order. In general, anti-symmetry is not present. We can recover a
partial order from ≤e by defining an equivalence relation ≈ on X such that x ≈ y whenever x ≤e y
and y ≤e x. We shall, however, defer this aspect to Section 3.2.1 where we recover a partial order by
identifying sentences under a notion of logical equivalence.

In the worked example of Section 4.2, we shall exhibit a second order on X that is also derived from
the meanings of the members of X (see Definition 4.11). Consequently we shall denote the order on
X generically as ≤X , indicating separately the mechanism of its derivation.
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We are interested in the special case where ΩX coincides with the Alexandroff topology on X with
respect to ≤X . The family of sets of the form ↑x, for any x ∈ X , is a base for this topology, and
every open set of the topology is also an up-set with respect to ≤X (compare p101 in [3] and also
p122 in [8]). Conveniently, each open set of the topology is then also a relational structure, since for
any U ∈ ΩX , x ∈ U and y ∈ X , if x ≤X y then y ∈ U as well. The significance of this feature will be
apparent from the work we shall set out in Section 2.3.

Definition 2.32. Let (X, H) be an r-algebraic space over A, and let ≤X be the order on X derived by
Definition 2.31.

1. If every open set U ∈ ΩX is an up-set with respect to ≤X , and every up-set with respect to ≤X

is also an open set, then we call (X, H,≤X) an ordered space over A.

2. A morphism f : (X, HX ,≤X) −→ (Y,HY ,≤Y ) of ordered spaces over A is given by a continu-
ous function k : X −→ Y that is also a homomorphism from (X,≤X) to (Y,≤Y ), together with
a k-morphism g : HY −→ HX of sheaves of A-simulations. It is an isomorphism of ordered
spaces over A, and (X, HX ,≤X) and (Y,HY ,≤Y ) are isomorphic as ordered spaces over A, if k
is a homeomorphism and an isomorphism from (X,≤X) to (Y,≤Y ), and g : HY −→ HX is an
isomorphism of sheaves of A-simulations.

If A is understood, we shall abbreviate “ordered space over A” to “ordered space”. By abuse of
terminology we shall usually write “X is an ordered space (over A)”.

Now suppose that we are given a set X . For work we shall need to complete in Chapters 3 and 4,
we require that X should have an algebraic structure of type F . Starting from just the algebra (X, F )
of type F , we can use A to derive ≤X , ΩX and the structure sheaf H by applying some modest
specialisations, set out below, to the exposition of ordered spaces we have just recorded. The outcome
is then, by Definition 2.32, an ordered space. Because X is equipped with an algebraic structure,
(X, F,≤X) is in fact an ordered r-algebra, and to emphasise this property we refer to (X,H,≤X) as
an ordered r-algebraic space.

We allow X to arise from a collection of primitive objects. Definition 2.33 is based on Definition
10.1 in Chapter II of [10]. We have used the words “primitive” and “sentence” where [10] has used
“variable” and “term”.

Definition 2.33. Let F be a language of algebras and let S0 be a set of objects called primitives. A
sentence of type F over S0 is defined inductively as

• Every member of S0 ∪ F0 is a sentence of type F .

• If f ∈ F is an n-ary function symbol, where n ≥ 1, and x1, x2, . . . , xn are sentences of type F ,
then f(x1, x2, . . . , xn) is a sentence of type F .

• Nothing else is a sentence of type F except by virtue of the above.

The smallest set to contain all sentences of type F over S0 is denoted by SF (S0). For any sentence
s ∈ SF (S0), the language of s is the set Ls defined such that

• If s ∈ S0 ∪ F0 then Ls = {s}.

• If s has the form f(x1, x2, . . . , xn), where f is an n-ary function symbol, where n ≥ 1, and
x1, x2, . . . , xn are sentences of type F , then Ls = Lx1 ∪ Lx2 ∪ . . . ∪ Lxn .
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For any non-empty set U ⊆ SF (S0) of sentences of type F , the language of U is LU =
⋃

x∈U Lx.

For our work, we shall take S0 to be a non-empty, countable set of distinct primitives.

The set SF (S0) of sentences of type F over S0 gives rise to an algebra of type F in the expected
manner. Definition 2.34 is based on Definition 10.4 in Chapter II of [10].

Definition 2.34. Let F be a language of algebras and let S0 be a set of objects called primitives. The
sentence algebra S = (S, F ) of type F over S0 has S = SF (S0), and the fundamental operations of S
satisfy

fS : Sn −→ S : (x1, x2, . . . , xn) 7→ f(x1, x2, . . . , xn)

for x1, x2, . . . , xn ∈ S and f ∈ Fn for n ≥ 1. If f is a nullary function symbol corresponding to the
sentence af ∈ SF (S0), then fS : ∅ −→ {af}.

The sentence algebra S of type F over S0 may be thought of as being generated by S0 (compare p71
in [10]). Furthermore, by Theorem 10.8 in [10], S is freely generated by S0 (compare Definition 3.4 in
[10]). The mechanism by which S is generated from S0 is made formal in Section 3 of Chapter II of
[10]. The procedure is not germane to our work, however, so we will not provide an exposition for it
here.

From Theorem 6.2 in Chapter II of [10], we have the following. The proof of this result is supplied in
[10], so we will not present it here.

Theorem 2.35. Let S be an algebra of type F generated by a set S0 and let T be an algebra of type F . If
f, g ∈ [S −→ T ] are homomorphisms from S to T such that for any s ∈ S0, f(s) = g(s), then f = g.

Let X = (X, F ) be the sentence algebra of type F over a non-empty, countable set X0 of primitives.
A homomorphism from X to A we shall call an A-assignment (over X), and the restriction to X0 of
an A-assignment over X we shall call an A-valuation (over X0). If A is understood, we shall refer to
A-assignments and A-valuations as just assignments and valuations. The family of valuations over
X0 is denoted by [X0 −→ A], and for any non-empty set U ⊆ X0, we obtain the family [U −→ A] of
valuations over U by restriction.

From Theorem 2.35, each valuation over X0 uniquely determines an assignment over X , so to deter-
mine the image of a sentence x ∈ X we need only consider the action of the corresponding valuation
on the language Lx of x. Given a valuation v and an arbitrary sentence x ∈ X , we shall abuse
notation and write v(x) to represent the value assigned to x by the assignment determined by v.

As a technical convenience, we shall regard the values in X that correspond to the nullary operations
of F as primitives in X0 as well. Because X = SF (X0), for every subset U of X0 there is x ∈ X such
that Lx = U . Consequently, we topologise X0 with the discrete topology, and form the sheaf G on X0

such that for any U ∈ ΩX0, G(U) = [U −→ A], the valuations over U . For any V ∈ ΩX0 with V ⊆ U ,
we have the restriction map ρU

V : G(U) −→ G(V ) : s 7→ s|V . Trivially, ρU
U is the identity map on U ,

and for any W ∈ ΩX0 with W ⊆ V , ρU
W = ρV

W ◦ ρU
V . Furthermore, it follows readily that G satisfies

the monopresheaf and glueing conditions of Definition 2.2, so G is in fact a sheaf, as intended. We
shall refer to G as the sheaf of A-valuations over X0. By Proposition 2.29 and Definition 2.27, (X0, G)
is an r-algebraic space over A.

Suppose that we have a reference valuation v ∈ [X0 −→ A]. For any x ∈ X , to determine the meaning
of x in the setting of valuations, we must consider those valuations that can assign a value to x. That
is, we consider those valuations in [U −→ A] with U ∈ ΩX0 and Lx ⊆ U . Similarly, for S ⊆ X , we
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consider those valuations in [U −→ A] with U ∈ ΩX0 and LS ⊆ U . Intuitively, the sets Wx,U and
WS,U defined earlier now take the form

Wx,U = {w ∈ G(U) | w |=v x} for any U ∈ ΩX0 with Lx ⊆ U
WS,U = {w ∈ G(U) | w |=v S} for any U ∈ ΩX0 with LS ⊆ U

and for Definition 2.31, the condition on U is strengthened so that Wx,U and Wy,U are formed from
any U ∈ ΩX0 with Lx, Ly ⊆ U , and similarly, WS,U and WT,U are formed for any U ∈ ΩX0 with
LS , LT ⊆ U . The derivation of the order ≤X then proceeds identically. Given ≤X , we then choose
ΩX to be the Alexandroff topology with respect to ≤X . Since X is countable, ΩX has a countable
base and so (X, ΩX) is second-countable.

Next, let H be a map from the open sets of X to sets of valuations over subsets of X0 such that for
any U ∈ ΩX , H(U) = G(LU ). For V ∈ ΩX with V ⊆ U , let ρU

V : H(U) −→ H(V ) : s 7→ s|LV
as before.

Then it is readily established that H is a presheaf of A-simulations over X , and also that H satisfies
the monopresheaf and glueing conditions of Definition 2.2, so H is in fact a sheaf of A-simulations
over X . Finally, as in Section 2.1.2, if we let Ux = {U ∈ ΩX | x ∈ U} for x ∈ X , then the pair

U = ({H(U)}U∈Ux , {ρU
V | U, V ∈ Ux and V ⊆ U})

is a direct system of sets with direct limit

V = (G(Lx), {αU : H(U) −→ G(Lx) : s 7→ sLx | U ∈ Ux})

from which it follows that the stalk Hx of H at x is just G(Lx). We shall refer to H as the sheaf of A-
valuations over X . The pair (X,H) is then an r-algebraic space of type F over A. Together with the
order ≤X , by Definition 2.32, (X, H,≤X) is an ordered space over A.

Definition 2.36. Let F be a language of algebras, and let A be a bounded r-algebra of type F such
that ≤A is a partial order.

1. An ordered r-algebraic space of type F over A is an ordered space (X, H,≤X), where ≤X is de-
rived by Definition 2.31, such that (X, F,≤X) is an ordered r-algebra of type F .

2. A morphism (X, HX ,≤X) −→ (Y, HY ,≤Y ) of ordered r-algebraic spaces of type F over A is
a morphism of ordered spaces over A for which the continuous function is a homomorphism
from (X, F ) to (Y, F ). It is an isomorphism if it is an isomorphism of ordered spaces such that
the continuous function is an isomorphism from (X,F ) to (Y, F ).

We shall abbreviate the term “ordered r-algebraic space of type F over A” to “ordered r-algebraic
space (over A)”, omitting any reference to the type F and underlying algebra A if this causes no
confusion. By abuse of terminology, we shall usually write “X is an ordered r-algebraic space (over
A)”.

2.3 Ordered Relational Algebraic Manifolds

In this section, we define a manifold in terms of a family of ordered spaces over a given bounded
r-algebra A. The definition that we provide is an adaptation of the sheaf-theoretic definition of a
manifold given in [52], and allows the manifold to inherit an order from the ordered spaces. We
conclude by setting out a construction procedure for these manifolds.
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2.3.1 Ordered Manifolds over a Relational Algebraic Structure

As in Section 2.2.2, we presuppose a bounded r-algebra A = (A,F,0A,1A,≤A) of type F in which
≤A is a partial order.

Informally, a local homeomorphism between two topological spaces X and Y ensures that locally, X
is topologically and set-theoretically the same as Y . If X and Y are both ordered spaces, however, the
structure sheaves need to be “locally the same” as well. To this end, local isomorphisms allow us to
say when two ordered spaces are locally equivalent. Definition 2.37 may be compared to Definition
4.3.6 in [52].

Definition 2.37. Let (M,G,≤M ) be an ordered space over A. An ordered space (X, H,≤H) over A
is locally isomorphic to (M, G,≤M ) if and only if for all x ∈ X there is a neighbourhood U ∈ ΩX
of x and an open set V in M such that (U,H|U ,≤X|U ) and (V, G|V ,≤M |V ) are isomorphic as ordered
spaces over A.

Remark 2.38. Definition 2.37 makes the importance of the Alexandroff topology clearer. The open
sets U and V are both up-sets, and since (U,H|U ,≤X|U ) and (V, G|V ,≤M |V ) are isomorphic as ordered
spaces over A, U carries the same order as V .

We may now define an ordered manifold (compare Definition 4.3.6 in [52]).

Definition 2.39. Let M be a class of ordered spaces over A. An ordered space (X, H,≤X) over A is
an ordered manifold of type M over A if and only if there is an open cover U of X such that for each
U ∈ U , (U,H|U ,≤X|U ) is locally isomorphic to some (M,G,≤M ) ∈ M.

In view of Remark 2.38, we may see an ordered manifold of type M over A as inheriting the order
≤X from the ordered spaces in M.

As before, we abbreviate “ordered manifold of type M over A” to “ordered manifold”, omitting the
references to M and A if these are understood and doing so causes no confusion. By abuse of ter-
minology we shall usually write “X is an ordered manifold”. A morphism (isomorphism) between
ordered manifolds of type M over A may then be expressed in terms of morphisms (isomorphisms)
of ordered spaces over A.

Remark 2.40. Manifolds are usually presented as topological n-manifolds, which are T2, second-
countable topological spaces locally homeomorphic to Rn with the Euclidean topology. The T2 con-
dition is required to exclude certain pathological spaces such as the “line with two origins” (see
Example 13.9(b) in [56], Exercise 3-8 in [34] and also Remark 4.3.8 in [52]), and also to ensure that
certain kinds of analysis can be carried out on a manifold. The T2 condition ensures that there are
enough open sets to work with, while second-countability ensures that there are not too many. Defi-
nition 2.39 can be phrased in terms of what are called geometric spaces in [52]. Given a commutative
ring R with identity, a geometric space over R is a topological space X together with a sheaf H of
R-algebras (compare Definition 2.27). An R-algebra is a pair (S, f), where S is a commutative ring
with identity and f : R −→ S is a 1-preserving ring morphism (compare the A-simulations of Defi-
nition 2.24). The sheaf H is such that the stalks are also local rings. If in Definition 2.39 M is instead a
class of geometric spaces over R, we recover the manifolds of Definition 4.3.6 in [52]. It is from these
manifolds that a topological n-manifold (with, for example, a smooth structure) can be recovered
(see Example 4.3.7 in [52]).

With the manifolds of Definition 2.39, we have been able to drop the requirement that a manifold
should resemble Rn locally. As described in Section 1.3, the relaxation of this requirement was im-
portant to us because we would need to use topologies with a local structure different from that of
Rn with the Euclidean topology.
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Given an ordered manifold X of type M, we can use the ordered spaces in M to explore the structure
of X . Let us presuppose a class M of ordered spaces over A and an ordered manifold (X, H,≤X) of
type M over A. Definition 2.41 is based on pp4-5 and p12 of [33].

Definition 2.41. A (coordinate) chart on X is a pair (U, φ) where U ∈ ΩX and φ : U −→ V , where
V = φ(U) is an open subset of some (M, G,≤M ) in M, such that (U,H|U ,≤X|U ) and (V, G|V ,≤M |V )
are isomorphic as ordered spaces over A. The set U is called the (coordinate) domain of the chart,
and the map φ is called a (local) coordinate map. If (U, φ) is a chart on X and x ∈ U , we say that
(U, φ) covers x. An atlas for X is a collection of charts on X whose domains cover X . That is, if
A = {(Ui, φi)}i∈I is an atlas for X , then {Ui}i∈I is an open cover of X .

A chart (U, φ) on X provides a view of X , since for the region U , we know that X is locally the same
as φ(V ), which is an open set in some M ∈ M. If two charts have overlapping domains, we can then
translate between these views. Definition 2.42 is based on p12 in [33].

Definition 2.42. Let (U, φ) and (V, ψ) be any two charts on X such that U ∩ V 6= ∅. The maps

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V ) and
φ ◦ ψ−1 : ψ(U ∩ V ) −→ φ(U ∩ V )

are called transition maps.

Remark 2.43. As a notational convenience we shall denote charts with lower case letters such as c
and d. We write Uc and φc for the domain and coordinate map of a chart c. We write cU to mean the
ordered space (Uc,H|Uc

,≤X|Uc
), and if V = φc(Uc) is an open set in (M,G,≤M ) ∈ M, we write cφ to

mean the ordered space (V, G|V ,≤M |V ). Given two charts c and d, if Uc ∩ Ud 6= ∅ we write c ◦ d−1

and d ◦ c−1 to mean the charts (Uc ∩ Ud, φc ◦ φ−1
d ) and (Uc ∩ Ud, φd ◦ φ−1

c ) respectively. Finally, given
a chart c, if V is an open subset of Uc, we write c|V to mean (V, (φc)|V ), the restriction of c to V .

Where two charts overlap, our exploration of X should be independent of the choice of chart. This
will be the case if the charts are compatible in the following sense (compare p12 in [33]).

Definition 2.44. Let c and d be two charts in an atlas A for X . Then c and d are order-compatible if
either Uc ∩Ud = ∅ or the transition maps φd ◦ φ−1

c and φc ◦ φ−1
d are such that (c ◦ d−1)φ and (d ◦ c−1)φ

are isomorphic as ordered spaces over A.

Order-compatibility between charts may naturally be extended to order-compatibility between at-
lases (compare pp13–14 in [33]).

Definition 2.45. Let A be an atlas for X . If any two charts in A are order-compatible, we call A an
order-compatible atlas for X . If A and B are two order-compatible atlases for X , then A and B are
jointly order-compatible if and only ifA∪B is an order-compatible atlas for X . An order-compatible
atlas is a maximal order-compatible atlas if it is not properly contained in any other order-compatible
atlas. Given an order-compatible atlas A, the maximal order-compatible atlas of A is an atlas that
contains all possible charts on X that are order-compatible with the charts in A.

A given atlas may not determine an ordered manifold uniquely. As an example, {(X, idX)} and
{(↑x, id↑x) | x ∈ X} are both atlases for X . We might therefore expect to specify a maximal order-
compatible atlas for X . The next result shows that we need only specify some order-compatible atlas,
as this will determine a unique maximal order-compatible atlas for X (compare Lemma 1.10 on p14
in [33]).
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Proposition 2.46. Every order-compatible atlas for X is contained in a unique maximal order-compatible
atlas for X . Two order-compatible atlases for X determine the same maximal order-compatible atlas for X if
and only if they are jointly order-compatible.

Proof. Let A be an order-compatible atlas for X , and let A′ denote the set of all charts on X that are
order-compatible with every chart in A. Let c and d be any two charts in A′. If Uc ∩ Ud = ∅, then c
and d are trivially compatible by Definition 2.44. Otherwise, for any x ∈ Uc ∩ Ud, let b be a chart in
A such that x ∈ Ub. Then also V = Uc ∩ Ud ∩ Ub 6= ∅. Because c and d are order-compatible with b,
it follows that (c|V )φ, (d|V )φ and (b|V )φ are all isomorphic as ordered spaces. Since the choice of x
was arbitrary, by Definition 2.37 it follows that (c|Uc∩Ud

)φ and (d|Uc∩Ud
)φ are isomorphic as ordered

spaces, and hence c and d are order-compatible and A′ is an order-compatible atlas. It is maximal
since any chart that is order-compatible with every chart inA is contained inA′. It is unique because
if B is another maximal order-compatible atlas, then every chart in A′ is in B and every chart in B is
in A′, whence A′ = B. For the second part, let A and B be two order-compatible atlases for X . For
the forward direction, let C be the unique maximal order-compatible atlas determined by A and B.
Then A ⊆ C and B ⊆ C, so A ∪ B ⊆ C. Since C is an order-compatible atlas, any two charts in A ∪ B
must then be order-compatible, so A∪B is an order-compatible atlas, and A and B are jointly order-
compatible. For the reverse direction, let A′ and B′ be the maximal atlases of A and B. Then since
A and B are jointly order-compatible, B ⊆ A′ and A ⊆ B′. But since A′ and B′ are order-compatible
atlases for X , every chart in A′ is order-compatible with every chart in B, so that A′ ⊆ B′. Similarly
B′ ⊆ A′, and hence A′ = B′.

Suppose now that instead of (X, H,≤X), we are given only the set X . We would like to topologise
X and equip it with an order ≤X and a structure sheaf H of A-simulations in such a way that
(X, H,≤X) is an ordered manifold of type M. In the next section, we describe how this may be
accomplished.

2.3.2 Construction of an Ordered Relational Algebraic Manifold

To endow a given set X with the structure of an ordered manifold, we follow the same procedure as
set out in Lemma 1.23 on pp21-22 of [33]. This lemma was developed for the case of a topological
n-manifold with the aim of conferring on it a smooth structure. We have adapted it to match the
ordered manifolds of Definition 2.39.

For convenience, we shall write the class M of ordered spaces as {(Mj , Gj ,≤j)}j∈J . It is possible that
not all of the ≤j will have arisen from the same bounded r-algebra. Assume then that each Mj is an
ordered space over the distinct bounded r-algebra Aj . Each Gj is then a sheaf of Aj-simulations.

We let A be a bounded r-algebra such that each Aj can be embedded in A. Observe that, by the
conventions established after Definition 2.21, whereby nullary functions are preserved by homomor-
phisms, the top and bottom elements of each Aj are mapped to the top and bottom elements of
A. From the discussion preceding Definition 2.25, each Gj can then be expressed as a sheaf of A-
simulations, which gives us a class of ordered spaces over A. We shall continue to use the notation
M = {(Mj , Gj ,≤j)}j∈J for this class and its members.

Next, let U = {Ui}i∈I be a family of subsets of X such that X =
⋃

i∈I Ui.

Remark 2.47. If we require that X , once topologised, should be a second-countable space (i.e. X
should have a countable base), U should be such that countably many of the Ui cover X , and each
member of M must be second-countable also. The Mj are second-countable if each arises as the
sentence algebra of type F over a countable set of primitives (see the discussion following Theorem
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2.35). If we require the T2 condition to be met, each Mj must be T2 and U must satisfy the additional
condition that for any distinct x, y ∈ X , either there is U ∈ U with x, y ∈ U or there are disjoint
U, V ∈ U with x ∈ U and y ∈ V . Both properties of ΩX are then readily established, and we will not
impose either of these requirements here.

Fix a collection {φi}i∈I of injective maps such that

M1: for each i ∈ I , φi : Ui −→ Mji , where ji ∈ J , and φi(Ui) ∈ ΩMji

M2: for each i, k ∈ I , φi(Ui ∩ Uk) ∈ ΩMji
and φk(Ui ∩ Uk) ∈ ΩMjk

, where ji, jk ∈ J

M3: for each i, k ∈ I , if Ui ∩ Uk 6= ∅ then (Vi, (Gji)|Vi
, (≤ji

)|Vi
) and (Vk, (Gjk

)|Vk
, (≤jk

)|Vk
),

where Vi = φi(Ui ∩ Uk) and Vk = φk(Ui ∩ Uk), are isomorphic as ordered spaces

Note that from M3, for each i, k ∈ I , if Ui ∩ Uk 6= ∅ then the transition maps

φi ◦ φ−1
k : φk(Ui ∩ Uk) −→ φi(Ui ∩ Uk) and

φk ◦ φ−1
i : φi(Ui ∩ Uk) −→ φk(Ui ∩ Uk)

are homeomorphisms.

Now let B be the family of sets given by

B =
⋃

i∈I

{φ−1
i (V ∩ φi(Ui)) | V ∈ ΩMji , ji ∈ J}

Lemma 2.48. The family B is a base for a topology on X .

Proof. For any i ∈ I , φi(Ui) ∈ ΩMji , and hence Ui ∈ B. It follows that U ⊆ B, and since X =
⋃

i∈I Ui,
we obtain X ⊆ ⋃

B∈B B. For any B ∈ B we have B = φ−1
i (V ∩ φi(Ui)) for some i ∈ I , where

V ∈ ΩMji . Since φi is injective and V ∩φi(Ui) ⊆ φi(Ui), it follows that B ⊆ Ui. Consequently, for any
B ∈ B there is i ∈ I such that B ⊆ Ui, and hence

⋃
B∈B B ⊆ ⋃

i∈I Ui = X . Taken together, we have
X =

⋃
B∈B B. Next, consider B1, B2 ∈ B with B1 = φ−1

i (V1 ∩ φi(Ui)) and B2 = φ−1
k (V2 ∩ φk(Uk)) for

i, k ∈ I , V1 ∈ ΩMji , V2 ∈ ΩMjk
and ji, jk ∈ J . Suppose that x ∈ B1 ∩ B2. Then since Ui ∩ Uk 6= ∅,

by M2 we have Vi = φi(Ui ∩ Uk) ∈ ΩMji and Vk = φk(Ui ∩ Uk) ∈ ΩMjk
. Then Vk ∩ V2 ∈ ΩMjk

,
and by M3, V3 = φi ◦ φ−1

k (Vk ∩ V2 ∩ φk(Uk)) ∈ ΩMji . Since V3 ∩ Vi ∩ V1 ∈ ΩMji , we then have
B3 = φ−1

i (V3 ∩ Vi ∩ V1 ∩ φi(Ui)) ∈ B with x ∈ B3. It follows readily that B3 ⊆ B1 ∩B2, and hence by
Theorem 5.3 in [56] B is a base for a topology on X .

From Theorem 7.9 in [56], we have the following result.

Lemma 2.49. Let X and Y be topological spaces, and let f : X −→ Y be a bijective function. Then the
following are equivalent:

i) The function f is a homeomorphism.

ii) For any G ⊆ X , f(G) ∈ ΩY if and only if G ∈ ΩX .

Proof. i)⇒ii). Because f is a homeomorphism, f is bijective and continuous and f−1 is also contin-
uous. For G ⊆ X , assume that f(G) ∈ ΩY . Since f is continuous, f−1(f(G)) ∈ ΩX . Since f is
bijective, f−1(f(G)) = G, and hence G ∈ ΩX . Similarly, if G ∈ ΩX , then since f−1 is continuous,
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(f−1)−1(G) ∈ ΩY . Since f is bijective, (f−1)−1(G) = f(G), and hence f(G) ∈ ΩY .

ii)⇒i). For any G ⊆ X , suppose that f(G) ∈ ΩY if and only if G ∈ ΩX . We are given that f is bijec-
tive. For any V ∈ ΩY , taking G = f−1(V ) we have f(G) = f(f−1(V )) = V ∈ ΩY , and so G ∈ ΩX by
hypothesis. For any G ∈ ΩX we have (f−1)−1(G) = f(G) ∈ ΩY by hypothesis. Thus, f is bijective
and continuous and f−1 is also continuou, and it follows that f is a homeomorphism.

Let ΩX denote the topology on X that arises from the base B.

Lemma 2.50. For each i ∈ I , φi is a homeomorphism.

Proof. Let V = φi(Ui) ∈ ΩMji
, and let (Ui, ΩUi) and (V, ΩV ) be topological spaces for which ΩUi and

ΩV are the relative topologies inherited from X and Mji
. From the definition of B, it follows that for

G ⊆ Ui, if φi(G) ∈ ΩMji then G = φ−1
i (φi(G)) ∈ ΩUi. Conversely, if G ∈ ΩUi then there is G ⊆ B

such that G =
⋃

U∈G U . But then φi(G) =
⋃

U∈G φi(U) ∈ ΩMji
because for each U ∈ G, φi(U) ∈ ΩMji

.
By Lemma 2.49, φi is then a homeomorphism from Ui to φi(Ui).

For any Ui ∈ U , we define ≤Ui⊆ Ui × Ui such that for any x, y ∈ Ui,

x ≤Ui y if and only if φi(x) ≤i φi(y)

By M3, if Ui ∩ Uj 6= ∅ for i, j ∈ I , then

φi(x) ≤i φi(y) if and only if φj(x) ≤j φj(y)

so that ≤Ui and ≤Uj are compatible on Ui ∩ Uj . In this way, an order is conferred on X . We shall
denote this order by ≤X , as before. Because the order on each φi(Ui) is derived by application of
Definition 2.31, it follows that ≤X is derived in this manner as well.

Because each member of M is an ordered space, from Definition 2.32, each member of M has the
Alexandroff topology. Based on≤X , because each member of M carries the Alexandroff topology we
can deduce that every basic open set in B is an up-set. Hence every open set in ΩX is an up-set as
well. From the definition of the φi and of B, for any x ∈ X , ↑x ∈ B as well. For any up-set U ⊆ X we
may write U =

⋃
x∈U ↑x, which, as an arbitrary union of open sets, is also open in X . Hence X also

has the Alexandroff topology. This gives us the following result.

Lemma 2.51. The topology ΩX is the Alexandroff topology on X .

We now need to provide a sheaf of A-simulations on X . By Definition 2.39, any sheaf H such that
(Ui, H|Ui

,≤X|Ui
) is locally isomorphic to (φi(Ui), (Gji)|φi(Ui),≤ji|φ(Ui)), where Ui ∈ U , will do. To

develop such a sheaf, we shall use our putative atlas A = {(Ui, φi)}i∈I . Thus, let H be a presheaf of
A-simulations on X .

For any U ∈ ΩX , let IU = {i ∈ I | Ui ∩ U 6= ∅}, and let UU = {Ui}i∈IU . For any Ui ∈ UU , we shall
require that

H|Ui∩U = (φ−1
i )∗(Gji)|φi(Ui∩U)

ρUi∩U
Ui∩V = (ρji)

φi(Ui∩U)
φi(Ui∩V ) where V ∈ ΩX and V ⊆ U

A given section of H(U) is then described by local sections that are provided by sheaves that are
accessed via the charts. That is,

∀s ∈ H(U).∀Ui ∈ UU .∃si ∈ H(Ui ∩ U)[ρU
Ui∩U (s) = si]
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In addition, if these local sections can be fitted together, they should give rise to a section in H(U).
That is, if {si}i∈IU is a family of sections such that for each i ∈ IU , si ∈ H(Ui ∩ U), then if

ρUi∩U
Ui∩Uj∩U (si) = ρ

Uj∩U
Ui∩Uj∩U (sj)

for any Ui, Uj ∈ UU with Ui ∩ Uj ∩ U 6= ∅, then there is a section s ∈ H(U) such that for all i ∈ Iu,

ρU
Ui∩U (s) = si

Finally, we shall identify two sections of H(U) if they can be described by the same family of local
sections. That is,

∀s, t ∈ H(U).[∀i ∈ IU .[ρU
Ui∩U (s) = ρU

Ui∩U (t)] ⇔ s = t]

(where we have written the above condition as an equivalence because the reverse implication is
always true).

It follows that, for the cover by members of UU , H satisfies the glueing and monopresheaf conditions
(Definition 2.2) on U . However, because the members of U are all open in ΩX , any open cover of U
can be expressed as an open cover by members of U . Since the choice of U ∈ ΩX was arbitrary, it
follows that H satisfies the monopresheaf and glueing conditions for any open set, and so is a sheaf
of A-simulations on X .

Trivially, for any Ui ∈ U , Ui is a cover of itself, so the requirement that H|Ui
= (φ−1

i )∗(Gji)|φi(Ui)

means that (Ui,H|Ui
,≤i) is locally isomorphic to (φi(Ui), (Gji)|φi(Ui),≤ji|φi(Ui)), and since the Ui

provide an open cover of X , H meets the requirements of Definition 2.39.

By Definition 2.32, (X, H,≤X) is then an ordered space over A, and by Definition 2.39, it is an ordered
manifold of type M over A. We state this as the following result, thereby summarising the outcome
of the procedure we have just described.

Theorem 2.52. The triple (X, H,≤X) is an ordered manifold of type M over A.

Corollary 2.53. Each member of A is a chart on X , and the family A of charts is an order-compatible atlas
for X .

Proof. This result follows from Definitions 2.41, 2.44 and 2.45, property M3 and the definition of H
just given.

Summary

In this chapter, we constructed the framework that we will use to model belief revision as a local,
relational operation. We presented the framework as a manifold that was constructed from a family
of topological spaces, each equipped with a quasi-order. The manifold was constructed in such a
way that it inherited a quasi-order from the topological spaces in the given family. Our approach to
the construction of the manifold appealed to the sheaf-theoretic definition of a manifold given in [52]
and consequently relied heavily on techniques and constructions from the field of sheaf theory.

Relational algebraic structures, or r-algebras, were the primary component of our framework. These
structures combined the idea that a set could carry a specified algebraic structure as well as a binary
relation. We illustrated our idea by showing how lattices could be considered as r-algebras. Certainly,
for simple structures like these, it was mostly straightforward to prescribe a binary relation. For
more complex algebraic structures, however, the relation between the points would be less obvious.
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R-algebras thus provided us with a convenient means of simultaneously transporting an algebraic
and relational structure on a set.

A related notion was the idea that one r-algebra could simulate another. This idea allowed us to
construct a topological space over a particular r-algebra, where the r-algebraic structure on the space
was provided by a sheaf of these r-algebra simulations. We called these spaces r-algebraic spaces.
We could certainly have equipped the given space with a sheaf of r-algebras to give it an r-algebraic
structure. However, our purpose in using a sheaf of r-algebra simulations was to equip the space
with the structure of a specified r-algebra.

By considering an r-algebra for which the relation was a partial order, we were then able to derive a
quasi-order and a topology on a given set of points, and in so doing, to construct an r-algebraic space
that was itself equipped with an order. We called these spaces ordered r-algebraic spaces, and it was
from these spaces that we were able to construct the required manifold.

By using the carrier set of a sentence algebra over a given set of primitives, we could derive the
quasi-order from a notion of valuation and satisfaction. In a typical logic, the notion of satisfaction
is derived from the assignment of a designated value such as true to a given sentence by a particular
valuation. In our case, we did not use such especially designated values, but appealed instead to
the idea of “preservation of degrees of truth” as described in [16]. Consequently, in Definition 2.30 a
sentence could be considered satisfied by a valuation in a particular context if the valuation preserved
the value assigned to the sentence in the same context by a reference valuation.

From the notion of satisfaction, we developed the idea of the meaning of a sentence, and from these
meanings we were able to derive an order for the sentences in our sentence algebra. With an order
in place, we could then derive a topology for the sentence algebra. To this end, we selected the
Alexandroff topology with the construction of the manifold in view, because with the Alexandroff
topology all open sets are also up-sets, which in turn would allow the manifold to inherit an order
more easily.



Chapter 3

Disposition and Logic

We now commence specialisation of the framework of Chapter 2. Our goal in this chapter is to
develop a model of a subject as a collection of sentences equipped with a logic.

The family of sentences that we consider is developed as the algebra of sentences of a specified type
over a countable set of primitives. To provide an order for these sentences, we appeal to the notion
of disposition, or propositional attitude, as described in Section 1.1, which we are able to represent
as a bounded r-algebra. By applying the work of Chapter 2 (in particular Section 2.2.2), we are able
to induce an order on sentences with this bounded r-algebra. The induced order then represents a
form of triage with respect to the given disposition.

We next develop a logic that interacts with the induced order on the sentences via the idea of “preser-
vation of degrees of truth” as described in [16]. This idea allows us to formulate a logic in which the
degrees of disposition assigned to the members of a set of sentences are, in a certain sense, preserved
under logical consequence. Logical consequence imposes additional structure on the sentences, and
from this structure we are then able to formulate conjunction, disjunction, negation and contradiction
in terms of the fundamental operations of the algebra. We proceed as follows.

Chapter Guide:

Section 3.1: A Model of Disposition. A disposition represents a propositional attitude towards a
proposition or state of affairs in which that proposition is true. Intuitively, a given disposition
can be held more strongly towards some propositions than others, which allows us to order
propositions. In this section, we develop a model of a disposition as a bounded r-algebra of
type F , which allows us to order the sentences of a given algebra of type F . This algebra,
together with the order is then a bounded r-algebra, which we use as the foundation for our
model of a subject.

Section 3.2: A Logic of Disposition. In this section, we develop a logic for a subject. We begin by
describing the properties of the logic that are required for us to develop a belief revision rela-
tion in the style of [36]. By appeal to the idea of “preservation of degrees of truth”, we then
develop a logic in such a way that the fundamental operations of the subject also serve as logi-
cal connectives.

35
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3.1 A Model of Disposition

In Chapter 1, we illustrated a propositional attitude with an example where James was hopeful that
there would be enough food for his guests. The example suggested a binary characterisation of the
disposition “hopefulness”, so that James either hoped or did not hope that there was enough food
for everyone. We could not express how fervently he might have hoped that there was enough food,
or whether he was more or less hopeful that there was enough food than that his guests would enjoy
the meal he had prepared.

With a set such as [0, 1] ⊆ R, we can express such degrees of dispostion with infinite refinement.
However, this is more than we need and masks the qualitative character of the problem. What we
want is a set of possible degrees of disposition that retains the simple qualitative nature of the two-
valued case yet allows us to express more refined degrees of disposition.

We begin our development of a disposition by specifying the set of sentences with which we shall
associate degrees of disposition. With a view to the development in Section 3.2, we specify that
F = {+, ∗, ′} = {2, 2, 1}, and we let X = (X, +, ∗, ′) be the sentence algebra of type F over a non-
empty, countable set X0 of primitives. In X we take + and ∗ to be associative and commutative, and
we treat ′ as a form of inverse so that for any x ∈ X , x′′ = x. To avoid ambiguity in any sentence, we
assume that ′ binds more tightly than ∗, which binds more tightly than +.

Suppose we have a set D, whose members we wish to assign to the sentences in X to indicate the
extent to which an agent holds a given disposition towards a particular sentence (x, say). Such
assignment presumes that we can know exactly the degree to which the agent holds the disposition
towards x. It would make our model brittle, for any discrepancies between actual and assigned
degrees of disposition would be amplified by computations we would need to perform based on
the structure of x. We would also need to commit to a type for the members of D – for example,
qualitative values such as hot or lukewarm – which is certain to attract controversy.

We can make our model more resilient and obviate the need to fix the type of the members of D by
introducing an element of non-determinism (compare p62 in [8] for example). To a given sentence
we now assign a subset of D, thereby assigning a degree of disposition based on a property that
the degree should satisfy, rather than assigning the degree purely by value. We can then exploit an
important duality between sets and members of sets. From [8] (see p12), the idea of this duality is
that

i) any particular thing is determined by its properties (Leibniz’ ‘Principle of the Identity of Indis-
cernables’)

ii) any property is determined by the set of all things having that property (the ‘Extensionality
Principle’)

A subset U ⊆ D thus represents a property. Correspondingly, given d ∈ D, the properties of d are
just those subsets of D that contain d. The subset U can also be seen as an observation about D, and
d satisfies U if d ∈ U . By assigning the observation U rather than the degree d to a given sentence x,
we indicate that, no matter what degree of disposition the agent may actually hold towards x, that
degree will satisfy the observation U .

There are several advantages to this approach. First, a richer characterisation is possible because
there are more properties than degrees of disposition. Second, because our model is formulated
in terms of properties rather than actual degrees of disposition, by analogy with [22] degrees are
not known by value but by observations that they satisfy. In a sense, the use of properties allows
us to work with dispositions in a mostly point-free setting (compare [54] and [55], for example),
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and obviates a commitment to a type for the members of D. Finally, degrees of disposition are not
necessarily equipped with an algebraic structure, so it may not be possible, for example, to determine
the degree of disposition assigned to the sentence x ∗ y from the degrees of disposition assigned to
the sentences x and y. In contrast, properties have an inherent logical nature that readily facilitates
such combination and manipulation, and in this sense they behave more like truth values than do
degrees of disposition.

Informally, to develop our model of a disposition, we begin with a set D of values about which we
assume nothing and know very little apart from a given setD0 of observations about the members of
D. To ensure that we have enough observations to work with, we impose certain restrictions on D0.
In addition, to ensure that we can relate an arbitrary observation about D to the given observations,
we extend D0 to derive a family D of sets called a topped intersection structure on D. By appeal to
the duality between sets and properties, we are then able to order the members of D in a way that
has a pleasing interaction with the observations in D.

By applying a particular closure operator to D, we are able to extract certain sets of properties, or
specifications, as the closed sets of the operator. We then us these “closed” specifications to develop
a set of surrogates for degrees of disposition. Our exposition of these surrogates uses ideas set out in
[9] and [15] as a starting point. Consequently, a surrogate is a combination of two specifications, and
it is the interplay between these two specifications that characterises the degree of disposition repre-
sented by the surrogate. Finally, we show that, when ordered in a certain way, the set of surrogates
is a complete lattice.

3.1.1 Degrees of Disposition, Observations, Order and Specifications

Let D be a non-empty set. To avoid a lack of differentiation amongst the degrees of disposition,
we assume without further comment that D has more than one point. A family of subsets of D
represents a collection of observations about D, and to avoid certain kinds of pathological cases
(compare Remark 2.40), this family must meet certain requirements.

Definition 3.1. Let X be a set. A non-empty family X = {Ui}i∈I of subsets of X is an admissible
family of observations about X if

i) X ∈ X
ii) for any two distinct points in X there is a set in X that contains one but not the other

iii) it contains at most countably many subsets of X

The observation X is called the trivial observation.

Let D0 be an admissible family of observations about D. We shall require the the existence of two
special elements d0 and d1 in D, for which

d0 , the trivial degree, which satisfies only the trivial observation D, and
d1 , the universal degree, which satisfies every observation in D0

In general, these elements may not be present in D, and to ensure their existence we artificially affix
them to D if this is necessary. For the rest of our exposition, we therefore assume that d0, d1 ∈ D.

Given an arbitrary observation V ⊆ D, we would like to relate V to the observations in D0. For
any d ∈ D, if d satisfies V then d also satisfies U ∈ D0 if V ⊆ U . The closest observation to V is
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then just
⋂{U ∈ D0 | V ⊆ U}, and to ensure that D0 contains this observation, we close D0 under

non-empty intersections to form the topped intersection structure D on D. Observe that the empty
intersection is included in D because by Definition 3.1(i), D ∈ D, so in effect D is closed under
arbitrary intersections.

From Definition 2.33 and Corollary 2.32 in [13] we have the following.

Definition 3.2. Let X be a set and let X be a family of subsets of X , ordered by inclusion. If, for every
non-empty family {Xi}i∈I ⊆ X we have

⋂
i∈I Xi ∈ X , then X is called an intersection structure (or⋂

-structure) on X . If X ∈ X , then X is called topped
⋂

-structure on X .

It is straightforward to show that a topped
⋂

-structure X on X is a complete lattice in which
∧

i∈I

Xi =
⋂

i∈I

Xi

∨

i∈I

Xi =
⋂
{Y ∈ X |

⋃

i∈I

Xi ⊆ Y }

for any non-empty family {Xi}i∈I ⊆ X , and in fact a proof of this claim is supplied in the form of
Corollary 2.32 in [13]. From the second equality, we see that the join operator does not coincide with
union.

Conveniently, the map that takes an arbitrary observation about D to its closest approximation in D
is the closure operator CD induced on D by D. Definition 3.3 and Proposition 3.4 are derived from
specialisations of Definition 7.1 and Proposition 7.2 in [13] to the power set P(X) of a set X . The
proof of Proposition 3.4 is straightforward, and we omit it here.

Definition 3.3. Let X be a set. A map C : P(X) −→ P(X) is called a closure operator (on X) if, for
any U, V ⊆ X ,

CL1: U ⊆ C(U)

CL2: U ⊆ V ⇒ C(U) ⊆ C(V )

CL3: C(C(U)) = C(U)

A set U ⊆ X is called closed if U = C(U). Given a closure operator C, the set of all closed subsets of
X under C is simply {U ⊆ X | U = C(U)}.

Proposition 3.4. Let X be a set and let C be a closure operator on (P(X),⊆).

i) The set of all closed subsets of X is X = {C(U) | U ⊆ X}, and X ∈ X .

ii) For any U ⊆ X , C(U) =
⋂{V ∈ X | U ⊆ V }

Topped
⋂

-structures and closure operators are closely connected, as shown by the following theo-
rem, derived from Theorem 7.3 in [13]. As before, the proof of this result is straightforward, and we
omit it here.

Theorem 3.5. Let X be a set, and let X be a topped
⋂

-intersection structure on X . The map

CX : P(X) −→ P(X) : U 7→
⋂
{V ∈ X | U ⊆ V }
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is a closure operator on X . Let C : P(X) −→ P(X) be a closure operator on X . Then the family

XC = {U ⊆ X | U = C(U)}

of closed subsets of X under C is a topped
⋂

-structure on X . Furthermore, (XC ,⊆) is a complete lattice in
which for any family {Xi}i∈I ⊆ XC ,

∧

i∈I

Xi =
⋂

i∈I

Xi

∨

i∈I

Xi = C(
⋃

i∈I

Xi)

We shall invoke the duality between sets and properties and treat the observations in the topped⋂
-structure D as properties of the members of D. That is, we treat each U ∈ D as a property θU , and

if θU is true of d ∈ D, we write d |= θU , so that U = {d ∈ D | d |= θU}. This gives rise to a family
ΘD = {θU}U∈D of properties. We let

Dd = {U ∈ D | d ∈ U}

denote the family of observations about a given d ∈ D. As expected, the corresponding set of prop-
erties is just

Θd = {θ ∈ ΘD | d |= θ} = {θU ∈ ΘD | U ∈ Dd}
We shall sometimes exploit the duality between sets and properties directly and write a property θ
as a subset of D.

To order the members of D, for any c, d ∈ D we shall take d to be stronger or more refined than c if
every observation that is true of c is also true of d.

Definition 3.6. For each d ∈ D, let Dd = {U ∈ D | d ∈ U}, and let h : D −→ P(D) : d 7→ Dd. We
define the binary relation ¹ on D such that for any c, d ∈ D,

c ¹ d if and only if h(c) ⊆ h(d)

It follows readily from Definition 3.6 that ¹ is a quasi-order on D. We can recover a partial order on
D, which we will also denote by ¹, by taking c ≈ d if and only if c ¹ d and d ¹ c. From Definition
3.1(ii) however, for no two distinct elements c, d ∈ D is it the case that c ≈ d, because then h(c) = h(d),
which violates Definition 3.1(ii).

The following result is an easy consequence of Definition 3.6.

Proposition 3.7. Let D0 be an admissible set of observations about a set D, with d0, d1 ∈ D, and let D be
the corresponding topped

⋂
-structure. Let h : D −→ P(D) be such that h(d) = {U ∈ D | d ∈ U}. Then⋂

d∈D h(d) = {D} and
⋃

d∈D h(d) = D.

Proof. From Definition 3.6, for any U ∈ ⋂
d∈D h(d) we have

U ∈
⋂

d∈D

h(d) ⇔ ∀d ∈ D.[U ∈ h(d)] ⇔ ∀d ∈ D.[d ∈ U ] ⇔ D ⊆ U

and since D =
⋃D, U ⊆ D so that U = D and hence

⋂
d∈D h(d) = {D}. For the second part, we

have already that
⋃

d∈D h(d) ⊆ D. Since D0 is an admissible set of observations about D, it follows
that D =

⋃D. Hence for any U ∈ D there is d ∈ D with d ∈ U , so that U ∈ h(d). It follows that
D ⊆ ⋃

d∈D h(d), and hence that
⋃

d∈D h(d) = D.
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Corollary 3.8. Let D0 be an admissible set of observations about a set D, with d0, d1 ∈ D, and let D be the
corresponding topped

⋂
-structure on D. Let Dd = {U ∈ D | d ∈ U}, let h : D −→ P(D) : d 7→ Dd and let

¹ ⊆ D×D be such that c ¹ d if and only if h(c) ⊆ h(d). Then, under ¹, d1 and d0 are, respectively, the top
and bottom elements of D.

Proof. For any d ∈ D, h(d) ⊆ D, and since h(d1) = D it follows that d ¹ d1. Suppose that there is
d ∈ D such that d 6= d1 and d1 ¹ d. Then h(d1) ⊆ h(d), and it follows that h(d) = D. For every
U ∈ D0 we then have d, d1 ∈ U , in which case D0 is not an admissible set of observations about D
and we reach a contradiction. Hence d1 is the top element of D. By Proposition 3.7, for any d ∈ D
we have {D} ⊆ h(d), and since h(d0) = {D} it follows that d0 ¹ d. Suppose that there is d ∈ D with
d 6= d0 and d ¹ d0. Then h(d) ⊆ {D}, and hence h(d) = {D}. It follows that D0 is not an admissible
set of observations, and we again reach a contradiction. Hence d0 is the bottom element of D.

For c, d ∈ D, if c ¹ d we may think of d as representing a stronger property than c.

Proposition 3.9. For any c, d ∈ D, if c ¹ d then CD({d}) ⊆ CD({c}).

Proof. For any c, d ∈ D,

c ¹ d ⇒ h(c) ⊆ h(d) (definition of ¹)
⇒ {U ∈ D | c ∈ U} ⊆ {U ∈ D | d ∈ U} (definition of h)
⇒

⋂
{U ∈ D | d ∈ U} ⊆

⋂
{U ∈ D | c ∈ U} (Lemma 2.22(v) in [13])

⇒ CD({d}) ⊆ CD({c}) (definition of CD)

which gives us the result, as required.

The members of ΘD may be ordered in a way that reflects the order induced on D by D. To do so,
we lift the existing order on D to a power order. From Definition 2.30 in [8] we have the following.

Definition 3.10. For any set X and any binary relation R ⊆ X × X , we define for all U, V ⊆ X
the lower power relation R0, the upper power relation R1 and the full power relation R+, where
R0, R1, R+ ⊆ P(X)× P(X), by

UR0V if and only if ∀u ∈ U.∃v ∈ V.[uRv]
UR1V if and only if ∀v ∈ V.∃u ∈ U.[uRv]
UR+V if and only if UR0V and UR1V

The lower and upper power orders ¹0 and ¹1 are not well-behaved with respect to the top and
bottom elements of D. To illustrate, suppose that we have d1 ∈ U ∩ V for U, V ⊆ D. Then U ¹0 V
and V ¹0 U . Similarly, if U, V ⊆ D with d0 ∈ U ∩ V then U ¹1 V and V ¹1 U . To prevent subsets
of D from being trivially ordered in this way, we use the full power order ¹+ and for any φ, ψ ∈ ΘD
we therefore define

φ v ψ if and only if {d ∈ D | d |= φ} ¹+ {d ∈ D | d |= ψ}

To ΘD we add the property θ0 = {d0}, and we write θ1 for {d1}.

Proposition 3.11. The elements θ1 and θ0 are, respectively the top and bottom elements of ΘD.
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Proof. For any θ ∈ ΘD, let Uθ = {d ∈ D | d |= θ}. Trivially, we have

∀c ∈ Uθ.∃d ∈ {d1}.[c ¹ d] and ∀d ∈ {d1}.∃c ∈ Uθ.[c ¹ d]

so that θ v θ1. Suppose that there is θ ∈ ΘD with θ 6= θ1 and θ1 v θ. Then {d1} ¹+ Uθ, in which
case there is d ∈ D with d 6= d1 and d1 ¹ d, and we reach a contradiction. It follows that θ1 is the top
element of ΘD. Similarly, we can show that θ0 is the bottom element of ΘD, which gives us the result
as required.

A power order is a quasi-order even if the order from which it is derived is a partial order. For
example, if (P,≤) is a partially ordered set and x, y, z ∈ P with x ≤ y ≤ z, then {x, z} ≤0 {y, z} and
{y, z} ≤0 {x, z} even though {x, z} 6= {y, z}. We recover a partial order, which we also denote by v,
by taking θ ≈ γ if and only if θ v γ and γ v θ.

We shall refer to a subset Θ ⊆ ΘD as a specification. From the definition of v, for any φ, ψ ∈ ΘD,
if φ v ψ then, based on Proposition 3.9, we may think of ψ as a stronger property than φ. The
specification ↑φ may then be thought of as comprising those observations that are at least as strong
as φ. Correspondingly, (↑φ)c = ΘD\ ↑φ may be thought of as those observations, none of which
is stronger than φ. Consequently, let S0 = {↑φ | φ ∈ ΘD} ∪ {(↑φ)c | φ ∈ ΘD} be a non-empty
family of subsets of ΘD. With the development of Section 3.2 in mind, we close S0 under non-empty
intersections and arbitrary unions to form the family SD of subsets of ΘD. Observe that SD is a
topped

⋂
-structure SD on ΘD, and that ∅ ∈ SD. We denote by CS the closure operator induced on

ΘD by SD.

Remark 3.12. The family SD was developed with the logic of Section 3.2 in mind. In particular,
arbitrary unions were needed so that the lattice of surrogate degrees of disposition that we will
develop in Section 3.1.2 would be (finitely) distributive. In turn, this property was required so
that condition Dn2 of Definition 3.49 would be satisfied by our proposed disjunction (see espe-
cially Proposition 3.53). Intuitively, if the negation, conjunction and disjunction connectives of the
logic developed in Section 3.2 were required to satisfy different axioms, or if one or other connec-
tive were omitted, SD could be formed differently. For example, if only conjunction were required,
we could choose SD to be the family of closed subsets of ΘD that arises from the closure operator
CS : P(ΘD) −→ P(ΘD) : Θ 7→ Θlu.

We shall treat specifications conjunctively, so d ∈ D satisfies Θ ⊆ ΘD if for every θ ∈ Θ, d |= θ. The
specification Θ thus gives rise to the set

DΘ =
⋂

θ∈Θ

{d ∈ D | d |= θ} = {d ∈ D | Θ ⊆ Θd}

of degrees of disposition.

3.1.2 Surrogate Degrees of Disposition

From Proposition 3.4(ii), given an arbitrary specification Θ ⊆ ΘD, the smallest closed specification at
our disposal is simply

PΘ =
⋂
{U ∈ SD | Θ ⊆ U} = CS(Θ)

In contrast, a closed specification U ∈ SD such that U ⊆ Θc, where Θc = ΘD \Θ, contains properties
that are excluded from Θ, and so may be thought of as being converse to Θ. The largest such closed
specification that we can construct is then just

QΘ =
⋃
{U ∈ SD | U ⊆ Θc}
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The definition of PΘ and QΘ is an adaption of an idea presented in [9] (compare the definition of the
p- and q-sets on p338 in that work). We may think of PΘ as a closed specification for the degree of
disposition held by an agent towards a given formula. Correspondingly, we may think of QΘ as a
closed specification for the degree of counter-disposition held by an agent towards the same formula.

In general, we expect that DPΘ ∩DQΘ 6= ∅, so it is possible for PΘ and QΘ to embody an element of
ambiguity. We shall use this ambiguity to characterise the surrogate degrees of disposition that we
derive from SD. To derive these surrogates, we adapt an idea presented in [15] (compare Example
7.2 on p229 in [12] for an alternative formulation of what we present here).

Definition 3.13. A D-surrogate is a pair (U, V ) where U, V ∈ SD. It is

i) overdefined if U ∩ V 6= ∅
ii) consistent if U ∩ V = ∅

iii) exact if it is consistent and furthermore U ∪ V = ΘD

The set of all D-surrogates is denoted by TD. For an arbitrary specification Θ ⊆ ΘD, we define PΘ

and QΘ to be the subsets of ΘD given by

PΘ =
⋂
{U ∈ SD | Θ ⊆ U}

QΘ =
⋃
{U ∈ SD | U ⊆ Θc}

and the corresponding D-surrogate is (PΘ, QΘ). For Θ, Υ ⊆ ΘD, the D-surrogate of the pair (Θ,Υ) is
given by (PΘ, QΥ).

Given a D-surrogate t ∈ TD, we will write t = (Pt, Qt) when the specifications that gave rise to
Pt and Qt are not supplied and to emphasise the role of the P - and Q-sets in describing degrees of
disposition and counter-disposition towards a given sentence x ∈ X .

Because Pt and Qt are sets, D-surrogates can be ordered by inclusion ⊆. In [15], two possible orders
are suggested (compare also p11 in [11]):

i) the knowledge order ≤k, under which s ≤k t if Ps ⊆ Pt and Qs ⊆ Qt

ii) the truth order ≤t, under which s ≤t t if Ps ⊆ Pt and Qt ⊆ Qs

where s and t are D-surrogates. For our work, we will use the truth order, which we denote simply
by ≤T . Trivially, ≤T is a partial order (this property is inherited via the componentwise application
of the inclusion order). Under the truth order, there are four D-surrogates in (TD,≤T ) that are of
particular significance to us, viz.

i) (∅, ∅), which indicates that the agent holds neither disposition nor counter-disposition towards
a sentence x ∈ X . We shall view this value as representing an “indeterminate” degree of dispo-
sition, and we will use it to indicate that the agent holds an “unknown” degree of disposition
towards x.

ii) (∅,ΘD), which indicates that the agent does not hold the disposition at all towards x, and is the
least element 0 in TD.

iii) (ΘD, ∅), which indicates that the agent holds the disposition maximally towards x. This ele-
ment is the greatest element 1 in TD.
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iv) (ΘD, ΘD), which indicates that the agent holds a fully contradictory disposition towards x.

Definition 3.14. Let D(TD) be the set of D-surrogates in TD defined by

D(TD) = {t ∈ TD | Pt = Qt}

We call the set D(TD) the diagonal of TD.

A D-surrogate t ∈ D(TD), represents a state in which the agent is unsure of its degree of disposition
towards a sentence x ∈ X . These D-surrogates do not convey any information about the degree of
disposition of the agent towards x because we cannot tell whether the agent is more or less disposed
than counter-disposed towards x, and so we may view them as being equivalent to the “unknown”
degree of disposition represented by the D-surrogate (∅, ∅). The values of the diagonal range from
(∅, ∅) through increasing degrees of contradiction until we reach (ΘD, ΘD).

We define meet and join so as to respect the topped
⋂

-structure (SD,⊆) on ΘD.

Definition 3.15. For any s, t ∈ TD, we define meet ∧ and join ∨ such that

i) (Ps, Qs) ∧ (Pt, Qt) = (Ps ∩ Pt, Qs ∪Qt)

ii) (Ps, Qs) ∨ (Pt, Qt) = (Ps ∪ Pt, Qs ∩Qt)

For a non-empty subset T of TD, we then have
∧

T = inf T = (
⋂

t∈T

Pt,
⋃

t∈T

Qt)

∨
T = supT = (

⋃

t∈T

Pt,
⋂

t∈T

Qt, )

where for each t ∈ T , (Pt, Qt) is the corresponding D-surrogate. Since
⋂

t∈T Pt and
⋃

t∈T Qt are both
closed sets in ΘD, it follows that

∧
T ∈ TD, and similarly for

∨
T . Furthermore, because TD contains

a top element (ΘD, ∅), by Theorem 2.31 in [13] TD is a complete lattice. We state this as the following
result.

Proposition 3.16. The partially ordered set (TD,≤T ) is a complete lattice.

As an easy consequence, we then have the following (compare Definition 4.4 in [13]).

Proposition 3.17. The lattice (TD,≤T ) is distributive.

Proof. Applying Definition 3.15, for any r, s, t ∈ TD,

r ∧ (s ∨ t) = (Pr, Qr) ∧ ((Ps, Qs) ∨ (Pt, Qt))
= (Pr, Qr) ∧ (Ps ∪ Pt, Qs ∩Qt)
= (Pr ∩ (Ps ∪ Pt), Qr ∪ (Qs ∩Qt))
= ((Pr ∩ Ps) ∪ (Pr ∩ Pt), (Qr ∪Qs) ∩ (Qr ∪Qt)) (set theory)
= (Pr ∩ Ps, Qr ∪Qs) ∨ (Pr ∩ Pt, Qr ∪Qt)
= ((Pr, Qr) ∧ (Ps, Qs)) ∨ ((Pr, Qr) ∧ (Pt, Qt))
= (r ∧ s) ∨ (r ∧ t)

which gives us the result as required.
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In a lattice-theoretic setting, different types of complementation are commonly used to derive a nega-
tion operation. For example, in a lattice with top and bottom elements 0 and 1, an element y is called
a complement of an element x if x ∧ y = 0 and x ∨ y = 1 (compare Definition 4.13 in [13]). Given
s = (Ps, Qs) ∈ TD, from Definition 3.15 a complement t = (Pt, Qt) of s would need to have the form
(ΘD \ Ps, ΘD \Qs) to satisfy s ∧ t = 0 and s ∨ t = 1. These set-theoretic complements are, however,
not guaranteed to be closed sets of ΘD, so we turn instead to a weaker notion of complement called
involution (compare Definition 5.18 in [12]).

Definition 3.18. Let (X,≤) be an ordered set. An order-reversing map ′ : X → X is called an
involution if for any x, y ∈ X ,

i) x ≤ y implies y′ ≤ x′

ii) x′′ = x

For any x ∈ X , we shall overload terminology and also refer to x′ as the involution of x.

We shall effect an involution on TD by reversing the roles of the P and Q sets within a given D-
surrogate. That is, given t = (Pt, Qt), we define a unary operation ′ on TD such that t′ = (Qt, Pt).

Proposition 3.19. The operation ′ is an involution.

Proof. For any two D-surrogates s = (Ps, Qs) and t = (Pt, Qt) in TD, if s ≤T t then Ps ⊆ Pt and
Qt ⊆ Qs, and we then have t′ = (Qt, Pt) ≤T (Qs, Ps) = s′. Furthermore, s′ = (Qs, Ps) and hence
s′′ = (Qs, Ps)′ = (Ps, Qs) = s.

Note that for t ∈ D(TD), t′ = t. Furthermore, for s, t ∈ TD, if s is such that Ps ⊆ Pt ∩ Qt and
Pt ∪Qt ⊆ Qs, then s ≤T t, t′. We shall need to account for this possibility in the derivation of a logic
for X in Section 3.2 (see Definition 3.27 in particular).

Henceforth, for TD we shall denote meet by ∗ and join by + (and correspondingly, we denote
∧

by∏
and

∨
by

∑
), so that (TD,+, ∗, ′) is an algebra of type F . With the partial order ≤T , we then have

a bounded r-algebra (TD, +, ∗, ′,0,1,≤T ) of type F .

Definition 3.20. Let D be a non-empty set, let D0 be an admissible set of observations about D and
let d0 and d1 exist in D. A disposition is a triple D = (D,D0,T), where T = (TD, +, ∗, ′,0,1,≤T ) is
a bounded r-algebra such that

i) D is the topped
⋂

-structure on D formed by closing D0 under non-empty intersections

ii) TD is the corresponding set of D-surrogates

iii) ≤T is the truth-order, ∗ and + represent the meet and join operations with respect to ≤T , and ′

is a unary operation on TD such that for any t = (Pt, Qt) ∈ TD, t′ = (Qt, Pt).

3.2 A Logic of Disposition

Let us presuppose a disposition D = (D,D0,T), where T = (TD,+, ∗, ′,0,1,≤T ) as in Definition
3.20. Given the sentence algebra (X,F ) of type F over X0, we may use the reference assignment v
to derive the order ≤X and Alexandroff topology ΩX on X from T as described in Section 2.2.2. By
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including a sheaf H of T-simulations, we then form the ordered r-algebraic space (X, H,≤X) of type
F over T.

We shall use T to derive a logic for (X, F ). From [12], the principle constituent of a system of logic
is the relation of consequence, which also distinguishes a logic from an algebra. We therefore com-
mence our development with the notion of consequence. We shall use [12] as a guide, and many
of the definitions and results presented here may be found there, although we have adapted the
notation used to match our conventions.

3.2.1 Logical Consequence

From [12], a consequence function for a logic on a set A of sentences is a function Cn : P(A) → P(A)
that associates a set U of sentences with a set Cn(U), the logical consequences of U , and induces an
equivalence relation 'Cn on A such that for any x, y ∈ A we have

x 'Cn y if and only if Cn({x}) = Cn({y})

which extends to arbitrary subsets S and T of A as

S 'Cn T if and only if Cn(S) = Cn(T )

When we combine Cn with an algebra of a specified type, we obtain a prelogic. If Cn satisfies certain
additional conditions, we obtain a logic. Definition 3.21 is adapted from Definitions 3.2(ii), 3.3(i) and
3.7 in [12].

Definition 3.21. Let F be a language of algebras.

1. A prelogic of type F is a pair (A, Cn) where A is an algebra of type F and Cn : P(A) → P(A)
is a set-to-set function. We denote the prelogic by L−A and call A the algebra of sentences of L−A,
Cn the consequence function of L−A and 'Cn the logical equivalence on L−A, also denoted by ↔.
If Cn satisfies the conditions

L1: For any U ⊆ A, U ⊆ Cn(U)

L2: For any U ⊆ A, Cn(Cn(U)) ⊆ Cn(U)

L3: For any U, V ⊆ A, U ⊆ V ⇒ Cn(U) ⊆ Cn(V )

then (A, Cn) is a logic of type F , denoted by LA. For x ∈ A, x is a logical consequence of U ⊆ A
if x ∈ Cn(U), and we write U `LA

x. The set of theorems of LA is given by Th(LA) = Cn(∅).

2. Let LA = (A, CA) and LB = (B, CB) be two logics of type F , and let f : A −→ B be a homo-
morphism from A to B.

i) If f maps A into (onto) B, then f is a weak homomorphism of LA into (onto) LB if for
any U ⊆ A, CA(U) ⊆ f←(CB(f(U))), and a strong homomorphism of LA into (onto) LB if
CA(U) = f←(CB(f(U))).

ii) If f is an epimorphism from A to B, then LB is a weak (strong) homomorphic image of LA

if f is a weak (strong) homomorphism of LA onto LB .

iii) If f is an isomorphism from A to B, then f is an isomorphism of LA to LB if it is a strong
homomorphism of LA onto LB .
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From Conditions L1 and L3, Cn(U) ⊆ Cn(Cn(U)), and in conjunction with Condition L2 we have
Cn(U) = Cn(Cn(U)). Thus we recognise in Definition 3.21 the conditions of Definition 3.3, which
allows us to use a closure operator on X as a consequence function.

Let Cn be a consequence function for the algebra (X,F ) of sentences, so that LX = (X, Cn) is a logic
of type F . We would like Cn to preserve the degree of disposition in the sense that for any U ⊆ X
and x ∈ X ,

U `LX
x if and only if ∀u ∈ [X0 −→ TD].∀t ∈ TD.[∀y ∈ U.[t ≤T u(y)] ⇒ t ≤T u(x)]

(compare the identity (5) in [16]). One means of accomplishing this preservation is to fix a topped⋂
-structure CT on TD and then define `LX

to be such that

U `LX x if and only if ∀u ∈ [X0 −→ TD].[u(x) ∈ CT (u(U))]

where CT is the closure operator on TD induced by CT (compare p204 in [12]; see also the statement
(5.2) in [17]). Intuitively, for any U ⊆ X we could then set Cn(U) = {x ∈ X | U `LX

x}.

For work we have yet to complete, we shall require that Cn should be an algebraic closure operator.
Recall the notion of a directed set from Definition 2.13. Where this is applied to a non-empty family
of sets, we have a directed family of sets in which the directed joins are referred to as directed unions.
Definitions 3.22, 3.23 and Theorem 3.24 are respectively based on Definitions 7.10, 7.12 and Theorem
7.14 in [13]. The proof of Theorem 3.24 is supplied in [13] and so we omit it here.

Definition 3.22. Let A be a non-empty family of subsets of a non-empty set A. The family A is
closed under directed unions if

⋃
i∈I Ai ∈ A for any directed family {Ai}i∈I in A. It is an algebraic⋂

-structure if

i)
⋂

i∈I Ai ∈ A for any non-empty family {Ai}i∈I in A
ii)

⋃
i∈I Ai ∈ A for any directed family {Ai}i∈I in A

An algebraic
⋂

-structure A on a set A is thus an
⋂

-structure on A that is closed under directed
unions. Intuitively, a topped algebraic

⋂
-structure on A is an algebraic

⋂
-structure A on A with

A ∈ A.

Definition 3.23. A closure operator C on a set A is algebraic if, for all U ⊆ A,

C(U) =
⋃
{C(V ) | V ⊆ U and V is finite}

Theorem 3.24. Let C be a closure operator on a set A, and letAC be the associated topped
⋂

-structure. Then
the following are equivalent:

i) C is an algebraic closure operator

ii) for every directed family {Ai}i∈I of subsets of A,

C(
⋃

i∈I

Ai) =
⋃

i∈I

C(Ai)

iii) AC is an algebraic
⋂

-structure

From Definition 2.20 in [13], we have the following.
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Definition 3.25. Let (A,≤) be a lattice. A non-empty subset B of A is called a filter (of A) if

i) x, y ∈ B implies x ∧ y ∈ B

ii) x ∈ B, y ∈ A and x ≤ y imply y ∈ B

The set of all filters of A is denoted by F(A) and carries the usual inclusion order.

Proposition 3.26. Let (A,≤) be a lattice. Then F(A) is a topped algebraic
⋂

-structure on A.

Proof. Let {Bi}i∈I be a non-empty family of filters of A, and let B =
⋂

i∈I Bi. Applying Definition
3.25, we then have

x, y ∈ B ⇒ ∀i ∈ I.[x, y ∈ Bi] ⇒ ∀i ∈ I.[x ∧ y ∈ Bi] ⇒ x ∧ y ∈
⋂

i∈I

Bi ⇒ x ∧ y ∈ B

Next, suppose that x ∈ B, y ∈ A and x ≤ y. Applying Definition 3.25 once more, we then have

x ∈ B ⇒ ∀i ∈ I.[x ∈ Bi] ⇒ ∀i ∈ I.[y ∈ Bi] ⇒ y ∈
⋂

i∈I

Bi ⇒ y ∈ B

so that B is also a filter. Now let B = {Bi}i∈I be a directed family of filters of A, and let B =
⋃

i∈I Bi.
For any x, y ∈ B, there are Bi, Bj ∈ B with x ∈ Bi and y ∈ Bj . Since B is directed, there is Bk ∈ B
with Bi, Bj ⊆ Bk. It follows that x, y, x ∧ y ∈ Bk and hence x ∧ y ∈ B also. For any x ∈ B, there is
Bi ∈ B with x ∈ Bi, and for any y ∈ A with x ≤ y, y ∈ Bi also, and consequently y ∈ B. Hence B
is also a filter. Trivially, A ∈ F(A), and it follows from Definition 3.22 that F(A) is a topped algebraic⋂

-structure on A.

We shall use the set F(TD) of filters of TD to define a closure operator on TD as follows.

Definition 3.27. Let CF : P(TD) −→ P(TD) : U 7→ ⋂{V ∈ F(TD) | U ⊆ V }. We define the map
CT : P(TD) −→ P(TD) to be such that for any U ⊆ TD,

CT (U) =
{

TD if for some t ∈ TD, t and t′ are both in CF (U)
CF (U) otherwise

Proposition 3.28. The map CT is an algebraic closure operator on TD.

Proof. We show first that CT satisfies Conditions CL1–CL3 of Definition 3.3.

(CL1). For any U ⊆ TD, if t, t′ ∈ CF (U) for some t ∈ TD then CT (U) = TD and U ⊆ CT (U).
Otherwise, CT (U) = CF (U) and by Proposition 3.26, U ⊆ CF (U).

(CL2). For any U, V ⊆ TD with U ⊆ V , if t, t′ ∈ CF (V ) for some t ∈ TD, then CT (V ) = TD and
trivially CT (U) ⊆ CT (V ). If t, t′ ∈ CF (U) for some t ∈ TD, then since CF (U) ⊆ CF (V )
by Proposition 3.26, it follows that CT (U) = CT (V ) = TD and again CT (U) ⊆ CT (V ).
Otherwise, by Proposition 3.26 we have CT (U) = CF (U) ⊆ CF (V ) = CT (V ).

(CL3). For any U ⊆ TD, if t, t′ ∈ CF (U) for some t ∈ TD, CT (CT (U)) = CT (TD) = TD = CT (U). If
not, CT (CT (U)) = CT (CF (U)) = CF (CF (U)) = CF (U) = CT (U), by Proposition 3.26.



48 CHAPTER 3. DISPOSITION AND LOGIC

Hence CT is a closure operator on TD. Let T = {Ti}i∈I be a directed family of subsets of TD.
For any i ∈ I , either CT (Ti) = TD or CT (Ti) = CF (Ti), and hence either

⋃
i∈I CT (Ti) = TD or⋃

i∈I CT (Ti) =
⋃

i∈I CF (Ti). By Proposition 3.26 and Theorem 3.24,
⋃

i∈I CF (Ti) = CF (
⋃

i∈I Ti),
which is a closed set, and it follows that

⋃
i∈I CT (Ti) is also a closed set. Trivially,

∀i ∈ I.[Ti ⊆
⋃

i∈I

Ti] ⇒ ∀i ∈ I.[CT (Ti) ⊆ CT (
⋃

i∈I Ti)] ⇒
⋃

i∈I

CT (Ti) ⊆ CT (
⋃

i∈I

Ti) and also

∀i ∈ I.[Ti ⊆ CT (Ti)] ⇒ ⋃
i∈I Ti ⊆

⋃
i∈I CT (Ti) ⇒ CT (

⋃

i∈I

Ti) ⊆ CT (
⋃

i∈I

CT (Ti))

and because CT (
⋃

i∈I CT (Ti)) =
⋃

i∈I CT (Ti), we then have CT (
⋃

i∈I Ti) =
⋃

i∈I CT (Ti). By Theorem
3.24, CT is then an algebraic closure operator on TD.

From Definition 3.21, (T, CT ) is a logic. The next result is then a useful consequence of Definition
3.27.

Proposition 3.29. For any U ⊆ TD, CT (U) = TD if and only if
∏

U ↔ 0.

Proof. (⇒). From Definition 3.27, for any U ⊆ TD, CF (U) = ↑ (
∏

U) = CF ({∏U}) since TD is a
complete lattice. If CT (U) = TD, we must then have t, t′ ∈ ↑(∏U) for some t ∈ TD. It follows that
CT ({∏ U}) = TD = CT ({0}), and hence

∏
U ↔ 0.

(⇐). If
∏

U ↔ 0, then CT ({∏ U}) = TD, and so t, t′ ∈ CF ({∏U}) for some t ∈ TD. It follows that
t, t′ ∈ CF (U) also, and hence CT (U) = TD.

Let V = [X0 −→ TD]. We now define our putative consequence function Cn as follows.

Definition 3.30. We define the set-to-set function Cn : P(X) −→ P(X) to be such that for any U ⊆ X ,

Cn(U) = {x ∈ X | ∀u ∈ V.[u(x) ∈ CT (u(U))]}

The next result is a useful consequence of Definitions 3.27 and 3.30.

Lemma 3.31. For any U ⊆ X and any u ∈ V, CT (u(Cn(U))) ⊆ CT (u(U)).

Proof. Let U be a subset of X . For any u ∈ Vwe have

x ∈ Cn(U) ⇒ u(x) ∈ CT (u(U)) (Definition 3.30)
⇒ u(Cn(U)) ⊆ CT (u(U)) (u(Cn(U)) = {u(x) | x ∈ Cn(U)})
⇒ CT (u(Cn(U))) ⊆ CT (CT (u(U))) = CT (u(U)) (since CT is a closure operator)

which gives us the result, as required.

Proposition 3.32. The set-to-set function Cn is an algebraic closure operator on X .

Proof. We show first that Cn satisfies Conditions CL1–CL3 of Definition 3.3.

(CL1). For any x ∈ U and any u ∈ V, u(x) ∈ u(U), and hence u(x) ∈ CT (u(U)). It follows that for
any U ⊆ X , U ⊆ Cn(U).
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(CL2). For U, V ⊆ X , suppose that U ⊆ V . Then

x ∈ Cn(U) ⇒ ∀u ∈ V.[u(x) ∈ CT (u(U))]
⇒ ∀u ∈ V.[u(x) ∈ CT (u(V ))] (property of CT )
⇒ x ∈ Cn(V )

so that Cn(U) ⊆ Cn(V ).

(CL3). By CL1, Cn(U) ⊆ Cn(Cn(U)). For any x ∈ X ,

x ∈ Cn(Cn(U)) ⇒ ∀u ∈ V.[u(x) ∈ CT (u(Cn(U)))]
⇒ ∀u ∈ V.[u(x) ∈ CT (u(U))] (Lemma 3.31)
⇒ x ∈ Cn(U)

Thus Cn(Cn(U)) ⊆ Cn(U), so that Cn(U) = Cn(Cn(U)).

Hence Cn is a closure operator on X . Now let X = {Xi}i∈I be a directed family of subsets of X . For
any x ∈ X ,

x ∈ Cn(
⋃

i∈I

Cn(Xi))

⇒ ∀u ∈ V.[u(x) ∈ CT (u(
⋃

i∈I

Cn(Xi)))]

⇒ ∀u ∈ V.[u(x) ∈ CT (
⋃

i∈I

u(Cn(Xi)))]

⇒ ∀u ∈ V.[u(x) ∈
⋃

i∈I

CT (u(Cn(Xi)))] (since {u(Cn(Xi))}i∈I is directed and CT is algebraic)

⇒ ∀u ∈ V.[u(x) ∈
⋃

i∈I

CT (u(Xi))] (Lemma 3.31)

⇒ x ∈
⋃

i∈I

Cn(Xi) (Definition 3.30)

and hence Cn(
⋃

i∈I Cn(Xi)) ⊆
⋃

i∈I Cn(Xi). By CL1 of Definition 3.3,
⋃

i∈I Cn(Xi) ⊆ Cn(
⋃

i∈I Cn(Xi)),
and it follows that Cn(

⋃
i∈I Cn(Xi)) =

⋃
i∈I Cn(Xi), so that

⋃
i∈I Cn(Xi) is a closed set. Trivially,

∀i ∈ I.[Xi ⊆
⋃

i∈I

Xi] ⇒ ∀i ∈ I.[Cn(Xi) ⊆ Cn(
⋃

i∈I Xi)] ⇒
⋃

i∈I

Cn(Xi) ⊆ Cn(
⋃

i∈I

Xi) and also

∀i ∈ I.[Xi ⊆ Cn(Xi)] ⇒ ⋃
i∈I Xi ⊆

⋃
i∈I Cn(Xi) ⇒ Cn(

⋃

i∈I

Xi) ⊆ Cn(
⋃

i∈I

Cn(Xi))

so that Cn(
⋃

i∈I Xi) ⊆ Cn(
⋃

i∈I Cn(Xi)) =
⋃

i∈I Cn(Xi), and hence Cn(
⋃

i∈I Xi) =
⋃

i∈I Cn(Xi). By
Theorem 3.24, Cn is then an algebraic closure operator on X .

Because Cn is a closure operator on X , we may use it as the consequence function of our logic LX .

Proposition 3.33. For any U ⊆ X , Cn(U) = X if and only if for every u ∈ V, CT (u(U)) = TD.

Proof. (⇒). Let U ⊆ X be such that Cn(U) = X . Then for any x ∈ X , x, x′ ∈ Cn(U). But then

x, x′ ∈ Cn(U) ⇒ ∀u ∈ V.[u(x), u(x′) ∈ CT (u(U))] (Definition 3.30)
⇒ ∀u ∈ V.∃t ∈ TD.[t, t′ ∈ CT (u(U))] (use t = u(x))
⇒ ∀u ∈ V.[CT (u(U)) = TD] (Definition 3.27)

(⇐). This follows directly from the definitions of CT and Cn.
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From Definition 2.4(iv) in [12], given a logic LA = (A, Cn), two sentences x, y ∈ A are logically
equivalent, written x ↔ y, if each is a logical consequence of the other. From Definition 3.21, we then
have the following result (compare also Example 3.9(iv) in [12]).

Proposition 3.34. Let LA = (A, Cn) be a logic. For any x, y ∈ A,

x ↔ y if and only if x ∈ Cn({y}) and y ∈ Cn({x})

Proof. Let x, y ∈ A. If x ↔ y then Cn({x}) = Cn({y}). By Condition L1 of Definition 3.21 we have
x ∈ Cn({x}) and y ∈ Cn({y}), so x ∈ Cn({y}) and also y ∈ Cn({x}). For the reverse direction,

x ∈ Cn({y}) ⇒ Cn({x}) ⊆ Cn(Cn({y})) ⊆ Cn({y})

by Condition L2 of Definition 3.21. Similarly, interchanging x and y gives Cn({y}) ⊆ Cn({x}), from
which it follows that Cn({x}) = Cn({y}), and hence that x ↔ y.

Within LX = (X, Cn), the consequence function Cn can thus be thought of as imposing a logical
structure on the given set X of sentences. With respect to this structure, if for any x, y ∈ X we
have x ↔ y, then x does not convey any more information than y, and so we may think of x and y
as representing the same sentence in X . Consequently, we may partition X by logical equivalence,
taking x ≈ y if and only if x ↔ y, and henceforth we assume that X contains only sentences that are
logically distinct.

At this point we can do little with LX since we have yet to specify any logical operations that we can
carry out within it. In the sub-sections to follow, we remedy this omission, beginning with negation
and concluding with conjunction and disjunction. As part of our treatment of negation we consider
the related aspect of contradiction and we discuss how one sentence might be compatible with a
given set of sentences.

3.2.2 Negation and Contradiction

Contradiction plays an important role in the defining the idea of negation within a logic. From [12], it
is characteristic of contradiction in logics such as classical and intuitionistic logic that any proposition
follows from a contradiction.

We first observe the following result.

Proposition 3.35. Within X = (X, +, ∗, ′), the operation ′ is an involution on X .

Proof. For any x, y ∈ X ,

x ≤0 y ⇒ ∀U ∈ ΩX | x, y ∈ U.[∀u ∈ Wx,U ∪Wy,U .[u(x) ≤T u(y)]] (from Definition 2.31)
⇒ ∀U ∈ ΩX | x, y ∈ U.[∀u ∈ Wx,U ∪Wy,U .[u(y′) ≤T u(x′)]] (property of involution)
⇒ y′ ≤0 x′

From Definition 2.31,

x ≤X y ⇒ ∃x1, x2, . . . , xn ∈ X.[x ≤0 x1 ≤0 x2 ≤0 . . . ≤0 xn ≤0 y]
⇒ ∃x1, x2, . . . , xn ∈ X.[y′ ≤0 x′n ≤0 x′n−1 ≤0 . . . ≤0 x′1 ≤0 x′]
⇒ y′ ≤X x′

Because ′ was defined such that x′′ = x, by Definition 3.18 ′ is then an involution.
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From p115 in [12], we have the following.

Definition 3.36. Let LA = (A, Cn) be a logic of type F . An element 0A ∈ A is a contradiction if
Cn({0A}) = A. An element 1A ∈ A is called theoremhood if for any x ∈ A, 1A ∈ Cn({x}).

To cater for theoremhood and contradiction in LX = (X, Cn), we extend the set X0 of primitives to
contain the elements 0X and 1X . For any w ∈ Vwe define w(0X) = 0 and w(1X) = 1.

Lemma 3.37. For any x ∈ X , 0X ≤X x ≤X 1X .

Proof. This follows directly from Definition 2.31 by observing that T = (TD,+, ∗, ′,0,1,≤T ) is a
bounded r-algebra.

Observe that from Lemma 3.37, 0′X = 1X and 1′X = 0X .

Proposition 3.38. Within LX = (X, Cn), 0X is a contradiction and 1X is theoremhood.

Proof. For any u ∈ V, u(0X) = 0, and hence CT ({u(0X)}) = TD. By Proposition 3.33, Cn({0X}) = X
and hence 0X is a contradiction in LX . Similarly, for any x ∈ X we have

∀u ∈ V.[1 ∈ CT ({u(x)})] (Definitions 3.25 and 3.27; ∀t ∈ TD.[t ≤T 1])
⇒ ∀u ∈ V.[u(1X) ∈ CT ({u(x)})]
⇒ 1X ∈ Cn({x}) (Definition 3.30)

and hence 1X is theoremhood in LX .

For any x ∈ X , if Cn({x}) = X then x ↔ 0X (compare Definition 3.21 and Proposition 3.34), and we
may replace any occurrence of x in a sentence or set of sentences by 0X . We will use this observation
without further comment.

Proposition 3.39 may be compared with Theorem 3.9 in [12].

Proposition 3.39. For LX = (X, Cn), let

CX = {Cn(U) | U ⊆ X}, the closed sets of X

TX =
⋂

x∈X

Cn({x})

Then,

i) Every closed set in X is non-empty.

ii) TX =
⋂

U∈CX
U

iii) Th(LX) = TX

iv) Cn({1X}) = Cn(∅)

Proof. (i). By CL2 of Definition 3.3, for any U ⊆ X and any x ∈ U , Cn({x}) ⊆ Cn(U). By Proposition
3.38 and Definition 3.36, for any x ∈ X , 1X ∈ Cn({x}), and it follows then that Cn(U) 6= ∅.

(ii). Trivially, {Cn({x})}x∈X ⊆ CX , so
⋂

U∈CX
U ⊆ ⋂

x∈X Cn({x}) = TX by Lemma 2.22(v) in [13]. By
(i), for any U ∈ CX , there is x ∈ U and hence TX ⊆ Cn({x}) ⊆ Cn(U). It follows that TX ⊆ ⋂

U∈CX
U ,
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and hence TX =
⋂

U∈CX
U .

(iii). From Proposition 3.4, for any U ⊆ X , Cn(U) =
⋂{V ∈ CX | U ⊆ V }. In particular,

Th(LX) = Cn(∅) =
⋂
{V ∈ CX | ∅ ⊆ V } =

⋂

U∈CX

U = TX

(iv). Trivially, Cn({1X}) = {1X} and by (i), for any U ∈ CX , {1X} ⊆ U . It now follows that
Cn(∅) = TX = {1X} = Cn({1X}).

In particular, Proposition 3.39(iv) means that LX has a non-empty set of theorems.

We would like to use the n-ary fundamental operations of (X,F ), where n ≥ 1, as logical operations.
From Definition 3.11 in [12], we have the following.

Definition 3.40. Let LA = (A, Cn) be a logic of type F , and for n ≥ 1 let f ∈ F be an n-ary function
symbol. The fundamental operation fA of A is called a logical operation or connective in LA if it pre-
serves logical equivalence. That is, for any a1, a2, . . . , an, b1, b2, . . . , bn ∈ A, if for all 1 ≤ i ≤ n we have
that ai is logically equivalent to bi, then fA(a1, a2, . . . , an) is logically equivalent to fA(b1, b2, . . . , bn).

Let LA = (A, Cn) be a logic with a unary operation ν. For any x ∈ A, we would like ν(x) to be the
negation of x. Intuitively, for this to be the case, ν must satisfy certain properties. Negation is related
to contradiction by the law of contradiction, which from p115 in [12] may be stated as

N1: For any x ∈ A, Cn({x, ν(x)}) = A

Axiom N1 is too weak for ν to preserve logical equivalence, as required by Definition 3.40. To N1 we
therefore add the following axioms, from p116 in [12]:

N3.1: For any x, y ∈ A and X ⊆ A, x ∈ Cn(X ∪ {y}) implies ν(y) ∈ Cn(X ∪ {ν(x)})

N3.2: For any x, y ∈ A and X ⊆ A, ν(x) ∈ Cn(X ∪ {y}) implies ν(y) ∈ Cn(X ∪ {x})

N3.3: For any x, y ∈ A and X ⊆ A, x ∈ Cn(X ∪ {ν(y)}) implies y ∈ Cn(X ∪ {ν(x)})

The versions of these axioms in which the set variable X is suppressed (effectively by setting X to ∅)
are denoted by N3.10, N3.20 and N3.30. Only Axiom N3.1 is needed for ν to be a logical operation,
as shown by the following result, based on Theorem 4.6 in [12]. In the proof of Theorem 3.41, we
have suppressed the set variable from the notation, so that ν satisfies N3.10 rather than N3.1. This
suppression is permissible because we are proving that ν is a logical rather than a strongly logical
operation (compare Definition 3.11 in [12]).

Theorem 3.41. Let LA = (A, Cn) be a logic with a unary operation ν that satisfies Axiom N3.1. Then ν is a
logical operation.

Proof. For x, y ∈ A we have

x ↔ y ⇒ x ∈ Cn({y}) and y ∈ Cn({x})
⇒ ν(y) ∈ Cn({ν(x)}) and ν(x) ∈ Cn({ν(y)}) (Axiom N3.1 with X = ∅)
⇒ ν(x) ↔ ν(y) (Proposition 3.34)

and so by Definition 3.40, ν is a logical operation.
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Proposition 3.42 and Lemma 3.43 show that ′ may indeed serve as a negation within (X, +, ∗, ′).
Proposition 3.42. Within (X, +, ∗, ′), the operation ′ satisfies Axiom N1.

Proof. This follows directly from Definitions 3.27 and 3.30.

As in the proof of Theorem 3.41, we suppress the set variable in the proof of the next result.

Lemma 3.43. Within (X, +, ∗, ′), the operation ′ satisfies Axioms N3.10, N3.20 and N3.30.

Proof. For any x, y ∈ X ,

x ∈ Cn({y})
⇒ ∀u ∈ V.[u(x) ∈ CT ({u(y)})]
⇒ ∀u ∈ V.[u(y) ≤T u(x)] (since u(y) ↔ 0 or CT ({u(y)}) = CF ({u(y)}) = ↑u(y))
⇒ ∀u ∈ V.[u(x′) ≤T u(y′)] (u(x′) = (u(x))′; property of ′)
⇒ ∀u ∈ V.[u(y′) ∈ CT ({u(x′)})] (since u(x′) ↔ 0 or CT ({u(x′)}) = CF ({u(x′)}) = ↑u(x′))
⇒ y′ ∈ Cn({x′}) (definition of Cn)

and hence ′ satisfies N3.10. Similarly, by substituting x′ for x, we can show that ′ satisfies N3.20,
and by substituting y′ for y, we can show that ′ satisfies N3.30.

We may therefore extend our logic to include the involution ′, so that LX = ((X, ′,0X ,1X), Cn),
where 0X represents contradiction and 1X represents theoremhood in LX .

The next result shows that for LX , for any U ⊆ X it is the case that Cn(U) = X if and only if either
0X ∈ U or there is x ∈ U with x ↔ 0X .

Proposition 3.44. For any U ⊆ X ,

∃x ∈ U.[x ↔ 0X ] if and only if Cn(U) = X

Proof. (⇒). Let U ⊆ X be such that there is x ∈ U with x ↔ 0X . Then since Cn({x}) ⊆ Cn(U) and
Cn({x}) = Cn({0X}) = X , it follows that Cn(U) = X .

(⇐). Let U ⊆ X be such that Cn(U) 6= X . Then, in particular, for no x ∈ U is it the case that
Cn({x}) = X , and hence there does not exist x ∈ U with x ↔ 0X .

From Cn, we have the notion that a sentence x is compatible with a given set U ⊆ X of sentences.
Definition 3.45 may be compared with Definition 3.12 in [36].

Definition 3.45. Let x ∈ X be a sentence. A set U ⊆ X is x-compatible if x′ 6∈ Cn(U). It is a
maximal x-compatible set if it is x-compatible and for any other V ⊆ X with U ⊂ V , x′ ∈ Cn(V ).

Proposition 3.46 is based on Theorem 4.8 in [12] and makes the role of x-compatibility clearer. The
proof is given in [12], so we will not restate it here.

Proposition 3.46. Let LX = ((X, ′,0X ,1X), Cn) be a logic in which 0X is a contradiction, 1X is theorem-
hood and ′ satisfies Axiom N1. Then LX satisfies

N4: For any x ∈ X and U ⊆ X , 0X ∈ Cn(U ∪ {x}) if and only if x′ ∈ Cn(U)
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if and only if ′ satisfies Axioms N3.1 and N3.2.

Now suppose that V0 ⊆ U is an x-compatible set of sentences, for x ∈ X . We need V ⊆ U such that
V0 ⊆ V and V is a maximal x-compatible set. To show that such an element exists, we appeal to
Zorn’s Lemma in the form of the following statement (see Definition 10.2 in [13]):

Let P be a non-empty ordered set in which every non-empty chain has an upper bound.
Then P has a maximal element.

This statement may specialised to families of sets as follows:

Let A be a non-empty family of sets such that
⋃

i∈I Ai ∈ A whenever {Ai}i∈I is a non-
empty chain in (A,⊆). Then A has a maximal element.

Let V = {V ⊆ U | V0 ⊆ V and V is x-compatible}. Then V0 ∈ V so V 6= ∅. Let Vc = {Vi}i∈I be a non-
empty chain in V , and let Vc =

⋃
i∈I Vi. Since Vc is directed, Cn(Vc) = Cn(

⋃
i∈I Vi) =

⋃
i∈I Cn(Vi)

because Cn is algebraic. Since each Vi is x-compatible, so is Vc and hence Vc ∈ V . Since Vc was
arbitrary, it follows that any non-empty chain in V has an upper bound in V and by Zorn’s Lemma,
V then contains a maximal element. This establishes the following result (compare Lemma 3.13 in
[36]).

Proposition 3.47. For the logic LX = (X, Cn), let U ⊆ X be a set of sentences, let x ∈ X be a sentence and
let V ⊆ U be an x-compatible set of sentences. Then V is contained in a maximal x-compatible subset of U .

Remark 3.48. In Definition 3.12 and Lemma 3.13 of [36], the authors describe x-compatibility in
terms of fallbacks, and hence in terms of deductively closed sets. Definition 3.45 and Proposition
3.47 are effectively expressed in terms of belief bases.

In the next section, we set out the formal requirements for conjunction and disjunction as we have
just done for negation.

3.2.3 Conjunction and Disjunction

As a notational convention, let Pf (Y ) denote the family of finite subsets of a set Y . Definition 3.49 is
adapted from the axioms presented on p118 in [12].

Definition 3.49. Let LA = (A, Cn) be a logic of type F . We take conjunction π and disjunction σ in
LA to be functions such that for each non-empty subset U ∈ Pf (A), π(U) and σ(U) are sentences in
A. For any S, T ∈ P(A) and any non-empty U ∈ Pf (A), π and σ have the properties

Cn1: For any x ∈ A, x ∈ U implies that x ∈ Cn(S ∪ {π(U)})
Cn2: If for all x ∈ U we have x ∈ Cn(S ∪ T ), then also π(U) ∈ Cn(S ∪ T )

Dn1: For any x ∈ A, x ∈ U implies that σ(U) ∈ Cn(S ∪ {x})
Dn2: For any y ∈ A, if y is such that for all x ∈ U , y ∈ Cn(S ∪{x}), then y ∈ Cn(S ∪{σ(U)})

An operation that satisfies Cn1 and Cn2 is called a normal conjunction (on A) . Similarly, an opera-
tion that satisfies Dn1 and Dn2 is called a normal disjunction (on A) .
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As defined, π and σ operate on finite sets. We would like to replace them with the binary operations
∗ and + in the algebra X of sentences of our logic LX . To do this, we first need the following results.
Lemma 3.50 is adapted from Theorem 3.7 in [12], while Lemma 3.51 and Corollary 3.52 are adapted
from Corollaries 4.10 and 4.11 in [12]. The proofs of Lemmas 3.50 and 3.51 follow by definition-
chasing, and Corollary 3.52 then follows by application of Lemmas 3.50 and 3.51, so we will omit the
proofs here.

Lemma 3.50. Let LA = (A, Cn) be a logic. Then for any S, T ⊆ A,

Cn(S ∪ T ) = Cn(S ∪ Cn(T )) = Cn(Cn(S) ∪ Cn(T ))

Lemma 3.51. Let LA = (A, Cn) be a logic with normal conjunction π and normal disjunction σ. Then for
all S, T ∈ P(A) and non-empty U ∈ Pf (A),

i) Cn({π(U)}) = Cn(U)

ii) Cn(S ∪ {σ(U)}) =
⋂

x∈U Cn(S ∪ {x})
Corollary 3.52. Let LA = (A, Cn) be a logic with normal conjunction π and normal disjunction σ. Then for
all non-empty S, T ∈ Pf (A),

i) π(S ∪ T ) and π({π(S), π(T )}) are logically equivalent.

ii) σ(S ∪ T ) and σ({σ(S), σ(T )}) are logically equivalent.

For any non-empty finite subset U = {xi}i∈I of X , let us define
∏

U , x1 ∗ x2 ∗ . . . ∗ xn

∑
U , x1 + x2 + . . . + xn

Proposition 3.53. Within the logic LX = (X, Cn), the operations
∏

and
∑

are respectively a normal
conjunction and a normal disjunction on X .

Proof. Let U = {xi}i∈I be a non-empty finite subset of X . For any x ∈ U we have

∀u ∈ V.[u(
∏

U) ≤T u(x)] (since u(
∏

U) = u(x1) ∗ u(x2) ∗ . . . ∗ u(xn))

⇒ ∀u ∈ V.[u(x) ∈ CT ({u(
∏

U)})] (property of CT )

⇒ x ∈ Cn({
∏

U}) (Definition 3.30)

⇒ x ∈ Cn(S ∪ {
∏

U}) (property CL2 of Definition 3.3)

and hence
∏

satisfies Cn1. Similarly, for any S, T ⊆ X ,

∀x ∈ U.[x ∈ Cn(S ∪ T )]
⇒ ∀u ∈ V.[u(x1), . . . , u(xn) ∈ CT ({u(S ∪ T )})] (Definition 3.30)
⇒ ∀u ∈ V.[u(x1) ∗ . . . ∗ u(xn) ∈ CT ({u(S ∪ T )})] (property of CT )
⇒ ∀u ∈ V.[u(

∏
U) ∈ CT ({u(S ∪ T )})]

⇒
∏

U ∈ Cn(S ∪ T ) (Definition 3.30)

and hence
∏

satisfies Cn2. For any S ⊆ X and x ∈ U ,

∀u ∈ V.[u(x) ≤T u(
∑

U)] (since u(
∑

U) = u(x1) + . . . + u(xn))
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⇒ ∀u ∈ V.[u(
∑

U) ∈ CT ({u(x)})] (property of CT )

⇒
∑

U ∈ Cn({x}) (Definition 3.30)

⇒
∑

U ∈ Cn(S ∪ {x}) (property CL2 of Definition 3.3)

and hence
∑

satisfies Dn1. Finally, for any y ∈ X ,

y ∈
⋂

x∈U

Cn(S ∪ {x}) ⇒ ∀x ∈ U.∀u ∈ V.[u(y) ∈ CT (u(S ∪ {x}))] (Definition 3.30)

⇒ ∀u ∈ V.[u(y) ∈
⋂

x∈U

CT (u(S ∪ {x}))]

For any x ∈ U and u ∈ V, u(S ∪ {x}) = u(S) ∪ {u(x)}. From Definition 3.27 we then have that
CF (u(S ∪{x})) = CF (u(S)∪{u(x)}). Denoting

∑
and

∏
in T respectively by

∨
and

∧
, and writing

tS =
∧

u(S), tx = u(x) and ty = u(y), we then have that CF (u(S ∪ {x})) = ↑ (tS ∗ tx). If now
CT (u(S ∪ {x})) = TD, then (tS ∗ tx) ↔ 0 by Proposition 3.29, and so ty ∈ ↑(tS ∗ tx). Otherwise,
CT (u(S ∪ {x})) = ↑(tS ∗ tx) and again ty ∈ ↑(tS ∗ tx). Hence,

∀u ∈ V.[u(y) ∈
⋂

x∈U

CT (u(S ∪ {x}))]

⇒ ∀u ∈ V.[ty ∈
⋂

x∈U

↑(tS ∗ tx)]

⇒ ∀u ∈ V.∀x ∈ U.[(tS ∗ tx) ≤T ty] (property of up set)
⇒ ∀u ∈ V.[

∨

x∈U

(tS ∗ tx) ≤T ty] (property of least upper bound)

⇒ ∀u ∈ V.[tS ∧ (
∨

x∈U

tx) ≤T ty] (since TD is distributive, Proposition 3.17)

⇒ ∀u ∈ V.[ty ∈ ↑(tS ∧ (
∨

x∈U

tx))] (property of up set)

⇒ ∀u ∈ V.[u(y) ∈ CT (u(S ∪ {
∑

U}))] (Definition 3.27)

⇒ y ∈ Cn(S ∪ {
∑

U}) (Definition 3.30)

and hence
∑

satisfies Dn2. Taken together, it follows from Definition 3.49 that
∏

and
∑

are respec-
tively normal conjunction and normal disjunction on X .

Proposition 3.54. The operations ∗ and + are logical connectives in the logic LX = (X, Cn).

Proof. For any x, y ∈ X we have x ∗ y =
∏{x, y}, and so Cn({x ∗ y}) = Cn({∏{x, y}}). Suppose that

x ↔ a and y ↔ b, for a, b ∈ X . Then

Cn({x ∗ y}) = Cn({
∏
{x, y}}) (since x ∗ y =

∏{x, y})
= Cn({x, y}) (by Lemma 3.51)
= Cn(Cn({x}) ∪ Cn({y})) (by Lemma 3.50)
= Cn(Cn({a}) ∪ Cn({b})) (since x ↔ a and y ↔ b)
= Cn({a, b}) (by Lemma 3.50)
= Cn({

∏
{a, b}}) (by Lemma 3.51)

= Cn({a ∗ b})

from which it follows that ∗ is a logical connective in LX . Similarly, for any S ⊆ X ,

Cn(S ∪ {x + y}) = Cn(S ∪ {
∑

{x, y}}) (since x + y =
∑{x, y})
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= Cn(S ∪ {x}) ∩ Cn(S ∪ {y}) (by Lemma 3.51)
= Cn(S ∪ Cn({x})) ∩ Cn(S ∪ Cn({y})) (by Lemma 3.50)
= Cn(S ∪ Cn({a})) ∩ Cn(S ∪ Cn({b})) (since x ↔ a and y ↔ b)
= Cn(S ∪ {a}) ∩ Cn(S ∪ {b}) (by Lemma 3.50)
= Cn(S ∪ {

∑
{a, b}}) (by Lemma 3.51)

= Cn(S ∪ {a + b})
and hence + is a logical connective in LX .

We now have a logic LX = ((X, +, ∗, ′,0X ,1X), Cn).

Recall from Section 3.2.1 that for x, y ∈ X , we write x ≈ y to mean x ↔ y. Proposition 3.55 may be
compared to Theorem 4.15(iv) in [12].

Proposition 3.55. Within the logic LX = ((X, +, ∗, ′,0X ,1X), Cn), x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z) for any
x, y, z ∈ X .

Proof. For any x, y, z ∈ X ,

Cn({x ∗ (y + z)}) = Cn({
∏
{x, y + z}})

= Cn({x, y + z}) (Lemma 3.51(i))
= Cn({x, y}) ∩ Cn({x, z}) (Lemma 3.51(ii) with S = {x})
= Cn({x ∗ y}) ∩ Cn({x ∗ z}) (Lemma 3.51(i))
= Cn({(x ∗ y) + (x ∗ z)}) (Lemma 3.51(ii))

so that x ∗ (y + z) and (x ∗ y) + (x ∗ z) are logically equivalent, and hence x ∗ (y + z) ≈ (x ∗ y) + (x ∗ z)
as required.

Thus, given a sentence in conjunctive normal form (i.e. as a conjunction of disjuncts), we can expand
the conjunctions as prescribed by the distributive law for lattices (see Definition 4.4(i) in [13]) and
equivalently rewrite the sentence in disjunctive normal form (i.e. as a disjunction of conjuncts).

Proposition 3.56 captures the familiar absorption laws for lattices (see Theorem 2.9 in [13]; compare
also Theorem 4.15(iv) in [12]).

Proposition 3.56. Within the logic LX = ((X, +, ∗, ′,0X ,1X), Cn),

i) x ≈ x ∗ (x + y)

ii) x ≈ x + x ∗ y

for any x, y ∈ X .

Proof. Since TD is a lattice, we may apply the absorption laws of Theorem 2.9 in [13]. Thus for any
valuation w over {x, y},

w(x ∗ (x + y)) = w(x) ∗ w(x + y) = w(x) ∗ (w(x) + w(y)) = w(x)

from which we can derive (i), and similarly

w(x + x ∗ y) = w(x) + w(x) ∗ w(y) = w(x)

from which we can derive (ii).
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A set U ⊆ X is taken to be consistent if Cn(U) 6= X (compare Definition 3.9(ii) and p115 in [12], and
also Sections 1.2.1 and 1.2.3). Equivalently, from Proposition 3.44, Proposition 3.42 and Corollary 3.57
below, U is consistent if for any x ∈ U , it is not the case that x′ ∈ U as well.

Corollary 3.57. Within the logic LX = ((X, +, ∗, ′,0X ,1X), Cn), for any x ∈ X , x ∗ x′ ↔ 0X .

Proof. By Definitions 3.27 and 3.30 and Lemma 3.51 we have

Cn({x ∗ x′}) = Cn({x, x′}) = X = Cn({0X})
and hence x ∗ x′ ↔ 0X .

Theorem 3.58 captures the familiar de Morgan Laws, as applied to LX .

Theorem 3.58. For the logic LX = ((X, +, ∗, ′,0X ,1X), Cn), let x, y ∈ X be any two sentences. Then,

i) (x + y)′ ≈ x′ ∗ y′

ii) x′ + y′ ≈ (x ∗ y)′

Proof. Both results follow readily from the properties of +, ∗ and ′. For any x, y ∈ X ,

∀u ∈ V.[u(x) ≤T u(x + y) and u(y) ≤T u(x + y)] (property of + in T)
⇒ ∀u ∈ V.[u((x + y)′) ≤T u(x′) and u((x + y)′) ≤T u(y′)] (property of ′ in T)
⇒ ∀u ∈ V.[u((x + y)′) ≤T u(x′ ∗ y′)] (property of ∗ in T)
⇒ ∀u ∈ V.[u(x′ ∗ y′) ∈ CT ({u((x + y)′)})] (property of CT )
⇒ x′ ∗ y′ ∈ Cn({(x + y)′}) (Definition 3.30)

We also have

∀u ∈ V.[u(x′ ∗ y′) ≤T u(x′) and u(x′ ∗ y′) ≤T u(y′)] (property of ∗ in T)
⇒ ∀u ∈ V.[u(x) ≤T u((x′ ∗ y′)′) and u(y) ≤T u((x′ ∗ y′)′)] (property of ′ in T)
⇒ ∀u ∈ V.[u(x + y) ≤T u((x′ ∗ y′)′)] (property of + in T)
⇒ ∀u ∈ V.[u(x′ ∗ y′) ≤T u((x + y)′)] (property of ′ in T)
⇒ ∀u ∈ V.[u((x + y)′) ∈ CT ({u(x′ ∗ y′)})] (property of CT )
⇒ (x + y)′ ∈ Cn({x′ ∗ y′}) (Definition 3.30)

By Proposition 3.34, we then have that (x + y)′ ≈ x′ ∗ y′. Similarly,

∀u ∈ V.[u(x ∗ y) ≤T u(x) and u(x ∗ y) ≤T u(y)]
⇒ ∀u ∈ V.[u(x′) ≤T u((x ∗ y)′) and u(y′) ≤T u((x ∗ y)′)]
⇒ ∀u ∈ V.[u(x′ + y′) ≤T u((x ∗ y)′)]
⇒ ∀u ∈ V.[u((x ∗ y)′) ∈ CT ({u(x′ + y′)})]
⇒ (x ∗ y)′ ∈ Cn({x′ + y′})

and

∀u ∈ V.[u(x′) ≤T u(x′ + y′) and u(y′) ≤T u(x′ + y′)]
⇒ ∀u ∈ V.[u((x′ + y′)′) ≤T u(x) and u((x′ + y′)′) ≤T u(y)]
⇒ ∀u ∈ V.[u((x′ + y′)′) ≤T u(x ∗ y)]
⇒ ∀u ∈ V.[u((x ∗ y)′) ≤T u(x′ + y′)]
⇒ ∀u ∈ V.[u(x′ + y′) ∈ CT ({u((x ∗ y)′)})]
⇒ x′ + y′ ∈ Cn({(x ∗ y)′})

and hence x′ + y′ ≈ (x ∗ y)′.
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It is natural to enquire how Cn might interact with the order ≤X .

Proposition 3.59. For any x, y ∈ X , if y ∈ Cn({x}) then x ≤X y.

Proof. For any x, y ∈ X we have

y ∈ Cn({x}) ⇒ ∀u ∈ [X0 −→ TD].[u(y) ∈ CT ({u(x)})]
⇒ ∀u ∈ Wx,X0 ∪Wy,X0 .[u(y) ∈ CT ({u(x)})]

For any U ⊆ X0 with Lx, Ly ⊆ U , u ∈ [U −→ TD] may be derived from u0 ∈ [X0 −→ TD] by
restriction from X0 to U . It follows that for any u ∈ Wx,U ∪ Wy,U , u(y) ∈ CT ({u(x)}), and by
Definition 2.31, x ≤X y.

We define the notion of a logical filter as follows (compare Definition 3.25 in Section 3.2.1, and also
Definition 3.2 and Lemma 3.3 in [36]).

Definition 3.60. Within the logic LX = ((X, +, ∗, ′,0X ,1X), Cn), a non-empty subset U of X is called
a logical filter (of X) if

i) x, y ∈ U implies x ∗ y ∈ U

ii) x ∈ U , y ∈ X and y ∈ Cn({x}) imply y ∈ U

The set of all logical filters of X is denoted by FL(X) and carries the usual inclusion order.

By Proposition 3.59, within a logical filter, up-closure with respect to ≤X is therefore constrained by
logical consequence. We shall refer to this restricted form of up-closure as “logical up-closure (with
respect to ≤X )”.

Proposition 3.61. For the logic LX = ((X, +, ∗, ′,0X ,1X), Cn), let CX = {Cn(U) | U ⊆ X} denote the
closed sets of X under Cn. Then CX = FL(X).

Proof. Let U ⊆ X be a set of sentences. By Cn2 of Definition 3.49, for any x, y ∈ Cn(U), x ∗ y ∈ Cn(U)
as well. From property CL1 of Definition 3.3, for any x ∈ Cn(U), Cn({x}) ⊆ Cn(U). From Definition
3.60, Cn(U) is a logical filter and it follows that CX ⊆ FL(X). Now let U be a logical filter, and assume
that x ∈ Cn(U). Since Cn is algebraic, from Definition 3.23 we have

Cn(U) =
⋃
{Cn(V ) | V ⊆ U and V is finite}

and so there is finite V ⊆ U with x ∈ Cn(V ). By Definition 3.60,
∏

V ∈ U as well, and so
Cn({∏ V }) ⊆ U . By Cn1 of Definition 3.49, we have V ⊆ Cn({∏ V }), and from CL2 and CL3 of
Definition 3.3, it follows that

Cn(V ) ⊆ Cn(Cn({
∏

V })) = Cn({
∏

V }) ⊆ U

and hence x ∈ U also, so that Cn(U) ⊆ U . By CL1 of Definition 3.3, U ⊆ Cn(U), so that U = Cn(U)
and hence U ∈ CX . Consequently, FL(X) ⊆ CX , from which we obtain CX = FL(X), as required.

Every closed set within LX therefore exhibits logical up-closure with respect to ≤X .
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Finally, let X ′
0 = X0 \ {0X ,1X}. With LX = ((X, +, ∗, ′,0X ,1X), Cn) in place, we impose logical

independence on X0 by requiring that

∀x ∈ X ′
0.¬∃U ⊆ X ′

0 \ {x}.[U 6= ∅ and (x ∈ Cn(U) or x′ ∈ Cn(U))]

The set X ′
0 is then consistent.

From Definition 2.28, (X, +, ∗, ′,≤X) is an ordered r-algebra of type F because ≤X is a quasi-order.
Lemma 3.37 then establishes that the elements of X are bounded above and below by 1X and 0X .
Taken together, by Definition 2.28 X = (X, +, ∗, ′,0X ,1X ,≤X) is then a bounded r-algebra of type
F . We shall take X, together with the logic LX as our model of a subject. As indicated in Section 1.3,
subjects play a central role in the formulation of of a B-structure, and so are an important component
of the work we shall undertake in Chapter 4.

Definition 3.62. Let D = (D,D0,T) be a disposition, where T = (TD, +, ∗, ′,0,1,≤T ).

1. A subject of type F is a pair S = ((X, H,≤X),LX) in which

i) (X, H,≤X) is an ordered r-algebraic space of type F over T,

ii) ≤X is derived by Definition 2.31,

iii) H is a sheaf of TD-valuations over X ,

iv) (X, +, ∗, ′) is the algebra of sentences of type F over a non-empty, countable set X0 of
primitives,

v) X = (X, +, ∗, ′,0X ,1X ,≤X) is a bounded r-algebra of type F ,

vi) LX = (X, Cn) is a logic of type F , where ∗ is a normal conjunction on X , + is a normal
disjunction on X , ′ is a negation on X and 0X and 1X are respectively contradiction and
theoremhood in LX , and

vii) CT is the algebraic closure operator on TD derived from Definition 3.27, and Cn is the
algebraic closure operator on X derived from CT through Definition 3.30.

We refer to X as the content of the subject S.

2. A morphism ((X, HX ,≤X), LX) −→ ((Y, HY ,≤Y ),LY ) of subjects is given by a morphism of
ordered r-algebraic spaces from (X, HX ,≤X) to (Y, HY ,≤Y ) together with a weak homomor-
phism from LX to LY .

With regard to LX , any set of sentences in X we will call a theory, and in particular we will refer to
the closed sets of X as X-theories. Given U ⊆ X , the set Cn(U) may then be thought of as the set of
“dispositional consequences” of U , and under Cn the closed sets of X coincide with the theories of
the underlying logic on X. A theory U is consistent if Cn(U) 6= X . If V ⊆ U , we will sometimes refer
to V as a sub-theory of U .

Summary

In this chapter we began to specialise the framework that we constructed in Chapter 2 by developing
a model of a subject as a family of sentences equipped with an order and a logic.

We began by furnishing a family of sentences in the form of a sentence algebra of a specified type
over a non-empty, countable set of primitives. The type of the algebra was chosen with the logic in
mind, because we intended to use the fundamental operations as connectives in the logic.
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To develop the required order, we appealed to the idea of a disposition. To compare information by a
given disposition, it would be necessary to assign the disposition to the given information in the form
of comparable “degrees”. Had we done that directly, we would have encountered two difficulties.
First, our model would have broken down as soon as the agent was discovered to hold a degree of
disposition different from what we had assigned. Second, we would have required knowledge of the
type used to represent the degrees of disposition. We overcame both problems by assigning these
degrees of disposition non-deterministically, an idea which we drew from [8].

We therefore assigned degrees of disposition to information based on properties that a degree should
satisfy, rather than based on its value. By using sets of properties or specifications rather than values,
we could also retain the qualitative character of the problem. In this regard, our approach differed
from models such as the transferable belief model of [46], which attempts to quantify the degree of
belief of an agent explicitly, or the ceteris paribus networks of [7] where, although no quantification
is made explicit, the qualitative preference orderings used to order the beliefs of an agent appeal
directly to the values in an ordered set of preferences.

An important feature proposed in Section 1.3 was that the agent should be able to hold an “inde-
terminate” disposition towards a given piece of information, since it may know nothing about what
that information might mean. To implement this feature, we drew on the work of several authors.
In particular, from [22] and [23], we used the idea of an order derived from a set of observations
about a given set of values. From [15], we drew on the idea of a bi-partite truth value to develop the
surrogate degrees of disposition we would ultimately assign to each piece of information.

In the derivation of these surrogates, our intention was to allow the two components of a given surro-
gate to overlap – the greater the overlap, the greater the indeterminacy represented by the surrogate.
Consequently, we used an idea described in [9] to develop P - and Q-specifications of degrees of dis-
position. The P -specification described degrees of disposition that could be held towards an item
of information, while the Q-specification described degrees of disposition that could be thought of
as being converse to those described by P . The interplay between these sets of degrees of disposi-
tion let us capture an element of ambivalence on the part of the agent towards the selected item of
information.

For technical reasons, we ordered specifications by inclusion (rather than using a power order). More
specifically, we chose the truth order of [15] because it reflected what we were after – as we moved up
the order on surrogates, the P -specification would strengthen while the Q-specification weakened.
Thus, the contrast between the pro- and contra-disposition represented by the surrogate would in-
crease, strengthening the characterisation of the prescribed degrees of disposition. In contrast, under
the knowledge order, the two degrees (∅,ΘD) and (ΘD, ∅) would no longer represent surrogates in
which the disposition was held minimally (resp. maximally). Rather, the top and bottom elements
would be (ΘD, ΘD) and (∅, ∅), which we needed to represent an indeterminate disposition.

From the order on surrogates, we could derive an order on sentences as described in Definition
2.31. To develop a logic, we appealed to the idea of “preservation of degrees of truth” described
in [16]. From this idea we were able to develop a consequence function that preserved the degrees
of disposition assigned to the members of a set of sentences, as set out in Definitions 3.27 and 3.30.
Furthermore, the notion of consequence also had a well-defined relationship to the order ≤X on X ,
as shown by Propositions 3.59 and 3.61. We were then able to use the operations of our algebra as
logical connectives, in the process formulating notions of conjunction, disjunction and negation.

Finally, from [36], an important requirement in the development of their belief revision relation was
that, given a sentence x, any x-compatible set of sentences should be contained in a maximal x-
compatible set of sentences. We were able to meet this requirement by ensuring that our consequence
function was algebraic.





Chapter 4

Belief Revision by Disposition

In Section 1.3, we proposed to replace the epistemic entrenchments used in [36] with a more general
quasi-order. These epistemic entrenchments played a central role in the development of the belief
revision relations of [36]. Our motivation for replacing them with a quasi-order was to extend the
model of [36] to obtain a more general version of relational belief revision where sentences are or-
dered by how strongly they exhibit a given property. Accordingly, theories are then revised by how
strongly the sentences exhibit the property.

We developed the quasi-order from a propositional attitude or disposition in Chapter 3, and based on
a given disposition we were also able to construct a logic on a family of sentences. We now continue
this development by formally exhibiting a belief revision relation that is derived from a disposition,
and hence uses a more general quasi-order. We then describe how a B-structure may be constructed
from the components we have developed in Chapters 2 and 3, and conclude by providing a worked
example to show how the theory we have developed may be applied to related areas of research. We
proceed as follows.

Chapter Guide:

Section 4.1: Belief Revision. In this section, we develop a belief revision relation for a family of
sentences that is ordered by a disposition. The proposed relation is formulated in terms of
belief bases rather than belief sets. We then show how a B-structure may be constructed from
the components set out in Chapters 2 and 3. This B-structure is relational in that the underlying
subjects are equipped with a relational belief revision operation. We conclude with a brief
discussion of how belief revision may be conducted with a relational B-structure.

Section 4.2: Towards an Application of Our Work. In [44], the author presents a “phenomenal, dis-
positional account of belief”. This model provides an innovative approach to belief in which
the beliefs held by an agent are portrayed in terms of what are called dispositional stereotypes.
The approach successfully accounts for those cases where an agent can neither be described as
believing or not believing something. In this section, we describe this approach, focussing in
particular on dispositional stereotypes. We then show how the theory we have developed for
our work may be applied to the approach.

63
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4.1 Belief Revision

We would now like to develop a belief revision relation by using the dispositions that we derived in
Chapter 3. Our exposition in this sub-section mostly follows that of [36], and through it we are able
to demonstrate how the theory that we have developed can be applied to the work of [36].

4.1.1 A Belief Revision Relation in the Style of Lindström and Rabinowicz

Let S = ((X, H,≤X), LX) be a subject of type F = {+, ∗, ′} = {2, 2, 1}, for which ≤X is derived from
a disposition D = (D,D0,T) and LX = (X, Cn), where Cn is given by Definition 3.30. For Cn, let
CX denote the family of closed sets of X . We take the “beliefs” of an agent to be represented by the
set G ⊆ X of sentences. In keeping with our convention, G is considered a theory. We shall assume
that this theory is consistent so that Cn(G) 6= X , that G is not necessarily an X-theory, and that the
surrogate degree of disposition towards each member of G can be determined with the reference
assignment v of the agent.

For belief revision, we shall restrict our consideration to sentences that are finite in the following
sense.

Definition 4.1. Let F be a language of algebras, and let X = (X,F ) be the sentence algebra of type
F over a non-empty, countable set X0 of primitives. For any x ∈ X , we say that x is a finite sentence
if Lx is finite, and for any y ∈ Lx, y appears in x only finitely many times.

Given a new finite sentence y, the agent will seek to revise G to include y. The outcome of this
revision depends on whether the agent can accommodate y amongst the sentences in G, given the
logic LX and its reference commitment v. If it cannot, we expect that it will abandon some of its
existing sentences to accommodate the new information, effectively reverting to a sub-theory of G.
We would like this retiring of sentences to be done so that the least number of sentences is given up
to accommodate y. Intuitively, we seek a sub-theory K ⊆ G that is maximally compatible with y, as
described in Definition 3.45. Fortunately, by Proposition 3.47, such a sub-theory of G does exist.

We propose a belief revision relation as follows.

Definition 4.2. For any G,H ∈ CX let G0,H0 ⊆ X be such that G = Cn(G0) and H = Cn(H0). For
any y ∈ X , let Ry ⊆ CX × CX be a binary relation on CX such that for any G,H ∈ CX , GRyH if

i) `LX y′ and H0 = {0X}, or

ii) G0 contains a possibly empty, maximal y-compatible sub-theory K and H0 = K ∪ {y}

If GRyH , we say that H is a revision of G with y relative to v.

This definition may be compared to Definition 4.1 in [36]. The relation Ry between the belief sets G
and H is determined by properties of the underlying belief bases G0 and H0, and we may think of Ry

as inducing a binary relation R0
y on P(X), where G0R

0
yH0 if and only if GRyH . We may then regard

Ry as an implicit and R0
y as an explicit belief revision relation (compare Remark 1.9).

We claim that the relation Ry of Definition 4.2 is in fact a belief revision relation. That is, Ry satisfies
the seven LR postulates R1–R7 listed in Section 1.2.3. For easy reference, we restate these axioms
here, reformulated to use the notation we have established thus far. In the list set out below, G and
H are X-theories and y, z ∈ X .
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R1: There exists H ∈ CX such that H ∈ Ry(G)

R2: If H ∈ Ry(G), then y ∈ H

R3: If y′ 6∈ G and H ∈ Ry(G), then H = Cn(G ∪ {y})

R4: If 6`LX
y′ and H ∈ Ry(G), then 0X 6∈ H

R5: If `LX
y ↔ z, then H ∈ Ry(G) if and only if H ∈ Rz(G)

R6: If H ∈ Ry(G) and z′ 6∈ H , then Cn(H ∪ {z}) ∈ Ry∗z(G)

R7: If H ∈ Ry(G) and for all L ∈ CX we have that if L ∈ Ry+z(G) then y′ 6∈ L, then there
exists L ∈ CX such that L ∈ Ry+z(G) and H is given by Cn(L ∪ {y})

It follows readily from Definition 4.2 that Ry satisfies Axioms R1 and R2, so we state these two claims
without proof.

Lemma 4.3. The relation Ry satisfies Axiom R1.

Lemma 4.4. The relation Ry satisfies Axiom R2.

Lemma 4.5. The relation Ry satisfies Axiom R3.

Proof. Let G0,H0 ⊆ X be such that G = Cn(G0) and H = Cn(H0), and assume that y′ 6∈ G and
H ∈ Ry(G). Since y′ 6∈ G, we do not have `LX

y′ and hence Definition 4.2(i) does not apply.
Furthermore, because y′ 6∈ G it follows that y′ 6∈ G0 and by Definition 3.45 G0 is a maximal y-
compatible sub-theory of itself, so that H0 = G0 ∪ {y}. Applying Lemma 3.50, we then obtain

H = Cn(H0) = Cn(G0 ∪ {y}) = Cn(Cn(G0) ∪ {y}) = Cn(G ∪ {y})

as required.

Lemma 4.6. The relation Ry satisfies Axiom R4.

Proof. Let G0,H0 ⊆ X be such that G = Cn(G0) and H = Cn(H0), and assume that 6`LX
y′ and

H ∈ Ry(G). Because 6`LX
y′, Definition 4.2(i) does not apply and we may write H0 = K ∪ {y} where

K is a maximal y-compatible sub-theory of G0. From Proposition 3.44, because y′ 6∈ Cn(K), 0X 6∈ K.
Hence 0X 6∈ K ∪ {y}, and by Proposition 3.44 we have 0X 6∈ Cn(K ∪ {y}) = H .

Lemma 4.7. The relation Ry satisfies Axiom R5.

Proof. Let G0,H0 ⊆ X be such that G = Cn(G0) and H = Cn(H0), and assume that `LX y ↔ z.
If H0,y = {0X}, then we must have `LX y′. By Definition 3.40 and Lemma 3.43, if `LX y ↔ z then
`LX

y′ ↔ z′, and from `LX
y′ we therefore have `LX

z′. But then H0,z = {0X} as well. It follows that
if H = X = Cn(H0,y) ∈ Ry(G) then also X ∈ Rz(G). Otherwise, let K be a maximal y-compatible
sub-theory of G0, so that H0,y = K ∪ {y}. Then

z′ ∈ Cn(K) ⇒ Cn({z′}) ⊆ Cn(K) (property CL2 of Definition 3.3)
⇒ Cn({y′}) ⊆ Cn(K) (since `LX y ↔ z)
⇒ y′ ∈ Cn(K) (property CL1 of Definition 3.3)
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and hence K could not have been a y-compatible sub-theory of G0, and we reach a contradiction.
Thus, K is z-compatible. Next suppose that there is K ′ ⊆ G0 such that K ′ is z-compatible and
K ⊂ K ′. Then

K ⊂ K ′ and z′ 6∈ Cn(K ′) ⇒ Cn({z′}) 6⊆ Cn(K ′)
⇒ Cn({y′}) 6⊆ Cn(K ′) (since `LX

y ↔ z)
⇒ y′ 6∈ Cn(K ′)

and hence K could not have been a maximal y-compatible set and again we reach a contradiction.
Thus K is a maximal z-compatible sub-theory of G0, and H0,z = K ∪{z}. Applying Lemma 3.50, we
then obtain

Cn(K ∪ {y}) = Cn(K ∪ Cn({y})) = Cn(K ∪ Cn({z})) = Cn(K ∪ {z})

and it follows that if H = Cn(K ∪ {y}) ∈ Ry(G) then also H ∈ Rz(G). By similar analysis, we can
show that if H ∈ Rz(G) then also H ∈ Ry(G), which then establishes the result.

Lemma 4.8. The relation Ry satisfies Axiom R6.

Proof. Let G0,H0 ⊆ X be such that G = Cn(G0) and H = Cn(H0), and assume that GRyH and
z′ 6∈ H . Since z′ 6∈ H , we have H 6= X and hence 6`LX y′, so that Definition 4.2(i) does not apply to
Ry . There is therefore a maximal y-compatible sub-theory K of G0 with H = Cn(H0) = Cn(K ∪{y}).
By hypothesis, z′ 6∈ H . Suppose that K is not (y ∗ z)-compatible. Then (y ∗ z)′ ≈ y′ + z′ ∈ Cn(K) and
hence also y′ + z′ ∈ Cn(K ∪ {y}), from which we have Cn(K ∪ {y} ∪ {y′ + z′}) = Cn(K ∪ {y}). Now,

Cn(K ∪ {y} ∪ {y′ + z′})
= Cn(K ∪ {y} ∪ {y′}) ∩ Cn(K ∪ {y} ∪ {z′}) (Lemma 3.51(ii))
= X ∩ Cn(K ∪ {y} ∪ {z′}) (Definitions 3.30 and 3.27)
= Cn(K ∪ {y} ∪ {z′})

and hence Cn(K ∪ {y}) = Cn(K ∪ {y} ∪ {z′}) in which case z′ ∈ Cn(K ∪ {y}) = H , contrary to our
hypothesis. Thus K is (y ∗ z)-compatible. Next, suppose that K is not a maximal (y ∗ z)-compatible
sub-theory of G0. Then there is K ′ ⊆ G0 with K ⊂ K ′ and (y ∗ z)′ ≈ y′ + z′ 6∈ Cn(K ′). By Dn1
of Definition 3.49, y′ 6∈ Cn(K ′) either, and hence K could not have been a maximal y-compatible
sub-theory of G, and we reach a contradiction. It follows that K is also a maximal (y ∗ z)-compatible
sub-theory of G0 and hence that GRy∗zH ′ with H ′

0 = K ∪ {y ∗ z}. As before, by Lemma 3.51(i) and
Lemma 3.50, H ′ = Cn(K ∪ {y, z}) = Cn(H ∪ {z}).
Lemma 4.9. The relation Ry satisfies Axiom R7.

Proof. Let G0,H0 ⊆ X be such that G = Cn(G0) and H = Cn(H0), and assume that GRyH and that
for any X-theory L, if GRy+zL then y′ 6∈ L. Now,

∃L ⊆ CX .[GRy+zL] (by Axiom R1)
⇒ y′ 6∈ L (by hypothesis)
⇒ 6`LX

y′ (by Definition 3.36)

and hence Definition 4.2(i) does not apply to Ry . Thus, we have GRyH with H = Cn(K ∪ {y}) and
K is a maximal y-compatible sub-theory of G0. By Condition Dn1 of Definition 3.49, since y ∈ H ,
y + z ∈ H also, and because H 6= X , by Propositions 3.44 and 3.57, (y + z)′ 6∈ H so that K is
(y + z)-compatible. Suppose that K is not a maximal (y + z)-compatible sub-theory of G0. Then
there is K ′ ⊆ G0 such that K ⊂ K ′ and K ′ is a maximal (y + z)-compatible sub-theory of G0. Taking
L0 = K ′ ∪ {y + z} and L = Cn(L0), we then have GRy+zL. But since K was a maximal y-compatible
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sub-theory of G0, y′ ∈ Cn(K ′) ⊆ L, contrary to our hypothesis, and so K is also a maximal (y + z)-
compatible sub-theory of G0. Thus, taking L0 = K ∪{y + z} and L = Cn(L0), we then have GRy+zL
and H = Cn(K ∪ {y}). By applying Proposition 3.56, we find that

H = Cn(K ∪ {y})
= Cn(K ∪ {y ∗ (y + z)})
= Cn(K ∪ {y, y + z}) (Lemma 3.51(i))
= Cn(L0 ∪ {y})
= Cn(Cn(L0) ∪ {y}) (Lemma 3.50)
= Cn(L ∪ {y})

which gives us the result, as required.

The preceding lemmas show that the relation Ry as set out in Definition 4.2 satisfies the axioms that
define a belief revision relation, and hence Ry is in fact a belief revision relation.

Theorem 4.10. The relation Ry of Definition 4.2 is a belief revision relation.

We have now presented a scheme under which a belief revision relation can be derived for a family
of sentences that has been ordered by a given disposition D. In the next section, we are able to build
a B-structure and show how relational belief revision may be carried out in it.

4.1.2 Relational B-Structures

We let S = {Sj}j∈J be a countable family of subjects of type F = {+, ∗, ′} = {2, 2, 1}. Recalling
Definition 3.62, for each j ∈ J , Sj = ((Xj ,Hj ,≤j),Lj) in which

i) (Xj ,Hj ,≤j) is an ordered r-algebraic space of type F over Tj = (Tj , +, ∗, ′,0Tj ,1Tj ,≤Tj ),

ii) ≤j is derived from Tj by Definition 2.31,

iii) Hj is a sheaf of Tj-valuations over Xj ,

iv) (Xj ,+, ∗, ′) is the algebra of sentences of type F over a non-empty, countable set X0,j of prim-
itives and Xj is the content of subject Sj ,

v) Xj = (Xj , +, ∗, ′,0j ,1j ,≤j) is a bounded r-algebra of type F ,

vi) Lj = (Xj , Cj) is a logic of typeF , where ∗ is a normal conjunction on Xj , + is a normal disjunc-
tion on Xj , ′ is a negation on Xj and 0j and 1j are respectively contradiction and theoremhood
in Lj , and

vii) Cj is derived via Definitions 3.27 and 3.30

Each Tj originates from a disposition Dj = (Dj ,D0,j ,Tj). To allow more than one disposition to be
applied to the content Xj of a subject Sj , S may contain copies of Sj for which the order is induced
by a different disposition. Correspondingly, the same disposition may be applied to more than one
member of S. Consequently, it is possible that for Sj ,Sk ∈ S we have Xj = Xk but ≤j 6=≤k, and it is
also possible that although Xj 6= Xk, Dj and Dk are the same disposition.

To simplify our work, for distinct i, j ∈ J , we shall treat X0,i and X0,j as being disjoint. Conse-
quently, for any Sj ,Sk ∈ S for which Xj = Xk, we nonetheless treat Xj and Xk as distinct sets of
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sentences. We let X0 =
⋃

j∈J X0,j , and for each Sj we assume that an agent holds the beliefs in Tj ,
corresponding to the belief base Γj .

As described in Section 2.3.2, we combine the Tj by forming a coalesced sum of the Tj , identifying
the top and bottom elements in the process, and in this way we obtain a new bounded r-algebra
T = (T,+, ∗, ′,0T ,1T ,≤T ). For each j ∈ J , Hj is now a sheaf of T-simulations. Taking U0 to be a
countable set, for each j ∈ J , we let Uj ⊆ U0 and φj : Uj −→ Xj be such that φj maps Uj bijectively
to Xj , and we let U = {Uj}j∈J and X =

⋃
j∈J Uj . Taking M = {(Xj ,Hj ,≤j)}j∈J , we construct an

ordered manifold X = (X,HX ,≤X) of type M as set out in Section 2.3.2. Borrowing notation from
Section 2.3.2, for each j ∈ J , if x ∈ Uj we take φj(x) to be a sentence that expresses or represents x in
Sj , and we let Vj = φ−1

j (Γj) and V +
j = φ−1

j (Tj).

By combining each Uj with the corresponding V +
j , we may then form B = {(Uj , V

+
j )}j∈J as a B-

structure on X0 (compare Definition 1.8). For any j ∈ J , the subject Sj is accessible via the corre-
sponding coordinate chart (Uj , φj), and in this sense Sj participates in B. Consequently, we name
B a relational B-structure (of type M) because each subject that participates in B is equipped with a
relational belief revision operation.

Let y be a finite sentence of type F , formed from the primitives in X0, and let Ly be the smallest
language of y (compare Lemma 1.4, Definition 1.5 and Remark 1.6). To revise B with y, we shall
apply the “Option B Revision” procedure (compare Section 1.2.2) as follows:

1. We form a new subject by combining those subjects that are affected by the new information y.

Let Jy = {j ∈ J | Ly ∩ X0,j 6= ∅}, and let X0,y =
⋃

j∈Jy
X0,j . Let (Xy, +, ∗, ′) be the algebra

of sentences of type F over X0,y. Via Definition 2.31 we can derive an order ≤y on Xy to form
the bounded r-algebra Xy = (Xy, +, ∗, ′,≤y) of type F . The Alexandroff topology ΩXy on
X and the sheaf Hy of T-simulations over Xy may then be derived as set out in Section 2.2.2
to give us the ordered space (Xy,Hy,≤y). From the work of Section 3.2 we can construct a
logic LXy = (Xy, Cy), where Cy is developed as described in Definitions 3.27 and 3.30. Taken
together, we then have the subject Sy = ((Xy,Hy,≤y), LXy ).

2. We determine the beliefs about the subject Sy.

For each j ∈ Jy, X0,j ⊆ X0,y. Consequently, for any j ∈ Jy the algebra (Xj , +, ∗, ′) can be
embedded in (Xy,+, ∗, ′). Letting fj : Xj −→ Xy represent the embedding, the beliefs about Sy

are given by T ′y = Cy(Γ′y), where Γ′y =
⋃

j∈Jy
fj(Γj). We then revise T ′y with the new information

y as described in Section 4.1.1 (compare Definition 4.1.1) to obtain the new belief base Γy and
beliefs Ty .

3. We reconstitute the manifold X.

We remove from M all of the ordered spaces that correspond to subjects affected by y, and we
add the ordered space of the new subject Sy to form the class

M′ = M \ {(Xj , Hj ,≤j)}j∈Jy ∪ {(Xy, Hy,≤y)}
of ordered spaces. We then form a new manifold X′ of type M′ and a new relational B-structure
B′ as before.

If instead we wished only to know whether y followed from the beliefs in B, we follow the same
procedure to construct the new subject Sy and the corresponding belief base Γ′y (steps 1 and 2 above).
Following Definition 1.12, vB : Xy −→ {⊥, true, false,>} is such that if Γ′y is consistent, then

i) if Γ′y `Ly y, then vB(y) = true,
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ii) if Γ′y `Ly
y′, then vB(y) = false, and

iii) vB(y) = ⊥ otherwise

and if Γ′y is inconsistent, then vB(y) = >.

4.2 Towards an Application of Our Work

In [44], the author presents a “phenomenal, dispositional account of belief” in which the beliefs held
by an agent are characterised by what are called dispositional stereotypes. An interesting feature
of the approach is that, without having to use a measure of uncertainty such as a probability, it can
successfully account for cases where an agent can neither be described as believing nor disbelieving
something. In this section, we describe this approach, focussing in particular on these dispositional
stereotypes. To demonstrate the applicability of our framework to other research, we then show how
the tools we have developed may be applied to this aspect of the approach.

4.2.1 A Dispositional Account of Belief

As described in Section 1.1, we may see belief as referring to the representation held by an agent of the
truth value of a proposition [24]. These representations have the character of discrete entities, either
fully present or wholly absent in the “mind” of the agent [44]. This view, however, disagrees with the
view that belief comes in degrees of uncertainty, which in turn does not handle cases where an agent
lies somewhere between believing and disbelieving a proposition. To overcome these difficulties,
[44] provides a phenomenal, dispositional account of belief in which conscious experience plays a
central role and belief is treated as being disposed to experience and do certain things.

The key element of the account is the notion of dispositional stereotype. Stereotypes are sets of
properties normally associated with an object. The accuracy of a stereotype depends on how well it
describes the objects to which it is normally applied. Intuitively, certain properties may be associated
with an object more frequently than others, and we then have the notion that these properties are
more central to a description of the object while others are more peripheral. These central properties
allow us to agree, for example, on what a typical object of a given type would be.

A dispositional stereotype is then just a stereotype that consists of what are called dispositional prop-
erties. As described in [44], a dispositional property is a conditional statement whereby an object
enters a state in which the property is manifested if a particular trigger condition is met. To illus-
trate, the dispositional stereotype of being hot-tempered might include dispositional properties such
as responding angrily (the manifestation) to minor provocations (the trigger condition), quickly ex-
pressing frustration or responding with aggression when one’s will is thwarted.

The approach of [44] is then to assign a dispositional stereotype to belief in a given proposition.
An agent that presents all of the properties in the stereotype for believing a proposition φ can then
be taken to believe that φ is the case, while an agent that presents none of these properties can not.
Informally, the more properties in the stereotype that are presented by the agent, and the more central
these properties are to the stereotype, the more appropriate it is to describe the agent as believing that
φ. In this way, the approach can account for a variety of “in-between” cases where an agent neither
believes nor disbelieves that φ.

To substantiate, the author describes two case studies where an agent m appears to believe that φ in
certain situations, and that ¬φ in other situations. It is then not clear what m believes about φ. In the
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author’s view, degrees of belief do not adequately describe these “in-between” cases because it is not
that m has little confidence that φ is true, but rather that in some situations m is confident that φ is
true, whereas in other situations m is confident that φ is false (compare p13 in [44]). The advantage
of the approach is that, from the stereotype presented in a given situation, a more definite answer as
to what m believes about φ can be given.

The dispositions of [44] are different from the propositional attitudes we described in Chapter 1 and
sought to model in Chapter 3. We referred to these attitudes as dispositions in keeping with the sense
of the term “propositional attitude” as used in [45]. There are, however, some similarities between
our work and that of [44], and to avoid confusion we shall refer to the dispositional stereotypes of
[44] as stereotypes, reserving the term “disposition” for the structure set out in Definition 3.20. Over
the next two sub-sections, we shall examine how the stereotypes of [44] may be modelled by the
dispositions of Chapter 3.

4.2.2 Dispositions and Stereotypes

We start with a stereotype S0, represented by a finite set of properties. We take S0 to represent a
characteristic β, so that β is true of an entity x if x presents all of the properties in S0. Usually, x will
not present all of these properties, so it is only appropriate to some extent to say that β is true of x.

We would like to characterise this extent, and to this end, let D be a finite sample population whose
members exhibit the properties in S0. We take S0 and D to be such that for any θ ∈ S0, there is
d ∈ D such that d presents θ, for any d ∈ D there is θ ∈ S0 such that d presents θ, and for any
two distinct members of D there is a property in S0 that is presented by one and not the other.
We also assume a property θ ∈ S0 such that every d ∈ D presents θ. For each θ ∈ S0 we have
Uθ = {d ∈ D | d presents θ}, and the family D0 = {Uθ}θ∈S0 of subsets of D is then an admissible
family of observations about D (Definition 3.1).

Given X ⊆ D, we may ask which property of S0 best describes the members of X . We could approx-
imate X “from below” and form a new property as X ′ =

⋃{U ∈ D0 | U ⊆ X}, but this could leave
some members of X unaccounted for and instead we take X ′ =

⋂{U ∈ D0 | X ⊆ U}. To ensure that
X ′ is itself a property of S0, we form the topped

⋂
-structure D on D by closing D0 under non-empty

intersections (compare the discussion following Definition 3.1). We write ΘD for the corresponding
set of properties and take this set to represent our supplemented stereotype which we now denote
by S.

Given h : D −→ P(D) : d 7→ {U ∈ D | d ∈ U} we may order the members of D as

c ¹ d if and only if h(c) ⊆ h(d)

for any c, d ∈ D, as with Definition 3.6. This order just means that d is a better match for S than c since
it presents more properties of S than c does. By Proposition 3.9, d then satisfies a stronger property
than c and relative to S, d improves c. Equivalently, if c ¹ d then S describes d more accurately than
it does c, and in view of [44] it is therefore more appropriate to say that β is true of d than that it is
true of c. As in Section 3.1.1, we may artificially include top and bottom elements d1 and d0 in D if
these are not already present. In particular, the element d1 exhibits all of the properties in S, so it is
fully appropriate to say that β is true of d1.

For any φ, ψ ∈ ΘD, the inclusion order on the properties in ΘD gives us

φ vi ψ if and only if Uφ ⊆ Uψ
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Under this order, properties that are higher up are more central to the stereotype, since they describe
more members of D. Similarly, for any φ, ψ ∈ ΘD the refinement order on ΘD gives us

φ vr ψ if and only if Uφ ¹+ Uψ

We regard vr as a form of refinement, since if φ vr ψ then any c ∈ Uφ is improved by at least one
d ∈ Uψ and every d ∈ Uψ improves at least one c ∈ Uφ. Given our interpretation of ¹, we may also
think of ψ as a better characterisation of S than φ, and in this way, the order vr provides us with
additional insight into the nature of S. As in Section 3.1.1, to ΘD we add the property θ0 = {d0}
(θ1 = {d1} is already present).

A subset Θ of ΘD determines a partial stereotype of S. In particular, under vr, the partial stereotype
↑θ represents a set of properties, all of which characterise S at least as well as θ. Correspondingly,
(↑θ)c contains those properties, none of which characterise S as well as θ. As in Section 3.1.1, we
may then form a family of partial stereotypes by closing S0 = {↑θ | θ ∈ ΘD} ∪ {(↑θ)c | θ ∈ ΘD}
under non-empty intersections and arbitrary unions to form a topped

⋂
-structure on ΘD. We may

then form the set TD of D-surrogates as set out in Definition 3.13.

Suppose that we now encounter an entity x 6∈ D that presents the properties in the partial stereotype
Θ ⊆ ΘD. This partial stereotype gives rise to a D-surrogate t = (PΘ, QΘ) ∈ TD. Based on the
discussion preceding Definition 3.13, PΘ is just the smallest closed stereotype to contain Θ, whereas
QΘ may be considered as a closed counter-stereotype because it was formed by considering those
properties not presented by x. As before, in general it is possible to find members of D that satisfy
both PΘ and QΘ, so (PΘ, QΘ) can embody an element of ambivalence with regard to S.

We may take the position of t in the order on TD as an indication of how appropriate it is to say that
β is true of x. Depending on the situation, x may present a different set of properties. This gives
rise to a family {Θi}i∈I of subsets of ΘD, where in situation i, x presents the properties in Θi. Each
partial stereotype Θi gives rise to a D-surrogate ti, and in turn we may take ti as an indication of
how appropriate it is to say that β is true of x in situation i.

Finally, suppose that we have a stereotype S that represents the characteristic ¬β, and that in situa-
tion i, x presents S to the extent represented by the D-surrogate ti. We can then form the pair (ti, ti)
to represent the extent to which β and ¬β are true of x in situation i. If we apply the truth order of
Section 3.1.2 to these pairs, we then have

(t, t) ≤ (t′, t′) if t ≤ t′ and t
′ ≤ t

The pair (0,1) indicates that ¬β is wholly true of x, and correspondingly (1,0) indicates that β is
wholly true of x. The remaining pairs correspond to “in-between” cases where neither β nor ¬β is
completely true of x.

We can add more subtlety to our approach by viewing the properties in S as a (propositional) lan-
guage from which other complex stereotypical properties can be constructed. The set of properties
actually presented by an entity x is then just a theory of this language. The properties in the theory
may be presented by x at most to some degree, and based on the work of Section 2.2.2 we can then
explore to what extent this theory is representative of the stereotype and also to what extent β is true
of x. We may also consider what happens when x presents a new stereotypical property. In the next
section, we explore these aspects in more detail.

4.2.3 Dispositional Order, Revision and Stereotypes

We begin once more with a stereotype S0, represented by a finite set of properties. We take S0 to
represent a characteristic β, so that β is true of an entity x if x presents all of the properties in S0. Let
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F = {+, ∗, ′} = {2, 2, 1} be a language of algebras, and let S = (S, +, ∗, ′) be the sentence algebra
of type F over S0. The carrier set S of S contains more complex stereotypical properties that can be
attributed to β, and subsets of S represent partial stereotypes that an entity could present. Given an
entity that presents the properties in X ⊆ S, we would once more like to determine the extent to
which β is true of the entity.

To this end, suppose we are given a bounded r-algebra T = (T, +, ∗, ′,0T ,1T ,≤T ) of type F . We
would like the values in T to indicate the extent to which a property s ∈ S is exhibited by an entity
x. To this end, a T -assignment over S0 will allow us to compute a value in T for s. Suppose then
that x exhibits the properties in S0 to the extents represented by the reference assignment v. From
Proposition 2.29, the T -assignments form the bounded r-algebra ([S0 −→ T], +, ∗, ′, v0, v1,≤S0). In
particular, v1 assigns 1T to any member of S0, so if v = v1 then β is completely true of x. Corre-
spondingly, if v = v0 then x does not exhibit β at all. For any other reference assignment, β is only
partly true of x.

We may think of v1 as an idealised state in which β is completely true of x (the corresponding element
was called “THE TRUTH” in Chapter 4 of [8]). Consequently, as we move up along≤S0 , x approaches
this idealised state, and β is increasingly true of x. The members of [S0 −→ T] become more like v1,
which gives us a notion of “similitude” that colloquially we may think of as “S0-likeness”. In this
sense, assignments provide an indication of the extent to which x presents S0 and hence to which β
is true of x.

We can use this idea to develop an order on the members of S. From Section 2.2.2, recall that in the
setting of valuations and assignments, the sets Ws,U and WX,U of models of s ∈ S and X ⊆ S given
the context U have the form

Ws,U = {w ∈ [U −→ T] | w |=v s} for any U ⊆ S0 with Ls ⊆ U
WX,U = {w ∈ [U −→ T] | w |=v X} for any U ⊆ S0 with LX ⊆ U

where Ls and LX are the languages of s and X (see Definitions 2.33 and 2.30).

Definition 4.11. For t, u ∈ S and X,Y ⊆ S, we define the order of T -similitude ≤s⊆ S×S to be such
that

t ≤s u if and only if ∀U ⊆ S0 | Lt, Lu ⊆ U.[Wt,U ≤+
S0

Wu,U ]

Correspondingly, we define ≤↑s⊆ P(S)× P(S) such that

X ≤↑s Y if and only if ∀U ⊆ S0 | LX , LY ⊆ U.[WX,U ≤+
S0

WY,U ]

Naturally, if T is understood, we shall refer to the order of T -similitude as just the order of similitude.

Normally, we would immediately lift ≤s to a power order in the standard way to derive a relation
between subsets of X . For example,

X ≤0
s Y if and only if ∀t ∈ X.∃u ∈ Y.[t ≤s u]

However, the resulting comparison is incorrect because for t ∈ X and u ∈ Y , the models of t and u
used in the comparison are not necessarily models of X and Y as well. Consequently, in Definition
4.11 we compare X and Y by their models rather than by their members.

Remark 4.12. In the power relation approach to verisimilitude presented in Chapter 4 of [8] (in
particular, pp134–138), a propositional language L, freely generated from a countable set of propo-
sitional variables, is considered. Each propositional variable is taken to represent an atomic fact. A
theory of the language is taken to be a set of propositions, not necessarily deductively closed. A
valuation is, as expected, an assignment of true (1) or false (0) to the propositional variables, and
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valuations are treated as possible worlds. By taking 0 ≤ 1, valuations (and hence possible worlds)
can be ordered by taking u ≤ v if and only if for any propositional variable p, u(p) ≤ v(p) (compare
Proposition 2.29). A proposition φ is true at a possible world w if the valuation that represents w is a
model for φ (compare Definition 2.30). The meaning M(φ) of φ is then simply the set of all possible
worlds at which φ is true, and by extension, the meaning M(T ) of a theory T is simply the set of all
possible worlds at which every member of T is true. For any two theories T1 and T2, the authors
define a verisimilar order ´ by applying the full power order on valuations so that

T1 ´ T2 if and only if ∀w1 ∈ M(T1).∃w2 ∈ M(T2).[w1 ≤ w2] and
∀w2 ∈ M(T2).∃w1 ∈ M(T1).[w1 ≤ w2]

(see Definition 4.8 in [8]). The approach we have adopted here is not simply a version of verisimil-
itude that suggests the use of a many-valued logic because in that case also, propositions would be
assigned a truth value from a designated set. In our case, the value assigned to a member of X is not
restricted to a designated set because the satisfaction reflected by the statement w |=v x is determined
by whether w preserves the value in TD assigned to x by the designated reference assignment v, in
the sense of Definition 2.30.

From Definition 4.11, the set Wu,U is closer to the idealised state than Wt,U if there is a universal
increase along ≤S0 in the transition from Wt,U to Wu,U , which we have represented as the full power
order ≤+

S0
. Consequently, we consider u to represent S0 more strongly than t, even though possibly

v(u) ≤T v(t). Similarly, for X, Y ⊆ S, we understand Y to have a higher degree of similitude or
“S0-likeness” than X if WX,U ≤+

S0
WY,U .

With the order of entrenchment set out in Definition 2.31, sentences in S are effectively compared
by the degree to which they are presented by the entity x. The comparisons that we make under
≤e are more directly relative to x than under ≤s because assignments now serve as “intermediaries”
between the sentences in S and ≤e, whereas with ≤s, assignments determine the order directly. For
this reason, under ≤e we have no ready means of determining the extent to which β is true of x.
However, unlike ≤s, ≤e imposes an order on S that directly reflects how strongly each sentence is
presented by x.

Observe that the methods of comparison that we have described here are less direct than the compar-
isons of Section 4.2.2. There we could state explicitly to what extent β was true of x, whereas here we
can do so only by comparing (sets of) sentences. The comparisons made here, however, allow more
flexibility because we can account for more complex properties and sets of properties, and hence
more complex stereotypes than in Section 4.2.2.

From T, we can once again derive a logic for S as set out in Section 3.2. As described in Section 3.2.3,
this logic will reflect ≤e rather than ≤s (see Propositions 3.59 and 3.61). Given a family {S0,i}i∈I

of stereotypes, where each S0,i corresponds to a characteristic βi, by treating each Si as a subject of
type F we can construct a relational B-structure as in Section 4.1.2 to form a unified representation
of the stereotypical behaviour of the entity x. In this way, we can reason in a single setting about the
different stereotypes presented by x.

Suppose that for each stereotype S0,i, x exhibits the properties Vi, of which the stereotypical “conse-
quences” are Ci(Vi), where Ci is the consequence function of the logic derived for S0,i. If x begins
to present a new property y, any existing contradictory properties should be retired, and in effect a
“belief revision” should be conducted on the properties that are presented by x. This revision can be
carried out as described in Section 4.1.2.

Finally, given our initial stereotype S0, suppose we have a stereotype S0 that represents the charac-
teristic ¬β. If we take the reference assignment of x as determining the extent to which β is true of x,
then we can form the pair (v, v), where v and v are the reference assignments for S0 and S0 (compare
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Section 4.2.2). If we apply the truth order of Section 3.1.2 to these pairs, we then have

(v, v) ≤ (v′, v′) if v ≤S0 v′ and v′ ≤S0 v

Under this order, the least element (v0, v1) would indicate that ¬β was wholly true of x, while the
greatest element (v1, v0) would indicate that β was wholly true of x. The remaining values may be
taken to represent “in-between” cases where it cannot be said that β or ¬β is true of the x.

Summary

In this chapter we set out to develop a belief revision relation in the style of [36] and derived from
the dispositions that we modelled in Chapter 3. The belief revision relation that we developed was
formulated in terms of belief bases rather than belief sets, because we wished to avoid the compu-
tational complexity that accompanies the use of belief sets. Although the relation was set out as a
relation between belief sets, it was determined by the properties of the underlying belief bases and
in fact also induced a relation between belief bases.

We then constructed a B-structure as a manifold derived from a family of subjects of a specified type.
The B-structure that we developed was relational in that each underlying subject was equipped
with a relational belief revision operation. To show how belief revision could be conducted with a
relational B-structure, we adapted the option B revision scheme of [11] to describe a belief revision
operation that was local and relational. In this way, we fulfilled the goal of our dissertation as stated
in the abstract and elaborated on in Section 1.3, viz. we were able to model belief revision as a local,
non-deterministic operation.

Finally, to illustrate the applicability of our work to other research, we recounted the phenomenal,
dispositional account of belief presented in [44]. We then provided a worked example in which we
showed how the theory we have developed could be applied to this account. To some extent we
were able to extend the work of [44] by showing how multiple dispositional stereotypes could be
handled and also by showing how stereotypes presented by an entity could be revised if the entity
began to exhibit a new stereotypical property.

It is certainly possible to provide a more comprehensive worked example than what we presented,
because our purpose was just to illustrate how our work might be applied and to present additional
ideas that could be developed further in a future study. Indeed, we have not commented much on
how the sheaf theoretic aspects of our model could be applied. In this regard, the papers [49] and [50]
provide examples of the benefits of a sheaf-theoretic approach. It is hoped that the short exposition
we have provided will serve to generate other ideas, and we shall leave such a development as a
possible topic for future research.



Chapter 5

Conclusions

We have now concluded the exposition of our subject matter, a model of belief revision. The central
hypothesis of our work has been the idea that

Mathematical structures with which to study and translate between global and local be-
haviour can be applied to model the process of belief revision as a local, non-deterministic
operator.

and through the steps that we set out in Section 1.3 and the framework that we developed over the
course of Chapters 2, 3 and 4, we have provided an affirmative response in support of this hypothesis.

In view of the work we have presented, one may immediately ask why we chose to study belief
revision in the manner that we did. In fact, we may pose the more general question as to why we
should study belief revision at all.

Why should we study belief revision?

Perhaps a simple answer to this question is just “because everything changes”. The cornerstones
of our world view gradually erode or are reinforced as we adapt and even re-invent ourselves in
the process of coping with and managing change. Some of our beliefs are more transitory, such as
whether the trains are running on time on a given afternoon, and so are easily relinquished when we
find matters contrary to what we thought was the case. Other beliefs are acquired at great cost, and
to relinquish them seems somehow to introduce an uncertainty that threatens to unravel the fragile
sense of order we have cultivated for ourselves.

Our greater reluctance to relinquish some beliefs than others suggests that our beliefs are not held
with equal strength, and in this sense, belief revision can be seen as the guarding of our established
beliefs against unnecessary change – the more entrenched a belief, the harder it is to dislodge or
replace it. Certainly, however, belief revision is necessary, for we can hardly expect to hold our stock
of beliefs constant in the face of all the changes taking place around us – if we were to do so, at some
point we would come to hold at least one belief that was contrary to what could be known about our
world.

If we agree that belief revision is necessary, perhaps the next question is how the required revision
might be effected. To understand this question, we might ask related questions about what sort of
changes to our beliefs would constitute a revision, how we would handle information from a possibly

75
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unreliable source, or what the role of memory is in the process of revision. Just as the study of logic
seeks to make precise the idea of valid inference (compare [12], p1), so the study of belief revision
seeks to make precise what constitutes a valid belief revision, and to provide a formal setting in
which to explore these kinds of questions.

Arguably, the inevitability of belief revision establishes its significance as well as the importance of its
study. Certainly, this importance is attested to by the large body of literature devoted to the subject,
some of which we surveyed in Chapter 1. A wide variety of approaches to the problem is represented
in this body of literature, which leads us back to the question of why we chose the path that we did.

Our Choice of Approach to Belief Revision.

As described in Section 1.2, the AGM postulates have become the dominating paradigm for reason-
ing about belief revision. The postulates regulate the action of a belief revision operation, and an
operation that satisfies them is then restricted to be a function that maps a deductively closed set to
another deductively closed set, where the deductive closure is determined with respect to a given
logical language.

Over the course of Section 1.2.1, we described some of the problems induced by the requirement of
deductive closure. More specifically, apart from computational complexity, under deductive closure
an agent would have to know all the consequences of its beliefs, and all of its beliefs would need to be
accounted for during a revision, without regard to the relevance of the beliefs to the new information.
Consequently, we chose to work with belief bases rather than belief sets, dispensing with the need
for deductive closure.

The choice to work with belief bases introduced the possibility of having a collection of beliefs that
was locally consistent but globally inconsistent. To cast a belief revision operation in this setting,
we would need to handle this possibility. In this regard, the approaches of [25] and [11] stood apart
from other approaches not only in their innovation but also because they addressed the problem of
relevance. We chose to adopt the approach of [11] because of its technical simplicity.

The model of [11] is based on an artifice called a B-structure. A B-structure divides a given language
into sub-languages, each of which determines a subject area. Each sub-language is then paired with
a theory held by an agent about the corresponding subject. The logic is determined by the complete
language, rather than being tailored to each subject. Arguably, it may not be appropriate for all the
subjects to have the same logic, and in our opinion the innovative model of [11] could be extended by
instead adopting a “bottom-up” approach and considering each subject to be autonomous, equipped
with its own language, logic and revision operation.

Under certain circumstances, a belief revision operation could have more than one outcome. Conse-
quently, we chose to model belief revision as a relation rather than as a function. To develop a belief
revision relation for a subject, we followed the development presented in [36]. We questioned the
use of epistemic entrenchments in their approach, however, and chose to extend their work by using
the more general notion of a disposition in place of an epistemic entrenchment.

With the belief revision relation in place, we next chose to combine the collection of autonomous
subjects by applying the definition, provided in [52], of a manifold in terms of sheaf theory. We
could therefore construct a B-structure whose elements were in effect indexed by the given atlas of
the underlying manifold, and for which relational belief revision could be conducted both locally
within a particular subject and more globally across a combination of subjects. By modelling the
process of belief revision as a local, non-deterministic operation, we were then able to fulfil the goal
our of dissertation.
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Belief revision is a field of study with a vast compass that embraces many complex topics. Conse-
quently, many aspects of the problem lay without the ambit of our work. In particular, one problem
that we did not discuss was iterated belief revision, where the beliefs of an agent are revised by some
sequence ϕ1, . . . , ϕn of formulae of a given language. Such revision is straightforward when for any
2 ≤ i ≤ n, ϕi is consistent with the beliefs that are held after revising with ϕ1, . . . , ϕi−1. Problems
arise when instead ϕi is not consistent with these beliefs, for there is at present no clear-cut answer
as to how any of the preceding revisions should be “undone” to accommodate ϕi.

We believe that it was to the advantage of our work that we omitted topics such as iterated revision,
since their inclusion would have broadened the scope of our exposition to the point where we would
have been unable to cover our topic in any adequate depth, rendering our work ineffective. For a
detailed critique of approaches to problems in belief revision, the interested reader is respectfully
referred to [18] ([19]).

Summary of Contributions and Extensions.

1. The choice to model belief revision in terms of propositional attitudes.

This decision marked a departure from the convention of working directly with beliefs, as was done
in [1], [11] and [36] for example, and through it we were able to extend the work of [36]. From [45],

“Contemporary discussions of belief are often embedded in more general discussions of the propo-
sitional attitudes; and treatments of the propositional attitudes often take belief as the first and
foremost example.”

As described in [45], hope, fear, doubt, desire and intention are all examples of propositional atti-
tudes. Using hope as an illustration, an agent m could hope that y was the case more strongly than
it did x. Intuitively, a set X of sentences could then be ordered by how strongly m hoped that each
x ∈ X was the case. This similarity to an epistemic entrenchment suggested that hopes could be
revised in much the same way as beliefs. Consequently, we chose to formulate our model of belief
revision in terms of propositional attitudes in an attempt to generalise and extend the work of [36].

2. In our development of a B-structure, we chose to use countably rather than finitely many primitives in
the construction of each subject.

If, for a given subject, we had started with a sentence algebra over a non-empty, finite set of prim-
itives, whenever the agent encountered information about the subject that involved new, unknown
atoms, it would need to expand this set of primitives and hence also the content of the subject. To
stabilise the set of primitives and corresponding subject content, we elected to use countably many
primitives instead.

Initially, an agent might know about a finite subset of these primitives only. The remaining primi-
tives would then serve as placeholders for new information that the agent could subsequently learn
about. This decision allowed us to extend the work of [11] by including the possibility that an agent
might not know about a particular primitive and hence not understand a particular sentence in the
content of the subject. We catered for this situation by defaulting any unknown primitives to an inde-
terminate degree of disposition. In this sense, the agent then implicitly held a degree of disposition
towards every primitive and consequently every sentence of the subject content.
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The use of countably many primitives exposed us to the risk of having to cater for sentences that
contained infinite conjunctions, which the logic of Chapter 3 would not have handled. We excluded
these cases by restricting new information to finite sentences in the sense of Definition 4.1. Mecha-
nisms to handle infinite conjunctions lay beyond the scope of our work, and the interested reader is
respectfully referred to works such as [5] and [4].

3. We chose to induce an order on a set of sentences by means of an external component.

A guiding factor in this choice was the concern that if we imposed the order directly on a given
set of sentences, the order might not be invariant under certain transformations. Our work had
a predominantly topological setting, and for topological spaces the structure-preserving transfor-
mations are homeomorphisms. To illustrate, let (A,≤) be an ordered set with A = {a, b, c, d} and
≤= {(a, b), (a, c), (b, d), (c, d)}. Given the topological spaces

A↑ = (A, {∅, A, {b, c, d}, {b, d}, {c, d}, {d}}) and
A↓ = (A, {∅, A, {a, b, c}, {b, a}, {c, a}, {a}})

the map f : A↑ −→ A↓ with f = {(a, d), (b, c), (c, b), (d, a)} is then an example of a homeomorphism
that does not preserve the order on A.

Our primary reason for this choice, however, was the flexibility that we could gain as a result. Our
aim was to model the idea that for two sentences x and y, x ≤ y if we held a stronger degree of
a given disposition towards y than towards x. We developed the idea of a bounded r-algebra of
type F to induce the required order on a given sentence algebra of type F . We could then add as
much detail to each bounded r-algebra as was necessary to model a particular order, and because the
bounded r-algebras were self-contained, the level of detail in each could vary independently of the
other bounded r-algebras.

This independence would also allow us to use different underlying data types for each disposi-
tion. For example, we could model one disposition by starting with an enumerated type such as
{strongly agree, agree, neutral, disagree, strongly disagree} and deriving surrogate values from that as
described in Section 3.1.2, whereas for another disposition we might start with a set of real numbers
such as a closed interval and then derive the surrogate values once more. It is not immediately clear
that we would have this kind of flexibility at our disposal had we imposed the order on the beliefs
directly.

4. We used a structure called a manifold to combine the subjects into a single, unified structure.

Two notions at work in a B-structure are unification and autonomy. A sense of autonomy comes
about via the decomposition of a theory into subjects that are largely independent, while unification
comes about because all of the subjects stem from the same ambient language. Because we began
with a family of independently developed subjects, autonomy was present by default. We there-
fore required a means of accomplishing unification. To this end, we appealed to the definition of a
manifold in terms of sheaf theory, as provided in [52], to accomplish the required combination of the
autonomous subjects.

5. The idea, in Definition 2.12, of a local isomorphism of presheaves.

In this definition, we sought to do for presheaves what local homeomorphisms do for topological
spaces. Whereas in Definition 2.37 an equal emphasis is placed on the topology and the sheaf, in
Definition 2.12 the emphasis is more on the presheaf than on the topology. Our intention was to
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allow the exploration of one presheaf in terms of another just as one explores a manifold in terms of
other, more well-known spaces.

6. The idea, in Definition 2.23, of a relational algebraic structure.

These structures were the primary component of our framework, and combined the idea that a set
could carry an algebraic as well as a relational structure. A well-known example is a lattice, where
an algebraic structure in the form of meet and join operations has a well-defined interaction with a
partial order on a set. For more abstract algebraic types such as those of Chapter 2, the interaction
between the algebraic and relational structure on the carrier set would not generally be as well-
defined as for lattices. For the work we had to complete, we needed a means of transporting both
kinds of structure in a single entity.

7. The idea, in Definition 2.24, of an r-algebra simulation.

An r-algebra simulation captures the idea that one r-algebra can simulate the structure of another.
The idea is adapted from Definition 4.1.1 in [52], which used the notion of an R-algebra to allow a
commutative ring S with identity to simulate another such ring R. A sheaf of r-algebra simulations
gives us a simple means of equipping a topological space with the structure of a given r-algebra.

In our case, the simulations were accomplished with homomorphisms. However, other forms of
simulation are available as well. For example, from [2] we have the idea of a bounded morphism.
For any two r-algebras A and B of type F , we might then define f : A −→ B to be a bounded
morphism from A to B if f is a homomorphism from (A,F ) to (B, F ), and if f(a)RBy then there is
b ∈ A with aRAb and f(b) = y.

8. The order of entrenchment (Definition 2.31) and the order of similitude (Definition 4.11).

The order of similitude is an adaptation of the work on pp134–138 in Chapter 4 of [8]. We applied
the idea of verisimilitude via power relations to the idea of dispositions, so that the reference assign-
ment of an agent might approach the idealised state of holding the maximum degree of disposition
towards all the primitives of a given language.

For both orders, we used the idea from [8] that the meaning of a particular sentence can be deter-
mined from its models. In [8], these models were simply those valuations that assigned the sentence
the value true. By treating valuations as states of affairs, the meaning of a sentence was then simply
those states of affairs in which the sentence was true. In contrast, we described in Definition 2.30 a
notion of satisfaction based on the idea of preservation of degrees of truth as set out in [16]. With
this idea, a reference valuation v gave rise to a set Tv of designated degrees of disposition towards a
sentence x, and a valuation w was a model of x if w(x) ∈ Tv .

For the order of similitude, we ordered sentences by considering their meanings directly, using val-
uations as indicators of the strength of a particular sentence with respect to the given disposition. In
contrast, for the order of entrenchment the valuations served as intermediaries between sentences
and the order, and we ordered sentences according to the values assigned to them by a common set
of states of affairs. This gave rise to an order that was similar in character to that of [36].

The (surrogate) degree of disposition assigned to a sentence was computed by means of the refer-
ence valuation. For any sentence in the given sentence algebra, the degree of disposition could then
be computed based on the values assigned to the primitives of the language. We consider this an
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advantage over the use of epistemic entrenchments, where the assignments are assumed and “pre-
existing”, rather than computed. Furthermore, for any new sentence we could determine the location
of the sentence in the order, whereas this was not generally possible for epistemic entrenchments un-
til such a value had been decided on.

9. The ordered manifolds of type M over an r-algebra (Definition 2.39) and the construction procedure of
Section 2.3.2.

These manifolds were an adaptation to the case of r-algebra simulations of the manifolds described
by Definition 4.3.6 in [52]. They provided a means whereby an ordered space over a given r-algebra
could be constructed from a family of ordered spaces over the given r-algebra.

To construct such a manifold, we adapted the approach set out in Lemma 1.23 on pp21-22 of [33].
The approach of [33] was simpler than in our case because it was based on a topological n-manifold
for which the (optional) structure was conferred without recourse to sheaf theory. We extended this
approach to allow a particular structure to be conferred on the manifold by a structure sheaf, and
in the process, we could construct a manifold of the kind described by Definition 4.3.6 in [52]. The
properties and local structure of the manifold could then be explored and described in terms of the
family of constituent spaces by using an atlas of charts, similarly to [33].

10. The model of disposition of Chapter 3.

This model is one of the main contributions of our work. To our knowledge, a model such as ours
has not been developed, at least not with the same goal in mind. Our model of a disposition as a
partially ordered set of surrogate values was derived purely from a family of observations about a
set of values whose exact nature it was not necessary to know. Our hope is that if not the structure,
then at least the technique of derivation will be useful in future research in the field of belief revision
or other fields of study such as program semantics.

In developing the model, we were able to extend the work of [22] and [23] in that we first used the
given observations to (implicitly) order the points in our set of degrees of disposition, then lifted the
order to a power order so we could order the observations.

The relation ¹ of Definition 3.6 may equivalently be written as

c ¹ d if and only if ∀U ∈ D.[c ∈ U ⇒ d ∈ U ]

This form of the definition is based on that presented in [22] and [23]. In both of those works however,
the antecedent and consequent on the right are interchanged so that

c ¹ d if and only if ∀U ∈ D.[d ∈ U ⇒ c ∈ U ]

The interchange is motivated by the notion of topological convergence, and c may be understood
as providing approximate information about d by virtue of the observations that c and d both sat-
isfy. The point d then serves as an idealised limit to the approximate information provided by c. In
contrast, it was the notion of refinement that interested us, and in Definition 3.6 the point d was a re-
finement of c because d satisfied more observations than did c and so represented a stronger property
than c, as shown by Proposition 3.9.

The idea of associating a point with a set of properties is not new. For example, in [41] this kind
of association is represented as a relation of type X × P(X) on a set X . These relations are called
binary multi-relations and have found application particularly in the field of program semantics.
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The idea is that a given input state is mapped by a binary multi-relation to a set of properties that the
output from a particular program can be expected to satisfy. The binary multi-relation is then used
to represent the program and captures in an accessible form angelic or demonic non-deterministic
terminating behaviour of the program.

In our case, we have turned this picture around by instead using properties to determine points,
thereby focussing on properties of points rather than points themselves. The idea of using observa-
tions to structure the points of a set is reminiscent of the work presented in [54], where the “opens” of
a frame are used for this purpose. Scope did not permit us to explore the development of relational
belief revision within settings such as those of [54]. It is our belief, however, that such exploration
would be valuable research because techniques from locale theory and formal (point-free) topology
could then be applied to the problem of belief revision.

In deriving our set of surrogates, we based our work on [15]. There were, however, some important
differences. In [15], a topology was assumed, and truth values were composed from the open and
closed sets of the topology. A truth value was thus constructed from two properties U and V , which
respectively were thought of as sets of worlds at which a formula of interest held and did not hold.
We extended this idea by composing a surrogate from two sets of properties. We could therefore
uncouple surrogate values from direct association with the underlying degrees of disposition.

To form a surrogate, we chose to use the closed sets of a closure operator (compare the discussion
following Proposition 3.11). As with [15], the resulting lattice of surrogates was finitely distributive.
In our case, however, we could define negation as an involution (Definition 3.18 and Proposition
3.19), whereas in [15], negation corresponded to the weaker notion of proto-complementation (see
Definition 5.14 in [12]).

From our development of a model of disposition, there arise several avenues for such future research.
It would be of interest to explore how r-algebra simulations might be applied to other fields of study.
For example, one very simple application to the study of program semantics might be as follows.
Let A be a bounded r-algebra of type F , where (A,≤A) represents a partially ordered family of
properties, and let (S,ΩS) be the state space for a given program. For each U ∈ ΩS, we let [U −→ A]
be the family of functions such that if f(u) = θ for f ∈ [U −→ A], then when the program is started
in state u, the outcome satisfies the property θ.

From Proposition 2.29, the sheaf H on S is such that for each U ∈ ΩS, H(U) = [U −→ A], is a
sheaf of A-simulations. We can then represent the actual behaviour of the program by a family
{si}i∈I ⊆ H(S) of global sections. With restriction maps, the program behaviour can be analysed
by considering more local behaviour over an open set of interest. We may also think of {si}i∈I as
representing a relation R ⊆ S × A where for x ∈ S, R(s) = {si(x)}i∈I . We are then able to represent
a form of non-determinism, from which we can proceed to explore other aspects such as the non-
terminating behaviour of a program.

In turn, a manifold would provide a means of combining the state spaces and behaviour of several
programs into a unified structure. The behaviour of each program can be examined by means of
the accompanying atlas, and where two programs share input states, the transition maps enforce a
coherency on the behaviour of the programs on these shared inputs. If each program is treated as a
method of a class in an object-orientated setting, we can then reason about the behaviour of the class.
Similarly, if each program is treated as an independent agent, we may reason about the behaviour of
a family of co-working agents.

We could use the P - and Q-specifications of a surrogate to specify, respectively, “liveness” (something
good always happens) and “safety” (something bad does not happen) properties (see for example
[47] and also [3]). An overdefined truth value assigned to an input state is then more desirable,
since for output states that satisfy P and Q something good always happens and something bad



82 CHAPTER 5. CONCLUSIONS

does not happen. Consistent and exact truth values are less desirable, because for output states
that satisfy P , we cannot guarantee that something bad does not happen. It may also be of interest to
explore how these surrogates could be used in conjunction with other analysis tools such as predicate
transformers.

In closing our work, we recall again the quote from [29] (page XX):

“Abstract algebra cannot develop to its fullest extent without the infusion of topological ideas, and
conversely, if we do not recognise the algebraic aspects of the fundamental structures of analysis
our view of them will be one-sided.”

Although we did not need to explore the kind of duality suggested by this quotation, we have
nonetheless been fortunate to have explored a problem in belief revision from logical, algebraic and
topological vantage points. The logical view would always be a given, because belief revision is so
intrinsically linked to the idea of logical consistency. Ideas from universal algebra were applied most
notably in the exposition of the Chapter 2 and to a lesser extent in the development of the disposi-
tions of Chapter 3. It was ultimately the application of topological ideas, however, that allowed us to
develop our proposed framework.

It is our hope that the framework we have constructed will be of benefit to further study of belief
revision, and that it may find application in other areas of study as well.
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