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Abstract 

 
Grapevine leafroll-associated virus 3 (GLRaV-3) is the type strain for the genus 

Ampelovirus, family Closteroviridae. There has been only one report that claimed the 

complete nucleotide sequence of GLRaV-3 (isolate NY-1, AF037268). Here we report the 

complete sequence of the South African GLRaV-3, isolate GP18 (EU259806) and show a 

significantly extended 5’ end. We used RLM-RACE to determine the 5’ end of GP18 and 

found the 5’ UTR to be 737 nt compared to 158 nt in the NY-1 sequence. This extended 

UTR was found in all other South African isolates of GLRaV-3 that were tested. In two 

collaborative studies the existence of the extended 5’ UTR was confirmed and further 

investigated. In the first study (Coetzee et al., 2010), metagenomic data generated by next 

generation sequencing (Illumina Genome Analyzer II) was analysed for GLRaV-3 specific 

sequences. Sequences similar to the GP18 isolate confirmed the sequence of the extended 

5’ UTR. In the second study (Jooste et al., 2010), three genetic variants were identified and 

their respective 5’ UTRs studied. Great diversity was observed between the 5’ UTRs of the 

different genetic variants, however within a variant the 5’ UTR was found to be highly 

conserved. Grapevine leafroll-associated virus 3 is a positive sense, single stranded RNA 

virus that has been shown, like other closteroviruses, to produce subgenomic (sg) RNAs 

during replication. These sgRNAs are deployed for the expression of the ORFs on the 3’ 

half of the genome. In this study a dsRNA blot confirmed the presence of three, 3’ co-

terminal sgRNAs species [sgRNA(ORF3/4), sgRNA(ORF5) and sgRNA(ORF6)] in 

GLRaV-3-infected plant material when using a probe directed at the coat protein gene. The 

specific 5’ terminal nucleotides for these sgRNAs as well as four additional sgRNAs 

[sgRNA(ORF7), sgRNA(ORF8), sgRNA(ORF9) and sgRNA(ORF10-12)] were 

determined by RLM-RACE for GLRaV-3 isolate GP18. The construction of a GLRaV-3 

mini-replicon, analogous to RNA1 of Lettuce infectious yellows virus, for the evaluation 

of putative sg-promoters is also described. 
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Opsomming 

 
Grapevine leafroll-associated virus 3 (GLRaV-3) is ‘n lid van die Closteroviridae familie 

en die hooflid vir die genus Ampelovirus. Tot dusver was daar net een studie wat die 

volledige nukleïensuurvolgorde van GLRaV-3 gerapporteer het (isolaat NY-1, AF037268). 

In hierdie studie rapporteer ons die volledige volgorde van ‘n Suid-Afrikaanse GLRaV-3, 

isolaat nl. GP18 (EU259806) wat noemenswaardig langer is aan die 5’ kant. RLM-RACE 

is gebruik om die 5’ eindpunt van GP18 te bepaal en daar is gevind dat die 5’ 

ongetransleerde streek (UTR) 737 nt lank is in vergelyking met die 158 nt van die NY-1 

volgorde. Die verlengde 5’ UTR is gevind in alle Suid-Afrikaanse monsters wat getoets is. 

Die verlengde 5’ UTR is bevestig en verder bestudeer tydens twee samewerkingsprojekte. 

In die eerste studie (Coetzee et al., 2010), is metagenomiese data gegenereer deur 

volgende-generasie volgordebepaling (Illumina Genome Analyzer II) en geanaliseer vir 

GLRaV-3 spesifieke volgordes. Volgordes soortgelyk aan die GP18 isolaat het die 

verlengde 5’ UTR volgorde bevestig. In die tweede studie (Jooste et al., 2010), is drie 

genetiese variante van GLRaV-3 geidentifiseer en hulle onderskeie 5’ UTR volgordes 

bepaal en bestudeer. Daar is groot diversiteit tussen die 5’ UTRs van die verskillende 

genetiese variante gevind, maar tussen isolate van dieselfde variant is die volgordes 

gekonserveerd. Grapevine leafroll-associated virus 3 is ‘n positiewe-sin, enkelstring RNA 

virus wat al voorheen bewys is om, soos ander closterovirusse, subgenomiese (sg) RNAs te 

produseer tydens replisering. Hierdie sgRNAs word ingespan vir die uitdrukking van die 

ORFs op die 3’ helfte van die virusgenoom. In hierdie studie is ‘n dsRNA klad gebruik om 

die voorkoms van 3’ ko-terminale sgRNAs [sgRNA(ORF3/4), sgRNA(ORF5) and 

sgRNA(ORF6)] te bevestig in GLRaV-3 geinfekteerde plantmateriaal deur gebruik te 

maak van ‘n peiler teen die kapsiedproteïengeen. Die spesifieke 5’ terminale nukleotiedes 

vir hierdie sgRNAs sowel as vier additionele sgRNAs [sgRNA(ORF7), sgRNA(ORF8), 

sgRNA(ORF9) and sgRNA(ORF10-12)] is bepaal deur gebruik te maak van RLM-RACE 

op die GLRaV-3 isolaat GP18. Die konstruksie van ‘n GLRaV-3 mini-repliserings 

konstruk, analoog aan die RNA1 van Lettuce infectious yellows virus, vir die evaluasie 

van moontlike sg-promotors word ook beskryf. 
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Chapter 1: Introduction  

 

1.1 General introduction 

The international wine industry is a major contributor to the global economy. According to 

the 33rd report of South African Wine Industry Statistics (SAWIS) published in 2009, the 

South African wine industry has been stable for the last three years (2006-2008). South 

Africa has approximately 124 000 hectares under vines, producing more than a billion 

litres of wine every year, contributing R3.5 bn (5.6%) to the State Revenue. In 2006 South 

Africa was ranked the 7th largest wine producing country, contributing 3.6% to the global 

production. In the Western Cape Province, the industry employs more than 250 000 people 

and greatly contributes to the provinces’ GRP (www.SAWIS.co.za).  

 

This global industry is threatened by many pests and pathogens such as insects, fungi, 

bacteria, nematodes, phytoplasmas and viruses. All these pathogens, except for viruses and 

phytoplasmas can be controlled by agrochemicals. The most destructive grapevine viruses 

are those involved in grapevine leafroll disease (LRD), Rugose wood disease and Fanleaf 

degeneration (Martelli and Boudon-Padieu, 2006). Vines infected with viruses cannot be 

cured and viticulturists have to resort to actively managing these diseases in their 

vineyards. Control methods consist of planting uninfected vines, clean pruning techniques 

and controlling the virus vectors with pesticides. All these methods help only in containing 

the virus spread with limited success. 

 

To help prevent the devastating affects of grapevine viruses an intimate knowledge of the 

virus infection cycle, mode of spread (vector), geographical distribution and level of 

infection is required. The International Council for the Study of Viruses and Virus-like 

Diseases of Grapevine (ICVG) has long recognised Grapevine leafroll-associated virus 3 

(GLRaV-3), the main causative agent in leafroll disease, as one of the most economically 

important viruses, and since 2003 it has been regarded as the foremost virus problem 

facing the grapevine industry. The NGO, Wine Industry Network of Expertise and 

Technology (Winetech) that co-ordinates and facilitates R&D for the South African wine 

industry has recognised leafroll disease as the most threatening of the grapevine virus 

diseases in their Vision 20/20 initiative.  
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Research on GLRaV-3 lags behind that of other economically important grapevine viruses 

like Grapevine fanleaf virus (GFLV) and has largely focused on epidemiology and the 

development of detection techniques. However, in 2004 Ling et al. published the genome 

sequence of GLRaV-3 isolate NY-1. Using this information, researchers were able to 

investigate the genome as a whole in an attempt to understand the role of this virus in LRD 

at the molecular level. 

 

 

1.2 Aims and objectives 

This study attempted to elucidate some of the fundamental questions pertaining to the virus 

replication strategy and mechanics of replication. The results obtained give us a better 

understanding of GLRaV-3 replication that will hopefully assist in the creation of new 

approaches to combat LRD. The main aim of this project was to address the lack of 

knowledge that existed for the genomic and sub-genomic (sg)RNA of GLRaV-3 and how 

these are utilised in virus replication. To achieve this goal the following objectives were set 

out:   

 

° To identify grapevine plants that were singly infected with GLRaV-3, to be used as 

starting material.  

° To determine the complete genome sequence of a South African isolate of GLRaV-

3, to be able to compare to previous genome sequences and map 5’ ends accurately.  

° To determine the 5’ ends of the sgRNAs associated with GLRaV-3 replication 

using RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE) and 

map on the genomic sequence generated. 

° To construct a GLRaV-3 mini-replicon for the evaluation of putative sg-promoters 

involved in the production of sgRNAs in a transient expression system in Nicotiana 

benthamiana.  

 

 

1.3 Breakdown of thesis chapters 

The thesis is divided into six chapters; a general introduction and literature overview 

followed by three research chapters and a general conclusion. Each chapter is introduced 

and referenced separately. 
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Chapter 1: Introduction 

General introduction, aims and objectives of the study with a breakdown of the thesis 

chapters. The scientific outputs generated during the study and the contribution by Mr. 

Maree is stated. 

   

Chapter 2: Literature overview 

An overview of the literature relating to leafroll disease, GLRaV-3, positive-sense, single 

stranded RNA virus replication (focussing on the role of sgRNA) and closterovirus 

infectious clones are given. 

 

Chapter 3: Sequencing and analysis of the complete genome of a South African Grapevine 

leafroll-associated virus 3 isolate, GP18. 

In this chapter the sequencing of the South African isolate GP18 is described. The 

discovery that the 5’ end extended 579 nt further than previously reported was further 

investigated. Relevant results from two collaborative studies are also included in this 

chapter, with additional analysis not included in the original publications. 

 

Chapter 4: Mapping of the 5’ terminal nucleotides of Grapevine leafroll-associated virus 3 

sgRNAs. 

In this chapter the use of RLM-RACE to map the 5’ terminal nucleotides of seven positive-

sense sgRNAs, for the expression of ORFs 3-12 of GLRaV-3 is described. 

 

Chapter 5: Construction of a Grapevine leafroll-associated virus 3 mini-replicon. 

In this chapter the construction of a GLRaV-3 mini-replicon is described. This is the first 

report of the construction of a mini-replicon for a member of the genus Ampelovirus. An 

attempt to utilize the GLRaV-3 mini-replicon to evaluate the activity of the putative sg-

promoter of sgRNA(ORF6) using a GUS gene expression assay is also reported.   

 

Chapter 6: Conclusion 

General concluding remarks and future prospects. 
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1.4 Research output and author contributions: 

The following papers, conference proceedings and conference posters were generated 

during the study. 

  

1.4.1 Publications 

1. Maree H.J., Freeborough, M-J., Burger, J.T., 2008. Complete nucleotide sequence of a 

South African isolate of grapevine leafroll-associated virus 3 reveals a 5’ UTR of 737 

nucleotides. Archives of Virology 153:755-757. 

This paper forms the basis of Chapter 3 and is in its entirety the work of Mr Maree. 

 

2. Coetzee, B., Freeborough, M-J., Maree, H.J., Celton, J-M., Rees, D.J.G., Burger, J.T., 

2010. Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. 

Virology 400, 157-163.  

This paper was partially included in Chapter 3 as supporting data for the sequence of 

GP18 and GP18-like viruses, and confirmation of the extended 5’ UTR. The data from 

this study was also used for further analyses, not included in the publication, but 

included in Chapter 3.  Mr Maree was involved in the experimental design and formed 

an integral part of the analysis team interpreting the data generated. 

 

3. Jooste, A.E.C., Maree, H.J., Bellstedt, D.U., Goszczynski, D.E., Pietersen, G., Burger, 

J.T., 2010. Genetic variation of Grapevine leafroll-associated virus 3 (GLRaV-3) in 

leafroll infected vineyards of South Africa. DOI 10.1007/s00705-010-0793-y. 

This paper was partially included in Chapter 3 as supporting data for the existence of 

the extended 5’ UTR and variation observed in this area between molecular variants. 

Mr Maree was involved in the experimental design and supplied technical support in 

the sequencing of the 3rd molecular variant, PL20. He also assisted in the determination 

of the 5’ ends of all three molecular variants described as well as the analysis of 

sequence data. 

 

4. Maree, H.J., Gardner, H.F.J., Freeborough, M-J., Burger, J.T., 2010. Mapping of the 

5’ terminal nucleotides of Grapevine leafroll-associated virus 3 sgRNAs. Virus 

Research 151, 252-255. 

This paper forms the basis of Chapter 4 and is completely the work of Mr Maree. The 

dsRNA blot image used in the publication was generated by H. Gardner.  
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1.4.2 Conference proceedings 

1. Maree, H.J., Jooste, A.E.C., Stephan, D., Freeborough, M-J., Burger, J.T. 

Characterisation of the genomic and subgenomic RNA of Grapevine leafroll-associated 

virus 3 (GLRaV-3). 16th meeting of the International Council for the Study of Virus 

and Virus-like Diseases of the Grapevine (ICVG),  31 August - 4 September 2009, 

Dijon, France. p222. ISSN 0369-8173. 

This proceeding includes work described in Chapters 3, 4 and 5 and is the in its entirety 

the work of Mr Maree. 

 

2. Jooste, A.E.C., Maree, H.J., Pietersen, G., Goszczynski, D.E., Burger, J.T. 

Identification and distribution of three divergent molecular variants of Grapevine 

leafroll-associated virus 3 (GLRaV-3) in South African vineyards. 16th meeting of the 

International Council for the Study of Virus and Virus-like Diseases of the Grapevine 

(ICVG),  31 August - 4 September 2009, Dijon, France. p273. ISSN 0369-8173. 

Mr Maree was involved in the experimental design and supplied technical support in 

the sequencing of the 3rd molecular variant, PL20. He also assisted in the determination 

of the 5’ ends of all three molecular variants described, as well as the analysis of 

sequence data. 

 

3. Coetzee, B., Freeborough, M-J., Maree, H.J., Celton, J-M., Rees, D.J.G., Burger, J.T. 

Virome of a vineyard: ultra deep sequence analysis of diseased grapevines. 16th 

meeting of the International Council for the Study of Virus and Virus-like Diseases of 

the Grapevine (ICVG),  31 August - 4 September 2009, Dijon, France. p216. ISSN 

0369-8173. 

Mr Maree was involved in the design of the experiments and the analysis and 

interpretation of the data generated. 

 

4. Maree, H.J., Freeborough, M-J., Burger, J.T., Characterisation of the Grapevine 

leafroll-associated virus 3 sgRNAs. 46th Congress of the South African Society for 

Plant Pathology and the 6th Congress of the African Mycological Association, 25-28 

January 2009, Villa Via Hotel, Gordon’s Bay, South Africa. P.70. ISBN: 13 978-1-

86849-376-0.  

This proceeding includes work described in Chapters 3 and 4 and is the in its entirety 

the work of Mr Maree. 
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1.4.3 Posters 

1. Maree H.J., Freeborough, M-J., Burger, J.T. Characterisation of the Grapevine 

leafroll-associated virus 3 sgRNAs. Cape Biotechnology Forum, Somerset West, South 

Africa, 30 November – 2 December 2008. Poster: PP06 

This conference proceeding includes work described in Chapters 3 and 4 and is the in 

its entirety the work of Mr Maree. 

  

2. Maree, H.J., Freeborough, M-J., Burger, J.T., Characterisation of the Grapevine 

leafroll-associated virus 3 replication mechanism. Agricultural Biotechnology 

International Conference (ABIC), Cork, Ireland, 24-27 August 2008. Poster: 2.07 p.20  

This conference proceeding includes work described in Chapters 3 and 4 and is the in 

its entirety the work of Mr Maree. 

 

1.5 References  

Ling, K.S., Zhu, H.Y., Gonsalves, D., 2004. Complete nucleotide sequence and genome organization of 

grapevine leafroll-associated virus 3, type member of the genus ampelovirus. J. Gen. Virol. 85, 2099-2102.  

 

Martelli, G.P., Boudon-Padieu, E., 2006. Directory of infectious diseases of grapevines and viroses and virus-

like diseases of grapevine: Bibliographic report 1998-2004. Opinions Mediterraneennes Serie B: Studies and 

Research.  
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Chapter 2: Literature overview 

 

2.1 Introduction 

The grapevine has been an important supplementary source of food and drink for 

millennia. Grapes are mainly used for the production of wine but also consumed fresh, 

dried or pressed into juice. Archaeological evidence of early viticulture and viniculture can 

be traced back as far as the Chalcolithic and mid-Bronze Age (Figueiral et al., 2010). 

Vinification residues found in clay jars from 7000 BCE and archeobiological remains of 

pressed grapes from the 5th millennium BCE are evidence of early winemaking 

(McGovern, 2003; Valamoti et al., 2007). Unfortunately, grapevine is also the crop plant 

most susceptible to intracellular pathogens, of which many cause disorders that reduce 

plant vigour and longevity as well as yield and quality of the harvest. Infectious 

intracellular agents like viruses, viroids, and phloem- or xylem-limited prokaryotes are 

some of the most important pathogens affecting grapevine.  The International Council for 

the Study of Virus and Virus-like Diseases of the Grapevine (ICVG) was established in 

1964 to serve as a platform to discuss research methodologies and results related to 

grapevine viral diseases. Since then the ICVG has had 15 meetings the latest (16th) in 

Dijon, France in 2009. The ICVG now recognises more than 70 infectious agents of 

grapevine which include more than 60 viruses from more than 8 families (Martelli and 

Boudon-Padieu, 2006). The diseases caused by these viruses can be divided into five main 

categories: Infectious degeneration (GFLV, European and Mediterranean nepoviruses, 

American nepoviruses), Leafroll (closteroviruses), Rugose wood complex (vitiviruses and 

foveaviruses), Graft incompatibility (Grapevine leafroll-associated virus 2 (GLRaV-2) and 

Grapevine virus B (GVB)) and Fleck complex (Grapevine fleck virus (GFkV), Grapevine 

redglobe virus (GRGV), Grapevine asteroid mosaic-associated virus (GAMaV) and 

Grapevine rupestris vein feathering virus (GRVFV)). Some of these diseases are caused by 

viruses that individually cause no symptoms in the plant but in combination with other 

viruses, i.e. in a virus complex, cause specific diseases (Martelli and Boudon-Padieu, 

2006). Worldwide and also in South Africa the most important of these viral diseases is 

Grapevine Leafroll Disease (LRD) (Pietersen, 2004). Recently, metagenomic and next 

generation sequencing have demonstrated that the complexity of grapevine viral diseases 

might extend even further than originally though as new viruses as well as viruses 
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previously not known to infect grapevine are being identified (Al Rwahnih et al., 2009; 

Coetzee et al., 2010; Prosser et al. 2007).  

 

This literature review is divided into four major parts to give an overview of the 

information available and to give credit to the research that formed the basis from were this 

research was undertaken. The first two parts broadly deals with LRD and Grapevine 

leafroll-associated virus 3 (GLRaV-3) specifically, for a comprehensive review refer to the 

report by Charles et al. compiled in 2006 for the New Zealand winegrowers. The third part 

focuses on the role of sgRNAs in viral replication, highlighted with examples from the 

family Closteroviridae. The fourth part of the literature overview is on the use of infectious 

clones as molecular tools to study members of the family Closteroviridae and the use of 

derived deletion mutants (mini-replicons).  

 

 

2.2 Grapevine Leafroll Disease 

2.2.1 History  

Reports of aberrant grapevine leaf morphology date back to the mid 1800s and were 

initially thought to be physiological in origin (Martelli and Boudon-Padieu, 2006). It was 

not until 1935 when Sheu demonstrated that the disorder “Rollkrankheit” was graft 

transmissible, that a pathogen was suspected (referenced by Charles et al., 2006). Several 

studies (geographically separated) over the years have investigated diseases now all 

believed to be LRD and are regarded as synonyms: White Emperor disease (English), 

“Rollkrankheit” and “Blattrollkrankheit” (German), “enroulement” (French), 

“accartocciamento” and “accartocciamento fogliare” (Italian), “enrollamiento de la hoja” 

and “enrollado” (Spanish) and “Enrolamento de la folha” (Portuguese) (Martelli and 

Boudon-Padieu, 2006). Since then LRD has been detected around the world and is 

currently the most widespread of the grapevine viral diseases.       

 

2.2.2 Symptoms 

The phenotypic symptoms of LRD in red Vitis vinifera cultivars are diagnostic and easily 

identified. The older leaves on the plant turn red prematurely, progressing to a dark purple 

while the primary and secondary veins remain green, this symptom will spread through the 

plant as the season progresses. Later in the season the leaves become brittle and roll 

downwards. In white cultivars the symptoms are less noticeable. Leaves also roll 
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downward but do not turn red but rather yellow or become chlorotic. Rootstock cultivars 

seem to be mainly symptomless (Martelli and Boudon-Padieu, 2006). The severity of the 

phenotypic symptoms also seems to be linked to cultivar and the combination of scion and 

rootstock used (Golino, 1993). See Figure 2.1 for typical LRD symptoms in red and white 

cultivars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Typical grapevine leafroll diseased vines from a red cultivar on the left and a white cultivar on 
the right.  
 

2.2.3 Detection 

The detection and identification of viruses form a critical part of the defence against these 

debilitating diseases. The earliest method used to identify virus diseases was through 

indexing. This method is based on the assumption that a virus will be transmissible through 

the graft union and induce symptoms on the indicator shoot. Indexing has been 

successfully used for LRD, typically using V. vinifera cv Cabernet Franc as the indicator. 

The drawbacks to this method are that it takes 1-3 years before a result is obtained and it 

does not provide any additional information on the viruses infecting the plant being tested.    
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The need to be able to identify not only the disease but also the different viruses involved 

was greatly satisfied by the introduction of serological techniques. The most well known of 

these techniques are the enzyme-linked immunosorbent assay (ELISA). It has been 

successfully used to detect GLRaV-3 infection in field collected samples (Ling et al., 

2000; Zee et al., 1987). The development of virus and even strain-specific antibodies 

makes ELISA a very useful detection system that is currently the method of choice in 

industry for routine screening. The advantages of ELISA are that it is fast, reliable, 

relatively inexpensive and up-scalable to process large numbers. 

RT-PCR based techniques are generally regarded as the most sensitive detection methods 

currently available (Dovas and Katis, 2003; Gambino and Gribaudo, 2006; La Notte et al., 

1997; Ling et al., 2001; Osman and Rowhani, 2006; Osman et al., 2007; Osman et al., 

2008). It is sensitive enough to be unaffected by seasonal fluctuations in virus titre that 

might affect the result in other tests. The strength of these techniques is also their 

drawback. It is highly specific and it is possible to determine genetic variants but it is also 

possible to generate false negatives as one unfortunate mismatch in the wrong position of a 

primer might end in a false negative result. RT-PCR is reliant on good sequence 

information and primer design with the use of multiple sequence alignments and possibly 

degenerate primers.    

 

2.2.4 Grapevine leafroll-associated viruses  

The initial research performed to determine the virus particles associated with LRD, 

identified potyvirus-like, closterovirus-like and isometric virus-like particles (Castellano 

and Martelli, 1984; Namba et al., 1979; Tanne et al., 1977). The transmission of the 

closterovirus-like particles was the final proof that the virus associated with LRD is a 

closterovirus or closteroviruses (Rosciglione and Gugerli, 1989; Tanne, 1988). Since the 

first purification of LRD closterovirus particles, many additional viruses have been 

identified, as determined through serology or more recently through nucleotide similarities. 

To date there are possibly 11 viruses associated with LRD (Table 2.1). In South Africa 

GLRaV-3 is the most prevalent virus associated with LRD (Pietersen, 2004).    
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Table 2.1: List of Grapevine leafroll-associated viruses 

Name Reference * 
Grapevine leafroll-associated virus 1 Gugerli et al., 1984  
Grapevine leafroll-associated virus 2 Gugerli et al., 1984 
Grapevine leafroll-associated virus 3 Rosciglione and Gugerli, 1986 
Grapevine leafroll-associated virus 4 Hu et al., 1990 
Grapevine leafroll-associated virus 5 Walter and Zimmerman, 1991 
Grapevine leafroll-associated virus 6 Gugerli et al., 1997 
Grapevine leafroll-associated virus 7 Choueiri et al., 1996 
Grapevine leafroll-associated virus 8 Does not exist 
Grapevine leafroll-associated virus 9 Alkowni, et al., 2002 
Grapevine leafroll-associated virus Pr Maliagka et al., 2008 
Grapevine leafroll-associated virus De Maliagka et al., 2008 
Grapevine leafroll-associated virus ? Abou Ghanem-Sabanadzovic at al., 2004 
* As referenced by Martelli and Boudon-Padieu, 2006. 

 

2.2.5 Effects of LRD on grapevines 

Numerous studies have been published that reported on the effect of LRD on the yield and 

quality of grapes on infected vines. These studies largely used four parameters to evaluate 

the grapes: yield, sugar level, titratable acid and anthocyanin accumulation. The results 

from these studies varied greatly, emphasising that there are several contributing factors 

that should also be taken into consideration when comparing these studies. Factors like 

Vitis spp. and cultivar, rootstock and scion combination, vine age, virus infection status 

(not only grapevine leafroll-associated viruses but also additional viruses) and climate 

(Golino, 1993; Lee and Martin, 2009). In general these studies indicate that LRD infected 

vines have a reduction in yield of up to 80% (Credi and Babini, 1997; Komar et al., 2007; 

Over de Linden and Chamberlain, 1970) with some notable exceptions where no effect was 

observed (Mannini et al., 1998). They also seem to confirm a reduction in sugar level with 

an increase in titratable acid (Cabaleiro et al., 1999; Komar et al., 2007; Over de Linden 

and Chamberlain, 1970). A reduction in the concentration of anthocyanin in the berry 

skins, that reduce the quality of the wine made from these grapes have been reported by 

several research groups (Guidoni et al., 1997; Lee and Martin, 2009; Mannini et al., 2000; 

Over de Linden and Chamberlain, 1970).   

The overall health of grapevines is negatively affected by the virus infection. Diseased 

vines have been shown to have significant physiological symptoms like reduced 

photosynthetic ability and vigour that could have a negative effect on the grape yield and 

quality (Bertamini et al., 2004; Cabaleiro et al., 1999; Guidoni et al., 1997; Mannini et al., 

1996; Mannini et al., 2000; Sampol et al., 2003). 
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2.2.6 Transmission and spread of LRD 

Leafroll disease is graft transmissible and mainly spreads through the propagation of 

infected material. Grapevine leafroll-associated viruses are not mechanically transmissible 

with the exception of GLRaV-2 that has been shown to be transmissible to an herbaceous 

host (Nicotiana benthamiana) (Castellano et al., 1995). The natural vectors for these 

viruses have been demonstrated to be mainly mealybugs, but possibly also soft scale 

insects (Figure 2.2). The vector for each of the grapevine leafroll-associated viruses is not 

specific and most likely linked to geographical distribution of the insects (Martelli and 

Boudon-Padieu, 2006). In Figure 2.3 typical spreading patterns can be seen.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Close-up photograph of a healthy female Planococcus ficus adult with a first instar nymph 
indicated by the arrow.  
 

 

 

 

 

 

 

 

Figure 2.3: Panoramic photo of a grapevine leafroll diseased vineyard in the Stellenbosch area showing 
typical spread patterns of virus infection. The arrows indicate the gradient of spread from adjacent blocks 
(short distance spread) and the circles, foci of infection (long distance spread) that is spreading outwards.  
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2.2.7 LRD management 

No natural immunity to LRD has been found in Vitis spp and it currently seems unlikely 

that such resistance exist. Some species or cultivars might be more tolerant to virus 

infection (esp. rootstocks) than others with only mild symptom expression but it has been 

shown that even in these vines the grapes are negatively affected. Currently, the best 

approach to maintain general vineyard health is to manage the disease and to plant 

sanitised material. Managing the disease could involve strategies to eliminate the vector 

through rigorous spray regimes or biological control with parasitoids like Anagyrus 

pseudococci (Figure 2.4), roguing of infected vines and ensuring that there are no 

additional stresses on the vine (Charles et al., 2006). The planting of virus-free material 

have been shown to be the most effective method available (Martelli and Boudon-Padieu, 

2006). Sanitation of propagation material is performed by heat therapy but chemotherapy 

has also been shown to be a possibility (Panattoni et al., 2007).   

In the future, molecular approaches such as genetic engineering of disease resistance into 

grapevine might play a prominent role in disease management. Several researchers are 

investigating the potential of transgenic grapevines resistant to grapevine viruses like 

GFLV (Krastanova et al., 1995; Maghuly et al., 2006) and GLRaV-2 and -3 (Freeborough, 

2003; Orecchia et al., 2008; Xue et al., 1999). The results from these studies are promising 

but unfortunately years away from being commercially available, environmental and 

ethical concerns as well as consumer preferences not withstanding.     

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: A) Photograph of a healthy female Planococcus ficus on the right and a mummy of a parasitoid 
on the left. B) Female P. ficus that have already been parasitised, the black spots indicate where the egg of 
the parasitoid has been laid. C and D) Photographs of the male and female parasitoids Anagyrus pseudococci 

hatched from the parasitised mealybugs. 

A B 

♂ ♀ C D 
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2.3 Grapevine leafroll-associated virus 3 

2.3.1 General 

Grapevine leafroll-associated virus 3 is generally regarded as the single most economically 

important grapevine virus in South Africa and possibly world wide (Freeborough and 

Burger, 2008). The first GLRaV-3 particles were purified from isolate NY-1 by Zee et al. 

in 1987. These purified particles were used to produce antiserum that was developed into 

an ELISA for field testing. The serological typing of different virus isolates established 

that there were five distinct recognised serotypes designated GLRaV I, GLRaV II, GLRaV 

III, GLRaV IV and GLRaV V in 1995 (Boscia et al., 1995). At the International 

Committee on Taxonomy of Viruses (ICTV) meeting in 1995 it was decided to change the 

Roman numerals in virus acronyms to Arabic numerals separated by a hyphen from the 

letters. This changed the acronyms of grapevine leafroll-associated viruses to GLRaV-1 to 

-5, as it is currently used.    

  

2.3.2 Properties of GLRaV-3  

2.3.2.1 Morphology  

Grapevine leafroll-associated virus 3 is a phloem limited, flexuous filamentous virus with a 

non-enveloped virion approximately 1800-2000nm in length (Figure 2.5) (Hoefert and 

Gifford, 1967; Karasev, 2000; Tidona and Darai, 2001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Transmission electron micrograph of negatively stained, purified GLRaV-3 particles, using 1% 
(w/v) aqueous uranyl acetate staining. Picture taken by G.G.F Kasdorf. 
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2.3.2.2 Genome 

In 2004, Ling et al. published the first complete sequence of GLRaV-3 isolate NY-1(Ling 

et al., 2004). Grapevine leafroll-associated virus 3 has a positive sense single stranded 

(+ss) RNA genome and the genome length was determined to be 17919nt divided into 13 

ORFs with 5’ and 3’ UTRs of 158 and 277 nucleotides, respectively. The genome 

organisation confirmed that GLRaV-3 is a closterovirus as it was similar to the 

closterovirus convention established by Dolja et al. (1994) (Ling et al., 1998). Since then 

more isolates of GLRaV-3 had been sequenced: isolate GP18 from South Africa (Maree et 

al., 2008), isolate CL-766 from Chile (Engel et al., 2008) and isolates 621, 623, and PL20 

from South Africa (Jooste et al., 2010). The sequencing of GLRaV-3 isolate GP18 as well 

as additional proof that the original genome sequence (NY-1) might not be complete is 

discussed in Chapter 3 of this thesis. 

The 13 ORFs of GLRaV-3 were designated ORF1a and 1b and ORFs 2-12 according to the 

convention set out by Agranovsky et al. (1994) (Ling et al., 1998). The putative functions 

of the different ORFs were determined by sequence comparisons to known proteins (Ling 

et al., 1998). ORF1a encodes a large polypeptide (Superfamily 1) with four distinct protein 

domains: leader papain-like protease (L-Pro)(Ling et al., 2004), methyltransferase (Ling et 

al., 1998), AlkB (Maree et al., 2008) and a Helicase (Ling et al., 1998). OFR1b encodes an 

RNA-dependent RNA polymerase (RdRp) belonging to the Supergroup 3 RdRps. There is 

no counterpart for the small peptide putatively encoded by ORF2 in the other 

closteroviruses. At this position in Citrus tristeza virus (CTV) and Lettuce infectious 

yellows virus (LIYV) a much larger ORF is found with no sequence similarity (Karasev et 

al., 1995; Klaassen et al., 1995). ORF3 potentially encodes a small transmembrane 

hydrophobic protein similar to other closteroviruses. An Hsp70-homologue protein is 

encoded by ORF4 and was identified by amino acid sequence similarity. Eight conserved 

domains (A-H) were identified of which three (A-C) are believed to contain an ATPase 

domain typical of closteroviral Hsp70 chaperone-like proteins. The function of ORF5 

could not be confirmed as a potential Hsp90-homologue as expected in other 

closteroviruses (Ling et al., 1998). These two proteins, along with the movement coat 

protein (analogous to the GLRaV-3 divergent coat protein), have been shown to form part 

of the virion tail assembly in BYV, which is responsible for the systemic spread of the 

virus (Dolja et al., 2006). ORF6 encodes the coat protein (CP) and contains the four amino 

acids (N, R, G, and D) conserved in all closterovirus coat proteins (Ling et al., 1997). 

ORF7 potentially encodes a divergent coat protein (dCP) and is identified by four 
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conserved closteroviral coat protein amino acids (N, R, G and D) on the C-terminus (Ling 

et al., 1998). It is interesting to note that the order of the CP and the dCP is the same as for 

the bi-partite closteroviruses (e.g. LIYV, criniviruses) and reversed compared to other 

mono-partite closteroviruses (e.g. BYV and CTV, closterviruses) (Karasev, 2000). The 

function of the remaining ORFs 8 to 12 was not determined by Ling et al. (1998). 

Similarity of ORFs 8, 9 and 10 to analogous ORFs of BYV and CTV makes it likely that 

these ORFs encode for viral silencing suppressors and systemic movement proteins, but 

remains to be proven experimentally. The small ORFs 11 and 12 are unique to GLRaV-3 

and not found in other closteroviruses. The intergenic region found in GLRaV-3 is also 

atypical of closteroviruses and due to its high GC content is expected to have extensive 

RNA secondary structure (Karasev, 2000). 

 

2.3.2.3 Genome variation  

Several studies have been conducted to determine genetic variability in the GLRaV-3 

genome (Fuchs et al., 2009; Turturo et al., 2005). In the study by Fuchs et al. (2009) they 

were able to identify five genetic variant groups. Four of the groups displayed low genetic 

variation with nucleotide sequence similarity of >90% to isolate NY-1, while the fifth 

group , represented by a single isolate from New Zealand (NZ-1), displayed high sequence 

variation with only 74.1% similarity to NY-1. The variant groups were designated NY-1, 

C5-1, GP18, MT48-2 and NZ-1. Differential symptom expression has been observed that 

might be linked to genetic variation but it remains to be associated with a specific viral 

genotype (Habili et al., 2009).  

In South Africa two genetic variant groups have previously been identified; represented by 

isolates 621 and 623 (Jooste and Goszczynski, 2005). Analysis of isolates 621 and 623 

found them to group with isolate NY-1 and isolate GP18, respectively. A third South 

African genetic variant had recently been found and sequenced by Jooste et al. (2010). In 

that study, three genetic variants of GLRaV-3 were fully sequenced and phylogenetically 

analysed. In Chapter 3 of this thesis the variation in the 5’ UTRs of these sequence variants 

are discussed.  

 

2.3.3 Taxonomy 

In 2002, the family Closteroviridae was revised by the ICTV study group on 

closteroviruses and allied viruses. The taxonomic composition of the family 

Closteroviridae was restructured to incorporate biological data as suggested by Karasev 
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(2000). The grouping of viruses according to their mono- vs. bi-partite genomes was 

abandoned and replaced by a system where viruses are grouped according to their 

transmission vector; aphid, whitefly or mealybug. This necessitated the establishment of a 

new grouping for closteroviruses that are transmitted by mealybugs. The new genus 

suggested by Martelli et al. is Ampelovirus (from ampelos, Greek for grapevine), with 

GLRaV-3 as the type species and was approved by the ICTV in 2002 (Martelli et al., 2002; 

Mayo, 2002). 

 

2.3.4 Vector transmission of GLRaV-3  

Grapevine leafroll-associated virus 3 can only infect Vitis spp., and in South African 

vineyards is predominantly spread semi-persistently by the mealybug, Planococcus ficus 

(Bar-Joseph et al., 1997; Karasev, 2000). More recently it has been shown that GLRaV-3 

was present in the salivary glands of Planococcus citri, challenging the notion of semi-

persistence and putting forward the hypothesis that GLRaV-3 is transmitted by the insect 

via a circulative mechanism (Cid et al., 2007).  Although GLRaV-3 cannot be transmitted 

by mechanical means, it can by transmitted by grafting and is rapidly spread by the 

planting of infected propagation material (Pietersen, 2004). 

Several studies have been conducted on the spread of GLRaV-3 by insect vectors. 

Combined, these studies determined that GLRaV-3 could be transmitted by: Planococcus 

ficus (Engelbrecht and Kasdorf, 1990), Planococcus Citri (Cabaleiro et al., 2008), 

Pseudococcus longispinus and Pseudococcus calceolariae (Petersen and Charles, 1997; 

Tanne, 1988).  Planococcus ficus and Pseudococcus longispinus have also been shown to 

be such effective vectors that a single nymph is capable of transmitting the virus under 

experimental conditions (Douglas and Krüger, 2008).  

 

2.3.5 Replication of GLRaV-3  

The replication mechanism of GLRaV-3, as with most woody plant phloem-limited 

viruses, has not been studied in detail (Zee et al., 1987). It is assumed that GLRaV-3 will 

follow a similar replication strategy to other closteroviruses like CTV and BYV, which 

have been studied comprehensively. The next section (2.4) will describe the replication 

strategies of these viruses.  

Some studies did investigate GLRaV-3 replication by determining the distribution of 

GLRaV-3 in the plant throughout the growing season. Monis et al. (1996) demonstrated 

that the highest concentration of virus accumulated in the petioles of older leaves and in 
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cane material (Monis and Bestwick, 1996). Ling et al. (2001) confirmed this and added 

that the most reliable source of GLRaV-3 infected tissue is bark scrapings of mature canes.  

Citrus tristeza virus (Hilf et al., 1995) and BYV (He et al., 1997) express the ORFs located 

on the 3’ half of their genomes via sgRNA, and similarly it is hypothesised that ORFs 3-12 

of GLRaV-3 are also expressed via sgRNAs. Subgenomic RNAs are RNA molecules of 

viral origin, shorter than the genome, analogous to mRNA utilised for the expression of the 

proximal ORF on the RNA molecule. The presence of GLRaV-3 specific sgRNAs in 

leafroll-diseased vines have been observed by several research groups but have not been 

characterised further (Habili and Razaian, 1995; Hu et al., 1990; Ling et al., 1997; Monette 

and James, 1990; Mossop et al., 1985; Prosser et al., 2007; Rezaian et al., 1991; Saldarelli 

et al., 1994). The only study that added some information on the composition and 

characteristics of the sgRNAs associated with GLRaV-3 infection was done by Saldarelli 

et al. (1994). In their study they made a cDNA library from dsRNA isolated from an Italian 

isolate of GLRaV-3. The cDNA clones were then used to make RNA probes for northern 

blots. A probe transcribed from pGEM23ds showed high specificity to GLRaV-3 dsRNA 

and was able to detect several bands expected to be the genomic RNA and sgRNA; thereby 

proving that the sgRNAs are derived from the genomic RNA (Saldarelli et al., 1994). This 

probe (23ds) was sequenced by Habili et al. (1995) and used to study GLRaV-3 spread in 

Australia. Analysis of the probe sequence by Ling et al. (1998) showed that the sequence 

comprised of a 5’ portion of ORF5 and a portion of the 3’ UTR. This led them to believe 

that this sequence is proof that GLRaV-3, like CTV also produces defective RNA 

(DRNA).  Chapter 4 of this thesis adds to the limited knowledge by describing the 

identification of the 5’ ends of seven positive sense GLRaV-3 sgRNAs. 

 

 

2.4 Role of sgRNAs in the infection cycle of closteroviruses  

2.4.1 Replication and expression of viral ORFs. 

To understand the role of sgRNAs in the infection cycle of closteroviruses it is important 

to have a working knowledge of what is currently understood as a general outline of the 

infection cycle of these viruses.  

The majority of plant viruses identified to date have +ssRNA genomes with great 

organisational variety of the ORFs and terminal structures. The 5’ and 3’ terminal 

structures have been shown to play a vital role in replication and includes structures like a 

cap or genome linked protein (VPg) at the 5’ end and a poly(A)-tail or tRNA-like structure 
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at the 3’ end (Goldbach et al., 1991). Through multiple amino acid sequence alignments of 

the RdRps of plant viruses, Koonin (1991) was able to identify three viral supergroups. 

The closteroviruses sorted into supergroup III with other Tymo-, Rubi-, and Tobamo-like 

viruses (Bustamante and Hull, 1998). The organisation of the ORFs and the relation 

between the non-structural proteins would indicate a common evolutionary origin and a 

similar replication strategy (Bar-Joseph et al., 1997; Bustamante and Hull, 1998; Koonin, 

1991). Closteroviruses, like most other members of supergroup III are capped, uses sgRNA 

during replication, and do not have a poly(A)-tail.  

The infection cycle of closteroviruses comprise of the following stages (Bustamante and 

Hull, 1998; Dolja et al., 2006): i) entry into the host cell and un-coating of the virion, ii) 

translation of the viral replicase polyprotein by the host cell, iii) transcription of genomic 

and sgRNA by the viral RdRp, iv) translation of viral ORFs via sgRNA and v) 

encapsidation of viral genomic RNA and spread of virions. 

 

2.4.1.1 Entry into the host cell and un-coating of virion   

Closteroviruses are naturally spread mainly by insects from the order Homoptera in a semi-

persistent manner (Bar-Joseph et al., 1997; Karasev, 2000). Upon entry into the cell the 

replication cycle is initiated by the un-coating of the virion and exposure of the genomic 

+ssRNA to the cellular replication proteins.  

 

2.4.1.2 Translation of viral replicase polyprotein by host cell 

The viral RNA replicase is directly translated from the viral genomic RNA molecule by the 

host cell ribosomes (Karasev et al., 1989). It is also possible that the virion tail proteins 

associated with the 5’ end of the genome could play a role by securing the translational 

initiation proteins from the host (Dolja et al., 2006). The translated viral replicase contains 

three domains: a methyltransferase (MET), a helicase (HEL) and an RdRp, which is 

translated via a +1 frameshift in very low quantities (Koonin and Dolja, 1993). The 

replicase polyprotein is then processed into the L-Pro and the replicase components that 

are predominantly MET-HEL with low quantities of MET-HEL-RdRp (Agranovsky et al., 

1994). The replicase proteins restructure the endoplasmic reticulum to form vesicles for the 

transcription of the viral genomic and sgRNA (Dolja et al., 2006).  

The L-Pro is not only involved in its own autocatalytic processing but plays a vital role in 

the accumulation of viral RNA in the host (Peng and Dolja, 2000). The mechanism by 

which the viral accumulation is enhanced is still being elucidated. More recently the 
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activity of the tandem leader protease of GLRaV-2 has been demonstrated to be host-

specific (Liu et al., 2009).    

The AlkB domain is not ubiquitously present in plant viruses and found in only in a few 

members (mostly woody plant infecting viruses) from different genera. This domain has 

been identified in GLRaV-3 as well as several other ampeloviruses (Dolja, 2009). The 

AlkB proteins from bacteria and mammals are iron(II)- and 2-oxoglutarate-dependent 

dioxygenases that are able to reverse methylation damage in DNA and RNA (Aas et al., 

2003). Van den Born et al. (2008) demonstrated, for the first time, that the AlkB domains 

of plant viruses play a vital role in the repair of methylation damage of ssRNA and 

dsRNA.    

 

2.4.1.3 Transcription of genomic and sgRNA by viral RdRp 

The RdRp transcribe full-length negative sense (complementary) genomic RNA molecules 

from the genome that forms the templates for the transcription of new progeny genomic 

RNA molecules (Bustamante and Hull, 1998). It also transcribes sgRNAs utilised in the 

expression of various ORFs. The production of sgRNA is regulated and timed for optimal 

infection efficiency (Dolja et al., 2006).  The method by which the RdRp transcribes the 

sgRNAs will be discussed separately (2.4.2). 

 

2.4.1.4 Translation of viral ORFs via sgRNA 

The timing of viral ORF expression via sgRNA is essential to the success of the infection 

(Hagiwara et al., 1999). Generally, the ORFs involved in suppression of host silencing 

mechanisms are expressed first, to be followed by the structural proteins, short and long 

distance movement proteins and other proteins (Dolja et al., 2006).     

 

2.4.1.5 Encapsidation of viral genomic RNA and virus spread 

The mass accumulation of structural proteins initiates the encapsidation of the genomic 

RNA. These newly formed virions accumulate to high concentrations in the host cell to be 

potentially acquired by an insect vector for spread to another host plant. Some of the 

virions spread through the plasmodesmata to adjacent cells (cell-to-cell movement) until 

they reach the phloem tissue from where it is possible to travel throughout the plant (long 

distance systemic movement) (Dolja et al., 2006). 
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2.4.2 Expression of 3’ half of genome via sgRNA  

Approximately half the genome of closteroviruses is dedicated to ORFs coding for proteins 

involved in the replication the genome. In GLRaV-3, ORF1a and 1b, span from nucleotide 

738 to nucleotide 9066 out of 18498 nucleotides (Maree et al., 2008) making the 

production of sgRNAs essential for the expression of the ORFs located on the 3’ half of the 

genome. The mechanism by which sgRNAs generally are produced is currently not known 

and two mechanisms have been proposed: internal initiation (II) and premature termination 

(PT) (Bertamini et al., 2004; Bustamante and Hull, 1998; Miller and Koev, 2000). The II 

method relies on the RdRp to initiate the production of sgRNA from the negative-sense 

genomic RNA molecule (Jaspars, 1998; Miller et al., 1985), while the PT method proposes 

that there is a premature termination of the negative-sense genomic RNA during 

replication. These shortened negative-sense RNA molecules would then serve as templates 

for sgRNA production (Palukaites et al., 1983; Sit et al., 1998). In Figure 2.6 a 

diagrammatic representation of these two methods can be seen.  

The level and timing of the sgRNAs’ transcription is controlled by sgRNA-promoters (sg-

promoters) or sgRNA control elements. Viruses using the II method of sgRNA production 

have been shown the utilise sg-promoters and have been the focus of many studies. It has 

been shown to have limited nucleotide conservation between viruses or within a specific 

virus. In Barley yellow dwarf virus (BYDV) all three sg-promoters have different primary 

and secondary structures and positions relative to the start site (Miller and Koev, 2000). 

However, the sg-promoters of Brome mosaic virus (BMV) have been demonstrated to be 

conserved on nucleotide level (Siegel et al., 1997) and the secondary structure of the viral 

sg-promoters is critical for promoter activity (Haasnoot et al., 2000).  

The method by which closteroviruses transcribe their ORFs have not been clarified and 

warrants more research on a wider range of viruses. Investigations into the infection cycle 

of CTV and BYV revealed that they produce positive and negative sense sgRNAs, making 

it more likely that they, and potentially all closteroviruses, are utilising the PT method to 

produce sgRNA (Dolja et al., 1990; Hilf et al., 1995). Gowda et al. (2001) studied the 

activity of the sgRNA controller elements in CTV but were unable to establish if these 

elements are promoters or terminators of replication (Gowda et al., 2001). It is 

hypothesised that CTV has a highly complex infection cycle that could potentially produce  
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Figure 2.6: Diagrammatic representation of the two proposed methods for the production 3’ co-terminal 
sgRNAs. In virus replication the 5’ genes (ORF1a and 1b) is translated directly from the positive sense 
gRNA, producing MET-HEL and MET-HEL-RdRp proteins. The RdRp is able to bind to the 3’ end of the 
gRNA and produces negative sense RNA molecules. There are two proposed methods for the production of 
the sgRNA. Internal initiation: RdRp produces full-length negative sense RNA that serves as template for 
the production of sgRNA. The sg-promoters serve as binding sites for the RdRp from where transcription can 
be initiated. Premature termination: RdRp produces not only full-length negative sense RNA molecules, 
but also negative sgRNAs. The point of termination is sometimes referred to as the sgRNA control elements. 
The negative sgRNAs can then serve as templates for the production of positive sgRNA used for translation. 
 

as many as 33 different RNA species, these include: 3’ and 5’ co-terminal sgRNA of 

positive and negative sense as well as DRNA (Bar-Joseph et al., 1997; Gowda et al., 2001; 

He et al., 1997; Hilf et al., 1995; Mawassi et al., 1995a; Mawassi et al., 1995b). The 

complexity of the CTV infection cycle hampers progress in elucidating the mechanism by 

which sgRNA controller elements regulate sgRNA transcription. These elements do not 

seem to be conserved at the nucleotide sequence level within individual viruses or between 

related viruses but possibly have conserved features in their secondary structure. The 

variation observed in these structures might contribute to the regulation and timing of gene 

expression (Dolja et al. 2006). Conversely, for BYV two conserved sg-promoter motifs 

were identified in a study by Vitushkina et al. (2007). These motifs were found to be 

conserved in three orthologous genes of CTV and two orthologous genes of Beet yellow 

stunt virus.  
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It is clear that the expression of the 3’ half of closteroviral genomes are not completely 

understood yet. Despite this gap in the current knowledge, it has however been 

demonstrated that the production of sgRNAs are central to the expression strategy.      

 

 

2.5 Infectious clones of plant RNA viruses 

Infectious clones of plant RNA viruses provide a valuable platform to study viral 

functional genomics as well as gain insight into the replication and expression of viral 

ORFs through mutagenesis (Boyer and Haenni, 1994; Nagyová and Šubr, 2007). Plant 

viruses have relatively small genomes that make them particularly suitable to be assembled 

into cDNA clones, thereby making them easier to manipulate. Infectious clones are usually 

assembled in a bacterial plasmid, from cDNA fragments generated by RT-PCR. These 

clones could then be manipulated to suit a particular investigation. Even though many 

viruses have been converted into infectious clones it remains a difficult task with many 

obstacles (Boyer and Haenni, 1994). The design and the assembly strategy of the intended 

infectious clone needs to be carefully planned to ensure that the cDNA clone represents the 

wild type sequence. It is also necessary to exclude non-viral nucleotides between the 

promoter elements and the cDNA clone especially at the 5’ end (Boyer and Haenni, 1994). 

Constructed cDNA clones are prone to mutations that are introduced during reverse 

transcription, assembly or when transformed into Escherichia coli. Clones are often 

unstable or toxic in E. coli which may lead to random rearrangements and point mutations 

that could render the clone non-infectious. Several strategies have been employed to 

overcome the mutation and instability problems associated with these clones. These 

include the use of high fidelity long template PCR, the incorporation of eukaryotic introns 

at critical genome regions, the use of a population cloning strategy and the inclusion of 

frameshifts (López-Moya and García, 2000; Satyanarayana et al., 2003; Yamshchikov et 

al., 2001; Yu and Wong, 1998).   

 

2.5.1 Types of infectious clones 

The infectious clones of RNA viruses can be divided into two types depending on the site 

of transcription: infectious RNA (in vitro) and infectious cDNA (in vivo). Both contain the 

viral genome but differ in the regulatory sequences flanking the viral genome. Infectious 

clones producing infectious RNA in vitro contain the viral genome under the control of a 

bacterial phage promoter typically T7, but also λpm, SP6 and T3 (Nagyová and Šubr, 
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2007). The phage promoter is then used to transcribe large quantities of viral RNA from 

the cDNA clone. To ensure optimal infectivity, the transcribed RNA must be identical to 

the viral wild type RNA. This implies that no additional nucleotides should be inserted 

between the viral cDNA 5’ end and the promoter’s transcription initiation site, since that 

would add nucleotides to the 5’ end of the transcribed RNA (Boyer and Haenni, 1994). 

Some drawbacks to the infectious RNA approach are the sensitivity of the transcribed 

RNA to degradation and the difficulties associated with mechanical inoculation. However, 

the advantage of this technique is that the transcribed RNA functions as mRNA that can be 

directly translated in the cytoplasm and does not require delivery to the nucleus (Nagyová 

and Šubr, 2007). The in vivo transcription of infectious RNA from the viral cDNA clones 

is achieved using the CaMV35S promoter. In vivo transcription has several advantages: it 

is simpler to perform and is less expensive and less sensitive to degradation compared to in 

vitro transcription. The main disadvantage is that the cDNA needs to be delivered to the 

nucleus for transcription to occur (Boyer and Haenni, 1994). 

 

2.5.2 Transfection of infectious clones 

There are several methods available to transfect plants and plant tissues with infectious 

cDNA clones or RNA: Agroinfection, biolistics, electroporation, liposome-mediated 

transfection, microinjection and mechanical inoculation (Nagyová and Šubr, 2007).  

Agroinfection is based on the ability of Agrobacterium species (mainly A. tumefaciens) to 

infect plant cells and transfer its T-DNA to the nucleus (Leiser et al., 1992). By 

incorporating the infectious clone into the T-DNA ensures that it will be delivered to the 

nucleus where it will be transcribed. Agrobacterium can be infiltrated into plant tissues by 

syringe, vacuum infiltration or agrodrenching (Brigneti et al., 2004; Ekengren et al., 2003; 

Liu and Lomonossoff, 2002; Vaghchhipawala and Mysore, 2008).  

Biolistics is mainly used to transfect tissues of plants that are not a natural host of 

Agrobacterium (Turnage et al., 2002). Nucleic acids are precipitated onto gold or tungsten 

particles and shot with compressed helium, under vacuum, into plant tissues.   

Electroporation, liposome-mediated transfection and microinjection are methods available 

for the transfection of protoplasts. During electroporation a high voltage pulse is applied to 

a solution of recombinant nucleic acids and protoplasts. Liposome-mediated transfection 

introduces nucleic acids to the protoplasts non-invasively while stably packaging these 

nucleic acids in liposomes (Lurquin and Rollo, 1993). Microinjection is another protoplast 

transfection method that can transfer nucleic acids to individual cells. This method is time-
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consuming and requires expensive devices that make this a specialised approach (Kost et 

al., 1995; Reich et al., 1986). 

Mechanical inoculation of nucleic acids to leaf surfaces is usually used for the transfection 

of in vitro RNA transcripts. In this method the leaf surface is abraded and the nucleic acids 

applied to enter the cells through the damaged cell walls in a way similar to how viruses 

are mechanically transmitted (Hull, 2002). This method might be less effective than the 

other methods but it is inexpensive and fast.         

 

2.5.3 Infectious clones of closteroviruses and their deletion mutants  

Infectious clones of several grapevine-infecting viruses have been constructed that have 

aided research on virus replication and plant-pathogen interactions. They include: the 

nepovirus GFLV (Viry et al., 1993), the vitiviruses GVA (Galiakparov et al., 1999; 

Saldarelli et al., 2000) and GVB (Moskovitz et al., 2007; Saldarelli et al., 2000) and the 

closterovirus GLRaV-2 (Liu et al., 2009). These infectious clones hold great potential to be 

converted into expression or Virus induced gene silencing (VIGS) vectors. The viti- and 

nepovirus infectious clones are more sensitive to foreign nucleic acids inserted into their 

genomes than closteroviruses, which have greater genetic capacity to accommodate these 

nucleic acids (Dolja et al., 2006; Folimonov et al., 2007). GLRaV-2 is the only grapevine-

infecting closterovirus that is able to infect an herbaceous host (N. benthamiana), making it 

an ideal model virus to study plant-virus interaction. Currently there are no ampelovirus 

infectious clones and in Chapter 5 the first steps towards such a clone is described.      

Several closteroviruses have been converted into infectious clones: LIYV (Klaassen et al., 

1995), BYV (Peremyslov et al., 1998), CTV (Satyanarayana et al., 1999) and GLRaV-2 

(Liu et al., 2009).  

The first closterovirus to be converted into an infectious clone was LIYV, which has a 

bipartite genome (Klaasen et al., 1996). These researchers were able to construct full-

length cDNA constructs for RNA 1 and RNA 2, under the control of the T3 promoter. 

RNA 1 in vitro transcripts were proven to be replication competent in protoplasts (N. 

benthamiana), independent from RNA 2, while RNA 2 was shown to be dependent on 

RNA 1 co-inoculation.  

Peremyslov et al. (1998) constructed a full-length infectious clone for BYV and 

demonstrated that the RNA transcripts are infectious in protoplasts (Nicotiana tabacum cv. 

Xanthi). The BYV infectious clone was used to confirm the function of several ORFs: 

ORF 1a and 1b are the replicase proteins and ORF8 (p21) has suppressor activity. 
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Additionally, they found that the six ORFs located on the 3’ terminus of the genome are 

dispensable for replication. The gene expression profile of BYV infection was determined 

by investigating the transcriptional regulation of BYV ORFs using infectious constructs 

containing GUS at different positions in the genome (Hagiwara et al., 1999). Hagiwara et 

al. (1999) confirmed that ORFs 2 to 8 are not required for replication. The construction of 

a BYV mini-replicon, analogous to LIYV RNA 1, proved to be a valuable molecular tool 

in closterovirus research (Figure 2.7). Through mutational analysis, the role of the L-Pro in 

BYV replication was determined (Peng and Dolja, 2000). The activity of the BYV p21 and 

five heterologous suppressors were evaluated using a BYV mini-replicon assay (Chiba et 

al., 2006). Through the use of the BYV infectious clones and mini-replicons, the function 

and regulation of several BYV ORFs and domains were determined.              

 

 

 

 

 

 

 

 

Figure 2.7: Genome maps of BYV (monopartite) and LIYV (bipartite), both members of the Closteroviridae 
family. Conserved proteins are colour coded. These maps clearly display the conserved proteins between 
LIYV RNA1 and ORFs 1a and 1b of BYV that were demonstrated to be essential for replication (Hagiwara 
et al., 1999; Klaasen et al., 1996). This figure is adapted from Figure 2 in Dolja et al. (2006). 
 

The first woody plant closterovirus to be converted to an infectious clone was CTV 

(Satyanarayana et al., 1999). A full-length CTV infectious cDNA clone was constructed 

from which replication-competent RNA transcripts could be transcribed. The large genome 

of CTV made the clone difficult to manipulate and prompted the construction of a mini-

replicon similar to BYV. Chimaeric CTV mini-replicons, containing terminal sequences 

from different genotypes, were then used to investigate its effect on replication 

(Satyanarayana et al., 1999).    

The latest closterovirus to be converted to an infectious clone was GLRaV-2 (Liu et al., 

2009). Lui et al. (2009) generated full-length, reporter tagged (GFP/GUS) clones to 

demonstrate that they were able to infect N. benthamiana plants systemically. Through the 

use of these infectious clones and their mini-replicon derivatives they investigated the 

1a 

1a 

1b 

1b 
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function of the tandem papain-like leader proteases (L1 and L2) in the GLRaV-2 infection 

cycle. They demonstrated that L1 is vital for infection in N. benthamiana, the experimental 

host, and that L2 only plays a minor role. However, in Vitis vinifera, the natural host, both 

L1 and L2 was found to be essential, indicating host-specific requirements. 

 

 

2.6 Conclusion 

Leafroll disease is arguably the most important grapevine viral disease, but the inherent 

difficulties associated with studying viruses of woody plants that are phloem-limited, have 

hampered advances in research. The most important virus associated with LRD is GLRaV-

3, which unfortunately only infects Vitis spp. Research on GLRaV-3 has mainly focussed 

on epidemiology and the development of detection techniques, while studies on the 

genome and viral replication lagged far behind compared to other grapevine viruses. The 

genome of GLRaV-3 was only sequenced in 2004 (Ling et al., 2004) and even though 

several research groups detected sgRNAs, these were not further pursued. The 

closterovirus CTV has had similar difficulties, but these were overcome largely due to its 

great economic impact on the citrus industry and its use in cross protection. Research on 

CTV has made great progress in elucidating its infection cycle and the role of sgRNAs in 

replication. The use of an infectious clone and its deletion mutants have accelerated the 

understanding of the viral replication mechanisms. Although, GLRaV-3 is an ampelovirus, 

its close evolutionary relation to the closteroviruses (CTV, BYV and GLRaV-2) allows us 

to draw from this research and apply it to GLRaV-3. In the research chapters that will 

follow the lack of knowledge on the genomic and subgenomic RNA of GLRaV-3 will be 

addressed.  
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Chapter 3: Sequencing and analysis of the complete genome of a South 

African Grapevine leafroll-associated virus 3 isolate, GP18. 

 

3.1 Introduction  

Grapevine leafroll-associated virus 3 (GLRaV-3) is the type strain for the genus 

Ampelovirus, family Closteroviridae. (Martelli et al., 2002). It is an economically 

important virus that is known to only infect Vitis spp. and that has a negative impact on the 

wine and table grape industries world wide. In South Africa it is the main causative agent 

of Grapevine Leafroll Disease (LRD) (Pietersen, 2004).  

To date, there have been only two reports that claim the complete nucleotide sequence of 

GLRaV-3. Ling et al. reported the complete sequence of isolate NY-1 (AF037268) in 2004 

and Engel et al. the complete sequence of isolate CL-766 (EU344893) in 2008. The single 

stranded 17919 nt RNA genome was reported to be organised into 13 ORFs (Ling et al., 

2004; Ling et al., 1998). Comparison of the genome organisation to other closteroviruses 

led to the establishment of a new taxonomic group transmitted by mealybugs namely 

ampelovirus (Ling et al., 1998). The extreme 5’ and 3’ ends of NY-1 was determined by 

Poly(A)-tailing whereas for CL-766, primers were designed to the NY-1 sequence at the 

extremities. The 5’ untranslated region (5’ UTR) for both isolates was reported to be 158 nt 

in length (Engel et al., 2008; Ling et al., 2004).  

Several studies have been conducted to determine genetic variability in the GLRaV-3 

genome. These studies focussed on selected genome sections typically in the RNA 

dependent RNA polymerase (RdRp), Heat shock protein 70 homologue (Hsp70h) and the 

coat protein (CP) and determined the variability by single stranded conformation 

polymorphism (SSCP) analysis and sequencing. Turturo et al., (2005) calculated a 

relatively low variability in their sample set (45) collected from 14 different countries. 

Their results indicated that there is a single dominant variant and that mixed infections are 

common (Turturo et al., 2005). Recently, an extensive survey was conducted by Fuchs et 

al., (2009) to determine the genetic variation between GLRaV-3 isolates within a specific 

geographical area. The study determined that the genetic variation in the Hsp70h gene was 

relatively low with nucleotide sequence homology ranging from 92.5-98.3% between 

isolates from the same region; but when 25 samples of this region were compared to 

available sequence data from other geographical regions the variation increased, with 

nucleotide sequence homology of 74.1-100% (Fuchs et al., 2009). A phylogenetic analysis 
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of these isolates was able to identify five genetic variant groups designated NY-1, C5-1, 

GP18, MT48-2 and NZ-1. 

In South Africa two genetic variant groups were previously identified; represented by 

isolates 621 (GQ352631) and 623 (GQ352632) (Jooste and Goszczynski, 2005). Isolate 

621 and 623 were found to be similar to NY-1 and GP18, respectively. The diversity 

observed in South African GLRaV-3 isolates and the lack of a complete sequence for the 

second genetic variant group prompted the sequencing of a full-length South African 

isolate. 

 

In this chapter the sequencing of the South African GLRaV-3 isolate GP18 is described. 

The finding that the 5’ end extended 579 nt further than previously reported was further 

investigated. Relevant results from two collaborative studies are also included in this 

chapter with additional analysis not included in the original publications (Coetzee et al., 

2010; Jooste et al., 2010). 

 

 

3.2 Material and methods 

3.2.1 Source material 

Grapevine material (Vitis vinifera cv Cabernet Sauvignon) was harvested in the Somerset 

West and Paarl wine-producing regions of South Africa from monitored vineyards. Vines 

displaying LRD symptoms for the first time were selected and tested for virus infection 

(Pietersen, pers comm). These vines were newly infected in a healthy vineyard, most likely 

through long distance transport by the natural insect vector (Planococcus ficus). All 18 

vines (GP1-18) were tested for virus infection by ELISA and RT-PCR. ELISA was 

performed to test for GLRaV-1, -2 and -3 and RT-PCR  for GLRaV-1, -2, -3, -5 and -9, 

Grapevine virus A (GVA), Grapevine virus B (GVB), Grapevine rupestris stempitting 

associated  virus (GRSPaV) and Grapevine fanleaf  virus (GFLV). Vines that tested 

positive for GLRaV-3 only were rooted and maintained in an insect free greenhouse 

facility. 

 

3.2.2 Sequencing of isolate GP18  

Double stranded RNA (dsRNA) was extracted with a cellulose (Whatman, CF-11) 

extraction protocol as described previously by Hu et al. (1990). Phloem scrapings of 
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wooded GLRaV-3-infected grapevine canes, isolate GP18, was used for the extraction. The 

quality and quantity of the dsRNA was evaluated by electrophoresis.  

Primers were designed with the Oligo Explorer software v 1.2 to cover the GLRaV-3 

genome (nt 1 835 – 17 905) in ten overlapping amplicons using the NY-1 sequence as 

reference (Table 3.1).  

Amplicons were generated by RT-PCR using AMV reverse transcriptase and a high 

fidelity DNA polymerase. Standard molecular techniques were used to clone amplicons 

into pDrive cloning vector. Clones were then sequenced using the SP6 and T7 primer sites 

located on the vector. For the large amplicons additional primers were designed on the 

isolate-specific sequence and used to complete the sequence of each of the amplicons. 

To determine the 5’ and 3’ ends of the genome, Poly(A)-tailing was performed on the 

dsRNA as described by Meng et al., (2005) using a genome specific primer and a modified 

oligo(dT) primer (Table 3.1). 

Additional to the Poly(A)-tailing, RLM-RACE (FirstChoice® RLM-RACE kit, Ambion, 

USA) was also used to determine the 5’ end of the isolate GP18 genome. Nested reverse 

primers were designed to the 5’ end of the consensus sequence determined for GP18 

(Table 3.1). Total RNA was extracted from mature canes containing isolate GP18, as 

described by White et al. (2008). The quality and quantity of the extracted total RNA was 

determined by spectrophotometry and electrophoresis and 12µg was used per RLM-RACE 

reaction. Reactions were performed as suggested by the manufacturer. The amplicon was 

cloned and four clones sequenced. The experiment was repeated and 5 additional clones 

were sequenced.  

 

3.2.3 Analysis of GP18 genome 

Sequence data was analysed with BioEdit software and a consensus sequence compiled 

(Hall, 1999). ORF borders were determined using the NCBI ORF finder function. Proteins 

and protein-domains were predicted with the Pfam 22.0 domain search software (Finn et 

al., 2006). A partial sequence of the Hsp70h for GP18 as well as sequence data available 

on GenBank from geographically diverse areas were phylogenetically analysed using 

PAUP 4.0b10 (Swofford and Sullivan, 2003). Hsp70h sequence data of isolates 621, 623 

and PL-20 from the collaborative study with Jooste et al. (2010) was also included.  
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Table 3.1: Primer sets used to sequence the GLRaV-3 isolate GP18 

Amplicon Primer name Position* Primer sequence 
    

Sequencing 

1a2 ORF1a2 (1835) For 2414 GTCCAGTGACCTTCTAACTG 

 ORF1a2 (4175) Rev 4754 CTCTTCCTCGACATAAGTGT 

1a34 ORF1a3 (3956) For 4535 GTATTACCGGGACTTTGAC 

 ORF1a4 (7172) Rev 7751 TCAAACGTGACGAGGTTAC 

1b LR3 ORF1b Rev 9173 GATGGCACGCCTAAGAGAAG 

 LR3 ORF1b For 7156 GGTCGTTGAAGGGAAAAGG 

2+3 LR3 ORF2+3 Rev 10717 GGGGAAAAGCAGATTGTGC 

 LR3 ORF2+3 For 9081 TTCTGTGCCTCGGTTCTTC 

4 LR3 ORF4 Rev 12551 GAGAGCGTGGTAGTCAATCC 

 LR3 ORF4_2 For 10458 GCTGAGCGAAGGTGATATCG 

5 LR3 ORF5 Rev 13924 GCATCCCCCACTCTAACTC 

 LR3 ORF5 For 12039 GGAACGGTGTCTGTTATCG 

6 LR3 ORF6 Rev 15420 CCAGGGTAGAGGTTCTGATC 

 LR3 ORF6 For 13615 GGGACGTTAGCGTATGACAC 

7 LR3 ORF7 Rev 16427 GTCTCGAAACGACTTTACCG 

 LR3 ORF7 For 14656 GTCCGACGTACGATCTGTTC 

8+9 LR3 ORF8+9 Rev 17501 AGCGCGTCGTATCATCAAC 

 LR3 ORF8+9 For 16018 CACTGTGCGATCCTTCATG 

10-12 LR3 ORF10-12 Rev 18484 TCGATAAGTTAGCCTCGTAA 

 LR3 ORF10-12 For 17097 CGATAGAAACAGCCAGAAGT 
    

Poly(A) tailing 

PolyA 5' ORF1a1 (2020) Rev 2599 GGGAACATAAGAGCTATGTC 

PolyA 3' LR3 17743 For 17097 CGAGGTAAGATGACTAAACT  
    

Spanning RT-PCR 

Spanning RT-PCR LR3 xtra 5' END  For 159 GCTGTTGTTAGTAGTTTCTGTTGT  

 LR3 ORF1a 365 Rev 944 CGTCCGCTTCACCCCTTTGG  
    

5' RLM-RACE 

5' RLM-RACE LR3 ORF1a 450 Rev 1029 TCTTACCATCCCCTCTCAAT 

 LR3 ORF1a 365 Rev 944 CGTCCGCTTCACCCCTTTGG  
    

*5' Binding position relative to the GP18 sequence 

 

3.2.4 Metagenomic sequencing 

In a collaborative project, dsRNA from a diseased vineyard was subjected to metagenomic 

sequencing. In brief, 50ng of dsRNA were isolated from 44 randomly selected vines in a 

virus-infected vineyard and subjected to metagenomic sequencing using the Illumina 

Genome Analyzer II. Paired-end sequence data was assembled into scaffolds using the 

short read assembler Velvet 0.7.31 (Zerbino and Birney, 2008). Scaffolds were identified 



 43

and assigned using BLAST analysis. Re-assemblies were also performed with Mapping 

and Assembly with Quality (MAQ) assembler v 0.7.1 (Li et al., 2008) using the Easyrun 

command. For a detailed description of the methods refer to Coetzee et al. (2010).  

Additional de novo assemblies were performed experimenting with different parameters in 

order to improve the length of the GLRaV-3-specific scaffolds. See Table 3.2 for the 

parameter settings for the various Velvet assembly runs. The scaffolds generated from the 

different runs were assembled into contigs with CAP3 contig assembly software using the 

default parameters (Huang and Madan, 1999). The NCBI BLAST analysis to the non-

redundant nucleotide database was used to identify contigs that showed high sequence 

similarity to the GP18 isolate.  

 

Table 3.2: Velvet run parameters 

Run # k-mer Paired end sd cov_cutoff exp_cov Number  of scaffolds Largest scaffold 
35762 19 N - 10 100 6849 3135(NODE_3466) 
35139 19 N - 100 500 1162 3095(NODE_153) 
35188 19 Y 20 100 500 967 3095(NODE_147) 
35764 21 N - 10 100 5683 1534(NODE_3703) 
35146 21 N - 100 1000 806 7495(NODE_101) 
35331 21 Y 20 100 1000 663 8593(NODE_325) 
35766 23 N - 10 100 4751 1808(NODE_3290) 
35150 23 N - 100 3000 579 8624(NODE_100) 
35336 23 Y 20 100 3000 434 8624(NODE_91) 
35775 25 N - 10 100 4083 1808(NODE_2698) 
35172 25 N - 100 4000 466 7124(NODE_92) 
35353 25 Y 20 100 4000 339 11987(NODE_796) 
35777 27 N - 10 100 3372 1808(NODE_2113) 
35174 27 N - 100 400 408 7500(NODE_82) 
35356 27 Y 20 100 4000 301 8620(NODE_211) 
35779 29 N - 10 100 2729 1540(NODE_472) 
35176 29 N - 100 6000 331 7147(NODE_81) 
35358 29 Y 20 100 6000 249 18635(NODE_40) 
35782 31 N - 10 100 2484 2756(NODE_399) 
35178 31 N - 100 7000 246 10293(NODE_31) 
35360 31 N 20 100 7000 179 18645(NODE_247) 
35494 33 N 20 - 50 3207 1500(NODE_19016) 
35784 33 N - 10 100 2484 2756(NODE_399) 
35183 33 N - 100 7000 246 10293(NODE_31) 
35364 33 N 20 100 7000 179 18645(NODE_247) 
35366 45 N 20 100 7000 179 18645(NODE_247) 

                

      43376  
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3.2.5 Further investigation into the occurrence of the extended 5’ UTR 

RLM-RACE was also used to determine the 5’ ends of GLRaV-3, Grapevine leafroll-

associated virus 2 (GLRaV-2) and Grapevine rupestris stempitting-associated virus 

(GRSPaV) within the same reaction using sample material from a vine infected with all 

three viruses. The primers were designed as specified by the manufacturer and reactions 

performed as prescribed. 

 

Additionally, a “spanning RT-PCR” was developed that spanned the 5’ end of the NY-1 

sequence (nts 159 - 944 of GP18, Table 3.1) to prove that the extended sequence observed 

is truly of GLRaV-3 genomic origin. Four samples (K1, K2, GP16 and KK1) from 

different origins were screened and the 786 nt amplicon generated was cloned and 

sequenced. 

 

In another collaborative project the 5’ ends of three genetic variants of GLRaV-3 were 

determined and analysed (Jooste et al., 2010). The 5’ ends of the isolates 621, 623 and 

PL20 (GQ352333) were determined using RLM-RACE. For a detailed description of the 

methods used, refer to Jooste et al. (2010). A multiple sequence alignment of the 5’ ends of 

these three groups was submitted to the RNAalifold server for secondary structure 

prediction with default parameters. RNAalifold is based on the algorithm developed by 

Zuker and Stiegler (1981). 

 

MAQ reassemblies were performed using the 5’ UTRs determined for the three genetic 

variants as reference sequences.  

 

 

3.3 Results 

3.3.1 Source material 

The ELISA was able to detect GLRaV-3 in all the samples. Samples GP(1, 2, 3, 4, 8, 10, 

12, 13, 15, 17 and 18) had relatively high titres compared to samples GP(6, 7,  9, 11, 

14,16). RT-PCR was able to detect GLRaV-3 in GP(3, 5, 6, 8, 9, 10, 12, 14, 16, 18) and 

GVA in GP3. All the samples tested negative for GLRaV-1, -2, -5 and -9, GVB, GRSPaV 

and GFL. Sample GP18 was selected as source material for sequencing and designated 

isolate GP18.  
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3.3.2 Sequencing of isolate GP18  

In figure 3.1A a schematic representation of the complete genome sequence of isolate 

GP18 is shown. In figure 3.1B the amplicons used to compile this sequence is depicted. 

The 10 overlapping amplicons spanning most of the genome were cloned and sequenced 

and a consensus sequence constructed that excluded the primer sequences.  

Poly(A)-tailing was used to determine the 5’ and 3’ ends of the genome of isolate GP18 

and the 3’ end was found to be similar to that of NY-1. However, the 5’ end was 

consistently found to be 49 nt short of the 5’ end found for NY-1. By adjusting the PCR 

conditions to be sub-optimal (Ta = 48ºC), a range of amplicons were generated. 

Sequencing of these amplicons not only showed sequence that extended beyond the 49 nt 

short sequence found with the optimised reaction, but also novel sequence that extended 

beyond the 5’ end of the NY-1 sequence. The poly(A) polymerase negative control also 

generated a similar range of amplicons. Sequencing of these amplicons confirmed that they 

are similar to the sub-optimal Poly(A)-tailing amplicons. A multiple sequence alignment of 

the amplicon sequences also indicate that just upstream of these amplicons the GLRaV-3 

sequence contains a high concentration of thymines (Figure 3.2). 

Hundred and seventy micrograms of total RNA was extracted from 2g of phloem scrapings 

and had an A260/280 ratio of 2.14. Amplicons generated from the RLM-RACE reactions 

were sequenced and demonstrated that the 5’ UTR of GP18 extended 579 nt further than 

the 5’ end of NY-1. 

 

3.3.3 Analysis of GP18 genome 

Analysis of the GP18 genome showed the same ORF borders as was found for NY-1 (Ling 

et al., 1998). The only exception being the greater overlap of ORF1a and ORF1b. The 

assignment of proteins and protein domains were also the same as for NY-1 (Figure 3.1A 

and Table 3.3). The L-Pro domain was identified manually by multiple sequence alignment 

as Pfam was unable to do so (Figure 3.3). Phylogenetic analysis of the Hsp70h showed 

three genetic variant groups with bootstap values higher than 80, and with the GP18 isolate 

in a separate group to NY-1 (Figure 3.4). 
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Figure 3.1: A) Schematic representation of the genome organisation of GLRaV-3 GP18 (drawn to scale). B) 
Lines indicate the regions cloned and sequenced by different techniques. Lines 1a2, 1a34, 1b, 2+3, 4, 5, 6, 7, 
8+9, 10-12 are representative of the clones generated by RT-PCR to sequence the majority of the genome. 
“PolyA 5’” and “PolyA 3’” represent the clones generated using poly A tailing and “5’ RLM-RACE” show 
the area amplified using RLM-RACE. “Spanning RT-PCR” represents the area generated by RT-PCR to 
indicate that other isolates also has the extended 5’ UTR. C) Enlargement of the 5’ area also shows the start 
of the NY-1 sequence compared to the GP18 sequence.   
 
 

 

Table 3.3. Position of untranslated regions (UTRs) and open reading frames (ORFs) on the GLRaV-3, 
isolate GP18 sequence and the percentage nucleotide and amino acid sequence identity to isolate NY-1 
(AF037268). 

UTR or ORF Position on the genome Size (nt) % Sequence identity to NY-1 
isolate 

nt Aa 
5' UTR 1 - 737 737 80 - 
1a (Met/Hel) 738 - 7451 6714 94 95 
1b (RdRp) 7369 - 9066 1698 95 97 
2 (p6) 9287 - 9442 156 90 80 
3 (p5) 10509 - 10646 138 93 98 
4 (Hsp70) 10665 - 12314 1650 94 97 
5 (Hsp90) 12307 - 13758 1452 92 93 
6 (CP) 13848 - 14789 942 92 95 
7 (dCP) 14852 - 16285 1434 92 90 
8 (p21) 16296 - 16853 558 93 97 
9 (p19.6) 16850 - 17383 534 91 89 
10 (p19.7) 17390 - 17929 540 90 86 
11 (p4) 17932 - 18042 111 90 89 
12 (p7) 18039 - 18221 183 97 97 
3' UTR 18222 - 18498 277 97 - 

 

 

A 19 kb 18 16 14 12 10 8 6 4 2 0 
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Figure 3.2: Multiple alignment of sequenced amplicons generated in Poly(A) tailing experiments using the 
oligo(dT) primer and LR3 ORF1a 365 Rev. Sequences of GP18 and NY-1 is depicted in top two lines. 
Sequences 218, 306-308 were generated from cloned amplicons from optimised Poly(A)-tailing RT-PCR 
reactions. Sequences 348-350 are sequence data from amplicons sequenced from suboptimal RT-PCR 
conditions. Sequences 433(Neg), 434(Neg), 436(Pos), 437(Pos) and 438(Pos) were generated in the 
comparative RT-PCR on Poly(A)-tailing positive and negative reactions.      
 

 

 

510 520 530 540 550 560 570 580 590 600 610 620 630

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 CTATTTTAACTTTCCTTTAGCGTTTTTGTGGTGGTTTTTCTTCTCTTGGTGTGTTTAGCGTGAGTGTTTTTCTATTTTCCTACGTACCATCTAGGGAGTTTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTT

NY-1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ctaagtaacacctaggaatttctacctaagattcaacttctttctttttctagtt

Vitis_438 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Vitis_218 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CTAGTT

Vitis_306 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CTAGTT

Vitis_307 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CTAGTT

Vitis_308 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CTAGTT

Vitis_350 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CTAGTT

Vitis_434 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CTAGTT

Vitis_436 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CTAGTT

Vitis_349 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ACGTACCATCTAGGGAGTTTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTT

Vitis_348 ~~~~~~~~~~TTTCTTTTAGCGTTTTTGtGGtGGTTTTTCTTCtCTTGGtGtGTTTAGCGtGAGTGTTTTTCTATTTTCCTACGTACCATCTAGGGAGTTTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTT

Vitis_433 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TGTGTTTAGCGTGAGTGTTTTTCTATTTTCCTACGTACCATCTAGGGAGTTTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTT

Vitis_437 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

650 660 670 680 690 700 710 720 730 740 750 760 770

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

NY-1 tttcctgctgtttgagggaagtttgcccttcttcttccgtcgtccttcgtaaaccattatttctatttcctctccttttaagtttttaagtttcgctatggactacattcgcccattgcgcgttttctcctttc

Vitis_438 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Vitis_218 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_306 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTCTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_307 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAgAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_308 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAgAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_350 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAgAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_434 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_436 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_349 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_348 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAgAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCACCATGGATTACGTTCGTCCGTTGCGCGTTTTCtCCTTTC

Vitis_433 TTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

Vitis_437 ~~~~~~~~~gTTTgagGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCCATGGATTACGTTCGTCCGTTGCGCGTTTTCTCCTTTC

790 800 810 820 830 840 850 860 870 880 890 900 910

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

NY-1 ttaataacaccttggagtacgttaggtacaacaaggccaatggtgatgtaggagctttcctaaccaccatgaagttcatagggaacgtgaagttgtcggacttcacacccaggtgcgcagctatgatttacatt

Vitis_438 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

Vitis_218 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

Vitis_306 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

Vitis_307 TCAATAATACCTTGGAGTATATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAACGTGAAGTTATCTGACTTCACACCCAAgAGTGCCGCTCTCATATATATT

Vitis_308 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAgAGTGCCGCTCTCATATATATT

Vitis_350 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAgAGTGCCGCTCTCATATATATT

Vitis_434 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

Vitis_436 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

Vitis_349 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAATGCCGCTCTCATATATATT

Vitis_348 TCAATAATACCTTGGAGTACGTTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAgAGTGCCGCTCTCATATATATT

Vitis_433 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

Vitis_437 TCAATAATACCTTGGAGTACATTAGGTACAACAAGGCTAATAGCGATGTAGGAGCTTTCCTGACAGCCATGAAGTTCACAGGGAATGTGAAGTTATCTGACTTCACACCCAAGAGTGCCGCTCTCATATATATT

930 940 950 960 970 980 990 1000 1010 1020

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|...

GP18 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

NY-1 ctcaccaaaggggtgaagcgtacgtttgtccccccaccagttaaagggtttgcacggcagtacgctgttgtcagcggctcagtcagcgcgctgagaggggatggtaag

Vitis_438 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_218 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_306 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_307 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACgCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAg

Vitis_308 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACgCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_350 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACgCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAg

Vitis_434 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_436 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTCTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_349 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_348 CTCACCAAAGGGGtGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_433 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCATTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG

Vitis_437 CTCACCAAAGGGGTGAAGCGGACGTTCGTCCCCCCACCAGTTAAAGGGTTTGCGCGGCAATACGCCGTTGTGAGCGGCACAGTTAGTGCATTGAGAGGGGATGGTAAG
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Figure 3.3: Multiple amino acid sequence alignment of Leader Protease domains of different closteroviruses. 
The predicted catalytic amino acids of the papain-like protease are blocked and the predicted cleavage site is 
indicated by the arrow.  
 

3.3.4 Metagenomic sequencing 

The metagenomic sequencing yielded 837MB of data from >1.9x107 pair-end sequence 

reads. De novo assembly of the short reads yielded 449 scaffolds using the following 

parameters: hash length of 23, coverage cut-off of 50, expected coverage of 1,000 and a 

minimum scaffold length of 100. BLAST analysis of these scaffolds showed that 124 

scaffolds were associated with GLRaV-3. Sixty-six of these scaffolds aligned 

preferentially across the genome of isolate GP18. The largest scaffold found to be similar 

to GP18, was node 611 (1765 nt). MAQ re-assembly with the GP18 sequence as reference 

determined that 4 242 321 reads can be assembled to an average depth of 10 008 nt with a 

100% genome coverage. Plotting the number of sequence reads assembled by MAQ on the 

GP18 genome demonstrates that the depth of coverage is variable across the genome with a 

maximum depth of >70 000 reads (Figure 3.5A).  

The additional de novo assemblies that were performed, yielded a combined total of 43 376 

scaffolds. A large portion of these scaffolds were redundant and reduced by creating 

consensus contigs with the CAP3 contig assembly software. The scaffolds were reduced to 

4 085 contigs, ranging from 45 to 18 653 nt in length. The largest contig that aligned with 

high homology to the GP18 sequence was Contig-3843 (18 635 nt). This contig spans the 

GP18 sequence from nt position 21 to nt position 18 472 (99% coverage), with an identity 

homology of 97.1%. The contig contains 72 nt insertions, 4 nt deletions and an incomplete 

duplication of 114 nt spanning from position 14 523 - 14 636 in the contig. Compared to 

the GP18 sequence, the duplication was homologous to nucleotides 14 501 – 14 614, 

inserted between nucleotides 14613 and 14614. MAQ reassembly with Contig-3843 as 

reference sequence was able to assemble 3 131 958 reads to an average depth of 6 842 nt 

with a 99% reference sequence coverage (Figure 3.5B). MAQ reassembly was also  

 

GP18 -AFVSTTK--G--W--CW--FNNERLR-GEIYRR---RCFSSSFSI--G---------------FLMHL-G-FRSLKA-IR--------FA-G---TSIL---------H-IP--SLNE--------ERTFGWK-----GG--

NY1 -AFVCTTK--G--W--CW--FNNERLR-GEIYRR---RCFSSSFSI--G---------------FLMHL-G-FRSLKV-IR--------FA-G---TNIL---------H-MP--SLNE--------ERTFGWK-----GG  

PMBWaV2 -RSVLSSR--G--W--CW--LTIPGVQ-KALRHC---ETFPSIVSI--S---------------YLRKL-G-CGRFKVMPT-----------G------D--PKVY---HFS---NNNG--------ILIDSLSYH--     

BYV ---YRPGE--G--L--CY--LAHAALC-CALQKR---TFREEDFFV--G--MY-P-TKFVFAKRLTEKL-G-PSALKHPVR-----------G---RQVS--RSLF---HCD---VASA--FSSP-FYSLPRFI-----GG--

Mintvirus1 ---FHSPN--G--L--CY--LNHVWFL-CLISGTSFLRARKYFGRL--G--AF-P-GVESFFSLLCNFF-S-YHAVRIQIR-----------G---YFTS--TGIF---HCD---NVRGNLFNHRYQRLRSARV-----GG--

StrawberryCSaV LPro1 -PSV--AD--G--R--CY--LAHVFLV-AVTLGVTA-KFWKF-TSL--G--SF-P-SLKAFRVRLASVF-G-PEALDVAFR-A--TIK----G-KLA------------HCD---LSSP--LTDL---PEDCIV-----GG--

StrawberryCSaV LPro2 ---REFAE--G--Y--CY--MNFLYYT-SLTVNRPF-GVFTAMKTL--G--KF-P-TATKLLWFIRSRF-G-GPGRKILVR-----------G-----HFTSN-KKIF-HVD---STSSRIYN-LAKMGYTVRV-----GG  

LR2 LPro1 LLENETLV--R--L--CG--NSVSDIGGCPLFHLHS-KTQRRVHVC--R--PV-L-DGKDAQRRVVRDL-Q-YSNVRLGDD---D--KILE-G-PRNID-IC-------H---YPLG----------ACDHESS--       

LR2 LPro2 -------------W--SF--IKSSKSR-VIISGK----IIHKDVNL--D--LK-Y-VESFAAVMLAS---G-VRSRLASEYLAKNLSHF-S-G-DC-SFI--EATSFVLREK-IRNMTLN-FN-ERLL               

GVrootstockstem lesion LPro1 --ECYP-D--G--L--CY--MAHMRYL-CAFFCQ---PFRESDYPL--G--SW-P-SVARLKALVLKRF-G-DEALNIGVR-----------G---YYVS--RRAF---HCD---YDSK--YARS-LMRLAGYV-----GG--

GVrootstockstem lesion LPro2 ---DKYKN--G--Y--CY--LAHCRYA-SAFLLK---GFHPAVFDI--G--AN-P-TAAKLRSRMVSVL-G-DRSLSLNLY-----------G---SFTS--RGIF---HCD---YDAA--YVKD-LRFMSAIVA---     

CTV ---AKVRD--G--Q--CY--IRHVYDV-ALYFGRRV-DLSVR-RTL--G--MY-P-TVGALKAYLVREY-G-RESLKVPMR-----------G---TYTF---GSVF--HCL---STKS---FVDLRSIPNHHLV----GG--



 49

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Phylogenetic tree constructed using partial sequence data of the Hsp70h gene (ORF4). The three 
genetic variant groups identified in the Jooste et al. (2010) are indicated with roman numerals. Isolates 
discussed in this chapter are highlighted in bold. Phylogenetic analysis of the aligned partial Hsp70h 
sequence matrix was performed using PAUP 4.0b10. A heuristic search (1,000 replicates) using TBR branch 
swapping with all characters weighted equally was performed to search for the shortest possible trees from 
both data matrices. The CI and RI were 0.906 and 0.786 respectively. A bootstrap analysis (1,000 replicates) 
using TBR branch swapping was performed to establish clade support. Branches with bootstrap values C75% 
were considered well supported, whilst values between 75% and 50% were considered moderately supported. 
Values below 50% were considered weakly supported and, in line with other phylogenetic analyses, were not 
indicated on phylograms.  
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Figure 3.5: MAQ re-assembly reads as plotted different reference sequences. A) Complete GP18 genome B) 
Contig3843 generated from CAP3 contig assembly and C) Contig3843B a “repaired” Contig3843. 
 

performed on a “repaired” Contig-3843 (Contig-3843B), where all the insertions and the 

duplication were removed, as reference sequence. In this reassembly, 3 731 803 reads were 

assembled to an average depth of 8 792 nt covering 99.9% of the reference sequence 

(Figure 3.5C).  

 

3.3.5 Further investigation into the occurrence of the extended 5’ UTR 

RLM-RACE data from the vine infected by multiple viruses was able to determine the 5’ 

ends of GLRaV-3, GLRaV-2 and GRSPV in the same reaction. The sequence data from 

the amplicons showed identical 5’ ends for GLRaV-2 (AY881628) and GRSPV 

(AY881627) as were previously published. However, for GLRaV-3 the sequence 

confirmed the extended 5’ UTR identified for isolate GP18.    

 

A 

B 

C 
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Sequencing results from the 786 nt amplicon generated from the ”spanning RT-PCR” 

using four additional samples (K1, K2, GP16 and KK1) clearly showed the extended 5’ 

UTR that continues beyond the 5’ end reported for NY-1 (Figure 3.1B). 

 

The 5’ ends of three additional South African genetic variants 621, 623 and PL20 were 

successfully determined using RLM-RACE. The sequence data demonstrated that the 

isolates contain extended 5’ UTRs similar to isolate GP18. The 5’ UTRs demonstrated 

great diversity among the variant groups. Sequencing of additional samples from each of 

the genetic variants groups indicated that the 5’ UTRs are strictly conserved within a 

particular variant group (Figure 3.6). A complex consensus secondary structure for these 5’ 

UTRs was predicted by RNAalifold with a minimum free energy for the structure of -

163.54 kcal/mol (Figure 3.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Multiple alignment of the 5’ UTR sequences of the 4 complete sequences GP18, 623 621 and 
PL20. The genetic variability between the groups are clear with large deletions/insertions when compared. 
 
 
 

10 20 30 40 50 60 70 80 90 100 110 120 130 140

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAAATTATTTTACCTGAATTTTCCGCCACGTGCCATAAAATTTTGTCTTTTATTTCTCGTGTTTTTGGGTGTTACGTCTTAGTTTTTCCTAAACAAAAACAAA

623 ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAAATTATTTTACATGAATTTTCCGCCACGTGCCATAAAATTTTGTCTTTTATTTCTCGTGTTTTTGGGTGTTACGTCTTAGTTTTTCCTAAACAAAAACAAA

621 ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAATTTATTTTACCTGAATTTTCCGCCACGTGCCATAAAATTTCATCTTTTATTTCTCGTGTTTTTGGGTGTTAAGTTTTAACTTTTCCTAAAGAAAAACAAA

PL20 ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAATTTATTTCATCTGAATTTTCCGCCACGTGCCATAAAACTGTATCTTTTATTTCTCGTGTTTTTGGGTGTTAAGTTTTAATTCTTCCTAAAGAAAAACAAA

160 170 180 190 200 210 220 230 240 250 260 270 280 290

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 TCCTTTCAGCTGTTGTTAGTAGTTTCTGTTGTAGTTTTCCTTAAAAATAACAAAA~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~AAGATTT~~~~CTTCTCCTTTTA

623 TCTTTTCAGCTGTTGTTAGTAGTTTCTGTTGTAGTTTTCCTTAAAAATAACAAAA-------------------------------------------------------------AAGATTT----CTTCTCCTTTTA

621 TTCTTTCAGCTGTCGTTAGTAGTTTTTATTGTAATTTTCCTTTAAAATAACAAAATTTTTCTTTTCTCTTATTGGGGTTTCGTGTTTTGTAGTCATTAACTTTCCTTTAAAATAACAAAATTTTTCTCTTCTCTTTTTG

PL20 CCTTTTCAGCCGCCGTTAGTAATTTTCGTCGTAATTTTCCTTAAAAATAACAAAAATTTTTCTTTCTTTTTCAGCCGCCGTTAGTAATTTTCGTCGTAATTTTCCTTAAAAATAACAAAAATTTTTCTTTCTCTTTCCA

310 320 330 340 350 360 370 380 390 400 410 420 430 440

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 CTTGTCATCTTTAATTTTCCTTGCGTCTGTTTAGGTTTGCGTCAAGTTTTCTTTGCGTCTTCGTGTTTTTAGTTTTAGTTTTTCCTAAGTGTCTTTTAAGAGGGTTAGTTCTCTTTATCGTGTTGGGTAAATTTAGATT

623 CTTGTCATCTTTAATTTTCCTTGCGTCTGTTTAGGTTTGCGTCAAGTTTTCTTTGCGTCTTCGTGTTTTTAGTTTTAGTTTTTCCTAAGTGTCTTTTAAGAGGGTTAGTTCTCTTTATCGTGTTGGGTAAATTTAGATT

621 TTAGTAGTTATTAACTTTCCTAGAGTCTGTTTAGGTTCGTGTTTAGTTTTCTCTGCGCTTCCGCGTCTTAAGTTTTAACTTTTCCTAAGCGTCTTTTAAGAGGGTTGGTTCTCATCGTCGTGTTGGGTTAATTTAGTTT

PL20 TTCTTTGTTACAAACTTTCCTAGAGTCTCTTTAGGTTTGAGTCTAGTTTTCTTAGTGTTTTCGTGTCTTTAGTTTTGGCCTTTCCTAAGCGTTATTTAAGAGGGTTAGTTCTCTTTGTTGTGTTGGGTCAATTCTTGTT

460 470 480 490 500 510 520 530 540 550 560 570 580 590

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 TTTTACAAAGATAGACAACGTCGTTTTCTTTTAGTGCCTCGTTTTCCGTTTCTTTGTAATTTTCCTTTGCGAATTTAAAAATTTTTCTTTTATTTCTTTTTAGTTGCAGCATTTACTATTTTAACTTTCCTTTAGCGTT

623 TTTTACAAAGATAGACAACGTCGTTTTCTTTTAGTGCCTCGTTTTCCGTTTCTTTGTAATTTTCCTTTGCGAATTTAAAAATTTTTCTTTTATTTCTTTTTAGTTGCGGCATTTACTATTTTAATTTTCCTTTAGCGTT

621 CTTTTAAAAAAGAAAAAACGTCATTTTCTTTTAGTGCTTTGTTTTCCGTTTTTTCGTAGTTTTCCTTCACAAGTTTAAAAATATTTCTTTTAGTTTTCTTTAGTCTCAGTGTTTACTTTTTCTATTTTCCTA-------

PL20 TATAAGAAAGATTAAAAACGTCATTTTCTTCTAGTGTTTCGTTTTTCAATTTTTTGTAACTTTCCTTTACGAAATTAAAATTTTTTCTTTCAGTTTTCTTTAGTTGTAGCGTTTATTACTTTAACTTTCCTTT------

610 620 630 640 650 660 670 680 690 700 710 720 730 740

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....

GP18 TTTTCTTCTCTTGGTGTGTTTAGCGTGAGTGTTTTTCTATTTTCCTACGTACCATCTAGGGAGTTTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTTTTTAATTTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTC

623 TTTTCTTCTCTTGGTGTGTTTAGCGTGAGTGTTTTTCTATTTTCCTACGTACCATCTAGGGAGTCTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTTTTTAATTTTCCTGCTGTTTGAGGGAAGTTTGTCCTTCTTC

621 -------CACCTAGGAATTTCTACCTAAG-----------ATTCCTAAGTAACACCTAGGAATTTCTACCTAAGATTCAACTTCTTTCTTTTTCTAGTTTTAAATTTTCCTGCTGTTTGAGGGAAGTTTGCCCTTCTTC

PL20 -------TTTGTGGTAGTTCTTCT-----------------TTTATTAGTG-TGTTTAGTGTGTCTTCTTTAGA-----------------------------------------------------------------

760 770 780 790 800

....|....|....|....|....|....|....|....|....|....|..

GP18 TTTTTAAACCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCC

623 CTTTTTAATCCTTTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTCGCC

621 TTCGTAAACCATTATTTCTATTTCCTCTCCTTTTAAGTTTTTAAGTTTCGCT

PL20 ------------------AATTTCCTCCCCTTTTAGGTTTTTAAATCTCGCT
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Figure 3.7: RNA secondary structure of the 5’ UTR of GLRaV-3 as predicted by RNAalifold Vienna using a 
multiple alignment of the 5’ UTRs of isolates GP18, 621 and PL-20. The structure was predicted to have a 
free energy of -163.54 kcal/mol.  
 
 

3.4 Discussion 

The complete genome of GLRaV-3 isolate GP18 was sequenced and found to be longer at 

the 5’ end, extending the 5’ UTR 579 nt beyond that reported for the NY-1 isolate. The 

extended 5’ UTR was also demonstrated to be present in all other isolates of GLRaV-3 

tested.  

 

Isolate GP18 was sequenced by employing three RT-PCR based techniques. RT-PCR for 

the bulk (87%) of the genome and two techniques for the 5’ and 3’ ends of the genome, 

Poly(A)-tailing and RLM-RACE. A consensus sequencing spanning nucleotides 1 835 – 

17 905 of the NY-1 sequence was constructed from the sequence data of 10 overlapping 

cloned amplicons generated with RT-PCR.  

Poly(A)-tailing on dsRNA was successful in determining the 3’ end of the GP18 genome 

and was found to be similar to NY-1. This technique was however not able to determine 

the 5’ end of the genome. Using optimised PCR conditions, the 5’ end was consistently 
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determined to be at position 50 of the NY-1 sequence. By reducing the annealing 

temperature by 7ºC it was possible to generate a range of amplicons that indicated the 5’ 

end extended beyond the 5’ end of the NY-1 sequence. The poly(A)-polymerase negative 

control under these sub-optimal conditions also yielded the same amplicons indicating that 

these fragments can be generated independently of poly-adenylation by yeast poly(A)-

polymerase. A multiple sequence alignment of these fragments revealed that the fragments 

are preceded by a high number of thymine/uracil nucleotides that seem to serve as binding 

sites for the oligo(dT) primer on the complementary negative strand during RT-PCR. This 

result highlights the potential hazard of using a single, sequence-dependant technique.  

The 5’ end of the GP18 genome was determined using RLM-RACE on total RNA. The 

amplicon generated from the RLM-RACE reaction was significantly larger than expected 

but it was cloned and four clones sequenced. The reaction was repeated and an additional 

five clones sequenced. Sequence data from all nine clones confirmed the same sequence 

that contains the first 365 nucleotides of the NY-1 sequence and an additional 579 nt 

upstream of the 5’ end reported for the NY-1 sequence. 

  

The complete genome sequence of isolate GP18 was found to be 18498 nucleotides long 

with a 93% sequence identity with the NY-1 sequence over nucleotides 580-18498. The 

putative function for some of the ORFs was predicted using the Pfam 22.0, domain search 

software. In table 3.3 the nucleotide and amino acid sequence identities for each of the 

ORFs between GP18 and NY-1 are listed. The predicted function and domains of GP18 are 

indicated and found to be similar to NY-1 (Ling et al., 2004).  

The GP18 sequence has an extended 5’ UTR compared to NY-1, which is 737 nt long with 

an unusual sequence composition. It has an adenine/uracil content of 68.4% with a high 

uracil content of 48.5%. The only other member of the genus Ampelovirus that has been 

completely sequenced is Little cherry virus 2 (LChV-2, AF531505), which was found to 

contain a region of 539 nt 5’ of the ORF1a. The 5’ region of LChV-2 and the 5’ UTR of 

GLRaV-3 GP18 are much larger than the 5’ UTRs of other members of the Closteroviridae 

family, GLRaV-2, closterovirus (AY881628) 105 nt, BYV, closterovirus (AF190581) 107 

nt, CTV, closterovirus (DQ272579) 107 nt and LIYV, crinivirus (NC_003617) 97 nt. The 

5’ UTR of GLRaV-3 GP18 contains two small ambisense ORFs with no similarity to the 

LChV-2 ORF0 and it is likely that these ORFs are not expressed (Rott and Jelkmann, 

2005). This leaves one to speculate about the function of such a large 5’ UTR, and which 

warrants further investigation.  
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The domains predicted by the Pfam software for the replicase (ORF1a) were similar to 

those previously described for the NY-1 isolate; with two differences. The software was 

able to detect the presence of an AlkB (2OG-Fe(II) oxygenase) domain (aa 1 938 – 2 199) 

in ORF 1a not previously described, but was unable to detect a p-protease (L-Pro) domain.  

This analysis was also performed on NY-1 with the same result. The presence of the AlkB 

domain is not unique to GP18, but present in all GLRaV-3 sequences tested. The presence 

of the L-Pro domain could not be determined by this software, possibly due to a lack of 

sequence information in the database. The position of the L-Pro domain and possible 

critical amino acids were determined by multiple sequence alignment and found to be 

similar to NY-1 (Figure 3.3). A further significant difference between the sequence of 

GP18 and NY-1 is the 82 nt overlap between ORF1a and ORF1b. In the GP18 sequence 

ORF1b can still be expressed as a +1 frameshift. Furthermore, analysis of the expression of 

ORF1b needs to be evaluated to determine the mechanism by which this protein is 

transcribed. 

 

Similar to the phylogenetic analysis by Fuchs et al. (2009) and Jooste et al. (2010) using a 

partial sequence of the Hsp70h gene, three main genetic variant groups were found. GP18 

was grouped with genetic variant 623 which was found by Jooste et al.(2010) to be the 

most abundant genetic variant group in South Africa. This group is separate to the group 

that contains isolates NY-1 and 621 and the group containing isolate PL20. 

 

Analysis of short read sequence data generated by metagenomic sequencing of a diseased 

vineyard yielded 449 scaffolds with de novo assembly. GLRaV-3 was identified as the 

most abundant virus in the sample as 124 scaffolds aligned with GLRaV-3 isolates, 

accounting for 58.5% of the short sequence read data. Isolate GP18 was found to be the 

most homologous to 66 of these scaffolds accounting for 56% of the short sequence read 

data associated with GLRaV-3, identifying a GP18-like GLRaV-3 as the most abundant 

virus in this environmental sample. MAQ reassemblies using available full-length GLRaV-

3 sequences as reference sequences confirmed the dominance of a GP18-like GLRaV-3 in 

the sample. MAQ reassembler was able to align 4 242 321 reads on the reference sequence 

with 100% genome coverage to an average depth of 10 008 nt. The MAQ reassembly was 

able to generate a full-length GP18-like consensus sequence from the environmental 

sample that confirmed the presence of the 5’ UTR observed for GP18. It was observed, by 

plotting the number of reads on the reference sequence, that there is great variability in the 
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depth of coverage across the reference sequence. This could be due to the incomplete 

dissociation of the dsRNA used as starting material or because the variant dominant in the 

sample varies at the positions with low coverage in the GP18 reference. See Coetzee et al. 

(2010) for a more complete discussion of this data set and other viruses that were 

identified. 

 

From figure 3.5, where the number of reads are plotted on the reference sequence, it is 

clear that although the average depth is very high, there is great variability in the depth that 

might explain the lack of a full-length scaffold for GLRaV-3. In an attempt to generate a 

full-length GLRaV-3 scaffold from the original data set of short sequence reads, additional 

de novo assemblies using different parameters were performed. Some of these assemblies 

were able to generate much larger scaffolds than those using the original parameter 

settings, but, interestingly, it was found that there is also a loss of data for some of the 

other virus sequences by using different parameter settings. The parameter settings in the 

original analysis were a good compromise and yielded the most usable data from a single 

analysis. None of the de novo assemblies were able to generate a full-length scaffold for 

GLRaV-3. Combined, all the de novo assemblies yielded 43376 scaffolds with a high 

degree of redundancy. By compiling all the de novo scaffolds into a contig assembly, it 

was possible to reduce the redundancy and construct larger contigs. Compiling de novo 

assembled scaffolds into contigs results in a loss of all quantitative and qualitative 

information linked to each of the individual scaffolds. Some indication of the quantitative 

and qualitative information associated with each of the contigs can be determined by using 

MAQ reassembly with the contigs that was generated as reference sequence. Contig-3843 

was found to be a nearly complete GLRaV-3 contig with 97% homology to isolate GP18. 

This contig however, contained many assembly errors such as insertions, deletions and an 

114 nt duplication when aligned to the GP18 sequence. When MAQ reassembly was 

performed on Contig-3843, the number of reads, coverage and depth of coverage was 

significantly lower than when isolate GP18 was used as reference sequence. Contig-3843 

was also “repaired” by removing all the insertions and the duplication to create Contig-

3843B and was subjected to MAQ reassembly. The number of reads, coverage and depth 

of coverage did increase, but was still lower than when GP18 was used. It is expected that 

a contig assembled from the sample sequence data would have a 100% coverage and a 

higher number of reads aligning to it when compared to a sequence from a different isolate. 

This discrepancy might be due to the composition of the sample that most likely contains 
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several closely related GLRaV-3 variants that would make de novo assembly difficult. It is 

important to note that the sequence of these contigs do not represent an isolate in the 

environmental sample but are rather a representation of the most dominant sequences 

found. The de novo assemblies from this data most likely construct chimeric contigs 

representing a range of isolates that are closely related and possibly quasispecies. Even 

though this chimeric contig cannot be directly compared to the GP18 isolate it still 

provides us with a GP18-like sequence that is more closely related to GP18 than NY-1 is to 

GP18 and more importantly it corroborates the existence of the extended 5’ UTR.          

 

The unexpected result of the extended 5’ UTR warranted further investigation and 

confirmation. To exclude the possibility that the extended 5’ UTR might be due to an 

experimental artefact, RLM-RACE was performed on a vine that was infected by three 

different viruses. Sequence data from the amplicons generated confirmed the 5’ ends of 

GLRaV-2 and GRSPaV as published, as well as the 5’ end determined for GP18 and 

reported here. This result excluded the possibility that the extended 5’ UTR is due to an 

RLM-RACE experimental artefact.  

 

In an attempt to determine if all isolates of GLRaV-3 contain this extended 5’ UTR an RT-

PCR was designed that amplified a portion of the extended 5’ UTR found for GP18 and the 

first 365 nt of the known sequence of NY-1. Sequencing results from the amplicons 

generated from the ”spanning RT-PCR” using four additional samples clearly showed the 

extended 5’ UTR that continues beyond the 5’ end reported for NY-1. Using this primer 

set, additional samples have been tested for the presence of this extended 5’ UTR and all 

were found to contain the extension. Some of these samples were also sequenced and 

found to be highly conserved (data not shown). 

 

The presence of such an unusual 5’ UTR was further supported by the collaborative project 

with Jooste et al. (2010) in which the 5’ ends of three genetic variant isolates were 

determined by RLM-RACE. All three variants were found to contain 5’ UTRs similar in 

length to GP18, but with great sequence diversity.  

 

Using these 5’ UTR sequences as reference sequences, it was determined that the 

environmental sample contained the GP18 and possibly the PL20 variants, with GP18 
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being the dominant variant with 100% coverage and the highest number of reads aligning 

to it.  

 

In Figure 3.6 the multiple alignment of the 5’ UTRs of the three genetic groups clearly 

demonstrate the areas where some variants have insertions or deletions compared to the 

other variants, flanked by regions that are highly conserved. Additional sequence data from 

samples in each of the genetic variant groups show that the 5’ UTRs are highly conserved 

within a genetic group. A multiple alignment of the three genetic variant 5’ UTRs were 

used to predict a possible secondary structure for the 5’ UTR of GLRaV-3. The complex 

secondary structure predicted had multiple conserved stems and loops and a structure free 

energy of -163.54 kCal/mol (Figure 3.7). Interpretation of this highly complex structure is 

not possible without an analogous example or biological data. Currently it is only possible 

to speculate on the function of such an unusually large 5’ UTR for a plant virus, however 

it’s possible role in replication cannot be discounted. Even though GLRaV-3 is a capped 

virus, the possibility exist that this 5’ UTR plays a role in sequestering ribosomes, 

independently from the cap, similar to the IRES sequence found in the 5’ UTRs of picorna 

viruses (insect virus). Alternatively, it might play a role in insect transmission. The 5’ UTR 

might also be involved in the binding of the tail assembly proteins. In the related 

closterovirus, BYV and GLRaV-2 the tail assembly was found to be influenced by the 

sequence of the 5’ terminal sequence of the replicase (Alzhanova et al., 2007; Liu et al., 

2009). Until experimental data is available all these possibilities are only conjecture.   

 

This chapter describes the sequencing of the first truly complete GLRaV-3 genome. The 

South African isolate GP18 was sequenced and found to contain an unusually large 5’ 

UTR. Further investigation and two collaborate projects unequivocally proved that the 5’ 

UTR is not only present in the GP18 isolate, but possibly in all GLRaV-3 isolates. The 

function of this large 5’ UTR is however unknown and needs to be investigated further. 
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3.7 Recommended internet resources 

Vienna RNA webserver: http://rna.tbi.univie.ac.at/ 

http://www.genelink.com/tools/gl-oe.asp 

http://pfam.sanger.ac.uk/ 
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Chapter 4: Mapping of the 5’ terminal nucleotides of Grapevine leafroll-

associated virus 3 sgRNAs.    

 

4.1 Introduction 

Grapevine leafroll-associated virus 3 (GLRaV-3) is a phloem limited, positive sense, single 

stranded (+ss) RNA virus. It is the type strain for the genus Ampelovirus, family 

Closteroviridae and is known to infect only Vitis spp.  (Martelli et al., 2002). It is of 

economical importance to the wine and table grape industries as virus infected grapevines 

have reduced grape quality and yield (Freeborough and Burger, 2008).  

The replication of large +ssRNA viruses is complex and these viruses can employ various 

replication strategies including the use of polyproteins, +1 frameshifts, subgenomic RNA 

(sgRNA) and defective RNA (DRNA) to translate their proteins. To express genes located 

at the 3’ terminal end of the genome, many +ssRNA viruses make use of sgRNAs. The 

mechanism how these sgRNAs are produced in the case of GLRaV-3 however still needs 

to be elucidated. There are two proposed models for the production of sgRNA: internal 

initiation and premature termination. Irrespective of which mechanism a virus utilises, the 

production of sgRNA is essential for the expression of the 3’ ORFs. For a review on 

positive sense RNA virus replication refer to Miller and Koev (Miller and Koev, 2000).  

Closteroviruses have complex genomes which range in size from 15.5 to 19.5 kb with 

between 10 and 14 ORFs (Martelli et al., 2002). In a review by Dolja et al. “a working 

model of the infection cycle for a ‘generic’ closterovirus” is proposed (Dolja et al., 2006). 

In this model, it is proposed that 3’ co-terminal sgRNAs are produced to facilitate the 

translation of the internal genes on the 3’ half of the genome and are approximately the 

same number as the number of ORFs (Dolja et al., 2006). 

Molecular research on GLRaV-3 has made slow progress compared to other 

closteroviruses such as Beet yellows virus (BYV) (Dolja, 2003) or other grapevine-

infecting viruses like Grapevine virus A (GVA) (Mawassi, 2007), probably due to the lack 

of an alternative herbaceous host (Monette and James, 1990). In recent years, research on 

GLRaV-3 focused on genetic variation for applications such as phylogeny, epidemiology 

and detection (Fuchs et al., 2009; Jooste and Goszczynski, 2005; Osman et al., 2007; 

Turturo et al., 2005).  

To date, no studies have investigated the composition and characteristics of the sgRNAs 

associated with GLRaV-3 infection. Although the presence of GLRaV-3-specific sgRNAs 
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in leafroll-diseased vines have been observed, they have not been further characterised. 

(Hu et al., 1990; K. S. Ling et al., 1997; Rezaian et al., 1991; Saldarelli et al., 1994). The 

replication mechanism of GLRaV-3 can be inferred from research conducted on the related 

closteroviruses like Citrus tristeza virus (CTV) (Hilf et al., 1995) and BYV (He et al., 

1997) and it is hypothesised that ORFs 3-12 are expressed via sgRNAs produced by an 

unknown mechanism. 

In this study the use of RLM-RACE to map the 5’ terminal nucleotides of GLRaV-3 

positive-sense sgRNAs, representing ORFs 3-12 is demonstrated. These are the first steps 

towards characterising the sgRNAs involved in replication of this ampelovirus. 

  

 

4.2 Material and methods 

4.2.1 Double stranded RNA extraction and DIG double stranded RNA blot 

Double stranded RNA (dsRNA) was extracted using a cellulose (Whatman, CF-11) 

extraction protocol as described previously (Hu et al., 1990). Phloem scrapings of lignified 

grapevine canes (Vitis vinifera cv Merlot) from the Stellenbosch area (Western Cape 

Province, South Africa) infected with the same genetic variant of GLRaV-3 as GP18 were 

used for the extraction. The quality and quantity of the dsRNA was evaluated by 

electrophoresis. The dsRNA purified from 20g of phloem scrapings was separated in a 

single lane on a 1% agarose-TAE gel, overnight at 40V. 

All protocols used for the dsRNA blot were performed according to the Southern blotting 

protocol described in the DIG manual supplied by the manufacturer (Roche) except where 

stated differently. The probe was PCR-labelled using digoxigenin (DIG)-dUTP. Primers to 

the CP gene (ORF6) of GLRaV-3 (CP01For-GCGATGGCATTTGAACTGAA and 

CP01Rev-ATCGATCGTAGCTACTTCTTTTGC) were used for probe synthesis. The 

dsRNA was blotted after separation on a 0.8% TAE agarose gel by alkaline vertical 

downward transfer (Brown, 1999). CDP-Star detection substrate (Roche) was used and the 

membrane was exposed to ECL Hyper film for 30’ (Amersham). DIG molecular weight 

marker VII (Roche) was used to determine the approximate sizes of the sgRNA bands 

observed in the blot. The migration distances of the different fragments were compared to 

a standard curve drawn using the molecular weight marker and the sizes calculated (Table 

1). 
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4.2.2 Total RNA extraction  

Total RNA was extracted from the phloem scrapings of lignified canes infected with the 

GP18 isolate (Maree et al 2008) (Somerset West region, South Africa) using a modified 

CTAB method (White et al., 2008). Isolate GP18 was selected as it was the only South 

African full-length sequence available for this study. The purity and concentration of the 

purified total RNA was determined spectrophotometrically. The integrity of the total RNA 

was analysed by electrophoresis on a non-denaturing 1% Agarose-TAE gel. 

    

4.2.3 RLM-RACE 

The 5’ RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-RACE) reactions 

were performed with the FirstChoice® RLM-RACE kit (Ambion, USA) as instructed by 

the manufacturer. Nested reverse primers were designed on the GP18 sequence 

(EU259806) using Oligo Explorer (version 1.1.0, http://www.genelink.com/tools/gl-

oe.asp) on the 5’ ends of ORF2-10 and ORF12. See table 2 for primer sequence and 

position of primers on the GLRaV-3 genome, as well as the amplicon associated with 

every primer combination. Twelve micrograms of total RNA was subjected to RLM-

RACE and the amplicons generated were cloned using TA-cloning into the pDrive vector 

(Qiagen). Plasmid DNA was purified using the GeneJet miniprep kit (Fermentas). For each 

amplicon at least 5 clones were sequenced using the SP6 or T7 sequencing primer sites on 

the pDrive vector. A summary of the number of clones sequenced and the 5’ ends 

predicted by the sequencing results can be seen in table 3. Sequences were aligned and 

analysed using BioEdit software with isolate GP18 as the reference sequence (Hall, 1999). 

 

 

4.3 Results 

4.3.1 DIG dsRNA blot 

The dsRNA yield from the cellulose extraction protocol was of sufficient quantity and 

quality for blotting and displayed an intact, large molecular weight band at the expected 

size (~18.5kb) for GLRaV-3 genomic RNA (gRNA) after separation in an agarose gel. The 

dsRNA blot showed four distinct bands, one band at the expected size for the gRNA and 3 

smaller bands expected to be sgRNA (Figure 1B). The DIG DNA molecular weight marker 

was used to draw a standard curve that was used to approximate the sizes of the sgRNA 

bands. For a summary of the predicted sizes see table 1. In the table the predicted sizes 

from the dsRNA blot are compared to the sizes predicted by RLM-RACE.   
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4.3.2 RLM-RACE 

The CTAB extraction method yielded 170 µg of total RNA from 2g of phloem scrapings 

with an A260/A280 ratio of 2.14. Electrophoresis of total RNA also indicated that the 

RNA was intact and of sufficient quality to be used in the RLM-RACE reactions. Primer 

combinations used to determine the 5’ ends of the different sgRNAs and the corresponding 

amplicons can be seen in table 2. All amplicons were cloned and sequenced. The primer 

combination for amplicon-1 produced a fragment. The same fragment was also produced 

in the RLM-RACE negative control. The primer combination for amplicon-2 was unable to 

produce an amplicon. Primer combinations for amplicon-3 to -11 were able to amplify 

specific fragments and clones of these amplicons were sequenced and used to predict the 5’ 

ends of the 7 different sgRNAs. All the clones sequenced, predicted the same nucleotide as 

the 5’ end of the corresponding sgRNA, with one exception. Three from fifteen clones 

from amplicon-4 did not contain the adapter sequence as was found for amplicon-1.  

The 5’ terminal nucleotides of the 7 sgRNAs of GLRaV-3 were mapped on the GP18 

sequence and compared to the NY-1 sequence (AF037268). These 5’ nucleotides were all 

found to be purines and conserved between GP18 and NY-1. The predicted sgRNAs are 

plotted in figure 1C. 

 

 

 

 

Table 1: Predicted sizes of GLRaV-3 sgRNA using RLM-

RACE or dsRNA blot results.  

sgRNA RLM-RACE dsRNA Blot %Diff 

sgRNA(ORF3/4) 8021 7974 0.59 
sgRNA(ORF5) 6313 6000 4.96 
sgRNA(ORF6) 4698 4615 1.77 
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Table 2: Primer combinations used in RLM-RACE to generate amplicons for sgRNA 5' end prediction.  

Amplicon 

number 

GLRaV-3 

ORF 

Inner primer 
a
 Outer primer 

b
 

Position
c
  Name Sequence Position

c
  Name Sequence 

1 2 9341 ORF2 (8762) Rev CGACAAGAGTAGGAAGGGT  9447 ORF2 (8868) Rev CCATCCTACCTTGACACAG  
2 3 10401 ORF3 (9822) Rev TATCCCAATCTAGCACGAA  10516 ORF3 (9937) Rev TCATCCATAAATAACTACGC  
3 3 10516 ORF3 (9937) Rev TCATCCATAAATAACTACGC  10863 ORF4 (10284) Rev TAACATACAACCTTCCCTCT  
4 4 10828 ORF4 (10249) Rev GCTTTCCCCGCTGCTTTACC  10863 ORF4 (10284) Rev TAACATACAACCTTCCCTCT  
5 5 12495 ORF5 (11916) Rev AGATTGCGAAGTTGATGTAA  12543 ORF5 (11964) Rev GGTAGTCAATCCGCCTTTCA  
6 6 13955 ORF6 (13376) Rev GAAACTCGCCTTACTAAACT 14000 ORF6 (13421) Rev GATTCCTGTTAACTCCGCCT 
7 7 14991 ORF7 (14412) Rev TAAGCCCTCGTATAACTATC  15079 ORF7 (14500) Rev CATAAGACCTGAAGCCAACT  
8 8 16461 ORF8 (15882) Rev AATACTCTTTCATAACGGTG  16537 ORF8 (15958) Rev CTTATCATCTCACCTTCCTT  
9 9 17039 ORF9 (16460) Rev AACTACACCTGGCTATGAGA  17105 ORF9 (16526) Rev TTTCTATCGTCGCCTTACAG  
10 10 17572 ORF10 (16993) Rev AGTCGTCGCTGTAGTAGTTA  17622 ORF10 (17043) Rev TAAGCGAAGGCGGAGTCTAT  
11 12 18200 ORF12 (17621) Rev ACCTTCTCCTTTTCTACAT  18227 ORF12 (17648) Rev GGATTTTTACCCATTACTG  

ND - Not determined, a- in combination with the RLM-RACE inner primer, b- in combination with the RLM-RACE outer primer, c- 5’ nt of primer compared to GP18 sequence (EU259806).  

 

Table 3: Characteristics of RLM-RACE predicted sgRNAs for GLRaV-3 ORFs 3-12.  

GLRaV-3 ORF
a
 Predicted sgRNA 

Amplicon 

number 

Size of the 

sgRNA 5' UTR 

5' nt in isolate sgRNA 

size 

Clones 

sequenced 

dsRNA 

Blot GP18 NY-1
c
 

2 (9287) b 1 - - - - 10/10  
3 (10509) - 2 No amplification - - - -  
3 (10509) sgRNA(ORF3/4) 3 32 G-10477 G-9898 8021 6/6 Yes 
4 (10665) sgRNA(ORF3/4) 4 188 G-10477 G-9898 8021 12/15 Yes 
5 (12307) sgRNA(ORF5) 5 122 G-12185 G-11606 6313 9/9 Yes 
6 (13848 sgRNA(ORF6) 6 48 A-13800 A-13221 4698 5/5 Yes 
7 (14852) sgRNA(ORF7) 7 37 G-14815 G-14236 3683 9/9 ND 
8 (16296) sgRNA(ORF8) 8 23 A-16273 A-15694 2225 5/5 ND 
9 (16850) sgRNA(ORF9) 9 92 G-16754 G-16175 1740 6/6 ND 

10 (17390) sgRNA(ORF10-12) 10 125 A-17265 A-16686 1233 7/7 ND 
11 (17932) sgRNA(ORF10-12) - 667 - - 1233 - ND 
12 (18039) sgRNA(ORF10-12) 11 774 A-17265 A-16686 1233 5/5 ND 

a- Position of ATG in brackets and nucleotide positions relative to GP18 sequence (EU259806), b- Amplification products were shown to be as a results false positive, c- position of 
sgRNA 5’ nt relative to NY-1 sequence (AF037268) as determined through sequence similarity, ND - Not determined. 
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Figure 1: A) Diagrammatic representation of the GLRaV-3 genome. B) Double stranded RNA blot. In lane 1 
DIG molecular weight marker VII with nt sizes as indicated. Lane 2 dsRNA sample with hybridised bands as 
indicated and annotated according to RLM-RACE predictions. C) Diagrammatic representation of the RLM-
RACE predicted sgRNAs. The position of probe used in dsRNA is marked with a grey box.    
 

 

4.4 Discussion  

In this study we identified three GLRaV-3 sgRNAs by dsRNA blotting with a probe 

directed at the coat protein gene. The 5’ nts of these three sgRNAs associated with ORFs 

3-6 as well as four additional putative sgRNAs associated with ORFs 7-12 were 

determined with RLM-RACE.  

 

The yield of dsRNA extracted from virus infected grapevine, as with other woody plants, 

was low but sufficient for blotting. The DIG-labelled probe directed towards the CP gene 

of GLRaV-3 detected four distinct bands. The high molecular weight band corresponds to 

the viral gRNA (~18500nt) and the three smaller bands to the sgRNAs most likely 

associated with ORFs 3-6. These bands were labelled sgRNA(ORF3/4) (~7974nt), 

sgRNA(ORF5) (~6000nt) and sgRNA(ORF6) (~4615nt) according to their respective sizes 
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and sequencing results from the amplicons generated with RLM-RACE. The sizes of these 

fragments were approximated with a standard curve drawn using the DIG molecular 

marker and their migration distances. The size of the different fragments approximated by 

the dsRNA blot and the sizes predicted by the RLM-RACE experiments can be seen in 

table 1 and was found to vary by less than 5%. The dsRNA blot confirmed that the 

sgRNAs of ORFs 3-6 are 3’ co-terminal, which correlates with other closteroviruses like 

BYV and CTV (He et al., 1997; Hilf et al., 1995).  

 

Nested reverse primers were designed for the RLM-RACE to the 5’ ends of ORFs 2-10 

and ORF 12. Amplicons were generated with all of the primer sets except for amplicon-2 

(Table 2). The amplicons (1, 3-11) were sequenced and analysed, and used to determine 

the 5’ nt of the sgRNA corresponding to a particular ORF (Table 3).  The 5’ proximal gene 

was assigned as the ORF associated with each sgRNA. In the case of ORFs 3 and 4 and 

ORFs 10-12 it was co-assigned as data indicated that these ORFs may be expressed from 

the same sgRNAs. All the clones sequenced for each amplicon predicted the same 

nucleotide to be the 5’ transcription initiation site for the sgRNA with 2 exceptions.  

Amplicon-1, designed to determine the 5’ nt of a possible sgRNA(ORF2) was consistently 

generated, however the RLM-RACE negative control amplified the same fragment. 

Sequencing of all amplicon-1 fragments clearly demonstrated that all the amplicons lacked 

the RNA adapter sequence ligated to the RNA 5’ ends during the RLM-RACE reaction. 

Three sequenced clones for amplicon-4 also lacked the RNA adapter sequence. Sequence 

homology between the RLM-RACE Inner primer and the sequence upstream of G-9001 for 

amplicon-1 and A-10516 for amplicon-4 indicates that amplification is possible in the 

absence of the RNA adapter. It was thus concluded that the amplification of amplicon-1 

and the three clones sequenced from amplicon-4 resulted from mispriming of the RLM-

RACE Inner primer and should be regarded as false positive clones. The results obtained 

do not exclude the possibility of ORF 2 to be translated via a sgRNA(ORF2) as the 5’ end 

of the sgRNA might be beyond the priming site for the RLM-RACE Inner primer. 

However, the existence of a sgRNA(ORF2) is not supported by the dsRNA blot. Primer 

sets to generate amplicon-2, -3 and -4 were designed to determine the 5’ ends of the 

sgRNAs produced in the expression of ORFs 3 and 4. Sequence analysis of amplicons-3 

and -4 revealed that they predicted the same 5’ nt to be the 5’ end of a sgRNA. In BYV the 

analogous proteins p6 (ORF 2) and Hsp70h (ORF 3) was determined to be expressed from 

two different sgRNAs by RLM-RACE (Peremyslov and Dolja, 2002). Sequence analysis 
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of 15 clones derived from amplicon-3 and -4 indicate that the 5’ nt for the proposed 

sgRNA(ORF3/4) is G-9898. The dsRNA blot was unable to resolve more than one band 

and an in depth investigation is required to determine if ORFs 3 and 4 are expressed from 

different sgRNAs like BYV or from the same sgRNA molecule. Sequence analysis of 

amplicons -5 and -6 determined the exact 5’ nt for sgRNA(ORF5) and sgRNA(ORF6) to 

be at G-12185 and A-13800, respectively. All the clones sequenced for each of these 

amplicons predicted the same 5’ nt to be the 5’ end of the respective sgRNAs.  

 

The dsRNA blot indicated the existence of three 3’ co-terminal sgRNAs for the expression 

of ORF 3, 4, 5 and 6. It is believed that ORFs 7-12 are also translated via sgRNA similarly 

to other closteroviruses like BYV and CTV (He et al., 1997; Hilf et al., 1995). To 

determine the 5’ ends of these putative sgRNAs possibly utilised in the expression of ORFs 

7-12, amplicons-7 to -11 were generated. Amplicons-7 to -9, consistently predicted the 5’ 

ends of 3 sgRNAs potentially involved in the expression of ORFs 7, 8 and 9 each from 

their own putative sgRNAs (designated sgRNA(ORF7), sgRNA(ORF8) and 

sgRNA(ORF9)) with 5’ ends mapped at G-14815, A-16273, and G-16754 respectively. 

Sequence data from amplicons-10 and -11 predicted that ORFs 10, 11 and 12 are expressed 

from a single sgRNA. Even though no amplicon was designed for ORF 11 because of its 

small size, the result indicates that ORF 10-12 are most likely translated from the same 

sgRNA. Eleven clones in all mapped the 5’ end of putative sgRNA(10-12) at A-17265. 

Amplicons-7 to -11 thus predicts the existence of 4 additional positive sense sgRNAs 

responsible for the expression of ORFs 7-12. 

 

Bioinformatic analysis of the sequences upstream of the mapped 5’ ends of the sgRNAs 

was unable to reveal any conserved sequence or secondary structure within the GLRaV-3 

genome. Comparisons with known viral sg-promoters and transcription control elements 

were unable to determine the position and critical bases of any possible sg-promoters. As 

bioinformatic tools are refined and more sequence data become available it may be 

possible in the future to identify such elements. 

 

Collectively the RLM-RACE data predict the existence of 7, most likely 3’ co-terminal 

positive sense sgRNAs for the expression of the 3’ ORFs 3-12 of GLRaV-3. The exact 5’ 

nts were mapped on the GP18 genome (Table 3) and found to all be purines. Compared to 

the NY-1 isolate these bases were found to be conserved. Similar to CTV, all the 
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amplicons sequenced indicated that the sgRNAs were continuous with the genome with no 

common 5’ leader sequence as observed in the evolutionary related Nidoviruses (Karasev 

et al., 1997). Data also indicated the interesting possibility that ORF 3 and 4, and ORFs 10-

12 are expressed from polycistronic sgRNAs. 
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Chapter 5: Construction of a Grapevine leafroll-associated virus 3 mini-

replicon. 

 

5.1 Introduction 

The inherent difficulties associated with studying woody plant viruses in their natural hosts 

necessitate the development of infectious clones that are able to replicate in herbaceous 

hosts. An infectious clone of an RNA virus is a full-length cDNA resembling the viral 

gRNA that can be used to induce an infection in a susceptible plant.  The viral cDNA is 

normally cloned downstream of a CaMV 35S promoter, transferred to a binary vector, 

transformed into Agrobacterium and infiltrated into a plant host. After T-DNA transfer, the 

viral genome will be transcribed in vivo, the virus will replicate and move systemically 

throughout the plant. Such cDNA clones can be utilised to improve our understanding of 

the functional role of viral ORFs as well as the biological characteristics of the represented 

viruses.  

One of the first plant viruses to be converted into an infections clone for the study of viral 

replication was Brome mosaic virus (BMV) (Ahlquist et al., 1984). Since then many more 

infectious clones representing plant viral genomes have been constructed. Infectious clones 

of the following closteroviruses have been constructed:  Citrus tristeza virus (CTV), Beet 

yellows virus (BYV), Lettuce infectious yellows virus (LIYV), and Grapevine leafroll-

associated virus 2 (GLRaV-2) (Klaassen et al., 1995; Liu et al., 2009; Peremyslov et al., 

1998; Satyanarayana et al., 1999).  

Infectious clones are useful molecular tools that can be utilised in expression systems to 

produce target proteins at high concentrations or in virus induced gene silencing (VIGS) 

systems for functional genomic studies of the host plant. Constructed clones are frequently 

found not to be infectious due to spontaneous rearrangements and mutations induced by 

the bacterial host during propagation (Boyer and Haenni, 1994). It has been reported that 

even a single point mutation within a viral cDNA clone can lead to reduced infectivity or 

complete abolishment of infectivity (Boyer and Haenni, 1994). Additional errors that 

influence the infectivity of a cDNA clone can also be introduced during the reverse 

transcription or PCR-based assembly steps. Infectious clones assembled from the genomes 

of larger RNA viruses, are more cumbersome to manipulate. Such clones are also more 

susceptible to errors being incorporated, due to their large size. To avoid this problem, 

replication competent mini-replicons were constructed by various research groups for 
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different viruses including the closteroviruses CTV, GLRaV-2 and BYV (Liu et al., 2009; 

Peremyslov et al., 1998; Satyanarayana et al., 1999). These mini-replicons contained only 

the replicase proteins and the 5’ and 3’ regulatory elements, analogous to the RNA1 of the 

bipartite closterovirus LIYV (Klaassen et al., 1995). They are useful for studies in 

protoplasts or agroinfiltrated plant material and are unable to move systemically (Liu et al., 

2009; Peremyslov et al., 1998; Satyanarayana et al., 1999). 

The construction of CTV and GLRaV-2 infectious clones and their deletion mutants 

enabled researchers to accelerate the progression of functional knowledge and increase the 

understanding of the replication cycle of these woody plant-infecting viruses. Such studies 

would have been impossible to perform without these respective clones (Liu et al., 2009; 

Satyanarayana et al., 1999).  

The construction of an infectious clone or mini-replicon of GLRaV-3 is necessary to 

further investigate the results generated in Chapter 3 and 4 of this thesis. In Chapter 3 the 

sequence of isolate GP18 was determined and found to contain a 5’ UTR of 737 nt 

(Coetzee et al., 2010; Jooste et al., 2010; Maree et al., 2008). Great diversity in this large 

5’ UTR was also observed among different genetic variants (Jooste et al., 2010). Such a 

large 5’ UTR is unusual for closteroviruses and a molecular tool, like an infectious clone 

will greatly assist in determining its function and to establish if the genetic variation 

observed has any functional significance. An infectious clone is also required to investigate 

the production of the seven sgRNAs identified in Chapter 4 (Maree et al., 2010). It still 

remains to be proven if the sgRNAs of GLRaV-3 are transcribed by sg-promoters or 

controlled by sgRNA controller elements (Dolja et al., 2006). In this study, the assumption 

is made that, the sgRNAs of GLRaV-3 are transcribed by sg-promoters situated on the 

negative genomic RNA strand and will be referred to as such.   

Here we report the first attempt to construct a GLRaV-3 mini-replicon, a member of the 

Ampelovirus genus. 

 

 

5.2 Material and methods 

5.2.1 Assembly of the GLRaV-3 mini-replicon 

Total RNA was extracted from the phloem tissue of mature canes infected with GLRaV-3 

isolate GP18 using a CTAB protocol (Maree et al., 2008; White et al., 2008). Primers were 

designed with Oligo Explorer (version 1.1.0, developed by Teemu Kuulasma) using the 

GP18 sequence (EU259806) as reference. 
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The GLRaV-3 mini-replicon was designed to include the 5’ UTR, ORF1a, ORF1b and 3’ 

UTR of the GLRaV-3 genome. The mini-replicon was assembled from four amplicons 

using the sub-cloning vector pL140 (Supplied by Edgar Maiss) as backbone. The pL140 

vector contains a duplicated CaMV 35S promoter and a hammerhead ribozyme (Shintaku 

et al., 1996) (Figure 5.1). The first three amplicons were designed to be assembled from 

the 5’ half of the genome (nucleotides 1-9100) designated LR3-Rep-1, -2 and -3. The 

fourth amplicon representing the 3’ UTR (nucleotides 18222-18498) was designated LR3-

Rep3UTR and was designed to be separated from the replication ORFs by a small spacer 

and two unique restriction sites SgfI and AflII (Figure 5.1B and 5.1C).  

All the amplicons were generated with RT-PCR from the extracted total RNA using AMV 

and a high fidelity DNA polymerase and was initially cloned into a standard TA-cloning 

vector (pDrive, Invitrogen). For the final design of the GLRaV-3 mini-replicon see figure 

5.1. See table 5.1 for the characteristics of primers used in the assembly. 

The two amplicons, LR3-Rep-1 and LR3-Rep-2, were first assembled in an intermediate 

cloning vector, pLitmus38 (supplied by E. Maiss). LR3-Rep-1 was transferred from the 

pDrive cloning vector into pLitmus38 using the restriction enzymes BamHI and HindIII 

(sites incorporated on primer flaps) to create pLitmus+I. LR3-Rep-2 was then transferred 

from pDrive into pLitmus+I using two endogenous GLRaV-3 restriction sites XbaI and 

NgoMIV to create pLitmus+I+II.  

The other two amplicons LR3-Rep-3 and LR3-Rep3UTR were first assembled in pL140. 

LR3-Rep3UTR was transferred from pDrive into pL140 using XhoI and Bsp120I (sites 

incorporated on primer flaps) to generate pL140+3UTR. LR3-Rep-3 was then transferred 

from pDrive into pL140+3UTR using AscI and SgfI (sites incorporated on primer flaps) to 

generate pL140+III+3UTR.  

To complete the GLRaV-3 mini-replicon, the first two assembled amplicons (LR3-Rep-1 

and -2) were cloned from pLitmus+I+II with restriction enzymes AscI and NgoMIV into 

pL140+III+3UTR to result in pL140_LR3_Minireplicon.  

The construct pL140_LR3_Minireplicon containes two restriction sites, SgfI and AflII 

separated by a GGG spacer that were used as an entry site for test constructs. The GLRaV-

3 mini-replicon was transferred into a pBIN_SN binary vector (derived from pBIN19, 

supplied by Edgar Maiss) using SmaI and NotI. The final assembled 

pBIN_LR3_Minireplicon was confirmed by sequencing.  
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5.2.2 Assembly of sg-promoter test constructs   

Test constructs were assembled to evaluate the activity of the sgRNA(ORF6) sg-promoter 

using β-glucuronidase (GUS) assays (Figure 1D). The sg-promoter of sgRNA(ORF6) 

responsible for the expression of the CP was selected as it is generally regarded as one of 

the most active sg-promoters. As positive test construct, pBIN_LR3_Minireplicon_ ORF6 

sg-promoter/GUSi containing the putative sg-promoter of sgRNA(ORF6) and the GUSi  

gene (GUS gene with an intron) was assembled. As negative test construct, 

pBIN_LR3_Minireplicon_ ∆ORF6 sg-promoter/GUSi was generated that was identical to 

the positive test construct but lacked the sg-promoter. The inserts used to generate these 

test constructs were first assembled and cloned into pDrive before subsequent transfer into 

the pL140_LR3_Minireplicon using SgfI and AflII. These assembled constructs were 

finally transferred into pBIN_SN using SmaI and NotI. 

The “ORF6 sg-promoter/GUSi” insert (positive test construct) was assembled by overlap 

primer extension of two amplicons. The amplicons were assembled using primers with a 

23nt overlap (Table 5.1) (Higuchi et al., 1988). The sg-promoter amplicon, spanning from 

nucleotides 13651 to 13859 in the GLRaV-3 genome, was generated from total RNA by 

RT-PCR. The sg-promoter amplicon included 150 nts upstream of the predicted 5’ 

transcription initiation site for sgRNA(ORF6) (Chapter 4 this thesis), the sgRNA(ORF6) 5’ 

UTR for ORF6 as well as the start codon and first three codons of the ORF6 (CP).  The 

GUSi amplicon was generated by use of a high fidelity DNA polymerase (Pyrobest, 

Takara) from the plasmid p35S:GUSi (supplied by Pere Mastre). Amplicons were gel-

purified and 25ng of each were used in overlap extension PCR using high fidelity DNA 

polymerase (ExTaq, Takara). The resulting amplicon was gel-extracted and cloned into 

pDrive.  

The negative test construct insert “∆ORF6 sg-promoter/GUSi” contains only the GUSi 

without the sg-promoter for ORF6. The GUSi amplicon was amplified from p35S:GUSi 

adding restriction sites SgfI and AflII and cloned into pDrive.  

Both test construct inserts were confirmed by sequencing before subsequent cloning into 

pL140-LR3-Minireplicon and then pBIN_LR3_Minireplicon. The resulting test constructs 

were designated: pBIN_LR3_Minireplicon_ORF6 sg-promoter/GUSi (positive test 

construct) and pBIN_LR3_Minireplicon_∆ORF6 sg-promoter/GUSi (negative test 

construct). 
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5.2.3 Evaluation of GLRaV-3 sgRNA(ORF6) sg-promoter in Nicotiana benthamiana 

The positive and negative test constructs were transformed, using electroporation, into 

electro-competent Agrobacterium tumefaciens cells C58C1(pCH32) using the following 

settings: capacitance 25 µF, resistance 200 Ω and voltage 1,5 kV (Annamalai and Rao, 

2006). Transient expression assays in N. benthamiana were performed via agroinfiltrations 

as described by Voinnet et al. in 1998. Test constructs were co-infiltrated with a clone of 

the silencing suppressor of Beet mild yellowing virus (BMYV), P0 under control of the 

CaMV 35S promoter (supplied by Edgar Maiss). Plants were maintained and sample 

leaves taken at 2, 4 and 6 days post infection (dpi). The sample leaves were then infiltrated 

with GUS-staining solution (100mM NaH2PO4, 0.5mM K-Ferrocyanid, 0.5mM K-

Ferricyanid, 100mM EDTA, 0.1% Triton X100, pH7 with added 0.5mg/mL X-Gluc) and 

incubated O/N at 37ºC with mild agitation and decoloured with 100% EtOH until 

completely white.  

 

 

5.3 Results 

5.3.1 Assembly of the GLRaV-3 mini-replicon 

A GLRaV-3 mini-replicon spanning nucleotides 1 to 9100 and 18222 to 18498 was 

successfully assembled and engineered to be under control of a duplicated CaMV 35S 

promoter and a ribozyme. The complete clone pBIN_LR3_Minireplicon was sequenced 

and found to contain a single nucleotide insertion in the 5’ UTR and 27 nucleotide changes 

when compared to the GP18 sequence (Table 5.2). Sequencing results confirmed that the 

ORFs and other regulatory elements were intact and contained no significant mutations 

such as premature stop codons or frameshifts. By comparing the GLRaV-3 mini-replicon 

sequence to the GP18 and other GLRaV-3 isolates (623 - GQ352632, NY-1 - AF037268, 

CL-766 - EU344893 and 621 - GQ352631), 13 nucleotide changes were found to be 

unique to the GLRaV-3 mini-replicon. The 27 nucleotide changes, when compared to the 

GP18 sequence, resulted in 13 amino acid changes, eight in the replicase and five in the 

RdRp. Seven of these aa changes were found to be unique to the GLRaV-3 mini-replicon. 

The grey boxes in table 5.2 highlights the nucleotide and amino acid changes that are 

unique to the GLRaV-3 mini-replicon. 
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Figure 5.1: Diagrammatic representation of the construction of the GLRaV-3 mini-replicon (not to scale) in pL140. These assemblies were cloned into pBIN_SN using the 
SmaI and NotI sites before they were transformed into Agrobacterium for transient expression studies. A) Diagrammatic representation of the genome of GLRaV-3 with “   “ 
indicating the positions of the sgRNA 5’ ends and the grey arrow the 5’ end of the NY-1 sequence compared the GP18 sequence. B) Figure shows the four amplicons used to 
construct the mini-replicon and their relative positions on the GLRaV-3 genome as well as the restriction enzymes used in assembly. C) The completed GLRaV-3 mini-
replicon under the control of a duplicated CaMV 35S promoter and a ribozyme in the pL140 backbone is shown. D) The three test inserts and their construct names when 
cloned into pL140_LR3_Minireplicon are shown.  
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Table 5.1 Details of amplicons used to assemble the GLRaV-3 mini-replicon 

Amplicon Size Name RE sites added Sequence* Position GP18 

LR3-Rep-1 2550 Rep LR3-1 For BamHI, AscI AT GGATCC GGCGCGCC ATAAATGCTCTAGTAGGATTCG 1 
  Rep LR3-1.2 Rev HindIII AG AAGCTT TATCGTACACATCCACCATA  2526 
LR3-Rep-2 3397 Rep LR3-2 For none TTCTAGAGCCGATGCGGGT 2486 
  Rep LR3-2 Rev none TTGGTGACCTCTCATCCGA 5883 
LR3-Rep-3 3297 Rep LR3-3 For AscI AA GGCGCGCC GGCGTAGGCAGGATGTTGC 5823 
  Rep LR3-3 Rev SgfI AA GCGATCGC CGAAGAACCGAGGCACAGA 9100 
LR3-Rep3UTR 311 Rep LR3-3' UTR For XhoI, SgfI,AflII AG CTCGAG GCGATCGC GGG CTTAAG AAATCCTTCAATAAATTTAAAATA 18222 
  Rep LR3-3' UTR Rev Bsp120I AA GGGCCC GACCTAACTTATTGTCGATAAG 18498 
      
ORF6-sgPromGUS 227 LR3 sgProm6 For SgfI T GCGATCGC TCTAAGGTGAGAAGTAT 13651 
  sgPr6 GUS Junct Rev  caggacgtaa TTCAAACGCCATCGCGTCCA 13859 
 2021 sgPr6 GUS Junct For  GATGGCGTTTGAA ttacgtcctgtagaaac  
  GUS Rev AflII t cttaag tcattgtttgcctccctgct  
      
GUS 2017 GUS For SgfI t gcgatcgc atgttacgtcctgtagaaac  
  GUS Rev AflII t cttaag tcattgtttgcctccctgct  
      
ORF6wt 1183 LR3 sgProm6 For SgfI T GCGATCGC TCTAAGGTGAGAAGTAT 13651 
    LR3 ORF6(CP) Rev AflII TT CTTAAG TTCACCGATTTATGGACAT 14817 
* Restriction sites are underlined. Overlapping primer sequences are shown in bold. The GUSi sequence is shown in lowercase.  
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5.3.2 Assembly of sg-promoter test constructs 

Two test constructs to evaluate the activity of the putative sg-promoter of sgRNA(ORF6) 

were successfully assembled and cloned into pBIN_LR3_Minireplicon.   

 

5.3.3 Evaluation of GLRaV-3 sgRNA(ORF6) sg-promoter in Nicotiana benthamiana 

Nicotiana benthamiana leaves co-infiltrated with a test construct and the P0 suppressor 

were harvested and assayed for GUS expression. Leaves taken 2 dpi clearly showed small 

foci of GUS expression in the plant cells for both test constructs (Figure 5.2A and 5.2C). 

At 4 dpi the negative test construct showed lower expression of GUS compared to the 

positive test construct (Figure 5.2B and 5.2D). At 6 dpi no foci of GUS expression were 

observed with any of the test constructs. The infiltrations were repeated several times, but 

were not reliably reproducible. Additionally, observed GUS expression levels were 

inconsistent and attempts to improve on this were unsuccessful. The results depicted in 

figure 5.2 show the greatest variation observed in GUS expression between the two 

constructs.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: N. benthamiana leaves infiltrated with GLRaV-3 mini-replicon constructs to evaluate the activity 
of the putative sg-promoter of sgRNA(ORF6). In panes A and C are representative photos of leaves 2 dpi and 
4 dpi respectively when infiltrated with pL140_LR3_Minireplicon_ ORF6 sg-promoter/GUSi. In panes B 
and D are representative photos of leaves 2 dpi and 4 dpi respectively when infiltrated with 
pL140_LR3_Minireplicon_ ∆ORF6 sg-promoter/GUSi. 
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Table 5.2: Nucleotide and amino acid differences of the GLRaV-3 mini-replicon and selected GLRaV-3 isolates.  

Nucleotide differences  Amino acid differences 

Replicase RdRp 

Position 

(GP18) 

Mini-

replicon GP18 632 621 

NY-

1 

CL-

766 

Position 

(GP18) 

Mini-

replicon GP18 632 621 

NY-

1 

CL-

766 

Position 

(GP18) 

Mini-

replicon GP18 632 621 

NY-

1 

CL-

766 

151 T INS INS INS INS INS                 
156 C T T T - -                 
359 C T T T - -                 
497 C T T T - -                 
989 A T T T T T                 

1039 C T T T T T 101 T M M M M M         
2235 G A A A A A                 
2714 A T A A A A 659 E D D D D D         
3109 G A A A A A 791 G D D D D D         
3414 A G A A A A 893 R G  R R R R         
3503 T C T T T T                 
3534 G A G G G G 933 A T A A A A         
3685 C T T T T T 983 S L L L L L         
3771 A G A A A A 1012 T A T T T T         
3908 G A G A A G                 
4010 T C T T T T                 
4786 A G A A A A                 
4929 G A G G G G                 
6253 G A A A A A 1839 C Y Y Y Y Y         
7780 C T T T T T         114 R C C C C C 
7785 C T T C C C                 
7993 G A A A A A         185 A T T T T T 
8037 G A G G G G                 
8270 A G A A A A         277 K R K K K K 
8501 T C T T T T         354 L P L L L L 
8532 C T T T T T                 
8549 T C T T T T         370 L P L L L L 
9033 C T T T T T                             
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5.4 Discussion 

In this chapter the construction of the first GLRaV-3 mini-replicon is described. This is the 

first report of the construction of a mini-replicon for a member of the genus Ampelovirus. 

An attempt to utilise the GLRaV-3 mini-replicon to evaluate the activity of the putative sg-

promoter of sgRNA(ORF6) using a GUS gene expression assay is also reported.   

 

It has been demonstrated that deletion mutants (including mini-replicons) of other woody 

plant viruses like CTV and GLRaV-2 were able to replicate in the absence of the genes 

located on the 3’ halves of their genomes (Liu et al., 2009; Satyanarayana et al., 1999). 

The choice to forego the construction of a complete infectious clone and assemble a mini-

replicon for GLRaV-3 first, was recognised as a high risk approach, but is justified in light 

of the published successes for other closteroviruses like BYV, CTV and GLRaV-2 (Liu et 

al., 2009; Peremyslov et al., 1998; Satyanarayana et al., 1999).  

 

A GLRaV-3 mini-replicon was assembled to contain the 5’ UTR, ORF1a, ORF1b and the 

3’ UTR. These elements were placed under the control of a duplicated CaMV 35S 

promoter and a ribozyme with two unique restriction sites (SgfI and AflII) engineered 

between ORF1b and the 3’ UTR.  

Sequencing of the GLRaV-3 mini-replicon revealed several nucleotide and amino acid 

differences when compared to the GP18 sequence. By comparing the sequence of the 

GLRaV-3 mini-replicon to other GLRaV-3 isolate sequences (623, NY-1, CL-766 and 

621) it is clear that some of these differences were shared with other GLRaV-3 isolate 

sequences. There are several possible explanations for these changes. Some of the viral 

sequences might be toxic to the bacterial intermediate host that could have resulted in 

spontaneous rearrangements, which might affect the ability of the GLRaV-3 mini-replicon 

to replicate in plants. The error prone nature of the RdRp can also be a contributing factor 

as it leads to a population of gRNA templates in the plant cell of which some are lethal 

mutants. All these templates have an equal chance to be amplified during RT-PCR and 

incorporated in the final assembly. Additionally, the plant material used as source material 

were propagated from the grapevine plant from where isolate GP18 was originally 

sequenced. Since the original RNA extraction and sequencing of GP18, the plants have 

been maintained for more the three years in a greenhouse facility with no seasonal 

fluctuations. The virus infection has thus been persistently replicating for the equivalent of 

six growing seasons. The variation observed in the GLRaV-3 mini-replicon is thus not 
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necessarily errors but potentially genetic drift accumulated over this time. Another 

contributing factor is the lack of proof-reading activity in the reverse transcriptase that 

might contribute to the differences observed in the GLRaV-3 mini-replicon by adding 

errors through slippage or by transcribing incorrect bases. Together, these two enzymes, 

reverse transcriptase and RdRp, can compound differences in the final assembly, compared 

to the original GP18 sequence, of which some might cause the construct to be non-

replicating.  

 

The evaluation of the putative sg-promoter for sgRNA(ORF6) was conducted with two 

GUSi containing GLRaV-3 mini-replicon constructs. The constructs used were the same 

except for the sg-promoter deletion mutant that was used as the negative control. It was 

expected that the sg-promoter present in the positive test construct will drive the 

expression of GUS in the infiltrated leaves. Nicotiana bethamiana leaves were co-

infiltrated with a GUS construct together with a suppressor of silencing (P0). Leaves 

harvested 2 and 4 dpi for both constructs showed small foci of GUS expression with very 

little difference between the sg-promoter positive and negative constructs. Leaves taken 

6dpi did not show clear GUS expression. This was unexpected as the negative control does 

not contain the sg-promoter sequence that is believed to be essential for GUS expression in 

this context. The GUS expression observed in the sg-promoter negative control cannot be 

explained and might indicate the presence of some other regulatory element remnant still 

present in the GLRaV-3 mini-replicon, which would make the GLRaV-3 mini-replicon 

unsuitable for use as a molecular tool to evaluate the activity of sg-promoters, in its current 

state. The inconsistency observed in the GUS expression as well as the GUS expression 

levels using these vectors were not optimal and needs further optimisation. 

 

It is clear that the GLRaV-3 mini-replicon still requires several optimisation steps before it 

can be regarded as a useful molecular tool to study GLRaV-3 or possibly even functional 

genomics of the host, V. vinifera. Several aspects of the GLRaV-3 mini-replicon can be 

further investigated to try and improve replication of the construct and expression of a 

reporter gene. Bioinformatic analysis did not reveal why basal levels of GUS expression 

were observed with the sg-promoter negative control constructs, but ideally, if any such 

elements could be identified and removed it might be possible to have a complete negative 

control construct. It was clear from the experiment described in this chapter that we were 

unsuccessful in detecting sg-promoter activity for the region tested (nucleotides 13651 to 
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13800). This might be due to the inability of the GLRaV-3 mini-replicon to replicate or 

that the size of the sg-promoter region being evaluated was too small. The possibility that 

there are other factors involved for the sg-promoter to be functional, like tissue specific 

requirements or additional proteins of host or viral origin, cannot be discounted.  The first 

steps would however be to extend the test area upstream of the 5’ transcription initiation 

site for the sg-promoter for sgRNA(ORF6) and to also include other putative sg-promoters 

in the evaluation. Once activity has been detected deletion studies could be performed to 

narrow in on the sg-promoter sites. The use of silencing suppressors has been shown to be 

essential for the active replication of closteroviral mini-replicon constructs (Liu et al., 

2009; Peremyslov et al., 1998; Satyanarayana et al., 1999). The P0 silencing suppressor 

from BMYV was used as it has been demonstrated to be very effective as a heterologous 

viral suppressor and enhancing the replication of GVA infectious clones in N. bethamiana 

(Du Preez, 2010). In a study by Chiba et al. (2006) the effect of five heterologous viral 

suppressors were evaluated for a BYV mini-replicon. It was demonstrated that 

heterologous viral suppressors can potentially be more effective than native viral 

suppressors. The efficacy of heterologous viral suppressors (like GLRaV-2, p24) to 

enhance replication of the GLRaV-3 mini-replicon needs to be evaluated. The native 

suppressors for GLRaV-3 have not been determined yet and candidates are currently being 

tested. The role of the natural host, V. vinifera in the replication cycle of the virus and its 

infectious clone derivatives should not be underestimated. The use of a model plant like N. 

bethamiana can potentially lead to an incomplete view of the mechanisms involved in viral 

replication. It was found by Liu et al. (2009) while investigating the tandem papain-like 

leader proteases using GLRaV-2 mini-replicon constructs that the activity of the L1 and L2 

proteases are affected by the host plant.   

If the GLRaV-3 mini-replicon is still not able to replicate after all these measures have 

been taken a de novo assembly strategy using population cloning should be considered (Yu 

and Wong, 1998). The rationale, in first constructing a mini-replicon before a full-length 

cDNA clone should also be re-evaluated.    

 

In this chapter we report the first steps towards the construction of a functional GLRaV-3 

mini-replicon for use as a molecular tool in the investigation of the replication mechanisms 

of GLRaV-3.  
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Chapter 6: Conclusion  

 

Grapevine leafroll disease (LRD) is the most widely spread of all the grapevine viral 

diseases and probably also the most economically important.  Advances in research have 

been hampered by the inherent difficulties associated with studying woody plant viruses 

that are phloem limited. Grapevine leafroll-associated virus 3 (GLRaV-3), the main 

causative agent of LRD in South Africa, has no known herbaceous host. Such an 

experimental host would greatly assist studies on the replication mechanisms of GLRaV-3 

and its interactions with the natural host. Current research on GLRaV-3 is mainly focussed 

on epidemiology and the development of detection techniques. The genome sequence of 

GLRaV-3 was only first reported in 2004 (Ling et al., 2004) and even though sgRNAs 

were detected by several research groups, it was not further characterised. The study 

presented in this thesis focussed on the further characterisation of the gRNA and sgRNA of 

GLRaV-3. The sequencing of a South African isolate of GLRaV-3, GP18, as well as 

mapping the 5’ nt of seven sgRNAs is presented. The construction of a GLRaV-3 mini-

replicon to study viral replication is also described.      

 

The complete genome of GLRaV-3 isolate GP18 was sequenced and found to have a 5’ 

UTR of 737 nt, extending 579 nt beyond the sequence reported for the NY-1 isolate. The 

sequence was compiled from combined data generated by three RT-PCR based techniques. 

Unlike, Ling et al. (2004) that used Poly(A)-tailing on dsRNA, the 5’ end of the GP18 

genome was determined using RLM-RACE on total RNA. The complete genome sequence 

of isolate GP18 was found to be 18498 nucleotides long with a 93% sequence identity with 

the NY-1 sequence over nucleotides 580-18498. The GP18 5’ UTR has an unusual 

sequence composition that suggested that it is highly structured. To ascribe function to this 

large 5’ UTR would be speculative, and warrants further investigation. Phylogenetic 

analysis, using a partial sequence of the Hsp70h gene, grouped isolate GP18 with genetic 

variant 623, representing the most abundant genetic variant group in South Africa. This 

group is separate from the groups that contain isolates NY-1 and 621, and isolate PL20. 

Analysis of short read sequence data generated by metagenomic sequencing of a diseased 

vineyard identified GLRaV-3 as the most abundant virus in the environmental sample, 

with a GP18-like genetic variant of GLRaV-3 being the most dominant. Additional de 

novo assemblies, using a range of parameter settings, and contig assemblies were 
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performed to generate larger contigs representing near complete GLRaV-3 genomes. 

Contig-3843 was found to represent a nearly complete GLRaV-3 genome with 97% 

homology to isolate GP18. The de novo assemblies from this data most likely represent 

chimeric contigs from a range of templates that are closely related. Even though this 

chimeric contig cannot be directly compared to the GP18 isolate, it still provides us with a 

sequence that is closely related to GP18 that corroborates the existence of the extended 5’ 

UTR. 

The unexpected result of the extended 5’ UTR required further investigation and 

confirmation. RLM-RACE was performed on a vine that was infected by three different 

viruses to prove that the extended 5’ end is not due to an experimental artefact. Sequence 

data from the amplicons generated confirmed the 5’ ends of GLRaV-2 and GRSPaV as 

published, as well as the 5’ end determined for GP18. To determine if all isolates of 

GLRaV-3 contain this extended 5’ UTR a “spanning RT-PCR” was designed that 

amplified a portion of the extended 5’ UTR found for GP18 and the first 365 nt of the 

known sequence of NY-1. Sequencing results confirmed the extended 5’ UTR in all the 

samples tested.  

The presence of such an unusual 5’ UTR was further supported by the collaborative project 

with Jooste et al. (2010) in which the 5’ ends of three genetic variant isolates were 

determined by RLM-RACE. All three variants were found to contain 5’ UTRs similar in 

length to GP18, but with great sequence diversity between variants and high conservation 

within a genetic variant group. These different 5’ UTRs were analysed and predicted to 

have a complex secondary structure with multiple conserved stems and loops. 

Interpretation of this highly complex structure is not possible without an analogous 

example or biological data.  

 

The sgRNAs produced by GLRaV-3 during its replication cycle were further characterised 

by mapping the 5’ nt of seven sgRNAs using RLM-RACE. The 5’ nts of three sgRNAs, 

identified by dsRNA blotting with a probe directed at the coat protein gene, associated 

with ORFs 3-6 as well as four additional putative sgRNAs associated with ORFs 7-12 were 

determined.  

Amplicons generated in the RLM-RACE reactions were sequenced and analysed, and the 

5’ nt of each of the sgRNAs determined. Primer sets were unable to determine if ORFs 3 

and 4 are expressed form the same or from different sgRNAs. The 5’ nts for 

sgRNA(ORF3/4), sgRNA(ORF5) and sgRNA(ORF6) were determined to be G-9898, G-
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12185 and A-13800, respectively. It is believed that ORFs 7-12 are also translated via 

sgRNA similarly to other closteroviruses like BYV and CTV (He et al., 1997; Hilf et al., 

1995). Analysis of sequenced data from amplicons designed to determine the 5’ nts of 

these putative sgRNAs associated with ORFs 7-12 predicted the 5’ ends of four sgRNAs. 

ORFs 7, 8 and 9 are believed to be translated from their own putative sgRNAs (designated 

sgRNA(ORF7), sgRNA(ORF8) and sgRNA(ORF9)) with 5’ ends mapped at G-14815, A-

16273, and G-16754, while ORFs 10-12 are likely translated from the same sgRNA with 

the 5’ end of putative sgRNA(10-12) mapped at A-17265.  

The seven positive sense sgRNAs predicted by RLM-RACE are most likely 3’ co-terminal 

with purines at the 5’ ends. Similar to CTV, all the amplicons sequenced indicated that the 

sgRNAs were continuous with the genome with no common 5’ leader sequence as 

observed in the evolutionary related Nidoviruses (Karasev et al., 1997). In this study we 

were unable to determine if ORFs 3 and 4 and ORFs 10-12 are expressed from separated 

sgRNAs or from the same polysistronic sgRNAs. This is an interesting finding and 

warrants an in depth investigation. 

Bioinformatic analyses were unable to identify any conserved sequences or secondary 

structures upstream of the mapped 5’ ends, which might provide some information on the 

position, function or structure of any possible sg-promoters or transcription control 

elements. As more sequence data becomes available and bioinformatic databases are 

expanded and tools refined, re-evaluation of these sequences might be able to identify such 

elements.  

 

The close evolutionary relation of ampeloviruses and closteroviruses, allows us to draw 

from the research performed on CTV and apply it to GLRaV-3. Research on CTV has 

made great progress in elucidating its infection cycle and the role of sgRNAs in 

replication, despite having similar difficulties than with GLRaV-3. The construction of an 

infectious clone and its deletion mutants for CTV proved to be a valuable molecular tool to 

elucidate the viral replication mechanisms. The construction of a GLRaV-3 infections 

mini-replicon was initiated in an attempt to investigate the replication mechanisms of 

GLRaV-3 by evaluating the activity of the putative sg-promoters.  

The mini-replicon was constructed to contain the 5’ UTR, ORF1a, ORF1b and the 3’ UTR 

of GLRaV-3, isolate GP18, under the control of a duplicated CaMV 35S promoter and a 

hammerhead ribozyme. Sequencing of the GLRaV-3 mini-replicon revealed several 

nucleotide and amino acid differences when compared to the GP18 sequence, none 
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affecting the ORFs. Some of these differences were found to be conserved when compared 

to other GLRaV-3 sequences and in Chapter 5 several possible explanations for these 

changes are explored, but ultimately the effect on infectivity has to be determined 

experimentally.  

To evaluate the activity of the putative sg-promoter for sgRNA(ORF6) a GUS reporter 

GLRaV-3 mini-replicon construct under the control of the putative sg-promoter was made. 

Nicotiana bethamiana leaves were co-agroinfiltrated with a GUS construct and suppressor 

of silencing. It was expected that the sg-promoter present in the positive test construct will 

drive the expression of GUS in the infiltrated leaves, unfortunately the sg-promoter 

deletion mutant, used as the negative control, was also able to express GUS. This makes 

the GLRaV-3 mini-replicon unsuitable for use as a molecular tool to evaluate the activity 

of sg-promoters in its current state and requires several optimisation steps. Once such a 

tool has been optimised it will proof useful to study GLRaV-3 or possibly even the host, V. 

vinifera.  

 

This study expanded the knowledge base of GLRaV-3 through investigations into the viral 

genomic and subgenomic RNAs. Our understanding of the genome of GLRaV-3 was 

altered by the sequencing of a South African isolate that indicated, for the first time, that 

the 5’ UTR extended further than originally indicated. Apart from several references to the 

presence of sgRNAs, little research had been conducted on the sgRNA of GLRaV-3. Here 

we describe our efforts to extend our knowledge of these sgRNAs by mapping the 5’ nt of 

seven positive sense sgRNAs using RLM-RACE.  

 

In future studies, it would be interesting to investigate the role in viral replication of the 

large 5’ and intergenic UTRs found in GLRaV-3. Repair of the GLRaV-3 mini-replicon to 

a functional molecular tool and optimisation of transfections protocols would greatly assist 

these investigations. An in-depth study into the sgRNAs involved in the translation of 

ORFs 3 and 4, and ORFs 10 to 12 would be of interest. Further investigations on the 

possible silencing suppressor activity of ORFs 8, 9 or 10 are ongoing and if found to be 

more effective than GLRaV-2, p24 will be used in co-infiltration experiments. Advances in 

V. vinifera transfection will allow future experiments to be conducted not only in an 

experimental host but also in the natural host.  
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