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Abstract

Contributions to centralizers in matrix rings

M.S. Marais

Department of Mathematical Sciences (Division Mathematics)
Stellenbosch University

Private Bag X1, Matieland, 7602, South Africa
Dissertation: PhD (Mathematics)

December 2010

THE concept of a k-matrix in the full 2× 2 matrix ring M2(R/〈k〉), where R is an arbitrary unique

factorization domain (UFD) and k is an arbitrary nonzero nonunit in R, is introduced. We obtain

a concrete description of the centralizer of a k-matrix B̂ in M2(R/〈k〉) as the sum of two subrings S1

and S2 ofM2(R/〈k〉), where S1 is the image (under the natural epimorphism fromM2(R) toM2(R/〈k〉))
of the centralizer in M2(R) of a pre-image of B̂, and where the entries in S2 are intersections of certain

annihilators of elements arising from the entries of B̂. Furthermore, necessary and sufficient conditions

are given for when S1 ⊆ S2, for when S2 ⊆ S1 and for when S1 = S2. It turns out that if R is a principal

ideal domain (PID), then every matrix in M2(R/〈k〉) is a k-matrix for every k. However, this is not the

case in general if R is a UFD. Moreover, for every factor ring R/〈k〉 with zero divisors and every n > 3

there is a matrix for which the mentioned concrete description is not valid. Finally we provide a formula

for the number of elements of the centralizer of B̂ in case R is a UFD and R/〈k〉 is finite.
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Uittreksel

Bydraes tot sentraliseerders in matriksringe

M.S. Marais

Departement van Wiskundige Wetenskappe (Afdeling Wiskunde)
Universiteit Stellenbosch

Privaatsak X1, Matieland, 7602, Suid-Afrika
Proefskif: PhD (Wiskunde)

Desember 2010

DIE konsep van ’n k-matriks in die volledige 2× 2 matriksring M2(R/〈k〉), waar R ’n willekeurige

unieke faktoriseringsgebied (UFG) en k ’n willekeurige nie-nul nie-inverteerbare element in R

is, word bekendgestel. Ons verkry ’n konkrete beskrywing van die sentraliseerder van ’n k-matriks B̂

in M2(R/〈k〉) as die som van twee subringe S1 en S2 van M2(R/〈k〉), waar S1 die beeld (onder die

natuurlike epimorfisme van M2(R) na M2(R/〈k〉)) van die sentraliseerder in M2(R) van ’n trubeeld

van B̂ is, en die inskrywings van S2 die deursnede van sekere annihileerders van elemente afkomstig van

die inskrywings van B̂ is. Verder word nodige en voldoende voorwaardes gegee vir wanneer S1 ⊆ S2,

vir wanneer S2 ⊆ S1 en vir wanneer S1 = S2. Dit blyk dat as R ’n hoofideaalgebied (HIG) is, dan is elke

matriks in M2(R/〈k〉) ’n k-matriks vir elke k. Dit is egter nie in die algemeen waar indien R ’n UFG is

nie. Meer nog, vir elke faktorring R/〈k〉 met nuldelers en elke n > 3 is daar ’n matriks waarvoor die

bogenoemde konkrete beskrywing nie geldig is nie. Laastens word ’n formule vir die aantal elemente

van die sentraliseerder van B̂ verskaf, indien R ’n UFG en R/〈k〉 eindig is.
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CHAPTER

1
Introduction

It is security, certainty, truth, beauty, insight, structure, architecture. I see mathematics, the
part of human knowledge that I call mathematics, as one thing - one great, glorious thing.

— PAUL HALMOS

LET S1 be a subgroup of a group S. The centralizer of an element s ∈ S in S1 is the set

{c ∈ S1 | cs = sc} (1.1)

which we denote by CenS1(s). Note that CenS1(s) is a subgroup of S and that if S1 and S are rings,

then CenS1(s) is a subring of S1 (with identity if S1 has an identity). Regarding the work in this

dissertation, S1 and S will always be rings and s will always be an element of S1. The concept of

a centralizer is well-known and is used throughout the literature in ring theory. The results in [11]

and [18] are, for instance, beautiful examples of where the structure of the centralizer of a certain

element in a ring can be used to determine some information about the ring’s structure. (The results

in [18] were extended in [22].) Let us, for example, consider the following result in [18].

Theorem 1.1. ([18], p. 215, Theorem 3) Let R be a simple ring with unit such that for some ele-

ment a ∈ R, an is in the center of R. If CenR(a) satisfies a polynomial identity of degree m, then R

satisfies the standard polynomial identity of degree nm.

To illustrate the above result we consider M2(Q), the full 2× 2 matrix ring over the real quaternions Q.
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Chapter 1. Introduction

Now, since Q is a division ring, it follows that M2(Q) is simple ([17], p. 39, Corollary 2.28). Be-

cause, (i) B =

[
i 0

0 i

]
∈M2(Q) such that B2 is in the center of M2(Q); (ii) CenM2(Q)(B) = M2(C),

where C is the field of complex numbers; and (iii) according to the Amitsur-Levitzki TheoremM2(C) sat-

isfies the standard polynomial identity of degree 4 ([2], p .455, Theorem 1); it follows from Theorem 1.1

that M2(Q) satisfies the standard polynomial identity of degree 8.

The following result in [11] is another example of how the structure of the centralizer of an element in

a ring can be used to determine whether the ring has some property which, in this case, is whether the

ring itself is simple Artinian.

Theorem 1.2. ([18], p. 207-208) Let R be a ring with no nilpotent ideals and let a ∈ R such that an is

in the center of R. If CenR(a) is simple Artinian, then R is simple Artinian.

In this dissertation we will consider the centralizer of a matrix in Mn(R), where R is a ring. Note that

if R is a commutative ring with identity, then Mn(R) is a prime example of a noncommutative central

(i.e. the center of Mn(R) is isomorphic to R) ring. It is a very difficult question in general to find a

concrete description of the centralizer of an arbitrary matrix in Mn(R). Most progress in this regard

has been made with regard to the case when R is a field F. Let us discuss this case briefly.

First of all it is important to note that if F[x] is the polynomial ring in the variable x over a field F, and

if B ∈Mn(F), then

{f(B) | f(x) ∈ F[x]} ⊆ CenMn(F)(B).

(This statement in fact remains true if we replace F by any commutative ring.) Using the fact

that B ∈ Mn(F) is similar to a matrix D, called the rational canonical form of B, such that D is

the direct sum of the companion matrices of the invariant factors of B ([13], p. 360-361, Corol-

lary 4.7(i)); and that B only has one invariant factor if the minimum polynomial of B coincides with its

characteristic polynomial ([13], p. 356-357, Theorem 4.2(i); [13], p. 367, Theorem 5.2(i)); we have

the following concrete description of CenMn(F)(B) in such a case.

Theorem 1.3. ([23], p. 23, Theorem 5) If B is an n× n matrix over a field F, then

CenMn(F)(B) = {f(B) | f(x) ∈ F[x]}

if and only if the minimum polynomial of B coincides with the characteristic polynomial of B.

Note that, by the converse statement of Theorem 1.3, the above mentioned description is not valid for

any matrix of which the minimum polynomial does not coincide with its characteristic polynomial.
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Chapter 1. Introduction

Since we will be working with 2× 2 matrices in this dissertation and since the minimum polynomial

and characteristic polynomial of a nonscalar 2 × 2 matrix always coincide (Lemma 2.6), the above

theorem will play an important role in this dissertation.

Viewing Mn(F) as an algebra over F, the following well-known result (due to Frobenius) gives us some

information regarding the structure of CenMn(F)(B) for an arbitrary B ∈Mn(F). However, a concrete

description of CenMn(F)(B) for the cases when the minimum polynomial of B is not equal to the

characteristic polynomial of B is not yet known. Note that we denote the degree of a polynomial f(x)

by deg(f(x)).

Theorem 1.4. ([14], p. 111, Theorem 19; [21], p. 331, Introduction and Preliminary Results) Let

B ∈ Mn(F), and suppose that f1, . . . , fl ∈ F[x] are the invariant factors of B, where fi divides fi−1,

for i = 2, . . . , l. Then the dimension of CenMn(F)(B) is given by

l∑
i=1

(2i− 1)(deg fi).

Keeping in mind (i) that the dimension of CenMn(F)(B) over F is equal to the dimension of CenMn(F)(B)

over F, where F is the algebraic closure of F ([23], p. 26, Lemma 5); (ii) that every ma-

trix B ∈ Mn(F) ⊆ Mn(F) is similar to its Jordan canonical form J ∈ Mn(F), i.e. SBS−1 = J for

some S ∈Mn(F) ([13], p. 360, Corollary 4.7(iii)); (iii) that the dimension of the centralizer of similar

matrices over the same ring is the same; and (iv) that matrices are similar if and only if they have the

same invariant factors ([13], p. 361, Corollary 4.8(ii)); the above result can be obtained by proving

it for an arbitrary Jordan canonical form J ∈ Mn(F). This can in fact be done by finding a concrete

description of CenMn(F)(J) ([23], p. 25-28, Proposition 6, Lemma 4 and Theorem 6). If F = F then, of

course, CenMn(F)(B) = S−1CenMn(F)(J)S. Unfortunately F 6= F for every finite field F ([13], p. 267,

Exercise 8). A result, analogous to Theorem 1.4, in which a formula for the dimension of CenMn(Q)(B),

for any B ∈Mn(Q), is given, is proved in [21].

If F is the complex field C (in this case note that C = C) then a canonical basis for CenMn(C)(J) is

determined in [19] on p. 85-87. (This basis can be converted to a basis for CenMn(C)(B), using the fact

that B and its Jordan canonical form J are similar.) Furthermore it is shown that this basis is closed

under nonzero products in the ring Mn(C) ([19], p. 87, Lemma 4). It is also shown in [19] that the

Jordan canonical forms of two matrices A,B ∈Mn(C) have the same canonical block structure ([19],

p. 90, Definition 9) if and only if CenMn(C)(A) ∼= CenMn(C)(B) ([19], p. 91, Theorem 11). If F is the

field of real numbers R (in this case note that R = C) and the characteristic polynomial of B ∈Mn(R)

is not separable over R, then J ∈Mn(C) \Mn(R). A canonical basis for CenMn(R)(B) is found ([19],

p. 102, Theorem 24 and p. 104). Although this basis is not closed under nonzero products, a nonzero

5



Chapter 1. Introduction

product of elements of this basis is ±1 times another basis element.

Let S1 and S2 be subgroups of a group S and let s ∈ S. The set of all the elements in S1 that commute

with all the elements in CenS2(s) is called the centralizer in S1 of the centralizer in S2 of s and is

denoted by CenS1(CenS2(s)). Note that CenS1(CenS2(s)) is a subgroup of S1 and that if S1, S2 and S

are rings, then CenS1(CenS2(s)) is a subring of S1 (with identity if S1 has an identity). Furthermore,

it follows from the fact that s ∈ CenS(s), that CenS(CenS(s)) can also be described as the center of

CenS(s). For an arbitrary B ∈Mn(F), a concrete description of CenMn(F)(CenMn(F)(B)) is known.

Theorem 1.5. ([23], p. 33, Theorem 7) Let B ∈Mn(F), then

CenMn(F)(CenMn(F)(B)) = {f(B) | f(x) ∈ F[x]}. (1.2)

In order to prove Theorem 1.5 note that, by definition, B commutes with every element in its centralizer.

Therefore it follows that we have the inclusion ⊇ in (1.2). Since the dimension of {f(B) | f(x) ∈ F[x]} is

equal to the degree of the minimum polynomial of B, it is only necessary to show that the dimension

of CenMn(F)(CenMn(F)(J)) is equal to the degree of the minimum polynomial of its Jordan canonical

form J (which coincides with the minimum polynomial of B) to prove Theorem 1.5. This can again be

done by finding a concrete description of CenMn(F)(CenMn(F)(J)).

Viewing Theorem 1.5 from a different perspective, considering CenMn(F)(B), we can also state this

result as follows ([24], p. 106, Theorem 2):

Any matrix in Mn(F) which commutes, not only with B, but also with every matrix which commutes

with B, is a polynomial in B.

In [12] a concrete description is also found of

CenMn(F)(CenGL(n,F)(B)) and of CenGL(n,F)(CenGL(n,F)(B)),

where B ∈Mn(F) and GL(n, F) denotes the group of all n× n invertible matrices over the field F.

Although some other results regarding the centralizer of a matrix in a matrix ring over a ring are

proved, the main goal of this dissertation is to find a concrete description of the centralizer of a so-cal-

led k-matrix in M2(R/〈k〉), where R is a unique factorization domain (UFD) and 〈k〉 denotes the

principal ideal generated by an arbitrary nonzero nonunit k in R.
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Chapter 1. Introduction

In Sections 2.2 and 2.3 of Chapter 2 we apply Theorem 1.3 to 2 × 2 matrices in order to obtain

an explicit description of the centralizer of a 2 × 2 matrix over a field or over an integral domain.

Section 2.5 contains other preliminary results concerning the centralizer of an n×n matrix that will be

used in the subsequent chapters, including Proposition 2.33 which may be considered as the inspiration

behind this dissertation. In this proposition we show that the centralizer of an n× n matrix B̂ over a

homomorphic image S of a commutative ring R contains the sum of two subrings S1 and S2 of Mn(S),

where S1 is the image of the centralizer in Mn(R) of a pre-image of B̂, and where the entries in S2

are intersections of certain annihilators of elements arising from the entries of B̂. In addition we find

a concrete description of the centralizer of a matrix unit in Section 2.1 and discuss some symmetric

properties of the centralizer of a matrix in a matrix ring over a ring in Section 2.4.

We introduce the concepts of k-invertibility in a factor ring R/〈k〉 of a UFD R in Section 3.1 and of a k-

matrix in M2(R/〈k〉) in Section 3.2 of Chapter 3. We show in Corollaries 3.7 and 3.18 that if R is a prin-

cipal ideal domain (PID), then every element in R/〈k〉 is k-invertible and every matrix in M2(R/〈k〉) is

a k-matrix. Examples 3.13 and 3.19(b) show that this is not true for UFD’s in general. A characterization

of the k-invertible elements in R/〈k〉 is given in Corollary 3.14 in case k is a power of a prime and R is

an arbitrary UFD. We conclude this chapter with Section 3.3 in which we consider the case when R is a

UFD and R/〈k〉 is finite. Analogous to the case when R is a PID, we prove in Corollaries 3.22 and 3.23

that if R is a UFD and R/〈k〉 is finite, then every element in R/〈k〉 is k-invertible and every matrix

in M2(R/〈k〉) is a k-matrix. In Remark 3.26 we also discuss the seemingly open problem, arising from

these results, whether R is a PID if R is a UFD and R/〈k〉 is finite.

Chapter 4, Section 4.1, contains the main result of the dissertation, namely Theorem 4.5, which

provides a concrete description of the centralizer of a k-matrix in M2(R/〈k〉) as the sum of the above

mentioned two subrings, where R is a UFD and k is an arbitrary nonzero nonunit in R. In Section 4.2

we give necessary and sufficient conditions for when S1 ⊆ S2, for when S2 ⊆ S1 and for when S1 = S2.

Since every 2 × 2 matrix over a factor ring of a PID is a k-matrix, Theorem 4.5 applies to all 2 × 2

matrices over factor rings of PID’s. In Example 4.9 we exhibit a UFD R, which is not a PID, a nonzero

nonunit k ∈ R and a matrix in M2(R/〈k〉), which is not a k-matrix, for which Theorem 4.5 does not

hold. In Example 4.10 we show that if R is a UFD and k ∈ R is such that R/〈k〉 is not an integral

domain, then for every n > 3 there is a matrix B in Mn(R) for which we have proper containment in

Proposition 2.33.

The problem of enumerating the number of matrices with given characteristics over a finite ring has

been treated extensively in the literature. Formulas have been found, for example, for the number of

matrices with a given characteristic polynomial [20]; the number of matrices over a finite field that

are cyclic [3] or symmetric [6]; and the number of matrices over the ring of integers Z modulo m,

7



Chapter 1. Introduction

Zm, that are nilpotent [4]. By using the results in [5], some of the above mentioned results, where

the matrices over a finite field that satisfy some property are enumerated by rank, can be extended to

matrices over certain finite rings that satisfy the property under consideration.

A question arising from the title of this dissertation and the above mentioned results is whether it is

possible to enumerate the number of matrices in CenMn(R)(B), denoted by |CenMn(R)(B)|, when R

is a finite commutative ring and B ∈ Mn(R). Using the fact that if R is a finite field F, then the

dimension of CenMn(F)(B) is known by Theorem 1.4, the answer is straightforward in such a case. For

example, if n = 2, then the number of elements in CenMn(F)(B) is |F|2, if B is a nonscalar matrix, and

it is |F|4 if B is a scalar matrix. If n = 2 we can even easily determine the number of matrices with

the same centralizer. Taking into account that the minimum polynomial always coincides with the

characteristic polynomial of a nonscalar matrix B ∈M2(F) (Lemma 2.6) and we therefore can apply

Theorem 1.3 arriving at Corollary 2.7, it follows that CenM2(F)(A) = CenM2(F)(B) for any nonscalar

matrix A ∈ M2(F) if and only if A ∈ CenM2(F)(B). Hence the number of matrices with the same

centralizer as a matrix B ∈M2(F) is |F| (the number of scalar matrices in M2(F)), if B is a scalar matrix,

and |F|2 − |F| (the number of matrices in CenM2(F)(B) minus the number of scalar matrices in M2(F)),

if B is a nonscalar matrix.

In Chapter 5 we define an equivalence relation on M2(R/〈k〉) and we use this relation to obtain a

formula for the number of matrices in CenM2(R/〈k〉)(B̂) when R is a UFD and R/〈k〉 is finite, k is a

nonzero nonunit element in R and B̂ ∈M2(R/〈k〉).
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CHAPTER

2
Preliminary Results

The more I practice the luckier I get.

— GARY PLAYER

THE goals of this chapter are manifold. Firstly we easily find for any commutative ring R a con-

crete description of the centralizer of a scalar multiple of a matrix unit in Mn(R) (Lemma 2.1,

Section 2.1). Secondly we find a concrete description for the centralizer of an arbitrary 2× 2 matrix

in M2(R) when R is a field (Corollaries 2.9 and 2.10, Section 2.2) or when R is an integral domain

(Corollary 2.12, Section 2.3). This chapter also contains a discussion of some symmetric properties of

the centralizer of an n× n matrix over a not necessarily commutative ring (Section 2.4), as well as

preliminary results that will be used repeatedly throughout this dissertation, in particular, in Chapter 4

(Section 2.5). We conclude with Proposition 2.33 (Section 2.5), which may be considered as the

inspiration behind Chapter 4, and a discussion thereof.

2.1 The centralizer of a matrix unit in Mn(R), R a ring

Throughout this dissertation we denote the matrix unit with 1 in position (i, j) and zeroes elsewhere

by Eij, and we use the notation [
B C

D E

]

9



Chapter 2. Preliminary Results

to denote the set {[
b c

d e

] ∣∣∣∣∣ b ∈ B, c ∈ C,d ∈ D, e ∈ E

}
,

where B, C, D and E are subsets of a ring R.

The set of all elements in a non-commutative ring R that annihilate a specific element b in R from the

left (right) , i.e. the set {a ∈ R| ab = 0} ( {a ∈ R| ba = 0} ), is called the left (right) annihilator of b in R.

If s ∈ R is in the left and right annihilator of b ∈ R then s ∈ CenR(b). If R is a commutative ring then

the left and right annihilator of an element obviously coincide. In such a case the set of all elements

in R that annihilate a specific element b ∈ R is called the annihilator of b in R and we denote it by

annR(b) ([13], p. 417). If there is no ambiguity, we will sometimes simply write ann(b).

Lemma 2.1. Let R be a commutative ring and let b ∈ R. Then CenMn(R)(bErt) =

{
a(Err + Ett), a ∈ R, if r 6= t

aErr, a ∈ R, if r = t

column r
↓

+

row t→


R

ann(b)
...

R

ann(b) ann(b) · · · ann(b) · · · ann(b)

R

...

ann(b)
R


.

Proof.

Y = [yij] ∈ CenMn(R)(bErt)

⇔ [yij]bErt = bErt[yij]

⇔

columt t
↓

by1r

by2r
...

© byrr ©
...

bynr



=

row r→



©

byt1 · · · bytt · · · bytn

©


⇔ byir = 0, for all i 6= r, and byti = 0, for all i 6= t, and b(yrr − ytt) = 0

⇔ yir ∈ ann(b), for all i 6= r, and yti ∈ ann(b), for all i 6= t, and yrr − ytt ∈ ann(b)

⇔ [yij] ∈

{
a(Err + Ett), a ∈ R, if r 6= t

aErr, a ∈ R, if r = t
+

10



Chapter 2. Preliminary Results

column r
↓

row t→


R

ann(b)
...

R

ann(b) ann(b) · · · ann(b) · · · ann(b)

R

...

ann(b)
R


.

Example 2.2. Since ann(3̂) = 〈4̂〉 in Z12 we have by Lemma 2.1 that

CenM4(Z12)(3̂E34) =




0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ 0̂

0̂ 0̂ â 0̂

0̂ 0̂ 0̂ â


∣∣∣∣∣∣∣∣∣∣
â ∈ Z12

+


Z12 Z12 〈4̂〉 Z12

Z12 Z12 〈4̂〉 Z12

Z12 Z12 〈4̂〉 Z12

〈4̂〉 〈4̂〉 〈4̂〉 〈4̂〉

 .

2.2 The centralizer of a matrix in M2(R), R a field

The next well-known result will be used in Corollary 2.4.

Theorem 2.3. (THE DIVISION ALGORITHM) ([13], p. 158, Theorem 6.2) If f and g are polynomials

over a field F and g 6= 0, then there exist unique polynomials q and r over F such that f = qg+ r and

either r = 0 or deg r < degg.

By using Theorem 1.3 and The Division Algorithm (Theorem 2.3) we arrive at the following result

for the case when the minimum polynomial coincide characteristic polynomial of an n× n-matrix.

Corollary 2.4. If B is a n× n matrix over a field F of which the minimum polynomial coincide with

the characteristic polynomial, then

CenM2(F)(B) = {an−1B
n−1 + · · ·+ a1B+ a0I | ai ∈ F}.

Proof. Suppose B is an n × n-matrix of which the minimum and characteristic polynomial coincide.

Then it follows from Theorem 1.3 that

CenMn(F)(B) = {f(B) | f(t) is a polynomial over F}.
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Thus if we can prove that

{f(B) | f(t) is a polynomial over F} = {an−1B
n−1 + · · ·+ a1B+ a0I | ai ∈ F}

then we are finished. Now, suppose that f(x) ∈ F[x]. Since deg(m(x)) = n, where m(x) is the minimum

polynomial of B, it follows from The Division Algorithm (Theorem 2.3) that

f(x) = h(x)m(x) + r(x),

where r(x) and h(x) are polynomials over F, and deg(r(x)) 6 n− 1. Thus

f(B) = m(B)h(B)︸ ︷︷ ︸
=0

+r(B) = r(B)

and therefore we are finished.

The following result is well-known.

Theorem 2.5. (THE CAYLEY-HAMILTON THEOREM) ([13], p. 367, Theorem 5.2(ii)) An n× n matrix

over a field satisfies its characteristic polynomial.

As a result of the next lemma, Corollary 2.4 is applicable to any 2× 2 nonscalar matrix.

Lemma 2.6. The characteristic- and minimum polynomial of a nonscalar 2 × 2 matrix over a field

coincide.

Proof. Let B ∈ M2(F) and let q(x) be the characteristic polynomial of B. Since a characteristic

polynomial is monic and, according to the Cayley-Hamilton Theorem (Theorem 2.5), q(B) = 0, we

only have to prove that deg(q(x)) = deg(m(x)), where m(x) is the minimum polynomial of B. Given

that B is a 2 × 2 matrix, we have that deg(q(x)) = 2. Since B is a nonscalar matrix, B 6= tI for

all t ∈ F which implies that sB + tI 6= 0, for all s, t ∈ F. Therefore deg(m(x)) > 2. Consequently

deg(q(x)) = deg(m(x)).

Since CenMn(F)(B) = Mn(F) for any n× n scalar matrix B and any field F, using Corollary 2.4 and

Lemma 2.6, we have the following result for the 2× 2 case.
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Corollary 2.7. If B is a 2× 2 matrix over a field F, then

CenM2(F)(B) =

{
{aB+ bI | a,b ∈ F} if B is a nonscalar matrix

M2(F) if B is a scalar matrix.

Using the above result we can determine the centralizer of any 2× 2 matrix over a field F in M2(F).

Example 2.8. Let F be the field of rational numbers Q and let B =

[
2 3

4 8

]
. By Corollary 2.7

CenM2(Q)(B) =

{
a

[
2 3

4 8

]
+ b

[
1 0

0 1

]∣∣∣∣∣a,b ∈ Q

}
=

{[
2a+ b 3a

4a 8a+ b

]∣∣∣∣∣a,b ∈ Q

}
.

Corollary 2.7 can easily be written in the forms in Corollaries 2.9 and 2.10. We need both these

forms in Chapter 4.

We will later in Corollary 2.17 prove that, for any B ∈Mn(F), CenMn(F)(B) = (CenMn(F)(B
T ))T .

Knowing this, considering Corollary 2.9, we can for example, if the centralizer of a matrix in case (iv)

is known, determine the centralizer of a matrix B in case (iii) by simply using (CenMn(F)(B
T ))T as a

formula.

Corollary 2.9. Let B =

[
e f

g h

]
∈M2(F), F a field. Then

CenM2(F)(B) =



(i)M2(F), if e = h, f = 0 and g = 0 (i.e. B is a scalar matrix)

(ii)

{[
a 0

0 b

]∣∣∣∣∣a,b ∈ F

}
, if e 6= h, f = 0 and g = 0

(iii)

{[
a 0

b a− g−1(e− h)b

]∣∣∣∣∣a,b ∈ F

}
, if f = 0, g 6= 0

(iv)

{[
a b

f−1gb a− f−1(e− h)b

]∣∣∣∣∣a,b ∈ F

}
, if f 6= 0.
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Proof. Since the proofs of (i)–(iv) are similar, we only prove (iv).

(iv) Assume f 6= 0. Then[
a b

c d

]
∈ CenM2(F)

([
e f

g h

])
⇔

[
a b

c d

][
e f

g h

]
=

[
e f

g h

][
a b

c d

]
. (2.1)

By simplifying (2.1) the equation in position (1, 1) is

ae+ bg = ea+ fc⇔ bg = fc⇔ c = f−1gb (2.2)

and the equation in position (1, 2) is

af+ bh = eb+ fd⇔ d = a− f−1(e− h)b. (2.3)

Thus it follows from (2.2) and (2.3) that

CenM2(F)(B) ⊆

{[
a b

f−1gb a− f−1(e− h)b

]∣∣∣∣∣a,b ∈ F

}
.

Since, direct verification shows that for arbitrary a,b ∈ F,[
a b

f−1gb a− f−1(e− h)b

][
e f

g h

]
=

[
e f

g h

][
a b

f−1gb a− f−1(e− h)b

]

we conclude that

CenM2(F)(B) =

{[
a b

f−1gb a− f−1(e− h)b

]∣∣∣∣∣a,b ∈ F

}
.

We now give an alternative proof of Corollary 2.9. In this proof we explicitly show that Corollary 2.9

is equivalent to Corollary 2.7.

Alternative proof of Corollary 2.9. Again, since the proofs of (i)–(iv) are similar, we only prove (iv).
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(iv) Assume f 6= 0. Then B is a nonscalar matrix, and so by Corollary 2.7,

CenM2(F)(B) =

{
s

[
e f

g h

]
+ t

[
1 0

0 1

]∣∣∣∣∣ s, t ∈ F
}

=

{[
se+ t sf

sg sh+ t

]∣∣∣∣∣ s, t ∈ F
}

. (2.4)

Let

[
se+ t sf

sg sh+ t

]
be an arbitrary matrix in (2.4). Now, put a := se+ t and b := sf. Then

sh+ t = sh+ se− se+ t = −s(e− h) + a = −f−1b(e− h) + a and sg = sff−1g = f−1gb.

Hence,

[
se+ t sf

sg sh+ t

]
=

[
a b

f−1gb a− f−1(e− h)b

]
and we conclude that

{[
se+ t sf

sg sh+ t

]∣∣∣∣∣ s, t ∈ F
}
⊆

{[
a b

f−1gb a− f−1(e− h)b

]∣∣∣∣∣a,b ∈ F

}
. (2.5)

Using direct verification, it follows that{[
a b

f−1gb a− f−1(e− h)b

]∣∣∣∣∣a,b ∈ F

}
⊆ CenM2(R)(B). (2.6)

Thus the result follows from (2.4), (2.5) and (2.6). �

Corollary 2.10. Let B =

[
e f

g h

]
∈M2(F), F a field. Then

CenM2(F)(B) =



(i)

{[
a (e− h)−1f(a− b)

(e− h)−1g(a− b) b

]∣∣∣∣∣a,b ∈ F

}
, if e 6= h

(ii) M2(F), if e = h, f = 0 and g = 0 (i.e. B is a scalar matrix)

(iii)

{[
a b

0 a

]∣∣∣∣∣a,b ∈ F

}
, if e = h, f 6= 0 and g = 0

(iv)

{[
a 0

b a

]∣∣∣∣∣a,b ∈ F

}
, if e = h, f = 0 and g 6= 0

(v)

{[
a b

f−1gb a

]∣∣∣∣∣a,b ∈ F

}
, if e = h, f 6= 0 and g 6= 0.
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Proof. Since the proofs of (i)–(v) are again similar, we only prove (i).

(i) Assume e 6= h. Then[
a b

c d

]
∈ CenM2(F)

([
e f

g h

])
⇔

[
a b

c d

][
e f

g h

]
=

[
e f

g h

][
a b

c d

]
. (2.7)

By simplifying (2.7) the equation in position (1,2) is

af+ bh = eb+ fd⇔ b = (e− h)−1f(a− d) (2.8)

and the equation in position (2,1) is

ce+ dg = ga+ hc⇔ c = (e− h)−1g(a− d). (2.9)

Thus it follows from (2.8) and (2.9) that

CenM2(F)(B) ⊆

{[
a (e− h)−1f(a− d)

(e− h)−1g(a− d) d

]∣∣∣∣∣a,d ∈ F

}
.

Since direct verification shows for an arbitrary a,d ∈ F that[
a (e− h)−1f(a− d)

(e− h)−1g(a− d) d

][
e f

g h

]

=

[
e f

g h

][
a (e− h)−1f(a− d)

(e− h)−1g(a− d) d

]
,

the result follows.

There is an alternative proof of the above corollary similar to the alternative proof of Corollary 2.9.

2.3 The centralizer of a matrix in M2(R), R an integral domain

The following trivial result will be used repeatedly throughout this dissertation.

Lemma 2.11. Let S be a subring of a ring T and let s ∈ S. Then

CenS(s) = S ∩ CenT (s).
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Proof. t ∈ CenS(s)⇔ t ∈ S ⊆ T and ts = st⇔ t ∈ S ∩ CenT (s).

Let f1, f2, . . . , fm be arbitrary elements of a UFD. By writing gcd(f1, f2, . . . , fm), we mean an

arbitrary greatest common divisor of f1, . . . , fm.

Using Corollary 2.9 and Lemma 2.11, we have the following corollary from which we can determine

the centralizer of a matrix in M2(R), where R is an integral domain.

Corollary 2.12. Let B =

[
e f

g h

]
∈M2(R), R an integral domain. Then CenM2(R)(B)

=


(i)M2(R), if e = h, f = 0 and g = 0 (i.e. B is a scalar matrix)

(ii)

{[
a fbd−1

gbd−1 a− (e− h)bd−1

]∣∣∣∣∣a,b ∈ R

}
,

if at least one of e− h, f

and g is nonzero,

where d−1 is the inverse of d = gcd(e− h, f,g) in the quotient field of R.

Proof. Let F be the quotient field of R.

(i) The result follows from Corollary 2.9(i) and Lemma 2.11.

(ii) We distinguish between the following cases:

(a) f = 0, g = 0 and e 6= h;

(b) f = 0 and g 6= 0;

(c) f 6= 0.

(a) In this case d = gcd(e−h, 0, 0) = e−h. Therefore it follows from Corollary 2.9(ii) and Lemma 2.11

that

CenM2(R)(B) =

{[
a 0

0 c

]∣∣∣∣∣a, c ∈ F

}
∩M2(R)
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=

{[
a 0

0 a− b

]∣∣∣∣∣a,b ∈ F

}
∩M2(R)

=

{[
a 0

0 a− b

]∣∣∣∣∣a,b ∈ R

}

=

{[
a 0b(e− h)−1

0b(e− h)−1 a− (e− h)(e− h)−1b

]∣∣∣∣∣a,b ∈ R

}

=

{[
a fbd−1

gbd−1 a− (e− h)bd−1

]∣∣∣∣∣a,b ∈ R

}
.

(b) It follows from Corollary 2.9(iii) and Lemma 2.11 that

CenM2(R)(B) =

{[
a 0

c a− g−1(e− h)c

]∣∣∣∣∣a, c ∈ F

}
∩M2(R) (2.10)

=

{[
a 0

c a− g−1(e− h)c

]∣∣∣∣∣a, c ∈ R

}
∩M2(R). (2.11)

Let A be an arbitrary element of CenM2(R)(B). It follows from (2.11) that

A =

[
a 0

c a− g−1(e− h)c

]
∈M2(R) (2.12)

for some a, c ∈ R. We now show that

A =

[
a 0

gbd−1 a− (e− h)bd−1

]
(2.13)

for some b ∈ R. Since

gcd(e− h,g) = gcd(e− h, 0,g) = gcd(e− h, f,g) := d, (2.14)

it follows that

g = dg ′ and e− h = dl (2.15)

for some g ′, l ∈ R such that gcd(g ′, l) = 1. Because c(e− h)g−1 ∈ R, by (2.12), it follows from (2.15)

that

c(e− h)g−1 = cdl(dg ′)−1 = cl(g ′)−1 ∈ R. (2.16)

18



Chapter 2. Preliminary Results

Knowing that gcd(g ′, l) = 1 it follows from (2.16) that g ′|c, which implies that

c = bg ′ (2.17)

for some b ∈ R. Hence, by using (2.16) and (2.17),

c(e− h)g−1 = cl(g ′)−1 = bg ′l(g ′)−1 = bl = b(e− h)d−1 ∈ R. (2.18)

Therefore, it follows from (2.15), (2.17) and (2.18) that

A =

[
a 0

bg ′ a− b(e− h)d−1

]
=

[
a 0

bgd−1 a− b(e− h)d−1

]
∈M2(R). (2.19)

Thus, by (2.10) and (2.19),

CenM2(R)(B) ⊆

{[
a 0

bgd−1 a− b(e− h)d−1

]∣∣∣∣∣a,b ∈ R

}

=

{[
a 0

bgd−1 a− (e− h)g−1(bgd−1)

]∣∣∣∣∣a,b ∈ R

}

⊆

{[
a 0

c a− (e− h)g−1c

]∣∣∣∣∣a, c ∈ F

}
∩M2(R)

= CenM2(R)(B).

Therefore, we conclude that

CenM2(R)(B) =

{[
a 0

gbd−1 a− (e− h)bd−1

]∣∣∣∣∣a,b ∈ R

}

=

{[
a fbd−1

gbd−1 a− (e− h)bd−1

]∣∣∣∣∣a,b ∈ R

}
.

(c) It follows from Corollary 2.9(iv) and Lemma 2.11 that

CenM2(R)(B) =

{[
a b

f−1gb a− f−1(e− h)b

]∣∣∣∣∣a,b ∈ F

}
∩M2(R)
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=

{[
a b

f−1gb a− f−1(e− h)b

]∣∣∣∣∣a,b ∈ R

}
∩M2(R). (2.20)

Let A be an arbitrary element of CenM2(R)(B). Then it follows from (2.20) that

A =

[
a b

gbf−1 a− (e− h)bf−1

]
∈M2(R) (2.21)

for some a,b ∈ R. We now show that

A =

[
a fcd−1

gcd−1 a− (e− h)cd−1

]

for some c ∈ R. Now, let

d1 := gcd(f,g). (2.22)

Then

f = d1f
′ and g = d1g

′ (2.23)

for some f ′,g ′ ∈ R such that gcd(f ′,g ′) = 1. Since, by (2.21) and (2.23),

gbf−1 = d1g
′b(d1f

′)−1 = g ′b(f ′)−1 ∈ R (2.24)

and gcd(f ′,g ′) = 1, it follows that f ′|b. Thus

b = f ′b ′ (2.25)

for some b ′ ∈ R. Hence, it follows from (2.24) and (2.25) that

gbf−1 = g ′b(f ′)−1 = g ′b ′f ′(f ′)−1 = g ′b ′. (2.26)

Furthermore, it follows from (2.23) and (2.25) that

(e− h)bf−1 = (e− h)f ′b ′(d1f
′)−1 = (e− h)b ′d−1

1 (2.27)

and so, from (2.25), (2.26) and (2.27) that

A =

[
a b

gbf−1 a− (e− h)bf−1

]
=

[
a f ′b ′

g ′b ′ a− (e− h)b ′d−1
1

]
∈M2(R). (2.28)
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Since gcd(d1, e− h) = gcd(gcd(f,g), e− h) = gcd(f,g, e− h) := d, it follows that

d1 = d ′1d and (e− h) = ld (2.29)

for some d ′1, l ∈ R such that gcd(d ′1, l) = 1. Since, by (2.28) and (2.29),

(e− h)b ′d−1
1 = ldb ′(d ′1d)

−1 = lb ′(d ′1)
−1 ∈ R (2.30)

and gcd(d ′1, l) = 1, it follows that d ′1|b
′. Therefore

b ′ = cd ′1 (2.31)

for some c ∈ R. Thus, by (2.30) and (2.31),

(e− h)b ′d−1
1 = lb ′(d ′1)

−1 = lcd ′1(d
′
1)

−1 = lc. (2.32)

Hence it follows from (2.28), (2.31) and (2.32) that

A =

[
a f ′d ′1c

g ′d ′1c a− lc

]

so that it follows from (2.23) and (2.29) that

A =

[
a fd1

−1d1d
−1c

gd1
−1d1d

−1c a− (e− h)d−1c

]
=

[
a fcd−1

gcd−1 a− (e− h)cd−1

]
.

Thus, it follows from (2.20) that

CenM2(R)(B) ⊆

{[
a fcd−1

gcd−1 a− (e− h)cd−1

]∣∣∣∣∣a, c ∈ R

}

=

{[
a fcd−1

gf−1
(
fcd−1

)
a− (e− h)f−1

(
fcd−1

) ]∣∣∣∣∣a, c ∈ R

}

⊆

{[
a b

gf−1b a− (e− h)f−1b

]∣∣∣∣∣a,b ∈ R

}
∩M2(R)

= CenM2(R)(B).

Hence we conclude that

CenM2(R)(B) =

{[
a fbd−1

gbd−1 a− (e− h)bd−1

]∣∣∣∣∣a,b ∈ R

}
.
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Example 2.13. Let R be the integral domain Z and let B =

[
2 3

6 8

]
. It follows from Corollary 2.12

that

CenM2(Z)(B) =

{[
a 3

3b
6
3b a+ 6

3b

]∣∣∣∣∣a,b ∈ Z

}
=

{[
a b

2b a+ 2b

]∣∣∣∣∣a,b ∈ Z

}
.
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2.4 Symmetric properties of the centralizer of a matrix in Mn(R), R a

ring

For a set C and a function α with domain C we denote the set {α(c) | c ∈ C} by α(C).

Lemma 2.14. Let R and S be (not necessarily commutative) rings and let α : R→ S be an isomorphism

or anti-isomorphism. Then

CenS(α(r)) = α(CenR(r)).

Proof. Suppose α is an anti-isomorphism and t ∈ CenR(r). Then

α(r)α(t) = α(tr) = α(rt) = α(t)α(r).

Hence α(t) ∈ CenS(α(r)). Therefore

α(CenR(r)) ⊆ CenS(α(r)).

Let α−1 : S→ R be the inverse map of α. Then, since

α−1(α(r) + α(s)) = α−1(α(r+ s)) = r+ s = α−1(α(r)) + α−1(α(s))

and

α−1(α(r)α(s)) = α−1(α(sr)) = sr = α−1(α(s))α−1(α(r)),

we have that α−1 also is an anti-isomorphism. Hence it follows that

CenS(α(r)) = α(α−1(CenS(α(r)))) ⊆ α(CenR(α−1(α(r)))) = α(CenR(r)).

The result for the case when α is an isomorphism is similar.

We first discuss some symmetric properties of the centralizer of a matrix around the main diagonal.

We will use the concept of an opposite ring.

Definition 2.15. ([13], p. 122, Exercise 17(a)) The opposite ring, denoted by Rop, of a ring R is defined

as follows. The underlying set of Rop is precisely the underlying set of R, and addition in Rop coincides

with addition in R. Multiplication in Rop, denoted by ◦, is given by a ◦ b = ba, where ba is the product

in R.
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Let β : Mn(R) → Mn(Rop) be the map defined by taking the transpose of a matrix in Mn(R).

The matrix β(B) is customarily denoted by BT . If B is a set of matrices over R, then we denote the

set {BT | B ∈ B} by BT and we call the set BT the transpose of B.

Using the fact that the map β is an anti-isomorphism ([13], p. 331, part of the proof of Theorem 1.4),

the following result follows directly from Lemma 2.14.

Corollary 2.16. Let B ∈Mn(R), where R is a ring. Then

CenMn(Rop)(B
T ) = (CenMn(R)(B))T .

Taking into account that if R is a commutative ring, then Rop = R, we have the following result.

Corollary 2.17. Let B ∈Mn(R), where R is a commutative ring. Then

CenMn(R)(B
T ) = (CenMn(R)(B))T .

In the next example we will see that Corollary 2.17 is not necessarily applicable if we replace R

with a noncommutative ring.

Example 2.18. Let Q be the noncommutative ring of quaternions. Now, let

B =

 0 0 i

j 0 0

0 k 0

 ∈M3(Q).

Then direct verification shows that

A =

 0 −1 0

0 0 i

k 0 0

 ∈ CenM3(Q)(B),

but that

AT 6∈ CenM3(Q)(B
T ).

Furthermore, direct verification also shows that

AT ∈ CenM3(Qop)(B
T ),

as is expected from Corollary 2.16.
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In the next example we illustrate Corollary 2.17.

Example 2.19. Let R = Z and let B =

[
2 3

6 8

]
. It follows from Corollary 2.12(ii), using Example 2.13,

that

CenM2(Z)(B
T ) =

{[
a 6

3b
3
3b a+ 6

3b

]∣∣∣∣∣a,b ∈ Z

}
=

{[
a 2b

b a+ 2b

]∣∣∣∣∣a,b ∈ Z

}

=

{[
a b

2b a+ 2b

]∣∣∣∣∣a,b ∈ Z

}T
=
(
CenM2(Z)(B)

)T ,

as is expected from Corollary 2.16.

According to the next corollary, the centralizer of a symmetric matrix over a commutative ring

has the symmetric property that the transpose of each matrix which is in its centralizer, is again in its

centralizer.

Corollary 2.20. Let B ∈Mn(R), where R is a commutative ring. If B = BT , then

CenMn(R)(B) = (CenMn(R)(B))T .

Proof. It follows from Corollary 2.17 that CenMn(R)(B) = CenMn(R)(B
T ) = (CenMn(R)(B))T .

We now discuss some symmetric properties of the centralizer of a matrix around the main skew-

diagonal. First we have to define the following new concepts.

Definition 2.21. Let b = [bij] ∈Mn(R), where R is a ring.

We denote the matrix which is formed by rotating the entries of B around the horizontal axis, in other

words by mapping the entry in position (i, j) to position (n+ 1 − i, j), by BH.

The matrix which is formed by rotating the entries of B around the vertical axis, hence by mapping the

entry in position (i, j) to position (i,n+ 1 − j), is denoted by BV .

Lastly, we call the matrix which is formed by rotating the entries of B around the main skew-diagonal,

which is the matrix formed by mapping the entry in position (i, j) to position (n + 1 − j,n + 1 − i),

the s-transpose of B. We denote this matrix by BT
′
. If B = BT

′
then we call B s-symmetric.
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Similarly to the transpose of a set of matrices B, we denote the set {BT
′
| B ∈ B} by BT

′
and we

call BT
′
the s-transpose of B.

Remark 2.22. Note that because the transpose of a matrix B is formed by mapping position (i, j) to

position (j, i) it follows from the above definitions that BHVT = BT
′
.

Lemma 2.23. Let B ∈ Mn(R), where R is a commutative ring. Then the map γ : Mn(R) → Mn(R)

given by γ(B) = BHV is an isomorphism.

Proof. Let

B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
...

bn1 bn2 · · · bnn

 and A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

 .

Then

BHV =


bnn bn,n−1 · · · bn1

bn−1,n bn−1,n−1 · · · bn−1,1
...

...
...

b1n b1,n−1 · · · b11

 and AHV =


ann an,n−1 · · · an1

an−1,n an−1,n−1 · · · an−1,1
...

...
...

a1n a1,n−1 · · · a11

 .

Since,

BHV +AHV =


bnn + ann bn,n−1 + an,n−1 · · · bn1 + an1

bn−1,n + an−1,n bn−1,n−1 + an−1,n−1 · · · bn−1,1 + an−1,1
...

...
...

b1n + a1n b1,n−1 + a1,n−1 · · · b11 + a11

 = (B+A)HV

it follows that γ preserves addition.

We now show that multiplication is also preserved. Without the loss of generality let us consider

position (n + 1 − i,n + 1 − j) of BHVAHV . The entry in this position is equal to the dot product of

row n+ 1 − i of BHV and column n+ 1 − j of AHV which is equal to

binanj + bi,n−1an−1,j + · · ·+ bi1a1j = bi1a1j + · · ·+ bi,n−1an−1,j + binanj. (2.33)

But (2.33) is the dot product of row i of B and column j of A which is the entry of position (i, j) of BA.

Because the entry of position (i, j) of BA is equal to the entry of position (n+1− i,n+1− j) of (BA)HV ,

we conclude that BHVAHV = (BA)HV . Therefore γ preserves multiplication.
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Now, suppose that BHV = AHV . Then the entries in position (n+ 1 − i,n+ 1 − j) of BHV and AHV

are equal, which implies that the entries in position (i, j) of A and B are equal. Since position (i, j)

was chosen arbitrarily it follows that A and B are equal. Hence, γ is 1-1. Because (BHV)HV = B for

all B ∈Mn(R), γ is also onto and therefore an isomorphism.

Since the map β : Mn(R) → Mn(Rop) defined by β(B) = BT is an anti-isomorphism, it follows

from the above result that the map βγ : Mn(R) → Mn(Rop), defined by taking the s-transpose of a

matrix in Mn(R) is also an anti-isomorphism. Therefore Corollaries 2.24 and 2.25 follows directly from

Lemma 2.14.

Corollary 2.24. Let B ∈Mn(R), where R is a ring. Then

CenMn(Rop)(B
T ′) = (CenMn(R)(B))T

′
.

Corollary 2.25. Let B ∈Mn(R), where R is a commutative ring. Then

CenMn(R)(B
T ′) = (CenMn(R)(B))T

′
.

Remark 2.26. Using A,B ∈M3(Q) in Example 2.18, it follows by direct verification that

AT
′ 6∈ CenM3(Q)(B

T ′), although A ∈ CenM3(Q)(B).

It also follows in agreement with Corollary 2.24 that

AT
′ ∈ CenM3(Qop)(B

T ′).

Therefore, similar to Corollary 2.16, Corollary 2.24 is not necessarily applicable if we replace R with a

noncommutative ring.

In the next example we illustrate Corollary 2.25.

Example 2.27. Let R = Z12. It follows from Lemma 2.1, using Example 2.2, that

CenM4(Z12)((3̂E34)
T ′) = CenM4(Z12)(3̂E12)

=




â 0̂ 0̂ 0̂

0̂ â 0̂ 0̂

0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ 0̂


∣∣∣∣∣∣∣∣∣∣
â ∈ Z

+


〈4̂〉 Z12 Z12 Z12

〈4̂〉 〈4̂〉 〈4̂〉 〈4̂〉
〈4̂〉 Z12 Z12 Z12

〈4̂〉 Z12 Z12 Z12
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=





0̂ 0̂ 0̂ 0̂

0̂ 0̂ 0̂ 0̂

0̂ 0̂ â 0̂

0̂ 0̂ 0̂ â


∣∣∣∣∣∣∣∣∣∣
â ∈ Z

+


Z12 Z12 〈4̂〉 Z12

Z12 Z12 〈4̂〉 Z12

Z12 Z12 〈4̂〉 Z12

〈4̂〉 〈4̂〉 〈4̂〉 〈4̂〉



T ′

= (CenM4(Z12)(3̂E34))
T ′ ,

as expected from Corollary 2.25.

Similar to the transpose of a matrix over a commutative ring the centralizer of a s-symmetric matrix

over a commutative ring has the symmetric property that the s-transpose of each matrix which is in its

centralizer, is again in its centralizer.

Corollary 2.28. Let B ∈Mn(R), where R is a commutative ring. If B = BT
′
, then

CenMn(R)(B) = (CenMn(R)(B))T
′
.

Proof. It follows from Corollary 2.25 that CenMn(R)(B) = CenMn(R)(B
T ′) = (CenMn(R)(B))T

′
.

2.5 Miscellaneous

The following results will be used repeatedly throughout this dissertation, and their proofs are straight-

forward.

Lemma 2.29. Let R be a commutative ring, b, t ∈ R, where t is invertible in R, and B ∈Mn(R). Then

(a) CenMn(R)(B) = CenMn(R)(tB), (b) CenMn(R)(B) = CenMn(R)(B+ bI)

and

(c) annR(b) = annR(tb),

Proof. Let A ∈Mn(R) and let a ∈ R. Then

(a)

A ∈ CenMn(R)(B) ⇔ BA = AB

⇔ B(tA) = t(BA) = t(AB) = (tA)B

⇔ B ∈ CenMn(R)(tA),
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(b)

A ∈ CenMn(R)(B) ⇔ AB = BA

⇔ A(B+ bI) = AB+AbI = BA+ bIA = (B+ bI)A

⇔ A ∈ CenMn(R)(B+ bI),

(c)

a ∈ annR(b)⇔ ab = 0⇔ t(ab) = a(tb) = 0⇔ a ∈ annR(tb).

For the remaining results in this section, let θ : R → S be a ring epimorphism and

Θ : Mn(R) → Mn(S) the induced epimorphism, i.e. Θ([bij]) = [θ(bij)]. For the sake of notation,

we will sometimes denote θ(b) by b̂ and Θ(B) by B̂. Also, if there is no ambiguity, we simply write

Cen(B) instead of CenMn(R)(B) and Cen(B̂) instead of CenMn(S)(B̂) for B ∈Mn(R). If r ∈ R andA ⊆ R,

then rA denotes the set {ra | a ∈ A}.

Remark 2.30. Note that, given that θ is onto and preserves multiplication, it follows from the fact

that R is a commutative ring, that S is also a commutative ring.

Lemma 2.31. Let R be an integral domain. If 0 6= b ∈ R, then

R ∩ b−1 ker θ = θ−1(ann(b̂)),

where b−1 is the inverse of b in the quotient field of R.

Proof. Let a ∈ R. Then

a ∈ b−1 ker θ⇔ ba ∈ ker θ⇔ b̂â = 0̂⇔ â ∈ ann(b̂)⇔ a ∈ θ−1(ann(b̂)).

In order to illustrate Lemma 2.31, let R = Z, S = Z12, and θ : Z→ Z12 the natural epimorphism.

Now, if b = 2 then

R ∩ b−1 ker θ = Z ∩ 1
2
〈12〉 = 〈6〉

and

θ−1(ann(b̂)) = θ−1(ann(2̂)) = θ−1(〈6̂〉) = 〈6〉.
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Lemma 2.32. Let R be a commutative ring and let B = [bij] ∈Mn(R), then

(Θ([bij]))
T = Θ([bij]

T ).

Proof. It follows from the definition of Θ that

(Θ([bij]))
T = [θ(bij)]

T = [θ(bji)] = Θ([bji]) = Θ([bij]
T ).

The following result is the inspiration behind Chapter 4.

Proposition 2.33. Let R be a commutative ring and let B = [bij] ∈Mn(R). Then

Θ(Cen(B)) + [Aij] ⊆ Cen(B̂),

where

Aij =

 ⋂
k, k6=j

ann(b̂jk)

⋂ ⋂
k, k6=i

ann(b̂ki)

⋂(
ann(b̂ii − b̂jj)

)
.

Proof. We first prove that

Θ(Cen(B)) ⊆ Cen(B̂). (2.34)

Let X ∈ Cen(B). Then

B̂Θ(X) = Θ(B)Θ(X) = Θ(BX) = Θ(XB) = Θ(X)Θ(B) = Θ(X)B̂,

which implies that Θ(X) ∈ Cen(B̂), i.e.

Θ(Cen(B)) ⊆ Cen(B̂).

This proves (2.34). Now we show that

[Aij] ⊆ Cen(B̂). (2.35)

Let [âij] ∈ [Aij]. Then it follows that position (r, t) of B̂[âij] − [âij]B̂ is equal to

b̂r1â1t + · · ·+ b̂r,r−1âr−1,t + b̂rrârt + b̂r,r+1âr+1,t + · · ·+ b̂rnânt−

(âr1b̂1t + âr2b̂2t + · · ·+ âr,t−1b̂t−1,t + ârtb̂tt + âr,t+1b̂t+1,t + · · ·+ ârnb̂nt). (2.36)
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Since âlt ∈ ann(b̂rl) for every l such that l 6= r, and ârq ∈ ann(b̂qt) for every q such that q 6= t, by

the definition of [Aij], it follows that (2.36) is equal to

b̂rrârt − ârtb̂tt = ârt(b̂rr − b̂tt). (2.37)

Since ârt ∈ ann(b̂rr − b̂tt), again by the definition of [Aij], it follows that (2.37) is equal to 0̂. Thus

position (r, t) of [âij]B̂− B̂[âij] is 0̂. This proves (2.35).

We conclude this section with some results with regard to Proposition 2.33.

Lemma 2.34. The set [Aij], as defined in Proposition 2.33, is a subring of Mn(S) (not necessarily with

identity).

Proof. Since −A ∈ [Aij] if and only if A ∈ [Aij], we only need to show that [Aij] is closed under

addition and multiplication.

Let [x̂ij], [ŷij] ∈ [Aij]. The entry in an arbitrary position (s, t) of [x̂ij] + [ŷij] is x̂st+ ŷst. Thus it follows

from the definition of [Aij] that

x̂st, ŷst ∈

 ⋂
k, k6=t

ann(b̂tk)

⋂ ⋂
k, k6=s

ann(b̂ks)

⋂ ann(b̂ss − b̂tt).

Since the annihilator of an element in R is an ideal in R, the intersection of ideals in R is an ideal in R

and an ideal is closed under addition, it follows that

x̂st + ŷst ∈

 ⋂
k, k6=t

ann(b̂tk)

⋂ ⋂
k, k6=s

ann(b̂ks)

⋂ ann(b̂ss − b̂tt).

Therefore it follows again from the definition of [Aij] that [x̂ij]+[ŷij] ∈ [Aij] and we conclude that [Aij]

is closed under addition.

The entry in an arbitrary position (s, t) of [x̂ij][ŷij] is

n∑
l=1

x̂slŷlt.
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Now, for an arbitrary l it follows that

x̂sl ∈

 ⋂
k, k6=l

ann(b̂lk)

⋂ ⋂
k, k6=s

ann(b̂ks)

⋂ ann(b̂ss − b̂ll) and

ŷlt ∈

 ⋂
k, k6=t

ann(b̂tk)

⋂ ⋂
k, k6=l

ann(b̂kl)

⋂ ann(b̂ll − b̂tt).

Similarly, because the annihilator of an element in R is an ideal in R, the intersection of ideals in R is an

ideal in R and an ideal in R is closed under multiplication by any element in R, we have that

x̂slŷlt ∈

 ⋂
k, k6=l

ann(b̂lk)

⋂ ⋂
k, k6=s

ann(b̂ks)

⋂ ann(b̂ss − b̂ll) and (2.38)

x̂slŷlt ∈

 ⋂
k, k6=t

ann(b̂tk)

⋂ ⋂
k, k6=l

ann(b̂kl)

⋂ ann(b̂ll − b̂tt). (2.39)

It follows from (2.38) that x̂slŷlt ∈
⋂

k, k6=s
ann(b̂ks) and from (2.39) that x̂slŷlt ∈

⋂
k, k6=t

ann(b̂tk).

Furthermore, since x̂slŷlt ∈ ann(b̂ss − b̂ll), by (2.38), and x̂slŷlt ∈ ann(b̂ll − b̂tt), by (2.39), it

follows that

x̂slŷlt(b̂ss − b̂tt) = x̂slŷlt(b̂ss − b̂ll + b̂ll − b̂tt) = x̂slŷlt(b̂ss − b̂ll) + x̂slŷlt(b̂ll − b̂tt) = 0̂ − 0̂ = 0̂.

Therefore x̂slŷlt ∈ ann(b̂ss − b̂tt) and so

x̂slŷlt ∈

 ⋂
k, k6=t

ann(b̂tk)

⋂ ⋂
k, k6=s

ann(b̂ks)

⋂ ann(b̂ss − b̂tt).

Since l was arbitrary chosen, we conclude that

n∑
l=1

x̂slŷlt ∈

 ⋂
k, k6=t

ann(b̂tk)

⋂ ⋂
k, k6=s

ann(b̂ks)

⋂ ann(b̂ss − b̂tt).

which implies that [x̂ij][ŷij] ∈ [Aij].

Remark 2.35. Since CenMn(R)(B) is a subring of Mn(R) and Θ is a homomorphism, it follows

that Θ(CenMn(R)(B)) is also a subring of Mn(S) (with identity, if R is a ring with identity).

Lemma 2.36. We have equality in Proposition 2.33 if B = aErt, a ∈ R.
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Proof. First of all, note that B̂ = âÊrt = [b̂ij], where b̂ij = 0̂ if i 6= r or j 6= t, and b̂rt = â. Firstly

assume that r 6= t. Then

⋂
k, k6=j

(ann(b̂jk)) =

{
ann(â) if j = r

S otherwise,⋂
k, k6=i

(ann(b̂ki)) =

{
ann(â) if i = t

S otherwise,

ann(b̂ii − b̂jj) = S.

Therefore it follows from the definition of [Aij] that

Aij =

{
annS(â) if j = r or i = t

S otherwise.

If r = t, then it follows similarly that

Aij =

{
annS(â) if i 6= j, and j = r or i = t

S otherwise.

Now, since Θ(annR(a)) ⊆ annS(â), it follolws that

[Aij] =

column r
↓

S
annS(â)

...
S

annS(â) annS(â) · · · W · · · annS(â)

S

...

annS(â)
S

 ← row t

= Θ



column r
↓

R
annR(a)

...
R

annR(a) annR(a) · · · T · · · annR(a)

R

...

annR(a)
R

 ← row t
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+

column r
↓

S
annS(â)

...
S

annS(â) annS(â) · · · W · · · annS(â)

S

...

annS(â)
S

 ← row t
,

where T = R if r = t, T = annR(a) if r 6= t, W = S if r = t and W = annS(â) if r 6= t. Using Lemma 2.1

it follows that

Θ
(
CenMn(R)(B)

)
+ [Aij] = Θ

(
CenMn(R)(aErt))

)
+ [Aij]

=

{
ĉ(Err + Ett), ĉ ∈ S, if r 6= t

ĉErr, ĉ ∈ S, if r = t
+ [Aij]

= CenMn(S)(B̂).

Lemma 2.37. Using the notation of Proposition 2.33 it follows for B ∈Mn(R) that âErt ∈ Cen(B̂) if

and only if âErt ∈ [Aij].

Proof. Let B̂ = [b̂ij]. Then

âErt ∈ Cen(B̂)⇔ [b̂ij]âErt = âErt[b̂ij]

⇔

columt t
↓

âb̂1r

âb̂2r
...

© âb̂rr ©
...

âb̂nr



=

row r→



©

âb̂t1 âb̂t2 · · · âb̂tt · · · âb̂tn

©


⇔ âb̂t1, âb̂t2, . . . , âb̂t,t−1, âb̂t,t+1, . . . , âb̂tn, âb̂1r, âb̂2r, . . . , âb̂r−1,r, âb̂r+1,r, . . . , âb̂nr = 0̂

and â(b̂rr − b̂tt) = 0̂
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⇔ â ∈

 ⋂
k, k6=t

ann(b̂tk)

⋂ ⋂
k, k6=r

ann(b̂kr)

⋂ ann(b̂rr − b̂tt)⇔ âErt ∈ [Aij].

Example 2.38. Let R = Z, let B =

 0 3 1

0 0 1

0 0 0

, B ′ =

 4 3 1

3 7 1

0 0 10

 and let θ : Z → Z12 be the

natural epimorphism. Using the notation of Proposition 2.33, we have ,using B and B ′, respectively,

that

[Aij] =

 0̂ 0̂ Z12

0̂ 0̂ 〈4̂〉
0̂ 0̂ 0̂

 and [Aij] =

 0̂ 0̂ 〈4̂〉
0̂ 0̂ 〈4̂〉
0̂ 0̂ 0̂

 .

Now, by Lemma 2.37 4̂ 0̂ 0̂

0̂ 0̂ 0̂

0̂ 0̂ 0̂

 ,

 0̂ 0̂ 0̂

4̂ 0̂ 0̂

0̂ 0̂ 0̂

 ,

 0̂ 0̂ 0̂

0̂ 0̂ 0̂

0̂ 0̂ 4̂

 6∈ Cen(B̂), Cen(B̂ ′).

Note that the sum of the above three matrices, namely

 4̂ 0̂ 0̂

4̂ 0̂ 0̂

0̂ 0̂ 4̂

, is an element of Cen(B̂) and

of Cen(B̂ ′).

Corollary 2.39. If R is a commutative ring and B =

[
e f

g h

]
∈M2(R), then

Θ(Cen(B)) +

[
A11 A12

A21 A11

]
= Θ(Cen(B)) +

[
0̂ A12

A21 A11

]

= Θ(Cen(B)) +

[
A11 A12

A21 0̂

]
⊆ Cen(B̂),

where

A11 = ann(f̂) ∩ ann(ĝ), A12 = ann(ĝ) ∩ ann(ê− ĥ) and A21 = ann(f̂) ∩ ann(ê− ĥ).

Proof. We will only prove that

Θ(Cen(B)) +

[
A11 A12

A21 A11

]
= Θ(Cen(B)) +

[
0̂ A12

A21 A11

]
. (2.40)
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The proof that Θ(Cen(B)) +

[
A11 A12

A21 A11

]
= Θ(Cen(B)) +

[
A11 A12

A21 0̂

]
is similar. Furthermore, it

follows from Proposition 2.33 that

Θ(Cen(B)) +

[
A11 A12

A21 A11

]
⊆ Cen(B̂).

We only have to prove the inclusion ⊆ in (2.40). Because

Θ(Cen(B)) ⊆ Θ(Cen(B)) +

[
0̂ A12

A21 A11

]
,

it suffices to prove that [
A11 A12

A21 A11

]
⊆ Θ(Cen(B)) +

[
0̂ A12

A21 A11

]
.

Now, let

A =

[
â b̂

ĉ d̂

]
∈

[
A11 A12

A21 A11

]
.

Then

A =

[
â 0̂

0̂ â

]
+

[
0̂ b̂

ĉ d̂− â

]
.

Because

[
a 0

0 a

]
∈ Cen(B) and d̂− â ∈ A11, the result follows.
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CHAPTER

3
k-invertibility in R/〈k〉 and k-matrices
in M2(R/〈k〉), R a UFD

Perhaps I could best describe my experience of doing mathematics in terms of entering a dark
mansion. One goes into the first room and it’s dark, completely dark. One stumbles around,
bumping into furniture, and gradually you learn where each piece of furniture is, and finally
after six months or so you find the light switch. You can see exactly where you were.

— ANDREW WILES

THE main purpose of this chapter is to introduce the concept of a k-matrix inM2(R/〈k〉) (Section 3.2,

Definition 3.16), where R is a UFD and k is a nonzero nonunit in R. To define this concept we need

the concept of k-invertibility in R/〈k〉 (Section 3.1, Definition 3.3). In Theorem 4.5, the main theorem

of this dissertation, we will obtain a concrete description of the centralizer of a k-matrix in M2(R/〈k〉).
Since there is a seemingly open question regarding the case when R/〈k〉 is finite (Remark 3.26), we

discuss this case separately in Section 3.3. We will use the results in Section 3.3 in Chapter 5 where we

will obtain a formula for the number of elements in the centralizer of a matrix in M2(R/〈k〉), when R is

a UFD and R/〈k〉 is finite.

From here onwards, unless stated otherwise, we assume that R is a UFD and that k ∈ R, with k a

nonzero nonunit. Let θk : R→ R/〈k〉 and Θk : M2(R)→M2(R/〈k〉) be the natural epimorphism and

induced epimorphism respectively. We denote the image θk(b) of b (b ∈ R) by b̂k and the image Θk(B)

of B (B ∈ M2(R)) by B̂k. However, if there is no ambiguity, then we simply write θ, Θ, b̂ and B̂

respectively.
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Chapter 3. k-invertibility in R/〈k〉 and k-matrices in M2(R/〈k〉), R a UFD

3.1 k-invertibility in R/〈k〉

The proofs of the following two results are straightforward. These results will be frequently used

throughout this dissertation.

Lemma 3.1. An element b̂ = θ(b) ∈ R/〈k〉 is a zero divisor if and only if gcd(b,k) 6= 1.

Proof. Assume gcd(b,k) = 1. Then none of the primes in the prime factorization of k is in the prime

factorization of b. Suppose there is an âk ∈ R/〈k〉 such that b̂kâk = 0̂k. Since ba is a pre-image

of b̂kâk = 0̂k, we have that k|ba. Now, suppose p is prime and pn is in the prime factorization of k.

Then, since p|k, it follows that p|ba and therefore that p|b or p|a. Because gcd(b,k) = 1, it follows

that p - b, and thus, since pn|k and therefore since pn|ba, that pn|a. Consequently every power of a

prime in the prime factorization of k, also divides a. Hence k|a so that âk = 0̂k. Thus b̂k is not a zero

divisor.

Conversely, suppose gcd(b,k) 6= 1. Since k = p
n1
1 . . .pnmm , with p1, . . . ,pm different primes and

n1,n2, . . . ,nm > 1, it follows that there is a pi ∈ {p1, . . . ,pm} such that pi|b. But then it follows that

bp
n1
1 . . .pni−1

i−1 p
ni−1
i p

ni+1
i+1 . . .pnmm = b ′pip

n1
1 . . .pni−1

i−1 p
ni−1
i p

ni+1
i+1 . . .pnmm

= b ′k,

where b ′ = bp−1
i ∈ R and p−1

i is the inverse of pi in the quotient field of R. Therefore it follows that

b̂kĉk = 0̂k, where

c = p
n1
1 . . .pni−1

i−1 p
ni−1
i p

ni+1
i+1 . . .pnmm .

Since k - c it follows that c 6∈ 〈k〉 = ker θk and therefore that ĉk 6= 0̂k. Thus we conclude that b̂k is a

zero divisor.

A commutative ring R satisfies the Bézout identity if for any a,b ∈ R there are u, v ∈ R such

that ua + vb = gcd(a,b). An integral domain that satisfies the Bézout identity is called a Bézout

domain. It is trivial to show that a PID satisfies the Bézout identity. We will use this identity in the next

lemma.

Lemma 3.2. Let R be a PID. An element b̂ ∈ R/〈k〉 is invertible if and only if gcd(b,k) = 1.
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Proof. Since R is a PID, there are u, v ∈ R such that ub+ vk = 1. Thus

ûkb̂k = ûkb̂k + v̂kk̂k︸ ︷︷ ︸
=0̂k

= 1̂k.

Therefore b̂k is invertible with inverse ûk.

Conversely, if b̂k is invertible in R/〈k〉, then there exists a ûk ∈ R/〈k〉 such that b̂kûk = 1̂k or

equivalently, such that bu = 1 + vk, for some v ∈ R. Let d := gcd(b,k), then d|bu and d|vk, which

implies that d|1. Therefore d is a unit. Consequently gcd(b,k) = 1.

Definition 3.3. A k-pre-image of an element b̂ ∈ R/〈k〉 is a pre-image of b̂ in R of the form rδ, where

gcd(r,k) = 1 and δ|k. We call r and δ the relative prime part and divisor part of rδ respectively. We

call b̂ k-invertible if r̂ is invertible in R/〈k〉 for at least one k-pre-image rδ of b̂.

Remark 3.4. Since 1 · k is a k-pre-image of 0̂, with relative prime part 1, we have that 0̂ is k-invertible

for any UFD R and any nonzero nonunit k ∈ R.

The following lemma is trivial to prove.

Lemma 3.5. Let u be a unit in R, and let b ∈ R. Then b̂k is k-invertible if and only if b̂uk is uk-

invertible.

Proof. Suppose b̂k is k-invertible in R/〈k〉. Hence it follows from definition that b̂k has a k-pre-

image of the form rδ in R, where r̂k is invertible in R/〈k〉, with inverse r̂ ′k, say, and δ|k. Since,

therefore b = rδ + ak = rδ + au−1uk, for some a ∈ R, rr ′ = 1 + ck = rr ′ + cu−1uk, for some c ∈ R,

and δ|uk, the result follows.

The proof of the next result is constructive.

Lemma 3.6. Every element in R/〈k〉 has a k-pre-image.

Proof. Let b̂ ∈ R/〈k〉. Since R is a UFD there exist different primes p1, . . . ,pm such that k = p
n1
1 . . .pnmm ,

where n1, . . . ,nm > 1. Since k 6= 0, there exists a nonzero pre-image b of b̂ in R. Again, because R

is a UFD, b can be expressed as r0p
q1
1 . . .pqmm , where pi - r0, for i = 1, . . . ,m, and q1, . . . ,qm > 0.

Therefore gcd(r0,k) = 1, and

b̂ = r̂0p̂
q1
1 . . . p̂qmm .
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Suppose we can show that each p̂qii has a pre-image ri · ptii , where gcd(ri,k) = 1 and ti 6 ni. Then

we have that

b̂ = r̂0
̂(r1pt1

1 ) . . . ̂(rmp
tm
m ) = r̂0r̂1 . . . r̂m

̂(pt1
1 . . .ptmm ) = θ(rpt1

1 . . .ptmm ),

where r = r0r1 · · · rm. Since gcd(ri,k) = 1 for i = 0, 1, . . . ,m, it follows that gcd(r,k) = 1. Also,

since ti 6 ni for i = 1, 2 . . . ,m, we have that

δ := p
t1
1 · · ·p

tm
m |p

n1
1 · · ·p

nm
m︸ ︷︷ ︸

=k

,

implying that r · δ is a k-pre-image of b̂ with relative prime part r and divisor part δ.

Let us now prove that each p̂qii has a pre-image ri · ptii , where gcd(ri,k) = 1 and ti 6 ni.

If qi 6 ni then pqii = 1 · pqii , where ti = qi 6 ni and gcd(ri,k) = 1, with ri = 1. Thus we have the

desired result.

Next we consider the case when ni < qi. Since

p̂
qi
i = p̂

qi
i + k

and

p
qi
i + k = p

qi
i + pn1

1 · · ·p
nm
m = p

ni
i (p

qi−ni
i + pn1

1 · · ·p
ni−1
i−1 p

ni+1
i+1 · · ·p

nm
m ),

it follows that pnii · ri = ri · pnii is a pre-image of p̂qii , where

ri = p
qi−ni
i + pn1

1 · · ·p
ni−1
i−1 p

ni+1
i+1 · · ·p

nm
m .

Since

pi|p
qi−ni
i (qi > ni) and pi - pn1

1 · · ·p
ni−1
i−1 p

ni+1
i+1 · · ·p

nm
m ,

we have that pi - ri. Furthermore, for all j ∈ {1, . . . , i− 1, i+ 1, . . . ,m} it follows that

pj - pqi−nii and pj|p
n1
1 · · ·p

ni−1
i−1 p

ni+1
i+1 · · ·p

nm
m

implying that pj - ri. Thus ri and k are relatively prime and ti = ni 6 ni.

The next result follows directly from Lemma 3.2, Definition 3.3 and Lemma 3.6.
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Corollary 3.7. If R is a PID, then every element in R/〈k〉 is k-invertible.

The next example illustrates the constructive proof of Lemma 3.6.

Example 3.8. Let R = Z. Then, since 12 = 22 · 3 and 10 = 2 · 5, using the procedure in the proof of

Lemma 3.6, it follows that

(1) 9̂12 = θ12(20 · 32) = θ12(1(32 + 12)) = θ12(3(7)) = (7̂ · 3)12, where gcd(7, 12) = 1 and 3|12;

(2) 6̂10 = θ10(3 · 2 · 50) = (3̂ · 2)10, where gcd(3, 10) = 1 and 2|10.

Since 7̂12 and 3̂10 are invertible in Z12 and Z10 respectively, it follows that 9̂12 is 12-invertible and 6̂10

is 10-invertible, as expected from Corollary 3.7.

Now, let R = F[x,y], the polynomial ring in two variables x and y over the field F. Then, again

using the procedure in the proof of Lemma 3.6, it follows that

(3) x̂3
x2y = θx2y(x

3y0) = θx2y(1(x3 + x2y)) = θx2y((x+ y)x2),

where gcd(x+ y, x2y) = 1 and x2|x2y.

We will show in Example 3.13 that Corollary 3.7 does not hold for UFD’s in general.

Proposition 3.10 and Corollaries 3.11 and 3.14 will help us to determine when an element in R/〈k〉 is

not k-invertible in case R is a UFD which is not a PID. In order to conclude that an element b̂ in R/〈k〉
is not k-invertible (using Definition 3.3), we have to show, for every k-pre-image rδ of b̂, that r̂ is not

invertible in R/〈k〉. However, if δ is of a specific form, then we will show in Proposition 3.10 that it

suffices to show that r̂ is not invertible in R/〈k〉 for at least one k-pre-image rδ of b̂.

We first establish a relationship between the divisor parts of the k-pre-images of an element in R/〈k〉.

Lemma 3.9. Let R be a UFD, let k = p
n1
1 · · ·pnmm ∈ R, where p1, . . . ,pm are different primes in R

and n1, . . . ,nm > 1, and let b̂ ∈ R/〈k〉. Then δ is a divisor part of a k-pre-image of b̂ if and only if

gcd(b,k) = δ, i.e. the divisor parts of the k-pre-images of b̂ are associates.

Proof. Suppose rδ is a k-pre-image of b̂. Then b = rδ+ sk for some s ∈ R. Now, since gcd(r,k) = 1, it

follows that gcd(b,k) = gcd(rδ+ sk,k) = gcd(δ,k) = δ.

41



Chapter 3. k-invertibility in R/〈k〉 and k-matrices in M2(R/〈k〉), R a UFD

For the converse, note that since all the greatest common divisors of b and k are associates and every

element in R/〈k〉 has at least one k-pre-image, by Lemma 3.6, the result will follow if we can show

that for an arbitrary unit t, tδ is also a divisor part of some k-pre-image of b̂. Since r̂t−1tδ = r̂δ = b̂,

gcd(rt−1,k) = 1 and tδ|k, the result follows.

Proposition 3.10. Let k = p
n1
1 p

n2
2 · · ·pnmm ∈ R, with p1, . . . ,pm different primes and n1,n2, . . .

. . . ,nm > 1, and let 0̂ 6= b̂ ∈ R/〈k〉. Assume (using Lemma 3.9) that the divisor parts of the k-

pre-images of b̂ are of the form uδ, where u is a unit in R. If δ = gcd(b,k) = p
q1
1 p

q2
2 · · ·p

qm
m ,

where 0 6 qi < ni for i = 1, 2, . . . ,m, then either r̂ is invertible in R/〈k〉 for every k-pre-image rδ of b̂

or no such r̂ is invertible in R/〈k〉.

Proof. Since, by Lemma 3.6, there exists a pre-image rδ of b̂ in R, with gcd(r,k) = 1, all the pre-images,

and in particular all the k-pre-images, of rδ are of the form

rδ+ cpn1
1 p

n2
2 · · ·p

nm
m (3.1)

for some c ∈ R. Because, according to Lemma 3.9, the divisor parts of all the k-pre-images of b̂

are of the form uδ, where u is a unit in R, it follows from (3.1) that the relative prime parts of all

the k-pre-images of b̂ are of the form

u−1r+ cu−1p
n1−q1
1 · · ·pnm−qm

m (3.2)

for some u, c ∈ R, u a unit.

Now, suppose r̂ is invertible in R/〈k〉 with inverse ŷ. In other words

yr = 1 + dpn1
1 p

n2
2 · · ·p

nm
m

for some d ∈ R. If we can show that the image under θ of the relative prime part of an arbitrary k-pre-

image of b̂ is invertible, then we are finished.

Let u−1r+ cu−1p
n1−q1
1 p

n2−q2
2 · · ·pnm−qm

m be the relative prime part of an arbitrary k-pre-image of b̂.

Furthermore, let l ∈ N such that

2l > max
{

ni

ni − qi

∣∣∣∣ i ∈ {1, . . . ,m}

}
> 0. (3.3)

For the sake of notation, let

s = dp
q1
1 · · ·p

qm
m + cy and t = p

n1−q1
1 p

n2−q2
2 · · ·pnm−qm

m .
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Then

(u−1r+ cu−1p
n1−q1
1 p

n2−q2
2 · · ·pnm−qm

m )yu(1 − ts)(1 + (ts)21
) · · · (1 + (ts)2l−1

)

= (1 + dpn1
1 p

n2
2 · · ·p

nm
m + cyp

n1−q1
1 p

n2−q2
2 · · ·pnm−qm

m )(1 − ts)(1 + (ts)21
) · · · (1 + (ts)2l−1

)

= (1 + ts)(1 − ts)(1 + (ts)21
) · · · (1 + (ts)2l−1

)

= 1 − (ts)2l .

Let 1 6 i 6 m. Since ni > qi, it follows from (3.3) that

2l(ni − qi) >
ni

ni − qi
(ni − qi) = ni,

and so

t2
l
= ap

n1
1 p

n2
2 · · ·p

nm
m

for some a ∈ R. Therefore

θ
(
(u−1r+ cu−1p

n1−q1
1 p

n2−q2
2 · · ·pnm−qm

m )yu(1 − ts) (1 + (ts)21
) · · · (1 + (ts)2l−1

)
)

= θ
(

1 − (ts)2l
)

= 1̂.

Hence we conclude that

θ
(
yu(1 − ts)(1 + (ts)21

)(1 + (ts)22
) · · · (1 + (ts)2l−1

)
)

is the inverse of the image under θ of the relative prime part of the arbitrary chosen k-pre-image

of b̂.

Corollary 3.11. Let 0̂ 6= b̂ ∈ R/〈k〉. If gcd(b,k) = 1, then b̂ is k-invertible if and only if b̂ is invertible

in R/〈k〉.

Proof. The pre-image b · 1 is a k-pre-image of b̂, with relative prime part b and divisor part 1. Now,

suppose k = p
n1
1 p

n2
2 · · ·pnmm , where p1,p2, . . . ,pm are different primes and n1,n2, . . . ,nm > 1.

Since 1 = p0
1 · · ·p0

m, the result follows from Proposition 3.10.

Remark 3.12. Note that it follows from Lemma 3.1 and Corollary 3.11 that if b̂ is an invertible element

in R/〈k〉, then b̂ is k-invertible.

We are now in a position to give an example of a UFD R (which is not a PID), an element k in R and

an element b̂ in R/〈k〉 which is not k-invertible.
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Example 3.13. Let R be the polynomial ring in two variables F[x,y] and let k := x2. Consider the

natural epimorphism θ : F[x,y]→ F[x,y]/〈x2〉, and let b̂ := ŷ = θ(y). Since gcd(y, x2) = 1 and ŷ is not

invertible in F[x,y]/〈x2〉, we conclude from Corollary 3.11 that ŷ is not x2-invertible.

Note that if k is a power of a prime, then every pre-image of a nonzero b̂ ∈ R/〈k〉 can be written

in the form rδ, where gcd(r,k) = 1 and δ|k. Therefore every pre-image of a nonzero b̂ ∈ R/〈k〉 is

a k-pre-image. In such a case we will sometimes refer to the divisor part and relative prime part of a

pre-image of an element b̂, instead of the relative prime part and divisor part of the k-pre-image of b̂.

The following result follows almost directly from Proposition 3.10.

Corollary 3.14. Let k = pn ∈ R, where p is prime, and let 0̂ 6= b̂ ∈ R/〈k〉. Then either the image

under θ of the relative prime part of every pre-image of b̂ is invertible or none is invertible.

Proof. Let b be an arbitrary pre-image of b̂. Since R is a UFD, it follows that b = cpm for some m > 0

and some c ∈ R such that p - c, i.e. gcd(c,pn) = 1. Because b̂ 6= 0̂, it follows that m < n. Hence the

result follows from Proposition 3.10.

The following statement is an equivalent formulation of Corollary 3.14, and so we have a characte-

rization for the nonzero k-invertible elements in R/〈k〉, if k is a power of a prime.

Let k = pn ∈ R, where p is prime, and let 0̂ 6= b̂ ∈ R/〈k〉. Then b̂ is k-invertible if and only if the image

under θ of the relative prime part of an arbitrary pre-image of b̂ is invertible in R/〈k〉.

Notice that we could also have concluded from Corollary 3.14 that ŷ in Example 3.13 is not x2-invertible.

Next we show that Proposition 3.10 does not hold in general if qi = ni for some i.

Example 3.15. Let R = Z[x], and k = 2x (with 2 and x primes in Z[x]). Consider

0̂ 6= x̂ ∈ Z[x]/〈2x〉.

Then 1 · x and 3 · x are 2x-pre-images of x̂ with relative prime parts 1 and 3 respectively, and 1̂ is

invertible in Z[x]/〈2x〉, but 3̂ is not.
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3.2 k-matrices in M2(R/〈k〉)

Definition 3.16. We call a matrix

[
êk f̂k

ĝk ĥk

]
∈ M2(R/〈k〉) a k-matrix if it satisfies the following

conditions:

(i) At least one of the three elements êk − ĥk, f̂k and ĝk is k-invertible with a k-pre-image rδ that

has divisor part δ; pick such an element, and call the remaining two elements âk and b̂k, say.

(ii) δ is a unit in R, or at least one of the elements âδ and b̂δ is δ-invertible.

Lemma 3.17. If ê− ĥ, f̂ or ĝ is invertible in R/〈k〉 then

[
ê f̂

ĝ ĥ

]
∈M2(R/〈k〉) is a k-matrix.

Proof. Suppose ĉk ∈ {êk − ĥk, f̂k, ĝk} is invertible in R/〈k〉. Then it follows from Corollary 3.11

that ĉk is k-invertible with a k-pre-image c · 1 that has divisor part 1, and so (ii) in Definition 3.16 is

satisfied.

The following result follows directly from Corollary 3.7.

Corollary 3.18. If R is a PID, then every matrix in M2(R/〈k〉) is a k-matrix.

We show that Corollary 3.18 does not hold for UFD’s in general.

Example 3.19. Let R = F[x,y] and let k = x2. We exhibit (a) a matrix which is an x2-matrix and (b) a

matrix which is not an x2-matrix.

(a) Let

B̂x2 =

[
ŷx2 x̂x2

x̂x2 0̂x2

]
∈M2(F[x,y]/〈x2〉).

Since 1 is the relative prime part and x is the divisor part of the pre-image 1 ·x of x̂x2 in F[x,y], and 1̂x2 is

invertible in F[x,y]/〈x2〉, it follows that x̂x2 is x2-invertible. Furthermore, x̂x = 0̂x, which is x-invertible

by Remark 3.4. Therefore we conclude from Definition 3.16 that B̂x2 is an x2-matrix.

(b) Let

B̂x2 =

[
̂(x+ y)x2 ŷx2

x̂x2 x̂x2

]
∈M2(F[x,y]/〈x2〉).

Regarding Definition 3.16(i), we consider the elements ŷx2 = ̂(x+ y)x2 − x̂x2 , ŷx2 and x̂x2 . We have

already seen in (a) and Example 3.13, respectively, that x̂x2 is x2-invertible and ŷx2 is not x2-invertible.
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Therefore the only possible choice of an x2-invertible element in Definition 3.16(i) is x̂x2 , and the only

remaining element is ŷx2 . By Lemma 3.9 all the divisor parts of the x2-pre-images of x̂x2 are of the

form ux for some nonzero u ∈ F. Regarding Definition 3.16(ii) we must show that ŷux is ux-invertible

for some u ∈ F for B̂x2 to be an x2-matrix. By Lemma 3.5 it suffices to show that ŷx is not x̂-invertible.

Since ŷx is not invertible in F[x,y]/〈x〉 and gcd(y, x) = 1, it follows from Corollary 3.11 that ŷx is

not x-invertible. Hence we conclude that B̂x2 is not an x2-matrix.

The following result will be used in the proof of Theorem 4.5 and Theorem 4.11.

Corollary 3.20. Let rδ be a k-pre-image of b̂ ∈ R/〈k〉, with relative prime part r and divisor part

δ = gcd(b,k) (by Lemma 3.9). Then it follows that

〈t〉 = θ−1(ann(b̂)),

where t = δ−1k ∈ R, with δ−1 the inverse of δ in the quotient field of R.

Proof. Since, by Lemma 2.29(c), it follows that θ−1(ann(b̂)) = θ−1(ann(r̂δ̂)) = θ−1(ann(δ̂)), the result

is a special case of Lemma 2.31.

3.3 The case when R/〈k〉 is finite

The following results for the case when R is a UFD and R/〈k〉 is finite are similar to the results in the

previous sections in this chapter for the case when R is a PID.

Lemma 3.21. (see Lemma 3.2) Let R/〈k〉 be finite. An element b̂ ∈ R/〈k〉 is invertible if and only

if gcd(b,k) = 1.

Proof. Suppose gcd(b,k) = 1. Since R/〈k〉 is finite, b̂n = b̂m for some m,n ∈ N, m 6= n. Without loss

of generality, suppose m < n. Then, since b̂ is not a zero divisor by Lemma 3.1 we have that b̂n−m = 1̂.

Hence b̂ is invertible in R/〈k〉.

The proof of the converse is the same as the proof of the converse of Lemma 3.2.

The following result follows directly from Definition 3.3, Lemma 3.6 and Lemma 3.21.
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Corollary 3.22. (see Corollary 3.7) If R/〈k〉 is finite, then every element in R/〈k〉 is k-invertible.

The next result follows directly from Definition 3.16 and Corollary 3.22.

Corollary 3.23. (see Corollary 3.18) If R/〈k〉 is finite, then every matrix in M2(R/〈k〉) is a k-matrix.

The following result is well-known.

Theorem 3.24. ([13], p. 132, Corollary 2.27) If A1, . . . ,Am are ideals in a ring S (not necessarily

commutative or with a unit), then there is a monomorphism of rings

φ : S/(A1 ∩ · · · ∩Am)→ S/A1 ⊕ · · · ⊕ S/Am

defined by

φ(s+ (A1 ∩ · · · ∩Am)) = (s+A1, . . . , s+Am).

If S2 +Ai = S for all i and Ai +Aj = S for all i 6= j, then φ is an isomorphism of rings.

The fact that φ and Φ in Corollary 3.25 are isomorphisms if R is a PID or if R/〈k〉 is finite is an

important property of these cases. This property will be used in Chapter 5.

Corollary 3.25. Let R be a PID or let R/〈k〉 be finite, and let k = p
n1
1 p

n2
2 · · ·pnmm , with p1,p2, . . . ,pm

different primes and n1, . . . ,nm > 1. Then

(i) φ : R/〈k〉 → R/〈pn1
1 〉 ⊕ R/〈p

n2
2 〉 ⊕ · · · ⊕ R/〈pnmm 〉

defined by

φ(r̂) = (θpn1
1

(r), θpn2
2

(r), · · · , θpnmm (r))

is an isomorphism.

(ii) Φ : M2(R/〈k〉)→M2(R/〈pn1
1 〉)⊕M2(R/〈pn2

2 〉)⊕ · · · ⊕M2(R/〈pnmm 〉)

defined by

Φ([b̂ij]) = (Θpn1
1

([bij]), . . . ,Θpnmm ([bij]))

is an isomorphism.

Proof. (i) Since R satisfies the Bézout identity if R is a PID it follows that 〈pnii 〉+〈p
nj
j 〉 = R for every i 6= j,

1 6 i, j 6 m. Therefore the result follows directly from Theorem 3.24 for this case.
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Suppose R/〈k〉 is finite. Now, let i 6= j, 1 6 i, j 6 m and let

πi : R/〈pn1
1 〉 ⊕ · · · ⊕ R/〈p

nm
m 〉 → R/〈pnii 〉

be the canonical projection. Since πi(φ(b̂k)) = b̂pnii
for every b̂pnii ∈ R/〈p

ni
i 〉 it follows that

πiφ : R/〈k〉 → R/〈pnii 〉

is an epimorphism (i.e. φ(R/〈k〉) is a subdirect sum of the rings R/〈pn1
1 〉, . . . ,R/〈pnmm 〉 ( see [17], p. 52,

Definition 3.5)). Hence R/〈pnii 〉 is also finite. Since gcd(pnii ,pnjj ) = 1 it follows from Lemma 3.21

that p̂njj is invertible in R/〈pnii 〉. Therefore there is an â ∈ R/〈pnii 〉 such that âp̂njj = 1̂, or in other

words, that apnjj = 1 + cpnii for some c ∈ R. Hence 〈pnii 〉 + 〈p
nj
j 〉 = R. The result therefore follows

from Theorem 3.24.

(ii) The fact that Φ is onto, 1-1 and well-defined follows directly from (i). We now show that Φ is a

homomorphism. Let Â, B̂ ∈Mn(R/〈k〉). Then, since Θpnii is a homomorphism for all i, it follows that

Φ(Â) ·Φ(B̂) = (Θpn1
1

(A), . . . ,Θpnmn (A)) · (Θpn1
1

(B), . . . ,Θpnmn (B))

= (Θpn1
1

(AB), . . . ,Θpnmn (AB))

= Φ(ÂB̂)

It can be similarly shown that addition is preserved.

Remark 3.26. A natural example to include in this section, if such an example exists, would be one of

a UFD R, which is not a PID, and a nonzero nonunit k ∈ R, as we assume throughout this dissertation,

such that R/〈k〉 is finite. Unfortunately we could not find such an example. Neither have we been able

to prove that if R is UFD and k ∈ R is a nonzero nonunit such that R/〈k〉 is finite, then R is a PID.

We could, though, find proofs for the following weaker results.

Proposition 3.27. Let F be a field. If R is a UFD that is a finitely generated F-algebra and k ∈ R is a

nonzero nonunit such that R/〈k〉 is finite, then R is a PID.

Proposition 3.28. If R is a UFD and R/〈k〉 is finite for all nonzero nonunit k ∈ R, then R is a PID.

To prove Proposition 3.27 and Proposition 3.28 we need the following preliminary definitions and

results.
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Definition 3.29. ([13], p. 372, Definition 1.2) A commutative ring R is Noetherian if R satisfies the

ascending chain condition on ideals, i.e. for every chain A1 ⊆ A2 ⊆ A3 ⊆ · · · of ideals, there exists

an n ∈ N such that Ai = An for all i > n.

Remark 3.30. Note that a commutative ring R is Noetherian if and only if every ideal in R is finitely

generated.

Definition 3.31. ([10], p. 6, Definition) In a ring R, the height of a prime ideal P, denoted by height P,

is the supremum of all the integers n such that there exists a chain P0 $ P1 $ · · · $ Pn = P of distinct

prime ideals. We define the Krull dimension, denoted by dimR, of R to be the supremum of the heights

of all prime ideals.

Lemma 3.32 follows almost directly from Theorem 2 on page 4 in [7]. For the sake of completeness

we prove the result from first principles.

Lemma 3.32. The minimal nonzero prime ideals in a UFD R are the ideals generated by the prime

elements in R.

Proof. Suppose R is a UFD and P is a nonzero prime ideal in R. Since P 6= R, P does not contain any

units. Therefore, let a = p
n1
1 · · ·pnmm , where p1, . . . ,pm are primes in R, ni > 1 for all i and m > 1,

be an arbitrary nonzero element in P. Then by the definition of prime ideals it follows that pi ∈ P for

some i, 1 6 i 6 m. Thus 〈pi〉 ⊆ P.

Conversely, suppose P is a nonzero prime ideal contained in an ideal generated by a prime element p, 〈p〉.
Since P does not contain any units, let b = q

s1
1 · · ·q

sl
l , where q1, . . . ,ql are primes in R, si > 1 for

all i and l > 1, be an arbitrary element in P. Then, again by the definition of prime ideals, qj ∈ P

for some j, 1 6 j 6 l. Since p is a divisor of every element in 〈p〉, it follows, given that qj ∈ P ⊆ 〈p〉,
that p|qj. Since qj is a prime we therefore have that p = uqj, for some unit u. Hence 〈p〉 = 〈qi〉 ⊆ P

and therefore 〈p〉 = P. Thus the result follows.

To prove Lemma 3.34 we need the following result which is straightforward to prove.

Lemma 3.33. ([7], p. 4) A UFD satisfies the ascending chain condition on principal ideals, i.e. for every

chain A1 ⊆ A2 ⊆ A3 ⊆ · · · of principal ideals, there exists an integer n such that Ai = An for all i > n.

Lemma 3.34. A UFD with Krull dimension 1 is a PID.

Proof. Suppose R is a UFD with Krull dimension 1. In other words, using Lemma 3.32, the ideals

generated by the prime elements in R are the maximal- and the minimal nonzero prime ideals. Since a
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maximal ideal in a ring with unity is a prime ideal, it follows that the maximal ideals in R are the ideals

generated by the prime elements in R. Now, suppose a and b are nonunits in R such that gcd(a,b) = 1,

then there does not exist a prime element p ∈ R such that 〈a,b〉 ⊆ 〈p〉 (otherwise a = sp and b = tp,

for some s, t ∈ R implying that p|a and p|b so that gcd(a,b) 6= 1). Hence 〈a,b〉 = R, which implies

that there exist c,d ∈ R such that ca+ db = 1. Therefore R is a Bézout domain (R satisfy the Bézout

identity). Hence every finitely generated ideal is a principal ideal.

Now, suppose R is not a PID. It follows from above that R is therefore not a Noetherian ring either

(Remark 3.30). Hence there exists an infinite ascending chain of finitely generated ideals in R. Since

every finitely generated ideal in R is principal, there exists an infinite chain of principal ideals in R.

But since R is a UFD it satisfies the ascending chain condition on principal ideals by Lemma 3.33 and

therefore we have a contradiction. Hence we conclude that R is a PID.

The following known result is important for the proof of Proposition 3.27.

Theorem 3.35. ([10], p. 6, Theorem 1.8A; [16], p. 92, Chapter 5, Section 14, Corollary 3) Let F be

a field, and let R be an integral domain which is a finitely generated F-algebra. Then for any prime

ideal P in R, we have

height P + dimR/P = dimR

The following three results are known and can be easily proved.

Lemma 3.36. ([17], p. 66, Exercise 4.9, no. 11(iii)) Let R be a commutative ring and let k ∈ R. Then

there is a 1-1 correspondence between the prime ideals in R that contains k and the prime ideals

in R/〈k〉.

Lemma 3.37. ([17], p. 66, Exercise 4.9, no. 6) Let R be a commutative ring with unity and let P be a

prime ideal in R. Then R/P is an integral domain.

Lemma 3.38. ([1], p. 94, Theorem 3.3.4) A finite integral domain is a field.

We are finally able to prove Proposition 3.27 and Proposition 3.28.

Proof of Proposition 3.27. Suppose p is a prime in the prime factorization of k. Then 〈k〉 ⊆ 〈p〉. There-

fore R/〈p〉 is also finite. Since 〈p〉 is a prime ideal it follows from Lemma 3.37 and Lemma 3.38

that R/〈p〉 is a field. Since 〈0〉 is the only prime ideal in a field we have that dimR/〈p〉 = 0. Furthermore,

it follows from Lemma 3.32 that height 〈p〉 = 1. Hence by Theorem 3.35 dimR = 1. We therefore

conclude from Lemma 3.34 that R is a PID. �
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Remark 3.39. It can similarly be shown that if R is a UFD with

height P + dimR/P = dimR

for all prime ideals P in R of height 1, we have that R/〈k〉 finite, for some nonzero nonunit k ∈ R,

implies that R is a PID.

Proof of Proposition 3.28. If we can show that there is no prime ideal in R that strictly contains an

ideal generated by a prime element, then R has Krull dimension 1 by Lemma 3.32 and therefore, by

Lemma 3.34, we are finished.

Let p be an arbitrary prime in R. Since there is a 1-1 correspondence between the prime ideals that

contain 〈p〉, according to Lemma 3.36, and the prime ideals in R/〈p〉, we only have to show that R/〈p〉
does not contain any nonzero prime ideal. Since R/〈p〉 is finite, according to assumption, and 〈p〉 is

prime in R, it follows from Lemma 3.37 and Lemma 3.38 that R/〈p〉 is a field. Therefore R/〈p〉 does

not contain any nonzero prime ideal. �

Remark 3.40. Using Proposition 3.28, Lemma 3.37 and Lemma 3.38, it follows that finding a UFD R,

which is not a PID, that contains a nonzero nonunit k ∈ R such that R/〈k〉 is finite (if such a UFD exists),

is the same as finding a UFD R, with primes p and q such that R/〈p〉 is a finite field and R/〈q〉 is an

integral domain that is not a field.

Example 3.41. Since F[x,y, z] is a UFD, which is a finitely generated F-algebra and not a PID, it fol-

lows from Proposition 3.27 that there is no nonzero nonunit k ∈ F[x,y, z] such that F[x,y, z]/〈k〉 is finite.

Since Zn is finite for every n ∈ Z, it follows from Proposition 3.28 that Z is a PID (as is already

known).

Given that the Gaussian integers Z[i] is a UFD, we can prove that Z[i] is a PID as follows. Let a+ bi be

an arbitrary nonzero nonunit element of Z[i]. Then a2 + b2 = (a+ bi)(a− bi) ∈ 〈a+ bi〉. Since a+ bi

is a nonzero nonunit we have that a2 + b2 > 1. Hence it follows that Z[i]/〈a2 + b2〉 = Za2+b2 [i] ([8],

p. 604, Theorem 1) is finite. Because 〈a2 + b2〉 ⊆ 〈a + bi〉 we have that Z[i]/〈a + bi〉 is also finite.

Since we have chosen a+ bi arbitrary, it follows that Z[i]/〈k〉 is finite for all nonzero nonunit k ∈ Z[i].

Therefore we conclude from Proposition 3.28 that Z[i] is a PID (as is already known).
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CHAPTER

4
The centralizer of a k-matrix in
M2(R/〈k〉), R a UFD

We are what we repeatedly do. Excellence, then, is not an act but a habit.

— ARISTOTLE

THE purpose of this section is to obtain a concrete description of the centralizer of a k-matrix

inM2(R/〈k〉), R a UFD and k a nonzero nonunit in R, by showing that the converse containments⊇
hold in Proposition 2.33 and Corollary 2.39. This will be done in Section 4.1. Recalling Lemma 2.34

and Remark 2.35 this means that the centralizer of a k-matrix is the sum of two subrings. In Section 4.2

necessary and sufficient conditions will be given for when each of these subrings is contained in the

other and for when these two subrings are equal.

In Section 4.1 we provide an example of a UFD, which is not a PID, and a non-k-matrix in M2(R/〈k〉)
(Example 4.9), as well as a universal example of a matrix in Mn(R), where n > 3, for which the

mentioned converse containment does not hold (Example 4.10). Note that we still assume that

θk : R→ R/〈k〉 and Θk : M2(R)→M2(R/〈k〉) are the natural and induced epimorphism respectively.
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4.1 A concrete description of the centralizer of a k-matrix

Lemma 4.1. Let R be a UFD, k ∈ R and let B =

[
e f

g h

]
∈M2(R).

(a) If f̂ is k-invertible (in R/〈k〉), then

Cen(B̂) ⊆ Θ(Cen(B)) +

[
0̂ ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ann(f̂)

]
(4.1)

= Θ(Cen(B)) +

[
ann(f̂) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) 0̂

]
.

(b) If ê− ĥ is k-invertible, then

Cen(B̂) ⊆ Θ(Cen(B)) +

[
0̂ ann(ê− ĥ)

ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
(4.2)

= Θ(Cen(B)) +

[
ann(f̂) ∩ ann(ĝ) ann(ê− ĥ)

ann(ê− ĥ) 0̂

]
.

(c) If ĝ is k-invertible, then

Cen(B̂) ⊆ Θ(Cen(B)) +

[
0̂ ann(ĝ)

ann(f̂) ∩ ann(ê− ĥ) ann(ĝ)

]
(4.3)

= Θ(Cen(B)) +

[
ann(ĝ) ann(ĝ)

ann(f̂) ∩ ann(ê− ĥ) 0̂

]
.

Proof. Let [
â b̂

ĉ d̂

]
∈ Cen(B̂). (4.4)

(a) Since f̂ is k-invertible, there is a k-pre-image rδ of f̂, with r̂ invertible in R/〈k〉 and δ|k. Notice

that δ 6= 0, since k 6= 0. Let t̂ be the inverse of r̂ in R/〈k〉. Then

t̂f̂ = t̂r̂δ̂ = δ̂. (4.5)
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Now we will first show that[
â b̂

ĉ d̂

]
∈ Θ

(
Cen

([
te δ

tg th

]))
+

[
0̂ 0̂

ann(f̂) ann(f̂)

]
. (4.6)

By Lemma 2.29(a) and (4.5),

Cen

([
t̂ê δ̂

t̂ĝ t̂ĥ

])
= Cen

([
ê f̂

ĝ ĥ

])
, (4.7)

and so by (4.4), [
te δ

tg th

][
a b

c d

]
−

[
a b

c d

][
te δ

tg th

]
∈M2(〈k〉). (4.8)

Considering the entries in position (1, 1) and (1, 2), we get δc − btg, bt(e − h) + δ(d − a) ∈ 〈k〉,
implying that c = δ−1btg+ δ−1v and d = a− δ−1bt(e− h) + δ−1w for some v,w ∈ 〈k〉, with δ−1 the

inverse of δ in the quotient field of R. Since δ|k, we have that δ|v and δ|w. Therefore δ−1btg, δ−1v,

a− δ−1bt(e− h), δ−1w ∈ R, and so[
â b̂

ĉ d̂

]
= Θ

([
a b

δ−1btg a− δ−1bt(e− h)

])
+

[
0̂ 0̂

θ(δ−1v) θ(δ−1w)

]
. (4.9)

Since δ−1v, δ−1w ∈ R ∩ δ−1 ker θ, it follows from Lemma 2.31, (4.5) and Lemma 2.29(c) that

δ−1v, δ−1w ∈ θ−1(ann(δ̂)) = θ−1(ann(t̂f̂)) = θ−1(ann(f̂)). (4.10)

We conclude from Corollary 2.9(iv), Lemma 2.11, (4.9) and (4.10) that[
â b̂

ĉ d̂

]
∈ Θ

(
Cen

([
te δ

tg th

]))
+

[
0̂ 0̂

ann(f̂) ann(f̂)

]
(4.11)

which establishes (4.6).

We now distinguish between the following cases:

(i) g 6= 0;

(ii) g = 0, e− h 6= 0;

(iii) g = 0, e− h = 0.
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(i) Let A ∈ Cen

([
te δ

tg th

])
. Since g 6= 0, we have tg 6= 0, and so considering

[
te tg

δ th

]
=

[
te δ

tg th

]T
,

it follows from Corollary 2.9(iv), Lemma 2.11 and Corollary 2.17 that

A =

[
α (tg)−1δγ

γ α− (tg)−1γt(e− h)

]
∈M2(R) (4.12)

for some α,γ ∈ R, with (tg)−1 the inverse of tg in the quotient field of R. By (4.5), tf = δ +mk for

some m ∈ R and so (tg)−1δγ = (tg)−1(δ+mk)γ− (tg)−1mkγ = g−1fγ− (tg)−1mkγ, from which we

conclude that

A =

[
α g−1fγ

γ α− g−1(e− h)γ

]
+

[
0 −(tg)−1mkγ

0 0

]
. (4.13)

By (4.12) we have that (tg)−1δγ ∈ R, and so (tg)−1mkγ ∈ R, since δ|k. Hence[
α g−1fγ

γ α− g−1(e− h)γ

]
∈M2(R),

which, again by Corollary 2.9(iv), Lemma 2.11 and Corollary 2.17, implies that[
α g−1fγ

γ α− g−1(e− h)γ

]
∈ Cen

([
e f

g h

])
= Cen(B).

Next we deduce from Lemma 2.29(c) and Lemma 2.31 that

−(tg)−1mkγ ∈ R ∩ (tg)−1 ker θ = θ−1(ann(t̂ĝ)) = θ−1(ann(ĝ)).

and so, by (4.13),

Θ(A) ∈ Θ(Cen(B)) +

[
0̂ ann(ĝ)

0̂ 0̂

]
. (4.14)

Thus combining (4.11) and (4.14), we have[
â b̂

ĉ d̂

]
∈ Θ

(
Cen

([
e f

g h

]))
+

[
0̂ ann(ĝ)

ann(f̂) ann(f̂)

]
. (4.15)
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(ii) Using Corollary 2.10(i) instead of Corollary 2.9(iv), similar arguments show that in this case,[
â b̂

ĉ d̂

]
∈ Θ

(
Cen

([
e f

g h

]))
+

[
0̂ ann(ê− ĥ)

ann(f̂) ann(f̂)

]
. (4.16)

(iii) If e− h,g = 0 and A ∈ Cen

([
te δ

tg th

])
, then by Corollary 2.10(iii) and Lemma 2.11,

A =

[
α β

0 α

]
, (4.17)

for some α,β ∈ R. Hence, again by Corollary 2.10(iii), Lemma 2.11 and (4.17), A ∈ Cen

([
e f

g h

])
,

and so it follows from (4.11) that[
â b̂

ĉ d̂

]
∈ Θ

(
Cen

([
e f

g h

]))
+

[
0̂ 0̂

ann(f̂) ann(f̂)

]
.

Consequently (4.15) holds again (as well as (4.16)).

We are finally in a position to prove that[
â b̂

ĉ d̂

]
∈ Θ

(
Cen

([
e f

g h

]))
+

[
0̂ ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ann(f̂)

]
. (4.18)

To this end, first note by (4.15) and (4.16)[
â b̂

ĉ d̂

]
= X̂+

[
0̂ q̂

ŷ ẑ

]
(4.19)

for some X̂ ∈ Θ(Cen(B)), ŷ, ẑ ∈ ann(f̂) and q̂ ∈ ann(ĝ) (respectively q̂ ∈ ann(ê− ĥ)). By (2.34) in the

proof of Proposition 2.33 X̂ ∈ Cen(B̂) and so it follows from (4.4) and (4.19) that[
0̂ q̂

ŷ ẑ

]
∈ Cen(B̂).
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Thus [
0 q

y z

][
e f

g h

]
−

[
e f

g h

][
0 q

y z

]
= M2(〈k〉). (4.20)

Since ŷ, ẑ ∈ ann(f̂), consideration of positions (1, 1) and (1, 2) in (4.20) shows that q̂ĝ, q̂(ê− ĥ) = 0̂,

and so q̂ ∈ ann(ĝ) ∩ ann(ê− ĥ). Thus, we conclude that[
â b̂

ĉ d̂

]
∈ Θ(Cen(B)) +

[
0̂ ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ann(f̂)

]
,

which establishes (4.18), and so we have proved (4.1).

(b) If one uses Corollary 2.10 instead of Corollary 2.9 and distinguishes between the following cases,

then arguments analogous to those in the proof of (a) lead to (4.2):

(i) g 6= 0;

(ii) f 6= 0;

(iii) g = 0 and f = 0.

(c) Suppose ĝ is k-invertible. By Corollary 2.17, Lemma 2.32 and (4.1),

Cen

([
ê f̂

ĝ ĥ

])
=

(
Cen

([
ê ĝ

f̂ ĥ

]))T

⊆

(
Θ

(
Cen

([
e g

f h

])))T
+

[
0̂ ann(f̂) ∩ ann(ê− ĥ)

ann(ĝ) ann(ĝ)

]T

= Θ

(
Cen

([
e f

g h

]))
+

[
0̂ ann(ĝ)

ann(f̂) ∩ ann(ê− ĥ) ann(ĝ)

]
,

i.e. (4.3) holds.

Corollary 4.2. Let R be a UFD, k ∈ R and let B =

[
e f

g h

]
∈ M2(R). If at least one of the three
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elements ê− ĥ, f̂ and ĝ is equal to 0̂ and at least one of the remaining two elements is k-invertible, then

Cen(B̂) = Θ(Cen(B)) +

[
0̂ ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
(4.21)

= Θ(Cen(B)) +

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) 0̂

]

= Θ(Cen(B)) +

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
.

Proof. By Corollary 2.39 we only have to prove the containment ⊆ in (4.21). We consider the following

possibilities:

(i) f̂ = 0̂ and ê− ĥ is k-invertible;

(ii) f̂ = 0̂ and ĝ is k-invertible;

(iii) ê− ĥ = 0̂ and f̂ is k-invertible;

(iv) ê− ĥ = 0̂ and ĝ is k-invertible;

(v) ĝ = 0̂ and f̂ is k-invertible;

(vi) ĝ = 0̂ and ê− ĥ is k-invertible.

(i) Let

[
â b̂

ĉ d̂

]
∈ Cen(B̂). Since f̂ = 0̂ we have ann(f̂) = R/〈k〉. Hence Lemma 4.1(b) implies that

[
â b̂

ĉ d̂

]
= X̂+

[
0̂ x̂

ŷ ẑ

]
(4.22)

for some X̂ ∈ Θ(Cen(B)), x̂ ∈ ann(ê− ĥ), ŷ ∈ ann(f̂) ∩ ann(ê− ĥ) and z ∈ ann(f̂) ∩ ann(ĝ). If we can

show that x̂ ∈ ann(ĝ), then we will have the containment ⊇ in (4.21). By (2.34) in the proof of

Proposition 2.33, X̂ ∈ Cen(B̂), and so we conclude from (4.22) that

[
0̂ x̂

ŷ ẑ

]
∈ Cen(B̂). Hence,

[
0̂ x̂

ŷ ẑ

][
ê 0̂

ĝ ĥ

]
=

[
ê 0̂

ĝ ĥ

][
0̂ x̂

ŷ ẑ

]
. (4.23)

Equating the entries in position (1, 1) we have x̂ĝ = 0̂, whence x̂ ∈ ann(ĝ) follows.
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((ii)–(vi)) These five possibilities are treated similarly by using Lemma 4.1(a), Lemma 4.1(c), Corol-

lary 2.17 and Lemma 2.32.

We will also use the following result in the proof of Theorem 4.5.

Lemma 4.3. Let R be a UFD and let b,k, δ,ν ∈ R. If k = νδ, then

ν(θ−1
δ (annR/〈δ〉(b̂δ)) ⊆ θ−1

k (annR/〈k〉(b̂k)).

Proof. Since k 6= 0, we have that ν 6= 0. If b = 0 it follows that b̂k = 0̂k and b̂δ = 0̂δ. Thus

νθ−1
δ (annR/〈δ〉(b̂δ)) = νR ⊆ R = θ−1

k (annR/〈k〉(b̂k)).

If b 6= 0 and s ∈ θ−1
δ (annR/〈k〉(b̂δ)), then by Lemma 2.31, s = b−1tδ for some t ∈ R, and so

νs ∈ b−1〈k〉. Again, by Lemma 2.31, νs ∈ θ−1
k (annR/〈k〉(b̂k)).

The next example illustrates Lemma 4.3.

Example 4.4. Let b = 6 − 4x+ 2x2, k = 2x, δ = x and ν = 2 in R = Z[x]. Then

2θ−1
x

(
annZ[x]/〈x〉

(
θx
(
6 − 4x+ 2x2))) = 2〈x〉 = 〈2x〉

$ 〈x〉 = θ−1
2x (〈x̂2x〉)

= θ−1
2x

(
annZ/〈2x〉

(
θ2x

(
6 − 4x+ 2x2))) .

We are now able to prove our main result.

Theorem 4.5. Let R be a UFD, k ∈ R and let B =

[
e f

g h

]
∈ M2(R). If Θ : M2(R) → M2(R/〈k〉) is

the natural epimorphism and Θ(B) = B̂ is a k-matrix, then

Cen(B̂) = Θ(Cen(B)) +

[
0̂ ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
(4.24)

= Θ(Cen(B)) +

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) 0̂

]
(4.25)

= Θ(Cen(B)) +

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
. (4.26)
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Proof. By Corollary 2.39 we only have to prove the containment ⊆ in (4.24). Let

[
âk b̂k

ĉk d̂k

]
∈

CenM2(R/〈k〉)(B̂k). Since B̂k is a k-matrix, we distinguish between the following cases:

(i) f̂k is k-invertible and (δ is a unit or êδ − ĥδ is δ-invertible or ĝδ is δ-invertible);

(ii) êk − ĥk is k-invertible and (δ is a unit or f̂δ is δ-invertible or ĝδ is δ-invertible);

(iii) ĝk is k-invertible and (δ is a unit or f̂δ is δ-invertible or êδ − ĥδ is δ-invertible).

(i) Suppose f̂k is k-invertible and (δ is a unit or êδ− ĥδ is δ-invertible or ĝδ is δ-invertible). If δ is a unit,

then f̂k is invertible which implies that 0̂k = ann(f̂k) = ann(f̂k) ∩ ann(ĝk) and that 0̂k = ann(f̂k) =

ann(f̂k) ∩ ann(êk − ĥk). Hence the result follows from Lemma 4.1(a). Thus suppose that δ is not a

unit. By Lemma 4.1(a) [
âk b̂k

ĉk d̂k

]
= X̂k +

[
0̂k x̂k

0̂k 0̂k

]
+

[
0̂k 0̂k
ŷk ẑk

]
,

where X̂k ∈ Θk(Cen(B)), x̂k ∈ annR/〈k〉(ĝk) ∩ annR/〈k〉(êk − ĥk) and ŷk, ẑk ∈ annR/〈k〉(f̂k). We will

show that [
0̂k 0̂k
ŷk ẑk

]
∈ Θk(Cen(B)) + (4.27)[

0̂k annR/〈k〉(ĝk) ∩ annR/〈k〉(êk − ĥk)

annR/〈k〉(f̂k) ∩ annR/〈k〉(êk − ĥk) annR/〈k〉(f̂k) ∩ annR/〈k〉(ĝk)

]
.

Then the containment ⊆ in (4.24) will have been established.

By (2.34) and (2.35) in the proof of Proposition 2.33

X̂k,

[
0̂k x̂k

0̂k 0̂k

]
∈ CenM2(R/〈k〉)(B̂k).

Therefore [
0̂k 0̂k
ŷk ẑk

]
∈ CenM2(R/〈k〉)(B̂k). (4.28)

By Lemma 3.6, there is a k-pre-image rδ of f̂k, with relative prime part r and divisor part δ. By

Corollary 3.20

〈t〉 = θ−1
k (annR/〈k〉(f̂k)),
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where t = δ−1k ∈ R. Since y, z ∈ θ−1
k (annR/〈k〉(f̂k)), it follows that

y = mt and z = nt (4.29)

for some m,n ∈ R. It follows from (4.28) that[
0̂k 0̂k
ŷk ẑk

][
êk f̂k

ĝk ĥk

]
=

[
êk f̂k

ĝk ĥk

][
0̂k 0̂k
ŷk ẑk

]

and so [
0 0

mt nt

][
e f

g h

]
−

[
e f

g h

][
0 0

mt nt

]
∈M2(〈k〉). (4.30)

Considering positions (1, 1), (1, 2), (2, 1) and (2, 2) in (4.30), we obtain

fmt, fnt, emt+ gnt− hmt ∈ 〈k〉,

which implies that

fm, fn, em+ gn− hm ∈ 〈δ〉.

This in turn implies that [
0 0

m n

][
e f

g h

]
−

[
e f

g h

][
0 0

m n

]
∈M2(〈δ〉)

or equivalently, [
0̂δ 0̂δ
m̂δ n̂δ

][
êδ f̂δ

ĝδ ĥδ

]
=

[
êδ f̂δ

ĝδ ĥδ

][
0̂δ 0̂δ
m̂δ n̂δ

]
,

i.e. [
0̂δ 0̂δ
m̂δ n̂δ

]
∈ CenM2(R/〈δ〉)(B̂δ). (4.31)

Since f̂k = (r̂δ)k it follows that f = rδ + wk for some w ∈ R. Since δ|k, it follows that δ 6= 0, and

so f = rδ+wδ−1kδ ∈ 〈δ〉. Thus f̂δ = 0̂δ. Since êδ− ĥδ or ĝδ is δ-invertible, it follows from Corollary 4.2
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and (4.31) that[
0̂δ 0̂δ
m̂δ n̂δ

]
∈ Θδ(CenM2(R)(B)) +[

0̂δ annR/〈δ〉(ĝδ) ∩ annR/〈δ〉(êδ − ĥδ)

annR/〈δ〉(f̂δ) ∩ annR/〈δ〉(êδ − ĥδ) annR/〈δ〉(f̂δ) ∩ annR/〈δ〉(ĝδ)

]
.

Hence [
0̂δ 0̂δ
m̂δ n̂δ

]
−Θδ(A) =

[
θδ(0) θδ(α)

θδ(β) θδ(γ)

]
for some

A ∈ CenM2(R)(B), α ∈ θ−1
δ (annR/〈δ〉(ĝδ) ∩ annR/〈δ〉(êδ − ĥδ)), (4.32)

β ∈ θ−1
δ (annR/〈δ〉(f̂δ)∩annR/〈δ〉(êδ−ĥδ)) and γ ∈ θ−1

δ (annR/〈δ〉(f̂δ)∩annR/〈δ〉(ĝδ)). (4.33)

Thus [
0 0

m n

]
−A−

[
0 α

β γ

]
∈M2(〈δ〉), (4.34)

i.e. [
0 0

mt nt

]
− tA−

[
0 tα

tβ tγ

]
∈M2(〈k〉). (4.35)

Since k = δt, it follows from Lemma 4.3 that

tα ∈ θ−1
k (annR/〈k〉(ĝk)) ∩ θ−1

k (annR/〈k〉(êk − ĥk)) = θ−1
k (annR/〈k〉(ĝk) ∩ annR/〈k〉(êk − ĥk)).

Using (4.33), one obtains similar results for tβ and tγ. By (4.32), tA ∈ CenM2(R)(B), and so we

conclude from (4.29) and (4.35) that[
0̂k 0̂k
ŷk ẑk

]
= Θk(tA) −

[
0̂k θk(tα)

θk(tβ) θk(tγ)

]
∈ Θk(Cen(B)) +[

0̂k annR/〈k〉(ĝk) ∩ annR/〈k〉(êk − ĥk)

annR/〈k〉(f̂k) ∩ annR/〈k〉(êk − ĥk) annR/〈k〉(f̂k) ∩ annR/〈k〉(ĝk)

]
.

(ii) Invoking Lemma 4.1(b) instead of Lemma 4.1(a), the result follows as in case (i).

(iii) Suppose ĝk is k-invertible and (δ is a unit or f̂δ is δ-invertible or êδ − ĥδ is δ-invertible). Now,

the result follows, similar to the proof of Lemma 4.1(c), from Corollary 2.17, (i) and Lemma 2.32, or
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similar to (i), using Lemma 4.1(c) instead of Lemma 4.1(a).

The following result can simplify calculations regarding Theorem 4.5 and will be used in the proof

of Theorem 4.11.

Lemma 4.6. Let R be a UFD and let k, x,y ∈ R, then

ann(d̂) = ann(x̂) ∩ ann(ŷ)

in R/〈k〉, with gcd(x,y) = d.

Proof. By definition there are u, v ∈ R such that ud = x and vd = y from which it follows that

ûkd̂k = x̂k and v̂kd̂k = ŷk. Now, assume l̂k ∈ annR/〈k〉(d̂k) so that l̂kd̂k = 0̂k which implies

that l̂kx̂k = l̂kûkd̂k = l̂kd̂kûk = 0̂kd̂k = 0̂k and that l̂kŷk = l̂kv̂kd̂k = l̂kd̂kv̂k = 0̂kv̂k = 0̂k. Thus

annR/〈k〉(d̂k) ⊆ annR/〈k〉(x̂k) ∩ annR/〈k〉(ŷk).

Conversely, assume l̂k ∈ annR/〈k〉(x̂k) ∩ annR/〈k〉(ŷk). Then l̂kx̂k = 0̂k and l̂kŷk = 0̂k and so

θ−1
k (̂lkx̂k) = ker θk and θ−1

k (̂lkŷk) = ker θk. Because lx ∈ θ−1
k (̂lkx̂k) and ly ∈ θ−1

k (̂lkŷk) it follows

that lx ∈ ker θk and that ly ∈ ker θk. Since d = gcd(x,y), it follows from the Bézout identity that

there are u ′, v ′ ∈ R such that u ′x+ v ′y = d which implies that u ′lx+ v ′ly = ld. Since lx ∈ ker θk and

ly ∈ ker θk and ker θk is an ideal in R, we have that ld = u ′lx+v ′ly ∈ ker θk. Thus θk(ld) = l̂kd̂k = 0̂k.

Therefore l̂k ∈ annR/〈k〉(d̂k) and we conclude that

annR/〈k〉(d̂k) = annR/〈k〉(x̂k) ∩ annR/〈k〉(ŷk).

Example 4.7. Consider B =

[
y x

x 0

]
∈ M2(F[x,y]) and the x2-matrix B̂ ∈ M2(F[x,y]/〈x2〉) in

Example 3.19(a). We use Theorem 4.5, (4.25), to obtain Cen(B̂). According to Corollary 2.12(ii)

Cen(B) =

{[
h1 xh2

xh2 h1 − yh2

]∣∣∣∣∣h1,h2 ∈ F[x,y]

}
. (4.36)

Furthermore, ann(x̂) = 〈x̂〉 and ann(x̂) ∩ ann(ŷ) = 0̂, and so it follows from (4.36) and Theorem 4.5,
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(4.25), that

Cen(B̂) = Θ

({[
h1 xh2

xh2 h1 − yh2

]∣∣∣∣∣ h1,h2 ∈ F[x,y]

})
+

[
〈x̂〉 0̂

0̂ 0̂

]

=

{[
ĥ1 + ĥ3x̂ x̂ĥ2

x̂ĥ2 ĥ1 − ŷĥ2

]∣∣∣∣∣ ĥ1, ĥ2, ĥ3 ∈ F[x,y]/〈x2〉

}
.

Remark 4.8. Note that in the above example

Θ(Cen(B)) 6⊆

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]

and that [
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
6⊆ Θ(Cen(B)).

According to Corollary 3.18, Theorem 4.5 applies to all 2 × 2 matrices over factor rings R/〈k〉,
where R is a PID. In other words, we have equality in Proposition 2.33 for all 2× 2 matrices over factor

rings of PID’s. This is not the case for all 2× 2 matrices over factor rings R/〈k〉, where R is a UFD, as

the following example shows.

Example 4.9. Consider B =

[
x+ y y

x x

]
∈M2(F[x,y]) and the non-x2-matrix B̂ ∈M2(F[x,y]/〈x2〉)

in Example 3.19(b). By Corollary 2.12(ii)

Cen(B) =

{[
h1 yh2

xh2 h1 − yh2

]∣∣∣∣∣ h1,h2 ∈ F[x,y]

}
. (4.37)

The second term in the righthand side of (4.25) is[
ann(ŷ) ∩ ann(x̂) ann(x̂) ∩ ann(ŷ)

ann(ŷ) ∩ ann(ŷ) 0̂

]
=

[
0̂ 0̂

0̂ 0̂

]
,

because ann(ŷ) = 0̂. Therefore the righthand side of (4.25) is equal to{[
ĥ1 ŷĥ2

x̂ĥ2 ĥ1 − ŷĥ2

]∣∣∣∣∣ ĥ1, ĥ2 ∈ F[x,y]/〈x2〉

}
,
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which does not contain the matrix

[
x̂ x̂

0̂ 0̂

]
. However, direct verification shows that

[
x̂ x̂

0̂ 0̂

]
∈ Cen(B̂).

In the following example we will see that for every n > 3 and for any UFD R and k ∈ R such

that R/〈k〉 is a ring with zero divisors, there is a matrix B ∈Mn(R) for which we do not have equality

in Proposition 2.33.

Example 4.10. Let R be a UFD and let k ∈ R such that R/〈k〉 has zero divisors. Thus suppose

that d̂, d̂ ′ ∈ R/〈k〉, d̂, d̂ ′ 6= 0̂ and d̂d̂ ′ = 0̂. Now let B =

 0 d 1

0 0 1

0 0 0

 ∈ M3(R). Note that d 6= 0

since d̂ 6= 0̂. Because the characteristic polynomial of B is equal to the minimum polynomial of B it

follows from Theorem 1.3 and Lemma 2.11 that CenM3(R)(B) =a
 0 0 d

0 0 0

0 0 0

+ b

 0 d 1

0 0 1

0 0 0

+ c

 1 0 0

0 1 0

0 0 1


∣∣∣∣∣∣∣
a,b, c are elements

of the quotient

field of R.

 ∩M3(R),

and so every matrix in Θ(Cen(B)) has 0̂ in position (2, 1). Furthermore, using the notation in Proposi-

tion 2.33 we have

[Aij] =

 0̂ 0̂ R/〈k〉
0̂ 0̂ 〈d̂ ′〉
0̂ 0̂ 0̂

 .

Hence every matrix in Θ(Cen(B)) + [Aij] has 0̂ in position (2, 1). However, direct multiplication shows

that  d̂
′ 0̂ 0̂

d̂ ′ 0̂ 0̂

0̂ 0̂ d̂ ′

 ∈ Cen(B̂),

and so equality in Proposition 2.33 does not hold in this case. Now, again let R be a UFD and let k ∈ R

65



Chapter 4. The centralizer of a k-matrix in M2(R/〈k〉), R a UFD

such that R/〈k〉 has zero divisors. Let us consider the matrix

B ′ =


0 d 1

0 0 1

0 0 0

©

© ©

 ∈Mn(R).

Then

Cen(B ′) ⊆

[
Cen(B) R/〈k〉
R/〈k〉 R/〈k〉

]
and [Aij] ⊆


0̂ 0̂ R/〈k〉
0̂ 0̂ 〈d̂ ′〉
0̂ 0̂ 0̂

R/〈k〉

R/〈k〉 R/〈k〉

 .

Since

Â :=


d̂ ′ 0̂ 0̂

d̂ ′ 0̂ 0̂

0̂ 0̂ d̂ ′
©̂

©̂ ©̂

 ∈ Cen(B̂ ′),

but clearly Â 6∈ Θ(Cen(B ′)) + [Aij], equality in Proposition 2.33, for these cases, does not hold.

It is interesting to note that it follows from Lemma 2.37 that
d̂ ′ 0̂ 0̂

0̂ 0̂ 0̂

0̂ 0̂ 0̂

©̂

©̂ ©̂

 ,


0̂ 0̂ 0̂

d̂ ′ 0̂ 0̂

0̂ 0̂ 0̂

©̂

©̂ ©̂

 ,


0̂ 0̂ 0̂

0̂ 0̂ 0̂

0̂ 0̂ d̂ ′
©̂

©̂ ©̂

 6∈ Cen(B̂ ′).
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4.2 Containment considerations regarding Section 4.1

Considering Remark 4.8, the following questions arise regarding the concrete description in Theo-

rem 4.5:

(1) when is

Cen(B̂) = Θ(Cen(B))?

(2) when is

Cen(B̂) =

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
?

(3) and when is

Θ(Cen(B)) =

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
?

Theorem 4.11. Let R be a UFD, k = p
n1
1 p

n2
2 · · ·pnmm , where p1, . . . ,pm are different primes and ni > 1

for all i, and let

B =

[
e f

g h

]
∈M2(R)

be such that B̂ is a k-matrix. Then

(a)

CenM2(R/〈k〉)(B̂) = Θk(CenM2(R)(B)) (4.38)

if and only if B is a scalar matrix or satisfies the following conditions for every i, i = 1, 2, . . . ,m:

(i) pi is not a divisor of at least one of the elements e− h, f and g; pick such an element a, and

call the remaining two elements b and c, say.

(ii) gcd(b, c,k) = 1 or âgcd(b,c,k) is invertible in R/〈gcd(b, c,k)〉;

(b)

Cen(B̂) =

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
(4.39)

if and only if f̂ = 0̂ and ĝ = 0̂;
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(c)

Θ(Cen(B)) =

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
(4.40)

if and only if f̂ = 0̂, ĝ = 0̂ and (ê− ĥ is invertible or ê− ĥ = 0̂).

Proof. (a) Since (4.38) follows trivially if B is a scalar matrix, we assume that B is a nonscalar matrix.

Suppose that conditions (i) and (ii) are satisfied for every i, i = 1, . . . ,m. We now show that[
0̂k annM2(R/〈k〉)(θk(gcd(g, e− h)))

0̂k 0̂k

]
,

[
0̂k 0̂k

annM2(R/〈k〉)(θk(gcd(f, e− h))) 0̂k

]
, (4.41)

[
0̂k 0̂k
0̂k annM2(R/〈k〉)(θk(gcd(f,g)))

]
⊆ Θk(CenM2(R)(B)). (4.42)

Since then, because Θk(CenM2(R)(B)) is a ring (Remark 2.35), (4.38) follows from Theorem 4.5 and

Lemma 4.6.

If annM2(R/〈k〉)(θk(gcd(g, e− h))) = 0̂k then it follows trivially that[
0̂k annM2(R/〈k〉)(θk(gcd(g, e− h)))

0̂k 0̂k

]
⊆ Θk(CenM2(R)(B)).

Thus suppose that annM2(R/〈k〉)(θk(gcd(g, e − h))) 6= 0̂k. Then 1 6= gcd(g, e − h,k) := δ and, by

Corollary 3.20,

annM2(R/〈k〉)(θk(gcd(e− h,g))) = 〈(k̂δ−1)k〉. (4.43)

To accomplish our objective, we show that for each d̂k ∈ annM2(R/〈k〉)(θk(gcd(g, e − h))) there is

a d̂ ′k ∈ annM2(R/〈k〉)(θk(gcd(g, e− h))) such that f̂kd̂ ′k = d̂k, since then

Θk

([
0 fd ′

gd ′ (e− h)d ′

])
=

[
0̂k d̂k

0̂k 0̂k

]
,

so that we therefore can conclude from Corollary 2.12(ii) that[
0̂k annM2(R/〈k〉)(θk(gcd(g, e− h)))

0̂k 0̂k

]
∈ Θk(CenM2(R)(B)).

Thus, let d̂k be an arbitrary element in annM2(R/〈k〉)(θk(gcd(g, e − h))), i.e. suppose, using (4.43),

that d̂k := ŝk(k̂δ−1)k for some ŝk ∈ R/〈k〉. Since by assumpsion δ := gcd(e − h,g,k) 6= 1, it follows

from condition (i) that gcd(f, δ) = 1 and from condition (ii) that f̂δ is invertible in R/〈δ〉. Thus
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there is a t̂δ ∈ R/〈δ〉 such that t̂δf̂δ = 1̂δ which implies that tf = 1 + vδ for some v ∈ R. Hence

ftd = (1 + vδ)(skδ−1 +wk) = skδ−1 + (w + vs + vδw)k, for some w ∈ R. In other words, if we set

d̂ ′k := (t̂d)k then f̂kd̂ ′k = f̂k(t̂d)k = (ŝkδ−1)k = d̂k.

The containment in Θk(CenM2(R)(B)) of each of the other two sets in (4.41) and (4.42) can similarly

be shown.

Conversely, suppose B does not satisfy both of the conditions (i) and (ii) for some i, 1 6 i 6 m. We

distinguish between the following cases:

(a ′) B does not satisfy (i) for some i, i = 1, . . . ,m, i.e. gcd(e− h, f,g,k) 6= 1;

(b ′) B satisfies (i) for every i, i = 1, . . . ,m, but for some i, 1 6 i 6 m, B satisfies (i) but not (ii).

(a ′) Suppose there is a prime pi in the prime factorization of k such that pi|e− h, f,g. We distinguish

between the following two cases:

(i ′) f = 0 or g = 0;

(ii ′) f,g 6= 0.

(i ′) Since pi|e− h, f,g, direct verification shows that

Âk :=

[
0̂k θk(p

n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m )

θk(p
n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m ) 0̂k

]
∈ CenM2(R/〈k〉)(B̂k).

Because θk(p
n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m ) 6= 0̂k, it follows that the entries in position (1, 2) and

position (2, 1) of Âk only have nonzero pre-images in R. Since B is a nonscalar matrix, it follows

from Corollary 2.12(ii) that every matrix in CenM2(R)(B) has 0 in position (1, 2) if f = 0 and 0 in

position (2, 1) if g = 0. Therefore Âk 6∈ Θk(CenM2(R)(B)) if f = 0 or g = 0.

(ii ′) Since f,g 6= 0 and pi|f,g it follows that

f = cpri and g = dpsi (4.44)
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for some s, r > 1 and c,d ∈ R such that pi - c,d. Now, r 6 s or s 6 r. Let us first assume that r 6 s.

Because pi|e− h, f,g direct verification shows that

Âk :=

[
0̂k 0̂k

θk(p
n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m ) 0̂k

]
∈ CenM2(R/〈k〉)(B̂k).

We now show that Âk 6∈ Θk(CenM2(R)(B)). Firstly note that the set of all the pre-images of Âk is[
ker θk ker θk

p
n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m + ker θk ker θk

]
.

Thus, if Âk ∈ Θk(CenM2(R)(B)), then, by Corollary 2.9(iv) and Lemma 2.11, there is a pre-image[
κ1 κ2

p
n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m + κ3 κ4

]
∈M2(R)

of Âk, where κ1, κ2, κ3,κ4 ∈ ker θk, such that[
κ1 κ2

p
n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m + κ3 κ4

]
=

[
a b

gf−1b a− (e− h)f−1b

]

in M2(R) for some a,b ∈ R. In other words, there are a,b ∈ R such that κ1 = a, κ2 = b

and pn1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m + κ3 = gf−1b. But then, considering (4.44) and keeping in mind

that r 6 s, that gf−1b ∈ R, that pnii |κ2 and that pi - c,d, we have that gf−1b = dpsi (cp
r
i)

−1κ2 ∈ 〈pnii 〉,
where 〈pnii 〉 is the ideal generated by pnii in R. Because pnii - pn1

1 · · ·p
ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m + κ3, it

follows that pn1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m + κ3 6∈ 〈pnii 〉, which implies that

p
n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m + κ3 6= gf−1b.

We therefore have a contradiction. Therefore Âk 6∈ Θk(CenM2(R)(B)).

If s 6 r one can similarly show that

Âk :=

[
0̂k θk(p

n1
1 · · ·p

ni−1
i−1 p

ni−1
i p

ni+1
i+1 · · ·p

nm
m )

0̂k 0̂k

]
∈ CenM2(R/〈k〉)(B̂k),

and that Âk 6∈ Θk(CenM2(R)(B)), by using Corollary 2.17 and Corollary 2.9(iv), instead of Corol-

lary 2.9(iv).
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(b ′) Suppose B satisfies (i) for every i, i = 1, . . . ,m, but for some i, 1 6 i 6 m, B satisfies (i) but

not (ii). Then at least one of the following cases is true:

(i ′) gcd(e− h, f,g,k) = 1 , 1 6= gcd(e− h,g,k) := δ and f̂δ is not invertible in R/〈δ〉;

(ii ′) gcd(e− h, f,g,k) = 1 , 1 6= gcd(e− h, f,k) := δ and ĝδ is not invertible in R/〈δ〉;

(iii ′) gcd(e− h, f,g,k) = 1 , 1 6= gcd(f,g,k) := δ and êδ − ĥδ is not invertible in R/〈δ〉;

We now show that (4.38) does not follow in each of the above cases.

(i ′) In this case Corollary 3.20 implies that

annM2(R/〈k〉)(θk(gcd(g, e− h))) = 〈(k̂δ−1)k〉.

Note that since δ is not a unit, 〈kδ−1〉 6= 〈k〉, it follows, by Theorem 4.5, that

Âk :=

[
0̂k (k̂δ−1)k

0̂k 0̂k

]
∈ CenM2(R/〈k〉)(B̂).

If we can show that Âk 6∈ Θk(CenM2(R)(B)), then we are finished. Now,[
ker θk k−1δ+ ker θk
ker θk ker θk

]

is the set of all the pre-images of Âk in R. Furthermore, recall that gcd(e− h, f,g,k) = 1. Therefore,

if Âk ∈ Θk(CenM2(R)(B)), it follows from Corollary 2.12(ii) that there is a pre-image[
κ1 kδ−1 + κ2

κ3 κ4

]
∈M2(R)

of Âk, where κ1, κ2, κ3,κ4 ∈ ker θk, such that[
κ1 kδ−1 + κ2

κ3 κ4

]
=

[
a fb

gb a− (e− h)b

]

for some a,b ∈ R. Hence, gb = κ3 and (e− h)b = κ1 − κ4, which implies, using the assumption that

gcd(e− h,g,k) := δ, that b = skδ−1 for some s ∈ R. But then, since fb = kδ−1 + κ2, we have that

fb = fskδ−1 = kδ−1 + κ2 ⇔ fs = 1 + tδ for some t ∈ R⇔ f̂δŝδ = 1̂δ.
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Since f̂δ is not invertible in R/〈δ〉, by assumption, we have a contradiction. Therefore

Âk 6∈ Θk(CenM2(R)(B))

and so we conclude that CenM2(R/〈k〉)(B̂k) 6⊆ Θk(CenM2(R)(B)).

((ii ′) and (iii ′)) In these cases it follows similarly to case (i ′) that CenM2(R/〈k〉)(B̂k) 6⊆ Θ(CenM2(R)(B)).

(b) Suppose f̂, ĝ = 0̂. If B is a scalar matrix, then the result follows trivially. Thus suppose B is a

nonscalar matrix. Now, f,g ∈ 〈k〉, and so by Corollary 2.12(ii)

Θ(Cen(B)) ⊆ Θ

({[
a fb

gb a− (e− h)b

]∣∣∣∣∣a,b ∈ R

})

= Θ

({[
a 0

0 a− (e− h)b

]∣∣∣∣∣a,b ∈ R

})

⊆

[
R/〈k〉 ann(ê− ĥ)

ann(ê− ĥ) R/〈k〉

]

=

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
.

Conversely, suppose

Θ(Cen(B)) ⊆

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
.

Since

[
â 0̂

0̂ â

]
∈ Θ(Cen(B)) for every â ∈ R/〈k〉 it follows that ann(f̂)∩ann(ĝ) = R/〈k〉 which implies

that ann(f̂) = R/〈k〉 and that ann(ĝ) = R/〈k〉 and so f̂, ĝ = 0̂.

(c) Using (b) and (a), it follows that

Θ(Cen(B)) =

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
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⇔ Θ(Cen(B)) ⊆

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
and[

ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
⊆ Θ(Cen(B))

⇔ f̂, ĝ = 0̂ and

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]
⊆ Θ(Cen(B))

⇔ f̂, ĝ = 0̂ and (ê− ĥ is invertible in R/〈k〉 or ê− ĥ = 0̂).

Example 4.12. Let R = F[x,y, z], k = x3y2z and let

B =

[
x2y2 x+ 1

x2 0

]
, B ′ =

[
x2y2 0

0 0

]
and B ′′ =

[
1 + xyz 0

0 0

]
.

Note that B̂, B̂ ′ and B̂ ′′ are x3y2z-matrices. Since gcd(x2y2, x2) = x2 and (x̂+ 1)x2 is invertible

in R/〈x2〉, it follows from Corollary 2.12(ii) and Theorem 4.11(a) that

Cen(B̂) = Θ(Cen(B)) =

{[
â (x̂+ 1)b̂

x̂2b̂ â+ x̂2y2b̂

]∣∣∣∣∣ â, b̂ ∈ F[x,y, z]/〈x3y2z〉

}
.

Furthermore, it follows from Theorem 4.11(b) that

Cen(B̂ ′) =

[
R/〈x3y2z〉 〈x̂z〉
〈x̂z〉 R/〈x3y2z〉

]

and, since θx3y2z(1 + xyz) is invertible in R/〈x3y2z〉, from Theorem 4.11(c) that

Cen(B̂ ′′) = Θ(Cen(B ′′)) =

[
ann(f̂) ∩ ann(ĝ) ann(ĝ) ∩ ann(ê− ĥ)

ann(f̂) ∩ ann(ê− ĥ) ann(f̂) ∩ ann(ĝ)

]

=

[
R/〈x3y2z〉 0̂

0̂ R/〈x3y2z〉

]
.

Remark 4.13. Note that in Example 4.7, using the notation of Theorem 4.11(a), we have that m = 1.

Now, for i = 1, B satisfies condition (i), since x - y, but not condition (ii), since ŷx is not invertible in

F[x,y]/〈x〉 as Remark 4.8 conveys.
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Using Lemma 3.2, Corollary 3.7 and Corollary 3.18 we simplify Theorem 4.11(a) for the case

when R is a PID.

Corollary 4.14. Let R be a PID and let B =

[
e f

g h

]
∈M2(R). Then

Cen(B̂) = Θ(Cen(B))

if and only if B is a scalar matrix or gcd(e− h, f,g,k) = 1.

Note that although Corollary 4.15 is not a characterization of the k-matrices for which question 1 at

the beginning of this section is true, it is easier to verify if Corollary 4.15 applies to a specific matrix

in M2(R) than to verify if Theorem 4.11(a) applies to a specific matrix in M2(R).

Corollary 4.15. Let R be a UFD, k ∈ R and B =

[
e f

g h

]
∈ M2(R). If at least one of the three

elements ê− ĥ, f̂ and ĝ is invertible in R/〈k〉, then

Cen(B̂) = Θ(Cen(B)).

Proof. Suppose k = p
n1
1 · · ·pnmm , where p1, . . . ,pm are different primes, m > 1 and ni > 1 for all i. By

Lemma 3.17 it follows that B̂ is a k-matrix. Without loss of generality, let us suppose that f̂ is invertible

in R/〈k〉. Then, by Lemma 3.1, gcd(f,k) = 1. Hence condition (i) in Corollary 4.11(a) is satisfied for

every i, i = 1, . . . ,m. Now, suppose that gcd(e− h,g,k) = δ. If δ is a unit, then condition (i) as well as

condition (ii) is satisfied for every i, i = 1, . . . ,m. Thus suppose that δ is not a unit. Then, since f̂k is

invertible in R/〈k〉 and δ|k, it follows that there is a t ∈ R such that tf = 1+sk = 1+svδ for some s, v ∈ R
which implies that t̂δf̂δ = 1̂δ. Therefore condition (i) and condition (ii) in Corollary 4.11(a) is satisfied

for every i, i = 1, . . . ,m.
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CHAPTER

5
The number of matrices in the
centralizer of a matrix in M2(R/〈k〉),
R a UFD and R/〈k〉 finite

Earth’s crammed with heaven, and every common bush afire with God, but only he who sees
takes off his shoes; the rest sit round it and pluck blackberries.

— ELIZABETH BARRETT BROWNING

IN this chapter R will always be a UFD, unless stated otherwise, k ∈ R will always be a nonzero

nonunit such that R/〈k〉 is finite and we will always denote the number of elements in a ring S

by |S|. Note that we still assume that θk : R→ R/〈k〉 and Θk : M2(R)→M2(R/〈k〉) are the natural and

induced epimorphism respectively. We, also, still denote the image θk(b) of b (b ∈ R) by b̂k and the

image Θk(B) of B (B ∈M2(R)) by B̂k. However, if there is no ambiguity, then we simply write θ, Θ, b̂

and B̂ respectively.

The purpose of this chapter is to determine the number of matrices in CenM2(R/〈k〉)(B), where R is a

UFD, R/〈k〉 is finite and B ∈M2(R/〈k〉).

To reach our goal, we first need some preliminary results.

Definition 5.1. Let k ∈ R, let B =

[
e f

g h

]
∈ M2(R) and let d := gcd(e − h, f,g,k). We define the

relation ∼ on CenM2(R/〈k〉)(B̂k) as follows: for Âk, Ĉk ∈ CenM2(R/〈k〉)(B̂k),

Âk ∼ Ĉk iff Âk − Ĉk ∈M2(〈 ̂(kd−1)k〉).
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It follows immediately that ∼ is an equivalence relation.

We denote the equivalence class of Âk by Â∗k and the set

{Â∗k | Âk ∈ (CenM2(R/〈k〉)(B̂k))}

of all equivalence classes by

(CenM2(R/〈k〉)(B̂k))
∗.

Since

M2(〈 ̂(kd−1)k〉) ⊆

[
ann(f̂k) ∩ ann(ĝk) ann(êk − ĥk) ∩ ann(ĝk)

ann(êk − ĥk) ∩ ann(f̂k) ann(f̂k) ∩ ann(ĝk)

]
,

it follows from Theorem 4.5 that M2(〈 ̂(kd−1)k〉) ⊆ CenM2(R/〈k〉)(B̂k). Therefore each equivalence

class in (CenM2(R/〈k〉)(B̂k))
∗ has |〈 ̂(kd−1)k〉|4 elements.

We define addition ⊕ and multiplication � on (CenM2(R/〈k〉)(B̂k))
∗ by

Â∗k ⊕ Ĉ∗k = (Âk + Ĉk)
∗ (5.1)

and by

Â∗k � Ĉ∗k = (Âk · Ĉk)∗. (5.2)

It is easy to show that ⊕ and � are well-defined and that the triple 〈(CenM2(R/〈k〉)(B̂k))
∗,⊕,�〉 is a

ring, which we sometimes, if the context is clear, denote by (CenM2(R/〈k〉)(B̂k))
∗.

We need the following trivial result in the next lemma.

Lemma 5.2. Let S,S1, . . . ,Sm be rings, s ∈ S and let

Γ : S→ S1 ⊕ · · · ⊕ Sm defined by Γ(s) = (s1, . . . , sm)

be an isomorphism. Then

t ∈ CenS(s) if and only if ti ∈ CenSi(si),

for all i.
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Proof.

t ∈ CenS(s) ⇔ ts = st

⇔ (t1s1, . . . , tmsm) = (t1, . . . , tm)(s1, . . . , sm) = Γ(t)Γ(s) = Γ(ts)

= Γ(st) = Γ(s)Γ(t) = (s1, . . . , sm)(t1, . . . , tm) = (s1t1, . . . , smtm)

⇔ tisi = siti for all i

⇔ ti ∈ CenSi(si) for all i.

Lemma 5.3. Let B =

[
e f

g h

]
∈M2(R) and let k ∈ R. If gcd(e− h, f,g,k) = 1, then

|Cen(B̂)| = |R/〈k〉|2.

Proof. Suppose k = p
n1
1 p

n2
2 · · ·pnmm , where p1, . . . ,pm are different primes and ni > 1 for all i. It

follows from Lemma 3.25(ii) and Lemma 5.2 that

CenM2(R/〈k〉)(B̂k) ∼=

m⊕
i=1

CenM2(R/〈pnii 〉)
(B̂pnii

).

Therefore,

|CenM2(R/〈k〉)(B̂k)| =

m∏
i=1

|CenM2(R/〈pnii 〉)
(B̂pnii

)|.

If we can show that

|CenM2(R/〈pnii 〉)
(B̂pnii

)| = |R/〈pnii 〉|
2,

for all i it follows, again from Lemma 3.25(ii) and Lemma 5.2, that

|CenM2(R/〈k〉)(B̂k)| =

m∏
i=1

|R/〈pnii 〉|
2 = |R/〈k〉|2.

Let pi be an arbitrary prime in the prime factorization of k. Since gcd(e− h, f,g,k) = 1, it follows that

pi - f or pi - g or pi - e− h. Thus, by Lemma 3.21, at least one of f̂pnii , ĝpnii or êpnii − ĥpnii
is invertible

in R/〈pnii 〉.

If f̂ is invertible in R/〈pnii 〉 with inverse t̂, say, then given that gcd(e− h, f,g,pnii ) = 1, it follows from
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Lemma 2.29(a), Corollary 4.15 and Corollary 2.12(ii) that

CenM2(R/〈pnii 〉)
(B̂) = Cen

([
ê f̂

ĝ ĥ

])

= Cen

([
t̂ê 1̂

t̂ĝ t̂ĥ

])

= Θ

(
Cen

([
te 1

tg th

]))

=

{
â

[
1̂ 0̂

0̂ 1̂

]
+ b̂

[
0̂ 1̂

t̂ĝ −t̂(ê− ĥ)

]∣∣∣∣∣ â, b̂ ∈ R/〈pnii 〉

}
. (5.3)

It can be similarly shown that if ĝ is invertible in R/〈pnii 〉 with inverse t̂, say, then

CenM2(R/〈pnii 〉)
(B̂) =

{
â

[
1̂ 0̂

0̂ 1̂

]
+ b̂

[
0̂ t̂f̂

1̂ −t̂(ê− ĥ)

]∣∣∣∣∣ â, b̂ ∈ R/〈pnii 〉

}
; (5.4)

and if ê− ĥ is invertible in R/〈pnii 〉 with inverse t̂, say, then

CenM2(R/〈pnii 〉)
(B̂) =

{
â

[
1̂ 0̂

0̂ 1̂

]
+ b̂

[
0̂ −t̂f̂

−t̂ĝ 1̂

]∣∣∣∣∣ â, b̂ ∈ R/〈pnii 〉

}
. (5.5)

It is easy to see that the number of elements in the sets in (5.3), (5.4) and (5.5) are |R/〈pnii 〉|
2.

Lemma 5.4. Let k ∈ R, let B =

[
e f

g h

]
∈ M2(R) and let B ′ =

[
d−1(e− h) d−1f

d−1g 0

]
, where

d := gcd(e− h, f,g,k), then

(CenM2(R/〈k〉)(B̂k))
∗ ∼= CenM2(R/〈kd−1〉)(B̂

′
kd−1).

Proof. It follows from Lemma 2.29(b) that

Â∗k ∈ (CenM2(R/〈k〉)(B̂k))
∗

⇔ Âk ∈ CenM2(R/〈k〉)(B̂k)

⇔ Âk ∈ CenM2(R/〈k〉)

([
êk − ĥk f̂k

ĝk 0̂k

])

⇔ A

[
e− h f

g 0

]
−

[
e− h f

g 0

]
A ∈M2(〈k〉)
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⇔ AB ′ − B ′A ∈M2(〈kd−1〉)

⇔ Âkd−1 ∈ CenM2(R/〈kd−1〉)(B̂
′
kd−1)

and that

Â∗k = Ĉ∗k

⇔ Âk − Ĉk ∈M2(〈k̂d−1
k〉)

⇔ A− C ∈M2(〈k〉) +M2(〈kd−1〉)

⇔ A− C ∈M2(〈kd−1〉)

⇔ Âkd−1 = Ĉkd−1 .

Hence Γ : (CenM2(R/〈k〉)(B̂k))
∗ → CenM2(R/〈kd−1〉)(B̂

′
kd−1), defined by

Γ(Â∗) = Âkd−1 ,

is a well-defined function which is 1 − 1 and onto. Since

Γ(Â∗k � Ĉ∗k) = Γ((ÂC)∗k) = (ÂC)kd−1 = Âkd−1Ĉkd−1 = Γ(Â∗k)Γ(Ĉ
∗
k)

and

Γ(Â∗k ⊕ Ĉ∗k) = Γ((Â+ C)∗k) = (Â+ C)kd−1 = Âkd−1 + Ĉkd−1 = Γ(Â∗k) + Γ(Ĉ∗k),

Γ is an isomorphism.

We are finally able to determine the number of elements in the centralizer of a matrix in M2(R/〈k〉),
if R is a UFD and R/〈k〉 is finite.

Theorem 5.5. Suppose R is a UFD, k ∈ R is a nonzero nonunit such that R/〈k〉 is finite, and

B =

[
e f

g h

]
∈M2(R),

then

|CenM2(R/〈k〉)(B̂k)| = |R/〈kd−1〉|2 · |〈(k̂d−1)k〉|4,

where d :=gcd(e− h, f,g,k).
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Proof. With B ′ as in Lemma 5.4, it follows from Lemma 5.3 that

|CenM2(R/〈kd−1〉)(B̂
′
kd−1)| = |R/〈kd−1〉|2.

Since each equivalence class in (CenM2(R/〈k〉)(B̂k))
∗ has cardinality |〈(k̂d−1)k〉|4, it follows that

|CenM2(R/〈k〉)(B̂k)| = |(CenM2(R/〈k〉)(B̂k))
∗||〈(k̂d−1)k〉|4,

and so Lemma 5.4 implies that

|CenM2(R/〈k〉)(B̂k)| = |CenM2(R/〈kd−1〉)(B̂
′
kd−1)||〈(k̂d−1)k〉|4 = |R/〈kd−1〉|2|〈(k̂d−1)k〉|4.

Example 5.6. Let R = Z[i], k = 12 so that R/〈k〉 = Z12[i] (see [8], p. 604, Theorem 1) and let

B̂ =

[
4̂i 3̂ + 6̂i

9̂i î

]
.

Note that according to Corollary 2.12(ii), Corollary 3.18 and Theorem 4.5

CenM2(Z12[i])(B̂12) = Θ12

({[
a (1 + 2i)b

3ib a− 3ib

]∣∣∣∣∣a,b ∈ Z[i]

})
+

[
〈4̂〉 〈4̂〉
〈4̂〉 0̂

]

=

{[
â+ 4̂c (1̂ + 2̂i)b̂+ 4̂m

3̂ib+ 4̂n â− 3̂ib

]∣∣∣∣∣ â, b̂, ĉ, m̂, n̂ ∈ Z12[i]

}
.

Now, since gcd(3i, 3 + 6i, 9i, 12) = 3, let d = 3 so that kd−1 = 12 · 3−1 = 4. Since

|Z[i]/〈4〉| = |{a+ ib | a,b ∈ Z4}| = 16 and |〈4̂12〉| = 9

it follows from Theorem 5.5 that

|CenM2(Z12[i])(B̂12)| = 162 · 94 = 1679616.

For 2× 2 matrices over a factor ring of Z we have the following result.

Corollary 5.7. Let B̂ =

[
ê f̂

ĝ ĥ

]
∈M2(Zk), then

|Cen(B̂)| = (kd)2,
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where d = gcd(e− h, f,g,k).

Proof. According to Theorem 5.5

|CenM2(Zk)(B̂k)| = |Zkd−1 |2|〈(k̂d−1)k〉|4

= (kd−1)2d4 = (kd)2.

Example 5.8. Let B̂12 =

[
2̂12 2̂12

4̂12 8̂12

]
. Since gcd(6, 2, 4, 12) = 2, it follows that

|CenM2(Z12)(B̂12)| = (12 · 2)2 = 242 = 576.
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List of Symbols

⇔ if and only if, 10
{x ∈ X | P(x)} set of all x ∈ X such that P(x) is true , 3

s ∈ S s is an element of the set S , 3

b /∈ X the element b is not an element of X , 24

⊆ is a subset of , 4

$ is a subset of and not equal to , 49

C \ D the set of all elements in the set C which are not in the set D , 5⋂
i∈I
Xi intersection of the sets Xi , 30

n∑
i=1

xi the sum of all xi’s from 1 to n , 31
m∏
i=1

Xi the Cartesian product of all the sets Xi from 1 to m , 77

X1 ⊕ X2 the direct sum of the sets X1 and X2 , 47
m⊕
i=1

Xi the direct sum of all the sets Xi from 1 to m , 77

∼= is isomorphic to , 5

N the set of natural numbers , 46

Z the ring of integers , 8

Q the field of rational numbers , 13

R the field of real numbers , 5

C the field of complex numbers , 4
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Q the division ring of real quaternions , 3

Zm the ring of integers modulo m , 8

Z[i] the ring of Gaussian integers , 51

UFD unique factorization domain , 6

PID principal ideal domain , 7

F the algebraic closure of the field F , 5

Rop the opposite ring of the ring R , 23

Mn(R) the full n× n matrix ring over the ring R , 3

GL(n, F) the group of all n× n nonsingular matrices over the field F , 6

R[x1, . . . , xn] the polynomial ring over the ring R in the variables x1, . . . , xn , 4

〈k〉 the principal ideal generated by the element k , 6

a|b a is a divisor of b , 40

a - b a is not a divisor of b , 40

gcd(f1, . . . fm) the greatest common divisor of f1, . . . fm , 17

|R| the number of elements in the ring R , 75

annR(b) the annihilator of the element b in the ring R , 10

R/〈k〉 the ring R modulo the principal ideal 〈k〉 , 6

CenS1(s) centralizer of s in S1 , 3

CenS1(CenS2(s)) the centralizer in S1 of the centralizer of s in S2 , 6

f(X) the image of the set X under the map f , 23

f−1(X) the inverse image of the set X under the map f , 23

deg f(x) the degree of the polynomial f(x) , 5

fg composite function of f and g , 27

ker f kernel of the homomorphism f , 29

πi : R1 ⊕ · · · ⊕ Rm → Ri canonical projection of the i’th component of the direct sum R1 ⊕ · · · ⊕ Rm , 48

θk : R→ R/〈k〉 the natural epimomorphism from the ring R onto the ring R/〈k〉 , 37

Θk : M2(R)→M2(R/〈k〉) the natural induced epimomorphism from M2(R) onto M2(R/〈k〉) , 37

b̂k image under θk of b , 37

B̂k image under Θk of B , 37

[bij] the matrix with entry bij in position (i, j) , 10

Eij the matrix unit with a 1 in position (i, j) , 9

BT the transpose of the matrix B , 24

BT the transpose of the set of matrices B , 24

BH the matrix formed by rotating the entries of B around its horizontal axis , 25

BV the matrix formed by rotating the entries of B around its vertical axis , 25

BT
′

the s-transpose of the matrix B , 25

BT
′

the s-transpose of the set of matrices B , 26
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height P the height of the prime ideal P , 49

dimR the Krull dimension of the ring R , 49

84



Bibliography

[1] R.B.J.T. Allenby, Rings, fields and groups - An introduction to abstract algebra, 2nd edition,

Butterworth Heinemann, Oxford, London, 1991.

[2] A.S. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950),

449–463.

[3] E.R. Berlekamp, Distribution of cyclic matrices in a finite field, Duke Math. J. 33 (1966), 45–48.
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