Automatic discovery of subword units and pronunciations fo
automatic speech recognition using TIMIT

George Goussard

and Thomas Niesler

Department of Electrical and Electronic Engineering
Stellenbosch University, South Africa
trn@sun.ac.za

Abstract—We address the automatic generation of acoustic subword
units and an associated pronunciation dictionary for spedt recognition.
The speech audio is first segmented into phoneme-like unitsyldetecting
points at which the spectral characteristics of the signal lsange abruptly.
These audio segments are subsequently subjected to aggloatee
clustering in order to group similar acoustic segments. Fially, the
orthography is iteratively aligned with the resulting tran scription in terms
of audio clusters in order to determine pronunciations of the training
words. The approach is evaluated by applying it to two subset of the
TIMIT corpus, both of which have a closed vocabulary. It is found that,
when vocabulary words occur often in the training set, the poposed
technique delivers performance that is close to but lower thn a system
based on the TIMIT phonetic transcriptions. When vocabulaly words
are not repeated often in the training set, the best system isble to
outperform its counterpart based on the TIMIT phonetic tran scriptions,
although recognition performance in both cases is poor.

|. INTRODUCTION

We address the automatic generation of acoustic subword u
and an associated pronunciation dictionary for speechgreton.
Traditionally, the subword acoustic units and pronunorei used
by a speech recogniser are phonetically-based and detstntin
a professional linguist. This procedure is extremely cursti@e and
expensive. We propose to automatically generate both thastc
units and the dictionary, using only the speech audio dathi&n
orthographic transcription as input, as illustrated in ureg 1. If
successful, this would increase the speed and reduce theotos
developing a speech recogniser for languages and accentshith
resources in the form of pronunciation dictionaries andeissed
phone sets are not available, as is the case for many larg @age
accents in Southern Africa.
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Other research has also considered an iterative approaehiam
a set of acoustic models and automatically generated potetion
dictionary are updated incrementally [1]. This system istbtvapped
from a configuration in which the graphemes of the words in the
dictionary are used as subword units, and hence the alplhzieet
by the system defines the number of subword units. We will not
make this assumption, but will attempt to find subword unigs b
direct inspection of the audio training data. Nevertheldss iterative
approach proposed by [1] has influenced our work.

I1. DATA

For experimental evaluation we will make use of the TIMIT exgle
corpus, which contains a total of 6300 recorded sentendéectad
from eight different dialect regions in the United Statestofal of
10 sentences were recorded for each of 630 different spgaked
there are male and female speakers from each dialect regmn.
recorded sentences can be divided into three categories:

« Phonetically diverse sentences (Sl). These sentencesclvere

sen from a large corpus of existing text to provide rich pligne
coverage and were designed to exploit the differences in the
dialects.

Phonetically compact sentences (SX). These sentences were
designed by hand to provide a rich variety of phonetic segsnen
and phonetic contexts.

Unique sentences (SA). These two sentences were specially
designed to demonstrate the effect of dialect on the aousti
characteristics of American English speech.

Sentence type| Sentences| Speakers| Utterances| Sents/spkr

Dialect (SA) 2 630 1260 2

Compact (SX) 450 7 3150 5

Diverse (SI) 1890 1 1890 3

Total 2342 6300 10
TABLE |

COMPOSITION OF THETIMIT CORPUS

Table | presents a breakdown of the composition of the TIMIT
corpus. The table shows that only the SA sentences are egpeat
by every speaker. In addition every speaker reads five pivaiigt
compact (SX) sentences, and each SX sentence is read by seven
different speakers. Finally, each speaker also reads pireeetically
diverse (Sl) sentences, and each Sl sentence is read by paly o
speaker.



Two subsets of the TIMIT corpus, shown in Table I, were used Next, a distance measure between consecutive featurersesto
for the experimental evaluation of our approach. defined in order to detect points at which the speech sigrexigds
rapidly, and hence a segment boundary might be consideregl. T

« The SA sentences are used in isolation for testing and m@ini ) .
following measure is proposed by [11]:

Due to the very small closed vocabulary and the high repaititi

rate of each word in the training data, this subset should ,

pr(_)wde a very optimistic scenario for our automatic sutmvor d(v1, v2) = arccos < V1 - V2 )

unit determination methods. (vt - v1) (V- v2)
« A subset of the SX and S| sentences was chosen such that all

words in the respective test set are also present in thértgasiet Wherew; and v, are any two consecutive MFCC vectors, arfdv.

(i.e. there is a closed vocabulary). While all vocabularyrago is the dot product betweem andwv., such that:

in the SA test set are repeated many times in the corresppndin

training set, the words in the SI+SX vocabulary are repeated v}z = ||v1]] ||vz]| cos @

with varying frequency in the corresponding training setnkeke

the SI+SX subset represents a more realistic scenario iohwhi The distancel(v1, v2) therefore corresponds to the angle between

to evaluate our automatic baseform determination methods. two consecutive vectors, and is used to segment the streafrOC
vectors by means of the following criterion:

TABLE Il
TIMIT SUBSETS USED FOR EXPERIMENTATION

D(i) = log (E (v:)) -d (0172 + Vi1 7 Vi+1 +U¢+2) >5 Q)

TIMIT subsets 2 2
SA SI+SX . L .
Train T Test | Train | Test Thls_ criterion states that the angle between two MFC_:C veakait
Vocabulary size (words)| 21 21 | 2602 | 311 be weighted by the log energy of the current frafg; ) in order to
Number of utterances 924 48 | 1307 | 129 make a segmentation decision. Furthermore, the angle d¢sllaséd
Number of speakers 462 | 24 | 450 [ 93 between the average of the two MFCC vectors preceding therdur
Duration (minutes) 47.8 2.4 69.5 5.2

frame, v;—_» and v;_1, and the average of the two following the
current frame,v;+1 and v;4+2. The averages are used in order to
I1l. AUDIO SEGMENTATION take the variability of the angle over successive speeamdsainto

account. HenceD(3) will emphasise regions with strong changes in

The first step in our _proc_edure for the au'_[omatlc generat_rbn_gpeech characteristics (large angle) and regions with &igirgy.
a subword representation is the segmentation of the audm® in

“phoneme-like” units. One approach to this problem is tosider
the classification of the speech signal into voiced and weebi " - ) '
regions. This has been investigated by several authorsvariety of has many minor peaks. HencB(i) is smoothed using a nine-
applications, including speech coding [2], [3] and speetognition PPNt Hanning window, arranged symmetrically around as also
[4]. However, during preliminary tests, segmentation dasevoicing Proposed by [11]. The result of this audio segmentation ggeds
seemed not to be a good basis for discovering subword ufise s & Seduence of_pomts in time at which the segment boundases h
regions of sustained voicing led to very long segments. been hypothesised.

The audio is segmented by searching for all the peak® {)
above a certain threshold. However in practice it is fourat ()

A different family of algorithms tries to identify recurignphrases IV. CLUSTERING
in unlabelled audio. These techniques are based on an atltern
implementation of the dynamic time warping (DTW) algorithm In order to determine how similar two acoustic segments efjual
which allows it to detect local sub-matches between two audiengths are, dynamic time warping (DTW) was used. This dtigor
segments [5]—[7]. These techniques are particularly gutte the can be considered an application of dynamic programmingrevthe
detection of frequently recurring words or phrases in uelled audio goal is to find the optimal alignment between two sequencesng
from a single speaker and within a stable acoustic envirmmmeSome constraints. The result is the best frame-by-frangniént
However, they do not attempt to segment all the audio, buy onPetween two acoustic sequences, as well as an overall sd¢uoh w
to find frequently recurring sub-portions. can be used to quantify the quality of the alignment.

A few researchers have considered approaches that attempt tin order to group similar acoustic segments, we will make use
find segment boundaries in unlabelled audio by detectingtpait Of agglomerative hierarchical clustering. This clustgriapproach
which the time or Spectra| characteristics of the Speeoha{;ighange requires Only the similarities between the units to be elest to be
strongly. Initial work located significant discontinuiién the speech known [13]. Initially, all acoustic segments are consideiredividual
spectra that had been subjected to a critical-band andBjsi©ther ~ clusters. These are subsequently merged successively iterative
authors have proposed variations on this technique [9]]. (& fashion. The average similarity between all possible pafirecoustic
have chosen the approach proposed in [11], which may be seers@dments is used as a measure of cluster similarity.

a refinement on the work described in [8] leading to a moreagieg
algorithm requiring only a single user parameter [11], [12]

The first step in the segmentation procedure is to generate me After audio segmentation and clustering, we are left withea s
frequency cepstral coefficient (MFCC) vectors from the autiwelve quence of automatically generated acoustic clusters esutiased or-
MFCCs, with the addition of log energy, first and second diffgial thographic transcription (word sequence). To generaterupiciation
coefficients were used, resulting in a 39-dimensional feauector. dictionary, we proceed by first finding an initial alignmergtlveen
MFCC vectors are generated at a rate of one each 10ms and awinthese two sequences. From this alignment, a mapping isrooted
size of 20ms, corresponding to a half-frame overlap. between each word in the orthographic transcription ane&pective

V. PRONUNCIATION DICTIONARY GENERATION
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Since both the sequence of words and acoustic clusters oteur
fixed order, an HMM can be used as an appropriate statistiodem
with which to perform their alignment. The states of each HMM

Fig. 2. Generation of the final dictionary.

correspond to the words and the sequence of acoustic dusténe

observations of the HMM. Each utterance can then be repeben
by an HMM consisting of a sequence of word HMMs. Findin

the optimal alignment is reduced to finding the state secquéhat
maximises the probability of the observation sequenceghvban be
achieved by means of the Viterbi algorithm. In order to matthel
sequential nature of the orthography, a left-to-right HMNMusture

with no skips was chosen. Each node of each HMM has associair

with it a probability distribution, describing how likely is for the
state to be associated with each acoustic cluster. We withate
these observation probabilities from a relative frequetiost is
obtained from the most recent alignment. In particular pirabability
that clustere; is associated with wora; is calculated as:

Ples|wy) = Number of timesc; is aligned withw;
“'777 7 Total number of clusters aligned with;

The totals on the right hand side of the above equation aserwat
by accumulating the counts obtained from the most receghiaént
of the entire training set with the corresponding acousticster
sequences. The dictionary obtained from this improvednaiignt
is referred to as the intermediate dictionary.

C. Final pronunciation dictionary

The intermediate dictionary will generally have many didfiet
pronunciations for the same word. Some of these pronunogtinay
rarely be associated with a word. So, in a last step, we ainmuoep
out such infrequent candidates from the dictionary.

First the intermediate dictionary is used to create inisiebustic

alignment between the orthography and the acoustic daitag ad
he pronunciations variants contained in the dictionatgpsthree

n Figure 2). In this process, pronunciation variants aresented
in parallel to the Viterbi decoder. Not all pronunciationrieats
will be favoured by the forced alignment, and those rarelgduare
subsequently pruned from the dictionary in step five of Fég@r
most recently updated HMMs as well as the new dictionagy a
then used to perform further forced alignments, followedupgates
to the HMMs as shown in steps six, seven and eight of Figure 2.
This process repeats until the dictionary no longer chahgéseen
successive iterations. Finally, the number of Gaussiarturés per
HMM state is increased from one to two and then four, six agtitei
where each increase is followed by a further set of five Bauahellv/
re-estimation iterations.

The pruning algorithm (step five in Figure 2) is governed by a
pruning threshold whose optimal value must be determingutrex
mentally. First, all the unique sequences of acoustic eteshassoci-
ated with each particular word are counted (step four in feid).
The result indicates the probability of each pronunciationthe
current alignment. Starting with the highest probabilitgrmunciation,
probabilities are accumulated until the total exceeds theipg
threshold. All pronunciations that form part of this accuated total
are retained, while the remainder are pruned from the diatip
However, at least one pronunciation is retained for eachdw®ohe
result is that the word-to-cluster sequence mappings ttairaften
in the training set alignment are retained, while infrequemes are
not. The final dictionary produced by this process can be tsadin
a new set of acoustic models that can be used in a speech itmogn
system.

models using the HTK tools, as illustrated by steps one arml tw

in Figure 2. Single-mixture flat-start context-indepertddMMs are
initialised from the global mean and variance of the tragréet audio
for each acoustic cluster. These initial models are theratgodby
performing five iterations of embedded re-estimation. Inheaase
each HMM consists of three states arranged in a left-tottigology,
with a single Gaussian mixture per state. Acoustic obsemnatare

VI. EXPERIMENTAL RESULTS

The first set of experiments was performed using the SA sen-
tences for both training and testing, as described in SedtioThe
purpose of these experiments was to determine how the prdpos

parameterised as MFCCs, with appended energy, first anddecgpproach would perform when presented with input data hiaighly

differentials.

repetitive. The highly repetitive orthography of the SA teemes

The HMM models obtained in the above process, together wittill provide ample data for each word and hence representsrna v
the intermediate dictionary, are then used to perform aefbrcoptimistic scenario.
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for the SA data set. The standard deviation is indicated byr drars. In intial dictionary | In final dictionary
512 32
Figure 3 shows how the average segment length changes as a 256 26
function of the segmentation threshold for the SA trainileg #\s 16248 ig
a point of reference, we consider the average length of tbegihes 32 13
in the TIMIT phonetic transcriptions is 110ms We concludatth TABLE I

a Iow. threshpld, in the region of 0.2, would be a good value for | /AL VERSUS FINAL NUMBER OF SUBWORD UNITS FOR THESA
experimentation. EXPERIMENTS.

B. Experiments using the SA data

Speech recognition results for the SA data set, using a sggme
tion threshold of 0.2, are presented in Figure 4 for eighttumix
HMMs. This graph indicates the performance of systems ediin
using automatically-determined clusters, as well as ptioctisters
(i.e. the TIMIT phonetic transcriptions). The latter seves a baseline
to the former. Systems using 32, 64, 128, 256 and 512 clustens
considered.

The table shows that, when the clustering stage produces 512
clusters, only 32 of these remain in the final dictionary. STk
comparable to the 48 phonemes defined by TIMIT and leads to the
best performing system. The small number of remaining efasis
probably related to the limited vocabulary of the SA data set

From the results in Figure 4, it is clear that systems withefew
than 256 clusters perform significantly worse than the lisslystem

0 il’he éjlgtlgn?ry prlénlng threshotld v¥as v?rled bert]ween a fvafue using the time phonetic annotations. Secondly, althoughbtseline
o and .9, 1o produce a variely of systems, Wnose periarenan, .. ynq pegt performing system, the automatically-detexchsystem
in terms of speech recognition accuracy (word accuracy)shosvn

R g . . using 512 clusters achieved performance which was almogbed.
in Figure 4. Speech recognition was performed using HTK,ctvhi 9 P og0

performs Viterbi decoding on the audio input using the setibfMs
and the dictionary produced by the process illustrated guiféi 2. A
word-loop grammar, in which all 21 vocabulary words are digjua The second set of experiments was performed using the SI+SX
likely, is used for speech recognition. We see that the pfionedata set, as described in Section Il. This data is more cigifig
segmentation led to the highest recognition accuracy irosimall because the sentences are not repeated among the speakbéey a
cases. This indicates that the pre-defined phonemes in thiéTTI were for the SA data. Furthermore, the SI+SX data set hasgarlar
corpus represent the best clusters, and that the autoregtitentation vocabulary (2595 words) and not all the test words are repeat
does not perform as well as the phonetic segmentation. multiple times in the training data. The scenario makesrnsaerably

The results in Figure 4 also indicate the effect of varying tiam- more difficult to obtain reliable pronunciations and to trajood
ber of clusters produced by the clustering stage. Graphsharen for HMMs for recognition. In particular, even the system trairan the
systems based on 32, 64, 128, 256 and 512 clusters. Theseermumb!MIT phonetic transcriptions has a low recognition acoyra
refer to the number of clusters produced by the clusteriaggest The same segmentation threshold of 0.2 used for the SA exper-
However, during dictionary refinement, the pronunciatiomning iments was employed again for the SI+SX data set. The results
algorithm discards pronunciations, which generally alsadk to a for an eight mixture system are presented in Figure 5. As lier t
reduction in the number of subword units used by the finalesgst SA experiments, a word-loop grammar, in which any of the 2595
Table Il indicates how many different subword units reneairin the vocabulary words may follow each other with equal probapilivas
final dictionary for each user specified number of clusters. used during decoding.

C. Experiments using the S+SX data
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A major difference between the SA and the SI+SX data sets is

the frequency of repetition of the training words in therniag sets.
The high level of repetition in the SA set allowed many pcsted
pronunciations to compete during dictionary generatidris Ted to a
greater degree of dictionary pruning, and to a better perifty sys-
tem. However the acoustic models based on the phonetictiptisn
still led to the best results for the SA data set.

For the SI+SX data set, however, most training words occur
only once. This means there is far less opportunity for cdinge
pronunciations to be generated, and for the subsequeribrdicy
pruning to remove less well-performing candidates. Néwedess,
acoustic models based on the best configuration (64 clyidestso
better recognition accuracies than models based on theepibdran-
scriptions. It should be borne in mind, however, that theogedion
accuracies were very low overall.

VIl. SUMMARY AND DISCUSSION

The success of the clustering of acoustic segments to discov
subword units depends critically on the quality of the segise
themselves. Furthermore, the quality of the segments asultaat
clusters critically affect the quality and ultimate sucesf the
dictionary. By listening to a random selection of the audigraents

From the results we see that the performance of all SVSte'ES‘r%duced by our system, it was concluded that although sorest

is poor. In general, a recognition accuracy of around 20 gugrc
was achieved. The recognition accuracy curves are alsly fitdt
compared to those obtained for the SA data set. Since maullti
repetitions and hence pronunciations of each vocabulamd vio
not often occur, the dictionary pruning algorithm elimiegtmost
pronunciation sequences even at a threshold of 0.2.

In initial dictionary | In final dictionary
512 341
256 177
128 93
64 46
32 27

TABLE IV
INITIAL VERSUS FINAL NUMBER OF SUBWORD UNITS FOR THESI+SX
EXPERIMENTS

the segments appeared to be plausible subword units, soeseti
they were not. Badly-formed segments most certainly hawk da

Rletrimental effect on the success of the overall approachveder

time did not permit this issue to be investigated with mog®ur.

While the segmentation and clustering stages were based on

known and published approaches, our procedure for the afitbom
determination of a pronunciation dictionary is, as far as kmew,
new. The dictionary is determined by an iterative procesdighment
between the automatically determined subword transoriptie as-
sociated orthographic transcription, and the correspandudio data.
Subword and orthographic transcriptions are aligned by ettiod
the orthography as a hidden Markov model (HMM), where the
subword units are the observations and the states of the HKMM a
the words. The resulting dictionary is used to align the ibss
pronunciations with the audio, and thereby discard poorataming
pronunciation variants. The process is iterated until soegree of

Table 1V indicates how many different subword units remain iconvergence is achieved. When this dictionary generatimtegss

the final dictionary for each user-specified number of chsst&he
table shows that, when the clustering stage produces 5k2ecu
341 remain after dictionary generation. For 32 user-spetiflusters,
the dictionary generation stage retains almost all of thEor. the
case of 64 user-specified clusters, 46 remained after thomkcy
generation stage. This number of clusters is close the numbe
defined phonemes in TIMIT and the associated system alseashi
the best results overall. For 128 clusters and more, an dsirrg
number are eliminated during the iterative refinement of fihal
dictionary.

D. Interpretation of results

For the SA experiments, the performance of the systems wegro
as the number of clusters increased. Furthermore, it wasthaéthe
overwhelming majority of clusters were pruned when gemnegathe

is presented with the true TIMIT phonetic transcriptionsstéad
of the automatically determined subword units, a pronuiosiadic-
tionary containing reasonable pronunciations (accordingformal
inspection) was determined. When presented with the auicalis
determined subword units, the dictionary was difficult talgse, but
nevertheless lead to a working system.

The overall approach was evaluated by testing it using tvbsets
of the TIMIT corpus. The first, termed the “SA’ system, used tivo
phonetically rich sentences repeated by every speakeaiaity and
testing material. Although there is no speaker overlap betwhe test
and train sets, the same two word sequences constituted Tiaith
is a very optimistic testing scenario, since the vocabulargmall
(21 words) and each word in the training set is repeated niargst
(462 times), albeit by different speakers. In this testingnario, it
was found that a system trained on automatically-deteminsodword

final dictionary. The same was not true for the SI+SX systemn, funits could achieve a performance nearly as good as onedrain

which best performance was achieved for an intermediatebauiof
clusters (64), and a much smaller proportion of clustersvpeuned
during dictionary generation.

the true TIMIT phonetic transcriptions. Due to the small aloglary
and the high repetition rate of training words, the word aacies
achieved by these systems were rather high.



The second subset of the TIMIT corpus was drawn from the Si
and the SX sentences, which are also phonetically rich, ithw
are repeated by only seven speakers or only once for the S)>$hnd
sentences respectively. The training and testing subserts @hosen
in such a way as to ensure a closed vocabulary, i.e. that eagth w
in the test set also occurs at least once in the training ystefs
trained on this SI+SX subset exhibited much poorer perfagaahan
those based on the SA subsets. However, the best systents drase
an automatically determined subword units were able toestamm
those based on the TIMIT phonetic transcriptions. Notwéthding
the low word accuracies, this is a very promising result.

VIII. CONCLUSION

It was possible to obtain working speech recognition system
using only the orthographic transcriptions and the audita dz
the training set as input. In particular, no pronunciatioctidnary
or other subword information was employed. The overall esyst
is complex, and time did no permit thorough testing and asisly
However, the limited test results are rather positive. & thchniques
described and proposed in this paper can be further anaksed
refined, it could be an important step for the developmentpetsh
recognition systems for under-resourced languages oeatgl for
which the extensive phonetic resources conventionallyired, are
not available.
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