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ABSTRACT 

 

FIBROLYTIC ENZYMES IN RUMINANT NUTRITION AND THEIR EFFECT ON FORAGE 
CELL WALL INTEGRITY 

 
by 

Wilhelmus Francois Joubert van de Vyver 
 

Promoter: Prof.  C.W. Cruywagen  
Department of Animal Sciences 

University of Stellenbosch 
Degree:  Ph.D. (Agric) 

 
Exogenous fibrolytic enzymes (EFE) as additives in ruminant feeds are being researched 

worldwide. Promising effects on dry matter intake (DMI), digestibility and production in 

especially dairy cows, but also feedlot steers and even sheep have been observed.  

However, lack of or negative effects are also reported and the need arises for clarity on the 

mode-of-action of EFE.  Forages are characterised as being highly heterogenic and contain 

varying concentrations of fibre.  The fibre, in turn, varies greatly in digestibility, due to the 

chemical as well as anatomical build-up of this complex carbohydrate.  Fibre, however, 

presents a major source of potential energy for ruminant animals and EFE is a viable option 

to increase the digestibility of forages.  Therefore, a study with the aim of establishing 

whether EFE can affect the digestibility of forages, how it affects the digestibility and the 

clarification of the mode-of-action was drafted.  From the literature, the first objective was 

readily attained and clear indications exist that EFE can indeed improve animal performance 

when their diets are treated with such enzymes.  From the current study, it was shown that 

EFE can alter the rate and extent of gas production of certain forages (lucerne, kikuyu and 

weeping love grass) and also improve the in vitro digestibility thereof (P < 0.05).  This is in 

agreement with other research findings and it was concluded that these effects were likely 

exerted during the early stages of digestion.  A complete feed for sheep, when treated with 

the EFE, showed positive effects on the in sacco digestibility, as well as on the digestion 

kinetics of the feed (P < 0.05).  The in vitro digestibility of the complete feed was also 

improved due to EFE treatment (P < 0.05).  The observations on in vitro digestibility were 

less marked when a purified xylanase, obtained from the partial purification of the EFE 

cocktail, was used as the sole fibrolytic enzyme treatment.  It is apparent, therefore, that 

enzyme specificity plays a major role in obtaining positive effects on digestibility of forages 
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and feeds.  In agreement with the literature, it is proposed that the approach to improve the 

digestibility of forages should be to use EFE cocktails containing various enzymes, matching 

the complexity of the substrate.  The major aim of the study was, however, an in depth 

investigation of the mode-of-action of EFE.  This aim was approached by observing changes 

in plant tissue material at the histological level upon treatment with EFE and incubation in 

buffered rumen fluid.  Results showed that EFE had subtle, yet significant effects on cell wall 

material for the various tissues studied (P < 0.05).  The major effect observed here was that 

EFE had a thinning effect on the cell wall thickness (P < 0.05).  It was deduced that as EFE 

affected the cell wall of the plant material, earlier access by microorganisms could be 

achieved.  Also, nutrients caught in the cell wall matrix could then be released for digestion.  

Therefore, observations that EFE increases the rate of digestion, as well as the extent of 

digestion of not only fibre, but also protein, were explained by the enzyme’s action on cell 

wall material.  It was concluded that there is definite merit in the use of EFE to improve the 

digestibility of ruminant feeds and that this is partly related to effects on the cell walls of the 

forages.  The effects can be expected to occur during the early stages of digestion, thereby 

potentially increasing the passage rate of digesta from the rumen.  Additionally, the effect of 

the EFE is not limited to fibre and increased digestibility of all nutrients can be expected, 

thereby increasing the overall digestibility of the feed.  Future research should further 

elucidate the mode-of-action of EFE using advanced technologies routinely employed in the 

plant sciences.  Additionally, the main potential advantage of EFE treatment lies in improving 

the digestibility of poor quality roughages.  Unfortunately, this is an area where limited 

positive effects are observed and in depth investigations should be undertaken to classify 

the specificity and optimum conditions of EFE to better match the complexity of the substrate 

being treated. 
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SAMEVATTING 

 

FIBROLITIESE ENSIEME IN HERKOUERVOEDING EN DIE EFFEK DAARVAN OP 
PLANTSELWAND INTEGRITEIT 

 
deur 

Wilhelmus Francois Joubert van de Vyver 
 

Promotor:  Prof. C.W. Cruywagen 
Departement Veekundige Wetenskappe 

Universiteit van Stellenbosch 

Graad:  Ph.D. (Agric) 
 

Eksogene fibrolitiese ensieme (EFE) word tans wêreldwyd ondersoek vir die gebruik 

daarvan as voerbymiddels vir herkouers.  Belowende effekte op DMI, verteerbaarheid en 

produksie van vernaam melkbeeste, maar ook voerkraalbeeste en selfs skape is al 

gerapporteer.  Swak en selfs negatiewe effekte word egter ook waargeneem en daarom is ŉ 

deeglike ondersoek na die metode van werking van EFE van belang.  Ruvoere word 

gekenmerk deurdat dit heterogeen van aard is en bevat variërende vlakke van vesel.  Vesel 

maak op sy beurt ŉ wesenlike deel uit van die ruvoer, maar varieer baie in verteerbaarheid 

weens die chemiese sowel as anatomiese samestelling van hierdie komplekse koolhidraat.  

Ruvoer verteenwoordig egter ŉ goeie bron van potensiële energie vir herkouers en EFE 

word voorgestel as ŉ haalbare behandeling om die verteerbaarheid daarvan te verhoog.  

Dus is ŉ studie beplan met die doelwit om die effekte van EFE te definieer, hoe dit 

verteerbaarheid beïnvloed en die metode van werking daarvan te ondersoek.  Vanuit die 

literatuur is dit duidelik dat daar wel baie positiewe effekte is waar ruvoere met EFE 

behandel is en dat diereproduksie wel bevoordeel word daardeur.  Vanuit die studie is dit 

getoon dat die tempo en hoeveelheid gasproduksie van sekere ruvoere (lusern, kikuyu en 

oulandsgras) verbeter word deur EFE behandeling (P < 0.05).  Hierdie bevinding was 

ondersteun deur verbeterde in vitro verteerbaarheid van die ruvoere (P < 0.05).  Dit is in 

ooreenstemming met literatuur en die gevolgtrekking is gemaak dat hierdie effekte tydens 

die vroeëre stadia van vertering verwag kan word.  ŉ Volledige skaapvoer wat met EFE 

behandel is, het positiewe effekte op in sacco verteerbaarheid en verterings kinetika data 

gehad (P < 0.05).  Weereens is die in vitro verteerbaarheid van die voer verbeter (P < 0.05).  

Waarnemings op in vitro verteerbaarheid was veel minder opvallend wanneer ŉ gesuiwerde 

xylanase as enigste fibrolitiese ensiem behandeling gebruik is.  Dit is dus duidelik dat 
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ensiem spesifisiteit ŉ belangrike rol speel in die verkryging van positiewe resultate in die 

verteerbaarheid van ruvoere en veevoere.  In ooreenstemming met literatuur word dit 

voorgestel dat ensiemmengsels wat verskeie ensieme bevat as EFE gebruik behoort te word 

ten einde aan die kompleksiteit van die substraat te voldoen.  Die hoof doelwit van die studie 

was egter ŉ indiepte ondersoek na die metode van werking van EFE.  Hierdie doelwit is 

benader deur die effekte van EFE op selwand strukture van plantmateriaal op ŉ histologiese 

vlak te ondersoek. Die ruvoere was vooraf met EFE behandel en in vitro geïnkubeer in 

rumen vloeistof.  Die resultate het getoon dat EFE ŉ matige, dog betekenisvolle effek op die 

selwand materiaal van die onderskeie weefsels gehad het (P < 0.05).  Die belangrikste 

waargeneemde effek was dat EFE ŉ verdunningseffek op die selwande gehad het.  Dit is 

afgelei dat as EFE die selwand kan beïnvloed, mikro-organismes vroeër toegang tot die 

inhoud kan kry.  Verder, nutriënte vasgevang in die selwand matriks raak ook beskikbaar vir 

vertering.  Hierdie afleiding en die effek van EFE op selwande verklaar waarnemings dat 

EFE die tempo van vertering sowel as die vlak van vertering van nie net vesel, maar ook 

proteïen kan bevoordeel.  Die gevolgtrekking is gemaak dat daar definitiewe meriete is in die 

gebruik van EFE om die verteerbaarheid van herkouervoere te verbeter en dat dit verband 

hou met die ensiem se werking op selwande van die ruvoere.  Die effekte kan verwag word 

tydens die vroeë stadia van vertering om dus deurvloeitempo van digesta te verbeter.  Die 

effek van die EFE is verder nie beperk tot vesel nie, maar positiewe effekte op ander 

nutriënte kan verwag word en vervolgens ŉ algehele verhoging in die verteerbaarheid van 

die voer.  Navorsing behoort in die toekoms verder die metode van werking van EFE te 

ondersoek deur gebruik te maak van gevorderde tegnologie wat alledaags gebruik word in 

die Plantwetenskappe.  Die belowendste aanwending van EFE lê in die verbetering in 

vertering van swak kwaliteit ruvoere.  Dit is ongelukkig juis hier waar min positiewe resultate 

gerapporteer word en indiepte navorsing moet onderneem word om ensiem spesifisiteit en 

optimum kondisies te definieer sodat EFE beter opgewasse is teen die kompleksiteit van die 

substraat. 
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CHAPTER 1 

General Introduction 

 
Enzymes are used worldwide in numerous industrial applications, ranging from:  

• the food industry for clarification of juices, beers and wines (Grassin and 

Fauquembergue, 1996a & b; Galante et al., 1998a & b),  

• the textile and laundry industry for the bio-staining and stonewashing of denim 

garments (Galante et al., 1998a), 

• in washing powders to improve colour brightness and touch of garments,  

• the pulp and paper biotechnology, 

• in the ethanol fuel industry for the conversion of starch to glucose, 

• in the synthesis of drugs, antibiotics and speciality chemicals, and  

• in the animal feed industry to improve nutrient utilization (Bhat, 2000; Beg et al., 

2001).   

 

The reader is referred to the review paper of Bhat (2000) for a comprehensive discussion on 

the applications of enzymes.  It is, however, the application of enzymes to animal feeds that 

is of particular interest to this study, especially those used in ruminant feeds.  In animal feed 

biotechnology, enzymes are added to monogastric feeds to eliminate anti-nutritional factors, 

improve the nutritional value of the feeds by degrading cereal components or to supplement 

the enzymes lacking in the animals digestive system (Galante et al., 1998b).  Cellulases, 

hemicellulases and even pectinases are used in ruminant feed biotechnology to improve  

feed utilization, affect production of milk or meat and to improve the digestibility of certain 

feed components.  As discussed by Bhat (2000), many research findings several decades 

earlier have already shown an improvement in feed digestibility and animal production using 

exogenous enzymes (Burroughs et al., 1960; Rust et al., 1965) while negative effects have 

also been shown in these early studies (Theurer et al., 1963; Perry et al., 1966).  Today, 

renewed research report very similar positive effects (Beauchemin et al., 1995, 2003) but 

with inconsistencies in research findings still being prevalent.  Great strides in our 

understanding of the enzymes and their application have however been made, as is evident 

in the host of exogenous fibrolytic enzymes (EFE) commercially available.  A major field of 

research in addition to the application of enzymes is a better understanding of the mode of 

action of fibrolytic enzymes and forms the core of this study.  In short, our understanding of 

EFE at present entails the following:  
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1. There appears to be a pre-feeding effect which is related to an enzyme-substrate 

pre-incubation interaction period.  The enzyme requires an adsorption and binding 

time to the substrate to allow for protection against proteolytic breakdown in the 

rumen (Forwood et al., 1990; Beauchemin et al., 2003);  

2. Another pre-feeding effect would be the rate of enzyme applied to the feed prior to 

feeding and Eun et al. (2007) points to the importance of determining the optimum 

dose rate (DR).  Jalilvand et al. (2008) also states the optimum DR as essential for 

enzymes to efficiently alter fibre digestion;  

3. According to Pinos-Rodriguez et al. (2002) the effects of exogenous fibrolytic 

enzymes are substrate-related.  White et al. (1993) indicated that for enzymes to be 

effective in altering forage degradation the enzyme activities must be specific to the 

chemical composition of the targeted substrate.  Except for enzymes being substrate 

specific, their action is also reliant on substrate temperature and pH.  Of the post 

feeding effects of enzymes, the ruminal pH appears to be one of the most important 

factors (Colombatto et al., 2007);  

4. Alvarez et al. (2009) reports that due to the increased dry matter (DM) and crude 

protein (CP) soluble fractions of diets upon fibrolytic enzyme addition, the reducing 

sugars produced would provide energy that would lead to rapid microbial growth.  

Increased ruminal bacteria numbers could lead to increased microbial colonization of 

the feed particles;  

5. Furthermore; Giraldo et al. (2008) suggested an alteration in the fibre structure due to 

the enzyme effects.  This, coupled with the increased colonization would shorten the 

lag time prior to the initiation of digestion by the rumen microbes (Yang et al., 1999).  

Indeed, by enzymes acting on the structures of plant cell walls, the access of the 

microbes to the potentially fermentable fibre is enhanced (Sutton et al., 2003; 

Elwakeel et al., 2007);  

6. There is a synergistic effect of EFE with the microbial enzymes produced in the 

rumen, hence the hydrolytic activity within the rumen is increased (Morgavi et al., 

2000), and  

7. Laboratory results suggest that it is important to consider the combined effect of 

enzyme type, enzyme level, and forage moisture condition when forage is treated 

with enzymes.   

 

These contributing factors will be dealt with in more detail in the subsequent sections of this 

document and expanded on in the research conducted in this study. 
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Objectives 

The objectives of this study were threefold.  The first research question posed was whether 

EFE can alter fibre digestibility and therefore have an impact on animal performance.  To a 

large extent, the answer to this question lies in the host of published research available and 

is addressed in the literature review (Chapter 2).  Secondly, if EFE indeed alters fibre 

digestibility, the question arises on how it affects fibre digestion.  This objective is addressed 

in the first part of the dissertation wherein the effects of EFE on various substrates is 

discussed based on in vitro and in situ studies (Chapter 4 and 5).  Finally, the objective was 

set to further elucidate on how EFE affects fibre digestion.  This third objective forms the 

distinguishing feature of this study and is related to establishing the mode-of-action of EFE.  

The answer to this question not only lies in research conducted within this study, but also in 

the research already published during the last couple of decades.  This objective was 

approached by observing and quantifying the histological changes to forage plant material 

due to EFE treatment at histological level, as is discussed in Chapter 7.      

 

Understanding the mode-of-action of the exogenous fibrolytic enzymes will better equip us to 

utilize and apply these exogenous enzymes that are otherwise limiting the rate of the 

hydrolysis reaction of fibrolytic feed components for commercially important ruminants. 
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CHAPTER 2 

Literature review 

 

Limitations of forages to rumen degradation 

 
The use of relatively high fibre, low energy diets as ruminant feeds in comparison to other 

domesticated animal diets is common practise in the nutrition of sheep, dairy and beef cattle 

and in feedlot finishing of animals.  Increasing the digestibility of the often poor quality 

forages has been a topic of research for many years. It is clear that forages play an 

important role in the animal industry worldwide.  The fibre (cell wall) portion makes up to 300 

to 800 g/kg of forage dry matter and represents a major source of nutritional energy for 

ruminants, but, unfortunately less than 50 % of this fraction is readily digested and utilized by 

the animal (Hatfield et al., 1999). 

 

The accessibility of the plant cell wall to ruminal microorganisms is complex and is described 

by Boon et al. (2005) to consist of three components.  The first is the accessibility of a tissue 

particle.  This is related to the size of the particle with large particles having only outer cell 

walls available for fermentation, hence the slow initial rate of fermentation of these often 

lignified and poorly degradable tissue (Engels and Schuurman, 1992).  Mastication of course 

plays a major role in overcoming this limitation (Wilson 1990) as does processing of forages.  

The second component is the accessibility of the cell wall and the third component is the 

accessibility of the plant cell wall components by ruminal microorganisms.  These 

components are related to structural factors such as cell wall thickness. For instance, 

sclerenchyma cells increase their cell wall thickness to such an extent that the lumen 

diameter of the cell becomes so limited that the space available is only sufficient for one 

microbe at a time (Boon et al., 2005).  Finally, the highly digestible cell wall contents can be 

encrusted by indigestible lignin, making it almost impossible for the microorganisms or even 

their enzymes to find access to such components. 

        

The plant’s first line of defence against microbial degradation in the rumen is the outer layers 

of epicuticular waxes, the cuticle and pectin (Forsberg and Cheng, 1992).  The cuticle, 

however, is disrupted by mastication and pretreatment of the feedstuffs.  The plant cells are 

connected by lamellae composed of pectin which in turn is formed by a backbone of α-1, 4 

linked residues of D-galacturonate.  Pectin is digested in the rumen by pectinolytic species 
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or by species producing pectinases and xylanases (Cheng et al., 1991; Gordon and Phillips, 

1992).   

 

The plant cell wall is comprised primarily of fibrils of cellulose which accounts for 20-30% of 

the dry weight of primary cell walls (McNeill et al., 1984).  Hemicellulose is another major 

component of both stem and leave cell walls and is comprised mainly of a backbone of β-1, 

4 linked xylose residues (xylans).  The structure of hemicellulose is complicated by 

attachment of the various side chains, consisting of acetic acid, arabinose, coumaric acid, 

ferulic acid and glucuronic acid to the xylose residues (McNeil et al., 1984).  Xylan polymers 

may be cross-linked to other hemicellulose backbones or to lignin. Structural proteins 

(extensins) are also commonly found in dicotyledonous cell walls which entrap other 

polymers within the wall (Fry, 1986). Thus the plant cell wall is an interwoven matrix of 

polymers (Selinger et al., 1996).  In certain species, a secondary cell wall is deposited 

interior to the primary cell wall, allowing for structural strength of the plant.  These cell walls 

form a formidable barrier against microbial invasion (Somerville et al., 2004).   

 

As stated by Somerville et al. (2004) plant cell walls are a complex and dynamic structure 

consisting of mainly polysaccharides, highly glyosylated proteins and lignin.  Weimer (1996) 

listed the cell-wall structure as a major constraint to penetration by non-motile cellulolytic 

microbes into the lumen.  This constraint is related to the matrix interactions between 

biopolymers of the cell wall and the low substrate surface area.  One potential strategy of 

ruminal cellulolytic bacteria and fungi to support rapid rates of cellulose hydrolysis is the 

synthesis of large amounts of fibrolytic enzymes, particularly cellulase.  This is 

predominantly the strategy of ruminal fungi and has been used by microbiologists to produce 

hypercellulolytic strains for enzyme production (Montenecourt and Eveleigh, 1977 as cited 

by Weimer, 1996).  In addition, ruminal fungi will also produce lower amounts of fibrolytic 

enzymes, but of high specific activity (Wood et al., 1986).  Ruminal cellulolytic bacteria on 

the other hand utilize a strategy in which the enzyme activity is predominantly located at the 

cell surface that facilitates adhesion to and degradation of the cellulose microfibril.  Fibrous 

cells can only be digested by bacteria from the interior (lumen) because the middle-lamella 

primary wall region is indigestible as stated by Wilson and Mertens (1995) after extensive 

research on cell wall accessibility and cell structure limitations to microbial digestion of 

forages.  This is consistent with the “inside-out” theory of plant digestion as described by 

Cheng et al. (1991).  The most readily digestible plant tissues are located inside the plant 

and therefore intact plants are digested slowly.  For microorganisms to digest the plant cell 

contents, access is only gained via the stomata and therefore mechanical disruption of plant 

material, such as chewing or grinding improves microbial access to the nutrient-rich inner 
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tissues.  In addition Wilson and Mertens (1995) state that as little as 20% of the wall 

thickness would typically be degraded within the average residence time of fibre particles in 

the rumen. 

 

In addition to the chemical and architectural composition of fibre, the rumen environment is 

also an important contributing factor to fibre digestion.  In this regard it is mostly the ruminal 

pH that can serve as constraint to cellulose digestion.  The optimal pH for ruminal bacteria is 

near neutrality and ruminal cellulolytic bacteria in particular appear to be sensitive to pH<6.0 

(Russell and Dombrowski, 1980).  In addition, Weimer (1996) discussed microbial 

interactions as a second environmental factor of importance for fibre digestion.  There is 

significant competition between individual species of ruminal cellulolytic bacteria and other 

bacteria for nutrients. 

 

In summary, the limitations of forages appear to be related to three factors: 1) the chemical 

composition of the fibrous source, 2) the spatial orientation and crystalline architecture of the 

fibre and 3) the rumen environment.  Weimer (1996) concluded that the upper limit in the 

rate of cellulose digestion in the rumen environment is close to its potential due to the 

aggressive cellulose digestion capabilities of predominantly ruminal cellulolytic bacteria.  

Consequently, to further improve the rate of fibre digestion other avenues than improving 

these bacterial strains need to be researched.  These avenues are likely linked to feeding 

management strategies that prevent unfavourable rumen conditions and to improving the 

extent of digestion by removing matrix interactions among forage cell wall biopolymers 

(Weimer, 1996).  

             

Exogenous fibrolytic enzymes in animal nutrition 

 
Exogenous fibrolytic enzymes have been studied extensively in the last couple of decades 

and a summary of the most important findings thereof is given in Table 2.1 at the end of this 

chapter.  The main aim of the inclusion of these enzymes is to increase the fibre digestibility 

of the diets fed, with the subsequent improvements in feed intake and animal production, 

amongst other. Preparations of enzymes that degrade cell walls (cellulases and xylanases) 

have the potential to hydrolyze forage fibre (Feng et al., 1996).  Hristov et al. (1998) in a 

review paper on the mode of action of exogenous enzymes, defined enzymes as “proteins 

that catalyze chemical reactions in biological systems”.  In the context of animal feeds, 

exogenous enzymes catalyze the degradative reactions of feedstuffs in order to release 

nutrients such as glucose for utilization by the microorganisms or host animal itself.  The 
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complete breakdown of any feedstuff is a complex process and literally requires hundreds of 

enzymes (Hristov et al., 1998).    

 

Bhat in 2000 wrote a research review paper on cellulases and related enzymes in 

biotechnology.  In that paper, the author details the use of these enzymes in both 

monogastric and ruminant feeds, showing that cellulases and hemicellulases have a wide 

range of potential applications in these livestock systems.  In monogastric nutrition, 

hydrolases are the main class of enzyme used to eliminate anti-nutritional factors, degrade 

certain cereal components to improve the value of the feed or to supplement the animal’s 

endogenous enzymes that might be limiting in the utilization of their feeds.  Of particular 

interest to this study is the use of β-glucanases and xylanases to hydrolyse non-starch 

polysaccharides (NSP) commonly found in barley, wheat and other cereals fed to pigs and 

poultry.  In the review, Bhat (2000) reported on the interest in using enzyme preparations in 

ruminant feeds.  The successful use of enzymes depends on their stability in the feed, the 

ability of the enzymes to hydrolyse the plant cell wall components and the ability of the 

animal to utilize the resultant products efficiently.  As is often reported in the literature, the 

author pointed to the inconsistent results obtained and ascribed this mainly by the presence 

of the hydrophobic cuticle, lignin and its close association with the cell wall components 

(Bhat, 2000).  Since Bhat’s review in 2000, many research groups have been studying 

effects of fibrolytic enzymes in ruminant diets and although the results can still be regarded 

as inconsistent, our understanding of the action of these enzymes has greatly improved.  

Other explanations for the variability include the types and activities of enzymes which is 

caused to a large extent by the organism from which it is produced, the substrate used for its 

growth and the culture conditions used (Considine and Coughlan, 1989; Gashe, 1992).  

There is evidence that biodegradable substrates such as sugar cane bagasse yield higher 

enzyme activities than submerged fermentation (Gerardo et al., 2009).  Also, the 

composition of the substrate used, the method of enzyme application and the portion of the 

diet the enzymes is added to, confounds results (Beauchemin and Rode, 1996; Hristov et 

al., 1998). 

     

It is of importance to identify the key enzymatic activities (Eun and Beauchemin, 2007) and 

as noted by Wallace et al. (2001), many of the enzymes used in ruminant studies were 

developed for other applications. Hence, the key activities are likely to differ from those 

needed for fibre degradation.  Technology, however, exists in which certain strains can be 

grown to produce fibrolytic enzyme cocktails as an alternative to using commercial products 

not necessarily designed for ruminant nutrition.  In this regard, Gerardo et al. (2009) showed 

that when two strains of white-rot fungi were cultivated on sugar cane bagasse, the resultant 
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enzymatic extracts contained xylanases and cellulases, with additional laccases that could 

be beneficial in fibre modification.  In fact, research has been reported where such novel 

enzyme preparations (produced from Abo 374) have been used to improve body weight 

(BW) gains of Dohne Merino lambs (Cruywagen and Goosen, 2004; Cruywagen and Van 

Zyl, 2008). Earlier recommendations by Hristov et al. (1998) are in agreement with those 

made by Beauchemin et al. (2003b) and the authors recommended the way forward in three 

categories: 1) the site of enzyme action needs to be defined, 2) the enzymes have to match 

the feed/substrate and 3) the cost of the enzyme should be economically justified regarding 

the effects expected from its inclusion.    

 

Exogenous fibrolytic enzymes in ruminant nutrition 

 

The challenge in successful farming with ruminants, be it dairy cattle, beef cattle or sheep 

and goats lies in the effective utilization of feed resources, as feeding costs present the 

largest component of production costs.  Of the feeds typically utilized, forage composes the 

largest part and hence presents a logical area of research for the improvement thereof.  

Exogenous fibrolytic enzymes present one way of improving fibre digestibility (Johnston, 

2000).  Many authors have reported on the successful use of this technology and will be 

highlighted in the following sections. In the past, advances in the use of exogenous enzymes 

have been far greater in the nutrition of monogastric animals than of ruminants.  Concerns 

were that the fibrolytic activity of the rumen was such that EFE would not be effective.  Also, 

many believed that the EFE would be deactivated either in the feed manufacturing process 

or by proteolysis in the rumen itself.  These concerns have been thoroughly addressed and 

positive effects of EFE have been demonstrated in beef and dairy cattle (Beauchemin et al., 

1995; 2003a) and even small stock such as sheep (Cruywagen and Goosen, 2004). 

  

Alvarez et al. (2009) studied the effect of two commercially available fibrolytic enzyme 

products on rumen digestibility in steers fed high fibre diets.  They found that both the DM 

and CP soluble fractions (a) of the high fibre diet were increased due to exogenous enzyme 

addition.  These results were ascribed to the pre-incubation interaction time of 24h that were 

allowed.  Other researchers have also previously suggested that pre-incubation of the diet 

with the enzyme is of importance (Forwood et al., 1990; Elwakeel et al., 2007; Krueger and 

Adesogan, 2008).  The enzyme requires an adsorption and binding time to the substrate to 

allow for protection against proteolytic breakdown in the rumen (Forwood et al., 1990; 

Beauchemin et al., 2003a).  The resultant stable enzyme-feed complex can then potentially 

degrade the relevant tissue in the rumen (Kung et al, 2000).  Alvarez et al. (2009) however 
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did not find any benefit of the exogenous fibrolytic enzyme treatment on wheat middlings or 

oat straw and an increase in the a-fraction was only reported for the prepared high fibre diet.  

Of interest is that this research group reported a higher total disappearance of CP.  This 

suggests that the effect of the enzyme was not only limited to the fibre components.  In fact, 

in that study there were no improvements on NDF or ADF disappearance.  Kohn and Allen 

(1995) suggested that the fibrolytic enzymes facilitate the degradation of cell wall bound 

proteins. 

  

In large ruminants, positive effects due to exogenous fibrolytic enzyme treatment of the 

substrate/diet have been reported.  These results were obtained with pre-treatment of the 

feed with the enzyme, but direct-fed enzymes have also shown increases in NDF digestion 

in bulls (Murillo et al., 2000) and in dairy cattle (Lopez-Soto et al., 2000).  Average daily gain 

increases have been reported for steers (Ware et al., 2002).  Some EFE preparations result 

in improved cell wall digestibility in vitro (Colombatto et al., 2003) or in vivo (Schingoethe et 

al., 1999).  Recent studies also indicated increases in milk production of lactating dairy cows 

(Tricarico et al., 2008) or improvements in the energy balance of transition cows (DeFrain et 

al., 2005).  Increases in forage utilization, production efficiency and reduced nutrient 

excretion have been reported (Beauchemin et al., 2003a). Giraldo et al. (2007) reported that 

treating a high-forage substrate with EFE from T. longibrachiatum increased the microbial 

protein synthesis (MPS) (measured as 15N-NH3 after 6 hours of incubation in Rusitec 

fermenters) and improved fibre degradation. These authors concluded that EFE stimulated 

the initial phase of microbial colonization. This supports the hypothesis that EFE subtly 

erode cell wall structure allowing ruminal microbes to obtain earlier access to fermentable 

substrate during the initial phase of digestion (Colombatto et al., 2003). However, some 

results have also been published showing no effect of exogenous polysaccharide degrading 

enzyme preparations on ruminal fermentation, polysaccharide degrading activities or 

apparent digestion of nutrients in dairy cattle (Hristov et al., 2008).  Similarly, exogenous 

fibrolytic enzyme treatments do not always result in positive effects on fibre digestion (Vicini 

et al., 2003). 

 

In the semi-arid and arid regions of the world, sheep and goats are increasingly produced 

due to their adaptation to these climates (Bala et al., 2009).  Studies using goats to ascertain 

the effect of exogenous fibrolytic enzymes have been limited and results poor due to the 

goat’s ability to utilize fibre being superior to that of large ruminants (Bala et al., 2009).  In 

addition, information on the effects of ruminal fermentation in small ruminants is scarce 

(Pinos-Rodriquez et al., 2002). Yang et al. (2000) could not ascertain any effects of fibrolytic 

enzymes fed to goats.  However, in a study done by Bala et al. (2009) positive results on 
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DM, OM, NDF, ADF, CP and total carbohydrate digestibility were reported when cross bred 

lactating Beetle-Saanen goats were fed a concentrate supplement fortified with cellulases 

and xylanases.  They also reported positive effects on milk yield in the third quarter of 

lactation along with a decrease in feed intake of up to 7%.  

  

In another study on small ruminants by Cruywagen and Goosen (2004) with Döhne Merino 

lambs, no effects of exogenous enzyme inclusion were observed on feed intake of a 

completely mixed roughage based diet (NDF 443 g/kg DM).  Animal performance was, 

however, improved in that lambs gained significantly more body weight when fed the 

enzyme treated diet, and had improved feed conversion ratios.  It has to be noted that in this 

study a novel enzyme cocktail was used and was produced by fermentation of the fungal 

strain, Abo 374.  The enzyme cocktail was extracted from the fermentation media and the 

supernatant added to the wheat straw component of the feed 18h prior to feeding, to allow 

for an enzyme-substrate interaction period.  In a subsequent study, the enzyme containing 

supernatant was stabilised and included in the diet in the liquid lyophilized or fresh 

supernatant form.  In this study, no pre-incubation interaction period was used and diets 

were only equilibrated for 15 min prior to being fed to lambs.  In both the high (920 g/kg 

forage) and low (600 g/kg forage) forage diets, the enzyme treatment resulted in improved 

BW gains and feed conversion ratios (Cruywagen and van Zyl, 2008).  This is in 

concurrence with earlier findings (Cruywagen and Goosen, 2004).  Giraldo et al. (2008a) 

also reported positive effects of an exogenous fibrolytic enzyme (endoglucanases and 

xylanases) on ruminal activity in sheep.  Even though they did not find an effect on diet 

digestibility (70 grass hay: 30 concentrate), they reported increases in the ruminally insoluble 

potential degradable fraction of grass hay DM as well as its fractional rate of degradation.  

The molar proportion of propionate was increased and the aceate:propionate ratio lowered.  

These findings are of particular interest as no enzyme substrate interaction period was 

allowed and enzymes were directly delivered into the rumen of the sheep. 

 

When EFE treated lucerne or rye-grass based diets were directly fed (no pre-treatment 

period allowed) to lambs, positive results were obtained (Pinos-Rodriguez et al., 2002).  The 

EFE was a commercially available fibrolytic product supplied by Alltech Inc., Nicholasville, 

KY (Fibrozyme) and supplied directly via the ruminal cannula daily at 5g per animal.  For 

both substrates, the DMI, OMI and CP intake were increased; however, fibre (ADF and NDF) 

intake was not affected.  The apparent digestibility of CP, NDF and hemicellulose were 

increased for the lucerne treatment only.  The N balance was improved for both hays due to 

enzyme inclusion as more N was retained by the lambs.  The total VFA concentration 

measured at 3 and 6h after enzyme treatment was increased for both hays (Pinos-Rodriguez 
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et al., 2002).  In a later study by Pinos-Rodriguez et al. (2008), a total mixed ration (TMR) 

treated with fibrolytic enzymes were fed to lambs.  The same enzyme product as in the 

previous study was used at a rate of 2g EFE/kg DM TMR, with the difference that the TMR 

was treated with the EFE 24h prior to feeding.  As stated by Beauchemin et al. (2003a), an 

enzyme is not necessarily appropriate for all feed ingredients, but an approach would be to 

include an enzyme that is relatively suitable for most.  Therefore, three forage to concentrate 

ratios were used in the TMR’s; 400:600, 500:500 or 600:400 kg/kg to best match the activity 

of the EFE product.  The EFE increased the soluble fraction of DM as well as the DM and 

NDF ruminal in situ disappearance rates.  In that trial though, no effects were observed on 

feed intake or N balance and ruminal fermentation patterns were unchanged (Pinos-

Rodriguez et al., 2008).  Further results with Fibrozyme indicated that the enzyme 

preparation stimulated the in vitro fermentation of substrates at 5 and 10h of incubation, but 

that the effect diminished at 24h (Ranilla et al., 2008).  Again, it was reported that effects 

were dose dependant and varied with substrate used (particularly the presence of neutral 

detergent soluble components in the substrate). 

             

The abundance of research on exogenous fibrolytic enzyme application appears to have 

been done using either in vitro or in situ studies.  Dean et al. (2008) evaluated four different 

commercial exogenous enzyme products on the ruminal degradation of coastal 

bermudagrass hay or Pensacola bahiagrass hay (12-week re growths, tropical grasses).  

The enzyme treatments were Promote®, Biocellulase X-20®, CA® and Biocellulase A-20®.  

These products were found to contain cellulase at 33.7, 22, 0 and 51.3 filter paper U/g and 

xylanase at 5190, 7025, 0 and 3530 µmol xylose released/min/ml, respectively.  Although 

CA® showed zero cellulase or xylanase activity, it contained some fibrolytic activity.  Results 

showed that Promote hydrolysed NDF into water soluble carbohydrates (WSC), decreased 

ADF levels and had higher 6h IVDMD.  The other enzyme treatments also resulted in 

decreased NDF concentrations and increased 6h IVDMD, but only for Bermudagrass hay.  

Only enzyme X-20 resulted in an increased 48h IVDMD of both substrates.  The enzymes 

also resulted in higher 6h IVADFD, with the exception of CA and Promote.  The enzymes 

had negligible effects on the extent of fibre digestion and in situ DM degradation as no 

responses were observed in the maximal degradable (b), a+b or potentially degradable (P) 

fractions.  It appears that the enzymes therefore exhibited their effects mostly in the initial 

and 48h stages of DM digestion.  It is of interest to report that the feed substrates were also 

evaluated after ammoniation and that results were far superior to that obtained by the 

enzyme treatments.  However, application of exogenous enzyme products is far less costly 

in terms of infrastructure, storage of treated substrate or hazards associated with 

ammoniation (Dean et al., 2008). 
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Commercial enzymes for monogastric nutrition can be used in ruminant diets as shown in 

the results of Jalilvand et al. (2008b) where Cellupract AS 130, Natuzyme and Endofeed DC 

were evaluated in situ.  These enzyme products are typically added to monogastric diets to 

reduce the negative effects associated with NSP’s present in the diet.  Cellupract showed 

postive effects evident in the increased rapidly soluble fraction (a), potentially degradable 

fraction (b) and effective degradability (ED) for DM of all the forages studied (lucerne hay, 

maize silage and wheat straw) in Blochi ewes. 

      

Giraldo et al. (2008b) used different ratios of grass hay to concentrate (0.7:0.3; 0.5:0.5 and 

0.3:0.7) to evaluate the effect of three fibrolytic enzymes produced by Trichoderma viride, 

Aspergillus niger and Trichoderma longibrachiatum.  All enzyme treatments increased the in 

vitro degradability of the substrate DM and the total VFA as well as acetate and propionate 

production were increased.  This was accompanied by an increase in the in vitro gas 

production.  These effects were greatest at 8h incubation, with effects remaining but less 

pronounced at 24h.  The enzymes were used at two inclusion rates, but it was found that 

little differences occurred due to dose rate of enzyme (40 or 80 enzyme units/g 

substrate)(Giraldo et al., 2008b).  This would appear to be in contrast with recommendations 

by other researchers such as Eun et al. (2007a) to determine the optimal dose rate.  Further 

elucidation is validated though. 

   

Rusitec fermenters can be used to determine the effect of exogenous fibrolytic enzymes on 

fibre digestion.  Giraldo and co workers (2007) have used this system in their laboratory to 

evaluate EFE and other treatments (such as fumarate) on methane production, fermentation, 

VFA production and microbial production.  In one such study they found that mixed fibrolytic 

enzymes from Trichoderma longibrachiatum resulted in daily increases in the production of 

acetate, butyrate and methane as well as substrate DM and fibre disappearance.  The daily 

flow of microbial-N and microbial colonisation of substrate was affected only at 6h of the total 

incubation of 48h, resulting in enhanced fibre degradation.  Of interest here is that enzyme 

treatment resulted in similar effects on rumen fermentation to than when enzyme was fed in 

combination to fumarate.  Giraldo et al. (2007) stated that fumarate is included in ruminant 

diets for the purpose of decreasing methane production.  Methane represents an energy loss 

to the animal and contributor to global warming.  In addition, it has been shown to stimulate 

the production of VFA and increase diet degradation (Lopez et al., 1999; Carro and Ranilla, 

2003; Garcia-Martines et al., 2005).  It therefore appears that the fumarate enzyme 

combination used in their study had no additional benefits on rumen fermentation, compared 
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to the enzyme treatment alone (Giraldo et al., 2007), indicating that fumerate addition was 

not advantageous.  

 

Ferulic acid esterases can be used to release ferulic acid bound to arabinose side chains of 

hemicellulose (Faulds and Williamson, 1994).  Upon the release of ferulic acid, the cell walls 

may be further degraded by other polysaccharidases.  Hence, if ferulic acid esterases were 

to be used in combination with fibrolytic enzymes, such as cellulases and xylanases, 

synergistic effects might be expected (Faulds and Williamson, 1994).  Ferulic acid esterase 

was therefore used in various combinations with cellulase and xylanase to determine the 

best combination for the degradation of fibre in bahiagrass (Krueger and Adesogan, 2008).  

These combinations were tested in either the absence or presence of rumen fluid.  Results 

showed that combinations of these enzymes can result in increases in DM disappearance 

(24h incubation) even in the absence of rumen fluid.  In the subsequent experiment, the 

combinations were tested in the presence of rumen fluid and assayed for its effects on 

bahiagrass using in vitro gas production over 24 or 96h incubation.  For the 24h incubation, 

no effect was noticed on DM or NDF digestibility or on gas production, but the acetate 

concentration was decreased whilst the propionate and butyrate concentrations were 

increased.  For the 96h incubation, DM and NDF digestibility as well as gas production and 

fermentation rate were again not affected, but the lag phase decreased due to use of any of 

the combinations of enzymes (Krueger and Adesogan, 2008).             

 

A very useful in vitro technique to measure effects of exogenous enzyme treatment of 

forages is the in vitro gas production technique, in which head space gas production can be 

measured throughout the incubation.  Eun and Beauchemin (2007) evaluated 13 

endoglucanases and 10 xylanases in this manner and were able to show increased gas 

production (GP) and OMD (18h) with many of these enzymes when applied to lucerne hay.  

Based on these initial screenings, two superior enzymes of each category were further 

evaluated, also in combination with each other.  The authors found that the enzymes were 

effective in improving GP and OMD, but that the combination of the two types of enzymes 

did not lead to any further improvement (Eun and Beauchemin, 2007). 

          

Although the focus of this document is on the use of exogenous fibrolytic enzymes, mention 

needs to be made regarding research on α-amylase as dietary supplements for ruminant 

diets.  As starch form a major component of dairy cattle feeds, any improvement in its 

digestion can have marked effects on animal performance.  During the process of starch 

hydrolysis, α-amylase plays an important role in cleaving starch polymers into 

oligosaccharides and eventually maltotriose and maltose.  Therefore, the addition of α-
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amylase to the diet of highly productive animals such as dairy cattle and beef animals can 

liberate additional starch hydrolysis products, bar the availability of substrate.  Tricarico et al. 

(2008) found that although α-amylase did not increase ruminal starch digestion in dairy cows 

or steers, it did result in increased butyrate and decreased propionate molar proportions in 

the rumen.  In addition, supplemental α -amylase fed to dairy calves resulted in improved 

epithelium growth as this tissue preferentially utilises butyrate as an energy source.  Rumen 

development is stimulated by the production of VFA by microorganisms and especially by 

butyrate and propionate (McLeod and Baldwin, 2000).  Most of the ruminal butyrate is 

absorbed by rumen tissue, providing energy for rumen wall thickening and development of 

papillae (Weigand et al., 1975).  The supplementation of α-amylase also supported the rapid 

growth of bacteria that otherwise grow slowly, or not at all, on starch.  These included 

Butyrivibrio fibrosolvens, Selenomonas ruminantium and Megasphaera elsdenii.  The 

beneficial effects of the enzyme addition to diets resulted in higher weight gains and 

longissimus muscle area in feedlot cattle.  In dairy cattle, increased milk yield and reduced 

milk fat proportion without reducing milk fat yield was recorded in 45 commercial herds 

(Tricarico et al., 2008). 

         

Exogenous fibrolytic enzymes in monogastric nutrition 

 
Exogenous enzymes are routinely used in modern monogastric diets.  They are abundantly 

used for their hydrolytic activity to eliminate anti-nutritional factors, degrade certain cereal 

components to enhance the nutritional value of the feed or to supplement the animal’s 

endogenous enzymes that might be limiting in the utilization of their feeds (Classen et al., 

1991).  Of particular interest is the use of β-glucanases and xylanases to hydrolyse non-

starch polysaccharides (NSP) commonly found in barley, wheat and other cereals fed to pigs 

and poultry (Bhat, 2000).  Castanon et al. (1997) found that NSP degrading enzyme 

preparations have two associated effects on cereal NSP.  The first is the solubilisation of the 

insoluble NSP followed by the hydrolysis of this solubilised NSP along with the original 

soluble NSP present in the feed.  This is in concurrence with the findings of Rouau and 

Moreau (1993) that reported that most insoluble NSP (arabinoxylans) of wheat were first 

solubilised prior to being hydrolysed to low molecular weight polysaccharides.  The 

subsequent hydrolysis of the solubilised NSP then appears to be limited by the amount of 

available NSP degrading enzyme (Bedford and Classen, 1992).  Therefore, findings that low 

levels of NSP degrading enzyme result in increases in the amount of solubilised NSP are not 

uncommon and increased digesta viscosity in the hind-gut of the bird could exist in some 

situations.   
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Choct (2006) refers to the use of enzymes to remove the anti-nutritional effects of NSP’s, 

such as arabinose and β-glucan as the first phase in the development of this technology that 

has now been in use for more than 20 years.  According to this researcher the scope of 

enzyme application expanded in the 1990’s from removing anti-nutritional factors and 

improving digestibility of NSP containing substrates.  One of the best examples lies in the 

use of phytase to liberate P from the unavailable phytic acid form thereof.  This has the 

additional advantage of reducing P excretion in the faeces and therefore alleviating the 

environmental burden thereof.  The next phase is described as the shift in focus to obtain 

highly effective enzymes for the non-cereal component of monogastric feeds.  Of particular 

interest is the inclusion of enzymes to improve the utilization of vegetable proteins for pigs 

and poultry.  Ongoing research in the field of enzyme application has yielded new areas of 

application.  These include the use of glycanases to degrade carbohydrates as an 

alternative to antibiotics used in feeds.  

 

Results with the use of exogenous enzyme products in wheat based diets with broiler 

chickens include improved apparent protein digestion, apparent fat digestion, and improved 

overall nutrient digestibility and increased apparent metabolizable energy (AMEn) and are 

reflected in improved weight gain and feed conversion efficiency (FCE) of the chickens 

(Steenfeldt et al., 1998).  The major limiting component in wheat fed to chickens is its 

relatively high content of arabinoxylans (50-80 g/kg DM) (Annison, 1990).  Using appropriate 

enzymes to degrade the xylan backbone of arabinoxylan has been shown to be effective in 

increasing the nutritive value of diets containing wheat for chickens (Annison, 1992; Choct et 

al., 1995).  Few studies have, however, indicated that the degradation of the cell wall NSP to 

smaller fragments due to EFE treatment lead to the increase in the utilization thereof 

(Annison, 1992).  Steenfeldt, et al. (1998), however, concluded that since the pH measured 

in the caeca of the chickens was lowered as a consequence of enzyme supplementation; 

part of the degraded NSP was available for microbial fermentation.     

 

Choct (2006) regards further developments in enzyme technology to be dependent on better 

characterization of substrates used, the gut microflora and the immune system.       

 

Mode-of-action 

 
For the complete breakdown of any feedstuff into its components, literally hundreds of 

enzymes are required. Hristov et al. (1998) in a review paper describes the complexity of 
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digestion of plant cell walls since plant cell walls contain numerous chemical bonds.  Pectin 

holds the plant cells together and is composed of a backbone of D-galacturonate, 

interspersed with rhamnose, with methyl ester and sugar side chains.  Pectin itself is, 

however, readily digestible.  The primary cell walls are composed of cellulose, a chain of D-

glucose monomers (Chafe, 1970).  Cellulose has structural properties linked to its 

crystalinity.  The higher the crystalinity, the more resistant the cellulose is to digestion.  

Cellobiohydrolase, endoglucanase and cellobiase are needed for the breakdown of 

cellulose.  Hemicellulose is the most complex structure, composed mainly by a backbone of 

xylose monomer residues.  The bonds between cellulose and hemicelluloses are relatively 

weak hydrogen bonds, not covalent bonds. Disrupting these bonds is probably a non-

enzymatic process.  The xylan polymer backbone in turn is bonded to the cellulose fibrils 

and this structure is further complicated by side-chains of acetic acid, arabinose, glucaronic 

acid etcetera (McNeil et al., 1984).  Xylan polymers may be further cross-linked to other 

hemicellulose backbones, or to lignin.  This structural complexity of hemicellulose obviously 

requires many enzymes for its digestion.  Therefore, based on this simple explanation of a 

cell wall, it is clear that a major challenge lies in identifying the rate-limiting step in digestion. 

Ruminant animals, however, have a dynamic array of microbial fibrolytic enzymes to cleave 

fibrous structures (Hristov et al., 1998). Limitations thereof can theoretically be overcome by 

the addition of exogenous fibrolytic enzymes to complement the rumen microbial system. 

Theoretically, to positively influence feed digestion, exogenous enzymes would have to 

contain enzymatic activities that are limiting the rate of the hydrolysis reaction (Morgavi et 

al., 2000b).  Herein lies the challenge of exogenous enzyme application. Exogenous enzyme 

activities are calculated to represent less than 15% of the total ruminal activity, which makes 

it difficult to envisage exogenous enzymes enhancing fibre digestion through direct 

hydrolysis alone (Beauchemin et al., 1997). Morgavi et al. (2000b) indicate that there is 

substantial synergism between exogenous and ruminal enzymes, such that the net 

hydrolytic effect is much greater than previously believed.  They found co-operation in the 

degradation of carboxymethylcellulose (CMC) between rumen and exogenous enzymes, 

particularly at low pH, which could explain, at least in part, the positive results observed with 

dairy and feedlot cattle. 

 

Another scenario in which feed digestion could benefit from the addition of exogenous 

enzymes occurs when the rumen pH is sub-optimal for efficient fibre digestion (Morgavi et 

al., 2000).  For example, fibre digestion is inhibited because of the depression of the ruminal 

cellulolytic bacteria when ruminal pH drops below 6.0, but ruminal pH in dairy and feedlot 

cattle fed high-energy diets is often below 6.0 for much of the day. The optimum pH for the 

exogenous enzymes produced from Trichoderma and Aspergillus cultures is lower than the 
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optimum pH of the rumen, and when high-energy diets are fed, the rumen pH drops 

significantly and becomes optimal for the exogenous enzymes, thus positively influencing 

fibre digestion under these conditions. 

               

Evidence exist that the mode of action of exogenous enzymes in ruminants is a combination 

of pre- and post-feeding effects (McAllister et al., 2001; Colombatto et al., 2003).  The pre-

feeding effects include an enzyme-substrate pre-incubation interaction period.  Alvarez et al. 

(2009) reported that several researchers had previously suggested that pre-incubation of the 

diet with the enzyme is of importance (Forwood et al., 1990; Elwakeel et al., 2007; Krueger 

and Adesogan, 2008).  The enzyme requires an adsorption and binding time to the substrate 

to allow for protection against proteolytic breakdown in the rumen (Forwood et al., 1990; 

Beauchemin et al., 2003).  The resultant stable enzyme-feed complex can then potentially 

degrade the relevant plant tissue in the rumen (Kung et al, 2000).  When enzymes are 

directly infused into the rumen instead of inclusion via the feed, no improvements in 

degradation were observed (Kopecny et al., 1987; Lewis et al., 1996) which serves as 

further justification for allowing a pre-incubation interaction period.  Indeed, Moharrery et al. 

(2009) reported improved in vitro DMD and aNDFom digestibility after 8h incubation in 

rumen fluid where forages were pre-treated (24h prior to incubation) with EFE.  The most 

pronounced effects were on the a-value which increased after enzyme pre-treatment.  The 

b-value, however, decreased; therefore no effect was seen on the potential degradability of 

the forages (a+b).  The lag time for aNDFom was also reduced.  When no pre-treatment 

enzyme substrate interaction time was allowed, none of the reported effects mentioned 

earlier were observed (Moharrery et al., 2009), supporting the recommendations of other 

research groups that a pre-treatment period should be allowed.  

       

Proteolysis of exogenous enzymes, however, seems to not be the sole reason why a pre-

incubation interaction time should be allowed as several studies have reported that fibrolytic 

enzymes are resistant to rumen proteolysis for a significant (6h) time (Hristov et al., 1998; 

Morgavi et al., 2000, 2000b).  Morgavi et al. (2000) found that endoglucanase and xylanase 

(both from A.niger extract) were stable for at least 6h in the rumen, whilst β-glucosidase and 

β-xylosidase activities were more labile and deactivated after 1h.  Different feed enzyme 

additives were reported to be more stable in the rumen than was previously thought 

possible, and this stability has been reported to depend on origin and type of activity (Hristov 

et al., 1998). Glycosylation of exogenous enzymes of fungal origin appear to instill sufficient 

protection for the enzymes in monogastric animals (Chesson, 1993) and indeed in ruminant 

animals where enzymes are found to be stable for up to 6h in the rumen (van de Vyver et al., 

2004), or even throughout the whole incubation period (Hristov et al., 1998).  Where 
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enzymes are not stable in the rumen, technologies do exist for their stabilization.  These 

include treatment with albumin which increased the half-life of β-glucosidase from 0.5 to 3h 

or proteins extracted from plant materials, particularly soybean 7S globulin (Morgavi et al., 

2000). 

    

In the study of Giraldo et al. (2008) it was found that direct-fed fibrolytic enzymes positively 

affected fibrolytic activity in the rumen of sheep and increased the growth of cellulolytic 

bacteria without a pre-feeding substrate enzyme interaction period.  They reported increases 

in the ruminally insoluble potential degradable fraction of grass hay DM, as well as its 

fractional rate of degradation.  However, the enzyme supplementation did not affect diet 

digestibility even though molar proportions of propionate were greater and acetate: 

propionate was lower. 

   

Another pre-feeding effect would be the rate of enzyme application. Responses to enzyme 

application rate in ruminant studies have been inconsistent (Colombatto et al., 2007), but 

mostly reported as quadratic or non-linear responses (Beauchemin et al., 2003b). A good 

example where low rates of application can lead to adverse effects can be found in work 

done on NSP degrading enzymes in monogastric nutrition.  Castanon et al. (1997) reported 

that low levels of NSP degrading enzyme result in increases in the amount of solubilised 

NSP, and increased digesta viscosity in the hind-gut of the bird could exist in some 

situations.  This is due to the two-fold action of the NSP degrading enzyme; 1) solubilisation 

of insoluble NSP and 2) hydrolysis of all soluble NSP (that produced from 1 as well as the 

original soluble NSP present in the diet).  The latter is reliant on enzyme dose level (Bedford 

and Classen, 1992) and if insufficient it is not uncommon to find increased levels of soluble 

NSP present in the faeces of the chicken.   

 

Similar effects can undoubtedly occur in ruminant nutrition.  Eun et al., (2007b) points to the 

importance of determining the optimum dose rate (DR) for ruminant diets.  In their 

experiment, two substrates (corn silage and lucerne hay) were treated with various 

exogenous fibrolytic enzymes (containing mainly endoglucanase and xylanase activities).  

The enzymes were applied at three different dose rates.  In that particular experiment, they 

observed that two of the EFE treatments resulted in significantly higher GP and degradation 

in either lucerne or corn silage fibre.  The optimum DR was 1.4 mg/g of DM for this particular 

experiment.  At this DR, NDF degradability was increased by 20% for lucerne hay and by an 

astounding 60% for corn silage (Eun et al., 2007b).  As was reported earlier by these 

researchers (Eun and Beauchemin, 2007), no additional benefit was observed when the 

EFE’s were used in combination (decreased endoglucanase to xylanase ratio).  The 
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important finding though is that the optimal dose rate has to be determined for each EFE and 

substrate.   

 

Jalilvand et al. (2008) was in agreement with this finding.  In their trial they treated three 

substrates (lucerne hay, maize silage and wheat straw) with an exogenous fibrolytic enzyme, 

Natuzyme, at three dose rates (3, 6 or 9 g enzyme/kg DM substrate).  The results on gas 

production measured over a 96h period clearly showed that only the 3g/kg DM inclusion rate 

increased volume of gas produced for the wheat straw only, measured in calibrated 

syringes.  No effects of enzymes were reported on the lucerne hay or maize silage. They 

concluded that adding enzyme at higher dose rates may not be beneficial (Jalilvand et al., 

2008).  The period of incubation is also of importance and Eun et al. (2007b) recommend a 

24h incubation time for in vitro assays.     

 

According to Pinos-Rodriguez et al. (2002) the effects of exogenous fibrolytic enzymes 

appear to be substrate related.  Except for enzymes being substrate specific, their action is 

also reliant on environmental temperature and pH.  Of the post feeding effects of enzymes, 

the ruminal pH appears to be one of the most important factors.  Colombatto et al. (2007) 

tested fibrolytic enzymes in rumen fluid incubation medium with different initial pH ranges 

(pH 5.4 to 6.8) and found that for the specific conditions of their experiment, the enzymes 

worked best at pH close to ruminal pH conditions of 6.8.  For this particular experiment, it 

was found that the positive effects of the enzyme treatment on in vitro digestion parameters 

were independent of the pre-treatment period (no interaction time or 20h interaction time).     

 

As reported by Alvarez et al. (2009), the reducing sugars released due to fibrolytic enzyme 

addition would provide energy that leads to rapid microbial growth.  In turn, increased 

ruminal bacteria numbers could lead to increased microbial colonization of the feed particles.  

Furthermore, Giraldo et al. (2008) suggested an alteration in the fibre structure due to the 

enzyme effects.  This, coupled with the increased colonization, would shorten the lag time 

(Yang et al., 1999).  Indeed, by enzymes acting on the structures of plant cell walls, the 

access of the microbes to the potentially fermentable fibre is enhanced (Sutton et al., 2003; 

Elwakeel et al., 2007). 

 

Earlier mention was made to the specificity of enzymes for their substrate and White et al. 

(1993) indicated that for enzymes to be effective in altering forage degradation, the enzyme 

activities must be specific to the chemical composition of the targeted substrate.  Studies 

using intact forages treated with EFE for their digestion characteristics in vitro, supplied 

evidence toward the specificity between enzyme activity and feed composition (Eun et al., 
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2007a; Giraldo et al., 2007; Ranilla et al., 2008).  Results reported by Ranilla et al. (2008) 

showed that the presence of neutral detergent (ND) soluble components of the substrate is 

of importance in the interaction between enzyme and substrate.  This is a component not 

previously studied and preliminary results indicate that ND soluble components of the 

substrates tested can influence the response to the EFE supplement (Ranilla et al., 2008).   

In addition, there is evidence that EFE work in synergy with the microbial enzymes produced 

in the rumen, hence the hydrolytic activity within the rumen is increased (Morgavi et al., 

2000).  Similarly, laboratory results suggest that it is important to consider the combined 

effect of enzyme type, enzyme level, and forage moisture condition when forage is treated 

with enzymes.  In vivo data indicate improved intake, digestibility, particulate passage, and 

ruminal degradability when fibrolytic enzymes are added to dry grass immediately before 

feeding (Feng et al., 1996). The beneficial activities of exogenous fibrolytic enzymes are 

related to their ability to enhance the initial degradation of plant structural carbohydrates and 

complement normal enzymatic activities associated with ruminal microorganisms (Dawson 

and Tricarico, 1999). 

 

Microscopic investigations on fibre digestion in the rumen 

 
Forage heterogeneity contributes largely to the variation in degradability of plant material 

even in those with similar chemical composition but with differences in anatomy.  This 

heterogeneity originates from the distribution of cell wall material between plant cell types, 

amongst other (Travis et al., 1997).  It is important therefore to recognize the botanical 

characteristics of plant material as factor determining its nutritional value (Walters, 1971).   

 

This is in agreement with Weimer (1996) that states: “The architecture of the plant cell may 

be just as important as its chemistry”.  McManus and Bigham in 1973 already said that the 

distribution pattern of lignin, for instance, rather than the total amount of lignin can mask the 

potentially digestible cell walls of forages (Travis et al., 1997).  Marked interactions exist 

between the cell wall thickness, lignification and other anatomical characteristics of forages 

and their digestibility (Wilson, 1993).  Therefore investigations on the anatomical structure of 

forages are of importance in determining the digestibility potential of forages.   

 

Akin (1982) reported a method termed the “section to slide” technique where forage tissues 

can be anatomically analysed.  In addition, this method can be employed to digest forage 

samples in vitro in rumen fluid and the samples rapidly evaluated by light microscopy for 

digestibility.   
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The use of such a technique showed normal digestion patterns of the various forages 

studied (orchard grass and bermuda grass), with mesophyll being degraded rapidly and prior 

to other tissues.  Indeed, Wilson (1993) states that mesophyll cell walls are not lignified and 

are rapidly digestible (Akin, 1989), with complete digestion in under 12h (Chesson et al., 

1986).  Along with mesophyll, phloem was also digested before the other tissues.  Extensive 

digestion of tissues was observed after 17h of incubation, with mostly indigestible tissue 

remaining after 24h.   

 

This technique is propagated as a simple and rapid technique for studying large numbers of 

tissue samples and to study effects of various treatments on forage anatomy and digestibility 

thereof.  Furthermore, to quantify the results, software that allows for cross section area 

measurements can be employed.   

 

Twidwell et al. (1989) describes such a method.  The objective of that method is to measure 

plant tissue degradation using computer-based image analysis instead of the subjective 

visual appraisal.  Plant material was degraded in buffered rumen fluid prior to sections being 

made; therefore the section-to-slide technique of Akin was not employed in this study.  After 

incubation in rumen fluid for 48h, sections of the material were prepared with a thickness of 

2µm.  The tissues in the cross section were measured with an optical image analysis system 

and each tissue graded as undigested, partially digested or completely digested (Twidwell et 

al., 1989).  This method was one of the earliest developments in the quantification of plant 

tissue degradation using image analysis.  Today, more precise software exists and 

automated image analysis techniques, such as applied in the plant sciences (Kolukisaoglu 

and Thurow, 2010), could be adapted for use in investigating the degradation of plant 

material by microorganisms.   

 

Exciting technology, such as laser-assisted microdissection (LAM), could also be applied to 

isolate specific microscopic regions from tissue sections.  Specific tissues, for instance the 

epidermis, or even organelles from sectioned forage plant material could be isolated and 

studied in great detail (Day et al., 2005).   These new and powerfull technologies should be 

investigated further for future studies on the degradation of plant material and how 

treatments, such as EFE, can alter the plant material.  

 

One of the limitations of Akin’s technique are the thick sections (50-100 µm) needed to 

maintain the structural integrity of the tissue during degradation.  These thick sections result 

in poor images with conventional light microscopy images (Travis et al., 1997).  Confocal 
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laser scanning microscopy (CLSM) offers an alternative method for estimating the amount of 

cell wall material present in tissue sections of forages before and after digestion and 

visualization of the tissue using three-dimentional image reconstruction (Travis et al., 1997). 

 

Jung and Engels (2001) used this technique to evaluate the rate and extent of cell-wall 

thinning of lucerne stem tissues during ruminal degradation.  The degree of removal of 

tissues were determined using light microscopy, while cell wall thickness over certain time 

periods within a 96h incubation period was measured using scanning electron microscopy as 

a determinant of cell wall thinning.  The rate and extent of cell-wall degradation was then 

calculated.  Results showed that the thin-walled tissues such as xylem parenchyma were 

degraded at a rate of 0.04µm/h while thick walled colenchyma degraded at a rate of 0.11 

µm/h. The non-lignified primary phloem fibres required up to 24h for complete degradation, 

whereas lignified tissues (pith parenchyma and secondary xylem fibres) were only partially 

degraded after 96h of incubation in rumen fluid.  Some tissues, such as the primary and 

secondary xylem vessels were completely undegraded (Jung and Engels, 2001).  Similarly, 

Jung et al. (2004) examined the degradation of lucern stem walls by different bacterial 

species as compared to ruminal degradation over 24h and 96h incubation periods.  Again 

they were successful in describing the degradation patterns of the various cell wall 

components. 

  

Scanning electron microscopy (SEM) offers another option in visualizing the three-

dimentional surfaces of plant sections (Grenet, 1989), but is regrettably flawed in that it is 

difficult to obtain quantitative information from such images (Travis et al., 1997).  However, it 

is a valuable tool for the study of the anatomical configuration of tissues, the susceptibility of 

the plant tissue to microbial attack and the identification of the microorganisms involved in 

the initial degradation of the plant (McManus et al., 1976; Akin, 1986 as cited by Horn et al., 

1989). 

 

It can be concluded that more sophisticated methods and aids (for example computer 

software) can greatly improve our ability to describe and quantify the effect of EFE on plant 

tissue at histological level.   
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Conclusion 

 
In conclusion, due to the complexity of forages typically used in ruminant diets, not only in 

terms of chemical composition, but also the architecture of the plant cell wall, there is great 

potential in the use of exogenous fibrolytic enzymes to improve the uitilzation thereof.  As is 

summarized in Table 2.1, many positive effects in using EFE in ruminant diets have been 

reported, but a clearer understanding of the mode-of-action of these EFE is of importance. A 

project with the aim of investigating the method by which exogenous fibrolytic enzymes can 

improve the efficiency of nutrient utilization by ruminants was therefore established.  The 

focus of the project was on the effect of the exogenous fibrolytic enzymes on digestion 

kinetics of certain economically important roughages used in the formulation of ruminant 

diets.  The mode of action of the exogenous fibrolytic enzymes, how it affects the digestion 

of the relevant plant cell wall constituents in the rumen (in vitro) and methods to quantify the 

efficiency of the enzymes formed the basis of the research and was nestled in methodology 

applied in histological studies on forages (Grabber et al., 1992; Jung and Engels, 2001).  
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Table 2.1. Summary table on the enzyme types, application methods and main effects of various feeds and roughages treated with exogenous fibrolytic enzymes 

Researchers  Enzyme 
description 

Pre-
incubation 
enzyme 
substrate 
interaction

Substrate/feed Animals 
studied 

Digestion effects reported Production effects and general 
comments reported  

Alvarez et al., 

2009 

Xylananes 

(43.4IU) 

Cellulase (31.0 

IU) 

24h High fibre diet 

(>500g/kg DM 

NDF) 

Steers In sacco: 

Increased DM and CP fraction a. 

No effect on DM b or c.  Increased 

CP c. 

No effect on NDF or ADF 

disappearance   

No effects reported on DMI, ADG or 

feed conversion. 

Pre-incubation effects suggested. 

Alvarez et al., 

2009 

Xylananes 

(43.4IU) 

Cellulase (31.0 

IU) 

24h Wheat middlings 

and oat straw 

Steers Increased disappearance of ADF 

(Wheat middlings) and NDF and ADF 

(Oat straw) 

Pre-incubation effects suggested. 

Bala et al., 

2009 

Cellulase  

Xylanase 

 Enzyme added to 

concentrate 

supplement fed at 

500g/d 

Lactating 

cross bred 

Beetle-

Sannen 

goats 

Increased digestibilities of DM, OM, 

CP, NDF, ADF and total 

carbohydrates 

Increased microbial protein reported 

(NS). 

Improved milk yield, fat and solubles-

non-fat (SNF). 

Decreased feed intake. 

Improved body weight. 

Burroughs et 

al., 1960 

Amylase, 

protease, 

cellulase, 

hemicellulase 

NA High corn or 

roughage diets 

evaluated with EFE 

applied to protein 

concentrates 

Feedlot 

cattle and 

digestibility 

trial 

Higher ADG (7%), DMI (1%) and 

improved FCR (6%). 

No effect reported for total tract 

digestibility. 

 



 

28 
 

Researchers  Enzyme 
description 

Pre-
incubation 
enzyme 
substrate 
interaction

Substrate/feed Animals 
studied 

Digestion effects reported Production effects and general 
comments reported  

Cruywagen 

and Goosen, 

2004 

Fibrolytic 

enzyme cocktail 

18h Roughage based 

formulated diet 

(443 g/kg NDF) 

Dohne 

Merino 

lambs 

No effect observed on DMI. 

Lambs gained significantly more body 

weight. Improved feed conversion 

ratios. 

Improved weight gains. 

Improved feed conversion ratio’s 

(FCR). 

Cruywagen 

and Van Zyl, 

2008 

Lyophilized and 

fresh fibrolytic 

enzyme cocktail 

None High (920 g/kg 

forage) and low 

(600 g/kg forage) 

forage diets 

Dohne 

Merino 

lambs 

 Improved body weight (BW) gains 

and FCR. 

Fresh enzyme cocktail were reported 

to be superior. 

Dean et al., 

2008 

Commercial 

enzymes: 

Promote®  

Biocellulase X-

20®, CA and 

Biocellulase A-

20® 

Substrate 

treated 3 

weeks prior 

to feeding 

and stored 

in plastic 

containers 

Tropical grasses: 

Coastal 

bermudagrass hay 

and Pensacola 

bahiagrass hay 

Buffered 

rumen fluid 

from non-

lactating 

cows 

X-20 and A-20 resulted in reduced 

fibre concentrations, increased initial 

(a) and later phases (48h) of IVDMD. 

No improvement in extent of digestion 

Higher application rates increased 

effects.  Ammoniation yielded 

superior results to enzyme treatment. 

Eun and 

Beauchemim, 

2007 

13 

Endoglucanases 

(END) 

10 Xylanases 

(Xyl) 

3h Fresh low quality 

lucerne hay 

Buffered 

rumen fluid 

from 

lactating 

Holstein 

cows 

Improved in vitro ruminal degradation 

Increased Gas production and OMD 

Combination of END and Xyl did not 

yield additional effects. 
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Researchers  Enzyme 
description 

Pre-
incubation 
enzyme 
substrate 
interaction

Substrate/feed Animals 
studied 

Digestion effects reported Production effects and general 
comments reported  

Eun et al., 

2007a 

Various EFE 

(endoglucanases 

and xylanases) 

Pre-

incubation 

allowed 

Lucerne hay 

corn silage 

Buffered 

rumen fluid 

lactating 

Holstein 

cows 

Improved NDF degradability of 20 

and 60% for lucerne hay and corn 

silage, respectively 

Superior results were obtained with 

the optimum dose rate. 

Eun et al., 

2007b 

Two proteolytic 

enzyme products 

3 Fibrolytic EFE 

products 

(endoglucanase, 

xylanase) 

3h Lucerne hay Buffered 

rumen fluid 

lactating 

Holstein 

cows 

Improvements in in vitro digestibility 

with one of the proteases and two of 

the EFE products 

Recommend 24h incubation time for 

in vitro assays (GP). 

Giraldo et al., 

2008 

Fibrolytic 

enzyme 

containing 

endogluconase 

and xylanase 

from 

Trichoderma 

longibrachiatum 

0h 70 grass hay: 30 

concentrate 

Sheep Increases in the ruminally insoluble 

potential degradable fraction DM and 

fractional rate of degradation. 

Increased propionate and decreased 

ace:prop 

Positive effects obtained without an 

enzyme substrate interaction period. 
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Researchers  Enzyme 
description 

Pre-
incubation 
enzyme 
substrate 
interaction

Substrate/feed Animals
studied 

Digestion effects reported Production effects and general 
comments reported  

Giraldo et al., 

2008b 

Fibrolytic 

enzymes from 

Trichoderma 

viride, 

Aspergillus niger 

and Trichoderma 

longibrachiatum 

24h 700, 500 and 300 g 

forage/kg diet DM.  

Grass hay. 

Buffered 

rumen fluid 

from Merino 

sheep in 

Rusitec 

fermentors 

Increased true degradability of 

substrate DM.  

Increased total VFA, acetate and 

propionate. 

 

Reported effects were the greatest at 

8h incubation. 

Giraldo et al., 

2007 

Mixed fibrolytic 

enzymes from 

Trichoderma 

longibrachiatum 

and Fumarate 

24h Grass hay and 

concentrate (600 

and 400 g/kg DM, 

respectively) 

Buffered 

rumen fluid 

from Merino 

sheep in 

Rusitec 

fermentors 

Increased acetate, butyrate and 

methane.  Increased substrate DM 

and fibre disappearance (6 and 48h) 

No additional benefit on rumen 

fermentation due to Fumarate 

addition to enzyme treatment. 

Jalilvand et 

al., 2008 

Natuzyme at DR 

of 3, 6, 9 g 

enzyme/kg DM 

substrate 

24h Lucerne hay 

maize silage 

wheat straw 

Buffered 

rumen fluid 

from 

Taleshi 

steers 

Increased cumulative gas production 

(syringes) at 6 and 12h and fractional 

fermentation rate for Wheat straw 

only. 

Asymptotic gas production not 

affected 

Optimal dose rate determined as 3g 

enzyme/kg DM substrate. 
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Researchers  Enzyme 
description 

Pre-
incubation 
enzyme 
substrate 
interaction

Substrate/feed Animals 
studied 

Digestion effects reported Production effects and general 
comments reported  

Jalilvand et 

al., 2008 

Cellupract AS 

130, Natuzyme 

and Endofeed 

DC (enzymatic 

products for 

poultry feeds) 

24h Lucerne hay 

maize silage 

wheat straw 

In situ 

analysis 

with Blochi 

ewes 

Cellupract resulted in increased a, b 

and effective degradability (ED) of all 

substrates 

Fibrolytic enzyme products for poultry 

feeds have potential in ruminant 

nutrition. 

Krueger and 

Adesogan, 

2008 

Combinations of 

Ferulic acid 

esterase, 

cellulase and 

xylanase 

<1h Bahiagrass hay Incubation 

in the 

absence of 

rumen fluid 

or with 

buffered 

rumen fluid 

from non-

lactating 

Holstein 

cows 

Increased DMD (absence of RF) 

Decreased ace and increased prop 

and but concentrations. 

Decreased lag phase (presence of 

RF). 

 

Ferulic acid esterase evaluated in 

combination with other fibrolytic 

enzymes. 
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Researchers  Enzyme 
description 

Pre-
incubation 
enzyme 
substrate 
interaction

Substrate/feed Animals 
studied 

Digestion effects reported Production effects and general 
comments reported  

Moharrery et 

al., 2009 

Two cellulase 

containing 

enzyme 

treatments 

0h or 24h Grasses (ryegrass 

and festulolium) 

and legumes 

(clover, red clover 

and lucerne) 

Buffered 

rumen fluid 

from dry 

Holstein 

cows 

Improved in vitro DMD and aNDFom 

digestibility (8h). 

Increased a and decreased b value. 

Reduced lag time for aNDFom. 

Effects were only observed when a 

24h pre-treatment period was 

allowed. 

Pinos-

Rodriguez et 

al., 2002 

Fibrozyme 0h Lucerne or rye-

grass based diets 

Criollo 

lambs 

(ruminally 

cannulated) 

Increased apparent digestibility of CP, 

NDF and hemicellulose (lucerne). 

Increased total VFA concentration 

(both hays at 3 and 6h). 

 

Increased DMI, OMI and CP intake 

(both hays). 

Improved N balance (both hays). 

Pinos-

Rodriguez et 

al., 2008 

Fibrozyme 24h TMR 

(forage:concentrate 

ratios of 40:60, 

50:50 or 60:40) 

Ramboulliet 

lambs 

(ruminally 

cannulated) 

Increased soluble fraction (a) of DM. 

Increased DM and NDF ruminal in 

situ disappearance rates. 

No effects observed on feed intake or 

N balance. 

Ranilla et al., 

2008 

Fibrozyme 0h Lucerne hay, grass 

hay, barley straw 

and isolated cells 

walls (as NDF) 

Buffered 

rumen fluid 

from Merino 

sheep 

Increased VFA and acetate 

concentration (5h). 

In vitro fermentation stimulated at 5 

and 10h. 

Dose response noted. 

Presence of neutral detergent soluble 

components of importance. 

NA: Not applicable 

a: soluble fraction, b: fraction of potential disappearance, c: rate of DM disappearance, ab: total disappearance 



33 
 

References 

 
Akin, D.E., 1982.  Section to slide technique for study of forage anatomy and digestion.  

Crop Sci., 22: 444-446. 

 

Akin, D.E., 1986. Interaction of ruminal bacteria and fungi with southern forages. J. Anim. 

Sci., 63: 962-977. 

 

Akin, D.E., 1989. Histological and physical factors affecting digestibility of forages. Agron. J., 

81: 17-25. 

 

Akin, D.E. & Robinson, E.L., 1982.  Structure of leaves and stems of Arrowleaf and Crimson 

clovers as related to in vitro digestibility.  Crop Sci., 22: 24-29. 

 

Akin, D.E., Wilson, J.R. & Windham, W.R., 1983.  Site and rate of tissue digestion in leaves 

of C3, C4 and C3/C4 intermediate Panicum species.  Crop Sci., 23: 147-155. 

 

Alvarez, G., Pinos-Rodriguez, J.M., Herrera, J.G., Garcia, J.C., Gonzalez, S.S. & Barcena, 

R., 2009.  Effects of exogenous fibrolytic enzymes on ruminal digestibility in steers fed high 

fibre rations.  Livestock Sci., 121: 150-154. 

 

Annison, G., 1990.  Polysaccharide composition of Australian wheats and the digestibility of 

their starches in broiler chicken diets.  Aus. J. Exp. Agric., 30: 183-184. 

 

Annison, G., 1992.  Commercial enzyme supplementation of wheat based diets raises ileal 

glycanase activities and improves apparent metabolizable energy, starch and pentosan 

digestibilities in broiler chickens.  Anim. Feed Sci. Technol., 38: 105-121.  

 

Bala, P., Malik, R. & Srinivas, B., 2009.  Effect of fortifying concentrate supplement with 

fibrolytic enzymes on nutrient utilization, milk yield and composition in lactating goats.  Anim. 

Sci. J., 80: 265-272. 

 

Beauchemin, K.A., Rode, L.M. & Sewalt, V.J.H., 1995.  Fibrolytic enzymes increase fiber 

digestibility and growth rate of steers fed dry forages.  Can. J. Anim. Sci., 75: 641-644. 

 



 

34 
 

Beauchemin, K.A. & Rode, L.M., 1996.  Use of feed enzymes in ruminant nutrition.  Pages 

103-131 in Animal Science Research and Development meeting, L.M. Rode (ed.). 

Lethbridge Research Centre, Agricylture and Agri-food Canada, Lethbridge, AB. 

 

Beauchemin, K.A., Jones, S.D.M., Rode, L.M. & Sewalt, V.J.H., 1997.  Effects of fibrolytic 

enzymes in corn or barley diets on performance and carcass characteristics of feedlot cattle.  

Can. J. Anim. Nut., 77: 645-653. 

 

Beauchemin, K.A., Colombatto, D., Morgavi, D.P. & Yang, W.Z., 2003a.  Use of exogenous 

fibrolytic enzymes to improve feed utilization by ruminants.  J. Anim. Sci., 81: E37-47. 

 

Beauchemin, K.A., Yang, W.Z., Morgavi, D.P., Ghorbani, G.R. & Kautz, W., 2003b.  Effects 

of bacterial direct-fed microbials and yeast on site and extent of digestion, blood chemistry, 

and subclinical ruminal acidosis in feedlot cattle.  J. Anim. Sci., 81: 1628-1640. 

 

Bedford, M.R. & Classen, H.L., 1992.  Reduction of intestinal viscosity through manipulation 

of dietary rye and pentosanase concentration is affected through changes in the 

carbohydrate composition of the intestinal aqueous phase and results in improved growth 

rate and food conversion efficiency of broiler chicks. J. Nutr., 122: 560-569  

 

Beg, Q.K., Kapoor, M., Mahajan, L. & Hoondal, G.S., 2001.  Microbial xylanases and their 

industrial applications: a review.  Appl. Microbiol, Biotechnol., 56: 326-338. 

 

Bhat, M.K., 2000.  Cellulases and related enzymes in biotechnology.  Biotechnol. Adv., 18: 

355-383. 

 

Boon, E.J.M.C., Engels, F.M., Struik, P.C. & Cone, J.W., 2005.  Stem characteristics of two 

forage maize (Zea mays L.) cultivars varying in whole plant digestibility. II. Relation between 

in vitro  rumen fermentation characteristics and anatomical and chemical feautures within a 

single internode. Neth. J. Agric. Sci. 53-1: 87-109. 

 

Burroughs, W., Woods, W., Ewing, S.A., Greig, J. & Theurer, B., 1960. Enzyme additions to 

fattening cattle rations. J. Anim. Sci., 19: 458-464. 

 

Carro, M.D. & Ranilla, M.J., 2003.  Influence of different concentrations of disodium fumarate 

on methane production and fermentation of concentrate feeds by rumen microorganisms in 

vitro. Brit. J. Nutr., 90: 617-623. 



 

35 
 

Castanon, J.I.R., Flores, M.P. & Pettersson, D., 1997.  Anim. Feed Sci. Technol., 68: 361-

365. 

 

Chafe, S.C., 1970.  The fine structure of the collenchyma cell wall. Planta, 90: 12-21. 

 

Cheng, K.-J., Forsberg, C.W., Minato, H. & Costerton, J.W., 1991.  Microbial ecology and 

physiology of feed degradation within the rumen.  In: Physiological aspects of digestion and 

metabolism in ruminants by Tsuda, T., Sasaki, Y. and Kawahima, R. (eds). Pp 595-624.  

Academic Press, New York. 

 

Chesson, A., Stewart, C.S., Dalgarno, K. & King, T.P., 1986.  Degradation of isolated grass 

mesophyll, epidermis and fibre cell walls in the rumen and by cellulolytic rumen bacteria in 

axenic media.  J. Appl. Bact., 60: 327-336. 

 

Chesson, A., 1993.  Feed enzymes.  Anim. Feed Sci. Technol., 45:65-79. 

 

Choct, M., Huges, R.J., Trimble, R.P., Angkanaporn, K. & Annison, G., 1995.  Non-starch 

polysaccharide degrading enzymes increase the performance of broiler chickens fed wheat 

and low apparent metabolisable energy. J. Nutr., 125: 485-492. 

 

Choct, M., 2006.  Enzymes for the feed industry: past, present and future.  World’s Poultry 

Sci. J., 62: 5-16. 

 

Classen, H.L., Graham, H., Inborr, J. & Bedford, M.R., 1991. Growing interest in feed 

enzymes to lead to new products. Feedstuffs, 63: 22-24. 

 

Colombatto, D., Mould, F.L., Bhat, M.K. & Owen, E., 2003. Use of fibrolytic enzymes to 

improve the nutritive value of ruminant diets. A biochemical and in vitro rumen degradation 

assessment. Anim. Feed Sci. Technol. 107, 201–209 

 

Colombatto, D., Mould, F.L., Bhat, M.K. & Owen, E., 2007.  Influence of exogenous fibrolytic 

enzyme level and incubation pH on the in vitro ruminal fermentation of alfalfa stems.  Anim. 

Feed Sci. Technol., 137: 150-162. 

 

Considine, P.J. & Coughlan, M.P., 1989.  Production of carbohydrate-hydrolyzing enzyme 

blends by solid state fermentation. In: Enzyme systems for lignocellulose degradation, 273-

281, M.P Coughlan, (eds). Elsevier Applied Science, New York. 



 

36 
 

Cruywagen, C.W. & Goosen, L., 2004.  Effect of an exogenous fibrolytic enzyme on growth 

rate, feed intake and feed conversion ratio in growing lambs.  S.A. J. Anim. Sci., 34 (suppl 

2): 71-73. 

 

Cruywagen, C.W. & Van Zyl, W.H., 2008.  Effects of a fungal enzyme cocktail treatment of 

high and low forage diets on lamb growth.  Anim. Feed Sci. Technol., 145: 151-158. 

 

Dawson, K.A. & Tricarico, J.M., 1999.  The use of exogenous fibrolytic enzymes to enhance 

microbial activities in the rumen and performance of ruminant animals. In: Biotechnology in 

the feed industry, Proceedings of the 15 th Annual Symposium by T.P. Lyons and K.A. 

Jacques (eds).  Nottingham University Press, Nottingham, Leics., U.K. p303. 

 

Day, R.C., Grossniklaus, U. & Macknight., R.C., 2005.  Be more specific!  Laser-assisted 

microdissection of plant cells.  Trends Plant Sci., 10(8); 397-406. 

  

Dean, D.B., Adesogan, A.T., Krueger, N.A. & Litell, R.C., 2008.  Effects of treatment with 

ammonia or finrolytic enzymes on chemical composition and ruminal degradability of hays 

produced from tropical grasses.  Anim. Feed Sci. Technol., 145: 68-83. 

 

DeFrain, J. M., Hippen, A.R., Kalscheur, K. & Tricarico., J.M., 2005. Feeding alpha 

amylase improves the glycemic status and performance of transition dairy cows. J. Dairy 

Sci. 88:4405-4413. 

 

Elwakeel, E.A., Titgemeyer, E.C., Johnson, B.J., Armendariz, C.K. & Shirley, J.E., 2007.  

Fibrolytic enzymes to increase the nutritive value of dairy feedstuffs.  J. Dairy Sci. 90: 5226-

5236. 

 

Engels, F.M. & Schuurman, J.L.L., 1992.  Relationship between structural development of 

cell walls and degradation of tissues in maize stems. J. Sci. Food Agric., 59: 45-51. 

 

Eun, J.-S. & Beauchemin, K.A., 2007.  Assessment of the efficacy of varying experimental 

exogenous fibrolytic enzymes using in vitro fermentation characteristics.  Anim. Feed Sci. 

Technol., 132: 298-315. 

 

Eun, J.-S., Beauchemin, K.A. & Schulze, H., 2007a.  Use of exogenous fibrolytic enzymes to 

enhance in vitro fermentation of alfalfa hay and corn silage.  J. Dairy Sci., 90: 1440-1451. 

 



 

37 
 

Eun, J.-S., Beauchemin, K.A. & Schulze, H., 2007b.  Use of an in vitro fermentation bioassay 

to evaluate improvements in degradation of alfalfa hay due to exogenous feed enzymes. 

Anim. Feed Sci. Technol., 135: 315-328. 

 

Faulds, C.B. & Williamson, G., 1994. Purification and characterization of a ferulic acid 

esterase (FAE-III) from Aspergillus niger: specificity for the phenolic moiety and binding to 

micro-crystalline cellulose. Microbiol. 140, 779– 787.  

 

Feng, P., Hunt, C.W., Pritchard, G.T. & Julien, W.E., 1996.  Effect of enzyme preparations 

on in situ and in vitro degradation and in vivo digestive characteristics of mature cool season 

grass forage in beef steers.  J. Anim. Sci., 74: 1349-1357. 

 

Forsberg, C.W. & Cheng, K. –J., 1992.  Molecular strategies to optimize forage and cereal 

digestion by ruminants.  In Biotechnology and nutrition by Bills D.D. & Kung, S.D. (eds).  Pp 

107-147, Butterworth Heinemann, Stoneham. 

 

Forwood, J.R., Sleper, D.A. & Henning, J.A., 1990. Tropical cellulose application effects on 

tall fescue digestibility.  Agron. J. 82: 909-913. 

 

Fry, S.C., 1986.  Cross-linking of matrix polymers in the growing cell walls of angiosperms. 

Ann. Rev. Plant Phys., 37: 165-186. 

 

Garcia-Martinez, R., Ranilla, M.J., Tejido, M.L. & Carro, M.D., 2005.  Effects of disodium 

fumarate on in vitro rumen microbial growth, methane production and fermentation of diets 

differeing in their forage:concentrate ratio. Brit. J. Nutr., 94: 71-77. 

 

Gashe, B.A., 1992. Cellulase production and activity by Trichoderma sp. A-001. J. Appl. 

Bacteriol. 73: 79-82. 

 

Gerardo, D.G., Marcos, M. Maura, T.T. & Octavio, L., 2009.  Fibrolytic enzymes produced in 

solid state fermentation by two strains of white-rot fungi.  New Biotechnol., 255, Abstract 

2.1.031. 

 

Giraldo, L.A., Tejido, M.L., Ranilla, M.J. & Carro, M.D., 2007.  Influence of exogenous 

fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation 

in Rusitec fermenters.  Brit. J. Nutr., 98: 753-761. 

 



 

38 
 

Giraldo, L.A., Tejido, M.L., Ranilla, M.J., Ramos, S. & Carro, M.D., 2008a.  Influence of 

direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed a grass 

hay-based diet.  J. Anim. Sci., 86: 1617-1623. 

 

Giraldo, L.A., Tejido, M.L., Ranilla, M.J. & Carro, M.D., 2008b.  Effects of exogenous 

fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage: 

concentrate ratios.  Anim. Feed Sci. Technol., 141: 306-325. 

 

Gordon, G.L.R. & Phillips, M.W., 1992.  Extracellular pectin lyase produced by 

Neocallimastix sp. LM1, a rumen anaerobic fungus. Lett. Appl. Microbiol., 15: 113-115. 

 

Grabber, J.H., Jung, G.A., Abrams, S.M. and Howard, D.B., 1992. Digestion kinetics of 
parenchyma and sclerenchyma cell walls isolated from orchardgrass and switchgrass. Crop 
Sci. 32:806–810.  
 

Grassin, C. & Fauquembergue, P. 1996a.  Fruit juices. In: Godfrey, T., West, S., (eds).  

Industrial enzymology, 2nd ed. UK: Macmillan, pp. 226. 

 

Grassin, C. & Fauquembergue, P. 1996b. Wine. In: Godfrey, T., West, S., (eds).  Industrial 

enzymology, 2nd ed. UK: Macmillan, pp 374-383. 

 

Grenet, E., 1989. Electron microscopy as a method for investigating cell wall degradation in 

the rumen. Anim. Feed Sci. Technol., 32: 27-33. 

 

Hatfield, R.D., Ralph, J. & Grabber, J.H., 1999.  Cell wall structural foundations: Molecular 

basis for improving forage digestibilities.  Crop Sci., 39: 27-37. 

 

Horn, G.W., Zorilla-Rios, J. & Akin, D.E., 1989.  Influence of stage of maturity and 

ammoniation of wheat straw on ruminal degradation of wheat forage tissues.  Anim. Feed 

Sci. Technol., 24: 201-218. 

   

Hristov, A., McAllister, T.A. & Cheng, K.-J., 1998.  Exogenous enzymes for ruminants: 

Modes of action and potential applications.  In: 17th Western nutrition conference, 

Edmonton, AB. 

 

Hristov, A.N., Basel, C.E., Melgar, A., Foley, A.E., Ropp, J.K., Hunt, C.W. & Tricarico, J.M., 

2008.  Effect of exogenous polysaccharide-degrading enzyme preparations on ruminal 



 

39 
 

fermentation and digestibility of nutrients in dairy cows.  Anim. Feed Sci. Technol., 145: 182-

193. 

 

Jalilvand, G., Odongo, N.E., Lopez, S., Naserian, A., Valizadeh, F., Eftekhar Shahrodi, F., 

Kebreab, E. & France, J., 2008.  Effects of different levels of an enzyme mixture on in vitro 

gas production parameters of contrasting forages.  Anim. Feed Sci. Technol., 146: 289-301. 

 

Jalilvand, G., Naserian, A., Kebreab, E., Odongo, N.E., Valizadeh, R., Eftekhar Shahroodi, 

F., Lopez, S.  & France, J., 2008b.  Rumen degradation kinetics of alfalfa hay, maize silage 

and wheat straw treated with fibrolytic enzymes.  Arch. Zootecnia, 57 (218): 155-164. 

 

Johnston, J.D., 2000.  Fibrozyme and in vitro NDF response: moving from theory to practical 

commercial reality. In: Biotechnology in the feed industry, Proceedings of the 16th Annual 

Symposium. (T.P. Lyons & K.A. Jacques, eds.).  Nottingham University Press, Nottingham, 

Leics., U.K. pp. 487. 

 

Jung, H.G. & Engels, F.M., 2001.  Alfalfa stem tissues: rate and extent of cell-wall thinning 

during ruminal degradation.  Netherlands J. Agric. Sci., 49: 3-13 

 

Jung, H.G., Engels, F.M. & Weimer, P.J., 2004.  Degradation of lucerne stem cell walls by 

five rumen bacterial species.  Neth. J. Agric. Sci. 52-1. 

 

Kohn, R.A. & Allen, M.S., 1995.  In vitro protein degradation of feeds using concentrated 

enzymes extracted from rumen contents.  Anim. Feed Sci. Technol., 52:15-28. 

 

Kolukisaoglu, U. & Thurow, K., 2010.  Future and frontiers of automated screening in plant 

sciences.  Plant Sci., 178: 476-484. 

    

Kopency, J., Marounek, M. & Holub, K., 1987.  Testing the suitability of the addition of 

Trichoderma viride cellulases to feed rations for ruminants.  Zivoc Vyroba, 32: 587-592. 

 

Krueger, N.A. & Adesogan, A.T., 2008.  Effects of different mixtures of fibrolytic enzymes on 

digestion and fermentation of bahiagrass hay.  Anim. Feed Sci. Technol., 145: 84-94. 

 

Kung, L., Jr., Treacher, R.J., Nauman, A.M., Smagala, K.M., Endres, K.M. & Cohen, M.A., 

2000.  The effect of treating forages withfibrolytic enzymes on its nutritive value and lactation 

performance of dairy cows. J. Dairy Sci., 83: 115-122. 



 

40 
 

Lewis, G. E., Hunt, C. W., Sanchez, W. K., Treacher, R., Pritchard, G. T. & Feng, P.,  1996. 

Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet 

fed to beef steers. J. Anim. Sci., 74: 3020–3028. 

 

Lopez, S., Valdes, C., Newbold, C.J. & Wallace R.J., 1999.  Influence of sodium fumarate 

addition on rumen fermentation in vitro.  Brit. J. Nutr., 81: 59-64. 

 

Lopez-Soto, M.A., Plascencia, A., Arellano, G.E. & Zinn, R.A., 2000. Interaction of 

maceration and fibrolytic enzyme supplementation on the site and extent of digestion in rice 

straw in Holstein cows. Proc. Western Sec. Am. Soc. Anim. Sci. Rapid City, South Dakota, 

51:458-462. 

 

McAllister, T.A., Hristov, A.N., Beauchemin, K.A., Rode, L.M. & Cheng, K.-J., 2001. 

Enzymes in ruminant diets.  In: Bedford, M.R., Partridge, G.G. (Eds.), Enzymes in Farm 

Animal Nutrition. CABI publishing, Wallingford, Oxon, UK, pp. 273–298. 

 

McLeod, K. R., & Baldwin R.L., 2000. Effects of diet forageto-concentrate ratio and 

metabolizable energy intake on visceral organ growth and in vitro oxidative capacity of gut 

tissues in sheep. J. Anim. Sci. 78:760-770. 

 

McManus, W.R. & Bigham, M.L., 1973.  Studies on forage cell walls: 1. Prediction of feed 

intake.  J. Agric. Sci., 80: 283-296. 

 

McManus, W.R., Choung, C.C. & Robinson, V.N.E., 1976.  Studies on forage cell wall.  4. 

Flow and degradation of alkali-treated rice hull digesta in the ruminant digestive tract.  J. 

Agric. Sci., 87: 471-483. 

 

McNeill, M., Darvill, A.G., Fry, S.C. & Albertsheim, P., 1984.  Structure and function of the 

primary cell wall of plants.  Ann. Rev. Biochem., 53: 625-663. 

 

Moharrery, A., Hvelplund, T. & Weisbjerg, M.R., 2009.  Effect of forage type, harvesting time 

and exogenous enzyme application on degradation characteristics measured using in vitro 

technique.  Anim. Feed Sci. Technol., 153: 178-192. 

 

Montenecourt, B.B. & Eveleigh, D.E., 1977.  Preparation of mutants of Trichoderma reesei  

with enhanced cellulase production.  Appl. Environ. Microbiol., 34: 777-782. 

 



 

41 
 

Morgavi, D.P., Newbold, C.J., Beever, D.E. & Wallace, R.J., 2000.  Stability and stabilization 

of potential feed additive enzymes in rumen fluid.  Enz. Microbial Technol., 26: 171-177. 

 

Morgavi, D.P., Beauchemin, K.A., Nsereko, V.L., Rode, L.M., Iwaasa, A.D., Yang, W.Z., 

McAllister, T.A. & Wang, Y., 2000b.  Synergy between ruminal fibrolytic enzymes and 

enzymes from Trichoderma longibrachiatum.  J. Dairy Sci., 83: 1310-1321. 

 

Murillo, M., Alvarez, E.G., Cruz, J., Castro, H., Sanchez, J.F., Vazquez, M.S. & Zinn, R.A., 

2000.  Interaction of forage level and fibrolytic enzymes on digestive function in cattle. Proc. 

West. Sec. Am. Soc. Anim. Sci., 51:324-326. 

 

Pinos-Rodriguez, J.M., Gonzalez, S.S., Mendoza, G.D., Barcena, R., Cobos, M.A., 

Hernandez, A. & Ortega, M.E., 2002.  Effect of exogenous fibrolytic enzyme on ruminal 

fermentation and digestibility of alfalfa and rye-grass hay fed to lambs.  J. Anim. Sci., 80: 

3016-3020. 

 

Pinos-Rodriguez, J.M., Moreno, R., Gonzalez, S.S., Robinson, P.H., Mendoza, G. & Alvarez, 

G., 2008.  Effects of exogenous fibrolytic enzymes on ruminal fermentation and digestibility 

of total mixed rations fed to lambs.  Anim. Feed Sci. Technol., 142: 210-219. 

 

Ranilla, M.J., Tejido, M.L., Giraldo, L.A., Tricarico, J.M. & Carro, M.D., 2008.  Effects of 

exogenous fibrolytic enzyme preparation on in vitro ruminal fermentation of three forages 

and their isolated cell walls. Anim. Feed Sci. Technol., 145: 109-121. 

 

Rouau, X. and Moreau, D., 1993. Modification of some physicochemical properties of heat 

flour pentosans by an enzyme complex recommended for baking.  Cereal Chem. 70: 626-

632. 

 

Russel, J.B. & Dombrowski, D.B., 1980.  Effect of pH on the efficiency of growth by pure 

cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol., 39: 604. 

 

Schingoethe, D. J., Stegeman, G. A. & Treacher, R. J., 1999. Response of lactating dairy 

cows to a cellulase and xylanase enzyme mixture applied to forages at the time of feeding. 

J. Dairy Sci. 82:996–1003. 

 

Selinger, L.B., Forsberg, C.W. & Cheng, K. –J., 1996.  The rumen: A unique source of 

enzymes for enhancing livestock production.  Anaerobe, 2: 263-284. 



 

42 
 

 

Somerville, C., Bauer, S, Brininstool, G, Facette, M., Hamann, T., Milne, J., Osborne, E., 

Paredez, A., Persson, S, Raab, T, Vorwerk, S. & Youngs, H., 2004.  Toward a systems 

approach to understanding plant cell walls.  Science, 306: 2206-2211. 

 

Steenfeldt, S, HammershØj, M., Mullertz, A. & Jensen, J.F., 1998.  Enzyme supplementation 

of wheat based diets for broilers. 2. Effect on apparent metabolisable energy content and 

nutrient digestibility.  Anim. Feed Sci. Technol., 75: 45-64. 

 

Sutton, J.D., Phipps, R.H., Beever, D.E., Humphries, D.J., Hartnell, G.F., Vicini, J.L. & Hard, 

D.L.,  2003.  Effect of method of application of a fibrolytic enzyme product on digestive 

processes and milk production in Holstein-Friesian cows. J. Dairy Sci., 86: 546-556. 

 

Travis, A.J., Murison, S.D., Perry, P. & Chesson, A., 1997.  Measurement of cell wall volume 

using confocal microscopy and its application to studies of forage degradation.  Ann. Bot., 

80: 1-11. 

  

Tricarico, J.M., Johston, J.D. & Dawson, K.A., 2008.  Dietary supplementation of ruminant 

diets with an Aspergillus oryzae a-amylase.  Anim. Feed Sci. Technol., 145: 136-150. 

 

Twidwell, E.K., Johnson, K.D., Bracker, C.E., Patterson, J.A. & Cherney, J.H., 1989.  Plant 

tissue degradation measurement using image analysis.  Agron. J., 81: 837-840. 

 

Van de Vyver, W.F.J., Dawson, K.A., Casey, N.H. & Tricarico, J.M., 2004.  Effect of 

glycosylation on the stability of fungal xylanase exposed to proteases or rumen fluid in vitro.  

Anim. Feed Sci. Technol., 116: 259-269. 

 

Vicini, J.L., Bateman, H. G.  Bhat, M. K., Clark, J. H., Erdman, R. A., Phipps, R. H., Van 

Amburgh, M. E., Hartnell, G. F., Hintz, R. L. & Hard, D. L.  2003. Effect of feeding 

supplemental fibrolytic enzymes or soluble sugars with malic acid on milk production. J. 

Dairy Sci. 86,576–585. 

 

Wallace, R. J., Wallace, S. J., McKain, N, Nsereko, V.L. & Hartnell, G. F.  2001. Influence of 

supplementary fibrolytic enzymes on the fermentation of corn and grass silages by mixed 

ruminal microorganisms in vitro. J. Anim. Sci. 79:1905-1916. 

 



 

43 
 

Walters, R.J.K., 1971.  Variation in the relationship between in vitro digestibility and 

voluntary dry matter intake of different grass varieties.  J. Agric. Sci., 76: 243-252. 

 

Ware, R.A., Alvarez, E.G., Machado, M., Montano, M.F., Rodriguez, S. & Zinn, R.A., 2002. 

Influence of pelletizing on the feeding value of rice straw in growing–finishing diets. 

Proc.West. Sec. Am. Soc. Anim. Sci. 53, 637– 641. 

 

Weigand, E., Young, J.W. & McGilliard, A.D., 1975. Volatile fatty acid metabolism by rumen 

mucosa from cattle fed hay or grain. J. Dairy Sci., 58 (9), 1294-1300.  

 

Weimer, P.J., 1996.  Why don’t ruminal bacteria digest cellulose faster?  J. Dairy Sci., 79: 

1496-1502. 

 

White, B. A., Mackie, R. I. & Doerner, K. C., 1993. Enzymatic hydrolysis of forage cell walls. 

Pages 455–484 in Forage Cell Wall Structure and Digestibility. H. G. Jung, D. R. Buxton, 

R.D. Hatfield, & J. Ralph, ed. Am. Soc. Agron., Crop Sci. Soc. Am., Soil Sci. Soc. Am., 

Madison, WI. 

 

Wilson, J.R., 1990.  Influence of plant anatomy on digestion and fibre breakdown. In: Akin, 

D.E., Ljungdahl, L.G. & Wilson, J.R. (Eds.), Microbial and plant opportunities to improve 

lignocellulose utilization by ruminants. Proceedings of the Tri-national workshop on Microbial 

and plant opportunities to improve lignocellulose utilization by ruminants.  Athens, Georgia. 

Elsevier, New York, pp. 99-117. 

 

Wilson, J.R., 1993.  Organisation of forage plant tissues.  In: Forage cell wall structure and 

digestibility by Jung, H.G., Buxton, D.R., Hatfield, R.D. & Ralph, J. (eds). Madison: Am. Soc. 

Agronom., pp 1-32. 

 

Wilson, J.R. & Mertens, D.R., 1995.  Crop quality and utilization.  Cell wall accessibility and 

cell structure limitations to microbial digestion of forage.  Crop Sci., 35: 251-259. 

 

Wood, T.M., Wilson, C.A., McCrae, S.I. & Joblin, K.N., 1986.  A highly active extracellular 

cellulase from the anaerobic rumen fungus  Neocallimastix frontalis.  FEM (Fed. Eur. Micriol. 

Soc.) Microbiol Lett., 34 (1): 37-40. 

 

Yang, W. Z., Beauchemin, K. A. & Rode, L. M., 1999. Effects of enzyme feed additives on 

extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 82:391–403. 



 

44 
 

Yang, W. Z., Beauchemin, K. A. & Rode, L. M., 2000. A comparison of methods of adding 

fibrolytic enzymes to lactating cow diets. J. Dairy Sci. 83:2512–2520. 

 

 
  



 

45 
 

CHAPTER 3 

General Materials and Methods 

 

Ethical clearance for animal use 

 
This study was completed with ethical clearance from the Stellenbosch University Care and 

Use Committee (SU ACUC), reference number: 2006B03005. 

 

Introduction 

 
Increasing the digestibility of poor quality forages has been a topic of research for many 

years. It is clear that forages play an important role in the animal industry worldwide.  As the 

structural fibre (cell wall) portion contributes from 300 to 800 g/kg of forage dry matter and 

represents a major source of nutritional energy for ruminants, any improvement in the 

digestibility thereof can be of great benefit.  Unfortunately, less than 50 % of the fibre fraction 

is readily digested and utilized by the animal (Hatfield et al., 1999).  Exogenous fibrolytic 

enzymes (EFE) have been studied extensively in the last couple of decades as a viable 

means of improving the digestibility of forages typically used in ruminant nutrition.  

Preparations of enzymes that degrade cell walls (cellulases and xylanases) have the 

potential to hydrolyze forage fibre (Feng et al., 1996).  Many authors have reported on the 

successful use of this technology as extensively described elsewhere in this document.  

However, many inconsistent findings have also been reported and the variability in results is 

related to the types and activities of enzymes which are caused to a large extent by the 

organism from which they are produced, the substrate used for its growth and the culture 

conditions used (Considine and Coughlan, 1989; Gashe, 1992).  Also, the composition of the 

substrate used, the method of enzyme application and the portion of the diet to which the 

enzymes are added, confound results (Beauchemin and Rode, 1996; Hristov et al., 1998).  

The current study had the overall objective of investigating the mode of action of EFE’s and 

in the first part of the study popular methodologies were employed.  These included an 

establishment of the in vitro gas production profile of EFE treated forages, in vitro digestibility 

thereof, as well as the in sacco degradation characteristics.  These general methodologies 

will be discussed in length at the subsequent sections. 
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Exogenous fibrolytic enzyme cocktail description and enzymic activity 

 

The exogenous fibrolytic enzyme cocktail used in this study was isolated from fungi obtained 

from soil in South Africa and was used as an extracellular enzyme supernatant in the fresh 

form.  The exogenous enzyme supernatant was produced by the Department of 

Microbiology, Stellenbosch University, South Africa.  This extracellular enzyme supernatant 

of the patented fungal strain, ABO 374, grown on wheat straw, was characterized as a 

fibrolytic enzyme cocktail, containing mostly xylanase (296 ± 0.07 U/mg protein) but also 

cellulase (1.44 ± 0.39 U/mg protein) and mannanase (1.10 ± 0.37 U/mg protein) activity 

(Cruywagen and Van Zyl, 2008).  The activities of these enzymes were determined using 10 

g/kg birchwood xylan in 50mM sodium citrate buffer, pH 5.3 for β-xylanase, 10g/kg CMC 

(carboxymethyl cellulose) as substrate in 0.05M sodium acetate buffer, pH 4.8 for cellulase 

(endoglucanase) and 10 g/kg locust bean gum for β -mannanase activity determination.  In 

most of the experiments reported in this document, fresh extracellular supernatant was used 

as the EFE. 
 

Nutrient composition of forages, feed and samples 

 

Lucerne (Medicago sativa), kikuyu (Penisetum clandestinum), weeping love grass 

(Eragrostis curvula) and a formulated feed were used in the different experiments, as 

described in subsequent chapters. These feeds were analyzed for moisture, DM, ash, crude 

protein, ether extract and NDF.   

Dry matter was determined according to the official method of AOAC International, method 

934.01, fat (crude) or ether extract according to the AOAC Official Method 920.39 and ash 

according to method 942.05. Crude protein was measured according to the combustion 

method (Method 990.03, AOAC, 2002) for nitrogen on a Leco FP-428 Nitrogen and Protein 

analyzer (Leco Corporation, St. Joseph, MI, USA).  Neutral detergent fibre (NDF) was 

determined according to the procedures described by ANKOM with the aid of the ANKOM220 

Fiber Analyzer (ANKOM Technologies, Fairport, NY, USA), using the ANKOM F 57 filter 

bags.     

 

Animals and diets 

 

Six adult Dohne-Merino wethers were used in the in sacco trial and as donors of rumen 

liquor in the in vitro trails.  All animals were fitted with rumen cannulae from Bar Diamond 
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Industries (Bar Diamond, Inc., Parma, ID, USA) by a qualified veterinarian under Ethical 

Clearance from the Stellenbosch University ethics committee (reference number: 

2006B03005).  Sheep were maintained on a 50:50 mixture of oat hay and lucerne ad libitum 

and supplemented with a commercial sheep concentrate at a daily level of 100 g/animal for 

the in vitro study. The roughage basal diet supplied 135 g/kg CP, 525 g/kg NDF, 16.2 g/kg 

crude fat and 80.0 g/kg ash (DM basis).  For the in sacco study, animals were fed a 

formulated diet based on the specification of the Nutrient Requirements of Sheep (National 

Research Council, 1985).  The composition and nutrient content of this diet is presented in 

Table 3.1 and was fed to animals during the in sacco trail and as basal diet in other 

experiments, where indicated.  Animals were adapted to this diet for a 10 d period before the 

experimental phase wherein animals were randomly assigned to two groups (enzyme and 

control group) in a 2 x 3 cross over experiment with a 10 d adaptation period in between.  

Sheep received the respective treatment diets for a period of four days.  All sheep therefore 

received both treatments.   

 

Table 3.1.  Formulation and chemical composition (DM-basis) of a balanced diet for sheep 

based on NRC requirements for sheep (National Research Council, 1985). 

Raw material Inclusion, g/kg  

Maize meal 450 

Wheat 150 

Lucerne meal 120 

Oat hay 200 

Cotton seed oilcake meal 50 

MuttonGainer premix1 30 

TOTAL 1000 

Chemical composition g/kg 

Moisture 132 

DM 868 

Crude protein 166 

NDF 349 

Ether extract 11.3 

Ash 46.5 

 1: Product supplied by FORMUFEED cc, Villiersdorp, South Africa and manufactured by 

NUTEC (Pty) Ltd, Willowton, South Africa. 
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Forages and diet characteristics 

 

Forages evaluated and used in the experiments of this project study were lucerne hay 

(Medicago sativa), freshly cut and dried (dried at 50oC for 72h) kikuyu (Pennisetum 

clandestinum), weeping love grass hay (Eragrostis curvula) and wheat straw.  The nutrient 

composition of these forages is presented in Table 3.2.  

 

Table 3.2.  Nutrient composition of forages used in the in vitro assays reported on a DM 

basis 

Nutrient content Lucerne hay 

(Medicago 

sativa) 

Dried kikuyu 

(Pennisetum 

clandestinum) 

Weeping 

lovegrass hay 

(Eragrostis 

curvula) 

Wheat straw 

(Triticum spp.) 

Moisture, g/kg 102.0 165.8 116.8 107.9 

DM, g/kg 898.0 834.2 883.2 892.1 

Ash, g/kg 86.1 55.4 57.5 74.9 

Crude fat, g/kg 12.7 17.4 14.8 18.2 

Crude protein, 

g/kg 

238.1 143.9 123.2 64.5 

NDF, g/kg 463.3 635.7 714.2 817.7 

 
 

The four forages, as well as the complete diet were all treated in a similar manner before any 

analysis.  The samples were milled through a 2mm screen using a laboratory scale hammer 

mill (Scientech RSA, Hammer mill Ser. No. 372, Cape Town, RSA).  The milled samples 

were then sieved through a 124 µm sieve on an automated horizontal shaker for 5 minutes 

(Retsch AS 200, Retsch Gmbh, Germany) and the coarse sample retained for analysis.  All 

samples were stored in glass screw top bottles at 4oC untill required for analysis.  The 

sieving step was included to eliminate the presence of particles small enough to pass 

through the polyester in sacco or in vitro bags as to limit over estimating the soluble (a) 

fraction (Cruywagen et al., 2003).  The pore size of the F57 in vitro filter bags (Ankom® 

Technology Corp., Fairport, NY, USA) and the polyester in sacco bags (Ankom forage bags) 

were 25 µm and 50 µm respectively, as indicated by the manufacturer.    
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Collection of rumen fluid from donor sheep 

 

The rumen fluid inoculum was collected from ruminally cannulated Döhne-Merino wethers 

fed a basal diet of roughage (ad libitum, Table 3.1) supplemented daily with a commercial 

concentrate (100g/sheep). The collection of the rumen fluid inoculum was only done after 

animals were adapted to the diet for a period of at least 10 d.  The donor animals were fed 

ad libitum with the first feeding in the morning (approximately 07:30) and topped up in the 

late afternoon to ensure the availability of fresh feed.  Concentrate supplementation was 

done once daily during the morning feeding.  Rumen fluid was always collected at least 30 

minutes after the morning feeding and any digesta other than the rumen liquor removed, was 

replaced.  Post-feeding rumen collection was done to ensure a high concentration of micro-

organisms present in the liquid (Mauricio et al., 1999).      

 

The rumen content of each animal was hand mixed before sampling and depending on the 

amount of inoculum needed, at least two to four sheep were sampled. Some of the rumen 

contents were then removed from the ventral rumen (Weimer et al., 1999) and strained 

through two layers of cheesecloth.   Approximately 500 ml of the ruminal fluid were collected 

from each donor animal, mixed and transferred to pre-heated thermos flasks. The flasks 

were filled completely to eliminate any oxygen (Mauricio et al., 1999) while being transported 

back to the laboratory. In the laboratory, the flasks were emptied into an industrial blender 

(Waring Commercial® Heavy Duty Blender, Waring® Corporation, New Hartford, CT, USA) 

while being purged with CO2 to maintain anaerobic conditions (Grant and Mertens, 1992).  

The blender was sealed and the contents blended for 1 minute on the pulse setting of the 

blender.  

 

Once blended, the rumen fluid was again squeezed through a single layer of cheesecloth to 

remove any remaining large solid particles and transferred to a large glass beaker inside a 

39oC water bath.  The blended rumen fluid was then allowed to stand for up to 10 minutes to 

allow for the breakdown of the frothy layer that formed due to the blending step while being 

continuously purged with CO2 as recommended by Goering and Van Soest (1970).  

Thereafter, the required amount of rumen fluid was added to the buffer solution in the 

respective incubation vessels at a ratio of one part rumen fluid to four parts buffer solution. 
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Preparation of the buffer solution 

 

The rumen fluid collected from the donor Döhne-Merino wethers was mixed with a reduced 

buffer solution as described by Goering and Van Soest (1970), with slight modifications. This 

buffer solution was used for the in vitro gas production determination as well as the in vitro 

true digestibility analysis.   According to Mertens and Weimer (1998), this phosphate-

bicarbonate buffer is capable of maintaining a pH of above 6.2 for 40 to 60 mg of fermented 

substrate when gases are not released during a 96 h fermentation.   As recommended by 

Tilley and Terry (1963), a relatively large volume of buffer solution was added (four parts), to 

maintain a pH level within the usual limits for digestion, and to ensure that the final acid 

concentration would be comparable to and not exceeding that found in the rumen.  The 

composition of the buffer solution is presented in Table 3.3. 

 
Table 3.3. Composition of the buffer solution used in the in vitro- GP and digestibility trials. 
Reagent    Quantity added 
Rumen buffer solution:  

Deionised water  2.0 l 

NH4HCO3  8.0 g 

NaHCO3  70.0 g 

Macro-mineral solution: 
Deionised water  2.0 l 

NaH2PO4 (anhydrous)  11.4 g  

KH2PO4 (anhydrous)  12.4 g 

MgSO4
.7 H2O  1.17 g 

Micro-mineral solution: 
Deionised water 100 ml 
CaCl2.2 H2O 13.2 g 

MnCl2.4 H2O 10.0 g 

CoCl2.6 H2O   1.0 g 

FeCl3.6 H2O   8.0 g 

Cysteine sulphide reducing agent: 

Deionised water 48 ml 

Cysteine hydrochloride 312 mg 

1 N NaOH   2 ml 

Na2S.9H2O 312 mg 

Final buffer solution (per litre): 
Deionised water 500 ml  
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Rumen buffer solution 250 ml  

Macro-mineral solution 250 ml  

Resazurin (0.2%, w/v) 2 ml  

Micro-mineral solution 0.12 ml  

Tryptose 1.25 g   

Reducing buffer solution: 
Final buffer solution 570 ml 

Cysteine sulphide reducing agent 30 ml 

 

The rumen buffer solution, macro mineral solution and micro mineral solution were prepared 

in large quantities and utilized as needed.  The micro mineral solution was stored in a dark 

glass bottle as to maintain the quality of the solution.  On the morning before 

commencement of the experiment, the appropriate amounts of deionised water, rumen 

buffer solution, macro and micro mineral solutions were mixed with the tryptose and freshly 

prepared resazurin.  The cysteine sulphide reducing solution was also prepared fresh and 

only added to the rest of the solution once all chemicals were dissolved.  As soon as the 

reducing agent was added, the buffer solution was placed in a 39oC water bath and bubbled 

with CO2 until the optimal pH of 6.8 was obtained.  The glass vial was then sealed with a 

rubber stopper and left at 39oC until the buffer solution was clear, indicating that the solution 

was sufficiently reduced. A purple or pink colour was regarded as indicative of the buffer 

being in the oxidized form (Goering and Van Soest, 1970).  Only after the solution was 

completely reduced were the appropriate amounts dispensed into the various in vitro glass 

vials already containing the substrates and treatment material under CO2 phase, capped and 

placed in the 39oC incubator.  As discussed in the following section, rumen fluid was added 

to the glass vials containing the substrate, EFE or dH2O and reduced buffer solution shortly 

before the experiment was initiated.  This protocol was regarded as sufficient to limit shock 

to the microbes when added to the buffer solution as optimal pH, temperature and reduced 

conditions were achieved.  The trace minerals, macro minerals, ammonia and Tryptose 

(T2813, Sigma-Aldrich, St. Louis, MO, USA), a pre-digested source of amino nitrogen and 

branched chain fatty acid precursors prevented any deficiencies of nutrients to the 

microorganisms (Mertens and Weimer, 1998).      

In vitro gas production measurement 

In this study, two gas production systems were used.  In the early stage of the work, a semi-

automated system was used whereas later on a fully automated system was used.  The 

semi-automated system consisted of a digital pressure gauge from SenSym ICT (Honeywell 

Inc., Morris, NJ, USA) fitted with a luer lock adapter and disposable 21 gauge needle.  In the 
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latter studies, fully automated mobile gas pressure sensors were used (MadgeTech, West 

Warner, NH, USA).  These sensors can be programmed to initiate the recording of gas 

pressure at a pre-determined time and at pre-determined intervals for the whole incubation 

period.  Sensors were fitted with 21 gauge needles which were inserted through the rubber 

stoppers on the in vitro gas production vials. After the experiment, sensors were removed 

and pressure data down loaded to a computer, exported to the MadgeTech data recorder 

software, version 2.00 program (MadgeTech, West Warner, NH, USA) and converted to gas 

volume as described in the following section. 

 

For the determination of gas production 500 mg samples of the test material were incubated 

in buffered rumen fluid under anaerobic conditions at 39oC. The samples were incubated for 

the appropriate incubation period, and depending on the system, gas pressure was recorded 

manually or automatically at pre-determined time intervals.  The gas production systems 

used here were based on the Reading Pressure Technique (RPT) and was similar to the 

system described by Theodorou et al. (1994) with the exception that semi-automated or 

automated gas pressure devices instead of syringes were used to log the gas pressure at 

the relevant time intervals. 

   

Glass vials with a nominal volume of 120 ml were used for the in vitro gas production 

measurements.  Feed samples were prepared as described earlier and weighed accurately 

into the vials prior to the start of the experiment.  In this study, amounts of up to 0.5 ± 0.01 g 

substrate (“as is” basis) were used per vial.  The substrates were pre-treated with the EFE at 

least 12h prior to adding the buffered rumen fluid.  This was to allow for an enzyme-

substrate interaction time as the enzyme requires an adsorption and binding time to the 

substrate to allow for protection against proteolytic breakdown in the rumen (Forwood et al., 

1990; Beauchemin et al., 2003).  The precise amounts of EFE or dH2O added and substrate 

used are described in the following chapters.  Fourty millilitres of buffered rumen fluid and 10 

ml of strained and blended rumen fluid were added to each vial shortly before initiating the 

experiment.  Each vial therefore contained no more than 50% of its total volume as 

substrate, EFE and buffered rumen fluid, allowing for sufficient head space for gas 

production.  However, pressure was released every three hours by inserting a 21 gauge 

needle through the rubber stopper. 

 

Digital gas pressure readings were converted to gas volumes produced in millilitres by a pre-

determined calibration curve developed in our laboratory, as described by Goosen (2004).  

This was done by setting up a correlation between pre-determined gas volumes added to the 

vials and consequently recording the pressure readings, taking into account the temperature 
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at which the gas was added as well as the head space of each individually marked glass 

vial.  The equation used to convert gas pressure to volume was y = 0.0977x (R2 = 0.99) 

where x = net pressure (psi) and y = volume (ml). 

 

The following two non-linear models (model 1: no lag phase calculation and model 2: lag 

phase calculation) were used to determine the kinetic coefficients for gas production.    The 

Solver function of Excel was used to fit the models to the gas production data (nett gas 

production, ml/g DM).   

Model 1:   ⎟
⎠
⎞

⎜
⎝
⎛ −−= ctebY 1      

 

Model 2:   
( )

⎟
⎠
⎞

⎜
⎝
⎛ −−−= LtcebY 1    

 

 

Where:  Y  = gas volume at time t   

b  = total gas production  

c  = rate of gas production  

t   = incubation time 

L = lag time 

 

Determination of neutral detergent fibre content (NDF) 

 

The procedure described by Ankom® was used in the determination of NDF of fresh feed 

and forage samples, as well as for samples after fermentation in buffered rumen fluid.  

Apparatus used were the Ankom® 200/220 Fiber analyzer (Ankom® Technology Corp., Fairport, 

NY, USA).  Neutral detergent fibre when treated with α-amylase, yields similar average fibre 

concentrations in the Ankom fibre analyzer with filter bags compared to using porous Gooch 

crucibles as was reported by Ferreira and Mertens (2007).   

 

ANKOM filter bags (F57) were prepared in acetone as per manufacturer instructions to 

remove the waxy surfactant layer which could interfere with microbial digestion.  The bags 

were then placed in a forced draught oven at 100oC for 24h, labelled and used as needed. 
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After weighing the labelled bags, the substrates were weighed into the bags at 0.5 ± 0.01 g 

per bag, or less if stated so elsewhere.  The bags were then sealed using an impulse heat 

sealer (Ankom® 1915/1920 Heat sealer; Ankom® Technology Corp., Fairport, NY, USA).  

One bag per every 23 analyzed was also heat sealed without any substrate to serve as 

blank and to determine the correction factors.  The sealed bags were then placed on the 

trays (three per tray on eight trays), inserted into the fibre analyser chamber and weighted 

down with the weight supplied with the system.  The neutral detergent solution (2000ml) was 

added to the chamber and the agitation button activated.  Twenty grams of sodium sulphite 

and 4.0 ml heat stable α-amylase were added to the neutral detergent solution before 

pouring the solution into the chamber to allow for solubilisation of the sodium sulphite.  The 

chamber was then sealed and the heat button activated and allowed to run for 75 min.  After 

the 75 minute period, agitation and heating were deactivated, the solution drained from the 

chamber and opened.  Two litres of hot water containing 4.0 ml α-amylase (for the first two 

rinses) were poured into the chamber and bags were allowed to rinse with agitation activated 

for three minutes.  This was repeated another two times, with the last rinse containing hot 

water only.  Bags were removed from the chamber, excess water removed by gently 

squeezing the bags and placed in a 100oC oven for 24h to dry.  The bags were then 

weighed and NDF corrected for DM calculated as per formula. 

 
Neutral detergent solution (NDS): 
 Deionised water      1.0 l 

 Sodium lauryl sulphate     30.0 g 

 Ethylenediaminetetraacetic disodium salt, dihydrate  18.61 g 

 Sodium tetraborate decahydrate    6.81 g 

 Sodium phosphate dibasic, anhydrous   4.51 g 

 Triethylene glycol      10 ml 

 

Neutral detergent fibre: 
  a = ((b – (c * d)) * 100) / e 

   Where: 

   a = neutral detergent fibre (%) 

   b = dried bag weight (post-NDF treatment) (g) 

   c = original bag tare weight (g) 

   d = DM corrected blank bag (g) 

   e = sample dry matter weight (g) 
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In vitro digestibility 

 

The Ankom® DAISYII in vitro fermentation system (Ankom® Technology Corp., Fairport, NY, 

USA) was used for the estimation of in vitro true digestibility (IVTD) and was done according 

to the protocol as described by the manufacturers.  Slight modifications were, however, 

made in the current study.  This included using the buffer solution of Goering and Van Soest 

(1970), containing Tryptose as protein source, as described earlier.  Also, the buffer solution 

was partially replaced by the EFE or dH2O in the flasks, in order for the flasks to contain the 

same final volume as prescribed by the manufacturers.  This consisted of replacing 200ml of 

the Goering and Van Soest buffer with EFE or dH2O.  To this, 1400 ml of reduced buffer 

solution and 400 ml of strained and blended rumen fluid inoculum were added. 

  

The DAISYII Incubator consists of a large incubator that can be maintained at 39oC.  Four 

large (4 L) flasks can be accommodated in the incubator and constantly rotated to improve 

access of microorganisms to the substrate and limit sedimentation of feed particles present 

in the buffered rumen fluid. Substrate is added to the flasks by weighing substrate into F57 

fibre filter bags and heat sealing the bags.  The F57 filter bags have a pore size of 25 µm 

allowing for access of microorganisms and substantially limiting the wash out of fine sample 

particles.  As samples were milled and sieved as described earlier, it was regarded that the 

over-estimation of the soluble fraction (a) would be minimal (Cruywagen et al., 2003).  Each 

flask may accommodate 25 substrate bags, which includes one blank bag for correction 

purposes in bag weight changes (Holden, 1999). 

  

As described by the manufacturer, multi-layer polyethylene polyester cloth bags (Ankom® 

F57 filter bag; Ankom® Technology Corp., Fairport, NY, USA.) were pre-rinsed in acetone for 

three minutes to remove the waxy surfactant coating that may inhibit access of 

microorganisms through the pores of the bag.  Bags were then dried in a forced draught 

oven (100oC, 24h) before being weighed and marked.  Samples were accurately weighed 

into the bags at amounts ranging from 0.25 ± 0.01g (according to manufacturer 

specifications) to 0.5 ± 0.01 g as indicated in the relevant chapters and heat sealed with an 

impact heat sealer (Ankom® 1915/1920 Heat Sealer; Ankom® Technology Corp., Fairport, 

NY, USA). A blank bag containing no substrate was also prepared.   The blank bag served 

as correction for any weight changes in bag weight due to microbial adhesion or particulate 

contamination due to the incubation in buffered rumen fluid.  The sealed bags were then 

placed in the Ankom® DAISYII Incubator digestion jars, ensuring that the bags were evenly 

distributed on both sides of the digestion jar divider. 
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As for the in vitro gas production, the substrate filled F57 bags were treated either with 

200ml EFE or dH2O at least 12h prior to incubation with buffered rumen fluid whilst being 

inside the flasks.  This was again to allow for an enzyme-substrate interaction time before 

the addition of buffered rumen fluid.  The reduced Goering and Van Soest (1970) buffer 

solution was added to each flask (1400ml) shortly before the experiment commenced, 

purged with CO2 and kept under anaerobic conditions inside the pre-warmed incubator 

(39oC).  Buffered rumen fluid (400ml) was added to the flasks under CO2 phase when the 

experiment was started.  Bags were removed after pre-determined incubation intervals as 

indicated in the relevant chapters.  Three bags per treatment were never included in the 

incubation flasks and served as 0h values.  These bags, along with the bags shortly after 

removal were gently rinsed under running tap water until the water was clear.  Bags were 

retrieved from the flasks by removing the flasks from the incubator, opening the lids and 

purging the flask with CO2 while the relevant bags were removed.  The washed bags were 

then placed either in a drying oven (60oC) for 24 h to allow for the determination of DM 

disappearance or frozen (-18oC) if only the In vitro true digestibility was to be determined. On 

completion of the drying period the bags were removed and weighed to determine the DM 

disappearance of substrate.  Thereafter, these bags or the frozen bags were placed in the 

Ankom®200/220 Fiber Analyzer (Ankom® Technology Corp., Fairport, NY, USA) and the 

procedure for determination of NDF (as described by the manufacturer) was followed.  On 

completion of the NDF procedure the bags were dried at 100˚C for 24h, and then weighed. 

The in vitro true digestibility corrected for dry matter (IVTD DM) was calculated according to 

the formula given by Ankom (Ankom® Technology Corp., Fairport, NY, USA). The in vitro 

dry matter digestibility and in vitro NDF digestibility were calculated for the different 

treatments. The calculations used to obtain these values are shown below: 

 

In vitro dry matter digestibility (%): 

   a = 100 – ((b – (c * d / e)) / f * 100) 

   Where: 

   a = in vitro dry matter digestibility (%) 

   b = dried bag weight (post-incubation) (g) 

   c = original bag tare weight (g) 

   d = blank bag weight (post-incubation) (g) 

   e = blank bag tare weight (g) 

   f = sample dry matter weight (g) 
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In vitro neutral detergent fibre digestibility (%): 

   a = 100 – (((b – (c * d / e)) – (f)) / ( * h) * 100) 

   Where: 

   a = in vitro neutral detergent fibre digestibility (%) 

   b = dried bag weight (post-NDF treatment) (g) 

   c = original bag tare weight (g) 

   d = blank bag weight (post-NDF treatment) (g) 

   e = blank bag tare weight (g) 

   f = crucible weight  

   g = sample dry matter weight (g) 

   h = NDF proportion of an untreated sample (%) 

 

In vitro true digestibility corrected for dry matter (%): 

  a = 100 – (((b – (c * d / e)) – (f)) / g * 100) 

   Where: 

   a = in vitro neutral detergent fibre digestibility (%) 

   b = dried bag weight (post-NDF treatment) (g) 

   c = original bag tare weight (g) 

   d = blank bag weight (post-NDF treatment) (g) 

   e = blank bag tare weight (g) 

   f = crucible weight (g)      

   g = sample dry matter weight (g) 
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CHAPTER 4 

The effect of an exogenous fibrolytic enzyme cocktail on in vitro gas production and 
in vitro digestibility of forages 

 

Abstract 

The aim of the study was to determine the effect of treatment of forage substrates with an 

exogenous fibrolytic enzyme cocktail (EFE, containing xylanase and cellulase activities) on 

in vitro gas production and in vitro true digestibility (IVTD). Rumen liquor, obtained from 

cannulated sheep fed a lucerne-oat hay based diet, was used as inoculum. Substrates used 

in the fermentations were lucerne hay (Medicago sativa) and two C4 grasses: weeping love 

grass (Eragrostis curvula) hay and kikuyu (Pennisetum clandestinum) grass dried at 50ºC for 

24h. Gas production was measured in 120 ml glass vials with the aid of a digital pressure 

gauge, following anaerobic fermentation in an incubator at 39ºC after 6, 12, 18, 24, 48 and 

72 hours.  Pressure values were converted to volume using a pre-determined regression 

equation.  In vitro true digestibility was measured after 24 hours of fermentation with the aid 

of an Ankom Daisy II incubator.  The gas production fermentation kinetic values upon 

applying a non-linear model to the data showed significant effects on the total gas production 

(b) as well as the rate of gas production (c).  The rate of gas production (c) was 0.049 and 

0.054 h-1 for lucerne control and EFE treatement, respectively and 0.016 and 0.019 h-1 for 

kikuyu control and EFE treatment, respectivley.  The non-linear model did not fit the weeping 

love grass data and therefore only a linear regression line was fitted to the data.  The 

potential total gas production (b) was increased for EFE-treated lucerne, regardless of 

whether the model was used with or without a lag phase.  For kikuyu, the potential gas 

production (b) was increased due to EFE treatment, but only in the non-linear model that 

included an estimation for lag.  Exogenous fibrolytic enzyme treatment resulted in higher 

rates of gas production (c) for both lucerne and kikuyu, and in both models used, but had no 

effect on the lag time of either lucerne or kikuyu.  In contrast with the fermentation kinetic 

values, enzyme treatment had no effect on cumulative gas production (ml/g DM) of lucerne 

or weeping love grass as substrate. However, with kikuyu as substrate, EFE treatment 

resulted in a 12 % increase in cumulative gas production (P < 0.05) after 24h of fermentation 

which was carried over to the rest of the incubation period.  This is in agreement with the 

higher b value predicted by the models (P < 0.05). This increase was observed for the 

remainder of the fermentation period at each subsequent time point (P < 0.05).  In vitro true 

digestibility, as measured after 24h of fermentation, was higher for lucerne than for the C4 

grasses (love grass or kikuyu).  Enzyme treatment increased 24h IVTD (P<0.05), but only for 
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lucerne and kikuyu hay. In this study, EFE treatment resulted in a higher rate of gas 

production (c), higher potential gas production (b) and an improved IVTD for both kikuyu and 

lucerne.  Cumulative gas production was increased for EFE treated lucerne only (P < 0.05). 

Introduction 

 
The use of exogenous enzymes in animal nutrition has in the recent past received renewed 

attention.  This is to an extent due to modern and improved technologies, making the 

commercial production of such enzymatic products cost effective.  Therefore, these products 

are increasingly being used, not only in monogastric nutrition, but also in ruminant nutrition.  

Cellulases, hemicellulases and even pectinases are used in ruminant feeding to improve 

feed utilization, increase production of milk or meat and to improve the digestibility of certain 

feed components.  As reported by Bhat (2000), many research findings have reported on the 

improvement of feed digestibility and animal production (Burroughs et al., 1960; Rust et al., 

1965), while negative effects have also been shown in these early studies (Perry et al., 

1966; Theurer et al., 1963).  These findings also had been reported several decades earlier.  

Today, renewed research in effect has reported very similar positive effects (Beauchemin et 

al., 1995, 2003), including increased forage digestibility, improvements in the efficiency of 

nutrient utilization, increased in vitro NDF digestion and more (Morgavi et al., 2000; 

Chesson, 1993). However, inconsistencies in research findings are still prevalent.  These 

inconsistencies are related to several factors regarding the application of the EFE, as well as 

our understanding of the mode of action of such enzymes.  In terms of the application of 

EFE, there appears to be an enzyme-substrate pre-treatment effect, indicating the 

importance of pre-treating the substrate with the EFE (Forwood et al., 1990; Beauchemin et 

al., 2003).  Another pre-feeding effect is the rate of enzyme application, or dose rate.  The 

optimal dose rate has to be determined for each enzyme preparation (Eun and Beauchemin, 

2007; Jalilvand et al. 2008) in addition to its specificity (White et al., 1993).  Post-feeding 

effects include ruminal pH with EFE in general being less efficient at lower pH levels 

(Colombatto et al., 2007).   

 

It appears that EFE has its major action on the fibre structure (Giraldo et al., 2008) and could 

possibly affect the structures of plant cell walls.  Additionally, Alvarez et al. (2009) reports 

that due to the increased DM and CP soluble fractions of diets resulting from fibrolytic 

enzyme addition, the reducing sugars produced would provide energy that would lead to 

rapid microbial growth.  Increased ruminal bacteria numbers could lead to increased 

microbial colonization of the feed particles.  This is consistent with views that the action of 
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EFE is due to a synergistic effect with rumen microbes and therefore the hydrolytic activity 

within the rumen is increased (Morgavi et al., 2000). 

 

From the literature, it is evident that exogenous fibrolytic enzymes indeed have an effect on 

fibre digestion.  However, results suggest that it is important to consider the combined effect 

of enzyme type, enzyme level and substrate, in addition to factors such as pre-treatment 

effects discussed above.  Therefore, the first objective of this study was to establish the 

effect of an EFE cocktail, allowing for pre-treatment effects and different substrates, on gas 

production kinetics and in vitro digestibility of lucerne, kikuyu and weeping love grass.  The 

EFE cocktail was produced by the Microbiology Department of Stellenbosch University.        

 

Materials and Methods 

 
Samples of lucerne (Medicago sativa) hay, dried kikuyu (Penisetum clandestinum) (50oC) 

and weeping love grass (Eragrostis curvula) hay were milled through a 2 mm screen.  The 

material was then sieved with an orbital shaker (Retsch AS 200, Retsch Gmbh, Germany) 

for 5 minutes through a 128 µm sieve to reduce variance in particle size by removing the 

extremely fine particles.  For the in vitro gas production technique, 0.5 ± 0.01 g of the 

relevant material was weighed into 120 ml serum vials of which the volume of each had 

previously been determined accurately. Four vials were used per treatment.  To each vial a 

magnetic stir bar was added to facilitate mixing during the incubation period.  A pre-

incubation time of 12h was allowed for the exogenous enzyme to interact with the substrate.  

The enzyme cocktail was diluted 200 fold and 1 ml thereof added to each experimental vial. 

Control bottles contained 1 ml distilled water to allow for similar changes in the headspace of 

the vials.  Rumen fluid was collected from adult donor Dohne-Merino wethers fed a lucerne-

oat hay based diet supplemented daily with 100 g of a commercial concentrate for sheep.  

Collection was in the morning shortly after the 07:30 feeding and rumen fluid was strained 

through two layers of cheese cloth into a pre-warmed thermos flask and sealed.  In the 

laboratory the rumen fluid was blended for 2 minutes before being added to the incubation 

bottles in a ratio of one part rumen fluid to four parts buffer.  The buffer was prepared 

according to the method of Goering and Van Soest (1970), with slight modifications as 

discussed in the general materials and methods chapter.  Anaerobic principles were adhered 

to and bottles were sealed under CO2 gas phase with rubber stoppers and crimp seal tops 

and placed in the 39oC incubator.  The stirrer plates were activated and continuous,  slow 

(20 rpm/min) stirring allowed.  Gas pressure (psi) was measured at 3, 6, 12, 18, 24, 36, 48 

and 72 h with a manual gas pressure gauge from SenSym ICT (Honeywell Inc., Morris, NJ, 
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USA).  After each gas pressure measurement gas build-up was released by inserting a 21 

gauge needle through the rubber stopper.  Gas pressure was converted to gas volume with 

a pre-determined regression equation taking into account the headspace of each particular 

bottle.   

 

For the determination of in vitro true digestibility (IVTD) the Ankom® DAISYII in vitro 

fermentation system (Ankom® Technology Corp., Fairport, NY, USA) was used and the 

procedure followed as described by the manufacturers.  The prescribed Ankom buffer was, 

however, replaced by the Goering and Van Soest (1970) buffer.  The F57 filter bags 

containing 0.25 (± 0.01) g substrate were incubated for 24 h in rumen fluid inoculum with 

buffer at a ratio of 1:4.  The same enzyme dilution (1ml in 200 ml distilled water) as for the 

gas production trial was used and 40 ml added to the two treatment incubation jars.  Two 

jars served as control with 40 ml distilled water added instead of the enzyme cocktail.  Bags 

were duplicated in each jar (2x2 replications). After the incubation period, the bags were 

removed and in vitro true digestibility (IVTD) determined according to the Ankom procedure, 

as explained in Chapter 3. The whole experiment (gas production and in vitro digestibility) 

was duplicated in a second run using rumen fluid collected in exactly the same manner and 

from the same animals as during the first run. 

 

The enzyme cocktail used was the extracellular enzyme supernatant of the patented fungal 

strain, ABO 374, produced by the Department of Microbiology, Stellenbosch University.  It is 

characterised as a fibrolytic enzyme cocktail and contains xylanase (296 ± 0.07 U/mg 

protein), cellulase (1.44 ± 0.39 U/mg protein) and mannanase (1.10 ± 0.37 U/mg protein) as 

major enzyme activities (Cruywagen and Van Zyl, 2008).  This cocktail was added to the 

experimental vessels at a dilution rate of 1 in 200 ml distilled water, as discussed previously. 

 

The following two non-linear models (model 1: no lag phase calculation and model 2: lag 

phase calculation) were used to determine the kinetic coefficients for gas production.    The 

solver function of Microsoft Excel was used to fit the models to the gas production data (nett 

gas production, ml/g DM).  The exponential equation presented by Model 2 is also proposed 

by other researchers as a fitting model for the determination of gas production kinetic values 

(France et al., 2000; Jalilvand et al., 2008)   

Model 1:   ⎟
⎠
⎞

⎜
⎝
⎛ −−= ctebY 1      
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Model 2:   
( )

⎟
⎠
⎞

⎜
⎝
⎛ −−−= LtcebY 1    

 

 

Where:  Y  = cumulative gas volume at time t  (ml) 

b  = asymptotic total gas production  

c  = rate of gas production (.h-1) 

t   = incubation time (h) 

L = lag time (h) 

 

Due to limitations in the manual gas production system, only eight incubation times were 

observed during the 72h period and therefore the data was not additionally fitted to a two-

compartmental model to distinguish effects of EFE on the rapidly soluble fraction. 

  

Statistical analysis 

The experiment was a completely randomized design and conducted in duplicate runs. 

Fractional gas production at each time interval and in vitro true digestibility data were 

subjected to a main effects ANOVA, using Statistica 8.1 (2008).  Significant forage * 

treatment interactions were detected and data pertaining to the respective forages were 

further subjected to a one way ANOVA.  Total cumulative gas production data were 

subjected to a repeated measures ANOVA and the Bonferroni distribution of the post-hoc 

comparisons.  If interactions were observed, the data was subjected to a one-way ANOVA to 

determine cumulative gas production effects at specific time intervals.  For the gas 

production kinetic data, the b and c (model without lag) and b, c and L (model with lag) 

kinetic values were subjected to a factorial ANOVA with the factors substrate and enzyme, 

using Statistica 8.1 (2008).  This was done for all the non-linear parameters.  If no interaction 

was observed, the main effects were interpreted.   

 

Results 

 
Roughages 
The proximate analysis results of the three forages used in the experiments of this chapter 

are presented in Table 4.1 on a DM basis and compared to typical values for South African 

produced hays.  The composition of our test substrates compared well to long term average 

South African values (determined in the Nutrition laboratory of the Department of Animal 
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Sciences, Stellenbosch University), with the exception of NDF that differed from the norm for 

all the substrates and crude fat that differed greatly from the norm, only for weeping love 

grass.  The differences in fibre content can be attributed to various factors as stated by Van 

Straalen and Tamminga (1990).  These are likely due to differences in the stage of cutting 

and hay making, but also to cultivar and species differences, season and weather 

conditions.   

 

Table 4.1.  Nutrient composition (on a DM basis) of forages used in the evaluation of 

exogenous fibrolytin enzymes (EFE) and its effects on gas production and IVTD  

Forage Moisture, 

g/kg 

DM, 

g/kg 

Ash, 

g/kg 

Crude 

fat, g/kg 

Crude 

protein, g/kg 

NDF, 

g/kg 

Lucerne hay (SA 

average) 102.0 

898.0 

(887) 

86.1 

(62.1) 

12.7 

(18.6) 

238.1 

(141) 

463.3 

(362.9) 

Dried Kikuyu (SA 

average) 165.8 

834.2 

(820) 

55.4 

(96.3) 

17.4 

(15.6) 

143.9 

(123.0) 

635.7 

(630.5) 

Weeping lovegrass 

hay (SA average) 116.8 

883.2 

(869) 

57.5 

(31) 

14.8 

(40.1) 

123.2 

(91) 

714.2 

(CF379) 

Values in brackets indicate the typical average nutrient content determined with South African forages 

in the Nutrition laboratory of the Department of Animal Sciences. 

CF:  Crude fibre. The average crude fibre value is given where insufficient data was available for the 

determination of the average NDF content. 

 

Gas production 
When net gas production is expressed as the volume of gas produced (ml/g DM) in 

consecutive 6 h gas production periods (termed fractional gas production, with removal of 

gas produced after each measurement), it is evident that the EFE cocktail had varying 

results on the three substrates evaluated as seen in Figures 4.1, 4.4 and 4.7.  

   

As indicated in Figure 4.1, kikuyu incubated with EFE showed improved gas production 

during the second, third and fifth 6 h consecutive incubation periods, corresponding to 12 h, 

18 h and 30 h incubation times respectively (P < 0.05).  This effect disappeared during the 

last 6 h incubation period (corresponding to the 36 h incubation time) and indeed no further 

enzyme effects were noted in the remainder of the incubation period (48 h and 72 h).  Figure 

4.2 indicates the cumulative gas production of kikuyu over the 72 h incubation period.  The 

addition of EFE resulted in greater net gas production with the kikuyu substrate as 

determined by a Bonferroni test from 12 h onwards (P < 0.05).  This cumulative gas 

production data was then fitted to two non-linear models (with and without a lag phase) to 
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determine the gas production kinetic digestion values.  The estimated gas production of the 

model containing a lag phase is presented in Figure 4.3.  From Table 4.2 it is clear that EFE 

treatment of kikuyu resulted in a higher total gas production (b-value; P = 0.039) and 

increased rate of gas production (c-value; P = 0.001) when the model with a lag phase was 

used.  The model without lag phase did not result in a higher b-value (P = 0.16), but is 

consistent with the first model in that the rate of gas production was also positively 

influenced (P = 0.002).  Lag time was not decreased due to enzyme treatment of kikuyu (P = 

0.99).  Although the total gas production (b) was improved by enzyme addition, it appears 

from Figure 4.1 that this effect was related to a carry-over effect, as fractional gas production 

was mostly improved during the earlier stages of fermentation and disappeared after 

incubation times exceeding 30 h.   

 

Table 4.2. Gas production fermentation kinetics of lucerne hay or kikuyu treated with EFE 

and incubated in buffered rumen fluid for 72 h 

Lucerne hay Control EFE cocktail SEM P 

Model with lag 

b 108.87 103.86 1.162 0.013 

c 0.049 0.054 0.00089 0.005 

Lag 0.373 0.307 0.039 0.260 

Model without lag 

b 109.84 104.56 1.151 0.009 

c 0.047 0.052 0.00082 0.002 

Dried kikuyu Control EFE cocktail SEM P 

Model with lag 

b 156.32 165.94 2.873 0.039 

c 0.016 0.019 0.00029 0.001 

Lag 1.40 1.40 0.027 0.990 

Model without lag 

b 175.43 183.41 3.740 0.160 

c 0.013 0.015 0.00030 0.002 

b: asymptotic total gas production, c: rate of gas production (per h), lag: lag time (h) 
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Figure 4.1.  Fractional gas production of kikuyu with or without EFE in six consecutive 6 h 

gas production periods (36 h incubation period). Error bars represent the SEM.  Different 

superscripts (a, b, c or d) indicate significant differences within a specific 6h period (P < 

0.05). 

 

 
Figure 4.2.  Cumulative gas production of kikuyu treated with or without EFE over a 72h 

incubation period in buffered rumen fluid.  Error bars represent the SEM. 
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Figure 4.3.  Gas production of kikuyu treated with EFE or distilled water over a 72h 

incubation period in buffered rumen fluid using estimate values with data fitted to a non-

linear model (with lag). Error bars represent the SEM. 

 

Far less positive effects were observed when lucerne was used as substrate.  Neither the 

fractional gas production (Figure 4.4) nor the cumulative gas production (Figure 4.5) of EFE 

treated lucerne was positively influenced (P > 0.05).  The cumulative gas production data 

was again fitted to the two models described earlier and results presented in Table 4.2.  For 

both models, the b- and c- values were significantly improved due to EFE treatment (P < 

0.05).  Exogenous fibrolytic enzyme treatment, however, had no effect on the lag time (P = 

0.26).  It therefore appears that EFE treatment consistently improved the potential gas 

production and rate of gas production, but in the case of lucerne, no explanation can be 

given as to when this effect occurred. 
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Figure 4.4. Fractional gas production of lucerne hay with or without EFE in six consecutive  

6 h gas production periods (36 h incubation period). Error bars represent the SEM. 

 

 
 

Figure 4.5.  Cumulative gas production of lucerne treated with or without EFE over a 72 h 

incubation period in buffered rumen fluid. Error bars represent the SEM. 
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Figure 4.6. Gas production of lucerne treated with EFE or distilled water over a 72 h 

incubation period in buffered rumen fluid using estimate values with data fitted to a non-

linear model (with lag). Error bars represent the SEM.  

 

With the weeping love grass as substrate (Figure 4.7), an increased gas production due to 

EFE addition was observed during the early hours of incubation, similar to that observed for 

kikuyu.  Fractional gas production was higher in period 2 and period 4, corresponding to 12 h 

and 24 h incubation times (P < 0.05) for the EFE treated weeping love grass.  During period 

3 the EFE treated weeping love grass, however, produced significantly less net gas than the 

control (P < 0.05).  However, with data expressed as cumulative gas production there was 

only an increased gas production due to EFE treatment at 12 h (Figure 4.8, P = 0.03) and 

the control treatment never exceeded the EFE treatment.  From Figure 4.8 it is evident that 

weeping love grass were still being degraded in a linear fashion and therefore the data could 

not be fitted to the two non-linear models used for kikuyu and lucerne.  A linear regression 

was therefore fitted to the data to get an indication of the rate of gas production.  The trend 

lines fitted the data well (R2 > 0.99) but the rate of production (taken as the slope of the trend 

lines) did not differ significantly between treatments.     
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not for EFE-treated weeping love grass (P = 0.17, Figure 4.9).   The increase was 3.42 % 

and 3.52 % for the lucerne and kikuyu, respectively.  The kikuyu digestibility results are in 

accordance with the net gas production results where a 12 % increased gas production was 

observed at the 24 h incubation time (P < 0.05).  However, there appears to be a poor 

relation between the gas production data and the in vitro digestion data as effects differed in 

magnitude.  Yet, the IVTD data supports the earlier findings on gas production in that a 

higher total gas production is indicative of higher digestibility.  The IVTD data did not support 

the small improvement in gas production observed due to EFE treatment of weeping love 

grass. 

                 

 
Figure 4.9. In vitro true digestibility of three forages treated with EFE after 24h incubation in 

buffered rumen fluid.  Error bars represent the SEM. Different superscripts (a, b, c, d or e) 

indicate significant differences upon pairwise comparisons (P < 0.05). 
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Discussion 

 
The proximate analysis of the three forages used compares well with the average nutrient 

values of South African produced hays, with expected differences in fibre content noted.  

The forages were therefore regarded as acceptable test substrates.   

 

In this study we reported significant effects of EFE treatment on fractional gas production 

during the early hours of incubation.  Fractional gas production was measured to eliminate 

the carry-over effect of higher gas production at the early stages of the incubation to the later 

stages of fermentation.  Indeed, for kikuyu the EFE resulted in higher gas production at 12, 

18 and 30 h of the incubation. For the incubation periods thereafter gas production was not 

improved by EFE.  Similar effects were observed for weeping love grass in which EFE 

treatment increased the fractional gas production at 12 and 24 h of fermentation.  The 

finding that EFE affected the kikuyu and weeping love grass at the earlier incubation times is 

in agreement with findings from Jalilvand et al. (2008) that reported effects of their EFE on 

stimulation of ruminal fermentation during the early hours (6 h) of incubation, but not 

thereafter. Giraldo et al. (2008) also noted the effect of EFE at 8 h of the fermentation of 

different ratios of forages to concentrates.  Tricarico (2001) found that exogenous fibrolytic 

enzymes did not alter final gas production or extent of fibre digestion when extended periods 

of incubation were evaluated and is in agreement with the statement of Colombatto et al. 

(2007) that the final gas production is often not increased by EFE as ruminal microorganisms 

degrade material anyway, albeit at a later stage.  Generally, it is accepted that the enzyme 

exert its effect within the first 6 – 12 h of fermentation.  Unfortunately, in this study the time of 

EFE effect on lucerne could not be determined as no differences were observed in fractional 

gas production for lucerne. 

  

The cumulative gas production data showed a significantly increased net gas production 

over the 72 h incubation period for kikuyu.  This is in agreement with the model predicted 

total gas production (b) which was also increased for the EFE treated kikuyu.  For lucerne, 

somewhat different results were obtained.  Although b was also increased due to EFE 

treatment, no significant difference was observed for the cumulative net gas production.  The 

increased total gas production (b) for kikuyu and lucerne is in agreement with findings that 

EFE can improve total GP of lucerne (Eun and Beauchemin, 2007), mixed forage and 

concentrate diets (Giraldo et al., 2008) or wheat straw (Jalilvand et al., 2008).  However, 

other researchers have reported no effects on total GP.  Colombatto et al. (2003b) found that 

the final gas production value of lucerne was not increased by the two levels of two enzymes 
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tested by them and this corresponds to findings of Jalilvand et al. (2008) whom also reported 

no effects on total GP of lucerne. 

   

For both lucerne and kikuyu, the rate of gas production (c) was increased in this study.  This 

is in stark contrast with findings from Jalilvand et al. (2008) who reported that the 

fermentation rate was adversely affected by enzyme addition, and the level of enzyme 

addition, as their results showed lower fractional gas production rates and higher half times 

as enzyme level increased.  They reported relatively high maximum fermentation rates 

(approximately 0.08 h-1) for lucerne which is close to the theoretical first order rate constants 

for cellulose digestion of 0.05 to 0.08 h-1, as suggested by Weimer (1996).  Weimer (1996) 

reported these values for rate constants of cellulose and suggests that ruminal cellulolytic 

bacteria have evolved to digest cellulose within this narrow range when digesting structurally 

ordered, insoluble polymers of fibrous sources.  It could be hypothesized that there are 

similar theoretical maximum rates above which EFE addition could not further improve the 

fermentation rate of lucerne and indeed any forage.  In our study, much lower gas production 

rates (c: 0.05 h-1 and 0.016 h-1 for lucerne and kikuyu, respectively) were observed than in 

the study of Jalilvand et al. (2008) following that there was scope for improvement by EFE.  

This was indeed the observation and EFE resulted in higher gas production rates for both 

lucerne and kikuyu, regardless of the model used for the determination of the kinetic values.  

Most of the exogenous fibrolytic enzymes tested by Eun and Beauchemin (2007) resulted in 

increased initial rates of gas production and supports findings of this study.  These 

researchers suggested that the increased rate of gas production supports the hypothesis of 

Colombatto et al. (2003a) that the enzyme treatment of forages lead to subtle changes in the 

cell wall structure, thereby allowing ruminal microbes earlier access to the highly digestible 

cell contents. 

 

Volatile fatty acids (VFA) were not measured on the rumen fluid inoculum after fermentation 

as it was assumed that the EFE would not alter the ratio of the VFA from the same 

substrates and thereby affecting the gas production.  As a future prospect, it will be of value 

to confirm this assumption by measuring the effect of the EFE treatment of similar substrates 

on the total VFA production as well as on the VFA ratio. 

 

In vitro true digestibility (IVTD) was significantly higher for both lucerne and kikuyu when 

treated with EFE.  The increase amounted to approximately 3.5% which is lower than values 

reported by Beauchemin et al. (2003) who listed the top ranked enzyme products for their 

ability to affect the IVDMD of lucerne or corn silage.  Although lower, the finding that EFE 

treatment of forages can increase the IVTD thereof is in agreement with other researchers.  
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Dean et al. (2008), similarly to Beauchemin et al. (2003), reported improved IVDMD at 6 h 

for enzyme treated tropical grass hay, but not at 48 h.  Giraldo et al. (2008) further indicated 

that the effect of enzymes on in vitro true DM degradability became less marked as the 

fermentation progressed.  This again is in agreement with earlier findings that EFE exerts its 

effects during the earlier stages of fermentation.  The IVTD results obtained here is in 

agreement with the gas production results and it appears as if EFE had the most consistent 

effects with kikuyu and lucerne, in this trial.        

 

Conclusion 

 
It was deemed important to characterise our enzyme for its particular effects on gas 

production and IVTD of lucerne, kikuyu and weeping love grass hay.  Results indicated that, 

especially for kikuyu, EFE can have a marked effect on the total gas production, as well as 

on the rate of gas production.  For future studies, however, two-compartmental models 

should be employed to determine the effect of the EFE on both the rapidly and slowly 

digesting pools present in forages.   

 

The gas production findings were supported by the increased in vitro digestibility (DMD) of 

kikuyu, but not for lucerne or weeping love grass where discrepancies were observed 

between GP and DMD.  These discrepancies are not well understood but can be related to 

the experimental protocol followed and two probable explanations are offered.  First of all, no 

attempt was made to measure VFA on the rumen fluid inoculum during or after fermentation.  

Increased VFA production or altered VFA ratios could have affected the gas production and 

should be addressed in future studies.  Additionally and more likely, the pre-treatment of the 

substrate with the EFE could have resulted in altered reducing sugar content in the substrate 

when inoculated 12h later on, affecting GP differently to DMD. For GP, the measurement 

does not include any of these pre-treatment effects, while for DMD; the pre-treatment effects 

are included in the calculation of digestibility.  

 

Limited indications exist and are in agreement with other researchers that the enzyme effect 

is likely exerted during the early phases of fermentation.  Results with lucerne were very 

similar to kikuyu regarding the gas production fermentation kinetic parameters, with 

increased total gas production and enhanced rate of gas production.  Weeping love grass 

showed very little potential in improving its digestibility with EFE treatment.      
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It is concluded that there is sufficient evidence that the EFE cocktail used in this study can 

affect the digestibility characteristics of especially kikuyu- and lucerne hay and further 

studies are warranted.  Such studies will be discussed in the subsequent chapter and 

includes information on in sacco degradability as opposed to merely evaluating gas 

production and IVTD. 
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CHAPTER 5 

The effect of an exogenous fibrolytic enzyme cocktail on in sacco and in vitro 
digestibility of a complete feed for sheep 

 

Abstract 

Exogenous fibrolytic enzymes (EFE) show potential in improving the digestibility of forages, 

not only in vitro and in situ, but also in terms of the production of ruminant animals.  Many 

research publications point to improved rates of DM, NDF and/or CP disappearance, 

potential disappearance of these nutrients, decreased lag times for digestion and effective 

degradability.  These results have, however, been inconsistent.  In this study, a novel 

exogenous fibrolytic enzyme cocktail, applied 12 h prior to incubation as a supernatant from 

the fermentation of fungal strain ABO 374 was evaluated in sacco (up to 96 h) using six 

Döhne-Merino sheep.  Data were fitted to two non-linear models differing only in terms of the 

inclusion of a calculation for lag time.  Parallel to this trial the in vitro digestibility of the 

complete feed was also evaluated (up to 72 h) for its susceptibility to EFE.  The complete 

feed contained a substantial amount of NDF (349 g/kg DM basis) and was further formulated 

according to the specifications for growing lambs.  Results were in agreement with other 

research findings on EFE treated feeds or feedstuffs.  It was observed that the rate of DM, 

CP and NDF disappearance and the effective degradability of each nutrient was significantly 

improved due to EFE treatment.  The two models yielded similar results with the exception 

that EFE resulted in a shorter lag time for NDF only.  Contradictory to expectations, EFE 

treatment of the complete feed resulted in a significantly lower soluble and rapidly 

degradable NDF fraction.  The in vitro digestibility results substantiated the findings that EFE 

treatment of the complete feed can result in the improved digestibility thereof.  Also, in 

agreement with findings of other groups, it was demonstrated that, although the EFE 

contained only fibrolytic enzyme activity, its effects were not limited to NDF.  Based on these 

results on nutrient digestibility, it is speculated that EFE partly results in subtle changes to 

the cell wall structure, allowing microorganisms earlier access to the cell contents. In 

addition, these effects may also be related to the enhanced attachment of microorganisms to 

the plant cell wall and by the synergistic effect with enzymes produced in the rumen, 

therefore affecting the in sacco disappearance of CP in addition to improving the overall 

digestibility of the feed.                 
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Introduction 

 
The use of high fibre, low energy diets as ruminant feeds is common practise in the nutrition 

of sheep, dairy and beef cattle and in feedlot finishing of animals.  Increasing the digestibility 

of the often poor quality forages has been a topic of research for many years. It is clear that 

forages play an important role in the animal industry worldwide.  The fibre (cell wall) portion 

makes up to 300 to 800 g/kg of forage dry matter and represents a major source of 

nutritional energy for ruminants, but, unfortunately less than 50 % of this fraction is readily 

digested and utilized by the animal (Hatfield et al., 1999).  Exogenous fibrolytic enzymes and 

preparations of enzymes that degrade cell walls (cellulases and xylanases) have the 

potential to hydrolyze forage fibre (Feng et al., 1996) and are proposed as a means of 

unlocking this source of nutritional energy for ruminants (Johnston, 2000).  Indeed, research 

findings indicate positive effects of enzyme treatment of forages and ruminant feeds in beef 

and dairy cattle (Lewis et al., 1999; Rode et al., 1999; Yang et al., 1999; Beauchemin et al., 

1995; 2003) and even small stock such as sheep (Cruywagen and Goosen, 2004). 

 

The abundance of research on exogenous fibrolytic enzyme application appears to be done 

either in in vitro or in situ studies.  Dean et al. (2008) evaluated four different commercial 

exogenous enzyme products on the ruminal degradation of Coastal bermudagrass hay or 

Pensacola bahiagrass hay (12-week re growths, tropical grasses).  The enzyme treatments 

contained mainly xylanase and cellulase enzymes, with the exception of one treatment that 

contained other fibrolytic activity.  Results showed that one preparation (Promote) 

hydrolysed NDF into water soluble carbohydrates (WSC), decreased ADF levels and had 

higher 6 h IVDMD.  The other enzyme treatments also resulted in decreased NDF 

concentrations and increased 6h IVDMD of bermudagrass hay.  The enzymes had negligible 

effects on the extent of fibre digestion and in situ DM degradation as no responses were 

observed in the b, a+b or potentially degradable (P) fractions.  It appears that the enzymes 

therefore exhibited their effects mostly in the initial and 48 h stages of DM digestion. 

   

Similarly, Pinos-Rodriguez et al. (2008) reported that EFE increased the soluble fraction (a) 

of DM as well as the DM and NDF ruminal in situ disappearance rates of TMR diets 

containing varying proportions of concentrate to forage.  Moharrery et al. (2009) recently 

also reported on increased a-values for NDF with a decreased b-value.   Commercial 

enzymes for monogastric nutrition can be used in ruminant diets as shown in the results of 

Jalilvand et al. (2008) where Cellupract AS 130, Natuzyme and Endofeed DC (enzymatic 

products for poultry feeds) were evaluated in situ.  Cellupract showed increased rapidly 
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soluble fraction (a), potentially degradable fraction (b) and effective degradability (ED) for 

DM of all the forages studied (lucerne hay, maize silage and wheat straw) in Blochi ewes.  

Reported results on EFE effects regarding in sacco digestion kinetics, however, do not seem 

to be consistent and therefore a study was proposed in which these digestion kinetics could 

be determined for our EFE cocktail.  The exogenous fibrolytic enzyme used in this study was 

isolated from soil in South Africa and used as an extracellular enzyme supernatant in the 

fresh form.  This extracellular enzyme supernatant of the fungal strain, ABO 374 was 

characterized as a fibrolytic enzyme cocktail, containing mostly xylanase (296 ± 0.07 U/mg 

protein) but also cellulase (1.44 ± 0.39 U/mg protein) and mannanase (1.10 ± 0.37 U/mg 

protein) activity (Cruywagen and Van Zyl, 2008).  The activities of these enzymes were 

determined using 10 g/kg birchwood xylan for β-xylanase, 10 g/kg CMC (carboxymethyl 

cellulose) as substrate for cellulase (endoglcanase) and 10 g/kg locust bean gum for β -

mannanase activity determination. 

 

The objective of this study was to extend the characterization of the novel EFE cocktail to its 

effects on the in sacco and in vitro digestibility of a complete feed for sheep.   

 

Materials and Methods 

 

In this study, a complete total mixed ration was formulated on the specifications for growing 

lambs as per the nutrient requirements of small ruminants (NRC, 2007).  The diet contained 

approximately 30% roughage and 65% concentrate, with 166 g/kg CP and 348 g/kg NDF.  

The fibre component of this diet was deemed high enough for the exogenous fibrolytic 

enzyme (EFE) to have a postive effect on digestion. Table 5.1 shows the formulation and 

proximate analysis of the feed.  In chapter 3, positive results were achieved with treating 

various forages with EFE.  In this chapter, the decision was taken to evaluate the effect of 

EFE in a total mixed ration, containing relatively high levels of forages typically used in 

sheep diets. 
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Table 5.1.  Formulation and chemical composition (DM-basis) of a balanced diet for growing 

lambs used in the in sacco and in vitro digestibility studies 

Raw material Inclusion, g/kg  

Maize meal 450 

Wheat 150 

Lucerne meal 120 

Oat hay 200 

Cotton seed oilcake meal 50 

MuttonGainer premix1 30 

Chemical composition g/kg 

Moisture 132 

DM 868 

Crude protein 166 

NDF 349 

Ether extract 11.3 

Ash 46.5 
1: Product supplied by FORMUFEED cc, Villiersdorp, South Africa and manufactured by 

NUTEC (Pty) Ltd, Willowton, South Africa. 

 

Six ruminally cannulated Döhne-Merino wethers were randomly assigned to two groups and 

adapted to the diet as described in Table 5.1 over a 10 day period.  The diet of three sheep 

(treatment group) was treated with the EFE at a rate of 5 ml EFE supernatant per kg of feed.  

The enzyme was applied and thoroughly mixed with the feed daily 12 h prior to feeding.  The 

control diet was treated with the same amount of distilled water daily and fed to three control 

sheep.  After the first 96 h collection period, the diets were switched over in a cross over 

design study and animals adapted to the diet before commencing with the second period of 

the study.  Each animal therefore received each treatment in either of the two periods.  Each 

animal then received 2 kg/day of the relevant fresh feed. 

   

A sample of the feed was ground through a 2 mm screen (Hammer mill 372, Cape Town, 

SA) and sieved through a 124 µm screen for 5 minutes to remove the extremely fine 

particles as described by Cruywagen et al. (2003).  An amount of 8 g (± 0.01g) of the milled 

and sieved sample was accurately weighed into 10 x 20 cm polyester bags (Ankom forage 

bags, Ankom Technology Corp., NY, USA).  The bags were closed with 0.44 mm fishing 

twine with a fisherman’s knot and attached to a circular stainless steel weight.  Ten bags 

were attached to each circular weight and one thereof inserted into the rumen of the relevant 
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animals.  The bags were inserted simultaneously into sheep fed either the control or EFE 

treated TMR and one bag per animal removed after 3, 9, 12, 24, 36 and 48 h.  After 72 and 

96 h two bags per time increment was removed to insure sufficient residue for chemical 

analysis.  After the 96 h incubation was completed, the circular weight with the blank bag 

was removed.  The animals were then adapted to the switched diet in period 2 in order for 

each animal to receive each treatment. 

   

Prior to insertion of the bags into the rumen of the animals, the bags were pre-treated with 

either distilled water (Control) or EFE.  The same enzyme dilution was used as for the 

treatment of the feed (1 ml exogenous enzyme supernatant per 200 ml distilled water) and 1 

ml thereof applied per gram of feed in the in sacco bags.  Therefore, xylanase and cellulase 

were added to the substrate at levels of 0.8 U/mg xylanase per g substrate and 0.05 U/mg 

cellulase per g substrate. The bags were allowed to soak overnight in either the 8ml EFE 

dilution or 8ml distilled water before insertion into the rumen of the animals at 08:00 the 

following day.  The 0 h bags were treated in the same manner, but were not inserted into the 

rumen of any animal.  The 0 h bag served as correction for material lost via the pores of the 

bag not ascribed to the digestion process.  Upon removal, bags were rinsed in ice cold water 

and frozen at -4o C until analysis. 

 

Simultaneously with the in sacco study, an in vitro study was performed.  The in vitro true 

digestibility assay is reported to be being highly repeatable in the results observed as well as 

comparable to in situ results (Spanghero et al., 2003).  Rumen fluid (RF) was collected from 

each sheep at the time of insertion of the in sacco bags.  Approximately 200 ml rumen fluid 

was collected from each animal, strained through four layers of cheesecloth and the rumen 

fluid of the sheep fed the EFE diet or the control then pooled.  The rumen fluid was handled 

anaerobically and transferred to the laboratory in a pre-heated thermos flask.  Upon arrival in 

the laboratory the rumen fluid of the sheep were blended in a high-speed mixer for 1 minute 

under CO2 gaseous phase.  The rumen liquor was mixed with the pre-heated (39o C), 

reduced buffer solution as described in Chapter 3 at a ratio of 1 part RF and 4 parts buffer 

solution.  The same milled and sieved sample as for the in sacco trial was used and 1g (± 

0.01g) sample weighed into Ankom F57 filter bags (Ankom Technology Corp., NY, USA).  

Bags were pre-treated overnight with either 200 ml EFE or 200 ml distilled water in the 

Incubation flasks as described for the in sacco bags.  Sixteen bags were added per flask and 

four flasks per treatment (two flasks per treatment per period as for the in sacco study) were 

allowed (two flasks for the EFE treatment and two flasks for the dH2O treatment).  Before 

collection of the RF, 1400ml pre-warmed reduced Goering and Van Soest (1970) buffer was 

added to each flask, purged with CO2 and placed in the incubator. The RF solution (400 ml) 
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was added to the flasks containing the enzyme pre-treated bags, purged with CO2 and 

placed in the pre-heated incubator (39oC) for up to 72 h.  Upon retrieval of the bags, the 

flasks were removed from the incubator, opened and bags removed while purging with CO2.  

Bags were removed after 3, 12, 24, 36, 48 or 72 h incubation and rinsed in ice cold water 

until the water was clear, and kept at -4o C until analysis for in vitro digestibility according to 

the ANKOM procedure.  Six bags with substrate were also prepared but did not undergo in 

vitro digestion.  These bags were termed 0 h bags and served as correction for fine material 

lost due to dissolving and washing out of the bags.   

 

Upon analysis, the in sacco bags were thawed and washed in a washing machine on a 

gentle cycle in cold water for three cycles of 5 minutes each, with rinses in between.  The 0 h 

bags were included in the washing process to correct for any soluble material lost during the 

incubation and washing processes.  After washing, the in sacco bags along with the F57 in 

vitro bags were dried in a forced draught oven at 55o C for 48 h.  On completion of the drying 

process, all bags were removed and weighed. 

   

The in sacco bags were emptied and the residual matter transferred to air tight containers for 

storage.  The residual matter was then analyzed for DM, NDF and CP and the DM 

disappearance, NDF disappearance and CP degradation subsequently calculated.  As 

described in Chapter 3, NDF was determined according to the Ankom procedure (Ankom 

Fibre Analyzer 200/220, Ankom Technology Corp., NY, USA) and CP was analyzed on the 

Leco (Leco corporation, St. Joseph, MI, USA). 

   

The disappearance of DM, NDF and CP were calculated as: 

 

Nutrient D = ((a-b)/a)*100 where: 

  Nutrient D = disappearance of the relevant nutrient 

  a = total mass of DM, NDF or CP before incubation (g)  

  b = total mass of DM, NDF or CP after incubation (g) 

 

The DM-, NDF- and CP- disappearance values of the in sacco trial were fitted to a non-linear 

model as described by Ørskov and McDonald (1979) to calculate the a, b and c- values.  As 

proposed by McDonald (1981), a lag phase was also included in the model as shown in 

Model 2 below. 
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Degradation rate model: 

Model 1:  Y = a + b(1-exp-ct)    

Model 2: Y = a + b(1-exp-c(t-L))  where:    

  Y = degradation 

  a = soluble and readily degradable fraction 

  b = potentially degradable fraction 

  c = degradation rate of fraction b 

  t = incubation time 

  L = Lag time 

 

The effective degradability (EFF Degr) was calculated with the obtained a, b and c-values 

according to the formula of Ørskov and McDonald, 1979: 

 

 Eff Degr = a + ((bc)/(c+k)) where: 

  Eff Degr = Effective degradability 

  a = soluble and readily degradable fraction 

  b = potentially degradable fraction 

  c = degradation rate of b 

  k = rate constant of digesta passage 

 

The rate constant (k) was assumed to be 0.05/h (Ørskov and McDonald, 1979). 

 

All the in vitro bags were subjected to the Ankom Fibre Analyzer 200/220 (Ankom 

Technology Corporation, NY, USA) to determine the in vitro true digestibility corrected for dry 

matter (IVTDDM) (%) as described in Chapter 3. 

 

Statistical analysis 
The a, b, c and Lag derivatives and the effective degradability were subjected to a main 

effects ANOVA with the aid of Statistica 9.0 (2009), with the main effects being time and 

treatment. For the IVTD data, the data were subjected to a Repeated measures ANOVA, 

also with the aid of Statistica 9.0 (2009).  Interactions with period were tested and where no 

significant interactions were declared, the main effects were interpreted.  Least square 

means were determined and significance declared at P<0.05.  
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Results 

 
The in sacco fermentation kinetics of the EFE treated and control feeds are presented in 

Tables 5.2 to 5.4 for DM and NDF disappearance and CP degradation data.  In each table, 

data yielded by either the model with or without a lag component build in, is given. 

   

For DM disappearance, the EFE treatment of a complete feed containing 868 g/kg DM did 

not result in an increase of the soluble and rapidly fermentable fraction (a) or in the potential 

degradable fraction (b).  However, the degradation rate of the degradable fraction was  

6.2%.h-1 for EFE treated feed as opposed to 4.2%.h-1 for the control diet.  This increase in 

degradation rate was highly significant (P = 0.0002).  Effective DM degradability was also 

positively increased with the EFE treated feed having an 11.5 % higher effective DM 

degradability than the control (P = 0.0006).  Lag time was not influenced by the treatments 

and when the model without lag was applied, the same effects were observed.  Again, the 

rate of degradation and the effective degradability were increased, although the magnitude 

of increase was slightly smaller than in the former case.  Figure 5.1 indicates the mean DM 

disappearance of the model fitted data (with lag).  The preparation of the models was based 

solely on the data yielded by the models, with a lag calculation included. 

      

Table 5.2.  In sacco DM disappearance fermentation kinetics of a complete feed treated with 

EFE or distilled water when fitted to a model with or without lag time calculation 

DMD Control EFE SEM P 

Model with lag calculation 

a 22.06 21.64 0.472 0.540 

b 60.97 62.89 0.840 0.140 

c 0.042 0.062 0.002 0.0002 

Lag 0.086 0.085 0.079 0.900 

Eff Degr 49.89 57.40 1.041 0.0006 

Model without lag calculation 

a 21.83 21.22 0.462 0.380 

b 61.20 63.64 0.970 0.110 

c 0.042 0.059 0.003 0.0009 

Eff Degr 49.76 55.80 0.491 0.0001 
a = soluble and readily degradable fraction 

b = potentially degradable fraction 

c = degradation rate of b 

Eff Degr = effective degradability 
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Figure 5.1. Mean disappearance of DM of a complete feed incubated in sacco in sheep 

when data were fitted to the model with a lag time calculation.  Error bars indicate the SEM.  
 
The soluble and rapidly fermentable CP fraction (a) was not increased due to EFE treatment 

of the complete feed.  However, with DM disappearance, the potential degradable fraction 

(b) was increased (P = 0.008), as was the rate of CP degradation (c) (P = 0.015) and the 

effective degradability of CP (P = 0.0037).  Lag time was unaffected by treatment.  The 

same differences followed when data was fitted to a model without lag with b, c and effective 

degradability being increased for EFE treated feed (P < 0.05). Figure 5.2 indicates the mean 

CP degradation of the model fitted data (with lag). 
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Table 5.3.  In sacco CP degradation fermentation kinetics of a complete feed treated with 

EFE or distilled water when fitted to a model with or without lag time calculation  

CP degradation Control EFE SEM P 

Model with lag calculation 

a 30.20 29.47 0.491 0.32 

b 38.31 41.13 0.592 0.01 

c 0.061 0.091 0.007 0.02 

Lag 0.14 0.14 0.011 0.93 

Eff Degr 50.88 55.91 0.913 0.04 

Model without lag calculation 

a 31.04 28.93 0.903 0.13 

b 37.47 41.67 1.362 0.06 

c 0.061 0.091 0.006 0.02 

Eff Degr 51.33 55.72 0.691 0.01 
a = soluble and readily degradable fraction 

b = potentially degradable fraction 

c = degradation rate of b 

Eff Degr = effective degradability 

 

 
Figure 5.2. Mean CP degradation of a complete feed incubated in sacco in sheep when data 

were fitted to the model with a lag time calculation.  Error bars represent the SEM. 

 

The enzyme used in the study, as discussed in detail earlier, was an exogenous fibrolytic 

enzyme cocktail capable of digesting xylan and cellulose, as its main function.  Therefore 

and because NDF consists mainly of hemicellulose, cellulose and lignin (McDonald et al., 

2002) this is where the direct effects of the EFE can be expected.  As can be seen in Table 
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5.4, EFE treatment of the complete feed (containing 349 g/kg NDF) resulted in a number of 

significant observations.  First of all, the degradation rate of the NDF degradable fraction 

was more than doubled (110 % increase) (P = 0.003) even though the potential degradable 

fraction itself was not increased.  Additionally, the lag time for fermentation was shorter for 

the EFE treated feed.  Surprisingly though was the observation that the EFE treated feed 

had a lower (P = 0.008) soluble and rapidly degradable fraction. The effective NDF 

degradation, as for DM and CP was increased by EFE treatment of feed.  The same effects 

were observed for the data fitted to the model excluding a lag phase calculation.  Figure 5.3 

indicates the mean NDF degradation of the model fitted data (with lag). 

   

Table 5.4.  In sacco NDF disappearance fermentation kinetics of a complete feed treated 

with EFE or distilled water when fitted to a model with or without lag time calculation 

NDF 

disappearance 

Control EFE SEM P 

Model with lag calculation 

a 19.30 16.39 0.611 0.01 

b 61.12 60.60 4.332 0.93 

c 0.019 0.040 0.004 0.01 

Lag 0.27 0.10 0.022 <0.01 

Eff Degr 35.17 42.82 0.741 <0.01 

Model without lag calculation 

a 18.97 16.33 0.623 0.02 

b 65.46 60.88 6.262 0.62 

c 0.019 0.039 0.003 <0.01 

Eff Degr 34.88 42.45 0.671 <0.01 
a = soluble and readily degradable fraction 

b = potentially degradable fraction 

c = degradation rate of b 

Eff Degr = effective degradability 
  



 

92 
 

 

 
Figure 5.3. Mean NDF disappearance of a complete feed incubated in sacco in sheep when 

data were fitted to the model with a lag time calculation. Error bars represent the SEM. 

   

The in vitro true digestibility data, as can be seen from Table 5.5 or Figure 5.4 substantiates 

the findings reported for NDF degradation.  No significant interactions were noted and 

therefore main effects were interpreted.  From this data it is apparent that EFE treatment of 

the feed increased the in vitro digestibility of the samples at each of the time points (P < 

0.05), with the exception of the IVTD at 0 h and 36 h.  The biggest percentage increase in 

IVTD was seen at incubation times 3 h and 12 h with a 3.1 % and 4.3 % increase in IVTD 

over the control feed, respectively.  Thereafter, although still significant, the increase was 

smaller and well below 3 %. 

     

Table 5.5. In vitro true digestibility (IVTD, %) of a complete feed incubated for up to  

72 h in buffered rumen fluid (n=8) 

Time, h EFE cocktail Control P-value 

0 32.8 a ± 0.33  31.8 a ± 0.26 0.082 

3 54.7a ± 0.55 53.1 b ± 0.44 0.004 

12 59.4 a ± 0.72 56.9 b ± 0.42 < 0.001 

24 64.2 a ± 0.32 62.7 b ± 0.35 0.009 

36 68.4 a ± 0.40 67.7 a ± 0.32 0.181 

48 70.6 a ± 0.37 69.1 b ± 0.18 0.007 

72 71.5 a ± 0.27 70.1 b ± 0.16 0.016 
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TIME*Trt; LS Means
Current effect: F(6, 194)=.90347, p=.49347

Type III decomposition
Vertical bars denote 0.95 confidence intervals
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Figure 5.4. In vitro digestibility of the complete feed treated with EFE or distilled water and 

fermented in buffered rumen fluid in DaisyII Incubator for pre-determined incubation periods. 

The graph was obtained after the repeated measure ANOVA and generated in Statistica 9.0 

(2009).  Error bars indicate the SE. 
  



 

94 
 

Discussion 

 

The EFE used in this study was characterized as an exogenous fibrolytic enzyme cocktail 

obtained from the fermentation of ABO 374 on wheat straw as growth medium.  As ABO 374 

is of fungal origin, it secretes the enzymes into the medium and therefore the supernatant of 

the growth medium can be used as the source of exogenous enzymes.  The major 

enzymatic activity of the supernatant was xylanase, with lower amounts of cellulase and 

mannanase also produced (Cruywagen and Van Zyl, 2008). 

   

Many reports have been published wherein EFE have been observed to increase the fibre 

digestibility of diets or feedstuffs (Elwakeel et al., 2007; Eun and Beauchemin, 2007; Pinos-

Rodríguez et al., 2008).  When a complete feed formulated based on the specifications of 

the NRC Sheep (National Research Council, 1985) for growing lambs was treated with this 

exogenous fibrolytic enzyme cocktail and evaluated in situ and in vitro, results indicated 

definite benefits in the use thereof.  The fermentation kinetic values for DM, CP and NDF all 

revealed that EFE treatment can substantially increase the rate of fermentation (c).  This 

finding, for the most part is consistent with other researchers including Alvarez et al. (2009), 

Pinos-Rodriguez et al. (2008), Feng et al. (1996) and Wang et al. (2004).  Alvarez et al. 

(2009) reported an increased rate of CP degradation of the feed studied by them as well as 

an increased rate of ADF and NDF disappearance for wheat middlings.  Similarly, Pinos-

Rodriguez et al. (2008) found improvements in the disappearance rates of DM and aNDF 

when total mixed rations were fed to sheep.  This is in agreement with our findings where 

sheep were also used. 

 

Exogenous enzyme activities are calculated to be less than 15 % of the total ruminal activity, 

which makes it difficult to envisage exogenous enzymes enhancing fibre digestion through 

direct hydrolysis alone (Beauchemin et al., 1997).  Probably, the effect is related to the 

enzymes effect on the substrate physical properties, i.e. cell wall thickness and accessibility 

of the cell contents to microorganisms and warrants further investigation.  Indeed, 

Colombatto et al. (2003a) indicated that EFE treatment results in subtle changes to the cell 

wall structure, allowing microorganisms earlier access to the highly digestible cell contents, 

including protein.  In addition, these effects can also be related to the enhanced attachment 

of microorganisms to the plant cell wall (Nsereko et al., 2000; Wang et al., 2001) and by the 

synergistic effect with enzymes produced in the rumen (Morgavi et al., 2000). 
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In our study, it was consistently observed that the effective degradability was increased for 

DM, CP and NDF.  These results are indicative that EFE can improve fibre digestion and the 

rate of digestion of various feedstuffs, feeds or TMR’s.  This is possibly related to the 

improvement in the attachment of microorganisms to the plant cell wall as proposed by 

Nsereko et al. (2000) and Wang et al. (2001) and by the synergistic effect of EFE with the 

enzymes produced in the rumen (Morgavi et al., 2000). 

 

Interestingly though, it was observed that the EFE was not limited to NDF or DM, but that CP 

digestion was also positively influenced.  This is not a new finding and it has been reported 

before that EFE effects are not limited to the dietary component it is applied to (Pinos-

Rodriguez et al., 2008).  Beauchemin et al. (2003) states this argument as the reason why 

the digestibility of the non-fibre carbohydrate fraction can be improved in addition to 

improvements in fibre digestibility when the concentrate portion of diets is treated with EFE.  

In agreement with the higher digestibility of CP reported by us, Pinos-Rodriguez et al. (2002 

found that a xylanolytic enzyme increased the apparent digestibility of CP in addition to the 

increased apparent NDF digestibility of lucerne.  Supposedly, as the EFE results in subtle 

changes to the cell wall structure and microorganisms gain earlier access to the cell contents 

(Colombatto et al., 2003a), the CP located within the cell is digested quicker (greater c-

value) and to a larger extent.  Also, CP entrapped in the complex crystalline structure of 

cellulose as described earlier, may be unlocked by the EFE’s effect on cellulose, as seen by 

the improved NDF digestibility reported here. 

  

If fibre and other nutrients are digested faster and to a larger extent as reported here, it 

follows that DMI of animals will be positively influenced.  In a study by Cruywagen and 

Goosen (2004) using the exact same EFE as in this study, unfortunately no improvement in 

DMI was observed in Döhne-Merino lambs.  However, effects on DMI have been reported in 

literature on numerous occasions and mostly in dairy cattle.  Beauchemin et al. (2003) listed 

across 20 studies using 41 treatments, that the average DMI increase observed was 1.0 ± 

1.3 kg/d for dairy cattle and that milk production was increased on average by 1.1 ± 1.5 kg/d.    

 

Although DMI was not improved in the study of Cruywagen and Goosen (2004), animal 

performance was improved in that animals gained more body weight and had improved feed 

conversion ratios (P < 0.05).  The improved animal performance is linked to the improved 

FCR and with results from this study, it can also be stated that animal performance can be 

improved due to higher digestibility of various nutrients found in EFE treated feeds.  Iwaasa 

et al. (1997) (as cited by Beauchemin et al., 2003) for instance related the increased feed 

efficiency observed by them in beef cattle to an increase in the diet digestibility. 
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The in vitro digestibility data in our study confirmed the improved digestibility of especially 

fibre reported in the in sacco study.                 

       

Conclusion 

 

In this study, the aim of establishing the effects of a locally produced novel fibrolytic enzyme 

cocktail was continued.  It was shown in the previous study that the EFE can affect the in 

vitro gas production kinetic values of various forages, as well as the in vitro digestibility of the 

forages.  When the EFE was applied to a complete feed for sheep and evaluated in sacco 

and in vitro, results demonstrated positive effects on fibre digestibility. These results included 

improved rates of degradation of nutrients as well as increased in sacco and in vitro 

digestibility.  A two compartmental model can also be used to determine the effects of the 

EFE on both the rapidly digesting and the slowly digesting pools of the mixed ration.  

However, upon plotting the data, lines were relatively smooth and there was no indication 

that there were two pools being digested.  For comparison purposes, it was therefore 

digested to base results on the one compartmental non-linear models.  

  

In the in sacco trial, a 15, 10 and 22 % increase in the effective degradability of DM, CP and 

NDF, respectively, was observed when a complete feed was treated with EFE.  The in vitro 

improvement of digestibility was much smaller but significant and appeared to be greater 

during the earlier hours of incubation. 

   

Overall though, the increase in digestibility is higher than can be attributed to the additional 

EFE activity alone as a very small amount of either xylanase or cellulase was added to the 

inoculum.  It follows then, that in addition to the direct effect of the EFE, the effect of the 

enzyme can also be on another level than merely adding the limiting enzyme activity. This is 

based on the effects of EFE not being limited to fibre alone, as indicated in this study and by 

other groups.   

 

It was concluded that the EFE evaluated here shows sufficient positive effects to further be 

evaluated for its mode-of-action in altering the digestibility of feeds and feedstuffs.   
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CHAPTER 6 

Partial purification of an exogenous fibrolytic enzyme cocktail and the effects thereof 
on in vitro gas production 

 

Abstract 

The exogenous fibrolytic enzyme cocktail produced from ABO 374 is characterised as a 

fibrolytic enzyme cocktail, containing mainly xylanase, but also cellulase and mannanase 

activity.  The fresh supernatant was used in previous studies as the source of enzyme for the 

treatment of forages or feeds and positive results regarding in vitro and in sacco digestibility 

were reported.  However, there is variation between batches of enzymes produced in terms 

of enzyme activity and digestibility effects.  The fresh supernatant used in this study were 

markedly different from the activities reported before using the same fungal strain for the 

production of the exogenous fibrolytic enzyme cocktail.  A simple purification step was 

therefore investigated to isolate the main fibrolytic enzyme from the cocktail, namely 

xylanase.  The supernatant was applied to a glass column packed with porous beads with a 

molecular weight cut-off of 40,000 Daltons. On a continuous basis, 2 ml aliquots were 

collected and analyzed for protein content on a spectrophotometer at 280 nm.  All aliquots 

within the same peak were pooled and its enzyme activity determined.  The pooled aliquot 

from Peak 2 contained 8.51 times the xylanase activity of the cocktail (1351.8 and 158.9 

U/mg protein, respectively) and was further tested for its ability to alter fibre digestion.  No 

cellulase activity was detected.  As positive results have been obtained with EFE treatment 

of lucerne hay and kikuyu, these forages were used as substrates in determining the effect 

of the partially purified xylanase on the in vitro gas production of the forages.  In vitro gas 

production was measured with a completely automated system over a 48 h incubation 

period.  The fermentation kinetic values were then determined by fitting the gas production 

data to two non-linear models.  No significant effects were observed in either of the forages 

treated in either of the two models used.  There was only a tendency for EFE to increase the 

total gas production of lucerne hay (P = 0.075) and to decrease the lag time for digestion of 

kikuyu (P = 0.08).  These results were far inferior to those obtained with the enzyme cocktail 

in previous studies and the conclusion was made that the partially purifed xylanase was 

incapable of significantly increasing in vitro digestion and no further studies were conducted.  

These findings are likely explained by the complexity in composition of forages and the 

specificity of enzymes.  Recommendations are that for EFE to positively affect digestion, 

various types of enzymes need to be simultaneously added to the complex plant substrates.     
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Introduction 

 
The exogenous fibrolytic enzyme cocktail (EFE) used in this study was isolated from soil in 

South Africa and used as an extracellular enzyme supernatant in the fresh form.  This 

extracellular enzyme supernatant of the fungal strain, ABO 374 was characterized as a 

fibrolytic enzyme cocktail, containing mostly xylanase (296 ± 0.07 U/mg protein) but also 

cellulase (1.44 ± 0.39 U/mg protein) and mannanase (1.10 ± 0.37 U/mg protein) activity 

(Cruywagen and Van Zyl, 2008).  The activities of these enzymes were determined using 10 

g/kg birchwood xylan for β-xylanase, 10 g/kg CMC (carboxymethyl cellulose) as substrate 

for cellulase (endoglucanase) and 10 g/kg locust bean gum for β-mannanase activity 

determination.  Generally, cellulolytic fungi such as ABO 374 produce large numbers of 

enzymes capable of the decomposition of plant cell wall polysaccharides (Wood, 1989).  The 

three major types of cellulolytic enzymes are endoglucanase (endo-1,4-β-glucanase; 

hydrolyzing 1,4-β bonds on the interior of the cellulose chain), cellobiohydrolase (exo-1,4-β-

glucanase; cleaves cellobiosyl units from the non-reducing ends of the cellulose chains) and 

β-glucosidase (cleaves glucosyl units from the non-reducing ends of cello-oligosaccharides) 

(Ye et al., 2001).     

 

In the previous chapters of this document, fresh extracellular supernatant harvested from 

ABO 374 produced on wheat straw as growth substrate was used as the EFE.  In this 

chapter, however, it was attempted to partially purify the cocktail using gel filtration 

chromatography to isolate the xylanase and cellulase for further studies.  Porous beads were 

used as the chromatographic support and a glass column was packed with the beads.  Such 

a packed column has two measurable liquid volumes, the external volume, consisting of the 

liquid between the beads and the internal volume, consisting of the liquid within the pores of 

the beads.  Large proteins (larger than the molecular-mass-cut-off of the beads) are 

excluded from the internal volume and therefore emerge first from the column while smaller 

protein molecules, which can access the internal volume, emerge later (Stellwagen, 1990).  

Fractions or aliquots of the emerging liquid are collected and analysed for protein content.  

Those fractions containing protein are then further subjected to enzymatic activity 

determination.  Royer and Nakas (1991) purified two xylanases from the fungus, 

Trichoderma longibrachiatum and indicated that the fungus generated a highly active 

xylanase enzyme of approximately 20 kDa and a less active enzyme of approximately 30 

kDa. More complex purification schemes exist, such as the scheme used by Chen et al. 

(1997).  In their experiment a xylanase from Trichoderma longibrachiatum was purified by 

subjecting the culture supernatant to a four-step purification scheme involving ultra filtration, 
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ammonium sulphate precipitation and cation exchange and gel filtration chromatography.  

They produced a homogenous purified protein that migrated as a single sharp band (Mr 18.6 

kDa) on SDS-PAGE.  Zymogram analysis proved that the single protein band was active on 

oat spelt xylan.  This purification scheme gave about a 56-fold overall purification and 

approximately 5.1 % recovery of activity.    The aim of the experiment in this chapter was to 

produce and characterise purified xylanase and cellulase from the extracellular enzyme 

supernatant from ABO 374.  Fractions showing xylanase or cellulase activity were then 

further evaluated for their potential in improving fibre digestion using the in vitro gas 

production system as described earlier (Chapter 3). 

 

Materials and Methods 

  

Gel filtration chromatography 
 A portion (5.0 ml) of a 0.5 % (v/v) fresh enzyme cocktail from ABO 374 were prepared in 0.1  

M sodium citrate (pH 5.3) and applied to a 90 x 0.75 cm glass column packed with Bio-Gel 

P-30 polyacrylamide gel (150-4150, Bio-Rad) and equilibrated with 0.1 M sodium citrate 

buffer, pH 5.3.  The exclusion limit of the porous beads is listed by the manufacturer as 

40,000 Daltons (nominal).  The Bio-Gel P-30 gel beads were prepared according to the 

manufacturer’s instructions.  The Bio-Gel P-30 beads were hydrated for 12 h at 20o C and 

half of the supernatant decanted.  The solution containing the beads was then degassed by 

vacuum for 5 to 10 min and washed with degassed buffer to remove > 90 % of the fine 

particles before the even slurry was poured into the column and allowed to pack.  Elution 

was at a flow rate of 5 ml/h and 2 ml fractions were continuously collected with an automatic 

fraction collector and analysed for the presence of protein by absorbance at 280 nm.  After 

the absorbance data were plotted on a graph, all the fractions with absorbance within the 

same peak on the graph were pooled together, and named Peak 1, 2 and so forth. The 

pooled aliquots were then analysed for xylanase and cellulase activity and the protein 

concentration determined by the Bradford method (1976). 

   

Xylanase activity 
Xylanase present in the partially purified and fresh extracellular enzyme preparations were 

determined by measuring reducing sugars released from xylan with dinitrosalicylic acid 

(DNS).  Xylanase was assayed using 10 g/kg (w/v) birchwood xylan (X-0502, Sigma 

Chemical Co.) in 50 mM sodium citrate buffer, pH 5.3 as substrate.  Assay conditions were 

adapted from those described by Bailey and Poutanen (1989).  Xylan substrate (1.8 ml) was 

equilibrated in a water bath at 50oC for 5 min in 16 x 125 mm glass tubes.  Duplicate tubes 
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were used for enzyme samples, enzyme blanks and substrate blank.  Appropriate serial 

enzyme dilutions were made using the citrate buffer.  After equilibration and at precise time 

intervals, enzyme dilutions (0.2 ml) were added to one test tube of a pair containing the 

xylan substrate to start the reaction. The other test tube served as an enzyme blank.  The 

DNS solution (3.0 ml) was added to each test tube after exactly 5 minutes to stop the 

reaction.  At this time, the enzyme dilution was added to the blank test tube and buffer to the 

substrate blank.  The DNS contained the following (per litre): 10 g dinitrosalicylic acid, 16 g 

NaOH and 300 g potassium-sodium tartrate.  All test tubes were removed from the water 

bath, mixed and capped.  Samples, blanks and standards were placed in a boiling water 

bath for exactly 5 minutes, removed and cooled in tap water.  Absorbance was read at 540 

nm against the substrate blank. Net absorbance was calculated by subtracting the 

absorbance measured in the enzyme blank tube from that of the tube containing the 

enzyme. Xylose served as the standard and the relationship between absorbance and 

xylose concentration was determined from a standard curve using xylose at 3.0, 5.0, 10.0, 

15.0 and 20.0 µmol/ml.  Xylanase activity was calculated from the amount of xylose released 

in each sample and was expressed as international units (U) per ml or g of enzyme 

preparation.  One xylanase U releases 1 µmole xylose per minute under the particular assay 

conditions. 

 

Cellulase activity was measured in a similar fashion and was determined using 10 g/kg 

carboxymethyl cellulose (CMC) as substrate.  This assay was adapted from the procedure 

described by Miller et al. (1960).  The suitable enzyme dilution (1.0 ml in 0.05 M sodium 

acetate buffer, pH 4.8) was equilibrated to 50o C.  To this, 1.0 ml CMC substrate was added 

and incubated at 50o C for 10 min.  The reaction mixture was then removed and 3.0 ml DNS 

added before being boiled for exactly 5 minutes, cooled in an ice water bath and reading the 

absorbance of the enzyme samples and blanks at 540 nm against distilled water.  The 

standard curve was prepared from the stock glucose solution in deionised water to contain 

0.2, 0.4, 0.6, 0.8 and 1.0 mg/ml and assayed along with the enzyme samples.  One 

carboxymethyl cellulose unit (CMC unit) of activity liberates 1 µmol of reducing sugar 

(expressed as glucose equivalents) in one minute under the particular assay conditions.     

 
Protein   

Protein concentration was determined by the method described by Bradford (1976). The 

protein sample or standard (250 µl) were added to duplicate 16 x 125 mm glass test tubes.  

To this 50 µl of 0.03 % desoxycholate in water and 50 µl of 20 % phosphoric acid was added 

and gently mixed without bubble formation and incubated at room temperature.  After exactly 

10 min, 650 µl distilled water and 1000 µl Coomassie brilliant blue R-250 reagent was 
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added.  The dye reagent was prepared by diluting 1 part dye reagent concentrate (500-

0006, Bio-Rad) with 4 parts distilled, deionised (DDI) water and filtered through Whatman #1 

filter paper to remove particles.  After gentle mixing, the absorbance was read at 595 nm 

using the 0 µg/ml standard as blank.  The relationship between absorbance and protein 

concentration was determined from a standard curve using bovine serum albumin (A-7906, 

Sigma Chemical Co.) at concentrations of 0, 25, 50, 75 and 100 µg/ml. 
 
Gas production   
The in vitro gas production technique was used as a simple, rapid screening method to 

evaluate the partially purified enzyme for its potential to affect fibre digestion.  Three glass 

serum vials per substrate (lucerne hay or dried kikuyu) treated either with purified EFE 

(containing xylanase) or distilled water (control) was used per run.  The experiment was then 

done in triplicate (three runs) on different days under exactly the same experimental 

conditions.  Into each bottle, 0.5 ± 0.01 g of the relevant substrate was weighed (“as is” 

basis) and treated with the purified EFE or distilled water 12 h prior to incubation with 

buffered rumen fluid.  Rumen fluid was collected from cannulated Döhne-Merino wethers on 

a standard diet, as described in Chapter 3.  Reduced buffer solution (Goering and Van 

Soest, 1970) was added to each vial (40ml) prior to adding strained and blended rumen fluid.  

The vials were sealed with rubber stoppers and crimp tops and the automatic gas pressure 

loggers attached with 21 gauge needles.  Bottles were placed in the 39o C incubator and the 

experiment started after 30 minutes equilibration and removal of gas pressure.  Three bottles 

per run was also included that contained no substrate to serve as correction of gas pressure 

produced due to the buffered rumen fluid alone.  Gas pressure was recorded every 10 

minutes for a period of 48 h.  After the gas pressure values were converted to volume gas 

produced (ml/g DM), the data were fitted to a non-linear model to determine the b (potential 

total gas production, ml/g DM) and c (potential gas production rate, ml/h) kinetic coefficients.  

A model with and without a calculation for lag phase was used and the kinetic coefficients 

determined using the solver function of Microsoft Excel.   

 

The models used were: 

Model 1:   ⎟
⎠
⎞

⎜
⎝
⎛ −−= ctebY 1      

 

Model 2:   
( )

⎟
⎠
⎞

⎜
⎝
⎛ −−−= LtcebY 1    
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Where:  Y  = gas volume at time t   

b  = total gas production  

c  = rate of gas production  

t   = incubation time 

L = lag time 

 
Statistical analysis 
For the gas production kinetic data, the b and c (model without lag) and b, c and L (model 

with lag) kinetic values were subjected to a factorial ANOVA with the factors substrate and 

enzyme, using Statistica 9.0 (2009).  This was done for all the non-linear parameters.  If no 

interaction was observed, the main effects were interpreted. 
 

Results 

 
The results obtained here regarding the xylanase and cellulase activities of the extracellular 

enzyme cocktail from ABO 374 is different to those reported earlier by Cruywagen and Van 

Zyl (2008).  The xylanase was assayed here as containing only 158.9 ± 0.32 U/mg protein 

and cellulase as 10.3 ± 0.21 U/mg protein.  In both cases this is substantially different from 

the values reported for the same enzyme cocktail by Cruywagen and Van Zyl (2008) where 

activities of 296 ± 0.07 U/mg protein for xylanase and 1.44 ± 0.39 U/mg protein for cellulase 

were reported.   This can be explained by the production method of the enzyme and that the 

fresh supernatant of different batches of fermentation on wheat straw was used here and in 

other studies of Goosen (2004) and Cruywagen and Van Zyl (2008).  Therefore, there is a 

definite need for a step in the production process to ensure minimum xylanase, cellulase and 

mannanase activity.  Also, it has to be pointed out that assay conditions were not exactly the 

same between the two studies.   

 

The elution of the fresh ABO 374 enzyme cocktail as aliquots from the gel filtration column is 

shown in Figure 6.1.  Two distinct peaks of protein were observed, dubbed Pool 1 and 2.  All 

aliquots within the same peak were pooled and assayed for xylanase and cellulase activity.  

The enzymatic activity of the fresh supernatant and the two partially purified pools obtained 

after gel filtration chromatography is shown in Table 6.1.  The purification procedure in itself 

resulted in the dilution of the total protein.  Therefore, enzymatic activity is indicated as U/ml 

and as specific activity (U/mg protein) and the purification factor based solely on the change 

in the specific activity of the enzymes.  Pool 2 had superior xylanase activity to both the 

original cocktail and Pool 1.  It contained 8.51 times the concentration of xylanase than the 
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fresh enzyme cocktail.  No cellulase activity was detected in this fraction, or in pool 1 and 

therefore no cellulase effects were evaluated for.  Pool 1 also contained xylanase activity at 

1.86 times the specific activity of the fresh enzyme cocktail.  However, Pool 1 had a low 

protein content (1.34 µg/ml) and was too diluted to be used as EFE.  The decision was 

therefore made to use Pool 2 as the sole source of enzyme for the in vitro gas production 

analysis to determine whether this enzyme would be beneficial in altering fibre digestion of 

kikuyu or lucerne hay.  The analysis was limited to these two substrates as they were shown 

earlier to be positively affected by EFE treatment.    

   

  
Figure 6.1.  Purification of the fresh exogenous fibrolytic supernatant of ABO 374 by gel 

electrophoresis and the determination of the presence of protein by measuring aliquots for 

absorbance at 280 nm on a spectrophotometer.      
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Table 6.1. Purification of an extracellular enzyme cocktail from the fungal strain ABO 374 

using gel filtration chromatography 

Aliquot Enzymic 

activity 

Total 

protein 

(µg/ml) 

Activity (U/ml) a Specific 

activitya 

(U/mg) 

Purification 

(fold) 

ABO 374 

supernatant 

 

Xylanase 

 

362.7 

 

57.663 

 

158.9 

 

1.00 

 Cellulase 362.7 3.728 10.3 1.00 

Pool 2 Xylanase 4.5 6.086 1351.8 8.51 

 Cellulase 4.5 ND ND ND 

Pool 1 Xylanase 1.34 0.396 295.1 1.86 

 Cellulase 1.34 ND ND ND 
aXylanase activity was assayed using birchwood xylan and cellulase using CMC with 

reducing sugar detection by the DNS method.  Protein was measured by the Bradford 

method. 

 

In vitro gas production results using Pool 2 as EFE treatment of lucerne hay or kikuyu is 

shown in Figures 6.2 and 6.3.  The purified EFE did not result in any significant changes to 

the fermentation kinetic values for gas production as indicated in Table 6.2 (from model 

simulated data).  There was only a tendency for the purified EFE to increase the total gas 

production of lucerne hay (P = 0.075) and decrease the lag time of dried kikuyu (P = 0.08). 

Earlier results on GP indicated that the enzyme cocktail is capable of improving the potential 

(total) gas production (b-value) and rate of gas production (c-value) of both kikuyu and 

lucerne hay and was therefore regarded as the superior enzyme treatment hence forth. 
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Figure 6.2.  Gas production of lucerne hay treated with purified EFE (xylanase) or distilled 

water as control and incubated in buffered rumen fluid for a period of 48 h.  

 

 
Figure 6.3.  Gas production of dried kikuyu treated with purified EFE (xylanase) or distilled 

water as control and incubated in buffered rumen fluid for a period of 48 h. 
 

  

0

50

100

150

200

250

300

350

0 12 24 36 48

N
et
 g
as
 p
ro
du

ct
io
n,
 m

l/
g 
O
M

Time, h

Control

Purified EFE

0

50

100

150

200

250

300

350

400

450

0 12 24 36 48

N
et
 g
as
 p
ro
du

ct
io
n,
 m

l/
g 
O
M

Time, h

Control

Purified EFE



 

110 
 

Table 6.2.  Digestion kinetics of EFE treated lucerne hay or dried kikuyu from gas production 

of substrates incubated in buffered rumen fluid for 48 h 

Lucerne hay Control Purified EFE SEM P 

Model with lag 

b 259.09 298.44 8.09 0.075 

c 0.106 0.086 0.0052 0.12 

Lag 1.13 1.97 0.034 0.31 

Model without lag 

b 264.14 306.23 7.69 0.06 

c 0.076 0.066 0.0027 0.12 

Dried kikuyu Control Purified EFE SEM P 

Model with lag 

b 410.39 452.59 10.31 0.10 

c 0.047 0.049 0.0040 0.76 

Lag 1.72 0.92 0.17 0.08 

Model without lag 

b 438.43 467.83 11.91 0.22 

c 0.045 0.045 0.0009 0.85 
b  = total gas production  

c  = rate of gas production  
 

Discussion 

 

The EFE cocktail used in the different experiments up to this point of this dissertation was 

characterised as a fibrolytic enzyme cocktail as it contained xylanase, cellulase and 

mannanase activities.  In the current study however, a purification step was included to 

isolate the major fibrolytic enzyme, namely xylanase and determine its effect as purified 

enzyme on the in vitro digestion kinetics of two forages.  Gas production data, used as a 

simple screening method, clearly showed that the purified enzyme was far inferior to the 

EFE cocktail used in the previous studies as no significant improvements in digestion 

kinetics were observed.  With the exogenous fibrolytic enzyme cocktail used up to this point, 

significant effects in the rate of digestion and even the extent of digestion have been 

observed. 

 

The explanation of the lack of positive effects on digestion likely lie in the complexity of the 

substrates tested coupled with the specificity of the enzymes for their substrate (White et al., 
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1993).  Cell wall polysaccharides are complex components and vary widely in physical 

properties, chemical composition and nutritional effects in ruminants (Graham et al., 1990).  

The structure of these cell wall polysaccharides can consist of more than 100 different 

monosaccharides of which 10 dominate quantitatively in cell walls of higher plants.  These 

are arabinose and xylose (pentoses); glucose, galactose and mannose (hexoses); rhamnose 

and fucose (6-deoxy-hexoses); galacturonic, glucuronic and 4-O-methyl-glucuronic acid 

(uronic acids) (Aman, 1993)  These monosaccharides form the building blocks of three main 

groups of polysaccharides, namely: cellulose, hemicellulose and pectin (Lagaert et al., 2009) 

and constitutes the largest (90%) component of primary cell walls with the remaining 10% 

made up of proteins.  The composition varies greatly between species, especially in grasses 

but typical composition values are 30% cellulose, 30% hemicellulose and 35% pectin 

(Cosgrove, 1997).  The primary cell wall in turn forms the first barrier of plants against 

penetration by ruminal microorganisms (Weimer, 1996).   

 

It is therefore evident that the fibre component of forages not only forms one of the major 

parts of the plant, but it also characterised by great variation.  As ruminant feeds contain 

several types of forages, enzyme feed specificity is problematic in the formulation of such 

diets (Graminha et al., 2008).  For exogenous fibrolytic enzymes to exert their maximal effect 

on digestion, a host of different enzyme types and sources is thus needed for the successful 

treatment of ruminant feeds and roughages as pointed out by Beauchemin et al. (2003).  

This is in agreement with the view of other researchers such as Eun et al. (2006) and EFE 

cocktails or purified EFE should be carefully characterised regarding its substrate specificity 

(Bhat, 2000).  The partially purified xylanase used in the current study, although containing a 

higher xylanase activity than the cocktail were inadequate purely because it contained 

xylanase as its sole fibrolytic activity. 

 

Conclusion 

 
The partially purified xylanase enzyme did not alter the in vitro digestion kinetics of kikuyu or 

lucerne hay and therefore not further elucidated in the following experiments. The enzyme 

cocktail contained various fibrolytic activities and it was thus decided to use only this cocktail 

in further studies.  This decision was taken based on the two-fold approach suggested by 

Beauchemin et al. (2003) to:  

1. use an enzyme that is relatively suitable for most forages or substrates and  

2. to include a host of different enzyme types for the successful treatment of ruminant 

feeds. 
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However, the recommendation of Bhat (2000) that EFE cocktails or purified EFE should be 

carefully characterised regarding its substrate specificity should be considered in the further 

characterisation of the enzyme cocktail.  The determination of the specificity and action of 

each of the enzymes present in the EFE cocktail is warranted.  This should include a 

description of the molecular weights of the different enzymes in the cocktail, their optimal pH 

and temperature ranges in addition to its specificity towards nutrients.  Additionally, any 

enzyme product and in particular the EFE tested here, should be tested under assay 

conditions closer to that of the rumen environment (39oC and pH 6.8) to precisely 

characterise the potential of the product.   

 

Finally, purification cannot be ruled out as a sensible step in ensuring enzyme activity levels 

in commercial EFE products, but was not regarded as beneficial to this study.   
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CHAPTER 7 

Histological evaluation of forages treated with exogenous fibrolytic enzymes in 
buffered rumen fluid, in vitro 

Abstract 

In the preceding chapters of this dissertation, it has been shown that there is definite 

potential in the use of EFE in improving the digestibility of forages.  This has been indicated 

with in vitro and in sacco studies and results were in agreement with literature.  Additionally, 

the literature also reports production responses in vivo.  However, there is a need for a 

better understanding of the mode-of-action of EFE and therefore it forms the core objective 

of this experiment.  Four forages, treated with EFE, were evaluated in vitro and at 

microscopic level, in an attempt to determine the effect of EFE on tissue degradation.  For 

the histological evaluation, weeping love grass and kikuyu leaf material and lucerne and 

wheat straw stem material were used.  Simultaneously, lucerne hay, weeping love grass 

hay, dried kikuyu and wheat straw were used as substrates and incubated in rumen fluid 

inoculated media for the determination of the effect of EFE on in vitro digestibility. Substrates 

were either pre-treated with an EFE cocktail or distilled water (Control) 12 h prior to 

incubation.  In vitro digestibility (after 24 h) was determined using the ANKOM Daisy 

incubation system.  The main focus, however, was a quantitative assessment of the 

degradation of the plant tissue at histological level over a 24 h period.  The section to slide 

technique was used to mount plant tissues on microscope slides for incubation in buffered 

rumen fluid media.  Images were acquired using the Olympus Cell R system coupled to a 

MT 20 illumination apparatus (Olympus Biosystems GMBH, Muenster, Germany).  

Degradation of cell wall components were quantified using image analysis software of the 

same system.  In vitro true digestibility was higher for EFE treated lucerne and kikuyu at 24 h 

of incubation (P < 0.05).  Clear histological differences were observed for all tissue types 

over the incubation period, but limited significant effects were observed.  Cell wall of the 

metaxylem of both kikuyu and weeping love grass leaf material were significantly thinner for 

the EFE treated samples at 12 h of incubation (P < 0.05).  There was also a significant 

thinning effect of EFE on the cell wall of phloem at 12 h of incubation for kikuyu as well as 

the adaxial epidermis at 24 h (kikuyu).  The abaxial epidermis at 12 h was thinner for 

weeping love grass due to EFE treatment.  Excluding the thinner epidermis of EFE treated 

lucerne (at 12 h incubation, P < 0.05), no further significant effects of EFE on cell wall 

material or total surface area of lucerne or wheat straw stem material was observed.  It was 

concluded that image analysis can be useful to quantify changes in cell wall over an 

incubation period and that the addition of exogenous enzymes could be quantified by this 
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system.  There was a definite, although subtle thinning effect of EFE on cell wall thickness of 

plant material which could be indicative of the mode-of-action of EFE.  

           

Introduction 

 
Exogenous fibrolytic enzymes (EFE) as additives in ruminant feeds have been researched 

worldwide. Promising effects on DMI, digestibility, feed utilization and production in 

especially dairy cows and feedlot cattle have been demonstrated (Beauchemin, 2003, Eun et 

al., 2007).  However, research also points to varied responses of ruminants to EFE 

treatment of their diets.  A better understanding of the mode-of-action of EFE is of 

importance (Colombatto et al., 2003) as responses vary due to many factors, including 

experimental conditions, dose rate of EFE, method of application and so forth (Beauchemin 

et al., 1995, 2003). 

   

Forage heterogeneity contributes largely to the variation in degradability of plant material 

even with similar chemical composition but varied anatomy.  This heterogeneity originates 

from the distribution of cell wall material between plant cell types, amongst other (Travis et 

al., 1997).  It is important therefore to recognize the botanical characteristics of plant material 

as a factor determining its nutritional value (Walters, 1971).  As early as 1973, McManus and 

Bigham stated that the distribution pattern of lignin for instance rather than the total amount 

of lignin can mask the potentially digestible cell walls of forages (Travis et al., 1997).  Marked 

interactions exist between the cell wall thickness, lignification and other anatomical 

characteristics of forages and their digestibility (Wilson, 1993).  Therefore investigations on 

the anatomical build-up of forages are of importance in determining the digestibility potential 

of forages. 

   

Akin (1982) reported a method termed the “Section to slide” technique where forage tissues 

can be anatomically analysed.  In addition, this method can be adapted to digest forage 

samples in vitro in rumen fluid and the samples rapidly evaluated by light microscopy for 

digestibility.  The use of this technique showed normal digestion patterns of the various 

forages studied (orchard grass and Bermuda grass), with mesophyll being degraded rapidly 

and prior to other tissues.  The method is propagated as a simple and rapid technique for 

studying large numbers of tissue samples and to study effects of various treatments on 

forage anatomy and digestibility thereof.  Furthermore, to quantify the results, software that 

allows for cross section area measurements and the determination of cell wall thickness can 

be employed.  Today, precise software exists and automated image analysis techniques, 
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such as applied in the plant sciences (Kolukisaoglu and Thurow, 2010), can be adapted for 

use in investigating the degradation of plant material by microorganisms.  Exciting 

technology, such as laser-assisted microdissection (LAM), can also be applied to isolate 

specific microscopic regions from tissue cross sections.  Specific tissues, for instance the 

epidermis, or even organelles from cross-sectioned forage plant material can be isolated and 

studied in great detail (Day et al., 2005).   These new and powerful technologies should be 

investigated further for future studies on the degradation of plant material and how 

treatments, such as EFE, can alter the plant material.   

 

One of the limitations of Akin’s technique, however, is the thick sections (50-100um) needed 

to maintain the structural integrity of the tissue during degradation.  These thick sections 

result in poor images with conventional light microscopy images (Travis et al., 1997).  

Confocal laser scanning microscopy (CLSM) offers an alternative method for estimating the 

amount of cell wall material present in tissue sections of forages before and after digestion 

and visualization of the tissue using three dimentional image reconstruction (Travis et al., 

1997).  However, in the current study the decision was made to use the “section to slide” 

technique but to limit tissue section thickness to 20 µm. 

 

Scanning electron microscopy (SEM) offers another option in visualizing the three-

dimensional surfaces of plant sections (Grenet, 1989), but is regrettably flawed in that it is 

difficult to obtain quantitative information from such images (Travis et al., 1997). 

       

Limited research is available on the effect of exogenous enzymes on forage tissue at the 

histological level, although some research findings points to the effect of EFE at the cellular 

level.  Recently, it has been reported that EFE alters the fibre structure of plant material 

(Giraldo et al., 2008).  Indeed, Senthilkumar et al. (2007) reports that the solubility effect of 

EFE on feeds is likely related to the removal of structural barriers (cell wall) of digestion.  

Similarly, Krause et al. (1998) states that enzymes applied to feed result in the partial 

solubilisation of cell wall components, thereby making more nutrients available for ruminal 

digestion (Hristov et al., 1998).   

 

Therefore, the objectives of this study was to determine the effect of EFE on in vitro 

digestibility of kikuyu (Pennisetum clandestinum) hay, weeping love grass (Eragrostis 

curvula) hay, lucerne (Medicago sativa) hay and wheat (Triticum spp.) straw and to 

quantitatively assess the degradation of the plant tissue at the histological level when treated 

with EFE and incubated in vitro in buffered rumen fluid.  The effect of EFE on the in vitro 

digestibility of these forages was also determined.  
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Materials and Methods 

 
For the histological study, leaf material from freshly cut weeping love grass and kikuyu and 

stem material from freshly cut lucerne and wheat straw were collected and prepared for 

sectioning by infusion of tissue with tissue freezing medium (Cryo-M-Bed, embedding 

compound, Bright Instrument Company Limited, Huntingdon, England) prior to cryo-freezing 

in liquid nitrogen.  Infusion of the tissue involved a step-wise protocol to prevent freeze 

damage to cell structures.  First, the collected leaf (cut from 3-week regrowth of kikuyu or 

weeping love grass) and stem (3-week regrowth of lucerne or baled wheat straw) were 

placed in a 5% (w/v) sucrose solution in phosphate buffered saline (PBS) at 4oC for 3 to 4 h.  

Material was transferred to a 20% (w/v) sucrose solution for an overnight infusion period (4o 

C) and then finally in a 50:50 mixture of 20 % sucrose and tissue freezing medium for 

another 24 h at 4o C.  The leaf or stem material was then frozen in liquid nitrogen and stored 

at -4o C until sectioning.   

 

Cross sections (20 µm) were made on a cryostat and fixed to microscope slides (Lasec™) 

by means of clear double-sided tape, as described by Akin (1982). Specimens were 

sectioned in a cryostat (Leica, CM1100) set at -23° C after an equilibration time of the 

specimens in the chamber for 5 minutes.  After each section was made, numerically labelled 

and fixed to the slide, the following section was labelled with the same number followed by 

an x and fixed to another slide, indicating that samples were collected adjacent to each 

other.  This protocol was followed to allow for comparison between EFE or distilled water 

treated specimens.  Prepared slides were stored overnight at 4o C in closed Coplin jars to 

prevent the material from drying out.  Each slide contained three sections of the same forage 

and for experimental purposes two slides were incubated back to back in the large glass test 

tubes.  Two test tubes were allowed per incubation time and per treatment (EFE or Control), 

and the whole experiment was duplicated.  Incubation times were 0 h (no incubation to set 

base values for tissues), 6 h, 12 h and 24 h in buffered rumen fluid. 

      

The EFE were prepared in the same manner as for the in vitro digestibility study and 

consisted of diluting the ABO 374 supernatant (1 ml) in 200 ml distilled water and applying 1 

ml to each slide in large glass test tubes (50ml). Slides were pre-treated with EFE or distilled 

water for 12 h in glass tubes sealed with rubber stoppers prior to incubation in buffered 

rumen fluid.  To this, 40 ml buffer (pH 6.8) and 10 ml filtered and blended rumen fluid was 

added under strict anaerobic conditions.  The tubes were sealed with rubber stoppers under 

CO2 gas phase with one way valves to release the build-up of gas and incubated in a 
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shaking water bath at 39o C.  After the appropriate incubation period, slides (two per 

treatment) were randomly removed from the test tubes, rinsed in ice cold water and stained 

with Toluidine blue for 5 minutes, rinsed and covered with a cover slip to prevent the sample 

from drying out.  Samples were observed on an Olympus CellR system attached to an IX-81 

inverted microscope equipped with a F-view-II cooled CCD camera (Soft Imaging Systems). 

Images were acquired by using Olympus 40x (leaf material) and 4x objectives (stem 

material) and the CellR imaging software. Images were analysed using the CellR software 

(Olympus Biosystems GMBH, Muenster, Germany). 

 

In vitro digestibility was evaluated according to the method for “In vitro true digestibility using 

the DAISY incubator” as described by ANKOM Technology, Fairport, NY.  The F57 filter 

bags containing 0.5 g substrate were incubated for 24 h in rumen fluid inoculum with buffer 

(Goering and Van Soest, 1970) at a ratio of 1:4.  The supernatant of ABO 374 was used as 

EFE in this study and 40 ml of a 1 in 200 dilution added to the two treatment incubation jars 

12 h prior to incubation with buffered rumen fluid.  Two jars served as control with 40 ml 

distilled water added instead of the EFE.  Bags were duplicated in each bottle (2x2 

replications) and the experiment duplicated along with the histological study.  After the 24 h 

incubation period the bags were removed and in vitro true digestibility (IVTD) determined 

according to the ANKOM procedure. 

 

Rumen fluid was collected from two cannulated adult Döhne-Merino wethers fed a lucerne-

oat hay based diet supplemented daily with 100 g concentrate, as described in Chapter 3.  

Collection was in the morning after the 07:00 feeding and fluid strained through two layers of 

cheese cloth into a pre-warmed thermos flask and sealed.  In the laboratory, the rumen fluid 

was blended for 2 minutes prior to being added to the incubation jars (DAISY jars or large 

test tubes containing the “section to slide” microscope slides) in a ratio of one part rumen 

fluid to four parts buffer.  The buffer (pH 6.8, 39o C) was prepared according to the method of 

Goering and Van Soest, (1970), with slight modifications.  Anaerobic principles were 

adhered to and bottles were sealed under CO2 gas phase and placed in the 39o C incubator.  

Four forage types, as described above, pre-treated (12 h prior to incubation) with the EFE 

cocktail or distilled water were used as incubation substrates for both the determination of in 

vitro digestibility and tissue degradation.  

 
Statistical analysis 

The in vitro digestibility data were subjected to a factorial ANOVA, using Statistica 8.1 

(2008). Significant forage x treatment interactions was detected and data pertaining to the 

respective forages were further subjected to a one way ANOVA.  Histology data were 
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analyzed with either a Bonferroni or Newman-Keuls multifactorial test where significant 

interactions were observed.  Main effects were otherwise interpreted.  Significance was 

declared at P < 0.05. 

Results 

 

The identification of the various tissues measured for cell wall thickness (CWT) and/or 

surface area is indicated in Figure 7.1 and 7.2.  Labelling of the tissues was done with the 

assistance of a botanist (Dr B. Marais, personal consultation, Stellenbosch University) and 

according to the description given by Wilson (1993).  The digestion process can easily be 

observed subjectively from Figures 7.4 to 7.6.  These figures indicate the multiple 

measurements made using imaging software and shows examples of EFE or control 

specimens at different incubation times.  

 

Rapid disappearance of mesophyll, phloem and xylem and the remainder of sclerenchyma 

and other lignified vascular tissue was noted after 24 h for kikuyu (or 12 h for weeping love 

grass) incubation in buffered rumen fluid, regardless of treatment.  Unfortunately, due to the 

thickness of the sections, weeping love grass and wheat straw material did not stay attached 

to the double-sided tape on the slide for periods longer than 12 h incubation periods in 

rumen fluid.  Few samples of weeping love grass and wheat straw remained thereafter and 

the decision was taken not to include the 24 h data in this report due to the limited number of 

samples available for statistical analysis. 

 

     

For the histological data, the factorial ANOVA showed significant interactions of treatment 

with substrate (P = 0.033).  Subsequently, a one way ANOVA was done on each substrate 

at the incubation times. The cell wall thickness- and surface area measurements of kikuyu 

and weeping love grass of the various tissues studied is given in Table 7.1.  The adaxial 

epidermis thickness (kikuyu after 24 h) and abaxial epidermis thickness (weeping love grass 

after 12 h) was thinner due to EFE treatment and incubation in buffered rumen fluid (P < 

0.05).  Metaxylem cell wall thickness was decreased due to EFE treatment for both kikuyu 

and weeping love grass at 12 h of incubation.  Phloem cell wall thickness was only thinner 

for kikuyu after 12 h incubation (P < 0.05).  Metaxylem expressed as a percentage of the 

unincubated (0 h) kikuyu specimen was also decreased due to EFE treatment (P < 0.05).  

For the stem material investigated (Table 7.2), the only significant observation (P < 0.05) 

was a decrease in the epidermal cell wall thickness of lucerne at 12 h of incubation in 

buffered rumen fluid with EFE.  
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Based on the numerous measurements made and reported in Table 7.1 and 7.2, relatively 

few significant findings can be reported.  However, overall there was a tendency towards a 

subtle thinning of cell wall thickness of the various tissues studied.  This is based on the 

calculation of the percentage reduction in cell wall thickness from the unincubated 

specimens (0 h) after the appropriate incubation times with EFE compared to the control 

treatment.  No significant differences were however observed other than where the cell wall 

thickness was affected by the EFE treatment as reported in the previous paragraph.    
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Figure 7.1.  Histology of kikuyu and weeping love grass leaf material and lucerne and wheat 

straw stem material determined under 40 x or 4 x magnification lenses of a conventional light 

microscope (Olympus) of undigested material.   
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Figure 7.2.  Anatomy of wheat straw stem material (adapted from Wilson, 1993). 
 

 
Figure 7.3.  Anatomy of lucerne stem material (adapted from Wilson, 1993). 
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Table 7.1. Cell wall thickness (CWT) of EFE-treated kikuyu or weeping love grass tissues after in vitro digestion in buffered rumen fluid 
Treatment 

and 
incubation 

time  

Ad. 
Epi. 
CWT, 
µm  

% 
Red. 
in 

CWT 
from 
0h  

Ab. 
Epi. 
CWT, 
µm  

% Red. 
in CWT 
from 
0h  

Xyl.
CWT, 
µm 

% Red.
in CWT 
from 
0h  

Metaxyl.
CWT, µm 

% Red.
in CWT 
from 
0h 

Phl.
CWT, 
µm  

% 
Red. 
in 

CWT 
from 
0h  

Xyl.
surface 
area, 
µm2 

% Red.
in AOI 
from 
0h 

Metaxyl.
surface 
area, µm2 

% Red.
in AOI 
from 
0h 

Phl.
surface 
area, 
µm2 

% Red. 
in AOI 
from 
0h 

Kikuyu cell wall thickness      Surface area measurement

Cnt 0h   1.4 ±      
0.05  

0  1.6 ± 
0.07  

0  1.5 ± 
0.13 

0.00 1.5 ±         
0.17  

0.00 1.4 ± 
0.20  

0  271.3 ± 
29.52 

0.00 306.0 ± 
40.49 

0.00 671.3 ± 
78.35 

0.00 

Cnt 6h  1.4 ±   
0.07 

‐1.53  1.7 ± 
0.01 

‐5.64  1.8 ± 
0.29 

‐22.70 1.3 ±       
0.09 

11.66 1.3 ± 
0.10 

12.7  292.4 ± 
27.03 

‐7.79 372.8 ± 
61.23 

‐21.84 448.6 ± 
46.82 

33.17 

EFE 6h   1.3 ±   
0.35  

6.95  1.5 ± 
0.01  

8.5  1.4 ± 
0.25 

5.38 1.4 ±       
0.13  

7.66 1.3 ± 
0.08  

6.2  214.8 ± 
54.72 

20.80 364.6 ± 
57.09 

‐19.16 439.7 ± 
20.00 

34.50 

Cnt 12h  1.3 ±   
0.11 

7.82  1.6 ± 
0.14 

‐3.47  1.8 ± 
0.144 

‐17.25 1.4a ±      
0.05 

4.96 1.4a ± 
0.09 

1.3  188.7 ± 
10.11 

30.43 240.9 ± 
65.06 

21.24 438.9 ± 
59.09 

34.63 

EFE 12h   1.3 ±   
0.02  

6.92  1.7 ± 
0.00  

‐7.14  1.3 ± 
0.053 

14.62 1.0b ±       
0.01  

30.69 1.1b ± 
0.20  

21.6  189.2 ± 
17.73 

30.24 232.1 ± 
63.55 

24.16 436.2 ± 
66.42 

35.02 

Cnt 24h  1.4a ± 
0.09 

5.75  1.4 ± 
0.15 

13.58  1.4 ± 
0.16 

8.77 1.2 ±        
0.10 

21.12 1.0 ± 
0.08 

29.7  263.5 ± 
38.35 

2.85 288.4a ± 
92.85 

5.75 442.9 ± 
59.74 

34.02 

EFE 24h   1.1b ± 
0.01  

22.4  1.3 ± 
0.01  

16.44  1.2 ± 
0.17 

21.68 1.1 ±         
0.10  

29.20 1.0 ± 
0.20  

28.7  237.6 ± 
78.05 

12.42 176.9b ± 
20.09 

42.17 449.3 ± 
48.93 

33.08 

Weeping love grass cell wall thickness  Surface area measurement

Cnt 0h   1.6 ±   
0.16  

0  1.8 ± 
0.29  

0  ND ND 1.1 ±         
0.09  

0.00 1.2 ± 
0.00  

0  472.7 ± 
139.51 

0.00 249.4 ± 
9.10 

0.00 416.1 ± 
71.73 

0.00 

Cnt 12h  1.4 ±   
0.04 

9.9  1.9a ± 
0.33 

‐7.3  ND ND 1.1a ±         
0.01 

2.00 1.1 ± 
0.26 

4.1  444.3 ± 
4.30 

6.00 241.1 ± 
39. 19 

3.31 452.1 ± 
36.57 

‐8.65 

EFE 12h   1.5 ±   
0.00  

4.3  1.4b ± 
0.50  

22.3  ND ND 0.7b ±        
0.00  

37.37 0.9 ± 
0.16  

16.9  292.9 ± 
2.90 

38.03 243.9 ± 
22.87 

2.20 484.5 ± 
3.67 

‐16.42 

Ad. = adaxial, Ab. – abaxial, Epi. = epidermis, CWT = cell wall thickness, Xyl. = xyleme, Metaxyl. = metaxyleme, Phl. = phloem, AOI = area of interest. 

Values with different superscripts differed significantly (P < 0.05) 
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Table 7.2.  Cell wall thickness (CWT) and surface area measurements of EFE-treated lucerne and wheat straw tissues after in vitro digestion in buffered 
rumen fluid  

Cross 
sections of 
stems  

Treatment and 
incubation 

time 

Epidermis CWT, 
µm  

% Reduction in 
CWT from 0h 

Inner mambrane 
CWT, µm 

% Reduction in 
CWT from 0h 

Material 
surface area 
as % of Total 

% Reduction in 
material surface 
area from 0h  

Cell wall thickness Surface area measurement

Lucerne   Cnt 0h   13.0 ± 0.48   0 7.6 ± 0.25 0.00 66.6 ± 2.41  0

   Cnt 6h  9.2 ± 0.83  28.9 7.6 ± 1.35 0.71 52.1 ± 6.98 21.8

EFE 6h   9.4 ± 0.43   27.9 6.8 ± 0.19 11.11 47.4 ± 1.19  28.9

   Cnt 12h  8.8 a± 0.46  32.5 7.4 ± 0.19 2.82 29.9 ± 3.27 55.1

EFE 12h   7.4b ± 0.59   43.1 6.8 ± 0.21 10.87 30.9 ± 1.79  53.6

   Cnt 24h  8.5 ± 0.53  34.7 6.5 ± 0.99 14.37 23.7 ± 0.84 64.4

EFE 24h   7.9 ± 0.17   39.5 6.5 ± 0.34 14.71 23.7 ± 2.17  64.4

Wheat straw  Cnt 0h   13.0 ± 1.22   0 11.9 ± 1.20 0.00 70.9 ± 0.72  0

   Cnt 12h  9.3 ± 0.70  28.8 8.7 ± 0.78 26.59 66.7 ± 1.38 5.9

EFE 12h   9.1 ± 0.91   29.9 6.3 ± 0.99 47.23 66.7 ± 0.90  6

   Cnt 12h       ND ND 57.9 ± 0.21 18.3

EFE 12h   ND ND 58.2 ± 1.66  18

CWT = cell wall thickness. Values with different superscripts differed significantly (P < 0.05)  
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Figure 7.4.  Degradation of kikuyu leaf material treated with EFE or dH2O after 6, 12 or 24 h 

incubation in buffered rumen fluid.  The cell wall thickness and tissue surface area was 

determined using CellR imaging software (Soft Imaging Systems). 
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Figure 7.5. Degradation of weeping love grass leaf material after 12 h or wheat straw stem 

material after 6 or 12 h of incubation in buffered rumen fluid.  Specimens were treated with 

EFE or dH2O and the cell wall thickness and tissue surface area determined using CellR 

imaging software (Soft Imaging Systems).   
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Figure 7.6. Degradation of lucerne stem material after 6, 12 or 12 h of incubation in buffered 

rumen fluid.  Specimens were treated with EFE or dH2O and the cell wall thickness and 

tissue surface area determined using CellR imaging software (Soft Imaging Systems). 
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The in vitro digestibility values (after 24 h of incubation) of EFE treated weeping love grass, 

dried kikuyu, lucerne hay and wheat straw is given in Table 7.3 and graphically represented 

by Figure 7.7. 

 
Table 7.3. In vitro digestibility of forages treated with EFE or distilled water and incubated in 

buffered rumen fluid for 24 h 

IVTD, % EFE treatment Control SEM Significance, P 

Weeping love 

grass hay 

42.3 41.5 0.695 0.486 

 

Dried Kikuyu  65.4a 61.9b 0.655 0.004 

Lucerne hay  77.0a 74.7b 0.488 0.008 

Wheat straw 42.9 44.3 1.200 0.411 

Values within rows with differing superscripts differed significantly (P < 0.05)   

 

 
Figure 7.7. In vitro digestibility of forages treated with EFE or distilled water and incubated in 

buffered rumen fluid for 24 h.  Error bars represent the SEM.  Different superscripts depicted 

at the bars indicate significance at P < 0.05.  

 

Exogenous fibrolytic enzyme treatment of wheat straw and weeping love grass was not 

effective in improving the in vitro digestibility of these relatively poor quality roughages.  

Lucerne hay and kikuyu hay both however showed increased in vitro digestibility after 24 h 

incubation in buffered rumen fluid due to EFE treatment. 
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Discussion 

No evidence could be found that the methodology followed in this study has been applied 

before in the evaluation of the effect of EFE on tissue degradation of forages at histological 

level.  Direct comparisons with literature therefore are limited.  However, many researchers 

have reported the effect of EFE on cell wall structures as part of the mode-of-action of 

enzymes in altering the digestibility of forages and feeds and will be discussed later on. 

 

Valuable information has, however, been gained on the degradation of forage tissue 

regardless of treatment and will be briefly discussed first.  Using image analysis software, 

the degradation pattern of the different tissues studied can be followed.  As is evident from 

the quantitative data and by subjective evaluation of the microscope slides, it is clear that the 

non-lignified tissues such as mesophyll, xylem and phloem were rapidly degraded.  Highly 

lignified tissue such as sclerenchyma and structural tissues such as pith parenchyma and 

epidermal tissue were far from being completely digested after 24 h.  These observations 

were in close agreement with other researchers such as Buxton and Readfearn (1997) who 

summarized the digestibility of various plant tissues (Table 7.4).  Indeed, Wilson (1993) 

states that mesophyll cell walls are not lignified and are rapidly digestible (Akin, 1989), with 

complete digestion in under 12 h (Chesson et al., 1986).  Along with mesophyll, phloem was 

also digested before the other tissues.   

 

Extensive digestion of tissues was observed after relatively short periods of incubation (17h), 

with mostly indigestible tissue (lignified vascular tissue) remaining after 24 h.  These findings 

on in vitro tissue disappearance are in agreement with other more recent research articles.  

Horn et al. (1989) listed the susceptibility of leaf tissue of wheat forage at various stages of 

maturity as mesophyll and parenchyma bundle sheath > phloem > epidermis > 

schlerenchyma > lignified vascular tissue.  For stem material, small losses of phloem, cortex 

and parenchyma tissue were reported with cortex being the most susceptible to degradation 

in rumen fluid.   

 

Interestingly, the susceptibility of the various tissues to ruminal degradation was found to be 

similar regardless the stage of maturity of the wheat forage.  The total cell wall content of 

forages increases with maturity (Morris, 1984) and the stage of maturity is a major factor in 

the nutritive value of plants.  However, it appears that it is the extent of digestion more than 

the type of tissue degraded that is influenced by the stage of maturity of leaf material.  For 

this study, care was taken to collect specimens of similar maturity to minimise any potential 

maturity effects. 
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Table 7.4. Summary of plant tissues and their relative digestibility (from Buxton & 

Readfearn, 1997) 

Tissue Function Digestibility Comments

Mesophyll  Contain 

chloroplasts 
High Thin wall, no lignin. Loosely 

arranged in legumes and C3 

grasses. 
Parenchyma Metabolic Moderate to 

high 
In midrib of grass and main vein of 

legume leaves, leaf sheath, and 

stem of grasses, and petiole and 

stem of legumes. Highly digestible 

when immature. 
Collenchyma  Structural Moderate to 

high 
In legume leaves and stems. 

Thick wall, not lignified. 
Parenchyma 

bundle sheath  
Contain 

chloroplasts 
Moderate to 

high 
Surrounds vascular tissue in C4 

leaf blades. Wall moderately thick 

and weakly lignified. 
Phloem fibre  Structural Moderate In legume petioles and stems. 

Often does not lignify. 
Epidermis  Dermal Low to high Outer wall thickened, lignified, and 

covered with cuticle and waxy 

layer. 
Vascular 

tissue  
Vascular None to 

moderate 
Comprises phloem and xylem. 

Major contributor to indigestible 

fraction. 
Sclerenchyma  Structural None to low Up to 1200 mm long and 5–20 

mm in diameter, thick, lignified 

wall. 
 

The focus of this study was however to evaluate and quantify the effect of EFE on cell wall 

structures.  It was hypothesised that EFE can result in the thinning of cell wall structures, 

thereby allowing earlier access of microbes to the cell contents.  This hypothesis is strongly 

based on findings from several research groups.  Senthilkumar et al. (2007) reported that 

EFE improved in vitro gas production as well as stimulating microbial production. They 

related their findings on the solubility effect of EFE on feeds to the removal of structural 

barriers of digestion, thereby releasing more nutrients to support the production of the 
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bacterial glycocalyx, which improves the colonization of plant cell walls and the activity of 

rumen microbes.  This is in agreement with Hristov et al. (1996) who reports that exogenous 

enzymes applied to feed can randomly release reducing sugars and possibly make more 

nutrients available.  Krause et al. (1998) also reported that enzymes applied to feed result in 

the partial solubilisation of cell wall components, thereby making more nutrients available for 

ruminal digestion.  Similarly, Giraldo et al. (2008) reported that enzymes can alter the fibre 

structure of plant material and indeed concluded earlier that EFE stimulated the initial phase 

of microbial colonization (Giraldo et al., 2007), in agreement with the above researchers.  

The effect of the exogenous enzyme might also be exerted prior to incubation with rumen 

fluid, during the pre-treatment interaction time as indeed was observed with lucerne fractions 

becoming more amenable to degradation by rumen microorganisms (Nsereko et al., 2000). 

  

In this study, the cell wall thickness of the different tissues were studied and as reported 

earlier, subtle yet significant thinning effects were observed for both adaxial and abaxial 

epidermis of kikuyu and weeping love grass and the epidermis and cortex of lucerne due to 

EFE treatment.  EFE treatment also had a thinning effect on the metaxyleme cell wall of 

kikuyu and weeping love grass, as well as the phloem cell wall of kikuyu (P < 0.05).  This 

supports the hypothesis that EFE subtly erode cell wall structures allowing ruminal microbes 

to obtain earlier access to fermentable substrate during the initial phase of digestion 

(Colombatto et al., 2003).  Should the cell wall structures be weakened or altered in such a 

way as to allow earlier access of microbes to the cell contents as proposed here, it follows 

that the digestibility should be positively influenced.  This was indeed the case in this study 

(and in previous chapters) wherein it was observed that the 24 h in vitro digestibility of kikuyu 

and lucerne was increased.  

  

This experiment was, however, conducted over a relatively short 24h incubation period due 

to limitations in measuring histological effects after longer incubation periods.  However, 

from the literature it has been reported that enzymes degrade material in the rumen that 

would have been degraded in the rumen anyway, only at a later time (Colombatto et al., 

2007) and this would have been interesting to determine at the histological level by allowing 

for longer incubation periods.  The implication of such a finding is that enzymes exert their 

multiple effects at a different level than by supplementing limiting enzymatic activity in the 

rumen.  One of the limitations of the section to slide technique is that it is difficult to obtain 

suitable specimens after longer incubation periods, more so with specimens of younger 

maturity (Unknown author, from: “12. Fibers, fibre products and forage fibre”).  Additionally, 

when sectioning, the cell walls aren’t necessarily cut at a straight angle; thereby over-

estimating the cell wall thickness upon measurement (Boon et al., 2005).  This is a likely 
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explanation for the large variation found in our dataset.  Regardless of these limitations, the 

section to slide technique proved to be a valuable tool to evaluate EFE effects at histological 

level of various forages. 

   

In this study, no attempt was made to quantify the level of lignification of the various 

structures examined as the EFE tested was not evaluated for enzymatic activity capable of 

digesting lignin.  In fact, identifying such an enzyme remains one of the biggest challenges in 

truly affecting fibre digestion.  As a future prospect, more precise and differential staining 

techniques can be investigated to determine the binding of EFE to plant tissue at histological 

level.   

 

Conclusion 

 
Results from this study suggest that enzymes have a thinning effect on the cell wall 

components of plant material which was substantiated by the improved in vitro digestibility of 

EFE treated samples.  Although limited significant effects were reported in terms of the cell 

wall thinning of the various tissues studied, the key to the observations were that subtle 

effects were indeed observed.  This is in strong agreement with literature where effects on 

cell wall digestion have been proposed by several researchers as a contributing factor to the 

mode-of-action of EFE.  It was concluded that EFE altered fibre cell wall structures, thereby 

positively influencing fibre digestion and fibre components.    
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CHAPTER 8 

General Conclusion and future prospects 

 
Exogenous fibrolytic enzymes (EFE) as additives in ruminant feeds is a topic being 

researched worldwide.  Enzymes are included in animal diets to improve feed utilization and 

many positive effects have been reported and are often related to improvements in DMI and 

increased digestibility of feeds and nutrients.  Improved feed utilization and production 

responses, in dairy cows especially and feedlot cattle, but also in sheep and goats, have 

been reported.  The literature available, reporting on such effects, serve as evidence that 

EFE can indeed be included in ruminant diets to improve feed digestibility.   

 

However, research also points to varied responses of ruminants to EFE treatment of their 

diets.  The inconsistencies in research findings necessitate investigations into establishing 

how EFE exert its effects.  The first part of this study therefore focussed on establishing how 

EFE can alter feed digestibility.  In this study, a novel enzyme cocktail preparation (ABO 

374), cultivated from a patented fungal strain found in South African soil was used as the 

EFE.  This cocktail was produced locally and characterised as a fibrolytic enzyme cocktail as 

it contained xylanase, cellulase and mannanase activities.  Upon treatment of lucerne, 

kikuyu or weeping love grass, it was observed that the EFE had marked effects on the total 

volume of gas produced and the rate of gas production of lucerne and kikuyu (P < 0.05).  

The in vitro digestibility of the kikuyu was also improved (P < 0.05).  Of particular interest, 

and in agreement with other researchers, it was observed that the greatest effects were 

achieved during the early hours of incubation (< 12 h).  The in sacco results of a complete 

feed treated with the EFE, substantiated findings that enzymes can improve the digestibility 

of feeds.  An increase in effective degradability of nutrients of up to 20 % was observed, in 

addition to an increased rate of degradation of DM, CP and NDF.  Of importance though, 

was the finding that the effect of the EFE was not only limited to the fibre component of the 

feed, but also affected CP degradability.  Supposedly, the EFE resulted in changes to the 

cell wall, albeit subtle, and therefore allowing microorganisms earlier access to the highly 

digestible cell contents.  Additionally, as cell walls are likely altered, the protein embedded in 

the cell wall matrix becomes available for degradation.  Hence, results indicating increased 

rates of degradation and increased levels of digestion of not only NDF, but also CP, are to 

be expected. 

 

Findings on the gas production kinetic and in sacco digestibility values were based on fitting 

the data to a one-compartmental non-linear model.  As a future prospect the data can also 
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be evaluated by a two compartmental model.  This will allow for the evaluation of the EFE on 

the rapidly digesting pool as well as on the slowly digesting pool.  All substrates evaluated 

will likely show two-compartmental digestion kinetics.  Unfortunately though, the initial gas 

production data did not allow for evaluating such a model as data points were too few and all 

subsequent findings were therefore compared using the same model one-compartmental 

model.  The latter results on automated gas production and on in sacco digestibility effects 

will however be fitted to a two-compartmental model, as a future prospect.  Results from this 

could then be combined into 6h intervals to allow for comparison with the early findings on 

gas production.   

 

The novel approach of the dissertation was aimed at investigating the effects of EFE 

treatment of forages on cell wall structures.  Forage heterogeneity contributes largely to the 

variation in degradability of plant material even when of similar chemical composition.  This 

heterogeneity originates from the distribution of cell wall material between plant cell types, 

amongst other.  The statement of Weimer (1996) that: “The architecture of the plant cell may 

be just as important as its chemistry” cannot be overlooked when attempting to elucidate the 

effects of EFE on cell wall material.  In the latter part of the study, investigations were made 

on the effect of EFE treated forages on the histology of cross sections of the forages.  

Effects were limited, but significant effects were observed and there was a thinning effect of 

the EFE on the cell wall of the less digestible tissues such as the epidermis, metaxylem and 

phloem of both kikuyu and weeping love grass.  The emphasis of these findings lies in the 

subtle changes observed at histological level being sufficient to allow earlier access by 

microorganisms and freeing nutrients for digestion.  It then follows that nutrients will be 

digested faster, and to a greater extent; therefore improving animal performance.   

 

Additionally, the reported results should be related in terms of the EFE’s studied and the 

characteristics of enzymes should be noted.  Enzymes are obtained from various sources 

and differ in their pH and temperature sensitivity.  Also, enzyme specificity might form one of 

the major limitations in observing positive effects.  As forage and fibre composition is 

complex, it is of importance to treat it with enzymatic cocktails with similar diversity if positive 

effects are to be observed.  In the literature, poor reporting of enzyme specificity and 

enzyme characteristics exist and this needs to be improved in future studies.  Limitations do 

exist in reporting the detail of enzyme products as many of these products are commercially 

available and protected by patent rights.  This was indeed the case in our study and limited 

specific information on the fungal strain and production methods could be reported.  

Regardless, in evaluating enzymes, detailed information on its activity is of great importance.   

Low enzyme activity and too narrow enzyme specificity, compared to a mixture of enzymes 
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in an enzyme cocktail, is likely accountable for limited responses as was observed when the 

purified xylanase was used as sole enzyme source.  Therefore, enzyme types should be 

diverse enough, and match the substrate closely enough to truly affect digestion to a great 

extent, as is typically found in the dynamic rumen environment.  Also, application of the 

enzyme directly to the feed and prior to ingestion should be noted.  This being said, 

continued investigations of the mode-of-action of EFE is necessary and might it be important 

to use new and exciting technology to isolate certain tissues, for instance the cell walls of the 

epidermis, to determine the effect of EFE at histological level and cell type by cell type. 

 

In this study and per chapter, at least two methods of assessing enzyme effects on forage 

digestibility were reported.  This allowed us to support findings in in vitro and in sacco 

studies.  The methods were always performed simultaneously under similar conditions, 

using exactly the same rumen fluid inoculum and substrates.  Even so, discrepancies were 

observed between the results of the methods, with special reference to discrepancies 

between in vitro gas production and in vitro digestibility.  These discrepancies are probably 

related to the pre-treatment of the substrate with the enzyme mixture.  Pre-treatment of the 

substrate, from literature, is reported as an important contributing factor in the ability of 

exogenous enzymes to alter fibre digestibility.  Therefore, the pre-treatment of substrate with 

the enzyme formed part of our protocol.  However, the methods used to assess the enzyme 

effects on forage digestibility could have been affected by this protocol in different manners. 

Pre-treatment of the substrate can result in altering the reducing sugars present in the 

substrate.  For the measurement of gas production, this change in reducing sugars is not 

accounted for as gas production measurement is only recorded after the pre-treatment 

interaction time.  On the other hand, where in vitro digestibility is measured, the effects of 

pre-treatment is included in the analysis; therefore leading to discrepancies in results.  

However, the different methods studied were successful in supporting one another regarding 

the conclusions drawn from the results.   

 

The main focus of the use of EFE lies in improving the digestibility of poor quality roughages, 

such as wheat straw.  Unfortunately, limited positive effects have been reported to date and 

future investigations into EFE application should include clear and definite information on 

factors such as the experimental conditions, the characteristics of the enzymes used 

regarding specificity and pH and temperature optimal and so forth.  Continued research on 

the mode-of-action of EFE is necessary and new technology to isolate certain cell types or 

employing differential staining techniques to evaluate plant tissue and cell components in 

depth, to clearly indicate enzyme effects, might be beneficial in broadening our knowledge 

on EFE. 
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In summary, it can be concluded that there is definite merit in the use of EFE in improving 

the digestibility of ruminant feeds and feedstuffs.  The effects of such EFE treatments can be 

expected to be exerted during the early stages of digestion, thereby increasing the passage 

rate of digesta.  Additionally, the effect of the EFE is not limited to fibre and increased 

digestibility of all nutrients can be expected, thereby increasing the overall digestibility of the 

feed.  This increased digestibility is likely related to subtle changes to the cell wall material of 

the forages, hence allowing earlier access of the microorganisms to the cell content and 

freeing nutrients from the fibrous complex for digestion.  For these effects to be observed, 

the enzyme specificity should be diverse enough and should closely match the targeted 

substrate. 

 




