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Abstract

The aim of the study is to ascertain whether geochemical exploration techniques can be
used in the search for tanzanite deposits in the Merelani area, NE Tanzania. Previous
studies have successfully demonstrated a partial extraction method (in situ soil leaching) in
identifying prospective ultramafic bodies at the Rockland ruby mine in the Mangare area,
Kenya, thereby demonstrating the usefulness of geochemical methods in gemstone
exploration. In this study, a partial extraction as well as a whole-rock geochemical method
was used to determine the applicability of these methods in prospecting for tanzanite
mineralisation using different sampling media, such as soil, stream sediment and calcrete.
It is possible that this geochemical approach may not be as effective as physical methods
such as the separation and examination of heavy mineral suites. However, its viability
needs to be evaluated due to the potential efficiency and relative logistic ease of the
method. In essence the scientific method employed is to compare overburden (soils,
stream sediments and calcrete) chemistry with known underlying geology, the latter having
been established via diamond core drilling. A positive correlation would allow the

prediction of overburden covered tanzanite mineralisation.

Soil samples were collected from a trench dug perpendicular to regional lithological strike
over both barren and tanzanite-bearing horizons. XRF trace element data for the soils
was compared to the chemistry of the underlying lithologies. ICP-AE data derived from 1
molar HCL soil leachate (12 hour leach) and soil XRF data, from the same samples, was
compared, using a mass balance index, to discern any hydromorphic dispersion of
selected trace elements and to evaluate the leachate as a viable alternative to XRF
analysis. In general, a good correlation exists between the soil and rock trace element
data profiles over the length of the section. However, Ti- and Zr-normalised mass balance
calculations show some down-hill drift, but this does not disrupt the overall pattern. The
ICP-AE acid leach data show that hydromorphic dispersion is low, that the trace elements
of interest (V, Cr, Ni and Cu) are hosted within non-soluble phases. Consequently, the
leach technique is not a viable alternative to XRF analysis of the soils. XRF analysis of the
soils was shown to be potentially useful in identifying new areas of mineralisation as the
soils overlying a graphitic calc-silicate schist, that always occurs adjacent to the tanzanite
mineralisation in the Merelani area, was found to be easily identifiable based on

anomalous concentrations of V.
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An exploration concession was chosen for stream sediment sampling on the basis of the
presence of large streams, of a few tsavorite mines indicating high prospectivity for
tanzanite, and because of a variation in geology on the property. Tanzanite and tsavorite
are cogenetic in the known tanzanite deposits. In this case the aim was to investigate the
possible occurrence of tanzanite-like geochemical anomolies (i.e. the anomalous V
observed in the soil chemistry investigation) could be detected in the vicinity of the
tsavorite mines. Tsavorite, the gem variety of grossular garnet, also contains high
concentrations of V. The samples were analysed by XRF whole-rock methods for trace
element content. The data shows a number of clear positive V anomalies in the study
area. The data also shows that each of the existing or abandoned mines in the area is
marked by a positive V anomaly. This section of the study also demonstrated a relatively
low degree of stream sediment dispersion of the trace elements of interest — most likely a
function of the semi-arid climate. The fine fraction (<90um), however was shown to be
mobilised to a relatively larger degree than the coarse (180um — 300um) and medium
(90um - 180um) fractions. As is predictable from the leachate analysis, factor analysis of
the data shows that the trace elements are dominated by heavy mineral geochemistry and
that a study in heavy mineral exploration might provide a cheaper and more viable option

to those explored in this study.

Calcrete samples were taken from an abandoned, 10m deep mine shaft, which was sunk
through the calcrete to reach the tanzanite deposit. The shaft was sampled from the
bottom, closest to the tanzanite mineralisation, to the surface to investigate the association
between trace element geochemistry and proximity to the deposit. There was no vertical
association between the trace element geochemistry of the calcrete and proximity to the
tanzanite deposit. There was also no clear indication in the geochemistry of the calcrete of
the existence of the tanzanite deposit beneath it. This further indicates the immobility of

the elements of interest in this environment.

This study has demonstrated that properly constrained soil and stream sediment
geochemical studies may be of use in tanzanite exploration. However, it must be stressed
that this is only the case if the geochemical signature of the lithological package

associated with the mineralisation is unique and well known.
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Opsomming

Die doel van hierdie studie is om te bepaal of geochemiese eksplorasie tegnieke vir die
soek na tanzaniet afsettings in die Merelani area, noord-oos Tanzanié, gebruik kan word.
Voorige studies het gewys dat ‘n gedeeltelike ekstraksie metode (in situ grond looging)
gebruik kon word om prospektiewe ultramafiese liggame by the Rockland rubyn myn in die
Mangare area, Kenia te identifiseer. Hierby is gedemonstreer dat geochemiese
eksplorasie metodes suksesvol in edelsteen eksplorasie toegepas kan word. In hierdie
studie is ‘n gedeeltelike ekstrasksie en heel-rots geochemiese metodes gebruik om die
toepaslikheid van hierdie metodes op tanzaniet eksplorasie te toets. Verskillende
geologiese materiale is gemonster, naamlik grond, stroom sedimente en kalkreet. Dit is
moontlik dat hierdie geochemiese benadering nie so effektief soos fisiese metodes soos
swaar mineraal skeidings mag wees nie. Dit is nogtans belangrik om die toepaslikheid
van hierdie metodes op tanzanite eksplorasie te toests, as gevolg van die potensiéle
effektiwiteit en relatiewe logistiese gemak van die metodes. Die essensie van die
wetenskaplike metodiek wat in hierdie studie gebruik is, is om die geochemie van die
grond, stroom sedimente en kalkreet te vergelyk met die geochemie van die
onderliggende geologie wat deur middel van diamant boorwerk vasgestel is. ‘n Positiewe

korrelasie sou dan dui op ‘n bedekte tanzaniet afsetting.

Grond monsters is van ‘n sloot geneem wat loodreg op die strekking van die tanzaniet
gemineraliseerde en ongemineraliseerde horisonne gegrawe is. XRF spoor element data
van die gronde is vergelyk met die chemie van die onderliggende gesteentes. |IGP-AE
data wat bekom is deur die monsters met 1 molaar HCI te loog (12 uur loging) is vergelyk
met XRF data van dieselfde monsters deur middel van ‘n massa balans indeks om te
bepaal of daar enige hidromorfiese dispersie van sekere spoor elemente is en om die
toepaslikheid van loging as ‘n alternatief tot die heel-rots metode te bepaal. In die
algemeen is daar ‘n goeie korrelasie tussen die grond en rots spoor element data profiele
oor die lengte van die seksie. Alhoewel, Ti- en Zr-genormaliseerde massa balans data
profiele wys dat daar ‘n mate van afwaartse beweging van grond na die voet van die
heuwel is, maar dat hierdie ‘n breuk in die algemene patroon vorm nie. Die IGP-AE data
dui daarop dat die hidromorfiese verspreiding van spoor elemente laag is en dat die spoor
elemente wat van belang is (V, Cr, Ni en Cu) in nie-oplosbare fases gesetel is. Gevolglik
is die logings metode nie ‘n toepaslike alternatief tot die heel-rots XRF metode op gronde

nie. XRF analises op die gronde het gewys dat die XRF metode moontlik nuttig kan wees
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om nuwe areas van tanzanite mineralisasie aan te dui, omdat die gronde wat ‘n grafietiese
kalk-silikaat skis oorlé, wat altyd langs die tanzaniet draende horisonne voorkom, is op

grond van anomale konsentrasies van V geidentifiseer.

‘n Eksplorasie konsessie is op die basis van die teenwoordigheid van groot strome, ‘n paar
tsavoriet myne wat aanduidend is van hoé prospektiwiteit vir tanzaniet is en as gevolg van
‘n variasie in geologie in die area vir stroom sediment monstering gekies. Tanzaniet en
tsavoriet is kogeneties in bekende tanzaniet afsettings. In hierdie geval was die doel om
te ondersoek of tanzanietagtige anomalieé (nl. die anomale konsentrasies van V wat in die
ondersoek van die grond chemie opgemerk is) in die omgewing van die tsavoriet myne
geidentifiseer kan word. Tsavoriet, die edelsteen variéteit van grossulaar granaat, bevat
hoé konsentrasies V. Die monsters is deur middel van die XRF heel-rots metode vir spoor
elemente geanaliseer. Die data dui op ‘n paar monsters met hoé V konsentrasies in die
ondersoek area. Hierdie studie het ook gedui op ‘n lae stroom sediment verspreiding van
die spoor elemente van belang, heel waarskynlik is dit ‘n funksie van die semi-ariede
klimaat. Die fyn fraksie (< 90pm) blyk tot ‘n groter mate as die growwer (90um tot 180um
en 180um - 300um) fraksies gemobiliseer te word. Soos voorspel kan word deur die
loogings analise het faktor analise gewys dat die spoor elemente deur swaar mineraal
geochemie gedomineer word en dat ‘n studie op swaar minerale moontlik ‘n goedkoper en

meer toepaslike eksploraise metode is as die wat in hierdie studie ondersoek is.

Kalkreet monsters is van ‘n ongebruikte, 10m diep myn skag wat deur die kalkreet gesink
is om by die tanzaniet gemineraliseerde horison uit te kom geneem. Monsters is van die
bodem van die skag, naaste aan die tanzaniet mineralisasie, tot die oppervlak geneem om
die assosiasie tussen die spoor element geochemie en afstand van die tanzaniet
mineralisasie te ondersoek. Geen vertikale assosiasie tussen spoor element geochemie
en die nabyheid tot die tanzaniet afsetting kon vasgestel word nie. Daar was geen
duidelike aanduiding in die geochemie van die kalkreet op die onderliggende tanzanite
afsetting nie. Hierdie is ‘n verdere annduiding op die nie-mobiele toestand van spoor

elemente in hierdie omgewing.

Hierdie studie het suksesvol gedemonstreer dat goed gedefinieerde grond en stroom
sediment geochemiese studies moontlik in geochemiese eksplorasie vir tanzaniet

bruikbaar kan wees. Dit is belangrik om in gedagte te hou dat dit slegs die geval is as die
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geochemie van die litologiese paket wat met die mineralisasie geassosieer is uniek en

goed bekend is.
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1. Introduction

The current tanzanite mining company, Tanzanite One, has projected a life of mine of
15 years. Additional tanzanite reserves will have to be found if the period is to be
extended beyond the current estimation. This study was conducted to ascertain
whether two common methods in geochemical exploration, whole-rock XRF and partial

leach, can be applied in exploring for additional tanzanite deposits.

The Merelani tanzanite deposit is located in the Lelatema mountains in the Merelani
region, north-eastern Tanzania. The Lelatema mountains are defined by the slopes of
a large anticlinal structure rising above the relatively low-lying plains. This is the only
significant topography in the immediate area. The climate is semi-arid, with heavy rain
falling from March to May. The development of abundant calcrete as well as the
positive weathering of the dolomite in the area attests to the aridity of the climate.
Vegetation consists of mostly Acacia species intergrown almost impenetrably in the
rainy season. Natural rock outcrop is limited to the limbs of the Lelatema anticlinal

structure and to isolated inselbergs occurring on the flat plane between the limbs.

Tanzanite occurs in intensely boudinaged and folded units in a kyanite gneiss in a
granulite facies metamorphic terrane. The deposit is confined to an area of about
7km? in the Merelani area. It has been mined on a small scale for about 30 years and
on a large scale for the past 7 years. The geology of the deposit has been the subject
of intense study for the last few years (Davies and Chase, 1994; Malisa, 1987; Malisa
and Muhongo, 1990; Malisa and Koljonen, 1989; Olivier, 2006; Scheepers and Kisters,
2000) and is well known. Mining of the deposit is a complex process due to the
intricate structure by which the tanzanite mineralisation is guided. The tanzanite
mineralisation is located in low-pressure shadows within boudins and along fold
hinges. Inclined shafts are sunk along the apparent to true dip of the JW-zone, which
is the tanzanite mineralised horizon, to intersect the generally NE plunging fold hinges.
Individual ore shoots are mined via lateral drives along the plunge of the fold hinges.
Winzes and raises are developed from the main lateral drives to investigate the
pressure shadow boudin structures associated with the fold hinges, in which tanzanite
is also mineralised. The ore is transported to the decline shafts by means of either
monorope or vacumation systems. From the decline shafts ore is transported to the

surface by means of a skip and track system.
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The lithologic package in which the tanzanite deposit is hosted is covered by an
overburden layer of variable thickness consisting of either calcrete and/or soil. The
possibility therefore exists that geochemical exploration methods employing these
different overburden types can provide relatively cheap and logistically simple methods

of finding additional tanzanite deposits.

Levitski and Sims (1997) raised the possibility that gemstone deposits can be sought
via geochemical exploration techniques, due to the fact that a gemstone is coloured by
a specific chromophoric trace element. They tested the method of diffusion extraction
(MDI) at the Rockland ruby mine in south-east Kenya. By using the method they were
able to successfully pinpoint the positions of covered ultramafic bodies which are
closely related to the ruby mineralisation in the area. The principles used in the
Rockland study were used to conceptualise a study to test the applicability of

geochemical exploration techniques in tanzanite exploration.

Tanzanite is a vanadiferous zoisite (CazAl,O.AIOH[Si,07][SiO,4]) which contains up to
3300ppm vanadium (~0,5wt% V,03). However, due to the “pocket’mode of tanzanite
mineralisation and the subsequently low ore to wall-rock ratio, vanadium dilution is
expected to occur during the process of soil formation when rock particles containing
high V concentrations are mixed with particles containing low V concentrations. This
is in addition to the probable low trace element dispersion in the soils and stream
sediments, because of the semi-arid climate. The challenge may therefore lie in
searching for low contrast geochemical anomalies. Like the ruby deposits of the
Rockland Ruby mine, tanzanite deposits are associated with a specific rock type.
Thus another exploration method may be to identify geochemical patterns unique to
specific rock-types, which either contain the tanzanite mineralisation or are closely

associated with the mineralised host-rocks.

The geochemistry of the lithological package in which the tanzanite deposit occurs is
well constrained through analysis of bore-hole and rock-chip samples (Olivier, 2006).
This study will focus on the trace element geochemistry of the overburden (soil, stream
sediment and calcrete) and try to relate it to the chemistry of the underlying lithologic
package, which hosts the tanzanite mineralisation. Two potential methods exist which

could identify potential anomalies associated with the tanzanite deposit: whole-rock

2
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and partial extraction methods. The partial extraction method is tested due to its
relative low cost as well as logistical ease with which a geochemical survey using
partial extraction can be conducted. In addition the partial extraction data will also
show whether the trace elements in the overburden occur in soluble or insoluble
phases. The analysis of stream sediments may be useful in identifying anomalies
related to tanzanite deposits not yet discovered, depending on the mode of trace
element dispersion within the stream systems. Tsavorite and tanzanite are cogenetic
in the mined tanzanite deposits. In addition no lithologic data exists outside the mining
area. Therefore the presence of operating and abandoned tsavorite mines in an
exploration concession will be used as a guide of any potential anomalies and their
meaning in terms of their proximity to the mines. Abundant calcrete is found
throughout the area. If the data from analysis of the calcrete can be used to identify
anomalies associated with tanzanite deposits, the cost of a geochemical exploration
program will be significantly reduced as these samples, occurring on the surface, are

easy to collect and relatively cheap to transport.

The results of this study will heavily rest on XRF and partial extraction data. The
partial extraction data represents the logistically easier data to collect, as no pre-
milling and crushing of the samples is required and therefore also the cheapest. The
XRF data will potentially prove to be the more accurate in anomaly identification and
establishing a link between the overburden and underlying rock types. In addition to
the geochemical methods explored in this study, heavy mineral separation and
analysis may also prove to be a viable exploration method for additional tanzanite
deposits. This study aims to show that geochemical exploration methods can be used

to identify the location of the tanzanite deposit.
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2. Regional Geology

The study area is located in the Neo-Proterozoic, north-south trending Mozambique
tectono-metamorphic belt in north-eastern Tanzania (Fig.1). Although the term
“‘Mozambique Belt” is still frequently used, the term “East African Orogen” (EAO),
proposed by Stern (1994) incorporating the Arabian-Nubian shield into the belt, is
preferred. The EAO will be dealt with in more detail as it is host to the various

gemstone deposits discussed in this thesis.

The geology of north-eastern Tanzania is subdivided into mainly two domains on the
basis of their structural and chronostratigraphic characteristics, namely the Tanzanian
Craton (ca. 2.0-3.1Ga) and the EAO (ca. 870-600Ma). The terranes are overlaid by

Cenozoic cover (1.2Ma to present).

2.1.The Tanzanian Craton

The Archaean Tanzanian Craton forms the central nucleus of the eastern Tanzanian
continental crust. The craton has been dated by Chesley et al. (1999) at 2.5 - 2.9Ga by
using Re-Os systematics from chromites obtained from mantle xenoliths in the East
African Rift as well as from the craton itself. They also show that the ancient refractory
lithosphere extends at least ~140km beneath the East African Rift in northern Tanzania
and that extensive rift-related thinning has not yet occurred as it has been shown to
have developed in Kenya (Chesley et al., 1999). Other ages for the craton also exist,
such as the 2.7 - 3.1Ga ages obtained from granitoids and reported by Moller et al.
(1998).

The craton has been subdivided into two contrasting domains (Maboko, 2000). The
first is a central domain consisting of granite, granodiorite, felsic gneisses and
migmatites associated with metamorphic supracrustal rocks. The second domain is
composed of the granite-greenstone association of basic to acid volcanics, turbidites,
pelites and banded iron formations intruded by granites and overlain by conglomerates,
argillaceous sediments and minor volcanics. Both domains are intruded by post-
orogenic granites (age ~2.6Ga) and pegmatites (age 2.5Ga). This is used by Maboko
and Nakamura (1995) to infer that the craton had cooled below 300°C by ~2.5Ga.
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The Tanzanian craton is flanked in the west and south-west by high grade
metamorphic rocks of the Paleo-Proterozoic Ubendian Belt (~2.0Ga) and in the east by
the Usagaran rocks of similar age (Fig.1b) (Maboko, 2000). It is inferred by Moller et
al. (1995) that the age of 2.0Ga represents a subduction zone, which led to the
formation of the Usagaran-Ubendian belts. The east-west structural trends of these
belts are truncated by the meridional trends of the EAO. It is this orogenic belt in which

the various gemstone deposits are located.

2.2. The East African Orogen and its Tectonic Evolution

The rocks representing the EAO in north-eastern Tanzania are mostly meta-igneous
and meta-sedimentary rocks which have witnessed multiple stages of deformation and
have been metamorphosed to granulite facies and subsequently retrogressed to
amphibolite facies (Maboko, 2000). The granulites in north-eastern Tanzania (Fig. 1b)
display pressures and temperatures which indicate that they once formed part of the
middle to lower crust. Examples are the Usambara and Uluguru granulites, which both
display temperatures and pressures of ~800°C and 9.5 - 11kbar and the meta-
anorthosites, which occur in the same area, for which pressures and temperatures of
950 - 1100°C and 13 — 17kbar are recorded (Muhongo et al., 1999). It is generally
accepted that these rocks underwent isobaric, slow cooling with three accelerated
periods of cooling during the early Cretaceous, late Cretaceous and late Eocene to
early Oligocene due to the episodic reactivation of high angle normal faults, inherited
from the Neo-Proterozoic Pan-African orogeny (Muhongo et al., 1999; Noble et al.,
1997; Maboko and Nakamura, 1995). In fact, the cooling rate was 2 - 3°C per million
years, which is extremely slow and is been used to infer a collisional regime in Neo-
Proterozoic times, because such slow cooling implies thermal relaxation of continental

crust thicker than average (Noble et al., 1997).

The EAO is an impressive belt in terms of size, being approximately 6000km long as
well as spanning a time of 350 million years in evolution (Fig.2) (Stern, 2002) rendering

it comparable to modern orogenic belts, such as the Andean orogeny.

It is thought that about 1.1Ga the supercontinent Rodinia had formed (Hoffman, 1989).
It is thus proposed that the history of the EAO started with a Rift-Rift-Rift (RRR) triple

junction around 870Ma ago with the subsequent opening of the Mozambique Ocean
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(Fig.3) (Stern, 1994 and 2002). The presence of abundant ophiolites and a significant
volume of juvenile crust, as well as other evidence, suggests that this ocean was large,
perhaps as large as the modern Pacific (Fig. 3) (Stern, 1994). The seafloor spreading
was reversed sometime during the Neo-Proterozoic, until it completely closed around a
pivot in what is now South Africa resulting in the collision between east and west
Gondwanaland around 700Ma, but which could have occurred as early as 750Ma ago
(Fig.3) (Stern, 1994). Collision occurred with the Tanzanian craton as the rigid indentor
and with the western flank of Gondwana being the area of crustal thickening and plastic
deformation (Bonavia and Chorowicz, 1992). Escape tectonics was used to infer the
direction of subduction as well as the duration of the collisional event. Escape took
place mainly to the north, beginning before 660Ma and ending after 610Ma, which
implies that the convergence of east and west Gondwana continued for 120 to 170Ma
after initial collision (Fig. 3) (Stern, 1994). The tectonic escape lead to rift basins
forming in north-east Africa and Arabia, which lead to continental separation and the
formation of a passive margin on the north flank of Gondwanaland at the end of the
Precambrian (Brookfield, 1993). The East African orogenic scenario is comparable to

the current collisional scenario between India and Asia (Stern, 1994) (Fig.4).

The presence of granulites in the EAO indicates the areas of greatest thickening and
subsequently where the inter-continental collision was most intense. Granulites are
found in southern Kenya, Tanzania, Malawi and Mozambique, marking these areas as
the focus of the collision. Granulites are absent north of Central Sudan and in southern
Ethiopia (Stern, 1994). There are differences of opinion among various researches
about the exact age of peak metamorphism in the granulites. The Usambara
granulites, for example, have been dated with ages ranging from ~605Ma to ~640Ma
(Maboko et al., 2002). These discrepancies are interpreted by Maboko (2000) as the
result of isotopic equilibration during cooling, thus rendering the calculated ages a
minimum for peak metamorphism. Peak metamorphism, however, is generally
accepted by most researchers to have occurred around 625 - 650Ma (Muhongo et al.,
2001; Maboko, 2000; Malisa and Muhongo, 1990).

After the EAO orogenic event, the basement rocks in eastern Tanzania underwent a
protracted history of denudation, uplift as well as post-Carboniferous extensional
tectonism. The rocks of the EAO also underwent slow, isobaric cooling with three

distinct rapid cooling events, which can be ascribed to the formation and reactivation of

6
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Fig.4 Comparison of continental collisions at the same scale (from Stern 1994). Both are oriented so
that the rigid indentor is moving towards the upper left corner: (A) East African Orogen,
ca 600Ma ago. Areas without ornamentation are juvenile or were remobilized during the
Neoproterozoic. (B) Modern India-Asia collision, shown as mirror-image so that the free face
and principal zone of tectonic escape are on the same side of the rigid
indentor as is the case for the EAO.
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high angle faults in response to intraplate stress (Noble et al., 1997). The East African
Rift Valley developed in a broad region of previously block faulted and mildly extended

crust during Neogene time.

2.3.Cenozoic Cover

The Cenozoic cover constitutes the upper Cenozoic volcanism associated with the
East African Rift and unconsolidated Quaternary sediments, which overlies the older

eastern Tanzanian rocks (Dawson, 1992, 1997).

The East African Rift is a linear structure following the meridional trend of the EAO
(Fig.5) (Dawson, 1997). RIifting in northern Tanzania started about 1.2Ma ago. The
Neogene volcanic rocks of the northern Tanzanian province comprise two ages of
volcanic activity. The first (pre-1.2Ma) age is defined by a major central group of
volcanoes of the alkali-basalt-phonolite association, with basalt being the dominant
lava type. The second (post-1.2Ma) volcanic group comprises mainly nephelinite-
phonolite-carbonatite volcanoes. Kibo peak on Mt Kilimanjaro (45km from the study
area), which belongs to the latter group of volcanoes, is regarded as active (Dawson,
1992).
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3. Local Geology

The rocks of the Merelani area in Tanzania consist of a poly-metamorphosed
metasedimentary sequence of upper amphibolite to granulite facies (Malisa et al.,
1990; Dauvies et al., 1994). The Merelani area itself, specifically the area surrounding
the active tanzanite mines, is situated on the northwestern limb of a large antiformal
structure in northeastern Tanzania defining the Lelatema Mountains and subsequently
termed the “Lelatema Anticline” (Malisa, 1987). The layers of the western limb of the
anticline itself display moderate dips of 30° to 60° to the west and a general strike of
040°, with the fold hinge dipping at ~16° to the north (Malisa, 1987; Scheepers and
Kisters, 2000).

The rocks of the Merelani area have been subdivided into two stratigraphic horizons,
the Upper and Lower horizons. It is the lithologies of the Lower Horizon which host the
tanzanite mineralisation and it is thus this horizon on which the current study is

focused.

The rocks in the Merelani area were subdivided into various lithological units by Malisa
(1987), but the nomenclature was deemed insufficient and was revised by Olivier
(2006). His subdivisions are presented in Table 1 together with the old names as
suggested by Malisa (1987). The entire Lower Horizon stratigraphic package is
sandwiched between two garnet gneiss units. A dolomite unit occurs in the centre of
the sedimentary package with two seemingly repetitive sub-packages occurring on
either side of it (Fig.6, Fig.9). It has been suggested that the Lower Horizon represents
a folded succession wrapped around the central dolomite (Rutahundurwa, Afgem

geologist, pers. comm.)

A detailed description of the mode of mineralisation is beyond the scope of this study.
A short description is, however, warranted for the sake of completion. The tanzanite
itself is situated within an altered zone in the Kyanite Gneiss LK2 and LK1 units of the
Lower Horizon sedimentary package. This altered zone is termed the Ali Jaluwatu
Zone, or JWZ for short. In essence it is a plagioclase-rich schistose unit. This unit is
host to intensely folded and boudinaged sub-units with the tanzanite mineralisation
occurring in stress minimum zones within the boudinaged package. This boudinaged

layer is subdivided into four categories:
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Table 1 Generalised stratigraphy and proposed new names for rocks in

the Merelani area

Mineralogical name (after Olivier, 2006)

Previous Name (after Malisa, 1987)

Dolomitic Marble

Dolostone

Garnet-sillimanite-biotite gneiss (GNG1)

Garnet-silimanite gneiss

Upper Horizon

Kyanite-graphite gneiss (K4

Kyanite gneiss unit 4 (K4)

Flaggy graphite gneiss (FL2)

)
Biotite-graphite gneiss (FL2)
Kyanite-graphite gneiss (K3)

Kyanite gneiss unit 3 (K3)

Biotite-graphite gneiss (FL1)

Flaggy graphite gneiss (FL1)

Kyanite-graphite gneiss (K2)

Kyanite gneiss unit 2 (K2)

(MAZ)

Hydrothermally altered graphite gneiss
(MAZ)

Kyanite-graphite gneiss (K1)

Kyanite gneiss unit 1 (K1)

(QF)

Quartzofeldspathic fels (QF)

Lower Horizon

Garnet-sillimanite-biotite gneiss (GNG2)

Garnet-sillimanite gneiss

Kyanite-graphite gneiss (LK4)

Lower kyanite-graphite gneiss (LK4)

Graphite-plagioclase gneiss (C-Zone)

C-Zone

Kyanite-graphite gneiss (LK3)

Lower kyanite-graphite gneiss (LK3)

Graphite-calc-silicate gneiss (GCS2)

Intensely altered (LA2)

Banded Calc-silicate fels (CF2)

Metapsammite (MPS2)

Dolomitic marble (DM2)

Dolostone

Banded Calc-silicate fels (CF1)

Metapsammite (MPS1)

Graphite-calc-silicate schist

Intensely altered (LA1)

Kyanite-graphite gneiss (LK2)

Lower kyanite-graphite gneiss (LK2)

Graphite-plagioclase gneiss (JWZ)

Jwz

Kyanite-graphite gneiss (LK1)

Lower kyanite-graphite gneiss (LK1)

Garnet-sillimanite-biotite gneiss (GNG3)

Garnet-sillimanite gneiss

Dolomitic marble (DM3)

Dolostone
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1. skarnoid reaction zones;

2. boudins
e pyroxene relics within boudins;
e calc-silicate skarn boudins and;

3. low-pressure pockets within skarn boudins

A more detailed description of the boudinaged layer is presented later on in this
chapter. However, they all form part of the same altered layer, the JWZ. The kyanite
gneiss units LK4 and LK3 above the central dolomite also contains an altered zone,

termed the C-Zone

Fig.6 is a simplified version of the modified map of Rutahundurwa (1995). The
mineralogy and petrography of the different lithological units of the Lower Horizon, the
tanzanite-hosting horizon, will be discussed briefly, mainly based on the geological

mapping and research by Olivier (2006).

3.1.Dolomitic Marble

The Merelani lithologies are marked by dolomitic marble ridges, which flank the
tanzanite deposit on the northeastern and southwestern sides. The schists and
gneisses are present in a northeast-southwest trending depression. The dolomitic
rocks are white in colour when pure and display shades of grey at places due to

impurities of accessory minerals such as graphite, biotite and pyrite.

The dolomitic marble consists mainly of dolomite (up to 80%) and calcite (15 - 25wt%).
Other mineral constituents are quartz (~5wt%), plagioclase, titanite (sphene), chlorite,

pyrite, pyrrhotite, kyanite and graphite.

3.2. Garnet Sillimanite-Biotite Gneiss

The garnet-sillimanite-biotite-gneiss forms the central unit between the Upper and
Lower horizons. It is a medium to coarse-grained rock which displays a spotted
appearance due to large, purple almandine crystals. The primary minerals are quartz,

almandine, sillimanite, biotite, potash feldspar and plagioclase. The accessory
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minerals are pyrite, rutile, titanite, kyanite, graphite, muscovite, zircon, hematite,

iimenite and apatite, with pyrite and rutile being the most abundant.

3.3.Kyanite-Graphite-Gneiss

The kyanite-graphite gneiss has been subdivided into 5 units by Olivier (2006): Unit 1,
the footwall kyanite-graphite gneiss (LK1), unit 2, the hangingwall kyanite-graphite
gneiss (LK2) and units LK3 and LK4 above the central dolomite and units LK5 and LK6
in the Upper Horizon (Table 1).

The boudinaged tanzanite-bearing graphite-plagioclase gneiss (JWZ) is sandwiched
between LK1 and LK2 units of the kyanite-graphite gneiss. Both the hangingwall and
footwall units are locally associated with pegmatites and a characteristic hangingwall

pegmatite layer is formed within unit LK2.

Units LK3 and LK4 of the kyanite-graphite gneiss are sometimes separated by a
graphite-plagioclase gneiss, termed the C-Zone. Where the C-Zone is absent the units

occur on top of each other and are then considered as one unit.

Units LK5 and LK6 occur above the central garnet-sillimanite-biotite gneiss and thus

occur within the Upper Horizon.

The kyanite-graphite gneiss is medium grained and consists of quartz, feldspar,
kyanite, graphite and variable amounts of sillimanite, mica and pyrite with pyrrhotite,
sphalerite, zircon, apatite and rutile occurring as accessories. Pyrite and pyrrhotite are
the main sulphide mineral phases. The feldspar occurs as separate aggregates

forming feldspar-rich layers.

3.4.Graphite-Plagioclase Gneiss

The graphite-plagioclase gneiss occurs as three units: the JWZ, C-Zone and D-Zone.
The JWZ and C-Zone occur in the Lower Horizon, while the D-Zone occurs in the
Kyanite Gneiss lithological unit in the Upper Horizon (between units LK5 and LKG6).
The C-Zone is sandwiched between the Kyanite Gneiss LK4 and LK3 units, while the
JWZ occurs between units LK2 (hangingwall) and LK1 (footwall).

10
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The JWZ is the most important of the graphite-plagioclase units, because it is this layer
which is host to the intensely boudinaged calc-silicate layers, which host the tanzanite

mineralization.

All three units consist of quartz, feldspar and graphite with mica, pyrite and titanite as
the accessory mineral phases. The layers, as previously mentioned, are similar to the

kyanite-graphite gneiss, but with the following most important differences:

1. Absence of aluminum silicates

2. Higher plagioclase content

3. Larger amount of alteration and oxidation (inferred from a lower rock
competence and a greater concentration oxidised sulfides)

4. Higher mica content

5. Generally smaller grain size

These horizons consist mostly of quartz and plagioclase, with small amounts of
diopside, tremolite, chlorite, calcite, serpentine and clay minerals which are present in

localised areas of calc-silicate units.

3.5.Calc-Silicates

The calc-silicate layers are intensely boudinaged and contained within the graphite-
plagioclase gneiss (JWZ) unit. This horizon hosts the tanzanite mineralization and

makes it the most unique layer in the world in terms of gemstone mineralization.

Where calc-silicate layers have been observed within the C-Zone, they have been
developed on a small scale and it is unknown to what extent they are present over a

regional scale.

The calc-silicate layers are divided into four lithological types:

a) Skarnoid reaction zones
b) Boudins
e pyroxene relicts

e calc-silicate skarn boudins

11
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c) Low-pressure pockets within skarn boudins
a) Skarnoid reaction zones
These layers are isoclinally folded and wrap around and connect the calc-silicate
boudins (Fig.7 and Fig.8). They are in contact with the neighboring gneisses and
represent a metasomatic reaction zone between the calc-silicates and the gneisses.
The layers are highly banded, foliated and medium grained. They are of a greyish
colour. The foliation is defined by the preferred crystallographic orientation of graphite
and elongated quartz and zoisite grains.
The layers consist of quartz, a mixture of clay minerals from the smectite group,
pyrophyllite, zoisite, graphite, pyrite, grossular and diopside with titanite and muscovite
as accessories.
b) Boudins
e Pyroxene relics
The boudins occur within the grey bands. They are situated on the fold
limbs and are a few centimetres up to about 1m in length. They are dark

green in colour and do not display any banding or foliation.

Diopside is the main rock-forming mineral within the relict units, with

grossular garnet, quartz, pyrite and graphite occurring in minor amounts.

e Calc-silicate skarn boudins

These altered boudins were formed by the hydrothermal alteration of the

pyroxene relict precursor.

The skarn boudins consist of diopside, quartz, graphite, pyrite, haematite,

zoisite (occasionally tanzanite), grossular garnet (occasionally its gem

12
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variant tsavorite) as well as secondary alteration minerals such as

goethite, halloysite and illite.

c) Pockets of low pressure

The hydrothermal boudins contain pockets of coarse-grained quartz, grossular, zoisite
(predominantly tanzanite), pyrite, calcite, graphite and diopside. The pockets are
situated in various types of low-pressure sites within and adjacent to the boudins, such
as at boudin necks (Fig.8). These pockets are the main source of gem-quality
tanzanite and tsavorite. Other minerals which also occur within these pockets are
pyrite, occurring as large euhedral crystals up to about 15cm with smooth crystal faces,
calcite, also as well-formed crystals and crystal aggregates, graphite, occurring as
flakes and halloysite, which occurs as irregular clots and as fracture fillings in zoisite

(and tanzanite).

3.6. Graphite-Calc-Silicate Schist

The graphite-calc-silicate schist has the following mineral constituents: Quartz,
graphite, grossular garnet, diopside, scapolite and plagioclase with pyrite, hematite,
titanite, serpentine and various clay minerals being the accessory minerals, with titanite

as the most abundant accessory.

The schistocity is defined by sub-paralleled graphite flakes. The rock has a greyish to
silver colour due to the graphite and also displays a green spotted appearance, due to
disseminated grossular crystals. The rock contains millimetre scale zones which are
richer in calc-silicate minerals. These zones consist mainly of the mineral diopside,

with variable amounts of quartz, graphite and feldspar.

3.7.Banded Calc-Silicate Fels

The banded calc-silicate fels has been divided into two units, CF1 and CF2, both
surrounding the central dolomitic marble in the Lower Horizon. Both units are medium-
to coarse-grained and are light grey in colour. The fels consists of millimetre scale
banding of alternating silicate and calc-silicate layers. The banding is also defined by
sulphides, which are especially abundant in the transition zones between silicate and
calc-silicate zones.

13
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The silicate zone consists of microcline and quartz with minor amounts of plagioclase,

muscovite, pyrrhotite, pyrite and accessory minerals, graphite, diopside and titanite.

The calc-silicate zone consists of diopside, calcite and scapolite with lesser amounts of
quartz, plagioclase and microcline with pyrrhotite, pyrite, muscovite, graphite and

titanite as the accessory minerals.

3.8. Superficial Deposits

Quaternary unconsolidated sediments cover most of the Merelani tanzanite deposit.
The south-western part of the deposit is mostly covered by thin calcareous soil,
laterites and gravel, while the north-eastern part of the deposit is covered by a hard

calcrete layer, increasing in thickness towards the north-east (Olivier, 20006).

3.9. Structural Geology

A detailed description of the structural geology is beyond the scope of this study and
only a short summary is presented here. The following is mostly based on a report on
the geology of the Merelani Tanzanite deposit by Scheepers and Kisters (2000), as
well as from Olivier (2006).

The Merelani tanzanite mine is situated on the north-western limb of the shallow
northerly plunging large-scale open Lelatema fold. The gneisstocity shows dips of
between 30° and 60° to the north-west, with a strike of 040°. On outcrop scale,

however, the gneissic foliation shows a much greater complexity.

The calc-silicate layers within the JWZ have been boudinaged and isoclinally folded.

Two types of boudins can be distinguished:

a) Single-layer boudins (Pyroxene boudins), in which a layer has undergone
boudinaging, which are flanked on either side by the kyanite-graphite
gneiss. The boudins mainly display lenticular geometries that gradually
taper off towards their terminations.

b) Mantled boudins (Hydrothermal boudins), which have been discussed
previously (p10).

14
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The tanzanite mineralization occurs in stress minimum zones such as quartz veins and
pockets. These pockets occur in specific structural sites within and adjacent to

boudins. Four main types of tanzanite-bearing structures can be distinguished:

a) Type 1: lIrregularly shaped to roundish pockets in central parts of
boudins (Fig.7)

b) Type 2: Wedge-shaped masses at the lateral terminations of boudins
corresponding to strain-shadow positions of boudin necks (Fig.8 a-c)

c) Type 3: Veins that transect boudins along shear fractures (Fig.8 a, c, d)

d) Type 4: Tension fractures in the central parts or close to the lateral

terminations of boudins (Fig.8d)

3.10. Trench Geology and Pedology

Fig.9 is a map of a trench that was excavated perpendicularly to strike over the JWZ
(Fig.6) and adjacent lithologies. The purpose thereof is to test whether geochemical
anomalies and trends can be identified for the tanzanite deposit, of its host rocks or for
rocks associated with the deposits by two different geochemical exploration methods.
The strike of the trench is roughly NW-SE.

The trench is 128.10m long and is divided into eight soil zones, distinguished mainly on
the basis of colour. The changes of soil colour around the tanzanite deposit could be
locally significant in tanzanite exploration. The Merelani soil in general can be
described as something between an aridisol and a molilisol, based on the definitions
given by Foth (1984). An aridisol would be a typical desert soil covered by desert
shrubs which later give way to grasses as the moisture increases. Mollisols generally
border desert regions and support grasses which produce abundant organic matter.
They generally display a high soil fertility with fair to adequate rainfall. Each soil zone
overlays one or more of the Lower Horizon lithologies (Table 2; Fig.9). These zones

are labeled Zone 1 to Zone 8.

Foth (1984) gives the following definitions for A-, B- and C-Horizons:
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Table.2 Table of lithologies represented by soil type

Soil Type Represented Lithologies

e Central Garnet-Biotite Gneiss (Dip:
Type 1

55°NW)

e Kyanite-Graphite Gneiss (Dip: 50°NW to
Type 2 40°NW)

e (C-Zone (Dip: 40°NW)

e Graphite-Calc-Silicate Fels (Dip: 40°NW)
Type 3

e (Calc-Silicate Schist (Dip: 40°NW)
Type 4 e Calc-Silicate Schist (Dip: 40NW)°
Type 5 e Dolomitic Marble (Dip: 50°NW)

e Calc-Silicate Schist (Dip: 52°NW)
Type 6

e Graphite-Calc-Silicate Fels (Dip: 50°NW)

¢ Kyanite-Graphite Gneiss (Dip: 55°NW)
Type 7

e JWZ-Zone (Dip 50°NW to 40°NW)
Type 8 e Garnet-Biotite Gneiss (Dip: 41°NW)
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A: This horizon is the first to form. It contains a high proportion of finely
divided organic matter and is consequently dark in colour.

B: llluvial or residual concentration of silicate clays, sesquioxides,
humus, etc., and/or development of structure if volume changes
accompany changes in moisture content.

C: This layer may be considered to be similar to the original appearance

of the solum where there are obviously no geological nonconformities.

Bridges (1997) corroborates these definitions with the following:

A: A mineral horizon formed at or near the surface, characterised by the
incorporation of humified organic matter intimately associated with
mineral materials.

B: A subsurface mineral horizon resulting from the change in situ of soil
material or the washing in of material from overlying horizons.

C: An unconsolidated or weakly consolidated mineral horizon which
retains evidence of rock structure and lacks the properties diagnostic

of the overlaying A or B horizons.

Based on these definitions as well as comments by Hall (1998), the Merelani trench
soils are divided into an A-Horizon and a C-Horizon. Only one soil zone, Zone 8,
displays a B-Horizon between its A- and C-Horizons. It seems to consist of mostly
transported material (Fig.10 and Fig.17), inferred from rounded grains which are
slightly larger than those of the typical A-Horizons of the other soil zones in the trench.
In general the soils in the trench are sand-rich. They grade from bedrock to what can
best be described as a dry saprolith, due to the fact that the original lithologic textures
and banding are preserved, but the material is unconsolidated, in the lower C-Horizon
to a mixture of soil grains and lithic fragments in the upper C-Horizon and finally to an

A-Horizon containing only soil grains.

Zone 1: This soil zone has a width in the trench of 52.9m (as measured from
the top of the trench, i.e. as measured from the top of the hill towards
the road at the bottom) (Fig.10). The colour of Zone 1 ranges from
darkish red to red. A 9.5m wide “Transition Zone” (Zone 1 T2Z),

occurring adjacent to Zone 1, was distinguished on the basis of a
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slightly browner tinge to the red colour and can be termed reddish
brown (Fig.11). The A-Horizon has a thickness of 10cm while that of

the C-Horizon is 30cm.

This is a greyish dark brown to light brown soil zone with red and
orange patches and is 7.9m in width (measured along the strike of the
trench from the end of Zone 1 and the beginning of Zone 3) (Fig.12).
Here the A-Horizon reaches a thickness of 6cm, before tapering out
towards the contact with Zone 3. The C-Horizon has an average

thickness of 1.8m.

This soil zone is 6.4m in width and ranges in colour from a dark brown
upper horizon (A-Horizon) to a dark, bluish grey lower horizon (C-
Horizon) (Fig.13). The C-Horizon is mottled with patches of grey and
dark purple. The A-Horizon is 15cm thick and the C-Horizon 1.6m.

The colour of this soil zone ranges from a dark brown A-Horizon to a
lighter brown to light brown C-Horizon. The soil zone is distinctly
lighter in colour than Zone 3 and is 5m in width (Fig.14). The A-
Horizon has a thickness of 25cm and the C-Horizon a thickness of
1.45m.

This 8.2m wide soil zone is slightly lighter in colour than Zone 4 with
its A-Horizon still darker brown than the C-Horizon. This zone is
poorly developed over the dolomitic marble and the start of the
formation of a calcrete layer can be discerned. An A-Horizon is
completely absent from this soil zone. The C-Horizon has an average

thickness of 1.2m.

This soil zone is 2.7m in width and has much the same colour scheme
as Zone 5, although the C-Horizon is distinctly different due to the
difference in terms of colour and the original rock textures and
banding which have been preserved. The C-Horizon of this soil zone
is light brown to light orange with a dark brown A-Horizon (Fig.15).
The A-Horizon is 30cm and the C-Horizon 1.52m thick.
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A-Horizon

C-Horizon

Fig.11 Type 1 Soil. Notice pen for scale (150mm).
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Fig.12 Soil Type 2.
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Fig.13 Type 3 Sail.
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A-Horizon
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Fig.15 Soil Type 6.
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Zone 7- The colour of the A-Horizon of this soil zone is almost identical to that
of Zone 6. The colour of the C-Horizon, however, is distinctly
different, being dark bluish grey to brownish grey (Fig.16). This soll
zone is 19.9m in width. The A-Horizon has a thickness of 25cm and
the C-Horizon of 60cm. Two additional samples of the C-Horizon
were taken from the zone just above the JWZ zone. The soil zone

which the additional samples represents is termed Zone-JWZ.

Zone 8. This soil zone starts with a dark brown A-Horizon, followed by a lighter
brown B-Horizon and a light brown C-Horizon. The zone is 15.6m in
width and it can be seen from Fig.9 that it reaches quite a great depth
(>3m) relative to the other soil zones. The B-horizon consists of
coarser material and it is thought, due to the slope downwards from
the top of the road towards the south and from the top of the hill where
the trench is situated towards the east, that this coarser material
represents transported material rather than it being formed situ
(Fig.17). The A-Horizon has a thickness of 20cm, the B-Horizon of

57cm and a C-Horizon of 2.43m.

The Merelani soil in general, as observed in the trench, is an immature soil. It is
situated on a hill which has a slope dipping between ~5° towards the east at the foot of
the hill and ~15° in the same direction at its steepest nearer the top. The soil zones
developed over the various Lower Horizon lithologies range in total thickness from
30cm at the top of the hill to 3.2m at the foot.

18



http://scholar.sun.ac.za/

A-Horizon

]

»
r“

C-Horizon

>l

Fig.16 Soil Type 7.

y
Trench Floor
y



http://scholar.sun.ac.za/

=;

A-Horizon

L}A

B-Horizon

L}A

C-Horizon

r“

Trench Floor

Fig.17 Soil Type 8.



http://scholar.sun.ac.za/

4. Sampling and Analytical Techniques

In order to identify whether such a unique geochemical signature exists and can be
identified, various types of sample media (soil, stream sediments and calcrete) were
collected and analysed. The various sample media were subjected to different
analytical techniques in order to identify whether a geochemical signature exists and
with what specific exploration method, if any, it can be identified. XRF whole-rock
analysis was done to ascertain total chemical content of various soil and stream
sediment size fractions and ICP-AE analyses were performed on the leachate of a
partial extraction technique. The samples were all analysed for their trace element
content, as it are these elements which act as the chromophoric elements in

gemstones.

4.1Soil Samples

Soil samples were collected from a trench dug perpendicular to strike over the
tanzanite mineralised as well as the barren lithologies of the Lower Horizon lithologic
package (Chapter 2; Fig.9). Two to three samples of each soil horizon were collected,
depending on the width of the soil profile in the trench. The purpose of the current
study is to test whether geochemical exploration techniques can be used to indicate
either tanzanite mineralisation or the lithologies in which the mineralisation occurs or
any lithologies closely related to the tanzanite deposits. A single trench was dug for
this purpose. Therefore the results of the study will have to be tested by the mining

company in a comprehensive orientation study.

The Merelani trench soil zones were studied with a specific focus on soil trace-element
geochemistry in order to discern which soil horizon produces optimum results in terms
of anomaly-background contrast. Orientation studies are designed to glean such
information from the geochemical data and apply it in an exploration program. With the
eye on such future studies, if such information already available, the cost of a
comprehensive orientation study will be significantly reduced. Elements concentrate in
different soil environments to different degrees and it is therefore important to sample
the correct soil horizon. The focus should therefore be to find the maximum anomaly-
background contrast of a specific indicator element and not necessarily its maximum

concentration. It is also imperative that a constant soil horizon is sampled as opposed

19



http://scholar.sun.ac.za/

to a constant sampling depth due to the undulating nature of soil horizon contacts.

These aspects were kept in mind in the collection of the soil samples for this study.

The Merelani soil surrounding the tanzanite deposit and which is represented in the
trench was subdivided into eight soil zones, based mainly on the different C-horizons,
which represent the underlying parent lithologies in the trench in terms of observed
layering, lithological structure and colour quite well (Fig.11 — Fig.17). The only soll

zone to contain a B-horizon is Zone 8 (Fig.17).

Samples were numbered according to the soil horizon and zone from which they were
collected and the sequence in which they were collected. An example is the first
sample, 01-A-001, which indicates that the sample was collected from soil zone 1, from
the A-Horizon and that it is the first sample which was collected. The ca. 5kg samples

were placed in plastic bags and stored in a dry freight container at the mine offices.

The 63 samples were oven dried at 50°C and subsequently sieved into three fractions:
coarse (300-180um), medium (180-90um) and fine (<90um). The coarse and medium
fractions were milled in a tungsten mill for the XRF sample preparation. Powder
briquettes were made of all three fractions for XRF trace element analysis. The XRF
analyses were done on a Philips 1404 Wavelength Dispersive X-ray spectrometer at
the University of Stellenbosch, South Africa. The spectrometer is fitted with a Rh tube,
six analyzing crystals, namely LIF200, LIF220, LIF420, PE, TLAP and PX1. The
detectors are a gas-flow proportional counter, a scintillation detector or a combination
of the two. The gas-flow proportional counter uses P10 gas, which is a mixture of
argon (90%) and methane (10%). The standards that were used for calibration

purposes are shown in Table 3.

A 5g sample was weighed for the fine and medium fractions and leached with 50ml 1M
HCI overnight (12 hours) and the mixture filtered the next morning according to the
method suggested by Fletcher et al. (1987). The residue was discarded and the filtrate
analysed by ICP-AE. The specific purpose for employing this method was to determine
the concentration of the readily extractable (i.e. leachable) metals (cxMe) in order to
resolve the question whether the elements of interest are present in the soil in
leacheable form, or whether they are concentrated in mineral grains. The procedure

replicates the mobilisation of trace elements by natural soil solutions in a much shorter
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Table.3 Standards used in XRF analyses

Sample Name Description

AGV-1 Andesite from USGS
BHVO-1 Basalt from USGS

JG-1 Granodiorite from GSJ
JB-1 Granodiorite from GSJ
GSP-1 Granodiorite from USGS
SY-2 Syenite from CCRMP
SY-3 Syenite from CCRMP
STM-1 Syenite from USGS
NIM-G Granite from MINTEK
NIM-S Syenite from MINTEK
NIM-N Norite from MINTEK
NIM-P Pyroxeneite from MINTEK
NIM-D Dunite from MINTEK
BCR Basalt from USGS

GA Granite from CRPG

GH Granite from CRPG
DRN Diorite from ANRT

BR Basalt from CRPG

Abbreviations used:

ANRT: Association Nationale de la Recherche Technique, Paris
CCRMP: Canadian certified Reference Materials Project

CRPG: Centre de Recherches Petrographiques et Geochimiques
MINTEK: Council for Mineral Technology, South Africa

GSJ: Geological Survey of Japan

NIM: National Institute of Metallurgy, South Africa

USGS: United States Geological Survey, Reston
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timeframe. The ICP-AE analyses were done on a Varian Liberty Il radial ICP with a
40MHz air cooled RF generator at the University of Stellenbosch. The samples were
injected via an inert V-groove nebulizer into an inert Sturman masters double pass
cyclonic action spray chamber. The torch is a standard single piece quartz torch. The
conditions of operation are as follows: The nebulizer pressure was 185kPa, with the
plasma power at 1.1kW. The argon flow rate was 15.0l.min” for the plasma and
1.5l.min"" for the auxiliary. The pump rate was 15rpm, the integration time 3s and 4
replicates were done. The detection limits for the analysed elements are shown in
Table 4.

Table 4 Detection limits of Elements analysed by ICP-AE

Element Wavelength LOD (mg.I™)
Vv 311.071 0.03

Cr 267.716 0.005

Ni 231.604 0.03

Cu 324.754 <0.006

U 367.007 0.3

Fe 259.940 <0.002

Mn 260.569 <0.002

Mg 279.553 <0.002

4.2 Stream Sediments

Stream sediments were collected from an exploration concession. The concession
was chosen on the basis of the presence of a few gemstone mines in the area, the
presence of large streams and a variation in geology. No lithologic data exists for any
lithologies outside the mining properties. Therefore the proximity of anomalous stream
sediment samples to existing operating and abandoned tsavorite mines were used to
evaluate the presence anomalous stream sediment samples. Tsavorite and tanzanite
are paragenetic in the tanzanite deposits. The assumption is that the tsavorite deposit
geology will be very similar to that of the tanzanite deposits (containing at least
metasomatically altered layers which may be boudinaged and folded). This
assumption is thought to be valid on the basis of the tsavorite deposits being found in
the same regional structure, the Lelatema anticlinal structure and will be substantiated
if the anomalies are similar to anomalies found in the soil samples collected from the

trench.
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One 2kg sample was taken every ca. 200m as suggested by Rose (Rose et al., 1979)
with the distance measurements made via GPS (Fig.18). First and second order
streams were sampled. The 46 samples were placed into plastic bags and stored at
base camp till the stream sediment sampling program was completed. The samples
were dried at 50°C and sieved into three fractions: coarse (600-180um), medium
(180-90um) and fine (<90um). The medium and fine fractions were analysed via XRF
for their trace element content (Fig.19). The coarse fraction was to be submitted for
heavy mineral separation, but due to severe time constraints this was never

completed.

4.3 Calcrete Samples

According to Anand et al. (1997) calcretes can concentrate elements during their
formation. This application is often used in gold exploration (Anand et al; 1997). In
order to determine whether the Merelani calcretes concentrate elements, four samples
were collected from the natural wall of an old mine shaft, which was sunk by local
miners. This shaft is situated directly above the tanzanite-mineralised JW-zone. The
benefit of being able to use the calcretes in an exploration program lies in the fact that
the Merelani calcretes are widespread and could be easily and therefore cheaply

sampled.
The calcrete samples were analysed via XRF for their trace element content.
4.4Precision
Samples were randomly selected from the soil and stream sediment samples and
duplicated. Each of these duplicates was analysed 5 times and the precision
calculated according to the formula (Fletcher et al., 1987):

P:(%) = 200.Sc/c
where P, is the analytical precision for concentration ¢ as the percent relative variation

at the 95% (two standard deviations) confidence level and S; an estimate of the

standard deviation at concentration c.
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Fig.18 Satellite image of Stream Sediment Sampling Sites (coordinates in UTM/UPS and the Cape Datum was used).
This image is an enlargement of Block A in Fig.1
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Fig.19 Flow chart of sample preparation and analytical methods employed
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The results are given in Table 5.

Any precision below 15% is deemed acceptable (Fletcher et al., 1987) Although many
of the trace elements show individual values above 15%, most of the data falls within
the 15% acceptable limit. The exceptions are Ga, La, Pb, Th and U, which all show
constant precision values above 15%. The reason for this is that these elements occur
in concentrations close or below the XRF detection limits. On this basis these
elements were not used in this study in the evaluation of techniques for geochemical
exploration of tanzanite. They are shown in this thesis on the various diagrams, but
this is only to observe trends in heavier elements. They were not considered in the

final conclusions drawn from the overburden data.
Table 6 shows the XRF detection limits. Any data within 2ppm of any of the detection

limits was not used in this study. Very few of the data points of the elements of interest

are below the detection limits.
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Table 6a XRF major element detection limits

Major element Detection limit (Oxide wt%)
Al,O3 0.20
CaO 0.01
Cr203 0.01
F6203 0.06
K20 0.05
MgO 0.04
MnO 0.01
Na,O 0.03
P20s 0.01
SiO, 0.50
TiO, 0.02

Table 6b XRF trace element detection limits

Trace element

Detection limit (ppm)

Vv

Cr

Co

Ni

Cu

Zn

Ga

Rb

Sr

Y

Zr

Nb

Ba

La

Ce

Nd

Pb

Th

(V)

o= N[OOI |hOROIW|O||O|— 0000
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5. Analysis of Soil XRF and ICP and Published XRF Data

5.1.Introduction

In this chapter, the data from the XRF and ICP trace element analyses of soil samples
taken from the trench over Lower Horizon Merelani lithologies are evaluated and
discussed. The soil samples are evaluated relative to the XRF analyses of samples of
the lithological units from the Lower Horizon taken by Olivier (2006). The Lower
Horizon lithological data from Olivier is derived from borehole core samples. The

borehole positions are shown in Fig.6.

The chapter consists of two main sections:
1. geochemical soil characterisation and graphical data description and;
2. the study of correlation coefficients to discern probable mineralogic hosts

for the various trace elements.

The first section of this chapter starts off with a lithologic characterisation. The
lithologies were normalised to the Bulk Continental Crust (BCC) values of Taylor and
McLennan (1995). The Merelani lithologies are comprised of various gneisses and
schists and are interpreted as being of crustal origin (Maboko, 1995; Maboko 2000,
Maboko and Nakamura, 1995; Maboko and Nakamura 2002). However, no genetic
interpretations are made from the BCC normalised data, which serves only as a mutual

reference between the Merelani lithologies and their derived soils.

5.2. Additional Samples

In order to establish whether an external reference frame exists relative to which the
trench geochemical data can be compared, additional surface soil samples were
collected from A-horizon of the soil adjacent to the Merelani trench. Significant soil
disturbance occurs in the area due to the presence of abandoned small scale mines.

For this reason not all the soil zones could be sampled (Fig.20).

Data from the coarse, medium and fine fractions of each additional sample

representing the different soil zones were compared to the data from the trench. The
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additional samples were collected 15 — 20m from the trench. The horizontal extent of
each soil zone was determined by extrapolation of the width of the soil in the trench
20m to each side. Each additional sample could then be correlated with the correct soil
zone in the trench. The additional samples were analysed by XRF and were compared
to trench XRF data.

Statistical data limits were calculated by using the average and standard error values of
each element for the various soil size fractions. The upper and lower limit are
represented by the sum and difference of the average value for each element from
each soil size fraction and the standard error respectively. Twice the standard
deviation was used in calculating the standard error, thereby providing a 95%
probability that a data point will fall within the statistical limits. The results are

contained within Table 7.

Table 7 shows that data from Zone 1, Zone 1 TZ and Zone 2 for the fine and medium
fraction correlate well with only a few data points occurring outside the data ranges for
the fine and medium fractions. Zones 3 and 4 consistently show values which occur
outside the data ranges. The coarse fraction data contains many data points which
occur outside the data ranges. Only the data from Zone 8 shows good correlation
between the additional sample and the trench samples. The coarser the fraction, the
more data points in total occur outside the data ranges. This is taken as a first
indication that at least the A-horizons of the different soil zones in the area surrounding
the trench are disturbed and only show a slight correlation with relatively undisturbed
soil from the trench. It is also indicative that if any geochemical anomalies are
identified, they would have to occur within the C-horizon, as it is most probably the

least disturbed horizon.

5.3.Merelani Lithology and Trench Soil Characterisation and Data Description

The XRF results of the soil samples from the trench as well as the Merelani Lower
Horizon lithogeochemical data were normalised to Bulk Continental Crust (BCC) values
(Taylor and McLennan, 1995), rendering them comparable. This method was used on
a study of the lower Amazon river by Vital and Stattegger (2000). The results were
subsequently plotted as spider diagrams (Fig.21 and Fig.23). To avoid clutter on the

graphs, the average values were plotted together with the sum and difference of the
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Table 7a Comparison of the fine fraction trace element concentration between additional samples collected
adjacent to the trench and trech samples

V |Cr | Ni | Cu|/Zn | Ga|Rb| Sr| Y Zr | Nb | Ba | La | Ce | Nd | Pb | Th U

Average 477 | 901 91 43| 208 26 90 | 267 46 | 928 41| 700 60 | 126 57 3 11 3

Zone1 | Std Error 29 22 23 55 38 Ohito://s@holar A lac.zafl | 151 2 65 6 26 11 0 2 0
01-A-050 469 | 894 85 1| 217 24 | 100 | 257 48 | 744 40 | 714 64 | 130 63 3 12 6

Average 595 | 833 | 213 69 | 355 25 83| 282 51| 787 40 | 740 59 | 119 58 3 11 6

Zone 1 TZ | Std Error 109 44| 128 16| 163 2 4 22 8| 121 6 40 10 25 15 0 2 3
01-A-052 519 | 962 | 107 75| 206 26 86 | 265 41 | 1016 44 | 740 58 | 129 61 3 13 7

Average 740 | 802 | 197 86 | 327 25 72 | 299 49 | 646 41| 886 66 | 128 62 3 9 5

Zone2 | StdError | 397 50| 116 68 | 122 1 16 19 10 89 1| 334 13 23 11 0 7 5
02-A-054 828 | 882 | 173 73| 264 29 72 | 328 55 | 783 44 | 1076 71| 144 76 3 14 6

Average | 1660 | 706 | 639 6| 1160 14 40 | 416 58 | 427 27 | 1113 39 83 54 2 10 9

Zone 3 | Std Error 20 61 22 0| 300 3 2 68 16 93 3 77 1 7 2 0 1 2
03-B-056 858 | 868 | 164 29 | 253 28 71| 332 58 | 807 45 | 1124 77| 170 73 3 14 8

Average | 1039 | 708 | 372 51| 587 22 63 | 349 60 | 560 41| 1124 63| 117 63 5 12 8

Zone 4 | Std Error 153 67 | 108 48 | 152 6 4 38 8| 127 6 11 12 24 11 3 5 4
04-B-058 764 | 934 | 254 60 | 339 26 77| 296 61| 1129 47 | 876 76 | 179 93 3 18 9

Average 737 | 742| 223 40 | 368 25 65| 290 49 | 670 47 | 1002 63| 122 57 2 14 8

Zone 8 | Std Error 153 46 67 38| 113 1 5 14 6 61 6 46 5 10 7 0 0 2
08-A-060 642 | 776 | 191 33| 317 24 67 | 266 45| 606 48 | 970 64 | 124 60 9 13 5

Table 7b Comparison of the medium fraction trace element concentration between additional samples collected
adjacent to the trench and trech samples

\'/ Cr |[Ni |[Cu |[Zn |[Ga [Rb [Sr |Y Zr ([Nb [Ba |La |Ce |Nd |Pb |[Th |U
Average 299 | 201 | 61 60| 133 30| 75| 221 37| 343| 40| 526| 147 | 300| 125 11| 41 10
Zone1 | Std Error 19| 12 2 7| 16 1 9| 12 41 99 2| 60| 20| 51| 25 2 10 7
01-A050 | 283 | 209| 64| 60| 132| 29| 79| 217| 32| 250| 39| 501 97| 202| 82 8| 31 9
Average 405 200 | 141 63| 259 29| 76| 241 39| 362| 39| 672| 107 | 227| 86| 12| 29| 12
Zone1TZ | StdError | 119| 10| 95 8| 147 6| 10| 24 8| 77 2| 164| 27| 47| 20 4 7 3
01-A-052 320| 288| 54| 62| 133| 35| 71| 219| 32| 354| 39| 602| 135| 2838| 112 12| 30| 11
Average 538 | 192 | 130| 57| 235| 28| 71| 261| 40| 272| 39| 942 94| 221 78| 11| 29| 11
Zone2 |StdError | 387 1] 89 9| 138 6 1] 54| 14| 71 5/ 650| 32| 61 13 2 0 2
02-A-054 | 540| 192 | 101 | 58| 157| 27| 65| 277| 39| 315| 38|1212| 82| 233 80| 10| 25[ 11
Average | 1248 | 190 | 428 | 52| 930| 17| 46| 346| 46| 222| 26| 1138| 62| 155 56| 12| 26| 15
Zone 3 | Std Error 83| 23| 27 2| 227 1 6| 48 9| 70 3| 135 2 12 9 4 1 4
03-A-056 552 | 202| 94| 59| 162| 30| 64| 275| 40| 289 37| 1274| 112| 231 79 11| 25 9
Average 644 | 168 | 201 53| 349 23| 68| 266| 44| 195| 36| 1154| 74| 178| 57| 15| 24| 12
Zone4 |StdError | 168| 11| 74 6| 130 1 8| 39 9| 22 6| 167| 26| 48| 25 7 8 2
04-A-058 | 435| 202 | 125| 58| 191| 28| 60| 224| 42| 254| 42| 814| 146 302| 123 4| 42| 12
Average 387| 163| 105| 55| 192| 23| 61| 216| 33| 249| 38| 1059| 67| 172| 58| 11| 24 9
Zone 8 | Std Error 13| 18 2 2 6 5 5 9 3| 64 2| 37| 13 1 2 4 5 4
08-A-060 465| 184| 136| 62| 241| 24| 70| 247| 35| 321| 46| 1112 88| 196| 58 5| 21 9
Table 7c Comparison of the coarse fraction trace element concentration between additional samples collected
adjacent to the trench and trech samples
\'4 Cr [Ni [Cu (Zn |Ga |Rb |[Sr |[Y [Zr [Nb |Ba |La |[Ce [Nd (Pb |Th |U
Average 268 | 242| 24| 10| 146| 35| 59| 200| 43| 285| 29 2| 135 291 | 17| 14| 52 5
Zone1 | Std Error 6 10 2 1] 22 4 71 10 3| 21 1 3| 23| 35| 20 1 8 5
01-A-050 | 273 | 190| 44| 19| 335| 26| 94| 240| 31| 174| 16| 234| 32| 116| 37 5| 47 1
Average 348 | 224| 48| 10| 255| 33| 59| 222| 46| 285 26| 61| 98| 206| 80| 18| 48 5
Zone 1 TZ | Std Error 91 9| 25 6| 115 5 5| 28 7| 29 1] 15 21| 28| 10 8 4 2
01-A-052 [ 294 | 267| 7 7| 228| 32| 108| 160 | 40| 262| 23| 87| 106| 226| 98| 20| 44 5
Average 476 | 214 | 50 8| 263| 30| 57| 241| 46| 276 26| 264| 80| 197 74| 12| 45 1
Zone2 |StdError | 329| 26| 31 o 135 7 2| 47| 10| 29 4| 536 | 26| 32 5 1 2 1
02-A054 | 302| 257 | 25| 15| 145| 37| 59| 195| 44| 306| 29| 221| 103| 307 | 124| 15| 52 8
Average | 1054 | 165 147 2| 939 17| 38| 320 50| 193| 14| 446| 48| 136| 62| 13| 27 8
Zone 3 | Std Error 44| 11 2 1| 294 9 5| 32 8| 71 41 156 21| 34 8 6 5 1
03-A056 | 426 | 229| 59| 12| 260| 30| 51| 215| 52| 323| 31| 518| 126 319| 128| 19| 55 3
Average 496 | 165| 65 3| 340| 23| 58| 228 48| 197| 23| 464| 49| 120 51 15| 33 5
Zone4 |StdError | 125| 17| 21 3| 106 5 6| 40 6 5 4| 185 7| 12 4 3 4 4
04-A-058 | 470 | 220 7 6| 308| 31| 53| 219| 50| 200| 27| 622 124| 240| 95 5| 47 5
Average 412 | 173 | 45 5|1 210| 22| 46| 202| 39| 204| 23| 727| 59| 84| 41 16| 33 6
Zone8 | StdError | 211 18| 19 2| 40 5 6| 48 1 6 5( 257 17| 21 6 41 10 6
08-A-060 309| 192| 35 5| 186 25| 47| 175| 38| 205| 27| 635| 54| 116| 54| 21| 36 7
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average and standard error, thus defining a data range for each element. The average
and standard error values were calculated separately for each individual soil zone as
well as for each soil horizon. Twice the standard deviation was used in the calculation
of the standard error, thus implying a 95% probability that a given value will fall within

the calculated data ranges.

The trace element pattern defined by the spider diagrams will be used as a

geochemical signature for the lithological units.

5.3.1. Lithology Characterisation

The results of the BCC normalised Merelani lithological units are presented in Fig.21.
Most of the lithological units contain statistically significant elevated concentrations of
Zn, Ba, Pb, Th and U relative to BCC. The only exception is the Central Dolomite,
which only has an elevated relative concentration of Th and U. The latter relative
concentration is by far the most pronounced in all the Merelani Lower Horizon
lithologies. Most of the lithologies contain elevated relative concentrations of V and Ni.
Exceptions are the garnet gneiss and banded calc-silicate fels units as well as the

Central Dolomite.

In addition, except for corresponding lithological units such as the Kyanite Gneiss LK3
and LK4 units and the C-Zone sandwiched between them, each lithology has its own
unique pattern. Also the patterns for corresponding lithological units on either side of
the Central Dolomite, such as the Banded Calc-Silicate Fels 1 and 2 units, are
practically identical. Folding in the Merelani Lower Horizon lithologies is well
documented from the tanzanite mining and evidence was found that suggests that
folding exists on a local scale in the rocks underlying the trench (Fig.22). The trace
element patterns of the Merelani lithological units (Fig.21) also show that duplication of

the stratigraphic succession around the Central Dolomite is a distinct possibility.

5.3.2. Soil Characterisation

The XRF trace element data for each individual soil zone and soil horizon and

normalised to BCC is presented in Fig.23.
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Fig.22a

Fig.22 Folding in the JWZ, located in the C-Horrizon of Type 7 Soil. This indicates that folding is definitely present within

at least the JWZ and is evidence that folding on a larger scale could exist.

Fig.22b
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Spider Diagram of the Fine Fraction of the
A- and C-Horizon of Zone JWZ Soil
Normalised to Bulk Continental Crust
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Spider Diagram of the Medium Fraction of the
A- and C-Horizon of Zone 7 (JWZ) Soil
Normalised to Bulk Continental Crust
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Spider Diagram of the Coarse Fraction of the
A- and C-Horizon of Zone 7 (JWZ) Soil
Normalised to Bulk Continental Crust
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All the soil zones as well as the different soil horizons and soil size fractions display
elevated concentrations of V, Zn, REE, Zr, Th and U relative to BCC. There is no
difference in the patterns of the A-Horizons compared to those of C-Horizons for any
of the three size fractions. Small differences between the trace element patterns
become apparent when the different size fractions from the same soil zones are
compared with each other. Where all the trace element patterns show a relatively
lower BCC normalised Cr value compared to BCC normalised V value, the coarse
fraction of soil Zone 1, the medium fraction of soil Zone 1, 1 TZ and 2 show the
reverse. Other comparative differences are the significant negative BCC normalised
Ba anomaly of the coarse fraction of soil Zone 1 and the negative Cu anomaly of the
Coarse fraction of soil Zone 3 relative to the other soil zones and soil size fractions.
Another comparative difference is the anomalous BCC normalised values of the
heavier elements in the fine fraction of soil Zone 7, with the exception of Pb, relative to

the other soil zones and size fractions.

The patterns of Zone 1 and Zone 1 TZ soils are almost identical for all three size
fractions. They are both situated on the Garnet Gneiss 1 unit. The same scenario
exists for Zone 7 and Zone JWZ soils, with the exception of the much higher relative
heavy element values of the coarse fraction of soil Zone 7 compare to the values for

the same elements of soil Zone JWZ.
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5.3.3. Comparison between lithologies and soils

Geochemical profiles over the Merelani lithologies and the soils that overly them, as
represented in the trench, were constructed by plotting both the soil trace element
XRF data for all three size fractions and for both soil horizons as well as the lithology
trace element XRF data on the same graph (Fig.24). The lithology and soil data were
plotted on two corresponding y-axes, due to the difference in trace element

concentration for some of the lithologies compared to the soils which overly them.

All the trace element profiles of the soil zones in the trench correlate with those of the
litholologies, which lie beneath them. However, some trace element profiles, such as
those of V and Cr, correlate to a larger degree than some of the others, such as Y and
Ce. Only the profiles in which the soil profiles most closely represent those of the
lithology profiles are shown in Fig.24. The rest can be found in the addendum
(addendum CD). In general, the closest correlations between the profiles of the soils
and lithologies exist in the profiles of the fine and medium fractions of the C-horizons
of the soils. The A-horizon profiles generally correlate well with the lithological profiles
from the Garnet Gneiss Unit 1 to the Central Dolomite, but then they “deviate” and the
profile is smoothed compared to the lithological profiles. The profiles of V, Ni and Zn
are similar to each other as well as the profiles of Cr and Ga and Ba and Sr, which
may suggest a correlation between these elements. The trace elements which show
the closest correlation between the soil and lithology trace element profiles are C-
Horizon profiles of the fine and medium fractions of V, Cr, Ni, Zn, Ga, Rb, Ba. Of
these elements V shows the closest correlation between the soil and lithology profile
patterns. The heavier elements, such as Pb and U show a correlation between soil
and lithology profiles, however, the statistical error is so large, due to the low
concentrations of these elements, that it is difficult to say whether the correlations

actually exist.

One reason for the weaker correlation with regard to the A-horizon profiles is that the
A-horizon is more susceptible to soil creep and soil disturbance than the C-horizon,
which is situated deeper in the soil profile. The implications for exploration are thus
that the C-horizon provides a more accurate comparison between soil and lithology

and should therefore be the soil horizon to be sampled in an exploration survey.
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When the trace element profiles of the Merelani Lower Horizon lithologies are
considered, it can be seen that most of the trace elements show relatively high
concentrations in either the Graphitic Calc-Silicate schist or in the Kyanite Gneiss
units. Exceptions are Zr, Ga and Rb, which show relatively high values in the Garnet
Gneiss units. The Garnet Gneiss units also contain, along with the Kyanite Gneiss

Units, high values of Cr relative to the other trace element concentrations.

An important trend in the trace element profiles of the Merelani lithologies is that the
profiles are mirrored on either side of the Central Dolomite. From the tanzanite mining
complex folding is known to exist the Lower Horizon Lithologies. The geochemical
duplication is therefore indicative of possible structural duplication around the Central

Dolomite.

Fig.24 shows that the resolution, i.e. the contrast between high and low concentrations
for a specific element, of the trace elements plotted as the soil trace element profiles is

much less than that of the Merelani lithologies’ trace element resolution.

It should be noted that the Graphitic Calc-Silicate schist units have the highest V
concentrations and that these units are in close proximity to the Lower Horizon Kyanite

Gneiss units 1 and 2, which host the tanzanite mineralisation.

To shed further light on the trace element profiles, the anomalous values for each
trace element in each of the soils and the Merelani lithologies were calculated. The
anomalous values are defined by all values above the 97.5™ percentile for a specific
trace element while the background values are all values below the median value as

suggested by Rose et al. (1979).

Only the summary results are shown in the text; the detailed tabulated results can be
found in the addendum compact disc. The tables for the Merelani lithologies will be
described first, followed by a comparative description of the soils. The elements which

show anomalous values for each lithological unit are presented in Table 8.
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Table 8 Trace elements showing anomalous values in the Merelani Lithologic
units

Merelani Lithological Unit Element in Anomalous Concentration

GNG1 Ga, Th

LK4/C-Zone/LK3 V, Ni', Cu, Ga, Zr, Nb, Ce, Pb, U, Ba

GCS2 V, Cr, Ni, Zn, Y, Nd, U

BCF2 Rb, Th

CD Ba

BCF1 Rb, Sr, Nb, Th

GCSH1 u

LK2/JWZ/LKA V, Cr, Ni, Cu, Zn, Ga, Sr, Y, Zr, Nb, La, Ce,
Nd, Ba

GNG3 Ga, Nb, Ce

1. Bold implies element anomalies which occur in the JWZ and/or C-Zone

The only element which displays anomalous values in only one specific lithology is Rb
in both BCF units. The following observations are made when the table of the spread

of anomalous values and values between background and anomalous are studied:

e V, Ni, Zn and U show anomalous and high values in the GCS and
Kyanite Gneiss units with background values in both Garnet Gneiss,
both BCF and the Central Dolomite units;

e Cr has background values in the Central Dolomite and has mostly
background values in both BCF units, with isolated high values;

e The high and anomalous values of Zr are situated exclusively in the
Garnet and Kyanite Gneiss units with background values in both GCS

and both BCF units as well as in the Central Dolomite Unit.

Zone 1 and Zone 1 TZ soil zones are regarded as one soil zone, as they both cover
the Garnet Gneiss 2 unit. When the spread of anomalous, high and background
values of the soils are compared (addendum compact disc) it becomes apparent that
almost none of the elements are exclusively anomalous in any one soil zone, horizon

or size fraction. Rb is the only exception. However, when the tables of anomalous
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values for the soils and lithologies are viewed in conjunction, the following

observations are made:

e Cr, Ga and Rb have the majority of their anomalous and high values
in Zone 1, Zone 1 TZ and Zone 8 soils, which are representative of
the Garnet Gneiss units;

e V, Ni, Zn, Sr and Ba have the majority of their anomalous and high
values in Zone 2, Zone 3 and Zone 4 soils (representing the Kyanite
Gneiss, GCS and BCF units above the Central Dolomite) and in
Zone 6 and Zone 7 soils (representing the GCS, BCF and Kyanite

Gneiss units below the Central Dolomite).
5.3.4. Ti and Zr normalisation as a test of trace element mobility

Two immobile elements are used to quantify element mobility during weathering
(Nesbitt, 1979). These are Zr and Ti. It is, however, Zr which is most frequently used
in mass balance calculations (Colin et al., 1993). Ti is, however, also used
(Scheepers and Rozendaal, 1993). The potential problem however, is that in both
cases the Ti and/or Zr is assumed to be the immobile element and all mass balance
calculations are based on this assumption. Therefore Ti and Zr were used to test
whether they are discernibly mobile relative to each other, thus indicating whether any
soil movement has taken place, as neither of these elements are mobile in a system

dominated by chemical weathering The mass balance calculations were performed

]
)

The percentage increase or decrease of an element x in the sample s compared to its

using the equation of Nesbitt (1979):

-1

% Change =100

concentration in the parent rock p can be calculated relative to an assumed immobile

element i (Ti or Zr).

32



http://scholar.sun.ac.za/

The results are presented diagrammatically as spider diagrams in Fig.26 and Fig.27.
The results of Zr- and Ti percentage change relative to each other is important for
inferring soil particle mobility. A summary of the values of Zr- and Ti-percentage
change for each of the soil horizons and size fractions of the different soil zones is

presented in Table 9 and Fig.25.

From Table 9 and Fig.25 it becomes apparent that Zr and Ti are mobile relative to
each other. One would expect that in the event of hydromorphic trace element
depletion or enrichment a percentage change of various mobile elements relative to Ti
and Zr would result, but certainly not any percentage change of Ti relative to Zr. Even
though Ti and Zr are mobile relative to each other, the correlations between the
percentage change of Zr relative to Ti for the different size fractions and soil horizons
is remarkable (Table 8). This would imply that the elements, although mobile, are
mobile together. With both elements being inert in chemical weathering systems, the
only deduction that can be made is that the elements are mobilised physically. Fig.26
and Fig.27 also shows a correlation between the Zr- and Ti-normalised patterns when
the percentage change values are plotted on a type of spider diagram. The only
general trend that can be observed in Fig.26 and Fig.27 is the generally larger
percentage change of the heavier elements. Exceptions however are the Ti and Zr-
normalised spider plots of Zone 4 and Zone 5, which both show high percentage
changes for V and Ni. Fig.25 shows that no clear trend can be discerned in the Zr-
and Ti-percentage change profiles over the trench. This would imply limited mobility,

despite the seemingly large percentage change values.
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Zone 7 (JWZ) Soil Ti-Normalised Percentage
Change
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Zone 7 (JWZ) Soil Zr-Normalised Percentage

Change
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Table 8. Correlation coefficient of the
percentage change of Zr and Ti

(calculated from Table 7)

fine medium coarse

fraction fraction fraction
A-Horizon -0.97 -0.94 -0.93
C-Horizon -0.90 -0.85 -0.92

Table 9 Percentage change of Ti and Zr of the Merelani soils relative to the

Merelani lithologies

Fine Fraction

Medium Fraction

Coarse Fraction

Ti Zr Ti Zr Ti Zr
Normalised | Normalised | Normalised | Normalised | Normalised | Normalised
Zr Ti Zr Ti Zr Ti
% Change % Change % Change % Change % Change % Change
A-Horizon
Zone 1 63 -38 3 1 -22 30
Zone 1
Tz 55 -35 29 -18 -5 7
Zone 2 -16 16 -36 49 -49 90
Zone 3 -28 35 -13 11 -22 23
Zone 4 33 -24 -50 98 -40 69
Zone 6 -24 30 -32 44 -54 140
Zone 7 -41 61 -49 86 -61 140
Zone 8 28 -32 -8 -5 -39 43
C-Horizon
Zone 1 1 0 -26 37 -29 42
Zone 1
Tz 6 -2 3 -1 -13 17
Zone 2 -30 39 -36 51 -41 64
Zone 3 -50 114 -23 30 -13 11
Zone 4 -47 87 -6 5 -5 8
Zone 5 -44 35 -41 28 -46 39
Zone 6 -50 95 -16 16 51 -34
Zone 7 -24 28 -19 16 -31 36
Zone 7
(JW2) -42 69 -42 71 -38 60
Zone 8 1 -14 -23 17 =27 20
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In addition to the possible use of partial extraction methods in the exploration for
additional tanzanite deposits, it is also a useful tool in testing the above hypothesis of
Merelani trace element mobility. Thus the following section will deal with the
quantification of the mobility of selected trace elements, which could prove useful in an

exploration venture for additional tanzanite deposits.

5.3.5. Total (XRF) and Partial (ICP) trace element extraction and analysis

Four trace elements were chosen for the ICP analyses for several reasons: V was
chosen due to the fact that it is the chromophoric element in tanzanite (Olivier, 2006)
and because it has been shown to have a good correlation between the Merelani soils
and lithologies and might prove useful in an exploration program and because of its
mobility in oxygenating environments. Cr, Ni and Cu were chosen for their
chromophoric properties in a plethora of coloured gemstones (Fritsch et al., 1987 and
1988) and budget constraint allowed for only the four elements to be analysed. The
coarse fraction was not chosen for analysis because of the fact that the elements
chosen for the ICP-AE analysis show a better correlation between the Merelani soils

and lithologies in the fine and medium fractions.

The leachate of the medium and fine fractions of the Merelani trench soil samples was
analysed by ICP-AE. The ICP analyses are expressed relative to the XRF analyses
as a percentage and presented in Table 10 and Table 11. The following equation was

used to calculate the values presented in the afore-mentioned tables:

XRF
X Average

ICP
Percentage Metal Leached = 100( X Average J

Table 10 and 11 show that there is generally and order of magnitude or two difference
between the concentration of extractable metal in the A- and C-Horizons. However,
values are still less that 2ppm for Cr, Ni and V, which is low relative to the
concentration of these elements in the soil. The percentage extractable Cu in the fine
fraction of Zone 3 A-Horizon and Zone 5 as well as the C-Horizon of the medium
fraction of Zone 3 are high relative to the percentage extractable metal available for
the other three elements and reaches a value of 73ppm in the A-Horizon of Zone 3. In
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addition to the high analytical precision values for Cu, the average Cu concentration in
the Merelani trench soils is low and ranges from 32 - 74ppm. Thus caution is called

for in interpreting the amount of Cu potentially leacheable from the soils.

The ICP-AE analyses therefore show that the trace elements investigated, with
perhaps the exception of Cu, is not significantly mobilised by soil solutions and must
therefore be mobile by physical means such as soil creep down-slope and/or flash

floods.

5.3.6. Chemical evaluation of various size fractions

In geochemical exploration it is important to know how the elements of interest are
distributed throughout the sampled medium and where they occur for the purposes of
planning and implementing a geochemical exploration programme. Thus the trace
element data of the fine, medium and coarse fractions from the Merelani soils were

geochemically evaluated in terms of trace element distribution.

V, Ni, Cr, Zn and Th were chosen for the study. The first four elements were chosen
due to their positive geochemical correlation between the Merelani lithologies and
soils. Th was chosen as a reference frame because of its known association with
heavy minerals (Dill, 1998; Wederpohl, 1978) and thus coarse fraction in soils and
stream sediments. Ni, is concentrated in the fine fraction. This, as well as the
association of Th with the coarse fraction in the Merelani soils, is demonstrated in
Fig.28b. Ni and Th display an antipathetic relationship with a linear correlation
coefficient of -0.586, which is significant (see section 4.3 for a more detailed
discussion on correlation coefficients). Ni displays maximum concentrations in the fine

fraction and Th maximum concentrations in the coarse fraction.

V shows a slight vertical trend towards higher concentrations in the fine fraction
(Fig.28a). The highest Cr values are found in the fine fraction, with no significant
separation of the spread of values between the medium and coarse fractions. Zn

shows the same trend and to the same degree as V.

V, Ni, Cr and Zn all display trends towards enrichment in the fine fraction. The only

difference is the degree of enrichment of individual elements, as can be seen from the
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plots of V, Zn and Cr against Ni. Cr shows a strong trend of enrichment in the fine
fraction relative to the medium and coarse fractions relative to Ni (Fig.28e). V and Zn
both show more gradual trends of enrichment towards the fine fraction relative to Ni
(Fig.30f-g).

As an aid to the above scatterplots in the study of trace element distribution, the
average and standard errors of the chosen elements were calculated and are

presented in Table 12.

Table 12 The average and Standard Error of the
Selected Trace Elements for the
Coarse, Medium and Fine Fractions of
the Merelani Soils (n=50)

Element | Fraction | Average | Standard Error

Coarse 440.27 51.61

v Medium | 541.60 62.39
Fine 779.50 82.12

Coarse 60.86 7.85

Ni Medium 177.54 24.82
Fine 287.93 40.52

Coarse 318.85 45.33

Zn Medium 311.23 45.73
Fine 438.54 56.60

Coarse 192.04 11.83

Cr Medium 183.65 10.08
Fine 739.01 47.99

Coarse 465.46 98.67

Ba Medium 990.28 99.02
Fine 910.61 60.80

Coarse 39.52 2.70

Th Medium 26.48 1.78
Fine 10.73 0.77

Twice the standard deviation (o) was used in the calculation of the standard error

implying a 95% certainty that a data point will be located in a certain data range

(Fletcher et al., 1987), defined by the sum of and difference between the average (})

and the standard error. The calculation is expressed by the following equation:

- (20
DataRange =x+| —
) (fj
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The data is presented schematically in Fig.29. From Fig.29 it becomes clear that no
data overlap exists (except for a few samples which fall outside the 95% confidence
limits) between the various size fractions for the individual trace elements. The
differentiation of Ni values from lower values in the coarse fraction to higher values in
the fine fraction is much more pronounced than that of V and Zn as was shown in the
scatterplots (Fig.28a and Fig.28d). The highest values of Cr are in the fine fraction,
but no clear distinction can be made between the coarse and medium fractions when
viewing the spread of Cr concentration values (Fig.29). Thus Table 12 is a

compliment to Fig.28.

5.4.Correlation

The linear correlation coefficient (r), is a dimensionless statistical parameter to quantify
the extent to which the values of a specific variable vary relative to the values of a

second variable and is defined by the following equation:

Cov,,
r=
S.S

y

with Cov,y the covariance of variable y and y defined by:

Cov,, =$ n (xl- —;Xyi —;)

i=1

with n the number of data points, %; the i value of variable 7, x the average for all
values of variable y, y; the i value of variable vy, ; the average for all values of

variable y and S, and S, the standard deviations of variables y and y respectively.
The upper an lower limits of the coefficient vary between the values of -1 and 1. 1
Indicates a perfect sympathetic (positive) correlation, or simultaneous variability, while
—1 indicates a perfect antipathetic (negative) correlation. 0 Indicates the total absence
of any correlation between the values of two respective variables. A few examples
from the Merelani lithologic data set were chosen as examples of the relation of
numerical integer values of r and their data distribution patterns in a scatterplot and

presented in Fig.30.
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Fig.29 Schematic diagram of trace element data ranges (as described in the text)
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There is one difficulty regarding r, inherent in its name, which must be taken into
account. The linear correlation coefficient is a measure of linear trends and does not
show any polynomial trends of data variability (Fig.31a (i - ii) and Fig.31b (i - ii)). The
numerical value of the coefficient should therefore always be interpreted in conjunction

with the relevant scatterplots.

5.4.1. Merelani Lithology Trace Element Correlations

Correlation matrices of the major and trace elements of the Merelani lithologies and
soils were constructed (addendum compact disc). A value of r > 0.500 was taken as
a significant correlation. These matrices were constructed in order to identify certain
element groups within the major and trace element data sets, which show mutual
variation trends. The aim was to discern possible mineralogic hosts for the various
trace elements. The study was performed in three main phases. In the first phase
correlations between the trace and major elements for the Merelani lithologies were
calculated. Various groups with mutually correlating trace elements and major
element oxides were identified. These groups are referred to as “mutually correlating”
groups. In the second phase, the correlation coefficients for the trace elements from
the Merelani trench soils were calculated. Once again, trace elements displaying
mutual correlations were identified and grouped. In the third phase the groups from
the Merelani lithologies and soils were compared with each other and with published
data on mineral chemistry. This was done to discern possible mineralogic hosts for
the trace elements of the soils, based on the groups of mutual correlation in which

specific elements occur. The results of this study are easily verified by LA-ICP-MS.

The Kyanite Gneiss (LK4) unit is taken as an example of the process.

Four groups of mutually correlating trace elements were identified from the correlation
matrix for the Kyanite Gneiss LK4 unit (Table 13) compared to the six groups of
mutually correlating trace elements and major element oxides, as show in Table 14. It
can be seen from both these tables that there are subtle differences between the
groups of mutually correlating trace elements and of the groups of trace elements and
major element oxides. However, when the groups mutually correlating elements in

Table 14 is studied, it becomes apparent that the groups of Table 13 are grouped
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Table 13 Groups of mutually correlating trace elements in the
Kyanite Gneiss (LK4)

Group' | Elements

1 V, Ba, Sr

2 Ga, Rb, Sr, Ce, Y, La, Nd, Th
3 Th, Y, Ce, U, Zn, Cr, Nb

4 Zr, Cu, Pb, Nb

Table 14 Groups of mutually correlating trace elements and major
element oxides in the Kyanite Gneiss (LK4)

Group |Elements

TiO,, Zr, Nb, Ce, Th, MgO

CaO0, P,0s5, Ga, Rb, La, Ce, Nd, Sr, Zr, U, Na,O, MgO

K20, Al,O3, V, Ba, Ga, Rb, Sr, Y, Ce, Ni, Cu, U, Cr, Zn, Na,O, MnO
Fe,O3T, La, Nd, Ni, Zr, Zn, Ga, MnO

Zr, Cu, Nb, Nd, Pb, Ni, LOI

Zn, Y, La, Nd, MnO, K,O

OB WIN|I—~

' a “Group” is defined by values of r defining mutual correlations between the elements of a specific group as
represented in the above tables.
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together to form the larger groups in Table 14. This is a result of adding the major
element oxides to the correlation matrix of the trace elements and recalculating the

correlations.

The groups of mutually correlating trace elements and major element oxides identified
for the Merelani Lower Horizon lithologies are shown in Table 14. The groups of
mutually correlating major element oxides and trace elements were ascribed to a
mineral phase(s) depending on the dominant major element component for a specific
mineral phase (Table 15b) based on published data on mineral chemistry (Deer et al.,
1966, Klein and Hurlbut, 1993. Wederpohl, 1978).

In order to identify general groups of mutually correlating trace elements in the
Merelani lithologies, all the lithological units were placed in a single spreadsheet and a
correlation matrix constructed (Table 16). The resultant matrix is therefore an average
of all the Merelani lithologies potentially rendering it comparable to a matrix of the

entire soil data set as certain soils cover more than one lithological unit.

Five groups were identified for both the major and trace elements (Table 15). The only
element in the Merelani lithologies with which SiO, shows a significant correlation is
Zr. This is an indication that Zr is predominantly incorporated into silicate minerals and
the mineral zircon is inferred, as this mineral does occur in many of the Merelani
lithologies (see Chapter 2, section 2). This is also substantiated by the correlation
between Zr and Y in many of the Merelani lithologies as these two elements commonly
group together (Wederpohl, 1978). The second group is interpreted as being
contained in the heavy minerals, including garnet due to the TiO2-Al,O3 correlation.
The third group is inferred as representing the carbonates, due to the mutual
correlation of CaO, MgO and LOI. The fourth group is seen to represent the feldspars
and micas, based on published data (lcenhower and London, 1996). It must be noted
that the Rb-K,O correlation is remarkable (Fig.32) with r = 0.906. This excellent
correlation exists despite the fact that the correlation matrix represents the entire
group of Merelani lithologies. This strongly suggests that both Rb and KO are located
in a very limited amount of mineral phases. The last group is a group containing P20s
and the Rare Earth Elements (REE).
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Table.15 Table of various groups extracted via intercorrelatory trace
element and trace element-major element oxide relationships
Major or Trace Element | Element | Correlated with
SiOz Zr
TiO> Ga, Zr, Nb, Al,O3', Fe,0sT
A|203 Ga, Zr, Nb, TiOz, F6203T, LOI
F6203T Ga, TiOQ, A|203
Major Element Correlations | MgO .. | CaO, LOI |
KZO TP 77SUIT 1. SUlT.dC.Zd/
CaO MgO, LOI
P205 Y, Ce
LOI MgO, LOI
V Ni, Cu, Zn, U
Ni V,Zn, U
Cu V, Ba
Zn V, Ni, U
Ga TiOz, A|203, F6203T
. Rb K20
Trace Element Correlations Y La, Ce. Nd, P,0x
Zr Nb, La, Ce, Nd, SiO,, TiO,, Al,O3
Nb Zr, TiOg, Al,O3
Ba Cu
Ce Y, Zr, La, Nd, P20s
U V, Ni, Zn
Major Element Groups:
1. SiOy, Zr
2. TiOz, A|203, F6203T, Ga, Zr
3. MgO, CaO, LOI
4. K0, Rb
5. P,0s, Rare Earth Elements

Trace Element Groups:

V, Ni, Zn, U, Cu, Ba?

Y, La, Ce, Nd, P,Os, Zr

Zr, Nb, La, Ce, Nd, SiO,, TiO,, Al,O3°
Rb, K,O

Ga, TiO,, Fe,05T, AlL,Os*

abkhown -~

Table.15b Table of various groups extracted via intercorrelatory trace
element and trace element-major element oxide relationships

Group | Elements Associated mineral(s)
1 V, Ni, Zn, U, Cu, Ba, Cr, Sr, Th | Graphite
2 Fe,O3T, MnO, NayO, H,O Fe-Minerals
3 Zr, Nb, SiO,, TiO,, Al,03, Ga Heavy Minerals (especially, Zircon, Rutile,

liImenite, Kyanite, Garnet)

4 Rb, Pb, K,O Feldspars and Micas
5 CaO, MgO, LOI Carbonates
6 REE, P,0s Apatite, Allanite

' Italics implies 0.8<r<0.9 and bold implies r>0.9

% This group is not significantly associated with any major element oxides and could be associated with graphite, as graphite is a major mineral phase in many of the
Merelani lithologies

% It could be that Zr is associated with the mineral zircon as well as with another phase, such as rutile and the clay minerals. Nb displays the same behaviour
* Ga seems to be associated with the heavy mineral phase, although the Al,O3; could represent the garets as well as the clay minerals or feldspar — the garnets or
feldspars are preferred as the clay minerals only form a major phase in the altered zones
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It is well known by igneous petrologists and geochemists that apatite, which is present
in the Merelani rocks, is an important sink for REE (Fleet and Pan, 1997, Rakovan and
Reeder, 1996, Watson and Green, 1981). There are, however, two problems with the
excellent correlations in the Merelani lithology data set. The first is fairly simple and
relates to the amount of apatite in the rocks. Only three of the six zones of Merelani
lithologies contain apatite and then only as an accessory. Fleet and Pan (1997) and
Watson and Green (1981) published data on the ability of apatite to absorb REE from

water-bearing phosphate fluoride melts and on the partition coefficients of REE
between apatite and a liquid (D3 ) at temperatures of 700°C to 800°C and

pressures of 0.10GPa to 0.15GPa. The partition coefficients in both these publications
are in relatively good agreement and the data from Fleet and Pan (1997) will be used.

Their partition coefficients are presented in Table 17.

Table 17 Published Distribution coefficients between REE in apatite and the
fluid
Rare Earth Element Distribution Coefficient (D)
La 5
Ce 7
Nd 8

The average values for La, Ce and Nd for the Merelani rocks are presented in
Table 18.

Table 18 Average concentration of REE in Merelani Lithologies in ppm
Rare Earth Element Average Concentration
La 23.32
Ce 38.50
Nd 25.50

Ce is taken as an example. For a total of 38.50ppm Ce with a D2 of 7, a total of

33.69ppm Ce will theoretically partition into apatite with 4.81ppm remaining in the fluid.
These values relate to a situation where apatite is the only primary REE absorbing
mineral. Thus 12.5% of the Ce will either remain in the melt or be transported by

supercritical (or hydrothermal) fluids and precipitate elsewhere such as in other
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minerals. One thing that must be kept in mind is the linear correlation coefficient
between Ce (r=0.560) and P,Os and the even lower correlation coefficient between
P.Os and the other REE. So even though the rce.p20s is significant, it may be that the
correlation is due to other factors, such as possible mutual correlation with graphite,
and not apatite. So, although an apatite Ce content of 33.69ppm is quite possible, it
might be more likely that the REE were firstly absorbed onto organic carbon
(Dissanayake et al., 1988) and then mobilised by progressive metamorphism and
incorporated into apatite and various other minerals, hence the only significant
correlation with each other and P,Os, which probably means that they (REE and P,05)
moved together. Additional evidence for the aforementioned lies in the significant
positive correlation between Ce and V in altered rocks. V is also thought to have been
extracted from seawater by organic matter and mobilised during diagenesis and
progressive metamorphism to be incorporated into silicate minerals (Breit and Wanty,
1991). ltis not being implied that the apatite does not contain any REE, only that they
are most probably primarily concentrated elsewhere and that the REE-P20s

relationship can be explained by other factors.

The second problem with the REE-P,0s5 correlation is that the values of r are classic
examples of the influence of an outlier on the correlation coefficient (Fig.33). When
Fig.35 is studied, it can be seen that an outlying sample plots to the right of all the
rest. When this sample is removed, it can be seen that the correlation is reduced from
0.920 to 0.164 (Fig.35b). The significant correlation has been reduced from a status
of significance to one of insignificance. The value of r is 82.17% less than when
plotted with the outlier. This serves as additional evidence that it is not apatite that is
the most significant drive in the Merelani REE chemistry. The sample was removed,
because of its large effect on especially the REE-P,0s5 correlations, rendering them
unrepresentative. The sample must, however, not be excluded from the database

and must be examined in more detail to discern the reason for the anomalous values.

Breit and Wanty (1991) highlights the significance of the V/Ni ratio, which is indicative
of both the oxidation-state of the accumulation zone as well as the amount of S

present. They state that:

V accumulates relative to nickel (high V/Ni) in strongly reducing,

H>S-rich environments.
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According to them, the larger the anoxia levels, the larger the V/Ni mole ratios in
carbonaceous rocks (maximum ~5). Larger levels of anoxia also favour larger
concentrations of both metals. They go on to state that V/Ni ratios are largest in S-
rich petroleum. This, according to them, is because of the reduction of V by H,S and
the immobilisation of Ni by NiS complexes. Deviations from the V/Ni values measured
in bitumen is attributed by them to the incorporation of V in silicate minerals and Ni in

sulphides.

In the Merelani lithologies observed H,S within the calcite in cavities ( inferred from
the yellow colour and characteristic H,S smell), as well as the presence of large pyrite
crystals in the same cavities, is evidence of anoxic conditions. Analyses of various
minerals are proof that V is indeed incorporated into silicate structures (Table 19). For
example, one sample of tsavorite contains about 34 000ppm (~3,4%) of V! The V/Ni
ratio ranges from 0.8 to 11.05 with an average of 3.35 for the total data set and an
average of 3.18 for the altered zones, which is slightly lower and reflects the

incorporation of V into silicate minerals, such as zoisite.

Dissanyake et al. (1988) studied trace elements from a vein graphite deposit in a high-
grade metamorphic terrain, dominated by granulite facies rocks. The rocks are
reported to be of Precambrian age, which makes an excellent chronological
correlation with the neo-Proterozoic, high-grade metamorphic rocks of the Merelani

area and its high graphite content (Davies et al., 1994).

They make the following important statement:
Other elements such as V, Cr, Co, Ni, Cu and Zn though found in
lesser concentrations (than Fe) at the parts per million (ppm)

range show noteworthy accumulation in graphite.

In addition they report a La-content of 4-10ppm and a Y-content of 0.5-2ppm,
although this is in the order of ~10ppm less than the Merelani lithologies.
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Dissanyake et. al (1988) also report a significant correlation between Y and P
(r =0.907) and La and P (r = 0.976) in graphite. They infer a genetic relationship to
explain the high correlation.

Thus it is reasonable to assume that the REE-P,05 correlation in the Merelani Lower
Horizon lithologies is not primarily due to apatite but to graphite. A possible
explanation that the correlation is not as strong as that of Dissanyake et al’s. (1988),
is most probably because the REE are predominantly partitioned into graphite, while
the P,0Os is distributed between apatite and graphite. This possibility could certainly
be important in certain specific lithologies, as reflected by the smaller correlation in
these lithologies. The negative correlation between the REE and phosphate in a few
lithological units points to a antipathetic correlation. This implies that the REE may be
absent where phosphate is present and visa versa, although to a small degree as the

negative correlations are weak, i.e. less than -0.500.

The final groups for the Merelani lithologies identified from the mutual correlations of

trace and major elements and their inferred mineralogic hosts are shown in Table 20.
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Table 20 Final groups of mutually correlating trace and major elements and
their associated mineral phases

Group | Elements Associated mineral(s)
1 V, Ni, Zn, U, Cu, Ba, Cr, Graphite
Sr, Th P

5 Fe,05T, MnO, Na,O, H,O Fg-Rlch Mlngrals (Pyrite, Pyrrhotite, Garnet,
Biotite, limenite)

3 Zr, Nb, SiOy, TiO,, Al,O3, Heavy Minerals (especially, Zircon, Rutile,

Ga limenite, Kyanite, Garnet)
4 Rb, Pb, K,O Feldspars and Micas
5 CaO, MgO, LOI Carbonates
6 REE, P,Os Apatite, Allanite, Graphite

5.4.2. Merelani Soil Trace Element Correlations

The next phase was to calculate correlation coefficients for the A- and C-Horizons and
the different size fractions of the Merelani trench soils. Groups of mutually correlating
trace elements were identified and the average correlation coefficient of the different
size fractions are presented in the tables. These groups were compared to the results
obtained from the study of the mutual major and trace element correlations of the

Merelani lithologies.

Table 21a shows the various trace elements and the elements with which they are
correlated with in the A-Horizons. From the correlations two main groups were
identified from mutual correlations (Table 21b). It must be said that a few elements,
such as Cu, did not show any significant correlations and they were then placed in the
group with which they shared the highest number of mutual correlations with the

highest values of r.

Based on comparison with the study of the groups of mutually correlating trace
elements and major element oxides and the minerals which these groups represent,
the groups of mutually correlating trace elements of the soils were divided into the
following groups: Group 1 of is taken to represent graphite, the clay minerals and the
micas, while Group 2 is taken to represent the heavy minerals, based on the above

study on the mutual correlations between the major and trace elements of the
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Table 21a Table of the A-Horizon trace element and the elements with
which they are correlated
Element Correlated with r
Ni 0.901
Zn 0.872
\' Sr 0.868
Y 0.647
U 0.581
Ga 0.661
CI' Rb nttp:7//scholar.sun.ac.za/ 0.707
Zr 0.844
V 0.901
Zn 0.967
Ni Sr 0.883
Y 0.590
Ba 0.661
Cu Nb 0.396'
V 0.872
7n Ni 0.867
Sr 0.817
Ba 0.568
Cr 0.661
Rb 0.686
Ga Zr 0.710
Nb 0.568
REE?
Cr 0.707
Rb Ga 0.686
Zr 0.754
V 0.868
Ni 0.883
Sr Zn 0.817
Y 0.640
Ba 0.791
V 0.647
Ni 0.590
Y Sr 0.640
Ba 0.718
U 0.650
Cr 0.844
Zr Ga 0.710
Rb 0.754
REE
Ga 0.568
Nb REE
V 0.798
Ni 0.661
Ba Zn 0.568
Sr 0.791
Y 0.718
U 0.567
Ga 0.682
Zr 0.653
Ce Nb 0.802
Th 0.664
REE
Pb Y 0.358°
Th REE
V 0.581
U Y 0.650
Ba 0.567
Table 21b Groups containing mutually correlating trace elements,
extracted from the above relationships together with the
minerals with which they are most probably associated
Group Elements Proposed Minerals
1 V, Ni, Zn, Sr, Y, U, Ba Graphite, Clays, Micas
2 Zr, Cr, Ga, Rb, REE, Pb Heavy Minerals

' Best correlation (i.e. highest r value)

% Correlations with all the REE were evaluated, therefore no single value

% Best correlation
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Merelani lithologies in conjunction with published data on mineral chemistry (Klein and
Hurlbut, 1993; Wederpohl, 1978.

A similar table was constructed for the C-Horizon (Table 22a). The table shows the
four main groups which were identified (Table 22b). However, some elements in
some groups showed significant correlations with other elements in other groups.
These mutual correlations were examined and two main groups were identified (Table
22c).

Both groups in the A- and C-Horizons are virtually identical. The only difference is Pb.
There is a very low concentration of Pb present in both soil horizons (average A-
Horizon = 2.8ppm; average C-Horizon = 3.23ppm).

When the groups of mutually correlating trace elements from the soils are compared
to the groups of mutually correlating trace elements and major element oxides of the
lithologies, one thing is immediately apparent: The number of groups differ. This
could either be due to the fact that the soil particles are slightly mobile or that some of
the major elements in the soils are mobile, thereby causing a slightly different trace
element variation pattern. However, some of the groups of mutual element
correlations of the Merelani lithologies can be identified as grouped together in the
groups of mutual correlations identified for the Merelani trench soil zones. Group 1 of
the Merelani rocks have been divided into Groups 1, 2 and 4 in the C-Horizon

samples of the soil, with the addition of Th to group 1 of the Merelani lithologies.

5.5.Discussion and Conclusions

The following conclusions can be reached from the foregoing paragraphs:

e The study of the percentage change of the concentration of trace
elements in the Merelani soils relative to their lithological
counterparts have shown that the trace elements are mobile;

e The study of ICP relative to the XRF analyses of the trace element
concentration in the Merelani trench soils has shown that the trace

elements are not mobilised by hydromorphic means;
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Table 22a Table of the C-Horizon trace element and the elements with

which they are correlated

Element Correlated with r

Ni 0.543

\'} Y 0.548

U 0.802

Ga 0.672

Cr Rb 0.577

Zr 0.668

V nttp:7//scholar.sun.ac.za/ 0543

Zn 0.703

Ni Y 0.673

Ba 0.637

U 0.510

Cu Sr 0.530

7n Ni 0.703

Ba 0.819

Cr 0.672

Ga Rb 0.723

Zr 0.672

Nb 0.541

Cr 0.577

Rb Ga 0.732

Cu 0.530

Sr \% 0.548

Y Ni 0.673

Ce 0.523

U 0.536

Cr 0.668

Ga 0.672

Zr Nb 0.804
REE

Th 0.708

Ga 0.541

Zr 0.804
Nb REE

Th 0.643

Ba Ni 0.637

Zn 0.819

Y 0.523

Zr 0.840

Ce Nb 0.821
REE

Th 0.847

Zr 0.708

Th Nb 0.643
REE

\% 0.802

U Ni 0.510

Y 0.536

Table 22b Groups extracted from above relationships

Group Elements

1 V, Ni, Y, U

2 Ba, Ni, Zn, Pb

3 Cr, Ga, Rb, Zr, Nb, REE
4 Sr, Cu

Table 22c Groups of mutually correlating trace elements, extracted from
the above relationships together with the minerals with which
they are most probably associated

Group Elements Proposed Minerals

1 V, Ni, Y, U, Ba, Ni, Zn, Pb, Graphite, Clay minerals,
Sr, Cu Micas

2 Cr, Ga, Rb, Zr, Nb, REE Heavy Minerals
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e Thus the trace elements are mobilised by physical means, such
as soil creep on a sloping hill side or by flash floods in the rainy
season. However, soil particle mobility is hindered, most probably
by dense vegetation in the rainy season and the resultant trace
element movement is low, as shown by the good correlation
between profiles of individual trace elements of the soil and the
lithologies;

e The trace element profiles of V, Ni, Cr and Zn in the Merelani
soils, plotted over the trench, show the closest correlation to the
profiles of these elements in the lithologies. Of the element
profiles of the aforementioned elements, the profile of the fine and
medium fractions of the C-Horizon of V showed the closest
correlation between soils and lithologies over the trench.. This
could be as a result of the fact that the medium fraction is a “best
of both worlds scenario”, in other words, both the finer (e.g.
graphite) and coarser (e.g. garnet) mineral particles are located in
this fraction;

e The correlation coefficients show that the trace elements occur
and move together in definite groups, which are attributed to the
movement of individual mineral phases (Table 17).

e V, Ni, Cr, and to a lesser extent Zn, is concentrated in the fine
fraction, as shown by the scatter plots of these elements against
Th which is concentrated in the coarse fraction. The most
probable, most important mineralogic host for V, Ni, Cr and Zn is
graphite with the silicate minerals such as zoiste and garnet being
of secondary importance in terms of element concentration. This
is an indication that the panning of graphite and the subsequent
geochemical analyses may be a viable exploration tool in the
exploration for additional tanzanite deposits and may prove more
effective than the whole-rock XRF and partial leach methods

employed in this study.

Soil samples can therefore potentially be utilised in the search for tanzanite, using a

whole-rock XRF method. The ICP-AE partial extraction method has proved to be
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ineffective in exploring for additional tanzanite deposits, due to the low concentration

of trace elements which can be extracted by this method.

It is not the tanzanite lithologies that are indicated by, for example, high V values, but
rather the lithologies containing high contents of the chromophoric element, V that are
illuminated. In addition to tanzanite, V has been shown to be most probably primarily
concentrated in graphite. Thus it is these lithologies, such as the Graphitic Calc-
Silicate schist units, which will be indicated when using V as a pathfinder. These units
fortunately occur in close proximity to the JW-Zone, which is host to the tanzanite
mineralisation and sandwiched between the Kyanite Gneiss units LK1 and LK2
(Olivier, 2006). Therefore, if a GCS-type unit is found, a altered zone might be in
close proximity. Of all the trace elements, V shows the best results with the closest
resemblance between lithologic and soil profile plots and it is this element which
should therefore be utilised in the search for additional tanzanite-bearing lithologies,
when using whole-rock XRF methods of analysis. Ni, Cr and Zn can be used in
conjunction with the V values to lend additional potential credence to the identified V-
anomalies. The highest values of Cr occur in the Garnet and Kyanite Gneiss units.
The fine and medium fractions of the C-Horizon samples showed the best anomaly-
background contrasts for V. Thus a fraction of smaller than 180um of the C-Horizon

should be sampled if soil sampling is to used in an exploration programme.
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6. Stream Sediments

6.1.Introduction

The trace elements contained within the stream sediments find themselves in a
completely different geochemical environment relative to the same elements within the
soil samples. Thus different data evaluation methods were used in the evaluation of
the stream sediment data. These different geochemical environments are influenced
by different geochemical parameters. One important parametrical difference is the
velocity of fluid movement. In soils, fluids only start to flow laterally when precipitation,
above freezing, exceeds the soil's speed of infiltration and/or capacity for fluid
absorption. For the most part, elements are mobilised by soil solution and/or soil
creep on hillsides. This implies that the soil fluids have a greater potential for chemical
equilibration with the surrounding soil particles. When, however, soil is transported by
surface runoff with the subsequent development of erosion channels, i.e. streams and
rivers, the soil particles and their contained trace elements are mobilised physically.
Some elements may go into solution due to changing physio-chemical conditions of
river water. It follows that soils are associated mainly with chemical erosion, excluding
arid climatic conditions, and rivers predominantly with physical erosion, depending on

the climate and landscape topography (Foth, 1984).

Three streams were sampled (Fig.18, Chapter 3). The data analysis was done on the

data for individual streams and then combined and analysed as a whole.

Elements are mobilised in rivers by three main mechanisms (Rose et al, 1979):
1. In mineral grains or rock particles on the river floor.
2. In suspension as fine mineral grains, adsorbed to clay and Fe and Mn
oxy-hydroxides or on suspended organic matter.

3. In solution, either as complexes or as dissolved ions.

In the Merelani area, heavy rains fall in the months from March to May, causing flash
floods. Due to the large amount of water available the heavy rains are accompanied
by abundant vegetation growth, which subsequently choke the smaller rivers and
streams in the area. The stream sediments, therefore, only have a small window of

time in which to be significantly mobilised.
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This chapter consists of three main parts. The first is the geochemical characterisation
of the stream sediment data, followed by statistical data evaluation, and the

conclusions drawn from it.

6.2. Stream Sediment Characterisation

Parameters exist which can indicate whether stream sediments are derived from upper
or lower continental crust (Vital and Stattegger, 2000). For this reason the trace
element concentrations for both fractions were normalised to the Upper Continental
Crust (UCC) and Lower Continental Crust (LCC) values of Taylor and McLennan
(1995). The values were plotted as spider diagrams (Fig.34). This normalisation is a
first approach to defining a geochemical signature for the Merelani stream sediment
geochemical data as well as rendering the data comparable to that of similar studies,
such as that of Vital and Stattegger (2000). No conclusions on genesis are derived for
either the stream sediments or their parent lithologies from the above-mentioned

normalisation plots.

The elements Sc, V, Cr, Ni, Cu, Zn and Ga seem to be relatively close to the values
for the lower continental crust, while the values for the same elements are much
higher relative to the upper continental crust (Fig.34). Rb shows high values relative to
the Rb values for the lower continental crust while, relative to the UCC, the Merelani
displays relatively lower Rb values. The heavier elements (Y to U), on the other hand,
are enriched with an order of magnitude relative to the UCC. This enrichment is even
more pronounced relative to the LCC values. This is an indication that the heavier
trace elements in the Merelani stream sediments are enriched relative to the

concentrations of the average continental crust.

V and Ni were both plotted against Th for the same reasons outlined for the Merelani
soils (Fig.35a-b), namely that Th is associated with the coarser fraction. A slight
vertical trend component towards enrichment of V in the medium fraction can be
discerned, although it is weak. Slightly more significant, however, is the horizontal
trend component indicating an enrichment in Th in the medium fraction, strengthening
the view that Th is indeed associated with the coarser fractions in both the Merelani

soils and stream sediments.
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UCC- and LCC-normalised Values of the
Stream Sediment Trace Element Data -
Fine Fraction
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Fig.34 Merelani XRF fine and medium fraction stream sediment data normalised to the upper continental (UCC) and lower continental crust (LCC)
values of Taylor and McLennan (1995)
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Evaluation of the Effect of Grain Size on the
Geochemistry of Th, Zr and Sc
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A much more obvious vertical trend component is visible in Fig.35b, indicating a strong
tendency of Ni to be enriched in the finer fraction. The horizontal trend component is

also present indicating, once again, the enrichment in Th in the medium fraction.

The La/Th plot in Fig.35c is a guide to provenance (Vital and Stattegger, 2000). The
trend towards enrichment of both elements in the medium fraction is fairly
conspicuous. A high La/Th ratio (3.6 + 0.4) is an indication that sediments are related
to Archaean sedimentary rocks (Vital and Stattegger, 2000). The average La-Th ratio
for the medium fraction is 4.47 and 3.78 for the fine fraction. The most important
observation, however, is that the values for the medium fraction are higher than the
values for the fine fraction. The 95" percentile for the medium fraction is 7.30 and
5.08 for the fine fraction. The 65™ percentile is 4.67 for the medium and 3.93 for the
fine fraction. These values indicate that the values of the medium fraction constantly
fall in a higher bracket than those of the fine fraction, indicating that both La and Th

are enriched in the medium relative to the fine fractions.

The Th/U versus Th plot (Fig.35d) can be used to track weathering trends (Vital and
Stattegger, 2000). During weathering there is a tendency for the elevation of Th-U
ratios above upper continental crust values of 3.5 to 4.0. The values for the medium
and fine fractions have average values of 3.36 and 3.58 respectively, well within the
range for UCC values. When the scatterplot is examined, a slight trend towards Th
enrichment relative to U can be seen in the fine fraction. This may be indicative of a
larger influence of weathering conditions on the fine compared to the medium
fractions. The trend towards Th enrichment in the medium fraction is once again
recognisable. Overall the effects of weathering, and hence sediment mobilisation,

seems to be at a minimum.

The Th/Sc versus Zr/Sc plot of Fig.35e is used to evaluate the influence of heavy
mineral concentrations during sedimentary sorting (Vital and Stattegger, 2000). The
Th/Sc ratio is sensitive to the provenance bulk composition, while Zr/Sc is a good
indicator of Zr enrichment. There is a slight trend towards Zr enrichment in the fine
fraction and a slightly larger trend towards Th enrichment in the medium fraction.
There is an amount of overlap of medium and fine fraction data points, indicating a

slight amount of mixing of stream sediments.
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The Cr-Th ratio has been shown to be a provenance indicator largely due to its
correlation with the Sc-Th ratio (Vital and Stattegger, 2000). When the scatterplot
(Fig.35f) was studied, no apparent trend towards either enrichment or depletion
towards the medium and/or fine fractions could be discerned. This implies that the

sediments are most probably proximal to their source.

The values of the upper and lower continental crust were plotted on each of the
scatterplots. It can be seen that although the LCC values plot close to the Merelani
stream sediment data in some plots (e.g. Fig.35-b), they plot far away in other plots
(e.g. Fig.35c-e). In fact the LCC values plot so far from the Merelani stream sediment
data in Fig.35c that it had to be removed, due to it causing the data to clump in the
bottom left-hand corner of the graph. The same can be said for the following ternary

plots.

The ternary plot Th-Co-Zr/10 (Fig.36a) shows that, although the scaling factor was
used to place the values in the centre of the graph, the stream sediment data still plots
near to the Zr pole. A strong trend exists towards Th enrichment in the medium
fraction, or Zr enrichment towards the fine fraction or a bit of both. Fig.36e has shown
that a slight trend of Zr enrichment in the fine fraction does exist. Thus substantiating
the latter view of both an enrichment in Th in the medium fraction and Zr in the fine

fraction. No trend exists towards or away from the Co pole.

A significant trend towards Th enrichment in the medium fraction can be seen on
Fig.36b. A slight trend exists towards enrichment of Hf in the fine fraction. This makes
sense when taking into account that the linear correlation coefficient between Zr and
Hf for the entire stream sediment data set is 0.718, indicating that Zr and Hf are
significantly correlated. They are commonly correlated in nature (Wederpohl, 1978;
Deer et al., 1966) and it is most likely that they are located within the same mineral,

most likely zircon.

52



http://scholar.sun.ac.za/

Th-Co-Zr/10 Plot of the Fine and Medium Th-Hf-Co Plot of the Fine and Medium
Fract:\cnms ?f t-hthRF ASn aéyses to . Fractions of the XRF Analyses of the
erefani stream sedimen Merelani Stream Sediment
Legend
. Stream 1 FF Legend
. Stream 2 FF ‘ Stream 1 FF
A Stream 3 FF . Stream 2 FF
Th ‘ Sty 1 MF Th A Stream 3 FF
. Stream 2 MF ‘ Stream 1 MF
A Stream 3 MF . Stream 2 MF
A Stream 3 MF
‘ ucc ‘ -
o - : O LCC
u
|
= |
.. ‘mm [ | .=l
‘IIA A. .. .
capfel .
° iai' d; n
EE el ! ° :.. Q
: <
CO‘ ‘ Zr/10 Hf | : i Co
Fig.36a Fig.36b

Fig.36 Ternary scatterplots of the XRF data of the Merelani
stream sediments

La-Th-Sc Plot of the Fine and Medium
Fractions of the XRF Analyses of the
Merelani Stream Sediment

Legend

Stream 1 FF

La

Stream 2 FF
Stream 3 FF
Stream 1 MF
Stream 2 MF
Stream 3 MF
ucc

Lcc

2 dd [ 2g [ J

Th | | Sc

Fig.36¢




http://scholar.sun.ac.za/

6.3.Factor Analyses

A detailed factor analysis was performed on the Merelani stream sediment data. The
functionality of a factor analysis lies in the reduction of the amount of variables to a
number of more manageable groups. If, as a purely hypothetical example, one has a
data set of, say, five chemical variables: La, Ce, Nd, Ta, and Nb it would be
theoretically possible that two factors would emerge from a factor analysis. Factor 1
would most probably be the REEs La, Ce and Nd and Factor 2 would be Ta and Nb,
unless these elements were for some or other reason varying together, resulting in
only one factor emerging. For the sake of the argument, say two factors emerged. It
would then be necessary to assign names to them. Factor 1 could possibly be a REE-
bearing mineral such as allanite or monazite, depending on the geochemical or
petrological environment, and Factor 2 could be the minerals tantalite and/or
columbite. The five variables would then be reduced to two and can be studied in two-

dimensional space.

The factor analysis was done by utilisation of the computer software program
Statistica®. It is true that a factor analysis contains an inherent amount of subjectivity
due to the fact that the data is “rotated”. The law which is used to rotate the data is
chosen by the observer. The data for n factors are plotted around a central point in n-
dimensional space (Fig.37). The factors are calculated based on the angle between
the vectors formed by connecting the central point of origin to the data point. The data
for the different data points for each variable are simply the factor loadings, calculated
as a function of the covariance in a data set between different variables and the angle
between the data vectors. Each data point, which, in this case, are the chemical

elements, will have a value for each of the factors called the factor loading.

The factor analyses were done for the fine and medium fractions of the Merelani

stream sediment data.

Three factors were extracted for both the fine and medium fractions explaining 77.82%
and 74.99% of the variability in the data respectively. The data was rotated using the
Verimax Raw rotation law and the factors were extracted using the Maximum

Likelihood extraction method.
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The following factors were extracted for the fine fraction (Table 23):

Table 23 The various Factors and the elements
constituting them (cut-off loading:
0.7000)
n =46
Factor Elements Constituting the Factor
1 Co, Cu, Y, Zr, Nb, La, Ce, Nd, Th, U
2 Ni, Zn
3 Cr, Ba

Factor 1 accounts for more than half (54.66%) of the variability in the data set and is
by far the most important factor. Factor 2 and Factor 3 account for 13.03% and
10.12% of the data variability respectively. The cut-off loadings for each factor was
chosen by the computer at 0.7000. It can be seen, however, that when the cut-off is

reduced to 0.5000 the following factors are extracted (Table 24):

Table 24 The various Factors of the Fine Fraction
and the elements constituting them (cut-
off loading: 0.5000)

n =46
Factor Elements Constituting the Factor
1 Cr, Co,Cu,Y, Zr, Nb, La, Ce, Nd, Th, U
2 V, Ni, Zn
3 V, Cr, Co, Cu, Ga, Nb, Ba

When the correlation matrix (Table 25) is examined, it can be seen that the factors in
Table 23 and 24 can be extracted by using mutual correlations. It is also apparent

that only Rb, Sr and Pb do not mutually correlate with the other trace elements.

Seeing that these elements, especially Rb and Sr, partition into major mineral phases,
such as the feldspars and micas (lcenhower and London, 1996), as shown for the
Merelani soils, the above seems to imply that it is not the major mineral phases that

dominate the stream sediment trace element chemistry, but rather the heavy mineral
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phase. This can be seen by the fact that the REEs and Zr, which are associated with

heavy minerals such as monazite and zircon, occur in the first factor, which accounts

for more than half the variability in the data set.

When the histograms of the various trace elements are examined, most display a

positively skewed data distribution profile. The exceptions are V, Ga, Rb, Ba and Pb.

Of these elements Ga, Rb and Pb display data distributions which are close to normal,

as can be seen from their skewness (Table 26).

Table. 26 Skewness and Kurtosis for the Merelani XRF

Stream Sediment Data of the Medium and|

Fine Fractions

Medium Fraction Fine Fraction
n
Skewness | Kurtosis | Skewness | Kurtosis

V 46 2.533 7.794 0.579 -0.046
Cr 46 1.556 2.073 1.316 1.913
Co 46 2.253 6.755 1.461 2.292
Ni 46 1.291 1.539| 1.481 4.730]
Cu 46 5.795 36.564 1.298 1.604
Zn 46 2.003 6.437 1.966 6.399]
Ga 46 0.014 -0.729| 0.161 -0.259|
Rb 46 -0.094 0.621 -0.746 0.028
Sr 46 1.519 6.440| 2.787 10.175
Y 46 1.843 2.646 2.601 10.993
Zr 46 2.355 6.069] 1.972 5.874
Nb 46 2.809 10.326 1.381 1.711
Ba 46 -1.640 7.475 0.582 0.536
La 46 3.249 10.958 3.286 12.517
Ce 46 3.170 10.452 3.074 11.503
Nd 46 3.169 10.800] 3.373 14.495
Pb 46 0.538 -0.419| 0.431 0.499]
Th 46 3.213 11.089| 3.093 12.363
U 46 2.847 9.363 2.461 9.321

The skewness is a statistical parameter which acts as a measure of the deviation of a

data distribution from symmetry.

implication is that the data is distributed asymmetrically. Skewness is defined as:

Skewness =

If the skewness is clearly different from 0 the

> (xl. - ;)3

(n - 1)(n - 2)03
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with n the number of data points, o the standard deviation, y; the i data point for, in

this case, a specific chemical element and x the average for the same element.

Kurtosis, on the other hand, is a measure of the “peakedness” of a data distribution.
Where the kurtosis is clearly different from 0, the data is either flatter or more peaked

than the normal, or Gaussian, data distribution. Kurtosis is defined as:

n(n-1) (x —x) B(Zx —x) (Zx —x) (n-1)
(n-1n-2)n-3)s*

Kurtosis =

The only significant changes of skewness and kurtosis from the fine to the medium
fraction are for the elements V and Ba (Table 26). When the total data set is
considered, the skewness of V increases from 0,579 in the fine fraction to 2,533, i.e.
positively skewed, in the medium fraction. The situation for Ba is exactly the reverse,
with a value for skewness of 0,510 in the fine fraction to —1,262, i.e. negatively
skewed, in the medium fraction. This implies that the data distribution increases to
more data points with lower V concentrations from the fine to the medium fraction, i.e.
material containing higher values of V is being removed. This is strong evidence for
the graphite containing much of the V, since it is the soft graphite flakes that will be the
first to be carried away by the flowing river water. The data distribution for Ba shows
that the Ba data points are distributed over higher values in the medium relative to the
fine fraction, i.e. material containing Ba is being concentrated in the streams. This is
evidence that the feldspars which, as was shown for the soil data, is the most probable
host to the Ba, are being concentrated in the streams and that the Ba is most
predominantly associated with the feldspars and not the micas. This makes sense in
terms of Merelani’s semi-arid climate in which the feldspars, which is resistant to
physical weathering, would not be easily broken down and would therefore be
associated with the heavier mineral fraction in the stream sediments. In addition,
micas are light and will be swept away with the other light minerals, such as graphite.

Thus if Ba was concentrated in the micas, the data distribution would mimic that of V.

When the data from the other streams are compared to the results from the overall
data set they compare well. The only major difference is the data from Stream 3, with

n = 6. Another important observation is that the change in Ba data distribution is more
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pronounced than that of the V data distribution. This could either be an indication that
the processes concentrating Ba in the stream sediments are more influential than
those depleting V, or that the V is distributed more evenly between minerals with large
and small specific densities (with grossular garnets as an example of the former and
graphite as an example of the latter) than Ba, which could be concentrated in feldspar

to a much larger extent than in, for example, mica.

Factor 1 of the fine fraction is taken to represent the bulk of the heavy mineral phase,
due to it containing the REEs and Zr, most often associated with the heavy minerals
such as zircon and/or apatite. Factor 2 is taken to represent the iron-rich minerals
such as pyrite and pyrrhotite, which also seem to contain a sphalerite component.
Factor 3 is taken to represent the major minerals such as feldspars and garnet. It can
be seen from Table 27, however, that the factor loading for V in Factor 2 is 0,548,
implying that other minerals such as V-rich zoisite and potentially graphite might also
have a slight influence on this factor. It is noteworthy that Ni and Zn not only form an
individual factor, but also that the correlation coefficient between these two elements is
0,969! This implies that these two elements are definitely mobilised together, either in
the same mineral or as adsorbed onto clay particles or graphite, or both. The latter is
attested to by the drop in Ni:Zn correlation coefficient to 0,820 in the medium fraction.

It is still a significant correlation.

The scenario seems slightly different when examining the medium fraction (Table 28).

Here the factors are as follows:

Table 28 The various Factors of the Medium
Fraction and the elements constituting
them (cut-off loading: 0.7000)
Factor Elements Constituting the Factor
1 La, Ce, Nd, Th, U
2 V, Cr, Co, Nb
3 Y, Zr

Factor 1 accounts for 50.02% of the variability in the data set and Factor 2 and

Factor 3 account for 18.81% and 6.17% of the variability in the data set respectively.
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When 0.5000 is taken as the cut-off loading the factors are as follows:

Table 29 The various Factors of the Medium
Fraction and the elements constituting
them (cut-off loading: 0.5000)
Factor Elements Constituting the Factor
1 Ni, Y, La, Ce, Nd, Th, U
2 V, Cr, Co, Zn, Nb
3 Ni, Cu, Y, Zr

Rb, Sr, Ba and Pb stand alone, as with the fine fraction, which is substantiated by the
examination of the correlation coefficients (Table 30). Factor 1 of the medium fraction
is taken to represent the bulk of the heavy mineral phase, with the REE-bearing
minerals having the major influence, which is the same for the fine fraction. Factor 2 is
taken to be represented by predominantly the garnets and Factor 3 as the mineral

zircon having the predominant influence.

The above scenario compares well with that for the fine fraction. All that has most
probably occurred is that the influence of fine minerals in the medium fraction, such as
the clay minerals and graphite, has been diminished and that of the heavy minerals
has been increased. It can be seen that in both fractions, the first factor consists of

elements which are commonly associated with heavy minerals.

Those elements, for the fine and medium fractions, that could not be grouped into a
specific factor are most probably associated with major mineral phases such as mica
or feldspar (e.g. Ba in the medium fraction). Ba has a negative loading count on all
three factors, implying strongly that it does not seem to occur in the heavy mineral

phase but rather in another phase, such as the micas or perhaps feldspars.

Five elements were chosen for the fine and medium fractions and their profiles were
plotted for each stream sampled (Fig.38 and Fig.39). The choice of these elements
was done on the basis of their respective differences and similarities in geochemical
behaviour. V and Ni were chosen because of their similar profiles in the Merelani
lithologies as well as their mobility in oxygenating conditions (Breit and Wanty, 1991).

Cr was chosen because of its immobility and its abundance in the grossular garnets.
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Th and Zr were chosen because of their occurrence in the coarser fraction of the soils
and stream sediments. The point where the y- and x-axes cross is the position

furthest up-stream.

The most important observation when studying the profiles for all three streams is that
for both size fractions no recognisable trend exists. There is neither a gradual

increase or decrease in any of the profiles plotted.

What is interesting, however are the peaks, especially of V, which occur in the profiles.
These peaks become extremely noteworthy when their spatial distribution is
considered. When only the V peaks of the fine fraction are studied, the following
samples are identified which have high (> 1000ppm) V values: SS-004, SS-020, SS-
032, SS-034, SS-039 and SS-040. An old mine-working, where gem mining was once
performed, is situated in close proximity to samples SS-032 and SS-034, which makes
these samples very significant (Fig.40). If the general strike of 40° for the Merelani
lithologies is taken into consideration the V peak over sample SS-020 also becomes
significant in that it lies, more or less, on a line linking the high values of Stream 2. In
terms of geologic mapping using geochemistry, the low values are also significant, but
it would be much harder to discern their meaning as to which lithologic unit they may

represent, if any at all.

The same V profile for the medium fraction (Fig.40) seems slightly different. Samples
SS-032, SS-034 and SS-035 still display their V peaks. The peak over sample SS-004
is not present. What is exciting about the peaks over samples SS-012 and SS-014 is
that a tsavorite (green, gem-quality, V-rich grossular garnet) mine, which is still
operational, is situated near SS-012. When the 40° strike (Malisa, 1987) is taken into
consideration the mine lies on a line more or less connecting it to SS-014. Though a
peak does not occur over sample SS-020 one does occur over sample SS-024, which
is just slightly off-set from SS-020. Samples SS-027 and SS-028 also show peaks and
could possibly be due to a curvature of the lithologies, causing the peaks in SS-032,
SS-034 and SS-035. The factor scores of both fractions were taken and plotted as

scatterplots. This was done to see if any outliers and trends could be discerned.

When studying the fine fraction plots of the factors plotted against each other it can be

seen that definite outliers and groups could be identified (Fig.41). It seems as if
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V Peaks for the Fine Fraction
V-Peaks for the Medium Fraction

Fig.40 Satellite image containing the sampling sites. The samples representing high V values for the fine and medium fractions are indicated
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samples of more or less similar properties are grouped together. This is most
conspicuous on the Factor 1 versus Factor 3 and Factor 2 versus Factor 3 graphs for
the fine fraction. On the Factor 1 versus Factor 3 graph, which would essentially
represent a plot of the heavy minerals and heavy major mineral phases, SS-035, SS-
034 and SS-004 plot in a group. Most of the samples of Stream 3 also plot in a
separate group. This is even more clearly seen on the Factor 2 versus Factor 3 plot
where all the Stream 3 samples, with the exception of sample SS-042, are located.
This is the same sample which displays a V peak on the V-profile, rendering this
sample worthy of further scrutiny. The samples that plot as outliers are given in
Table 31 below:

Table 31 Outlying samples on the Factor Scores plot of the fine fraction

Merelani stream sediment samples

Factors of which Scores were | Outlying Samples

plotted
F1/F2
SS-020, SS-040, SS-039, SS-035, SS-034
F1/F3
SS-020, SS-035, SS-034, SS-004
F2/F3 SS-020, SS-040, SS-039, SS-032, SS-034, SS-

004

All the outlying samples correspond to the V peaks in the profile plots which, in turn,
correspond to samples which occur near and on strike from currently exploited gem

deposits.

When the factors of the medium fraction are examined the scenario seems, at first
glance, slightly different. The fact that the medium fraction factors most probably
represent a larger heavy mineral component, relative to the fine fraction, has already
been discussed. This fact is evident simply by examining the elements which
constitute the factors. The outlying samples of the factor ratio plots are given in
Table 32 below.
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Table 32 Outlying samples on the Factor Scores plot of the medium

fraction Merelani stream sediment samples

Factors of which Outlying Samples

Scores were plotted

F1/F2 SS-027, SS-035, SS-028, SS-024, SS-034, SS-
012, SS-014, SS-040

F1/F3 SS-035, SS-027, SS-028, SS-021, SS-024,
SS-040, SS-034, SS-023, SS-026

F2/F3 SS-035, SS-034, SS-014, SS-012, SS-024,

SS-021, SS-027, SS-040

As was previously mentioned, the samples with seemingly similar properties tend to
cluster together. This is what makes the outlying samples so interesting because
these samples will possess properties that are different, i.e. anomalous, to the rest. It
is, once again, important to note that the outlying samples of the factor plots for the

medium fraction correspond exactly with the V peaks for the same fraction.

Graphs were plotted for the fine and medium fractions of the individual factors (Fig.41
and Fig.42) as well as for the ratios (Fig.43 and Fig.44). It can be seen, by examining
these graphs, that it is always the same samples over which the peaks occur. There
are a few exceptions, but the sample that is different is always adjacent to samples
which display peaks in other graphs. In other words, the peaks are always spatially
distributed in the same general area. It is fairly obvious that no one graph contains all
the peaks and that, to get a better view of what is happening in the data, it is

necessary to study all these graphs together.

The samples which are most important and deserve further scrutiny with respect to
correlation with geology and specifically with specific lithological units are as follows:
SS-004, SS-012, SS-014, SS-020, SS-024, SS-027, SS-028, SS-034, SS-035, SS-039
and SS-040.

Of the above-mentioned samples SS-014, SS-020, SS-024, SS-034, SS-039 and SS-
040 are deemed to be the most important, based on outlying character on the factor

plots, on spatial distribution with regard to old and current mine workings as well as on
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their continued anomalous behaviour in all the plots for both fractions for the plotted

elements, such as V as well as for the factors.

The samples containing V peaks as well as the samples represented by peaks on the
factor plots and those that plot as outliers on the factor ratio plots are presented on the
satellite image as a means of graphically presenting the spatial distribution of these

anomalous samples (Fig.45 - Fig.48).

A detailed structural description of the area of study is beyond the scope of this thesis,
as the primary focus is on the geochemistry. It is however necessary to make brief
comments on the proposed structure, firstly, because minimal detailed regional
structural work has been performed and, secondly, because the spatial orientation of
the different lithological units will have a profound effect on the stream sediment
composition because of the fact that the sediments are not extensively mobilised over

great distances.

It has already been reported that boudinaging does occur within the relatively small
scale of the tanzanite mine and that these boudins have very important implications for
the tanzanite mineralization. When the satellite greyscale image with the stream
sediment sampling points superimposed upon it is examined (Fig.49), two triangular
shaped structures are seen in the centre slightly off-set towards the top right-hand
corner. Other than that, it would also seem that there is a larger structure present, as
delineated. When the image is zoomed out to display the major part of the western
limb of the Lelatema anticline, the two smaller triangular structures can still clearly be
seen. It would also appear that there is a larger block-like structure to the south-west
of these two triangular structures. Furthermore, it can also be seen that there are a
number of smaller oblate structures orientated with their long axes parallel to these
two seemingly larger structures. Something else that is important is that the layers
that form the Merelani lithologies, upper and lower horizons, seem to form “rolling”
structures, i.e. they form structures which are convex towards the bottom of the image.
It is therefore proposed, that the possibility exists that the small scale structures also
occur on a larger scale and that the smaller structures in the mine just mimic the larger

scale structures within the Lelatema anticline.
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Factor 1 of Fine Fraction
Factor 2 of Fine Fraction
Factor 3 of Fine Fraction

Fig.45 Samples with high factor scores are indicated for all three factors for the fine fraction
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Factor 1 peaks of the Medium Fraction

Factor 2 peaks of the Medium Fraction
Factor 3 peaks of the Medium Fraction

Fig.46 Samples with high factor scores are indicated for all three factors for the medium fraction
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F1/F2 Outliers of the Fine Fraction

F1/F3 Outliers of the Fine Fraction
F2/F3 Outliers of the Fine Fraction

Fig.47 Factor ratio plot outliers indicated for all three factors plots of the fine fraction
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F1/F2 Outliers of the Medium Fraction
F1/F3 Outliers of the Medium Fraction

F2/F3 Outliers of the Medium Fraction

Fig.48 Factor ratio plot outliers indicated for all three factors plots of the medium fraction
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The reason why this is so important can be seen on the satellite images marked by the
anomalous V values identified in the plots of the various factors (Fig.42). The
interpretation of these “anomalous” samples for the various factors is directly
proportional to the spatial distribution of the lithological units and it is therefore vitally
important that a profound attempt is made to map and understand the large-scale

structures within the Lelatema anticline.

The image of the plot of the outliers for the factor ratios of the medium fraction will be
used as an illustration (Fig.50) as to why detailed structural knowledge of the area is
so important. Two possibilities are proposed to explain the anomalous sample
distribution, all three of which are heavily dependent on the structure of the underlying
lithological units. The first possibility is a straight line, sub-parallel to strike, following
the general outcropping rocks on the image, connecting the anomalous samples. A
second possibility is that the anomalous samples represent different parts of the same
folded JWZ-, or graphitic calc-silicate type zones, occurring in a larger structure such
as a boudinaged stratigraphic package, as demarcated on the image. The third
possibility is much like the second: the large scale structure is just seen as a large
boudinaged package with either linear or folded packages within the larger boudin.
That the “anomalous” factor samples represent a lithological unit, albeit altered or a
GCS type unit, is fairly certain and if indeed the altered zones in the rest of the
Merelani structure occur in such a close proximity as in the JWZ-GCS1 case in the
Merelani Lower Horizon it wouldn’t matter which of these two units are being
delineated. The general strike is known and the general dip is known, which implies
that one or two strategically placed drill holes should illuminate the location of the
altered zones. As mentioned before, detailed geological mapping preceding any
drilling will further elucidate the structure of the Merelani area and will substantially
raise the level of certainty of what exactly it is that we are dealing with in terms of

structure and type of lithology.
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F1/F2 Outliers of the Medium Fraction
F1/F3 Outliers of the Medium Fraction

F2/F3 Outliers of the Medium Fraction
Possibility 1
Possibility 2

Fig.50 Different possibilities for the structural interpretation of observed features. Possibility 1 is where the solid lines are a stratigraphic package (between
the dashed lines) similar to the Merelani Lower Horizon in which the samples represent altered zones. If this is the case, then it would explain the
river channels, because the altered rock is less competent than the surrounding lithologies. Possibility 2 is a stratigraphic package occurring in a
mega-boudin.
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6.4.Discussion and Conclusions

The following conclusions are derived from the foregoing chapter:

e The UCC values constantly plot in the vicinity of the Merelani stream
sediment data, which could indicate that the Merelani sediments are
possibly derived from upper continental crustal rocks. This can easily be
verified by a study on the protoliths of the various Merelani metamorphic
rocks.

e Ni-Th and V-Th scatterplots confirm that V and Ni are concentrated in the
fine fraction and that Ni is concentrated to a larger degree than V. This
indicates that V is distributed between minerals which are concentrated in
the fine fraction, such as graphite, and minerals which concentrate in
coarser fractions, such as grossular garnet and zoisite. This is
substantiated by the study of the change in skewness of the V data
distribution from the fine to the medium fraction. The same skewness
study performed on the distribution of Ba data suggests that the Ba is
predominantly concentrated in the feldspars;

e Factor analysis and the scatterplots indicate that the heavy minerals
dominate the trace element chemistry;

e Lack of trends in the trace element profile plots over the three stream
sampled suggests that the mineral particles in which the trace elements
find themselves are not appreciably mobilised and that the stream
sediment trace element geochemistry is a good indication of proximal
geology which could immensely aid geological mapping;

e High V values, factor loading and factor ratio plots indicate samples which
lie close to presently and historically mined gemstone deposits and these
plots can therefore be employed as a tool in the search for hidden

gemstone deposits.
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7. Conceptual Geochemical Model

7.1.Introduction

Hoffman and Thomson (1987) describe a landscape as:

a dynamic system involving the relationship between vegetation, soils,
underlying rocks, the atmosphere, surface and ground waters,

geomorphology and geology.

Fletcher et al. (1987) list six fundamental concepts in landscape geochemistry. The
relationship between these concepts and the definition of a landscape, as given in the
above paragraph, is presented graphically in Fig.51. A landscape starts off with a
specific geology and therefore lithologic composition under a specific prevailing
atmosphere. These parameters will lead to the formation of a specific set of soils and
geomorphology and hydrology, which in turn will have an influence on the type of
vegetation and organisms which will thrive. The vegetation and organisms will in turn
have an influence on the hydrologic cycle as well as soil formation. All these
parameters will define each of the six fundamental concepts in landscape geochemistry
(Fig.51).

7.2.Conceptual Geochemical Model for Soils

The Merelani area in north-eastern Tanzania has a semi-arid climate although heavy
rains fall during the months of March to May. The landscape is hilly and is densely
vegetated by Acacia trees and various shrubs. The rocks in the area are mostly garnet
and kyanite gneisses, graphite-rich schists and dolomitic marbles. The dolomitic
marbles weather positively and form prominent ridges. Vegetation growth and density
reaches a maximum in the rainy season. Ti- and Zr-normalised trace element values
show that the soils on the slopes of the Merelani hills are mobile. The good correlation
between the profiles of specific trace element concentrations plotted over the Lower
Horizon stratigraphy and the profiles for the same elements plotted in the soils covering
the lower horizon stratigraphic units indicate that the soil particles are mobilised on a
small scale of a few tens of centimetres to a few metres. Analysis of acid leachate

from the Merelani soils shows that the trace elements are not primarily mobilised by
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hydromorphic means. The trace element concentration in the acid leachate, although
very small, increases with distance down slope, as shown on the profile plots of the
ICP-analysed values (Fig.38, Fig.39). This implies that soil solution movement is
dictated by the landscape topography.

There is a sharp drop in element concentration in Zone 8 soil. The landscape over
which the trench was dug has two primary slope directions: One toward the east, the
hill slope, and one toward the south (Fig.52).

Road leading Block-B
to B-Shaft

Fig.52 The two slopes (shown in red) most important for the mobility of the Merelani soils in the vicinity of the
trench. The trench is obscured by the shrubs in the foreground, but the slope of the hill is similar to the
slope of the ridges in the background. The road leading down to B-Shaft is representative of the second
slope and the direction of sediment and fluid movement. Block-B, which is mined by local miners, can be
seen in the background. The view is to the south.

The slope of the hill is significantly larger than the slope towards the south. Therefore it
is expected that the largest component of soil fluid migration would be in the direction
of the road and then down the secondary slope towards the south. The same
components are proposed for soil particle movement due to gravity sliding. The
movement of trace elements in the Merelani soils by hydromorphic means was shown
to be very low. Thus the movement of soil particles can be equated to the movement

of the trace elements, as in placers. The abundance of vegetation, however, is most
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probably the main force in restricting soil particle movement, resulting in short

dispersion trails in the order of a few tens of centimetres to a few metres.

A graphic representation of the model is shown in Fig.53.

7.3.Conceptual Geochemical Model for Stream Sediments

The scenario for trace element mobility in the Merelani streams is very similar to that of
the trace elements in the soils. The binary and ternary scatterplots, as well as the lack
of visible trends in trace element profiles along stream length, shows that the stream
sediments are not significantly mobilised for particle sizes of >90um. This implies that
the stream sediments are therefore proximal to their source lithologies. The skewness
and kurtosis of V and Ba data distribution show that it is only the fine fraction that is
mobilised to any significant degree. A statistical factor analysis has indicated that the
majority of the trace elements are represented by three factors for both size fractions.
The first and largest factor accounts for more than half the variability of the data in both
fractions and can be ascribed to a fraction containing the heavy minerals. The
aforementioned is based on the elements which constitute the fraction (e.g. Zr, Y and
the rare earth elements) and a literature study on element distribution (Deer et al.,
1966; Wederpohl, 1978; Klein and Hurlbut, 1993). This indicates that the heavy
mineral fraction is the most important “carrier” of the trace elements in the Merelani
area. Thus the movements of the heavy minerals will control the movement of the
trace elements. Some anomalous values of factor scores and factor score ratios for
specific samples plot close to currently and historically mined coloured gemstone

deposits, indicating proximity to the source.

Most of the streams have shallow slopes and are choked by vegetation. These two
facts are seen as the major forces inhibiting stream sediment and therefore trace
element mobility. Thus geochemical dispersion occurs physically due to the flash
floods from March to May relative to the abundant vegetation which chokes the

streams and subsequently inhibits particle mobility.

The above is summarised in Fig.54.
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Fig.53 Graphic representation of the geochemical model for the Merelani soils as described in the text
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Fig.54 Graphic representation of the geochemical model for the stream sediments as described in the text
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7.4.Discussion Final Conclusions and Recommendations

The study has shown that soil and stream sediment sampling followed by whole-rock

XRF analysis is a viable method of exploring for tanzanite.

The study has also shown that the trace elements are only mobilised to a small degree
in both the soils and stream sediments and that trace elements are located in soluble
phases. Therefore partial extraction methods have proven to be inadequate in
tanzanite exploration. The best results were obtained by whole-rock XRF methods. In
the soils the fine and medium fractions of the C-horizon showed the closest correlation
between soil and bedrock. In the stream sediments it was also the fine and medium
fractions which provided the largest V anomaly-background contrasts. Samples
containing V anomalies occurred close to the existing and abandoned tsavorite mines
in the area selected. Thus the study has shown that V is indeed the vital element to

geochemical exploration for additional tanzanite deposits.

The study on the soil samples has revealed that the Graphitic Calc-Silicate Schist 1
and 2 units are indicated by V-anomalies. The GCS 1 unit occurs adjacent to the
Kyanite Gneiss 1 and 2 units, which host the tanzanite mineralisation located in the JW
zone. Thus whole-rock geochemical exploration on soil samples has provided an

indirect method in exploring for tanzanite.

The study on the stream sediment samples has shown that by grouping the trace
elements into factors using factor analysis and by subsequently using calculated factor
ratios and factor scores in conjunction with anomalous V-values, samples could be
identified, which occur close to abandoned and operating tsavorite mines in the
selected area. Thus a potentially viable method for exploring for as yet unknown
tanzanite and tsavorite deposits is provided by the whole-rock geochemical analyses of

stream sediments.

Although the study of both soil samples and stream sediments via a whole-rock XRF
method has proven useful, other methods may prove more effective. This would
include a heavy-mineral exploration technique on both the soils and stream sediments
as well as a technique involving the panning of graphite. Further studies on both these

techniques is therefore warranted and could provide a geochemical exploration
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technique, which could prove most effective in searching for additional tanzanite

deposits. To further refine and constrain any geochemical exploration method, further

research is also required to quantify the length of trace element dispersion trails in the

soil and stream sediments. This will ensure more accurate estimates on the location of

the graphitic calc-silicate units as well as the position of planned exploration drilling

points. In addition, further research into the soil and stream sediment formation since

the last eruption of Neogene lavas (~1,2Ma) is required to better understand trace

element dispersion patterns surrounding the tanzanite deposit.

The conclusions reached in this study are thus:

Whole-rock XRF geochemical techniques are best suited for tanzanite
exploration;

Partial leach ICP methods have proven that the trace elements are
not mobilised hydromorphically. In addition it has also proven that
partial leach methods will prove to be ineffective in exploring for
tanzanite;

V is the key in the geochemical exploration for tanzanite in both the
soils and stream sediments;

In terms of the soils it was the GCS units which displayed the largest
V-anomalies;

In conjunction with the V-anomalies in the stream sediments, the
factor scores and factor ratios have shown that abandoned and
existing gemstone mines can be detected and that the anomalous
samples not associated with any known gemstone mining activities
should be investigated further;

This study has also shown that although whole-rock geochemical
exploration techniques have proven successful in identifying tanzanite
an other gemstone deposits, exploration methods involving heavy
minerals and perhaps graphic may prove to be more effective in

exploring for tanzanite deposits.

Recommendations for further research are:

A study of the mineral geochemistry and parameters governing the
dispersion of heavy minerals in the soil and stream sediments as a

possible alternative exploration tool for tanzanite;
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e A study of the geochemistry and parameters governing the dispersion
of graphite in the soil and stream sediments as a possible alternative
exploration tool for tanzanite;

e A detailed study of the parameters governing the formation of soils,
calcrete and stream sediments in the Merelani area since the last
eruption of neogene lavas (~1,2Ma) to the present with the aim of
better understanding geochemical dispersion patterns;

¢ A study to quantify the exact trace element dispersion distance in soill

solutions as well as of the soil and stream sediment particles.
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