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1 Introduction

The problem of finding edge-disjoint trees in a hypercube e.g. arises in the context of
parallel computing [3]. Independent of applications it is of high aesthetic appeal. A
hypercube of dimension n, denoted by Qn, comprises 2n vertices each corresponding to a
distinct binary string of length n. An edge exists between two vertices if and only if their
corresponding binary strings differ in exactly one position. Since each vertex of Qn has
degree n, the number of edges is n2n−1. A variety of decomposability options derive from
this fact. In the remainder of the introduction we focus on three of them. The first two
have been dealt with before in the literature, the third is the topic of this article.

a) Roskind and Tarjan [7] found a polynomial-time algorithm for computing the span-

ning tree packing number σ(G) of a connected graph G, i.e. the maximum number
of edge-disjoint spanning trees of G. Since each spanning tree of Qn has 2n − 1
edges, one concludes

σ(Qn) ≤

⌊

n2n−1

2n − 1

⌋

=
⌊n

2

⌋

.

It turns out that σ(Qn) = ⌊n
2
⌋. This is an instance of the fact that a variety of

graphs [4] which are regular of degree n have σ(G) = ⌊n
2
⌋. For n even, an explicit

construction of m = n
2

edge-disjoint spanning trees S1, · · · , Sm of Qn is given in
[1]. These Si’s are not isomorphic, and because of m(2n − 1) = n2n−1 − m, there
are m edges left over (which constitute a path in Qn). For n odd, an analogous
construction remains to be found.
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b) So partitioning the edge set of Qn into spanning trees is impossible. What about
a partitioning into isomorphic trees? Surprisingly, for every tree T with n edges,
the edge set of Qn can by [2] be covered by 2n−1 trees all of which isomorphic to T .
This has been extended in [5], [6], and will be followed up in Section 4.

c) As opposed to partitioning Qn into 2n−1 isomorphic trees of size n, in this article
we partition Qn into n trees of size 2n−1, all of which isomorphic to some tree Tn.
Our tree Tn needs to have a very specific shape.

As proposed by one referee, the authors at one time pondered to condense the whole article
to Theorem 2 and its easy (once found) proof. Eventually we opted for a more leisurely
approach which includes two equivalent definitions of Tn and some more historical remarks.
The direct definition of Tn is useful in Theorem 2, whereas the recursive definition underlies
our pictures of T1 up to T5.

2 Construction of Tn

Rather than dealing with 0, 1-strings, it will be more convenient to let the vertex set V (Qn)
be the power set P([n]) of [n] := {1, 2, · · · , n}, with X,X ′ ∈ V (Qn) being adjacent if and
only if their symmetric difference has cardinality one. Before tackling the formal definition
of Tn, let us do some small cases; of course, we must have |V (Tn)| = 2n−1 + 1 for every n.

{1}

∅

T1 =

{1, 2}

{1}

∅

T2 =

{1, 2, 3}

{2}

{1, 2}

{1}

∅

T3 =

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1, 3}
{2, 3}

{1}
{2} {3}

∅

T4 =

The following notation shall be employed throughout the article. Permutations π of
[n] will be written in cycle notation and to the right of the argument, separated by a
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dot. Thus if π = (3, 4)(2, 5, 7) (for some n ≥ 7), then 3 · π = 4 and 7 · π = 2. Each
permutation of [n] induces, in the obvious way, a permutation of the vertex set V (Qn).
Carrying over the described notation, applying the permutation π above to the vertex
(say) X = {1, 2, 4} of Qn yields X ·π := {1, 5, 3}. Furthermore, for {X1, X2, · · · } ⊆ V (Qn)
we set {X1, X2, · · · }·π := {X1·π,X2·π, · · · }. If T is a subgraph of Qn and π a permutation,
then T · π is defined as the subgraph of Qn which has vertex set V (T ) · π and edge set
{{X · π, Y · π} | {X,Y } ∈ E(T )}.

Let us resume the discussion of our trees Tn and put n = 3, π = (1, 2, 3). Then we have

123

3

23

2

∅

T3 · π =

123

1

13

3

∅

T3 · π
2 =

where for simplicity we wrote e.g. 23 instead of {2, 3}. The edge-disjoint decomposition
of Q3 into the isomorphic rooted trees T3, T3 · π, and T3 · π

2 is now apparent:

123

23
13

12

1
2

3

∅

Q3 =

The corresponding decomposition of Q4 into the trees T4 · π
i (0 ≤ i < 4, π := (1, 2, 3, 4))

is already more surprising:
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1234

123 124 134 234

12 13
23

14
24 34

1 2 3 4

∅

Q4 =

Let us now define Tn in general. For any positive integer n, we set V (Tn) = P([n−1])∪[n],
i.e. the vertices are all subsets of [n−1] and the root [n]. It is obvious from this definition
that |V (Tn)| = 2n−1 + 1 for all n. Furthermore, we assign a parent vertex p(v) to every
vertex v 6= [n], namely the set p(v) = v ∪ {x(v)}, where

(1) x(v) = min(N \ v).

In other words, to obtain the parent vertex, we add the smallest positive integer that is
not yet contained in the set. If v 6= [n−1], this is an element of [n−1]; if v = [n−1], then
x(v) = n and p(v) = [n]. Now the edge set E(Tn) consists of all pairs (v, p(v)). The fact
that every set (= vertex) v 6= [n] is adjacent to a unique superset, implies that the graph
(V (Tn), E(Tn)) has no cycles, i.e. is a forest. Since every vertex v 6= [n] is connected to
[n − 1] via p(v), p2(v), · · · , pk(v) = [n − 1], the forest is in fact a tree. The levels (which
consist of all those vertices whose distance from the root is some given integer) correspond
exactly to the subsets of [n − 1] of fixed cardinality.

It should be noted that Tn can be constructed in a recursive manner as well. Consider
the subforest Sn,i of Tn (1 ≤ i ≤ n − 1) that is induced by the vertex set

(2) V (Sn,i) = {v ∈ P([n − 1]) : {i + 1, i + 2, . . . , n − 1} ⊆ v, i 6∈ v} ∪ [n − 1]

which consists of all those sets that contain i + 1, i + 2, . . . , n − 1 but do not contain i,
together with the set [n − 1]. The picture for n = 5 is as follows:
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12345
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134

124
123

34
24

142313
12

4321

∅

T5 =

S5,4
S5,3

S5,2

S5,1

Notice that

(3) S5,4 = T4, S5,3 ≃ T3, S5,2 ≃ T2, S5,1 ≃ T1

Proposition 1: The subforest Sn,i of Tn (1 ≤ i ≤ n − 1) is a tree isomorphic to Ti. It
follows that Tn is isomorphic to the tree that is obtained by gluing T1, · · · , Tn−1 at their
roots and then attaching a new root.

Proof. The second statement of Proposition 1 follows from the first because P([n − 1]) \
{[n− 1]} is by (2) partitioned by the sets V (Sn,1) \ {[n− 1]} up to V (Sn,n−1) \ {[n− 1]}.
As to the first statement, fix n and i ∈ {1, 2, · · · , n − 1}.

Case 1: i = n − 1. As a special case of (2),

(4) V (Sn,n−1) = {v ∈ P([n − 1]) : n − 1 6∈ v} ∪ [n − 1],

and so V (Sn,n−1) coincides with V (Tn−1). Thus Sn,n−1 is not just isomorphic to but
actually equals Tn−1 (cf. (3)).

Case 2: i ∈ {1, 2, · · · , n − 2}. Then

(5) V (Si+1,i) = {v ∈ P([i]) : i 6∈ v} ∪ [i],

and so the map f from V (Sn,i) to V (Si+1,i) defined by

f(v) := v \ {i + 1, i + 2, · · · , n − 1}

is again bijective. If v and v ∪ {x(v)} are adjacent in Sn,i, then their images are f(v)
and f(v) ∪ {x(v)} (since x(v) < i), which are adjacent in Si+1,i. Analogously, adjacent
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vertices w and w ∪ {x(w)} in Si+1,i yield adjacent vertices f−1(w) and f−1(w) ∪ {x(w)}
in Sn,i. Hence Sn,i ≃ Si+1,i ≃ Ti where the second isomorphism follows by Case 1. �

We mention that the recursive construction was the way the second author discovered
Tn. The equivalent view in terms of parent vertices, which enabled to properly prove the
speculated theorem below, is due to the first author.

3 Main result

Our main result states that the edges of the n-dimensional hypercube Qn can be parti-
tioned into isomorphic copies of Tn:

Theorem 2: Let π = (1, 2, · · · , n). If {X,Y } ∈ E(Tn), then it follows that {X,Y } 6∈
E(Tn · π

i) for all 0 < i < n. Therefore, the edge sets of the trees Tn, Tn · π, · · · , Tn · π
n−1

form a partition of the edge set of Qn.

Proof: Let i be an integer with 0 < i < n. We show the following: if a set X belongs to
the vertex sets of both Tn and Tn · πi, then the parent vertices of X in Tn and Tn · πi are
distinct. Since parent vertices are unique, this implies immediately that Tn and Tn · πi

have no common edges. The vertex set of Tn · πi is precisely

(6) (P([n − 1]) ∪ [n]) · πi = P ([n] \ {i}) ∪ [n].

Hence, a set X can only belong to the vertex sets of both Tn and Tn · πi if i, n 6∈ X or if
X = [n]. Since X = [n] has no parent vertex, it suffices to consider the case that i, n 6∈ X.
Let X ∪ {x} and X ∪ {y} be the parent vertices of X in Tn and Tn · πi respectively.

Since i 6∈ X, we have 1 ≤ x ≤ i by the definition of Tn. Let Z ∈ V (Tn) be the preimage
of X ∈ V (Tn · πi). From n 6∈ X follows (n − i) 6∈ Z, and so the parent vertex Z ∪ {z} of
Z satisfies z ∈ {1, 2, · · · , n − i}. But this forces y = z · πi ∈ {i + 1, · · · , n}. Altogether,
this shows that x 6= y, and so the parents X ∪ {x} and X ∪ {y} are distinct, as claimed.

Therefore, the edge sets of Tn and Tn · πi are disjoint for all 0 < i < n. This also implies
that the edge sets of Tn · π

i and Tn · π
j are disjoint for all 0 ≤ i < j < n: if they were not

disjoint, the edge sets of Tn and Tn · πj−i would not be disjoint either, a contradiction.

Since Tn has 2n−1 edges and the isomorphic copies Tn, Tn · π, · · · , Tn · πn−1 are pairwise
edge-disjoint by the above argument, it follows immediately that they partition the edge
set of Qn that comprises of n2n−1 edges. �
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4 Related matters

Let E be a subset of E(Qn). Following Ramras call E a fundamental set for Qn with group
G , if G is a subgroup of Aut(Qn) such that {g(E)| g ∈ G} is an edge decomposition of Qn.
It is shown in [5] that if |E| = n and the graph induced by E is connected with at most
one cycle (e.g. a tree), then E is a fundamental set for Qn. Results about fundamental
2n-element sets are contained in [6]. Our tree Tn fits into this framework in that E(Tn)
is a fundamental 2n−1-set for the group G ⊆ Aut(Qn) that is induced by the cyclic group
〈π〉 ⊆ Sn.

In another vein, every rooted tree T (e.g. T = Tn) becomes a unique partially ordered
set (T,≤) when the root is postulated as largest element. It is an open problem to find
necessary or sufficient conditions for a rooted tree (T,≤) to be cover preserving order
embeddable into (Qn,⊆). That is, we want a map φ : T → Qn that satisfies

(7) (∀x, y ∈ T ) x ≤ y ⇔ φ(x) ⊆ φ(y)

(8) (∀x, y ∈ T ) x ≺ y ⇒ φ(x) ≺ φ(y)

Here x ≺ y means that x < y and (x < z ≤ y ⇒ z = y). We mention that for 0, 1-posets
(P,≤) the problem is settled in [8] in terms of the chromatic number of some auxiliary
graph. Notice that e.g. (T4,≤) is not order embedded in Q4: while {2} ⊆ {2, 3} in Q4,
the corresponding vertices are not comparable in (T4,≤).
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