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ABSTRACT 

In recent years there has been an increase in obesity and diabetes mellitus (DM). 

These conditions have for a long time been associated with infertility. Obesity is 

characterized by high levels of circulating leptin and cytokines as well as insulin 

resistance. Type I DM is associated with low or no insulin whereas, Type II DM is 

characterised by insulin resistance. As the prevalence of obesity and DM continues 

to rise, it is likely that the incidence of infertility associated with these pathological 

conditions will likewise increase. The effects of insulin and leptin on male 

reproductive function have been reported on the endocrine and spermatogenesis 

level, but their effects on cellular level of human ejaculated spermatozoa are yet to 

be elucidated. 

 

This study presents data on the role of insulin and leptin on human ejaculated 

spermatozoa and their interaction with cytokines and nitric oxide. In the first part of 

the study, we established the suitable concentrations of glucose, insulin and leptin 

that could be administered to human spermatozoa in vitro.  Glucose concentration of 

5.6 mM was chosen as the suitable concentration to be administered to human 

spermatozoa because it has previously been reported in the literature; furthermore, it 

is within the range of the physiological glucose levels found in the blood of fasting 

humans. Insulin and leptin concentrations of 10 µIU and 10 nmol were chosen 

respectively because they gave much improved sperm function and this was within 

the range of insulin and leptin levels previously measured in human ejaculated 

spermatozoa. This was followed by investigating the signalling pathway of insulin and 

its beneficial effects on human spermatozoa function. Endogenous insulin secretion 

from human ejaculated spermatozoa was blocked by nifedipine and its receptor 
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tyrosine phosphorylation effects were inhibited by erbstatin while phosphatidylinositol 

3-kinase (PI3K) phosphorylation activity was inhibited by wortmannin. Exogenous 

insulin administration significantly increased human sperm motility parameters as 

well as the sperm ability to acrosome react. The inhibition of endogenous insulin 

release from spermatozoa as well as the inhibition of the insulin receptor substrate 

(IRS) tyrosine phosphorylation significantly decreased motility parameters and the 

ability of spermatozoa to acrosome react.   

 

The study also investigated the effects of insulin and leptin on human sperm motility, 

viability, acrosome reaction and nitric oxide (NO) production. Both insulin and leptin 

significantly increased sperm motility parameters, acrosome reaction and NO 

production. The NO production induced by insulin and leptin was via PI3K signalling 

as evidenced by a reduction in NO levels when PI3K activity was inhibited by 

wortmannin. To investigate whether insulin and leptin could improve motility 

parameters of asthernozoospermic and teratozoospermic spermatozoa, the 

spermatozoa were separated into two fractions by means of a double density 

gradient technique. The gradient system was able to separate spermatozoa into high 

morphologically abnormal and less motile spermatozoa similar to that of 

asthernozoospermic and teratozoospermic patients as well as a more motile fraction. 

Insulin and leptin significantly increased the motility parameters of spermatozoa from 

the immature and less motile fraction.  

 

The fourth part of the study was aimed at investigating the effects of the cytokines, 

tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), on human sperm 

motility, viability, acrosome reaction and NO production. The study shows that TNF-α 

and IL-6 significantly reduced motility parameters and acrosome reaction in a dose- 
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and time-dependent manner. These cytokines were also shown to significantly 

increase NO production from human spermatozoa. The decreased motility 

parameters induced by these cytokines could be attributed to their ability to induce 

excessive NO production. It is not yet clear how they inhibit spermatozoa to undergo 

the acrosome reaction.  

 

The fifth part of the study was to investigate the expression and localization of 

glucose transporter 8 (GLUT8) in human spermatozoa. This study shows that GLUT8 

is constitutively expressed and located in the midpiece region of the human 

spermatozoa. The study also showed that stimulating spermatozoa with insulin led to 

an increase in GLUT8 expression as well as translocation to the acrosomal region. 

 

In the last part of the study we wanted to investigate why the increase in NO 

generation by spermatozoa due to insulin and leptin stimulation is accompanied with 

increased sperm function whereas NO increased due to TNF-α and IL-6 stimulation 

is accompanied with decreased sperm function. We observed that TNF-α and IL-6 

not only increased NO production but also ROS production. This study speculates 

that the decrease in sperm motility and acrosome reaction when TNF-α and IL-6 

were administered was due to the concomitant high increase in NO and ROS they 

induced.  

 

In conclusion, this study has established in vitro beneficial effects of insulin and leptin 

in normozoospermic and asthernozoospermic human sperm function. These 

hormones influence sperm function via the PI3K signalling pathway in two ways. 

Firstly, by increasing GLUT8 expression and translocation thereby possibly 
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increasing glucose uptake and metabolism and secondly, by increasing NO 

production. The study has also established that TNF-α and IL-6 have detrimental 

effects on human spermatozoa in a dose and time dependent manner. These effects 

are mediated via their ability to stimulate both NO and ROS production in human 

spermatozoa. This study reports that GLUT8 is expressed in the midpiece region of 

human spermatozoa and that insulin stimulation upgrades its expression and leads to 

its translocation to the acrosomal region.  

 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 



 6

OPSOMMING 

Oor die afgelope jare was daar `n toename in obesiteit en diabetes mellitus (DM). 

Hierdie toestande word reeds vir ’n geruime tyd geassosieer met onvrugbaarheid. 

Obesiteit word gekenmerk deur verhoogde sirkulerende vlakke van leptiene en 

sitokiene sowel as insulien weerstandigheid. Tipe I DM word geassosieer met lae of 

geen insulien terwyl Tipe II DM gekenmerk word deur insulien weerstandigheid. Soos 

wat die voorkoms van obesiteit en DM toeneem, is dit waarskynlik dat die insidensie 

van onvrugbaarheid wat met hierdie patologiese toestande geassosieer word, 

gevolglik ook sal toeneem. Die effek van insulien en leptien op die manlike 

voortplantingsfunksie is alreeds aangetoon op endokriene en spermatogenese vlak, 

maar hul effekte op sellulêre vlak van menslike geëjakuleerde spermatosoë is nog 

onduidelik. 

 

Die studie vertoon data oor die rol van insulien en leptien op die menslike 

geëjakuleerde spermatosoë en hul interaksie met sitokiene en stikstofoksied (NO). In 

die eerste gedeelte van die studie, het ons ’n toepaslike konsentrasie van insulien en 

leptien bepaal wat aan menslike spermatosoë in vitro toegedien kan word. Glukose 

konsentrasies van 5,6 mM is bepaal as die gepaste konsentrasie om aan menslike 

spermatosoë toe te dien, omdat dit beter resultate tot gevolg het; verder is dit 

vergelykbaar met fisiologiese glukose vlakke in die bloed van `n vastende persoon. 

Insulien en leptien konsentrasies is op 10 µIU en 10 nm onderskeidelik vasgestel, 

aangesien dit tot beter resultate gelei het, en omdat dit vergelykbaar was met 

insulien en leptien vlakke wat reeds voorheen in menslike geëjakuleerde 

spermatosoë gemeet is. Dit was gevolg deur `n ondersoek na die insulien 

seintransduksie pad en sy voordelige effekte op menslike spermatosoë funksie. 
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Endogene insulien afskeiding deur menslike geëjakuleerde spermatosoë was deur 

nifedipien geïnhibeer en sy reseptor tirosien fosforilasie effekte was deur erbstatin 

geïnhibeer terwyl fosfatidielinositol 3-kinase (PI3K) fosforilasie deur wortmannin 

geïnhibeer is. Eksogene insulien toediening het menslike sperm-motiliteit parameters 

betekenisvol laat toeneem asook die vermoë van sperme om die akrosoomreaksie te 

ondergaan. Die inhibisie van endogene insulien afskeiding deur spermatosoë sowel 

as die inhibisie van die insulien reseptor substraat (IRS) tirosien fosforilasie het die 

motiliteit parameters en die akrosoomreaksievermoë van spermatosoë verlaag. 

 

Die studie het ook die effekte van insulien en leptien op menslike sperm-motiliteit,  

-lewensvatbaarheid, -akrosoomreaksie en -NO produksie nagevors. Beide insulien 

en leptien het sperm-motiliteit parameters, -akrosoomreaksie en -NO produksie 

betekenisvol verhoog. NO produksie is deur insulien en leptien via PI3K 

seintransduksie geïnduseer, soos bewys deur die verlaging waargeneem in NO 

vlakke toe PI3K aktiwiteit deur wortmannin geïnhibeer was. Om vas te stel of insulien 

en leptien die motiliteit parameters van asthenozoospermiese en teratozoospermiese 

spermatosoë kon verbeter, het ons spermatosoë in twee fraksies met ’n dubbel 

digtheid gradiënt geskei. Die gradiënt sisteem was daartoe instaat om die 

spermatosoë in ’n onvolwasse, (morfologies abnormaal en minder motiel - soortgelyk 

aan dié van asthenozoospermiese en teratozoospermiese pasiënte), sowel as ’n 

volwasse meer motiele fraksie te skei. Insulien en leptien het die motiliteit parameters 

van spermatosoë van die onvolwasse en minder motiele fraksie verhoog. 

 

Die vierde gedeelte van die studie was daarop gemik om die effekte van die sitokiene 

tumor nekrose faktor alfa (TNF-α) en interleukin-6 (IL-6) op menslike sperm-motiliteit, 
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-lewensvatbaarheid, -akrosoomreaksie en -NO produksie, te ondersoek. Die studie 

het getoon dat TNF-α en IL-6 motiliteit parameters en akrosoomreaksie in ’n tyd- en 

dosis-afhanklike wyse betekenisvol verlaag het. Hierdie sitokiene was ook in staat 

om NO produksie in menslike spermatosoë te verhoog. Die verlaging in motiliteit 

parameters wat deur hierdie sitokiene geïnduseer is, kan toegeskryf word aan hul 

vermoë om die produksie van oormatige hoeveelhede NO te stimuleer. Dit is nog nie 

duidelik hoe hulle die akrosoomreaksie in spermatosoë kan inhibeer nie.  

 

Die vyfde gedeelte van die studie het dit ten doel gehad om die uitdrukking en 

lokalisering van die glukose transporter 8 (GLUT8) in menslike spermatosoë te 

ondersoek. Hierdie studie kon aantoon dat GLUT8 konstitutief uitgedruk is en in die 

middelstuk van die menslike spermatosoë voorkom. Die studie bewys ook dat 

stimulering van die spermatosoë met insulien tot `n toename in GLUT8 uitdrukking 

sowel as translokasie na die akrosomale area, lei. 

 

In die finale gedeelte van die studie wou ons ondersoek waarom die toename in NO 

produksie in spermatosoë (as gevolg van insulien en leptien stimulasie) deur `n 

toename in spermfunksie gekenmerk word, terwyl die toename in NO produksie (as 

gevolg van TNF-α en IL-6 stimulasie) deur ’n afname in spermfunksie gekenmerk 

word. Ons het waargeneem dat TNF-α en IL-6 nie alleen NO produksie nie, maar ook 

reaktiewe suurstof spesies (ROS) produksie verhoog het. Ons vermoed dat die 

afname in sperm motiliteit en akrosoomreaksie met TNF-α en IL-6 toediening, die 

gevolg van die gelyktydige verhoging in NO en ROS was. 
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In gevolgtrekking kan ons sê dat hierdie studie die voordelige in vitro effekte van 

insulien en leptien op asthenozoospermiese en teratozoospermiese menslike 

spermfunksie aangetoon het. Hierdie hormone beïnvloed spermfunksie via die PI3K 

seintransduksie pad op twee maniere. Eerstens, deur `n toename in GLUT8 

uitdrukking en translokasie, met die gevolg dat glukose opname en metabolisme 

moontlik verhoog is, en tweedens, deur die toename in NO produksie. Die studie het 

ook vasgestel dat TNF-α en IL-6 nadelige effekte op menslike spermatosoë in `n 

dosis- en tyd-afhanklike wyse het. Hierdie effekte vind plaas a.g.v. hul vermoë om 

beide NO en ROS produksie in menslike spermatosoë te induseer. Die studie toon 

aan dat GLUT8 uitdrukking in die middelstuk van die menslike spermatosoon 

voorkom en dat insulien stimulasie GLUT8 uitdrukking opreguleer en tot translokasie 

na die akrosomale area lei. 
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H+  = Hydrogen cation 

HCO3
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L-NAME = NW-nitro-L-arginine methyl ester 
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ROO-  = Peroxyl  
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ZP  = Zona pellucida 
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CHAPTER 1: INTRODUCTION AND STATEMENT OF THE PROBLEM 

 

1.1 Introduction  

Until recently, the relationship between obesity and male infertility has been largely 

ignored (Hedly et al., 2004; Mokdad et al., 1999). This recent surge in interest in 

obesity has brought to light the detrimental effects of obesity on people’s health in 

general, as well as on the reproductive function in particular. Obesity which leads to a 

condition known as the metabolic syndrome is associated with pathologies such as 

insulin resistance which culminates into Type 2 diabetes mellitus (DM) (Kasturi et al., 

2008), hyperleptinemia (Sahu, 2004), high levels of circulating cytokines (Marcos-

Gόmez et al., 2008), dyslipidemia and hypertension (Kasturi et al., 2008) among 

others. Population-based studies have shown an elevated risk for subfertility among 

couples in which the male partner is obese and an increased likelihood of abnormal 

semen parameters among obese men (Hammoud et al., 2008).  

 

DM is characterized by poor glucose control leading to hyperglycemia. There are two 

types of DM: Type I DM, also known as insulin-dependent diabetes mellitus (IDDM), 

is a condition in which there is an absolute or relative lack of insulin due to 

autoimmune destruction of the insulin secreting β-cells in the islets of Langerhans in 

the pancreas; Type II DM, also known as non-insulin dependent diabetes mellitus 

(NIDDM), is characterized by cellular insulin insensitivity despite sufficient insulin 

levels (Atkinson and Maclaren, 1994). Both Type I and II DM are well recognized as 

a cause of sexual dysfunction, which in turn also contributes to infertility (Agbaje et 

al., 2007). DM is thought to affect the male reproductive function at multiple levels 

due to its effects on the endocrine control of the spermatogenesis process, 
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spermatogenesis itself, as well as impairing penile erection and ejaculation (Sexton 

and Jarow, 1997). Many studies involving diabetic animal models have demonstrated 

that there is an impairment of sperm quality (Amaral et al., 2006; Scarano et al., 

2006) which leads to a reduction in fertility (Murray et al., 1983; Cameron et al., 1990; 

Ballester et al., 2004; Scarano et al., 2006). Furthermore, it has been reported that 

men affected with IDDM have sperm with severe structural defects, significantly lower 

motility (Baccetti et al., 2002) and decreased ability to penetrate zona free hamster 

eggs (Shrivastav et al., 1989). 

 

Obesity is characterized by elevated leptin levels, whereas DM is characterized by 

decreased insulin levels or insulin insensitivity. There is a large body of evidence 

suggesting that insulin and leptin play a role in the physiology of human reproduction. 

Insulin and leptin deficiencies have been shown to negatively affect reproductive 

function in both human and animal models. These hormones are thought to affect 

male reproduction at multiple levels due to their effects on endocrine control of 

spermatogenesis and spermatogenesis itself. The discovery that ejaculated human 

spermatozoa secrete their own insulin and leptin opened a new and interesting field 

in reproductive biology. It has therefore become imperative to investigate the role of 

these hormones in ejaculated human spermatozoa.  

 

1.2 Hypothesis 

We hypothesize that insulin and leptin play a role in enhancing the fertilization 

capability of human spermatozoa and that this may be mediated through the increase 

in glucose uptake as well as increase in NO production. 
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1.3 Objectives of the study  

The general objective of this study is to present data that will shed more light and 

understand better the factors that might be involved in preserving the fertilizing 

capacity of ejaculated spermatozoa. Specifically, this study was aimed at 

investigating: 

(1) The in vitro effects of insulin and leptin on ejaculated human sperm motility 

parameters, viability, acrosome reaction and nitric oxide generation.  

(2) The effects of insulin and leptin on asthenozoospermic and teratozoospermic 

spermatozoa’s motility parameters.  

(3) The expression and localization of glucose transporter 8 (GLUT8) in human 

spermatozoa and how insulin affects its expression and localization.  

(4) The effects of cytokines (TNF-α and IL-6) on human sperm motility, viability, 

acrosome reaction and nitric oxide production and the mechanisms involved.  

 

1.4 Plan of study         

As a background to the study, a broad overview of the current literature on insulin, 

leptin, cytokines and nitric oxide and how they affect male reproduction is provided in 

chapter two. This is followed by the basic materials and methods in chapter three 

where detailed protocols of how the experiments were conducted are outlined.  

 

The fourth chapter comprises of the results obtained in this study. They are 

presented in the form of tables, graphs and pictures. The fifth chapter is the 

discussion, where the results are interpreted, explained and discussed. The appendix 

consists of all publications that have resulted from this study.  
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1.5 Conclusion    

The increasing prevalence of obesity and DM requires a vigilant awareness of their 

effects on fertility, better understanding of the underlying mechanisms, as well as 

avenues for mitigation or treatment. Therefore, understanding how insulin, leptin and 

cytokines function on the cellular level of human spermatozoa would go a long way in 

achieving this.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Insulin 

2.1.1 Introduction 

Insulin is the most potent anabolic hormone and is essential for appropriate tissue 

development, growth, and maintenance of whole-body glucose homeostasis (Pessin 

and Saltiel, 2000). This hormone is secreted by the β-cells of the pancreatic islets of 

Langerhans in response to increased circulating levels of glucose and amino acids 

after a meal. Insulin regulates glucose homeostasis at many sites, by reducing 

hepatic glucose output (via decreased gluconeogenesis and glycogenolysis) and 

increasing the rate of glucose uptake (Saltiel and Kahn, 2001). In muscle and fat 

cells, the clearance of circulating glucose depends on the insulin-stimulated 

translocation of the GLUT4 isoform to the cell membrane (Shulman, 2000).  

 

Insulin also affects lipid metabolism, increased lipid synthesis in the liver and fat 

cells, and attenuating fatty acid release from triglycerides in fat and muscle tissue 

(Pessin and Saltiel, 2000). Decreased secretion of insulin or lack of insulin secretion 

results in Type 1 DM whereas, the resistance to its actions, results in Type 2 DM, a 

devastating disease that is reaching epidemic proportions (Saltiel, 2001). Even in the 

absence of diabetes, insulin resistance is often associated with central obesity, 

hypertension, polycystic ovarian syndrome, dyslipidemia and atherosclerosis (Kasturi 

et al., 2008).  

 

At the cellular level, insulin action is characterized by diverse affects, including 

changes in vesicle trafficking, stimulation of protein kinases and phosphatases, 
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promotion of cellular growth and differentiation and activation or repression of 

transcription (Pessin and Saltiel, 2000). This complexity suggests that insulin action 

must involve multiple signaling pathways that diverge at or near the activation of its 

tyrosine kinase receptor.  

 

2.1.2 The insulin receptor 

Insulin action is initiated through the binding to and activation of its cell-surface 

receptor. The receptor is a tyrosine kinase that catalyses the phosphorylation of 

several intracellular substrates, including the insulin receptor substrate (IRS) proteins 

(White, 1998), Grb 2-associated binder 1 (GAB-1) (Holgado-Madruga et al., 1996), 

Shc (Sasaoka et al., 1994), adapter protein with Pleckstrin Homology and Src 

Homology 2 domains (APS) (Moodie et at., 1999), p60dok (Noguchi et al., 1999), 

signal regulatory proteins (SIRPs) (Khatitonenkov et al., 1997) and c-Cbl (Ribon and 

Saltiel, 1997) (Fig 1). Each of these substrates recruits a distinct subset of signaling 

proteins containing Src homology 2 (SH2) domains, which interact specifically with 

sequences surrounding the phosphotyrosine residue.  

 

 



 32

 

 

Figure 1. Substrates of the insulin receptor. The insulin receptor is a tyrosine kinase 

that undergoes autophosphorylation upon binding insulin, resulting in increased 

kinase activity of intracellular substrates. Several substrates have been identified, 

including the insulin receptor substrate proteins (IRS1–IRS4), Shc, Gab-1, Cbl and 

APS. Upon tyrosine phosphorylation (Y-P), each of these substrates interacts with a 

series of signaling proteins containing Src-homology 2 (SH2) domains, leading to 

initiation of different signaling pathways. Each of these pathways plays a separate 

role in the different cellular effects of insulin (Modified from Satiel and Pessin, 2002). 

 

2.1.3 Insulin signaling 

A key action of insulin is to stimulate glucose uptake into cells by inducing 

translocation of the GLUT4 from intracellular storage to the plasma membrane (Czeh 

and Coevera, 1999). Several studies have suggested that phosphatidylinositol 3-

Shp-2 

Gab-1 Y-P 

Grb2 

Shc 

Y-P 

PI3-K 

IRS1-4 

CrkII 

c-Cbl 

Y-P 

Y-P 

Y-P 

APS CAP 

MAP kinase 
Pathway 

Lipid raft 

Insulin 
receptor 

Akt 
pat



 33

kinase (PI3-K) and protein kinase B (PKB/Akt) are known to play a role in GLUT4 

translocation (Lizcano and Alessi, 2002; Pessin and Saltiel, 2000). 

 

As illustrated in Figure 2, at basal state, GLUT4 slowly recycles between the plasma 

membrane and vesicular compartments within the cell, where most of the GLUT4 

resides. Insulin stimulates the translocation of a pool of GLUT4 to the plasma 

membrane through a process of targeted exocytosis (Satoh, 1993; Jhun et al., 1992). 

At the same time, the rate of GLUT4 endocytosis is somewhat attenuated (Yang and 

Holman, 1993). The large increase in GLUT4 exocytosis coupled with a smaller 

decrease in the rate of plasma membrane internalization results in a dramatic 

accumulation of plasma-membrane-localized GLUT4 protein. Thus, the rate of 

glucose transport into fat and muscle cells is primarily governed by the concentration 

of GLUT4 at the cell surface and the time for which the protein is maintained at the 

site.  

 

Although there is overwhelming evidence showing that GLUT4 exists in specialized 

vesicles sequestered within the cell, the precise intracellular location and trafficking 

pathways of these compartments remain unclear. It is generally accepted that 

GLUT4 is localized in tubulovesicular and vesicular structures that are biochemically 

distinct from the vesicles of the recycling endosomal network. Furthermore, the 

GLUT4 compartment is enriched in the SNARE (soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor), vesicle-associated membrane protein 2 (VAMP2) 

but not in the related VAMP3/cellubrevin isoform, which is present in recycling 

endosomes (Pessin et al., 1999). This specific compartmentalization of GLUT4 

provides a mechanism by which insulin can stimulate robust translocation of GLUT4 



 34

to the plasma membrane while only mildly stimulating the translocation of other 

recycling proteins. Although the mechanism of intracellular tethering of the GLUT4 

vesicle in resting cells is unknown, sequestration of GLUT4 depends on C-terminal 

sequences in the protein (Haney et al., 1995; Marsh et al., 1995). The GLUT4 

compartment also contains the insulin-responsive aminopeptidase (IRAP) (Keller et 

al., 1995). Overproduction of the N-terminus of GLUT4, results in GLUT4 localization 

to the plasma membrane (Waters et al., 1997). These results suggest that both the 

C-terminus of GLUT4 and the N-terminus of IRAP contribute to the cytoplasmic 

sequestration of GLUT4 vesicles.  

 

 

Figure 2. A model for diverse signaling pathways in insulin action. Two signaling 

pathways are required for the translocation of the glucose transporter GLUT4 by 

insulin in fat and muscle cells. Tyrosine phosphorylation (Y-P) of the insulin receptor 

substrate (IRS) proteins after insulin stimulation leads to an interaction with and 
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subsequent activation of the Src-homology 2 (SH2)-domain-containing protein 

phosphatidylinositol 3-kinase (PI3-K), producing the polyphosphoinositide 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which in turn interacts with and 

localizes protein kinases such as phosphoinositide-dependent kinase 1 (PDK1) 

(Adopted from Satiel and Pessin, 2002). 

 

2.1.4 Effects of insulin on male reproductive function 

The importance of insulin has been demonstrated in male rat reproduction by using 

streptozotocin, to deplete the β-cells of the pancreas, and thereby inducing IDDM 

(Murray et al., 1983). The deficiency of insulin in these rats led to a decrease in 

Leydig cell number as well as an impairment in Leydig cell function. This 

consequently translated to a decrease in androgen biosynthesis and serum 

testosterone levels.  

 

The impaired Leydig cell function and subsequent decrease in testosterone in IDDM 

could be explained by the absence of the direct stimulatory effects of insulin on 

Leydig cells, as well as to an insulin-dependent decrease in follicle stimulating 

hormone (FSH) and luteinizing hormone (LH) levels (Wang et al., 1998).  

 

It was also reported that insulin plays a central role in the regulation of the 

hypothalamic-pituitary-testicular axis by the reduction in secretion of LH and FSH in 

diabetic men as well as in knockout mice lacking the insulin receptor in the 

hypothalamus (Baccetti et al., 2002).  Both the diabetic men and the knockout mice 

had notably impaired spermatogenesis, increased germ cell depletion and Sertoli cell 

vacuolization (Brüning et al., 2000; Baccetti et al., 2002). Furthermore, men affected 
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with IDDM have sperm with severe structural defects, significantly lower motility 

(Bacetti et al., 2002) and lower ability to penetrate zona free hamster eggs 

(Shrivastav et al., 1989). Figure 3 shows that insulin is required to stimulate the 

hypothalamus to release gonadotrophin releasing hormone (GnRH) which stimulates 

the release of LH and FSH from the anterior pituitary gland.  It has been reported that 

higher insulin concentrations, as found in NIDDM, lead to hypogonadism (Barrett-

Connor et al., 1990) as well as decreased serum testosterone levels (Dhindsa et al., 

2004). Furthermore, Pitteloud and co-workers (2005) also reported that insulin 

resistance lead to a decrease in testosterone secretion at testicular level (Leydig cell) 

that was not due to changes in hypothalamic or pituitary function. These findings 

point to a direct action of insulin at gonadal level (see Figure 3). 

 



 37

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The interaction of insulin, leptin and the endocrine control of 

spermatogenesis. Diabetes mellitus and obesity have an influence on circulating 

insulin and leptin levels respectively. Both insulin and leptin affect the secretion of 

gonadotrophin releasing hormone (GnRH) from the hypothalamus which 

subsequently orchestrate the secretion of luteinizing hormone (LH) and follicle 

stimulating hormone (FSH) from the anterior pituitary gland. These hormones in turn 

affect gonadal function and spermatogenesis. Both insulin and leptin can exert 

direct effects on the testes as well.  

 

Morphological abnormalities have been reported in IDDM human testicular biopsies. 

These abnormalities included increasing tubule-wall thickness, germ cell depletion 

and Sertoli cell vacuolization (Cameron et al., 1985). Morphological and functional 

spermatozoal abnormalities that have been observed in diabetic animal models 
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appear to be reversible with the administration of insulin (Howland and Zebrowski, 

1976; Seethalakshmi et al., 1987). A significantly lower sperm count, and epididymal 

sperm motility was reported in diabetic rats in comparison to controls (Seethalakshmi 

et al., 1987). In vitro insulin administration to these retrieved epididymal spermatozoa 

restored their motility to that of normal levels, suggesting a direct effect on 

spermatozoa due to defective carbohydrate metabolism. Studies have reported that 

insulin as well as insulin-like growth factor I (IGF-I) and IGF-II promote the 

differentiation of spermatozoa into primary spermatocytes by binding to the IGF-I 

receptor (Nakayama et al., 1999). There is also evidence that both the sperm 

membrane and the acrosome represent cytological targets for insulin (Silvestroni et 

al., 1992).  

 

2.1.5 Insulin and human spermatozoa 

In adult mammals, insulin is thought to be produced only in the β-cells in the 

pancreas (Throsby et al., 1998). Insulin has been shown to play a central role in the 

regulation of gonadal function; however, its significance in male fertility is not 

completely understood and properly elucidated (Aquila et al., 2005).  

 

Recently studies have demonstrated that insulin is expressed in and secreted by 

human ejaculated spermatozoa. Both, transcriptions for insulin as well as the actual 

protein were detected in ejaculated human sperm (Aquila et al., 2005). It was found 

that capacitated spermatozoa secreted more insulin than noncapacitated 

spermatozoa (Aquila et al., 2005) thereby suggesting a possible role for insulin in 

sperm capacitation.   
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2.1.6 GLUT8 as a glucose transporter in human spermatozoa 

Glucose uptake and metabolism are essential for proliferation and survival of cells 

and is usually carried out through glucose transporters. It is largely known that the 

fertility of germ cells is directly associated with the glucose metabolism of these cells 

and that spermatogenesis is disturbed in IDDM, thereby causing infertility (Bacetti et 

al., 2002; Shrivastav et al., 1989).  

 

It has been assumed previously that the major sugar transporter of the sperm cell is 

the GLUT5 (Burant et al., 1992). GLUT5 is a specific fructose transporter (Kane et 

al., 1997) and does not transport glucose to a significant extent. Because GLUT5 

was not detected in rat testis, it was suggested that other sugar transporters, 

presumably the GLUT3, catalyze the fuel supply of the rat sperm cell (Burant and 

Davidson, 1994a).  

 

In recent years, a novel 447-amino-acid glucose transporter protein, GLUT8 was 

discovered (Ibberson et al., 2000; Doege et al., 2000; Carayannopoulos et al., 2000). 

GLUT8 is expressed to some extent in insulin-sensitive tissues, e.g., brain, adrenal 

gland, spleen, adipose tissue, muscle, heart, and liver (Ibberson et al., 2000; Doege 

et al., 2000; Reagan et al., 2001). GLUT8 mRNA expression is greatest in the 

testicular tissue and its expression was linked to circulating gonadotrophin levels 

(Doege et al., 2000; Scheepers et al., 2001).  

 

GLUT8 was found to be specifically located in the head of mouse and human 

spermatozoa and that it is predominantly located within the head of mature sperm 

cells in the region of the acrosome (Schürmann et al., 2002). Coincidentally, insulin 
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has also been reported to be predominant in these areas of human spermatozoa 

(Silvestroni et al., 1992).  The intracellular localization of GLUT8 is similar to that of 

insulin-sensitive GLUT4, and it has indeed been described that insulin could produce 

a translocation of GLUT8 to the plasma membrane of blastocysts (Carayannopoulos 

et al., 2000). In addition, Lisinski et al. (2001) showed that GLUT8 translocates 

between internal membranes and the plasma membrane in rat adipocytes and 

COS-7 cells.  

 

2.2 Leptin 

2.2.1 Introduction 

Leptin is a 16-kDa protein that is produced mainly by adipose tissue and is encoded 

by the ob gene (Zhang et al., 1994), but is also produced by the placenta (Masuzaki 

et al., 1997), stomach (Bado et al., 1998) and skeletal muscles (Wang et al., 1998). 

The tertiary structure of leptin resembles that of cytokines and lactogenic hormones 

(Zabeau et al., 2003). Leptin is best known as a regulator of food intake and energy 

expenditure via hypothalamic-mediated effects (Schwartz et al., 1999). Recent 

studies have demonstrated that leptin has many additional effects, often as a 

consequence of direct peripheral actions. These include angiogenesis, 

hematopoiesis, lipid and carbohydrate metabolism and effects on the reproductive, 

cardiovascular and immune systems (Wauters et al., 2000; Caprio et al., 2001) as 

demonstrated in Figure 4. Thus, changes in plasma leptin concentrations have 

important and wide-ranging physiological implications.  
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Figure 4. Schematic representation of the actions of leptin. Leptin acts either directly 

or by activating specific centers in the central nervous system to decrease food 

intake, increase energy expenditure, influence glucose and fat metabolism, and alter 

neuroendocrine function (Modified from Mantzoros CS, 1999).  

 

 

2.2.2 Regulation of serum leptin 

Leptin levels increase exponentially with increasing fat mass (Sahu, 2004; Lonnqvist 

et al., 1995; Considine et al., 1996). Its levels reflect not only the amount of fat 

stored, but also energy imbalance. Prolonged fasting substantially decreases leptin 

levels, whereas over feeding lead to increases in leptin levels (Tritos and Mantzoros, 

1997; Flier, 1997). Diet composition, such as the intake of micronutrients such as 
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zinc, and hormonal factors also regulate leptin levels (Jenkins et al., 1997). 

Prolonged insulin infusions or supraphysiological insulin levels markedly increase 

circulating leptin levels (Caro et al., 1996; Ryan and Elahi, 1996). Glucocorticoids 

have been shown to increase leptin production in vitro (Bjorbæck and Kahn, 2004; 

Wabitsch et al., 1996), while exogenously administered glucocorticoids produce a 

sustained increase in circulating leptin levels in humans (Miell at al., 1996; Larsson 

and Ahren, 1996). Several cytokines such as tumor necrosis factor-α (TNF-α), 

interleukin-1 (IL-1) and IL-6, also alter leptin mRNA expression and circulating levels 

(Zumbach et al., 1997; Grunfeld et al., 1996)  as illustrated in Figure 5. 
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Figure 5. Schematic representation of feedback loops involving leptin. Leptin 

circulates in the serum either in free form or bound to leptin-binding proteins, 

activates receptors in the hypothalamus, and alters expression of several 

neuropeptides; these in turn decrease appetite, increase energy expenditure by 

altering sympathetic and parasympathetic tone, and alter neuroendocrine function. 

Increase in leptin levels activate the thyroid, growth hormone, and gonadal axes and 

suppress the pituitary-adrenal axis. Leptin also influences hemopoiesis and immune 

function and improves glucose and fat metabolism. GC = glucocorticoids; IGF = 

insulin-like growth factor; IL = interleukin; TNF-α = tumor necrosis factor-α (Modified 

from Mantzoros CS, 1999). 
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2.2.3 Leptin and the testes 

Studies have shown that the leptin receptor is found in the testes (Hoggard et al., 

1997). The passage of leptin across the blood-testis barrier has also been 

investigated, and showed that leptin enters the testis by a passive, non-saturable 

process (Banks et al., 1999). It was demonstrated that leptin exerts a rapid and dose-

dependent inhibition of LH-stimulated testosterone production in rat cells in culture 

(Caprio et al., 1999). Other studies have shown that leptin inhibits testosterone 

secretion from adult rat testicular slices incubated in vitro, but not from prepubertal 

testes (Tena-Sempere et al., 1999).  

 

Circulating leptin levels have been shown to be elevated in obese individuals 

(Tchernof et al., 1995). In addition, it has been known for some time that the degree 

of androgen reduction is related to the amount of fat mass (Zumoff et al., 1990) and 

recently, it has also been linked to leptin levels (Vettor et al., 1997). The androgen 

response to human chorionic gonadotropin (hCG) stimulation is impaired in obese 

women, and leptin has been shown to be the best hormonal predictor of the obesity-

related reduction in androgen response (Isidori et al., 1999). These observations 

indicate that leptin excess might play an important role in the development of 

reduced androgen output in male obesity.  

 

Immunohistochemical studies have demonstrated that mouse testes germ cells 

express the leptin receptor (OB-R) in a stage and age-dependent manner (El-

Hefnawy et al., 2000). Furthermore, in vitro treatment of isolated seminiferous tubules 

with leptin led to signal transducer and activator of transcription 3 (STAT-3) 

phosphorylation, which indicated that the OB-R is functional and capable of signal 
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transduction in germ cells. These data suggest that leptin might have additional 

testicular effects, possibly exerted on the proliferation and differentiation of germ 

cells, and that lack of its action might be locally involved in the pathogenesis of 

infertility observed in leptin-deficient mice (El-Hefnawy et al., 2000).   

 

2.2.4 Leptin receptors 

Leptin acts via transmembrane receptors which show structural similarity to the class 

I cytokine receptor family (Tartaglia et al., 1995; Lee et al., 1996; Myers, 2004), which 

includes the receptors of IL-2, IL-3, IL-4, IL-6, IL-7, leukemia inhibitory factor (LIF), 

granulocyte colony-stimulating factor, growth hormone, prolactin and erythropoietin 

(Bazan, 1989). The OB-R is produced in several alternatively spliced forms, 

designated OB-Ra, OB-Rb, OB-Rc, OB-Rd, OB-Re, OB-Rf (Lee et al., 1996; Wang et 

al., 1998) that have in common an extracellular domain of over 800 amino acids, a 

transmembrane domain of 34 amino acids and a variable intracellular domain, 

characteristic of each of the isoforms. The isoforms can be classified into three 

classes: short, long and secreted (Tartaglia et al., 1995; Myers, 2004). The short 

forms of the receptor, i.e. OB-Ra, OB-Rc, OB-Rd and OB-Rf as illustrated in Figure 6, 

consist of 30-40 cytoplasmic residues. However, only the long full-length isoform, 

OB-Rb, was considered to be the functional receptor, based on the finding that it has 

an extended domain approximately 300 cytoplasmic residues, containing various 

motifs required for the interaction with other proteins and subsequent signalling 

pathway activation (Tartaglia et al., 1995). It is due to the lack of the full-length OB-R 

that the diabetic (db/db) mouse and the obese Zucker (fa/fa) rat become obese 

(Chua et al., 1996). The phenotype of these mice and rats suggest that the long form 
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of leptin receptor plays an important role in regulation of food intake, energy 

expenditure and endocrine function.  

 

 

 

Figure 6. Leptin receptor isoforms. CR =cytokine receptor domain, F-III = fibronectin 

type III domain, Box 1, 2, 3=consensus intracellular motifs (Adopted from Hegyi et al., 

2004).  
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2.2.5 Main leptin signaling pathways  

2.2.5.1 JAK/STAT signal transduction cascade 

The JAK/STAT signaling pathway comprises a family of four non-receptor tyrosine 

kinases (JAKs) and seven 85-95kDA transcription factors (STATs) that are 

phosphorylated on specific serine and tyrosine residues. The JAK/STAT signaling 

cascade is activated by interferons, interleukins and some other cytokines which 

have no intrinsic kinase activity in their receptors (Ihle and Kerr, 1995). The OB-R 

contains no intrinsic tyrosine kinase domain, and therefore binds cytoplasmic 

kinases, mainly JAK2 (Murakami et al., 1991). The JAK2 proteins are associated with 

membrane-proximal sequences of the receptor intracellular domain, which are 

activated and translocated to the nucleus leads to transcription stimulation. The OB-

R has been implicated in the ligand-receptor binding activation of STAT3, STAT5, 

and STAT6, but not STAT1, STAT2, or STAT4 (Sweeney, 2002).  

 

2.2.5.2 Mitogen-activated protein kinase (MAPK) cascade 

The MAPK signaling cascade can be stimulated by either OB-Ra or OB-Rb, even 

though the OB-Ra stimulation is usually weaker (Banks et al, 2000). Leptin is able to 

trigger the MAPK pathway in two ways. Firstly via tyrosine phosphorylation of JAK2 

receptor-associated activation and secondly it can trigger the signaling cascade 

independently of receptor phosphorylation (Hegyi et al., 2004). An intact catalytic 

domain of SHP-2 is required downstream of both the pathways (Bjørbæck et al., 

2001). Leptin has been reported to increase the phosphorylation of p38 MAPK in 

mononuclear cells and L6 muscle cells. It does this by reducing insulin-stimulated 

p38 MAPK phosphorylation (van den Brink et al., 2000).  
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2.2.5.3 The PI3K pathway 

PI3K activity is one of the key targets regulated by several ligands with insulin 

deserving a special mention. In fact, PI3K is involved in most insulin-dependent 

actions which make this a very relevant point of cross-talk between the insulin and 

leptin signaling pathways (Ducy et al., 2000; Hegyi et al., 2004; Niswender and 

Schwartz, 2003). The PI3K pathway leads to the stimulation of protein kinases such 

as PKB/Akt and protein kinase C (PKC) isoforms (Sweeney, 2002). Studies have 

shown that leptin acts through some of the components of the insulin signaling 

cascade as illustrated in Figures 7 and 8. When insulin binds to its receptor, it leads 

to the recruitment of several IRSs which are tyrosine-phosphorylated by intrinsic 

kinase activity of the receptor. The phosphorylation of the IRSs increases their affinity 

for binding other signaling molecules, leading to further steps of the pathway 

(Figure 8). 
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Figure 7. Stimulation of the PI3K pathway by leptin (L) represents a key cascade to 

exert several different effects of the hormone at multiple sites (Adopted from 

Frühbeck, 2006). 
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Figure 8. Cross-talk between leptin signaling and insulin-induced pathways. Leptin 

receptor (OB-Rb) activation acts through some of the components of the insulin 

signaling cascade recruiting several IRSs (Adopted from Frühbeck, 2006). 

 

2.2.5.4 Other signaling cascades activated by leptin 

Leptin has been implicated cross-talk with many different signal transduction 

pathways through its ubiquitous receptors. A functional relationship has been 

established between leptin and nitric oxide (NO) (Frühbeck et al., 2001). It has been 

shown that leptin increase serum NO concentrations while NO has been shown to 

facilitate leptin-induced lipolysis (Frühbeck and Gómez-Ambrosi, 2001). The effect of 

leptin on other signaling pathways has also been shown to have an influence on the 

Rho family GTPases which are involved in several cellular processes including 
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apoptosis as well as the regulation of the actin-myosin cytoskeleton (Sweeney, 

2002).  

 

2.2.6 Effects of leptin on male reproductive function 

Leptin receptor isoforms have been reported to be present in gonadal tissue, 

suggesting that it could exert a direct endocrine action on the gonads (Cioffi et al., 

1996; Cioffi et al., 1997; Karlsson et al., 1997). Indeed studies have shown that 

treatment with leptin of infertile ob/ob knockout mice restored reproductive ability 

(Mounzih et al., 1997). Injecting ob/ob mice with leptin was reported to cause an 

elevation in FSH levels, while it also stimulated gonadal development Barash et al., 

1996). It was further shown that the chronic administration of antileptin antibody to 

rats inhibited LH release (Carro et al., 1997). 

 

Humans deficient of leptin have shown similar effects as observed in animal models. 

A case study of a male with a homozygous leptin mutation reported that he was still 

pre-pubertal and showed clinical traits typical of hypogonadism and androgen 

deficiency despite being 22 years of age (Strobel et al., 1998). Furthermore, another 

male subject with a leptin receptor deficiency showed no pubertal development at 

either 13 or 19 years of age (Clément et al., 1998). Reports like these emphasize the 

biological importance of leptin at the onset of puberty in males. 

 

The mechanisms through which leptin act are not yet clearly elucidated but probably 

involve the hypothalamus and its subsequent effects on the pituitary and gonadal 

axis. It has been shown that the administration of gonadotrophin releasing hormone 

(GnRH) to the leptin-deficient male induced a normal increase in serum LH and FSH 
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levels, while the administration of gonadotrophins increased testosterone levels 

(Strobel et al., 1998).  As illustrated in Figure 3, it may be that leptin stimulates GnRH 

synthesis or secretion from the hypothalamic neurons or secretion of gonadotrophins 

by the pituitary gland (Yu et al., 1997). 

 

2.2.7 Leptin and human spermatozoa 

Leptin has been implicated to play a role in the regulation of reproduction in both 

experimental animals and humans (Barash et al., 1996). In female reproduction, its 

participation is well established, whereas its role in male reproduction is yet to be 

properly elucidated (Camina et al., 2002; Fietta, 2005). The existence of leptin in 

ejaculated human spermatozoa was demonstrated through its transcripts evaluated 

by reverse transcription-polymerase chain reaction (PCR), its protein content 

evidenced by Western blot analysis and through its localization by immunostaining 

analysis (Aquila et al., 2005).  

 

The significance of leptin in reproduction is somehow controversial. Some studies 

have indicated positive effects while others have reported negative effects for leptin 

in gonadal function (Caprio et al., 2001; Clarke and Henry, 1999). It has been shown 

that seminal plasma leptin levels are significantly lower in normozoospermic patients 

compaired to pathological semen samples and that higher leptin levels negatively 

correlated with sperm function (Glander et al., 2002). On the other hand, it was also 

reported that there is no correlation between leptin levels and sperm motility or 

morphology (Zorn et al., 2007). Capacitated spermatozoa were reported to secrete 

more leptin than noncapacitated spermatozoa suggesting that leptin plays a role in 

the process of capacitation (Aquila et al., 2005). Moreover, leptin receptors have 
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been detected in ejaculated spermatozoa and were localized in the tail region (Jope 

et al., 2003).  

 

2.3 Cytokines 

2.3.1 Introduction 

The role of cytokines in male reproductive function has been widely reported (Diemer 

et al., 2003). Although the immune system is the major source of cytokine production 

there are various other cells in the male urogenital tract which secrete cytokines and 

have an effect on sperm function and fertility (Naz and Kaplan, 1994a). Their 

production occurs in response to foreign antigen, pathogen and chronic inflammation 

(Huleihel et al., 1996). The defense strategies of the immune system against 

bacterial infections include the release of proinflammatory cytokines especially 

interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) as 

primary or secondary signals (Metalliotakis et al., 1998). 

 

2.3.2 Importance of cytokines 

Cytokines participate in signal transmission between cells and perform regulatory 

roles in different biological processes, such as cell activation, proliferation, growth, 

differentiation and mobility (Kretser et al., 1998). They also show modulatory effects 

on inflammatory reactions. Examples of these include cytokines of the IL-1 family, the 

IL-6 family, the superfamily of TNF-α and the interferons, IL-2, proinflammatory 

chemokines (eg, IL-8 and IL-12) and IL-15 (Feldmann and Saklatvala, 2001). The 

course of the inflammatory reaction depends on the levels of cytokines produced, as 

well as the presence of cytokine inhibitors and their specific receptors and /or 

antagonists (Eggert-Kruse et al., 2007). Proinflammatory cytokines usually act locally, 
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since they are produced by cells which have been locally activated by stimuli (Koçak 

et al., 2002).  

 

2.3.3 Cytokines and male fertility 

In the male gonad, cytokines are also produced physiologically and are involved in 

the normal function of the organ (Hales et al., 1999; Soder et al., 2000; Diemer et al., 

2003). Because of this, they appear as the natural component of the seminal plasma 

(Maegawa et al., 2002). Studies have shown that some cytokines act as regulators of 

the physiological levels of ROS in seminal plasma (Buch et al., 1994; Depuydt et al., 

1996). It has been reported that the main source of cytokines in the male gonad is 

the testicular macrophages although some cytokines (IL-1 and IL-6) are also 

produced by the cells of the rete testis which include the Leydig and Sertoli cells 

(Cudicini et al., 1997). The extent to which cytokines affect fertility is dependent upon 

their concentration. For instance, it has been reported that IL-12 levels correlates 

with the density and morphology of sperm cells, which suggests a certain biological 

role for IL-12 in male infertility (Naz and Evans, 1998). Naz and Kaplan, (1994b) 

reported that stimulating with IL-6, capacitation and acrosome reaction of sperm can 

be induced and the proportion of penetrated oocytes is increased. On the other hand, 

increased IL-6 levels have been observed in seminal plasma of infertile males (Naz 

and Kaplan, 1994a). It has been observed that high levels of certain cytokines in 

semen are often linked with a decrease in the quality of sperm parameters 

(Gruschwitz et al., 1996). 

 

Some studies have reported that particular cytokines modulate the expression of 

genes responsible for the redox system in semen (Shimoya et al., 1993; Naz and 
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Kaplan, 1994a). For instance, an increase in ROS production by human sperm was 

observed after the addition of IL-1α, IL-1β or TNF-α, the result of which was an 

increase in sperm membrane lipid peroxidation (Buch et al., 1994). 

 

IL-1β is a well-known proinflammatory cytokine that is especially important for 

testicular physiology. It has been reported to be involved in autocrine and paracrine 

regulation of local control of spermatogenesis and spermiogenesis, and constitutes 

one of the elements of immune privilege in the testes (Huleihel et al., 2000; Soder et 

al., 2000; Fiszer et al., 2003; Rozwadowska et al., 2005). This cytokine is responsible 

for the development and maintenance of the immune and inflammatory responses to 

invading pathogens. Huleihel and Lunenfeld, (2004) reported that an increase in the 

expression of IL-1β in the testes during local infection or inflammation is associated 

with decreased testosterone production by Leydig cells and decreased intensity of 

spermatogenesis, probably mediated through apoptosis.  

 

There is a relationship between the IL-6 levels in seminal plasma and the intensity of 

sperm membrane peroxidation (Camejo et al., 2001). This cytokine is principally 

produced by monocytes/macrophages and its most important functions include the 

stimulation of B-lymphocyte differentiation, the activation of T lymphocytes, and the 

stimulation of acute phase protein release (Furunya et al., 2003). Infertile patients 

have reported high levels of IL-6 (Camejo et al., 2001; Furunya et al., 2003).  

 

TNF-α is one of the major cytokines produced during inflammation. It is 

predominantly secreted by the monocytes and macrophages, mainly after contact 
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with lipopolysaccharides (Buch et al., 1994). The cytotoxic influence of TNF-α is 

augmented by ROS and phospholipase A2 (Perdichizzi et al., 2007).  

 

IL-12 has been detected in seminal plasma samples of both infertile and fertile males 

(Naz and Evans, 1998). The higher IL-12 levels observed in the seminal plasma 

samples of fertile males compared to infertile ones suggests the participation of this 

cytokine in the physiological functioning of the reproductive system (Naz and Evans, 

1998).  

 

IL-18 belongs to the large IL-1 superfamily, and although it is similar in structure to 

IL-1 family members, it differs in terms of mode of action (Munder et al., 1998). It is 

not only produced by the cells of the immune system, such as monocytes and 

macrophages, but can also be released from keratinocytes, most epithelial cells, and 

osteoblasts (Dinarello, 1999). The proinflammatory activity of IL-18 is mostly linked to 

the stimulation of proliferation and the cytotoxicity of natural killer cells and T 

lymphocytes among others, through the induction of interferon gamma (IFN-צ) 

production (Munder et al., 1998). In turn, IFN-צ which is induced by both IL-18 and IL-

12 stimulates macrophages to produce TNF-α, NO, and ROS as part of the defense 

against infectious agents (Dinarello, 1999; Nakanishi et al., 2001). 

 

2.4 Nitric oxide 

2.4.1 Introduction 

NO is a free radical gaseous molecule which has a very short biological half life 

(Santoro et al., 2001). In recent years, NO has become one of the most studied 

substances because of its important role in several biological systems. It has been 
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shown that NO has a role in the modulation of sexual and reproductive function 

(Middendorff et al., 1997). 

 

2.4.2 NO synthesis 

The production of NO is catalysed by a family of NO synthase (NOS) enzymes 

(Thundathil et al., 2003). NOS is responsible for the conversion of L-arginine to NO 

and L-citrulline (O’Bryan et al., 1998). Two NOS types have been identified in human 

spermatozoa: NOS similar to the constitutively expressed brain neuronal NOS 

(nNOS) and endothelial NOS (eNOS) (Donnelly et al., 1997). The ability of human 

spermatozoa to synthesize NO has been demonstrated indirectly by measuring nitrite 

accumulation (Lewis et al., 1996),  as well as L-[3H] citrulline generation (Revelli et 

al., 1999) or directly by means of an NO meter (Donnelly et al., 1997) and 

fluorescence activated cell sorting (FACS) analysis (Lampiao et al., 2006).  

 

2.4.3 Importance of NO 

NO is a potent vasodilator and neurotransmitter and has been implicated in 

numerous physiological, pharmacological and pathological processes (Moncada et 

al., 1991). It has also been shown to be an essential mediator in the female 

(Yallampalli et al., 1993; Rosselli et al., 1994) and the male reproductive tracts 

(Adams et al., 1992). Its deficiency has been suggested as the contributory factor in 

pre-eclampsia (Fickling et al., 1993; Seligman et al., 1994), while its vasodilatory 

activities on cavernosal smooth muscles are responsible for achieving penile erection 

(Burnett et al., 1992).  
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Despite being a free radical itself, NO can also act as a free radical scavenger by 

inactivating and inhibiting the production of superoxide (O2
-) (Clancy et al., 1992). O2

- 

leads to lipid peroxidation which results in functional impairment of spermatozoa 

(Jeyendran et al., 1984). In vitro studies have shown that exogenous NO yield 

contrasting results on human sperm function depending on the concentrations 

applied (Sengoku et al., 1998). It has been reported that lower concentrations of NO 

are beneficial to human sperm function whereas higher concentrations become 

detrimental (Wu et al., 2004).  

 

Studies have reported a relationship among insulin, leptin, cytokines and NO. Pro-

inflammatory cytokines such as TNF-α and IL-6 have been reported to induce NO 

production in the pancreatic islets (Erbagei et al., 2001; Rabinovitch, 1998). Recent 

evidence shows that cytokines and NO are associated with destruction of pancreatic 

cells and development of DM (Berman et al., 1996; Rabinovitch, 1998). The 

production of leptin has been shown to be regulated by insulin, cytokines and 

chemokines (Nomura et al., 2000; Lauszus et al., 2001).  Some of these substances 

are implicated in sperm physiology therefore, imperative to investigate. 
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CHAPTER 3: MATERIALS AND METHODS 

 

3.1 Chemicals 

Hams F10, wortmannin, nifedipine, erbstatin, leptin, L-NAME, propidium iodide (PI), 

fluorescein isothiacyanate Pisum sativum agglutinin (FITC-PSA), glucose, tumor 

necrosis factor alpha (TNF-α), interleukin-6 (IL), calcium ionophore A23187 and 

progesterone were obtained from Sigma Chemical Co., (St Louis, MO, USA). Human 

insulin was purchased from Lilly France S.A.S (Federsheim, France). 4,5-

diaminofluorescein-2/diacetate (DAF-2/DA) was from Calbiochem, San Diego, CA, 

USA. GLUT8 goat polyclonal IgG primary antibody and donkey anti-goat IgG-Texas 

Red conjugated secondary antibody were purchased from Santa Cruz Biotechnology, 

California, USA. Donkey serum was from Sigma Aldrich Inc., St Louis, MO, USA. 

DakoCytomation Fluorescent Mounting Medium was bought from Dako North 

America Inc., CA, USA, and Hoechst was purchased from Invitrogen, California, 

USA.  

 

3.2 Semen collection 

Semen samples were obtained from 43 normozoospermic healthy volunteer donors 

studying at the Tygerberg Campus, University of Stellenbosch, aged between 19-23 

years who provided informed consent for a research protocol approved by the 

University of Stellenbosch Ethics Committee. All semen samples were collected by 

masturbation after 2-3 days of sexual abstinence according to the World Health 

Organization criteria (WHO, 1999). Semen samples were collected in sterile wide 

mouthed containers after which the semen was allowed to liquefy for 30 minutes at 

37˚C before processing. 
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3.3 Semen preparation using double wash swim-up technique 

Fresh semen was placed in a 5ml tube and an equal amount of Hams F10 medium 

was added. The tube was centrifuged for 5 minutes at 400xg. The supernatant was 

discarded leaving a pellet at the bottom which was resuspended in fresh Hams F10 

medium and centrifuged again for 5 minutes at 400xg. The supernatant was carefully 

removed by aspiration without disturbing the pellet and 1.2 mL of HTF/Hams F10 

mixed with 3% bovine serum albumin (BSA) medium was layered on top of the pellet. 

The tube was placed on a rack inclined at 45 degrees and incubated (37˚C, 5% CO2, 

60 min). After 1 hour the media containing a homogenous motile sperm population 

was collected (swim-up). 

 

3.4 Semen preparation using two-layer density discontinuous gradient 

system 

Two mililitres of PureSperm®80 was added to a conical centrifuge tube. 

PureSperm®80 is denser than PureSperm®40. This was followed by carefully layering 

of 2 mL PureSperm®40 on top of the PureSperm®80. Using a Pasteur pipette, 1.5 mL 

of semen was layered onto the PureSperm®. The tube was centrifuged at 300 x g for 

20 minutes. After centrifugation the top layer which consisted of seminal plasma and 

debris was aspirated and discarded. The middle layer which contains less motile 

sperm in PureSperm®40 was aspirated and placed into a 5 mL tube which was filled 

to the 5 mL mark with Hams F10 medium. The pellet at the bottom which contains 

more motile cells in PureSperm®80 was collected and resuspended in 5 mL Hams 

F10 medium. The two tubes were centrifuged at 400 x g for 10 minute. The Hams 

F10 medium supernatant was aspirated leaving as little liquid as possible above the 
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pellet. The sperm pellet was resuspended in a suitable volume of Hams F10 medium 

+ 3% BSA medium to obtain the required sperm concentration.  

 

3.5 Motility 

Sperm motility/kinematics were determined with the HTM-IVOS analyzer (Hamilton-

Thorne Research Inc., Beverley, MA, USA) with the following standard set-up 

parameters: 30 frames/60 HZ; minimum contrast, 80; minimum cell size, 2; minimum 

static contrast, 30; low path velocity (VAP) cut-off, 5 µm s-1; static head intensity, 

0.60-1.40; slow cell, nonmotile; magnification, 2.01 and temperature, 37°C. The 

following parameters were evaluated: sperm concentration (million/mL), motile (%) 

and progressive motility (%), average path velocity (VAP, µm/s), straight line velocity 

(VSL, µm/s), curvilinear velocity (VCL, µm), amplitude of lateral head displacement 

(ALH, µm/s), beat cross frequency (BCF, Hz), straightness (STR, %) and linearity 

(LIN, %). Motion characteristics were recorded in samples using randomly selected 

microscopic fields. Sperm motion characteristics are illustrated below (Figure 9).  
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Figure 9. An illustration of different sperm motility parameters measured using CASA 

(Adapted from WHO, 1999)  

 

3.6 Cell viability 

Spermatozoa which had received different treatment interventions were incubated for 

different periods before the administration of PI (1 µM, 15 minutes). Viability was 

assessed using flow cytometry as described in section 3.8. Living cells with an intact 

cell membrane and active metabolism will exclude PI while cells with damaged 

membranes or impaired metabolism allow PI to enter the cell and stain the DNA. An 

increase in PI fluorescence was interpreted as decreased cell viability.  

 

3.7 Acrosome reaction  

Spermatozoa were left to capacitate for 3 hours after which they were induced to 

undergo the acrosome reaction by means of a physiological trigger, progesterone 
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(1 µg/mL, 30 min), calcium ionophore A23187 (1 µg/mL, 30 min) or left to undergo 

the spontaneous acrosome reaction (30 min). 

 

The extent of the acrosome reaction was assessed by placing samples on spotted 

slides and left to air dry after which they were fixed in cold ethanol (WHO, 1999). 

Fluorescein isothiacyanate Pisum sativum agglutinin (FITC-PSA) (125 µg/ml) was 

layered on the slides and they were incubated for 30 min in a dark humid 

atmosphere. Slides were subsequently rinsed with distilled water in order to eliminate 

excess probe, and then observed under a fluorescence microscope. At least 200 

cells were evaluated per spot. 

 

3.8 Flow cytometry 

NO and sperm cell viability was measured by flow cytometric analysis (FACS: 

fluorescence-activated cell sorter). A Becton Dickinson FACSCaliburTM analyzer (BD, 

San Jose, CA, USA) was used to quantify fluorescence at the single-cell level and 

data was analyzed using CellQuestTM version 3.3 (Becton Dickinson, San Jose, CA, 

USA) software. In each sample, the mean fluorescence intensity of the analyzed cells 

was determined after gating the cell population by forward and side light scatter 

signals as recorded on a dot plot (Figure 10). In total, 100,000 events were acquired, 

but non-sperm particles and debris (located at the bottom left corner of the dot plot) 

were excluded by prior gating, thereby limiting undesired effects on overall 

fluorescence. Final gated populations usually contained 15,000-20,000 sperm cells. 

Fluorescence signals were recorded on a frequency histogram (Figures 11 and 12) 

using logarithmic amplification. Fluorescence data are expressed as mean 

fluorescence (percentage of control, control adjusted to 100%). 
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Figure 10. A representative dot plot of sperm cells showing the spread of the total 

recorded “events”. Gated population (top right): sperm cells and bottom left: non-

sperm particles, debris.  

 

Figure 11. A representative frequency histogram showing baseline fluorescence 

(log) of 4,5-diaminofluorescein-2/diacetate (DAF-2/DA) on x-axis (A); a shift to right 

depicting an increase in fluorescence intensity (B)  

 

 

 

A B 
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Figure 12. A frequency histogram of propidium iodide (PI) fluorescence with two 

peaks. Cells possessing a damaged membrane will permit PI to enter into the cell 

and bind to DNA causing the cells to fluoresce red. The peak to the left is depicting 

viable cells which are able to exclude PI while that to the right is non-viable cells 

which had absorbed PI. 

 

3.9 Protocols 

This section will outline in detail all the protocols that were employed in this study. 

Spermatozoa were separated from semen through a double wash swim-up or a 

double density gradient system as described in sections 3.3 and 3.4 respectively, 

before the cells were counted using CASA. In each experiment the spermatozoa 

were divided into aliquots containing 5 x 106/mL cells. 

 

3.9.1 The glucose concentration curve 

The aliquots were treated with glucose concentrations (0, 2, 5, 8, 12, 20 mM) and 

incubated (37°C, 5% CO2). Sperm motility parameters were measures by means of 

CASA at 1 and 2 hours (Figure 13).  

M1
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Figure 13.  Protocol to determine the effects of glucose on sperm motility 

parameters. 

 

8.9.2 Effects of different glucose concentrations on PI fluorescence 

The different sperm aliquots were treated with increasing concentrations of glucose 

(0, 2, 5, 8, 12, 20 mM) and incubated (37°C, 5% CO2; 180 min) before the addition of 

PI (1 µM, 15 minutes) (Figure 14). The PI fluorescence assessment was done by 

FACS analysis as described in section 3.8.  

 

 

 

Figure 14. Protocol to determine the effects of different glucose concentrations on PI 

fluorescence 
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3.9.3 The insulin concentration curve 

The spermatozoa aliquots were treated with increasing concentrations of insulin (0, 

5, 10, 20, 30 µIU) and incubated (37°C, 5% CO2). Sperm motility parameters were 

measured by means of CASA at 1, 2 and 3 hours as illustrated in Figure 15. 

 

 

Figure 15. Protocol to determine the effects of different insulin concentrations on 

sperm motility parameters.  

 

 

3.9.4 Effects of different insulin concentrations on PI fluorescence 

Spermatozoa were treated with insulin concentrations (0, 5, 10, 20, 30 µIU) and 

incubated (37°C, 5% CO2; 180 min) before the addition of PI (1 µM, 15 minutes) 

(Figure 16). The PI fluorescence assessment was done by FACS analysis as 

described in section 3.8.  
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Figure 16. Protocol to determine the effects of different insulin concentrations on PI 

fluorescence. 

 

3.9.5 The leptin concentration curve 

The aliquots were treated with leptin concentrations (0, 5, 10, 20, 30 nM) and 

incubated (37°C, 5% CO2). Sperm motility parameters were measured by means of 

CASA at 1, 2 and 3 hours as illustrated in (Figure 17). 

 

 

Figure 17. Protocol to determine the effects of different leptin concentrations on 

sperm motility parameters.  

 

3.9.6 Effects of different leptin concentrations on PI fluorescence 

The spermatozoa was treated with increasing concentrations of leptin (0, 5, 10, 20, 

30 nM) and incubated (37°C, 5% CO2; 180 min) before the addition of PI (1 µM, 15 
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minutes) (Figure 18). The PI fluorescence assessment was done by FACS analysis 

as described in section 3.8.  

 

 

 

Figure 18. Protocol to determine the effects of different leptin concentrations on PI 

fluorescence. 

 

 

3.9.7 Unravelling the insulin signalling pathway in human spermatozoa 

As illustrated in Figure 19, insulin’s effects were blocked in three ways: the blockage 

of insulin release by nifedipine (25 µM), the inhibition of its intracellular effector, PI3K 

by wortmannin (10 µM) and the inhibition of insulin receptor tyrosine phosphorylation 

by erbstatin (25 µM) 30 minutes prior to insulin administration. These concentrations 

were previously described by Aquila et al. (2005a). The control group had sperm 

cells in HTF medium with no extra glucose whereas the glucose free group 

comprised of sperm cells in glucose free HTF medium. Sperm motility parameters 

were measured by means of CASA at 1, 2 and 3 hours.  
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Figure 19. Protocol to determine the effects of insulin on sperm motility parameters.  

 

 

3.9.8 Effects of insulin on PI fluorescence 

As illustrated in Figure 20, insulin’s effects were blocked by nifedipine, wortmannin 

and erbstatin 30 minutes prior to insulin administration. After insulin administration, 

the cells were incubated (180 minutes) before the addition of PI (1 µM, 15 minutes). 

The PI fluorescence assessment was done by FACS analysis as described in section 

3.8.  

 

 

Figure 20. Protocol to determine the effects of insulin on PI fluorescence. 
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3.9.9 Effects of insulin on acrosome reaction  

As illustrated in Figure 21, insulin’s effects were blocked by nifedipine, wortmannin 

and erbstatin 30 minutes prior to insulin administration. Progesterone (1 µg/mL, 30 

minutes) and calcium ionophore A23187 (10 µmol/L, 30 minutes) were used as 

inducers of the AR. The rest of the experiment was done as outlined in section 3.7. 

 

 

 

Figure 21. Protocol to determine the effects of insulin on acrosome reaction. 

 

 

3.9.10 Effects of insulin and leptin on sperm motility parameters 

Wortmanin (10 µM) was used to block the effects of insulin and leptin 30 minutes 

prior to insulin and leptin administration (Figure 22). Sperm motility parameters were 

measures by means of CASA at 1, 2 and 3 hours.  
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Figure 22. Protocol to determine the effects of insulin and leptin on sperm motility 

parameters.  

 

3.9.11 Effects of insulin and leptin on PI fluorescence 

Some aliquots were treated with wortmannin (10 µM) 30 minutes prior to insulin and 

leptin administration. After insulin and leptin administration, the cells were incubated 

for 180 minutes before the addition of PI (1 µM, 15 minutes) (Figure 23). The PI 

fluorescence assessment was done by FACS analysis as described in section 3.8.  

 

 

Figure 23. Protocol to determine the effects of insulin and leptin on PI fluorescence.  
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loaded with the NOS inhibitor, L-NAME (0.7 mM), 30 minutes prior to DAF-2/DA 

administration (Figure 24). Care was taken to prevent exposure to light throughout 

the rest of the experimentation as the probe is light sensitive. After incubation with 

DAF-2/DA the cells were analysed by FACS as described in section 3.8.  

 

 

Figure 24. Protocol to determine the effects of insulin and leptin on DAF-2/DA 

fluorescence.  

 

3.9.13 Effects of insulin and leptin on sperm acrosome reaction 

After the administration of wortmannin (10 µM; 30 minutes), insulin and leptin were 

administered. Progesterone and calcium ionophore were used as inducers of the AR 

(Figure 25). The rest of the experiment was done as outlined in section 3.7. 
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Figure 25. Protocol to determine the effects of insulin and leptin on sperm acrosome 

reaction. 

 

3.9.14 Characterizing the spermatozoa separated by the PureSperm® two-layer 

density discontinuous gradient  

Spermatozoa were separated into two fractions by the PureSperm® two-layer density 

discontinuous gradient system as described in section 3.4. Sperm motility parameters 

from the two fractions were assessed by means of CASA. Cell viability of the two 

fractions was assessed by flow cytometry using PI as a probe. Morphology smears 

were made, air-dried and stained using the Diff-quick staining technique. The 

Tygerberg Strict Criteria was used to evaluate morphology using CASA on Sperm 

Class Analyser (SCA) (Figure 26).  
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Figure 26. Protocol to determine the characteristic of the two sperm fractions 

separated by the PureSperm® two-layer density discontinuous gradient system.  

 

3.9.15 Effects of insulin and leptin on motility parameters of 

asthenozoospermic and teratozoospermic spermatozoa 

Spermatozoa were separated into two fractions using the PureSperm® two-layer 

density discontinuous gradient system and subsequently treated with insulin (10 µIU) 

and leptin (10 nM). Motility parameters were measured after three hours of 

incubation (Figure 27).  

 

 

 

Figure 27. Protocol to determine the effects of insulin and leptin on motility 

parameters of asthenozoospermic and teratozoospermic spermatozoa. 
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3.9.16 Effects of TNF-α and IL-6 on motility parameters 

The spermatozoa aliquots were incubated (37˚C, 5% CO2) with increasing 

concentrations of TNF-α and IL-6 (0, 2, 5, 10, 20, 50, 100 ng/mL) for 1, 3, 5 hours in  

1 mL Hams + BSA medium according to concentrations described by Perdichizzi et 

al., (2007). At the end of the incubation, the aliquots’ sperm motility parameters were 

assessed using CASA (Figure 28). 

 

 

Figure 28. Protocol to determine the effects TNF-α and IL-6 on motility parameters. 

 

 

3.9.17 Effects of TNF-α and IL-6 on PI fluorescence 

Increasing concentrations of TNF-α and IL-6 (0, 2, 5, 10, 20, 50, 100 ng/mL were 

administered to spermatozoa and incubated (37˚C, 5% CO2; 5hrs). Subsequently, the 

cells were loaded with PI (1 µM, 15 min) (Figure 29). PI fluorescence was analyzed 

by FACS as described in section 3.8.  
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Figure 29. Protocol to determine the effects TNF-α and IL-6 on PI fluorescence. 

 

3.9.18 Effects of TNF-α and IL-6 on DAF-2/DA fluorescence 

Cells were treated with TNF-α and IL-6 (0, 5, 20, 100 ng/mL before they were loaded 

with DAF-2/DA (10 µM) and incubated (5hrs, 37 ºC) in the dark. Some of the samples 

were loaded with the NOS inhibitor, L-NAME (0.7 mM), 30 min prior to DAF-2/DA 

administration (Figure 30).  After incubation with DAF-2/DA the cells were analyzed 

by FACS as described in section 3.8. 

 

 

 

Figure 30. Protocol to determine the effects TNF-α and IL-6 on DAF-2/DA 

fluorescence.  

 

     

150’ 90’ 
Swim-up  

30’ 

Washx2  
400g, 5’ 

Liquefy  

DAF-2/DA FACS 

450’ 

± TNF-α/IL-6 (0, 5, 20, 100 ng/mL) 

120’ 

± L-NAME 

    
460’ 90’ 

Swim-up  
30’ 

Washx2  
400g, 5’ 

Liquefy     PI 

475’ 

FACS ± TNF-α/IL-6 (0, 2, 5, 10, 20,  50, 100 ng/mL) 



 78

3.9.19 Effects of TNF-α and IL-6 on spontaneous, calcium ionophore and 

progesterone-induced acrosome reaction 

The spermatozoa aliquots were incubated for 3 hours to capacitate and then 

exposed to increasing concentrations of TNF-α and IL-6 (0, 2, 5, 20, 50, 100 pg/mL) 

for 30 minutes (Figure 31). The concentrations were chosen to cover TNF-α and IL-6 

levels detected in the seminal plasma (Koçak et al., 2002; Eggert-Kruse et al., 2007). 

Each aliquot was split into three fractions: one for analysis of the spontaneous AR, 

the second for exposure to calcium ionophore A23187 and the third for exposure to 

progesterone. The extent of the AR was assessed as described in section 3.7. 

 

 
 

Figure 31. Protocol to determine the effects TNF-α and IL-6 on spontaneous, 

calcium ionophore and progesterone-induced acrosome reaction. 
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300’ 90’ 
Swim-up  

30’ 

Washx2  
400g, 5’ 

Liquefy  

350’ 310’ 
   

320’ 

± Calcium 
± Progesterone 
 

Air dry FITC AR ± TNF-α/IL-6 (0, 2, 5,  
10, 20,  50, 100 ng/mL) 

270’ 



 79

before addition of 10% donkey serum (100 µl) for 20 minutes at room temperature. 

The serum was carefully drained from the slide before the addition of GLUT8 goat 

polyclonal IgG primary antibody (100 µl; 1:200) and incubated for 90 min at room 

temperature. The slides were then rinsed with PBS carefully before the addition of 

donkey anti-goat IgG-Texas Red conjugated secondary antibody (100 µl; 1:200) and 

incubated for 30 minutes at room temperature in the dark. This was followed by the 

addition of 100 µl Hoechst (1:200) and incubated for 10 minutes as illustrated in 

Figure 32. The slides were washed 3 times with PBS and mounted with 

DakoCytomation Fluorescent Mounting Medium, before storage at -20˚C for up to 

2 weeks. Fluorescence was detected by means of fluorescence microscope.  

 

 
 
 
Figure 32. Protocol for immunostaining of GLUT8 in human spermatozoa.  
 
 
 
3.9.21 Statistical analysis 
 
The results were analyzed on the GraphPad PrismTM 4 statistical program. All data 

are expressed as mean ± SEM. Student’s t-test or One-way analysis of variance 

(ANOVA) (with Bonferroni post hoc test if p < 0.05) was used for statistical analysis. 

DAF-2/DA fluorescence data are expressed as mean fluorescence (percentage of 

control, control adjusted to 100%). Differences were regarded statistically significant 

if p < 0.05.  
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CHAPTER 4: RESULTS 
 
 
 
4.1 The glucose concentration curve after one and two hours of incubation 

Table I shows the effects of different glucose concentrations (2, 5, 8, 12, 16, and 

20 mM) on sperm motility parameters after 1 hour of incubation. The number of 

motile cells significantly increased in all the glucose treated groups when compared 

to the control (p < 0.05 vs. Control). Progressive motility, VAP, ALH and rapid cells 

were all significantly increased in glucose treated groups when compared to the 

control (p < 0.05 vs. Control). On the other hand static cells were significantly 

decreased in all the glucose treated groups when compared to the control (p < 0.05 

vs. Control). No statistically significant differences were observed in VSL, VCL, BCF, 

STR, and LIN (p > 0.05 vs. Control). 

 

Similar results were observed after incubation for 2 hours (Table II). Motile cells were 

significantly increased in all the glucose treated groups when compared to the control 

(p < 0.05 vs. Control). Progressive motility was only significantly increased in the 

 2 mM and 5 mM glucose treated groups when compared to the control (p < 0.05 vs. 

Control). VAP and ALH were significantly increased in all the glucose treated groups 

when compared to the control (p < 0.05 vs. Control). There was a significant 

reduction in static cells in all the glucose treated groups when compared to the 

control (p < 0.05 vs. Control). No significant differences were observed for VSL, VCL, 

BCF, STR, LIN and rapid cells after 2 hours of incubation (p > 0.05 vs. Control). 
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Table I. Effects of glucose on sperm motility parameters after 1 hour of incubation 
 (n = 15) 
 
 

 

 

*p < 0.05 vs. Control 
 

 
Parameter 
 

 
Control 

 

 
2 mM 

 
5 mM 

 
8 mM 

 
12 mM 

 
16 mM 

 
20 mM 

 
Motile 
(%) 

 
40.89±4.92 

 

 
56.33±2.48* 

 
61.44±1.75* 

 
58.89±2.13* 

 
57.73±1.97* 

 
53.33±2.52* 

 
54.33±4.95* 

 
Progr. Mot 
(%) 

 
21.44±2.61 

 
28.33±3.08* 

 
29.11±1.34* 

 
29.00±2.01* 

 
28.33±1.41* 

 
26.44±2.38* 

 
27.00±3.71* 

 
VAP 
(m/s) 

 
49.97±2.27 

 
60.58±2.20* 

 
62.03±2.64* 

 
60.90±3.85* 

 
60.50±3.23* 

 
58.66±2.20* 

 
59.14±2.10* 

 
VSL 
(m/s) 

 
42.44±1.99 

 
50.24±2.57 

 
48.71±1.94 

 
51.01±4.73 

 
50.70±4.04 

 
48.24±2.78 

 
49.93±2.91 

 
VCL 
(m) 

 
74.51±3.03 

 
80.31±3.71 

 
82.94±3.34 

 
84.14±7.31 

 
82.71±4.82 

 
81.29±3.78 

 
80.46±4.18 

 
ALH 
(m/s) 

 
3.67±0.12 

 
4.37±0.10* 

 
4.70±0.09* 

 
4.71±0.15* 

 
4.42±0.08* 

 
4.52±0.14* 

 
4.31±0.16* 

 
BCF 
(Hz) 

 
21.20±2.20 

 
22.59±0.59 

 
24.13±1.04 

 
23.58±0.84 

 
23.09±0.43 

 
22.93±0.43 

 
23.21±0.74 

 
STR 
(%) 

 
83.00±0.81 

 
82.22±0.87 

 
83.44±0.70 

 
82.33±1.21 

 
83.00±0.72 

 
82.33±1.00 

 
81.67±1.64 

 
LIN 
(%) 

 
55.33±1.01 

 
55.00±1.20 

 
56.89±1.18 

 
56.11±2.05 

 
56.22±0.99 

 
54.78±1.28 

 
54.11±1.70 

 
Rapid cells 
(%) 

 
30.78±3.82 

 
40.11±3.37* 

 
40.11±2.87* 

 
40.22±2.77* 

 
40.56±2.01* 

 
37.67±1.62* 

 
39.00±4.48* 

 
Static cells 
(%) 
 

 
37.78±5.70 

 
20.67±1.65* 

 
19.33±2.60* 

 
24.00±2.33* 

 
21.89±3.24* 

 
23.22±3.04* 

 
21.22±3.11* 
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Table II. Effects of glucose on sperm motility parameters after 2 hours of incubation 
(n = 15) 
 
 
 

 
 
 
*p < 0.05 vs. Control 
 
 

 
Parameter 
 

 
Control 

 

 
2 mM 

 
5 mM 

 
8 mM 

 
12 mM 

 
16 mM 

 
20 mM 

 
Motile 
(%) 

 
52.50±1.40 

 

 
60.00±3.68* 

 
63.83±1.62* 

 
63.00±2.88* 

 
60.50±2.46* 

 
60.50±3.13* 

 
59.50±2.37* 

 
Progr. Mot 
(%) 

 
30.67±2.80 

 
39.67±2.39* 

 
39.33±4.01* 

 
37.50±5.54 

 
36.83±2.48 

 
36.50±3.65 

 
36.50±2.68 

 
VAP 
(m/s) 

 
51.23±0.80 

 
64.13±3.63* 

 
68.22±3.21* 

 
66.17±2.59* 

 
63.78±3.30* 

 
62.80±3.71* 

 
64.80±3.51* 

 
VSL 
(m/s) 

 
51.03±2.78 

 
59.15±2.89 

 
61.93±3.23 

 
60.38±2.56 

 
58.43±4.63 

 
57.88±4.02 

 
58.33±3.95 

 
VCL 
(m) 

 
76.88±3.72 

 
82.53±3.82 

 
84.63±2.12 

 
83.90±2.57 

 
81.60±3.45 

 
82.25±1.64 

 
82.92±3.32 

 
ALH 
(m/s) 

 
3.80±0.15 

 
4.85±0.16* 

 
4.81±0.17* 

 
4.98±0.20* 

 
4.81±0.27* 

 
4.73±0.20* 

 
4.70±0.21* 

 
BCF 
(Hz) 

 
20.53±0.48 

 
21.13±1.24 

 
22.10±0.61 

 
22.23±0.90 

 
22.40±0.62 

 
22.68±0.62 

 
23.38±0.40 

 
STR 
(%) 

 
83.17±1.81 

 
83.17±1.79 

 
84.00±1.52 

 
84.50±1.58 

 
82.67±1.35 

 
83.33±1.25 

 
83.50±1.14 

 
LIN 
(%) 

 
59.00±2.17 

 
57.17±2.38 

 
59.67±2.14 

 
59.50±2.34 

 
57.50±1.76 

 
58.17±1.35 

 
57.67±1.45 

 
Rapid cells 
(%) 

 
45.50±1.33 

 
50.67±2.20 

 
51.00±1.52 

 
50.50±4.66 

 
50.83±0.98 

 
51.17±3.20 

 
49.50±2.86 

 
Static cells 
(%) 
 

 
32.17±2.08 

 
20.33±1.14* 

 
21.17±3.18* 

 
20.17±1.62* 

 
22.50±5.57* 

 
20.83±2.05* 

 
20.83±2.65* 
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4.1.1 Effects of different glucose concentrations on PI fluorescence 

As illustrated in Figure 33, there were no statistically significant differences in PI 

fluorescence with increasing glucose concentration.  

 

 

 

Figure 33. The effects of different glucose concentrations on PI fluorescence (n = 15) 
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4.2 The effects of different insulin concentrations on sperm motility 

parameters after 1, 2, and 3 hours of incubation 

Table III shows the effects of different insulin concentrations on sperm motility 

parameters after one hour of incubation. The number of motile sperm cells was 

significantly increased in the 10 µIU insulin treated group compared to the control  

(p < 0.05 vs. Control). Static cells were also significantly decreased in the 10 µIU 

insulin treated group when compared to the control (p < 0.05 vs. Control). There were 

no significant differences in any of the other motility parameters (p > 0.05 vs. 

Control). 

 

After two hours of incubation (Table IV), the number of motile cells was significantly 

increased in the 10 µIU, 20 µIU and 30 µIU insulin treated groups when compared to 

the control (p < 0.05 vs. Control). Progressive motility was significantly increased in 

the 10 µIU insulin treated group only when compared to the control (p < 0.05 vs. 

Control). VAP was significantly increased in both 5 µIU and 10 µIU insulin treated 

groups when compared to the control (p < 0.05 vs. Control). Similarly, rapid cells 

were also significantly increased in the 5 µIU and 10 µIU insulin treated groups when 

compared to the control (p < 0.05 vs. Control). However, static cells were only 

significantly reduced in the 10 µIU insulin treated group when compared to the 

control (p < 0.05 vs. Control). 

 

Table V shows the effects of different insulin concentrations on sperm motility 

parameters after three hours of incubation. Motile cells and progressive motility were 

significantly increased in all the insulin treated groups when compared to the control 

(p < 0.05 vs. Control). On the other hand, VAP, VSL, VCL, ALH and rapid cells were 
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significantly increased only in the 5 µIU and 10 µIU insulin treated groups when 

compared to the control (p < 0.05 vs. Control). Static cells were significantly reduced 

in the 5 µIU and 10 µIU insulin treated groups when compared to the control  

(p < 0.05 vs. Control). No significant differences were observed for BCF, STR and 

LIN (p > 0.05 vs. Control). 
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Table III. The effects of different insulin concentrations on sperm motility parameters 

after one hour of incubation (n = 18) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   *p < 0.05 vs. Control 

 
Parameter 
 

 
Control 

 

 
5 µIU 

 
10 IU 

 
20 IU 

 
30 IU 

 
Motile 
(%) 

 
66.80±2.64 

 

 
69.70±2.50 

 
77.30±2.62* 

 
75.90±2.12 

 
75.20±3.47 

 
Progr. Mot 
(%) 

 
44.10±3.08 

 
50.70±2.21 

 
52.50±1.62 

 
52.10±2.97 

 
51.80±2.77 

 
VAP 
(m/s) 

  
60.32±3.24 

 
67.88±0.86 

 
69.11±2.51 

 
70.31±1.22 

 
65.62±3.66 

 
VSL 
(m/s) 

 
52.40±2.96 

 
59.65±0.98 

 
63.11±1.98 

 
63.03±1.27 

 
57.22±3.45 

 
VCL 
(m) 

 
81.63±5.17 

 
91.02±2.75 

 
91.27±4.44 

 
91.88±1.79 

 
87.59±4.28 

 
ALH 
(m/s) 

 
3.47±0.22 

 
3.59±0.14 

 
3.68±0.18 

 
3.69±0.16 

 
3.84±0.21 

 
BCF 
(Hz) 

 
15.97±1.08 

 
17.02±0.87 

 
16.82±0.88 

 
17.71±0.90 

 
17.58±0.73 

 
STR 
(%) 

 
84.10±1.08 

 
86.60±1.12 

 
85.30±0.83 

 
87.40±1.08 

 
84.80±1.23 

 
LIN 
(%) 

 
62.20±1.42 

 
66.70±2.08 

 
65.30±1.25 

 
67.40±2.02 

 
63.00±1.64 

 
Rapid cells 
(%) 

 
55.80±2.70 

 
69.90±2.97 

 
71.00±2.64 

 
63.00±3.78 

 
64.70±4.95 

 
Static cells 
(%) 
 

 
29.10±2.44 

 
20.20±3.37 

 
16.90±2.30* 

 
23.20±2.95 

 
20.80±3.00 
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Table IV. The effects of different insulin concentrations on sperm motility parameters 

after two hours of incubation (n = 18) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                *p < 0.05 vs. Control 

 
Parameter 
 

 
Control 

 

 
5 µIU 

 
10 IU 

 
20 IU 

 
30 IU 

 
Motile 
(%) 

 
64.50±3.63 

 

 
72.80±1.68 

 
81.60±1.41* 

 
77.60±1.12* 

 
76.30±1.68* 

 
Progr. Mot 
(%) 

 
40.50±3.87 

 
52.00±1.27 

 
57.10±2.31* 

 
51.40±3.36 

 
53.50±1.80 

 
VAP 
(m/s) 

 
  57.27±3.88 

 
72.11±3.32* 

 
73.57±3.16* 

 
67.59±1.77 

 
68.75±3.30 

 
VSL 
(m/s) 

 
50.80±2.47 

 
62.08±2.05 

 
65.39±2.36 

 
59.71±1.80 

 
58.57±2.50 

 
VCL 
(m) 

 
80.91±5.34 

 
95.94±4.37 

 
96.62±5.58 

 
88.94±5.17 

 
87.89±5.17 

 
ALH 
(m/s) 

 
3.72±0.26 

 
3.95±0.22 

 
3.82±0.21 

 
3.85±0.28 

 
3.79±0.26 

 
BCF 
(Hz) 

 
16.50±0.86 

 
17.33±0.95 

 
17.25±1.00 

 
16.95±0.98 

 
17.47±0.89 

 
STR 
(%) 

 
83.00±1.20 

 
85.50±0.88 

 
84.60±1.01 

 
85.40±0.68 

 
84.20±1.17 

 
LIN 
(%) 

 
59.60±1.77 

 
64.10±1.74 

 
65.10±1.39 

 
63.00±1.71 

 
62.00±1.80 

 
Rapid cells 
(%) 

 
54.70±4.62 

 
69.50±2.77* 

 
75.30±2.80* 

 
60.20±3.99 

 
60.00±4.09 

 
Static cells 
(%) 
 

 
25.00±2.93 

 
18.10±2.33 

 
12.30±1.36* 

 
23.60±3.46 

 
23.50±2.68 
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Table V. The effects of different insulin concentrations on sperm motility parameters 

after three hours of incubation (n = 18) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                *p < 0.05 vs. Control 

 
Parameter 
 

 
Control 

 

 
5 µIU 

 
10 IU 

 
20 IU 

 
30 IU 

 
Motile 
(%) 

 
60.40±2.00 

 

 
75.50±2.75* 

 
83.80±1.22* 

 
78.70±1.71* 

 
75.90±2.44* 

 
Progr. Mot 
(%) 

 
34.70±4.82 

 
50.80±3.01* 

 
58.00±0.85* 

 
53.20±0.98* 

 
50.20±3.70* 

 
VAP 
(m/s) 

 
  55.15±4.84 

 
73.14±2.49* 

 
74.22±3.29* 

 
69.41±2.67 

 
64.53±3.85 

 
VSL 
(m/s) 

 
45.70±3.27 

 
64.49±1.88* 

 
65.64±2.10* 

 
60.46±2.92 

 
57.26±3.36 

 
VCL 
(m) 

 
78.01±5.79 

 
98.36±4.71* 

 
98.92±5.12* 

 
91.35±5.40 

 
84.41±6.43 

 
ALH 
(m/s) 

 
3.47±0.20 

 
4.01±0.23* 

 
4.04±0.18* 

 
3.79±0.28 

 
3.70±0.22 

 
BCF 
(Hz) 

 
18.14±1.38 

 
17.33±0.90 

 
16.48±0.75 

 
18.13±0.84 

 
18.23±0.91 

 
STR 
(%) 

 
81.10±1.81 

 
84.60±0.90 

 
84.60±0.63 

 
85.50±1.03 

 
83.60±1.31 

 
LIN 
(%) 

 
58.20±2.42 

 
63.70±1.83 

 
63.20±1.06 

 
66.30±3.22 

 
60.10±1.60 

 
Rapid cells 
(%) 

 
49.80±5.51 

 
67.60±3.28* 

 
71.70±2.63* 

 
54.80±3.29 

 
54.60±3.87 

 
Static cells 
(%) 
 

 
28.50±4.21 

 
16.40±1.47* 

 
13.40±1.39* 

 
21.80±4.98 

 
25.50±3.04 
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4.2.1 Effects of different insulin concentrations on PI fluorescence 

Insulin significantly decreased PI fluorescence at all the concentrations when 

compared to the control (Figure 34). The decrease in PI fluorescence was interpreted 

as an increase in viability. 

 

 

 

Figure 34. The effects of different insulin concentrations on PI fluorescence (n = 18) 
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4.3 The effects of different leptin concentrations on sperm motility 

parameters after 1, 2, and 3 hours of incubation. 

Table VI shows the effects of different leptin concentrations on sperm motility 

parameters. The number of motile cells was significantly increased in the 10 nM 

leptin treated group when compared to the control (p < 0.05 vs. Control). On the 

other hand the author observed a significant decrease in the number of motile cells in 

the 30 nM leptin treated group when compared to the 10 nM leptin treated group 

(p < 0.05), but was not statistically different when compared to the control (p > 0.05). 

No significant differences were observed in the other motility parameters (p > 0.05 

vs. Control). 

 

After two hours of incubation (Table VII), there was a significant increase in motile 

cells in the 10 nM leptin treated group when compared to the control (p < 0.05 vs. 

Control). However, the 20 nM and 30nmol leptin treated groups had significantly less 

motile cells when compared to the 10 nM treated group (p < 0.05), but were not 

statistically different when compared to the control (p > 0.05). Progressive motility 

and VAP were significantly increased in the 10 nM leptin treated group when 

compared to the control (p < 0.05 vs. Control). No significant differences were 

observed in the other parameters (p > 0.05 vs. Control). 

 

Motile cells and progressive motility were significantly increased in the 5 nM and  

10 nM leptin treated groups when compared to the control (p < 0.05 vs. Control) after 

three hours of incubation (Table VIII). VAP and VSL were significantly increased in 

the 10 nM leptin treated group when compared to the control (p < 0.05 vs. Control). 

VCL was significantly increased in the 10 nM, 20 nM and 30 nM leptin treated groups 
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when compared to the control (p < 0.05 vs. Control). Static cells were significantly 

decreased in the 10 nM leptin treated group when compared to the control (p < 0.05 

vs. Control). 

 

Table VI. The effects of different leptin concentrations on sperm motility parameters 

after one hour of incubation (n = 18) 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                *p < 0.05 vs. Control; #p < 0.05 vs. 10 nmol leptin. 
 
 
 
 
 
 
 
 

 
Parameter 
 

 
Control 

 

 
5 nmol 

 
10 nmol 

 
20 nmol 

 
30 nmol 

 
Motile 
(%) 

 
66.80±2.64 

 

 
67.60±2.38 

 
77.80±2.41* 

 
68.70±4.16 

 
63.90±2.52# 

 
Progr. Mot 
(%) 

 
44.10±3.08 

 
47.50±2.00 

 
49.30±1.27 

 
47.50±2.92 

 
46.90±3.19 

 
VAP 
(m/s) 

 
  60.32±3.24 

 
62.75±2.76 

 
62.88±3.23 

 
66.04±1.46 

 
61.32±3.76 

 
VSL 
(m/s) 

 
52.40±2.96 

 
55.20±1.61 

 
58.58±2.08 

 
58.72±1.36 

 
55.03±1.69 

 
VCL 
(m) 

 
81.63±5.17 

 
82.61±3.45 

 
89.18±3.04 

 
87.53±2.29 

 
83.25±2.51 

 
ALH 
(m/s) 

 
3.47±0.22 

 
3.42±0.14 

 
3.33±0.18 

 
3.61±0.16 

 
3.50±0.14 

 
BCF 
(Hz) 

 
15.97±1.08 

 
17.31±0.79 

 
16.30±0.63 

 
17.78±1.01 

 
18.91±1.27 

 
STR 
(%) 

 
84.10±1.08 

 
85.60±1.01 

 
82.40±0.96 

 
86.70±0.85 

 
83.90±1.21 

 
LIN 
(%) 

 
62.20±1.42 

 
63.30±1.44 

 
59.90±1.37 

 
66.10±1.59 

 
62.10±2.12 

 
Rapid cells 
(%) 

 
58.80±2.70 

 
56.80±2.56 

 
61.20±1.63 

 
61.30±3.32 

 
658.10±3.76 

 
Static cells 
(%) 
 

 
29.10±2.44 

 
28.00±2.24 

 
26.10±2.49 

 
24.80±2.92 

 
23.80±2.85 
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Table VII. The effects of different leptin concentrations on sperm motility parameters 

after two hours of incubation (n = 18) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
                      *p < 0.05 vs. Control; #p < 0.05 vs. 10 nmol leptin. 
 

 
Parameter 
 

 
Control 

 

 
5 nmol 

 
10 nmol 

 
20 nmol 

 
30 nmol 

 
Motile 
(%) 

 
64.50±3.63 

 

 
71.70±2.86 

 
79.60±1.55* 

 
67.20±2.54# 

 
68.20±3.57# 

 
Progr. Mot 
(%) 

 
40.50±3.87 

 
47.30±3.33 

 
53.10±1.75* 

 
50.63±3.86 

 
49.10±3.93 

 
VAP 
(m/s) 

 
  57.27±3.88 

 
60.19±3.38 

 
71.89±3.35* 

 
63.36±2.72 

 
62.56±2.66 

 
VSL 
(m/s) 

 
50.80±2.47 

 
52.98±2.83 

 
60.11±2.00 

 
55.91±2.55 

 
56.10±2.49 

 
VCL 
(m) 

 
80.91±5.34 

 
82.26±3.78 

 
88.59±3.32 

 
85.04±3.89 

 
85.87±2.99 

 
ALH 
(m/s) 

 
3.72±0.26 

 
3.35±0.22 

 
3.51±0.26 

 
3.68±0.16 

 
3.82±0.15 

 
BCF 
(Hz) 

 
16.50±0.86 

 
17.20±0.97 

 
16.73±1.12 

 
18.08±0.62 

 
18.09±0.72 

 
STR 
(%) 

 
83.00±1.20 

 
85.20±1.20 

 
82.80±0.55 

 
85.95±0.75 

 
85.90±1.21 

 
LIN 
(%) 

 
59.60±1.77 

 
62.00±1.78 

 
61.60±1.67 

 
64.20±1.57 

 
63.70±1.89 

 
Rapid cells 
(%) 

 
54.70±4.62 

 
62.20±1.44 

 
61.70±2.64 

 
57.90±3.53 

 
61.30±4.06 

 
Static cells 
(%) 
 

 
25.00±2.93 

 
22.40±2.83 

 
21.50±2.64 

 
25.00±2.84 

 
25.30±3.01 
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Table VIII. The effects of different leptin concentrations on sperm motility parameters 

after three hours of incubation (n = 18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
                *p < 0.05 vs. Control 
 

 

 

 

 

 

 

 
Parameter 
 

 
Control 

 

 
5 nmol 

 
10 nmol 

 
20 nmol 

 
30 nmol 

 
Motile 
(%) 

 
60.40±2.00 

 

 
75.90±2.49* 

 
77.30±1.77* 

 
64.00±2.40 

 
65.90±2.43 

 
Progr. Mot 
(%) 

 
34.70±4.82 

 
51.10±3.37* 

 
54.10±2.26* 

 
48.30±1.90 

 
48.80±1.86 

 
VAP 
(m/s) 

 
  55.15±4.84 

 
59.93±2.87 

 
65.54±4.54* 

 
64.96±1.75 

 
63.32±2.47 

 
VSL 
(m/s) 

 
45.70±3.27 

 
52.15±2.92 

 
58.87±2.21* 

 
57.15±1.86 

 
54.25±2.35 

 
VCL 
(m) 

 
78.01±5.79 

 
82.46±3.47 

 
90.78±3.28* 

 
87.86±2.50* 

 
88.21±3.38* 

 
ALH 
(m/s) 

 
3.47±0.20 

 
3.53±0.19 

 
3.57±0.27 

 
3.81±0.10 

 
3.58±0.16 

 
BCF 
(Hz) 

 
18.14±1.38 

 
17.79±0.89 

 
17.47±0.59 

 
17.60±1.02 

 
18.05±1.13 

 
STR 
(%) 

 
81.10±1.81 

 
82.60±0.81 

 
81.20±0.48 

 
85.70±0.73 

 
81.80±1.63 

 
LIN 
(%) 

 
58.20±2.42 

 
58.20±1.56 

 
58.20±1.11 

 
63.80±1.34 

 
60.30±1.16 

 
Rapid cells 
(%) 

 
49.80±5.51 

 
51.20±2.56 

 
61.00±2.82 

 
58.80±2.19 

 
56.00±4.39 

 
Static cells 
(%) 
 

 
28.50±4.21 

 
21.70±2.72 

 
18.30±14.05 

 
24.90±2.46 

 
27.40±4.75 
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4.3.1 Effects of different leptin concentrations on PI fluorescence 

Figure 35 shows that there was no statistical difference in PI fluorescence with the 

administration of 5 nmol and 10 nmol leptin when compared to the control (p > 0.05). 

However, the 30 nmol leptin treated group had significantly more PI fluorescence 

when compared to the 10 nmol treated group (24.95 ± 2.09 vs. 16.70 ± 1.16;  

p < 0.05). 

 

 

 

Figure 35. The effects of different leptin concentration on PI fluorescence (n = 18) 
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4.4 Teasing out the insulin signalling pathway in human spermatozoa after 

1, 2, and 3 hours of incubation. 

The concentration of 10 µIU of insulin was chosen from the dose response curve to 

be administered to the cells. After one hour of incubation (Table IX), the insulin 

treated group had significantly higher percentage of motile cells and progressive 

motility when compared to the erbstatin + insulin treated group (p < 0.05). The 

erbstatin + insulin group also had significantly lower progressive motility when 

compared to the control (p < 0.05). Percent motile cells were significantly decreased 

in the erbstatin and erbstatin + insulin group when compared to the insulin treated 

group (p < 0.05).  

 

Table X shows the effects of insulin on sperm motility parameters after two hours of 

incubation. The erbstatin, nifedipine and wortmannin concentrations used in this 

study were those as described by Aquila et al. (2005). Motile cells were significantly 

decreased in the glucose free, erbstatin (25 µM) and erbstatin + insulin groups when 

compared to the control and the insulin treated group (p < 0.05). Nifedipine (25 µM) 

and wortmannin (10 µM) also significantly decreased motile cells when compared to 

the insulin treated group (p < 0.05). The glucose free, erbstatin, erbstatin + insulin 

and wortmannin groups had significantly lower progressive motility when compared 

to the control (p < 0.05). However, the addition of insulin significantly increased 

progressive motility as well as rapid cells when compared to the control, nifedipine, 

erbstatin, erbstatin + insulin and wortmannin treated groups (p < 0.05).  VAP, VSL, 

VCL and ALH were significantly decreased in the glucose free group when compared 

to the control (p < 0.05). Static cells were significantly decreased in the insulin group 
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when compared to the nifedipine, nifedipine + insulin, erbstatin and erbstatin + insulin 

groups (p < 0.05). Erbstatin and erbstatin + insulin treated groups also had 

significantly higher percentages of static cells when compared to the control (p < 

0.05). 

 

After three hours of incubation (Table XI) the glucose free group had significantly 

lower motile cells, progressive motility, VAP, VSL, VCL, ALH and rapid cells when 

compared to the control (p < 0.05). Static cells were also significantly increased in the 

glucose free group when compared to the control (p < 0.05). The addition of insulin 

significantly increased rapid cells when compared to the control, nifedipine, erbstatin 

and erbstatin + insulin treated groups (p < 0.05). Motile cells and progressive motility 

were significantly decreased in the nifedipine, erbstatin and erbstatin + insulin treated 

groups when compared to the control and the insulin treated group (p < 0.05). VAP, 

VSL, VCL and rapid cells were significantly decreased in the erbstatin + insulin group 

when compared to both the control and the insulin treated group (p < 0.05). 

Nifedipine and erbstatin also significantly decreased rapid cells when compared to 

the insulin treated group. Static cells were significantly increased in the nifedipine 

treated group when compared to the control and the insulin treated group (p < 0.05) 

respectively.   
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Table IX. Unravelling the insulin signalling pathway after one hour of incubation (n = 20) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p < 0.05 vs. Control; #p < 0.05 vs. Insulin 

 

 
Parameter 
 

 
Control 

 
Glucose-free 

 
Insulin (10 µIU) 

 
Nifedipine 
 (25 µM) 

 
Nifedipine+ 

    Insulin 

 
Erbstatin 
(25 µM) 

 
Erbstatin + 

    Insulin 

 
Wortmannin 
(10  µM) 

 
Wortmannin + 
Insulin 

 
Motile 
(%) 

 
73.90±2.96 

 
66.80±2.64 

 

 
77.30±2.62 

 
66.70±3.72 

 
71.50±4.35 

 
63.20±2.49 

 
56.80±1.78# 

 
67.50±3.32 

 
64.40±3.57 

 
Progr. Mot 
(%) 

 
54.90±2.62 

 
44.10±3.08 

 
52.50±1.62 

 
49.60±3.37 

 
49.20±3.93 

 
44.10±2.61 

 
31.90±1.47*# 

 
48.70±3.03 

 
43.30±3.87 

 
VAP 
(m/s) 

 
68.54±1.05 

 
60.32±3.24 

 
69.11±2.51 

 
70.31±1.22 

 
65.62±3.66 

 
57.69±1.86 

 
56.53±1.44 

 
66.04±1.46 

 
61.32±2.31 

 
VSL 
(m/s) 

 
59.60±0.60 

 
52.40±2.96 

 

 
63.11±1.98 

 
62.51±1.21 

 
57.02±3.53 

 
50.80±1.87 

 
47.67±1.38 

 
58.72±1.36 

 
53.64±2.08 

 
VCL 
(m) 

 
91.02±2.75 

 
81.63±5.17 

 
91.27±4.44 

 
92.58±2.16 

 
89.33±4.58 

 
79.73±2.67 

 
77.78±2.28 

 
87.53±2.29 

 
83.25±2.51 

 
ALH 
(m/s) 

 
3.59±0.14 

 
3.47±0.22 

 
3.68±0.18 

 
3.69±0.16 

 
3.84±0.21 

 
3.42±0.14 

 
3.33±0.18 

 
3.61±0.16 

 
3.50±0.14 

 
BCF 
(Hz) 

 
17.02±0.87 

 
15.97±1.08 

 
16.82±0.88 

 
17.71±0.90 

 
17.58±0.73 

 
17.31±0.79 

 
16.30±0.63 

 
17.78±0.01 

 
18.91±1.27 

 
STR 
(%) 

 
86.60±1.12 

 
84.10±1.08 

 
85.30±0.83 

 
87.40±1.08 

 
84.80±1.23 

 
85.60±1.01 

 
82.40±0.96 

 
86.70±0.85 

 
83.90±1.21 

 
LIN 
(%) 

 
66.70±2.08 

 
62.20±1.42 

 
65.30±1.25 

 
67.40±2.02 

 
63.00±1.64 

 
63.30±1.44 

 
54.90±1.37 

 
66.10±1.59 

 
62.10±2.12 

 
Rapid cells 
(%) 

 
69.90±2.97 

 
    55.80±2.70 

 
71.00±2.64 

 
63.00±3.78 

 
64.70±2.95 

 
56.80±2.56 

 
50.10±1.65 

 
61.30±3.32 

 
58.10±3.76 

 
Static cells 
(%) 
 

 
20.20±3.37 

 
29.10±2.44 

 
16.90±2.30 

 
23.20±2.95 

 
20.80±3.00 

 
28.00±2.24# 

 
36.10±2.49# 

 
24.80±2.92 

 
23.80±2.85 
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Table X. Unravelling the insulin signalling pathway after two hours of incubation (n = 20) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p < 0.05 vs. Control; #p < 0.05 vs. Insulin 

 

 
Parameter 
 

 
Control 

 
Glucose-free 

 

 
Insulin (10 µIU) 

 
Nifedipine 
(25 µM) 

 
Nifedipine+ 

    Insulin 

 
Erbstatin 
(25 µM) 

 
Erbstatin + 

    Insulin 

 
Wortmannin 
(10 µM) 

 
Wortmannin + 
Insulin 

 
Motile 
(%) 

 
76.10±2.15 

 
64.50±3.63* 

 

 
81.60±1.41 

 
64.70±3.55# 

 
68.30±3.47 

 
54.20±3.45*# 

 
59.90±2.57*# 

 
62.20±3.28# 

 
68.50±3.42 

 
Progr. Mot 
(%) 

 
54.00±1.78 

 
40.50±3.87* 

 
67.10±2.31* 

 
41.90±3.55# 

 
46.60±3.25 

 
35.30±3.30*# 

 
38.60±2.85*# 

 
44.90±3.91# 

 
49.10±3.93 

 
VAP 
(m/s) 

 
72.11±3.32 

 
  57.27±3.88* 

 
73.57±3.16 

 
64.55±3.43 

 
63.86±4.09 

 
60.19±3.38 

 
59.80±3.41 

 
63.36±2.72 

 
62.56±2.66 

 
VSL 
(m/s) 

 
63.06±2.64 

 
50.80±2.47* 

 
65.39±2.36 

 
56.51±3.07 

 
55.58±4.09 

 
52.47±3.03 

 
50.87±2.77 

 
55.91±2.55 

 
56.10±2.49 

 
VCL 
(m) 

 
95.94±4.37 

 
80.91±5.34* 

 
96.62±5.58 

 
88.94±5.17 

 
87.89±5.17 

 
82.26±3.78 

 
81.54±4.11 

 
85.04±3.89 

 
85.87±2.99 

 
ALH 
(m/s) 

 
4.17±0.23 

 
3.72±0.26* 

 
3.82±0.21 

 
3.85±0.28 

 
3.79±0.26 

 
3.50±0.22 

 
3.51±0.26 

 
3.68±0.16 

 
3.82±0.15 

 
BCF 
(Hz) 

 
17.33±0.95 

 
16.50±0.86 

 
17.25±1.00 

 
16.95±0.98 

 
17.47±0.89 

 
17.20±0.97 

 
16.73±1.12 

 
18.08±0.62 

 
18.09±0.72 

 
STR 
(%) 

 
85.50±0.88 

 
83.00±1.20 

 
84.60±1.01 

 
85.40±0.68 

 
84.20±1.17 

 
85.20±1.20 

 
82.80±0.55 

 
85.90±0.75 

 
85.90±1.21 

 
LIN 
(%) 

 
64.10±1.74 

 
59.60±1.77 

 
65.10±1.39 

 
63.00±1.71 

 
62.00±1.80 

 
62.00±1.78 

 
61.60±1.67 

 
64.20±1.57 

 
63.70±1.89 

 
Rapid cells 
(%) 

 
69.50±2.77 

 
54.70±4.62 

 
75.30±2.80* 

 
56.90±4.09# 

 
60.00±4.09 

 
47.80±3.95# 

 
53.70±2.90# 

 
57.90±3.53 

 
61.30±4.06 

 
Static cells 
(%) 
 

 
18.10±2.33 

 
25.00±2.93 

 
12.30±1.36 

 
23.60±3.46# 

 
23.50±2.68# 

 
32.40±2.83*# 

 
31.50±2.64*# 

 
25.00±2.84 

 
25.30±3.01 
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Table XI. Unravelling the insulin signalling pathway after three hours of incubation (n = 20) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

*p < 0.05 vs. Control; #p < 0.05 vs. Insulin 

 

 
Parameter 
 

 
Control 

 

 
Glucose-free 

 
Insulin (10 µIU) 

 
Nifedipine 
(25 µM) 

 
Nifedipine+ 

    Insulin 

 
Erbstatin 
(25 µM) 

 
Erbstatin + 

    Insulin 

 
Wortmannin 
(10 µM) 

 
Wortmannin + 
Insulin 

 
Motile 
(%) 

 
75.70±2.58 

 
60.40±2.00* 

 

 
79.60±2.56 

 
58.40±4.14*# 

 
63.90±2.46 

 
55.30±2.98*# 

 
50.00±2.73*# 

 
64.00±2.40 

 
62.00±4.41 

 
Progr. Mot 
(%) 

 
52.80±3.02 

 
34.70±4.82* 

 
61.50±3.42 

 
39.90±3.79*# 

 
40.20±3.46# 

 
33.00±2.13*# 

 
27.00±2.14*# 

 
45.20±2.18# 

 
39.10±3.85*# 

 
VAP 
(m/s) 

 
73.14±2.49 

 
55.15±4.84* 

 
79.24±4.47 

 
67.08±3.95 

 
60.14±5.01 

 
59.93±2.87 

 
53.88±3.88*# 

 
64.96±1.75 

 
63.32±2.47 

 
VSL 
(m/s) 

 
64.83±2.49 

 
45.70±3.27* 

 
71.12±3.66 

 
59.31±3.60 

 
51.61±4.47 

 
52.15±2.92 

 
45.93±3.56*# 

 
57.15±1.86 

 
54.25±2.35 

 
VCL 
(m) 

 
98.36±4.71 

 
78.01±5.79* 

 
94.55±6.84 

 
91.35±5.40 

 
84.41±6.43 

 
82.46±3.47 

 
75.12±4.98*# 

 
87.86±2.50 

 
88.21±3.38 

 
ALH 
(m/s) 

 
4.56±0.21 

 
3.47±0.20* 

 
4.64±0.25 

 
3.79±0.28 

 
3.70±0.22 

 
3.53±0.19 

 
3.57±0.27 

 
3.81±0.10 

 
3.58±0.16 

 
BCF 
(Hz) 

 
17.33±0.90 

 
18.14±1.38 

 
16.48±0.75 

 
18.13±0.84 

 
18.23±0.91 

 
17.79±0.89 

 
17.47±0.59 

 
17.60±1.02 

 
18.05±1.13 

 
STR 
(%) 

 
84.60±0.90 

 
81.10±1.81 

 
84.60±0.63 

 
85.50±1.03 

 
83.60±0.31 

 
82.60±0.81 

 
81.20±0.48 

 
85.70±0.73 

 
81.80±1.63 

 
LIN 
(%) 

 
63.70±1.83 

 
58.20±2.42 

 
63.20±1.06 

 
66.30±3.22 

 
60.10±1.60 

 
58.20±1.56 

 
58.20±1.11 

 
63.80±1.34 

 
60.30±1.16 

 
Rapid cells 
(%) 

 
70.00±3.21 

 
49.80±5.15* 

 
78.00±4.50* 

 
52.40±4.31# 

 
52.60±3.73 

 
48.30±3.23# 

 
41.10±3.33*# 

 
57.20±2.70 

 
56.00±4.39 

 
Static cells 
(%) 
 

 
16.40±1.47 

 
28.50±4.21* 

 
13.40±1.39 

 
30.80±4.98*# 

 
25.90±3.04 

 
31.70±2.72 

 
38.30±4.05 

 
24.90±2.46 

 
27.40±4.75 
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4.4.1 Effects of insulin on PI fluorescence 

Figure 36 shows that PI fluorescence was significantly increased in the glucose free 

group when compared to the control (26.41 ± 1.58% vs. 19.98 ± 0.80%; p < 0.05). 

Addition of insulin significantly decreased the PI fluorescence when compared to the 

control (16.40 ± 0.94% vs. 19.98 ± 0.80%; p < 0.05), but the blockage of endogenous 

insulin secretion by nifedipine significantly increased PI fluorescence when compared 

to the control (25.99 ± 1.91 vs. 19.98 ± 0.80%; p < 0.05). No statistically significant 

differences were observed with the other groups (p > 0.05). 

 

 

Figure 36. Effects of insulin on PI fluorescence. *, p < 0.05 vs. Control (n = 20) 

 

 

 

 

 



 101

4.4.2 Effects of insulin on acrosome reaction 

 

In Figure 37 it can be seen in the control group that progesterone stimulation led to 

significantly more spermatozoa undergoing the AR when compared to cells left to 

spontaneously acrosome react. This phenomenon was observed in all of the 

treatment groups (glucose free, insulin, nifedipine, erbstatin, and wortmannin). The 

lack of glucose significantly reduced the percentage of cells undergoing AR when 

compared to the control (12.42 ± 0.80% vs. 22.92 ± 1.54 %; p < 0.05) for 

spermatozoa which were left to undergo the spontaneously acrosome reaction. 

Insulin significantly increased spontaneously acrosome reacted cells compared to the 

control (44.67 ± 2.20% vs. 22.92 ± 1.54 %; p < 0.05). On the other hand, the 

inhibition of insulin release by nifedipine as well as the inhibition of the IRS tyrosine 

phosphorylation by erbstatin significantly decreased spontaneously acrosome 

reacted spermatozoa compared to the control (15.33 ± 0.92%; 17.67 ± 0.69% vs. 

22.92 ± 1.54 %; p < 0.05) respectively. Wortmannin had no effect on spontaneous 

acrosome reaction when compared to the control.  

 

When spermatozoa were stimulated with progesterone to acrosome react in this 

study was observed a similar trend. The glucose-free group had a significantly lower 

percentage of acrosome reacted spermatozoa compared to the progesterone control 

(19.42 ± 0.63% vs. 31.17 ± 1.06%; p < 0.05). The addition of insulin significantly 

increased the progesterone stimulated acrosome reaction compared to the control 

(53.42 ± 1.56 % vs. 31.17 ± 1.06%; p < 0.05). Inhibition of insulin release by 

nifedipine as well as inhibition of IRS tyrosine phosphorylation by erbstatin 

significantly decreased the percentage of progesterone stimulated acrosome reacted 
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spermatozoa compared to the control (23.17 ± 1.27%; 20.92 ± 0.93% vs. 31.17 ± 

1.06%; p < 0.05) respectively. The PI3K inhibitor, wortmannin, had no effect on 

progesterone stimulated acrosome reaction compared to the control. The addition of 

insulin to the nifedipine treated group significantly increased AR compared to the 

spontaneous nifedipine treated group (28.58 ± 0.98 vs. 15.33 ± 0.92; p < 0.05).  
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Figure 37. Effects of insulin, nifedipine, erbstatin and wortmannin on acrosome 

reaction. Cells were stimulated with progesterone to induce the acrosome reaction or 

left to spontaneously acrosome react. *, p < 0.05 vs. Control (spontaneous); ●, p < 

0.05 vs. Control (progesterone); @, p < 0.05 vs. Progesterone in the same group; #, p 

< 0.05 (n = 20). 

 



 103

4.5 The additive effects of insulin and leptin on sperm motility parameters 

after different incubation periods. 

After one hour of incubation (Table XII) there was a significant increase in motile cells 

in the leptin and insulin + leptin treated groups when compared to control (p < 0.05). 

Progressive motility and VCL were also significantly increased in the leptin and 

insulin + leptin treated groups when compared to the control (p < 0.05). On the other 

hand, VAP, ALH and rapid cells were significantly increased in the insulin + leptin 

treated group only when compared to the control (p < 0.05). Percentage of motile 

cells were significantly increased in the leptin and insulin + leptin group when 

compared to the control (p < 0.05). 

 

Table XIII shows the effects of insulin and leptin on motility parameters after two 

hours of incubation. Motile cells, progressive motility, VCL, and rapid cells were 

significantly increased in the insulin, leptin and insulin + leptin treated groups when 

compared to the control (p < 0.05). ALH was significantly increased in the leptin and 

insulin + leptin treated groups when compared to the control (p < 0.05). The 

percentage of static cells was significantly decreased in the insulin, leptin and insulin 

+ leptin treated groups compared to the control (p < 0.05). 

 

Motile cells, progressive motility, VCL, ALH, and rapid cells were all significantly 

increased in the insulin, leptin and insulin + leptin treated groups compared to the 

control (p < 0.05) after three hours of incubation (Table XIV). Percentage of motile 

cells was significantly increased in the insulin, leptin and insulin + leptin treated 

groups when compared to the control (p < 0.05). 
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Table XII. Effects of insulin and leptin on sperm motility parameters after one hour of 
incubation (n = 18) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

              *p < 0.05 vs. Control 

 
Parameter 
 

 
Control 

 

 
Insulin 

 (10 µIU) 

 
Leptin 

(10 nmol) 

 
Insulin+ 

    Leptin 

 
Wortmannin 

(10 µM) 

 
Insulin+Leptin+ 
Wortmannin 

 
Motile 
(%) 

 
64.80±2.74 

 

 
72.80±2.05 

 
75.30±0.57* 

 
76.10±2.53* 

 
63.70±2.63 

 
66.90±2.09 

 
Progr. Mot 
(%) 

 
42.30±2.84 

 
44.80±3.09 

 
51.60±1.98* 

 
52.30±3.08* 

 
43.90±2.83 

 
43.70±2.06 

 
VAP 
(m/s) 

 
55.71±3.08 

 
54.18±3.07 

 
60.18±2.40 

 
64.21±2.84* 

 
61.55±2.33 

 
60.77±1.61 

 
VSL 
(m/s) 

 
46.72±3.04 

 
45.42±3.20 

 
52.07±2.67 

 
55.42±3.09 

 
55.38±2.60 

 
56.18±3.87 

 
VCL 
(m) 

 
78.51±3.90 

 
86.49±3.48 

 
93.15±2.92* 

 
97.40±3.33* 

 
83.44±2.17 

 
83.71±3.82 

 
ALH 
(m/s) 

 
3.36±0.13 

 
3.36±0.13 

 
3.79±0.15 

 
4.00±0.15* 

 
3.89±0.11 

 
3.90±0.17 

 
BCF 
(Hz) 

 
18.15±0.65 

 
16.93±0.95 

 
19.74±0.64 

 
19.00±0.50 

 
19.02±0.62 

 
19.88±0.41 

 
STR 
(%) 

 
83.30±1.00 

 
82.70±1.38 

 
84.80±1.05 

 
84.20±0.96 

 
84.60±0.83 

 
84.20±0.57 

 
LIN 
(%) 

 
60.20±1.65 

 
58.50±2.00 

 
60.90±1.24 

 
61.40±1.41 

 
59.50±1.16 

 
61.30±0.95 

 
Rapid cells 
(%) 

 
61.10±2.87 

 
66.90±2.88 

 
68.80±1.31 

 
70.70±2.61* 

 
54.30±3.18 

 
57.00±3.09 

 
Static cells 
(%) 
 

 
29.30±2.57 

 
19.30±1.40 

 
17.20±1.11* 

 
16.10±1.89* 

 
22.50±1.19 

 
23.30±1.83 
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Table XIII. Effects of insulin and leptin on sperm motility parameters after two hours 
of incubation (n = 18) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              *p < 0.05 vs. Control 

 

 
Parameter 
 

 
Control 

 

 
Insulin 

(10 µIU) 

 
Leptin 

(10 nmol) 

 
Insulin+ 

    Leptin 

 
Wortmannin 

(10 µM) 

 
Insulin+Leptin+ 
Wortmannin 

 
Motile 
(%) 

 
54.30±2.43 

 

 
69.00±2.22* 

 
72.20±2.02* 

 
73.80±2.81* 

 
59.00±1.92 

 
58.10±3.00 

 
Progr. Mot 
(%) 

 
32.90±3.83 

 
47.30±3.81* 

 
53.20±3.00* 

 
54.80±3.13* 

 
39.80±3.53 

 
39.00±3.61 

 
VAP 
(m/s) 

 
60.66±4.17 

 
63.66±2.76 

 
65.36±2.29 

 
67.23±1.97 

 
60.72±2.44 

 
58.94±2.33 

 
VSL 
(m/s) 

 
53.64±4.04 

 
56.39±3.03 

 
57.76±2.19 

 
59.11±1.55 

 
53.68±2.06 

 
51.89±2.10 

 
VCL 
(m) 

 
84.97±5.39 

 
99.78±2.07* 

 
105.2±1.87* 

 
106.6±1.59* 

 
82.99±3.27 

 
82.50±3.51 

 
ALH 
(m/s) 

 
4.20±0.16 

 
4.76±0.24 

 
5.20±0.24* 

 
5.40±0.26* 

 
3.92±0.13 

 
3.97±0.17 

 
BCF 
(Hz) 

 
19.35±1.10 

 
20.48±0.53 

 
20.50±0.53 

 
19.53±0.51 

 
18.84±0.52 

 
20.11±0.52 

 
STR 
(%) 

 
84.40±0.77 

 
85.40±0.92 

 
84.90±0.79 

 
85.40±0.84 

 
85.10±1.01 

 
84.40±0.71 

 
LIN 
(%) 

 
60.60±1.64 

 
61.70±1.85 

 
62.90±0.94 

 
62.80±1.03 

 
61.50±1.05 

 
61.90±1.00 

 
Rapid cells 
(%) 

 
45.20±4.13 

 
61.30±3.14* 

 
66.00±2.38* 

 
67.20±2.84* 

 
50.80±2.79 

 
50.90±3.61 

 
Static cells 
(%) 
 

 
33.30±1.93 

 
19.40±1.44* 

 
19.20±1.77* 

 
16.80±1.59* 

 
26.00±1.57 

 
31.30±2.44 
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Table XIV. Effects of insulin and leptin on sperm motility parameters after three hours 
of incubation (n = 18) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              *p < 0.05 vs. Control 

 

 

 

 

 

 

 

 
Parameter 
 

 
Control 

 

 
Insulin 

(10 µIU) 

 
Leptin 

(10 nmol) 

 
Insulin+ 

    Leptin 

 
Wortmannin 

(10 µM) 

 
Insulin+Leptin+ 
Wortmannin 

 
Motile 
(%) 

 
54.70±2.85 

 

 
69.40±1.33* 

 
70.30±2.43* 

 
73.00±1.51* 

 
55.10±2.40 

 
52.50±2.15 

 
Progr. Mot 
(%) 

 
35.90±4.32 

 
45.50±2.77* 

 
49.20±3.00* 

 
49.80±3.29* 

 
32.70±2.52 

 
30.40±1.85 

 
VAP 
(m/s) 

 
61.22±3.43 

 
65.21±2.00 

 
64.05±2.74 

 
61.05±3.08 

 
55.54±3.60 

 
56.81±3.83 

 
VSL 
(m/s) 

 
53.76±3.80 

 
56.60±1.89 

 
56.54±2.27 

 
53.19±3.01 

 
45.30±1.80 

 
48.97±3.65 

 
VCL 
(m) 

 
85.89±3.34 

 
106.0±1.66* 

 
106.9±2.04* 

 
110.5±1.91* 

 
80.18±3.18 

 
80.20±4.42 

 
ALH 
(m/s) 

 
4.17±0.13 

 
6.12±0.29* 

 
6.47±0.20* 

 
7.16±0.26* 

 
4.66±0.34 

 
4.47±0.26 

 
BCF 
(Hz) 

 
19.92±0.47 

 
19.76±0.33 

 
18.90±0.72 

 
20.67±0.33 

 
19.86±0.31 

 
20.60±0.41 

 
STR 
(%) 

 
85.30±1.30 

 
84.80±0.67 

 
85.70±0.80 

 
86.10±0.97 

 
83.80±0.71 

 
82.90±0.64 

 
LIN 
(%) 

 
61.00±2.44 

 
59.90±1.17 

 
62.70±1.49 

 
61.50±1.55 

 
57.60±1.19 

 
58.20±1.35 

 
Rapid cells 
(%) 

 
47.00±4.01 

 
61.60±1.95* 

 
61.80±2.09* 

 
62.70±1.92* 

 
47.40±2.79 

 
41.90±2.21 

 
Static cells 
(%) 
 

 
30.50±2.77 

 
20.60±0.96* 

 
19.70±1.47* 

 
16.50±1.34* 

 
24.70±0.74 

 
30.30±1.95 
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4.5.1 Effects of insulin and leptin on propidium iodide (PI) fluorescence 

 

In this study no statistically significant results were observed in viability for cells 

treated with insulin, leptin, and insulin + leptin when compared to the control (Figure 

38).  

 

 

 

Figure 38. Effects of insulin and leptin on PI fluorescence. PI was used as a probe 

for non-viable cells. Spermatozoa were treated with insulin, leptin, insulin + leptin 

(Ins/Lep), insulin + leptin + wortmannin (Ins/Lep/Wort), or wortmannin (Wort). Data is 

expressed as the percentage of PI fluorescence (n = 18) 
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4.5.2 Effects of insulin and leptin on sperm acrosome reaction 

 

In all of the groups the progesterone-stimulated samples had significantly more 

acrosome-reacted cells compared to samples left to undergo the spontaneous 

acrosome-reaction (p < 0.05) (Figure 39). The addition of insulin, leptin, and 

insulin + leptin significantly increased the percentage of spontaneous acrosome-

reacted cells compared to the control (35.33 ± 1.73 %, 36.56 ± 1.93 %, and 

41.78 ± 1.31 % vs. 14.56 ± 0.64 %, respectively; p < 0.05). Similarly, insulin, leptin, 

and insulin + leptin significantly increased acrosome reaction in cells stimulated with 

progesterone when compared to the control (42.11 ± 2.05 %, 42.89 ± 1.26 %, and 

49.11 ± 1.18 % vs 20.00 ± 1.35 %, respectively; p < 0.05). The inhibition of PI3K with 

wortmannin did not affect the percentage of acrosome-reacted cells compared to the 

control in either spontaneous or progesterone-stimulated groups. Wortmannin, 

however, attenuated the stimulatory effects of insulin/leptin on acrosome reaction 

when used as a cotreatment. 
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Figure 39. Effects of insulin and leptin on sperm acrosome reaction. Spermatozoa 

were treated with insulin, leptin, insulin + leptin (Ins/Lep), 

insulin + leptin + wortmannin (Ins/Lep/Wort), or wortmannin (Wort). Cells were 

simulated to acrosome react with progesterone or left to undergo spontaneous 

acrosome reaction. *P < 0.05 vs spontaneous control; **P < 0.05 vs spontaneous; 

***P < 0.05 vs progesterone control (n = 18) 
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4.5.3 Effects of insulin and leptin on 4,5-diaminofluorescein-2/diacetate (DAF-
2/DA) fluorescence 
 

Figure 40 shows the effects of insulin and leptin on DAF-2/DA fluorescence. The 

NOS inhibitor, L-NAME (0.7 mM), significantly reduced DAF-2/DA fluorescence 

compared to the control (81.01 ± 1.48 % vs 100 %; p < 0.05). Wortmannin (10 µM), a 

PI3K inhibitor, also significantly reduced DAF-2/DA fluorescence compared to the 

control (91.58 ± 2.35 % vs 100 %; p < 0.05). Insulin, leptin, and insulin + leptin 

groups significantly increased DAF-2/DA fluorescence compared to the control 

(113.10 ± 1.25 %, 115.30 ± 3.24 %, and 120.80 ± 2.70 % vs 100 %, respectively; 

p < 0.05). The addition of insulin + leptin to the L-NAME and wortmannin treated 

groups did not reverse the situation after 150 min of incubation.  
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Figure 40. Effects of insulin and leptin on DAF-2/DA fluorescence. Spermatozoa 

were treated with N-nitro-L-arginine methyl ester L-NAME), wortmannin, insulin, 

leptin, insulin + leptin (Ins/Lep), insulin + leptin + L-NAME (Ins/Lep/L-N), 

insulin + leptin + wortmannin (Ins/Lep/Wort). Values are expressed as mean DAF-

2/DA fluorescence percentage of the control (control adjusted to 100 %) of 10 

samples. *P < 0.05 vs control  
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4.6 Characterizing the spermatozoa separated by the PureSperm® two-layer 

density discontinuous gradient system.  

 

4.6.1 Motility parameters 

As shown in Table XV, there was a significantly higher percentage of motile cells, 

progressive motility, VAP, VSL, VCL, ALH and rapid cells in the mature group when 

compared to the immature groups (p < 0.05). No significant differences were 

observed in BCF, STR and LIN between the two groups (p > 0.05). However, static 

cells were significantly decreased in the mature sperm group when compared to the 

immature sperm group (p < 0.05) separated by PureSperm® two-layer density 

discontinuous gradient system.  

 

4.6.2 Sperm head morphology 

Figure 41 shows that the immature group had significantly high sperm head 

morphology abnormalities when compared to the mature group (10.48 ± 2.85% vs. 

23.83 ±6.01%; p < 0.05).  

 

4.6.3 Cell viability 

There was a significant increase in PI fluorescence in the immature group when 

compared to the mature group (31.29 ± 2.13 vs. 15.14 ± 1.53; p < 0.05) as 

demonstrated by Figure 42.  
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Table XV. Motility parameters of bottom and top fractions of spermatozoa separated 

by the PureSperm® two-layer density discontinuous gradient (n = 20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                *p < 0.05  

 

 
Parameter 
 

 
Mature 

 

 
Immature 

 
Motile 
(%) 

 
58.33±4.81* 

 

 
17.17±1.85 

 
Progr. Mot 
(%) 

 
26.17±5.04* 

 
6.83±0.87 

 
VAP 
(m/s) 

 
        51.62±5.64* 

 
36.83±2.48 

 
VSL 
(m/s) 

 
38.32±3.93* 

 
27.75±1.60 

 
VCL 
(m) 

 
66.83±5.62* 

 
53.78±1.79 

 
ALH 
(m/s) 

 
3.61±0.23* 

 
2.56±0.31 

 
BCF 
(Hz) 

 
20.28±1.08 

 
18.28±0.87 

 
STR 
(%) 

 
79.00±1.06 

 
76.83±3.00 

 
LIN 
(%) 

 
51.00±1.31 

 
53.67±2.77 

 
Rapid cells 
(%) 

 
46.83±6.68* 

 
12.33±1.40 

 
Static cells 
(%) 
 

 
28.00±3.45* 

 
71.33±4.40 
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Figure 41. Sperm head morphology of bottom and top fractions of spermatozoa 

separated by the PureSperm® two-layer density discontinuous gradient (n = 15) 
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Figure 42. PI fluorescence of bottom and top fractions of spermatozoa separated by 

the PureSperm® two-layer density discontinuous gradient (n = 15) 
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4.6.4 Effects of insulin and leptin on motility parameters of mature and 

immature spermatozoa separated by the PureSperm® two-layer density 

discontinuous gradient  

As shown in Table XVI, insulin, leptin and insulin + leptin significantly increased 

motile cells as well as progressive motility in both mature and immature groups 

compared to their untreated controls (p < 0.05) after three hours of incubation. VAP 

was significantly increased in both mature and immature groups with the addition of 

insulin + leptin.  VSL was significantly increased in the mature group treated with 

insulin + leptin. ALH was significantly increased in the leptin treated mature cells 

compared to untreated mature cells (p < 0.05). The number of rapid cells was 

significantly increased when cells were treated with insulin, leptin and insulin + leptin 

in the mature group whereas in the immature group rapid cells were significantly 

increased with the treatment of insulin + leptin.  No statistical significances were 

observed with VCL, BCF, STR and LIN in both mature and immature groups.  Static 

cells were significantly decreased with the addition of insulin, leptin and insulin + 

leptin in both mature and immature groups when compared to the untreated group 

(p < 0.05).  

 

Table XVII shows that the percentage increase in motile cells, progressive motility as 

well as rapid cells above their respective own controls was much higher in immature 

cells treated with insulin, leptin and insulin + leptin when compared to the 

corresponding treated mature cells.  
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Table XVI. Effects of insulin and leptin on motility parameters of mature and immature spermatozoa separated by PureSperm® two-
layer density discontinuous gradient after three hours of incubation (n = 20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mature 

 
Immature 

 
Parameter 
 

 
Control 

 

 
Insulin (10 µIU) 

 
Leptin 

 (10 nmol) 

 
Insulin+Leptin 

 
     Control 

 
Insulin (10 µIU) 

 
Leptin 

(10 nmol) 

 
Insulin+Leptin 

 
Motile 
(%) 

 
58.33±4.81 

 

 
66.00±3.32* 

 
67.00±2.51* 

 
70.83±1.95* 

 
17.17±1.85 

 
27.33±2.76# 

 
25.50±2.36# 

 
35.83±2.30# 

 
Progr. Mot 
(%) 

 
26.17±5.04 

 
36.33±4.16* 

 
36.33±5.34* 

 
42.00±2.65* 

 
6.83±0.87 

 
11.67±1.22# 

 
11.00±1.52# 

 
16.67±1.70# 

 
VAP 
(m/s) 

 
51.62±5.64 

 
58.85±3.25 

 
62.60±3.58 

 
66.80±3.12* 

 
36.83±2.48 

 
42.42±2.75 

 
43.92±3.59 

 
50.03±4.68# 

 
VSL 
(m/s) 

 
38.32±3.93 

 

 
48.40±1.79 

 
50.77±0.90 

 
55.12±1.26* 

 
27.75±1.60 

 
30.10±2.62 

 
30.83±2.81 

 
33.82±2.27 

 
VCL 
(m) 

 
66.83±5.62 

 
69.90±3.90 

 
73.32±4.84 

 
74.87±3.22 

 
53.78±1.79 

 
53.82±2.67 

 
56.68±3.13 

 
56.55±3.25 

 
ALH 
(m/s) 

 
3.61±0.23 

 
3.933±0.16 

 
4.16±0.11* 

 
3.93±0.18 

 
2.56±0.31 

 
3.20±0.18 

 
2.85±0.03 

 
3.25±0.21 

 
BCF 
(Hz) 

 
20.28±0.97 

 
20.98±0.75 

 
20.45±1.21 

 
20.87±0.70 

 
21.28±1.03 

 
20.80±1.24 

 
19.00±0.47 

 
19.10±0.93 

 
STR 
(%) 

 
79.00±1.06 

 
78.00±1.21 

 
78.00±1.46 

 
78.67±2.36 

 
76.83±3.00 

 
81.33±1.40 

 
77.83±1.97 

 
80.67±0.95 

 
LIN 
(%) 

 
51.00±1.31 

 
56.50±1.23 

 
54.83±1.70 

 
56.67±0.88 

 
53.67±2.77 

 
49.67±0.71 

 
50.00±2.81 

 
53.33±2.80 

 
Rapid cells 
(%) 

 
46.83±6.68 

 
55.83±4.71* 

 
60.00±3.44* 

 
62.83±3.32* 

 
12.33±1.40 

 
19.67±2.47 

 
18.50±2.04 

 
26.83±2.10# 

 
Static cells 
(%) 
 

 
28.00±3.45 

 
19.33±1.33* 

 
18.33±1.17* 

 
15.83±0.83* 

 
71.33±4.40 

 
63.33±4.31# 

 
61.33±3.58# 

 
49.33±2.66# 

*p < 0.05 vs. Mature Control; #p < 0.05 vs. Immature Control 
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Table XVII. Percentage increase in motility parameters of mature and immature sperm after insulin and leptin treatment after three 
hour of incubation (n = 20) 

 
Mature 

 
Immature 

 
Parameter 
 

 
Control 

 

 
Insulin (10 µIU) 

 
Leptin 

(10 nmol) 

 
Insulin+Leptin 

 
     Control 

 
Insulin (10 µIU) 

 
Leptin 

(10 nmol) 

 
Insulin+Leptin 

 
Motile 
(%) 

 
58.33±4.81 

 

 
13.15% 

 
14.86% 

 
21.43% 

 
17.17±1.85 

 
59.17% 

 
48.51% 

 
108.68% 

 
Progr. Mot 
(%) 

 
26.17±5.04 

 
38.82% 

 
38.82% 

 
60.49% 

 
6.83±0.87 

 
70.86% 

 
61.05% 

 
144.07% 

 
VAP 
(m/s) 

 
51.62±5.64 

 
14.01% 

 
21.27% 

 
29.41% 

 
36.83±2.48 

 
15.18% 

 
19.25% 

 
35.84% 

 
VSL 
(m/s) 

 
38.32±3.93 

 

 
26.30% 

 
32.49% 

 
43.84% 

 
27.75±1.60 

 
8.47% 

 
11.10% 

 
21.87% 

 
VCL 
(m) 

 
66.83±5.62 

 
4.59% 

 
9.71% 

 
12.03% 

 
53.78±1.79 

 
0.07% 

 
5.39% 

 
5.15% 

 
ALH 
(m/s) 

 
3.61±0.23 

 
8.95% 

 
15.24% 

 
8.86% 

 
2.56±0.31 

 
25.00 

 
11.33% 

 
26.56% 

 
BCF 
(Hz) 

 
20.28±0.97 

 
3.45% 

 
0.84% 

 
2.91% 

 
21.28±1.03 

 
-2.26% 

 
-10.71% 

 
-10.24% 

 
STR 
(%) 

 
79.00±1.06 

 
-1.27% 

 
-1.27% 

 
-0.42% 

 
76.83±3.00 

 
5.82% 

 
1.30% 

 
5.00% 

 
LIN 
(%) 

 
51.00±1.31 

 
10.78% 

 
7.51% 

 
11.12% 

 
53.67±2.77 

 
-7.45% 

 
-6.84% 

 
-0.63% 

 
Rapid cells 
(%) 

 
46.83±6.68 

 
19.22% 

 
28.12% 

 
34.17% 

 
12.33±1.40 

 
59.53% 

 
50.04% 

 
117.60% 

 
Static cells 
(%) 
 

 
28.00±3.45 

 
-31.00% 

 
-34.50% 

 
-43.50% 

 
71.33±4.40 

 
-11.20% 

 
-14.00% 

 
-30.80% 
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4.7 Effects of TNF-α on motility parameters after 1, 3, and 5 hours of 

incubation 

Table XVIII shows the effects of TNF-α on motility parameters after 1 hour of 

incubation. No significant differences were observed in the TNF-α treated groups for 

motile cells, progressive motility, BCF, STR and LIN after one hour of incubation 

when compared to the control (p > 0.05). In the 20, 50 and 100 ng/mL TNF-α treated 

groups, VAP was significantly decreased when compared to the control (p < 0.05). 

On the other hand, VSL and ALH were significantly decreased in the 50 and  

100 ng/mL TNF-α treated groups when compared to the control (p < 0.05). VCL was 

significantly decreased in the 100 ng/mL TNF-α treated group when compared to the 

control (p < 0.05) whereas, static cells were significantly increased in the 10, 20, 50 

and 100 ng/mL TNF-α treated groups when compared to the control (p < 0.05). 

 

After three hours of incubation (table XIX), the number of motile cells were 

significantly decreased in the 100 ng/mL TNF-α treated group when compared to the 

control (p < 0.05). Progressive motility was significantly decreased in the 20, 50, and 

100 ng/mL TNF-α treated groups when compared to the control (p < 0.05). VAP, 

VSL, VCL, ALH and rapid cells were significantly decreased in the 50 and 100 ng/mL 

TNF-α treated groups when compared to the control (p < 0.05). On the other hand, 

the number of static cells was significantly increased in the 5, 10, 20, 50, and  

100 ng/mL TNF-α treated groups when compared to the control (p < 0.05).  

 

Table XX shows that five hours of incubation led to a significant decrease in the 

number of motile cells in the 50 and 100 ng/mL TNF-α treated groups when 

compared to the control (p < 0.05). Progressive motility and VSL were significantly 



 120

decreased in the 10, 20, 50, 100 ng/mL TNF-α treated groups when compared to the 

control (p < 0.05). VAP and ALH were significantly decreased in the 50 and  

100 ng/mL TNF-α treated groups when compared to the control (p < 0.05) while VCL 

was significantly decreased in the 100 ng/mL TNF-α treated group when compared to 

the control (p < 0.05). The percentage of static cells was significantly increased in the 

10, 20, 50, and 100 ng/mL TNF-α treated groups when compared to the control  

(p < 0.05). 
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Table XVIII. Effects of TNF-α on motility parameters after one hour of incubation 
(n = 15) 
 

 

*p < 0.05 vs. Control 

 

 

 

 

 

 

 

 

 
Parameter 
 

 
Control 

 

 
2 ng 

 
5 ng 

 
10 ng 

 
20 ng 

 
50 ng 

 
100 ng 

 
Motile 
(%) 

 
77.80±2.52 

 

 
74.30±2.48 

 
71.40±2.13 

 
69.10±1.50 

 
69.90±2.32 

 
68.40±1.99 

 
68.30±2.03 

 
Progr. Mot 
(%) 

 
49.10±4.83 

 
46.60±5.07 

 
41.10±4.02 

 
41.40±4.52 

 
34.30±3.65 

 
35.20±4.87 

 
33.30±5.01 

 
VAP 
(m/s) 

 
66.19±1.72 

 
63.38±3.18 

 
56.48±0.85 

 
57.26±1.17 

 
53.98±1.93* 

 
46.92±2.42* 

 
46.01±3.17* 

 
VSL 
(m/s) 

 
57.21±2.66 

 
53.87±3.55 

 
50.37±2.13 

 
48.04±1.50 

 
48.03±1.68 

 
40.03±1.65* 

 
39.89±2.61* 

 
VCL 
(m) 

 
87.51±3.33 

 
85.66±2.89 

 
85.45±1.57 

 
84.72±1.61 

 
83.43±1.38 

 
76.44±3.22 

 
69.97±3.32* 

 
ALH 
(m/s) 

 
4.42±0.20 

 
4.27±0.24 

 
4.02±0.19 

 
3.88±0.15 

 
3.53±0.19 

 
3.17±0.21* 

 
3.28±0.19* 

 
BCF 
(Hz) 

 
19.45±0.97 

 
17.49±0.56 

 
17.60±0.39 

 
18.27±0.39 

 
17.81±0.47 

 
18.33±0.57 

 
17.43±0.46 

 
STR 
(%) 

 
79.80±1.90 

 
79.70±1.90 

 
78.30±1.55 

 
77.10±1.60 

 
78.00±2.12 

 
74.80±2.32 

 
73.00±2.60 

 
LIN 
(%) 

 
55.30±1.40 

 
56.40±1.54 

 
54.70±0.93 

 
54.40±1.55 

 
57.20±1.40 

 
47.90±5.33 

 
52.00±1.84 

 
Rapid cells 
(%) 

 
73.90±3.52 

 
66.30±3.58 

 
59.30±3.83 

 
58.20±3.18 

 
58.30±4.57 

 
57.70±3.76 

 
56.60±4.53 

 
Static cells 
(%) 
 

 
16.50±2.20 

 
20.70±1.75 

 
22.70±2.00 

 
25.80±2.02* 

 
26.60±2.21* 

 
28.30±1.93* 

 
30.00±2.28* 
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Table XIX. Effects of TNF-α on motility parameters after three hours of incubation 

(n = 15) 

 

 

 

*p < 0.05 vs. Control 

 

 

 

 

 

 

 
Parameter 
 

 
Control 

 

 
2 ng 

 
5 ng 

 
10 ng 

 
20 ng 

 
50 ng 

 
100 ng 

 
Motile 
(%) 

 
77.80±2.52 

 

 
74.30±2.48 

 
71.40±2.13 

 
69.10±1.50 

 
69.90±2.32 

 
68.40±1.99 

 
68.30±2.03* 

 
Progr. Mot 
(%) 

 
48.20±3.69 

 
44.80±2.94 

 
39.10±4.90 

 
38.70±3.63 

 
31.90±3.06* 

 
31.10±3.29* 

 
28.70±3.25* 

 
VAP 
(m/s) 

 
63.48±1.60 

 
61.69±1.48 

 
57.35±1.72 

 
50.29±5.63 

 
53.31±1.65 

 
43.63±5.03* 

 
45.12±3.70* 

 
VSL 
(m/s) 

 
54.30±1.54 

 
54.31±1.47 

 
49.78±1.84 

 
47.01±0.97 

 
46.41±1.35 

 
39.00±2.56* 

 
37.76±2.65* 

 
VCL 
(m) 

 
84.49±1.49 

 
87.97±0.51 

 
83.93±1.64 

 
79.96±1.15 

 
80.39±2.55 

 
71.38±3.90* 

 
68.18±4.91* 

 
ALH 
(m/s) 

 
4.50±0.12 

 
4.28±0.20 

 
4.08±0.17 

 
3.90±0.13 

 
3.65±0.18 

 
3.28±0.24* 

 
3.30±0.22* 

 
BCF 
(Hz) 

 
20.27±0.59 

 
17.67±0.40 

 
18.30±0.48 

 
18.37±0.47 

 
17.75±0.34 

 
18.14±0.36 

 
16.87±0.34 

 
STR 
(%) 

 
81.50±1.58 

 
80.20±1.75 

 
79.30±1.70 

 
78.90±1.65 

 
77.30±2.28 

 
75.20±2.70 

 
73.10±2.61 

 
LIN 
(%) 

 
56.70±1.30 

 
58.00±1.16 

 
55.70±1.77 

 
56.60±1.17 

 
55.30±1.07 

 
52.70±1.83 

 
50.80±1.58 

 
Rapid cells 
(%) 

 
66.00±3.41 

 
61.00±3.14 

 
53.60±4.94 

 
52.50±3.37 

 
51.10±3.00 

 
50.00±3.64* 

 
50.30±2.82* 

 
Static cells 
(%) 
 

 
17.50±1.71 

 
25.00±1.71 

 
26.00±2.19* 

 
27.80±1.63* 

 
30.10±1.82* 

 
30.00±1.27* 

 
32.90±1.62* 
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Table XX. Effects of TNF-α on motility parameters after five hours of incubation 

(n = 15) 

 

 

*p < 0.05 vs. Control 

 

 

 

 

 

 

 

 
Parameter 
 

 
Control 

 

 
2 ng 

 
5 ng 

 
10 ng 

 
20 ng 

 
50 ng 

 
100 ng 

 
Motile 
(%) 

 
68.90±3.42 

 

 
64.20±4.08 

 
59.40±4.45 

 
59.20±2.51 

 
58.70±1.92 

 
57.00±1.80* 

 
56.20±1.77* 

 
Progr. Mot 
(%) 

 
43.40±4.11 

 
36.50±2.09 

 
32.90±1.62 

 
27.90±1.76* 

 
26.20±1.81* 

 
24.80±2.33* 

 
22.20±2.45* 

 
VAP 
(m/s) 

 
61.11±2.49 

 
57.28±1.56 

 
56.71±0.99 

 
54.40±1.67 

 
53.98±2.16 

 
44.31±2.73* 

 
42.75±3.14* 

 
VSL 
(m/s) 

 
53.79±2.62 

 
50.95±1.89 

 
48.69±0.74 

 
45.18±1.24* 

 
43.81±1.42* 

 
36.10±2.21* 

 
33.91±1.50* 

 
VCL 
(m) 

 
81.87±1.64 

 
81.28±1.94 

 
79.01±3.13 

 
77.72±2.11 

 
79.67±2.44 

 
71.90±3.48 

 
68.73±4.30* 

 
ALH 
(m/s) 

 
4.35±0.26 

 
4.35±0.18 

 
3.86±0.18 

 
3.89±0.21 

 
3.37±0.31 

 
3.26±0.21* 

 
3.25±0.22* 

 
BCF 
(Hz) 

 
20.74±0.48 

 
17.66±0.48 

 
18.45±0.75 

 
18.24±0.76 

 
17.44±0.25 

 
17.71±0.43 

 
17.38±0.47 

 
STR 
(%) 

 
83.00±1.23 

 
79.80±1.38 

 
78.90±1.80 

 
77.00±2.28 

 
76.70±2.87 

 
73.70±3.35 

 
71.60±3.60 

 
LIN 
(%) 

 
59.00±1.03 

 
56.80±1.33 

 
54.80±1.34 

 
54.20±1.25 

 
56.90±1.80 

 
56.60±1.64 

 
51.10±2.09 

 
Rapid cells 
(%) 

 
60.50±4.38 

 
52.70±2.74 

 
51.10±2.12 

 
50.40±2.06 

 
49.80±2.83 

 
49.10±2.56 

 
49.40±3.26 

 
Static cells 
(%) 
 

 
21.70±1.17 

 
26.40±1.147 

 
26.30±2.88 

 
30.50±1.48* 

 
33.40±0.84* 

 
37.20±1.46* 

 
38.30±1.30* 
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4.7.1 Effects of IL-6 on motility parameters after 1, 3, and 5 hours of incubation 

After one hour of incubation (table XXI), VAP was significantly decreased in the 20, 

50 and 100 ng/mL IL-6 treated groups when compared to the control (p < 0.05). VSL 

and ALH were significantly decreased in the 50 and 100 ng/mL IL-6 treated groups 

whereas, VCL was significantly decreased in the 100 ng/mL IL-6 treated group when 

compared to the control (p < 0.05) respectively. However, the number of static cells 

was significantly increased in the 50 and 100 ng/mL IL-6 treated groups when 

compared to the control (p < 0.05). No differences were observed with the other 

motility parameters (p > 0.05). 

 

After three hours of incubation as shown in table XXII, progressive motility and VCL 

were significantly decreased in the 100 ng/mL IL-6 treated group when compared to 

the control (p < 0.05). VAP, VSL and ALH were significantly decreased in the 50 and 

100 ng/mL IL-6 treated groups compared to the control (p < 0.05). On the other hand 

the number of static cells was significantly increased in the 20, 50 and 100 ng/mL  

IL-6 treated groups when compared to the control (p < 0.05).  

 

Table XXIII shows the effects of IL-6 on motility parameters after five hours of 

incubation. Progressive motility, VAP and VSL were significantly decreased in the 50 

and 100 ng/mL IL-6 treated groups when compared to the control (p < 0.05). ALH 

was decreased only in the 100 ng/mL IL-6 treated group whereas the number of 

static cells was significantly increased in the 10, 20, 50 and 100 ng/mL IL-6 treated 

groups (p < 0.05). 
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Table XXI. Effects of IL-6 on motility parameters after one hour of incubation (n = 15) 

 

 

*p < 0.05 vs. Control 

 

 

 

 

 

 

 

 
Parameter 
 

 
Control 

 

 
2 ng 

 
5 ng 

 
10 ng 

 
20 ng 

 
50 ng 

 
100 ng 

 
Motile 
(%) 

 
77.80±2.52 

 

 
76.50±2.84 

 
73.80±2.31 

 
71.40±2.26 

 
70.80±3.46 

 
69.20±2.89 

 
68.80±2.88 

 
Progr. Mot 
(%) 

 
49.10±4.83 

 
50.20±4.49 

 
42.50±5.43 

 
43.90±4.35 

 
38.60±6.39 

 
36.30±5.52 

 
34.40±5.04 

 
VAP 
(m/s) 

 
66.19±1.72 

 
67.00±2.26 

 
58.20±0.84 

 
57.46±1.47 

 
54.11±1.26* 

 
47.40±2.69* 

 
46.30±2.84* 

 
VSL 
(m/s) 

 
57.21±2.66 

 
58.80±1.71 

 
55.46±1.28 

 
51.29±1.13 

 
50.48±1.01 

 
41.65±1.88* 

 
40.84±2.33* 

 
VCL 
(m) 

 
87.51±3.33 

 
92.10±2.32 

 
86.51±2.11 

 
83.01±2.45 

 
86.17±2.89 

 
76.50±3.47 

 
72.31±3.60* 

 
ALH 
(m/s) 

 
4.42±0.20 

 
4.54±0.16 

 
4.17±0.17 

 
4.03±0.18 

 
3.66±0.21 

 
3.23±0.21* 

 
3.15±0.24* 

 
BCF 
(Hz) 

 
19.45±0.97 

 
18.45±0.54 

 
19.51±0.46 

 
19.85±0.60 

 
18.53±0.68 

 
18.85±0.93 

 
17.56±0.85 

 
STR 
(%) 

 
79.80±1.90 

 
81.00±1.57 

 
80.60±1.70 

 
79.50±1.64 

 
78.80±2.68 

 
66.48±3.23 

 
74.00±2.76 

 
LIN 
(%) 

 
55.30±1.40 

 
57.90±1.01 

 
57.10±1.42 

 
55.10±1.26 

 
58.20±1.30 

 
53.50±1.79 

 
52.00±1.54 

 
Rapid cells 
(%) 

 
73.90±3.52 

 
70.00±3.70 

 
59.50±4.94 

 
59.10±3.83 

 
55.90±5.56 

 
58.90±3.81 

 
56.90±4.13 

 
Static cells 
(%) 
 

 
16.50±2.20 

 
19.20±1.56 

 
23.00±3.33 

 
24.60±2.20 

 
25.60±2.54 

 
28.40±2.80* 

 
29.60±2.97* 
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Table XXII. Effects of IL-6 on motility parameters after three hours of incubation 

(n = 15) 

 

 

*p < 0.05 vs. Control 

 

 
Parameter 
 

 
Control 

 

 
2 ng 

 
5 ng 

 
10 ng 

 
20 ng 

 
50 ng 

 
100 ng 

 
Motile 
(%) 

 
77.80±2.52 

 

 
72.20±2.82 

 
68.90±2.13 

 
65.40±1.86 

 
65.10±2.16 

 
64.90±2.67 

 
64.60±2.33 

 
Progr. Mot 
(%) 

 
48.20±3.69 

 
48.10±3.80 

 
41.30±3.58 

 
40.20±3.73 

 
32.40±3.40 

 
34.20±4.80 

 
29.80±3.20* 

 
VAP 
(m/s) 

 
63.48±1.60 

 
63.86±1.46 

 
59.32±1.06 

 
57.01±0.93 

 
55.77±2.03 

 
48.60±2.58* 

 
45.63±3.60* 

 
VSL 
(m/s) 

 
54.30±1.54 

 
57.00±1.44 

 
52.08±0.71 

 
49.16±1.30 

 
49.25±1.52 

 
40.60±2.77* 

 
39.38±2.51* 

 
VCL 
(m) 

 
84.49±1.49 

 
88.83±0.93 

 
85.20±1.40 

 
85.75±0.75 

 
83.89±2.61 

 
73.00±3.68 

 
70.59±4.72* 

 
ALH 
(m/s) 

 
4.50±0.12 

 
4.41±0.20 

 
4.20±0.16 

 
3.95±0.15 

 
3.74±0.20 

 
3.24±0.23* 

 
3.20±0.29* 

 
BCF 
(Hz) 

 
20.27±0.59 

 
18.98±0.44 

 
19.37±0.55 

 
20.11±0.51 

 
18.11±0.66 

 
19.04±0.94 

 
17.97±0.90 

 
STR 
(%) 

 
81.50±1.58 

 
82.60±1.52 

 
80.90±1.46 

 
80.00±1.81 

 
78.60±2.26 

 
76.70±2.57 

 
74.80±2.84 

 
LIN 
(%) 

 
56.70±1.30 

 
59.10±1.22 

 
56.20±0.96 

 
57.20±1.71 

 
57.20±1.03 

 
54.20±1.91 

 
53.20±1.93 

 
Rapid cells 
(%) 

 
66.00±3.41 

 
64.30±3.16 

 
56.40±4.11 

 
55.70±2.64 

 
55.30±3.24 

 
54.90±23.69 

 
53.70±3.50 

 
Static cells 
(%) 
 

 
17.50±1.71 

 
22.30±1.47 

 
24.00±2.88 

 
26.30±2.15 

 
27.80±2.29* 

 
29.80±2.12* 

 
30.90±3.05* 
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Table XXIII. Effects of IL-6 on motility parameters after five hours of incubation 

(n = 15) 

 

 

 

*p < 0.05 vs. Control 

 

 

 

 

 

 

 
Parameter 
 

 
Control 

 

 
2 ng 

 
5 ng 

 
10 ng 

 
20 ng 

 
50 ng 

 
100 ng 

 
Motile 
(%) 

 
68.90±3.42 

 

 
65.70±4.43 

 
61.10±3.27 

 
61.10±3.49 

 
60.40±4.00 

 
60.40±2.57 

 
57.30±3.16 

 
Progr. Mot 
(%) 

 
43.40±4.11 

 
40.90±3.55 

 
36.40±3.84 

 
36.80±4.71 

 
34.90±5.28 

 
25.10±2.59* 

 
24.20±3.38* 

 
VAP 
(m/s) 

 
61.11±2.49 

 
60.83±1.83 

 
57.37±1.50 

 
55.70±1.36 

 
53.41±1.55 

 
45.64±3.07* 

 
44.24±3.56* 

 
VSL 
(m/s) 

 
53.79±2.62 

 
54.94±2.06 

 
48.48±1.30 

 
46.03±1.21 

 
45.40±1.28 

 
38.28±2.30* 

 
37.74±2.44* 

 
VCL 
(m) 

 
81.87±1.64 

 
86.56±2.13 

 
79.44±3.42 

 
78.86±1.35 

 
80.30±2.09 

 
71.14±2.67 

 
69.58±4.55 

 
ALH 
(m/s) 

 
4.35±0.26 

 
4.44±0.19 

 
3.85±0.18 

 
3.86±0.20 

 
3.43±0.31 

 
3.19±0.35 

 
2.97±0.34* 

 
BCF 
(Hz) 

 
20.74±0.48 

 
18.21±0.39 

 
19.38±0.85 

 
18.90±0.58 

 
18.38±0.93 

 
19.06±1.23 

 
16.89±0.95 

 
STR 
(%) 

 
83.00±1.23 

 
81.10±1.26 

 
79.30±1.50 

 
78.30±2.16 

 
78.70±2.92 

 
74.80±3.47 

 
72.60±3.66 

 
LIN 
(%) 

 
59.00±1.03 

 
56.60±0.89 

 
54.80±1.02 

 
54.20±1.05 

 
55.60±1.29 

 
51.90±1.36 

 
53.60±3.69 

 
Rapid cells 
(%) 

 
60.50±4.38 

 
59.20±4.00 

 
52.80±4.21 

 
52.70±4.40 

 
52.90±4.03 

 
52.60±3.47 

 
51.40±3.04 

 
Static cells 
(%) 
 

 
21.70±1.17 

 
25.90±2.47 

 
26.20±2.13 

 
30.00±1.22* 

 
31.20±1.14* 

 
34.30±2.15* 

 
35.20±1.74* 
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4.7.2 Effects of TNF-α and IL-6 on PI fluorescence 

Sperm cell viability was assessed by PI fluorescence. The increase in PI 

fluorescence was interpreted as an increase in non-viable cells. No significant 

differences in PI fluorescence (P > 0.05) were observed for both TNF-α and IL-6 

dose response curve (Figure 43). However, there was a trend of increase in PI 

fluorescence with increase in TNF-α and IL-6 concentrations.  

 

Figure 43. Effects of TNF-α and IL-6 on PI fluorescence. Cells were incubated with 

increasing concentrations of TNF-α and IL-6 and incubated for 5 hours. PI was used 

as a viability probe (n = 15) 
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4.7.3 Effects of TNF-α and IL-6 on DAF-2/DA fluorescence 

Three concentrations of TNF-α and IL-6 (5, 20 and 100 ng/mL) were chosen for the 

NO experiments. A significant increase in mean DAF-2/DA fluorescence was 

observed in cells treated with 5, 20, 100 ng TNF-α compared to the untreated cells 

(109.00 ± 2.29%; 119.20 ± 2.76%; 129.20 ± 4.25% vs. 100%; P < 0.05) respectively, 

while the addition of L-NAME (0.7 mM) significantly reduced fluorescence in all the 

groups (Figure 44). IL-6 significantly increased mean DAF-2/DA fluorescence at 20 

and 100 ng (115.40 ± 2.29%; 123.10 ± 2.55% vs. 100%; P < 0.05) while the addition 

of L-NAME significantly reduced fluorescence in all the groups (P < 0.05) (Figure 45). 

The reduction of fluorescence by L-NAME confirmed negative control and probe 

specificity of DAF-2/DA. 
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Figure 44. Effects of TNF-α on DAF-2/DA fluorescence. Cells were incubated with 5, 

20 and 100 ng/mL TNF-α in the presence or absence of L-NAME (0.7 mM) and 

incubated for 5 ours with DAF-2/DA. Values are expressed as mean DAF-2/DA 

fluorescence percentage of control (control adjusted to 100%) of 10 samples. 
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Figure 45. Effects of IL-6 on DAF-2/DA fluorescence. Cells were incubated with 5, 20 

and 100 ng/mL IL-6 in the presence or absence of L-NAME (0.7 mM) and incubated 

for 5 hours with DAF-2/DA. Values are expressed as mean DAF-2/DA fluorescence 

percentage of control (control adjusted to 100%) of 10 samples.  
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4.7.4 Effects of TNF-α and IL-6 on spontaneous, calcium ionophore and 

progesterone-stimulated acrosome reaction 

Figure 46 shows the effect of TNF-α on calcium and progesterone-induced AR as 

well as spontaneous AR. Lower concentrations of TNF-α IL-6 were used in the AR 

studies when compared to the motility studies to avoid killing the cells; furthermore, 

these concentrations were within the range measured in the seminal plasma of men 

with accessory gland infection (Koçak et al., 2002). TNF-α significantly reduced the 

ability of human spermatozoa to undergo spontaneous AR at the concentrations of 

20 pg/mL, 50 pg/mL and 100 pg/mL when compared to the spontaneous control 

(5.80 ± o.29%; 4.75 ± 0.26%; 3.90 ± 0.17% vs. 13.75 ± 0.54%; p < 0.05). The 

calcium ionophore-induced AR was significantly reduced by TNF-α at the 

concentrations of 5 pg/mL, 20 pg/mL, 50 pg/mL and 100 pg/mL when compared to 

the calcium ionophore-induced control (31.70 ± 1.87%; 24.20 ± 1.25%; 20.40 ± 

0.84%; 17.35 ± 0.73% vs. 46.30 ± 2.08%; p < 0.05). TNF-α also significantly reduced 

the progesterone-induced AR at the concentrations of 20 pg/mL, 50 pg/mL and 100 

pg/mL when compared to the progesterone-induced control (14.30 ± 1.14%; 12.50 ± 

0.73%; 9.60 ± 0.76% vs. 29.10 ± 1.91%; p < 0.05). In all the groups, calcium and 

progesterone significantly increased the number of acrosome reacted cells compared 

to the spontaneously acrosome reacted cells in the same group.  

 

IL-6 significantly reduced spontaneous AR at the concentration of 100 pg/mL when 

compared to the spontaneous control (5.30 ± 0.19% vs. 13.75 ± 0.54%; p < 0.05) 

(Figure 47). On the other hand, IL-6 significantly reduced the calcium ionophore-

induced AR at the concentrations of 20 pg/mL, 50 pg/mL and 100 pg/mL when 

compared to the calcium-induced control (27.30 ± 1.93%; 23.80 ± 1.09%; 17.85 ± 
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0.85% vs. 46.30 ± 2.08%; p < 0.05). The progesterone-induced AR was significantly 

reduced by IL-6 at the concentrations of 50 pg/mL and 100 pg/mL when compared to 

the progesterone-induced control (13.70 ± 0.98%; 11.85 ± 0.92% vs. 29.10 ± 1.91%; 

p < 0.05).  

 

 

 

Figure 46. The effects of TNF-α on AR. Human spermatozoa were treated with 0, 2, 

5, 20, 50 and 100 pg/mL TNF-α before stimulated to undergo AR with calcium 

ionophore A23187 (10 µmol/L), progesterone (1 µmol/mL) or left to undergo the 

spontaneous AR (n = 15) 
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Figure 47. The effects of IL-6 on AR. Human spermatozoa were treated with 0, 2, 5, 

20, 50 and 100 pg/mL IL-6 before stimulated to undergo AR with calcium ionophore 

A23187 (10 µmol/L), progesterone (1 µmol/mL) or left to undergo the spontaneous 

AR (n = 15)  
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4.7.5 Effects of insulin, leptin, TNF-α and IL-6 on DCFH-DA fluorescence  

Figure 48 shows that TNF-α significantly increased DCFH-DA fluorescence at the 

concentrations of 20 and 100 ng/mL when compared to the control (130.30 ± 6.01%; 

136.80 ± 6.95% vs. 100%; p < 0.05). On the other hand, IL-6 significantly increased 

DCFH-DA fluorescence at 100 ng/mL when compared to the control (128.00 ± 6.41% 

vs. 100%; p < 0.05). No significant differences were observed in the insulin and leptin 

treated groups when compared to the control (p > 0.05). 
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Figure 48. Effects of insulin, leptin, TNF-α and IL-6 on DCFH-DA fluorescence (n = 

15) 
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4.8 Immunofluorescence of GLUT8 in human spermatozoa 

Figure 49 shows the GLUT8 immunoreactivity with and without insulin stimulation in 

human spermatozoa. The blue colour represents the Hoechst staining whereas the 

red colour represents the GLUT8 Texas-Red conjugated secondary antibody 

immunoflurescence. There was no immunoflurescence detection in the negative 

control cells observed under light and fluorescent microscope. The cells which were 

stimulated with insulin produced an increased immunoreactivity when compared with 

the unstimulated cells. More GLUT8 immunoreactivity in the insulin stimulated cells 

was observed to be localized in the plasma membrane whereas that in the 

unstimulated cells was localized more in the intracellular of the midpiece region. 

GLUT8 immunoreactivity was also observed in the acrosome and midpiece regions 

of the insulin stimulated spermatozoa. 
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Figure 49. GLUT8 Texas-red conjugated immunofluorescence in human 

spermatozoa as visualized by light and fluorescence microscopy. Negative control 

observed under light microscope (A1), Negative control with Hoechst staining 

observed under fluorescent microscope (A2); Unstimulated spermatozoa observed 

under light microscope (B1); Unstimulated spermatozoa observed under fluorescent 

microscope showing the localization of GLUT8 in the midpiece region (B2); Insulin 

stimulated spermatozoa observed under light microscope (C1); Insulin stimulated 

spermatozoa observed under fluorescent microscope showing increase in GLUT8 

localization in the midpiece region and its translocation to the acrosome region (C2). 
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CHAPTER 5: DISCUSSION 

 

5.1 The glucose concentration curve 

Energy substrates such as glucose and lactate are present in most culture media 

used for in vitro fertilization (IVF). These substrates have been shown to be essential 

for sperm function (Mitchell et al., 1976; Fraser and Quinn, 1981) or oocyte function 

(Tsunoda and Chang, 1975). This study has confirmed the importance of glucose in 

human sperm function as evidenced by increases in total sperm motility, progressive 

motility and various other motility parameters as well as enhancing cell viability with 

the administration of different glucose concentrations after a two hours incubation 

period. Glucose concentration of 5.6 mM was choosen as appropriate to be 

administered to human spermatozoa because it gave better results compared to the 

control as well as it was a concentration previously used by Williams and Ford, 

(2001). Our results are in agreement with the findings of (Williams and Ford, 2001; 

Mahadevan et al., 1997) in which they reported that glucose was able to improve 

motility parameters, sperm capacitation as well as fertilization rate.    

 

5.2 The insulin dose response curve 

The insulin dose response curve was performed to establish a suitable concentration 

of insulin to be administered to the human spermatozoa in vitro since it has been 

reported that human ejaculated spermatozoa are capable of secreting their own 

insulin (Aquila et al., 2005a). This study has established that administration of 10 µIU 

of insulin to human spermatozoa yielded the best beneficial effects as indicated by 

increased motility parameters as well as cell viability. The concentration used in this 

study is within the range of physiologically secreted insulin by human ejaculated 
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spermatozoa as reported by Aquila et al (2005a) who demonstrated that capacitated 

spermatozoa were capable of secreting up to 18 µIU of insulin. As far as we are 

aware, this is the first study to report specific exogenous concentrations of insulin 

which are beneficial to human spermatozoa function.  

 

5.3 The leptin dose response curve 

To establish the suitable leptin concentration to be administered in vitro to human 

spermatozoa, a dose response curve was performed. It appears leptin is beneficial at 

lower concentrations of up to 10nmol/mL and its beneficial effects are abolished at 

higher concentrations. Leptin concentrations of up to 4ng/mL have been measured in 

capacitated human ejaculated spermatozoa. Lackey et al. (2002) reported leptin 

concentration levels of approximately 1 ng/mL in human seminal plasma, whereas in 

female follicular fluid, leptin levels of approximately 16 ng/mL have been reported 

(Dorn et al., 2003). Human spermatozoa have been reported to secrete their own 

leptin (Aquila et al., 2005b). This study reports for the first time that leptin has in vitro 

beneficial effects to human spermatozoa at lower concentrations and that the 

beneficial effects are abolished at higher concentrations. This study has established 

that leptin concentrations of more than 20 nmol abolish the beneficial effects of leptin 

to human spermatozoa. Based on this finding, 10 nmol of leptin was chosen as 

appropriate to administer to human spermatozoa because it yielded the best results 

as indicated by increased motility parameters and cell viability. 
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5.4 Investigating the insulin signalling pathway and its effects on motility 

parameters, viability and acrosome reaction 

The motility results as illustrated in tables IX, X and XI have demonstrated that 

glucose was required to support optimum total and progressive motility as evidenced 

by a significant reduction in both total motility and progressive motility in the glucose-

free group. The importance of glucose was further demonstrated by a decrease in 

cell viability in the glucose free media (Figure 36). The data are in agreement with the 

findings of Williams and Ford (2001) in which they reported that glucose and other 

glycolysable sugars improved sperm motility.  

 

The decrease in motility and cell viability when endogenous insulin release was 

blocked by nifedipine, IRS tyrosine phosphorylation was inhibited by erbstatin and 

when downstream insulin intracellular effector, PI3K, was inhibited by wortmannin, 

confirm the importance of insulin in human sperm function. We speculate that 

endogenous insulin was required for the mobilization of energy reserves in the 

human spermatozoa by enhancing glucose up-take which subsequently led to 

improved sperm function.  

 

The acrosome reaction results (Figure 37) demonstrate that insulin increased the 

ability of sperm to acrosome react. These results were further confirmed by the 

significant reduction in acrosome reacted spermatozoa when insulin release was 

blocked by nifedipine and the IRS tyrosine phosphorylation was inhibited by 

erbstatin. This finding confirms the speculation that insulin is involved in the triggering 

of the process of sperm capacitation (Aquila et al., 2005a) which is a pre-requisite 

step for the sperm to undergo acrosome reaction (Jaiswal et al., 1998). On the other 
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hand the inhibition of PI3K with wortmannin had no effect on the acrosome reaction 

status of the cells when compared to the control (Figure 37).  

 

5.5 The insulin and leptin signalling pathway and its effects on sperm 

motility parameters, acrosome reaction and nitric oxide generation 

The existence of insulin and leptin in human ejaculated spermatozoa was 

demonstrated through their transcripts evaluated by RT-PCR, their protein content 

evidenced by Western blotting and through their localization by immunostaining 

analysis (Aquila et al., 2005a, and b). The significance of leptin in influencing 

reproduction was evidenced by leptin-deficient female mice (ob mice) which are 

infertile (Jones and Harrison, 1957). However, treatment with leptin restores fertility in 

ob male mice suggesting its role in reproduction (Chehab et al., 1996). The role of 

leptin in male reproduction and human spermatozoa function is not clearly 

elucidated. So far, some studies indicate positive effects while others indicate 

negative effects of leptin on gonadal function (Caprio et al., 2001; Clarke and Henry, 

1999). Glander et al. (2002) reported that seminal plasma leptin levels were 

significantly lower in patients with normal spermiogram parameters, compared with 

pathological semen samples, and showed a negative correlation with motility of 

human spermatozoa, suggesting that higher leptin concentration has negative effects 

on sperm function. In our leptin dose response curve, we also observed that high 

leptin concentrations of more than 20 nmol abolished the beneficial effects observed 

when lower concentrations were administered (Tables VI and VII). On the other 

hand, Zorn et al. (2007) found no correlation between leptin levels and sperm motility 

and morphology. 
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The importance of insulin in spermatozoa physiology is demonstrated by men who 

lack  insulin due to insulin dependent diabetes. These men have sperm with severe 

structural defects, significantly lower motility (Baccetti et al., 2002) and lower ability to 

penetrate hamster eggs (Shrivastav et al., 1989). Our data has demonstrated that 

insulin and leptin may possibly play a role in enhancing human sperm motility 

parameters as evidenced by increased total motility, progressive motility as well as 

the sperm hyperactivation characteristics (VCL and ALH) (Tables XII, XIII and XIV).  

 

Insulin and leptin secretion was reported to be significantly increased in capacitated 

sperm when compared to non-capacitated sperm, suggesting the involvement of 

these hormones in the process of capacitation. Capacitated sperm released up to 

around 18 µIU of insulin and 4 ng/mL of leptin (Aquila et al., 2005a, b). Lackey et al., 

(2002) reported leptin concentration levels of around 1 ng/mL in the human seminal 

plasma, whereas in the female follicular fluid leptin levels of around 16 ng/mL have 

been reported (Dorn et al., 2003). 

 

Studies have shown that capacitated sperm display an increase in metabolic rate, 

overall energy expenditure, intracellular ion concentrations, plasma membrane 

fluidity, intracellular pH and reactive oxygen species, presumably to affect the 

changes in sperm signaling and function during capacitation (Aitken et al., 2007; 

Visconti et al., 1998). Sperm capacitation is a pre-requisite step for sperm to undergo 

the acrosome reaction (Liu et al., 2008; Jaiswal et al., 1998). This possibly explains 

why insulin and leptin increased the percentage of spontaneous and progesterone 

acrosome reacted cells in our study (Figure 39). It is not clear that this increase is 

due to the agonists’ effect on capacitation or AR itself. Further studies are 
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recommended. However, the blockage of PI3K with wortmannin had no effect on the 

acrosome reaction status of the cells when compared to the control. This finding is 

consistent with results observed by Fisher et al. (1998), in which wortmannin was 

found not to inhibit the acrosome reaction induced by A23187 or progesterone. Du 

Plessis et al. (2004) also reported that LY294002 (another PI3K inhibitor) also did not 

inhibit the acrosome reaction induced by A23187, progesterone and solubilized zona 

pellucida. We speculate that the cellular pathways involved in acrosome reaction 

induced by this agonist do not involve PI3K, or alternatively that PI3K is somehow by-

passed. It has been reported that the signaling of insulin is a complex process which 

involves multiple signaling pathways that diverge at or near the activation of its 

tyrosine kinase receptor (Saltiel and Pessin, 2002).  

 

Studies have reported that insulin and leptin enhance NO production in other cell 

types (White et al., 2006; Kim, 2007). Our study has for the first time shown that both 

insulin and leptin enhance NO production in human spermatozoa and that this 

increase is possibly via the PI3K signaling pathway as evidenced by reduction of NO 

production when the PI3K inhibitor, wortmannin, was administered (Figure 40). 

However, it is still preliminary at this stage to make significant conclusions about the 

mechanism of action of insulin and leptin on NO production since wortmannin has 

also been shown to inhibit PI4K (Etkovitz et al., 2007). The attenuation of NO 

production when the NOS inhibitor, L-NAME, was administered confirms that the NO 

was derived from NOS (Figure 40). As illustrated in Figure 52 both insulin and leptin 

stimulation converges at the level of PI3K during the intracellular signaling pathway. 

PI3K activation leads to protein kinase B (PKB/Akt) phosphorylation, which possibly 

in turn causes GLUT8’s translocation and insertion into the cell membrane. This 
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allows for increased glucose uptake, thereby fueling glucose metabolism necessary 

for increased motility and the acrosome reaction. Simultaneously the PI3K and 

PKB/Akt pathway activated by insulin and leptin can also diverge and stimulate the 

endothelial nitric oxide synthase (eNOS) enzyme of spermatozoa in order to increase 

NO generation. It has been shown that NO can also increase sperm motility and 

acrosome reaction (Wu et al., 2004). Therefore, we hypothesize that insulin and 

leptin can possibly act via two methods (GLUT8 translocation; NO production) to 

influence human sperm motility and the acrosome reaction.                               

 

5.6 Characterizing the spermatozoa separated by the PureSperm® two-layer 

density discontinuous gradient  

Semen samples of normozoospermic subjects contain spermatozoa of higher as well 

as lower motility which can be separated by density gradient centrifugation (Ollero et 

al., 2000; Buffone et al., 2004). This study has confirmed that the PureSperm® two-

layer density discontinuous gradient is able to separate spermatozoa into two distinct 

populations. One population contained mature spermatozoa with high motility 

parameters (Table XV), better normal head morphology (Figure 41) and high cell 

viability (Figure 42) whereas, the other contained sperm with poor motility 

parameters, poor morphology and lower cell viability. The mature fraction was 

retrieved from the pellet at the bottom of the PureSperm® two-layer density 

discontinuous gradient whereas the immature fraction was retrieved from the middle 

layer of the PureSperm® two-layer density discontinuous gradient. Our finding was 

similar to that of Buffone et al. (2005) in which they reported that spermatozoa from 

the poor quality fraction are functionally and structurally similar to pathological 

spermatozoa from asthenozoospermic and varicocele samples. 



 144

5.6.1 Effects of insulin and leptin on motility parameters of mature and 

immature spermatozoa separated by PureSperm® two-layer density 

discontinuous gradient  

In order to investigate whether insulin and leptin could improve motility parameters of 

sperm samples from asthenozoospermic patients, we separated spermatozoa using 

the PureSperm® two-layer density discontinuous gradient. This study reports for the 

first time that insulin and leptin were able to improve the motility of immature human 

spermatozoa separated by the PureSperm® two-layer density discontinuous gradient 

(Table XVI). The insulin effect on immature spermatozoa observed in the study is in 

agreement with the findings of Seethalakshmi et al., (1987); Howland and Zebrowski, 

(1976) where in vitro insulin administration to the retrieved epididymal spermatozoa 

from a diabetic rat model restored their motility to that of normal levels. Future studies 

will indicate whether administration of insulin and leptin to asthenozoospermic 

spermatozoa during in vitro fertilization in ART settings could improve the fertilizing 

capacity of the spermatozoa.  

 

5.7 Effects of TNF-α and IL-6 on sperm motility parameters, viability and 

acrosome reaction 

Cytokines appear to be natural components of seminal plasma (Maegawa et al., 

2002) since they are produced physiologically by germ cells, Leydig cells and Sertoli 

cells in the testis and are involved in the normal function of the testis (Hales et al.,  

1999; Soder et al., 2000; Diemer et al., 2003). Physiological concentrations of 

selected cytokines in semen determined as the mean of several values taken from 

several authors (Huleihel et al., 1999; Matalliotakis et al., 2002; Kamejo, 2003; Kopa 

et al., 2005) were as follows: IL-6 (25.0 pg/mL), IL-8 (50.0 pg/mL), IL-10 (7.8 pg/mL), 
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IFN-ּצ (127.1 pg/mL) and TNF-α (1.6 pg/mL). It has been shown that sperm-derived 

hyalauronidase stimulate IL-6 production in the cumulus cells surrounding the oocyte 

complex and thereby enhances fertilization (Shimada et al., 2008). The participation 

of cytokines in the regulation of fertility is dependent upon their concentration 

(Gruschwitz et al., 1996). TNF-α and IL-6 concentration levels have been reported to 

significantly increase in the seminal plasma of men with inflammatory genital 

diseases (Koçak et al., 2002) and in the peritoneal fluid of females with 

endometriosis (Eisermann et al., 1988).  

 

Various pro-inflammatory cytokines are present in seminal plasma but their effect on 

sperm motility, viability and acrosome reaction (AR) is still unclear. Studies have 

demonstrated increased levels of IL-6 in seminal plasma of infertile men which was 

inversely correlated with total sperm number and motility (Naz and Kaplan, 1994). 

However, other in vivo studies did not show a reduction in sperm motility by TNF-α 

and IL-6 (Comhaire et al., 1994; Hussenet et al., 1993). Our in vitro study has 

demonstrated that both TNF-α and IL-6 negatively affected progressive motility in a 

dose and time dependent manner. Our TNF-α results are in agreement with the 

findings of Eisermann et al., (1989) and Perdichizzi et al., (2007) in which sperm 

motility was significantly reduced in a dose- and time-dependent manner. The sperm 

viability results show that increasing concentrations of TNF-α and IL-6 led to increase 

in non-viable cells even though the increase was not significant. 

 

Studies have reported that infertile patients with varicocele exhibited elevated levels 

of cytokines such as IL-6, IL-8 and TNF-α (Sakamoto et al., 2008; Nallella et al., 

2004). In experimental varicocele in rats, Sahin et al., (2006) reported elevated levels 
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of IL-1α and IL-1β.  On the other hand, Aksoy et al., (2000) observed elevated levels 

of NO in seminal plasma of varicocele patients and concluded that the elevated NO 

levels influenced sperm production, motility and morphology in patients with 

varicocele. Oxidative stress due to NO and ROS in infertile patients with varicocele 

has been positively correlated with sperm DNA fragmentation (Sakamoto et al., 

2008). Sperm DNA damage has been reported to be a possible cause of reduced 

fertilization rates and poor outcomes of assisted reproduction (Ozmen et al., 2007; 

Tarozzi et al., 2007). This study has demonstrated that both TNF-α and IL-6 

increased NO production in human spermatozoa which was reversed by L-NAME 

(Figures 44 and 45). The reduction of NO production by L-NAME validated that the 

NO was derived from NOS. We speculate that apart from other sources, the elevated 

NO levels observed in varicocele patients may be due to elevated levels of cytokines 

such as IL-6.  It is known that NO can reduce adenosine triphosphate levels required 

for sperm motility by inhibiting glycolysis and the electron-transport chain (Dimmeler 

et al., 1992) while Weinberg et al., (1995) reported that NO was capable of inhibiting 

sperm motility in vitro. We therefore propose that elevated levels of TNF-α and IL-6 

possibly affect human spermatozoa function via the elevation of NO production. 

 

The presence of cytokines at high concentrations in seminal plasma or around the 

egg may result in defective AR either by inducing premature acrosome loss or 

insufficient acrosome response. TNF-α and IL-6 concentration levels of up to 61.3 

pg/ml and 152.7 pg/ml respectively, have been reported in seminal plasma of men 

with accessory gland infection (Koçak et al., 2002). In the follicular fluid of females 

with endometriosis, TNF-α and IL-6 concentration levels of up to 41.8 pg/ml and  
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30.8 pg/ml respectively have been reported (Wunder et al., 2006).  This study has 

demonstrated that both TNF-α and IL-6 can inhibit sperm from undergoing the AR 

(Figures 46 and 47). At the moment, the mechanism through which the inhibition is 

achieved is not known. Possibly this inhibiting effect could be attributed to the 

influence of the cytokines on the activities of Na+-K+-ATPase proton pumps, 

superoxide dismutase (SOD) and NO concentration (Bian et al., 2007). Our TNF-α 

results are in agreement with the findings of Dimitrov and Petrovská, (1996), and 

Bian et al., (2007) where TNF-α was reported to decrease both spontaneous and 

ionophore-induced AR. On the other hand, our finding that IL-6 has an inhibitory 

effect on AR, is contradictory to previous findings by Naz and Kaplan, (1994), and Zi 

and Song, (2006) but in agreement with Carver-Ward et al., (1997). These 

contradictions may be due to different concentrations of cytokines, methods of sperm 

selection as well as other methodological differences used by the different groups.  

 

Our study has demonstrated that TNF-α and IL-6 elevate NO production in human 

spermatozoa and that they have an effect on human sperm function especially 

progressive motility.  The detrimental effects of TNF-α and IL-6 are not different even 

though TNF-α seems to negatively affect sperm function more than IL-6. We have 

further demonstrated that this suppression of sperm function may be through the 

elevation of NO production.  

 

The finding that TNF-α and IL-6 also inhibit physiologically induced AR by 

progesterone is a novel finding since previous studies only used non-physiological 

inducer, calcium ionophore. This inhibitory effect seems to be dose dependent. In 

conclusion, the increase in concentration of these hormones in the male and female 
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reproductive tracts may be a source of fertilization failure as they may lead to 

decreased motility, viability and insufficient acrosome response to the stimulants.  

 

5.8 Effects of insulin, leptin, TNF-α and IL-6 on ROS generation 

In our earlier studies it was observed that insulin, leptin, TNF-α and IL-6 increased 

NO generation. Paradoxically, the increase of NO due to insulin and leptin was 

accompanied by increased sperm motility and acrosome reaction whereas NO 

increased due to TNF-α and IL-6 administration was accompanied by decreased 

sperm function. This study has shown that apart from NO stimulation, TNF-α and IL-6 

also stimulates ROS production (Figure 48) whereas insulin and leptin did not 

stimulate ROS production. We speculate that the ROS generated by TNF-α and IL-6 

was responsible for the detrimental effects on spermatozoa leading to decreased 

motility and acrosome reaction sensitivity. ROS are very reactive with cellular 

structures, undermining or eliminating their biological functions and properties 

(Agarwal et al., 2003). Our finding that TNF-α and IL-6 increased ROS production is 

in agreement with the findings of Buch et al., (1994); Nallela et al., (2004) and 

Nandipati et al., (2005). It might also be that the NO produced due to TNF-α and IL-6 

stimulation reacted with superoxide (O2
-.), a member of the ROS family, to form 

peroxynitrite (ONOO-) which is a more harmful free radical than O2
-. (Reiter et al., 

2000). Peroxynitrite formed from O2
-. and NO can mediate oxidation, nitration, toxicity 

and alterations in signaling pathways (Radi, 2004). This could explain the reduction 

in sperm motility and acrosome reaction with the addition of TNF-α and IL-6. As 

illustrated in Figure 50 insulin and leptin induce NO production via PKB/Akt 

stimulation of eNOS whereas TNF-α and IL-6 stimulate NO production via inducible 

NOS (iNOS) stimulation. At the same time TNF-α and IL-6 also induced ROS 
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generation via the NADPH oxidase activity. We therefore, speculate that the 

detrimental effects observed when TNF-α and IL-6 were administered to 

spermatozoa were because of their induction of excessive ROS and NO generation.  

The NO may also have reacted with some members of the ROS family such as O2
-. 

to form more detrimental radicals such as ONOO-.  

 

 

 

Figure 50. A schematic interaction between insulin, leptin, TNF-α and IL-6 in human 

spermatozoa. Insulin and leptin induce NO generation via the PI3K and PKB/Akt 

pathway which stimulates the endothelial nitric oxide synthase (eNOS), whereas 

TNF-α and IL-6 stimulate NO via the stimulation of inducible NOS (iNOS). 

Simultaneously, TNF-α and IL-6 via NADPH oxidase activity stimulates ROS 

production which is harmful to human sperm function at high concentration levels.  
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5.9 Expression and localization of GLUT8 in human spermatozoa 

Studies have shown that glucose in necessary for sperm function, and it has to be 

metabolized by spermatozoa to ensure that tyrosine phosphorylation occurs during 

capacitation, zona pellucida penetration and sperm-oocyte fusion (Urner and Sakkas, 

2003). The process of sperm capacitation requires a significant amount of energy 

and glucose seems to be a major energy source needed to maintain in vitro 

capacitation in mice and human spermatozoa since this sugar has been shown to 

induce much higher penetration rates and capacitation-like changes than do other 

monosaccharides such as fructose or mannose (Travis et al., 2004). GLUT4 is the 

most important and studied insulin-regulated transporter but it has not been detected 

in the testis or spermatozoa (Burant and Davidson, 1994b; Angulo et al., 1998; 

Schürmann et al., 2002), therefore making GLUT8 the best candidate for insulin-

stimulated glucose up-take in human spermatozoa. Gόmez et al., (2006) reported 

that GLUT8 expression in mouse testis first appears when round spermatids are 

formed, persists during spermiogenesis, and is present in spermatozoa isolated from 

the epididymis. However, it is not present in spermatogonia or spermatocytes. Our 

study has found that GLUT8 is constitutively expressed in the mid-piece region of 

mature human spermatozoa (Figure 49). As far as we are aware, this is the first study 

to report an increase in expression of GLUT8 in the midpiece region when 

spermatozoa are stimulated with insulin as well as its translocation to the acrosomal 

region. It is not yet clear why GLUT8 translocates to the acrosomal region. Previously 

it has been reported that GLUT8 translocates from subcellular compartments to the 

cell membrane in insulin-treated blastocysts (Carayannopoulos et al., 2000; Pinto et 

al., 2002). We therefore speculate that insulin through PI3K activation, leads to 

PKB/Akt phosphorylation, which in turn activates GLUT8’s translocation and insertion 
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into the cell membrane. This allows increased glucose uptake, thereby fueling 

glucose metabolism necessary for increased motility and the acrosome reaction as 

illustrated in Figure 51. 
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Figure 51. Hypothetical model of the functional interaction between insulin and leptin in human ejaculated spermatozoa. Insulin 
receptor activation and leptin receptor stimulation converge on PI3K via IRS1/2 and JAK/STAT respectively. Activation of the PI3K 
and PKB/Akt pathway can lead to GLUT8 translocation and insertion in the cell membrane and/or induce NO production. 
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Conclusions  

The discovery that a human ejaculated spermatozoon secretes its own insulin and 

leptin opened a very interested field in reproductive biology. Decreased insulin levels 

have been shown to exert adverse effects on reproductive endocrine function, 

gonadal function but nothing was known about its effects on ejaculated spermatozoa 

function. On the other hand, decreased leptin levels negatively affect the male’s 

reproductive capacity by delaying puberty, whereas higher leptin levels have been 

reported to be negatively correlated with human sperm function. The unanswered 

questions about the role insulin and leptin play in human sperm function made it 

imperative to investigate their physiological effects as well as unravelling their 

signalling pathways.  

 

In this study we have established suitable in vitro concentrations of insulin and leptin 

that can be administered to human spermatozoa. Our findings have also 

demonstrated that insulin and leptin play a beneficial role in enhancing human sperm 

motility parameters, viability and acrosome reaction. The study further demonstrated 

that insulin and leptin improved sperm function of asthernozospermic and 

teratozoospermic spermatozoa separated by the PureSperm® two-layer density 

discontinuous gradient. The study has also demonstrated for the first time the 

localization of GLUT8 in the midpiece region of human spermatozoa and that its 

expression in enhanced with insulin stimulation. Furthermore, insulin stimulation led 

to the translocation of the GLUT8 to the acrosome region. It is not yet clear why 

GLUT8 translocates to the acrosome region upon insulin stimulation. Further studies 

are required to elucidate this phenomenon.  
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This study has demonstrated that insulin and leptin stimulation of human 

spermatozoa converges at the level of PI3K during the intracellular signaling 

pathway. PI3K activation leads to protein kinase B (PKB/Akt) phosphorylation, which 

subsequently leads to GLUT8’s translocation and insertion into the cell membrane. 

The GLUT8 leads to an increase in glucose uptake, thereby fueling glucose 

metabolism necessary for increased motility and the acrosome reaction. On the other 

hand, the PI3K and PKB/Akt pathway stimulated by insulin and leptin can 

simultaneously diverge and stimulate the eNOS enzyme of spermatozoa in order to 

increase NO generation. We therefore, report that insulin and leptin can possibly act 

via two methods (GLUT8 translocation; NO production) to influence human sperm 

motility and acrosome reaction. 

 

This study has confirmed the detrimental effects of TNF-α and IL-6 on human sperm 

motility and acrosome reaction. Our findings have demonstrated that these effects 

are mediated via an excessive increase in NO and ROS induced by these cytokines. 

Apart from other sources, the elevated NO and ROS levels observed in deseased 

states that cause infertility such as varicocele in men and endometriosis in women, 

may be due to elevated levels of cytokines such as TNF-α and IL-6. 

 

Based on the findings of this study, we recommend that insulin and leptin could be 

used to improve human sperm function in vitro especially for asthenozoospemic 

spermatozoa. We also repport that TNF-α and IL-6 are detrimental to human sperm 

function at higher concentrations. Future studies will indicate whether lack of insulin 

or leptin receptors on human spermatozoa could explain the causes of idiopathic 

male infertility.  
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Abstract 

In recent years, there has been an increase in obesity, diabetes mellitus and male 

factor infertility. Obesity, which leads to a condition called the metabolic syndrome, is 

characterized by elevated leptin levels, whereas diabetes mellitus is characterized by 

decreased insulin levels or insulin insensitivity. There is a large body of evidence 

suggesting that insulin and leptin play a role in the physiology of human reproduction. 

Insulin and leptin deficiencies have been shown to negatively affect reproductive 

function in both humans and animal models. These hormones are thought to affect 

male reproduction at multiple levels due to their effects on endocrine control of 

spermatogenesis, spermatogenesis itself, as well as on mature ejaculated 

spermatozoa.  

 

 

 

 

 

Keywords: insulin, leptin, spermatozoa, diabetes mellitus, infertility. 

 

 

 

 

 

 

 

 



 184

Introduction 

A growing body of research has been focusing on obesity, which is a cardinal feature 

of a condition known as the metabolic syndrome, and its pathophysiology. The 

metabolic syndrome is characterized by a group of abnormalities including 

overweight, dyslipidemia, hypertension, and impaired glucose metabolism.  In 

reproductive biology, the metabolic syndrome has garnered more attention because 

of the connection that exists between diabetes mellitus (DM), hyperleptinemia and 

infertility. Infertility is a common phenomenon amongst modern societies and it is 

estimated that about 15% of couples attempting to conceive are not able to do so 

within the time frame of one year. The male contribution to this occurrence is believed 

to be between 20-50% [1].  

 

DM is characterized by poor glucose control leading to hyperglycemia. There are two 

types of DM: Type I DM, also known as insulin-dependent diabetes mellitus (IDDM), 

is a condition in which there is an absolute or relative lack of insulin due to 

autoimmune destruction of the insulin secreting β-cells in the islets of Langerhans in 

the pancreas; Type II DM, also known as non-insulin dependent diabetes mellitus 

(NIDDM), is characterized by cellular insulin insensitivity despite sufficient insulin 

levels [2]. Both Type I and II DM are well recognized as a cause of sexual 

dysfunction, which in turn also contributes to infertility [3]. DM is thought to affect the 

male reproductive function at multiple levels due to its effects on the endocrine 

control of the spermatogenesis process, spermatogenesis itself, as well as impairing 

penile erection and ejaculation [4]. Many studies involving diabetic animal models 

have demonstrated that there is an impairment of sperm quality [5, 6] which leads to 

a reduction in fecundity [6, 7, 8, 9]. Furthermore, it has been reported that men 
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affected with IDDM have sperm with severe structural defects, significantly lower 

motility [10] and lower ability to penetrate zona free hamster eggs [11].  In recent 

years, there has been an increase in NIDDM due to an increase in obesity [3]. 

Therefore, increase in prevalence of DM will pose a significant problem to human 

fertility.  

 

Obese individuals are also reported to have higher circulating leptin levels as well as 

higher prevalence of infertility [12, 13]. Leptin is a 16-kDa protein that is produced 

mainly by adipose tissue and is encoded by the ob gene [14]. Apart from the adipose 

tissue it is also produced by the placenta [15], stomach [16] and skeletal muscles 

[17]. The tertiary structure of leptin resembles that of cytokines and lactogenic 

hormones [18]. Leptin is best known as a regulator of food intake and energy 

expenditure via hypothalamic-mediated effects [19]. An increasing amount of data is 

suggesting that apart from the aforementioned, leptin also acts as a metabolic and 

neuroendocrine hormone. It is involved in glucose metabolism as well as in normal 

sexual maturation and reproduction [20]. Thus, changes in plasma leptin 

concentrations can have important and wide-ranging physiological implications. This 

review will aim at highlighting the roles of both insulin and leptin in male reproduction 

as well as focus on their possible effects at various reproductive levels contributing 

towards male infertility. 

 

Endocrine effects of insulin on male reproduction 

The importance of insulin has been demonstrated in male rat reproduction by using 

streptozotocin, to deplete the β-cells of the pancreas, and thereby inducing IDDM [7]. 

The deficiency of insulin in these rats led to a decrease in Leydig cell number as well 
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as an impairment in Leydig cell function. This consequently translated to a decrease 

in androgen biosynthesis and serum testosterone levels.  

 

The impaired Leydig cell function and subsequent decrease in testosterone in IDDM 

could be explained by the absence of the direct stimulatory effects of insulin on 

Leydig cells, as well as to an insulin-dependent decrease in follicle stimulating 

hormone (FSH) and luteinizing hormone (LH) levels [17].  

 

It was also reported [10] that insulin plays a central role in the regulation of the 

hypothalamic-pituitary-testicular axis by the reduction in secretion of LH and FSH in 

diabetic men as well as in knockout mice lacking the insulin receptor in the 

hypothalamus. Both the diabetic men and the knockout mice had notably impaired 

spermatogenesis, increased germ cell depletion and Sertoli cell vacuolization [10, 

21]. Figure 1 shows that insulin is required to stimulate the hypothalamus to release 

gonadotrophin releasing hormone (GnRH) which instructs the release of LH and FSH 

from the pituitary gland.  It has been reported that higher insulin concentrations, as 

found in NIDDM, lead to hypogonadism [22] as well as decreased serum testosterone 

levels [23]. Furthermore, Pitteloud and associates [24] also reported than insulin 

resistance lead to a decrease in testosterone secretion at testicular level (Leydig cell) 

that was not due to changes in hypothalamic or pituitary function. These findings 

points to a direct action of insulin at gonadal level (see Fig 1). 
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Figure 1. A schematic interaction of insulin, leptin and the endocrine control of 

spermatogenesis. Diabetes mellitus and obesity have an influence on circulating 

insulin and leptin levels respectively. Both insulin and leptin affect the secretion of 

gonadotrophin releasing hormone (GnRH) from the hypothalamus which 

subsequently orchestrate the secretion of luteinizing hormone (LH) and follicle 

stimulating hormone (FSH) from the pituitary gland that affect gonadal function and 

spermatogenesis. Both insulin and leptin can exert direct effects on the testes as 

well.  
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Endocrine effects of leptin on male reproduction 

Three leptin receptor isoforms have been reported to be present in gonadal tissue, 

suggesting that it could exert a direct endocrine action on the gonads [25, 26, 27]. 

Indeed studies have shown that treatment with leptin of infertile ob/ob knockout mice 

restored reproductive ability [28]. Injecting these ob/ob mice with leptin was reported 

to have caused an elevation in FSH levels, while it also stimulated gonadal 

development [29]. It was further shown that the chronic administration of antileptin 

antibody to rats inhibited LH release [30]. 

 

Humans deficient of leptin have shown similar effects as observed in animal models. 

A case study regarding a male with a homozygous leptin mutation reported that he 

was still pre-pubertal and showed clinical traits typical of hypogonadism and 

androgen deficiency despite being 22 years of age [31]. Furthermore, another male 

subject with a leptin receptor deficiency showed no pubertal development at either 13 

or 19 years of age [32]. Reports like these emphasize the importance of leptin on the 

onset of puberty in humans. 

 

The mechanisms through which leptin acts are not yet clearly elucidated but might 

probably involve the hypothalamus and its subsequent effects on the pituitary and 

gonadal axis. It has been shown that the administration of gonadotrophin releasing 

hormone (GnRH) to the leptin-deficient man induced a normal increase in serum LH 

and FSH levels, while the administration of gonadotrophins increased testosterone 

levels [31].  As illustrated in Figure 1, it may be that leptin stimulates GnRH synthesis 

or secretion from the hypothalamic neurons or secretion of gonadotrophins by the 

pituitary gland [33]. 
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Effects of insulin on spermatogenesis  

Morphological abnormalities have been reported in IDDM human testicular biopsies. 

These abnormalities included increasing tubule-wall thickness, germ cell depletion 

and Sertoli cell vacuolization [34]. Morphological and functional spermatozoal 

abnormalities that have been observed in diabetic animal models appear to be 

reversible with the administration of insulin [35, 36]. A significantly lower sperm count, 

and epididymal sperm motility was reported in diabetic rats in comparison to controls 

[36]. In vitro insulin administration to these retrieved epididymal spermatozoa 

restored their motility to that of normal levels, suggesting a direct effect on 

spermatozoa due to defective carbohydrate metabolism. Studies have reported that 

insulin as well as insulin-like growth factor I (IGF-I) and IGF-II promote the 

differentiation of spermatozoa into primary spermatocytes by binding to the IGF-I 

receptor [37]. There is also evidence that both the sperm membrane and the 

acrosome represent cytological targets for insulin [38].  

 

Effects of leptin on spermatogenesis  

The importance of leptin during the process of spermatogenesis was demonstrated 

by the observation that a leptin deficiency in mice was associated with impaired 

spermatogenesis, increased germ cell apoptosis and up-regulated expression of 

proapoptotic genes within the testes [39]. This resulted into the reduction in germ cell 

numbers and the absence of mature spermatozoa in the seminiferous tubules. This 

furthermore stresses the importance of physiological leptin levels in the normal 

production of male gametes. 
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Insulin and ejaculated spermatozoa 

Insulin has been shown to play a central role in the regulation of gonadal function; 

however, its significance in male fertility is not completely understood and properly 

elucidated [40]. In adult mammals insulin was thought to be produced only by the β-

cells in the pancreas [41]. 

 

Recently studies have demonstrated that insulin is expressed in and secreted by 

human ejaculated spermatozoa. Both insulin mRNA as well as the actual protein 

were detected in ejaculated human sperm [41]. It was found that capacitated 

spermatozoa secreted more insulin than noncapacitated spermatozoa [41], thereby 

suggesting a possible role for insulin in sperm capacitation.  Our group has 

furthermore shown the importance of insulin on ejaculated human spermatozoa in 

vitro [42]. Insulin administration to the medium (10µIU) was found to not only 

significantly increase total and progressive motility, but also significantly enhanced 

hyperactivation characteristics (VCL and ALH). In vitro insulin administration also led 

to an increase in spontaneous acrosome reaction, as well as further enhancing the 

sensitivity to the progesterone induced acrosome reaction. It is not clear if this 

increase was due to the agonists’ effect on capacitation or the acrosome reaction 

itself. It was also demonstrated by our group that insulin increased nitric oxide (NO) 

production in human spermatozoa and that this increase was possibly via the 

phosphoinositide 3-kinase (PI3K) signaling pathway as evidenced by the reduction in 

NO production when the PI3K inhibitor, wortmannin, was administered. Insulin may 

play a role in enhancing the fertilization capacity of human spermatozoa by 

increasing motility, NO production and acrosome reaction sensitivity [42].  
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Leptin and ejaculated spermatozoa 

Despite the fact that leptin has been implicated to play a role in the regulation of 

reproduction in both humans and animal models and that its specific role in the 

female reproductive system has been well established, its exact role(s) in the male 

reproductive system remains to be clarified [43, 44]. The expression of leptin in 

ejaculated human spermatozoa was demonstrated through identifying its transcripts 

by means of reverse transcription-polymerase chain reaction, while its protein 

presence was evidenced by Western blot analysis and its localization by 

immunostaining techniques [45].  

 

It seems that the significance of leptin in male reproduction will remain ambiguous for 

at least a while as results from studies are quite controversial and contradictory. 

Some studies have indicated positive effects [46] whereas others have reported 

negative effects of leptin on gonadal function [47]. It has been shown that seminal 

plasma leptin levels are significantly lower in normozoospermic patients compared to 

pathological semen samples and that higher leptin levels negatively correlated with 

sperm function [48]. Conversely, it was also reported that no correlation exists 

between leptin levels and sperm motility or morphology [49]. Capacitated 

spermatozoa were reported to secrete more leptin than noncapacitated spermatozoa 

suggesting that leptin plays a role in the process of capacitation [45]. Moreover, leptin 

receptors have been detected by immunohistochemistry in ejaculated spermatozoa 

and were localized on the tail area [50]. Similar to what we observed with insulin, our 

group has demonstrated that in vitro leptin administration increased various motility 

parameters and NO production as well as increasing the sensitivity of the 

spontaneous and progesterone induced acrosome reaction [42].  
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BOX 1: The effects of different Insulin and Leptin 
concentrations on male reproductive function 

 HIGHER 
CONCENTRATIONS 

ABSENCE or LOWER 
CONCENTRATIONS 

INSULIN Hypogonadism (Dhindsa et 
al., 2004) 
 
Low testosterone 
concentrations (Barret-
Connor et al., 1990) 
 
Decreased testosterone 
levels independent of 
hypothalamus-pituitary –
axis (Leydig cells) 
(Pitteloud et al., 2005) 

Decreased Leydig cell 
number; impaired Leydig 
cell function (Murray et al., 
1983) 
 
Reduction in LH and FSH; 
impaired spermatogenesis; 
increased germ cell 
depletion; Sertoli cell 
vacuolization (Brüning et 
al., 2000; Bacetti et al., 
2002) 
 
Sperm morphological 
abnormalities (Cameron et 
al., 1985) 
 
Reduced sperm motility 
(Lampiao et al., 2008) 

LEPTIN Inverse correlation with 
percentage motile 
spermatozoa and straight 
line velocity (Glander et al., 
2002) 

Decreased FSH and LH 
secretion (Carro et al., 
1997) 
 
Delayed puberty; 
hypogonadism; androgen 
deficiency (Strobel et al., 
1998) 
 
Increased germ cell 
apoptosis; impaired 
spermatogenesis (Bhat et 
al., 2006) 

 

Box 1. A summary of the effects of different insulin and leptin concentrations on 

male reproductive function. 
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GLUT8 as a glucose transporter in human spermatozoa 

Glucose uptake and metabolism are essential for proliferation and survival of cells 

and is usually carried out through glucose transporters (GLUTs). In mammals there 

are fourteen known members of GLUT proteins [51]. Insulin regulation of glucose 

transport in target tissues is known to involve the specialized GLUT4 isoforms, which 

is localized only in insulin responsive tissues [51].  

 

It is well known that glucose metabolism is essential for germ cell fertility and that 

when it is disturbed as in DM, spermatogenesis is impaired causing infertility [10, 11]. 

Previously it has been assumed that GLUT5 was the major sugar transporter of the 

sperm cell [52]. However, it has come to light that GLUT5 is a very specific fructose 

transporter [53] and does not transport glucose to a significant extent. Because 

GLUT5 was not detected in rat testis, it was suggested that other sugar transporters, 

presumably GLUT3, catalyze the fuel supply of the rat sperm cell [54]. In recent 

years, a novel 447-amino-acid glucose transporter protein, GLUT8 was described 

[55, 56, 57]. GLUT8 is expressed to some extent in insulin-sensitive tissues, e.g., 

brain, adrenal gland, spleen, adipose tissue, muscle, heart, and liver [55, 56, 58]. It 

was discovered that GLUT8 mRNA expression is highest in testicular tissue and that 

it was linked to circulating gonadotrophin levels [56, 59].  

 

GLUT8 was found to be specifically located in the head of mouse and human 

spermatozoa and that it is predominantly located within the region of the acrosome of 

mature sperm [60]. Coincidentally, immunohistochemical studies have shown that 

insulin is also predominantly located in these areas of human spermatozoa [38].  The 

intracellular localization of GLUT8 is similar to that of the insulin-sensitive glucose 
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transporter GLUT4, and it has indeed been described that insulin could produce a 

translocation of GLUT8 to the plasma membrane of the blastocyst [57]. In addition, it 

was shown that GLUT8 recycles in a dynamic-dependent manner between internal 

membranes and the plasma membrane in rat adipocytes and COS-7 cells [61]. As 

illustrated in Figure 2, both insulin and leptin stimulation converges at the level of 

PI3K during the intracellular signaling pathway. PI3K activation leads to protein 

kinase B (PKB/Akt) phosphorylation, which in turn causes GLUT8’s translocation and 

insertion into the cell membrane. This allows increased glucose up-take, thereby 

fueling glucose metabolism necessary for increased motility and the acrosome 

reaction. Simultaneously the PI3K and PKB/Akt pathway activated by insulin and 

leptin can also diverge and stimulate the endothelial nitric oxide synthase (eNOS) 

enzyme of spermatozoa in order to increase NO generation. It has been shown that 

NO can also increase sperm motility and acrosome reaction [62]. Therefore, we 

hypothesize that insulin and leptin can possibly act via two methods (GLUT8 

translocation; NO production) to influence human sperm motility and acrosome 

reaction.  

 

In conclusion, there is an association between insulin levels, leptin levels and male 

infertility. Decreased insulin levels have been shown to exert adverse effects on 

reproductive endocrine function, gonadal function as well as ejaculated spermatozoa 

function (see Box 1). On the other hand, decreased leptin levels negatively affect the 

male’s reproductive capacity by delaying puberty, whereas higher leptin levels have 

been reported to be negatively correlated with human sperm function (see Box 1). It 

appears that the insulin and leptin concentration levels are a double edged sword 

and a proper balance need to be struck for normal reproductive function.  The 
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impairment of insulin and leptin due to pathologies such as DM, obesity and 

metabolic syndrome explain why infertility is connected to these conditions. Despite 

the fact that the relationship between obesity, metabolic syndrome, DM and male 

infertility has been established, the exact mechanisms by which they act have not 

been elucidated to the fullest. This brief review has focused only on two hormones 

i.e. insulin and leptin, that can possibly be implicated under these conditions as the 

important role players. Further studies are needed to not only tease out the exact 

roles each play, but also to help find possible in vivo and in vitro solutions and 

treatment regimes for male infertility patients.   
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Figure 2. Hypothetical model of the functional interaction between insulin and leptin 

in human ejaculated spermatozoa. Insulin receptor activation and leptin receptor 

stimulation converge on PI3K via IRS1/2 and JAK/STAT respectively. Activation of 

the PI3K and PKB/Akt pathway can lead to GLUT8 translocation and insertion in the 

cell membrane and/or induce NO production.  
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Abstract 

Aim: To investigate the in vitro effects of insulin and leptin on human sperm motility, 

viability, acrosome reaction, and nitric oxide production. Methods: Washed human 

spermatozoa from normozoospermic donors were treated with insulin (10 µIU) and 

leptin (10 nmol). Insulin and leptin effects were blocked by inhibition of their 

intracellular effector, phosphotidylinositol 3-kinase, by wortmannin (10 µmol) 30 min 

prior to insulin and leptin being given. Computer-assisted semen analysis was used 

to assess motility after 1, 2, and 3 h of incubation. Viability was assessed by 

fluorescence-activated cell sorting using propidium iodide as a fluorescent probe. 

Acrosome-reacted cells were observed under a fluorescent microscope using 

fluorescein-isothiocyanate–Pisum sativum agglutinin as a probe. Nitric oxide was 

measured after treating the sperm with 4,5-diaminofluorescein-2/diacetate and 

analyzed by fluorescence-activated cell sorting. Results: Insulin and leptin 

significantly increased total motility, progressive motility, and acrosome reaction, as 

well as nitric oxide production. Conclusion: This study has shown the in vitro 

beneficial effects of insulin and leptin on human sperm function. These hormones 

could play a role in enhancing the fertilization capacity of human spermatozoa.  
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Introduction 

 

The discovery that human ejaculated spermatozoa secrete insulin [1] and leptin [2] 

has opened a new field of study in reproductive biology. Leptin, a hormone secreted 

mainly by adipose tissue [3] is known as a regulator of food intake and energy 

expenditure [4]. It also fulfils many other functions, such as the regulation of 

neuroendocrine systems, hematopoieses, angiogenesis, puberty, and reproduction 

[5–8]. Studies have shown the presence of leptin receptors on human spermatozoa 

as well as soluble leptin receptors in seminal plasma [9].  

Insulin is mainly produced by the β cells of the pancreas and is important for the 

promotion of growth, differentiation, and metabolism in somatic cells [10]. It has also 

been shown to play a role in the regulation of gonadal function [11].  

In other cell types, leptin and insulin play a central role in regulation of energy 

homeostasis, acting on the phosphotidylinositol 3-kinase (PI3K)/protein kinase B 

pathway that mediates their metabolic effects [12]. Similarly, in uncapacitated sperm, 

both insulin and leptin increased PI3K activity as well as AktS473 and GSK-3S9 

phosphorylation [1, 2], thereby possibly modulating the availability of the 

spermatozoa’s energetic substrates during capacitation. However, the significance of 

these hormones in male fertility is not properly elucidated.  

Recent studies have confirmed the role of nitric oxide (NO) in modulating sexual and 

reproductive function [13]. The production of NO is catalysed by a family of NO 

synthase (NOS) enzymes [14]. NOS is responsible for the conversion of L-arginine to 

NO and L-citrulline [15] and has been shown to be expressed in spermatozoa [16]. 

The ability of human spermatozoa to synthesize NO has been shown indirectly by 
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measuring nitrite accumulation [16], as well as L-[3H]citrulline generation [17] or 

directly by means of an isolated NO meter with sensor [18] and flow cytometry [19].  

The aim of this study was to investigate the in vitro effects of leptin and insulin on 

human sperm motility, viability, acrosome reaction, and NO production.  

 

Materials and methods 

 

Chemicals 

Wortmannin, Ham’s F10, leptin, N-nitro-L-arginine methyl ester (L-NAME), propidium 

iodide (PI), fluorescein isothiocyanate–Pisum sativum agglutinin, and progesterone 

were obtained from Sigma Chemical (St. Louis, MO, USA). Human insulin was 

purchased from Lilly France (Fegersheim, France). 4,5-Diaminofluorescein-

2/diacetate (DAF-2/DA) was from Calbiochem (San Diego, CA, USA).  

 

Preparation of sperm samples 

The 25 donors recruited in this study provided informed consent for a research 

protocol approved by the University of Stellenbosch Ethics Committee (Tygerberg, 

South Africa). Fresh semen samples were obtained by masturbation from healthy 

volunteers after a minimum of 2 days of sexual abstinence according to World Health 

Organization guidelines [20]. Samples were left to liquefy for 30 min before 

processing. Motile sperm fractions were retrieved from the samples using a double 

wash (400 × g, 5 min) swim-up technique in Hams medium containing 3 % bovine 

serum albumin (37 °C, 5 % CO2). After 1 h, the supernatant containing motile sperm 

was collected and divided into aliquots (5 × 106/mL).  
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Experimental procedure 

Insulin and leptin effects were blocked by inhibition of their intracellular effector, PI3K, 

by wortmannin (10 µmol) given 30 min prior to the addition of 10 µIU insulin and 

10 nmol leptin to the samples according to the concentrations described by Aquila et 

al. [1, 2]. 

 

Motility parameters 

Motility was measured by means of computer-assisted semen analysis using an Ivos 

motility analyzer (Hamilton Thorne Biosciences, Beverley, MA, USA) after 1, 2, and 

3 h of incubation (37 ˚C, 5 % CO2).  

 

Cell viability 

Sperm cells that had received different treatments were incubated (37 ˚C, 5 % CO2, 

120 min) and subsequently loaded with PI (1 µmol, 15 min). Living cells with an intact 

cell membrane and active metabolism will exclude PI, whereas cells with damaged 

membranes or impaired metabolism allow PI to enter the cell and stain the DNA. PI 

fluorescence was analyzed by fluorescence-activated cell sorting (FACS).  

 

Acrosome reaction 

Spermatozoa that received different treatments were left to capacitate for 3 h, after 

which they were induced to undergo the acrosome reaction by means of a 

physiological trigger, progesterone (1 µg/mL, 30 min), or left to undergo the 

spontaneous acrosome reaction (30 min). 

The extent of the acrosome reaction was assessed by placing samples on spotted 

slides and leaving them to air dry, then fixing them in cold ethanol [20]. Fluorescein 
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isothiocyanate–Pisum sativum agglutinin (125 µg/mL) was layered on the slides and 

they were incubated for 30 min in a dark humid atmosphere. Slides were 

subsequently rinsed with distilled water in order to eliminate excess probe, then 

observed under a fluorescence microscope. At least 200 cells were evaluated per 

spot. 

 

NO production 

NO production was measured as previously described [19]. Briefly, samples that had 

received different treatments were loaded with DAF-2/DA (10 µM) and incubated 

(120 min, 37 ºC) in the dark. Some of the samples were loaded with the NOS 

inhibitor, L-NAME (0.7 mmol), 30 min prior to DAF-2/DA loading. Care was taken to 

prevent exposure to light throughout the rest of the experiment as the probe is light-

sensitive. After incubation with DAF-2/DA the cells were analyzed by FACS.  

 

Flow cytometry 

A FACSCalibur analyzer (Becton Dickinson, San Jose, CA, USA) was used to 

quantify fluorescence (excitation wavelength 488 nm and emission wavelength 

530 nm) at a single-cell level and data were analyzed using CellQuest version 3.3 

(Becton Dickinson) software. The mean fluorescence intensity of the analyzed sperm 

cells was determined after gating the cell population by forward and side scatter 

signals. In total, 100 000 events were acquired, but non-sperm particles and debris 

were excluded by prior gating, thereby limiting undesired effects on overall 

fluorescence. The final gated populations usually consisted of 15 000–20 000 sperm 

cells.  
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Statistical analysis 

The results were analyzed on the Prism 4 statistical program (GraphPad, San Diego, 

CA, USA). All data are expressed as the mean ± SEM. Data were tested for normality 

with the Kolmogorov–Smirnov test. One-way ANOVA (with Bonferroni post hoc test if 

P < 0.05) was used for statistical analysis. DAF-2/DA fluorescence data are 

expressed as mean fluorescence (percentage of control, control adjusted to 100 %). 

Differences were regarded statistically significant if P < 0.05.  

 

Results 

 

Motility 

Total sperm motility, progressive motility, curvilinear velocity (VCL), and amplitude of 

lateral head displacement (ALH) were assessed after 1, 2, and 3 h of incubation 

(Figures 1–4, respectively). Leptin as well as insulin + leptin significantly increased 

total motility compared to the control (75.30 ± 0.57 % and 76.10 ± 2.53 % vs 

64.80 ± 2.74 %, respectively; P < 0.05) after 1 h of incubation. Similarly, progressive 

motility was significantly increased in the leptin and insulin + leptin groups compared 

to the control (51.60 ± 1.98 % and 52.30 ± 3.08 % vs 42.30 ± 2.84 %, respectively; 

P < 0.05). The increase in total motility and progressive motility in the insulin only 

treated group did not reach significant levels when compared to the control after 1 h 

of incubation. VCL was significantly increased in the leptin and leptin + insulin groups 

compared to the control (93.15 ± 2.26 µm/sec and 97.40 ± 1.88 µm/sec vs 

78.51 ± 3.48 µm/sec, respectively; P < 0.05), whereas ALH was significantly 

increased in the insulin + leptin group when compared to the control after 1 h of 

incubation (3.89 ± 0.11 µm vs 3.36 ± 0.13 µm; P < 0.05).  
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After 2 h of incubation, sperm cells incubated with insulin, leptin, or insulin + leptin 

had significantly increased total motility compared to the control (69.00 ± 2.22 %, 

72.20 ± 2.02 %, and 73.80 ± 2.81 % vs 54.30 ± 2.43 %, respectively; P < 0.05). 

Similar results were observed with progressive motility. Insulin, leptin, and insulin + 

leptin groups significantly increased progressive motility compared to the control 

(47.30 ± 3.81 %, 53.20 ± 3.00 %, and 54.80 ± 3.13 % vs 32.90 ± 3.83 %, 

respectively; P < 0.05). The main characteristics of hyperactivation (VCL and ALH) 

were also significantly increased after 2 h of incubation. VCL was significantly 

increased in the insulin, leptin, and insulin + leptin groups compared to the control 

(99.78 ± 2.07 µm/sec, 105.2 ± 1.87 µm/sec, and 106.6 ± 1.59 µm/sec vs 

84.97 ± 5.39 µm/sec, respectively; P < 0.05). However, ALH was significantly 

increased in the leptin and insulin + leptin groups when compared to the control 

(5.20 ± 0.24 µm and 5.40 ± 0.26 µm vs 4.23 ± 0.13 µm, respectively; P < 0.05). A 

similar trend of events was observed after 3 h of incubation. The insulin, leptin, and 

insulin + leptin groups had significantly increased total motility, progressive motility, 

and VCL, as well as ALH, when compared to the control. At all time points the 

addition of wortmannin did not affect motility, however, it was able to attenuate the 

effects of insulin/leptin on motility, progressive motility, VCL, and ALH when used as 

a cotreatment.  

 

Sperm cell viability 

We observed a trend of decreased PI fluorescence, interpreted as an increase in 

viability, for cells treated with insulin, leptin, and insulin + leptin, but it did not attain 

statistical significance (Figure 5).  
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Acrosome reaction  

Progesterone-stimulated samples had significantly more acrosome-reacted cells 

compared to spontaneous acrosome-reacted cells in all the groups (Figure 6). The 

addition of insulin, leptin, and insulin + leptin significantly increased spontaneous 

acrosome-reacted cells compared to the control (35.33 ± 1.73 %, 36.56 ± 1.93 %, 

and 41.78 ± 1.31 % vs 14.56 ± 0.64 %, respectively; P < 0.05). Similarly, insulin, 

leptin, and insulin + leptin significantly increased acrosome reaction in cells 

stimulated with progesterone when compared to the control (42.11 ± 2.05 %, 

42.89 ± 1.26 %, and 49.11 ± 1.18 % vs 20.00 ± 1.35 %, respectively; P < 0.05). The 

inhibition of PI3K with wortmannin did not affect the percentage of acrosome-reacted 

cells compared to the control in either spontaneous or progesterone-stimulated 

groups. Wortmannin, however, attenuated the stimulatory effects of insulin/leptin on 

acrosome reaction when used as a cotreatment. 

 

NO generation 

Figure 7 shows the effects of insulin and leptin on DAF-2/DA fluorescence. The NOS 

inhibitor, L-NAME, significantly reduced DAF-2/DA fluorescence compared to the 

control (81.01 ± 1.48 % vs 100 %; P < 0.05). Wortmannin, a PI3K inhibitor, also 

significantly reduced DAF-2/DA fluorescence compared to the control 

(91.58 ± 2.35 % vs 100 %; P < 0.05). Insulin, leptin, and insulin + leptin groups 

significantly increased DAF-2/DA fluorescence compared to the control 

(113.10 ± 1.25 %, 115.30 ± 3.24 %, and 120.80 ± 2.70 % vs 100 %, respectively; 

P < 0.05). The addition of insulin + leptin to the L-NAME and wortmannin treated 

groups did not reverse the situation.  
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Discussion 

 

The existence of insulin and leptin in human ejaculated spermatozoa was shown 

through their transcripts evaluated by reverse transcription–polymerase chain 

reaction, their protein content evidenced by Western blot analysis and through their 

localization by immunostaining analysis [1, 2]. The significance of leptin in influencing 

reproduction was evidenced by leptin-deficient female mice (ob mice) that are infertile 

[21]. However, treatment with leptin restores fertility in ob male mice, suggesting its 

role in reproduction [22]. The role of leptin in human spermatozoa function is not 

clearly elucidated. Most studies have indicated both positive and negative effects of 

leptin in gonadal function [23, 24]. Glander et al. [25] reported that seminal plasma 

leptin levels were significantly lower in patients with normal spermiogram parameters, 

compared with pathological semen samples, and showed a negative correlation with 

motility of human spermatozoa, suggesting that higher leptin concentration has 

negative effects on sperm function. However, Zorn et al. [26] found no correlation 

between leptin levels and sperm motility or morphology. 

The importance of insulin in spermatozoa physiology is indicated by men affected by 

diabetes mellitus type 1 who have sperm with severe structural defects, significantly 

lower motility [27] and lower ability to penetrate hamster eggs [28]. Our data has 

shown that insulin and leptin might play a role in enhancing human sperm motility 

parameters, as evidenced by increased total and progressive motility as well as the 

sperm hyperactivation characteristics, VCL and ALH (Figures 1–4).  

Insulin and leptin secretion was reported to be significantly increased in capacitated 

sperm than in non-capacitated sperm, suggesting the involvement of these hormones 

in capacitation. Capacitated sperm released up to approximately 18 µIU insulin and 
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4 ng/mL leptin [1, 2]. Lackey et al. [29] reported leptin concentration levels of 

approximately 1 ng/mL in human seminal plasma, whereas in female follicular fluid, 

leptin levels of approximately 16 ng/mL have been reported [30]. 

Studies have shown that capacitated sperm display an increase in metabolic rate, 

overall energy expenditure, intracellular ion concentrations, plasma membrane 

fluidity, intracellular pH, and reactive oxygen species, presumably to affect the 

changes in sperm signaling and function during capacitation [31, 32]. Sperm 

capacitation is a prerequisite step for sperm to undergo the acrosome reaction [33, 

34]. This possibly explains why insulin and leptin increased the percentage of 

spontaneous and progesterone acrosome-reacted cells in our study. It is not clear 

whether this increase is due to the agonists’ effect on capacitation or acrosome 

reaction itself. Further studies are recommended. However, the blockage of PI3K with 

wortmannin had no effect on the acrosome reaction status of the cells when 

compared to the control. This finding is consistent with results observed by Fisher et 

al. [35], in which wortmannin was found not to inhibit the acrosome reaction induced 

by A23187 or progesterone, as well as by du Plessis et al. [36], where LY294002, 

another PI3K inhibitor, also did not inhibit the acrosome reaction induced by A23187, 

progesterone, and solubilized zona pellucida. We speculate that the cellular 

pathways involved in the acrosome reaction induced by this agonist do not involve 

PI3K, or, alternatively, that the need for PI3K in the pathway is somehow by-passed. 

It has been reported that the signaling of insulin is a complex process that involves 

multiple signaling pathways that diverge at or near the activation of its tyrosine kinase 

receptor [37].  

Studies have reported that insulin and leptin enhance NO production in other cell 

types [38, 39]. Our study has, for the first time, shown that both insulin and leptin 
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enhance NO production in human spermatozoa and that this increase is possibly 

through the PI3K signaling pathway, as evidenced by reduction of NO production 

when the PI3K inhibitor, wortmannin, was given. However, it is still too early to make 

significant conclusions about the mechanism of action of insulin and leptin on NO 

production, as wortmannin has also been shown to inhibit phosphotidylinositol 4-

kinase [40]. The attenuation of NO production when the NOS inhibitor, L-NAME, was 

given confirms that the NO was derived from NOS (Figure 7).  

 

In conclusion, our study has shown that insulin and leptin might play a role in 

enhancing the fertilization capacity of human spermatozoa by increasing motility, 

acrosome reaction, and NO production.  
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Figure 1. Effects of insulin and leptin on human sperm total motility after 1, 2, and 3 h 

of incubation. Washed sperm samples were treated with insulin, leptin, insulin + leptin 

(Ins/Lep), insulin + leptin + wortmannin (Ins/Lep/Wort), or wortmannin (Wort). Values 

are the mean ± SEM of 10 replicates. *P < 0.05 vs control.  
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Figure 2. Effects of insulin and leptin on human sperm progressive motility after 1, 2, 

and 3 h of incubation. Washed sperm samples were treated with insulin, leptin, 

insulin + leptin (Ins/Lep), insulin + leptin + wortmannin (Ins/Lep/Wort), or wortmannin 

(Wort). Values are the mean ± SEM of 10 replicates. *P < 0.05 vs control.  
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Figure 3. Effects of insulin and leptin on human sperm curvilinear velocity (VCL) after 

1, 2, and 3 h of incubation. Washed sperm samples were treated with insulin, leptin, 

insulin + leptin (Ins/Lep), insulin + leptin + wortmannin (Ins/Lep/Wort), or wortmannin 

(Wort). Values are the mean ± SEM of 10 replicates. *P < 0.05 vs control.  
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Figure 4. Effects of insulin and leptin on human sperm amplitude of lateral head 

displacement (ALH) after 1, 2, and 3 h of incubation. Washed sperm samples were 

treated with insulin, leptin, insulin + leptin (Ins/Lep), insulin + leptin + wortmannin 

(Ins/Lep/Wort), or wortmannin (Wort). Values are the mean ± SEM of 10 replicates. 

*P < 0.05 vs control.  
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Figure 5. Effects of insulin and leptin on propidium iodide (PI) fluorescence. PI was 

used as a probe for non-viable cells. Spermatozoa were treated with insulin, leptin, 

insulin + leptin (Ins/Lep), insulin + leptin + wortmannin (Ins/Lep/Wort), or wortmannin 

(Wort). Data is expressed as the percentage of PI fluorescence.  
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Figure 6. Effects of insulin and leptin on sperm acrosome reaction. Spermatozoa 

were treated with insulin, leptin, insulin + leptin (Ins/Lep), 

insulin + leptin + wortmannin (Ins/Lep/Wort), or wortmannin (Wort). Cells were 

simulated to acrosome react with progesterone or left to undergo spontaneous 

acrosome reaction. *P < 0.05 vs spontaneous control; **P < 0.05 vs spontaneous; 

***P < 0.05 vs progesterone control.  
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Figure 7. Effects of insulin and leptin on 4,5-diaminofluorescein-2/diacetate (DAF-

2/DA) fluorescence. Spermatozoa were treated with N-nitro-L-arginine methyl ester  

(L-NAME), wortmannin, insulin, leptin, insulin + leptin (Ins/Lep), insulin + leptin + L-

NAME (Ins/Lep/L-N), insulin + leptin + wortmannin (Ins/Lep/Wort). Values are 

expressed as mean DAF-2/DA fluorescence percentage of the control (control 

adjusted to 100 %) of 10 replicates. *P < 0.05 vs control. 
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Summary 

Many studies have reported the effects of cytokines on human sperm function even 

though their role and mechanisms involved remain unclear. We assessed and 

compared the effects of increasing concentrations of TNF-α and IL-6 on human 

sperm motility, viability as well as investigated the possible mechanism involved. 

TNF-α and IL-6 significantly reduced progressive motility at higher concentrations in a 

dose- and time-dependent manner. No differences were observed in cell viability. 

Both cytokines increased nitric oxide production in a dose-dependent manner. TNF-α 

and IL-6 did not statistically differ in their detrimental effects on human spermatozoa. 

These results indicate that TNF-α and IL-6 have an effect on sperm function. The 

effect is possibly mediated via an increase in nitric oxide production. 
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Introduction 

 

The role of cytokines in male reproductive function has been widely reported (Diemer 

et al., 2003). Although the immune system may be the major source of cytokine 

production, various other cells in the male urogenital tract also secrete cytokines and 

have an effect on sperm function and fertility (Naz and Kaplan, 1994). Their 

production occurs in response to foreign antigen, pathogen and chronic inflammation 

(Huleihel et al., 1996). The defense strategies of the immune system against bacterial 

infections include the release of proinflammatory cytokines especially interleukin-1 

(IL-1), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) as primary or 

secondary signals (Metalliotakis et al., 1998). 

 

IL-6 is produced by fibroblasts, monocytes/macrophages and endothelial cells (Syed 

et al., 1995). It may serve as an autocrine and paracrine growth factor in a wide 

range of cell lines. In seminal plasma the prostate appears to be the main site of 

origin of IL-6 (Metalliotakis et al., 1998). IL-6 has been shown to be significantly 

elevated in patients with varicocele (Nallella et al., 2004).  

 

TNF-α is a key cytokine in the initiation and orchestration of the inflammatory 

response against invading microorganisms (Hales et al., 1999). It has been reported 

to be highly elevated in patients with chronic prostatitis/chronic pelvic pain syndrome 

(Alexander et al., 1998). 

 

Even though much is known about the pathophysiology of cytokines on human sperm 

function, the mechanisms involved are yet to be clearly elucidated. The aim of this 
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study was twofold (i) to assess and compare the effects of TNF-α and IL-6 on human 

sperm function and (ii) to investigate if the elevation of NO production is a possible 

potential pathological mechanism of sperm damage employed. 

 

Materials and methods 

 

Chemicals 

TNF-α, IL-6, Nw-nitro-L-arginine methyl ester (L-NAME) and propidium iodide (PI) 

were obtained from Sigma Chemical Co., (St Louis, MO, USA). 4,5-

diaminofluorescein-2/diacetate (DAF-2/DA) was purchased from Calbiochem, San 

Diego, CA, USA.  

 

Preparation of sperm samples 

This study was approved by the ethics committee board of our institution. Semen was 

collected from 15 normozoospermic donors by masturbation after 3-5 days of 

abstinence according to the World Health Organization (WHO) criteria (WHO, 1999). 

Only samples with sperm concentration ≥ 20 x 106 /mL, total motility ≥ 50%, 

progressive motility ≥ 40% were used. Samples were left to liquefy for 30 minutes 

before processing. Motile sperm fractions were retrieved from the samples using a 

double wash in Hams F-10 medium (400 x g, 5 min) swim-up technique (3% Hams F-

10-bovine serum albumin (BSA), 37˚C, 5% CO2). After 1 hour, the supernatant 

containing motile sperm was collected and divided into aliquots.  

 

 

 



 232

Experimental protocol 

Aliquots containing 5 x 106 spermatozoa were incubated (37˚C, 5% CO2) with 

increasing concentrations of TNF-α and IL-6 (0, 2, 5, 10, 20, 50, 100ng/mL) for 1, 3, 5 

hours in 1 mL Hams + BSA medium according to concentrations described by 

Perdichizzi et al., (2007). At the end of the incubation, the aliquots’ sperm motility, 

viability and intracellular nitric oxide production were evaluated.  

 

Sperm Motility 

Total motility and progressive motility were measured by means of computer assisted 

semen analysis (CASA) using Hamilton Thorne Ivos after 1, 3 and 5 hours of 

incubation (37˚C, 5% CO2).  

 

Flow cytometry 

A Becton Dickinson FACSCaliburTM analyzer was used to quantify fluorescence 

(excitation wavelength 488 nm and emission wavelength 530 nm) at a single-cell 

level and data were analysed using CellquestTM version 3.3 (Becton Dickinson, San 

Jose, CA, USA) software. The mean fluorescence intensity of the analysed sperm 

cells was determined after gating the cell population by forward and side scatter 

signals. In total 100 000 events were acquired, but non-sperm particles and debris 

were excluded by prior gating, thereby limiting undesired effects on overall 

fluorescence. The final gated populations usually consisted of 15 000-20 000 sperm 

cells.  
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Cell viability 

Sperm cells which had received different treatments were incubated (37˚C, 5% CO2, 

5hrs) and subsequently, loaded with PI (1µM, 15 min). Living cells with an intact cell 

membrane and active metabolism will exclude PI while cells with damaged 

membranes or impaired metabolism allow PI to enter the cell and stain the DNA. PI 

fluorescence was analyzed by fluorescence-activated cell sorting (FACS).  

 

Nitric oxide production 

Nitric oxide production was measured as previously described (Lampiao et al., 2006). 

Briefly, samples which had received different treatments were loaded with DAF-2/DA 

(10 µM) and incubated (5hrs, 37 ºC) in the dark. Some of the samples were loaded 

with the nitric oxide synthase (NOS) inhibitor, L-NAME (0.7mM), 30 min prior to DAF-

2/DA administration.  Care was taken to prevent exposure to light throughout the rest 

of the experimentation as the probe is light sensitive. After incubation with DAF-2/DA 

the cells were analyzed by FACS.  

 

Statistical analysis 

The results were analyzed on the GraphPad PrismTM 4 statistical program. All data 

are expressed as mean ± SEM. Student’s t-test or One-way analysis of variance 

(ANOVA) (with Bonferroni post hoc test if p < 0.05) was used for statistical analysis. 

Differences were regarded statistically significant if p < 0.05. 

 

Results 

Both TNF-α and IL-6 did not significantly reduce sperm total motility after 1, 3 and 5 

hours of incubation (Fig. 1) even though there was a trend of reduction in total motility 
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with increase in cytokines concentration but did not reach statistical significance (P > 

0.05). No statistically significant differences were observed between TNF-α and IL-6 

treated cells of similar concentration even though TNF-α treated cells had slightly 

lower total motility than IL-6 treated cells at all time points.  

 

 

 

Figure 1. Time-course and dose-response of the effects of TNF-α and IL-6 on total 

motility. Values are the mean ± SEM of 10 replicates. 
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Progressive motility showed to be more sensitive to the effects of both TNF- α and IL-

6 (Fig. 2). TNF-α significantly reduced progressive motility from the concentration of 

20 ng/mL while IL-6 suppressive effects were observed at 100 ng/mL 3 hours after 

incubation (p < 0.05 vs. TNF-α zero; IL-6 zero, respectively). After 5 hours of 

incubation TNF-α significantly reduced progressive motility from the concentration of 

10 ng/mL (p < 0.05 vs. TNF-α zero) whereas, IL-6 significantly reduced progressive 

motility from the concentration of 50 ng/mL (p < 0.05 vs. IL-6 zero). No significant 

differences were observed in progressive motility between TNF-α and IL-6 treated 

spermatozoa of corresponding concentrations (P > 0.05).  

 

 

Figure 2. Time-course and dose-response of the effects of TNF-α and IL-6 on 

progressive motility. Values are the mean ± SEM of 10 replicates. *, P < 0.05 vs. zero 

concentration.  
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Sperm cell viability was assessed by PI fluorescence. The increase in PI 

fluorescence was interpreted as an increase in non-viable cells. No significant 

differences in PI fluorescence (P > 0.05) were observed for both TNF-α and IL-6 dose 

response curve (Fig. 3).  

 

Figure 3. Effect of TNF-α and IL-6 on PI fluorescence. Cells were incubated with 

increasing concentrations of TNF-α and IL-6 and incubated for 5 hours. PI was used 

as a viability probe. Values are the mean ± SEM of 10 replicates. 

 

 

Three concentrations of TNF-α and IL-6 (5, 20 and 100ng) were chosen for the NO 

experiments. A significant increase in mean DAF-2/DA fluorescence was observed in 

cells treated with 5, 20, 100ng TNF-α compared to the untreated cells (109.00 ± 

2.29%; 119.20 ± 2.76%; 129.20 ± 4.25% vs. 100%; P < 0.05) respectiv�ly, while the 
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addition of L-NAME siginificantly reduced fluorescence in all the groups (Fig. 4). IL-6 

significantly increased mean DAF-2/DA fluorescence at 20 and 100ng (115.40 ± 

2.29%; 123.10 ± 2.55% vs. 100%; P < 0.05) while the addition of L-NAME 

significantly reduced fluorescence in all the groups (P < 0.05) (fig. 5). 

 

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

TNF-
+L-NAME

0 5 20 100

#
#

#
#

* **
**

#P<0.05
*P=0.05 vs. zero

**P=0.001 vs. zero

TNF- concentration (ng/mL)

M
ea

n 
D

A
F-

2/
D

A
 fl

uo
re

sc
en

ce
 (%

 o
f c

on
tr

ol
)

 

 

Figure 4 . Effect of TNF-α on DAF-2/DA fluorescence. Cells were incubated with 5, 

20 and 100ng/mL TNF-α in the presence or absence of L-NAME and incubated for 5 

hours with DAF-2/DA. Values are expressed as mean DAF-2/DA fluorescence 

percentage of control (control adjusted to 100%) of 10 replicates. #, p < 0.05; *, 

p=0.05 vs. Zero; **, p=0.001 vs. Zero. 
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Figure 5. Effect of IL-6 on DAF-2/DA fluorescence. Cells were incubated with 5, 20 

and 100ng/mL IL-6 in the presence or absence of L-NAME and incubated for 5 hours 

with DAF-2/DA. Values are expressed as mean DAF-2/DA fluorescence percentage 

of control (control adjusted to 100%) of 10 replicates. #, p < 0.05; *, p=0.05 vs. Zero; 

**, p=0.001 vs. Zero. 

 

 

Discussion 

Various proinflammatory cytokines are present in seminal plasma but their effect on 

sperm motility and viability is still unclear. Studies have demonstrated increased 

levels of IL-6 in seminal plasma of infertile men which was inversely correlated with 

total sperm number and motility (Naz and Kaplan, 1994). However, other in vivo 

studies did not show a reduction in sperm motility by TNF-α and IL-6 (Comhaire et 
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al., 1994; Hussenet et al., 1993). Our in vitro study has demonstrated that both TNF-

α and IL-6 negatively affected progressive motility in a dose and time dependent 

manner. Our TNF-α results are in agreement with the findings of Eisermann et al., 

(1989) and Perdichizzi et al., (2007) in which sperm motility was significantly reduced 

in a dose- and time-dependent manner. It appears from our results that TNF-α is 

more detrimental than IL-6 in reducing sperm progressive motility even though no 

statistical differences were observed. The sperm viability results show that increasing 

concentrations of TNF-α and IL-6 led to increase in non-viable cells even though the 

increase was not significant. 

 

Studies have reported that infertile patients with varicocele exhibited elevated levels 

of cytokines such as IL-6, IL-8 and TNF-α (Sakamoto et al., 2008; Nallella et al., 

2004). In experimental varicocele in rats, Sahin et al., (2006) reported elevated levels 

of IL-1α and IL-1β.  On the other hand, Aksoy et al., (2000) observed elevated levels 

of NO in seminal plasma of varicocele patients and concluded that the elevated NO 

levels influenced sperm production, motility and morphology in patients with 

varicocele. Oxidative stress due to NO and reactive oxygen species (ROS) in infertile 

patients with varicocele has been positively correlated with sperm DNA fragmentation 

(Sakamoto et al., 2008). Sperm DNA damage has been reported to be a possible 

cause of reduced fertilization rates and poor outcomes of assisted reproduction 

(Ozmen et al., 2007; Tarozzi et al., 2007). This study has demonstrated that both 

TNF-α and IL-6 increased NO oxide production in human spermatozoa which was 

reversed by L-NAME. The reduction of NO production by L-NAME validated that the 

NO was derived from NOS. We speculate that apart from other sources, the elevated 

NO levels observed in varicocele patients may be due to elevated levels of cytokines 
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such as IL-6.  It is known that NO can reduce adenosine triphosphate levels required 

for sperm motility by inhibiting glycolysis and the electron-transport chain (Dimmeler 

et al., 1992) while Weinberg et al., (1995) reported that NO was capable of inhibiting 

sperm motility in vitro. We therefore propose that elevated levels of TNF-α and IL-6 

possibly affect human spermatozoa function via the elevation of NO production. 

 

This study has demonstrated that TNF-α and IL-6 elevate NO production in human 

spermatozoa. In conclusion, this study has shown that TNF-α and IL-6 have an effect 

on human sperm function especially progressive motility and that their detrimental 

effects are not different even though TNF-α seems to affect sperm function more than 

IL-6. We have further demonstrated that this suppression of sperm function may be 

through the elevation of NO production.  
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Summary 

For human spermatozoa to successfully fertilize the oocyte they, need to undergo a 

timely acrosome reaction (AR). Factors which disturb the AR may lead to fertilization 

failure. The objective of this study was to investigate the effects of two cytokines 

namely tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) on the 

spontaneous, calcium ionophore-induced and progesterone-induced human sperm 

AR. Twenty-two normal semen samples were treated with increasing concentrations 

of TNF-α and IL-6 after spermatozoa were isolated by a double wash swim-up 

method. The AR was induced by calcium ionophore A23187 and progesterone. The 

AR was determined by using Fluorescein isothiacyanate Pisum sativum agglutinin 

(FITC-PSA) and observed under fluorescence microscope. Both TNF-α and IL-6 

could decrease the spontaneous, ionophore and progesterone-induced AR (p < 0.05) 

in a dose dependent manner. TNF-α showed a more potent inhibiting effect than IL-6 

by inhibiting the AR at lower concentrations. This study has demonstrated that TNF-α 

and IL-6 play a role in inhibiting both the non-physiological as well as physiologically 

elicited AR by calcium ionophore and progesterone respectively.  
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Introduction 

Sperm AR involves the fusion of the outer acrosomal membrane with the overlying 

plasma membrane (Yudin et al., 1988) and consequent exocytosis of acrosomal 

contents (Sabeur et al., 1996). Undergoing the AR is a prerequisite for normal 

fertilization and any disturbances thereof lead to fertilization failure. Interestingly, only 

a small subpopulation of spermatozoa is apparently able to undergo the AR (Benoff 

et al., 1996).  

 

Some of the cytokines which have been implicated to be involved in male fertility are 

TNF-α and IL-6 (Koçak et al., 2002). Studies have reported a contradictory role of 

cytokines on AR. IL-6 has been reported to enhance human sperm AR (Naz and 

Kaplan, 1994; Zi and Song, 2006). On the other hand, Carver-Ward et al., (1997) 

reported that IL-6 led to a reduction in AR. Naz and Kaplan, (1994) used 

concentrations ranging from 6-600pg/100µl of sperm suspension whereas Carver-

Ward et al., (1997) used concentrations ranging from 5-160 pg/ml sperm. TNF-α has 

been reported to have an inhibitory effect on the AR (Dimitrov and Petrovská, 1996; 

Bian et al., 2007). In all these studies, calcium ionophore was used to examine the 

induced AR. This agent is considered as an unphysiologic stimulus, because it 

circumvents the natural pathway of AR, potentially yielding false-positive results (Liu 

and Baker, 1996). Therefore, it would be more applicable to use a physiologic 

inducer i.e. progesterone to measure the effects of cytokines on the AR. 

Progesterone which is secreted by the oocyte and steroidogenic cumulus cells that 

surround it (Osman et al., 1989; Hartshorne, 1989) initiates AR in vitro (Oehninger, et 

al., 1994; Bronson et al., 1999; Muratori et al., 2008).  
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The aim of this study was to investigate and compared the effects of TNF-α and IL-6 

on the AR by using calcium ionophore as well as the physiologic stimulus 

progesterone. In this study 0, 2, 5, 20, 50, 100pg/mL concentrations of TNF-α and IL-

6 were used. The concentrations were chosen to cover TNF-α and IL-6 levels 

detected in the seminal plasma and female follicular fluid (Koçak et al., 2002; Eggert-

Kruse et al., 2007; Amato et al., 2003; Wunder et al., 2006). 

 

Materials and methods 

Donors recruited in this study provided informed consent for a research protocol 

approved by the University of Stellenbosch Ethics Committee. Fresh semen samples 

were obtained by masturbation from healthy volunteers after a minimum of 2 days of 

sexual abstinence according to the World Health Organization (WHO, 1999).  

 

After 30 minutes liquefaction, motile sperm fractions were retrieved from the samples 

using a double wash in Hams F-10 medium (400 x g, 5 min) swim-up technique (3% 

Hams F-10-bovine serum albumin, 37˚C, 5% CO2) as previously described (Lampiao 

and du Plessis, 2006).  Aliquots containing 5 x 106 spermatozoa were incubated for 3 

hours and then exposed to increasing concentrations of TNF-α and IL-6 (0, 2, 5, 20, 

50, 100pg/mL) for 30 minutes. The cytokines remained present until stimulation with 

the agonists to mimic the environment in the female genital tract. Each aliquot was 

split into three fractions: one for analysis of the spontaneous AR (30 minutes), the 

second for exposure to calcium ionophore A23187 (10 µmol/L, 30 minutes; Sigma 

Chemical Co., St Louis, MO, USA) and the third for exposure to progesterone (1 

µmol/mL, 30 minutes; Sigma Chemical Co., St Louis, MO, USA).  
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The extent of the AR was assessed by placing samples on spotted slides and left to 

air dry after which they were fixed in cold ethanol for 30 sec. FITC-PSA (125µg/mL; 

Sigma Chemical Co., St Louis, MO, USA) was layered on the slides and they were 

incubated for 30 minutes in a dark humid atmosphere. Slides were subsequently 

rinsed with distilled water in order to eliminate excess probe, and then observed 

under a fluorescence microscope. At least 200 cells were evaluated per spot. 

 

Results  

Figure 1 shows the effect of TNF-α on calcium and progesterone-induced AR as well 

as spontaneous AR. TNF-α significantly reduced the ability of human spermatozoa to 

undergo spontaneous AR at the concentrations of 20 pg/mL, 50 pg/mL and 100 

pg/mL when compared to the spontaneous control (5.80 ± o.29%; 4.75 ± 0.26%; 3.90 

± 0.17% vs. 13.75 ± 0.54%; p < 0.05). The calcium ionophore-induced AR was 

significantly reduced by TNF-α at the concentrations of 5 pg/mL, 20 pg/mL, 50 pg/mL 

and 100 pg/mL when compared to the calcium ionophore-induced control (31.70 ± 

1.87%; 24.20 ± 1.25%; 20.40 ± 0.84%; 17.35 ± 0.73% vs. 46.30 ± 2.08%; p < 0.05). 

TNF-α also significantly reduced the progesterone-induced AR at the concentrations 

of 20 pg/mL, 50 pg/mL and 100 pg/mL when compared to the progesterone-induced 

control (14.30 ± 1.14%; 12.50 ± 0.73%; 9.60 ± 0.76% vs. 29.10 ± 1.91%; p < 0.05).  
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Figure 1. The effects of TNF-α on AR. Human spermatozoa were treated with 0, 2, 5, 

20, 50 and 100 pg/mL TNF-α before stimulated to undergo AR with calcium 

ionophore A23187 (10 µmol/L), progesterone (1 µmol/mL) or left to undergo the 

spontaneous AR. *, p < 0.05 vs. spontaneous control; #, p < 0.05 vs. A23187 control; 

●, p < 0.05 vs. progesterone control.  

 

IL-6 significantly reduced spontaneous AR at the concentration of 100 pg/mL when 

compared to the spontaneous control (5.30 ± 0.19% vs. 13.75 ± 0.54%; p < 0.05) 

(Fig. 2). On the other hand, IL-6 significantly reduced the calcium ionophore-induced 

AR at the concentrations of 20 pg/mL, 50 pg/mL and 100 pg/mL when compared to 



 250

the calcium-induced control (27.30 ± 1.93%; 23.80 ± 1.09%; 17.85 ± 0.85% vs. 46.30 

± 2.08%; p < 0.05). The progesterone-induced AR was significantly reduced by IL-6 

at the concentrations of 50 pg/mL and 100 pg/mL when compared to the 

progesterone-induced control (13.70 ± 0.98%; 11.85 ± 0.92% vs. 29.10 ± 1.91%; p < 

0.05).  

 

 

Figure 2. The effects of IL-6 on AR. Human spermatozoa were treated with 0, 2, 5, 

20, 50 and 100 pg/mL IL-6 before stimulated to undergo AR with calcium ionophore 

A23187 (10 µmol/L), progesterone (1 µmol/mL) or left to undergo the spontaneous 

AR. *, p < 0.05 vs. spontaneous control; #, p < 0.05 vs. A23187 control; ●, p < 0.05 

vs. progesterone control.  



 251

Discussion 

Cytokines appear as the natural components of seminal plasma (Maegawa et al., 

2002) since they are produced physiologically by the testis and are involved in the 

normal function of the organ (Hales et al.,  1999; Soder et al., 2000; Diemer et al., 

2003). It has been shown that sperm-derived hyalauronidase stimulate IL-6 

production in the cumulus cells which enhances fertilization (Shimada et al., 2008). 

The participation of cytokines in the regulation of fertility is dependent upon their 

concentration (Gruschwitz et al., 1996). TNF-α and IL-6 concentration levels have 

been reported to significantly increased in the seminal plasma of men with 

inflammatory genital diseases (Koçak et al., 2002) and in the peritoneal fluid of 

females with endometriosis (Eisermann et al., 1988). Their presence at high 

concentrations in seminal plasma or around the egg may result in defective AR either 

by inducing premature acrosome loss or insufficient acrosome response. TNF-α and 

IL-6 concentration levels of up to 61.3 pg/ml and 152.7 pg/ml respectively have been 

reported in seminal plasma of men with accessory gland infection (Koçak et al., 

2002). In the follicular fluid of females with endometriosis, TNF-α and IL-6 

concentration levels of up to 41.8 pg/ml and 30.8 pg/ml respectively have been 

reported (Wunder et al., 2006).  This study has demonstrated that both TNF-α and IL-

6 can inhibit sperm from undergoing the AR. At the moment, the mechanism through 

which the inhibition is achieved is not known. Possibly this inhibiting effect could be 

attributed to their influence on the activities of Na+-K+-ATPase, sodium dismutase and 

nitric oxide concentration (Bian et al., 2007). The TNF-α results are in agreement with 

the findings of Dimitrov and Petrovská, (1996), and Bian et al., (2007) where TNF-α 

was reported to decrease both spontaneous and ionophore-induced AR. On the other 

hand, our finding about the inhibitory effect of IL-6 on AR is contradictory to previous 
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findings by Naz and Kaplan, (1994), and Zi and Song, (2006) but in agreement with 

Carver-Ward et al., (1997). These contradictions may be due to different 

concentrations of cytokines, methods of sperm selection as were as other 

methodological differences used, by the different groups.  

 

The finding that TNF-α and IL-6 also inhibit physiologically induced AR by 

progesterone is a novel finding since previous studies only used the unphysiologic 

inducer, calcium ionophore. This inhibitory effect seems to be dose dependent. In 

conclusion, the increase in concentration of these hormones in the male and female 

reproductive tracts may be a source of fertilization failure as they may lead to 

insufficient acrosome response to the stimulants.  
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