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Abstract 
 

Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the 

reproductive system through its stimulation of gonadotropin synthesis and release from 

the pituitary via binding to its specific receptor, known as the gonadotropin-releasing 

hormone receptor type I (GnRHR-I).  The gonadotropins, luteinising hormone (LH) and 

follicle-stimulating hormone (FSH), bind to receptors in the gonads, leading to effects on 

steroidogenesis and gametogenesis.  The recent finding of a second form of the GnRH 

receptor, known as the type II GnRHR or GnRHR-II, in non-mammalian vertebrates 

triggered the interest into the possible existence and function of a GnRHR-II in humans.  

The current study addressed this issue by investigating the presence of transcripts for a 

GnRHR-II in various human tissues and cells.  While it was demonstrated that antisense 

transcripts for this receptor, containing sequence of only two of the three coding exons, 

are ubiquitously and abundantly expressed in all tissues examined, potentially full-length 

(containing all three exons), sense transcripts for a GnRHR-II were detected only in 

human ejaculate.  Further analysis revealed that the subset of cells in the ejaculate 

expressing these transcripts is mature sperm.  These findings, together with the reported 

role for GnRH in spermatogenesis and reproduction led to the further analysis of the 

presence of a local GnRH/GnRHR network in human and vervet monkey ejaculate or 

sperm.  Indeed, such a network seems to be present in humans since transcripts for 

both forms of GnRH present in mammals, as well as transcripts for the GnRHR-I, are 

expressed in human ejaculate.  Furthermore, transcripts for the GnRHR-II are expressed 

in both human and vervet monkey ejaculate.  Thus, it would appear that locally produced 

GnRH-1 and/or GnRH-2 in the human male reproductive tract might mediate their effects 

on fertility via a local GnRHR-I, and possibly via GnRHR-II. 

 

Remarkably, in the pituitary, LH and FSH are present in the same gonadotropes, yet 

they are differentially regulated by GnRH under various physiological conditions.  While 

it is well established that post-transcriptional regulatory mechanisms occur, the 

contribution of transcriptional regulation to the differential expression of the LHβ- and 

FSHβ-subunit genes is unclear.  In this study, the role of GnRH-1 and GnRH-2 via the 

GnRHR-I and the GnRHR-II in transcriptional regulation of mammalian LHβ- and FSHβ 

genes was determined in the LβT2 mouse pituitary gonadotrope cell-line.  It is 

demonstrated for the first time that GnRH-1 may affect gonadotropin subunit gene 



expression via GnRHR-II in addition to GnRHR-I, and that GnRH-2 also has the ability to 

regulate gonadotropin subunit gene expression via both receptors.  Similar to other 

reports, it is shown that the transcriptional response to GnRH-1 of LHβ and FSHβ is low 

(about 1.4-fold for bLHβLuc and 1.2-fold for oFSHβLuc).  In addition, evidence is 

supplied for the first time that GnRH-2 transcriptional regulation of the gonadotropin β 

subunits is also low (about 1.5-fold for bLHβLuc and 1.1-fold for oFSHβLuc).  It is 

demonstrated that GnRH-1 is a more potent stimulator of bLHβ promoter activity as 

compared to GnRH-2 via the GnRHR-I, yet both hormones result in a similar maximum 

induction of bLHβ.  However, GnRH-2 is a more efficacious stimulator of bLHβ 

transcription via the GnRHR-II than GnRH-1.  No discriminatory effect of GnRH-1 vs. 

GnRH-2 was observed for oFSHβ promoter activity via GnRHR-I or GnRHR-II.  By 

comparison of the ratio of expression of transfected oFSHβ- and bLHβ promoter-

reporters via GnRH-1 with that of GnRH-2, it is shown that GnRH-2 is a selective 

regulator of FSHβ gene transcription.  This discriminatory effect of GnRH-2 is specific for 

GnRHR-I, as it is not observed for GnRHR-II, where GnRH-1 results in a greater oFSHβ-

to-bLHβ ratio. These opposite selectivities for GnRHR-I and GnRHR-II on the ratios of 

oFSHβ:bLHβ promoter activity for GnRH-1 vs. GnRH-2 suggest a mechanism for fine 

control of gonadotropin regulation in the pituitary by variation of relative GnRHR-I vs. 

GnRHR-II levels.  In addition, a concentration-dependent modulatory role for PACAP on 

GnRH-1- and GnRH-2-mediated regulation of bLHβ promoter activity, via both GnRHR-I 

and GnRHR-II, and of oFSHβ promoter activity, via GnRHR-I, is indicated.  The 

concentration-dependent effects suggest the involvement of two different signalling 

pathways for the PACAP response.  Together these findings suggest that transcription of 

the gonadotropin genes in vivo is under extensive hormonal control that can be fine-

tuned in response to varying physiological conditions, which include changing levels of 

GnRH-1, GnRH-2, GnRHR-I and GnRHR-II as well as PACAP. 



Opsomming 
 

Gonadotropien-vrystellingshormoon (GnRH) is bekend as die sentrale reguleerder van 

die voorplantingsisteem deur die stimulasie van gonadotropiensintese en            -

vrystelling vanaf die pituïtêre klier via binding aan ‘n spesifieke reseptor, die 

sogenaamde tipe I gonadotropien-vrystellingshormoonreseptor (GnRHR-I).  Die 

gonadotropiene, lutineringshormoon (LH) en follikel-stimuleringshormoon (FSH), bind 

aan reseptore in die gonades waar dit steroïedogenese en gametogenese beïnvloed.  

Die onlangse ontdekking van ‘n tweede vorm van die GnRH-reseptor, bekend as die tipe 

II GnRHR of GnRHR-II, in nie-soogdier vertebrate het belangstelling in die moontlike 

bestaan en funksie van ‘n GnRHR-II in die mens gewek.  Hierdie kwessie is aangeraak 

deur die teenwoordigheid van transkripte vir ‘n GnRHR-II in verskeie weefsel- en seltipes 

van die mens te ondersoek.  Daar is aangetoon dat nie-sin transkripte vir hierdie 

reseptor, wat die DNA-opeenvolgings van slegs twee van die drie koderende eksons 

bevat het, oormatig uitgedruk word in al die weefseltipes wat ondersoek is.  Daarteenoor 

is potensieel vollengte (bevattende al drie eksons) sin transkripte vir ‘n GnRHR-II in die 

mens slegs in semen gevind.  Verdere analise het getoon dat dit volwasse sperma binne 

die semen is wat laasgenoemde transkripte uitdruk.  Hierdie bevindinge, tesame met die 

aangetoonde rol vir GnRH in spermatogenese en reproduksie het gelei tot die verdere 

analise van die teenwoordigheid van ‘n lokale GnRH/GnRHR-netwerk in mens- en 

blouaapsemen of -sperm.  So ‘n netwerk blyk om teenwoordig te wees in die mens, 

aangesien transkripte vir beide vorme van GnRH wat in soogdiere gevind word, asook 

transkripte vir die GnRHR-I, in menssemen uitgedruk word.  Daarbenewens word 

transkripte vir die GnRHR-II uitgedruk in beide mens- en blouaapsemen.  Dit wil dus 

voorkom asof lokaalgeproduseerde GnRH-1 en/of GnRH-2 in die manlike 

voortplantingstelsel van die mens hul effek op vrugbaarheid bemiddel via ‘n lokale 

GnRHR-I, en moontlik ook via GnRHR-II. 

 

Dit is opmerklik dat LH en FSH teenwoordig is in dieselfde gonadotroopselle van die 

pituïtêre klier en tog verskillend gereguleer word deur GnRH tydens verskeie fisiologiese 

kondisies.  Terwyl dit bekend is dat post-transkripsionele reguleringsmeganismes 

teenwoordig is, is die bydrae van transkripsionele regulering tot die differensiële 

uitdrukking van die LHβ- en FSHβ-subeenheidgene minder duidelik.  In hierdie studie is 

die rol van GnRH-1 en GnRH-2 via die GnRHR-I en die GnRHR-II in transkripsionele 



regulering van soogdier-LHβ- en -FSHβ-gene in die LβT2 muis pituïtêre 

gonadotroopsellyn bepaal.  Dit is vir die eerste keer aangetoon dat GnRH-1 ‘n effek mag 

hê op gonadotropiensubeenheid-geenuitdrukking via GnRHR-II bykomend tot GnRHR-I, 

en dat GnRH-2 ook die vermoë besit om gonadotropiensubeenheid-geenuitdrukking via 

beide reseptore te reguleer.  Soos deur ander studies aangetoon is die transkripsionele 

respons van LHβ en FSHβ tot GnRH-1 klein (ongeveer 1.4-voudig vir bLHβLuc en 1.2-

voudig vir oFSHβLuc).  Verder is daar vir die eerste keer bewys gelewer dat 

transkripsionele regulering van die gonadotropien β-subeenhede deur GnRH-2 ook 

gering is (ongeveer 1.5-voudig vir bLHβLuc en 1.1-voudig vir oFSHβLuc).  Daar is 

aangetoon dat GnRH-1 ‘n sterker stimuleerder van bLHβ-promotoraktiwiteit is in 

vergelyking met GnRH-2 via die GnRHR-I, hoewel beide hormone tot ‘n soortgelyke 

maksimum induksie van bLHβ lei.  GnRH-2 is egter ‘n meer effektiewe stimuleerder van 

bLHβ-transkripsie as GnRH-1 via die GnRHR-II.  Geen verskille is gevind tussen die 

effekte van GnRH-1 en GnRH-2 op oFSHβ-promotoraktiwiteit via GnRHR-I of GnRHR-II 

nie.  Wanneer die verhouding van uitdrukking van getransfekteerde oFSHβ- en bLHβ-

promotor-verslaggewers via GnRH-1 met dié van GnRH-2 vergelyk is, is aangetoon dat 

GnRH-2 ‘n selektiewe reguleerder van FSHβ-geentranskripsie is.  Hierdie diskriminasie-

effek van GnRH-2 is spesifiek vir GnRHR-I aangesien dit nie vir GnRHR-II waargeneem 

word nie.  GnRH-1 lei tot ‘n groter oFSHβ tot bLHβ-verhouding via GnRHR-II.  Hierdie 

teenoorgestelde selektiwiteite van GnRHR-I en GnRHR-II op die verhoudings van 

oFSHβ tot bLHβ-promotoraktiwiteit vir GnRH-1 teenoor GnRH-2 suggereer dat daar ‘n 

meganisme bestaan vir die fyn regulering van gonadotropiene in die pituïtêre klier, 

deurdat die relatiewe vlakke van GnRHR-I teenoor GnRHR-II gevarieer word.  

Daarbenewens is ‘n konsentrasie-afhanklike moduleringsrol vir PACAP op GnRH-1- en 

GnRH-2-bemiddelde regulering van bLHβ-promotoraktiwiteit aangetoon, via beide 

GnRHR-I en GnRHR-II, asook op oFSHβ-promotoraktiwiteit via GnRHR-I.  Hierdie 

konsentrasie-afhanklike effekte dui op die betrokkenheid van twee verskillende 

seinpadweë vir die PACAP-respons.  Tesame suggereer hierdie bevindinge dat 

transkripsie van die gonadotropiengene in vivo onder ekstensiewe hormonale kontrole is 

wat verfyn kan word in respons to veranderlike fisiologiese kondisies.  Laasgenoemde 

sluit veranderende vlakke van GnRH-1, GnRH-2, GnRHR-I en GnRHR-II asook PACAP 

in. 
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Thesis structure 
 

This thesis is divided into five chapters.  Chapter 1 consists of a general introduction that 

introduces the reader to the basic relevant background on the structure, function and 

expression of gonadotropin-releasing hormone receptors (GnRHRs).  Some of this 

background information has been published in an international journal [Hapgood JP et 

al., 2005] and a copy of the publication is included at the back of the thesis.  The general 

introduction is followed by a summary of the general aims of the study.  Chapters 2, 3 

and 4 contain the results of the study.  Each of the results chapters is written in paper 

format by having its own background (which supplies more specific and detailed 

background information), aim, experimental section, results and discussion. 

 

Chapter 2 covers the results of cloning of a mammalian type II GnRHR.  The main focus 

is on the cloning from human ejaculate cells but cloning results from several human, as 

well as monkey and baboon, tissue types are included in the study.  Some of the results 

shown in Chapter 2 have been published [Van Biljon W et al., 2002] and a copy of the 

publication is included at the back of the thesis. 

 

Chapter 3 reports on the findings of whether transcripts for the gonadotropin-releasing 

hormone(s) (GnRHs) as well as the type I GnRHR are found in ejaculate.  The study 

was done in human and monkey ejaculate in parallel. 

 

Chapter 4 contains the results of an extensive study performed in the LβT2 mouse 

pituitary gonadotrope and COS-1 monkey kidney cell-lines, with the aim being to 

compare cellular responses to GnRH-1 and GnRH-2 when either the mammalian type I 

GnRHR or the mammalian type II GnRHR is overexpressed. 

 

A final chapter, Chapter 5, containing a concluding discussion and listing some future 

prospects, follows the three results chapters.  Chapter 5 highlights the main results and 

conclusions reported in Chapters 2 to 4 and gives insight into the significance of the 

entire thesis.  Thereafter follows a list of all references used throughout the thesis, in 

alphabetical order.  The appendices can be found after the list of references at the back 



of the thesis.  These include the appendices that are referred to within the chapters as 

well as copies of publications. 

The author of this thesis did most of the work presented here.  The human dot blot and 

in situ hybridisations mentioned in Chapter 2 and shown in Appendix 5 were however 

done by Dr Sonja Scherer (in our laboratory) and Dr Susan Wykes (under the 

supervision of Prof SA Krawetz), respectively.  Brief mention is made of cloning results 

obtained from human testis tissue and exontrap results within Chapter 2 – these were 

performed by Ms Emerentia Hutchinson in our laboratory. 
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CHAPTER 1 
 
 

GENERAL INTRODUCTION1

& 
GENERAL AIMS 

 
 
 

1.  Part of the information in this chapter has been published [Hapgood JP, Sadie H, 

Van Biljon W, Ronacher K.  Regulation of expression of mammalian 

gonadotrophin-releasing hormone receptor genes.  Journal of 

Neuroendocrinology 2005;  17:  619-638].  A copy of the review can be found at 

the back of this thesis (Appendix 6). 
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General Introduction 
 
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), is a central 

regulator of the mammalian reproductive system [Matsuo H et al., 1971;  Amoss M et 

al., 1971].  It acts mainly on the anterior pituitary lobe via a specific GnRH receptor 

(the so-called type I GnRHR or GnRHR-I) on the plasma membrane, where it triggers 

the synthesis of the gonadotropin hormones, luteinising hormone (LH) and follicle-

stimulating hormone (FSH).  LH and FSH in turn stimulate gonadal production of sex 

steroids.  GnRH not only causes de novo production of the gonadotropins, but also 

induces their secretion from pituitary gonadotropes, allowing them to regulate the 

synchronisation of the reproductive cycle [Cheng CK & Leung PC, 2005].  The 

hypothalamus, pituitary and gonads together form the reproductive axis, also known 

as the hypothalamic-pituitary-gonadal (HPG) axis.  GnRH was initially known as 

luteinising hormone-releasing hormone, referring to its stimulatory effect on LH 

release, but later obtained its current, more general, name [Dubois EA et al., 2002]. 

 

The GnRH peptide is synthesised in the hypothalamic region of vertebrate brains but 

is also distributed in extrahypothalamic tissues such as the midbrain, central and 

peripheral nervous system, pituitary, and other peripheral tissues and cells (table 1).  

Interestingly, at least two, and often three, GnRH subtypes are found within a single 

species [Millar RP, 2003].  Generally, the GnRHs are named after the species in 

which they were first discovered but their distribution is not limited to that particular 

species.  Humans, for example, express the mammalian GnRH and chicken GnRH-II 

subtypes [Millar RP, 2003] that will be named GnRH-1 and GnRH-2, respectively, 

from here onwards.  GnRH-2 is regarded as the most conserved member of the 

GnRH family because it has been found in representative members of every 

vertebrate class, including from fish to humans [Millar RP et al., 2004].  Its amino acid 

sequence (pGlu-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH2) only differs from GnRH-1 

(pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) at positions 5, 7 and 8 [Millar RP et 

al., 2004]. 
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Table 1:  Distribution of GnRH-1 and GnRH-2 in mammals. 

 
Mammalian tissue/cell type GnRH-1 GnRH-2 Reference 

Bone marrow 1 1 [Kakar SS & Jennes L, 1995;  White 

RB et al., 1998] 

Amygdala 2 1 

Anterior olfactory area 2 N/D 

Arcuate nucleus N/D 1 

Caudate nucleus 1 1 

Cerebral cortex N/D 2 

Corpus callosum N/D 1 

Dentate gyrus N/D 1 

Foetal brain N/D 1 

Hippocampus N/D 1 

Hypothalamus 1 1,2 

Infundibular stalk 2 N/D 

Median eminence 2 2 

Medulla oblongata N/D 1,2 

Midbrain N/D 1,2 

Neurohypophysis 2 N/D 

Neuronal cell-lines 1,2 1,2 

Pons N/D 1,2 

Periventricular region N/D 2 

Preoptic area 2 2 

Septal region 2 N/D 

Suprachiasmatic nucleus N/D 1 

Supraoptic nucleus N/D 1 

Brain 

Thalamus N/D 1 

[Anthony EL et al., 1984;  Hayflick JS 

et al., 1989;  Stopa EG et al., 1991;  

Lescheid DW et al., 1997;  Chen A et 

al., 1998;  White RB et al., 1998;  

Urbanski HF et al., 1999;  Chen A et 

al., 2001;  Latimer VS et al., 2001] 

Cancer & carcinoma cells 1 1 Breast 

Normal tissue 1 1 

[Seppälä M & Wahlston T, 1980;  

Harris N et al., 1991;  Chen A et al., 

2002b] 

Heart 1 N/D [Kakar SS & Jennes L, 1995] 

Normal and Jurkat leukemic T cells 2 2 

Peripheral blood mononuclear cells 1 N/D 

Immune cells 

Spleen lymphocytes 1 N/D 

[Azad N et al., 1991;  Chen HF et al., 

1999;  Chen A et al., 2002a] 

Kidney 1 1 [Kakar SS & Jennes L, 1995;  White 

RB et al., 1998] 

Liver 1 N/D [Kakar SS & Jennes L, 1995] 

Pituitary:  normal & adenoma tissue 1 N/D [Miller GM et al., 1996;  Sanno N et 

al., 1997] 

Pituitary stalk N/D 2 [Chen A et al., 1998] 

Fallopian tube 1,2 N/D [Casañ EM et al., 2000] 

Carcinoma 1 1 

Granulosa-luteal cells 1 1 

Reproductive 

system Ovary 

Surface epithelium 1 1 

[Irmer G et al., 1995;  Peng C et al., 

1994;  Botté M-C et al., 1998;  Kang 

SK et al., 2000;  Choi KC et al., 2001;  

Kang SK et al., 2001] 
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First trimester 1,2 1,2 Placenta 

Term 1,2 - 

[Khodr GS & Siler-Khodr T, 1978;  

Kelly AC et al., 1991;  Wolfahrt S et 

al., 1998;  Chou CS et al., 2004] 

Pre-implantation embryos 2 N/D [Casañ EM et al., 1999] 

Normal tissue 1 1 Prostate 

Cancer cells 1 N/D 

[Kakar SS & Jennes L, 1995;  

Limonta P et al., 1992;  White 

RB et al., 1998] 

Seminal plasma 2 N/D [Izumi S-I et al., 1985;  Sokol RZ et 

al., 1985] 

Seminiferous tubular 

cells 

2 N/D Testis 

Sertoli cells 1 N/D 

[Bhasin S et al., 1983;  Bahk JY et 

al., 1995;  Botté M-C et al., 1998] 

Endometrium and 

endometrial cancer 

cell lines 

1,2 1 

Isolated epithelial 

cells 

1,2 2 

Isolated stromal cells 1,2 2 

Leiomyomata 1,2 - 

Uterus 

Myometrium 1,2 - 

[Irmer G et al., 1995;  Chegini N et 

al., 1996;  Raga F et al., 1998;  

Cheon KW et al., 2001] 

Skeletal muscle 1 N/D [Kakar SS & Jennes L, 1995] 

Spinal cord 1,2 N/D [Dolan S et al., 2003] 

Sympathetic ganglion 2 N/D [Jan YN et al., 1980] 

Key: 

1 Expression indicated on mRNA level. 

2 Expression indicated on protein level. 

-  Investigated but found to not be present. 

N/D Not determined to the author’s knowledge. 

 

The secreted, mature hormones exist as decapeptides (the length of GnRH has been 

conserved) but the precursor or preprohormones are much longer in length, 

consisting of a signal peptide (21 to 23 amino acids) followed by the mature peptide, 

a cleavage site (Gly-Lys-Arg or G-K-R) and a GnRH-associated peptide (GAP, 40 to 

60 amino acids) [Sherwood NM et al., 1993] (figure 1).  The G-K-R sequence serves 

to signal enzymatic cleavage of the decapeptide from the preprohormone [Cheng CK 

& Leung PC, 2005].  GAP, on the other hand, is possibly involved in the correct 

processing and packaging of GnRH [Sherwood NM et al., 1993].  The coding region 

of the human GnRH-1 cDNA contains an open reading frame of 276 bp encoding a 

preprohormone of 92 amino acids [Cheng CK & Leung PC, 2005] (figure 1).  The 

reading frame is followed by a 160 bp 3’ untranslated sequence (UTR), which 

contains an AATAAA sequence for polyadenylation shortly upstream of a 

polyadenylated tail [Cheng CK & Leung PC, 2005] (figure 1).  The human GnRH-1 

signal peptide consists of 23 amino acids and is separated by the GnRH decapeptide 
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by two serine (S-S) residues, whereas GAP consists of 56 amino acids [Cheng CK & 

Leung PC, 2005] (figure 1).  The predicted GnRH-2 preprohormone is organised 

identically to the GnRH-1 precursor [Cheng CK & Leung PC, 2005] (figure 1).  GAP is 

however 50% longer in GnRH-2 than in GnRH-1 (84 vs. 56 amino acids) [White RB 

et al., 1998] (figure 1). 
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Key: 
1, 2, 3, 4 Exon no    5’ & 3’ UTRs 
     ↓ Translation start site   Signal peptide 
    ↓↓ Translation stop signal  Mature decapeptide hormone 

              S-S motif    G-K-R cleavage site 

    PA      Polyadenylation motif   P-G-R cleavage site 

    GnRH-associated peptide (GAP) 

 
 
 
 

Human GnRH-1 mRNA 

        1                   2                      3                 4
↓

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The GnRH genes are organised into four exons separated by three introns.  The 

human GnRH-1 gene is present as a single gene copy on chromosome 8p11.2-p21 

[Cheng CK & Leung PC, 2005].  Exon 1 contains 5’ UTR sequence.  Exon 2 contains 

the rest of the 5’ UTR as well as the signal peptide, GnRH, the G-K-R processing 

signal and the first 11 amino acids of GAP.  Exon 3 encodes the next 32 GAP amino 

acids, while exon 4 encodes the remaining amino acids, the translation stop and 

Human GnRH-2 mRNA 

1 2 3 4
↓ ↓↓

PA 

Preprohormone 

   1-23    24-33    34-36     37-47                      48-79                        80-120 

   (21) (2)  (10)      (3)                                         (84) 

Fig 1.  Schematic representation of human GnRH-1 and GnRH-2:  mRNAs and 

preprohormones.  Amino acid numbers are indicated above, whereas the number 

of amino acids of each segment of the preprohormones is indicated underneath 

the preprohormones.  Data taken from Cheng CK & Leung PC [2005];  Seeburg 

PH & Adelman JP [1984] and White RB et al. [1998]. 

↓↓
PA 

Preprohormone 

   1-23     24-33   34-36     37-47                     48-79                  80-92 

   (21) (2)  (10)     (3)                                     (56) 
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polyA+ signals and the entire 3’ UTR [Seeburg PH & Adelman JP, 1984] (figure 1).  

The human GnRH-2 gene has been mapped to chromosome 20p13 and is 

remarkably short (2.1 kilobases, kb) compared with GnRH-1 (5.1 kb) primarily 

because the second and third introns are much larger in GnRH-1.  The lengths of the 

various exons differ quite substantially between GnRH-1 and GnRH-2 (figure 1).  In 

general, the sequence of exon 2 is the most conserved between the various GnRHs, 

whereas the other exons show high variability.  As a consequence, the signal 

peptides and the GnRHs are well conserved, but the GAPs show less homology 

among species [King JA & Millar RP, 1992;  King JA & Millar RP, 1997]. 

 

GnRH-1 (or hypothalamic GnRH) is classically the regulator of gonadotropin 

hormone expression in the pituitary.  Hypothalamic GnRH is released in pulses from 

neuronal nerve endings into the hypophysial portal system every 30 to 120 min from 

where it binds to its receptor on pituitary gonadotropes [Millar RP, 2003].  In addition 

to its gonadotropin-regulating role, GnRH-1 performs other functions as well by 

binding to the GnRHR-I (see table 2).  In contrast, indications are that the primary 

role of GnRH-2 is not to stimulate gonadotropin release but rather to act as a 

neurotransmitter to, for example, coordinate reproductive behaviour with an 

organism’s energetic condition [Temple JL et al., 2003;  Kauffman AS & Rissman EF, 

2004].  However, recently, GnRH-2 has also been shown to be capable of stimulating 

LH and FSH release both in vivo and in cultured pituitary cells, via activation of the 

GnRHR-I [Cheng CK & Leung PC, 2005].  Some suggestions are that GnRH-2 

preferentially regulates FSH synthesis and release, but this is controversial 

[Padmanabhan V & McNeilly AS, 2001;  Millar RP, 2003].  In addition, GnRH-2 

mimics some of the other known actions of GnRH-1, such as its antiproliferative 

effects on human endometrial and ovarian cancer cells [Gründker C et al., 2002] and 

its regulatory effect on the secretion of human chorionic gonadotropin (hCG) by 

human placenta [Siler-Khodr TM & Grayson M, 2001].  It is further possible that 

GnRH-2 plays a role in modulating pituitary responsiveness to GnRH-1 by competing 

for binding to GnRHR-I [Densmore VS & Urbanski HF, 2003].  This idea comes from 

the fact that the GnRHR-I becomes desensitised when exposed to continuous, rather 

than pulsatile, GnRH-1 [Belchetz PE et al., 1978] and that GnRH-2 has a 

substantially longer circulating half-life than GnRH-1 [Licht P et al., 1994].  In other 

words, if GnRH-2 remains bound to the GnRHR-I for a longer period, it is possible 

that GnRH-2 treatment would result in a more profound desensitisation of the 

GnRHR-I [Densmore VS & Urbanski HF, 2003]. 
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The GnRHR-I was first identified exclusively in pituitary gonadotropes.  However, 

since the isolation of the GnRHR-I cDNA, the expression of GnRHR-I mRNA has 

also been detected in several extrapituitary tissues (table 2).  Whereas in pituitary 

cells the GnRHR-I, by binding of GnRH-1 or GnRH-2, seems to be specific for the 

regulation of LH and FSH synthesis and secretion, it functions as an autocrine and/or 

paracrine factor in extrapituitary compartments where it regulates steroidogenesis, 

cell proliferation, apoptosis and embryo implantation as well as a number of other 

functions (table 2).  Thus, the extrapituitary actions of GnRH-1, GnRH-2 and their 

analogs might be mediated by local receptors or by desensitisation of pituitary 

receptors followed by decreased serum gonadotropin levels and gonadal steroids, or 

by both mechanisms [Naor Z, 1997;  Cheng CK & Leung PC, 2005]. 

 

The first primary structure of a mammalian GnRHR-I was determined by sequencing 

of a functional receptor cDNA isolated from an immortalised mouse pituitary 

gonadotrope cell-line (alphaT3-1 or αT3-1) during the early 1990s [Tsutsumi M et al., 

1992;  Reinhart J et al., 1992].  The cloned cDNA encodes a 327 amino acid receptor 

protein that consists of seven hydrophobic stretches that are predicted to form 

transmembrane alpha (α) helices, separated by alternating intracellular- (ICL) and 

extracellular (ECL) loops, making it a member of the largest group of cell surface 

receptors, known as the serpentine or seven-transmembrane family of receptors.  

These receptors transmit their signals mainly through GTP-binding proteins (G 

proteins) and therefore are known as G protein-coupled receptors (GPCRs).  Most of 

the primary sequence homology among GPCRs and thus among GnRHRs is 

contained within the transmembrane (TM) domains [Strader CD et al., 1994;  Kraus S 

et al., 2001]. 
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Table 2:  Tissue distribution of the mammalian GnRHR-I as well as its tissue-specific 

function. 

 
Mammalian tissue/cell type GnRHR-Ia Some functions Reference 

Brain 1 Regulates food intake in 

females. 

Regulates reproductive 

behaviour. 

[Krsmanovic LZ et al., 

1993;  Temple JL et al., 

2003;  Kauffman AS & 

Rissman EF, 2004] 

Cancer tissue and tissue with 

fibrocystic disease 

1,2 

Cancer cell-lines 1 

Breast  

Normal tissue 1,2 

Inhibits tumour cell growth. [Miller WR et al., 1985;  

Eidne KA et al., 1987;  

Kottler ML et al., 1997;  

Mangia A et al., 2002] 

Digestive tract and submaxillary glands 1,2 Secretion of epidermal 

growth factor (EGF). 

[Yao B et al., 2003] 

Pre-implantation embryo 1 Improves blastocyst 

formation and quality of in 

vitro synthesised embryos. 

[Nam DH et al., 2005] 

Gastric smooth muscle cells 1,2 Inhibits cell proliferation and 

DNA synthesis. 

[Chen L et al., 2004] 

Heart 1  [Kakar SS & Jennes L, 

1995;  Chen HF et al., 

1999] 

Peripheral blood 

mononuclear cells 

1 Immune cells 

Peripheral T-lymphocytes 2 

Cell adhesion. 

Chemotaxis. 

Increases cell proliferation. 

[Azad N et al., 1993;  

Kakar SS & Jennes L, 

1995;  Azad N et al., 

1997;  Chen HF et al., 

1999;  Chen A et al., 

2002a] 

Kidney 1  [Kakar SS & Jennes L, 

1995;  Chen HF et al., 

1999] 

Liver (hepatocarcinoma cell-line) 1 Inhibits cell proliferation. [Kakar SS & Jennes L, 

1995;  Pati D & Habibi 

H, 1995;  Cheng HYKW 

et al., 1998;  Yin H et al., 

1998;  Chen HF et al., 

1999] 

Melanoma cells 1,2 Promotes proliferation. [Moretti RM et al., 2002] 

Olfactory epithelium 1,2 Triggers axon growth and 

actin cytoskeleton 

remodelling. 

Down-regulates nestin 

expression. 

[Romanelli RG et al., 

2004] 
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α-subunit/null-

cells 

2 

Gonadotropes 1,2 

Adenoma 

tissue 

Somatotropes 2 

 

α-subunit/null-

cells 

2 

Gonadotropes 1,2 

Somatotropes 2 

Pituitary 

Normal 

tissue 

Thyrotropes 2 

LH and FSH synthesis and 

release. 

[Kakar SS et al., 1992;  

Sanno N et al., 1997;  

La Rosa S et al., 2000;  

Densmore VS & 

Urbanski HF, 2003] 

αT3-1 1  Cell-lines 

LβT2 1 

LH (αT3-1 & LβT2) and FSH 

(LβT2) synthesis and release. 

Growth suppression. 

[Reinhart J et al., 1992;  

Tsutsumi M et al., 1992;  

Alarid ET et al., 1996;  

Turgeon JL et al., 1996;  

Miles LEC et al., 2004] 

Decidua 1 Regulates urokinase-type 

plasminogen activator and its 

endogenous inhibitor during 

pregnancy. 

[Chou C-S et al., 2003;  

Huang HY et al., 2003] 

Cancer cell-

lines 

1 

Cancer tissue 1 

Epithelial 

carcinoma 

1 

Granulosa-

luteal cells 

1,2 

Ovary 

Normal 

epithelium 

1 

Inhibits progesterone release. 

Steroidogenesis. 

Apoptosis. 

Follicular maturation, 

ovulation and atresia. 

Regulates cell growth. 

[Ny T et al., 1987;  

Leung PCK & Steele, 

1992;  Bussenot I et al., 

1993;  Emons G & 

Scally AV, 1994;  Irmer 

G et al., 1995;  Peng C 

et al., 1994;  Kakar SS 

et al., 1995;  Whitelaw 

PF et al., 1995;  Yin H et 

al., 1998;  Kang SK et 

al., 2000;  Zhao S et al., 

2000;  Choi KC et al., 

2001;  Cheng CK et al., 

2002;  Siler-Khodr TM et 

al., 2003] 

Placenta 

 

1 

 

Human chorionic 

gonadotropin (hCG) 

secretion. 

[Lin LS et al., 1995] 

Cancer tissue 1 

Cancer cell-

lines 

1,2 

Intraprostatic 

lymphocytles 

2 

Repro-

ductive 

system 

Prostate 

Normal tissue 1 

Stimulates/inhibits cell 

growth. 

[Limonta P et al., 1992;  

Kakar SS et al., 1995;  

Bahk JY et al.,  1998;  

Limonta P et al., 1999;  

Tieva A et al., 2001;  

Enomoto M et al., 

2004b] 
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Sperm 2 (N/C) Spermatogenesis & sperm 

maturation. 

Sperm-egg binding during 

fertilisation. 

(refer to Chapter 3). 

[Morales P et al., 1994;  

Kangasniemi M et al., 

1996;  Morales P & 

Llanos M, 1996;  

Glander H & Kratzsch J, 

1997;  Morales P, 1998;  

Lee CY et al., 2000] 

Testis 1 Inhibits testosterone 

production by inhibiting 17α-

hydroxylase and 17,20-

desmolase activities. 

[Clayton RN et al., 1980;  

Hsueh AJW et al., 1983] 

Endometrial 

carcinoma 

1,2 

Leiomyomal 

cells 

1,2 

Myometrial 

cells 

1,2 

Normal 

endometrial 

tissue 

1 

Stromal cells 1 

Uterus 

Cervical 

cancer cell-

line 

- 

Inhibits endometrial tumour 

cell growth. 

[Imai A et al., 1994;  

Chatzaki E et al., 1996;  

Chegini N et al., 1996;  

Kobayashi Y et al., 

1997] 

 

Retina 1,2  [Wirsig-Wiechmann CR 

& Wiechmann AF, 2002] 

Skeletal muscle 1  Kakar SS & Jennes L, 

1995;  Chen HF et al., 

1999] 

Spinal cord 1 Regulates currents through 

K+ and Ca2+ channels. 

[Jan YN et al., 1980;  

Dolan S et al., 2003] 

Key: 

a Most of this data has been obtained from [Hapgood JP et al., 2005] (see table 1 of Appendix 6). 

1 Expression indicated on mRNA level. 

2 Expression indicated on protein level by immunodetection, not binding studies. 

-  Expression investigated and found not to occur. 

N/C Expression indicated but results are not convincing. 

 

GPCRs are integral membrane proteins involved in the transmission of a wide variety 

of signals from the extracellular environment to the intracellular milieu.  The G 

proteins that are coupled to GnRHRs are heterotrimeric proteins composed of an α 

subunit (Gα) that binds guanine nucleotides (GTP or GDP), and a dimer that consists 

of a β and γ subunit (Gβγ).  Upon stimulation, Gα dissociates from the Gβγ dimer 

which results in the active GTP-bound form of Gα that influences various effector 

molecules.  The Gβγ dimer remains attached to the plasma membrane and can by 

itself initiate several signalling events.  G proteins can be broadly classified according 
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to the subtype of their α subunit into the four following groups:  Gs, Gi, Gq/11 and G12/13 

[Kraus S et al., 2001].  Gs mainly exerts its downstream effects via stimulation of 

adenylyl cyclase, which induces the production of high levels of the second 

messenger adenosine 3’,5’-cyclic monophosphate (cAMP) and activation of PKA 

[Han XB & Conn PM, 1999;  Kraus S et al., 2001].  Unlike Gs, the Gi protein has an 

inhibitory effect on adenylyl cyclase [Kraus S et al., 2001].  Gq/11 principally exerts its 

action by activating membrane-associated phospholipase C (PLC), while G12/13 

primarily operates by stimulation of protein tyrosine kinases [Kraus S et al., 2001].  

Thus, binding of GnRH (-1 and/or -2) to the GnRHR-I activates a signal transduction 

cascade that eventually directs the synthesis and release of LH and FSH (see figure 

2).  A single receptor can activate several different pathways in a given cell.  

Classically, in αT3-1 cells, binding of GnRH-1 to the GnRHR-I leads to the 

stimulation of Gq and/or G11, activating PLC and leading to enhanced 

phosphoinositide turnover (figure 2).  Enhanced phosphoinositide turnover stimulates 

the production of the second messengers inositol-1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG) from phosphatidylinositol-4,5-bisphospate (PIP2) [Naor Z, 1997] 

(figure 2).  For this reason, GnRH-induced IP production has been used to assess 

signal transduction in response to GnRH.  IP3 in turn mobilises Ca2+ from intracellular 

stores, which, combined with DAG and phospholipid, activates various protein kinase 

C (PKC) subspecies. [Naor Z, 1997] (figure 2).  Mobilisation of intracellular Ca2+ is 

followed by an influx of extracellular Ca2+ through voltage-gated calcium channels in 

the plasma membrane.  Whereas IP3-released Ca2+ seems to be critical for 

gonadotropin secretion, Ca2+ influx through the plasma membrane is required mainly 

for the replenishment of internal stores [Kraus S et al., 2001].  Following a short lag 

(~1 to 2 min), phospholipase D (PLD) is also activated.  It has been suggested that 

DAG is generated in sequential phases, initially by PLC and later by PLD, permitting 

selective and sequential activation of various PKC subspecies (figure 2).  Ca2+-

dependent PKCs may be activated early, whereas the Ca2+-independent PKCs might 

be activated at a later stage [Naor Z, 1997]. 

 

The PKC gene family plays a pivotal role in cell signalling by means of its protein 

serine/threonine kinase activity.  GPCRs are thought to act via PKC-dependent and 

independent pathways to activate the mitogen-activated protein kinase (MAPK) 

cascades.  MAPK is translocated to the nucleus where it can interact and activate 

transcription factors.  Thus, MAPK provide an important link for the transmission of 



 14

signals from the cell surface to the nucleus and play a role in the regulation of 

gonadotropin gene transcription [Naor Z, 1997;  Kraus S et al., 2001]. 
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GnRHR  β γ    α 
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Fig 2.  Classical model for GnRH-1 signal transduction via the mammalian GnRHR-I.  

Data taken from Naor Z [1997].  PLC, phospholipase C;  GDP, guanosine 

diphosphate;  GTP, guanosine triphosphate;  PIP2, phosphatidylinositol-4,5-

bisphospate;  IP3, inositol-1,4,5-triphosphate;  DAG, diacylglycerol;  PLD, 

phospholipase D;  PKC, protein kinase C. 

 

In other cell types, the GnRHR-I may couple to different G proteins, which results in 

different signalling (see table 3).  It is evident from table 3 that cell context is 

extremely important for coupling of the GnRHR to different G proteins and highlights 

the danger of extrapolating results from one cell type to another [Liu F et al., 2002b].  

Each cell type has a different capacity to amplify a specific signalling cascade, 

probably due to a differential concentration of cellular components required for 

signalling pathways [Oh DY et al., 2003]. 

 Ca2+ PKC 

2+ 2+Ca CaCytosol 
2+Ca

LH & FSH synthesis/release 
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Table 3:  G protein coupling by GnRHR-I in different mammalian cell types. 

 
Cell-type G protein involved 

in GnRHR signalling 
G protein shown 
not to be involved in 
GnRHR signalling 

Reference 

αT3-1 mouse pituitary 
gonadotrope cells 

Gq/11  [Naor Z, 1997] 

LβT2 mouse pituitary 
gonadotrope cells 

Gq/11 & Gs Gi/0 [Liu F et al., 2002b] 

COS-7 cells transfected with 
human GnRHR-I 

Gi (primarily) & Gq/11  [Grosse R et al., 2000;  
Kraus S et al., 2001] 

GGH3 cells (GH3 rat pituitary 
lactotrope cells stably 
transfected with rat GnRHR-I) 

Gq/11, Gs & Gi (only 
when GnRHR is 
overexpressed) 

 [Stanislaus D et al., 1997] 

Human reproductive tract 
tumours 

Gi/0  [Imai A et al., 1996] 

LNCaP prostate cancer cells Gi/0  [Kraus S et al., 2001] 
Rat gonadotropes Gq/11, Gs & Gi  [Stanislaus D et al., 1998] 
 

In contrast to the genes of many other GPCRs, which are intronless, the structural 

organisation of all mammalian GnRHR genes that have been cloned to date is three 

exons separated by two introns.  The human GnRHR-I gene exists as a single copy 

on chromosome 4q21.2 and it spans more than 20 kilobase pairs (kb) [Cheng CK & 

Leung PC, 2005] (see figure 3).  Exon 1 encodes the 5’ UTR and the first 522 

nucleotides (nt) of the open reading frame, which encode TMs 1 to 3 and a portion of 

the 4th TM domain (figure 3).  Exon 2 encodes the next 220-nt of the reading frame 

(nt +523 to +742), which encompass the remainder of TM4, the 5th TM domain, as 

well as part of ICL3 (figure 3).  Exon 3 contains the rest of the coding sequence (nt 

+743 to +987) and the 3’ UTR [Kakar SS, 1997;  Cheng CK & Leung PC, 2005] 

(figure 3). 
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Fig 3.  Structural organisation of the human GnRHR-I gene.  Exons are numbered 

with Roman numbers and are represented by blocks, with portions of exons 

containing coding sequences shown as white areas, and untranslated regions 

shown as shaded areas.  Sizes of coding and non-coding portions of each 

exon are indicated.  Introns are represented by solid lines, with sizes as 

indicated between brackets.  All sizes are indicated in kilobase pairs (kb).  

The size of the 5’ UTR is given relative to the most-3’ transcription start site 

as identified by Kakar SS et al. [1997] for human pituitary tissue, and the size 

of the 3’ UTR is as established by Fan NC et al. [1995] for human brain 

tissue.  The correlation of coding regions with protein structure is indicated, 

with transmembrane (TM) domains shown as black bars.  The figure was 

adapted from Hapgood JP et al. [2005].  Note that the figure is not drawn to 

scale. 

 

The amino (N)-terminal domain of GPCRs is extracellular and often contributes to 

ligand recognition and binding, while the intracellular carboxyl (C)-terminal domain 

contributes to effector binding and downstream signalling events.  Sustained 

stimulation of GPCRs typically causes receptor desensitisation and internalisation, 

which is mediated by phosphorylation, often within the C-terminal tail of the receptor 

[McArdle CA et al., 2002].  Desensitisation is defined as a waning of response in the 

presence of a constant, or repeated, stimulus [McArdle CA et al., 2002].  The 

mammalian GnRHR-Is are unique in that they lack C-terminal tails and apparently do 

not undergo agonist-induced receptor desensitisation and internalise slowly [McArdle 

CA et al., 2002].  Although mammalian GnRHR-Is do not desensitise, sustained 

activation of GnRHR-Is causes desensitisation of gonadotropin secretion, and can 
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result in down-regulation of IP3 receptors and desensitisation of Ca2+ mobilisation in 

pituitary cells [McArdle CA et al., 2002].  Non-mammalian GnRHRs do however 

possess intracellular C-terminal tails [McArdle CA et al., 2002] and can be 

internalised in small vesicles and recycled [Naor Z, 1997]. 

 

One of the reasons for the great interest in the GnRH/GnRHR system is its 

application in the medical field.  Synthetic GnRH and GnRH analogues are being 

used clinically in applications such as the advancement of puberty in the instance of 

delayed puberty;  as a contraceptive by inhibiting ovulation and spermatogenesis;  as 

a treatment of hormone-dependent diseases such as prostatic and breast cancer;  

and as a treatment of infertility by inducing ovulation [Millar RP et al., 1993;  Millar RP 

et al., 2004].  Interestingly, at the time when this study was begun, new sequence 

information became available about a second form of the GnRHR (designated “type 

II” GnRHR or GnRHR-II) in a number of non-mammalian vertebrates [Troskie B et al., 

1997;  Troskie B et al., 1998;  Illing N et al., 1999] (refer to Chapter 2 for a more 

detailed description of the discovery of the GnRHR-IIs).  The GnRHR-IIs were shown 

to also bind GnRH-1 but with a lower affinity compared to GnRH-2 [Millar R et al., 

2001].  The finding of the existence of more than one GnRHR subtype added to the 

complexity of the GnRH/GnRHR system.  Not only does GnRH exist in multiple forms 

but it is also able to bind to and signal via distinct GnRH-specific receptors.  The 

existence of a mammalian GnRHR-II was not yet established at the start of this 

study.  Should such a functional GnRHR-II (which possesses a unique tissue 

distribution and a different ligand selectivity as compared to the GnRHR-I) exist in 

humans, this would be very significant in the medical field. 

 

Taken together, when this study was started, there were a number of outstanding 

questions in the GnRH/GnRHR field.  Firstly, the ability of GnRH-1 and GnRH-2 to 

differentially regulate LH and/or FSH gene transcription by binding to the mammalian 

GnRHR-I was not yet established satisfactorily.  Another issue on the forefront was 

the question of whether mammals, including humans, express a GnRHR-II.  If 

mammals indeed express a functional GnRHR-II, its role as a putative regulator of 

the gonadotropin hormones would need to be determined.  Finally, while data is 

accumulating for the extrapituitary actions of GnRH-1 and/or GnRH-2 and that some 

of these actions are mediated by locally produced GnRH via binding to a local 

receptor, it has not yet been determined whether a local GnRH/GnRHR system is 

present in the male reproductive tract where it may affect reproduction directly.  This 

study was designed to investigate the above-mentioned outstanding questions.
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General Aims 
 

The general aims of the study were to determine whether 

 

• humans and non-human primates express a functional GnRHR-II cDNA 

(Chapter 2); 

• an autocrine GnRH/GnRHR system is contained within human and/or monkey 

ejaculate (Chapter 3); 

• the LHβ and FSHβ genes are differentially regulated by GnRH-1 and GnRH-2 

via the GnRHR-I and the GnRHR-II (Chapter 4). 

 

More specific aims are outlined within the relevant chapters. 
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CHAPTER 2 
 
 

CLONING AND SEQUENCING OF A MAMMALIAN TYPE II 
GONADOTROPIN-RELEASING HORMONE RECEPTOR 

(GnRHR-II) cDNA1

 
 
 
1  Some of the results shown in this chapter have been published [Van Biljon W, 

Wykes S, Scherer S, Krawetz SA, Hapgood J.  Type II gonadotropin-releasing 

hormone receptor transcripts in human sperm.  Biology of Reproduction 2002;  

67:  1741-1749].  A copy of the publication can be found at the back of this thesis 

(Appendix 5). 
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Background 
 

The first GnRHR cloned was the mouse GnRHR-I, from RNA isolated from αT3-1 

pituitary gonadotrope cells [Tsutsumi M et al., 1992;  Reinhart J et al., 1992].  A 

reverse transcriptase polymerase chain reaction (RT-PCR)-based cloning strategy 

was followed, whereby cDNA prepared from αT3-1 cells was used as template, 

together with degenerate primers designed to bind to conserved regions of GPCRs 

[Tsutsumi M et al., 1992;  Reinhart J et al., 1992].  Functionality of the partial cDNAs 

obtained was tested in a hybrid-arrest assay in Xenopus laevis oocytes whereafter 

an αT3-1 cDNA library was screened to obtain the full-length mouse GnRHR-I cDNA 

[Tsutsumi M et al., 1992;  Reinhart J et al., 1992]. 

 

Subsequently, the cloning of GnRHRs from several mammalian and non-mammalian 

vertebrates has been described.  The cloned mammalian GnRHR-Is include that of 

rat [Eidne KA et al., 1992], sheep [Brooks J et al., 1993], human [Chi L et al., 1993], 

bovine [Kakar SS et al., 1993] and pig [Weesner GD et al., 1994].  Generally, the 

cloning strategy was to obtain a partial cDNA sequence by PCR amplification 

performed with degenerate primers designed from conserved regions of known 

GnRHRs.  The 5’ and 3’ ends were cloned by rapid amplification of cDNA ends 

(RACE) whereafter gene-specific primers were designed to amplify the full-length 

cDNAs. 

 

The presence of more than one form of GnRH within a single vertebrate species 

indicated the probable existence of multiple GnRHR subtypes.  With the use of a 

series of pairs of degenerate oligonucleotides to the mammalian GnRHR-I, short 

sequences encoding ECL3, which suggested the presence of at least two distinct 

GnRHR genes, were cloned from genomic DNA of species of amphibian, fish, reptile 

and bird [Troskie B et al., 1998].  One of these ECL3 sequences was most similar to 

the mammalian pituitary GnRHR-I [Troskie B et al., 1998].  The other was different 

and was designated “GnRHR-II” [Troskie B et al., 1998]. 

 

The full-length cDNAs for two goldfish GnRHR-IIs, called GfA and GfB, were cloned 

from pituitary and brain respectively [Illing N et al., 1999;  Lethimonier C et al., 2004].  

It was found that GfA has a greater preference for GnRH-2 and a lesser preference 

for the other natural GnRHs [Illing N et al., 1999].  Furthermore, in amphibian 

sympathetic ganglia the presence of a GnRH-2-selective receptor was indicated by 
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receptor binding studies [Troskie B et al., 1997].  The existence of a receptor 

selective for GnRH-2 in these non-mammalian vertebrates, together with the 

presence of GnRH-2 in all vertebrates from jawed fish to humans [Millar RP, 2003] 

suggested the existence of a GnRH-2-selective GnRHR in mammals.  At the onset of 

the present study, no mammalian GnRHR-II was yet identified. 

 

Millar R et al. [1999] used sequence information of ECL3 of a putative reptile 

GnRHR-II to search for a human GnRHR-II homolog in a human expressed 

sequence tag (EST) database.  The use of sequence information of ECL3 to search 

for novel GnRHR-IIs, as described in many instances above, was based on the 

indication that ECL3 plays a role in determining differential ligand selectivity [Li JH et 

al., 2005] and hence that ECL3 is degenerate between different GnRHRs.  The gene 

sequence of a putative human GnRHR-II was not available at that time because the 

human genome project was in progress but not yet completed.  Several GnRHR-like 

ESTs were obtained from the EST database.  A consensus sequence was derived 

that contained nucleotide sequence corresponding to exon 2 (ECL2 to ICL3) and 

exon 3 (ICL3 to the end of TM7) of the human GnRHR-I [Millar R et al., 1999].  The 

overall amino acid identity between this region of the human GnRHR-I and the EST-

derived putative human GnRHR-II was 42%, which was much higher than the 

percentage homology to any other GPCR [Millar R et al., 1999].  The homology of the 

human GnRHR-II homolog to ECL3 of the reptile GnRHR-II was 80% [Millar R et al., 

1999].  Surprisingly, all EST transcripts detected matched the GnRHR-I in a reverse, 

or antisense, orientation (figure 4).  PCR performed on cDNA from a wide range of 

human tissues (refer to table 4 within the Discussion of this chapter) revealed that 

intronic sequence equivalent to intron 2 of the GnRHR-I was retained.  The failure to 

splice out putative intron sequences in transcripts which spanned exon-intron 

boundaries is expected in antisense transcripts, as candidate donor and acceptor 

sites are only present in the gene when transcribed in the orientation encoding the 

GnRHR homolog (figure 4).  No transcripts extended 5’ to the sequence 

corresponding to exon 2 of the GnRHR-I as the antisense transcripts terminated in 

polyA due to the presence of a polyadenylation signal sequence in the putative intron 

1 when transcribed in the antisense orientation (figure 4). 
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Fig 4.  Comparison of the human GnRHR-II antisense transcript and the GnRHR-I 

gene (adapted from Millar R et al. [1999]).  Positions of intracellular (ICL) 

and extracellular (ECL) loops, as well as transmembrane (TM) domains 

(dark blocks) are indicated.  The polyA tail (AAAA) at the position of putative 

intron 1 is indicated for the GnRHR-II antisense transcript. 

 

Thus, the only information available for a putative human GnRHR-II at the start of this 

project was partial sequence information of exons 2 and 3, obtained from an EST 

database, as well as the fact that an antisense transcript is abundantly expressed in 

a wide variety of tissues.  In addition, prior results obtained in our laboratory using an 

exon 2-3-specific primer pair in RT-PCR revealed the presence of an intronless 

transcript, together with the intron 2-containing antisense transcript, in human testis 

RNA [Hutchinson E, 1997].  The intron-containing transcript was in abundance over 

the intronless transcript, which seemed to be a minor product of the RT-PCR 

[Hutchinson E, 1997].  Two overlapping intronless exon 2-3 amplicons were cloned 

from human testis which, together, formed an amplicon of 628 bp in length, stretching 

from the coding region for ECL2 in exon 2 (primer S10) to the 3’ UTR in exon 3 

(primer AS11) [Hutchinson E, 1997] (refer to figure 6, as well as Appendix 1 and 

Appendix 2 for a description of primer sequences and positions in the GnRHR-II 

gene).  5’ RACE attempts on human testis RNA, with the aim to obtain novel human 

GnRHR-II sequence 5’ to exon 2, were unsuccessful [Hutchinson E, 1997].  

Subsequently, some human GnRHR-II exon 1 sequence information, obtained from 
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an EST database, as well as the sequences of three sense and three antisense 

primers within this region, was obtained from Dr A Katz (Department of Medical 

Biochemistry, University of Cape Town, Cape Town, South Africa).  The six exon 1-

specific primers were S4, S5, S6, AS3, AS4 and AS5.  Of these, S4 was the most 5’ 

primer and was designed to the coding region of the extracellular N-terminus.  Primer 

AS5, which was the most 3’ exon 1-specific primer, was designed to a region 

encoding part of TM4 (refer to figure 6 and Appendices 1 to 3).  In addition, human 

P1 genomic clones containing GnRHR-II gene sequence were obtained from Dr A 

Katz.  These had been purchased from Genome Systems, St Louis, USA. 

 

Based on the results in the literature as well as results obtained in our laboratory, it 

was apparent that expression levels of the intronless, sense transcript for a putative 

human GnRHR-II was very low compared to that of the antisense transcript.  This 

was strengthened by results obtained in our laboratory of low-level expression 

(compared to the intron-containing transcript) of the intronless transcript in human 

testis.  Since the antisense transcript would not contain exon 1 due to the presence 

of the polyadenylation signal within putative intron 1 (figure 4), the focus of the 

present study was to find a human tissue- or cell type that expresses exon 1-

containing GnRHR-II transcripts.  Therefore, human tissues and cells that were 

available were screened for the presence of exon 1-containing GnRHR-II transcripts 

using RT-PCR, in situ hybridisation and dot blotting.  Human ejaculate was included 

in the study based on the prior results obtained in human testis RNA.  The scope of 

the study was subsequently broadened to include tissues and cells from two other 

mammalian primate species, namely vervet monkey (also known as the African 

green monkey) and baboon, in an attempt to clone a mammalian GnRHR-II. 

 

A central question is what the significance of a GnRHR-II in humans would be.  One 

possibility is that the presence of a human GnRHR-II may explain why, in some 

instances, clinically used GnRH-1 agonists were found to act as antagonists in vivo 

[Morgan JE et al., 1986;  Rivier J et al., 1996].  Indications are that the GnRHR-IIs 

are selective for GnRH-2 [Troskie B et al., 1997;  Illing N et al., 1999] and thus have 

a different ligand selectivity compared to the GnRHR-I.  It is therefore possible that 

agonists for the human GnRHR-I could act as antagonists for a human GnRHR-II, if 

humans express a functional GnRHR-II.  Considering that GnRH-2 is highly 

conserved between species and widely distributed in mammalian tissues, it most 

likely has important functions [Millar RP, 2003].  The cloning of a human GnRHR-II 

would open up the opportunity to elucidate the GnRH-2-specific functions and to 
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develop GnRH-2 analogues for specific use as therapeutic agents.  A better 

understanding of the characteristics of such a putative receptor would open up doors 

to predict the outcome of GnRH agonist and antagonist treatments. 
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Aim 

 

The aim of this study was to clone a full-length cDNA, originating from the sense 

RNA transcript, for a GnRHR-II in humans.  In addition, an attempt was made to 

clone a functional GnRHR-II cDNA from a non-human primate species. 
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Experimental 
 
Animals and cells 

Human and vervet monkey ejaculate were freshly obtained from the Andrology 

Department, Groote Schuur hospital (Cape Town, South Africa) and from the MRC at 

Tygerberg (Bellville, South Africa) (courtesy of Dr J Zyer), respectively, kept at room 

temperature (rt) and used within a few hours for RNA isolation.  Each ejaculate 

sample was pooled from several male donors.  Adult human tissues were obtained 

from the Salt River Mortuary (Cape Town, South Africa) after approval from the 

Medical Ethics Committee at the University of Cape Town Medical School (Cape 

Town, South Africa).  The tissues were snap frozen in liquid nitrogen and stored at    

-80°C until later use.  Vervet monkey and baboon tissues were obtained from the 

MRC at Tygerberg and from the Department of Dental Science at the University of 

Stellenbosch Medical School (Bellville, South Africa) (courtesy of Prof N Louw), 

respectively.  Monkey and baboon tissues were extracted from animals immediately 

after mortalisation and were either homogenised on the spot in TRI-reagent (Sigma-

Aldrich, Saint Louis, Missouri) (~10 X the tissue volume) or in tissue guanidinium 

solution (5 M Guanidinium isothiocyanate, 0.05 M Tris-HCl pH 7.5, 0.01 M Na2EDTA 

pH 8.0, 5% v/v mercapto-ethanol) with the use of an Ultra-turrax or stored whole in 

RNAlater® (Ambion, Inc., Austin, USA) (~4 X the tissue volume), snap frozen in 

liquid nitrogen and transferred to a -80°C freezer for later use.  COS-1 cells were 

kept in culture at 37°C in Dulbecco’s modified Eagle’s medium (DMEM) containing 

1% v/v PenStrep and supplemented with 10% foetal bovine serum (FBS) (Highveld 

Biological, Kelvin, South Africa), under 5% CO2. 

 

RNA preparation and cDNA synthesis 

Total RNA was isolated from human and vervet monkey ejaculate by cesium chloride 

(CsCl)-guanidinium isothiocyanate ultracentrifugation after pelleting the ejaculate 

cells for 10 min at 2000 X g, as described by Ausubel FM et al. [1996a].  Total RNA 

from vervet monkey and baboon tissues was isolated by CsCl-guanidinium 

isothiocyanate ultracentrifugation after pelleting the homogenised tissue for 10 min at 

12000 X g using the protocol described by Ausubel FM et al. [1996a] or according to 

the TRI reagentTM protocol (Sigma-Aldrich).  Tissue samples that had been stored 

frozen in RNAlater® were thawed on ice, rinsed in diethyl pyrocarbonate (DEPC)-

treated water and homogenised in tissue guanidinium solution.  Total RNA from 

COS-1 cells was isolated according to the TRI reagentTM protocol, with the use of 1 
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mℓ TRI-reagent per confluent T75 flask (surface area 75 cm2).  Total RNA from other 

human tissues and cells was isolated with the use of TRI reagentTM.  All RNA 

samples, except the ultracentrifuged ultra pure preparations, underwent a DNaseI 

treatment, as described in Ausubel FM et al. [1996b] to minimise the possibility of 

genomic DNA contamination prior to cDNA preparation.  This was to ensure that RT-

PCR products are the result of priming of cDNA only and not contaminating genomic 

DNA.  The quality of the total RNA preparations was determined by gel 

electrophoresis on a 1% denaturing formaldehyde agarose gel according to the 

protocol described by Sambrook J et al. [1989a].  Three (3) to 5 μg of each total RNA 

sample was loaded.  Interestingly, it was found that the ejaculate total RNA 

preparations were intact only when using the CsCl-guanidinium isothiocyanate 

ultracentrifugation method of isolation but not when using TRI reagentTM (not shown).  

All RNA isolations from human and vervet monkey ejaculate used for cDNA 

synthesis were thus performed according to the CsCl-ultracentrifugation method 

described above. 

 

cDNAs used as templates for RT-PCR were prepared from 1 μg of denatured total 

RNA using 200 ng random hexamer primers (Promega, Madison, WI) and 200 U 

Superscript II reverse transcriptase (GibcoBRL/Invitrogen, California, USA) in a 20 μℓ 

reaction volume with incubation at 42°C for 60 min.  Double-stranded Marathon-

ready cDNA for 5’ RACE was prepared from human ejaculate total RNA with the use 

of the MarathonTM cDNA amplification kit (BD Biosciences Clontech, Palo Alto, CA).  

One (1) μg of total RNA was primed with hexanucleotide primers (5 mM, Promega) 

for first-strand cDNA synthesis using AMV reverse transcriptase and all other 

components of the MarathonTM cDNA amplification kit.  Adaptor-ligated double-

stranded cDNA was diluted 1:25 in Tricine-EDTA buffer, which was supplied with the 

Marathon kit.  Vervet monkey and baboon single-stranded cDNAs used for 5’ and 3’ 

RACE were synthesised from 1.5 to 3.5 μg of total RNA using the SMARTTM RACE 

cDNA amplification kit (BD Biosciences Clontech) according to the manufacturer’s 

instructions.  Powerscript reverse transcriptase (BD Biosciences Clontech) was 

utilised in a total volume of 10 μℓ for the cDNA synthesis reaction, at 42°C for 90 min.  

Single-stranded SMARTTM RACE-ready cDNA was diluted by adding 100 μℓ Tricine-

EDTA buffer (BD Biosciences Clontech). 
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RT-PCR and RACE 

RT-PCR reactions were performed using 10 μℓ cDNA, 5 U Taq DNA polymerase in 

Storage Buffer A (Promega), 20 pmoles of each primer, 0.2 mM of each dNTP, 1.7 

mM MgCl2 and 1 X PCR reaction buffer (10 mM Tris-HCl pH 9.0, 50 mM KCl, 0.1% 

Triton® X-100) in a 50 μℓ reaction volume.  Five per cent (5%) Dimethylsulfoxide 

(DMSO) was included in the RT-PCR reaction make-up for vervet monkey and 

baboon RNAs.  Primer sets were designed such that the PCR extended over more 

than one exon.  Refer to Appendices 1 to 3 for a list of the primers that were used in 

RT-PCR and Southern blotting as well as the primer sequences, relative positions 

with regards to the relevant genes and expected sizes of the RT-PCR products.  A 

schematic representation of the GnRHR-II cDNA, with the relative positions of the 

primers indicated, are shown in the Results section of this chapter (see figure 6).  

Seeing that no vervet monkey and baboon genomic DNA sequences for a GnRHR-II 

were available, human-specific primers were used in the vervet monkey and baboon 

RT-PCRs and in RACE. 

 

Cycle conditions for PCR were as follows:  93°C for 2.5 min, 35 to 40 cycles of 93°C 

for 1 min, annealing as indicated in Appendix 2 (ranging from 52°C to 60°C) for 1 min 

and extension at 72°C for 1 min, followed by a final 10 min extension time at 72°C.  

Annealing temperature was chosen to be approximately 5°C below the lowest 

melting temperature (Tm) of the primer combination used (refer to Appendix 2 for a 

list of annealing temperatures used in PCR).  A control PCR reaction, to test for 

efficiency of the RT-reaction, was routinely performed using primers designed to the 

mouse beta (β)-actin housekeeping gene.  The β-actin primer set was designed such 

to cross exon-intron boundaries. 

 

5’ and 3’ RACE were performed according to the protocols described in the 

MarathonTM (for human ejaculate) and SMARTTM (for all monkey and baboon 

templates) RACE cDNA amplification kits.  The MarathonTM RACE protocol utilises 

double-stranded cDNA whereas the SMARTTM RACE technology makes use of first-

strand (single-stranded) cDNA (see figure 5).  The switch from the MarathonTM to the 

SMARTTM RACE protocol was recommended by the manufacturer of the RACE kits 

when total RNA is used as starting material for RACE, as was the case in the present 

study.  This was an attempt to increase efficiency of the cDNA synthesis reactions, 

using the improved technology of the SMARTTM kit. 
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See Figure 5 in “Separate Figures” folder on CD 
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For the MarathonTM RACE PCR a 5 μℓ aliquot of RACE-ready human ejaculate cDNA 

and 10 picomoles of each primer were used per 50 μℓ reaction.  Primary 5’ RACE 

was performed with the adaptor-specific AP1 primer (BD Biosciences Clontech) in 

conjunction with exon 1-specific antisense oligo AS5.  Nested 5’ RACE was 

performed using 5 μℓ of the primary reaction, adaptor-specific AP2 primer (BD 

Biosciences Clontech) and antisense gene-specific primer AS3, in a final volume of 

50 μℓ.  The AdvantageTM cDNA polymerase mix (BD Biosciences Clontech) was used 

in the MarathonTM RACE reactions, together with Advantage PCR buffer (BD 

Biosciences Clontech).  The AdvantageTM cDNA polymerase mix contained KlenTaq-

1 DNA polymerase (containing an N-terminal deletion of Taq DNA polymerase) as 

the primary polymerase and a minor amount of a 3’>5’ proofreading polymerase, as 

well as TaqStartTM antibody to provide automatic hot start PCR.  Touchdown PCR 

was performed according to the manufacturer’s instructions using 36 cycles for the 

primary and 30 cycles for the secondary PCR reactions, respectively. 

 

For the SMARTTM 5’ RACE PCR a 2.5 μℓ aliquot of SMARTTM RACE-ready COS-1, 

vervet monkey or baboon cDNA, 1 X universal primer mix (UPM) (BD Biosciences 

Clontech) and 10 picomoles of a GnRHR-II-specific antisense oligo (COS-1, AS2;  

vervet monkey and baboon, AS8), were used in the primary reaction in a 50 μℓ 

reaction volume.  Nested 5’ RACE was performed using 5 μℓ of a 1:49 tricine-EDTA 

dilution of the primary reaction, 10 picomoles each of the nested universal primer 

(NUP) (BD Biosciences Clontech) and an antisense gene-specific oligo which is 

internally nested to the primary gene-specific oligo (COS-1, AS1;  vervet monkey and 

baboon, AS7), in a final volume of 50 μℓ.  3’ SMART RACE was performed on vervet 

monkey and baboon RNA using the same conditions as described for 5’ SMART 

RACE, except for the use of sense gene-specific primers S7 and S8 for the primary 

and secondary reactions, respectively.  DMSO (5%) was included in the reaction 

make-up of both the primary and the secondary SMART RACE reactions.  The 

AdvantageTM2 cDNA polymerase mix was used in the SMART RACE reactions, 

together with AdvantageTM2 PCR buffer (polymerase mix and PCR buffer both from 

BD Biosciences Clontech).  This polymerase mix contained Titanium Taq DNA 

polymerase, which provides higher yields than Taq and contains the TaqStartTM 

antibody for an integrated hot start, as well as a proofreading polymerase.  Cycling 

conditions for PCR were according to the manufacturer’s instructions, using 40 

cycles for both the primary and the secondary PCR reactions. 
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Southern blot analysis 

RT-PCR and RACE products were separated by electrophoresis in 1 X TAE 

[Sambrook J et al., 1989b] on an agarose gel containing ethidium bromide (EthBr) 

(0.5 μg/mℓ).  Specificity of the RT-PCR and RACE reactions for GnRHR-II was 

confirmed by Southern blot analysis.  After resolution of the RT-PCR products by 

electrophoresis, the gel was transferred to a UV-light box and photographed.  DNA 

was denatured by soaking the agarose gel with shaking in denaturing solution (1.5 M 

NaCl, 0.5 M NaOH) for 30 min at rt.  This was followed by a brief rinse in dH2O.  The 

denaturant was neutralised by washing twice for 15 min at rt in neutralising solution 

(1.5 M NaCl, 0.5 M Tris-HCl pH 7.2, 0.001 M EDTA pH 8.0), with dH2O washes in 

between and afterwards.  DNA was transferred onto a Hybond-N+ nylon membrane 

(Amersham Pharmacia Biotech, Buckinghamshire, UK) by means of capillary 

transfer.  The transfer was performed overnight in 20 X SSC pH 7.0 (3 M NaCl, 0.3 M 

Na3-citrate).  Complete transfer of the DNA was verified by staining the gel with EthBr 

(0.5 μg/mℓ).  The membrane was washed in 2 X SSC pH 7.0 (0.3 M NaCl, 0.03 M 

Na3-citrate) for 1 min at rt and air-dried.  Thereafter DNA was covalently linked to the 

nylon membrane by UV irradiation in a UV crosslinker (Amersham Pharmacia 

Biotech) at 70000 μJ/cm2 for 15 s.  A DNA oligonucleotide probe specific to a 

sequence between the amplification primers was labelled with fluorescein-11-dUTP 

(10 μℓ/100 pmoles oligonucleotide) using the Gene Images 3’-oligolabelling and 

detection system (Amersham Pharmacia Biotech) according to the manufacturer’s 

specifications.  Fluorescein-11-dUTP is supplied with the Gene Images 3’-

oligolabelling system.  Labelling was performed for 90 min at 37°C.  The membrane 

was pre-hybridised in hybridisation solution (5 X SSC, 0.02% w/v SDS, 0.1% w/v 

hybridisation buffer component supplied, 1/20 dilution liquid block supplied) at 0.25 

mℓ/cm2 of membrane for 30 min at 42°C.  A total of 10 ng/mℓ of labelled DNA oligo 

probe was added to the hybridisation solution.  Hybridisation was carried out 

overnight at 5 to 10°C below the Tm of the probe.  The membrane was washed twice 

in 5 X SSC, 0.1% w/v SDS for a total of 5 min at rt.  This was followed by two washes 

in 1 X SSC, 0.1% w/v SDS for 15 min at 60°C.  The membrane was rinsed in Buffer 1 

(0.15 M NaCl, 0.1 M Tris-HCl pH 7.5) for 1 min at rt.  Membrane blocking was 

performed in block solution (supplied with the Gene Images 3’-oligolabelling system) 

for 5 min at rt, followed by a 1 min wash in Buffer 1 at rt.  Anti-fluorescein antibody 

conjugate was prepared as instructed.  The membrane was incubated with the 

antibody for 30 min at rt and washed four times in Buffer 2 (0.4 M NaCl, 0.1 M Tris-

HCl pH 7.5) for 5 min at rt.  Signal generation was carried out by incubating the 
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membrane with a mixture of equal volumes of the ECL detection reagents 

(Amersham Pharmacia Biotech) to a total volume of 0.125 mℓ/cm2 of membrane for 1 

min at rt.  The membrane was exposed to hyperfilm (Amersham Pharmacia Biotech) 

for 1 to 60 min at rt. 

 

Cloning of the relevant cDNAs 

RT-PCR products of the correct size and which were found to be GnRHR-II-specific 

by Southern blotting were purified from the PCR components for cloning purposes by 

gel electrophoresis.  The RT-PCR products were separated on a 2% low melting 

point agarose (Promega) gel in 1 X TAE.  A slice containing the relevant band was 

excised from the gel with a sterile blade.  cDNA was extracted from the gel slice with 

the use of the GenElute gel purification system (Sigma-Aldrich) according to the 

manufacturer’s instructions.  Purified cDNA was eluted from the GenElute column in 

30 μℓ elution buffer (10 mM Tris-HCl pH 8.0).  Of this, 7 μℓ was visualised on 1% 

agarose together with λ DNA standards (Roche Molecular Biochemicals, 

Indianapolis, IN) to estimate the concentration of the purified DNA. 

 

The cDNA was subsequently ligated to the pMOS vector and used to transform 

MOSBlue cells with the use of the pMOSBlue blunt ended cloning kit (Amersham 

Pharmacia Biotech), according to the protocol described by the manufacturer.  The 

amount of cDNA used in the ligation reaction was calculated at a vector:insert molar 

ratio of 1:2.5.  Transformants were plated onto Luria Bertani (LB) agar plates 

containing ampicillin (Amp, 50 μg/mℓ) and tetracyclin (Tet, 15 μg/mℓ) which had been 

freshly coated with a mixture of 1 M Isopropyl β-D-thiogalactopyranoside (IPTG, 2 μℓ) 

and 25 mg/mℓ 5-bromo-4-chloro-3-indolyl-β-galactoside (X-gal, 70 μℓ) and grown 

overnight at 37°C.  White (insert-containing) colonies were subjected to PCR 

screening with the T7 promoter primer and U19-mer primer pair, as follows:  A 

bacterial suspension was prepared by inoculating 20 μℓ ddH2O with a white colony 

that had been picked off the plate with a sterile toothpick.  Of this, 5 μℓ was added to 

a 20 μℓ mix containing 0.625 U Taq DNA polymerase (Promega), 25 pmoles each of 

the T7 and U19-mer primers, dNTPs to a final concentration of 0.2 mM, MgCl2 to a 

final concentration of 1.2 mM and 1 X PCR reaction buffer (Promega).  The rest of 

the bacterial suspension in H2O (15 μℓ) was added to 385 μℓ LB/Amp broth and 

incubated for 5 to 8 h at 37°C with shaking, before addition of 80% glycerol (100 μℓ) 

to make glycerol stocks.  Cycle conditions for the colony screen PCR were as 

follows:  35 cycles of 94°C for 1 min, 50°C for 1 min and 72°C for 1 min followed by a 
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final 10 min extension time at 72°C.  Products of the PCR screening were visualised 

on 1% agarose and subjected to Southern blot analysis as described above, using 

the same oligonucleotide probe that had been used in the initial blot.  Colonies 

containing pMOS plasmids with the right size insert were selected for plasmid DNA 

isolation. 

 

Plasmid DNA preparation 

Plasmid DNA containing the cloned cDNAs was isolated using the Wizard® Plus SV 

Miniprep DNA purification system (Promega).  Briefly, 9 to 10 mℓ LB/Amp broth was 

inoculated with the glycerol stock using an eye needle that had been sterilised over a 

flame.  Cultures were grown overnight at 37°C with shaking;  whereafter plasmid 

DNA was isolated using a spin protocol according to the specifications described in 

the Wizard® Plus SV Miniprep manual.  Purified plasmid DNA was eluted in 60 to 

100 μℓ nuclease-free water.  Plasmid DNA concentrations were determined 

spectrophotometrically by measuring A260.  Integrity of the plasmid DNA was 

determined by agarose gel electrophoresis;  200 ng of plasmid DNA was loaded onto 

the gel. 

 

Sequencing and sequence analyses of cloned cDNAs 

Sequencing was done at the Core DNA Sequencing facility at the Department of 

Genetics, University of Stellenbosch (South Africa).  Several clones originating from 

independent RNA or cDNA batches were sequenced from both sides (T7 as well as 

U19-mer) to be able to correct for PCR and sequencing errors and create consensus 

sequences.  Sequencing results were analysed with the use of a Windows-based 

program namely “BioEdit sequence alignment editor”.  Other applications that were 

used can be found on the Internet at  

www.ch.embnet.org/software/LALIGN_form.html (for local alignment of two DNA 

sequences) and www.expasy.ch/tools/dna.html (for translation of DNA sequence to 

amino acid sequence). 

 

Cloning and sequencing results from human, vervet monkey and baboon are 

summarised in tables 6 and 7 at the end of this chapter.  Figure 23, also found at the 

end of this chapter, gives a schematic representation of all cloned sequences. 

http://www.ch.embnet.org/software/LALIGN_form.html
http://www.expasy.ch/tools/dna.html
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Results 
 

Distribution of human GnRHR-II transcripts 

Multiple strategies were used to examine the distribution of exon 1-containing 

GnRHR-II transcripts in human tissues and cells, due to the abundance and wide 

expression of the antisense transcript.  The rationale for this approach was that 

antisense transcripts would not contain exon 1 because of the presence of the 

polyadenylation signal when the GnRHR-II gene is transcribed in the antisense 

orientation. 

 

In a previous study using an exon 1-specific DNA probe in dot blot analysis of 

multiple human tissue polyA+ RNAs, positive signals were detected for a number of 

brain parts and peripheral tissues (refer to Appendix 5).  These included putamen, 

caudate nucleus, cerebellum, occipital lobe, adult heart, testis, salivary gland, 

peripheral leukocyte and lymph node (see Appendix 5 figure 1, A & B).  

 

The fidelity of the positive signals was assessed in this study by RT-PCR on total 

RNA from human tissues, cells, or cell-lines that were available.  The human tissues 

were adult cerebellum, cortex, hypothalamus, kidney, medulla, midbrain, pituitary, 

pons, testis, thyroid and uterus, as well as foetal adrenals, cerebellum, frontal lobe, 

hypothalamus, medulla, midbrain, lumbar sympathetic chain, olfactory bulb, pituitary, 

pons, and retina.  The human cells were total ejaculate as well as HepG2 hepatocyte 

carcinoma cells.  Several sets of GnRHR-II-specific PCR primers were utilised.  

These included the exon 1-specific primer S5 (designed to part of the coding region 

of ECL1) in combination with primers to either exon 2 (AS6, designed to part of the 

coding region of ECL2, that would yield a 319 bp intronless amplicon) or exon 3 

(AS10, designed to part of the coding region of TM6, that would yield a 542 bp 

intronless amplicon), as well as the exon 2-3 primer pair (S10 & AS10, that would 

yield a 660 bp or 250 bp amplicon, respectively, if an intron was present or absent).  

S10 is designed to part of the coding region of ECL2.  The relative positions of the 

primers used are indicated in figure 6. 
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See Figure 6 in “Separate Figures” folder on CD 
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Expression of exon 1-containing, sense GnRHR-II transcripts in human ejaculate 

As expected, the intron 2-containing antisense 660 bp product was amplified from 

almost all human RNA samples with the use of the exon 2-3 primer pair S10 & AS10 

(not shown).  This product was also present in human testis and ejaculate (figure 7, 

lane 2 and figure 8, lane 3, respectively).  In contrast, the processed 250 bp exon 2-3 

product, arising from transcription of the GnRHR-II gene in the sense orientation, was 

detected only in testis and ejaculate (figure 7, lane 2 and figure 8, lane 3, 

respectively).  In testis and ejaculate RNA, the antisense 660 bp exon 2-3 product 

was in abundance over the processed 250 bp product (figure 7, lane 2 and figure 8, 

lane 3).  Furthermore, human GnRHR-II transcripts containing exon 1 were detected 

only in ejaculate RNA (figure 8, lanes 1 and 2).  The expected 319 bp (exon 1-2, 

encoding part of ECL1 to part of ECL2) and 542 bp (exon 1-3, encoding part of ECL1 

to part of TM6) intronless amplicons were faintly visible on an agarose gel (figure 8, 

lanes 1 and 2) but clearly visible on a Southern blot using an internally nested exon 

1-specific probe, AS3 (figure 9, lanes 1 and 2).  In addition to the expected size 

intronless amplicons, RT-PCR products of other sizes were also obtained from 

human ejaculate.  For example, the presence of a 419 bp exon 1-2 amplicon, in 

addition to the expected 319 bp amplicon, was visible on an agarose gel (figure 8, 

lane 1) and confirmed by Southern blot analysis (figure 9, lane 1).  Similarly, a ~1 kb 

exon 1-3 amplicon was obtained from human ejaculate RNA apart from the expected 

542 bp amplicon (figure 8, lane 2) but the ~1 kb band was not positive on the 

Southern blot (figure 9, lane 2).  Another RT-PCR product of unexpected size in 

human ejaculate RNA, arising from amplification with the exon 2-3 primer pair S10 & 

AS10, was visible on an agarose gel together with the intronless 250 bp and intron-

containing 660 bp products (~600 bp;  figure 8, lane 3).  Specificity of this ~600 bp 

amplicon was not determined by Southern blot analysis. 
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Fig 7.  Agarose gel visualisation of RT-PCR results on human testis RNA:  indication 

of expression of a sense transcript for the GnRHR-II.  The lanes are marked 

as follows:  M1, pBR322HapII molecular weight markers;  M2, 100 bp ladder 

molecular weight markers (Promega);  1, 317 bp product obtained with the β-

actin control primers;  2, 250 bp and 660 bp product obtained with the 

GnRHR-II exon 2-exon 3 primer pair S10 & AS10.  The positions and sizes of 

some of the marker bands are indicated to the left whereas the positions and 

sizes of the appropriate amplicons are indicated to the right of the 

photographed gel picture. 
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Fig 8.  Agarose gel visualisation of RT-PCR results on human ejaculate RNA:  

amplification of exon 1-containing, sense GnRHR-II transcripts.  The lanes 

are marked as follows:  M, 100 bp ladder molecular weight markers 

(Promega);  1, 319 bp and 419 bp products obtained with the exon 1-exon 2 

primer pair S5 & AS6;  2, 542 bp and ~1 kb product obtained with the exon 

1-exon 3 primer pair S5 & AS10;  3, 250 bp, ~600 bp and 660 bp products 

obtained with the exon 2-exon 3 primer pair S10 & AS10;  4, 317 bp product 

obtained with the β-actin control primers;  5, negative control.  The positions 

and sizes of some of the marker bands are indicated to the left whereas the 

positions and sizes of the appropriate amplicons are indicated to the right of 

the photographed gel picture. 



 42

 

 

 
 

 

Fig 9.  Autoradiogram of the Southern blot of the gel shown in figure 8.  The blot was 

probed with exon 1-specific oligo AS3.  All six lanes, including the marker 

lane, were probed.  Results are only shown for lanes 1 and 2 since no signals 

were obtained for the other lanes with the exon 1 probe.  The positions and 

sizes of the appropriate amplicons are indicated to the right of the 

photographed autoradiogram. 

 

Sequence identity of the human ejaculate GnRHR-II transcripts 

The human ejaculate 319 bp, 419 bp and 542 bp exon 1-containing GnRHR-II 

transcripts were cloned and sequenced (see Sequence no 1 in Appendix 4).  The 

sequence of the 319 bp exon 1-2 amplicon (S5 & AS6) is contained within the 542 bp 

sequence of exon 1-3 (S5 & AS10).  Surprisingly, within exon 2 and in the correct 

reading frame, a TGA translation stop signal was found in the human ejaculate cDNA 

sequence.  Subsequent completion of the human genome project confirmed that the 

TGA is contained within the human GnRHR-II gene (accession AL160282).  The 

sequence of the 419 bp amplicon (figure 8, lane 1) corresponded to that of the 319 

bp amplicon (including the TGA translation stop signal), except that it contained 

additional sequence of a 100 bp between exons 1 and 2 (sequence data not shown).  

This insert resulted in the shift in the reading frame between the two exons.  The 

sequence of this 100 bp insert in the human ejaculate transcript was compared to the 

database sequence of the human GnRHR-II gene (accession AL160282) and found 

to be a part of intron 1, which is situated between exons 1 and 2 and is ~4.3 kb in 

length.  Hence, this 419 bp amplicon is likely to be the result of amplification of an 
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incompletely processed mRNA.  Intriguingly, the 100 bp retained intronic sequence 

did not follow immediately 3’ to exon 1 nor did it immediately precede exon 2 of the 

human GnRHR-II gene (accession AL160282).  Rather, it was located at ~2.6 kb 

downstream of the 3’ end of exon 1 and ended ~1.6 kb upstream of the 5’ end of 

exon 2.  Thus, this additional 100 bp sequence was most likely the result of an 

additional splicing event, where exon 1 was spliced onto a part of intron 1 before 

splicing onto exon 2.  Sequencing of the ~1 kb exon 1-3 amplicon (figure 8, lane 2) 

was not pursued because this product did not appear on the Southern blot (figure 9, 

lane 2).  The ~600 bp amplicon obtained with the exon 2-3 primer pair (figure 8, lane 

3) was not sequenced because the focus was on exon 1-containing GnRHR-II 

transcripts. 

 

By 5’ and 3’ RACE, attempts were made to obtain sequence information of the 5’ and 

3’ ends of the human ejaculate GnRHR-II cDNA because of the unavailability of the 

human GnRHR-II gene sequence at the time.  The primary 5’ RACE reaction, using 

exon 1-specific oligo AS5 (designed to part of the coding region of TM4) in 

combination with the Marathon adaptor primer AP1 produced no bands on an 

agarose gel (results not shown).  Secondary 5’ RACE with exon 1-specific primer 

AS3 (designed to part of the coding region of ECL1 and which is internally nested to 

AS5) in combination with the Marathon nested adaptor primer AP2 produced a broad 

band on an agarose gel, with products ranging in size between 622- and 810 bp, as 

well as a range of minor smaller products (figure 10, A, lane 1, indicated with an 

arrow).  The finding of multiple products is a typical result of the RACE technique.  

Southern blot analysis using labelled exon 1-specific oligo S5 confirmed specificity of 

all these secondary 5’ RACE products (figure 10, B, lane 1).  A gel slice containing 

the broad band was cut out for subsequent cloning and sequencing.  Sequence 

analysis of this secondary 5’ RACE product revealed a consensus sequence of 751 

bp (706 bp excluding the AS3 and AP2 primer sequences, 5 clones sequenced), 

which included a novel 5’ sequence of 481 bp as well as the putative translation start 

site (see Sequence no 1 in Appendix 4). 
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Fig 10.  Results of secondary 5’ RACE on human ejaculate Marathon RACE-ready 

cDNA:  amplification of the 5’ end of the human GnRHR-II cDNA.  The 

lanes are marked as follows:  1, Broad band obtained with primer pair AP2 

& AS3 from which a 751 bp product was sequenced;  M1, pBR322HapII 

molecular weight markers (1 μg);  M2, λPstI molecular weight markers 

(1 μg). 

A.  Agarose gel visualisation.  The positions and sizes of the appropriate 

marker bands are indicated to the right of the photographed gel picture. 

B.  Autoradiogram of the Southern blot of the gel shown in A.  The blot was 

probed with exon 1-specific oligo S5.  All lanes, including the marker 

lanes, were probed.  The very dark dots are due to overexposure of the 

blot. 

 

All GnRHR-II sequences obtained from human ejaculate RNA, by RT-PCR as well as 

by 5’ RACE, were assembled to create a 1227 bp contiguous consensus sequence 

from overlapping clones (see Sequence no 1 in Appendix 4).  The assembled human 

ejaculate sequence contained almost the full putative coding region of the GnRHR-II 

cDNA, stretching from -392 to +835 (numbering relative to the putative ATG 
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translation start site), until 302 bp 5’ to the translation stop signal.  This sequence 

would encode a GnRHR-II protein containing TM1 to almost the end of TM6.  

Attempts to obtain the translation stop and polyadenylation signals, using 3’ RACE 

on human ejaculate RNA, were unsuccessful.  When the primary and the secondary 

3’ RACE products were visualised on an agarose gel, only smears, and no distinct 

bands, were seen, indicating the generation of multiple amplicons of varying length 

(not shown). 

 

Localisation of GnRHR-II transcripts to human sperm cells 

Subsequent to this study, in situ hybridisation analyses were performed using both 

sense and antisense GnRHR-II exon 1-specific riboprobes to confirm the presence 

and further examine the distribution of the human GnRHR-II transcripts in testis and 

mature sperm.  Bright-field photomicrographs summarising these results are shown 

in figures 4 and 5 of Appendix 5.  In human testis the presence of exon 1-containing 

GnRHR-II sense transcripts was indicated within the adluminal region of the 

seminiferous epithelium, in association with various types of differentiating haploid 

spermatids (see Appendix 5, figure 4, A).  This was consistent with the view that the 

GnRHR-II gene is transcribed during the haploid phase of spermatogenesis.  In situ 

hybridisation analysis also revealed the persistence of human exon 1-containing 

sense GnRHR-II transcripts in mature sperm (see Appendix 5, figure 5, A).  These 

results indicate that the GnRHR-II transcripts obtained in this study by RT-PCR and 

5’ RACE in human ejaculate RNA result from mature sperm within the ejaculate. 

 
Distribution of non-human primate GnRHR-II transcripts 

 
Expression of GnRHR-II transcripts in vervet monkey 

While performing exontrapping with human P1 genomic DNA clones in COS-1 cells, 

a GnRHR-II sequence was cloned that was clearly not human.  This lead to the 

conclusion that the sequence must have come from COS-1 RNA.  For that reason, 

the presence of a monkey GnRHR-II was further investigated by RT-PCR and RACE, 

using RNA isolated from COS-1 cells.  In addition, the cloning of a GnRHR-II cDNA 

was attempted from RNA isolated from vervet monkey cerebellum, hypothalamus, 

kidney, occipital lobe, pituitary, testis and total ejaculate. 
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• COS-1 GnRHR-II 

A number of overlapping GnRHR-II transcripts were amplified by RT-PCR from 

COS-1 RNA, including a 542 bp exon 1-3 amplicon obtained with PCR primer 

pair S5 & AS10 (figure 11, lane 1) that was cloned and sequenced.  The 542 bp 

amplicon stretched from the coding region for part of ECL1 to the coding region 

for part of TM6 (see Sequence no 2 in Appendix 4), similar to what was found in 

human ejaculate RNA.  Apart from the expected 542 bp amplicon, RT-PCR 

products of other sizes were also obtained (see figure 11, lane 1 and figure 12, 

lane 1, showing two additional bands at ~1000 bp and ~350 bp). 
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Fig 11.  Agarose gel visualisation of RT-PCR results on COS-1 vervet monkey kidney 

cell RNA:  amplification of exon 1-containing, sense GnRHR-II transcripts.  
The lanes are marked as follows:  M1, 100 bp ladder molecular weight 
marker (6 μℓ, Promega);  M2, 1 kb molecular weight marker (2.2 μg, 
GibcoBRL/Invitrogen);  1, ~350 bp, 542 bp and ~1 kb products obtained 
with the exon 1-exon 3 primer pair S5 & AS10.  Some of the positions and 
sizes of the molecular weight markers are indicated to the left whereas the 
positions and sizes of the appropriate amplicons are indicated to the right of 
the photographed gel picture. 

 

 
 

Fig 12.  Autoradiogram of the Southern blot of the gel shown in figure 11.  The blot 
was probed with exon 1-specific oligo AS3.  All lanes, including the marker 
lanes, were probed.  The positions and sizes of the exon 1-containing 
amplicons that were visible on the blot are indicated to the right of the 
photographed autoradiogram. 
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5’ SMARTTM RACE was performed on SMARTTM RACE-ready cDNA prepared 

from COS-1 RNA, using primer pair UPM & AS2 (exon 1, TM2) in the primary 

and NUP & AS1 (exon 1, TM1) in the secondary reactions.  Multiple products 

were obtained in both reactions (figure 13).  A gel slice containing a distinct band 

at approximately 600- to 650 bp was extracted for subsequent DNA purification, 

cloning and sequencing of the secondary 5’ SMARTTM RACE reaction product 

(figure 13, lane 2).  A consensus sequence, 290 bp in length including the 

sequences of both primers, was derived from the sequences of four clones (see 

Sequence no 2 in Appendix 4).  This 290 bp COS-1 5’ SMARTTM RACE 

sequence contained 83 bp of 5’ UTR sequence, including the putative translation 

start site (see Sequence no 2 in Appendix 4).  Interestingly, the COS-1 GnRHR-II 

transcript was found to utilise an ACG threonine translation start codon instead of 

the universal AUG that encodes methionine. 

 
 
 
Fig 13.  Agarose gel visualisation of 5’ RACE results on COS-1 SMARTTM RACE-

ready cDNA:  amplification of the 5’ end of the monkey GnRHR-II cDNA.  
The lanes are marked as follows:  M1, 1 kb molecular weight marker (3.5 
μg, GibcoBRL/Invitrogen);  1, primary 5’ SMARTTM RACE using UPM & 
AS2;  2, secondary 5’ SMARTTM RACE using NUP & AS1;  M2, 100 bp 
ladder molecular weight marker (0.65 μg, Promega).  Some of the positions 
and sizes of the molecular weight markers are indicated to the left and to 
the right of the photographed gel picture.  The position of the band 
containing secondary 5’ SMARTTM RACE products of ~600- to ~650 bp, 
which was extracted for sequence analysis, are indicated to the right of the 
photographed gel picture.  Southern blot analysis of this particular gel was 
not performed.  Southern blot analysis of a similar gel probed with exon 1-
specific oligo probe S1 revealed that all bands obtained by 5’ SMARTTM 
RACE on COS-1 cDNA were GnRHR-II-specific. 
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3’ RACE was not performed on COS-1 RNA.  An attempt was made to amplify a 

full-length cDNA containing the full coding region of the vervet monkey GnRHR-II 

from COS-1 RNA, using primer sets S1 & AS12 as well as S2 & AS12 in RT-

PCR.  These primer pairs are designed such to amplify a 1295 bp amplicon, 

stretching from -48 relative to the translation start within the 5’ UTR to 82 nt 

downstream of the translation stop within the 3’ UTR (see Appendices 1 to 3).  

Primers S1 and S2 are designed to identical gene positions, but differ in their 

species-specificity.  The sequence of primer S1 is 100% human-specific and 

92.6% vervet monkey-specific, whereas the sequence of primer S2 is 100% 

vervet monkey-specific and 92.6% human-specific.  Primer AS12 was designed 

based on the human GnRHR-II gene sequence.  Numerous RT-PCR attempts 

using these primer pairs resulted in the expected 1295 bp amplicon (not shown) 

but Southern blot analysis using labelled exon 1-specific oligo probe AS3 

indicated that the obtained product was not GnRHR-II-specific.  Furthermore, 

subsequent cloning and sequence analysis of the S1 & AS12 and S2 & AS12 

amplicons confirmed that they did not contain GnRHR-II sequence.  It later 

became evident, when 3’ RACE results were obtained from vervet monkey 

occipital lobe RNA (see below), that the sequence of primer AS12 is not present 

in the vervet monkey cDNA at the expected position, which would explain why 

cloning attempts with this primer had failed.  In summary, from two overlapping 

clones obtained with 5’ RACE and RT-PCR, respectively, on COS-1 RNA, a 

GnRHR-II cDNA sequence was derived that contained a total sequence length of 

918 bp, stretching from -82 to +836 (numbering relative to the translation start 

site), within TM6 in exon 3 (see Sequence no 2 in Appendix 4). 

 

• Expression of GnRHR-II transcripts in other vervet monkey tissues and cells 

RNA isolated from a number of vervet monkey tissues (refer to list above) was 

initially screened by RT-PCR for the expression of intronless, sense, GnRHR-II 

transcripts using the exon 2-3 primer pair S10 & AS10.  Some of the results 

obtained are shown in figure 14, lanes 1 to 4.  Primer pair S10 & AS10 should 

theoretically yield a 660 bp intron-containing or 250 bp intronless exon 2-3 (ECL2 

to TM6) amplicon.  As expected, the antisense 660 bp amplicon was obtained 

from all vervet monkey RNAs (see figure 14, lanes 1 to 4, for examples).  In 

addition, the 250 bp intronless amplicon was obtained from vervet monkey testis 

and occipital lobe RNA (figure 14, lanes 3 and 4, respectively). 
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M  100 bp ladder molecular weight marker (0.65 μg, Promega) 
1    Vervet monkey kidney    6    Baboon kidney 
2    Vervet monkey cerebellum   7    Baboon ovary 
3    Vervet monkey testis    8    Baboon temporal lobe 
4    Vervet monkey occipital lobe   9    Baboon occipital lobe 
5    Baboon hypothalamus    10  Baboon cerebellum 
 

Fig 14.  Agarose gel visualisation of RT-PCR results on vervet monkey and baboon 

tissue RNAs:  attempts to amplify exon 2-3 intronless, sense GnRHR-II 

transcripts.  Primer pair S10 & AS10, for the amplification of a 250 bp 

intronless sense amplicon or a 660 bp intron-containing antisense amplicon 

(ECL2 to TM6), was utilised in the RT-PCRs.  Some of the positions and 

sizes of the molecular weight markers are indicated to the left whereas the 

positions and sizes of the appropriate amplicons are indicated to the right of 

the photographed gel picture. 

 

Furthermore, RT-PCR using the exon 1-3 primer pair S5 & AS10, designed to 

amplify a 542 bp intronless sense GnRHR-II amplicon (ECL1 to TM6), was 

performed on the same vervet monkey tissue RNAs.  The expected 542 bp 

amplicon was detected in RNA from vervet monkey cerebellum and occipital lobe 

(figure 15, lanes 2 and 4, respectively), as well as from total ejaculate (not 

shown).  These results suggested that vervet monkey cerebellum, occipital lobe 

and ejaculate RNAs were good candidates for the cloning of a full-length 

mammalian GnRHR-II cDNA.  The absence of the 542 bp product on a Southern 

blot (figure 16, lanes 2 and 4) is hard to explain since sequence analysis of this 

542 bp amplicon obtained from vervet monkey occipital lobe RNA revealed that it 

contained GnRHR-II sequence (see Sequence no 3 in Appendix 4).  Surprisingly, 

a 331 bp S5 & AS10 amplicon was detected in all vervet monkey RNAs and was 

also present on a Southern blot (figure 15 and figure 16, lanes 2 to 10). 
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1 Vervet monkey kidney  6 Baboon kidney 
2 Vervet monkey cerebellum  7 Baboon ovary 
3 Vervet monkey testis   8 Baboon temporal lobe 
4 Vervet monkey occipital lobe  9 Baboon occipital lobe 
5 Baboon hypothalamus  10 Baboon cerebellum 
M1 1 kb ladder molecular weight marker (2.2 μg, GibcoBRL/Invitrogen) 
M2 100 bp ladder molecular weight marker (0.65 μg, Promega) 
 
Fig 15.  Agarose gel visualisation of RT-PCR results on monkey and baboon tissue 

RNAs:  attempts to amplify GnRHR-II transcripts containing part of exon 1, 
the full exon 2 and part of exon 3 (ECL1 to TM6).  Exon 1-3 primer pair S5 
& AS10, for the amplification of a 542 bp amplicon, was utilised in the RT-
PCRs.  The positions and sizes of the appropriate amplicons are indicated 
to the left whereas some of the positions and sizes of the molecular weight 
markers are indicated to the right of the photographed gel picture.  Results 
were confirmed by Southern blot analysis using labelled exon 1-specific and 
internally nested oligo AS3. 

 

 
1    Vervet monkey kidney    6    Baboon kidney 
2    Vervet monkey cerebellum   7    Baboon ovary 
3    Vervet monkey testis    8    Baboon temporal lobe 
4    Vervet monkey occipital lobe   9    Baboon occipital lobe 
5    Baboon hypothalamus    10  Baboon cerebellum 
M1 1 kb molecular weight marker (2.2 μg, GibcoBRL/Invitrogen) 
M2 100 bp ladder molecular weight marker (0.65 μg, Promega) 
 
Fig 16.  Autoradiogram of the Southern blot of the gel shown in figure 15.  The blot 

was probed with exon 1-specific oligo AS3.  All twelve lanes, including the 
marker lanes, were probed.  The position and size of an abundantly 
expressed 331 bp amplicon is indicated to the left of the photographed 
autoradiogram. 
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RNA isolated from vervet monkey occipital lobe and from ejaculate was subjected 

to further RT-PCR and RACE analyses.  Primer pair UPM & AS8 (designed to the 

exon 2-3 barrier, in a region encoding part of ICL3) was used in the primary 5’ 

RACE reactions.  The choice of oligo AS8 for 5’ RACE was based on the 

presence of a ubiquitous 331 bp exon 1-3 amplicon in the non-human primate 

RNAs, as described above (figure 15 & figure 16).  Prior sequence analysis of 

this unusually sized amplicon (sequenced from baboon cerebellum, see 

Sequence no 4 in Appendix 4) indicated that it contained part of exon 1 and part 

of exon 3 of the GnRHR-II, but lacked exon 2.  The omission of exon 2 from this 

transcript resulted in a shift in the reading frame between exons 1 and 3 

(Sequence no 4 in Appendix 4).  Primer AS8 contains partly exon 2 and partly 

exon 3 sequence and hence would facilitate the amplification of transcripts 

containing both exons.  Secondary 5’ RACE was performed with primer pair NUP 

& AS7 (designed to exon 2, in a region encoding part of TM5).  By 5’ RACE on 

vervet monkey occipital lobe RNA, novel 5’ sequence of the vervet monkey 

GnRHR-II cDNA was obtained.  Sequence analysis of the secondary 5’ RACE 

reaction product (958 bp including primer sequences;  figure 17, lane 4 and figure 

18, lane 4) revealed that it contained most of exon 2 plus most of exon 1, 

including the putative translation start and 141 bp of 5’ UTR sequence (Sequence 

no 5 in Appendix 4).  Similar to what was found for the COS-1 GnRHR-II, the 

vervet monkey occipital lobe transcript contained an ACG threonine codon at the 

translation start position (Sequence no 5 in Appendix 4).  Interestingly, a 

sequence of 116 bp, resulting in a shift in the reading frame, was inserted 

between exons 1 and 2 of the occipital lobe sequence.  A second product was 

obtained by 5’ RACE on vervet monkey occipital lobe RNA, which contained most 

of exon 2 but did not include exon 1 sequence (sequence data not shown).  The 

presence of this exon 1-less 5’ RACE product suggested that the vervet monkey 

GnRHR-II gene is, similar to its human counterpart, also transcribed in the 

antisense orientation. 
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  M1 λPstI molecular weight marker (0.5 μg) 
  1 Baboon temporal lobe 
  2 Baboon pituitary 
  3 Vervet monkey ejaculate 
  4 Vervet monkey occipital lobe 
  M2 EZ load molecular weight marker (10 μℓ, BIORAD) 
 
 

Fig 17.  Agarose gel visualisation of results of 5’ SMARTTM RACE performed on RNA 

from vervet monkey and baboon tissues:  attempts to obtain the 5’ end of 

the mammalian GnRHR-II cDNA.  The primary reactions were performed 

with primer pair UPM & AS8.  Results of the secondary reactions, using 

primer pair NUP & AS7, are shown here.  The positions and sizes of some 

of the molecular weight markers are indicated to the right of the 

photographed gel picture.  Specificity of the RACE products was confirmed 

by Southern blotting with labelled GnRHR-II exon 2-specific primer S9. 
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  M1 λPstI molecular weight marker (0.5 μg) 
  1 Baboon temporal lobe  
  2 Baboon pituitary 
  3 Vervet monkey ejaculate 
  4 Vervet monkey occipital lobe 
  M2 EZ load molecular weight marker (10 μℓ, BIORAD) 

 

 
Fig 18.  Autoradiogram of the Southern blot of the gel shown in figure 17.  The blot 

was probed with exon 2-specific oligo S9.  All six lanes, including the 

marker lanes, were probed.  The positions and sizes of some of the relevant 

bands are indicated on either side of the photographed autoradiogram. 

 

By 3’ RACE, using primer pair S7 & UPM in the primary and S8 & NUP in the 

secondary reaction, respectively, a GnRHR-II amplicon of 727 bp was obtained 

from vervet monkey occipital lobe RNA (figure 19, lane 4 and figure 20, lane 4).  

Gene-specific primer S7 is designed such to bind to the exon 1-2 barrier, within a 

region encoding the 3’ end of TM4.  The use of S7 in the primary 3’ RACE 

reaction would therefore facilitate the selection of transcripts that contained exon 

1 as well as exon 2, which are likely to contain the full-length GnRHR-II sequence 

in the sense orientation.  Primer S8 is designed to a region within exon 2 that 

encodes the 5’ end of ECL2.  Amplicons with a length greater than 592 bp (refer 

to Appendix 2) would contain novel 3’ sequence.  The vervet monkey occipital 
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lobe 727 bp amplicon contained most of exon 2 plus part of exon 3 of the 

GnRHR-II, stretching from ECL2 to TM6, but did not include the translation stop 

signal or novel 3’ sequence (sequence data not shown).  Furthermore, an insert 

of 447 bp was present between exons 2 and 3 of the 3’ RACE product. 

 
  M1 λPstI molecular weight marker (0.5 μg)  
  1 Baboon temporal lobe   
  2 Baboon pituitary   
  3 Vervet monkey ejaculate  
  4 Vervet monkey occipital lobe  
  M2 EZ load molecular weight marker (10 μℓ, BIORAD) 

 

Fig 19.  Agarose gel visualisation of results of 3’ SMARTTM RACE performed on RNA 

from vervet monkey and baboon tissues:  attempts to obtain novel 3’ UTR 

sequence including the polyadenylation signal.  The primary reactions were 

performed with primer pair S7 & UPM.  Results of the secondary reactions, 

using primer pair S8 & NUP, are shown here.  The positions and sizes of 

some of the molecular weight markers are indicated to the left and to the 

right of the photographed gel picture.  Specificity of the RACE products was 

confirmed by Southern blot analysis with labelled GnRHR-II exon 2-specific 

primer S9. 
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  M1 λPstI molecular weight marker (0.5 μg)  
  1 Baboon temporal lobe   
  2 Baboon pituitary   
  3 Vervet monkey ejaculate  
  4 Vervet monkey occipital lobe  
  M2 EZ load molecular weight marker (10 μℓ, BIORAD) 

 

Fig 20.  Autoradiogram of the Southern blot of the gel shown in figure 19.  The blot 

was probed with exon 2-specific oligo S9.  All six lanes, including the 

marker lanes, were probed.  The position and size of the relevant band is 

indicated to the right of the photographed autoradiogram. 

 

5’ RACE was also performed on vervet monkey ejaculate SMARTTM RACE-ready 

cDNA using the same primer pairs that were used for 5’ RACE on occipital lobe 

RACE-ready cDNA (1°:  UPM & AS8;  2°:  NUP & AS7).  However, the obtained 

vervet monkey ejaculate secondary 5’ RACE product was not selected for cloning 

and sequencing due to its size, which ranged between 600 bp to 700 bp (figure 

17, lane 3).  An amplicon of at least 750 bp was expected (refer to Appendix 2).  

Only amplicons with a length greater than 750 bp would most likely contain novel 

5’ sequence.  3’ RACE on monkey ejaculate cDNA (figure 19, lane 3 and figure 

20, lane 3) did not produce novel 3’ sequence of the monkey GnRHR-II.  A 

GnRHR-II amplicon containing the full coding region, including part of the 5’ and 

3’ UTRs, was obtained from vervet monkey ejaculate RNA.  This 1729 bp 
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amplicon was amplified using primer pair S3 & AS13 in RT-PCR (Sequence no 6 

in Appendix 4).  The 5’ end of primer S3 is at -37 relative to the putative 

translation start whereas the 3’ end of AS13 ends at 86 bp downstream of the 

translation stop signal.  Similar to results obtained with 3’ RACE on occipital lobe 

RNA (see above), the vervet monkey ejaculate 1729 bp amplicon contained an 

insert of 447 bp between exons 2 and 3.  This insert did not change the reading 

frame between the two exons but it did result in the incorporation of a number of 

in-frame premature translation stop signals (Sequence no 6 in Appendix 4). 

 

Thus, to summarise, an amplicon containing exons 1 and 3 but lacking exon 2 

was found to be ubiquitously expressed in monkey (and baboon) tissue RNAs.  

By 5’ RACE on vervet monkey occipital RNA a GnRHR-II transcript was obtained 

that stretched from -141 relative to the putative ACG translation start in exon 1 

and included most of exon 2, and which had an insert sequence of 116 bp 

between the two exons.  A second vervet monkey occipital lobe 5’ RACE product 

contained exon 2 sequence but not exon 1.  By 3’ RACE a GnRHR-II amplicon 

was obtained from vervet monkey occipital lobe RNA that contained part of exon 

2 plus part of exon 3, with an additional insert of 447 bp between the two exons 

in-frame.  Furthermore, 5’ and 3’ RACE on vervet monkey ejaculate RNA failed to 

produce novel 5’ or 3’ sequence of the monkey GnRHR-II.  However, a GnRHR-II 

amplicon containing the full coding region, including part of the 5’ and 3’ UTRs, 

was obtained from vervet monkey ejaculate RNA by RT-PCR.  This amplicon did 

however contain an insert of 447 bp between exons 2 and 3, similar to what was 

found for vervet monkey occipital lobe RNA. 

 

Expression of GnRHR-II transcripts in baboon 

The presence of transcripts for a GnRHR-II was investigated in RNA isolated from 

baboon cerebellum, heart, hypothalamus, kidney, occipital lobe, ovary, pituitary and 

temporal lobe.  An initial screen using the exon 2-3 primer pair S10 & AS10 in RT-

PCR revealed that in baboon, similar to human and vervet monkey, an antisense 

GnRHR-II transcript with intron 2 retained is ubiquitously expressed, as was evident 

from the presence of the 660 bp amplicon in all baboon tissue RNAs examined (for 

example, see figure 14, lanes 5 to 10).  Furthermore, the 250 bp intronless exon 2-3 

amplicon was faintly visible in baboon temporal lobe and cerebellum RNAs (figure 

14, lanes 8 and 10, respectively).  With the use of the exon 1-3 primer pair S5 & 

AS10 in RT-PCR to detect an intronless GnRHR-II transcript of 542 bp, faint bands of 

the right size were obtained in RNA from baboon temporal lobe and baboon occipital 
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lobe (figure 15, lanes 8 and 9, respectively), but these bands did not light up on a 

Southern blot (figure 16, lanes 8 and 9).  Based on these findings, baboon temporal 

lobe RNA was selected for further 5’ RACE analysis. 

 

5’ SMARTTM RACE was performed on baboon temporal lobe RNA using the same 

primer sets in the primary and secondary reactions as utilised in 5’ RACE on vervet 

monkey occipital lobe RNA, namely UPM & AS8 and NUP & AS7, respectively.  A 

product of 807 bp was obtained from baboon temporal lobe in the nested 5’ RACE 

reaction (figure 17, lane 1 and figure 18, lane 1) that contained most of exon 2 (from 

AS7, within TM5, until the 5’ end of exon 2, within TM4) but exon 1 was excluded 

(sequence data not shown).  Thus, no additional 5’ sequence of the baboon GnRHR-

II was obtained with the use of 5’ RACE on temporal lobe RNA.  Nevertheless, these 

5’ RACE results in baboon temporal lobe revealed the presence of a baboon 

GnRHR-II transcript that contained exon 2 but lacked exon 1 sequence. 

 

From baboon pituitary RNA a transcript containing exons 1 and 3 but lacking exon 2 

was amplified by RT-PCR, using primer pairs S0 & AS13 in the primary and S1 & 

AS12 in the secondary reactions, respectively.  These primer sets are designed to 

amplify a GnRHR-II transcript containing the full coding region, stretching from the 5’ 

UTR to the 3’ UTR.  The primary reaction using S0 & AS13 yielded no visible bands 

on an agarose gel (not shown) and was therefore subjected to a secondary reaction 

with primer pair S1 & AS12.  S1 and AS12 is designed such to amplify a 1295 bp 

amplicon containing the full coding region of the GnRHR-II.  Priming of the primary 

reaction with this primer set produced multiple bands of various sizes (figure 21, lane 

1), including a band of the expected size of 1295 bp.  Specificity of the RT-PCR 

results was confirmed by Southern blotting using the labelled exon 1-specific and 

internally nested oligo AS5 (not shown).  A number of bands were positive on the 

Southern blot.  Of these, the largest product was the 1295 bp amplicon.  Sequence 

analysis of this amplicon revealed that it contained only 1084 bp, corresponding to 

exons 1 and 3 of the baboon GnRHR cDNA, but lacking the 211 bp of exon 2 (see 

Sequence no 7 in Appendix 4).  Thus, exon 3 followed directly after exon 1.  

Furthermore, exon 2 skipping resulted in a shift in the reading frame between the two 

exons (Sequence no 7 in Appendix 4).  The failure to clone the full-length 1295 bp 

product from baboon pituitary RNA can be explained by the presence of multiple RT-

PCR products visible on an agarose gel as a result of S1 & AS12 priming (figure 21, 

lane 1).  It is possible that the gel slice containing the 1295 bp amplicon that was 

excised was contaminated with the 1084 bp amplicon because the bands were so 



 59

closely positioned (figure 21, lane 1).  The existence of multiple GnRHR-II fragments 

adds to the complexity of cloning of a full-length mammalian GnRHR-II cDNA 

containing all three exons, as was evident from these results in baboon pituitary 

RNA.  Although such a full-length cDNA could not be cloned from baboon pituitary 

RNA, another feature of the baboon GnRHR-II cDNA worth mentioning, was noted.  

Whereas the vervet monkey GnRHR-II transcript contains an ACG threonine codon 

at the translation start, the baboon transcript was found to contain an AUG 

methionine codon at that position, similar to what was found in humans. 

 

 
 

Fig 21.  Agarose gel visualisation of RT-PCR results on baboon pituitary RNA:  

attempts to amplify exons 1, 2 and 3 of the baboon GnRHR-II cDNA.  The 

lanes are marked as follows:  1, 1084 bp & 1295 bp products amongst 

other products obtained in the nested RT-PCR reaction on 1 with primer 

pair S1 & AS12;  M, 100 bp ladder molecular weight marker (0.65 μg, 

Promega).  The position and size of the appropriate amplicons are 

indicated to the left whereas some of the positions and sizes of the 

molecular weight markers are indicated to the right of the photographed 

gel picture.  Specificity of the RT-PCR results was confirmed by Southern 

blotting using the labelled exon 1-specific and internally nested oligo AS5. 

 

5’ and 3’ SMARTTM RACE was performed on baboon pituitary RNA, using the primer 

pairs described above (5’ RACE, figure 17, lane 2 and figure 18, lane 2;  3’ RACE, 

figure 19, lane 2 and figure 20, lane 2).  However, no novel 5’ or 3’ sequence was 

obtained by 5’ or 3’ RACE, respectively (sequence data not shown).  5’ RACE 

analysis confirmed the presence of a transcript in baboons that contains exon 2 but 

lacks exon 1, possibly resulting from antisense transcription of the baboon GnRHR-II 

gene (not shown).  In addition, a second 5’ RACE product was obtained from baboon 

pituitary RNA, which contained exon 2 sequence as well as the last 223 bp of exon 1 
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immediately upstream of exon 2 (not shown).  By 3’ RACE on baboon pituitary RNA 

a product was obtained that contained exon 2 as well as part of exon 3 until the end 

of TM6 (not shown).  Furthermore, this baboon pituitary 3’ RACE product contained 

an insert of 448 bp between exons 2 and 3, similar to the 447 bp insert found 

between exons 2 and 3 of the vervet monkey occipital lobe 3’ RACE and ejaculate 

RT-PCR products (see above).  Comparison of the sequences of the inserts between 

exons 2 and 3 of the baboon pituitary, vervet monkey occipital lobe and vervet 

monkey ejaculate GnRHR-II amplicons revealed that they were the same except for 

a few nt differences (see Sequence no 8 in Appendix 4).  The percentage sequence 

identity of the insert present in the vervet monkey occipital lobe 3’ SMARTTM RACE 

amplicon and the insert present in the vervet monkey ejaculate RT-PCR product was 

99.3%, with 3 nt differences over 447 bp.  Likewise, the insert sequences in the 

baboon pituitary 3’ RACE product differed in seven and four nt positions from the 

insert sequences of vervet monkey occipital lobe and vervet monkey ejaculate, 

respectively, which is an identity of 98.4% (baboon pituitary vs. vervet monkey 

occipital lobe) and 99.1% (baboon pituitary vs. vervet monkey ejaculate), respectively 

(Sequence no 8 in Appendix 4).  The presence of the insert sequences is likely to be 

the result of retained intronic sequence due to antisense transcription of the vervet 

monkey and baboon GnRHR-II genes, similar to what was found in humans. 
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Discussion 
 
There has been an increasing interest in a mammalian GnRHR-II since initial 

evidence for the presence of a GnRH-2-selective receptor in amphibian [Troskie B et 

al., 1997] and the subsequent cloning of a GnRHR-II from goldfish [Illing N et al., 

1999].  Numerous laboratories have attempted to clone a functional cDNA for this 

novel receptor from humans, but, to our knowledge, all attempts were unsuccessful.  

The finding of a full-length human GnRHR-II transcript (containing all three exons 

including the translation start and stop signals) has been hampered by the abundant 

and ubiquitous expression of an antisense GnRHR-II transcript that lacks exon 1 and 

has intron 2 retained [Millar R et al., 1999].  The aim of this study was to find a tissue 

and/or cell source of a full-length, sense GnRHR-II transcript in humans.  In addition, 

the cloning of a GnRHR-II from two non-human primate species namely vervet 

monkey and baboon was pursued. 

 

GnRHR-II genes in the human genome 

While this study was ongoing, completion of the human genome project revealed the 

existence of two putative GnRHR-II genes in the human genome, one on 

chromosome 1 and one on chromosome 14 [Neill JD, 2002a].  The GnRHR-II gene 

on chromosome 14 possesses exons 2 and 3 with a sequence identity of 40% to 

exons 2 and 3 of the human GnRHR-I gene on chromosome 4 [Neill JD, 2002a].  

This gene is encoded on the antisense DNA strand of the 3’ UTR region of a RNA-

binding motif protein-8 pseudogene, termed RBM8B [Faurholm B et al., 2001;  Neill 

JD, 2002a].  The chromosome 14 GnRHR-II gene lacks exon 1 and is therefore 

considered to be sterile [Faurholm B et al., 2001;  Neill JD, 2002a].  Antisense 

GnRHR-II transcripts, containing exons 2 and 3 and with intron 2 retained and which 

are abundantly transcribed in a wide variety of tissues, are a product of transcription 

of the chromosome 14 gene.  The chromosome 1 gene possesses three exons, 

similar to the human GnRHR-I gene, and has a 40% sequence identity with the 

human GnRHR-I gene (accession AL160282) [Neill JD, 2002a].  This GnRHR-II gene 

is transcribed in the sense orientation and encodes the full-length GnRHR-II.  The 

use of exon 1-specific primers or probes in RT-PCR, RACE and hybridisation 

analyses in this study was an attempt to select GnRHR-II transcripts derived from 

transcription of the chromosome 1 gene. 
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Human chromosome 1 GnRHR-II transcripts in mature sperm 

Prior results obtained with the human dot blot indicated that the exon 1-containing, 

chromosome 1 GnRHR-II transcripts are neither abundantly nor widely expressed, in 

contrast to the expression of the exon 2-3 chromosome 14 gene (see Appendix 5).  

Of the tissues that produced positive signals on the dot blot, only cerebellum (adult 

as well as foetal) and testis were available for further RT-PCR analysis in this study, 

as well as a number of other human tissues and cells (summarised in table 4).  

GnRHR-II exon 1-specific primers were utilised in RT-PCR in combination with exon 

2- or exon 3-specific primers to screen the human RNAs for the presence of 

intronless transcripts containing all three exons.  Human ejaculate was the only 

source where a potential full-length (containing all three exons) intronless transcript 

was detected (table 4).  The failure to detect exon 1-containing GnRHR-II transcripts 

in testis total RNA by RT-PCR may have been due to their degradation post-mortem 

and/or during the RNA isolation procedure from the testis and/or the low abundance 

of exon 1-containing transcripts.  The RT-PCR results supported the findings that 

exon 2-3 amplicons, resulting from transcription of the chromosome 14 gene, are 

abundant for most of the human RNAs, whereas exon 1-containing amplicons are 

weakly detected.  Subsequent to this study, in situ hybridisation analyses were 

performed on human testis tissue and on mature sperm to investigate the distribution 

of exon 1-containing GnRHR-II transcripts (see Appendix 5).  The in situ localisation 

of GnRHR-II transcripts to the adluminal region of the seminiferous epithelium in 

testis suggests that the human GnRHR-II gene is post-meiotically expressed in round 

and elongating spermatids (Appendix 5).  Furthermore, in situ hybridisation confirmed 

the presence of exon 1-containing transcripts in mature sperm (Appendix 5).  Hence, 

the source of exon 1-containing, sense GnRHR-II transcripts in ejaculate appears to 

be mature sperm.  A human sperm GnRHR-II cDNA sequence that stretched from     

-392 relative to the translation start within exon 1 until almost the end of TM6 in exon 

3 was assembled from results of 5’ RACE and RT-PCR.  3’ RACE attempts to obtain 

the translation stop and polyadenylation signals were not successful, possibly due to 

the amplification of multiple GnRHR-II transcripts that were heterologous in the 

length of their 3’ ends.  Interestingly, the human sperm GnRHR-II sequence 

contained a nt deletion causing a frame shift within the coding region in exon 1, as 

well as a premature TGA translation stop signal in exon 2.  The requirement for a nt 

insertion in exon 1 and the premature translation stop signal in exon 2 were also 

present in the GnRHR-II gene on chromosome 1 (Accession AL160282).  These 

results are novel and interesting, since they are the first report of the finding of 

GnRHR-II transcripts containing all three exons in any human tissue or cell type.
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See Table 4 in “Separate Figures” folder on CD 
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Functionality of the human sperm GnRHR-II 

A central query to be resolved is whether the GnRHR-II transcript is functional in 

human sperm.  In light of the nt deletion in exon 1 and the premature translation stop 

signal in exon 2, the significance of the obtained human sperm transcripts is 

presently unknown.  One possibility is that the human GnRHR-II gene on 

chromosome 1 is a pseudogene and that the sperm transcripts are the result of 

transcription of this pseudogene (see Appendix 5 for a detailed discussion).  

However, the expression of a GnRHR-II pseudogene that is on a different 

chromosome as the paralogous functional GnRHR-I gene would appear to be a rare 

event (Appendix 5).  Nevertheless, it is difficult to envisage how transcripts from a 

gene containing a premature translation stop and a frame shift within the coding 

region could result in a full-length, functional GPCR.  There is however support in the 

literature for the possible functionality of such transcripts.  For example, it has been 

shown that 5-TM GPCRs, lacking TM helices 1 and 2, are expressed on the cell 

surface and retained their function [Ling K et al., 1999].  Furthermore, a truncated 

form of another GPCR, containing only a single TM region, was shown to be as 

active as the wild type [Sugita S et al., 1998].  Thus, one possibility is that a 

functional truncated protein, containing TMs 3 to 7, is expressed.  This could occur if 

translation begins at the second AUG, situated at the end of TM2, which would 

cancel out the effect of the nt deletion in exon 1 (Sequence no 1 in Appendix 4), were 

it not for the stop codon within ECL2.  Even so, there exist a number of possibilities 

whereby the human sperm GnRHR-II transcript could translate to a full-length 

functional GnRHR protein.  These include RNA editing, whereby a single base 

insertion within exon 1 could result in the generation of a functional truncated protein 

(Appendix 5).  Another possibility is that a full-length functional protein could be 

generated by an additional event that involves transition editing of the translation stop 

in exon 2 (Appendix 5).  The presence of a premature stop signal within the human 

sperm RNA may represent a mechanism of translational control of the GnRHR-II 

during spermatogenesis, whereby transcripts produced during one stage are 

subsequently stored as inactive RNAs prior to their editing and translation at a later 

stage (Appendix 5).  There is a possibility that another mechanism may be involved 

in the production of a functional GnRHR-II ([Faurholm B et al., 2001] and Appendix 

5).  This would entail the incorporation of an unusual amino acid, selenocysteine, at 

the position of the translation stop to create an extended open reading frame 

([Faurholm B et al., 2001] and Appendix 5).  This possibility is strengthened by the 

fact that selenium, which is incorporated into selenocysteine, is supplied to the testis 

with an apparent priority over other tissues [Behne D et al., 1982].  Furthermore, it 
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has been established that selenium plays an important role during spermatogenesis 

and that the uptake thereof is under gonadotropin control [Wu ASH et al., 1979].  

Therefore, the UGA codon in the human GnRHR-II transcript may code for 

selenocysteine.  Although the functionality of the various human GnRHR-II 

transcripts remains to be tested, there is substantial evidence in the literature for a 

functional role for a GnRHR in human sperm [Morales P et al., 1994;  Morales P & 

Llanos M, 1996;  Morales P, 1998] (further discussed in Chapter 3).  The expression 

of functional GnRHR-II transcripts in human sperm could be part of the existing 

network of intratesticular or neuroendocrine hormonal regulation governing 

spermatogenesis [Dimeglio LA et al., 1998].  Although some of the above-mentioned 

functions could be mediated by the GnRHR-I, the expression of a functional GnRHR-

II protein in the testis and sperm would be consistent with these reports.  Recent 

results obtained by Maiti and co-workers further strengthened the case for the 

expression of a functional human GnRHR-II in reproductive tissue [Maiti K et al., 

2005].  Their findings suggested the existence of a GnRH-2 binding protein, in 

addition to the conventional GnRHR-I, in prostate cancer cells [Maiti K et al., 2005].  

Another study indicated that the human GnRHR-II plays a role in cell proliferation 

[Enomoto M & Park MK, 2004].  Thus, if the chromosome 1 GnRHR-II gene is not a 

pseudogene, transcripts of this gene could possibly be translated as a truncated, 

immunoreactive protein or edited to result in translation of a full-length protein, 

possibly containing selenocysteine ([Faurholm B et al., 2001] and Appendix 5).  

Further experiments using specific antibodies directed against domains encoded by 

sequences both 5’ and 3’ to the stop codon would be necessary to clarify whether a 

full-length or truncated GnRHR-II protein is expressed in sperm. 

 

Other reported findings of human GnRHR-II transcripts 

Subsequent to the start of this study, human GnRHR-II transcripts have been 

detected by others using either dot blotting with an exon 3-specific riboprobe for the 

sense transcript [Neill JD et al., 2001] or by Northern blotting using an exon-1 specific 

double-stranded DNA probe [Millar R et al., 2001] on selected polyA+ RNA tissue 

arrays.  Interestingly, the reported tissue distribution patterns differed, which may 

reflect the use of different probes.  Similar to this report, Millar R et al. [2001] have 

observed signals for exon 1 of the GnRHR-II in putamen, occipital lobe, cerebellum, 

caudate nucleus, and heart, amongst other tissues including other brain parts (see 

table 4). 
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Finding of GnRHR-II transcripts in vervet monkey and baboon 

The presence of RNA for a GnRHR-II in various vervet monkey and baboon tissues 

and cells has been demonstrated in this study, indicating the existence of genes for 

vervet monkey and baboon GnRHR-IIs.  However, a transcript containing the full 

coding region of a mammalian GnRHR-II could not be cloned.  While busy with these 

cloning attempts from vervet monkey RNAs including from COS-1 RNA, the finding of 

a cDNA containing all coding sequences of a mammalian GnRHR-II was reported by 

two independent laboratories, from rhesus monkey pituitary tissue and COS-1 cells 

[Neill JD et al., 2001;  Accession AF353988] as well as from marmoset monkey 

pituitary and brain [Millar R et al., 2001;  Accession AF368286].  One of these 

laboratories used the same antisense primer AS12 in their cloning attempts that was 

utilised in this study [Neill JD et al., 2001].  The inability to obtain the full-length cDNA 

from COS-1 RNA with AS12 in this study is therefore hard to explain, although, with 

the use of 3’ RACE on vervet monkey occipital lobe RNA it was indicated that the 

sequence of primer AS12 is not present in the vervet monkey cDNA at the expected 

position.  In addition, in this study, using 5’ RACE analysis on COS-1 and vervet 

monkey occipital lobe RNAs, novel 5’ sequence was obtained compared to the 

published vervet monkey GnRHR-II cDNA sequence (Accession AF353988).  From 

COS-1 and vervet monkey occipital lobe RNA, 34- and 92 bp novel 5’ UTR sequence 

was obtained compared to the published vervet monkey GnRHR-II cDNA sequence, 

respectively (Sequence no 2 & 5 in Appendix 4).  Furthermore, the sequence of the 

vervet monkey occipital lobe GnRHR-II transcript corresponded to the published 

vervet monkey GnRHR-II cDNA sequence (Accession AF353988) except for two nt 

differences, one in TM3 and the other in ECL2 (Sequence no 3 in Appendix 4).  

Since the occipital lobe and published COS-1 sequences were both derived from 

vervet monkey, these nt differences most likely indicated differences between 

individuals, i.e. between the GnRHR-II expressed in occipital lobe (this study) and in 

kidney cells (published sequence, Accession AF353988).  However, the possibility 

that these single nt differences originated from errors incorporated during the cDNA 

synthesis reaction cannot be excluded.  Both nt differences would result in the 

incorporation of a different amino acid compared to the published vervet monkey 

sequence if the occipital lobe sequence is translated. 

 

Characteristics of the monkey GnRHR-II 

In contrast to the mammalian GnRHR-Is, the monkey GnRHR-IIs possess C-terminal 

tails (similar to non-mammalian GnRHRs) and showed rapid desensitisation and 

internalisation, with concomitant receptor phosphorylation within the tails [McArdle 
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CA et al., 2002].  Similar to results obtained in this study, it was shown that the vervet 

monkey GnRHR-II mRNA contains a CGA arginine codon at the position where the 

human sequence contains a TGA stop signal within exon 2 (Accession AF353988, 

and results presented here), creating an extended open reading frame.  Furthermore, 

translation of the vervet monkey GnRHR-II mRNA is initiated by an unusual ACG 

threonine codon.  There are indeed reports of several non-AUG initiation codons, 

such as CUG, GUG, ACG, and AUU that are functionally active in viral and 

eukaryotic mRNAs [Sprengart ML & Porter AG, 1997].  Purines almost always 

occupy the -3 and/or +4 positions of these initiation sites.  In vertebrates, initiation at 

non-AUG sites of some mRNAs can also be stimulated in the presence of specific 

nucleotides located downstream of the initiation codon, preferentially G at +4, A or C 

at +5 and U at +6 [Sprengart ML & Porter AG, 1997].  The vervet monkey COS-1, 

occipital lobe and ejaculate GnRHR-II mRNAs indeed possess purines at -3 (COS-1 

has an A, occipital lobe has a G, and ejaculate has an A), C at +5 and U at +6 

(Sequence numbers 2, 5 and 6 in Appendix 4).  The published vervet monkey 

GnRHR-II cDNA sequence (Accession AF353988) was used to predict the site of 

initiation of translation in the human sperm cDNA sequence.  Interestingly, translation 

of the human cDNA would be predicted to initiate at an AUG methionine codon like 

most eukaryotic cDNAs, but the human start codon occurs in a different reading 

frame ([Faurholm B et al., 2001] and Sequence no 1 & 7 in Appendix 4).  Similarly, 

sequence analysis of the baboon pituitary RT-PCR product revealed that, unlike the 

vervet monkey GnRHR-II, translation of the putative baboon GnRHR-II most likely 

initiates with an AUG methionine codon, in the correct frame (Sequence no 7 in 

Appendix 4).  Overall, there is a 96.5% identity between the coding regions of the 

human and vervet monkey GnRHR-II cDNAs and a 92.9% identity at the amino acid 

level (Sequence no 1 in Appendix 4). 

 

Multiple GnRHR-II transcripts in vervet monkey and baboon 

In vervet monkey occipital lobe RNA the presence of multiple GnRHR-II amplicons 

was indicated.  These include an amplicon containing exons 1 and 2 as well as a 116 

bp insert between the two exons, with a resultant shift in the reading frame 

(Sequence no 4 in Appendix 4).  Another amplicon, containing exons 2 and 3 with a 

447 bp insert between the two exons in-frame, was obtained from vervet monkey 

occipital lobe RNA.  A third amplicon, containing exon 2 but lacking exon 1, was also 

found.  The finding of this exon 1-less transcript indicated that the vervet monkey 

GnRHR-II gene is, like its human counterpart, transcribed in the antisense 

orientation.  From vervet monkey ejaculate RNA a GnRHR-II amplicon containing the 
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full coding region, including the translation start and stop as well as partial sequence 

of the 5’ and 3’ UTRs, was cloned (Sequence no 6 in Appendix 4).  This amplicon 

contained an insert of 447 bp between exons 2 and 3 in frame, similar to what was 

found in vervet monkey occipital lobe RNA.  The length of the 447 bp insert between 

exons 2 and 3 of the vervet monkey ejaculate and occipital lobe transcripts as well as 

the 448 bp insert between exons 2 and 3 of the baboon pituitary transcript would 

correspond to the size of intron 2 of the human GnRHR-II gene ([Millar RP et al., 

1999] and results presented here). 

 

From baboon cerebellum and pituitary RNAs, RT-PCR products were amplified that 

contained exons 1 and 3 of a putative GnRHR-II but lacked exon 2, with a resultant 

shift in the reading frame between the two exons (Sequence numbers 4 & 7 in 

Appendix 4).  The omitted exon 2 would translate to ECL2 and TM5.  The exon 2-

less variant seemed to be abundantly and ubiquitously expressed and may mask the 

amplification of the 3-exon fully processed transcript if the latter exists in baboon.  

Where the baboon transcripts did contain exon 2, exon 1 was absent and there was 

an additional insert between exons 2 and 3, as demonstrated in baboon pituitary 

RNA (Sequence no 8 in Appendix 4).  Furthermore, from baboon temporal lobe RNA 

a GnRHR-II transcript was cloned that contained exon 2 but lacked exon 1.  Taken 

together, the presence of numerous GnRHR-II transcripts is indicated in vervet 

monkey and baboon RNAs although a GnRHR-II cDNA containing the full three 

exons and which has been fully processed could not be isolated from the tissues and 

cells that were examined.  To the best knowledge of the author, this is the only report 

of an extensive study of the various GnRHR-II transcripts expressed in mammals, 

and also the only reported finding of GnRHR-II transcripts in baboon. 

 

The presence of vervet monkey and baboon transcripts containing inserts between 

exons 2 and 3 suggests that the vervet monkey and baboon GnRHR-II genes are 

transcribed in the antisense orientation, similar to what was found in humans.  

Whether they are indeed the results of antisense transcription or rather originating 

from pre-mRNAs containing intron 2, in the sense orientation, remains to be shown.  

Seeing that the insert between exons 2 and 3 lies within, or disrupts, ICL3 (Sequence 

numbers 5 & 8 in Appendix 4), it is possible that it possesses an important function in 

GnRHR-II signalling.  According to Bockaert & Pin the function of splicing with 

insertions localised at ICL3 is to modify or regulate the specificity and intensity of 

GPCR coupling to G proteins [Bockaert J & Pin JP, 1999].  This would suggest that 

GnRHR-II transcripts (in the sense orientation) containing an insert between exons 2 



 70

and 3 are functional.  It is possible that functionality of insert-containing transcripts 

depends on the presence of exon 1.  Hence, the vervet monkey ejaculate transcript 

was particularly interesting because of the presence of exon 1. 

 

Whether the exon 2-less GnRHR-II transcripts found in baboon pituitary and 

cerebellum RNAs encode functional GnRHR-II proteins that are capable of 

responding to GnRH stimulation is questionable, especially in view of the fact that the 

domain namely ECL2 that is responsible for receptor stabilisation is absent.  ECL2 

has been shown to be involved in the formation of disulfide bonds between cysteine 

residues in the N terminus and/or TM1 of the folded GnRHR protein [Davidson JS et 

al., 1997].  However, a deletion in ECL2 does not affect the human GnRHR-I function 

[Ott TR et al., 2002] or that of the Xenopus laevis GnRHR-II [Gault PM et al., 2004;  

Accession AF257320].  There are also reports of GPCRs other than the GnRHR that 

consist of “split” fragments i.e. complimentary TMs from different proteins that are 

constituted together to form a functional receptor that can efficiently couple to G 

proteins [Gudermann T et al., 1997;  Bockaert J & Pin JP, 1999].  Furthermore, 

polypeptide sequences encoded by two different reading frames of the mRNA may 

be fused by frame shifting.  Examples have been found in MS2 bacteriophage RNA 

as well as retroviral mRNAs such as HIV-1 [Melcher U, 2001].  Thus, there is a 

possibility that the above-mentioned baboon GnRHR-II fragments are indeed 

translated into functional membrane receptors.  GnRHR transcripts of various lengths 

other than full-length or transcripts that are not fully processed are not uncommon 

and have been reported in numerous species, for both the GnRHR-I and the 

GnRHR-II (table 5). 
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Table 5.  Examples of transcripts for the GnRHR other than full-length, fully 

processed in various species. 
Species GnRHR 

subtype 

Transcript identity Reference 

Mouse GnRHR-I • Exons 1 & 3 but lacks exon 2, resulting in a shift in 

the reading frame between the two exons. 

• Exons 1 & 2 but lacks exon 3 and with a 700 bp 

insert past the exon 2 splice donor. 

[Zhou W & Sealfon SC, 

1994]. 

Bull frog GnRHR-I, 

-II and -III 
• Partial intron retention or partial exon skipping with a 

resultant shift in the reading frame and the 

introduction of a premature stop signal. 

[Wang L et al., 2001b]. 

Rainbow 

trout 

GnRHR-I • Exons 1 & 2, which may encode a truncated protein 

corresponding to the N-terminus plus TMs 1 to 5. 

[Madigou T et al., 2000]. 

Rat GnRHR-I • Intron 1 retained. [Botté M-C et al., 1998]. 

Human GnRHR-I • Exons 1 & 3 but lacks exon 2, resulting in a frame 

shift as well as a premature stop signal. 

• Intron 1 retained. 

• Partial deletion of exon 2 (128 bp or 220 bp deleted). 

[Silveira LFG et al., 

2002;  Seeburg PH & 

Adelman JP, 1984;  

Dong KW et al., 1993;  

Dong KW et al., 1997;  

Grosse R et al., 1997]. 

Human GnRHR-II • Partial deletion of exon 1. [Morgan K et al., 2003]. 

 

Two important questions arise namely what the origin of these alternative GnRHR 

transcripts is and what their possible function(s) are.  One major contributing factor is 

the fact that GnRHR genes contain introns, which allow for alternative splicing.  

Furthermore, the existence of multiple transcription initiation sites and 

polyadenylation signals in the 5’ and 3’ ends of the GnRHR genes, respectively, 

facilitates the production of various transcripts with different lengths [Fan NC et al., 

1995].  In general, one of the functions of alternative splicing of mRNA transcripts is 

to expand the range of protein products from a single gene locus [Burgess HA & 

Reiner O, 2002].  Different combinations of exons can be spliced together to produce 

different mRNA isoforms of a gene, encoding structurally and functionally different 

proteins [Gilbert W, 1978].  Thus, it is possible that the alternative human, baboon 

and vervet monkey GnRHR-II transcripts reported on in this study encode functional 

receptors possessing alternative functions.  Another possible result of alternative 

processing of GnRHR mRNAs is the production of functional truncated proteins, as 

described above [Ling K et al., 1999;  Sugita S et al., 1998].  It is also possible that 

the truncated receptors interfere with the function of the wild type receptor.  In fact, 

alternative mRNA splicing is a commonly used strategy to create a functionally 

diverse pool of gene products derived from a single gene, which is recognised as an 
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important mechanism for the regulation of the wild type receptor function [Rueter SM 

et al., 1999;  Belaguli NS et al., 1999].  One example is the human pituitary GnRHR-I 

splice variant that contains a 128 bp deletion between nucleotide positions 522 and 

651, which forms part of exon 2, resulting in the interference of GnRH-1 binding to 

the wild type receptor and thereby inhibiting signalling through the wild type [Grosse 

R et al., 1997].  Furthermore, when co-expressed with the wild type receptor, this 

truncated protein caused impaired insertion of the wild type into the plasma 

membrane [Grosse R et al., 1997].  Similarly, in the bull frog, GnRHR transcripts that 

contain intronic sequence are expressed at levels comparable to the wild type 

receptor but exhibited a very low binding affinity to GnRH and did not induce signal 

transduction in response to GnRH treatment [Wang L et al., 2001b].  Co-transfection 

of the bull frog variant GnRHR transcripts with the wild type receptor lead to the 

inhibition of wild type receptor-mediated signalling [Wang L et al., 2001b].  It has 

been suggested that the variant proteins interact physically with the wild type 

receptor protein [Wang L et al., 2001b]. 

 

Indeed, new data from Pawson AJ et al. [2005] indicated a role for a human 

chromosome 1 GnRHR-II fragment as inhibitor of GnRHR-I function.  These authors 

expressed a protein corresponding to the domains from the cytoplasmic end of TM5, 

ICL3, TM6, ECL3, TM7 and the C-terminal tail of the putative human GnRHR-II in 

COS-7 cells.  This protein (designated as the GnRHR-II-reliquum) is the result of 

usage of a putative translational start codon 117 bp downstream of the premature 

stop signal in exon 2 (AUG, at +654, see Sequence no 1 in Appendix 4 and figure 

22) [Pawson AJ et al., 2005].  The expressed GnRHR-II-reliquum was localised 

throughout the cytoplasm but appeared not to be significantly inserted into the cell 

plasma membrane.  Co-expression of the GnRHR-I and the GnRHR-II-reliquum in 

COS-7 cells resulted in reduced expression of the GnRHR-I as well as impaired 

signalling via the GnRHR-I (as revealed by reduction of GnRH-induced IP 

accumulation) [Pawson AJ et al., 2005].  This inhibitory effect was found to be 

specific for the tail-less GnRHR-I since the GnRHR-II-reliquum exerted no inhibitory 

action on the chicken GnRHR-I that possesses a C-terminal tail [Pawson AJ et al., 

2005].  The reduction in GnRHR-I numbers is thought to be exerted at the 

endoplasmic reticulum or Golgi apparatus level, possibly by perturbing the normal 

processing of GnRHR-I from these sites or enhancing GnRHR-I degradation 

[Pawson AJ et al., 2005].  These results would thus be consistent with the view that 

the GnRHR-II-reliquum plays a modulatory role in GnRHR-I expression.  Pawson AJ 

et al. [2005] proposed a mechanism whereby expression of the GnRHR-I is inhibited 



 73

by the GnRHR-II-reliquum, based on the findings of Grosse R et al. [1997] that a C-

terminal protein fragment, corresponding to TM6 and TM7, was able to interact with 

the TM1 through TM5 fragment to produce a functional receptor.  They suggested 

that the GnRHR-II-reliquum may similarly interact, via interhelical interactions, with 

the GnRHR-I and lead to an unstable or misfolded receptor complex that would be 

prevented from onward processing and/or undergo defective intracellular transport 

from the endoplasmic reticulum, or enhanced degradation [Pawson AJ et al., 2005].  

Although expression of the GnRHR-II-reliquum has not been detected in vivo, the 

presence of a putative start codon downstream of the premature stop would suggest 

that synthesis of a GnRHR-II-reliquum is possible, should this be used as a 

translational start site.  Indeed, any mRNA transcript derived from the chromosome 1 

GnRHR-II gene, in which intron 2 has been spliced out, would lead to translation and 

synthesis of the GnRHR-II-reliquum, should the downstream start site be used by the 

translation machinery.  Such transcripts (i.e. in which intron 2 has been spliced out) 

are present in humans as have been demonstrated in the present study and by 

others [Morgan K et al., 2003]. 

 
 
Fig 22.  Generation of the GnRHR-II-reliquum as demonstrated by Pawson AJ et al. 

[2005].  The structure of the full-length coding region of the GnRHR-II gene 
on chromosome 1 is shown.  Exons are indicated as boxes.  TMs 1 to 7 
(numbered black boxes) and the extracellular N-terminus and cytoplasmic 
C-terminal tail of the putative GnRHR-II are indicated.  The position of the 
frame shift (FS), in-frame premature translation stop signal (TGA between 
TM4 and TM5) and putative translation start site (ATG in TM5, 117 bp 
downstream of the premature stop) are indicated.  The GnRHR-II-reliquum 
open reading frame was PCR amplified using primer pair E & X and 
subcloned into a FLAG-tagged mammalian expression vector.  The 
corresponding GnRHR-II-reliquum protein domains are depicted 
schematically (taken from Pawson AJ et al. [2005]). 
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The variation in mRNA splicing is likely to be both species- and tissue-specific.  In 

human pituitary, for example, the full-length GnRHR-I as well as two variant 

transcripts with internal deletions are expressed, whereas in the testis the full-length 

and one of the two shortened transcripts are expressed but only the full-length 

transcript is found in breast tissue [Kottler ML et al., 1999].  Interestingly, the number 

of tissue-specific alternative splice forms has been found to be the highest in the 

brain [Xu Q et al., 2002].  Physiological conditions may also play a role in the 

differential expression of GnRHR splice variants, as is indicated for the bull frog 

GnRHR where the ratio between different splice variants change together with a 

change of season [Wang L et al., 2001a].  Taken together, it seems that regulation of 

mRNA splicing may introduce an additional level of control of GnRHR expression. 

 

Alternative splicing may occur in a very large fraction of human genes (35% to 59%), 

suggesting a major role for alternative splicing in the production of functional 

complexity in the human genome [Xu Q et al., 2002].  This implies extensive 

regulation of alternative splicing, so that it displays strong specificity to a particular 

tissue or developmental stage, modulating the functional characteristics of protein 

isoforms in specific tissues.  It seems as if this is indeed the case for the GnRHR (-I 

and -II).  While the current study as well as studies performed by a number of others 

showed the presence of various alternative human GnRHR-II transcripts, a transcript 

that does not need some kind of alteration or editing to encode a full-length functional 

protein has not been found.  It is possible that such a transcript exists only under 

certain physiological conditions, which are presently unknown, or does not exist at 

all. 

 

The study of GnRHRs has been hampered by the unavailability of antibodies that 

discriminate between the GnRHR-I and GnRHR-II subtypes.  Such antibodies would 

be especially helpful to detect whether humans express a functional GnRHR-II 

protein, and, if they do, in which tissues or cells.  This could contribute greatly to the 

eventual understanding of the physiology of the two receptor subtypes and lead to 

the development of drugs to target GnRHR-related ailments specifically and with 

greater success.  However, the fact that most of the GnRHR protein is buried in the 

cell membrane makes it difficult to purify the receptor from the membrane in an active 

form for production of antibodies to the native protein. 
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CHAPTER 3 
 
 

DISTRIBUTION OF TRANSCRIPTS FOR 
GnRH-1, GnRH-2, THE GnRHR-I AND THE GnRHR-II 

IN HUMAN AND MONKEY EJACULATE 
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Background 
 

Substantial evidence exists for extrapituitary functions of GnRH in addition to its well-

known gonadotropin-releasing role in the pituitary [Cheng CK & Leung PC, 2005].  

Many of the extrapituitary actions of GnRH involve tissues and cells of the 

reproductive system, such as the ovary, uterus, placenta, testis as well as developing 

and mature sperm (see table 2 in Chapter 1).  Furthermore, by comparison of tables 

1 and 2 (Chapter 1) it is evident that the GnRHR-I is often co-expressed with GnRH-1 

and/or GnRH-2, or expressed by adjacent tissues or cells.  This suggests local 

actions of GnRH-1 and GnRH-2 as autocrine and/or paracrine regulators in 

extrapituitary tissues. 

 

Evidence exists for a direct role of GnRH-1 in spermatogenesis, sperm maturation 

and fertilisation [Kangasniemi M et al., 1996;  Morales P, 1998;  Morales P et al., 

2000].  For example, when human sperm aliquots were incubated with the zona 

pellucida (ZP), which is the extracellular coat of an egg, it was found that the number 

of sperm that bound to the ZP increased three-fold in the presence of GnRH-1 (20 

nM) compared to a saline control [Morales P, 1998;  Morales P et al., 2000].  

Furthermore, the effects of GnRH-1 upon sperm-zona binding could be inhibited by 

GnRH-1 antagonists [Morales P et al., 2000], indicating that a GnRH-1 receptor is 

involved.  Likewise, a GnRH-1 antagonist was found to be able to suppress mouse 

spermatogenesis in vivo [Kangasniemi M et al., 1996]. 

 

These observations imply that human and mouse sperm express receptors for 

GnRH-1 on their cell surface.  Since GnRH-1 can bind to and signal via both the 

GnRHR-I and the GnRHR-II [McArdle CA et al., 2002], any one of the two receptor 

subtypes or both may be expressed in mature mammalian sperm.  A single 

immunohistochemical study has indicated that the GnRHR-I protein is localised in the 

acrosomal region of human sperm [Lee CY et al., 2000].  Results of the present 

study revealed that GnRHR-II transcripts are present in human sperm and in monkey 

ejaculate (Chapter 2).  Others have demonstrated the presence of the GnRHR-I in 

human testis by RT-PCR [Moumni M et al., 1994;  Petersson F et al., 1989;  Clayton 

RN et al., 1980;  Sharpe RM & Fraser HM, 1980].  Further support for the actions of a 

local GnRHR by binding of locally produced GnRH in mammalian sperm comes from 

the fact that the levels of hypothalamic GnRH in circulation are too low to have 

effects on extrapituitary tissues [Nett TM et al., 1974].  Besides this, GnRH has a 

short half-life [Eskay RL et al., 1997;  Hsueh AJW & Jones PBC, 1981].  Therefore, 
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GnRH produced locally and present in the fallopian tube, where sperm and oocytes 

are deposited to form zygotes [Casañ EM et al., 2000], might be responsible for 

increased sperm-ZP binding during fertilisation in vivo.  Similarly, GnRH produced 

locally in the testis or sperm may possibly orchestrate the effects of GnRH in 

spermatogenesis and sperm maturation.  Indeed this is supported by the detection a 

number of years ago of GnRH-1 and GnRH-like molecules in human seminal plasma 

[Izumi S-I et al., 1985;  Sokol RZ et al., 1985]. 

 

Taken together, it appears likely that human sperm expresses a local GnRH/GnRHR 

system.  Whereas data from this and other studies have suggested the presence of 

GnRH-1, the GnRHR-I and the GnRHR-II in human sperm, it has not been 

established whether GnRH-2 is expressed in mammalian sperm.  Also, to the 

author’s knowledge there are no reports of the presence of GnRHR-I mRNA as 

detected by RT-PCR amplification in mammalian sperm.  Furthermore these 

observations of the presence of GnRH-1 and the GnRHR (-I and/or -II) in human 

sperm were made at different times and in independent laboratories.  Therefore, the 

focus of the present study was to determine in a single study, by RT-PCR, whether 

transcripts for GnRH-1 and/or GnRH-2 and the two GnRHR subtypes are found in 

human and vervet monkey ejaculate.  The results of such a study could be very 

significant in the reproductive field, especially since a role for GnRH has been 

indicated in mammalian fertilisation. 
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Aim 

 

To determine within a single study whether transcripts for GnRH-1, GnRH-2, the 

GnRHR-I and the GnRHR-II are expressed in human and/or monkey ejaculate, with 

the use of the techniques of RT-PCR, Southern blotting and sequencing. 
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Experimental 
 
Animals and cells 

Human and vervet monkey ejaculate were freshly obtained from the Andrology 

Department, Groote Schuur hospital (Cape Town, South Africa) and from the MRC at 

Tygerberg (Bellville, South Africa), respectively, kept at rt and used within a few 

hours for RNA isolation.  Each ejaculate sample was pooled from several male 

donors.  Adult human hypothalamic and pituitary tissue was obtained from the Salt 

River Mortuary (Cape Town, South Africa) after approval from the Medical Ethics 

Committee at the University of Cape Town Medical School (Cape Town, South 

Africa).  The tissues were snap frozen in liquid nitrogen and stored at -80°C until later 

use.  MCF-7 human breast cancer and COS-1 monkey kidney cells were kept in 

culture at 37°C in DMEM containing 1% v/v PenStrep and supplemented with 10% 

FBS, under 5% CO2. 

 

RNA preparation and cDNA synthesis 

Total RNA was isolated from human and monkey ejaculate by CsCl-guanidinium 

isothiocyanate ultracentrifugation and from human pituitary, human hypothalamus, 

and MCF-7, LβT2 and COS-1 cells according to the TRI-reagentTM protocol and 

subjected to a DNaseI treatment as previously described (Chapter 2).  cDNAs used 

as templates for RT-PCR were prepared from 1 μg of denatured total RNA using 500 

ng random hexamer primers (Promega) and 1 μℓ ImProm-IITM reverse transcriptase 

(Promega) in a 20 μℓ reaction volume with incubation at 42°C for 60 min. 

 

RT-PCR, Southern blot and sequence analyses 

RT-PCR reactions were performed using 10 μℓ cDNA in a 50 μℓ reaction volume as 

previously described (Chapter 2), with the inclusion of 5% DMSO in the reaction 

make-up.  Primer sets were designed such that the PCR extended over more than 

one exon.  Primers were mainly human-specific but in some instances corresponded 

to the mouse or vervet monkey gene sequence(s) (refer to Appendices 1 to 3).  

Schematic representations of the GnRH-1, GnRH-2, GnRHR-I and GnRHR-II cDNAs, 

with the relative positions of the primers indicated, are shown within the Results 

section of this chapter (figures 25 & 26).  A control PCR reaction was routinely 

performed using primers designed to the mouse β-actin housekeeping gene, as 

previously described (Chapter 2).  The cycle conditions for PCR were the same as 

previously described (Chapter 2), with annealing temperatures ranging between 50°C 
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and 60°C (Appendix 2).  RT-PCR products were separated by electrophoresis, 

subjected to Southern blot analysis, cloning and sequencing as described previously 

(Chapter 2). 
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Results 
 

Total RNA was isolated from human and vervet monkey ejaculate and used in RT-

PCR with a series of gene-specific primers for GnRH-1, GnRH-2, the GnRHR-I and 

the GnRHR-II.  Integrity of total RNA preparations was confirmed by gel 

electrophoresis (not shown) as previously described (Chapter 2).  Quality of cDNA 

preparations was determined by a control PCR using primers specific for the β-actin 

gene to amplify a 317 bp exon 2-3 fragment (see figure 24).  Parallel positive control 

RT-PCRs were performed on RNAs isolated from tissues that had previously been 

shown to express the relevant genes.  In addition, negative control RT-PCRs were 

performed where indicated on RNAs isolated from tissues that do not express the 

relevant genes.  The use of primers spanning introns was used to control for genomic 

DNA contamination.  Furthermore, the use of a laminar flow cabinet and dedicated 

PCR pipettes for setting up of reactions would make contamination of cDNA 

templates or reagents by plasmids an unlikely event.  This is supported by the finding 

that, of the samples analysed in parallel for the presence of intronless GnRH or 

GnRHR transcripts, using the same reagents, most did not show positive signals 

(figures 27, 29, 31 and results not shown).  The specificity of RT-PCR products of the 

expected size was confirmed by Southern blot analysis followed by isolation and 

sequencing to finally confirm the identity of the amplicons. 
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M1 100 bp ladder molecular weight marker (0.65 μg, Promega) 
1 Human pituitary  
2 Human ejaculate 
3 Vervet monkey ejaculate 
4 MCF-7 cell 
5 LβT2 cell  
6 Human hypothalamus 
M2 EZ load molecular weight markers (6 μg, BIORAD) 

 

Fig 24.  Agarose gel visualisation of RT-PCR results on human and vervet monkey 

ejaculate RNA and control RNAs using β-actin primers:  indications that the 

cDNA synthesis reactions were successful.  The position and size of the 

appropriate amplicon as well as some of the positions and sizes of the 

molecular weight markers are indicated. 

 

To be able to better understand the strategy of and the results obtained in the GnRH 

and GnRHR RT-PCRs, two schematic diagrams are included that show the relevant 

positions of the primers utilised (figures 25 & 26).  Furthermore, a detailed description 

of the primer positions and design can be found in Appendices 1 to 3. 
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See Figure 25 in “Separate Figures” folder on CD 
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See Figure 26 in “Separate Figures” folder on CD 
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Distribution of transcripts for GnRH-1 and GnRH-2 in human and vervet 

monkey ejaculate RNA 

The distribution of GnRH-1 transcripts in human and vervet monkey ejaculate RNA 

was investigated using GnRH-1-specific primers H1S1 & H1AS1 (figure 25).  RNA 

isolated from human hypothalamus tissue was included as a positive control.  The 

expected size of a H1S1-H1AS1 amplicon is 387 bp if the mRNA is fully processed.  

In human ejaculate RNA, the presence of transcripts for GnRH-1 was revealed by the 

successful amplification of the 387 bp H1S1 & H1AS1 amplicon (figure 27, lane 2).  

Furthermore, specificity of this 387 bp product was confirmed by Southern blot 

analysis using an internally nested and exon 2-specific oligonucleotide, H1S2 (figure 

28, lane 2).  In monkey ejaculate RNA the 387 bp product was not visible in the 

photograph of the agarose gel (figure 27, lane 3) yet a very faint band could be seen 

on the Southern blot at the expected position (figure 28, lane 3).  These results 

suggest that GnRH-1 is also expressed in vervet monkey ejaculate.  The absence of 

a band on the agarose gel may be due to a low efficiency of the reaction due to the 

use of the human-specific primer pair H1S1 & H1AS1 that could have a low 

sequence homology to the vervet monkey GnRH-1 cDNA.  Unfortunately, the vervet 

monkey GnRH-1 gene or mRNA sequences have not been published, but the GnRH-

1 gene sequence of the rhesus monkey is known (Accession X88795).  Comparison 

of the sequences of the human-specific GnRH-1 primers that were used with that of 

the rhesus monkey gene sequence revealed a 47.8% identity to one of the primers, 

H1S1 (used as the sense primer in RT-PCR).  The sequences of the other two 

primers, H1AS1 and H1S2, used as antisense primer in RT-PCR and as a probe in 

Southern blotting respectively, could not be recognised in the rhesus monkey gene. 

 

The human ejaculate 387 bp GnRH-1 amplicon was cloned and sequenced 

(Sequence no 9 in Appendix 4).  In parallel, partial sequence information was 

obtained from sequencing of the human hypothalamic positive control GnRH-1 

amplicon.  Comparison of the human ejaculate GnRH-1 sequence to the published 

GnRH-1 cDNA sequence (Accession X15215) revealed three nt differences between 

the two sequences (Sequence no 9 in Appendix 4).  One of the three nt differences, 

namely a “G” instead of a “C”, resulting in translation to a tryptophan (W) instead of a 

serine (S) in the human ejaculate sequence was also found in the human 

hypothalamus sequence (Sequence no 9 in Appendix 4).  This C-for-G substitution 

formed part of the signal peptide.  The other two alternative nucleotides formed part 

of GAP, and fell out of the frame of the obtained hypothalamic sequence.  Thus, the 
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human ejaculate and hypothalamus sequences were identical in the overlapping 

parts but differed from the published GnRH-1 cDNA sequence (Accession X15215). 

 

 
M 100 bp ladder molecular weight marker (0.65 μg, Promega) 
1 Human hypothalamus 
2 Human ejaculate 
3 Vervet monkey ejaculate 

 
Fig 27.  Agarose gel visualisation of RT-PCR results on human and vervet monkey 

ejaculate RNA:  attempts to determine whether transcripts for GnRH-1 are 

expressed.  Human hypothalamic RNA was included as positive control.  

Primer pair H1S1 & H1AS1, for the amplification of a 387 bp intronless exon 

2-4 amplicon was utilised in the RT-PCRs.  Some of the positions and sizes 

of the molecular weight markers are indicated to the left whereas the 

position and size of the appropriate amplicon is indicated to the right of the 

photographed gel picture. 
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 M 100 bp ladder molecular weight marker (0.65 μg, Promega) 
 1 Human hypothalamus 
 2 Human ejaculate 
 3 Vervet monkey ejaculate 

 

Fig 28.  Autoradiogram of the Southern blot of the gel shown in figure 27:  

demonstration that the human hypothalamus and ejaculate 387 bp 

amplicons are GnRH-1-specific and indication of the presence of GnRH-1 

transcripts in vervet monkey ejaculate.  The blot was probed with exon 2-

specific oligo H1S2.  All four lanes, including the marker lane, were 

probed.  The position and size of the appropriate amplicon are indicated 

to the right of the photographed autoradiogram. 

 

Similarly, the distribution of GnRH-2 transcripts in human and vervet monkey 

ejaculate RNA was determined by RT-PCR using the primer pair H2S1 & H2AS2 

(figure 25) that is expected to produce a processed amplicon of 389 bp, 368 bp or 

365 bp from human RNA templates.  In human ejaculate RNA, the presence of 

transcripts for GnRH-2 was revealed by the successful amplification of a 368 bp 

H2S1 & H2AS2 amplicon (figure 29, lane 1).  Furthermore, specificity of this 368 bp 

product was confirmed by Southern blot analysis using an internally nested and exon 

3-specific oligonucleotide, H2AS1 (figure 30, lane 1).  Likewise, a GnRH-2 amplicon 

of the expected size was obtained in vervet monkey ejaculate RNA, as was faintly 

evident on a Southern blot (figure 30, lane 2) although not visible on an agarose gel 

(figure 29, lane 2). 

 

The human ejaculate 368 bp GnRH-2 amplicon was cloned and sequenced 

(Sequence no 10 in Appendix 4).  A consensus sequence was derived from three 

clones, which correlated with the sequence of the published human GnRH-2 variant 

3 mRNA (Accession NM_178331).  This variant utilises an alternative in-frame splice 

site compared to the longest variant, variant 1, so that a stretch of 21 nt is excluded 

from the mRNA.  This missing region contains the first 21 nt of exon 3 (see 
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Sequence no 10 in Appendix 4 for a comparison of the cloned human ejaculate 

GnRH-2 cDNA sequence with the published GnRH-2 variant 1 sequence (Accession 

NM_001501)).  The missing 21 nt correspond to the last two amino acids of the Pro-

Gly-Arg (PGR) processing site of the GnRH-2 preprohormone as well as the first five 

amino acids of GAP (see figure 1 in Chapter 1 & Sequence no 10 in Appendix 4).  

The vervet monkey ejaculate GnRH-2 amplicon could not be cloned and 

subsequently sequenced due to its low yield. 

 
 M1 EZ load molecular weight markers (6 μg, BIORAD)   
 1 Human ejaculate 
 2 Vervet monkey ejaculate 
 3 MCF-7 cell 
 M2 100 bp ladder molecular weight marker (0.65 μg, Promega) 

 

Fig 29.  Agarose gel visualisation of RT-PCR results on human and monkey 

ejaculate RNA:  attempts to determine whether transcripts for GnRH-2 are 

expressed.  RNA isolated from MCF-7 human breast cancer cells was 

included as negative control.  Primer pair H2S1 & H2AS2, for the 

amplification of a 368 bp or 350 bp intronless amplicon from human and 

vervet monkey, respectively, was utilised in the RT-PCRs.  Some of the 

positions and sizes of the molecular weight markers are indicated to the 

left whereas the position and size of the appropriate amplicon is indicated 

to the right of the photographed gel picture. 
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M1 EZ load molecular weight marker (6 μg, BIORAD) 
1 Human ejaculate 
2 Vervet monkey ejaculate 
3 MCF-7 cell 
M2 100 bp ladder molecular weight marker (0.65 μg, Promega) 
 

Fig 30.  Autoradiogram of the Southern blot of the gel shown in figure 29:  

demonstration that the human ejaculate 368 bp amplicon is GnRH-2-

specific and indication of the presence of GnRH-2 amplicons in vervet 

monkey ejaculate.  The blot was probed with exon 3-specific oligo H2AS1.  

All three lanes, including the marker lane, were probed.  The position and 

size of the appropriate amplicon is indicated to the right of the 

photographed autoradiogram.  The “bubble”-like appearance in figure 30, 

lane 1 is possibly the result of a trapped air bubble when the membrane 

was wrapped in cling film. 

 

Distribution of transcripts for GnRHR-I and GnRHR-II in human and vervet 

monkey ejaculate RNA 
Three different sets of primers were used to determine the distribution of GnRHR-I 

transcripts in human and vervet monkey ejaculate RNA, namely R1S2 & R1AS1;  

R1S1 & R1AS2 and R1S0 & R1AS2 (figure 26).  The expected sizes of GnRHR-I 

amplicons using these primer pairs are 396 bp (R1S2-R1AS1, exon 1-2), 909 bp 

(R1S1-R1AS2, exons 1-3) and 948 bp (R1S0-R1AS2, exon 1-3) if the mRNA is fully 

processed.  RNA isolated from human pituitary tissue served as a positive control for 

the GnRHR-I RT-PCR.  Photographs of the agarose gels containing results of the 

R1S2 & R1AS1 (396 bp) and R1S1 & R1AS2 (909 bp) RT-PCRs are shown.  As 

expected, the appropriate size amplicons were obtained from human pituitary RNA 

(figure 31, A & B, lane 1) and confirmed to be GnRHR-I-specific by Southern blot 
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analysis using internally nested exon 1-specific oligo R1S3 (figure 32, A & B, lane 1).  

In human ejaculate RNA, the presence of transcripts for the GnRHR-I was revealed 

by the successful amplification of the 396 bp exon 1-2 amplicon using primer pair 

R1S2 & R1AS1 (figure 31, A, lane 2), which was confirmed to be GnRHR-I-specific 

by Southern blot analysis (figure 32, A, lane 2) and by sequencing (Sequence no 11 

in Appendix 4).  Surprisingly, none of the other two GnRHR-I-specific primer pairs 

designed to amplify an almost full-length transcript produced bands of the expected 

size in human ejaculate RNA as visualised on an agarose gel (figure 31, B, lane 2 

and results not shown).  However, an extremely faint exon 1-3 R1S1 & R1AS2 band 

(909 bp) was visible on the Southern blot at the expected position (figure 32, B, lane 

2).  Cloning of this larger human ejaculate product was not pursued due to low 

abundance (it could not be seen on the agarose gel).  In monkey ejaculate RNA an 

RT-PCR product of the expected size (396 bp) using the exon 1-2 GnRHR-I-specific 

primer pair R1S2 & R1AS1 could not be seen on an agarose gel (figure 31, A, lane 

3).  However, an extremely faint band was visible on the Southern blot at the 

expected position (figure 32, A, lane 3).  Sequence analysis revealed that this 

amplicon did not contain GnRHR-I sequence (sequencing data not shown), which 

suggests that the GnRHR-I is not expressed in vervet monkey ejaculate.  However, it 

could be that the primers utilised are not homologous enough to the vervet monkey 

GnRHR-I, since, although the sequences of both primer R1S2 and primer R1AS1 are 

identical to the published bonnet monkey pituitary GnRHR-I mRNA sequence 

(Accession AF156930), they may differ from the (as yet unpublished) vervet monkey 

GnRHR-I sequence.  None of the other GnRHR-I primer combinations produced RT-

PCR products that were visible on an agarose gel or on a Southern blot from vervet 

monkey ejaculate RNA (for example, see figures 31 & 32, B, lane 3).  Interestingly, 

no product was obtained from LβT2 mouse pituitary gonadotrope RNA using primer 

pair R1S1 & R1AS2 (figures 31 & 32, B, lane 4).  The inability to amplify GnRHR-I 

fragments from RNA isolated from these cells strengthens the case for a compatibility 

problem of the human primers across other species, since it is well known that these 

cells do express the mouse GnRHR-I [Thomas P et al., 1996;  Turgeon JL et al., 

1996;  Alarid ET et al., 1996]. 
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M1 EZ load molecular weight marker (6 μg, BIORAD) 
1 Human pituitary 
2 Human ejaculate 
3 Vervet monkey ejaculate 
4 LβT2 mouse pituitary gonadotrope cell 
M2 100 bp ladder molecular weight marker (0.65 μg, Promega) 
 

Fig 31.  Agarose gel visualisation of RT-PCR results on human and vervet monkey 
ejaculate RNA:  attempts to determine whether transcripts for GnRHR-I are 
expressed.  Human pituitary RNA was included as positive control.  Primer 
pairs R1S2 & R1AS1 (A) and R1S1 & R1AS2 (B), for the amplification of a 
396 bp exon 1-2 or 909 bp exon 1-2-3 intronless amplicon, respectively, 
were utilised in the RT-PCRs.  Some of the positions and sizes of the 
molecular weight markers are indicated to the left whereas the position and 
size of the appropriate amplicon is indicated to the right of the 
photographed gel picture. 

 
 

 
 M1 EZ load molecular weight marker (6 μg, BIORAD) 
 1 Human pituitary     
 2 Human ejaculate   
 3 Vervet monkey ejaculate  
 4 LβT2 mouse pituitary gonadotrope cell 

M2 100 bp ladder molecular weight marker (0.65 μg, Promega) 
 

Fig 32. Autoradiogram of the Southern blot of the gel shown in figure 31:  
demonstration of the specificity of the GnRHR-I RT-PCRs.  The blots were 
probed with exon 1-specific oligo R1S3.  All four lanes of both blots, 
including the marker lanes, were probed.  The positions and sizes of the 
appropriate amplicons are indicated to the right of the photographed 
autoradiograms.  The “bubble”-like appearance in figure 32, A, lane 1 is 
possibly the result of a trapped air bubble when the membrane was 
wrapped in cling film. 
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An extensive study of the type and distribution of GnRHR-II transcripts in human and 

vervet monkey ejaculate RNA was performed and the results are discussed in full in 

Chapter 2 of this thesis.  However, some of the GnRHR-II RT-PCRs were repeated 

on the ejaculate RNAs in order to include them in a single study with GnRH-1, 

GnRH-2 and the GnRHR-I altogether, and the results obtained are briefly 

summarised here.  One of two GnRHR-II primer sets were used, namely S5 & AS10 

(542 bp exon 1-3, ECL1 to TM6) (human and vervet monkey ejaculate RNA) and/or 

S3 & AS13 (1262 bp exon 1-3, 5’ UTR to 3’ UTR) (vervet monkey ejaculate RNA) 

(figure 26).  In addition, parallel amplification using primer pair S5 & AS10 in RT-PCR 

on COS-1 cell RNA served as a positive control.  At the time when the initial study of 

the expression of GnRHR-II transcripts in human and vervet monkey ejaculate was 

performed (Chapter 2), a monkey GnRHR-II cDNA sequence was not yet published.  

However, in the mean time, GnRHR-II cDNAs were cloned from several monkey 

RNA sources, including from COS-1 cells and from rhesus and marmoset monkey 

brain and pituitary [Neill JD et al., 2001;  Millar R et al., 2001].  As a result, when the 

study of the distribution of GnRH and GnRHR transcripts in human and vervet 

monkey ejaculate was performed and some of the GnRHR-II RT-PCRs were 

repeated (results presented in this Chapter), RNA isolated from COS-1 cells could 

serve as a positive control (figures 33 & 34, lane 1).  The expected size of a fully 

processed exon 2-3 S5-AS10 amplicon is 542 bp, whereas the expected size of a 

fully processed vervet monkey S3-AS13 amplicon, which would contain the full 

coding region plus parts of the 5’ and 3’ UTRs, is 1262 bp.  In human ejaculate RNA 

the presence of a fully processed 542 bp S5-AS10 GnRHR-II amplicon was shown 

(figure 33, lane 2).  The specificity of this 542 bp amplicon was confirmed by 

Southern blot analysis with an internally nested exon 2-specific oligo S9 (figure 34, 

lane 2).  Sequence analysis of this human ejaculate GnRHR-II transcript revealed a 

single nt deletion within exon 1 as well as an in-frame translation stop signal within 

exon 2, and thereby questioning the functionality of the human transcript (Sequence 

no 1 in Appendix 4) (refer to Chapter 2 for a detailed discussion).  In vervet monkey 

ejaculate RNA the S5 & AS10 primer combination resulted in a band of the expected 

size (542 bp) that was faintly visible on an agarose gel (figure 33 lane 3) but clearly 

visible on the Southern blot (figure 34, lane 3).  Surprisingly, subsequent sequencing 

of this vervet monkey ejaculate 542 bp product revealed that it did not contain 

GnRHR-II-specific sequence.  The failure to obtain a vervet monkey ejaculate S5-

AS10 sequence could however be explained by the faintness of the vervet monkey 

amplicon on the agarose gel (figure 33, lane 3).  Background smearing is visible in 

the same lane (figure 33, lane 3), which could have hindered the purification of the 
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542 bp product from the agarose gel.  Nevertheless, a GnRHR-II-specific product of 

1729 bp was amplified from vervet monkey ejaculate RNA with the use of primer pair 

S3 & AS13 (not shown).  Sequence analysis of this 1729 bp amplicon revealed that 

an additional 447 nt, possibly retained intronic sequence, is inserted between exons 

2 and 3 (Sequence no 5 in Appendix 4).  These extra nucleotides do not change the 

reading frame but contain a number of in-frame premature translation stop signals 

(refer to Chapter 2 for a more detailed discussion).  Furthermore, larger size products 

(~1000 bp), possibly containing additional insert sequence between two exons, were 

obtained with S5 & AS10 apart from the expected 542 bp amplicon, as was evident 

on the agarose gel (figure 33, lane 1) and on a Southern blot (figure 34, lanes 1 & 3). 
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  M EZ load molecular weight marker (3 μg, BIORAD) 
  1 COS-1 cells 
  2 Human ejaculate 
  3 Vervet monkey ejaculate 
 

Fig 33.  Agarose gel visualisation of RT-PCR results on human and vervet monkey 
ejaculate RNA:  attempts to detect the expression of transcripts for GnRHR-
II within a single experiment together with GnRH-1, GnRH-2 and the 
GnRHR-I.  COS-1 RNA was included as positive control.  Primer pair S5 & 
AS10, for the amplification of an exon 1-2-3 542 bp intronless amplicon 
containing TMs 1 to 6, was utilised in the RT-PCRs.  Some of the positions 
and sizes of the molecular weight markers are indicated to the left whereas 
the position and size of the appropriate amplicon as well as that of a larger 
amplicon are indicated to the right of the photographed gel picture. 

 

 
 M EZ load molecular weight marker (3 μg, BIORAD) 
 1 COS-1 cells 
 2 Human ejaculate 
 3 Vervet monkey ejaculate 

 

Fig 34. Autoradiogram of the Southern blot of the gel shown in figure 33:  
demonstration that the human and vervet monkey ejaculate exon 1-2-3 542 
bp amplicons are GnRHR-II-specific.  The blot was probed with exon 2-
specific oligo S9.  All four lanes, including the marker lane, were probed.  
The position and size of the appropriate amplicon as well as that of a larger 
amplicon are indicated to the right of the photographed autoradiogram. 
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Discussion 
 
To the best knowledge of the author, this thesis reports on the first investigation into 

the distribution of transcripts for GnRH-1, GnRH-2, the GnRHR-I and the GnRHR-II 

in human and vervet monkey ejaculate. 

 
Expression of GnRH-1 and GnRH-2 in human and vervet monkey ejaculate 

It was shown by RT-PCR and sequencing that human ejaculate expresses 

transcripts for GnRH-1.  Although the full-length cDNA was not cloned, an amplicon 

was obtained from human ejaculate RNA that included sequence stretching from the 

signal peptide (exon 2) until the 3' UTR (exon 4), also containing the coding 

sequence of the mature peptide, QHWSYGLRPG.  A single nt difference as 

compared to the published human cDNA sequence (Accession X15215) was found in 

the human ejaculate GnRH-1 amplicon within the signal peptide sequence.  This 

same nt difference, which would result in the incorporation of a Trp (W), with its bulky 

aromatic side-chain, instead of a polar uncharged Ser (S) residue upon translation, 

was also evident in the sequence obtained from the human hypothalamus positive 

control RNA (Sequence no 9 in Appendix 4), suggesting that it is not the result of 

PCR or sequencing error(s).  Furthermore, two human ejaculate clones were 

sequenced and both contained the nt difference.  Two other nt differences, compared 

to the published sequence, were found within the GAP region of the human ejaculate 

GnRH-1 amplicon.  One of these would result in the incorporation of a different amino 

acid when the mRNA is translated, namely an uncharged Gly (G) instead of a 

negatively charged Glu (E), within the GAP sequence (Sequence no 9 in Appendix 4, 

at +170 relative to translation start).  The presence of three nt differences compared 

to the published sequence, which would result in the incorporation of two alternative 

amino acids in the human ejaculate GnRH-1 preprohormone, is likely due to 

variations between individuals.  Be that as it may, the incorporation of alternative 

amino acids in the GnRH-1 preprohormone does not affect the sequence of the 

mature decapeptide. 

 

Human ejaculate was also shown to also express transcripts for GnRH-2.  The 

obtained human ejaculate GnRH-2 amplicon was found to be 21 nt shorter in length 

compared to the sequence that had originally been deposited in GenBank (Accession 

NM_001501).  Human hypothalamus was also shown to express the same shorter 

variant transcript.  These results correspond to the findings of White RB et al. [1998] 

who, with the use of a different set of GnRH-2-specific primers, indicated the 
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existence of two transcripts, which differed in length by 21 nt, for GnRH-2 in humans.  

Furthermore, White RB et al. [1998] reported that both the shorter transcript and the 

longer variant that is extended at the 5’-end of exon 3 are expressed in human 

thalamus and foetal brain, but that human kidney only expresses the shorter GnRH-2 

variant.  This 5’ deletion of exon 3 results in a reduction in the predicted length of 

GAP from 84- to 77 amino acids [White RB et al., 1998].  The identity of the mature 

GnRH-2 peptide is however not affected.  It later became evident that three transcript 

variants that encode unique preprohormones but the same mature peptide hormone 

exist for GnRH-2 (Accession NM_001501, NM_178332 and NM_178331, 

respectively).  Of these, GnRH-2 variant 1 is the longest transcript and encodes the 

longest isoform “a”, whereas variants 2 and 3 both utilise an alternative in-frame 

splice site compared to variant 1, resulting in shorter isoforms “b” and “c”, 

respectively, compared to isoform “a”.  Splice variant 2 is 24 nt shorter and splice 

variant 3 is 21 nt shorter than splice variant 1.  Interestingly, the reading frame is the 

same for all 3 splice variants (see figure 35 for a comparison of the mRNA 

sequences of the three GnRH-2 variants).  The results presented here indicated that 

splice variant 3 is expressed in human ejaculate and hypothalamus.  The human 

ejaculate and hypothalamic sequences obtained were aligned to the database 

sequence of the longest GnRH-2 variant, variant 1, to indicate the position of the 

alternative splice junction that are utilised in ejaculate and hypothalamus (Sequence 

no 10 in Appendix 4).  The significance of the existence of three different GnRH-2 

preprohormones is presently unknown.  A possible explanation for their occurrence is 

the utilisation of different splice junctions in different tissues, due to the presence of 

tissue-specific factors.  In other words, there are three different ways in which exon 2 

can be spliced onto exon 3 (figure 35).  Statistically, all three GnRH-2 variants should 

be expressed at near-equal frequencies (figure 35).  It is however difficult to 

distinguish between amplicons that differ in only 21- or 24 bp from one another on an 

agarose gel.  From the Southern blot result showing a second band at a higher 

position (figure 30, lane 1) it would appear that variant 1 is also present in human 

ejaculate, but subsequent sequence analysis revealed that, in this study, transcripts 

containing variants 1 and 2 were not obtained from human hypothalamus and 

ejaculate RNAs. 
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> NM_001501 

GnRH-2 variant 1 (423 nt) 
Represents the longest transcript and encodes the longest isoform “a” 
 

  1 CTGCAGCTGC CTGAAGGAGC CATCTCATCC ACAGCTCTTC CTTGAGCAGC CATGGCCAGC 
 61 TCCAGGCGAG GCCTCCTGCT CCTGCTGCTG CTGACTGCCC ACCTTGGACC CTCAGAGGCT 
121 CAGCACTGGT CCCATGGCTG GTACCCTGGA GGAAAGCGAG CCCTCAGCTC AGCCCAGGAT 
181 CCCCAGAATG CCCTTAGGCC CCCAGGAAGG GCCCTGGACA CTGCAGCAGG CAGCCCAGTC 
241 CAGACTGCCC ATGGCCTCCC AAGTGATGCC CTGGCTCCCC TGGACGACAG CATGCCCTGG 
301 GAGGGCAGGA CCACGGCCCA GTGGTCCCTT CACAGGAAGC GACACCTGGC ACGGACACTG 
361 CTGACCGCAG CCCGAGAGCC CCGCCCCGCC CCGCCATCCT CCAATAAAGT GTGAGGTTCT 
421 CCG 

 
> NM_178332 
GnRH-2 variant 2 (399 nt) 
This variant uses an alternative in-frame splice site compared to variant 1, 
resulting in a shorter isoform “b” compared to isoform “a”. 
 

  1 CTGCAGCTGC CTGAAGGAGC CATCTCATCC ACAGCTCTTC CTTGAGCAGC CATGGCCAGC 
 61 TCCAGGCGAG GCCTCCTGCT CCTGCTGCTG CTGACTGCCC ACCTTGGACC CTCAGAGGCT 
121 CAGCACTGGT CCCATGGCTG GTACCCTGGA GGAAAGCGAG CCCTCAGCTC AGCCCAGGAT 
181 CCCCAGAATG CCCTTAGGCC CCCAGGCAGC CCAGTCCAGA CTGCCCATGG CCTCCCAAGT 
241 GATGCCCTGG CTCCCCTGGA CGACAGCATG CCCTGGGAGG GCAGGACCAC GGCCCAGTGG 
301 TCCCTTCACA GGAAGCGACA CCTGGCACGG ACACTGCTGA CCGCAGCCCG AGAGCCCCGC 
361 CCCGCCCCGC CATCCTCCAA TAAAGTGTGA GGTTCTCCG 

 
> NM_178331 
GnRH-2 variant 3 (402 nt) 
This variant uses an alternative in-frame splice site compared to variant 1, 
resulting in a shorter isoform “c” compared to isoform “a”. 
 

  1 CTGCAGCTGC CTGAAGGAGC CATCTCATCC ACAGCTCTTC CTTGAGCAGC CATGGCCAGC 
 61 TCCAGGCGAG GCCTCCTGCT CCTGCTGCTG CTGACTGCCC ACCTTGGACC CTCAGAGGCT 
121 CAGCACTGGT CCCATGGCTG GTACCCTGGA GGAAAGCGAG CCCTCAGCTC AGCCCAGGAT 
181 CCCCAGAATG CCCTTAGGCC CCCAGCAGGC AGCCCAGTCC AGACTGCCCA TGGCCTCCCA 
241 AGTGATGCCC TGGCTCCCCT GGACGACAGC ATGCCCTGGG AGGGCAGGAC CACGGCCCAG 
301 TGGTCCCTTC ACAGGAAGCG ACACCTGGCA CGGACACTGC TGACCGCAGC CCGAGAGCCC 
361 CGCCCCGCCC CGCCATCCTC CAATAAAGTG TGAGGTTCTC CG 

 
 
Fig 35.  Comparison of the three GnRH-2 mRNA variants.  Accession numbers and 

lengths of the transcripts are given.  Nucleotides are numbered from the 
transcription start and are colour-coded to indicate the result of alternative 
splicing of the pre-mRNA.  According to Padgett RA et al. [1986], vertebrate 
genes always have introns ending with “AG”.  The two alternative “AG” 
recognition sites that are utilised to create variants 2 and 3 are underlined in 
the variant 1 sequence. 

 
There are three different ways in which exon 2 can be spliced onto exon 3: 
(1) splicing of “CAG” onto “GAA” to create variant 1;  or 
(2) splicing of “CAG” onto “GCA” to create variant 2;  or 
(3) splicing of “CAG” onto “CAG” to create variant 3. 
The identities of the splice acceptor sites that are utilised are thus GA, GC or 
CA.  Fifty-five per cent (55%) of all vertebrate splice acceptors contain a “G” in 
the first position whereas 17% contain a “C”.  Twenty one per cent (21%) of all 
vertebrate splice acceptors contain an “A” in the second position whereas 20% 
contain a “C” [Padgett RA et al., 1986].  Thus, statistically, one would expect 
that the frequency of occurrence of the above-mentioned splice acceptor sites 
would be 
GA:  20% X 21% = 4.2% 
GC:  20% X 20% = 4.0% 
CA:  17% X 21% = 3.6% 
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Although it could not be confirmed by sequencing analysis that GnRH-1 transcripts 

are present in vervet monkey ejaculate, the presence of a signal at the expected 

position on a Southern blot suggests that GnRH-1 is also expressed in monkey 

ejaculate.  One possible explanation for the inability to detect GnRH-1 amplicons on 

an agarose gel for subsequent cloning and sequencing analyses in this study may be 

a low efficiency PCR reaction with the human-specific GnRH-1 primers.  

Alternatively, another possibility could be that vervet monkey ejaculate, in contrast to 

human ejaculate, does not express GnRH-1.  Likewise, a signal was detected in 

vervet monkey ejaculate RNA for GnRH-2 at the expected position on a Southern 

blot but amplified GnRH-2 cDNA could not be cloned and sequenced due to a very 

low yield.  The vervet monkey GnRH-2 gene is unpublished and therefore the 

percentage homology to the vervet monkey GnRH-2 gene of the primers utilised 

could not be calculated. 

 

Expression of GnRHR-I and GnRHR-II in human and vervet monkey ejaculate 

Interestingly, it was found that human ejaculate expresses part of the GnRHR-I gene, 

as indicated by the successful amplification of a 396 bp exon 1-2 amplicon using 

primer pair R1S2 & R1AS1 as well as Southern blot confirmation.  Sequence 

analysis of the human ejaculate exon 1-2 transcript revealed that the human 

ejaculate GnRHR-I transcript is identical to the pituitary GnRHR-I transcript within the 

amplified region, as well as to the published human GnRHR-I cDNA sequence 

(Accession L07949).  This corresponds to findings that the full-length GnRHR-I 

cDNAs cloned from placenta, ovary, endometrium and breast are identical to that of 

pituitary [Cheng CK & Leung PC, 2005].  With the use of primer pair R1S1 & R1AS2 

designed to amplify 909 bp of the 986 bp GnRHR-I coding region (spanning most of 

exons 1 to 3), no amplification products were obtained as evidenced by the fact that 

no bands could be seen on the agarose gel, from both human and vervet monkey 

ejaculate RNA.  This, together with the failure to clone and sequence a GnRHR-I 

exon 1-2 amplicon from vervet monkey ejaculate RNA suggests that the GnRHR-I 

gene is not expressed in vervet monkey ejaculate.  However, the possibility that the 

use of human-specific primers precluded the detection of the transcripts cannot be 

excluded.  Nevertheless, it is likely that a full-length GnRHR-I transcript is produced 

in human ejaculate because a Southern blot of the R1S1 & R1AS2 RT-PCR 

produced a band at the correct position, albeit very faint.  Moreover, parallel RT-

PCRs performed on RNA isolated from MCF-7 human breast cancer cells produced 

similar results i.e. the presence of an exon 1-2 GnRHR-I amplicon with primer pair 

R1S2 & R1S1 but failure to detect a longer GnRHR-I transcript using primer pair 
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R1S1 & R1AS2 (results not shown).  This is interesting because others have 

indicated high-affinity binding sites for GnRH-1 in MCF-7 cells [Cheng CK & Leung 

PC, 2005], which would suggest the expression of a functional GnRHR-I in these 

cells.  Also, the presence of GnRHR immunoreactivity and mRNA with sequence 

identical to the pituitary have been demonstrated in both normal and malignant 

breast tissue [Cheng CK & Leung PC, 2005]. 

 

A detailed discussion of results of the GnRHR-II RT-PCR on human and vervet 

monkey ejaculate RNAs is given in Chapter 2.  In brief, transcripts for the GnRHR-II 

containing all three exons were found to be expressed in both human and vervet 

monkey ejaculate, but the functionality of these transcripts is unknown.  In human 

ejaculate, a GnRHR-II transcript that contains a single nt deletion in exon 1 and a 

premature translation stop signal in exon 2 is expressed.  Both the nt deletion and 

translation stop signal are also present in the putative human GnRHR-II gene on 

chromosome 1 (Accession AL160282).  In vervet monkey ejaculate a GnRHR-II 

transcript is expressed that contains a 447 bp insertion between exons 2 and 3.  This 

insertion is possibly the result of retained intronic sequence and it leads to the 

incorporation of a number of premature in-frame translation stop signals in the vervet 

monkey ejaculate GnRHR-II transcript.  The physiological function of a vervet 

monkey ejaculate GnRHR-II transcript possessing a single retained intronic 

sequence is unclear.  This could possibly be a mechanism for storage of a non-

functional transcript, that could facilitate the subsequent rapid generation of a 

functional transcript when needed by the cell, requiring the removal of only this single 

intron.  This may occur, for example, during a specific stage of development or during 

the process of fertilisation. 
 

Taken together, the results presented here reveal that transcripts for GnRH-1, 

GnRH-2 and the GnRHR-I, in addition to transcripts for the GnRHR-II, are expressed 

in human ejaculate.  Furthermore results of the Southern blot analyses would 

suggest a possibility that GnRH-1, GnRH-2 and GnRHR-I are also expressed in 

vervet monkey ejaculate.  The vervet monkey results are however inconclusive due 

to the utilisation of primers that are 100% homologous to the human but possibly not 

to the vervet monkey gene sequences.  The relatively strong signal obtained in the 

RT-PCR using the β-actin primers (figure 24, lane 3) demonstrates that the RNA 

prepared from vervet monkey ejaculate is not significantly degraded.  It would be 

useful to repeat these studies with the use of vervet monkey-specific primers, 



 105

however, the sequences of the vervet monkey GnRH-1, GnRH-2 and GnRHR-I 

genes or mRNAs have not been published yet. 

 

Thus, it seems likely that a local GnRH/GnRHR network is present in human, and 

possibly in vervet monkey, ejaculate.  This suggests paracrine/autocrine actions of 

GnRH within ejaculate, most likely in mature sperm, based on the results of in situ 

hybridisation analysis presented in Chapter 2 of this thesis.  Given the functional 

evidence for a role for GnRH in mature sperm, it seems likely that such a local 

GnRH/GnRHR network would have the capacity to modify sperm-egg interactions 

and could therefore alter the probability of conception. 

 

It is interesting to speculate what the possible mechanism could be whereby GnRH 

affects sperm-ZP binding.  Factors that affect sperm-ZP binding may be present in 

the fluids that bathe the sperm or the egg before they meet and/or in the fallopian 

tube, where fertilisation takes place in vivo.  Interestingly, mature sperm are not able 

to fertilise an egg upon ejaculation but have to first undergo a final stage of 

maturation when in contact with the secretions of the female genital tract [Morales P 

& Llanos M, 1996;  Lawrence E, 1995].  Furthermore, mature sperm have an 

organelle at their apex, known as the acrosome, which contains hydrolytic enzymes 

to digest the ZP coating and thereby enabling sperm to penetrate the egg [Lawrence 

E, 1995;  Burgos M & Fawcett D, 1955].  The acrosome reaction (AR) is the 

collective term for the release of hydrolytic enzymes from the acrosome of the sperm 

when they contact the egg [Lawrence E, 1995].  The AR is possibly induced by some 

components of the ZP [Cross NL et al., 1988] but Ca2+ stores within the sperm may 

also play a role since the AR is a Ca2+-dependent process [Morales P & Llanos M, 

1996;  Yanagimachi R, 1994].  GnRH signalling in sperm leads to a Ca2+ influx 

through T-type, voltage-operated channels and subsequent release from intracellular 

stores, resulting in an elevation of the intracellular free Ca2+ concentration ([Ca2+]i) in 

mature sperm [Morales P et al., 2000;  Stojilkovic SS et al., 1994].  This indicates that 

the result of GnRH binding to its receptor on sperm cells is probably not the secretion 

of LH and FSH, but rather the release of Ca2+ as intracellular second messenger 

[Morales P et al., 2000;  Stojilkovic SS et al., 1994].  Furthermore, IP3 receptors are 

present in the sperm acrosome, as well as Gαq/11 and phospholipase Cβ1 [Morales P 

& Llanos M, 1996].  Similar to GnRH signalling in the pituitary, GnRHR activation in 

mature sperm could result in the activation of Gαq/11, which could subsequently lead 

to the activation of phospholipase Cβ1 and the generation of IP3 and DAG [Morales P 
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& Llanos M, 1996].  It is possible that binding of IP3 to IP3 receptors localised in the 

outer acrosomal membrane could induce the release of acrosomal Ca2+, and, 

subsequently, the sperm AR [Morales P & Llanos M, 1996].  The high [Ca2+]i together 

with DAG production are required for molecular events leading to membrane fusion 

and finally for acrosomal exocytosis and fertilisation [Morales P & Llanos M, 1996].  

Thus, it seems likely that mature sperm expresses a local GnRH/GnRHR system that 

functions to affect the sperm AR and to increase sperm-ZP binding, via elevation of 

[Ca2+]i. 

 

Other local actions of GnRH in sperm would include a role in sperm development 

during spermatogenesis and spermiogenesis.  Indeed, the results presented here 

would suggest that GnRH-1 and GnRH-2 as well as the GnRHR-I and/or the 

GnRHR-II are expressed in human ejaculate to form part of the intratesticular 

network of hormones that can function in an autocrine manner. 
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CHAPTER 4 
 
 

DIFFERENTIAL EXPRESSION OF THE BETA SUBUNITS OF 
LUTEINISING HORMONE (LH) 

& 
FOLLICLE-STIMULATING HORMONE (FSH) 

VIA THE GnRHR-I & THE GnRHR-II 

IN LβT2 MOUSE PITUITARY GONADOTROPE 

AND COS-1 MONKEY KIDNEY CELL-LINES 
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Background 
 

The pituitary gonadotropins, LH and FSH, are members of the glycoprotein hormone 

family.  In mammals, LH regulates steroidogenesis in the gonads and induces 

ovulation in the ovary [Albanese C et al., 1996].  FSH is required for initiation and 

regulation of spermatogenesis in the male and for ovulation and follicular 

development in the female [Baccetti B et al., 1998].  Thus, the combination of LH and 

FSH plays an essential role in sexual differentiation and fertility [Albanese C et al., 

1996].  The glycoprotein hormones are composed of two subunits, namely a common 

or shared alpha (α)- and a hormone-specific beta (β)-subunit that together form a 

heterodimer [Albanese C et al., 1996;  Maurer RA et al., 1999].  The α-subunit gene 

is expressed in gonadotropes and thyrotropes of the pituitary [Albanese C et al., 

1996].  By contrast, expression of the β genes is limited to gonadotropes, where LH 

and FSH are synthesised [Pierce JG & Parsons TF, 1981]. 

 

The synthesis and secretion of the gonadotropins are regulated by positive and 

negative factors that act at the brain, pituitary and gonad levels [Gharib SD et al., 

1990].  These include GnRH as well as a number of steroid hormones (progesterone, 

estradiol and testosterone) and gonadal peptides (activin, inhibin and follistatin).  The 

different types of steroid hormones exert different regulatory effects on gonadotropin 

secretion and subunit synthesis at the pre-translational level [Gharib SD et al., 1990].  

They may act directly at the pituitary level or indirectly at the hypothalamus to alter 

GnRH pulses, and they can have positive or negative actions [Shupnik MA, 1996].  

The gonadal peptides regulate the secretion of gonadotropins from the pituitary.  

Activin and inhibin have stimulatory and inhibitory effects, respectively, on FSH 

secretion [Gharib SD et al., 1990].  Furthermore, activin stimulates LHβ transcription 

[Otsuka F & Shimasaki S, 2002] and enhances GnRH-induced LH secretion [Nicol L 

et al., 2004].  Follistatin has the capacity to suppress FSH secretion from the pituitary 

without affecting LH secretion [Gharib SD et al., 1990;  De Kretser DM et al., 2002].  

GnRH serves as a principal mediator of neuroendocrine control of reproductive 

function [Ando H et al., 2001].  GnRH is released from the hypothalamus in a 

pulsatile fashion to stimulate parallel pulsatile release of LH and FSH [Gharib SD et 

al., 1990].  Moreover, GnRH desensitises the pituitary gonadotropes unless it is 

presented in a pulsatile fashion.  Continuous exposure to long-acting GnRH analogs 

or exposure to supra-physiologic concentrations of GnRH causes down-regulation of 

the GnRHRs on the pituitary cells and a decrease in GnRHR-I gene expression, 
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leading to a profound decrease in the secretion of LH and FSH [Belchetz PE et al., 

1978;  Shupnik MA & Fallest PC, 1994;  Chedrese PJ et al., 1994;  Schally AV et al., 

1995;  Pinski J et al., 1996;  Halmos G et al., 1996]. 

 

In vivo, the frequency and amplitude of the GnRH pulses vary physiologically as a 

function of hormonal status and stage of the reproductive cycle [Crowley Jr WF et al., 

1985].  These variations in GnRH pulse pattern are associated with differential LH 

and FSH release.  Intriguingly, whereas LH pulses always coincide with, or follow, 

GnRH pulses, both GnRH-associated and non-GnRH-associated pulses of FSH exist 

[Padmanabhan V & McNeilly AS, 2001].  Thus, LH, but not FSH secretion, is 

absolutely dependent upon GnRH pulsatility [Padmanabhan V & McNeilly AS, 2001]. 

 

The existence of FSH pulses that are not associated with GnRH pulses would 

indicate the presence of a selective FSH-releasing factor that is released from the 

hypothalamus and may stimulate FSH in the absence of LH [Padmanabhan V et al., 

2002].  Such a factor must be capable of selectively stimulating FSH over LH or at 

least be a more potent releaser of FSH than of LH to be categorised as an FSH-

releasing factor [Padmanabhan V & McNeilly AS, 2001].  In this regard, the finding of 

GnRH-2 in the hypothalamus and identification of a second GnRHR (the GnRHR-II) 

in the pituitary open up the possibility of GnRH-2 being the FSH-releasing factor 

[Padmanabhan V et al., 2002].  Whereas there are some indications that GnRH-2 is 

indeed a selective regulator of FSH synthesis and release from pituitary 

gonadotropes, this issue is still controversial [Millar RP, 2003].  For example, at the 

level of gonadotropin hormone release, several studies have determined that GnRH-

2 can promote LH and FSH secretion, but it does so with a much lower potency than 

GnRH-1 [Hasegawa Y et al., 1984;  Millar RP & King JA, 1983;  Millar RP et al., 

1986;  Millar R et al., 2001;  Neill JD, 2002a;  Okada Y et al., 2003].  Even so, 

maximum LH and FSH secretion with GnRH-1 and GnRH-2 is similar at high doses 

of hormone [Montaner AD et al., 2001;  Okada Y et al., 2003].  However, an in vivo 

study in rhesus monkeys demonstrated similar plasma LH and FSH concentrations 

after intravenous injections with either GnRH-1 or GnRH-2 [Densmore VS & Urbanski 

HF, 2003].  Similarly, in rat pituitary cells GnRH-2 was able to induce LH and FSH 

release in a GnRH-1-like manner [Montaner AD et al., 2001;  Mongiat LA et al., 

2004].  Taken together, data from the literature would suggest that GnRH-2 could 

stimulate LH and FSH release in vivo and in vitro, and that its efficacy to do so is 

lower than, or equals, that of GnRH-1. 
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However, it is unclear whether the gonadotropin-releasing abilities of GnRH-2 have 

physiological relevance [Densmore VS & Urbanski HF, 2003].  Indications are that 

the role of GnRH-2 in the differential secretion of FSH (and LH) is only evident when 

comparing FSH to LH ratios [Millar RP et al., 1986;  Millar R et al., 2001].  In rams, 

for example, the ratio of FSH to LH secretion was higher following intravenous 

injection with GnRH-2 than with GnRH-1 although GnRH-2 was a less effective 

stimulator of LH and FSH secretion as compared to GnRH-1 [Millar R et al., 2001].  

Furthermore, in early studies of pituitary cells from mature hens, GnRH-2 was found 

to have a 2-fold greater potency to release FSH vs. LH when compared to stimulation 

by chicken GnRH-1 [Millar RP et al., 1986].  With rat hemipituitaries on the other 

hand, GnRH-2 was no more potent than GnRH-1 as a stimulator of FSH when 

compared to LH [Yu WH et al., 1997]. 

 

Another peptide hormone that has been indicated to play a role in the regulation of 

secretion of LH and FSH, mainly by synergising with GnRH-1, is pituitary adenylate 

cyclase-activating polypeptide (PACAP) [Rawlings SR & Hezareh M, 1996].  PACAP 

is a ubiquitously expressed neuropeptide that was originally isolated from sheep 

hypothalamus and was named for its ability to stimulate cAMP production in rat 

anterior pituitary cells [Kimura C et al., 1990].  The major form of PACAP is a C-

terminal amidated 38-amino acid polypeptide, but a shorter form, PACAP27, 

corresponding to the N-terminal 27 residues of PACAP38, is also found in the 

hypothalamus [Arimura A et al., 1991].  PACAP regulates the secretion of GnRH and 

sensitises the pituitary for the release of the gonadotropin hormones through 

changes in pituitary GnRHR levels, either by directly activating the GnRHR promoter 

[Cheng KW & Leung PC, 2001;  Ngan ES et al., 2001;  Pincas H et al., 2001] or 

through modulation of the follistatin/activin system [Norwitz ER et al., 2002].  While 

some evidence exists for a role for PACAP in transcriptional regulation of the 

gonadotropin subunit genes, either alone or by modulating the effects of GnRH-1 

(see Discussion of this chapter), no data is available for the combined effects of 

PACAP and GnRH-2. 

 

All of the studies on the ability of GnRH-2 to regulate the gonadotropins performed 

thus far have focused on protein level, by determining its ability to stimulate LH 

and/or FSH release.  Although there are numerous reports in the literature on the 

transcriptional regulation of the gonadotropin α-, LHβ- and FSHβ-subunit genes by 

GnRH-1 or GnRH-1 analogues, none has described the role of GnRH-2 in this 

regard.  Moreover, the relative abilities of GnRH-1 and GnRH-2 to regulate 
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gonadotropin subunit gene transcription, either with transfected promoter reporter 

constructs or of endogenous mRNA, have not been compared prior to the present 

study.  Furthermore, there are no reports in the literature on the transcriptional 

regulation of the LHβ- or FSHβ genes via GnRH-1 or GnRH-2 in the presence of 

expressed GnRHR-II in vivo or in vitro.  While a role for GnRHR-II in gonadotropin 

regulation in mammalian pituitary cells has not been established, the literature 

suggests that, at least for marmoset [Millar R et al., 2001] and rhesus monkey [Neill 

JD et al., 2001], the GnRHR-II is expressed in some mammalian pituitary cells.  

Given that GnRH-1 is an agonist for GnRHR-II [Millar R et al., 2001;  Neill JD et al., 

2001], the potential thus exists for GnRHR-II to regulate gonadotropin gene 

expression in some mammalian pituitary cells. 

 

Taken together, there seem to be a number of, as yet, unanswered questions 

regarding the differential regulation of LHβ- and FSHβ-subunit gene transcription by 

GnRH-1, GnRH-2 and PACAP in mammalian pituitary gonadotropes.  In the current 

study, LβT2 mouse pituitary gonadotrope cells were transiently transfected with 

mammalian LHβ- and FSHβ-subunit promoter-reporter constructs and stimulated with 

GnRH-1 or GnRH-2 and/or PACAP.  Co-transfections with exogenous mammalian 

GnRHR-I or GnRHR-II expression vectors were also performed.  Since the α-subunit 

is in abundance and common to all glycoprotein hormones, and because synthesis of 

the LHβ- and FSHβ-subunits is the limiting factor in LH and FSH synthesis 

respectively [Bhasin S & Swerdloff RS, 1995], the measurement of β-subunit 

promoter-reporter activity poses a suitable strategy to assess the transcriptional 

regulation of LH and FSH.  Specifically, the focus of the study was to compare the 

capabilities of GnRH-1 and GnRH-2 to differentially regulate LHβ- and FSHβ gene 

transcription in the presence of the GnRHR-I and the GnRHR-II.  In addition, the role 

of GnRH concentration and method of administration as well as PACAP in the 

regulation of β-subunit gene transcription was investigated.  Understanding the 

molecular control of gonadotropin biosynthesis is relevant both for the clinical 

treatment of a variety of reproductive disorders and for advancing the basic 

knowledge of regulation of gene expression. 

 

The LβT2 cell-line seems well suited to study the regulation of these transfected 

promoters because they express the α-, LHβ- and FSHβ-subunit genes 

endogenously in addition to the GnRHR-I and are thus representative of mature 
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pituitary gonadotropes [Thomas P et al., 1996;  Turgeon JL et al., 1996;  Alarid ET et 

al., 1996]. 
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Aim 

 

To investigate the capabilities of GnRH-1 and GnRH-2 to differentially regulate 

transcription of the LHβ- and FSHβ-subunit genes, via binding to the mammalian 

GnRHR-I or GnRHR-II.  In particular, the focus of this study was to 

• compare the ability of GnRH-1 vs. GnRH-2 to stimulate LHβ- and FSHβ 

promoter-reporter activity, via both GnRHR-I and GnRHR-II; 

• compare the ability of a single GnRH ligand (GnRH-1 or GnRH-2, 

respectively) to induce LHβ- vs. FSHβ promoter-reporter activity (to, 

accordingly, determine whether GnRH-1 and/or GnRH-2 is a selective 

stimulator of LH and/or FSH);  and, in addition 

• investigate the synergistic effect of PACAP on GnRH-1- and GnRH-2-

mediated gonadotropin gene expression, 

in a cell-line, LβT2, that expresses the GnRHR-I endogenously (but not the GnRHR-

II,) as well as in a cell-line, COS-1, that expresses the GnRHR-II endogenously (but 

not the GnRHR-I). 
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Experimental 
 

Cells 

LβT2 mouse pituitary gonadotrope cells were gifts from Dr P Mellon (University of 

California, San Diego, CA) and were maintained in monolayer cultures in DMEM 

supplemented with 10% v/v FBS and PenStrep (1% v/v) in humidified 5% CO2 at 

37°C.  COS-1 monkey kidney cells were kept in culture at 37°C in culture media 

(DMEM containing 1% v/v PenStrep and supplemented with 10% FBS), under 5% 

CO2. 

 

Reporter plasmids, expression vectors and vectors used for probe synthesis 

All plasmid DNAs used for promoter-reporter studies were prepared from overnight 

bacterial cultures using QIAGEN DNA plasmid maxi columns according to the 

manufacturer’s protocol (QIAGEN, Chatsworth, CA).  Wild-type GnRHR-I expression 

vector (R10) consists of the full-length mouse GnRHR-I cDNA (1.2 kb) fused to the 

cytomegalovirus (CMV) promoter in pcDNA1 [Tsutsumi M et al., 1992], and was 

obtained from Dr SC Sealfon (Mt Sinai Medical School, New York, USA).  The 

marmoset GnRHR-II expression vector (pR-II), containing the full-length marmoset 

GnRHR-II cDNA (1465 bp) in pcDNA3.1+ [Millar R et al., 2001], was kindly donated 

by Dr A Katz (Department of Medical Biochemistry, University of Cape Town, Cape 

Town, South Africa).  Luciferase reporter plasmids of LHβ and FSHβ were 

generously provided by Dr John H Nilson (Department of Pharmacology, Case 

Western Reserve School of Medicine, Cleveland, Ohio) and Dr William L Miller 

(North Carolina State University, Raleigh, NC), respectively.  The LHβ luciferase 

reporter construct consists of 779 bp of the bovine LHβ (bLHβ) gene 5’-flank plus 10 

bp 3’ to the +1 transcription start site of the bovine LHβ gene in the pGL2 vector 

which contains the coding sequence for luciferase (construction of this vector is 

described by Keri RA & Nilson JH [1996] and Quirk CC et al. [2001]).  This vector 

was named bLHβLuc.  The FSHβ luciferase reporter construct contains a 5.5 kb 

region of the ovine FSHβ (oFSHβ) gene encompassing 4741 bp of the 5’-flanking 

region plus 759 bp downstream from the +1 transcription start site, which includes 

exon 1 (63 nt), intron 1 and 62 nt of exon 2 of the oFSHβ gene, in pGL3 vector which 

contains the coding sequence for luciferase [Huang H et al., 2001].  The β-

galactosidase (βgal) reporter plasmid (pSV40βgal) contained the coding region of β-

galactosidase under control of the SV40 viral promoter. 
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All plasmid DNAs used for Northern blot analyses were prepared from overnight 

bacterial cultures using the Wizard® Plus SV Miniprep DNA purification system 

(Promega) according to the manufacturer’s protocol.  Plasmids containing the full-

length cDNAs for mouse α-subunit, rat LHβ or human β-actin or part of the coding 

sequence of the rat FSHβ-subunit gene were used to generate DNA fragments used 

as probes in Northern blot analyses (table 8).  Plasmid containing mouse α-subunit 

cDNA (640 bp) in pGEM3Zf+ [Chin WW et al., 1981] was obtained from Dr DF 

Gordon (Division of Endocrinology, Metabolism and Diabetes, University of Colorado, 

Health Science Center, Denver Colorado, USA).  Rat LHβ-subunit cDNA (426 bp) in 

pGEM2 [Chin WW et al., 1983] was kindly donated by Dr WW Chin (Eli Lilly and 

Company, Indianapolis, USA).  Rat FSHβ gDNA (1 kb) in pGEM2, of which part of 

segment 2 was excised for labeling, was constructed by Dr WW Chin and is 

described in [Gharib SD et al., 1989].  Human fibroblast cytoplasmic β-actin cDNA 

(2.1 kb) in the Okayama-Berg expression vector, pSPT19, was from Prof MI Parker 

(Department of Medical Biochemistry, University of Cape Town, Cape Town, South 

Africa). 

 

Reagent make-up 

Luteinising hormone-releasing hormone (LHRH, pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-

Pro-Gly-NH2, acetate salt) (GnRH-1) and LHRH II (Pyr-His-Trp-Ser-His-Gly-Trp-Tyr-

Pro-Gly-NH2, trifluoroacetate salt) (GnRH-2) were purchased from Sigma-Aldrich 

and Bachem (Bubendorf, Switzerland), respectively, and prepared as stock solutions 

(5 mM) in water.  Working stock solutions (100 μM) were prepared by further dilution 

with water and kept in small volumes at -20°C until use.  PACAP27 (Sigma-Aldrich) 

was prepared as a stock solution of 100 μM in water, diluted to 20 μM and 3 μM 

working concentrations and stored at -20°C until use.  For all inductions the 

compound working stock solution was diluted 1/1000 in DMEM containing 10% FBS, 

just before use.  Control incubations in the absence of hormone were performed with 

a similar 1/1000 addition of water to induction media.  Where inductions were 

performed with more than one compound simultaneously, i.e. GnRH-1 or GnRH-2 

plus PACAP, each compound was diluted 1/1000 into induction media.  Accordingly, 

control incubations were performed in the presence of media containing a 2/1000 

addition of water. 
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Transient transfections 

Twenty-four (24) h before transfection, 1 X 105 LβT2 or 5 X 104 COS-1 cells were 

plated per 15.5 mm well in 24-well plates, in 500 μℓ culture media.  Cell were 

transfected with the indicated DNAs using FuGENE 6 (Roche Molecular 

Biochemicals) according to the manufacturer’s guidelines.  The FuGENE 6:DNA ratio 

was 2:1 (2 μℓ of FuGENE 6 reagent to 1 μg of DNA).  Luciferase promoter-reporter 

constructs (bLHβLuc or oFSHβLuc, 0.125 μg/well) were co-transfected with GnRHR 

expression vectors (R10 or pR-II, 6 ng/well) or promoterless pGL2-basic vector (to 

keep the amount of transfected DNA constant) (6 ng/well) as indicated, as well as 

pSV40βgal vector (25 ng/well) to correct for differences in transfection efficiencies 

between wells.  In addition, control transfections using pGL2-basic vector DNA 

(0.156 μg) only were performed to determine background luminescence of cells not 

transfected with a luciferase- or βgal reporter.  Some earlier experiments were 

performed using Lipofectamine 2000 transfection reagent (GibcoBRL/Invitrogen) and 

not FuGENE 6.  Where results of experiments using Lipofectamine 2000 are shown, 

it is indicated in the legend of the relevant figures in the Results section.  Otherwise, 

all results are from transfections performed using FuGENE 6.  Transfection with 

Lipofectamine 2000 was performed according to the manufacturer’s guidelines, using 

double the amount of DNA specified above and a Lipofectamine 2000:DNA ratio of 

2:1 (2 μℓ of Lipofectamine 2000 reagent to 1 μg of DNA). 

 

Continuous and pulsatile treatment of cells with GnRH-1, GnRH-2 and PACAP 

The FuGENE 6/DNA solution was replaced with complete medium (DMEM/10% v/v 

FBS) (500 μℓ/well) containing the various treatments after 24 h.  Each treatment was 

applied to triplicate cultures post-transfection.  Treatments included GnRH-1 (1 nM, 

10 nM or 100 nM), GnRH-2 (1 nM, 10 nM or 100 nM), PACAP (3 nM or 20 nM) or 

vehicle (water).  Pulsatile GnRH treatment was performed as follows:  GnRH-1 or 

GnRH-2 (10 nM) or vehicle in complete medium was added to cells for 15 min.  After 

the 15 min pulse, medium containing the treatment was removed by aspiration and 

replaced with complete medium alone.  For 1 pulse/30 min, medium was replaced 

with treatment medium 15 min later.  For 1 pulse/2 h, medium was replaced with 

treatment medium after 1 h and 45 min.  Cells were lysed 20 min after the last pulse.  

After incubation (6-, 12-, 18- or 24 h, as indicated), the cells were rinsed with cold 

phosphate-buffered saline (PBS) (500 μℓ/well), air-dried for 5 min and lysed using 50 

μℓ 1 X reporter lysis buffer (Promega).  The cells were then incubated for 15 min at rt 

with shaking and transferred to -20°C to undergo at least one freeze-thaw cycle 
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before collection of the lysates.  Lysates were scraped from wells, transferred to 

Eppendorf tubes and centrifuged for 45 sec at 12200 X g to precipitate cell debris.  

Luciferase activity and βgal activity of the cell lysates were measured as described 

below. 

 

Luciferase and βgal assays 

For both luciferase and βgal assays, 10 μℓ of cell lysate was pipetted into black 96-

well plates.  The luciferase activity was measured for 5 sec using a Luminoskan RS 

luminometer (Labsystems, Chicago, Illinois) after injection of prepared luciferase 

assay substrate (Luciferase assay system, Promega) (50 μℓ/well).  For the βgal 

assay, Tropix Galacto-StarTM β-galactosidase assay substrate (Applied Biosystems, 

Bedford, Massachusetts) (50 μℓ/well) was injected and the βgal activity was counted 

for 1 sec after a 60 min incubation using the luminometer described above. 

 

Normalisation and statistical analysis of the transient transfection data 

Luciferase activity was first normalised to the level of the matching βgal activity to 

correct for variation in transfection efficiency between wells.  This was done by 

dividing the luciferase value with the relevant value for βgal.  The average luciferase 

to βgal (Luc/βgal) ratio for control transfections (using pGL2-basic DNA only) was 

subtracted from all Luc/βgal ratios to correct for background luminescence of LβT2 

cells.  This was not done with values derived from COS-1 cells since background 

luminescence in these cells were negligible.  Thereafter each Luc/βgal value was 

multiplied with a common factor so that, within a specific experiment, the average 

value for a specific treatment group (often, this was the no hormone control group 

with either endogenous GnRHR or overexpressed GnRHR-I) equalled 1.  To 

calculate fold induction relative to expression in the presence of the control treatment 

of a specific luciferase reporter, results of the different GnRHR subtypes 

(endogenous, overexpressed GnRHR-I or overexpressed GnRHR-II) were analysed 

separately.  Values for a specific GnRHR subtype were multiplied by a common 

factor so that the mean value for the water control group equalled 1. 

 

Each experiment represents a pool of cells from a separate passage.  The number of 

times an experiment was repeated (n) is indicated.  Although experiments were 

repeated a number of times, data for each replicate experiment were analysed 

independently because of great variation between experiments in fold induction 

obtained.  This variation in fold stimulation of bLHβ- and of oFSHβ promoter-reporter 
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activity obtained is possibly due to differences in the status of the cells (growth stage 

or passage number) as well as in transfection efficiency and GnRHR expression 

levels between experiments.  Therefore, typical results from individual experiments, 

rather than results from pooled experiments, are shown.  Data are shown as the 

mean Luc/βgal ratio ± standard deviation (STDEV) and represent single experiments 

with each point run in triplicate.  Differences between groups were determined by 

one-way ANOVA and Bonferroni’s post-test, which compares all groups to each 

other, using the software package GraphPad Prism version 4.00 for Windows 

(GraphPad Software, San Diego, California, USA, www.graphpad.com).  Differences 

were considered significant if P ≤ 0.05 and groups were then assigned different 

letters of the alphabet (a, b, c etc.), such that if one group has the same letter as 

another, the two groups are not statistically significantly different to each other, while 

if two groups have different letters, then they are. 

 

RNA preparation and Northern blot analysis 

Northern blots were performed in two separate experiments, each performed in 

duplicate.  LβT2 cells were plated at 2 X 106 cells per 100 mm Petri dish in 10 mℓ 

complete medium and grown for 2 days.  Growth medium was then replaced by 

treatment media.  Cells were challenged continuously with GnRH-1 (100 nM), GnRH-

2 (100 nM) or PACAP (3 nM or 20 nM) alone or with a combination of GnRH-1 or 

GnRH-2 (100 nM) and PACAP (3 nM or 20 nM) in 10 mℓ complete medium.  Control 

treatments were performed with vehicle (water).  Treatment durations were 6- or 24 

h.  Another control, with cells lysed at the time of treatment (i.e. non-treated) was 

also included to compare mRNA levels at t = 0.  After treatment, cells were washed 

once with 1 X PBS and air-dried.  Total RNA was extracted by the TRI reagentTM 

(Sigma-Aldrich) procedure.  One (1) mℓ of TRI reagentTM was added per dish.  

Isolated RNA was dissolved in 40 μℓ FORMAzol® (Molecular Research Center, Inc., 

Cincinnati, OH) and stored at -20°C until use.  The concentration of total RNA was 

determined spectrophotometrically at 260 nm.  Total RNA (15 μg in 6 μℓ DEPC-

treated water), together with appropriate RNA molecular weight markers (0.28–6.58 

kb, Promega, 5 μℓ), was separated in 1 X morpholinopropanesulfonic acid (MOPS) 

buffer pH 7.0 (0.04 M MOPS, 0.01 M Na-acetate, 0.001 M EDTA) on a 1% agarose 

gel containing formaldehyde (0.7 M) and 1 X MOPS.  Duplicate treatments were run 

in adjacent lanes.  For sample preparation, a loading buffer was prepared using 2.5 

μℓ 10 X MOPS, 4 μℓ 37% formaldehyde and 12.5 μℓ formamide per RNA sample.  Of 

this, 15 μℓ was added to each sample and the loading buffer/RNA mixture incubated 

http://www.graphpad.com/
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for 10 min at 65°C to denature secondary structures.  Samples were placed on ice for 

5 min before addition of 2.5 μℓ loading dye (50% glycerol, 1 mM EDTA, 0.4% 

bromophenol blue, 0.4% xylene cyanol).  In addition, 0.5 μℓ EthBr (10 mg/mℓ) was 

added to the markers.  After resolution of the RNA by electrophoresis, the marker 

lane was excised from the gel and photographed on a UV-light box.  The gel 

containing the RNA samples was washed once in DEPC-treated water.  RNA was 

transferred onto a Hybond-N+ nylon membrane (Amersham Pharmacia Biotech) by 

means of capillary transfer.  The transfer was performed overnight in 20 X SSC pH 

7.0 (3 M NaCl, 0.3 M Na3-citrate).  Complete transfer of the RNA was verified by 

staining the gel with EthBr (0.5 μg/mℓ).  The membrane was washed in 2 X SSC pH 

7.0 (0.3 M NaCl, 0.03 M Na3-citrate) for 1 min at rt and air-dried.  Thereafter RNA 

was covalently linked to the nylon membrane by UV irradiation in a UV crosslinker 

(Amersham Pharmacia Biotech) at 70000 μJ/cm2 for 15 s.  Membranes were 

wrapped in cling film and stored at 4°C.  α-subunit, LHβ, FSHβ and β-actin mRNA 

levels were determined by Northern blot analysis as follows:  32P-labelled DNA 

probes were generated by random priming from DNA fragments for α-, LHβ- and 

FSHβ-subunit as well as β-actin (see above). The fragments were prepared from the 

relevant vectors by restriction enzyme digestion (table 8) and purification from a 2% 

low melting point agarose gel using the Wizard® SV gel and PCR clean-up system 

(Promega) as described by the manufacturer.  Sizes of the probes are indicated in 

table 8.  Probes were labelled with α-32P-dCTP (50 μCi/100 ng DNA) using the 

Fermentas DecaLabelTM DNA labelling kit (Inqaba Biotechnical Industries, Pretoria, 

South Africa) according to the manufacturer’s specifications.  One-hundred (100) ng 

of DNA was labelled per two 150 cm2 membranes.  Labelling was performed for 5 

min at 37°C.  Forty-five (45) μℓ TE buffer pH 8.0 (10 mM M Tris-HCl, 1 mM EDTA) 

was added to the labelled probe to increase the volume to 100 μℓ.  Labelled probes 

were purified on a G-50 Sephadex spin column to remove unincorporated α-32P-

dCTP.  The percentage incorporation of 32P as well as specific activity of each probe 

were calculated (table 8).  Membranes were pre-hybridised in DIG Easy Hyb 

hybridisation solution (Roche Molecular Biochemicals) (20 mℓ/150 cm2 membrane) 

for at least 30 min at 50°C.  Pre-hybridisation solution was replaced with fresh DIG 

Easy Hyb solution (15 mℓ/150 cm2 membrane).  Labelled probes were denatured by 

incubation in a heat block for 5 min at 95°C and chilled on ice for 5 min before 

addition to the membrane.  A single labelling was divided in two and both 

membranes were hybridised simultaneously, each with half of the labelling reaction.  

Hybridisations were performed overnight at 50°C.  Membranes were washed twice in 
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2 X SSC, 0.1% w/v SDS for a total of 5 min at rt.  One or two additional washes in 0.1 

X SSC, 0.1% w/v SDS were performed for 15 min at 50°C.  Membranes were 

exposed in a Phospho Imager at the University of Cape Town (Cape Town, South 

Africa) (courtesy of Mr Dave Woolley) and analysed densitometrically using the 

software installed on the imager computer.  Between hybridisations with the various 

probes, membranes were stripped by pouring boiling SDS (0.5% w/v) over 

membranes and shaking at rt for 2 h.  Membranes were rinsed in 2 X SSC pH 7.0 for 

1 min at rt and either stored at 4°C or subjected to the next hybridisation. 

 

Table 8:  Size, percentage incorporation of 32P and specific activity of labelled DNA 

probes used in Northern blot analysis. 

Plasmid 

name 

Restriction 

enzyme used to 

generate 

fragment used 

for labelling 

Probe identity Size of 

labelled 

fragment 

Percentage 

incorporation of 
32P (%) 

Specific 

activity 

(cpm/μg DNA)

α-

pGEM3Zf+ 

PstI Mouse α-

subunit 

460 bp 43.1 7.8 X 108 

LHβ-

pGEM2 

PstI Rat LHβ-

subunit 

350 bp 48.7 2.3 X 108 

FSHβ-

pGEM2 

AlwNI Rat FSHβ-

subunit 

202 bp 36.1 2.6 X 108 

β-actin-

pSPT19 

BamHI Human β-

actin 

1.9 kb 31.3 1.7 X 108 

 

Normalisation and statistical analysis of Northern blot data 

Northern blot analysis was performed twice with each point run in duplicate.  Imager 

values obtained with Northern analysis (representing the number of counts) were 

divided by the values for β-actin mRNA in the same lane to correct for loading 

differences.  The corrected values were normalised to the water control (average 

water control = 1) to obtain fold changes in endogenous mRNA levels.  Data were 

analysed by one-way ANOVA followed by Dunnet’s post-test to compare treatment 

groups to the control group with the use of the GraphPad Prism software package 

described above;  P ≤ 0.05 was considered significant.  Data were also analysed 

using Bonferroni’s post-test to compare all groups to one another.  All given values 

are the mean ± STDEV. 
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Homologous competition binding 

For homologous competition binding analysis, 2 X 105 LβT2 cells were plated per 22 

mm well in 12-well plates, in 1 mℓ complete medium.  Cells were transfected as 

described above, but using double the amount of DNA per well to have the same 

concentration of DNA per cell and per media volume as for promoter-reporter assays.  

Twenty-four (24) h after transfection, transfection medium was replaced with 1 mℓ 

complete medium and cells incubated for another 24 h at 37°C prior to subjection to 

homologous competition binding analyses.  Whole cell binding experiments were 

performed in the laboratory of Dr A Katz (Department of Medical Biochemistry, 

University of Cape Town, Cape Town, South Africa).  Binding studies were 

performed in two separate experiments, each performed in duplicate.  Labelled 125I-

[His5,D-Tyr6]GnRH (1350 μCi/μg, MW 1604 [Flanagan CA et al., 1998]) and 

unlabelled competitor peptide, [His5,D-Tyr6]GnRH, were kindly donated by Dr A Katz.  

Plates were placed on ice during the course of the binding experiment, to stabilise 
125I-[His5,D-Tyr6]GnRH.  Cells were washed once with ice cold assay medium (DMEM 

buffered with 10 mM HEPES, pH 7.2) (500 μℓ/well).  Displacement curves were 

generated by incubating cells at 4°C with 125I-[His5,D-Tyr6]GnRH (binding experiment 

no 1, 1.0 X 105 cpm/well or 0.057 nM;  binding experiment no 2, 4.7 X 105 cpm/well 

or 0.26 nM) and increasing concentrations of unlabelled competitor, [His5,D-

Tyr6]GnRH, in assay medium (500 μℓ/well).  The concentration of [His5,D-Tyr6]GnRH 

ranged from 10-11 M to 10-6 M.  Non-specific binding was estimated in the presence of 

10-6 M unlabelled competitor.  Plates were incubated for 4.5- to 5 h.  Thereafter, 

assay medium was aspirated and cells washed twice with ice cold PBS (500 μℓ/well).  

Cells were lysed by addition of ice cold NaOH (1 N, 500 μℓ/well) and cell lysates 

transferred to plastic tubes for determination of the amount of radioactivity. 

 

Normalisation and statistical analysis of binding data 

Homologous competition binding experiments were performed twice with each point 

run in duplicate.  When analysing results of the binding experiments the assumption 

was made that the labelled (125I-[His5,D-Tyr6]GnRH) and unlabelled ([His5,D-

Tyr6]GnRH) ligands have similar affinities at the expressed GnRHRs.  Previous 

studies showed that the affinities of iodinated GnRH analogs were the same as those 

of equivalent unlabelled peptides in rat pituitary membranes [Clayton RN et al., 1979, 

Perrin MH et al., 1983].  However, Flanagan CA et al. [1998] have established that 
125I-[His5,D-Tyr6]GnRH has a higher affinity as compared to [His5,D-Tyr6]GnRH at the 

human GnRHR-I, but the difference is only ~2-fold.  For analysis of binding data, 
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non-linear curve fitting was performed using a one-site homologous competitive 

binding equation {Total binding (Y) = (Bmax X [labelled])/([labelled] + [unlabelled] + 

Kd) + Non-specific binding} (GraphPad Prism version 4.00).  From the homologous 

competition binding curve, the concentration of 125I-[His5,D-Tyr6]GnRH and the values 

for Kd, EC50 and Bmax, the number of GnRHRs on the cell surface of LβT2 cells co-

transfected with either GnRHR-I or GnRHR-II were calculated.  All given values are 

the mean ± standard error of the mean (SE). 
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Results 
 

LβT2 and COS-1 cells, expressing endogenous GnRHR-I and GnRHR-II, 

respectively, were transfected with constructs containing the bLHβ- or oFSHβ 

promoter controlling a luciferase reporter gene, as well as with a βgal expression 

vector.  Parallel experiments were performed with cells co-transfected with either a 

GnRHR-I or a GnRHR-II expression vector, to compare results in the presence of 

endogenous GnRHR with that of overexpressed GnRHR (figure 36).  After 

transfection, cells were grown for one day before treatment with GnRH-1 or GnRH-2 

and/or PACAP or vehicle.  Cells were lysed at the appropriate time and luciferase 

and β-galactosidase protein levels measured.  The ratio of luciferase to β-

galactosidase was determined for each treatment group.  As luciferase expression 

should reflect transcriptional activity, the calculated Luc/βgal ratios would be an 

indication of bLHβ- and oFSHβ promoter activity, i.e. regulation at the transcriptional 

level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 36.  Schematic representation of the cell context after transient transfection with 

bLHβLuc or oFSHβLuc in combination with either GnRHR-I or GnRHR-II as 

well as pSV40Bgal.  Endogenous GnRH- and PACAP receptors are printed 

with solid lines whereas overexpressed mammalian GnRHRs are printed 

with dashed lines. 
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All figures showing the results of this study and referred to within the text (i.e. figures 

37 to 51) are grouped together at the end of the Results section of this chapter, from 

page number 137 onwards.  This was done because each figure represents an 

experiment where various aspects are compared with one another, and, for this 

reason, the text often refers to more than one figure at a time in no specific order.  

The specific issues are however addressed within the text sequentially. 

 

Regulation of bLHβ- and oFSHβ promoter-reporter activities by GnRH-1 and 

GnRH-2 via endogenous GnRHR-I in LβT2 cells 

To investigate whether GnRH-1 and GnRH-2 are able to induce LHβ- and FSHβ 

promoter-reporter activity in LβT2 cells via endogenous GnRHR-I, cells were 

transiently transfected with bLHβ- or oFSHβLuc and stimulated continuously for 6 h 

with 100 nM hormone (n = 8).  No significant stimulation of bLHβ- or oFSHβ 

promoter-reporter activity with GnRH-1 or GnRH-2 was observed for most of the 

experiments performed.  Typical fold inductions obtained ranged between 0.7 ± 0.3- 

and 1.5 ± 0.4-fold with bLHβLuc and 0.7 ± 0.1- and 1.4 ± 0.5-fold with oFSHβLuc (for 

example, see figures 40 & 41, showing no significant stimulation of bLHβ- or oFSHβ 

promoter-reporter activity with 100 nM GnRH-1 or with 100 nM GnRH-2 in the 

presence of endogenous GnRHR-I after 6 h continuous stimulation).  Similar results 

of no response to GnRH-1 and GnRH-2 by bLHβ- and oFSHβLuc were obtained with 

different concentrations of hormone (1 nM and 10 nM), a longer treatment duration 

(18 h) or with pulsatile stimulation (see figures 42 & 43, showing results of 6 h 

continuous and 6 h pulsatile stimulation at a pulse frequency of 1 pulse/2 h with 10 

nM hormone, respectively, and figure 44, showing results of 18 h continuous 

stimulation with 100 nM hormone).  Co-treatment with GnRH-1 or GnRH-2 and 

PACAP also did not result in an increase in either bLHβ- or oFSHβ promoter-reporter 

activity via endogenous GnRHR-I (figure 46). 

 

Regulation of endogenous α-, LHβ-, and FSHβ-subunit mRNA levels in LβT2 

cells:  effects of GnRH-1 vs. GnRH-2 and PACAP 

An important question is whether the absence of an effect on the transfected bLHβ- 

and oFSHβ promoter-reporter activities with GnRH-1, GnRH-2 or PACAP in LβT2 

cells is a true reflection of the responses of the endogenous LHβ- and FSHβ-subunit 

promoters in these cells.  Therefore, Northern blot analysis was performed on RNA 

isolated from LβT2 cells to determine endogenous LHβ- and FSHβ-subunit mRNA 

levels.  In addition, endogenous α-subunit mRNA levels were also determined.  Cells 
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were plated and incubated for 2 days prior to continuous treatment with GnRH-1 (100 

nM), GnRH-2 (100 nM) and PACAP (3 nM or 20 nM) alone or with a combination of 

GnRH-1 or GnRH-2 plus PACAP.  Treatments were performed in duplicate for 6- or 

24 h. 

 

α-subunit 

A 6 h stimulation with 100 nM GnRH-1 or GnRH-2 resulted in slight (not significant) 

increases in endogenous α-subunit mRNA levels compared to levels in the absence 

of hormone (see figure 37, A, showing a 1.14 ± 0.22-fold increase with 100 nM 

GnRH-1 and a 1.22 ± 0.02-fold increase with 100 nM GnRH-2 ).  Interestingly, 

PACAP (20 nM) alone increased α-subunit mRNA levels 2.04 ± 0.18-fold after 6 h 

(figure 37, A, bar no 5), but this was not statistically significant compared to control 

incubation in the absence of hormone (figure 37, A, bar no 2).  The combination of 

PACAP (20 nM) plus GnRH-1 or GnRH-2 (100 nM) resulted in significant increases 

in α-subunit mRNA levels compared to control incubation in the absence of hormone 

(see figure 37, A, showing 2.85 ± 0.18-fold with PACAP/GnRH-1 (bar no 6), P < 0.01 

relative to control, and 2.22 ± 0.79-fold with PACAP/GnRH-2 (bar no 7), P < 0.05 

relative to control).  Based on these observations, it would appear that the short-term 

(6 h) effects of continuous GnRH-1 and PACAP on α-subunit mRNA are synergistic 

(see figure 37, A, compare bar no 6 with bars no 3 & 5), whereas increases in α-

subunit mRNA levels with GnRH-2 plus PACAP seem to be additive with these 

conditions of continuous 6 h incubation (see figure 37, A, compare bar no 7 with bars 

no 4 & 5).  However, differences in α-subunit mRNA levels were not observed 

between PACAP alone (figure 37, A, bar no 5) and PACAP plus GnRH-1 or PACAP 

plus GnRH-2 (figure 37, A, bar no 6 & 7, respectively).  The only difference between 

groups was observed for α-subunit mRNA levels when stimulating cells with a 

combination of PACAP plus GnRH-1 (figure 37, A, bar no 6) as compared to α-

subunit mRNA levels obtained when stimulating cells with GnRH-1 or GnRH-2 alone 

(figure 37, A, bar no 3 & 4, respectively).  No significant differences were observed in 

α-subunit mRNA levels after a 24 h stimulation using any treatment, although slight 

decreases were observed in the presence of GnRH-2 (100 nM) alone, PACAP (20 

nM) alone, and PACAP (20 nM) in combination with either GnRH-1 (100 nM) or 

GnRH-2 (figure 37, B).  Interestingly, α-subunit mRNA levels at t = 0 (figure 37, B, 

bar no 1) were significantly lower compared to levels observed after 24 h incubation 

in absence of hormone (figure 37, B, bar no 2, P < 0.05 relative to t = 0), indicating a 
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hormone-independent increase in α-subunit mRNA levels in culture over time.  

These differences were not apparent when using Bonferroni’s post-test. 

 

LHβ 

All treatments resulted in slight increases in LHβ-subunit mRNA levels after 6 h.  

However, the fold induction observed with 100 nM GnRH-1 or GnRH-2 alone, 20 nM 

PACAP alone or 20 nM PACAP plus 100 nM GnRH-1 was not significant, ranging 

from 1.16 ± 0.06- to 1.28 ± 0.13-fold (figure 38, A).  A combination of 20 nM PACAP 

plus 100 nM GnRH-2 increased LHβ-subunit mRNA levels significantly by 1.37 ± 

0.21-fold compared to control induction in absence of hormone, P < 0.05 (figure 38, 

A, compare bar no 7 with bar no 2).  LHβ mRNA levels in cells incubated for 24 h 

were similar to the no hormone control for all groups (figure 38, B).  No differences 

were observed between groups after 6 h or 24 h. 

 

FSHβ 

FSHβ mRNA levels were slightly increased compared to no hormone control after 6 h 

with all treatments, similar to what was found for LHβ.  The fold induction observed 

with 100 nM GnRH-1 or GnRH-2 alone or 20 nM PACAP plus 100 nM GnRH-1 was 

not significant, ranging from 1.05 ± 0.05 to 1.19 ± 0.12 (figure 39, A).  In contrast, 

PACAP (20 nM) alone or in combination with GnRH-2 (100 nM) resulted in a slight 

but significant increase in FSHβ mRNA (see figure 39, A, showing 1.32 ± 0.03-fold 

with PACAP (bar no 5) and 1.34 ± 0.05-fold with PACAP/GnRH-2 (bar no 7), P < 

0.05 relative to no hormone control (bar no 2)).  Similar to α-subunit, FSHβ mRNA 

levels observed at t = 0 were significantly lower compared to levels observed after 24 

h incubation in the absence of hormone (see figure 39, B, showing 0.50 ± 0.09-fold at 

t = 0 (bar no 1), P < 0.01 relative to no hormone control).  However, similar to LHβ, 

no differences were observed between groups after 6 h or 24 h. 

 

GnRH-1 vs. GnRH-2:  Relative effects in regulating LHβ- and FSHβ promoter-

reporter activity, via either overexpressed GnRHR-I or overexpressed GnRHR-II 

in LβT2 cells 

The abilities of GnRH-1 and GnRH-2 to regulate bLHβ- and oFSHβ promoter-reporter 

activities were compared in LβT2 cells overexpressing either GnRHR-I or GnRHR-II 

to determine whether one of the two hormones is a selective regulator of 

gonadotropin gene transcription. 
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GnRH-1 vs. GnRH-2:  Relative effects in regulating bLHβ promoter-reporter activity 

via overexpressed GnRHR-I 

Overexpressed GnRHR-I resulted in a ~50% greater induction of bLHβ promoter-

reporter activity via GnRH-1 as compared to GnRH-2 (P > 0.05), when stimulating 

cells for 6 h with 10 nM hormone, either continuously or in a pulsatile fashion at 1 

pulse/2 h (see figure 42, A, showing 5.98 ± 1.57-fold with 10 nM GnRH-1 (bar no 5) 

and 3.80 ± 0.97-fold with 10 nM GnRH-2 (bar no 6);  and figure 43, A, showing 4.50 ± 

0.68-fold with 10 nM GnRH-1 (bar no 5) and 3.45 ± 0.02-fold with 10 nM GnRH-2 

(bar no 6)).  These differences between GnRH-1 and GnRH-2 were not apparent 

after 6 h of pulsatile stimulation with 10 nM hormone using a pulse frequency of 1 

pulse/0.5 h (n = 2) (not shown) or after 6 h continuous stimulation with 100 nM 

hormone (n = 6) (figure 41, A).  In contrast, overexpressed GnRHR-I resulted in a 

~50% greater induction of bLHβ promoter-reporter activity via GnRH-2 as compared 

to GnRH-1 (P > 0.05), when stimulating cells continuously for 18 h with 100 nM 

hormone (n = 3) (figure 44, A).  A dose-dependent increase in the fold induction 

obtained of bLHβ promoter-reporter activity was observed when overexpressing 

GnRHR-I in LβT2 cells, with both GnRH-1 and GnRH-2.  As can be seen in figure 47 

and figure 48, a concentration of 1 nM hormone did not stimulate bLHβ promoter-

reporter activity to significant levels.  However, in most experiments performed, bLHβ 

promoter-reporter activity was induced to significant levels with 10 nM GnRH-1 and 

GnRH-2, compared to no hormone control.  Often, a 100 nM treatment resulted in a 

further increase in bLHβ promoter-reporter activity compared to 10 nM, indicating that 

maximum stimulation of bLHβLuc is sometimes reached at 10 nM GnRH-1 or GnRH-

2 but often requires concentrations of 100 nM or higher (for example, see figure 47, 

A, showing 3.51 ± 0.31-fold with 10 nM (bar no 3) vs. 6.89 ± 0.36-fold with 100 nM 

(bar no 4) GnRH-1, P < 0.001, and figure 47, B, showing 2.14 ± 0.19-fold with 10 nM 

(bar no 3) vs. 5.94 ± 0.59-fold with 100 nM (bar no 4) GnRH-2, P < 0.001 after 6 h 

continuous stimulation.  Also refer to figure 48, A & B).  Furthermore, it was found 

that the fold induction of bLHβ promoter-reporter activity (compared to no hormone 

control) increased between 6- and 12 h stimulation with GnRH-1 and GnRH-2 at all 

concentrations tested, but was decreased at 24 h (see figure 48, A & B, showing a 

definite trend whereby maximum stimulation of bLHβ promoter-reporter activity was 

reached between 6 h and 24 h), indicating that bLHβ promoter-reporter activity is 

decreased after prolonged continuous exposure to GnRH-1 or GnRH-2 when 

overexpressing GnRHR-I.  Based on these observations, inductions in subsequent 
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experiments were performed for 6 h and/or 18 h with 10 nM and/or 100 nM of 

hormone. 

 

GnRH-1 vs. GnRH-2:  Relative effects in regulating bLHβ promoter-reporter activity 

via overexpressed GnRHR-II 

Unlike the results obtained for overexpressed GnRHR-I, overexpressed GnRHR-II 

resulted in a markedly greater induction of bLHβ promoter-reporter activity via GnRH-

2 as compared to GnRH-1, when stimulating cells for 6 h with 10 nM hormone, 

independent of whether GnRH was administered continuously or in a pulsatile 

fashion (see figure 43, A, showing 3.85 ± 1.13-fold with 10 nM GnRH-1 (bar no 8) 

and 5.95 ± 1.00-fold with 10 nM GnRH-2 (bar no 9), P < 0.01.  Also see figure 45, A).  

A similar discriminatory effect was seen after 6 h of continuous administration with 

100 nM of hormone (figure 40, P < 0.001, and figure 41, A, P > 0.05).  These 

differences were not apparent after 18 h of continuous administration (n = 3) (figure 

49, A). 

 

GnRH-1 vs. GnRH-2:  Relative effects in regulating oFSHβ promoter-reporter activity 

via overexpressed GnRHR-I 

No significant differences were observed in oFSHβ promoter-reporter activity via 

GnRH-1 as compared to GnRH-2 upon continuous stimulation, independent of 

duration of treatment or concentration of hormone used, when overexpressing 

GnRHR-I (figure 41, B, figure 42, B, figure 43, B, and figure 44, B).  Furthermore, a 

similar dose-dependent increase as observed in bLHβ promoter-reporter activity was 

not observed in oFSHβ promoter-reporter activity at the concentrations tested (not 

shown). 

 

GnRH-1 vs. GnRH-2:  Relative effects in regulating oFSHβ promoter-reporter activity 

via overexpressed GnRHR-II 

In contrast to the results for GnRHR-I, overexpressed GnRHR-II resulted in a 

markedly greater induction of oFSHβ promoter-reporter activity via GnRH-2 as 

compared to GnRH-1 when stimulating cells in a pulsatile fashion for 6 h with 10 nM, 

at a frequency of 1 pulse/2 h (see figure 43, B, showing 1.17 ± 0.09-fold with 10 nM 

GnRH-1 (bar no 8) and 2.08 ± 0.09-fold with 10 nM GnRH-2 (bar no 9), P < 0.01).  

The fold induction of oFSHβ promoter-reporter activity was similar via GnRH-1 as 

compared to GnRH-2 after 6 h (figure 41, B, and figure 45, B) or 18 h (figure 49, B) of 
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continuous administration and 6 h of pulsatile administration using 1 pulse/0.5 h (not 

shown) when overexpressing GnRHR-II. 

 

Relative induction of oFSHβ- vs. bLHβ promoter-reporter activity via 

endogenous GnRHR-I or overexpressed GnRHR-I and GnRHR-II in LβT2 cells 

The capabilities of GnRH-1 or GnRH-2 to differentially regulate bLHβ- and oFSHβ 

promoter-reporter activities were determined in LβT2 cells expressing endogenous 

GnRHR-I or overexpressing either GnRHR-I or GnRHR-II.  This was done by dividing 

the average value for oFSHβLuc with the average value for bLHβLuc for a specific 

treatment group, to calculate the oFSHβLuc:bLHβLuc ratio.  The oFSHβLuc:bLHβLuc 

ratios obtained with GnRH-1 were compared to the ratios obtained with GnRH-2, in 

the presence of a specific GnRHR subtype.  Some of these ratios, including those 

calculated for the representative experiments of which results are shown at the end 

of this section, are shown in table 9. 
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Table 9:  Comparison between oFSHβLuc:bLHβLuc ratios obtained with GnRH-1 vs. 

GnRH-2 in LβT2 cells overexpressing GnRHR-I or GnRHR-II. 

Calculated oFSHβLuc:bLHβLuc ratio relative to the 

oFSHβLuc:bLHβLuc ratio for no hormone = 1 

Overexpressed GnRHR-I Overexpressed GnRHR-II 

Treatment condition 

GnRH-1 GnRH-2 GnRH-1 GnRH-2 

Relevant 

figure no 

0.2 0.5   42 

0.3 0.6   Not shown 

  0.4 0.2 45 

6 h continuous 

(10 nM) 

  0.14 0.1 Not shown 

0.7 0.8 0.7 0.4 Not shown 6 h pulse 1 per 0.5 h 

(10 nM) 0.4 0.5   Not shown 

0.4 0.6 0.3 0.3 43 6 h pulse 1 per 2 h 

(10 nM) 0.3 0.5   Not shown 

0.3 0.8   Not shown 6 h continuous 

(100 nM) 0.16 0.23 0.4 0.2 41 

Note: 

Each row represents one experiment with all conditions shown in that row done in parallel. 

Ratios from at least two independent experiments are shown unless only one experiment was 

performed. 

Ratios were calculated by dividing the average value for oFSHβLuc with the average value for 

bLHβLuc for a specific treatment group after normalisation to βgal, each group done with 

triplicate samples.  The oFSHβLuc:bLHβLuc ratio for the no hormone group was set at a value 

of 1 for a specific GnRHR subtype. 

 

When comparing the ratios of oFSHβLuc:bLHβLuc, although the absolute values of 

the ratios differed between experiments, a trend was observed for GnRH-1 vs. 

GnRH-2 upon 6 h of hormone treatment.  When overexpressing the GnRHR-I in 

LβT2 cells, a greater oFSHβLuc:bLHβLuc ratio was obtained via GnRH-2 as 

compared to GnRH-1 after 6 h, independent of the concentration of hormone used or 

whether hormones were administered continuously or in a pulsatile fashion (table 9).  

In contrast to results obtained via overexpressed GnRHR-I, continuous stimulation 

with GnRH-1 for 6 h resulted in a higher oFSHβLuc:bLHβLuc ratio as compared to 

stimulation with GnRH-2 in cells overexpressing the GnRHR-II (table 9).  This 

observation of a greater oFSHβLuc:bLHβLuc ratio with GnRH-1 via overexpressed 

GnRHR-II was also evident when stimulating cells in a pulsatile fashion at a high 

(1/0.5 h), but not a low (1/2 h) pulse frequency (table 9).  Low pulse frequency 
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treatment resulted in similar oFSHβLuc:bLHβLuc ratios with GnRH-1 vs. GnRH-2 via 

overexpressed GnRHR-II (table 9).  No clear trends were observed after 18 h of 

hormone treatment (not shown). 

 

PACAP: 

Effect on GnRH-1- and GnRH-2-mediated regulation of bLHβ- and oFSHβ 

promoter-reporter activity in LβT2 cells 

To determine the effect of PACAP on GnRH-1- and GnRH-2-mediated regulation of 

bLHβ- and oFSHβ promoter-reporter activity, LβT2 cells overexpressing GnRHR-I or 

GnRHR-II were stimulated continuously for 6 h with PACAP (3 nM or 20 nM) alone or 

in combination with GnRH-1 (100 nM) or GnRH-2 (100 nM). 

 

Regulation of bLHβ promoter-reporter activity via overexpressed GnRHR-I in LβT2 

cells:  effects of PACAP alone or in combination with GnRH-1 or GnRH-2 

PACAP alone (3 nM or 20 nM) did not induce bLHβ promoter-reporter activity 

significantly in LβT2 cells overexpressing GnRHR-I, after 6 h continuous stimulation 

(figure 46, A).  In contrast, PACAP together with GnRH-1 or GnRH-2 (100 nM) 

resulted in a significant induction of bLHβ promoter-reporter activity via 

overexpressed GnRHR-I, independent of the concentration of PACAP used.  GnRH-

1 often resulted in a significantly greater fold induction of bLHβ promoter-reporter 

activity as compared to GnRH-2, when co-stimulating cells with 3 nM PACAP (see 

figure 46, A, showing 6.69 ± 1.19-fold with 3 nM PACAP/100 nM GnRH-1 (bar no 10) 

and 4.42 ± 0.26-fold with 3 nM PACAP/100 nM GnRH-2 (bar no 11), P < 0.05).  This 

difference between GnRH-1 and GnRH-2 was not observed with the addition of 20 

nM PACAP (figure 46, A).  These results show that PACAP modulates the response 

of the bLHβ promoter to 6 h of continuous stimulation with 100 nM GnRH-1 and/or 

GnRH-2 via the GnRHR-I, in a dose-dependent fashion.  Although inductions with 

GnRH only were not included in these experiments, the effects seen with PACAP 

plus GnRH-1 or GnRH-2 can be compared with the relative effects of GnRH-1 vs. 

GnRH-2 alone observed in separate experiments.  As can be seen in figure 41, A, 

the bLHβ response to 100 nM GnRH-1 or GnRH-2 alone was similar via 

overexpressed GnRHR-I.  This would suggest that the greater response to 3 nM 

PACAP plus 100 nM GnRH-1 as compared to 3 nM PACAP plus 100 nM GnRH-2 

after 6 h continuous stimulation (figure 46, A) is either the result of an increase in the 

GnRH-1 response or a decrease in the GnRH-2 response by 3 nM PACAP. 
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Regulation of bLHβ promoter-reporter activity via overexpressed GnRHR-II in LβT2 

cells:  effects of PACAP alone or in combination with GnRH-1 or GnRH-2 

Overexpressed GnRHR-II did not result in induction of bLHβ promoter-reporter 

activity via PACAP alone, similar to results obtained with overexpressed GnRHR-I 

(figure 46, A).  A combination of PACAP and 100 nM GnRH-1 or GnRH-2 always 

increased bLHβ promoter-reporter activity significantly, and the fold induction 

obtained was similar independent of the concentration of PACAP used or whether 

PACAP was combined with either GnRH-1 or GnRH-2 (figure 46, A).  Since it was 

found that for overexpressed GnRHR-II, in the absence of PACAP, 100 nM GnRH-2 

resulted in a significantly greater fold induction of bLHβ promoter-reporter activity as 

compared to 100 nM GnRH-1 added continuously for 6 h (figures 40 & 41, A), this 

suggests that PACAP is modulating the response via GnRHR-II to GnRH, either by 

reducing the relative response to GnRH-2 or increasing the relative response to 

GnRH-1. 

 

Regulation of oFSHβ promoter-reporter activity via overexpressed GnRHR-I in LβT2 

cells:  effects of PACAP alone or in combination with GnRH-1 or GnRH-2 

oFSHβ promoter-reporter activity was not significantly affected by PACAP alone via 

overexpressed GnRHR-I, similar to results obtained for bLHβ (figure 46, B).  

Interestingly, significant increases, albeit very small, in oFSHβ promoter-reporter 

activity were observed with 20 nM PACAP, but not 3 nM PACAP, in the presence of 

both 100 nM GnRH-1 and GnRH-2 (figure 46, B), as compared to no hormone 

control.  When stimulating cells with GnRH-1 or GnRH-2 (100 nM) alone for 6 h 

continuously (figure 41, B) a small and similar increase was observed in oFSHβ 

promoter-reporter activity for both hormones.  Thus while it can be seen that PACAP 

does not alter the relative effects of GnRH-1 vs. GnRH-2 (figure 46, B), unlike the 

results obtained for bLHβ, it does appear to modulate the GnRH response via 

GnRHR-I, in a dose-dependent fashion, by inhibiting the effects of both hormones at 

3 nM PACAP, but not at 20 nM PACAP. 

 

Regulation of oFSHβ promoter-reporter activity via overexpressed GnRHR-II in LβT2 

cells:  effects of PACAP alone or in combination with GnRH-1 or GnRH-2 

In contrast to overexpressed GnRHR-I, no significant stimulation of oFSHβ promoter-

reporter activity was observed with PACAP alone (both 3 nM and 20 nM) or in 

combination with GnRH-1 or GnRH-2 via overexpressed GnRHR-II, after 6 h 

continuous stimulation (figure 46, B).  GnRH-1 or GnRH-2 (100 nM) treatment alone 
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also had no stimulatory effect on oFSHβ promoter-reporter activity (figure 41, B), 

and, since this lack in response was not altered upon addition of PACAP, it was 

evident that PACAP has no modulatory effect on the oFSHβ response to GnRH via 

the GnRHR-II. 

 

Tissue-specificity of the regulation of bLHβ- and oFSHβ promoter-reporter 

activity:  Comparison of effects in LβT2 vs. COS-1 cells 

To determine whether the relative effects of GnRH-1 vs. GnRH-2 in regulating bLHβ- 

and oFSHβ promoter-reporter activities via GnRHR-I and GnRHR-II are specific to 

pituitary gonadotrope cells, some of the promoter-reporter studies performed in LβT2 

cells were repeated in COS-1 kidney cells.  COS-1 cells express GnRHR-II 

endogenously, at very low levels [Neill JD et al., 2001], but do not express GnRHR-I.  

LβT2 cells do not express endogenous GnRHR-II in addition to GnRHR-I since 

rodents do not possess a GnRHR-II gene [Neill JD, 2002b].  Similar to LβT2 cells, it 

was found that neither bLHβ- nor oFSHβ promoter-reporter activity was significantly 

increased in response to GnRH-1 or GnRH-2 in the presence of endogenous GnRHR 

levels in COS-1 cells, independent of the concentration of hormone used or the 

duration of treatment (figure 50).  When overexpressing GnRHR-I or GnRHR-II, 

bLHβ- but not oFSHβ promoter-reporter activity was increased in response to 

hormone treatment in COS-1 cells (figure 50), whereas in LβT2 cells both activities 

were increased.  The maximum fold induction of bLHβ promoter-reporter activity 

obtained in COS-1 cells was lower than that observed in LβT2s.  These results 

indicated that GnRH-1 and GnRH-2 are both able to regulate bLHβ- and oFSHβ 

promoter-reporter activity in COS-1 cells, which would suggest that the transcriptional 

machinery involved in the regulation of the gonadotropin β-subunit genes is not 

specific to gonadotrope cells.  One interesting difference between the two cell-lines 

was the effect of GnRH treatment duration on bLHβ- and oFSHβ promoter-reporter 

activity.  Whereas in LβT2 cells bLHβ promoter-reporter activity was higher after a 

short (12 h or less) as compared to a long (more than 12 h) continuous incubation 

with GnRH-1 and GnRH-2 via overexpressed GnRHR-I or overexpressed GnRHR-II 

(figure 48, A & B), a similar time dependency of the fold induction of bLHβ promoter-

reporter activity in COS-1 cells was only observed when overexpressing GnRHR-II, 

but not when overexpressing GnRHR-I (not shown).  Furthermore, oFSHβ promoter-

reporter activity was higher after 6 h continuous as compared to 18 h continuous 

treatment with GnRH-1 or GnRH-2 via overexpressed GnRHR-II (but not via 
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overexpressed GnRHR-I) in LβT2 cells.  This time-dependency of the induction of 

oFSHβ promoter-reporter activity was not observed in COS-1 cells (not shown).  

Interestingly, in COS-1 cells there was a significant increase in bLHβ promoter-

reporter activity when stimulating cells continuously with 100 nM as compared to 10 

nM GnRH-1, in the presence of overexpressed GnRHR-II (figure 50, A, bar numbers 

11 to 13), but not when overexpressing GnRHR-I (figure 50, A, bar numbers 6 to 8).  

A similar dose-dependent increase in bLHβ promoter-reporter activity was not 

observed when stimulating cells with GnRH-2, independent of the subtype of GnRHR 

overexpressed (figure 50, A, bar numbers 6, 9 to 11, 14 & 15).  A similar low-fold, not 

significant, induction of oFSHβ promoter-reporter activity was obtained in COS-1 

cells (figure 50, B) as observed in LβT2 cells (figure 41, B). 

 

Expression levels of GnRHR-I and GnRHR-II in LβT2 cells 

To investigate the possibility that the differences observed in bLHβLuc- and/or 

oFSHβLuc activity via GnRHR-I as compared to GnRHR-II are the result of 

differences in receptor levels, homologous competitive binding assays were 

performed in LβT2 cells to calculate GnRHR numbers (figure 51).  Whole-cell binding 

was performed to determine cell-surface receptor numbers, i.e. receptors that would 

be available to respond to GnRH treatment.  Cells used for binding analysis were 

transiently transfected with the same combination and concentration of DNA as used 

in the promoter-reporter assays to be able to directly compare results of the 

promoter-reporter assays with binding data.  Incubation times of cells were chosen 

such to mimic incubation times used in the promoter-reporter assays. 

 

Binding of the 125I-[His5,D-Tyr6]GnRH analogue to the endogenous GnRHR-I in LβT2 

cells was negligible (not shown).  Analysis of binding data yielded a Kd of 3 nM 

(LogKd ± SE -8.49 ± 0.02) for 125I-[His5,D-Tyr6]GnRH in LβT2 cells overexpressing the 

GnRHR-I and a Kd of 9 nM (LogKd ± SE -8.04 ± 0.12) in cells overexpressing 

GnRHR-II.  These Kd values are in the same range as the Kd determined for 125I-

[His5,D-Tyr6]GnRH at the human GnRHR-I (0.19 nM) with the use of saturation 

binding assays in COS-1 cells [Flanagan CA et al., 1998].  Using the values for Bmax 

(Bmax ± SE, overexpressed GnRHR-I:  3.51 X 106 ± 160500 cpm, overexpressed 

GnRHR-II:  3.41 X 105 ± 38400) as determined with the GraphPad Software, as well 

as the specific activity of 125I-[His5,D-Tyr6]GnRH (3608 cpm/fmol), the total GnRHR 

number on the cell surface was calculated.  This number for LβT2 cells 

overexpressing the GnRHR-I was on average 4.87 X 10-3 fmol per cell, which is 10.3 
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times higher compared to the total GnRHR number expressed on the cell surface of 

cells overexpressing GnRHR-II (4.72 X 10-4 fmol per cell). 
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Bar number 1 2 3 4 5 6 7 
        
Time (h) 0 6 6 6 6 6 6 
GnRH-1 100 nM - - + - - + - 
GnRH-2 100 nM - - - + - - + 
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GnRH-1 100 nM - - + - - + - 
GnRH-2 100 nM - - - + - - + 
PACAP   20 nM - - - - + + + 

 
Fig 37.  Northern blot analysis of α-subunit mRNA in LβT2 cells after 6- (A) and 24 h 
(B) stimulation with GnRH-1 (100 nM), GnRH-2 (100 nM) or PACAP (20 nM) alone or 
a combination of GnRH-1 or GnRH-2 with PACAP:  Bar graph representations of the 
relative mRNA levels of duplicate samples (mean ± SEM) after normalisation to β-
actin mRNA (n = 1).  Groups were compared to control incubation in absence of 
hormone (bar no 2) using Dunnet’s post-test and were considered significantly 
different from control if P ≤ 0.05.  Differences to control were indicated with *, P < 
0.05 or **, P < 0.01.  Groups were also compared to each other using Bonferroni’s 
post-test and were considered significantly different from another group if P ≤ 0.05.  
Differences between groups were indicated with different letters of the alphabet. 
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Fig 38.  Northern blot analysis of LHβ mRNA in LβT2 cells after 6- (A) and 24 h (B) 
stimulation with GnRH-1 (100 nM), GnRH-2 (100 nM) or PACAP (20 nM) alone or a 
combination of GnRH-1 or GnRH-2 with PACAP:  Bar graph representations of the 
relative mRNA levels of duplicate samples (mean ± SEM) after normalisation to β-
actin mRNA.  Results from one representative experiment out of two independent 
experiments are shown.  Groups were compared to control incubation in absence of 
hormone (bar no 2) using Dunnet’s post-test and were considered significantly 
different from control if P ≤ 0.05.  Differences to control were indicated with *, P < 
0.05.  Groups were also compared to each other using Bonferroni’s post-test and 
were considered significantly different from another group if P ≤ 0.05.  Differences 
between groups were indicated with different letters of the alphabet. 

Bar number 1 2 3 4 5 6 7 
        
Time (h) 0 6 6 6 6 6 6 
GnRH-1 100 nM - - + - - + - 
GnRH-2 100 nM - - - + - - + 
PACAP   20 nM - - - - + + + 

Bar number 1 2 3 4 5 6 7 
        
Time (h) 0 24 24 24 24 24 24 
GnRH-1 100 nM - - + - - + - 
GnRH-2 100 nM - - - + - - + 
PACAP   20 nM - - - - + + + 
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Fig 39.  Northern blot analysis of FSHβ mRNA in LβT2 cells after 6- (A) and 24 h (B) 
stimulation with GnRH-1 (100 nM), GnRH-2 (100 nM) or PACAP (20 nM) alone or a 
combination of GnRH-1 or GnRH-2 with PACAP:  Bar graph representations of the 
relative mRNA levels of duplicate samples (mean ± SEM) after normalisation to β-
actin mRNA.  Results from one representative experiment out of two independent 
experiments are shown.  Groups were compared to control incubation in absence of 
hormone (bar no 2) using Dunnet’s post-test and were considered significantly 
different from control if P ≤ 0.05.  Differences to control were indicated with *, P < 
0.05 or **, P < 0.01.  Groups were also compared to each other using Bonferroni’s 
post-test and were considered significantly different from another group if P ≤ 0.05.  
Differences between groups were indicated with different letters of the alphabet. 

Bar number 1 2 3 4 5 6 7 
        
Time (h) 0 6 6 6 6 6 6 
GnRH-1 100 nM - - + - - + - 
GnRH-2 100 nM - - - + - - + 
PACAP   20 nM - - - - + + + 

Bar number 1 2 3 4 5 6 7 
        
Time (h) 0 24 24 24 24 24 24 
GnRH-1 100 nM - - + - - + - 
GnRH-2 100 nM - - - + - - + 
PACAP   20 nM - - - - + + + 
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Fig 40.  Induction of bLHβ promoter-reporter activity in LβT2 cells overexpressing 

GnRHR-II, after 6 h continuous stimulation with GnRH-1 or GnRH-2 (100 nM).  

Results from one representative experiment, with each point done in triplicate, out of 

three independent experiments are shown.  All groups were compared to each other 

using Bonferroni’s post-test.  Differences between groups were considered significant 

if P ≤ 0.05. 
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Fig 41.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in LβT2 cells 
overexpressing GnRHR-I or GnRHR-II, after 6 h continuous stimulation with GnRH-1 
or GnRH-2 (100 nM).  (A) and (B) are from the same experiment.  Note that the 
scales for the y axes of (A) and (B) are the same.  Results from one representative 
experiment, with each point done in triplicate, out of six independent experiments are 
shown.  All groups were compared to each other using Bonferroni’s post-test.  
Differences between groups were considered significant if P ≤ 0.05.  No significant 
differences were observed between groups in (B). 

Bar number 1 2 3 4 5 6 7 8 9 
          
bLHβLuc + + + + + + + + + 
pGL2-basic + + + - - - - - - 
GnRHR-I cDNA - - - + + + - - - 
GnRHR-II cDNA - - - - - - + + + 
pSV40βgal + + + + + + + + + 
          
GnRH-1 100 nM - + - - + - - + - 
GnRH-2 100 nM - - + - - + - - + 

Bar number 1 2 3 4 5 6 7 8 9 
          
oFSHβLuc + + + + + + + + + 
pGL2-basic + + + - - - - - - 
GnRHR-I cDNA - - - + + + - - - 
GnRHR-II cDNA - - - - - - + + + 
pSV40βgal + + + + + + + + + 
          
GnRH-1 100 nM - + - - + - - + - 
GnRH-2 100 nM - - + - - + - - + 
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Fig 42.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in LβT2 cells 
overexpressing GnRHR-I, after 6 h continuous stimulation with GnRH-1 or GnRH-2 
(10 nM).  (A) and (B) are from the same experiment.  Note that the scales for the y 
axes of A and B are different, to enable comparison within each panel of the effects 
of hormone relative to no hormone, which is set at a value of 1 for each panel.  The 
relative Luc/βgal values for (A) vs. (B) are such that a value of 1 for oFSHβLuc 
equals a value of 3.5 for bLHβLuc.  Results from one representative experiment, with 
each point done in triplicate, out of four independent experiments are shown.  All 
groups were compared to each other using Bonferroni’s post-test.  Differences 
between groups were considered significant if P ≤ 0.05.  No significant differences 
were observed between groups in (B). 
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bLHβLuc + + + + + + 
pGL2-basic + + + - - - 
GnRHR-I cDNA - - - + + + 
pSV40βgal + + + + + + 
       
GnRH-1 10 nM - + - - + - 
GnRH-2 10 nM - -  + - - + 

Bar number 1 2 3 4 5 6 
       
oFSHβLuc + + + + + + 
pGL2-basic + + + - - - 
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Fig 43.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in LβT2 cells 
overexpressing GnRHR-I or GnRHR-II, after 6 h pulsatile stimulation with GnRH-1 or 
GnRH-2 (10 nM), at a pulse frequency of 1 pulse/2 h.  (A) and (B) are from the same 
experiment.  Note that the scales for the y axes of (A) and (B) are the same.  Results 
from one representative experiment, with each point done in triplicate, out of two 
independent experiments are shown.  All groups were compared to each other using 
Bonferroni’s post-test.  Differences between groups were considered significant if P ≤ 
0.05. 

Bar number 1 2 3 4 5 6 7 8 9 
          
bLHβLuc + + + + + + + + + 
pGL2-basic + + + - - - - - - 
GnRHR-I cDNA - - - + + + - - - 
GnRHR-II cDNA - - - - - - + + + 
pSV40βgal + + + + + + + + + 
          
GnRH-1 10 nM 1/2 h - + - - + - - + - 
GnRH-2 10 nM 1/2 h - - + - - + - - + 

Bar number 1 2 3 4 5 6 7 8 9 
          
oFSHβLuc + + + + + + + + + 
pGL2-basic + + + - - - - - - 
GnRHR-I cDNA - - - + + + - - - 
GnRHR-II cDNA - - - - - - + + + 
pSV40βgal + + + + + + + + + 
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Fig 44.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in LβT2 cells 
overexpressing GnRHR-I, after 18 h continuous stimulation with GnRH-1 or GnRH-2 
(100 nM).  (A) and (B) are from the same experiment.  Note that the scales for the y 
axes of (A) and (B) are the same.  Results from one representative experiment, with 
each point done in triplicate, out of three independent experiments are shown.  All 
groups were compared to each other using Bonferroni’s post-test.  Differences 
between groups were considered significant if P ≤ 0.05. 

Bar number 1 2 3 4 5 6 
       
bLHβLuc + + + + + + 
pGL2-basic + + + - - - 
GnRHR-I cDNA - - - + + + 
pSV40βgal + + + + + + 
       
GnRH-1 100 nM - + - - + - 
GnRH-2 100 nM - -  + - - + 

Bar number 1 2 3 4 5 6 
       
oFSHβLuc + + + + + + 
pGL2-basic + + + - - - 
GnRHR-I cDNA - - - + + + 
pSV40βgal + + + + + + 
       
GnRH-1 100 nM - + - - + - 
GnRH-2 100 nM - -  + - - + 
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GnRH-2 10 nM - - + 

 
 
Fig 45.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in LβT2 cells 
overexpressing GnRHR-II, after 6 h continuous stimulation with GnRH-1 or GnRH-2 
(10 nM).  (A) and (B) are from the same experiment (n = 1), with each point done in 
triplicate.  Note that the scales for the y axes of A and B are different, to enable 
comparison within each panel of the effects of hormone relative to no hormone, 
which is set at a value of 1.  The relative Luc/βgal values for (A) vs. (B) are such that 
a value of 1 for bLHβLuc equals a value of 2 for oFSHβLuc.  All groups in (A) were 
compared to each other using Bonferroni’s post-test.  Differences between groups 
were considered significant if P ≤ 0.05.  Groups in (B) were not compared to each 
other since bar no 3 represents only a single value. 
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Fig 46.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in LβT2 cells 
overexpressing GnRHR-I or GnRHR-II, after 6 h continuous stimulation with PACAP (3 nM or 
20 nM) alone or PACAP (3 nM or 20 nM) plus GnRH-1 or GnRH-2 (100 nM).  (A) and (B) are 
from the same experiment.  Note that the scales for the y axes of (A) and (B) are different, to 
enable comparison within each panel of the effects of hormone relative to no hormone in the 
absence of overexpressed receptor, which is set at a value of 1 for each panel.  The relative 
Luc/βgal values for (A) vs. (B) are such that a value of 1 for bLHβLuc equals a value of 2.2 for 
oFSHβLuc.  Results from one representative experiment, with each point done in triplicate, 
out of three independent experiments are shown.  All groups were compared to each other 
using Bonferroni’s post-test.  Differences between groups were considered significant if P ≤ 
0.05. 
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Fig 47.  Induction of bLHβ promoter-reporter activity in LβT2 cells overexpressing 
GnRHR-I, after 6 h continuous stimulation with GnRH-1 (A) or GnRH-2 (B) (1, 10 or 
100 nM).  (A) and (B) are from two independent experiments, each performed once, 
with each point done in triplicate.  Note that (B) represents part of the results of a 
time course experiment of which the full result is show in figure 48, B.  All groups 
were compared to each other using Bonferroni’s post-test.  Differences between 
groups were considered significant if P ≤ 0.05.  
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Fig 48.  Induction of bLHβ promoter-reporter activity in LβT2 cells overexpressing 

GnRHR-I, after 6-, 12- or 24 h continuous stimulation with GnRH-1 (10 or 100 nM) 

(A) or GnRH-2 (1, 10 or 100 nM) (B).  (A) and (B) are from two independent 

experiments, each performed once using Lipofectamine 2000 transfection reagent 

and with each point done in triplicate.  Note that samples for the 6 h no hormone 

group in (A) (bar no 2) were lost, and hence this bar is absent form panel (A).  Also, 

note that in (B) there is no result with 1 nM hormone for 24 h;  instead, induction with 

100 nM in the presence of only endogenous GnRHR-I was included at this time point.  

All groups were compared to each other using Bonferroni’s post-test.  Differences 

between groups were considered significant if P ≤ 0.05. 
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Fig 49.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in LβT2 cells 
overexpressing GnRHR-II, after 18 h continuous stimulation with GnRH-1 or GnRH-2 
(100 nM).  (A) and (B) are from the same experiment.  Note that the scales for the y 
axes of (A) and (B) are the same.  Results from one representative experiment, with 
each point done in triplicate, out of three independent experiments are shown.  All 
groups were compared to each other using Bonferroni’s post-test.  Differences 
between groups were considered significant if P ≤ 0.05. 
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Fig 50.  Induction of bLHβ- (A) and oFSHβ (B) promoter-reporter activity in COS-1 
cells overexpressing GnRHR-I or GnRHR-II, after 6 h continuous stimulation with 
GnRH-1 or GnRH-2 (10 or 100 nM).  (A) and (B) are from the same experiment.  
Note that the scales for the y axes of (A) and (B) are the same.  Results from one 
representative experiment, with each point done in triplicate, out of three independent 
experiments are shown.  All groups were compared to each other using Bonferroni’s 
post-test.  Differences between groups were considered significant if P ≤ 0.05. 
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Fig 51.  Homologous competition binding curves using 125I-[His5,D-Tyr6]GnRH in 

whole LβT2 cells to compare binding to the expressed GnRHR-I (A) and the 

expressed GnRHR-II (B).  Binding was performed in the presence of co-

transfected bLHβLuc (∆) or oFSHβLuc (▲) to be able to directly compare 

binding results with results of promoter-reporter assays.  Data points 

represent the mean ± SE of duplicate samples.  Results from one 

representative experiment out of two independent experiments are shown. 

A.  Expressed GnRHR-I 

B.  Expressed GnRHR-II 
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Discussion 
 

LH and FSH are present in the same gonadotropes, yet their synthesis and 

expression are differentially regulated by GnRH.  There are several possible 

mechanisms whereby this may occur, both transcriptional and post-transcriptional, 

the latter including regulation of mRNA and protein turnover, and release of stored 

LH and FSH from intracellular vesicles.  The purpose of the present research is to 

investigate the role of GnRH-1 and GnRH-2 in transcriptional regulation of 

transfected bLHβ- and oFSHβ promoter-reporter constructs in LβT2 and COS-1 cells, 

and to determine the involvement of endogenous and expressed mammalian 

GnRHR-I and GnRHR-II therein, as well as possible modulatory effects of PACAP on 

the responses.  Regulation by GnRH-1 and GnRH-2 of endogenous gonadotropin 

mRNA levels via endogenous GnRHR-I in LβT2 cells and modulatory effects of 

PACAP thereon, were also investigated. 

 

Transcriptional regulation of bLHβ- and oFSHβ-subunit genes via endogenous 

GnRHR-I in LβT2 cells 

When considering the results obtained via endogenous GnRHR-I in LβT2 cells, no 

statistically significant induction of bLHβ- and oFSHβ promoter-reporter activity was 

detected by GnRH-1 or GnRH-2 treatment, independent of the method of hormone 

administration, concentration or duration of treatment.  While it appeared that small 

GnRH-induced increases (about 1.5-fold) in promoter-reporter activity were 

sometimes observed, if this was significant this was not detectable within the limits of 

the experimental system.  In accordance with an absence of a transcriptional effect 

for continuous stimulation with GnRH, Northern blot analysis in LβT2 cells confirmed 

that LHβ and FSHβ mRNA levels are not significantly increased after 6- or 24 h of 

continuous stimulation with GnRH-1 or GnRH-2 (figures 38 & 39).  Taken together, 

these results also show that there is no regulation of LHβ and FSHβ mRNA turnover 

in LβT2 cells by continuous stimulation with GnRH-1 or GnRH-2.  The promoter-

reporter and Northern blot studies reported in the present study for regulation by 

GnRH-2 of LHβ and FSHβ are novel, and as such increase our understanding of the 

role of continuous GnRH stimulation on transcriptional regulation of these promoters. 
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LHβ regulation by endogenous GnRHR-I upon continuous stimulation with GnRH-1 

or GnRH-2 

The results obtained for bLHβ regulation by endogenous GnRHR-I upon continuous 

stimulation with GnRH-1 are consistent with those in the literature [Wurmbach E et 

al., 2001;  Pernasetti F et al., 2001;  Nguyen KA et al., 2004;  Kakar SS et al., 2003;  

Haisenleder DJ et al., 1991].  For example, others have also shown that expression 

of the LHβ gene is unaffected after 1-, 3-, 6- or 24 h continuous stimulation with 

GnRH-1 [Wurmbach E et al., 2001;  Pernasetti F et al., 2001;  Nguyen KA et al., 

2004;  Haisenleder DJ et al., 1991].   Likewise, Kakar SS et al. [2003], with the use of 

microarray analysis, also detected no significant change (<1.3 fold) in endogenous 

mRNA levels for LHβ in response to either 1- or 24 h of continuous GnRH-1 agonist 

(100 nM) treatment.  Collectively, these findings that steady-state LHβ mRNA levels 

are not significantly increased in response to continuous GnRH-1 suggest that LHβ is 

not regulated or regulated to a small degree at the level of transcription and/or mRNA 

turnover by GnRH-1.  However, numerous studies in LβT2 cells have reported that 

LHβ protein levels are elevated by short-term continuous GnRH-1 stimulation [Liu F 

et al., 2002a;  Nguyen KA et al., 2004].  In a study by Liu F et al. [2002a], increases 

in LHβ protein synthesis in response to a continuous dose of 100 nM GnRH agonist 

was apparent by 2 h in LβT2 cells and reached a maximum at 8 h, which was 

maintained for up to 24 h.  In a recent study by Nguyen KA et al. [2004] using LβT2 

cells transfected with a rat LHβ promoter-reporter construct no significant increase in 

LHβ promoter-reporter activity was seen after 6 h of continuous stimulation with 10 

nM GnRH-1, whereas a significant increase in LHβ subunit (determined by 

radioimmunoassay) was observed within 4 h in LβT2 cells.  Thus, short-term (<6 h) 

induction of LH synthesis and release by continuous GnRH-1 would appear to be 

dependent upon new protein synthesis but not new mRNA synthesis, suggesting that 

the LH response to GnRH-1 treatment is mainly a translational, rather than a 

transcriptional effect [Nguyen KA et al., 2004], consistent with the results of the 

present study.  There are however two reports in the literature showing acute 

activation (within 6 h) [Kaiser UB et al., 2000;  Vasilyev VV et al., 2002a] and long-

term repression (after 24 h) of LHβ promoter-reporter activity by continuous GnRH-1 

agonists in the presence of endogenous GnRHR-I in LβT2 cells [Vasilyev VV et al., 

2002a].  These differences in the results as to the effects of continuous GnRH-1 on 

LHβ transcriptional regulation might be attributed to the use of different GnRH-1 

analogues as well as different promoter-reporter constructs. 
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As for GnRH-1, the findings of the present study suggest that continuous GnRH-2 

does not regulate LHβ transcription and/or mRNA turnover via endogenous GnRHR-I 

in LβT2 cells.  No previous studies have been reported for regulation of LHβ gene 

transcription by GnRH-2 in any system expressing endogenous GnRHR-I, and thus 

the results presented in this study with GnRH-2 are novel. 

 

FSHβ regulation by endogenous GnRHR-I upon continuous stimulation with GnRH-1 

or GnRH-2 

The results via endogenous GnRHR-I with continuous stimulation with GnRH-1 for 

oFSHβ reported here, showing low-fold induction of the transfected oFSHβ promoter, 

are consistent with those in the literature.  Others have reported similar results of 

small increases in oFSHβ promoter-reporter activity using the same promoter-

reporter construct as used in this study [Pernasetti F et al., 2001;  Vasilyev VV et al., 

2002b].  Both Pernasetti F et al. [2001] and Vasilyev VV et al. [2002b] observed a 

maximal 2-fold increase in oFSHβ promoter-reporter activity in LβT2 cells using 1 nM 

GnRH-1 continuously for 6 h, in the absence of overexpressed GnRHR.  In addition, 

in perifused male rat pituitary cells continuous incubation with 10 nM GnRH-1 for 4 h 

stimulated FSHβ mRNA approximately 2-fold [Besecke LM et al., 1996].  Haisenleder 

DJ et al. [1991], with the use of a nuclear run-off transcription assay in isolated rat 

pituitaries, determined that a 24 h continuous GnRH-1 infusion did not increase the 

transcription rate of FSHβ mRNA.  The finding by others that FSHβ gene 

transcription and steady-state mRNA levels are increased by ≤200% (2-fold change) 

in response to continuous GnRH-1 in vivo further suggests that FSHβ is only partly 

regulated at the transcriptional level by continuous GnRH-1 [Haisenleder DJ et al., 

1991].  No previous studies have been reported for regulation of FSHβ gene 

transcription by GnRH-2 in any system expressing endogenous GnRHR-I.  Thus, the 

findings presented here that continuous GnRH-2 does not stimulate bFSHβ promoter 

activity or increase FSHβ mRNA levels significantly are novel and show that, as for 

GnRH-1, GnRH-2 has no effect on FSHβ transcriptional regulation in LβT2 cells 

expressing only endogenous GnRHR-I.  Furthermore, by Northern blot analysis it 

was demonstrated that a hormone-independent increase in endogenous FSHβ 

mRNA levels occurs over time in culture in the absence of hormone (figure 39, B).  

This finding of stimulation of FSHβ transcription in the absence of GnRH is a first, 

and may explain the reported results in the literature indicating that, on protein level, 

FSH release is not only regulated by GnRH but also by a non-GnRH-associated 
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pathway [Padmanabhan V & McNeilly AS, 2001] (also discussed in the Introduction 

of this chapter).  Taken together, the results presented here show that FSHβ 

promoter activity is either not stimulated or stimulated to very low levels after 

continuous administration of GnRH-1 and GnRH-2 via endogenous GnRHR-I in LβT2 

cells, independent of the duration of treatment or concentration used.  When a low-

level increase in FSHβ transcriptional activity is observed, this is possibly due to the 

effects of a non-GnRH-mediated pathway. 

 

LHβ and FSHβ regulation by endogenous GnRHR-I upon pulsatile stimulation with 

GnRH-1 or GnRH-2 

It is interesting to compare the effect of the method of administration of GnRH on 

LHβ- and FSHβ transcription and mRNA levels via endogenous GnRHR-I in LβT2 

cells.  In this study it was found that pulsatile stimulation resulted in a similar lack of 

response to GnRH-1 and GnRH-2 by bLHβ- and oFSHβLuc as obtained with 

continuous administration for 6 h.  These results are different from reports by 

Haisenleder DJ et al. [1991] and Turgeon JL et al. [1996], showing stimulation of 

FSHβ- and/or LHβ transcription by pulsatile GnRH-1 in isolated rat pituitaries as 

determined by a nuclear run-off transcription assay and in LβT2 cells by Northern blot 

analysis  respectively.  GnRH pulses at 30 min intervals elevated LHβ- and FSHβ 

transcription rates 3- to 5-fold vs. control after 1 h in rat pituitaries [Haisenleder DJ et 

al., 1991].  After 4 h of GnRH pulses, FSHβ transcription rate was reduced vs. 1 h, 

but LHβ mRNA synthesis rate was maintained, whereas, at 24 h, LHβ- and FSHβ 

transcription rates had both fallen to basal levels despite a continuing pulsatile GnRH 

stimulus [Haisenleder DJ et al., 1991].  By Northern analysis of LβT2 cells after three 

days in culture it was shown that four GnRH-1 (10 nM) pulses of 15 min duration 

given every 90 min for three days increased steady-state LHβ mRNA levels 4- to 5-

fold [Turgeon JL et al., 1996].  Furthermore, in perifused LβT2 cells LHβ promoter 

activity was found to be preferentially stimulated by a high pulse frequency (1 

pulse/30 min) whereas FSHβ promoter activity is stimulated to the greatest extent at 

a lower pulse frequency (1 pulse/2 h) after either 10- or 20 h of GnRH stimulation 

[Bédécarrats GY & Kaiser UB, 2003], similar to an earlier report [Dalkin AC et al., 

1989].  However, direct demonstration that pulsatile GnRH affects gonadotropin β-

subunit gene transcription in vivo has been somewhat elusive, as the action appears 

to be model-dependent [Turgeon JL et al., 1996].  For example, similar results of 

increased induction of LHβ- and FSHβ mRNA synthesis by pulsatile GnRH have 

been indicated in vivo in the ewe [Hamernik DL & Nett TM, 1988;  Molter-Gérard C et 
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al., 1999] and in male rats [Marshall JC et al., 1991].  In contrast, FSHβ-, but not 

LHβ, mRNA synthesis is induced by pulsatile GnRH in adult female or GnRH-

deficient female rats [Gajewska A et al., 2000;  Weiss J et al., 1990;  Haisenleder DJ 

et al., 1995;  Kerrigan JR et al., 1993] although cells from peripubertal females did 

show an increase in LHβ mRNA [Haisenleder DJ et al., 1993]. 

 

One possible explanation for the lack of induction of LHβ- and FSHβ transcription as 

seen in this and other studies may be due to the method used to generate GnRH 

pulses.  For example, Bédécarrats & Kaiser used a perifusion system that allowed 

them to replicate the GnRH pulsatility occurring in vivo [Bédécarrats GY & Kaiser UB, 

2003] whereas, in this study, a manual method was used.  Another possibility could 

be differences in duration of pulsatile treatment.  It was shown in one study that 20 h 

of pulsatile GnRH stimulation was necessary to obtain clear differential regulation of 

gonadotropin subunit gene promoter activity [Bédécarrats GY & Kaiser UB, 2003].  

Also, differences in cell conditions may alter responsiveness, since cells in culture 

are exquisitely sensitive to conditions of cell growth [Sealfon SC, via personal 

communication].  Unlike GnRH-1, pulsatile stimulation with GnRH-2 to measure 

transcription of the gonadotropin β-subunit genes was not done prior to this study.  

Hence the results presented here for GnRH-2, indicating that GnRH-2 (10 nM) too, 

like GnRH-1, does not affect bLHβ- or oFSHβ promoter activity in LβT2 cells after 6 h 

pulsatile stimulation, are novel. 

 

Interestingly, recent studies demonstrated a link between the role of GnRH pulse 

frequency in LHβ transcription and the number of GnRHRs on the cell-surface 

[Kaiser UB et al., 1997a;  Bédécarrats GY & Kaiser UB, 2003].  The highest GnRHR 

numbers occur at those GnRH pulse frequencies that preferentially stimulate LHβ 

gene transcription, with lower levels occurring at slower frequencies that are 

associated with preferential FSHβ gene expression [Kaiser UB et al., 1997b;  

Bédécarrats GY & Kaiser UB, 2003].  GnRHR gene expression is also dependent on 

GnRH pulse frequency [Bédécarrats GY & Kaiser UB, 2003;  Schally AV et al., 1995;  

Pinski J et al., 1996;  Halmos G et al., 1996].  Whereas pulsatile GnRH seems to 

increase GnRHR number, continuous GnRH stimulation induces a down-regulation 

of receptor number and a decrease in GnRHR gene expression [Bédécarrats GY & 

Kaiser UB, 2003;  Schally AV et al., 1995;  Pinski J et al., 1996;  Halmos G et al., 

1996], which could explain the need for pulsatile stimulation in some of the above-

mentioned studies in the absence of co-transfected GnRHR cDNA. 
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Endogenous GnRHR-I levels in LβT2 cells 

Given the lack of response of the bLHβ- and oFSHβ promoter-reporters to GnRH-1 

and GnRH-2 via the endogenous GnRHR-I in LβT2 cells, even when stimulating cells 

pulsatile, the question of whether the receptor is expressed and active in the LβT2 

cells as cultured in our laboratory, is relevant.  Although the results obtained for 

continuous GnRH-1 stimulation are in agreement with the literature, the results for 

pulsatile administration differ, raising the question above.  The present binding 

results showing no significant binding of a GnRH analogue in LβT2 cells (not shown) 

would suggest that, if endogenous GnRHR-I is present, expression levels for this 

receptor are very low in these cells.  However, others have measured GnRH binding 

in LβT2 cells in the absence of exogenous GnRHR [Bédécarrats GY & Kaiser UB, 

2003].  Furthermore, using IP assays, Kakar SS et al. [2003] demonstrated that the 

GnRHRs on the cell membranes of LβT2 cells are high affinity receptors and are 

biologically active. 

 

Two lines of evidence suggest that GnRHR-I protein is indeed expressed and active 

in this study in LβT2 cells.  Firstly, GnRHR-I mRNA could be detected by Northern 

blot analysis in these cells (not shown), and, secondly, α-subunit mRNA levels 

responded to GnRH-1 and GnRH-2 administered together with PACAP, whereas 

PACAP alone had no effect (figure 37, A), in the absence of transfected exogenous 

GnRHR cDNA.  It may be that endogenous GnRHR-I levels are lower in the cells 

cultured in our laboratory as compared to those in other labs.  This is further 

strengthened by evidence from the literature that the response of pituitary 

gonadotropes to GnRH correlates, at least in part, with the density of GnRHRs on the 

cell surface [Loumaye E & Catt KJ, 1982;  Kaiser UB et al., 1995;  Bédécarrats GY & 

Kaiser UB, 2003].  Nevertheless, the findings in the present study of a lack of 

response of bLHβLuc and oFSHβLuc or LHβ and FSHβ mRNA levels with a relatively 

low level of endogenous GnRHR-I suggest that these low levels of GnRHR-I are 

insufficient to cause a transcriptional effect on endogenous or on transfected 

promoters and also make the interpretation of results with transfected GnRHRs 

easier without a high background due to endogenous receptors.  However, it should 

be noted that low levels of endogenous receptors may possibly modulate the 

response of transfected receptors, without having an effect on their own. 
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Expressed GnRHR-I and GnRHR-II levels in LβT2 cells 

The calculated number of cell-surface receptors in LβT2 cells overexpressing the 

GnRHR-I was approximately 10-fold greater than that of cells overexpressing the 

GnRHR-II.  Due to these differences in GnRHR number, it is hard to make a direct 

comparison of the ability of a specific GnRH ligand (GnRH-1 or GnRH-2) to induce 

bLHβ- or oFSHβ promoter-reporter activity via overexpressed GnRHR-I as compared 

to overexpressed GnRHR-II, i.e. to compare potencies of the two receptor subtypes.  

This is further complicated by the different affinities of a specific ligand for the two 

different GnRHR subtypes (GnRH-1:  EC50 at human GnRHR-I, 2.81 ± 0.17 nM and 

at marmoset and monkey GnRHR-II, 42.6 ± 3.19 nM and 337 ± 96 nM, respectively.  

GnRH-2:  EC50 at human GnRHR-I, 26.1 ± 4 nM and at marmoset and monkey 

GnRHR-II, 1.07 ± 0.04 nM and 0.86 ± 0.18 nM, respectively) [Millar R et al., 2001;  

Neill JD et al., 2001]).  Nevertheless, certain comparisons can be made, as 

discussed below. 

 

Transcriptional regulation of bLHβ- and oFSHβ-subunit genes via 

overexpressed GnRHR-I or GnRHR-II in LβT2 cells 

In the current study the effects of GnRH-1 and GnRH-2 on bLHβ- and oFSHβ 

promoter-reporter activity in the presence of overexpressed GnRHR-I or GnRHR-II 

were compared in LβT2 cells.  Unlike the results obtained for endogenous GnRHR-I 

in LβT2 cells, both GnRH-1 and GnRH-2 up-regulated bLHβ- and oFSHβ promoter-

reporter activity via overexpressed GnRHR-I or GnRHR-II in LβT2 cells, under 

conditions of continuous and pulsatile hormonal administration.  The reasons for this 

difference may be that transcriptional regulation is only obtained at receptor levels 

higher than those present in the LβT2 cells grown in our lab (discussed above).  

Furthermore, pulsatile administration of GnRH-1 or GnRH-2 was not required for 

bLHβ- or oFSHβLuc stimulation in LβT2 cells overexpressing GnRHR-I or GnRHR-II 

in this study.  This may be due in part to the fact that the GnRHR expression 

plasmids are driven by CMV promoters, which continuously produce GnRHR and are 

most likely not down-regulated by GnRH. 

 

The physiological significance of the results with overexpressed GnRHRs needs to 

be interpreted with caution.  It is clear that GnRHR-I levels vary in vivo during the 

reproductive cycle [Kaiser UB et al., 1993;  Bauer-Dantoin AC & Jameson JL, 1995;  

Yasin M et al., 1995].  For example, it has been reported that the GnRHR-I number 

can be as low as 500 per cell in progesterone-treated sheep gonadotropes and as 
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high as 15000–20000 per cell after treatment with oestradiol, inhibin, or both [Laws 

SC et al., 1990a;  Laws SC et al., 1990b].  The total GnRHR levels reached in the 

present study in LβT2 cells expressing exogenous GnRHR-I or GnRHR-II were 

respectively about 10-fold and 100-fold higher than the maximum levels reported 

above.  It is therefore unlikely that the expressed receptor numbers obtained in this 

study mimic the physiological levels. 

 

Transcriptional regulation of bLHβ via overexpressed GnRHR-I 

A general trend was observed whereby GnRH-1 resulted in a greater induction of 

bLHβ promoter-reporter activity as compared to GnRH-2 when stimulating cells with 

10 nM for 6 h, either continuous or at a slow pulse frequency (1 pulse/2 h) (figures 42 

& 43), in the presence of overexpressed GnRHR-I.  A high pulse frequency treatment 

(1 pulse/0.5 h) (not shown) or continuous stimulation with 100 nM (figure 41) resulted 

in similar bLHβ promoter-reporter activities via GnRH-1 and GnRH-2, showing a clear 

difference depending on continuous vs. pulsatile administration of hormone. 

 

These results can be interpreted in terms of the greater affinity for GnRH-1 at the 

GnRHR-I as compared to GnRH-2 (EC50 at human GnRHR-I:  GnRH-1, 2.81 ± 0.17 

nM;  GnRH-2, 26.1 ± 4 nM) [Millar R et al., 2001] so that, at a low concentration (10 

nM), GnRH-1 is a more potent stimulator of bLHβ promoter-reporter activity due to 

greater occupancy of the membrane GnRHR-Is as compared to GnRH-2.  However, 

at a high concentration (100 nM) the GnRHR-I would be saturated by both hormones, 

with the resulting similar maximal activity suggesting that GnRH-1 and GnRH-2 have 

the same efficacy (i.e. maximal response) for activation of the bLHβ promoter-

reporter via GnRHR-I. 

 

Interestingly, it was found that GnRH-2 increased bLHβ promoter-reporter activity to 

levels approximately 50% higher than those obtained with GnRH-1 after 18 h 

continuous stimulation using a 100 nM of hormone, via overexpressed GnRHR-I 

(figure 44, A).  Given the result of similar responses at 6 h, one possible explanation 

would be that GnRH-2 is more stable after 18 h in culture as compared to GnRH-1 

due to its longer half-life [Tsai P & Licht P, 1993;  Licht P et al., 1994], hence the 

bioavailability of GnRH-2 after 18 h would exceed that of GnRH-1. 

 

There are no reports in the literature of a comparison of the effects of GnRH-1 and 

GnRH-2 on LHβ transcriptional regulation in the presence of overexpressed GnRHR-



 
 

163

I in vivo or in vitro.  Single studies have determined the effect of GnRH-1 on LHβ 

transcriptional activity in cultured pituitary cells transiently [Kaiser UB et al., 1995;  

Bédécarrats GY & Kaiser UB, 2003] or stably [Saunders BD et al., 1998] transfected 

with a GnRHR expression vector.  For example, in LβT2 cells co-transfected with an 

LHβ promoter-reporter construct and the rat GnRHR-I cDNA, continuous stimulation 

with GnRH-1 resulted in a significant increase in LHβ promoter-reporter activity with 

no evidence of down-regulation of the response after 10 h [Bédécarrats GY & Kaiser 

UB, 2003].  A 6 h stimulation with a GnRH-1 agonist (100 nM) resulted in an 8-fold 

stimulation of LHβ promoter-reporter activity in GH3 cells transfected with a rat 

GnRHR-I expression vector [Kaiser UB et al., 1995].  Likewise, in GGH3 cells (rat 

GH3 cells constitutively expressing the rat GnRHR) and transiently transfected with a 

luciferase reporter gene controlled by the LHβ gene promoter, a 6 h treatment with 

GnRH-1 agonist (100 nM) resulted in a ~5-fold increase in LHβ promoter-reporter 

activity as compared to control [Saunders BD et al., 1998].  The fold inductions of 

bLHβLuc observed in the present study using a 100 nM GnRH-1 correspond to that 

reported in the literature.  Results in the present study showing that GnRH-2 is able 

to regulate bLHβ transcription via GnRHR-I are novel. 

 

Transcriptional regulation of bLHβ via overexpressed GnRHR-II 

GnRH-2 resulted in a marked greater induction of bLHβ promoter-reporter activity 

compared to GnRH-1 in the presence of overexpressed GnRHR-II after 6 h 

stimulation, independent of hormone concentration or method of administration 

(figure 40, and figure 43, A).  This result suggests that GnRH-2 is more efficacious 

than GnRH-1 for activation of the bLHβ promoter via GnRHR-II, since at 100 nM 

hormone, when the receptor would be fully saturated with either hormone, the 

maximal response for GnRH-2 is greater than that for GnRH-1.  This result thus 

differs for that obtained with GnRHR-I, which does not appear to differ in the maximal 

response for bLHβ promoter regulation via GnRH-1 vs. GnRH-2, as described above. 

 

However, the finding that after 18 h continuous stimulation the obtained fold induction 

of bLHβ promoter activity with GnRH-1 and GnRH-2 via GnRHR-II was similar, is 

hard to explain.  If the half-life of GnRH-2 is greater than that of GnRH-1 [Tsai P & 

Licht P, 1993;  Licht P et al., 1994] and, as proposed above, GnRH-2 is more 

efficacious for bLHβ activation than GnRH-1 via GnRHR-II, one would expect that for 

longer times, there would be even greater activity for GnRH-2 than for GnRH-1.  

Possibly time-dependent variation in levels of receptor expressed on the cell surface 
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may play a role in these time-dependent effects [Bédécarrats GY & Kaiser UB, 2003], 

or the involvement of different regions of the bLHβ promoter or other time-dependent 

signalling pathways [Kaiser UB et al., 1995;  Vasilyev VV et al., 2002a]. 

 

Whatever the explanation, it is clear that the time, dose and method of hormonal 

administration can have a significant effect on the relative effects of GnRH-1 vs. 

GnRH-2 via GnRHR-I and GnRHR-II, on bLHβ promoter activity.  This is likely to be 

physiologically relevant, and suggests that the response to GnRH hormones can be 

regulated very finely via changing several parameters, to achieve exquisite control.  

These results showing a difference in the abilities of GnRH-1 vs. GnRH-2 to stimulate 

bLHβ transcriptional activity via GnRHR-II are novel since there are no reports in the 

literature on the transcriptional regulation of LHβ via GnRH-1 or GnRH-2 in the 

presence of overexpressed GnRHR-II in vivo or in vitro. 

 

Ratio of GnRHR subtypes and likely effects on LHβ transcription 

One factor that is likely to affect the response of a cell to GnRH-1 vs. GnRH-2, that 

has not been investigated in the present study, would be the relative levels of 

GnRHR-I vs. GnRHR-II.  If, as shown in this work, GnRH-2 is more efficacious than 

GnRH-1 in activating LHβ promoter activity via GnRHR-II, then changes in relative 

receptor levels would most likely change the LHβ mRNA levels without changes in 

hormone levels.  For example, in species where both the GnRHR-I and the GnRHR-II 

are expressed such as monkey [Neill JD et al., 2001;  Millar R et al., 2001;  

Accession AF353988 and AF156930, respectively], the efficacy of GnRH-1 vs. 

GnRH-2 in LHβ transcriptional regulation would depend on the ratio between 

GnRHR-I and GnRHR-II expressed in pituitary gonadotropes. 

 

Transcriptional regulation of oFSHβ via overexpressed GnRHR-I or GnRHR-II 

In contrast to bLHβ, results of this study indicated that, in general, GnRH-1 and 

GnRH-2 possess equal abilities to stimulate oFSHβ promoter-reporter activity in the 

presence of overexpressed GnRHR-I and overexpressed GnRHR-II in LβT2 cells 

(figures 41, B, 42, B, & 49, B).  The only exception, where GnRH-2 resulted in a 

marked greater induction of oFSHβ promoter-reporter activity as compared to GnRH-

1, was seen in LβT2 cells overexpressing the GnRHR-II and stimulated pulsatile with 

10 nM for 6 h at a slow pulse frequency (1 pulse/2 h) (figure 43, B).  Once again, this 

result clearly shows that the relative effects of GnRH-1 vs. GnRH-2 can be influenced 

by the method of hormonal administration, in this case pulse frequency, suggesting a 
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mechanism for fine control of the pituitary response.  No reports are found in the 

literature where the effects of GnRH-1 and GnRH-2 on FSHβ gene transcription in 

the presence of overexpressed GnRHR-I or GnRHR-II are compared.  Like LHβ, 

single studies have determined the effect of GnRH-1 on FSHβ transcriptional activity 

in the presence of co-transfected GnRHR-I [Kaiser UB et al., 1995;  Saunders BD et 

al., 1998;  Bédécarrats GY & Kaiser UB, 2003].  Kaiser UB et al. [1995], after 

stimulating cells with continuous GnRH-1 agonist (100 nM) for 6 h, observed a 4-fold 

stimulation of FSHβ promoter-reporter activity in GH3 cells transfected with a rat 

GnRHR-I expression vector.  Furthermore, Saunders BD et al. [1998] have 

demonstrated a 3-fold increase in luciferase expression in response to a 6 h 

continuous treatment with 100 nM GnRH-1 agonist in GGH3 cells transiently 

transfected with FSHβLuc.  These values in the literature of the fold induction 

obtained with GnRH-1 for FSHβLuc are consistent with results of this study. 

 

Ratio of oFSHβ- to bLHβ-subunit promoter-reporter activity via GnRH-1 and 

GnRH-2 in LβT2 cells 

In this study a greater fold induction (actual fold stimulation) of bLHβ promoter-

reporter activity via GnRH-1 or GnRH-2 as compared to the fold induction of oFSHβ 

promoter-reporter activity was observed when overexpressing GnRHR-I or GnRHR-

II.  However, the relevance of this is unclear as this could simply reflect differences in 

the strength of promoters in the respective luciferase expression vectors.  

Furthermore, basal (in absence of hormone) oFSHβ promoter-reporter activity was 

higher as compared to bLHβ possibly due to stimulation of oFSHβLuc in the absence 

of GnRH.  Be that as it may, what is of great interest and where comparisons are 

relevant and likely to be physiologically significant, is the ratio of oFSHβ- to bLHβ-

subunit promoter-reporter activity via GnRH-1 and GnRH-2. 

 

Ratio of oFSHβ- to bLHβ-subunit promoter-reporter activity in the presence of 

overexpressed GnRHR-I in LβT2 cells 

When comparing the ratio between oFSHβ- and bLHβ promoter-reporter activity 

obtained with GnRH-2 vs. GnRH-1 via overexpressed GnRHR-I, it was found that the 

oFSHβLuc:bLHβLuc ratio was higher with GnRH-2 as compared to the same 

concentration of GnRH-1 after 6 h, independent of the method of hormonal 

administration (table 9).  These results indicate that induction of oFSHβ promoter-

reporter activity is favoured over bLHβ promoter-reporter activity by GnRH-2 via 
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GnRHR-I.  In the present study it can be seen that this elevated oFSHβLuc:bLHβLuc 

ratio with GnRH-2 is a direct result of decreased bLHβ promoter-reporter activity 

since oFSHβ promoter-reporter activity was similar via GnRH-2 as compared to 

GnRH-1 in the presence of overexpressed GnRHR-I.  Per definition these results 

would qualify GnRH-2 as a selective regulator of FSHβ expression via the GnRHR-I.  

The demonstration in this study that GnRH-2 is capable of increasing the ratio of 

oFSHβ- to bLHβ transcription after 6 h as compared to GnRH-1 via the GnRHR-I, 

both when administered continuously or in a pulsatile fashion, is, to the best of our 

knowledge, the first report showing that GnRH-2 is a selective regulator of FSHβ 

transcriptional activity via GnRHR-I.  Others have indicated on protein level that 

GnRH-2 could play a role in the alteration of the FSH-to-LH ratio [Millar R et al., 

2001;  Millar RP, 2003].  For example, in rams, GnRH-2 was a less effective 

stimulator of FSH secretion than GnRH-1, yet the ratio of circulating FSH to LH was 

approximately 2-fold higher following GnRH-2 than with GnRH-1 [Millar R et al., 

2001].  Also, in early studies of pituitary cells from mature hens, GnRH-2 was found 

to have a 2-fold greater potency to release FSH vs. LH when compared to stimulation 

by chicken GnRH-1 [Millar RP, 2003]. 

 

Ratio of oFSHβ- to bLHβ-subunit promoter-reporter activity in the presence of 

overexpressed GnRHR-II in LβT2 cells 

A general trend was observed whereby GnRH-1 resulted in a greater 

oFSHβLuc:bLHβLuc ratio as compared to GnRH-2 via overexpressed GnRHR-II, 

when stimulating cells for 6 h, either continuous (10 nM & 100 nM) or at a high pulse 

frequency (1 pulse/0.5 h) (table 9).  In contrast, GnRH-2 resulted in a greater 

oFSHβLuc:bLHβLuc ratio after 6 h treatment at a low pulse frequency (1 pulse/2 h), 

showing a clear difference in the oFSHβLuc:bLHβLuc ratio depending on continuous 

vs. pulsatile administration of hormone.  Similar to results with overexpressed 

GnRHR-I, these results showing differences in the ratios between FSHβ and LHβ via 

GnRH-1 as compared to GnRH-2 on transcriptional level are novel, and add to the 

understanding of the dynamic interplay between GnRH-1 and GnRH-2 via a specific 

GnRHR subtype to alter the cellular response. 

 

Collectively, these observations clearly point to the possibility that the differential 

regulation of gonadotropin subunit gene expression by GnRH observed in vivo may 

be mediated by two different GnRH peptides acting through a single or two different 
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receptor(s).  This provides a physiological mechanism whereby GnRH can 

differentially regulate the gonadotropin hormones in the same cell. 

 

PACAP 

The current study also investigated the possible modulatory role of PACAP on 

GnRH-1 and GnRH-2 regulation of bLHβ- and oFSHβ mRNA and reporter activity of 

the respective transfected promoters in LβT2 cells.  LβT2 cells express PACAP-

specific type 1 (PAC1) receptors that respond to PACAP via Ca2+ mobilisation and 

activation of PLC and adenylate cyclase [Rawlings SR & Hezareh M, 1996].  It has 

been demonstrated that low concentrations of PACAP will preferentially stimulate the 

production of cAMP via the protein kinase A (PKA) pathway (EC50 ≈3 nM) while 

higher PACAP concentrations will also stimulate the IP production via a PKC 

pathway (EC50 ≈20 nM) [Schomerus E et al., 1994;  Rawlings SR & Hezareh M, 

1996].  There is substantial evidence that PACAP alone and in combination with 

GnRH-1 regulates LH and FSH protein synthesis and release via post-transcriptional 

mechanisms [Rawlings SR & Hezareh M, 1996].  For example, one report in the 

literature suggested that PACAP and GnRH are additive in their effects on LH 

release, but there is significant evidence to indicate that PACAP increases GnRH-

stimulated α-, LHβ- and FSHβ-subunit release in a synergistic manner from both rat 

gonadotropes and αT3-1 mouse gonadotrope-derived cells [Tsujii T & Winters SJ, 

1995;  Rawlings SR & Hezareh M, 1996].  Moreover, in rat pituitary cultures PACAP 

on its own was shown to induce an immediate accumulation of LH and free α-subunit 

protein in the extracellular medium [Tsujii T et al., 1994].  In addition to post-

transcriptional effects, there is evidence for a modulatory role for PACAP at the level 

of mRNA and transcription [Tsujii T et al., 1995].  For example, one of the actions of 

PACAP on transcriptional level is to increase α-subunit mRNA concentrations in the 

pituitary [Schomerus E et al., 1994;  Tsujii T et al., 1994], leading to the hypothesis 

that PACAP is partly responsible for maintaining the high levels of α-subunit peptide, 

relative to the β-subunits [Tsujii T et al., 1995].  Thus PACAP increases α-subunit 

gene transcription, although less effectively than GnRH [Tsujii T et al., 1995].  Other 

indications are that PACAP increases α-subunit mRNA additively with GnRH, and 

lengthens LHβ mRNA, presumably at the polyA tail [Tsujii T et al., 1994].  

Furthermore, in LβT2 cells, PACAP increases steady-state levels of FSHβ mRNA 

[Fujii Y et al., 2002].  In contrast to results obtained in LβT2 cells of an increase in 

FSHβ transcription, PACAP reduces FSHβ mRNA levels in rat pituitary monolayer 

cultures [Winters SJ et al., 1997] and in rat pituitary cells perifused with pulses of 
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GnRH [Tsujii T et al., 1994].  The effect of PACAP together with GnRH-1 on FSHβ 

gene transcription is less clear from the literature.  Furthermore, the synergistic 

effects of PACAP on GnRH-2-mediated regulation of gonadotropin subunit gene 

expression have not been studied thus far.  Thus several questions remain 

unanswered regarding the role of PACAP in modulating effects of GnRH-1 and 

GnRH-2 on transcriptional regulation of LHβ- and FSHβ promoters in pituitary 

gonadotropes. 

 

In this study it was shown that PACAP treatment alone did not affect bLHβ- or oFSHβ 

promoter-reporter activities after 6 h continuous stimulation (figure 46).  Northern blot 

analysis on LβT2 cells stimulated with 20 nM PACAP for 6 h revealed that LHβ 

mRNA levels are also unaffected (figure 38).  However, FSHβ mRNA was 

significantly increased (figure 39, A), consistent with the findings of Fujii Y et al. 

[2002].  The discrepancy between results of the promoter-reporter assays and that of 

Northern analysis may be due to effects on mRNA turnover, or possibly the presence 

of regulatory elements in the endogenous promoter not contained in the transfected 

promoter-reporter. 

 

Modulatory effects of PACAP on GnRH-mediated bLHβ- and oFSHβ promoter-

reporter activity in LβT2 cells 

While neither bLHβ- nor oFSHβ promoter-reporter activity was significantly affected 

by PACAP alone at low or high concentrations, PACAP did modulate the response of 

the bLHβ promoter to GnRH via both GnRHR-I and GnRHR-II (figure 46, A), and of 

the oFSHβ promoter via GnRHR-I but not via GnRHR-II (figure 46, B).  Results 

presented show that PACAP has a modulatory effect on the GnRH-1 and GnRH-2 

response via GnRHR-I of the bLHβ promoter, which occurs after 6 h of continuous 

stimulation at 3 nM but not at 20 nM PACAP.  The modulatory effect at 3 nM PACAP 

occurs by either increasing the GnRH-1 response or by decreasing the GnRH-2 

response.  Since a PACAP effect was observed only at 3 nM, this effect would most 

likely involve activation of the cAMP pathway by PACAP, and not an alteration in IP 

production by PACAP.  Similarly, PACAP is also shown to have a modulatory role on 

the GnRH response via GnRHR-II on the bLHβ promoter activity by, similar to 

GnRHR-I, reducing the response to GnRH-2 or increasing the response to GnRH-1.  

This action in the presence of GnRHR-II is however independent upon the dose of 

PACAP used, suggesting a different mechanism to that which occurs for GnRHR-I, 

and which can possibly occur via either a PACAP-induced PKA pathway or both PKA 
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and PKC pathways.  PACAP also modulates the response of the oFSHβ promoter to 

GnRH via the GnRHR-I in a dose-dependent fashion, but unlike the results obtained 

for bLHβ with GnRHR-I, it does not alter the relative effects of GnRH-1 vs. GnRH-2 

(figure 46, B).  In this case PACAP appears to inhibit the effects of both hormones at 

3 nM PACAP, but not at 20 nM PACAP, suggesting an involvement of the PACAP-

induced PKA pathway.  However, PACAP has no modulatory effect on the oFSHβ 

response to both GnRH hormones via the GnRHR-II (figure 46, B). 

 

Results of this study of the modulatory effect of PACAP on GnRH-1- and GnRH-2 

transcriptional regulation of LHβ demonstrate yet another dimension of the 

complexity of the way in which the gonadotropins are differentially regulated in the 

same gonadotrope cells.  Collectively, these findings indicate that the local pituitary 

milieu is the means by which changes in GnRH input lead to differential release 

patterns of LH and FSH [Padmanabhan V & McNeilly AS, 2001], which includes the 

presence or absence of GnRH-1, GnRH-2, PACAP and any or both GnRHR 

subtypes, at changing concentrations.  This study is the first to show the combined 

effects of PACAP and GnRH-1 on FSHβ transcriptional regulation.  Furthermore, this 

study is the first report on the modulatory role of PACAP on GnRH-2 regulation of 

LHβ and FSHβ.  Also, for the first time it is shown that differences in PACAP 

concentration may be involved in selectively increasing or decreasing the GnRH 

response.  Finally, it is demonstrated for the first time that the GnRHR-II might be 

involved in the modulatory role of PACAP on LHβ transcriptional regulation. 

 

α-subunit 

Northern analysis of α-subunit mRNA in LβT2 cells revealed that α-subunit mRNA 

levels were unaffected by a 6 h continuous stimulation with GnRH-1 or GnRH-2 

alone (figure 37, A).  After a 24 h treatment with GnRH-1, α-subunit mRNA levels 

were similar to basal levels whereas GnRH-2 alone resulted in a decrease in mRNA 

levels (figure 37, B).  Whereas the effect of GnRH-2 on α-subunit mRNA levels has 

not been described previously, the results of this study showing no increase in α-

subunit mRNA are consistent with the reported lack of induction of α-subunit mRNA 

[Turgeon JL et al., 1996] or protein [Liu F et al., 2002a] by GnRH-1 agonists in LβT2 

cells.  Nevertheless, stimulation of LβT2 cells with continuous or pulsatile GnRH 

resulted in an increase in α-subunit promoter activity after 1- to 24 h in several other 

studies [Haisenleder DJ et al., 1991;  Fowkes RC et al., 2002;  Bédécarrats GY & 

Kaiser UB, 2003].  In αT3-1 cells, α-subunit promoter activity was maximally 
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increased after 4- to 6 h treatment with GnRH-1 agonist, followed by a return to 

baseline after 24 h [Chedrese PJ et al., 1994;  Kay TWH et al., 1994]. 

 

Furthermore, in this study α-subunit mRNA was increased by 6 h continuous 

stimulation with PACAP alone or in combination with GnRH-1 or GnRH-2 (figure 37, 

A), similar to the findings of Tsujii T et al. [1994;  1995].  This stimulatory effect was 

lost after 24 h (figure 37, B).  Thus, α-subunit mRNA levels would appear to be more 

responsive to a 6 h treatment with PACAP alone or in combination with GnRH-1 or 

GnRH-2 as compared to LHβ- or FSHβ mRNA levels in LβT2 cells.  While some 

evidence from the literature indicates that GnRH stabilises α-subunit mRNA 

[Chedrese PJ et al., 1994], results of the present study would suggest that α-subunit 

mRNA is insensitive to GnRH-1 and GnRH-2 treatment alone.  However, PACAP 

may modulate the responsiveness of the α-subunit gene promoter to GnRH-1 and 

GnRH-2.  It could be worthwhile to repeat some of the promoter-reporter studies 

performed on bLHβ- and oFSHβLuc with an α-subunit promoter-reporter construct to 

further investigate this possibility. 

 

With one exception in figure 37, A, when using Bonferroni’s post-test to compare all 

groups to all groups, there were no differences between treatments, other than those 

detected by Dunnet’s post-test between a particular condition and control (figure 37, 

A, bar no 2).  In some cases a difference observed between the non-treatment 

control and a treatment group using Dunnet’s post-test was not observed when using 

Bonferonni’s post-test (eg. figure 37, A, bar no 7 vs. bar no 2, figure 37, B, bar no 1 

vs. bar no 2, figure 38, A, bar no 7 vs. bar no 2, and figure 39, A, bar no 5 vs. bar no 

2 and bar no 7 vs. bar no 2).  A possible explanation for this could be that the 

Bonferonni post-test is a more stringent test compared to Dunnet’s post-test. 

 

Comparison of the regulation of bLHβ- and oFSHβ promoter-reporter activity in 

LβT2 vs. COS-1 cells 

In COS-1 cells, a similar lack of response in bLHβ- and oFSHβ promoter-reporter 

activity was observed in the absence of exogenous GnRHR cDNA as seen in LβT2 

cells, independent of hormone concentration or duration of treatment (figure 50, A & 

B).  Results of this study of the induction of bLHβ- and oFSHβ promoter-reporter 

activity in COS-1 cells (albeit at low levels) when overexpressing GnRHR-I or 

GnRHR-II (figure 50, A & B) indicate that these cells are able to regulate bLHβ- and 

oFSHβ transcriptional activity and that this activity, as for LβT2 cells, depends upon a 
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critical minimum number of receptors on the cell surface.  Pulsatile administration of 

GnRH-1 or GnRH-2 was not required for bLHβLuc stimulation in COS-1 cells 

overexpressing any GnRHR subtype, similar to results obtained in LβT2 cells.  

Furthermore, these results supply evidence that transcriptional regulation of the 

gonadotropin β-subunit genes is not limited to pituitary gonadotrope cells, which 

would be consistent with another report showing induction of oFSHβ promoter-

reporter activity (~3-fold) by GnRH-1 in COS-7 cells co-transfected with the mouse 

GnRHR-I after 12 h continuous stimulation using 100 nM [Strahl BD et al., 1998].  

Moreover, more than one study has even indicated the secretion of bioactive LH and 

FSH from COS-7 cells [Schmidt A et al., 1999;  Chopineau M et al., 1999], 

suggesting that COS-7 (and possibly COS-1) cells also contain the cellular 

machinery to perform the necessary post-transcriptional and translational events for 

the expression of the gonadotropins. 

 

Whereas in general in LβT2 cells bLHβ promoter-reporter activity was higher with 

GnRH-1 as compared to GnRH-2 via overexpressed GnRHR-I and higher with 

GnRH-2 as compared to GnRH-1 via overexpressed GnRHR-II, respectively, after 6 

h, a similar discriminatory effect between GnRH-1 and GnRH-2 was observed in 

COS-1 cells overexpressing the GnRHR-II, but not the GnRHR-I (figure 50, A).  

Furthermore, similar to results of this study in LβT2 cells it was found that GnRH-1 

and GnRH-2 possess equal abilities to stimulate oFSHβ promoter-reporter activity in 

the presence of overexpressed GnRHR-I and overexpressed GnRHR-II in COS-1 

cells, independent of hormone concentration or duration of treatment (figure 50, B). 

 

Concerning time-dependent regulation of bLHβ promoter-reporter activity it was 

found that a similar down-regulation of bLHβ promoter-reporter activity as observed 

in LβT2 cells after prolonged (18 h) treatment was observed in COS-1 cells only 

when overexpressing the GnRHR-II, but not when overexpressing GnRHR-I in this 

study (not shown).  This difference observed between LβT2 vs. COS-1 cells in the 

regulation of bLHβ promoter-reporter activity is most likely due to the fact that distinct 

sets of G proteins, kinases, transcription factors and other classes of molecules are 

expressed in the two different cell-lines and highlights the danger of extrapolating 

results obtained in different cellular systems. 
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Recent evidence for the presence of non-mammalian GnRHR-II cDNAs, together 

with the finding that these receptors are selective for GnRH-2 [Troskie B et al., 1997;  

Illing N et al., 1999], have triggered the interest in the existence of a human GnRHR-

II.  The presence of a GnRH-2-selective receptor in humans might explain earlier 

observations that GnRH-1 antagonists behave like agonists in reproductive tissue 

tumors [Eidne KA et al., 1987;  Emons G et al., 1997] since GnRH-1 antagonists 

were found to have agonistic effects on the GnRHR-II [Millar R et al., 2001].  It is 

possible that GnRH-1 antagonists interact with the putative GnRHR-II if it is present 

and functional in humans [Gründker C et al., 2002].  Using the available sequence 

information for part of exons 2 and 3 [Millar R et al., 1999] as well as some exon 1 

sequence information of a putative human GnRHR-II gene, RNA from numerous 

available human tissue and cell types was screened for the presence of a GnRHR-II 

transcript containing all three exons, using dot blot analysis, RT-PCR and in situ 

hybridisation (Chapter 2 and Appendix 5).  The present study indicated the 

widespread expression of a human GnRHR-II transcript containing exons 2 and 3 but 

lacking exon 1, similar to the findings of a previous report [Millar R et al., 1999].  

Human ejaculate was the only source where a potential full-length (containing all 

three exons), sense, intronless transcript was detected.  From human ejaculate RNA 

a GnRHR-II cDNA sequence stretching from -392 relative to the translation start 

within exon 1 until almost the end of TM6 in exon 3 was assembled, using results of 

5’ RACE and RT-PCR (Chapter 2 and Appendix 5).  In situ hybridisation further 

revealed that these transcripts are present in mature sperm within the ejaculate 

(Chapter 2 and Appendix 5).  Whereas other reports demonstrated a functional role 

for GnRH-1 in human sperm during spermatogenesis and in the process of 

fertilisation [Morales P, 1998;   Morales P et al., 2000], which would suggest the 

presence of the GnRHR-I on the sperm cell surface, this is the only report of the 

finding of GnRHR-II transcripts in the male reproductive tract (Chapter 2 and 

Appendix 5). 

 

Subsequent to this study a full-length GnRHR-II cDNA was cloned from other 

primates and demonstrated to be functional [Neill JD et al., 2001;  Millar R et al., 

2001].  Comparison of the human sperm GnRHR-II sequence obtained in this study 

with the protein coding sequences of the published primates GnRHR-II sequences 

revealed that the human sequence contains a frameshift mutation within the coding 

region in exon 1 and a premature TGA translation stop signal in exon 2, within the 

region encoding ECL2.  The requirement for a nt insertion in exon 1 and the 

premature translation stop signal in exon 2 were also present in the GnRHR-II gene 
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on chromosome 1 (accession AL160282).  While the functionality of a protein product 

resulting from translation of this human GnRHR-II transcript is questionable, 

evidence exists for the presence of a specific GnRH-2-responsive system in humans 

[Leung PCK et al., 2003;  Enomoto M et al., 2004b].  For example, cell proliferation 

studies show that GnRH-2 inhibits the growth of human ovarian cancer cells that 

express transcripts for GnRHR-II but not for GnRHR-I, indicating that the GnRHR-II 

binding sites are functional in these cells [Leung PCK et al., 2003].  Furthermore, in a 

recent study by Enomoto M et al. [2004b] it was indicated that GnRH-1 as well as 

GnRH-2 have both stimulatory and inhibitory effects on cell proliferation.  Growth of a 

human endometrial carcinoma- and a human prostatic carcinoma cell-line is 

decreased by GnRH-1 and GnRH-2, whereas that of a human prostatic carcinoma- 

and a human mature leukemic cell-line is increased [Enomoto M et al., 2004b].  

However, the sensitivities of cells to the stimulatory and inhibitory effects differ with 

GnRH-1 as compared to GnRH-2, such that GnRH-2 is a stronger inhibitor while 

GnRH-1 is a stronger stimulator of cell growth, which would strongly suggest that the 

inhibitory and stimulatory effects of GnRH occur via different GnRHRs i.e. that the 

cognate GnRHR-II is also functional in humans [Enomoto M et al., 2004b].  

Interestingly, in a subsequent study performed by this same group it was indicated 

that both GnRH-1 and GnRH-2 affect actin cytoskeleton remodeling and cell 

migration in human prostatic carcinoma cell-lines and that these effects are mediated 

via the GnRHR-I [Enomoto M et al., 2006].  It remains unknown whether the human 

GnRHR-II is involved in the effects of GnRH on cell proliferation and sperm function.  

Clearly further work is required to ascertain the precise nature of potentially 

functional protein products of the disrupted yet transcriptionally active human 

GnRHR-II gene [Pawson AJ et al., 2005], possibly with the use of GnRHR-II-specific 

antibodies. 

 

To further investigate the possibility that a local GnRH/GnRHR network is present in 

mature sperm, the distribution of transcripts for GnRHR-I, GnRH-1 and GnRH-2 in 

human and monkey ejaculate was also determined (Chapter 3).  The results 

presented here indicate that transcripts for GnRH-1, GnRH-2 and the GnRHR-I are 

expressed in human ejaculate in addition to transcripts for the GnRHR-II (Chapter 3).  

These findings would be consistent with and support the view that locally produced 

GnRH may affect spermatogenesis and spermiogenesis and may increase the 

probability of conception in an autocrine/paracrine manner in vivo.  Based on these 

findings, it would be interesting to compare the ability of GnRH-2 to increase sperm-

ZP binding, and thereby affect fertility and reproduction, with that of GnRH-1, in the 
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presence of GnRHR-I- and/or GnRHR-II-specific antagonists, to further examine the 

functionality of a human GnRHR-II in sperm.  This could be done using a well-

described hemizona assay in vitro [Morales P, 1998]. 

 

In addition to the finding of transcripts of the GnRHR-II in human sperm, data is 

presented here for the first time to demonstrate that baboon, a non-human primate 

species, also expresses GnRHR-II transcripts in pituitary and extrapituitary tissues 

(Chapter 2).  An extensive report is given of the various sense GnRHR-II transcripts 

found in human and non-human primates, which suggests that alternative splicing is 

an important mechanism whereby expression of the GnRHR-II is regulated across 

tissues and species (Chapter 2).  Furthermore, evidence is presented that in non-

human primates, similar to humans, an antisense GnRHR-II transcript with intron 2 

retained is widely expressed.  The finding of such a transcript across species and in 

numerous tissues would suggest that it has an important function, possibly by 

modulating the expression of the GnRHR-I as proposed by Pawson AJ et al. [2005]. 

 

Taken together, results of this study (Chapter 2 & 3), together with reports in the 

literature, would suggest that, if the human GnRHR-II protein is expressed as a 

functional receptor, such a receptor would be involved in cell proliferation, to 

stimulate or inhibit the growth of GnRH-2-responsive cancerous cells and possibly to 

stimulate spermatogenesis and sperm maturation and increase sperm-egg binding. 

 

Towards further understanding of the function of GnRH-1 and GnRH-2 in the pituitary 

and the respective roles of the GnRHR-I relative to the GnRHR-II, transcriptional 

regulation of the gonadotropin subunit genes by GnRH was investigated (Chapter 4).  

There are numerous reports in the literature as to the effects of GnRH-1 on LHβ- 

and/or FSHβ promoter activity and/or mRNA turnover via endogenous or expressed 

GnRHRs in various systems in vivo and in vitro (see Chapter 4), none of which 

determined the role of GnRH-2 in this regard.  The present study is the first to show 

that GnRH-2 affects gonadotropin subunit gene expression in the LβT2 mouse 

pituitary gonadotrope cell-line via GnRHR-I and GnRHR-II, albeit a small effect under 

certain conditions, and supplies evidence that its ability to do so depends on a 

number of factors.  These factors include the relative ratio of GnRHR-I and GnRHR-

II, concentration of hormone used, method of administration and treatment duration, 

as well as varying concentrations of PACAP (Chapter 4).  In addition, it is 
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demonstrated for the first time that GnRH-1 may affect gonadotropin subunit gene 

expression via GnRHR-II in addition to GnRHR-I. 

 

Results of this study using GnRH-1 and GnRH-2 demonstrated a non-significant 

increase in LHβ- and FSHβ mRNA levels as well as in bLHβ- and oFSHβ 

transcriptional activity via endogenous GnRHR-I in LβT2 cells after 6 h continuous 

stimulation (Chapter 4).  These results showing a small (not significant) 

transcriptional effect on bLHβ by GnRH-1 and GnRH-2 via endogenous GnRHR-I 

(≤1.5-fold) would be consistent with findings by others collectively showing that acute 

GnRH-1-induced LHβ protein synthesis and LH secretion are more dependent upon 

new protein synthesis than new mRNA synthesis, with continuous stimulation via 

endogenous GnRHR-I in LβT2 cells [Wurmbach E et al., 2001;  Pernasetti F et al., 

2001;  Nguyen KA et al., 2004;  Kakar SS et al., 2003;  Haisenleder DJ et al., 1991].  

However, a non-GnRH-associated increase in FSHβ mRNA was observed in LβT2 

cells after 24 h in culture in this study (Chapter 4).  Furthermore, promoter-reporter 

studies revealed that basal (non-GnRH-associated) transcriptional activity of oFSHβ 

is relatively high as compared to bLHβ (Chapter 4).  The finding in the present study 

of stimulation of FSHβ transcription in the absence of GnRH is a first, and suggest 

that transcriptional effects via a non-GnRH-associated pathway may contribute to an 

observed non-GnRH regulated increase in FSH protein levels [Padmanabhan V & 

McNeilly AS, 2001]. 

 

Central to the reproductive field is the question of whether a specific FSH-releasing 

factor exists that would preferentially stimulate FSHβ mRNA and/or FSH protein 

synthesis and release.  Results in the literature concerning this issue are 

contradictive [reviewed in Millar RP, 2003].  Whereas other factors such as activin 

seem to be potent stimulators of FSHβ mRNA [Padmanabhan V & McNeilly AS, 

2001], results of this study are the first to establish that GnRH-2 may play such a 

discriminatory role on FSHβ gene transcription via expressed GnRHR-I, but not 

GnRHR-II (Chapter 4).  This is evident by comparison of the ratio of expression of 

transfected oFSHβ- and bLHβ promoter-reporters via GnRH-1 with that of GnRH-2, 

but not when observing actual fold inductions of the respective promoters. 

 

GnRH-2 results in a greater oFSHβLuc:bLHβLuc ratio as compared to GnRH-1, 

when overexpressing the GnRHR-I in LβT2 cells independent of the concentration of 

hormone used or whether hormones were administered continuously or in a pulsatile 
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fashion (Chapter 4).  This preferential effect on FSHβ promoter activity for GnRH-2 is 

not seen for overexpressed GnRHR-II, where the opposite preference is observed for 

most conditions tested.  Thus GnRH-1 results in a greater oFSHβLuc:bLHβLuc ratio 

as compared to GnRH-2, when overexpressing the GnRHR-II in LβT2 cells with 

continuous stimulation or pulsatile administration at a high pulse frequency (1 

pulse/0.5 h) for 6 h.  These opposite selectivities for GnRHR-I and GnRHR-II on the 

ratios of oFSHβLuc:bLHβLuc promoter activity for GnRH-1 vs. GnRH-2 are intriguing 

and suggest another mechanism for fine control of gonadotropin regulation, which 

could occur by variation of relative GnRHR-I vs. GnRHR-II levels.  Physiologically, it 

may be that the ratio of FSHβ- to LHβ mRNA is more relevant than the absolute 

mRNA levels of the transcripts.  These results correspond to effects seen on protein 

level as demonstrated by others [Millar R et al., 2001;  Millar RP, 2003]. 

 

When comparing the effects of GnRH-1 and GnRH-2 on transcriptional regulation of 

the bLHβ- and oFSHβ-subunit genes individually, differences are observed (Chapter 

4).  In general, at lower concentrations (10 nM), GnRH-1 is a more potent stimulator 

of bLHβ promoter activity as compared to GnRH-2 via overexpressed GnRHR-I for 

short-term (6 h) continuous exposure as well as for pulsatile stimulation at a 

frequency of one pulse every 2 h, most likely due to differences in the affinity for 

GnRH-1 as compared to GnRH-2 for the GnRHR-I.  However, GnRH-1 and GnRH-2 

result in a similar maximum fold stimulation of bLHβ promoter activity after 6 h using 

saturating doses (100 nM) of hormone, showing that they have the same efficacy for 

regulation of bLHβ promoter activity via GnRHR-I in this system (Chapter 4).  In 

contrast, both saturating and sub-saturating concentrations of GnRH-2 result in a 

greater maximum response in bLHβ promoter activity as compared to GnRH-1 via 

overexpressed GnRHR-II for 6 h, independent of whether hormone is administered 

continuously or in a pulsatile fashion. GnRH-2 thus seems to be a more efficacious 

stimulator of bLHβ transcription via GnRHR-II, than GnRH-1 (Chapter 4).  Results of 

this study further demonstrate that, in contrast to bLHβ, GnRH-1 and GnRH-2 

possess equal abilities at saturating and at non-saturating concentrations to stimulate 

oFSHβ promoter activity via GnRHR-I and GnRHR-II, independent of the way in 

which hormone is presented, except at a slow pulse frequency treatment in the 

presence of GnRHR-II during which GnRH-2 results in a marked greater induction of 

oFSHβ promoter-reporter activity as compared to GnRH-1. 

 



 180

In addition to the effects of GnRH-1 and GnRH-2, the effect of PACAP alone or 

PACAP together with GnRH-1 or GnRH-2 on gonadotropin subunit gene expression 

was investigated in the present study (Chapter 4).  Results show that PACAP alone 

has no effect on endogenous α-, LHβ- and FSHβ-subunit mRNA levels or on 

transfected bLHβ- and oFSHβ-promoter activities after 6 h continuous treatment 

(Chapter 4).  However, PACAP did modulate the response of the bLHβ promoter to 

GnRH via both GnRHR-I and GnRHR-II, and of the oFSHβ promoter via GnRHR-I 

but not via GnRHR-II (Chapter 4).  Some of these effects were PACAP dose-

independent, while others were PACAP dose-dependent and suggested differential 

regulation by lower concentrations of PACAP (3 nM) possibly via a PACAP-induced 

PKA pathway, vs. effects at 20 nM possibly via both PACAP-induced PKA and PKC 

pathways.  Some modulatory effects of PACAP were different for GnRH-1 vs. GnRH-

2, while others appeared to be equally effective for both hormones.  The modulatory 

effects of PACAP were also different for bLHβ- vs. oFSHβ, and for GnRHR-I vs. 

GnRHR-II, under some conditions.  This study showing differences in the modulatory 

effect of PACAP on the LHβ- and FSHβ response to GnRH-1 as compared to GnRH-

2 on transcriptional level is a first of its kind.  Furthermore, the investigation into the 

role of the GnRHR-II in the PACAP response is also novel.  Since it is evident from 

the results of this study that some of the effects of PACAP are concentration-

dependent, future studies could include a repeat of the Northern blot analysis of 

endogenous α-, LHβ- and FSHβ-subunit mRNA levels but with the inclusion of 3 nM 

PACAP to also determine the effect of PACAP concentration on mRNA levels.  It 

would be interesting to further investigate the kinase pathways and other 

downstream pathways involved in the PACAP modulatory effects. 

 

Besides the role of peptide hormones on gonadotropin subunit gene expression, 

changes in GnRHR number have previously been proposed as a mechanism 

involved in the differential regulation of gonadotropin subunit gene expression [Kaiser 

UB et al., 1995;  Kaiser UB et al., 1997a;  Bédécarrats GY & Kaiser UB, 2003].  

Although the current study is not a thorough investigation into the effect of varying 

GnRHR numbers on LHβ- and FSHβ transcriptional regulation via GnRH-1, GnRH-2 

and PACAP, by comparison of results obtained in the presence of endogenous 

GnRHR levels with that obtained with expressed mammalian receptors, it was 

demonstrated that gonadotropin β-subunit gene expression depends on a minimal 

number of receptors on the cell surface (Chapter 4).  It would appear that the cells 

used in this study express endogenous GnRHR at too low levels to be able to 
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respond to a 6 h stimulation with GnRH-1 or GnRH-2 alone, independent of the 

concentration of hormone or the method of treatment used (Chapter 4).  Although the 

physiological significance of the results with overexpressed GnRHRs is unclear, it is 

clear that GnRHR-I levels vary in vivo during the reproductive cycle [Kaiser UB et al., 

1993;  Bauer-Dantoin AC & Jameson JL, 1995;  Yasin M et al., 1995], and thus it is 

possible that they reach similar levels to those obtained in cells expressing 

exogenous GnRHR in the present study.  Ideally, these studies should be repeated in 

a pituitary cell-line or primary pituitary cells that express the GnRHR-I and the 

GnRHR-II endogenously to be able to compare the effects of GnRH-1 vs. GnRH-2 in 

a system where the two receptor subtypes are expressed at physiological levels.  

Alternatively, further studies could include experiments where the GnRHR-I and the 

GnRHR-II are co-transfected, to have more similar receptor levels of both, to 

investigate this interaction further.  Other interesting variations of the promoter 

reporter studies and/or Northern blot analysis would include the addition of 

treatments with activin, inhibin and follistatin to further examine the regulation of 

FSHβ- (and possibly LHβ-) promoter activity and mRNA levels. 

 

Since relatively little is known about the cell signalling pathways that mediate GnRH 

action at the level of gonadotropin-subunit gene transcription, it would be useful to 

design a study to compare the different signal transduction pathways as well as the 

second messengers involved in GnRH-1- vs. GnRH-2 signalling.  Preferential 

sensitivity to distinct second messenger pathways and/or activation of different 

transcription factors is another possible mechanism whereby different GnRH pulse 

frequencies can regulate gonadotropin gene regulation [Vasilyev VV et al., 2002b]. 

 

Collectively, results of this study clearly point to the possibility that the differential 

regulation of gonadotropin subunit gene expression by GnRH observed in vivo may 

be mediated by the presence of GnRH-1 and GnRH-2, at varying concentrations and 

released at varying pulse frequencies from the hypothalamus, acting via any or both 

GnRHR subtype(s).  Furthermore, an added level of control is mediated via changes 

in GnRHR number or the relative expression of GnRHR-I vs. GnRHR-II on the cell 

surface, as well as by changing levels of PACAP released from the hypothalamus.  

These parameters all vary during the reproductive cycle, thereby suggesting a 

physiological mechanism for fine control of the pituitary response. 

 

The findings presented in this thesis are significant since a thorough understanding 

of the factors that regulate LHβ- and FSHβ gene expression is critical for the 
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development of efficient methods for fertility regulation and the treatment of a variety 

of reproductive disorders.  Furthermore, they contribute to advancing the basic 

knowledge of regulation of gene expression. 
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Table 4.  Summary of distribution of human GnRHR-II transcripts detected by RT-PCR1, Northern blot analysis2 or dot blot analysis3. 

Human GnRHR-II transcripts detected  
Antisense exon 2-3 amplicon containing intron 2 Sense amplicon, possibly containing exon 1 

Human tissue 

Adult brain Cerebellum, 
Hypothalamus, 
Whole brain. 

Cerebellum, 
Whole brain. 

Cerebellum, 
Cortex, 
Hypothalamus, 
Medulla, 
Midbrain, 
Pons. 

Various brain 
parts. 

Whole brain.   

or cell type 
[Millar R et al., 

1999]1
[Hutchinson E, 

1997]1

 

 
This study1

 

[Millar R et al., 
2001]2

[Neill JD et al., 
2001]3

[Hutchinson E, 
1997]1 This study1

Foetal brain Whole brain. Whole brain. Cerebellum, 
Frontal lobe, 
Hypothalamus, 
Medulla, 
Midbrain, 
Olfactory bulb, 
Pons. 

    

Adult 
peripheral 

Heart, 
Insulinoma, 
Kidney, Liver, 
Lymph node, 
Pancreas, 
Retina, 
Skeletal muscle, 
Spinal cord, 
Spleen, Thyroid. 

Adrenals, 
Bone marrow, 
Cortex, Daudi, 
Insulinoma, 
Kidney, Liver, 
Lung, 
Lymph node, 
Retina, Spleen, 
Thyroid. 

Kidney, 
Pituitary, 
Thyroid. 

Heart, 
Pancreas. 

Adrenal, Breast, 
Heart, Kidney, 
Large intestine, 
Liver, Lung, 
Pancreas, Pituitary, 
Skeletal muscle, 
Small intestine, 
Spleen, Stomach, 
Thymus, Thyroid. 

  

Foetal 
peripheral 

  A  drenals,  
Lumbar sympa-
thetic chain, 
Pituitary, 
Retina. 

   



 
Reproductive Ovary, 

Placenta, 
Testis, 
Uterus. 

Placenta, 
Prostate, 
Testis, 
Uterus. 

Ejaculate, 
Testis, 
Uterus. 

 Ovary, 
Placenta, 
Prostate, 
Testis, 
Uterus. 

 Ejaculate1. 

Carcinoma 
cell-lines or 
cells 

MCF-7 breast. CaCO2, 
MCF-7 breast, 
T47D. 

HepG2 liver.  Colorectal, HeLa, 
Leukemia, Lung. 

  

Tissues and 
cells in which 
attempts were 
unsuccessful 

 hvvec2, 
HUH-7, 
Liver, 
Small intestine. 

   Daudi, 
Foetal brain, 
Lymph node, 
MCF-7 breast, 
Placenta, 
T47D, 
Thyroid. 

Adult tissues: 
Cerebellum, 
Cortex, Hypotha-
lamus, Kidney, 
Medulla, Mid-
brain, Pituitary, 
Pons, Testis, 
Thyroid, Uterus. 
 
Foetal tissues: 
Adrenals, 
Cerebellum, 
Frontal lobe, 
Hypothalamus, 
Lumbar sympa-
thetic chain, 
Medulla, Mid-
brain, Olfactory 
bulb, Pons, 
Pituitary, Retina. 
 
HepG2 cell-line. 

 



 
 
 
 
       Table 6:  Summary of GnRHR-II cloning results from human and baboon tissues and cells. 
 

 Features of the cloned GnRHR-II cDNA transcript Species Tissue/cell 
type PCR primer 

pair 
Length 
(bp)** 

Sequence 

S5 & AS6 3191 Part of exons 1 & 2.  Fully processed.  Contains a TGA translation stop signal in 
exon 2.  Is contained within the S5 & AS10 sequence. 

S5 & AS6 419Δ Same sequence as the above S5 & AS6 319 bp sequence, except that this 
sequence contains a 100 bp insert between exons 1 and 2, resulting in a shift in 
the reading frame.  Possibly the result of incomplete processing of the mRNA.  
Also contains the TGA translation stop in exon 2. 

S5 & AS10 5421 Same sequence as the S5 & AS6 319 bp sequence except for 1 nt difference in 
exon 1, possibly due to a sequence error in the S5 & AS10 sequence.  Continues 
further 3’ up to the end of primer AS10, encoding part of TM6. 

Human Ejaculate 

AP2 & AS3 
(5’ RACE) 

7061

 
 
 
 
 
 
 
 
 
 
 
 Part of exon 1, including 391 nt of the 5’ UTR.  A nt deletion at position +26 

relative to the ATG translation start results in a frame shift (compared to 
sequences from other cloned mammalian GnRHR-II cDNAs), raising the question 
whether this transcript is functional in humans. 

 
 
 
 Cerebellum S5 & AS10 3314 Part of exons 1 & 3, but lacks exon 2, with a resultant shift in reading frame. 
 S1 & AS11 10847

 
 
 
 
 
 
 
 

**  Number in superscript represents the sequence number.  Refer to Appendix 4 for sequence information. 
Δ  Sequence data not shown. 

Most of exons 1& 3, including the translation start codon and translation stop 
signal and 5’ UTR and 3’ UTR sequences, but lacks exon 2, resulting in a shift in 
the reading frame. 

Pituitary 

S8 & NUP 
(3’ RACE) 

7798 Most of exon 2 and part of exon 3.  Has a 448 bp insertion between exons 2 & 3.  
Does not contain novel 3’ sequence.  

Baboon 

Temporal lobe NUP & AS7 
(5’ RACE) 

807Δ Part of exon 2, but does not include exon 1.  Does not contain novel 5’ sequence. 



 
Table 7:  Summary of GnRHR-II cloning results from vervet monkey. 

 
 Features of the cloned GnRHR-II cDNA transcript Species Tissue/cell 

type  PCR 
primer pair

Length 
(bp)** 

Sequence 

Ejaculate S3 & 
AS13 

 
 17296,8 Most of exon 1, full exon 2 & most of exon 3.  Starts at -37 within 5’ UTR, includes the 

translation start codon and all seven TMs and ends 86 nt 3’ to translation stop signal within 3’ 
UTR.  Has a 447 bp insertion between exons 2 & 3 in frame. 

S5 & 
AS10 

 
 

5422 Part of exon 1, full exon 2 & part of exon 3.  Starts within ECL1 and ends within TM6.  Contains 
the sequences of S5 & AS6 and S10 & AS10 in a single amplicon.  Consensus sequence 
derived from two clones is identical to published vervet monkey GnRHR-II cDNA sequence. 

NUP & 
AS1 

 
 
 
 
 

(5’ RACE) 

2442 5’ RACE sequence, starting within TM1 in exon 1 and continues 5’ to contain 83 nt of the 5’ 
UTR, of which 34 nt are novel compared to the published vervet monkey GnRHR-II cDNA 
sequence (Accession AF353988).  Consensus sequence derived from four clones is identical 
to published vervet monkey GnRHR-II cDNA sequence except for 2 nt differences within the 5’ 
UTR. 

COS-1 
cells 

 
 
 S1 & 

AS12/ 
S2 & 
AS12 

1295Δ Full coding region, from -48 relative to translation start, within 5’ UTR, until 82 nt downstream 
of translation stop, within 3’ UTR.  Obtained the expected size band on an agarose gel, but not 
positive on Southern blot using exon 1-specific oligo AS3.  Cloning attempts unsuccessful. 

S5 & 
AS10 

5423 Part of exon 1, full exon 2 & part of exon 3.  Starts within ECL1 and ends within TM6.  Identical 
to published vervet monkey GnRHR-II cDNA sequence except for two nt differences, one 
within TM3 and one within ECL2, which would result in the incorporation of two different amino 
acids. 

NUP & 
AS7 
(5’ RACE) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

**  Number in superscript represents the sequence number.  Refer to Appendix 4 for sequence information. 
Δ  Sequence data not shown. 

171Δ

9585

Two transcripts: 
i.   Most of exon 2 but does not include exon 1 sequence. 
ii.  Part of exon 1 including the translation start and 140 nt of the 5’ UTR, of which 92 nt are 
novel compared to the published vervet monkey GnRHR-II cDNA, plus most of exon 2.  
Sequence derived from a single clone, contains 2 nt differences compared to published vervet 
monkey GnRHR-II cDNA sequence (Accession AF353988).  In addition, has a 116 bp insertion 
between exons 1 & 2 with a resultant shift in the reading frame. 

Vervet 
monkey 

Occipital 
lobe 

727ΔS8 & NUP 
(3’ RACE) 

Most of exon 2 plus part of exon 3, stretching from ECL2 to TM6.  Contains a 447 bp insertion 
between the two exons.  Does not include the translation stop signal or novel 3’ sequence. Δ



 
Sequence make-up:       Species:   Tissue/cell type* 

  
  

          Human    Ejaculate1

          Vervet monkey  COS-1 kidney cells2, occipital lobe3

 

 Exon 1 

          Human    Ejaculate1

          Vervet monkey  Occipital lobe5

 
          Human    EjaculateΔ   
          Vervet monkey  Occipital lobe5

 
 
                    
          Baboon   Cerebellum4, pituitary7

 
                    
          Human    Widely distributedΔ

          Baboon   Pituitary8, temporal lobeΔ

          Vervet monkey  Occipital lobeΔ

 
           
          Vervet monkey  Ejaculate6

 
 
Notes:   
“Exon 1” may or may not include the 5’ UTR (refer to tables 1 & 2 and actual sequences). 
“Exon 3” may or may not include the translation stop (refer to tables 1 & 2 and actual sequences), and never includes the polyA tail. 
*  Number in superscript represents the sequence number.  Refer to Appendix 4 for sequence information. 
Δ Sequence data not shown. 
 
Fig 23.  Summary of all sequences cloned:  schematic representation. 

 Exon 1  Exon 2 

 Exon 1 
Insert 

 Exon 2 

 Exon 1  Exon 3 

 Exon 2  Exon 3 

 Exon 2  Exon 3 
Insert 

 Exon 2  Exon 3 
Insert 

 Exon 1 



 
A.  Human GnRHR-II gene: 

 
Ex 1 Ex 2 Ex 3 Sense DNA strand *

Antisense DNA strand **

5’ 
 
3’ 

3’ 
 
5’

         ⏐ 
Transcription 
         ↓ 

Ex 1 Ex 2 Ex 3 5’ 
 

3’    *   AND/OR: 

                  ↓ 
SMART cDNA synthesis: 

Ex 1’ Ex 2’ Ex 3’ 

Ex 1 Ex 2 Ex 3 5’ 
 

3’
Ex 1’ Ex 2’ Ex 3’ 3’ 

 
5’

Sense transcript *  
 **                 Ex 1’ Ex 2’ Ex 3’ 3’ 

 
5’  ** 

mRNA 

Ex 2’ Ex 3’ 3’ polyA 
 

5’
Ex 2 Ex 3 5’ polyT 

 
3’

Antisense transcript **

Ex 2’ Ex 3’ 
In 2’ 

3’ polyA 
 

5’  **

        AND/OR:         AND/OR: 

Ex 2 Ex 3 5’ polyT 
 

3’  * 

Key 
Ex Exon number, from sequence of human GnRHR-I gene (Kakar SS, 1997) 

In 2 

In Intron number, from sequence of human GnRHR-I gene (Kakar SS, 1997) 
** Sense exon 2-specific primer will be able to anneal to this cDNA strand during PCR 
* Antisense exon 3-specific primer will be able to anneal to this cDNA strand during PCR 

In 1 In 2 

In 1’ 

 *                

                  ↓ 
Marathon cDNA synthesis: B. 

In 2’ 

In 2 

In 2’ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.  Schematic view of (A) putative sense and antisense transcripts from the human GnRHR-II gene and (B) the putative resulting human 

GnRHR-II cDNAs produced with the MarathonTM and SMARTTM RACE kits, for use in RACE. 
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Key:    
1, 2, 3, 4   Exon no. 
    ↓           ATG translation start 
    ↓↓         TGA translation stop 
                 Mature peptide 

 
QHWSYGLRPG 

H1AS1 (←) H1S1 (→) 
H1S2 (→) 

GnRH-1: 

Nt no.     -155                    -2   -1                     141  142         237   238                 438 

3’ UTR 5’ UTR                                                                           ↓                                               ↓↓ 
    1                         2                    3                   4

 
Fig 25.  Schematic representation of the human GnRH-1 and GnRH-2 cDNAs 

and relative positions of the primers used in RT-PCR (not to scale).  

Nucleotide positions from the translation start are indicated for the 

exon boundaries.  Direction of primers is indicated as sense (→) or 

antisense (←).  The mature GnRH peptide hormone sequences are 

highlighted in green.  GnRH-1 data obtained from Hayflick JS et al. 

[1989];  GnRH-2 data obtained from White RB et al. [1998]. 

QHWSHGWYPG 

GnRH-2 (variant 1): 

Nt no.     -51         -8   -7                         154 155                    312  313           372 

3’ UTR 5’ UTR 
                                                               ↓                                                   ↓↓    1                     2                          3                     4

H2S1 (→) H2AS1 (←) 

H2AS2 (←) 
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R1AS1 (←)

Key:    
1, 2, 3     Exon no. 
    ↓         ATG translation start 
    ↓↓       TGA translation stop 

Fig 26.  Schematic representation of the human GnRHR-I and GnRHR-II cDNAs and 
relative positions of the primers used in RT-PCR (not to scale).  Nucleotide 
positions from the translation start are indicated for the exon boundaries.  
Direction of primers is indicated as sense (→) or antisense (←).  According 
to Fan NC et al. [1995] the 5’ UTR of the human GnRHR-I mRNA stretches 
between 703- and 1393 bp, depending on which transcription initiation site is 
used.  Five classical polyadenylation signals are scattered over a region of 
800 bp within the 3’ end of the human GnRHR-I gene [Fan NC et al., 1995].  
Data of the GnRHR-I exon boundaries was obtained from Kakar SS [1997].  
The 5’ and 3’ UTRs of the GnRHR-II cDNA are indicated with dotted lines 
because the boundaries are unidentified to date.  GnRHR-II data was 
obtained by comparison of results of RT-PCR and 5’ RACE on human testis 
and ejaculate RNA (see Chapter 2) to the putative human GnRHR-II gene 
sequence (Accession AL160282), as well as to the published vervet monkey 
GnRHR-II cDNA sequence (Accession AF353988). 

 

 
 
R1AS2 (←) R1S0 (→) 

R1S1 (→) 
 
R1S2 (→) 
R1S3 (→) 

              ↓                                                                  ↓↓ 
5’ UTR 3’ UTR          1                               2                    3 

Nt no.  -1393/-703                                 522  523           742   743                     ≥ 1542 

S3 (→) 
 
S5 (→) 

S9 (→) AS10 (←) 
 
AS13 (←) 

                       ↓                                                        ↓↓ 
             1                       2                        35’ UTR 3’ UTR 

Nt no.  « -392                         509  510              720   721                        1349 » 

GnRHR-II: 

GnRHR-I: 



Appendix 1 
 
List of primers used in RT-PCR, RACE, Southern blot analysis, exontrapping, 
and for probe synthesis for dot blot and in situ hybridisation experiments, 
indicating relative positions in the relevant genes 
 
Notes: 
1.  All primer combinations span exon-intron boundaries. 
2.  Alternative names are given for each primer.  “Lab name” refers to the name of 

the primer as it is known in the laboratory.  “Thesis name” refers to a new name 
given to each primer based on its position in the gene. 

 
 

GnRH-1: 
 
GnRH-1 sense primers GnRH-1 antisense primers 
Thesis 
name 

Lab 
name 

Position in gene 
(5’ end of primer) 

Thesis 
name 

Lab 
name 

Position in gene 
(3’ end of primer) 

H1S11 129 Exon 2, +18 relative 
to translation start, 
within the signal 
peptide. 

H1AS11 131 Exon 4, +382 relative 
to translation start, 
within the 3’ UTR. 

H1S21,2,* 122 Exon 2, +95 relative 
to translation start, 
within the last 4 
nucleotides encoding 
the mature peptide. 

 

 
1.  100% homologous to human;  % homology to vervet monkey not known. 
2.  47.8% homology to rhesus monkey. 
*   Used in Southern blot analysis. 
 

 
GnRH-2: 

 
GnRH-2 sense primers GnRH-2 antisense primers 
Thesis 
name 

Lab 
name 

Position in gene 
(5’ end of primer) 

Thesis 
name 

Lab 
name 

Position in gene 
(3’ end of primer) 

H2S11,2 132 Exon 1, -49 relative to 
translation start, 
within the 5’ UTR. 

H2AS13,* 124 Exon 3, +228 relative 
to translation start, 
within GAP. 

 H2AS24 133 Exon 3, +298 relative 
to translation start, 
within GAP. 

 
1.  100% homologous to human;  % homology to vervet monkey not known. 
2.  100% homologous to rhesus monkey. 
3.  86.4% homology to rhesus monkey. 
4.  95.5% homology to rhesus monkey. 
*   Used in Southern blot analysis. 
 



GnRHR-I: 
 
GnRHR-I sense primers GnRHR-I antisense primers 
Thesis 
name 

Lab 
name 

Position in gene 
(5’ end of primer) 

Thesis 
name 

Lab 
name 

Position in gene 
(3’ end of primer) 

R1S01,2 HR1S2 Exon 1, -31 relative 
to translation start. 

R1AS14 106 Exon 2, +675 
relative to 
translation start. 

R1S13 HR1S3 Exon 1, +9 relative to 
translation start. 

R1AS24 HR1AS1 Exon 3, +894 
relative to 
translation start. 

R1S24 101 Exon 1, +301 relative 
to translation start. 

R1S35,* 117 Exon 1, +458 relative 
to translation start. 

  
 

 
1.  100% homologous to human; % homology to vervet monkey not known. 
2.  58.3% homology to bonnet monkey. 
3.  87.0% homology to bonnet monkey. 
4.  100% homologous to bonnet monkey. 
5.  90.5% homology to bonnet monkey. 
*   Used in Southern blot analysis. 
 



GnRHR-II: 
 
Percentage (%) homology to human and vervet monkey is indicated as follows: 
• h:      100% homologous to human but <100% homology to vervet monkey. 
• m:     100% homologous to vervet monkey but <100% homology to human. 
• h,m:  100% homologous to both human and vervet monkey. 
• #:      <100% homology to both human and vervet monkey;  % homology given. 

 
GnRHR-II exon 1 
Sense primers Antisense primers 
Thesis 
name 

Lab name Position in gene 
(5’ end of primer) 

Thesis 
name 

Lab name Position in gene 
(3’ end of primer) 

S0h,* S1 -77 relative to 
translation start, 
within 5’ UTR. 

AS1h NAS3 +163 relative to 
translation start. 

S1h NS2 -48 relative to 
translation start, 
within 5’ UTR$. 

AS2h NAS2 +237 relative to 
translation start. 

S2m NS2mod1 -48 relative to 
translation start, 
within 5’ UTR$. 

AS3h,* AS252 +317 relative to 
translation start. 

S3m GW2S -36 relative to 
translation start, 
within 5’ UTR. 

AS4h,m AS302 +367 relative to 
translation start. 

S4h S4 +90 relative to 
translation start. 

AS5h,m AS405 +472 relative to 
translation start. 

S5h,m S210 +295 relative to 
translation start. 

S6h,m S387 +473 relative to 
translation start. 

S7m We1e2S +497 relative to 
translation start;  
spans the exon 1-2 
barrier, with 14 nt in 
exon 1 and 12 nt in 
exon 2. 

 

 
*   Used in Southern blot analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



GnRHR-II exon 2 
Sense primers Antisense primers 
Thesis 
name 

Lab name Position in gene 
(5’ end of primer) 

Thesis 
name 

Lab name Position in gene 
(3’ end of primer) 

S7m We1e2S (See above). AS6h,m 10242 +594 relative to 
translation start. 

S8m We2S +524 relative to 
translation start. 

AS7m We2AS +654 relative to 
translation start. 

S9h,m,* 10377S +554 relative to 
translation start. 

AS8m We2e3AS +698 relative to 
translation start;  
spans the exon 2-3 
barrier, with 24 nt in 
exon 2 and 2 nt in 
exon 3. 

S10h,m 10417 +594 relative to 
translation start. 

S11h,m JHe2e3S +704 relative to 
translation start;  
spans the exon 2-3 
barrier, with 18 nt in 
exon 2 and 9 nt in 
exon 3. 

 

 
*   Used in Southern blot analysis. 
 
 
GnRHR-II exon 3 
Sense primers Antisense primers 
Thesis 
name 

Lab name Position in gene 
(5’ end of primer) 

Thesis 
name 

Lab name Position in gene 
(3’ end of primer) 

S11h,m JHe2e3S (See above). AS9# 10350 +763 relative to 
translation start. 

AS10h,m 10070 +811 relative to 
translation start. 

AS11h 10071 +1199 relative to 
translation start, 60 
nt downstream of 
translation stop, 
within 3’ UTR. 

AS12h NAS4 +1221 (human) 
relative to 
translation start, 82 
nt downstream of 
translation stop, 
within 3’ UTR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#  95.7% homologous to human and 87.0% 
homologous to vervet monkey. 
 

AS13h,m AS6 +1200 (monkey) or 
+1321 (human) 
relative to 
translation start, 
60 nt or 182 nt          
downstream of 
translation stop, 
respectively. 



Other: 
 
Name: Description: 
AP1 Marathon RACE adaptor primer 1. 
AP2 Marathon RACE nested adaptor primer. 
UPM Smart RACE universal primer mix (mixture of a 45-mer and 22-mer). 
NUP  Smart RACE nested universal primer. 
βA1 β-actin exon 2 sense primer;  100% identity to human and mouse. 
βA2 β-actin exon 3 antisense primer;  mouse-specific, 96% identity to human. 
T7 T7 promoter primer. 
U19 U-19mer primer. 
 



Appendix 2 
 
Expected sizes of RT-PCR products & PCR annealing temperatures used. 
 

Non-GnRHR-II: 
 
Primer pair Gene of interest Expected size (bp) 

(Including primers) 
Annealing 
temperature (°C) 

H1S1 & H1AS1 GnRH-1 3871 55 
H2S1 & H2AS2 GnRH-2 389/368/365 (human)2/

350 (Rhesus monkey)3
60 

R1S2 & R1AS1 GnRHR-I 3964 50 
R1S1 & R1AS2 GnRHR-I 9094 53 
R1S0 & R1AS2 GnRHR-1 9484 53 
βA1 & βA2 β-actin 3175 50-55 
 
Expected sizes are based on the following sequences: 
1  Human GnRH-1 cDNA (Accession X15215). 
2  Human GnRH-2 variant 1 cDNA (Accession NM_001501). 
3  Rhesus monkey GnRH-2 mRNA (Accession AF097356). 
4  Human GnRHR-I cDNA (Accession L07949). 
5  Mouse β-actin cDNA (Accession X03672). 
 

GnRH-RII: 
 
Primer pair Expected size (bp) 

(Including primers) 
Annealing 
temperature (°C) 

S0 & AS13 13036/14248 50 
S1/S2 & AS12 12957 58 
S3 & AS13 1383 (human)8/1262 (vervet monkey)7 57 
S4 & AS5 4029 55 
S5 & AS6 31910 55 
S5 & AS10 54210,11 52 
S7 & UPM 615 (long UP)7/592 (short UP)7 60 
S8 & NUP 6407 60 
S10 & AS10 25011 60 
AP1 & AS5 5677 Touchdown 72→70→68 
AP2 & AS3 4097 Touchdown 72→70→68 
NUP & AS1 2567 55 
UPM & AS2 358 (long UP)7/336 (short UP)7 55 
NUP & AS7 7507 60 
UPM & AS8 818 (long UP)7/793 (short UP)7 60 
 
Expected sizes are based on the following sequences: 
6   5’ SMART RACE results on COS-1 and RT-PCR results on vervet monkey ejaculate RNA 

using primer pair S3 & AS13. 
7    Published vervet monkey GnRHR-II [Neill JD et al, 2001]. 
8    Human chromosome 1 genomic DNA (Accession AL160282). 
9    PCR amplification of P1 human genomic DNA clones. 
10  Exontrapping results. 
11  RT-PCR results with S10 & AS11 on testis RNA [Hutchinson E, 1997]. 



Appendix 3 
 
Primer sequences (5’ → 3’) 
 
 

GnRH-1-specific: 
 
Sense: 
H1S1:    ACTCCTAGCTGGCCTTATTCTAC 
H1S2:    TGGAGGAAAGAGAGATGCCG 
 
Antisense: 
H1AS1:  GCAACTTGGTGTAAGGATTTCTG 
 
 

GnRH-2-specific: 
 
Sense: 
H2S1:    GCAGCTGCCTGAAGGAGCCATC 
 
Antisense: 
H2AS1:   CCAGGGCATGCTGTCGTCCAGG 
H2AS2:   CTGCGGTCAGCAGTGTCCGTGC 
 
 

GnRHR-I-specific: 
 
Sense: 
R1S:    CACAAGGCTTGAAGCTCTGTCCTG 
R1S1:    CAGTGCCTCTCCTGAACAGAATC 
R1S2:    TGGAACATTACAGTCCAATGG 
R1S3:    GCAAAGTCGGACAGTCCATGG 
 
Antisense: 
R1AS1:   TGCATTGCAGATCAGCATGATG 
R1AS2:   TGATTTACTGGGTCTGACAACCTG 

 
 

GnRHR-II-specific: 
 
Sense: 
S0: GAGGGCGAAGAATCAGTGGCCAAAGC 
S1: CCGCTTCATACCCACACTTCATCCTCC 
S2: CCGCTTCATACCCACACTGCCTCCTCC 
S3: CACACTGCCTCCTCCTCAGTTTCTCTC 
S4: CCCACCTTCTCGGCAGCAGCC 
S5: ACCTGGAATATCACTGTTCAATGG 
S6: CAGCCTGGGGACTTAGTTTCCTG 
S7: TTGCCTTGCCCCAGCTGTTCCTGTTC 
S8: ATACCGTCCACCGAGCTGGCCCAGTC 
S9: TCACTCAGTGTGTCACCAAAGGCAGC 
S10: GCAAGAGACCACCTATAACCT 
S11: CAAGGAAGGGGAGCCATGCCCCTGCTG 
 
 



Antisense: 
AS1: ACTGACCACAGGACTGCCAGGTT 
AS2: ACTAGTAAGTCGGCGGCTGCTAAATGGATG 
AS3: CATGCGATGTCCACAGCCAGCC 
AS4: GGAAAGCTGCAGAATACATGGC 
AS5: GAAACTAAGTCCCCAGGCTGC 
AS6: GGTTATAGGTGGTCTCTTGC 
AS7: CAATGCGGCTATAGCAGATGGCCATG 
AS8: GGCATGGCTCCCCTTCCTTGTCTGAG 
AS9: CCGGAGACGAACACGGGGACAAT 
AS10: GGTGTCCAGCAGAGGATGAAGGTCAG 
AS11: GGAGAGCAGGAGTAGAAGTGAG  
AS12: CAGTATTTCTTTTTTGGGGGGAACTA 
AS13: GTAGAGATGGGGTCTTGCTGTGTTACC 
 
 

Other: 
 
AP1: CCATCCTAATACGACTCACTATAGGGC 
AP2: ACTCACTATAGGGCTCGAGCGGC 
UPM:   Long:  TAATACGACTCACTATAGGGCAAGCAGTGGTAACAACGCAGAGT 

Short:  CTAATACGACTCACTATAGGGC 
NUP: AAGCAGTGGTAACAACGCAGAGT 
βA1: CACCACACCTTCTACAATGAGCTG 
βA2: GATCTTCATGAGGTAGTCTGTCAGG 
T7: TAATACGACTCACTATAGGG 
U19: GTTTTCCCAGTCACGACGT 
 



Appendix 4:  Sequence data of cloned amplicons 
 

Sequence no 

1. Cloned GnRHR-II cDNA sequence from human ejaculate containing part of 

exon 1, the full exon 2 and part of exon 3, stretching from TM1 to TM6. 

2. Cloned GnRHR-II cDNA sequences from COS-1 vervet monkey kidney cells 

containing parts of exon 1, the full exon 2 and part of exon 3, obtained by 5’ 

SMARTTM RACE and RT-PCR. 

3. Cloned GnRHR-II cDNA sequence from monkey occipital lobe containing part 

of exon 1, the full exon 2 and part of exon 3, stretching from ECL1 in exon 1 

to TM6 in exon 3. 

4. Cloned GnRHR-II cDNA sequence from baboon cerebellum containing part of 

exon 1 and part of exon 3 but lacking exon 2, stretching from ECL1 to TM6 

minus ECL2. 

5. Vervet monkey occipital lobe GnRHR-II 5’ SMARTTM RACE sequence, 

containing part of exon 1 and most of exon 2, with an insert between the two 

exons. 

6. Cloned GnRHR-II cDNA sequence from vervet monkey ejaculate, containing 

most of exon 1, the full exon 2 and most of exon 3, with an insert between the 

exons 2 and 3. 

7. Cloned GnRHR-II cDNA sequence from baboon pituitary, containing most of 

exon 1 and most of exon 3 but lacking exon 2, stretching from the 5’ UTR to 

the intracellular C-terminal tail minus ECL2. 

8. Additional insert sequence between exons 2 and 3 of the GnRHR-II cDNA:  

comparison between baboon pituitary and vervet monkey ejaculate and 

occipital lobe. 

9. Cloned GnRH-1 cDNA sequences from human ejaculate and hypothalamus. 

10. Cloned GnRH-2 cDNA sequence from human ejaculate. 

11. Cloned GnRHR-I cDNA sequences from human ejaculate and pituitary. 



Sequence no 1:  Cloned GnRHR-II cDNA sequence from human ejaculate containing part of exon 1, the full exon 2 and part of exon 3, 
stretching from TM1 to TM6, and aligned to published vervet monkey GnRHR-II cDNA sequence (Accession AF353988) 

 
Exon 1  Exon 2 Exon 3  

 
 
 
             -392-390         -380          -370         -360         -350          -340         -330         -320          -310 
                 A   R   A   G   D   L   H   V   L   E   A   A   G   I   G   V   R   L   A   E   P   H   K   Y   T   C   T   Q    
Human ejacul  c gcc cgg gca ggt gat ctc cac gtc ttg gag gcc gcc ggc ata ggt gtg cgc ctg gca gaa cct cac aaa tac aca tgc acg cag 
 
 
                       -300         -290          -280         -270         -260          -250         -240         -230 
               A   P   T   E   S   R   A   V   G   A   K   E   V   *   V   S   R   G   L   K   P   R   L   V   C   P   R   K    
Human ejacul  gcc ccg act gaa tcc agg gct gta ggg gct aaa gag gtc tag gtc agt aga ggc ctg aag ccc agg ctg gtc tgt cca agg aaa 
 
 
                  -220         -210         -200          -190         -180         -170          -160         -150         -140 
               K   E   R   D   W   Y   Q   I   F   V   P   C   R   T   L   T   V   E   Q   V   T   S   S   R   T   D   G   E    
Human ejacul  aag gag cgt gat tgg tac cag atc ttc gtt ccc tgc aga acc ttg aca gtt gaa caa gtg acc tcc tcc aga aca gat gga gag 
 
 
                          -130         -120         -110          -100         -90          -80           -70          –60  
               S   P   E   A   E   A   L   V   N   E   I   R   N   N   Q   L   Q   I   L   K   R   R   A   K   N   Q   W   P    
Human ejacul  tct cca gaa gca gag gct tta gtg aac gaa att cgc aat aat cag ctc cag atc ctg aaa agg agg gcg aag aat cag tgg cca 
 
 
                    -50           -40          -30          -20           -10          1           10           20 
               K   L   T   A   S   Y   P   H   F   I   L   L   S   F   S   P   G   H   H   V   C   R   Q   R   H   P   L    G    
Human ejacul  aag cta acc gct tca tac cca cac ttc atc ctc ctc agt ttc tct cca ggc cac cat gtc tgc agg caa cgg cac ccc tt↓g ggg 
V/vet monkey           cc gct tca tac cca cac ttc atc ctc ctc agt ttc tct cca ggc cac cac gtc tgc agg caa cgg cac ccc ttgg ggg 
 
 
              30           40           50            60           70           80            90           100          110 
               S   A   A   G   E   E   V   W   A   G   S   G   V   E   V   E   G   S   E   L   P   T   F   S   A   A   A   K    
Human ejacul  tca gca gcg ggg gag gag gtc tgg gct gga tca gga gtg gag gtg gag ggc tca gag ctg ccc acc ttc tcg gca gca gcc aag 
V/vet monkey  tca gca gtg ggg gag gag gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag ctg ccc acc ttc tcg aca gca gcc aag 
                                                                                                                         |____ 
 



                      120          130          140           150          160          170           180          190 
               V   R   V   G   V   T   I   V   L   F   V   S   S   A   G   G   N   L   A   V   L   W   S   V   T   R   R   E    
Human ejacul  gtc cga gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gca gtc ctg tgg tca gtg aca cgg cgg gaa 
V/vet monkey  gtc cga gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc gtc ctg tgg tca gtg aca cgg ccg caa 

              ________________________________TM1________________________________________________________|| 
 
 
                200           210          220          230           240          250          260           270          280 
               P   S   Q   L   R   P   S   P   V   R   R   L   F   I   H   L   A   A   A   D   L   L   V   T   F   V   V   M    
Human ejacul  ccc agc cag ctc cgc ccc tct ccg gtc agg aga ctc ttc atc cat tta gca gcc gcc gac tta cta gtc act ttt gtg gtt atg 
V/vet monkey  ccc agc cag ctc cgc ccc tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc gac tta cta gtc act ttt gtg gtt atg 
                          ICL1                    |_____________________________________TM2__________________________________ 
 
 
                        290           300          310          320           330          340          350           360 
               P   L   D   A   T   W   N   I   T   V   Q   W   L   A   V   D   I   A   C   R   T   L   M   F   L   K   L   M    
Human ejacul  ccc cta gat gcc acc tgg aat atc act gtt caa tgg ctg gct gtg gac atc gca tgt cgg aca ctg atg ttc ctg aaa cta atg 
V/vet monkey  ccc cta gat gcc acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg 
              ______|                            ECL1                              |______________________TM3________________ 
 
 
                   370          380           390          400          410           420          430          440 
               A   T   Y   S   A   A   F   L   P   V   V   I   G   L   D   R   Q   A   A   V   L   N   P   L   E   S   R   S    
Human ejacul  gcc acg tat tct gca gct ttc ctg cct gtg gtc att gga ttg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca 
V/vet monkey  gcc atg tat tct gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca 
              ___________________________________________________|                              ICL2                          
 
 
              450          460          470           480          490          500            510          520          530 
               G   V   R   K   L   L   G   A   A   W   G   L   S   F   L   L   A   F   P   Q    L   F   L   F   H   T   V   H   
Human ejacul  ggt gta agg aaa ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttc ccc cag  ctg ttc ctg ttc cac acg gtc cac 
V/vet monkey  ggt gta agg aaa ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag  ctg ttc ctg ttc cat acc gtc cac 
                    |______________________________________________TM4___________________________________________| 

|
| 
| 
| 
1|2  

 
                      540          550          560           570          580          590           600          610 
               *   A   G   P   V   P   F   T   Q   C   V   T   K   G   S   F   K   A   Q   W   Q   E   T   T   Y   N   L   F    
Human ejacul  tga gct ggc cca gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct caa tgg caa gag acc acc tat aac ctc ttc 
V/vet monkey  cga gct ggc cca gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga tgg caa gag acc acc tat aac ctc ttc 
                                                                ECL2                                                          



                620           630          640          650           660          670          680           690          700 
               T   F   C   C   L   F   L   L   P   L   T   A   M   A   I   C   Y   S   R   I   V   L   S   V   S   R   P   Q    
Human ejacul  acc ttc tgc tgc ctc ttt ctg ctg cca ctg act gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agg ccc cag 
V/vet monkey  acc ttc tgc tgc ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agc cct cag 
                 |_____________________________________________TM5___________________________________________| 
 
 
                        710           720            730          740           750          760          770           780 
               T   R   K   G   S   H     A   P   A   G   E   F   A   L   P   R   S   F   D   N   C   P   R   V   R   L   R   A    
Human ejacul  aca agg aag ggg agc cat g  cc ccc gct ggt gaa ttt gcc ctc ccc cgc tcc ttt gac aac tgt ccc cgt gtt cgt ctc cgg gcc 
V/vet monkey  aca agg aag ggg agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt tgt ctc cgg gcc 
                                                                ICL3                                                           

|
|  
| 
| 
2|3  

 
                   790          800           810          820          830    835 
               L   R   L   A   L   L   I   L   L   T   F   I   L   C   W   T                                                  
Human ejacul  ctg aga ctg gcc ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cc 
V/vet monkey  ctg aga ctg gct ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cct tat tac cta ctg ggt ctg tgg tac tgg ttc tct 
                                                                               P   Y   Y   L   L   G   L   W   Y   W   F   S 
                                                                                    840           850          860          870 
              |________________________________TM6___________________________________________________________|          
 
 
V/vet monkey  ccc acc atg cta act gaa gtc cct ccc agc ctg agc cac atc ctt ttc ctt ttt ggc ctc ctc aat gct cct ctg gat cct ctc 
               P   T   M   L   T   E   V   P   P   S   L   S   H   I   L   F   L   F   G   L   L   N   A   P   L   D   P   L 
                          880          890          900           910          920          930           940          950 
                                ECL3                    |___________________________________TM7______________________________ 
 
 
V/vet monkey  ctc tat ggg gcc ttc acc ttt ggc tgc cga aga ggg cac caa gaa ctt agt ata gac tct tct aaa gaa ggg tct ggg aga atg 
               L   Y   G   A   F   T   F   G   C   R   R   G   H   Q   E   L   S   I   D   S   S   K   E   G   S   G   R   M 
                    960           970          980          990           1000         1010         1020          1030 
               _________________________|                          Intracellular C-terminal tail 
 
 
V/vet monkey  ctc caa cag gag att cat gcc ctt aga cag cag gaa gta caa aaa act gtg aca tca aga agt gca gga gaa aca aaa ggc att 
               L   Q   Q   E   I   H   A   L   R   Q   Q   E   V   Q   K   T   V   T   S   R   S   A   G   E   T   K   G   I 
               1040         1050          1060         1070         1080          1090         1100         1110          1120 
 
 
 



V/vet monkey  tct ata aca tct atc tga 
               S   I   T   S   I   *  
                       1130         1140 
 
 
Notes: 
 
1. The above is the combined sequence of secondary 5’ RACE, using an exon 1-specific primer (AS3) in combination with the 

Marathon adaptor primer AP2, and RT-PCR using an exon 1-3 primer pair (S5 & AS10) in human ejaculate RNA.  The sequence 
obtained using an exon 1-2 primer pair (S5 & AS6) is contained within this sequence, stretching from nt number 294 to 611.  
The 5’ RACE sequence stretches from nt number –391 to 337 whereas the exon 1-3 amplicon stretches from nt number 294 to 835.  
A total of sixteen overlapping clones were sequenced to obtain the above consensus sequence (five clones containing 5’ RACE 
sequence, nine clones containing exon 1-2 sequence and two clones containing exon 1-3 sequence).  The human ejaculate 
sequence is aligned to the recently published vervet monkey GnRHR-II cDNA (accession AF353988). 

2. Nucleotides are numbered from the translation start, according to the human ejaculate sequence, therefore exon 1 ends at nt 
position 509 whereas exon 1 ends at nt position 510 of Sequence numbers 2 to 7.  The translated amino acid sequence is 
indicated above the nt sequences.  The amino acid sequence shown is that which would be predicted from the human ejaculate nt 
sequence until the end of the human sequence in TM6.  Thereafter the vervet monkey amino acid sequence is shown.  
Transmembrane domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated.  Exon boundaries are 
indicated with a dotted line showing exon numbers.  Primer sequences are included, except the Marathon RACE adaptor primer 
AP2.  Primers used in RT-PCR are printed in italics.  Primers used in primary and secondary 5’ RACE are underlined. 

3. Nucleotides typed in red represent novel (unpublished) human GnRHR-II 5’ sequence obtained in the 5’ RACE analysis, from nt 
number –89 until –392, which is a total of 481 bp. 

4. The position of the vervet monkey translation start codon (AGC) is bolded and highlighted in green (xxx).  However, the human 
sequence has a nt deletion compared to the monkey sequence (the position of which is indicated by ↓) and this results in a 
frame shift so that the translation start codon is in a different reading frame.  Interestingly, had there not been a nt 
deletion, the human sequence would have an AUG methionine translation start codon compared to the ACG threonine of the vervet 
monkey sequence.  A second putative translation start, situated at nt position 279 and highlighted in yellow (xxx) would 
cancel the need for a nt insertion in the human sequence, but would result in a truncated protein that lacks TM1 and most of 
TM2. 

5. There are a number of nt differences between the human ejaculate and vervet monkey sequences (highlighted in turquoise, x) 
due to species differences.  The nt differences often result in the incorporation of a different amino acid (X) in the human 
translated protein sequence, compared to the vervet monkey sequence. 

6. The human ejaculate sequence contain an in-frame TGA translation stop signal within exon 2, starting at nt position 534 and 
shown in underlined bold print.  It was subsequently revealed that, upon completion of the human genome project, the TGA is 
present in the GnRHR-II gene on chromosome 1 (accession AL160282).  At the same position, the monkey sequence contains a CGA 
arginine codon, creating an extended open reading frame. 

 



Sequence no 2:  Cloned GnRHR-II cDNA sequences from COS-1 vervet monkey kidney cells containing parts of exon 1, the full exon 2 
and part of exon 3, obtained by 5’ SMARTTM RACE and RT-PCR.  The 5’ RACE product stretches from –82 in the 5’ 
UTR to the end of TM1 in exon 1.  The RT-PCR product stretches from ECL1 in exon 1 to TM6 in exon 3.  Sequences 
are aligned to the published vervet monkey GnRHR-II cDNA sequence (Accession AF353988) 

 
Exon 1  Exon 2 Exon 3  

 
 
              -82–80          -70           -60          -50          -40           -30          -20          -10           1 
                 R   G   G   R   R   I   S   G   Q   S   *   P   L   H   T   H   T   A   S   S   S   V   S   L   Q   A   T   T  
Monkey COS-1  a cgc ggg ggg cga aga atc agt ggc caa agc taa ccg ctt cat acc cac act gcc tcc tcc tca gtt tct ctc cag gcc acc acg 
V/vet monkey                                                ccg ctt cat acc cac act tca tcc tcc tca gtt tct ctc cag gcc acc acg 
 
                      10           20           30            40           50           60            70           80 
               S   A   G   N   G   T   P   W   G   S   A   V   G   E   E   A   W   A   G   S   G   V   A   V   E   G   S   E    
Monkey COS-1  tct gca ggc aac ggc acc cct tgg ggg tca gca gtg ggg gag gag gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag 
V/vet monkey  tct gca ggc aac ggc acc cct tgg ggg tca gca gtg ggg gag gag gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag 
 
                90            100          110          120           130          140          150           160          170 
               L   P   T   F   S   T   A   A   K   V   R   V   G   V   T   I   V   L   F   V   S   S   A   G   G   N   L   A    
Monkey COS-1  ctg ccc acc ttc tcg aca gca gcc aag gtc cga gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc
V/vet monkey  ctg ccc acc ttc tcg aca gca gcc aag gtc cga gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc

                                |______________________________________TM1_____________________________________ 
 
                        180           190          200          210           220          230          240           250 
               V   L   W   S   V   T   R   P   Q   P   S   Q   L   R   P   S   P   V   R   T   L   F   A   H   L   A   A   A 
Monkey COS-1  gtc ctg tgg tca gt  
V/vet monkey  gtc ctg tgg tca gtg aca cgg ccg caa ccc agc cag ctc cgc ccc tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc 
             ________________|                         ICL1                          |___________________TM2_________________ 
 
                   260          270           280          290          300           310          320          330 
               D   L   L   V   T   F   V   V   M   P   L   D   A   T   W   N   I   T   V   Q   W   L   A   G   D   I   A   C  
Monkey COS-1                                                      acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt 
V/vet monkey  gac tta cta gtc act ttt gtg gtt atg ccc cta gat gcc acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt 
              ___________________________________________|              ECL1                                           |_____ 
 
              340          350          360           370          380          390           400          410          420 
               R   T   L   M   F   L   K   L   M   A   M   Y   S   A   A   F   L   P   V   V   I   G   L   D   R   Q   A   A    
Monkey COS-1  cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca 
V/vet monkey  cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca 
              _________________________________________TM3___________________________________________| 



                      430          440          450           460          470          480           490          500 
               V   L   N   P   L   G   S   R   S   G   V   R   K   L   L   G   A   A   W   G   L   S   F   L   L   A   L   P  
Monkey COS-1  gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc 
V/vet monkey  gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc 
                                ICL2                    |__________________________________TM4_______________________________ 
 
                510           520          530          540           550          560          570           580          590 
               Q   L   F   L   F   H   T   V   H   R   A   G   P   V   P   F   T   Q   C   V   T   K   G   S   F   K   A   R  
Monkey COS-1  cag ctg ttc ctg ttc cat acc gtc cac cga gct ggc cca gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga 
V/vet monkey  cag ctg ttc ctg ttc cat acc gtc cac cga gct ggc cca gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga 
              _______________________|                                        ECL2 

|
| 
| 
| 
1|2 

 
                        600           610          620          630           640          650          660           670 
               W   Q   E   T   T   Y   N   L   F   T   F   C   C   L   F   L   L   P   L   I   A   M   A   I   C   Y   S   R  
Monkey COS-1  tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc 
V/vet monkey  tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc 
                                                     |__________________________________TM5__________________________________ 
 
                   680          690           700          710          720             730          740          750       
               I   V   L   S   V   S   S   P   Q   T   R   K   G   S   H     A   P   A   G   E   F   A   L   R   R   S   F   D 
Monkey COS-1  att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac 
V/vet monkey  att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac 
              ___________________|                        ICL3                     

 
| 
| 
| 
2|3  

 
              760          770          780           790          800          810           820          830          840 
               N   R   P   R   V   C   L   R   A   L   R   L   A   P   L   I   L   L   T   F   I   L   C   W   T   P     
Monkey COS-1  aat cgt ccc cgt gtt tgt ctc cgg gcc ctg aga ctg gct ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cc 
V/vet monkey  aat cgt ccc cgt gtt tgt ctc cgg gcc ctg aga ctg gct ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cct tat tac 
                                                                                                                       Y   Y 
                                                     |____________________________________TM6________________________________ 
 
                      850          860          870           880          890          900           910          920 
V/vet monkey  cta ctg ggt ctg tgg tac tgg ttc tct ccc acc atg cta act gaa gtc cct ccc agc ctg agc cac atc ctt ttc ctt ttt ggc 
               L   L   G   L   W   Y   W   F   S   P   T   M   L   T   E   V   P   P   S   L   S   H   I   L   F   L   F   G  
              ___________________|                            ECL3                           |_______________________________ 
 
                930           940          950          960           970          980          990           1000         1010 
V/vet monkey  ctc ctc aat gct cct ctg gat cct ctc ctc tat ggg gcc ttc acc ttt ggc tgc cga aga ggg cac caa gaa ctt agt ata gac 
               L   L   N   A   P   L   D   P   L   L   Y   G   A   F   T   F   G   C   R   R   G   H   Q   E   L   S   I   D    
              _______________________________TM7_____________________________| 
 



                        1020          1030         1040         1050          1060         1070         1080          1090 
V/vet monkey  tct tct aaa gaa ggg tct ggg aga atg ctc caa cag gag att cat gcc ctt aga cag cag gaa gta caa aaa act gtg aca tca 
               S   S   K   E   G   S   G   R   M   L   Q   Q   E   I   H   A   L   R   Q   Q   E   V   Q   K   T   V   T   S    
                                                     Intracellular C-terminal tail                                 
 
                   1100         1110          1120         1130         1140 
V/vet monkey  aga agt gca gga gaa aca aaa ggc att tct ata aca tct atc tga 
               R   S   A   G   E   T   K   D   I   S   I   T   S   I   *    
 
 
Notes: 
 
1. The above is the combined sequence of secondary 5’ SMART RACE, using an exon 1-specific primer (AS1) in combination with the 

SMART RACE primer NUP, and RT-PCR using an exon 1-3 primer pair (S5 & AS10) in COS-1 vervet monkey RNA.  The sequence 
obtained using an exon 1-2 primer pair (S5 & AS6) is contained within this sequence, stretching from nt number 295 to 613 
(including primers).  Similarly, the sequence obtained using an exon 2-3 primer pair (S10 & AS10) is contained within this 
sequence, stretching from nt number 594 to 836(including primers).  The 5’ RACE sequence stretches from nt number -83 to 162 
(excluding primers) whereas the exon 1-3 amplicon stretches from nt number 295 to 836 (including primers).  A total of 
thirteen overlapping clones were sequenced to obtain the above consensus sequence (four clones containing 5’ SMART RACE 
sequence, five clones containing exon 1-2 sequence, two clones containing exon 2-3 sequence and two clones containing exon 1-
3 sequence).  The COS-1 vervet monkey sequence is aligned to the recently published vervet monkey GnRHR-II cDNA (accession 
AF353988). 

2. Nucleotides are numbered from the translation start.  The translated amino acid sequence is indicated above the nt sequences.  
Transmembrane domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated.  Exon boundaries are 
indicated with a dotted line showing exon numbers.  Primer sequences are included, except the SMART RACE nested universal 
primer NUP.  Primers used in RT-PCR are printed in italics.  Primers used in primary and secondary 5’ RACE are underlined. 

3. Novel (unpublished) COS-1 vervet monkey GnRHR-II 5’ sequence was obtained in the 5’ RACE analysis, from nt number –50 to -83. 
4. The position of the vervet monkey translation start codon (AGC) is bolded and highlighted in green (xxx). 
5. There are two nt differences within the 5’ UTR between the COS-1 vervet monkey 5’ RACE sequence and the pulished vervet 

monkey sequence (highlighted in turquoise, x).  These nt differences result in the incorporation of an alanine instead of a 
serine in the COS-1 translated protein sequence, compared to the vervet monkey sequence. 

 



Sequence no 3:  Cloned GnRHR-II cDNA sequence from monkey occipital lobe containing part of exon 1, the full exon 2 and part of 
exon 3, stretching from ECL1 in exon 1 to TM6 in exon 3, and aligned to the published vervet monkey GnRHR-II 
cDNA sequence (Accession AF353988) 

Exon 1  Exon 2 Exon 3  
 
 
              295   300           310          320          330           340          350          360           370         
               T   W   N   I   T   V   Q   W   L   A   G   D   I   A   C   R   T   L   M   F   L   K   L   M   A   M   Y   S  
M occ lobe    acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct 
V/vet monkey  acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct 
                                   ECL1                   |______________________________TM3__________________________________ 
 
               380          390           400          410          420           430          440          450           460 
               A   A   F   L   P   V   I   I   G   L   D   R   Q   A   A   V   L   N   P   L   G   S   R   S   G   V   R   K  
M occ lobe    gca gct ttc ctg cct gtg atc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa 
V/vet monkey  gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa 
              ___________________________|                                  ICL2                               |______________ 
 
                       470          480           490          500          510           520          530          540       
               L   L   G   A   A   W   G   L   S   F   L   L   A   L   P   Q    L   F   L   F   Y   T   V   H   R   A   G   P  
M occ lobe    ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag  ctg ttc ctg ttc tat acc gtc cac cga gct ggc cca 
V/vet monkey  ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag  ctg ttc ctg ttc cat acc gtc cac cga gct ggc cca 
              _____________________________________TM4____________________________________| 
 
                  550          560          570           580          590          600           610          620          630 

|
| 
| 
| 
1|2 

               V   P   F   T   Q   C   V   T   K   G   S   F   K   A   R   W   Q   E   T   T   Y   N   L   F   T   F   C   C  
M occ lobe    gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc 
V/vet monkey  gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc 
                                                           ECL2                                           |___________________ 
 
                          640          650          660           670          680          690           700          710    
               L   F   L   L   P   L   I   A   M   A   I   C   Y   S   R   I   V   L   S   V   S   S   P   Q   T   R   K   G  
M occ lobe    ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg 
V/vet monkey  ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg 
              ___________________________________TM5_________________________________|                                        
 
                    720             730          740          750           760          770          780           790         
               S   H     A   P   A   G   E   F   A   L   R   R   S   F   D   N   R   P   R   V   C   L   R   A   L   R   L   A  
M occ lobe    agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt tgt ctc cgg gcc ctg aga ctg gct 
V/vet monkey  agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt tgt ctc cgg gcc ctg aga ctg gct 
                                                     ICL3                                         |_____________________________ 

 
| 
| 
| 
2|3 



               800          810           820          830     836 
               L   L   I   L   L   T   F   I   L   C   W   T       
M occ lobe    ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cc   
V/vet monkey  ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cc   
              _______________________TM6________________________-- 
 
 
Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nt sequences.  

Transmembrane domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated underneath.  Exon boundaries 
are indicated with a dotted line showing exon numbers.  Primer sequences are included and printed in italics. 

2. A total of two clones were sequenced to obtain the above consensus sequence. 
3. There are two nt differences between the vervet monkey occipital lobe sequence and the published vervet monkey sequence 

(accession AF353988) (highlighted in turquoise, x), even though they both are from vervet monkey.  Both nt differences would 
result in the incorporation of different amino acids into the translated occipital lobe sequence, compared to the published 
vervet monkey translated amino acid sequence.  The original PCR was performed using ordinary Taq polymerase and it is 
therefore possible that these differences are the result of PCR error, but, since the above sequence is the result of 
sequencing of two different clones and both have these differences, it is likely that the nt differences between the vervet 
monkey occipital lobe and the published vervet monkey sequence are real.  Interestingly, these two differences are not found 
in the vervet monkey ejaculate sequence, rather, in the ejaculate sequence, they are the same as the published vervet monkey 
sequence.  In addition, the nt differences between vervet monkey ejaculate and the published vervet monkey sequence are not 
found in the occipital lobe sequence. 

 



Sequence no 4:  Cloned GnRHR-II cDNA sequence from baboon cerebellum containing part of exon 1 and part of exon 3 but lacking 
exon 2, stretching from ECL1 to TM6 minus ECL2, and aligned to published vervet monkey GnRHR-II cDNA sequence 
(Accession AF353988) 

 
Exon 1 Exon 3  

 
 
 
              295   300           310          320          330           340          350          360           370 
               T   W   N   I   T   V   Q   W   L   A   G   D   I   A   C   R   T   L   M   F   L   K   L   M   A   M   Y   S  
B cerebellum  acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct 
V/vet monkey  acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct 
                                      ECL1                       |______________________________TM3__________________________ 
  
               380          390           400          410          420           430          440          450           460 
               A   A   F   L   P   V   V   I   G   L   D   R   Q   A   A   V   L   N   P   L   G   S   R   S   G   V   R   K  
B cerebellum  gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa 
V/vet monkey  gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa 
              ___________________________________|                                  ICL2                               |_____ 
              
                       470          480           490          500          510 
               L   L   G   A   A   W   G   L   S   F   L   L   A   L   P   Q    
B cerebellum  ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
V/vet monkey  ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag  ctg ttc ctg ttc cat acc gtc cac cga gct ggc cca 
              _______________________________________TM4__________________________________________|                            

|
| 
| 
| 
1|2  

 
B cerebellum  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
V/vet monkey  gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc 
                                                               ECL2                                               |__________ 
 
B cerebellum  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
V/vet monkey  ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg 
              _______________________________________TM5_____________________________________| 
               
                                     520          530           540          550          560           570          580 
                             P   A   G   E   F   A   L   R   R   S   F   D   N   R   P   R   V   R   L   R   A   L   R   L   A  
B cerebellum  ~~~ ~~~ ~  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt cgt ctc cgg gcc ctg aga ctg gcc 
V/vet monkey  agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt tgt ctc cgg gcc ctg aga ctg gct 
                                                        ICL3                                              |__________TM6_______ 

| 
| 
| 
| 
2|3                



                590           600          610          620    625 
               L   L   I   L   L   T   F   I   L   C   W   T       
B cerebellum  ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cc 
V/vet monkey  ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cc 
              __________________________________________________---- 
 
Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nt sequences.  

Transmembrane domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated.  Exon boundaries are 
indicated with a dotted line showing exon numbers.  Primer sequences, namely S5 and AS10, are included and printed in 
italics. 

2. A total of two clones were sequenced to obtain the above consensus sequence. 
3. Exon 1 follows directly onto exon 3.  The position of the missing exon 2, at total of 211-bp, is indicated by “~”. 
4. The omission of exon 2 results in a shift in the reading frame, from frame 1 (exon 1) to frame 3 (exon 3). 
5. There are two nt differences within exon 3 between the baboon cerebellum sequence and the published vervet monkey GnRHR-II 

cDNA sequence (accession AF353988).  Both differences are T→C changes.  Only the first nt difference would result in the 
incorporation of a differenct amino acid, incorporating an arginine instead of a cysteine into the translated baboon sequence 
(see highlighted (x/X) letters).  The RT-PCR was performed using Expand High fidelity proofreading Taq polymerase.  
Furthermore, both clones that were sequenced contained the same two nt differences.  Therefore, these nt differences are 
unlikely to be the result of PCR incorporation or sequencing errors.  Rather, they are likely to represent species 
differences between baboon and vervet monkey. 

 
 



Sequence no 5:  Vervet monkey occipital lobe GnRHR-II 5’ SMARTTM RACE sequence, containing part of exon 1 and most of exon 2, 
with an insert between the two exons.  The sequence stretches from –83 in the 5’ UTR in exon 1 to TM5 in exon 2.  
Sequence is aligned to the published vervet monkey GnRHR-II cDNA sequence (Accession AF353988) 

 
Insert

Exon 2 Exon 1
 
 
 
 
           -141-140          -130         -120         -110          -100         -90          -80           -70          -60 
                  A   G   K   Q   R   L   *   *   T   K   F   A   V   I   S   S   R   S   W   K   G   G   R   R   I   S   G    
M occ lobe    ac gcg ggg aag cag agg ctt tag tga acg aaa ttc gca gta atc agc tcc aga tcc tgg aaa ggt ggg cga aga atc agt ggc  
V/vet monkey    
 
                        -50           -40          -30          -20           -10         1           10           20 
               Q   S   *   P   L   H   T   H   T   A   S   S   S   V   S   L   Q   A   A   T   S   A   G   N   G   T   P   W   
M occ lobe    caa agc taa ccg ctt cat acc cac act gcc tcc tcc tca gtt tct ctc cag gcc gcc acg tct gca ggc aac ggc acc cct tgg  
V/vet monkey              ccg ctt cat acc cac act tca tcc tcc tca gtt tct ctc cag gcc acc acg tct gca ggc aac ggc acc cct tgg 
 
                30            40           50           60            70           80           90            100          110 
               R   S   A   V   G   E   E   A   W   A   G   S   G   V   A   V   E   G   S   E   L   P   T   F   S   T   A   A    
M occ lobe    agg tca gca gtg ggg gag gag gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag ctg ccc acc ttc tcg aca gca gcc  
V/vet monkey  ggg tca gca gtg ggg gag gag gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag ctg ccc acc ttc tcg aca gca gcc                  
                                                                                                                         |___ 
 
                        120           130          140          150           160          170          180           190 
               K   V   R   V   G   V   T   I   V   L   F   V   S   S   A   G   G   N   L   A   V   L   W   S   V   T   R   P    
M occ lobe    aag gtc cga gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc gtc ctg tgg tca gtg aca cgg ccg  
V/vet monkey  aag gtc cga gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc gtc ctg tgg tca gtg aca cgg ccg 
              ________________________________________________TM1____________________________________________|       
 
                   200          210           220          230          240           250          260          270  
               Q   P   S   Q   L   R   P   S   P   V   R   T   L   F   A   H   L   A   A   A   D   L   L   V   T   F   V   V    
M occ lobe    caa ccc agc cag ctc cgc ccc tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc gac tta cta gtc act ttt gtg gtt  
V/vet monkey  caa ccc agc cag ctc cgc ccc tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc gac tta cta gtc act ttt gtg gtt 
                                ICL1                 |____________________________________TM2________________________________ 
 
              280          290          300           310          320          330           340          350          360 
               M   P   L   D   A   T   *   N   I   T   V   Q   W   L   A   G   D   I   A   C   R   T   L   M   F   L   K   L    
M occ lobe    atg ccc cta gat gcc acc tag aat atc act gtt caa tgg ctg gcc ggg gat atc gca tgt cgg aca ctc atg ttc ctg aaa cta  
V/vet monkey  atg ccc cta gat gcc acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta 
               __________|                       ECL1                       |________________________TM3_____________________ 



                      370          380          390           400          410          420           430          440 
               M   A   M   Y   S   A   A   F   L   P   V   V   I   G   L   D   R   Q   A   A   V   L   N   P   L   G   S   R 
M occ lobe    atg gcc atg tat tct gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt 
V/vet monkey  atg gcc atg tat tct gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt 
               ______________________________________________|                              ICL2                     
 
 
                450           460          470          480           490          500          510        
               S   G   V   R   R   L   L   G   A   A   W   G   L   S   F   L   L   A   L   P   Q     I   C   F   T   T   L   G    
M occ lobe    tca ggt gta agg aga ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag   atc tgt ttt act aca ctt ggc  
V/vet monkey  tca ggt gta agg aaa ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag 

|
| 
| 
| 
1|- 

                   |______________________________________TM4____________________________________   
 
 
               F   C   I   F   A   S   S   Q   S   H   L   V   M   I   G   A   G   K   K   N   R   K   T   Y   M   G   S   M    
M occ lobe    ttc tgc atc ttt gca tcc tcc caa tct cac ctc gtc atg att ggg gca ggg aag aag aac aga aaa aca tac atg ggg tct atg  
V/vet monkey   
 
 
                                 511         520          530          540           550          560          570           580     
               K   R   V   S      C   S   C   S   I   P   S   T   E   L   A   Q   S   L   S   L   S   V   S   P   K   A   A   S    
M occ lobe    aag aga gtg agc    tgt tcc tgt tcc ata cca tcc acc gag ctg gcc cag tcc ctt tca ctc agt gtg tca cca aag gca gct tca  
                                 L   F   L   F   H   T   I   H   R   A   G   P   V   P   F   T   Q   C   V   T   K   G   S   F    
                                ctg ttc ctg ttc cat acc atc cac cga gct ggc cca gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc  
V/vet monkey                    ctg ttc ctg ttc cat acc gtc cac cga gct ggc cca gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc 

| 
| 
| 
|  

-|2 

                                 L   F   L   F   H   T   V   H   R   A   G   P   V   P   F   T   Q   C   V   T   K   G   S   F 
                                ___________|                                        ECL2             
 
 
                         590          600           610          620          630           640          650            660 
                 R   L   D   G   K   R   P   P   I   T   S   S   P   S   A   A   S   F   C   C   H   *   L   P   C   P   S   A 
M occ lobe      agg ctc gat ggc aag aga cca cct ata acc tct tca cct tct gct gcc tct ttc tgc tgc cac tga ttg cca tgg cca tct gct  
               K   A   R   W   Q   E   T   T   Y   N   L   F   T   F   C   C   L   F   L   L   P   L   I   A   M   A   I   C 
              aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc  
V/vet monkey  aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc 
               K   A   R   W   Q   E   T   T   Y   N   L   F   T   F   C   C   L   F   L   L   P   L   I   A   M   A   I   C 
                                                         |_________________________________TM5_______________________________ 
 
 
 
 



 
                   670         680          690           700          710          720             730          740          750 
               I   A   A   F 
M occ lobe      ata gcc gca ttg 
               Y   S   R   I   
              tat agc cgc att g 
V/vet monkey  tat agc cgc att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc 
               Y   S   R   I   V   L   S   V   S   S   P   Q   T   R   K   G   S   H     A   P   A   G   E   F   A   L   R   R    
              _______________________|                        ICL3                     

| 
| 
| 

2|3   
 
 
                          760          770          780           790          800          810           820          830 
V/vet monkey  tcc ttt gac aat cgt ccc cgt gtt tgt ctc cgg gcc ctg aga ctg gct ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca 
               S   F   D   N   R   P   R   V   C   L   R   A   L   R   L   A   P   L   I   L   L   T   F   I   L   C   W   T    
                                               |_______________________________________TM6___________________________________ 
 
 
                    840           850          860          870           880          890          900           910     
V/vet monkey  cct tat tac cta ctg ggt ctg tgg tac tgg ttc tct ccc acc atg cta act gaa gtc cct ccc agc ctg agc cac atc ctt ttc 
               P   Y   Y   L   L   G   L   W   Y   W   F   S   P   T   M   L   T   E   V   P   P   S   L   S   H   I   L   F    
              _______________________________|                            ECL3                           |___________________ 
 
 
               920          930           940          950          960           970          980          990           1000 
V/vet monkey  ctt ttt ggc ctc ctc aat gct cct ctg gat cct ctc ctc tat ggg gcc ttc acc ttt ggc tgc cga aga ggg cac caa gaa ctt 
               L   F   G   L   L   N   A   P   L   D   P   L   L   Y   G   A   F   T   F   G   C   R   R   G   H   Q   E   L    
               ___________________________________TM7____________________________________| 
 
 
                       1010         1020          1030         1040         1050          1060         1070         1080 
V/vet monkey  agt ata gac tct tct aaa gaa ggg tct ggg aga atg ctc caa cag gag att cat gcc ctt aga cag cag gaa gta caa aaa act 
               S   I   D   S   S   K   E   G   S   G   R   M   L   Q   Q   E   I   H   A   L   R   Q   Q   E   V   Q   K   T    
                                                      Intracellular C-terminal tail                                 
 
 
                  1090         1100         1110          1120         1130         1140 
V/vet monkey  gtg aca tca aga agt gca gga gaa aca aaa ggc att tct ata aca tct atc tga 
               V   T   S   R   S   A   G   E   T   K   D   I   S   I   T   S   I   *    
 
 
 



Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nt sequences.  

Transmembrane domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated.  Exon boundaries are 
indicated with a dotted line showing exon numbers.  The sequence of the nested SMARTTM RACE primer NUP is not included 
whereas the sequence of gene-specific primer AS7 is included and underlined. 

2. The above sequence was the result of sequencing of a single clone. 
3. The position of the vervet monkey translation start codon (AGC) is bolded and highlighted in green (xxx).  This result 

confirms that the vervet monkey GnRHR-II cDNA utilises an ACG instead of ATG translation start codon. 
4. Exon 1 is followed by a 116-bp insert prior to exon 2.  The insert sequence is typed in italics. 
5. Exon 2 follows after the insert sequence.  The 116-bp insert results in a shift in the reading frame.  The correct frame with 

the encoded amino acid sequence, had there not been a frame shift, is indicated in blue underneath the actual code. 
6. There are six nt differences between the monkey occipital lobe 5’ SMARTTM RACE and the published vervet monkey GnRHR-II cDNA 

sequences, even though they both are from vervet monkey (see highlighted letters, x and x).  All six nt differences would 
result in the incorporation of a different amino acid into the translated occipital lobe sequence, compared to the published 
vervet monkey translated protein sequence.  The letters highlighted in pink (x) represent the nt sequences that differ from 
the published vervet monkey cDNA sequence, but is identical to the sequences obtained by RT-PCR using primer pair S3 & AS13 
on monkey ejaculate RNA (see Sequence no 6 in this appendix).  The letters highlighted in turquoise (x) represent the nt 
sequences that differ from both the published vervet monkey cDNA sequence as well as the monkey ejaculate RT-PCR result (see 
Sequence no 5 in this appendix). 

 



Sequence no 6:  Cloned GnRHR-II cDNA sequence from vervet monkey ejaculate, containing most of exon 1, the full exon 2 and most 
of exon 3, with an insert between the exons 2 and 3.  Sequence stretches from –37 in the 5’ UTR in exon 1 to the 
3’ UTR in exon 3, and is aligned to the published vervet monkey GnRHR-II cDNA sequence (Accession AF353988) 

 
Exon 2 Exon 3

Insert
Exon 1 

 
 
              -37      -30          -20           -10         1           10           20           30            40 
               H   T   A   S   S   S   V   S   L   Q   A   T   T   S   A   G   N   G   T   P   W   G   S   A   V   G   E   E  
M ejaculate   cac act gcc tcc tcc tca gtt tct ctc cag gcc acc acg tct gca ggc aac ggc acc cct tgg ggg tca gca gtg ggg gag gag 
V/vet monkey  cac act tca tcc tcc tca gtt tct ctc cag gcc acc acg tct gca ggc aac ggc acc cct tgg ggg tca gca gtg ggg gag gag 
 
               50           60            70           80           90            100          110          120           130 
               A   W   A   G   S   G   V   A   V   E   G   S   E   L   P   T   F   S   T   A   A   K   V   R   V   G   V   T  
M ejaculate   gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag ctg ccc acc ttc tcg aca gca gcc aag gtc cga gtg gga gtg acc 
V/vet monkey  gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag ctg ccc acc ttc tcg aca gca gcc aag gtc cga gtg gga gtg acc 

                                                                                |_______________________________ 
 
                       140          150           160          170          180           190          200          210 
               I   V   L   F   V   S   S   A   G   G   N   L   A   V   L   W   S   V   T   R   P   Q   P   S   Q   L   R   P  
M ejaculate   att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc gtc ctg tgg tca gtg aca cgg ccg caa ccc agc cag ctc cgc ccc 
V/vet monkey  att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc gtc ctg tgg tca gtg aca cgg ccg caa ccc agc cag ctc cgc ccc 
              _________________________________TM1_______________________________|                     ICL1                    
 
                  220          230          240           250          260          270           280          290          300 
               S   P   V   R   T   L   F   A   H   L   A   A   A   D   L   L   V   T   F   V   V   M   P   L   D   A   T   *  
M ejaculate   tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc gac tta cta gtc act ttt gtg gtt atg ccc cta gat gcc acc tag 
V/vet monkey  tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc gac tta cta gtc act ttt gtg gtt atg ccc cta gat gcc acc tgg 
                         |________________________________________TM2_________________________________________|               
 
                          310          320          330           340          350          360           370          380 
               N   I   T   V   Q   W   L   A   G   D   I   A   C   R   T   L   M   F   L   K   L   M   A   M   Y   S   A   A  
M ejaculate   aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct gca gct 
V/vet monkey  aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg tat tct gca gct 
                             ECL1               |_____________________________________TM3____________________________________ 
 
                     390           400          410          420           430          440          450           460 
               F   L   P   V   V   I   G   L   D   R   Q   A   A   V   L   N   P   L   G   S   R   S   G   V   R   K   L   L  
M ejaculate    ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa ctt ctg 
V/vet monkey  ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta agg aaa ctt ctg 
              ___________________|                                  ICL2                               |______________________ 



               470          480           490          500          510           520          530          540           550    
               G   A   A   W   G   L   S   F   L   L   A   L   P   Q    L   F   L   F   H   T   I   H   R   A   G   P   V   P  
M ejaculate   ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag ctg ttc ctg ttc cat acc atc cac cga gct ggc cca gtc cct 
V/vet monkey  ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag ctg ttc ctg ttc cat acc gtc cac cga gct ggc cca gtc cct 
              _________________________________TM4________________________________|                            

|
| 
| 
| 
1|2  

 
                       560          570           580          590          600           610          620          630  
               F   T   Q   C   V   T   K   G   S   F   K   A   R   W   Q   E   T   T   Y   N   L   F   T   F   C   C   L   F  
M ejaculate   ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc ctc ttt 
V/vet monkey  ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc tgc tgc ctc ttt 
                                                     ECL2                                        |___________________________ 
 
                  640          650          660           670          680          690           700          710          720 
               L   L   P   L   I   A   M   A   I   C   Y   S   R   I   V   L   S   V   S   S   P   Q   T   R   K   G   S   H  
M ejaculate   ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg agc cat 
V/vet monkey  ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agc cct cag aca agg aag ggg agc cat 
              _______________________________TM5_____________________________|                        ICL3                     
 
              721                            
                 G   E   T   P   I   P   R   P   *   S   L   T   L   D   L   L   P   L   A   S   F   I   Y   L   P   N   S   Y  
M ejaculate   g  gt gag act cca att ccc agg cct taa tcc tta acc cta gac ctg ttg cct cta gca tca ttt atc tac cta cct aat agc tat 
V/vet monkey  g~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

| 
| 
| 
2|-   

 
                   
               L   P   V   T   Q   L   W   *   D   P   N   H   M   S   S   T   *   C   *   F   C   *   I   L   S   I   I   N  
M ejaculate   cta cca gtc act caa ctg tgg tga gat cct aac cat atg tct agc acc tga tgc taa ttt tgt tga atc ctt tca att ata aac 
V/vet monkey  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
 
              
               S   *   V   S   W   T   G   T   R   E   A   I   S   I   I   Y   S   Y   T   P   S   S   L   K   V   D   W   V  
M ejaculate   agc tga gtt agc tgg aca ggg act agg gag gca atc agt att att tat tct tat aca cca tca agt ctt aaa gta gac tgg gtg 
V/vet monkey  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
                                                                       
 
                           
               A   S   H   F   Y   H   N   P   W   G   *   E   I   I   *   S   *   V   G   K   G   K   R   V   C   S   I   L  
M ejaculate   gct tca cat ttc tat cat aat ccc tgg ggg taa gag atc ata tag tcc tag gtt ggg aag ggg aaa agg gtt tgc agc att ctc 
V/vet monkey  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
 
                



               L   L   V   G   G   K   L   C   V   T   S   Y   A   P   P   S   V   H   P   I   L   S   S   E   A   *   T   L 
M ejaculate   ctc ctt gta gga ggg aag ctc tgt gtc act agc tat gcc cct cca tca gtt cac cct ata ctc agt tca gaa gct tag act ctg 
V/vet monkey  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
 
                                                     722        730          740          750           760          770 
               N   Y   S   I   F   A   K   F   L     A   P   A   G   E   F   A   L   R   R   S   F   D   N   R   P   R   V   C  
M ejaculate   aat tac agt ata ttt gct aaa ttc cta g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt tgt 
V/vet monkey  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt tgt 
                                                                       ICL3                                                        

|
| 
| 
| 
-|3  

 
                780           790          800          810           820          830          840           850          860      
               L   R   A   L   R   L   A   P   L   I   L   L   T   F   I   L   C   W   T   P   Y   Y   L   L   G   L   W   Y  
M ejaculate   ctc cgg gcc ctg aga ctg gct ccg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cct tat tac cta ctg ggt ctg tgg tac 
V/vet monkey  ctc cgg gcc ctg aga ctg gct ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cct tat tac cta ctg ggt ctg tgg tac 
              |___________________________________________________TM6____________________________________________________|    
 
                        870           880          890          900           910          920          930           940               
               W   F   S   P   T   M   L   T   E   V   P   P   S   L   S   H   I   L   F   L   F   G   L   L   N   A   P   L  
M ejaculate   tgg ttc tct ccc acc atg cta act gaa gtc cct ccc agc ctg agc cac atc ctt ttc ctt ttt ggc ctc ctc aat gct cct ctg 
V/vet monkey  tgg ttc tct ccc acc atg cta act gaa gtc cct ccc agc ctg agc cac atc ctt ttc ctt ttt ggc ctc ctc aat gct cct ctg 
                                       ECL3                          |_____________________________TM7_______________________ 
 
                   950          960           970          980          990           1000         1010         1020             
               D   P   L   L   Y   G   A   F   T   F   G   C   R   R   G   H   Q   E   L   S   I   D   S   S   K   E   G   S  
M ejaculate   gat cct ctc ctc tat ggg gcc ttc acc ttt ggc tgc cga aga ggg cac caa gaa ctt agt ata gac tct tct aaa gaa ggg tct 
V/vet monkey  gat cct ctc ctc tat ggg gcc ttc acc ttt ggc tgc cga aga ggg cac caa gaa ctt agt ata gac tct tct aaa gaa ggg tct 
              _______________________________________|                                                                        
 
              1030         1040         1050          1060         1070         1080          1090         1100         1110     
               G   R   M   L   Q   Q   E   I   H   A   L   R   Q   Q   E   V   Q   K   T   V   T   S   R   S   A   G   E   T  
M ejaculate   ggg aga atg ctc caa cag gag att cat gcc ctt aga cag cag gaa gta caa aaa act gtg aca tca aga agt gca gga gaa aca 
V/vet monkey  ggg aga atg ctc caa cag gag att cat gcc ctt aga cag cag gaa gta caa aaa act gtg aca tca aga agt gca gga gaa aca 
 
                      1120         1130         1140          1150         1160         1170          1180         1190 
               K   D   I   S   I   T   S   I   *   S   *   Q   S   I   Q   E   Q   N   N   I   V   *   K   F   T   *   P   T  
M ejaculate   aaa gac att tct ata aca tct atc tga tcc taa cag agt ata cag gaa caa aat aat ata gta tag aaa ttc aca taa cca acc 
V/vet monkey  aaa ggc att tct ata aca tct atc tga ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
 
 
 



                1200          1210         1220    1226 
               Q   V   T   Q   Q   D   P   I   S       
M ejaculate   cag gta aca cag caa gac ccc atc tct ac 
V/vet monkey  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~ 
 
 
Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nt sequences.  

Transmembrane domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated.  Exon boundaries are 
indicated with a dotted line showing exon numbers.  Primer sequences are included and printed in italics. 

2. The above consensus sequences was derived from a single clone that had been sequenced from both the T7 and the U19 sides as 
well as from S5 and from AS10 to create overlapping sequences. 

3. The translation start codon and stop signal are bolded.  This result confirmed that the vervet monkey GnRHR-II cDNA utilises 
an ACG instead of ATG translation start codon. 

4. Exon 1 follows onto exon 2, which is followed by a 447 nt insert prior to exon 3.  The position of the insert is indicated by 
“~” in the published COS-1 sequence. 

5. The 447 nt insert does not result in a shift in the reading frame.  However, it leads to the incorporation of a number of 
premature translation stop signals in frame, indicated by “*”.  This is possibly the result of unspliced intronic sequence. 

6. There are a number of nt differences between the vervet monkey ejaculate and the published vervet monkey GnRHR-II cDNA 
sequences, even though they both are from vervet monkey.  Often, the nt differences would result in the incorporation of a 
different amino acid into the translated ejaculate sequence compared to the published vervet monkey translated protein 
sequence (see highlighted (x/X) letters).  There are two nt differences at positions –31 and –29, but these form part of the 
primer that was used in the RT-PCR amplification reaction.  Therefore the translated amino acid at that position (A) is not 
highlighted, even though it is different from the published vervet monkey sequence.  The reason for the choice of a 5’ primer 
with a slightly different sequence compared to the published vervet monkey sequence was, because, by 5’ RACE on COS-1 and 
vervet monkey occipital lobe RNA, these two nt differences were found.  RT-PCR was performed using ordinary Taq polymerase 
and since the above sequence is the result of a single clone, the nt differences between the vervet monkey ejaculate and the 
published vervet monkey sequences are not necessarily real.  The premature translation stop signal within exon 1, at nt 
position 299, is probably not real. 

 
 



Sequence no 7:  Cloned GnRHR-II cDNA sequence from baboon pituitary, containing most of exon 1 and most of exon 3 but lacking 
exon 2, stretching from the 5’ UTR to the intracellular C-terminal tail minus ECL2, and aligned to published 
vervet monkey GnRHR-II cDNA sequence (Accession AF353988) 

 
Exon 1 Exon 3  

 
 
 
             -49         -40          -30          -20          -10          1           10           20           30 
              P   L   H   T   H   T   S   S   S   S   V   S   L   Q   A   T   M   S   A   G   N   G   T   P   W   G   S   A  
B pituitary  ccg ctt cat acc cac act tca tcc tcc tca gtt tct ctc cag gcc acc atg tct gca ggc aac ggc acc cct tgg ggg tca gca 
V/vet monkey ccg ctt cat acc cac act tca tcc tcc tca gtt tct ctc cag gcc acc acg tct gca ggc aac ggc acc cct tgg ggg tca gca 
 
 
                 40           50           60            70           80           90            100          110          120 
              A   G   E   E   A   W   A   G   S   G   V   A   V   E   G   S   E   L   P   T   F   S   A   A   A   K   V   R  
B pituitary  gcg ggg gag gag gcc tgg gct gga tcg gga gtg gcg gtg gag ggc tca gag ctg ccc acc ttc tcg gca gca gcc aag gtc cga 
V/vet monkey gtg ggg gag gag gcc tgg gct gga tca gga gtg gcg gtg gag ggc tca gag ctg ccc acc ttc tcg aca gca gcc aag gtc cga 

                                                                                               |_______________ 
 
 

                         130          140          150           160          170          180           190          200 
 V   G   V   T   I   V   L   F   V   S   S   A   G   G   K   L   A   V   L   W   S   V   T   R   P   Q   P   S  

B pituitary  gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aag ctg gcc gtc ctg tgg tca gtg aca cgg ccg caa ccc agc 
V/vet monkey gtg gga gtg acc att gtg ctg ttt gtt tct tcg gct gga ggg aac ctg gcc gtc ctg tgg tca gtg aca cgg ccg caa ccc agc 

_________________________________________TM1_______________________________________|             ICL1            
 
 

                   210           220          230          240           250          260          270           280 
              Q   L   R   P   S   P   V   R   T   L   F   A   H   L   A   A   A   D   L   L   V   T   F   V   I   M   P   L  
B pituitary  cag ctc cgc ccc tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc gac tta cta gtc act ttt gtg att atg ccc cta 
V/vet monkey cag ctc cgc ccc tct ccg gtc agg aca ctc ttc gcc cat tta gca gct gcc gac tta cta gtc act ttt gtg gtt atg ccc cta 
                                       |________________________________________TM2_________________________________________| 

 
 
 290          300           310          320          330           340          350          360           370 
 D   A   T   W   N   I   T   V   Q   W   L   A   G   D   I   A   C   R   T   L   M   F   L   K   L   M   A   M 

B pituitary  gat gcc acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg 
V/vet monkey gat gcc acc tgg aat atc act gtt caa tgg ctg gcc ggg gac atc gca tgt cgg aca ctc atg ttc ctg aaa cta atg gcc atg 
                                     ECL1                       |______________________________TM3___________________________ 
 



                      380          390           400          410          420           430          440          450 
 Y   S   A   A   F   L   P   V   V   I   G   L   D   R   Q   A   A   V   L   N   P   L   G   S   R   S   G   V  

B pituitary  tat tct gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta 
V/vet monkey tat tct gca gct ttc ctg cct gtg gtc att gga ctg gac cgc cag gca gca gta ctc aac ccg ctt gga tcc cgt tca ggt gta 
             ___________________________________|                                  ICL2                               |______ 
 
 
                 460          470          480           490          500          510           520          530          540 
              R   K   L   L   G   A   A   W   G   L   S   F   L   L   A   L   P   Q    
B pituitary  agg aaa ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
V/vet monkey agg aaa ctt ctg ggg gca gcc tgg gga ctt agt ttc ctg ctt gcc ttg ccc cag ctg ttc ctg ttc cat acc gtc cac cga gct 
             _______________________________________TM4_________________________________________|                            

|
| 
| 
| 
1|2  

 
                         550          560          570           580          590          600           610          620 
B pituitary  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
V/vet monkey ggc cca gtc cct ttc act cag tgt gtc acc aaa ggc agc ttc aag gct cga tgg caa gag acc acc tat aac ctc ttc acc ttc 
                                                             ECL2                                                |___________ 
               
 
                   630           640          650          660           670          680          690           700 
B pituitary  ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 
V/vet monkey tgc tgc ctc ttt ctg ctg cca ctg att gcc atg gcc atc tgc tat agc cgc att gtc ctc agt gtg tcc agc cct cag aca agg 
             _______________________________________TM5_____________________________________|                                
 
 
              710          720             730          740          750           760          770          780           790 
                                    P   A   G   E   F   A   L   R   R   S   F   D   N   R   P   R   V   R   L   R   A   L   R  
B pituitary  ~~~ ~~~ ~~~ ~~~ ~  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt cgt ctc cgg gcc ctg aga 
V/vet monkey aag ggg agc cat g  cc cct gct ggt gaa ttt gcc ctc cgc cgc tcc ttt gac aat cgt ccc cgt gtt tgt ctc cgg gcc ctg aga 
                                                        ICL3                                              |____________________ 

| 
| 
| 
| 
2|3  

 
                       800          810           820          830          840           850          860          870 
               L   A   L   L   I   L   L   T   F   I   L   C   W   T   P   Y   Y   L   L   G   L   W   Y   W   F   S   P   T  
B pituitary   ctg gcc ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cct tat tac cta ctg ggt ctg tgg tac tgg ttc tcc ccc acc 
V/vet monkey  ctg gct ctg ctt atc ttg ctg acc ttc atc ctc tgc tgg aca cct tat tac cta ctg ggt ctg tgg tac tgg ttc tct ccc acc 
             __________________________________________TM6__________________________________________|           ECL3          
 
 
 



                 880          890          900           910          920          930           940          950          960 
              M   L   T   E   V   P   P   S   L   S   H   I   L   F   L   F   G   L   L   N   A   P   L   D   P   L   F   Y  
B pituitary  atg cta act gaa gtc cct ccc agt ctg agc cac atc ctt ttc ctt ttt ggc ctc ctc aat gct cct ttg gat cct ctc ttc tat 
V/vet monkey atg cta act gaa gtc cct ccc agc ctg agc cac atc ctt ttc ctt ttt ggc ctc ctc aat gct cct ctg gat cct ctc ctc tat 
                                                |_____________________________________TM7___________________________________ 
 
 
                         970          980          990           1000         1010         1020          1030         1040 
              G   A   F   T   L   G   C   Q   R   G   H   Q   E   L   S   I   D   S   S   K   E   G   S   G   R   M   L   Q  
B pituitary  ggg gcc ttc acc ctt ggc tgc caa aga ggg cac caa gaa ctt agt ata gac tct tct aaa gaa ggg tct ggg aga atg ctc caa 
V/vet monkey ggg gcc ttc acc ttt ggc tgc cga aga ggg cac caa gaa ctt agt ata gac tct tct aaa gaa ggg tct ggg aga atg ctc caa 
             ___________________|                                C-terminal tail                                                              
 
 
                   1050          1060         1070         1080          1090         1100         1110          1120 
              Q   E   I   H   A   L   R   Q   Q   E   V   Q   K   T   V   T   S   R   S   A   G   E   T   K   D   I   S   I  
B pituitary  cag gag att cat gcc ctt aga cag cag gaa gta caa aaa act gtg aca tca aga agt gca gga gaa aca aaa gac att tct ata 
V/vet monkey cag gag att cat gcc ctt aga cag cag gaa gta caa aaa act gtg aca tca aga agt gca gga gaa aca aaa ggc att tct ata 
 
 
              1130         1140          1150         1160         1170          1180         1190         1200          1210 
              T   S   I   *   S   *   Q   S   I   *   E   Q   N   N   K   S   L   I   P   *   D   L   N   I   S   L   L   L  
B pituitary  aca tct atc tga tcc taa cag agt ata tag gaa caa aat aat aag tct tta ata cca taa gat ctt aac atc tca ctt cta ctc 
V/vet monkey aca tct atc tga 
 
 
                      1220         1230          1240     1247 
              L   L   S   *   F   P   P   K   K   K   Y 
B pituitary  ctg ctc tcc tag ttc ccc cca aaa aag aaa tac tg 
 
 
Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nt sequences.  

Transmembrane domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated.  Exon boundaries are 
indicated with a dotted line showing exon numbers.  Primer sequences, namely S1 and AS12, are included and printed in 
italics. 

2. A total of five clones were sequenced in both directions to obtain the above consensus sequence. 
3. The translation start codon and translation stop signal are bolded. 
4. Exon 1 follows directly onto exon 3.  The position of the missing exon 2 is indicated by “~”. 
5. The omission of exon 2 results in a shift in the reading frame, from frame 1 (exon 1) to frame 3 (exon 3). 



6. There are a number of nt differences between the baboon pituitary sequence and the published vervet monkey GnRHR-II cDNA 
sequence (accession AF353988).  The RT-PCR was performed using Expand High fidelity proofreading Taq polymerase and, 
furthermore, five different clones were sequenced to obtain the above consensus sequence.  Therefore, these nt differences 
are unlikely the result of PCR- or sequencing errors.  Rather, they are likely to represent species differences between 
baboon and vervet monkey.  Often, the nt differences also result in the incorporation of a different amino acid into the 
translated baboon sequence compared to the published vervet monkey translated protein sequence (see highlighted (x/X) 
letters). 

 



Sequence no 8:  Additional insert sequence between exons 2 and 3 of the GnRHR-II cDNA:  comparison between baboon pituitary and 
vervet monkey ejaculate and occipital lobe 

 
 
              1           10           20           30            40           50           60            70           80 
M occ lobe    gtg aga ctc caa ttc cca ggc ctt aat cct taa ccc tag acc tgt tgc ctc tag cat cat tta tct acc tac cta ata gct atc 
M ejaculate   gtg aga ctc caa ttc cca ggc ctt aat cct taa ccc tag acc tgt tgc ctc tag cat cat tta tct acc tac cta ata gct atc 
B pituitary   gtg aga ctc caa ttc cca ggc ctt aat cct taa ccc tag acc tgt tgc ctc tag cat cat tta tct acc tac cta ata gct atc 
 
                    90            100          110          120           130          140          150           160 
M occ lobe    tac cag tca ctc aac tgt ggt gag atc cta acc ata tgt cta gca cct gat gct aat ttt gtt gaa tcc ttt caa tta taa aca 
M ejaculate   tac cag tca ctc aac tgt ggt gag atc cta acc ata tgt cta gca cct gat gct aat ttt gtt gaa tcc ttt caa tta taa aca 
B pituitary   tac cag tca ctc aac tgt ggt gag atc cta acc ata tgt cta gca cct gat gct aat ttt gtt gaa tcc ttt caa tta taa aca 
 
               170          180           190          200          210           220          230          240           250 
M occ lobe    gct gag tta gct gga cag gga cta ggg agg caa tca gta tta ttt att ctt atg cac cat caa gtc tta aag tag act ggg tgg 
M ejaculate   gct gag tta gct gga cag gga cta ggg agg caa tca gta tta ttt att ctt ata cac cat caa gtc tta aag tag act ggg tgg 
B pituitary   gct gag tta gct gga caa gga cta ggg agg caa tca gta tta ttt att ctt gaa cac cat caa gtc tta aag tag act ggg tgg 
 
                       260          270           280          290          300           310          320          330 
M occ lobe    ctt cac att tct atc ata atc cct ggg ggt aag aga tca tac agt cct agg ttg gga agg gga aaa ggg ttt gca gca ttc tcc 
M ejaculate   ctt cac att tct atc ata atc cct ggg ggt aag aga tca tat agt cct agg ttg gga agg gga aaa ggg ttt gca gca ttc tcc 
B pituitary   ctt cac att tct atc ata atc cct ggg ggt aag aga tca tat agt cct agg ttg gga agg gga aaa ggg ttt gca gca ttc tcc 
 
                  340          350          360           370          380          390           400          410          420 
M occ lobe    tcc ttg tag gag gga agc tct gtg tca cta gct atg ccc ctc cat cag ttc acc cta tac tca gtt cag aag ctt aga ctc tga 
M ejaculate   tcc ttg tag gag gga agc tct gtg tca cta gct atg ccc ctc cat cag ttc acc cta tac tca gtt cag aag ctt aga ctc tga 
B pituitary   tcc ttg tag gag gca agc tct gtg tca cta gct atg ccc ctc cat cag ttc acc cta tac tca gtt cag aag ctt aga ctc tga 
 
                          430          440      447 
M occ lobe    att gca gta tat ttg cta aat tcc tag 
M ejaculate   att aca gta tat ttg cta aat tcc tag 
B pituitary   att aca gta tat ttt cta aat tcc tag c 448 
 
Notes: 
 
1. Nucleotide identities that are the same in two of the three RNAs but differ in the third are highlighted in yellow. 
2. The percentage overall identities are as follows, except for the additional C at the end of the baboon pituitary sequence: 

Vervet monkey occipital lobe vs. vervet monkey ejaculate:  99.3% (3 nt differences over 447 bp) 
Vervet monkey occipital lobe vs. baboon pituitary:         98.4% (7 nt differences over 447 bp) 
Vervet monkey ejaculate vs. baboon pituitary:              99.1% (4 nt differences over 447 bp) 



Sequence no 9:  Cloned GnRH-1 cDNA sequences from human ejaculate and hypothalamus, aligned to the published human GnRH-1 cDNA 
sequence (Accession X15215) 

 
 
             18 20           30            40           50           60            70           80           90            100 
                L   L   A   G   L   I   L   L   T   W   C   V   E   G   C   S   S   Q   H   W   S   Y   G   L   R   P   G   G   
H sperm      a ctc cta gct ggc ctt att cta ctg act tgg tgc gtg gaa ggc tgc tcc agc cag cac tgg tcc tat gga ctg cgc cct gga gga 
H hypothal   a ctc cta gct ggc ctt att cta ctg act tgg tgc gtg gaa ggc tgc tcc agc cag cac tgg tcc tat gga ctg cgc cct gga gga 
X15215       a ctc cta gct ggc ctt att cta ctg act tcg tgc gtg gaa ggc tgc tcc agc cag cac tgg tcc tat gga ctg cgc cct gga gga 
                                        Signal peptide                            |___________Mature decapeptide__________| 
 
                      110          120           130          140          150           160          170          180 
              K   R   D   A   E   N   L   I   D   S   F   Q   E   I   V   K   E   V   G   Q   L   A   G   T   Q   R   F   E   
H sperm      aag aga gat gcc gaa aat ttg att gat tct ttc caa gag ata gtc aaa gag gtt ggc caa ctg gca gga acc caa cgc ttc gaa 
H hypothal   aag aga gat gcc gaa aat ttg att gat tct ttc caa gag ata g 
X15215       aag aga gat gcc gaa aat ttg att gat tct ttc caa gag ata gtc aaa gag gtt ggt caa ctg gca gaa acc caa cgc ttc gaa 
            |___PS__|                                  GnRH-associated peptide 
 
                 190          200          210           220          230          240           250          260          270 
              C   T   T   H   Q   P   R   S   P   L   R   D   L   K   G   A   L   E   S   L   I   E   E   E   T   G   Q   K   
H sperm      tgc acc acg cac cag cca cgt tct ccc ctc cga gac ctg aaa gga gct ctg gaa agt ctg att gaa gag gaa act ggg cag aag 
H hypothal 
X15215       tgc acc acg cac cag cca cgt tct ccc ctc cga gac ctg aaa gga gct ctg gaa agt ctg att gaa gag gaa act ggg cag aag 
                                                       GnRH-associated peptide 
 
                         280          290          300           310          320          330           340          350 
              K   I   *   I   H   W   A   R   R   N   D   H   Y   *   H   D   L   S   I   I   L   T   L   K   I   Y   N   P 
H sperm      aag att taa atc cat tgg gcc aga agg aat gac cat tac taa cat gac tta agt ata att ctg aca ttg aaa att tat aac cca 
H hypothal 
X15215       aag att taa atc cat tgg gcc aga agg aat gac cat tac taa cat gac tta agt ata att ctg aca ttg aaa att tat aac cca 
 
                   360           370          380          390           400  404 
              L   N   T   C   K   W   Y   E   F   Q   K   S   L   H   Q   V   
H sperm      tta aat acc tgt aaa tgg tat gaa ttt cag aaa tcc tta cac caa gtt gc 
H hypothal                                        
X15215       tta aat acc tgt aaa tgg tat gaa ttt cag aaa tcc tta cac caa gtt gc 
 
 
 
 
 



Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nucleotide 

sequences.  The signal- and mature peptides, processing site (PS) and GnRH-associated peptide are indicated.  Primer 
sequences are included and printed in italics. 

2. There are 3 nucleotide differences between the human sperm and the published human GnRH-1 sequence.  The differences are 
highlighted.  Two of these nucleotide differences also result in the incorporation of different amino acids, which are 
highlighted as well. 

3. The human sperm and hypothalamus sequences are the same up to where the hypothalamus sequence ends. 
4. The human sperm sequence is a consensus sequence derived from 2 clones whereas the hypothalamus sequence is the result of 

sequencing of a single clone. 
 



Sequence no 10:  Cloned GnRH-2 cDNA sequence from human ejaculate, aligned to the published human GnRH-2 variant 1 cDNA sequence 
(Accession NM_001501) 

 
 
                -49         -40           -30          -20          -10           1            10           20 
                   Q   L   P   E   G   A   I   S   S   T   A   L   P   *   A   A   M   A   S   S   R   R   G   L   L   L   
H sperm         g cag ctg cct gaa gga gcc atc tca tcc aca gct ctt cct tga gca gcc atg gcc agc tcc agg cga ggc ctc ctg ctc 
NM_001501       g cag ctg cct gaa gga gcc atc tca tcc aca gct ctt cct tga gca gcc atg gcc agc tcc agg cga ggc ctc ctg ctc 
                                         
                30           40           50            60           70           80            90           100          110 
                 L   L   L   L   T   A   H   L   G   P   S   E   A   Q   H   W   S   H   G   W   Y   P   G   G   K   R   A   
H sperm         ctg ctg ctg ctg act gcc cac ctt gga ccc tca gag gct cag cac tgg tcc cat ggc tgg tac cct gga gga aag cga gcc 
NM_001501       ctg ctg ctg ctg act gcc cac ctt gga ccc tca gag gct cag cac tgg tcc cat ggc tgg tac cct gga gga aag cga gcc 
                                            |__________________________________Signal peptide______________________________ 
 
                            120          130          140           150          160          170           180          190 
                 L   S   S   A   Q   D   P   Q   N   A   L   R   P   P   G   R   A   L   D   T   A   A   G   S   P   V   Q   
H sperm         ctc agc tca gcc cag gat ccc cag aat gcc ctt agg ccc cca                             gca ggc agc cca gtc cag 
NM_001501       ctc agc tca gcc cag gat ccc cag aat gcc ctt agg ccc cca gga agg gcc ctg gac act gca gca ggc agc cca gtc cag 
                __________| |___________Mature decapeptide________| |____PS___|           GnRH-associated peptide 
 
                          200           210          220          230           240          250          260           270 
                 T    A   H   G   L   P   S   D   A   L   A   P   L   D   D   S   M   P   W   E   G   R   T   T   A   Q   W   
H sperm         act gcc cat ggc ctc cca agt gat gcc ctg gct ccc ctg gac gac agc atg ccc tgg gag ggc agg acc acg gcc cag tgg 
NM_001501       act gcc cat ggc ctc cca agt gat gcc ctg gct ccc ctg gac gac agc atg ccc tgg gag ggc agg acc acg gcc cag tgg 
                                                          GnRH-associated peptide      
 
                         280          290           300          310        318 
                 S   L   H   R   K   R   H   L   A   R   T   L   L   T   A   
H sperm         tcc ctt cac agg aag cga cac ctg gca cgg aca ctg ctg acc gca g 
NM_001501       tcc ctt cac agg aag cga cac ctg gca cgg aca ctg ctg acc gca g 
                                   GnRH-associated peptide         
 
 
Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nucleotide 

sequences.  The signal- and mature peptides, processing site (PS) and GnRH-associated peptide are indicated.  Primer 
sequences are included and printed in italics.  The translation start site is bolded. 

2. The human sperm sequence and the published human GnRH-2 sequences are exactly the same for the amplified region, except that 
the sperm sequence has a 21 nt deletion at the 5’ end of exon 3. 



3. The human sperm sequence is a consensus sequence derived from sequencing of 4 clones. 
4. There are two nucleotide positions at which the sperm sequence can be degenerate (highlighted in grey): 
 Nucleotide number 223:  t/c (2 clones: t and 2 clones: c) 
 Nucleotide number 266:  a/g (2 clones: a and 2 clones: g) 
 Thus, two of the human sperm clones contain the same sequence as published while two clones differed in two nucleotide 

positions.  
 



Sequence no 11:  Cloned GnRHR-I cDNA sequences from human ejaculate and pituitary, aligned to published human GnRHR-I cDNA 
sequence (Accession L07949) 

 
 
             1           10           20           30            40           50           60            70           80 
              M   A   N   S   A   S   P   E   Q   N   Q   N   H   C   S   A   I   N   N   S   I   P   L   M   Q   G   N   L    
H sperm       
H pituitary            c agt gcc tct cct gaa cag aat caa aat cac tgt tca gcc atc aac aac agc atc cca ctg atg cag ggc aac ctc  
L07949       atg gca aac agt gcc tct cct gaa cag aat caa aat cac tgt tca gcc atc aac aac agc atc cca ctg atg cag ggc aac ctc 
 
 
                   90            100          110          120           130          140          150           160 
              P   T   L   T   L   S   G   K   I   R   V   T   V   T   F   F   L   F   L   L   S   A   T   F   N   A   S   F    
H sperm       
H pituitary  ccc act ctg acc ttg tct gga aag atc cga gtg acg gtt act ttc ttc ctt ttt ctg ctc tct gcg acc ttt aat gct tct ttc  
L07949       ccc act ctg acc ttg tct gga aag atc cga gtg acg gtt act ttc ttc ctt ttt ctg ctc tct gcg acc ttt aat gct tct ttc  

                                       |___________________________________TM1_________________________________ 
 
             170          180           190          200          210           220          230          240           250 
             L   L   K   L   Q   K   W   T   Q   K   K   E   K   G   K   K   L   S   R   M   K   L   L   L   K   H   L   T    
H sperm       
H pituitary ttg ttg aaa ctt cag aag tgg aca cag aag aaa gag aaa ggg aaa aag ctc tca aga atg aag ctg ctc tta aaa cat ctg acc  
L07949      ttg ttg aaa ctt cag aag tgg aca cag aag aaa gag aaa ggg aaa aag ctc tca aga atg aag ctg ctc tta aaa cat ctg acc   
            ___________________|                              ICL1                              |___________________________ 
 
                     260          270           280          290          300           310          320          330 
             L   A   N   L   L   E   T   L   I   V   M   P   L   D   G   M   W   N   I   T   V   Q   W   Y   A   G   E   L    
H sperm                                                                     tgg aac att aca gtc caa tgg tat gct gga gag tta 
H pituitary tta gcc aac ctg ttg gag act ctg att gtc atg cca ctg gat ggg atg tgg aac att aca gtc caa tgg tat gct gga gag tta  
L07949      tta gcc aac ctg ttg gag act ctg att gtc atg cca ctg gat ggg atg tgg aac att aca gtc caa tgg tat gct gga gag tta   
            ________________________TM2________________________|                             ECL1 
 
                340          350          360           370          380          390           400          410          420 
             L   C   K   V   L   S   Y   L   K   L   F   S   M   Y   A   P   A   F   M   M   V   V   I   S   L   D   R   S    
H sperm     ctc tgc aaa gtt ctc agt tat cta aag ctt ttc tcc atg tat gcc cca gcc ttc atg atg gtg gtg atc agc ctg gac cgc tcc  
H pituitary ctc tgc aaa gtt ctc agt tat cta aag ctt ttc tcc atg tat gcc cca gcc ttc atg atg gtg gtg atc agc ctg gac cgc tcc  
L07949      ctc tgc aaa gtt ctc agt tat cta aag ctt ttc tcc atg tat gcc cca gcc ttc atg atg gtg gtg atc agc ctg gac cgc tcc   
                       |___________________________________________TM3_________________________________________| 
 



                        430          440          450           460          470          480           490          500 
             L   A   I   T   R   P   L   A   L   K   S   N   S   K   V   G   Q   S   M   V   G   L   A   W   I   L   S   S    
H sperm     ctg gct atc acg agg ccc cta gct ttg aaa agc aac agc aaa gtc gga cag tcc atg gtt ggc ctg gcc tgg atc ctc agt agt 
H pituitary ctg gct atc acg agg ccc cta gct ttg aaa agc aac agc aaa gtc gga cag tcc atg gtt ggc ctg gcc tgg atc ctc agt agt  
L07949      ctg gct atc acg agg ccc cta gct ttg aaa agc aac agc aaa gtc gga cag tcc atg gtt ggc ctg gcc tgg atc ctc agt agt  
                                              ICL2                                  |_______________________________________ 
 
 
                  510           520          530          540           550          560          570           580 
             V   F   A   G   P   Q   L   Y   I   F   R   M   I   H   L   A   D   S   S   G   Q   T   K   V   F   S   Q   C   
H sperm     gtc ttt gca gga cca cag tta tac atc ttc agg atg att cat cta gca gac agc tct gga cag aca aaa gtt ttc tct caa tgt 
H pituitary gtc ttt gca gga cca cag tta tac atc ttc agg atg att cat cta gca gac agc tct gga cag aca aaa gtt ttc tct caa tgt 
L07949      gtc ttt gca gga cca cag tta tac atc ttc agg atg att cat cta gca gac agc tct gga cag aca aaa gtt ttc tct caa tgt 
            ________________________TM4________________________|                              ECL2    
 
             590          600           610          620          630           640          650          660           670 
             V   T   H   C   S   F   S   Q   W   W   H   Q   A   F   Y   N   F   F   T   F   S   C   L   F   I   I   P   L    
H sperm     gta aca cac tgc agt ttt tca caa tgg tgg cat caa gca ttt tat aac ttt ttc acc ttc agc tgc ctc ttc atc atc cct ctt   
H pituitary gta aca cac tgc agt ttt tca caa tgg tgg cat caa gca ttt tat aac ttt ttc acc ttc agc tgc ctc ttc atc atc cct ctt  
L07949      gta aca cac tgc agt ttt tca caa tgg tgg cat caa gca ttt tat aac ttt ttc acc ttc agc tgc ctc ttc atc atc cct ctt  
                                                           |_______________________________TM5_____________________________ 
 
                     680          690           700          710          720           730          740          750           
             F   I   M   L   I   C   N   A   K   I   I   F   T   L   T   R   V   L   H   Q   D   P   H   E   L   Q   L   N      
H sperm     ttc atc atg ctg atc tgc aat gca  
H pituitary ttc atc atg ctg atc tgc aat gca aaa atc atc ttc acc ctg aca cgg gtc ctt cat cag gac ccc cac gaa cta caa ctg aat  
L07949      ttc atc atg ctg atc tgc aat gca aaa atc atc ttc acc ctg aca cgg gtc ctt cat cag gac ccc cac gaa cta caa ctg aat   
            _______________________________|                                       ICL3                     
 
                760          770          780           790          800          810           820          830          840 
             Q   S   K   N   N   I   P   R   A   R   L   K   T   L   K   M   T   V   A   F   A   T   S   F   T   V   C   W    
H sperm       
H pituitary cag tcc aag aac aat ata cca aga gca cgg ctg aag act cta aaa atg acg gtt gca ttt gcc act tca ttt act gtc tgc tgg 
L07949      cag tcc aag aac aat ata cca aga gca cgg ctg aag act cta aaa atg acg gtt gca ttt gcc act tca ttt act gtc tgc tgg 
                                                                       |_________________________TM6_______________________ 



                        850          860          870           880          890          900           910      917  
             T   P   Y   Y   V   L   G   I   W   Y   W   F   D   P   E   M   L   N   R   L   S   D   P   V   N     
H sperm       
H pituitary act ccc tac tat gtc cta gga att tgg tat tgg ttt gat cct gaa atg tta aac agg ttg tca gac cca gta aat ca 
L07949      act ccc tac tat gtc cta gga att tgg tat tgg ttt gat cct gaa atg tta aac agg ttg tca gac cca gta aat ca 
            _______________________________________________|                     ECL3                   |____TM7___-- 
 
 
Notes: 
 
1. Nucleotides are numbered from the translation start.  Translated amino acid sequences are indicated above the nucleotide 

sequences.  Primer sequences are included and printed in italics.  The translation start site is bolded.  Transmembrane 
domains (TM) and intracellular (ICL) and extracellular (ECL) loops are indicated underneath. 

2. The human pituitary positive control as well as the human sperm sequences are identical to the published GnRHR-I cDNA 
sequence, which had been obtained by cloning the cDNA from whole human pituitary.  This result confirms that humans acquire a 
single gene for the GnRHR-I, which is situated on chromosome 4 [Kakar SS, 1997]. 

3. The human sperm and pituitary sequences are results of sequencing of two clones. 
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1. In this publication it was stated that a gene is ubiquitously transcribed in the 

antisense orientation to the GnRHR-II gene on chromosome 14.  This gene had 

been previously reported by others to encode a ribonucleoprotein [Conklin DC, 

Rixon MW, Kuestner RE, Maurer MF, Whitmore TE, Millar RP.  Cloning and gene 

expression of a novel human ribonucleoprotein.  Biochimica et biophysica acta 

2000;  1492:  465-468].  However, more recent evidence indicates that a 

functional transcript for the ribonucleoprotein RBM8A is transcribed from the 

gene on chromosome 1, and not from the gene on chromosome 14.  It appears 

that a transcript from the gene on chromosome 14 would be non-functional for 

the ribonucleoprotein [Faurholm B, Millar RP, Katz AA.  The genes encoding the 

type II gonadotropin-releasing hormone receptor and the ribonucleoprotein 

RBM8A in humans overlap in two genomic loci.  Genomics 2001;  78:  15-18.]. 
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ABSTRACT

GnRH regulates reproduction via the well-characterized
mammalian pituitary GnRH receptor (type I). In addition, two
homologous genes for a second form of the GnRH receptor
(type II) are present in the human genome, one on chromosome
14 and the second on chromosome 1. The chromosome 14 gene
is ubiquitously transcribed at high levels in the antisense ori-
entation but lacks exon 1, required to encode a full-length re-
ceptor. In comparison, the chromosome 1 gene contains all
three exons. The issue of whether this gene is transcribed in any
human tissue(s), and whether these transcripts encode a func-
tional receptor protein, remains unresolved. We have directly
addressed this by screening a panel of human RNAs by hybrid-
ization and RT-PCR. These analyses showed that, unlike the chro-
mosome 14 gene, chromosome 1 gene expression is limited and
of low abundance. Exon 1-containing transcripts were detected
by in situ hybridization in mature sperm and in human post-
meiotic testicular cells. Further sequence analysis revealed that
although all the potential coding segments were present, the
human transcripts, like the gene, contain a stop codon within
the coding region and a frame-shift relative to other mammalian
GnRH receptors. Although this suggests that the human gene
may be a transcribed pseudogene, a functional type II GnRH
receptor cDNA has recently been cloned from monkeys. Given
the well-established role of GnRH in spermatogenesis and re-
ported evidence of type II GnRH receptor immunoreactivity in
human tissues, it is possible that the chromosome 1 gene is func-
tional.

gene regulation, gonadotropin-releasing hormone receptor,
sperm, spermatogenesis, testis

INTRODUCTION

GnRH is a key reproductive hormone in all vertebrates,
including humans. Upon binding to its receptor on the cell
membrane of pituitary gonadotropes, GnRH triggers the re-
lease of the gonadotropins, namely LH and FSH. These
hormones in turn regulate most of the reproductive func-
tions in both sexes. GnRH and GnRH analogues have ex-
tensive application in the treatment of human diseases. For
example, they are utilized to treat infertility, precocious pu-
berty, polycystic ovarian syndrome and breast cancer in
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women, delayed puberty in boys, prostatic cancer in men,
and in the protection of gonadal tissue during radiotherapy
and chemotherapy [1].

The well-characterized pituitary GnRH receptor (or so-
called type I receptor), a member of the seven transmem-
brane G-protein coupled family of receptors, has been
cloned and its structure and function have been studied ex-
tensively in both mammalian and nonmammalian verte-
brates [2–8]. Interestingly, most vertebrates, including man,
have two or more forms of the GnRH peptide. In man, a
second form of the GnRH hormone has been detected in
the kidney, prostate, bone marrow, and brain [9]. In addi-
tion, GnRH receptors have been detected by ligand-binding
studies in the pituitary, placenta, ovary, testis, adrenal
glands, lymphocytes, and the central nervous system, as
well as cancers of the breast and prostate [10–14]. Thus it
is possible that GnRH(s) and its receptor(s) may, in addition
to the established endocrine role, have paracrine and au-
tocrine functions in several reproductive and nonreproduc-
tive tissues. In human testis, for example, it may act as a
neuroendocrine hormone [15]. In amphibia, GnRH is pres-
ent in the sympathetic ganglia where it acts as a neuro-
modulator [16]. In fish, GnRH-producing cells interact with
neurons that control sperm duct and oviduct contractility
[17]. Furthermore, several differentiated lymphocytes pro-
duce GnRH or a GnRH-like peptide [18]. Taken together,
these observations suggest that more than one form of the
GnRH receptor exists within a single species.

Indeed, a second form of the GnRH receptor has recently
been cloned from several nonmammalian vertebrate organs
such as goldfish brain and pituitary [2], frog midbrain and
pituitary [3], and chicken pituitary [4], as well as from
mammalian vertebrate organs such as marmoset pituitary
[19], COS-1 (vervet monkey kidney) cells, and rhesus mon-
key pituitary [20]. The mRNAs of all the mammalian
GnRH receptors cloned to date are encoded by three exons,
and the gene structures are conserved. Database searches
have revealed that apart from the known type I pituitary
receptor gene there are at least two other GnRH receptor
genes in the human genome, which are located on separate
chromosomes. A gene that encodes exons 2 and 3 as well
as intron 2 of a putative type II GnRH receptor is located
on chromosome 14. A second human type II GnRH recep-
tor gene containing all three putative exons (exons 1, 2,
and 3) is located on chromosome 1 (accession AL160282).
It has been reported that the chromosome 14 gene is abun-
dantly expressed in a wide range of human tissues, but the
transcripts are in the antisense orientation with respect to
the type II receptor sequence [21]. Reverse transcriptase-
polymerase chain reaction (RT-PCR) and Northern blotting
analyses showed that the gene is transcribed in most human
tissues examined. However, an intronic sequence equivalent
to intron 2 was retained, reflecting the absence of donor
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and acceptor splice sites for these transcripts ([21] and our
unpublished results). Interestingly, the chromosome 14
transcript encodes the 39 untranslated region of a novel hu-
man ribonucleoprotein mRNA, RBM8 (accession
AF127761) [21, 22]. In comparison, little is known of the
expression of the chromosome 1 gene. This includes wheth-
er a functional, full-length transcript for a human type II
GnRH receptor, arising from transcription of the gene on
chromosome 1, is expressed in human pituitary or any other
tissue. The results of our studies that directly address this
issue are presented.

MATERIALS AND METHODS

Patient Samples
For RT-PCR analysis, human semen samples pooled from a number

of male donors were obtained from the Andrology Department, Groote
Schuur hospital (Cape Town, South Africa). Adult human postmortem
tissue was obtained from the Salt River Mortuary under the supervision
of pathologists from the University of Cape Town (UCT) Medical School
(Cape Town, South Africa), after approval from the Medical Ethics Com-
mittee at UCT. Postabortion human fetal tissue was obtained by Nicola
Illing (Department of Molecular and Cell Biology, UCT, Cape Town,
South Africa) who obtained permission from the Medical Ethics Com-
mittee at UCT. For in situ hybridizations, formalin-fixed, paraffin-embed-
ded testicular samples were provided by Harper hospital (Detroit, MI).
Human semen samples from a normal male donor were obtained from the
in vitro fertilization (IVF) clinic, Hutzel hospital (Detroit, MI). Semen
samples had an average concentration of 15 3 107 sperm/ml and contained
less than 2% immature germ cells and/or somatic contaminants.

Human Dot Blot
Dot blot analysis was performed using radiolabeled, double-stranded

exon 1-specific human type II GnRH receptor DNA to probe a commer-
cially available human RNA Master blot (Clontech, Palo Alto, CA) con-
taining poly(A)1 RNA from 50 different human tissues. The DNA probe
was obtained by PCR amplification of a 402-base pair (bp) fragment from
human genomic DNA using primer pair S1 (59 CCC ACC TTC TCG GCA
GCA GCC 39) and AS2 (59 GAA ACT AAG TCC CCA GGC TGC 39).
A 25-ng aliquot of the probe was labeled for 1 h at 378C with the use of
the Megaprime DNA labeling system (Amersham, Buckinghamshire, Eng-
land) and 50 mCi [a-32P]dCTP as described by the supplier. The labeled
probe (109 dpm/mg) was purified on a G-25 spin column. Hybridization,
using 25 ng of probe in 5 ml of solution, was performed as described in
the Master blot manual, except for the replacement of sheared salmon
testis DNA with sheared herring sperm DNA. Washes were as follows:
five 20-min washes with solution 1 (2 3 SSC, 1% SDS) at 658C and two
20-min washes with solution 2 (0.1 3 SSC, 0.5% SDS) at 558C. The
Master blot membrane was exposed to Hyperfilm for four overnights prior
to autoradiographic detection.

Isolation of Total RNA
Total RNA was isolated from fresh human semen by cesium chloride-

guanidinium isothiocyanate ultracentrifugation as described [23]. In brief,
cells were pelleted for 10 min at 2000 3 g and resuspended in 4.5 ml of
guanidinium solution per 0.5-g pellet. Prior to ultracentrifugation, 1 g of
cesium chloride was added per 2.5 ml of homogenate. Dithiothreitol
(DTT) and RNasin ribonuclease inhibitor (Promega, Madison, WI) were
added to the purified RNA to final concentrations of 1 mM and 1 U/ml,
respectively. Human fetal RNA was obtained from Nicola Illing. Total
RNA from other human tissues was isolated with the use of TRI-reagent
(Molecular Research Center, Inc., Cincinnati, OH) according to the man-
ufacturer’s protocol.

Reverse Transcriptase-Polymerase Chain Reaction
A 1-mg aliquot of total RNA was reverse-transcribed in a 20-ml reac-

tion volume using 200 ng of a hexanucleotide mix (Roche, Randburg,
South Africa) and 200 U of Superscript II RNaseH2 reverse transcriptase
(Gibco-BRL, Paisley, Scotland). Reverse transcriptase-reactions included
1 mM dNTPs, 1 3 Gibco first strand cDNA buffer, 10 mM DTT, 20 U
RNasin, and 0.1 mg/ml BSA and were performed at 428C for 1 h. Poly-

merase chain reactions were performed with 10 ml of first-strand cDNA
and 5 U Taq DNA polymerase in a 50-ml reaction volume using combi-
nations of human type II GnRH receptor exon 1-, exon 2-, and exon 3-
specific oligonucleotide primers (see Fig. 2). Twenty picomoles of each
gene-specific primer were used. The sense primers were for exon 1, S2
(59ACC TGG AAT ATC ACT GTT CAA TGG 39); for exon 2, S3 (59
GCA AGA GAC CAC CTA TAA CCT 39); and for mouse b-actin, b-S
(59 CAC CAC ACC TTC TAC AAT GAG CTG 39). Antisense primers
were for exon 1, AS1 (59 CAT GCG ATG TCC ACA GCC AGC C 39)
and AS2 (59 GAA ACT AAG TCC CCA GGC TGC 39); for exon 2, AS3
(59 GGT TAT AGG TGG TCT CTT GC 39); for exon 3, AS4 (59 GGT
GTC CAG CAG AGG ATG AAG GTC AG 39) and AS5 (59 GGA GAG
CAG GAG TAG AAG TGA G 39) for the 39 untranslated region; and for
mouse b-actin, b-AS (59 GAT CTT CAT GAG GTA GTC TGT CAG G
39). Cycling parameters were as follows: 2.5 min denaturing at 938C, fol-
lowed by 35 cycles of 1 min denaturing at 938C, 1 min annealing at 558C
and 1 min extension at 728C, and a final extension of 10 min at 728C. The
RT-PCR products were visualized on 1% agarose gels containing 0.5 mg/
ml ethidium bromide.

59 Rapid Amplification of cDNA Ends
Double-stranded Marathon-ready cDNA for 59 rapid amplification of

cDNA ends (RACE) was prepared from 1 mg of total RNA from human
semen. Hexanucleotide primers (5 mM) were used for first-strand cDNA
synthesis using AMV reverse transcriptase and all other components of
the Marathon cDNA amplification kit (Clontech). Adaptor-ligated double-
stranded cDNA was diluted 1:25 in Tricine-EDTA buffer, which was sup-
plied with the RACE kit. A 5-ml aliquot of RACE-ready cDNA and 10
picomoles of each primer were used per 50 ml reaction. Primary 59 RACE
was performed with the adaptor-specific AP1 primer (59 CCA TCC TAA
TAC GAC TCA CTA TAG GGC 39) in conjunction with exon 1-specific
antisense oligo AS2. Nested 59 RACE was performed using 5 ml of the
primary reaction, adaptor-specific AP2 primer (59 ACT CAC TAT AGG
GCT CGA GCG GC 39) and antisense gene-specific primer AS1, which
is internally nested to AS2, in a final volume of 50 ml. Touchdown PCR
was performed according to the manufacturer’s instructions using 36 cy-
cles for the primary and 30 cycles for the secondary PCR reactions, re-
spectively. Products of 59 RACE were purified, cloned, and sequenced as
described below.

Southern Blot Confirmation of RT-PCR
and 59 RACE Results

The PCR products were transferred to Hybond N1 nylon membranes
by capillary blotting after electrophoresis. The DNA was cross-linked to
the membranes with a UV crosslinker (Amersham). Membranes were sub-
sequently probed with type II GnRH receptor gene-specific oligonucleo-
tides that were labeled and detected using the ECL 39-oligo labeling and
detection system (Amersham). Hybridizations were performed at 428C in
0.25 ml of hybridization solution per square centimeter of membrane. A
10-ng aliquot of fluorescein-11-dUTP-labeled oligonucleotide was added
per milliliter of hybridization solution. Signals were detected by autora-
diography.

Cloning and Sequencing of RT-PCR
Amplification Products

The RT-PCR products were purified from low melting-point agarose
using the Macherey-Nagel Nucleospin extract 2-in-1 system (Separations,
Düren, Germany) according to the manufacturer’s instructions. The puri-
fied DNA was ligated to the pMOSBlue vector and used for subsequent
transformation of competent MOSBlue cells using the pMOSBlue blunt-
ended cloning kit (Amersham). After plating, white colonies were isolated
and screened by PCR for the presence of the expected size insert prior to
plasmid DNA isolation and sequencing. Plasmid DNA was isolated with
the use of the Wizard Plus SV miniprep DNA purification system (Pro-
mega) and sequenced at the Core Sequencing facility, University of Stel-
lenbosch, South Africa. Several clones were sequenced in both directions
to obtain a consensus sequence.

Synthesis of cRNA Probes for In Situ
Hybridization Studies

A 402-bp subcloned fragment containing part of exon 1 of the human
type II GnRH receptor gene (see above) was ligated into the multiple
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FIG. 1. A) Autoradiogram of a dot blot
showing the tissue distribution of exon 1-
containing poly A1 RNA of the human
type II GnRH receptor gene. B) Diagram
of the human RNA Master blot showing
the type and position of poly A1 RNAs
and controls dotted on the positively
charged nylon membrane.

FIG. 2. Schematic diagram of the human type II GnRH receptor gene
on chromosome 1, indicating the relative positions of the primers used
for RT-PCR, Southern blotting, and RACE. Assignment of exon-intron
boundaries was determined from the cDNA sequences. Assignment of
exon and intron numbers was based on the assumption that no additional
59 and/or 39 introns and/or exons exist. Neither the 59 nor the 39 ends of
the cDNA are defined. The minimum size of exon 1 is based on the
position of the predicted ATG translation start codon. The minimum size
of exon 3 is based on inclusion of 84 bases of the 39 untranslated region.

cloning site of the pGEM-T vector (Promega), possessing flanking T7 and
SP6 bacterial phage promoters. The resulting construct was then se-
quenced to confirm orientation. The construct was linearized by digestion
with either BamHI or NotI restriction endonucleases in order to generate
the corresponding sense or antisense RNA probes, respectively. A 1-mg
aliquot of purified linearized template and 80 mCi [a-35S]UTP (.1000 Ci/
mmole, Amersham) was subsequently used to synthesize cRNA probes
using the Maxiscript in vitro transcription system (Ambion, Austin, TX)
according to the manufacturer’ instructions.

In Situ Hybridization
The hybridization protocol was similar to that described previously

[24]. Both paraffin sections and sperm smears were prepared using Vec-
tabond (Vector, Burlingame, CA) silane-coated slides. In brief, the slides
were pretreated by digestion with 1 mg/ml proteinase K (Invitrogen, Carls-
bad, CA) at 378C for 30 min followed immediately by acetylation with
0.25% (v/v) acetic anhydride in 0.1 M triethanolamine-HCl, pH 8.0, at
room temperature for 10 min. The pretreated slides were then hybridized
at 428C overnight in a 200-ml hybridization solution containing 106 cpm
of the labeled cRNA probe, 1 mg/ml tRNA, 0.1 M DTT, 50% formamide,
300 mM NaCl, 50 mM Na2EDTA, 10% PEG-8000, and 13 Denhardt
reagent. Following hybridization, the slides were washed through a series
of progressively higher stringency washes at 508C as described elsewhere
[24]. Subsequent to washing, the slides were coated with a thin film of a
1:1 mixture of Kodak NBT-2 (Eastman Kodak, Newhaven, CT) emulsion
in 0.3 M ammonium acetate prewarmed to 458C. The slides were air-dried
vertically at room temperature and then exposed at 48C for 2–3 days.
Following autoradiographic development, the tissue sections and sperm
smears were counterstained with a hematoxylin and eosin histological
stain.

RESULTS

Tissue Distribution of Exon 1-Containing Human Type II
GnRH Receptor Transcripts

Our studies initially focused on determining whether
exon 1-containing transcripts from the chromosome 1 gene
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FIG. 3. Amplification of type II GnRH receptor transcripts from human
testis and sperm by RT-PCR. A) An ethidium bromide-stained agarose gel
of the results with testis total RNA is shown. The lanes are marked as
follows: M, molecular weight markers; 1, 317-bp product obtained with
the b-actin control primers; 2, 250-bp and 660-bp product obtained with
the exon 2-exon 3 primer pair S3/AS4. B) An ethidium bromide-stained
agarose gel of the results with sperm total RNA is shown. The lanes are
marked as follows: M, molecular weight markers; 1, 329-bp product ob-
tained with the exon 1-exon 2 primer pair S2/AS3; 2, 559-bp product
obtained with the exon 1-exon 3 primer pair S2/AS4; 3, 250-bp and 660-
bp product obtained with the exon 2-exon 3 primer pair S3/AS4; 4, 317-
bp product obtained with the b-actin control primers; 5, negative control.
C) An autoradiogram of a Southern blot of the gel in B is shown. The blot
was probed with F-11-dUTP-labeled exon 1-specific oligo AS1. All six
lanes, including the marker lane, were probed. Results are only shown
for lanes 1 and 2 since no signals were obtained for the other lanes with
the exon 1 probe.

were expressed in any human tissue(s). The rationale for
this approach was that transcripts from the gene on chro-
mosome 14, although abundant and widely distributed,
would not contain exon 1. Expressed sequence tags con-
taining exon 1 have been identified in the National Center
for Biotechnology Information database from a prostate ad-
enocarcinoma cell-line (accession BG036291) and from
RNA pooled from testis, B-lymphocytes, and fetal lung
cells (accession AA954764). The existence of these ex-
pressed sequence tags indicated that transcripts for the gene
on chromosome 1 are expressed at least in these tissues,
and possibly in others.

We examined the distribution of exon 1-containing hu-
man type II GnRH receptor transcripts in a variety of hu-
man tissues using dot blot analysis (Fig. 1). Hybridization
with an exon 1-specific DNA probe under high stringency
conditions yielded a convincing, albeit faint, positive signal
for putamen (Fig. 1, B2). In addition, signals could also be
detected for the following tissues (see Fig. 1): caudate nu-
cleus (A3), cerebellum (A4), occipital lobe (B1), adult heart
(C1), testis (D1), salivary gland (D7), peripheral leukocyte
(E6), and lymph node (E7). Cross-hybridization with bac-
terial chromosomal DNA (Fig. 1, H4) is evident; however,
the other negative controls including yeast total RNA, yeast
tRNA, E. coli rRNA, Poly r(A), human Cot1 DNA, and
human DNA (100 and 500 ng) did not react with the probe
and confirm its specificity for the chromosome 1 type II
GnRH receptor. The fidelity of the positive signals was as-
sessed by RT-PCR on total RNA from human tissues that
were available.

RT-PCR was performed on total RNA from 22 different
human tissues, cells, or cell lines that were available (see

Fig. 2). The adult human tissues were cerebellum, cortex,
hypothalamus, kidney, medulla, midbrain, pituitary, pons,
and testis. The human fetal tissues were adrenals, cerebel-
lum, frontal lobe, hypothalamus, medulla, midbrain, lumbar
sympathetic chain, olfactory bulb, pituitary, pons, and ret-
ina. The human cells were total ejaculate and HepG2 he-
patocyte carcinoma cells. Several sets of PCR primers were
utilized. These included the exon 1-specific primers in com-
bination with primers to either exon 2 (that would yield a
329-bp intronless amplicon) or exon 3 (that would yield a
559-bp intronless amplicon), as well as an exon 2–3 primer
pair (that would yield a 660- or 250-bp amplicon, respec-
tively, if an intron was present or absent). These results are
summarized in Figure 3. As expected, the unprocessed 660-
bp chromosome 14 product was amplified from almost all
human RNA samples (Fig. 3 and results not shown). This
product was also present in testis and mature sperm (Fig.
3A, lane 2, and Fig. 3B, lane 3, respectively). In contrast,
the processed 250-bp exon 2–3 product, arising from tran-
scription of the chromosome 1 gene, was detected only in
testis and mature sperm (Fig. 3A, lane 2, and Fig. 3B, lane
3). Furthermore, exon 1-containing transcripts were detect-
ed only in mature sperm (Fig. 3B, lanes 1 and 2). Hybrid-
ization analysis of the RT-PCR products revealed the pres-
ence of both the exon 1–2 (329 bp) and exon 1–3 (559 bp)
intronless chromosome 1 transcripts in sperm (Fig. 3C).

To further examine the distribution of the human chro-
mosome 1 type II GnRH receptor transcripts in testis and
ejaculated sperm, in situ hybridization analyses were then
performed using both sense and antisense exon 1-specific
riboprobes. Bright-field photomicrographs summarizing
these results are shown in Figures 4 and 5. In human testis
the presence of chromosome 1 type II GnRH receptor sense
transcripts is indicated by the marked deposition of silver
grains within the adluminal region of the seminiferous ep-
ithelium (Fig. 4A). Although some luminal collapse result-
ing from the fixation process is evident, there is sufficient
cellular detail to localize the signal. Silver grains were con-
fined to the various types of differentiating haploid sper-
matids and not observed in association with spermatogonia,
spermatocytes, Sertoli cells, or stromal cells (Fig. 4A). This
is consistent with the view that the type II GnRH receptor
gene on chromosome 1 is transcribed during the haploid
phase of spermatogenesis. In contrast, human testis hybrid-
ized with the probe for the antisense transcript exhibited a
sparse, nonspecific distribution of silver grains (Fig. 4B).
In situ hybridization also revealed the persistence of human
chromosome 1 type II GnRH receptor transcripts in mature
sperm (Fig. 5). Sperm hybridized with the probe for the
sense transcript displayed a concentrated, specific deposi-
tion of silver grains over the entire surface of the head,
indicating the presence of human type II GnRH receptor
sense transcripts (Fig. 5A). In contrast, human sperm hy-
bridized with the corresponding control probe for the an-
tisense transcript displayed a sparse and nonspecific back-
ground distribution of silver grains (Fig. 5B).

Cloning and Sequencing of Human Type II
GnRH Receptor Transcripts from Ejaculated Sperm

A processed human chromosome 1 type II GnRH recep-
tor transcript of the predicted size and containing all three
exons was amplified from human sperm total RNA by RT-
PCR (see Fig. 3, B and C). The 59 end of the cDNA was
determined by 59 RACE. A consensus sequence spanning
the full putative coding region for the human type II GnRH
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FIG. 4. In situ localization of type II GnRH receptor transcripts in human testis. Testis hybridized with a 35S-labeled riboprobe for the sense transcript
(A) or control riboprobe for the antisense transcript (B) are shown at 3200 and 3400 original magnification.

receptor cDNA was compiled by cloning and sequencing
of three overlapping RT-PCR products (accession
AY077708) and is shown in Figure 6. Several clones from
each individual PCR reaction were sequenced. Of note, a
UGA translation stop or selenocysteine codon was detected
within exon 2 of the chromosome 1 transcript. In addition,
alignment of the human and vervet monkey (accession
AF353988) protein sequences revealed that the human
cDNA would require the insertion of a single G residue in
the 59 end region to encode a protein homologous to the
monkey type II GnRH receptor (Fig. 6). The consensus
coding sequence was then compared to the corresponding
chromosome 1 gene sequence (accession AL160282) and
found to be identical except for two nucleotide positions
within the coding region. This would result in the substi-
tution of a valine for an alanine residue and a serine for an
arginine residue at amino acid positions 220 and 232, re-
spectively, if the cDNA is translated.

DISCUSSION

Two genes for a type II GnRH receptor are found in the
human genome. The chromosome 1 gene is comprised of
exons 1, 2, and 3, whereas the chromosome 14 gene is
comprised of only exons 2 and 3 of the putative receptor.
Our dot blot results indicate that human transcripts con-
taining exon 1 of the chromosome 1 type II GnRH receptor
are neither abundantly nor widely expressed, in contrast to
the expression of the exon 2–3 chromosome 14 transcripts.

The faint positive signals obtained for only some tissues
indicate that the exon 1-containing chromosome 1 tran-
scripts are either not expressed in most tissues or are ex-
pressed at very low levels. This is supported by our RT-
PCR findings that exon 2–3 amplicons are abundant for
most of the human RNAs, whereas exon 1-containing am-
plicons are weakly, if ever, detected. Human type II GnRH
receptor transcripts have been detected by others using ei-
ther dot blotting with an exon 3-specific riboprobe for the
sense transcript [20] or by Northern blotting using an exon-
1 specific double-stranded DNA probe [19] on selected
poly(A)1 RNA tissue arrays. Interestingly, the reported tis-
sue distribution patterns differ, which may reflect the use
of different probes. Although our observation using an exon
1-specific probe of relatively strong signals in putamen, oc-
cipital lobe, cerebellum, caudate nucleus, and heart is con-
sistent with that of Millar et al. [19], we did not detect a
similar, relatively strong signal in other brain tissues. We
did, however, detect a relatively strong signal in human
testis, leading us to further examine this site of expression.

This is the first report of the cloning of a potentially full-
length type II GnRH receptor transcript from the gene on
chromosome 1 in any human tissue or cell type. Sequencing
of the chromosome 1 sperm transcripts showed the pres-
ence of a UGA translation stop codon within exon 2, as
well as a frame shift within exon 1 when compared to the
recently cloned vervet monkey type II GnRH receptor (ac-
cession AF353988) [20] (see Fig. 6). Both the stop codon
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FIG. 5. In situ localization of type II GnRH receptor transcripts in human
sperm. Human sperm hybridized with a 35S-labeled riboprobe for the
sense transcript (A) or control riboprobe for the antisense transcript (B)
are shown at 3400 original magnification.

and frame shift are also found in the human type II GnRH
receptor gene on chromosome 1 (accession AL160282).
Overall there is a 99.7% identity between the cDNA and
gene sequence, with only two nucleotide differences within
the coding region, most likely due to variation between
individuals. The site of initiation of translation was pre-
dicted from the cDNA sequence of the monkey type II
GnRH receptor. Interestingly, translation of the human
cDNA would be predicted to initiate at an ATG codon like
most eukaryotic cDNAs, whereas translation of the monkey
cDNA starts with an unusual ACG. Overall, there is a
96.5% identity between the coding regions of the human
and monkey type II GnRH receptor cDNAs and a 92.9%
identity at the amino acid level (see Fig. 6).

Many human tissues were screened by RT-PCR and/or
RACE for the presence of intronless transcripts containing
the three exons. Ejaculated sperm was the only source
where a potential full-length intronless transcript, resulting
from the gene on chromosome 1, was detected. The failure
to detect exon 1-containing sperm transcripts in testis total
RNA by RT-PCR may have been due to their degradation
postmortem and/or during the RNA isolation procedure
from the testis. However, in situ hybridization revealed the
presence of exon 1-containing transcripts in both testis and
mature sperm. The in situ localization of type II GnRH
receptor transcripts to the adluminal region of the seminif-
erous epithelium is consistent with the distribution of other
haploid-specific mRNAs [24] and suggests that the human

chromosome 1 type II GnRH receptor gene is postmeioti-
cally expressed in round and elongating spermatids. These
transcripts are distributed throughout the entire sperm head
in a similar manner as reported for other sperm transcripts
[25]. A central query to be resolved is whether this tran-
script is functional in sperm.

Given that the mRNA contains a stop codon and would
also require a nucleotide insertion to create the correct open
reading frame, it seems likely that this gene is a transcribed
pseudogene that, although functional in other primates, is
nonfunctional in humans [20]. This may reflect the involve-
ment of the type II GnRH receptor in the induction of mat-
ing behavior of other primates that are seasonal breeders
[20], unlike humans. Pseudogenes are a consequence of
gene duplication via either retrotransposition or duplication
of genomic DNA [26]. The human genome contains a large
number of pseudogenes, most of which are retrotransposons
or processed pseudogenes, which lack introns and arise
from single-stranded RNA. An intron-containing GnRH re-
ceptor pseudogene on chromosome 1 would thus have orig-
inated by DNA duplication. Pseudogenes derived from du-
plicated genomic DNA are most likely to be on the same
chromosome as their paralogous functional partners, al-
though they can also be inserted into a different chromo-
some by a duplication and translocation process [26]. Clear-
ly, the latter process would have had to occur to result in
a GnRH receptor pseudogene on chromosome 1 and a par-
alogous gene on chromosome 14. Most pseudogenes are
promoterless and are therefore not transcribed. However,
transcripts for some pseudogenes have been identified, aris-
ing most likely from DNA duplication of the promoter el-
ements in parallel with the coding regions or from insertion
of the pseudogene near the promoter of another gene [26].
Interestingly, spermatogenic cells have a high tendency to
express processed retrotransposons. For example, 10 of the
14 retrotransposons that have been retained as functional
genes in mammals are expressed in testis [27]. Taken to-
gether, although expression of pseudogenes does occur in
mammalian spermatogenic cells, the expression in these
cells of a GnRH receptor pseudogene on chromosome 1
would appear to be a rare event. Furthermore, the detection
of immunoreactivity to the type II GnRH receptor protein
in human pituitary and brain tissue by Millar et al. [19]
would suggest that the gene on chromosome 1 is not a
pseudogene.

Nevertheless, it is difficult to envisage how transcripts
from a gene containing a stop codon and a frame shift with-
in the coding region could result in a full-length, functional
G-protein coupled receptor. It has, however, been shown
that 5-transmembrane G-protein coupled receptors, lacking
transmembrane helices 1 and 2, are functional [28]. Thus
one possibility is that a functional, truncated, immunore-
active protein containing transmembrane helices 3–7 is ex-
pressed. This could occur if translation begins at the second
AUG, situated at the end of transmembrane helix 2 (see
Fig. 6), were it not for the stop codon within extracellular
loop 2. RNA editing, with a single base transition within
the UGA stop codon, could be involved in generating a
functional truncated protein. Alternatively, a full-length
functional protein could be generated by an additional RNA
editing event involving the insertion of a G residue near
the 59 end of the transcript. It has been shown that the
monkey type II GnRH receptor cDNA contains a CGA ar-
ginine codon instead of a stop codon, creating an extended
open reading frame [19, 20]. The presence of a UGA stop
codon within the human sequence may represent a mech-
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FIG. 6. Comparison of the predicted amino acid sequence of the human (H) type II GnRH receptor (accession AY077708) with the published vervet
monkey (M) sequence [20]. The human protein sequence is shown with (uppercase) or without (lowercase) the frame shift within exon 1. The position
of the frame shift in the human protein sequence is bolded, and so is the second methionine at the end of transmembrane helix 2. The translation stop
signal within exon 2 is indicated by an asterisk. The aligned sequences begin at the start of translation and end at the translation stop signal. TM,
Transmembrane helices; IC, intracellular loops; EC, extracellular loops. Amino acid differences between human and monkey are shaded.

anism for the temporal translational regulation of the type
II GnRH receptor during spermatogenesis. Many haploid
expressed genes are under extensive translational control.
For example, the mammalian protamines, which package
the DNA within the sperm head, are initially transcribed at
the round spermatid stage and subsequently stored as in-
active ribonucleoprotein particles prior to their translation
in elongating spermatids [29]. Differentiating spermatids
might require a functional type II GnRH receptor at specific
stages during spermatogenesis. RNA editing would there-
fore provide a similar means for the translational regulation
of these transcripts.

Although there are no reports of the occurrence of RNA
editing in human sperm, there are examples in the literature
for other mammalian tissues and for other species. Substi-
tution editing, including posttranscriptional U to C substi-
tutions, has been previously described for mammalian and
plant transcripts [30]. This has been shown to result in the
removal of stop codons for some plants [30]. In addition,
there are many examples in the literature of posttranscrip-
tional insertion editing resulting in expression of alternative
reading frames [30]. Although we are not aware of any
cases reported to date of G insertions for mammalian tran-
scripts, there are examples of A insertion in human mito-
chondrial transcripts [31], G insertions in viruses [30], and
insertions of all four nucleotides in a slime mold [30]. Our
inability to detect an edited type II GnRH receptor tran-
script may have been due to a short half-life or low abun-
dance.

Evidence from others suggests another unusual mecha-
nism whereby a functional type II GnRH receptor may be

produced. This could involve the incorporation of a sele-
nocysteine amino acid at the UGA position, rather than
encoding a translation stop signal [32, 33]. A prominent
role for selenium during spermatogenesis has been well es-
tablished [34, 35]. Selenium, which is incorporated into sel-
enocysteine, has been shown to be supplied to the testis
with an apparent priority over other tissues [34], and the
uptake thereof appears to be under gonadotropin control
[35]. For example, the selenoenzyme phospholipid hydro-
peroxide glutathione peroxidase has been detected in mam-
malian spermatids, sperm, and testis [32, 33]. In addition,
a number of mammalian proteins have been identified that
contain selenocysteines encoded by in-frame UGA codons
[36]. Therefore, the UGA codon in the type II GnRH re-
ceptor transcript may code for selenocysteine. Selenocys-
teine incorporation, however, requires a selenocysteine-in-
sertion sequence (SECIS) motif of approximately 200 nu-
cleotides that form a stem-loop structure in the 39 untrans-
lated segment of the mRNA [37]. Because of the length
and degeneracy of the SECIS sequence, it is difficult to
assess whether a SECIS sequence occurs in the chromo-
some 1 human type II GnRH receptor transcript. The find-
ing that selenocysteine is more efficiently incorporated
when the UGA codon is positioned closer to the middle of
the coding region, rather than close to one of the ends [38],
as is the case for the human type II GnRH receptor mRNA,
would be consistent with the selenocysteine hypothesis.
Production of a selenocysteine-containing truncated protein
would not require an RNA editing event. However, if the
stop codon encodes selenocysteine, the production of a full-
length protein would still require RNA insertion editing of
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the transcript to correct the frame shift in the amino ter-
minus, an event that appears to be extremely rare.

Although the functionality of these transcripts remains
to be confirmed, the presence of GnRH and GnRH recep-
tors has been shown to play a role during spermatogenesis,
sperm maturation, and fertilization [39]. GnRH hormone
has been localized to the seminal plasma [39] and has been
shown to increase the binding of sperm to the ovum, an
effect that is inhibited by GnRH antagonists [40, 41]. In
addition, GnRH has also been shown to function as a local
regulator in human placenta, where GnRH or GnRH-like
peptides are synthesized by cytotrophoblasts and syncytio-
trophoblasts during embryogenesis [42]. The mammalian
type II GnRH receptor has been demonstrated to specifi-
cally regulate FSH secretion, a peptide hormone involved
in the development of meiotic spermatocytes and postmei-
otic spermatids [43]. Sperm have also been shown to ex-
press receptors for other hormones or signaling molecules
such as the estrogen receptor [44] and A1 adenosine recep-
tor [45]. Furthermore, a number of neuroendocrine hor-
mones and growth factors, including GnRH, are produced
by the testis [15]. The presence of these receptors and hor-
mones is consistent with the presence of a network of in-
tratesticular hormonal regulators, where hormones can
function in a paracrine or autocrine manner due to their
isolation from the rest of the body by a blood-testis barrier
[15]. The expression of functional type II GnRH receptor
transcripts in human sperm could be part of the existing
network of intratesticular or neuroendocrine hormonal reg-
ulation governing spermatogenesis. Although some of the
above-mentioned functions could be mediated by the type
I GnRH receptor, the expression of a functional type II
GnRH receptor protein in the testis and sperm would be
consistent with these reports.

In summary, we have cloned a transcript of the gene on
chromosome 1 for the human type II GnRH receptor from
human sperm. This transcript, although containing all the
exons required for a full-length receptor protein, contains a
stop codon and a frame shift, which are also present in the
gene. Although this would suggest that the gene is a tran-
scribed pseudogene, several lines of evidence from the lit-
erature suggest otherwise. There is evidence for a function-
al role for a type II GnRH receptor protein in human sperm
and testis. Furthermore, immunoreactivity data strongly
suggest that a protein is expressed from the human chro-
mosome 1 gene [19]. Thus if the gene is not a pseudogene,
the transcript could possibly be translated as a truncated,
immunoreactive protein or edited to result in translation of
a full-length protein, possibly containing selenocysteine.
However, given that RNA editing and/or incorporation of
selenocysteine are rare events, the latter possibility seems
unlikely. Further experiments using specific antibodies di-
rected against domains encoded by sequences both 59 and
39 to the stop codon would be necessary to clarify whether
a full-length or truncated type II GnRH receptor protein is
expressed in sperm or in the developing zygote.
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Abstract

Gonadotrophin-releasing hormone (GnRH), acting via its cognate GnRH receptor (GnRHR), is the primary

regulator of mammalian reproductive function, and hence GnRH analogues are extensively used in the

treatment of hormone-dependent diseases, as well as for assisted reproductive techniques. In addition to its

established endocrine role in gonadotrophin regulation in the pituitary, evidence is rapidly accumulating to

support the expression and functional roles for two forms of GnRHR (GnRHR I and GnRHR II) in multiple and

diverse extra-pituitary mammalian tissues and cells. These findings, together with findings indicating that

mutations of the GnRHR are linked to the disease hypogonadotrophic hypogonadism and that GnRHRs play

a direct role in neuronal migration and reproductive cancers, have presented new therapeutic targets and

intensified research into the structure, function and mechanisms of regulation of expression of GnRHR

genes. The present review focuses on the current knowledge on tissue-specific and hormonal regulation of

transcription of mammalian GnRH receptor genes. Emerging insights, such as the discovery of diverse

regulatory mechanisms in pituitary and extra-pituitary cell types, nonclassical mechanisms of steroid

regulation, the use of composite elements for cell-specific expression, the increasing profile of hormones

involved in regulation, the complexity of kinase pathways that target the GnRHR I gene, as well as species-

differences, are highlighted. Although further research is necessary to understand the mechanisms of

regulation of expression of GnRHR I and GnRHR II genes, the GnRHR is emerging as a potential target gene

for facilitating cross-talk between neuroendocrine, immune and stress-response systems in multiple tissues

via autocrine, paracrine and endocrine signalling.

Gonadotrophin-releasing hormone (GnRH), in conjunction
with the GnRH receptor (GnRHR) is the primary regulator
of reproduction in vertebrates. It is well-established that
GnRH is released from the hypothalamus in a pulsatile
fashion, and travels to the pituitary gland via the portal
hypophyseal vasculature (1). Upon GnRH binding to its G
protein-coupled receptor (GPCR) on the plasma membranes
of pituitary gonadotroph cells, a range of intracellular
signalling pathways are activated that ultimately regulate
the synthesis and secretion of the gonadotrophins, luteinising
hormone (LH) and follicle-stimulating hormone (FSH). In
turn, gonadotrophins stimulate sex hormone synthesis and
gametogenesis in the gonads to ensure reproductive compet-
ence. At least two forms of the decapeptide hormone (i.e.
GnRH I and GnRH II), as well as the receptor (i.e. GnRHR I
and GnRHR II), have been found in most vertebrates,

including mammals, increasing the potential for diverse
physiological actions (2–6). GnRH II was originally isolated
from chicken brain and its precise role in mammals remains
to be elucidated (7). However, both GnRH peptides can bind
to and activate both receptor forms, with GnRH I exhibiting
a greater affinity and potency for GnRHR I and GnRH II
exhibiting a greater affinity and potency for GnRHR II (8).
GnRH I released from the hypothalamus is the hormone that
appears to be sufficient for gonadotrophin regulation in the
mammalian pituitary (4).
Besides the well-established role for GnRH I and GnRHR

I in gonadotrophin regulation in the pituitary, the detection
of both forms of the hormone and receptor (Table 1) (4) in
multiple mammalian nonpituitary tissues and cells suggests
numerous and diverse autocrine, paracrine and endocrine
extra-pituitary roles for GnRHs and GnRHRs (2–5, 9). These
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Table 1. Summary of Mammalian Tissues and Cell Lines Where GnRHR I mRNA and/or Protein have been Detected.

Tissue Species mRNA Protein Reference

Normal tissues, primary cells

Pituitary
Mouse + (1) + (5) (173)
Rat + (2) + (6) (156, 174)
Guinea pig + (2) + (7) (175)
Bovine + (2) + (6) (176, 177)
Sheep + (2) + (6) (133)
Wallaby + (2) (78)
Possum + (2) + (6, 7) (178)
Human + (2) + (6) (85)
Bonnet monkey + (3) + (8) (179)
Marmoset monkey + (1, 3) + (7) (180, 181)
Macaque monkey + (1) (180)
Pig + (2) (182)

GH, TSH cells Human + (9) (183)
Hypothalamus

Rat + (3) + (6) (185, 186)
Bovine ) (3) (176)
Wallaby – (3) (187)

Brain
Sheep – (3) (133)
Human + (3) (38)
Wallaby – (3) (187)

Placode-derived Rat + (3) + (7) (50)
Pre-optic area Rat + (3) + (6) (185, 188)
Hippocampus Bovine – (3) (176)
Enteric neurones Rat + (3) (189)

Placenta
Human + (1, 3) + (6) (190, 191)

IEVT Human + (3) + (7) (163)
Primary trophoblasts Human + (3) + (7) (163)

Endometrium Human + (3) (15)
Human + (3) + (6) (192)
Human + (3) (193)

Myometrium
Human + (3) + (6, 7) (194, 195)
Bovine – (3) (176)
Human + (3) + (7) (194)

Decidua Human + (7) (196)
Ovary

Wallaby + (3) (78)
Bovine – (3) (176)
Human + (3, 4) + (7) (85, 197)

Granulosa-luteal Human + (3) + (7) (38, 197)
Surface epithelium Human + (3) + (7) (159, 198)

Rat + (3) + (6) (199, 200)
Interstitial Rat + (1) (79)
Granulosa Rat + (1) (79)
Corpus luteum Rat + (1) + (6, 7) (79, 201)

Human + (6) (202)
Theca Rat – (1) (79)
Luteal cells Bovine – (3) (176)

Breast/mammary gland
Rat + (3) + (6) (203)
Mouse – (3) (81)
Human + (3, 4) – (6) (85, 204)

Testis
Wallaby + (3) (78)
Human + (3, 4) (85)
Rat + (3) + (6) (199, 205)
Bovine – (3) (176)

Interstitial Rat + (6) (205)
Leydig Rat + (6) (206)
Sperm Human + (9) (207)

Prostate
Human + (3, 4) (85)
Rat + (3) (208)

Immune system
Lymphocytes Mouse + (3) (87)

620 Regulation of expression of mammalian GnRH receptor genes

� 2005 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 17, 619–638



Table 1. Continued

Tissue Species mRNA Protein Reference

T cells Human + (7) (14)
Mononuclear blood cells Human + (3) + (7) (88)
Spleen Human – (3) (85)

Bovine – (3) (176)
Liver Human + (3) (209)

Wallaby – (3) (187)
Bovine – (3) (176)
Sheep – (4) (133)

Pancreas Hamster – (6) (210)
Human – (6) (211)

Kidney Human + (3) + (6) (209, 212)
Bovine – (3) (176)
Sheep – (4) (133)

Adrenal Bovine – (3) (176)
Sheep – (4) (133)

Heart Human + (3) (209)
Sheep – (4) (133)

Skeletal muscle Human + (3) (209)
Human – (3) (38)
Wallaby – (3) (187)
Rat – (8) (213)

Submaxillary glands Rat + (1, 3) + (9) (214)
Digestive tract Rat + (1) + (9) (12)
Gastric parietal cells Rat + (1) + (9) (13)

Spinal chord Sheep + (3) (86)
Retina Vole + (3) (11)

Cancer tissues, cancer cell lines

Pituitary
Pituitary adenoma Human + (1, 3) (215)
aT3-1 Mouse + (4) + (6) (184)
LbT2 Mouse + (4) + (7) (96)

Hypothalamus
GT1-7 Mouse + (4) + (6) (39)
FNC-B4 Human + (3) + (7) (10)

Liver
HepG2 (hepatocarcinoma) Human + (3) + (7) (89, 216)

Pancreas Hamster + (9) (90)
Human + (6) (211)

Skin
BLM, Me15392 (melanoma) Human + (3) + (6–8) (217)

Placenta
JEG-3 (choriocarcinoma) Human + (3) – (7) (218, 219)
JEG-3 Human + (3) + (7) (163)

Endometrium
Human + (6, 7) (220)
Human + (3) – (6) (219)
Human + (3) + (6) (195)

HEC-1A Human + (3) + (7) (221)
Human + (3) – (7) (219)

Ishikawa Human + (3) – (7) (219)
Uterus
Leiomyosarcoma Human + (3) + (6) (222)
Myoma Human + (3) + (6) (195)
Cervical Human – (3) – (6) (195)

Ovary
Human + (3) + (7) (223, 224)
Human + (3) + (6) (225)

Epithelial Human + (3) + (6) (195)
Stromal Human + (3) + (6) (195)
Germ-cell derived Human – (3) – (6) (195)

Rat + (6) (200)
OVCAR-3 Human + (3) + (7) (159)
Caov-3 Human + (3) + (7) (226)
SK-OV3 Human + (7) (227)
EFO-21, EFO-27 Human + (6, 7) (228)
SVOG-4o, SVOG-4 m Human + (3) + (8) (111)

Breast
Human + (3) + (6) (204, 223)

MCF-7 Human + (3) + (6, 7)
(6)

(229)
(23)
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include neuronal migration during development (10), neuro-
modulation in the brain to affect sexual behaviour (4),
possible modulation of visual processing in the eye (11),
digestive tract function (12), inhibition of gastric acid
secretion (13), adhesion chemotaxis and homing in T cells
(14), human chorionic gonadotrophin (hCG) release in the
placenta (15), steroidogenesis in ovarian cells (16–19), prolif-
eration in melanoma cells (20), sperm function and sperm–
oocyte interactions (21) and growth inhibition in reproductive
tumours (22–26). However, the specific roles of each form of
the hormone and receptor in these various tissues and cells
remain to be elucidated. Recently, there has been an upsurge
in the available literature on GnRHRs. GnRH and its
analogues are extensively used in the treatment of hormone-
dependent diseases, as well as for assisted reproductive
techniques (6). More recently, they have been proposed as
novel contraceptives in men and women (6, 27). The finding
that naturally occurring mutations of the GnRHR are linked
to the disease hypogonadotrophic hypogonadism, which
results in delayed puberty, has also recently stimulated
interest in GnRHR function (28). Thus, the presence of
multiple forms of GnRH and its receptor in mammals, as well
as the emerging multiple roles thereof, have presented new
therapeutic targets and intensified the search for novel
interventive GnRH analogues.
A central issue in the field is to understand the extracellular

signals and the intracellular mechanisms that regulate expres-
sion of GnRHRs in these diverse tissues and cells. Respon-
siveness to GnRH depends on the number of GnRHRs on the
cell surface. In turn, GnRH appears to be an important
regulator of receptor levels on the gonadotroph cell surface
(29). Several lines of evidence indicate that the number of
GnRHRs is partially dependent upon the level of GnRHR
mRNA, which appears to be regulated at least in part at the
transcriptional level in gonadotrophs, including by GnRH
itself (29–33). New insights have recently been obtained about
other hormones [melatonin (34), adrenal and sex steroids (35–
37), activin (20), hCG (38, 39)], as well as the intracellular
signalling pathways (40–44) and transcription factors in-
volved (45–49) in regulating mammalian GnRHR transcrip-
tion in diverse tissues (10, 50, 51) from different species (35,
40, 41, 45, 52). Knowledge of these mechanisms is important

to fully understand both the physiological and the therapeutic
actions of GnRH and GnRHRs, given the central role of
GnRHRs in reproductive endocrinology and the widespread
use of GnRH analogues in endocrine and anticancer therapy.
The present review focuses on transcription of mammalian
GnRHR genes, including the hormones that are involved, the
signalling pathways that are activated and the promoter
elements and transcription factors that mediate responses to
multiple signals in various tissues.

Mammalian GnRHR genes

The structures of the mouse (53), rat (54), human (55), pig
(56) and sheep (57) GnRHR I genes have been characterised.
In these species, the genes exist as a single copy, and have a
high degree of sequence homology in the coding regions.
They are structurally similar and consist of three exons
separated by two introns. The exon–intron boundaries are
conserved between the species, but the genes differ with
regard to the size of the introns, as well as the sequence and
length of the 5¢-and 3¢ untranslated regions (UTR) (Fig. 1).
Exon 1 encodes the N-terminal tail as well as transmembrane
helices (TM) 1, 2, 3 and part of TM 4 of the GnRHR I
protein. Exon 2 encodes the rest of TM 4 and the whole of
TM 5 whereas exon 3 encodes TM 6 and 7 (58).
Candidate genes for GnRHR II can be found at two

different loci in the human genome (2, 4). The first is located
on chromosome 1 and overlaps in the antisense orientation
with the gene encoding the RNA-binding motif protein-8A
(RBM-8A) (59). The GnRHR II gene has the same exon–
intron structure as GnRHR I, except that exon 3 includes a
cytoplasmic C-terminal tail, which is absent in GnRHR I. A
premature stop codon (UAA) is located inframe within exon
2 in the human gene, suggesting that the gene products are
nonfunctional. A second human locus containing a pseudo-
gene for GnRHR II and RBM-8A is on chromosome 14.
GnRHR II genes have also been detected in other mamma-
lian genomes. The premature stop codon found in the human
gene is conserved in the chimpanzee GnRHR II gene (7),
whereas a fully functional GnRHR II gene is present in other
primates, such as the marmoset monkey (8), rhesus monkey
and African green monkey (60). GnRHR II genomic

TABLE 1. Continued

Tissue Species mRNA Protein Reference

MDA-MB-157, MDA-MB-231 Human + (6, 7) (229)
ZR-75–1 Human + (6, 7) (229)
Sk Br 3 Human + (6, 7) (229)
MXT Mouse + (9) (90)

Prostate
Human + (3) + (6) (223, 230)
Rat + (3) + (6) (208, 231)

Dunning R3327 Rat + (3) (208)
DU145 Human + (1) (232)
LNCaP Human + (1) + (8) (232, 233)
PC-3 Human + (3) + (6, 7) (90, 223)
TSU-Pr1 Human + (3) + (7) (234)

+, Expression in specific tissues. –, expression investigated and found not to occur. Numbers refer to detection method: (1) ¼ in situ hybridisation ;
(2) ¼ cDNA cloned ; (3) ¼ RT-PCR ; (4) ¼ Northern Blot; (5) ¼ Xenopus oocyte expression; (6) ¼ ligand binding assay; (7) ¼ hormone response;
(8) ¼ Western Blot; (9) ¼ Immunohistochemistry or immunocytochemistry.
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sequences for some nonprimate mammals have also been
identified, and potentially encode functional proteins in pigs
and dogs, but not in sheep and cows. The gene is completely
deleted from the mouse genome (4), but a gene remnant is
present in the rat genome (5).

Expression and physiological roles of mammalian GnRHRs

Both GnRHR I (Table 1) and GnRHR II (4) transcripts and,
in some cases, GnRHR I protein (Table 1) have been detected
in pituitary as well as extra-pituitary tissues and cell lines
from several mammalian species. However, expression of
endogenous GnRHR II protein has not been conclusively

shown in any mammalian species. One study shows immu-
nodetection of putative GnRHR II extracellular loop 3 in
mammalian pituitary tissues, however, positive signals were
also detected in mouse pituitary tissue (8), raising doubts
about the specificity of the antibody. Expression of a full-
length human GnRHR II protein would appear unlikely
because, apart from the premature stop codon within exon 2,
the human transcript lacks a methionine translation initiation
codon. Several as yet unsubstantiated theories have been
postulated as to how such a transcript could result in the
synthesis of a functional receptor protein (7, 61). However, a
truncated form of the human GnRHR II may play a
modulatory role in GnRHR I expression by perturbing
normal processing of GnRHR I (62). Although recent
indirect evidence suggests that a functional human GnRHR
II protein may be expressed in cancer cells (63), no definitive
functional role has been established to date for any mamma-
lian GnRHR II (3).

Pituitary

It is well established that GnRHR I protein is expressed in
mammalian pituitary gonadotrophs, where its primary role is
to regulate LH and FSH synthesis and release (1). GnRHR I
expression in the pituitary is regulated during foetal develop-
ment, during sexual maturation (showing differential patterns
between sexes) and during the reproductive cycle and preg-
nancy in the adult (51, 64, 65). In adult mammals, activation
of the GnRHR I results in stimulation of diverse intracellular
signalling pathways in the anterior pituitary, the nature of
which depends on the cellular context (the relative concen-
trations of receptors and G-proteins vary during the oestrous
cycle) (66, 67). In mouse gonadotroph cell lines, GnRHR I
has been shown to couple to Gq/G11 in aT3-1 cells and to Gq/
G11 and Gs in LbT2 cells (42). In rat primary pituitary cell
cultures, the rat GnRHR I can couple to Gs, Gi/Go and Gq/
G11, to modulate the activity of both the protein kinase A
(PKA) and protein kinase C (PKC) pathways (41). Several
recent reports have further unravelled the downstream kinase
pathways in gonadotroph cell lines showing that GnRH can
activate ERK, JNK and p38 MAPK in both aT3-1 and LbT2
cell lines, in various ways including via both PKA- and PKC-
dependent and -independent pathways (41, 68). These path-
ways then differentially regulate synthesis and release of the
gonadotrophins, via mechanisms that are not well defined. A
feedback mechanism whereby PKC regulates the affinity of
the GnRHR for GnRH has been reported, which suggests a
novel form of �inside-out� signalling (44). Furthermore, it has
recently been shown in aT3-1 cells that the appropriate
organisation of the GnRHR I into low-density membrane
microdomains on the cell surface appears critical in mediating
GnRH I-induced intracellular signalling (43). The important
role played by the GnRHR in gonadotrophin regulation is
illustrated by the findings that several naturally occurring
mutations in the human GnRHR I result in hypogonado-
trophic hypogonadism, with symptoms of delayed sexual
development, low or apulsatile gonadotrophin and sex steroid
hormone levels, in the absence of abnormalities in the
hypothalamic-pituitary axis (6, 69). The majority of these
mutated receptors are mislocalised proteins, exhibiting altered
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Fig. 1. Structural organisation of the the gonadotrophin-releasing hormone
receptor I gene in human, mouse, rat and sheep. Exons are represented by
blocks, with portions of exons containing coding sequences shown as dark
areas, and untranslated regions (UTR) shown as light areas. Sizes of exons
are shown as the sum of the sizes of the coding and noncoding portions of
each exon. The size of the sheep 3¢ UTR has not been established. Introns
are represented by solid lines, with sizes as indicated. All sizes are indicated
in kilobasepairs. For the human gene, the size of the 5¢UTR is given relative
to the most-3¢ transcription start site as identified by Kakar et al. (98) for
human pituitary tissue, and the size of the 3¢ UTR is as established by Fan
et al. (55) for human brain tissue. For the mouse gene, the 5¢UTR is relative
to the major transcription start site as identified by Albarracin et al. (97) in
aT3-1 cells and by Sadie et al. (49) in mouse pituitary tissue. For the rat
gene, the size of the 5¢ UTR is given relative to the major transcription start
site as identified by Reinhart et al. (54) for rat pituitary tissue. For the
human gene, the correlation of coding regions with protein structure is
indicated, as adapted from (58), and is identical for the other species shown.
The figure was adapated from (53–55, 57, 58, 98, 99, 172). Note that the
figure is not drawn to scale.
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membrane trafficking (70) and endoplasmic reticulum retent-
ion that can be restored to function by pharmacological
chaperones (71).
Multiple GnRHR I mRNA transcripts coding for full-

length protein are detected in normal mammalian pituitary
tissue and cell lines. In addition, several species, including
humans, express splice variants that may code for function-
ally relevant truncated GnRHR I proteins (9, 72). In the
gonadotrophs, ligand-mediated GnRHR I activation also
leads to an increase in the expression and enzyme activity of
nitric oxide synthase (NOS) I (73), the enzyme responsible for
producing the signalling molecule nitric oxide (NO). In
particular, this up-regulation occurs during pro-oestrus (74),
and a role for NO in gonadotrophin release, fertility (75) and
mating behaviour (76) has been suggested although the link
between GnRHR I activation and NOS remains unclear. In
some mammals (4), functional GnRHR II mRNA has been
detected in pituitaries. Because stimulation with GnRH II has
been shown to result in preferential FSH release in sheep (8),
it is tempting to speculate that both GnRHR II and GnRH II
may be involved in regulation of gonadotrophin synthesis and
release in the pituitary gonadotrophs. GnRHR I immunore-
activity has also been detected in human thyrotrophs and
somatotrophs, suggesting additional roles for GnRHR I in
the pituitary other than gonadotrophin regulation in gonado-
trophs (9).

Extra-pituitary

Reproductive tissues

In female reproductive tissues, paracrine/autocrine actions of
GnRH via GnRHR I play a role in normal breast (77) and
ovarian (78, 79) development, regulation of the menstrual
cycle, early establishment and maintenance of pregnancy (80)
and in lactation (81, 82). GnRHR I mRNA and/or protein
has been detected in normal human breast tissue and several
ovarian compartments, in endometrial tissue and in placental
trophoblasts, cytoblasts and syncytiotrophoblasts (Table 1)
(9). Endometrial GnRH may play a paracrine/autocrine role
in the early stages of implantation by modulating placental
hCG secretion (15), which is involved in establishment and
maintenance of pregnancy. The ovarian levels of GnRHR I
and GnRH I mRNA vary during the oestrous cycle in the rat,
where they are thought to play a local role in preparing the
ovary for ovulation (83). Recent findings have also revealed
additional novel functions for GnRHRs in the human ovary,
including inhibition of gonadotrophin-regulated steroidogen-
esis and suppression of hCG-stimulated progesterone pro-
duction in granulosa-luteal cells (16–19).
In male reproductive tissue, paracrine/autocrine actions of

GnRH I via GnRHR I play a role in both testis and sperm
development (78), as well as sperm motility and sperm–oocyte
interactions (21). Although GnRHR II transcripts have been
detected in mature human sperm and postmeiotic testicular
cells, these appear not to be functional (61). GnRH or
GnRH-like peptides produced in the human testis and
prostate, and detected in human seminal plasma (84), may
all be part of complex autocrine and paracrine regulatory
circuits, because the GnRHR I is expressed in the human
testis and prostate (85).

Non-reproductive tissues

Hypothalamic GnRH neurones have been found to express
GnRHR I, which is proposed to function in an autocrine
fashion to regulate GnRH release (50). Furthermore, recent
findings in rat primary GnRH neuronal cells suggest that the
GnRH-activated Ca2+ signalling and autocrine regulation
of GnRH release could provide a mechanism for regulated
GnRH I secretion during embryonic neuronal migration (50).
Support for a role for GnRHRs in neuronal differentiation
and migration also comes from work on human foetal
olfactory epithelial cells (10). In addition, the detection of
both GnRHR I (Table 1) and GnRHR II (4) transcripts in
many mammalian brain tissues has supported a role for
GnRH I and/or GnRH II as a neurotransmitter or neuro-
modulator. This hypothesis is supported by the expression of
both GnRH I and GnRHR I in the spinal cord of sheep (86),
as well as functional evidence in vivo for an integral role for
GnRH in sexual behaviour in mammals via several different
brain tissues (4). In addition, the detection of GnRH and
GnRHR I transcripts and/or protein in T-cells (14), spleen
(87) and gastric parietal cells (13), combined with func-
tional evidence, suggests other autocrine/paracrine roles for
GnRHRs in immunomodulation (87, 88), such as adhesion
chemotaxis and homing in T cells (14), and inhibition of
gastric acid secretion (13).

Cancer cells

It is widely accepted that continuous administration of
GnRH analogues inhibits growth of several reproductive
tissue-derived tumours and that this effect may be mediated
via GnRHRs expressed on these cells (20, 22–26). However,
the antiproliferative effects of GnRH analogues on human
melanoma cells (20) suggest that such GnRHR-mediated
growth effects are not unique to reproductive tissue-derived
cancer cells. The GnRHR-mediated intracellular pathways
involved may include nuclear GnRH binding sites (89, 90)
and/or interaction and interference with epidermal growth
factor receptor mitogenic signalling (91, 92). Some investiga-
tors have recently provided indirect evidence to support a
functional role for a putative human GnRHR II in mediating
the antiproliferative effects of GnRH analogues in human
endometrial, leukaemic and prostate cancer cells (63).

Regulation of GnRHR gene transcription in different
mammalian tissues and cell lines

Regulation of expression of GnRHR numbers has been
shown to occur at the transcriptional, translational and
post-translational level. A well-known mechanism for ligand-
mediated post-translational down-regulation of GPCR
numbers on the cell surface involves desensitisation, inter-
nalisation and degradation. Whereas type I mammalian
GnRHRs have been shown to internalise slowly due to the
lack of a C-terminal tail (40), a recent study showed that the
marmoset monkey GnRHR II, which has a C-terminal
cytoplasmic domain, internalises rapidly (93). Homologous
regulation of translation efficiency from GnRHR mRNA has
also been shown to occur in aT3-1 cells (94). However, very
little research has been reported on post-transcriptional
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regulation of GnRHR I gene expression. The present review
will thus focus on transcriptional mechanisms.
Work carried out in animals, in primary cells, as well as in

several model cell lines, has contributed towards an emerging
understanding of the complex transcriptional regulatory
pathways by which mammals regulate transcription of
GnRHR I genes. Much of the detailed molecular mechanisms
of gene regulation of the mouse, rat and human GnRHR I
genes have been investigated in mouse pituitary cell lines. The
aT3-1 cell line is a precursor gonadotroph cell line that retains
several differential functions of gonadotrophs, such as
gonadotrophin a-subunit expression, synthesis and secretion,
as well as expression of GnRHR I and receptor-dependent
responsiveness to GnRH I. However, these cells differ from
mature primary gonadotrophs in that they do not express or
secrete the gonadotrophin beta-subunits LHb and FSHb (95).
The LbT2 mouse pituitary cell line is more differentiated,
exhibiting more pronounced gonadotroph-like characteris-
tics, such as expression and secretion of the gonadotrophin
a-subunit and both gonadotrophin-specific b-subunits (96).
Extensive characterisation of the human GnRHR I gene
promoter has been performed in human reproductive tissue-
derived cell lines.

Promoter characterisation, basal and cell-specific expression
(Fig. 2)

To date, the 5¢ flanking regions of the mouse (97), rat (54),
human (55, 98) and sheep (57) GnRHR I genes have been
characterised. Although the mouse and rat promoters share
>80% homology over 1.9 kb, the rat promoter shares 55%
homology with the human promoter over 2.2 kb, and 63%
homology with the sheep promoter over 0.9 kb (99). There
are several highly homologous regions within the proximal
500 basepairs of the mouse, rat, human and sheep promoters
(99). A number of cis-elements have been conserved, in
sequence as well as position, supporting their role as
important functional elements. No functional characterisa-
tion of mammalian GnRHR II promoters has as yet been
published, and therefore this section will focus on regulation
of transcription of the mammalian GnRHR I gene.
The mouse GnRHR I proximal promoter was the first to be

isolated and characterised (97). The major transcription start
site in primary pituitary tissue (49) and aT3-1 cells (49, 97), is
located at )62 (all numbering is relative to the translation
start site) and is not associated with a consensus TATA box.
In addition to this site, Clay et al. (100) identified other
pituitary transcription start sites at )90 and )200 bp in aT3-1
cells. Gonadotroph-specific activity of the mouse promoter in
aT3-1 cells is conferred by a tripartite basal enhancer, which
includes binding sites for steroidogenic factor-1 (SF-1) at
)244/)236, and activator protein-1 (AP-1) at )336/)330,
respectively, as well as an element originally termed GnRHR-
activating sequence (GRAS) at )391/)380 (102). The pan-
pituitary homeobox transcription factor Pitx-1 has been
shown by chromatin immunoprecipitation assay to interact
with AP-1 in intact LbT2 cells, and functional evidence in
other cell types indicate that this interaction might be
important for GnRHR I gonadotroph-specific, basal promo-
ter activity (103). In addition, the promoter region around

)360, shown to bind LHX3 homeodomain protein in vitro
and in intact cells, was recently demonstrated to be important
for mouse GnRHR I basal promoter activity in aT3-1 cells
(104). Experiments with transgenic mice suggest tissue-speci-
fic promoter usage for the mouse GnRHR I gene, because
1900 bp of mouse GnRHR I 5¢ flanking sequence can drive
reporter expression in pituitary, brain and testis, but not in
the ovary, indicating an essential requirement for promoter
elements located further upstream for ovary-specific expres-
sion in vivo (105).
In the rat proximal GnRHR I promoter, the transcription

start site in aT3-1 cells was initially found to be 103 bp
upstream from the start codon, with a putative TATA box
23 bp upstream from the transcription start site (54). A
different study group later identified five major transcription
start sites in aT3-1 cells, four of which are clustered around
)103, and one situated at )30, along with several minor start
sites (99). Maximal gonadotroph-specific expression of the rat
GnRHR I is conferred by multiple regulatory domains within
1260 bp of 5¢ flanking region. The proximal 183 bp consti-
tutes a self-sufficient, but fairly weak promoter which confers
basal but not gonadotroph-specific activity. A distal
GnRHR-specific enhancer (GnSE), located between )1135
and )753, contains binding sites for GATA-related and LIM
homeodomain-related factors, and facilitates gonadotroph-
specific expression through functional interaction with an
SF-1 site at ) 245 (99, 106) (Fig. 2). The mechanisms involved
in gonadotroph-specific expression of the mouse and rat
GnRHR I are therefore clearly different, although both
involve SF-1 sites. An AP-1 site in the rat promoter is also
involved in basal promoter activity, but has no influence on
the GnSE function. The function of the proximal rat
promotor and the GnSE is supported by results obtained in
transgenic mice, showing that the proximal 1.1-kb rat
GnRHR I promoter is sufficient to drive gonadotroph-
specific expression. Furthermore, 3.3 kb of the rat promoter
was found to drive cell-specific expression of the transgene in
gonadotrophs and certain areas of the brain (51).
The 5¢ flanking regions of the human and sheep genes are

much more complex than that of the mouse and rat genes,
with the presence of multiple transcription start sites and
CAP sites (57, 107). Although the sheep proximal 5¢ flanking
region is structurally similar to the mouse promoter, it has
greater sequence homology to the human promoter (57). No
further functional characterisation of sheep promoter ele-
ments has been performed. In stark contrast to the single start
site identified in mouse pituitary tissue (49), 18 transcription
start sites have been identified for the human GnRHR I gene
in human pituitary tissue (98). These start sites are located
between )1748 and )577 and are well dispersed among
several TATA and CCAAT boxes. The proximal 173 bp of
the human 5¢ flanking region, although not a self-sufficient
promoter, is critical for basal promoter activity in aT3-1 cells
(108). However, characterisation of the human pituitary
promoter has been hampered by unavailability of human
gonadotroph cell lines, and the results in mouse cell lines may
not be physiologically relevant. The mouse, rat and human
promoters all contain several SF-1 sites, with at least one site
in each promoter occurring in the 5¢ untranslated region. For
the human promoter, this site is situated at )140/)134 and is
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primarily responsible for mediating high cell-specific expres-
sion in aT3-1 cells (108), whereas the same function has not
been assigned for similar sites in the mouse and rat promoters
(situated at )15/)7 in both species) (49). An upstream Oct-1
binding at )1718 is also required for basal activity of the
human promoter in aT3-1 cells (109).
The regulatory elements involved in expression of the

mouse, rat and sheep GnRHRs have not been characterised
in cells other than pituitary cell lines. However, cell-specific
cis and trans elements have recently been identified for the
human promoter in ovarian, placental and neuronal medull-
oblastoma cell lines. Expression of the human GnRHR I gene
in both aT3-1 mouse gonadotroph cells and OVCAR-3
human ovarian carcinoma cells requires two promoter
regions, located between )771/)557 and between )1351/
)1022 (110). However, different trans-acting factors appear to
bind to these regions in the different cell-types, possibly
providing a mechanism for cell-selective expression (110).
Two additional upstream promoters are responsible for high
expression levels in human placental and ovarian granulosa-
luteal cells, respectively (111). The granulosa (Fig. 2) cell-
specific promoter is situated between )1300 and )1018, and
contains a GATA element and two putative CCAAT/
enhancer binding protein (C/EBP) motifs that were shown
to be crucial in regulating GnRHR I transcription in the
human ovarian granulosa-luteal cell lines SVOG-4o and
SVOG-4m (111). GnRHR I expression in human placental
cells requires a distal promoter region, located between
)1737/)1346, in combination with a proximal region,
between )707 and )167 (109). At least five placental
transcription start sites were identified within the distal
promoter region (109). A strong negative regulatory element
is located between )1018 and )771, with a strong positive
regulatory region between )771 and )577 (109). The distal
placenta-specific promoter also contains an Oct-1 and an
AP-1 binding site, required for basal expression in placental
cells and other cell-types, as well as a cAMP response element
(CRE) and a GATA element, essential for placenta-specific
expression (109). Taken together, these studies indicate that
various reproductive tissues differentially utilise downstream
and upstream promoter elements and transcription factor
binding sites for tissue-specific transcription of the human
GnRHR I gene (111).
The transcription factor Oct-1 appears to regulate basal

GnRHR I gene expression both positively and negatively,

depending on the species and cell-type. As already mentioned,
Oct-1 is required for basal expression of the human GnRHR I
gene in several cell types, including placental, ovarian and
gonadotroph cell lines, via an Oct-1 binding site at )1718
(109). On the other hand, in placental JEG-3 cells, ovarian
OVCAR-3 cells and aT3-1 cells, Oct-1 acts as a potent
repressor of the human GnRHR I promoter via a negative
regulatory element (NRE) at position )1017 (112). Oct-1 is
also involved in basal and GnRH-stimulated activity of the
mouse GnRHR I promoter in aT3-1 cells via the SURG-1
(Sequence Underlying Responsiveness to GnRH) element
(48).
The mouse CRE has been found to be essential for basal

promoter activity in some pituitary cell lines, such as LbT2
gonadotroph cells (Sadie et al., unpublished data) and GGH3

somatolactotroph cells (113), but the rat CRE does not
appear to be involved in basal promoter activity in aT3-1 cells
(114). A CRE at position )1650 is required for placenta-
specific expression of the human GnRHR I gene (109). These
findings indicate a cell- and/or species-specific contribution of
CREs to basal GnRHR I expression levels.

Transcriptional regulation of GnRHRs in the pituitary and in
gonadotroph cell lines by physiological signals

GnRH

Homologous regulation of the GnRHR I is a physiologically
relevant mechanism for increasing pituitary sensitivity to
GnRH during ovulation (31). GnRH I activation of GnRHR
I is thus a potent stimulus for increased expression of multiple
genes including the gene encoding the GnRHR itself. GnRH I
regulates the GnRHR I in a biphasic manner, with initial
(short-term) exposure to hormone leading to an increase in
receptor expression, whereas prolonged exposure leads to
receptor down-regulation (32). It is widely accepted that
pulsatile GnRH I stimulation is essential for appropriate
GnRHR I expression levels, at the same time avoiding
receptor down-regulation due to continuous hormonal sti-
mulation (115). GnRH I pulse frequency and amplitude vary
with physiological state, during the oestrous cycle in mam-
mals and the menstrual cycle in humans, as well as during
puberty and menopause (32). Regulation of pituitary
GnRHR I mRNA levels and receptor numbers by GnRH I
also differs between sexes (29). Recent experiments in
transgenic mice show that mutation of the AP-1 site at

Fig. 2. Functional elements in the gonadotrophin-releasing hormone receptor I promoter regions of human, mouse and rat. Shaded boxes and striped boxes
represent TATA and CCAAT elements, respectively. Black boxes represent elements that have been functionally characterised. White boxes represent putative
elements that have been identified through promoter sequence analysis. Transcription start sites are indicated with arrows, and the translation start site with
�ATG�. For the human gene, the most-3¢ transcription start site, as identified by Kakar et al. (98) for human pituitary tissue, is indicated. Other transcription
start sites, as identified for human brain (55), pituitary (98) and placental tissues (109), are not indicated. Hormone responses and their corresponding cis-
elements established in functional studies in pituitary cell lines are indicated. The mouse promoter has not been functionally characterised upstream of the
GRAS element. This figure was adapted from (9) and (72), and other references quoted in the text. *GRAS contains binding sites for SMAD, AP-1 and FoxL2
proteins (45, 47). #Several functional elements overlap in this region. The positions for DARE and SURG-1 are indicated. LHX2 was specifically shown to
bind DARE (154), but LHX3 was shown to bind an overlapping site (104). SF-1, Steroidogenic factor-1 binding site; PRE, progesterone response element;
hPRE, PRE half-site; CRE, cAMP response element; AP-1, activator protein 1 binding site; C/EBP, CCAAT/enhancer binding protein motif; GRE/PRE,
glucocorticoid response element/progesterone response element; PEA-3, phorbol ester response element; Pit-1, Pit-1 transcription factor binding site; Oct-1,
octamer transcription factor-1 binding site; GATA, GATA transcription factor binding site; LIM, LIM-homeodomain factor binding site; GRAS, GnRH
receptor activating sequence; DARE, downstream activin response element; SURG, sequence underlying responsiveness to GnRH; GnSE, GnRHR-specific
enhancer; NF-Y, nuclear factor-Y binding site; NRE, negative regulatory element; GL-specific, granulosa-luteal cell-specific; GC, glucocorticoid. Note that the
figure is not drawn to scale.
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)336 leads to a loss of GnRH I regulation of the mouse
GnRHR I promoter (105).
The effects of GnRH I on GnRHR I protein and/or

mRNA levels in primary pituitary cultures and cell lines
suggest a direct mechanism of GnRH on pituitary cells, with
a combination of both transcriptional and post-transcrip-
tional mechanisms regulating GnRHR I expression levels. In
attempts to mimic the situation in vivo, rat pituitary cultures
were stimulated with GnRH I in a pulsatile fashion, resulting
in increased GnRHR I mRNA levels (30). The mechanism
appears to involve MAPK and possibly also cAMP/PKA
(116, 117). Different pulse frequencies were found to have
different effects on GnRHR I mRNA, with higher pulse
frequencies causing maximal stimulation (118).
In aT3-1 cells, continuous stimulation with GnRH I

appears to decrease endogenous GnRHR I levels via post-
transcriptional mechanisms, although transcriptional mecha-
nisms also contribute (94, 119). By contrast, the expression
levels of mouse GnRHR I promoter–reporter constructs
transfected into aT3-1 cells increase in response to 100 nM
GnRH I after 4–6 h of continuous stimulation (32). This
GnRH I responsiveness was mapped to two regions, desig-
nated SURG-1 and SURG-2 (32). SURG-1 contains binding
sites for nuclear factor Y (NF-Y) and Oct-1, and it was shown
by chromatin immunoprecipitation assays that GnRH
increased binding of these factors to SURG-1 in intact cells
(48). SURG-2 contains the AP-1 site described earlier. GnRH
I responsiveness via SURG-2 appears to be mediated by
PKC-induced activation of JNK which increases expression,
activity and binding of AP-1 proteins to SURG-2 (46).
SURG-1 and SURG-2 can respond to GnRH I independ-
ently, but the AP-1 element is critical for conferring maximal
GnRH I responsiveness (32). These findings are in agreement
with the results obtained in transgenic mice (46). However, in
the mouse promoter, responsiveness to GnRH I also involves
binding of Smad and AP-1 factors to another composite
element called GRAS, which occurs further upstream at
position ) 391/)380 (Fig. 2) (45, 52). This is discussed in
more detail below.
Down-regulation of the transcriptional activity of the

transfected human GnRHR I promoter-reporter construct
by 24 h of continuous GnRH agonist treatment in aT3-1 cells
is also mediated via an AP-1 element in a PKC-dependent
fashion (120). In LbT2 cells, endogenous GnRHR I mRNA
and protein levels are up-regulated upon long-term pulsatile
GnRH I stimulation (96, 121), whereas long-term continuous
stimulation down-regulates receptor levels (121). By contrast,
both continuous and pulsatile stimulation induced only a
small increase in the activity of a transfected 1.2 kb mouse
GnRHR I promoter-reporter construct in LbT2 cells (121).
Conn et al. (122) studied the regulation of mouse GnRHR I
promoter activity in the GGH3 cell line, which was engineered
by stably transfecting GH3 rat somatolactotroph cells with
rat GnRHR I cDNA. Several intracellular signalling path-
ways were found to be involved in mediating the
up-regulation of the mouse GnRHR I promoter activity by
GnRH I in these cells, such as PKA (123), PKC and the Ca2+

signalling pathway (124). However, unlike the results in aT3-
1 cells (31, 32), the AP-1 site does not appear to be involved
(35). Although the PKA pathway mediates homologous

regulation of the mouse GnRHR I promoter in GGH3 cells,
this is not the case for the mouse or human promoters in aT3-
1 cells, most likely reflecting differences in GnRHR I G-
protein coupling between the cell lines. However, functional
studies do indicate a role for the PKA pathway and cAMP
response elements (CREs) in regulating GnRHR I mouse, rat
and human promoter activity. These promoters all contain
functional CREs and are up-regulated by activators of the
PKA pathway in aT3-1 cells (49, 114, 125). It is thus likely
that in pituitary or extra-pituitary cells in which the GnRHR
I can couple to Gs, homologous regulation will involve the
PKA pathway. Other factors likely to be involved in
mediating PKA responses, as shown in aT3-1 cells, are
CREB (94) for the rat and SF-1 (49, 114) for the rat and
mouse promoters.

Steroids

Studies in rat, sheep and cow conclude that oestradiol
increases the level of GnRHR I mRNA and protein in
pituitary (126, 127) consistent with a requirement for a
strong, prolonged LH surge for ovulation during the
preovulatory phase of the reproductive cycle. Experiments
in ovariectomised transgenic mice harbouring a sheep
GnRHR I promoter-reporter construct, as well as experi-
ments in sheep primary pituitary cells (128–131), suggest that
transcription is the predominant mechanism of oestradiol up-
regulation of GnRHR I numbers in the pituitary. However,
oestradiol stimulation of aT3-1 cells was found to down-
regulate GnRHR I numbers (132), whereas oestradiol stimu-
lation of LbT2 cells had little effect on endogenous GnRHR I
gene expression (96, 132). These conflicting results highlight
the apparent discrepancies that may occur when using
transformed cell lines compared to primary cells that contain
mixed cell populations. In addition, one group reported that
the GnRHR I mRNA levels increase before an increase in
circulating concentration of oestradiol (133), leading them to
postulate that a decrease in progesterone, rather than an
increase in oestradiol, is required for up-regulation of
GnRHR I numbers.
In most mammals, high levels of progesterone correlate

with reduced GnRHR I protein levels in pituitary and
reduced pituitary responsiveness to GnRH I, such as that
occurring during the luteal phase of the menstrual cycle and
during pregnancy (126, 134, 135). In sheep pituitary cells,
progesterone was found to dramatically down-regulate
GnRHR I numbers within 48 h (129, 136), consistent with
a direct effect of progesterone on the pituitary. Progesterone
was also able to prevent oestradiol- and inhibin-induced
increases in GnRHR I mRNA levels in these cells. Recent
results with the human GnRHR I promoter in aT3-1 cells,
showing that progesterone administration and overexpres-
sion of progesterone receptor (PR) isoforms inhibited
GnRHR I promoter activity (137), suggest that, at least
for the human promoter, repression by progesterone occurs
via direct transcriptional effects on the GnRHR I promoter
in gonadotrophs. Furthermore, this negative effect was
shown to occur via a glucocorticoid response element
(GRE)/progesterone response element (PRE) at )535/)521,
which has 75% homology to a consensus progesterone
response element (Fig. 2), and to which PR isoforms were
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shown to bind in vitro (137). In the same study, a half-PRE
binding site was shown to be located at )402/)397.
However, this site did not play a role in the progesterone-
mediated transcriptional effects. Interestingly, another puta-
tive GRE/PRE is located further upstream (55), but its
function remains unknown.
In male rats, pituitary GnRHR I mRNA levels appear to

be repressed by testosterone because a negative correlation
exists between mRNA levels and testosterone concentrations
in serum (30, 64). GnRHR I numbers in primary pituitary
cultures from male rats decreased after treatment with
a-dihydrotestosterone (138), consistent with in vivo results
and suggesting direct actions of a-dihydrotestosterone on the
pituitary. By contrast, a-dihydrotestosterone up-regulated
GnRHR I mRNA levels in LbT2 cells (139).
It is well documented that chronic or prolonged stress

results in inhibition of gonadotrophin secretion and inhibi-
tion of reproduction in mammals, whereas the effects of acute
stress are less clear and can even stimulate reproduction (140).
Although the mechanisms whereby stress regulates reproduc-
tion in mammals are not well defined, there is evidence that
glucocorticoids play an important role in modulating pituit-
ary responsivess to GnRH I, as part of a feedback mechanism
from adrenal to pituitary (140, 141). Further evidence for
direct actions of glucocorticoids on pituitary is provided by
findings that cortisol inhibits GnRH-induced LH release from
bovine and porcine primary pituitary cells (142, 143). One
mechanism whereby glucocorticoids may regulate GnRH
responsiveness in pituitary may be via modulating GnRHR
levels. Rosen et al. (144) showed that glucocorticoids aug-
mented GnRH I-induced increase in GnRHR I numbers in
castrated testosterone-replaced male rats. However, earlier
studies in rats did not show a change in GnRHR I levels after
treatment with corticosterone (138, 145). In sheep, adminis-
tration of cortisol led to a decrease in GnRHR protein, but
did not reduce GnRHR I mRNA levels (146). These
experiments suggest that varying effects of glucocorticoids
on GnRHR I levels may depend on species, the cellular
milieu, and the dose, type and duration of glucocorticoid
administration. However, a direct positive transcriptional
effect of glucocorticoids on the mouse GnRHR I promoter
has been established. Glucocorticoids increased endogenous
GnRHR I mRNA levels in LbT2 cells, whereas pretreatment
with GnRH I further augmented this increase (96). Gluco-
corticoids can also directly up-regulate activity of the mouse
GnRHR I promoter in GGH3 cells (35). Although the tested
1.2 kb of 5¢ flank of the mouse gene does not contain a
classical GRE (Fig. 2), the glucocorticoid-responsive region
of the mouse GnRHR I promoter was mapped to the AP-1
site at )336 in GGH3 cells (35). The results from this study
suggest that liganded glucocorticoid receptor interacts
directly or indirectly with AP-1 proteins, such as c-Jun, to
increase GnRHR I transcription (35).

Other physiological regulators

Activin and inhibin, both members of the transforming
growth factor-b family of proteins, are produced by primary
gonadotrophs (147), aT3-1 (148) and LbT2 cells (149), and
exert autocrine/paracrine effects on pituitary cells. Activin-A
stimulates the rate of synthesis of new GnRHRs in rat

pituitary cell cultures (150), and decreases receptor numbers
in sheep pituitary cultures (151). Inhibin was found to
prevent the stimulation of receptor synthesis by GnRH I in
rat pituitary cultures (152), but increases GnRHR I mRNA
levels (129) and receptor numbers (151) in sheep pituitary
cultures. Whether these differences are species-specific or due
to different experimental conditions is not known. In aT3-1
and LbT2 cells, long-term stimulation with activin-A
up-regulates endogenous GnRHR I mRNA synthesis and
mouse GnRHR I promoter-reporter activity (148, 149), and
pretreatment of aT3-1 cells with activin enhances the
response of the mouse GnRHR I promoter to GnRH I
(45). Follistatin blocks the activin-mediated stimulation at
both mRNA and promoter level. In addition, follistatin
decreases the basal activity of the mouse GnRHR I
promoter in aT3-1 and LbT2 cells, indicating that endog-
enous activin maintains basal GnRHR I expression levels in
these cells (45, 148, 149). Activin responsiveness of the
mouse GnRHR I promoter was mapped to the GRAS
element (153) described earlier, together with a region
immediately downstream from GRAS, termed DARE
(down-stream activin regulatory element) (154) (Fig. 2).
The mouse GRAS element is a composite regulatory
element for which the functional activity in aT3-1 cells
depends on the proper organisation and assembly of a
multiprotein complex, which includes Smad, AP-1 and
FoxL2 proteins (47). Basal GnRHR I promoter activity,
as well as responsiveness to GnRH I and to activin require
binding of Smad factors to the Smad binding element, as
well as binding of AP-1 to a novel AP-1 element contained
within GRAS (Fig. 2) (45, 52). The LIM-homeodomain
protein LHX2 was shown to bind the DARE sequence
in vitro (154). It has been postulated that activin responsive-
ness requires a specific configuration of multiple transcrip-
tion factors on these distinct elements, to form a complex
activin-responsive �enhanceosome� (154). Interestingly, the
sequence of the corresponding GRAS element in the rat
GnRHR I promoter differs from the mouse GRAS by only
one base-pair, but does not confer activin responsiveness to
the rat promoter (106, 154), suggesting that the rat DARE
sequence is nonfunctional for activin responsiveness.
Pituitary adenylate cyclase activating polypeptide

(PACAP) is a hypothalamic peptide hormone that modulates
pulsatile GnRH I release from the hypothalamus and
responsiveness to GnRH I, as well as regulates gonadotro-
phin subunit expression (155). The mouse, rat and human
GnRHR I promoters have all been shown to be regulated by
PACAP in aT3-1 cells (49, 114, 125). For the rat and human
promoters, this has been shown to involve PKA (114, 125).
Two promoter elements, designated PARE (PACAP response
element) I and PARE II, are required for the PACAP
response of the rat GnRHR I promoter. PARE I includes the
SF-1 binding site at position )245/)237, along with binding
sites for additional factors, whereas PARE II contains an
imperfect cAMP response element (CRE) at position )110/
)103 that can bind CREB (114). Both the SF-1 site and the
imperfect CRE are conserved in relative position in the mouse
GnRHR I promoter (Fig. 2), raising the possibility that a
similar mechanism could be responsible for the PACAP
response of the mouse promoter.
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Transcriptional regulation of GnRHRs in extra-pituitary
tissues and cell lines by physiological signals

Ovary and placenta

By contrast to results obtained in primary rat pituitary
cultures (30, 156), homologous regulation of GnRHR I by
GnRH I has not been consistently observed in rat primary
granulosa cells (157, 158). Treatment of human granulosa cell
lines (SVOG-4o and SVOG-4m) with high and low doses of
GnRH II induced a significant decrease in GnRHR I mRNA
levels, whereas GnRH I induced a down-regulation at high
and an up-regulation at low doses, showing that the two
ligands regulate GnRHR I transcription differentially (16).
Responsiveness of GnRHR I transcription to oestradiol
appears to vary between ovarian cell types. In human primary
ovarian surface epithelial cells, as well as in OVCAR-3
ovarian cancer cells, treatment with oestradiol caused a
significant down-regulation of GnRHR I mRNA (37, 159,
160). In human granulosa-luteal cells, short-term oestradiol
treatment (6 h) increased GnRHR I mRNA levels, whereas
long-term treatment (48 h) decreased GnRHR I mRNA
levels (161). This observation is consistent with what was
found in vivo (30, 162). A recent study in ovarian cancer cells
demonstrated that oestradiol represses GnRHR I transcrip-
tion in a ERa-dependent and ERb-independent way, via an
AP-1-like motif at )130/)124 (9, 37). Repression of GnRHR
I promoter activity by oestradiol did not involve direct
binding of the ER to the AP-1 site, suggesting that the ER
interacts with other proteins bound to this motif, such as c-
Jun or c-Fos. Other physiological modulators of GnRHR I
expression in human primary granulosa-luteal cells are hCG
(38) and melatonin (34), although the mechanisms are not
well defined. hCG down-regulates GnRHR I mRNA levels in
primary ovarian granulosa-luteal cells without changing
GnRH I expression (38). Until recently, regulation of
reproductive function by melatonin was assumed to be
restricted to the level of the pituitary and the hypothalamus.
However, the presence of melatonin in the follicular fluid and
of melatonin binding sites in the ovary suggests a role for this
hormone in the ovary. In support of this, melatonin reduces
both GnRH I and GnRHR I mRNA levels in human primary
granulosa-luteal cells (34), suggesting that melatonin directly
regulates ovarian function.
In the human choriocarcinoma JEG-3 and the immortal-

ised extravillous trophoblast IEVT placental cell lines, the
human GnRHR I mRNA is up-regulated after 24 h of
continuous stimulation with GnRH I (163). This may be a
tissue-specific mechanism to help maintain GnRH I-stimu-
lated hCG secretion throughout pregnancy. The kinase
pathways and transcription factors mediating this response
have not been determined, but may involve the PKC
pathway, as shown in aT3-1 cells, and/or perhaps the
PKA pathway, because the human gene is up-regulated by
activators of the PKA pathway, via binding of CREB to
two AP-1/CRE elements (9). Progesterone has a positive
effect on GnRHR I promotor activity in the JEG-3 placental
cell line in contrast to the repression observed in aT3-1 cells
(137). The GRE/PRE at position )535/)521 was shown to
mediate PR regulation in both aT3-1 gonadotroph and
JEG-3 placental cells (137). Furthermore, it was shown that

both PR-A and PR-B isoforms bound to the PRE in vitro
and that the balance between PR-A and PR-B overexpres-
sion in the different cell lines can determine the response to
progesterone (137). Whereas PR-A inhibits transcription in
both placental and pituitary cells, PR-B activates transcrip-
tion in placental cells, and inhibits transcription in pituitary
cells.

Brain

In the GT-17 hypothalamic GnRH neuronal cell line hCG
was found to down-regulate the expression of the GnRHR I
as well as of GnRH I (39). By down-regulating the GnRH/
GnRHR system, hCG may disrupt the autocrine regulation in
hypothalamic GnRH neurones. Results obtained in the
TE671 neuronal medulloblastoma cell line showed that
progesterone has a potent negative effect on human GnRHR
I promoter activity, and up-regulates GnRH I expression
(36). Overexpression of PR-A increased sensitivity towards
progesterone-mediated repression of the GnRHR I gene,
whereas PR-B reversed the PR-A-induced repression, sug-
gesting that negative regulation occurs in the absence of
overexpression via endogenous PR-A (36).

Immune cells

Consistent with the idea that immune function is differentially
regulated during the reproductive cycle, expression of
GnRHR I in lymphocytes was shown to vary throughout
the oestrous cycle and parallels expression in pituitary (87).
In vitro administration of GnRH and oestradiol increased
GnRHR I mRNA levels in immune cells (87) but the
mechanisms remain unclear.

Discussion and future perspectives

GnRHRs are expressed in multiple mammalian tissues and
cell types (Table 1) and have diverse functional roles, in
addition to the established endocrine role for gonadotroph
GnRHRs in regulation of reproductive physiology. Further-
more, the profile of hormones that regulate expression of the
GnRHR I is expanding and now includes adrenal glucocor-
ticoids, gonadal sex steroids, as well as hCG, activin, inhibin,
follistatin, PACAP, melatonin and GnRH. It is well-estab-
lished that sex steroids and glucocorticoids feedback and
inhibit the HPG axis at the hypothalamic, pituitary and
gonadal levels, providing mechanisms for fine-tuning repro-
ductive function (140). Studies also suggest additional con-
nections between physiological processes, demonstrating that
the neuroendocrine, immune, inflammatory and stress-
response systems are functionally integrated and bidirection-
ally regulated (164–169). Although the target genes and
intracellular mechanisms of such feedback regulation are
poorly defined, the GnRHR is emerging as a potential target
gene for facilitating cross-talk between these systems in
multiple tissues via autocrine/paracrine and endocrine signal-
ling. The identification of two forms of both the mammalian
hormone and receptor, expressed in multiple tissues, and in
many cases coexpressed, further increases the diverse signal-
ling potential of the GnRH/GnRHR system in mammals.
However, further work is needed to clearly establish the
presence of GnRHR I and/or GnRHR II in the various
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tissues and cells, using receptor-subtype specific functional
and morphological methods.
Studies to determine the promoter elements, transcription

factors and detailed molecular mechanisms of transcription
regulation have focused on the mouse, rat and human
GnRHR I promoters. No characterisation of the mammalian
GnRHR II promoters has been published to date, most likely
due to the absence of suitable model systems where the
GnRHR II is known to be endogenously expressed. Most of
the GnRHR I work has been performed using transient
transfections in cell lines, using the human, mouse and rat
GnRHR I promoters transfected into aT3-1 and LbT2 mouse
pituitary gonadotroph cell lines, and, more recently, with the
human GnRHR I promoter transfected into human ovarian,
placental and neuronal medulloblastoma cell lines. Some
work has also been performed in primary cells, which usually
contain mixed cell populations. It is clear that there are many
apparent discrepancies between the results obtained in the
various model systems, highlighting the difficulties inherent in
finding suitable model systems that are physiologically
relevant. These discrepancies may be due in part to the
absence of native chromatin structure when comparing
responses of transfected promoter constructs versus endog-
enous genes, or due to cell-specific differences between cell
lines. In addition, indirect effects of one cell type on other cell
types in primary cultures, or the use of heterologous
expression systems may result in discrepancies. Finally,
variations in experimental procedures such as doses and
times and method of administration (e.g. continuous versus
pulsatile) of hormonal stimulation, and culture conditions
may lead to different results. Some experiments in transgenic
mice have been particularly helpful in confirming the results
obtained in vitro, such as the finding that an AP-1 site in the
mouse promoter is necessary for homologous regulation (46).
Two elegant studies have also recently addressed the issue of
protein–DNA interactions in intact cells by employing the
technique of chromatin immunoprecipitation assays to iden-
tify factors binding to the endogenous mouse GnRHR I
promoter, to confirm the results obtained in vitro (48, 103).
Certainly, future studies will be helpful in determination of
protein–DNA interactions in intact cells for other factors.
Despite the limitations of the present model systems,

several interesting insights into the mechanisms of GnRHR I
regulation have emerged. Experiments performed in trans-
genic mice indicate that the mouse gene does not exhibit
multiple, widely spaced, tissue-specific promoter usage in the
pituitary, brain and testis, although they suggest that a
different promoter that is upstream of )1900 in the mouse
GnRHR I gene is used in the ovary (105). Similarly,
experiments with transgenic mice harbouring the rat GnRHR
I promoter found that a single 3.3-kb promoter is capable of
driving transcription in gonadotrophs and multiple brain
tissues (51). The human promoter uses different promoters in
the pituitary compared to the placenta, and even within
different ovarian cell types, although these regions all occur
within the first 2 kb of 5¢ flanking region (109–111). Evidence
is emerging from work on the mouse and human GnRHR I
promoters that mechanisms of regulation of transcription in
the ovary appear to differ substantially as compared to other
tissues investigated to date (105, 110, 111).

Mouse, rat and human promoters also appear to exploit
the concept of multiple commonly expressed transcription
factors binding to a composite element in a particular
structural organisation, to achieve tissue-specific expression.
In addition, the mouse GnRHR I promoter uses the complex
SURG and GRAS composite elements to achieve homolog-
ous regulation in aT3-1 cells (32, 45, 48, 52, 102, 154).
Although the components of these complex elements differ
between species, they appear to often rely on some common
factors. The human, mouse and rat promoters all contain
several SF-1 sites, with at least one being involved in
gonadotroph-specific expression (102, 106, 108), although
SF-1 is expressed in several other tissues. Interestingly, the
mouse and human promoters contain at least one AP-1 site
shown to be involved in mediating homologous regulation via
the PKC pathway in the pituitary (46, 120). However, the
apparent lack of an AP-1 site in the sheep promoter (57)
suggests that the PKC pathway may not be involved in
homologous regulation in this species. It appears likely that
both the rat and mouse promoters could employ similar
mechanisms for PACAP regulation (49, 114), based on the
presence of conserved promoter elements, whereas species-
specific differences appear to exist for their regulation by
activin (106, 154). Mechanisms of homologous regulation
also appear to be cell-specific, and are likely to depend on the
physiological state of the cells, as shown by different findings
for GnRHR I regulation in rat primary granulosa cells (157,
158) versus primary rat pituitary cultures (30, 156).
In the light of the potential role of GnRHR genes as targets

for cross-talk between various physiological systems, it is of
great interest to determine whether adrenal and sex steroids
directly regulate expression of GnRHR genes, and whether
these mechanisms are transcriptional or post-transcriptional.
Studies in some mammals show repressive effects with
progesterone (126, 134, 135) and stimulatory effects with
oestrogen (29, 126, 170, 171) on GnRHR I expression in the
pituitary. However, experiments in primary cells and cell lines
from pituitary and extra-pituitary origins reveal no consistent
picture, suggesting species-, cell- and/or promoter-specific
differences in response to these steroids (37, 96, 129, 132, 136,
137, 161). To date, no classical oestrogen or androgen
response elements have been identified in the mouse, rat,
human or sheep GnRHR I promoters. Although the same
applies for glucocorticoid and progesterone response elements
in the mouse, rat and sheep promoters, several PRE/GREs
have been identified for the human promoter (137). Data are
accumulating to suggest that steroid regulation of these
promoters may occur via nonclassical pathways other than
up-regulation via binding of homodimers of steroid receptors
to steroid response elements. Several recent studies pinpoint a
direct transcriptional effect of some steroids on mammalian
GnRHR I promoters. A direct effect of oestradiol on the
human GnRHR I promoter in human ovarian and breast
cancer cell lines has been established, mediated via an AP-1
site (37). Interestingly, different ER isoforms exhibited
different effects on the promoter, with the oestradiol response
being ERa-dependent, but ERb-independent (37). An AP-1
site is also involved in glucocorticoid regulation of mouse
GnRHR I promoter activity in the GGH3 rat somatolacto-
troph cell line (35). However, in this case, an up-regulation is
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observed in response to glucocorticoids. Because it is well
established that steroid receptors can inhibit transcription of
several target genes via interference with the actions of AP-1,
the up-regulation of mouse GnRHR I promoter activity via
AP-1 may represent a novel mechanism. Progesterone has
been shown to both up-regulate [in a human placenta cell line
(137)] and down-regulate [in the mouse aT3-1 gonadotroph
(137) and human medulloblastoma (36) cell lines] transcrip-
tion of the human GnRHR I promoter, via binding of the PR
to a PRE at )535/)521. Reminiscent of the situation with the
ER described above, different isoforms of the PR have
differential cell-specific effects on the human promoter (36,
137). Taken together, these ER and PR results suggest that,
for the human promoter, variations in the levels of receptor
isoforms may be a widely used mechanism for differential
tissue-specific regulation in pituitary and extra-pituitary
tissues. This could allow differential expression levels of the
GnRHR I by varying the relative concentrations of receptor
isoforms in response to different signals and thereby integrate
connections between multiple physiological processes.
Continued research on the regulation of expression of

mammalian GnRHRs is important for understanding repro-
ductive endocrinology and could lead to novel insights on
receptor function.
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