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Abstract 
 

Grapevine diseases, in particular virus and virus-like diseases, are threatening grapevine 

industries worldwide; also in South Africa. Grapevine leafroll (GLR) is one of the most 

important diseases of grapevines, occurring in all grape-producing countries worldwide. 

Grapevine leafroll-associated virus 3 (GLRaV-3) is known to be closely associated with GLR 

disease and occurs commonly in South African vineyards. In this study three genetic variants 

of GLRaV-3 were identified in vineyards of the Western Cape, South Africaby single strand 

conformation polymorphism (SSCP) profiles generated from a region amplified in ORF5. A 

specific SSCP profile could be assigned to each variant group and these wereconfirmed by 

sequencing of the ORF5 regions.These results demonstrated that SSCP analysis on this region 

in ORF5 provides a fast and reliable indication of the GLRaV-3 variant status of a plant, 

which in many instances showed mixed infections. The full genome sequence of one 

representative of each variant group i.e. isolates 621 (group I), 623 (group II) and PL-20 

(group III), was determined by sequencing overlapping cloned fragments of these isolates. 

The sequences of genomic 5’ ends of these isolates were determined by RLM-RACE. 

Sequence alignment of the 5’UTRs indicated significant sequence and length variation in this 

region, between the three South African variant groups. Nucleotide sequence alignment of the 

Hsp70h and CP gene regions of these isolates with those of isolates from elsewhere in the 

world, followed by phylogenetic analysis, further supported the presence of three GLRaV-3 

variants in South Africa, and that two or three additional variant groups occurs elsewhere in 

the world. We further investigated the prevalence of these three GLRaV-3 variants in mother 

blocksof different cultivars and from different vine growing regions, using SSCP analysis. 

The majority of the plants studied, were infected with the group II variant, similar to isolates 

623 and GP18. The distribution of the three GLRaV-3 variants within a spatio-temporally 

recorded cluster of diseased plants was studied by means of SSCP profile analysis. We 

showed that different GLRaV-3 variants are transmitted to adjacent plants in an infection 

cluster. Results showed that, in some leafroll disease clusters, the variant that was present in 

the original GLRaV-3 infected plant of a cluster was transmitted to adjacent plants in a row 

and across rows. Some plants in the cluster were also infected with variants not present in the 

original plant. These infections could have been caused by mealybug vectors feeding on 

plants from surrounding areas and then infecting these plants.  

 

The scientific information generated on GLRaV-3 variants in this project contributed to the 

advancement of our knowledge of genetic variability and provides a basis of further 
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epidemiology and vector-virus studies. The study showed for the first time that different 

GLRaV-3 variants were transmitted to adjacent plants in a row and across rows in a GLR 

disease cluster. The diversity detected in the 5’UTR between variants from the three genetic 

groups provides a platform for the further study of the biological characteristics of GLRaV-3 

variants.  
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Opsomming 
 

Wingerdsiektes, veral virus siektes, bedreig wingerd industrieë wêreldwyd, asook die Suid 

Afrikaanse wingerdbedryf. Rolbladsiekte is een van die belangrikste siektes op wingerd en 

kom wêreldwyd voor. Die virus, grapevine leafroll-associated virus 3 (GLRaV-3), word sterk 

geassosieer met Rolbladsiekte en kom wydverspreid voor in Suid Afrikaanse wingerde. 

Tydens hierdie studie is drie genetiese variante van GLRaV-3 geïdentifiseer in wingerd 

moederblokke in die Wes-Kaap. Die GLRaV-3 variante is geïdentifiseer met ‘n tegniek wat 

‘single-strand conformation polymorphism (SSCP)’ genoem word. Die SSCP profiele was 

gegenereer vanaf PKR produkte van die ORF5 area op die genoom van GLRaV-3. Die 

geamplifiseerde produk van die ORF5 gebied is gebruik om die SSCP profiele te verkry en 

DNA-volgorde data in die gebied het die drie SSCP profiele gestaaf. Hierdie metode om virus 

variasie te bestudeer in plante is vinnig en betroubare resultate is verkry. Gemengde infeksies, 

wat gereeld in wingerd voorkom, kon ook met die tegniek opgespoor word. Die volledige 

nukleotied-volgorde van elkeen van die drie GLRaV-3 genome is volledig bepaal. Die isolate 

wat die drie variant groepe verteenwoordig is isolaat 621 (groep I), 623 (groep II) en PL-20 

(groep III). Die nukleotiedvolgorde in die 5’UTR is bepaal met die RLM-RACE tegniek. 

Wanneer die 5’UTRs van die drie variante vergelyk is, het dit getoon dat daar verskille is in 

die volgordes en lengtes voorgekom het. Ander dele van die genoom, o.a. die dopproteïen 

(CP) en Hsp70 areas, is filogeneties vergelyk met isolate van regoor die wêreld. In die 

filogenetiese analise is bevind dat die drie GLRaV-3 variante saamgegroepeer het met ander 

isolate in die wêreld en dat daar elders ook twee to drie addisionele variant groepe van 

GLRaV-3 voorkom. Die verspreiding van die drie GLRaV-3 variante in wingerde is bestudeer 

in verskillende kultivars en in verskillende verbouingsgebiede. Die meerderheid van die 

plante in die studie was geïnfekteer met die groep II variant wat dieselfde is as isolate 623 en 

GP18. Die voorkoms van die drie variante in ‘n siekte cluster is bestudeer d.m.v SSCP. Die 

studie het gewys dat verskillende GLRaV-3 variante versprei word na aangrensende plante in 

‘n ry en tussen rye. In sommige gevalle is die variant wat in die oorspronklik geïnfekteerde 

plant voorkom, oorgedra na naasliggende plante. Sommige van die plante in the infeksie area 

was ook met ander GLRaV-3 variante geïnfekteer wat moontlik deur wolluise oorgedra is 

vanaf naburige geïnfekteerde plante.  

 

Die wetenskaplike inligting wat tydens hierdie studie beskryf word aangaande die 

identifikasie van GLRaV-3 variante, dra by tot die molekulêre kennis van GLRaV-3 en 
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verskaf ‘n basis vir verdure epidemiologiese -en insek oordragingstudies. Die studie het vir 

die eerste keer bewys dat verskillende GLRaV-3 variante na aanliggende plante in ‘n ry asook 

oor rye oorgedra word. Die diversiteit tussen die GLRaV-3 variant groepe in die 5’UTR moet 

verder ondersoek word en die deel van die genoom kan ‘n belangrike rol speel in die 

biologiese eienskappe van die variante.  
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Preface 

 
This dissertation is divided into 5 chapters: 

 

CHAPTER 1: General Introduction and Objectives of the Project 

 

CHAPTER 2: Literature Review 

 

CHAPTER 3: Three genetic grapevine leafroll-associated virus-3(GLRaV-3) variants 

identified from South African vineyards show high variability in their 5’UTR 

 

CHAPTER 4: Distribution of grapevine leafroll associated virus 3 (GLRaV-3) variants in 

South African vineyards 

 

CHAPTER 5: Conclusions 
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General Introduction and Objectives of Project 
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1.1 BACKGROUND INFORMATION OF PROJECT 

 

1.1.1 General introduction 

Wine making in South Africa has been ongoing for 300 years already and this industry is one 

of the best established in the country. The main centre for grape production in South Africa is 

in the Western Cape Province where long, warm summers provide ideal conditions for 

viticulture. Currently 108 000 hectares of wine grapes are under cultivation locally over an 

area of 800 kilometres in length.  

 

A number of virus diseases are threatening the grapevine industry worldwide. Grapevine 

leafroll (GLR) is one of the most important viral diseases of grapevines, occurring in all 

grape-producing countries of the world. Grapevine leafroll-associated virus3 (GLRaV-3) is 

known to be closely associated with GLR disease and occurs commonly in South African 

vineyards (Pietersen 2004, 2006). Several epidemiological studies showed that GLR is 

spreading rapidly in vineyards. Despite the negative impact of GLRaV-3 on grapevine 

industries worldwide, the genetic variability of the virus, knowledge essential for developing 

effective control measures to the virus, is largely unknown. Recently the genetic variability of 

GLRaV-3 is being investigated more frequently in world wide vineyards.  

 

GLRaV-3 is transmitted between grapevines by at least six species of pseudococcid 

mealybugs and four soft scale species. The interaction between the virus and the vector, not 

studied here, is an important aspect to consider in understanding the GLR disease complex. 

Figure 1 illustrates some of the research aspects discussed in this study, namely, 1) a field 

survey of GLR-infected mother blocks, 2) analysis of GLRaV-3 variants in infected plants 

using the SSCP technique to examine genetic variability, 3) identification of GLRaV-3 

variants, 4) the full-length genome sequence determination of three GLRaV-3 variants, and 5) 

the interaction between the virus and the mealybug vector. GLRaV-3 is believed to be the 

major virus in GLR-infected plants in South African vineyards and the study of GLRaV-3 

variants will be presented here.  



 3 

 
Figure 1. A graphic presentation of the research aspects in this study, with the focus on the identification of 

GLRaV-3 variants.  

 

The molecular characterization of a GLRaV-3 full length genome was first published in 2004 

and for four years only one full length sequence of a GLRaV-3 isolate, NY-1, was known 

(Ling et al., 2004). In 2008, two additional full length sequences were published, a Chilean 

isolate Cl-766 (Engel et al., 2008) and a South African isolate GP18 (Maree et al., 2008). In a 

previous study of South African isolates of GLRaV-3, single strand conformation 

polymorphism (SSCP), restriction enzyme (RE) SSCP, cloning and sequencing techniques 

were used to identify two clearly divergent molecular groups of the virus (Jooste & 

Goszczynski, 2005). The first molecular variant, represented by isolate 621, was very similar 

to the NY-1 isolate of Ling et al. (2004) while sequence data of the second molecular variant, 

represented by isolate 623, was very similar to the complete genome sequence of the South 

African isolate GP18 (Maree et al., 2008). The molecular divergence between these two 

variant groups was especially high in the 5’ terminal part (partial sequences of the 5’UTR and 

ORF1a) of the virus where nucleotide sequences differed by 35%. Sequence data of the 

remaining coding regions showed nucleotide similarities above 90% between the variant 

groups. The two variant groups could be distinguished by unique SSCP profiles generated 

from an amplified region in ORF 5. This project is a continuation of the initial study 

published by Jooste & Goszczynski (2005).  
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1.1.2 Value of work 

There are currently no published data on the association of biological properties of GLRaV-3 

variants to a specific pathogenic characteristic. i.e. symptom expression or spread of GLRaV-

3 in plants. To be able to study biological properties of a virus the genetic variability of a 

virus must be known. The full length sequence data published to date showed clear variability 

between the genomes of different GLRaV-3 isolates. These studies revealed genomic regions 

where nucleotide changes can have a significant impact, for example, the variable 5’UTR. In 

this study the identification of GLRaV-3 variants in South African vineyards will be 

discussed. For the successful control of GLR disease it is important to know the variant status 

of a plant as well as the interaction between the vector and virus variants. It is also important 

to have specific and universal detection methods in place to detect all GLRaV-3 variants. The 

lack of mechanical transmissibility of GLRaV-3 has impaired the molecular and biological 

characterization of the virus.  

 

1.2 OBJECTIVES OF PROJECT 

 

The rapid spread of GLR in South African vineyards (Pietersen, 2004) is of major concern to 

the industry. Molecular variability, which determines biological properties of a virus, and the 

virus-vector interactions, are the most important aspects to consider to advance our 

knowledge of disease epidemiology and devise efficient management strategies. The first 

objective of this project was to obtain the full genome sequences of the two variants, 

represented by isolates 621 (group I) and 623 (group II), described in Jooste & Goszczynski 

(2005). Objective twowas to investigate the presence and interaction of the two GLRaV-3 

variants in the GLR disease clusters from mother blocks in different regions. A field survey 

was done; firstly to determine which of the variants occurred predominantly in the selected 

mother blocks and secondly to determine if there are any differences in the distribution 

patterns of the two GLRaV-3 variants. A related objective was to assess if the distribution of 

GLRaV-3 variants correlate with the spread of GLR in vineyards. What transpired from the 

field surveys done in mother blocks in 2007 and 2008 was the identification of a third 

molecular variant and this lead to objective 3 to obtain the full genome sequence of this third 

variant, represented by PL-20 (group III).  
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2.1 INTRODUCTION 

 

2.1.1 Grapevine cultivation: Now and Then 

The wine grapevine is part of the plant genus Vitis, with species name vinifera, meaning wine-

bearing, and has the unique ability to accumulate sugar in its grapes up to a third of its volume 

making its juice a clean and lively drink (Johnson, 2005). The earliest evidence of wine-

making dates back to archeological findings of grape pips from as early as 7000-5000BC in 

Georgia. Excavations in Turkey, Damascus in Syria, Byblos in Lebanon and Jordan have 

produced grape pips from the Stone Age, about 8000BC (Johnson, 2005). Recent physical 

evidence from China showed that a stem from Vitis vinifera, discovered in the Yanghai 

Tombs, Turpan District in Xinjiang, proved to be nearly 2300 years old, which suggests that 

there was grape cultivation at least from that time in China (Jiang et al., 2009). Wine drinking 

was enjoyed by ancient Egyptians and is well documented in their paintings. The cultivation 

of grapevine and olive in the Mediterranean cultures made Greece one of the economic 

strongholds in earlier times. Grapevine production soon spread from Greece onto Italian 

shores when the Tuscany of today belonged to the Etruscans, who were keen grapevine 

growers and wine producers. The grapevine production culture spread to most of Europe and 

followed western civilization.  

 

The history of wine making in South Africa goes back to the first cultivation of vineyards in 

the Western Cape in 1655 by Jan van Riebeeck who planted the first vineyard and his 

successor, Simon van der Stel, who planted a vineyard on his farm Constantia a few years 

later. The wines from this elite farm are still famous today. Additional expertise regarding 

vine growing and wine production came when the French Huguenots arrived and settled at the 

Southern tip of Africa between 1680 and 1690. Their wine making skills left a permanent 

impression on the South African wine culture.  

 

Grapevine cultivation in California followed in 1697 and Australia and New Zealand in 1813 

(WOSA, http://www.wosa.co.za/sa/history_beginning.php). The so-called New World 

vineyards, including Australia, New Zealand, South Africa, Chile, Argentina, Mexico and the 

United States soon produced wines comparable to the finest French wines. The distinction 

between Old World (Europe) and New World wine lies with different philosophies of 

winemaking (Swart & Smit, 2006). Old World wine making is based on tradition and Nature 

is the key factor; wine is viewed primarily as an expression of terroir (a combination of 
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topography, climate, geology and soil variations) rather than individual varieties (Swart & 

Smit, 2006). Old World wines tend to have lower alcohol levels (Alc. 11-12%), fruit flavours 

relating to each variety are less pronounced and Old World wines have a greater maturation 

potential. New World wines are characterized by the application of new technologies, 

innovative cultivation and exploration of new ideas. These wines are created to be consistent 

in quality, are defined by varietal characteristics and the expression of a wine’s fruit 

characteristics (Swart & Smit, 2006). New World wines have higher alcohol levels (up to Alc. 

16%) and tend to have a more pronounced fruitiness because they are grown in warmer 

regions and sugar levels are higher. The maturation potential of these wines is not as high as 

the Old World wines. South African wines are often described as lying somewhere between 

these two worlds, with the structure and restraint of the Old World and the fruit intensity of 

the New (Swart & Smit, 2006).  

 

2.1.2 Grapevine Cultivation: Regions and Varieties  

There are five main wine production regions in the Western Cape (Figure 1), namely 

BreedeRiverValley, Coastal, Little Karoo, OlifantsRiver and Boberg, which cover21 diverse 

districts and some 64 smaller wards. The vineyards included in this study were from 

Stellenbosch-, Paarl-, Wellington-, Rawsonville-, Worcester- and Somerset West grape 

production districts. A new wine production area has recently been developed in KwaZulu-

Natal that stretches from Greytown to Oribi Flats and the Midlands where altitudes reach up 

to 1500 metres.  

 

 
Figure 1.The winegrowing regions in the Western Cape (www.wosa.co.za). 
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According to WOSA over 40% of vineyards were replanted in recent years to ensure that the 

South African market competes globally, moving from quantity to noble cultivars and quality 

wines. The shift to planting more white cultivars than red cultivars in the past 4 years is a 

reversal of the 10-year trend of planting more red cultivars.  

 

Noble varieties which have been cultivated increasingly in the past few years include 

Sauvignon Blanc and Chardonnay, which produce top-class white wines, and Shiraz and Pinot 

noir. Although most of the vine varieties were imported material, up to now six crossings 

have been released. The best known of these is a red variety, Pinotage, a hybrid of Pinot Noir 

and Hermitage, which is cultivated on a fairly large scale. In total, 21 red and 20 white 

varieties are grown in South Africa (Table 1). 

 

Table 1. The white –and red wine varieties grown in South Africa 

WHITE-WINE VARIETIES RED-WINE VARIETIES 
Bukettraube Cabernet Franc 

CapeRiesling (Crouchen Blanc) Cabernet Sauvignon 
Chardonnay Carignan 

Chenel Cinsaut 
Chenin Blanc (Steen) Gamay (Noir) 

Clairette Blanche Grenache (Noir) 
Colombar(d) Malbec 

Emerald Riesling Merlot 
Gewűrztraminer Mourvèdre 

Grenache (Blanc) Muscadel 
Muscat d’Alexandrie (Hanepoot) Nebbiolo 

Muscadel Petit Verdot 
Nouvelle Pinot Noir 

Palomino (White French Grape) Pinotage 
Pinot Gris Roobernet 

Sauvignon Blanc Ruby Cabernet 
Semillon (Green Grape) Shiraz 
Ugni Blanc (Trebbiano) Souzào 

Viognier Tinta Barocca 
Weisser Riesling (Rhine Riesling) Touriga Nacional 

 Zinfandel 

 

2.1.3 Economic importance of the South African wine industry 

The economic importance of the wine industry is shown by the 348 500 people being 

employed directly and indirectly in the wine industry. According to a study commissioned by 

the SA Wine Industry Information System (SAWIS), the wine industry contributes 9.7% to 

the Western Cape’s gross geographic product. The study concluded that of the R14.6 billion 

contributed by the wine industry to the regional economy, some R3 billion was generated 

indirectly through wine-tourism activities centered in the winelands. Although local vineyards 

account for just 1.5% of the world’s vineyards, South Africa ranks as number eight in volume 
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production of wines and produces 3% of the world’s wine (WOSA website 

http://www.wosa.co.za). 

 

2.1.4 Grapevine virus diseases 

A wide range of viruses and virus–like diseases are threatening the grapevine industry 

worldwide as well as locally. The grapevine diseases, grapevine leafroll (GLR), shiraz 

disease, syrah decline, rugose wood (RW) complex including rupestris stem pitting (RSP) 

disease, corky bark, kober stem grooving and LN33 stem grooving syndrome, cause 

economic losses in worldwide grapevine production areas. A report written in 2006 listed 58 

plant viruses that infect grapevine (Martelli & Boudon-Padieu, 2006). These viruses represent 

eight families and 18 plant virus genera. At the 16th International Council for the study of 

Virus and Virus-like Diseases of the Grapevine (ICVG) meeting, held in Dijon, France, two 

newly characterized viruses were added to this list, namely Grapevine virus E(GVE) 

(Nakaune et al.,2008) and Grapevine syrah virus-1 (GSyV-1) (Al Rwahnih et al., 2009). The 

identification of new viruses in vineyards is important to understand the interaction between 

viruses and disease complexes. With new technologies emerging every day, this task is 

becoming easier and the characterization of viruses at the molecular level is much faster. 

However, to associate a specific virus with a disease is still a challenge and requires precise 

studies, including biological studies.  

 

The focus in this dissertation will be on grapevine leafroll (GLR) disease, with the main focus 

on grapevine leafroll associated virus 3 (GLRaV-3). 

 

2.2 GRAPEVINE LEAFROLL DISEASE  

 

2.2.1 Symptoms 

Grapevine leafroll disease (GLR) is one of the most important diseases of grapevines, 

occurring in all grape-producing countries worldwide, including South Africa (Pietersen, 

2004).The disease delays ripening of grapevine berries, decreases the accumulation of sugar 

and ultimately influences the quality of the wine. The expression of GLR symptoms is 

variable among cultivars, and environmental conditions play a role as well. In red-berried 

cultivars the leaf blade areas turn red, whereas leaf yellowing of the same leaf occurs in white 

wine cultivars (Carstens, 2002). Some white cultivars may show no visual signs of infection 

(Rayapati et al., 2009). Symptoms are best observed in the period between harvesting and 
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shedding of leaves (late summer and early autumn). Typical GLR symptoms appear as 

distinctive downward rolling of leaves with leaf veins that stay green (Figure 2).  

 

 
Figure 2A-D. Typical GLR symptoms (A, B) with areas between the veins turning red including downward curl 

of leaves and leafroll infection visible in rows and across rows (C, D) (Photos: G. Pietersen). 

 

2.2.2 Viruses involved in GLR disease 

Viruses from the Ampelovirus and Closterovirus genera are known to cause leafroll disease. 

Several phloem-limited filamentous viruses, identified as grapevine leafroll-associated 

viruses(GLRaVs), have been characterized from leafroll infected grapevines (Fuchs et al., 

2009b). These viruses are from the genera Closterovirus (GLRaV-2), Ampelovirus (GLRaV-

1, GLRaV-3, GLRaV-4, GLRaV-5, GLRaV-6 and GLRaV-9) and GLRaV-7 is not yet 

assigned to a genus (Fuchs et al., 2009b).  

 

2.2.3 Epidemiology of GLR disease 

Crop losses caused by GLR disease are a worldwide problem and can have huge economic 

impact. Significant yield losses of 30-50% have been recorded (Fuchs et al., 2009b) and even 

as high as 68% (Walter & Martelli, 1997). In a recent report written for the New Zealand wine 

industry (Charles et al., 2006), 22 studies were identified that presented data on GLR disease 

and its effects on yield. There were significant variations between the reports concerning 
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reduced yield. There is no quantifiable yield loss data available for South African vineyards 

but we can assume a similar situation exists. We do know that the disease causes serious 

problems in the South African wine industry due to its rapid spread and infection of certified 

planting material (Pietersen, 2006). A sector of the local wine industry, Winetech, invests 

research funds to study aspects of GLR disease, including projects that aim to eradicate virus 

infected material from vineyards by implementing control strategies for leafroll disease.  

 

GLR disease is transmitted through infected propagation material as well as through 

mealybug and soft scale insect vectors (Belli et al.,1994; Cabeleiro & Segura, 1997; Douglas 

& Krüger, 2008; Petersen & Charles, 1997; Sforza et al.,2003; Tsai et al.,2008,).  

 

Recently, several epidemiology studies on GLR disease have been reported from grapevine 

growing regions worldwide. These studies were mainly done in South Africa (Pietersen, 

2006), Spain (Cabeleiro et al., 2006, 2008) and the USA (Golino et al., 2008, Rayapati et al., 

2009). A study of the spread of GLR disease in a Napa Valley vineyard in California showed 

that the disease spread from neighbouring blocks, heavily infected with leafroll, and mapping 

results of the disease showed a spread rate increase of more than 10% per year in this block 

(Golino et al.,2008). The possible causes for this sudden rapid spread of GLR in vineyards of 

California were debated and the authors suggested that something fundamental changed in the 

vineyards, such as vector epidemiology, grower rootstock preferences and/or new leafroll 

strains that emerged (Golino et al.,2008). The epidemiological studies reported by Cabeleiro 

et al. (2006, 2008) described the involvement and spread of GLRaV-3 in GLR disease. The 

spatial distribution of GLRaV-3 was studied in vineyards from Spain since 1991 (Cabeleiro et 

al.,2006, 2008) and reported recently (Cabeleiro et al., 2008). From this study it was clear that 

there was a correlation between mealybug incidence and virus spread (Cabeleiro et al.,2008). 

Scale insects were implied as vectors of GLRaV-3 in the Meaño vineyard where slow, but 

constant spread of the virus was observed (Cabeleiro et al.,2008). In two vineyards, in 

Portomarín and Goian, in the same study, the virus inoculum originated from infected plant 

material resulting in a random distribution of the disease. A study of vineyards in the Pacific 

Northwest (PNW) of the U.S.A. documented the presence of genetic variants of GLRaV-1, 

GLRaV-2, GRSPaV and GFLV in these vineyards (Rayapati et al.,2009).  

 

The spatial distribution and spatial dynamics (changes in distribution patterns) of GLR 

disease within Mother blocks of the South African Certification Scheme were studied 

intensively from 2001-2007 (Pietersen, 2004, 2006). Four common distribution patterns of 
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GLR disease were observed in this study. The most significant distribution pattern identified 

in local vineyards was secondary spread within vineyards after establishment (Pietersen, 

2006). The other means of GLR spread are primary spread of leafroll by infected plant 

material, GLR spread from a preceding vineyard and gradients of GLR-infected vines 

associated with proximal leafroll infected vineyards (Pietersen, 2006). An example of the 

distribution patterns of GLR in vineyards are shown in Figure 3. 

 

 

 
Figure 3.Spatial distribution patterns of GLR infection in vineyards (A,B). GLR infection clusters clearly visible 

(indicated by white arrows) and a vineyard with 100% leafroll infection in the far background in photoB. 

(Photos: G. Pietersen). 

 

2.2.4 Control strategies for GLR disease 

To combat the spread of GLR disease in vineyards, most wine producing countries recognised 

the importance of a certification scheme for virus-free propagation material. Published 

literature on the management options to limit the spread of GLRaV-3 within new vineyards is 

limited and only a few scientific publications exist on this topic (Charles et al., 2006). Only a 

few publications exist on the control of GLRaV-3 mainly because leafroll symptoms and 

A 

B 
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associated damages are not so serious in other parts of the world as in South Africa. In most 

other countries other diseases causes more serious damages than leafroll and therefore studies 

and control strategies are focused on such diseases. Leafroll disease control in South Africa is 

a high priority for the local industry and some extensive work has been done on the control of 

this disease locally.  

 

The study conducted by Pietersen (2004) in South African vineyards led to the establishment 

of a management strategy for the disease. It is generally accepted that GLRaV-3 is not 

infecting hosts other than Vitis and the virus cannot be transmitted mechanically but can 

spread by vegetation propagation and grafting of infected plant material. The virus can be 

transmitted by mealybugs and scale insects from plant to plant, with mealybugs being the 

most prevalent vector. 

 

The control measures implemented in the South African vineyards were described in detail in 

a popular article published in a local Wineland magazine (Pietersen, 2010). Rouging (removal 

of infected vines), planting strategies for new blocks, the use of certified planting material and 

the control of mealybugs and ants in vineyards were discussed in the paper.  

 

2.3 GRAPEVINE LEAFROLL-ASSOCIATED VIRUS 3 (GLRaV-3) 

 

2.3.1 Taxonomy 

GLRaV-3 is the type member of the Ampelovirus genus in the family Closteroviridae 

(Martelliet al., 2002). The family comprise of three genera, namely Closterovirus, 

Ampelovirus and Crinivirus. The three genera distinguish between aphid, mealybug and 

whitefly transmitted viruses. Molecular properties, like genome composition and structure, 

also differentiate the three genera. Other viruses that belong to the Ampelovirus genus are 

Grapevine leafroll-associated virus-1, -4, -5, -6, -9 (GLRaV-1, -4, -5, -6, -9), Pineapple 

mealybug wilt-associated virus-1, -2 (PMWaV-1, -2), Little cherry virus-2 (LChV-2) 

(Martelli et al., 2002) and Plum bark necrosis stem-pitting-associated virus (PBNSPaV) (Al-

Rwahnih et al., 2007). The ampeloviruseswere recently divided into two subgroups based on 

the phylogenetic analyses of the Hsp70h, RdRp and HEL domains of viruses in this group 

(Maliogka et al., 2009). This analysis included two Greek isolates, GLRaV-Pr and GLRaV-

De, which represent two newly assigned ampeloviruses(Maliogka et al.,2008). These two 

isolates, together with GLRaV-4, -5, -6 and -9, PMWaV-1 and PBNSPaV are included in the 

lineage of subgroup I ampeloviruses and GLRaV-1, -3, PMWaV-2 and LChV-2 included in 
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the subgroup II lineage. The genome organisation and phylogenetic relationship of Pineapple 

mealybug wilt-associated virus-3 (PMWaV-3) with other closterovirusessuggests the addition 

of another genus within the family Closteroviridae (Sether et al., 2009).  

 

2.3.2 Morphology and Genome organization 

The virus has flexuous particles of about 1800 nm in length (Figure 4); containing a positive-

sense single stranded RNA (ssRNA) genome. The RNA content in closterovirusparticles is 

about 5% (Dolja et al.,1994).  

 

 
Figure 4.Electron micrograph of a purified GLRaV-3 particle negatively stained with 2% uranyl acetate. (Photo: 

G.G.F. Kasdorf). 

 

The size of closterovirusgenomes varies from ~15.5 to ~19.5kb with a coding capacity of 10-

14 proteins (Dolja et al.,2006).  

 

 

 

Figure 5.Schematic representation of the GLRaV-3 genome and positions of genes and ORFs. 

 

The first full-length genome sequence of a GLRaV-3 isolate, NY-1, was published by Ling et 

al. in 2004. The genome organisation of the virus conformed to the genome structure for 

closterovirusesproposed by Dolja et al.(1994). The relatively large genome of GLRaV-3 is 

organized into 13 open reading frames (ORFs) (ORF1a, 1b, 2-13) and represent a typical 

monopartite closterovirus(Ling et al.,2004), the genome organisation seen in Figure 5. In the 
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Ling study, a comparative study was done on all genes and amino acid sequence similarities 

between GLRaV-3 and other closteroviruseswere calculated in these regions.  

 

ORF1a encodes a large polyprotein with different domains; leader protease (L-Pro) (Ling et 

al.,2004), methyltransferase (MET) (Ling et al., 1998), AlkB domain (Engel et al.,2008; 

Maree et al.,2008) and helicase (HEL) (Ling et al., 1998). L-Pro plays a prominent role in the 

amplification of the viral genome either activation of the viral replicase or protection of the 

RNA from degradation by a host defense system (Dolja et al., 2006). The C-terminal portion 

of ORF1a shared significant similarity with the Superfamily 1 helicase of positive–strand 

RNA viruses (Ling et al., 2004). Phylogenetic analyses of this region showed that GLRaV-3 

grouped in a cluster of its own when compared to other closteroviruses, Beet yellows 

virus(BYV), Citrus tristeza virus(CTV) and Beet yellow stunt virus(BYSV) (transmitted by 

aphids), Lettuce infectious yellows virus(LIYV) (transmitted by whiteflies) and Little cherry 

virus(LChV) (transmitted by mealybugs). Although LChV is transmitted by mealybugs it 

showed to be closer related to LIYV. ORF1b encodes for a RNA-dependent RNA polymerase 

(RdRp) and showed significant similarity to the Supergroup 3 RdRp of positive–strand RNA 

viruses. Phylogenetic relationships were similar in this region as in ORF1a. An interesting 

feature of the mealybug-transmitted closteroviruses is a long untranslated intergenic region 

downstream of ORF1b, which is GC rich and possess extensive RNA secondary structure 

(Karasev, 2000). The size of this intergenic region is comparable to the size of a protein 

encoded by ORF2 in the BYSV and CTV genomes (Karasev, 2000). ORF2 encodes a small 

peptide and for this region no equivalent ORFs were found in BYV and LChV genomes, but 

in CTV, LIYV and BYSV larger ORFs were found (Karasev et al.,1995, Karasev et al.,1996, 

Klaasen et al.,1995). The p6 protein resides in the ER and functions in virus movement from 

cell to cell and can be considered a conventional movement protein (Dolja et al., 2006). ORF 

3 encodes a small hydrophobic transmembrane protein. ORF4 encodes the Hsp 70-homologue 

protein that is the unique hallmark of the closterovirus family (Dolja et al.,1994). Eight 

conserved motifs (A-H) were identified from the multiple alignments of Hsp 70 homologues 

of GLRaV-3 and other closteroviruses (Ling et al.,1998). Three of these functionally 

important motifs (A-C) contain ATPase activity typical of closteroviral Hsp70 chaperone-like 

proteins. ORF5 encodes a 55K protein but the two conserved regions of the Hsp70-

homologue previously delineated in BYV and CTV were not identified in this protein of 

GLRaV-3 (Ling et al.,1998). ORF 6 and 7 encodes the coat protein (CP) gene and copy of CP 

(dCP). The duplication of the capsid protein gene is a unique feature of closteroviruses(Boyko 

et al.,1992).The function of the remaining ORFs 8 to 12 was not determined by Ling et al. 
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(1998). It is suggested that these ORFs, especially the p21 protein coded for in ORF8, encode 

for viral silencing suppressors. The p20 proteins, coded for in ORF 9 and 10, are involved as 

systemic movement proteins (Dolja et al., 2006). 

 

In a recent study the sgRNAs associated with GLRaV-3 infection was investigated (Maree et 

al., 2010). The production of sgRNA is necessary for the expression of the 3’ ORFs (3-12) in 

positive sense RNA viruses. This study predicted the existence of at least seven 3’ co-terminal 

positive-sense sgRNAs for the expression of ORFs 3-12 (Maree et al., 2010). The gene 

expression strategy and cis- acting elements of GLRaV-3 were reported recently in another 

study (Jarugula et al., 2010). The study showed that four of the eleven putative 3’ co-terminal 

sgRNAs (specific to ORF6, 8, 9 and 10) were present in higher levels, two sgRNAs (ORF11 

and 12) accumulated at intermediate levels and three sgRNAs (ORF7, 5, 3 and 4) were 

present in very low levels (Jarugula et al., 2010). These results suggest that 3’ coterminal 

sgRNAs accumulate at variable amounts, reflecting differences in their expression levels in 

infected grapevine tissues. It was suggested that ORF10-12 are likely to be translated from the 

same sgRNA (Maree et al., 2010).  

 

2.3.3 Full length sequences of GLRaV-3 

As mentioned earlier, the first full-length sequence of GLRaV-3, from the NY-1 isolate, was 

published by Ling et al. (2004). In 2008, a full-length genome sequence of a Chilean GLRaV-

3 isolate, Cl-766, was published that showed the same properties as the NY-1 isolate (Engel et 

al.,2008). In the same year, the complete genome length of a South African GLRaV-3 isolate, 

GP18 (EU259806), was reported to be 18498 nt (Maree et al.,2008). The extended length of 

the 5’UTR, consisting of 737 nt, differed from that reported previously by Ling et al. (2004) 

and Engel et al. (2008) where a 5’UTR of 158 nt for both isolates NY-1 (AF037268) and Cl-

766 (EU344893) was described. The length of the 3’UTR of all GLRaV-3 isolates sequenced 

to date is 277 nucleotides (nt) (Engel et al.,2008; Ling et al.,2004; Maree et al.,2008). Since 

the report by Maree et al.,three additional GLRaV-3 isolates from South Africa were 

sequenced, namely isolates 621, 623 and PL-20 (Joosteet al.,2010). The detailed description 

of the three GLRaV-3 isolates will be discussed in Chapter 3.  

 

2.3.4 Transmission of GLRaV-3 

The survival of a plant virus depends on its efficient transmission from plant to plant. Since 

the association of GLRaV-3 with GLR disease, the vectors responsible for transmitting the 

virus were studied intensively in combination with the spread of the disease (Cabeleiro et al., 
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1997, 2006, 2008; Daane et al., 2006; De Bourbon et al.,2004; Douglas & Krüger, 2008; 

Fuchs et al., 2009b; Golino et al., 2002, 2008; Mahfoudi et al., 2009; Petersen & Charles, 

1997; Pietersen, 2004, 2006; Sforza et al., 2003; Tsai et al., 2008;) 

 

GLRaV-3 is transmitted in a semi-persistent way by its mealybug insect vectors (Martelli et 

al., 2002), although a recent study suggest a circulative transmission mechanism (Cid et al., 

2007).  

 

The first report of GLR disease transmission by the vine mealybug Planococcus ficus in 

South Africa was two decades ago (Engelbrecht & Kasdorf, 1990). The vine mealybug P. 

ficus (Figure 6A) is considered the most important vector of GLRaV-3 in South Africa and 

the longtailed mealybug, Planococcus longispinus (Figure 6B), is far less abundant on 

grapevine and has a more aggregated distribution in vineyards than P. ficus (Walton & 

Pringle, 2004). Transmission efficiency studies with P. ficus and P. longispinus showed that 

the two mealybug species are both efficient vectors for GLRaV-3 in South African vineyards. 

The study showed for the first time that a single nymph of P. ficus or P. longispinus is capable 

of infecting a healthy grapevine plant with GLRaV-3 (Douglas & Krüger, 2008). The age of 

the mealybug and dispersal of mealybugs play a role in the efficiency of transmission of the 

virus from plant to plant. In a recent study it was confirmed that the first and second instars of 

P. ficus is more effective (36.7% versus 10%) in transmission of the virus than the adult 

females (Mahfoudi et al., 2009). These first instar nymphs could be carried by wind over long 

distances but may not have fed on phloem before dispersing. One can argue that the adult 

mealybug is more likely to transmit a virus from plant to plant with its less active lifestyle. 

The dispersal of mealybugs is therefore connected to the transmission ecology and important 

fact to consider when performing vector-virus studies.   
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Figure 6.Two mealybug species, Planococcus ficus (A) and Planococcus longispinus detected and studied in 

South African vineyards. (Photo A: N. Douglas-Smit; Photo B: D.B. Douglas). 

 

Other species recorded to transmit GLRaV-3 are the soft scales Pulvinaria innumerabilis, 

Pseudococcus maritimus (Golino et al., 2002), Ceroplastes rusci (Mahfoudi et al., 2009), 

Pulvinaria vitis (Belli et al., 1994) and mealybugs Heliococcus bohemicus (Sforza et al., 

2003), Phenacoccus aceris (Sforza et al., 2003), Plannococcus citri (Cabaleiro et al., 1997) 

and Pseudococcus calceolariae (Petersen & Charles, 1997).  

 

2.3.5 Detection techniques for GLRaV-3 and other grapevine infecting viruses 

Serological and molecular detection methods for grapevine viruses have been developed 

during the past years that included the conventional enzyme-linked immunosorbent assay 

(ELISA), reverse transcription-polymerase chain reaction (RT-PCR), and even more sensitive 

assays with Real-time PCR.  

 

Strategies for the detection of multiple grapevine viruses have been developed and tested and 

these approaches proved to reduce the cost of virus diagnostics dramatically. Examples of the 

simultaneous detection of viruses associated with GLR disease and other viruses infecting 

grapevine were described in several papers. These studies described a variety of techniques: 

one-tube RT-PCR assays (Nassuth et al., 2000), a spot-PCR technique (La Notte et al., 1997), 

the use of RT-PCR with degenerate primers for simultaneous detection of some members of 

P. ficus 

P. longispinus 

P. ficus 
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the Clostero-, Viti-, and Trichovirus genera (Salderelli et al., 1998), a spot multiplex nested 

RT-PCR for detection of viruses involved in the aetiology of GLR disease and RW of 

grapevine (Dovas & Katis, 2003) and a multiplex RT-PCR developed for the simultaneous 

detection of nine viruses (ArMV, GFLV, GVA, GVB, GRSPaV, GFkV, GLRaV-1, -2 and -3) 

(Gambino & Gribaudo, 2006). A more sensitive detection technique, TaqMan RT-PCR, was 

developed for the sensitive and quantitative detection of GLRaV-1 to GLRaV-5 and GLRaV-

9 (Osman et al., 2007). An improvement on this technique was described a year later by the 

same authors. Low-density arrays have been designed based on real-time RT-PCR (TaqMan) 

assays for the specific detection of 13 viruses that infect grapevines (Osman et al., 2008). In a 

recent study, a diagnostic oligonucleotide microarray for the simultaneous detection of a wide 

range of grapevine viruses was developed (Engel et al., 2010). The microarray developed in 

this study contained probes designed against species-specific regions, to discriminate between 

closely related genus members, and against highly conserved regions at the family level, to 

enable the detection of highly divergent viruses or even previously unidentified viruses (Engel 

et al., 2010).  

 

ELISA and RT-PCR are basic tools used in grapevine virus diagnostics. Recently the use of 

deep sequencing of an individual plant (Al Rwahnih et al., 2009) or pooled vines from a 

diseased South African vineyard (Coetzee et al., 2010) resulted in the identification of newly 

described viruses as well as determining the frequency in which viruses occurred in a 

vineyard. The use of the next generation high-throughput sequencing technologies proved to 

be a powerful tool to identify new viruses in disease complexes and to determine dominant 

variants of a specific virus. The deep sequencing analyses of 44 pooled vines from the South 

African study detected GLRaV-3 as dominant virus in the plants from this study (Coetzee et 

al., 2010).  

 

Real-time RT-PCR has some advantages over conventional PCR and has been used in plant 

virus diagnostic methods in the last years (Osman et al., 2007). The high cost and expensive 

equipment needed to use advanced techniques is not feasible for routine diagnostic tests. In 

the South African context, the polyclonal antisera prepared against GLRaV-1, -2, and -3 

(Goszczynski et al., 1995, 1997) are used widely by industry and growers to test with ELISA 

for these viruses.  
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2.4 GENETIC VARIABILITY OF PLANT VIRUSES 

 

2.4.1 Definition of a virus variant 

It is generally accepted that the genetic structure in a virus population may change with time. 

Most viruses continue to evolve through genetic exchanges and accumulation of mutations 

(Seo et al., 2009). Recombination plays a significant role in the evolutionary changes of RNA 

viruses (Worobey & Holmes, 1999; Chare & Holmes, 2006) and will be discussed in more 

detail. RNA viruses have genetically diverse populations due to an error-prone replication 

mechanism with high mutation rates, which causes these viruses to consist of many sequence 

variants around a consensus sequence (Komínek et al., 2005). This mixture of variants is 

usually termed quasispecies. A diverse quasispecies ensures better population fitness. 

 

Methods developed to analyse nucleic acids in the 1970s had a big impact on understanding 

the evolution of plant viruses (García-Arenal & Fraile, 2008). These methods included 

ribonuclease T1 fingerprinting, restriction fragment length polymorphisms (RFLPs), 

ribonuclease protein assay (RPA) of a labelled complementary RNA probe, single strand 

conformation polymorphism (SSCP) analysis and nucleotide sequence determination of genes 

and entire genomes. In this study SSCP analysis and sequence determination of genes were 

used to study the variability of GLRaV-3 in South African vineyards. 

 

2.4.2 The use of SSCP analysis in genetic variability studies 

 

2.4.2.1 SSCP analysis as detection method of virus variants 

SSCP analysis is one of the methods generally used to identify virus variants (García-Arenal 

et al., 2001). The analysis of a targeted genomic region with the SSCP technique was first 

established by Orita and colleagues (1989). SSCP analysis is a simple, reliable method for the 

detection of sequence variations in genomic loci. Another advantage of the technique is that 

PCR products from many isolates can be screened simultaneously to determine whether or not 

DNA fragments are identical in sequence. Pre-screening of isolates with SSCP analysis 

therefore reduces the amount of sequencing necessary (Sunnucks et al., 2000).  

 

The SSCP technique was introduced soon after the introduction of PCR technology, and 

relied on the fact that relatively short DNA fragments can migrate in a nondenaturing gel not 

only as a function of their size but also their sequence (Garinis et al., 2005). In other words, 

amplified DNA fragments are denatured by heat or chemical agents, cooled down and the 
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Single-stranded DNA fragments are then electrophoresed through a nondenaturing 

polyacrylamide gel. Single-stranded DNA fragments adopt a specific three dimensional shape 

according to their nucleotide sequence with unique conformation. Even a single base 

difference will result in a different conformation and then migrate as different position during 

electrophoresis (Figure 7).  

 

 

 

Figure 7.Schematic representation of the SSCP technique. A point mutation (represented by a dot on a DNA 

strand) leads to the formation of different single-strand conformations of the mutant DNA (M) compared with 

the non-mutant molecule (N), resulting in differential mobilities in a non-denaturing gel matrix (figure taken 

from Gasser et al., 2007). 

 

2.4.2.2 Application of SSCP analysis in virus variability studies 

SSCP analyses have been used in several genetic variability studies of viruses in the family 

Closteroviridae.  

 

Sequence variability of the coat protein gene of 17 CTV isolates, a closterovirus, was studied 

and results showed that 1 to 59 nucleotide differences in their CP gene could be distinguished 

by SSCP analysis (Rubio et al., 1996). In a similar study on the CP gene of CTV isolates 

introduced into Morocco, SSCP analysis showed that each isolate consisted of several related 

genomic variants, typical of a quasispecies (Lbida et al., 2004). SSCP analysis was also 

applied in a study of the p27 gene (dCP) of CTV (Gago-Zachert et al., 1999) and could 

successfully distinguish between biologically mild and severe CTV isolates in this region. 
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The population structure and genetic diversity within Californian CTV isolates was studied 

with SSCP analysis of four genomic regions (Kong et al., 2000). In this study most CTV 

isolates were composed of a population of genetically related variants, one being 

predominant. The Kong et al (2000) study suggested that some CTV isolates could have 

arisen as result of a mixed infection of two divergent isolates. More recently, the population 

structure of CTV isolates from field Argentinean isolates was studied in three genomic 

regions of the virus (Iglesias et al., 2008). SSCP analysis showed that most isolates contained 

high intra-isolate variability. The SSCP technique was also applied to study the different 

genomic variants in clones from CTV variants (Černi et al., 2008).  

 

The genetic variation of a crinivirus, Cucurbit yellow stunting disorder virus(CYSDV), was 

studied with the use of SSCP analysis (Rubio et al., 1999; Rubio et al., 2001). Genetic 

variation within individual CYSDV isolates and between CYSDV isolates collected in 

different years from different locations worldwide were studied. The molecular variability of 

the whitefly-transmitted Beet pseudo-yellows virus(BPYV), a closterovirus, and CYSDV 

were studied in cucurbits (Rubio et al., 1999). Based on SSCP profiles, CYSDV could be 

divided into three divergent groups and BPYV into two groups (Rubio et al., 1999).  

 

The identification of two major sequence variants of GLRaV-3 infected vines from South 

Africa and world wide samples were initially done with SSCP analysis of a region in ORF5 

(Jooste & Goszczynski, 2005). In this study it was possible to assign a specific SSCP profile 

to each of the variant groups. Sequence data confirmed these findings. In the same year a 

study on the genetic variability and population structure of GLRaV-3 isolates was 

investigated by SSCP analysis and sequence analysis of three genomic regions of the virus 

(Turturo et al., 2005). The authors came to the conclusion that GLRaV-3 that they have 

studied consist of a single undifferentiated population. The sequence variation in GLRaV-3 

infected plants from New Zealand was studied with the SSCP technique and sequencing 

(Chooi et al., 2009). A third molecular variant of GLRaV-3 was identified from South African 

vineyards with SSCP analysis of individual clones from twelve isolates (Jooste et al., 2010).  

 

The SSCP technique is a very useful tool for the rapid determination of the number of 

dominant sequence variants of GVA in virus-infected herbaceous host plants as well as in 

grapevines (Goszczynski & Jooste, 2002). The technique could also be used in an initial 

screening to discriminate between isolates of different origin and to analyse the genomic 

structure of each isolate (Lbida et al., 2004). 



 25 

 

2.4.3 The role of recombination in shaping diversity 

Recombination is one of the main factors in the evolution of positive-strand RNA viruses 

(Karasev, 2000). Homologous recombination, where the donor sequence replaces a 

homologous region of the acceptor sequence leaving its structure unchanged, and 

nonhomologous recombination, recombination between unrelated RNA sequences, are 

commonly observed (Lai, 1992). The recombination events in closteroviruseshave been 

studied rather well. The most direct evidence of recombination, in studies on closteroviruses, 

is the presence of defective RNAs (D-RNA) in infected cells or the exchange of viral genes 

with sgRNA in the process of replication (Yang et al., 1997) and secondly, the findings of 

chimeric genomes (Karasev, 2000).  

 

2.4.3.1 Recombination studies in CTV, a Closterovirus 

D-RNA was first isolated from a citrus plant infected with CTV (Mawassi et al., 1995). 

Although D-RNA has been mainly studied in CTV, they are probably characteristic of all 

closteroviruses (Karasev, 2000). The possibility of chimeric genomes were suggested when 

two CTV isolates, VT and T36, were 90% identical on nucleotide sequence level in the 3’ 

terminal fragment, compared to the 72% identity in the 5’ terminal part (Mawassi et al., 

1996). It was even suggested that the two CTV isolates were perhaps too dissimilar to remain 

the same virus. Two theories were discussed: the one suggesting an uneven evolution rate for 

the two halves of the genome and the other suggesting possible recombination between the 

CTV isolate and an unknown CTV genome (Mawassi et al., 1996). In a later study the diverse 

nature of the 5’ terminal of isolate T36 was confirmed when a probe was developed in this 

region (Hilf et al., 1999). The T36-probe bound only to isolate T36. It was suggested T36 has 

arisen upon recombination between a normal CTV genome that provided all the 3’ terminal 

genes and an unknown closterovirus that provided most of the ORF1a to form a chimeric 

genome.  

 

Recombination has also been studied extensively in two CTV isolates, SY568 (Vives et al., 

2005) and FS627 (Roy & Brlansky, 2009). The RNA population of isolate SY568 was found 

to be composed of two diverged sequence variants and different recombinants of them and 

this report showed the multiple recombination events within a natural virus isolate (Vives et 

al., 2005). In the study by Roy & Brlansky (2009), the generation of virus recombinants after 

aphid transmission was proved. Different dominant genotypes were detected in the parent and 
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aphid-transmitted (AT) subisolates and even intermediate genotypes were detected that 

differed from the parental or AT subisolates (Roy & Brlansky, 2009). 

 

Advantageous genotypes can be created more rapidly by recombination than in clonal 

populations and harmful mutations can be removed by recombination with error–free parts of 

co-infecting genomes (Chare & Holmes, 2006). Recombination has proved to repair defective 

genes and generate beneficial new variation.  

 

2.4.4 Molecular variability in 5’- and 3’- terminal regions 

Information on the variability between CTV genomes are currently the best studied in the 

closteroviruses. Similarities between genome comparisons of CTV isolates and GLRaV-3 

were observed in literature and therefore recorded here. Nucleotide variability between two 

CTV isolates, T36 and VT, showed that the 5’ ends of these isolates have a less than 70% 

nucleotide identity while the 3’ end was relatively conserved (López et al, 1998). The length 

of the 5’UTR differed between the isolates, 107nt and 105nt, respectively. A feature of the 

5’UTR of CTV is the high content of A (27-35%) and C (28-34%) in combination of the low 

content of G (14-18%). A deletion of seven nucleotides was observed in the T36 sequence 

and a proposed secondary structure with two stem-looped structures was identified (López et 

al, 1998). Some of the CTV isolates in this study contained sequences belonging to more than 

one variant group. Polymorphisms of the 5’ terminal region of CTV confirmed the three 

molecular groups of CTV (Ayllon et al., 2001) although a recent phylogenetic analysis of 

complete CTV genome sequences showed the existence of more than three groups, with the 

addition of two New Zealand isolates (Harper et al., 2009). The length of the 5’ and 3’-

terminal regions of CTV is short (105nt) in comparison to the longer 5’UTR reported for 

GLRaV-3, isolate GP18 (Maree et al., 2008). The function of the extended 5’UTR of GLRaV-

3 is not yet known.  

 

2.4.5 Genetic variation between GLRaV-3 isolates 

A focus area of this study is the genetic variation between GLRaV-3 variants.  

 

Research world wide showed the existence of several molecular variants of GLRaV-3. 

Turturo et al. (2005) investigated the population structure and genetic variability of 45 

GLRaV-3 isolates, from different grapevine varieties and 14 different countries, by single 

stranded conformation polymorphism (SSCP) and sequence analysis of three genomic 

regions, RdRp, Hsp70h and coat protein (CP). Their results for the RdRp and Hsp70h regions 
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showed that 10% of the isolates analysed had mixed variant infections, whilst 15% of the 

isolates had mixed infections when the CP region was analysed (Turturo et al., 2005). 

Multiple alignment of sequences deposited in Genbank® revealed that the sequences used in 

the Turturo study had nucleotide identities of above 90% between isolates in the regions 

studied. High diversity was noted in other studies, such as the divergent strain of GLRaV-3 

(GLRaV-3-Tempr) (Genbank accession no. DQ314610), found in a grapevine accession in the 

cultivar Tempranillo from a Spanish vineyard (Angelini et al., 2006). The GLRaV-3-Tempr 

isolate was almost 20% divergent to the NY-1 isolate on nucleotide level in the sequenced 3’ 

end of ORF1 (Angelini et al., 2006). GLRaV-3 infected juice grapes (Vitis labruscana 

‘Concord’ and Vitis labruscana ‘Niagara’) from Washington State revealed nucleotide 

identities of 94 to 98% and amino acid identities of 97 to 98% in the Hsp70h gene of the NY-

1 isolate (Soule et al.,2006). A survey of leafroll disease-associated viruses showed a 74.1-

100% identity at the nucleotide level and 85.9-100% identity at the amino acid level between 

five GLRaV-3 isolates from New York and 25 isolates from other geographic regions (Fuchs 

et al.,2009a). Phylogenetic analysis of the HSP70h gene showed at least five possible variant 

groups in their study (Fuchs et al.,2009a). A study on the viral variants in the ‘Waltham 

Cross’ table grape variety, revealed at least two GLRaV-3 variants; one clone (WC-HSP-2) 

shared a 93.2% nucleotide identity with NY-1 (Ling et al.,2004) and two other clones (WC-

HSP-10 and WC-HSP-28) were only 72.3% identical to NY-1 (Prosser et al.,2007). A 

nucleotide identity of 97.6% was reported between the Chilean isolate Cl-766 and NY-1 

(Engel et al.,2008). Another study reported significant variability between New Zealand 

isolates where, to date, four genetic variants have been identified (Chooi et al.,2009). A study 

on Portuguese grapevine varieties, infected with GLRaV-3, identified five GLRaV-3 variant 

groups based on coat protein gene sequences (Gouveia et al.,2009).  

 

From this summary it is clear that the variation in the GLRaV-3 genome is far greater than 

reported on in the earlier studies.  
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2.5 CONCLUSION 

 

Grapevine is an important crop globally and is known to be the host of many diseases, 

especially virus diseases. The main virus diseases known to occur on grapevine includes 

devastating diseases like GLR disease, the focus of this study, shiraz disease, syrah decline, 

rugose wood (RW) complex including rupestris stem pitting (RSP) disease, corky bark, kober 

stem grooving and LN33 stem grooving syndrome. These diseases cause economic losses in 

worldwide grapevine production areas.  

 

GLRaV-3, ampelovirus, was identified as being one of the main viruses in the GLR disease 

complex. A number of factors contribute to the spread of GLR disease, i.e. efficient virus 

vectors, infected planting material, virus variants and lack of control strategies. Studies on the 

mealybug vectors P. ficus and P. longispinus in South Africa showed that these species are 

very efficient in transmitting GLRaV-3. The importance of using virus-free planting material 

is supported by the certification scheme in the South African grapevine industry. Several 

epidemiology studies on GLR disease showed the importance of this disease worldwide and 

although control measures are stipulated for GLR disease, the disease still causes major 

infections in local vineyards.  

 

The genetic variation of GLRaV-3 have been studied more intensively in the past years, since 

Ling et al. published the first full length sequence of isolate NY-1. New molecular evidence, 

based on the full length sequence of the South African isolate GP18, showed that the 5’UTR 

of this isolate is 579 nt longer that the sequence data reported for the NY-1 and Chilean 

isolate Cl-766. Phylogenetic studies on GLRaV-3 variants showed at least five to six groups 

of variants. There are a number of sequences that cluster outside these variant groups and 

further research may find that these isolates are part of a wider range of variation that exists 

around the world. It is important to understand the interactions between GLRaV-3 variants 

and insect vectors for control of the disease.  

 

The literature review includes different aspects of the GLR disease complex: GLRaV-3, insect 

vectors, genetic variability and epidemiology studies and serves as background for further 

discussions in this dissertation.  
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3.1 ABSTRACT 

Three genetic variants of grapevine leafroll-associated virus 3(GLRaV-3) were identified in 

vineyards of the Western Cape, South Africa. The GLRaV-3 variants were identified by 

single strand conformation polymorphism (SSCP) profiles generated from a region amplified 

in ORF5. ORF5 sequence data confirmed the three genetic variant groups and a specific 

SSCP profile was assigned to each variant group. The results of the SSCP analysis on the 

region in ORF5 showed that this method gives a fast and reliable indication of the GLRaV-3 

variant status of a plant, which in many instances showed mixed infections. The full genome 

sequence of one representative of each variant group i.e. isolates 621 (group I), 623 (group II) 

and PL-20 (group III), was determined by sequencing overlapping cloned fragments of these 

isolates. The sequences of genomic 5’ ends of these isolates were determined by RLM-RACE. 

Sequence alignment of the 5’UTRs indicated significant sequence and length variation in this 

region between the three South African variant groups. Alignment of the Hsp70h and CP gene 

regions of these isolates with those of isolates from elsewhere in the world, followed by 

phylogenetic analysis, further supported the presence of three variants of GLRaV-3 in South 

Africa and that two or three additional variant groups occurred elsewhere in the world.  

 

3.2 INTRODUCTION 

Grapevine leafroll-associated virus 3 (GLRaV-3) is the main causative agent of grapevine 

leafroll disease (leafroll) in South Africa and spreads rapidly in local vineyards (Pietersen, 

2004). As GLRaV-3 is consistently associated with leafroll it is viewed to be an important 

etiological agent in this economically important disease (Boscia et al., 1995). GLRaV-3 is the 

type species of the genus Ampelovirus in the family Closteroviridae (Martelli et al, 2002). 

Virions are flexuous, filamentous particles, about 1800 nm long with a positive-sense single 

stranded RNA genome organised into 13 open reading frames (Ling et al., 2004). 

 

Research world wide showed the existence of several molecular variants of GLRaV-3. The 

population structure and genetic variability of 45 GLRaV-3 isolates, from different grapevine 

varieties and 14 different countries, by single stranded conformation polymorphism (SSCP) 

and sequence analysis of three genomic regions, RdRp, Hsp70h and coat protein (CP) was 

investigated (Turturo et al., 2005). The results for the RdRp and Hsp70h regions showed that 

10% of the isolates analysed had mixed variant infections, whilst 15% of the isolates had 

mixed infections when the CP region was analysed (Turturo et al., 2005). Multiple alignment 

of sequences deposited in Genbank® revealed that the sequences used in the Italian study had 

nucleotide identities of above 90% between isolates in the regions studied. High diversity was 
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noted in other studies, such as the divergent strain of GLRaV-3 (GLRaV-3-Tempr) (Genbank 

accession no. DQ314610), found in a grapevine accession in the cultivar Tempranillo from a 

Spanish vineyard (Angelini et al., 2006). The GLRaV-3-Tempr isolate was almost 20% 

divergent to the NY-1 isolate on nucleotide level in the sequenced 3’ end of ORF1 (Angelini 

et al., 2006). GLRaV-3 infected juice grapes (Vitis labruscana ‘Concord’ and Vitis 

labruscana ‘Niagara’) from Washington State revealed nucleotide identities of 94 to 98% and 

amino acid identities of 97 to 98% in the Hsp70h gene of the NY-1 isolate (Soule et al., 

2006). A survey of leafroll-associated viruses showed a 74.1-100% identity at the nucleotide 

level and 85.9-100% identity at the amino acid level between five GLRaV-3 isolates from 

New York and 25 isolates from other geographic regions (Fuchs et al., 2009). Phylogenetic 

analysis of the HSP70h gene showed at least five possible variant groups in their study (Fuchs 

et al., 2009). A study on the viral variants in the ‘Waltham Cross’ table grape variety, 

revealed at least two GLRaV-3 variants; one clone (WC-HSP-2) shared a 93.2% nucleotide 

identity with NY-1 (Ling et al., 2004) and two other clones (WC-HSP-10 and WC-HSP-28) 

were only 72.3% identical to NY-1 (Prosser et al., 2007). A nucleotide identity of 97.6% was 

reported between the Chilean isolate Cl-766 and NY-1 (Engel et al., 2008). Another study 

reported significant variability between New Zealand isolates where, to date, four genetic 

variants have been identified (Chooi et al., 2009). A study on Portuguese grapevine varieties, 

infected with GLRaV-3, identified five GLRaV-3 variant groups based on coat protein gene 

sequences (Gouveia et al., 2009).  

 

In a previous study of South African isolates of GLRaV-3, single strand conformation 

polymorphism (SSCP), restriction enzyme (RE) SSCP, cloning and sequencing techniques 

were used to identify two clearly divergent molecular groups of the virus (Jooste & 

Goszczynski, 2005). The first molecular variant, represented by isolate 621, was very similar 

to the NY-1 isolate of Ling et al. (2004) while sequence data of the second molecular variant, 

represented by isolate 623, was very similar to the complete genome sequence of the South 

African isolate GP18 (Maree et al., 2008). The molecular divergence between these two 

variant groups was especially high in the 5’ terminal part (partial sequences of the 5’UTR and 

ORF1a of the virus where nucleotide sequences differed by 35%. Sequence data of the 

remaining coding regions showed nucleotide similarities above 90% between the variant 

groups. The two variant groups could be distinguished by unique SSCP profiles generated 

from an amplified region in ORF 5 (Jooste & Goszczynski, 2005).  
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The complete genome length of a South African GLRaV-3 isolate, GP18 (EU259806), was 

reported to be 18498 nt (Maree et al., 2008). The extended length of the 5’UTR, consisting of 

737 nt, differed from that reported previously by Ling et al. (2004) and Engel et al. (2008) 

where a 5’UTR of 158 nt for both isolates NY-1 (AF037268) and Cl-766 (EU344893) was 

described. There was a 93% sequence identity between the genome sequences of isolate GP18 

and NY-1 (Maree et al., 2008).  

 

In this study, the variability of GLRaV-3 in infected plants in South African vineyards was 

further explored. The aim of the study was to use the SSCP technique to identify GLRaV-3 

variants from infected vineyards and to obtain full genome sequences of three representatives 

of these GLRaV-3 variants, namely isolates 621, 623 and PL-20, including their 5’UTRs. The 

phylogenetic relationships of these three isolates were determined using Hsp70h and CP gene 

sequences which were aligned with those of isolates obtained from elsewhere in the world.  

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Virus sources  

A field survey was conducted in five mother blocks in different grape producing areas of the 

Western Cape, South Africa, namely; Stellenbosch, Paarl, Wellington, Rawsonville and 

Worcester. GLRaV-3 infected plants were selected based on different spatial distribution 

patterns of leafroll recorded in a survey done in mother blocks from 2001-2007 (Pietersen, 

2004). In numerous disease foci (also referred to as disease clusters) the infection point or 

starting point of disease spread began from a single plant. From this single plant mealybugs 

transmitted the disease to adjacent plants in rows and across rows forming clusters of 

infection. The plants collected in this survey all represent the initial infected plant of any 

given foci of leafroll infection. 

 

Based on SSCP profiles, twelve of these infected plants (3,4,5,7,12,15,16,17,20,32,48, and 

50) were selected for further investigation (Table 1). The existence of an extended 5’UTR was 

studied in these twelve plants and in 57 additional field-collected GLRaV-3 isolates. 
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Table 1.A description of the twelve plants selected for further investigation, in which 

cultivar, year planted and collection region are listed  

Plant 
number 

Position description 
(Block/Row/Plant no) 

Cultivar Region Year 
planted 

3 52/28/95 Cabernet Sauvignon Paarl 1997 
4 52/30/64 Cabernet Sauvignon Paarl 1997 
5 52/53/26 Cabernet Sauvignon Paarl 1998 
7 52/63/89 Cabernet Sauvignon Paarl 1998 
12 10/9/87 Cabernet Sauvignon Worcester 1996 
15 10/23/10 Cabernet Sauvignon Worcester 1997 
16 10/29/2 Cabernet Sauvignon Worcester 1997 
17 10/31/35 Cabernet Sauvignon Worcester 1997 
20 10/39/99 Cabernet Sauvignon Worcester 1992 
32 19b/6/15 Merlot Rawsonville 1994 
48 1/23/63 Cabernet Sauvignon Stellenbosch 1991 
50 1/29/83 Cabernet Sauvignon Stellenbosch 1991 

 

3.3.2 dsRNA isolation, RT-PCR, cloning and SSCP analysis 

Isolation of dsRNA, SSCP analysis and cloning were carried out as described earlier 

(Goszczynski & Jooste, 2002). SSCP profiles were generated in 15% polyacrylamide gels 

from GLRaV-3 amplified products in ORF5, genome position 12592-12801 (primer pair 

H420/C629 in Jooste & Goszczynski (2005). Additionally, the variability in eleven regions of 

the genomes of the twelve plants listed in Table 1 was further investigated with SSCP 

analysis and sequencing. The primers used in this study are listed in the supplementary data as 

Table 1.  

 

3.3.3 Cloning of fragments of isolates 621, 623 and PL-20 and assembly into whole-

genome sequences 

Based on the SSCP results from the field survey, the complete nucleotide sequences of three 

GLRaV-3 isolates were determined: GLRaV-3 isolate PL-20, from a Vitis vinifera cv. 

Cabernet Sauvignon plant (Table 1), and GLRaV-3 isolates 621 and 623, from Vitis vinifera 

cv. C. Sauvignon and Vitis vinifera cv. Ruby Cabernet, respectively (Jooste & Goszczynski, 

2005).  

 

dsRNA and total RNA were isolated from these samples and used for RT-PCR to clone 

fragments of isolates 621, 623 and PL-20 using standard molecular techniques.  

 

Primer design for cloning and sequencing of the genome fragments of isolates 621 and 623 

was done with the Genefisher program (Giegerich et al., 1996) using the published sequences 

of isolate NY-1 (Ling et al., 2004) as a template. The sequencing strategy for fragments of 

isolates 621 and 623 was based on the amplification, cloning and sequencing of 18 
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overlapping clones in the genomes of isolates 621 and 623, with product sizes ranging from 

283 to 986 bp (primer sequences not shown). Cloning of PCR-amplified products was carried 

out using a pGEM®-T Easy cloning system (Promega). At least three clones of each amplicon 

were sequenced in both directions. Consensus sequences of isolates 621 and 623, similar to 

the nucleotide length of NY-1 (Ling et al., 2004), were assembled with DNAMAN version 6 

sequence analyses software (Lynnon Biosoft, 1996) from the overlapping sequences 

generated from the cloned fragments.  

 

The sequence of isolate PL-20 was compiledfrom the amplification and sequencing of ten 

overlapping cloned fragments (Figure 3). Primer design was done with Genefisher (Giegerich 

et al., 1996) and OligoExplorer 1.1.0 Software (http://www.genelink.com/tools/gl-oe.asp) 

with the GP18 isolate sequence as a template (Maree et al.,2008). Primers designed to amplify 

the fragments of isolate PL-20 in ten overlapping clones are listed in Table 2. The PCR 

products (Table 2) were ligated into the pDrive vector, using a Qiagen® PCR Cloning kit 

according to the manufacturer’s instructions and transformed into competent DH5α cells. At 

least three clones of each amplicon were sequenced in both directions with the SP6 and T7 

primers, and with additional primers where required. The additional sequencing primers that 

were designed to sequence the larger cloned fragments are listed in Table 3.  

 

Table 2. Primers designed to amplify and sequence ten overlapping clones of isolate PL-20. Primer positions are 

based on the genome sequence of GLRaV-3 isolate GP18 (EU259806) 

Clone Primer Sequence (5’ to 3’) Product 
size(bp) 

Position of amplified 
products 

K GL3.5 TGCTCTAGTAGGATTCGAAC    
 GL3H.R CGATCAATAGACCTCCTCTTG  1976 ORF1a (6-1973) 
J GL3J1814F GTCACTCAATGAAGAGCGCACC   
 GL3J3108R CAACCTTGCTGTGGACGCC  1294 ORF1a (1814-3108) 
I GL3J.F GACTTTGTCGACAGGATC    
 GL3.4133R CACGCTTCGAGGTGAATGG  1763 ORF1a (2967-4730) 

G GL3.3874F GGGGCTTGCTTAACGACAC    
 GL3.5591R AACGCCCTGTATGTCCTCTC  1734 ORF1a (4453-6187) 

F GL3.5297F GTCACCAGGTGTTCCAAACC   
 GL3.7707R CCTGCTTCATGAGAGCACTC 2429 ORF1a/b (5876-8305) 

E GL3.7466F CGCCATTGTCGAAGTACG    
 GL3.3RRev GAATACTTCCACAGCCCTAG  3534 ORF1b/4 (8045-11579) 

D GL3.3RFor TGCTGGTTCTTACGTTCG    
 GL3.12524R TGACCAGCTTGAGCGTAG  2547 ORF3/5 (10573-13120) 

C GL3.12212F CGATCGTGCCGTTAAGAG    
 GL3.15218R GCCTTTCGAAAGAACGAGTC 3026 ORF5/7 (12791-15817) 

B GL3B15705F CGGACTCAGTGTTGTCAATCAGTG    
 GL3B17172R GCTTCCTCCAACGCTGAAACAG  1467 ORF7/9 (15705-17172) 

A GL3.16399F GGGTGCCGTATTAAGAGACTC    
 3’UTRev AAGGGCCCGACCTAACTTATTGTCGATAAG   1520 ORF9/3’UTR (16978-

18498) 
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Table 3.Additionalprimers designed for sequencing the gaps in the large clones generated for PL-20. The 

positions of the primers are indicated in the primer name according to positions on the GP18 (EU259806) 

sequence 

Clone Primer Sequence (5’ to 3’) 
K GL3K790F TTTACGGGGAATGTGAAGTTG 
F GL3F6544F CTCCTCCAGGTGGTGGTAAGAC 
E GL3E8837F CGCGGAAATATAAGCATTCGGGATG  
 ORF2+3Rev GGGGAAAAGCAGATTGTGC  

D GL3D11187F CCGACAGCCGCAGCCCTCTATTC  
 GL3D12353R GCCTCGTTAGGGTTCAATATCC  

C GL3C13579F CACAGGAACAATTGGAAGACGCTG  
 GL3C15054R CTGGCTATCGATAACGTAACCG  

 

To determine the sequences of the 5’ and 3’ ends of isolates 621 and 623, poly (A) tailing was 

attempted (Ling et al., 1998; Ling et al., 2004). The 5’ends of isolates 621, 623 and PL-20 

were amplified using the RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-

RACE) with the First Choice® RLM-RACE kit (Ambion, USA) according to the 

manufacturer’s instructions, using total RNA extracted from 2 g of phloem tissue by the 

CTAB method (White et al., 2008). The genome-specific reverse primers used for the 5’ 

RLM-RACE kit to perform the 5’ RACE PCRs, were LR3 365Rev, 5’ 

CGTCCGCTTCACCCCTTTGG 3’ (used in the outer PCR reaction), and LR3 868, 5’ 

GGGTGTGAAGTCAGATAACTT 3’ (in the inner PCR reaction). The PCR products of the 

5’UTR region were ligated into the pDrive vector and sequenced as described above. 

Sequences were analysed and assembled with Vector NTI v10 (Invitrogen) and BioEdit 

software (Hall, 1999), and consensus sequences of the 5’ and 3’ ends of isolates 621, 623 and 

PL-20 were compiled.  

 

The 3’ ends of isolates 621 and 623 were successfully determined with the polyadenylation 

and reverse transcription of purified dsRNA (Ling et al., 1998). The 3’ end of isolate PL-20 

was cloned with the extension of polyA cDNA. 

 

The whole-genome sequences of GLRaV-3 isolates 621, 623 and PL-20 were deposited in the 

GenBank® database and assigned accession numbers GQ352631, GQ352632 and GQ352333. 

The predicted functions of the ORFs were confirmed with the Conserved Domain Search on 

the NCBI website (Marchler-Bauer, 2009; Marchler-Bauer & Bryant, 2004). The nucleotide 

(nt) and amino acid (aa) sequences of the ORFs of these isolates, those of the Chilean isolate 

C1-766 and the South African isolate GP18 were compared with those of the USA isolate 
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NY-1, and were expressed as percentage sequence identity to isolate NY-1 and were listed in 

tabular form (Table 6). 

 
3.3.4 Confirmation of 5’UTR in field-collected samples 

Primers were designed to amplify a 362-422nt fragment (depending on the variant group) in 

the 5’UTR of selected GLRaV-3 isolates by RT-PCR. These primers were designed in 

conserved regions, identified by multiple sequence alignment of the 5’UTRs of isolates 621, 

623, PL-20 and GP18, and were designated GL3.5F (5’ TGCTCTAGTAGGATTCGAAC 3’) 

and GL3.342R (5’ CCCAACACGATAAAGAGAAC 3’). PCR products were sequenced and 

sequence data were analysed to identify variant groups. 

 

3.3.5 Phylogenetic analysis 

In order to assess the relationship of the three South African isolates, their Hsp70h and 

CPgene sequences were used in a phylogenetic analysis in which the Hsp70h and CP 

sequences of a large number of isolates from elsewhere in the world were included. The 

origins of the Hsp70h and CPsequences and Genbank accession numbers are shown in Table 

4 and 5 respectively. These Hsp70h and CP sequences of isolates 621, 623 and PL-20 as 

representatives of the South African variant groups I, II and III, respectively, were aligned 

with the Hsp70h and CP sequences downloaded from GenBank (Table 4, 5), respectively 

utilizing the software package BioEdit (Hall, 1999). These sequences were aligned using the 

Clustal W (v 1.4) alignment function embedded within the BioEdit package and the alignment 

was refined manually. Phylogenetic analyses of the aligned Hsp70h and CP sequence matrices 

were performed using PAUP 4.0b10 (Swofford, 2003). In both analyses theGLRaV-1 Hsp70h 

and CPsequence (GenBank accession no. AF 195822) was used as the outgroup. A heuristic 

search (1 000 replicates) using TBR branch swapping with all characters weighted equally 

was performed to search for the shortest possible trees from both data matrices. A bootstrap 

analysis (1 000 replicates) using TBR branch swapping was performed to establish clade 

support. Branches with bootstrap values ≥ 75% were considered as well supported, whilst 

values between 75% and 50% were considered as moderately supported. Values below 50% 

were considered weakly supported and in line with other phylogenetic analyses were not 

indicated on phylograms. 
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Table 4. Virus isolates used in this study to determine the phylogenetic relationships between the different 

variant groups of GLRaV-3 based on the Hsp70h gene  

Isolate Cultivar Country  GenBank accession no. 

NY-1  Pinot noir U.S.A AF037268 
GP18 Cabernet Sauvignon South Africa EU259806 
621 Cabernet Sauvignon South Africa GQ352631 
623 Ruby Cabernet South Africa GQ352632 
PL-20 Cabernet Sauvignon South Africa GQ352633 
Cl-766 Merlot Chile EU344893 
NZ-1 Unknown New Zealand EF508151 
MT48-1 LN33 Italy AJ748518 
MT48-2 LN33 Italy AJ748519 
MT48-3 LN33 Italy AJ748520 
MT48-4 LN33 Italy AJ748521 
C1-1 Unknown U.S.A DQ780885 
C2-1 Unknown U.S.A DQ780886 
C3-1 Unknown U.S.A DQ780887 
C4-1 Unknown U.S.A DQ780888 
C5-1 Unknown U.S.A DQ780889 
C6-1 Unknown U.S.A DQ780890 
N1-1 Unknown U.S.A DQ780891 
TU32 Unknown Tunisia AJ748522 
AUSG5-2 Unknown Austria AJ748510 
AUSG5-4 Unknown Austria AJ748511 
AUSG5-5 Unknown Austria AJ748512 
AUSG5-6 Unknown Austria AJ748513 
SY2-2 Homos Syria AJ748515 
SY2-4 Homos Syria AJ748516 
SY2-7 Homos Syria AJ748517 
IL1 Hillmanis Israel AJ748524 
USA6 Shermann  U.S.A AJ748523 
GLRaV-1 Unknown Australia AF195822 
C3 Unknown China AJ748514 
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Table 5.Virus isolates used in this study to determine the phylogenetic relationships between the different 

variant groups of GLRaV-3 based on the coat protein gene  

Isolate Cultivar Country  GenBank accession no. 

NY-1  Pinot noir U.S.A AF037268 
GP18 Cabernet Sauvignon South Africa EU259806 
621 Cabernet Sauvignon South Africa GQ352631 
623 Ruby Cabernet South Africa GQ352632 
PL-20 Cabernet Sauvignon South Africa GQ352633 
Cl-766 Merlot Chile EU344893 
NZ-1 Unknown New Zealand EF508151 
MT 48 Unknown Italy AJ606351 
MT 38 Unknown Italy AJ606350 
MN 18 Unknown Italy AJ606349 
SS 5.1 Unknown Italy AJ606348 
SS 5.2 Unknown Italy AJ606347 
TA 3.3 Unknown Italy AJ606346 
TA 3.1 Unknown Italy AJ606345 
TA 3.2 Unknown Italy AJ606344 
GR 1.2 Unknown Greece AJ606343 
GR1.1 Unknown Greece AJ606342 
NIG 3.1 Unknown Nigeria AJ606341 
NIG 3.2 Unknown Nigeria AJ606358 
USA Unknown Tromelin Island AJ606340 
AUSG 5.2 Unknown Austria AJ606339 
AUSG 5.2 Unknown Austria AJ606338 
LN Venus seedless China FJ786016 
SL10 Unknown China DQ911148 
Pet-3 Unknown Brazil DQ062152 
Pet-4 Unknown Brazil AY753208 
Pet-1 Unknown Brazil DQ680141 
Cl-765 Merlot Chile EU344896 
Cl-644 Merlot Chile EU344895 
Cl-817 Chardonnay Chile EU344894 
Dawanhong 2 Unknown China DQ119574 
CH 5.2 Unknown China AJ606357 
CH 5.1 Unknown China AJ606356 
IL 1.1 Unknown Israel AJ606355 
IL 1.2 Unknown Israel AJ606354 
TU 16 Unknown Tunisia AJ606353 
SY 2.3 Unknown Syria AJ606352 
GLRaV-1  Australia AF195822 
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3.4 RESULTS 

3.4.1 Field survey, SSCP analysis  

SSCP profiles performed on the isolated dsRNA of 46 GLRaV-3 infected plants showed two 

distinct profiles (Figure 1a, lane 4 and 5) as previously described (Jooste & Goszczynski, 

2005), as well as additional (hitherto unreported) profiles (Figure 1a-d). The SSCP profiles 

consisted of ‘simple’ and ‘complex’ patterns, as described previously(Turturo et al., 2005). 

‘Complex’ and atypical profiles were selected for further analyses in this study. The SSCP 

profiles of the twelve plants selected for further analysis are indicated by arrows in Figure 1a-

d (3, 4, 5, 7, 12, 15, 16, 17, 20, 32, 48 and 50). The SSCP profiles of plants 4 and 5 represent 

the two variants, isolates 621 (group I) and 623 (group II), previously identified (Jooste & 

Goszczynski, 2005).  

 

 
Figure 1a-d. SSCP results of plants collected in vineyards in the (a) Paarl and Worcester regions, lanes 2-10 and 

11-15, respectively, (b) Worcester and Wellington regions, lanes 16-20 and 21-30, respectively, (c) Rawsonville 

region, lanes 32-41 and (d) Stellenbosch region, lanes 42-54. 

 

Ten clones from each of the twelve plants were generated and individually analysed by SSCP. 

A minimum of four clones per plant were selected for sequencing of this region (indicated by 

circled numbers in Figure 2). Variability in SSCP profiles between the clones was detected in 

most of the plants (4, 7, 12, 15, 16, 32, and 48), illustrating that combinations of variants 

occurred in different plants. In some of the plants (5, 17, 20 and 50) the SSCP profiles of all 
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10 selected clones were identical. The nucleotide sequences of 55 clones and four reference 

sequences (Group I: NY-1 and 621, Group II: GP18 and 623) were compared. Sequence 

alignment showed that the majority of the clones grouped with the variant group II isolates 

623 and GP 18 (Supplementary data, Figure 1). A third variant group was identified based on 

sequence results and distinct SSCP profiles detected in plants 15, 16, 20 and 32. The SSCP 

profiles shown in Figure 2 of clones 15.2, 15.9, 16.1, 16.5, 16.7, 20.1, 20.4, 20.7, 20.9, 32.5 

and 32.8 represent this third group of variants. Based on these results, the viral isolate from 

plant 20 (referred to as isolate PL-20) was selected as a representative of the third variant 

group. Sequences of other clones from plant 15, 16 and 32 clustered with sequences of clones 

in group I. Nucleotide sequences from each clone and the SSCP profiles (Figure 2) of 

individual clones of the three variant groups, correlated. SSCP profiles of clones from plant 

12 were all similar, except for 12.8, which had a single nucleotide change, resulting in a 

different SSCP profile.  

 

Clones derived from plant 4, i.e. 4.1, 4.3, 4.6 and 4.10, showed SSCP profiles typical for 

variant group I and clustered into the group that was similar to isolates 621 and NY-1. Clones 

4.5, 4.7 and 4.9 showed atypical SSCP profiles for group I and sequence results confirmed 

that these clones were similar to clones from variant group II. The alignment of clones from 

plant 4 is shown in Figure 2 as supplementary data to this chapter.  

 

The SSCP profiles determined previously for the three variant groups are indicated in the 

profiles of plants 4, 5 and 20 (Figure 1a, b).  

 

 

Figure 2. SSCP profiles of ten clones of each of the twelve plants. Clones indicated with circles were sequenced. 

The first lane of each gel represents the original SSCP profile (OP) of each plant. 
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The bands seen in the SSCP profiles of the original plants 3,7,12 and 17 were not all found in 

the 10 cloned samples. This is because the expected SSCP pattern should be composed of two 

or three bands (one of them being a ‘conformomer’, i.e a conformational structure of the same 

sequence as described by Orita et al., 1989) (Turturo et al., 2005). A closer look at the SSCP 

profiles of these plants show these conformational structures of the same sequence as light 

bands, some more visible than others.  

 

Additional SSCP and sequence data were analysed to investigate the variability of the viral 

genomes present in the twelve selected plants. The objective was to investigate how SSCP 

analysis and sequencing results compared in identifying GLRaV-3 variants. Sequencing 

results, presented as phylogenetic analyses, and SSCP analysis of primer pairs 2 in ORF1a 

(259 nt), 6 in ORF5 (312 nt), 8 in ORF7 (326 nt), 10 in ORF9(254 nt) and 11 in ORF10 (212 

nt) are shown in Figures 3-7 in the supplementary data. At least four or more different SSCP 

profiles were detected in the twelve plants analysed. Phylogenetic analysis of the sequence 

results from the plants in these regions confirmed three clear variant groups in all the regions 

studied. The additional sequence data confirmed the three variant groups detected in ORF5 

with H420, C629 primers.  

 

3.4.2 Whole-genome sequencing results and variability in the 5’UTR 

Whole-genome sequences of isolates 621, 623 and PL-20 were successfully generated, each 

representing one of the variant groups identified in the SSCP studies. The genome 

organisation of the three GLRaV-3 variants was similar to that described previously for 

isolates NY-1, Cl-766 and GP18 (Ling et al., 2004; Engel et al., 2008; Maree et al., 2008). 

Similar to isolate GP18, all three isolates contained an extended 5’UTR. ORF1a of isolates 

621 (group I) and 623 (group II) started at nucleotide position 738 on the respective genomes 

and at position 673 on the PL-20 genome (group III). In this region, the methyltransferase 

(MET), AlkB (2OG-FeII) and helicase (HEL) domains were found in all three isolates. The 

other domains were similar to the NY-1, GP18 and Cl-766 isolates (Ling et al., 2004; Maree 

et al., 2008; Engel et al., 2004) and included the two intergenic regions from positions 9058-

9286 and 9443-10508.  

 

The variation between the three variant groups compared to isolate NY-1 is shown in Table 6. 

The percentage sequence identity in the nt and aa sequences in ORF1a showed no clear 

differentiation between group I and II variants. In ORF2 the aa prediction for the variant 

group II isolates, GP18 and 623, differed by almost 20% to group I and III variants. The 
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genomic regions towards the 3’UTR, namely ORF10, ORF11 and ORF12, showed the most 

variation between variants in the nt and aa sequences and the group III variant showed 80%, 

67% and 78% aa identity, respectively, to the NY-1 isolate in these regions.  

 

Table 6.The nucleotide (nt) and amino acid (aa) percentage sequence identity of the GLRaV-3 isolates, Cl-766 

(EU344893), 621 (GQ352631), GP18 (EU259806), 623 (GQ352632) and PL-20 (GQ352633), representing the 

three variant groups, as compared to isolate NY-1 (AF037268)  

 

GLRaV-3 
isolate 

ORF1a 
Met/Hel 

nt/aa 

ORF1b 
RdRp 
nt/aa 

ORF2 
p6 

nt/aa 

ORF3 
p5 

nt/aa 

ORF4 
Hsp70h 

nt/aa 

ORF5 
Hsp90h 

nt/aa 

ORF6 
CP 

nt/aa 

Variant 
group 

95.7/95.5 99.0/99.1 98.7/98.0 97.1/100 98.8/98.4 99.2/99.0 99.0/99.0 Cl-766 
621 96.2/96.5 99.4/100 98.7/98.0 97.1/100 98.8/98.7 99.2/99.2 99.3/99.0 

 

I 

94.1/95.3 95.4/97.6 90.4/80.4 93.5/97.8 94.6/96.9 92.8/93.2 92.5/94.6 GP18 
623 93.4/95.6 90.3/95.7 91.0/82.4 93.5/97.8 94.8/97.8 92.9/93.4 92.8/95.2 

 

II 

PL-20 87.5/90.9 92.3/96.5 87.8/78.4 92.0/91.1 90.0/94.7 90.8/91.3 91.5/96.5 III 
 ORF7 

dCP 
nt/aa 

ORF8 
p21 

nt/aa 

ORF9 
p19.6 
nt/aa 

ORF10 
p19.7 
nt/aa 

ORF11 
p7 

nt/aa 

ORF12 
p4 

nt/aa 

3’UTR 
 

nt 

 

99.2/98.1 98.9/98.4 99.4/99.4 98.7/97.2 98.2/97.2 93.4/91.7 97.5 Cl-766 
621 99.1/98.3 99.5/100 99.6/99.4 98.7/96.6 97.3/94.4 93.4/91.7 96.8 

 

I 

92.1/89.9 93.5/97.3 91.6/88.7 90.6/86.0 91.0/88.9 97.3/96.7 97.5 GP18 
623 92.3/90.6 93.7/97.3 91.6/88.7 89.8/84.9 91.9/88.9 97.8/95.0 97.1 

 

II 

PL-20 88.3/89.3 90.1/94.6 90.8/89.3 83.0/79.9 77.5/66.7 84.2/78.3 94.9 III 
 
The 5’UTR sequences of isolates 621, 623 and PL-20 were successfully sequenced after 

RLM-RACE. The full genome length of isolates 621 and 623 was 18498 nt with a 5’UTR 

length of 737 nt, identical to that reported for the South African GP18 isolate (Maree et al., 

2008). Multiple sequence alignment of the 5’UTR (Figure 3) indicated significant variation 

amongst the three variant groups with two regions differing substantially amongst them. In 

the first region, two insertions were observed in the sequence of the group I and III variants 

(isolates 621 and PL-20) compared to the group II variants, in which a 61 nt insertion between 

positions 205 and 267 and an insertion of 4 nt between positions 273 and 278 was found. In 

the second region, deletions between positions 567 and 661 in variant group I (isolate 621) of 

65 nt, and in variant group III (isolate PL-20) of 132 nt were found. The sequence data of the 

5’UTR was confirmed with clones generated from the RLM-RACE reaction as well as clones 

from primer set GL3.5 and LR 365Rev that amplified a product of 941 bp from positions 5-

946 on the GP18 genome.  

 

The variation in the 5’UTR sequences presented here correlated with the three variant groups 

shown by SSCP profiles generated from amplicons of ORF5, and sequence data of the 

5’UTRs of the three variants (621, 623 and PL-20) reflected the three variant groups. The 

5’UTR is highly variable between the GLRaV-3 molecular variants compared to the rest of 
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the genome. Intergroup variation between the group I (621) and group II (623) variants in the 

5’UTR was as much as 30%, while variant group II (623) and group III (PL-20) differed by 

22%. Group I (621) and III (PL-20) varied by 33%.  

 

3.4.3 Confirmation of 5’UTR sequence results  

Amplified RT-PCR products obtained from the twelve selected plants, using primer pair 

GL3.5F and GL3.342R, were of the expected sizes for the different variant groups, i.e. 422 bp 

for isolates of variant group I and III, and a smaller product, 362 bp, for isolates of group II 

variants. These PCR products were sequenced and nucleotide sequences of 382 nt and 317 nt 

(excluding primer sequences) were compiled. The multiple sequence alignment of the twelve 

plants showed the insertion of 65 nts for group I and III isolates (plants 4 and 20).  

 

In addition to these plants, 57 GLRaV-3 infected plants, collected randomly from 10 mother 

blocks in different grapevine growing regions of the Western Cape, were analysed in the same 

area of the 5’UTR (not shown). Fifty-two of these plants grouped in the group II variant clade 

with GP18 and 623, four of these plants grouped with the group I variant, 621, and one plant 

in the group III clade with PL-20.  
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  621 GQ352631   (1) ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAATTTATTTTACCTGAATTTTCCGCCACGTGCCATAAAATTTC 
  623 GQ352632   (1) ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAAATTATTTTACATGAATTTTCCGCCACGTGCCATAAAATTTT 
 GP18 EU259806   (1) ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAAATTATTTTACCTGAATTTTCCGCCACGTGCCATAAAATTTT 
PL-20 GQ352633   (1) ATAAATGCTCTAGTAGGATTCGAACACGGCATTTTTCAATTTATTTCATCTGAATTTTCCGCCACGTGCCATAAAACTGT 
 
  621 GQ35263   (81) ATCTTTTATTTCTCGTGTTTTTGGGTGTTAAGTTTTAACTTTTCCTAAAGAAAAACAAAATAAAATTTTTTCCTTTCAGC 
  623 GQ35263   (81) GTCTTTTATTTCTCGTGTTTTTGGGTGTTACGTCTTAGTTTTTCCTAAACAAAAACAAAAGTAAATTTTTTCTTTTCAGC 
 GP18 EU25980   (81) GTCTTTTATTTCTCGTGTTTTTGGGTGTTACGTCTTAGTTTTTCCTAAACAAAAACAAAAGTAAATTTTTTCCTTTCAGC 
PL-20 GQ35263   (81) ATCTTTTATTTCTCGTGTTTTTGGGTGTTAAGTTTTAATTCTTCCTAAAGAAAAACAAAAATAATTTTTTCCTTTTCAGC 
 
  621 GQ352631  (161) TGTCGTTAGTAGTTTTTATTGTAATTTTCCTTTAAAATAACAAAATTTTTCTTTTCTCTTATTGGGGTTTCGTGTTTTGT 
  623 GQ352632  (161) TGTTGTTAGTAGTTTCTGTTGTAGTTTTCCTTAAAAATAACAAAA----------------------------------- 
 GP18 EU259806  (161) TGTTGTTAGTAGTTTCTGTTGTAGTTTTCCTTAAAAATAACAAAA----------------------------------- 
PL-20 GQ352633  (161) CGCCGTTAGTAATTTTCGTCGTAATTTTCCTTAAAAATAACAAAAATTTTTCTTTCTTTTTCAGCCGCCGTTAGTAATTT 
 
  621 GQ352631  (241) AGTCATTAACTTTCCTTTAAAATAACAAAATTTTTCTCTTCTCTTTTTGGTGTTTCGTGTTTAGTAGTTATTAACTTTCC 
  623 GQ352632  (206) --------------------------AAGATTT----CTTCTCCTTTTAGTACGTCGCGTCTTGTCATCTTTAATTTTCC 
 GP18 EU259806  (206) --------------------------AAGATTT----CTTCTCCTTTTAGTACGTCGCGTCTTGTCATCTTTAATTTTCC 
PL-20 GQ352633  (241) TCGTCGTAATTTTCCTTAAAAATAACAAAAATTTTTCTTTCTCTTTCCAGTGTTTCGTGTTTCTTTGTTACAAACTTTCC 
 
  621 GQ352631  (321) TAGAGTCTGTTTAGGTTCGTGTTTAGTTTTCTCTGCGCTTCCGCGTCTTAAGTTTTAACTTTTCCTAAGCGTCTTTTAAG 
  623 GQ352632  (256) TTGCGTCTGTTTAGGTTTGCGTCAAGTTTTCTTTGCGTCTTCGTGTTTTTAGTTTTAGTTTTTCCTAAGTGTCTTTTAAG 
 GP18 EU259806  (256) TTGCGTCTGTTTAGGTTTGCGTCAAGTTTTCTTTGCGTCTTCGTGTTTTTAGTTTTAGTTTTTCCTAAGTGTCTTTTAAG 
PL-20 GQ352633  (321) TAGAGTCTCTTTAGGTTTGAGTCTAGTTTTCTTAGTGTTTTCGTGTCTTTAGTTTTGGCCTTTCCTAAGCGTTATTTAAG 
 
  621 GQ352631  (401) AGGGTTGGTTCTCATCGTCGTGTTGGGTTAATTTAGTTTTTAAAATTTCCCTTTTAAAAAAGAAAAAACGTCATTTTCTT 
  623 GQ352632  (336) AGGGTTAGTTCTCTTTATCGTGTTGGGTAAATTTAGATTTTAGATTTTCCTTTTACAAAGATAGACAACGTCGTTTTCTT 
 GP18 EU259806  (336) AGGGTTAGTTCTCTTTATCGTGTTGGGTAAATTTAGATTTTAGATTTTCCTTTTACAAAGATAGACAACGTCGTTTTCTT 
PL-20 GQ352633  (401) AGGGTTAGTTCTCTTTGTTGTGTTGGGTCAATTCTTGTTTCGAATTTTCCTATAAGAAAGATTAAAAACGTCATTTTCTT 
 
  621 GQ352631  (481) TTAGTGCTTTGTTTTCCGTTTTTTCGTAGTTTTCCTTCACAAGTTTAAAAATATTTCTTTTAGTTTTCTTTAGTCTCAGT 
  623 GQ352632  (416) TTAGTGCCTCGTTTTCCGTTTCTTTGTAATTTTCCTTTGCGAATTTAAAAATTTTTCTTTTATTTCTTTTTAGTTGCGGC 
 GP18 EU259806  (416) TTAGTGCCTCGTTTTCCGTTTCTTTGTAATTTTCCTTTGCGAATTTAAAAATTTTTCTTTTATTTCTTTTTAGTTGCAGC 
PL-20 GQ352633  (481) CTAGTGTTTCGTTTTTCAATTTTTTGTAACTTTCCTTTACGAAATTAAAATTTTTTCTTTCAGTTTTCTTTAGTTGTAGC 
 
  621 GQ352631  (561) GTTTACT-----------------------------------------------------------------TTTTCTAT 
  623 GQ352632  (496) ATTTACTATTTTAATTTTCCTTTAGCGTTTTTGTGGTGGTTTTTCTTCTCTTGGTGTGTTTAGCGTGAGTGTTTTTCTAT 
 GP18 EU259806  (496) ATTTACTATTTTAACTTTCCTTTAGCGTTTTTGTGGTGGTTTTTCTTCTCTTGGTGTGTTTAGCGTGAGTGTTTTTCTAT 
PL-20 GQ352633  (561) GTTTATTA------------------------------------------------------------------------ 
 
  621 GQ352631  (576) TTTCCTAAGTAACACCTAGGAATTTCTACCTAAGATTCAACTTCTTTCTTTTTCTAGTTTTAAATTTTCCTGCTGTTTGA 
  623 GQ352632  (576) TTTCCTACGTACCATCTAGGGAGTCTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTTTTTAATTTTCCTGCTGTTTGA 
 GP18 EU259806  (576) TTTCCTACGTACCATCTAGGGAGTTTTATCTAAGTTTTAACTTCTTTTCTTTTCTAGTTTTTAATTTTCCTGCTGTTTGA 
PL-20 GQ352633  (569) -----------------------------C-----TTTAAC---TTTCCTTTAGT-GTTTT------------TGT---- 
 
  621 GQ352631  (656) GGGAAGTTTGCCCTTCTTCTTCCGTCGTCCTTCGTAAACCAT-TATTTCTATTTCCTCTCCTTTTAAGTTTTTAAGTTTC 
  623 GQ352632  (656) GGGAAGTTTGTCCTTCTTCTTTAGTTCCCCCTTTTTAATCCT-TTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTC 
 GP18 EU259806  (656) GGGAAGTTTGTCCTTCTTCTTTAGTTCCCCTTTTTAAACCCT-TTTAGAAATTTCCTCTTCTTTCAAGTTTTCAAGTTTC 
PL-20 GQ352633  (595) -----GGTAGTTCTTCTTTTATTAGTGTGTTTAGTGTGTCTTCTTTAGAAATTTCCTCCCCTTTTAGGTTTTTAAATCTC 
 
  621 GQ352631  (735) GCT 
  623 GQ352632  (735) GCC 
 GP18 EU259806  (735) GCC 
PL-20 GQ352633  (670) GCT 
 

 
Figure 3.A schematic representation of the genome organisation of GLRaV-3 and the position of the ten 

overlapping clones of isolate PL-20 illustrating the sequencing strategy (top). The multiple alignments of the 

complete 5’UTR sequences of isolates 621, 623, PL-20 and GP18 is shown below this. This reveals a first 

deletion in isolates 623 and GP18 (group II) of 61 and 4 nt, a second deletion of 65 nt in isolate 621 and PL-20 

(group I and III) and a further deletion of 51 nt in the isolate PL-20 sequence (group III).  
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3.4.4 Phylogenetic analysis of the Hsp70h and CP gene sequences 

The alignment of the Hsp70h gene sequences of the isolates 621, 623 and PL-20 with the 

sequences from Genbank® resulted in a matrix which was 933 bp in length. The phylogenetic 

analysis revealed that 213 of the 933 characters were constant, 545 (58%) characters were 

found to be parsimony uninformative while 175 (19%) characters were parsimony 

informative. The heuristic search retrieved 8960 trees with a tree length of 988, with a 

consistency index (CI) of 0.906 and a retention index (RI) of 0.786. As many of the 

Genbank® depositions of CP sequences were not complete, the alignment that was used in the 

phylogenetic analysis was restricted to the first 499 bp of the CP gene. The analysis revealed 

that 174 of the 499 characters were constant, 228 (45.7%) characters were found to be 

parsimony uninformative while 97 (19.4%) characters were parsimony informative. The 

heuristic search retrieved 16 trees with a tree length of 458, with a CI of 0.856 and an RI of 

0.876. The trees that were retrieved were used to generate a strict consensus tree. One of the 

shortest trees retrieved for both regions is shown in Figure 4. This representation of the 

phylogenetic analysis was chosen as it shows branch lengths, which indicate the actual 

numbers of differences between the sequences that were included in the analysis. Those nodes 

that collapsed in the strict consensus tree are indicated with arrows. The phylogeny confirms 

that, based on strong bootstrap support of key nodes, three distinct variants of GLRaV-3 occur 

in South Africa.  

 

The phylogenetic position of the three South African variants in the Hsp70h region (Figure 

4A), in relation to GLRaV-3 from other geographic regions, showed that the group I variant, 

isolate 621, grouped with the NY-1 (Ling et al., 2004) and Cl-766 (Engel et al., 2008) isolates 

with very little variation between these isolates. The variant I clade included sequences from 

isolates from the USA (NY-1, N1-1, C6-1, C4-1, C3-1, C2-1, C1-1, USA6), China (C3), 

Chile (Cl-766), Israel (IL1), Italy (MT48-4, MT48-1), Syria (SY2-2, SY2-7), and Austria 

(AUSG5-5). The group II variant, isolate 623, was sister to isolate GP18 (Maree et al, 2008). 

Other accessions in the group II clade were from Austria (AUSG5-2, AUSG5-6), Syria (SY2-

4) and Tunisia (TU32). Branch lengths were longer in this clade indicating greater sequence 

heterogeneity, and even the two South African isolates showed some sequence divergence. 

The South African variant group III, as represented by isolate PL-20, grouped with two 

accessions from Italy (MT48-2, MT48-3). The branch lengths in this clade indicated that there 

was very little variation between these isolates. Two isolates, C5-1 and NZ-1, each resolved in 

isolated positions on their own in the phylogeny. They appear to represent two further 
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variants of GLRaV-3 in addition to the three variants present in South Africa and elsewhere in 

the world.  

 
Figure 4A.One of the shortest trees of a heuristic search performed on the aligned Hsp70h sequence matrix. 

Branch lengths that are longer than 5 are shown above branches and bootstrap values are indicated beneath. 

Branches that collapsed in the strict consensus tree are shown with arrows. The branch length of the outgroup is 

not drawn according to scale. The three variant groups studied here are indicated as groups I, II and III.  

II 

III 

I 
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Figure 4B.One of the shortest trees of a heuristic search performed on the aligned coat protein sequence matrix. 

Branch lengths that are longer than 5 are shown above branches and bootstrap values are indicated beneath. 

Branches that collapsed in the strict consensus tree are shown with arrows. The branch length of the outgroup is 

not drawn according to scale. The three variant groups studied here are indicated as groups I, II and III.  

I 

II 

III 
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The phylogenetic analysis of the CP gene region (Figure 4B) showed that the three South 

African isolates also grouped into three well-supported monophyletic clades, as in the Hsp70h 

analysis. In the CP analysis, the majority of isolates grouped in the variant group I clade, 

together with isolate 621 and NY-1. This group included isolates from Brazil (Pet-1, Pet-3), 

China (SL10, CH 5.1, CH 5.2, Dawanhong 2), Italy (TA 3.2, TA 3.3, MN18, MT38, MT48, 

SS 5.1), Israel (IL1.1), Chile (Cl-664, Cl-766, Cl-765), Austria (AUSG 5.1), Tunisia (TU16), 

and Syria (SY 2.3). In the group II clade, isolates 623 and GP18 grouped together with 

isolates from Italy (TA 3.1), Nigeria (NIG 3.1, NIG 3.2), Austria (AUSG 5.2), Greece (GR 

1.2), Tromelin Island (USA) and Brazil (Pet-4). Isolates that grouped with the third variant, 

isolate PL-20, were from China (LN), Italy (SS 5.2) and Greece (GR 1.1). The New Zealand 

isolate NZ-1, the Chilean isolate Cl-817 and the Israeli IL 1.2 isolate resolved in isolated 

positions but with poor bootstrap support.  

 

3.5 DISCUSSION 

As in another study (Turturo et al., 2005), the SSCP technique proved a useful tool for 

studying the genetic diversity of South African GLRaV-3 isolates. In our study, the results 

showed that SSCP analysis of a region in ORF5 gave a fast and reliable indication of the 

GLRaV-3 variant status of a plant. This region in ORF5 was successfully amplified in all 

GLRaV-3-infected plants (>200 plants) collected during two local surveys in red grapevine 

cultivars (data not shown). Based on this gene region, three main GLRaV-3 variant groups 

were identified in South African vineyards. The three variant groups were confirmed by 

sequencing and distinct SSCP profiles could be assigned to each variant group. SSCP and 

sequencing results showed complete correlation in all of the genomic regions studied. 

Additional SSCP analysis and sequence data from other regions of the genomes confirmed the 

same three variant groups. The SSCP profiles detected for group II variants were 

heterogeneous, indicating greater sequence complexity within this group. In some of the 

analysed plants, “complex” SSCP profiles were detected which, in most cases, contained a 

single dominant GLRaV-3 variant. Plants infected with a mixture of variants were also 

detected. This information is in agreement with a previous study (Turturo et al., 2005) in 

which combinations of variants in the same isolate were also detected. 

 

The variation detected by SSCP was confirmed by sequencing the whole genomes of three 

isolates representative of the three variant groups. The three GLRaV-3 variant groups 

correlated with previous reports that more than one group occurred in South Africa. Prosser et 



 57 

al. (2007) reported that the WC-HSP-2 isolate- from South Africa, was 93.2% identical to the 

NY-1 isolate and isolates WC-HSP-10 and WC-HSP-28 were only 72.3% identical to NY-1. 

Similarly, Maree et al. (2008) reported that isolate GP18 was 93% similar to NY-1. Jooste & 

Goszczynski (2005) found that the percentage identity between isolates 621 and 623 was 

91.8-96.2% in ORF4-7 and that the most and least divergent fragments were of ORF5 and 

ORF7 (91.8-92.3% and 96.0-96.2%).  

 

The phylogenetic analysis of the aligned sequences of the Hsp70h gene region of these South 

African isolates and those of isolates from elsewhere in the world, further confirmed that three 

variant groups of GLRaV-3 occurred in South Africa and that these variants also occur 

elsewhere in the world. The two further isolates, one from New Zealand (NZ-1) and one from 

China (C5-1) appear to represent two further variants. Five GLRaV-3 variant groups were 

also identified by Fuchs et al. (2009) in their phylogenetic analysis of partial Hsp70h 

sequences available in GenBank. The five variant groups in the Fuchs study were represented 

by isolates NY-1, GP18 and MT48-2, found in our groups I, II and III respectively, and also 

C5-1 and NZ-1. The two isolates, C5-1 and NZ-1, each also resolved in isolated positions on 

their own in the phylogenetic analysis in the Fuchs study. The phylogenetic analysis of the CP 

largely corroborated the identification of the three variant groups present in South Africa, in 

spite of the fact that most of the CP sequences from elsewhere in the world, with the 

exception of NY-1, Cl-766 and GP18, were not from the same source as the Hsp70h gene 

sequences. Again the NZ-1 isolate grouped in an isolated position, confirming the unique 

identity of a further variant in New Zealand, but the isolated position of two further isolates, 

Cl-817 from Chile, and IL 1.2 from Israel may prove to present two further variant groups of 

GLRaV-3. Thus, the phylogenetic analysis of the CP region indicates six possible variants 

instead of the five indicated by the phylogenetic analysis of the Hsp70h gene. Further whole-

genome sequencing of viral isolates from other regions of the world will have to be 

undertaken to establish whether, besides the three isolates that are represented in South 

Africa, two or three further GLRaV-3 variants occur. 

 

The high divergence detected in the 5’UTR between isolates 621 and 623 supports the 

previous report where a 417 nt fragment, which included 88 nt of the 5’UTR and adjacent 329 

nt of ORF1a, only revealed a 81.8% identity between isolates 621 and 623 (Jooste & 

Goszczynski, 2005). In the present study, the sequence of the 5’UTR of GLRaV-3 showed 

three clear variant groups of GLRaV-3 that correlated with the identification of the three 

variant groups by SSCP profiles, whole-genome sequencing and phylogenetic analysis of 
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South African isolates. The third variant, represented by PL-20, is especially interesting as it 

contains a shorter 5’UTR resulting in a genome of 18433 nt, 65 nt shorter than the sequences 

of isolates 621 (variant group I), 623 (variant group II) and GP18 (variant group II). A similar 

study on variability of Citrus tristeza virus (CTV) isolates showed that the 5’UTR of CTV 

could be used for the classification of sequences into three groups (López et al., 1998). 

 

RT-PCR of all South African field samples tested thus far confirmed the presence of an 

extended 5’UTR for GLRaV-3, as described previously (Maree et al., 2008). Sequence results 

of the 5’UTR from 69 of these field collected isolates clearly indicated that variability 

between isolates of the same variant group is low, but higher between isolates from different 

variant groups.  

 

The possibility of potential folding and the significance of the 5’UTR were investigated in 

this study. Bioinformatic analysis of the 5’UTRs, i.e. conserved functional motifs, ORF 

analyses and predicted secondary structure of these three molecular variants were unable to 

predict a possible function for these 5’ UTRs. 

 

Three genetic variants of GLRaV-3 represented by isolates 621, 623 and PL-20, were 

identified from South African vineyards. We conclude that the 5’UTR of the GLRaV-3 

genome is a key region that can be used to study the variation amongst variants of the virus. 

The full-length sequences of these three isolates and partial 5’UTR sequence data from field 

isolates reaffirm the existence of an extended 5’UTR (Maree et al., 2008). Currently these 

four sequences represent the only complete full-length sequences of GLRaV-3. Sequencing of 

the 5’ UTRs of other GLRaV-3 variants occurring elsewhere in the world may therefore be of 

particular value in future studies of the variation in GLRaV-3 and warrants further 

investigation.  
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4.1 ABSTRACT 

Three genetic variants of grapevine leafroll-associated virus 3 (GLRaV-3) were identified 

from vineyards of the Western Cape, South Africa. In a previous study, three full-genome 

sequences of isolates representing each of the variant groups were determined. The three 

variant groups were represented by accessions 621, 623 and PL-20, of variant groups I, II and 

III respectively. A specific single strand conformation polymorphism (SSCP) profile was 

assigned to each variant which was used as a quick, reliable detection and differentiation 

method. In this study we analysed the occurrence of these three GLRaV-3 variants in mother 

blocks in different cultivars and from different vine growing regions using SSCP analysis. 

The majority of the plants studied were infected with the group II variant, similar to isolates 

623 and GP18. The distribution of three GLRaV-3 variants within a spatio-temporally 

recorded cluster of diseased plants was studied by means of SSCP profile analysis of ORF5 

amplified PCR products. We showed that different GLRaV-3 variants are transmitted to 

adjacent plants in an infection cluster. Results showed that, in some leafroll disease clusters, 

the variant that was present in the original GLRaV-3-infected plant of a cluster was 

transmitted to adjacent plants in a row and across rows.  

 

4.2 INTRODUCTION 

Grapevine leafroll (GLR) disease is one of the most important diseases of grapevines, 

occurring in all grape-producing countries worldwide, including South Africa (Pietersen 

2004). Several phloem-limited filamentous viruses, identified as grapevine leafroll-associated 

viruses(GLRaVs), have been characterized from leafroll infected grapevines (Fuchs et al., 

2009a). These viruses include species from the genera Closterovirus (GLRaV-2) and 

Ampelovirus (GLRaV-1, GLRaV-3, GLRaV-4, GLRaV-5, GLRaV-6 and GLRaV-9) and 

GLRaV-7, not assigned to a genus yet (Fuchs et al. 2009a).  

 

The disease delays ripening of grapevine berries, decreases the accumulation of sugar and 

ultimately influences the overall quality of the wines. GLR symptoms vary depending on 

environmental conditions as well as the cultivars concerned. Symptoms are best observed in 

the period between harvesting and shedding of leaves (late summer and autumn) and appear 

as typical downward rolling of leaves with leaf veins that stay green. In red wine cultivars the 

areas between leaf veins turn red, whereas yellowing of the same leaf areas occur in white 

wine cultivars (Carstens 2002). GLR disease is transmitted through infected propagation 

material as well as by mealybug and soft scale insect vectors (Belli et al 1994; Cabeleiro 
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&Segura 1997a; Cabeleiro & Segura 1997b; Douglas & Krüger 2008; Petersen & Charles 

1997; Sforza et al. 2003; Tsai et al 2008).  

 

GLRaV-3 is known to be closely associated with leafroll disease and occurs commonly in 

South African vineyards (Pietersen 2004; Pietersen 2006). The mealybug Planococcus ficus is 

considered the most important vector of GLRaV-3 in South Africa (Douglas & Krüger 2008). 

Transmission efficiency studies with P. ficus and P. longispinus showed that the two 

mealybug species are both efficient vectors for GLRaV-3 in South African vineyards 

(Douglas & Krüger 2008).  

 

The first report of natural spread of GLR disease in South Africa was recorded in 1985 

(Engelbrecht & Kasdorf 1985). The natural spread of this disease in a vineyard was proven a 

few years later when 100 healthy LN33 indicators were planted in a leafroll infected vineyard 

of cv. Tinta Barocca (Engelbrecht & Kasdorf 1990). The first symptoms on the indicator 

plants appeared 2-3 years after planting and after 7 years 71% of the plants displayed 

symptoms. GLRaV-3 was detected in all symptomatic plants.  

 

Recently, several epidemiology studies on leafroll disease have been reported from grapevine 

growing regions world-wide. The spatial distribution of GLRaV-3 was studied in vineyards 

from Spain (Cabeleiro & Segura 2006; Cabeleiro et al. 2008) and the field spread of GLRaV-

3 was monitored in these vineyards since 1991 (Cabeleiro et al. 2008). From this study it was 

clear that there was a correlation between mealybug incidence and virus spread (Cabeleiro et 

al. 2008). Scale insects were implied as vectors of GLRaV-3 in the Meaño vineyard where 

slow, but constant spread of the virus was observed (Cabeleiro et al. 2008). In two vineyards, 

in Portomarín and Goian, in the same study, the virus inoculum originated from infected plant 

material resulting in a random distribution of the disease. A study of the spread of leafroll 

disease in a Napa Valley vineyard in California showed that spread of the disease came from 

neighbouring blocks, heavily infected with leafroll, and mapping results of the disease 

showed an increase in spread of more than 10% per year in this block (Golino et al. 2008). 

The possible causes for the sudden rapid spread of leafroll in vineyards of California were 

debated and the authors suggested that something fundamental changed in the vineyards, such 

as vector epidemiology, grower rootstock preferences and/or new leafroll strains that emerged 

(Golino et al. 2008). A study of vineyards in the Pacific Northwest (PNW) of the U.S.A. 

documented the presence of several genetic variants of GLRaV-1, GLRaV-2, Rupestris 

stempitting-associated virus and Grapevine fanleaf virus in these vineyards (Rayapati et al. 
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2009). The identification of variants of the viruses is therefore important to understand the 

spread of a complex disease like leafroll.  

 

Three genetic variants of grapevine leafroll associated virus 3(GLRaV-3) were identified in 

vineyards of the Western Cape, South Africa (Jooste & Goszczynski 2005; Jooste et al 2010). 

The GLRaV-3 variants were identified by single strand conformation polymorphism (SSCP) 

profiles generated from a region amplified in ORF5. SSCP results and sequence data 

confirmed the three variant groups and a specific SSCP profile was assigned to each variant 

group. Results showed that SSCP analysis on the region in ORF5 gives a fast and reliable 

indication of GLRaV-3 variant status in a plant. In many plants, combinations of variants 

were detected. The full genome sequence of a representative from each variant group, 621 

(GQ352631, group I), 623 (GQ352632, group II) and PL-20 (GQ352633, group III), was 

determined (Jooste et al. 2010). The most variation between the three variants occurred in 

their 5’UTR.  

 

The spatial distribution and spatial dynamics (changes in distribution patterns) of GLR 

disease within mother blocks of the South African Certification Scheme were studied 

intensively from 2001-2007 (Pietersen 2004; Pietersen 2006). Four common distribution 

patterns of GLR were observed in this study. The most significant distribution pattern 

identified in local vineyards was secondary spread within vineyards after establishment 

(Pietersen 2006). The other described means of GLR spread are primary spread by infected 

plant material, GLR spread from a preceding vineyard and gradients of GLR infected vines 

associated with proximal leafroll infected vineyards (Pietersen 2006).  

 

No information is currently available on the spread of specific GLRaV-3 variants in 

vineyards. The recent data on molecular characteristics of three genetic variants of GLRaV-3 

together with the occurrence of GLR-infected plants within mother blocks of the certification 

scheme led to the objectives of this study: firstly, to determine which variant occurs 

predominantly in mother blocks and secondly, to investigate disease clusters and the spread of 

individual GLRaV-3 variants within such a disease cluster.  
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4.3 MATERIALS AND METHODS 

 

4.3.1 Field survey to determine the occurrence of GLRaV-3 variants in mother 

blocks 

Spatio-temporal distribution patterns of leafroll-infected plants for the period 2001 to 2005 

were observed from mother blocks from different regions, including the Stellenbosch, Paarl, 

Wellington, Worcester, and Somerset West grape production areas (Pietersen unpublished 

results).  

 

Mother blocks are a category of propagation vineyard within the South African Wine Grape 

Certification Scheme, and generally refer to the second generation of vines derived from 

nuclear plants. Nuclear plants are plants from which virus was eliminated through heat 

therapy and meristem tip culture and tested for the presence of any viruses by indexing on 

indicator vine plants, more specifically for GLRaV-1, -2, and -3 by ELISA and for all leafroll-

associated viruses and grapevine virus A by immuno-electron microscopy. These plants are 

maintained in vector-free gauze houses. Mother blocks represent the second propagation 

generation planted outside the gauze houses, the first generation being foundation blocks. 

These vineyards may only be established from a foundation block or from approved other 

mother block planting material. Mother blocks are inspected for leafroll disease annually and 

infected vines either rouged or marked with paint and the canes pruned before planting 

material is collected from the rest of the mother block. Planting material is no longer collected 

from mother blocks once leafroll infection levels exceed 3%, whereupon these vineyards 

loose their mother block status. All mother blocks referred to in these studies were at 

incidences of leafroll below 3% at the initiation of them being monitored for the spatial spread 

of leafroll. 

The relative position of vines showing leafroll symptoms were recorded and plotted in an XY 

matrix using the row number and vine position as co-ordinates (Pietersen 2004). Leafroll-

infected plants were recorded in vineyards on a yearly basis, based on symptom expression. In 

numerous disease foci (also referred to as disease clusters), the infection point or starting 

point of disease spread appeared to begin from a single plant, from where mealybugs 

transmitted the disease to adjacent plants in rows and across rows forming clusters of GLR 

infection. Plants were recorded to be positive for GLR when the typical symptoms were first 

visible. Assuming that the actual infection of a plant may have preceded the GLR symptom 

expression by a constant number of seasons, the appearance of symptoms does reflect the 

timing of infection.  
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Eighty one plants were collected from 10 mother blocks (1, 4, 9, 17, 50, 54, 64, 65, M and V) 

in different grapevine growing regions (Table 1). Eight plants were randomly selected per 

block, except for block 4 where nine plants were collected and block 65 from which seven 

plants were collected. The plants were chosen based on the vine position and leafroll 

distribution data collected previously (Pietersen 2004). Additionally, nine plants (V1-9) were 

collected randomly from five mother blocks (72, 73, 77, 84, and 108) on the Vergelegen Wine 

Estate. On this farm, a virus control strategy was implemented (Pietersen, 2010) and the nine 

plants were isolated sources with GLR infection. Grapevine plants displaying leafroll 

symptoms, spatially distant from other infected plants, as well as plants that were part of 

heavily-infected disease clusters were selected. Cultivars included Cabernet Sauvignon, 

Merlot, Shiraz, Petit Verdot, red cultivars, and Palomino, a white cultivar, grafted on different 

rootstocks (Table 1).  

 

Table 1.Grapevine plants collected from ten mother blocks from different geographical regions and their 

GLRaV-3 variant status 

Plant 

no. 

Plant position 

Block/Row/Plant 
Cultivar x Rootstock 

Year 

planted 
Region 

Variant 

group 

1.1 1/4/62 Cabernet Sauvignon 1CxRichter99 179 1991 Stellenbosch II 

1.2 1/10/17 Cabernet Sauvignon 1CxRichter99 179 1991 Stellenbosch I 

1.3 1/15/37 Cabernet Sauvignon 1CxRichter99 179 1991 Stellenbosch I 

1.4 1/18/2 Cabernet Sauvignon 1CxRichter99 13A 1991 Stellenbosch II 

1.5 1/18/49 Cabernet Sauvignon 1CxRichter99 13A 1991 Stellenbosch II 

1.6 1/22/40 Cabernet Sauvignon 1CxRichter99 13A 1991 Stellenbosch I+II 

1.7 1/30/63 Cabernet Sauvignon 1CxRichter99 13A 1991 Stellenbosch II 

1.8 1/30/113 Cabernet Sauvignon 1CxRichter99 13A 1991 Stellenbosch II 

4.1 4/1/16 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West II 

4.2 4/3/122 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West II 

4.3 4/4/125 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West I+II+III 

4.4 4/7/70 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West I+II+III 

4.5 4/8/18 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West I+II+III 

4.6 4/9/5 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West II 

4.7 4/6/32 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West II 

4.8 4/9/252 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West I+II+III 

4.9 4/10/124 Cabernet Sauvignon 1Cx101-14 219A 1997 Somerset West II 

9.1 9/2/75 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/Stellenbosch II 

9.2 9/3/6 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/ Stellenbosch unknown 

9.3 9/3/36 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/ Stellenbosch I 

9.4 9/8/64 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/ Stellenbosch I+II+III 

9.5 9/11/30 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/ Stellenbosch I 

9.6 9/11/99 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/ Stellenbosch nt 

9.7 9/12/85 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/ Stellenbosch II 

9.8 9/13/21 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl/ Stellenbosch I 

17.1 17/2/6 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl II+III 

17.2 17/3/44 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl II+III 
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17.3 17/4/120 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl I 

17.4 17/12/34 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl II 

17.5 17/15/58 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl II 

17.6 17/18/82 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl I+II+III 

17.7 17/28/27 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl I+II+III 

17.8 17/31/4 Cabernet Sauvignon 163IxRichter99 179 1997 Paarl I+II+III 

50.1 50/12/22 Merlot 12x101-14 28A 1992 Paarl I+II+III 

50.2 50/12/64 Merlot 12x101-14 28A 1992 Paarl II+III 

50.3 50/17/21 Merlot 12x101-14 28A 1992 Paarl II 

50.4 50/23/58 Merlot 12x101-14 28A 1992 Paarl II 

50.5 50/30/9 Merlot 12x101-14 28A 1992 Paarl II 

50.6 50/32/24 Merlot 12x101-14 28A 1992 Paarl II 

50.7 50/33/56 Merlot 12x101-14 28A 1992 Paarl I 

50.8 50/34/62 Merlot 12x101-14 28A 1992 Paarl II 

54.1 54/6/54 Cabernet Sauvignon 1CxRichter99 179 1997 Franshoek/Paarl I+II 

54.2 54/12/45 Cabernet Sauvignon 1CxRichter99 179 1997 Franshoek/Paarl II 

54.3 54/14/19 Cabernet Sauvignon 1CxRichter99 179 1997 Franshoek/Paarl II 

54.4 54/16/93 Cabernet Sauvignon 1CxRichter99 179 1997 Franshoek/Paarl II 

54.5 54/23/39 Cabernet Sauvignon 1CxRichter99 179 1997 Franshoek/Paarl II 

54.6 54/52/41 Shiraz 22BxRichter99 13 1998 Franshoek/Paarl II 

54.7 54/65/40 Shiraz 22BxRichter99 30B 1997 Franshoek/Paarl II 

54.8 54/66/4 Shiraz 22BxRichter99 30B 1997 Franshoek/Paarl II 

64.1 64/2/77 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville II 

64.2 64/8/82 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville II 

64.3 64/9/55 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville II 

64.4 64/13/12 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville II 

64.5 64/23/11 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville II 

64.6 64/37/20 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville nt 

64.7 64/41/18 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville I 

64.8 64/59/22 Petit Verdot 400Dx101-14 219F 2000 Stellenbosch/Belville unknown 

65.1 65/16/46 Cabernet Sauvignon 341Bx101-14 219F 2000 Klapmuts/Franshoek nt 

65.2 65/20/19 Cabernet Sauvignon 341Bx101-14 219F 2000 Klapmuts/Franshoek I 

65.3 65/38/116 Cabernet Sauvignon 341Bx101-14 219F 2000 Klapmuts/Franshoek I+II 

65.4 65/39/18 Cabernet Sauvignon 341Bx101-14 219F 2000 Klapmuts/Franshoek I+II 

65.5 65/40/10 Cabernet Sauvignon 341Bx101-14 219F 2000 Klapmuts/Franshoek II 

65.6 65/44/62 Cabernet Sauvignon 341Bx101-14 219F 2000 Klapmuts/Franshoek I 

65.7 65/50/44 Cabernet Sauvignon 341Bx101-14 219F 2000 Klapmuts/Franshoek II 

M1 38/1/9 Palomino 1980 Worcester/Villiersdorp II 

M2 38/3/4 Palomino 1980 Worcester/Villiersdorp I+II 

M3 38/4/12 Palomino 1980 Worcester/Villiersdorp I 

M4 38/4/55 Palomino 1980 Worcester/Villiersdorp III 

M5 38/16/1 Palomino 1980 Worcester/Villiersdorp II 

M6 38/19/7 Palomino 1980 Worcester/Villiersdorp II 

M7 38/31/23 Palomino 1980 Worcester/Villiersdorp nt 

M8 38/42/25 Palomino 1980 Worcester/Villiersdorp I+II 

V1 72/5/136 Shiraz SA99xRichter 110 1999 Somerset West II 

V2 72/16/84 Shiraz SA99xRichter 110 1999 Somerset West II 

V3 73/27/107 Cabernet Sauvignon 46Cx101-14 1999 Somerset West II+III 

V4 77/2/66 Cabernet Sauvignon 46Cx101-14 219A 2002 Somerset West II 

V5 77/16/32 Cabernet Sauvignon 46Cx101-14 219A 2002 Somerset West II 

V6 72/16/78 Shiraz SA99xRichter 110 1999 Somerset West I+II+III 

V7 84/6/44 Cabernet Sauvignon 46Cx101-14 219A 2002 Somerset West I 



 68 

V8 84/27/11 Cabernet Sauvignon 46Cx101-14 219A 2002 Somerset West I+II+III 

V9 108/37/19 Cabernet Sauvignon  1999 Somerset West II 

nt= not determined 

 

4.3.2 Distribution of GLRaV-3 variants in infected disease clusters 

The spread of three GLRaV-3 variants, previously identified from South African vineyards 

(Jooste et al.,2010), was investigated within three leafroll disease clusters. The disease 

clusters were studied in a Cabernet Sauvignon block in the Worcester region, Western Cape. 

The identification of GLRaV-3 variants in leafroll-infected plants was described in a previous 

study (Jooste et al 2010; Chapter 3 of this dissertation). In this study, SSCP results of plants 

16, 17 and 20 showed distinct SSCP profiles that indicated the specific variant status of the 

plants (Jooste et al 2010). The SSCP profiles were correlated with sequence data. SSCP 

profiles of plant 16 showed a mixed infection with group II (623) and group III (PL-20) 

variants, the dominant variant in plant 17 was the group II (623) variant and plant 20 (PL-20) 

was infected with the group III variant. These three plants represented the initial infected plant 

of the particular cluster and were recorded to be leafroll-infected in 2001 based on symptom 

expression. The first symptom expression in a plant and the position of the infected plant was 

used to reflect the relative time of infection of a plant. We assumed that actual infection of a 

plant may have preceded the symptom expression of leafroll in a plant by a number of 

seasons. The history of symptom development of infected plants in the infection cluster, 

which developed around the initial infected leafroll plants, was recorded in consecutive years. 

Ten plants directly adjacent to each of plants 16, 17 and 20 (A-J) were collected in 2008, as 

seen in Figure 1, X indicating the originally-infected plant.  

 

 

Figure 1. A diagram of the positions (A-J) of plants collected in a leafroll infected disease cluster relative to the 

original GLRaV-3 infected plant (X). 
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4.3.3 RT-PCR and SSCP analysis 

Isolation of dsRNA, SSCP analysis and cloning were carried out as described earlier 

(Goszczynski & Jooste 2002). Double-stranded RNA was isolated from the plants in both 

experiments and SSCP analysis was performed on PCR-amplified products from a region in 

ORF5 with primer set H420 and C629 as described in Jooste et al. (2010). PCR products of 

the expected size were purified directly from low melting agarose gels using a Wizard PCR 

Prep DNA Purification System (Promega). SSCP profiles were generated in 15% 

polyacrylamide gels, run for two hours at 200V and stained with ethidium bromide.  

 

4.4 RESULTS 

 

4.4.1 Incidence of GLRaV-3 variants in mother blocks 

GLRaV-3-specific RT-PCR amplicons of 209nt from ORF5 were obtained from all 81 plants. 

SSCP profiles were generated, analysed and each unique profile, representing a specific 

variant group, reported as a percentage of the total number of SSCP profiles analysed. SSCP 

results of blocks 1, 4, 9, 38, 54, and 64 are shown in Figure 2. SSCP profiles representing 

pure sources (single infections) of the group I variant can be seen in plants 1.2, 1.3, 9.3, 9.5, 

9.8, 64.7 and M3. Similarly, the profile for pure sources of the group II variant can be seen in 

the profiles of plants 1.1, 1.4, 1.5, 1.7, 1.8, 9.1, 9.7, 54.2, 54.3, 54.4, 54.5, 54.6, 54.7, 54.8, 

64.1, 64.2, 64.3, 64.4, 64.5, M1, M5, M6, 4.1, 4.2, 4.6, 4.7, and 4.9. Profiles of plants infected 

with combinations of variants can be seen in plants 1.6 and 54.1, which are infected with 

variant groups 1 and II, while plants 4.3, 4.4, 4.5 and 4.8, showed ‘complex’ profiles, 

suggesting that they represent mixed infections of group I, II and III variants. Results showing 

the respective variant groups detected in every plant are summarized in Table 1. Single 

infection with the group II variant was detected in 54% of the plants followed by the group I 

variant infecting 16.2% of the plants studied. The group III variant was detected in only one 

plant as a single infection, representing 1.4%. Six plants (8.1%) were infected with a 

combination of group I and group II variants, and four plants (5.3%) were infected with 

variants from groups II and III simultaneously. Eleven plants or 14.9% of all plants were 

infected with a combination of all three variants. Two plants had unknown SSCP profiles (9.2 

and 64.8) and in four plants it was not possible to generate SSCP profiles because of 

inadequate concentrations of the amplified products.  
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Figure 2.Examples of SSCP results of ORF5 from plants collected in six mother blocks (1, 9, 54, 64, M and 4). 

Pure sources of each variant group, as well as mixed variant infections were differentiated by unique SSCP 

profiles. 

 

4.4.2 Distribution of GLRaV-3 variants in infected disease clusters 

Three infection clusters, surrounding plants 16, 17 and 20, were collected from a vineyard in 

the Worcester region. The spread of variants from the putative originally-infected plant (the 

first one showing symptoms) to neighbouring plants were studied with SSCP analysis (Figure 

3), in combination with the plotted data of leafroll infected plants from the survey of 2001 to 

2005 (Figure 4). These originally infected plants in a disease cluster were sequenced in a 

previous study and ten clones of each plant were analysed by SSCP analyses and sequencing 

(Jooste et al.2010).  

 

Plant 16, showing leafroll symptoms for the first time in 2001, was infected with variants 

from group II and III. The plants directly adjacent to it, in the same row, i.e. plants A and B, 

displayed leafroll symptoms three years later in 2004. The combination of these two variants 

was transmitted to the two plants along the row. Plants H, I and J, plants across the row, on 

the right side, showed leafroll symptoms in 2005 and both variants were detected in these 

plants. Plants E, F and G, in the row on the left of plant 16, showed the separation of group II 

and III variants. Plants E and G were infected with the group II variant and plant F with the 

group III variant.  

 

A second infection cluster of plants, those surrounding plant 17, was analysed. Plant 17 was 

infected with the group II variant and was recorded as leafroll symptomatic in 2001. At that 
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time the adjacent plants did not show any leafroll symptoms. In the following season, 2002, 

two plants in the row adjacent to plant 17 showed leafroll symptoms and only the group II 

variant was detected in these plants. Three years after plant 17 was infected with leafroll, in 

2004, the plants in the row on the left of the infection focus showed symptoms (plants H, I, 

and J). Plant H was infected with a combination of variants from groups I and II and plants I 

and J infected with variant groups III and II, respectively. Plants E, F, and G, on the left side 

of plant 17, showed symptoms a year later in 2005, and the group II variant was detected in 

these as well as the group III variant in plant F.  

 

Plant 20, the representative of the group III variant, displayed symptoms for the first time in 

2001 and was an isolated focus point of leafroll disease in the vineyard. Four years later in 

2005, plant A, directly next to plant 20 in the row, displayed symptoms and was found to be 

infected with the group III variant. The other plant recorded to be leafroll infected in 2005 

was plant J, diagonally left of plant 20. Plant J was infected with the group II variant. It is 

possible that plant J was infected by a mealybug that fed on a plant infected with the group II 

variant, from outside the 10 plants in the cluster, and transmitted the variant to plant J. None 

of the other plants in the disease cluster showed symptoms in 2005, but in 2008, when the 

plants in the cluster were tested, all plants tested positive for GLRaV-3 and contained the 

group II variant, according to SSCP profiles, except plant C that was infected with a 

combination of group II and III variants. The movement of mealybugs from the surrounding 

area could have transmitted variants in the cluster.  
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Figure 3.SSCP analyses of three disease clusters in Block 10 in the Worcester vine growing region, Western 

Cape. SSCP profiles of eight surrounding plants of plants 16, eight plants surrounding plant 17 and seven plants 

surrounding plant 20 are shown.  
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Figure 4.A graphic presentation of the relative position of the infection clusters in the Worcester vineyard. Rows 

are indicated horizontally and plant number vertically. The original infected plant of an infection cluster is 

marked as X, and represents plants 16, 17 and 20, respectively. The GLRaV-3 variant status of every plant in the 

disease cluster is indicated by the following symbols: variant I (   ), variant II (    ), variant III (    ). Mixed 

infections with more than one variant are indicated with a combination of the symbols. 

 

4.5 DISCUSSION 

The distribution of three GLRaV-3 variants in local vineyards was investigated, with the 

focus on the presence of the three GLRaV-3 variants in leafroll disease clusters. A field 

survey was done; firstly to determine which of the variants occurred predominantly in the 

selected mother blocks and secondly, to determine if there were any differences in the spatial 

distribution patterns of the three GLRaV-3 variants. The distribution of GLRaV-3 variants 

was compared with the spatial distribution study of leafroll disease within mother blocks of 

the South African Certification Scheme, from 2001-2005 (Pietersen 2004; Pietersen 2006). 

Distribution data of newly-infected leafroll plants within vineyards, based on the visual 

inspection of diseased plants on a yearly basis, was used as basis for this study. Each of the 

individual monitored vineyards was planted at the same time with the same cultivar, and 

grafted on the same rootstock, and therefore it validates the monitoring strategy based on 

symptom expression. The distribution of a specific GLRaV-3 variant in a disease cluster was 

based on the appearance of GLR symptoms in plants.  
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In previous studies, phylogenetic analysis of the Hsp70h and coat protein gene sequences 

deposited in Genbank, showed that the majority of GLRaV-3 isolates grouped into the variant 

group I clade, represented by the South African accession 621 and American isolate NY-1 

(Ling et al. 2004; Fuchs et al. 2009b; Jooste et al. 2010). However, in the current study, we 

determined that variant group II is the predominant variant in the plants collected from 14 

mother blocks, suggesting that variant II is the most widespread in local vineyards. Whether 

this difference reflects a unique situation in vineyards in South Africa is still unknown and 

warrants further investigation. Factors like specific virus-vector interactions, weather 

conditions or the dissemination of group II variant-infected propagation material may 

individually or collectively contribute to the fact that the group II variant occur predominantly 

in South Africa. The effectiveness with which the vine mealybug, P. ficus, transmits the 

different variants needs further investigation.  

 

We made the assumption that the dominant variant in a plant would be detected with SSCP 

analysis. The SSCP profiles characteristic for each variant group, as determined previously 

(Jooste et al. 2010), could be corroborated by sequence data. Furthermore, we assumed that 

plants with the same SSCP profile contained the same variant(s), as observed in the Turturo et 

al. (2005) study. The upper band of the SSCP profiles in plants 1.8, 54.7, 64.2 and 64.3 

(Figure 2) are slightly higher than the typical SSCP profile (plants 1.4, 1.5, 1.7) for group II 

variants. Sequence data previously obtained from plants 5 and 48 described in the Figure 1 in 

Jooste et al. (2010), page 48 in this thesis, showed that a two-nucleotide change resulted in the 

SSCP profile with the slightly higher upper band. Similarly, the four-band profile detected in 

plant 54.3 was also found in the Jooste et al. (2010) study in plants 7, 12, and 17, and, based 

on sequence results, were shown to be group II members. Sequence results obtained from four 

clones from each plant with a ‘duplicate’ four-band profile proved to be identical to that of 

plant 5, which has a two-band profile, and represent the group II profile (Jooste et al., 2010). 

Plant 54.3 was therefore identified as a group II variant. Based on SSCP results, the variant 

status of originally infected plants, plants 16, 17 and 20 in this study, remained the same in 

two consecutive years, 2007-2008.  

 

In plants 17 and 20 (Figure 3 and 4), single variant infections were detected, but adjacent 

plants had mixed variant infections. We observed that the single variant infection detected 

with SSCP analysis in plant 20 (group III variant) only spread to an adjacent plant four years 

later, suggesting that this variant maybe slower in expressing symptoms or is spread slower 
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by mealybugs in contrast with the group II variant, plant 17, detected in adjacent plants a year 

later. This observation still needs to be proved. Plants 20 B, C, E, F and G all tested positive 

for GLRaV-3 in 2008. The exact year when symptoms became visible were not recorded in 

these plants. A combination of variants in a plant may be transmitted more effectively to 

adjacent plants as seen in the transmission of variants in the plant 16 disease cluster. It was 

not possible to analyse plants in positions 16 C, D, 17 A, B or plants 10 I, H as these positions 

did not contain vines in the field. In the disease clusters analysed it is clear that the spread of 

variants was not always from the originally infected plant, marked X. Plausible explanations 

would be that these plants were new primary infections due to 1) first instar mealybugs being 

dispersed long distances by wind, machinery or workers clothing, or 2) adult mealybugs 

moving around from plant to plant. 

 

It is likely that plants with older leafroll symptoms are infected with combinations of variants 

as seen in certain of the SSCP profiles of Figure 2, for example plants in blocks 4 and 17 

(Table 1). This suggests that with time, plants might get infected with a selection of variants, 

depending on the mealybug’s transmission efficiency of different variants. The influence of 

an insect vector on the change of a viral population was discussed in work done on a well-

studied Closterovirus, Citrus tristeza virus (CTV) (Ayllón et al., 1999; d’Urso et al., 2000). 

SSCP analysis of genes p18 and p20 showed that the profiles characteristic of field CTV 

isolates were frequently altered after aphid transmission (d’Urso et al., 2000). Similarly, it has 

been shown (Brlansky et al., 2003) that frequencies of genomic variants in a Citrus tristeza 

virus (CTV) populations may alter following aphid-mediated virus transmission to a new 

host. Another study by Roy & Brlansky (2009), proved the generation of virus recombinants 

after aphid transmission. Different dominant genotypes were detected in the parent and aphid-

transmitted (AT) sub isolates and even intermediate genotypes were detected that differed 

from the parental or AT sub isolates (Roy & Brlansky, 2009). A study by Broadbent et al. 

(1996) showed that the influence of aphid transmission sometimes even alters pathogenic 

characteristics in CTV. Whether mealybug vectors influences the transmission efficiency of 

specific GLRaV-3 variants or are influencing the viral population in a certain way, needs to 

be studied.  

 

The classification of GLRaV-3 variants reported in this and previous studies (Jooste & 

Goszczynski, 2005; Jooste et al. 2010) are similar to the phylogenetic classification described 

by Fuchs et al. (2009a). The Fuchs study classified GLRaV-3 accessions into groups NY-1, 

GP-18, C5-1, MT48-2 and NZ-1. Jooste et al. (2005 and 2010) identified three variant groups 
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and numbered them I, II and III. The clades identified are similar to the Fuchs study. In the 

Jooste et al. (2010) paper the genome of isolate 621 (group I) was completely sequenced, and 

could replace NY-1 as representative of group I. GP-18 is the representative of group II 

variants and 623 joins this variant group (both complete genomes). PL-20 (complete genome), 

similar to MT48-2 (partial sequence), from the Jooste et al (2010) study is the representative 

of variant group III. We propose that isolates from the NZ-1 clade belong to variant group IV 

and isolates from the C5-1 clade to variant group V, with representative isolate sequences to 

be determined when more data is available. In our opinion the proposed Roman numeral 

classification system for the different variant groups of GLRaV-3 is a sensible approach that 

will reduce the risk for confusion. 

 

This is the first study to show that a specific GLRaV-3 variant, or a combination of GLRaV-3 

variants, is transmitted to adjacent plants in a leafroll infected cluster. As discussed above, the 

importance of the interaction between the mealybug vector and a specific GLRaV-3 variant 

warrants further investigations. Mealybug populations in the vineyards and their role in 

transmitting the GLRaV-3 variants from plant to plant were not monitored in this study. 

Results of this study concluded that GLRaV-3 variants from group II occur predominantly in 

the vineyards studied. It is important to continue to study the biological properties of GLRaV-

3 variants, including their possible role in causing mild or severe symptoms in grapevine 

plants.  
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CHAPTER 5 

 
CONCLUSIONS 

 
 
Grapevine leafroll (GLR) disease is one of the most important diseases of grapevines, and 

occurs in all grape-producing countries worldwide, including South Africa. The rapid spread 

of GLR disease and the associated GLRaV-3 in South African vineyards (Pietersen, 2004) is 

of major concern to the local grapevine industry and makes GLRaV-3 an important virus to 

study. In this project the molecular variability of GLRaV-3 isolates, and the spread of 

GLRaV-3 variants within GLR-infected clusters were investigated.  

 

In this study we confirmed the result of an extended 5’UTR of GLRaV-3 described by Maree 

et al. in 2008, with the full-length nucleotide sequences of representatives of variant groups I 

and II, namely isolates 621 (GQ352631) and 623 (GQ352632). Field surveys done in mother 

blocks in 2007 and 2008 resulted in the identification of a third molecular variant and added 

another objective - to determine the full-genome sequence of this new variant - to the study. 

The complete nucleotide sequence of this isolate represented by PL-20 (GQ352633), showed 

that this molecular variant is significantly different, especially in the 5’UTR, from isolates 

621 (group I), 623 and GP18 (group II). We therefore propose that isolate PL-20 represents a 

third molecular variant, group III. 

 

The variation in the 5’UTR sequences presented here correlated with the characteristic SSCP 

profiles generated from amplicons of ORF5 of the three variants (621, 623 and PL-20). 

Compared to the rest of the genome, the 5’UTR is highly variable between GLRaV-3 

molecular variants. The significance of the extended 5’UTR is not yet known and future 

studies to determine the possible function of this region is important, especially since 

bioinformatic analyses of the 5’UTRs, e.g. conserved functional motifs, ORF analyses and 

predicted secondary structure of these regions for the three molecular variants were unable to 

predict a possible function.  

 

The identification of the genetic variants of GLRaV-3 was described in Chapter 3. Results 

from this study suggest that more than the current three GLRaV-3 variants may exist in South 

African vineyards. These results were generated from SCCP analysis, and subsequent 
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corroboration by sequencing of the amplicons of ORF 5. In order to confirm the early 

suggestion that even more variants may exist, whole-genome sequencing of viral isolates from 

other regions of the world will have to compared with those identified in the current study as 

potential additional variants. 

 

Another aspect investigated in this study was the distribution and spread of the genetic 

variants in selected vineyards in the Western Cape. The results of the field surveys were 

described in detail in Chapter 4. We concluded that a specific GLRaV-3 variant, or a 

combination of GLRaV-3 variants, is transmitted to adjacent plants in a leafroll-infected 

cluster. In the disease clusters analysed, it is clear that the spread of variants was not always 

from the originally infected plant, marked X. Theoretically it is possible that not all genetic 

variants in plant X were detected with the H420, C629 primer set, especially since primer 

H420 was chosen from a region with limited homology. A second more plausible explanation 

could be that these surrounding plants were new primary infections due to 1) first instar 

mealybugs being dispersed long distances by wind, machinery or workers’ clothing, or 2) 

adult mealybugs moving around from plant to plant. The importance of the interaction 

between the mealybug vector and specific GLRaV-3 variants warrants further investigation. 

Mealybug populations in the vineyards and their role in transmitting the GLRaV-3 variants 

from plant to plant were not monitored in the current study, but studies to investigate these 

interactions are underway. Future studies will include transmission efficiency experiments of 

the three identified GLRaV-3 variants in South African vineyards.  

 

Based on the results of this study we concluded that GLRaV-3 variants from group II 

occurred predominantly in the vineyards we studied. Whether the dominant occurrence of 

group II variants reflects a unique situation in vineyards of South Africa is still unknown and 

warrants further investigation. The abundance of the group II variant may be the result of 

positive selection, a process by which the variants that are the fittest increase their frequency 

in a population, or could simply have resulted from the accidental use of infected plant 

material or infected rootstocks.It is important to continue to study the biological properties of 

GLRaV-3 variants, including their possible role in causing mild or severe symptoms in 

grapevine plants. The future challenge will be to associate pathogenicity of GLR with a 

specific GLRaV-3 variant and to determine if the mealybug vectors transmit specific GLRaV-

3 variant(s) more efficiently.  
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In many of the plants in this study, combinations of GLRaV-3 variants were detected by 

SSCP analysis. The mealybug vector is probably the main contributor to the spread of the 

genetic variability that already exists in the vines. It is possible that grapevine plants acquire 

multiple GLRaV-3 variants (and other grapevine viruses) when mealybugs transmit these 

viruses from plant to plant. The role of recombination in GLRaV-3-infected plants has not 

been studied previously. The possible role of recombination in the emergence of new 

GLRaV-3 variants needs to be investigated.  

 

This study clearly demonstrated that SSCP analysis of a portion of ORF5 provided a fast and 

reliable indication of GLRaV-3 variant status in a plant. One can argue that the SSCP 

analysis, without confirmation with sequence data, was not sensitive enough to detect all the 

genetic variants in vineyards. However, repeated SSCP analyses of this region in ORF5 and 

corroboration of these SSCP profiles with sequence data strongly support our notion that this 

is a reliable method to identify individual or complexes of variants infecting individual plants. 

All the GLRaV-3 infected plants screened to date were amplified with the H420 and C629 

primers, positioned in ORF5. Other regions of the genome were also investigated with SSCP 

analysis and sequence comparisons. The predicted three variant groups were further 

confirmed with SSCP profiles from amplified products of multiple sets of primers, spanning 

the entire genome, as well as by sequencing these regions. We therefore propose that this 

method be used as an initial screening of field material to give a preliminary indication of 

variant status of plants.  

 

Moreover, the use of the SSCP technique is relatively simple, quick and inexpensive and does 

not require expensive equipment. The question if we can solely rely on SSCP analysis to 

identify genetic variants in plants needs attention. The fact that single base changes alter 

SSCP profiles can result in complicated SSCP profiles that are not easy to interpret. SSCP 

profiles of the group II variant, described in this study, showed more variable and complicated 

SSCP profiles in different genomic regions. Variation within this group of variants should 

therefore be further characterised. Variant group I and III profiles were always distinct in all 

regions studied. With genome sequence data of several GLRaV-3 variants available now, it is 

possible to design variant-specific primers to detect variants individually and universal 

primers to detect all known GLRaV-3 variants in grapevine plants. This could be useful in 

studies designed for the detection new viruses and variants of viruses. The recent deep 

sequencing of viruses infecting grapevines provides the ultimate way to detect new viruses 
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and variants of viruses (Coetzee et al., 2010), but is prohibitively expensive for most 

laboratories.  

 

The number of full-length GLRaV-3 sequences submitted to GenBank was doubled by this 

study, with the addition of the 621, 623 and PL-20 sequences (Jooste et al. 2010). The other 

full-length sequence is the published GP18 sequence (Maree et al., 2008) and the Chilean Cl-

766 and NY-1 accessions, the latter two (Engel et al., 2008, Ling et al, 2004) lacking the 

extended 5’UTR ends. 

 

The results obtained in this study form a basis for future studies to further advance our 

understanding of GLRaV-3 and the spread and management of the virus. Some future 

prospects from this study include: 

1) The significance of the extended 5’UTR, described by Maree et al., 2008, is not yet 

known and future studies to determine the function of this region are important. 

2) Whole-genome sequencing of GLRaV-3 variants from other regions of the world and 

South Africa should be undertaken to obtain a complete picture of GLRaV-3 

variability. 

3) The role of recombination in the emergence of new GLRaV-3 variants needs to be 

studied. 

4) Molecular detection methods for these variants should be optimised. 

5) The biological properties of the virus are important to consider and the interaction 

between the mealybug vector and specific GLRaV-3 variants needs to be studied. 

6) A transmission efficiency experiment is necessary to explain the fast spread of certain 

variants in a vineyard. 

7) It will be interesting to continue the search for more GLRaV-3 variants in vineyards, 

also in white cultivars and the occurrence of variants in table grapes. 

 

Finally, the taxonomical classification of GLRaV-3 variants presented in this thesis and 

related publications (Jooste et al, 2005, 2010), is based on the Roman numerical classification 

system, and is similar to the phylogenetic classification described earlier (Fuchs et al., 2009). 

We support the proposed Roman numeral classification system for the different variant 

groups of GLRaV-3 as a sensible approach to classify GLRaV-3 variants, which will reduce 

the risk of confusion. 
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Figure 1.Alignment of 55 clones from twelve plants, selected in Figure 2 in the main text, and four reference 

sequences (GP18, 623, 621 and NY-1) selected for sequencing to confirm variant groups of clones detected with 

SSCP analysis.  
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621      GATTTAAGCGCGTTTTTCAGGACTCTAATTAAAGGTAAGATTTATGCATCGCGTTCTGTGGACAGCAATC     70 
4.1      -----------------------C-----------------C----------------------------     70 
4.3      -----------------------C----------------------------------------------     70 
4.6      -----------------------C----------------------------------------------     70 
4.10     -----------------------C----------------------------------------------     70 
GP18     ---C---------------AC--GT--G---G------------C-----------G--------T----     70 
4.5      -----------------------GT--G---G------------C-----------G--------T----     70 
4.7      -----------------------GT--G---G------------C-----------G--------T----     70 
4.9      -----------------------GT--G---GG-----------C-----------G--------T----     70 
 
621      TTCCAAAGAAAGACAGGGATGACATCATGGAAGCGAGTCGACGACTATCGCCATCGGACGCCGCCTTTTG    140 
4.1      ----------------------------------------------------------------------    140 
4.3      ------G---------------------------------------------------------------    140 
4.6      ----------------------------------------------------------------------    140 
4.10     ----------------------------------------------------------------------    140 
GP18     ------C------------C--T----A---------------------A-----A--------------    140 
4.5      ------C------------C--T----A---------------------A-----A--------------    140 
4.7      ------C------------C--T----A---------------------A-----A--------------    140 
4.9      ------C------------C--T----A---------------------A-----A--------------    140 
 
621      CAGAGCAGTGTCGGTTCAGGTAGGGAAGTATGTGGACGTAACGCAGAATTTAGAAAGTACGATCGTGCCG    210 
4.1      ----------------------------------------------------------------------    210 
4.3      ----------------------------------------------------------------------    210 
4.6      ----------------------------------------------------------------------    210 
4.10     ----------------------------------------------------------------------    210 
GP18     --AG--C--------------G------------------------------------------------    210 
4.5      --AG--T--------------G------------------------------------------------    210 
4.7      --AG--T--------------G------------------------------------------------    210 
4.9      --AG--T--------------G------------------------------------------------    210 

 

Figure 2. Clones derived from plant 4 aligned with 621 (variant group I) and GP 18 (variant group II) 

sequences. SSCP profiles of clones 4.5, 4.7, and 4.9 clearly showed atypical profiles of the dominant group I 

variant in plant 4.  

 

 

Table 1.Primer sequences to amplify eleven additional region in the genomes of plants 

3,4,5,7,12,15,16,17,20,32,48, and 50 to study the variability of their genomes with SSCP and sequencing 

Primer 
pair nb 

Position Forward 
primer 

Primer sequence (5'-3') 

1 ORF1a GL3.253 AGC TTT CCT AAC CAC CAT GAAG 
2 ORF1a GL3.3874 GGG GCT TGC TTA ACG ACA C 
3 ORF1a GL3.5297 GTC ACC AGG TGT TCC AAA CC 
4 ORF1b GL3.7466 CGC CAT TGT CGA AGT ACG 
5 ORF4 GL3.10953 ACT GGA CGC AAT CGT TGC 
6 ORF5 GL3.12212 CGA TCG TGC CGT TAA GAG 
7 ORF6 GL3.13450 CCA CAG CAG CTT TGG CTA C 
8 ORF7 GL3.14893 TTC CCC AGT GCG CAT CTT C 
9 ORF8 GL3.15736 TAA TTA CAG TTC GCC GTG ATC C 
10 ORF9 GL3.16399 GGG TGC CGT ATT AAG AGA CTC 
11 ORF10 GL3.17104 CTG GAG GTC ATC AAG TCG ATG 
 
Primer 
pair nb 

Position Reverse primer Primer sequence (5'-3') Product size 

1 ORF1a GL3.539 CGG TGG TAG TGT ACG ACA AG 286 
2 ORF1a GL3.4133 CAC GCT TCG AGG TGA ATG G 259 
3 ORF1a GL3.5591 AAC GCC CTG TAT GTC CTC TC 292 
4 ORF1b GL3.7707 CCT GCT TCA TGA GAG CAC TC 241 
5 ORF4 GL3.11250 TTA CCA CCG GCT GAA G 298 
6 ORF5 GL3.12524 TGA CCA GCT TGA GCG TAG 312 
7 ORF6 GL3.13816 GAA CTC CGT CGA AGA CGA TG 366 
8 ORF7 GL3.15218 GCC TTT CGA AAG AAC GAG TC 326 
9 ORF8 GL3.16038 TAG GTA ACC GGC GCG TTG 302 
10 ORF9 GL3.16653 AAC GTC GGA TCC ACA ATC AC 254 
11 ORF10 GL3.17316 CAA CAA AGC GTC AAG AGC AAC 212 
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Figure 3a.SSCP analysis from a region in ORF1a show at least five different SSCP profiles. 

 

 

 

Figure 3b.Phylogenetic analysis of sequence data from a region in ORF1a confirms that there are three main 

variant groups in the plants analysed. 
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Figure 4a.SSCP analysis from a region in ORF5 show at least four different SSCP profiles. 

 

 

Figure 4b.Phylogenetic analysis of sequence data from a region in ORF5 confirms that there are three main 

variant groups in the plants analysed. 
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Figure 5a.SSCP analysis from a region in ORF7 show at least six different SSCP profiles. 

 

 

Figure 5b.Phylogenetic analysis of sequence data from a region in ORF7 confirms that there are three main 

variant groups in the plants analysed. 
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Figure 6a.SSCP analysis from a region in ORF9 show at least four different SSCP profiles. 

 

 

 

Figure 6b.Phylogenetic analysis of sequence data from a region in ORF9 confirms that there are three main 

variant groups in the plants analysed.  
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Figure 7a.SSCP analysis from a region in ORF10 show at least four different SSCP profiles. 

 

 

Figure 7b. Phylogenetic analysis of sequence data from a region in ORF10 confirms that there are three main 

variant groups in the plants analysed. 
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