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Abstract

Individuals can be identified by their handwriting. Signatures are, for example, currently used

as a biometric identifier on documents such as cheques. Handwriting recognition is also ap-

plied to the recognition of characters and words on documents—it is, for example, useful to

read words on envelopes automatically, in order to improve the efficiency of postal services.

Handwriting is a dynamic process: the pen position, pressure and velocity (amongst others) are

functions of time. However, when handwritten documents arescanned, no dynamic informa-

tion is retained. Thus, there is more information inherent in systems that are based on dynamic

handwriting, making them, in general, more accurate than their static counterparts. Due to the

shortcomings of static handwriting systems, static signature verification systems, for example,

are not completely automated yet.

During this research, a technique was developed to extract dynamic information from static

images. Experimental results were specifically generated with signatures. A few dynamic rep-

resentatives of each individual’s signature were recordedusing a single digitising tablet at the

time of registration. A document containing a different signature of the same individual was

then scanned and unravelled by the developed system. Thus, in order to estimate the pen tra-

jectory of a static signature, the static signature must be compared to pre-recorded dynamic

signatures of the same individual. Hidden Markov models enable the comparison of static and

dynamic signatures so that the underlying dynamic information hidden in the static signatures

can be revealed. Since the hidden Markov models are able to model pen pressure, a wide scope

of signatures can be handled. This research fully exploits the modelling capabilities of hidden

Markov models. The result is a robustness to typical variations inherent in a specific individual’s

handwriting. Hence, despite these variations, our system performs well. Various characteristics

of our developed system were investigated during this research. An evaluation protocol was

also developed to determine the efficacy of our system. Results are promising, especially if our

system is considered for static signature verification.
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Opsomming

Handskrif kan gebruik word om individue te identifiseer. Daar word steeds van handtekeninge

gebruik gemaak as ’n biometriese identifiseerder op dokumente soos tjeks. Handskrifherkenning

word ook onder andere gebruik vir die herkenning van karakters en woorde op dokumente. Dit

is byvoorbeeld nuttig om die adresse op koeverte outomatieste lees om sodoende posdienste se

effektiwiteit te verhoog. Handskrif is ’n dinamiese proses: die pen se posisie, druk en snelheid

(onder andere) is funksies van tyd. Wanneer handskrif egteringeskandeer word, gaan al hierdie

omvattende dinamiese inligting verlore. Omdat stelsels gebaseer op statiese handskrif van min-

der inligting gebruik maak, is hulle meestal nie so akkuraatsoos hulle dinamiese ekwivalente

nie. Juis as gevolg van hierdie tekortkominge is statiese handtekeningverifikasie nog nie ten

volle geoutomatiseer nie.

Gedurende hierdie navorsing is ’n tegniek ontwikkel om dinamiese inligting uit ingeskandeerde

prentjies van handskrifte te onttrek. Eksperimentele resultate is gegenereer vanaf ingesamelde

handtekeninge. ’n Paar dinamiese voorbeelde van elke individu se handtekening is opgeneem

met behulp van ’n enkele digitale tablet tydens registrasie. ’n Dokument wat ’n ander voorbeeld

van dieselfde individu se handtekening bevat, word dan ingeskandeer. Die stelsel onttrek slegs

die trajek wat die pen gevolg het tydens die vorming van die handtekening. In die proses om

die statiese handtekening te ontrafel, moet die statiese handtekening dus vergelyk word met

reeds bestaande dinamiese handtekeninge. Verskuilde Markov modelle maak die vergelyking

van die statiese en dinamiese handtekeninge moontlik, sodat die onderliggende dinamiese pro-

sesse van statiese handtekeninge ontbloot kan word. Aangesien die verskuilde Markov modelle

ook dinamiese pendruk kan modelleer, kan die ontwikkelde tegniek ’n wye verskeidenheid van

statiese prentjies hanteer. Hierdie navorsing maak ten volle gebruik van verskuilde Markov

modelle se modelleringskrag. Verskuilde Markov modelle isbyvoorbeeld in staat om die vari-

asies, wat kenmerkend is van ’n spesifieke individu se handtekening, te modelleer. Gevolglik

lewer die stelsel steeds goeie resultate op, ten spyte van hierdie variasies. Verskeie van die ont-

wikkelde stelsel se karakteristieke is ondersoek. ’n Evalueringstegniek is ook ontwikkel om die

akkuraatheid van die stelsel te meet. Resultate is belowend, veral vir die gebruik van die stelsel

vir statiese handtekeningverifikasie.
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(3.3)).
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A The matrix representing the transition links ofλ, whereai j =

P(st+1 = q j |st = qi).

Ah The matrix representing the transition links ofλh, whereah
i j is the

weight for a transition fromqh
i to qh

j .

T Number of samples in a dynamic exemplar.

X = [x1, x2, . . . , xT ] xt denotes ad-dimensional feature vector at discrete-time instant

t, andT is the number of feature vectors that represent a dynamic

exemplar.

s= [s1, s2, . . . , sT] The hidden state sequences= [s1, s2, . . . , sT] that results whenX

is matched to an HMM. In this caseX is matched toλ′, so thats

translates into the estimated pen trajectory ofP.

δ The likelihood ofs, as described by (5.4).

δW Weighted likelihood ofs, as described by (5.5).
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Glossary

This section presents an abbreviated glossary for terms that occur frequently in this dissertation.

A more detailed index of terms with page references are provided at the end of this dissertation,

after the appendices.

Allographic variations Variations of the same handwritten character or word due

to different writer populations.

Biometric measurement Quantification of the attributes of an individual that helps

to identify a person uniquely.

Chinese postman problem The search for a Eulerian cycle in a graph.

Critical point

resampled curve

The resampled curve that results when selecting the most

important points (critical points) from an original para-

metric curve.

Crosspoint A skeleton sample connected to more than two adjacent

skeleton samples.

Delaunay triangulation An angle-optimal triangulation from a set of points,

where the minimum angle over all the constructed tri-

angles are maximised.

Deletion A sample that occurs in a static script’s ground-truth pen

trajectory and not in the script’s estimated pen trajectory.

Dynamic counterpart The on-line version of a static script recorded while the

handwriting was generated on the document.

Dynamic exemplar A dynamic representation (not a dynamic copy) of a

static handwritten script recorded at the time of regis-

tration.

Edge A line that connects two successive control points.

Endpoint A skeleton sample connected to only one adjacent skele-

ton sample.

Euclidean resampled curve A parametric curve where the distance between any two

successive samples is approximately the same.

Feature vectors A sequence ofd-dimensional quantifiable characteristics

describing a pattern.

xv
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Geometric variations Shape variations, e.g., position, orientation, size and

slant variations.

Graph-theoretical

approaches

Methods that construct graphs from static scripts. The

Chinese postman or travelling salesman problems are

then typically solved to estimate the pen trajectories of

the scripts.

Ground-truth trajectory The pen trajectory derived by matching the dynamic

counterpart to the HMM of a static script.

Insertion A sample that occurs in a static script’s estimated pen

trajectory and not in the script’s ground-truth pen trajec-

tory.

Intersection artifacts Skeleton artifacts where two or more lines that should

intersect fail to cross each other in a single point.

Levenshtein distance The smallest number of elementary operations required

to transform one sequence into another sequence.

Line segment A sequence of connected segment points.

Multi-path static script A static handwritten script that consists of one or more

single-path trajectories.

Neighbouring states States that are associated with adjacent skeleton samples.

Off-line handwriting A static 2D image of handwriting usually recorded with

a scanner.

On-line handwriting Dynamic handwriting captured using an electronic de-

vice, e.g. a digitising tablet, that is able to record the

pen’s positions, pressure and tilt as it moves across the

surface of the tablet.

Orientation of a script The specific overall or average direction relative to the

horizontal axis in which the handwriting is generated.

Path A list of successive control points, e.g., skeleton samples

or vertices in(G), where successive control points are

connected by edges.

Peripheral artifacts Spurs attached to the skeleton of an image.

Rule-based methods Methods that estimate the pen trajectories of static scripts

using a prior set of heuristic rules that try to mimic the

underlying temporal principles for generating handwrit-

ing.

Segment point A skeleton sample having only two adjacent skeleton

neighbours.



GLOSSARY xvii

Self-loop An HMM transition link that connects a state back to

itself.

Sequence variations Variations in the order in which pen positions may be

produced.

Single-path trajectory An on-line handwritten curve created with uninterrupted,

non-zero pressure.

Skeleton A collection of thin lines that mostly coincides with the

centreline of the original image.

Skip-link An HMM transition link connecting two states that are

separated by a neighbour common to both.

Spurious disconnections Unexpected broken lines in a static script.

Standard skeletons Skeletons from skeletonisation or thinning techniques

that do not attempt to skeleton artifacts.

Static script A 2D image of handwriting, e.g., cursive handwriting

and signatures.

Sub-image A set of contiguous samples that represent a shape.

Substitution A sample from a static script’s estimated pen trajectory

that is erroneously mapped to a sample from the script’s

ground-truth pen trajectory.

Travelling salesman

problem

The search for the shortest Hamilton cycle in a weighted

complete graph.

Writer-specific training Our HMM training scheme that estimates a uniqueσ′P
andσ′V for each individual.

Zero-pressure state An additional emitting state in our HMM that enables us

to identify where an individual lifted the pen.



Chapter 1

Introduction

1.1 Problem statement and motivation

Producing cursive writing or handwritten signatures on documents involves a dynamic process:

the pen’s position, pressure, tilt and angle are functions of time. The end result, however, is a

static image with little, if any, dynamic information encoded in it. This dissertation investigates

the problem of extracting the pen trajectories that createda static handwritten script, i.e., the

paths that the pen followed over the document. Thus, the problem is to unravel the script and

present it as a chronological collection of parametric curves.

A biometric measurementquantifies attributes of an individual that help to identifya person

uniquely. Biometric measurements can be either physiological or behavioural.Physiological

measurementsrelate to the inherent physiological characteristics of anindividual, e.g., iris pat-

terns and fingerprints.Behavioural measurementsrelate to spontaneous or learned acts that

are carried out by an individual, e.g., cursive handwritingand signatures [24]. In general, be-

havioural measurements are less intrusive than physiological measurements. Nevertheless, the

choice of biometric measurement depends on the applicationdomain, e.g., Plamondon and Sri-

hari [64] note that signatures are still the most widely accepted means of identification, socially

and legally.

Handwriting can be either on-line or off-line. On-line handwriting is captured using an elec-

tronic device, e.g., a digitising tablet, that is able to record the pen’s position, pressure and tilt

as it moves across the surface of the tablet.Off-line handwriting is typically recorded with a

scanner to present the document as a 2D static image. Behavioural measurements of an individ-

ual can be extracted from on-line and off-line handwriting. These measurements are useful for

a wide range of applications. Although on-line systems are mostly more reliable than their off-

1
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line versions, as a means of personal identification, off-line systems are, in many cases, more

economically viable and sufficiently accurate for the required application. Off-line systems are,

e.g., sufficient for the automatic interpretation of handwritten postal addresses on envelopes and

reading courtesy amounts on bank cheques [64].

Plamondon and Srihari [64] endorse the relevance of the research topic with the following

statement: “The success of on-line systems makes it attractive to consider developing off-line

systems that first estimate the trajectory of the writing from off-line data and then use on-line

recognition algorithms. However, the difficulty of recreating the temporal data has led to few

such feature extraction systems so far.” Munich and Perona [56] have also shown that the

pen trajectories of signatures contribute to an effective on-line signature verifier. Thus, it is

concluded that estimated pen trajectories of static scripts are particularly useful for automatic

handwritten character or word recognition, or for the verification of signatures.

The question is therefore to what extent is it possible to extract dynamic information from

static handwritten scripts. Since one must deal with dynamic information loss incurred in static

images, Park [60] relates this problem to the recovery of 3D depth information from single 2D

images.

Literature on methods that do not specialise their trajectory estimation algorithms to cursive

or language-specific handwriting is sparse. It should be noted that it is not compulsory in

South Africa (or in Europe for that matter) for a person’s signature to be readable. Signatures

therefore tend to be unpredictable. There are many examplesof signatures containing so many

regions of self-intersection that even humans find these signatures difficult to unravel. It is

therefore challenging to create a robust heuristic framework that can deal with almost any type

of handwritten script.

1.2 Literature overview

This section discusses typical problems encountered when estimating the pen trajectory of static

handwritten scripts. A summary of how existing literature deals with these problems is also

presented. Chapter 2 elaborates on the related techniques mentioned in this section.

There are several difficulties that need to be overcome when recovering the pen trajectory from

a static handwritten script. These difficulties are compounded when the line densities and line

widths at intersection regions are high. An example of a problematic signature containing such

regions is shown in Figure 1.1(a). When handwriting is simultaneously recorded on a digitising

tablet and on paper, both the static script and thedynamic counterpartof the handwriting are
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available. The dynamic counterpart of the static signaturein Figure 1.1(a) is rendered as grey

lines in Figures 1.1(b)-(i). The pen positions that generated the dynamic counterpart are ani-

mated using solid arrows. It should be noted that such a dynamic counterpart is not available

when unravelling a static script. The dynamic counterpart of Figure 1.1(a) is, in this case, shown

only to illustrate typical difficulties arising when dealing with such a complicated signature.

Start

Terminate

(a)
(b) (c) (d) (e)

(f) (g) (h) (i)
(j)

Figure 1.1: A problematic signature to unravel. (a) A static signature containing intersection

regions with high line densities and thick line widths. (b)-(i) Animation of the dynamic pen

positions (solid arrows) that generated the dynamic counterpart (grey lines) of (a). (j)

Identifying the starting and terminating positions (labelled arrows) of the static signature

in (a).

The first difficulty is to find the starting and terminating positions of thestatic script—these

positions are often hidden inside the image (especially where signatures are concerned) and

not visible at all. Due to this ambiguity, strict constraints are normally required. Typically, it

is assumed that the pen trajectory must start and terminate at distinct positions [33, 40, 50].

Thus, characters such as “o”, cannot be successfully unravelled. Without prior knowledge, it

is almost impossible to determine where the signature in Figure 1.1(a) starts and terminates.

It is, however, easy to approximate the starting and terminating positions (dotted circles in

Figure 1.1(j)) from the dynamic counterpart in Figure 1.1(b)-(i).

The problem of finding the starting and terminating positions of a static script is more chal-

lenging if the script consists of multiple single-path trajectories, where asingle-path trajectory

refers to a single curve created with uninterrupted, non-zero pen pressure. A static script that

consists of one single-path trajectory is referred to as asingle-path static script, whereas one

that consists of one or more single-path trajectories is called a multi-path static script. Pressure

information is vital to determine where the writer lifts thepen. Wirotius et al. [84], e.g., note

that the grey-levels within handwritten text are linked to pressure and writing speed when text is
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produced. This information is, however, unreliable if, e.g., the script becomes indistinct due to

multiple crossings. In general, it is therefore difficult to extend techniques that trace single-path

handwritten scripts to deal with multi-path scripts if no prior on-line pressure information is

available. Note, e.g., that it is almost impossible to determine how many single-path trajecto-

ries constitute the static signature in Figure 1.1(a). However, the pen pressure of the dynamic

counterpart in Figure 1.1(b)-(i) reveals that the static signature in Figure 1.1(a) consists of one

single-path trajectory. Because of these difficulties some studies deal only with single-path

static scripts [58, 40].

Signatures often have complicated regions consisting of many intersections making it difficult

to track a particular path through those regions. One possibility is to assume that the direc-

tion of a line is maintained when entering and leaving an intersection. A choice between the

different possibilities at the intersection is then typically based on some local smoothness cri-

teria, as in [54, 9, 44, 11, 34]. This approach is, however, insufficient to resolve ambiguities

completely—if the script becomes indistinct due to a large number of intersections in a small

area, local information is not sufficient to find the correct path. Additional assumptions may then

be necessary, e.g., restricting the number of lines that cancross at an intersection [33, 40]. It is

evident from Figure 1.1(a) that such a restriction is not necessarily valid in cases where signa-

tures are concerned. In general, methods that make local choices at intersections have difficulty

taking context into account. Several studies therefore include global information by modelling

the pen trajectory estimation problem as a graph-theoretical problem [2, 38, 37, 43, 40, 41, 4, 3].

As a rule, the studies mentioned above, use only the 2D image of the script. Another approach

is to record dynamic representatives of the static script captured with a digitising tablet at the

time of registration [31, 51]. We refer to such dynamic representatives of the static script as

dynamic exemplars. The idea is to compare a given static script with the pre-recorded dynamic

exemplars. It is important to note that the static image is compared with generic dynamic

representatives, and not a dynamic copy of itself. There is anotable advantage to such systems:

only a single tablet is required at the registration phase. On-line systems often require a tablet

at each signing post, which makes it economically infeasible for many applications.

We have indicated how easy it is to estimate the static script’s starting and terminating positions

if a dynamic counterpart is available. However, it is more complicated to do the same if only dy-

namic exemplars are available. When using pre-recorded dynamic exemplars, a problem arises

with regard to modelling dynamic exemplar variations. Examples of such variations are geomet-

ric, allographic and sequencing variations [64].Geometric variationsrefer to shape variations,

e.g., position, orientation, size and slant variation.Allographic variationsrefer to variations of

the same handwritten character or word due to different writer populations.Sequence variations

refer to variations in the order in which pen positions may beproduced. Sequence variations are
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increased by the correction of spelling errors, slips of thepen, and letter omissions and inser-

tions. A system, developed using prior dynamic exemplar information, should be able to draw

on a comprehensive set of variations so that the additional information from the exemplars can

be exploited to partially resolve ambiguities. Nevertheless, some heuristic measures may still

be required to resolve the ambiguities completely, e.g., even though Guo et al. [31] and Lau et

al. [51] employ pre-recorded dynamic exemplars they rely onlocal choices at intersections.

A dynamic exemplar is also valuable in resolving another difficulty, namely identifying turning

points, where the pen stops and then reverses direction. It should be clear that static scripts

retain no information about the return portion of a pen trajectory that stops and then reverses

direction, returning along the same path. To simplify the problem, some studies restrict the

number of times the pen can revisit a line [33, 40].

We have shown in this section that pre-recorded dynamic exemplars are invaluable in addressing

several difficulties when estimating the pen trajectory of a static script. It is evident from exist-

ing literature that a lack of prior dynamic information typically necessitates the introduction of

several restrictions for simplification. More details of existing approaches are documented in

Chapter 2.

1.3 Overview of this dissertation

1.3.1 Statistical pattern recognition: A brief background

A typical statistical pattern recognition system. In the context of this dissertation, apattern

is defined from [6] as “a regular or logical form, order, or arrangement of parts”. Instatistical

pattern recognition, a pattern is described by a sequence ofd-dimensional quantifiable charac-

teristics calledfeature vectors. To distinguish between different patterns, one has to establish

suitable decision boundaries. Jain et al. [36] describe a typical statistical pattern recognition

system with a chart equivalent to Figure 1.2.

Figure 1.2 illustrates that a statistical pattern recognition system typically operates in two

modes: Training and classification.Training describes the process in which characteristics

of applicable patterns (training patterns) are learned to establish a comprehensive system.Clas-

sification is the process in which an input pattern (test pattern) must be assigned to a certain

class based on the features that are measured from it. If two patterns belong to different classes,

a good pattern recognition system would maximise their separability. Likewise, if they belong

to the same class, the system must minimise their separability. The system’s ability to calculate
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test

training
pattern

pattern

Preprocessing

Preprocessing Feature

Feature

measurement

extraction

Classification

Classification

Learning

Training

Figure 1.2: A model for statistical pattern recognition from [36].

decision boundaries depends on the features selected by thefeature extraction module. Increas-

ing the number of features typically leads to more accurate results. The preprocessing module

must extract a pattern from its background, remove noise, and normalise it so that the pattern

can be represented in a compact form. The feedback path allows the designer to optimise the

applicable modules.

Hidden Markov Models (HMMs). An HMM is a probabilistic model that models a time

dependent sequence of events with a sequence ofstatesconnected bytransitions links[68].

An HMM describes a dynamic process that evolves from one state to the next. HMMs have

been used successfully in many applications that model sequential data statistically, most no-

table speech recognition. Jain et al. [36] note that models using the Markov structure in speech

compresses the data to what is physically meaningful, thereby simultaneously improving clas-

sification accuracy. Each state has an associated Probability Density Function (PDF). HMM

observation PDFs reflect similarities between a test pattern and the training data. The HMM

topologyspecifies the interconnection of states. Transitions between states are weighted with

transition probabilities. Theorder of an HMM determines the number of previous states that

can be remembered by the HMM at each state.

An application of HMMs, relevant to this research, is on-line signature verification [53, 75]. It

is typically required that a collection of dynamic signatures is recorded for each individual at

the registration phase. In the context of Figure 1.2, these dynamic signatures are the training

patterns. Training and test signatures are normalised during preprocessing. Such normalisation

typically translates, rotates and scales the signatures sothat they are aligned. Typical features

that are extracted from the normalised signatures are discrete samples of the dynamic pen posi-

tions, velocity and pressure. An HMM is then constructed from the feature vectors that repre-

sent the training data. The HMM parameters are trained for each individual. Features are then

measured from the test signature and matched to the trained HMM. The degree of similarity

between the HMM and test signature is quantified so that the test signature can be classified

as a forgery or a genuine signature. The success of these systems is primarily due the HMM’s

ability to model not only the magnitude of the variations butalso thenatureof the variations.
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Our approach within a statistical framework. To model static images with HMMs poses the

problem of modelling 2D data with 1D observation sequences.We make use of pre-recorded

dynamic exemplars to estimate the pen trajectory of a statichandwritten script. In the context

of Figure 1.2, the dynamic exemplars are the training patterns and the test pattern is the static

image of the script. The static image is quantified as 2D feature vectors occurring inno spe-

cific sequence. Thus, a conventional match, as illustrated by the on-line signature verification

example above, between a trained HMM and the static image is not applicable. The following

solution addresses the problem: An HMM is constructed from the static image, i.e., from the

test pattern. The training (pre-recorded) data (dynamic exemplar) is then matched to the HMM

in the process to estimate the pen trajectory of the image. These concepts are illustrated in

Figure 1.3. A dynamic exemplar, i.e., a known sequence of samples, is matched to the HMM

(dashed circle) of a static image. This match enables one to estimate the unknown sequence of

samples that constitute the static image.

Known pre−recorded
      time sequence

       2D Image
(unknown time sequence)

Dynamic exemplar

Match

HMM

Static image

Estimated trajectory
of static image

Figure 1.3: A high-level diagram for our approach.

Paradoxically, for this application, the conventional employment of test and training data, specif-

ically for an HMM is reversedas follows: Usually an HMM describes a dynamic process and

represents the training (pre-recorded) data. The test (newly acquired) data are then matched

to the HMM. In this application, however, an HMM represents astatic image which forms the

test (newly acquired) data. The training (pre-recorded) data is then matched to the HMM in the

process to estimate the pen trajectory of the image. Accordingly, the topology for our HMM is

not fixed, i.e., it is dependent on the structure of the staticimage and our training schemes have

to be adapted.

In the context of Figure 1.2, the feature measurement modulederives an HMM from a static

script. The dynamic exemplars are then compared with this HMM to establish a point-wise

correspondence between the static script and each dynamic exemplar. A suitable dynamic ex-
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emplar is then chosen to reveal the pen trajectory of the static script. Classification, in this case,

consists of choosing the most likely pen trajectory, as determined by the HMM and dynamic

exemplars. The output of the classification module in Figure1.2 is therefore the estimated pen

trajectory of the static script. On-line techniques can then be applied to the estimated pen trajec-

tory in, e.g., an off-line handwriting recognition system with a restricted library or in an off-line

signature verification system. These possible applications are discussed in Section 7.2.4 with

some preliminary results. It should be noted that a completeimplementation of a handwriting

recognition or verification system has not been pursued during this research. Instead, we have

developed an evaluation protocol to quantify the accuracy of estimated pen trajectories. The

rest of this section describes the different modules of Figure 1.2 in more detail.

1.3.2 Preprocessing

Static handwritten scripts must be extracted from the documents on which they were created.

Thus, they are not in a form suitable for creating an HMM. Theymust also resemble on-line

data so that they are comparable with dynamic exemplars. A substantial amount of prepro-

cessing is therefore required. Preprocessing is fully treated in Chapter 3. The most important

preprocessing steps include:

1. Orientation normalisation:A method based on the Radon transform is employed to align

the general orientations of a static script and a pre-recorded dynamic exemplar; see Sec-

tion 3.2.

2. Skeletonisation:In order to extract a parametric curve from a static image, a skeleton

is derived from the image through a thinning process. Askeleton, in the context of this

research, is a collection of thin lines that coincides mostly with the centreline of the

original image. A number of enhancements particular to thisapplication is introduced for

standard skeletonisation/thinning procedures, as described in Section 3.1.

3. Resampling:The dynamic exemplars and static skeletons must be parameterised and

resampled similarly before they are compared, as discussedin Section 3.3.

1.3.3 Deriving an HMM from a static script

Deriving the HMM. After preprocessing, an HMM is derived from the skeleton of astatic

script, as discussed in Chapters 4 and 5. Our HMM, derived from a static skeleton, describes

the pen trajectory that created the skeleton. Each state hasan associated PDF, embedding ge-

ometric shape information of the skeleton. Transitions between states are weighted with tran-
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sition probabilities to dictate the choices of pen movements between skeleton samples. HMMs

designed specifically for single-path static scripts are discussed in Chapter 4. Chapter 5 shows

how to extend these HMMs to deal with multi-path static scripts.

A basic first-order HMM constructed from a single-path static script is described in Section 4.2.

However, this HMM is not sufficient to resolve ambiguities in regions with multiple intersec-

tions. The problem is due to a loss of context caused by the useof first-order HMMs: state

transitions depend only on the current state. Plamondon andSrihari [64] note that any observ-

able signal from a handwritten trajectory is affected by at least both the previous and successive

trajectories. Transitions of higher-order HMMs depend notonly on the current state, but also

on the previous states. Higher-order HMMs are therefore much better equipped to take context

into account. Usually, higher-order HMMs tend to be computationally expensive. In this study,

however, we use second-order HMMs with sparse transition probability matrices, reducing the

computational cost to a manageable level. The suitable second-order HMM that is derived from

a basic first-order HMM is described in Section 4.3. Further context is incorporated by compar-

ing not only pen positions but also local line directions. Itis shown in Section 5.2 how the pen

pressure of the dynamic exemplars can be exploited to extendthe HMMs for single-path scripts

to deal with multi-path scripts. Normally, both the state observation PDFs and the transition

probabilities are obtained through a training process. Data sparseness is a serious problem in

our application, which necessitated the adaptation of our training algorithms. This is discussed

in Section 4.8.

Estimating the pen trajectory. The next step is to compare the constructed HMM with pre-

recorded dynamic exemplars of the static image. This is doneusing the Viterbi algorithm [68].

The result is an optimal state sequence that can be translated into the estimated pen trajectory

of the static script, as discussed in Section 5.4.

1.3.4 Evaluation protocol and results

Evaluation protocol. In general, it is not entirely straightforward to assess theefficacy of an

estimated pen trajectory. An obvious solution is to record astatic script simultaneously on

paper and on a digitising tablet, so that the dynamic counterpart of the static script is avail-

able. The dynamic counterpart can then be compared to the estimated pen trajectory (computed

from a different dynamic exemplar) of the static script. Due to imperfect recording devices and

subsequent processing, the image skeleton may differ from its exact dynamic counterpart. A

one-to-one correspondence between the static script and its dynamic counterpart is therefore

not available. Hence, a ground-truth trajectory is extracted from the static script. Theground-

truth trajectoryis the estimation of the exact pen trajectory that generateda static script’s skele-
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ton, and is calculated by comparing the script’s dynamic counterpart with its skeleton. The

ground-truth and the estimated pen trajectories (derived from the same image skeleton) are then

compared, as described in Section 6.1. An error measure is calculated from these comparisons

to quantify the accuracies of the estimated pen trajectories.

Results. Results are generated with US-SIGBASE; see Section 6.2. To the best of our knowl-

edge, a standardised database that contains on-line and off-line versions of signatures does not

exist. US-SIGBASE was collected as part of this research, and consists of signatures for 51

individuals that were recorded simultaneously on paper anda digitising tablet. Results are gen-

erated by randomly selecting a static image for each individual and estimating pen trajectories

from the selected images. The estimated pen trajectories are evaluated as described in Sec-

tion 6.1. Experimental results show that our HMM is able to estimate approximately 88% of

the ground-truth trajectories correctly, as described in Section 6.3.

1.4 Research objectives

The objective of this research is to estimate the pen trajectories of static handwritten scripts with

the following requirements:

• The system must berobust, i.e., the system must not be highly sensitive to variationsin

static scripts.

• Estimated pen trajectories must beaccurate. The efficacy of the pen trajectory estimation

algorithm must be evaluated objectively in order to producequantifiable results.

1.5 Contributions

• An original approach. We have managed to estimate the pen trajectories of static hand-

written scripts by using a novel method—to the best of our knowledge, we are the first

to use HMMs for this purpose. Guo et al. [31] establish a localcorrespondence between

a static image and a dynamic exemplar. It is shown in Chapter 2, however, that their

approach is fundamentally different from our approach. Quantifiable results show that

our approach is accurate. Preliminary results show that ourpen trajectory estimation

algorithm can be especially useful in an off-line signature verification application.

• Characteristics of our HMM contributing to a robust and accurate system.By virtue

of our HMM’s design, described in Chapters 4 and 5, we have managed to solve the fol-
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lowing problems, mentioned in Section 1.2, that are in combination prevalent in existing

approaches:

1. The initial/terminating transition probabilities in our HMM allow the estimated pen

trajectory to start/terminate at any position, resolving the problem of thestart-

ing/terminating positions. This is a direct result of our first-order HMMs developed

in Section 4.2.

2. Turning pointsare dealt with by specifying appropriate transition probabilities, and

no restrictive assumptions are needed, as described in Section 4.5.

3. Elasticity is included in the HMM topology so that dynamic exemplars andstatic

scripts with different numbers of samples are comparable, as described in Sec-

tion 4.4. Corresponding segments are typically allowed to differ with a scale factor

of two.

4. The observation PDFs, associated with the states in our HMMs, enable the quantifi-

cation of similarities between static scripts and dynamic exemplars. Furthermore,

the PDF parameters enable us to model thegeometric variationsin different pre-

recorded dynamic exemplars. The PDF parameters that are included to model posi-

tional variations are described in Section 4.2, whereas thePDF parameters to model

directional variations are described in Section 4.6.

5. We are able to model a collection of single-path trajectories constituting a static

script, i.e., we are able to deal withmulti-path static scripts, as described in Sec-

tions 5.1 and 5.2.

6. When the ink is not evenly distributed over the pen-tip, itmay causespurious dis-

connectionsin static scripts. In practice, this problem occurs frequently. Our HMM

topology enables us to deal with such spurious disconnections, as shown in Sec-

tion 5.3.

7. We have mentioned in the previous section that many techniques are limited due to

local optimisation. We match a dynamic exemplar to our HMM using the Viterbi

algorithm. Since the Viterbi algorithm is aglobal optimisationalgorithm, it is par-

ticularly useful for resolving local ambiguities due to multiple intersections.

8. Section 5.4 shows that the Viterbi algorithm, the availability of many dynamic ex-

emplars and some further calculations enable us to deal withthesequence variations

in signatures.

9. Our HMM training schemes calculate a prior set of parameters particular to a spe-

cific individual. These parameters can be especially usefulin a signature verification

system as they are, in fact, biometric measurements of an individual. Section 6.3.5

shows that our system performs only slightly better using this training scheme, in-

dicating that our HMM is rather robust toallographic variationsin signatures.
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• The necessary preprocessing characteristics to contribute to a robust and accurate

system. The necessary preprocessing steps to enhance the performance of our trajec-

tory estimation algorithm have been thoroughly investigated. Contributions regarding the

preprocessing are the following:

1. A skeletonisationalgorithm that tends to enhance local line directions, enables us

to identify simple crossings with confidence and that enables an accurate resam-

pling scheme has been developed, as discussed in Section 3.1. Specifically, the

necessary modifications to the existing techniques described in [86, 87, 69] are in-

troduced, which can also be useful for general off-line handwriting application. In

many existing techniques, a collection of skeleton points that must be traversed at

least once is selected, making these approaches especiallysensitive to artifacts and

background noise. Our system has a remarkable robustness toskeleton artifacts, as

shown in Section 6.3.2.

2. The general orientations of static images and dynamic exemplars are aligned with a

shape-matching algorithm in the Radon domain, as shown in Section 3.2. Thisori-

entation normalisationapproach is more robust than the general Principle Compo-

nent Analysis (PCA) approach, especially when aligning shapes with similar princi-

ple components, as shown in Sections 3.2 and 6.3.3. Despite the obvious benefits of

the Radon-based rotation, there is not a substantial decrease in our system’s perfor-

mance when using PCA-based rotation, as shown in Section 6.3.3. This shows that

our HMM contributes to a trajectory estimation algorithm that is robust to rotational

variations.

3. It is shown that the choice of a scheme to resample parametric curves plays an im-

portant role in theaccuracyandefficiencyof our system. Judicious resampling of

parametric curves increases the speed of our system substantially without a signifi-

cant performance degradation, as shown in Section 6.3.2.

• Quantifiable results. Objective methods evaluating the efficacy of estimated pen tra-

jectories are sparse; see Chapter 2. We have developed a sensible evaluation protocol

that is applicable to a wide range of pen trajectory estimation algorithms. The evaluation

protocol isstraightforwardto implement andinvariant to parameterisation.

• Published work. The sections in this dissertation that describe how to estimate the pen

trajectories of single-path static scripts (including thethe necessary preprocessing and

quantitative results) were condensed into a journal paper.The paper was peer-reviewed

and accepted for publication in a journal that specifically publishes work that contributes

to the field of pattern recognition [58]. The sections in thisdissertation that describes

the extensions of the techniques in [58] to multi-path static scripts were condensed into a

conference paper. The conference paper was peer-reviewed and accepted for publication

in conference proceedings focussing on work that contributes to the field of document
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analysis and recognition [57].



Chapter 2

Literature study

This chapter documents related literature relevant to the research topic. We focus on prominent

studies that estimate the pen trajectories of static scripts. In this dissertation, these studies

are divided into rule-based methods, graph-theoretical methods and methods that search for an

optimal local correspondence between a static script and a dynamic exemplar. In Chapter 1 we

have mentioned that explicit restrictions occur in severalexisting approaches for the sake of

simplification. Section 2.1 provides more detail of these restrictions. In Section 2.2-2.4 each

existing system is discussed with attention to the following matters:

• The feature measurement scheme of each system is discussed,i.e., it is investigated how

the system under consideration presents a static script.

• Each system’s approach to estimating the pen trajectory of astatic script is described.

• The database, evaluation protocol and experimental results of each system are reported.

• Chapter 1 has shown that approaches that utilise pre-recorded dynamic exemplars must

be especially comprehensive of variations in the dynamic exemplars. Hence, where ap-

plicable, notice is taken of a system’s performance in this regard.

The discussion on existing approaches is summarised in Section 2.5, where some pertinent

conclusions are drawn.

2.1 Restrictions

Several existing techniques impose restrictions when estimating the pen trajectories of static

scripts for the sake of simplification. As mentioned in Chapter 1, it is important to construct a

system that can handle a wide range of static scripts. Restrictions typically restrict the system to

14
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a limited set of scripts, e.g., only characters or cursive words that are straightforward to unravel.

The restrictions applicable to existing approaches have been identified and listed. The most

common of the listed restrictions, which explicitly occur at some stage in existing algorithms,

are categorised as follows:

1. Starting/terminating positions: The positions where a single-path trajectory can start

(where a pen-down event occurs) or terminate (where a pen-upevent occurs), are typically

restricted as follows:

(a) Left-to-right assumption:It is assumed that a static script has been generated by

an individual from a specific population, where cursive handwriting proceeds in a

top-to-bottom-left-to-right fashion.

(b) End of line assumption:It is assumed that the starting and terminating positions ofa

single-path trajectory occur at the end of a line, where traversal can proceed in only

one direction.

2. Intersections: Section 1.2 has shown that static scripts that contain regions where many

lines cross one another in close proximity can be problematic to unravel. Typical restric-

tions at intersections are:

(a) Local smoothness constraints:Some methods introduce a local smoothness con-

straint at intersections, compelling lines that enter an intersection to exit it with

approximately the same orientation. Inevitably, this constraint impels local choices

at intersections.

(b) Number of intersecting lines assumption:It is assumed that a maximum of two lines

can cross each other at an intersection.

3. Turning points: A turning point is defined as a high curvature point on a parametric

curve, where the pen stops and reverses its direction. Due tothe pen-tip width and digi-

tising effects, it frequently happens that the curve that enters and the curve that exits the

turning point are merged. The result is a single curve which must cope with bidirectional

traversal. The degree of ambiguity increases even more if the pen revisits the merged

curve. Simplifications to deal with ambiguities include:

(a) No turning point assumption:It is assumed that no segment in the static script can

be traversed more than once, i.e., no turning points are allowed.

(b) Double-traced lines assumption:It is assumed that no segment in the static script

can be traversed more than twice.

4. Single-path static scripts: Due to the difficulty of identifying pen-up and pen-down

events when estimating a pen trajectory, some studies assume that a static script con-

sists of only a single-path trajectory. Hence, pen-up and pen-down events other than the

starting and terminating positions of a script cannot be identified.
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A summary of all the related work mentioned in this chapter ispresented in Table 2.1. The

authors, years of publication, and appropriate referencesare presented. In the third to last

columns it is indicated if the assumptions above (indicatedby numbers) occur at some stage in

the referenced work (
√

), do not occur (×), or if there is not enough detail to make deductions

(−).

2.2 Rule-based methods

Rule-based methods are some of the earlier approaches used to estimate 1D sequences from 2D

images. The first attempts to unravel static scripts tried tounderstand the temporal principles for

generating handwriting. Various mathematical models havebeen developed to analyse or gener-

ate a piece of handwriting; see [62, 64].Bottom-up modelsare, e.g., concerned with the analysis

and synthesis of low-level neuromuscular processes involved in the motor-controlled actions to

generate handwriting [62]. One can then model certain curves of a handwritten script as the

result of the coactivation of two neuromuscular systems, one agonist and the other antagonist,

which control the velocity of the pen-tip. Accordingly, an appropriate mathematical function

is chosen to model velocity. Note, however, that measuring such neuromuscular processes and

choosing appropriate models are highly dependent on the application and is definitely not trivial

(these tasks are also dedicated subjects in the field of psychology, neurology, cognitive science,

and graphology [62].)

In this field of study, it is already a difficult task to estimate dynamic information from static

images. To calculate indicators of neuromuscular processes from 2D images is even more

challenging. In general, it can be concluded that handwriting, especially signatures, is unpre-

dictable, making it difficult to establish a robust set of heuristic rules that are able to mimic

the underlying principles that control pen motions. Hence,several rule-based methods aim to

estimate 1D observation sequencesconsistentlyrather thanprecisely, i.e., to extract consistent

pseudo-dynamic information from a static script. Althoughsome of these methods are severely

restricted by the rules they impose, they provide a useful framework for other approaches. The

most important heuristic from rule-based methods, which isalso a crucial component of most

of the relevant literature on this research topic, is based on continuous handwriting motion.

Specifically, it is assumed that muscular movements constrain an individual’s hand (holding

the pen) to move continuously. Consequently, thisnatural motor-controlled movement leads

to a general smoothness criterion, enforcing the pen to maintain its direction of traversal. This

smoothness criterion enables one to follow lines through intersections. In the chapters to follow

we refer to this criterion as thecontinuity criterion of motor-controlled pen motions.
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Authors Year 1. Start/End 2. Intersect 3. Turn 4. Single-

path(a) (b) (a) (b) (a) (b)

Rule-based methods

Lee and Pan [59, 54] 1991,

1992

√
×

√
× ×

√
×

Doermann and

Rosenfeld [17, 19, 18]

1993,

1995

√
×

√
− × − ×

Boccignone et al. [9] 1993
√ √ √ × √ √ ×

Huang et al. [34] 1995 ×
√ √

×
√ √

×
Lallican and

Viard-Gaudin [44]

1997 − −
√

×
√ √

×

Chang and Yan [11] 1999
√ √ √ × √ √ ×

Plamondon and Privitera

[66, 63]

1995,

1999

√ √ √
× × − ×

Spagnolo et al. [78] 2004 − − − − − − −
Graph-theoretical methods

Abuhaiba and Ahmed [2] 1993 × × × × ×
√ √

Huang and Yasuhara [33] 1995 −
√

×
√ √ √ √

Allen and Navarro [5] 1997
√

×
√

× ×
√ √

Jäger [38, 37] 1997,

1998

× × × × × ×
√

Kato and Yasuhara [40, 41] 1999
√ √ √ √

×
√
×

2000
√ √ √ √

×
√ √

Lallican et al. [43] 2000
√

− × × × × ×
Al-Ohali et al. [4, 3] 2002 × √ × × × √ √

Lau et al. [50, 51] 2002
√ √

× × − − ×
2003 ×

√ √
× − − ×

Qiao and Yasuhara [67] 2004 −
√ √

× ×
√ √

Local correspondence methods

Guo et al. [31, 30] 2000,

2001

× ×
√

× × × ×

Table 2.1: A summary of related work. The authors, years of publication, and appropriate

references are presented. In the third to last columns it is indicated if the numbered

assumptions of Section 2.1 occur explicitly at some stage inthe referenced work (
√

), do not

occur (×), or if there is not enough detail to make deductions (−).
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Lee and Pan [59, 54] estimate the pen trajectories of static signature skeletons by using a set

of heuristic rules that mimic the writing process of English-speaking, right-handed individuals.

Experiments were conducted on 20 static signatures. Subjective evaluation indicated that the

invoked rules cannot cope with characters such as “a”, “d”, and “g”, where counterclockwise

circular drawing movements occur.

Doermann and Rosenfeld [17, 19, 18] extract a taxonomy of local and global clues from grey-

scale images of handwriting that is useful for recovering temporal information from the images.

A typical local clue is, e.g., the grey-scale intensity at the end of a line: the authors observe

that, for ball-point pens, the intensity is typically significantly lighter than the rest of the script

if a pen-down event occurs. The recovered clues are weightedaccording to their reliability.

The weighted clues are then used to estimate the order of certain segments. Hence, temporal

information is not recovered in ambiguous parts where no reliable clues are available. Their

experiments intend to determine to what extent the recovered clues can be used to deduce the

mechanics of the writing instrument and knowledge of the writing process. Subjective evalu-

ation of 1000 handwritten static scripts from U. S. mail pieces indicated that over 90% of the

scripts contain clues that can be used to recover temporal information.

Boccignone et al. [9] consider the direction, width and length of curves in a continuity criterion

to segment the skeletons of static scripts. During the segmentation process each curve that

enters an intersection is either merged with another curve and detached from the rest of the

image, or just detached without merging. The calculated segments are then traced according to

the invoked heuristics. Experiments were conducted on 10 000 handwritten characters by 20

writers, consisting of uppercase and lowercase letters as well as numerals. Human observers

were consulted to determine if the system made the right choices at intersection regions (yes or

no.) Accordingly, the system performed with an average accuracy of 97%.

Chang and Yan [11] and Huang et al. [34] partially trace the skeletons of static scripts as part of

a segmentation process. Huang et al. [34] divide static signatures into easily traceable (reliable)

and ambiguous (unreliable) skeletons. Parametric curves are then extracted from the reliable

skeletons by using a local continuity criterion. The authors note that many lines crossing at

an intersection cause severe problems. Chang and Yan [11] subdivide Chinese characters into

collections of parametric curves. (Note that the substructures of Chinese characters are some-

times referred to asradicals.) For each character, the general positions and directionsof the

separated curves are matched to calculate a further segmentation, i.e., some parametric curves

are merged and some are subdivided into smaller segments to compute a new collection of para-

metric curves. A set of direction rules is then employed to calculate the time sequence of the

points that constitute the parametric curves.

Lallican and Viard-Gaudin [44] divide grey-scale images ofstatic scripts into sets of sepa-



2.2 — R-  19

rated segments. The pen trajectories of the grey-scale segments are then calculated using a

Kalman filter that chiefly detects curvature information. Assorted trajectories, as computed by

the Kalman filter, are then merged in accordance with a globalcost function to compute the

final, smoothest trajectory.

Plamondon and Privitera [63] identify high curvature points and intersection regions in images

of handwritten words by employing information available from image contours. Prior rules

that mimic the writing process of the Latin alphabet by right-handed individuals, as well as the

identified intersection regions and high curvature points are used in conjunction to estimate the

pen trajectories of the words while tracing the contours of the words. Results were tested on 200

city names for 6 individuals, containing 1390 intersectionregions. Ten human observers were

consulted to determine if the system made the right choices at intersection regions (yes or no.)

Accordingly, the system performed with an average accuracyof 94%. Additionally, the authors

also determined subjectively that the system recovered 89%of the original pen-tip movements.

Spagnolo et al. [78] use a novel opto-electronic device and 3D reconstruction techniques to

perform 3D acquisition of documents. Preliminary results show that their 3D presentations

of static scripts contain information that is unavailable in conventional 2D presentations. The

additional information is especially useful for pen pressure analysis, thereby making it easier

to unravel superimposed curves. Figure 2.1(a) shows a typical example of a binarised 2D “x”

pattern. Note that there are no clues, whatsoever, to determine the sequence in which the two

intersecting curves have been created. However, Figures 2.1(b) and (c) show the 3D presen-

tations from [78] of an “x” pattern viewed from above and below, respectively. Spagnolo et

al. [78] observe that the z-coordinates of the curves in the xyz-plane, and the colour intensities

of the 3D presentations can be used, among other local clues,to infer which curve was written

first (F) and second (S). It is shown in Section 7.2.2 that the pressure information inferred from

such 3D presentations of static scripts may complement our approach.

F

S

F

S

(a) (b) (c)

Figure 2.1: Presenting an “x” pattern as a 2D image and in a 3D space (takenfrom [78]),

with (a) the 2D image, (b) the 3D presentation viewed from above and (c) the 3D presentation

viewed from below. Pressure information is inferred from the 3D presentations, which is used,

among other local clues, to detach the two superimposed curves and determine which curve

was written first (F) and second (S).
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2.3 Graph-theoretical methods

The excess of recent literature on the research topic relieson graph-theoretical methods. A brief

background of graph theory is provided in Section 2.3.1. Further information regarding graph

theory can be found in [72, 38, 55].

2.3.1 Graph-theoretical background

A graphg = (v, e) is a collection ofnodes/verticesv = {v0, . . . , vn} and edgese = {e1, . . . , en},
where anedge en is a line that connects two control points, in this case the two verticesvn−1

andvn. A directedgraph consists oforderedpairs of vertices, whereas anundirectedgraph

consists ofunorderedpairs of vertices. Graph-theoretical approaches to this research topic con-

struct undirected graphs from static scripts. In skeleton-based methods, e.g., the nodes typically

label the skeleton samples that are connected to one, or morethan two skeleton samples. A

cost/weightis then assigned to each edge to produce aweighted graph. In acomplete graphall

the nodes are connected. The nodes in aline graph`(g) correspond to the edges ofg so that two

nodes are adjacent iǹ(g) if the corresponding edges ing are adjacent.

General graph-theoretical concepts are illustrated in Figure 2.2. A static script, which is easy

to unravel, is shown in Figure 2.2(a). Figure 2.2(b) depictsa typical graphg for the skele-

ton of the static script in Figure 2.2(a), whereg consists of four edges{A, B,C,D} and five

nodes (filled dots.) The complete line graph`(g) of Figure 2.2(b) is the collection of black

solid lines and black filled dots in Figure 2.2(c). Apath p = [v0, e1, v1, . . . , vn−1, en, vn] in a

graph is an alternating sequence of nodes and edges, beginning and ending with nodes. It

joins nodesv0 andvn, passes through the nodesv = [v0, v1, . . . , vn−1, vn] and traverses the edges

e= [e0, e1, . . . , en−1, en]. A path iselementaryif all the edges are distinct, whereas it issimpleif

all the nodes are distinct. Acycleis a path in a graph with identical start/end nodes, i.e.,v0 = vn.

A tree is a graph that contains no cycles. Aspanning treeof g is a subgraph ofg that contains

all the vertices but only enough of the edges to form a tree. Thus, in Figure 2.2(b), the set of

edges{B,C,D} and the nodes that are connected to these edges form a spanning tree ofg.

An important graph-theoretical problem to address is to calculate the shortest path from a source

vertexs ∈ v to a destination vertexd ∈ v. In a weighted graph, this path corresponds to the

path s → d with the smallest total weight. This problem is called thesingle-pair shortest-

path problem; see [32]. For any graph, there is a number of variants to this problem. In the

single-source shortest-pathproblem, the shortest path from a single sources ∈ v to everyother

vertexv ∈ v must be calculated. This problem can be solved using Dijkstra’s algorithm with



2.3 — G-  21

g

A

B C D

`(g)

a

b

c
d

p

(a) (b) (c)

g
A

B
C

`(g)
a

b
c

p

(d) (e) (f)

Figure 2.2: Illustration of graph-theoretical terminology. (a) A static script with (b) a typical

graphg for the script’s skeleton. (c) Black solid lines and filled dots render the complete line

graph`(g) of (b). A “virtual” node p is included to search for an optimumHamilton cycle. (d)

A static “r” with (e) the graph of its skeleton. (f) The complete line graph of (e) which is

connected to a “virtual” node p.

complexityO(N3), whereN is the number of nodes [72, 32, 38]. In theall-pairs shortest-path

problem the shortest path between every pair of vertices is calculated. Although this problem

can be solved by solving the single-source shortest-path problem on every vertex, there are more

efficient ways, e.g., in [72] a dynamic-programming approach isdescribed. In the context of the

research topic, the path that minimises a predefined cost function (depending on the application)

maps to the pen trajectory of the static script. The well-known Chinese postman problemis the

search for a Eulerian cycle in a graph, where theEulerian pathis the shortest path containing

every edge in the graph exactly once and theEulerian cycleis the Eulerian path with identical

start/end nodes. However, not all graphs have Eulerian paths. To solve the Chinese postman

problem, some edges may have to be duplicated so that the graph has a Eulerian path. Edges

are, however, duplicated at most once, so that a segment in a static script can be traversed at

most twice in approaches that solve the Chinese postman problem.

TheHamilton pathis a path that contains every node of a given graph exactly once. The search

for the shortest Hamilton cycle in a weighted complete graphis called thetravelling salesman

problem[38], where aHamilton cycleis a Hamilton path with identical start/end nodes. To solve

the travelling salesman problem, a “virtual node” orpseudo-node p∈ v is typically included in

the complete line graph ofg. The new graph is called theextensionof the complete line graph

of g. Pseudo-edgesare then included to connect all the other nodes top, as illustrated by the

grey lines in Figure 2.2(c). The shortest Hamilton cycle is then calculated.
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If the shortest Hamilton cycle corresponds, e.g., to the sequence of nodes [p, b, a, c, d, p] in

Figure 2.2(c), the nodep is removed to calculate the final sequence of nodes. The shortest

Hamilton cycle may yield discontinuous paths. In such cases, the shortest continuous path to

bridge the discontinuity is typically calculated. In Figure 2.2(d) a static script of the character

“r” is shown. The graphsg and`(g) for the skeleton of (d) are shown in Figures 2.2(e) and

(f), respectively. A realistic Hamilton cycle from Figure 2.2(f) is [p, b, a, c, p]. This sequence

of nodes then translates to the sequence of edges [B,A,C] in Figure 2.2(e). The shortest path

to continuously reach edgeC from A in Figure 2.2(e), afterA has already been traversed from

edgeB, is to retrace edgeA. Hence, the final sequence of edges in Figure 2.2(e) is [B,A,A,C].

In travelling salesman approaches, similar extensions aremade for lines that are traversed more

than twice.

The travelling salesman problem and Chinese postman problem areproximity problems, i.e.,

these problems can be reduced to geometric problems that deal with the proximity of points in

metric space [55]. A powerful approach to deal with these problems effectively is to utilise a

Voronoi diagramand its straight-line dual, theDelaunay triangulation. The Voronoi diagramV

of a set of pointsP = {p1, p2, . . . , pN} is a uniquely defined decomposition or tessellation of

the plane into a set ofN polygonal cells, referred to as Voronoi polygons [73]. Eachpolygon

contains exactly one samplepi ∈ P and delineates the locus of all points in that plane that are

closer topi than any other point inP. The edges defining a Voronoi polygon are generated

from the intersections of perpendicular bisectors of the line segments connecting any one point

to all its nearest neighbours inP [73]. A typical Voronoi diagramV of a set of points (black

dots) is shown in Figure 2.3(a). The Delaunay triangulationcan now be computed fromV by

connecting all pairs of points that share the same edge [55].The Delaunay triangulation of

Figure 2.3(a) is shown in Figure 2.3(b). It is shown in Section 3.1 how a Delaunay triangulation

can be derived from a static script to calculate the skeletonof the script from the computed

tessellation.

A few points must be considered when deciding whether the Chinese postman or the travelling

salesman problem is applicable to a problem. That is, one must determine when to calculate

the shortest path directly fromg or when to compute extension of the complete line graph ofg

and then calculate the shortest path from`(g). Both solutions calculate an optimal trajectory,

based on global optimisation. Global optimisation is especially useful to resolve ambiguous

intersections in static scripts. A wider range of scripts can be dealt with when solving the

travelling salesman as opposed to the Chinese postman problem, e.g., lines that are traversed

more than twice can, by definition, be identified for the travelling salesman problem, which

is not the case for the Chinese postman problem. Unfortunately, the computational cost of

the Chinese postman and travelling salesman problems have to be accounted for. Solutions to

problems are regarded asefficient if they can be solved in polynomial time, i.e., the number
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(a) (b)

Figure 2.3: Computing (a) the Voronoi diagram and (b) the Delaunay triangulation

(straight-line dual of (a)) of a set of points (filled dots.)

of operations is proportional to some polynomial in the number of input bits [72]. As graph-

theoretical methods based on the travelling salesman problem and certain cases of the Chinese

postman problem are NP-complete, these methods belong to a family of problems for which

no efficient solution can be found [72, 38]. Since a complete graph of a static script has to

be constructed to solve the travelling salesman problem, the travelling salesman problem is in

general computationally more expensive than the Chinese postman problem. Generally, when

solving the travelling salesman problem, all the permutations of the vertices in a weighted

complete graph must be calculated. Hence, in the worst caseO(N!) operations are required,

whereN is the number of edges in the graph [72]. There are, however, good approximations

of efficient solutions to all cases of the Chinese postman problem;see [38]. Thus, one often

has to rely on sub-optimal solutions to the travelling salesman problem, or, by imposing more

restrictions, revert to the Chinese postman problem and approximations of it. When solving the

travelling salesman problem for this application, one can also introduce heuristic constraints to

reduce the computational complexity and thereby ensure that the algorithm is not NP-complete.

This is, however, at the cost of a lower accuracy.

2.3.2 Trajectory estimation algorithms that solve the Chinese postman

and travelling salesman problems

Methods that rely on solving either the Chinese postman or travelling salesman problem differ

primarily as follows:

1. Different cost functions are minimised to find the shortest path in the graph that presents

a static script.
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2. Different processing steps are applied to the graphs before the search for the shortest path

is conducted, e.g., in some methods the graphs are divided into smaller sub-graphs in

order to reduce the computational complexity.

3. Graphs are derived from the skeleton or grey-scale image of the static script.

Attention is afforded to the above differences in the discussion of the graph-theoretical methods

that follows, as these differences influence a method’s flexibility, computational complexity and

sensitivity to artifacts.

The methods in [2, 33, 5] are some of the first approaches to estimate the pen trajectories of

static script skeletons by solving the Chinese postman problem. Abuhaiba and Ahmed [2]

introduce a prior set of heuristic rules that comply with Arabic handwriting, e.g., they search

for a starting position at the right side of the script, as Arabic handwriting proceeds from right

to left. After calculating the starting position of the pen trajectory, the rest of the trajectory

corresponds to the path with the shortest Euclidean distance. 1605 Arabic scripts by two writers

were traced, and a subjective evaluation indicated that 92%of the actual temporal information

was recovered. Huang and Yasuhara [33] subdivide the skeleton graph into smaller sub-graphs

to reduce the computational complexity, and introduce a cost function which is minimised to

find the smoothest path in the graph. Allen and Navarro [5] apply a local continuity criterion to

merge certain edges in the graphs presenting the skeletons of Roman characters. The Eulerian

paths with minimum Euclidean distances are then calculated.

Jäger [38, 37] constructs graphs from the skeletons of static scripts and estimates pen trajectories

from the graphs by using two systems. The first system finds thepath with minimum Euclidean

distance by solving the Chinese postman problem. The secondsystem computes the angles

between intersecting edges and solves the travelling salesman problem in order to minimise

curvature globally. In [38], 6934 on-line words by 88 Germanstudents were converted into off-

line words to generate results, where the average length of the ground-truth trajectories is 17.7

(expressed as the number of edges ing.) It should be noted that edges do not necessarily have

equal pixel lengths (nodes ing are constructed for only certain skeleton samples, as illustrated in

Figure 2.2(b).)Levenshtein distancesare used to calculate error rates; see Section 6.4 for more

detail. The second system, which solves the travelling salesman problem, performs best with an

average Levenshtein distance of approximately 3.9. If the graph of a word consists of too many

edges, i.e., when the computational complexity is too high,the word is segmented. The optimal

trajectories from the separate graphs of the segments are then combined to calculate the final

trajectory of a static script.

Kato and Yasuhara [40] construct a graph from the skeleton ofa single-path static script and

label the kind of vertices and edges in the graph, e.g., heuristic measures are invoked to identify
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and label the edges that are allowed to be traversed twice. The pen trajectory of the static script is

then estimated from the graph by combining the label information and the search for the shortest

Eulerian path. Although restrictions are imposed on the starting and terminating positions of a

pen trajectory, the authors are able to identify lines that have been traversed twice. Hence, in this

regard, they improve on techniques that are unable to identify retraced lines, e.g. [33]. Although

their method is not as flexible as methods that solve the travelling salesman problem, e.g. [38],

not all the possible paths are enumerated, thereby making their approach computationally more

effective. A subjective evaluation was conducted on more than 100 static handwritten scripts,

and it has been observed by the authors that their method is successful on scripts that comply

with their assumptions. In [41], the same authors extend their approach to multi-path static

scripts.

Lallican et al. [43] segment the grey-scale images of staticscripts at critical points, e.g., high

curvature and intersection points. A graph is then calculated with nodes that correspond to the

calculated critical points. The position and direction between edges in the graph are minimised

by solving the travelling salesman problem. The authors note that, compared to Jäger [38,

37], their graphs are refined so that they are able to account more accurately for lines that are

revisited multiple times, as well as pen-up and pen-down events. Pen trajectories were estimated

from characters and words in the IRONOFF database, where theIRONOFF database consists

of on-line and off-line versions of 30 000 words and 25 000 characters for 700 individuals

(see [45] for more detail.) The estimated pen trajectories were implemented in a character and

word recogniser. Approximately 80% of the estimated trajectories produce likelihoods in the

same range as their dynamic counterparts when words and characters are classified. Hence, the

authors infer that approximately 80% of the estimated pen trajectories are correct.

Al-Ohali et al. [4, 3] transform the graphg of a static script’s skeleton into a spanning treet

by removing all the cycles fromg. Some edges int are allowed to be retraced when calculat-

ing the path with the shortest Euclidean distance. The removed cycles are reinstated after the

calculation of the shortest path int. The algorithm is specialised for Arabic letters and words.

In [3], estimated trajectories are applied to recognise Arabic words, where a recognition system

has been trained on 19 813 samples and tested on 8172 samples.All samples were extracted

from real-world bank cheques. The authors observe that 40% of the classifier errors are due to

noise on the cheques, digitising effects, and scripts that are hard to unravel. A further 8% of

the classifier errors are due to skeleton artifacts. (Other errors are caused by the classification

module.)

Qiao and Yasuhara [67] identify lines that are allowed to be traversed twice in the skeleton of

a static script using a probabilistic approach. Accordingly, they duplicate, merge and separate

certain edges in the graph that presents the skeleton. The altered graph is subsequently divided
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into smaller sub-graphs to improve the efficiency of the search for an optimal path. The same

cost function as in [33] is minimised during the search for the smoothest path. The authors

observe that their approach is more efficient and flexible than the methods in [40, 33].

The approaches of Lau et al. [50, 51] are similar to methods that solve the Chinese postman

problem. Curves are extracted from the skeleton of a script.In [50], the extracted curves

are matched to empirically determined cost functions, which are minimised to find an optimal

path using dynamic programming. In [51], the cost functionsare expressed as PDFs which

are trained from a set of on-line handwritten scripts, i.e.,they utilise dynamic exemplars in

this regard. Training makes the system in [51] more robust toallographic variations than the

system in [50]. Note, e.g., in Table 2.1 that theleft-to-right assumptionoccurs in [50] and

not in [51]. The authors note that, regarding geometric variations, their PDFs are scale and

translation invariant, but not rotationally invariant. Noquantitative results are provided.

2.4 Local correspondences with dynamic exemplars

Guo et al. [31, 30] estimate the pen trajectories of static signatures to detect forgeries in an

off-line signature verification system. Dynamic exemplars arerecorded using a digital mouse.

A search algorithm is directed that finds a corresponding point in the grey-scale image of a

static script for each point in the dynamic exemplar. For each point in the dynamic exemplar,

the corresponding point in the static image must have a grey-scale intensity above a certain

threshold, it must be nearby and within an angular sector of±45◦. The search for the most

likely pen trajectory is conducted up to a certain depth, where the search is terminated and

started again. The authors note that this local optimisation causes errors as well as local choices

at noisy, ambiguous intersections. It is also indicated that, regarding geometric variations, their

system is not scale invariant. It is, however, rotationallyinvariant, within an angular sector of

±45◦. No explicit provision is made for sequence or allographic variations, i.e., no training

schemes are invoked. No quantitative results are provided.

2.5 Summary

Some characteristics of existing techniques are identifiedthat are comparable to our approach

and that can be used to evaluate the performance of pen trajectory estimation algorithms. These

characteristics are summarised as follows:

1. It is evident from Table 2.1 that rules are typically required to find the starting and ter-
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minating positions of a static script in methods that do not make use of prior knowledge.

Guo et al. [31] and Lau et al. [51], e.g., do not impose rules tocalculate these positions,

but invoke prior information available from dynamic exemplars. Likewise, additional

information from dynamic exemplars, or prior rules, are typically required to identify

pen-up and pen-down events, i.e., to deal with multi-path static scripts.

2. A comparison between graph-theoretical and rule-based methods indicate that local choices

at intersections are frequently invoked in rule-based methods, whereas graph-theoretical

methods evade local choices by minimising predefined cost functions globally. Hence,

graph-theoretical methods generally have a better abilityto resolve ambiguities in static

scripts than rule-based methods have. The most flexible graph-theoretical methods are

employed by Jäger [38] and Lallican et al. [43], where the travelling salesman problem

is solved. However, no efficient solution exists to solve the travelling salesman problem.

Hence, many graph-theoretical techniques are impelled to revert to sub-optimal or more

restrictive solutions.

3. Table 2.1 indicates that techniques that can explicitly deal with lines that must be traversed

more than twice are sparse. Hence, most techniques deal withhandwritten words, letters

or numerals which, in general, do not contain lines that are traversed more than twice.

Few techniques unravel static signatures, which are usually much more unpredictable

and difficult to unravel.

4. Only Jäger [38] and Lau et al. [52] propose methods to quantify the efficacy of an esti-

mated pen trajectory. Although the method in [38] is not invariant to parameterisation, it

can be applied to a wide range of scripts. The method proposedin [52] is only applicable

to a restricted set of scripts, as discussed in Section 6.1.1.

5. In general, methods that extract all the skeleton samplesof a static script are more sen-

sitive to noise than methods that extract only a selection ofskeleton samples, e.g., Guo

et al. [31]. If a scanned-in document contains noticeable spurious lines near the hand-

written script, due to external noise, errors are typicallyintroduced if the system enforces

traversal of all lines. Al-Ohali et al. [3], e.g., take notice of the errors introduced in their

classifier due to external noise and skeletonisation artifacts.

6. Recent work by Lau et al. [51] and Guo et al. [31] rely on prior knowledge from dynamic

exemplars. Guo et al. establish a local correspondence between a static image and dy-

namic exemplar. Lau et al. do not establish such a local correspondence but compute

cost functions from dynamic exemplars which are used to compute the path with mini-

mum cost in the skeleton of a static script. The following remarks can be made regarding

existing systems that employ prior dynamic information:

(a) Even when prior dynamic exemplars are available, heuristic measures are typically

required to resolve ambiguities completely. Lau et al. [51]and Guo et al. [31], e.g.,

invoke a local smoothness criterion at intersections.
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(b) Existing methods that utilise prior dynamic information are not completely robust

against geometric variations; the approach followed by Lauet al. [51] is not rotation-

ally invariant while the approach followed by Guo et al. [31]is not scale invariant.

(c) The approach followed by Lau et al. [51] train PDFs to include writer-specific in-

formation, and is therefore more robust to allographic variations than the approach

followed by Guo et al. [31].

(d) Sequence variations do not explicitly influence the method of Lau et al. [51], whereas

the method of Guo et al. [31] is highly sensitive to substitutions and deletions (cor-

responding points in the static image must be found for all points in the dynamic

exemplar.)

The above characteristics are taken into consideration in Section 6.4, where the performance of

our system is evaluated in comparison with existing techniques.



Chapter 3

Preprocessing

Some basic preprocessing steps are applied before estimating the pen trajectory of a static script.

To estimate a pen trajectory, a static script is compared with a dynamic exemplar. Hence, any

prior alignment of a dynamic exemplar and a static script assists our HMM to establish an

accurate match and therefore improves the performance of our trajectory estimation algorithm.

The most significant preprocessing steps are:

1. A dynamic exemplar is presented as a smooth parametric curve. Accordingly, the skeleton

of a static script is computed by reducing the script to a collection of parametric curves.

Section 3.1 pursuits an adequate skeletonisation scheme.

2. The next step renders prior preprocessing to make our approach invariant to geometric

variations. First, the centroids of a dynamic exemplar and astatic skeleton are aligned

to ensure translation invariance. Next, the dynamic exemplar is scaled so that it has the

same standard deviation in the xy-plane as the static skeleton [53]. The orientations of

the dynamic exemplar and static image are aligned using a Radon-based approach, as

described in Section 3.2.

3. Finally, the parametric curves that constitute the dynamic exemplars and static skeletons

are similarly resampled, as described in Section 3.3, in order to obtain a more efficient

representation.

29
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3.1 Skeletonisation

3.1.1 Introduction

Since static signatures appear as 2D images on documents, little, if any, dynamic information

about the actual process of creating the signature is retained. In order to extract a parametric

curve from a static image, we first extract askeletonfrom the image through a thinning process,

where the skeleton follows the centreline of the original image. Note thatskeletonisational-

gorithms compute the centrelines from image boundaries, whereasthinningalgorithms remove

outer layers of an image while simultaneously preserving the image connectivity. In general,

a strict requirement of good skeletonisation is the preservation of the topological and geomet-

rical properties of the original object. There is a vast collection of existing literature available

on thinning and skeletonisation techniques. Some of these techniques are discussed in Sec-

tion 3.1.2. It is, however, important to bear the following in mind regarding the skeletonisation

for this application:

• Many existing techniques that estimate the pen trajectories of static scripts from the script

skeletons are sensitive to skeletonisation artifacts. It is therefore necessary to deter-

mine our HMM’s robustness to artifacts. This section shows how artifacts are removed,

whereas the effect of artifact removal is measured in Section 6.3.2.

• The local directions and the positions of the lines that constitute the skeletons of static

scripts are embedded in our HMM PDFs, as shown in Chapter 4. The embedded script

characteristics are then matched to the dynamic exemplars.To facilitate an accurate

match, it is important to skeletonise static scripts so thatthey resemble their dynamic

counterparts as accurately as possible. The efficacy of our algorithm in this regard is is

qualitatively measured in Section 3.1.6, whereas quantitative performance measures are

presented in Section 6.3.2.

• For this application, it is important to distinguish between parts in a handwritten static

script that are easy and parts that are difficult to unravel. Section 3.1.5 develops heuristics

to establish such distinctions.

• Section 4.5 shows that smooth and accurate line directions allow the simplification of our

HMM for intersections that are easy to unravel. We thereforefocus on various smoothing

techniques during the development of our skeletonisation algorithm in Sections 3.1.3-

3.1.5.

• A skeleton that segments a handwritten script into smooth parametric curves comple-

ments our resampling scheme that identifies high curvature points; see Section 3.3 for

details.
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3.1.2 Literature synopsis

When an image is scanned as a grey-scale image and binarised,noise is inevitably introduced.

If the skeleton is then derived from this binarised image, following the image centreline exactly,

the skeleton is bound to contain artifacts. We refer to skeletons resulting from skeletonisation or

thinning techniques that do not attempt to remove such artifacts asstandard skeletons. Exam-

ples of such techniques can be found in [48, 28, 73, 29]. Artifacts are categorised asperipheral

artifacts, such as spurs attached to the skeleton of an image andintersection artifacts, where two

or more lines that should intersect fail to cross each other in a single point. Figure 3.1(a) shows

an example of a reasonably difficult signature to skeletonise—one that even the eye finds diffi-

cult to unravel. Figure 3.1(b) is an example of a standard skeleton from [29] for Figure 3.1(a).

Some, but not all, artifacts are encircled with dotted lines. Since we are attempting to extract

the pen trajectory from the image, artifacts can affect our trajectory extraction algorithm—the

exact effect of such artifacts is investigated in Chapter 6.

(a) (b)

(c) (d)

Figure 3.1: The skeleton of a static signature containing regions of multiple crossings. (a) A

binarised signature that is difficult to unravel. (b) Examples of artifacts that can occur in

skeletons. (c) The final skeleton of (a), specific to our application (note the web-like

structures.) (d) Examples of trajectories that can be extracted from (c).

To remove skeletonisation artifacts and improve local linedirections, so that static scripts

closely resemble their dynamic counterparts, more sophisticated algorithms are required; see,

e.g., [86, 87, 69, 80, 42, 13, 47, 79]. To choose an appropriate scheme is unfortunately rather

difficult, as the quality of skeletonisation and thinning algorithms are mostly quantitatively mea-

sured by their computation time and their ability to preserve the topology and geometric prop-

erties of the original object; see [83, 46]. For this application, additional considerations should

be taken into account, as outlined in Section 3.1.1. It is important, e.g., that the connectivity of
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lines through complicated regions should be preserved.

For our application the rather sophisticated algorithm by Zou and Yan [86], as improved by

Rocha [69] is highly suitable, with modifications specific toour application. Our skeletonisa-

tion scheme is primarily based on the algorithm by Zou and Yan[86], which is from now on

referred to as the Zou-Yan algorithm. The Zou-Yan algorithmis based onDelaunay triangu-

lation [14]—an angle-optimal triangulation given a set of points.Specifically, any Delaunay

triangulation from a set of points maximises the minimum angle over all the constructed trian-

gles; see [14] for further detail. The Zou-Yan algorithm first identifies the edges that represent

the boundaries of the original image, where the edges, in this case, are lines connecting succes-

sive boundary samples. By constructing Delaunay trianglesfrom the control points representing

these edges and some further basic steps, one computes a skeleton that follows the centreline of

the image [86]. Additionally, the triangles that comprise artifacts are identified, resulting in a

powerful technique to identify and remove skeletonisationartifacts.

The most important modification for our application is with regard to the skeletonisation in com-

plicated regions. The Zou-Yan and Rocha [69] algorithms assume that lines do not change their

orientation after entering an intersection. Due to the nature of human handwriting, especially

signatures, this is not always true. When an image becomes indistinct due to multiple thick-lined

crossings in a small region, it is not clear which curves should be connected. If the skeletonisa-

tion algorithm follows a dominant curve and strives to maintain its direction, the wrong curves

may be connected, with the result that actual trajectories become irretrievably lost. In situations

like these, we are careful to maintain all possible connections, while smoothing transitions at

intersections as much as possible. This often results in a visually unappealing web of connected

lines (see Figure 3.1(c).) Although visually unappealing,theseweb-like structuresare tailored

for our proposed method. The HMM is able to find the appropriate connections, thereby recon-

structing the pen trajectory accurately. Due to the web-like structures in complicated regions

we do not necessarily preserve the topology of the original image. We therefore refer to our

skeletonisation algorithm as apseudo skeletonisationalgorithm resulting in thepseudo skeleton

of the original image.

3.1.3 Overview of our pseudo skeletonisation algorithm

This section presents a brief overview of the application-specific modifications to the Zou-

Yan and Rocha approaches. The key idea of these approaches isto partition an image into

smaller regions so that regional information can be exploited to identify artifacts. These regions

assume a wide variety of shapes.End regionsare defined as regions that contain skeleton

lines between endpoints and crosspoints. Anendpointis a skeleton sample connected to only
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one adjacent skeleton sample, whereas acrosspointis a skeleton sample connected to more

than two adjacent skeleton samples. Typically, end regionsare likely to contain peripheral

artifacts if they are short in length in comparison with their width. Spurious end regions are

simply removed.Intersection regionscontain crosspoints. Different crosspoints are joined in

a single point by merging their intersection regions, thereby removing intersection artifacts,

wheremergingdescribes the process that unites two or more intersection regions. Typically,

the directions of skeleton lines that enter intersection regions are used as basis for calculating

whether nearby intersection regions should be united.

Two simple examples are shown in Figure 3.2 to illustrate thebasic steps for artifact removal.

The first bounding box in Figure 3.2(a) depicts the skeleton of an image containing spurious

intersection regions (dashed boxes.) Line directions (arrows) are used as basis for merging the

two intersection regions. As mentioned above, the merging of the two intersection regions re-

sults in their unification, effectively expanding the separate intersection regions and removing

the connected sub-shapes between them. Thus, the two regions are united into a single inter-

section region, as depicted by the big dashed box containingp in the second bounding box

of Figure 3.2(a). The lines that enter the new intersection region (dashed box) are joined at a

crosspoint, where the crosspoint is the 2D skeleton samplep. Figure 3.2(b) shows spurious end

regions (dashed boxes) which are removed to compute the finalskeleton, as shown in the last

bounding box.

p

(a)

(b)

Figure 3.2: Removal of skeleton artifacts. (a) Removing intersection artifacts by uniting the

appropriate intersection regions (dashed boxes.) The directions (arrows) of the lines that enter

the new intersection region are computed to calculate the crosspointp where the lines should

join. (b) Peripheral artifacts are removed by removing spurious end regions (dashed boxes.)

Problems are typically encountered in complicated areas where many intersection regions are

located within close proximity, e.g. the left-hand side of Figure 3.1(a). In such cases, lines

entering the intersection regions are too short to make accurate estimates of their directions.

Inaccurate line direction estimates can result in the merging unrelated shapes, thereby remov-
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ing skeleton lines that are not intersection artifacts, butimportant image features. The removal

of such features can lead to a performance degradation of ourHMM. It is therefore necessary

to introduce further refinements to the basic algorithm. In short, one has to avoid merging of

unrelated intersection regions. Accordingly, we introduce additional constraints, relying mainly

on local line width. In the previous section, we alluded to the generation of additional lines in

complicated parts forming web-like appearances. Since there is a direct relationship between

the noise in the boundaries of an image and the number of artifacts in the image skeleton, a

smoothing procedure is applied to the original boundaries as well as the final skeletons. Using

the Zou-Yan algorithm as the basis for our pseudo skeletonisation algorithm, our implementa-

tion effects the following modifications for handwritten signatures:

• Image boundaries, lines that estimate the directions of connected sub-shapes and final

skeletons are smoothed with appropriate smoothing techniques.

• Complicated parts of a static handwritten script, where it is difficult to estimate line di-

rections, are identified and handled separately.

• Several constraints are set, based on line width.

• Iterative merging of intersection regions is prevented andthe criteria of the Zou-Yan al-

gorithm are extended to decide whether two intersection regions should be merged.

The details of the algorithm are described in subsequent sections of this chapter. Section 3.1.4

explains how an image is partitioned into sub-shapes and howa standard skeleton is derived

from these sub-shapes. Section 3.1.5 explains how sub-shapes are manipulated to remove arti-

facts. Section 3.1.6 presents results and a summary of our algorithm, and some final conclusions

are drawn in Section 3.1.7.

3.1.4 Shape partitioning

The first steps are straightforward: Image boundaries are extracted from static handwritten

images. These boundaries comprise polygons so that the set of polygons, referred to as the

approximating polygonof the static image, now represents the image. Since local line directions

are not well defined as a result of noisy boundaries, boundarysamples are processed as follows:

1. High curvature points are selected from the boundaries following the polygonalisation

approach in [73].

2. The resulting boundaries are smoothed using a low-pass filter [28]. Excessive smoothing,

however, will remove regions of high curvature. This can be particularly problematic for
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thinner signatures, as excessive smoothing allows outer boundaries (surrounding the im-

age) to cross inner boundaries (surrounding holes.) To overcome this problem, the meanµ

and standard deviationσ of line thickness are computed. After each smoothing iteration,

the areas of the polygons enclosed by smooth boundaries are calculated as percentages

of the original polygon areas. The area loss/gainapolygon after each smoothing iteration is

compared with the following empirically determined threshold amin, where

amin = 1.5 ∗ µ 1
2σ

1
5 . (3.1)

Hence, ifapolygon> amin the smoothing of the iteration is not included. According to(3.1),

thick-lined signatures varying more in line width (an indication of noisy boundaries) are

smoothed more than thin-lined signatures with less boundary noise.

3. Image boundaries that enclose three or less connected pixels are considered insignificant

and removed immediately.

4. For the sake of simplicity, image boundaries are resampled so that the distance between

any two successive samples is approximately one pixel.

Figure 3.3(a) shows a static signature to be skeletonised. Figure 3.3(b) shows a part of the sig-

nature’s noisy boundary as extracted from Figure 3.3(a). Figure 3.3(c) illustrates the smoothing

effect on the boundary of Figure 3.3(b) after processing the parametric curve that presents the

boundary according to the steps above. The smoothed boundary samples are used as control

points to divide the original shape into a set of non-overlapping triangles using Delaunay tri-

angulation [86, 65, 14]; also see Section 2.3.1. In order to proceed we need to recall some

concepts of [86, 87, 69]:

• External trianglesoccur because the Delaunay triangles are situated inside the the convex

hull of the object. This can generate triangles outside the approximating polygon that

represents an image. External triangles are simply removed.

• Internal trianglesare the Delaunay triangles that are situated inside the approximating

polygon of a static image. Internal triangles are identifiedby shooting a ray (half-line)

from the centroid of a particular triangle in any direction,so that the ray does not directly

hit any vertices of the approximating polygon. The ray originates inside an internal trian-

gle if the ray intersects the edges of the approximating polygon an odd number of times

(see [72].)

• External edgesare the sides of internal triangles that coincide with the image boundaries.

• Internal edgesare internal triangle sides inside the approximating polygon of the image.

Note that two adjacent internal triangles have a common internal edge so that the internal

edges connect the internal triangles that partition the approximating polygon of an image.
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(a) (b) (c)

E-TE-T

E-T

J-T

N-TN-T

I-T

(d) (e)

(f) (g)

Figure 3.3: (a) A scanned signature with (b) a part of its noisy boundary.(c) The filtered

version of (b). (d) Vertices (filled dots), external edges (solid lines) and internal edges (dashed

lines) are used to classify the internal triangles. (e) The primary skeleton (solid centrelines) of

(c). (f)-(g) The primary skeleton of (a) without and with prior smoothing.

• Internal triangles having zero, one, two, or three internaledges are labelledisolated-

triangles (I-Ts), end-triangles (E-Ts), normal-triangles (N-Ts)andjunction-triangles (J-

Ts), respectively. Figure 3.3(d) shows examples of each triangle type, where the black

dots represent control points (vertices) of the approximating polygon that represents the

original image. The control points also form the vertices ofthe Delaunay triangles. Ex-

ternal edges are rendered as solid lines, whereas internal edges are rendered as dashed

lines.

A primary skeletonis obtained as follows: for N-Ts, lines connecting the midpoints of their

internal edges are computed. For E-Ts and J-Ts, the skeletons are straight lines connecting

their centroids to the midpoints of their internal edges, whereas the skeletons for I-Ts are their

centroids. The appropriate skeletons for the internal triangles from Figure 3.3(d) are shown in

Figure 3.3(e). The primary skeleton for the signature in Figure 3.3(a), if no prior smoothing

is applied to the image boundaries, is shown in Figure 3.3(f). The result when smoothing
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is applied, is shown in Figure 3.3(g). Note the reduction of spurs as a result of a smoother

boundary. The few remaining spurs must now be removed and intersection artifacts corrected.

3.1.5 Removing artifacts

Parts of a handwritten static script that are difficult to unravel, as well as intersection and pe-

ripheral artifacts, are identified by means of a parameterα, which is the ratio between the

width w and length̀ of a ribbon, i.e.,α = w
`
, where aribbon is a set of connected N-Ts be-

tween two J-Ts, or between a J-T and an E-T. Along ribbon is identified whenα is smaller

than a threshold value, whereas ashort ribbonis identified whenα is larger than a threshold

value. The widthw of a ribbon is taken as the trimean length over all internal edges that con-

stitute the ribbon, i.e., the weighted average of the 25th percentile, twice the 50th percentile

and the 75th percentile. The length` is the path length of the connected N-T skeleton lines

that constitute the ribbon. Figure 3.4(a) depicts a typicalribbon between an E-T and a J-T.

The length of the ribbon is computed as the path length of the skeleton line that connects the

midpoints of the internal edges fromh to i. The widthw of the ribbon is given by the trimean of

{‖ab‖, ‖bc‖, ‖cd‖, ‖ce‖, ‖ef‖, ‖fg‖}, wherexy = y − x andx, y are both 2D boundary coordinates.

The algorithm proceeds in several steps:

Step 1: Removing spurs.The first step in the skeletonisation is to remove all peripheral arti-

facts remaining after boundary smoothing. Following [87],short spurs belong to sets of

connected triangles that are short in comparison with theirwidth; they are removed. If

α ≥ 2, the ribbon is identified to be a short ribbon and removed, sothat the J-T becomes

an N-T as shown in Figure 3.4(b).

The threshold forα depends on the boundary noise—less boundary noise results in shorter

spur lengths. Thus, the threshold forα is increased as the boundary noise decreases.

Figures 3.4(c) and (d) show the result afterStep1 is applied to Figures 3.3(f) and (g) with

α ≥ 2. Note that most of the important image features from Figure3.3(a) are preserved

in Figure 3.4(d), whereas it becomes difficult to calculate a threshold forα that removes

spurs from Figure 3.3(f) without removing important image features. Clearly, smoothing

significantly improves spur removal as spurs are shortened in a natural way, making it

easier to compute a robust value forα.

Step 2: Identifying complicated intersections. Figure 3.5(a) indicates the typical locations

of J-Ts, as derived from a complicated part in a signature. Ifso many lines cross in

a small area, it is difficult, if not impossible, to maintain the integrity of lines,i.e., it

is difficult to follow individual ribbons through intersections. The Delaunay triangles

enable us to identify such complexities as parts of images where many J-Ts are within
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J-T

E-T

a
b

c
d

e
f g
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i

(a) (b)

(c) (d)

Figure 3.4: Removing peripheral artifacts. (a) An illustration of the parameters involved to

determine if the ribbon between the J-T and E-T is spurious. Vertices that are used to compute

the width of the ribbon are labelled from a to g, whereas the length of the ribbon is the path

length of the skeleton line between h and i. (b) Removing the spurious end region from (a). (c)

Removing spurs from Figure 3.3(f). (d) Removing spurs from Figure 3.3(g).

close proximity, as shown in Figure 3.5(a). Instead of forcing poor decisions in such

complicated parts, web-like structures are introduced, including additional skeleton lines

to preserve all possible connections.

J-T

J-T
J-T

J-T

J-TJ-T

J-T 1,2

2,1 3,2

4,3

5,26,1

7,2

(a) (b) (c)

Figure 3.5: Identifying complicated intersections. (a) Cluttered J-Ts extracted from a

complicated part of a signature. (b) Illustration of Step 2,where J-Ts are numbered, followed

by the number of long ribbons that are connected to them. (c) Final skeleton for (b) containing

web-like structures superimposed on the internal Delaunaytriangles.

Recall that during the primary skeletonisation, the centroids of all J-Ts become skeleton

points. As mentioned above, it is important to avoid forcingcrucial decisions in compli-

cated parts of a static script. Hence, for complicated intersections, the primary skeleton

points of the J-Ts are removed, and the lines that enter the J-Ts are directly connected. The
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resulting web-like structures contribute to smoother transitions than the original primary

skeleton points in complicated parts of the image. We proceed to discuss the heuristic

measures employed to identify J-Ts that belong to such complicated intersections.

First, J-Ts that are connected to two or three short ribbons (α ≥ 2.5), are labelledcompli-

cated J-Ts. The primary skeleton points of complicated J-Ts are replaced by lines con-

necting the midpoints of the J-T internal edges. The same is done for other J-Ts that are

connected to complicated J-Ts through short ribbons. This is illustrated in Figure 3.5(b),

where the J-Ts from Figure 3.5(a) are numbered, followed by the number of long rib-

bons connected to the J-Ts. Although J-Ts 1 and 7 are connected to two long ribbons,

they are connected to complicated J-Ts through short ribbons, so that their primary skele-

ton points are also replaced with web-like structures, connecting the midpoints of their

internal edges, as shown in Figure 3.5(c). Note that our HMM extracts the appropriate

connections, as described in Chapter 5.

Step 3: Characterising skeleton points. The remaining uncomplicated J-Ts are either con-

nected to two or three long ribbons. The skeleton points of such uncomplicated J-Ts

(recall that the primary skeleton selected the centroid) are recalculated following a simi-

lar approach to [86].

Recalculating the skeleton points of uncomplicated intersections. The midpoints of

internal edges belonging to the first few triangles (we use thirteen) in all three ribbons

connected to a J-T are connected and smoothed using a smoothing cubic spline, as shown

in Figure 3.6(a). The average directions of these curves arethen calculated and extended

in the direction of the J-T, as illustrated by the dashed lines in Figure 3.6(b). Let the

skeleton point of J-Ti bepi, i.e., at this stage J-Ti does not belong to a web-like structure

so thatpi is the centroid of J-Ti, wherei ∈ {1, . . . , n} andn is the number of uncomplicated

J-Ts. The new skeleton pointp′i of J-Ti is computed by calculating the centroid of the

intersections between the extended lines, as indicated by acircle in Figure 3.6(b).

J-Ti

J-Ti

p′i
x

(a) (b)

Figure 3.6: Calculating crosspoints to identify complicated intersections. (a) Cubic splines to

estimate the local directions of the ribbons that enter J-Ti. (b) The local ribbon directions

(arrows) are extended (dashed lines) to compute the skeleton pointp′i for J-Ti in (a).
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Recalculation of skeleton points that are out of bounds.In some casesp′i falls com-

pletely outside J-Ti and all the ribbons connected to J-Ti, e.g., in the image background.

To preserve local line directions,p′i is relocated to an appropriate triangle closest to it.

Specifically, for each ribbonj connected to J-Ti, the nearest triangleTi, j to p′i is com-

puted. Thus,Ti, j can be any triangle that partially constitutes thejth ribbon connected to

J-Ti for j ∈ {1, 2, 3} andi ∈ {1, . . . , n}. For eachTi, j, the angleθi j is computed, where

θi j = cos−1

(

(pi − p j) · (pi − p′i )

‖(pi − p j)‖ · ‖(pi − p′i )‖

)

, (3.2)

wherep j is the centroid ofTi, j, pi is the centroid of J-Ti, andp′i is the recalculated value for

pi which must be recalculated again. The triangleT(i, j)min corresponding to the minimum

θ(i, j) is chosen as the triangle that should containp′i . If T(i, j)min is an E-T,p′′i , the new value

for p′i , is the centroid of the E-T. IfT(i, j)min is an N-T,p′′i is the centroid of the midpoints

of the N-T’s two internal edges. Finally, the skeleton pointpi for each uncomplicated J-Ti

is recalculated aspi = p′i , or pi = p′′i if pi is out of bounds.

Associating a ribbon with each crosspoint.We now associate a single ribbonj with

a crosspointpi, where ribbonj is selected from the three ribbons that are connected to

the uncomplicated J-Ti. Specifically, the distances betweenpi and the midpoints of J-Ti ’s

internal edges (each corresponding to a specific ribbon) arecalculated. The midpoint of

edgej closest topi defines the ribbonj, associated withpi, e.g., the ribbonx is associated

with pi in Figure 3.6(b). All the crosspoints along with their associated ribbons are stored

to be used at a later stage of the algorithm.

Step 4: Removing intersection artifacts (criterion 1). This step identifies uncomplicated J-

Ts (excluded from web-like structures) that contribute to intersection artifacts so that

artifacts can be removed by adapting some of the criteria used by [86]. A J-Ti is labelled

unstable, i.e., contributing to an artifact, if its skeleton pointpi lies outside it. In this

case, the sequence of connected triangles from J-Ti up to the triangle in whichpi falls are

removed, thereby merging them into a single polygon. Figure3.7(a) indicatesT(i, j)min for

J-Ti using an x-shaped marker. The intersection region resulting from the removal of all

the triangles up topi is depicted in Figure 3.7(b). Note thatpi is now associated with a

pentagon (five-sided polygon rendered as dotted lines.)

An extension ofStep4 is illustrated in Figure 3.8. The primary skeletons of J-T1 and J-T2
from Figure 3.8(a) must be joined to remove the intersectionartifact (solid line between

J-T1 and J-T2). In this case, the skeleton pointp2 of J-T2 falls inside J-T1, so that the two

J-Ts are united into a four-sided polygon (dotted rectangle) with skeleton pointp (circle),

as shown in Figure 3.8(b), wherep = (p1 + p2)/2.

More intersection artifacts are identified and removed during the next step.
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x

pi

J-Ti

pi

(a) (b)

Figure 3.7: Correcting intersection artifacts. (a) Recalculating theskeleton pointpi (circle)

for J-Ti, where the ribbon j that is associated with J-Ti is indicated by anx-shaped marker. (b)

All the triangles from J-Ti to pi are removed from (a) to calculate a new intersection region

(dotted polygon) containing the crosspointpi, thereby preserving the line directions of the

y-shaped pattern (thick solid line) better than in (a).

J-T1

J-T2 p

(a) (b)

Figure 3.8: Removing an intersection artifact using an extension of Step 4. (a) An intersection

artifact (solid line) between J-T1 and J-T2 and (b) removal thereof by uniting J-T1 and J-T2

into a new intersection region (dotted polygon) with skeleton pointp.

Step 5: Removing intersection artifacts (criterion 2). We now make use of the information

about the location of skeleton points and their associated ribbons obtained inStep3. If

two crosspointsp1 andp2 are associated with the same ribbon, as shown in Figure 3.9(a),

andα ≥ 2 for the ribbon, the two intersection regions and the ribbonbetween them are

united into a new intersection region. Note that after the application ofStep4 a ribbon

connects an intersection region (triangle/polygon) to an intersection region or an E-T.

The skeleton point for the new intersection region (dotted polygon) isp = (p1 + p2)/2, as

shown in Figure 3.9(b).

In addition, three J-Ts must sometimes be merged, as illustrated in Figure 3.10. Fig-

ure 3.10(a) depicts three J-Ts and their skeleton pointsp1, p2 andp3. Conditions for such

a merge occur if according toStep4, J-T2 and J-T3 must be united, whereas according to

Step5, J-T1 and J-T2 must be united. In such cases, a new intersection region is created

with a single skeleton pointp = (p1 + p2 + p3)/3, as shown in Figure 3.10(b).

The final step modifiesStep1 and removes spurs after the application ofSteps4 and 5.
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p1

p2

1

2

p

(a) (b)

Figure 3.9: Intersection regions are united if their skeleton points are associated with the same

short ribbon. (a) Skeleton pointsp1 andp2 of intersection regions 1 and 2 (numbered dotted

polygons) are associated with the same short ribbon. (b) Theribbon and intersection regions

from (a) are united into a new intersection region (dotted polygon with skeleton pointp).

p1

p2
p3

J-T1

J-T2

J-T3

p

(a) (b)

Figure 3.10: Merging three J-Ts, where (a) J-T2 must merge with J-T3 and J-T1 according to

the locations of the J-T skeleton pointsp1, p2 andp3 and the criteria imposed by Steps 4 and 5.

(b) A new intersection region (solid lines) with skeleton point p and skeleton lines connecting

the midpoints of its internal edges (thin dashed lines) results after merging the J-Ts from (a).

Step 6: Removing spurs by modifyingStep 1. If a crosspointp is associated with a short

ribbon (α ≥ 2.5) that is connected to its intersection region and an E-T, the intersection

region is united with all the connected triangles up to the E-T. The skeleton point of the

new intersection region is the centroid of the E-T. The intersection region (dotted polygon)

of Figure 3.11(a) is connected to an E-T through a short ribbon. A new intersection region

is therefore computed (dotted polygon) resulting in a v-shaped pattern (solid line), as

shown in Figure 3.11(b).

AlthoughSteps1 and 6 appear similar, there are subtle differences.Step1 measures the length of

all ribbons that are connected to E-Ts and J-Ts and serves to remove the excessive artifacts that

can affect the rest of the algorithm.Step6 removes peripheral artifacts by relocating crosspoints

to the centroids of E-Ts, i.e.,Step6 transforms y-shaped patterns into v-shaped patterns.
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(a) (b)

Figure 3.11: Removing the last spurs. (a) An intersection region (dottedpolygon) connected

to an E-T through a short ribbon. (b) Merging connected triangles from the intersection region

up to the E-T from (a) in accordance with Step 6 to compute a newintersection region (dotted

polygon) and skeleton (thick solid line.)

3.1.6 Results: The final skeletons

Final skeletons are smoothed using Chaikin’s corner-cutting subdivision method [10, 49]. This

smoothing scheme treats the samples that constitute a parametric curve as control points of a

polygon and iteratively “cuts” the corners of the polygon while doubling the numbers of sam-

ples that constitute the curve. It is shown by Lane and Riesenfeld [49] that Chaikin’s curve is

equivalent to a quadratic B-spline curve (a piecewise quadratic Bézier curve.) Due to Chaikin’s

geometricapproach to smooth curves, a wide variety of shapes can be handled easily and ef-

ficiently, e.g., straight lines and closed curves are treated the same, making it an appropriate

smoothing scheme for this application. This smoothing scheme is applied to all curves con-

nected to endpoints and crosspoints, as well as closed curves (e.g., the character “o”.) Further

resampling before deriving an HMM from the skeletons is described in Section 3.3.

On-line signatures from the Dolfing database [20, 82] (converted into thin off-line signatures)

and the off-line signatures from the Stellenbosch dataset developed by Coetzer [12] were used

to optimise the threshold values forα at each step; see the previous section. The average line

thickness of the static signatures that were skeletonised varied between 1.7 and 8.1 pixels with

average standard deviations between 0.3 and 5.3. Although the signatures vary considerably

as far as line thickness and boundary noise levels are concerned, the same threshold values for

α, as presented in the previous section, are used in all cases.Examples of final skeletonised

signatures are shown in Figure 3.12. Figure 3.12(a) shows the original signatures, while their

application-specific and general-purpose skeletons are presented in Figure 3.12(b)-(c). The

application-specificskeletons are our pseudo skeletons containing web-like structures. The

general-purposeskeletons are our pseudo skeletons that do not contain web-like structures,

i.e., the skeleton points of complicated J-Ts are their primary skeleton points (seeStep2.)

Thus, except for the web-like structures, the general-purpose skeletons are the same as the
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application-specific skeletons. The general-purpose skeletons can be used for other off-line

handwriting applications where improvements of standard skeletons are required to compute

visually appealing skeletons.

Signatures 1, 10 and 11 are examples of signatures that are relatively straightforward for the

eye to unravel. Their application-specific and general-purpose skeletons are therefore the same.

Note how local line directions are improved in the skeleton of the first signature after the ap-

plication ofSteps2 to 6 as compared to Figure 3.4(d). Furthermore, web-like structures retain

all possible connections while smoothing transitions at intersections slightly in parts that are

difficult to unravel. The application-specific skeletons of signatures 5 and 8 illustrate that our

pseudo skeletonisation algorithm is able to identify difficult parts (evident from the webs on the

left-hand parts), whereas intersection and peripheral artifacts are corrected in parts that are rel-

atively straightforward to unravel (right-hand parts.) Quantitative measurements to determine

the efficacy of our skeletonisation scheme for this application arepresented in Chapter 6.

3.1.7 Summary and conclusions

Before drawing some conclusions, our skeletonisation scheme is briefly summarised as follows:

• First, the boundaries of static handwritten images are extracted, smoothed and resampled.

Small polygons are removed, while the rest of the polygons are subdivided into non-

overlapping Delaunay triangles. These triangles are used as the foundation to calculate

the primary skeletons of static images.

• Peripheral artifacts are removed by removing short ribbons(α ≥ 2) connected between

J-Ts and E-Ts.

• Parts of the signature that are difficult to unravel are identified and web-like structures are

introduced. Hereα ≥ 2.5. (For general purposes, the primary skeletons in complicated

parts are retained.)

• Unstable J-Ts and other intersection regions that contribute to intersection artifacts are

identified. Intersection artifacts are corrected using twocriteria. The first criterion merges

a J-T with a connected set of triangles up to its estimated skeleton point. The second

criterion unites two intersection regions if their skeleton points are associated with the

same short ribbon (α ≥ 2.)

• The last peripheral artifacts are identified after the recalculation of crosspoints in the steps

above. Hereα ≥ 2.5.

• Skeletons are smoothed using a corner-cutting subdivisionscheme.
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Figure 3.12: Examples of our pseudo skeletonisation, where the scanned static signatures are

shown in (a) with (b) their application-specific skeletons and (c) the general-purpose skeletons

derived from (a).
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Apart from the specific application to static signatures, the above skeletonisation procedure is

also very suitable for arbitrary handwritten shapes. This was achieved by introducing a number

of detailed modifications to the basic skeletonisation technique in [86] and developed further

by [69]. In particular we find that smoothing of boundaries reduces the number of artifacts

significantly and enhances local line directions. An important feature of the algorithm is our

exploitation of line width. This allows us to identify the complicated parts of the signature where

difficulties might be encountered. It is of interest to note that the parameters depending on the

line width can be fixed for a wide class of handwritten images,possibly for all handwritten

images.

To conclude, our skeletonisation approach has the following beneficial characteristics for this

application:

• In order to be able to extract the time sequence of the lines comprising static signatures,

estimating local line directions is crucial. The challengeis to design a skeletonisation

algorithm that preserves local line directions and maintains the correct connections be-

tween incoming and outgoing curves, especially in complicated parts of the signature.

Our pseudo skeletonisation identifies complicated parts instatic handwritten scripts while

enhancing local line directions using various smoothing techniques. An adaption of our

pseudo skeletons for general purposes is also proposed for applications that require arti-

fact removal and visually appealing skeletons.

• Due to the useful shape partitioning of static scripts usingDelaunay triangulation, our

pseudo skeletonisation enables us to identify simple intersections that are easy to unravel,

as shown in Section 4.5.

• The segmentation of a static handwritten script into a selection of smooth parametric

curves with few artifacts enable us to identify high curvature points accurately, as de-

scribed in Section 3.3.

The effect of skeletonisation artifacts on our system is investigated in Section 6.3.2.

3.2 Orientation normalisation

Any form of handwriting is generated with a specific general direction relative to the horizontal

axis, which we refer to as theorientationof the handwriting. Since our algorithm relies on local

line directions, it is important that the static image and the dynamic exemplar have the same

orientation.
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Principal component analysis (PCA) is often used to align different shapes [28, 54, 56]. Unfor-

tunately, this simple procedure is not reliable for signatures. To calculate the principle axes of a

shape, the covariance matrixC of the data, representing the shape, is computed. The matrixE

containing the eigenvalues ofC on its main diagonal is then computed, where

E =
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, (3.3)

wheren is the dimension of the data and the eigenvalues are sorted indescending order so

that β j ≥ β j+1 for j = 1, 2, . . . , n − 1. The eigenvector corresponding toβ1 is then the axis

of maximum variation and therefore the principle axis. For our applicationn = 2. Hence,

problems are encountered with shapes that do not display a clear “direction”, i.e., whenβ1 ≈ β2

which causes mismatched principle axes of dynamic exemplars and static skeletons.

(a)

(b)

Figure 3.13: Aligning signatures with (a) PCA and (b) the Radon transform.

A more robust approach is provided by shape matching algorithms in the Radon and Hough do-

mains [26, 81, 12]. The Radon and Hough transforms are frequently used to detect straight lines

in an image. The estimated equations of the straight lines enable one to detect italic (slanted)

handwritten characters or to determine the general orientation of a document (document skew);

see, e.g., [70, 39]. The Radon transform consists of projections at different anglesθ, where

0◦ ≤ θ < 180◦, as shown in Figure 3.14, so that all the original image information is contained

in the projections for 0◦ ≤ θ < 180◦. The Radon transform is computed overn angles, where

n = 360 for this application. The Radon transform is periodic and rotation becomes a linear

shift in the Radon domain. At a specific angleθ j, an image is presented bym line integrals

(projections overm beams), wherej ∈ {1, . . . , n}.

Since a rotation of an image corresponds to a linear shift in the Radon and Hough domains (see,

e.g., [35]), it is straightforward to calculate the optimalmatch between a dynamic exemplar

and a static script. We use the Radon transform in a general shape matching algorithm, which is

very similar to the algorithms described in [26, 81, 12]. Thedynamic exemplar is then converted

into a static image. Since the Radon transform is sensitive to the line width of the images, we

thicken [28] the static image skeleton as well as the image derived from the dynamic exemplar to
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Θ 

Figure 3.14: A projection of a static signature in the Radon domain, wherethe dashed lines

depict the projection at an angleθ relative to the x-axis.

a line width of approximately five pixels. This results in thefollowing orientation normalisation

algorithm:

1. The relative angle between a reference image (originallythe static script) and test image

(originally the dynamic exemplar) that produces the closest match in the Radon domain

is computed. The Euclidean distancedi is computed for all possible rotations so that

di =

√

√

√ 360
∑

j=1

‖ t j − r i+ j ‖2, (3.4)

wheret j andr i+ j are the Radon transforms (m dimensional vectors) of the test and refer-

ence images atθ j andθi+ j, respectively, andi ∈ {1, . . . , 360}. The value ofk that produces

the minimum value to (3.4), i.e.,k = arg(min(d)), whered = [d1, d2, . . . , dn], is computed.

2. The dynamic exemplar is rotated withθk, wherek is computed in the previous step, to

align it with the skeleton of a static script.

As far as we are aware, only Coetzer [12] employes this Radon-based scheme in a signature

verification application. However, existing techniques that quantify the proficiency of PCA-

based versus Radon-based orientation normalisation couldnot be found. A direct comparison

between these two normalisation schemes is therefore presented in Section 6.3.3, where the

effect of these normalisation schemes on our system is also measured.

3.2.1 Summary

This section has shown how to match a static image and a dynamic exemplar in the Radon do-

main in order to calculate their relative angle of rotation.The dynamic exemplar is then rotated



3.3 — R 49

with this angle to align its orientation with the orientation of a static skeleton. This approach is

applicable to any method that requires rotation normalisation between two shapes. Many sig-

nature verification approaches use PCA to align the orientations of the signatures. Local shape

similarities form the foundation for our Radon-based rotation, whereas global characteristics

with less shape information form the foundation for PCA-based rotation. The effect of PCA-

based and Radon-based orientation normalisation on our trajectory estimation algorithm and a

more quantitative comparison between the two approaches are investigated in Section 6.3.3.

In addition to the alignment of two shapes, a similarity measure between the shapes is also ob-

tained that can be useful in shape recognition or signature verification systems. This is endorsed

by Terrades and Valveny [81] who note that: “Symbols with a common structure share maxima

location in the Radon transform, although the Radon transform also reflects differences between

them.”

3.3 Resampling

The performance of the HMM is significantly improved by employing a suitable sampling

scheme. An adequate sampling scheme is also required to establish a comparison between

standard skeletons and our pseudo skeletons from Section 3.1.

A dynamic exemplar samplext at time instancet is a 3D vector consisting ofx1,2
t , the 2D

position coordinate in the first two entries, andx3
t the pen pressure in the last entry, wherex3

t ∈
{0, . . . , 255}. Since the final skeletons are smoothed using Chaikin’s method (see Section 3.1.6),

the dynamic exemplars are also smoothed using the same method. For reasons that become

more apparent in Chapter 5,x3
t is normalised so thatx3

t = 1 if the pressure at instancet is

non-zero, andx1,2
t = (0, 0) andx3

t = 0 in cases where the pen pressure is zero att.

Subsequent resampling proceeds in two steps:

1. Any two successive samples that form part of a standard pixel-based skeleton of a static

image are within a distance of 1 or
√

2 pixels from each other. To obtain a comparative

resampling, all smoothed curves are resampled so that‖xt − xt+1‖ ≈ 1, wherext is the 2D

position coordinate at time instancet. The result is calledEuclidean resampling, as the

distance between any two successive samples is approximately the same. This resampling

scheme is applied to all the position coordinates of the dynamic exemplar curves created

with non-zero pressure. It is also applied to static skeleton curves connected to endpoints

and crosspoints, as well as circular shapes.

2. During the next step of the resampling, the most importantsamples, calledcritical points
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are selected from the dynamic exemplars and static scripts after the Euclidean resampling,

as described in Section 3.3.1. The resulting parametric curve is called acritical point re-

sampled curve.

3.3.1 A critical point resampling scheme

It is shown in Section 6.3.4 that the computation time of our trajectory algorithm depends on the

numbers of samples that constitute the static skeletons anddynamic exemplars. Thus, for this

application, it is desirable to reduce the number of Euclidean samples without degrading the

performance of our HMM. Hence, the Euclidean resampled curves that represent the dynamic

exemplars and static scripts are resampled by selecting only the critical points from the curves.

In general, when a piecewise linear interpolation is employed between the successive 1D sam-

ples xt and xt+1, the errore(xt) of the linear interpolant between these successive samples is

given by

e(xt) =
1
2
|xt − xt+1|2 f ′′(ξt), (3.5)

where f ′′(ξt) is the second derivative at an unknown valueξ ∈ (xt, xt+1) for t = [1, . . . ,T − 1].

Thus, the maximum error of the linear interpolantemax(xt) = max(e(xt)) satisfies

emax(xt) ≤
1
8

h2
t Mt, (3.6)

where| f ′′(ξt)| ≤ Mt, ξt ∈ (xt, xt+1) andht = |xt+1 − xt|. Thus, provided that| f ′′(ξt)| is bounded,

it is natural to try and reduce the overall error by placing interpolation samples so that

e(xt) = h2
t f ′′(ξt) ≈ constant, (3.7)

for ξt ∈ (xt, xt+1) and t = [1, . . . ,T − 1]. Thus, from the equations above, one can decrease

the overall error by increasing the number samples where thecurvature (second derivative) is

high, reducing samples where the curvatures is low (see [15]for more detail on approximating

splines.)

High curvature points are identified using the critical-point detection described in [73]. This

technique computes the angular differenceθ between the slopes of two lines that are fitted to

portions of a parametric curve at each sample, as shown in Figure 3.15. The longer the line

segments, the more noise are smoothed out and the more samples constitute high curvature

portions. It is noted in [73] that it becomes problematic to choose a single set of parameters

in noisy images containing a wide range of image features, i.e., coexisting sharp and gentle

curves in the presence of noise. Thus, our pseudo skeletonisation, which removes artifacts and

performs smoothing, holds a great advantage over noisy standard skeletons in this regard.
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Figure 3.15: Selecting high curvature points from at set of control points (filled dots) that

constitute a parametric curve (dashed line) using two straight line segments (solid lines) to

estimate curvature (θ).

For this application, our line segments that estimate the slopes at dynamic exemplar or skeleton

samples have a length of 10, i.e., in Figure 3.15‖`1‖ = ‖`2‖ = 10 . Furthermore, if|θ| ≤ 170◦,

xt is selected as a critical point, otherwisext is identified to be part of a straight line, wherext

is a 2D position coordinate of the sample at instancet. Samples on straight lines are reduced so

that the distance between any two successive samples on the straight lines is approximately five

pixels. Skeleton crosspoints and endpoints are treated differently from other skeleton samples

by our HMM (as explained in the chapters to follow) and are therefore also chosen as critical

points. Due to the pen-tip width and digitising effects, it frequently happens that the curve

that enters and the curve that exits a high curvature point are merged. Thus, starting at an

endpoint, the first 10 connected points (excluding crosspoints) are selected as critical points. In

accordance, the first and last 10 non-zero pressure samples of the single-path trajectories that

constitute the dynamic exemplars are also chosen as critical points.

3.3.2 Summary

This section has described how the Euclidean resampled curves for static skeletons and dy-

namic exemplars are computed, so that so that results are comparative to results from standard

skeletonisation schemes. It is also shown how critical points are chosen from the Euclidean

resampled curves to reduce the computation time without degrading the performance of our pen

trajectory estimation algorithm. This critical point resampling scheme favours good skeletons,

i.e., smooth curves without noise. The effect of the different resampling schemes on our system

is evaluated in Section 6.3.4.



Chapter 4

The HMM for a single-path static script

The technique we develop for extracting the pen trajectory from a static, normalised image is

based on an HMM. An HMM is a probabilistic model describing a dynamic process that evolves

from one state to the next. In our application, the sequence of states describes the sequence of

pen positions as the image is produced. An HMM is constructedfrom the static image skeleton.

Using the HMM, a dynamic exemplar is matched to the static image. The matching algorithm

results in the most likely pen trajectory of the static skeleton, given the model. In addition to

the pen trajectory, one also obtains a quantitative correspondence between the static image and

dynamic exemplar.

We explain the main ideas by means of the simple example shownin Figure 4.1. The static im-

age of Figure 4.1(a) is skeletonised, as described earlier.In Chapters 4-5 skeleton samples that

constitute a static image are always rendered as filled dots,whereas HMM states are rendered

as unfilled numbered circles. The order of skeleton samples is unknown; a typical numbering is

shown in Figure 4.1(b). Figure 4.1(c) shows a dynamic exemplar that must be matched to the

static image. Note the shape differences between the two. Possible pen trajectories must be es-

timated from Figure 4.1(b) and compared with the known exemplar sequence of Figure 4.1(c).

Since we do not know the optimal sequence of samples in Figure4.1(b), or even the starting

point for that matter, a very large number of possible sequences need to be compared—far too

many for an exhaustive search. The use of an HMM, however, makes the calculation of the

optimal pen trajectory computationally feasible.

To estimate the pen trajectory of the static image, two basicissues are addressed. First, a

probabilistic model of the static script is created. More specifically, an HMM is created which

describes the geometric shape of the script and restricts the choices of possible pen movements.

Second, the optimal pen trajectory is calculated by matching the known dynamic exemplar

to the HMM. This chapter presents our HMM for a single-path static script. The necessary

52
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Figure 4.1: Extracting dynamic information from a simple, single-pathstatic signature. (a) A

straightforward single-path static signature, with (b) its unordered skeleton samples (filled

dots) and (c) a dynamic exemplar that can be used to extract the pen trajectory of (b).

HMM background is provided in Section 4.1. A basic first-order HMM is then expanded and

adapted for this application in Sections 4.2-4.6. All the HMM parameters are summarised

in Section 4.7. Our HMM training scheme that estimates specific HMM parameters for each

individual is described in Section 4.8. This chapter treatsall static images as single-path static

scripts. In Chapter 5 it is shown how to extend our approach sothat multi-path static scripts can

be handled.

4.1 HMM background

An HMM has N emittingstates{q1, q2, . . . , qN} that have observation PDFs associated with

them. The two statesq0 and qN+1, without associated PDFs, are callednon-emittingstates.

These two additional non-emitting states serve as initial and terminating states, thus eliminating

the need for separate initial and terminating probabilities (see [22] for more detail.)

All state observation PDFs in this chapter are spherical Gaussian PDFs, described by

f (x) =
1

(2π)
D
2σ

exp

(

− 1
2σ2

(x − µ)T(x − µ)

)

, (4.1)

wherex is aD-dimensional vector that must be matched to the PDF andµ is theD-dimensional

mean of the Gaussian. The standard deviationσ is preset for this application. For brevity,

the PDF associated with statei having meanµi and standard deviationσ will be referred to as

N(µi , σ). Geometric shape information of the static image is embedded in the PDF parameters

µi andσ, as described in Section 4.2.

States are connected by transition links that dictate the possible pen movements. All transitions

between states are weighted with transition probabilities. Theorder of the HMM specifies the
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number of previous states the HMM considers when transitingto a next state. Sections 4.2–4.6

describe how the order of our HMM is increased to take contextinto account.

In order to match a static image and a dynamic exemplar, the dynamic exemplar is presented as

a sequence of quantifiable characteristics calledfeature vectors. The sequence is given byX =

[x1, x2, . . . , xT], wherext denotes aD-dimensional feature vector at discrete-time instantt, andT

is the number of feature vectors (number of samples in the dynamic exemplar.) Using the Viterbi

algorithm,X is matched to our HMM to produce a hidden state sequences = [s1, s2, . . . , sT ].

This state sequence is then mapped to the desired sequence ofskeleton samples, as described in

Section 5.4.

4.2 First-order HMMs

The shorthand notation for an HMMλ is

λ = {A, {N(µi, σ), i = 1, . . . ,N}}, (4.2)

whereA is a matrix representing the transition links andN(µi , σ), as described by (4.1), is the

observation PDF of statei for i ∈ {1, . . . ,N}.

We begin by constructing a first-order HMM from the skeleton of the static image. The skeleton

consists ofM unordered samples{p1, p2, . . . , pM}, wherepx is the 2D coordinate of samplex.

Each emitting statei is associated with a skeleton samplei by lettingµi = pi. Thus, the obser-

vation PDFi of statei embeds the position coordinate of the skeleton sample. For afirst-order

HMM, we therefore haveN = M. Our first-order HMM matches only 2D feature vectors, in

this case, the pen positions of the dynamic exemplar. We chooseσ = 0.7 pixels in (4.2) for all

states, in order to relate the match between the position coordinates of the dynamic exemplar

and static image to Euclidean distance.

The HMM topology is crucial to our algorithm, as it constrains the range of possible pen move-

ments that could generate the static image. For our first-order HMM, the probability of reach-

ing the next state depends only on the current state, so that the transition probability matrix

A = [ai j ], whereai j = P(st+1 = q j |st = qi) is the probability of a transition fromqi to q j at

instancet + 1, with i, j ∈ {0, 1, . . . ,N + 1} and t ∈ {1, 2, . . . ,T − 1}. HMM states are called

neighboursif their associated skeleton samples are adjacent. All emitting states are linked to

their neighbours, to allow the pen to move to an adjacent skeleton point on a transition. How-

ever, this only takes local information into account, and not context. Context is incorporated

by using second-order HMMs, which allow us to include a directional feature, as described in

Section 4.3.
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Since we have no prior knowledge of where the pen trajectory of the static image may start

or end, the non-emitting initial state can enter any emitting state. Also, each emitting state is

directly connected to the non-emitting terminating state.

One also needs elasticity in the model, to allow the static image and dynamic exemplar to have

different numbers of samples. This is accomplished by includingskip-links and self-loops in

the HMM. A skip-link is a transition between two states separated by a neighbour common to

both. A self-loopconnects a state back to itself. Self-loops are added to the emitting states.

In this dissertation, we use skip-links to skip states with only two neighbours. Equal transition

probabilities are assigned to all transition links leavinga state, normalised to sum to one.

These ideas are illustrated in Figure 4.2. The first-order HMM for the isolated fragment in

Figure 4.2(a) is shown in Figure 4.2(b), where the three states indicated by the larger circles

are emitting states. Each state is labelled with a single number representing the index of the

state, the state’s PDF index (and therefore also the index ofthe skeleton sample associated with

the state which is embedded in the PDF.) The dashed lines indicate transition links to and from

states outside the rectangular box in Figures 4.2(a). The smaller blank circles indicate the non-

emitting initial and terminating states. All states are connected to these non-emitting states so

that the pen trajectory can start and end at any skeleton sample. Skip-link 31 and self-loop 33

are also indicated. State 1 and its neighbours each have two neighbours. Thus, state 1 has

six transition links leaving it: two to its neighbours, two skip-links, one self-loop and one to

the non-emitting terminating state. The associated six transition probabilities are therefore all

specified as16.
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Figure 4.2: Deriving the first-order HMM from a static signature skeleton. (a) Isolated

unordered skeleton samples (within rectangle) in a signature. (b) The first-order HMM for the

skeleton samples contained within the rectangle in (a). Non-emitting states (small circles) and

emitting states (big circles) are connected with transition links (arrows), where dashed lines

indicate links to states that correspond to skeleton samples outside the rectangle in (a).
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We emphasise an important feature of Figure 4.2(b): Any two neighbouring emitting states

and any two emitting states connected by a skip-link are connected both ways—if one enters

the HMM at an emitting state with more than one neighbour it isnot possible to determine

locally in which direction one should move next, and therefore more than two directions are

allowed. Since all transition links are assigned the same probability, all skeleton samples are

potential turning points. It is therefore entirely possible, and it indeed happens in practice, that

the extracted pen trajectory may incorrectly reverse direction.

One way to model turning points is to include more context. On-line handwriting systems

typically include more context by extending the feature vectors. Specifically, the inclusion of a

velocity/delta componentxt −xt−1 contributes substantially to the good results of these systems.

As the time sequence of a handwritten script is known in an on-line system, each samplext can

be preceded by onlyonesamplext−1, permitting the inclusion of this velocity component. As

indicated above, our static images consist ofrandom-orderskeleton samples. Thus, a skeleton

sample can be preceded by multiple other skeleton samples, as illustrated in Figure 4.3. In

Figure 4.3 it is specifically indicated that a dynamic exemplar samplext can be preceded by

only xt−1, whereas a static skeleton samplepi can be preceded by multiple skeleton samples.

Dynamic sample Static skeleton sample

xt

xt−1

pi

vs

Figure 4.3: Including an unambiguous velocity feature in a static imageis difficult as skeleton

samples with more than one neighbour can be preceded by multiple skeleton samples.

It is therefore not possible to include an unambiguous velocity component at each skeleton sam-

ple in a static image (without introducing heuristic constraints.) As our HMM topology is di-

rectly computed from the connectivity of the static skeleton samples, it is not possible to include

unambiguous velocity components in our first-order models either. (Recall that pre-recorded

dynamic exemplars are matched to the HMM of a static image to compute the trajectory of

the image. Thus, although we are able to include velocity components in the dynamic exem-

plar feature vectors, corresponding components must existin our HMMs.) Hence, to include

velocity/delta components in our HMMs we must find a way to model long-term dependencies.

Bengio and Frasconi [8], supported by the experiments of Abou-Moustafa et al. [1], investigated

the effect of an HMM’s topology on the ability of the HMM to learn context. They showed that

the addition of hidden states with a sparse connectivity canincrease the ability of a Markov
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model to learn long-term dependencies and reduce the diffusion of context. The topology of

our first-order HMM is ergodic with a sparse connectivity. When using second-order HMMs,

we include extra states and the connectivity becomes even sparser in a natural way, as discussed

in the next section. Thus, in accordance with Bengio and Frasconi, we improve the ability of

the HMM to model context. The second-order models specifically allows us to include velocity

components in our feature vectors.

4.3 Second-order HMMs and their first-order equivalents

This section describes the most important characteristicsof higher-order HMMs that can be

exploited for our application. In Section 4.3.1, some fundamental concepts of higher-order

HMMs are discussed. Section 4.3.2 provides a broad overviewof the implication of higher-

order HMMs for our application.

4.3.1 General higher-order HMM theory

In order to take past context into account, we use second-order HMMs. It has been shown

that the transition probabilities of first-order HMMs only depend on the current state, so that

ai j = P(st+1 = q j |st = qi). The transition probabilities of second-order HMMs depend on the

current and previous states. The probability of a transition from statej to statek, given that

state j is preceded by statei, becomesai jk = P(st+1 = qk|st−1 = qi, st = q j). Second-order

HMMs can then be reduced to first-order equivalents to simplify their implementation, by using

the Order Reducing (ORED) algorithm [22, 23].

We illustrate these ideas with a hypothetical HMM in Figure 4.4. The HMM fragment in the

figure forms part of a larger HMM. We only consider the transitions between the visible states.

The second-order HMM in Figure 4.4(b) is formed by extendingall transitions of the first-order

HMM in Figure 4.4(a) to second-order connections (the orderof the transitions is encoded in

the subscripts of the transition probabilities.) Second-order connections depending on states

outside of the HMM fragment are not shown.

The principle behind the ORED algorithm is to reduce anRth-order HMM to its (R − 1)th-

order equivalent, by creating states for all pairs of connected states in theRth-order HMM.

Applying this procedure recursively, an HMM of arbitrary order is reduced to its first-order

equivalent [22, 23]. The first-order equivalent of the second-order HMM of Figure 4.4(b) is

shown in Figure 4.4(c). In general, each state is now uniquely defined by its label, where each
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Figure 4.4: Calculating the first-order equivalents of second-order HMMs using the ORED

algorithm. (a) A first-order HMM expanded to (b) a second-order HMM, and (c) the first-order

equivalent of (b).

stateab in Figure 4.4(c) was created from the connected pairab in Figure 4.4(b). If numerical

values are assigned toa andb, we refer to stateab as state (a,b) for the sake of simplicity,

e.g, if a = 1 andb = 10, we refer to stateab as state (1,10). All the second-order transition

weights can now be interpreted as first-order weights. The first-order statesjk andkm, e.g., are

connected with transition weighta jkm, so thata jkm can be interpreted as afirst-order transition

probability. Likewise, the pairskk, ik, i j , kmandxi in Figure 4.4(b) are connected and become

stateskk, ik, i j , kmandxi in Figure 4.4(c), respectively, wherex can be any state connected toi

via a dashed line. Thus, in general,M different pairs of connected states in theRth-order model

result in approximatelyM states in the (R− 1)th model.

Higher-order HMMs result from enlarging the state context in the Markov order assumption

(one of the two fundamental assumptions utilised in HMMs [22].) Strictly speaking, this leaves

the state PDFs unaffected by the Markov order, i.e., each higher-order HMM statestill has only

one PDF. Reducing such an HMM to its first-order equivalent therefore also does not change

the total number of PDFs. Note that the rightmost labelb in ab is the PDF index of stateab so

that some statessharethe same PDF. We refer to PDFs that are shared by more than one state

astied PDFs. Statejk, e.g., is created in Figure 4.4(c) from the connected pairjk Figure 4.4(b).

State jk inherits its PDF from statek in Figure 4.4(b) and also shares PDFk with stateskk

and ik. In general, apredecessor qh of qi is any state for whichahi > 0. Note that by virtue

of a second-order HMM’s topology, it is guaranteed that eachstate is preceded only by states

that share the same PDF. In general, we now let the leftmost indexa in ab indicate that all the

predecessors of stateabshare PDFa. Statekk, in Figure 4.4(c), e.g., is preceded only by states

that share PDFk, i.e., statesik, kk and jk.

The order reduction significantly increases the number of states. AnRth-order model with

N states reduces to an equivalent first-order model withO(NR) states. However, it should be

noted that this expansion does not increase the number of free parameters. Tied PDFs are

evaluated only once, and only the original number of higher-order transition probabilities need
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to be considered. Therefore, the ORED algorithm does not affect processing requirements. It

is shown by Du Preez [21] that memory requirements are not affected either. However, for

our application we increase the memory requirements somewhat by not allowing the sharing

of PDFs after the first-order equivalent models are derived:since the resulting first-order states

have the same PDFs than their original higher-order states,they merely represent the higher-

order states in different conditions. Thismultiplicity of states allows one to make the state

PDFs context dependent, simply by not sharing them with other states. In this research we

make fruitful use of the richness in modelling that this option presents. The computational cost

depends on the transition probabilities, as discussed in Chapters 6 and 7. The computational cost

of our proposed algorithm is manageable, as our transition probability matrix remains sparse.

This avoids redundant calculations.

Without loss of generality, all the higher-order HMMs are represented by their first-order equiv-

alents in the sections to follow.

4.3.2 Application of higher-order HMM theory to static handwritten scripts

In the sections to follow, it is illustrated how to exploit the flexibility of higher-order HMMs

to model handwritten scripts. Before we proceed, however, some of the higher-order HMM

concepts from Section 4.3.1 have to be placed into perspective. The derivation of the final

HMM of a single-path static script proceeds in two defining steps:

1. Deriving second-order HMMs. Firstly, the second-order HMMλ′ for our first-order

HMM λ of a static script (from Section 4.2) is derived. Each second-order HMM λ′ is

then represented by its first-order equivalentλ′′ with N′ states using the ORED algorithm.

All the notation developed in Section 4.3.1 is therefore applicable so that an emitting

statei j in λ′′ is generated from the connected pairi j in λ′, wherei, j ∈ {1, . . . ,N} andN

is the number of states inλ. Let ζi j be the index of the pairi j so thatζi j ∈ {1, . . . ,N′}.
Recall from Section 4.2 that a unique PDF exists for each state in λ and that a skeleton

sample is embedded in each PDF. Hence, for this application,the following information is

available directly from the labeli j that defines statei j uniquely: The PDFj is associated

with statei j (as explained in Section 4.3.1), where skeleton samplep j is embedded in

PDF j (as a result of our first-order HMMs.) Thus, it is always knownwhich skeleton

sample is inherited fromλ by statei j . We have also explained in Section 4.3.1 that statei j

is preceded only by states that share PDFi. Since skeleton samplei is embedded in PDFi,

statei j can be preceded only by states that share skeleton samplei. Thus, in general, our

second-order HMMλ′′ guarantees that all predecessors of an emitting state sharethe
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same skeleton sample. Sections 4.4 and 4.5 illustrate the detail development of the first

step of our algorithm.

2. Altering the HMM PDFs. In the second phase of our algorithm, we add a second com-

ponent to the PDFs ofλ′′ so that the PDF of each state is unique. We have explained in

Section 4.3.1 that the number of states in a second-order HMMis increased when deriv-

ing its first-order equivalent. In this step, we exploit the multiplicity of states to make the

PDFs context dependent. Recall that a statei j of λ′′ is uniquely defined by its double-

indexed label, where the rightmost labelj indicates which skeleton sample is associated

with statei j and the leftmost labeli indicates the predecessor skeleton sample of statei j .

This makes it possible to include directional (normalised velocity) information. Hence,

in this step the PDFj of statei j is relabelled as PDFi j , thereby defining it uniquely.

Section 4.5 elaborates on this step of our algorithm.

4.4 HMM topology for line segments

When unravelling a static image, the simplest parts are those without crossings or turning points,

referred to as line segments.Line segmentsconsist of connected segment points, where aseg-

ment pointis a skeleton sample having only two skeleton neighbours.

For first-order HMMs it is necessary to have transition linksconnecting neighbouring states in

both directions, since the direction of travel on a line segment is not initially available. This cre-

ates the problem that the pen’s direction of motion can reverse at any segment point. We solve

this by extending the first-order HMM of Section 4.2 to a second-order HMM, as described in

Section 4.3. This introduces longer state dependencies, which enables the use of directional

constraints.

Figure 4.5(a) shows a simplified version of a first-order HMM for a line segment (skip-links,

non-emitting states, and transition links connected to thenon-emitting states are omitted.) The

skip-links are added in Figure 4.5(b). For the sake of clarity, Figure 4.6 presents an enlarged

version of the right-hand column of Figure 4.5.

One can now develop second-order HMMs for the topologies of Figures 4.5(a) and (b), as

described in the previous section. The first-order equivalents of these second-order systems are

shown in Figures 4.5(c) and (d), respectively.
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Figure 4.5: The simplified HMM topology for a line segment in the left-hand column with a detailed

version in the right-hand column when skip-links are added to our first-order HMM. (a)-(b) First-order

HMMs. (c)-(d) Second-order HMMs. (e)-(f) Assigning the cost function. (g)-(h) Removal of self-loop

states. (i)-(j) Inclusion of duration states.
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As explained in Section 4.3.2, the first-order HMM has just asmany emitting states as skeleton

samples, whereas the second-order model has more than one state per sample. Thus,N′ > M,

representing different contexts in which a skeleton sample can be found. (Recall that N is the

number of states in the first-order HMMλ of a static script, whereasN′ is the number of states

in the first-order equivalentλ′′ of the second-order HMM forλ.) Specifically, statei j in the

second-order model is associated with skeleton samplej of the static script and is preceded

only by states that share skeleton samplei. It is also worth noting the significant increase in

model complexity in the right-hand column, due to the skip-links added in Figure 4.5(b). The

symbol
x
∀, y is used in all the figures to indicate that statexy is preceded by states that share

PDF x outside the figure, wherex ∈ {1, . . . ,N} so that the labelxy defines statexy uniquely.

Note that since all the states that precede statexyshare PDFx, they also share skeleton samplex.

The next step is to enforce pen movement in one direction. Letθhi j be the angle between the

two straight lines connecting pointsh to i andi to j, respectively. Then

cos(θhi j) =
(p j − pi) · (pi − ph)

‖p j − pi‖ ‖pi − ph‖
, (4.3)

where‖ · ‖ is the Euclidean distance norm andph, pi, andp j are the 2D coordinates of pointsh,

i, and j, respectively.

In order to encourage the system to follow the same directionalong a line segment, the proba-

bility of a transition from statehi to emitting statei j is chosen as the cost function

ahi j =











cos(θhi j), for |θhi j | ≤ 90◦ (4.4a)

0, for |θhi j | > 90◦, (4.4b)

where cos(θhi j) is defined by (4.3). Equation 4.4 is, however, not applied tolinks entering or

leaving self-loop states, whereself-loop statesare states with self-loops, e.g., state (1,1) in

Figure 4.5(d). Figures 4.5(e)-(f) show the HMMs in Figures 4.5(c)-(d) after links with zero

probability have been removed, based on the cost function from (4.4).

Since the self-loop states are excluded from the cost function, it is still possible to turn around

via them. An example from Figure 4.5(e) is the state sequence[(1,2), (2,3), (3,3), (3,2)] cor-

responding to the PDF/sample sequence (rightmost indexes) [2, 3, 3, 2]. In order toprevent

this, self-loop states and all their connections (both entering and leaving them) are removed.

Figures 4.5(g)-(h) show the HMMs in Figures 4.5(e)-(f) after this step.

Introducing skip-links for more elasticity leads to the configuration of Figure 4.5(h). We use the

term skip-link stateswhen referring to states in the second-order HMM that resultfrom skip-

links in the corresponding first-order HMM, e.g., state (3,1) in Figure 4.5(d) resulting from the

skip-link leaving state 3 and entering state 1 in Figure 4.5(b). Skip-link states can compensate

for situations in which the static image has more samples than the dynamic exemplar. Self-loop
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states, on the other hand, can compensate for situations in which the dynamic exemplar has

more samples than the static image. Since all self-loop states have been removed all emitting

states are duplicated and each emitting state is allowed to enter its duplicated state. We refer to

the duplicated states asduration states, where the duration states have the same destinations as

the states they duplicate.

The above duration state concepts are illustrated in Figures 4.5(i)-(j). State (3,2,2), e.g., is

the duration state of state (3,2) (their two leftmost indexes are the same, indicating that they

are “partners”). These states also share PDF 2 and thereforeskeleton sample 2 (rightmost

index) and have the same destinations. Note that thedestinationsof states (3,2,2) and (3,2) are

preceded only by states that share PDF 2. It should be noted how the two directions that a pen

can follow on a line segment are completely disjoint within the HMM, so that it is not possible

to change direction in the middle of a line segment. Additionally any skeleton sample is allowed

to be repeated without allowing the pen to turn around abruptly, i.e, without a loss of context.

In general any duration statei j j is now uniquely defined, where for our application, statei j j

is associated withand preceded by skeleton samplej. Additionally, it is known at statei j j

that statei j (preceding statei j j ) is preceded only by states that share skeleton samplei. The

inclusion of this additional information can be interpreted as a third-order occurrenceonly at

the duration states of our HMM. This additional knowledge isespecially useful when we extend

our PDFs, as described in Section 4.6. With the exception of duration states, our HMM employs

only past context available from second-order transitions. Thus, we still refer to our HMMs as

second-order HMMs in the sections to follow.

In this section we have discussed the topology of states associated with segment points. Specific

transition weights are presented at the end of Chapter 5. Next we discuss the topology of states

where the pen is allowed to change direction abruptly.

4.5 HMM topology for crosspoints and endpoints

To enable the pen to immediately recross a line or suddenly change direction we allow it to turn

around or change direction abruptly at states associated with endpoints and crosspoints. Re-

call that Section 3.1 has definedendpointsas skeleton samples having one neighbour, whereas

crosspointsare skeleton samples having more than than two neighbours. The main difference

between states associated with segment points and states associated with crosspoints and end-

points is that the direction constraint of (4.4) is not enforced for crosspoint and endpoint states.

Instead, traversal to any immediate or skip-link state neighbour is allowed from a state associ-

ated with a crosspoint or endpoint. This ensures that it is possible to change direction abruptly,
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or even to turn around, at these states.

Some situations, however, involve simple crossings, whereit is easy to follow line directions

that enter and leave the crosspoint. It is straightforward to unravel such crossings. If the line

thickness is uniform and line directions are smooth near such a simple crosspoint, and no more

than two lines cross each other at a single point, it is unlikely that the pen has passed through

that region multiple times. Let us, for the moment, assume that we can identify such a simple

crossing and label its associated sample asi. A simplified first-order model (excluding non-

emitting states, skip-links, and self-loops) is shown in Figure 4.7(a), wherei = 4. It should

be noted that first-order HMMs are not able to model past context, so that the transition prob-

abilities for statei have to allow access to and from any of its four neighbouring states. The

situation is different with second-order HMMs. The first-order equivalent ofthe second-order

model for Figure 4.7(a) is shown in Figure 4.7(b). As the transition probabilities depend on pre-

decessor states that share the same skeleton sample, it is straightforward to follow lines through

the crosspoint. At a simple crossing, one can then detach thetwo lines that cross, by setting the

appropriate transition probabilities to zero, as shown in Figure 4.7(c). To do this, however, we

need to be able to identify such simple crossings.

With the crosspoint labelled asi, we label the four neighbouring coordinates clockwise, in order,

asa, b, c, andd. The idea is to identify whether the sequenced samples [a, i, c] and [b, i, d] are

intersecting lines. In Figure 4.7(b), e.g., the coordinates (rightmost indexes) are labelled as

a = 7, b = 10, c = 11, andd = 9. We consider only crossings wherea, b, c, andd are all

segment points, having only one other skeleton neighbour besidesi. Let x be the other skeleton

neighbour ofa andy be the other skeleton neighbour ofc. We now calculate three angles,θxai,

θaic, andθicy, using (4.3). If|θaic| ≤ 10◦, |θxai| ≤ 30◦, and|θicy| ≤ 30◦, [a, i, c] is considered a

straight line. If, likewise [b, i, d] also proves to be a straight line, the crossing is considered a

simple crossing. The second-order HMM provides the necessary context to extract directions

and decouple the two lines [a, i, c] and [b, i, d] so that the two intersecting lines can both be

traversed in one direction or the other. Direction is now maintained through the crossing, and

the inclusion of duration states provides the necessary flexibility, as shown in Figure 4.7(d).

An important point should be brought to light, regarding ourskeletonisation and resampling.

Final skeletons are smoothed using Chaikin’s corner-cutting subdivision method [10, 49]. Since

only line segments are smoothed and resampled, endpoints and crosspoints are not affected by

this procedure. When testing whether crosspointi is a simple crosspoint, the original intersect-

ing lines [a, i, c] and [b, i, d], i.e., the two linesbeforesmoothing are used. This allows a more

reliable estimate of how close the lines are to being straight. Thus, for each immediate and skip-

link neighbour of a simple crosspoint state, two skeleton samples are in in reality stored—those

before smoothing and those after smoothing.
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Figure 4.7: The HMM topology for endpoints and crosspoints. (a) The simplified first-order HMM for

a crosspoint (excluding non-emitting states, skip-links,and self-loops), with (b) the first-order

equivalent of its second-order counterpart; (c) lines decoupled at the crossing by removing links from

(b); and (d) duration states included in (c). (e) Possible pen trajectories for Figure 4.1(b) using our

first-order HMM, and (f) using the second-order HMM with detachment of the intersecting lines at the

crosspoint. It should be noted that graphs (e) and (f) are notintended as HMMs, but as representations

of allowed pen trajectories, with skeleton samples as nodesand possible pen motions as arrows.
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A more detailed example is shown in Figures 4.7(e)-(f), indicating possible pen trajectories

that can be extracted from Figure 4.1(b) if first-order and second-order HMMs are used and

detaching the simple crossing at skeleton sample 4 in Figure4.7(f). For the sake of clarity, Fig-

ures 4.7(e)-(f) omit the fact that a pen trajectory can startand end at any sample (filled circle.)

Self-loop symbols are used to indicate duration modelling in Figure 4.7(f). The corresponding

states for the grey skeleton samples in Figure 4.7(e) are shown in Figure 4.7(a), whereas the

corresponding states for the grey skeleton samples in Figure 4.7(f) are shown in Figure 4.7(d).

Note that the two lines [7, 4, 11] and [9, 4, 10] are detached in Figure 4.7(f). It is interesting to

derive the number of first-order and second-order HMM statesand non-zero transition proba-

bilities for the signature in Figure 4.1(b), that allow the choices of possible pen motions shown

in Figures 4.7(e) and (f):

1. The signature in Figure 4.1(b) has 16 states in its first-order HMM and 107 states in its

final second-order HMM (including non-emitting states.)

2. The signature in Figure 4.1(b) has92
256 (36 percent) non-zero transition probabilities in

its first-order HMM. This is reduced to428
11449 (3.7 percent) in its final HMM. It should

be noted that transition links leaving the non-emitting initial state and entering the non-

emitting terminating state are included in this computation.

We can conclude from the above statistics that the final HMM isnotably sparser and has more

states than its first-order counterpart. Thus, in accordance with Bengio and Frasconi [8], our

second-order HMM has a better ability to model long-term dependencies compared to our first-

order HMM, thereby improving our pen trajectory estimationalgorithm’s ability to take more

context into account; see Section 4.2 for further detail.

4.6 HMM PDFs

In our first-order HMM, a skeleton sample is associated with each state. For simplicity, the

PDF associated with each state has so far reflected only information about the position varia-

tions of the static image. When unravelling a static image, the direction of pen motion at each

coordinate is also important. Knowledge of pen direction allows us to match not only position

coordinates, but also local directions in a dynamic exemplar, thus providing additional context.

At this point, we have designed the second-order HMMλ′′ of a single-path static script with

N′ states. To include pen directional information in our PDFs we have to “untie” the PDFs of

λ′′, as discussed in Section 4.3.2. Hence, we relabel our PDFs sothat the PDF component of

statei j that reflects the pen position is given byN(µP
i j , σP), where we definedµP

i j = p j. For a
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duration stateµP
i j j = p j in N(µP

i j j , σP). However, in our second-order HMM, each statei j has

a single predecessor skeleton samplei, enabling the use of a directional feature. Except for the

duration states, the existing (positional) Gaussian PDFs are now extended with an independent

directional component. The mean of this component takes theform of (4.1) with

µ
V
i j =

p j − pi

‖p j − pi‖
, (4.5)

for i, j ∈ {1, . . . ,N} andζi j ∈ {1, . . . ,N′} whereζi j is the index of the pairi j andµV
i j = (0, 0)

if state i j is preceded by the non-emitting initial state. The directional PDF is abbreviated as

N(µV
i j , σV). A duration statei j j , associated with skeleton samplej, is preceded by statei j

which is also associated with skeleton samplej, so that we cannot compute the directional

feature described by (4.5) forN(µV
i j j ). Recall that we have introduced a third-order occurrence

at duration states (described in Section 4.4) so that it is known at statei j j that statei j is preceded

only by states that share skeleton samplei. We now exploit this additional information and let

µV
i j j = µ

V
i j .

The two components that constitute each PDF are assumed to bestatistically independent [61].

They reflect the typical correspondences between the coordinates (position and direction of pen

motion) of the static image and dynamic exemplar. It should be noted that the directional feature

described by (4.5) is frequently used in first-order HMMs of on-line character recognition and

signature verification applications, where each pen position has a unique previous position. In

our application, each coordinate in the skeleton of a staticimage has one or more neighbours

and we have no prior knowledge to choose appropriately. Second-order HMMs can model

longer dependencies, effectively enforcing a single previous coordinate for each state. Thus, we

are able to include an unambiguous directional feature in each state PDF. All the final HMM

parameters for a single-path static script are presented inSections 4.7 and 4.8.

4.7 A summary of empirical HMM parameters

Key concepts.Since our final HMMs are in reality first-order HMMs by virtue of the ORED al-

gorithm, we present them hereafter with the first-order HMM notation developed in Section 4.2.

Hence, the HMM of a static script consists ofN statesq = {1, . . . ,N}. Note that we only revert

to this notation for the sake of simplicity (ignoring the double indexing.) This can only be done

if the following key concepts are intact: Each statei in the HMM of a single-path static script

is associated with a skeleton sample and is preceded only by states that share the same skeleton

sample. Thus, when referring to statei, we hereafter assume that its associated skeleton sample

is known, as well as its unique predecessor skeleton sample.The transition weights of statei

depend on whether the skeleton sample associated with statei is a segment point, a turning point
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or a crosspoint. Statei has its own PDFi which embeds directional and positional information.

These are the only concepts that have to be remembered hereafter to proceed with our HMM

development. The HMM parameters are also listed in accordance with these ideas.

All the HMM parameters for a single-path static script are designed specifically for our ap-

plication. The parameters were optimised on a single signature from a different database (the

Dolfing [20, 82] database) and are therefore independent of the test set. The relevant empirically

determined values used in our system are listed as follows (all transition probabilities leaving a

state are normalised to sum to 1.0 after these values are assigned):

• aE
i j = 1.0: Probability of a transition from endpoint statei to statej.

• aI
i j = 1.0: Probability of a transition from non-emitting initial statei to statej.

• aC
i j = 1.0: Probability of a transition from crosspoint statei to statej.

• aSS
i j = 0.05: Probability of a transition from segment point statei to its duration statej.

• aST
i j = 0.05: Probability of a transition from segment point statei to the terminating non-

emitting statej.

• aS
i j = cos(θxyz), |θxyz| ≤ 90◦: Probability of any other transition from statei associ-

ated with segment pointy, where skeleton samplex is the unique predecessor sample of

statei and skeleton samplez is associated with statej (see (4.4).) To prevent numerical

instabilities,aS
i j is set to 0.05 ifaS

i j < 0.05. This corresponds to cases where the angle

|θxyz| ≥ 87.1◦.

• µP
i = py: The mean of the position PDF component (a spherical Gaussian PDF described

by (4.1)) of statei associated with skeleton sampley.

• µV
i =

µP
i −px

‖µP
i −px‖

: The mean of the directional PDF component (a spherical Gaussian PDF

described by (4.1)) of statei with predecessor skeleton samplex; see (4.5). Note that for

duration statespx is the predecessor skeleton sample of the state that precedes statei.

• σP = 17: Standard deviation (in pixels) quantifying similarities between pen positions.

This constrains the distance between points in the static image and dynamic exemplar.

• σVI = 2: Standard deviation that quantifies similarities betweenlocal line directions if a

state is preceded by the non-emitting initial state.

• σV = 0.2: A tight standard deviation that quantifies similarities between local line direc-

tions if a state is preceded by an emitting state.

4.8 Writer-specific HMM training

Since the associated skeleton sample and predecessor skeleton sample of each state are inherent

in the means of the positional and directional PDF components, we do not want to train them.
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Thus, for our PDFs, we train onlyσP andσV (see Section 4.7) to calculateσ′P andσ′V for each

individual. We refer to this training scheme aswriter-specific training. These parameters can be

seen as indications of the general directional and positional variations of a specific individual’s

handwriting. The parametersσ′P andσ′V can therefore be interpreted as biometric measurements

of an individual and may also be useful for other applications, e.g., in an off-line signature

verification system.

Since we have a PDF for each state, many transition links and more than one state associ-

ated with each skeleton sample, there are not enough training data to estimate all the PDF and

transition weight parameters. Thus, data sparsity is a serious problem when using our current

HMM structure. Hence, we utilise the pre-recorded dynamic exemplars as follows: Firstly, an

HMM for each dynamic exemplar of a specific individual is constructed. These HMMs and our

HMMs for static scripts have certain characteristics in common. However, since the dynamic

exemplar samples are not randomly ordered, a first-order HMMwith a left-to-right topology

is sufficient for our purpose. Note that all states in an HMM with aleft-to-right topologyare

numbered in an increasing order so thatai j = 0 for j < i. In the next step, we match the HMM

of a dynamic exemplar to the remaining dynamic exemplars of the same individual, in order

to estimate the values forσ′P andσ′V. Thus, if there are 14 pre-recorded dynamic exemplars

for a specific individual, 14 left-to-right first-order HMMsare constructed. For each of these

HMMs, the remaining 13 dynamic exemplars are matched to it. The information inherent in the

final 182 state sequences are then joined to estimateσ′P andσ′V for the individual. Some further

issues regarding training are discussed in Section 7.2.3.

For training, we treat the dynamic exemplars as single-pathtrajectories, i.e., zero-pressure

samples are removed. A first-order HMM is then derived for each dynamic exemplarX =

[x1, x2, . . . , xT]. Similar to the HMMs for static scripts, an emitting state is associated with each

dynamic exemplar samplext, i.e., q = {q1, q2, . . . , qT}. However, the topology can be greatly

simplified, as the dynamic exemplar samples are in sequence.The non-emitting initial state is

connected to all the emitting states with equally weighted transition links. In correspondence

with the HMM’s left-to-right topology, the state associated with xt can reach any other state in

the forward direction, i.e., states corresponding to [xt+1, xt+2, . . . , xT ]. Self-loops are included

at all the emitting states. All transition links are equallyweighted by assigning a value of 1.0

to them, except for self-loops, which are weighted with a value of 1× 10−6. All the transition

probabilities from a state are then normalised to sum to 1.0.The topology for the dynamic

exemplar HMM is illustrated in Figure 4.8. States that are indicated by the larger circles are

emitting states, where the numbers represent the indexes ofthe states as well as their associated

dynamic exemplar sample indexes. The dashed lines render transition links to and from states

that are not shown. The smaller blank circles represent the non-emitting initial and terminating

states. All states are connected to these non-emitting states. Note that the HMM depicted in
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Figure 4.8 is much simpler than the HMM in Figure 4.2.

1 2 3

Figure 4.8: Deriving the first-order HMM from a dynamic exemplar. Non-emitting states

(small circles) and emitting states (big circles) are shown. All states are connected with

transition links (arrows), where dashed lines indicate links to states other than the ones that

are shown. The numbers represent state indexes as well as their associated dynamic exemplar

sample indexes.

Before constructing a PDF for each state, the dynamic exemplars are normalised as follows

(note that this normalisation is only valid for the trainingscheme described in this section):

The first two components of each dynamic feature vectorxt form a sub-vectorx1,2
t describing

the dynamic pen position. The third and fourth direction components (normalised velocity)

arex3,4
t = (x1,2

t − x1,2
t−1)/‖x

1,2
t − x1,2

t−1‖ with x3,4
1 = (0, 0). The fifth componentx5

t is a curvature

component which measures the angle between two successive lines, where

x5
t =

(x1,2
t − x1,2

t−1) · (x
1,2
t+1 − x1,2

t )

‖x1,2
t − x1,2

t−1‖ · ‖x
1,2
t+1 − x1,2

t ‖
(4.6)

=
x3,4

t · x3,4
t+1

‖x3,4
t ‖ · ‖x3,4

t+1‖
, (4.7)

(4.8)

wheret = [2, . . . ,T − 1] andx5
1 = x5

T = 0.

Each PDF associated with an emitting statei within the HMM λ j (derived from the dynamic

exemplarX j) consists of three components: the first two components are the same as the two

PDF components associated with an emitting state in the HMM of a static script. Thus,µP
i, j =

x1,2
t, j andσP = 17 inN(µP

i, j, σP), where the subscript (i, j) generalises all the above notation by

indicating that statei is associated withX j. The samplext, j at instancet of X j is also identified

by the subscript (t, j). Following the same procedure for the directional componentN(µV
i, j, σV),

σVI = 2,σV = 0.2 andµV
i, j = x3,4

t, j . The third independent component of the PDF associated with

statei is also a spherical GaussianN(µA
i, j , σA) with µA

i, j = x5
t, j for t = [1, . . . ,T j], σA = 0.2 for

t = [2, . . . ,T j − 1] andσA = 2 for t ∈ {1,T j}, whereT j is the number of samples inX j. Let
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f P
i, j(x

1,2
t,k ) be the positional PDF componentN(µP

i, j, σP) evaluated atx1,2
t,k . Likewise, let f V

i, j(x
3,4
t,k )

be the directional PDF componentN(µV
i, j, σV) evaluated atx3,4

t,k and let f A
i, j(x

5
t,k) be the curvature

PDF componentN(µA
i, j, σA) evaluated atx5

t,k. Since these PDF components are assumed to

be independent, the joint observation PDF of statei evaluated at feature vectorxt,k is given

by fi, j(xt,k) = f P
i, j(x

1,2
t,k ) f V

i, j(x
3,4
t,k ) f A

i, j(x
5
t,k), for t = [1, . . . ,Tk], i ∈ {1, . . . ,T j} j, k ∈ {1, . . . ,K},

whereTk is the number of samples inXk, T j is the number of samples inX j (from which

the HMM is constructed) andK is the number of dynamic exemplars for a specific individual.

The observation PDFs and the transition weights of the HMMλ j, derived from the dynamic

exemplarX j, are now completely defined.

For each of theK dynamic exemplars of an individual, an HMMλ j, as described above, is

derived. All the otherK − 1 dynamic exemplars of the same individual are matched toλ j

using the Viterbi algorithm [16]. The result is an optimal state sequencesj = [sj
1, s

j
2, . . . , s

j
Tk

].

The parametersσ′V andσ′P are re-estimated by the method ofmaximum likelihood(ML) [68].

However, we do not update the PDF means and only one training iteration is invoked. The total

number of observations after computingλ j for each dynamic exemplarX j and matching the

otherK − 1 dynamic exemplars toλ j is computed by:

NT =

K
∑

j=1

K
∑

k=1,k, j

Tk, (4.9)

whereTk is the number of samples fromXk which is matched toλ j. The re-estimated position

varianceσ′P is now calculated by

σ′P =
1

NT − 1

K
∑

j=1

K
∑

k=1,k, j

Tk
∑

t=1

(x1,2
t,k − µ

P
sj
t , j

)2, (4.10)

wherex1,2
t,k is the pen position at instancet in Xk andµP

sj
t , j

is the mean of the position PDF

component at statesj
t in λ j. Likewise, the re-estimated directional varianceσ′V is calculated by

σ′V =
1

NT − 1

K
∑

j=1

K
∑

k=1,k, j

Tk
∑

t=1

(x3,4
t,k − µ

V
sj
t , j

)2. (4.11)

Although the above training scheme is computationally expensive, it is still feasible as it needs

to be employed only once (after the recording of the dynamic exemplars.) The effect of this

training scheme on our system is described in Section 6.3.5,and related issues are discussed

in Section 7.2.3. In the sections that followσ′V andσ′P replaceσV andσP from Section 4.7.

However, the rest of the parameters remain unchanged.
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4.9 Summary

This chapter has described the issues that need to be addressed when designing an HMM for a

single-path static script, so that the pen trajectory of thescript can be estimated from the HMM.

The design of our HMM is summarised as follows:

1. A first-order HMM is derived from the skeleton of a static script, where each skeleton

sample is associated with an emitting state. The topology ofthe first-order HMM allows

a pen trajectory to start and end at any skeleton sample and allows the pen to turn around

at any skeleton sample. Skip-links and self-loops create the necessary flexibility, so that

corresponding dynamic exemplar curves and static skeletoncurves can be compared even

though the curves have different numbers of samples. The pen is constrained to move

continuously within a three-pixel range (to an immediate orskip-link neighbour.) The

problem with our first-order HMM is, however, that it lacks the necessary context to

model long term dependencies accurately.

2. Further context is provided by expanding the first-order HMM to its second-order equiv-

alent. This second-order HMM has exactly the same characteristics as the first-order

HMM, except that the range of pen motions is constrained whenthe pen traverses line

segments. A second directional PDF component is also included at each state and a

more advanced duration modelling is accomplished. To include even more context, sim-

ple crossings, where only two straight lines intersect, aredetached. Our skeletonisation

scheme holds the benefit that regional information is available when critical decisions has

to be made at possible simple intersections.

3. A training scheme that partially compensates for geometric variations, while compensat-

ing for data sparsity, has been employed. This training scheme specifically estimates only

two parameters from the pre-recorded dynamic exemplars fora specific individual. These

parameters may be useful as biometric measurements of a specific individual.



Chapter 5

The HMM for a multi-path static script

Up to this point, only single-path static scripts have been considered. In practice, static scripts

often consist of more than one single-path trajectory, where the pen is lifted and moved to

different positions between the single-path trajectories. This causes several problems that need

to be addressed. Three major problems are:

• Problem 1: The accurate identification of the image parts/segments so that each image

segment corresponds to a single-path trajectory. Thus, an accurate image segmentation

had to be employed.

• Problem 2: The estimation of the sequence in which the different image segments were

produced. Thus, the order of the image segments must be computed.

• Problem 3: The estimation of the pen trajectory of each image segment. As each im-

age segment corresponds to a single-path trajectory (from Problem 1), all the techniques

described in Chapter 4 are applicable to each segment.

In simple cases, e.g., a sequence of disconnected letters, one can associate each disconnected

letter with a single-path trajectory. Unfortunately this approach fails if the single-path trajecto-

ries are recrossed—more often the case than not. Thus, thereis mostly not a one-to-one corre-

spondence between the number ofdisconnectedimage segments and the number of single-path

trajectories that constitute a static script. Figure 5.1 illustrates these concepts, where the off-

line representatives of the word “stop” and a signature are depicted. If each disconnected part

corresponds to a single-path trajectory, the indicated segmentation results, where all the discon-

nected parts are encompassed by numbered dashed lines. Notethat even in the simple case of

the word “stop”, an error occurs using this segmentation, asthe “t” consists of two single-path

trajectories and not one.

74
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1

1

2

2

3

3 4

Word Signature

Figure 5.1: A typical segmentation to identify disconnected parts in static scripts that

correspond to single-path trajectories.

If it is assumed that we have segmented the static scripts, asindicated in Figure 5.1, the sec-

ond problem is to determine in which order the disconnected parts occurred. In this example,

it specifically becomes clear why most existing methods assume that cursive handwriting pro-

ceeds in a top-bottom-left-right-fashion. Accordingly, the sequence of the disconnected seg-

ments constituting the word “stop” is [1, 2, 3, 4]. One can then estimate the single-path pen

trajectory of each disconnected part using the methods described in Chapter 4. This strategy

is, however, not necessarily sufficient for signatures, as multiple crossings occur, and sometra-

jectories may proceed from right to left, e.g., segment 1 andthe last part of segment 3 of the

signature shown in Figure 5.1.

In practice, it is therefore not possible to rely on a prior “hard” segmentation of static scripts

before estimating their pen trajectories. Again, the necessary information can be extracted from

the pre-recorded dynamic exemplars, where non-zero-to-zero pen-pressure transitions indicate

pen-up events. Note that pen-up events occur at the terminating positions of single-path tra-

jectories, and therefore indicate the transition points between different single-path trajectories.

However, even the dynamic exemplars do not provide unambiguous information. Due to the

typical pen-sequence variations of handwritten signatures, the number of single-path trajecto-

ries that constitute the dynamic exemplars may vary for the same individual.

In this chapter it is shown how the above problems are addressed using hierarchical hidden

Markov models. Hence, the HMMs for single-path static scripts are generalised to HMMs for

multi-path static scripts. Our notation is generalised accordingly in Section 5.1. Section 5.2

shows how to exploit the dynamic exemplar pen pressure information to identify pen-up events.

Accordingly, the HMM for a static script is manipulated to identify the single-path trajectories

that constitute the script. Section 5.3 deals with the special case where unexpected disconnec-

tions occur in a static script. Section 5.4 describes how to match a dynamic exemplar to the

HMM of a static script. The pen trajectory of the script is then derived from an optimal state

sequence. Some concluding remarks are made in Section 5.5.
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5.1 Hierarchical HMMs

A hierarchical hidden Markov model (HHMM) is a structured multi-level stochastic process [25].

Fine et al. [25] show that HHMMs extend HMMs, as an HHMM is alsoan HMM and a state

in an HHMM can be an HHMM itself. Thus, the states of the HHMM can emit sequences

rather than single symbols. This application deals only with two-level HHMMs. The higher

level defines the choices of pen motions between different single-path trajectories that consti-

tute a multi-path static script. The lower level defines the choices of pen motions between the

skeleton samples that constitute a specific single-path trajectory.

The notation of Chapter 4 is generalised as follows: An HMMλh is constructed for each dis-

connected imagePh = {ph
1, p

h
2, . . . , p

h
Mh
} called asub-imageof a static script, whereMh is the

number of skeleton samples that constitutePh, and N is the number of sub-images so that

h = {1, . . . ,N}. Thus, e.g., “s” has one sub-image so thatN = 1, and “i” has two sub-images so

thatN = 2. The topology and PDFs for eachλh are derived as described in Chapter 4, so thatλh

hasNh emitting statesqh = {qh
1, q

h
2, . . . , q

h
Nh
} and two non-emitting statesqh

0 andqh
N+1. Each emit-

ting stateqh
i is associated with a PDFfi,h(x) consisting of two independent components that are

both spherical Gaussians. The transition probability matrix of λh is Ah = {ah
01, a

h
02, . . . , a

h
NhNh+1}

and is developed as described in the previous chapter. All the specific parameters forλh are

summarised in Sections 4.7 and 4.8. As a direct consequence of the techniques developed in

Chapter 4, the skeleton sample associated withqh
i and the skeleton sample that is shared by

the states precedingqh
i are assumed to be known in the sections to follow; see Section4.7 for

further detail.

Recall that a dynamic exemplarX is represented asT d-dimensional feature vectors, so that

X = [x1, x2, . . . , xT]. Section 4.6 has been shown that our current PDFs can be matched to 4D

features vectors consisting of two positional and two directional components (i.e.,d = 4.) In this

chapter it is shown how to include a fifth component, namely pressure. The first two components

of each dynamic feature vectorxt form a sub-vectorx1,2
t describing the dynamic pen position.

It has been shown in Section 3.3 that each dynamic exemplar isnormalised so that the dynamic

pen pressure is 0 or 1. We now let the fifth component of each dynamic feature vectorxt form

the scalarx5
t describing the dynamic pen pressure. The dynamic exemplar is also normalised

so thatx1,2
t = (0, 0) if x5

t = 0. The third and fourth components are directional components

(normalised velocity) withx3,4
t = (x1,2

t −x1,2
t−1)/‖x

1,2
t −x1,2

t−1‖, with x3,4
t = (0, 0) if x5

t = 0 or if t = 1.

According to the current PDF structure onlyx1,2
t andx3,4

t are matched to our HMM. The next

section includes a PDF component that can deal withx5
t . The current PDF components forqh

i

are summarised as follows. Letf P
i,h(x

1,2
t ) be the positional PDF componentN(µP

i,h, σ
′
P) evaluated

at x1,2
t . Likewise, let f V

i,h(x
3,4
t ) be the directional PDF componentN(µV

i,h, σ
′
V) evaluated atx3,4

t .
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Since these PDF components are independent, the joint observation PDF ofqh
i evaluated at

feature vectorxt is given by fi,h(xt) = f P
i,h(x

1,2
t ) f V

i,h(x
3,4
t ), wherei ∈ {1, . . . ,Nh}, h ∈ {1, . . . ,N}.

The HMMs [λ1, . . . , λN] are combined to form the higher-level emitting statesq = [q1, . . . , qN]

of the HHMM λ of a multi-path static script. The higher-level states ofλ are connected ac-

cording to a fully-connected ergodic topology [8] with transition weights defined byA. In

accordance with afully-connected ergodictopology, all states are connected to each other with

non-zero transition probabilities. In this case,ai j is set equal for each transition leavingqi.

The lower-level states remain as before. The state sequencethat must be extracted fromλ is

s = [s1, s2, . . . , sT]. Recall that a skeleton sample is associated with each lower-level emitting

state. Hence,s can be directly translated to the pen trajectory of the static script, as shown in

Section 5.4.

An example of the HHMMλ for the character “i”, consisting of four skeleton samples and two

sub-images, i.e.,N = 2, is shown in Figure 5.2. Each higher-level emitting state (big circle)

corresponds to a sub-image for which an HMMλh is derived. The skeleton samples (filled

dots) that constitute the different sub-images and from which the lower-level emitting states

are derived, are also shown. Pen motions between the randomly-ordered skeleton samples are

rendered as dashed lines. (For the sake of simplicity it is not shown that a pen trajectory can

start at any skeleton sample within each sub-image, and the links betweenp2
1 andp2

3 are not

shown.) It is indicated thatq1 is constructed fromP1 = p1
1, whereasq2 is constructed from

P2 = {p2
1, p

2
2, p

2
3}. The interconnections of the higher-level states{q0, q1, q2, q3} in λ dictate

the choices of pen motions (solid arrows) between the sub-images that can be estimated. All

the transitions leaving a state are equally weighted. Note that the topology allows the pen to

arbitrarily jump between skeleton samples, thereby removing the context that has so carefully

been included using second-order HMMs, as described in Chapter 4. According to Chapter 4,

e.g.,p2
2 is a segment point, so that the pen is not allowed to turn around or change direction

abruptly fromp2
2. However, according to the current topology, nothing prevents the extraction

of the pen trajectory (amongst many others) [p2
3, p

2
2, p

2
3], as the pen is allowed to exit and re-enter

q2 at any instance. Thus, no pressure information is containedin the current HHMM structure:

all the skeleton samples are just indirectly connected to each other. It is more sensible to allow

a transition to any skeleton sample only directly after a pen-up event. Hence, the next section

shows how to identify pen-up events by exploiting dynamic exemplar pen pressure information.
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Figure 5.2: The HHMMλ for the static character “i”. The higher-level states ofλ are

represented as unfilled circles, where each emitting state qh corresponds to an HMMλh for

each sub-image. The weighted (ai j ) choices of pen motions (solid arrows) between the different

sub-images are shown. The simplified choices of pen motions (dashed arrows) between the

skeleton samples (filled dots) within each sub-image are also shown.

5.2 Identifying pen-up and pen-down events

The first step to identify pen-up and pen-down events is to addazero-pressureemitting stateqN+1

to the higher level of the HHMMλ, so thatλ hasN + 1 emitting states, a non-emitting initial

stateq0 and a non-emitting terminating stateqN+2. All transition links connecting higher-level

emitting states to other higher-level emitting states ofλ are removed. Instead, all higher-level

emitting states andq0 are connected toqN+1. The zero-pressure stateqN+1 is connected to itself,

to qN+2 and to all the other higher-level emitting states. All transition weights contained inA

are set equal and normalised to sum to 1.0. Note, however, that all the lower-level transition

weights contained inAh for h ∈ {1, . . . ,N} remain unchanged (as developed in Chapter 4). The

new topology forλ is depicted by the solid arrows in Figure 5.3, as derived fromFigure 5.2.

There are now three higher-level emitting states in the figure, whereq3 is the zero-pressure state.

Similar to the PDFs developed in Sections 4.6 to 4.8, two PDF components are associated
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Figure 5.3: Manipulating the HHMMλ for the static character “i” to identify pen-up and

pen-down events. An HMMλh corresponds to an emitting state qh (big circle) for each

sub-image. The higher-level emitting state q3 dictates pen motions (solid arrows) between the

different sub-images only if x5
t = 0. The simplified choices of pen motions (dashed arrows)

between the skeleton samples (filled dots) within each sub-image are also shown.

with qN+1. The first position componentf P
N+1(x

1,2
t ) is a spherical Gaussian PDF (described by

(4.1)) and is written asN(µP
N+1, σ

′
P). The second directional PDF componentf V

N+1(x
3,4
t ) is also

a spherical Gaussian PDF and is written asN(µV
N+1, σ

′
V). Recall from the previous section that

x1,2
t = (0, 0) andx3,4

t = (0, 0) if x5
t = 0. Hence, we letµP

N+1 = µ
V
N+1 = (0, 0), σ′P = σ

′
V = 0.4 in

N(µP
N+1, σ

′
P) andN(µV

N+1, σ
′
V).

To force the state sequence to enterqN+1 under zero-pressure conditions, i.e.,st = qN+1 if x5
t = 0,

a third statistically independent PDF componentf (x) with a uniform distribution is added to the

PDF ofqN+1 and to all the lower-level emitting states, where

f (x) =

{ 1/(b− a), for a ≤ x ≤ b (5.1a)

0, elsewhere, (5.1b)

for real constants−∞ < a < b < ∞ (see [61].) For the sake of brevity, we refer tof F
i,h(x

5
t ), the

third PDF component (described by (5.1)) ofqh
i , asUi,h(a, b), and leta = 0.5 andb = 1.5 (the

reason for this specific choice will become clear in a moment.) Since all the PDF components
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are independent, the joint observation PDF at the lower-level emitting stateqh
i evaluated at

feature vectorxt is now given by

fi,h(xt) = f P
i,h(x

1,2
t ) f V

i,h(x
3,4
t ) f F

i,h(x
5
t ), (5.2)

wherei ∈ {1, . . . ,Nh}, h ∈ {1, . . . ,N}, t = [1, . . . ,T]. Likewise, we refer tof F
N+1(x

5
t ), the third

PDF component of the higher-level emitting stateqN+1, asUN+1(a, b), and leta = −0.5 and

b = 0.5, so that the joint observation PDF evaluated at feature vector xt is given by

fN+1(xt) = f P
N+1(x

1,2
t ) f V

N+1(x
3,4
t ) f F

N+1(x
5
t ), (5.3)

wheret = [1, . . . ,T]. The choices ofa andb inUi,h(a, b) andUN+1(a, b) let fi,h(xt) = 0 if x5
t = 0

from (5.2), andfN+1(xt) = 0 if x5
t = 1 from (5.3). The third PDF components therefore serve as

binary gatesthat force the state sequence to revealqN+1 if the dynamic exemplar pen pressure

is zero.

The above concepts are illustrated in Figure 5.3. As long asx5
t = 1, st = q1

i for i ∈ {0, . . . ,N1+1},
or st = q2

i for i ∈ {0, . . . ,N2 + 1}. If a pen-up event is identified at instancet + 1, i.e.,x5
t+1 = 0,

st+1 = q3. If a pen-down event is subsequently identified at instancet + 2, i.e., x5
t+2 = 1,

st+2 = q1
i or st+2 = q2

i . Thus, when the dynamic exemplar pen pressure is non-zero, the heuristic

framework developed in Chapter 4 is applicable, so that the choices of pen motions within

the different sub-images are restricted as illustrated by the dashed arrows. (For the sake of

simplicity it is not shown that a pen-trajectory can start atany skeleton sample within each

sub-image, and the links betweenp2
1 andp2

3 are not shown.)

This section has shown that the addition of a single emittingstate and a third component to

all PDFs enables us to identify and accommodate the single-path trajectories that constitute a

multi-path static script. The next section shows how to dealwith special cases where spurious

disconnections (broken lines) occur in a static script.

5.3 Compensating for broken lines (spurious disconnections)

As mentioned in Section 1.5,spurious disconnectionsmay result in the static script when the

ink is not evenly distributed over the pen-tip. This practical problem arises especially when an

individual signs rapidly, so that unevenly distributed inkresults in line fragments with very light

grey levels which typically vanish after binarisation.

Our HMM topology enables us to deal with broken lines as follows: If two endpoints are judged

possibly to be part of the same broken line, then we add appropriate additional states for each

of the two endpoints. These states are manipulated to enablethe pen to reach the one endpoint
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from the other, where the ease of such a transition is dictated by the “brokenness” of the line.

We proceed with a detailed discussion. If the lower-level emitting stateqg
j is associated with an

endpoint, it can be preceded by the lower-level non-emitting initial state, immediate lower-level

neighbours or lower-level skip-link neighbours (see Chapter 4). For the sake of simplification,

we allow only the immediate neighbours of endpoint states inour approach to accommodate

broken lines. Thus, ifqg
i is the immediate neighbour of endpoint stateqg

j and another endpoint

stateqh
k is encountered, it is tested whetherqg

j andqh
k are associated with the two disconnected

endpoints of a broken line, wherei, j ∈ {1, . . . ,Ng}, g, h ∈ {1, . . . ,N}, k, ` ∈ {1, . . . ,Nh}. N,

Ng andNh are the numbers of states inλ, λg andλh, respectively (see Section 5.1 for further

notation specifications.) It is assumed that these two disconnected endpoints must at least be

within nearby vicinity of each other and that the disconnected lines to which they are connected

have similar directions. The HMM topology for broken lines is designed in accordance with

this assumptions.

First, let pg
a, pg

b ph
c and ph

d be the skeleton samples associated with statesqg
i , qg

j qh
k and qh

`
,

respectively. Hence, the angleθabc is computed using (4.3). Ifθabc ≤ 45◦ and ‖pg
b − ph

c‖ ≤
70 (pixels),pg

b andph
c are considered to be part of a broken line and they must therefore be

reconnected. Note that the connection ofpg
b andph

c effectively unitesλg andλh if g , h, so that

there is one less higher-level emitting state inλ. Figure 5.4 shows an example of two endpoints

pg
b (indicated by a solid circle) andph

c (indicated by an x-marker) in the skeleton of a static script,

which are identified as parts of a broken line. The dashed circle spans the region‖pg
b−ph

c‖ ≤ 70

(pixels.)

pg
b ph

c

Figure 5.4: The locations of two disconnected endpointspg
b (solid circle) andph

c (x-marker) in

a broken line. Candidate disconnected endpoints are withinthe vicinity of the dashed circle

frompg
b.

To connectpg
b andph

c, two extra statesqg
m andqh

n are added toλg andλh, respectively. The first

extra stateqg
m is associated with the same skeleton samplepg

b asqg
j . The stateqg

m is connected

to qh
n with a transition weight of cos(θabc), to itself with ag

mm = 0.5, and toqg
j with ag

jm =

min(ag
jx), wherex can be any transition link leavingqg

j (as developed in Chapter 4.) All transition

weights fromqg
j and qg

m are again normalised to sum to 1.0. This topology is illustrated in

Figure 5.5, where the two disconnected endpoints from the set of skeleton samples (filled dots)
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that constitute linesA andB must be connected. All the states are rendered as circles, where the

state labels (top) and their associated skeleton samples (bottom) are indicated. Transitions to

states outside the figure are rendered as dashed lines. Note that more than one state is typically

associated with a skeleton sample, e.g.,qg
j is preceded by all the states that share skeleton sample

pg
a.

pg
a

pg
a

pg
a

pg
b

pg
b

pg
b

ph
c

ph
c

ph
c

ph
c

ph
d

ph
d

line A line B

qg
i

qg
m

qh
`

qg
j qh

k

qh
n

ag
jm = min(ag

jx)

ag
mm= 0.5

cos(θabc)

ah
nn = 0.5

a h
nx =















cos(θcde) for |θcde| ≤ 45◦

0

for |θcde| > 45◦

a h
n` = cos(θ

bcd)

Figure 5.5: Compensating for broken lines. An unexpected disconnection occurs between the

skeleton samples (filled dots) that constitute lines A and B,which has to be corrected. The

appropriate HMM states (top labels in circles) and their associated skeleton samples (bottom

labels in circles) are shown. Transition weights (ai j ) are shown and transitions to/from states

outside the figure are indicated by dashed arrows.

Stateqh
n is associated with the same skeleton sampleph

c asqh
k and is connected to itself withah

nn =

0.5, to the non-emitting terminating state withan(Nh+1) = 0.5 and to all the other destinations

of qh
k that are associated with skeleton samples. To compute the latter transition weights, the

angleθcde for each destination stateqh
x from qh

n is computed, whereph
e is the skeleton sample

associated withqh
x. Subsequently,ah

nx = cos(θcde) for |θcde| ≤ 45◦ andah
nx = 0 for |θcde| > 45◦, as

illustrated in Figure 5.5.

Typically, when a broken line occurs, the part of the line that is absent in the static script

corresponds to a line in the dynamic exemplar which is written with non-zero pen pressure.

Thus, in such cases the state sequence must be allowed to linger in qg
m or qh

n. However, some

penalty has to be introduced to prevent the exploitation of these extra states in cases where
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broken lines do not occur. Accordingly, the PDFs forqg
m andqh

n are designed as follows. Firstly,

the PDFs are designed so that only nearby dynamic exemplar samples with non-zero pressure

are matched topg
b andph

c. Hence, to ensure the matching of nearby samples, the positional

PDF component ofqg
m is N(µP

m,g, σ
′
P) = N(µP

j,g, σ
′
P), i.e., the positional constraint invoked by

σ′P is the same as for all the other PDFs inλg (see Section 4.8.) The pressure PDF component

Um,g(a, b) = U j,g(a, b), i.e.,a = 0.5 andb = 1.5 to ensure the matching of dynamic exemplar

samples written with non-zero pressure. Likewise,N(µP
n,h, σ

′
P) = N(µP

k,h, σ
′
P) andUn,h(a, b) =

Uk,h(a, b). Note thatx3,4
t is normalised so that min(x3,4

t ) = (0, 0) and max(x3,4
t ) = (1, 1). Hence,

µV
m,g = µ

V
n,h = (0, 0) inN(µV

m,g, σ
′
V) andN(µV

n,h, σ
′
V). The directional deviationσ′V is chosen so

large thatf V
n,h(x

3,4
t ) and f V

m,g(x
3,4
t ) are always approximately equal to 5× 10−10, making it rather

expensive to linger in statesqg
m and qh

n in comparison with other emitting states, if it is not

absolutely necessary.

It should be noted that the same process to identify broken lines is followed forall the applicable

endpoints so that there is a bi-directional connection between broken lines.

5.4 The hidden state sequence (estimated pen trajectory)

We have now developed the full HHMM for the static image of a handwritten script. This

HHMM consists of states associated with the position coordinates of the static image skele-

ton, and transition probabilities that dictate consecutive transitions between states. Each state

is associated with a single PDF that consists of three statistically independent components,

describing the positional, directional and pen pressure variations. The transition probabilities

govern the possible choices of pen motions, based on three basic assumptions:

1. The pen is not allowed to turn around suddenly within line segments of a sub-image when-

ever the pen pressure is non-zero. This assumption assumes that the pen must maintain

its direction of traversal, i.e., it is based on the continuity criterion of motor-controlled

pen motions, discussed in Section 2.2.

2. The pen is allowed to turn around at endpoints and crosspoints within a sub-image when-

ever the pen pressure is non-zero. It should be noted that this assumption does not inval-

idate the continuity criterion of motor-controlled pen motions. It simply identifies cases

where the continuity criterion is not necessarily applicable to estimate the pen trajectories

of the static scripts by assuming that ambiguities are most likely to occur at endpoints

and crosspoints. Thus, due to the representation of the handwritten scripts as prepro-

cessed 2D images, it is not necessarily possible to relate continuous pen motions to the

available representative curves.
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3. The pen can reach any skeleton sample at a pen-down event, i.e., after the individual has

lifted the pen (after a pen-up event.) Similar to the previous assumption, this assumption

does not invalidate the continuity criterion of motor-controlled pen motions. It simply

accounts for the information loss in the 2D images—althoughan individual’s hand is still

constrained to move continuously in the air while the pen is lifted, it can resume writing

anywhereon the document at a pen-down event. Thus, this assumption also identifies

cases where the continuity criterion is not necessarily applicable to estimate the pen tra-

jectories of the static scripts.

It is clear from the above assumptions that provision is madein our HHMMs for situations

where the continuity criterion of motor-controlled pen motions can not necessarily be used to

extract dynamic information from 2D images. In such cases, we rely on the additional infor-

mation provided by our pre-recorded dynamic exemplars. Recall that rule-based methods rely

exclusively on a prior generalised model (which is prone to fail in certain situations.) In our

application, one can think of the dynamic exemplars as models describing the underlying prin-

ciples of handwritten motions. These models are, however, writer specific. In ambiguous parts,

where one can not rely on a single prior model, no heuristics are employed. The writer-specific

models, established by the dynamic exemplars, are simply followed. Thus, the additional infor-

mation available from the dynamic exemplars (prior models)are applied, where this additional

information is specific to each individual. The models employed by rule-based methods are

thereforefixed, whereas our models (dynamic exemplars) areflexible, as our models are able to

change in accordance with the changing handwriting scripts.

Most importantly, when a dynamic exemplar is matched to the HHMM, one determines the

most likely state sequence. Since the higher-level states are associated with the sub-images

and the lower-level states with the position coordinates ofthe skeleton, this sequence yields the

maximum likelihood pen trajectory as determined by the model. The dynamic exemplarX =

[x1, x2, . . . , xT] is matched to the HHMMλ of the static image using the Viterbi algorithm [16,

68, 25]. This results in an optimum state sequences= [s1, . . . , sT] as well as a likelihood.

The PDF associated with the zero-pressure stateqN+1 in the higher level ofλ emits a single

observation, whereas the rest of the PDFs emit sequences of observations due to our hierarchical

structure. However, every HHMM can also be represented as a single-level HMM (see [25].)

For the sake of simplicity we representλ as its single-level HMM equivalentλ′ with N states.

The globally optimised likelihood ofs, based onλ′ and the dynamic dataX, is then given by

δ = as0s1

T
∏

t=1

astst+1 fst(xt), (5.4)

wheres0 = 0 is the non-emitting initial state ofλ′, sT+1 = N + 1 is the non-emitting terminating

state ofλ′ and fst(xt) is the PDF associated with emitting statest of λ′ evaluated at feature vector
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5.6: Estimating the pen trajectory of a static “i”. (a) The staticskeleton of the

character “i”. (b)-(g) Matching different dynamic exemplars to the HMMλ′ of (a), where

arrows indicate the sequences of the dynamic exemplar pen positions.

xt. We can therefore obtain a maximum likelihood state sequence for each available dynamic

exemplar of a static image. This provides a point-wise correspondence between the static image

and each dynamic exemplar.

The likelihoodδ is a useful measure of similarity between a static image and adynamic ex-

emplar. It tends to decrease if a segment exists in the dynamic exemplar and not in the static

image, or in cases of inconsistencies in size or orientation. However, it can happen that a dy-

namic exemplar matches only a portion of the static image very well. A dynamic character “1”,

e.g., can produce a high likelihood on a static “7”. To illustrate the behaviour ofδ, the different

dynamic exemplars shown in Figures 5.6(b)-(g) are matched to the HMM λ′ of Figure 5.6(a),

whereλ′ is the single-level equivalent of Figure 5.3. Hence,δ tends to decrease in cases of

inconsistent pen movements, e.g., Figure 5.6(c); extreme shape differences, e.g., Figure 5.6(e);

different orientations, e.g., Figure 5.6(d); and trajectoriesoccurring in the dynamic exemplar

and not in the static script, e.g., Figures 5.6(c), (e) and (f).

As mentioned above,δ will not necessarily decrease if the dynamic exemplar does not con-

tain all the curves that constitute the static script, e.g.,Figure 5.6(b) could have a similarδ to

Figure 5.6(g). To prevent this, we weight the likelihood from (5.4) in the following manner:

Firstly, the total path lengthTL is computed as the sum of distances between all the connected

skeleton samples of the static image. Secondly, the path length RL of the recovered pen trajec-

tory is computed, so thatRL ≤ TL . Note that web-like structures may contain excessive linesto

model complicated intersections. We therefore do not include the path lengths of consecutive
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samples that constitute web-like structures. We now weighteach of the maximum likelihood

state sequences (one for each dynamic exemplar) as follows:

log(δW) = sign(log(δ))
RL

TL
| log(δ) | (5.5)

Finally, the dynamic exemplar’s state sequence that produces the maximum weighted likelihood

δW is chosen as the estimated pen trajectory. IfδW is computed as described above, Figure 5.6(g)

will have the highest and Figure 5.6(e) the lowestδW. The state sequence resulting from Fig-

ure 5.6(g) will therefore yield the estimated pen trajectory of Figure 5.6(a).

Note thatδW can be useful to identify forgeries in a signature verification application. This is

also indicated by some preliminary experiments that are presented in Section 7.2.4.

A typical static signature with three sub-images from our database is shown in Figure 5.7(a)

(close inspection of the signature shows that there are onlythree disconnected images.) Of

the fourteen pre-recorded dynamic exemplars, the one that has the highestδW is shown in

Figure 5.7(b). Figure 5.7(c) depicts the aligned dynamic exemplar (dashed line) from Fig-

ure 5.7(b) and the skeleton (solid line) of Figure 5.7(a) after preprocessing. The solid lines

in Figures 5.7(d)-(p) illustrate how the single-path trajectories of the dynamic exemplar (top)

and the static curves of the skeleton (bottom) from Figure 5.7(c) are matched. Dashed lines

render previous single-path trajectories, and the direction of corresponding starting positions

is indicated by arrows. The sequenced single-path trajectories of Figure 5.7(a) are therefore

revealed by establishing a point-wise correspondence withthe dynamic exemplar. Note that

the dynamic exemplar is especially helpful to estimate the single-path trajectories in compli-

cated regions, e.g., the bottom trajectories in Figures 5.7(e)-(l), which overlap greatly in the

leftmost sub-image of the static script. It should also be noted that our system computes all

thirteen single-path trajectories of Figure 5.7(a) although the static signature consists of only

three sub-images.

One final alteration is made to the estimated pen trajectories before their accuracies are cal-

culated. Chapter 4 has shown that some skeleton samples may be skipped or consecutively

repeated. This is due to the inclusion of skip-link and duration states in our model, to compen-

sate for static scripts and dynamic exemplars with different numbers of samples. To remove this

compensation (which is necessary for our evaluation protocol, as described in Section 6.1), we

reinstate the skipped samples and remove samples that are consecutively repeated.
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(d) (e) (f) (g) (h) (i)

(j) (k) (l) (m)

(n) (o) (p)

(a) (b) (c)

Figure 5.7: Estimating the pen trajectory of a multi-path signature. (a) A multi-path static

signature and (b) the dynamic exemplar that corresponds best to it. (c) The dynamic exemplar

(dashed lines) from (b) superimposed on the static skeleton(solid lines) of (a) after

preprocessing. (d)-(p) Estimating the sequence of single-path trajectories (bottom) that

constitute the skeleton from (c) by establishing a pointwise correspondence with the dynamic

exemplar trajectories (top) from (c). The directions of corresponding starting positions are

indicated by arrows, and previous single-path trajectories are rendered as dashed lines.

5.5 Summary

This chapter has extended the HMMs for single-path static scripts to handle multi-path static

scripts. The most important accomplishments of this chapter are summarised as follows:

• It has been shown how to define pen-up and pen-down events, i.e., the single-path trajec-

tories that constitute a static script, without removing the context within the second-order
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HMMs that are derived from the different sub-images of the script. Specifically, bi-level

hierarchical HHMMs with additional zero-pressure states force discontinuities in pen tra-

jectories where pen-up events occur.

• Broken lines that may occur in static scripts have been treated as a special case of multi-

path scripts. Compensation for such spurious disconnections has been included in our

HMM topology.

• It has been shown how to estimate a pen trajectory from the HMMof a static script using

the Viterbi algorithm. Each pen trajectory has a likelihoodafter matching a dynamic ex-

emplar to the HMM. This likelihood can be used as a confidence measure for the accuracy

of an estimated pen trajectory.



Chapter 6

Experiments

In order to evaluate the accuracy of an estimated pen trajectory, a ground-truth trajectory is

required. Since we were unable to find any standardised database containing both the on-line

and off-line versions of signatures, we developed our own, named US-SIGBASE. Section 6.2

describes US-SIGBASE in more detail. Section 6.1 presents evaluation protocols: Section 6.1.1

treats existing protocols, whereas Section 6.1.2 describes our evaluation protocol. Experiments

are described in Section 6.3, where the configurations of theexperiments and experimental re-

sults are presented. Typical errors made by our system are described in Section 6.3.6. These er-

rors can be scrutinised by viewing the animation examples onthe attached CD; see Appendix A

for further details. Our results are compared with results from existing techniques in Section 6.4,

and some conclusions are drawn in Section 6.5.

6.1 Evaluation protocol

US-SIGBASE consists of 814 multi-path signatures for 51 individuals. Each signature was

recorded on a piece of paper placed on a digitising tablet. Thus, the dynamic counterpart of each

signature was obtained. However, due to noise introduced during every stage of the recording

process, i.e., while recording a dynamic signature and while scanning, binarising and skeleton-

ising its static counterpart, the image skeleton generallydiffers from its dynamic counterpart.

Thus, one cannot assume a one-to-one correspondence between a skeletonised static image and

its dynamic counterpart. The ground-truth pen trajectory is obtained by matching the dynamic

counterpart of a static script to a slightly modified HHMM of the script (as described in Chap-

ter 5). In general, the position coordinates of a static skeleton and a dynamic counterpart are

much better aligned than the position coordinates of the static skeleton and any of its dynamic

exemplars. Accordingly, the mentioned HHMM modification tightens the standard deviation

89
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σ′P to 7 (measured in pixels) for all the lower-level emitting states in the HHMM. All that re-

mains is to compare the two trajectories—the ground-truth trajectory, as computed above, and

the estimated trajectory obtained from the dynamic exemplar. Both trajectories are extracted

from the same static skeleton so that it is possible to compare them. However, since the two

trajectories are obtained from different dynamic sequences, the trajectories do not necessarily

have the same number of samples. A point-wise comparison is therefore not possible. Sec-

tion 6.1.1 describes existing methods that establish quantitative comparisons between estimated

and ground-truth trajectories, whereas Section 6.1.2 presents our evaluation protocol.

6.1.1 Existing evaluation protocols

To our knowledge, there are only two noteworthy quantitative evaluation protocols described in

existing literature. The first protocol, by Lau et al. [52], is based on ranking analysis, whereas

the second method, by Jäger [38], is based on Dynamic Programming (DP).

The evaluation protocol by Lau et al. [52] is based on paired ranking comparison. In brief,

this amounts to presenting the ground-truth trajectory as asequence of numbers (ranked items)

$ground = [1, . . . ,T]. It is then assumed that the estimated pen trajectory consists of the same

samples as the ground-truth trajectory, but that the samplesequence might be different. The

estimated pen trajectory$est is therefore also presented as a sequence ofT numbers, where

each number occurs exactly once, i.e.,$est(t) ∈ {1, . . . ,T}, where t = [1, . . . ,T] so that

$est(t) < {$est(1), $est(2), . . . , $est(t − 1), $est(t + 1), . . .$est(T)}, where$est(t) is samplet of

$est. The basis of the method by Lau et al. [52] is Kendell’s metric, where Kendell’s met-

ric is the minimum pair-wise adjacent transpositions to transform$est into $ground. Thus, if

$ground = [1, 2, 3, 4] and$est = [1, 3, 4, 2], a Kendell distance of 2 is required to transform

$est into $ground. The metric established by Lau et al. [52] is a refinement of Kendell’s metric,

also taking into account general directions and discontinuities between consecutive items in

$est. However, the evaluation protocol and results of Lau et al. [52] are not applicable to our

estimation algorithm for the following reasons:

1. No provision is made for estimated and ground-truth trajectories with different path lengths.

2. The protocol requires that segmented static scripts are only represented by their line end-

points. Thus, a static script is presented as a sequence of numbers, where each number

represents an endpoint, as shown in Figure 6.1, where the ground-truth trajectory is ren-

dered as a solid line. Thus,$ground = [1, 2] and the only sequences that can be extracted

from the shown script are$est= [1, 2] or$est = [2, 1]. If, e.g.,$est = [1, 2], their evalua-

tion protocol would indicate that$est is 100% accurate. A problem arises when a system

(such as ours) computes the sequence ofall the skeleton samples that constitute a static
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script: if the estimated sequence of skeleton samples is incorrect between the endpoints,

e.g., if the directions of traversal at the loops are reversed (dashed lines) it would have no

influence on the result of their evaluation protocol, as onlythe sequences of endpoints are

considered.

1 2

Figure 6.1: Segmentation of a static skeleton at endpoints. Solid linesrepresent the

ground-truth trajectory and the dashed lines indicate thatthe directions of the loops can be

erroneously reversed in the estimated pen trajectory.

A more applicable evaluation protocol is followed by Jäger[38], where the smallest number of

elementary operations, called theLevenshtein distance, required to transform$est into$ground is

calculated. In this case,$est and$ground are sequences of 2D position coordinates and are both

extracted from the same skeleton of a static script. To compute the Levenshtein distance, DP

is employed. A short presentation of the evaluation protocol established by Jäger [38] follows,

using a generic example from [38], where the ground-truth and estimated sequences are both

strings, with$ground= INTEREST and$est= INDUSTRY.

Firstly, a grid is constructed, where each node represents apossible corresponding point be-

tween$groundand$est, as indicated by the grey dots in Figure 6.2. In general, if$groundconsists

of n samples and$est consists ofm samples, the grid hasm× n nodes. The matrixD is con-

structed to contain the values for a locally defined cost function, so thatD( j, i) reflects the simi-

larity between$est( j) (samplej of $est) and$ground(i) (samplei of $ground), wherei ∈ {1, . . . , n},
and j ∈ {1, . . . ,m}. Hence, for$ground= INTEREST and$est = INDUSTRY, i = j = 8, so that

there are 64 nodes in total.

By starting with the initial distanceD(1, 1), a final accumulated cost at each node (j, i) is com-

puted in a left-to-right, bottom-to-top fashion. Each nodecan be preceded by at most three

nodes, namely the left, bottom and bottom-diagonal-left nodes. The matrixC is constructed to

contain the final costs at all the nodes. Within the grid’s constraints, the costC( j, i) is assigned
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Figure 6.2: Using DP to calculate the optimal Levenshtein distance between two sequences. A

grid is constructed with weighted nodes for each character in the strings INTEREST and

INDUSTRY, as indicated by the grey dots. The final cost at eachnode is shown and the

possible paths which all result in a minimum Levenshtein distance of 8 at node (8,8) are

rendered as dashed arrows.

to the node (j, i) in a recursive way, as follows:

C( j, i) = min



























C( j − 1, i) + D( j, i),

C( j − 1, i − 1)+ D( j, i),

C( j, i − 1)+ D( j, i),



























, (6.1)

wherei ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. The DP evaluation technique enables one to distinguish

between different error types that contribute to the total error rate. A sample that occurs in$est

and not in$ground is called aninsertion, whereas a sample that occurs in$ground and not in$est

is called adeletion. If a sample from$ground is mapped to a mismatched sample from$est, the

erroneous sample in$est is called asubstitution. When DP is employed, deletions are identified

by vertical transitions and insertions are identified by horizontal transitions. Substitution are

identified by diagonal transitions mapping mismatched samples onto each other.

The node that precedes (j, i) (with minimum local cost) is logged, so that the optimal sequence

of nodes (leading to a global optimum) can be back-traced when the final node (m, n) is reached.
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Jäger [38] definesD( j, i) at node (j, i) from (6.1) as follows:

D( j, i) =



























1, for predecessor nodes (j − 1, i) and (j, i − 1) (6.2a)

2, for predecessor node (j − 1, i − 1) if ‖$ground(i) − $est( j))‖ > 0 (6.2b)

0, otherwise. (6.2c)

The final costC( j, i) at each node (i, j) in Figure 6.2 is shown. Note, however, that there are

numerous paths that all lead to the minimum Levenshtein distance of 8, as indicated by the

dashed arrows. This is problematic if one wishes to pinpointerror sources and erroneous re-

gions. For our application, substitutingD( j, i) = ‖$ground(i)−$est( j))‖ into (6.1), i.e., minimising

the Euclidean distance between the estimated and ground-truth trajectory, would already result

in fewer optimal paths. However, big distances between successive samples in$est and$ground,

where pen-up and pen-down events occur, might have a negative impact. Another problem is

that the evaluation protocol followed by Jäger [38] is not parameterisation invariant.

Based on our studies, a satisfactory evaluation protocol should have the following characteris-

tics:

1. The evaluation protocol must establish a mapping between$ground and$est that is as

unique as possible, so that errors can be identified easily and with confidence. If the

pointwise mapping between$ground and$est is unique, one can use the point-wise corre-

spondence between the two sequences to identify the errors instead of the final cost of

the mapping. This enables a direct identification of erroneous curves in the estimated pen

trajectories.

2. The evaluation protocol must be invariant to parameterisation, while also being compre-

hensive of cases where successive samples are far apart between pen-up and pen-down

events, or in cases where successive samples are part of spurious broken lines.

3. The evaluation protocol must be easy to implement, so thatit can be used as a standardised

technique to evaluate the efficacy of an estimated pen trajectory.

Section 6.1.2 describes our evaluation protocol, which meets the above requirements.

6.1.2 Using a left-to-right HMM to establish an evaluation protocol

Our evaluation protocol, introduced in this section, relies on an HMM that is constructed from

$ground. This HMM is matched to$est, resulting in an optimal state sequence. Similar to the

concepts developed in the previous chapters, the state sequence provides a pointwise corre-

spondence between$est and$ground. In this case, two states are associated with each sample in
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$ground, an “error” state which must be entered when an erroneous sample occurs in$est, and

a “correct” state which must be entered when a correct sampleoccurs in$est. Compared with

our HMMs for static scripts, our HMM for$est is much less complex, as$est and$ground are

extracted from the same image skeleton (i.e., corresponding samples are exactly the same) and

both sequences are time signals. The two states associated with each skeleton sample in$ground

are constructed so that their PDFs can be exploited to determine whether errors occur: In cases

where corresponding samples in$est and$ground are the same, the “correct” states have sig-

nificantly higher observation likelihoods than the corresponding “error” states, so that the state

sequences are forced to reveal the “correct” states. Likewise, in cases where$estand$grounddif-

fer, the “error” states have significantly higher observation likelihoods than the “correct” states,

so that the state sequences are forced to reveal the “error” states.

Our evaluation protocol uses a first-order HMMλL2R with a left-to-right topology. For this

application,$ground and$est are sequences of 2D position coordinates, where$ground(k) and

$est( j) are the 2D position coordinates at time instancesk and j, for k ∈ {1, . . . , n} and j ∈
{1, . . . ,m}. As mentioned above, two states are associated with each sample in$ground. Each

emitting state is associated with a spherical Gaussian PDF,as described by (4.1). We now let

i ∈ {0, . . . , n− 1} so that the first state associated with the sample$ground(i + 1) is labelled with

an odd number 2i + 1. The PDF associated with state 2i + 1 is initialised withσ2i+1 =
√

0.016

(measured in pixels) andµ2i+1 = $ground(i + 1). The second state associated with a sample

$ground(i + 1) is labelled with an even number 2i + 2. The associated PDF of state 2i + 2 is

initialised withσ2i+2 =
√

100000 (measured in pixels) andµ2i+2 = $ground(i + 1). All states are

connected to the non-emitting initial and terminating states. An odd-numbered state 2i + 1 is

also connected to state 2i + 2 (its even “partner” associated with$ground(i + 1)) and to any other

odd-numbered statex if x > (2i + 1). An even-numbered state 2i + 2 is connected to itself and

to any odd-numbered statex if x > 2i. All transition links leaving a state are equally weighted.

Similar to Section 5.4,$est is matched toλL2R using the Viterbi algorithm. The result is a

hidden state sequences = [s1, s2, . . . , sm]. Note that the PDFs of states 2i + 1 and 2i + 2 have

the same mean$ground(i + 1), so they overlap approximately where the distance‖$ground(i +

1) − $est( j)‖ = 0.25, for i ∈ {0, . . . , n − 1} and j ∈ {1, . . . ,m}. The topology and the PDFs

of λL2R are now manipulated so that if‖$ground(i + 1) − $est( j)‖ ≤ 0.25, sj is odd, whereas if

‖$ground(i +1)−$est( j)‖ ≥ 0.25, sj is even. Hence, ifsj is even,$est( j) is either an insertion or a

substitution. If (sj+1 − sj) > 2, wheresj+1 andsj are both odd numbers, a deletion is identified.

Our resampling scheme (described in Section 3.3) ensures that the distance between any two

successive samples in skeleton of a static script is greaterthan or equal to approximately 1.0.

Hence, if each character in the strings INDUSTRY and INTEREST is associated with a 2D

coordinate, so that the distance between any two charactersis always greater than 0.25 (where
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the two PDFs associated with the same sample overlap) we can apply our evaluation proto-

col. Accordingly, the HMMλL2R of the word INTEREST is shown in Figure 6.3. Each letter

is associated with an even- and odd-numbered state, where the PDFs of even-numbered states

are less constrained than the PDFs of odd-numbered states, as indicated on the left-side of

the figure. Although the state sequence can start and terminate at any state, transition links

connected to the non-emitting initial and terminating states are omitted for the sake of sim-

plicity. Arrows indicate the destinations of the states. For the sake of simplicity, some of the

states are also connected to transition links using filled dots and grey lines. The word IN-

DUSTRY is matched toλL2R, either the state sequences = [0, 1, 3, 4, 4, 13, 15, 16, 16, 17], or

s= [0, 1, 3, 4, 4, 4, 5, 9, 10, 17] will be revealed, depending on the 2D values that are associated

with each character.
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Figure 6.3: The left-to-right HMM from our evaluation protocol for the string INTEREST.

PDFs associated with odd-numbered states have tighter standard deviations than PDFs

associated with even-numbered states. Transition links are indicated by arrows. Grey lines and

filled dots also connect some of the states to transition links. For the sake of simplicity, links

that are connected to the non-emitting initial and terminating states are omitted.

An error measure that is invariant to parameterisation is computed as follows: If sample$est( j)

is identified as substitution or insertion, the error is quantified as the erroneous path length

‖$est( j)−$est( j−1)‖. If $est( j) is a deletion, the error is quantified as‖$ground( j)−$ground( j−1)‖,
i.e., the path length of the ground-truth curve which is absent in the estimated trajectory is

calculated. The path lengths between endpoints that bridgegaps in broken lines and the path

length between zero-pressure discontinuities are not added to erroneous path lengths. The sum

of all errors of a static script is then expressed as a percentage of the script’s total ground-truth

path length. Note that, due to the addition of insertion errors, the error percentage can exceed

100% so that the accuracy of an estimated pen trajectory can be negative. The final error rate

is computed by averaging individual error rates for the static images over the number of static

images. Some more examples of the evaluation protocol are presented in Section 6.3.6.
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6.2 Database for experimental evaluation

As briefly mentioned in Section 6.1, our signature database consists of a total of 814 multi-path

signatures for 51 individuals. All signatures were recorded on paper placed on a Wacom UD-

0608-R digitising tablet. The paper signatures were scanned as grey-scale images at 600 dpi.

The scanner was set to highlight as much detail as possible inlight areas, to prevent spurious dis-

connections if possible. Unfortunately this also introduces more background noise. Most of the

noise was easily removed using a median and low-pass filter. Amedian filter was used, as it is

a highly effective and simple method to reduce salt-and-pepper noise ingrey-scale images [73].

A median filter sorts the intensities in thek × k neighbourhood of a pixelpi and chooses the

middle (median) intensityis. The effect is that if the intensity ofpi is higher/lower thanis, the

intensity ofpi is replaced withis. Next, a low-pass filter is applied, because, in general, noise

manifests as sharp intensity transitions [28]. Low-pass filters with uniform distributions replace

the intensity value at each pixel with the average intensityvalue in a specified neighbourhood.

We opted for a Gaussian-shaped low-pass filter, so that central pixels contribute more to the

final intensity of a pixel. In general, low-pass filters tend to blur the image slightly due to the

smoothing of edges. Hence, image features that constitute small regions in the image (typically

noise) attenuate, while significant regions are slightly expanded.

After applying the low-pass filter, the document was binarised, where a global threshold was

chosen using the entropy method described in [73]. Theentropyof an image measures the

average, global information content of an image in terms of average bits per pixel [28, 73]. For

a grey-scale image with 256 intensity-levels, an entropy of8 bits/pixel indicates an information-

rich image, where the pixel intensities cover the full rangeequally. An entropy of 0 indicates

the presence of a predominant pixel intensity and little variation in the intensity levels. To

compute a threshold based on entropy, the image data is separated into two classes for each

intensity level. The optimal threshold is then computed as the intensity level for which the sum

of entropies for the two classes is the maximum. After binarisation, the static signatures have

a line thickness varying between five and ten pixels in parts where the lines do not intersect

(depending on the pen pressure.)

Individuals were constrained to write within a grid, e.g., Figure 6.4(a) depicts a typical grey-

scale grid extracted from a page in US-SIGBASE. The document’s binarised version, after

filtering, is shown in Figure 6.4(b). Note that the signatures in Figure 6.4(b) appear thicker than

in Figure 6.4(a) due to the entropy-based threshold (at a light grey level)—this has the advan-

tage of accentuating light features, thus preventing broken lines, at the cost of thicker lines. To

illustrate the effect of low-pass filtering and binarisation, Figure 6.4(c) zooms in on a part of

the second signature in Figure 6.4(a) after median filtering. Figure 6.4(d) depicts Figure 6.4(c)
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after binarisation. Figure 6.4(e) depicts Figure 6.4(c) after low-pass filtering followed by bina-

risation. Note that although Figure 6.4(e) is slightly thicker in parts compared to Figure 6.4(d),

it is noticeably smoother.

(a) (b)

(c) (d) (e)

Figure 6.4: An example of a typical scanned document in US-SIGBASE. (a) Two static

signatures on a grey-scale document and (b) the document’s binarised representative. (c) A

part of the second signature in (a) after a median filter has been applied. (d) The binarised

image of (c). (e) The binarised image of (c) after low-pass filtering.

More data were originally recorded, but the following practicalities have invalidated some of

the data:

1. Some individuals are unable to sign within a grid’s constraints. In fact, some individuals

tend to write not only over the grid lines, but also over neighbouring signatures, making

it impossible to extract the individual signature images automatically without corrupting

them.

2. The recording devices may corrupt the data. In fact, a research field is dedicated to this

problem; see [77, 85, 76]. Our Hewlett-Packard (HP) scanjet5470C also causes various

slight distortions, and our digitising tablet’s pressure resolution is insufficient to capture

small pressure values. In some cases, e.g., there are lines in the static scripts that do not

occur in the dynamic counterparts of the scripts.
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3. The differences between the orientations of the tablet, the paper onthe tablet and the

paper on the scanner’s surface have to be accounted for.

4. In some cases, the paper shifted on the tablet while data were recorded simultaneously

on the digitising tablet and paper, thereby causing severe discrepancies between the static

signatures and their dynamic counterparts. Hence, we iteratively apply various linear

transforms to map the static signatures onto their dynamic counterparts. If a linear trans-

form is unable to determine a satisfactory mapping for a static signature and its dynamic

counterpart, the static signature is considered invalid.

6.3 Experiments

6.3.1 Overview of experiments

A static image is randomly selected for each individual. As stated above, the dynamic counter-

parts that are used to compute ground-truth trajectories are available for all static images. All

the dynamic exemplars (excluding the dynamic counterparts, of course) are used for estimating

the pen trajectories of the static scripts, as described in Section 5.4. The estimated pen trajecto-

ries are then compared with the ground-truth trajectories to obtain accuracy scores, as described

in Section 6.1. Theaverage accuracyfor a specific experiment is then calculated by averag-

ing the accuracy scores over all the static images in the database. The database and processing

steps that have been applied to the dynamic exemplars and static skeletons are specified for each

experiment.

A summary of the experiments described in Sections 6.3.2-6.3.5 is presented in Table 6.1. The

top of the table indicates that the signatures in US-SIGBASEwere used to conduct all the ex-

periments, where US-SIGBASE consists of 51 static images and 712 dynamic exemplars. Sub-

sequently, the configurations of the conducted experimentsare shown, where each experiment

is numbered in the first column. Due to different skeletonisation and resampling schemes, the

number of skeleton samples and the path lengths of the ground-truth trajectories may differ for

various configurations. Hence, the second column presents the sum of all the ground-truth path

lengths (expressed in pixels) in the database averaged overthe number of static scripts for each

experiment. The third column presents the number of edges (number of successive samples) in

the ground-truth trajectories, averaged over the number ofstatic scripts. A short description of

each experiment is provided at the bottom of the table. An overview of these experiments is

presented as follows:
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Signatures in database:

Database Number of images Number of exemplars

US-SIGBASE 51 712

Experimental configurations:

Path Number Skeletonisation Orientation Resampling Training

length of edges Standard Pseudo Radon PCA Euclidean Critical points Empirical Writer-Specific

1(a) 2811 2210.4 × × × ×
1(b) 2970 2525 × × × ×
2(a) 2844.1 776.4 × × × ×
2(b) 2844.1 776.4 × × × ×
3(a) 2811 2210.4 × × × ×
3(b) 2844.1 776.4 × × × ×
4(a) 2844.1 776.4 × × × ×
4(b) 2844.1 776.4 × × × ×

1 Experimental configuration for measuring the effect of two different skeletonisation schemes.

2 Experimental configuration for measuring the effect of two different orientation normalisation schemes.

3 Experimental configuration for measuring the effect of two different resampling schemes.

4 Experimental configuration for measuring the effect of two different training schemes.

Table 6.1: A summary of all the experimental configurations.
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1. The effect of artifacts that frequently occur in the skeletons of static scripts are mea-

sured in Section 6.3.2. Specifically, results from our skeletonisation scheme, described

in Section 3.1, are compared with results from standard skeletonisation schemes. The

abbreviationstandardin Table 6.1 indicates that the standard thinning algorithmin [29]

was employed, whereaspseudoindicates that our skeletonisation scheme was employed.

2. The efficacy of our orientation normalisation scheme in the Radon domain, as described in

Section 3.2, is evaluated in Section 6.3.3. Results are specifically measured against results

from the popular PCA-based scheme. Table 6.1 specifies whether theRadontransform or

PCAwas used.

3. The effect of Euclideanversuscritical-point resampling, as described in Section 3.3, is

investigated in Section 6.3.4. The resampling scheme for each experiment is specified in

Table 6.1.

4. The influence of the training schemes, described in Sections 4.7-4.8, on our HMM is

measured in Section 6.3.5. Specifically, the effect of predefined HMM parameters and

trained parameters is investigated. Table 6.1 specifies whetherempiricalor trainedwriter-

specificstandard deviations are used in our PDFs.

Results. In the sections to follow, the optimal state sequences from our left-to-right HMMs

(described in Section 6.1.2) are used to map estimated trajectories onto their ground-truth tra-

jectories. Quantitative results for each experiment are presented, where the accuracies of the

estimated pen trajectories are expressed as percentages ofthe total ground-truth path lengths,

averaged over the number of static images in the database. InSection 6.3.6, a qualitative inves-

tigation is described to identify typical errors in estimated pen trajectories.

Statistical significance.Where applicable, single-sided statistical significance indicators were

calculated to determine whether the differences between the two experimental configurations

are attributable to chance [71, 21, 12, 61]. In the sections to follow, the results for two different

configurations are compared to each other for each experiment. Thus, for each configuration,

the pen trajectories of the 51 static signatures in US-SIGBASE were estimated. For each exper-

iment, the number of times (for the 51 trials) where the accuracy of Configuration A is greater

than or equal to the accuracy of Configuration B, i.e., the number of timesaA ≥ aB, is calcu-

lated. If we assume that the two configurations are equally accuratep = P(aA ≥ aB) = 0.5. We

can model the number of timesk whereaA ≥ aB with the random variableY, whereY has a

binomial distribution. Thus, the probability thatY is realised at leastk times is given by

P(Y ≥ k) =
N

∑

i=k

(

N
i

)

pi(1− p)N−i (6.3)

= 0.551
51
∑

i=k

(

51
i

)

, (6.4)
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whereN = 51 is the number of trials (static images to unravel.) The mean of the binomial

distribution ofY is µY = Np = 25.5, whereas the standard deviationσY =
√

Np(1− p) = 3.57

(see [71, 61] for further detail.) Equation 6.4 indicates that if k is relatively large, our assumption

that the the two configurations are equally accurate is wrong, i.e., whereP(Y ≥ k) ≤ T if

k > µY, there is a significant difference between the results for the two configurations. For this

application, we letT = 5%. For each of the experiments in the sections to follow, we compare

the results for the two different configurations and calculatek, P(Y ≥ k) and| µY − k | /σY to

compute the statistical significance of the results. For allthe experimentsP(Y ≥ k) is expressed

as a percentage so that it can be easily compared toT.

6.3.2 Experimental results for different skeletonisation schemes

Two sets of experiments are described. The first set uses the sophisticated skeletonisation pro-

cedure described in Section 3.1, and yields an average accuracy of 88.3%. The second set uses

a standard thinning algorithm [29] without any removal of artifacts, and yields an accuracy of

88.1%. The exact configurations of the experiments are specified at entries 1(a) and 1(b) in

Table 6.1.

Results Statistical significance

Skeletonisation Accuracy k P(Y < k) | µY − k | /σY

(a) Pseudo 88.3%
25 50% 0.14

(b) Standard 88.1%

Table 6.2: Experimental results for (a) our pseudo-skeletonisation scheme and (b) for the

standard thinning algorithm in [29].

Note that although the overall average accuracy of Configuration A is higher than the overall

average accuracy of Configuration B,k is smaller thanµY. Hence, to obtain an indication of

the significance of this result, we test how many times Configuration B outperforms Configura-

tion A for the separate trials. Thus, in this case,P(Y < k) is computed. Accordingly, the results

for this experiment are not regarded as significant.

We can conclude from this experiment that the simple thinning approach achieves a surpris-

ingly high accuracy. In fact, by also observing the statistical significance tests, one cannot say

with confidence that our skeletonisation performs better than the standard thinning algorithm.

However, our skeletonisation algorithm definitely does notdegrade the overall performance of

our system, especially considering that it is essential fora good critical-point resampling and to

identify simple crossing with confidence.
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It is important to realise that the detachment of intersecting lines at simple crossings removes

ambiguities, effectively including more context. It is therefore expected that thinner signatures

or less complicated handwritten scripts which, in general,have more simple crossings, will

result in more accurately estimated pen trajectories. Thisexpectation is endorsed by the results

from our system that deals only with single-path scripts (see [58]): Results were generated by

converting on-line signatures from the Dolfing database [20, 82]) to thin off-line signatures. The

results are shown in Table 6.3 (from [58]), where accuracy scores are expressed as percentages

of the ground-truth path lengths that were estimated correctly. Although a different evaluation

protocol was used (DP-based, as our evaluation protocol from Section 6.1.2 was not developed

yet), it is still evident that, for the Dolfing database, estimated pen trajectories extracted from

our pseudo skeletons are approximately 5.6% more accurate than the ones extracted from the

standard skeletons. Similar to our results for this experiment, however, the performance increase

of the pseudo skeletonisation is only 0.7% for the thick signatures from US-SIGBASE. The

only significant difference between the signatures from the Dolfing database and US-SIGBASE

were that the Dolfing signatures were significantly thinner than US-SIGBASE signatures. In our

opinion, the performance increase of the Dolfing signaturesusing pseudo skeletons is mostly

due to the inclusion of more context at simple crossings. Note that only single-path signatures

are unravelled in the experiments of Table 6.3. The single-path signatures are different and fewer

in number than the multi-path signatures in US-SIGBASE. Different evaluation protocols were

also employed for the two experiments of Table 6.3 and Table 6.2. Thus, the results are slightly

different, i.e., an accuracy of 91% is achieved for the single-path signatures in US-SIGBASE,

whereas 88.3% is achieved for the multi-path signatures in US-SIGBASE.

Dolfing US-SIGBASE Combined

Number of static images 15 35 50

Number of dynamic exemplars 210 450 660

Accuracy for thinning in [29] 87.2% 90.3% 89.3%

Accuracy for our pseudo skeletons 92.8% 91.0% 91.5%

Table 6.3: Experimental results, showing the average accuracy of recovered pen trajectories

for single-path static scripts expressed as the correct percentages of the ground-truth path

lengths that were extracted.

6.3.3 Experimental results for different orientation normalisation schemes

Two sets of experiments are described. The first set uses the orientation normalisation scheme

in the Radon domain, as described in Section 3.2, and yields an average accuracy of 87.9%. The

second set normalises the orientations of the static skeletons and dynamic exemplars using PCA,
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and yields an accuracy of 86.9%. Thus, the orientation scheme in the Radon domain performs

slightly better than PCA-based normalisation: there is a 1%improvement in the accuracy with

a confidence which is definitely better than chance. The exactconfigurations of the experiments

are specified at entries 2(a) and 2(b) in Table 6.1.

Results Statistical significance

Orientation normalisation Accuracy k P(Y ≥ k) | µY − k | /σY

(a) Radon 87.9%
35 0.55% 2.7

(b) PCA 86.9%

Table 6.4: Experimental results for (a) our Radon-based orientation normalisation scheme

and (b) for PCA.

To illustrate the potential and efficacy of the Radon-based orientation normalisation scheme,as

well as our HMM’s robustness to geometric variations, a moredirect comparison between the

Radon-based and PCA-based schemes has been devised. It is mentioned in Section 6.2 that we

iteratively applied various linear transforms to map static signatures onto their dynamic counter-

parts. The orientation of the dynamic counterpart after this alignment is used as the ground-truth

orientation of the dynamic counterpart. We then extract theboundaries of the static script in or-

der to approximate the script with a polygon (see Section 3.1.4.) Hence, the number of dynamic

counterpart samples that fallinside the approximating polygon of the static script are calcu-

lated. This value is expressed as a percentageaG of the total number of dynamic counterpart

samples. For this experiment, the orientation of the staticscript remains unchanged, whereas

the dynamic counterpart is rotated to align it with the static script using PCA-based and Radon-

based rotations. After the dynamic counterpart is rotated using these schemes, the number of

dynamic counterpart samples that fall inside the approximating polygon of the static script is

recalculated. This value is expressed as a percentageaE of the total number of dynamic coun-

terpart samples for each of the orientation normalisation schemes. A typical example is shown

in Figure 6.5(a), where a scanned image is depicted in black.The ground-truth alignment of the

dynamic counterpart and static script results in an accuracy of aG = 98.5%, i.e., 98.5% of the

dynamic counterpart samples (white) fall inside the approximating polygon (the area spanned

by the image boundaries.) According to the PCA-based scheme, the dynamic counterpart must

be rotated clockwise by 8.9◦. According to our Radon-based scheme, no rotation is required.

After PCA-based rotationaE = 37.8%. Thus, only 37.8% of the dynamic counterpart samples

(grey lines) fall inside the approximated polygon of the static script.

Figure 6.5(b) shows the results for 51 static scripts from US-SIGBASE after PCA-based and

Radon-based normalisation. Before rotation,aG is calculated, whereaG is the number of dy-

namic counterpart samples inside the static script’s approximated polygon, expressed as a per-

centage of the total number of dynamic counterpart samples.The same procedure is followed
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Figure 6.5: Measuring the accuracy of Radon-based versus PCA-based orientation

normalisation. (a) A scanned image (black) superimposed onits dynamic counterpart before

(white) and after (grey) PCA-based rotation. (b) Results for Radon-based (grey) and

PCA-based (black) rotation normalisation, where the difference between the number of

dynamic counterpart samples inside the approximating polygons of the original images before

and after rotation is shown as a function of the principle components
√

β1/β2.

after Radon-based and PCA-based rotation to calculateaE. The difference betweenaG andaE is

shown as a function of the skeleton principle components (
√

β1/β2) for PCA-based (black) and

Radon-based (grey) orientation normalisation. Note that
√

β1/β2 for a specific signature pro-

vides one with an indication of the ratio of the signature length in the direction of the principle

axis over the signature length in the direction of the axis that is orthogonal to the principle axis.

The highest PCA-based error results from the signature of Figure 6.5(a), whereaG−aE = 60.7%

and
√

β1/β2 = 1.41. In general, the graph shows that for PCA,aG − aE is especially high where
√

β1/β2 is small. It is therefore deduced that PCA-based rotation becomes unreliable where

principle components are similar. Averaged over the total number of static scripts (51) the av-

erageaG − aE for PCA-based rotation is 7.7%, whereas for the Radon-based rotation it is 1.5%.

Thus, despite the relatively few signatures where
√

β1/β2 is small (there are only 3 signatures

where
√

β1/β2 ≤ 1.5), the Radon-based orientation normalisation scheme already outperforms

the PCA-based scheme according to this evaluation. It is also clear that, although the Radon-

based scheme is more accurate than the PCA-based scheme, only a 1% performance increase in
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our HMM’s performance is achieved for the Radon-based rotation. This experiment is therefore

a good indication that our HMM is quite robust to global orientation variations. It is, however,

beneficial to employ the Radon-based rotation, especially where
√

β1/β2 ≤ 1.5.

Our HMM’s robustness to rotational variations is explainedas follows:

• Firstly, it is observed that our HMM is rather robust to localrotational variations. This ro-

bustness is especially evident from the good results obtained for the standard pixel-based

thinning technique (discussed in Section 6.3.2), where theangular differences between

connected samples are multiples of 45◦. This local robustness is attributed to:

– The standard deviationσ′V in our directional PDF componentN(µV
i j , σ

′
V) (see Sec-

tion 4.8) compensates for local directional differences between a dynamic exemplar

and a static skeleton.

– The Viterbi algorithm computes agloballyoptimal path, thereby providing a robust-

ness to local differences.

• Secondly, our HMM is rather robust to global rotational variations. This robustness is

especially evident from the experiments described in this section. Equation 4.5 indicates

that the directional featureµV
i j in N(µV

i j , σ
′
V) is relative and normalised. Thus, in most

cases, the same global optimal path for a wide scope of globalrotational shifts between

the same dynamic exemplar and static script results. However, it is important to note that

δ from (5.4) decreases for the same state sequence if the relative global rotational shift is

increased. Since the selection of the optimal pen trajectory for a static script is based on

δ, rotational variations may lead to a sub-optimal selection.

6.3.4 Experimental results for different resampling schemes

Two sets of experiments are described. The first set resamples the static skeletons and dynamic

exemplars so that the distance between any two successive samples is roughly the same, i.e.,

a Euclidean resampling is used. Specifically, the distance between two successive pixels is

approximately 1 pixel, as described in Section 3.3. For the first set, an average of 88.3% of the

estimated trajectory path lengths are correct. The second set uses the critical-point resampling

described in Section 3.3, and achieves an average accuracy of 87.9% (expressed as a percentage

of the ground-truth path lengths.) The exact configurationsof the experiments are specified in

entries 3(a) and 3(b) in Table 6.1.

Firstly, it is evident from Table 6.5 that the accuracies forcritical-point and Euclidean resam-

pling are approximately the same. In fact, according to the statistical significance test the dif-

ferences are chiefly attributable to chance. Section 3.3 hasshown that our critical-point resam-
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Results Statistical significance

Resampling Accuracy k P(Y ≥ k) | µY − k | /σY

(a) Euclidean 88.3%
26 50% 0.14

(b) Critical point 87.9%

Table 6.5: Experimental results for (a) Euclidean resampling and (b)

critical-point resampling.

pling reduces samples on a parametric curve by minimising the information loss inherent in the

point-reduction scheme. Thus, it is expected that the results for the two configurations would

be similar if all the high-curvatures points (containing important information) of the samples on

the Euclidean resampled curve were selected by our critical-point resampled curve. However,

it should also be noted that the critical-point resampling includes more context for our HMMs.

This inclusion of context also contributes to the good results of the critical-point resampling

scheme and can be explained as follows. As mentioned earlier, skip-link and duration states

allow for a factor two difference between the number of samples in corresponding segments of

static skeletons and dynamic exemplars. A straight line anda curved line with the same path

length have approximately the same number of samples when using Euclidean resampling. Al-

though the directional PDF components suppress the matching of curved and straight lines, it

is still possible. When using our critical-point resampling, the number of samples on a straight

line and a curved line with the same path length might differ with a factor of more than two,

thereby further restricting the matching of these curved and straight lines.

Secondly, a significant increase in the speed of our system isobserved when using critical-

point instead of Euclidean resampling. This increase in speed is simply due to the decrease in

the number of samples when using critical-point resampling. The reduction of computational

requirements is demonstrated using a typical signature in US-SIGBASE, shown in Figure 6.6.

During the recording process of the static signature in Figure 6.6(a) and its dynamic exemplars,

the signatory was constrained to sign within a bounding box of approximately 50 mm× 20 mm

(somewhat larger than what would normally be allowed on documents such as bank cheques.)

All experiments were conducted on a 1.6 GHz AMD XP1900+. The signature in Figure 6.6(a)

has approximately 1378 samples in its skeleton using the Euclidean resampling scheme. Its

final HMM has 12 294 states and 73 502 transition links. Practically, it takes approximately 31

seconds to estimate the pen trajectory of Figure 6.6(a) based on a different Euclidean resam-

pled dynamic exemplar with 1652 samples. The critical-point skeleton of Figure 6.6(b) results

from selecting high curvature points from the Euclidean resampled skeleton and reducing the

number of samples on straight lines, as described in Section3.3. The final critical-point resam-

pled skeleton of Figure 6.6(a) has 572 samples, 5040 HMM states and 29 966 transition links.
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CriticalEuclidean
(a) (b)

Figure 6.6: A typical example from US-SIGBASE to explain experimental results for different

resampling schemes. (a) A static script with (b) a fragment of its Euclidean and critical-point

resampled skeleton.

Practically, it takes approximately 7 seconds to estimate its pen trajectory based on a differ-

ent dynamic exemplar with 676 critical points. The computational requirements of the system

will continue to decrease if the number of samples is reduced. However, it is anticipated that

a cut-off would surface where the trade-off between the accuracy and the speed of the system

becomes less rewarding. It should also be noted that we are using generic software with no

optimisation for this particular application. It is expected that the execution time can also be

substantially reduced with code optimised for this application. Other optimisation suggestions

are made in the final chapter.

6.3.5 Experimental results for different training schemes

Two sets of experiments are described. The first set uses the HMM parameters defined in

Section 4.8. Thus, for each individual, the unique PDF parametersσ′P andσ′V are calculated

using the training scheme described in Section 4.8. Recall that these parameters are derived

from σP andσV by utilising pre-recorded dynamic exemplar information, and that they allow

for size and orientation variations in static scripts. The first set achieves an average accuracy

rate of 87.9%. The second set uses the empirical HMM parameters defined in Section 4.7.

Hence, no training is applied to the position and directional standard deviations of the PDFs,

so thatσP = 17 andσV = 0.2 for all the individuals in US-SIGBASE. The second set achieves

an average accuracy rate of 87%. The exact configurations of the experiments are specified in

entries 4(a) and 4(b) in Table 6.1.

No significant difference between the two training schemes is observed. It is therefore con-

cluded that our empirical standard deviations are well chosen. To roughly estimate how well

the empirical standard deviations correspond with the writer-specific standard deviations, the

averageσ′P andσ′V have been computed over all the individuals. The averageσ′P is 13.3 and the
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Results Statistical significance

Training Accuracy k P(Y ≥ k) | µY − k | /σY

(a) Writer-specific 87.9%
28 28.8% 0.7

(b) Empirical 87%

Table 6.6: Experimental results for (a) our writer-specific training scheme and (b) for

empirically determined PDF parameters.

averageσ′V is 0.15, which are relatively similar to the empirical valuesσP = 17 andσV = 0.2.

It is also concluded that our system is not highly sensitive to allographic variations, i.e., the

system that uses the same position and directional standarddeviations for different individuals

performs surprisingly well. However, writer-specific training is beneficial when considering the

following:

• There is a slight increase in the performance of the system when writer-specific training

is employed.

• The parametersσ′P andσ′V are specified for each individual, and may therefore be useful

as biometric measurements for an individual in other applications.

6.3.6 Typical errors

As expected, the main cause of errors is inconsistencies between a static image and a dynamic

exemplar. Specifically, the system is prone to errors in regions where a line segment is present

in either the dynamic exemplar or static image, but absent inthe other. Figure 6.7 shows exam-

ples of typical errors that are encountered when estimatingthe pen trajectories of static scripts.

Examples of typical dynamic exemplars and skeletonised static images from US-SIGBASE are

shown in Figures 6.7(a) and (b), respectively. Black lines in Figure 6.7(b) identifies curves

that match the ground-truth trajectories. Red lines indicate which skeleton samples were not

extracted during the computation of the estimated and ground-truth trajectories. As expected,

the red lines are mostly part of web-like structures. Erroneous skeleton samples, i.e., estimated

samples that do not match the ground-truths, are indicated using green and blue lines. Specifi-

cally, deletion errors are green, whereas substitution andinsertion errors are blue.

Figure 6.7(d) presents the accuraciesatotal of the estimated pen trajectories of Figure 6.7(b), as

calculated frome(t) in Figure 6.7(c). The error functione(t) is computed by identifying all the

errors, as described in Section 6.1.2, and calculating the sum of all the errors that are part of the

same non-zero pulse. Thus, each continuous blue or green curve in Figure 6.7(b) corresponds

to a non-zero pulse in Figure 6.7(c), where the height of the pulse is the total error of the
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Figure 6.7: Typical errors that are encountered in estimated pen trajectories. (a) Dynamic

exemplars. (b) Skeleton samples that are estimated correctly (black lines), skeleton samples

that were not extracted during the calculation of the ground-truth and the estimated

trajectories (red lines), errors due to deletions (green lines), and errors due to substitutions

and insertions (blue lines.) (c) Graphs of the cost functions that are used to quantify errors

from (b). (d) Quantitative results when the dynamic exemplars of (a) are matched to the HMMs

derived from (b).

continuous erroneous curve. Figure 6.7(d) presents the loglikelihoods log(δ) after matching the

dynamic exemplars of Figure 6.7(a) to the HMMs derived from Figure 6.7(b). The values for
RL
TL

and log(δW) from (5.5) are also shown.

Samples in a static image that are absent in the corresponding dynamic exemplar cannot be ex-



6.3 — E 110

tracted from the static image and therefore cause deletion errors. The reason is that the dynamic

exemplar does not provide the necessary information. The curves at arrows 1 and 2 of skeleton 1

in Figure 6.7(b) do not occur in the dynamic exemplar, as indicated by the corresponding arrows

in Figure 6.7(a). The two corresponding deletion errors ine(t) are indicated in Figure 6.7(c).

Note that the first error has the longest path length and therefore results in the highest pulse in

e(t), as shown in Figure 6.7(c). The second error’s pulse is wider, as the erroneous curve has a

high curvature point and therefore consists of more skeleton samples than the first error.

Other errors are caused by dynamic exemplar substitutions and insertions, as indicated by the

blue lines in Figure 6.7(b). An example of a substitution is indicated by the arrow of dynamic

exemplar 2 in Figure 6.7(a). The resulting error is indicated by the blue lines at the arrow

of Figure 6.7(b). Examples of insertions are at the arrows ofdynamic exemplars 3 and 4.

Corresponding errors are indicated by the blue lines and arrows of Figure 6.7(b). The error at the

arrow of signature 3 is better comprehended when notice is taken of the differences between the

static skeleton and dynamic exemplar, as depicted by the animation in Figure 5.7(k). Animation

examples are also provided on the attached CD; see Appendix Afor further detail.

Size differences between corresponding segments can also cause errors, e.g., the character “o”

of signature 5. Because the “o” in the dynamic exemplar is bigger than the “o” in the static

skeleton, a part of the “o” in the static skeleton is traversed twice, resulting in the error shown

in blue. Note, however, that our HMM does accommodate size differences in most cases, e.g.,

the leftmost loop of signature 1.

It is observed that the accuracy of our system is not primarily linked to the complexity of the

static scripts. Our system’s efficacy depends more on the consistency between an individual’s

signatures. More dynamic exemplars are required for inconsistent individuals than for consis-

tent individuals to produce accurate results. In some cases, however, the images may have an

excessive line thickness relative to the size of the signature. Hence, information loss due to

multiple crossings in small areas becomes severe, making itdifficult or impossible to unravel

the image. Figures 6.8(a)-(c) show an example of such a signature. The original image, its

skeleton, and the dynamic exemplar corresponding best to itare shown in Figures 6.8(a)-(c),

respectively. Not only is the shape of the image in Figure 6.8(a) corrupted in the middle region,

but the dynamic exemplars have inconsistent pen movements in corresponding regions. Despite

the obvious difficulties, a total path length of approximately 64% is recovered correctly.
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(a) (b) (c)

Figure 6.8: (a) A complicated static image to unravel, with (b) its skeleton and (c) the

dynamic exemplar corresponding best to it.

6.4 Comparison with existing approaches

Compared to the related work listed in Table 2.1, we do not impose any significant restric-

tions on the range of scripts that can be dealt with. Our HMM topology enables an estimated

pen-trajectory to start and end at any skeleton sample of thestatic script and enables us to

model turning points. No restrictions are imposed at intersections (except in cases of very sim-

ple crossings; see Section 4.5). Furthermore, the PDF components that take the pen pressure

of the dynamic exemplars into consideration enable us to accommodate scripts that consist of

multi-path trajectories. The only other method that can establish a local correspondence be-

tween a static script and a dynamic exemplar is the method of Guo et al. [31]. However, their

method differs significantly from ours, and they have no quantitative results. Experimental

results indicate that our approach is not highly sensitive to skeletonisation artifacts, whereas

many existing techniques are. Compared to existing techniques that use dynamic exemplar in-

formation [31, 51], basic preprocessing makes our technique scale, translation and rotationally

invariant. Experimental results show that our approach is not highly sensitive to allographic

variations. Pen sequence variations can be accommodated depending on the consistency of a

specific individual’s handwriting and the number of available dynamic exemplars.

The only technique that provides a quantitative evaluationprotocol and comparative results is

that of Jäger [38]. Firstly, it should be noted that the travelling salesman approach (employed by

Jäger [38]) seems to produce the most accurate results of all the graph-theoretical approaches.

However, the travelling salesman problem cannot be solved efficiently; see Chapter 2. The

Viterbi algorithm, on the other hand, is efficient. The computational cost of the Viterbi algorithm

is O(Tm), wherem is the number of non-zero transition probabilities at each time step [7]. Thus,

e.g., in the worst case, when all the transition probabilities are non-zero at each time step for

our HMM derived from the critical-point skeleton of Figure 6.6, m = 29 966 andT = 676, so

that mT = 14 728 688. Solving the travelling salesman problem (Jäger’s approach [38]) for

the same skeleton with 572 edges, causes a combinatorial explosion. In fact, when solving the
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travelling salesman problemO(n!) computations evaluate all the paths so thatn! = 39 916 800

for a skeleton with only 11 edges. Hence, it is concluded thatour approach is computationally

more effective than methods that solve the travelling salesman problem.

Table 6.7 shows the experimental configurations for our approach and Jäger’s approach [38] in

rows labelled (a) and (b), respectively.

Database characteristics:

Database Average path

length (pixels)

Average number

of edges

Number

of images

Number

of exemplars

(a) US-SIGBASE 2844.1 776.4 51 712

(b) Jäger [38] − 17.7 6934 6934

Data configuration:

Skeleton Orientation Resampling Training Evaluation

(a) Pseudo (webs) Radon High curvature Writer DP

(b) Non-standard − Cross/Endpoint − DP

Results:

Total accuracy: (Levenshtein distance expressed as a % of the number of edges)

(a) 83.1%

(b) 78%

Table 6.7: A comparison with an existing approach. The data configurations that were used to

establish a comparison with Jäger [38] are shown.

A few essential differences between the two configurations displayed in Table 6.7 should be

taken into consideration before the results can be discussed:

1. It should be noted that Jäger [38] generated results by converting on-line words into off-

line words. Although we conducted validation tests, there are still discrepancies between

the on-line and off-line signatures in our database that result in additional errors in some

cases. In general, off-line scripts that are generated from on-line scripts result in skeletons

with less artifacts and background noise than skeletons derived from scanned-in scripts.

2. Jäger [38] is primarily concerned with words, whereas wefocus on signatures. In general,

characters and words do not have as many complicated intersections and lines that are

traced more than twice as signatures do.

3. Jäger [38] employes a skeletonisation different from ours. However, they also use a

method to remove artifacts from the skeletons.

4. Jäger [38] segments the skeletons of static scripts at crosspoints and endpoints. In our

database, pen-up and pen-down events can occur at any skeleton sample, and there are
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many web-like structures in our skeletons, making it ratherdifficult to employ the same

segmentation.

5. Another important point to note is that Jäger’s approach[38] cannot indicate where pen-

up and pen-down events occur—it is assumed that every word iswritten without the pen

being lifted. The author notes that arbitrary pen-up and pen-down events pose serious

problems. Thus, it is expected that the approach followed byJäger [38] will struggle

to unravel the signatures in our database, where the positions of pen-up and pen-down

events cannot be easily predicted.

6. The evaluation protocol of Jäger [38] has been employed,as described in Section 6.1.

The total Levenshtein distance is expressed as a percentageof the total number of edges

in the ground truths and averaged over the number of static images in the database. This

error measure is, however, not invariant to parameterisation, and may therefore cause

discrepancies between the results that are compared.

From the above remarks, it is clear that there are so many significant differences between the

two experimental configurations in Table 6.7 that an accurate comparison is not really possible.

In fact, our system is penalised due to our resampling and thecomplicated scripts that constitute

US-SIGBASE. However, an extremely rough estimate indicates that our approach outperforms

Jäger [38] by approximately 5%. Note that this is the absolute difference between our results

and the results of Jäger [38]. However, in view of a relativedifference, our algorithm reduces the

error rate with approximately 23% compared to Jäger. It is anticipated that our system would

perform significantly better for characters and words, depending on the application.

6.5 Summary

In summary, this chapter has accomplished the following:

1. To compute the efficacy of an estimated pen trajectory, the ground-truth and estimated

pen trajectories must be compared with each other. Existingevaluation protocols that

establish such a quantitative comparison have been investigated. Specifically, the two

existing protocols by Lau et al. [52] and Jäger [38] have been examined to establish the

general beneficial characteristics of an evaluation protocol. Accordingly, our evaluation

protocol has the following desired characteristics:

• Ground-truth and estimated pen trajectories having different numbers of samples

can be handled.

• Our evaluation protocol is invariant to parameterisation.
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• Our evaluation protocol establishes a rather unique mapping between the estimated

and ground-truth trajectories, so that errors can be identified easily and with confi-

dence.

• Our evaluation protocol is easy to implement, so that it can be used as a standardised

evaluation protocol for trajectory estimation algorithms.

2. A database that contains both the on-line and off-line versions of signatures was created.

As far as we are aware, no such standardised signature database exists. It is important to

determine if a system’s performance degrades in a practicalenvironment. Thus, the most

influential processing steps and practical implications when recording such a database

have been briefly pointed out in this chapter.

3. Various experiments have been described in this chapter.The following important re-

sults, which contribute to the establishment of our system’s robustness, emerged from the

experiments:

• Our system is not highly sensitive to skeletonisation artifacts.

• Experimental results indicate that the Radon-based orientation normalisation scheme

performs better than the PCA-based scheme. A sensitive measurement scheme in-

dicates that the Radon-based rotation is more accurate the the PCA-based rotation.

However, the performance of our system for the PCA-based rotation remains very

good. This indicates that our system is rather robust to rotational variations.

• Experimental results indicate that the empirical PDF parameters were suitably cho-

sen and that our system is not highly sensitive to allographic variations.

4. The experiments show that critical-point resampling is preferable over Euclidean resam-

pling: without a significant decrease in the performance of the system, a significant in-

crease in the speed is acquired. This critical-point resampling is, however, dependent on

high-quality skeletons.

5. Compared to existing techniques, our system imposes few restrictions on the range of

scripts that can be handled. An extremely rough quantitative comparison indicates that

our system outperforms the system of Jäger [38]. Our estimation algorithm is also much

more efficient.



Chapter 7

Conclusions and future work

7.1 Conclusions

In this dissertation a probabilistic model was developed for extracting the pen trajectory of a

static script. Although our emphasis was on handwritten signatures, the technique should also

be valuable for more general scripts such as handwritten words, characters and line drawings.

The HMM encapsulates a two-level representation of a staticimage. Both levels take context

into account by modelling time dependencies. On the higher level, the sub-images and single-

paths that constitute a static script are modelled, whereason the lower level the skeleton samples

that constitute the sub-images are modelled. Our principleachievements in this design are the

following:

• On the lower level, only single-path trajectories can be extracted. Thus, if applied to

a script consisting of multiple sub-images, a single trajectory with continuous non-zero

pressure will be extracted from one of the sub-images. Time dependencies are mod-

elled by exploiting the virtues of higher-order HMMs. An effective implementation of

higher-order HMMs is made practically realisable through the ORED algorithm [22, 21].

Knowledge of past context, available from second-order HMMs, is especially useful for

modelling the following important facets:

– Knowledge of past context enables the enforcement of continuous pen motions

(without abrupt erratic turns) on straight lines (see Figure 4.5.)

– Simple intersections are detached within the HMM and turning points are also mod-

elled by exploiting past context (see Figure 4.7.)

– Knowledge of past events enables the inclusion of a directional feature in our PDFs.

This directional feature is similar to the velocity featureused in various on-line

handwriting applications, and is a crucial factor for good results.

115
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• On the higher-level, the virtues of hierarchical HMMs are exploited. Time dependencies

between the different sub-images that constitute a static scriptand the different paths

between them are modelled. This provides an elegant solution to the following problems:

– The gateway to model pen pressure in handwritten static scripts is opened when

using HHMMs. The HHMMs enable the estimation of locations where the indi-

vidual lifted the pen, thus allowing us to deal with multi-path static scripts. This

generalises our approach so that no restrictions are placedon the number of sub-

images that may constitute a static script, or the number of single-path trajectories

that generated the script.

– By manipulating the topology of our HHMM we can deal effectively with situations

where unexpected disconnections occur in static scripts.

• Our higher-level and lower-level HMMs are designed to incorporate prior knowledge

from pre-recorded dynamic exemplars. The Viterbi algorithm matches a dynamic ex-

emplar to the final HMM and determines the most likely state sequence, which can be

translated into the most likely pen trajectory. The Viterbialgorithm is globally optimised,

making it highly suitable for resolving local ambiguities in a static script.

From a more general point of view, this dissertation has shown how the topology and PDFs of

HMMs can be engineered to meet application-specific requirements. In short, our model can

deal with a wide variety of static scripts robustly and effectively. Throughout this dissertation,

we have remarked on and referenced back to the outlined contributions in Section 1.5. Our

foremost results are now summarised as follows:

• Our experiments compared the ground-truth with the estimated pen trajectories of static

scripts, where a database with on-line and off-line representatives of signatures was used

to conduct experiments. The experimental results indicatethat an average of approxi-

mately 88% of the estimated trajectory path lengths from this database correspond to the

ground-truth path lengths (averaged over all the images.)

• Many systems that estimate the pen trajectories of static scripts and other off-line hand-

writing recognition techniques suffer from a high sensitivity to artifacts. Experiments

indicate that our system is rather robust with respect to thetype of skeletonisation used.

Moreover, we find that complex static images, even ones that are hard to unravel with the

eye, do not pose serious problems. Of course, some thick-lined images can be corrupted

to such an extent during skeletonisation that information loss becomes severe, making it

very difficult to unravel the image.

• The main source of errors is inconsistencies between a dynamic exemplar and a static

image, which are inevitable for handwritten documents. Although our system is not im-

mune to dissimilarities and ambiguities, it takes global context into account, making it
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more robust than algorithms that rely heavily on local correspondences. It is important

to note, however, that in those cases where errors do occur, one still has access to local

correspondences. This can be useful in a signature verification application, as it allows

the comparison of only those parts of the signature that wereaccurately recovered.

• Experiments indicate that our HMM is rather robust to rotational variations. However, it

is still beneficial to employ our Radon-based scheme in caseswhere the principle com-

ponents of the script are similar.

• The effect of different resampling schemes was measured. Experimental results indi-

cate that a dense sampling rate at high curvature points and the reduction of samples on

straight lines tend to complement our approach: a substantial increase in speed without a

substantial decrease in accuracy is effected.

• We also experimented with writer-specific training schemes, where the position and direc-

tional standard deviations were estimated from the dynamicexemplars of each individual.

Our experiments indicate that our basic writer-specific training scheme is not significantly

better than our system where the same empirical deviations are used for all the individ-

uals. This indicates that our system is insensitive to allographic variations and that the

empirically obtained parameter values are adequate. Although prior conventional scal-

ing and translation schemes are invoked, embedded PDF variances also contribute to our

system’s ability to cope with signatures of different sizes.

• The availability of dynamic exemplars enables us to incorporate pressure information to

deal with multi-path scripts. In fact, to our knowledge, no existing technique includes

dynamic pressure information. A practical problem arises when spurious disconnections

(broken lines) are encountered. By virtue of our HMM topology, we can deal with most

spurious disconnections, turning points and signatures with different numbers of samples.

• Compared to existing techniques, our approach does not impose severe restrictions on

the scripts that can be handled—it depends chiefly on the availability of dynamic exem-

plars, easily obtained in practise. A pen trajectory can, e.g., start at any position in a

static script, depending on where the dynamic exemplars of the individual that gener-

ated the script start. There are also no limitations on the number of times the pen can

revisit a line in the static script. It has been shown that ourHMM-based approach is

computationally more viable than methods that solve the travelling salesman problem.

Furthermore, there is sufficient scope to reduce the computational time of our system

even more, as discussed in the next section. Very few techniques provide quantitative

results, and no standard database exists with which to make accurate comparisons with

existing techniques. However, using the same evaluation protocol (which is not invariant

to parameterisation), and under very different circumstances, a rough estimate indicates

that our system outperforms the system of Jäger [38] by approximately 5%.

• Different evaluation protocols were used to calculate the efficacy of estimated pen trajec-



7.2 — F  118

tories. Compared to existing techniques, our evaluation protocol can deal with ground-

truth and estimated pen trajectories with different numbers of samples, and is invariant

to parameterisation. Additionally, it also calculates a more unique local correspondence

between an estimated and ground-truth trajectory, which makes the identification and

classification of errors possible.

7.2 Future work

7.2.1 Reducing the computational complexity

It is felt that the speed of the system can still be increased substantially. Section 6.3.4 has

shown that systems based on the critical-point resampling of Section 3.3 are faster than and

achieve approximately the same accuracy rate as systems based on Euclidean resampling. A

further improvement in the computational time could be effected by a reduction in the number

of samples in the static images and dynamic exemplars. However, some experiments must then

be conducted to calculate the degree of accuracy sacrificed for an increase in speed. General

optimisation of code for this application would also effect a reduction of execution time (see

Section 6.3.4.)

The Viterbi algorithm is used to estimate the pen trajectoryof a static image. The computa-

tional cost of the Viterbi algorithm isO(Tm), wherem is the number of non-zero transition

probabilities at each time step [7] andT is the number of samples in the dynamic exemplar that

are matched to the HMM. There are other approximate but faster algorithms that could be used

instead of the Viterbi algorithm (see [7].)

The number of transition links in our HMM can be reduced by establishing region boundaries

that enclose the typical starting and terminating positions of a static script. For example, the

region that spans the typical starting positions of a specific individual’s dynamic exemplars

can be computed. The appropriate transition weights can then be set to zero to prohibit a pen

trajectory from starting at skeleton samples outside the computed region. Note that this is also

a realisation of training. This training scheme would not, however, necessarily improve the

accuracy of results, but would decrease the computational time.
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7.2.2 Exploiting pressure information

To improve the accuracy of our system, pen pressure information can be exploited to a greater

extent. As mentioned in Chapter 1, pressure information is frequently embedded in the grey

levels of a static image (also see [84, 78].)

Initial stages of our skeletonisation scheme, described inSection 3.1, extracts the boundaries of

static scripts from their binarised images. Digitisation noise on the boundaries has a significant

effect on the smoothness and accuracy of final skeletons. Hence,much attention is paid to

smoothing the image boundaries. In our opinion, a better approach would be to extract the

boundaries of the static scripts directly from their grey-scale images before the calculation of

the skeletons. Section 3.1.4 has shown that smoother boundaries reduce peripheral artifacts.

Thus, a further improvement could be obtained if the boundaries are smoothed on a sub-pixel

basis while they are extracted. Subsequent smoothing procedures can then be removed, e.g.,

the empirical formula of (3.1). Under ideal circumstances,no peripheral artifacts would appear

in the skeletons of the static scripts, thereby also reducing the risk of removing actual image

features.

With our current HMM configuration (described in Section 4.8) the only normalised pressure

values that are matched to our pressure PDF components are 0 and 1. Thus, “hard decisions”

are made by the pressure PDF components to determine if the pen trajectory must be extracted

from a specific sub-image in the static script, or if the zero-pressure state must be entered

(when a pen-up event occurs.) A more accurate approach wouldbe to let the pen pressure PDF

components of the zero-pressure states and other emitting states overlap slightly. This would be

especially beneficial in cases where the dynamic pen pressure is so small that some lines occur

in a static script which are absent in the script’s dynamic counterpart. However, the resolution

of the pen pressure quantisation levels of our digitising tablet is too low for such investigations.

It can record only 256 pressure levels, whereas more advanced tablets can record at least 1024

pressure levels. Thus, to measure the effect of overlapping PDF components practically, we

would have to record a new database with a more up-to-date tablet.

As shown in Section 2.2, Spagnolo et al. [78] developed a system that performs 3D acquisition

of documents. This device is particularly useful for computing the relationship between the

depth and grey-levels of static handwritten images, as wellas the pen pressure that generated

the images, especially in cases where the line densities at intersections are high. It is anticipated

that this additional information can be included in our PDF components to complement our

approach.
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7.2.3 Extending the training schemes

Our current efforts, not described in this thesis, investigates training schemes, where specific

standard deviations are trained for positional and directional PDF components of emitting states.

In this dissertation, such training schemes are referred toaslocalisedtraining schemes. Again,

localised training has to be adapted for this application. The aim of localised training is to

include more flexibility for geometric variations within our HMM, as corresponding parts in

the dynamic exemplars and static scripts frequently have inconsistent sizes and orientations.

The following pertinent observations have been made from preliminary experiments:

1. Data sparsity and the association of skeleton samples with emitting states prohibit training

of transition weights and the PDF meansµP andµV. As a first attempt we intend to

model geometric variations on specific curves within the static script more accurately. It

is therefore beneficial to train onlyσ′P andσ′V from Section 4.8 for each PDF.

2. Usually the HMM parameters are estimated by the method ofmaximum likelihood(ML).

However, due to data sparsitymaximum a posteriori(MAP) estimation is more appropri-

ate, so thatσ′P andσ′V can be used as priors for each PDF; see [27, 74] for more detailon

MAP estimation.

3. Due to data sparsity and our specific HMM structure, it is beneficial to group observations

from neighbouring emitting states (excluding the zero-pressure state) together. Since

these emitting states are associated with skeleton samples, this would result in grouping

together connected skeleton samples within a specified proximity of each other.

4. Due to typical pen sequence variations, it is possible that dynamic exemplar samples

that do not, in reality, correspond to each other are joined to update a specific PDF’s

parameters. Thus, it seems beneficial to employ a strategy that can identify mismatched

dynamic exemplar samples before parameter estimates.

7.2.4 Applications: Signature verification and character recognition

Our HMMs for static scripts are potentially useful for a variety of applications. The HMMs

are rather robust to geometric and allographic variations in static scripts, indicating potential to

generalise them for arbitrary static shapes. Our system also has the ability to separate patterns

belonging to different classes. It may therefore be useful in applications where it is necessary

to classify arbitrary shapes. Two possible applications where our system may be integrated is

discussed in this section: An off-line verification system and an off-line character recognition

system.
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Signature verification. Off-line signature verification systems that extract dynamic informa-

tion from static scripts are rare. As far as we are aware, onlyGuo et el. [31] establish local

correspondences between dynamic exemplars and static signatures for verification purposes.

Furthermore, by estimating the pen trajectories of static signatures, one has access to many

on-line signature verification techniques. In general, these on-line techniques differ noticeably

from off-line verification techniques. Thus, it is anticipated our system can be combined with a

wide range of other different signature verification techniques to produce even better results.

Recall from Section 1.3.1 that a good pattern recognition system increases the separability be-

tween test and training patterns belonging to different classes. Preliminary results indicate that

the likelihoodδW can already be used as a confidence measure of the separability between

patterns from different classes, and can therefore be useful to identify forgeries, especially ca-

sual forgeries, in an off-line signature verification system. Figure 7.1 depicts a typical scenario

where the pen trajectory of a static script is estimated using a correct dynamic exemplar (created

by the same individual) and an incorrect dynamic exemplar (created by a different individual.)

Figure 7.1(b) shows the skeleton of the static signature in Figure 7.1(a). Figure 7.1(c) shows

the results when the dynamic exemplar of Figure 7.1(c), by the same individual, is compared

with the HMM derived from Figure 7.1(b). Thus, the situationis simulated where a genuine

static signature must be verified in an off-line signature verification system, where the static

signature is the test pattern and the dynamic exemplar the training pattern. Note that all accu-

racy scores are expressed as a percentage of the ground-truth path length of the script in (a).

Figure 7.1(d) shows the results when the dynamic exemplar ofFigure 7.1(d), by a different

individual in the database, is compared with the HMM derivedfrom Figure 7.1(b). Thus, the

situation is simulated where a casually forged static signature must be verified in an off-line sig-

nature verification system. Note that the signatures have been normalised before comparison,

as shown in Figures 7.1(e)-(f), where the skeleton of Figure7.1(b) is rendered as a solid line

and the signatures of Figures 7.1(c)-(d) are rendered as dashed lines.

Figures 7.1(c)-(d) illustrate our system’s ability to separate test and training patterns from differ-

ent classes: Even though the accuracy of the estimated pen trajectory derived from Figure 7.1(c)

is not 100%, there is already a noticeable separation between the log likelihood log(δ) of Fig-

ures 7.1(c) and (d). Note from (5.5) how log(δW) increases this separability since only 47.4%

of Figure 7.1(b) is recovered when Figure 7.1(d) is used to estimated the pen trajectory of Fig-

ure 7.1(b). Note that the accuracy of Figure 7.1(d) is negative, as determined by our evaluation

protocol. Specifically, the 68.3% deletion errors are addedto the 32.4% substitution and inser-

tion errors resulting in a negative accuracy score.

Character/word Recognition. Although our pen trajectory estimation algorithm can also be

applied to a character/word recognition system, a large vocabulary of characters and cursive
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(a) (e)

log(δ) = −8.75
RL
TL
= 0.9511

log(δW) = −9.2

Accuracy: 83.8%

log(δ) = −18.56
RL
TL
= 0.474

log(δW) = −39.18

Accuracy:−0.7%

(b) (c) (d) (f)

Figure 7.1: Illustration of our system’s ability to separate test and training patterns from

different classes. (a) A static script with (b) its skeleton. (c)A dynamic exemplar by the same

individual who generated (b). (d) A dynamic exemplar by a different individual than the one

who generated (b). (e)-(f) The skeleton (solid line) from (b) superimposed on the dynamic

exemplars (dashed lines) of (c) and (d) after normalisation.

words may result in exhaustive searches for the most suitable pen trajectories (the likelihoods of

each character/word may be used as a confidence measure to recognise them.) Itwould therefore

be more beneficial to recognise characters/words from a restricted library (see [31, 64]), or by

simplifying our model. We have, e.g., done some promising preliminary experiments, where our

HMM was adapted to model the boundaries of shapes. In such cases, our HMM can be greatly

simplified, as the boundaries of shapes are non-overlapping, closed, contiguous trajectories.

For cursive words, prior segmentation of the static words into separate characters may also be

beneficial.

7.2.5 Recording more data and conducting more experiments

Recording more data. Our system was tested on a carefully designed database. Although

every effort was made to ensure that the results quoted in this thesis are true reflections of

the capabilities of our system, more extensive tests on moredata will improve the confidence

in the performance of the system. Cursive characters and words can also be recorded to test

our system’s performance in a character/word recognition environment. Application-specific

simplifications can then be made to our HMM.

Conducting more experiments. As our experiments were conducted using primarily ball-

point pens, it will be interesting to record static images using different pen types, e.g., pencils,

crayons, permanent markers and even paint brushes. One can then quantify the robustness of
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our system relative to the type of pen. In this application, Euclidean and critical-point resam-

pling schemes were employed. For the Euclidean resampling scheme the length of a curve

segment is always approximately one (measured in pixels), whereas for the critical-point re-

sampling scheme the length of a curve segment is always approximately five or one (measured

in pixels.) Thus, the length of a curve segment is dependent on its resampling. Future work

can include the investigation of different resampling schemes resulting in more curve-length

variations. One can then include more context by adding another curve-length component in

our feature vectors. In general, one can also investigate the utilisation of other features, e.g., a

curvature feature, to enhance the performance of our system.
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[38] Jäger, S.,Recovering Dynamic Information from Static, Handwritten Word Images. PhD

thesis, University of Freiburg, 1998.

[39] Kapoor, R., Bagai, D., and S., K. T., “A New Algorithm forSkew Detection and

Correction.”Pattern Recognition Letters, August 2004, Vol. 25, pp. 1215–1229.

[40] Kato, Y. and Yasuhara, M., “Recovery of Drawing Order from Single-Stroke

Handwriting Images.”IEEE Transactions on Pattern Analysis and Machine Intelligence,

September 2000, Vol. 22, No. 9, pp. 938–949.

[41] Kato, Y. and Yasuhara, M., “Recovery of Drawing Order from Scanned Images of

Multi-Stroke Handwriting.” inProceedings of the International Conference on Document

Analysis and Recognition, pp. 261–264, IEEE Computer Society, 1999.

[42] Kegl, B. and Krzyzak, A., “Piecewise Linear Skeletonization using Principal Curves.”

IEEE Transactions on Pattern Analysis and Machine Intelligence, January 2002, Vol. 24,

No. 1, pp. 59–74.

[43] Lallican, P. M., Viard-Gaudin, C., and Knerr, S., “FromOff-Line to On-Line Handwriting

Recognition.” inProceedings of the Seventh International Workshop on Frontiers in

Handwriting Recognition, pp. 303–312, International Unipen Foundation, 2000.

[44] Lallican, P. M. and Viard-Gaudin, C., “A Kalman Approach for Stroke Order Recovering

from Off-Line Handwriting.” inProceedings of the International Conference on

Document Analysis and Recognition, pp. 519–523, IEEE Computer Society, 1997.

[45] Lallican, P. M., Viard-Gaudin, C., Knerr, S., and Binter, P., “The IRESTE ON-OFF

(IRONOFF) Handwritten Image Database.” inProceedings of the International

Conference on Document Analysis and Recognition, pp. 455–458, 1999.

[46] Lam, L. and Suen, C. Y., “Automatic Comparison of Skeletons by Shape Matching

Methods.”International Journal of Pattern Recognition and Artificial Intelligence, 1993,

Vol. 7, No. 5, pp. 1271–1286.

[47] Lam, L. and Suen, C. Y., “An Evaluation of Parallel Thinning Algorithms for

Character-Recognition.”IEEE Transactions on Pattern Analysis and Machine

Intelligence, September 1995, Vol. 17, No. 9, pp. 914–919.



BIBLIOGRAPHY 128

[48] Lam, L., Lee, S., and Suen, C. Y., “Thinning Methodologies-A Comprehensive Survey.”

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, Vol. 14, No. 9,

pp. 869–885.

[49] Lane, J. M. and Riesenfeld, R. F., “A Theoretical Development for the Computer

Generation of Piecewise Polynomial Surfaces.”IEEE Transactions on Pattern Analysis

and Machine Intelligence, 1980, Vol. 2, pp. 34–46.

[50] Lau, K. K., Yuen, P. C., and Tang, Y. Y., “Stroke Extraction and Stroke Sequence

Estimation on Signatures.” inProceedings of the International Conference on Pattern

Recognition, pp. 119–122, 2002.

[51] Lau, K. K., Yuen, P. C., and Tang, Y. Y., “Recovery of Writing Sequence of Static Images

of Handwriting using UWM.” inProceedings of the International Conference on

Document Analysis and Recognition, pp. 1123–1128, 2003.

[52] Lau, K. K., Yuen, P. C., and Tang, Y. Y., “Directed Connection Measurement for

Evaluating Reconstructed Stroke Sequences in HandwritingImages.”Pattern

Recognition, 2005, Vol. 38, pp. 323–339.

[53] Le Riche, P., “Handwritten Signature Verification: A Hidden Markov Model Approach.”

Master’s thesis, Stellenbosch University, 2000.

[54] Lee, S. and Pan, J. C., “Offline Tracing and Representation of Signatures.”IEEE

Transactions on Systems, Man, and Cybernetics, July 1992, Vol. 22, No. 4, pp. 755–771.

[55] Martinez, T. and Schulten, K., “Topology RepresentingNetworks.”Neural Networks,

1994, Vol. 7, No. 3, pp. 507–522.

[56] Munich, M. E. and Perona, P., “Visual Identification by Signature Tracking.”IEEE

Transactions on Pattern Analysis and Machine Intelligence, February 2003, Vol. 25,

No. 2, pp. 200–217.

[57] Nel, E., Du Preez, J. A., and Herbst, B. M., “Estimating the Pen Trajectories of Static

Scripts using Hidden Markov Models.” inProceedings of the International Conference

on Document Analysis and Recognition, 2005.

[58] Nel, E., Du Preez, J. A., and Herbst, B. M., “Estimating the Pen Trajectories of Static

Signatures using Hidden Markov Models.”IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2005, Vol. 27, pp. 1733–1746.

[59] Pan, J. C. and Lee, S., “Offline Tracing and Representation of Signatures.” inProceedings

of IEEE Conference on Computer Vision and Pattern Recognition, pp. 679–680, 1991.



BIBLIOGRAPHY 129

[60] Park, H., Sin, B., Moon, J., and Lee, S., “A 2-D HMM Methodfor Offline Handwritten

Character Recognition.”International Journal of Pattern Recognition and Artificial

Intelligence, 2001, Vol. 15, No. 1, pp. 91–105.

[61] Peebles, P. Z.,Probability, Random Variables, and Random Signal Principles. Third

edition. McGraw-Hill, 1993.

[62] Plamondon, R. and Maarse, F. J., “An Evaluation of MotorModels of Handwriting.”

IEEE Transactions on Systems, Man, and Cybernetics B, 1989, Vol. 19, No. 5,

pp. 1060–1072.

[63] Plamondon, R. and Privitera, C. M., “The Segmentation of Cursive Handwriting: An

Approach Based on Off-Line Recovery of the Motor-Temporal Information.”IEEE

Transactions on Image Processing, January 1999, Vol. 8, No. 1, pp. 80–91.

[64] Plamondon, R. and Srihari, S. N., “On-Line and Off-Line Handwriting Recognition: A

Comprehensive Survey.”IEEE Transactions on Pattern Analysis and Machine

Intelligence, January 2000, Vol. 22, No. 1, pp. 63–84.

[65] Prasad, L., “Morphological Analysis of Shapes.” tech.rep., Los Alamos National

Laboratory, Los Alamos, July 1997.

[66] Privitera, C. M. and Plamondon, R., “A System for Scanning and Segmenting Cursively

Handwritten Words into Basic Strokes.” inProceedings of the International Conference

on Document Analysis and Recognition, pp. 1047–1050, 1995.

[67] Qiao, Y. and Yasuhara, M., “Recovering Dynamic Information from Static Handwritten

Images.” inProceedings of the International Workshop on Frontiers in Handwriting

Recognition, pp. 118–123, IEEE Computer Society, 2004.

[68] Rabiner, L. R. and Juang, B. H., “An Introduction to Hidden Markov Models.”IEEE

ASSP Magazine, January 1986, pp. 4–16.

[69] Rocha, J., “Perceptually Stable Regions for ArbitraryPolygons.”IEEE Transactions on

Systems, Man, and Cybernetics B, February 2003, Vol. 33, No. 1, pp. 165–171.

[70] Rosenthal, A. S., Hu, J., and Brown, M. K., “Size and Orientation Normalization of

On-Line Handwriting using Hough Transform.” inProceedings of the International

Conference on Acoustics, Speech, and Signal Processing, pp. 3077–3080, IEEE

Computer Society, 1997.

[71] Scheaffer, R. L. and McClave, J. T.,Probability and Statistics for Engineers. Wadsworth

Publishing Company, 1995.



BIBLIOGRAPHY 130

[72] Sedgewick, R.,Algorithms. Addison-Wesley Publishing Company, 1946.

[73] Seul, M., O’Gorman, L., and Sammon, M. S.,Practical Algorithms for Image Analysis:

Description, Examples, and Code. Cambridge University Press, 2000.

[74] Shinoda, K. and Lee, C.-H., “A Structural Bayes Approach to Speaker Adaptation.”IEEE

Transactions on Speech and Audio Processing, March 2001, Vol. 9, pp. 276–287.

[75] Sindle, C., “Handwritten Signature Verification usingHidden Markov Models.” Master’s

thesis, Stellenbosch University, 2003.

[76] Smith, E. H. B., “Scanner Parameter Estimation using Bilevel Scans of Star Charts.” in

Proceedings of the International Conference on Document Analysis and Recognition,

pp. 1164–1168, 2001.

[77] Smith, E., “Characterization of Image Degradation caused by Scanning.”Pattern

Recognition Letters, November 1998, Vol. 19, No. 13, pp. 1191–1197.

[78] Spagnolo, G. S., Simonetti, C., and Cozzella, L., “Superposed Strokes Analysis by

Conoscopic Holography as an Aid for a Handwriting Expert.”Journal of Optics A: Pure

and Applied Optics, 2004, Vol. 6, pp. 869–874.

[79] T. Stheinherz, N. I., “A Special Skeletonization Algorithm for Cursive Words.” in

Proceedings of the Seventh International Workshop on Frontiers in Handwriting

Recognition, pp. 529–534, International Unipen Foundation, 2000.

[80] Tang, Y. Y. and You, X., “Skeletonization of Ribbon-Like Shapes Based on a New

Wavelet Function.”IEEE Transactions on Pattern Analysis and Machine Intelligence,

September 2003, Vol. 25, No. 9, pp. 1118–1133.

[81] Terrades, O. R. and Valveny, E., “Radon Transform for Lineal Symbol Representation.”

in Proceedings of the International Conference on Document Analysis and Recognition,

pp. 195–199, 2003.

[82] Van Oosterhout, J. J. G. M., Dolfing, J. G. A., and Aarts, E. H. L., “On-Line Signature

Verification with Hidden Markov Models.” inProceedings of the International

Conference on Pattern Recognition, pp. 1309–1312, 1998.

[83] Verwer, B., van Vliet, L., and Verbeek, P., “Binary and Grey-Value Skeletons: Metrics

and Algorithms.”PRAI, 1993, Vol. 7, No. 5, pp. 1287–1308.

[84] Wirotius, M., Seropian, A., and Vincent, N., “Writer Identification from Gray Level

Distribution.” in Proceedings of the International Conference on Document Analysis and

Recognition, pp. 1168–1172, 2003.



BIBLIOGRAPHY 131

[85] Zhou, J. Y., Lopresti, D., Sarkar, P., and Nagy, G.,Spatial Sampling Effects on Scanned

2-D Patterns. Singapore: World Scientific, 1997.

[86] Zou, J. J. and Yan, H., “Skeletonization of Ribbon-LikeShapes Based on Regularity and

Singularity Analysis.”IEEE Transactions on Systems, Man, and Cybernetics B,

June 2001, Vol. 31, No. 3, pp. 401–407.

[87] Zou, J. J. and Yan, H., “Vectorization of Cartoon Drawings.” in Selected Papers from

Pan-Sydney Workshop on Visual Information Processing(Eades, P. and Jin, J. (Eds)),

(Sydney, Australia), ACS, 2001.



Appendix A

The static scripts in US-SIGBASE:

Animation examples.

Slides on the attached CD.The signatures that were randomly chosen to generate the results in

Section 6 are shown in Figure A.1. The static scripts of the users are numbered and correspond

to the static scripts that are presented in the Portable Document Format (PDF) file “slides.pdf”

on the attached CD. The file “slides.pdf” also contains animation examples for each user. The

slides can be viewed with Adobe Reader on a Windows or Linux platform. The slides are best

viewed full screen (the shortcut key is usually CTRL-L). Quick references to the different slides

can be found on the top of each slide. To quickly reach the slide for user 40, e.g, mouse-click on

the section reference “User 31-45” on the top of any slide andthen on the sub-section reference

“User 39-41”, and scroll down one slide to slide 40.

Slide description. Each slide shows the static script for a user (also shown in Figure A.1) as

well as the dynamic exemplar that obtained the highestδW (of all the dynamic exemplars for the

same individual). Refer to Section 5.4. The skeleton (solidlines) is also shown superimposed

on the dynamic exemplar (dashed lines) to illustrate geometric variation between them, after

prior preprocessing alignment (see Chapter 3). The Adobe Reader tools, e.g, the zoom utility,

can be used to inspect the shown signatures closely. The accuracy for each script’s estimated

pen trajectory is shown, and some Moving Picture Experts Group (MPEG) format animation

examples are provided. Click once on the play buttons to viewthem.

It is important to note that Adobe Reader opens an appropriate program to view the MPEG

animations. It was verified that the format of the animationsis compatible with Windows Media

Player and Winamp (on a Windows platforms) and Mplayer (on a Linux platform). It was

reported that some versions of Windows Media Player distortthe last frame of the animations

slightly. If Adobe Reader does not display the animations, one should verify the following:
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• Verify that a suitable MPEG viewing program is installed.

• Verify that the suitable MPEG viewing program is set as the default application associated

with MPEG files for the operation system in question.

Animation 1: View ground-truth pen trajectory. The first button launches an animation that

illustrates the result after matching the dynamiccounterpartof the static script to the HMM of

the script’s skeleton, as described in Section 6.1. Hence, the ground-truth trajectory (bottom

trajectory) of the static script is extracted from the script skeleton (bottom signature) by estab-

lishing a pointwise correspondence (red dots) with the dynamic counterpart (top signature and

trajectory).

Animation 2: View estimated pen trajectory. The second button launches an animation that

illustrates the result after matching the dynamicexemplar(also shown on the slide) of the static

script to the HMM of the script’s skeleton, as described in Chapters 4 and 5. The result is a

local correspondence (red dots) between the dynamic exemplar and the skeleton. The bottom

trajectory, extracted from the script skeleton, is the estimated pen trajectory of the static script,

where the top trajectory is the dynamic exemplar.

Animation 3: View evaluation trajectories. The third button launches the result when the

estimated pen trajectory (bottom trajectory from Animation 2) is matched to the script’s ground-

truth trajectory (bottom trajectory from Animation 1). Errors are represented the same as in

Figure 6.7(c), i.e., the ground-truth and estimated trajectories are superimposed, where green

lines indicate deletions and blue lines indicate substitutions and insertions. The error functions

(top) are computed exactly the same as the error functions inFigure 6.7(d). Thus, an erroneous

curve corresponds to a continuous pulse in the error function, where the pulse height is equal to

the path length of the erroneous curve. The rendered red dotscorrespond to errors of zero and

they are used to indicate where ground-truth and estimated trajectories (bottom) correspond.

The rendered yellow dots are used to indicate inception points of erroneous curves. They only

become visible when the red dots traverse erroneous curves.In such cases the error signal (top)

is non-zero.
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User 1 User 2 User 3 User 4

User 5 User 6 User 7 User 8

User 9 User 10 User 11 User 12

User 13 User 14 User 15 User 16

User 17 User 18 User 19 User 20

User 21 User 22 User 23 User 24

User 25 User 26 User 27 User 28

User 29 User 30 User 31 User 32

User 33 User 34 User 35 User 36

User 37 User 38 User 39 User 40

User 41 User 42 User 43 User 44

User 45 User 46 User 47 User 48

User 49 User 50 User 51

Figure A.1: The static scripts in US-SIGBASE that were unravelled to generate experimental

results.
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Application-specific skeleton, 43

Approximating polygon, 34, 103

Behavioural biometric measurement, 1

Biometric measurement, 1

Boundary edge, 32

Chaikin corner cutting, 43

Chinese postman problem, 21

Classification, 5

Complete graph, 20

Complicated J-T, 39

Critical point resampling, 49

Crosspoint, 33, 64

Cycle, 20

Delaunay triangulation, 32

Deletion, 92

Duration state, 64

Dynamic counterpart, 2

Dynamic exemplar, 4

Edge, 20

Efficient solution, 22

Emitting state, 53

End-triangle (E-T), 36

Endpoint, 32, 64

End region, 32

Entropy, 96

Euclidean resampled curve, 49

Eulerian cycle, 21

Eulerian path, 21

External triangles, 35

External edge, 35

Feature vector, 5, 54

Fully-connected ergodic, 77

General-purpose skeleton, 43

Geometric variations, 4

Graph, 20

Graph-theoretical methods, 20

Ground-truth trajectory, 9

Guo et al. [31], 26

Hamilton cycle, 21

Hamilton path, 21

HHMM, 76

HMM, 6

HMM State, 6

Insertion, 92

Internal edge, 35

Internal triangles, 35

Intersection artifacts, 31

Intersection region, 33

Isolated-triangle (I-T), 36

Jäger,S [38], 24

Junction-triangle (J-T), 36

Lau et al. [51], 26

Left-to-right topology, 70

Levenshtein distance, 24, 91

Line graph, 20

Line segment, 60

Localised training, 120

Local correspondence methods, 26
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Long ribbon, 37

Maximum likelihood estimation, 72, 120

Merging, 33

Multi-path static script, 3, 76

Multi-path trajectory, 3

Neighbouring states, 54

Nodes/Vertices, 20

Non-emitting state, 53

Normal-triangle (N-T), 36

Off-line handwriting, 1

On-line handwriting, 1

Order of an HMM, 6, 53

ORED algorithm, 57

Orientation of handwriting, 46

Path, 20

PCA, 46

Peripheral artifacts, 31

Physiological biometric measurement, 1

Predecessor state, 58

Primary skeleton, 36

Probability Density Function (PDF), 6

Pseudo skeleton, 32

Radon transform, 47

Ribbon, 37

Rule-based methods, 16

Segment point, 60

Self-loop, 55

Self-loop state, 63

Sequence variations, 4

Short ribbon, 37

Single-path static script, 3

Single-path trajectory, 3

Skeleton, 8, 30

Skeletonisation algorithms, 30

Skip-link, 55

Skip-link state, 63

Spanning tree, 20

Spurious disconnections, 11, 80

Standard skeleton, 31

Sub-image, 76

Substitution, 92

Thinning algorithms, 30

Tied PDF, 58

Topology, 6

Training, 5

Transition links, 6

Travelling salesman problem, 21

Tree, 20

Uncomplicated J-T, 40

Unstable J-T, 40

Web-like structures, 32

Weighted graph, 20

Writer-specific training, 70

Zero pressure state, 78
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