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Abstract

Individuals can be identified by their handwriting. Sigrratiare, for example, currently used
as a biometric identifier on documents such as cheques. Hamdurecognition is also ap-
plied to the recognition of characters and words on docusreittis, for example, useful to
read words on envelopes automatically, in order to imprireedficiency of postal services.
Handwriting is a dynamic process: the pen position, presand velocity (amongst others) are
functions of time. However, when handwritten documentssaanned, no dynamic informa-
tion is retained. Thus, there is more information inherargyistems that are based on dynamic
handwriting, making them, in general, more accurate tham #tatic counterparts. Due to the
shortcomings of static handwriting systems, static sigreaverification systems, for example,
are not completely automated yet.

During this research, a technique was developed to extsa@mdic information from static
images. Experimental results were specifically generatddsignatures. A few dynamic rep-
resentatives of each individual’s signature were recorggdg a single digitising tablet at the
time of registration. A document containing dfdrent signature of the same individual was
then scanned and unravelled by the developed system. Thasjer to estimate the pen tra-
jectory of a static signature, the static signature mustdimepared to pre-recorded dynamic
signatures of the same individual. Hidden Markov modeldknthe comparison of static and
dynamic signatures so that the underlying dynamic inforonatidden in the static signatures
can be revealed. Since the hidden Markov models are abledelrpen pressure, a wide scope
of signatures can be handled. This research fully explbé&stodelling capabilities of hidden
Markov models. The resultis a robustness to typical vanetinherent in a specific individual’s
handwriting. Hence, despite these variations, our sysemopns well. Various characteristics
of our developed system were investigated during this reeeaAn evaluation protocol was
also developed to determine thi@eacy of our system. Results are promising, especially if our
system is considered for static signature verification.



Opsomming

Handskrif kan gebruik word om individue te identifiseer. Da@ard steeds van handtekeninge
gebruik gemaak as 'n biometriese identifiseerder op doktersmos tjeks. Handskrifherkenning
word ook onder andere gebruik vir die herkenning van karalda woorde op dokumente. Dit
is byvoorbeeld nuttig om die adresse op koeverte outomigtiess om sodoende posdienste se
effektiwiteit te verhoog. Handskrif is 'n dinamiese prose® pen se posisie, druk en snelheid
(onder andere) is funksies van tyd. Wanneer handskrif @ggeskandeer word, gaan al hierdie
omvattende dinamiese inligting verlore. Omdat stelseltmgeer op statiese handskrif van min-
der inligting gebruik maak, is hulle meestal nie so akkusaeats hulle dinamiese ekwivalente
nie. Juis as gevolg van hierdie tekortkominge is statieseltekeningverifikasie nog nie ten
volle geoutomatiseer nie.

Gedurende hierdie navorsing is 'n tegniek ontwikkel om direse inligting uit ingeskandeerde
prentjies van handskrifte te onttrek. Eksperimenteleltatais gegenereer vanaf ingesamelde
handtekeninge. 'n Paar dinamiese voorbeelde van elkeithudse handtekening is opgeneem
met behulp van 'n enkele digitale tablet tydens registrasiBokument wat 'n ander voorbeeld
van dieselfde individu se handtekening bevat, word dansikgi@deer. Die stelsel onttrek slegs
die trajek wat die pen gevolg het tydens die vorming van dretekening. In die proses om
die statiese handtekening te ontrafel, moet die statiesdtéleening dus vergelyk word met
reeds bestaande dinamiese handtekeninge. VerskuildeoMarkdelle maak die vergelyking
van die statiese en dinamiese handtekeninge moontliki deglanderliggende dinamiese pro-
sesse van statiese handtekeninge ontbloot kan word. Aieng#ie verskuilde Markov modelle
ook dinamiese pendruk kan modelleer, kan die ontwikkelgei&k 'n wye verskeidenheid van
statiese prentjies hanteer. Hierdie navorsing maak tele galbruik van verskuilde Markov
modelle se modelleringskrag. Verskuilde Markov modelleyigoorbeeld in staat om die vari-
asies, wat kenmerkend is van 'n spesifieke individu se h&edieg, te modelleer. Gevolglik
lewer die stelsel steeds goeie resultate op, ten spyte eadidivariasies. Verskeie van die ont-
wikkelde stelsel se karakteristieke is ondersoek. 'n Exahgstegniek is ook ontwikkel om die
akkuraatheid van die stelsel te meet. Resultate is belowenal vir die gebruik van die stelsel
vir statiese handtekeningverifikasie.
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Glossary

This section presents an abbreviated glossary for termsdtkar frequently in this dissertation.
A more detailed index of terms with page references are geavat the end of this dissertation,
after the appendices.

Allographic variations Variations of the same handwritten character or word due
to different writer populations.
Biometric measurement Quantification of the attributes of an individual that he|ps

to identify a person uniquely.
Chinese postman problem | The search for a Eulerian cycle in a graph.

Critical point The resampled curve that results when selecting the most

resampled curve important points (critical points) from an original para-
metric curve.

Crosspoint A skeleton sample connected to more than two adjacent
skeleton samples.

Delaunay triangulation An angle-optimal triangulation from a set of points,

where the minimum angle over all the constructed |[tri-
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Dynamic counterpart The on-line version of a static script recorded while the
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Dynamic exemplar A dynamic representation (not a dynamic copy) of a
static handwritten script recorded at the time of regis-
tration.

Edge A line that connects two successive control points.

Endpoint A skeleton sample connected to only one adjacent skele-
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Euclidean resampled curve | A parametric curve where the distance between any|two
successive samples is approximately the same.
Feature vectors A sequence of-dimensional quantifiable characteristics
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Shape variations, e.g., position, orientation, size
slant variations.

and

Graph-theoretical
approaches
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Chinese postman or travelling salesman problems
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are

then typically solved to estimate the pen trajectories of

the scripts.

Ground-truth trajectory

The pen trajectory derived by matching the dynamic

counterpart to the HMM of a static script.
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A sample that occurs in a static script’'s estimated
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pen

Intersection artifacts

Skeleton artifacts where two or more lines that shquld

intersect fail to cross each other in a single point.

Levenshtein distance

The smallest number of elementary operations required

to transform one sequence into another sequence.

Line segment

A sequence of connected segment points.

Multi-path static script

A static handwritten script that consists of one or m
single-path trajectories.

ore

Neighbouring states

States that are associated with adjacent skeleton samples.

Off-line handwriting

A static 2D image of handwriting usually recorded w
a scanner.

On-line handwriting

Dynamic handwriting captured using an electronic
vice, e.g. a digitising tablet, that is able to record

pen’s positions, pressure and tilt as it moves across the

surface of the tablet.

Orientation of a script

The specific overall or average direction relative to
horizontal axis in which the handwriting is generated

the

Path

A list of successive control points, e.g., skeleton sam

bles

or vertices in(G), where successive control points are

connected by edges.

Peripheral artifacts

Spurs attached to the skeleton of an image.

Rule-based methods

Methods that estimate the pen trajectories of static &
using a prior set of heuristic rules that try to mimic t
underlying temporal principles for generating handw

ing.

Segment point

A skeleton sample having only two adjacent skele
neighbours.

ript
rit-

ton
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Self-loop

An HMM transition link that connects a state back
itself.

Sequence variations

Variations in the order in which pen positions may
produced.

Single-path trajectory

An on-line handwritten curve created with uninterrupt
non-zero pressure.

ne

Skeleton A collection of thin lines that mostly coincides with tf
centreline of the original image.
Skip-link An HMM transition link connecting two states that a

separated by a neighbour common to both.

Spurious disconnections

Unexpected broken lines in a static script.

Standard skeletons

Skeletons from skeletonisation or thinning techniq
that do not attempt to skeleton artifacts.

es

that is erroneously mapped to a sample from the scr
ground-truth pen trajectory.

Static script A 2D image of handwriting, e.g., cursive handwriti
and signatures.

Sub-image A set of contiguous samples that represent a shape.

Substitution A sample from a static script’s estimated pen trajectory

pt's

Travelling salesman
problem

The search for the shortest Hamilton cycle in a weigh
complete graph.

ted

Writer-specific training

Our HMM training scheme that estimates a unigtfe
ando, for each individual.

Zero-pressure state

An additional emitting state in our HMM that enables

us

to identify where an individual lifted the pen.




Chapter 1

Introduction

1.1 Problem statement and motivation

Producing cursive writing or handwritten signatures onusieents involves a dynamic process:
the pen’s position, pressure, tilt and angle are functidrisree. The end result, however, is a
static image with little, if any, dynamic information en@atlin it. This dissertation investigates
the problem of extracting the pen trajectories that creatsthtic handwritten script, i.e., the
paths that the pen followed over the document. Thus, thelgmols to unravel the script and

present it as a chronological collection of parametric earv

A biometric measuremermuantifies attributes of an individual that help to identfyperson
uniquely. Biometric measurements can be either physiokbgir behavioural Physiological
measurement®late to the inherent physiological characteristics oinalividual, e.g., iris pat-
terns and fingerprintsBehavioural measurementslate to spontaneous or learned acts that
are carried out by an individual, e.g., cursive handwritamgl signatures [24]. In general, be-
havioural measurements are less intrusive than phystdbgieasurements. Nevertheless, the
choice of biometric measurement depends on the applicdtiorain, e.g., Plamondon and Sri-
hari [64] note that signatures are still the most widely atee means of identification, socially
and legally.

Handwriting can be either on-line offdine. On-line handwriting is captured using an elec-
tronic device, e.g., a digitising tablet, that is able toorelcthe pen’s position, pressure and tilt
as it moves across the surface of the tab@f-line handwriting is typically recorded with a
scanner to present the document as a 2D static image. BehnaMoeasurements of an individ-
ual can be extracted from on-line anfi-bne handwriting. These measurements are useful for
a wide range of applications. Although on-line systems awstiy more reliable than theirid
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line versions, as a means of personal identificatidiilime systems are, in many cases, more
economically viable and siiciently accurate for the required applicationf-tine systems are,
e.g., stificient for the automatic interpretation of handwritten pbatidresses on envelopes and
reading courtesy amounts on bank cheques [64].

Plamondon and Srihari [64] endorse the relevance of thearelsdopic with the following
statement: “The success of on-line systems makes it atteact consider developingfiline
systems that first estimate the trajectory of the writingrfraff-line data and then use on-line
recognition algorithms. However, theflilculty of recreating the temporal data has led to few
such feature extraction systems so far.” Munich and Per66alave also shown that the
pen trajectories of signatures contribute to #ieaive on-line signature verifier. Thus, it is
concluded that estimated pen trajectories of static scapt particularly useful for automatic
handwritten character or word recognition, or for the veaifion of signatures.

The question is therefore to what extent is it possible t@agkxtdynamic information from
static handwritten scripts. Since one must deal with dycanformation loss incurred in static
images, Park [60] relates this problem to the recovery of 8ptllinformation from single 2D
images.

Literature on methods that do not specialise their trajgotstimation algorithms to cursive
or language-specific handwriting is sparse. It should beddthat it is not compulsory in
South Africa (or in Europe for that matter) for a person’swsityire to be readable. Signatures
therefore tend to be unpredictable. There are many examaptegnatures containing so many
regions of self-intersection that even humans find theseasiges dficult to unravel. It is
therefore challenging to create a robust heuristic frammkwwat can deal with almost any type
of handwritten script.

1.2 Literature overview

This section discusses typical problems encountered wstenaging the pen trajectory of static
handwritten scripts. A summary of how existing literatueals with these problems is also
presented. Chapter 2 elaborates on the related technicqerégomed in this section.

There are severalfliculties that need to be overcome when recovering the pesctoay from

a static handwritten script. Thesdfdiulties are compounded when the line densities and line
widths at intersection regions are high. An example of a l@rohtic signature containing such
regions is shown in Figure 1.1(a). When handwriting is stangously recorded on a digitising
tablet and on paper, both the static script anddix@amic counterpardf the handwriting are
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available. The dynamic counterpart of the static signatufegure 1.1(a) is rendered as grey
lines in Figures 1.1(b)-(i). The pen positions that gerestdhe dynamic counterpart are ani-
mated using solid arrows. It should be noted that such a dyneounterpart is not available

when unravelling a static script. The dynamic counterplfigure 1.1(a) is, in this case, shown
only to illustrate typical diiculties arising when dealing with such a complicated sigreat

[ A

(b) () (d) (€)

Terminate

7 4

start v (f) @  (h (i)

Figure 1.1: A problematic signature to unravel. (a) A static signatuoatining intersection
regions with high line densities and thick line widths. ())Animation of the dynamic pen
positions (solid arrows) that generated the dynamic couoae (grey lines) of (a). (j)
Identifying the starting and terminating positions (laleel arrows) of the static signature
in(a).

The first dificulty is to find the starting and terminating positions of #tatic script—these
positions are often hidden inside the image (especiallyrg/isggnatures are concerned) and
not visible at all. Due to this ambiguity, strict constrairire normally required. Typically, it
is assumed that the pen trajectory must start and terminatestanct positions [33, 40, 50].
Thus, characters such as “0”, cannot be successfully ulfedvenNithout prior knowledge, it
is almost impossible to determine where the signature inr€id..1(a) starts and terminates.
It is, however, easy to approximate the starting and tertimggositions (dotted circles in
Figure 1.1(j)) from the dynamic counterpart in Figure 1)i(ih

The problem of finding the starting and terminating posgiar a static script is more chal-
lenging if the script consists of multiple single-path é@&pries, where aingle-path trajectory
refers to a single curve created with uninterrupted, non-pen pressure. A static script that
consists of one single-path trajectory is referred to amgle-path static scriptwhereas one
that consists of one or more single-path trajectories isda multi-path static scriptPressure
information is vital to determine where the writer lifts tpen. Wirotius et al. [84], e.g., note
that the grey-levels within handwritten text are linked tegsure and writing speed when text is
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produced. This information is, however, unreliable if,.ethe script becomes indistinct due to
multiple crossings. In general, it is thereforéhidult to extend techniques that trace single-path
handwritten scripts to deal with multi-path scripts if nagoron-line pressure information is
available. Note, e.g., that it is almost impossible to datee how many single-path trajecto-
ries constitute the static signature in Figure 1.1(a). Harehe pen pressure of the dynamic
counterpart in Figure 1.1(b)-(i) reveals that the statymature in Figure 1.1(a) consists of one
single-path trajectory. Because of thes#idilties some studies deal only with single-path
static scripts [58, 40].

Signatures often have complicated regions consisting ofymaersections making it icult

to track a particular path through those regions. One piisgils to assume that the direc-
tion of a line is maintained when entering and leaving anrggetion. A choice between the
different possibilities at the intersection is then typicakygéd on some local smoothness cri-
teria, as in [54, 9, 44, 11, 34]. This approach is, howevesfiitient to resolve ambiguities
completely—if the script becomes indistinct due to a largeber of intersections in a small
area, local information is not ficient to find the correct path. Additional assumptions mayth
be necessary, e.g., restricting the number of lines thatiess at an intersection [33, 40]. Itis
evident from Figure 1.1(a) that such a restriction is notessarily valid in cases where signa-
tures are concerned. In general, methods that make locileshat intersections havefliiculty
taking context into account. Several studies thereforeideglobal information by modelling
the pen trajectory estimation problem as a graph-thealgiroblem [2, 38, 37, 43, 40, 41, 4, 3].

As a rule, the studies mentioned above, use only the 2D imbilpe acript. Another approach
is to record dynamic representatives of the static scripturad with a digitising tablet at the
time of registration [31, 51]. We refer to such dynamic reprdatives of the static script as
dynamic exemplarsThe idea is to compare a given static script with the prendsd dynamic
exemplars. It is important to note that the static image immared with generic dynamic
representatives, and not a dynamic copy of itself. Therenwable advantage to such systems:
only a single tablet is required at the registration phaseli®® systems often require a tablet
at each signing post, which makes it economically infeadiit many applications.

We have indicated how easy it is to estimate the static s&8f#rting and terminating positions
if a dynamic counterpart is available. However, it is mormpticated to do the same if only dy-
namic exemplars are available. When using pre-recordedndynexemplars, a problem arises
with regard to modelling dynamic exemplar variations. Epées of such variations are geomet-
ric, allographic and sequencing variations [6@gometric variationsefer to shape variations,
e.g., position, orientation, size and slant variatidtlographic variationsrefer to variations of
the same handwritten character or word due fiedent writer populationsSequence variations
refer to variations in the order in which pen positions maptmeuced. Sequence variations are
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increased by the correction of spelling errors, slips ofgée, and letter omissions and inser-
tions. A system, developed using prior dynamic exemplarmftion, should be able to draw

on a comprehensive set of variations so that the additiof@mation from the exemplars can

be exploited to partially resolve ambiguities. NevertBs|esome heuristic measures may still
be required to resolve the ambiguities completely, e.genekiough Guo et al. [31] and Lau et

al. [51] employ pre-recorded dynamic exemplars they relfooal choices at intersections.

A dynamic exemplar is also valuable in resolving anothéialilty, namely identifying turning
points, where the pen stops and then reverses directiorholild be clear that static scripts
retain no information about the return portion of a pen tiey that stops and then reverses
direction, returning along the same path. To simplify thebbpem, some studies restrict the
number of times the pen can revisit a line [33, 40].

We have shown in this section that pre-recorded dynamic pkasiare invaluable in addressing
several dificulties when estimating the pen trajectory of a static $chps evident from exist-
ing literature that a lack of prior dynamic information tgplly necessitates the introduction of
several restrictions for simplification. More details ofsting approaches are documented in
Chapter 2.

1.3 Overview of this dissertation

1.3.1 Statistical pattern recognition: A brief background

A typical statistical pattern recognition system. In the context of this dissertation pattern

is defined from [6] as “a regular or logical form, order, oraamgement of parts”. Istatistical
pattern recognition, a pattern is described by a sequendalwhensional quantifiable charac-
teristics calledeature vectors To distinguish between filerent patterns, one has to establish
suitable decision boundaries. Jain et al. [36] describepecdy statistical pattern recognition
system with a chart equivalent to Figure 1.2.

Figure 1.2 illustrates that a statistical pattern recognitsystem typically operates in two
modes: Training and classificationlraining describes the process in which characteristics
of applicable patterns (training patterns) are learnedtaiish a comprehensive syste@ias-
sificationis the process in which an input pattern (test pattern) mestdsigned to a certain
class based on the features that are measured from it. [fatterps belong to élierent classes,

a good pattern recognition system would maximise theirrsdgiiity. Likewise, if they belong

to the same class, the system must minimise their sepayabitie system’s ability to calculate
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Figure 1.2: A model for statistical pattern recognition from [36].

Preprocessin

decision boundaries depends on the features selected fatiiee extraction module. Increas-
ing the number of features typically leads to more accuredalts. The preprocessing module
must extract a pattern from its background, remove noisg nanmalise it so that the pattern
can be represented in a compact form. The feedback pathsall@wdesigner to optimise the
applicable modules.

Hidden Markov Models (HMMs). An HMM is a probabilistic model that models a time
dependent sequence of events with a sequenctatésconnected byransitions links[68].
An HMM describes a dynamic process that evolves from one $tathe next. HMMs have
been used successfully in many applications that modeleseigl data statistically, most no-
table speech recognition. Jain et al. [36] note that modgtgyithe Markov structure in speech
compresses the data to what is physically meaningful, biyesenultaneously improving clas-
sification accuracy. Each state has an associated Prapdbdnsity Function (PDF). HMM
observation PDFs reflect similarities between a test patad the training data. The HMM
topologyspecifies the interconnection of states. Transitions batvatates are weighted with
transition probabilities. Therder of an HMM determines the number of previous states that
can be remembered by the HMM at each state.

An application of HMMs, relevant to this research, is orelsignature verification [53, 75]. It
is typically required that a collection of dynamic signasiis recorded for each individual at
the registration phase. In the context of Figure 1.2, thgsamhic signatures are the training
patterns. Training and test signatures are normalisedglpreprocessing. Such normalisation
typically translates, rotates and scales the signaturésasahey are aligned. Typical features
that are extracted from the normalised signatures areafessamples of the dynamic pen posi-
tions, velocity and pressure. An HMM is then constructednftbe feature vectors that repre-
sent the training data. The HMM parameters are trained foin @adividual. Features are then
measured from the test signature and matched to the traivdd.H he degree of similarity
between the HMM and test signature is quantified so that tstesignature can be classified
as a forgery or a genuine signature. The success of thessrsys primarily due the HMM'’s
ability to model not only the magnitude of the variations also thenatureof the variations.
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Our approach within a statistical framework. To model static images with HMMs poses the
problem of modelling 2D data with 1D observation sequen®®s.make use of pre-recorded
dynamic exemplars to estimate the pen trajectory of a statcwritten script. In the context
of Figure 1.2, the dynamic exemplars are the training padtand the test pattern is the static
image of the script. The static image is quantified as 2D featactors occurring imo spe-
cific sequenceThus, a conventional match, as illustrated by the on-ligeagure verification
example above, between a trained HMM and the static imagetiapplicable. The following
solution addresses the problem: An HMM is constructed froendtatic image, i.e., from the
test pattern. The training (pre-recorded) data (dynamaeeogiar) is then matched to the HMM
in the process to estimate the pen trajectory of the imagessditoncepts are illustrated in
Figure 1.3. A dynamic exemplar, i.e., a known sequence opssnis matched to the HMM
(dashed circle) of a static image. This match enables onstitm&e the unknown sequence of
samples that constitute the static image.

HMM

-

-

- -y

-~
~

’
¢ Staticimage

~
.

Dynamic exemplar .

4 A
I \

Match
_>

1
1
1
\

1 ~
1 -~

Y Y

Known pre—recorded 2D Image
time sequence (unknown time sequence)

Figure 1.3: A high-level diagram for our approach.

Paradoxically, for this application, the conventional émgment of test and training data, specif-
ically for an HMM is reversedas follows: Usually an HMM describes a dynamic process and
represents the training (pre-recorded) data. The testlyrmvquired) data are then matched
to the HMM. In this application, however, an HMM representatic image which forms the
test (newly acquired) data. The training (pre-recordetf dathen matched to the HMM in the
process to estimate the pen trajectory of the image. Acoglylithe topology for our HMM is
not fixed, i.e., itis dependent on the structure of the statage and our training schemes have
to be adapted.

In the context of Figure 1.2, the feature measurement madkerdiees an HMM from a static
script. The dynamic exemplars are then compared with thigvHid establish a point-wise
correspondence between the static script and each dynaemapéar. A suitable dynamic ex-
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emplar is then chosen to reveal the pen trajectory of thie stexipt. Classification, in this case,
consists of choosing the most likely pen trajectory, asrdateed by the HMM and dynamic
exemplars. The output of the classification module in FiguPes therefore the estimated pen
trajectory of the static script. On-line techniques camthe applied to the estimated pen trajec-
tory in, e.g., an &i-line handwriting recognition system with a restricteddity or in an d@t-line
signature verification system. These possible applicataye discussed in Section 7.2.4 with
some preliminary results. It should be noted that a comphepdementation of a handwriting
recognition or verification system has not been pursueddutiis research. Instead, we have
developed an evaluation protocol to quantify the accurdaystmated pen trajectories. The
rest of this section describes théfdrent modules of Figure 1.2 in more detail.

1.3.2 Preprocessing

Static handwritten scripts must be extracted from the d@sison which they were created.
Thus, they are not in a form suitable for creating an HMM. Thayst also resemble on-line
data so that they are comparable with dynamic exemplars. b&tantial amount of prepro-
cessing is therefore required. Preprocessing is fullyedean Chapter 3. The most important
preprocessing steps include:

1. Orientation normalisationA method based on the Radon transform is employed to align
the general orientations of a static script and a pre-rexbdynamic exemplar; see Sec-
tion 3.2.

2. SkeletonisationiIn order to extract a parametric curve from a static imagekedeson
is derived from the image through a thinning processskaletonin the context of this
research, is a collection of thin lines that coincides nyogiith the centreline of the
original image. A number of enhancements particular todp@ication is introduced for
standard skeletonisatighinning procedures, as described in Section 3.1.

3. Resampling: The dynamic exemplars and static skeletons must be pamseeteand
resampled similarly before they are compared, as discuss®ekction 3.3.

1.3.3 Deriving an HMM from a static script

Deriving the HMM. After preprocessing, an HMM is derived from the skeleton aftatic

script, as discussed in Chapters 4 and 5. Our HMM, derived ficstatic skeleton, describes
the pen trajectory that created the skeleton. Each statarhassociated PDF, embedding ge-
ometric shape information of the skeleton. Transitionsveen states are weighted with tran-
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sition probabilities to dictate the choices of pen moveméetween skeleton samples. HMMs
designed specifically for single-path static scripts aseuksed in Chapter 4. Chapter 5 shows
how to extend these HMMs to deal with multi-path static gsrip

A basic first-order HMM constructed from a single-path statiript is described in Section 4.2.
However, this HMM is not sflicient to resolve ambiguities in regions with multiple irstec-
tions. The problem is due to a loss of context caused by theuBest-order HMMs: state
transitions depend only on the current state. Plamondorsahdri [64] note that any observ-
able signal from a handwritten trajectory t$exted by at least both the previous and successive
trajectories. Transitions of higher-order HMMs depend ordy on the current state, but also
on the previous states. Higher-order HMMs are thereforemingtter equipped to take context
into account. Usually, higher-order HMMs tend to be compatelly expensive. In this study,
however, we use second-order HMMs with sparse transitiobaisility matrices, reducing the
computational cost to a manageable level. The suitablensecler HMM that is derived from

a basic first-order HMM is described in Section 4.3. Furtlwentext is incorporated by compar-
ing not only pen positions but also local line directiongsishown in Section 5.2 how the pen
pressure of the dynamic exemplars can be exploited to extendMMs for single-path scripts
to deal with multi-path scripts. Normally, both the statesetvation PDFs and the transition
probabilities are obtained through a training process.alBparseness is a serious problem in
our application, which necessitated the adaptation ofraimihg algorithms. This is discussed
in Section 4.8.

Estimating the pen trajectory. The next step is to compare the constructed HMM with pre-
recorded dynamic exemplars of the static image. This is deimgy the Viterbi algorithm [68].
The result is an optimal state sequence that can be trathstdtethe estimated pen trajectory
of the static script, as discussed in Section 5.4.

1.3.4 Evaluation protocol and results

Evaluation protocol. In general, it is not entirely straightforward to assessetfieacy of an
estimated pen trajectory. An obvious solution is to recomstadic script simultaneously on
paper and on a digitising tablet, so that the dynamic copateiof the static script is avail-
able. The dynamic counterpart can then be compared to tinesstl pen trajectory (computed
from a diferent dynamic exemplar) of the static script. Due to impetnfecording devices and
subsequent processing, the image skeleton mi@grdrom its exact dynamic counterpart. A
one-to-one correspondence between the static script amtymamic counterpart is therefore
not available. Hence, a ground-truth trajectory is exeddtom the static script. Thground-
truth trajectoryis the estimation of the exact pen trajectory that genetatdtic script’s skele-
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ton, and is calculated by comparing the script’s dynamiocntewpart with its skeleton. The
ground-truth and the estimated pen trajectories (derirad the same image skeleton) are then
compared, as described in Section 6.1. An error measurdécigaged from these comparisons
to quantify the accuracies of the estimated pen trajectorie

Results. Results are generated with US-SIGBASE; see Section 6.2helbest of our knowl-
edge, a standardised database that contains on-linefialgleoversions of signatures does not
exist. US-SIGBASE was collected as part of this researct,camsists of signatures for 51
individuals that were recorded simultaneously on paperaaiiditising tablet. Results are gen-
erated by randomly selecting a static image for each indalidnd estimating pen trajectories
from the selected images. The estimated pen trajectorees\aiuated as described in Sec-
tion 6.1. Experimental results show that our HMM is able ttneate approximately 88% of
the ground-truth trajectories correctly, as describedeictiSn 6.3.

1.4 Research objectives

The objective of this research is to estimate the pen t@jest of static handwritten scripts with
the following requirements:

e The system must b®bust i.e., the system must not be highly sensitive to variations
static scripts.

e Estimated pen trajectories mustdecurate The dficacy of the pen trajectory estimation
algorithm must be evaluated objectively in order to prodygantifiable results.

1.5 Contributions

e An original approach. We have managed to estimate the pen trajectories of stattt: ha
written scripts by using a novel method—to the best of ounedge, we are the first
to use HMM s for this purpose. Guo et al. [31] establish a lecatespondence between
a static image and a dynamic exemplar. It is shown in Chaptéo®@ever, that their
approach is fundamentally féerent from our approach. Quantifiable results show that
our approach is accurate. Preliminary results show thatpeartrajectory estimation
algorithm can be especially useful in afti-bne signature verification application.

e Characteristics of our HMM contributing to a robust and accurate system.By virtue
of our HMM'’s design, described in Chapters 4 and 5, we haveageah to solve the fol-
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lowing problems, mentioned in Section 1.2, that are in coration prevalent in existing
approaches:

1. The initiajterminating transition probabilities in our HMM allow thstenated pen
trajectory to stayterminate at any position, resolving the problem of #tart-
ingterminating positionsThis is a direct result of our first-order HMMs developed
in Section 4.2.

2. Turning pointsare dealt with by specifying appropriate transition pralids, and
no restrictive assumptions are needed, as described in&5dch.

3. Elasticity is included in the HMM topology so that dynamic exemplars atatic
scripts with diferent numbers of samples are comparable, as described in Sec
tion 4.4. Corresponding segments are typically allowed fi@dwith a scale factor
of two.

4. The observation PDFs, associated with the states in ouvisiMnable the quantifi-
cation of similarities between static scripts and dynamengplars. Furthermore,
the PDF parameters enable us to modelghemetric variationsn different pre-
recorded dynamic exemplars. The PDF parameters that duel@tcto model posi-
tional variations are described in Section 4.2, whereaPbie parameters to model
directional variations are described in Section 4.6.

5. We are able to model a collection of single-path trajeesoconstituting a static
script, i.e., we are able to deal withulti-path static scriptsas described in Sec-
tions 5.1 and 5.2.

6. When the ink is not evenly distributed over the pen-tipnéty causespurious dis-
connectionsn static scripts. In practice, this problem occurs fredlye®@ur HMM
topology enables us to deal with such spurious disconnestias shown in Sec-
tion 5.3.

7. We have mentioned in the previous section that many tgaesiare limited due to
local optimisation. We match a dynamic exemplar to our HMNhgghe Viterbi
algorithm. Since the Viterbi algorithm isglobal optimisatioralgorithm, it is par-
ticularly useful for resolving local ambiguities due to ripile intersections.

8. Section 5.4 shows that the Viterbi algorithm, the avalilglof many dynamic ex-
emplars and some further calculations enable us to deathg8equence variations
in signatures.

9. Our HMM training schemes calculate a prior set of paramsgiarticular to a spe-
cific individual. These parameters can be especially ugetusignature verification
system as they are, in fact, biometric measurements of avidndl. Section 6.3.5
shows that our system performs only slightly better using titaining scheme, in-
dicating that our HMM is rather robust &dlographic variationsn signatures.
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e The necessary preprocessing characteristics to contribatto a robust and accurate
system. The necessary preprocessing steps to enhance the pert@rofour trajec-
tory estimation algorithm have been thoroughly invesgdatContributions regarding the
preprocessing are the following:

1. A skeletonisatioralgorithm that tends to enhance local line directions, kEsabs
to identify simple crossings with confidence and that ersmhble accurate resam-
pling scheme has been developed, as discussed in SectiorSekcifically, the
necessary modifications to the existing techniques dexstiiib[86, 87, 69] are in-
troduced, which can also be useful for generf@lime handwriting application. In
many existing techniques, a collection of skeleton poihéd tust be traversed at
least once is selected, making these approaches espeeaiiifive to artifacts and
background noise. Our system has a remarkable robustnsksl&ton artifacts, as
shown in Section 6.3.2.

2. The general orientations of static images and dynamiaplas are aligned with a
shape-matching algorithm in the Radon domain, as showndtid®e3.2. Thisori-
entation normalisatiompproach is more robust than the general Principle Compo-
nent Analysis (PCA) approach, especially when aligningpekavith similar princi-
ple components, as shown in Sections 3.2 and 6.3.3. Debpitsbvious benefits of
the Radon-based rotation, there is not a substantial dexeaur system’s perfor-
mance when using PCA-based rotation, as shown in SectioB. &.8is shows that
our HMM contributes to a trajectory estimation algorithmttfs robust to rotational
variations.

3. Itis shown that the choice of a scheme to resample parancetves plays an im-
portant role in theaccuracyandefficiencyof our system. Judicious resampling of
parametric curves increases the speed of our system stiyanithout a signifi-
cant performance degradation, as shown in Section 6.3.2.

e Quantifiable results. Objective methods evaluating thé&ieacy of estimated pen tra-
jectories are sparse; see Chapter 2. We have developediblsawaluation protocol
that is applicable to a wide range of pen trajectory estiomagilgorithms. The evaluation
protocol isstraightforwardto implement andnvariantto parameterisation.

e Published work. The sections in this dissertation that describe how to edérthe pen
trajectories of single-path static scripts (including the necessary preprocessing and
guantitative results) were condensed into a journal paplee paper was peer-reviewed
and accepted for publication in a journal that specificallplshes work that contributes
to the field of pattern recognition [58]. The sections in ttissertation that describes
the extensions of the techniques in [58] to multi-path stsdripts were condensed into a
conference paper. The conference paper was peer-reviewleataepted for publication
in conference proceedings focussing on work that conetbt the field of document
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analysis and recognition [57].
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Chapter 2
Literature study

This chapter documents related literature relevant togkearch topic. We focus on prominent
studies that estimate the pen trajectories of static scrif this dissertation, these studies
are divided into rule-based methods, graph-theoretic#thous and methods that search for an
optimal local correspondence between a static script aryshardic exemplar. In Chapter 1 we
have mentioned that explicit restrictions occur in severasting approaches for the sake of
simplification. Section 2.1 provides more detail of thessrietions. In Section 2.2-2.4 each
existing system is discussed with attention to the follgimatters:

e The feature measurement scheme of each system is discueseatlis investigated how
the system under consideration presents a static script.

e Each system’s approach to estimating the pen trajectorystatec script is described.

e The database, evaluation protocol and experimental sesiétach system are reported.

e Chapter 1 has shown that approaches that utilise pre-red¢aghamic exemplars must
be especially comprehensive of variations in the dynamergtars. Hence, where ap-
plicable, notice is taken of a system’s performance in tgmrd.

The discussion on existing approaches is summarised ino8ezt5, where some pertinent
conclusions are drawn.

2.1 Restrictions

Several existing techniques impose restrictions whemesitng the pen trajectories of static
scripts for the sake of simplification. As mentioned in Cleat, it is important to construct a
system that can handle a wide range of static scripts. Restrs typically restrict the system to

14
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a limited set of scripts, e.g., only characters or cursivedsohat are straightforward to unravel.
The restrictions applicable to existing approaches haes lidentified and listed. The most
common of the listed restrictions, which explicitly occirsame stage in existing algorithms,
are categorised as follows:

1. Starting/terminating positions: The positions where a single-path trajectory can start
(where a pen-down event occurs) or terminate (where a p&varg occurs), are typically
restricted as follows:

(a) Left-to-right assumptionit is assumed that a static script has been generated by
an individual from a specific population, where cursive haritihg proceeds in a
top-to-bottom-left-to-right fashion.

(b) End of line assumptiont is assumed that the starting and terminating positiors of
single-path trajectory occur at the end of a line, whereetrsad can proceed in only
one direction.

2. Intersections: Section 1.2 has shown that static scripts that contain nsgidere many
lines cross one another in close proximity can be problematiunravel. Typical restric-
tions at intersections are:

(a) Local smoothness constraintSome methods introduce a local smoothness con-
straint at intersections, compelling lines that enter d@rrgection to exit it with
approximately the same orientation. Inevitably, this ¢aist impels local choices
at intersections.

(b) Number of intersecting lines assumptidhis assumed that a maximum of two lines
can cross each other at an intersection.

3. Turning points: A turning point is defined as a high curvature point on a patdme
curve, where the pen stops and reverses its direction. Dinietpen-tip width and digi-
tising dfects, it frequently happens that the curve that enters andutve that exits the
turning point are merged. The result is a single curve whiastroope with bidirectional
traversal. The degree of ambiguity increases even moreip#én revisits the merged
curve. Simplifications to deal with ambiguities include:

(&) No turning point assumptiont is assumed that no segment in the static script can
be traversed more than once, i.e., no turning points arevetlo

(b) Double-traced lines assumptioft is assumed that no segment in the static script
can be traversed more than twice.

4. Single-path static scripts: Due to the dificulty of identifying pen-up and pen-down
events when estimating a pen trajectory, some studies a&sthaha static script con-
sists of only a single-path trajectory. Hence, pen-up amdgmvn events other than the
starting and terminating positions of a script cannot betified.
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A summary of all the related work mentioned in this chapteprissented in Table 2.1. The
authors, years of publication, and appropriate refereacespresented. In the third to last
columns itis indicated if the assumptions above (indicégdumbers) occur at some stage in
the referenced worky(), do not occur x), or if there is not enough detail to make deductions

)

2.2 Rule-based methods

Rule-based methods are some of the earlier approachesousstthtate 1D sequences from 2D
images. The first attempts to unravel static scripts triathtterstand the temporal principles for
generating handwriting. Various mathematical models Ihaen developed to analyse or gener-
ate a piece of handwriting; see [62, 6Bpttom-up modelare, e.g., concerned with the analysis
and synthesis of low-level neuromuscular processes iedalv the motor-controlled actions to
generate handwriting [62]. One can then model certain suofea handwritten script as the
result of the coactivation of two neuromuscular systems, agonist and the other antagonist,
which control the velocity of the pen-tip. Accordingly, appaopriate mathematical function
is chosen to model velocity. Note, however, that measune) seuromuscular processes and
choosing appropriate models are highly dependent on tHesappn and is definitely not trivial
(these tasks are also dedicated subjects in the field of pkygh neurology, cognitive science,
and graphology [62].)

In this field of study, it is already a fllicult task to estimate dynamic information from static
images. To calculate indicators of neuromuscular prosefsen 2D images is even more
challenging. In general, it can be concluded that handvgjtespecially signatures, is unpre-
dictable, making it dficult to establish a robust set of heuristic rules that are &bimimic
the underlying principles that control pen motions. Herss¥eral rule-based methods aim to
estimate 1D observation sequencessistentlyather tharprecisely i.e., to extract consistent
pseudo-dynamic information from a static script. Althosgime of these methods are severely
restricted by the rules they impose, they provide a useduh&work for other approaches. The
most important heuristic from rule-based methods, whichiss a crucial component of most
of the relevant literature on this research topic, is basedantinuous handwriting motion.
Specifically, it is assumed that muscular movements cdnsaéira individual's hand (holding
the pen) to move continuously. Consequently, trasural motor-controlled movement leads
to a general smoothness criterion, enforcing the pen totaiaiits direction of traversal. This
smoothness criterion enables one to follow lines throutgrsections. In the chapters to follow
we refer to this criterion as thedntinuity criterion of motor-controlled pen motions.
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Authors Year | 1. Start/End | 2. Intersect| 3. Turn | 4. Single-
@] ® @] ® [@]®]|ran

Rule-based methods

Lee and Pan [59, 54] 1991, | +/ X Y, X X | 4 | x
1992

Doermann and 1993, | +/ X Y, - X | — | x

Rosenfeld [17, 19, 18] 1995

Boccignone et al. [9] 1993 | +/ Y, Y, VIRV,

Huang et al. [34] 1995 | x Y, Y, VIRV,

Lallican and 1997 | — - Y, VIRV,

Viard-Gaudin [44]

Chang and Yan [11] 1999 | Y, Y, VIRV,

Plamondon and Privitera 1995, | + Y, Y, X | -

[66, 63] 1999

Spagnolo et al. [78] 2004 | - — — — - | - |-

Graph-theoretical methods

Abuhaiba and Ahmed [2] 1993 | x X X X X | v |V

Huang and Yasuhara [33] | 1995 | — +/ X Y, viIivIlY

Allen and Navarro [5] 1997 | +/ X v X X | v |V

Jager [38, 37] 1997, | x X X X X | x|+
1998

Kato and Yasuhara [40, 41] | 1999 | +/ Y, Y, Y, X | 4| x
2000 | V| vV [ V| vV [ x| V|V

Lallican et al. [43] 2000 | +/ — X X X | X | X

Al-Ohali et al. [4, 3] 2002 | x v X X X | v |V

Lau et al. [50, 51] 2002 | +/ Y, X X - | - | x
2003 | x v Y, X - | - | x

Qiao and Yasuhara [67] 2004 | - Y, Y, X X | v |

Local correspondence methods

Guo et al. [31, 30] 2000, | x X Y, X X | X | x
2001

Table 2.1: A summary of related work. The authors, years of publicatmal appropriate

references are presented. In the third to last columns idsdated if the numbered
assumptions of Section 2.1 occur explicitly at some stageeineferenced worky(), do not

occur (X), or if there is not enough detail to make deduction} (
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Lee and Pan [59, 54] estimate the pen trajectories of stggi@asire skeletons by using a set
of heuristic rules that mimic the writing process of Engligteaking, right-handed individuals.
Experiments were conducted on 20 static signatures. Swgexvaluation indicated that the
invoked rules cannot cope with characters such as “a”, “dt ‘@”, where counterclockwise
circular drawing movements occur.

Doermann and Rosenfeld [17, 19, 18] extract a taxonomy @l lacd global clues from grey-
scale images of handwriting that is useful for recoverimggeral information from the images.
A typical local clue is, e.g., the grey-scale intensity a #nd of a line: the authors observe
that, for ball-point pens, the intensity is typically siicantly lighter than the rest of the script
if a pen-down event occurs. The recovered clues are weigitedrding to their reliability.
The weighted clues are then used to estimate the order @icetgments. Hence, temporal
information is not recovered in ambiguous parts where nialskd clues are available. Their
experiments intend to determine to what extent the recadveltees can be used to deduce the
mechanics of the writing instrument and knowledge of thdimgiprocess. Subjective evalu-
ation of 1000 handwritten static scripts from U. S. mail pedndicated that over 90% of the
scripts contain clues that can be used to recover tempdoaimation.

Boccignone et al. [9] consider the direction, width and &g curves in a continuity criterion
to segment the skeletons of static scripts. During the satatien process each curve that
enters an intersection is either merged with another cundedtached from the rest of the
image, or just detached without merging. The calculatedheegs are then traced according to
the invoked heuristics. Experiments were conducted on DOh@ddwritten characters by 20
writers, consisting of uppercase and lowercase lettersefisas numerals. Human observers
were consulted to determine if the system made the rightelkait intersection regions (yes or
no.) Accordingly, the system performed with an average r@ayuof 97%.

Chang and Yan [11] and Huang et al. [34] partially trace thedeslons of static scripts as part of
a segmentation process. Huang et al. [34] divide statiasigas into easily traceable (reliable)
and ambiguous (unreliable) skeletons. Parametric cumesthan extracted from the reliable
skeletons by using a local continuity criterion. The aushoote that many lines crossing at
an intersection cause severe problems. Chang and Yan [fdijvede Chinese characters into
collections of parametric curves. (Note that the substinest of Chinese characters are some-
times referred to amdicals) For each character, the general positions and directbtise
separated curves are matched to calculate a further segpiani.e., some parametric curves
are merged and some are subdivided into smaller segmerdsiaute a new collection of para-
metric curves. A set of direction rules is then employed fowdate the time sequence of the
points that constitute the parametric curves.

Lallican and Viard-Gaudin [44] divide grey-scale imagesstdtic scripts into sets of sepa-
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rated segments. The pen trajectories of the grey-scaleesggrare then calculated using a
Kalman filter that chiefly detects curvature information séed trajectories, as computed by
the Kalman filter, are then merged in accordance with a globsl function to compute the
final, smoothest trajectory.

Plamondon and Privitera [63] identify high curvature psianhd intersection regions in images
of handwritten words by employing information availablerfr image contours. Prior rules
that mimic the writing process of the Latin alphabet by riganhded individuals, as well as the
identified intersection regions and high curvature pointsused in conjunction to estimate the
pen trajectories of the words while tracing the contoursiefwords. Results were tested on 200
city names for 6 individuals, containing 1390 intersectiegions. Ten human observers were
consulted to determine if the system made the right choiceseasection regions (yes or no.)
Accordingly, the system performed with an average accun&®&y%. Additionally, the authors
also determined subjectively that the system recovered@3®e original pen-tip movements.

Spagnolo et al. [78] use a novel opto-electronic device dddetonstruction techniques to
perform 3D acquisition of documents. Preliminary resulisvg that their 3D presentations
of static scripts contain information that is unavailableconventional 2D presentations. The
additional information is especially useful for pen pressanalysis, thereby making it easier
to unravel superimposed curves. Figure 2.1(a) shows adlypikample of a binarised 2D “X”
pattern. Note that there are no clues, whatsoever, to deteritme sequence in which the two
intersecting curves have been created. However, Figui€b)2and (c) show the 3D presen-
tations from [78] of an “x” pattern viewed from above and heloespectively. Spagnolo et
al. [78] observe that the z-coordinates of the curves in flzeptane, and the colour intensities
of the 3D presentations can be used, among other local ¢tugder which curve was written
first (F) and second (S). It is shown in Section 7.2.2 that tlesgure information inferred from
such 3D presentations of static scripts may complementmnoach.

(@) (b) (©)

Figure 2.1: Presenting an “x” pattern as a 2D image and in a 3D space (takem [78]),
with (a) the 2D image, (b) the 3D presentation viewed fromvalend (c) the 3D presentation
viewed from below. Pressure information is inferred from 3D presentations, which is used,

among other local clues, to detach the two superimposedesuard determine which curve

was written first (F) and second (S).
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2.3 Graph-theoretical methods

The excess of recent literature on the research topic @hgsaph-theoretical methods. A brief
background of graph theory is provided in Section 2.3.1tHarrinformation regarding graph
theory can be found in [72, 38, 55].

2.3.1 Graph-theoretical background

A graphg = (v, €) is a collection onodegverticesv = {v,...,V,} and edgee = {ey,..., e},
where anedge g is a line that connects two control points, in this case the werticesv,_;
andv,. A directedgraph consists obrderedpairs of vertices, whereas amdirectedgraph
consists ofuinorderedpairs of vertices. Graph-theoretical approaches to tisisarch topic con-
struct undirected graphs from static scripts. In skeldtased methods, e.g., the nodes typically
label the skeleton samples that are connected to one, or tmamefwo skeleton samples. A
costweightis then assigned to each edge to produeeigghted graphin acomplete grapfall

the nodes are connected. The nodeslinegraph¢(g) correspond to the edges@$o that two
nodes are adjacent #ifg) if the corresponding edges gnare adjacent.

General graph-theoretical concepts are illustrated inféi@.2. A static script, which is easy
to unravel, is shown in Figure 2.2(a). Figure 2.2(b) dep&ctypical graphg for the skele-
ton of the static script in Figure 2.2(a), whegeconsists of four edgefA, B, C, D} and five
nodes (filled dots.) The complete line graffg) of Figure 2.2(b) is the collection of black
solid lines and black filled dots in Figure 2.2(c). pathp = [Vo,€1,V1,...,Va 1,61, Vo] IN @
graph is an alternating sequence of nodes and edges, begiand ending with nodes. It
joins nodesy, andyv,, passes through the nodes: [vy, v1, .. ., Vo1, V] @and traverses the edges
e=[e€,...,61, 6] A pathiselementaryf all the edges are distinct, whereas isimpleif

all the nodes are distinct. géycleis a path in a graph with identical sta@md nodes, i.eVy = V.

A treeis a graph that contains no cycles.spanning treef g is a subgraph of that contains
all the vertices but only enough of the edges to form a treausTim Figure 2.2(b), the set of
edgegB, C, D} and the nodes that are connected to these edges form a spaeeiofg.

An important graph-theoretical problem to address is towdate the shortest path from a source
vertexs € v to a destination verted € v. In a weighted graph, this path corresponds to the
paths — d with the smallest total weight. This problem is called thegle-pair shortest-
path problem; see [32]. For any graph, there is a number of variemthis problem. In the
single-source shortest-pagitoblem, the shortest path from a single sowseev to everyother
vertexv € v must be calculated. This problem can be solved using Dglssalgorithm with
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g
B C D
(@) (b)
C
g
A I
(@) (e) T

Figure 2.2: lllustration of graph-theoretical terminology. (a) A stascript with (b) a typical
graphg for the script’s skeleton. (c) Black solid lines and filledsleender the complete line
graph¢(qg) of (b). A “virtual” node p is included to search for an optimurdamilton cycle. (d)
A static “r” with (e) the graph of its skeleton. (f) The comfgdine graph of (e) which is
connected to a “virtual” node p.

complexityO(N3), whereN is the number of nodes [72, 32, 38]. In thk-pairs shortest-path
problem the shortest path between every pair of verticeal@itated. Although this problem
can be solved by solving the single-source shortest-pathigqm on every vertex, there are more
efficient ways, e.g., in [72] a dynamic-programming approadesribed. In the context of the
research topic, the path that minimises a predefined costitum(depending on the application)
maps to the pen trajectory of the static script. The wellvkm@hinese postman probleisithe
search for a Eulerian cycle in a graph, where BEugerian pathis the shortest path containing
every edge in the graph exactly once andEuwerian cycles the Eulerian path with identical
starfend nodes. However, not all graphs have Eulerian paths. [We fite Chinese postman
problem, some edges may have to be duplicated so that the bespa Eulerian path. Edges
are, however, duplicated at most once, so that a segmenttatia script can be traversed at
most twice in approaches that solve the Chinese postmaiepnob

TheHamilton pathis a path that contains every node of a given graph exactlg.oftte search
for the shortest Hamilton cycle in a weighted complete griaptalled thetravelling salesman
problem[38], where aHamilton cyclds a Hamilton path with identical st@ind nodes. To solve
the travelling salesman problem, a “virtual node’pseudo-node g v is typically included in
the complete line graph @. The new graph is called thextensiorof the complete line graph
of g. Pseudo-edgeare then included to connect all the other nodep,tas illustrated by the
grey lines in Figure 2.2(c). The shortest Hamilton cycléhert calculated.
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If the shortest Hamilton cycle corresponds, e.g., to thaisege of nodesp, b, a, c,d, p] in
Figure 2.2(c), the node is removed to calculate the final sequence of nodes. Theestort
Hamilton cycle may yield discontinuous paths. In such cagesshortest continuous path to
bridge the discontinuity is typically calculated. In Figu2.2(d) a static script of the character
“r" is shown. The graphg and¢(g) for the skeleton of (d) are shown in Figures 2.2(e) and
(), respectively. A realistic Hamilton cycle from Figure2®f) is [p, b, a, ¢, p]. This sequence
of nodes then translates to the sequence of ed§es €] in Figure 2.2(e). The shortest path
to continuously reach edde from A in Figure 2.2(e), afteA has already been traversed from
edgeB, is to retrace edg@. Hence, the final sequence of edges in Figure 2.2(d,i4,[A, C].

In travelling salesman approaches, similar extensionsaie for lines that are traversed more
than twice.

The travelling salesman problem and Chinese postman pnoaie proximity problemsi.e.,
these problems can be reduced to geometric problems thawdledhe proximity of points in
metric space [55]. A powerful approach to deal with thesdjams dfectively is to utilise a
Voronoi diagramand its straight-line dual, theelaunay triangulationThe Voronoi diagranv

of a set of pointsP = {p1, p2,....pn} IS @ uniquely defined decomposition or tessellation of
the plane into a set dfl polygonal cells, referred to as Voronoi polygons [73]. Eaolygon
contains exactly one sampbe € P and delineates the locus of all points in that plane that are
closer top; than any other point ifP. The edges defining a Voronoi polygon are generated
from the intersections of perpendicular bisectors of the 8egments connecting any one point
to all its nearest neighbours ia [73]. A typical Voronoi diagramV of a set of points (black
dots) is shown in Figure 2.3(a). The Delaunay triangulatan now be computed from by
connecting all pairs of points that share the same edge [bB¢ Delaunay triangulation of
Figure 2.3(a) is shown in Figure 2.3(b). Itis shown in Set8dl how a Delaunay triangulation
can be derived from a static script to calculate the skelefaie script from the computed
tessellation.

A few points must be considered when deciding whether the€3a postman or the travelling
salesman problem is applicable to a problem. That is, oné daisrmine when to calculate
the shortest path directly frogmor when to compute extension of the complete line grapd of
and then calculate the shortest path frém). Both solutions calculate an optimal trajectory,
based on global optimisation. Global optimisation is esgdlcuseful to resolve ambiguous
intersections in static scripts. A wider range of scripta b& dealt with when solving the
travelling salesman as opposed to the Chinese postmarepipblg., lines that are traversed
more than twice can, by definition, be identified for the tiiwg salesman problem, which
is not the case for the Chinese postman problem. Unfortlyndkee computational cost of
the Chinese postman and travelling salesman problems bdee dccounted for. Solutions to
problems are regarded agicientif they can be solved in polynomial time, i.e., the number
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(b)

Figure 2.3: Computing (a) the Voronoi diagram and (b) the Delaunay tgalation
(straight-line dual of (a)) of a set of points (filled dots.)

of operations is proportional to some polynomial in the nemaf input bits [72]. As graph-
theoretical methods based on the travelling salesmangmroahd certain cases of the Chinese
postman problem are NP-complete, these methods belongatmity fof problems for which
no dficient solution can be found [72, 38]. Since a complete grdph static script has to
be constructed to solve the travelling salesman probleentrttvelling salesman problem is in
general computationally more expensive than the Chinestram problem. Generally, when
solving the travelling salesman problem, all the permatetiof the vertices in a weighted
complete graph must be calculated. Hence, in the worst ©849& operations are required,
whereN is the number of edges in the graph [72]. There are, howewex] gpproximations
of efficient solutions to all cases of the Chinese postman probdéem;[38]. Thus, one often
has to rely on sub-optimal solutions to the travelling sal@s problem, or, by imposing more
restrictions, revert to the Chinese postman problem antbappations of it. When solving the
travelling salesman problem for this application, one dan mtroduce heuristic constraints to
reduce the computational complexity and thereby ensutéhtbalgorithm is not NP-complete.
This is, however, at the cost of a lower accuracy.

2.3.2 Trajectory estimation algorithms that solve the Chirese postman
and travelling salesman problems

Methods that rely on solving either the Chinese postmanavetling salesman problemftir
primarily as follows:

1. Different cost functions are minimised to find the shortest patha graph that presents
a static script.
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2. Different processing steps are applied to the graphs beforedahehdor the shortest path
is conducted, e.g., in some methods the graphs are dividedsmaller sub-graphs in
order to reduce the computational complexity.

3. Graphs are derived from the skeleton or grey-scale imbtfeetatic script.

Attention is dorded to the above flerences in the discussion of the graph-theoretical methods
that follows, as these filerences influence a method’s flexibility, computational ptaxity and
sensitivity to artifacts.

The methods in [2, 33, 5] are some of the first approaches imast the pen trajectories of
static script skeletons by solving the Chinese postmani@mob Abuhaiba and Ahmed [2]
introduce a prior set of heuristic rules that comply with Bimhandwriting, e.g., they search
for a starting position at the right side of the script, asbAcghandwriting proceeds from right
to left. After calculating the starting position of the peajéctory, the rest of the trajectory
corresponds to the path with the shortest Euclidean distar@05 Arabic scripts by two writers
were traced, and a subjective evaluation indicated that 828te actual temporal information
was recovered. Huang and Yasuhara [33] subdivide the sketgaph into smaller sub-graphs
to reduce the computational complexity, and introduce & ftwgction which is minimised to
find the smoothest path in the graph. Allen and Navarro [S]yaapocal continuity criterion to
merge certain edges in the graphs presenting the skeletétanman characters. The Eulerian
paths with minimum Euclidean distances are then calculated

Jager [38, 37] constructs graphs from the skeletons o statipts and estimates pen trajectories
from the graphs by using two systems. The first system findgdtiewith minimum Euclidean
distance by solving the Chinese postman problem. The sesgstdm computes the angles
between intersecting edges and solves the travellingrealegproblem in order to minimise
curvature globally. In [38], 6934 on-line words by 88 Gerns&idents were converted intf-o

line words to generate results, where the average lengtreajround-truth trajectories is 17.7
(expressed as the number of edgeg.jnit should be noted that edges do not necessarily have
equal pixel lengths (nodes gare constructed for only certain skeleton samples, asridltes] in
Figure 2.2(b).)Levenshtein distancese used to calculate error rates; see Section 6.4 for more
detail. The second system, which solves the travellingssada problem, performs best with an
average Levenshtein distance of approximatedy B the graph of a word consists of too many
edges, i.e., when the computational complexity is too higéword is segmented. The optimal
trajectories from the separate graphs of the segments emectimbined to calculate the final
trajectory of a static script.

Kato and Yasuhara [40] construct a graph from the skeletan ©hgle-path static script and
label the kind of vertices and edges in the graph, e.g., siBumeasures are invoked to identify
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and label the edges that are allowed to be traversed twiaepdintrajectory of the static scriptis
then estimated from the graph by combining the label infaionaand the search for the shortest
Eulerian path. Although restrictions are imposed on thgistaand terminating positions of a
pen trajectory, the authors are able to identify lines taetbeen traversed twice. Hence, in this
regard, they improve on techniques that are unable to igeptraced lines, e.g. [33]. Although
their method is not as flexible as methods that solve theltiragesalesman problem, e.g. [38],
not all the possible paths are enumerated, thereby makangapproach computationally more
effective. A subjective evaluation was conducted on more tt¥hstatic handwritten scripts,
and it has been observed by the authors that their methode¢gssful on scripts that comply
with their assumptions. In [41], the same authors extend #ypproach to multi-path static
scripts.

Lallican et al. [43] segment the grey-scale images of s&igts at critical points, e.g., high
curvature and intersection points. A graph is then caledlatith nodes that correspond to the
calculated critical points. The position and directiorviien edges in the graph are minimised
by solving the travelling salesman problem. The authore rioat, compared to Jager [38,
37], their graphs are refined so that they are able to accoarg accurately for lines that are
revisited multiple times, as well as pen-up and pen-down®véen trajectories were estimated
from characters and words in the IRONOFF database, when®RDROFF database consists
of on-line and &-line versions of 30 000 words and 25 000 characters for 7@8Wiotuals
(see [45] for more detail.) The estimated pen trajectoriessvimplemented in a character and
word recogniser. Approximately 80% of the estimated trajees produce likelihoods in the
same range as their dynamic counterparts when words analotéer are classified. Hence, the
authors infer that approximately 80% of the estimated pa&edtories are correct.

Al-Ohali et al. [4, 3] transform the graph of a static script’s skeleton into a spanning ttee
by removing all the cycles frorg. Some edges ihare allowed to be retraced when calculat-
ing the path with the shortest Euclidean distance. The rechaycles are reinstated after the
calculation of the shortest path in The algorithm is specialised for Arabic letters and words.
In [3], estimated trajectories are applied to recognisébiravords, where a recognition system
has been trained on 19 813 samples and tested on 8172 saAplsamples were extracted
from real-world bank cheques. The authors observe that 4G#ealassifier errors are due to
noise on the cheques, digitisinfects, and scripts that are hard to unravel. A further 8% of
the classifier errors are due to skeleton artifacts. (Othrersgare caused by the classification
module.)

Qiao and Yasuhara [67] identify lines that are allowed torbedrsed twice in the skeleton of
a static script using a probabilistic approach. Accordintfiey duplicate, merge and separate
certain edges in the graph that presents the skeleton. Tre@dbraph is subsequently divided
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into smaller sub-graphs to improve th@&&ency of the search for an optimal path. The same
cost function as in [33] is minimised during the search far #moothest path. The authors
observe that their approach is mofgaent and flexible than the methods in [40, 33].

The approaches of Lau et al. [50, 51] are similar to methodsgblve the Chinese postman
problem. Curves are extracted from the skeleton of a sciipt[50], the extracted curves
are matched to empirically determined cost functions, tviaie minimised to find an optimal
path using dynamic programming. In [51], the cost functians expressed as PDFs which
are trained from a set of on-line handwritten scripts, ileey utilise dynamic exemplars in
this regard. Training makes the system in [51] more robusiltgraphic variations than the
system in [50]. Note, e.g., in Table 2.1 that tleé-to-right assumptioroccurs in [50] and
not in [51]. The authors note that, regarding geometricatemns, their PDFs are scale and
translation invariant, but not rotationally invariant. joantitative results are provided.

2.4 Local correspondences with dynamic exemplars

Guo et al. [31, 30] estimate the pen trajectories of stagjoaiures to detect forgeries in an
off-line signature verification system. Dynamic exemplarsracerded using a digital mouse.
A search algorithm is directed that finds a correspondingtpai the grey-scale image of a
static script for each point in the dynamic exemplar. Fohgaaint in the dynamic exemplar,
the corresponding point in the static image must have a ggale intensity above a certain
threshold, it must be nearby and within an angular sectae4®. The search for the most
likely pen trajectory is conducted up to a certain depth, iettbe search is terminated and
started again. The authors note that this local optimisatamuses errors as well as local choices
at noisy, ambiguous intersections. It is also indicatet| tlegarding geometric variations, their
system is not scale invariant. It is, however, rotationatlsariant, within an angular sector of
+45°. No explicit provision is made for sequence or allograpladations, i.e., no training
schemes are invoked. No quantitative results are provided.

2.5 Summary

Some characteristics of existing techniques are identifialare comparable to our approach
and that can be used to evaluate the performance of pentngjestimation algorithms. These
characteristics are summarised as follows:

1. It is evident from Table 2.1 that rules are typically reqdito find the starting and ter-
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minating positions of a static script in methods that do nakenuse of prior knowledge.
Guo et al. [31] and Lau et al. [51], e.g., do not impose rulesaiculate these positions,
but invoke prior information available from dynamic exewmsl. Likewise, additional
information from dynamic exemplars, or prior rules, areitgfly required to identify
pen-up and pen-down events, i.e., to deal with multi-pathcsscripts.

2. A comparison between graph-theoretical and rule-bastidads indicate that local choices
at intersections are frequently invoked in rule-based oughwhereas graph-theoretical
methods evade local choices by minimising predefined caositions globally. Hence,
graph-theoretical methods generally have a better abditgsolve ambiguities in static
scripts than rule-based methods have. The most flexiblehgitegpretical methods are
employed by Jager [38] and Lallican et al. [43], where tlageatling salesman problem
is solved. However, noficient solution exists to solve the travelling salesman |@mb
Hence, many graph-theoretical techniques are impelleevert to sub-optimal or more
restrictive solutions.

3. Table 2.1 indicates that techniques that can explicébl @ith lines that must be traversed
more than twice are sparse. Hence, most techniques deahanthwritten words, letters
or numerals which, in general, do not contain lines that ereetsed more than twice.
Few techniques unravel static signatures, which are ysualich more unpredictable
and dificult to unravel.

4. Only Jager [38] and Lau et al. [52] propose methods to tfiyahe efficacy of an esti-
mated pen trajectory. Although the method in [38] is not iravat to parameterisation, it
can be applied to a wide range of scripts. The method propgog&a] is only applicable
to a restricted set of scripts, as discussed in Section.6.1.1

5. In general, methods that extract all the skeleton sangflasstatic script are more sen-
sitive to noise than methods that extract only a selectioskefeton samples, e.g., Guo
et al. [31]. If a scanned-in document contains noticeableisps lines near the hand-
written script, due to external noise, errors are typicatyoduced if the system enforces
traversal of all lines. Al-Ohali et al. [3], e.g., take na@iof the errors introduced in their
classifier due to external noise and skeletonisation atsifa

6. Recent work by Lau et al. [51] and Guo et al. [31] rely on pkioowledge from dynamic
exemplars. Guo et al. establish a local correspondenceebata static image and dy-
namic exemplar. Lau et al. do not establish such a local spomdence but compute
cost functions from dynamic exemplars which are used to caenthe path with mini-
mum cost in the skeleton of a static script. The following aeks can be made regarding
existing systems that employ prior dynamic information:

(&) Even when prior dynamic exemplars are available, hitiriseasures are typically
required to resolve ambiguities completely. Lau et al. [@id Guo et al. [31], e.g.,
invoke a local smoothness criterion at intersections.
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(b) Existing methods that utilise prior dynamic informattiare not completely robust
against geometric variations; the approach followed byétal. [51] is not rotation-
ally invariant while the approach followed by Guo et al. [&hot scale invariant.

(c) The approach followed by Lau et al. [51] train PDFs to unld writer-specific in-
formation, and is therefore more robust to allographicatasns than the approach
followed by Guo et al. [31].

(d) Sequence variations do not explicitly influence the roétbf Lau et al. [51], whereas
the method of Guo et al. [31] is highly sensitive to subsiios and deletions (cor-
responding points in the static image must be found for alhggan the dynamic
exemplar.)

The above characteristics are taken into consideratioeatic 6.4, where the performance of
our system is evaluated in comparison with existing tealesq



Chapter 3
Preprocessing

Some basic preprocessing steps are applied before estyiadi pen trajectory of a static script.
To estimate a pen trajectory, a static script is comparel svilynamic exemplar. Hence, any
prior alignment of a dynamic exemplar and a static scripisess®ur HMM to establish an
accurate match and therefore improves the performancerafaectory estimation algorithm.
The most significant preprocessing steps are:

1. Adynamic exemplar is presented as a smooth parametie.cAccordingly, the skeleton
of a static script is computed by reducing the script to aesobibn of parametric curves.
Section 3.1 pursuits an adequate skeletonisation scheme.

2. The next step renders prior preprocessing to make oupapiprinvariant to geometric
variations. First, the centroids of a dynamic exemplar aistatic skeleton are aligned
to ensure translation invariance. Next, the dynamic examiplscaled so that it has the
same standard deviation in the xy-plane as the static ske[68]. The orientations of
the dynamic exemplar and static image are aligned using arRbadsed approach, as
described in Section 3.2.

3. Finally, the parametric curves that constitute the dyin@xemplars and static skeletons
are similarly resampled, as described in Section 3.3, ieroia obtain a moreficient
representation.

29
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3.1 Skeletonisation

3.1.1 Introduction

Since static signatures appear as 2D images on documéthes ifliany, dynamic information
about the actual process of creating the signature is extaim order to extract a parametric
curve from a static image, we first extractkeletorfrom the image through a thinning process,
where the skeleton follows the centreline of the originahg®. Note thaskeletonisatioral-
gorithms compute the centrelines from image boundariesredghinningalgorithms remove
outer layers of an image while simultaneously preservirgitilage connectivity. In general,
a strict requirement of good skeletonisation is the pregem of the topological and geomet-
rical properties of the original object. There is a vastedion of existing literature available
on thinning and skeletonisation techniques. Some of thedeniques are discussed in Sec-
tion 3.1.2. It is, however, important to bear the followimgmind regarding the skeletonisation
for this application:

e Many existing techniques that estimate the pen traject@fistatic scripts from the script
skeletons are sensitive to skeletonisation artifacts.s ltherefore necessary to deter-
mine our HMM’s robustness to artifacts. This section shoaw hrtifacts are removed,
whereas theféect of artifact removal is measured in Section 6.3.2.

e The local directions and the positions of the lines that tiis the skeletons of static
scripts are embedded in our HMM PDFs, as shown in Chapter é.entbedded script
characteristics are then matched to the dynamic exempleostacilitate an accurate
match, it is important to skeletonise static scripts so thay resemble their dynamic
counterparts as accurately as possible. Tihieaey of our algorithm in this regard is is
gualitatively measured in Section 3.1.6, whereas qudngtperformance measures are
presented in Section 6.3.2.

e For this application, it is important to distinguish betwggarts in a handwritten static
script that are easy and parts that af@iclilt to unravel. Section 3.1.5 develops heuristics
to establish such distinctions.

e Section 4.5 shows that smooth and accurate line directitovs the simplification of our
HMM for intersections that are easy to unravel. We therefoces on various smoothing
techniques during the development of our skeletonisatigarghm in Sections 3.1.3-
3.1.5.

e A skeleton that segments a handwritten script into smoothrpetric curves comple-
ments our resampling scheme that identifies high curvatomrgg see Section 3.3 for
details.
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3.1.2 Literature synopsis

When an image is scanned as a grey-scale image and binarisgel s inevitably introduced.
If the skeleton is then derived from this binarised imaglowang the image centreline exactly,
the skeleton is bound to contain artifacts. We refer to skakeresulting from skeletonisation or
thinning techniques that do not attempt to remove suchaattifasstandard skeleton€EExam-
ples of such techniques can be found in [48, 28, 73, 29]. #uts are categorised g®ripheral
artifacts such as spurs attached to the skeleton of an imagmserdection artifactswhere two
or more lines that should intersect fail to cross each otharsingle point. Figure 3.1(a) shows
an example of a reasonablyfiiltult signature to skeletonise—one that even the eye fintls di
cult to unravel. Figure 3.1(b) is an example of a standartesie from [29] for Figure 3.1(a).
Some, but not all, artifacts are encircled with dotted lin8sice we are attempting to extract
the pen trajectory from the image, artifacts cdlieet our trajectory extraction algorithm—the
exact éfect of such artifacts is investigated in Chapter 6.

(d)

Figure 3.1: The skeleton of a static signature containing regions otiplel crossings. (a) A
binarised signature that is fficult to unravel. (b) Examples of artifacts that can occur in
skeletons. (c) The final skeleton of (a), specific to our apfibn (note the web-like
structures.) (d) Examples of trajectories that can be esterd from (c).

To remove skeletonisation artifacts and improve local kivections, so that static scripts
closely resemble their dynamic counterparts, more sdpatstl algorithms are required; see,
e.g., [86, 87, 69, 80, 42, 13, 47, 79]. To choose an appr@psictieme is unfortunately rather
difficult, as the quality of skeletonisation and thinning altjoris are mostly quantitatively mea-
sured by their computation time and their ability to presdie topology and geometric prop-
erties of the original object; see [83, 46]. For this applara additional considerations should
be taken into account, as outlined in Section 3.1.1. It isartgnt, e.g., that the connectivity of
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lines through complicated regions should be preserved.

For our application the rather sophisticated algorithm loy And Yan [86], as improved by
Rocha [69] is highly suitable, with modifications specificoiar application. Our skeletonisa-
tion scheme is primarily based on the algorithm by Zou and [8&f), which is from now on
referred to as the Zou-Yan algorithm. The Zou-Yan algoriierbased orDelaunay triangu-
lation [14]—an angle-optimal triangulation given a set of poingpecifically, any Delaunay
triangulation from a set of points maximises the minimumlarmyer all the constructed trian-
gles; see [14] for further detail. The Zou-Yan algorithmtfidentifies the edges that represent
the boundaries of the original image, where the edges, $ictse, are lines connecting succes-
sive boundary samples. By constructing Delaunay triarfgbes the control points representing
these edges and some further basic steps, one computestaskeat follows the centreline of
the image [86]. Additionally, the triangles that comprisgfacts are identified, resulting in a
powerful technique to identify and remove skeletonisasidifacts.

The mostimportant modification for our application is widlgard to the skeletonisation in com-
plicated regions. The Zou-Yan and Rocha [69] algorithmemssthat lines do not change their
orientation after entering an intersection. Due to the reatii human handwriting, especially
signatures, this is not always true. When an image becordesimct due to multiple thick-lined
crossings in a small region, it is not clear which curves sthbe connected. If the skeletonisa-
tion algorithm follows a dominant curve and strives to maimits direction, the wrong curves
may be connected, with the result that actual trajectoeesime irretrievably lost. In situations
like these, we are careful to maintain all possible conoesti while smoothing transitions at
intersections as much as possible. This often results isually unappealing web of connected
lines (see Figure 3.1(c).) Although visually unappealthgseweb-like structuresire tailored
for our proposed method. The HMM is able to find the appropriannections, thereby recon-
structing the pen trajectory accurately. Due to the web-$iltuctures in complicated regions
we do not necessarily preserve the topology of the origimalge. We therefore refer to our
skeletonisation algorithm ageseudo skeletonisati@igorithm resulting in th@seudo skeleton
of the original image.

3.1.3 Overview of our pseudo skeletonisation algorithm

This section presents a brief overview of the applicatipeedfic modifications to the Zou-
Yan and Rocha approaches. The key idea of these approacteepastition an image into
smaller regions so that regional information can be exgtbio identify artifacts. These regions
assume a wide variety of shapeEnd regionsare defined as regions that contain skeleton
lines between endpoints and crosspoints. elidpointis a skeleton sample connected to only
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one adjacent skeleton sample, whereasosspointis a skeleton sample connected to more
than two adjacent skeleton samples. Typically, end regaraslikely to contain peripheral
artifacts if they are short in length in comparison with th&idth. Spurious end regions are
simply removed.Intersection regiongontain crosspoints. Berent crosspoints are joined in
a single point by merging their intersection regions, thgreemoving intersection artifacts,
wheremergingdescribes the process that unites two or more interseatigions. Typically,
the directions of skeleton lines that enter intersectigmoms are used as basis for calculating
whether nearby intersection regions should be united.

Two simple examples are shown in Figure 3.2 to illustratebthsic steps for artifact removal.
The first bounding box in Figure 3.2(a) depicts the skeletbarcimage containing spurious
intersection regions (dashed boxes.) Line direction®yas) are used as basis for merging the
two intersection regions. As mentioned above, the mergirigeotwo intersection regions re-
sults in their unification, fectively expanding the separate intersection regions amdving
the connected sub-shapes between them. Thus, the two semi@munited into a single inter-
section region, as depicted by the big dashed box contamimgthe second bounding box
of Figure 3.2(a). The lines that enter the new intersectagion (dashed box) are joined at a
crosspoint, where the crosspoint is the 2D skeleton sajmpgtggure 3.2(b) shows spurious end
regions (dashed boxes) which are removed to compute theske#dton, as shown in the last
bounding box.

REVAR
P
(a)

(b)

Figure 3.2: Removal of skeleton artifacts. (a) Removing intersectitifeats by uniting the
appropriate intersection regions (dashed boxes.) Thectloas (arrows) of the lines that enter
the new intersection region are computed to calculate tbheswoinp where the lines should
join. (b) Peripheral artifacts are removed by removing spus end regions (dashed boxes.)

Problems are typically encountered in complicated arear@vimany intersection regions are
located within close proximity, e.g. the left-hand side ofu¥e 3.1(a). In such cases, lines
entering the intersection regions are too short to makerate@stimates of their directions.

Inaccurate line direction estimates can result in the megrgnrelated shapes, thereby remov-
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ing skeleton lines that are not intersection artifacts,itmgortant image features. The removal
of such features can lead to a performance degradation dfilelM. It is therefore necessary

to introduce further refinements to the basic algorithm.Harg one has to avoid merging of
unrelated intersection regions. Accordingly, we introeladditional constraints, relying mainly
on local line width. In the previous section, we alluded te generation of additional lines in

complicated parts forming web-like appearances. Since tisea direct relationship between
the noise in the boundaries of an image and the number oéetdiin the image skeleton, a
smoothing procedure is applied to the original boundasesell as the final skeletons. Using
the Zou-Yan algorithm as the basis for our pseudo skeletioisalgorithm, our implementa-

tion effects the following modifications for handwritten signagire

e Image boundaries, lines that estimate the directions ohected sub-shapes and final
skeletons are smoothed with appropriate smoothing teabasiq

e Complicated parts of a static handwritten script, whers difficult to estimate line di-
rections, are identified and handled separately.

e Several constraints are set, based on line width.

e Iterative merging of intersection regions is prevented tuedcriteria of the Zou-Yan al-
gorithm are extended to decide whether two intersectiolonsgshould be merged.

The details of the algorithm are described in subsequetibssf this chapter. Section 3.1.4
explains how an image is partitioned into sub-shapes andaetandard skeleton is derived
from these sub-shapes. Section 3.1.5 explains how suleslap manipulated to remove arti-
facts. Section 3.1.6 presents results and a summary ofganitiim, and some final conclusions
are drawn in Section 3.1.7.

3.1.4 Shape partitioning

The first steps are straightforward: Image boundaries amaa®d from static handwritten
images. These boundaries comprise polygons so that thd petygons, referred to as the
approximating polygonf the static image, now represents the image. Since lowablirections
are not well defined as a result of noisy boundaries, bourskanples are processed as follows:

1. High curvature points are selected from the boundarikawing the polygonalisation
approach in[73].

2. The resulting boundaries are smoothed using a low-p#ss[#B]. Excessive smoothing,
however, will remove regions of high curvature. This can bgipularly problematic for
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thinner signatures, as excessive smoothing allows outandaries (surrounding the im-
age) to cross inner boundaries (surrounding holes.) Taowee this problem, the mean
and standard deviatian of line thickness are computed. After each smoothing ii@nat
the areas of the polygons enclosed by smooth boundariesabndated as percentages
of the original polygon areas. The area Jgssna,oygon after each smoothing iteration is
compared with the following empirically determined threlsha,i,, where

amin = 1.5 *ﬂ%o'%. (3.1)

Hence, ifayoygon > amin the smoothing of the iteration is not included. According3d)),
thick-lined signatures varying more in line width (an ination of noisy boundaries) are
smoothed more than thin-lined signatures with less boynuaise.

3. Image boundaries that enclose three or less connectels pbe considered insignificant
and removed immediately.

4. For the sake of simplicity, image boundaries are resaimdethat the distance between
any two successive samples is approximately one pixel.

Figure 3.3(a) shows a static signature to be skeletonisgdrd-3.3(b) shows a part of the sig-
nature’s noisy boundary as extracted from Figure 3.3(gjurei 3.3(c) illustrates the smoothing
effect on the boundary of Figure 3.3(b) after processing tharpatric curve that presents the
boundary according to the steps above. The smoothed bgusdaiples are used as control
points to divide the original shape into a set of non-ovesiag triangles using Delaunay tri-

angulation [86, 65, 14]; also see Section 2.3.1. In orderrtzgrd we need to recall some
concepts of [86, 87, 69]:

e External trianglesoccur because the Delaunay triangles are situated insdbétconvex
hull of the object. This can generate triangles outside fhraimating polygon that
represents an image. External triangles are simply removed

¢ Internal trianglesare the Delaunay triangles that are situated inside theoajppating
polygon of a static image. Internal triangles are identifigdshooting a ray (half-line)
from the centroid of a particular triangle in any directisn,that the ray does not directly
hit any vertices of the approximating polygon. The ray arages inside an internal trian-
gle if the ray intersects the edges of the approximatinggmtyan odd number of times
(see[72].)

e External edgesre the sides of internal triangles that coincide with thagemboundaries.

¢ Internal edgesre internal triangle sides inside the approximating potygf the image.
Note that two adjacent internal triangles have a commomnateedge so that the internal
edges connect the internal triangles that partition theamating polygon of an image.



3.1 — XELETONISATION 36

(b)

(f) (9)

Figure 3.3: (a) A scanned signature with (b) a part of its noisy boundéy.The filtered
version of (b). (d) Vertices (filled dots), external edgesiddines) and internal edges (dashed
lines) are used to classify the internal triangles. (e) Thienary skeleton (solid centrelines) of

(¢). (H-(g) The primary skeleton of (a) without and withgrgmoothing.

¢ Internal triangles having zero, one, two, or three interdges are labelledisolated-
triangles (I-Ts) end-triangles (E-Ts)hormal-triangles (N-Tsandjunction-triangles (J-
Ts) respectively. Figure 3.3(d) shows examples of each thatype, where the black
dots represent control points (vertices) of the approximggbolygon that represents the
original image. The control points also form the verticeshaf Delaunay triangles. Ex-
ternal edges are rendered as solid lines, whereas intetgakere rendered as dashed
lines.

A primary skeletoris obtained as follows: for N-Ts, lines connecting the midg®of their
internal edges are computed. For E-Ts and J-Ts, the skelat@nstraight lines connecting
their centroids to the midpoints of their internal edgeseraas the skeletons for I-Ts are their
centroids. The appropriate skeletons for the internahgfies from Figure 3.3(d) are shown in
Figure 3.3(e). The primary skeleton for the signature iruFeg3.3(a), if no prior smoothing
is applied to the image boundaries, is shown in Figure 3.3(Me result when smoothing
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is applied, is shown in Figure 3.3(g). Note the reductionmirs as a result of a smoother
boundary. The few remaining spurs must now be removed aacsattion artifacts corrected.

3.1.5 Removing artifacts

Parts of a handwritten static script that aréidult to unravel, as well as intersection and pe-
ripheral artifacts, are identified by means of a parametewhich is the ratio between the
width w and length¢ of a ribbon, i.e.a« = 7, where aribbonis a set of connected N-Ts be-
tween two J-Ts, or between a J-T and an E-TioAg ribbonis identified whemnr is smaller
than a threshold value, whereaslzort ribbonis identified whenr is larger than a threshold
value. The widthw of a ribbon is taken as the trimean length over all internglesdhat con-
stitute the ribbon, i.e., the weighted average of the 25ticgreile, twice the 50th percentile
and the 75th percentile. The lengths the path length of the connected N-T skeleton lines
that constitute the ribbon. Figure 3.4(a) depicts a typitdion between an E-T and a J-T.
The length of the ribbon is computed as the path length of kik&e®on line that connects the
midpoints of the internal edges frolto i. The widthw of the ribbon is given by the trimean of
{llabl|, [Ibcl, llcdll, licdl, llefll, lIfgll}, wherexy = y — x andx, y are both 2D boundary coordinates.
The algorithm proceeds in several steps:

Step 1: Removing spurs. The first step in the skeletonisation is to remove all penigharti-
facts remaining after boundary smoothing. Following [&Hert spurs belong to sets of
connected triangles that are short in comparison with thalth; they are removed. If
a > 2, the ribbon is identified to be a short ribbon and removedhabthe J-T becomes
an N-T as shown in Figure 3.4(b).

The threshold forr depends on the boundary noise—less boundary noise rassiisiter
spur lengths. Thus, the threshold feris increased as the boundary noise decreases.
Figures 3.4(c) and (d) show the result afitepl is applied to Figures 3.3(f) and (g) with

a > 2. Note that most of the important image features from Figud¢a) are preserved

in Figure 3.4(d), whereas it becomeshdult to calculate a threshold far that removes
spurs from Figure 3.3(f) without removing important imagatires. Clearly, smoothing
significantly improves spur removal as spurs are shortemednatural way, making it
easier to compute a robust value &or

Step 2: Identifying complicated intersections. Figure 3.5(a) indicates the typical locations
of J-Ts, as derived from a complicated part in a signaturesolinany lines cross in
a small area, it is diicult, if not impossible, to maintain the integrity of linesg., it
is difficult to follow individual ribbons through intersections.h& Delaunay triangles
enable us to identify such complexities as parts of imagesrevimany J-Ts are within
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(b)

(€) (d)

Figure 3.4: Removing peripheral artifacts. (a) An illustration of tharpmeters involved to
determine if the ribbon between the J-T and E-T is spurioadicdés that are used to compute
the width of the ribbon are labelled from a to g, whereas thmgth of the ribbon is the path
length of the skeleton line between h and i. (b) Removinggheais end region from (a). (c)
Removing spurs from Figure 3.3(f). (d) Removing spurs frayare 3.3(g).

close proximity, as shown in Figure 3.5(a). Instead of fagcpoor decisions in such
complicated parts, web-like structures are introducedyding additional skeleton lines
to preserve all possible connections.

Figure 3.5: Identifying complicated intersections. (a) Clutteredslektracted from a
complicated part of a signature. (b) lllustration of Stepaere J-Ts are numbered, followed
by the number of long ribbons that are connected to them. (@l Bkeleton for (b) containing

web-like structures superimposed on the internal Delaunapgles.

Recall that during the primary skeletonisation, the cedsof all J-Ts become skeleton
points. As mentioned above, it is important to avoid foroongcial decisions in compli-

cated parts of a static script. Hence, for complicated satefions, the primary skeleton
points of the J-Ts are removed, and the lines that enter Tisaade directly connected. The
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resulting web-like structures contribute to smootherditons than the original primary
skeleton points in complicated parts of the image. We prbdeealiscuss the heuristic
measures employed to identify J-Ts that belong to such doatpt intersections.

First, J-Ts that are connected to two or three short ribbens 2.5), are labelledompli-
cated J-Ts The primary skeleton points of complicated J-Ts are requldny lines con-
necting the midpoints of the J-T internal edges. The samens @or other J-Ts that are
connected to complicated J-Ts through short ribbons. Bhilkustrated in Figure 3.5(b),
where the J-Ts from Figure 3.5(a) are numbered, followedheynumber of long rib-
bons connected to the J-Ts. Although J-Ts 1 and 7 are cormhext&vo long ribbons,
they are connected to complicated J-Ts through short riglsmthat their primary skele-
ton points are also replaced with web-like structures, eoting the midpoints of their
internal edges, as shown in Figure 3.5(c). Note that our HMMaets the appropriate
connections, as described in Chapter 5.

Step 3: Characterising skeleton points. The remaining uncomplicated J-Ts are either con-
nected to two or three long ribbons. The skeleton points chsincomplicated J-Ts
(recall that the primary skeleton selected the centroidyecalculated following a simi-
lar approach to [86].

Recalculating the skeleton points of uncomplicated intersctions. The midpoints of
internal edges belonging to the first few triangles (we usgetn) in all three ribbons
connected to a J-T are connected and smoothed using a sngotitiic spline, as shown
in Figure 3.6(a). The average directions of these curvetharecalculated and extended
in the direction of the J-T, as illustrated by the dashedslimeFigure 3.6(b). Let the
skeleton point of J-Tbep;, i.e., at this stage J; oes not belong to a web-like structure
so thatp; is the centroid of J-Twherei € {1,. .., n} andnis the number of uncomplicated
J-Ts. The new skeleton poipf of J-T; is computed by calculating the centroid of the
intersections between the extended lines, as indicatectlvgla in Figure 3.6(b).

Figure 3.6: Calculating crosspoints to identify complicated interts@as. (a) Cubic splines to
estimate the local directions of the ribbons that enter.JA3) The local ribbon directions
(arrows) are extended (dashed lines) to compute the skepetimtp; for J-T; in (a).
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Recalculation of skeleton points that are out of boundsln some casep; falls com-
pletely outside J-iTand all the ribbons connected to j-&.g., in the image background.
To preserve local line directiongy is relocated to an appropriate triangle closest to it.
Specifically, for each ribbon connected to J-J the nearest triangl&; ; to p; is com-
puted. ThusT;; can be any triangle that partially constitutes flieribbon connected to
J-Tifor j € {1,2,3}andi € {1,..., n}. For eacl, j, the angl&;; is computed, where

o af i-p)-(Pi-p)
e TS TR T 1A

(3.2)

wherep;j is the centroid oT; ;, p; is the centroid of J-Tandp; is the recalculated value for
pi which must be recalculated again. The trianglgmin corresponding to the minimum
6ii.j) is chosen as the triangle that should cont#inf T jmin is an E-T,p"", the new value

for p7, is the centroid of the E-T. T jymin iS @an N-T,p!" is the centroid of the midpoints
of the N-T’s two internal edges. Finally, the skeleton p@ifor each uncomplicated J-T
is recalculated ag; = p!, orp; = p{” if p; is out of bounds.

Associating a ribbon with each crosspoint. We now associate a single ribbgrwith

a crosspoinp;, where ribbonj is selected from the three ribbons that are connected to
the uncomplicated J;TSpecifically, the distances betweggrand the midpoints of J+B
internal edges (each corresponding to a specific ribbongaloellated. The midpoint of
edgej closest tq; defines the ribbom, associated witp;, e.g., the ribborx is associated
with p; in Figure 3.6(b). All the crosspoints along with their asated ribbons are stored

to be used at a later stage of the algorithm.

Step 4: Removing intersection artifacts (criterion 1). This step identifies uncomplicated J-
Ts (excluded from web-like structures) that contribute riteisection artifacts so that
artifacts can be removed by adapting some of the criterid bgg86]. A J-T; is labelled
unstable i.e., contributing to an artifact, if its skeleton pointlies outside it. In this
case, the sequence of connected triangles fromup-To the triangle in whiclp; falls are
removed, thereby merging them into a single polygon. Figuréa) indicated  jymin for
J-T; using an x-shaped marker. The intersection region reguitom the removal of all
the triangles up te; is depicted in Figure 3.7(b). Note thatis now associated with a
pentagon (five-sided polygon rendered as dotted lines.)

An extension ofStep4 is illustrated in Figure 3.8. The primary skeletons ofiJamd J-T
from Figure 3.8(a) must be joined to remove the interseditifact (solid line between
J-T,; and J-B). In this case, the skeleton poy of J-T; falls inside J-T, so that the two
J-Ts are united into a four-sided polygon (dotted rectgngith skeleton poinp (circle),
as shown in Figure 3.8(b), whepe= (p1 + p2)/2.

More intersection artifacts are identified and removedrdytihe next step.
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Figure 3.7: Correcting intersection artifacts. (a) Recalculating tsieeleton poinp; (circle)
for J-T;, where the ribbon j that is associated with JiFindicated by arx-shaped marker. (b)
All the triangles from J-Tto p; are removed from (a) to calculate a new intersection region
(dotted polygon) containing the crosspomtthereby preserving the line directions of the
y-shaped pattern (thick solid line) better than in (a).

Figure 3.8: Removing an intersection artifact using an extension g 8t¢a) An intersection
artifact (solid line) between J;Tand J-T and (b) removal thereof by uniting J-and J-T
into a new intersection region (dotted polygon) with skatgbointp.

Step 5: Removing intersection artifacts (criterion 2). We now make use of the information
about the location of skeleton points and their associabdmbns obtained irstep3. If
two crosspointp; andp, are associated with the same ribbon, as shown in Figure);3.9(a
anda > 2 for the ribbon, the two intersection regions and the ribbetween them are
united into a new intersection region. Note that after theliaption of Step4 a ribbon
connects an intersection region (trianglaygon) to an intersection region or an E-T.
The skeleton point for the new intersection region (dottelgigon) isp = (p1 + p2)/2, as
shown in Figure 3.9(b).

In addition, three J-Ts must sometimes be merged, as dliestrin Figure 3.10. Fig-
ure 3.10(a) depicts three J-Ts and their skeleton ppints, andps. Conditions for such

a merge occur if according ®tep4, J-T, and J-& must be united, whereas according to
Step5, J-T; and J-T must be united. In such cases, a new intersection regioradext
with a single skeleton poimt = (p; + p2 + p3)/3, as shown in Figure 3.10(b).

The final step modifieStepl and removes spurs after the applicatioistdpst and 5.
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(b)
Figure 3.9: Intersection regions are united if their skeleton points associated with the same
short ribbon. (a) Skeleton poinpg andp, of intersection regions 1 and 2 (humbered dotted

polygons) are associated with the same short ribbon. (b)rildmn and intersection regions
from (a) are united into a new intersection region (dottetygon with skeleton poirg).

(b)

Figure 3.10: Merging three J-Ts, where (a) J-must merge with Jsland J-T, according to
the locations of the J-T skeleton poipis p, andps; and the criteria imposed by Steps 4 and 5.
(b) A new intersection region (solid lines) with skeletompp and skeleton lines connecting

the midpoints of its internal edges (thin dashed lines) ltssafter merging the J-Ts from (a).

Step 6: Removing spurs by modifying Step 1. If a crosspointp is associated with a short
ribbon @ > 2.5) that is connected to its intersection region and an Edjrtersection
region is united with all the connected triangles up to th€ Ehe skeleton point of the
new intersection region is the centroid of the E-T. The s#etion region (dotted polygon)
of Figure 3.11(a) is connected to an E-T through a short nbBonew intersection region
is therefore computed (dotted polygon) resulting in a veglgpattern (solid line), as
shown in Figure 3.11(b).

AlthoughStepsl and 6 appear similar, there are subtlatencesStepl measures the length of
all ribbons that are connected to E-Ts and J-Ts and servestove the excessive artifacts that
can dfect the rest of the algorithngtep6 removes peripheral artifacts by relocating crosspoints
to the centroids of E-Ts, i.eStep6 transforms y-shaped patterns into v-shaped patterns.
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Figure 3.11: Removing the last spurs. (a) An intersection region (dgpiggigon) connected
to an E-T through a short ribbon. (b) Merging connected tghas from the intersection region
up to the E-T from (a) in accordance with Step 6 to compute ainesection region (dotted
polygon) and skeleton (thick solid line.)

3.1.6 Results: The final skeletons

Final skeletons are smoothed using Chaikin’s cornerfugigubdivision method [10, 49]. This
smoothing scheme treats the samples that constitute a p@raicurve as control points of a
polygon and iteratively “cuts” the corners of the polygonileldoubling the numbers of sam-
ples that constitute the curve. It is shown by Lane and Riet#49] that Chaikin’s curve is
equivalent to a quadratic B-spline curve (a piecewise catadBézier curve.) Due to Chaikin’s
geometricapproach to smooth curves, a wide variety of shapes can lidubeasily and ef-
ficiently, e.g., straight lines and closed curves are trte#ite same, making it an appropriate
smoothing scheme for this application. This smoothing sehés applied to all curves con-
nected to endpoints and crosspoints, as well as closeds(ewg, the character “0”.) Further
resampling before deriving an HMM from the skeletons is déed in Section 3.3.

On-line signatures from the Dolfing database [20, 82] (camekinto thin dt-line signatures)
and the &-line signatures from the Stellenbosch dataset developéibletzer [12] were used
to optimise the threshold values farat each step; see the previous section. The average line
thickness of the static signatures that were skeletoniagdd/between 1.7 and 8.1 pixels with
average standard deviations betweeh &and 53. Although the signatures vary considerably
as far as line thickness and boundary noise levels are quetethe same threshold values for
a, as presented in the previous section, are used in all c&esnples of final skeletonised
signatures are shown in Figure 3.12. Figure 3.12(a) shogvsrilginal signatures, while their
application-specific and general-purpose skeletons asepted in Figure 3.12(b)-(c). The
application-specificskeletons are our pseudo skeletons containing web-liketsties. The
general-purposeskeletons are our pseudo skeletons that do not contain ikelstructures,
i.e., the skeleton points of complicated J-Ts are their anymskeleton points (seStep2.)
Thus, except for the web-like structures, the general-gaepskeletons are the same as the
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application-specific skeletons. The general-purposecties can be used for otheff-dine
handwriting applications where improvements of stand&edetons are required to compute
visually appealing skeletons.

Signatures 1, 10 and 11 are examples of signatures thatlateely straightforward for the
eye to unravel. Their application-specific and generappse skeletons are therefore the same.
Note how local line directions are improved in the skeletbthe first signature after the ap-
plication of Steps2 to 6 as compared to Figure 3.4(d). Furthermore, web-likecgires retain

all possible connections while smoothing transitions &rgections slightly in parts that are
difficult to unravel. The application-specific skeletons of atgnes 5 and 8 illustrate that our
pseudo skeletonisation algorithm is able to identif§icult parts (evident from the webs on the
left-hand parts), whereas intersection and peripheréiets$ are corrected in parts that are rel-
atively straightforward to unravel (right-hand parts.) aQtitative measurements to determine
the dficacy of our skeletonisation scheme for this applicatiorpaesented in Chapter 6.

3.1.7 Summary and conclusions

Before drawing some conclusions, our skeletonisationreetie briefly summarised as follows:

e First, the boundaries of static handwritten images araetéd, smoothed and resampled.
Small polygons are removed, while the rest of the polygoessaibdivided into non-
overlapping Delaunay triangles. These triangles are use¢deafoundation to calculate
the primary skeletons of static images.

e Peripheral artifacts are removed by removing short ribl{ans 2) connected between
J-Ts and E-Ts.

¢ Parts of the signature that ardfutiult to unravel are identified and web-like structures are
introduced. Herexr > 2.5. (For general purposes, the primary skeletons in contplica
parts are retained.)

e Unstable J-Ts and other intersection regions that congitm intersection artifacts are
identified. Intersection artifacts are corrected usingdviteria. The first criterion merges
a J-T with a connected set of triangles up to its estimatete&ke point. The second
criterion unites two intersection regions if their skelefmoints are associated with the
same short ribbory( > 2.)

e The last peripheral artifacts are identified after the @dation of crosspoints in the steps
above. Herer > 2.5.

e Skeletons are smoothed using a corner-cutting subdivsgibame.
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(a) (b) (c)

Figure 3.12: Examples of our pseudo skeletonisation, where the scartagc sgnatures are

shown in (a) with (b) their application-specific skeletomsl&c) the general-purpose skeletons
derived from (a).
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Apart from the specific application to static signatures, above skeletonisation procedure is
also very suitable for arbitrary handwritten shapes. Tlds achieved by introducing a number
of detailed modifications to the basic skeletonisation émlne in [86] and developed further
by [69]. In particular we find that smoothing of boundarieduees the number of artifacts
significantly and enhances local line directions. An imabttfeature of the algorithm is our
exploitation of line width. This allows us to identify theroplicated parts of the signature where
difficulties might be encountered. It is of interest to note thatgarameters depending on the
line width can be fixed for a wide class of handwritten imagesssibly for all handwritten
images.

To conclude, our skeletonisation approach has the follgueneficial characteristics for this
application:

¢ In order to be able to extract the time sequence of the linegpadsing static signatures,
estimating local line directions is crucial. The challeng¢o design a skeletonisation
algorithm that preserves local line directions and manstdhe correct connections be-
tween incoming and outgoing curves, especially in comf@tgarts of the signature.
Our pseudo skeletonisation identifies complicated padtatic handwritten scripts while
enhancing local line directions using various smoothirtpmegues. An adaption of our
pseudo skeletons for general purposes is also proposeggbcaions that require arti-
fact removal and visually appealing skeletons.

e Due to the useful shape partitioning of static scripts usdegaunay triangulation, our
pseudo skeletonisation enables us to identify simplesetdions that are easy to unravel,
as shown in Section 4.5.

e The segmentation of a static handwritten script into a siele®f smooth parametric
curves with few artifacts enable us to identify high curvatpoints accurately, as de-
scribed in Section 3.3.

The dfect of skeletonisation artifacts on our system is invegtidan Section 6.3.2.

3.2 Orientation normalisation

Any form of handwriting is generated with a specific generadion relative to the horizontal
axis, which we refer to as thaientationof the handwriting. Since our algorithm relies on local
line directions, it is important that the static image and dlynamic exemplar have the same
orientation.
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Principal component analysis (PCA) is often used to aligieteént shapes [28, 54, 56]. Unfor-

tunately, this simple procedure is not reliable for signegu To calculate the principle axes of a
shape, the covariance matfixof the data, representing the shape, is computed. The niatrix
containing the eigenvalues Gfon its main diagonal is then computed, where

B1 0 ... 0
0 B ... O

E= , 3.3
D0 3.3)
0 0 ... fG

wheren is the dimension of the data and the eigenvalues are sortddsicending order so
thatg; > Bj.1 for j = 1,2,...,n— 1. The eigenvector correspondingAois then the axis
of maximum variation and therefore the principle axis. Far applicationn = 2. Hence,
problems are encountered with shapes that do not displaaa‘@irection”, i.e., wheB; ~ 3,
which causes mismatched principle axes of dynamic exesplat static skeletons.

N NO OO\~
550606

Figure 3.13: Aligning signatures with (a) PCA and (b) the Radon transform

A more robust approach is provided by shape matching algosgin the Radon and Hough do-
mains [26, 81, 12]. The Radon and Hough transforms are fratyugsed to detect straight lines
in an image. The estimated equations of the straight lineblerone to detect italicsfanted
handwritten characters or to determine the general otientaf a documentdocument skelw
see, e.g., [70, 39]. The Radon transform consists of phojestat diferent angle®, where
0° < 0 < 180, as shown in Figure 3.14, so that all the original image mifation is contained
in the projections for 0< § < 18C°. The Radon transform is computed ovesngles, where
n = 360 for this application. The Radon transform is periodid astation becomes a linear
shift in the Radon domain. At a specific anglg an image is presented loy line integrals
(projections ovem beams), wherg € {1,...,n}.

Since a rotation of an image corresponds to a linear shifterRadon and Hough domains (see,
e.g., [35]), it is straightforward to calculate the optinmahtch between a dynamic exemplar
and a static script. We use the Radon transform in a geneapéshatching algorithm, which is
very similar to the algorithms described in [26, 81, 12]. Tiyaamic exemplar is then converted
into a static image. Since the Radon transform is sensiited line width of the images, we
thicken [28] the static image skeleton as well as the imageet&from the dynamic exemplar to
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Figure 3.14: A projection of a static signature in the Radon domain, whkesdashed lines
depict the projection at an anglerelative to the x-axis.

a line width of approximately five pixels. This results in folowing orientation normalisation
algorithm:

1. The relative angle between a reference image (origitiadystatic script) and test image
(originally the dynamic exemplar) that produces the clbsestch in the Radon domain
is computed. The Euclidean distard;es computed for all possible rotations so that

360
di= | > Ity =ri I, (3.4)
i=1

wheret; andr;,; are the Radon transformsidimensional vectors) of the test and refer-
ence images &; andd,, j, respectively, ande {1,...,360. The value ok that produces
the minimum value to (3.4), i.&k,= arg(min()), whered = [dy, 0o, .. ., dy], is computed.

2. The dynamic exemplar is rotated witfy wherek is computed in the previous step, to
align it with the skeleton of a static script.

As far as we are aware, only Coetzer [12] employes this Rédsed scheme in a signature
verification application. However, existing techniqueattuantify the proficiency of PCA-
based versus Radon-based orientation normalisation catlde found. A direct comparison
between these two normalisation schemes is thereforeressen Section 6.3.3, where the
effect of these normalisation schemes on our system is alsauneeils

3.2.1 Summary

This section has shown how to match a static image and a dgrex@mplar in the Radon do-
main in order to calculate their relative angle of rotati@he dynamic exemplar is then rotated
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with this angle to align its orientation with the orientatiof a static skeleton. This approach is
applicable to any method that requires rotation normadiegdtetween two shapes. Many sig-
nature verification approaches use PCA to align the orilemsbf the signatures. Local shape
similarities form the foundation for our Radon-based riotatwhereas global characteristics
with less shape information form the foundation for PCAdthsotation. The ect of PCA-

based and Radon-based orientation normalisation on gactiay estimation algorithm and a
more quantitative comparison between the two approaclkeasastigated in Section 6.3.3.

In addition to the alignment of two shapes, a similarity meadetween the shapes is also ob-
tained that can be useful in shape recognition or signatniécation systems. This is endorsed
by Terrades and Valveny [81] who note that: “Symbols with enowon structure share maxima
location in the Radon transform, although the Radon trans#dso reflects dierences between
them.”

3.3 Resampling

The performance of the HMM is significantly improved by emypig a suitable sampling
scheme. An adequate sampling scheme is also required tagigista comparison between
standard skeletons and our pseudo skeletons from Secfion 3.

A dynamic exemplar sample, at time instancé is a 3D vector consisting of?, the 2D
position coordinate in the first two entries, axjtthe pen pressure in the last entry, whete

{0, ..., 255. Since the final skeletons are smoothed using Chaikin’s odgdee Section 3.1.6),
the dynamic exemplars are also smoothed using the same aneflon reasons that become
more apparent in Chapter % is normalised so that® = 1 if the pressure at instanteds
non-zero, and;-* = (0,0) andx® = 0 in cases where the pen pressure is zeto at

Subsequent resampling proceeds in two steps:

1. Any two successive samples that form part of a standaml-pixsed skeleton of a static
image are within a distance of 1 of2 pixels from each other. To obtain a comparative
resampling, all smoothed curves are resampled sd[xhatx,,:|| ~ 1, wherex; is the 2D
position coordinate at time instanteThe result is calledEuclidean resamplingas the
distance between any two successive samples is approkittaesame. This resampling
scheme is applied to all the position coordinates of the shyo@xemplar curves created
with non-zero pressure. It is also applied to static skeletoves connected to endpoints
and crosspoints, as well as circular shapes.

2. During the next step of the resampling, the most imporantiples, calledritical points
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are selected from the dynamic exemplars and static scfiptdlae Euclidean resampling,
as described in Section 3.3.1. The resulting parametricedsrcalled acritical point re-
sampled curve

3.3.1 A critical point resampling scheme

Itis shown in Section 6.3.4 that the computation time of oajetctory algorithm depends on the
numbers of samples that constitute the static skeletonslamaimic exemplars. Thus, for this
application, it is desirable to reduce the number of Euealidsamples without degrading the
performance of our HMM. Hence, the Euclidean resampledesitivat represent the dynamic
exemplars and static scripts are resampled by selectiygloaicritical points from the curves.

In general, when a piecewise linear interpolation is emgdidyetween the successive 1D sam-
ples x and x.1, the errore(x,) of the linear interpolant between these successive saniple
given by

%) = 3%~ %l (&), 35)

wheref” (&) is the second derivative at an unknown vague (X, X1) fort =[1,..., T — 1].
Thus, the maximum error of the linear interpolani(x) = maxe(x)) satisfies

1
Emax(Xt) < ghflvlt, (3.6)

where|f”(&)] < My, & € (X, %1) andhy = |X,1 — X/. Thus, provided thdtf”(£;)| is bounded,
it is natural to try and reduce the overall error by placingipolation samples so that

e(x) = h?f” (&) ~ constant (3.7)

for & € (%, %41) andt = [1,..., T — 1]. Thus, from the equations above, one can decrease
the overall error by increasing the number samples whereuheture (second derivative) is
high, reducing samples where the curvatures is low (seef¢tBhore detail on approximating
splines.)

High curvature points are identified using the criticalfadetection described in [73]. This
technique computes the angulaffdienced between the slopes of two lines that are fitted to
portions of a parametric curve at each sample, as shown urd-i8115. The longer the line
segments, the more noise are smoothed out and the more sacopigtitute high curvature
portions. It is noted in [73] that it becomes problematic bmase a single set of parameters
in noisy images containing a wide range of image features, ¢oexisting sharp and gentle
curves in the presence of noise. Thus, our pseudo skelatmmswhich removes artifacts and
performs smoothing, holds a great advantage over noisgatdrskeletons in this regard.
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Figure 3.15: Selecting high curvature points from at set of control pefiffilled dots) that
constitute a parametric curve (dashed line) using two gtialine segments (solid lines) to
estimate curvaturedy.

For this application, our line segments that estimate thged at dynamic exemplar or skeleton
samples have a length of 10, i.e., in Figure 3|88 = ||{,|| = 10 . Furthermore, if9] < 170,

X Is selected as a critical point, otherwigds identified to be part of a straight line, whete

is a 2D position coordinate of the sample at instan@&@amples on straight lines are reduced so
that the distance between any two successive samples omdlghslines is approximately five
pixels. Skeleton crosspoints and endpoints are treatéeteltly from other skeleton samples
by our HMM (as explained in the chapters to follow) and aredf@e also chosen as critical
points. Due to the pen-tip width and digitisingfexts, it frequently happens that the curve
that enters and the curve that exits a high curvature poatregrged. Thus, starting at an
endpoint, the first 10 connected points (excluding crosgppare selected as critical points. In
accordance, the first and last 10 non-zero pressure sanfples single-path trajectories that
constitute the dynamic exemplars are also chosen as tpbaas.

3.3.2 Summary

This section has described how the Euclidean resamplecgsdor static skeletons and dy-
namic exemplars are computed, so that so that results angacative to results from standard
skeletonisation schemes. It is also shown how critical ggoame chosen from the Euclidean
resampled curves to reduce the computation time withoutdkgg the performance of our pen
trajectory estimation algorithm. This critical point regaling scheme favours good skeletons,
i.e., smooth curves without noise. Thigeet of the diferent resampling schemes on our system
is evaluated in Section 6.3.4.



Chapter 4
The HMM for a single-path static script

The technique we develop for extracting the pen trajectmwnfa static, normalised image is
based on an HMM. An HMM is a probabilistic model describing/a@mic process that evolves
from one state to the next. In our application, the sequehstates describes the sequence of
pen positions as the image is produced. An HMM is construitted the static image skeleton.
Using the HMM, a dynamic exemplar is matched to the statigyena he matching algorithm
results in the most likely pen trajectory of the static state given the model. In addition to
the pen trajectory, one also obtains a quantitative cooredgnce between the static image and
dynamic exemplar.

We explain the main ideas by means of the simple example shoftigure 4.1. The static im-
age of Figure 4.1(a) is skeletonised, as described edni€hapters 4-5 skeleton samples that
constitute a static image are always rendered as filled dbisteas HMM states are rendered
as unfilled numbered circles. The order of skeleton samgplesknown; a typical numbering is
shown in Figure 4.1(b). Figure 4.1(c) shows a dynamic exantplt must be matched to the
static image. Note the shapdidrences between the two. Possible pen trajectories must be e
timated from Figure 4.1(b) and compared with the known eXanmgequence of Figure 4.1(c).
Since we do not know the optimal sequence of samples in Figdi®), or even the starting
point for that matter, a very large number of possible segegmeed to be compared—far too
many for an exhaustive search. The use of an HMM, howeveremdie calculation of the
optimal pen trajectory computationally feasible.

To estimate the pen trajectory of the static image, two b&siges are addressed. First, a
probabilistic model of the static script is created. Moreafcally, an HMM is created which
describes the geometric shape of the script and restrigtshibices of possible pen movements.
Second, the optimal pen trajectory is calculated by matrhie known dynamic exemplar
to the HMM. This chapter presents our HMM for a single-pattistscript. The necessary

52
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Figure 4.1: Extracting dynamic information from a simple, single-patatic signature. (a) A
straightforward single-path static signature, with (I3 itnordered skeleton samples (filled
dots) and (c) a dynamic exemplar that can be used to extragbéim trajectory of (b).

HMM background is provided in Section 4.1. A basic first-ortM is then expanded and
adapted for this application in Sections 4.2-4.6. All the MNparameters are summarised
in Section 4.7. Our HMM training scheme that estimates $jpediMM parameters for each
individual is described in Section 4.8. This chapter tr@ditstatic images as single-path static
scripts. In Chapter 5 it is shown how to extend our approachatmulti-path static scripts can
be handled.

4.1 HMM background

An HMM has N emittingstates{q;, 0, ..., Qn} that have observation PDFs associated with
them. The two stategy and qy.1, Without associated PDFs, are calledn-emittingstates.
These two additional non-emitting states serve as initidltarminating states, thus eliminating
the need for separate initial and terminating probabdi(see [22] for more detalil.)

All state observation PDFs in this chapter are sphericak&an PDFs, described by

0= ? exp| 550~ )" (x — w). (4.1)

)20

wherex is aD-dimensional vector that must be matched to the PDReeisdhe D-dimensional
mean of the Gaussian. The standard deviattois preset for this application. For brevity,
the PDF associated with statbaving meam; and standard deviatian will be referred to as
N(w;, o). Geometric shape information of the static image is embéddid the PDF parameters
w; ando, as described in Section 4.2.

States are connected by transition links that dictate tlssipte pen movements. All transitions
between states are weighted with transition probabilifidse order of the HMM specifies the
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number of previous states the HMM considers when transitirggnext state. Sections 4.2—-4.6
describe how the order of our HMM is increased to take contggtaccount.

In order to match a static image and a dynamic exemplar, thardic exemplar is presented as
a sequence of quantifiable characteristics cdkatiure vectorsThe sequence is given by =
[X1, X2, ..., X7], wherex; denotes ®-dimensional feature vector at discrete-time instaandT

is the number of feature vectors (humber of samples in thamymexemplar.) Using the Viterbi
algorithm, X is matched to our HMM to produce a hidden state sequenegs;, S, .. ., Sr].
This state sequence is then mapped to the desired sequestadaibn samples, as described in
Section 5.4.

4.2 First-order HMMs

The shorthand notation for an HMMis
A={A{N,o),i=1...,N}}, (4.2)

whereA is a matrix representing the transition links aN@uw;, o), as described by (4.1), is the
observation PDF of staidori € {1,..., N}.

We begin by constructing a first-order HMM from the skeletbthe static image. The skeleton
consists ofM unordered sample®y, p2. . . .. Pm}, Wherepy is the 2D coordinate of sampie
Each emitting stateis associated with a skeleton samplgy lettingw; = p;. Thus, the obser-
vation PDFi of statel embeds the position coordinate of the skeleton sample. Fistarder
HMM, we therefore havé\ = M. Our first-order HMM matches only 2D feature vectors, in
this case, the pen positions of the dynamic exemplar. Wesghoe- 0.7 pixels in (4.2) for all
states, in order to relate the match between the positiordowies of the dynamic exemplar
and static image to Euclidean distance.

The HMM topology is crucial to our algorithm, as it constraithe range of possible pen move-
ments that could generate the static image. For our firsgrdid/iM, the probability of reach-
ing the next state depends only on the current state, solbdtdnsition probability matrix
A = [g;], wherea;; = P(s;1 = qjls = q) is the probability of a transition frorg; to g; at
instancet + 1, withi,j € {0,1,...,N+ 1} andt € {1,2,...,T — 1}. HMM states are called
neighbourdf their associated skeleton samples are adjacent. Alltemgistates are linked to
their neighbours, to allow the pen to move to an adjacenesielpoint on a transition. How-
ever, this only takes local information into account, and cantext. Context is incorporated
by using second-order HMMs, which allow us to include a dimsal feature, as described in
Section 4.3.
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Since we have no prior knowledge of where the pen trajectbthe static image may start
or end, the non-emitting initial state can enter any engtstate. Also, each emitting state is
directly connected to the non-emitting terminating state.

One also needs elasticity in the model, to allow the statagenand dynamic exemplar to have
different numbers of samples. This is accomplished by incluslkngrlinks and self-loops in
the HMM. A skip-linkis a transition between two states separated by a neighlboumon to
both. A self-loopconnects a state back to itself. Self-loops are added tortfitiry states.
In this dissertation, we use skip-links to skip states witlydawo neighbours. Equal transition
probabilities are assigned to all transition links leavangtate, normalised to sum to one.

These ideas are illustrated in Figure 4.2. The first-orderMHidr the isolated fragment in
Figure 4.2(a) is shown in Figure 4.2(b), where the threeestatdicated by the larger circles
are emitting states. Each state is labelled with a singlebaunmepresenting the index of the
state, the state’s PDF index (and therefore also the indthedfkeleton sample associated with
the state which is embedded in the PDF.) The dashed linesaitadiransition links to and from
states outside the rectangular box in Figures 4.2(a). Tlalanblank circles indicate the non-
emitting initial and terminating states. All states aremected to these non-emitting states so
that the pen trajectory can start and end at any skeletonlea®@kip-link 31 and self-loop 33
are also indicated. State 1 and its neighbours each have a@igbbours. Thus, state 1 has
six transition links leaving it: two to its neighbours, twkifg-links, one self-loop and one to
the non-emitting terminating state. The associated snstti@n probabilities are therefore all
specified ag.

(b)

Figure 4.2: Deriving the first-order HMM from a static signature skeletd@a) Isolated
unordered skeleton samples (within rectangle) in a sigrat{lb) The first-order HMM for the
skeleton samples contained within the rectangle in (a).-Blmiitting states (small circles) and

emitting states (big circles) are connected with transitioks (arrows), where dashed lines

indicate links to states that correspond to skeleton sasnplgside the rectangle in (a).
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We emphasise an important feature of Figure 4.2(b): Any teighbouring emitting states
and any two emitting states connected by a skip-link are ectedl both ways—if one enters
the HMM at an emitting state with more than one neighbour ios possible to determine
locally in which direction one should move next, and therefmore than two directions are
allowed. Since all transition links are assigned the sarobability, all skeleton samples are
potential turning points. It is therefore entirely possildnd it indeed happens in practice, that
the extracted pen trajectory may incorrectly reverse tdoac

One way to model turning points is to include more context.-li@a handwriting systems
typically include more context by extending the featuretoes Specifically, the inclusion of a
velocity/delta component; — X;_; contributes substantially to the good results of theseegyst
As the time sequence of a handwritten script is known in atirensystem, each samptecan

be preceded by onlgnesamplex;_;, permitting the inclusion of this velocity component. As
indicated above, our static images consistasfdom-orderskeleton samples. Thus, a skeleton
sample can be preceded by multiple other skeleton samalustrated in Figure 4.3. In
Figure 4.3 it is specifically indicated that a dynamic exeanglamplex, can be preceded by
only X;_1, whereas a static skeleton sampilean be preceded by multiple skeleton samples.

Dynamic sample Static skeleton sample

Xt
VS

Xi-1

Figure 4.3: Including an unambiguous velocity feature in a static imeg@ificult as skeleton
samples with more than one neighbour can be preceded byphewtieleton samples.

It is therefore not possible to include an unambiguous ¥Bleomponent at each skeleton sam-
ple in a static image (without introducing heuristic coastts.) As our HMM topology is di-
rectly computed from the connectivity of the static sketetamples, itis not possible to include
unambiguous velocity components in our first-order modileee (Recall that pre-recorded
dynamic exemplars are matched to the HMM of a static imagetopute the trajectory of
the image. Thus, although we are able to include velocitypmments in the dynamic exem-
plar feature vectors, corresponding components must ex@ir HMMs.) Hence, to include
velocity/delta components in our HMMs we must find a way to model lomgirtgdependencies.

Bengio and Frasconi [8], supported by the experiments oUAldoustafa et al. [1], investigated
the dfect of an HMM’s topology on the ability of the HMM to learn cext. They showed that
the addition of hidden states with a sparse connectivityinarease the ability of a Markov
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model to learn long-term dependencies and reduce tliasdin of context. The topology of
our first-order HMM is ergodic with a sparse connectivity. &dhusing second-order HMMs,
we include extra states and the connectivity becomes ewwrean a natural way, as discussed
in the next section. Thus, in accordance with Bengio anddéraswe improve the ability of
the HMM to model context. The second-order models spedyiedlbws us to include velocity
components in our feature vectors.

4.3 Second-order HMMs and their first-order equivalents

This section describes the most important characterisfidsgher-order HMMs that can be
exploited for our application. In Section 4.3.1, some fundatal concepts of higher-order
HMMs are discussed. Section 4.3.2 provides a broad overofalve implication of higher-
order HMMs for our application.

4.3.1 General higher-order HMM theory

In order to take past context into account, we use secongl-dt¥IMs. It has been shown
that the transition probabilities of first-order HMMs onlgmkend on the current state, so that
aj = P(s41 = qjls = g;). The transition probabilities of second-order HMMs depen the
current and previous states. The probability of a transifrom statej to statek, given that
statej is preceded by state becomesjx = P(S:1 = GlS-1 = G, & = ;). Second-order
HMMs can then be reduced to first-order equivalents to simffieir implementation, by using
the Order Reducing (ORED) algorithm [22, 23].

We illustrate these ideas with a hypothetical HMM in Figuré.4The HMM fragment in the
figure forms part of a larger HMM. We only consider the traiosis between the visible states.
The second-order HMM in Figure 4.4(b) is formed by extendildgransitions of the first-order
HMM in Figure 4.4(a) to second-order connections (the oafehe transitions is encoded in
the subscripts of the transition probabilities.) Secorako connections depending on states
outside of the HMM fragment are not shown.

The principle behind the ORED algorithm is to reduceRih-order HMM to its R — 1)th-
order equivalent, by creating states for all pairs of cotetestates in th&th-order HMM.
Applying this procedure recursively, an HMM of arbitraryder is reduced to its first-order
equivalent [22, 23]. The first-order equivalent of the setorder HMM of Figure 4.4(b) is
shown in Figure 4.4(c). In general, each state is now unygdelined by its label, where each
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Ak az:]n -
(a) (b)

Figure 4.4: Calculating the first-order equivalents of second-order MMusing the ORED
algorithm. (a) A first-order HMM expanded to (b) a secondesrdiMM, and (c) the first-order
equivalent of (b).

stateabin Figure 4.4(c) was created from the connected ghiin Figure 4.4(b). If numerical
values are assigned tandb, we refer to stat@b as state &,b) for the sake of simplicity,
e.g, ifa = 1 andb = 10, we refer to statab as state (1,10). All the second-order transition
weights can now be interpreted as first-order weights. Thedider stategk andkm, e.g., are
connected with transition weight,, so thata;, can be interpreted asf@st-ordertransition
probability. Likewise, the pairkk, ik, i], kmandxi in Figure 4.4(b) are connected and become
statekk, ik, ij, kmandxi in Figure 4.4(c), respectively, whexecan be any state connected to
via a dashed line. Thus, in generil,different pairs of connected states in Rik-order model
result in approximatelyv states in theR — 1)th model.

Higher-order HMMs result from enlarging the state contexthe Markov order assumption
(one of the two fundamental assumptions utilised in HMM4.[|23trictly speaking, this leaves
the state PDFs uff@cted by the Markov order, i.e., each higher-order HMM siéitehas only
one PDF. Reducing such an HMM to its first-order equivaleatdfore also does not change
the total number of PDFs. Note that the rightmost |dbigl ab is the PDF index of statab so
that some statesharethe same PDF. We refer to PDFs that are shared by more tharnatee s
astied PDFs Statejk, e.g., is created in Figure 4.4(c) from the connected patigure 4.4(b).
State jk inherits its PDF from stat& in Figure 4.4(b) and also shares PRRvith stateskk
andik. In general, gredecessor gof ¢ is any state for whicla, > 0. Note that by virtue
of a second-order HMM'’s topology, it is guaranteed that estake is preceded only by states
that share the same PDF. In general, we now let the leftmdskiin ab indicate that all the
predecessors of statd share PDFRa. Statekk, in Figure 4.4(c), e.g., is preceded only by states
that share PDK, i.e., statesk, kk and jk.

The order reduction significantly increases the number atest AnRth-order model with

N states reduces to an equivalent first-order model ®{N®) states. However, it should be
noted that this expansion does not increase the number efpfieameters. Tied PDFs are
evaluated only once, and only the original number of higireer transition probabilities need
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to be considered. Therefore, the ORED algorithm does flietiaprocessing requirements. It
is shown by Du Preez [21] that memory requirements are fiett®ed either. However, for
our application we increase the memory requirements soweihnot allowing the sharing
of PDFs after the first-order equivalent models are derigatte the resulting first-order states
have the same PDFs than their original higher-order sttieg,merely represent the higher-
order states in dlierent conditions. Thisnultiplicity of states allows one to make the state
PDFs context dependent, simply by not sharing them withragteges. In this research we
make fruitful use of the richness in modelling that this optpresents. The computational cost
depends on the transition probabilities, as discussedaptehs 6 and 7. The computational cost
of our proposed algorithm is manageable, as our transitiobgbility matrix remains sparse.
This avoids redundant calculations.

Without loss of generality, all the higher-order HMMs arpressented by their first-order equiv-
alents in the sections to follow.

4.3.2 Application of higher-order HMM theory to static handwritten scripts

In the sections to follow, it is illustrated how to exploitetfilexibility of higher-order HMMs
to model handwritten scripts. Before we proceed, howewanesof the higher-order HMM
concepts from Section 4.3.1 have to be placed into persgeciihe derivation of the final
HMM of a single-path static script proceeds in two definirgpst

1. Deriving second-order HMMs. Firstly, the second-order HMM’ for our first-order
HMM A of a static script (from Section 4.2) is derived. Each seeomtttr HMM A’ is
then represented by its first-order equival&htvith N’ states using the ORED algorithm.
All the notation developed in Section 4.3.1 is thereforeliapple so that an emitting
stateij in 1” is generated from the connected paim A’, wherei, j € {1,...,N} andN
is the number of states ih Let ¢; be the index of the paifj so that{j; € {1,...,N"}.
Recall from Section 4.2 that a unique PDF exists for eacle stat and that a skeleton
sample is embedded in each PDF. Hence, for this applicahieriollowing information is
available directly from the labe] that defines statg uniquely: The PDH is associated
with stateij (as explained in Section 4.3.1), where skeleton sample embedded in
PDF j (as a result of our first-order HMMs.) Thus, it is always knowhich skeleton
sample is inherited from by stata j. We have also explained in Section 4.3.1 that state
is preceded only by states that share RD&ince skeleton sampiés embedded in PDR
stateij can be preceded only by states that share skeleton sanpias, in general, our
second-order HMM?” guarantees that all predecessors of an emitting state #tare
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same skeleton sample. Sections 4.4 and 4.5 illustrate taéd development of the first
step of our algorithm.

2. Altering the HMM PDFs. In the second phase of our algorithm, we add a second com-
ponent to the PDFs of” so that the PDF of each state is unique. We have explained in
Section 4.3.1 that the number of states in a second-order HivMiMreased when deriv-
ing its first-order equivalent. In this step, we exploit theltiplicity of states to make the
PDFs context dependent. Recall that a statef 1 is uniquely defined by its double-
indexed label, where the rightmost lajehdicates which skeleton sample is associated
with stateij and the leftmost labelindicates the predecessor skeleton sample of gtate
This makes it possible to include directional (normalisetbeity) information. Hence,
in this step the PDF of stateij is relabelled as PDH, thereby defining it uniquely.
Section 4.5 elaborates on this step of our algorithm.

4.4 HMM topology for line segments

When unravelling a static image, the simplest parts arestivithout crossings or turning points,
referred to as line segmentisine segmentsonsist of connected segment points, wheseg:
ment poinis a skeleton sample having only two skeleton neighbours.

For first-order HMMs it is necessary to have transition lick&inecting neighbouring states in
both directions, since the direction of travel on a line segtis not initially available. This cre-
ates the problem that the pen’s direction of motion can sevat any segment point. We solve
this by extending the first-order HMM of Section 4.2 to a setonder HMM, as described in
Section 4.3. This introduces longer state dependencieshvemables the use of directional
constraints.

Figure 4.5(a) shows a simplified version of a first-order HMd & line segment (skip-links,
non-emitting states, and transition links connected tanthreemitting states are omitted.) The
skip-links are added in Figure 4.5(b). For the sake of glaktgure 4.6 presents an enlarged
version of the right-hand column of Figure 4.5.

One can now develop second-order HMMs for the topologiesiglires 4.5(a) and (b), as
described in the previous section. The first-order equntalef these second-order systems are
shown in Figures 4.5(c) and (d), respectively.
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(i)

Figure 4.5: The simplified HMM topology for a line segment in the leftdhanlumn with a detailed

version in the right-hand column when skip-links are adaedur first-order HMM. (a)-(b) First-order

HMMs. (c)-(d) Second-order HMMs. (e)-(f) Assigning thetdoaction. (g)-(h) Removal of self-loop
states. (i)-(j) Inclusion of duration states.
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As explained in Section 4.3.2, the first-order HMM has justnasy emitting states as skeleton
samples, whereas the second-order model has more tharaba@at sample. Thudl’ > M,
representing dierent contexts in which a skeleton sample can be found. (ReeaN is the
number of states in the first-order HMMof a static script, wheredy'’ is the number of states
in the first-order equivalent” of the second-order HMM for.) Specifically, statej in the
second-order model is associated with skeleton samplethe static script and is preceded
only by states that share skeleton samiplé is also worth noting the significant increase in
model complexity in the right-hand column, due to the skiyik¢ added in Figure 4.5(b). The
symbol\){(,y is used in all the figures to indicate that staieis preceded by states that share
PDF x outside the figure, whene € {1, ..., N} so that the labeky defines statexy uniquely.
Note that since all the states that precede stashare PDF, they also share skeleton sample

The next step is to enforce pen movement in one direction.glebe the angle between the
two straight lines connecting pointgo i andi to j, respectively. Then

(Pj = pi) - (Pi — Pn)
lIpj — pillllpi = pall’

where|| - || is the Euclidean distance norm apgl p;, andp; are the 2D coordinates of poirtts
i, andj, respectively.

cosphij) = (4.3)

In order to encourage the system to follow the same direetiong a line segment, the proba-
bility of a transition from statdi to emitting state| is chosen as the cost function

coslhij),  for|0hj| < 9O° (4.4a)
il = { 0, for || > 90°, (4.4b)

where cosfy;;) is defined by (4.3). Equation 4.4 is, however, not applietinks entering or
leaving self-loop states, wheself-loop statesre states with self-loops, e.g., state (1,1) in
Figure 4.5(d). Figures 4.5(e)-(f) show the HMMs in FigureS(d)-(d) after links with zero
probability have been removed, based on the cost functoom {4.4).

Since the self-loop states are excluded from the cost foimgti is still possible to turn around
via them. An example from Figure 4.5(e) is the state sequf{a¢®), (2,3), (3,3), (3,2)] cor-
responding to the PDBample sequence (rightmost indexes) [2, 3, 3, 2]. In ord@rdégent
this, self-loop states and all their connections (both remgeand leaving them) are removed.
Figures 4.5(g)-(h) show the HMMs in Figures 4.5(e)-(f) aftes step.

Introducing skip-links for more elasticity leads to the tigaration of Figure 4.5(h). We use the
term skip-link statesvhen referring to states in the second-order HMM that refsoith skip-
links in the corresponding first-order HMM, e.g., state J3nlFigure 4.5(d) resulting from the
skip-link leaving state 3 and entering state 1 in Figurel®).58kip-link states can compensate
for situations in which the static image has more samplestiirdynamic exemplar. Self-loop
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states, on the other hand, can compensate for situationsishwhe dynamic exemplar has
more samples than the static image. Since all self-loopstave been removed all emitting
states are duplicated and each emitting state is allowentén #s duplicated state. We refer to
the duplicated states dsiration stateswhere the duration states have the same destinations as
the states they duplicate.

The above duration state concepts are illustrated in Fsgdarg(i)-(j). State (3,2,2), e.g., is
the duration state of state (3,2) (their two leftmost indeaee the same, indicating that they
are “partners”). These states also share PDF 2 and thersfeteton sample 2 (rightmost
index) and have the same destinations. Note thatiéiséinationf states (3,2,2) and (3,2) are
preceded only by states that share PDF 2. It should be notedheotwo directions that a pen
can follow on a line segment are completely disjoint withie HMM, so that it is not possible
to change direction in the middle of a line segment. Addaibnany skeleton sample is allowed
to be repeated without allowing the pen to turn around abyupe, without a loss of context.

In general any duration statg is now uniquely defined, where for our application, sigje
is associated wittand preceded by skeleton sampje Additionally, it is known at statej|
that stataj (preceding statejj) is preceded only by states that share skeleton samflae
inclusion of this additional information can be interpeeies a third-order occurrenamly at
the duration states of our HMM. This additional knowledgespecially useful when we extend
our PDFs, as described in Section 4.6. With the exception@ftobn states, our HMM employs
only past context available from second-order transitidimsus, we still refer to our HMMs as
second-order HMMs in the sections to follow.

In this section we have discussed the topology of statesiased with segment points. Specific
transition weights are presented at the end of Chapter 5. WWexliscuss the topology of states
where the pen is allowed to change direction abruptly.

4.5 HMM topology for crosspoints and endpoints

To enable the pen to immediately recross a line or suddeggdndirection we allow it to turn
around or change direction abruptly at states associatddemdpoints and crosspoints. Re-
call that Section 3.1 has defineddpointsas skeleton samples having one neighbour, whereas
crosspointsare skeleton samples having more than than two neighbotnes mgin diference
between states associated with segment points and statesadased with crosspoints and end-
points is that the direction constraint of (4.4) is not enéat for crosspoint and endpoint states.
Instead, traversal to any immediate or skip-link state Imeayir is allowed from a state associ-
ated with a crosspoint or endpoint. This ensures that it $siade to change direction abruptly,
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or even to turn around, at these states.

Some situations, however, involve simple crossings, witaseeasy to follow line directions
that enter and leave the crosspoint. It is straightforwardrravel such crossings. If the line
thickness is uniform and line directions are smooth nedn susimple crosspoint, and no more
than two lines cross each other at a single point, it is uhlifeat the pen has passed through
that region multiple times. Let us, for the moment, assuragére can identify such a simple
crossing and label its associated samplé. a& simplified first-order model (excluding non-
emitting states, skip-links, and self-loops) is shown igufe 4.7(a), whereé = 4. It should
be noted that first-order HMMs are not able to model past sbge that the transition prob-
abilities for stata have to allow access to and from any of its four neighbourtages. The
situation is diferent with second-order HMMs. The first-order equivalenthef second-order
model for Figure 4.7(a) is shown in Figure 4.7(b). As the $rfaon probabilities depend on pre-
decessor states that share the same skeleton sampleratgagorward to follow lines through
the crosspoint. At a simple crossing, one can then detadwthi&nes that cross, by setting the
appropriate transition probabilities to zero, as shownigufe 4.7(c). To do this, however, we
need to be able to identify such simple crossings.

With the crosspoint labelled aswe label the four neighbouring coordinates clockwise raeq,
asa, b, ¢, andd. The idea is to identify whether the sequenced samplesd and [b, i, d] are
intersecting lines. In Figure 4.7(b), e.g., the coordiagtgghtmost indexes) are labelled as
a=7,b=10,c =11, andd = 9. We consider only crossings wheagb, c, andd are all
segment points, having only one other skeleton neighbaidbs. Let x be the other skeleton
neighbour ofa andy be the other skeleton neighbour@fWe now calculate three angléa;,
Baic, andbiey, using (4.3). If|facl < 107,10kl < 30°, and|fiyl < 307, [a,i,C] is considered a
straight line. If, likewise Ip, i, d] also proves to be a straight line, the crossing is consttare
simple crossing. The second-order HMM provides the necgssatext to extract directions
and decouple the two linesy[l, c] and [b, i, d] so that the two intersecting lines can both be
traversed in one direction or the other. Direction is nhowntened through the crossing, and
the inclusion of duration states provides the necessarpiligy as shown in Figure 4.7(d).

An important point should be brought to light, regarding skeletonisation and resampling.
Final skeletons are smoothed using Chaikin’s cornerfogigubdivision method [10, 49]. Since
only line segments are smoothed and resampled, endpothtsrasspoints are notfacted by
this procedure. When testing whether crosspoisia simple crosspoint, the original intersect-
ing lines [a,i,c] and b, i, d], i.e., the two linedbeforesmoothing are used. This allows a more
reliable estimate of how close the lines are to being sttaighus, for each immediate and skip-
link neighbour of a simple crosspoint state, two skeletangas are in in reality stored—those
before smoothing and those after smoothing.
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Figure 4.7: The HMM topology for endpoints and crosspoints. (a) The Efieg first-order HMM for
a crosspoint (excluding non-emitting states, skip-lirdes] self-loops), with (b) the first-order
equivalent of its second-order counterpart; (c) lines dgaed at the crossing by removing links from
(b); and (d) duration states included in (c). (e) Possible pmjectories for Figure 4.1(b) using our
first-order HMM, and (f) using the second-order HMM with detment of the intersecting lines at the
crosspoint. It should be noted that graphs (e) and (f) areimt@nded as HMMs, but as representations
of allowed pen trajectories, with skeleton samples as naddsgpossible pen motions as arrows.
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A more detailed example is shown in Figures 4.7(e)-(f), gatihg possible pen trajectories
that can be extracted from Figure 4.1(b) if first-order ancbed-order HMMs are used and
detaching the simple crossing at skeleton sample 4 in Fiyi(®. For the sake of clarity, Fig-
ures 4.7(e)-(f) omit the fact that a pen trajectory can stad end at any sample (filled circle.)
Self-loop symbols are used to indicate duration modellmBigure 4.7(f). The corresponding
states for the grey skeleton samples in Figure 4.7(e) anershoFigure 4.7(a), whereas the
corresponding states for the grey skeleton samples in &igui(f) are shown in Figure 4.7(d).
Note that the two lines [4, 11] and [94, 10] are detached in Figure 4.7(f). It is interesting to
derive the number of first-order and second-order HMM state&snon-zero transition proba-
bilities for the signature in Figure 4.1(b), that allow tHewes of possible pen motions shown
in Figures 4.7(e) and (f):

1. The signature in Figure 4.1(b) has 16 states in its fideloHMM and 107 states in its
final second-order HMM (including non-emitting states.)

2. The signature in Figure 4.1(b) hg"% (36 percent) non-zero transition probabilities in
its first-order HMM. This is reduced t lﬁg (3.7 percent) in its final HMM. It should
be noted that transition links leaving the non-emittingiatistate and entering the non-

emitting terminating state are included in this computatio

We can conclude from the above statistics that the final HMKbigbly sparser and has more
states than its first-order counterpart. Thus, in accomlavith Bengio and Frasconi [8], our
second-order HMM has a better ability to model long-termeshelencies compared to our first-
order HMM, thereby improving our pen trajectory estimataigorithm’s ability to take more
context into account; see Section 4.2 for further detail.

4.6 HMM PDFs

In our first-order HMM, a skeleton sample is associated wébhestate. For simplicity, the
PDF associated with each state has so far reflected onlymatoon about the position varia-
tions of the static image. When unravelling a static imalge direction of pen motion at each
coordinate is also important. Knowledge of pen directidaved us to match not only position
coordinates, but also local directions in a dynamic exemgias providing additional context.
At this point, we have designed the second-order HMMof a single-path static script with
N’ states. To include pen directional information in our PDEshave to “untie” the PDFs of
A”, as discussed in Section 4.3.2. Hence, we relabel our PD#smasthe PDF component of
stateij that reflects the pen position is given b)g(uﬁ,ap), where we definegifj’ = p;. Fora
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duration stateuﬁj = p;in N(uﬁj,o-p). However, in our second-order HMM, each stgtdas

a single predecessor skeleton sampénabling the use of a directional feature. Except for the
duration states, the existing (positional) Gaussian PD&saw extended with an independent
directional component. The mean of this component takeftheof (4.1) with

v _ Pj—hi

Wi = o =Pl (4.5)
fori,j e {1,....,N}and¢g; € {1,..., N’} where(; is the index of the pairj andui‘j’ = (0,0)
if stateij is preceded by the non-emitting initial state. The dire@id®DF is abbreviated as
N(ui‘j’,a\,). A duration statdjj, associated with skeleton samgleis preceded by statig
which is also associated with skeleton sampleo that we cannot compute the directional
feature described by (4.5) fav (ui\j/j ). Recall that we have introduced a third-order occurrence
at duration states (described in Section 4.4) so that itesvkrat statejj that statej is preceded

only by states that share skeleton sampM/e now exploit this additional information and let
vV _,V
Mijj = Mij-

The two components that constitute each PDF are assumedstatistically independent [61].
They reflect the typical correspondences between the guaisdi (position and direction of pen
motion) of the static image and dynamic exemplar. It shoelddied that the directional feature
described by (4.5) is frequently used in first-order HMMs pflme character recognition and
signature verification applications, where each pen moshias a unique previous position. In
our application, each coordinate in the skeleton of a statage has one or more neighbours
and we have no prior knowledge to choose appropriately. r&eooder HMMs can model
longer dependenciedfectively enforcing a single previous coordinate for eaaltestThus, we
are able to include an unambiguous directional feature @h state PDF. All the final HMM
parameters for a single-path static script are present8dations 4.7 and 4.8.

4.7 A summary of empirical HMM parameters

Key concepts.Since our final HMMs are in reality first-order HMMs by virtuétbe ORED al-
gorithm, we present them hereafter with the first-order HMdation developed in Section 4.2.
Hence, the HMM of a static script consistsdfstatesy = {1, ..., N}. Note that we only revert

to this notation for the sake of simplicity (ignoring the ddeiindexing.) This can only be done

if the following key concepts are intact: Each state the HMM of a single-path static script

is associated with a skeleton sample and is preceded onkat®sghat share the same skeleton
sample. Thus, when referring to stateve hereafter assume that its associated skeleton sample
is known, as well as its unique predecessor skeleton sanmjplke transition weights of state
depend on whether the skeleton sample associated with g@segment point, a turning point
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or a crosspoint. Staienas its own PDF which embeds directional and positional information.
These are the only concepts that have to be remembered teerteaproceed with our HMM
development. The HMM parameters are also listed in accoslasth these ideas.

All the HMM parameters for a single-path static script arsigeed specifically for our ap-
plication. The parameters were optimised on a single sigadtom a diferent database (the
Dolfing [20, 82] database) and are therefore independehedésst set. The relevant empirically
determined values used in our system are listed as follolwsgasition probabilities leaving a
state are normalised to sum to 1.0 after these values agnad3i

. aiEj = 1.0: Probability of a transition from endpoint statt state;.

. a1.'j = 1.0: Probability of a transition from non-emitting initialadei to state;j.

. aﬁ = 1.0: Probability of a transition from crosspoint state statej.

. aﬁs = 0.05: Probability of a transition from segment point stiatie its duration statg.

. aﬁT = 0.05: Probability of a transition from segment point stiate the terminating non-
emitting statgy.

° aﬁ = C0Slyy,), |0xyd < 90°: Probability of any other transition from stateassoci-
ated with segment poiryt where skeleton sampleis the unique predecessor sample of
statei and skeleton sampleis associated with state(see (4.4).) To prevent numerical
instabilities,aﬁ* is set to 0.05 ifaﬁ < 0.05. This corresponds to cases where the angle
|0yyd > 87.1°.

e u” = p,: The mean of the position PDF component (a spherical Gauf¥r described
by (4.1)) of state associated with skeleton sample

o n’ = % The mean of the directional PDF component (a spherical SandDF
described by (4.1)) of statenith predecessor skeleton sampjesee (4.5). Note that for
duration statepy is the predecessor skeleton sample of the state that peestade.

e op = 17: Standard deviation (in pixels) quantifying similaegibetween pen positions.
This constrains the distance between points in the staageand dynamic exemplar.

e oy = 2: Standard deviation that quantifies similarities betwleeal line directions if a
state is preceded by the non-emitting initial state.

e oy = 0.2: Atight standard deviation that quantifies similaritiesvieen local line direc-
tions if a state is preceded by an emitting state.

4.8 Writer-specific HMM training

Since the associated skeleton sample and predecessdosksdenple of each state are inherent
in the means of the positional and directional PDF compaewn¢ do not want to train them.
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Thus, for our PDFs, we train ontyp andoy (see Section 4.7) to calculate, ando, for each
individual. We refer to this training schemewaster-specific training These parameters can be
seen as indications of the general directional and positizariations of a specific individual’s
handwriting. The parametess, ando, can therefore be interpreted as biometric measurements
of an individual and may also be useful for other applicaioa.g., in an fi-line signature
verification system.

Since we have a PDF for each state, many transition links ame ithan one state associ-
ated with each skeleton sample, there are not enough tgadlaita to estimate all the PDF and
transition weight parameters. Thus, data sparsity is @aseproblem when using our current
HMM structure. Hence, we utilise the pre-recorded dynamengplars as follows: Firstly, an
HMM for each dynamic exemplar of a specific individual is coasted. These HMMs and our
HMMs for static scripts have certain characteristics in owon. However, since the dynamic
exemplar samples are not randomly ordered, a first-order HMiW a left-to-right topology

is suficient for our purpose. Note that all states in an HMM witle#i-to-right topologyare
numbered in an increasing order so that= 0 for j < i. In the next step, we match the HMM
of a dynamic exemplar to the remaining dynamic exemplarf@fsame individual, in order
to estimate the values fer, ando,. Thus, if there are 14 pre-recorded dynamic exemplars
for a specific individual, 14 left-to-right first-order HMMare constructed. For each of these
HMMs, the remaining 13 dynamic exemplars are matched tdie iliformation inherent in the
final 182 state sequences are then joined to estinfagmdo, for the individual. Some further
issues regarding training are discussed in Section 7.2.3.

For training, we treat the dynamic exemplars as single-pailectories, i.e., zero-pressure
samples are removed. A first-order HMM is then derived forhedgnamic exemplaX =
[X1,Xo, ..., X7]. Similar to the HMMSs for static scripts, an emitting stageassociated with each
dynamic exemplar sampbg, i.e.,q = {q:;, 02, ...,qr}. However, the topology can be greatly
simplified, as the dynamic exemplar samples are in sequéiteenon-emitting initial state is
connected to all the emitting states with equally weightaddition links. In correspondence
with the HMM's left-to-right topology, the state associ@tgith x; can reach any other state in
the forward direction, i.e., states correspondingxi[ X2, . .., Xt]. Self-loops are included
at all the emitting states. All transition links are equallgighted by assigning a value of01
to them, except for self-loops, which are weighted with aigadf 1x 1075, All the transition
probabilities from a state are then normalised to sum to Tl@e topology for the dynamic
exemplar HMM is illustrated in Figure 4.8. States that amdigated by the larger circles are
emitting states, where the numbers represent the indexhks sfates as well as their associated
dynamic exemplar sample indexes. The dashed lines reradesition links to and from states
that are not shown. The smaller blank circles representdheamitting initial and terminating
states. All states are connected to these non-emittingsst&tote that the HMM depicted in
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Figure 4.8 is much simpler than the HMM in Figure 4.2.

SAY A

Figure 4.8: Deriving the first-order HMM from a dynamic exemplar. Noniging states
(small circles) and emitting states (big circles) are showtl states are connected with
transition links (arrows), where dashed lines indicaté8rio states other than the ones that
are shown. The numbers represent state indexes as welliassiseciated dynamic exemplar
sample indexes.

Before constructing a PDF for each state, the dynamic exa@re normalised as follows
(note that this normalisation is only valid for the trainisgheme described in this section):
The first two components of each dynamic feature vextéorm a sub-vectok;-* describing
the dynamic pen position. The third and fourth direction poments (normalised velocity)
arex?? = (xt? - x-2)/IIx¢? — xP3]l with x3* = (0,0). The fifth component® is a curvature
component which measures the angle between two successsewhere

12 12 12 12
(" = %) - (Xg1 — %)

t+1

X? 12 12 12 12 (4.6)

lIXe = X2l - 11X = %l

34 34
_ Xt X 47
= A s (4.7)
(X1 - Xl

(4.8)

wheret = [2,...,T - 1] andx; = x3 = 0.

Each PDF associated with an emitting statethin the HMM 4; (derived from the dynamic
exemplarX;) consists of three components: the first two componentshareame as the two
PDF components associated with an emitting state in the HM#static script. Thus;,tfj =

x}f andop = 17 in N(ufj, op), Where the subscript,(j) generalises all the above notation by
indicating that stateis associated witiX;. The sample; ; at instancé of X; is also identified

by the subscriptt( j). Following the same procedure for the directional commné(ui‘fj, ov),

oy =2,0y =0.2 andui"’j = xg’j“. The third independent component of the PDF associated with
statei is also a spherical Gaussiaf(u, oa) with ufy = X, fort = [1,...,Tj], oa = 0.2 for
t=[2,....,Tj —1] andoa = 2 fort € {1, T;}, whereT; is the number of samples ;. Let
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fF(x;) be the positional PDF componeMt(u’;, op) evaluated ak;}?. Likewise, letfY (¢
be the directional PDF componet\ﬂ(uI i ov) evaluated ax34 and Ieth(xt ) be the curvature
PDF componenN(pi’j,aA) evaluated atxt’k. Since these PDF components are assumed to
be independent the joint observation PDF of sta¢égaluated at feature vectayy is given
by fij(x) = FEOGATSOCHTACS), fort = [1,...,Ti], i € {1,....Tj} jk € {1,...,K]},
whereTy is the number of samples Xy, T; is the number of samples i¥; (from which
the HMM is constructed) anH{ is the number of dynamic exemplars for a specific individual.
The observation PDFs and the transition weights of the HMMderived from the dynamic
exemplarX;, are now completely defined.

For each of theK dynamic exemplars of an individual, an HMM, as described above, is
derived. All the othelK — 1 dynamic exemplars of the same individual are matched, to
using the Viterbi algorithm [16]. The result is an optimadtst sequencs, = [si, sg s szk].
The parametersy, ando, are re-estimated by the methodrofiximum likelihoodML) [68].
However, we do not update the PDF means and only one trait@ragion is invoked. The total
number of observations after computingfor each dynamic exemplax; and matching the
otherK — 1 dynamic exemplars t; is computed by:

Z " (4.9)

whereTy is the number of samples froiy which is matched ta;. The re-estimated position

th

varianceos, is now calculated by

k
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wherex is the pen position at instandan Xy anduJ is the mean of the position PDF

component at stalx;;l in 4;. Likewise, the re-estimated d|rectional variamggeis calculated by
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Although the above training scheme is computationally agpe, it is still feasible as it needs
to be employed only once (after the recording of the dynamé&rplars.) The fect of this
training scheme on our system is described in Section 6aB® related issues are discussed
in Section 7.2.3. In the sections that follewy, ando, replaceoy andop from Section 4.7.
However, the rest of the parameters remain unchanged.



4.9 — SIMMARY 73

4.9 Summary

This chapter has described the issues that need to be aeftlsglsen designing an HMM for a
single-path static script, so that the pen trajectory ottrgt can be estimated from the HMM.
The design of our HMM is summarised as follows:

1. A first-order HMM is derived from the skeleton of a staticigt; where each skeleton
sample is associated with an emitting state. The topologlgefirst-order HMM allows
a pen trajectory to start and end at any skeleton sample kvasahe pen to turn around
at any skeleton sample. Skip-links and self-loops creaendtessary flexibility, so that
corresponding dynamic exemplar curves and static sketetoses can be compared even
though the curves haveftkrent numbers of samples. The pen is constrained to move
continuously within a three-pixel range (to an immediateskip-link neighbour.) The
problem with our first-order HMM is, however, that it lacksetinecessary context to
model long term dependencies accurately.

2. Further context is provided by expanding the first-ordeMHto its second-order equiv-
alent. This second-order HMM has exactly the same charsitsras the first-order
HMM, except that the range of pen motions is constrained vtherpen traverses line
segments. A second directional PDF component is also iediid each state and a
more advanced duration modelling is accomplished. To dekven more context, sim-
ple crossings, where only two straight lines intersect,datached. Our skeletonisation
scheme holds the benefit that regional information is akalevhen critical decisions has
to be made at possible simple intersections.

3. Atraining scheme that partially compensates for geamediriations, while compensat-
ing for data sparsity, has been employed. This trainingreetspecifically estimates only
two parameters from the pre-recorded dynamic exemplaesg$pecific individual. These
parameters may be useful as biometric measurements of ificpetividual.



Chapter 5

The HMM for a multi-path static script

Up to this point, only single-path static scripts have beamscdered. In practice, static scripts
often consist of more than one single-path trajectory, whhbe pen is lifted and moved to
different positions between the single-path trajectoriess thuses several problems that need
to be addressed. Three major problems are:

e Problem 1: The accurate identification of the image pgtgments so that each image
segment corresponds to a single-path trajectory. Thusceurae image segmentation
had to be employed.

e Problem 2: The estimation of the sequence in which thatent image segments were
produced. Thus, the order of the image segments must be ¢ecipu

e Problem 3: The estimation of the pen trajectory of each image segmeateakh im-
age segment corresponds to a single-path trajectory (frotlém 1), all the techniques
described in Chapter 4 are applicable to each segment.

In simple cases, e.g., a sequence of disconnected letters;am associate each disconnected
letter with a single-path trajectory. Unfortunately thppeoach fails if the single-path trajecto-
ries are recrossed—more often the case than not. Thus,ish@@stly not a one-to-one corre-
spondence between the numbedconnectedimage segments and the number of single-path
trajectories that constitute a static script. Figure Suistrates these concepts, where tfie o
line representatives of the word “stop” and a signature apatied. If each disconnected part
corresponds to a single-path trajectory, the indicatethsegation results, where all the discon-
nected parts are encompassed by numbered dashed lineshhloégen in the simple case of
the word “stop”, an error occurs using this segmentatiomhast” consists of two single-path
trajectories and not one.

74
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Word

Stof

Figure 5.1: A typical segmentation to identify disconnected partsatisscripts that
correspond to single-path trajectories.

If it is assumed that we have segmented the static scripiadasated in Figure 5.1, the sec-
ond problem is to determine in which order the disconnectetspccurred. In this example,
it specifically becomes clear why most existing methodsrassihnat cursive handwriting pro-
ceeds in a top-bottom-left-right-fashion. Accordinglyetsequence of the disconnected seg-
ments constituting the word “stop” is [2, 3,4]. One can then estimate the single-path pen
trajectory of each disconnected part using the methodgidedcin Chapter 4. This strategy
is, however, not necessarilyfigient for signatures, as multiple crossings occur, and dogne
jectories may proceed from right to left, e.g., segment 1taedast part of segment 3 of the
signature shown in Figure 5.1.

In practice, it is therefore not possible to rely on a prioafti’ segmentation of static scripts
before estimating their pen trajectories. Again, the nemgsinformation can be extracted from
the pre-recorded dynamic exemplars, where non-zeroftmfEn-pressure transitions indicate
pen-up events. Note that pen-up events occur at the termgnaositions of single-path tra-
jectories, and therefore indicate the transition pointsvben diterent single-path trajectories.
However, even the dynamic exemplars do not provide unarobiginformation. Due to the
typical pen-sequence variations of handwritten signatutee number of single-path trajecto-
ries that constitute the dynamic exemplars may vary for #meesindividual.

In this chapter it is shown how the above problems are adeldessing hierarchical hidden
Markov models. Hence, the HMMs for single-path static d4srgre generalised to HMMs for
multi-path static scripts. Our notation is generalisedoadingly in Section 5.1. Section 5.2
shows how to exploit the dynamic exemplar pen pressurenrdtion to identify pen-up events.
Accordingly, the HMM for a static script is manipulated teerdify the single-path trajectories
that constitute the script. Section 5.3 deals with the sp@ease where unexpected disconnec-
tions occur in a static script. Section 5.4 describes how @atchna dynamic exemplar to the
HMM of a static script. The pen trajectory of the script isritgerived from an optimal state
sequence. Some concluding remarks are made in Section 5.5.
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5.1 Hierarchical HMMs

A hierarchical hidden Markov model (HHMM) is a structuredltilevel stochastic process [25].
Fine et al. [25] show that HHMMs extend HMMs, as an HHMM is assoHMM and a state
in an HHMM can be an HHMM itself. Thus, the states of the HHMM @mit sequences
rather than single symbols. This application deals onlhwato-level HHMMs. The higher
level defines the choices of pen motions betwedfent single-path trajectories that consti-
tute a multi-path static script. The lower level defines theices of pen motions between the
skeleton samples that constitute a specific single-pgtéctay.

The notation of Chapter 4 is generalised as follows: An HMMs constructed for each dis-
connected imag®, = {p}.p}.....p}, } called asub-imageof a static script, wher/y, is the
number of skeleton samples that constit®g andN is the number of sub-images so that
h={1,...,N}. Thus, e.g., “s” has one sub-image so tNat 1, and “i” has two sub-images so
thatN = 2. The topology and PDFs for eaghare derived as described in Chapter 4, so ihat
hasN, emitting states}, = {qf, 0}, .. .. qy, } and two non-emitting stateg andq]),,. Each emit-
ting stateq" is associated with a PDf(x) consisting of two independent components that are
both spherical Gaussians. The transition probability imaif 1, is Ay = (&, al),. ..., &l .1}
and is developed as described in the previous chapter. Alspecific parameters fa, are
summarised in Sections 4.7 and 4.8. As a direct consequéribe techniques developed in
Chapter 4, the skeleton sample associated gfitand the skeleton sample that is shared by
the states precedirgj are assumed to be known in the sections to follow; see Sedtibfor

further detail.

Recall that a dynamic exemplar is represented ab d-dimensional feature vectors, so that
X = [X1, X2, ..., X7]. Section 4.6 has been shown that our current PDFs can bénethtoc 4D
features vectors consisting of two positional and two diog@l components (i.ed = 4.) In this
chapter itis shown how to include a fifth component, namedggpure. The first two components
of each dynamic feature vectgy form a sub-vector(tl’2 describing the dynamic pen position.
It has been shown in Section 3.3 that each dynamic exempiarisalised so that the dynamic
pen pressure is 0 or 1. We now let the fifth component of eachmynfeature vectox; form
the scalarx® describing the dynamic pen pressure. The dynamic exengpkdsd normalised
so thatx? = (0,0) if X* = 0. The third and fourth components are directional comptnen
(normalised velocity) with** = (x* —x-2)/lIx* = x4 ll, with x3* = (0,0) if x* = O orift = 1.
According to the current PDF structure ondy” andx>* are matched to our HMM. The next
section includes a PDF component that can deal withThe current PDF components fq{“r
are summarised as follows. Liﬁ](xtl’z) be the positional PDF componem(ufh, op) evaluated
atx;?. Likewise, letfY (x>*) be the directional PDF componeM(uy,, o%,) evaluated ak;*.
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Since these PDF components are independent, the jointvaltieer PDF ofg! evaluated at
feature vectok is given by fin(x;) = 7, (x?) £ (), wherei € {1,...,Nn}, h e {1,...,N}.

The HMMs 14, .. ., A\] are combined to form the higher-level emitting stages [q, . . ., On]

of the HHMM 2 of a multi-path static script. The higher-level statestiadre connected ac-
cording to a fully-connected ergodic topology [8] with tsition weights defined byA. In
accordance with &ully-connected ergoditopology, all states are connected to each other with
non-zero transition probabilities. In this casg, is set equal for each transition leaving
The lower-level states remain as before. The state sequlkatenust be extracted frorhis
sS=[s1,%,...,5r]. Recall that a skeleton sample is associated with eachriavel emitting
state. Hences can be directly translated to the pen trajectory of thestatript, as shown in
Section 5.4.

An example of the HHMM for the character “i”, consisting of four skeleton sampled &vo
sub-images, i.elN = 2, is shown in Figure 5.2. Each higher-level emitting staig €ircle)
corresponds to a sub-image for which an HMiMis derived. The skeleton samples (filled
dots) that constitute the fierent sub-images and from which the lower-level emittirajest
are derived, are also shown. Pen motions between the rapdodered skeleton samples are
rendered as dashed lines. (For the sake of simplicity it isshown that a pen trajectory can
start at any skeleton sample within each sub-image, andrtke betweerp? andp3 are not
shown.) It is indicated thaf,; is constructed fronP; = pi, whereagsy, is constructed from
P, = {p3,p3 p3}. The interconnections of the higher-level statgs o, 0z, gz} in 4 dictate
the choices of pen motions (solid arrows) between the sw#gés that can be estimated. All
the transitions leaving a state are equally weighted. Nuéthe topology allows the pen to
arbitrarily jump between skeleton samples, thereby rengthe context that has so carefully
been included using second-order HMMSs, as described int€hdp According to Chapter 4,
e.g.,p3 is a segment point, so that the pen is not allowed to turn at@urchange direction
abruptly fromp3. However, according to the current topology, nothing pnés¢he extraction
of the pen trajectory (amongst many otheps) p3, p3], as the pen is allowed to exit and re-enter
0. at any instance. Thus, no pressure information is contam#te current HHMM structure:
all the skeleton samples are just indirectly connected ¢b ether. It is more sensible to allow
a transition to any skeleton sample only directly after apprevent. Hence, the next section
shows how to identify pen-up events by exploiting dynamiereglar pen pressure information.
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aj = 0.33

a» = 0.33

Figure 5.2: The HHMMa for the static character “i”. The higher-level states afare
represented as unfilled circles, where each emitting stat®gesponds to an HMM, for
each sub-image. The weighteg @hoices of pen motions (solid arrows) between thjexint

sub-images are shown. The simplified choices of pen motiastéd arrows) between the

skeleton samples (filled dots) within each sub-image a@stiswn.
5.2 ldentifying pen-up and pen-down events

The first step to identify pen-up and pen-down events is taagdo-pressuremitting stateyy, 1

to the higher level of the HHMM, so thattl hasN + 1 emitting states, a non-emitting initial
stateqy and a non-emitting terminating stagg,,. All transition links connecting higher-level
emitting states to other higher-level emitting stateQ afe removed. Instead, all higher-level
emitting states andp are connected tqy,;. The zero-pressure staig,; is connected to itself,

to gn.2 and to all the other higher-level emitting states. All tiine weights contained iA

are set equal and normalised to sum to 1.0. Note, howeveéralihtne lower-level transition
weights contained i\, for h € {1,..., N} remain unchanged (as developed in Chapter 4). The
new topology fora is depicted by the solid arrows in Figure 5.3, as derived ffégure 5.2.
There are now three higher-level emitting states in the éigirhereg; is the zero-pressure state.

Similar to the PDFs developed in Sections 4.6 to 4.8, two PDfponents are associated
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Figure 5.3: Manipulating the HHMM1 for the static character “i” to identify pen-up and
pen-down events. An HMN, corresponds to an emitting statg (pig circle) for each
sub-image. The higher-level emitting statedectates pen motions (solid arrows) between the
different sub-images only ifx 0. The simplified choices of pen motions (dashed arrows)
between the skeleton samples (filled dots) within eachrealge are also shown.

with gu,1. The first position componerf_,(x;"%) is a spherical Gaussian PDF (described by
(4.1)) and is written a#v(uR,,, o). The second directional PDF componéml(xf"‘) is also

a spherical Gaussian PDF and is writtem\a@,,, 0¥,). Recall from the previous section that
xi? = (0,0) andx3** = (0,0) if X* = 0. Hence, we lept , = w¥,, = (0,0),0 = 0%, = 0.41in
N1, op) andN (1, %)

To force the state sequence to emjgr, under zero-pressure conditions, i®.5 qu.1 if X° = 0,
a third statistically independent PDF componé&fd) with a uniform distribution is added to the
PDF ofqy,: and to all the lower-level emitting states, where
1/(b—a), fora<x<b (5.1a)
f(x) = {

0, elsewhere, (5.1b)
for real constantsco < a < b < o (see [61].) For the sake of brevity, we referf@(xf), the
third PDF component (described by (5.1))af asin(a, b), and leta = 0.5 andb = 1.5 (the
reason for this specific choice will become clear in a momedince all the PDF components
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are independent, the joint observation PDF at the lowestlemitting stateq' evaluated at
feature vectok; is now given by

fin(xt) = fi?h(xtl’z) f%(xt&‘l) fi!:h(xf)’ (5.2)

wherei € {1,...,Np}, h e {1,...,N}, t = [1,...,T]. Likewise, we refer tof{ ,(>?), the third
PDF component of the higher-level emitting stgtg:, asUn.1(a, b), and leta = -0.5 and
b = 0.5, so that the joint observation PDF evaluated at featurevgcis given by

1:N+1(Xt) = fl\lT+l(XéL’2) fl§|/+1(xf’4) fI\IT+1(XIS)’ (53)

wheret = [1,..., T]. The choices ohandbin U x(a, b) andUy,1(a, b) let fin(x;) = O if xt5 =0
from (5.2), andfy.1(X;) = 0 if X* = 1 from (5.3). The third PDF components therefore serve as
binary gateshat force the state sequence to revggal if the dynamic exemplar pen pressure
is zero.

The above concepts are illustrated in Figure 5.3. Aslong asl, s = qi1 fori € {0,..., Ny+1},
ors = ¢g?fori €{0,...,N; + 1}. If a pen-up event is identified at instartce 1, i.e.,x>, = 0,
S:1 = Qz. If a pen-down event is subsequently identified at instanee, i.e., xf+2 =1,
Sw2 = G Or S42 = @2, Thus, when the dynamic exemplar pen pressure is non-terbeturistic
framework developed in Chapter 4 is applicable, so that tl@ces of pen motions within
the different sub-images are restricted as illustrated by the daastrews. (For the sake of
simplicity it is not shown that a pen-trajectory can starbay skeleton sample within each
sub-image, and the links betwephandp3 are not shown.)

This section has shown that the addition of a single emitsitage and a third component to
all PDFs enables us to identify and accommodate the siragletpajectories that constitute a
multi-path static script. The next section shows how to el special cases where spurious
disconnections (broken lines) occur in a static script.

5.3 Compensating for broken lines (spurious disconnectics)

As mentioned in Section 1.5purious disconnectionsay result in the static script when the
ink is not evenly distributed over the pen-tip. This praatigroblem arises especially when an
individual signs rapidly, so that unevenly distributed rekults in line fragments with very light
grey levels which typically vanish after binarisation.

Our HMM topology enables us to deal with broken lines as fe#iolf two endpoints are judged
possibly to be part of the same broken line, then we add apptemdditional states for each
of the two endpoints. These states are manipulated to ettabfeen to reach the one endpoint
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from the other, where the ease of such a transition is dittayethe “brokenness” of the line.
We proceed with a detailed discussion. If the lower-levelimng stateq? is associated with an
endpoint, it can be preceded by the lower-level non-engittiitial state, immediate lower-level
neighbours or lower-level skip-link neighbours (see Chag). For the sake of simplification,
we allow only the immediate neighbours of endpoint statesunapproach to accommodate
broken lines. Thus, iff’ is the immediate neighbour of endpoint stq?eand another endpoint
stateq is encountered, it is tested wheth@randq{g are associated with the two disconnected
endpoints of a broken line, whergj € {1,...,Ng}, g, h € {1,...,N}, K¢ € {1,...,Nqy}. N,

Ny and Ny are the numbers of states in 14 and Ay, respectively (see Section 5.1 for further
notation specifications.) It is assumed that these two disected endpoints must at least be
within nearby vicinity of each other and that the disconaddines to which they are connected
have similar directions. The HMM topology for broken linesdesigned in accordance with
this assumptions.

First, letps, py pf andp] be the skeleton samples associated with states qf andqy,
respectively. Hence, the anglg,. is computed using (4.3). W, < 45° andllpg - pll <

70 (pixels),pg andp! are considered to be part of a broken line and they must threrdfe
reconnected. Note that the connectiopptndp] effectively unitesiy anday, if g # h, so that
there is one less higher-level emitting stata.irFigure 5.4 shows an example of two endpoints
p; (indicated by a solid circle) arpf! (indicated by an x-marker) in the skeleton of a static script
which are identified as parts of a broken line. The dashete@mans the regiolrpg —pall <70
(pixels.)
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Figure 5.4: The locations of two disconnected endpo'pﬁ@solid circle) andp” (x-marker) in
a broken line. Candidate disconnected endpoints are witiervicinity of the dashed circle
fromp}.

To connecp; andp}, two extra stategn, andq] are added tay and 1, respectively. The first
extra stategy, is associated with the same skeleton sarpfjlesq;. The stategs, is connected
to gfy with a transition weight of cosfy), to itself with af, = 0.5, and toq] with &) =
min(a?x), wherex can be any transition link Ieavirtﬁ (as developed in Chapter 4.) All transition
weights fromq? and g, are again normalised to sum to 1.0. This topology is illusttan
Figure 5.5, where the two disconnected endpoints from thefskeleton samples (filled dots)
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that constitute lineé andB must be connected. All the states are rendered as circlesgwle
state labels (top) and their associated skeleton sampd®ifin) are indicated. Transitions to
states outside the figure are rendered as dashed lines.Hdbtadre than one state is typically
associated with a skeleton sample, eq%is preceded by all the states that share skeleton sample

pa.

line A line B
e —
ps pe ph ph
afgnm =05

C0SQanc)

Figure 5.5: Compensating for broken lines. An unexpected disconmegtiours between the
skeleton samples (filled dots) that constitute lines A anadich has to be corrected. The
appropriate HMM states (top labels in circles) and their asisited skeleton samples (bottom
labels in circles) are shown. Transition weights;J@re shown and transitions fcom states

outside the figure are indicated by dashed arrows.

Stateqf; is associated with the same skeleton sampplesql! and is connected to itself wit,, =
0.5, to the non-emitting terminating state wihy,.1) = 0.5 and to all the other destinations
of gf that are associated with skeleton samples. To compute tiee {eansition weights, the
angled.qe for each destination statf from g is computed, wherg!! is the skeleton sample
associated witlf). Subsequenthgl!, = cos@.qe) for |6.qd < 45° andall, = O for |6qd > 45°, as
illustrated in Figure 5.5.

Typically, when a broken line occurs, the part of the linettisaabsent in the static script
corresponds to a line in the dynamic exemplar which is writkgth non-zero pen pressure.
Thus, in such cases the state sequence must be allowed ¢o iingf, or ¢!. However, some
penalty has to be introduced to prevent the exploitatiornesé extra states in cases where
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broken lines do not occur. Accordingly, the PDFsdfjrandq! are designed as follows. Firstly,
the PDFs are designed so that only nearby dynamic exemptgriesa with non-zero pressure
are matched t@; andpf. Hence, to ensure the matching of nearby samples, the quusiiti
PDF component of, is N(uﬁlg, op) = N(u'ig,o-’P), l.e., the positional constraint invoked by
op Is the same as for all the other PDFsiij(see Section 4.8.) The pressure PDF component
Umng(a,b) = Ujq(a,b), i.e.,a = 0.5 andb = 1.5 to ensure the matching of dynamic exemplar
samples written with non-zero pressure. Likewisép,, or) = N(ug,,, op) andUyp(a, b) =
Uycn(a, b). Note thatx>* is normalised so that mir{*) = (0, 0) and max¢>*) = (1, 1). Hence,
Wi = 1y, = (0,0) in N(uyg, o) and N (wy,, o). The directional deviationr, is chosen so
large thatfr}fh(xf”4) and fr}{g(xf”“) are always approximately equal to<5L01°, making it rather
expensive to linger in stategy, and ¢f! in comparison with other emitting states, if it is not
absolutely necessary.

It should be noted that the same process to identify brokes Iis followed foall the applicable
endpoints so that there is a bi-directional connection betwbroken lines.

5.4 The hidden state sequence (estimated pen trajectory)

We have now developed the full HHMM for the static image of adwritten script. This
HHMM consists of states associated with the position comigis of the static image skele-
ton, and transition probabilities that dictate conseeutransitions between states. Each state
is associated with a single PDF that consists of three statily independent components,
describing the positional, directional and pen pressuratrans. The transition probabilities
govern the possible choices of pen motions, based on theie desumptions:

1. The penis not allowed to turn around suddenly within liegreents of a sub-image when-
ever the pen pressure is non-zero. This assumption assbatedbé pen must maintain
its direction of traversal, i.e., it is based on the contiyariterion of motor-controlled
pen motions, discussed in Section 2.2.

2. The pen is allowed to turn around at endpoints and crogtpwithin a sub-image when-
ever the pen pressure is non-zero. It should be noted tisadisisumption does not inval-
idate the continuity criterion of motor-controlled pen moots. It simply identifies cases
where the continuity criterion is not necessarily applledab estimate the pen trajectories
of the static scripts by assuming that ambiguities are mbkslylto occur at endpoints
and crosspoints. Thus, due to the representation of thewrdteh scripts as prepro-
cessed 2D images, it is not necessarily possible to relaténcmus pen motions to the
available representative curves.
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3. The pen can reach any skeleton sample at a pen-down eeerdftier the individual has
lifted the pen (after a pen-up event.) Similar to the presiassumption, this assumption
does not invalidate the continuity criterion of motor-aafied pen motions. It simply
accounts for the information loss in the 2D images—althcargindividual’s hand is still
constrained to move continuously in the air while the peiiftisd, it can resume writing
anywhereon the document at a pen-down event. Thus, this assumpsonidgntifies
cases where the continuity criterion is not necessarilyiegige to estimate the pen tra-
jectories of the static scripts.

It is clear from the above assumptions that provision is madeur HHMMs for situations
where the continuity criterion of motor-controlled pen as can not necessarily be used to
extract dynamic information from 2D images. In such casesyely on the additional infor-
mation provided by our pre-recorded dynamic exemplarsalR#wat rule-based methods rely
exclusively on a prior generalised model (which is proneaibih certain situations.) In our
application, one can think of the dynamic exemplars as nsadiegcribing the underlying prin-
ciples of handwritten motions. These models are, howev@enmspecific. In ambiguous parts,
where one can not rely on a single prior model, no heuristegmployed. The writer-specific
models, established by the dynamic exemplars, are simppbfed. Thus, the additional infor-
mation available from the dynamic exemplars (prior modais)applied, where this additional
information is specific to each individual. The models engpbb by rule-based methods are
thereforefixed whereas our models (dynamic exemplars)fEnable as our models are able to
change in accordance with the changing handwriting scripts

Most importantly, when a dynamic exemplar is matched to thiMN, one determines the
most likely state sequence. Since the higher-level statesigsociated with the sub-images
and the lower-level states with the position coordinatatefkkeleton, this sequence yields the
maximum likelihood pen trajectory as determined by the rhodlbe dynamic exemplaX =
[X1, X2, ..., X7] Is matched to the HHMM of the static image using the Viterbi algorithm [16,
68, 25]. This results in an optimum state sequeeds,, . .., Sr] as well as a likelihood.

The PDF associated with the zero-pressure gjgte in the higher level oft emits a single
observation, whereas the rest of the PDFs emit sequencbs@fations due to our hierarchical
structure. However, every HHMM can also be represented asgéedevel HMM (see [25].)
For the sake of simplicity we represehgs its single-level HMM equivalent’ with N states.
The globally optimised likelihood of, based o’ and the dynamic dat4, is then given by

.
0 = Agg 1_[ Agser fs (X1), (5.4)
t=1

wheres, = 0 is the non-emitting initial state af, sr.; = N + 1 is the non-emitting terminating
state oft” and f, (x;) is the PDF associated with emitting statef 1’ evaluated at feature vector
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Figure 5.6: Estimating the pen trajectory of a static “i”. (a) The stas&eleton of the
character “i". (b)-(g) Matching diferent dynamic exemplars to the HMNlof (a), where
arrows indicate the sequences of the dynamic exemplar paEtiqs.

X;. We can therefore obtain a maximum likelihood state sequémrceach available dynamic
exemplar of a static image. This provides a point-wise spoadence between the static image
and each dynamic exemplar.

The likelihood¢ is a useful measure of similarity between a static image adgnamic ex-
emplar. It tends to decrease if a segment exists in the dynexeimplar and not in the static
image, or in cases of inconsistencies in size or orientatitmwever, it can happen that a dy-
namic exemplar matches only a portion of the static imaggwetl. A dynamic character “1”,
e.g., can produce a high likelihood on a static “7”. To ilhas¢ the behaviour af, the diferent
dynamic exemplars shown in Figures 5.6(b)-(g) are matcbelet HMM A’ of Figure 5.6(a),
where’ is the single-level equivalent of Figure 5.3. Henédgends to decrease in cases of
inconsistent pen movements, e.g., Figure 5.6(c); extrérapesdiferences, e.g., Figure 5.6(e);
different orientations, e.g., Figure 5.6(d); and trajectooesurring in the dynamic exemplar
and not in the static script, e.g., Figures 5.6(c), (e) and (f

As mentioned abovej will not necessarily decrease if the dynamic exemplar dag¢scan-

tain all the curves that constitute the static script, d=ggure 5.6(b) could have a similarto
Figure 5.6(g). To prevent this, we weight the likelihoodnfr@5.4) in the following manner:
Firstly, the total path length, is computed as the sum of distances between all the connected
skeleton samples of the static image. Secondly, the patiti&h of the recovered pen trajec-
tory is computed, so th&®_< T, . Note that web-like structures may contain excessive lioes
model complicated intersections. We therefore do not ohelihe path lengths of consecutive
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samples that constitute web-like structures. We now weggleh of the maximum likelihood
state sequences (one for each dynamic exemplar) as follows:

10g(Gw) = sign(log@)% 110g() | (5.5)

Finally, the dynamic exemplar’s state sequence that pexitie maximum weighted likelihood
dw is chosen as the estimated pen trajector§yIfs computed as described above, Figure 5.6(g)
will have the highest and Figure 5.6(e) the lowggt The state sequence resulting from Fig-
ure 5.6(g) will therefore yield the estimated pen trajegtafrFigure 5.6(a).

Note thatd, can be useful to identify forgeries in a signature verifmat@pplication. This is
also indicated by some preliminary experiments that arsegmted in Section 7.2.4.

A typical static signature with three sub-images from ouwabase is shown in Figure 5.7(a)
(close inspection of the signature shows that there are thinée disconnected images.) Of
the fourteen pre-recorded dynamic exemplars, the one #mathe highesé, is shown in
Figure 5.7(b). Figure 5.7(c) depicts the aligned dynamiengglar (dashed line) from Fig-
ure 5.7(b) and the skeleton (solid line) of Figure 5.7(agraftreprocessing. The solid lines
in Figures 5.7(d)-(p) illustrate how the single-path tcapeies of the dynamic exemplar (top)
and the static curves of the skeleton (bottom) from Figurécy.are matched. Dashed lines
render previous single-path trajectories, and the doaabf corresponding starting positions
is indicated by arrows. The sequenced single-path trajestof Figure 5.7(a) are therefore
revealed by establishing a point-wise correspondence thérdynamic exemplar. Note that
the dynamic exemplar is especially helpful to estimate thgle-path trajectories in compli-
cated regions, e.g., the bottom trajectories in Figure&p(l), which overlap greatly in the
leftmost sub-image of the static script. It should also beeddhat our system computes all
thirteen single-path trajectories of Figure 5.7(a) altffothe static signature consists of only
three sub-images.

One final alteration is made to the estimated pen trajectdrgfore their accuracies are cal-
culated. Chapter 4 has shown that some skeleton samples enskigped or consecutively
repeated. This is due to the inclusion of skip-link and darastates in our model, to compen-
sate for static scripts and dynamic exemplars witfedent numbers of samples. To remove this
compensation (which is necessary for our evaluation podt@s described in Section 6.1), we
reinstate the skipped samples and remove samples thatresecctively repeated.
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Figure 5.7: Estimating the pen trajectory of a multi-path signature). Aamulti-path static
signature and (b) the dynamic exemplar that correspondstbet (c) The dynamic exemplar
(dashed lines) from (b) superimposed on the static skelstai lines) of (a) after
preprocessing. (d)-(p) Estimating the sequence of sipgté-trajectories (bottom) that
constitute the skeleton from (c) by establishing a poirdwmrespondence with the dynamic
exemplar trajectories (top) from (c). The directions ofresponding starting positions are
indicated by arrows, and previous single-path trajecterége rendered as dashed lines.

5.5 Summary

This chapter has extended the HMMs for single-path statiptscto handle multi-path static
scripts. The most important accomplishments of this chiagreesummarised as follows:

¢ It has been shown how to define pen-up and pen-down eventsheesingle-path trajec-
tories that constitute a static script, without removing tlontext within the second-order
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HMMs that are derived from the fllerent sub-images of the script. Specifically, bi-level
hierarchical HHMMs with additional zero-pressure statesé discontinuities in pen tra-
jectories where pen-up events occur.

e Broken lines that may occur in static scripts have beenddeas a special case of multi-
path scripts. Compensation for such spurious disconmectias been included in our
HMM topology.

¢ It has been shown how to estimate a pen trajectory from the Hi¥idlstatic script using
the Viterbi algorithm. Each pen trajectory has a likelih@dr matching a dynamic ex-
emplar to the HMM. This likelihood can be used as a confideneasure for the accuracy
of an estimated pen trajectory.



Chapter 6
Experiments

In order to evaluate the accuracy of an estimated pen toajec ground-truth trajectory is
required. Since we were unable to find any standardised asgatpntaining both the on-line
and df-line versions of signatures, we developed our own, name&IEBASE. Section 6.2
describes US-SIGBASE in more detail. Section 6.1 presemls&tion protocols: Section 6.1.1
treats existing protocols, whereas Section 6.1.2 descabeevaluation protocol. Experiments
are described in Section 6.3, where the configurations oéxperiments and experimental re-
sults are presented. Typical errors made by our system aceibled in Section 6.3.6. These er-
rors can be scrutinised by viewing the animation exampldgb@attached CD; see Appendix A
for further details. Our results are compared with resutisifexisting techniques in Section 6.4,
and some conclusions are drawn in Section 6.5.

6.1 Evaluation protocol

US-SIGBASE consists of 814 multi-path signatures for 5liviinidials. Each signature was
recorded on a piece of paper placed on a digitising tablais;Tihe dynamic counterpart of each
signature was obtained. However, due to noise introducedglevery stage of the recording
process, i.e., while recording a dynamic signature andenguanning, binarising and skeleton-
ising its static counterpart, the image skeleton genewdiffers from its dynamic counterpart.
Thus, one cannot assume a one-to-one correspondence betwkeletonised static image and
its dynamic counterpart. The ground-truth pen trajectergtitained by matching the dynamic
counterpart of a static script to a slightly modified HHMM bgtscript (as described in Chap-
ter 5). In general, the position coordinates of a staticetha@l and a dynamic counterpart are
much better aligned than the position coordinates of thecstkeleton and any of its dynamic
exemplars. Accordingly, the mentioned HHMM modificatioghtiiens the standard deviation

89



6.1 — BEVALUATION PROTOCOL 90

op to 7 (measured in pixels) for all the lower-level emittingtss in the HHMM. All that re-
mains is to compare the two trajectories—the ground-tnajec¢tory, as computed above, and
the estimated trajectory obtained from the dynamic exemBath trajectories are extracted
from the same static skeleton so that it is possible to coenff@@m. However, since the two
trajectories are obtained fromftérent dynamic sequences, the trajectories do not nedgssari
have the same number of samples. A point-wise comparisdrerefore not possible. Sec-
tion 6.1.1 describes existing methods that establish gatiweé comparisons between estimated
and ground-truth trajectories, whereas Section 6.1.2pte®ur evaluation protocol.

6.1.1 Existing evaluation protocols

To our knowledge, there are only two noteworthy quantita¢ivaluation protocols described in
existing literature. The first protocol, by Lau et al. [54,bhased on ranking analysis, whereas
the second method, by Jager [38], is based on Dynamic Rrogireg (DP).

The evaluation protocol by Lau et al. [52] is based on paigatking comparison. In brief,
this amounts to presenting the ground-truth trajectory seqaience of numbers (ranked items)
®gound = [1,..., T]. Itis then assumed that the estimated pen trajectory stanef the same
samples as the ground-truth trajectory, but that the sasgzl@eence might be fierent. The
estimated pen trajectome is therefore also presented as a sequenck néimbers, where
each number occurs exactly once, i.@est) € {1,...,T}, wheret = [1,...,T] so that
Wes(t) € {Wes(1), Tes(2), . . ., Wes(t — 1), @es(t + 1), ... wes(T)}, Wherewes(t) is samplet of
@es: The basis of the method by Lau et al. [52] is Kendell's metwbere Kendell's met-
ric is the minimum pair-wise adjacent transpositions tmsfarm ®es; iNt0 Gyroung  Thus, If
Ogound = [1,2,3,4] and@es: = [1,3,4,2], a Kendell distance of 2 is required to transform
®cs: INtO @g0une The metric established by Lau et al. [52] is a refinement ofd&d’s metric,
also taking into account general directions and discoittesubetween consecutive items in
@es: However, the evaluation protocol and results of Lau et5#] pre not applicable to our
estimation algorithm for the following reasons:

1. No provisionis made for estimated and ground-truth ¢ttajges with diferent path lengths.

2. The protocol requires that segmented static scriptsradyerepresented by their line end-
points. Thus, a static script is presented as a sequencendiers, where each number
represents an endpoint, as shown in Figure 6.1, where thmd+outh trajectory is ren-
dered as a solid line. Thuagung = [1, 2] and the only sequences that can be extracted
from the shown script ar@eg; = [1, 2] or @est = [2, 1]. If, €.9.,@est = [1, 2], their evalua-
tion protocol would indicate thaes;is 100% accurate. A problem arises when a system
(such as ours) computes the sequencallahe skeleton samples that constitute a static
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script: if the estimated sequence of skeleton samples arect between the endpoints,

e.g., if the directions of traversal at the loops are rexe(dashed lines) it would have no

influence on the result of their evaluation protocol, as ¢indysequences of endpoints are
considered.

Figure 6.1: Segmentation of a static skeleton at endpoints. Solid le@esent the
ground-truth trajectory and the dashed lines indicate ttet directions of the loops can be
erroneously reversed in the estimated pen trajectory.

A more applicable evaluation protocol is followed by Ja@&], where the smallest number of
elementary operations, called thevenshtein distanceequired to transformes; iNt0 @ground IS
calculated. In this cas@yes; and@gyoung are sequences of 2D position coordinates and are both
extracted from the same skeleton of a static script. To coéenfhe Levenshtein distance, DP

is employed. A short presentation of the evaluation prdtestablished by Jager [38] follows,
using a generic example from [38], where the ground-truth estimated sequences are both
strings, With®@gound = INTEREST andwes; = INDUSTRY.

Firstly, a grid is constructed, where each node represeptssible corresponding point be-
tween®young aNd@es;, as indicated by the grey dots in Figure 6.2. In generagifunq consists
of n samples an@; consists ofm samples, the grid has x n nodes. The matriD is con-
structed to contain the values for a locally defined costtiongso thatD( |, i) reflects the simi-
larity betweermes(j) (samplej of @es) and@gound(i) (Sample of @y0und, Wherei € {1, ..., n},
andj € {1,...,m}. Hence, foi®gound = INTEREST andmes; = INDUSTRY, i = j = 8, so that
there are 64 nodes in total.

By starting with the initial distancB(1, 1), a final accumulated cost at each nogé) (s com-
puted in a left-to-right, bottom-to-top fashion. Each nad® be preceded by at most three
nodes, namely the left, bottom and bottom-diagonal-leftaso The matrixXC is constructed to
contain the final costs at all the nodes. Within the grid’sstraints, the co<E(j, 1) is assigned
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Figure 6.2: Using DP to calculate the optimal Levenshtein distance betwtwo sequences. A
grid is constructed with weighted nodes for each charactehe strings INTEREST and
INDUSTRY, as indicated by the grey dots. The final cost at radk is shown and the
possible paths which all result in a minimum Levenshteitadise of 8 at node (8,8) are
rendered as dashed arrows.

to the node |, i) in a recursive way, as follows:

C(j - L1) + D(}, 1),
C(j.i) =min{ C(j - 1,i - 1)+ D(j,i), ¢ (6.1)
C(j,i = 1)+ D(j, ),

wherei € {1,...,n}andj € {1,...,m}. The DP evaluation technique enables one to distinguish
between dterent error types that contribute to the total error rateamgle that occurs iWes;

and not in@g.una iS called annsertion whereas a sample that occursigoung and Not iN@es;

is called adeletion If a sample frommgounq is mapped to a mismatched sample fr@aq, the
erroneous sample me is called asubstitution When DP is employed, deletions are identified
by vertical transitions and insertions are identified byizantal transitions. Substitution are
identified by diagonal transitions mapping mismatched dasynto each other.

The node that precedeg i) (with minimum local cost) is logged, so that the optimalseace
of nodes (leading to a global optimum) can be back-traceawlefinal noderf, n) is reached.
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Jager [38] defineB(j, i) at node (, i) from (6.1) as follows:

1, for predecessor nodes< 1,i) and (j,i — 1) (6.2a)
D(j,i) = { 2, for predecessor nodg € 1,i — 1) if [[@gound(i) — @es( J))Il > O (6.2b)
0, otherwise. (6.2¢)

The final cosiC(j,i) at each nodei(j) in Figure 6.2 is shown. Note, however, that there are
numerous paths that all lead to the minimum Levenshteiranicgt of 8, as indicated by the
dashed arrows. This is problematic if one wishes to pinpeirdr sources and erroneous re-
gions. For our application, substitutilyj, i) = ||@groundi) —@es( j))Il into (6.1), i.e., minimising
the Euclidean distance between the estimated and groutidttajectory, would already result
in fewer optimal paths. However, big distances betweenessiee samples i@es: and®@gyroung
where pen-up and pen-down events occur, might have a negatpact. Another problem is
that the evaluation protocol followed by Jager [38] is natgmeterisation invariant.

Based on our studies, a satisfactory evaluation protoaalldhhave the following characteris-
tics:

1. The evaluation protocol must establish a mapping betv@gnnd and @.s; that is as
unique as possible, so that errors can be identified easilywaitn confidence. If the
pointwise mapping betweeanyoung aNd@es: IS UNique, one can use the point-wise corre-
spondence between the two sequences to identify the enstesad of the final cost of
the mapping. This enables a direct identification of errogemrves in the estimated pen
trajectories.

2. The evaluation protocol must be invariant to parametgas, while also being compre-
hensive of cases where successive samples are far apadenepen-up and pen-down
events, or in cases where successive samples are part @itsplroken lines.

3. The evaluation protocol must be easy to implement, sattban be used as a standardised
technique to evaluate théigacy of an estimated pen trajectory.

Section 6.1.2 describes our evaluation protocol, whichtside above requirements.

6.1.2 Using a left-to-right HMM to establish an evaluation potocol

Our evaluation protocol, introduced in this section, ielb@ an HMM that is constructed from
®goune This HMM is matched tames; resulting in an optimal state sequence. Similar to the
concepts developed in the previous chapters, the statesegyrovides a pointwise corre-
spondence betwed.s;and@young IN this case, two states are associated with each sample in
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®goune AN “error” state which must be entered when an erroneouglsamocurs indes, and

a “correct” state which must be entered when a correct saogaers in@.s. Compared with
our HMMs for static scripts, our HMM fome: is much less complex, a@Bes: and @yroung are
extracted from the same image skeleton (i.e., correspgradimples are exactly the same) and
both sequences are time signals. The two states associiieeteh skeleton sample @young
are constructed so that their PDFs can be exploited to detemvhether errors occur: In cases
where corresponding samples@qs: and @y0ung are the same, the “correct” states have sig-
nificantly higher observation likelihoods than the cor@sging “error” states, so that the state
sequences are forced to reveal the “correct” states. Ldewn cases whemes;and®gounq dif-

fer, the “error” states have significantly higher obseatikelihoods than the “correct” states,
so that the state sequences are forced to reveal the “etade’ss

Our evaluation protocol uses a first-order HMWbr with a left-to-right topology. For this
application,®young aNd @es; are sequences of 2D position coordinates, wiiggundk) and
@es(]) are the 2D position coordinates at time instankesd j, fork € {1,...,n} and | €
{1,...,m}. As mentioned above, two states are associated with eaghlesam®y,,n¢ Each
emitting state is associated with a spherical Gaussian B #&gescribed by (4.1). We now let
i €{0,...,n— 1} so that the first state associated with the sarigle..{i + 1) is labelled with
an odd numberi2+ 1. The PDF associated with state+21 is initialised witho,1 = V0.016
(measured in pixels) ang,,; = @goundi + 1). The second state associated with a sample
®Ogoundi + 1) is labelled with an even number 2 2. The associated PDF of state+22 is
initialised witho,» = V100000 (measured in pixels) apgd,, = @goundi + 1). All states are
connected to the non-emitting initial and terminatingestatAn odd-numbered state 21 is
also connected to state 22 (its even “partner” associated wilhyoundi + 1)) and to any other
odd-numbered stateif x > (2i + 1). An even-numbered staté 22 is connected to itself and
to any odd-numbered staxaf x > 2i. All transition links leaving a state are equally weighted.

Similar to Section 5.4@.; IS matched tal ,r using the Viterbi algorithm. The result is a
hidden state sequense= [s;, S, ..., Sn]. Note that the PDFs of states 21 and 2 + 2 have
the same meamyoundi + 1), SO they overlap approximately where the distalf@goundi +

1) — @es(j)l| = 0.25, fori € {0,...,n—1}andj € {1,...,m}. The topology and the PDFs
of 1.,r are now manipulated so that|i@goundi + 1) — @esd(j)Il < 0.25, s; is odd, whereas if
I@groundi + 1) — @esd( j)Il > 0.25, s; is even. Hence, i§; is evenme( ) is either an insertion or a
substitution. If §.1 — ;) > 2, wheres;,; ands; are both odd numbers, a deletion is identified.

Our resampling scheme (described in Section 3.3) ensuatshih distance between any two
successive samples in skeleton of a static script is gréseror equal to approximately 1.0.
Hence, if each character in the strings INDUSTRY and INTERESassociated with a 2D

coordinate, so that the distance between any two charastelsays greater than 0.25 (where



6.1 — BEVALUATION PROTOCOL 95

the two PDFs associated with the same sample overlap) wepgy aur evaluation proto-
col. Accordingly, the HMMA, ,r of the word INTEREST is shown in Figure 6.3. Each letter
is associated with an even- and odd-numbered state, whefeDRs of even-numbered states
are less constrained than the PDFs of odd-numbered stat@ésdiaated on the left-side of
the figure. Although the state sequence can start and telenattaany state, transition links
connected to the non-emitting initial and terminating edaéire omitted for the sake of sim-
plicity. Arrows indicate the destinations of the statesr ff@ sake of simplicity, some of the
states are also connected to transition links using fillets dod grey lines. The word IN-
DUSTRY is matched tal ., either the state sequense= [0, 1, 3,4,4,13,15,16,16,17], or
s=10,1,3,4,4,4,5,9,10 17] will be revealed, depending on the 2D values that arecestsal
with each character.

B [ )
AN 9 @ 2 &) ®
PN

n

Figure 6.3: The left-to-right HMM from our evaluation protocol for th&isg INTEREST.
PDFs associated with odd-numbered states have tightedatdrdeviations than PDFs
associated with even-numbered states. Transition linksratticated by arrows. Grey lines and
filled dots also connect some of the states to transitiorslifkr the sake of simplicity, links
that are connected to the non-emitting initial and termingtstates are omitted.

An error measure that is invariant to parameterisation isprged as follows: If sampl@es( )

is identified as substitution or insertion, the error is giieadl as the erroneous path length
|@esd( ]) — @esd ] —1)II. If @es(j) is a deletion, the error is quantified [@8yround J) — Bground J — 1)II,
i.e., the path length of the ground-truth curve which is abse the estimated trajectory is
calculated. The path lengths between endpoints that bgdgs in broken lines and the path
length between zero-pressure discontinuities are notcatderroneous path lengths. The sum
of all errors of a static script is then expressed as a peagendf the script’s total ground-truth
path length. Note that, due to the addition of insertionrsirthe error percentage can exceed
100% so that the accuracy of an estimated pen trajectory earedpative. The final error rate
is computed by averaging individual error rates for theiciatages over the number of static
images. Some more examples of the evaluation protocol asepted in Section 6.3.6.
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6.2 Database for experimental evaluation

As briefly mentioned in Section 6.1, our signature databassists of a total of 814 multi-path
signatures for 51 individuals. All signatures were recdrda paper placed on a Wacom UD-
0608-R digitising tablet. The paper signatures were sahasegrey-scale images at 600 dpi.
The scanner was set to highlight as much detail as possiligirareas, to prevent spurious dis-
connections if possible. Unfortunately this also introgimore background noise. Most of the
noise was easily removed using a median and low-pass filteredian filter was used, as it is
a highly dfective and simple method to reduce salt-and-pepper nogeyascale images [73].
A median filter sorts the intensities in tlkex k neighbourhood of a pixgd and chooses the
middle (median) intensitis. The dfect is that if the intensity op; is higheflower thanis, the
intensity ofp; is replaced withs. Next, a low-pass filter is applied, because, in generakenoi
manifests as sharp intensity transitions [28]. Low-pagsr&ilwith uniform distributions replace
the intensity value at each pixel with the average intenstye in a specified neighbourhood.
We opted for a Gaussian-shaped low-pass filter, so thatatguikels contribute more to the
final intensity of a pixel. In general, low-pass filters tendotur the image slightly due to the
smoothing of edges. Hence, image features that constima# segions in the image (typically
noise) attenuate, while significant regions are slightiyasxded.

After applying the low-pass filter, the document was biredjsvhere a global threshold was
chosen using the entropy method described in [73]. @heopyof an image measures the
average, global information content of an image in terms/efage bits per pixel [28, 73]. For
a grey-scale image with 256 intensity-levels, an entro/lwtgpixel indicates an information-
rich image, where the pixel intensities cover the full raegeally. An entropy of O indicates
the presence of a predominant pixel intensity and littleateom in the intensity levels. To
compute a threshold based on entropy, the image data isaseghanto two classes for each
intensity level. The optimal threshold is then computechasnitensity level for which the sum
of entropies for the two classes is the maximum. After bsation, the static signatures have
a line thickness varying between five and ten pixels in patiere/ the lines do not intersect
(depending on the pen pressure.)

Individuals were constrained to write within a grid, e.ggu¥e 6.4(a) depicts a typical grey-
scale grid extracted from a page in US-SIGBASE. The documéimarised version, after

filtering, is shown in Figure 6.4(b). Note that the signasureFigure 6.4(b) appear thicker than
in Figure 6.4(a) due to the entropy-based threshold (atha ¢jcey level)—this has the advan-
tage of accentuating light features, thus preventing brdikes, at the cost of thicker lines. To
illustrate the &ect of low-pass filtering and binarisation, Figure 6.4(cdms in on a part of

the second signature in Figure 6.4(a) after median filterigure 6.4(d) depicts Figure 6.4(c)
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after binarisation. Figure 6.4(e) depicts Figure 6.4(t3rabw-pass filtering followed by bina-

risation. Note that although Figure 6.4(e) is slightly #&cin parts compared to Figure 6.4(d),
it is noticeably smoother.

Number : §7) Number © §
Age 1 g Age : 1\q

| C/D: D f’C/:D:D
1\/I//F A M/F : M
L/R: R L/R: R

&
#

(b)
’ % al
(e)
Figure 6.4: An example of a typical scanned document in US-SIGBASEM@}iktic
signatures on a grey-scale document and (b) the documeangsibed representative. (c) A

part of the second signature in (a) after a median filter hasrbapplied. (d) The binarised
image of (c). (e) The binarised image of (c) after low-passrfilg.

-
(€) (d)

More data were originally recorded, but the following prealities have invalidated some of
the data:

1. Some individuals are unable to sign within a grid’s camsts. In fact, some individuals
tend to write not only over the grid lines, but also over neiglring signatures, making
it impossible to extract the individual signature imagetaatically without corrupting
them.

2. The recording devices may corrupt the data. In fact, aarebdield is dedicated to this
problem; see [77, 85, 76]. Our Hewlett-Packard (HP) sca%@0C also causes various
slight distortions, and our digitising tablet’s pressugsalution is instficient to capture
small pressure values. In some cases, e.g., there arenities static scripts that do not
occur in the dynamic counterparts of the scripts.
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3. The diferences between the orientations of the tablet, the papéneotablet and the
paper on the scanner’s surface have to be accounted for.

4. In some cases, the paper shifted on the tablet while data neorded simultaneously
on the digitising tablet and paper, thereby causing sevscegpancies between the static
signatures and their dynamic counterparts. Hence, wetiitelg apply various linear
transforms to map the static signatures onto their dynaouaterparts. If a linear trans-
form is unable to determine a satisfactory mapping for acssagnature and its dynamic
counterpart, the static signature is considered invalid.

6.3 Experiments

6.3.1 Overview of experiments

A static image is randomly selected for each individual. tséexl above, the dynamic counter-
parts that are used to compute ground-truth trajectoreesvaailable for all static images. All
the dynamic exemplars (excluding the dynamic counterpafitsourse) are used for estimating
the pen trajectories of the static scripts, as describe@ati@ 5.4. The estimated pen trajecto-
ries are then compared with the ground-truth trajectodexbtain accuracy scores, as described
in Section 6.1. Theverage accuracyor a specific experiment is then calculated by averag-
ing the accuracy scores over all the static images in thddaga The database and processing
steps that have been applied to the dynamic exemplars aidskietons are specified for each
experiment.

A summary of the experiments described in Sections 6.32%6 presented in Table 6.1. The
top of the table indicates that the signatures in US-SIGBA®Ee used to conduct all the ex-
periments, where US-SIGBASE consists of 51 static imagds/a& dynamic exemplars. Sub-
sequently, the configurations of the conducted experimemetshown, where each experiment
is numbered in the first column. Due tdid@rent skeletonisation and resampling schemes, the
number of skeleton samples and the path lengths of the grwutidtrajectories may éier for
various configurations. Hence, the second column predaeatsum of all the ground-truth path
lengths (expressed in pixels) in the database averagedre/aumber of static scripts for each
experiment. The third column presents the number of edgesl§er of successive samples) in
the ground-truth trajectories, averaged over the numbstadic scripts. A short description of
each experiment is provided at the bottom of the table. Amwewe of these experiments is
presented as follows:



Signatures in database:

Database | Number of images| Number of exemplars
US-SIGBASE 51 712

Experimental configurations:

Path | Number | Skeletonisation | Orientation Resampling Training
length | of edges| Standard Pseudol Radon| PCA | Euclidean| Critical points| Empirical | Writer-Specific
1(a) | 2811 | 2210.4 X X X
1(b) | 2970 2525 X X X X
2(a) | 2844.1| 776.4 X X X
2(b) | 2844.1| 776.4 X X X
3(a) | 2811 | 2210.4 X X X X
3(b) | 2844.1| 776.4 X X X X
4(a) | 2844.1| 776.4 X X X
4(b) | 2844.1| 776.4 X X X X

1 Experimental configuration for measuring tHeeet of two diferent skeletonisation schemes.
2 Experimental configuration for measuring th&eet of two diferent orientation normalisation schemes.
3 Experimental configuration for measuring tHeeet of two diferent resampling schemes.

4 Experimental configuration for measuring tHeeet of two diferent training schemes.

Table 6.1: A summary of all the experimental configurations.

SINTNINEdYX] — €°9
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1. The dfect of artifacts that frequently occur in the skeletons afistscripts are mea-
sured in Section 6.3.2. Specifically, results from our dkelsation scheme, described
in Section 3.1, are compared with results from standardesieisation schemes. The
abbreviatiorstandardin Table 6.1 indicates that the standard thinning algorithij29]
was employed, wheregseudadndicates that our skeletonisation scheme was employed.

2. The dficacy of our orientation normalisation scheme in the Radonado, as described in
Section 3.2, is evaluated in Section 6.3.3. Results arefgyadly measured against results
from the popular PCA-based scheme. Table 6.1 specifies etitRadontransform or
PCAwas used.

3. The dfect of Euclideanversuscritical-point resampling, as described in Section 3.3, is
investigated in Section 6.3.4. The resampling scheme fdr eaperiment is specified in
Table 6.1.

4. The influence of the training schemes, described in Sexcto7-4.8, on our HMM is
measured in Section 6.3.5. Specifically, thfeet of predefined HMM parameters and
trained parameters is investigated. Table 6.1 specifiethe@hempiricalor trainedwriter-
specificstandard deviations are used in our PDFs.

Results. In the sections to follow, the optimal state sequences fromle&ft-to-right HMMs
(described in Section 6.1.2) are used to map estimatedtoaes onto their ground-truth tra-
jectories. Quantitative results for each experiment aesgamted, where the accuracies of the
estimated pen trajectories are expressed as percentatfestotal ground-truth path lengths,
averaged over the number of static images in the databaSechon 6.3.6, a qualitative inves-
tigation is described to identify typical errors in estiepen trajectories.

Statistical significance.Where applicable, single-sided statistical significamckdators were
calculated to determine whether thdéfeiences between the two experimental configurations
are attributable to chance [71, 21, 12, 61]. In the sectiorislbow, the results for two dierent
configurations are compared to each other for each experiméns, for each configuration,
the pen trajectories of the 51 static signatures in US-SIGBAvere estimated. For each exper-
iment, the number of times (for the 51 trials) where the aacyiof Configuration A is greater
than or equal to the accuracy of Configuration B, i.e., the lmemof timesa, > ag, is calcu-
lated. If we assume that the two configurations are equatiyratep = P(ax > ag) = 0.5. We

can model the number of timéswherea, > ag with the random variabl&, whereY has a
binomial distribution. Thus, the probability thitis realised at leasttimes is given by

N

> (1 pa-pr 63)

i=k

= 0.551i (5|1) (6.4)

i=k

P(Y > k)
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whereN = 51 is the number of trials (static images to unravel.) Themafathe binomial
distribution ofY is uy = Np = 255, whereas the standard deviatiop = /Np(1 - p) = 3.57
(see[71, 61] for further detail.) Equation 6.4 indicatest ihk is relatively large, our assumption
that the the two configurations are equally accurate is wraeg whereP(Y > k) < T if

k > uy, there is a significant efierence between the results for the two configurations. Fsr th
application, we leT = 5%. For each of the experiments in the sections to follow, @magare
the results for the two elierent configurations and calculdeP(Y > k) and| uy — k | /oy to
compute the statistical significance of the results. Fahallexperiment®(Y > K) is expressed
as a percentage so that it can be easily comparéd to

6.3.2 Experimental results for different skeletonisation schemes

Two sets of experiments are described. The first set usesfinsticated skeletonisation pro-
cedure described in Section 3.1, and yields an averageaaycaf 88.3%. The second set uses
a standard thinning algorithm [29] without any removal dffacts, and yields an accuracy of
88.1%. The exact configurations of the experiments are Bpe@at entries 1(a) and 1(b) in
Table 6.1.

Results Statistical significance

Skeletonisation| Accuracy || k | P(Y <K) | | uy = K| /oy
(@) Pseudo 88.3%
(b) Standard 88.1%

25| 50% 0.14

Table 6.2: Experimental results for (a) our pseudo-skeletonisatidresne and (b) for the
standard thinning algorithm in [29].

Note that although the overall average accuracy of Configura is higher than the overall

average accuracy of Configuration IBis smaller thany. Hence, to obtain an indication of
the significance of this result, we test how many times Comrdion B outperforms Configura-

tion A for the separate trials. Thus, in this caB€Y < k) is computed. Accordingly, the results
for this experiment are not regarded as significant.

We can conclude from this experiment that the simple thigr@pproach achieves a surpris-
ingly high accuracy. In fact, by also observing the statatsignificance tests, one cannot say
with confidence that our skeletonisation performs bettan tthe standard thinning algorithm.
However, our skeletonisation algorithm definitely doesdwgrade the overall performance of
our system, especially considering that it is essentighfgood critical-point resampling and to
identify simple crossing with confidence.
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It is important to realise that the detachment of interseclines at simple crossings removes
ambiguities, &ectively including more context. It is therefore expecteat thinner signatures
or less complicated handwritten scripts which, in gendralje more simple crossings, will
result in more accurately estimated pen trajectories. @kpectation is endorsed by the results
from our system that deals only with single-path scripte (&8]): Results were generated by
converting on-line signatures from the Dolfing database82() to thin df-line signatures. The
results are shown in Table 6.3 (from [58]), where accuracyescare expressed as percentages
of the ground-truth path lengths that were estimated ctiyre&lthough a diterent evaluation
protocol was used (DP-based, as our evaluation protocwmi 8ection 6.1.2 was not developed
yet), it is still evident that, for the Dolfing database, e&tted pen trajectories extracted from
our pseudo skeletons are approximate% more accurate than the ones extracted from the
standard skeletons. Similar to our results for this expentyhowever, the performance increase
of the pseudo skeletonisation is only7% for the thick signatures from US-SIGBASE. The
only significant diference between the signatures from the Dolfing database &+8IGBASE
were that the Dolfing signatures were significantly thinhantUS-SIGBASE signatures. In our
opinion, the performance increase of the Dolfing signatusésg pseudo skeletons is mostly
due to the inclusion of more context at simple crossingseNoat only single-path signatures
are unravelled in the experiments of Table 6.3. The singl&-pignatures arefiierent and fewer

in number than the multi-path signatures in US-SIGBASHtddent evaluation protocols were
also employed for the two experiments of Table 6.3 and Tal@eThus, the results are slightly
different, i.e., an accuracy of 91% is achieved for the singth-pgnatures in US-SIGBASE,
whereas 88% is achieved for the multi-path signatures in US-SIGBASE.

Dolfing | US-SIGBASE | Combined
Number of static images 15 35 50
Number of dynamic exemplars 210 450 660
Accuracy for thinning in [29] 87.2% 90.3% 89.3%
Accuracy for our pseudo skeletons 92.8% 91.0% 91.5%

Table 6.3: Experimental results, showing the average accuracy ofvexam pen trajectories
for single-path static scripts expressed as the correat@etages of the ground-truth path
lengths that were extracted.

6.3.3 Experimental results for dfferent orientation normalisation schemes

Two sets of experiments are described. The first set usegitheaiion normalisation scheme
in the Radon domain, as described in Section 3.2, and yieldserage accuracy of 8Rb6. The
second set normalises the orientations of the static shedeind dynamic exemplars using PCA,
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and yields an accuracy of 83%. Thus, the orientation scheme in the Radon domain pesform
slightly better than PCA-based normalisation: there is arhf@@rovement in the accuracy with

a confidence which is definitely better than chance. The exauftgurations of the experiments
are specified at entries 2(a) and 2(b) in Table 6.1.

Results Statistical significance
Orientation normalisation | Accuracy || k | P(Y > K) | | uy = K| /oy
(@) Radon 87.9%
35| 0.55% 2.7
(b) PCA 86.9%

Table 6.4: Experimental results for (a) our Radon-based orientatiommalisation scheme
and (b) for PCA.

To illustrate the potential andfecacy of the Radon-based orientation normalisation schame,
well as our HMM's robustness to geometric variations, a ntbrect comparison between the
Radon-based and PCA-based schemes has been devised. ritismae in Section 6.2 that we
iteratively applied various linear transforms to map staignatures onto their dynamic counter-
parts. The orientation of the dynamic counterpart afteralignment is used as the ground-truth
orientation of the dynamic counterpart. We then extracbthendaries of the static scriptin or-
der to approximate the script with a polygon (see Sectior3.Hence, the number of dynamic
counterpart samples that fafisidethe approximating polygon of the static script are calcu-
lated. This value is expressed as a percenggef the total number of dynamic counterpart
samples. For this experiment, the orientation of the statigpt remains unchanged, whereas
the dynamic counterpart is rotated to align it with the statript using PCA-based and Radon-
based rotations. After the dynamic counterpart is rotatdguthese schemes, the number of
dynamic counterpart samples that fall inside the approtimggolygon of the static script is
recalculated. This value is expressed as a percemtagethe total number of dynamic coun-
terpart samples for each of the orientation normalisatabresies. A typical example is shown
in Figure 6.5(a), where a scanned image is depicted in bl ground-truth alignment of the
dynamic counterpart and static script results in an acgusdes = 985%, i.e., 985% of the
dynamic counterpart samples (white) fall inside the apjpnaxing polygon (the area spanned
by the image boundaries.) According to the PCA-based schigs@elynamic counterpart must
be rotated clockwise by.®. According to our Radon-based scheme, no rotation is reduir
After PCA-based rotatioag = 37.8%. Thus, only 38% of the dynamic counterpart samples
(grey lines) fall inside the approximated polygon of thdistscript.

Figure 6.5(b) shows the results for 51 static scripts from3JSBASE after PCA-based and
Radon-based normalisation. Before rotatiag,is calculated, whereg is the number of dy-
namic counterpart samples inside the static script’s aqyprated polygon, expressed as a per-
centage of the total number of dynamic counterpart samflee.same procedure is followed
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Figure 6.5: Measuring the accuracy of Radon-based versus PCA-basedtation
normalisation. (a) A scanned image (black) superimposeitkatynamic counterpart before
(white) and after (grey) PCA-based rotation. (b) Results<adon-based (grey) and
PCA-based (black) rotation normalisation, where thgatence between the number of
dynamic counterpart samples inside the approximatinggmtg of the original images before

and after rotation is shown as a function of the principle paments+/31/5..

after Radon-based and PCA-based rotation to calcafat€he diference betweeag andag is
shown as a function of the skeleton principle compone@) for PCA-based (black) and
Radon-based (grey) orientation normalisation. Note W for a specific signature pro-
vides one with an indication of the ratio of the signaturegtérin the direction of the principle
axis over the signature length in the direction of the axés ihorthogonal to the principle axis.
The highest PCA-based error results from the signaturegefrBi6.5(a), whereg—ag = 60.7%
and \/,BT,BZ = 1.41. In general, the graph shows that for P@A- ag is especially high where
\B1/B2 is small. It is therefore deduced that PCA-based rotaticoives unreliable where
principle components are similar. Averaged over the tatahber of static scripts (51) the av-
erageag — ag for PCA-based rotation is. 7%, whereas for the Radon-based rotation it §94.
Thus, despite the relatively few signatures WhQ//éT,Bz is small (there are only 3 signatures
where \/,BT,BQ < 1.5), the Radon-based orientation normalisation schemadtreutperforms
the PCA-based scheme according to this evaluation. It s@ésar that, although the Radon-
based scheme is more accurate than the PCA-based scheyn 18flperformance increase in
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our HMM’s performance is achieved for the Radon-basedimtal his experiment is therefore
a good indication that our HMM is quite robust to global otation variations. It is, however,
beneficial to employ the Radon-based rotation, especidibre~/3./6> < 1.5.

Our HMM's robustness to rotational variations is explaimsdollows:

e Firstly, itis observed that our HMM is rather robust to loaatiational variations. This ro-
bustness is especially evident from the good results oddefor the standard pixel-based
thinning technique (discussed in Section 6.3.2), whereatigular diferences between
connected samples are multiples of 4bhis local robustness is attributed to:

— The standard deviatios, in our directional PDF componem(ui‘f, a},) (see Sec-
tion 4.8) compensates for local directionaffdrences between a dynamic exemplar
and a static skeleton.

— The Viterbi algorithm computesglobally optimal path, thereby providing a robust-
ness to local dierences.

e Secondly, our HMM is rather robust to global rotational &tions. This robustness is
especially evident from the experiments described in #sisn. Equation 4.5 indicates
that the directional featurpi\j’ in N(ui‘f,a(,) is relative and normalised. Thus, in most
cases, the same global optimal path for a wide scope of gtokational shifts between
the same dynamic exemplar and static script results. Hawgw®important to note that
¢ from (5.4) decreases for the same state sequence if thevegdédbal rotational shift is
increased. Since the selection of the optimal pen trajgdtora static script is based on
d, rotational variations may lead to a sub-optimal selection

6.3.4 Experimental results for dfferent resampling schemes

Two sets of experiments are described. The first set resarti@estatic skeletons and dynamic
exemplars so that the distance between any two successin@esais roughly the same, i.e.,
a Euclidean resampling is used. Specifically, the distamte/den two successive pixels is
approximately 1 pixel, as described in Section 3.3. For tise det, an average of 8846 of the
estimated trajectory path lengths are correct. The seaetngsgs the critical-point resampling
described in Section 3.3, and achieves an average accUr@c¢Peno (expressed as a percentage
of the ground-truth path lengths.) The exact configuratmfithe experiments are specified in
entries 3(a) and 3(b) in Table 6.1.

Firstly, it is evident from Table 6.5 that the accuraciesdotical-point and Euclidean resam-
pling are approximately the same. In fact, according to thBstical significance test the dif-
ferences are chiefly attributable to chance. Section 3.3lm@asn that our critical-point resam-
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Results Statistical significance

Resampling | Accuracy | k | P(Y >K) | | uy — K| /oy
(@) | Euclidean 88.3%
(b) | Critical point| 87.9%

26| 50% 0.14

Table 6.5: Experimental results for (a) Euclidean resampling and (b)
critical-point resampling.

pling reduces samples on a parametric curve by minimisiagntormation loss inherent in the
point-reduction scheme. Thus, it is expected that the t®éoi the two configurations would
be similar if all the high-curvatures points (containingoontant information) of the samples on
the Euclidean resampled curve were selected by our crpigit resampled curve. However,
it should also be noted that the critical-point resamplmgudes more context for our HMMs.
This inclusion of context also contributes to the good rssaf the critical-point resampling
scheme and can be explained as follows. As mentioned easkigr-link and duration states
allow for a factor two diference between the number of samples in corresponding ségofe
static skeletons and dynamic exemplars. A straight lineaandrved line with the same path
length have approximately the same number of samples whieg Baclidean resampling. Al-
though the directional PDF components suppress the matdfiourved and straight lines, it
is still possible. When using our critical-point resamglithe number of samples on a straight
line and a curved line with the same path length miglfiediwith a factor of more than two,
thereby further restricting the matching of these curvatistraight lines.

Secondly, a significant increase in the speed of our systamhssrved when using critical-
point instead of Euclidean resampling. This increase irdpg simply due to the decrease in
the number of samples when using critical-point resamplifige reduction of computational
requirements is demonstrated using a typical signatureStSIGBASE, shown in Figure 6.6.
During the recording process of the static signature inle@@u6(a) and its dynamic exemplars,
the signatory was constrained to sign within a bounding B@pproximately 50 mnx 20 mm
(somewhat larger than what would normally be allowed on dwents such as bank cheques.)

All experiments were conducted on a 1.6 GHz AMD XP180The signature in Figure 6.6(a)
has approximately 1378 samples in its skeleton using théidean resampling scheme. Its
final HMM has 12 294 states and 73 502 transition links. Pcadlyj, it takes approximately 31
seconds to estimate the pen trajectory of Figure 6.6(a)dbase diterent Euclidean resam-
pled dynamic exemplar with 1652 samples. The critical-pskeleton of Figure 6.6(b) results
from selecting high curvature points from the Euclidearanegled skeleton and reducing the
number of samples on straight lines, as described in Se8t®rirhe final critical-point resam-
pled skeleton of Figure 6.6(a) has 572 samples, 5040 HMMstatd 29 966 transition links.
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Euclidean Critical

(a) (b)
Figure 6.6: A typical example from US-SIGBASE to explain experimegtallts for dfferent

resampling schemes. (a) A static script with (b) a fragméitsdzuclidean and critical-point
resampled skeleton.

Practically, it takes approximately 7 seconds to estim@t@en trajectory based on affér-

ent dynamic exemplar with 676 critical points. The compatal requirements of the system
will continue to decrease if the number of samples is redu¢tmvever, it is anticipated that

a cut-df would surface where the tradéfd®etween the accuracy and the speed of the system
becomes less rewarding. It should also be noted that we arg generic software with no
optimisation for this particular application. It is expedtthat the execution time can also be
substantially reduced with code optimised for this appioca Other optimisation suggestions
are made in the final chapter.

6.3.5 Experimental results for diferent training schemes

Two sets of experiments are described. The first set uses M Harameters defined in
Section 4.8. Thus, for each individual, the unique PDF patansor, ando?, are calculated
using the training scheme described in Section 4.8. Reallthese parameters are derived
from op andoy by utilising pre-recorded dynamic exemplar informationg @hat they allow
for size and orientation variations in static scripts. Thstfset achieves an average accuracy
rate of 879%. The second set uses the empirical HMM parameters defm&edtion 4.7.
Hence, no training is applied to the position and directiat@andard deviations of the PDFs,
so thatop = 17 andoy = 0.2 for all the individuals in US-SIGBASE. The second set actse
an average accuracy rate of 87%. The exact configuratiorteaxperiments are specified in
entries 4(a) and 4(b) in Table 6.1.

No significant diterence between the two training schemes is observed. leisftire con-
cluded that our empirical standard deviations are well ehosTo roughly estimate how well
the empirical standard deviations correspond with theamsgpecific standard deviations, the
averagery, ando, have been computed over all the individuals. The avesgge 133 and the
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Results Statistical significance

Training Accuracy || k | P(Y>=K) | |uy = k]| /oy
(@) | Writer-specific| 87.9%
(b) Empirical 87%

28| 28.8% 0.7

Table 6.6: Experimental results for (a) our writer-specific trainingreme and (b) for
empirically determined PDF parameters.

averager, is 0.15, which are relatively similar to the empirical values= 17 ando = 0.2.

It is also concluded that our system is not highly sensitovaltographic variations, i.e., the
system that uses the same position and directional stadearations for diferent individuals
performs surprisingly well. However, writer-specific traig is beneficial when considering the
following:

e There is a slight increase in the performance of the systeanwiiter-specific training
is employed.

e The parameters;, ando, are specified for each individual, and may therefore be lisefu
as biometric measurements for an individual in other appbos.

6.3.6 Typical errors

As expected, the main cause of errors is inconsistenciegebeta static image and a dynamic
exemplar. Specifically, the system is prone to errors inoregivhere a line segment is present
in either the dynamic exemplar or static image, but absethigother. Figure 6.7 shows exam-
ples of typical errors that are encountered when estim#ti@@en trajectories of static scripts.
Examples of typical dynamic exemplars and skeletonisdit staages from US-SIGBASE are
shown in Figures 6.7(a) and (b), respectively. Black linegigure 6.7(b) identifies curves
that match the ground-truth trajectories. Red lines indieehich skeleton samples were not
extracted during the computation of the estimated and grdruth trajectories. As expected,
the red lines are mostly part of web-like structures. Eromseskeleton samples, i.e., estimated
samples that do not match the ground-truths, are indicatied) green and blue lines. Specifi-
cally, deletion errors are green, whereas substitutionirsseftion errors are blue.

Figure 6.7(d) presents the accuracgsg, of the estimated pen trajectories of Figure 6.7(b), as
calculated frome(t) in Figure 6.7(c). The error functiog(t) is computed by identifying all the
errors, as described in Section 6.1.2, and calculatinguirmeds all the errors that are part of the
same non-zero pulse. Thus, each continuous blue or greee icuFigure 6.7(b) corresponds
to a non-zero pulse in Figure 6.7(c), where the height of thisepis the total error of the
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(a) (b) (c) (d)
Figure 6.7: Typical errors that are encountered in estimated pen tri@ees. (a) Dynamic
exemplars. (b) Skeleton samples that are estimated ctyri@tack lines), skeleton samples

that were not extracted during the calculation of the groundh and the estimated
trajectories (red lines), errors due to deletions (grearek), and errors due to substitutions
and insertions (blue lines.) (c) Graphs of the cost funditirat are used to quantify errors
from (b). (d) Quantitative results when the dynamic exenspdé(a) are matched to the HMMs
derived from (b).

g

5y

e(t)

continuous erroneous curve. Figure 6.7(d) presents thé&kigdhoods logf) after matching the
dynamic exemplars of Figure 6.7(a) to the HMMs derived froguFe 6.7(b). The values for
7+ and log6w) from (5.5) are also shown.

Samples in a static image that are absent in the corresgpdgiramic exemplar cannot be ex-
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tracted from the static image and therefore cause deletiorse The reason is that the dynamic
exemplar does not provide the necessary information. Thesuwat arrows 1 and 2 of skeleton 1
in Figure 6.7(b) do not occur in the dynamic exemplar, asciai@id by the corresponding arrows
in Figure 6.7(a). The two corresponding deletion errors(thare indicated in Figure 6.7(c).
Note that the first error has the longest path length andfibrereesults in the highest pulse in
g(t), as shown in Figure 6.7(c). The second error’s pulse isyvakethe erroneous curve has a
high curvature point and therefore consists of more skelstanples than the first error.

Other errors are caused by dynamic exemplar substitutioth$rsertions, as indicated by the
blue lines in Figure 6.7(b). An example of a substitutiomidicated by the arrow of dynamic
exemplar 2 in Figure 6.7(a). The resulting error is indidaby the blue lines at the arrow
of Figure 6.7(b). Examples of insertions are at the arrowslysfamic exemplars 3 and 4.
Corresponding errors are indicated by the blue lines ammvarof Figure 6.7(b). The error at the
arrow of signature 3 is better comprehended when notic&éntaf the diferences between the
static skeleton and dynamic exemplar, as depicted by timeadian in Figure 5.7(k). Animation
examples are also provided on the attached CD; see Appeniixfarther detail.

Size diferences between corresponding segments can also causg eigq the character “0”
of signature 5. Because the “0” in the dynamic exemplar ig&ighan the “0” in the static
skeleton, a part of the “0” in the static skeleton is travérsece, resulting in the error shown
in blue. Note, however, that our HMM does accommodate siferénces in most cases, e.g.,
the leftmost loop of signature 1.

It is observed that the accuracy of our system is not primdiriked to the complexity of the
static scripts. Our system’stzacy depends more on the consistency between an indivsdual’
signatures. More dynamic exemplars are required for insterd individuals than for consis-
tent individuals to produce accurate results. In some césegever, the images may have an
excessive line thickness relative to the size of the sigeattience, information loss due to
multiple crossings in small areas becomes severe, makuhffidult or impossible to unravel
the image. Figures 6.8(a)-(c) show an example of such atsighaThe original image, its
skeleton, and the dynamic exemplar corresponding besta@ ishown in Figures 6.8(a)-(c),
respectively. Not only is the shape of the image in Figurés§.€orrupted in the middle region,
but the dynamic exemplars have inconsistent pen movemeatsiesponding regions. Despite
the obvious diiculties, a total path length of approximately 64% is recedesorrectly.
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(a) (b) (€)
Figure 6.8: (a) A complicated static image to unravel, with (b) its skateand (c) the
dynamic exemplar corresponding best to it.

6.4 Comparison with existing approaches

Compared to the related work listed in Table 2.1, we do notosepany significant restric-
tions on the range of scripts that can be dealt with. Our HMpbtogy enables an estimated
pen-trajectory to start and end at any skeleton sample ostdiec script and enables us to
model turning points. No restrictions are imposed at irgetisns (except in cases of very sim-
ple crossings; see Section 4.5). Furthermore, the PDF coemp® that take the pen pressure
of the dynamic exemplars into consideration enable us toranwdate scripts that consist of
multi-path trajectories. The only other method that cam&h a local correspondence be-
tween a static script and a dynamic exemplar is the methoduofés al. [31]. However, their
method difers significantly from ours, and they have no quantitatisilts. Experimental
results indicate that our approach is not highly sensitivekieletonisation artifacts, whereas
many existing techniques are. Compared to existing teclesithat use dynamic exemplar in-
formation [31, 51], basic preprocessing makes our tectenggale, translation and rotationally
invariant. Experimental results show that our approachoishighly sensitive to allographic
variations. Pen sequence variations can be accommodgteddiag on the consistency of a
specific individual’'s handwriting and the number of avaléatbynamic exemplars.

The only technique that provides a quantitative evalugpiaiocol and comparative results is
that of Jager [38]. Firstly, it should be noted that the &g salesman approach (employed by
Jager [38]) seems to produce the most accurate resultstbbajraph-theoretical approaches.
However, the travelling salesman problem cannot be sol¥iéclently; see Chapter 2. The
Viterbi algorithm, on the other hand, iffieient. The computational cost of the Viterbi algorithm
is O(T m), wheremis the number of non-zero transition probabilities at eauole step [7]. Thus,
e.g., in the worst case, when all the transition probabgdifire non-zero at each time step for
our HMM derived from the critical-point skeleton of Figureé6ém = 29 966 andl' = 676, so
thatmT = 14 728 688. Solving the travelling salesman problem (J&aggproach [38]) for
the same skeleton with 572 edges, causes a combinatorlakexp In fact, when solving the
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travelling salesman proble@(n!) computations evaluate all the paths so thiat 39 916 800
for a skeleton with only 11 edges. Hence, it is concluded dbatpproach is computationally
more dfective than methods that solve the travelling salesmangmab

Table 6.7 shows the experimental configurations for our@gugr and Jager’s approach [38] in
rows labelled (a) and (b), respectively.

Database characteristics:

Database Average path | Average number | Number | Number
length (pixels) | of edges of images| of exemplars

(a) | US-SIGBASE 2844.1 776.4 51 712
(b) | Jager [38] - 17.7 6934 6934
Data configuration:

Skeleton Orientation Resampling Training | Evaluation
(a) | Pseudo (webs) | Radon High curvature | Writer DP
(b) | Non-standard - CrosgEndpoint | — DP
Results:

Total accuracy: (Levenshtein distance expressed as a % of the number of)edges
(@) | 83.1%
(b) | 78%

Table 6.7: A comparison with an existing approach. The data configaratithat were used to
establish a comparison witrager [38] are shown.

A few essential dterences between the two configurations displayed in TaBleltould be
taken into consideration before the results can be disdusse

1. It should be noted that Jager [38] generated results byertng on-line words into f&-
line words. Although we conducted validation tests, theeestill discrepancies between
the on-line and fi-line signatures in our database that result in additiomalre in some
cases. In generalfieline scripts that are generated from on-line scripts teswkeletons
with less artifacts and background noise than skeletongetkfrom scanned-in scripts.

2. Jager [38] is primarily concerned with words, whereagages on signatures. In general,
characters and words do not have as many complicated iotiense and lines that are
traced more than twice as signatures do.

3. Jager [38] employes a skeletonisatioffetent from ours. However, they also use a
method to remove artifacts from the skeletons.

4. Jager [38] segments the skeletons of static scriptsoaspoints and endpoints. In our
database, pen-up and pen-down events can occur at anyoske&ehple, and there are
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many web-like structures in our skeletons, making it rathifrcult to employ the same
segmentation.

5. Another important point to note is that Jager’s apprd&8&hcannot indicate where pen-
up and pen-down events occur—it is assumed that every wavdtien without the pen
being lifted. The author notes that arbitrary pen-up andgemn events pose serious
problems. Thus, it is expected that the approach followeddwner [38] will struggle
to unravel the signatures in our database, where the posiabpen-up and pen-down
events cannot be easily predicted.

6. The evaluation protocol of Jager [38] has been emplogsdjescribed in Section 6.1.
The total Levenshtein distance is expressed as a percaritéye total number of edges
in the ground truths and averaged over the number of staigésiin the database. This
error measure is, however, not invariant to parameteoisaind may therefore cause
discrepancies between the results that are compared.

From the above remarks, it is clear that there are so manyfisant differences between the

two experimental configurations in Table 6.7 that an aceuratparison is not really possible.
In fact, our system is penalised due to our resampling anddhmplicated scripts that constitute
US-SIGBASE. However, an extremely rough estimate indgcttat our approach outperforms
Jager [38] by approximately 5%. Note that this is the alisotlifference between our results
and the results of Jager [38]. However, in view of a reladiNBerence, our algorithm reduces the
error rate with approximately 23% compared to Jager. Iniscgated that our system would

perform significantly better for characters and words, dep® on the application.

6.5 Summary

In summary, this chapter has accomplished the following:

1. To compute thef@icacy of an estimated pen trajectory, the ground-truth atichated
pen trajectories must be compared with each other. Existaduation protocols that
establish such a quantitative comparison have been igeg¢stl. Specifically, the two
existing protocols by Lau et al. [52] and Jager [38] havenb&eamined to establish the
general beneficial characteristics of an evaluation pato&ccordingly, our evaluation
protocol has the following desired characteristics:

e Ground-truth and estimated pen trajectories havirfieint numbers of samples
can be handled.
e Our evaluation protocol is invariant to parameterisation.
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e Our evaluation protocol establishes a rather unique mappatween the estimated
and ground-truth trajectories, so that errors can be ifiedteasily and with confi-
dence.

e Our evaluation protocol is easy to implement, so that it aoded as a standardised
evaluation protocol for trajectory estimation algorithms

2. A database that contains both the on-line afidime versions of signatures was created.
As far as we are aware, no such standardised signature datekiats. It is important to
determine if a system’s performance degrades in a praeticatonment. Thus, the most
influential processing steps and practical implicationgmvhecording such a database
have been briefly pointed out in this chapter.

3. Various experiments have been described in this chaptee. following important re-
sults, which contribute to the establishment of our syssgobustness, emerged from the
experiments:

e Our system is not highly sensitive to skeletonisation act.

¢ Experimental results indicate that the Radon-based @atientnormalisation scheme
performs better than the PCA-based scheme. A sensitiveursgasnt scheme in-
dicates that the Radon-based rotation is more accuratbeheG@A-based rotation.
However, the performance of our system for the PCA-baseatioot remains very
good. This indicates that our system is rather robust tdiostal variations.

e Experimental results indicate that the empirical PDF patans were suitably cho-
sen and that our system is not highly sensitive to allog@phiiations.

4. The experiments show that critical-point resamplingrefgrable over Euclidean resam-
pling: without a significant decrease in the performancenefdystem, a significant in-
crease in the speed is acquired. This critical-point re$ags, however, dependent on
high-quality skeletons.

5. Compared to existing techniques, our system imposesédstrigtions on the range of
scripts that can be handled. An extremely rough quantéatomparison indicates that
our system outperforms the system of Jager [38]. Our estbmalgorithm is also much
more dficient.



Chapter 7

Conclusions and future work

7.1 Conclusions

In this dissertation a probabilistic model was developadefdracting the pen trajectory of a

static script. Although our emphasis was on handwrittenatigres, the technique should also
be valuable for more general scripts such as handwrittedsyaharacters and line drawings.
The HMM encapsulates a two-level representation of a statage. Both levels take context

into account by modelling time dependencies. On the highesl] the sub-images and single-
paths that constitute a static script are modelled, wheneéise lower level the skeleton samples
that constitute the sub-images are modelled. Our prineipleevements in this design are the
following:

e On the lower level, only single-path trajectories can beasted. Thus, if applied to
a script consisting of multiple sub-images, a single ttajgcwith continuous non-zero
pressure will be extracted from one of the sub-images. Tiemeddencies are mod
elled by exploiting the virtues of higher-order HMMs. Affective implementation of
higher-order HMMs is made practically realisable through ©®RED algorithm [22, 21].
Knowledge of past context, available from second-order HViMd especially useful for
modelling the following important facets:

— Knowledge of past context enables the enforcement of cooti® pen motions
(without abrupt erratic turns) on straight lines (see Feglu5.)

— Simple intersections are detached within the HMM and tgmpiaints are also mod-
elled by exploiting past context (see Figure 4.7.)

— Knowledge of past events enables the inclusion of a dineatif@ature in our PDFs.
This directional feature is similar to the velocity featwrsed in various on-line
handwriting applications, and is a crucial factor for goesluits.

115
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¢ On the higher-level, the virtues of hierarchical HMMs argleiked. Time dependencies
between the dierent sub-images that constitute a static saupd the diferent paths
between them are modelled. This provides an elegant soltdithe following problems:

— The gateway to model pen pressure in handwritten statiptscis opened when
using HHMMs. The HHMMs enable the estimation of locationseventhe indi-
vidual lifted the pen, thus allowing us to deal with multitpatatic scripts. This
generalises our approach so that no restrictions are placede number of sub-
images that may constitute a static script, or the numbeimngfespath trajectories
that generated the script.

— By manipulating the topology of our HHMM we can dedleztively with situations
where unexpected disconnections occur in static scripts.

e Our higher-level and lower-level HMMs are designed to ipcoate prior knowledge
from pre-recorded dynamic exemplars. The Viterbi algonitmatches a dynamic ex-
emplar to the final HMM and determines the most likely statgusace, which can be
translated into the most likely pen trajectory. The Vitalgorithm is globally optimised,
making it highly suitable for resolving local ambiguitiesa static script.

From a more general point of view, this dissertation has shioww the topology and PDFs of
HMMs can be engineered to meet application-specific remergs. In short, our model can
deal with a wide variety of static scripts robustly arfteetively. Throughout this dissertation,
we have remarked on and referenced back to the outlinedilotdns in Section 1.5. Our
foremost results are now summarised as follows:

e Our experiments compared the ground-truth with the eséthpen trajectories of static
scripts, where a database with on-line afidlime representatives of signatures was used
to conduct experiments. The experimental results inditede an average of approxi-
mately 88% of the estimated trajectory path lengths from dlatabase correspond to the
ground-truth path lengths (averaged over all the images.)

e Many systems that estimate the pen trajectories of statijgts@and other fi-line hand-
writing recognition techniques ffier from a high sensitivity to artifacts. Experiments
indicate that our system is rather robust with respect tdytpe of skeletonisation used.
Moreover, we find that complex static images, even ones tedtard to unravel with the
eye, do not pose serious problems. Of course, some thiek-lmages can be corrupted
to such an extent during skeletonisation that informatass lbecomes severe, making it
very difficult to unravel the image.

e The main source of errors is inconsistencies between a dgnaxemplar and a static
image, which are inevitable for handwritten documentshéligh our system is not im-
mune to dissimilarities and ambiguities, it takes globaiteat into account, making it
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more robust than algorithms that rely heavily on local cgpmndences. It is important
to note, however, that in those cases where errors do oaeeirstdl has access to local
correspondences. This can be useful in a signature veigincapplication, as it allows
the comparison of only those parts of the signature that wecarately recovered.

e Experiments indicate that our HMM is rather robust to ratadil variations. However, it
is still beneficial to employ our Radon-based scheme in cabese the principle com-
ponents of the script are similar.

e The dfect of diferent resampling schemes was measured. Experimentalsrasdit
cate that a dense sampling rate at high curvature pointshenettiuction of samples on
straight lines tend to complement our approach: a subatamtrease in speed without a
substantial decrease in accuracyfteeted.

¢ We also experimented with writer-specific training schemdeere the position and direc-
tional standard deviations were estimated from the dynaxemplars of each individual.
Our experiments indicate that our basic writer-specifiming scheme is not significantly
better than our system where the same empirical deviati@nssed for all the individ-
uals. This indicates that our system is insensitive to allpgic variations and that the
empirically obtained parameter values are adequate. éAdghqgrior conventional scal-
ing and translation schemes are invoked, embedded PDFeasalso contribute to our
system’s ability to cope with signatures offérent sizes.

e The availability of dynamic exemplars enables us to incaaf@pressure information to
deal with multi-path scripts. In fact, to our knowledge, naséing technique includes
dynamic pressure information. A practical problem ariseemvspurious disconnections
(broken lines) are encountered. By virtue of our HMM topgloge can deal with most
spurious disconnections, turning points and signaturésdifferent numbers of samples.

e Compared to existing techniques, our approach does notsenpevere restrictions on
the scripts that can be handled—it depends chiefly on théadity of dynamic exem-
plars, easily obtained in practise. A pen trajectory cag,, estart at any position in a
static script, depending on where the dynamic exemplarseirdividual that gener-
ated the script start. There are also no limitations on thebar of times the pen can
revisit a line in the static script. It has been shown that ldMM-based approach is
computationally more viable than methods that solve theetliag salesman problem.
Furthermore, there is flicient scope to reduce the computational time of our system
even more, as discussed in the next section. Very few teghsigrovide quantitative
results, and no standard database exists with which to nakeaie comparisons with
existing techniques. However, using the same evaluatiotopol (which is not invariant
to parameterisation), and under veryteient circumstances, a rough estimate indicates
that our system outperforms the system of Jager [38] bycqmiately 5%.

¢ Different evaluation protocols were used to calculate fleaey of estimated pen trajec-
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tories. Compared to existing techniques, our evaluatiotoppl can deal with ground-
truth and estimated pen trajectories witlfelient numbers of samples, and is invariant
to parameterisation. Additionally, it also calculates aewanique local correspondence
between an estimated and ground-truth trajectory, whickesaéhe identification and
classification of errors possible.

7.2 Future work

7.2.1 Reducing the computational complexity

It is felt that the speed of the system can still be increasdxtantially. Section 6.3.4 has

shown that systems based on the critical-point resamplirf§ection 3.3 are faster than and
achieve approximately the same accuracy rate as systemad bastuclidean resampling. A

further improvement in the computational time could lfieeted by a reduction in the number
of samples in the static images and dynamic exemplars. Hawsyme experiments must then
be conducted to calculate the degree of accuracy sacrifareahfincrease in speed. General
optimisation of code for this application would alsfiext a reduction of execution time (see
Section 6.3.4.)

The Viterbi algorithm is used to estimate the pen trajectufra static image. The computa-
tional cost of the Viterbi algorithm i©(T m), wherem is the number of non-zero transition
probabilities at each time step [7] aiids the number of samples in the dynamic exemplar that
are matched to the HMM. There are other approximate butrfakjerithms that could be used
instead of the Viterbi algorithm (see [7].)

The number of transition links in our HMM can be reduced bybkshing region boundaries
that enclose the typical starting and terminating pos#tioha static script. For example, the
region that spans the typical starting positions of a speaifiividual’'s dynamic exemplars
can be computed. The appropriate transition weights canlibeset to zero to prohibit a pen
trajectory from starting at skeleton samples outside tmepeded region. Note that this is also
a realisation of training. This training scheme would naiywkver, necessarily improve the
accuracy of results, but would decrease the computational t
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7.2.2 Exploiting pressure information

To improve the accuracy of our system, pen pressure infeormatin be exploited to a greater
extent. As mentioned in Chapter 1, pressure informationeguently embedded in the grey
levels of a static image (also see [84, 78].)

Initial stages of our skeletonisation scheme, describ&eution 3.1, extracts the boundaries of
static scripts from their binarised images. Digitisatiaise on the boundaries has a significant
effect on the smoothness and accuracy of final skeletons. Hemeeh attention is paid to
smoothing the image boundaries. In our opinion, a bettercaggth would be to extract the
boundaries of the static scripts directly from their gregle images before the calculation of
the skeletons. Section 3.1.4 has shown that smoother boesdaduce peripheral artifacts.
Thus, a further improvement could be obtained if the bouedare smoothed on a sub-pixel
basis while they are extracted. Subsequent smoothing guoee can then be removed, e.g.,
the empirical formula of (3.1). Under ideal circumstancesperipheral artifacts would appear
in the skeletons of the static scripts, thereby also reduttie risk of removing actual image
features.

With our current HMM configuration (described in Section )48 only normalised pressure
values that are matched to our pressure PDF components age ) & hus, “hard decisions”
are made by the pressure PDF components to determine if thiggpectory must be extracted
from a specific sub-image in the static script, or if the zeressure state must be entered
(when a pen-up event occurs.) A more accurate approach el let the pen pressure PDF
components of the zero-pressure states and other emitdites ®verlap slightly. This would be
especially beneficial in cases where the dynamic pen pregsso small that some lines occur
in a static script which are absent in the script’s dynamienterpart. However, the resolution
of the pen pressure quantisation levels of our digitisifdetas too low for such investigations.
It can record only 256 pressure levels, whereas more adgaabéets can record at least 1024
pressure levels. Thus, to measure thfea of overlapping PDF components practically, we
would have to record a new database with a more up-to-ddtd.tab

As shown in Section 2.2, Spagnolo et al. [78] developed asyshat performs 3D acquisition
of documents. This device is particularly useful for compgithe relationship between the
depth and grey-levels of static handwritten images, as agethe pen pressure that generated
the images, especially in cases where the line densitiageasections are high. It is anticipated
that this additional information can be included in our PRinmponents to complement our
approach.
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7.2.3 Extending the training schemes

Our current €orts, not described in this thesis, investigates traincigemes, where specific
standard deviations are trained for positional and dioeeti PDF components of emitting states.
In this dissertation, such training schemes are referredlmcalisedtraining schemes. Again,
localised training has to be adapted for this applicatioie &im of localised training is to
include more flexibility for geometric variations within otHMM, as corresponding parts in
the dynamic exemplars and static scripts frequently hagenisistent sizes and orientations.
The following pertinent observations have been made fraghmmary experiments:

1. Data sparsity and the association of skeleton samplbswiitting states prohibit training
of transition weights and the PDF meass andu’. As a first attempt we intend to
model geometric variations on specific curves within thécsteript more accurately. It
is therefore beneficial to train onby, ando, from Section 4.8 for each PDF.

2. Usually the HMM parameters are estimated by the methogeoimum likelihoo@ML).
However, due to data sparsityaximum a posterioiMAP) estimation is more appropri-
ate, so thatr;, ando, can be used as priors for each PDF; see [27, 74] for more detail
MAP estimation.

3. Due to data sparsity and our specific HMM structure, it isdfieial to group observations
from neighbouring emitting states (excluding the zercspuoee state) together. Since
these emitting states are associated with skeleton santipiesvould result in grouping
together connected skeleton samples within a specifiedmityof each other.

4. Due to typical pen sequence variations, it is possiblé dgaamic exemplar samples
that do not, in reality, correspond to each other are joirredpdate a specific PDF’s
parameters. Thus, it seems beneficial to employ a strategygdm identify mismatched
dynamic exemplar samples before parameter estimates.

7.2.4 Applications: Signature verification and character ecognition

Our HMM s for static scripts are potentially useful for a edyi of applications. The HMMs
are rather robust to geometric and allographic variatiorsdatic scripts, indicating potential to
generalise them for arbitrary static shapes. Our systeohals the ability to separate patterns
belonging to diferent classes. It may therefore be useful in applicatioreravh is necessary
to classify arbitrary shapes. Two possible applicationsnefour system may be integrated is
discussed in this section: Arffdine verification system and arffdine character recognition
system.
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Signature verification. Off-line signature verification systems that extract dynamiforima-
tion from static scripts are rare. As far as we are aware, Gug et el. [31] establish local
correspondences between dynamic exemplars and stat&tsiga for verification purposes.
Furthermore, by estimating the pen trajectories of stagnatures, one has access to many
on-line signature verification techniques. In generals¢hen-line techniques fiker noticeably
from off-line verification techniques. Thus, it is anticipated ogstem can be combined with a
wide range of other dierent signature verification techniques to produce evderetsults.

Recall from Section 1.3.1 that a good pattern recognitictesy increases the separability be-
tween test and training patterns belonging tbedlent classes. Preliminary results indicate that
the likelihoodéy, can already be used as a confidence measure of the sepgriabiliteen
patterns from dterent classes, and can therefore be useful to identify fiegeespecially ca-
sual forgeries, in anfiline signature verification system. Figure 7.1 depictspacl scenario
where the pen trajectory of a static script is estimatedgugicorrect dynamic exemplar (created
by the same individual) and an incorrect dynamic exemplaated by a dferent individual.)
Figure 7.1(b) shows the skeleton of the static signaturagnrg 7.1(a). Figure 7.1(c) shows
the results when the dynamic exemplar of Figure 7.1(c), eyséime individual, is compared
with the HMM derived from Figure 7.1(b). Thus, the situatisrsimulated where a genuine
static signature must be verified in aff-bne signature verification system, where the static
signature is the test pattern and the dynamic exemplar d@h@rtg pattern. Note that all accu-
racy scores are expressed as a percentage of the groumgbaithitlength of the script in (a).
Figure 7.1(d) shows the results when the dynamic exempl&igfre 7.1(d), by a dierent
individual in the database, is compared with the HMM derifredn Figure 7.1(b). Thus, the
situation is simulated where a casually forged static gigieanust be verified in anfiéline sig-
nature verification system. Note that the signatures haga hermalised before comparison,
as shown in Figures 7.1(e)-(f), where the skeleton of Figui€b) is rendered as a solid line
and the signatures of Figures 7.1(c)-(d) are rendered &eddives.

Figures 7.1(c)-(d) illustrate our system’s ability to segta test and training patterns fronttdr-
ent classes: Even though the accuracy of the estimatedaeattry derived from Figure 7.1(c)
is not 100%, there is already a noticeable separation betiteelog likelihood logf) of Fig-
ures 7.1(c) and (d). Note from (5.5) how lég() increases this separability since only 47.4%
of Figure 7.1(b) is recovered when Figure 7.1(d) is used timesed the pen trajectory of Fig-
ure 7.1(b). Note that the accuracy of Figure 7.1(d) is nega#is determined by our evaluation
protocol. Specifically, the 68.3% deletion errors are adddatie 32.4% substitution and inser-
tion errors resulting in a negative accuracy score.

Character/word Recognition. Although our pen trajectory estimation algorithm can also b
applied to a charactavord recognition system, a large vocabulary of charactedsaursive
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e
(a)
log(®) = -8.75 log(®) = —18.56
F+=09511 +=0474
log(ow) = -9.2 log(ow) = —39.18
Accuracy: 838% Accuracy:-0.7%
(b) (€) (d) (f)

Figure 7.1: lllustration of our system’s ability to separate test anditing patterns from
different classes. (a) A static script with (b) its skeleton Aclynamic exemplar by the same
individual who generated (b). (d) A dynamic exemplar byfedint individual than the one

who generated (b). (e)-(f) The skeleton (solid line) frojs{iperimposed on the dynamic

exemplars (dashed lines) of (c) and (d) after normalisation

words may result in exhaustive searches for the most saips trajectories (the likelihoods of
each charactgword may be used as a confidence measure to recognise themuldttherefore
be more beneficial to recognise charagteosds from a restricted library (see [31, 64]), or by
simplifying our model. We have, e.g., done some promisiegjminary experiments, where our
HMM was adapted to model the boundaries of shapes. In suels,casr HMM can be greatly
simplified, as the boundaries of shapes are non-overlapploged, contiguous trajectories.
For cursive words, prior segmentation of the static wordis separate characters may also be
beneficial.

7.2.5 Recording more data and conducting more experiments

Recording more data. Our system was tested on a carefully designed databaseoudyith
every éfort was made to ensure that the results quoted in this thesigree reflections of
the capabilities of our system, more extensive tests on hata will improve the confidence
in the performance of the system. Cursive characters andsacan also be recorded to test
our system’s performance in a charagtard recognition environment. Application-specific
simplifications can then be made to our HMM.

Conducting more experiments. As our experiments were conducted using primarily ball-
point pens, it will be interesting to record static imagesa@slifferent pen types, e.g., pencils,
crayons, permanent markers and even paint brushes. Onbaraquantify the robustness of
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our system relative to the type of pen. In this application¢liElean and critical-point resam-
pling schemes were employed. For the Euclidean resamptingnse the length of a curve
segment is always approximately one (measured in pixels¢reas for the critical-point re-
sampling scheme the length of a curve segment is always @ppately five or one (measured

in pixels.) Thus, the length of a curve segment is dependertisaesampling. Future work
can include the investigation of flierent resampling schemes resulting in more curve-length
variations. One can then include more context by addinghenaturve-length component in
our feature vectors. In general, one can also investigatatihsation of other features, e.g., a
curvature feature, to enhance the performance of our system
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Appendix A

The static scripts in US-SIGBASE:
Animation examples.

Slides on the attached CDThe signatures that were randomly chosen to generate thlésres
Section 6 are shown in Figure A.1. The static scripts of tlegsiare numbered and correspond
to the static scripts that are presented in the Portable mMeantiFormat (PDF) file “slides.pdf”
on the attached CD. The file “slides.pdf” also contains atimmeexamples for each user. The
slides can be viewed with Adobe Reader on a Windows or Lina@im. The slides are best
viewed full screen (the shortcut key is usually CTRL-L). Quieferences to thefllerent slides
can be found on the top of each slide. To quickly reach the $tiduser 40, e.g, mouse-click on
the section reference “User 31-45" on the top of any slidethad on the sub-section reference
“User 39-41", and scroll down one slide to slide 40.

Slide description. Each slide shows the static script for a user (also shownguorEiA.1) as
well as the dynamic exemplar that obtained the highggbf all the dynamic exemplars for the
same individual). Refer to Section 5.4. The skeleton (dotek) is also shown superimposed
on the dynamic exemplar (dashed lines) to illustrate genonedriation between them, after
prior preprocessing alignment (see Chapter 3). The Adoleel®eools, e.g, the zoom utility,
can be used to inspect the shown signatures closely. Theaagcior each script’s estimated
pen trajectory is shown, and some Moving Picture Expertu@(®PEG) format animation
examples are provided. Click once on the play buttons to #am.

It is important to note that Adobe Reader opens an appreppeigram to view the MPEG
animations. It was verified that the format of the animatisre®mpatible with Windows Media
Player and Winamp (on a Windows platforms) and Mplayer (onraix platform). It was
reported that some versions of Windows Media Player dighertast frame of the animations
slightly. If Adobe Reader does not display the animatiomg, should verify the following:
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¢ \erify that a suitable MPEG viewing program is installed.

¢ Verify that the suitable MPEG viewing program is set as thfauléapplication associated
with MPEG files for the operation system in question.

Animation 1: View ground-truth pen trajectory. The first button launches an animation that
illustrates the result after matching the dynaucinterpartof the static script to the HMM of
the script’'s skeleton, as described in Section 6.1. Hemgegtound-truth trajectory (bottom
trajectory) of the static script is extracted from the scsigeleton (bottom signature) by estab-
lishing a pointwise correspondence (red dots) with the dyoa&ounterpart (top signature and
trajectory).

Animation 2: View estimated pen trajectory. The second button launches an animation that
illustrates the result after matching the dynaexemplaralso shown on the slide) of the static
script to the HMM of the script’s skeleton, as described iragtiers 4 and 5. The result is a
local correspondence (red dots) between the dynamic exerapt the skeleton. The bottom
trajectory, extracted from the script skeleton, is thenegted pen trajectory of the static script,
where the top trajectory is the dynamic exemplar.

Animation 3: View evaluation trajectories. The third button launches the result when the
estimated pen trajectory (bottom trajectory from Animat®) is matched to the script’s ground-
truth trajectory (bottom trajectory from Animation 1). Brs are represented the same as in
Figure 6.7(c), i.e., the ground-truth and estimated ttajges are superimposed, where green
lines indicate deletions and blue lines indicate substitistand insertions. The error functions
(top) are computed exactly the same as the error functioRgure 6.7(d). Thus, an erroneous
curve corresponds to a continuous pulse in the error fumctibere the pulse height is equal to
the path length of the erroneous curve. The rendered reccdotsspond to errors of zero and
they are used to indicate where ground-truth and estimadgetctories (bottom) correspond.
The rendered yellow dots are used to indicate inceptiontpaiherroneous curves. They only
become visible when the red dots traverse erroneous curvesch cases the error signal (top)
is non-zero.
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Figure A.1: The static scripts in US-SIGBASE that were unravelled t@gEer experimental
results.
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Dynamic counterpart, 2
Dynamic exemplar, 4

Edge, 20

Efficient solution, 22
Emitting state, 53
End-triangle (E-T), 36
Endpoint, 32, 64

End region, 32
Entropy, 96
Euclidean resampled curve, 49
Eulerian cycle, 21
Eulerian path, 21
External triangles, 35
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External edge, 35

Feature vector, 5, 54
Fully-connected ergodic, 77

General-purpose skeleton, 43
Geometric variations, 4
Graph, 20

Graph-theoretical methods, 20
Ground-truth trajectory, 9

Guo et al. [31], 26

Hamilton cycle, 21
Hamilton path, 21
HHMM, 76

HMM, 6

HMM State, 6

Insertion, 92

Internal edge, 35
Internal triangles, 35
Intersection artifacts, 31
Intersection region, 33
Isolated-triangle (I-T), 36

Jager,S [38], 24
Junction-triangle (J-T), 36

Lau et al. [51], 26

Left-to-right topology, 70
Levenshtein distance, 24, 91

Line graph, 20

Line segment, 60

Localised training, 120

Local correspondence methods, 26
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Long ribbon, 37

Maximum likelihood estimation, 72, 120
Merging, 33

Multi-path static script, 3, 76

Multi-path trajectory, 3

Neighbouring states, 54
NodegVertices, 20
Non-emitting state, 53
Normal-triangle (N-T), 36

Off-line handwriting, 1
On-line handwriting, 1

Order of an HMM, 6, 53
ORED algorithm, 57
Orientation of handwriting, 46

Path, 20

PCA, 46

Peripheral artifacts, 31

Physiological biometric measurement, 1
Predecessor state, 58

Primary skeleton, 36

Probability Density Function (PDF), 6
Pseudo skeleton, 32

Radon transform, 47
Ribbon, 37
Rule-based methods, 16

Segment point, 60

Self-loop, 55

Self-loop state, 63

Sequence variations, 4

Short ribbon, 37

Single-path static script, 3
Single-path trajectory, 3
Skeleton, 8, 30
Skeletonisation algorithms, 30
Skip-link, 55

Skip-link state, 63

Spanning tree, 20

Spurious disconnections, 11, 80
Standard skeleton, 31
Sub-image, 76

Substitution, 92

Thinning algorithms, 30

Tied PDF, 58

Topology, 6

Training, 5

Transition links, 6

Travelling salesman problem, 21
Tree, 20

Uncomplicated J-T, 40
Unstable J-T, 40

Web-like structures, 32
Weighted graph, 20
Writer-specific training, 70

Zero pressure state, 78
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