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Abstract

Extracting data from video streams and using the data to better understand the observed world
allows many systems to automatically perform tasks that ordinarily needed to be completed by
humans. One such problem with a wide range of applications is that of detecting and tracking
people in a video sequence. This thesis looks speci�cally at the problem of estimating the positions
of players on a sports �eld, as observed by a multi-view camera setup.

Previous attempts at solving the problem are discussed, after which the problem is broken down
into three stages: detection, 2D tracking and 3D position estimation. Possible solutions to each of
the problems are discussed and compared to one another.

Motion detection is found to be a fast and e�ective solution to the problem of detecting players in
a single view. Tracking players in 2D image coordinates is performed by implementing a hierarchical
approach to the particle �lter. The hierarchical approach is chosen as it improves the computational
complexity without compromising on accuracy. Finally 3D position estimation is done by multi-
view, forward projection triangulation. The components are combined to form a full system that is
able to �nd and locate players on a sports �eld.

The overall system that is developed is able to detect, track and triangulate player positions.
The components are tested individually and found to perform well. By combining the components
and introducing feedback between them the results of the individual components as well as those of
the overall system are improved.



Opsomming

Deur data uit 'n video-stroom te ontrek, en die data te gebruik om die wêreld wat waargeneem word
beter te verstaan, kan baie rekenaarstelsels take outomaties voltooi wat voorheen deur 'n mens sou
gedoen moes word. Een so 'n probleem wat 'n wye toepassingsveld het, is om mense te vind en te
volg in 'n video. Hierdie tesis kyk spesi�ek daarna om die posisie van spelers op 'n sportveld te vind,
gegee 'n klomp kameras wat na die veld kyk.

Daar word na vorige stelsels wat hierdie probleem probeer oplos gekyk, waarna die probleem in
drie dele opgedeel word: vind die spelers, volg die spelers in 2D en skat die posisie van die spelers
in 3D. Moontlike oplossings vir elk van hierdie dele word bespreek en vergelyk met mekaar.

Daar word gevind dat om beweging te identi�seer 'n eenvoudige manier is om die spelers te vind.
Hulle word dan gevolg in 2D beeldkoördinate deur gebruik te maak van 'n hiërargiese implemen-
tasie van die partikel-�lter. Die hiërargiese implementering word gekies omdat dit die spoed van
die partikel-�lter verbeter, sonder om die akkuraatheid te verswak. Laastens word die 3D posisie
gevind deur multi-sigpunt, voorwaartse projeksie triangulering. Die verskillende komponente word
kombineer om 'n volledige stelsel te vorm wat spelers kan vind en plaas op 'n veld.

Die volledige stelsel wat ontwikkel is, is in staat om spelers te vind, volg en hulle posisies te
bepaal. Elk van die individuele komponente word getoets, en daar word gevind dat hulle goed op
hulle eie werk. Deur die komponente te kombineer en terugvoer tussen verskillende komponente te
bewerkstellig word die resultate van die individuele komponente, sowel as dié van die volledige stelsel
nog verbeter.
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Chapter 1

Introduction

Computer vision is the �eld of study relating to machines that observe the world around them. As

a scienti�c discipline it is concerned with the technology of arti�cial systems extracting information

from images or sequences of images. Images may come from a variety of sources that may include

single snap-shot cameras, video cameras or multiple synchronized cameras.

Applications for computer vision range greatly between various �elds. Security is one �eld that

uses computer vision to a great extent. Video motion detection allows for automatic intruder alerts

while more advanced systems are able to detect suspicious people or parcels in public areas. Systems

that are able to measure the length of a queue or patterns in human movement are used in shopping

malls and airports to optimize personnel and layout decisions. In a sports environment video data

can be analyzed to extract statistical information such as how often a person handled the ball or

which side had more possession.

This thesis considers the problem of tracking the 3D positions of players moving about on a sports

�eld. This problem requires one to use techniques from several areas of computer vision. Combining

the various techniques in a computationally e�ective manner poses a challenge and reaching a real-

time implementation is not a trivial problem.

1
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Figure 1.1: Examples of computer vision used in di�erent �elds. From left to right: motion detection,
sports statistics and pedestrian �ow.

1.1 Background and Motivation

As technology has improved over the past years, the number of people following sports around the

world has increased correspondingly. Before the invention of radio the only way to gain knowledge

about events from far away was by word of mouth or reading a newspaper or magazine. With the

arrival of radio people could listen to live commentary as the game was unfolding. Later when

television became available it became possible to watch a game happening on the other side of the

world. With every step forward in technology it became easier to follow sports and allowed larger

audiences to follow the action.

With the greater following that sports obtained, the analysis of how teams and players perform

during matches and seasons also gained interest. Spectators and fans are increasingly looking for

up-to-date statistics on all aspects of their game of choice. Much of these statistics are manually

extracted while watching the game or from video footage after the game has completed.

A system that is able to track players on a �eld during a game will be able to automatically

provide a range of statistics that is relevant to analyzing player and team performances. It will be

possible to calculate how much distance players are covering in a match as well as which areas of

the �eld they spend the majority of time. This can be used to measure the work rate of di�erent

players on the �eld or to compare tactical strategies between teams.

The use of cameras in developing such a system will also provide various advantages above, say,

attaching a GPS or other tracking device to each player. One of the big advantages is that the use
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Figure 1.2: Viewing of sport events as technology progressed.

of cameras is non-intrusive. Players will not need to attach a device to their clothing or person. In

contact sports such tracking devices also run the risk of being damaged during physical contact.

The costs involved when using cameras also make them an attractive option. Although setup

costs may be high if high-quality cameras are used, these costs are incurred only once. Using personal

devices for each player would require continuous costs to maintain such devices. A �nal advantage

is that cameras are a passive medium. A solution using radio or radar waves might work in a similar

fashion to a camera-based solution, however it would need to project those waves onto the �eld.

This may interfere with transmission of audio and video feeds to viewers around the world.

1.2 Problem Statement

Given the world-wide interest in sport and sport statistics, along with the numerous advances in

technology over the past decades, the problem that this study will address is: Tracking the 3D

positions of players on a sports �eld using multiple stationary cameras.

The following section expands on the problem statement and includes speci�c aims and objectives

of the study.

1.3 Aims and Objectives

The primary aim of this study is to design and implement a computer vision system that is able

to track players as they move around on a sports �eld. Di�erent components are compared based
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on accuracy and computational complexity to �nd a suitable compromise. The components are

then combined into a complete system that is able to detect and track players moving about on a

�eld, as observed by several cameras. Attempts must be made to have the system run in real-time

(approximately 25 frames per second) to allow relevant statistics to be gained during the playing of

a match. The work in this thesis is limited to detecting and tracking players in non-contact sports

such as �eld hockey and soccer, due to the increased di�culties that arise from re-identifying players

after complex multi-person contact situations.

The setup of such a system, along with the calibration of the cameras, is a vital component of

the whole. If this is not done properly all the data that the system extracts will be inaccurate. As

a result the setup must be accurate and easy to implement by non-experts. It should also be easy

to modify the setup at a later stage.

After the setup procedure the next stage of importance is the computation that needs to be

performed on each camera stream individually. For each camera stream, the system must be able

to detect players that are within the camera's �eld of view and, having detected them, track those

players through the video sequence. The detection step is important, without it the system will

not be able to track any players. On the other hand new players do not enter the �eld of view

very regularly. As such the detection stage must be computationally inexpensive (as not to waste

computational power on redundant searches), while still being able to detect new players within a

reasonable time (say around 10 frames). The detection stage should also be robust against false

positives. The tracking of players in each video sequence forms the largest component of the system

and it requires a high degree of accuracy. It is of vital importance that the tracker does not lose any

players it is tracking as this may have a severely negative in�uence on the 3D tracking accuracy.

The �nal component of the tracker is the 3D position estimation of players on the �eld. Combining

the tracking data of each of the individual cameras, this stage must be able to accurately estimate

the position of each player on the �eld. The triangulation procedure must be computationally

inexpensive to increase the achievable frame-rate of the system.

An additional aim of the thesis is to implement the modules required for the various stages of the

project, developing the code rather than using pre-developed modules. This allows the code that

is written to be developed speci�cally for the given application. Writing the code oneself also gives
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Figure 1.3: Overview of the tracking system.

one complete control over the code, so that modi�cations or improvements can easily be made.

1.4 System Overview

The system that is developed through this study can be broken down into several component parts.

The three core components of the system are: camera setup, 2D tracking and 3D tracking as

illustrated in �gure 1.3.

The camera setup component relates to the physical setup that would be made at a �eld where

the system would be used. Along with the physical setup of the cameras the calibration of the

cameras to the world around them needs to be calculated. Only by accurately �xing the internal

parameters as well as the position of a camera in the world can it be used to perform measurements

on the world that it observes.

The second component is the processing that needs to be performed on each video stream indi-

vidually. The �rst step is to detect players that enter the �eld of play. A motion detection solution

is implemented to detect players moving around in the �eld. Once players have been detected they
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can then be tracked through a video sequence. To accomplish this several di�erent approaches are

considered, and a hierarchical approach to the particle �lter is implemented.

The �nal component of the system combines the tracking data from each of the individual cameras

to determine the 3D positions of players on the �eld. Corresponding players are found between the

di�erent views, and their location on the �eld is then triangulated from the multiple views.

1.5 Thesis Outline

In the rest of the thesis di�erent areas of interest pertaining to the problem are discussed. In

chapter 2 some previous attempts at solving the problem are discussed. The di�erent approaches

are compared based on their implementation, accuracy and computational complexity.

In chapter 3 the pinhole camera model is described. It is then shown how to calibrate (calculate

the internal and external parameters of) a single or set of cameras. The �nal section of the chapter

describes how the camera model is used to triangulate the real-world coordinates of a point visible

in multiple cameras.

Chapter 4 looks at the problem of detecting the presence of people in an image or video sequence.

The �rst part of the chapter discusses various algorithms for detecting and locating people in an

image, while the second part concentrates on using motion detection to locate people moving through

a video sequence.

The problem of tracking people through a video sequence is covered in chapter 5. Two categories

of tracking are discussed. The �rst tracks people through the sequence by detecting them in each

frame. The second category uses a �lter to estimate the position and then compares the estimate to

some model of what is expected, to produce a more accurate result.

In chapter 6 the various components discussed in the previous chapters are combined to form a

solution to the stated problem. Details for camera calibration, 2D tracking and 3D triangulation

are given.

The results obtained by the system are presented and discussed in chapter 7. Individual compo-

nents are tested, followed by tests of the complete system.
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The �nal chapter, chapter 8, presents some conclusions based on the problem statement, ob-

jectives and obtained results. Some recommendations are made for future research to expand and

improve the system.



Chapter 2

Related Work

Before one begins to develop a system it is important to investigate similar systems that have

been produced or proposed by other researchers. Such systems can be compared in three areas:

methodology, accuracy and speed performance.

Di�erent approaches need to be compared to �nd similarities and di�erences. By doing this it

allows one to �nd positive and negative trends in past research. Research of past work may also

provide one with innovative ideas used by di�erent researchers that may be combined to produce a

more accurate or e�cient system.

For the rest of this chapter various such previous approaches are summarized and then discussed

according to their strengths and weaknesses. Single-view approaches are compared �rst, followed by

multi-view solutions.

2.1 Single View

Single view refers to systems that attempt to solve the problem using video captured by a single

camera.

8
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2.1.1 Condensation Tracking

In the work by Needham et al. [39] players in a �ve-a-side soccer match are tracked using a single

static camera that has a view of the entire �eld.

To detect players on the �eld, colour models of foreground and background regions are created

o�ine, prior to running the tracker. The regions are manually identi�ed from a set of frames in the

sequence. When running the tracker on the sequence each image is then segmented into foreground

and background regions and a bounding box is placed around each foreground region.

The players on the �eld are tracked using the Condensation algorithm [30]. Each player is

represented by a bounding box that is described by four parameters: the x and y location of the

center of the bottom of the bounding box and the width and height of the bounding box.

The x and y parameters of the bounding box are used to calculate the location of the player

on the �eld by the assumption that those parameters correspond to the location of the feet of the

player on the �eld. By calibrating the camera to the ground plane (�eld) the intersection between

a line extended from the camera center to the bounding box point and the �eld can be calculated.

At each frame, estimates of player positions are matched to the extracted foreground regions and

a best match is found, after which the player bounding boxes are updated. The estimates of player

positions are improved by using Kalman �ltering in addition to the Condensation algorithm.

This method of player tracking provides some good results for the chosen application but it does

have some severe limitations. O�ine foreground and background parametrization implies that the

method cannot be run in real-time or without human interaction. Perspective distortion from the

camera location also causes the 3D position estimation to be inaccurate on the far side of the �eld.

2.1.2 Tracking by Detection of Shirt and Pants Regions

The problem of tracking players on a �eld from a single pan-tilt-zoom (PTZ) camera is tackled by

Yamada et al. [55]. Using a moving camera presents new problems, especially in the calibration.

Since the camera parameters can change between each frame the camera needs to be calibrated
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at each frame. Lines and curves on the �eld are found in each frame and compared to a model of

a soccer �eld. By comparing the detected lines and curves with the model the camera parameters

can be calculated at each frame.

The detection of players is done by identifying shirt and pants regions in each image. The pants

and shirt regions are then matched by checking for regions that align vertically.

Player locations on the �eld are found in the same way as Needham et al. [39] by �nding the

position of feet on the �eld using the intersection of a line through the bottom of the player region

and the ground plane.

Players are tracked through a sequence by estimating their position in each frame by simple

linear extrapolation between frames. This is possible as player motion can be approximated as near

constant over short periods of time. The estimated position of each player is projected back onto

the image plane and a region around the backprojected point is searched for a pants-shirt match.

Although this solution does successfully track players through the di�culties of a moving camera,

it does fail in some important areas. The greatest of these is that it is unable to handle occlusions.

When occlusions occur the occluded players are tracked as a single entity until the occlusion passes.

2.1.3 Template Matching with Kalman Filtering

Another single-view tracking attempt was done by Choi et al. [12], also using a single PTZ camera.

In this solution the calibration is done by creating a model of the �eld. The view of the �eld is then

matched to this model and the transformation between the view and the model can be calculated.

To detect players in the image the �eld area in the image is �rst found. A mask of the �eld is

created by identifying the primary colour in the image (the �eld occupies the largest part of the

image). Players are then found by masking the image with the �eld mask. Regions where players

are present are then identi�ed by looking for areas where the image di�ers from the mask.

The tracking of players is done by building a shape template of each player. A Kalman �lter

is used to predict the position of a player in a frame. A region around the predicted point is then

searched for a match of the player template. The best match is used as the measurement step of the
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Kalman �lter, and the template is updated.

Player positions on the �eld are then found by using the transformation between the �eld view

and the model. The player region is transformed onto the �eld model, giving the location of the

player on the �eld.

This solution is able to follow players through occlusions as long as those occlusions occur between

players of opposing teams, by comparing colours of the uniforms. Occlusions between players of the

same team cannot be handled.

Single-view tracking solutions all share several problems. The �rst problem is that with only

one camera a trade-o� needs to be made between �eld-of-view and resolution. When viewing the

entire �eld the resolution of far-away areas will be very low causing many missed detections. When

viewing only a section of the �eld some players will be outside the �eld of view and will not be

tracked. Single view solutions are also unable to triangulate player locations accurately through

occlusions.

In the next section some multi-view tracking solutions are discussed. These multi-view solutions

are able to deal with the problems that the single-view solutions have.

2.2 Multi-View

Many of the problems that single view systems have can be overcome by using multiple cameras.

First some systems that are able to match people between multiple views and track them in 2D are

discussed, after which full systems that are able to track people in 3D are covered.

2.2.1 2D Multi-View Tracking

Khan et al. [32] tackled the problem of tracking people moving through a building using multiple

views. By �nding the �eld-of-view lines for each camera they are able to identify people as they

enter the view of a new camera by comparing what view lines the person crossed in other cameras

they are being tracked in. By analyzing the movement of people when they enter the view of a new

camera the �eld-of-view lines of the cameras are also able to be calculated automatically.
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Another method to track people in multiple views is done by Cai et al. [8]. People are detected

by segmenting the image into foreground and background, by building a model of the background

and comparing the current view to the model. Foreground regions are then broken into bounding

boxes using a window slicing technique [31]. The foreground regions are then analyzed to detect

human shapes. A 2D model of the human body is chosen by combining a set of rectangles and

ellipses.

People are tracked through a video sequence by selecting a number of feature points and recording

the geometric relation between the points. In successive frames detected people are compared to

previous sets of feature points to �nd a match for people between frames. Matches between cameras

are found by comparing the positions and velocities of people through the video sequence.

Whilst both of these systems are able to track people in 2D and perform matches between the

cameras they lack some functionality that is required for 3D tracking. The biggest problem is that

neither of the two solutions are able to calculate the 3D position of a tracked person. Another

problem with the two systems is that they are unable to track people through occlusions.

2.2.2 Multi-View 3D Tracking

The �rst of the full multi-view 3D tracking systems was developed by Alahi et al. [2]. In their system

players on a basketball �eld are tracked using a selection of planar and omnidirectional cameras.

Using adaptive mixture models from [47] a foreground image is extracted for each camera. Having

calibrated the cameras beforehand the foreground silhouettes for each camera can be projected onto

the court ground plane. By matching the ground plane projections of each camera and modelling

the player behaviour using the work of [3] players can be tracked on the court through a sequence.

This tracking solution is able to track players in a video sequence but achieves low results for

precision and recall (precision: 76% and recall: 72%). The tracking approach is also rather simple

and is unable to track players through occlusions.

Another multi-view 3D tracking technique was developed by Xu et al. [54]. A mask of the �eld

is extracted using background modelling techniques. This mask is applied to all subsequent images
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to limit detection and tracking only to regions of the image that correspond to the �eld of play.

Players are then found on the �eld using the mixture of Gaussians approach (as described in section

4.2.2 of this thesis).

2D player tracking is performed using a Kalman �lter. For each player in each view a Kalman

�lter is created to track that player through the video sequence. Measurement updates are taken

from the motion detection using a nearest neighbour approach.

For 3D tracking a Kalman �lter is again used. Player bounding boxes from the 2D stage are

projected onto the �eld of play and used as measurements for the 3D Kalman tracking �lters. The

system assumes 25 people are on the �eld at all times: 11 players on each team, a referee and two

linesmen. The bounding box projections are evaluated using several criteria and are then assigned

to each of the expected 25 people to update the Kalman �lter.

This proposed solution provides good results for tracking the 25 players over long video sequences

while remaining computationally inexpensive. The system does, however, fail at some important

aspects. By forcing the system to use 25 people it may provide false positives in cases where there

are less players, e.g. a player is o� due to injury, or fail to detect people when there are more than

25 people on the �eld, e.g. medical sta� enter the �eld causing the system to track them and ignore

players. Players are also often triangulated using a single camera which may provide inaccurate

position results.

Having introduced the problem in chapter 1 and discussed previous attempts to solve the problem

in this chapter the rest of this thesis discusses a proposed solution to the problem. The next few

chapters discuss the various elements that need to be combined to provide a full solution, and are

then combined in chapter 6.



Chapter 3

The Geometry of Cameras

Before one can work with a camera and perform calculations from a video sequence it is important

to establish a mathematical model describing a camera. Once this is understood it becomes possible

to use the data contained in the video sequence to calculate positions of real-world features. In this

chapter the pinhole camera model is �rst described and then a method for calculating the camera

parameters is given. Next the relationship between multiple cameras capturing the same scene is

explored and �nally triangulating real-world features from several views is explored.

3.1 Single Camera Model

The pinhole model, shown in �gure 3.1, is used to describe the geometry of a camera. In this model

the camera is de�ned by the camera center, C, and the image plane. Any point X in R3 can be

projected onto the image plane by tracing a ray from X to C. The point x where the ray intersects

the image plane becomes the projected point. Note that X is a point in R3 whilst x is a point in

R2 on the image plane.

To represent this projection mathematically the points X and x need to be transformed into the

homogeneous coordinate system. The camera matrix P can now be introduced as the operator that

14
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Figure 3.1: Projection of a 3D point X onto the image plane using a pinhole camera model.

maps X to x:

x = PX. (3.1)

In homogeneous coordinates X is a 4× 1 vector and x is a 3× 1 vector implying that P is a 3× 4

matrix.

We now proceed to analyze the P matrix, starting with simple projection and building it up as

we introduce more factors until we �nally arrive at the full de�nition of P. The �rst step is to look

at a simple projection of a point onto the image plane. In �gure 3.2 the camera center is at the

origin and the image plane is parallel to the x-y plane.

From �gure 3.2 it is clear that X projects onto x. Using similar triangles we can show that

this projection takes the point (X,Y, Z)T to (fX/Z, fY/Z, f)T , where f is the focal length of the

camera, with both points in R3 and in Euclidean coordinates. The second point, however, now lies

on the image plane. This allows us to write it as (fX/Z, fY/Z)T in image coordinates (all points

on the image plane will have a z component of f). In homogeneous coordinates the second point

becomes (fX/Z, fY/Z, 1)T which can be rewritten as (fX, fY, Z)T . This projection can now be

described by expressing (3.1) as


fX

fY

Z

 =


f 0 0 0

0 f 0 0

0 0 1 0





X

Y

Z

1


. (3.2)
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Figure 3.2: Simple projection using camera coordinates in the z-y plane, where f is the focal length.

Next we look at the in�uence of the image coordinate system. To do this the principal point

�rst needs to be de�ned. Extending a line from the camera center perpendicular to the image plane

provides one with two basic features. The line forms the principal axis, and the point where it

intersects the image plane is the principal point. P as described above assumes that the origin of

the image coordinates is at the principal point (0, 0, f)T . If this is not the case, we need to add the

x and y coordinates of the camera center to the projected point x. This gives us the projection:

(X,Y, Z)T 7→ (fX/Z + px, fY/Z + py)T . (3.3)

Moving to homogeneous coordinates again gives us

x = (fX/Z + px, fY/Z + py, 1) = (fX + Zpx, fY + Zpy, Z). (3.4)

This can be represented in P by including the px and py components:


fX + Zpx

fY + Zpy

Z

 =


f 0 px 0

0 f py 0

0 0 1 0





X

Y

Z

1


. (3.5)

Having now looked at the geometry of an ideal pinhole camera we need to introduce two factors

that occur in real-world cameras. The �rst of these is the ratio between the unit length (or pixel
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Figure 3.3: Illustration of the camera axis ratio (left) and camera skew parameter (right).

size) in the direction of the two axes. Up to now we have assumed that this ratio is 1, as would result

from perfectly square pixels. In real-world cameras this is often not the case and pixels actually

become rectangular as shown in �gure 3.3 (a). To account for this the camera matrix needs to be

multiplied by diag(mx,my, 1) from the left, with mx proportional to the lenght in the x direction

and my proportional to the lenght in the y direction, giving:

P =


mx 0 0

0 my 0

0 0 1



f 0 px 0

0 f py 0

0 0 1 0

 =


αx 0 x0 0

0 αy y0 0

0 0 1 0

 (3.6)

where (αx, αy) = (mxf,myf) and (x0, y0) = (mxpx,mypy).

The second factor we need to consider is called the skew factor. This arises if the x and y axes

of the camera are not perfectly perpendicular, as shown in �gure 3.3 (b). To account for this the

parameter s is included into the P matrix giving us:

P =


αx s x0 0

0 αy y0 0

0 0 1 0

 . (3.7)

Up to this point the P matrix contains all the parameters related to the internal structure of

the camera. We now need to look at the external parameters relating the camera position to the

real-world coordinate system. Before we continue it is useful at this point to rewrite the P matrix

as

P = K[I | 0]. (3.8)

K is called the camera calibration matrix and contains all the internal parameters, i.e.
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Figure 3.4: Relation between world and camera coordinate systems.

K =


αx s x0

0 αy y0

0 0 1

 . (3.9)

The P matrix in (3.7) is su�cient to project any point in R3 onto the image plane, assuming

the point is given in the camera coordinate system. It is often the case that the camera, Xcam,

and real-world, X, coordinates of the point do not agree. It becomes necessary to relate the two

coordinate systems to one another. The two systems are related by a rotation and a translation as

shown in �gure 3.4. A simple relationship exists, and can be written as:

X̃cam = R
(
X̃− C̃

)
, (3.10)

where C̃ is the 3×1 vector for the camera center in (Euclidean) world coordinates and R is the 3×3

rotation matrix between the two coordinate systems. The tilde indicates Euclidean coordinates, i.e.

X =

 X̃

1

 . (3.11)
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Equation (3.10) can be rewritten in homogeneous coordinates as

Xcam =

 R −RC̃

0 1




X

Y

Z

1


. (3.12)

We can combine equations (3.8) and (3.12) to arrive at

P = KR
[
I | − C̃

]
. (3.13)

Equation (3.13) now contains all the parameters needed to project any point onto the image

plane and the �nal projection equation becomes:

x = KR
[
I | − C̃

]
X. (3.14)

3.2 Single Camera Calibration

In the previous section the pinhole camera model was described. In this section the process of

calculating P is described. The P matrix from (3.13) has 11 degrees of freedom: 3 for the rotation

matrix R, 3 for the translation vector C̃ and 5 for the calibration matrix K.

To solve for all the parameters 11 linearly independent equations are required. The equations

can be obtained from point correspondences Xi ↔ xi where xi = PXi for every i. Equations are

derived by setting the vector cross product xi × PXi equal to 0 since any two parallel vectors in

homogeneous coordinates refer to the same point in the image plane. Writing P as a vector of its

rows, PXi becomes:

PXi =


p1TXi

p2TXi

p3TXi

 , (3.15)

where pjT denotes the jth row. The cross product can be expressed as the product of a skew-
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symmetric matrix and a vector, leading to the following equations
0T −wiXT

i yiXT
i

wiXT
i 0T −xiXT

i

−yiXT
i xiXT

i 0T




p1

p2

p3

 = 0, (3.16)

where Xi = (xi, yi, wi) and p =
(
p1T , p2T , p3T

)T
is a 12× 1 vector containing all the elements

of P. From(3.16) it would appear that each point correspondence provides three equations. However,

this is not the case as only two of the equations are linearly independent causing (3.16) to reduce to

 0T −wiXT
i yiXT

i

wiXT
i 0T −xiXT

i




p1

p2

p3

 = 0. (3.17)

Each point correspondence provides us with two linear equations. To solve the eleven degrees of

freedom we need eleven equations, or at least d 112 e = 6 point correspondences. It is important to note

that no three points chosen should be collinear as they will not provide linear independent equations.

Stacking all the point correspondence equations into a single matrix, A, the system Ap = 0 can

be solved by solving for the right null space of A using e.g. singular value decomposition (see

Appendix B).

Due to the presence of noise and the possibility of measuring errors Ap = 0 will often not have

a non-trivial solution, and some approximation of the null space will need to be made, e.g. using a

least squares approach. To increase the accuracy of such an approximation it is desirable to increase

the number of equations used by increasing the number of point correspondences.

Having now calculated the P matrix it is useful to decompose it into the K, R and C̃ components.

The aim is to �nd an upper-triangular matrix K, a rotation matrix R and a 3× 1 column vector C̃

such that P = KR
[
I| − C̃

]
.

To this end, let P1:3 be the �rst 3 columns of P, and p4 the 4th column. Let

W =


0 0 1

0 1 0

1 0 0

 , (3.18)
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note that W−1 = WT = W, and perform QR-factorization on (WP1:3)T , such that (WP1:3)T =

Q̂R̂ with Q̂ orthogonal and R̂ upper-triangular.

The following set of matrices can now be calculated:

K = WR̂TW

R = WQ̂T

C̃ = −RTK−1p4 (3.19)

Note that R̂T is a lower-left-triangular matrix, hence R̂TW is lower-right-triangular, and K =

WR̂TW is an upper-right-triangular matrix. Also, Q̂ is orthogonal, hence Q̂T and R = WQ̂T are

also orthogonal.

It remains to show that (3.19) does indeed produce a decomposition of P in the form P =

KR
[
I| − C̃

]
. From (3.19),

KR = WR̂TWWQ̂T = WR̂T Q̂T = W
(
Q̂R̂

)T
= W

[
(WP1:3)T

]T
= WWP1:3 = P1:3, (3.20)

and

−KRC̃ = −KR
(
−RTK−1

)
p4 = KRRTK−1p4 = KK−1p4 = p4. (3.21)

Therefore KR
[
I| − C̃

]
= P.

Note that QR-factorization is unique only up to sign, and implies that any column of K and

corresponding row of R can be multiplied by −1, and leave the product KR unchanged.

Luckily we can remove this ambiguity be noting two properties. First, the focal length of the

camera must be positive, hence the �rst two entries on the diagonal of K must be positive. Second,

the orthogonal matrix R must be a pure rotation (not re�ection) and hence det(R) must be 1 (not

−1). Using these restrictions the component matrices of P can be found uniquely.

3.3 Multiple Camera Calibration

The internal parameters of a camera remain constant over time (zooming may change the focal

length, but it is assumed to remain constant). The external parameters, however, may change as
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the camera moves around. For accurate triangulation (as discussed later) it is important that these

external parameters are calculated accurately once every camera has been �xed at its location.

3.3.1 Absolute Calibration

One method to accomplish multiple camera calibration is to calibrate each camera individually

against the same real-world coordinate system. With the internal parameters for each camera

known there are only six degrees of freedom that remain for each camera: three for rotation and

three for translation. The six degrees of freedom can be solved using a minimum of three point

correspondences for each camera and is known as the three point relative pose problem.

Several methods for solving the three point relative pose problem have been presented in the

literature. The �rst solution was presented by Grunert [23] in 1841 while more recent solutions have

been presented, amongst others, by Grafarend et al. [22], Tsai [48] and Mozerov et al. [38]. A simple

linear solution to the three point relative pose problem is presented in [25] and restated here.

To restate the problem, given three points in the 3D camera coordinate system and their corre-

sponding three points in the 3D world coordinate system one wants to determine the rotation matrix

R and the translation vector t that satis�es

pi = Rp′i + t, i = 1, 2, 3, (3.22)

where pi = (xi, yi, zi)T , i = 1, 2, 3 are the points in the 3D world coordinate system and p′i =

(x′i, y
′
i, z
′
i), i = 1, 2, 3 the points in the 3D camera coordinate system. R is a 3×3 orthogonal matrix

such that RRT = I and t = (tx, ty, tz)T .

To arrive at a linear solution the R matrix is expressed as

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (3.23)

Equation (3.22) is now an underconstrained system of 9 equations in 12 unknowns. It is known,

however, that the unknowns in the rotation matrix are not independent. The following constraints

exist (as shown by Ganapathy [21]):

r211 + r212 + r213 = r221 + r222 + r223 = r231 + r232 + r233 = 1, (3.24)
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r13 = r21r32 − r22r31,

r23 = r12r31 − r11r32,

r33 = r11r22 − r12r21. (3.25)

Note that since the three points are coplanar in the camera coordinate system we can assume

z′i = 0, i = 1, 2, 3, allowing us to use the image coordinates for points p′i. Equation (3.22) can now

be written as

xi = r11x
′
i + r12y

′
i + tx

yi = r21x
′
i + r22y

′
i + ty

zi = r31x
′
i + r32y

′
i + tz (3.26)

and in matrix form as

Ax = b (3.27)

with

A =



x′1 y′1 0 0 0 0 1 0 0

0 0 x′1 y′1 0 0 0 1 0

0 0 0 0 x′1 y′1 0 0 1

x′2 y′2 0 0 0 0 1 0 0

0 0 x′2 y′2 0 0 0 1 0

0 0 0 0 x′2 y′2 0 0 1

x′3 y′3 0 0 0 0 1 0 0

0 0 x′3 y′3 0 0 0 1 0

0 0 0 0 x′3 y′3 0 0 1



,

x = (r11, r12, tx, r21, r22, ty, r31, r32, tz)T ,

b = (x1, y1, z1, x2, y2, z2, x3, y3, z3)T . (3.28)

Provided that the three points are not collinear the matrix A will not be singular and x can be

solved for a unique solution. After solving for x, equations (3.25) can be used to solve for r13, r23

and r33.
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3.3.2 Relative Calibration

As an alternative to calibrating each camera relative to the real-world coordinate system it is possible

to calibrate the cameras relative to one another. To achieve this calibration the fundamental matrix

is �rst introduced, followed by how it may be used to calculate the camera matrices and �nally how

it may be calculated.

3.3.2.1 Fundamental Matrix

To perform this calibration the 3 × 3 fundamental matrix, F, between two cameras C1 and C2 is

useful. The de�ning condition for F is that given any pair of corresponding points in two images,

x↔ x′, the following holds true:

x′TFx = 0. (3.29)

The fundamental matrix captures the relationship between points on the two image planes result-

ing from the two cameras. A variation of the fundamental matrix is the essential matrix, E, which

relates only the geometric relationship between the two cameras, as opposed to the fundamental

matrix that also includes information on the internal parameters. The de�ning condition for the

essential matrix is

y′TEy = 0, (3.30)

with y and y′ the normalized coordinates of x and x′ respectively, i.e. y = K−1x and y′ = K′−1x′.

A simple relation between F and E exists:

E = K′TFK. (3.31)

For all essential matrices the �rst two singular values are equal and the third is zero. It can

be written in the form [t]×R as shown in [26] ([t]× is the skew-symmetric cross-product matrix of

the translation vector t, and r is the rotation matrix relating the two camera coordinate systems).

Having de�ned the fundamental and essential matrices the next section explains how they can be

used.
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3.3.2.2 Extracting the Camera Matrices

When using the fundamental matrix the camera matrices can be recovered only up to a projective

ambiguity. The essential matrix, however, is able to recover the matrices up to scale [26, p. 256].

Without loss of generality it may be assumed that the �rst camera matrix is P = [I | 0] and the

second camera matrix is P′ = [R | t] to make calculation of the second matrix P′ simpler. From

section 3.3.2.1 it is clear that the SVD of E is U diag(1, 1, 0) VT . This allows for two factorizations

of the form E = SR:

S = UZUT , R = UWVT or UWTVT (3.32)

with

W =


0 −1 0

1 0 0

0 0 1

 , Z =


0 1 0

−1 0 0

0 0 0

 . (3.33)

From this factorization the translation, t, can be determined from the skew-symmetric matrixS =

[t]×. Since St = 0 it follows that t = U(0, 0, 1)T = u3, which is the last column of U. The sign

of E, and consequently of t, cannot be determined giving t = ±u3. This result along with the

factorization of E given in (3.32) gives four possibilities for P′:

P′ = [UWVT |+ u3] or [UWVT | − u3] or [UWTVT |+ u3] or [UWTVT | − u3]. (3.34)

The four solutions correspond to four possible geometric con�gurations for the two cameras.

The di�erence between terms with +u3 and −u3 is simply a reversal in the direction of the vector

between to two cameras. The relation between terms with W and WT amounts to a 180◦ rotation

about the line joining the two camera centers.

It is possible to check which of the four solutions is correct by reconstructing a single point using

the four options. In only one of the reconstructions will the point be in front of both cameras which

gives the correct solution. Figure 3.5 illustrates this.
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Figure 3.5: Reconstructing a single point from four possible solutions to P′.

3.3.2.3 Calculating the Fundamental Matrix

Given several point matches pi ↔ p′i the basic fundamental matrix equation p′TFp = 0 can be

used to solve for F. Writing p = (x, y, 1)T and p′ = (x′, y′, 1)T each point correspondence gives one

linear equation in the elements of F:

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0, (3.35)

where fij is the element of F in row i and column j. With a set of n point matches (3.35) can be

expressed as a matrix equation:

Af =


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0. (3.36)

The vector f can now be solved using standard linear algebra techniques (such as an SVD).

3.4 Triangulation

When there are several cameras capturing the same scene it becomes possible to obtain 3D data

about objects in the scene. The process of determining the 3D coordinates of an object that is visible
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Figure 3.6: Triangulation using point correspondences. The triangulated point is the intersection of
the projected lines through the image points.

in two or more views is known as triangulation. The rest of this section discusses how triangulation

can be done using �rstly two cameras and then n cameras.

3.4.1 Two View Triangulation

Every point, x, on an image plane corresponds to a line, l, in 3D space. Any point on this l

will project onto x. If one is able to �nd corresponding points in two or more camera views, this

information can be used to �nd the point in 3D space that corresponds to all of the image points.

This point is simply the point of intersection between all of the projected lines of each camera.

Figure 3.6 illustrates this.

To solve for the point X we �rst notice that, given two camera matrices P and P′ and corre-

sponding points x = (x, y, z)T and x′ = (x′, y′, z′)T in the images:

x = PX and x′ = P′X. (3.37)

These equations cannot be solved directly as we are working in homogeneous coordinates (the

equality sign merely indicates that vectors on the two sides of the equation point in the same

direction). To solve the system we take the cross product of the two sides of the equation, i.e.
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x×PX = 0. From this we get three equations:

ypT3 X− zpT2 X = 0, (3.38)

zpT1 X− xpT3 X = 0, (3.39)

xpT2 X− ypT1 X = 0. (3.40)

Using only the �rst two equations of each cross product(the third is a linear combination of the

�rst two) we can write it as follows:

AX = 0, (3.41)

where

A =



ypT3 − zpT2

zpT1 − xpT3

y′p′T3 − z′p′
T
2

z′p′T1 − x′p′
T
3


.

Since we are measuring directly from the image plane in Euclidean coordinates we have z = z′ =

1. Using SVD we can solve for X by �nding the right singular vector that is associated with the

smallest singular value. This simply corresponds to the right-most column of V in the SVD.

3.4.2 Optimizing Triangulation Results

In general two lines in 3D space do not necessarily intersect at some point. This is also true for the

projection lines used in the triangulation method described in section 3.4.1. Problems may arise

from errors in calibration, as well as non-perfect point detection. This causes a situation as shown

in �gure 3.7 where the projected lines do not intersect each other.

The challenge now becomes to �nd some best �t solution in the presence of these two factors.

When optimizing a system one tries to minimize some cost or error function. For triangulation we

have two distances (error values) that can be minimized.

The �rst is the total projection error, ep, of the triangulated point x on each of the projection

lines li. The projection of a point x on a line l where l = p + kn (p is a point on the line and n a
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Figure 3.7: Errors in calibration and point detection may result in projection lines that do not cross
in 3D space.

unit vector in the direction of the line) is yi = ninTi (xi − pi) + pi. The total error now becomes

ep =
∑
i

‖yi − x‖2. (3.42)

This error value is calculated in the projected space, and as such it is not projectively invariant. The

lack of projective invariance implies that the measurement made does not have a concrete physical

meaning. An error measurement of 5 may be 5 centimeters in one case and 5 kilometers in another.

The second error function commonly used is the back projection error ebp. This is obtained by

calculating the total error by projecting the triangulated point X back onto each image plane and

measuring the distance between the original point, pi, and the back projected point, p′i:

ebp =
∑
i

‖pi − p′i‖2. (3.43)

This error is measured directly on the image plane in Euclidean coordinates, giving us a projectively

invariant distance measure.

In two views it is commonly preferred to minimize the back projection error when optimizing

triangulation results. One approach to minimizing the back projection error for two views is known

as Sampson correction and is described in [26]. This approach has been extended to three views by

Byrod et al. [7] using the Grobner basis [1]. There is, however, no such technique for minimizing

the back projection error in more than three views. In the next section we describe a method for

minimizing the projection error in multiple views.
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3.4.3 Multiple View Triangulation

Triangulation from multiple views presents new challenges, but also some bene�ts above two view

triangulation. On the one hand multiple views provide more information, allowing for more accurate

triangulation. On the other hand it is harder to combine the data in a computationally inexpensive

manner while keeping a high degree of accuracy. As mentioned in section 3.4.2 we try to minimize

the projection error ep from (3.42).

The �rst step in minimizing ep is to �nd the projection of the point X on the projection lines,

li, from each camera. Each of the lines li can be written as li = pi + kni where pi is a point on the

line and ni is a unit vector in the direction of the line. To �nd this representation one begins with

the camera equation:

x = KR[I| − C̃]X = KRX̃−KRC̃ (3.44)

which can be rewritten as

X̃ = RTK−1x + C̃. (3.45)

The camera center, (0, 0, 0)T , and the point (x, y, 1) on the image plane both lie on the projection

line. By substituting them for x in equation (3.45), two points, q1 and q2, are found in the real-world

coordinate system that both lie on this line. It is now possible to solve for pi and ni:

pi = q1 (3.46)

ni =
q1 − q2

||q1 − q2||
(3.47)

The projection, yi, of X on li can then be found as

yi = ninTi (X− pi) + pi, (3.48)

with the total projection error

ep =
∑
i

‖yi −X‖2. (3.49)
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We now want to �nd X that minimizes ep:

ep =
∑
i

‖ninTi (X− pi) + pi −X‖2

=
∑
i

‖(ninTi − I)X− (ninTi − I)pi‖2

=
∑
i

‖AiX− bi‖2

=
∑
i

(AiX− bi)T (AiX− bi)

=
∑
i

[
(AiX)T (AiX)− 2(AiX)Tbi + bTi bi

]
. (3.50)

Taking the derivative of (3.50) with respect to X and setting it equal to zero yields

∂ep
∂X

=
∑
i

[
2(AT

i Ai)− 2AT
i bi

]
= 0∑

i

(AT
i Ai)X =

∑
i

AT
i bi(∑

i

AT
i Ai

)
X =

∑
i

AT
i bi

CX = d. (3.51)

Equation (3.51) is now in a familiar form, allowing us to solve it using standard linear algebra

techniques.

This chapter looked at the model used to describe a camera and how to use that model to perform

some calculations needed to locate players on the �eld. In the next chapter methods for detecting

people and objects on the �eld are discussed.



Chapter 4

Object Detection

Detecting and locating people in an image or video sequence has many real-world applications, over

a wide range of �elds. Security systems attempt to detect people in order to alert personnel or

automatically begin recordings. Large building complexes such as shopping centers and airports

use systems to detect people to gather statistics about tra�c �ow and queue lengths in an attempt

to improve building layout. Even some hand-held cameras are able to detect people, allowing for

example the auto-focus to focus on them.

With such a wide range of applications much work has been done to re�ne the algorithms that

are used. The ever present tradeo� between speed and accuracy also plays an important role in

algorithm implementation, where an advanced security system with high processing power might use

a high accuracy, computationally expensive algorithm whilst hand-held cameras opt for inexpensive

algorithms.

Two broad �elds for detecting people or objects in video sequences are discussed in this chapter.

The �rst is to �nd people by trying to match some area in the image to a model of what a person

looks like, known as detection by recognition. A second method tries to �nd areas of motion in an

otherwise static scene. In general some further processing would need to be done to con�rm that

motion is caused by a person, however for the focus of this study the only movement on a sports

�eld will be caused by the players, ball and referees on the �eld.

32
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4.1 Detection by Recognition

Detection by recognition attempts to recognize a person or object by matching an area of the scene

to some model of what a person looks like. Di�erent algorithms use many di�erent features, some

attempting to interpret the scene much as a person would, while others analyze the scene using

mathematical models.

4.1.1 Edge Orientation Histogram

A popular approach used when detecting speci�c objects in cluttered scenes is to build some math-

ematical model that describes the object in a manner that it can then be searched for in an image.

One such approach is to model an object (or person) as a collection of edges in di�erent directions,

as in [18]. When trying to detect if a person occurs in the scene one then only needs to search for

an area in the scene that has a similar collection of edges.

The �rst step in this method is to build the edge model of a person from a set of training data.

Each of the training images will contain a person on a plain background so that the only edges in

the image belong to the person being modelled. Edge detection is then performed on the image to

reduce it to an edge image. A popular edge detection method is to convolve an image with the Sobel

operators [17]:

Sx =


−1 0 1

−2 0 2

−1 0 1

 , Sy =


−1 −2 −1

0 0 0

1 2 1

 . (4.1)

Two edge images, Ex and Ey, are composed, one for each of the Sobel operators. For each pixel

in the original image a gradient magnitude and direction can be calculated as:

M(x, y) =
√
Ex(x, y)2 + Ey(x, y)2, (4.2)

G(x, y) = arctan
Ey(x, y)
Ex(x, y)

× 180
π
. (4.3)

A histogram can now be constructed by thresholding the edge magnitudes and then collecting

the remaining edges into a histogram where the bins represent the edge directions. It may be useful

to normalize the histogram to avoid problems that may arise from varying scale. By repeating
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this process for each image in the training sequence the model can then be chosen as the average

histogram over the sequence.

After the model has been created new images can be processed by �rst decomposing the image

into edge images and computing the edge magnitude and direction for each pixel. After this has

been done the image can be searched through for an area that produces a histogram similar to that

of the model.

Edge orientation histograms have been used and expanded upon in a number of ways. A notable

modi�cation to the standard edge histogram was done by Dalal et al. [13]. In their work they build

grids of Histograms of Oriented Gradients (HOG) to detect people in a scene. A search area is

broken into several smaller overlapping blocks and edge histograms are calculated for each block.

Combining the blocks and normalizing over the entire cell provides more accurate detection results

than using only edge orientation histograms.

One severe limitation of using edge orientation histograms is that a histogram may change dras-

tically as the pose of a person changes. This limits the use of edge histograms to situations where

the pose of a person does not vary greatly, e.g. in pedestrian detection.

4.1.2 Scale Invariant Feature Transform

Lowe [35] has proposed a method of object recognition by classifying an object as a collection of

interest points in a geometric relation, known as the Scale Invariant Feature Transform (SIFT). The

object is then found in an image by searching for a collection of similar interest points in a similar

con�guration.

To locate interest points a di�erence of Gaussian function is applied to the image at various

sampling levels. At the �rst sampling level the image is smoothed using two passes of a 1D Gaussian

function:

g(x) =
1√
2πσ

exp(−x2/(2σ2)) (4.4)

in the vertical and horizontal directions.

The initial image is convolved with the Gaussian function to give a smoothed image A. This
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image A is again smoothed to produce image B. The di�erence of Gaussian is then taken as A−B

(pixelwise subtraction). The next sampling level is generated by sampling the smoothed image B

using bilinear interpolation with a pixel spacing of 1.5, and each subsequent level generated by

sampling the previous level in the same manner.

Maxima and minima of the scale space are then determined by comparing each pixel with its

eight neighbours in its level. If it is a maximum (or minimum) in its level it is compared to the

pixels in the level above and below it. If the closest match to the pixel in both those levels is also a

maximum (or minimum) it is said to be a scale space maximum (or minimum) and thus an interest

point.

At each of the interest points a SIFT key is generated by calculating the pixel edge magnitude,

M(x, y), and orientation, R(x, y), of the base image A as:

M(x, y) =
√

(A(x, y)−A(x+ 1, y))2 + (A(x, y)−A(x, y + 1))2, (4.5)

R(x, y) = arctan
A(x, y)−A(x+ 1, y)
A(x, y + 1)−A(x, y)

. (4.6)

Objects can now be detected in cluttered images by searching for a collection of similar keys in

a similar con�guration to that of the model set. To make this search easier and to allow for rotation

invariance the keys are stored using the radial coordinate system.

The SIFT features have proven to be highly accurate, but su�er from high computational com-

plexity. The features are also only able to handle object rotation up to 20 degrees and scaling up to

about 20 percent.

4.1.3 Supervised Learning

Supervised learning has been used extensively in computer vision problems, with object detection

being no exception (see [49] for an overview of supervised learning methods). One of the advantages

of supervised learning techniques is that the system may be trained on both object and non-object

instances. Training with non-object classes may allow the system to reject false positives with greater

accuracy.

A supervised learning approach is used by Papageorgiou et al. [41] to detect people, faces and
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cars in cluttered scenes. Objects are represented by an overcomplete dictionary of local, oriented,

multiscale intensity di�erences between neighbouring regions. The dictionary is built using the Haar

wavelet transform [24], which is a simple wavelet transform based on the Haar wavelet functions.

The learning approach derives a model of the object by training a support vector machine (SVM)

using both positive and negative examples. SVMs are a set of supervised learning methods that

analyze data and recognize patterns. Given a set of training examples that are classed as either

object or non-object the SVM algorithm builds a model that will predict whether a new example

falls into the object or non-object categories. For details on SVMs see [49].

Supervised learning produces good results when trained well. Desired objects can be modelled

accurately as the algorithm is given many samples to learn from. By training with non-object

instances as well, the system is also able to correctly exclude incorrect objects that may be similar

to the desired object. Supervised learning has problems, however, in that the system is only able

to detect object instances that it has been trained on. Sports players may assume a large number

of poses and may play in widely varying environments (day or night, in rainy or cloudy weather,

etc). This requires that the algorithm be trained for each pose in each situation, which may be

impractical for real-world application.

4.1.4 Parts Detector

Another approach to detecting people in images is to view a person as a collection of �exible parts.

Detecting a person in the scene then becomes a case of detecting individual parts and checking if

they appear in an appropriate geometric con�guration.

One such approach is followed by Mikolajczyk et al. [37] where detection is done using a proba-

bilistic assembly of parts. Seven body parts are used for classi�cation, with each part described by

a set of SIFT features. The model for each part is trained using the AdaBoost algorithm [19].

When detecting people in a scene, individual body parts are �rst searched for. When parts have

been found the part with the highest likelihood score is chosen as a starting point. A neighbourhood

is searched for other parts that would make up the rest of the body. If all the parts are found a

probabilistic decision is made using a joint likelihood model based on two observations: detected
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parts and the relative position of the parts.

A Bayesian decision for a body B with features F and geometric parameters R is then made:

p(B|R,F )
p(¬B|R,F )

=
p(R|F,B)
p(R|F,¬B)

p(F |B)
p(F |¬B)

p(B)
p(¬B)

. (4.7)

One of the advantages of such a parts detector is that the entire body need not be visible. By

detecting a subset of the total body parts the system may be able to detect a partialy occluded body.

Drawbacks to the system exist though. The parts detector is computationally expensive, hindering

real-time applications. The parts detector may also fail when players occlude one another as multiple

body parts of each person are detected but the system is unable to match parts to speci�c bodies.

4.2 Motion Detection

Motion detection is the process of detecting and locating areas of motion in a video sequence. Basic

motion detection algorithms might only detect if there is any motion in the video sequence, while

more advanced algorithms try to �nd where in each frame the motion occurs.

When the goal is to simply detect motion in a sequence without locating the motion it is possible

to view the image as a whole and perform computations on it. Some solutions include comparing

eigenvalues and -vectors or singular values of the pixel intensities between frames. Large changes in

these values between frames can indicate that there is a change in the scene implying that motion

has occurred.

More advanced algorithms try to �nd where in each frame motion occurs. These algorithms

typically attempt to split each frame into two areas: foreground and background. Foreground

regions are those areas where motion occurs while background regions are static areas. In order to

accomplish this a more detailed comparison of pixels and/or regions of each frame needs to be made.

Some popular motion detection algorithms are now discussed.
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4.2.1 Pixel Subtraction

Pixel subtraction is a basic form of motion detection. A model of the background is made by taking

some weighted average of the pixel intensity for each pixel in the tth frame over some set of previous

frames. Motion can now be found by comparing each pixel, It(i, j), to the corresponding model

image pixel Bt(i, j). A motion image, Mt, can be composed by combining all the results from each

pixel comparison:

Mt(i, j) = |It(i, j)−Bt(i, j)|. (4.8)

There are a number of ways in which the background image can be created. Several frames of

an empty scene can be used to build up the model which will then remain constant for the duration

of the sequence. Each of the initial frames will then be given equal weight:

B(i, j) =
1
n

n∑
k=1

Ik(i, j). (4.9)

Alternatively the background model may be updated as the sequence continues. This is useful

for incorporating permanent changes in the background. It is also useful for situations where a

sequence of an empty scene is not available. For this one can use the average of the past n frames:

Bt(i, j) =
1
n

t∑
k=t−n+1

Ik(i, j). (4.10)

The weighting on each frame can also be used to implement a fading memory where more

emphasis is placed on newer frames and older frames are gradually reduced in importance:

Bt(i, j) =
t∑

k=t−n+1

wkIk(i, j), (4.11)

where wn > wm if n > m and
∑
wk = 1. This method uses a fading memory on the past n frames.

To use a fading memory on all the past frames the following background model can be used:

Bt(i, j) = wIt(i, j) + (1− w)Bt−1(i, j), (4.12)

with 0 < w < 1.

The motion image will typically be thresholded and any pixels that fall above the threshold

classi�ed as movement.
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Pixel subtraction is a basic algorithm, and as such it is computationally inexpensive. This is

desirable as it will reduce processing time, increasing the achievable framerate of the system. The

basic algorithm, however, su�ers from inaccuracy caused by many incorrect detections, due to its

simplicity.

4.2.2 Mixture of Gaussians

Several statistical methods exist as solutions to motion detection problems, where the sequence

background is modelled using various techniques. Common methods model the background using a

multi-modal probability density function (pdf) for each pixel in a frame [42].

Mixture of Gaussians (MOG) is popular in many machine learning and pattern recognition

algorithms as a method to build pdfs. The MOG pdfs are constructed as a linear combination of

Gaussian probability functions, allowing for multi-modal behaviour that a single Gaussian would

not permit.

When applied to background subtraction problems, the MOG technique attempts to model

regions of background by a mixture of K Gaussian distributions (due to an increase in computation

complexity, K is usually limited to a value between 3 and 5). Each Gaussian corresponds to an

aspect of interest of the pixel, such as intensity or brightness.

Generally a training sequence is required for the MOG technique to provide accurate results.

Work as been done on algorithms for initializing a MOG algorithm without prior background infor-

mation. Examples include Zivkovic [58] and Suter et al. [52]. During the training sequence the K

Gaussian distributions are found for each pixel in the image. When the algorithm is run on a real

sequence each pixel is compared to the Gaussians. If it is classi�ed as foreground then motion has

been found, if not then the corresponding Gaussians will be updated with the new pixel values.

4.2.3 Optical Flow

Optical �ow is the process of estimating a 2D motion �eld between frames in an image sequence,

originally developed by Horn et al. [28]. If the �eld can be calculated accurately motion can be found
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by searching for areas where there is a great deal of �ow in one direction. Areas with no �ow are

generally background areas while areas with near constant non-zero �ow indicate moving objects.

Areas with �ow in haphazard directions may also indicate background areas, such as foliage moving

in the wind.

Optical �ow methods function by attempting to �nd a match for each pixel p in image It with

a pixel in image It+1. Search areas are usually limited to a region surrounding the original pixel

in order to reduce computational expense and increase accuracy. If such a match can be found the

�ow of the pixel is the displacement (dx, dy) of the pixel between the two images.

Simple algorithms may look for a perfect or near perfect match between frames and calculate

the displacement as the movement in x and y directions:

(dx, dy) = (It(px)− It+1(px), (It(py)− It+1(px)) . (4.13)

Another method is to calculate the �ow between images by matching a window of size w × h

in image It with a window of the same size in image It+1. The best such match can be found by

minimizing the function E:

E(dx, dy) =
px+w∑

x=px−w

py+h∑
y=py−h

(It(x, y)− It+1(x+ dx, y + dy))2 . (4.14)

More advanced optical �ow methods have been developed for di�erent applications with trade-

o�s made between speed and accuracy for each. A popular optical �ow method was developed by

Lucas et al. [36] that has been used in tracking applications, whilst Camus [9] designed an optical

�ow algorithm for real-time processing.

In this chapter various object detection methods have been discussed. This is the �rst step to

tracking players through a video sequence, as they need to be found before they can be tracked.

In the following chapter some tracking techniques for following the position of an object in a video

sequence are reviewed.



Chapter 5

Tracking

Tracking moving objects through video sequences is of great interest to a wide range of �elds.

Security applications might want to follow people walking through secure areas or track suspicious

packages. Another application is that of tra�c �ow monitoring, allowing for automatic, intelligent

tra�c light management.

Two broad categories of tracking exist: tracking-by-detection and �lter tracking. In the �rst

case, tracking relies on accurate detection of the object through various frames. The second case

uses knowledge about the object's state and state transition equations, to predict where the object

is moving to next and make object detection easier and more accurate.

5.1 Tracking-by-Detection

Tracking-by-detection, as the name implies, is the process of tracking an object through various

frames by attempting to �nd the object in each of the frames. If the object has been found in each

of the frames the path of the object can be found using the data from each frame.

The object detection can be done using any of the available techniques (refer to chapter 4 for

more detail). Using mathematical �lters it is possible to improve the results of tracking by detection

in both speed and accuracy.

41
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Figure 5.1: Illustration of the Kalman �lter process.

One problem with tracking by detection is that detection measurements may su�er from noise

distortion. This can cause in the tracked path to appear jagged. Smoothing �lters can be used to

reduce the impact of detection noise on the path. Some popular �lters include the median �lter,

LULU �lters and the Gaussian �lters. For more details on mathematical �lters see [14].

5.2 Kalman Filter

The Kalman �lter [45] estimates a process, or tracks an object, using a form of feedback control.

Using knowledge of how the process propagates between stages (or time steps) the �lter estimates a

process state at some time step k from the �lter output at stage k − 1. This estimate is combined

with some noisy measurement at that time to improve the estimate and update the solution. This

process is repeated iteratively for as long as required. Figure 5.1 illustrates the Kalman loop.

Because of this estimate-update loop of the Kalman �lter, the equations for the �lter can be

grouped into two categories: estimation and updating. The estimation equations estimate the �lter

state at a future time step. The update equations then update the estimate after measurements

have been made.

First the process and measurement equations must be de�ned:

xk = Axk−1 + Bµ+ wk−1, (5.1)

zk = Hxk + vk, (5.2)

where xk is the process state at time k, zk is the measurement at time k and wk and vk represent
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process and measurement noise with normal probability distributions:

p(w) ∼ N(0,Q), (5.3)

p(v) ∼ N(0,R). (5.4)

The matrix A contains the transition equations between �lter states, B contains the control-

input model (0 for purely observational systems) and µ is the control vector. H is the observation

model that maps the true state onto the observed space. The �lter equations can now be de�ned.

The estimation equations are:

x̂−k = Ax̂k−1 + Bµk−1 (5.5)

P−k = APk−1AT + Qk, (5.6)

and the update equations:

Kk = P−k HT (HP−k HT + Rk)−1 (5.7)

x̂k = x̂−k + Kk(zk −Hx̂−k ) (5.8)

Pk = (I−KkH)P−k . (5.9)

In the above equations x̂k is the mean �lter state at time k, which serves as the output of

the �lter. Also note that estimates obtained from the �rst set of equations are all denoted with a

bar-superscript.

P−k and Pk represent the estimates for the a priori (before measurement) and a posteriori (after

measurement) error covariances. The �nal �lter term, Kk, acts as a weighting factor between the

estimated x̂−k and the measurement. It can be shown that:

lim
R→0

Kk = H−1 (5.10)

lim
P−k→0

Kk = 0. (5.11)

From this one can see that as the error covariance of the measurement, R, approaches 0 (i.e.

the measurement becomes more accurate) the weight will favor measured values. In contrast, if the

error covariance of the estimate, P−k , approaches zero (i.e. the estimate becomes more accurate) the

weight will start to favor the estimate.
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While the Kalman �lter is an optimal �lter, it is limited to linear systems with normally dis-

tributed noise. This makes it unsuitable in a wide variety of situations. To overcome this limitation

the extended Kalman �lter (EKF) can be used.

5.3 Extended Kalman Filter

The extended Kalman �lter [53] is a non-linear extension of the Kalman �lter. It functions in much

the same way as the standard Kalman �lter by linearizing around the current mean and covariance.

Allowing for non-linear systems, the process and measurement equations become:

xk = f(xk−1, µk−1) + wk−1 (5.12)

zk = h(xk) + vk (5.13)

with wk and vk as in (5.3) and (5.4). F and H can now no longer be directly applied to the covariance.

Instead at each step a matrix of the partial derivatives, i.e. the Jacobian matrix, is computed and

applied. This matrix can then be used in the Kalman �lter equations, essentially linearizing the

non-linear system. The Jacobians for f and h are:

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1,µk−1

(5.14)

Hk =
∂h

∂x

∣∣∣∣
x̂−k−1

(5.15)

The estimation equations now become:

x̂−k = f(x̂k−1, µk−1) (5.16)

P−k = Fk−1Pk−1FTk−1 + Qk−1 (5.17)

and the update equations are:

Kk = P−k HT
k (HkP−k HT

k + Rk) (5.18)

x̂k = x̂−k + Kk(zk − h(x̂−k )) (5.19)

Pk = (I−KkHk)P−k . (5.20)

While the EKF does address the linearity problems it has several problems of its own. First, it

is generally not an optimal �lter (except in linear cases where it would be identical to the standard
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Kalman �lter). A second problem is that a poor initial estimate or process model may cause the

�lter to diverge quickly due to its linearization. For the EKF to give accurate results the noise

present in the system also needs to be normally distributed.

To improve �lter performance above that of the EKF the particle �lter can be used. The particle

�lter is able to better approach the Bayesian optimal estimate. It can also be used in the presence

of noise that is non-normally distributed.

5.4 Particle Filter

The particle �lter [4] is a generalization of the Kalman �lter. The �lter uses Monte Carlo techniques

to solve non-linear �ltering problems. The �lter is also able to cope with non-Gaussian noise. In

this section we provide an overview of the particle �lter. For a more detailed discussion, including

derivation, the reader is referred to [27].

The particle �lter consists of several particles (anywhere from 100 to 1000, depending on the

problem). Each of the particles represents a possible solution to the problem, and is represented at

time t by some state vector, pi,t. The state vector describes the proposed solution for that particle.

At each iteration of the �lter, the particles are propagated using some model function with model

noise, ηt, added:

pi,t = f(pi,t−1) + ηt. (5.21)

where f is a function that describes the movement of the particles between each iteration of the

�lter.

After all the particles have been moved forward they are compared to some expected solution

(or template). This can be done by creating a model of the object that is being tracked as well as

for each particle after it has been moved. The particle models can then be compared to the object

model (or template). After comparing a particle i to the expected model a dissimilarity measure di

can be found, such that di = 0 would indicate an exact match and a greater value of di would imply

less accuracy.

Every particle is given a weight wi,t for the current frame according to its dissimilarity measure,
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as follows:

wi,t = exp(−d2
it/(2σ

2)). (5.22)

The �nal weight of each particle is then the product of its previous weight and the weight

calculated for the current frame. Once all the weights are calculated, they are normalized so that

they sum to 1. Note the manner in which the value of σ scales the weights. A large σ means that

the values of d2
i /(2σ

2) are closer together. The weights of the particles would then change slowly

because the weights of poor matches do not di�er greatly from those of good matches. Hence the

�lter places more emphasis on the model equations than on the particle matches. The opposite holds

for a small σ value.

There are two popular choices for the output of the particle �lter, which should be the �best�

estimate of the object's current position. The �rst is a best �t solution, where the particle with the

highest weight is returned. The second solution is a weighted average of all the particles. The state

of each particle is weighted with its wi value.

An important issue worth mentioning is that of particle degradation. After several iterations the

weights of many particles may drop down to zero or values very close to zero as a result of repeated

high dissimilarity scores. When a particle weight becomes this low it ceases to contribute to the

solution. Even if that particle becomes a very good match at a later stage, its very low weighting

prior to that point will prevent its weight from increasing to a meaningful value. To combat this it

is useful to perform re-sampling. During re-sampling new particles are chosen from the current set

by discarding low weighted particles and splitting high weighted particles into several new particles.

All particles are then assigned equal weights and the process continues.

The past several chapters, including this one, have discussed the various components that are

needed to design a multi-view 3D tracking system. In the next chapter the components are combined

to build a full system for tracking the 3D positions of players on a sports �eld.



Chapter 6

System Design and Implementation

In the previous chapters various mathematical models and techniques were considered as theoretical

background for the problem of tracking players on a sports �eld using multiple cameras. In this

chapter the various components discussed are selected and combined to form a complete system.

First the problem of calibrating multiple cameras observing the same scene is addressed. Next

player detection and tracking in a single view is discussed, followed by tracking the players in 3D.

6.1 Calibration Method

As mentioned in section 3.2 there are two options for calibrating several cameras to a single scene:

absolute calibration and relative calibration.

If relative calibration is used the cameras will be calibrated against one another, but not the

real-world coordinate system. This will allow tracking and triangulation calculations to be made,

but all the calculated points will be relative to a camera-coordinate system. To convert these points

to the real-world coordinate system a further calibration step will be required. Because of this second

calibration step it becomes easier to simply perform absolute calibration on the cameras.

47
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6.1.1 Internal Calibration

The �rst step is to calibrate the internal camera parameters (those that are included in the K

matrix). This calibration can be done in an o�ine environment before the system is deployed to a

site. A popular approach to perform this calibration is to use a checker-board pattern [57] where

the number and physical size of squares are known.

The corners of each of the squares on the checker-board can either be detected automatically or

selected by a human. Calibration can then be performed by using the corners as interest points.

As only the internal parameters are calculated the world-coordinate system can be chosen to corre-

spond to the checker-board. See section 3.2 for details on calibrating a camera using x ↔ X point

correspondences.

This process can be repeated several times with each iteration providing a set of calibration

parameters. An average or least square solution to the set of parameters can then be chosen for each

camera.

The discussion here and in chapter 3 assumes the pinhole camera model, in which radial lens

distortion is ignored. In a real-world implementation this might be a problem, but can easily be

�xed by �rst dewarping the images prior to further computation. Finding the necessary parameters

that enable the dewarping may also be done during internal calibration by a method such as [34].

6.1.2 External Calibration

For external calibration several point correspondences are needed between points with known real-

world coordinates and the image coordinates of those points. As mentioned in section 3.2 a minimum

of three such point correspondences are required. Any points may be used with the restriction that

no three points lie on a single line in space.

A convenient set of points to use is the set of corners made by intersecting lines on the �eld.

These lines can be accurately detected and the corresponding intersections found to give the corners.

To detect the lines, and through them the �eld corners, the Hough transform is used.

The Hough transform [15] is a method to detect lines in an image. The �rst step is to perform
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Figure 6.1: Sample lines for building the Hough-space from detected points.

edge detection on the image using any of the available techniques (Sobel [17], Canny [10], etc.).

At each edge point, several lines can be drawn as shown in �gure 6.1. Each of these lines is then

parameterized using two parameters. The �rst is the distance between the origin, o, and the closest

point on the line, c. The second parameter is the angle between the x-axis and the vector joining o

and c. A two-dimensional histogram can be built where each bin is associated with a distance-angle

pairing. Local maxima above some threshold in this histogram will then highlight lines on the �eld.

Figure 6.2 illustrates this process.

Once the lines are found the intersection of those lines can be found by turning to homogeneous

coordinates. The standard equation for lines in R2 is ax+by+c = 0, allowing each line to be uniquely

represented by a coe�cient vector l = [a, b, c]T . The intersection, p, of any two lines represented

this way is simply the cross-product between the two lines:

p = l× l′. (6.1)

As the real-world coordinates for the corners are known (if the dimensions of the �eld are known)

they make ideal candidates for calibration points using the calibration method of section 3.3.1.
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(a) (b)

(c) (d)

Figure 6.2: Illustration of the Hough transform for line detection: (a) Original Image, (b) Sobel
Edge detection, (c) Hough transform histogram and (d) Detected lines.

6.2 Detection and Tracking in 2D

Tracking players in 3D through the use of multiple cameras �rst requires that the players be tracked

in each of the individual camera sequences. To accomplish this players �rst need to be detected in

each camera's �eld of view separately and then tracked through the video sequence.

A shortend version of this section appears in our paper [51]

6.2.1 Detection

In chapter 4 several techniques for detecting people in images were discussed. Although these meth-

ods can achieve high rates of success they are either limited in their application or computationally

expensive. On a sports �eld it is likely that the only moving objects will be players, a ball and

possibly a referee. All of these are objects that one may want to track. As such, motion detection

is an attractive choice as an e�ective, low cost detection algorithm.



CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION 51

(a) (b) (c)

Figure 6.3: A depiction of (a) the 2-rectangle feature, and (b) & (c) some 3-rectangle features. An
image is convolved with one of these masks. Black indicates regions of negative elements and gray
regions of positive elements in the mask.

6.2.1.1 Di�erence Image

The �rst step in the motion detection process is background subtraction. A model of the background

is created and the current frame is compared to this model (see section 4.2.1). Pixels that di�er

from this model are interpreted as motion and analyzed further in later stages. One of our main

objectives is to have the system run at a high speed, and therefore a simple and fast approach was

chosen that turns out to be highly e�ective.

The background model is constructed using the rectangle features of Viola and Jones [50]. Dif-

ferent rectangle features (vertical, horizontal, 2-rectangle, 3-rectangle, etc.) were tested, and the

2-rectangle feature in �gure 6.3 (a) was found to produce excellent results while also being the

fastest to calculate.

At each pixel location we calculate the value of the rectangle feature in the region around the

pixel. Let Is(i, j) denote the grayscale intensity of the pixel at row i and column j in frame s of the

sequence. Rectangle features can be computed for that frame to give a feature image Fs, where

Fs(i, j) = Is(i, j) + Is(i+ 1, j)− Is(i, j + 1)− Is(i+ 1, j + 1). (6.2)

Using these feature images the background model is calculated. The model associated with the

current frame k is denoted as Bk. Bk is calculated as the weighted average of the feature images

over the past p frames, where p is the memory length of the model,

Bk(i, j) =
k−1∑
s=k−p

ws Fs(i, j). (6.3)
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The value of p can be varied to �t the expected background situation. As p increases the memory

length of the background model also increases. This is useful for static backgrounds as the longer

memory length will create a more accurate model. Conversely, if the background often changes a

small p can be chosen. This will allow the model to incorporate the changes much faster and update

the model as necessary. The symbol ws in equation (6.3) corresponds to a weight assigned to the

frame s. We can assume without loss of generality that wk−p + wk−p+1 + . . . + wk−1 = 1. The

weights can be chosen as constant, causing all frames to have the same in�uence on the background

model. Alternatively one may chose the weights so that wk−p < wk−p+1 < . . . < wk−1, which will

create a �fading memory� where more recent frames hold greater importance.

Note that the background model is constantly updated, in fact at every frame, to accommodate

variations in light intensity, unforeseen camera motion, and motion due to non-player objects such

as trees in the background or spectators. The rectangle features are extremely quick to determine,

so that this constant updating of the background model is by no means a computational bottleneck.

After specifying a background model Bk for the current frame k, a di�erence image Dk is created

simply as the absolute di�erence between Fk and Bk, i.e.

Dk(i, j) = |Fk(i, j)−Bk(i, j)|. (6.4)

Every value in Dk is interpreted as a sort of likelihood of motion occurring at the corresponding

pixel. Figure 6.4 shows an example frame and its di�erence image (normalized for display purposes).

Observe that the shadows of the players are hardly visible in the di�erence image. This is another

exceptionally useful e�ect of the chosen rectangle features. The background model consists of relative

pixel di�erences so that, for example, grass in sunlight and grass under a cast shadow are viewed as

being equal (or at least close to being equal).

6.2.1.2 Extracting Areas of Motion

Once the di�erence image has been created regions of high density are searched for. These high

density areas will in general correspond to players that are moving around against the static back-

ground.

The �rst step in �nding the high motion density areas is to convolve the di�erence image with
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Figure 6.4: One frame from a grayscale video sequence and the di�erence image resulting from our
background subtraction procedure. Note that shadows hardly appear in the di�erence image.

(a) (b) (c)

Figure 6.5: The e�ects of changing the averaging �lter size. The original motion image (a) is averaged
�rst with a large �lter (b) and then a small �lter (c). The larger �lter only highlights large areas of
high motion density.

an averaging �lter. The size of the �lter, (2a+ 1)× (2b+ 1), can be varied to allow larger or smaller

areas of motion to persist. A small �lter will highlight small areas of motion as well as large areas

of motion, while a large �lter will exclude smaller motion patches. Figure 6.5 illustrates this point.

This averaging process serves two purposes. First, the motion values of individual pixels are

summed over a neighbourhood so that regions with high motion density stand out. Second, regions

containing a small amount of motion, likely due to noise, are de-emphasised.

Figure 6.6 shows on the left the motion image corresponding to the frame in �gure 6.4. Regions

containing a large amount of motion are clearly visible.

Objects can now be extracted from the motion image by, for example, a blob detection method.

A fast and easy technique for isolating di�erent objects, that was found to be very successful, is

to simply threshold the motion image by some value t, and then perform a connected-components
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Figure 6.6: A visualization of the motion image corresponding to the frame in the previous �gure
(left), and objects extracted by the detection of dense motion blobs (right).

labelling. Of course, the choice of t has some e�ect on the outcome. A smaller threshold may produce

many false detections whereas a larger threshold, although less prone to false detections, may miss

some of the objects of interest. The e�ect of t is further explored in section 7.2.1. Figure 6.6 (right)

shows a result of this procedure performed on the motion image shown on the left, where every

extracted object is highlighted by the bounding box of its corresponding component (or blob) in the

motion image.

6.2.1.3 Passing Objects to the Tracker

In the �nal step of the motion detector, regions of interest as detected in the previous stage are

considered. Regions are assigned to one of three categories and are then dealt with accordingly. The

three categories are:

1. an object already being tracked;

2. an object not yet tracked but under consideration;

3. an entirely new object.

If an extracted region is in close proximity to a player that is already being tracked, that motion

is assumed to correspond to the tracked player and is ignored. The region is then excluded from any

further processing at this stage.
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Next the �possible object� queue comes under inspection. This queue contains a list of regions

that are currently under consideration for tracking. If an object is placed into the queue, and remains

in the queue for several frames it can safely be assumed to be an object that needs to be tracked.

It is then passed to the tracker for tracking and removed from the possible object queue. Although

false motion detections do occur, it is very rare for them to occur in close proximity to each other

over several consecutive frames. This queue therefore allows us to avoid most false detections.

Once all regions that fall into category 1 above have been removed, regions of extracted motion

are checked to see if they are in close proximity to any regions currently residing in the possible

object queue. If this is the case, we increase the frame count for that region in the queue. Any

remaining regions (that did not fall into either category 1 or 2) are newly discovered regions. These

regions are then added to the possible object queue.

Lastly we look through the possible object queue again. Regions that did not have their frame

count updated in the current frame are discarded from the list as they are likely to be false detections

from a previous frame. Any remaining regions that have been in the queue for some predetermined

time (5 frames or so) are passed to the tracker for tracking.

6.2.2 Tracking

After �nding players using the motion detection step, the players need to be tracked through the

video sequence. To accomplish this a hierarchical approach to the particle �lter is used (as developed

in [56]). In this approach objects are represented using several di�erent descriptors. Descriptors vary

from coarse, fast descriptors that may yield many false positives, to �ne but slow descriptors for

more precise classi�cation. Objects are �rst compared to the coarse descriptors, and if they are a

good match are then passed to the slower second stage. This hierarchical approach allows for much

faster execution of the �lter while maintaining good results.

For this implementation, each particle represents a possible (x, y) location for a player in a

frame of the video sequence. Each particle is represented by a four-tuple state vector pi,t =

(xi,t, yi,t, x′i,t, y
′
i,t) where xi,t and yi,t are the current possiotion of the particle and x′i,t and y′i,t

are the velocities in the x and y directions. For �lter propagation standard movement equations are
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Figure 6.7: Illustration of a rectangle feature used as a tracking descriptor.

used:

pi,t = (xi,t−1 + ∆tx′i,t−1, yi,t−1 + ∆ty′i,t−1, x
′
i,t−1, y

′
i,t−1) (6.5)

with x′i,t and y
′
i,t calculated by taking the di�erence in x and y positions of the �lter output after

each iteration.

6.2.2.1 First Stage Descriptors

For �rst-stage descriptors in the hierarchical particle �lter the rectangle features of Viola and Jones

[50] are once again used, this time those depicted in �gure 6.7. The descriptors act similar to a

mask that has been run over the image. At each pixel location the intensity values of pixels in the

region around the object are added and subtracted. Figure 6.7 and the equation below illustrate

how to calculate the feature on the right using a 9× 9 block (in our system the block size is closer

to 80× 40).

R(i, j) =
4∑

i=−4

 −3∑
j=−4

I(i, j) +
4∑
j=3

I(i, j)−
2∑

j=−2

I(i, j)

. (6.6)

These features are chosen as they are very fast to calculate. Using the integral image [50] further

speed increases can be made. The integral image is such that each pixel value is the sum of all the

intensity values of all pixels to the left or above the current pixel. This can easily be calculated as

follows:

s(x, y) = s(x, y − 1) + I(x, y), (6.7)

I∫ (x, y) = I∫ (x− 1, y) + s(x, y), (6.8)
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Figure 6.8: Using the integral image to calculate the sum of all the pixels in a rectangle.

where s(x, y) is the sum of pixels in the row thus far (s(x,−1) = −1) and I∫ (x, y) is the integral

image. Using the integral image the sum of any rectangle can be found as the sum of four integral

image values. In �gure 6.8 the value of the integral image at point t is the sum of the pixels in

rectangle A. At point u it is A + B, and similarly for points v and w. The sum of the pixel

intensities of rectangle D is then w + t− (u+ v).

Two rectangle features are calculated for every particle. The dissimilarity measure between the

calculated feature and the model feature is taken as the absolute di�erence between the two. Particle

weights for each feature can be calculated using equation (5.22). Each particle now has two �rst-

stage weights assigned to it, one for each feature. The weights can be combined either using the

average of the two or by multiplying the two together. An average of the two will give particles that

have a good match in both features a high �nal weight, however particles that have one good and

one poor match will still have relatively high scores. Only particles that scored a good match in

both features are of interest, making the multiplication method better suited to the problem.

6.2.2.2 Second Stage Descriptors

In the second stage of the hierarchical particle �lter only those particles that have a contributable

weight after the �rst stage, i.e. those that have a �rst-stage weight greater than some threshold, are

considered. Particles with small weights after the �rst stage are considered to be very di�erent to the

object, and by ignoring them in the slower second stage we gain computational time. In this stage



CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION 58

a histogram of oriented gradients [13] is calculated as a more precise descriptor than the rectangle

features used in the �rst stage.

The calculation of a histogram of oriented gradients, as in section 4.1.1, requires gradient vectors

for each pixel in the image. Discrete derivative operators, such as the Sobel operators, can be used for

this purpose and yield two edge images: Eh that highlights horizontal edges and Ev that highlights

vertical edges. The magnitude and angle of the gradient vector at each pixel is then calculated as

M(i, j) =
√
Eh(i, j)2 + Ev(i, j)2, (6.9)

G(i, j) = arctan [Ev(i, j)/Eh(i, j)] . (6.10)

Gradients with a magnitude greater than some threshold are then binned into a histogram according

to their angles.

The histograms of all the particles need to be compared with that of the model in order to arrive

at some dissimilarity value. There are various ways in which the distance between two histograms

can be calculated.

The �city block� and Euclidean distances (i.e. the L1 and L2 norms) are fast to compute but do

not perform adequately on histograms where the order of the bins carry some meaning. Consider,

for example, three histograms h1 = [1 5 1 1 1 1 1], h2 = [3 1 3 1 1 1 1] and h3 = [1 1 1 1 3 3 1]. Here

h1 and h2 should be considered as being much closer to one another than, say, h1 and h3. However

the Euclidean distance gives d(h1, h2) = d(h1, h3) =
√

24.

Distances that measure the di�erence between discrete probability density functions can also

be used to compare histograms. Examples include the Kullback-Leibler divergence [33] and the

Bhattacharyya distance [5]. These measures, however, also fail for the same reason as the L1 and

L2 norms.

There are more indicative measures of the distance between histograms. The earth mover's dis-

tance (EMD) [43], for example, regards the histograms as piles of dirt and determines the minimum

cost required to turn one into the other (where cost is de�ned as amount of dirt times the distance by

which it is moved). This optimization problem, although linear, is rather computationally intensive

for the purposes of this problem. Cha and Srihari [11] proposed a measure which is related to the

EMD but is much faster to calculate. Because gradient orientations range between 0◦ and 360◦,
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with the endpoints regarded as equal, the modulo distance measure (as explained in full detail in

[11]) is used.

Particles that were ignored in the second stage due to low �rst stage weightings still require a

second stage weight for the �lter to propagate forward. As there is no distance measure calculated

for these particles, they are given a second stage dissimilarity value equal to twice the largest value

calculated in the second stage. The second stage weights for all the particles can now be calculated

using equation (5.22).

6.2.2.3 Filter Output and Updating the Filter Model

Once all the �rst and second stage weights have been calculated a �lter output can be obtained. The

�rst and second stage weights for each particle are multiplied together, after which all the weights

are normalized to produce a �nal weight for each particle. A weighted average of all the particles is

taken to �nd the �lter output X:

X(x, y) =
n∑
i=0

wipi(x, y). (6.11)

The model that is being tracked must now be updated for the next iteration of the �lter. Af-

ter �nding X, the �rst and second stage descriptors are calculated around that point, and those

descriptors are used for the next iteration of the �lter.

The next section looks at combining the data from the 2D trackers to estimate the 3D position

and track players in real-world coordinates.

6.3 Tracking in 3D

Once players are successfully tracked in 2D it becomes possible to estimate and track their 3D

positions. To accomplish 3D tracking the data from the 2D tracking is required for each player in

each view. This 3D data can then be fed back to the 2D trackers to check and possibly correct errors

in the 2D tracking. This forms a feedback loop as illustrated in �gure 6.9.
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Figure 6.9: Tracking feedback loop: 2D data is used to calculate 3D points which are fed back to
the 2D trackers for error correction.

The rest of this section details the processes of combining the various views, triangulating the

player positions and the feedback loop.

6.3.1 Matching Players Between Views

Before triangulation of player positions becomes possible it is necessary to match the players between

views. Several options exist when trying to accomplish this, such as shape, colour and position.

Shape and colour methods operate by quantifying the shape and/or colour aspects of the person

being tracked using, for example, edge or colour histograms. These histograms can be compared

to histograms of players being tracked in di�erent views, and should a match be found they are

assumed to be the same player in the di�erent views.

These methods can fail, however, when applied to the problem of tracking sports players. Colour

methods are ine�ective as players on the same team will all be wearing similar clothing. Attempting

to match players in this situation will result in multiple matches making it impossible to know

which is the correct match. Shape matching on the other hand fails as the player shape may vary

drastically when viewed from di�erent angles. Figure 6.10 illustrates the problems that arise when

attempting shape or colour matching.
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Figure 6.10: Di�culties that arise from matching players between views using shape or colour
matching.

Position matching estimates the position of the player on the �eld from each view individually.

This estimation may not be highly accurate, but it does allow one to identify clusters of estimated

points. These points will indicate the presence of a player on the �eld and the corresponding

projections of the players in the 2D views.

The single view estimation begins by �nding the line in 3D passing through the tracked point on

the image plane (see section 3.4.3 for details on calculating the line equations). Once this line has

been found the intersection between the line and a plane some distance above the �eld is calculated.

According to [59] the average height of a male in South Africa is 168 cm, indicating that a plane 84

cm above the playing �eld should be chosen when tracking the center of the player. Similarly the

average height of a female in South Africa is 158 cm, indicating a plane 79 cm above the playing

�eld.

After the intersection points have been calculated they can be compared to intersection points

from di�erent views. If clusters of intersection points are found close to one another then a match is



CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION 62

Figure 6.11: Matching players in di�erent views using single view position estimation. Di�erent
colours indicate people detected in di�erent views.

made between the di�erent views. See �gure 6.11 for an illustration of the process. If two or more

intersection points from a single view are located close to each other, i.e. during an occlusion, that

location cannot be assigned with a high level of certainty and it is ignored until the two tracked

players move away from one another. Also note that once a match has been made, that match

remains for the rest of the program execution and the matching step does not need to be repeated.

Another advantage of this matching method is that the calculation of the 3D lines is also required

for the triangulation step. This has the e�ect that the matching step does not greatly increase

computational time.

6.3.2 Triangulating Player Positions

Once all the players are tracked in each of the video sequences the positions of players can be

triangulated on the �eld. Two options exist for triangulating from multiple views:

• pairwise, back-projection error minimizing triangulation;

• multi-view, forward-projection error minimizing triangulation.

In the �rst case the object is triangulated for each possible pair of cameras using back-projection

error minimization techniques as discussed in section 3.4.1. This will give 1
2n(n− 1) solutions when
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the object is visible by n cameras. These solutions may then be combined to get a �nal point by

taking the average or least-squares estimate of the set of points. The second option triangulates a

single point using all views in a single step, by minimizing the forward projection error rather than

the backward projection error.

Tests of the two techniques gave similar results (see section 7.2.4), causing a decision between the

two to hinge on computational speed. In this respect the multi-view triangulation is superior to pair-

wise triangulation due to the fact that multi-view triangulation increases linearly in computational

complexity with the number of cameras while pairwise triangulation is of order n2.

6.3.3 Error Correction

When tracking the 3D positions of players using multiple cameras, this 3D data can be used to

increase the accuracy of the tracking in the individual camera scenes. By comparing the 3D position

obtained by triangulation to an estimation of the position based only on each view individually it

becomes possible to detect and correct errors in the single view tracking.

After triangulating a player based on the 2D tracking results a set of distance measures can

be calculated between the triangulated point and the projected point from each camera, using the

Euclidean distance. This projected point is the same point as calculated in section 6.3.1 when �nding

player matches.

If any of the distance measures are greater than some threshold it may indicate that there is a

problem with the corresponding 2D tracking. To correct this error the player's location is triangu-

lated a second time, using only tracking results from those trackers where the distance measure is

below the threshold. This new 3D point, X, is then projected back to the discredited views using

the standard camera equation:

x = PX. (6.12)

The tracker corresponding to that player in that view can then be restarted at the calculated

point x. If less than two of the projection points fall within the threshold then there is no reliable

way to determine which of the trackers have failed and which of them are still accurate. In this case

the player may need to be dropped from 3D tracking and all corresponding 2D trackers stopped.
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The player will then be detected and tracked again as a new entity as if it is a new player on the

�eld.

In this chapter the various components that were discussed earlier were combined to form a

complete multi-view 3D tracking system. In the next chapter the individual components, as well as

the system as a whole are tested and the results presented.



Chapter 7

Results

This chapter presents the results of the system that has been described in the previous chapters.

The individual components that make up the whole of the system are �rst tested on their own. This

allows one to identify weak and strong aspects of the system where further work should focus. After

the components have been tested the system as a whole is considered.

7.1 Software

As mentioned in section 1.3, part of the aims for this thesis was to develop the code to implement

the overall system. To this end, four modules were developed during the course of the thesis: a

calibration module, a detection module, a 2D tracking module and a triangulation module. For

the calibration module OpenCV [6] was used to perform the internal calibration while the external

calibration was developed manually. Each of the other modules was developed without the aid of

external modules. The system could have been developed for a graphical processing unit (GPU)

that could push the system into a real-time implementation, but it was considered to be outside the

scope of this project.

65
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7.2 Component Results

The component results are broken down into three sections: motion detection, 2D tracking and 3D

tracking. Each component is tested to �nd its various strengths and weaknesses and the results are

then discussed.

7.2.1 Motion Detection

The motion detection subsystem was applied to four video sequences of 200 frames each (frames were

captured at 640 × 480, and upsampled to 1280 × 960 using bicubic interpolation). Sample frames

are shown in �gure 7.1. Sequences 1 and 2 are real world recordings, whilst sequences 3 and 4 were

synthetically generated using the Unreal Development Kit (UDK) [60], recorded with WeGame [61].

The synthetic data is useful for testing purposes since ground truth values are available.

Two quantities were measured: precision and recall. Precision is a measure of how accurate

the detection is and is calculated as the number of correct detections (players) divided by the

total number of detections. Recall gives an indication of how complete the detection is and gives

the number of correct detections divided by the number of objects (in this case players) that are

actually present. Of course, ideally these two values should both be as close as possible to 1. In an

e�ort to measure precision and recall, manual annotation of the video frames were performed.

A crucial user-speci�able parameter a�ecting precision and recall in the motion detection system

is the threshold t discussed in section 6.2.1.2. It speci�es the amount of motion needed for a blob to

be classi�ed as a moving object. Table 7.1 below lists the obtained precision and recall for the four

video sequences, for a few di�erent values of the threshold t.

The poor performance of t = 5 in all the sequences comes as a result of over-detection. Many

regions that do not actually contain moving objects are falsely detected. An increase in t leads to

fewer false detections but, at some stage, starts to exclude true objects from being detected (i.e. low

recall).

Most of the missed and incorrect detections occur as a result of one player occluding another or

when two players are close together. In the �rst case only the player visible to the camera is detected
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(Seq 4)

(Seq 3)

(Seq 2)

(Seq 1)

Figure 7.1: Sample frames from motion detection test sequences.

correctly. In the second case it may happen that neither of the players is detected correctly because

they appear as one large blob. Figure 7.2 gives an example of each of these two problems. Missed

detections can also result from players standing still or moving very slowly for a long period of time.



CHAPTER 7. RESULTS 68

Figure 7.2: Typical examples of situations causing faulty detections: one player occluding another
(left) and two players in close proximity to each other (right).

7.2.2 Passing Detection Results to the Tracker

The experimentally obtained precision and recall of the motion detector, as a stand-alone system, are

not bad but not exceptionally good either. However, as mentioned before, it is not that important

that a player be detected at the very �rst possible instance.

Far more crucial is the motion detector's success rate at passing players to the tracker. Recall

from section 6.2.1.3 that an object needs to be detected for n frames before eventually being passed

Sequence 1
t = 5 t = 8 t = 10 t = 15 t = 20

Precision 0.60 0.85 0.94 0.97 0.99
Recall 0.77 0.87 0.84 0.52 0.33

Sequence 2
t = 5 t = 8 t = 10 t = 15 t = 20

Precision 0.78 0.91 0.94 0.95 0.98
Recall 0.76 0.85 0.77 0.54 0.15

Sequence 3
t = 5 t = 8 t = 10 t = 15 t = 20

Precision 0.85 0.90 0.91 0.97 0.96
Recall 0.77 0.82 0.71 0.31 0.04

Sequence 4
t = 5 t = 8 t = 10 t = 15 t = 20

Precision 0.94 0.97 0.98 0.98 0.97
Recall 0.92 0.94 0.95 0.97 0.57

Table 7.1: Precision and recall of the motion detection on the video sequences. The threshold t
speci�es the amount of motion necessary in a region for it to be classi�ed as a moving object.
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on. For these experiments we used n = 5.

In order to investigate the success of the motion detection stage in the larger tracking system,

we measure the following four quantities:

(i) average number of frames taken to pass a new object to the tracker;

(ii) number of true objects missed entirely and never passed to the tracker;

(iii) number of incorrect detections (non-players) that are passed to the tracker;

(iv) number of true objects correctly passed to the tracker.

These measurements are presented in Table 7.2 for the four test video sequences. Table 7.3 lists

for each of the players visible in the four sequences the number of frames that she is in view before

being passed on to the tracker by the motion detector.

In the �rst sequence there are no missed or incorrect handovers. The average time taken by the

motion detector to hand over players is rather slow but, as is apparent from Table 7.3, this is mainly

due to two players. The �rst of these (a4) entered the scene in close proximity to another player

and only once she moved away from the other player was she picked up by the motion detector as a

separate object. The second player with a long detection time (a5) was the goalkeeper, who stood

still for a long time, and was only detected after signi�cant movement.

The missed detection in the second sequence resulted from a player that entered the scene in

close proximity to another player, towards the end of the video, and never moved far enough away

from the other player for her to be detected as a new player. The incorrect detection in the second

sequence came as a result of slight camera movement so that the background model was, for a short

Sequence 1 Sequence 2 Sequence 3 Sequence 4
(i) avr time per handover 27.3 14.8 5.7 5.7
(ii) missed players 0 1 0 0
(iii) incorrect handovers 0 1 0 0
(iv) correct handovers 6 11 7 7

Table 7.2: Measurements indicating the success of the motion detection system at its primary role
of handing over correct objects to the tracker.



CHAPTER 7. RESULTS 70

Sequence 1
player a1 a2 a3 a4 a5 a6

detection time 5 8 19 35 88 9

Sequence 2
player b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11
detection time 5 5 5 5 5 5 5 5 8 15 100

Sequence 3
player c1 c2 c3 c4 c5 c6 c7
detection time 5 5 5 5 5 6 9

Sequence 4
player d1 d2 d3 d4 d5 d6 d7

detection time 5 5 5 5 5 5 10

Table 7.3: Detection times for all the players in the video sequences. Each is given as the number of
frames that the player is actually in view before being passed to the tracker by the motion detector.

period of time, inaccurate. Player b11 also entered the scene in close proximity to another player,

hence the longer detection time.

Sequences three and four have no missed players, no incorrect handovers and low average de-

tection times. These two sequences illustrate the e�ectiveness of the detection stage, providing

exceptional results under near ideal conditions.

7.2.3 Tracking

Before quantitative results for the tracking stage are presented, a note must be made on the use of

UDK videos as opposed to real-life videos. Whilst the UDK videos are useful as the ground truth

for them are known, they may not provide full insight into the reliability of the system in real-life

situations. For the quantitative results UDK videos are used for their ground truth properties. To

illustrate that the tracking system does work for real-life videos, �gure 7.3 shows some results for

tracking from a video recorded with a hand-held camera. Each instance is a set of 100 frames.

To test the accuracy of the 2D player tracking a single humanoid was tracked through four

sequences of 286 frames. For each frame the center of the humanoid was manually annotated. The

distance between the center of the tracking block (a blocksize of 80×40 was used) and the annotated
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Figure 7.3: Tracking players through a video sequence as recorded by a hand-held video camera.
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Figure 7.4: Results of tracking a humanoid in 2D through a video sequence. The red points are the
manually annotated points and the blue points are the tracking results.

Sequence Maximum deviation Average deviation
1 19.5 8.08
2 18.1 6.29
3 25.7 7.67
4 21.4 7.01

Table 7.4: Maximum and average deviation of tracked players measured against manually annotated
ground truth positions (measured in pixels).

point was calculated for each frame. Figure 7.4 illustrates the results of the four sequences. The red

points are the annotated points and the blue ones the tracking results.

Table 7.4 shows the maximum and average deviation between the tracked and annotated points.

The average deviation between the tracked and annotated points ranges between 6.29 and 8.08 pixels

in the four sequences. This average deviation result indicates that the tracking system remains fairly

close to the actual path for the duration of the sequence. The maximum deviation results may be

a cause for some concern. If the deviation exceeds 30 pixels in a purely horizontal direction (or

60 pixels in the vertical) there is a risk of the tracker losing the player. Fortunately the highest

maximum deviation found was 25 pixels and this was not in a horizontal direction.
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Figure 7.5: Tracking a player through a partial occlusion.

Figure 7.6: Tracking a player through a full occlusion.

Finally the ability of the tracking system to handle occlusions must be discussed. A partial

occlusion (from the camera's point of view) occurs when one player covers part of another for some

period of time. If the area of occlusion is small so that most of the partially occluded player remains

visible, the tracker is able to follow her correctly. Figure 7.5 shows an example before, during and

after such a partial occlusion.

In a full occlusion one players obscures another more-or-less completely. Figure 7.6 shows an

example. In this case the tracker loses the occluded player and may, after the occlusion when the

two players separate, erroneously follow the occluding player. This may happen because (in our

current system) template models are updated rather quickly so that, in the event of a full occlusion,

both trackers may lock onto the front-most player.

In the following section the tracking system is combined with triangulation to calculate the

accuracy of 3D position estimation.
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7.2.4 Triangulation

The two triangulation methods, forward and back projection error minimization, are analyzed and

compared in two experiments. In the �rst experiment random points were created and projected

onto the image planes of several cameras, with noise added. The points were then triangulated

using the noisy projections and the distance between the actual point and the triangulated point

were calculated. In the second experiment several synthetic sequences of a humanoid running on

a preplanned path were created. The humanoid was then tracked and triangulated from multiple

views using the discussed method. Sequences were created using the UDK.

The �rst experiment will provide insight into the accuracy of each of the projection methods in

a controlled arti�cial environment. The second experiment is done to measure the accuracy of the

triangulation methods on typical data that would be encountered when the system is applied to a

real match.

For the �rst experiment a random point within the combined �eld of view of all the cameras

is created. This point is projected onto each camera's image plane and then some noise is added

to the projected point. The original point is recalculated using the two triangulation methods.

Figure 7.7 shows the results of this experiment. The average distance between the original point

and the triangulated point (over 10, 000 iterations) is plotted against the amount of noise added to

the projected point. From this �gure it can be seen that for low noise situations the triangulation

accuracy is similar for the two methods. At higher noise levels the forward projection method

performs better than the back projection method, with triangulation results 4% better at projection

noise of 50 pixels.

For the second test synthetic sequences were created using UDK. By arti�cially creating a se-

quence in UDK it is possible to record a humanoid running on a pre-planned path for which the

ground truth is known. This allows for more accurate analysis of the triangulation technique than

using real-world data for which ground truth is not known. Figure 7.8 shows the results for four

such sequences. The solid blue line in each �gure is the ground truth path that the humanoid ran

over, as viewed from above. The blue points are the back projection results and the green points

are the forward projection results.
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Figure 7.7: Performance comparison of forward and back projection triangulation techniques.

Figure 7.8: Triangulation of two image sequences using forward (green) and backprojection (blue)
methods. The solid blue line indicates the ground truth.
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This test again indicates that triangulation results for the two methods are similar. This test

also indicates that the proposed tracking and triangulation method succeeds at locating a player on

the �eld of play. In the given �gures one unit of measurement corresponds to 2 cm on a real-life

�eld. The maximum deviation from the ground truth between the four sequences is 20 units (40

cm) while the average deviation is about 5 units (10 cm).

7.3 System Results

In �gure 7.9 the full system results can be seen for tracking 4 players as seen in 4 views over 286

frames (10 seconds). The coloured dots indicate the triangulated position for each player through

the sequence, as viewed from directly above the �eld. The approximate position of the cameras

are shown by the small camera drawings. As can be seen from this �gure the system as a whole

functions as desired: detecting, tracking and triangulating each of the players. This is, however, an

ideal case and further testing of some possible problem scenarios needs to be done.

During full system testing two cases of interest were identi�ed. The �rst case is when a player

leaves or enters a camera �eld of view and the second is when a 2D tracker loses its player due to

occlusion.

In �gure 7.10 the solid lines indicates �eld of view boundaries of the di�erent cameras, and the

blue dots indicates the path followed by the player. At point (a) the player moves out of the view of

the camera indicated by the green lines. At this point the corresponding 2D tracker is stopped and

the player is triangulated with the remaining views. At point (b) the player moves back into the

�eld of view of the camera and is tracked in that view again. Single view position estimation showed

that this view corresponded to the player already being tracked and the player is then triangulated

using the data from that view as well.

The second case is illustrated in �gures 7.11 and 7.12, where in one view the two players move

in such a way that the one player occludes the other whilst in the other two views they move apart

from each other. In frame (1) the players are some distance away from each other. By frame (10)

they have started to occlude each other and at frame (32) they are heavily occluded. As can be seen

in frame (48) the tracker indicated by the blue square has begun to track the incorrect player. At
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Figure 7.9: Full system results for tracking four players though 286 frames. Positions at �rst and
last frames are noted. Frame 1 is also shown for each camera.
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Figure 7.10: Tracking a player crossing the �eld-of-view line of a camera, shown here from a top
down view.

Figure 7.11: Triangulation results of the multi-view tracking in �gure 7.12, as viewed from above.

this point the system detected that the 2D tracker has lost the player and moved from the correct

path and attempts to correct the mistake. In frame (49) the 2D tracker in the �rst view has been

corrected by back projection after triangulating the player using the rest of the views. By frame

(57) the 2D tracker has corrected itself and is tracking the player correctly again.

The plot of the players' positions in �gure 7.11 illustrates the e�ect of this occlusion. At point

(a) the triangulation result begins to drift from the ground truth line. At point (b) the 2D tracker

is corrected and the triangulation results snap back to the correct ground truth line.
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(57)

(49)

(48)

(32)

(10)

(1)

(Camera 1) (Camera 2) (Camera 3)

Figure 7.12: Automatic correction of tracking occlusion. Frame numbers are listed on the left of the
images.



Chapter 8

Conclusions and Future Work

In this thesis the problem of estimating the positions of players on a sports �eld was discussed. Past

techniques, required components and overall system design were all covered in some detail.

8.1 Conclusions

At the start of the thesis several existing approaches to position estimation of people in a known

environment were discussed in methodology and with regards to their strengths and weaknesses.

This allowed us to identify possible routes to follow and areas to focus on.

After having discussed previous attempts at solving the problem of position estimation the var-

ious components required to build a complete system were discussed. By comparing the di�erent

components it was possible to decide on a subset of them that would provide an e�ective solution to

the stated problem. Motion detection proved to be a simple, e�ective player detection solution and

the particle �lter was found to be a useful tool for 2D tracking. Accurate multi-view triangulation

that shares computation with previous steps was chosen for position estimation.

In chapter 6 the various components were combined to form a complete system that is able to

detect and provide position estimates for players on a sports �eld. Some algorithms discussed earlier

were expanded upon and feedback between di�erent stages of the systems was introduced to increase
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accuracy. This system was analyzed in chapter 7 to determine if it is capable of solving the given

problem.

The results obtained for the system were very promising overall. While some improvements can

be made the system is able to solve the initial problem to a satisfactory extent. The lesser goal of

real-time processing was not achieved during implementation, but the use of a graphical processing

unit (GPU) along with some algorithm optimization should achieve this goal with relative ease.

8.2 Future Work

As stated in the previous section, there is some room to improve on the system to increase the

accuracy of the results. Two of these areas would be to remove the �xed block size during tracking

and improve 2D occlusion handling.

The �xed block size used during tracking provides a minor problem during tracking as the player

size on the image may vary depending on how far away they are from the camera. This causes the

tracker to lose accuracy in the 2D stage, which propagates to less accurate triangulation results.

Allowing the block size to vary would go some distance to improve this problem. One method would

be to vary size of the block as a function of the position of the player in the image, since each camera

is calibrated to the playing �eld.

The introduction of multiple cameras gives the system some robustness against incorrect 2D

tracking during occlusions. However solving the problem in the 2D stage will provide better results

overall. Some work on this stage to allow 2D trackers to correctly track through occlusions without a

feedback loop from the triangulation step would be of great aid. This is a di�cult problem, however,

which would require a more accurate motion model of human movement in the particle �lter. Since

people, especially sports players, can move erratically and unpredictably such a model can be hard

to specify.

Adding a player recognition component to the system may increase the accuracy, as well as the

useability of the system. Some feature recognition algorithm can be trained to recognise the players

by using footage of previous games. If this is done, 2D trackers can be grouped based on whom they

are tracking without the need for a ground plane matching stage. Such a system may also allow the
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system to be implemented for contact sports such as rugby. In the current system, an event such as

a ruck or a maul would likely cause most of the 2D trackers to lose their players. This in turn will

cause the 3D tracking to fail, and the 2D trackers will be stopped. As the players move apart they

will be found as new players by the motion detector and be tracked again. If a recognition stage is

implemented the system will be aware that they are the same players as before, allowing the system

to continue to track them.

Using the data provided by this system to perform sports analysis could also provide some areas

for future work. Post processing or �ltering of the output data might be required to provide a more

accurate estimate of how far a player travelled during the game as the output data may give a much

longer distance than the ground truth, as the estimated path typically forms a wavy line around the

ground truth path.

The work discussed in this thesis can be applied to many real-life situations. The main focus was

on sports applications, but with some modi�cation the system may be used for security or logistic

purposes as well. With cameras and computers becoming more and more accessible and taking an

ever increasing role in our lives, such research into how they can be used to improve or aid real-life

situations is becoming all the more important.



Appendix A

QR Factorization

QR factorization is an important tool used in linear algebra. It is especially useful for solving linear

least squares problems. The factorization decomposes a matrix A into two matrices Q and R, where

Q is orthogonal and R is an upper triangular matrix. To �nd the QR decomposition we use the

three Givens rotations:

G1 =


c 0 s

0 1 0

−s 0 c

 ,

G2 =


c s 0

−s c 0

0 0 1

 ,

G3 =


1 0 0

0 c s

0 −s c

 ,

where c = cos(θ) and s = sin(θ). First we left multiply A by G1, with θ = arctan(A3,1
A1,1

), to set

A3,1 to zero. Next we use G2 and G3 respectively to set A2,1 and A3,2 to zero. We are now left
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with an upper triangular matrix R so that

G3G2G1A = R. (A.1)

The Q matrix is obtained by combining the three Givens rotations with QT = G3G2G1. This

gives us:

QTA = R, (A.2)

so that

A = QR. (A.3)



Appendix B

Singular Value Decomposition

Singular value decomposition (SVD) takes a rectangular n × p matrix, A, and decomposes it into

three matrices:

A = USVT , (B.1)

where U is n× n, S is n× p and V is p× p. Also

UTU = I (B.2)

VTV = I (B.3)

i.e. U and V are orthogonal, and S contains the singular values of A along its main diagonal.

To calculate the SVD we multiply (B.1) from the left and the right by AT respectively. This

gives us:

AAT = USVTAT

= USVT [USVT ]T

= USVTVSTUT

= USSTUT

AATU = USSTUTU

AATU = USST (B.4)
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and following a similar argument

ATAV = VSTS. (B.5)

From this one can see that the columns of U correspond to the eigenvectors of the symmetric

matrix AAT and the columns of V to the eigenvectors of ATA. The singular values contained in

S are the positive square roots of the eigenvalues of either AAT or ATA. As both AAT and ATA

are symmetric matrices we know that their eigenvalues are always real.
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