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ABSTRACT 
 

The mammalian neocortex contributes to the increasing functional complexity of the mammalian brain, 

partly because of its striking organisation into distinct neuronal layers. The development of the neocortex 

has been well studied because disrupted neurodevelopment results in several human diseases. 

 

The basic principles of neocortical development have been well established for some time; however the 

molecular mechanisms have only recently been identified. One major advance in our understanding of 

these molecular mechanisms was the discovery of Reelin, an extracellular matrix protein that directs the 

migration of neurons to their final positions in the developing neocortex.  

 

Reelin is a large multi-domain protein that exerts its functions by binding to its ligands on the cell surface 

and initiating a signal transduction cascade that ultimately results in cytoskeletal rearrangements. Several 

investigations have been undertaken to elucidate the functions of each of these domains to gain a better 

understanding reelin’s functions.  

 

We have previously identified the WR40 repeat protein 47 (WDR47), a protein of unknown function, as a 

novel putative ligand for the N-terminal reeler domain of reelin. To gain better understanding into the 

functional significance of this interaction, the present study sought to identify novel WDR47- interacting 

proteins. In order to achieve this, a cDNA encoding a polypeptide that contains the two N-terminal 

domains of WDR47, i.e. the Lis homology and the C-terminal Lis homology domain (CTLH) was used as 

bait in a Y2H screen of a foetal brain cDNA library.  Putative WDR47 ligands were subsequently verified 

using 3D in vivo co-localisation. 

 

Results of these analyses showed that SCG10, a microtubule destabilizing protein belonging to the 

stathmin family of proteins, interacted with the N-terminal of WDR47. The identification of SCG10 as a 

novel WDR47 interacting protein not only sheds some light on the role and function of WDR47 but also 

aids in a better understanding of the reelin pathway and cortical lamination. Moreover, the data presented 

here, may also provide researchers with new avenues of research into molecular mechanisms involved in 

neuronal migration disorders. 
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OPSOMMING 

 

The mammalian neocortex contributes to the increasing functional complexity of the mammalian brain, 

partly because of its striking organisation into distinct neuronal layers. The development of the neocortex 

has been well studied because disrupted neurodevelopment results in several human diseases. 

 

The basic principles of neocortical development have been well established for some time; however the 

molecular mechanisms have only recently been identified. One major advance in our understanding of 

these molecular mechanisms was the discovery of Reelin, an extracellular matrix protein that directs the 

migration of neurons to their final positions in the developing neocortx.  

 

Reelin is a large multidomain protein that exerts its functions by binding to its ligands on the cell surface 

and initiating a signal transduction cascade that ultimately results in cytoskeletal rearrangements. Several 

investigations have been undertaken to elucidate the functions of each of these domains to gain a better 

understanding reelin’s functions.  

 

We have previously identified the WR40 repeat protein 47 (WDR47), a protein of unknown function, as a 

novel putative ligand for the N-terminal reeler domain of reelin. To gain better understanding into the 

functional significance of this interaction, the present study sought to identify novel WDR47- interacting 

proteins. In order to achieve this, a cDNA encoding a polypeptide that contains the two N-terminal 

domains of WDR47, ie the Lis homology and the C-terminal Lis homology domain (CTLH) was used as 

‘bait’ in a Y2H screen of a foetal brain cDNA library.  Putative WDR47 ligands were subsequently 

verified using 3D in vivo co-localisation. 

 

Results of these analyses showed that SCG10, a microtubule destabilizing protein belonging to the 

stathmin family of proteins, interacted with the N-terminal of WDR47. The identification of SCG10 as a 

novel WDR47 interacting protein not only sheds some light on the role and function of WDR47 but also 

aids in a better understanding of the reelin pathway and cortical lamination. Moreover, the data presented 

here, may also provide researchers with new avenues of research into molecular mechanisms involved in 

neuronal migration disorders. 
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LIST OF FIGURES 

 

Figure 1.1. Shows the regions within the mammalian brain. The mammalian neocortex in composed 

of the frontal lobe, the parietal lobe, the occipital lobe and the temporal lobe. 

 

Figure 1.2. Mouse embryonic development of the neocortex. Embryonic cortical development results 

in the formation of a distinct six layered adult neocortex. First wave of postmitotic neurons migrate out of 

the ventricular zone (VZ) towards the pial surface (PS) via radial glial cells (vertical bars), this causes the 

preplate (PP) to be split into the marginal zone (MZ) containing the Cajal-Retzius cells (yellow) and the 

subplate (SP, green diamonds); creating the cortical plate (CP). Each successive wave of migrating 

neurons move through the intermediate zone (IZ) and expand the CP in an ‘inside-out’ fashion, as later 

born neurons bypass their earlier born predecessors and settle within the more superficial layers near the 

PS. In adulthood, the SP degenerates forming the characteristic laminar structure of the neocortex (Taken 

from Gupta et al., 2002).  

 

Figure 1.3. Somal translocation during early corticogenesis.  Neuronal cells (green) extend a long 

branched leading process from the ventricular zone towards the pial surface; once implanted within the 

pial surface, the entire cell and cell body is retracted upwards shortening the leading process. This causes 

the neuronal cell to be moved or translocated to its’ final position within the cortical plate (Taken from 

Bielas et al., 2004). 

 

Figure 1.4. The cytoskeletal rearrangements that drive somal translocation. The leading process 

extends towards the pial surface; once attached to the pial surface cytoskeletal rearrangements are 

responsible for the retraction of the trailing process and the cell body containing the nucleus (Taken from 

Cooper, 2008). 

 

Figure 1.5. Glial guided locomotion during later stages of corticogenesis. Migrating neurons (green) 

use radial glial fibers (orange) as guidance tracts to reach their final destinations within the cortical plate. 

These radial glial tracts are anchored in the ventricular zone and extend to the pial surface (Taken from 

Bielas et al., 2004). 

 

Figure 1.6 The cytoskeletal rearrangements during glial guided locomotion. Migrating neurons attach 

via integrins and/or gap junctions to the radial glial fibers (green); cytoskeletal rearrangements move the 
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migrating cell up along the radial glial fiber until its’ correct position within the cortical plate is reached 

(Taken from Cooper, 2008). 

 

Figure 1.7. Tangential migrating cortical interneurons arising from the medial ganglionic 

eminence. (a) Cortical interneurons born in the ganglionic emenences migrate tangentially (red arrow) 

around the cortical notch to the developing cortex. (b) Cortical interneurons migrate tangentially within 

the cortex and subsequently change direction in order to enter the cortical plate. The solid red arrows 

indicate the path travelled by the cortical interneurons, while the broken red arrow shows that some 

cortical interneurons have been found to descend radially from the marginal zone into the cortical plate 

and others continue radially into the deeper cortical layers. Abbreviations: IZ, intermediate zone, LGE, 

lateral ganglionic eminence, LV, lateral ventricle; MGE, medial ganglionic eminence; MZ, marginal 

zone; SVZ, subventricular zone, VZ, ventricular zone. (Taken from Kriegstein and Noctor, 2004). 

 

Figure 1.8. Cyto-architectural abnormalities in the reeler mouse.  In the reeler cortex, the preplate 

forms normally with the exception that the first cohort of early-born migrating neurons are unable to split 

the preplate due to the absence of reelin; thus the subplate remains adjacent to the marginal zone forming 

a ‘superplate’ (SPP, a cell dense area containing the Cajal-Retzius cells, subplate neurons and few cortical 

plate neurons). The cortical plate then forms underneath the ‘superplate’, as later generated neurons are 

not able to migrate past their earlier born predecessors which leads to the formation of a disorganised and 

inverted (outside-in) cortical plate as neurons are not able to arrange themselves into distinct neuronal 

layers  (Taken from Gupta et al., 2002). 

 

Figure 1.9. Schematic representation of the reelin structure. The open reading frame predicts a 

secreted extracellular matrix glycoprotein of 3641 amino acids with a relative molecular mass of 388kDa. 

At the N terminal reelin contains a cleavable signal peptide, followed by a region with 25% identity to 

that of F-spondin (controls cell migration and neurite outgrowth). This is followed by the characteristic 

presence of a series of eight internal reelin repeats, each repeat is composed of 350-390 amino acids and 

is composed of two related subrepeats A and B, which are separated by an EGF-like motif. The epitope 

for the CR-50 antibody  is located upstream of the reelin repeats; oncebound, this antibody blocks the 

reelin-induced kinase cascade both in vitro and in vivo. The C-terminal is an area rich in arginine 

residues, which are required for reelin secretion from the Cajal-Retzius cells during corticogenesis (Taken 

from Kubo and Nakajima, 2002; Rice and Curran, 2001). 
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Figure 1.10. Molecular signalling networks regulating neuronal migration. Extracellular guidance 

cues, growth factors and adhesion molecules trigger a wide range of intracellular signalling cascades 

which ultimately end in the coordinated regulation of cytoskeletal dynamics. The reelin signalling 

pathway is well characterized and explained in the literature above (Taken from Ayala et al., 2007). 

 

Figure 1.11. ‘Detach and stop’ model for the role of reelin in neuronal migration and cortical 

lamination. Migrating neurons (blue) are numbered in order of birth, radial glial fibers (green), reelin-

dependent actions are in red, the grey area represents the marginal zone (MZ) and the lowest white region 

the proliferative ventricular zone (VZ). In the normal cortex, layer VI neurons migrate from the VZ along 

their radial glial guides. As the cell soma enters the MZ, reelin induces the detachment from glial tracts, 

arresting migration. In the reeler mutant, layer VI neurons do not receive the reelin detachment signal and 

fail to detach from their glial guides, these neurons continue to migrate to the MZ. Later born neurons 

accumulate below earlier born neurons, due to traffic jams created along the glial fibers (Taken from 

Cooper, 2008). 

 

Figure 1.12. ‘Detach and go’ model for the role of reelin in neuronal migration and cortical 

lamination. Migrating neurons (blue) are numbered in order of birth, radial glial fibers (green), reelin-

dependent actions are in red, the grey area represents the marginal zone (MZ) and the lowest white region 

the proliferative ventricular zone (VZ). Early in development of the normal cortex, reelin acts on the 

leading edge of layer VI neurons inducing somal translocation to just beneath the MZ. Later born neurons 

then migrate by locomotion along radial glial, as the leading edge reaches the MZ reelin triggers 

detachment from the glial tracts and induces the anchoring of the leading process to the MZ, the cell body 

then moves to its correct position by somal translocation. In the reeler cortex, layer VI neurons are unable 

to migrate via somal translocation. Thus later born neurons migrate normally via glial guided locomotion, 

but fail to detach and move their soma to the top of the cortical plate, resulting in neuronal congestion and 

causing the inverted cortical layers (Taken from Cooper, 2008). 

 

Figure 1.13. Domain structures of WDR47 and LIS1. A comparison of the domain structures of 

WDR47 and LIS1, showing that WDR47 and LIS1 have similar domain structures namely the Lis 

homology domain (LisH, green rectangle) and the same number of WD40 repeating units (blue triangles). 

Additionally, WDR47 also contains a C-terminal Lis homology domain (CTLH, yellow oval).      

 

Figure 2.1. Shows basis of the Yeast 2- Hybrid technique.  
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Figure 2.2. Schematic flow diagram of the Y2H analysis and verification studies. The flow diagram 

briefly sums up the steps followed in the present Y2H assay. 

 

 

Figure 3.1. Image of the PCR amplified N-terminal domain of WDR47, representing a product of 279bp. 

 

Figure 3.2. Image of the bacterial colony PCR, to identify which clones carried N-terminal domain of 

WDR47 (red arrow) and clones with no WDR47 inserts (blue arrow). 

 

Figure 3.3. Linear growth curve of yeast strain AH109 transformed with non-recombinant pGBKT7 and 

pGBKT7-WDR47 bait constructs. In order to determine whether the bait constructs had toxic effects on 

the AH109 strain, the growth rate of the pGBK-bait transformants were compared to the non-recombinant 

pGBK. The growth rate was determined by calculating the slope of each of the curves. The slopes were 

comparable indicating that the bait constructs had no toxic effect on the growth of the host yeast strain. 

 

Figure 3.4. Fluorescence imaging of Cul7 and WDR47 in GT-17 cells. (A) YFP-tagged WDR47 

(yellow). (B) Cullin7 TxRed labelled (red). (C) Co-localisation of WDR47 and Cul7 generated from Z-

stack (yellow). (D) Overlay of images A-C with Hoechst H-33342 labelling of the nuclei (blue). 

Magnification: 60X oil immersion before 70% reduction.   

 

Figure 3.5. Fluorescence imaging of Guk1 and WDR47 in GT-17 cells. (A) YFP-tagged WDR47 

(yellow). (B) Guanylate Kinase 1 TxRed labelled (red). (C) Co-localisation of WDR47 and Guk1 

generated from Z-stack (yellow). (D) Overlay of images A-C with Hoechst H-33342 labelling of the 

nuclei (blue). Magnification: 60X oil immersion before 70% reduction. 

 

Figure 3.6. Fluorescence imaging of SNAPIN and WDR47 in GT-17 cells. (A) YFP-tagged WDR47 

(yellow). (B) SNARE-associated protein (SNAPIN) TxRed labelled (red). (C) Co-localisation of WDR47 

and SNAPIN generated from Z-stack (yellow). (D) Overlay of images A-C with Hoechst H-33342 

labelling of the nuclei (blue). Magnification: 60X oil immersion before 70% reduction. 

 

Figure 3.7. Fluorescence imaging of SCG10 and WDR47 in GT-17 cells. (A) YFP-tagged WDR47 

(yellow). (B) Stathmin-like 2 (SCG10) TxRed labelled (red). (C) Co-localisation of WDR47 and SCG10 

generated from Z-stack (yellow). (D) Overlay of images A-C with Hoechst H-33342 labelling of the 

nuclei (blue). Magnification: 60X oil immersion before 70% reduction. 

C 
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Figure 4.1. Schematic representation of the microtubule destabilizing protein SCG10. The N-

terminal blue represents the palmitoylation domain responsible for membrane anchoring of SCG10 to 

growth cone vesicles. The purple represents the regulatory sub-domain of the conserved stathmin-like 

domain, while the red triangles represent the serine phosphorylation sites. The green represents the 

interacting sub-domain of the stathmin-like domain, which is responsible for the tubulin interaction and 

MIT destabilizing activity of SCG10.  

 

 

Figure 4.2. Shows the dynamic instability of microtubules in light of SCG10. Microtubules are 

polymer structures composed of α/β heterodimers. GTP-bound tubulin is added to the plus end of growing 

microtubules. Microtubules are also dynamic polymers which are capable of switching between phases of 

growth (rescue) and shrinkage (catastrophe). SCG10 increase the dynamic instability of microtubules by 

promoting catastrophe and by sequestering tubulin, thus dynamic instability is crucial in neurite extension 

and elongation (Taken from Grenningloh et al.,2003). 
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CHAPTER ONE: INTRODUCTION 

 

1.1 NEUROLOGICAL AND NEURODEVELOPMENTAL DISORDERS 

Neurological and behavioural disorders are major health problems endemic to all countries around the world, 

and cause great suffering to affected individuals as well as to their family members. According to the World 

Bank, neurological and behavioural disorders combined account for approximately 13% of the Global 

Disease Burden; a burden greater than that of AIDS, tuberculosis and malaria combined (11.4%) (World 

Bank. Data and Statistics, http://go.worldbank.org). Moreover, these disorders are among the ten leading 

causes of disability in the United States and other developed countries (World Health Organization, 

http://www.who.int/mental_health).  

 

Global estimates from the World Health Organisation (WHO) showed that in 2004 approximately 154 

million people suffer from depression, 24 million people suffer from Alzheimer’s and other dementias, 25 

million people suffer from schizophrenia and a staggering one million people die due to suicide each year 

(World Health Organization, http://www.who.int/healthinfo). It is further estimated that 1 in 4 families have 

at least one family member suffering from some form of neurological disorder (World Health Organization, 

http://www.who.int/healthinfo). Despite the increasing number of affected individuals, some low income 

countries, in which neurological disorders seem to thrive due to adverse circumstances and malnutrition 

(World Health Organization, http://www.who.int/healthinfo), spend less than 1% of the countries health 

budget on mental health. These and many more daunting statistics  highlight the increasing numbers of 

affected individuals, and the need for a better understanding of such debilitating disorders in order to develop 

better diagnostic methods and treatments.  

 

Our laboratory has undertaken a keen interest in neuro-psychiatric disorders, particularly obsessive-

compulsive disorder (OCD) and schizophrenia both of which are severely debilitating illnesses. Even though 

it is well known that both OCD and schizophrenia are multifactorial disorders in which both genetic and 

environmental factors play essential roles, their precise aetiologies remain relatively unknown. This is partly 

due to the intricacy of the human central nervous system as well as the complex nature of human behaviour. 

However, in recent years, several lines of evidence have emerged suggesting these disorders are, in part, 

caused by defects in neurodevelopment (Hyde et al., 1992; Marenco and Weinberger, 2000; Rosenberg et 

al., 1997; Weinberger, 1987) (section 1.5). Therefore in order to fully elucidate the intricate 

pathophysiologies of neurologic disorders such as OCD and schizophrenia, a clearer understanding of the 

processes involved in neurodevelopment may be helpful. 

 

 In an effort to gain a better understanding of the underlying mechanisms governing neurodevelopment, the 

present study sought to investigate some of the molecular mechanisms involved in this process. More 
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specifically, the focus of this investigation is the identification of novel molecular components involved in 

the development of the mammalian neocortex, as this highly evolved brain structure has been implicated in 

the pathogenesis of OCD, schizophrenia and several other devastating neurological disorders (Fish, 1957; 

Hyde et al., 1992; Marenco and Weinberger, 2000; Rosenberg et al., 1997; Watt, 1972; Weinberger, 1987). 

For this reason, the sections that follow will describe both cellular and molecular mechanisms involved in the 

development of the mammalian neocortex.   

 

1.2 THE MAMMALIAN CEREBRAL CORTEX 

The largest region of the mammalian forebrain is composed of cerebral hemispheres which make up the 

cerebral cortex. This specific region of the brain is highly convoluted to increase the surface area, and is 

responsible for numerous functions such spatial reasoning, sensory perception, generation of motor 

commands, and, in humans, for conscious thought, language and higher cognition ( Figure 1.1) (Douglas and 

Martin, 2007; Kaas, 2000; Kaas, 2007). It is believed that the complexity of this brain region gives rise to its 

superior functions (Douglas and Martin, 2007; Herculano-Houzel et al., 2007; Kaas, 2007). The newest 

evolved part of the cerebral cortex is a region known as the neocortex, this region is unique to mammals and 

differs greatly in appearance, size and convolutions between species, and in humans the neocortex occupies 

90% of the cerebral cortex housing billions of neurons (Figure 1.1) (Douglas and Martin, 2007; Herculano-

Houzel et al., 2007; Kaas, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Regions within the mammalian brain. The mammalian neocortex in composed of the frontal 

lobe, the parietal lobe, the occipital lobe and the temporal lobe (Taken from, 

http://www.aphorgcviimagesbrain).  

 

 



5 

 

 

 

A striking feature of the mammalian neocortex, which contributes to its functional complexity, is its 

organization into six distinct neuronal layers (Gupta, 2002; Kriegstein et al., 2006; Rakic, 1995). The 

development of such an organised and intricate structure is a highly complex process and requires a finely 

regulated molecular developmental programme (Couillard-Despres et al., 2001). A crucial step in the 

development and lamination of the neocortex into these layers is the migration of neurons from their place of 

birth (in the ventricular zone) across an ever changing microenvironment to their final resting places within 

respective layers (Bielas et al., 2004; Kriegstein et al., 2006; Rakic, 1995). Another notable developmental 

characteristic of the mammalian neocortex is the inside-out arrangement of these six neuronal layers, in 

which later born neurons migrate past earlier born neurons (Aboitiz et al., 2001). As the cortex matures and 

expands, this task becomes ever more challenging as the distances through which neurons must traverse 

increases. It is crucial that during development and lamination of this remarkably intricate brain structure 

that each neuron migrates and settles in its proper position. This is ultimately accomplished by cues from the 

surrounding extracellular matrix and neighbouring cells as well as the cytoskeletal machinery within neurons 

themselves (Couillard-Despres et al., 2001).  

 

1.3 DEVELOPMENT OF THE CEREBRAL CORTEX 

The formation of the neocortex can be divided into three broad crucial steps: neuronal proliferation, neuronal 

migration, and cortical organization (Barkovich et al., 2005; Geurrini et al., 2008) (Figure 1.2). The sections 

that follow will briefly elaborate on each of these phases, with special emphasis on neuronal migration as 

anomalies in the different modes of migration result in several neurological disorders. Some of these 

disorders are caused by abnormal cortical lamination and irregular neuronal organisation due to anomalies in 

neuronal migration.   
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Figure 1.2. Mouse embryonic development of the neocortex. Embryonic cortical development results in the 
formation of a distinct six layered adult neocortex. First wave of postmitotic neurons migrate out of the ventricular zone 
(VZ) towards the pial surface (PS) via radial glial cells (vertical bars), this causes the preplate (PP) to be split into the 
marginal zone (MZ) containing the Cajal-Retzius cells (yellow) and the subplate (SP, green diamonds); creating the 
cortical plate (CP). Each successive wave of migrating neurons move through the intermediate zone (IZ) and expand the 
CP in an ‘inside-out’ fashion, as later born neurons bypass their earlier born predecessors and settle within the more 
superficial layers near the PS. In adulthood, the SP degenerates forming the characteristic laminar structure of the 
neocortex (Taken from Gupta et al., 2002).  
 

1.3.1 Cell proliferation  

During the proliferation phase, neuronal stem cells proliferate and differentiate into either young neurons or 

glial cells deep within the ventricular zone (VZ) (Figure 1.2). During this stage a layer known as the preplate 

(PP) is formed above the proliferative VZ (Bielas et al., 2004; Couillard-Despres et al., 2001; Rickmann and 

Wolff, 1981) (Figure1.2). The preplate is composed of the first wave of postmitotic neurons to migrate out of 

the VZ (Bielas et al., 2004), including the subplate neurons as well as the earliest generated Cajal-Retzius 

(CR) cells which run adjacent to the pial surface (Marin-Padilla, 1998) (Figure1.2). 

 

1.3.2 Neuronal migration 

The formation of the six layered neocortex is orchestrated by the extraordinarily ordered migration of 

postmitotic neurons from the VZ. The first migratory phase involves the movement of postmitotic neurons 

from the VZ, in an upward direction, towards the brain’s pial surface, the surface closest to the membranous 

layer covering the brain under the skull (Bielas et al., 2004; Kubo and Nakajima 2002). At this stage, a layer 

known as the preplate (PP) is formed (Bielas et al., 2004; Couillard-Despres et al., 2001; Rickmann and 

Wolff, 1981) (Figure1.2). Subsequently, a second set of postmitotic neurons migrate from the VZ, which 

move past their earlier born predecessors and split the preplate into the superficial marginal zone (MZ) and 

the subplate (Figure 1.2), creating an intermediate layer known as the cortical plate (CP) (Figure 1.2) (Bielas 
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et al., 2004; Couillard-Despres et al., 2001; Kubo and Nakajima, 2002;). Following the creation of the 

cortical plate, sets of postmitotic neurons continue to migrate from the VZ, passing through the subplate to 

form the ordered layers of the cortical plate.  

 

An autoradiographic study that dates the birth of migratory neurons in mice, showed that the layering of 

cortical plate neurons occur in an inside-out fashion, in which the earlier born neurons constitute the deeper 

cortical layers, while later born neurons migrate past the aforementioned neurons and form the more 

superficial cortical layers (Angevine et al., 1961; Gupta et al., 2002; Kubo and Nakajima 2002). Once the 

cortical plate has been formed, the subplate disintegrates leaving behind the characteristic six-layered 

neocortex. It is important to note that each wave of postmitotic neurons at some stage come in into contact 

with the MZ. The relevance of this is not yet properly understood, but it is postulated that an extracellular 

cue within the MZ containing the Cajal-Retzius cells is responsible for guiding migrating neurons to their 

correct final orientation within the inside out laminated neocortex (Bielas et al., 2004). 

 

The above mentioned model of neuronal migration is the widely accepted model that was first documented 

by the Boulder Committee in 1970 (Boulder Committee, 1970). However, several studies of mechanisms 

involved in neuronal migration has shown that this model is only applicable to pyramidal projection neurons, 

which are the excitatory glutamatergic neurons in the neocortex (Anderson et al., 2002; Mione et al., 1997; 

Parnavelas et al., 2000; Tan et al., 1998). In recent years, several investigations have demonstrated that 

GABA-containing inhibitory cortical interneurons, which are born in the ganglionic eminence (GE), follow a 

different mode of migration to their excitatory counterparts. Whereas pyramidal projection neurons migrate 

radially from the VZ towards the pial surface, cortical interneurons migrate from the GE, round the 

corticostriatal notch and follow tangentially orientated paths to enter the neocortex (Anderson et al., 1997; 

2002; Lavdas et al., 1999; Wichterle et al., 2001). Thus, two forms of neuronal migration have been 

identified to date and have been termed radial and tangential to denote the directions in which each the 

neurons migrate (Ayala et al., 2007).  

 

1.3.2.1 Radial migration 

In a landmark electron microscopic investigation of the foetal monkey neocortex conducted in 1972, Rakic 

demonstrated that migrating neurons are intimately associated with radial glial fibers, which suggested that 

these glial fibers could act as scaffolds for neuronal migration (Kanatani et al., 2005; Rakic, 1972). This 

notion was supported by more recent investigations which showed that radial fibers are present during 

neocortical development and that their radial processes extended the entire cortical wall (Mission et al., 

1991). It should be noted, however, that in a later microscopic investigation of early mouse neocortical 

slices, Shoumakimas and Hinds did not find a dependable association between glial fibers and migrating 

neurons, which suggested that during the early stages of neo-corticogenesis, neurons do not require radial 

glial fibers for migration (Shoumakimas and Hinds, 1978). Taken together, these studies suggested that there 
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are two modes of radial migration. Later, these were termed glial-guided locomotion and somal or nuclear 

translocation (Borrel et al., 2006; Nadarajah et al., 2003; Rakic, 2007). 

 

Time lapse studies of mouse embryonic neocortices, conducted by Nadarajah and colleagues confirmed that 

each of these modes of radial migration occurred at different stages of development. At embryonic day E12-

13 in mice, somal translocation was used to split the preplate, while glial-guided locomotion traversed 

neurons across the cortical plate at embryonic days E15-16 (Nadarajah et al., 2003). Thus, it seems that 

during the early stages of corticogenesis, while the cortical wall is relatively thin (shorter distance), neurons 

migrate via somal translocation; whereas later during corticogenesis, as the cortical wall thickens and the 

distance to the pial surface increases, neurons migrate by glial-guided locomotion (Nadarajah and 

Parnavelas, 2002). 

 

1.3.2.1.1 Somal translocation during early corticogenesis 

During somal translocation, neurons extend a long radially directed leading process (Figure 1.3) with 

branched ends from the VZ, which terminates at the pial surface. This is followed by a short transient trailing 

process (Ayala et al., 2007; Cooper, 2008; Gupta et al., 2002; Kubo and Nakajima, 2002) (Figure 1.3). Since 

this type of migration is independent of the radial glial guides it is unaffected by the signalling cascades and 

molecular cues that regulate glial guided locomotion (Nadarajah and Parnavelas, 2002). The attachment of 

the leading process to the pial surface is followed by the ascendant movement of the cell body (including the 

nuclei), ultimately resulting in the shortening of the leading process overtime (Ayala et al., 2007; Cooper, 

2008; Gupta et al., 2002; Kubo and Nakajima, 2002) (Figure 1.3). The driving force for this type of 

movement is not yet understood, although Miyata and colleagues believe that a spring-like mechanism (due 

to force generated in the stretching and twisting of the rising leading process) propels these neurons towards 

the pial surface (Miyata and Ogawa, 2007) (Figure 1.4). This mode of radial migration is smoother, faster 

and more continuous than glial-guided locomotion, essentially resulting in a faster mode of migration 

(Cooper, 2008; Nadarajah and Parnavelas, 2002). 
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Figure 1.3. Somal translocation during early corticogenesis.  Neuronal cells (green) extend a long branched leading 
process from the ventricular zone towards the pial surface; once implanted within the pial surface, the entire cell and 
cell body is retracted upwards shortening the leading process. This causes the neuronal cell to be moved or translocated 
to its’ final position within the cortical plate (Taken from Bielas et al., 2004). 

Figure 1.4. The cytoskeletal rearrangements that drive somal translocation. The leading process extends towards 
the pial surface; once attached to the pial surface cytoskeletal rearrangements are responsible for the retraction of the 
trailing process and the cell body containing the nucleus (Taken from Cooper, 2008). 
 
 
1.3.2.1.2 Glial-guided locomotion during the later stages of corticogenesis 

As the thickness of the cortical plate increases with each successive wave of migrating neurons, neurons 

change their mode of migration from somal translocation to glial-guided locomotion, a mode of migration 

characterized by the use of radial glia as guidance tracks (Couillard-Despres et al., 2001; Kanatani et al., 

2005; Nadarajah et al., 2003). During glial-guided migration, locomoting neurons are not attached to the pial 

surface; instead these neurons migrate up towards the MZ via radial glial guides which are anchored in the 

MZ. These neurons maintain a shorter, unbranched, freely motile leading process. Both the leading edge and 

cell soma move together along the radial glial fiber via a repetitive cycle of events (Guota et al., 2002; 

Nadarajah et al., 2001; Nadarajah et al., 2003). Each cycle involves the extension of the leading edge which 

results in the nucleus moving forward. The trailing process is then retracted and the cell migrates due to the 

mechanical strain within the cell and the release of adhesive contacts at the trailing process (Cooper, 2007; 

Nadarajah et al., 2001). This cycle is then repeated (Cooper, 2007; Nadarajah et al., 2001) (Figure 1.5). 
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Attachment of migrating neurons to the radial glial involves integrins and gap junctions. These interactions 

allow the cell body to squeeze and manoeuvre through the cortex as the cellular density increase throughout 

corticogenesis (Cooper, 2007) (Figure 1.6).  This mode of migration is characteristically slow and jerky, with 

short bursts of forward movement intermingled with stationary/paused phases (Cooper, 2007; Nadarajah and 

Parnavelas, 2002).   

Figure 1.5. Glial guided locomotion during later stages of corticogenesis. Migrating neurons (green) use radial glial 
fibers (orange) as guidance tracts to reach their final destinations within the cortical plate. These radial glial tracts are 
anchored in the ventricular zone and extend to the pial surface (Taken from Bielas et al., 2004).  

Figure 1.6 The cytoskeletal rearrangements during glial guided locomotion. Migrating neurons attach via integrins 
and/or gap junctions to the radial glial fibers (green); cytoskeletal rearrangements move the migrating cell up along the 
radial glial fiber until its’ correct position within the cortical plate is reached (Taken from Cooper, 2008).  
 
 
 
Importantly neither of the two types of radial migration are cell-type specific (Ayala et al., 2007). As 

neurons migrate towards the pial surface they dynamically change their morphology and mode of migration 

(Honda et al., 2003; Kubo and Nakajima, 2002). Nadarajah and colleagues noted that glial guided 

locomoting cells switch to somal translocation in the final stages of their migration as the leading edge 

approaches the pial surface (Nadarajah et al., 2001). They showed that at embryonic day 15-16 in mice, 
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previously generated neurons have already split the PP and the CP is rapidly expanding. During this period 

glial-guided locomotion is the dominant form of migration, although somal translocation is simultaneously 

occurring in the upper half of the developing neocortex (Gupta et al., 2002). As development continues, the 

cortical wall thickens and neurons cannot translocate the full width of the neocortex; thus neurons first 

migrate via locomotion and then switch to somal translocation once they have moved far enough through the 

neocortex to attach their leading process to the pial surface (Gupta et al., 2002; Nadarajah et al., 2001). 

Neuroanatomical studies of the inverted laminar organisation of the mammalian neocortex have shown that 

the first neurons to arrive in the cortex are phylogenetically the oldest, whereas later born cortical neurons 

are a more recent evolutionary addition (Marin-Padilla, 1978; Goffinet, 1983). Thus, it was postulated that 

somal translocation is an earlier evolutionary mode of neuronal migration (used to migrate neurons across 

shorter cortical distances), whereas glial-guided locomotion evolved to migrate and guide neurons across 

greater cortical distances (more convoluted, hence more complex cortical organisation) (Rakic, 1972; 

Nadarajah et al., 2001).  

 

1.3.2.2 Tangential migration 

In contrast to earlier investigations that only pointed to radial migration as the mode of migration adopted by 

cortical neurons, several in vitro and in vivo studies have provided clear evidence for non-radial migratory 

routes taken by cortical interneurons (Anderson et al., 1997; Mione et al., 1997; Sussman et al., 1999; Walsh 

and Cepko, 1993). These neurons were found to migrate tangentially across the plain of the glial fibres. 

Furthermore, recent investigations have shown that most cortical interneurons originate in the primordia of 

the basal ganglial- the lateral, medial and caudal ganglionic eminences (LGE, MGE and CGE, respectively) 

and subsequently migrate to the cortex (de Carlos et al., 1996; Ware et al., 1999). In rodents and in humans, 

the primary source of interneurons is the MGE (Anderson et al., 2001; Lavidas et al., 1999; Polleux et al., 

2002; Wichterle et al., 1999, 2001), however, in humans, a significant amount of cortical interneurons have 

been shown to originate from progenitors in the cortical sub-ventricular zone (SVZ) (Lectinic et al., 2002; 

Rakic and Zecevic, 2003). 

 

During cortical development, the first waves of tangentially migrating interneurons are mostly found in the 

lower intermediate zone (IZ) and SVZ and also in the MZ and subplate (Anderon et al., 2001; Ang et al., 

2003; Lavdas et al., 1999; Tanaka et al., 2003; Wichterle et al., 1999). Several investigation have been 

undertaken to elucidate the migratory paths of these interneurons from the MGE to the cortex. These include 

studies in which MGE neurons were fluorescently labelled and subsequently cultured in vitro (Anderson et 

al., 2001; de Carlos et al., 1996; Nadarajah et al., 2002; Lavdas et al., 1999; Tamamaki et al., 1997), studies 

of transgenic animals (Anderson et al., 1997; Casarosa et al., 1999; Sussel et al., 1999) and studies of tagged 

transplanted tissues (Anderson et al., 2001; Nery et al., 2002; Polleux et al., 2002; Wichterle et al., 2001). 

However, a recent investigation that made use of real time imaging of green fluorescent protein- labelled 

glutamate decarboxylase 67 (Gad67-GFP) has provided researchers with a more accurate picture. In their 
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study, Tanaka and co-workers used Gad67-GFP knock in embryonic mice and showed that the migration of 

cortical interneurons primarily occur in two streams, in the cortical MZ and in the IV-SVZ (Tanaka et al., 

2003). Once interneurons enter the cerebral cortex, they migrate tangentially and then enter the cortical plate 

by changing their orientation and migrating radially to their final positions (Tanaka et al., 2003) (Figure 1.7). 

Interneurons migrating tangentially from the IV-SVZ have been shown to turn and migrate radially, or even 

obliquely, in order to enter the cortical plate from the bottom (Figure 1.7b) (Ang et al., 2003; Nadarajah et 

al., 2002; Polleux et al., Tanaka et al., 2003), while interneurons migrating tangentially in the MZ have been 

shown to enter the cortical plate from above (Figure 1.7b) (Ang et al., 2003; Tanaka et al., 2003). 

 

Several lines of evidence have suggested that tangentially migrating interneurons make use of corticofugal 

fibres as scaffolds for their migration (Anderson et al., 2001; Denaxa et al., 2001; Lavdas et al., 1999), while 

a functional association between these interneurons and radial glial has also been suggested (Polleux et al., 

2002). This possible association between interneurons and radial glial was further investigated in a study by 

Yokota and co-workers (Yukako et al., 2007). Since previous investigation showed that tangentially 

migrating interneurons eventually switches to radial migration, these investigators sought to determine what 

influence, if any, the radial glial grid exerts on the migration of interneurons in the developing cortex. In 

their investigation, they made use of transgenic mice which were engineered so that only GE-derived 

neurons were tagged with green fluorescent protein (GFP), while radial glial were tagged with a red 

fluorescent protein (RFP). They further monitored the interneuronal migration in utero in developing 

embryos using two-photon microscopy. These studies revealed that once tangential migrating interneurons 

switch to radial migration, they potentially make use of radial glial fibers (Yokota et al., 2007). It therefore 

seems that interneurons first migrate tangentially from the MGE, making use of corticofugal fibers, to the 

MZ or the IZ-SVZ where they switch to glial-guided radial migration in order to be incorporated into the 

developing neocortex. It is important to note that radial and tangential migration takes place simultaneously.  
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Figure 1.7. Tangential migrating cortical interneurons arising from the medial ganglionic eminence. (a) Cortical 
interneurons born in the ganglionic emenences migrate tangentially (red arrow) around the cortical notch to the 
developing cortex. (b) Cortical interneurons migrate tangentially within the cortex and subsequently change direction in 
order to enter the cortical plate. The solid red arrows indicate the path travelled by the cortical interneurons, while the 
broken red arrow shows that some cortical interneurons have been found to descend radially from the marginal zone 
into the cortical plate and others continue radially into the deeper cortical layers. Abbreviations: IZ, intermediate zone, 
LGE, lateral ganglionic eminence, LV, lateral ventricle; MGE, medial ganglionic eminence; MZ, marginal zone; SVZ, 
subventricular zone, VZ, ventricular zone. (Taken from Kriegstein and Noctor, 2004). 
 

Thus neuronal migration is extremely important in the formation of a complex structure such as the cortex. 

The correct laminar organization of neurons allows neurons to generate the appropriate synaptic connectivity 

characteristic of each neuronal layer (Dulabon et al., 2000). Several molecules play essential roles in 

controlling and regulating neuronal migration, including intracellular and extracellular cues, molecules of the 

cytoskeleton, and signalling molecules all of which ensure neurons arrive at their proper final positions 

within the cortex, allowing it to function in all its complexity.  Having outlined the basic migratory pathways 

involved in the development of the neocortex, one now needs to consider the underlying molecular 

mechanisms that control this process. Several investigations focusing on the molecular control of neuronal 

migration have uncovered a number of mechanisms that control this process. However, since the present 

investigation primarily focuses on further unravelling the Reelin signalling pathway, only the Reelin 

signalling pathway will be reviewed.  

 

1.3.2.3 Reelin signalling pathway and neuronal migration 

Unravelling the molecular mechanisms involved in cortical development in humans is very challenging due 

to the complexity of the cerebral cortex and the numerous genes and their related protein products involved 

in its regulation. Both of these factors make identifying and understanding genes and proteins involved in the 

development of the cortex quite a daunting task. This task has been made slightly less arduous by studying 

neurodevelopmental disorders in naturally occurring and transgenic animal models (D’Arcangelo and 

Curran, 1998; Gupta et al., 2002). The mouse cerebral cortex lacks gyri, thus serves as the perfect model for 

studying and examining cortical malformations resulting from aberrant neuronal migration. Several mouse 
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mutants exhibiting abnormal neuronal migration resulting in cortical malformations have been indentified 

(D’Arcangelo and Curran, 1998), however, it was the discovery of the naturally occurring reeler mouse that 

has provided researchers with a perfect entry point for studying neuronal migration (Park et al., 2007). 

 

1.3.2.3.1 The spontaneous neurological mutant mouse reeler – An animal model for schizophrenia 

The reeler mouse arose spontaneously in 1948 in a stock of ‘snowy-bellied’ mice at the Institute of Animal 

Genetics in Edinburgh, Scotland (D’Aracangelo and Curran, 1998; Rice and Curran, 2001). Since its 

discovery, the reeler mouse has been used for several years as an important experimental model to 

investigate neurological mutations which affect neuronal migration and hence organisation of the central 

nervous system (CNS) (Rice and Curran, 1999).  This behavioural mutant has characteristic neuroanatomical 

anomalies in the cerebral cortex, cerebellum and hippocampus; suggesting the genes mutated in the reeler 

phenotype are crucial for regulating neuronal positioning in the developing CNS (Caviness et al., 1988; Rice 

and Curran, 2001). The reeler phenotype is characterized by loss of cellular organisation resulting in severe 

hypoplasia of the cerebellum, which ultimately causes the ataxic phenotype characterised by tremors, 

dystonia and a reeling gate (hence the name reeler phenotype) (D’Arcangelo, 2006). 

 

Neuroanatomically, the homozygous reeler mouse shows an inversion of the normal ‘inside-out’ lamination 

of the cerebral cortex, accompanied with an accumulation of neurons in the normally cell sparse marginal 

zone (Caviness and Rakic 1978; Gleeson and Walsh, 2000) (Figure 1.8). Thus, in the reeler mouse cortex, 

neurons are produced and proliferate normally, but fail to migrate to their correct final positions within the 

developing neocortex, causing an outside-in manner of lamination (Cooper, 2008; Goffinett, 1979; 

Nadarajah and Parnavelas, 2002) (Figure 1.8). In addition to the layering and organisational defects of the 

reeler cortex, it was found that postmigratory neurons in the cortex remain closely associated with their 

radial glia fibers and that during the later stages of corticogenesis, the radial glia scaffold are deployed at 

oblique angles instead of their normal vertical orientation (Hunter-Schaedle, 1997; Mikoshiba et al., 1983; 

Pinto-Lord, 1982; Rice and Curran, 2001). Moreover, during the early stages of development, Reelin-

deficient neurons are unable to split the preplate, while later during development, glial-guided neurons are 

unable to migrate past one another (Ayala et al., 2007).   

 

In contrast, the heterozygous reeler mouse (HRM) does not show the severe cortical layering defects as the 

homozygous reeler mouse, although they do show subtle neurochemical, neuropathological and behavioural 

abnormalities that are characteristic in schizophrenia (Ognibene et al., 2007 a, b ; Tueting et al., 1999). 

Hence, the HRM serves as a good animal model to investigate the complex interactions between genetic 

vulnerability and environmental factors in the pathogenesis and aetiology of schizophrenia (Lavialo et al., 

2008; Tordjman et al., 2007). 
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In 1995, D’ Arcangelo and colleagues identified a mutation in the gene encoding Reelin, an extracellular 

matrix glycoprotein as being the cause for the reeler phenotyope in the reeler mouse (D’Arcangelo et al., 

1995). Since then, several investigations have been undertaken to evaluate the role the Reelin protein plays 

in neuronal migration. 

F
Figure 1.8. Cyto-architectural abnormalities in the reeler mouse.  In the reeler cortex, the preplate forms normally 
with the exception that the first cohort of early-born migrating neurons are unable to split the preplate due to the 
absence of Reelin; thus the subplate remains adjacent to the marginal zone forming a ‘superplate’ (SPP, a cell dense 
area containing the Cajal-Retzius cells, subplate neurons and few cortical plate neurons). The cortical plate then forms 
underneath the ‘superplate’, as later generated neurons are not able to migrate past their earlier born predecessors which 
leads to the formation of a disorganised and inverted (outside-in) cortical plate as neurons are not able to arrange 
themselves into distinct neuronal layers  (Taken from Gupta et al., 2002).  
 

1.3.2.3.2 Reelin glycoprotein 

Reelin is a 388kDa extracellular matrix glycoprotein (D’ Arcangelo et al., 1995) secreted in the MZ (Ogawa 

et al., 1995). In humans, the gene encoding Reelin has been localised to chromosome 7 (DeSilva et al., 1997) 

and is highly conserved in a number of vertebrate species (Rice and Curran 1999).  

 

The Reelin protein is comprised of 3461 amino acid residues that are arranged into a number of domains 

(Figure 1.9). The amino-terminal domain of Reelin contains a cleavable signal peptide trailed by a small 

region (reeler domain) which shares similarity with F-spondin (a protein which directs neuronal crest cell 

migration) (Klar et al., 1992) (Figure 1.9). The carboxy terminus contains a sequence of eight internal Reelin 

repeats of 350-390 amino acids, followed by 33 positively charged amino acids (Kubo and Nakajima, 2002; 

Rice and Curran, 2001). Each Reelin repeat is composed of two related sub-repeats which flank a pattern of 

conserved cysteine residues known as EGF (epidermal growth factor) like motifs (De Bergeyck et al., 1998) 

(Figure 1.9).  
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During the development of the cerebral cortex, Reelin is synthesized and secreted primarily by the transient 

Cajal-Retzius cells found in MZ even before the first wave of postmitotic neurons reach the preplate and is 

first detected at embryonic day 10 in mice (D’Arcangelo, 1995; Hirotsune et al., 1995; Schiffman et al., 

1997). Reelin expression is highest during the early stages of cortical development and can already be 

detected in humans in the eleventh week of gestation (Deguchi et al., 2003; Meyer and Goffinet, 1998).  

 

The expression of Reelin is maintained in the postnatal and adult cortex, despite the fact that corticogenesis 

is completed and most of the Cajal-Retzius cells have disappeared (D’Arcangelo 2006). In the postnatal 

cortex, GABAergic interneurons continue to express Reelin into adulthood, although at significantly lower 

concentrations (Alcantara et al., 1998; Pesold et al., 1998; Super et al., 1998). It has been shown that the 

Reelin protein is crucial during neuronal migration, where it is involved in cortical lamination and synapse 

formation (Guidotti et al., 2000; Toro and Deakin, 2006); while during adulthood it is thought be involved in 

the adaption and maintenance of neurotransmission, synaptic plasticity, memory formation and neurogenesis 

(Alcantara et al., 1998; Guidotti et al., 2000; Toro and Deakin 2006).  

Figure 1.9. Schematic representation of the Reelin structure. The open reading frame predicts a secreted 
extracellular matrix glycoprotein of 3641 amino acids with a relative molecular mass of 388kDa. At the N terminal 
Reelin contains a cleavable signal peptide, followed by a region with 25% identity to that of F-spondin (controls cell 
migration and neurite outgrowth). This is followed by the characteristic presence of a series of eight internal Reelin 
repeats, each repeat is composed of 350-390 amino acids and is composed of two related subrepeats A and B, which are 
separated by an EGF-like motif. The epitope for the CR-50 antibody is located upstream of the Reelin repeats; 
oncebound, this antibody blocks the Reelin-induced kinase cascade both in vitro and in vivo. The C-terminal is an area 
rich in arginine residues, which are required for Reelin secretion from the Cajal-Retzius cells during corticogenesis 
(Taken from Kubo and Nakajima, 2002; Rice and Curran, 2001).  
 
 
1.3.2.3.3 Reelin signalling pathway  
Reelin was the first protein to be identified in the molecular signalling pathway that co-ordinates neuronal 

migration and cortical lamination. Since Reelin is a secreted extracellular matrix glycoprotein, receptors are 

crucial for it to relay its guidance effect to migrating neurons. A combination of independent genetic and 
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biochemical studies (D’Arcangelo et al., 1999; D’Arcangelo et al., 1995; Gotthardt et al., 2000; Heisberger 

et al., 1999; Hirotsune et al., 1995; Howell et al., 1997; Howell et al., 1999; Trommsdorff et al., 1998; 

Trommsdorff et al., 1999; Sheldon et al., 1997; Stolt et al., 2003; Yun et al., 2003) from several 

investigators has established a linear signalling pathway for Reelin (Herz and Chen, 2006) (Figure 1.10).  

 

Reelin binds to the extracellular domains of two high affinity transmembrane receptors which belong to the 

lipoprotein receptor superfamily. These are the apolipoprotein E receptor 2 (ApoER2) and the very low 

density lipoprotein receptor (VLDLR) (D’Arcangelo et al., 1999; Heisberger et al., 1999) (Figure 1.10). 

Both receptors are located on the surface of migrating neurons and are expressed at high levels throughout 

the brain during cortical development (Kim et al., 1996; Trommsdorff et al., 1999). Interestingly, VLDLR 

and ApoER2 double knock-out mice were found to exhibit reeler-like abnormalities, although each has 

distinct roles in regulating migration (as each binds to different sets of cytoplasmic proteins): ApoER2 is 

believed to promote the migration of later born cortical neurons, whereas VLDLR may act as a stop signal 

for migrating neurons (Hack et al., 2007; Huang, 2009) This observation provided the first concrete evidence 

for their involvement in the Reelin signalling pathway (Trommsdorff et al., 1999). 

  

The cytoplasmic tails of VLDLR and ApoER2 contain an unphosphorylated NPxY (N, asparagine; P, 

proline; x, any amino acid; Y, tyrosine) motif which binds to the phosphotyrosine binding (PTB) domain of 

the intracellular protein Disabled-1 (Dab1) (Howell et al., 1999) (Figure 1.10). Dab 1 is a cytosolic adaptor 

protein which is highly expressed during development in Reelin target cells (migrating neurons) (Howell et 

al., 19997a; Sheldon et al., 1997). The importance of Dab1 in the Reelin signalling pathway is highlighted in 

Dab1 deficient mice, who exhibit a reeler phenotype where the preplate does not split into the normal 

distinct cortical layers (Howell et al., 1997b; Sheldon et al., 1999). In reeler mice, Dab1 is expressed 

normally, but accumulates in a hypophosphorylated state, suggesting that Reelin is crucial for Dab1 

phosphorylation, turn over and degradation (Rice et al., 1998; Sheldon et al., 1999).   

 

Even though VLDLR and ApoER2 possess no intrinsic kinase activity, binding of Reelin to these 

transmembrane receptors results in the tyrosine phosphorylation of Dab1 (Howell et al., 1997a) (Figure 

1.10). Several independent investigations have shown that Dab1 phosphorylation is reliant on the clustering 

of the VLDLR and ApoER2 receptors induced by the binding of oligomeric Reelin. Binding of monomeric 

Reelin to both these receptors is unable to phosphorylate Dab1 and thus unable to transduce the Reelin signal 

(Herz and Chen, 2006; Mayer et al., 2006; Riddle et al., 2001; Strasser et al., 2004) (Figure 1.10).  

 

Recent studies have further shown that Dab1 phosphorylation is mediated through the recruitment of SRC 

family tyrosine kinases (SFKs), such as Fyn and Src (Ballif et al., 2003; Pawson and Scott, 1997; Schillace 

and Scott, 1999). These investigations found that receptor clustering is crucial for the recruitment of these 

SFKs (Figure 1.10). Thus, the binding of Reelin to VLDLR and ApoER, triggers receptor clustering, which 
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recruits SFKs, resulting in the transphoshorylation of Dab1 and subsequent recruitment and activation of 

additional non-receptor tyrosine kinases (Arnaud et al., 2003; Bock and Herz, 2003). Moreover, Dab1 and 

SFKs were shown to mutually activate one another upon binding of Reelin to its receptors (Bock and Herz, 

2003; Utsunomiya et al., 2000) (Figure 1.10).  

 

The ensuing high concentration of active SFKs initiates the downstream cytosolic kinase cascade which 

relays the Reelin signal (Herz and Chen, 2006). Phosphorylated Dab1 not only relays the Reelin signal to 

intracellular effectors, but has also been shown to interact and bind to Lis1 (Assadi et al., 2003), which links 

the Reelin pathway to microtubule dynamics, as Lis1 interacts with the microtubule-associated cytoplamsic 

dynein/dynactin-motor complex (Niethammer et al., 2000) (Figure 1.10).  

 

After Reelin binding to its receptors and Dab1 phosphorylation, the Reelin signalling pathway activates 

phosphatidylinositol 3-kinase (PI3K) and serine/threonine protein kinase B (PKB, also known as Akt), as 

well as the inactivation and activation of glycogen synthase kinase 3 beta (GSK3β) within neuronal growth 

cones (Ballif et al., 2003; Beffert et al., 2002; Feng and Cooper, 2008). This Reelin-mediated activation of 

PI3K is dependent on phosphorylated Dab1 which physically interacts with the regulatory subunit of PI3K, 

p85 (Bock et al., 2003). The activation of PKB stimulates mammalian target of rapamycin (mTor) (Chiang 

and Abraham, 2005; Holz and Blenis, 2005; Jossin and Goffinet, 2007).  

 

The effects of Reelin on GSK3β are context-dependent (depending on which microtubule-associated protein 

is being regulated). Reelin induces the serine phosphorylation of GSK3β, inhibiting its activity, which results 

in the hypophosphorylation of the microtubule-associated protein tau (Beffert et al., 2004; Hiesberger et al., 

1999) (Figure 1.10). Phosphorylation of tau reduces its microtubule assembly-promoting effect, thus 

phosphorylated tau is unable to stabilize the microtubule network (Dreschel et al., 1992). It has also been 

observed that tau is hyperphosphorylated in the reeler mouse (Beffert et al., 2004; Hiesberger et al., 1999). 

Moreover, this hyperphosphorylated tau has been found to induce microtubule disassociation (Hardy et al., 

1998), which suggests that one function of Reelin is to regulate the phosphorylation (hence activity) of tau 

and so maintains the microtubule dynamics within neuronal growth cones (Beffert et al., 2004; Heisberger et 

al., 1999). Additionally, Reelin can also induce the activation of GSK3β (via tyrosine phosphorylation) and 

cyclin-dependent kinase 5 (cdk5), resulting in the phosphorylation of microtubule-associated protein 1 B 

(MAP1B). Phosphorylation of MAP1B reduces its ability to bind to the microtubule lattice (Gonzalez- 

Billault et al., 2005) (Figure 1.10). These studies show that Reelin has opposing phosphorylation effects on 

MAP1B and tau, suggesting that the cytoskeletal regulation by Reelin through phosphorylation is highly 

dynamic and depends on the cellular compartment and the needs of the migrating neuron. 
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In addition to the phosphorylation of Dab1 upon Reelin binding to VLDLR, Reelin is also internalized into 

intracellular vesicles of neurons (D’Arcangelo et al., 1999) via clatherin-dependent endocytosis (Herz and 

Bock, 2002). The precise reason for the internalization of Reelin remains unknown. 

Figure 1.10. Molecular signalling networks regulating neuronal migration. Extracellular guidance cues, growth 
factors and adhesion molecules trigger a wide range of intracellular signalling cascades which ultimately end in the 
coordinated regulation of cytoskeletal dynamics. The Reelin signalling pathway is well characterized and explained in 
the literature above (Taken from Ayala et al., 2007). 
 

Other Reelin receptors have also been identified. These include members of the cadherin-related neuronal 

receptors (CNRs) (Senzaki et al., 1999) and members of the integrin family of adhesion proteins (Dulabon et 

al., 2000). The precise role of integrins as coreceptors for Reelin remains highly controversial, as conflicting 

results have been obtained to date. Integrins are transmembrane receptors which link the extracellular matrix 

to the cytoskeleton and, in neurons; they play a fundamental role in cell migration and adhesion (Andressen 

et al., 1998; DeFreitas et al., 1995; Fishman and Hatten, 1993; Georges-Labouesse et al., 1998; Zhang and 

Galileo, 1998). Dulabon and colleagues demonstrated an interaction between Reelin and α3β1 integrin 

(Dulabon et al., 2000). This interaction was shown to inhibit the adhesive properties of α3β1 integrin, 

thereby initiating the detachment of migrating neurons from their radial glial tracts which is believed to stop 

glial guided neuronal migration (Dulabon et al., 2000). These findings were subsequently confirmed in two 

further independent investigations (Sanada et al., 2004; Schmid et al., 2004; Schmid et al., 2005).  
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As appealing as this model for Reelin’s action in controlling neuronal migration and cortical lamination may 

seem, it is not supported by genetic studies on α3β1 integrin (Fassler and Meyer, 1995, Magdaleno and 

Curran, 2001). In α3β1 integrin null mutant mice, radial glial cells adopt normal and appropriate positions, 

although complications and defects arise once the fibers reach the basement membrane as the endfeet 

(anchoring ends of migrating neurons) fail to form normally (Fassler and Meyer, 1995; Magdaleno and 

Curran, 2001). This has led to an alternative hypothesis in which Reelin exerts its effect, in part, by 

regulating the development of the radial glial scaffold via the interaction with α3β1 integrin which also 

regulates interactions among Cajal-Retzius cells, the extracellular matrix and the glial endfeet (Fassler and 

Meyer, 1995; Forster et al., 2002; Magdaleno and Curran, 2001). More recently Belvindrah and co-workers 

showed that α3β1 integrins in migrating neurons is not essential for the arrangement of cell layers within the 

neocortex, although the expression of α3β1 integrins on radial glial themselves are critical for the formation 

of neocortical layers (Belvindrah et al., 2007). Additionally they also reported that other receptors such as 

connexins regulate neuronal migration. Elias and colleagues also showed that connexion 26 and 43 are 

expressed at the contact points between radial glial fibers and migrating neurons providing dynamic adhesion 

points (Belvindrah et al., 2007; Elias et al., 2007). With all the controversial data surrounding the interaction 

between Reelin and α3β1 integrin, the precise role of this receptor in neuronal migration remains unclear.  

 

As in any signal transduction pathway, inhibition or down-regulation of the initial stimulus is an essential 

component of the pathway as this prevents desensitization and allows the system to reset in preparation for 

the next stimulus (Arnaud et al., 2003, Koshland, 1981). The precise mechanism in which the Reelin signal 

is down-regulated is still unclear, although inhibition of this signal seems to be important since migrating 

neurons respond differently to Reelin stimulation at different times during the history of the cell in 

development (Arnaud et al., 2003). 

 

One mechanism for the down-regulation of Reelin signalling involves the Reelin-dependent down-regulation 

of Dab1 (Arnaud et al., 2003; Howell et al., 1999; Rice et al., 1998; Sheldon et al., 1997). Arnaud and 

colleagues reported that tyrosine-phosphorylated Dab1 is targeted for polyubiquitination and degraded via 

the proteasome pathway (Arnaud et al., 2003). Since Dab1 is the only component of the Reelin pathway to 

be down regulated (in response to Reelin induced phosphorylation), Dab1 is thus considered the primary 

mechanism for desensitization of the Reelin pathway in migration neurons (Arnaud et al., 2003; Bock et al., 

2004). More recently, Feng and co workers showed that Dab1 down-regulation is mediated by Cullin5 (Cul5 

(Feng et al., 2007), a key component of the E3 ubiquitin ligase complex (Ilangumaran et al., 2004; Petroski 

and Deshaies, 2005). They showed that in Cul5 knockdown mice, phosphorylated Dab1 is up-regulated, 

resulting in cortical lamination abnormalities (Feng et al., 2007). This study confirms the importance of 

Dab1 degradation in neuronal migration (Feng et al., 2007).  
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Another important protein involved the control of neuronal migration and cortical lamination is the cyclin-

dependent kinase 5 (Cdk5) (Lew and Wang, 1995; Nikoloc et al., 1998). Cdk5 serine/threonine 

phosphorylates Dab1 independently of Reelin (D’Arcangelo et al., 1999). Interestingly, mice lacking cdk5 or 

its activating subunit p35 display abnormalities in cortical lamination and aberrant neuronal migration 

similar but not identical to reeler (Chae et al., 1997; Ohshima et al., 1996; Ohshima et al., 2007;  Tanaka et 

al., 2004). These findings suggest that Reelin and cdk5 are involved in overlapping pathways, which in 

unison, control normal cortical development and lamination. Ultimately extracellular guidance signals are 

interpreted by transmembrane receptors that relay the Reelin signal to a network of intracellular signalling 

pathways, all of which converge onto the cytoskeleton.  

 

Numerous studies to date have sought to unravel the complex Reelin signalling pathway. Upon binding to its 

receptors the Reelin signal is subsequently removed to maintain sensitivity to further stimulation. Before 

degradation, Reelin exerts its effects on the cytoskeleton of migrating neurons which ultimately results in the 

proper formation of neuronal layers. Even though it is well accepted that Reelin is responsible for normal 

cortical lamination, the precise mechanism by which Reelin controls neuronal migration still remains 

unresolved.  

 

1.3.2.3.4 How does Reelin control cortical lamination during corticogenesis? 

Numerous hypotheses have been proposed to explain the mechanism by which Reelin regulates cortical 

lamination and how this architectonic structure is disrupted in reeler mice. As discussed in section 1.3.2.3.2, 

Reelin is expressed by Cajal-Retzius cells in the MZ before the first set of postmitotic neurons reaches the 

PP (Rice and Curran, 2001). Once these neurons leave the VZ they receive guidance cues on where to 

migrate and settle within the cerebral cortex. 

 

Thus far, all the hypotheses that have been put forward are based on the temporal and spatial expression of 

Reelin, the proteins which form part of the Reelin signalling pathway, the movement of neurons in the 

cerebral cortex and cortical lamination in both normal and transgenic mouse brains. In short, these 

hypotheses can be summed up into three broad categories. 

 

Firstly, Reelin may act as an inhibitory or stop signal that terminates radial migration by inducing 

detachment from radial glial fibers (Dulabon et al., 2000; Frotscher et al., 2003; Pearlman et al., 1998; 

Sheppard and Pearlman, 1997). Secondly, Reelin has been postulated to act as a repellent for early neuronal 

populations (Ogawa et al., 1995; Schiffmann et al., 1997). Lastly, Reelin may act as a chemo-attractant for 

migrating neurons (Dulabon et al., 2000; Gilmore and Herrup, 2000). The last two categories both 

encompass the detach and go model for Reelin’s actions.  
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Early evidence suggested that Reelin acts as a ‘stop’ signal for migrating neurons, providing positional 

information to migrating neurons by instructing them to detach from their radial glial tracts and to stop 

migration (Dulabon et al., 2000; Frotscher et al., 2003; Schiffman et al., 1997; Sheppard and Pearlman, 

1997). This hypothesis was dubbed the ‘detach and stop’ model and relied on the fact that most neurons 

migrate via glial-guided locomotion (Cooper, 2008; Kriegstein and Gotz, 2003). This hypothesis was based 

on investigations that showed that Reelin causes the detachment of neurons from their glial tracts by binding 

to α3β1 integrin (Dulabon et al., 2000), resulting in arrested migration (Dulabon et al., 2000; Sanada et al., 

2004) (Figure 1.11).  

 

D’Arcangelo proposed that a Reelin concentration gradient is present within the developing cortex and thus 

Reelin exerts different cellular effects depending on its concentration (D’Aracangelo, 2005). In this model, 

low concentrations of Reelin (closer to the VZ) induces the upward extension of the leading edge towards the 

MZ, whereas high concentrations of Reelin (close to the MZ) causes the detachment from radial glial fibers 

arresting migration (D’Arcangelo, 2005).  

 

Recently, numerous lines of evidence have discredited the ‘detach and stop’ model. Of these, the most 

compelling comes from real-time imaging studies which found that during the early stages of corticogenesis 

many neurons migrate via somal translocation (section 1.3.2.1.1) (Borrel et al., 2006; Cooper, 2008; 

Kriegstein and Noctor, 2004; Miyata et al., 2001; Nadarajah et al., 2004), while during the later stages, as the 

cortical distance increases, they migrate via locomotion along radial glial tracts (section 1.3.2.1.2). Once the 

migrating neurons near the pial surface, they detach from their glial guides and migrate the rest of the 

cortical via somal translocation until they reach their final positions within the cortical plate (Borrell et al., 

2006; Cooper, 2008; Hatanaka et al., 2004; Nadarajah et al., 2001). These data show that glial detachment 

does not stop migration as previously speculated but may instead be required for neurons to reach the top of 

the cortical plate and settle within their cortical layers. These observations lead to a new hypothesis, the 

‘detach and go’ hypothesis, being proposed (Figure 1.12). This hypothesis postulated that neurons migrate 

via glial dependent locomotion until they encounter Reelin near the MZ where they detach from their glial 

fibers and migrate towards their final positions close to the pial surface via somal translocation (Nadarajah et 

al., 2001) (Figure 1.12). 
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Figure 1.11. ‘Detach and stop’ model for the role of Reelin in neuronal migration and cortical lamination. 
Migrating neurons (blue) are numbered in order of birth, radial glial fibers (green), Reelin-dependent actions are in red, 
the grey area represents the marginal zone (MZ) and the lowest white region the proliferative ventricular zone (VZ). In 
the normal cortex, layer VI neurons migrate from the VZ along their radial glial guides. As the cell soma enters the MZ, 
Reelin induces the detachment from glial tracts, arresting migration. In the reeler mutant, layer VI neurons do not 
receive the Reelin detachment signal and fail to detach from their glial guides, these neurons continue to migrate to the 
MZ. Later born neurons accumulate below earlier born neurons, due to traffic jams created along the glial fibers (Taken 
from Cooper, 2008). 

Figure 1.12. ‘Detach and go’ model for the role of Reelin in neuronal migration and cortical lamination. 
Migrating neurons (blue) are numbered in order of birth, radial glial fibers (green), Reelin-dependent actions are in red, 
the grey area represents the marginal zone (MZ) and the lowest white region the proliferative ventricular zone (VZ). 
Early in development of the normal cortex, Reelin acts on the leading edge of layer VI neurons inducing somal 
translocation to just beneath the MZ. Later born neurons then migrate by locomotion along radial glial, as the leading 
edge reaches the MZ Reelin triggers detachment from the glial tracts and induces the anchoring of the leading process 
to the MZ, the cell body then moves to its correct position by somal translocation. In the reeler cortex, layer VI neurons 
are unable to migrate via somal translocation. Thus later born neurons migrate normally via glial guided locomotion, 
but fail to detach and move their soma to the top of the cortical plate, resulting in neuronal congestion and causing the 
inverted cortical layers (Taken from Cooper, 2008). 
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1.3.3 Cortical organisation 

Once migrating neurons reach their final destination within the developing cortex, cortical organisation and 

terminal differentiation takes place. This allows neurons to mature within their correct final positions and 

enables the formation of synaptic connections which are important for sensory integration and behavioural 

output. During this phase of cortical development, programmed cell death or apoptosis of old or damaged 

neurons also occurs (Guerrini et al., 2006). Little is known about neuronal maturation and specification, 

although it is known that expression of a proneural (regulators of neurogenesis such as: Neurogenin1, 

Neurogenin 2 and Mash1) is usually adequate to initiate a neuronal differentiation programme in 

undifferentiated neuronal cells (Ma et al., 1996; Farah et al., 2000; Mizuguchi et al., 2001; Guillemot et al., 

2006). This programme regulates the achievement of features common to all neurons, whereas the layer-

specific features exhibited by distinct neuronal layers is accomplished by transcription factors belonging to 

the bHLH class that are expressed by differentiating neurons (Bertrand et al., 2002; Lee, 1997). Further 

research needs to be done to better understand this stage of cortical development.  

 

Disruption in any of the three stages of cortical development (1.3.1-1.3.3) leads to characteristic 

morphological disturbances that mostly result in abnormal convolution patterns and manifest as behavioural 

abnormalities. These neurodevelopmental disruptions have been classed together as a group of disorders 

known as malformations of cortical development (MCD) each classified according to the first developmental 

step at which the developmental process was impaired (Barkovich et al., 2001) (Table 1.1, Guerrini et al., 

2006). Although MCD are devastating neurological disorders, they do provide researchers with natural 

models in which to study the molecular pathways involved in the development of the cortex. In addition to 

MCD, it has been hypothesised that impairment in neurodevelopmental pathways may also contribute to the 

pathogenesis in complex neuropsychiatric disorders such as schizophrenia (Fatemi et al., 2000; Guidotti et 

al., 2000; Impagnatiello et al., 1998), major depression (Fatemi et al., 2000), bipolar disorders (Fatemi et al., 

2000; Guidotti et al., 2000) and autism (Fatemi et al., 2001; Keller et al., 2000; Persico et al., 2001).  

 

1.4 MALFORMATIONS OF CORTICAL DEVELOPMENT 

Many brain or cortical malformations are attributed to defective neuronal migration, in which neurons have 

failed to migrate in an orchestrated manner. Brain malformations due to abnormal neuronal migration are 

characterised generally into four pathological groups: agyria/pachygyria, heterotopia, focal cortical dysplasia 

and lissencephaly (Uher and Golden, 2000), of which lissencephaly is regarded as the most severe or 

extreme form of aberrant neuronal migration. Due to the fact that neuronal migration occurs in distinct steps 

or phases, neuronal migration can be affected at numerous levels each resulting in different pathological 

conditions (Couillard-Despres et al., 2001). The genes believed to play a role in the pathogenesis of neuronal 

migration and the stages at which the anomalies occur are shown in Table 1.1 (Guerrini et al., 2006). For the 

purpose of this study defects in ongoing neuronal migration and defects in lamination will be further 

discussed.  



25 

 

 

 

 

1.4.1 Focal cortical dysplasia 

Focal cortical dysplasia (FCD) is a heterogeneous group of lesions characterized by abnormal neurons within 

a localized region of the neocortex. Focal cortical dysplasia is the term used to describe a spectrum of 

cortical laminar abnormalities that are associated with cytopathological features which include cytomegalic 

(giant) neurons, dysmorphic neurons and balloon cells (Tassi et al., 2002). The current hypothesis is that 

FCD’s result from abnormalities in the proliferation of neurons which are derived from neuronal progenitor 

cells within in the ventricular zone (Lamparello et al., 2007). One of the most characteristic symptoms or 

features of FCD’s is drug-resistant epilepsy (Taylor et al., 1971). The cause of this severe form of epilepsy is 

due to the disorganisation of the abnormal neurons found in patients with FCD, these neurons are unable to 

form normal synaptic connections and are hence dysfunctional (Guerrini and Fillipi, 2005).  
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Table 1.1. Genetic malformations of cortical development throughout the stages of development.  

Malformation Gene Locus Reference  

Malformations due to abnormal proliferation 
 

   

Focal cortical dysplasia - abnormalities of the laminar structure of the cerebral cortex    

   Tuberous sclerosis TSC1 9q34.13 Dabora et al., 2001 

   Tuberous sclerosis TSC2 16p13.3 Dabora et al., 2001 

    

Malformations due to abnormal neuronal migration  
 

   

Lissencephaly (X-linked, Autosomal dominant) – most severe neuronal migration disorder in which neurons are unable to complete migration  

   X-linked lissencephaly with  abnormal genitalia  ARX Xp22.1 Kato et al., 2004 

   Isolated lissencephaly sequence (ILS) or subcortical band heterotopia (SBH or double 

cortex - less severe) 

DCX Xq22.3-

q23 

Matsumoto et al., 2001 

   ILS or SBH TUBA1A 12q13.12 Poirier et al., 2007 

   ILS or SBH LIS1 17p13.3 Cardosa et al., 2002 

   Miller- Dieker syndrome  

 

LIS1 + 

YWHAE 

17p13.3 Cardosa et al., 2003 

Lissencephaly (Autosomal recessive) - most severe neuronal migration disorder in which neurons are unable to complete migration 

   Lissencephaly with cerebral hypoplasia (LCH) group b RELN 7q22.1 Zaki et al., 2007 

   LCH group b  

 

VLDLR 9p24.2 Boycott et al., 2005 

Heterotopia (X-linked, Autosomal dominant) – clusters of normal neurons in 

abnormal positions  

   

   Periventricular nodular heterotopias (PNH)  FLNA Xq28 Parrini et al., 2006 
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   PNH - 5p15.1 Sheen et al., 2003 

  PNH - 5p15.33 Sheen et al., 2003 

  PNH 

 

- 7q11.23 Ferland et al., 2006  

Heterotopia (Autosomal recessive) - clusters of normal neurons in abnormal positions    

   Microcephaly and PNH 

 

ARFGEF2 20p13 Sheen et al., 2004  

Cobblestone cortical malformations (Autosomal recessive)  

 

   

   Fukuyama congenital muscular dystrophy or Walker-Warburg syndrome (WWS) FCMD 9q31.2 Kondo-Iida et al., 1999 

   Muscle-eye-brain disease (MEB) or WWS FKRP 19q13.32 Beltran-Valero de Barnabe et al., 

2004 

   MEB LARGE 22q12.3 Longman et al., 2003 

   MEB POMGnT1 1p34.1 Beltran-Valero de Barnabe et al., 

2002 

   MEB or WWS POMT1 9q34.13 van Reeuwijk et al., 2006 

   MEB or WWS POMT2 14q24.3 van Reeuwijk et al., 2005 

   Bilateral fronto-parietal cobblestone malformation (polymicrogyria) GPR56 16q13 Piao et al., 2005 

   CEDNIK syndrome  SNAP29 22q11.2 Sprecher et al., 2005 

    

Malformations due to abnormal cortical organization  

 

   

Polymicrogyria (X-linked, Autosomal dominant) - excessive number of abnormally small gyri presenting as an irregular cortical surface 
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   Rolandic seizures, oromotor dyspraxia  SRPX2 Xq22 Roll et al., 2006 

   Agenesis of the corpus callosum (ACC), microcephaly and polymicrogyria (PMG) TBR2 3p21 Baala et al., 2007 

   Aniridia plus PAX6 11p13 Glaser et al., 1994 

   PMG - 11p36.3-

pter 

Ribeiro et al., 2007 

   Microcephaly, PMG - 1q44-qter Zollino et al., 2003  

   ACC, PNH and PMG - 6q26-qter Eash et al., 2005 

   PMG - 21q2 Yao et al., 2006 

   DiGeorge syndrome 

 

- 22q11.2 Robin et al., 2006  

Polymicogyria (Autosomal recessive) - excessive number of abnormally small gyri 

presenting as an irregular cortical surface 

   

   Goldberg-Shprintzen syndrome KIAA1279 10q21.3 Brooks et al., 2005 

   Micro syndrome  RAB3GAP1 2q21.3  Aligianis et al., 2005 

(Adapted from Guerrini et al., 2006). 
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Table 1.2. Human migration disorders and respective mouse mutants resulting from abnormal 
neuronal migration. Tabulating the different stages of migration at which these anomalies occur in light of 
the causative genes.  

Abbreviations: PVNH, periventricular nodular heterotopias; PVH, periventricular heterotopias; DC/XLIS, double 
cortex /X-linked lissencephaly; LIS, lissencephaly; LCH, lissencephaly cerebral hypoplasia; MAP, microtubule 
associated protein; MD, muscular dystrophy; -  not known or previously described (Taken from Beilas et al., 2004).  
 

1.4.2 Anomalies in ongoing neuronal migration: lissencephaly and double cortex 

Lissencephaly, which means smooth brain, is characterized by absent (agyria) and decreased (pachygyria) 

convolutions, resulting in a smooth cerebral cortex (Barkovich et al., 2005; Uher and Golden, 2000). Two 

forms of lissencephaly have been identified, classical or type I lissencephaly and cobblestone complex or 

type II lissencephaly, each classified according to anatomical differences observed in the formation of the 

Stage of 
migration 

Gene name Human disorder Mouse mutant Putative function 

 
 
Initiation 

filamin PVNH - Actin binding protein 

 Arfgef2 PVH/microcephaly - Vesicle trafficking 
     
Ongoing 
migration Dcx DC/XLIS Hippocampal 

malformation MAP 

 
Lis1 LIS/DC 

Disrupted 
cortex and 
hippocampus 

MAP and dynein regulator 

 14-3-3epsilon - Migration 
defect Phosphatase inhibitor 

 kif2A - Migration 
defect + end motor protein 

 Map1b/Map2 - Migration 
defect MAP 

 Map1b/Tau - Migration 
defect MAP 

     
Lamination Reelin LCH reeler Glycoprotein 
 dab1 - scrambler, 

yotari Adaptor protein 

 Apoer2 - Inverted cortex Reelin receptor 
 Vldlr - Inverted cortex Reelin receptor 
 P35 - Inverted cortex Activator of cdk5 
 cdk5 - Inverted cortex Serine-threonine kinase 
 Brn1/Brn2 - Inverted cortex Transcriptional activation 

of cdk5 and dab1 
     
Termination Fak - Disrupted 

migration Focal-adhesion kinase 

 POMT1 Walker-Warburg 
syndromome - Α-dystroglucan O-linked 

glycosylation 
 POMGnT1 Muscle-eye-brain 

disease - Α-dystroglucan O-linked 
glycosylation 

 
fukutin Fukuyamu MD Disrupted 

migration 

Phospholigand transferase 
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cortex (Kanatani et al., 2005). In both these forms of lissencephalies neurons fail to migrate to their proper 

cortical destinations which disrupts the normal six layered organisation of the cortex (Guerrini and Marini, 

2006).  

 
1.4.2.1 Classical or type I lissencephaly 

Type I lissencephaly (LIS) is regarded as the most severe neuronal migration disorder, with symptoms 

ranging from epilepsy to mental retardation (Kubo and Nakajima 2002). The lissencephalic brain is 

abnormally enlarged and is characterized by a thicker than normal four-layered cortex (Kubo and Nakajima, 

2002; Kuchelmeister et al., 1993), which is comprised of a molecular layer (marginal zone, layer 1), an outer 

cellular layer (layer 2), a cell sparse layer (layer 3) and a deep cellular layer which contains the majority of 

misguided cortical plate neurons (Barkovich et al., 1991; Dobyns et al., 1996; Kubi and Nakajima, 2002). 

Interestingly, despite the loss of distinctive neuronal layers, the lissencephalic brain retains the proper inside-

out lamination of healthy individuals.  

 

Investigations into the molecular causes of lissencephaly in humans and in mice, have identified several 

mutations in a number of genes.  These include mutations in the LIS1 gene (also known as the β subunit of 

platelet activating factor acetylhydrolase gene, PAFAH1B1) (Hattori et al., 1994; Reiner et al., 1993; Reiner 

et al., 2000) and in the X-linked doublecortin gene (DCX, also known as XLIS). Both these genes encode 

proteins that are considered microtubule-associated proteins (MAP) and exert their regulatory function by 

controlling microtubule dynamics within migrating neurons (Bielas, 2004; Reiner et al., 1995). The protein 

products of these two genes are structurally unrelated and it is not known whether they physically interact 

with one another (Gleeson and Walsh, 2000), yet they are believed to act in an overlapping manner to control 

neuronal migration (Kubo and Nakajima, 2002). More recently, Keays and colleagues showed that humans 

with type I lissencephaly may also carry heterozygous mutations in TUBA1A, the α-tubulin gene, which 

encodes a crucial microtubule protein (Keays et al., 2007). 

 

1.4.2.2 Double cortex or type 2 lissencephaly  

X-linked lissencephaly results from mutations within the X-linked gene doublecortin (DCX). Mutations 

within this gene cause two distinct disease phenotypes: in males the neuronal migration disorder type I 

lissencephaly, whereas in females doublecortin mutations causes a syndrome known as double cortex. This 

mosaic effect is most probably due to the X-inactivation of DCX in certain cells in females (Ayala et al., 

2007; des Portes et al., 1998; Gleeson et al., 1998). 

 

Recently, it was shown that the mutations in DCX responsible for the lissencephalic phenotype are found 

within the protein’s tubulin-binding domains (Sapir et al., 2000; Taylor et al., 2000). Gleeson and co-

workers postulated that doublecortin has a strong microtubule-bundling effect, causing microtubules to 
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reorganise into large bundles which are more resistant to depolymerisation thus over stabilizing the 

microtubule network (Gleeson et al., 1999).  

 

Both Lis1 and DCX regulate microtubule dynamics by stabilizing microtubules enabling microtubule 

polymerization. Thus it has been suggested that Lis1 and DCX act in similar pathways to regulate 

microtubules in migrating neurons (Gupta et al., 2002). Caspi and colleagues showed that Lis1 and DCX 

interact both in vitro as well as in mouse embryonic slices to maintain the pool of polymerized microtubules, 

essential for neuronal migration and the extension of the leading process (Caspi et al., 2000). 

 

1.5. NEURODEVELOPMENT IN COMPLEX DISORDERS  

The pathogenesis of numerous more complex neuropsychiatric disorders have also been attributed to 

abnormalities in neurodevelopment; a few of these are discussed briefly below.  

 

1.5.1. Schizophrenia 

The notion that schizophrenia may have a neurodevelopmental component first gained prominence in the 

1970’s when studies by Watt and co-workers and Fish and co-workers showed that the behavioural and 

neurological abnormalities seen in schizophrenic patients dated back to childhood (Fish, 1957; Watt, 1972). 

Over the years this theory has gained widespread popularity in the literature which is supported by numerous 

studies (Marenco and Weinberger, 2000; Weinberger, 1986). The neurodevelopmental hypothesis of 

schizophrenia poses that disease process affect critical brain circuits during embryonic development (lesion 

forming). These brain lesions or insults are able to remain clinically dormant until triggered later during 

adolescence when several developmental changes occur (Achte et al., 1969; Hyde et al., 1992; Weinberger, 

1987). 

 

By the end of the 1980s a more comprehensive neurodevelopmental hypothesis for the pathogenesis of 

schizophrenia had emerged (Weinberger, 1986; 1987), which is supported by more recent epidemiological 

and neuropathological studies. These studies mostly implicate changes within the schizophrenic brain. 

Firstly, numerous studies have shown that there is an increase in the size of the ventricles in the brains of 

schizophrenic patients, this enlargement of the ventricles was found to be present prior to the onset or at the 

onset of schizophrenia (Johnstone et al., 1976; Weinberger, 1979; 1982). Not only were the ventricles 

enlarged before the development of schizophrenia, the enlargement did not progress with the progression of 

the illness and its associated symptoms nor did the degree of enlargement correlate to the severity of the 

illness (Johnstone et al., 1976; Weinberger, 1979; 1982). These findings disprove the previously postulated 

neurodegenerative hypothesis for the development of schizophrenia (Illowsky et al., 1988). It should 

however be noted that several studies have shown no ventricular enlargement during or prior to 

schizophrenia (De Lisi et al., 1992; Degreef et al., 1991; Illowsky et al., 1988; Jaskiw et al., 1994). Thus it 
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seems that in a subset of schizophrenia patients the pathogenesis of schizophrenia may be attributed to 

factors other than neurodevelopmental insults. 

 

Secondly, cyto-architectural abnormalities found within the brains of certain schizophrenic patients provided 

evidence to support the neurodevelopmental hypothesis. Harrison and colleagues showed that within the 

schizophrenic brain neurons are abnormal in size and they are incorrectly positioned, causing neuronal 

disarray and displacement, heterotopias and disorganisation of laminar structures (Harrison et al., 1997). 

These abnormalities are all caused by disruptions in neuronal proliferation and migration. In parallel, 

schizophrenic patients have a reduction in Reelin protein levels by up to 50% (Impagnatiello et al., 1998; 

Fatemi et al., 2000). Reelin is extracellular matrix glycoprotein secreted by the Cajal-retzius cells of the 

developing marginal zone and is required for neuronal migration and normal cortical lamination 

(D’Arcangelo and Curran, 1998) (section 1.3.2.3.2),  

 

Lastly, post mortem studies have shown no indication of gliosis (Harrison et al., 1997). Gliosis (neuronal 

scarring) is an indicator of neuronal damage or injury after the second trimester of gestation, and is also used 

as a histopathological marker for neurodegeneration (Kreutzberg et al., 1997). The absence of neuronal 

scarring indicates that the changes in the schizophrenic brain occurred before the third trimester of gestation 

(Kreutzberg et al., 1997), further supporting the neurodevelopmental hypothesis for schizophrenia. 

Neurodevelopmental insults caused before the second trimester would ultimately result in gross 

abnormalities in the cerebral cortex suggesting that neurodevelopmental abnormalities in schizophrenic 

patients are caused by insults or disruptions during the second trimester (Bloom et al.,1993; Roberts et al., 

1991).  

 

All these studies provide a significant amount of evidence to support the neurodevelopmental hypothesis of 

schizophrenia, in which this polygenic disorder is accompanied by early neuropathological insults occurring 

during embryonic development. These morbidity risks which begin to be expressed during embryonic 

neurodevelopment remain dormant until activated later during adulthood in which they manifest into 

schizophrenia. In spite of all the evidence supporting this hypothesis, other factors (such as environment and 

other susceptibility genes) occurring later in life beyond the neurodevelopmental stages also remain plausible 

risk factors for the pathogenesis of schizophrenia (Marenco and Weinberger, 2000).  

 

1.5.2. Obsessive-compulsive disorder 

Despite the high prevalence of OCD, the precise pathophysiology of this distressing and debilitating disorder 

remains unclear. One theory that is gaining momentum, is that the aetiology of OCD has 

neurodevelopmental origins (Rosenberg and Keshavan, 1998). The manifestation of OCD in children is 

similar to its presentation in adulthood, the most cases of OCD have their onset during early childhood and 

adolescence (Pauls et al., 1995; Bolton, 1996). These and numerous other studies have suggested that the 
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risk for OCD emerges during early childhood brain development (Bolton, 1996; Castillo et al., 2005; 

Venkatasubramanian et al., 2009). Further support for the neurodevelopmental hypothesis of OCD is its 

comorbidity with the well known neurodevelopmental disorder, Tourette’s syndrome (Lenane et al., 1990; 

Paul et al., 1995). In addition, patients with OCD demonstrate severe impairments in neurological functions 

in comparison to healthy controls (Behar et al., 1984; Conde Lopez et al., 1990; Hollander et al., 1990). 

Several neurological soft sign abnormalities (such as sensorimotor abnormalities, poor sensory and motor 

integration) observed at the onset of OCD in the absence of deterioration as the disorder progresses, further 

support the hypothesis that neurodevelopmental abnormalities contribute to the pathogenesis of OCD 

(Rosenberg and Keshavan, 1998).  

 

1.5.3. Autism spectrum disorders 

Autism spectrum disorders (ASD) is a group of complex and heterogeneous conditions including autism, 

Rett and Asperger syndromes and pervasive developmental disorders (American Psychiatric Association 

1994, DSM-IV). The stereotypic behaviours and delay or disruption in communication and social behaviour 

characteristic of ASDs, indicate that these spectrum of disorders have abnormal brain structures (Pardo and 

Eberhart, 2007). It is thought that abnormalities could arise in neurodevelopmental pathways during intra-

uterine development and/or during early postnatal brain development (Pardo and Eberhart, 2007). Several 

clinical assessments, neuroimaging and neuropathological studies have been used to link aberrant 

neurodevelopment to the pathogenesis of ASDs (Pardo and Eberhert, 2007). One of the most striking 

features in ASDs is altered brain growth, in which overgrowth occurs in areas of the frontal lobe, cerebellum 

and limbic structures; this pattern of overgrowth is followed by abnormal slowness in brain growth 

(Courchesne et al., 2004; Courchesne and Peirce, 2005). Additionally neuroimaging studies have shown an 

enlargement of brain volume and abnormal patterns of growth in the cerebral cortex (Herbert, 2005). 

Moreover, post mortem neuropathological studies have also shown disturbances in neuronal and cortical 

organization of the cerebellum and cerebral cortex (Bailey et al., 1998; Kemper and Bauman, 1998). Taken 

together, all the clinical, neuroimaging and neuropathological studies support the hypothesis that ASDs are 

disorders of neuronal-cortical organization which cause alterations in neurodevelopment and in information 

processing.  

 

Bipolar disorders have also been attributed to abnormal neurodevelopment; these disorders most commonly 

have cognitive impairments within the domains of attention, memory and executive function (Bearden et al., 

2001; Quraishi and Frangou, 2002). Despite several lines of evidence linking the aetiology of bipolar to 

impaired neurodevelopment (such as neurocognitive deficits, and superior to average cognitive ability), there 

is still no conclusive hypothesis as evidence suggest that bipolar may be linked more to neurodegeneration 

rather than neurodevelopment (Goodwin et al., 2008).  
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In summary, embryonic cortical development is a highly complex process which is regulated by numerous 

pathways and proteins, each playing a crucial role in the development of the cerebral cortex. The importance 

of normal cortical development is highlighted by the vast amount of cortical malformation disorders caused 

by abnormal neuronal proliferation, migration and differentiation. Normal neuronal migration (both radial 

and tangential) is fundamental to the development of an organised six layered neocortex. Neuronal migration 

disorders and mutant mice such as reeler have shed light on the processes involved in controlling neuronal 

migration during corticogenesis. Despite the vast amount of evidence on the Reelin signalling pathway and 

it’s pivotal role in neuronal migration and cortical lamination, the precise mechanism by which Reelin 

instructs migrating neurons remains a mystery. More recently, aberrant embryonic neuronal development has 

also been linked to more complex neuropsychiatric disorders such as schizophrenia and OCD.  

 

1.6 THE PRESENT STUDY 

The literature reviewed above highlights the importance of normal cortical development, with particular 

emphasis on the role of the Reelin signalling pathway in normal neuronal migration. The present 

investigation was conducted in an effort to further unravel the components of the Reelin signalling pathway 

which may shed more light on the molecular processes involved in cortical development. 

 

In a previous investigation conducted in our laboratory, the amino (N)-terminal domain (reeler domain) of 

Reelin was used in a yeast-two hybrid (Y2H) screen to identify novel interacting proteins (Kinnear, 2007). In 

this study, the reeler domain was found to bind to C-terminal domain of WDR47 (WD-repeat domain), a 

protein of unknown function belonging to the WD-repeat family of proteins. In an effort to determine the 

function of WDR47 and what role it may play in cortical development, the present study sought to identify 

proteins which interact with WDR47. 

 

1.6.1 WDR47 

WDR47 is a seven WD-repeat containing protein belonging to the WD-repeat protein family (Figure 1.13). 

Despite the fact that the function of this protein being largely unknown, we hypothesised that it may play a 

crucial role based on its domain structure which bears a striking resemblance to that of LIS1,a protein 

involved in the Reelin signalling pathway (Figure 1.13). Besides having seven WD repeats in common, both 

WDR47 and Lis1 contain a Lis homology domain (LisH) at their N-termini (Figure 1.13). Moreover, 

WDR47 contains a C-terminal to LisH domain (CTLH), a domain also found in RAN-binding protein 9, a 

protein shown to be involved in microtubule assembly (Nishitani et al, 2001). 

 

1.6.1.1 WD- repeat family 

WD-repeats are minimally conserved domains of approximately 40-60 amino acids which typically contain a 

glycine-histidine (GH) dipeptide 11- 24 residues from the proteins N-terminus and end with a tryptophan-
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aspartic acid (WD) dipeptide at the C-terminus (Li and Roberts, 2001; Smith et al., 1999). The repeating unit 

was first recognised in the β subunit of the GTP-binding protein transducin, and have since been found in 

approximately 140 human proteins (Vander and Ploegh, 1992). 

 

WD-repeat proteins perform a wide variety of functions which include RNA synthesis and processing, 

chromatin assembly, vesicular trafficking, cytoskeletal assembly, cell cycle regulation and programmed cell 

death (Li and Roberts, 2001; Neer et al., 1994; Smith et al., 1999; Vander and Ploegh, 1992). Despite the 

diverse functions, all members of the WD-repeat family have an underlying common function in 

coordinating multi-protein complex assemblies (Li and Roberts, 2001; Smith et al., 1999). It is thought that 

these repeating units may serve as a scaffold for protein interactions, which can occur simultaneously with 

several different proteins (Li and Roberts, 2001; Smith et al., 1999). This notion is supported by structure-

function analysis which suggested that the repeats act as a rigid platform or scaffold regardless of the 

proteins involved, and that the specificity of the proteins involved is determined not by the repeating WD 

motif but rather by the sequences flanking the repeating units (Li and Roberts, 2001; Smith et al., 1999).  

 

Of particular relevance to the present study is the fact that some of the identified WD-repeat containing 

proteins have been found to play crucial roles in the signal transduction and cytoskeletal assembly, two 

processes that are vital for neuronal migration and neurodevelopment. Furthermore, mutations in WD-repeat 

containing proteins have been identified that cause disorders of neuronal migration. For example, mutations 

or deletion in the WD-repeat gene, Lis1, causes Type 1 Lissencephaly in humans (Lo et al., 1997; Neer et 

al., 1993) (section1.4.2.1) while Cockayne syndrome (CS), an autosomal recessive disorder neuronal 

migration disorder, is caused by mutations within the WD-repeat protein CSA (Henning et al., 2005; 

Troelstra et al., 1992).  
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Figure 1.13. Domain structures of WDR47 and LIS1. A comparison of the domain structures of WDR47 and LIS1, 
showing that WDR47 and LIS1 have similar domain structures namely the Lis homology domain (LisH, green 
rectangle) and the same number of WD40 repeating units (blue triangles). Additionally, WDR47 also contains a C-
terminal Lis homology domain (CTLH, yellow oval).  
 
1.6.1.2 LIS1 homology domain 

The LIS1 homology domain was first described as a novel sequence motif in the products of genes mutated 

in Miller-Dieker Lissenecephaly, Treacher Collins and oral-digital type 1 syndromes, three disorders 

associated with defects in cell migration (Emes and Ponting, 2001). As mentioned in the previous section, 

mutations in LIS1 are associated with Miller-Dieker lissencephaly, which is a consequence of abnormal 

neuronal migration. Interestingly, in mice heterozygous for a LIS1 mutation, in which the LISH domain was 

removed, aberrant morphology of the developing cortex was found, which is consistent with defects in 

neuronal migration (Cahan et al., 2001). Furthermore, in a patient with low severity lissencephaly, a 

mutation was found within the LISH domain of the LIS1 gene (Cahan et al., 2001). This suggests that the 

LISH domain may play a vital role in mediating neuronal migration during neurodevelopment. Additionally, 

LISH domains have also been suggested to contribute to the regulation of microtubule dynamics, either by 

mediating dimerisation, or by binding cytoplasmic dynein heavy chain or microtubules directly (Emes and 

Ponting, 2001; Gerlitz et al., 2005). Microtubule rearrangement has been shown to play an important role in 

neuronal migration (reviewed by Jossin, 2004). Based on the functions of both WD40-repeat domains and 

LISH domains in neuronal migration, it is quite reasonable to assume that the WDR47 protein, which 

contains both of these domains, may also play a critical role in the process of neuronal migration.  

 

Therefore, we hypothesized that this protein plays a crucial role in neocortical development via its 

participation in the Reelin pathway, and that the subsequent protein-protein interactions may also be 

implicated in neurological disorders. To further understand the function of this novel protein, a human foetal 

brain cDNA library was screened to identify its binding partners. In this experiment, the region of WDR47 

WDR47 

LIS1 
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corresponding to the LisH and the CTLH domains was used as ‘bait’ in a Y2H analysis; this region was 

chosen as it is likely that this region of WDR47 (rather than the WD repeat domains) is responsible for the 

interactions specific to WDR47. Plausible WDR47-interactions indentified in the Y2H screen were then 

verified in a mammalian system via 3D-colocalisation. 
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CHAPTER TWO: MATERIALS AND METHODS  

 

2.1. POLYMERASE CHAIN REACTION (PCR) 

2.1.1. Oligonucleotide primer design 

Oligonucleotide primers were designed according to the sequence of the pEYFP-WDR47 (clone IOH26831, 

protein ref sequence: gi│55960048│emb│CAI14353.1│), which encodes the full length WDR47 (Imagenes, 

Berlin, Germany). Before the primers were synthesized, the sequences were analysed for both self-

complimentarity and primer-primer complimentarity as well as melting temperature compatibility using 

DNAmanTM  version 4 software (Lynnion Biosoft Corp©). The primers were synthesized according to 

standard phosphoramidite techniques at the Department of Molecular and Cell Biology, University of Cape 

Town (UCT), South Africa. 

 

2.1.1.1. Primer design for WDR47 bait construct used in Y2H 

Oligonucleotide primers were designed to PCR-amplify the cDNA region encoding the two N-terminal 

domains (LisH and CTLH) of the WD-repeat 47 protein (WDR47). The primers were designed according to 

the sequence of the pEYFP-WDR47 (clone IOH26831), which encodes the full length WDR47 (Imagenes, 

Berlin, Germany).  

 

The primers were engineered to incorporate restriction enzyme sequences on both the forward (NdeI) and 

reverse (SalI) primers in order to facilitate the insertion of the amplified product into the pGBKT7 shuttling 

vector. In addition, the primers were also designed to incorporate a universal enzyme seat, which allows the 

restriction enzyme to digest at the specific engineered restriction sites, and a stop codon. The sequences of 

the N-terminal WDR47 bait-insert primers are shown in Table 2.1.  

 

Table 2.1. Primer sequences used for PCR amplification and engineering of WDR47 
Name Sequence Ta (°C) 

WDR47- F 5’- act gca gaa cat atg aaa gag gtt gaa atc att aag-  3’ 51  

WDR47-R 5’ –act gca gaa gtc gac cta tga cat cgc gtt gtt a-3’ 51 

Blue: universal enzyme seat, Purple: NdeI restriction site, Green: SalI restriction site, Red: stop codon, Black gene 
specific sequences. Abbreviations: Ta, annealing temperature  
 

2.1.1.2. Vector- specific primer design 

In order to amplify inserts cloned into the pACT2 library vector, and for subsequent sequence analysis, 

primers were also designed to amplify vector-specific sequences flanking the multiple cloning site of the 

pACT2 vector (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A). The primers were designed according to 
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vector sequences obtained from the Clonetech MATCHMAKER™ handbook (www.clonetech.com). 

Similarly vector-specific primers were also designed for pGBKT7, these primers were used to amplify and 

sequence the pGBKT7-WDR47 bait construct. Table 2.2 shows the sequences for both the vector-specific 

primers. 

Table 2.2 Primer sequences and annealing temperatures used for the amplification of inserts from 
cloning vectors. 

 
 
 
 
 
 
 

Abbreviations: °C, degrees Celsius; Ta, Annealing temperature 
 

2.1.2. PCR-amplification to generate WDR47 bait-insert fragment  

PCR reactions were performed in 50 µl reactions and consisted of 1 µl of 150 ng plasmid DNA (WDR47-

EYFP), 150 ng/µl forward and reverse primer, 1.5 µl of an equimolar dNTP solution (2.5 mM of each dATP, 

dCTP, dGTP, dTTP) (TaKaRa Shuzo Co. Ltd, Shiga, Japan), 5 µl of 10X Ex Taq™ Mg2+-containing reaction 

buffer (TaKaRa Shuzo Co. Ltd, Shiga, Japan), 1.5 U Ex Taq™ (TaKaRa Shuzo Co. Ltd, Shiga, Japan) and 

sterile water (ddH2O) to a final volume of 50 µl. 

 

Amplification was performed on a GeneAmp® PCR System 2720 thermal cycler (Applied Biosystems, 

Foster City, CA, U.S.A) using the following cycling parameters: initial denaturation at 94°C for 5 min, 

followed by 30 cycles of denaturation at 94°C for 30 seconds, annealing at 51°C for 30 seconds and 

extension at 72°C for 30 seconds, a final extension step followed at 72°C for 7 minutes.  

 

2.1.3. Bacterial colony PCR 

Bacterial colony PCR was performed in order to rapidly identify bacterial colonies harbouring the desired 

recombinant plasmid, as the vectors used in the Y2H analysis do not support blue-white colour selection. In 

these PCR reactions, a tiny amount from an individual bacterial colony was picked from an agar plate 

containing the appropriate antibiotic, and used as a template. Y2H vector-specific primers (Table 2.2) were 

used in conjunction with the appropriate primers and the 2X Kapa Ready mix (Kapa, Woburn, U.S.A), a pre-

made reaction mixture containing all the reagents required for a standard PCR reaction under the 

abovementioned PCR conditions (section 2.1.2). PCR amplified products were subsequently electrophoresed 

on a 1% agarose gel, and visualisized under UV light for verification (section 2.2). 

 

 

Name Sequence Ta (°C) 

pGBKT7-F 5’ TCA TCG GAA GAG AGT AG 3’ 50 
pGBKT7-R 5’ TCA CTT TAA AAT TTG TAT ACA 3’ 51 
pACT2-F 5’ CTA TTC GAT GAT GAA GAT ACC CCA CCA AAC C 3’ 68 
pACT2-R 5’ GTG AAC TTG CGG GGT TTT TCA GTA TCT ACG A 3’ 68 
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2.2. GEL ELECTROPHORESIS 

In the present study, agarose gel electrophoresis was used to visualise PCR-amplified fragments, to identify 

recombinant plasmids harbouring the correct insert and to identify DNA fragments for purification.  

 

2.2.1. Agarose gel electrophoresis for visualisation of PCR-amplified products 

In order to verify if the PCR-amplification of the products was successful, the amplified products were 

subjected to agarose gel electrophoresis as follows: 10 µl of product was initially mixed with 5 µl 

bromophenol blue (Appendix I) loading dye. Each mixed sample was loaded into separate wells of a 1% 

agarose gel containing EtBr submerged in 1x SB buffer (Appendix I). A 100bp marker (Promega, Madison 

WI, USA) was co-electrophoresed with  the amplified products to give an indication of relevant sizes. The 

DNA fragments were then visualised on a long wave 3UV trans-illuminator (UVP, Inc. Upland, CA, USA).  

 

2.3. AUTOMATED DNA SEQUENCING   

Bidirectional automated DNA sequencing of PCR-amplified products, as well as cloned inserts, was 

performed at the Core Sequencing Facility at the Department of Genetics of the University of Stellenbosch, 

RSA, either on an ABI PrismTM 377 or an ABI PrismTM 3100 automated sequencer (P.E. Applied 

Biosystems, Forster City, CA, U.S.A). The primers used for the sequencing reactions for PCR-amplified 

products were identical to the initial PCR primers (Table 2.1), while for the sequencing of Y2H constructs, 

the vector-specific primers were used (Table 2.2). 

 

2.4. SEQUENCE ANALYSIS 

2.4.1. DNA sequence analysis 

Sequence analysis was done using the ChromasPro computer program (Techelysium Pty Lmt, Helensvale, 

Queensland, Australia) and DNAman™ version 4 (Lynnion Biosoft Corp©) to verify that the sequence 

integrity and frame of the WDR47 fragment generated by PCR-amplification (section 2.1.2.) were intact, as 

well as to identify Y2H possible interacting prey clones isolated during Y2H library screening. The 

nucleotide sequence of the amplified WDR47 was compared to the WDR47 reference sequence obtained 

from the Genbank database (www.ncbi.nlm.nih.gov/Entrez) and the Ensembl database (www.ensembl.org). 

The Y2H prey constructs were identified by BLASTn comparison of the nucleotide sequences against the 

Genbank database (www.ncbi.nlm.nih.gov/Entrez) and the Ensembl database (www.ensembl.org). The insert 

sequences of the prey clones were also translated in the frame dictated by the preceding GAL4AD reading 

frame (i.e. reading frame 1), and this deduced protein sequence was compared to proteins in the Swissprot 

database by BLASTp analyses. 
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2.4.2. Protein sequence analysis 

Following the identification of the protein encoded by each of the clones obtained from the Y2H screen, the 

protein sequence was analysed using Proteome Analyst 

(http://www.cs.ualberta.ca/%7Ebioinfo/PA/Sub/index.html) and ESLpred 

(http://www.imtech.res.in/raghava/eslpred/) to determine protein domain structure of the putative interactors 

of WDR47. 

 

2.5 GENERATION OF CONSTRUCTS  

2.5.1. Y2H constructs 

To generate the pGBKT7-WDR47 bait construct for the Y2H screen, the engineered WDR47 bait-insert was 

cloned into the pGBKT7 cloning vector (Appendix V). This was achieved by sequential double-digestion of 

the amplified cDNA fragment and pGBKT7 vector with appropriate enzymes (section 2.5.2) followed by the 

ligation of the digested amplified product (WDR47 bait construct) to digested pGBKT7 vector (section 2.7), 

to form the pGBKT7-WDR47 bait construct. The bait construct was transformed into a competent DH5α 

E.Coli strain (section 2.8.1), single bacterial colonies were subjected to bacterial colony PCR to detect or 

identify colonies harbouring the recombinant plasmid. 

 

Colonies containing the correct insert were then grown overnight in Luria-Bertani Broth (LB) supplemented 

with 10 µl of a 50 mg/ml stock of Kanamycin (Appendix I). The following day the plasmids were purified 

using Zippy™ Plasmid miniprep kit (Inqaba Biotec, Pretoria, South Africa) according to manufacturer’s 

instructions (section 2.12.2). The purified plasmids were then sequenced to determine the integrity of the 

sequence and conservation of the GAL4 DNA-BD reading frame. The purified pGBKT7-WDR4 bait 

construct was then transformed into the S.cerevisiae yeast strain YH109, thus generating the bait yeast strain 

which was used to screen a Clonetech MATCHMAKER™ pre-transformed foetal- brain cDNA library 

(section 2.14.2) (Clonetech, Paulo Alto, CA, U.S.A). The library consisted of foetal brain cDNA which were 

cloned into the pACT2 prey vector (Figure 2, Appendix V) and pretransformed into the S.cerevisiae yeast 

strain Y187.  

 

2.5.2. Restriction enzyme digestion for cloning of WDR47 bait-insert into pGBKT7 

In order to generate the pGBKT7-WDR47 bait construct, both the insert (WDR47) and the vector (pGBKT7) 

were sequentially double-digested with NdeI and SalI (Promega, Madison WI, USA). The digests were 

prepared in a 50µl reaction volume as follows: 30 µl PCR amplified insert DNA or 20 µl vector DNA (100 

ng/µl) was mixed with 2 µl restriction enzyme (5 U/µl), 5 µl restriction enzyme buffer and the appropriate 

volume of ddH2O (insert, 13 µl; 23 vector, µl). The mixtures were incubated at 37 °C for 3h. Following this, 

the samples were purified using the Wizard™ kit (Wizard® Purefection Plasmid DNA purification kit, 
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Promega Corp. Madison Wisconsin, USA) (section 2.12.1), with the exception that instead of gel 

electrophoresis and excision of DNA from the gel for purification, the samples were purified directly.  

 

The samples were subsequently eluted in 50 µl ddH2O and mixed with 5µl of the second restriction enzyme 

(5 U/µl), 10 µl restriction buffer and 35 µl ddH2O. These samples were incubated at 37°C for 3 hours, after 

which they were again purified using the Wizard™ kit (Wizard® Purefection Plasmid DNA purification kit, 

Promega Corp. Madison Wisconsin, USA).  

 

2.6. CALF INTESTINAL ALKALINE PHOSPHATASE (CIAP) TREATMENT OF VECTOR 

To prevent the vector re-circularising by self-ligation, the ends of the linearised plasmid were CIAP-treated 

to remove any phosphate groups after the final restriction enzyme digestion step. This was accomplished by 

mixing 50 µl of the digested vector with 1 µl CIP (Promega, Madison WI, USA), 10 ul CIAP buffer and 38µl 

ddH2O. The sample was incubated at 37 °C for 30 min, after which another 2 µl CIAP was added and the 

mixture incubated for a further 30min. Following this, 2 µl 0.5 M EDTA (Appendix I) was added and the 

sample was incubated at 65 °C for 20 min to inactivate the enzyme. The vector was subsequently purified 

using the Wizard™ kit (Promega Corp. Madison Wisconsin, USA) (section 2.12).  

 

2.7. DNA LIGATION 

DNA ligations were performed in order to generate the Y2H bait constructs to be used in Y2H analysis. 

Ligations were performed in 10 µl reactions as follows: 1 µl double-digested CIAP-treated vector, 2 µl 

double-digested insert (section 2.6), 5 µl T4 DNA ligase buffer (Promega, Madison WI, USA), 5U T4 DNA 

ligase and ddH2O, to a final volume. The sample was then incubated for 16 hours at 4 °C. Following 

incubation, 5 µl of the sample was transformed into the bacterial strain DH5α (section 2.11.1) which was 

plated onto LB agar plates containing the appropriate antibiotic. After incubation of the plates, successful 

ligation reactions were confirmed by bacterial colony PCR (section 2.1.3). 

 

2.8. BACTERIAL STRAINS, YEAST STRAINS AND CELL LINES 

2.8.1. Bacterial strains- E.coli DH5α strain 

To facilitate the selection and purification of Y2H constructs, ligation reactions were transformed into the 

E.coli DH5α strain. Transformed bacterial colonies were selected on the basis of their ability to grow on LB 

agar plates (Appendix I) containing selection antibiotics. Kanamycin (Kan) was used when selecting for 

pGBKT7 recombinant plasmids, and Ampicillin (Amp) was used when selecting for pACT2 recombinant 

plasmids. Recombinant plasmids were identified by colony PCR (section 2.1.3). 
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2.8.2. S.cerevisiae yeast strains 

The pGBKT7 bait construct was transformed into the yeast strain AH109, while all the clones present in the 

pre-transformed CLONTECH foetal cDNA library (section 2.14.2) used in the Y2H analysis had been 

transformed into the yeast strain Y187 by the manufacturer. 

 

2.8.3. Mammalian neuronal cells 

GT-17 hypothalamus cells (kindly provided by Dr Pamela Mellon, University of California, San Diego, 

USA),  were used to verify the results obtained from the Y2H analysis by co-immunoprecipitation using 

polyclonal antibodies specifically directed towards the positive prey proteins identified.  

 

2.9. GENERATION OF E.Coli DH5α COMPETENT CELLS USED FOR BACTERIAL 

TRANSFORMATIONS 

A scrape of an E.coli DH5α frozen (-70°C) glycerol stock was inoculated into 10ml LB-media (Appendix I). 

The culture was then incubated overnight at 37 °C in a YIH DER model LM-530 shaking incubator 

(SCILAB Instrument CO. Ltd, Taipei, Taiwan) at approximately 3000 rpm. Following incubation, a 1 ml 

aliquot of this culture was inoculated into a 2l Ehrlenmeyer flask (with cotton-wool plug and tinfoil lid) 

containing 200 ml LB media (Appendix I). This culture was incubated at room temperature for 24 hours, 

while shaking at 3000 rpm, to mid-log phase (OD600nm=0.6) on a Labcon orbital shaker (Labcon Pty, Ltd, 

Maraisburg, RSA). At this point the culture was decanted into 4x 50 ml polypropylene tubes, which were 

centrifuged at 3000 rpm for 15 min at 4 °C in a Multitex centrifuge (MSE instruments, England). The 

supernatant was removed and 8ml of ice-cold CAP buffer (Appendix I) was used to resuspend the pellet. The 

cells were re-pelleted by centrifugation at 3000 rpm for 15 min at 4 °C in a Multitex centrifuge. The 

supernatant was discarded and the pellet was resuspended in 4 ml of ice-cold CAP buffer. The suspended 

cells were subsequently transferred into 1.5 ml microfuge tubes in 500 µl aliquots and snap frozen by 

immersion in liquid nitrogen. The cells were then stored at -70 °C until they were needed. 

 

2.10. CULTURING OF THE GT-17 CELL LINE 

2.10.1. Culturing of GT-17 cells from frozen stocks 

2.10.1.1 Thawing the GT-17 cells 

Frozen GT-17 cells (provided by Dr Pamela Mellon, University of California, San Diego, USA) were rapidly 

thawed by immersing the vial containing the frozen stock in a waterbath at 37°C (Memmert®, Schwabach, 

Germany) for 10 minutes. Once the cells were thawed, the outside of the vial was sterilized using 70% 

ethanol.  
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2.10.1.2. Removing DMSO from the GT-17 frozen stocks and culturing the neuronal cells 

The frozen cell stocks contained DMSO, which needed to be removed for maximum viability of the cells 

once they were plated. DMSO was removed as follows: One millilitre of growth media (Appendix I), pre-

warmed to 37°C was added to the thawed stock and mixed by gently pipetting the mixture. The mixture was 

transferred to a 12ml Greiner tube (Greiner Bio-one, Frickenhaussen, Germany) and another 5ml growth 

media was added. The cells were then pelleted by centrifugation at 10000rpm for 1 minute using a Sorval ® 

GLC-4 General Laboratory centrifuge (Separations Scientific, Johannesburg, South Africa), followed by 

removal of the supernatant. The pellet was resuspended in 5ml growth media and once again centrifuged at 

10000rpm for 1 minute. The cells were then once again resuspended in 10ml growth media and transferred 

into a T25 culture flask. The flask was then incubated at 37°C in a Farma termosteri-cycle 5% carbon 

dioxide humidified incubator (Farma International, Miami, Florida).  

 

2.10.2. Splitting the cell cultures 

Cell cultures were split every 2-4 days when they reached approximately 80% confluency (to ensure efficient 

transformation). Briefly, the growth media was removed from the flask and the cells were washed with 

sterile phosphate buffered saline (PBS) containing no magnesium or calcium, to this 2ml of trypsin 

(Highveld Biological, Lyndhurst, South Africa) was added to aid in detaching the cells from the growth 

surface of the flask. After 3min, 5ml growth media was added and the cells were gently resuspended. The 

cells were then transferred into four flasks, each containing 10ml growth media.  

  

2.11. TRANSFORMATIONS AND TRANSFECTION OF PLASMIDS INTO PROKARYOTIC 
(E.Coli) AND EUKARYOTIC (S.cerevisiae) CELLS 
2.11.1. Bacterial plasmid transformations 

Prior to the transformation, an aliquot of competent E.coli DH5α was removed from the  

-70°C freezer and allowed to thawed on ice for 15-20 min. One tube which contained 200µl competent cells 

was used per transformation. Once the cells had thawed, 1µl plasmid preparation (section 2.12.3), or 3-5µl of 

the ligation reaction (section 2.7), was added to the 200µl cells and gently mixed. The mixture was then 

incubated on ice for 20-30 min after which they were placed in a Lasec 102 circulating water-bath (Lasec 

Laboratory and Scientific Company Pty Ltd, Cape Town, R.S.A) at 42°C for exactly 45s. The sample was 

then removed from the water bath and left at room temperature for 2min. Subsequently, 1ml of LB media 

was added to the mixture and the sample was incubated for 1h at 37°C, while shaking at 200rpm in a YIH 

DER model LM-530 shaking incubator.  

 

Following the incubation step, 200µl of the sample was plated onto LB agar plates containing the appropriate 

selection antibiotic (Appendix I). The remaining transformation reaction mixture was centrifuged at 

13000rpm for 2min in a Beckman Microfuge Lite, the supernatant discarded and the pellet resuspended in 
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200µl LB media. This was then also plated onto the appropriate LB-agar plates. All the plates were incubated 

overnight, inverted, at 37°C in a model 329 stationary CO2 incubator (Former Scientific, Marieta, Ohio, 

U.S.A). 

 

2.11.2. Yeast Plasmid transformations 

The yeast strain to be transformed (either AH109 or Y187) was streaked from frozen stocks onto YPDA agar 

plates (Appendix I). These plates were then incubated at 30°C for 2-3 days in a Sanyo MIR262 stationary 

ventilated incubator (Sanyo, Electronic Company Ltd, Ora-Gun, Japan). Following incubation, a volume 

representing 20-50µl of yeast cells was picked and resuspended in 1ml sterile ddH2O in a sterile 2ml tube. 

The cells were then re-pelleted by centrifugation at 13000rpm for 30sec in a Beckman Microfuge Lite 

(Beckman Instruments Inc, CA, USA). The supernatant was removed and the pellet was resuspended in 1ml 

100mM lithium acetate (LiAc) (Appendix I) and incubated for 5 min at 30°C in a MIR262 stationary 

ventilated incubator. Thereafter, the cells were pelleted by centrifugation at 13000 rpm for 20s in a Beckman 

Microfuge Lite and all the LiAc was removed.  

 

Next, the following were added in this specific order onto the pellet: 240µl of 50% polyethylene glycol 

(PEG) (Appendix I), 36µl 1M LiAc (Appendix I), 25µl of 2mg/ml heat-denatured and snap-cooled sonicated 

herring sperm DNA (Promega, Madison WI, USA),10-20µl plasmid preparation and ddH2O to a final 

volume of 350µl.The samples were then mixed by vortexing for at least 1 min and incubated at 42°C for 20-

30min in a Lasec 102 circulating water-bath. Following incubation, the cells were pelleted by centrifugation 

at 13000rpm in a Beckman Microfuge Lite and all the supernatant was removed. The cells were resuspended 

in 150µl sterile Millipore ddH2O and plated (using sterile glass beads) onto the appropriate selection plates 

(Appendix I) and incubated inverted at 30°C for 2-5 days in a Sanyo MIR262 stationary ventilated incubator. 

 

2.11.3. Transfection of GT-17 cells  

Two days before the cells were transfected, approximately 1-3 x 104 cells per well were plated in sterile 

complete growth media (Appendix I) in 6-well tissue culture plates, each containing a coverslip, and 

incubated at 37°C in a 5% Farma-thermosteri-cycle carbon dioxide humidified incubator (Farma, 

International , Miami, Florida, U.S.A). Forty-eight hours later, the cells were visualised under a Nikon TMS 

light microscope (Nikon, Tokyo, Japan) to determine the level of confluence. The cells were only transfected 

once an 80% level of confluence had been reached, to ensure optimum transfection efficiency. For each 

transfection, 100µl of serum-free media was aliquoted into a sterile 1.5ml eppendorf tube. To each tube 

containing serum-free media, 4µl of GeneJuice® (EMD Biosciences, Darmstadt, Germany) was added. This 

mixture was inverted a few times and incubated at room temperature for 5min. One microgram of WDR47-

EYFP (clone IOH26831, Imagenes, Berlin, Germany) plasmid was added to each tube,  which was then 
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inverted gently. The GeneJuice®/plasmid/media was incubated at room temperature for 15 minutes. 

Additionally, one tube was set aside and used as a GeneJuice® control, in which GeneJuice® was added to 

the serum-free media but no plasmid was added. The entire volume of the mixture of both the controls and 

plasmid tubes were added drop-wise to the cells in the growth media, making sure the drops fell over the 

coverslip. The cells were incubated at 37°C in a 5% Farma-thermosteri-cycle carbon dioxide humidified 

incubator (Farma, International, Miami, Florida, U.S.A) for 48 hours. Not all the wells containing cells were 

transfected, the remaining untransfected cells were used as controls for transfection efficiency, and as 

controls for both primary and secondary antibodies during the co-localisation experiments (section 2.15). 

 

2.12. DNA AND PLASMID PURIFICATION 

2.12.1. Gel purification of PCR-amplified products 

Purification of PCR-amplified DNA products from agarose gels was performed to obtain DNA products 

suitable for sequencing reactions and cloning. The relevant PCR-amplified DNA product was 

electrophoresed in a 1% agarose gel (section 2.2.) and subsequently viewed under ultraviolet (UV) light. The 

segment of the gel containing the DNA to be purified was excised using a sterile blade, and the DNA 

extracted from the agarose gel was purified using the Wizard® Clean-Up System (Wizard® Purefection 

Plasmid DNA purification kit, Promega Corp. Madison Wisconsin, USA). As per manufacturer’s 

instructions, the excised gel band (containing amplified product) was dissolved in 10 µl per 10 mg 

membrane binding solution and incubated at 50°C until completely dissolved, this mixture was then 

transferred to a mini-column assembly and centrifuged at 14000rpm in a Beckman Microfuge Lite (Beckman 

Instruments Inc., CA, USA) for 1 min and the flow through was discarded; subsequently 700 µl of 

membrane washing solution was added to the column and centrifuged for 1min, the flow-through was 

discarded and the column washed again with 500µl membrane washing solution and centrifuged for 5mins. 

Fifty microlitres nuclease-free water was then used to elute the purified PCR-product.  

 

2.12.2. Bacterial plasmid purification 

One E.coli colony containing the plasmid of interest was picked from an appropriate selection plate and 

inoculated into 10 ml LB (Appendix I), containing the correct antibiotic, in a 50ml polypropylene tube. The 

culture was then incubated at 37°C overnight, while shaking at 250rpm in a YIH DER model LM-530 

shaking incubator (SCILAB instrument Co LTD., Taipei, Taiwan).  

 

The following morning, the culture was centrifuged for 10min at 3000rpm in a Beckman model TJ-6 

centrifuge (Beckman Coulter, Scotland, UK), after which the supernatant was discarded and the pellet was 

resuspended in 600µl LB. The plasmid DNA was then extracted from the pellet using the Zippy™ Plasmid 

Miniprep kit (Promega Corp. Madison Wisconsin, U.S.A). As per manufacturer’s instructions, 100µl of 7X 
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lysis buffer was added to the 600µl resuspended bacterial culture and gently inverted, 350µl of cold 

neutralization buffer was added and gently mixed, this mixture was then centrifuged for 2min, the 

supernatant was then transferred to a Zymo-Spin™ II column and centrifuged for 15s, the flow through was 

discarded and 200µl Endo-Wash buffer was added to the column. The column was then centrifuged for 15s, 

the flow through was then discarded and 400µl of Zippy™ wash buffer was added to the column, which was 

again centrifuged for 30 seconds. Thirty microlitres of Zippy™ elution buffer was used to elute the purified 

plasmids.  

 

2.12.3. Bacterial plasmid purification using Wizard® Purefection Plasmid DNA purification kit 

The Wizard® Purefection Plasmid DNA purification kit (Wizard® Purefection Plasmid DNA purification 

kit, Promega Corp. Madison Wisconsin, USA) was used to isolate plasmid DNA, free of endotoxins, which 

was used to transfect GT-17 cells for 3D in vivo co-localisation assays (section 2.15).  

 

Twenty microlitres of a bacterial glycerol stock, of the appropriate vector, was inoculated into 10ml LB 

media (supplemented with the appropriate antibiotic) in separate 50ml polypropylene tubes. The cultures 

were incubated at 37oC overnight, while shaking at 250rpm in a YIH DER model LM-530 incubator. The 

next day, the cultures were centrifuged for 10min at 3000rpm in a Beckman model TJ-6 centrifuge. The 

supernatant was then discarded and the plasmid DNA was extracted using the Wizard® kit, as per 

manufacturer’s instructions. Following extraction, the DNA was resuspended in 50µl sterile water and the 

concentration determined.  

 

2.12.4. Yeast plasmid purification 

A yeast colony containing the plasmid of interest was inoculated into 1ml synthetic dropout (SD) medium 

containing the appropriate dropout supplement (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A) and 

incubated overnight at 30°C in a shaking incubator at 250rpm. The following morning, 4ml YPDA 

(Appendix I) was added to the culture, which was incubated for an additional 4 hrs at 30°C. Thereafter, the 

samples were centrifuged at 14000rpm for 10min in a Beckman model TJ-6 centrifuge (Beckman Coulter, 

Scotland, UK), and the supernatant was discarded. The pellet was resuspended in the remaining supernatant 

and then transferred to 2ml Eppendorf microfuge tubes.  

 

The ‘Smash and Grab’ plasmid isolation method was used in order to purify S.cerevisiae plasmids, thus the 

following were added to the suspension: 200µl ‘Smash and Grab’ buffer (Appendix 1), 200µl 

Phenol:Chloroform:Isoamylalcohol (25:24:1 [PCI]) (Sigma, St Louis, MO, USA), and 0.3g sterile 450-

600µm glass beads. This mixture was then vortexed using a Snijders model 34524 (Snijders Scientific, 

Tilburg, Holland) for 2.5min and then centrifuged for 5min at top speed in a Beckman Microfuge Lite 
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(Beckman Instruments Inc, CA, USA) centrifuge, to allow phase separation. Subsequently, the aqueous 

phase was transferred to a 1.5ml Eppendorf microfuge tube. The plasmids were then purified from this phase 

using the Wizard™ Clean-Up System  (Wizard® Purefection Plasmid DNA purification kit, Promega Corp. 

Madison Wisconsin, USA) according to the manufacturer’s instructions. 

 

2.13. ASSESMENT OF Y2H CONSTRUCTS  

2.13.1. Phenotypic assessment of yeast strains 

Both of the yeast strains (AH109 and Y187) to be used in the Y2H analysis were assessed phenotypically 

before being transformed. Both these yeast strains have been engineered to have defects in genes crucial for 

production of adenine (-Ade), histidine (-His), leucine (-Leu) and tryptophan (-Trp) amino acid, but neither 

have a deficiency in the uracil (-Ura) amino acid-producing pathway (as indicated by Appendix V). 

Therefore, it was possible to assess the phenotype of the strains by plating them onto agar plates lacking 

essential amino acids. Non-transformed yeast cells that were unable to grow on SD-Ade, SD-His, SD-Leu, SD-Trp 

but were able to grow on SD-Ura were used for transformations with bait vector and subsequent Y2H analysis. 

 

2.13.2. Autonomous reporter gene activation 

The AH109 yeast strain that was transformed successfully with the pGBKT7-WDR47 bait construct was 

tested for its ability to autonomously activate the ADE2 and HIS3 reporter genes (activation of which is 

crucial for identification of interactions between bait and preys in the Y2H screen)  by streaking transformed 

and un-transformed AH109  onto agar plates lacking essential amino acids namely SD-Ade, SD-His, SD-Leu, SD-

Trp  and SD-Ura.  

 

2.13.3. Toxicity test for transformed AH109 yeast strain 

In order to test whether the bait-construct had any noticeable toxic effects on the AH109 host strain, growth 

curves of three categories of the AH109 host strain were compared: 1. AH109 transformed with WDR47-

pGBKT7 bait construct, 2. AH109 transformed with empty pGBKT7 (non-recombinant vector control) and 

3. Untransformed AH109. The growth tests were conducted concurrently and under the same experimental 

conditions for each category. 

 

The growth curves were generated by growing each of the yeast strains to stationary phase in SD-Trp in a 

50ml polypropylene tube at 30°C in a YIH DER model LM-530 shaking incubator shaking at 200rpm. 

Following this incubation, a 1:10 dilution of each primary culture was made in SD-Trp and incubated for an 

additional 24h in a 50ml polypropylene tube at 30°C in a YIH DER model LM-530 shaking incubator 

shaking at 200rpm. Every 2 hours, over a period of 8h during this incubation, a 1ml aliquot of the culture 

was taken and its OD600nm was measured. An overnight (24h) reading was also taken. A linearised graph of 



52 

 

 

 

the log of these OD600nm readings versus time was constructed and the slopes of the graphs generated for the 

recombinant and non-recombinant transformants were compared. 

 

2.13.4. Mating efficiency test  

As decreased mating efficiency would result in a reduced number of interacting clones in the Y2H screen 

using the WDR47 bait construct, the effect that the bait construct had on the mating efficiency of AH109, 

was determined using small scale yeast matings. In these mating experiments, the AH109 transformed with 

pGBKT7-WDR47 bait construct was mated with the prey host strain, Y187 transformed with the non-

recombinant prey vector pACT2 or the control prey vector, pTD1.1, supplied by the manufacturer (BD 

Bioscience, Clontech, Paulo Alto, CA, U.S.A). Concurrently, control matings were also performed in which 

the yeast strain AH109 transformed with non-recombinant pGBKT7 or the control pGBKT7-53 vector 

supplied by the manufacturer (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A) was mated with the prey 

host strain, Y187 transformed with the non-recombinant prey vectors pACT2 or the Clontech pTD1.1 control 

vector. The experimental procedures were as follows: 

 

Each of the yeast strains used in the mating efficiency experiments was plated onto the appropriate 

nutritional selection plates (AH109 pGBKT7-WDR47, AH109 pGBKT7 and AH109 pGBKT7-53 on SD-Trp 

plates; Y187 pACT2 and Y187 pTD.1.1 on SD-Leu plates). These plates were incubated for 2-5 days in a 

Sanyo MIR262 stationary gravity-ventilated incubator. A single colony from these agar plates was used for 

each the mating experiments; which was performed in 1ml YPDA media (Appendix I) in a 2ml microfuge 

tube. The matings were incubated overnight at 30°C, shaking at 200rpm, in a YIH DER model LM-530 

shaking incubator. Following the overnight incubation, serial dilutions (1:10; 1:100; 1:1000 and 1:10000) of 

the mating cultures were plated onto SD-Leu, SD-Trp and SD-Leu/-Trp agar plates and incubated for 4-5 days at 

30° in a Sanyo MIR262 stationary ventilated incubator. After the incubation period, the colonies on each 

plate were counted and used to calculate the mating efficiency (Appendix II). 

 

2.14 Y2H ANALYSIS 

2.14.1. Principles of the Y2H 

The Y2H assay analyses protein-protein interactions in yeast cells, this is achieved by cloning the genes for 

the proteins of interest into relevant vectors. Each of these vectors contains either the DNA binding domain 

(BD) or the activation domain (AD) of the GAL4 transcription activator complex. Normal transcription in 

yeast requires the interaction of the GAL4 DNA-BD and the GAL4 AD to form a functional and active 

transcription complex (Figure 1). This complex then binds to recognition sequences within the promoter 

regions and activates the transcription of downstream reporter genes cloned into relevant vectors (Figure 

2.1). In the Y2H screen, unlike in the intact yeast GAL4 transcription factor, the two engineered domains do 
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not physically interact, thus downstream reporter genes will only be transcribed if the bait and prey proteins 

interact, hence bringing the two domains into close proximity to form the transcription complex. The 

transcription of reporter genes is crucial to identify whether proteins have interacted.  

 

In the present Y2H analysis the ADE2, HIS3 and MEL1 reporter genes were used as indicators of protein 

interactions. The N-terminus of WDR47 was fused to the GAL4 DNA-BD and used as the bait once 

transformed into the AH109 yeast strain, whereas the GAL4 DNA-AD were fused to the proteins within the 

human foetal cDNA library to form the preys pre-transformed into Y187. These two strains were then mated 

in the Y2H screen and produced diploid yeast cells in which transcription of reporter genes was activated due 

to the interaction of the bait and prey fusion constructs. These diploid cells were then subjected to selection 

assays including nutritional selection, X-α- galactosidase assays and heterologous matings to select for 

positive prey clones in which a putative protein-protein interaction activated the transcription complex and 

hence activated downstream reporter genes. After the prey clones were selected, their inserts were sequenced 

and subjected to further analysis (in vivo 3D co-localisation) to identify novel ligands interacting with the N-

terminus of WDR47.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. The basis of the Yeast 2- Hybrid technique. The bait construct will only activate the transcription of the 
downstream reporter genes, if the bait fusion protein and prey fusion protein interact, bringing together the DNA 
binding domain and the activation domain of the Gal4 transcription complex. The transcription of reporter genes allows 
for the detection of putative interactions.  
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Figure 2.2. Schematic flow diagram of the Y2H analysis and verification studies. 

 

2.14.2. The foetal brain cDNA library 

A pre-transformed human MATCHMAKER foetal brain cDNA Library (BD Bioscience, Clontech, Paulo 

Alto, CA, U.S.A) consisting of S.cerevisiae Y187 transformed with a foetal brain cDNA library, constructed 

in pACT2, was used in the Y2H library assay (Figure 2.1).  

 

This library had been constructed from a pool of nine male and female Caucasian foetuses aged between 20-

25 weeks. The library was XhoI-(dT)15 primed and contains approximately 3.5x106 independent clones 

inserted into pACT2 through EcoRI and XhoI sites. The average insert size for this library was reported by 

the manufacturer as 2.0kb, with a range of between 0.5 and 4.0kb. 

 

2.14.3. Establishment of bait culture 

A colony of AH109 transformed with the WDR47 bait construct was streaked out onto  

SD-Trp plates and allowed to grow at 30°C for 4 days. Yeast colonies were inoculated into four separate 500 

ml Erlenmeyer flasks, each containing 50ml SD-Trp media. This was done in order to facilitate the generation 

Verification studies: 

• 3D in vivo co-localisation  

Detection of activation of nutritional reporter genes: 
• Growth on TDO- activation of HIS3 
• Growth on QDO- activation of both HIS3 and ADE2 

 

Library screen using pre-transformed foetal brain cDNA library and N-terminal WDR47 as ‘bait’ protein 

Yeast two-hybrid analysis 

Detection of activation of colorimetric reporter genes: 
• X-α-Galactosidase assay- intensity of blue colour product, indicates activation of MEL1 

Interaction specificity test: 

• Heterologous mating  
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of a final bait culture with a titre of at least 1x1010, i.e. 100-fold excess of bait to prey, to facilitate high 

mating efficiency. 

 

The four initial cultures were incubated at 30°C overnight, while shaking at 200rpm in a YIH DER model 

LM-530 shaking incubator (SCILAB instrument CO. Ltd, Taipei, Taiwan). Following overnight incubation, 

the cultures were transferred into individual 50ml polypropylene tubes and the cells pelleted by 

centrifugation at 3000rpm for 10min at room temperature in a Beckman Microfuge Lite (Beckman 

Instruments Inc., CA, USA). The supernatants were discarded and the four pellets were resuspended together 

in 50ml SD-Trp following which, the suspension was transferred to a single 500ml Erlenmeyer flask and 

incubated for a further 16h in a YIH DER model LM-530 shaking incubator (SCILAB instrument CO. Ltd, 

Taipei, Taiwan), shaking at 200 rpm. After incubation, the titre of the bait culture was estimated by 

measuring the OD600nm of a 1ml aliquot of the bait culture. This estimation was subsequently confirmed by 

means of a haemocytometric cell count (using a Neubauer Haemocytometer which determines the number of 

cells per millilitre).  

 

The bait culture was centrifuged at 3000rpm at room temperature for 10min in a Beckman Microfuge Lite to 

pellet the cells; the supernatant was removed and the pellet resuspended in ml SD-Trp media. An appropriate 

number of 10µl aliquots of this culture were removed for control mating experiments. 

 

2.14.4. Library mating 

A 1ml aliquot of the pre-transformed foetal brain cDNA library was removed from the  

-70°C freezer and thawed at room temperature (BD Bioscience, Clontech, Paulo Alto, CA, U.S.A). Once 

thawed, the library aliquot was vortexed and 10µl aliquoted into a sterile 1.5µl microfuge tube for library 

titering. The pGBKT7-WDR47 transformed AH109 pellet (section 2.11.2) was resuspended in 45ml 2x 

YPDA media (Appendix I) supplemented with 10µg/ml kanamycin (Kan) in a 2L Erlenmeyer flask, the 

remaining 990µl of the library culture was added to the Erlenmeyer flask (thus mixing the bait and prey 

cultures). This mating culture was incubated at 30°C overnight, while shaking at 200rpm in a YIH DER 

model LM-530. 

 

After the overnight incubation, the entire mating culture was transferred into a sterile 50ml polypropylene 

centrifuge tube and the cells pelleted by centrifugation at 3000rpm for 5min in a Multex centrifuge (MSE 

Instrumentation, England, UK), and the supernatant subsequently removed. The Erlenmeyer flask in which 

the library mating was performed was rinsed twice with 40ml 2x YPDA containing 10µg/ml Kan. Each time 

the flask was rinsed, the 2x YPDA medium was used to resuspend the cell pellet and the cells then re-

pelleted by centrifugation at 3000rpm for 10min at room temperature in Multex centrifuge. Following the 
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final centrifugation step, the supernatant was removed and the pellet resuspended in 15ml 0.5x YPDA 

containing 10µg/ml Kan (Appendix I). 

 

Serial dilutions of 100µl aliquots (1:10; 1:100; 1:1000; and 1:10000) of this cell-suspension were plated onto 

90mm SD-Leu, SD-Trp and SD-Leu/-Trp agar plates, in order to determine bait:library mating efficiency. Two 

hundred and fifty microlitres aliquots of the remainder of the culture was plated onto each of 60 140mm 

diameter TDO (media lacking leucine, trytophan and histidine) plates (Appendix I). The TDO plates were 

incubated, inverted, at 30°C for 2 weeks in a Sanyo MIR262 stationary ventilated incubator.  

 

2.14.5. Establishing a library titre 

The serial dilutions of the mating culture plated onto the 90mm SD-Leu, SD-Trp and SD-Leu/-Trp agar plates were 

inverted and incubated in a Sanyo MIR262 stationary ventilated incubator for 4 days. Colony counts were 

performed on the SD-Leu, SD-Trp and SD-Leu/-Trp plates after the 4 day incubation in order to calculate the 

mating efficiency of the library mating and the number of library plasmids screened (section 2.13.4). 

 

2.14.6. Control matings 

Control matings were set up concurrently with library matings, in order to determine whether the 

recombinant WDR47 bait construct (transformed into AH109) had any negative effect on the ability of the 

transformed AH109 strain to mate with the library strain (Y187). A 10µl aliquot of the bait culture and a 

single test prey- (yeast strain Y187 transformed with pTD 1.1 control vector) colony were co-inoculated in 

1ml 0.5x YPDA containing 10µg/ml kanamycin (Appendix I) in a 2ml centrifuge tube. This culture was 

subsequently incubated for 24h at 30°C in a YIH DER model LM-530 shaking incubator, shaking at 200 

rpm. Following incubation, serial dilutions (1:10; 1:100; 1:1000; 1:10000) were plated onto SD-Leu, SD-Trp 

and SD-Leu/-Trp agar plates and incubated for 4 days in a Sanyo MIR262 stationary ventilated incubator. 

Following this, colony counts were done and the mating efficiency was calculated. Control preys included 

non-recombinant pACT2 transformed into Y187 and the pTD1.1 control vector supplied by Clontech. 

 

2.14.7. Detection of activation of nutritional reporter genes 

2.14.7.1. Selection of transformant yeast colonies 

Yeast transformed with the bait construct to be used in Y2H analysis was plated onto SD-Trp agar plates. 

Following incubation of these plates for 4-6 days in a Sanyo MIR262 stationary gravity-ventilated incubator, 

transformant yeast colonies were picked and used in small and large scale bait cultures (section 2.14.2) and 

library matings (section 2.14.5). 
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2.14.7.2. Selection of diploid yeast colonies containing putative interacting peptides 

In order to identify yeast colonies in which an interaction between the bait- and prey-fusion peptides had 

taken place, yeast colonies were plated onto TDO plates (Appendix I) as well as QDO (media lacking 

leucine, histidine, tryptophan and adenine) plates (Appendix I). Growth of the yeast cells on TDO plates 

indicated the transcriptional activation of the HIS3 nutritional reporter gene, while growth on the QDO plates 

indicated that both the HIS3 and ADE2 nutritional reporter genes had been transcriptionally activated. The 

activation of these genes in the diploid yeast cells is an indication of the interaction between the bait and prey 

peptides. 

 

Briefly, the library mating culture was plated directly onto 60 140mm TDO agar plates (Appendix I) (section 

2.14.3) and incubated in a Sanyo MIR262 stationary ventilated incubator for 2 weeks. The growth of these 

colonies on the TDO plates were monitored every 2 days and colonies were picked and re-streaked onto 

TDO and QDO plates in order to test for the activation of HIS3 and ADE2 nutritional reporter genes. These 

plates were incubated for 3-6 days at 30°. Colonies growing on TDO plates after incubation were picked and 

plated onto QDO plates containing X-α-galactose, to assess activation of the MEL1 gene, and incubated at 

30°C in a stationary gravity-ventilated incubator for a further 3-5 days.  

 

2.14.8. Detection of activation of colourimetric reporter genes 

2.14.8.1. X-α-galactosidase assay 

X-α-galactosidase assays were performed in order to test for the activation of the MEL1 reporter gene by the 

specific interaction between specific bait and prey peptides. The MEL1 gene encodes for the yeast secreted 

enzyme α-galactosidase, thus when the bait protein and the prey protein interact the MEL1 gene is 

transcribed and the enzyme product is secreted into the culture media where it catalyses melibiose and 

subsequently produces a notable blue yeast colony containing the interacting proteins. 

 

 Briefly, yeast colonies in which the HIS3 and ADE2 reporter genes were activated, as determined by their 

growth on QDO agar plates, were replicated from QDO plates onto Hybond N+ nylon membranes 

(Amersham pharmacia biotech Ltd, England). These membranes were subsequently placed colony-side up 

onto a QDO plate impregnated with 20mg/ml X-α-gal solution (BD Biosciences, Clontech, Palo Alto, CA, 

U.S.A). The plates were then incubated at 30°C in a Sanyo MIR262 stationary ventilated incubator. 

Following incubation, the intensity of the blue colour of yeast colonies that had activated the MEL1 reporter 

gene was assessed visually. 
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2.14.9. Rescuing/extracting prey plasmids from diploid colonies 

In order to identify the novel interacting proteins, each individual prey needed to be isolated from the diploid 

yeast colonies, containing both the WDR47 bait plasmid as well as the prey plasmid. To enable this, plasmid 

DNA, comprised of a mixture of bait and prey plasmids, was isolated from each of the diploid cells 

following the protocol discussed in section 2.12.3 and transformed into E.coli strain DH5α as described in 

section 2.11.1. The transformants were plated onto LB ampicillin (20µg/ml) plates which only allows for the 

growth of transformants containing the prey constructs. These prey constructs were prepared from the E.coli 

(section 2.11.1) and subsequently transformed into the yeast strain Y187 (section 2.11.2). 

 

2.14.10. Interaction specificity test i.e. heterologous mating 

To test whether the interactions detected by Y2H analysis, through the activation of nutritional and 

colourimetric reporter genes represented specific interactions between the pGBKT7-WDR47 bait and a 

particular prey peptide, interaction-specificity tests were used. Y187 colonies expressing the specific prey 

peptide were individually mated with the yeast strain AH109 (transformed with different plasmids): 1. 

transformed with the pGBKT7-WDR47 construct, 2. AH109 transformed with non-recombinant pGBKT7, 3. 

AH109 transformed with the pGBKT7-53 control bait-plasmid supplied by the manufacturer (BD 

Biosciences, Clontech, Palo Alto, CA, U.S.A) and 4. transformed with a heterologous bait, encoding a 

cytosolic cardiac myosin binding protein C (MyBPC) C5C10 domain. The first round of matings was done 

on SD-Leu-Trp plates and incubated for four days at 30°C, these clones were subsequently streaked onto TDO 

and incubated four days at 30°C. Finally, the heterologous matings were transferred to QDO selection plates 

and incubated for four days at 30°C. Clones that interacted specifically with the WDR47 bait (thus only grew 

once mated with WDR47 and not with any of the other transformed AH109) were considered putative true 

interactors. The inserts of these putative interactor plasmids were then nucleotide sequenced to determine 

their identities and subjected to further analysis.  

 

2.15. IN VIVO CO- LOCALISATION  

To verify the positive interactions identified in the present Y2H screen (after numerous stringency tests) in 

vivo co-immunoprecipitation was utilized to analyse whether the indentified prey proteins co-localised with 

WDR47 in GT-17 hypothalamus cells. The mammalian GT-17 cells were transfected with WDR47 tagged 

with yellow fluorescent protein (YFP), primary antibodies directed against the individual prey proteins were 

detected by a secondary antibody labelled with Texas Red (TxRed) fluorescent dye.  

 

2.15.1. Culture and transfection of GT-17 cells 

Human GT-17 hypothalamus cells (provided by Dr Pamela Mellon, University of California, San Diego, 

USA) used in the immunoflourescence  co-localisation, were maintained at 37°C and 5% CO2 in Dulbecco’s 
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modified Eagle’s medium supplemented with 10% fetal calf serum, 4% glutamine and 1% 

penicillin/streptomycin. Cells were grown on sterile cover slips which were placed inside 30-mm culture 

dishes, allowing the GT-17 cells to grow and adhere onto the cover slips submerged in growth media.  

 

2.15.2. Immunocytochemistry 

Twenty-four hours after transfection with pEYFP-WDR47 (section 2.11.3), GT-17 cells grown on cover 

slips were washed with phosphate buffered saline (PBS) (Appendix I). The cells were then fixed with a 1:1 

methanol/acetone solution and incubated for 10min on ice at 4°C.  The fixative was then removed and the 

cover slips were air dried for 20min. Cover slips were then incubated at room temperature in 5% serum 

(depending on which secondary antibody was used, refer to Table 2.3) for 20min. Following this, the cover 

slips were  incubated for 90min at room temperature with the appropriate prey primary antibodies (Table 

2.3). The cover slips were then rinsed with PBS, and subsequently incubated at room temperature for 30min 

with respective Texas red-labelled secondary antibodies (Table 2.3). Thereafter, Hoescht 33342 (10mg/ml; 

Sigma, St Louis, MO, USA) was added in a 1:200 dilution and allowed to incubate at room temperature for 

10min. This dye stains the nuclear material blue and is required for orientation purposes during the 

acquisition of images for the z-stack. Cover slips were then washed three times with PBS and transferred to 

glass microscope slides, mounted with fluorescent mounting media (Dako Cytomation, Glostrup, Denmark) 

and sealed with clear nail polish.  

 

Table 2.3. Prey proteins and respective antibodies used for immunprecipitation.  
Prey Primary antibody Dilution Serum Secondary antibody Dilution 

      

Cul7 Cul7 rabbit polyclonal 1:200 Goat Goat anti-rabbit TxRed 1:200 

      

Guk1 Guk1 mouse polyclonal 1:200 Donkey Donkey anti-mouse TxRed 1:200 

      

SCG10 SCG10 goat polyclonal 1:200 Donkey Donkey anti-goat TxRed 1:200 

      

SNAPIN SNAPIN goat polyclonal 1:200 Donkey Donkey anti-goat TxRed 1:200 

Abbreviations: Cullin 7 (Cul7); Guanylate kinase 1 (Guk1); Stathmin like 2 (SCG10), SNARE associated protein 
(SNAPIN); Texas Red (TxRed). Suppliers: Cul7 rabbit polyclonal antibody – Bethyl Laboratories, INC, Montgomery, 
TX, USA. Guk1 mouse polyclonal antibody – Abnova Corporation, Taiwan. SCG10 goat polyclonal antibody and 
SNAPIN goat polyclonal antibody – Santa Cruz Biotechnology, INC. Secondary antibodies - Santa Cruz 
Biotechnology, INC.  
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2.15.3 Fluorescence microscopy and co-localisation 

Cells were observed through an Olympus Cell^R system attached to an IX-81 inverted fluorescence 

microscope equipped with a Z-motor, a cooled CCD camera (F-view-II Soft Imaging Systems) and 

automated excitation and emission filter wheel controlled by MT20 CellR (Olympus Biosystems GMBH, 

Tokyo, Japan). Cell^R imaging software was used for the image acquisition and analysis.  

 

Fluorescence was excited through an excitation filter for the each of the fluorescent tags and labels (Table 

2.4). Emission was collected using Ultraviolet, blue, green (UBG) bandpass and YFP emission filter cubes, 

using an oil immersion 60X objective. Three-dimensional (3D) co-localised images were produced from an 

average of 13 Z-stacked images at 0.26µm increments. Based on the 3D images data, co-localisation was 

calculated using the Cell^R co-localisation analysis tool. The two fluorescence signals (bait and prey) to be 

measured were activated, the threshold was set and co-localisation was displayed as a new false colour 

image.  

 

Table 2.4. Excitation and emission spectra, and filter requirements of fluorescent proteins used in in 
vivo co-localisation 
Fluorescent protein Excitation Emission Filter set 

EYFP 500nm 527nm YFP 

TexasRed 557nm 585nm  TxRed 

Hoechst H-33342* 360nm 460nm DAPI 

* Nuclear stain, not a fluorescent protein tag. 
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CHAPTER THREE: RESULTS 

 

3.1. YEAST-TWO HYBRID ANALYSIS OF N-TERMINAL DOMAIN OF WDR47 

3.1.1 Y2H bait constructs  

3.1.1.1. PCR amplification to generate the bait-insert fragment 

The WDR47 bait-insert fragment was obtained by PCR-amplification of the N-terminus domain of WDR47 

from the commercially available clone (Imagenes, Berlin, Germany clone IOH26831). The primers used in 

the amplification allowed for the incorporation of restriction enzyme recognition sites and universal enzyme 

seats (section 2.1.1.1, Table2.1).  Amplification with this primer set generated a WDR47 bait fragment of 

279 bp suitable for cloning into the pGBKT7 shuttle vector. 

 

 

 

 

 

 

 

 

Figure 3.1. Image of the PCR amplified N-terminal domain of WDR47, representing a product of 279bp. 

Lane 1 contains the 100bp marker, Lanes 2-7 contain the PCR amplified product. 

 

3.1.1.2. Restriction enzyme digestion and ligation  

Both the PCR amplified WDR47 bait fragment and the pGBKT7 cloning vector were successfully double- 

digested with NdeI and SalI (section2.6.1). After CIP- treatment of the vector, a ligation reaction (section 

2.7) generated the pGBKT7- WDR47 bait construct.  

 

3.1.1.3. Selection for successful cloning via bacterial colony PCR 

Bacterial colony PCR reactions were done in order to select for recombinant pGBKT7 plasmids, confirming 

successful cloning of the bait insert into the bait vector. PCR reactions were done using primers flanking the 

multiple cloning site of pGBKT7 cloning vector (section 2.1.3, Table 2.2). This PCR amplification generated 

either non recombinant pGBKT7 plasmid (333bp) products or recombinant pGBKT7-WDR47 products. 

These recombinant plasmids were then used as the bait protein in the Y2H analysis. 

6543 721

279bp 
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Figure 3.2. Image of the bacterial colony PCR, to identify which clones carried N-terminal domain of 
WDR47 (red arrow, lanes 1, 4, 6) and clones with no WDR47 inserts (blue arrow, lanes 2, 3, 5, 7), M 100bp 
molecular marker). 
 

3.1.1.4. Sequence analysis of pGBKT7 - WDR47 bait construct 

The generated bait construct was sequenced to verify the integrity of the coding sequence and to confirm that 

the integrity of the reading frame had been preserved. Sequence analysis revealed that the pGBKT7 - 

WDR47 bait construct was in the correct reading frame and proved that the integrity of the nucleotide 

sequence of the WDR47 insert had been conserved (even after the multiple cloning steps used in the 

generation of the bait construct) (Chromatogram in Appendix V).  

 

3.1.2. Verification of the integrity of the Y2H construct 

3.1.2.1. Auto- activation test 

The yeast strain AH109 transformed with the bait construct was unable to grow on selection  media lacking 

essential amino acids ( SD-Ade, SD-His and SD-Leu ) indicating that the pGBKT7 - WDR47 bait construct did 

not autonomously activate the expression of the endogenous reporter genes. The lack of growth on these 

plates also indicated that the phenotype of the AH109 yeast strain was maintained after transformations with 

the generated bait construct. The transformant was, however, able to grow on SD –Trp and SD –Ura as expected. 

 

3.1.2.2. Toxicity test 

In order to determine whether the pGBKT7 - WDR47 bait construct had any toxic effects on the AH109 

yeast cells, linear growth curves of AH109 transformed with empty pGBKT7 vector and AH109 transformed 

with pGBKT7 - WDR47 were constructed and compared. The slopes of these curves, which did not differ 

significantly from each other, indicated that the WDR47 bait construct had no toxic effect on the growth of 

the yeast strain (Figure3.3).  

  

582bp 
333bp 

1 5 6 7 2 3 4M 
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Figure 3.3. Linear growth curve of yeast strain AH109 transformed with non-recombinant pGBKT7 and 
pGBKT7-WDR47 bait constructs. In order to determine whether the bait constructs had toxic effects on the 
AH109 strain, the growth rate of the pGBKT7-bait transformants were compared to the non-recombinant 
pGBKT7. The growth rate was determined by calculating the slope of each of the curves. The slopes were 
comparable indicating that the bait constructs had no toxic effect on the growth of the host yeast strain. 
 

 

3.1.2.3. Mating efficiency of AH109 transformed with WDR47 bait construct 

Small scale yeast matings were performed to assess whether the WDR47 bait construct affected the mating 

efficiency of the host yeast strain AH109. These mating experiments allowed for the calculation 

(AppendixII) and the comparison of mating efficiency of the WDR47 bait construct with the mating 

efficiency of AH109 yeast strains transformed with control plasmids (pGBKT7 and pGBK53) and standard 

prey transformants (pACT2 and pTD1.1).   

 

Table 3.1 show the mating efficiency results, and indicate that pGBKT7 - WDR47 did not hinder the mating 

efficiency of the AH109 yeast strain. The calculated mating efficiency (63.6%) of the pGBKT7 - WDR47 

transformant with the empty library vector, pACT2, was notably higher than the minimum of 2% 

recommended by the manufacturer of the MATCHMAKER Y2H system (BD BioScience, Paulo Alto, CA, 

U.S.A). This proved that the pGBKT7 - WDR47 construct did not decrease the mating efficiency of the 

AH109 yeast strain, and would result in screening of 106 individual prey clones if mated at a 100-fold excess 

against the commercial pretransformed foetal brain cDNA (titre= 3 x 108).  
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Table 3.1. Effect of WDR47 bait construct on AH109 mating efficiency. 
Mating Mating efficiency (%) 
pGBKT7-WDR47 (AH109) x pACT2 (Y187) 63.60 
pGBKT7 (AH109) x pACT2 (Y187) 2.22 
pGBK53 (AH109) x pACT2 (Y187) 64.20 
pGBKT7-WDR47 (AH109) x pTD1.1 (Y187) 1.33 
pGBKT7 (AH109) x pTD1.1 (Y187) 23.00 
pGBK53 (AH109) x pTD1.1 0.41 
Control matings indicated in black, blue indicates matings of pGBKT7-WDR47 transformants. Yeast strains indicated 
in brackets.  
 

3.1.3. Y2H screening of pretransformed foetal brain cDNA library  

Following the verification tests performed in section 3.1.2, the pGBKT7 - WDR47 bait construct was used in 

the Y2H analysis. Library mating-efficiency calculations indicated that approximately 8.4 x 105 

pretransformed foetal brain cDNA library clones were screened with the pGBKT7 -WDR47 construct. The 

screen yielded 817 clones which were able to activate the HIS3 reporter gene as determined by growth on 

TDO plates. Successive nutritional selection stages reduced the initial number of diploid colonies to 704 

clones, which were also able to activate the ADE2 reporter gene, as they grew on QDO plates (Table 3.2). 

These 704 clones were then assessed for their ability to activate the colourimetric reporter gene MEL1. 

Activation of this gene was detected by the presence of the blue end product of the x- α- galactosidase assay 

(section 2.14.8). Of the 704 assessed, 198 were found to activate the MEL1 reporter gene of which 37 were 

classified as primary clones and 161 as secondary clones based on the amount of growth and the intensity of 

the blue colour produced in the x-α-galactosidase assay. Table 3.2 shows only the clones that were able to 

activate the MEL1 reporter gene.  
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Table 3.2. Activation only of ADE2 (nutritional) and MEL1 (colorimetric) reporter genes by prey-
WDR47 interactions  

Colony # 
Growth on TDO  

(HIS3 activation) 

Growth on QDO  

(ADE2 activation) 

X-α-galactosidase 

(colour, MEL1 activation) 

8  + + (very light blue) 

9  ++ ++ (blue- grey) 

10  ++ ++ (light blue) 

11  + + (very light blue) 

16  +++ +++ (blue-green) 

20  + + (very light blue) 

24  ++ +  (very light blue) 

25  +  + (light blue, pink spots) 

26  + + (very light blue) 

32  + ++ (small, but blue) 

34  ++++ ++++ (bright blue) 

37  ++ ++ (light blue) 

42  ++ + (light blue) 

44  ++ ++ (light blue) 

46  +++ +++ (darker blue) 

50  ++++ ++++ (bright blue) 

51  ++++ ++++ (bright blue) 

52  +++ ++  (light blue) 

54  ++ + (very light blue) 

64  + + (very light blue) 

76  ++++ ++ (light blue) 

86  ++++ ++++ (bright blue) 

87  ++ ++ (light blue) 

91  ++++ + (very light blue) 

93  ++ + (very light blue) 

97  ++++ +++ (bright blue brown) 

103  ++++ + (very light blue) 

105  ++++ ++++ (bright blue) 
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Colony # 
Growth on TDO  

(HIS3 activation) 

Growth on QDO  

(ADE2 activation) 

X-α-galactosidase 

(colour, MEL1 activation) 

110  ++ ++ (light blue) 

113  ++++ ++++ (bright blue) 

114  ++++ +++ (darker blue) 

115  ++++ +++ ( blue grey) 

119  ++++  ++++ (bright blue) 

121  ++++ ++++ (bright blue) 

122  ++ ++++ (bright blue) 

126  ++++ ++ (brown blue) 

127  ++++ + (very light blue) 

129  ++++ + (very little blue) 

130  +++ ++ (light blue) 

135  ++ ++++ (bright blue) 

142  ++ + (brown blue) 

143  ++++ ++++ (bright blue) 

144  ++++ + (brown blue) 

145  ++++ +++ (dark light blue) 

146  ++++ ++ (light blue) 

155  ++ + (very light blue) 

160  ++++ ++++ (bright blue) 

172  ++ ++ (light blue) 

182  +++ ++ (light brown/blue) 

188  +++ ++ (light blue white) 

203  +++ + (brownish blue) 

206  ++  ++ (light blue) 

213  + + (very light blue) 

217  + + (very light blue) 

218  ++++ ++ (whitish blue) 

221  +++ ++++ (bright blue) 

228  ++ ++ (light blue) 
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Colony # 
Growth on TDO  

(HIS3 activation) 

Growth on QDO  

(ADE2 activation) 

X-α-galactosidase 

(colour, MEL1 activation) 

236  ++++ ++++ (bright blue) 

239  ++ + (brown blue) 

241  ++ ++ (light blue) 

243  +++ ++ (brown blue) 

244  ++++ +++ (darker light blue) 

249  + ++++ (bright blue) 

251  +++ ++ (light blue) 

252  +++ ++ (blue yellow) 

264  ++ + (very light blue) 

268  +++ ++ (very light blue) 

277  ++ ++ (light blue) 

279  ++ ++ (light blue) 

281  ++ + (yellowy blue) 

282  ++ + (brown blue) 

291  ++ ++ (light blue) 

293  ++ ++ (very light blue) 

294  ++ + ( yellow light blue) 

295  + + (brown blue) 

297  ++ + (very light blue) 

303  +++ ++ (light blue) 

305  ++ + (very light blue) 

315  ++ + (brown blue) 

319  +++ ++++ (bright blue) 

320  +++ ++ (light blue) 

326  + + (very light blue) 

334  ++ ++ (light blue) 

336  +++ ++ (light blue) 

342  +++ ++ (light blue) 

348  ++ + (brown blue) 
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Colony # 
Growth on TDO  

(HIS3 activation) 

Growth on QDO  

(ADE2 activation) 

X-α-galactosidase 

(colour, MEL1 activation) 

    
350  + ++ (cream blue) 

361  ++++ ++ (brown light blue) 

367  ++ +++ (darker blue) 

373  +++ ++++ (bright blue) 

374  +++ ++ (creamy yellow blue) 

375  ++ ++ (cream blue) 

376  + ++++ (very blue) 

380  + + (very light blue) 

388  ++++  ++ (light cream blue) 

390  ++++ ++++ (bright blue) 

393  ++ ++ (cream blue) 

396  ++ ++ (cream blue) 

402  + ++++ (bright blue) 

405  ++ ++ (blue white) 

407  + + (brownish blue) 

410  ++++ ++ (blue, mostly yellow) 

417  + ++++ (bright blue) 

418  +++ ++++ (bright blue) 

423  + +++ (dull blue) 

424  ++ +++ (dull blue) 

425  ++ +++ (yellowish blue) 

437  ++++ + (blue, mostly cream brown) 

438  ++++ ++ (blue, mostly cream brown) 

441  ++ ++ (light blue) 

446  + + (brownish blue) 

447  + ++++ (bright blue) 

449  + ++ (whitish light blue) 

459  +++ +++ (darker blue) 
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Colony # 
Growth on TDO  

(HIS3 activation) 

Growth on QDO  

(ADE2 activation) 

X-α-galactosidase 

(colour, MEL1 activation) 

460  + + (light blue, more white) 

462  ++ ++ (light blue) 

463  ++ ++ (cream light blue) 

464  ++++ ++ (brownish blue) 

467  ++ ++ (light blue) 

472  + + (dark brown blue) 

476  +++ ++++ (bright blue) 

477  +++ + (very light blue) 

486  ++ + (very light blue) 

489  + ++ (light blue) 

490  +++ + (creamy yellow blue) 

493  ++ ++ (light blue) 

500  +++  + (creamy yellow blue) 

502  ++ ++ (light blue) 

512  + + (very light blue) 

516  ++ + (whitish cream blue) 

530  +++ +++ (blue, dark brown area) 

532  ++ ++ (light blue) 

533  +++ + (cream brown blue) 

541  ++ + (very light blue) 

545  +++ + (creamy yellow blue) 

552  ++ ++ (light blue) 

553  ++++ ++++ (bright blue) 

554  ++ ++ (light blue) 

556  ++ + (brown blue) 

557  ++++ + (brown blue) 

558  ++ ++ (green blue, white areas) 

560  ++ + (light blue, mostly brown & pink) 

563  ++ ++ (light blue, mostly pink) 
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Colony # 
Growth on TDO  

(HIS3 activation) 

Growth on QDO  

(ADE2 activation) 

X-α-galactosidase 

(colour, MEL1 activation) 

564  + + (very light yellow blue) 

576  ++ ++ (creamy light blue) 

584  +++ ++++ (bright blue) 

585  +++ ++ (creamy blue green) 

586  +++ ++++ (bright blue) 

587  +++ ++ (creamy blue green) 

589  ++ ++ (creamy blue green, more white) 

590  + ++ (creamy blue green) 

596  ++ ++ (creamy blue green) 

598  ++ ++ (creamy light blue) 

614  ++ + (very light blue) 

615  + + (yellow cream blue) 

619  ++ + (creamy yellow blue) 

625  +++ + (very light blue, yellow patches) 

626  +++ + (dark brown blue) 

640  ++++ ++ (creamy light blue) 

652  + ++ (light blue) 

657  +++ + (very light blue) 

668  ++++ ++ (light blue, brown patches) 

670  + +++ (darker blue) 

673  ++ ++ (creamy light blue) 

682  +  + (very light blue green) 

683  + + (very light blue green) 

694  + +++ (darker blue) 

696  ++++ + (very light blue green) 

702  ++ ++++ (bright blue) 

704  +++ ++ (creamy blue green) 

719  ++++ ++ (creamy yellow blue green) 

724  ++++ ++ (creamy blue green) 
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Colony # 
Growth on TDO  

(HIS3 activation) 

Growth on QDO  

(ADE2 activation) 

X-α-galactosidase 

(colour, MEL1 activation) 

728  ++++ ++++ (bright blue) 

729  + ++ (creamy blue green) 

733  ++ ++ (creamy blue green) 

734  ++++ ++ (creamy blue green) 

735  ++++  ++ (creamy blue green) 

736  + ++ (creamy blue green) 

746  ++ +++ (darker bright blue) 

747  ++ + (light brown blue) 

764  ++ + (very light blue) 

767  +++ ++ (light cream blue) 

770  ++ +++ (darker bright blue) 

781  ++ + (very light blue) 

791  ++ +++ (bright light blue) 

793  ++ + (creamy brown blue) 

796  +++ +++ (very dark cream blue) 

798  + + (very light blue) 

801  ++ + (light brown blue) 

806  ++ +++ (dark light blue) 

807  ++++ ++ (creamy blue green) 

808  +++ ++ (creamy blue green) 

813  ++ ++ (creamy brown blue) 

817  ++ +++ (dark blue) 

TDO= solid media lacking Leu, Trp and His, QDO= solid media lacking Leu, Trp, His and Ade. Growth of clones on 

solid media: ++++ = very good; +++ = good; ++ = weak; +=very weak, - = no growth  

 

3.1.3.1. Heterologous mating 

Primary clones, viz. prey clones that lead to strong activation of the MEL1 gene, clones that produced bright 

blue colonies during the x-α-galactosidase assay in addition to activation of the ADE2 and HIS3 reporter 

genes were subjected to heterologous matings (section 2.14.10). Due to time constraints and the vast number 

of clones able to activate both ADE2 and HIS3 reporter genes, only primary prey clones and not secondary 
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prey clones were subjected to heterologous bait matings. The results of these heterologous mating 

experiments are shown in Table 3.3.Following heterologous mating experiments, only 21 of the 37 primary 

clones showed binding specificity for the WDR47 bait protein (Table 3.3). The inserts of these prey 

constructs were subsequently analysed by automated nucleotide sequence analysis.  
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Table 3.3.  Interaction of preys with heterologous baits in specificity tests as assessed by HIS3 and ADE2 reporter gene activation- Primary clones 

Clone # x pGBK-WDR47 x pGBK-WDR47 x pGBKT7 x pGBKT7 x pGBK53 x pGBK53 x pGBK-C5C10 x pGBK-C5C10 

 TDO QDO TDO QDO TDO QDO TDO QDO 

16 ++++ ++++ ++++ + ++++ - ++++ - 

34 ++++ ++++ +++ - +++ - ++++ - 

46 ++++ ++++ ++++ ++ +++ + +++ + 

50 ++++ ++++ +++ - ++++ - ++++ - 

52 ++++ - ++++ - +++ - ++++ - 

76 ++++ ++++ +++ ++ +++ - +++ - 

86 ++++ +++ +++ + +++ - +++ - 

87 ++++ - +++ - +++ + +++ + 

97 ++++ ++++ +++ ++ +++ - +++ - 

105 ++++ ++++ +++ - ++ - +++ - 

113 ++++ ++++ +++ + +++ - +++ - 

114 ++++ +++ +++ - +++ - +++ - 

115 ++++ ++++ +++ - ++ - ++++ + 

119 ++++ ++++ +++ - +++ - +++ + 

121 ++++ ++++ +++ - +++ - +++ + 

122 ++++ ++++ ++++ - ++++ - ++++ - 

135 ++++ ++++ ++++ ++ ++++ ++ ++++ ++ 

143 ++++ ++++ ++++ - ++++ + ++++ + 
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145 ++++ ++++ ++++ - ++++ - ++++ - 

160 ++++ ++++ ++++ - ++++ - ++++ ++ 

221 ++++ - ++++ - ++++ - ++++ - 

236 ++++ + ++++ - ++++ - ++++ + 

244 ++++ ++++ ++++ ++ ++++ ++ +++ ++ 

268 ++++ ++ ++++ + +++ + +++ - 

293 ++++ +++ +++ ++ ++++ ++ ++++ + 

319 ++++ +++ ++++ +++ ++++ ++ ++++ + 

336 ++++ - ++++ - ++++ - ++++ - 

373 ++++ - ++++ - ++++ - ++++ + 

417 ++++ - ++++ - ++++ - ++++ - 

418 ++++ - ++++ - ++++ - ++++ - 

476 ++++ - ++++ + ++++ - ++++ - 

553 ++++ - +++ - ++++ ++ ++++ - 

584 ++++ - +++ + +++ - +++ - 

586 ++++ - ++++ - ++++ - ++++ - 

668 ++++ - ++++ - ++++ - ++++ + 

702 ++++ - ++++ - ++++ - ++++ - 

806 ++++ - ++++ - +++ - ++++ - 

Pink font denotes clones that were selected based on their ability to activate reporter genes in the absence of heterologous baits, hence used in further analysis. TDO= solid media 
lacking Leu, Trp and His, QDO= solid media lacking Leu, Trp, His and Ade. Growth of clones on solid media: ++++ = very good; +++ = good; ++ = weak; +=very weak, - = no 
growth. 
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3.1.3.2. Sequence analysis  

The 21 prey clones were sequenced and their identity determined by searching nucleotide and protein 

databases. The identities of these interacting clones are shown in Table 3.4. The frame and integrity of the 

prey sequences were analysed using ChromasPro computer software and DNAman™ version 4 software, and 

subsequently subjected to Genbank BLAST database using both BLASTN (nucleotide sequences) and 

BLASTP (in frame protein sequences) (http://www.ncbi.nlm.nih.gov/Entrez). Eight of the 21 sequenced 

clones contained prey insert sequences which were rejected as their open reading frames (ORFs), fused to the 

GAL4-AD ORF, did not match the ORF predicted from the gene locus in the NCBI Genbank 

(http://www.ncbi.nlm.nih.gov) protein database. This is not unusual, as only one sixth of the clones 

represented within the Matchmaker™ pretransformed cDNA libraries are predicted to be in the correct 

reading frame (Clonetech MATCHMAKER Two-Hybrid Assay Kit User Manual).   

 

Of the in-frame clones, one primary clones were discarded as positive interactors due to their cellular 

localisation, as the identified cellular compartment was incompatible with WDR47’s cytosolic cellular 

localisation (Kinnear, 2007). Two of the identified protein sequences, for SNAPIN and SCG10, were 

represented by multiple clones. The identities of the clones are shown in Table 3.4. 
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Table 3.4. Identification of plausible WDR47 interacting clones from the Y2H screen.  

Clone Genomic Protein Cellular localisation and Function 

 
Blastn acc 
(e-value) 

ID 
Blastp acc 
(e-value) 

ID  

34, 86,  
114,  
115,  
122,  
143* 

NM_007029.2 
(0.0) 

Homo sapiens stathmin-
like 2 (STMN2) 

gb│AAB36428.1│ 
(9e-90) 

SCG10 
[Homo 
sapiens]* 

Cytoplasm (soluble or membrane bound) - 
Member of the Stathmin gene family of microtubule 
destabilising phosphoproteins. Involved in the 
regulation of neurite outgrowth by controlling 
dynamic properties of neuronal microtubules. 
Neuronal specific, and developmentally regulated. 
 

97, 
244,  
293* 

NM_012437.3 
(0.0) 

Homo sapiens SNAP- 
associated protein 
(SNAPIN)  

sp│O95295│S25BP_HUMAN 
(7e-37) 

SNARE-
associated 
protein 
Snapin * 

Cytoplasm or transmembrane, cytoplasmic 
vesicle or cytoplasmic vesicle membrane – forms 
part of the SNARE complex essential for synaptic 
vesicle docking and fusion 
 

46 
NM_005493.2 
(0.0) 

Homo sapiens RAN 
binding protein 9 
(RANBP9) 

sp│Q96S59│RANB9_HUMAN
(1e-163) 

Ran-binding 
protein9 
(RanBP9) 

Extracellular matrix 

160* 
NM_000858.4 
(0.0) 

Homo sapiens guanylate 
kinase 1 (GUK1) 

gb│AAH07369.2│ 
(4e-84) 

GUK1 
protein 
[Homo 
sapiens]* 

Cytoplasm – involved in GMP recycling 

319* 
NM_014780.3 
(0.0) 

Homo sapiens cullin 7 
(CUL7) 

sp│Q14999.2│CUL7_HUMAN
(4e-139) 

Cullin-7 
(CUL7)* 

Cytoplasm (by function) – component of the 
ubiquitin ligase complex, involved in the  
ubiquitination pathway targeting proteins for 
proteosomal  degradation 

16 
NM_018241.1 
(0.0) 

Homo sapiens 
transmemebrane protein 34 
(TMEM34) 

No significant similarity  N/A 

50 NM_001838430
.2 (0.0) 

Homo sapiens chromosome 
17 genomic contig  No significant similarity  N/A 
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*- represent the clones that will further be investigated using 3D co-localisation 

76 
NT_007299.12 
(0.0) 

Homo sapiens chromosome 
6 genomic contig  No significant similarity  N/A 

113 NM_002509.2 
Homo sapiens NK2 
homeobox 2 (NKX2-2), 
mRNA 

No significant similarity  N/A 

119 
NT_007299.12 
(0.0) 

Homo sapiens chromosome 
6 genomic contig, ref 
assembly 

No significant similarity  N/A 

121 
NM_018183.2 
(0.0) 

Homo sapiens strawberry 
notch homolog 1 
(Drosophila) (SBNO1) 

No significant similarity  N/A 

135 
NM_006387.5 
(0.0) 

Homo sapiens calcium 
homeostasis endoplasmic 
reticulum protein 

No significant similarity  N/A 

145 NM_001013839
.1 

Homo sapiens exocyst 
complex component 7 
(EXOC7) 

No significant similarity  N/A 

268 
NW_001838952
.2 
(0.0) 

Homo sapiens chromosome 
5 contig, alternate assembly No significant similarity  N/A 
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3.2. Ligands used for further analysis 

Of the 21 putative prey clones identified by sequence analysis nine were discarded due to out of frame 

nucleotide sequences, while one was discarded based on incompatible cellular locations. Therefore 11 

clones (four multiply represented proteins- Guk1, Cul7, SNAPIN and SCG10) were identified as 

putative WDR47 ligands. These clones were then subjected to further analysis to verify if the 

interactions with WDR47 occurred in a mammalian system. To test for such in vivo interaction, in 

vivo three-dimensional co-localisation using fluorescence microscopy was performed.  

 

3.2.1. Three-dimensional in vivo co-localisation using fluorescence microscopy 

In vivo co-localisation using fluorescence microscopy was employed to assess the interaction of 

WDR47 with SCG10, SNAPIN, Cul7 and Guk1 (Figures 3.4-3.6). The panels of images presented 

represent a single frame of the 13 images that were captured for the Z-stack (images taken at 0.3 

microns right through the cell, thus the co-localised images are a collection of images at different 

depths throughout the cell). In all these figures, images A-C shows a single colour channel with, A 

representing the yellow channel for localization of the WDR47-YFP, B representing the red channel 

for localization of the respective preys with Texas Red-labelled secondary antibody, and C 

representing the co-localised image of both the bait and prey proteins, while image D shows an 

overlay of the four colour channels used including the nuclear stain. In all the samples, the proteins 

investigated showed no nuclear localisation and appeared to be localised to the cytoplasm, yet only 

SCG10 co-localised with WDR47 (Figure 3.6 C). These results confirm that neuronal specific SCG10 

interacts with WDR47 in GT-17 hypothalamus cells. However, it appears as if SNAPIN co-localises 

with WDR47 (Figure 3.6 C), although these results are inconclusive as this image represents the 

maximal image projections, and the area of co-localisation is not above the background for that seen 

in image B of the secondary antibody. Thus, the WDR47-SNAPIN interaction needs to be further 

investigated, yet due to time constraints this was not possible for the present study and only the 

definite WDR47-SCG10 interaction will further be discussed.   

 

 

 

 

D 
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Figure 3.4. Fluorescence imaging of Cul7 and WDR47 in GT-17 cells. (A) YFP-tagged WDR47 
(yellow). (B) Cullin7 TxRed labelled (red). (C) Co-localisation of WDR47 and Cul7 generated from 
Z-stack (yellow). (D) Overlay of images A-C with Hoechst H-33342 labelling of the nuclei (blue). 
Magnification: 60X oil immersion before 70% reduction.   
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Figure 3.5. Fluorescence imaging of Guk1 and WDR47 in GT-17 cells. (A) YFP-tagged WDR47 
(yellow). (B) Guanylate Kinase 1 TxRed labelled (red). (C) Co-localisation of WDR47 and Guk1 
generated from Z-stack (yellow). (D) Overlay of images A-C with Hoechst H-33342 labelling of the 
nuclei (blue). Magnification: 60X oil immersion before 70% reduction. 
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Figure 3.6. Fluorescence imaging of SNAPIN and WDR47 in GT-17 cells. (A) YFP-tagged 
WDR47 (yellow). (B) SNARE-associated protein (SNAPIN) TxRed labelled (red). (C) Co-
localisation of WDR47 and SNAPIN generated from Z-stack (yellow). (D) Overlay of images A-C 
with Hoechst H-33342 labelling of the nuclei (blue). Magnification: 60X oil immersion before 70% 
reduction. 
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Figure 3.7. Fluorescence imaging of SCG10 and WDR47 in GT-17 cells. (A) YFP-tagged WDR47 
(yellow). (B) Stathmin-like 2 (SCG10) TxRed labelled (red). (C) Co-localisation of WDR47 and 
SCG10 generated from Z-stack (yellow). (D) Overlay of images A-C with Hoechst H-33342 labelling 
of the nuclei (blue). Magnification: 60X oil immersion before 70% reduction. 
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CHAPTER FOUR: DISCUSSION 

 

Cortical development is an intricately regulated process resulting in the proper lamination and 

organisation of the neocortex. This complicated process relies on the ordered migration of neurons 

from their place of birth to their proper final destination within the six-layered neocortex. The proper 

migration of neurons is crucial for the organisation and the function of the neocortex, which is 

responsible for numerous tasks, most notably, in humans, higher cognition and memory (Kaas, 2000; 

Kaas, 2007; Douglas and Martin, 2007). 

 

One of the key regulators of neuronal migration during neocortical development is Reelin, an 

extracellular matrix glycoprotein.Despite the vast amount of research on Reelin and the Reelin 

signalling pathway, the precise mechanism in which Reelin controls cortical lamination is still largely 

unknown. To date numerous Reelin interacting proteins have been identified, and more recently 

Kinnear and colleagues (Kinnear, 2007) identified a novel interaction between the N-terminal reeler 

domain of Reelin and WDR47, a protein of unknown function.  

 

The WDR47 protein belongs to a family of highly conserved proteins, of which the tryptophan-

aspartic acid (WD) dipeptide at the C-terminus is characteristic to each protein at variable lengths 

(section 1.6.1). This family of proteins have been implicated in several cellular functions from signal 

transduction to cytoskeletal rearrangements (section 1.6.1). In the present study, the N-terminal 

domain of WDR47 (section 1.6) was used as bait in a Y2H screen to identify interacting proteins. 

Identification of its binding partners will ultimately aid in a better understanding not only of the 

function of WDR47, but also in further elucidating the function of the Reelin signalling pathway in 

regulating cortical lamination. 

 

The results of the Y2H screen yielded 21 putative WDR47-interacting clones based on their ability to 

activate all reporter genes within the system. However, only four clones were deemed plausible as 

nine clones were not in the correct reading frame and a further one clone encoded proteins that reside 

in cellular compartments that renders them inaccessible to interact with cytosolic WDR47. 

 

4.1. YEAST TWO-HYBRID ANALYSIS TO IDENTIFY INTERACTORS OF THE N-

TERMINAL DOMAIN OF WDR47 

4.1.1. Number of independent clones screened 

The library mating efficiency calculations indicated that approximately 8.4 x 105 pre-transformed 

foetal brain cDNA library clones were screened (section 3.1.2.4). Therefore, since the pre-transformed 



87 

 

 

 

foetal brain cDNA library used contained approximately 3.5 x 106 independent clones, a number of 

library clones were not tested as plausible WDR47 interactors. It may therefore be possible that some 

putative WDR47-interacting proteins could have been missed in the current screen. 

 

4.1.2. Preys excluded from further analysis 

Upon completion of the Y2H and subsequent stringency experiments which tested for the activation 

of both nutritional and colorimetric reporter genes, 21 clones were identified. However, sequence 

analysis of the 21 putative interacting clones showed that ten were unlikely to encode biologically 

relevant WDR47 interacting proteins for the following reason, and were thus excluded: 

 

4.1.2.1. No significant protein matches  

Although several insert sequences had significant DNA matches in the NCBI Genbank   

(http://www.ncbi.nlm.nih.gov) or Ensemble (http://www.ensembl.org) databases, many of these 

inserts were either not in-frame in accordance with the reading frame dictated by the upstream GAL4 

domain and/or once translated had no significant protein matches in the database. One reason for the 

lack of significant protein matches in spite of significant DNA matches, is due to the limitations of the 

commercially available cDNA libraries used in a classical Y2H screen. The CLONETECH library 

used in the present investigation is derived from oligo-dT primed cDNA [generated from mRNA 

using a oligo(dT)15 primer containing a degenerate nucleotide site which positions the primer to the 

proper transcript at the poly-A tail (Borson et al., 1992). This method enhances the representation of 

full-length clones and 3’ ends in the engineered library (Chenchik et al., 1994; Borson et al., 1992; 

Moqadam & Siebert, 1994), which means that only one out of six of all cloned inserts are in-frame 

with the transcription factor activation domain (van Criekinge and Beyaert, 1999).  

 

4.1.2.2. Incompatible cellular compartments 

The sub-cellular localisation of proteins is helpful in understanding their functions. It is also not 

possible for proteins in different sub-cellular compartments to interact with one another. Therefore, 

proteins localised to sub-cellular compartments incompatible with WDR47 (cytosolic) localisation 

were excluded from further analysis. However, for some proteins, the sub-cellular localisation has not 

yet been experimentally determined. To overcome this obstacle several online sub-cellular 

localisation tools have been developed which predicts a proteins sub-cellular  localisation based on 

amino acid sequence information (Hua and Sun, 2001; Emanuelssen et al., 2001; Nair and Rost, 

2002). These prediction tools are somewhat restricted in their function as they have a limited accuracy 

for predicting sub-cellular localisation and they have limited coverage of the number of sub-cellular 

regions (Lu et al., 2003). 



88 

 

 

 

The accuracy of the publically available sub-cellular localisation prediction programmes vary rather 

substantially. Thus, the present study used two prediction programmes, namely “Proteome Analyst” 

and “ESLpred” which have a reported prediction accuracy of 92% (Lu et al., 2003) and 88% 

respectively. In spite of the several other programmes available to predict sub-cellular localisation, 

these two programmes were used as they have the highest accuracy and cover nine cellular 

compartments (cytoplasm, endoplasmic reticulum, extracellular, golgi, lysosome, mitochondria, 

nucleus, peroxisome and plasma membrane). 

 

Using these prediction programmes, only four in frame clones were found to encode proteins that 

localised to the cytoplasm a cellular compartment compatible with WDR47 localisation. However, as 

the automated prediction programmes are not 100% accurate, it remains possible that some preys 

identified may have been assigned to incorrect cellular compartments, but due to project constraints, 

the predicted sub-cellular localisation of each prey was not verified experimentally.  

 

4.1.3. Preys identified as putative WDR47 ligands 

Four in-frame prey proteins, encoding Cul7, Guk1, SNAPIN and SCG10, were identified as plausible 

WDR47 interacting proteins by their compatible cytoplasmic comparmentalization. Due to the 

limitations of Y2H analysis, further in vivo studies were employed to verify these interactions.  

 

4.2. VERIFICATION STUDIES 

Due to the various limitations of Y2H (section 4.5), three-dimensional in vivo co-localisation was 

used to verify the putative WDR47-interactors in the present investigation. Of the four putative 

interactions detected by Y2H, the in vivo co-localisation only verified the WDR47-SCG10 interaction. 

It should however be noted that the co-localisation of SNAPIN and WDR47 needs to be further 

verified, as the images obtained were inconclusive due to the fact that the area of co-localisation seen 

was not above the background for that seen in image B (Figure 3.6. B) of the secondary antibody. 

Therefore, the co-localisation between WDR47 and SNAPIN needs to be re-investigated however; 

due to time constraints this was not possible for the present study. So, in the present investigation, 

only the interaction between WDR47 and SCG10 was deemed conclusive and therefore, only this 

interaction will be discussed further although SNAPIN will be briefly discussed. 

 

4.3. SNAPIN 

Neurons release neurotransmitters by excocytosis of synaptic vesicles (Vites et al., 2004). The process 

of neurotransmitter release is dependent on synaptic vesicle docking and fusion via the association of 

neuronal proteins on the vesicle and plasma membranes. This interaction ensures the docking of the 
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vesicle to the plasma membrane and fusion of the two membranes releasing the neurotransmitters 

contained within the vesicles (Ilardi et al., 1999).  The formation of the soluble N-ethyl maleimide 

sensitive factor adaptor protein receptor (SNARE) core complex is essential for vesicular transport 

and in the docking and fusion process (Ilardi et al., 1999). The assembly of a stable SNARE complex 

consists of the vesicle-associated protein synaptobrevin (VAMP), which interacts with two plasma-

membrane associated proteins syntaxin and the 25kDa synaptosomal associated protein SNAP-25 

(Trimble et al., 1988; Oyler et al., 1989; Bennett et al., 1992; Söllner et al., 1993; Calakos et al., 

1994; Fasshauer et al., 1998; Hilfiker et al., 1999). The assembly of this complex is thought to pull 

together the vesicle and the plasma membrane, initiating the docking/fusion reaction (Chen and 

Scheller, 2001; Vites et al., 2004).  

 

SNAPIN, a 15kDa protein, was first identified as a SNAP-25 binding partner that associates with the 

SNARE complex and increases the binding of synaptotagmin to the SNARE complex (Ilardi et al., 

1999). Synaptotagmins are integral Ca2+ binding proteins located on the membranes of synaptic 

vesicles, providing Ca2+  dependent regulation of the fusion process and neurotransmitter release 

(Augustine, 2001; Chapman, 2002). SNAPIN is a ubiquitously expressed soluble phospho-protein, 

present in both the cytosol and peripheral membranes (due to transmembrane domain located at the N-

terminal) (Buxton et al., 2003; Vites et al., 2004; Ruder et al., 2005). The synaptotagmin-SNARE 

binding activity of SNAPIN is further enhanced by the protein kinase A (PKA) phosphorylation of 

SNAPIN at Ser50, ultimately increasing the excocytosis of neurotransmitters (Chheda et al., 2001). 

Thus, SNAPIN provides a direct molecular link between the fusion/docking machinery and second 

messenger pathways (Tian et al., 2005).   

 

It seems as if SNAPIN could be a possible interactor of WDR47, based on SNAPINs role in 

excocytosis and vesicular content release. It could serve as a mechanism by which excess WDR47 is 

removed from neuronal cells. WDR47 could possibly facilitate the attachment of vesicles for release 

to the plasma membrane via the interaction with SNAPIN. The results from the current study 

regarding SNAPIN need to be re-investigated and confirmed using additional biochemical assays. 

However, due to time constraints this did not form part of the present study.  

 

4.4. SCG10-WDR47 INTERACTION AND NEURONAL MIGRATION 

The data presented in the present study revealed a novel and exciting interaction between WDR47 and 

SCG10, however to fully appreciate the significance of this interaction one needs to understand the 

role of microtubules in migrating neurons. Therefore, the sections that follow will give a brief 

overview on microtubules, and microtubule dynamics during neuronal migration.  
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4.4.1. Neuronal migration and the neuronal cytoskeleton  

Neuronal migration involves many aspects of intrinsic cytoskeletal regulation and reorganisation 

(Feng and Walsh, 2001). Therefore, several proteins involved in neuronal migration ultimately 

function by regulating the neuronal cytoskeleton (Feng and Walsh, 2001). The cytoskeleton of most 

eukaryotic cells is composed of both actin filaments and microtubule (MIT) arrays, each of which is 

regulated by associated proteins to control migration and also to confer structural support to non-

migrating neurons (Desai and Mitchison, 1997; Nogales and Wang, 2006).  

 

Whereas mature neurons are highly polarised cells that typically have one thin, long axon (to transmit 

information) and several shorter, branched dendrites (to receive information) (Craig and Banker, 

1994; Witte et al., 2008), developing neurons begin their journey as simple, symmetric spheres in the 

proliferative layers (Witte and Bradke, 2008). The formation of the leading edge (axon) is the first 

step in neuronal migration and in the establishment of neuronal polarity (Witte and Bradke, 2008). 

The extension of axons, and ultimately neuronal migration, is controlled by extracellular guidance 

cues which are temporally and spatially distributed within the developing neocortex (Gordon-Weeks, 

2003; Tessier-Lavigne and Goodman, 1996). These guidance cues are detected by highly motile and 

dynamic structures known as growth cones, situated at the tips of growing neurites, which guide 

axons towards their target regions (Dickson, 2002; Gordon-Weeks, 2003; Kalil and Dent, 2005). 

Growth cones have both sensory and motor capabilities, allowing them to integrate the information 

relayed by the guidance cues into appropriate behaviours (Gordon-Weeks, 2003). These behaviours 

are most commonly a steering movement either towards (attraction) or away (repulsion) from the 

guidance cues, followed by vectorial growth towards the pial surface (Gordon-Weeks, 2003).  

 

The movement of the growth cone in response to guidance cues is controlled by the organisation and 

dynamics of both the actin and microtubule cytoskeleton (Dent and Gertler, 2003; Kalil and Dent, 

2005).  The growth cone can be divided into two main domains or regions, the central domain (C) 

which is dominated by microtubule arrays, and the peripheral domain (P) which is dominated by actin 

filaments that form both a meshwork in the veil-like lamellipodia and bundles in the finger-like 

filopodia (Gordon-Weeks, 2003; Kalil and Dent, 2000; Smith, 1988). Filopodia are the structures 

responsible for pathfinding via the detection of guidance cues and the steering of the growth cone in 

response to these cues (Gordon-Weeks, 2000; Gordon-Weeks, 2003; Kalil and Dent, 2005).  

 

The role of the actin cytoskeleton in neuronal migration and neurite outgrowth has been extensively 

studied, and it is well known that actin dynamics plays a crucial role in cell motility (Kalil and Dent 

2005). More recently, emphasis has been on the role of MITS and MIT dynamics during neuronal and 

cellular elongation and/or migration. Of particular interest to the present study is the fact that the 
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identified WDR47-interacting protein, SCG10, is a key regulator of microtubule dynamics during 

neuronal migration (Lutjens et al., 2000; Mori and Morri, 2002; Stein et al., 1988; Sugiura and Mori, 

1995). 

 

4.4.2. Superior Cervical Ganglion10 (SCG10) 

Superior Cervical Ganglion10 is a developmentally regulated neuron-specific protein that is 

abundantly expressed in the growth cones of developing neurons (Curmi et al., 1997; Di Paolo et al., 

1997; Lutjens et al., 2000; Mori and Morri, 2002; Stein et al., 1988; Sugiura and Mori, 1995). SCG10 

belongs to the family of phosphoproteins known as stathmins, which include stathmin, SCG10, 

SCLIP, RB3, and its splice variants RB3’ and RB3’’ (Schubart et al., 1989). Structural and 

biochemical studies have shown that each stathmin protein can bind two tubulin heterodimers and that 

each contributes to the regulation of MIT dynamics by inhibiting MIT polymerization (favouring 

depolymerization) thereby negatively regulating MIT stability (Charbaut et al.,2001;Curmi et 

al.,1999; Horwitz et al.,1997; Ravelli et al., 2004,). The MIT destabilising activity of the stathmin 

family of proteins is regulated by phosphorylation, i.e. phosphorylation of these proteins inhibit their 

MIT destabilising activity (Mori and Morri, 2002).  

 

Each member of the stathmin family contains a conserved C-terminal stathmin-like domain, which is 

composed of a regulatory domain, a tubulin binding domain and an N-terminal domain (Maucuer et 

al., 1993; Ozon et al., 1997, 1998; Stein et al., 1988; Schubart et al., 1989; Togano et al., 2005) 

(Figure 4.1). For SCG10 (179 amino acids), the N-terminal includes sites for palmitoylation (a 

dynamic type of acetylation) which enables the attachment of SCG10 to growth cone vesicles and 

Golgi localisation (Di Paolo, 1997b; Grenningloh et al.,2004; Lutjens et al.,2000) (Figure 4.1).  

Essentially, when palmitoylation is inhibited SCG10 is no longer targeted to the growth cone where it 

is associated with vesicular structures (Grenningloh et al., 2004). The SCG10-bound growth cone 

vesicles associate with labile MITs in the growth cone, suggesting that SCG10 could possibly bind 

directly to MITs (Di Paolo et al., 1997b, Riderer et al., 1997). In SCG10, the stathmin-like domain is 

organised into two overlapping sub-domains, the regulatory domain which contains four serine 

phosphorylation sites (S50, S62, S73 and S97), each phosphorylated by distinct kinases (such as cdk5, 

Protein kinase A and MAP kinase) (Antonsson et al.,1997) (Figure 4.1) and the interacting domain 

which forms the α-helical structure responsible for the coiled-coil interactions with other proteins 

such as tubulin (Curmi et al.,1994; Doye et al.,1989; Mauceur et al.,1990) (Figure 4.1).  
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Figure 4.1. Schematic representation of the microtubule destabilising protein SCG10. The N-
terminal blue represents the palmitoylation domain responsible for membrane anchoring of SCG10 to 
growth cone vesicles. The purple represents the regulatory sub-domain of the conserved stathmin-like 
domain, while the red triangles represent the serine phosphorylation sites. The green represents the 
interacting sub-domain of the stathmin-like domain, which is responsible for the tubulin interaction 
and MIT destabilising activity of SCG10 (adapted from Curmi et al., 1997).  
 

Although SCG10 shares similar characteristic features to stathmin, small distinctive features separate 

these two proteins. One such characteristic is that SCG10 is a potent MIT destabilising factor, which 

promotes catastrophe (growth to shrinkage) of MITs. Unlike stathmin which is present in developing 

neurons and neuronal glial tracts, SCG10 is exclusively expressed in developing neurons, with the 

highest level of expression during development, but with drastically decreased expression in the adult 

brain. However, some expression of SCG10 persists in areas associated with synaptic plasticity (Himi 

et al., 1994; Ozon et al., 1993; Sugiura and Mori 1996).  

 

To better understand SCG10 and the crucial role it plays in neuronal migration via its actions on 

MITs, one needs to understand MITs themselves and the dynamic properties they exhibit which allow 

them to respond to guidance cues such as Reelin.  

 

4.4.2.1. Microtubules  

Microtubules are non-covalent, polarised polymers of composed of tubulin dimers assembled into 

linear arrays (Dent and Gertler, 2003; Desai and Mitchison, 1997). Tubulin dimers are composed of 

one α-tubulin subunit and one β-tubulin subunit, forming an α/β heterodimer (Dent and Gertler, 2003; 

Desai and Mitchison, 1997; Gordon-Weeks, 2003). Microtubule polymerization, the head-to-tail 

association of α/β heterodimers forms a protofilament. In neuronal cells thirteen protofilaments 

associate laterally to form a long, hollow, cylindrical microtubule structure (Dammermann et al., 

2003; Dent and Gertler, 2003; Desai and Mitchison, 1997).  Due to the head-to-tail configuration of 

the heterodimers, MITs are inherently polarised, with the N-terminal of the β-tubulin subunit directed 

to the faster polymerizing ‘plus’ end, and the α-tubulin subunit facing the slower polymerizing 

‘minus’ end (Dammermann et al.,2003; Dent and Gertler, 2003). This intrinsic polarity of 

microtubules is critical to their function (Dammermann et al., 2003). As a rule of thumb, the plus end 
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of the MIT is considered the most dynamic i.e. it has the ability to grow and shrink, whereas the 

minus end is inherently unstable and shrinks unless stabilized by minus end capping proteins or via 

attachment to the microtubule organization centre (MITOC) (Dent and Gertler, 2003; Gordon-Weeks, 

2003).  

 

In neuronal cells, MITs in the axonal growth cones are arranged so that their plus ends are orientated 

distally, towards the actin rich peripheral domain (Baas et al., 1987, 1988; Heidemann et al., 1981). 

This polarity is of importance as studies have shown that individual MITs elongate at their distal plus 

ends towards the actin rich P domain. These studies also showed that depolymerization of actin 

filaments (via the actin depolymerizing drug cytochalasin) allowed MITs to move even further into 

the P domain, linking actin dynamics to the MIT cytoskeleton (Dent and Kalil, 2001; Forscher and 

Smith, 1988; Lin and Forscher, 1993; Zhou et al., 2002).  

 

4.4.2.2. Microtubule dynamics 

Both in vitro and in vivo studies have revealed a unique polymerization property of tubulin, termed 

dynamic instability, a behaviour which allows MITs to alternate between prolonged periods of 

polymerization and depolymerization (Mitchison and Kirschner, 1984; Schulze and Kirschner, 1986). 

Thus, even though a population of MITs are in a bulk steady state within a migrating cell, a single 

MIT never reaches a steady-state length due to in frequent inter-conversions between prolonged states 

of polymerization and depolymerization (Mitchison and Kirschner, 1984). This behaviour is most 

prominent at the MIT plus end, where they cycle between phases of growth and shrinkage 

interspersed by occasional pauses (Dent and Gertler, 2003; Mitchison and Kirschner, 1984). In short, 

after a period of growth, a MIT can begin to shrink (known as catastrophe= transition from growth to 

shrinkage), and a shrinking MIT can resume growth (known as rescue= transition from shrinkage to 

growth) (Dent and Gertler, 2003; Mitchison and Kirschner, 1984; Schulze and Kirschner, 1986; 

Tanaka et al., 1995).  

 

The dynamic behaviour of tubulin and MITs results in the rapid exchange between tubulin pools, and 

a swift turnover of the MIT array. This dynamic character of the MIT array is crucial to neuronal 

migration as it allows for rapid changes in cell shape, i.e. dynamic instability allows MITs to explore 

three-dimensional space more effectively than non-dynamic equilibrium polymerization (Desai and 

Mitchison, 1997; Dreschel et al., 1992; Schulze and Kirschner, 1986). The dynamic instability of 

MITs, allows MITs to dynamically explore the growth cone and ensures that MITs can interconvert 

between arrays from looped arrays, bundled arrays and splayed out arrays depending on the need of 

the developing neuron (Sabry et al., 1992; Tanaka et al., 1993). More recently the importance of MIT 

dynamics has been implicated as an essential component in axonal outgrowth and in axonal guidance. 
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These studies show that inhibition of MIT dynamics abolishes directional growth cone movement and 

axonal elongation (Tanaka et al., 1995), suggesting that proper regulation of the transition frequencies 

is required for normal neuronal migration (Kawauchi et al., 2005).  

 

Not surprisingly, microtubules are abundant in the leading processes of migrating neurons (Tanaka et 

al., 1995). These MITs are selectively stabilized in dense arrays to maintain the morphology of the 

leading process. Stability is decreased at the tips of the growth cones, allowing MIT arrays to splay 

out into single, dynamic pioneer MITs (Bunge, 1973; Bray and Bunge, 1981; Tanaka et al., 1995; 

Yamada, 1971). Accordingly, there is a gradient of MIT stability in migrating neurons so that MITs 

turn over more rapidly and frequently the further distal they are along the migrating neuron (the closer 

MITs are to the P domain of growth cones, the more MIT instability and dynamics increase) 

(Bamburg et al., 1986; Gordon-Weeks, 2003; Lim et al., 1989). Microtubule dynamics is critical to 

growth cone steering. It has been shown that MIT stabilization on the one side of the growth induces a 

growth cone turn in the direction of the MIT stabilization, and conversely MIT destabilization steers 

the growth cone away towards the more stabilized MIT region (Buck and Zheng, 2002). Thus, 

although instability is crucial for growth cone turning and steering, simultaneous stabilization in the 

direction of growth is required to form stable structural MIT bundles which are more resilient to 

depolymerization (Bondallaz et al., 2006; Mimori-Kiyosue and Tsukita, 2003). Recently fluorescent 

studies have shown that MITs rapidly extend and retract from the actin-rich P-domain of growth 

cones. Over a period of only a few minutes MITs can explore almost the entire P domain of the 

growth cone via the dynamic polymerization and depolymerization abilities of single pioneer MITs 

(Dent et al., 1999; Dent and Kalil, 2001; Kabir et al., 2001; Schaefer et al., 2002; Tanaka and 

Kirschner, 1991, 1995).  

 

Microtubule stability is conferred or enhanced by microtubule associated proteins (MAPs) and 

decreased by microtubule destabilising proteins such as stathmin and SCG10 (Tararuk et al., 2006). 

Thus, neurite elongation and axonal outgrowth requires a fine balance between MIT stability and 

instability, as too much or too little stabilization hinders neuronal migration (Chuckowree and 

Vickers, 2003; Tararuk et al., 2006). Stability is essential in the shaft where in addition to MAPs 

MITs are stabilised by numerous post-translational modifications, whereas instability is crucial for 

MITs present in the growth cone. Activity of both stabilizing and destabilising factors (such as 

SCG10) is tightly regulated by phosphorylation, thus regulating the dynamic state required for neurite 

extension (Stoothoff and Johnson, 2005; Walter-Yohrling et al., 2003). Importantly, inappropriate 

expression or phosphorylation of these MIT regulatory proteins result in numerous forms of cancer 

and neurodegenerative diseases, such as Alzheimer’s disease (hyperphosphorylated tau, a MAP) 

(Stoothoff and Johnson, 2005; Walter-Yohrling et al., 2003). Okazaki and colleagues showed that 
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patients with Alzheimer’s disease had altered SCG10 compartmentalization and inadequate 

degradation (Okazaki et al., 1995). Additionally, patients with Down’s syndrome had almost 

undetectable amounts of SCG10 in neuronal precursor cells (Bahn et al., 2002). These cells exhibited 

reduced neurogenesis, abnormal neuronal morphology and reduced neurite lengths (Bahn et al., 

2002). More recently it has been shown that the MIT destabilising protein stathmin is 

hyperphosphorylated in patients with schizophrenia, suggesting that MIT dynamics and regulation 

need to be investigated in neurodevelopmental disorders such as schizophrenia and OCD (Hayashi et 

al., 2006).   

 

4.4.2.3. SCG10 and growth cone microtubule dynamics 

It is well known that SCG10 acts as a potent MIT destabilising factor, although the precise 

mechanism by which it regulates neurite extension via the regulation of MIT stability still remains 

unclear. The MIT destabilising activity of SCG10 can be explained by two molecular mechanisms. 

Firstly, SCG10 has the ability to sequester free tubulin dimers into a ternary T2S complex (2 tubulin 

molecules: 1 SCG10) which prevents assembly into an MIT lattice (Curmi et al., 1997; Jourdain et 

al., 1997; Morii et al., 2006) (Figure 4.2).  

 

Secondly, SCG10 has the ability to promote catastrophe at the MIT plus end (Belmont and Mitchison, 

1996) (Figure 4.2). It is this feature that allows SCG10 to play a pivotal role in regulating MIT 

dynamics in migrating neurons, a property unique to tubulin heterodimers (Gavet et al., 1998; 

Riederer et al., 1997). Moreover, investigations by Li and colleagues and Manna and colleagues have 

shown that SCG10 has a dual activity. It has the potential to partially stabilize the plus end by 

increasing the extent and rate of growth, while also having the potential to destabilize free minus ends 

by sequestering free tubulin and slightly increasing the catastrophe rate (Li et al., 2008; Manna et al., 

2007). However, in vivo studies have shown that the main function, known to date, of SCG10 is to act 

as a catastrophe promoting factor (Morri et al., 2006).  
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Figure 4.2. Shows the dynamic instability of microtubules in light of SCG10. Microtubules are polymer 
structures composed of α/β heterodimers. GTP-bound tubulin is added to the plus end of growing microtubules. 
Microtubules are also dynamic polymers which are capable of switching between phases of growth (rescue) and 
shrinkage (catastrophe). SCG10 increase the dynamic instability of microtubules by promoting catastrophe and 
by sequestering tubulin, thus dynamic instability is crucial in neurite extension and elongation (Taken from 
Grenningloh et al.,2003).  
 

Recently it has been shown that gene silencing or immunodepletion of SCG10 suppresses neurite 

elongation and also increases the proportion of looped-shaped MITs, which induce growth cone 

pauses, so retarding growth cone movement (Mori et al., 2006). Interestingly, drugs which suppress 

MIT dynamic instability (such as taxol and vinblastine, which block destabilising proteins) reduce 

neurite elongation and reduce growth cone motility (Letourneau and Ressler, 1984; Letourneau et al., 

1986; Rochlin et al., 1996; Tanaka et al., 1995; Zheng et al., 1993; Yu and Baas, 1995). Additionally, 

elevated levels of SCG10 blocks neurite extension, due to its potent MIT depolymerizing effect 

(Reiderer et al., 1997).   

 

In a landmark study by Antonsson and colleagues, these investigators showed that phosphorylation of 

SCG10 inactivated its MIT depolymerizing activity as phosphorylated SCG10 is unable to sequester 

free tubulin and is therefore unable to promote MIT catastrophe (Antonsson et al., 1997). These 

results indicate that SCG10 is crucial to neurite extension and growth cone guidance and that a fine 
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balance between SCG10 phosphorylation and expression is required for its proper function 

(Antonsson et al., 1997). 

 

4.4.2.4. SCG10-WDR47 interaction 

Due to the localisation and potent destabilising effect of SCG10, it has been hypothesized that SCG10 

may act antagonistically to MAPs by inducing destabilization of MITs to ensure a highly dynamic 

state of MITs within growth cones (Grenningloh et al., 2003; Reiderer et al., 1997). Thus the presence 

of both stabilizing and destabilising factors are required by migrating neurons to regulate MITs 

(Grenningloh et al., 2003; Reiderer et al., 1997).  

 

The significance of the WDR47-SCG10 interaction could be to reduce the catastrophe promoting 

effect of SCG10, thereby reducing MIT dynamic instability. Dynamic instability is essential to neurite 

outgrowth, axonal elongation and growth cone turning and exploration (section 4.4.2.2.). Therefore, 

based on the previous Y2H screen of Reelin conducted by Kinnear and co-workers (Kinnear, 2007) 

and the novel interaction between WDR47 and SCG10 described in the present investigation, one 

could propose the following mechanism: Reelin signalling to downstream effectors such as MAP1B 

and tau would induce the partial stabilization of MITs. Upon Reelin internalization, it binds to 

WDR47 within neuronal vesicles where WDR47, in turn, binds to SCG10, possibly reducing the 

potent destabilising effects of SCG10. Thus, the interaction of WDR47 with SCG10 ultimately 

reduces MIT dynamics, this shift in balance in MIT dynamics results in an alteration in the migratory 

path of neurons.  

 

The latter effect is supported by findings of Nixon and co-workers, who showed that when SCG10 is 

bound to the Golgi structure, it appears to be inactive (Nixon et al., 2002). They found that SCG10 

interacts with RGSZ1 (a regulator of G protein signalling) on the Golgi structure and that this 

interaction inhibited the MIT depolymerizing activity of SCG10 (Nixon et al., 2002). Furthermore, 

Gong and colleagues recently used SCG10 in a Y2H analysis and identified a novel interaction 

between SCG10 and BRI3 (a neuron-specific member of the integral membrane proteins) (Gong et al., 

2008). They hypothesized that BRI3 may inhibit neurite extension by decreasing the dynamic 

instability of MITs induced by SCG10 (Gong et al., 2008). Similarly, one could speculate that the 

WDR47-SCG10 interaction may serve to reduce the MIT dynamic instability and, ultimately, 

arresting neurite elongation. The WDR47-SCG10 interaction could render SCG10 inactive by 

incorporating it into a vesicular structure. Reelin could thus be an extracellular guidance cue that 

shifts the balance between stabilizing (via MAPs, such as tau and MAP1B) and destabilising (via 

WDR47-SCG10 interaction) factors within a growth cone, such that MITs are stabilized in the 

direction of growth. 
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Furthermore, WDR47 could induce the phosphorylation of SCG10 either directly or by inducing 

relevant kinases, as the non-phosphorylated form of SCG10 represents the most active form of SCG10 

(Antonsson et al., 1997). The Reelin signalling pathway activates cdk5 via the phosphorylation of 

Dab1, activated cdk5 is able to phosphorylate SCG10 thereby reducing its destabilising effects on 

MITs (Antonsson et al., 1997). It therefore appears that in the Reelin pathway, one of the mechanisms 

that Reelin uses to exert its effects on neuronal migration is to reduce the MIT destabilising function 

of SCG10, either directly by binding to vesicle bound WDR47 or indirectly by inducing the 

phosphorylation, and hence, inactivation of SCG10. Additional studies need to be done to assess the 

phosphorylation state of SCG10 once bound to WDR47, and whether this interaction alters the degree 

of phosphorylation or what happens to SCG10 once WDR47 is no longer present in neuronal cells 

(knockdown of WDR47). It would also be interesting to measure the phosphorylation state of SCG10 

before and after Reelin stimulation. Additionally, the MIT destabilising effect, as well as MIT 

dynamics and the amount of SCG10 as well as the phosphorylation state of SCG10 should be 

analysed in the reeler mouse cortex.  

 

Li and colleagues identified an interaction between Rnd1 (subfamily of Rho GTPases) and the central 

domain of SCG10 using a Y2H screen (Li et al., 2008). Rnd1 has been implicated in the regulation of 

the actin cytoskeleton, and in neurite extension via the inhibition of Rho-dependant pathways (Li et 

al., 2008). The binding of Rnd1 to SCG10 is independent of the phosphorylation state of SCG10, and 

this interaction was shown to increase the MIT destabilising activity of SCG10 (Li et al., 2008). Due 

to Rnd1s induced increase in SCG10 function, the MITs become more dynamically unstable which 

increases neurite outgrowth and axon formation (Li et al., 2008). This study shows that once the 

destabilising effects of SCG10 increase, MIT dynamics instability increases which in turn increases 

neurite outgrowth. Thus, reinforcing the hypothesis we put forward in light of the reduction of MIT 

dynamics and arresting neurite elongation.  

 

To reinforce the current hypothesis that WDR47 bound to internalized Reelin controls migration and 

lamination via the inhibition of cytoskeletal dynamics, Chai and colleagues recently showed that the 

Reelin signalling pathway increased the phosphorylation of n-cofilin (non-muscle cofilin) via the 

activation of LIM kinase 1 (LIMK1) (Chai et al., 2009). Cofilin is an actin-binding protein and an 

essential regulator of actin dynamics (Bamburg, 1999). Cofilin acts as an actin depolymerizing protein 

that is responsible for promoting actin disassembly and provides actin monomers required for 

directional migration (Dawe et al., 2003; Ghosh et al., 2004; Jovceva et al., 2007; Kiuchi et al., 

2007). Upon LIMK1 phosphorylation, cofilin no longer has the ability to bind to and disassemble 

actin filaments, which reduces actin dynamics and in turn inhibits neurite extension (Moriyama et al., 

1996; Zebda et al., 2000, Chai et al., 2009). Chai and colleagues showed that Reelin signalling 
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enhanced the activity of LIMK1, which increased the serine phosphorylation of cofilin and hence 

increased the stability of the actin cytoskeleton, resulting in the inhibition of neurite extension and 

migration (Chai et al., 2009). Additionally, they showed that, in the reeler cortex, n-cofilin 

phosphorylation was significantly reduced (Chai et al., 2009). From this study they concluded that 

Reelin’s effect on the actin cytoskeleton (via the inhibition of actin dynamics) is responsible for 

Reelin’s action as a positional and directional cue, suggesting that Reelin acts as a stop signal to 

migrating neurons via the reduction of cytoskeletal dynamics (Chai et al. ,2009). Thus, in light of the 

above study in which Reelin reduces actin dynamics to regulate neuronal migration, we hypothesise 

that Reelin additionally modulates MIT dynamics via the interaction between WDR47 and SCG10 

ultimately inhibiting cytoskeletal dynamics as a whole to arrest neuronal migration.     

 

It is not yet known whether or not internalised Reelin (hence WDR47) within neuronal vesicles 

(section 1.3.2.3.3) is targeted for proteosomal degradation. If the neuronal vesicles containing Reelin 

bound WDR47 are targeted for degradation, the binding of WDR47 to SCG10 could facilitate the 

removal of SCG10 from neuronal growth cone. This mechanism could be responsible for the down 

regulation of SCG10 mRNA in postnatal development, and may also serve to remove SCG10 in 

regions of plasticity in the adult brain once regeneration has been achieved. 

   

Numerous theories have been posited for the function of Reelin during cortical development. Based 

on the results of the present investigation, one could envision the following scenario: The first wave 

of postmitotic neurons to leave the ventricular zone may migrate via somal translocation to their final 

cortical positions (section 1.3.2.1.1). Various extracellular guidance cues such as neuronal growth 

factor (NGF), which not only stimulates axonal or neurite outgrowth, but also activates the expression 

of SCG10 initiates migration and neurite extension (Riederer et al., 1997; Grenningloh et al., 2003). 

These neurons would initially encounter a high concentration of Reelin as the cortical distance is still 

relatively short. Upon binding of Reelin to its receptors on the surface of the migrating neuron and its 

consequential internalization, neurite elongation is inhibited by the inhibition of MIT dynamic 

instability via the downstream effects of Reelin, including its interaction with WDR47 and the binding 

of WDR47 to SCG10. Thus, once internalised Reelin binds to WDR47, it may activate WDR47 which 

in turn binds to SCG10 rendering SCG10 inactive (bound to the vesicular structure). Additionally, 

Reelin activated WDR47 bound to SCG10 could also recruit kinases to phosphorylate SCG10 (vesicle 

bound or free cytosolic SCG10), further inactivating SCG10 and reducing MIT dynamics. Later born 

neurons then migrate via glial-dependent locomotion (section 1.3.2.1.2) and encounter a concentration 

gradient of Reelin. It appears as if lower concentrations of Reelin are initially not enough to inhibit 

MIT dynamics although it is sufficient to detach neurons from their glial guides via the Reelin-

integrin interaction (section 1.3.2.3.3). As the concentration of Reelin increases, neurons would 
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migrate via somal translocation, which is guided by cytoskeletal dynamics and motor proteins (section 

1.3.2.1.1). Once migrating neurons have encountered a high enough concentration of Reelin (the 

closer they are to the marginal zone), MIT dynamics is inhibited (via the WDR47-SCG10 interaction) 

and neurons stop migrating and assume their final cortical positions.  

 

This hypothesis could also explain the inside-out manner of lamination of the neocortex, as later born 

neurons only encounter a high enough concentration of Reelin once they have by passed their earlier 

born predecessors. Thus later born neurons traverse greater cortical distances and assume more 

superficial positions until they stop migration once MIT and actin dynamics have been inhibited. It 

also explains the outside-in manner of lamination observed in the reeler neocortex, as early born 

neurons do not stop migrating as there is no Reelin available to reduce cytoskeletal dynamics. Hence, 

later born neurons do not bypass their early born predecessors, instead they settle underneath earlier 

born neurons in an unorganised mass of neocortical neurons. Neurons also remain closely associated 

to their glial guides due to the absence of the Reelin-integrin interaction. However, it needs to be 

taken into account that other factors could also contribute to the reeler phenotype, as Reelin could 

interact with other extracellular factors which allow for the fine tuning of the normal neocortical 

architecture, one such factor is the microtubule associated protein LIS1. It is safe to say that a host of 

signalling pathways regulate neuronal migration and cortical lamination; these pathways ultimately 

control migration via their actions on the neuronal cytoskeleton. It is also not impossible that these 

pathways regulate each other, or interact in unison as is the case for the Reelin and the LIS1 signalling 

pathways. 

 

4.5. LIMITATIONS OF THE PRESENT STUDY  

4.5.1. Limitations of Yeast-two-hybrid analysis 

The yeast two-hybrid system is a powerful, reliable and relatively inexpensive method to detect tissue 

specific protein-protein interactions, although like any assay it has its advantages and disadvantages.  

 

This technique uses the yeast as a host system; this is both an advantage as well as a disadvantage. 

Yeast bears a greater similarity to higher eukaryotic systems in comparison to systems using a 

bacterial host (Sobhanifer, 2003). One of the major drawbacks of using S. cerevisae as a host is that a 

number of proteins’ functions depend on their post-translational modifications (such as 

phosphorylation, disulphide bridge formation and glycosylation). Not all the enzymes responsible for 

these modifications for interaction with the particular bait occur in yeast and therefore, protein 

interactions that depend on post-translational modifications may not be detected (Van Criekinge and 
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Beyaert, 1999; Sobhanifer, 2003). Moreover, the yeast cells may not express the necessary chaperone 

proteins to fold the constructed fusion protein (Van Crieking and Beyaert, 1999). 

 

Another limitation of the Y2H assay is the use of artificially constructed fusion proteins (Van 

Criekinge and Beyaert, 1999; Sobhanifer, 2003). The generation of chimeric bait and prey proteins 

may alter their native conformation, which, in turn, could alter both the activity and binding properties 

of the proteins (Van Criekinge and Beyaert, 1999; Sobhanifer, 2003). 

 

An additional disadvantage of the Y2H system is the necessity for nuclear localisation of the proteins 

of interest.  This is problematic since proteins which contain localisation signals to cellular 

compartments other than the nucleus will be exported to their proper cellular compartments thereby 

rendering them unavailable for analysis (Van Criekinge and Beyaert, 1999; Sobhanifer, 2003).  

 The Y2H assay also produces false positives, where the reporter genes are activated and detected 

even in the absence of protein interactions. These false positives may occur if the bait or prey 

constructs are able to auto activate transcription of the reporter genes (Van Criekinge and Beyaert, 

1999; Sobhanifer, 2003).  

 

Additionally, if the bait is mildly toxic to the yeast, some yeast diploids will be lost during the mating, 

so that interactions may be missed (a form of false negatives) (Van Criekinge and Beyaert, 1999; 

Sobhanifer, 2003). In the present study, the WDR47 construct was tested for auto-activation and 

toxicity. The results showed that this construct was not able to activate transcription autonomously 

nor was the construct toxic to the yeast host. In order to minimise the number of false positives in the 

present study, multiple reporter genes (both nutritional and colorimetric) and heterologous mating 

experiments were preformed to reduce non specific protein-protein interactions. 

 

4.5.2. Limitations of in vivo co-localisation 

The GT-17 hypothalamus cells used in the present study proved to be problematic as they were 

difficult to culture. Furthermore, the transfection efficiency of the cells was fairly low as they are 

difficult to transfect. Although this problem can be overcome by the use of endogenous WDR47, there 

is currently no commercially available WDR47 primary antibody, hence the present study made use 

of transfected WDR47.  

 

Resolution is another obstacle when using fluorescent microscopy. Resolution depends on the 

wavelength of the light imaged and on the numerical aperture (NA) of the objective (Lalonde et al., 

2008). The resolution of a conventional light microscope (even with a high-NA objective) is limited 



102 

 

 

 

to approximately 200nm, suggesting that proteins could be contained or visualised within a co-

localised space (volume) without biologically interacting (objects closer together than 200nm may 

appear as a single localised object) (Lalonde et al., 2008). For the present study, z-stack images were 

taken 260nm apart, thus it remains possible that considerable distances may actually separate proteins 

that appear co-localised by fluorescence microscopy. 

 

Despite the limitations of the in vivo co-localisation, it does, however, provide compelling evidence 

that WDR47 and SCG10 do co-localise although this interaction needs to be further verified using 

more sensitive in vivo techniques such as in vivo co-immunoprecipitation, which overcome the 

limitations of in vivo co-localisation.  

 

4.6. FUTUTRE STUDIES  

The present study has presented a novel interaction between WDR47 and SCG10 that directly links 

the Reelin signalling pathway to proteins which regulate microtubule dynamics and neuronal 

migration. However, further investigations of the current results are needed to fully grasp the 

significance of these findings in context of the pathophysiologies of neuronal migration disorders. The 

identification of the novel WDR47-interacting protein, not only furthers our understanding of the 

Reelin signalling pathway, but also sheds light on the function of WDR47. It should however be noted 

that further verification studies such as in vivo co-immunoprecipitation and bioluminescence 

resonance energy transfer (BRET), for example, need to be conducted in order to fully confirm the 

WDR47-SCG10 interaction. It also needs to be determined to which domains of SCG10 WDR47 

binds, as this will aid in a better understanding of the WDR47-SCG10 interaction. Due to time 

constraints these could not be conducted as part of the present study, although they are currently 

underway in our laboratory.  

 

Following this, it would be crucial to determine what effect, if any, the interaction of SCG10 with 

WDR47 has one tubulin dynamics. For this reason, siRNA knockdown studies, in which WDR47 is 

knocked down in GT1-7 cells, are currently underway in our laboratory. The effect of the WDR47-

knockdown on tubulin would then be determined by fluorescent microscopy using tubulin specific 

antibodies. Additionally, by knocking down WDR47, one could also determine the effect WDR47 has 

on the phosphorylation status of SCG10. These experiments will give us more insight into the 

functional significance of the WDR47-SCG10 interaction. 
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4.7. CONCLUSION 

This study identified four putative interactors of the N-terminal domain of WDR47 by Y2H analysis. 

In vivo 3D co-localisation verified that only the neuronal specific protein, SCG10, showed a true 

interaction with WDR47. The identification of SCG10 as a novel WDR47 interacting protein not only 

sheds light on the role and function of WDR47 but also aids in a better understanding of the Reelin 

pathway and cortical lamination. This interaction also has significant implications in the 

pathophysiologies of neurodevelopmental disorders. The data presented in the present study yielded 

exciting results that warrant future follow-up investigation. Ultimately, the goal of studies like this 

one, is to get a clearer understanding of the aetiologies of neurodevelopmental disorders, such as 

lissencephaly and more complex neurodevelopmental disorders such as OCD and schizophrenia. The 

identification of SCG10 as a WDR47-interacting protein, may provide investigators with alternative 

avenues of research into potential drug targets for OCD and schizophrenia pharmacotherapy.  
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APPENDIX I 
 

1. DNA eXTRACTION SOLUTIONS  

Cell Lysis Buffer 

 Sucrose       0.32M 

 Triton-X-100      1% 

 MgCl2       5mM 

 Tris-HCl      10mM 

 H2O       1l 

 

 3M NaAc 

 NaAc.3H2O (Merck)     40.18g 

 ddH2O       50ml 

 Adjust pH to 5.2 with glacial acetic acid and adjust volume to 100ml with ddH2O 
 

 DNA Extraction Buffer  

 NaCl       0.1M 

 Tris-HCl      0.01M 

 EDTA(pH8)      0.025M 

 SDS       0.5% 

 Protein K      0.1mg/ml 

 

 TBE Buffer (10X stock) 

 Tris-HCl      0.89M 

 Boric Acid      0.89M 

 Na2EDTA(pH8)      20Mm 

 

2.   BACTERIAL PLASMID PURIFICATION SOLUTIONS 

Cell Suspension Solution 

50mM Tris-HCl, pH 7.5     2.5ml 1M Tris 

10mM EDTA      1ml 0.5M EDTA 

Sterile H2O to a final volume of 50ml 

 

Cell Lysis Solution 

0.2M NaOH      2.5ml 4M NaOH 

1% SDS      5ml 

Sterile H2O to a final volume of 50ml 
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Neutralisation Solution 

1.32M KOAc, pH 4.8     13.2ml 5M KOAc 

Sterile H2O to a final volume of 50ml 

 

3. YEAST PLASMID PURIFICATION SOLUTIONS 

Yeast Lysis Buffer 

SDS       1% 

Triton X-100      2% 

NaCl       100mM 

Tris, pH 8      10mM 

EDTA, pH8      1mM 

 

4.  YEAST TRANSFORMATION REAGENTS 

1M LiAc 

 LiAC       5.1g 

Sterile H2O to a final volume of 50ml 

  

 100mM LiAc 

 1M LiAC      5ml 

Sterile H2O to a final volume of 50ml 

  

50% PEG 4000    

 PEG 4000      25g 

Sterile H2O to a final volume of 50ml 

 

5.   ELECTROPHORESIS STOCK SOLUTIONS 

10% Ammonium Persulphate 

Ammonium persulphate (Merck)   1g 

Sterile water      10ml 

Mix well and stock at 40C 

 

20X SB Stock Solution 

di-Sodium tetraborate decahydrate   38.14g 

Sterile H2O to a final volume of 1 litre  

 

1X SB Solution 

20X SB solution     50ml 
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Sterile H2O to a final volume of 1 litre  

 

6.  GELS 

 1% Agarose Gel 

 Agarose      1g 

 SB buffer (1X)      100ml 

Microwave for 1 minute on maximum power (or until agarose has dissolved) and add 5µl 

ethidium bromide (10mg/ml) when temperature of ≈550C is reached. 

  

 2% Agarose Gel 

 Agarose      2g 

 SB buffer (1X)      100ml 

Microwave for 1 minute on maximum power and add 5µl ethidium bromide (10mg/ml) when 

temperature of ≈550C is reached. 

  

7.  DYES 

Ethidium Bromide Stock (10mg/ml) 

Ethidium bromide (Sigma)    500mg 

Sterile water      50ml 

Stir well on magnetic stirrer for 4 hours and store in a dark container at 40C 

 

 

Bromophenol Blue Loading Dye 

Bromophenol blue     0.1% (w/v) 

Sterile H2O to a final volume of 100ml. Store at 40C 

 

8.  MOLECULAR SIZE MARKERS 

Molecular Size Marker (Lambda λPst) 

Bacteriophage Lambda genomic DNA   200µl 

PstI Restriction enzyme     3µl (30U) 

Promega buffer H     30µl 

Sterile H2O to a final volume of 300µl 

Incubate at 370C for 3 hours, heat inactivate enzyme at 650C for 10 minutes. Load 3µl on 

agarose gel containing EtBr. 
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9 .        PCR BUFFER 

10x NH4 PCR Buffer (BIOLINE UK) 

Ammonium sulphate     160mM 

Tris-HCl (pH 8.8)     670mM 

Tween-20      0.1% 

 

10. SOLUTIONS USED FOR THE ESTABLISHMENT OF BACTERIAL COMPETENT 

CELLS 

CAP-Buffer       

CaCl2       2.21g 

Glycerol      37.5ml 

PIPES       0.76g 

Sterile water to a final volume of 250ml. Adjust pH to 7.0 and store at 40C. 

 

11.  BACTERIAL MEDIA 

LB-Media 

Bacto tryptone      5g 

Yeast extract      2.5g 

NaCl       5g 

Sterile H2O to a final volume of 500ml. Autoclave and add the appropriate antibiotic 

(Ampicillin 25mg/l, Kanamycin 5mg/l or Zeocin™ 10mg/l) to media when temperature of 

≈550C is reached. 

 

LB-Agar Plates 

Bacto tryptone      5g 

Yeast extract      2.5g 

NaCl       5g 

Bacto agar      8g 

Sterile H2O to a final volume of 500ml. Autoclave and add the appropriate antibiotic 

(Ampicillin 25mg/l, Kanamycin 5mg/l or Zeocin™ 10mg/l) to media when temperature of 

~550C is reached, prior to pouring ~20, 90mm plates. These plates were then allowed to set 

for 2-5 hours and stored at room temperature for up to three weeks. 

 

12. YEAST MEDIA 

YPDA Media 

Difco peptone      10g 

Yeast extract      10g 
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Glucose      10g 

L-adenine hemisulphate (0.2% stock solution)  7.5ml 

Add sterile H2O to a final volume of 500ml. Autoclave at 1210C for 15 minutes. 

 

YPDA Agar Plates 

YPDA media 

Difco peptone      10g 

Yeast extract      10g 

Bacto agar      10g 

Glucose      10g 

L-adenine hemisulphate (0.2% stock solution)  7.5ml 

Add sterile H2O to a final volume of 500ml. and autoclave at 1210C for 15 minutes. Allow to 

cool to a temperature of ~550C, before pouring ~20, 90mm plates. These plates were then 

allowed to set for 2-5 hours and stored at room temperature for up to three weeks. 

 

SD-W Media 

Glucose      12g 

Yeast nitrogen base without amino acids   4g 

SD-W amino acid supplement    0.4g 

Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. 

 

SD-W Agar Plates 

Glucose      12g 

Bacto agar      12g 

Yeast nitrogen base without amino acids   4g 

SD-W amino acid supplement    0.4g 

Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. Allow to cool to a temperature of ~550C, before pouring ~20, 90mm plates. These 

plates were then allowed to set for 2-5 hours and stored at room temperature for up to three 

weeks. 

 

 

SD-L Media 

Glucose      12g 

Yeast nitrogen base without amino acids   4g 

SD-L amino acid supplement    0.4g 
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Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. 

 

SD-L Agar Plates 

Glucose      12g 

Bacto agar      12g 

Yeast nitrogen base without amino acids   4g 

SD-L amino acid supplement    0.4g 

Add sterile H2O to a final volume of 600ml.  Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. Allow to cool to a temperature of ~550C, before pouring ~20, 90mm plates. These 

plates were then allowed to set for 2-5 hours and stored at room temperature for up to three 

weeks. 

SD-L-W Media 

Glucose      12g 

Yeast nitrogen base without amino acids   4g 

SD-L-W amino acid supplement    0.4g 

Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. 

 

SD-L-W Agar Plates 

Glucose      12g 

Bacto agar      12g 

Yeast nitrogen base without amino acids   4g 

SD-L-W amino acid supplement    0.4g 

Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. Allow to cool to a temperature of ~550C, before pouring ~20, 90mm plates. These 

plates were then allowed to set for 2-5 hours and stored at room temperature for up to three 

weeks. 

 

TDO Media 

Glucose      12g 

Yeast nitrogen base without amino acids   4g 

SD-L-W-H amino acid supplement    0.4g 

Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. 
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TDO Agar Plates 

Glucose      12g 

Bacto agar      12g 

Yeast nitrogen base without amino acids   4g 

SD-L-W-H amino acid supplement    0.4g 

Add sterile H2O to a final volume of 600ml.  Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. Allow to cool to a temperature of ~550C, before pouring ~20, 90mm plates. These 

plates were then allowed to set for 2-5 hours and stored at room temperature for up to three 

weeks. 

 

QDO Media 

Glucose      12g 

Yeast nitrogen base without amino acids   4g 

SD-L-W-H-Ade amino acid supplement   0.4g 

Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. 

 

QDO Agar Plates 

Glucose      12g 

Bacto agar      12g 

Yeast nitrogen base without amino acids   4g 

SD-L-W-H-Ade amino acid supplement   0.4g 

Add sterile H2O to a final volume of 600ml. Adjust pH to 5.8 and autoclave at 1210C for 15 

minutes. Allow to cool to a temperature of ~550C, before pouring ~20, 90mm plates. These 

plates were then allowed to set for 2-5 hours and stored at room temperature for up to three 

weeks. 

 

X-α-Galactosidase Solution (5mg/ml) 

X-α-Galactosidase     25mg 

Dimethylformamide      1ml 

Make a 25mg/ml stock. Dilute with dimethylformamide to 5mg/ml working solution. 

13.       EUKARYOTIC CELL CULTURE MEDIA 

Complete Growth Media 

DMEM (4.5g/L glucose, with L-glutamine)              178ml 

Foetal calf serum                                               20ml   

Penstrep                                              2ml   

Pre-warm to 370C before use. 



111 

 

 

 

 

Serum-Free Media 

DMEM (4.5g/L glucose, with L-glutamine)             100ml 

Pre-warm to 370C before use. 
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APPENDIX II 
 

CALCULATING YEAST MATING EFFICIENCIES (Calculations based on Clontech Manual) 

 

Count number of colonies on all plates with 30-300 colonies after 4 days 

 

#colony forming units (cfu)/ml=  cfu x 1000µl/ml 

    

 

1. Number of cfu/ml on SD-L plates = viability of prey partner 

2. Number of cfu/ml on SD-W plates = viability of bait partner 

3. Number of cfu/ml on SD-L-W plates = viability of diploids 

4. Lowest Number of cfu/ml of SD-L or SD-W plates indicate limiting partner 

 

5. Mating efficiency=         #cfu/ml of diploids x 100 

                                         #cfu/ml of limiting partner 

 

Library titre 

Count number of colonies on all plates with 30-300 colonies after 4 days 

 

#cfu/ml=                         #colonies plating volume(ml) x dilution factor 

 

# colonies clones screened= # cfu/ml x final resuspension volume 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 

 

 

 

Heamocytrometric cell count protocol 

 

Haemocytometric cell count using a Neubauer haemocytometer (Superior, Berlin, Germany) was 

performed to determine the titre of bait culture used in the library mating experiment. Prior to 

aliquoting the sample onto the haemocytometer, a glass coverslip was placed over the counting 

surface. Approximately 50µl of a 1 in 10 dilution of bait culture was then pippeted into one of the V-

shaped wells (Fig A). This allowed for the area under the coverslip to be filled with the sample 

through capillary action. The counting chamber was subsequently placed on a microscope (Nikon 

TMS, Nikon Instruments inc., New York U.S.A) stage and the counting area was brought into focus 

under low magnification. The organisation of the counting area is shown in Figure B and Figure C. 

The number of cells per millilitre was determined using the following formula: 

 

number of cells/ml = number of cells x dilution factor x 104 (a constant used because the depth of 

the haemocytometer is 0.1mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1 mm depth Cover slip

Ruled area 

A. 

B. 

V-shaped well
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Neubauer heamocytometer, side and top view. The central platforms contain the ruled counting areas 

and are 0.1 mm under the cover slip, which is suspended on the raised ridges (taken from McNeel and Brown, 

1992). b) Magnified view of the ruled counting area (taken from McNeel and Brown, 1992). c) View of the 

central quadrant of the haemocyometer that was used to determine the number of cells per milliliter. The 

number of cells per milliliter was determined as follows: The number of cells in each of the blue squares within 

the 4 outer larger squares (in the diagram) were counted and added together. This amount was multiplied by 4 to 

give an approximate number of cells each of the 4 large outer squares. The amount of cells in each of the 4 

larger outer squares was then added together and divided by 4 to give an average number of cells for each of the 

25 large squares of the central quadrant of the haemocytometer. This average number was then multiplied by 25 

to yield a average number of cells within the large central quadrant. Number of cells per milliliter was then 

determined using the formula: 
Cells/ml=number of cells x dilution factor x 104 
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APPENDIX III 
 

LIST OF SUPPLIERS 

Agarose        Whitehead Scientific 

Ammonium acetate      B&M Scientific 

Ammonium persulphate      Merck 

Ampicillin       Roche 

β-mercaptoethanol      Sigma 

Bacteriophage Lambda gnomic DNA    Promega 

Bacto Agar       Merck 

Bacto tryptone       Fluka 

BamHI        Promega 

Bromophenol blue      Merck 

Calcium chloride      Merck  

Calf intestinal alkaline phosphatise    Promega 

dATP        Boerhinger Mannheim 

dCTP        Boerhinger Mannheim 

dGTP        Boerhinger Mannheim 

Dimethylformamide      Merck 

di-Sodium tetraborate decahydrate    Merck  

DMEM        Highveld biological 

dNTP mix       TaKaRa 

DTT        Roche 

dTTP        Boerhinger Mannheim 

EcoRI        Promega 

EDTA        Boerhinger Mannheim 

Ethanol        Boerhinger Mannheim 

Ethidium bromide      Roche 

Ex TaqTM polymerase      TaKaRa 

Ex TaqTM polymerase Mg2+-containing reaction buffer  TaKaRa 

Foetal calf serum      Delta Bioproducts 

GeneJuice®       Novagen 

GFX® DNA purification kit     Amersham Pharmacia 

Glass beads (450-600µm)     Sigma 

Glucose       Kimix 
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Glycerol       Promega 

Glycine        Kimix 

HCl        Merck  

Herring sperm DNA      Promega 

HindIII        Promega 

Isopropanol       Merck 

K-acetate       Sigma 

Kanamycin       Roche 

LiAc        Sigma 

MgCl2        Bioline 

MgSO4.7H2O       Merck 

Molecular size marker (200bp)     Promega 

Na2CO3        Merck 

NaCl        BDH Chemicals 

Na2HPO4.7H2O       Merck 

Na2H2PO4.H2O       Merck 

NaOH        Sigma 

NdeI        Promega 

Oligonucleotide primers Department of Molecular and Cell 

Biology, University of Cape Town 

(UCT), Cape Town, South Africa 

pACT2        BD Biosciences 

PBS        Sigma 

PEG4000       Merck 

Penicillin/streptomycin      Highveld Biological 

Peptone        Difco 

pGBKT7       BD Biosciences 

Phenol/chloroform/isoamyl     Sigma 

PstI        Promega 

QDO        BD Biosciences 

SacII        Promega 

SD-Ade        BD Biosciences  

SD-L        BD Biosciences 

SD-L-W        BD Biosciences 

SD-Met        BD Biosciences 

SDS        Sigma 

SD-Ura        BD Biosciences 
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SD-w        BD Biosciences 

T4 DNA Ligase       Promega 

Taq polymerase       Bioline 

TDO        BD Biosciences 

Tris        Merck 

Tris-HCl       Merck 

Triton X-100       Sigma  

Trypsin        Highveld Biological 

Tween 20       Merck 

Whatman 3M paper      Whatman international 

Wizard® Purefection plasmid purification kit   BD Bioscences 

X-α-galactosidase      Southern Cross 

Yeast extract       Difco 

Yeast nitrogen base (without amino acids)   BD Biosciences 
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APPENDIX IV 
 

BACTERIAL STRAIN PHENOTYPE 

 

E.coli strain DH5α 

Φ 80d lacZ∆M15 recA1, endA1, Gry A96 thi-1, hsdR17 supE44, relA1, deoR ∆(lacZYA argF)u169 

 

YEAST STRAIN PHENOTYPES 

 

Yeast strain AH109 

MATa, trp1-901, leu2-3, ura3-5, his3-200, gal4∆, gal80∆, LYS2::GAL1uas-GAL1TATA-HIS3, GAL2UAS-

GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ (James et al., 1996) 

 

Yeast strain Y187 

MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, met-, gal80∆, URA3::GAL1UAS-

GAL1TATA-lacZ (Harper et al., 1993) 
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APPENDIX V 
 

Restriction maps of Yeast two-hybrid  
 

 

Figure 1. Restriction map and multiple cloning site of pGBKT7 Y2H bait vector.  

A) The positions of the kanamycin resistance gene (kan), TRP1 and GAL4-BD coding sequences, f1 

bacteriophage and pUC plasmid origins of replication, the truncated S.cerivisiae ADH1 promotor sequence 

(PADH1), the T7 RNA polymerase promoter, the T7 and c- Myc epitope tag are indicated on the map. B) 

Nucleotide sequence of the pGBKT7 MCS. The positions of all unique restriction enzyme recognition 

sequences, stop codons in the T7 terminator sequence, the  GAL4-BD coding sequence, the T7 promoter 

sequence, c-Myc epitope tag and the positions of pGBKT7-F and pGBKT7-R screening primers and sequencing 

primers are indicated on the sequence (taken from Clontech MATCHMAKER vectors handbook). 

pBK7T‐F 

pGBKT7‐F 

A 

B
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Figure 2. Restriction map and multiple cloning site of pACT2 Y2H prey vector. A) The positions 

of unique restriction sites are indicated in bold. The position of the ampicillin resistance gene (Ampr), LEU2 and 

GAL4-AD coding sequences, and pBR322 plasmid origins, the S.cerevisiae ADH1 promoter, S.cerevisiae 

ADH1 termination sequence, Lox sites (Lox 1 and Lox 2), the heamagglutinin (HA) epitope tag and the MCS 

are indicated on the map. B) Nucleotide sequence of the pACT2 MCS. The positions of all unique restriction 

sites, stop codons, the position of the final codon (881) of GAL4-AD coding sequence, the positions of the 

pACT2-F and pACT2-R primers and the HA epitope tags are all indicated in the map (taken from Clontech 

MATCHMAKER vectors handbook). 

 

 

 

 

 

 

 

pACT2‐R 

pACT2‐F

A 

B 
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Chromatogram of WDR47 sequence 
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