
Characterisation of L..malic acid metabolism ID
strains of Saccharomyces and the development

of a commerelal wine yeast strain with. an
efficient malo-ethanolic pathway

Heinrich Volschenk

Dissertation presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy at Stellenbosch University

December 2002

Promoter: Prof. HJJ. van Vuuren

Co-Promoter: Dr. M. Bloom



DECLARA TION

I, the undersigned, hereby declare that the work contained in this dissertation is my own original work

and that I have not previously in its entirety or in part submitted it at any university for a degree.

Stellenbosch University http://scholar.sun.ac.za



SUlVllVIA RY

L-Malic and tartaric acid are the most prominent organic acids in wine and playa crucial role in

winemaking processes and wine quality, including the organoleptic quality and the physical,

biochemical and microbial stability of wine. The production of premium wines depends on the

oenologist's skill to accurately adjust wine acidity to obtain the optimum balance with other wine

components to produce wine with optimum colour and flavour.

Strains of Saccharomyces, in general, rarely degrade L-malic acid completely in grape must during

alcoholic fermentation, with relatively minor modifications in total acidity during vinification. The

degree of L-malic acid degradation, however, varies from strain to strain. Some strains of

Saccharomyces are known to be able to degrade a higher percentage of L-malic acid, but the

underlying reason for this phenomenon is unknown. The underlying mechanisms of this phenomenon

have been partially revealed during preliminary transcriptional regulation research during this study.

In contrast, S. pombe cells can effectively degrade up to 29 gil L-malic acid via the malo-ethanolic

pathway that converts L-malic acid to pyruvate and CO2, and ultimately to ethanol under fermentative

conditions. A number of reasons for the weak degradation of L-malic acid in Saccharomyces

cerevisiae have been postulated. Firstly, S. cerevisiae lacks the machinery for the active transport of

L-malic acid found in S. pombe and relies on rate-limiting simple diffusion for the uptake of

extracellular L-malic acid. Secondly, the malic enzyme of S. cerevisiae has a significantly lower

substrate affinity for L-malic acid (Km = 50 mM) than that of S. pombe (Km = 3.2 mM), which

contributes to the weaker degradation of L-malic acid in S. cerevisiae. Lastly, the mitochondrial

location of the malic enzyme of S. cerevisiae, in contrast to the cytosolic S. pombe malic enzyme,

suggests that the S. cerevisiae malic enzyme is inherently subject to the regulatory effects of

fermentative metabolism.

The malate permease gene tmael) and the malic enzyme gene (mae2) of S. pombe was therefore

cloned and co-expressed in single or multi-copy under regulation of the constitutive S. cerevisiae

3-phosphoglycerate kinase (PGK1) promoter and terminator sequences in a laboratory strain of

S. cerevisiae. This introduced a strong malo-ethanolic phenotype in S. cerevisiae where L-malic acid

was rapidly and efficiently degraded in synthetic and Chardonnay grape must with the concurrent

production of higher levels of ethanol. Functional expression of the malo-ethanolic pathway genes of

S. pombe in a laboratory strain of S. cerevisiae paved the way for the genetic modification of

industrial wine yeast strains of Saccharomyces for commercial winemaking.

A prerequisite for becoming an inherited component of yeast is the stable integration of the

malo-ethanolic genes into the genome of industrial wine yeast strains. Genetic engineering of wine

yeasts strains of Saccharomyces is, however, complicated by the homothallic, multiple ploidy and
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prototrophic nature of industrial strains of Saccharomyces. Transformation and integration of

heterologous genes into industrial strains of Saccharomyces require the use of dominant selectable

markers, i.e. antibiotic or toxic compound resistance markers. Integration of these markers into the

yeast genome is, however, not acceptable for commercial application due to the absence of long-term

risk assessment and consumer resistance.

A unique strategy for the integration of the S. pombe mae} and mae2 expression cassettes without the

incorporation of any non-yeast derived DNA sequences was. The malo-ethanolic cassette, containing

the S. cerevisiae PGK} promoter and terminator regions together with the S. pombe mae] and mae2

open reading frames, was integrated into the VRA3 locus of an industrial strain of Saccharomyces

bayanus EC 1118 during co-transformation with a phleomycin-resistance plasmid, pUT332. After

initial screening for phleomycin resistance, S. bayanus EC1118 transformants were cured of the

phleomycin-resistance plasmid, resulting in the loss of non-yeast derived DNA sequences. After

correct integration of the mae] and mae2 expression cassettes was verified, small-scale vinification in

synthetic and Chardonnay grape must with stable transformants resulted in rapid and complete

degradation of L-malic acid during the early stages of alcoholic fermentation. Integration and

expression of the malo-ethanolic genes in S. bayanus ECll18 had no adverse effect on the

fermentation ability of the yeast, while sensory evaluation and chemical analysis of the Chardonnay

wines indicated an improvement in wine flavour compared to the control wines, without the

production of any off-flavours.
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OPSOl\1l\IING

L-Appelsuur en wynsteensuur is die mees prominente organiese sure in wyn en speel 'n kritiese rol in

die wynbereidingsproses en organoleptiese wynkwaliteit, insluitende die fisiese, biochemiese en

mikrobiese stabiliteit van wyn. Die produksie van hoë-kwaliteit wyne berus op die vermoë van 'n

wynmaker om die suurinhoud korrek aan te pas om sodoende 'n gebalanseerde produk met optimale

geur en kleur te produseer.

Saccharomyces rasse kan gewoonlik nie appelsuur volledig tydens alkoholiese gisting benut nie en

dra dus nie noemenswaardig tot 'n verlaging van die totale suurinhoud van wyn by nie. Die mate van

appelsuur afbraak deur Saccharomyces wissel egter van ras tot ras. Sekere Saccharomyces rasse kan

'n groter persentasie appelsuur afbreek, maar die onderliggende rede vir hierdie verskynsel is

onbekend. Die onderliggende meganismes vir hierdie verskynsel is gedurende hierdie studie uitgelig

na afloop van voorlopige transkripsionele regulerings studies op die malaatensiemgeen. In

teenstelling hiermee kan S. pombe tot 29 gIl appelsuur via die malo-alkoholiese padweg afbreek

waartydens appelsuur na pirodruiwesuur en CO2, en uiteindelik na alkoholonder fermentatiewe

toestande omgeskakel word. Verskeie redes vir die swak afbraak van appelsuur deur

Saccharomyces cerevisiae is voorgestel. Eerstens beskik S. cerevisiae nie oor 'n meganisme vir die

aktiewe transport van appelsuur, soos in die geval van S. pombe nie, en is aangewese op die stadige

opname van appelsuur deur eenvoudige diffusie. Tweedens het die S. cerevisiae malaatensiem 'n baie

laer substraataffiniteit vir appelsuur (Km = 50 mM) in vergelyking met die van S. pombe (Km =

3.2 mM), wat verder bydra tot die swak afbraak van appelsuur in S. cerevisiae. Laastens dra die

mitochondriale ligging van die S. cerevisiae malaatensiem in teenstelling met die sitoplasmiese

ligging van die S. pombe malaatensiem, verder by tot die swak afbraak van appelsuur, aangesien die

mitochondria onder fermentatiewe toestande negatief gereguleer word.

Die malaatpermease geen (maely en malaatensiem geen (mae2) van S. pombe is gevolglik gekloneer

en heteroloog in 'n laboratoriumras van S. cerevisiae onder die beheer van die konstitutiewe

3-fosfogliseraat kinase (PGKI) promoter- en termineerdervolgordes uitgedruk. 'n Sterk

malo-alkoholiese fenotipe was duidelik tydens fermentasies met die rekombinante gis in sintetiese en

Chardonnay druiwemos, met 'n gepaardgaande verhoging in alkoholvlakke. Funksionele uitdrukking

van die malo-alkoholiese gene van S. pombe in 'n S. cerevisiae laboratoriumras het die weg vir die

genetiese modifisering van industriële wynrasse van S. cerevisiae vir kommersiële wynfermentasie

gebaan.

Om 'n integrale deel van die gis te word, moet die malo-alkoholiese gene stabiel in die genoom van

industriële wynrasse geïntegreer word. Genetiese manipulering van industriële wynrasse word egter

bemoeilik deur die homotalliese, multi-ploïediese en prototrofiese aard van industriële
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Saccharomyces rasse. Transformasie en integrasie van heteroloë gene in industriële Saccharomyces

rasse vereis die gebruik van dominante merkers, bv. weerstandbiedendheid teen antibiotika of ander

gifstowwe. Integrasie van hierdie merkers in die gisgenoom is egter nie vir kommersiële toepassing

aanvaarbaar nie weens die afwesigheid van langtermyn risikobepalings en verbruikersweerstand.

Tydens hierdie studie is daar dus gepoog om industriële wynrasse met 'n unieke strategie geneties te

verbeter sodat slegs gis-DNA tydens die integrasie van die S. pombe mae1 en mae2

uitdrukkingskassette in die gisgenoom opgeneem word. Die Malo-alkoholiese integrasiekasset wat

slegs die S. pombe mae1, mae2 oopleesrame en die S. cerevisiae PGK1 promoter en

termineerdervolgordes bevat, is in die URA3 lokus van Saccharomyces bayanus ECll18 geïntegreer

tydens parallelle transformasie met 'n 'phleomycin' weerstandbiedendheidsplasmied. Na seleksie van

transformante op 'phleomycin' -bevattende media, is die S. bayanus EC 1118 transformante in nie-

selektiewe kondisies opgegroei sodat verlies van die 'phleomycin' plasmied kon plaasvind. Integrasie

van die mae1 en mae2 uitdrukkingskassette is bevestig en kleinskaalse fermentasies in sintetiese en

druiwemos het 'n vinnige en doeltreffende afbraak van appelsuur in die vroeë fases van die

alkoholiese fermentasie getoon. Integrasie en uitdrukking van die malo-alkoholiese gene in

S. bayanus ECl118 het geen nadelige effek op die fermentasievermoë van die gis getoon nie, terwyl

sensoriese en chemiese ontleding van die Chardonnay wyne 'n verbetering in aroma relatief tot die

kontrole wyne getoon het, met die afwesigheid van enige afgeure.
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A scientific truth does not try to convince its opponents, but rather that its opponents

eventually die and a new generation grows up to be familiar with it. - Max Planck
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General Introduction and Project Aims

1.1 INTRODUCTION

Wine acidity and pH playa crucial role in the winemaking process and the final organoleptic quality

and shelf-life of wine. L-Tartaric acid and L-malic are the major grape acids, contributing to more

than 90% of the titratabie acidity in wine (Beelman and Gallander, 1979; Gao and Fleet, 1995;

Henick-Kling, 1993; Radler, 1993). The production of premium wines depends on the optimal

adjustment of wine acidity in relation to the other wine components to obtain a balanced wine with an

optimum flavour and colour profile. In the warmer wine regions of Australia, South Africa,

California and southern Europe, acidulating agents such as L-tartaric acid or o/t-maïic acid are

routinely added prior to fermentation to increase the titratabie acidity of must to ensure an optimal

acid:sugar ratio in grape must (Beelman and Gallander, 1979; Boulton et al., 1996). In contrast, a

number of deacidification methods are employed in the cooler wine regions of northern Europe,

eastern United States and Canada to decrease the levels of acid in the final product.

Malolactic fermentation, regarded as the preferred method by the international wine industry for

naturally reducing wine acidity, efficiently decreases the acidic taste of wine, improves the microbial

stability and modifies to some extent the organoleptic character of wine. Strains of the lactic acid

bacterium Oenococcus oeni are routinely used to execute malolactic fermentation in wine during

which L-malic acid is converted to t-lactic acid and CO2 (Van Vuuren and Dicks, 1993; Wibowo

et al., 1985). However, all the positive attributes of malolactic fermentation may also contribute

negatively to wine quality and stability, especially in low-acid wines. Moreover, the recurrent

phenomena of stuck or sluggish malolactic fermentation often causes delays in cellar operations such

as sulphiting, which may result in the chemical oxidation and spoilage of wine, as well as the

production of biogenic amines by spoilage organisms (Lonvaud-Funel and Joyeux, 1994; Straub et

al., 1995). Even with the use of starter cultures, malolactic fermentation may only be completed

weeks or months after alcoholic fermentation (Henick-Kling, 1995). Factors such as pH, sulphur

dioxide, ethanol, temperature, nutritional status of the wine and interactions with other wine flora

synergistically influence. the onset and completion of malolactic fermentation (Beelman and

Gallander, 1979; Boulton et al., 1996; Davis et al., 1985; Henick-Kling, 1993). Furthermore,

malolactic fermentation is not always compatible with specific styles of wine. For example,

malolactic fermentation is usually undesirable in the production of the fruity-floral cultivars such as

Muscat, Sauvignon Blanc, Riesling and Gewurztraminer. The varietal flavours are essential to the

aromatic character of these wines and are adversely modified during malolactic fermentation (Radler,

1972; Wagner, 1974).
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Yeast species capable of utilising tricarboxylic acid (TCA) cycle intermediates such as L-rnalic acid,

are classified into two groups: K (+) yeasts utilise TCA intermediates as sole energy and carbon

source, while K (-) yeasts can only utilise TCA cycle intermediates when glucose or other assimilable

carbohydrates are present. The K (-) group includes yeasts such as Saccharomyces cerevisiae,

Schizosaccharomyces pombe and Zygosaccharomyces balii (Baranowski and Radler, 1984;

Kuczynski and Radler, 1982; Rodriquez and Thornton, 1989). However, wine yeast strains of

Saccharomyces cannot efficiently utilise L-malic acid during alcoholic fermentation (Ansanay et al.,

1996; Baranowski and Radler, 1984; Delcourt, 1995; Fuck and Radler, 1974; Radler, 1993; Rankine,

1966; Rodriques and Thornton, 1990; Salmon, 1987; Subden et al., 1998; Volschenk et al., 2001).

The inefficient degradation of L-malic acid by S. cerevisiae is ascribed to the slow uptake of L-malic

acid by diffusion (Ansanay et al., 1996; Baranowski and Radler, 1984; Volschenk et al., 1997a
•
b
) and

the low substrate affinity of its malic enzyme (Km= 50 mM) (Fuck et al., 1973). Furthermore, initial

transcriptional analysis of the S. cerevisiae malic enzyme gene (MAE1), indicated that the gene is

expressed at relatively low, but constitutive levels (Boles et al., 1998). The mitochondrial location of

the S. cerevisiae malic enzyme also contributes to the weak metabolism of L-malic acid under

fermentative conditions, since the mitochondrial enzymes are negatively regulated under high glucose

conditions (Cho et al., 2001; Dejean et al., 2000; Garcia et al., 1993; Jayaraman et al., 1966; Mattoon

et al., 1979; Perlman and Mahler, 1974; Polakis and Bartley, 1965).

In contrast to S. cerevisiae, the fission yeast S. pombe can efficiently degrade up to 29 gil of L-malic

acid (Taillandier et al., 1988; Taillandier and Strehaiano, 1991). Cells of S. pombe actively transport

L-malic acid via a H'-symport system (Sousa et al., 1992) provided by the malate permease encoded

by the mae1 gene (Grobler et al., 1995). Intracellularly, S. pombe decarboxylates L-malic acid to

pyruvic acid and CO2 by means of a cytosolic malic enzyme encoded by the mae2 gene (Viljoen

et al., 1994). Under fermentative conditions, pyruvic acid is further metabolised to ethanol and CO2

(Mayer and Temperli, 1963; Osothsilp and Subden, 1986), resulting in the so-called malo-ethanolic

fermentation. Although strains of S. pombe have been used for the degradation of L-malic acid in

grape must, it is unsuitable for the production of quality wine due to the frequent production of

off-flavours or the lack of typical wine flavours and the higher fermentation temperatures required for

fermentation (Beelman and Gallander, 1979; Carré et al., 1983; Gallander, 1977; Radler, 1993).

Fundamental knowledge about the regulation and physiological role of L-malic acid and its

metabolism in strains of Saccharomyces is vital for the successful innovation of genetically

engineered strains and the application of these wine yeasts for vinification. Relatively little

information is available on malo-ethanolic fermentation and its regulation in wine yeast strains of

Saccharomyces, i.e. it is a well-known fact that some strains of Saccharomyces have an increased

ability of up to 45% to degrade L-malic acid during alcoholic fermentation, but the cause of this

phenomenon is unknown. Recombinant strains of Saccharomyces with the ability to execute
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alcoholic fermentation and simultaneously reduce wine acidity could have a significant influence on

the future production of quality wines, especially in cool-climate regions. . Since alcoholic

fermentation and reduction of excess L-malic acid can be obtained in one single fermentation step,

bottling and storage of wine can immediately proceed.

1.2 AIMS OF THIS STUDY

The aim of this study was to develop a genetically engineered industrial strain of Saccharomyces with

the ability to degrade L-malic acid via the malo-ethanolic pathway during alcoholic fermentation. The

specific objectives and approaches were the following:

i) A better understanding of the physiological role of the native malo-ethanolic pathway of

Saccharomyces by comparing the expression of the malic enzyme gene (MAE]) in low malic

acid-degrading and high malic acid-degrading strains of Saccharomyces.

ii) Introduction of an efficient malo-ethanolic pathway in S. cerevisiae by co-expressing the

mae} and mae2 genes of S. pombe in a laboratory strain of S. cerevisiae.

iii) Integration of the mae} and mae2 genes of S. pombe in industrial wine yeast strains of

Saccharomyces containing DNA exclusively derived from yeast.

iv) Characterisation of the malo-ethanolic industrial wine yeast strains in terms of their ability to

degrade L-malic acid during vinification, their fermentation kineties and potential for

producing wine of high quality.

The dissertation is organised as a number of chapters covering the current literature on the origin and

fate,..of L-malic ..acid in grapes and wine, the metabolism of L-malic acid by yeast via the malo-

ethanolic pathway and the genetic engineering of industrial strains of Saccharomyces (Chapters 2, 3

and 4), followed by the research that addressed the different objectives stated above (Chapters 5, 6

and 7) and general discussion (Chapter 8). Note that Chapters 5, 6 and 7 were written in the style

required for the specific journal to which the manuscript was submitted.

The first of the objectives was addressed in Chapter 5, which is based on a publication entitled

"Differential malic acid degradation by selected strains of Saccharomyces during alcoholic

fermentation" (Redzepovic et al., 2002). This paper describes (i) the isolation and characterisation of

a Saccharomyces paradoxus strain R088 with the ability to degrade increased levels of L-malic acid

during alcoholic fermentation (Vaughan-Martini, 1989); (ii) comparative fermentation and sensory

evaluation studies with S. paradoxus R088 and other commercially available wine yeast strains; (iii)

the expression of the malic enzyme gene (MAE}) in these different strains of Saccharomyces during

the course of alcoholic fermentation; (iv) transient expression studies of the MAE} gene from the
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different strains of Saccharomyces under artificial conditions, i.e. with or without L-malic acid, high

glucose and anaerobic conditions, and (v) cloning and sequence comparison of the MAE] promoter

region from different strains of Saccharomyces. The chapter also includes a brief overview of the

PCR cloning strategy of the promoter region of the MAE] gene from different Saccharomyces strains

(Addendum A).

Chapter 6 addresses the second objective and is based on a publication entitled "Malo-Ethanolic

Fermentation in Grape Must by Recombinant Strains of Saccharomyces cerevisiae", (Volschenk et

al., 2001). The paper describes (i) subeloning of the S. pombe mae] and mae2 genes under the

regulation of the 3-phosphoglycerate kinase (PGKl) promoter and terminator elements; (ii)

transformation of the multi-copy plasmid into a laboratory strain of Saccharomyces cerevisiae, as well

as the single copy integration of the expression cassette into the genome of a laboratory strain of

S. cerevisiae, and (iii) confirmation and quantification of the malo-ethanolic phenotype in synthetic

and actual grape must. This chapter also includes a brief overview of the initial experimental

approach and results not included in the paper (Addendum B).

The final two objectives of this thesis are discussed in Chapter 7, a draft manuscript to be submitted

to Yeast. The manuscript describes (i) the construction of the S. pombe mae] and mae2 integration

cassette containing DNA exclusively derived from yeast; (ii) the transformation and integration of the

S. pombe mae] and mae2 genes in a commercial wine yeast strain of Saccharomyces bayanus and

screening for malo-ethanolic phenotype; (iii) Southern blot analysis of the integration events and

confirmation of stability of the integrated genes; (iv) determination and quantification of the malo-

ethanolic phenotype in synthetic and grape must, and (v) sensory evaluation of wine produced by the

recombinant malo-ethanolic strain. This chapter also includes a brief overview of the initial

experimental approach and results not included in the paper (Addendum C).

The work presented in this dissertation comprises the first report on the construction of a wine yeast

strain of S. bayanus with the ability to efficiently degrade L-malic acid during alcoholic fermentation

via a heterologous malo-ethanolic pathway. The integration strategy developed during this study sets

the basis for future genetic engineering of wine yeast without the incorporation of any bacterial

selection markers or other foreign DNA, which is essential for commercial application and consumer

approval. This study contributes to the daunting challenge of the world-wide wine industry in this

new century to understand and anticipate new consumer preferences and to produce wines of

enhanced attractiveness while simultaneously developing and implementing sustainable production

practices for wine making.
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The origin of i.-malic acid in wine and its fate during winernaking

2.1 INTRODUCTION

Acidity in wine originates mainly from two sources, the first being those organic acids that are

extracted from grapes into the must during harvesting and crushing. Thus, the development of the

grape berry and the chemical composition of mature grapes dictate the composition of grape juice or

must at the onset of vinification and ultimately the final quality of the bottled wine. Secondly, the

combined metabolism of yeasts and bacteria during subsequent fermentation steps contribute to the

pool of wine acids. The net contribution of these microorganisms to wine acidity is, however, the

sum of both the degradation of some grape acids and the biosynthesis of some unique organic acids by

yeasts and bacteria during and after alcoholic fermentation. Furthermore, several cellar procedures

such as maceration, cold stabilisation etc. also influence the final acid composition of wine.

In the wine industry winemakers often experience predicaments when certain wine acids exceed the

acceptable concentration ranges. The production of quality wine requires a judicious balance between

the sugar, acid and flavour/aroma components of wine. To this end winemakers can only modify the

acidity component of wine by the addition or removal of certain acids, since the artificial

manipulation of sugars and flavourants in wine is detrimental to wine quality and illegal in most wine

producing countries. The adjustment of acidity in must or wine is a complex, since several factors

must be taken into account to determine the correct timing and the method of choice for rectifying

wine acidity. Modem winemakers routinely employ malolactic fermentation to deacidify wine.

Although this step is considered the most natural method for wine acidity adjustment and contributes

further to micorbial stability and organoleptic complexity, winemakers face inherent pitfalls

associated with this biological process.

This chapter deliberates, with special reference to L-malic acid, on the origin and evolution of organic

acids in grapes and wine, the role of acidity in wine and the fate of these organic acids during

subsequent fermentation steps and winemaking procedures.

2.2 ORGANIC ACIDS IN GRAPES

The principal organic acids in grapes are L-tartaric and L-malic acid (Table 2.1), accounting for more

than 90% of the grape berry's acid content (Amerine and Winkler, 1942; Boulton et al., 1996; Lavee

and Nir, 1986; Radler, 1993; Ribéreau-Gayon et al., 1976, Tucker, 1993). Although L-malic and L-
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tartaric acid has similar chemically structures they are synthesised from glucose via different

metabolic pathways in grape berries. L-Malic acid is formed via glycolysis and the tricarboxylic acid

cycle, while ascorbic acid is the principle intermediary product of L-tartaric acid biosynthesis. The

evolution of L-malic and L-tartaric acid differs significantly during grape berry development and

maturation. L-Tartaric acid is usually present in grapes at average concentrations of 5 to 10 gil

(Ruffner, 1982), while mature grapes contain between 2 and 6.5 gil L-malic acid (Boulton et al., 1996;

Ribéreau-Gayon et al., 2000b). Excessive amounts of malic acid (15 - 16 gil) may be present in

grapes at harvest time during exceptionally cold summers in the cool-climate viticultural regions of

the world (Gallander, 1977). Slight differences in grape acidity among different grape varieties are

usually found, affecting especially the ratio between L-tartaric acid and L-malic acid in different grape

cultivars (Kliewer et al., 1967).

Table 2.1 Organic acids present in grapes and wine (adapted from Boulton et al., 1996)

Fixed acids Volatile acids

Major Acids Minor AcidsMinor Acids Major Acids

L-tartaric acid (5-10 gil)
L-malic acid' (2-6.5 gil)
L-lactic acid (1-3 gil)
citric acid" (0.5-1 gil)
succinic acid (0.5-1.5 gil)
amino acids

pyruvic acid
a-ketoglutaric acid
Isocitric acid
2-oxoglutaric acid
dimethyl glyceric acid
citramalic acid
gluconic acid"
galacturonic acid
glucuronic acid
mucic acid
coumaric acid
ascorbic acid

acetic acid formic acid
propionic acid
2-methylpropionic acid
butyric acid
2-methylbutyric acid
3-methylbutyric acid
hexanoic acid
octanoic acid
decanoic acid

15 -16 gil t.-malic acid have been reported in cool climate regions
"> 0.3 gil when wines are stabilised for metal precipitation
•••present in wine with Botrytis cinerae infection

Although tartaric acid is often found at higher concentrations than L-malic acid and is the stronger

acid of the two, its concentration is relatively constant and it is rather the fluctuating concentration of

L-malic acid that poses problems to winemakers (Margalit, 1997; Ribéreau-Gayon et al., 2000b).

Citric acid, a metabolite of plant photosynthesis, together with all the other intermediates of the

tricarboxylic acid (TCA) cycle, is also found in grapes at low concentrations (Ribéreau-Gayon et al.,

2000b
). Other acids that are present in low concentrations in grapes are the phenolic acids, coumaric

acid and ascorbic acid, as well as sugar acids, such as gluconic, glucuronic and galacturonic acids

from Botrytis cinerea-infected grapes (Sponholz and Dittrich, 1984). Grapes also contain several

amino acids, of which arginine and proline are the most prominent in wine, while only two inorganic

acids are found in wine in the form of dissolved gases, namely S02 and CO2 (Boulton et al., 1996).
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2.2.1 Evolution of organic acids during grape berry development

Vitis vinifera produce non-climacteric grape berries; like strawberry and citrus, since they do not

exhibit a significant increase in respiration or ethylene synthesis during ripening (Davies et al., 1997;

Koch and Alleweldt, 1978; Palejwala et al., 1985). The development of the grape berry displays a

double-sigmoid growth curve, characteristic of all berry fruits (Coombe and Hale, 1973; Kanellis and

Roubelakis-Angelakis, 1996). The berry growth pattern is characterised by three successive phases,

starting with the green or herbaceous stage immediately after flowering (Fig. 2.1). During this stage

the berries are hard and green (Terrier et al., 2001) and undergo a short period of cell division

(Kanellis and Roubelakis-Angelakis, 1996; Ribéreau-Gayon et al., 2000a) and cell enlargement

resulting in rapid expansion of the berry. Characteristic of stage I is the increase in vacuolar size of

grape berry cells due to the rapid storage of L-malic and L-tartaric acid (Fillion et al., 1999; Lavee and

Nir, 1986; Pratelli et al., 2002; Ruffner, 1982). Stage II comprises a short lag phase during which

berry growth ceases and berry acidity reaches a maximum due to continued accumulation of L-malic

and L-tartaric acid. Following the lag phase, there is a second period of "berry growth" (Stage III).

The entry into Stage III begins with the sudden onset of ripening or "véraison", which may occur

within 24 hours; in general this starts between 6 to 8 weeks after flowering and lasts for 35 to 55 days

depending on the grape cultivar (Coombe, 1992; Pratelli et al., 2002; Ribéreau-Gayon et al., 2000a
).

Véraison, which seems to be a stress-associated process, is characterised by several drastic physical

and biochemical changes in the grape berry (Coombe, 1992; Davies and Robinson, 2000; Vivier and

Pretorius, 2000). A rapid accumulation of sugar and amino acids occurs, as well as a decrease in

organic acid content. Physical changes to the grape berry during véraison include further increase in

berry size and softening due to flesh cell expansion rather than cell division, as well as colour changes

(especially red cultivars). The softening of grape berries has been linked tochanges in. the berry cell

wall composition, especially poIX~flfcgftrid,e~~.-'!1l4.-::cel_1.wall-associatedproteins (Nunan et al., 1998).

Colour changes are brought about by the degradation of chlorophyll in the grape and its replacement

with the colour pigments anthocyanins and flavonols (in red grapes) after véraison (Boss et al., 1996).

The mechanisms of grape berry development, like those of other non-climacteric fruits, are still

poorly understood at the molecular level. Most studies have focused on genes whose expression is

changed during véraison (Davies and Robinson, 2000; Robinson et al., 1997; Tattersall et al., 1997).

Particular attention has been given to sugar transporters and enzymes involved in sucrose metabolism

(Ageorges et al., 2000; Davies and Robinson, 1996; Fillion et al., 1999; Manning et al., 2001).

Recently the role of the vine potassium (K+) channel during véraison, which is involved in ionic

homeostasis in the berry, has also been unravelled (Pratelli et al., 2002). K+ is the most abundant

cation in the berry cell and is involved in a number of fundamental functions linked together at the

cellular or the whole plant level, e.g. control of cell turgor, and thereby control of cell enlargement or

guard cell movements, as well as electrical neutralisation of L-malic acid and tartaric acid stored in the
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vacuolar compartment. An increase in grape berry K+ content, due to e.g. increased K+ levels in the

soil, or rootstock efficiency in the uptake and transporting of K+, leads to decreased vacuolar acidity

and changes in relative concentrations of organic acids in the ripe berry, resulting in reduced wine-

quality (Delas et al., 1989; Hale, 1977; Pratelli et al., 2002).

Time

Figure 2.1. The double-sigmoid model of grape berry development indicates the three stages of
herbaceous growth, temporary growth arrest and véraison (adapted from Coombe, 1973; Jackson and
Schuster, 1997). The thick arrows denote the simultaneous pattern of t-malic acid synthesis and
accumulation as well as rapid decrease via respiration during grape berry development.

2.2.1 Sugar content changes in grape berries during véraison

Ripening of grapes is biochemically characterised by the vacuolar accumulation of grape sugars,

glucose and fructose, with the concomitant loss of acidity, mainly t-malic acid (Selvaraj et al., 1977,

1978). The main sugars found in grapes are n-ghicose and n-fructose, usually present at near equal

concentrations of up to 20% (w/v) in mature grapes (Kliever, 1967; Margalit, 1997). Glucose and

fructose are derived from sucrose synthesised in the vine leaves during photosynthesis, which are

translocated through the phloem to the grape berry (Hawker, 1969). Upon its arrival in the berry

phloem, sucrose can be unloaded into the apoplast and partly cleaved by an apoplastic invertase to

form glucose and fructose. The remaining sucrose, glucose and fructose can then be taken up by the

berry mesocarp. Once in the cytoplasm of the mesocarp cells, the sugars are transported by tonoplast

carriers and accumulate in the berry vacuole. In the berry vacuole the remaining sucrose is rapidly
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converted to glucose and fructose via two putative vacuolar invertases (Davies and Robinson, 1996;

Kanellis and Roubelakis-Angelikis, 1996). During the early stages of berry development (stages I

and II) glucose and fructose are further metabolised via the normal route of glycolysis and the

subsequent respiratory pathways, involving the TCA cycle and oxidative phosphorylation.

The accumulation of glucose and fructose in the grape berry from the start of véraison (Stage ill, Fig.

2.1) has been partially explained on enzymatic level. The acid invertase enzyme activity increases

during véraison, producing more glucose and fructose, while simultaneously the rate of glucose and

fructose respiration during véraison is significantly decreased in the berry vacuole (Davies and

Robinson, 1996; Hawker, 1969; Kanellis and Roubelakis-Angelakis, 1996; Takayanagi and

Yokotsuka, 1997). As a consequence, carbon flow through respiration is significantly slowed down

by the inhibition of the glycolytic pathway, resulting in the accumulation of non-utilised glucose and

fructose in the berry vacuole (Robinson et al., 1997). It has been demonstrated that the

pyrophosphate: fructose 6-phosphate phosphotransferase enzyme activity, which is directly linked to

the glycolytic flux, decreases during véraison. The phenomenon of sugar accumulation during

véraison is, however, only partially understood in terms of fluctuations in enzyme activities. No

conclusive evidence for the apparent inhibition of glycolytic enzymes has yet been found to support

the decreased flow of carbon via glycolysis during berry maturation. Likewise, the apparent increase

in grape berry acid invertase activity, which would theoretically contribute to the accumulation of

glucose and fructose, does not correlate with the timing of véraison (Coombe, 1989; Coombe, 1992;

Davies and Robinson, 1996). It has been suggested that sugar accumulation during berry ripening is

more affected by compartmentation of the enzymes involved and the transport of the sugars through

the different membranes than the actual enzyme activities in the berry (Davies and Robbinson, 1996;

Fillion et al., 1999; Manning et al., 2001; Or et al., 2000; Terrier et al., 2001).

2.2.3 Acidity changes in grape berries during véraison

The second most significant biochemical change during véraison is the rapid reduction of grape berry

acidity, which coincides with the change in sugar composition of the grape berry. During the

development of the grape berry, right from the flowering stage up until berry maturity, the

metabolism of L-malic acid and tartaric acid follows a predictable pattern of evolution. The final

t-malic acid content in the grape berry depends on the balance between the rate of L-malic acid

synthesis (Laval-Martin et al., 1977), vacuolar storage (Muller et al., 1996) and mobilisation (Ruffner

et al., 1984).

Grape berries respire very actively during the early stages of growth, but the intensity of respiration

slows down as they advance in age. Respiration in terms of O2 uptake decreases, while the respiratory

quotient (RQ) continues to increase throughout grape berry development from flowering to maturity

(Lutra and Cheema, 1931; Selvaraj et al., 1977). During véraison the availability of the respiratory
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substrate, sucrose, via photosynthesis becomes limited due to the degradation of chlorophyll. The

berry is forced to shift its metabolism from sugar to L-malic acid respiration, due to the scarcity of

respiratory substrate. Prior to the onset of véraison L-malic acid is the most abundant organic acid (up

to 25 gil) in the grape berry vacuole, resulting in the low internal pH of 2.5 of grapes

(Ribéreau-Gayon et al., 2000b
; Ruffner, 1982). With the onset of véraison the L-malic acid

concentration rapidly decreases to between 4 and 6.5 gIl or even as low as 1 to 2 gIl, with a

concomitant increase in internal berry pH (pH of ca. 3.5) (Kanellis and Roubelakis-Angelikis, 1996;

Ribéreau-Gayon et al., 2000b; Ruffner, 1982). Although L-malic acid and tartaric acid are structurally

related, only a slight decrease in tartaric acid concentration occurs in grapes during véraison, due to

the chemical resistance of tartaric acid to respiration (Davies and Robinson, 1996). Padgett and

Morrison (1990) also found differences in the exudation of the two acids from the grape berry:

L-malic acid was found in berry exudates from the flowering to mature stages of grape berry

development, while tartaric acid could not be detected. The accumulation of L-malic and tartaric acid

in the berry vacuole and exudation to the berry surface up until the onset of véraison may contribute

to controlling the growth of Botrytis cinerea, the causal agent of an important ripe rot disease that

seriously damages the berries between the onset of ripening and harvesting (Vercesi et al., 1997).

The biochemistry behind the accumulation and rapid respiration of L-malic acid in grapes has been

studied in detail (Fig. 2.2). L-Malic acid accumulates in the berry vacuole before véraison (Stages I

and II, Fig. 2.1) via the collective activities of two key enzymes, the phosphoenolpyruvate

carboxylase (PEPC) and malate dehydrogenase (MDH) enzyme (Blanke and Lenz, 1989; Diakou et

al., 2000; Hawker, 1969; Or et al., 2000). The cytosolic PEPC enzyme, well-known for its

photosynthetic role in C4- and CAM-plants, catalyses the ~-carboxylation of phosphoenolpyruvic acid

to yield oxaloacetic acid and inorganic phosphate. The resulting oxaloacetic acidis further reduced

by the NAD-dependent rnalate.dehydrogenase to produce L-malic acid. Oxaloacetic acid and L-malic

acid can enter the TCA cycle to produce citrate as well as other metabolites (Diakou et al., 2000).

The ~-carboxylation of phosphoenolpyruvic acid plays an important role as an anapleurotic CO2

fixation step that supplies carbon skeletons for other cellular processes such as osmolarity regulation,

pH regulation and nitrogen assimilation (Diakou et al., 2000; Latzko and Kelly 1983). Although a

high malic enzyme (ME) activity during the accumulation phase of malic acid has been noted, the

actual contribution to L-malic acid concentration via the reverse malic enzyme reaction, i.e. pyruvic

acid carboxylation, was found-to be insignificant (Kanellis and Roubelakis-Angelakis, 1996; Ruffner

et al., 1984).

The rapid decrease in L-malic acid concentration inside the grape berry during véraison is the result

of a significant decrease in L-malic acid biosynthesis synchronised with a sharp increase in L-malic

acid degradation via respiration: Initially the concentration of L-malic acid in the berry vacuole is

diluted due to the influx of water during berry expansion in the second growth
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phase (Stage III, Fig. 2.1). Secondly, the slowing down of glycolytic carbon flow during véraison as

described above for sugar accumulation, not only results in the increase of glucose and fructose in the

berry vacuole, but also a decrease in L-rnalic acid synthesis via pyruvic acid in the tricarboxylic acid

(TCA) cycle. The biosynthesis of L-malic acid via the PEPC enzyme is also reduced during véraison

as it has been shown that the disappearance of the PEPC gene transcription and PEPC enzyme

activity correlates with the start of véraison (Hawker 1969; Or et al., 2000).

sugars. - - glycolysis

intermediate
reserve pool

..---- .....
-,
\

photosynthesis

decrease in carbon flux via
glycolysis during véraison

___. citric acid

! ~ biosynthesis

storage

respiration via oxidative
, phosphorylation

t gluconeogenesis

+ATP t degradation

Figure 2.2 The biochemical pathways involved in the biosynthesis, dissipation and regulation of
L-malic acid in grape berries (adapted from Kanellis and Roubelakis-Angelakis, 1996). ME = malic
enzyme; PEPC = phosphoenolpyruvate carboxylase; PEPCK = phosphoenolpyruvate carboxykinase;
MDH = malate dehydrogenase. The decrease in L-malic acid is due to <D a decrease in carbon flux
via glycolysis, <bl a decrease in L-malic acid biosynthesis via7PEPC, and G) an increase in L-malic acid
respiration via the malic enzyme.

The rate of respiration of stored L-malic acid significantly increases during véraison due. to a higher.

demand for a respiratory substrate in the grape berry. L-Malic acid is degraded in grape berries via
. '".7 .• ,

two pathways, mainly the cytosolic NADP-malic enzyme (ME) (Ruffner et al., 1984) and, to a lesser

extent, the PEP carboxykinase (PEPCK) (Fig. 2.2) (Ruffner and Kliewer, 1975). There is also
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evidence that the malate dehydrogenase (MDH), especially the mitochondrial iso-enzyme, plays a

putative role in the degradation of L-malic acid in the grape berry. Gene expression profiles and

enzyme activities of the ME and MDH enzymes increase at the onset of véraison, descriptive of the

rapid depletion scenario of L-malic acid (Or et al., 2000). L-Malic acid degraded via the NADP-malic

enzyme fuels the required biosynthetic (in particular the provision of NADPH) and respiratory

pathways (Ruffner et al., 1984), whereas a small percentage of L-rnalic acid « 5%) is converted back

to phosphoenolpyruvate via MDH and PEPCK for glucose synthesis via gluconeogenesis (Fig. 2.2)

(Kanellis and Roubelakis-Angelakis, 1996; Ruffner, 1982; Ruffner and Kliewer, 1975).

2.2.4 Warm climate vs. cool-climate winemaking

Acidity in wine is a function of various exogenous factors, such as the climate or average

temperature, the grape cultivar and vineyard practices (Beelman and Gallander, 1979;

Ribéreau-Gayon et al., 2000b; Zoecklein et al., 1995). The most important factor that influences the

final sugar : organic acid and the malic : tartaric acid ratio in grapes is the prevailing climatic

conditions and ambient temperature during stage III of berry ripening (Crippen and Morrison, 1986;

Kanellis and Roubelakis-Angelakis, 1996; Ruffner, 1982; Zoecklein et al., 1995). The rate of

respiration of L-malic acid increases with higher temperatures and vice versa. Climatologists

recognise three levels of climate, namely macroclimate (regional climate), mesoclimate (vineyard site

climate) and microclimate (grapevine canopy climate), of which the mesoclimate plays the most

important role in grape composition and wine quality. According to the length of the ripening season

and the prevailing climate/temperature during the ripening stage, the wine-producing regions of the

world are divided into alpha viticultural zones, i.e. cool-climate regions, and beta viticultural zones,

i.e. warm-climate regions (Jackson, 2001; Jackson and Lombard, 1993; Zoecklein et al., 1995;).

The cool-climate regions, which include parts of northern Europe, Canada and northeast USA, are

characterised by shorter ripening periods and/or sub-optimal mean temperatures (9 - 15°C) during the

ripening season (Jackson, 2001). The rate of respiration of L-malic acid in cold climates is

significantly slower, resulting in "immature grapes" at harvesting, containing a high titratable acidity

(TA) content and low pH. High acidity in cool-climate grapes is often enhanced by unusually cold

and wet seasons, poor vineyard locations, sub-optimal cultivar selections or poor viticultural practices

such as overcropping. In these countries L-malic acid can comprise up to 50% of the total acidity in

grapes. In contrast, the warm climates have longer ripening seasons and/or higher mean temperatures

(l6°C and above) and include parts of southern Europe, California, South Africa and Australia

(Pretorius, 2000). Since the prevailing temperature of the region directly influences the rate of

t.-rnalic acid respiration in grapes, grapes in the warmer climates tend to have a faster rate of L-malic

acid respiration compared to those of the cooler climates. Thus grapes from the warmer climates

often contain insufficient final titratabie acidity values and do not meet desirable pH values at harvest

time.
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The proper harvesting time of grapes depends mainly on the style of wine to be made. Grapes for dry

wine should have high acidity and moderate sugar content. Therefore, such grapes are usually

harvested at 20-24° Brix, while grapes for sweet wines are harvested at a higher sugar content of

around 24° Brix or higher. To determine the exact time of harvesting, oenologists have to be

conscious of the changes in acid content in relation to the sugar content of grapes, especially during

the latter stages of berry ripening. Routine maturity evaluation includes the measurement of berry

sugar content for alcohol potential, pH and total titratabie acidity, where the ratio of sugar: organic

acid and sometimes the malic acid:tartaric acid ratios serve as yardsticks or standard quality indexes

in the vineyard to predict grape maturity and the optimal time for harvesting (Terrier et al., 2001;

Zoecklein et al., 1995).

2.3 ORGANIC ACIDS FOUND IN WINE

Most of the organic acids in wine originate directly from the raw material, grapes. Consequently the

predominant acids in wine are also L-tartaric, L-malic acid and citric acid. During the subsequent

fermentation of grape must several organic acids are synthesised or metabolised by yeasts and/or

bacteria. Wine acids are grouped into two categories, i.e. fixed and volatile acids (Table 2.1). The

fixed acids include all the non-volatile carboxylic acids such as L-malic acid, L-tartaric acid and citric

acid, as well as the other carboxylic acids produced during fermentation. Succinic acid is the major

acid produced by yeast during alcoholic fermentation, with concentrations ranging from 0.5 to 1.5 gil

in wine (Beelman and Gallander, 1979; Ribéreau-Gayon et al., 2000b). Pyruvic, a-ketoglutaric,

isocitric, citric and fumaric acid are also present in wine as they are TCA cycle intermediates of yeast

metabolism. Lactic acid bacteria mainly produce L-Lactic acid during the malolactic fermentation,

but small amounts can also be synthesised by yeast. Some yeast stráiiisálso produce citramalic acid

and variable quantities of L-malic acid in wine during fermentation.

Volatile acids in wine include all the vaporous acids that usually have distinctive odours. The

presence of detectable levels of volatile acids in wine is normally associated with wines infected by

spoilage yeast or bacteria. The most prevalent volatile acid in wine is acetic acid, which is produced

by yeast during fermentation, or by acetic or lactic acid bacteria. Other volatile acids include

propionic, formic, butyric, octanoic and decanoic acid. Total acidity in wine combines the sum of

both the fixed and volatile acids in wine and is usually expressed in terms of titratable acidity (TA).

Titratabie acidity is usually lower than the actual total acidity, since it only measures total proton

concentration in wine as determined by titration with a strong base. The optimal TA of white wine

cultivars lies between 5 and 9 gil with a corresponding pH range of 3.0 to 3.4 units. Red wines

usually have a lower TA range of 4 to 7 gil with a pH range of 3.3 to 3:7 (Margalit, '1'997).
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2.4 THE ROLE OF ORGANIC ACIDS IN WINE

The conversion of grape sugars to ethanol and carbon dioxide is often described as the fundamental

biochemical reaction involved in making wine. The chemistry of winemaking involves, however, an

intricate ensemble of biological and spontaneous chemical reactions that has been unravelled through

decades of research. Besides the chemical importance of flavour and aroma compounds, the presence

or the lack of organic acids in wine plays a pivotal role in the production of quality wines. Acidity in

wine impacts directly or indirectly on several different levels of wine quality and the success of

several winemaking processes. Over and above the apparent contribution of organic acids to the taste

of wine, wine acidity ultimately determines wine quality in terms of the perceived organoleptic and

aesthetic character of wine. Similarly, wine acidity influences the ageing potential or the shelf life of

wine, as it determines the physical, biochemical and microbial stability of wine. In addition, wine

acidity and pH affect the timely succession of cellar events and effectiveness of several winemaking

techniques applied by modern winemakers.

2.4.1 Organoleptic character of wine

Organic acids can contribute positively to the organoleptic character of wine when in balance with the

other wine components. The sour-sweet balance is well-known as a required sensory quality in wine,

especially in white wine (Burns and Noble, 1985; Fischer and Noble, 1994; Martin and Revel, 1999;

Noble and Bursick, 1984; Vannier et al., 1999). Acid-balanced wines are usually perceived as having

refreshing or crisp sensory undertones, while descriptions such as "sharp", "green", "acidulous" or

"unripe" often refer to wine with too much acidity. When present in excessive concentrations,

organic acids leave a uniquely tart or sour taste indicative of the specific acid in wine. For example,

excess quantities of t-malic acid are perceived as a sour taste resem.bling that of unripe apples.

Furthermore, aside from the direct detection· of- acids in wine, wine acidity often disguises or

accentuates the perception of other wine tastes. This is often true for the perception of sweetness,

where acidity usually masks excess sweetness, while the perception of astringency is emphasised

when coinciding with low pH values in wine (Noble, 1998).

The specific organic acid composition of wine determines the specific pH of the wine, which in turn

indirectly influences the perception of taste in wine. Since the pH of any given solution is based on

the balance between the protonated and deprotonated isoforms of organic molecules, the pH of wine

determines the degree of organic acid and amino acid ionisation in a wine solution. The level of

ionisation of these organic building blocks influences the ionic state, solubility and biological activity

of many complex molecules such as proteins, fatty acids, phenolic compounds, etc. It is thus not

inconceivable that a minor change in wine pH (as small as 0.05 units), when coinciding with changes

in total acidity (TA) of 0.2-0.5 gIl, significantly modifies the organoleptic perception of wine

(Margalit, 1997).
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Organic acids and pH play an important role in the development of specific flavour compounds

during vinification. A high TA and low pH in grape juice or must can be linked to the release of

floral aroma and other flavour precursors from grapes skins during the crushing stages of vinification.

The release of stored organic acids, specifically L-malic acid and tartaric acid, from the grape berry

during crushing is responsible for acid hydrolysis of non-volatile flavour compounds like

monoterpene glycosides, some phenolic compounds, Cwnorisoprenoids, benzyl alcohol and

2-phenylethanol from the berry. These flavour compounds are essential for the development of a

healthy, complex flavour profile during vinification and subsequent ageing of wine (Strauss et al.,

1987, Winterhalter et al., 1990). Furthermore, most organic acids in wine are involved in the

formation of another group of important aroma compounds that contribute to the generic background

flavour of wine, namely esters (Lilly et al., 2000; Marais, 1978; Nykanen, 1986; Nykanen and

Suomalainen, 1983). Esters are the condensation products of the carboxyl group of an organic acid

and the hydroxyl group of an alcohol or phenol. Esters can be synthesised enzymatically during yeast

fermentation or chemically during long-term ageing (Ribéreau-Gayon et al., 2000b). The main ester

produced by yeast is ethyl acetate, but other esters of fusel alcohols, short chain-fatty acids, fatty

acid-ethyl esters and long-chain higher alcohol acetates are also produced (Mateo et al., 1999; Mateo

et al., 2001; Nykanen and Suomalainen, 1983; Schreier, 1979). The concentration of the various

esters produced during fermentation depends on many factors, including the pH of the wine (Lilly at

al., 2000; Marais, 1978, 1998).

Acidity in wine, and more specifically wine pH, is also a role player in the preservation of wine

aroma and flavour, as the pH of wine influences the rate of oxidation in wine. Wine oxidation entails

the reaction of dissolved oxygen in wine with compounds like phenolics, aldehydes, sugars, sulphur.

dioxide, etc. Oxidation of phenolic compounds causes severe changes in wine aroma and colour. A

low pH in must or wine acts as a safeguard in wine that prevents or delays phenolic oxidation by

maintaining the phenolic compounds in their non-ionised state, rendering them less susceptible to

oxidation. Although only approximately 0.004% of grape phenols are in a readily oxidised state at a

pH of 3.5, these compounds are so unstable that even a slight increase in pH could result in

significant oxidation (Margalit, 1997). Wines, especially white cultivars, with high pH values (pH

~3.9) are therefore prone to oxidation and lose their fresh aroma and colour easily (Margalit, 1997).

2.4.2 Aesthetic character of wine

As the term aesthetic implies, the acidity and pH of wine greatly influences the visible attributes of

wine, such as wine colour and clarity. The colour of white wine is usually affected by pH-dependent

phenolic oxidation reactions that lead to browning of the wine's colour. In red wines a low pH,

together with free sulphur dioxide, is essential for the development and stability of the red colour.

The phenolic compound anthocyanin is responsible for the red colour of red cultivars and occurs in a
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state of dynamic equilibrium between five different molecular states of ionisation in wine (Margalit,

1997). The anthocyanin equilibrium is highly pH-dependent, with the two main isoforms, namely the

red flavylium cation and the colourless hemiketal form, most prevalent at normal wine pH levels.

Most of the other forms of anthocyanins are colourless at the pH range found in wine

(Vivar-Quintana et al., 2002). At low pH values the flavylium cation is more abundant relative to the

four other isoforms, resulting in a more intense red colour. Rapid deprotonation of the flavylium

cation occurs as the pH increases, with maximum decolourisation between pH 3.2 and 3.5 (Margalit,

1997; Ribéreau-Gayon et al., 2000b
). Furthermore, the pH of red wine also influences the degree of

co-pigmentation of anthocyanins, which in tum determines the red colour density. Co-pigmentation

involves complex formation or stacking of the different isoforms of anthocyanin with each other, or

with other colourless phenolic compounds, such as coumarins, phenolic acids and flavonals

(Ribéreau-Gayon et al., 2000b; Somers and Vérette, 1988).

The precipitation of acids, particularly tartaric acid, in wine can also be considered an aesthetic

imperfection, especially in young bottled wines. Excess tartaric acid is routinely removed before

bottling by cold stabilisation and racking or filtering of the potassium bitartrate crystals to avoid

future precipitation of the acid after bottling.

2.4.3 Microbial stability of wine

Wine acidity, but more importantly wine pH, has a profound effect on the microbial stability of wine

as it determines the survival and proliferation of bacteria and yeast species during and after

vinification. Grape must or juice with a low pH is usually more protected against microbial spoilage

at the onset of alcoholic fermentation, as the low pH serves as a natural antimicrobial shield in the

must. Although a low pH in must « 3~5) is not conducive to the growth of most spoilage-bacteria -

and yeast species, it still permits the proliferation of the wine yeast Saccharomyces cerevisiae. One

of the components in wine responsible for bacterial inhibition under low pH conditions is the fatty

acids produced by yeast during alcoholic fermentation (Capucho and San Romao, 1994). The

antimicrobial effect of fatty acids against bacteria in wine is enhanced at lower pH values, as the

non-ionised form of fatty acids is significantly more toxic to bacteria. It is postulated that at low pH

the undissociated isoform of fatty acids enters bacteria cells by diffusion, since it is highly soluble in

the phospholipid layer of the plasmamembrane (Warth, 1988). Invasion of these fatty acids into the

bacterial plasmamembrane disrupts its normal spatial organisation, which in tum disturbs the

selective permeability of the cells and leads to the accumulation of toxic ions. Disruption of the

plasmamembrane also leads to the disruption of the transmembrane proton gradient (Ap) (Viegas and

Sa-Correia, 1991) required for regulation of intracellular pH and energy production in malolactic

bacteria.
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Extreme pH values in wine usually have a negative effect on the growth of yeast and bacteria during

vinification. Extremely low pH values (pH < 2.9) in must not only inhibits the growth of spoilage

bacteria and yeasts, but also starts to inhibit the growth and rapid population growth of most strains of

S. cerevisiae. Even with the application of selected S. cerevisiae strains in starter cultures, delays in

the onset of alcoholic fermentation can be anticipated, leading to scheduling problems in the cellar.

Similarly, pH levels below 2.9 will severely affect the success of inoculating wine with malolactic

bacteria starter cultures after alcoholic fermentation (Mayer and Vetsch, 1973).

When the pH of must or juice exceeds pH 3.5, the risk of overgrowth of spoilage lactobacilli,

pediococci as well as strains of Oenococcus oeni during alcoholic fermentation is increased. At

elevated pH ranges strains of these lactic acid bacteria can rapidly proliferate to substantial

populations before the actual onset of alcoholic fermentation. Premature growth of lactic acid

bacteria poses a serious risk to wine quality, since glucose is fermented to acetic acid, resulting in

elevated volatile acidity values in wine and reduced ethanol yields. Furthermore, spoilage of this

kind could also have serious repercussions further down the line in the winemaking process, often

leading to stuck or sluggish alcoholic fermentation (Fugelsang, 1997; Narendranath et al., 1997).

2.4.4 Cellar operations

Several wine-related treatments influence or are influenced by the TA and pH of wine. To be a

successful oenologist the winemaker has to take into account all the implications of the acidity and

pH of the must or juice before the start of vinification. Skin contact or maceration, for instance, has

an important effect on TA and pH of wine before the start of fermentation. Skin contact is often

applied in red wines (and some white wines) to extract anthocyanins and other phenolic flavour

compounds from the pomace to ensure the optimal colour and flavour development iri red wines.

However, increased extraction of potassium from the skins coincides with,pt\~~I}QIlC_~xtractionduring

skin contact, which normally causes an increase in potassium bitartrate precipitation. Generally skin

contact or maceration leads to a slight decrease in TA and an increase in pH in must before the start

of fermentation (Darias-Martin et al., 2000; Ferreira et al., 1995; Le Fur, 1992; Singleton et al.,

1980). Carbonic maceration is a modified maceration process that can also lead to reduction in grape

acidity. In this process the grapes are kept under anaerobic conditions by exposing them to CO2 gas

before crushing or pressing. In the anaerobic environment certain intracellular fermentation reactions

are stimulated in the intact berries, one of which is the oxidative decarboxylation of L-malic acid to

pyruvic acid, catalysed by a berry NADP-dependent malic enzyme (Ee 1.1.1.40) (Beelman and

Gallander, 1979).

The use of chemical additives is also reduced in low pH wines. For example, sulphiting (S02

-,0'°, addition) of wine is usually necessary before and after alcoholic fermentation as an antimicrobial and

antioxidant agent in grape must and wine. Wines with low pH values require lower concentrations of
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S02 due to the added protection against oxidation and microbial spoilage supplied by the low pH.

The effective precipitation of pectins and heat-unstable proteins during bentonite treatment is also

enhanced by a lower pH in wine. Since less bentonite is required at lower pH values for the effective

removal of solids and proteins during racking, the loss of flavour compounds during fining due to

excessive use of bentonite is minimised (Boulton et al., 1996; Margalit, 1997; Ribéreau-Gayon et al.,

2000b).

2.5 TECHNIQUES FOR ACIDITY ADJUSTMENT IN WINE

Acidity adjustment in grape juice and must is an essential step during vinification when the TA and/or

pH of the must or wine exceed acceptable ranges. The adjustment of acidity in must or wine could be

a perplexing decision for winemakers, since several factors need to be considered to determine the

timing (before or after alcoholic fermentation) and method of rectifying wine acidity. General

guidelines for the timing of acid adjustment exist based on the initial pH of the must or juice.

Traditionally, the acidification of low-acid (high pH) grape must in the warm viticultural regions is

preferably applied before the start of alcoholic fermentation. Lowering the pH is conducive to

optimal wine flavour production during fermentation and prevents the proliferation of spoilage

lactobacilli and pediococci during alcoholic fermentation. Similarly, a reduction of TA prior to

fermentation is a prerequisite in grape must with a pH below 2.9, since the onset of alcoholic

fermentation by strains of Saccharomyces will be negatively affected at such low pH extremes.

Except for the two scenarios described above, the adjustment of acidity prior to alcoholic

fermentation is not always advisable, especially when the impact of alcoholic fermentati~n on: the

final TA and pH of wine is difficult to predict and quantify.. As a general rule, the TA of wine is

increases by 1 to 2 gil during alcoholic fermentation via the production of ï.-malic, succinic, acetic

and lactic acid by strains of yeast and bacteria. However, significant variations might occur due to

the contribution of the specific yeast strains used for alcoholic fermentation or the success of the

malolactic fermentation. Some strains of S. cerevisiae have the ability to synthesise significant

concentrations of L-malic acid during fermentation (Bhattacharjee et al., 1968; Pines et al., 1996,

1997; Schwartz and Radler, 1988). Under these conditions post-fermentation acid correction is a

more reliable treatment option to ensure optimum acid-balance in wines.

2.5.1 Vineyard practices

Viticulturists in both cool- and warm-climate regions have several vineyard techniques at hand to

preserve or decrease the acidity content of grapes. Winemakers in the warm-climate countries, for

example, can alleviate the problem of low acidity wines by selecting the production of specific

cultivars with a natural higher tartaric : malic acid ratio. Cultivars like Semillon and Riesling are
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known to have a higher tartaric : malic acid ratio and would ensure an acceptable TA content of the

grape must and wine (Lavee and Nir, 1986), while Cabernet Sauvignon is classified as an

intermediate-acidity variety (Kliewer et al., 1967) that will to a limited degree relieve high acidity

problems in the cool-climate regions.

Canopy management, irrigation control and soil fertilisation has an enormous influence on the acid

composition of grapes. For example, nitrogen and potassium fertilisation stimulates the accumulation

of L-malic acid due to increased foliage and shading in the bunches. Similarly, several trellising and

leaf-pruning practices that increase shading creates cooler bunch and foliage zones that yield grapes

with increased potassium concentration and titratabie acids in the grapes. Berries maturing in densely

shaded canopy interiors are generally associated with low total soluble solids, high titratabie acidity,

high L-malic acid concentrations, elevated pH, high potassium, low proline, high arginine, low total

phenols, low anthocyanin concentrations in red cultivars and high chlorophyll to flavanoid pigment

ratio in white cultivars (Kliewer, 1980; Kliewer and Lider, 1968; Morrison and Noble, 1990;

Reynolds et al., 1986; Smart, 1985; Zoecklein et al., 1995). The increase in TA is mainly ascribed to

an increase in L-malic acid, while the more stable tartaric acid is usually slightly decreased, leading to

the elevated pH levels (Archer and Strauss, 1989). Similarly, viticulturists in the cool-climate regions

can make use of trellising and leaf-pruning techniques that allows grape bunches to be more exposed

to sunlight and increase the microclimate temperature to ensure increased respiration of L-malic acid

during véraison.

The success of these viticultural methods is, however, limited and more extreme measures, like

adapting the harvesting time, could in theory resolve the problem of acidity imbalances. Delaying or

shortening the ripening time of grapes in the cool or warm Climates- to ensure optimal TA content of

must is, however, unpractical and generally jeopardises the quality of the final wine. For instance, if

grapes were to be harvested earlier than usual to ensure the desirable level of acidity in the warm-

climate regions, the grape must would lack the acceptable sugar and varietal aroma content, leading

to the production of lower-quality wine (Margalit, 1997). Similarly, extending the ripening period in

cool-climate regions will result in both a high pH and high acid concentration due to the increased

exchange of protons (H+) with potassium in the berry (Butzke and Boulton, 1997). The only viable

solution for winemakers is therefore to rectify wine acidity artificially either before or after alcoholic

fermentation.

2.5.2 Acidification of low-acid wines

Several artificial methods for acidification of grape must are available to winemakers, the most

traditional method of which is the use of raw gypsum or plaster (hydrous calcium sulphate), which

reacts with potassium bitartrate and releases free tartaric acid. Even though this method is still being

used in the Jerez region of Spain during sherry production, it is, however, rarely applied in modern
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winemaking due to the risk of increased hydrogen sulphide production by yeast during fermentation

as excess sulphur is added to the wine (Zoecklein et al., 1995). Acidification of wine can also be

achieved by adding naturally occurring grape acids to wine, such as tartaric, L-malic, citric or fumaric

acid. Although succinic acid is relatively resistant to microbial attack under fermentative conditions,

it cannot be utilised as an acidulating agent due to its bitter-salty taste (Ribéreau-Gayon et al., 2000b
).

Tartaric acid is the preferred acidulating agent in low-acid wines and its application is in accordance

with stipulations of the Office International de la Vigne et du Vin (OIV) and the European

Community (EC) legislation (Margalit, 1997; Ribéreau-Gayon et al., 2000b). Tartaric acid is

relatively more resistant to microbial breakdown and can thus be added before the onset of alcoholic

fermentation without the risk of off-flavour production. Acidification of grape must with L-malic

acid and citric acid can be applied with some degree of success, but degradation of these acids by

spoilage malolactic bacteria does pose a risk under winemaking conditions. L-Malic acid does not

precipitate like tartaric acid, but can initiate a second round of malolactic fermentation if still present

in the wine just before bottling. As a precaution, malic acid is added as a racemic mixture of

OIL-malic acid to the must at the beginning of fermentation, which leads to increased TA and lowered

pH of the wine. The risk of bottled malolactic fermentation is significantly reduced, since most or all

of the L-malic acid isoform is removed from the wine by the first round of malolactic fermentation,

leaving only the D-malic acid isoform that is resistant to microbial attack and maintains a low pH in

wine. The precise influence of the D-malic acid isomer on malolactic fermentation has not yet been

determined in wine, but research in the cider industry showed that D-malic acid has an inhibitory

effect on malolactic fermentation. It was found that the n-isomer of malic acid reduced the uptake

rate of the L-isomer and also reduced the affinity of the malolactic enzyme for L-malic acid

(Ribéreau-Gayon et 'al., 2000b).

2.5.3 Deacidification of high-acid wines

In the cool viticultural regions, the removal of tartaric acid or excess L-malic acid from the wine

before or after alcoholic fermentation is usually required to ensure wines with a balanced acid content

and sufficient stability. Deacidification of high-acid wines can be achieved through physiochemical

methods such as blending, chemical neutralisation and precipitation, or by biological means through

the microbial degradation of L-malic acid during or after alcoholic fermentation. However,

physiochemical deacidification of wine is often time-consuming, requires increased labour and capital

input and is regularly associated with reduced wine quality (Pretorius, 2000). For these reasons,

biological deacidification of wine with lactic acid bacteria or yeast is the method of choice for most

winemakers as it is a natural or spontaneous process, despite some inherent obstacles associated with

its successful execution.
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2.5.3.1 Physiochemical deacidification methods. Blending of grape musts with different TA and

pH indexes is one of the most elementary and most effective solutions available to winemakers.

However, blending of a low-pH with a high-pH must to neutralise the pH before fermentation is not

always practically achievable in a cellar. The main logistical problem with blending is the lack of

available musts with significantly opposite characteristics in the same wine-producing region.

Another physical method employed to decrease the TA of high-acid musts is the process of

amelioration (Kluba and Beelman, 1975). This method is based on the blending concept, but involves

the dilution of grape must with water to ultimately reduce the must TA before fermentation.

Amelioration, however, does not significantly influence the pH of grape must and requires the

addition of sugar to maintain the optimal sugar : organic acid balance. Amelioration has in recent

times become an unacceptable winemaking practice due to the detrimental effect that its excessive

use has on wine flavour, aroma, body and colour (especially red wines) and has not been legalised in

some wine-producing countries (Margalit, 1997).

2.5.3.2 Precipitation-based deacidification methods. Acids become less soluble and their salts

precipitate in wine under chilled conditions and increased ethanol concentrations; therefore the TA of

wine or grape must can be reduced by precipitating tartaric acid, and to a lesser extent, L-malic acid

salts. Tartaric acid usually precipitates in wine at the end of fermentation as potassium bitartrate

crystals and it is often considered an aesthetic fault. To prevent the formation of tartaric acid crystals

during wine ageing, cold stabilisation, an accepted winemaking procedure, is applied. After alcoholic

fermentation the wine is usually chilled to between -4 and ODCfor several days during which tartaric

acid crystallisation and precipitation are promoted. Removal of the tartaric acid crystals during

subsequent racking, filtration or centrifugation leads to lower tartaric acid concentration, thus a

decrease in TA and an increase in pH.

Potassium bicarbonate (KHCO) and calcium carbonate (CaCO) are approved neutralisation

additives that can be added to wine to assist in tartaric acid precipitation (Faber, 1970). In the

presence of these additives, tartaric acid forms the corresponding insoluble salts, potassium bitartrate

and calcium tartrate, as well as carbonic acid (H2CO). The carbonic acid eventually breaks down to

CO2 and H20, with the concomitant loss of acidity (McKinnon, 1993). One of the disadvantages of

the deacidification of wine with KHCO) and CaCO) is the fact that only one of the major wine acids,

namely tartaric acid, is affected and not L-malic acid, often leading to undesirable tartaric: malic acid

ratios in wine (Ribéreau-Gayon et al., 2000\

A very effective method to reduce the TA of high-acid grape musts before fermentation is the double

salt-precipitation treatment (also known as Acidex or DICALCIC treatment) (Ribéreau-Gayon et al.,

2000b). This method is often used in countries like Canada and the USA and is based on the addition

of a fine powder of calcium carbonate that contains a 1% calcium tartaric and malic acid salt mixture
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as a seeding agent. At pH values above 4.5 this additive causes the precipitation of supposedly

equimolar quantities of both tartaric and L-malic acid (Cole and -Boulton, 1989). Usually, a

pre-determined fraction of the wine is treated with Acidex and then blended back with the untreated

rest to yield a wine with a lower TA and higher pH.

2.5.3.3 Biological deacidification of wine. The most widely accepted winemaking procedure for

the removal of excess acidity in wine is the traditional malolactic fermentation. Winemaking

regularly involves two sequential vinification steps. First, wine yeast strains initiate the alcoholic

fermentation whereby grape sugars, glucose and fructose, are converted into ethanol and various

flavour compounds. Secondly, once all of the grape must sugars are depleted, the yeast population

rapidly declines, followed by the proliferation of lactic acid bacteria, which execute the depletion of

the remaining pentose sugars and performs malolactic fermentation (MLF). Modern winemaking has

harnessed the benefits of the naturally occurring lactic acid bacteria in wine by developing pure

starter cultures of selected malolactic bacteria for improved efficiency and reliability of malolactic

fermentation.

2.6 BIODEACIDIFICATION WITH MALOLACTIC BACTERIA

The organisms responsible for malolactic fermentation in wine were isolated and identified over 40

years ago (Peynaud, 1956). Since then it has become a well-known fact that strains of lactic acid

bacteria (LAB) are regularly associated with different food and beverage-related biotopes such as

beer, ciders, vegetables, silage, bread (sourdough), cocoa and coffee fermentations (Beech, 1972;

Hashizume and Mori, 1990; Henick-Kling, 1993; Salihet al., 1988). As their name suggests, strains

of LAB have the ability to produce significant quantities of lactic.acid from sugars. The production

of lactic acid by LAB is achieved either via a homofermentative metabolic pathway when only lactic

acid is produced from glucose, or via a heterofermentative pathway where glucose is fermented to

lactic acid, ethanol and acetic acid (Table 2.2). Strains of LAB isolated from wine have the additional

unique ability to convert L-malic acid into t-lactic acid and CO2 by means of the malolactic enzyme

(MLE), and have been renamed the malolactic bacteria. The malolactic enzyme is, however, not

exclusive to the wine lactic acid bacteria, but is also present in other lactic acid bacteria such as

Leoconostoc, Weissella, Pediococcus and Lactobacillus species from other ecological niches. The

malolactic enzyme is a bi-functional enzyme that executes the conversion L-malic acid into t-Iactic

acid in the presence of the cofactors NAO+ and Mg2+, without the generation of any enzymatic

intermediates or net cofactor reduction (Fig. 2.3) (Bony et al., 1997).
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Table 2.2 Lactic acid bacteria isolated from wine (Adapted from Fugelsang, 1997)

Genus Wine-related species

Homofermentative species Heterofermentative species

Oenococcus o. oeni (formerly Leuconostoc oenos)

Leuconostoc L. mesenteroides

L. casei ,L. homohiochii, L. plantarum,
Lactobacillus L. sake (or facultative heterofermentative) L. brevis, L. hilgardii, L. fructivorans (formerly

trichodes), L. buchneri, L.fermentum

Pediococcus P. damnosus (formerly P. cerevisiae),
P. parvulus, P. pentosaceus

Malolactic bacteria are usually present in low numbers (102_104 colony-forming units (CFU)/g) on

grapes and in grape must at the early stages of vinification (Fugelsang, 1997; Lafon-Lafourcade et al.,

1983; Lonvaud-Funel, 1999; Radler, 1958; Wibowo et al., 1985). The prevalence of LAB in grape

musts is mainly correlated to the must pH: the higher the must pH (pH> 3.5), the higher the total

LAB population. However, elevated populations of LAB can also be found in musts from damaged

grapes (Lonvaud-Funel, 1999). Mainly four different genera of LAB are present in the must at the

beginning of vinification (Table 2.2), i.e. Oenococcus, Lactobacilllus, Pediococcus and Leuconostoc

(Dicks et al., 1990; Dicks and Van Vuuren, 1988; Fugelsang, 1997; Irwin et al., 1983; London, 1976;

Lonvaud et al., 1977; Lonvaud-Funel, 1999; Stamer, 1979; Wibowo et al., 1985). The Leuconostoc

group has recently undergone several taxonomic changes due to advances in phylogenetic studies.

The classification of LAB into different genera was originally solely based on their morphology,

metabolism and physiological characteristics (Buchanan and Gibbons, 1986; Collins et al., 1987,

1990; Stiles and Holzapel, 1997; Van Damme et al., 1996). With the advent of DNA-DNA

hybridisation (Kawai et al., 1996), 16S rRNA sequencing (Collins et al., 1990, 1993; Lane et al.,

1985) and soluble protein patterns (Dicks et al., 1996) several changes in the classification of LAB

were suggested. For example, Leuconostoc paramesenteroides and related species have been

reclassified in a new genus, Weissella (Collins et al., 1993), on the basis of their 16S rRNA

sequences. Phylogenetic studies have also revealed that Leuconostoc oenos is distinct from other

Leuconostoc spp. (Martinez-Murcia and Collins, 1990) and it has been suggested that this organism is

an interesting case of a fast-evolving species (Yang and Woese, 1989) that was renamed Oenococcus

(Dicks et al., 1995).
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Figure 2.3. The NAD-dependent malolactic enzyme (MLE) transforms the C4 dicarboxylic acid
L-malic acid to the C3 monocarboxylic acid t-lactic acid without any free intermediates. The
conversion is a direct decarboxylation of L(-)-malic acid to L(+)-lactic acid and carbon dioxide (Pilone
and Kunkee, 1970).

During the early days of yeast alcoholic fermentation, the LAB population increases to ca. 104

CFU/ml, but quickly declines to only a few cells/ml with the onset of ethanol production (Fugelsang,

1997; Van Vuuren and Dicks, 1993). Most importantly, not only do the bacterial numbers diminish

but also the diversity of species. The main reasons for the decline in LAB population is' a

combination of low initial pH values, low temperatures, increased ethanol concentration, competitive

interactions with yeasts and possible bacteriophage infections. Furthermore, high concentrations of

S02 are usually added to the must after crushing to prevent oxidation and uncontrolled growth of wild

yeasts, which also severely inhibits the growth of LAB (Van Vuuren and Dicks, 1993). At the end of

alcoholic fermentation, mainly strains of 0. oeni rapidly proceed to proliferate to a population of 107

CFU/ml, which coincides with the malolactic fermentation (Costello et al., 1983; Fleet et al., 1984;

Kunkee, 1967b; Lafon-Lafourcade et al., 1983; Lonvaud-Funel, 1999; Wibowo et al., 1985).- Strains

of 0. oeni have the unique ability to survive in a wine milieu at.plLxalues.Iower than 4.2 and ethanol

levels as high as 10% (v/v) (Garvie and Farrow, 1980). Strains of Pediococcus and Lactobacillus

only proliferate in wines with initial high pH levels prior or during alcoholic fermentation, and

usually cause spoilage or sluggish alcoholic fermentations in the wines due to the untimely utilisation

of glucose (Costello et al., 1983; Fugelsang, 1997; Mayer 1974; Vetsch and Mayer, 1978).

2.6.1 Advantages and disadvantages of malolactic fermentation

Malolactic fermentation is the preferred deacidification method in most of the wine regions of the

world. Red wine production in both cold- and warm-climate regions almost always involves the

malolactic fermentation, naturally or induced, after yeast alcoholic fermentation. Natural malolactic

fermentation occurs less frequently in white wines due to an average lower pH of most white cultivars

and higher concentrations of S02 employed (Ingraham and Cooke, i960; Rodriquez et al., 1990), but

it can be induced with LAB starter cultures in some styles of wine, e-g. Chardonnay. The malolactic

fermentation is crucial in the Champagne wine region of France, where the traditional méthod
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champenoise process is used to produce sparkling wine. The grapes used during the production of

base wines are usually high in acid content and require the malolactic fermentation as a primary

fermentation to deacidify and mature the base wine prior to the yeast fermentation in the bottle (Pool

and Henick-Kling, 1991).

The malolactic fermentation affects four different, but interrelated aspects of wine quality:

adjustments to wine acidity, influences microbial stability, contributes to the sensory complexity and

lastly influences the hygienic quality of wine. Controversy over the benefits of the malolactic

fermentation still endures after years of oenological research. Under certain conditions the

contributions made by malolactic fermentation improve wine quality, but the same contributions may

be considered highly undesirable under a different set of circumstances (Table 2.3). This is especially

evident in the cool- and warm-climate wine regions, where its contribution to wine quality differs

remarkably.

2.6.1.1 Loss of acidity and increase in pH. Depending on the initial pH of the must, the removal of

L-malic acid via MLF can either be advantageous or detrimental to wine quality. In high-acid/low-pH

wines typically found in the cool-climate regions, a decrease in excess L-malic acid (2 -10 gil) is

highly favourable for the production of acid-balanced wines (Boulton et al., 1996; Henick-Kling,

1995; Kunkee, 1967b; Lonvaud-Funel, 1999). MLF usually leads to a reduction in final TA of 1-3 gil

and an average increase in pH of 0.1 to 0.3 units in wine (Bousbouras and Kunkee, 1971; Margalit,

1997). Subsequently, the rise in pH after MLF often promotes the precipitation of potassium

bitartrate, leading to an additional reduction in TA (Beelman and Gallander, 1979; Ribéreau-Gayon et

al., 2000b). The pH of wine is could also be raised due to the ability of malolactic bacteria to

metabolise arginine during MLF. The degradation of arginine leads to the release of ammonia in

wine and results in an increase in wine pH (Liu and Pilone, 1998). However, the extent of a pH

increase due to arginine metabolism by malolactic bacteria is limited, since it depends on the timing

of the bacterial growth during alcoholic fermentation and the buffering capacity of the wine. After

alcoholic fermentation, the grape must is depleted of arginine and little if any arginine remains

available for malolactic bacteria.

The incidence of MLF in wine with an initial high pH (or low acidity), customarily found in the

warmer climatic regions, has the opposite impact on wine quality. MLF in these wines leads to an

additional reduction in wine acidity and subsequent increase in pH due to the degradation of L-malic

acid and results in undesirable "bland" wines that lack adequate acidity. Under these circumstances,

the aesthetics of red wine is often negatively affected in terms of red colour intensity, with a potential

loss of ca. 30% in red colour due to the shift in pH (Kunkee, 1967b; Vetsch and Luthi, 1964).

Furthermore, as mentioned before, the risk of spoilage by strains of lactobacilli and pediococci is

enhanced in these elevated pH wines.
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Removal of excess acidity by malolactic fermentation is thus only a true benefit to winemaking in the

cool-climate viticultural regions, where the final wine acidity remains within acceptable ranges to

produce balanced wines. This same attribute of MLF, however, complicates rather than alleviates the

winemaking process in warmer viticultural regions.

2.6.1.2 Microbial stability. Winemakers have long believed that MLF leads to an increase In

microbial stability due to the depletion of essential nutrients in wine and the fastidious growth

requirements of LAB, especially O. oeni. This might be in part true for high-acid/low-pH wines,

where the antimicrobial effect of low pH dominates in inhibiting the growth of spoilage bacteria after

the first round of MLF. The apparent depletion of residual nutrients, which includes L-malic acid,

citric acid, amino acids, nitrogen bases, vitamins and fermentable sugars left after alcoholic

fermentation, prevents the growth of other spoilage bacteria. Furthermore, malolactic bacteria

produce antimicrobial compounds such as lactic acid and bacteriocins (Rammelsberg and Radler,

1990) that inhibit the growth of other related bacterial species (Henick-Kling, 1993). However, the

depletion of nutrients after the first round of MLF does not completely guarantee total growth

inhibition of other bacterial species. Spoilage by strains of malolactic bacteria, including O. oeni, is

often encountered in wine industries, especially if low concentrations of L-malic acid remain in the

wine. In wines with high initial pH levels, the danger exists that the incidence of malolactic

fermentation might, contrary to general belief, aggravate the risk of microbial instability of wine.

Due to the additional increase in pH (> 3.5), some strains of lactobacilli and pediococci may find it

more favourable to proliferate and spoil the wine (Costello et al., 1983; Davis et al., 1986).

The benefit of increased microbial stability due to MLF is therefore also more applicable to the cool- .

climate viticultural regions, where the low pH of wine remains an inhibitory. factor after completion

of MLF. Under these circumstances, complete removal of L-malic acid during MLF, which serves as

relatively good nutritional resource for O. oeni, does minimise the risk of future growth after bottling.

In the warmer viticultural regions the use of MLF is tolerated in most red and some white cultivars

for the sole purpose of completely removing ï.-malic acid from the wine. However, winemakers have

to take extreme care to adjust the pH of the wine prior to MLF to the accepted range, usually with

tartaric acid, to prevent spoilage by LAB and other bacteria.

2.6.1.3 Wine sensory modifications. The role of MLF in improving the sensory complexity of wine

is one of the more dubious benefits of MLF when compared to its role in deacidification and

microbial stability of wine. The most convincing change in wine taste after MLF is the replacement

of the strong "green" taste of L-malic acid with the less aggressive taste of lactic acid (Beelman and

Gallander, 1979; Lonvaud-Funel, 1999). Removal of the sharp taste of-excess-t.-malie acid is usually
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described in terms of the mouth feel and extended aftertaste of wine compared to non-MLF control

wines (Davis et al., 1985; Henick-Kling, 1993; Henick-Kling et al., 1994; Malik, 1998).

In general wines that underwent MLF, particularly red wines, are often characterised by lower

vegetative/herbaceous aromas, while the fruity and floral characters are also reduced due to the

degradation of several esters and other flavour compounds (Laurent et al., 1994; McDaniel et al.,

1987). Many other flavours such as 'buttery', 'lactic', 'nutty', 'oaky', 'yeasty' and 'sweaty' has been

described in wines after MLF (Laurent et al., 1994). The exact sensory contribution of MLF in wine

is extremely difficult to evaluate due to the intricate nature of the factors that playa role. The number

of flavour compounds synthesised during MLF is greatly influenced by the initial wine pH and the

fermentation temperature, which determines the rate of malolactic fermentation. When the rate of

malolactic fermentation is fast (high pH and temperature), the production of acetic acid is enhanced,

while the production of diacetyl is favoured under low pH and temperature conditions. A second

factor that complicates the determination of flavour contribution by MLF in wine is the large

diversity of strains and species of malolactic bacteria that are usually involved in MLF (Table 2.3).

For example, individual strains of O. oeni contribute different flavour changes to the wine during

MLF (Henick-Kling et al., 1994; Zeeman et al., 1982).

The improvement of the front-palate volume and roundness in the mouth is not only due to the

reduction in acidity of the wine. Certain selected malolactic bacteria can produce metabolites, which

improve mouth feel either directly or by binding with bitter and astringent wine compounds. Specific

metabolites synthesised during the heterofermentative metabolism of malolactic bacteria, especially

strains of O. oeni, have been identified as flavour compounds in wine and it is argued that these

compounds play a role in improving the sensory complexity of wine (McDaniel et al., 1987;

Rodriquez et al., 1990). These metabolites are synthesised at varying concentrations during MLF and

include compounds such as acetaldehyde, 2,3-butanediol, acetic acid, acetoin, 2-butanol and various

other volatile esters (such as ethyl lactate, isoamyl acetate, ethyl caproate, diethyl succinate and ethyl

acetate) (Dittrich, 1987; Meunier and Bott, 1979; Zeeman et al., 1982). Diacetyl, a volatile diketone

and end product of citric acid metabolism by LAB, is another compound added to wine during MLF

and is often perceived as a desirable buttery or nutty flavour when present at low concentrations

(Davis et al., 1985; Shimazu et al., 1985). However, the results of many wine-tasting trials suggest

that the sensory changes in wine due to malolactic fermentation cannot always be directly correlated

to the production of specific flavour compounds (Davis et al., 1985; Kunkee et al., 1964; Laaboudi et

al., 1995; Martineau et al., 1995; Van Wyk, 1976;).

The sensory changes incurred during malolactic fermentation are not always desirable in all wine

styles and cultivars. Some delicate European white wines, such as Muscat, Riesling, Sauvignon

Blanc and Gewurztraminer, are protected against natural MLF, since the malolactic bacteria degrade
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many terpenes and other flavour molecules that diminish the varietal fruity-floral aromas revealed

during alcoholic fermentation (Lonvaud-Funel, 1999; Radler, 1972; Wagner, 1974).

•
Bacterial Advantage R' k
strain (positive contribution) IS

T bl 23 I fl

Selected
O. ceni

Spontaneous
O.ami

L. mesenteroides

Lb. plantarum,
Lb. casei

P. pentosacceus
P. damnosus

Lb. brevis
Lb. hilgardii

Lb. kunkeei

f lolactic bacteri tbr

• Reduction of total acidity
• Reduction of ketone and aldehyde

compounds (reducing S02 requirement)
• Partial microbial stability
• Reduction of grassy and vegetative notes
• Increase in front-pallet volume
• More diacetyllevel control
• Dominance of feral bacteria

• Reduction of total acidity
• Reduction of ketone and aldehyde

compounds (reducing S02 requirement)
• Partial microbial stability
• Reduction of grassy and vegetative notes
• Increase in front-pallet volume

• Reduction of total acidity

• Reduction of total acidity in must or wine
• No production of acetic acid from sugar

(hexose)

• Reduction of total acidity in must or wine
• No production of acetic acid from sugar

(hexose)

• Reduction of total acidity in must or wine

fil

• Production of volatile acidity (especially
under high pH conditions, in presence of
residual sugars and after L-malic acid
degradation)

• Small color loss due to the pH increase

• Long lag phase involving an increase in the
volatile acidity depending on the pH

• Significant bacterial growth involving a
high production of diacetyl

• Production of spoilage aromas and flavours
(mousy off-flavour, sweat, sauerkraut)

• Reduction of esters (fruity characters)
• Loss of varietal aromas
• Color loss due to pH increase and by direct

action on polyphenols
• Production of biogenic amines
• Production of ethyl carbamate

• Production of viscous compounds (ropy
wines)

• Production of spoilage aromas and flavours

• Sensitive to alcohol over 5% vol.
• Sluggish or stuck fermentation in high pH

wine at high contamination levels
• Production of spoilage aromas and flavours

(Lb. casei)

• Production of viscous compounds (ropy
wines)

• Production of biogenic amines
• Risk of sluggish or stuck fermentation, at

pH >3.5 with high contamination levels
• Risks increase with the pH value

• Production of viscous compounds (ropy
wines)

• Production of biogenic amines
• High production of ethyl carbamate
• Production of spoilage aromas and flavours
• Production of acetic acid

• Strong competition with yeasts during the
alcoholic fermentation for nutrients

• Overproduction of acetic acid
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Furthermore, many of the metabolic end products of malolactic bacteria are usually perceived as

spoilage when produced at elevated levels. For example, depending on the type of wine and the

spoilage threshold for a specific wine, the synthesis of diacetyl often masks the characteristics of

white wines with heavy notes of butter or cheese and can be considered an off-flavour (Martineau et

al., 1995). Many other types of severe spoilage by lactic acid bacteria such as mousy off-flavours,

"animal" phenolic odours and geranium-like taints have been identified in wine (Cavin et al., 1991;

Crowell and Guymon, 1975). Some strains of malolactic bacteria, especially the lactobacilli, have the

ability to degrade L-tartaric acid, which could lead to severe deficiencies in wine TA, a spoilage

defined as toume (Ribéreau-Gayon et al., 2000a
). Another type of off-flavour associated with

lactobacilli, amertume, is caused by the oxidation of glycerol that leads to increased levels of

2,3-butanediol and acetic acid, thus volatile acidity (Siegrist et al., 1983). Some Lactobacillus spp.

sometimes contributes to the mousy odour in wines due to the production of acetamide in the

presence of ethanol or propanol (Heresztyn, 1986).

2.6.1.4 Hygienic quality of wine. The wholesomeness of wine is becoming an ever-increasingly

important marketing tool in the wine trade industry. Winemakers are therefore steering clear of

procedures that could tarnish the hygienic or health image of their wines, i.e. the excessive use of

detrimental chemicals such as S02. The synthesis of two undesirable compounds in wine, namely

biogenic amines and ethyl carbamate, during the conventional malolactic fermentation have led to a

renewed interest in studies on biogenic amines (Table 2.3).

Biogenic amine production during MLF. Lactic acid bacteria are well-known to produce biogenic

amines during the process of fermentation of foods and beverages, for example in cheese, sausage,

fermented vegetables, beer and wine (Guerrini et al., 2002). Biogenic -amines (e.g. histamine) are

.,.,.....generated via. the decarboxylation of. the precursor amino acids (e.g. histidine) through.

substrate-specific enzymes (Ten Brink et al., 1990). The physiological role of this reaction in lactic

acid bacteria is thought to ensure growth and survival in acidic conditions, since it increases the pH.

Although the biogenic amine content of fermented foods, i.e. in vegetable and meat products, is

usually higher than that found in wine, the presence of alcohol and other biogenic amines has been

shown to amplify the toxic effect of certain biogenic amines (Fernandes and Ferreira, 2000; Ibe et al.,

1991; Silla Santos, 1996). For example, the presence of putrescine, the most prevalent amine in wine

(Soufleros et al., 1998), is known to act as a potentiator of histamine toxicity in humans (Bover-Cid

and Holzapfel, 1999; Taylor, 1986).

The concentration of biogenic amines, especially histamine, tyramine and putrescine, in wine is more

elevated after the completion of malolactic fermentation (Lonvaud-Funel and Joyeux, 1994; Radler

and Fath, 1991; Soufleros et al., 1998). Other biogenic amines such as methylamine, ethylamine,

phenyl-ethylamine, iso-amylamine and diaminopentane (cadaverin) are also synthesised and degraded
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by LAB (Buteau et al., 1984; Cilliers and van Wyk, 1985; Lafon-Lafourcade, 1975; Lonvaud-Funel

and Joyeux, 1994; Petridis and Steinhart, 1995). The biogenic amine content of wine is dependent on

the amino acid composition of the wine after alcoholic fermentation and the specific microflora

present in wine, but more importantly their ability to decarboxylate amino acids. The amino acid

content of wine is determined by the composition of the grape must, which in turn is dependent on the

specific "terroir", grape variety, vine nutrition and the impact of yeast metabolism during alcoholic

fermentation (Soufleros et al., 1998). The metabolic activity of yeasts during alcoholic fermentation

leads to modifications in the initial nitrogen content of grape must as some amino acids are utilised

while others are synthesised and secreted, especially during yeast autolysis. An increase in biogenic

amine content has been noted when wines are maintained in contact with yeast lees for longer

periods, as more peptides and free amino acids become available for lactic acid bacteria to hydrolyse

and decarboxylate (Lonvaud-Funel, 2001). The decarboxylating capacity of malolactic bacteria was

found to differ significantly between strains. The pH of wine is considered to be the governing factor

that determines not only the variety of lactic acid bacteria in wine, but also their decarboxylating

activity (Caton et al., 1998; Ough et al., 1987). At elevated pH levels biogenic amines are usually

found at higher concentrations in wine due to easier total growth and greater bacterial diversity

(Lonvaud-Funel and Joyeux, 1994). White wines, which are generally more acidic, therefore contain

lower biogenic amine concentrations than red wines (Gerbaux and Monany, 2000; Ribéreau-Gayon et

al.,2000b
).

As biogenic amines are produced in wine by strains of LAB, these bacteria must inherently be

equipped with the necessary metabolic pathways, i.e. amino acid decarboxylases and transport

proteins. This has indeed been shown for some strains of LAB that are capable of decarboxylating

amino acids to form biogenic amines (Straub et al., 1995). Traditionally oenologists have considered

strains of Pediococcus as the main culprits of histamine production in wine (Aerny, 1985). This

genus is always present in wine microflora together with Lactobacillus, Leuconostoc and

Oenococcus, but usually at low CFU/rnl values. Although many Pediococcus spp. are well-known

for their ability to produce histamine from histidine by means of a histidine decarboxylase (HDC)

enzyme, Lonvaud-Funel and Joyeux (1994) demonstrated that strains of Oenococcus oeni, generally

regarded as the safe LAB, also contain the histidine decarboxylase gene that may playa role in the

production of histamine in wine (Aerny, 1985; Caton et al., 1998; Delfini, 1989; Guerrini et al., 2002;

Mayer et al., 1971; Weiller and Radler, 1976).

The presence of biogenic amines is becoming a health concern also for wine consumers, as can be

seen by the renewed research interest in biogenic amine formation in wine (Coton et al., 1998;

Guerrini et al., 2002; Lasekan and Lasekan, 2000; Lonvaud-Funel, 2001; Moreno-Arribas et al.,

2000; Soufleros, et al., 1998). Since amines are part of the natural biochemistry and metabolic

functioning of living organisms, it is also an important metabolite in human cells; for example, the
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presence of polyamines is essential for growth, while histamine and tyramine are vital for the correct

functioning of the nervous system and control of blood pressure (Lonvaud-Funel, 2001). As could be

anticipated, the ingestion of low concentrations of biogenic amines is not considered harmful to

humans, as these compounds are natural intermediates of human metabolism. When absorbed in

excessive amounts or when the human amine detoxification system is debilitated, e.g. during the

simultaneous intake of alcohol and prescription drugs, harmful physiological side effects have been

reported (Lonvaud-Funel, 2001). Clinical symptoms of biogenic amine intoxication include

headaches, respiratory distress, heart palpitation, hyper- or hypotension, as well as several allergenic

disorders (Lonvaud-Funel, 2001; Silla Santos, 1996). Histamine and tyramine are considered to be

neurotoxins in humans due to their vasoactive and psychoactive properties (Bover-Cid and Holzapfel,

1999). Many clinical studies have reported on the allergic effect histamine has on humans, especially

people with a histamine intolerance due to a deficiency of the diaminoxidase enzyme (Wantle et al.,

1993, 1994).

Ethyl carbamate production during MLF. Ethyl carbamate (EC, urethane) is a naturally occurring

compound present in all fermented foods and beverages. There is a general agreement that the

presence of EC in wine is not desirable and must be maintained as low as possible since it has been

proven to be a carcinogen when administered at high dosages in animal tests (Azevedo et al., 2002;

Liu and Pilone, 1998). The main source of EC in wine is from the ethanolysis of urea synthesised

during yeast metabolism. Arginine, usually one of the most abundant amino acids in grape juice, is

metabolised by yeasts to urea, which is released into wine when it accumulates in the yeast cell

during or at the end of fermentation. Urea spontaneously reacts with the ethanol in wine to form EC.

Some strains of lactic acid bacteria can produce precursors compounds that can form EC via

ethanolysis. Most of the commercialO. oeni strains are able to breakdown' arginine through -the

arginine deiminase-pathway (ADI pathway), during which citrulline and carbamyl phosphate are -,

excreted and react with ethanol to produce ethyl carbamate (Liu et al., 1994). The ADI pathway for

arginine metabolism has been identified in strains of O. oeni that produce EC precursors in wine (Liu

and Pilone, 1998; Lonvaud-Funel, 1999; Tonon et al., 2001).

2.6.2 Control of malolactic fermentation

Although malolactic fermentation is the most widely accepted deacidification method of wine, the

bioconversion"of-L-malic acid to lactic acid is a difficult and time-consuming process that does not

always proceed favourably under the natural conditions of wine. It can lead to spoilage of wine when

it occurs after bottling and during storage of wine, especially in wines with pH values higher than 3.5

units. The occurrence of spontaneous malolactic fermentation in wineries is unpredictable and

irregular (Boulton et al., 1996; Davis et al., 1988; Wibowo et al., 1985). Malolactic fermentation

may take place immediately after alcoholic fermentation or only weeks or months later, and

sometimes after bottling (Henick-Kling, 1995). The control of malolactic bacteria is crucial during
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winemaking, since their presence at the end of alcoholic fermentation is beneficial, but detrimental to

wine quality during maturation. Maturation or ageing of wines is solely based on spontaneous

chemical reactions, such as esterification and polymerisation of the chemically active components

that result in the modification of wine aroma and colour (Lonvaud-Funel, 1999).

Malolactic fermentation tends to occur spontaneously in low-acid wines where it is least wanted and

the outcome of the modified flavours is unpredictable due the proliferation of some Lactobacillus and

Pediococcus spp. (Henick-Kling and Edinger, 1994; Zeeman et al., 1982). After alcoholic

fermentation wine cannot be treated by sulphiting until malolactic fermentation is completed. During

this period wine is exposed to chemical oxidation and the development of spoilage organisms such as

acetic acid bacteria and other spoilage yeasts. Therefore control of malolactic fermentation and an

understanding of the favourable and unfavourable conditions for malolactic fermentation are of great

importance to winemakers to predict or prevent the occurrence of malolactic fermentation. Numerous

physiochemical, chemical and biological conditions in wine influence the development of MLF

(Table 2.4); some have individual effects, while others act concurrently (Britz and Tracey, 1990;

Vaillant et al., 1995). The most important factors that influence the onset and completion of MLF is

the initial wine composition, fermentation and storage temperature, as well as interactions between

malolactic bacteria and other wine-related microorganisms (Table 2.4).

2.6.3 Progress in the successful application of malolactic fermentation

Even with a complete understanding of MLF and the factors that play a role in the successful

development of MLF, wine remains a hostile environment to malolactic bacteria. MLF is often

difficult to control and predict and is also a time-consuming process; therefore winemakers and

oenologists continuously investigate and develop new technologies to ensure the reliable and

controllable application of MLF in wine. Numerous advances have therefore been made in the field

of MLF starter culture production as well as some other alternative technologies for the successful

development of MLF in wine.

2.6.3.1 Inducing MLF through bacterial starter cultures. Winemakers can intentionally induce

MLF in "resistant" wines by blending them with wine which is undergoing or which has already

completed MLF (Castino et al., 1975; Kunkee, 1967"). Based on their survival abilities, specific

strains of O. oeni have been selected for the commercial production of liquid, lyophilised or

freeze-dried starter cultures. The must is inoculated with starter cultures to ensure successful MLF

(Beelman et al., 1977; Henick-Kling, 1995; Henick-Kling et al., 1989; Ingraham et al., 1960; King,

1984; Lafon-Lafourcade et al., 1983; Pompillo, 1993; Wibowo et al., 1988). Although no official

data are available on the prevalence of induced MLF in commercial wine production, roughly 75% of

all red wine and 40% of white wines usually undergo induced MLF (Maicas, 2001; Ough, 1992).
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Factor Influence on 1\ILF Reference

Wine environment
pH

Ethanol

Sulphur dioxide
(free form)

Nutrient Content

Fermentation and
Storage
Temperature

Low pH values « 3.5)
• Prevents growth of spoilage LAB, not

O.oeni
• Extends lag phase of O. oeni
• Less volatile acidity due to

• slower active growth rate and
metabolism

• inhibited glucose and fructose
catabolism

High pH values (> 3.5)
• No protection against spoilage LAB
• Increased volatile acidity due to

• Faster active growth rate and
metabolism

• Glucose and fructose fermentation by
LAB

Low ethanol levels « 6% v/v)
• Minor inhibitory effect on MLF

High ethanol levels (> 6% v/v)
• Inhibits growth of LAB
• Toxic to lactobacilli and pediococci, not

O.oeni

No S02 addition
• MLF occurs naturally
• Spoilage by LAB is frequent

S02 (> 50mg/l ) inhibits growth of LAB
• Antimicrobial effect is pH dependent
• Lower pH = higher ratio of free S02 = higher

microbial toxicity

LAB have fastidious nutritional requirements:
• Limiting concentrations of amino acids,

purines, pyrimidines, sugars, organic acids
and vitamins inhibits growth

• Lactic acid inhibits growth of LAB
LAB are micro-aerophilic

• Low concentration of dissolved oxygen
required

• Too much oxygen inhibits growth
LAB sensitive to traces of fungicides and
insecticides

5° and ro-c
• Complete inhibition of LAB

< 18°C
• Delayed growth of LAB

>25°C
• Growth of spoilage LAB strains

Asmundson and Kelly, 1990;
Henick-Kling, 1988; Kunkee,
1967b, 1974, 1991;
Ribéreau-Gayon et al., 2000'

Henick-Kling, 1988;
Henick -Kling, 1995;
Ribéreau-Gayon et al., 2000'

Asmundson and Kelly, 1990;
Britz and Tracey, 1990;
Carreté et al., 2002; Davis et
al., 1985; Fang and
Dalmasso, 1993; Kunkee,
1967b; Ribéreau-Gayon et
al., 2000'; Wibowo et al.,
1985; Van Wyk, 1976
Cabras et al., 1995; Cox,
1991; Henick-Kling, 1988;
Lafon-Lafourcade, 1970;
Lonvaud-Funel, 1986;
Naouri et al., 1990; Pilone
and Kunkee, 1972;
Ribéreau-Gayon et al.,
2000a

; Tracey and Britz,
1989

Asmundson and Kelly, 1990;
Boulton et al., 1996; Britz
and Tracey, 1990; Davis et
al., 1985; Henick-Kling,
1988; Lafon-Lafourcade,
1970; Ribéreau-Gayon et al.,
2000'
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Starter cultures of malolactic bacteria are selected according to strict criteria (Davis et al., 1985;

Vaillant et al., 1995). The strains must have a fast growth rate under winemaking conditions and

should not produce any off-flavours or off-odours. Malolactic strains are further selected for their

tolerance to low pH (pH < 3.0), high ethanol levels of up to 14% (v/v) and non-lysogenic

characteristics after phage infection (Drici-Cachon et al., 1996). Lastly, the strains should have good

growth characteristics and be suitable for drying to make their commercial production economically

viable in terms of type and cost of culturing media (Kunkee, 1991). Strains of malolactic bacteria can

also be selected based on their inability to produce biogenic amines such as histamine and ethyl

carbamate precursors. With the help of PCR, DNA probes and activity assays, strains of malolactic

bacteria can now be screened for the presence of the amino acid decarboxylase genes (Le Jeune et al.,

Table 2.4 (continued)

Microbial Interactions
Yeast-bacterial

Bacterial-bacterial

Bacterial-bacteriophage

1995).

Yeast strains can inhibit LAB growth
• Yeast strain dependent
• Competition for and depletion of

essential nutrients
• Production of ethanol and S02
• Production of medium-chain fatty acids

(C6-CI2) such as octanoic and decanoic
fatty

Yeast strains can promote LAB growth
• Secreted vitamins and amino acids

during yeast growth
• Yeast autolysis promotes LAB growth
• "Yeast ghosts" (yeast hulls) used as

additive

During natural MLF
• Related and non-related bacteria inhibits

growth of O. oeni
• Production of antimicrobial substances
• Hydrogen peroxide, lactic acid,

bacteriocins
Bacterial Starter Cultures

• Eliminates bacterial-bacterial effect
• High rate of successful MLF

Bacteriophages inhibits MLF
• Contaminate, infect and lyse starter

cultures of O. oeni
• Phages are inhibited by S02 (>50mg/l)

and pH < 3.5, as well as bentonite
treatment

37

Amerine and Kunkee, 1968;
Beelman et al., 1982; Capucho
and San Ramao, 1994; Dick et
al., 1992; Edwards et al., 1990;
Edwards and Beelman, 1989;
Fomachon, 1968; King and
Beelman, 1986; Kunkee and
Amerine, 1970;
Lafon-Lafoucade et al., 1984;
Narendranath et al., 1997;
Rankine and Pocock, 1969;
Ribéreau-Gayon et al., 2000';
Splittstoesser and Stoyla, 1989;
Van Wyk, 1976

Bhunia et al., 1988; Daeschel
and Klaenhammer, 1985; Geis
et al., 1983; Klaenhammer,
1988; LUcke et al., 1986;
Orberg and Sandine, 1984;
Rammelsberg and Radler,
1990; Ribéreau-Gayon et al.,
2000'; Spelhaug and Harlander
1989; Strasser de Saad et al.,
1995; Strasser de Saad and
Manca de Nadra, 1993; Tagg et
al., 1976
Arendt et al., 1991; Daly,
1983; Davis et al., 1985;
Henick-Kling et al., 1986;
Huggins, 1984;
Lonvaud-Funel, 1995; Nel et
al., 1987; Olwage, 1992; Sozzi
et al., 1976; Ribéreau-Gayon et
al., 2000'; Sozzi et al., 1982
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The availability of active bacterial starter cultures to induce MLF has certainly contributed to many

successful applications of this secondary fermentation. However, the completion of malolactic

fermentation cannot be guaranteed and starter culture delay or failure is not unusual under certain

environmental conditions (Beelman and Gallander, 1979; Guerzoni et al., 1995). In addition,

unstable strain characteristics due to the presence of plasmids in malolactic bacteria are of some

concern to oenologists. Small and large plasmids have been isolated from strains of O. oeni (Cavin et

al., 1988; Janse et al., 1987; Orberg and Sandine, 1984; Taylor et al., 1990). Although the function

of these plasmids is largely unknown, pesticide resistance has been identified as a plasmid-encoded

attribute. Genomic rearrangements of selected starter cultures during growth in wine are another

source of concern in starter culture development (Henick-Kling, 1995). Reactivation conditions of

freeze-dried starter cultures before inoculation into wine also playa role in the successful completion

of malolactic fermentation (Nault et al., 1995), since direct inoculation of starter cultures in wine

leads to loss of viability (Davis et al., 1985; Nielsen et al., 1996).

2.6.3.2 Alternative technologies to develop MLF in wine. Persistent problems with bacterial

starter cultures have driven the search for other alternatives to ensure rapid and reliable evolution of

MLF in wine. Alternative strategies are based on the use of high biomasses of free malolactic

bacteria cells, immobilised cells, as well as immobilised malolactic enzyme, in a bioreactor-type

design. The use of bioreactors with free or immobilised strains of malolactic bacteria, as well as

free-cell bioreactors with immobilised malolactic enzyme and cofactors have been evaluated for its

application in wine deacidification (Gao and Fleet, 1994; Maicas, 2001; Macais et al., 1999 a,b,2000;

Spettoli et al., 1982, 1984, 1987). The major problems associated with these technologies involve the

degree of difficulty to prepare matrixes, the use of unacceptable chemicals in wine and the

unsuccessful scaling-up of free or immobilised high-density cell bioreactors for industrial application ..

Furthermore, free-cell bioreactorsusingonly immobilised enzymes have yet to be 100% effective in

converting L-rnalic acid to lactic acid.

Genetic engineering of strains of Saccharomyces with the ability to degrade L-malic acid is an

important alternative that has enormous potential in the wine industry. Molecular biologists have

attempted to transfer the malolactic activity of malolactic bacteria into S. cerevisiae to enable the

yeast to execute the alcoholic and malolactic fermentation simultaneously. Williams et al. (1984)

expressed the gene for malolactic activity of L. delbrueckii in S. cerevisiae. The recombinant strain

of S. cerevisiae only managed to metabolise a mere 1% and 1.5% (w/v) L-malic acid in synthetic

media and grape must, respectively. In the same year the L-malic acid assimilating activity from

O. oeni was cloned and expressed in E. coli and yeast, but due to DNA stability problems the research

was terminated (Lautensach and Subden, 1984). Nearly a decade later the mleS genes of L. laetis and

Oi oeni were subeloned under the' control of the strong, constitutive 3-phosphoglycerate kinase

(PGK]) promoter and terminator of S. cerevisiae and successfully expressed in a laboratory strain of
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S. cerevisiae (Ansanay et al., 1993; Denayrolles et al., 1994, 1995; Labarre et al., 1996). Both E. coli

and S. cerevisiae containing the mleS gene, produced malolactic activity, but they were still unable to

efficiently degrade L-malic acid under winemaking conditions.

The main inadequacy of the above attempts to genetically engineer S. cerevisiae with a malolactic

pathway is ascribed to the slow, inefficient uptake of L-malic acid via simple diffusion by the yeast

(Grobler et al., 1995). Expression of the malolactic gene (mIeS) in yeast is not adequate to improve

S. cerevisiae's ability to degrade L-malic acid. Ansanay et al. (1996) confirmed the lack of efficient

t.-rnalic acid transport in S. cerevisiae as the sole limiting step in the recombinant malolactic yeast.

When the mleS gene of L. laetis was expressed under the control of the ADH1 promoter in both

S. cerevisiae and S. pombe, only the recombinant S. pombe strain, which contains an active L-malic

acid transport mechanism, rapidly converted L-malic acid to lactic acid, while the recombinant

S cerevisiae strains managed to metabolise only small amounts of L-malic acid (Ansanay et al.,

1996).

Pre-empting the possible problems that would be encountered with the genetic engineering of a

malolactic strain of S. cerevisiae without a functional malate transport mechanism, cloning and

characterisation of the malate permease gene (maeIï and the malic enzyme gene (mae2) of S. pombe

were deemed a feasible solution (Grobler et al., 1995; Subden et al., 1998; Viljoen et al., 1994).

Co-expression of the malate transporter gene tmaeTï of S. pombe and the malolactic enzyme gene of

L. laetis and O. oeni in a laboratory strain of S. cerevisiae resulted in a recombinant strain of

S. cerevisiae that actively transported L-malic acid and efficiently converted it to lactic acid

(Volschenk et al., 1997 a.b). The recombinant S. cerevisiae strain was able to perform alcoholic and

malolactic fermentation simultaneously, rendering malolactic fermentation with malolactic bacteria'

redundant. .The malate transporter gene (mae1) of S. pombe and the malolactic enzyme gene of·,· -,

O. oeni were subsequently integrated in the genomes of industrial wine yeast strains, in a pioneering

endeavour to develop commercially available wine yeast strains with the ability to degrade L-malic

acid during alcoholic fermentation (Husnik, 2003). Currently, the recombinant yeast strains are

evaluated for large-scale commercial application and promises to be the first genetically modified

yeast available to the wine yeast market.
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Regulation of L-Malic Acid Metabolism in Yeast

3.1 INTRODUCTION

The conversion of L-malic acid to lactic acid and CO2 during malolactic fermentation is one of the

four possible metabolic conversions found in nature. As a natural compound that serves as a carbon

source for many microorganisms, L-malic acid can also be transformed into three other compounds,

namely oxaloacetic acid (via malate dehydrogenase), fumaric acid (reversible dehydrationlhydration

via fumarase) and pyruvic acid (via malic enzyme). Several yeast species have been recognised for

their ability to utilise extracellular L-malic acid. Based on yeasts' ability to metabolise L-malic acid

and other TCA cycle intermediates as sole carbon or energy source, yeasts are divided into a K (-) or

K (+) group (Barnett et al., 1990; Barnett and Kornberg, 1960; Goto et al., 1978; Rodriquez and

Thornton, 1990; Saayman et al., 2000; Whiting, 1976).

The K (-) group of yeasts consists of those yeasts capable of utilising TCA cycle intermediates only in

the presence of glucose or other assimilable carbon sources (Barnett and Kornberg, 1960). Strains of

Saccharomyces sensu stricto (including all wine strains), Schizosaccharomyces pombe and

Zygosaccharomyces bailii are all classified as K (-) yeasts. Although grouped together, the yeasts in

this category have diverse aptitudes to metabolise L-malic acid. Typically, strains of Saccharomyces

are regarded as inefficient metabolisers of extracellular L-malic acid, in fact the synthesis of L-malic

acid in some strains of Saccharomyces has been reported (Ramon-Portugal et al., 1999). In contrast

strains of S. pombe and Z. bailii can degrade extensive amounts of this L-malic acid (Baranowski and

Radler, 1984; Kuczynski and Radler, 1982; Osothsilp, 1987; Osothsilp and Subden, 1986b; Rodriquez

and Thornton, 1989; Taillandier et al., 1988; Taillandier and Strehaiano, 1991).

The K (+) yeast group is comprised of yeasts such as Candida sphaerica (Corte-Real et al., 1989),

Candida utilis (Cássio and Leao, 1993), Hansenula anomala (Carte-Real and Leao, 1990), Pichia

anomala (Amador et al., 1996) and Kluyveromyces marxianus (Queiros et al., 1998), which have the

ability to utilise TCA cycle intermediates as sole energy and carbon sources, with no requirement for

other assimilable sugars. The genetic and biochemical characterisation of the L-malic acid utilising

pathways in several K (-) and K (+) yeast species, including S. pombe, C. utilis, K. marxianus,

Z. bailii and Saccharomyces cerevisiae, have been the focus of several investigations. In agreement

with the divergent mechanisms of regulation of metabolic pathways involved in these yeasts, the

physiological role and regulation of L-malic acid metabolism differs significant between the K (-) and

K (+) yeasts. In general, L-malic acid metabolism in K (-) yeasts is characterised by the absence of

glucose repression or substrate induction (Osothsilp and Subden, 1986b; Rodriquez and Thornton,
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1989). In contrast, the regulation of L-malic acid metabolism in K (+) yeasts typically exhibits strong

glucose (or catabolite) repression and rapid substrate induction that leads to a diauxic shift growth

pattern where glucose is used prior to the utilisation of L-malic acid (Amador et al., 1996; Cássio and

Leao, 1993; Cêrte-Real et al., 1989; Cêrte-Real and Leao, 1990; Queiros et al., 1998).

The ability to metabolise extracellular L-malic acid depends on an efficient uptake system for L-malic

acid, i.e. active import via a malate permease, and a L-malic acid-converting enzyme, i.e. fumarase,

malolactic enzyme, malate dehydrogenase or a malic enzyme. The focus of this chapter is on the

"malic enzymes" that catalyse the oxidative decarboxylation of L-malic acid to pyruvic acid and CO2,

linked to the reduction of the pyridine nucleotides, NAD+ or NADP+. During fermentative sugar

metabolism, pyruvic acid, an important branching point in carbohydrate metabolism in yeast, is

further decarboxylated to acetaldehyde by pyruvate decarboxylase and subsequently reduced to

ethanol by the alcohol dehydrogenase enzyme in yeast. Since L-malic acid is thus in effect converted

to ethanol, this pathway was described as the "malo-ethanolic pathway".

This chapter aims to give an in-depth characterisation of the malo-ethanolic pathways of K (-) and K

(+) yeasts, with specific emphasis on S. pombe and Saccharomyces species. Fundamental knowledge

about the regulation and physiological role of L-malic acid and its metabolism in yeast is imperative

for the successful application of innovative genetic engineering strategies for Saccharomyces. From a

winemaking perspective, K (-) yeasts or their genetically modified counterparts seem to be well suited

for the deacidification of wine as an alternative to the bacterial malolactic fermentation. One of the

strongest advantages of employing malo-ethanolic K (-) yeast in biodeacidification of wine is the

production of the primary end product of alcoholic fermentation, ethanol, without the introduction of

.any other unnatural metabolic intermediates to wine.

3.2 THE MALIC ENZYME

Since the first description of a malic enzyme in pigeon liver almost 50 years ago (Ochoa, 1955),

"malic enzyme" activities have been identified in several species, including prokaryotes (Bacillus

subtilis, Bacillus stearothermophilus, Clostridium thermocellum, Pseudomonas putida, Sulfolobus

solfatarieus-Rhizobium meliloti -and Escherichia coli) (Driscol and Finan, 1996; Kobayashi et al.,

1989), parasitic flagellates (Tritrichomonas foetus) (Vafiáëová et al., 2001), yeasts, fungi (Mucor

circinelloides; Aspergillus nidulans; MortierelIa alpina and Neocallimastix frontalis) (Song et al.,

2001; Van der Giezen et al., 1998; Wynn et al., 1997, 1999; 2000), plants, mammals and humans.

Malic enzymes (BC 1.1.1.38-40) (Outlaw and Springer, 1983) differ in their specificity for substrates

(L-malic acid and/or oxaloacetic acid), co-factors (either NAD+ [BC 1.1.1.38 and EC 1.1.1.39] or

NADP+ [Ee 1.1.1.39 and EC 1.1.1.40]), kinetic constants, oxaloacetate-decarboxylating activity,
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intracellular localisation (cytosolic, mitochondrial or hydrogenosomal), and the degree of reversibility

of the decarboxylation reaction (ranging from absent to almost complete) (Voegele et al., 1999).

Furthermore, malic enzymes from bacteria to humans exhibit a high degree of amino acid sequence

conservation (Viljoen et al., 1994; Xu et al., 1999; Yang et al., 2000). Based on the diversity of

regulation of malic enzymes in different organisms or different compartments and the evolutionary

preservation of malic enzymes throughout a wide spectrum of organisms in nature, it is believed that

malic enzymes are responsible for various but essential physiological functions in living organisms

(Driscoll and Finan, 1996; Song et al., 2001).

The end products of the malic enzyme reaction, i.e. pyruvic acid, CO2 and NAD(P)H, feed into

numerous biological pathways that can be broadly defined as pathways where NAD-dependent malic

enzymes are involved in oxidative metabolic processes, or pathways where the NADP-dependent

enzymes playa role in reductive biosynthesis processes. In line with this broad metabolic view, the

NAD-dependent malic enzyme isoforms usually play an important role in energy production via the

production of NADH and pyruvic acid. For example, the human NAD-dependent malic enzyme is

pivotal in energy production via glutamine in rapidly growing tissues, such as those found in the

spleen, thymus, mucosal cells of small intestine, as well as tumour cells (Bagetto, 1992; McKeehan,

1982; Sauer et al., 1980).

NADP-dependent malic enzyme isoforms found in bacteria (Gourdon et al., 2000), yeast, fungi, birds

and mammals play a role in primarily biosynthetic reactions, especially lipid biosynthesis and

desaturation through the provision of NADPH (Coleman and Kuzava, 1991; Goodridge and Ball,

1966, 1967, 1968a• b; Gourdon et al., 2000; Leveille et al., 1968; Nunes et al., 1996; Tanaka et al.,

1983; Wynn et al., 1997, 1999; 2000; Xu et al., 1999). Acetyl-coenzyme A is. produced in .

mitochondria t~rou~h the .metabolism of fatty acids and the oxidation of pyruvic acid to acetyl-

coenzyme A (Fig. 3.1). When ATP is required, acetyl-coenzyme A can enter the TCA cycle to drive

ATP production via oxidative phosphorylation. When ATP supplies are abundant, the acetyl-

coenzyme A can be diverted to other purposes like energy storage in the form of fatty acids. The

biosynthesis of fatty acids from this acetyl-coenzyme A cannot take place directly, since it is

produced inside mitochondria while fatty acid biosynthesis occurs in the cytosol. Also, acetyl-

coenzyme A cannot directly be transported out of the mitochondria. To be transported, the acetyl-

coenzyme A must be chemically converted to citric acid using a pathway called the tricarboxylate

transport system (Fig. 3.1).

Inside mitochondria, the enzyme citrate synthase fuses acetyl-coenzyme A with oxaloacetic acid to

produce citric acid. The citric acid can be transported from the mitochondria to the cytosol, thus

transporting the acetyl-coenzyme. A -in the form of citric acid. Once in the cytosol, citric acid is

converted back to oxaloacetic acid via the energy-dependent citrate 'lyase reaction, which is then
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reduced to t-malic acid by means of the malate dehydrogenase enzyme. L-Malic acid can be oxidised

to pyruvic acid by the malic enzyme, with the production of NADPH that feeds into the fatty acid

biosynthesis pathway. Pyruvic acid can also be re-imported back into the mitochondria. Similarly, L-

malic acid can be transported back into the mitochondria and used to produce NADH via the

mitochondrial malate dehydrogenase, once inside the mitochondria (Fig. 3.1). The role of the malic

enzyme in lipid biosynthesis in filamentous fungi has been studied in depth and strong evidence has

been obtained that malic enzyme activity is a key factor in ensuring maximal lipid accumulation

(Wynn and Ratledge, 2000). The direct relation between malic enzyme activity and lipid

accumulation is still speculative, however, since it is generally agreed that lipogenesis obtains

NADPH from the cytosolic NADPH reservoir, which is maintained by a regiment of

NADPH-producing enzymes, i.e. the glucose-ë-pbosphate dehydrogenase, 6-phosphogluconate

dehydrogenase and NADP+ :isocitrate dehydrogenase, as well as the malic enzyme. Furthermore,

fungi possessing a high degree of malic enzyme activity do not necessarily accumulate lipids (Wynn

et al., 1999). This finding, together with the presence of multiple isoforms of malic enzyme in some

fungi (Savitha et al., 1997; Zink, 1972), suggests that several forms of malic enzyme may exist in

fungi, perhaps even encoded by different genes. Specific isoforms of the malic enzyme may therefore

be associated with lipid accumulation, whilst others have other cellular functions.

Figure 3.1. The role of the malic enzyme in lipid biosynthesis and desaturation through the provision
of cytosolic NADPH in the mouse and humans. The tricarboxylate transport system is responsible for
the export of acetyl-coenzyme A from the mitochondrial matrix into the cytosol where the fatty acid
biosynthetic pathway is situated (Biocarta, http://www.biocarta.com/).
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In mammals and humans the NADP malic enzyme plays an essential role in microsomal drug

detoxification (Sanz et al., 1997) and preventing oxidative damage, i.e. cellular damage by reactive

oxygen species (Lee et al., 2002). The NADP-dependent malic enzyme contributes to a pool of

NADPH that drives the NADPH-dependent glutathione reductase enzyme in producing small but

critical amounts of the well-known antioxidant glutathione (Meister and Anderson, 1983). The

antioxidant capacity of a tissue is determined by the constant supply of reducing potentials (Bukato et

al., 1995; Izawa et al., 1998; Kochan et al., 1995; Lee et al., 2002; Loeber et al., 1994; McKenna et

al., 2000; Vogel et al., 1998).

L-Malic acid metabolism plays multiple roles in plants, including contributing to energy production,

reducing power, pH balancing mechanisms, mechanisms of stomatal closure, carbon skeletons for

biosynthesis, mineral nutrition, fruit ripening, plant defense and injury responses (Drincovich et al.,

2001; Lance and Rustin, 1984; Laporte et al., 2002; Outlaw et al., 1981). However, the quantitative

understanding of how the many reactions of L-malic acid metabolism contribute to plant function is

rudimentary (Edwards et al., 1998). A well-characterised role of L-malic acid in plants occurs during

photosynthesis, i.e. for the transient storage of CO2 (Hatch, 1971; Leegood, 2002). In C4- and

vascular (CAM) plants, the decarboxylation reaction by the NADP-dependent malic enzyme, in

combination with the phosphoenolpyruvate carboxylase (PEP-carboxylase), plays an essential role in

delivering CO2 via the Hatch-Slack pathway for further CO2 fixation during the Calvin-Benson

photosynthetic cycle in chloroplasts (Edwards and Andrea, 1992; Lipka et al., 1999; Wedding, 1989).

In C3 plants that only utilise the Calvin-Benson cycle, the malic enzyme does not playa significant

role during photosynthesis (Drincovich et al., 2001; Honda et al., 2000; Lai et al., 2002"' b; Stryer,

1995).

3.3 THE MALO-ETHANOLIC PATHWAY OF S. POMBE

Since the original isolation of S. pombe by Lindner from East African millet beer (pombe beer) in

1890, the remarkable L-malic acid-degrading ability of this yeast under fermentative conditions has

attracted the attention of several applied and fundamental scientific studies (Barnett and Lichtenthaler,

2001; Lindner, 1893; Lodder and Kreger-Van Rij, 1952; Osterwalder, 1924; Viljoen et al., 1994;

1998; 1999). The potential application of strains of S. pombe for the deacidification of wine was soon

realised and has been the subject of numerous oenological studies (Beelman and Gallander, 1979;

Carré et al., 1983; Fleet and Heard, 1993; Gallander, 1977; Gao and Fleet, 1995; Maconi et al., 1984;

Munyon and Nagel, 1977; Snow and Gallander, 1977; Taillandier et al., 1995; Yang, 1973, 1975;

Yokotsuka et al., 1993). Strains of S. pombe are occasionally found in spontaneous wine fermentation

.:. and exhibit several auspicious characteristics similar to wine yeast strains of Saccharomycescsueti as
- - -

a strong alcoholic fermentation capacity and a high S02 tolerance. Together with the yeast's unique
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ability to degrade L-malic acid during alcoholic fermentation, strains of S. pombe proved to be an

ideal candidate for the simultaneous fermentation and deacidification of grape must (Beelman and

Gallander, 1979; Benda and Schmitt, 1966; Bidan et al., 1974; Carré et al., 1983; Gallander, 1977;

Gao and Fleet, 1995; Magyar and Panyik, 1989; Rankine, 1966; Snow and Gallander, 1977;

Taillandier et al., 1995; Yang, 1973, 1975).

Vinification experiments with strains of S. pombe yielded a constant 50% decrease in the total acidity

(TA) that corresponds to the complete removal of extracellular L-malic acid (Gallander, 1977). The

significant increase in wine pH as a result of the complete removal of L-malic acid also leads to a

further loss of acidity due to the enhanced precipitation of potassium bitartrate. Although efficient

wine deacidification can be achieved with strains of S. pombe, some strains, particularly strains of

S. pombe var. malidevorans, are inclined to produce off-flavours in wine with especially high levels

of hydrogen sulphide (Dharmadhikari and Wilker, 1998; Gallander, 1977; Rankine, 1966). In other

S. pombe vinifications, no significant off-flavours were produced, but the wine lacked traditional wine

flavours (Gallander, 1977; Munyon and Nagel, 1977). To overcome the adverse sensory effect of

S. pombe on vinification, co-fermentation studies with S. pombe and S. cerevisiae were attempted.

However, due to S. pombe's higher optimum fermentation temperature and slower doubling time,

cells of S. pombe grow slower than S. cerevisiae in the presence of S02 and the low pH « pH 3.5)

associated with wine (Gallander, 1977; Yang, 1973, 1975). Typically, cells of S. cerevisiae

out-compete S. pombe under winemaking conditions and dominate the fermentation, leading to a

diminished and insignificant deacidification effect by S. pombe.

In pursuit of optimising the deacidification step by S. pombe, strains of S. cerevisiae were inoculated

onlyafterS. pombe performed a partial degradation of t.-malic acid (Sousa et al., 1995; Taillandier et .

al., 1995). However, pre-fermentation with S. pombe resulted in severe growth inhibition of

S. cerevisiae due to some unfamiliar inhibitory factors liberated by S. pombe (Taillandier et al., 1995).

Furthermore, this strategy required the removal of S. pombe cells by filtration after a certain desired

level of deacidification was obtained before S. cerevisiae could be inoculated to complete the

alcoholic fermentation (Snow and Gallander, 1977). Implementation of such a strategy in a winery

would complicate rather than simplify cellar operations, with an increased risk of oxidation.

Deacidification of wine with S. pombe after alcoholic fermentation with S. cerevisiae has also been

ruled out by research indicating- severe inhibition of L-malic acid transport in S. pombe by low

concentrations of ethanol and acetic acid (Sousa et al., 1995). Due to these obstacles, strains of

S. pombe have not yet been successfully applied in any commercial winemaking operation.

3.3.1 The molecular biology of the malo-ethanolic pathway in S.pombe

Genetic analysis of L-malic acid metabolism in'S. pombe originated in the 1980s when mutants of

S. pombe defective in L-malic acid metabolism (mau mutants) were generated and characterised
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(Osothsilp and Subden, 19863
). Based on classical genetic analysis, the mutants were found to group

into three complementation clusters, namely' malate permease, malic enzyme and malate

dehydrogenase mutants. Retrieval of the structural genes involved in L-malic acid metabolism was

subsequently obtained by complementation of the mutant strains with a genomic library of S. pombe,

leading to the cloning of the malate transporter (mael y and malic enzyme (mae2) genes (Grobler et

al., 1995; Subden et al., 1998; Viljoen et al., 1994).

3.3.1.1 The malate permease gene (mae1). The structural gene of the malate permease (maeJ),

localised on the S. pombe chromosome I, encodes an open reading frame of 1314 bp that translates

into a putative protein of 438 amino acids with a theoretical molecular weight of approximately 49

kDa (Grobler et al., 1995). DNA and amino acid sequence analysis of the S. pombe malate transport

protein did not reveal any significant homologies with other genes or proteins previously sequenced,

but computational analysis of the hydrophobic-hydrophilic profile of the putative maelp indicated

some conserved motifs found in other transport proteins. A leucine zipper motif, which normally

facilitates protein-protein interaction (Bisson et al., 1993; White and Weber, 1989), aC-terminal

PEST motif involved in protein degradation, and several N-linked glycosylation and protein kinase C

phosphorylation sites were identified in the maelp protein (Grobler et al., 1995; Rogers et al., 1986).

The biological role of these protein motifs in S. pombe has not yet been established and requires more

in-depth physiological studies. In addition, the putative maelp protein did not contain a

membrane-targeting signal, usually identifiable at the N-terminal of most membrane proteins, but the

existence of an internal membrane signal motif was suggested (Grobler et al., 1995).

3.3.1.2 The malic enzyme gene (mae2). The structural gene of the S. pombe malic enzyme, mae2,

was cloned and characterised as an open reading frame of 1695 bp located on -the S. pombe

chromosome III (Viljoen et al., 1994). DNA-sequence analysis of the S. pombe malic enzyme gene

did not indicate the presence of a mitochondrial-targeting signal, suggesting that the malic enzyme

functions in the cytosol of S. pombe cells. A high degree of homology on the amino acid sequence

level (up to 52%) was observed between the putative S. pombe mae2p protein and malic enzymes

from other organisms (Viljoen et al., 1994). A high degree of homology was also observed between

the malic enzyme of eukaryotes and the malolactic enzyme (MLE) of lactic acid bacteria (LAB). The

phylogenetic tree obtained with amino acid sequences of the MLE and different malic enzymes

showed that these two types of enzymes might-have a common ancestor. Fascinatingly, the malic

enzyme of E. coli, S. pombe and S. cerevisiae showed a closer phylogenetic link with the MLE of

LAB than with malic enzymes from other organisms (Groisillier and Lonvaud-Funel, 1999).

3.3.2 The physiological role of the malo-ethanolic pathway in-S. pombe

As a K (-) yeast, S. pombe utilises L-malic acid (or other TCA cycle intermediates) only in the

presence of glucose or other assimilable carbon sources (De Queiros and Pareilleux, 1990; Fuck and
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Radler, 1972; Rankine, 1966; Magyar and Panyik, 1989; Osothsilp, 1987; Osothsilp and Subden,

1986b; Taillandier et al., 1988). S. pombe displays an extreme tolerance for high L-malic acid

concentrations, as levels of up to 29.0 gil of L-malic acid can be degraded without any negative effect

on cell growth. Temperli et al. (1965) also found that this highly active metabolism of L-malic acid

had no effect on the yeast's sugar metabolism or ethanol production abilities. The fundamental

understanding of why S. pombe degrades L-malic acid in this manner and the specific metabolic role

of MEF in this yeast has been partially revealed through primary biochemical characterisation of the

L-malic acid transport and enzymatic conversion to pyruvic acid by S. pombe cells. Detailed

molecular analysis of the mechanisms involved in regulation of L-malic acid degradation in S. pombe

has further contributed to our understanding of the physiological role of the MEF pathway in yeast.

3.3.2.1 Uptake of L-malic acid in S. pombe. According to the pKa parameters for L-malic acid

dissociation (pKal = 3.41 and pKa2= 5.1), the negatively charged mono-anionic form of L-malic acid

is transported by carrier-mediated active transport at pH 3.5. At pH values lower than 3.4, mainly the

undissociated form of the acid enters cells of S. pombe by simple diffusion (Baranowski and Radler,

1984; Camarasa et al., 2001; Osothsilp and Subden 1986b; Rodriquez and Thornton, 1990; Sousa et

al., 1992; Sousa et al., 1995). Taillandier et al. (1988) first demonstrated that the uptake of L-malic

acid in S. pombe displays saturation kinetic data typical of carrier-mediated active transport. The

energy requirement of active L-malic acid transport was demonstrated by the inhibitory effect of

energy metabolism inhibitors, such as oxidative phosphorylation uncouplers and electron transport

inhibitors, on L-malic acid transport (Osothsilp and Subden, 1986b). Recently, the active mode of

transport for the S. pombe malate permease protein was confirmed when the mael gene was expressed

in S. cerevisiae using the regulatory elements of the 3-phosphoglycerate kinase (PGKl) gene

(Camarasa et al., 2001).

The transport of negatively charged molecules across a plasma membrane is characterised by either

anion exchange (antiport), co-transport (symport) with cations or protons involving a single carrier, or

separate electrically coupled carriers. Proton flux studies with S. pombe during L-malic acid transport

strongly suggest that the malate permease operates as a proton-dicarboxylate symporter and that the

proton motive force (~pH) is the driving force behind L-malic acid uptake. Uptake of one molecule

of L-malic acid corresponds to the uptake of one proton, leading to the formation of a pH gradient

between the intracellular and external cell milieu (Camarasa et al., 2001; Osothsilp and Subden 1986b;

Sousa et al., 1992).

S. pombe has the ability to metabolise mainly two TCA cycle intermediates. Both L-malic acid and

oxalacetic acid undergo vigorous oxidative decarboxylation, while the other TCA cycle intermediates

are poorly metabolised (Krebs, 1952). Mayer and Temperli (1963) ascribed this phenomenon to the

presence of a 'permeability barrier' for these slowly metabolised TCA cycle intermediates in S. pombe.
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Competitive inhibition studies on the initial transport rate of C14-labelled L-malic acid in the presence

of other TCA cycle intermediates or dicarboxylic acids, such as succinic, fumaric, oxalacetic,

a-ketoglutaric, maleic and malonic acid, indicated that the malate permease of S. pombe might act as

a general transporter for all these acids (Sousa et al., 1992). Lactic, pyruvic and citric acid, on the

other hand, did not inhibit initial uptake rates of t.-rnalic acid, suggesting that they are not transported

by the same permease (Sousa et al., 1992). More in-depth investigations into the transport

mechanism of the S. pombe malate transporter revealed that the malate permease is able to act as a

selective general dicarboxylic acid transporter. Although the preferred substrate of the S. pombe

malate transporter is t.-malic acid, other dicarboxylic acids such as succinic, malonic and

a-ketoglutaric acid are also weakly transported by this protein (Camarasa et al., 2001; Grobler et al.,

1995; Sousa et al., 1992). On the other hand, fumaric acid is not actively transported by maelp, but

competes with L-malic acid during transport by binding to the active site of the protein and thereby

blocking r.-rnalic acid transport (Saayman et al., 2000). This stearic occupation by fumaric acid, and

possibly some other TCA cycle intermediates and dicarboxylic acids, is due to the structural

relatedness of these acids to malic acid.

Two classes of malate transporters have been described for yeast and fungi, i.e. those that are

repressed by glucose and those that are not. In the K (+) yeasts Kluyveromyces lactis, C. utilis,

H. anomala and C. sphaerica, the malate transport system was found to be substrate inducible and

subject to glucose repression (Camarasa et al., 2001; Cássio and Leao, 1993; Carte-Real et al., 1989;

Corte-Real and Leao, 1990). In contrast, ï.-malic acid transport in Z. bailii and S. pombe were found

to be active in the presence of glucose and not induced by the substrate (Baranowski and Radler,

1984; Osothsilp and Subden, 1986b). In support of S. pombe's requirement for fermentable carbon

sources for ï.-malic acid utilisation, L-malic acid transport was shown to be insensitive to glucose

.,orepression.iRJhis yeast. It is postulated that metabolism of sugar(s) supplies the required energy by

inducing the proton motive force for active transport of L-malic acid (Camarasa et al., 2001; Magyar

and Panyik, 1989; Osothsilp and Subden, 1986a• b; Saayman et al., 2000; Taillandier and Strehaiano,

1991). In fact, in heterologous expression studies where the S. pombe mae} gene was expressed in

S. cerevisiae under the regulatory elements of the 3-phosphoglycerate kinase (PGK}) gene, L-malic

acid transport was characterised by glucose activation of the maelp permease (Camarasa et al., 2001).

These results have, however, not yet been confirmed for the native malate permease in S. pombe. On

the transcription level, preliminary expression studies of the mae} gene in S. pombe confirmed that

the mae} gene is constitutively expressed and not subject to catabolite repression (Grobler et al.,

1995; Osothsilp, 1987).

3.3.2.2 Enzymatic conversion of L-malic acid in S. pombe. The malic enzyme catalyses the direct

1,4-decarboxylation of L-malic acid to pyruvic acid and CO2• (Fig. 3.2). The enzyme in S. pombe is

bifunctional, reacting with either t-malic acid or oxalacetic acid, and requires NAD+ and the divalent
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cations Mn2+ or Mg2+ for activity (Osothsilp, 1987; Osothsilp and Subden, 1986a). The metal ion in

the enzymatic reaction serves as a bridge between L-malic acid and the enzyme and functions to

properly position the L-malic acid at the active centre, as well as helping to polarise the C-2 hydroxyl

group in the initial stage (Chou et al., 1995). Subsequent decarboxylation of oxaloacetic acid is also

catalysed by the metal ion, which acts as a Lewis acid. The metal ion plays a vital role in chelating

the negatively charged enolate-pyruvate intermediate (Chang et al., 2002).

NADH ,-- -_ ,
I ,

C-OOH NAD+ + H+
,

C-OOH ;10',,
I ,

II

H-C-H , H-C-H C-H,
I 3I ,

I,
HO-C-H ,

O=C ~ C=O,
I

,
I I,

C-OOH ,
C-OOH C-OOH,,

Mn2+/Mg2+ ", I H+
L( -) Malic acid

.:»
L(-) Pyruvic acid

Oxaloacetic acid
(enzyme-bound)

Figure 3.2. The NAD-dependent malic enzyme of S. pombe (EC 1.1.38, Malate : NAD+
oxidoreductase [oxaloacetate decarboxylating]) proceeds by oxidation of L-malic acid to oxaloacetic
acid, followed by decarboxylation to pyruvic acid.

The biologically functional form of most eukaryotic malic enzymes is a homotetrameric protein

composed of four chemically identical sub-units (Lee and Chang, 1990; Mitsch et al., 1998). In

S. pombe, however, the malic enzyme was predicted to be a dimer consisting of two identical subunits

with a molecular weight of 60 kDa (Temperli et al., 1965). The enzyme has an optimal pH range of

3.5 to 4.0 and has a high substrate affinity for L-malic acid (Km= 3.2 mM) (Temperli et al., 1965).

Molecular analysis of the S. pombe malic enzyme gene and its deduced amino acid sequence revealed

the presence of eight highly conserved regions, regions A-H, across 27 malic enzymes from various

prokaryotic and eukaryotic sources (Viljoen et al., 1994, 1998). These regions represent clusters of

highly conserved residues separated by spacer regions with less homology, but conserved in length.

Four of the conserved regions were implicated in the binding of NAD(P)H, L-malic acid or divalent

cations, whilst the physiological importance of the other regions remains unknown. Further sequence

homology analysis between all known malic enzymes, as well as malolactic enzymes (MLEs), has

revealed that the active and cofactor binding sites within these enzymes are highly conserved (Fig.

3.3) (Groisillier and Lonvaud-Funel, 1999). The dinucleotide (NAD+/NADP+) binding signature

motif, i.e. consensus box I, has been identified by Wierenga et al. (1985). The consensus box III,

identified through site-directed mutagenesis as the metal binding site (Wei et al., 1995), is identical

between malic and malolactic enzymes. The importance of a cysteine in malate binding has been

demonstrated by SH reagent inhibition studies in several malic enzymes (Chang et al., 1993; Gavva et
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aL., 1991). This residue is replaced by isoleucine (I) in MLEs (lysine (K) for Lactobacillus

saLivarius). However, the malic enzymes of S. pombe and S. cerevisiae also have isoleucine, similar

to the MLEs (Groisillier and Lonvaud-Funel, 1999). Although the function of only four of the

conserved regions found in malic enzyme is known, the importance of the other homologous areas

should not be disregarded. This was demonstrated by a single point mutation in the S. pombe malic

enzyme gene at nt 1331, where a switch from a G to an A changed amino acid 444 from a glycine into

an aspartate residue in the conserved H region. The point mutation resulted in the almost complete

abolishment of malic enzyme activity in the S. pombe mutant (Viljoen et aL., 1998).

Consensus Malic Acid Binding Site

M p I V y T P T V G D A@]Q K y S S L F R R P
L V I D V I A E S I K Q F G L I y V K S
N E L T S N N E A L Q y

A H Q N
I D T D
V Y

G

Consensus Box I (dinucleotide binding site)

VV T D G E R I L G L G D L G
S A S G I W

S M Q

Consensus Box III (metal binding site)

F NDD I Q G T

Figure 3.3. Analysis of aligned consensus amino acid sequences of malic and malolactic enzymes.
Malolactic specific residues are indicated in bold. Yeast-specificrêsidues are indicated in italics.
Adapted from Groisillier and Lonvaud-Funel (1999).

L-malic acid metabolism in S. pombe involves three enzymes, i.e. the malate permease, the cytosolic

malic enzyme (EC 1.1.1.38) and a mitochondrial malate dehydrogenase enzyme (EC 1.1.1.37)

(Osothsilp and Subden, 19868). Under fermentative (non-aerated) conditions when functional

mitochondria are restricted, the cytosolic malic enzyme of S. pombe is exclusively involved in the

degradation of intracellular L-malic acid. However, during aerobiosis (respiration), when

mitochondria are functional, both the malic enzyme and malate dehydrogenase play a role in the

metabolism of L-malic acid. The malate dehydrogenase contributes to approximately 10% of the

L-malic acid degradation during aerobiosis, while the remaining L-malic acid is directly converted to

pyruvic acid and CO2 via the malic enzyme (Osothsilp, 1987; Osothsilp and Subden, 19868; Subden et

aL., 1998).
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An eminent attribute of the conversion of L-malic acid to ethanol in S. pombe is the stoichiometrical

nature of this conversion, i.e. one mole of L-malic acid is converted into one mole of ethanol and CO2,

with no apparent link between L-malic acid utilisation and cell growth or biomass production under

fermentative conditions (Magyar and Panyik, 1989; Mayer and Temperli, 1963; Taillandier et al.,

1988; Taillandier and Strehaiano, 1991). An in-depth analysis of the malic enzyme's physiological

role in S. pombe's metabolism was prompted by the intriguing question of why S. pombe contains

such a strong L-malic acid metabolism when it does not contribute to cell biosynthesis. The

transcriptional regulation of the mae2 gene of S. pombe under different conditions was therefore

investigated to shed some new light on the function of malic enzyme in this yeast.

In accordance with the general characteristics of L-malic acid metabolism in K (-) yeasts, the

expression of the mae2 gene was not induced by the substrate, malic acid. Further expression studies

revealed an increase in transcription of mae2 gene under high glucose (8%) and anaerobic

(fermentative) conditions (Groenewald and Viljoen-Bioom, 2001; Viljoen et al., 1999). Subsequent

deletion and mutational analysis of the mae2 gene promoter identified the presence of several

cis-acting regulatory elements, including upstream activator sequences (UAS) and repressor

sequences (URS) that playa role in the regulation of the mae2 gene in S. pombe. The specific role of

these cis-acting regulatory elements in the regulation of the mae2 gene expression could be linked to

the cAMP-dependent and general stress-activated pathways in S. pombe. A hypothetical model for

the regulation of the malic enzyme expression suggests that there are two possible levels of regulation

of the mae2 gene in response to glucose. The first level of regulation involves a mild

carbon-regulated induction of malic enzyme expression in response to increased glucose

concentrations, and a stronger induction in response to osmotic stress conditions (Groenewald and

Viljoen- Bioom, 200 I; Viljoen et al., 1999). Both these conditions, i.e. high glucose concentrations

and osmot!£_.stI:.e.~~"mi!,y'_adverselyaffect the redox balance inside the cell.

Since the oxidative decarboxylation of L-malic acid coincides with the reduction of NAD+ to NADH,

it is plausible that the malic enzyme may play an important role in maintaining the redox balance

under aerobic conditions. Under anaerobic conditions, pyruvic acid produced during this reaction is

further metabolised to ethanol with the concomitant oxidation of NADH to NAD+. Because there is

no net gain or loss in NADH during the conversion of L-malic acid to ethanol, the increased

expression of the malic enzyme under fermentative conditions should not playa role in stabilising the

redox balance. It was therefore suggested by Viljoen et al. (1999) that the malic enzyme in S. pombe

provides additional pyruvic acid for essential anapleurotic reactions under fermentative conditions.

Pyruvic acid plays an important role in the provision of a-ketoglutaric acid and oxalacetic acid for the

synthesis of amino acids and nucleotides. Both these precursors are synthesised in the mitochondria

and transported to the cytosol for biosynthetic reactions; therefore alternative pathways have to be

utilised for the synthesis of these precursors when the mitochondria are not functional. These'

Stellenbosch University http://scholar.sun.ac.za



65

anapleurotic reactions comprise the carboxylation of pyruvic acid to oxalacetic acid via pyruvate

carboxylase, the oxidation of L-malic acid to pyruvic acid via the malic enzyme, and the production of

succinic acid via the glyoxylate cycle. Although earlier biochemical studies indicate that the

metabolism of L-malic acid in S. pombe does not contribute to cell biomass, the induced expression of

the S. pombe malic enzyme under fermentative conditions may provide an important secondary

pathway for the provision of pyruvic acid for other metabolic requirements (Groenewald and

Viljoen-Bloom,2001).

3.4 THE MALO-ETHANOLIC PATHW AY IN STRAINS OF SACCHAROMYCES

Strains of S. cerevisiae are in general incapable of efficiently utilising malic acid. Relatively minor

modifications in L-malic acid concentration, and thus total acidity, are observed under winemaking

conditions. Different accounts of the ability of strains of Saccharomyces to degrade L-rnalic acid have

been reported in the past. Depending on the strain of Saccharomyces, between 0 and 3 gil L-malic

acid can be consumed (Subden et al., 1998), while between 3% and 45% (w/v) of L-malic acid

degradation by strains of Saccharomyces have been reported by Rankine (1966) and Radler (1993).

In contrast, Wenzel et al. (1982) described the degradation of between 10% and 20% (w/v) L-malic

acid by commercial wine yeast strains of Saccharomyces. As a rule, however, strains of

Saccharomyces rarely degrade all of the L-malic acid in grape must during alcoholic fermentation.

Within the five-member Saccharomyces sensu stricto group, i.e. S. cerevisiae, S. paradoxus,

S. pastorianus, S. uvarum and S. bayanus (Pulvirenti et al., 2000), notable variations in the action on

ï.-rnalic acid exist. The degradation of L-malic acid by strains of Saccharomyces is correlated to the

optimal growth temperature of the individual strains, that is, cryotolerant species (i.e. S: bayanus.

S. uvarum and S. paslorianus)."we.r:e_Jound to synthesise ï.-malic acid, while mesophylic strains of

Saccharomyces degraded intermediate amounts of L-malic acid during fermentation. The

thermotolerant strains of S. cerevisiae and S. paradoxus exhibit the strongest L-malic acid degrading

phenotype of up to 40 - 48% L-malic acid (Rainieri et al., 1998a, b).

Strains of Saccharomyces with the ability to synthesise ï.-malic acid are of important oenological

value as they can contribute to improving the total acidity (TA) of wines produced in the warm-

climate regions. Strains of Saccharomyces produce variable amounts of extracellular carboxylic

acids, mainly malic, succinic and citric acid as well as some non- TCA intermediates such as acetic

acid, during alcoholic fermentation (Bhattacharjee et al., 1968; Castellari et al., 1994;

Ramon-Portugal et al., 1999). The production and accumulation of L-malic acid and other TCA cycle

intermediates by some strains of S. cerevisiae and S. uvarum have been attributed to growth in stress

conditions. Dependirig on the strain of Saccharomyces, between 0.1 and 2.6 gil malic acid is liberated

during the active growth phase in conditions of high sugar levels (15-20 % Iw/vl). elevated pH levels
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(pH> 5.0) and under limiting nitrogen conditions « 300 mg/l assimilable nitrogen) (Coggins and

Whiting, 1975; Drawert et al., 1965; Fatichenti et al., 1984; Radler and Lang, 1982; Schwartz and

Radler, 1988; Whiting, 1976). Although L-malic acid synthesis is regarded as unlikely to proceed via

the reverse reaction of the malic enzyme since it would imply fixation of CO2 (Radler, 1993), the

requirement of CO2 for the production of L-malic acid was suggested by Schwartz and Radler (1988)

and confirmed by Pines et al. (1996, 1997).

The pathway for L-malic acid synthesis involves three cytosolic enzymes, i.e. the pyruvate carboxylase

(PC) responsible for the biotin- and ATP-dependent carboxylation of pyruvic acid to oxalacetic acid,

the cytosolic malate dehydrogenase (MDH2) and the cytosolic fumarase enzyme (Pines et al., 1996,

1997) (Fig. 3.4). In S. cerevisiae, the two principal pathways for the replenishment of oxalacetic acid

are via the carboxylation of pyruvic acid by pyruvate carboxylase (PC) and from the glyoxylate cycle.

During growth on glucose, the enzymes of the glyoxylate cycle are, however, repressed and thus PC

catalyses the only known reaction to replenish the TCA cycle under these conditions (Bakker et al.,

2001) .

•
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C-OOH

C-OOH "" _ j C=O
~=O ~ C-H
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Figure 3.4. The two cytosolic pathways for ï.-malic acid synthesls inS. cerëvisiae; -'1) L-rnalic acid
synthesis via carbon dioxide fixation by pyruvate carboxylase and malate dehydrogenase, and 2) via
the fumarase activity in S. cerevisiae.

The decomposition of L-malic acid rather than its synthesis is, however, the norm for commercial wine

yeast strains under winemaking conditions due to these yeasts' predominantly mesophylic nature, the

prevailing low pH values and sufficient nitrogen levels in grape musts (Radler, 1993). The

physiological significance of the liberation of L-malic acid by yeasts and more importantly its

significance in cryotolerant strains of Saccharomyces is unknown and currently under investigation.

The synthesis of L-malic acid in cryotolerant strains may be ascribed to high levels of biotin, the

coenzyme for pyruvate carboxylase, present in strains of S. bayanus. Interestingly, most strains of .

S. cerevisiae require biotin as an essential growth factor, while S. bayanus does not (Rainieri et al.,
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3.4.1 The molecular biology of the malo-ethanolic pathway in Saccharomyces strains

Although the complete sequence of the S. cerevisiae genome was published in 1996 (Goffeau et al.,

1996), no structural gene or functional homologue for the transporter protein of extracellular L-malic

acid has yet been identified in this yeast. A mitochondrial dicarboxylic acid carrier has been purified

and characterised and the genes of several mitochondrial dicarboxylic acid transporters, i.e. DrCï that

catalyse the uptake of L-malic acid in S. cerevisiae mitochondria, have been previously described

(Lancar-Benba, 1996; Pallotta et al., 1999; Palmieri et al., 1996, 1999, 2000). The lack of a genetic

equivalent for the malate transport gene of S. pombe corroborates the biochemical evidence on the

absence of an active transport system for L-malic acid in S. cerevisiae.

3.4.1.1 The malic enzyme gene (MAEl). Recently, the malic enzyme phenotype was designated to

an open reading frame, YKL029C, in the S. cerevisiae genome based on amino acid sequence

comparison with the known S. pombe malic enzyme (Boles et al., 1998). The MAE] gene of

S. cerevisiae was identified as the structural gene of the S. cerevisiae malic enzyme, which encodes a

putative protein of 669 amino acids with 47% homology to the S. pombe malic enzyme. Further proof

of the malic enzyme gene identity was obtained when the gene was deleted or over-expressed in yeast

and a loss or increase in malic enzyme activity was observed, respectively (Boles et al., 1998).

Phylogenetic analysis of the S. cerevisiae malic enzyme indicated a closer relatedness to the

eubacteria malic enzymes compared to the malic enzyme of higher eukaryotes. Based on the first 30

amino acids at the amino-terminal of the S. cerevisiae malic enzyme, the subcellular location of this

protein is predicted to be mitochondrial due the presence of a typical mitochondrial targeting signal,

i.e. seven arginine, five leucine, five serine residues and the absence of acidic amino acids. The

physiological function of mitochondrial targeting sequences is mainly determined by the overall

balance between these basic, hydrophobic and hydroxylated amino acids and the propensity to form

.amphiphilic helices (Allison and Schatz, 1986; Von Heijne, 1986).

3.4.2 The physiological role of the malo-ethanolic pathway in S. cerevisiae

As a K (-) yeast, S. cerevisiae only utilises L-malic acid in the presence of one or more fermentable

carbon sources. However, L-malic acid utilisation in S. cerevisiae is weak compared to S. pombe,

which seems to be evolutionarily streamlined for L-malic acid degradation. Moreover, the malic

enzyme is not essential for the survival of cells of S. cerevisiae, as a deletion of the MAE] gene does

not influence its viability (Boles et al., 1998). Together with the mitochondrial location of the

S. cerevisiae malic enzyme, these characteristics suggest that the malic enzyme fulfils an entirely

different role in the metabolism of S. cerevisiae.
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3.4.2.1 Uptake of L-malic acid in S. cerevisiae . The ability of yeast to degrade extracellular L-malic

acid efficiently is first and foremost dependent on the efficient transport of the dicarboxylic acid, o.

while the efficacy of its intracellular malic enzyme plays an auxiliary role. From previous studies

which have shown the simple diffusion of L-malic acid (and other dicarboxylic acids) in S. cerevisiae

(Ansanay et al., 1996; Baranowski and Radler, 1984; Rodriquez and Thornton, 1990; Salmon, 1987;

Salmon et al., 1987) and the absence of an equivalent gene in its genome, it can be concluded that

S. cerevisiae does not contain an effective method for L-malic acid uptake. The most favourable pH

for L-malic acid degradation by S. cerevisiae was found to be between pH 3.0 and 3.5, suggesting that

only the undissociated form of L-malic acid enters the yeast (Salmon, 1987; Salmon et al., 1987).

Further studies on the influence of initial L-malic acid and glucose concentrations, as well as pH, on

L-malic acid metabolism in S. cerevisiae, revealed some more detail on the nature of simple diffusion

of L-malic acid in S. cerevisiae (Delcourt, 1995). The initial L-malic acid concentration influenced

the final amount of L-malic acid degraded by S. cerevisiae, i.e. higher initial L-malic acid

concentrations resulted in a faster diffusion rate into the cells, which in tum resulted in higher levels

of L-malic acid degradation. However, the initial level of glucose did not have any significant

influence on the rate of L-malic acid uptake or the final amount of L-malic acid degraded by

S. cerevisiae (Delcourt, 1995).

3.4.22 Enzymatic conversion of L-malic acid in S. cerevisiae. Initial research by Polakis and

Bartley (1965) indicated that S. cerevisiae lacks malic enzyme activity, but very low malic enzyme

activities were reported nearly a decade later in cell extracts of S. cerevisiae by Fuck et al. (1973).

The partially purified S. cerevisiae malic enzyme (EC 1.1.1.38) was characterised as having a low

substrate affinity (Km= 50 mM) that is at least IS-fold weaker than the S. pombe malic enzyme and

further contributes to the inefficient degradation of L-malic acid in S. cerevisiae (Fuck et al., 1973;··

Osothsilp, 1987; .Salmon 1987; Temperli et al., 1965). As in S. pombe, malate dehydrogenases

contribute little to L-malic acid degradation in S. cerevisiae during fermentation, since functional

mitochondria are absent under these conditions. In contrast to the S. pombe malic enzyme that can

only utilise NAD+ as co-factor (Temperli et al., 1965), the malic enzyme from S. cerevisiae has been

reported to use both NAD+ and NADP+ as electron acceptors (Fuck et al., 1973). Manganese cations

(Mn2+) are also essential for the malic enzyme activity in S. cerevisiae.

An additional feature of the S. cerevisiae malic enzyme that may contribute to the weak degradation

of L-malic acid by strains of S. cerevisiae under fermentative conditions, is the mitochondrial location

of this enzyme. The mitochondrial localisation was first suggested by the presence of amino acid

targeting motifs and subsequently confirmed by subcellular fractionation analysis (Boles et al., 1998).

Mitochondria, the powerhouse of yeast cells responsible for energy generation through oxidative

phosphorylation, as well as the synthesis of haem, pyrimidines, amino acids and many other key

metabolites, exist in two different well-defined physiological states depending on the presence or
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absence of dissolved oxygen. When yeast is grown aerobically on a non-fermentable carbon source,

mitochondria of the fully-respiring cells are rich in cristae structures and up to 50 have been observed

per cell. During anaerobic growth conditions mitochondria are redundant in the respiratory sense, due

to the absence of oxygen as terminal electron acceptor. Nevertheless, the premitochondria present in

yeast cells are still responsible for the synthesis and desaturation of fatty acids and membrane lipids,

ergosterol biosynthesis, physiological adaptation to stresses caused by ethanol, toxic oxygen radicals

and high sugar, modification of cell surface characteristics involved in flocculation and cell

partitioning, amino acid and purine/pirimidine biosynthesis, mobilisation of glycogen and production

of flavour and aroma compounds (O'Connor-Cox et al., 1996).

S. cerevisiae has a strong tendency towards alcoholic fermentation due to the so-called Crabtree

effect. Even under fully aerobic conditions a mixed respiro-fermentative metabolism is observed

when the sugar concentration in the growth medium exceeds a threshold value (typically ca. 1 mM)

(Verduyn et al., 1984) or when the growth rate is higher than the so-called critical growth rate

(usually ca. two-thirds of the maximum specific growth rate on glucose) (Flikweert et al., 1997). In

glucose-repressed cells, only a few mitochondria with poorly developed cristae are found. Glucose

plays a crucial role in Crabtree-positive yeasts such as S. cerevisiae, since the development of and the

enzyme activities in mitochondria are repressed in the presence of glucose (Cho et al., 2001; Dejean

et al., 2000; Garda et al., 1993; Jayaraman et al., 1966; Mattoon et al., 1979; Perlman and Mahler,

1974; Polakis and Bartley, 1965). Under winemaking conditions where high glucose concentrations

are present, yeast mitochondria become fewer in numbers and dysfunctional, while many

mitochondrial enzymes are down-regulated. It is postulated that this phenomenon will have an

adverse effect on the ability of S. cerevisiae to degrade malic acid.

Preliminary transcriptional re~ulation studies of the MAE1 gene in S. cerevisiae have shed some light

on the physiological role of the malic enzyme in this yeast. Expression of the MAE1 gene was found

to be relatively low, but constitutive during continuous cultivation on different carbon sources, i.e.

glucose, ethanol and acetate (Boles et al., 1998). This is in contrast with the biochemical data found

for the purified S. cerevisiae malic enzyme, which, besides indicating the absence of substrate

induction by malic acid, also showed that the malic enzyme of S. cerevisiae is sensitive to catabolite

repression, which is not the case for the malic enzyme in S. pombe (Groenewald and Viljoen-BIoom,

2001; Osothsilp, 1987). Further evidence for the constitutive expression of the MAE1 gene was

obtained by genome-wide expression studies where the MAE1 gene expression showed no change

during batch growth in a 2% glucose medium until the glucose was exhausted (DeRisi et al., 1997;

Ter Linde et al., 1999).
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A clear induction of MAE] expression was observed during anaerobic growth of S. cerevisiae on

glucose in continuous culturing, with a ca. 3-fold increase at the transcriptional level and a ca. 4-fold

increase of the enzyme activity in cell extracts (Boles et al., 1998). Similar results were obtained

during genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of

S. cerevisiae (Ter Linde et al., 1999). However, a database search with the promoter sequence of the

MAE] gene did not reveal any significant or relevant transcription factor binding sites. The

expression pattern of S. cerevisiae MAE] gene strongly suggests a physiological function of the malic

enzyme in anaerobic conditions, possibly in the provision of intramitochondrial NADPH or pyruvate

(Boles et al., 1998).

The current proposed physiological role of the malic enzyme in S. cerevisiae involves its possible

participation as an auxiliary pathway for the regeneration of the main biosynthetic co-factor, NADPH

(Boles et al., 1998) (Fig. 3.5). Due to the respiro-fermentative metabolism of S. cerevisiae, carbon

flow is steered away from biosynthesis towards ethanol production. However, even under

fermentative conditions some degree of biosynthetic activity is essential for the yeast cell's survival.

Biosynthesis results in a net consumption of NADPH and a net production of NADH and, since

alcoholic fermentation is a redox-neutral process, ethanol formation does not account for the

reoxidation of assimilatory NADH. S. cerevisiae and other yeasts solved this redox dilemma by

reducing glucose to glycerol, with the concomitant reoxidation of NADH (Larson et al., 1998;

Nordstrërn, 1968; Oura, 1977; Van Dijken and Scheffers, 1986). According to this model (Fig. 3.5),

the malic enzyme, pyruvate carboxylase (PC), NAD+-dependent malate dehydrogenase (MDH2) and

mitochondrial dicarboxylic carrier (DIe]) act as a cyclic transhydrogenase shuttle to convert NADH

resulting from biosynthetic metabolism (Van Dijken and Scheffers, 1986) to NADPH to sustain the

yeast cell's biosynthetic requirements (Bakker et al., 2001). This NADHINADPH shuttle was also

described for the pancreatic islets of rats (MacDonald, 1995) ..

One of the major shortcomings in this model is that the actual existence of a mitochondrial pyruvate

transporter has not yet been established through the identification of its structural gene in the genome

of S. cerevisiae. Furthermore, the natural direction of flux of pyruvic acid during respiration is from

the cytosol, where glycolysis takes place, into the mitochondria. If this shuttle is active in

S. cerevisiae, it is therefore unlikely to operate as a complete shuttle. The physiological role of the

presumed malic acid-pyruvic acid shuttle is thus considered to be a complementary, but nevertheless

important, pathway for the provision of pyruvic acid for biosynthesis purposes in the yeast's

mitochondria (Bakker et al., 2001; Gombert et al., 2001).
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Figure 3.5 The predicted transhydrogenase malic acid-pyruvic acid shuttle in S. cerevisiae which
functions as a recycling process for cytosolic NADH into mitochondrial NADPH. All the enzyme
activities, except the mitochondrial pyruvate transporter (indicated by the question mark) has been
found in S. cerevisiae. Adapted from Bakker et al. (2001).

3.4.3 Comparison of L-malic acid metabolism in S. pombe and S. cerevisiae

As K (-) yeasts, both S. cerevisiae and S. pombe are unable to utilise L-malic acid as only energy or

carbon source. L-malic acid is oxidatively decarboxylated to pyruvic acid and CO2 by a malic enzyme

in both yeasts, but the efficiency of L-malic acid degradation is significantly weaker in S. cerevisiae.

Three main reasons for the weaker degradation of L-malic acid in S. cerevisiae have been postulated.

Firstly, S. cerevisiae lacks the machinery for active transport of L-malic acid (Fig. 3.6) found in

S. pombe and relies on rate-limiting simple diffusion for the intake of extracellular malic acid.

Secondly, the malic enzyme of S. cerevisiae has a significantly lower substrate affinity for L-malic

acid (Km = 50 mM) than that of S. pombe (Km = 3.2 mM), which contributes to weaker metabolism of

this acid in S. cerevisiae (Fuck et al., 1973; Temperli et al., 1965). Lastly, the mitochondrial location

of the malic enzyme of S. cerevisiae suggests that this enzyme is inherently submitted to the

regulatory effect of fermentative glucose metabolism, such as mitochondrial deterioration, which is a

well-documented phenomenon in Crabtree-positive yeast and which may amplify the already weak

L-malic acid metabolism of S. cerevisiae.
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On the basis of the opposing L-malic acid degradation abilities of S. cerevisiae and S. pombe, one can

argue that L-malic acid metabolism should play distinct physiological roles in these yeast species.

However, biochemical and genetic evaluation of the enzymes and genes involved in this pathway

from both yeasts concluded that the S. cerevisiae and S. pombe malic enzymes play an almost similar

role in the provision of pyruvic acid for cellular biosynthesis. The possibility for the existence of an

NADH-NADPH recycling function of the S. cerevisiae mitochondrial malic enzyme cannot be ruled

out, but additional evidence is still required. On the other hand, it has been postulated that the

conversion of L-malic acid to pyruvic acid to ethanol is a redox-neutral process. The exact influence

of the strong cytosolic malic enzyme of S. pombe on maintaining the redox balance and energy

production in this yeast therefore requires more in-depth investigation.

malic acid •••

NAD+ NADH
Mg2~Q02---

MA ME ~
(K",=3.2 mM) ~

~ CO2--- -+C02

Acet-
aldefhYde

NADH

NAD+
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cytosol
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Figure 3.6 The main differences in L-malic acid degradation between S. cerevisiae and S. pombe
involves the transport of malic acid, the substrate affinity of the malic enzyme and the
compartmentalisation of the malic enzymes in these two yeast species. Despite these significant
differences, the malic enzyme seems to playa similar role in S. cerevisiae and S. pombe, i.e. to supply
pyruvic acid for biosynthesis.
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Genetic engineering of industrial strains of Saccharomyces

4.1 INTRODUCTION

The genetic improvement of wine yeast strains can be obtained in a number of ways to accommodate

the requirements of the wine industry. Some techniques alter selective or specific regions of the

genome, while others cause the recombination or rearrangement of the entire genome (Barre et al.,

1993; Hammond, 1996; Pretorius and Bauer, 2002; Pretorius and Van der Westhuizen, 1991; Querol

and Ramon, 1996). Traditionally, since the middle 1980's, development of new industrial wine yeast

strains predominantly employed classical genetic techniques such as clonal selection. Variants or

mutants with beneficial attributes were selected by harnessing the forces of naturally occurring

genetic processes such as spontaneous mutation, genetic drifting (Snow, 1983) and genome renewal

(Mortimer et al., 1994) within a wine yeast strain. Forced mutation by means of chemical or radiation

mutagenesis and selection for positive phenotypes has increased the frequency of improving wine

yeast strains for decades.

Other widely used genetic techniques for the breeding of new wine yeast strains involve several

different "shotgun" approaches, including several types of hybridisation methods such as intra-species

mating, spore-cell mating, rare-mating, spheroplast fusion and cytoduction. After applying these

techniques, the newly constructed strains are usually screened for general beneficial properties such as

fermentation capacity, ethanol tolerance, absence of off-flavours, flocculation and carbohydrate

utilisation (Barre et al. 1993; Dequin, 2001; Pretorius, 2000). Although these classical genetic

techniques are extremely valuable in wine yeast development, a major drawback of this approach is

the lack of specificity and difficulty to introduce or remove specific properties from a strain in a well-

controlled manner without altering the yeast's overall performance. Often a new strain is obtained

with desirable new characteristics, but at the risk of compromising other desired characteristics (Barre

et al., 1993; Hammond, 1996; Pretorius and Bauer, 2002; Pretorius and Van der Westhuizen, 1991;

Querol and Ramon, 1996).

With the advent of recombinant DNA technology in combination with the transformation of foreign

DNA into yeast and its application in combination with the classic genetic techniques, especially

hybridisation, a new cutting-edge approach to developing improved strains of Saccharomyces has

emerged. A substantial amount of work took place during the 1990s to develop new strains, which

mainly involved recombinant DNA approaches (Barre et al. 1993; Blondin and Dequin 1998; Butzke

and Bisson 1996; Henschke 1997; Pretorius 2000; Pretorius and Bauer, 2002; Pretorius and Van der

Westhuizen 1991; Querol and Ramon 1996). Although natural transformation, defined as the uptake

of free DNA from the surrounding medium, has been described in prokaryotes and only recently in
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the yeast S. cerevisiae (Dreiseikelmann, 1994; Griffith, 1928; Lorenz and Wackernagel, 1994;

Nevoigt et al., 2000; Stewart and Carlson, 1986), yeast cells usually are artificially transformed with

DNA. Yeast cells can be forced to take up DNA by chemical treatment, e.g. spheroplast-producing

enzymes, polyethylene glycol, thiol compounds, anions or cations, by mechanical treatment, e.g.

electroporation or bombardment with microprojectiles, or by a combination of the two treatments

(Armaleo et al., 1990; Becker and Guarente, 1991; Beggs, 1978; Gietz et al., 1995; Hinnen et al.,

1978; Ito et al., 1983; Schiestl and Gietz, 1989; Thompson et al., 1998). In electroporation, cells are

subjected to a short high-voltage electrical pulse that forms pores in their cellular membrane through

which macromolecules such as DNA can enter (Wong and Neumann, 1982). Electroporation is

currently regarded as the most efficient and versatile method for transforming yeast cells with naked

DNA and the method of choice for delivering DNA into industrial wine yeast strains (Manivasakam

and Schiestl, 1993; Neumann et al., 1996; Rech et al., 1989; Suga et al., 2000; Thompson et al.,

1998).

4.2 GENETIC FACTORS THAT INFLUENCE THE DEVELOPMENT OF NEW

INDUSTRIAL WINE YEAST STRAINS

Modern-day industrial strains of Saccharomyces have been selected and domesticated over the last

8000 years under conditions that favoured their evolution towards specialised abilities, such as rapid

fermentation of high-sugar grape juices, high yield and tolerance of ethanol, resistance to S02 and

good flavour production (Pretorius, 2000; Querol and Ramón, 1996). As a consequence, wine yeasts

have developed a unique genetic composition and have built-up unique physiological traits that

distinguish them from laboratory strains as well as other industrial strains, i.e. baker's, brewer's .and

distiller's yeasts (Dequin, 200l).

4.2.1 Chromosomal make-up of laboratory strains of Saccharomyces vs. industrial wine yeasts

The chromosomal composition of industrial strains of Saccharomyces shows some unique attributes

that complicate the genetic manipulation and improvement of these wine yeast strains. Haploid

strains of S. cerevisiae have a relatively small genome, containing approximately 12 to 13 megabases

(mb) of chromosomal DNA (Pretorius and Van der Westhuizen, 1991). The genome consists of 16

linear chromosomes, ranging in size from 200 to 2200 kilobases and each containing a single DNA

molecule. The complete genome of a laboratory strain of S. cerevisiae has been sequenced and

published in 1996 and original computational analysis showed that it contains approximately 6000

open reading frames (ORF's), as well as 275 tRNA, 140 rRNA and 20 genes encoding small nuclear

RNA species (snRNA) (Goffeau et al., 1996). However, according to later estimates up to 20 % of

the predicted 6000 ORF's in the Munich Information Center for Protein Sequences ~MIPS) Yeast

Genome Database (MYGD) were found to be non-coding. A more accurate estimation of 5300-5400
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protein-encoding genes has therefore been suggested (Mackiewicz et al., 2002). Although almost

70 % of the more than 12 million bp comprise open reading frames (ORF's) of which only 4 %

contain introns, a high level of apparent genetic redundancy in the genome has been revealed (Delneri

et al., 2000; Mewes et al., 1997; Oliver, 1996; Wolfe and Shields, 1997). On the other hand, the S.

cerevisiae genome is still considered relatively compact relative to the genomes of other yeast and

fungi.

In contrast to laboratory strains, industrial and natural (wild) strains of Saccharomyces are

characterised by karyotype instability, both during meiosis and vegetative growth (Adams et al.,

1992; Bakalinsky and Snow, 1990b; Carro and Pifia, 2001; Codon et al., 1997; Codon and Benitez,

1995; Gasent-Ramirez et al., 1999; Longo and Vezinhet, 1993; Miklos et al., 1997; Mortimer et al.,

1994; Nadal et al., 1999). The main karyotype differences between laboratory and industrial strains

include the acquisition or loss of whole chromosomes, the presence of chromosomal-length

polymorphisms (duplications of 30 - 390 kb as well as deletions of 30 - 50 kb) and the presence of

hybrid chromosomes (Adams et al., 1992; Bidenne et al. 1992; Dequin, 200l). The most frequent

alteration in the karyotype pattern in wine yeast strains is the variation in size of chromosome XII

(Chindamporn et al., 1993; Nadal et al., 1996, 1999; Petes et al., 1991; Rustchenko et al., 1993).

Genetic heterogeneity in wine yeast strains is due mainly to mitotic recombination during vegetative

growth and spontaneous mutation. It has been suggested that these rearrangements occurred by

recombination through sub-telomeric repeats and transposable elements (Ty elements) (Rachidi et al.,

1999). Minor differences, such as point mutations, have also been identified between laboratory and

industrial strains of Saccharomyces. These variations in DNA sequence also affect strain

performance if they are localised inside an open reading frame (ORF) or the regulatory region of a

gene, especially if it is a pathway-regulating gene (Cavalieri et al., 2000). Several. attempts to

elucidate the characteristics and the mechanisms of mitotic instability have been published in recent

years (Adams et al., 1992; Codon and Benitez, 1995; Gasent-Rarnirez et al., 1999; Puig et al., 2000;

Rachidi et al., 1999). However, the question of why some natural strains are more prone to

chromosomal rearrangements during vegetative growth than others remains largely unanswered.

Wine yeasts exhibit a greater variety in chromosome number than laboratory strains. Most laboratory

strains of Saccharomyces are haploid (or sometimes diploid), whereas industrial strains of

Saccharomyces are predominantly diploid, aneuploid and even occasionally polyploid (Bakalinsky

and Snow, 1990b; Dequin, 2001; Ibeas and Jimenez, 1996; Johnston, 1990, Kunkee and Bisson, 1993;

Mortimer, 2000; Mortimer et al., 1994). Polyploidy and aneuploidy in industrial yeast is linked to the

chromosomal centro meres which forms the kinetochore, i.e. a special multiprotein structure located at

the chromosomal surface that binds spindle microtubules to form the spindle pole body (SPB) and

regulates chromosome movements (Afshar et al., 1995; Ault and Rieder, 1994; Pluta et al., 1995;

Zang et al., 2002). The spindle pole body (SPB) in yeast is responsible for the correct segregation of
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chromosomes in early G 1 phase. Mutations that prevent SPB duplication lead to monopolar mitosis

that gives rise to aneuploidy and polyploidy (Chial et aL., 1999). Whole-genome duplication in wine

yeast strains of Saccharomyces is thought to have played an important evolutionary role, especially in

facilitating the evolution of anaerobic fermentation (Mewes et aL., 1997; Keogh et aL., 1998;

Philippsen et aL., 1997; Wolfe and Shields, 1997). Multiple copies of a chromosome endow wine

yeasts with a selective advantage; increased gene dosage of beneficial genes could partly explain the

differences in fermentation kinetics and production of flavour/aroma compounds between different

strains (Cavalieri et aL., 2000; Dilorio et aL., 1987; Mowshowitz, 1979; Stewart et aL., 1981; Talbot

and Wayman, 1989). Furthermore, multiple ploidy in industrial wine yeasts confers protection

against recessive lethal or deleterious mutations (Tavares et al., 1988).

The multiple ploidy phenomenon in combination with the presence of prototrophy, i.e. recessive

nature of selectable mutations in amino acid biosynthesis genes (URA3, LEU2, etc.) or purine and

pirimidine genes (ADE2, etc.), in industrial strains of Saccharomyces severely complicates genetic

improvement strategies in industrial strains of Saccharomyces (Bakalinsky and Snow, 1990";

Beckerich et al., 1984; Rank et al., 1988; Snow, 1983; Spencer and Spencer, 1983, Subden, 1987).

The introduction of heterologous genes into a wine yeast strain requires either that the strain be made

auxotrophic prior to transformation, or that the plasmid used for transformation carry a marker that is

selectable against a wild-type diploid or polyploid background. Only one auxotrophic marker that is

based on complementing a pantothenic acid auxotrophy at 35°C with the ECM331 gene has been

reported in industrial sake yeast strains of S. cerevisiae, (Shimoi et al., 2000). In addition to the fact

that the construction of an auxotrophic polyploid wine yeast strain is a complex and time consuming

process, auxotrophic markers have inherent problems in that they frequently lead to secondary growth

effects (Baganz et al., 1997; Smith et al., 1995, 1996) and sometimes to undesirable and unpredictable

phenotypes (Gaber et al., 1989; Goldstein and McCusket, 1999; Whelan et aL., 1979). Auxotrophy

also interferes with the two nitrogen-starvation-regulated cellular differentiation processes in

S. cerevisiae, i.e. sporulation efficiency and pseudohyphal growth as the growth medium must be

supplemented with nitrogen-containing compounds such as amino acids and bases (Atkinson et al.,

1980; Freese et al., 1984; Goldstein and McCusket, 1999; Schroerder and Breitenbach, 1981; Varma

et al., 1985). All these built-in disadvantages of auxotrophic markers therefore contribute to their

unsuitability for use in industrial strains of Saccharomyces.

As a result of the above, several dominant selectable markers have been developed for the

introduction of heterologous genes into industrial strains of Saccharomyces (Van den Berg and

Steensma, 1997). These dominant selectable markers include resistance to antibiotics such as

phleomycin (also known as bleomycin) (ble gene) (Wenzel, et aL., 1992), cyclohexamide (cyh2 and

cyh5 genes) (Navas et al., 1991; Del Pozo et al.; 1991), geneticin G418 (Tn903/APTl gene) (Baganz

et al., 1997; Hadfield et al., 1990; Lang-Hinrichs et aL., 1989; Wach et aL., 1994), nourseothricin,
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bialaphos/phosphinothricin (Goldstein and McCusker, 1999), hygromycin B (hph gene) (Goldstein

and McCusker, 1999), L-canavanine (CANl gene), chloramphenicol (cat gene) (Hadfield et al., 1987),

aureobasidin A (AURl-C gene) (Hashida-Okado et al., 1998) as well as other toxic compounds such

as o-fluoro-nt-pherrylalanine (Shimura et al., 1993), trit1uoroleucine (LEU4-l gene) (Bendoni et al.,

1999), cerulenin (PDR4 gene) (Nakazawa et al., 1993), copper (CUPl gene) (Fogel et al., 1983;

Henderson et al., 1985), methotrexate (dhfr gene) (Zhu et al., 1986), sulfometuron methyl (SMRl

gene) (Casey et al., 1988), methylglyoxal (Murata et al., 1985), manganese (MNRl gene) (Del Pozo et

al., 1999), sulfite (FZFl-4 gene) (park et al., 1999), formaldehyde (SFAl gene) and fluoroacetate

(dehHl gene) resistance (Van den Berg and Steensma, 1997; Wehner and Brendel, 1993).

4.2.2 Homothallism vs. heterothalism

As a unicellular fungus and member of the Ascomycetes, Saccharomyces yeasts reproduce asexually

through multilateral budding and sexually through the formation of ascospores (Fig. 4.1 ). Yeasts are

termed heterothallic when the ascospores possesses a stable sexual type, either a or a., and the cultures

originating from these spores are permanently haploid Heterothallism is mostly found in laboratory

strains of S. cerevisiae, while more than 70 % of industrial wine yeast strains have a homothallic life

cycle (Haber and Halvorson, 1975; Mortimer, 2000; Mortimer et al., 1994; Pretorius and Van der

Westhuizen, 1991; Thornton and Eschenbruch, 1976). Homothallic diploid yeasts yield four haploid

ascospores when they sporulate. Due to the presence of the HO gene, these ascospores quickly

change their mating type, mate and form homozygous diploids within the first two cell divisions

(Haber, 1983; Herskowitz et al., 1992; Nasmyth, 1982; Tarnai et al., 2001).

Figure 4.1. Comparison of the heterothallic and homothallic life cycle of the yeast S. cerevisiae
(adapted from Phaff, 1981).

Heterothallic Life Cycle

Mating

'b~~o()g:b
~ Cib MATa/MATa

': DiPljse

Meiosis a
MA la sporulation

Haplophase +
~

MAra ~a()~~d
Haplophase n...-- ~

~ Tetrad
~ (4-spore ascus

a,a,a,a)

Homothallic Life Cycle

••••••
oOgb ~KaryogamY

MAla/MATa
Diplophase

I MATa MAla

::U~~~. ~(
t GO JlJ ~ ~g-type switching
~ and mating

_- Germ~on
Tetrad

(4-spore ascus
a,a,a,a)

Stellenbosch University http://scholar.sun.ac.za



86

The success of hybridisation techniques depends on the generation of stable haploid ascospores for

efficient mating between different parent strains. The mating type-switching nature of industrial wine

yeast strains complicates this procedure, since true hybrids are obtained at a lower frequency with an

increased difficulty to correctly identify them (Bakalinsky and Snow, 1990a; Guijo et al., 1997;

Jiménez and Benitez, 1994; Mortimer et al., 1994; Romano et al., 1985; Thornton and Eschenbruch,

1976). Furthermore, depending on the ploidy of the parental strain, only between 0 - 25 % of

industrial strains are able to mate and sporulate. When mating and sporulation does occur, the

production of viable spores varies from 0 - 95 % (Guijo et al., 1997; Johnston et al., 2000; Subden,

1987). Despite these obstacles, different strategies have been developed to improve the success rate

of hybridisation between homothallic strains of Saccharomyces (Romano et al., 1985; Sebastiani et

al., 2002; Winge and Lausten, 1938). Early approaches made use of crossings between laboratory

haploid heterothallic strains that contain known markers with the haploid cells of homothallic

industrial strains. In these cases, hybrids are easy to detect and the genetic improvement of some

industrial yeasts has been described (Guijo et al., 1997; Ibragimova et al., 1994; Jiménez and Benitez,

1994; Thornton, 1985). However, backerossing is needed to regenerate the exact industrial strain

properties that are lacking in laboratory strains. The use of the killer phenotype found in several wine

yeast strains has also been used for the successful hybridisation of homothallic strains (Ramirez et al.,

1998).
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ABSTRACT

To produce a high quality wine, it is important to obtain a fine balance between the various chemical

constituents, especially between the sugar and acid content. The latter is more difficult to achieve in

wines that have a high acidity due to excess malic acid, since wine yeast in general cannot effectively

degrade malic acid during alcoholic fermentation. An indigenous Saccharomyces paradoxus strain

R088 was able to degrade 38% of the malic acid in Chardonnay must and produced a wine of good

quality. In comparison, Schizosaccharomyces pombe strain F effectively removed 90% of the malic

acid, but did not produce a good quality wine. Although commercially promoted as a malic acid

degrading wine yeast strain, only 18% of the malic acid was degraded by Saccharomyces cerevisiae

Lalvin strain 71B. Preliminary studies on the transcriptional regulation of the malic enzyme gene

from three Saccharomyces strains, i.e. S. paradoxus R088, S. cerevisiae 71B and

Saccharomyces bayanus ECll18, were undertaken to elucidate the differences in their ability to

degrade malic acid. Expression of the malic enzyme gene from S. paradoxus R088 and S. cerevisiae

71B increased towards the end of fermentation once glucose was depleted, whereas no increase in

transcription was observed for Saccharomyces bayanus ECl118 which was also unable to effectively

degrade malic acid.

5.1 INTRODUCTION

The relative concentrations of organic and inorganic acids are important factors that determine the

quality of wine. The dominant organic acids in wine are L-tartaric and L-malic acid, which represent

70-90% of total grape acidity (Ruffner, 1982). The malic acid concentration in grapes ranges from 1

to 10 g r' depending on several factors of which the prevailing climate is the most important. The

levels of malic acid are usually higher in the cool viticulture regions where the respiration of acids in

the grape berry progresses at a slower rate than in the warm climate regions. Excessive amounts of

malic acid (15 - 16 g rt) have been found in grapes at harvest time during exceptionally cold
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summers in cool climate viticultural regions (Gall ander, 1977). Malic acid not only contributes to the

acidic taste of wine, but also serves as a substrate for contaminating lactic acid bacteria that can result

in wine spoilage after bottling. It is therefore essential to remove excess malic acid from the wine to

ensure the physical, biochemical and microbial stability and quality of the wine (Delcourt et al., 1995;

Pretorius, 2000).

There are a number of methods to decrease the acidity of wine, but biological deacidification is most

often used. Biological deacidification can be carried out through malolactic fermentation (MLF) or

malo-ethanolic fermentation (MEF). During MLF, lactic acid bacteria such as Oenococcus oeni

convert malic acid into lactic acid and CO2, whereas MEF is carried out mostly by yeast species such

as Schizosaccharomyces pombe and strains of Saccharomyces that convert malic acid into pyruvate by

means of an intracellular malic enzyme. During wine fermentation, the glucose and S02

concentration, pH, fermentation temperature, thiamine and biotin content, as well as ethanol

concentration, can influence MLF and may result in stuck or sluggish MLF (Torti a et al., 1993).

Together with a decrease in acidity, MLF also changes the aromatic characteristics of wine, which can

be either desirable or not, depending on the grape cultivar and wine style (Davis et al., 1985; Henick-

Kling et al., 1994).

Based on yeasts' ability or inability to metabolise TCA cycle intermediates as sole carbon or energy

source, yeasts are divided into a K (+) or K (-) group (Goto et al., 1978; Rodriquez and Thornton,

1990; Barnett et al., 1990). The K (-) group of yeasts comprise those yeasts capable of utilising TCA

cycle intermediates only in the presence of glucose or other assimilable carbon sources. According to

this definition, strains of Saccharomyces (including all wine yeast strains of Saccharomyces),

Schizosaccharomyces pombe and Zygosaccharomyces bailii, are all classified as K (-) yeasts.

Although grouped together, the yeasts in this group have significant differences in their abilities to

degrade malic acid. Typically, strains of Saccharomyces are regarded as the most inefficiently

metabolisers of extracellular malic acid, whereas strains of S. pombe and Z. bailii can degrade high

concentrations of malic acid (Taillandier and Strehaiano, 1991; Baranowski and Radler, 1984).

However, within the species Saccharomyces, remarkable differences exist with regard to their ability

to decompose malic acid during alcoholic fermentation (from 0 and 3 g rl malic acid) (Subden et al.,

1998). Malic acid metabolism by strains of Saccharomyces are linked to the optimal growth

temperature of the strains, as cryotolerant strains (i.e. S. bayanus and S. pastorianus) were found to

synthesise malic acid, while thermotolerant strains (i.e. S. cerevisiae and S. paradoxus) could degrade

significant quantities (up to 48%) of malic acid (Rainieri et al., 1998a, b).

The ability of a yeast strain to degrade extracellular malic acid is dependent on the efficient transport

of the dicarboxylic acid, as well as the efficacy of the intracellular malic enzyme (Ansanay et al.,

1996; Volschenk et al., 1997). Previous studies have shown that S. cerevisiae can import malic acid
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and other dicarboxylic acids only via simple diffusion and is therefore unable to effectively degrade or

utilise extracellular malic acid (Salmon, 1987). However, the S. cerevisiae malic enzyme has a very

low substrate affinity (Km of 50 mM), which further contributes to the inefficient degradation of malic

acid by S. cerevisiae (Temperli et al., 1965; Osothsilp, 1987). An additional aspect that may

contribute to the weak degradation of malic acid by strains of S. cerevisiae under fermentative

conditions, is the mitochondrial location of the S. cerevisiae malic enzyme and the fact that the

mitochondria are dysfunctional and present in reduced in numbers under winemaking conditions. In

contrast, S. pombe can degrade malic acid effectively, but only in the presence of an assimilable

carbon source (Osothsilp and Subden, 1986). It has an active transport system for the uptake of malic

acid, as well as an intracellular malic enzyme with a very high substrate affinity (Km of 3.2 mM).

In general, malic enzymes catalyse the oxidative decarboxylation of L-malate and/or oxaloacetate to

pyruvate and CO2 in the presence of the cofactors NAD(Pt and Mn2+ or Mg2+. Malic enzymes

exhibit a high degree of homology (Viljoen et al., 1994; 1998), but their metabolic function and

regulation vary between different species and types of tissue. The S. cerevisiae mitochondrial

NAD(P)-dependent malic enzyme, MAElp, was proposed to play a role in the provision of

intramitochondrial NADPH or pyruvate under anaerobic conditions (Boles et al., 1998). In contrast,

the NAD+-dependent malic enzyme from S. pombe seems to playa role in the provision of cytosolic

NADH under fermentative conditions (Groenewald and Viljoen-BIoom, 2001).

The high substrate affinity and cytosolic location of the S. pombe malic enzyme enables the yeast to

effectively degrade malic acid to ethanol during alcoholic fermentation, but the production of

undesired fermentation aroma have been reported (Rankine, 1966; Gallander, 1977; Munyon and

Nagel, 1977; Carre et al., 1983; Sousa et al., 1995; Taillandier et al., 1995). Furthermore, S. -pombe

. sspecies- aresnee.ideally suited for wine fermentation due to their temperature and alcohol sensitivity.

(Taillandier et al., 1988). In this study, the natural-occurring Saccharomyces paradoxus strain R088

isolated from grapes (unpublished data, S. Redzepovic et al.) was evaluated and compared with

S. pombe strain F, S. cerevisiae 71B and S. bayanus EC 1118 for the biological deacidification of

grape must and its influence on the chemical and sensory characteristics of wine. Furthermore, the

expression patterns of the malic enzyme gene from the three Saccharomyces strains were compared to

better understand the underlying mechanisms for the differential degradation of malic acid by

Saccharomyces strains. Fundamental knowledge about the malo-ethanolic pathways fromboth K (-)

and K (+) yeasts is imperative for our understanding of the regulation and physiological role of malic

acid metabolism in yeast and can contribute to innovative applications of improved strains of

Saccharomyces for the biological deacidification of wine.
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5.2 MA TERlALS AND METHODS

5.2.1 Yeast cultures

Saccharomyces paradoxus strain R088 was isolated from grapes collected in Jazbina in the Zagreb

wine region of Croatia (unpublished data, S. Redzepovic et al., Department of Microbiology,

University of Zagreb). The Saccharomyces bayanus ECll18 strain and S. cerevisiae Lalvin 71B

strain are active dry yeast strains from Lallemand Inc. (France) and the S. pombe strain F was

obtained from Prof. C. Zambonelli (DIPROVAL, University of Bologna, Italy).

5.2.2 Fermentation in synthetic grape must

The S. bayanus, S. cerevisiae and S. paradoxus strains were inoculated at 2 x 106 cells ml' into

duplicate sets of 800 ml synthetic grape must (Denayrolles et al., 1995). The synthetic grape must

contained either 0.3% or 0.8% L-malic acid (Sigma, St. Louis, MO) and the pH was adjusted with

KOH to 3.3. Fermentations were carried out at 20°C without shaking and sealed with fermentation

caps filled with 2.5% S02 solution for approximately 9 days. Daily samples of 10 ml were taken for

total RNA extraction and to determine the malic acid and glucose concentrations. Fermentation was

considered to be complete when the glucose was depleted.

5.2.3 Grape must preparation

Chardonnay grapes obtained from the Scientific Research Center of Jazbina (Zagreb, Croatia) were

harvested during the 1999 season, destemmed, crushed and pressed. Chemical analysis indicated that

the juice contained 191 g r' total sugars, 3.6 g r' malic acid, a pH of 3.2 and total acidity of 8.7 g r'.
The must was treated with 50 mg rl S02 and allowed to settle overnight. The juice was racked and

the must divided into 16 lots of 15litre each for four repetitions of four different treatments, Le.: .

inoculated with S. pombe, S. cerevisiae 718, S. paradoxus R088 or with no inoculum (i.e.

spontaneous fermentation by the natural yeast population).

5.2.4 Vinification

The Chardonnay grape must was inoculated with pre-cultures of S. paradoxus or S. pombe to a final

concentration of 10% (w/v), and the manufacturer's instructions were followed for the rehydration of

strain 71B. Four repetitions of fermentations were carried out at 18°C in 25 litre glass fermentation

flasks and the residual sugar concentration was determined every 5 days. After fermentation was

completed, the wines were decanted and treated with 30 mg r' S02. Samples were taken for chemical

analysis and the wines were bottled after a second decanting and kept at 4°C. An experienced panel

of seven judges performed organoleptic analysis of the wines 6 months after bottling. - A ranking

method was used to determine quality differences between the treatments and statistical significance

was determined according to Amerine and Roessler (1976).
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S.2.S Chemical analysis

The concentration of succinic acid, malic acid and lactic acid were determined enzymatically with

specialised kits (Roche Biochemicals, Germany) according to the manufacturer's instructions.

Standard methods were used to determine the pH, total acidity, volatile acidity, ethanol and sugar

concentrations of the must and wines (Ough and Amerine, 1987). Sugar concentrations in synthetic

grape must were measured with the Glucose (Trinder) Test Kit (Sigma Diagnostics, St. Louis, USA).

5.2.6 Expression studies with shift assays

Minimal medium (10 ml) containing 0.17 % YNB without amino acids and ammonium sulphate

(Difco Laboratories, Detroit, MI), 0.5 % (NH4hS04, 2 % n-glucose (Saarchern, Midrand, South

Africa) and all the required amino acids was inoculated in duplicate with either S. bayanus EC1118 or

S. paradoxus R088 and grown overnight at 30°C under aerated conditions. The cells were harvested

and the pellets resuspended in fresh minimal medium containing either 2% glucose plus 1% malic

acid or 10% glucose, and cultured under aerated conditions for an additional 60 min with samples

taken every 15 minutes for mRNA analysis. A shift to non-aerated conditions was obtained by

resuspending the cultures in fresh minimal medium and covering it with 1-2 cm mineral oil.

5.2.7 RNA isolation and slot blot analysis

Total RNA was isolated with the FastRNA Kit (Bio 101, Carlsbad, CA) and equal amounts were

transferred to a Nylon membrane (MSI, Westboro, MA) with slot blotting (Ausubel et al., 1989).

Transcripts were visualised with the Chemiluminescent Detection Kit (Roche Biochemicals,

Germany) using PCR-generated DIG-labelled fragments of the S. cerevisiae malic enzyme gene,

MAE1, and actin gene, ACT1. The PCR primers for the MAE1 and ACTl genes were derived from the

corresponding Saccharomyces Genome Database gene sequences: . i.e.... 5' -MAE}·

(5'-TTGCTATCTCCAAATTGGCA-3', 3'-MAE1 (5'-ATTTTCTTGCGCGCTTCTTC-3', 5'-ACTl

(5'-TATGGAAAAGATCTGGCATCA-3'), 3'-ACTl (5'-CGGTTTGCATTTCTTGTTCG-3').

Relative concentrations of the transcripts were quantified by means of densitometry and expressed in

percentage relative to the S. cerevisiae ACT1 transcripts, which were of comparable concentrations for

most of the slots.

S.2.8 DNA sequence analysis of malic enzyme gene promoters

The promoter region of the malic enzyme genes from S. paradoxus R088, S. bayanus EC 1118 and S.

cerevisiae 71B was PCR amplified with primers based on the DNA sequence of the S. cerevisiae

malic enzyme gene, MAE1. The 5' primer, SCMAEI-F (5'-CATCGTGCATTGCAAGGTTT-3')

binds at nucleotide -594 of the MAEl gene promoter and the downstream primer, SCMAEI-R (5'-

GAATATAAACGCGATTGCTGA-3'), binds at nucleotide +94 inside the MAE1 open reading frame.

The PCR fragments were subeloned using p-GEM®-T Easy Vector System (Promega Corporation,

Madison) and three subelones of each strain was submitted for sequencing. The DNA sequence of the
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promoter fragments from S. paradoxus R088, S. cerevisiae 71B and S. bayanus EC1118 were

compared with that of the published sequence of the S. cerevisiae MAE} gene (Saccharomyces

Genome Database).

5.3 RESULTS AND DISCUSSION

5.3.1 Fermentation of Chardonnay and synthetic grape must

A decrease in malic acid concentration in wines with a high total acidity is one of the most important

steps in the enhancement of wine quality. The degradation of malic acid by three Saccharomyces

strains, i.e. S. bayanus ECll18 (known for inefficient malic acid degradation), S. cerevisiae 71B

(reported to degrade up to 35% malic acid) and S. paradoxus R088, an indigenous strain, were

evaluated in synthetic grape must containing either 0.3% or 0.8% malic acid. Under both conditions,

fermentation by all three strains were completed after 5 days (Fig. 5.1). After being cultured in

synthetic must containing 0.3% malic acid for 9 days, S. bayanus ECl118 degraded only 5% of the

malic acid, whereas S. cerevisiae 71B and S. paradoxus R088 degraded 20% and 28%, respectively.

Similar results were obtained in the medium containing 0.8% malic acid, i.e. 8%, 17% and 26% of the

malic acid was degraded by S. bayanus EC1118, S. cerevisiae 71B and S. paradoxus R088,

respectively. This clearly indicated that S. paradoxus R088 is able to degrade extracellular malic acid

under fermentation conditions more efficiently than S. cerevisiae 71B.

Based on these results, S. paradoxus strain R088 was compared with S. cerevisiae 71B and S. pombe

strain F for the fermentation of freshly pressed Chardonnay must. Fermentations with either

S. cerevisiae 71B or S. paradoxus R088 were completed within 30 days (Fig.5.2), whereas the

spontaneous fermentation (no inoculum added) took 40 days. The must inoculated with S. pombe,
-- . - -

known to be a slow fermenting yeast (Snow and Gallander, 1979; Dharmadhikari and Wilker, 1998;

Zambonelli, 1998), took 56 days to complete fermentation. Chemical analyses of the fermented

Chardonnay wine (Table 5.1) indicated that S. paradoxus R088 and S. pombe degraded

approximately 38% and 90% of the malic acid, respectively. In contrast, S. cerevisiae 71B reduced

the malic acid concentration by only 18%, in accordance with previous reports concerning the weak

ability of S. cerevisiae to degrade malic acid (Rankine, 1966; Fuck and Radler, 1972; Gandini et al.,

1988; Yokotsukaer al., 1993; Pilone and Ryan, 1997). The spontaneous fermentation carried out by

the natural microbial population in the Chardonnay must, was the least effective in degrading

extracellular malic acid (only 10%).
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Figure. 5.1. (A) Glucose and (B) malic acid concentrations during fermentation of synthetic grape
must containing (i) 0.3 % or (ii) 0.8 % malic acid by S. bayanus EC1118, S. cerevisiae 71B and
S. paradoxus R088.
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Figure 5.2. Sugar concentration during fermentation of Chardonnay grape must with spontaneous
fermentation or inoculated with S. paradoxus R088, S. pombe F or S. cerevisiae 71B.
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Table 5.1. Chemical composition of fermented Chardonnay wines

\1' I I Reducing Total Yolatile 'I I', Succinic
T t t r co 111 S idi idi " a IC idrea men ( ./ .) rt • ugar an It~ (g aCI It~- (g id ( r') aCI

"-I( (gr') rt) rt) aCI g (gr')

Prior to 191 8.7 3.6fermentation

Spontaneous 12 ±O.07 1.9 ±O.05 7.8 ±O.05 0.29 ±O.l 3.5 ±O.06 0.98 ±O.05fermentation

S. paradoxus ROSS 13.0 ±O.05 1.9 ±O.06 6.8 ±O.l 0.31 ±O.09 2.2 ±O.06 0.9 ±O.08

S. cerevisiae 71B 13 ±O.06 1.9±O.12 7.3 ±O.08 0.29 ±O.05 2.9 ±O.05 1.0 ±O.06

S.l!.0mbe F 13.1 ±O.08 2.0 ±O.08 4.2 ±O.13 0.35 ±O.12 0.5 ±O.10 1.3 ±O.09

as tartaric acid, "as acetic acid
n.d. = not determined
± = standard deviation

The decrease in malic acid concentration also correlated with the decrease in total acidity (Table 5.1).

In the wine fermented with S. pombe, total acidity decreased by 4.5 g r', in agreement with almost

complete malic acid decomposition. Total acidity was decreased by 1.9 g r' in the wine produced by

S. paradoxus R088, by 1.4 g 1'1 for S. cerevisiae 71B, and by 0.9 g 1'1 for the spontaneous

fermentation. The decrease in acidity was also reflected in the pH of the different wines: the pH of

the wine fermented with S. pombe increased with 0.16 units, whereas fermentation with S. cerevisiae

71B and S. paradoxus R088 resulted in a pH increase of only 0.07 and 0.08 units, respectively.

Organoleptic evaluations of the fermented wines indicated no significant difference between wines

produced with S. cerevisiae 71B or with spontaneous fermentation (Table 5.2). The lowest score was

obtained for the wine fermented by S. pombe strain F; no off-flavours were detected as previously

described (Rankine, 1968), but a loss in fruitiness was noted. The best results were obtained with the

wine fermented by S. paradoxus R088, which confirmed that indigenous strains could be

advantageous for the development of wine aroma and improvement of wine quality (Soles et al.,

1982; Mateo et al., 1992).

Table 5.2. Results of the organoleptic evaluation of wine

Treatment order slim
I

S. paradoxus ROSS

S. cerevisiae 71B

Spontaneous fermentation

S. pombeF

8*

17

17

2

3

4 28**

LSD of 1% = 8-20
LSD of 5% = 10-18
* significant at p<0.05
** signficant at p<O.OI
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5.3.2 Regulation of malic acid degradation in Saccharomyces strains

The ability of a yeast strain to degrade extracellular malic acid is dependent on the efficient transport·

of the dicarboxylic acid, as well as the efficacy of the intracellular malic enzyme. Little information

is available on malic acid transporters from S. bayanus or S. paradoxus, but it is known that

S. cerevisiae can import malic acid and other dicarboxylic acids only via simple diffusion and IS

therefore unable to effectively degrade or utilise extracellular malic acid (Salmon, 1987).

The malic enzyme from S. paradoxus has not yet been reported and its structure and function remains

unknown. In general, the efficacy of a malic enzyme is determined by its substrate affinity and/or the

level of expression of the corresponding gene. In this study, we found that expression of the malic

enzyme gene from S. bayanus Eell18, the non-degrading strain, slightly increased at the beginning

of fermentation in synthetic grape must containing either 0.3% or 0.8% malic acid (Fig. 5.3), but

declined towards the end of fermentation. Transcription of the malic enzyme genes from S. cerevisiae

71Band S. paradoxus R088 showed a similar increase and decline, followed by a strong increase in

transcription towards the end of fermentation. The increase in transcription towards the end of

fermentation by both strains was stronger in the presence of 0.8% malic acid, suggesting that the

malic enzyme of these yeasts could play an important role in their ability to respond to the varying

conditions associated with fermenting wine. Furthermore, our results indicated that the increase in

malic enzyme transcription in S. cerevisiae 71B and S. paradoxus R088 towards the end of

fermentation (Fig. 5.3), correlated with the depletion of glucose (Fig. 5.1). However, only

S. paradoxus R088 displayed a marked increase in the degradation of malic acid upon glucose

depletion when grown on 0.8% malic acid (Fig. 5.1), with a lesser effect on 0.3% malic acid. It

therefore seems likely that malic acid is utilised as a secondary carbon source by S. paradoxus R088

once the glucose is exhausted.

These results support the increase in malic enzyme activity towards the end of fermentation

previously reported by Ramon-Portugal et al. (1999). As indicated in Fig. 5.4, there are two possible

routes for malic acid decomposition inside the yeast ceU, i.e. via the malic enzyme or via fumarase

(Radler, 1986). Although both routes are utilised during fermentation, succinate production was

reported to be more active at the beginning of fermentation, while a large portion of the malic acid is

converted into ethanol during the second part of fermentation (Ramon-Portugal et al., 1999). Our

--'=Fesults showed differences in the concentration of succinic acid in the wines fermented by-the

different strains, with that produced by S. pombe being the highest (Table 5.1). Of the numerous

organic acids produced in wine by yeasts, succinic and acetic acid are the most prominent (Radler,

1986). Wine yeast strains differ in the amount of succinic acid that is produced (Heerde and Radler,

1978; Dharmadhikari and Wilker, 1998) and an increase in malic acid concentration was reported to

generally result in a higher production of succinic acid (Ramon-Portugal et al., 1999).
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/ACTI /ACTI /ACTI

To 100 To 100 To 100
Tl 158 Tl 59 Tl 162
T2 46 T2 64 T2 109
T3 16 T3 35 T3 59
Ts 14 Ts 55 .... Ts 77

T7 122 T7 82 T7 85
Tg 213 Tg 120 fIIIIIïII!I Tg 92

S. paradoxus ROSS S. cerevisiae 718 S. bayanus EC111S

Figure 5.3. (A) Graphic representation of the malic enzyme transcription levels during fermentation
of synthetic grape must containing (i) 0.3% or (i) 0.8% malic acid by S. bayanus EC1118,
S. cerevisiae 7lB and S. paradoxus R088. The malic enzyme transcript levels are calculated as
relative to that of S. cerevisiae ACT 1. (B) Northern slot blots showing the relative transcript levels for
MAE1 and ACT1 for S. paradoxus R088, S. cerevisiae 7lB and S. bayanus ECl118 during
fermentation of synthetic grape must containing 0.8% malic acid.

pyruvate alcohol
decarboxylase dehydrogenase

Acetaldehyde 7 ~ II Ethanol
NADH2

\ /' Pyruvic acid

NAD~ malic enzyme

L-Malic acid
~marase

Fumaric acid -------+

NAD+

fumarate
reductase

Succinic acid

Figure 5.4. Malic acid decomposition in yeast can occur via the malic enzyme or via fumarase to
yield either ethanol or succinic acid.
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The regulation of the malic enzyme gene from S. paradoxus R088 was further evaluated and

compared with that of S. bayanus ECl118 (the weak malic acid degrader) under different conditions,

i.e. a shift from growth in 2% glucose to 2% glucose plus 1% malic acid, to 1()oio glucose, or to non-

aerated growth (Fig. 5.5). When shifted to 2% glucose plus 1% malic acid, the malic enzyme genes

from both S. bayanus ECll18 and S. paradoxus R088 showed a rapid, but transient, increase in

expression (2 to 2.5-fold) within the first 60 minutes. A shift to 10% glucose also resulted in a

transient increase in expression from S. bayanus ECl118 (4-fold increase after 45 min), whereas

S. paradoxus R088 had a slower, but steady increase in transcription (3.5-fold increase after 60 min).

A shift to non-aerated conditions resulted in a decrease in the expression of the mitochondrial malic

enzyme in both strains, probably due to a general decrease in mitochondrial activity under these

conditions.

- S. tJ.y~ OCl1l8
= S. pariidoXIJS R088~~-----------------,

/lfAE11
ACTl

HAEl
IACTI

100

176

/lfAEl ACTlHAEl ACTJ
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T30 254
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~ T60 170

TO ns no T4S 1"60
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Figure 5.5. Northern slot blots and graphic representation of the expression of the malic enzyme
gene of S. bayanus ECll18 and S. paradoxus R088 after a shift to media containing (A) 2% glucose
plus 1 % malic acid, (B) 10% glucose and in (C) non-aerated conditions.

From these results it is clear that the expression profile of the malic enzyme genes from S. bayanus

and S. paradoxus reacted similarly in the malic acid shift conditions, i.e. both were temporarily

induced in the presence of malic acid This is in contrast to the findings of Boles et al. (1998) on the

S. cerevisiae malic enzyme gene which was constitutively expressed at low levels and not subject to
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any substrate induction. A difference in expression pattern of the malic enzyme gene from S. bayanus

and S. paradoxus was, however, observed when cells were shifted to high glucose conditions, which

may indicate possible divergent responses to carbon source or osmotic stress by S. bayanus and

S. paradoxus. Increased expression under high glucose conditions was also observed for the cytosolic

NAD+-dependent malic enzyme of S. pombe where the transcription of the S. pombe malic enzyme

gene, mae2, seems to be regulated in response to the carbon source, lack of oxygen and osmotic stress

conditions, probably to assist in maintaining the intracellular redox balance (Groenewald and Viljoen-

Blaam, 2001).

Analysis of the transcriptional regulation of the S. pombe malic enzyme gene indicated that two cis-

acting elements in the mae2 promoter, UAS 1 and UAS2, are required for basal expression whilst three

negative-acting elements (URSs) are involved in general derepression of mae2 (Viljoen et al., 1999).

The promoter sequence of the malic enzyme gene from S. paradoxus R088 was therefore compared

with that of S. bayanus ECl118, S. cerevisiae 71B and the published S. cerevisiae MAE1 sequence to

determine whether putative regulatory elements could explain the different expression patterns of the

Saccharomyces malic enzyme genes. In view of S. paradoxus being considered to be the evolutionary

parental strain for both S. cerevisiae and S. bayanus (personal communication, A. Vaughan Martini,

Department of Plant Biology and Biotechnology, University of Perugia, Italy), we anticipated a high

degree of DNA homology between the promoter regions. However, comparative analysis of the DNA

sequences (Fig. 5.6) indicated that the malic enzyme promoter of S. paradoxus R088 differ in a

number of nucleotides from those in the other Saccharomyces strains which could account for the

difference in expression patterns observed. However, further investigation into the promoter

sequences and putative regulatory elements of the S. paradoxus malic enzyme gene is required to

. determine their importance in the transcriptional regulation of the malic enzyme gene.

It is difficult to directly compare the expression results obtained in defined minimal medium with the

observations from the fermentation studies in Chardonnay or synthetic grape must since two very

different questions were addressed, i.e. (1) how do the strains perform in the degradation of malic acid

during wine fermentation (i.e. over a number of days), and (2) are there any differences in the

immediate response of the malic enzyme genes to changes in their physiological conditions (i.e.

within the first 60 min.). For example, the results presented in Fig. 5.1 and 5.3 suggest that

expression-of the S. paradoxus R088 malic enzyme gene in synthetic grape must with 0.8% malic

acid was increased slightly after 24 hours and more profoundly upon glucose depletion after approx. 5

days. The latter suggests that the malic acid was utilised (i.e. converted to pyruvate via the malic

enzyme) when glucose was no longer available. The regulatory studies (Fig. 5.5) indicated a transient

increase in the S. paradoxus R088 malic enzyme transcription upon a shift to I% malic acid, which

declined after 30 min; This could indicate an initial response to the malic acid, which was

subsequently repressed by the 2% glucose present in the medium. If the expression of the
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S. paradoxus gene was followed for a longer period of time, it is likely that the same effect would

have been observed as in the fermentations studies, i.e. a stronger increase in expression of the malit

enzyme gene upon glucose depletion.

HAEI_databank
HAEI_EC111S
HAEI_71B
HAEI_ROSS

CATCGTGCATTGCAAGGTTTTTCAAATTCTTGCGTCTTGTCAACCGTTCAAGGCGA
CATCGTGCATTGCAAGGTTTTTCAAATTCTTGCGTCTTGTCAACCGTTCAAGGCGA
CATCGTGCATTGCAAGGTTTTTCAAATTCTTGCGTCTTGTCAACCGTTCAAGGCGA
CATCGTGCATTGCAAGGTTTTTSAAATTCTTGCGT, TSGTCqACCGTTCAAGGCGA

-548

HAEI_databank TTGAAAGATATTCACTGCATATCTTCTTATACGAAAAGCATCGAAGAAAAAACACCCATACA -486
HAEI_EClllS TTGAAAGATATTCACTGCATATCTTCTTATACGAAAAGCATCGAAGAAAAAACACCCATACA
HAEI_71B
HAEI_ROSS

TTGAAAGATATTCACTGCATATCTTCTTATACGAAAAGCATCGAAGAAAAAACACCCATACA
TT8AgAGATATTCACTGCATATCTTCTTATACGAAAAGCATCGAN;AAAAAAgACCCATACA

HAEI_databank ACCAAGTATAGACGGAACAATTCGGGTTTTTACTCTTCCCTAGGCGGTTTAAATCGGATATA -424
HAEI_EClllS ACCAAGTATAGACGGAACAATTCGGGTTTTTACTCTTCCCTAGGCGGTTTAAATCGGATATA
HAEI_71B
HAEI_ROSS

ACCAAGTATAGACGGAACAATTCGGGTTTTTACTCTTCCCTAGGCGGTTTAAATCGGATATA
t~GGAACAATTCGGGg_ TTTACTCTTCCCTAGGCGGTTTAAATCGGATATA

HAEI_databank TG.AAAAGAAATC GAATTGGCGCATTTGAAGTTTTATT -362
HAEI_EClllS TG.AAAAGAAATC AAAAAAAAAAAAAAAGAATTGGCGCATTTGAAGTTTTATT
HAEI_71B
HAEI_ROSS

TG.AAAAGAAATC ....AAAAAAAAAAAAAAAGAATTGGCGCATTTGAAGTTTTATT
TG!AAAAGAAATC .tAA A GAATTGGCGCATTcGAta.TTTTATT

HAEI_databank ATCGTACGCGTTATTGTTTGCGCTAACATCGCATCGCATCAGCTGACTGAGTGACTGAGTCC -300
HAEI_EC111S
MAEI_71B
HAEI_ROSS

ATCGTACGCGTTATTGTTTGCGCTAACATCGCATCGCATC~ CTGACTGAGTGACTGAGTC~
ATCGTACGCGTTATTGTTTGCGCTAACATCGCATCGCATCA CTGACTGAGTGACTGgGTCC
ATSGTACGCGTTATTGTTTGCGCTAACATCGCATCGCATCA;CTGACTGAGTGACTGAGTCC

HAEI_databank CCTTGGCTTCGACTCATCATCGCCTTTCTATGGTGAAAAATTTTCGCAATTTCCTATTACTG -238
HAEI_EClllS CCTTGGCTTCGACTCATCATCGCCTTTCTATGGTGAAAAATTTTCGCAATTTCCTATTACTG

HAEI_databank TACCGCGTATGCTCCATTTGACTTCCTTTGGTCTACAGCTTTAGCGCTATAGAGTTTCGAAG -176
HAEI_EClllS TACCGCGTATGCTCCATTTGACTTCCTTTGGTCTACAGCTTTAGCGCTATAGAGTTTCGAAa
HAEI_71B TACCGCGTATGCTCCATTTGACTTCCTTTGGTCTACAGCTTTAGCGCTATAGAGTTTCG~
HAEI_ROSS TAC GCGTAT CTCCATTTGACTTCCTTTGGTCTACAGCTTTAGCGCTATAG TTTCGAA!

HAEI_71B
HAEI_ROSS

CCTTGGCTTCGACTCATCATCGCCTTTCTATGGTGAAAAATTTTCGCAATTTCCTATTACTG
CCTTGGCTTCGACTCATCATCGCCTTTCTATGGTGAAAAATTTTCGCAATTTCCTATTACTG

HAEI~data.bank TCGTACCCGTTACCGGCATGATTGA.CATAT ....TATATATATATATATAT ..GCGTATCT· -114
HAEI_EC111S
HAEI_71B
HAEI_ROSS

TCGTACCCGTTACCGGCATGATTGA.CATATt taTATATATATATATATAT ..GCGTATCT
TCGTACCCGTTACCGGCATGATTGA.CATATt' ..TATATATATATATATAT ..GCGTATCT

--TCGTACCCGTTACCGGC GATTGt CATATt TATATATATATATATATa GCGTATCT

HAEI_databank TTATACTTACTCGTATATTGTGTCCAGCTTCGGATA.TTTGTGCTTTTGAAACCTACAACTT -52
HAEI_EClllS TTATACTTACTCGTATATTGTGTCCAGCTTCGGATA.TTTGTGCTTTTGAAACCTACAACTT
HAEI_71B
HAEI_ROSS

TTATACTTACTCGTATATTGTGTCCAGCTTCGGATA.TTTGTGCTTTTGAAACCTACAACTT
mrATACTTACTCGTATA TGcaTC AGCTT t:G t TTGTGCTTTT!AiAc ACAA TT

HAEI_databank TTAACGAGTTTAGTGCACATAAAT.ACCAAGACAAAAGGTAGAAATACGGTT ATGCTTAGAA 10
HAEI_EClllS TTAACGAGTTTAGTGCACATAAAT.ACCAAGACAAAAGGTAGAAATACGGTT ATGCTTAGAA

HAEI_databank CCAGACTATCCGTTTCCGTTGCTGCTAGATCGCAACTAACCAGATCCTTGACAGCATCAAGG 72

HAEI_71B
HAEI_ROSS

HAEI_EC111S
HAEI_71B
HAEI_ROSS

TTAACGAGTTTAGTGCACATAAAT.ACCAAGACAAAAGGTAGAAATACGGTT ATGCTTAGAA
TTAACGAGTaTASTGcA§AT~Acc~GiCAAAAG~TAGAA§TACGGTT ATGCTTAGAA

CCAGACTATCCGTTTCCGTTGCTGCTAGATCGCAACTAACCAGATCCTTGACAGCATCAAGG
CCAGACTATCCGTTTCCGTTGCTGCTAGATCGCAACTAACCAGATCCTTGACAGCATCAAGG
CCAGACTATCCGTTT~TaGCTG~aAGgTCGCAACTAACCAGATCCTTGgCAGCAT ItAGG

HAEI_databank ACAGCACCATTAAGAAGATGGCCTAT ...TCAGCAATCGCGTTT 134

Figure 5.6. Alignment of the promoter sequences of S. cerevisiae 71B, S. bayanus Ee1118,
S. paradoxus strain R088 and the published sequence of S. cerevisiae MAE}.

HAEI_EC111S
HAEI_71B
HAEI_ROSS

ACAGCACCATTAAGAAGATGGCCTAT TCAGCAATCGCGTTT
ACAGCAC GAAGATGGCCTAT TCAGCAATCGCGTTT
ActG g,CCATTAA.~ GATGGCCTA C TCAGCAATCGCGTT'T .
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In this study we have shown that the S. paradoxus strain R088 is able to effectively degrade malic

acid in both synthetic grape and Chardonnay must. This strain was able to produce a wine of good

quality and may proof to be of value for biological deacidification of wines. In contrast, little malic

acid was removed by the Saccharomyces cerevisiae Lalvin strain 71B. The mechanism and proteins

involved in the degradation of malic acid by S. paradoxus strain R088 is yet unknown, but our results

suggest that the malic enzyme may play an important role in enabling the yeast to respond to different

physiological conditions, e.g. the available carbon source. Preliminary studies on the transcriptional

regulation indicated that expression of the malic enzyme gene from S. paradoxus R088 and

S. cerevisiae 71B increased towards the end of fermentation once glucose was depleted, whereas no

effect was observed with Saccharomyces bayanus ECll18, a non-degrading strain. However, only

S. paradoxus R088 showed a further degradation of malic acid in response to the increase in malic

enzyme expression, suggesting that it was able to utilise the malic acid as a secondary carbon source.
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ADDENDUM A

A.I INTRODUCTION

Various yeast species found on grapes (Boulton et al., 1996) and on winery surfaces (Amerine and

Singleton, 1965) partake in spontaneous wine fermentations. Yeast genera such as Hanseniaspora,

Candida and Kloeckera typically prevail during the early stages of wine fermentations, followed by

several species of Metschnikowia and Pichia in the middle stages when the ethanol level increases to

3-4% (Pretorius et al., 1999). Other yeast species such as Hansenula, Brettanomyces/Dekkera,

Debaromyces, Kluyveromyces, Torulopsora and Saccharomycodes may also play a role during

spontaneous wine fermentations (Boulton et al., 1996; Fleet, 1993; Lafon-Lafourcade, 1983; Snow,

1983). The composition of yeast species in wine originates from the grapes, which in tum is

determined by the climate, altitude of the vineyard, the type of nitrogen fertilisation, fungicide control

methods, presence of insect vectors and waste disposal practices of wineries (Boulton et al., 1996).

The latter stages of spontaneous alcoholic fermentation are usually dominated by different strains of

the Saccharomyces sensu stricto group of yeast, which are more resistant to higher levels of ethanol

and produce typical wine flavours (Amerine et al., 1972; Boulton et al., 1996; Fleet, 1993). To date,

the Saccharomyces sensu stricto yeast group contains at least six species, namely Saccharomyces

cerevisiae, Saccharomyces bayanus, Saccharomyces paradoxus and the recently isolated

Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae, as well as one

hybrid taxon S. pastorianus (synonym S. carlsbergensis) (Naumov, 1996, 2000; Naumov et al.,

2000a,b; Vaughan-Martini and Martini, 1998). All the yeasts in the Saccharomyces senso stricto

group contain at least 16 distinctive nuclear chromosomes of small, medium and large sizes, while

each species displays a unique karyotype (Vaughan-Martini et al., 1993). More importantly, it is

believed that the chromosomes of the different Saccharomyces senso stricto yeasts are homologous,

i.e. the order of genes is largely preserved among different species (Hunter et al., 1996; Ryu et al.,

1996).

Over the years the classification of the wine yeast has been refined from a wide variety of species or

varieties such as Saccharomyces uvarum, Saccharomyces ellipsoideus, Saccharomyces vini,

Saccharomyces fermenti and the galactose non-fermenting yeast Saccharomyces oviformis to only one

yeast species, namely S. cerevisiae (Kunkee and Goswell, 1977; Lodder, 1970; Vaughan-Martini

and Martini, 1998). The majority of commercial wine yeasts are strains of S. cerevisiae, while some

commercial wine yeast strains belongs to the species S. bayanus. Although some confusion exists

among winemakers about the identity of S. bayanus strains (Masneuf et al., 1996), these strains can
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usually be distinguished from s. cerevisiae through their distinctive fermentation properties, i.e. some

S. bayanus strains are cryophilic with a higher growth rate and better fermentation at low

temperatures compared to s. cerevisiae (Kishimoto and Goto, 1995; Masneuf et al., 1998). Recently,

S. uvarum has once again been delineated as a subgroup of S. bayanus, i.e. S. bayanus var. uvarum,

based on molecular fingerprinting, electrophoretic karyotype profile, distinctive biochemical profile

and high sporulation ability (Gouliamova and Hennebert, 1998; Masneuf et al., 1996; Montrocher. et

al., 1998; Naumov et al., 2000'; Nguyen and Gaillardin, 1997; Pulverenti at al., 2000; Rainieri et al.,

1999). Strains of S. cerevisiae are almost exclusively associated with man-made fermentation

environments, i.e. they are usually absent or rare on grapes, but frequent inhabitants of wineries and

have become known as "wine yeast" as they are universally favoured for initiating wine

fermentations.

In contrast to the strong association of S. cerevisiae and S. bayanus with winemaking, strains of

S. pastorianus are usually found in the production of lager beers (Rodrigues de Sousa et al., 1995;

Turakainen et al., 1993; Vaughan-Martini and Martini, 1987), while strains of S. paradoxus are not

associated with either wine or beer production (Redzepovic et al., 2002). Strains of S. paradoxus,

which are often associated with plant disease, is usually found in exudates of broad-leaved trees,

insects and uncultivated soils (Naumov, 1999; Naumov et al., 1992, 1994, 1997, 1998, 2000b).

However, it was recently isolated in high numbers from Croatian vineyards (Redzepovic et al., 2002).

Strains of S. paradoxus appear to be present on most continents, but exhibit genetic and reproductive

differentiation (Naumov, 1996, 1999), i.e. S. paradoxus strains collected from different geographical

regions showed relatively little allozyme variability (Naumov et al., 1997), but on a DNA sequence

level large variations was found between different strains of S. paradoxus, as illustrated by DNA

fingerprinting methods (Naumov et al., 2000b) and hybridisation profiles (Cliften et al.>. 2001; ..

Naumov et al., 1992, 1994, 1998, 2000b; Redzepovic et al., 2002).

A.2 GENETIC RELATIONSHIP BETWEEN S. CEREVISIAE AND S. PARADOXUS

Based on DNA re-association studies, S. paradoxus is regarded as the natural parent species of

S. cerevisiae (Nau et al., 1996; Redzepovic et al., 2002; Vaughan-Martini, 1989; Vaughan-Martini

and Martini, 1998; Young et al., 2000). The close relation between S. cerevisiae and S. paradoxus is

also indicated by the fact that fructose transport mechanisms are absent in both these yeast, whereas

strains of S. bayanus and S. pastorianus contain proton-symport apparatus for fructose transport

(Tornai-Lehoczki et al., 1996).

When the amino acid sequence of the malic enzymes of S. cerevisiae, S. paradoxus and S. bayanus

was compared (Saccharomyces Genome Database), the protein alignments clearly showed a higher
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degree of homology (98 %) between the S. cerevisiae and S. paradoxus malic enzymes, compared to

that of S. cerevisiae and S. bayanus (94 %) (Fig A 1). In-depth analysis of the amino acid sequence of

the S. pombe, S. cerevisiae, S. paradoxus and S. bayanus malic enzymes, indicated a high degree of

conservation between all the Saccharomyces malic enzymes with regard to the previously identified

homologous regions (Box A-H) found in all malic enzymes (see Chapter 3) (Viljoen et al., 1994).

These conserved regions are thought to play essential roles in the enzymatic functioning of the malic

enzyme, while the linker regions between regions A-H are conserved in length, but not in amino acid

composition. A closer look at these homologous regions indicates that there is an almost 100%

homology between the malic enzymes of Saccharomyces species, with the exception of two amino

acid changes in the malic enzyme from S. bayanus within region E and H. Furthermore, the amino

acid variations between the S. cerevisiae and S. paradoxus malic enzyme are positioned within the

linker regions of the protein and not the functional domains of the protein. Strains of S. paradoxus

and S. cerevisiae has been shown to have divergent abilities to degrade i-malie acid, however, this is

not corroborated in the amino acid sequences of these two proteins (Fig. A.I).

Recently, the close phylogenetic relationship between S. cerevisiae and S. paradoxus has become the

motivation for evaluating strains of S. paradoxus for their enological characteristics and potential as a

winemaking yeast (Majdak et al., 2002). Strains of S. paradoxus were found to have excellent

vinification characteristics such as a vigorous fermentation of grape sugars, high ethanol tolerance,

lack of off-flavour production, as well as low H2S production. The major differences in wine

produced by S. paradoxus and S. cerevisiae were the amount of volatile components, i.e. comparative

analysis between wine made by S. paradoxus and S. cerevisiae revealed that S. paradoxus strains are

prone to produce lower amounts of higher alcohols but higher amounts of volatile esters, which has a
. " . -

major influence on the wine aroma (Majdak et al., 2002; Redzepovic et al., 2002).



Figure A.I. Amino acid sequence alignment of the malic enzymes from S. cerevisiae, S. paradoxus,
S. bayanus and S. pombe. Homologous regions A-H are indicated by the yellow boxes, while amino
acid changes are indicated in blue for S. pombe, in green for S. paradoxus, and in red for S. bayanus.
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A.3 PCR-AMPLIFICA TION TO ISOLATE THE MAE] PROMOTER REGION FROM

SELECTED SACCHAROMYCES STRAINS

The promoter region of the malic enzyme gene (MAE]) from S. paradoxus R088, S. bayanus EC1118

and S. cerevisiae 71B were PCR amplified based on the nucleotide sequence of the MAE] gene of

S. cerevisiae (Saccharomyces Genome Database) (Fig. A.2). The 5' primer, SCMAEl-F (5'-

CATCGTGCATTGCAAGGTTT-3') anneals to nucleotide -594 of the MAE] gene promoter and the

downstream primer, SCMAEl-R (5'-GAATATAAACGCGATTGCTGA-3'), anneals to nucleotide

+94 inside the MAE] open reading frame. Genomic DNA from S. paradoxus R088, S. bayanus

ECll18 and S. cerevisiae 71B was isolated using a glass bead-phenol extraction method (Hoffman

and Winston, 1987), and approximately 1 /Lg was used as template for PCR amplification. The PCR

program consisted of an initial denaturation step at 94°C for 5 minutes, followed by 30 cycles of 94°C

for 45 seconds, 58°C for 1 minute and 72° for 1.5 minutes.

SCMAE1-F

S'-CATC GTGCATTGCA AGGTTT-3'
ATATTGCATC GTGCATTGCA AGGTTTTTCA AATTCTTGCG TCTTGTCAAC CGTTCAAGGC
GATTGAAAGA TATTCACTGC ATATCTTCTT ATACGAAAAG CATCGAAGAA AAAACACCCA
TACAACCAAG TATAGACGGA ACAATTCGGG TTTTTACTCT TCCCTAGGCG GTTTAAATCG
GATATATGAA AAGAAATCAA AAAAAAAAAA AAAAAAAAAA AAGAATTGGC GCATTTGAAG
TTTTATTATC GTACGCGTTA TTGTTTGCGC TAACATCGCA TCGCATCAGC TGACTGAGTG
ACTGAGTCCC CTTGGCTTCG ACTCATCATC GCCTTTCTAT GGTGAAAAAT TTTCGCAATT
TCCTATTACT GTACCGCGTA TGCTCCATTT GACTTCCTTT GGTCTACAGC TTTAGCGCTA
TAGAGTTTCG AAGTCGTACC CGTTACCGGC ATGATTGACA TATTATATAT ATATATATAT
GCGTATCTTT ATACTTACTC GTATATTGTG TCCAGCTTCG GATATTTGTG CTTTTGAAAC
CTACAACTTT TAACGAGTTT AGTGCACATA AATACCAAGA CAAAAGGTAG AAATACGGTT

-600
-540
-480
-420
-360
-300
-240
-180
-120
-60

0
-f~: 60

120

ATGCTTAGAA CCAGACTATC CGTTTCCGTT GCTGCTAGAT CGCAACTAAC CAGATCCTTG

III
3'-~ TCGTTAGCGC AAATATAAG-S'

SCMAE1-RTCTAACACTA

Figure A.2. Nucleotide sequence of the promoter region of the S. cerevisiae MAE] gene used for
designing the PCR amplification primers, i.e. SCMAEl-F and SCMAEI-R, for subclaning and
sequencing of the MAE] promoter region of S. paradoxus R088, S. cerevisiae 71B and S. bayanus
EC1118. The MAE] open reading frame is indicated by shaded area.

A 710 bp fragment was obtained from all three Saccharomyces strains and these fragments were

purified by gel electrophoresis and subeloned using the p-GEM®-T Easy Vector System (Prornega

Corporation, Madison). Three subelones of each strain were submitted for automated sequencing

using the M13 forward and M13 reverse primers. The DNA sequence of the promoter fragments from
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S. paradoxus R088, S. cerevisiae 71B and S. bayanus EC1118 were compared with that of the

published sequence of the S. cerevisiae MAEI gene using DNAMAN version 4.13 (Lynnon Biosoft.).
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ABSTRACT

Recombinant strains of Saccharomyces cerevisiae with the ability to reduce wine acidity could have a

significant influence on the future production of quality wines, especially in cool climate regions.

L-Malic acid and L-tartaric acid contribute largely to the acid content of grapes and wine. The wine

yeast S. cerevisiae is unable to effectively degrade L-malic acid, whereas the fission yeast

Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of a

malo-ethanolic fermentation. However, strains of S. pombe are not suitable for vinification due to the

production of undesirable off-flavours. Heterologous expression of the S. pombe malate permease

tmael ï and malic enzyme (mae2) genes on plasmids in S. cerevisiae resulted in a recombinant strain

of S. cerevisiae which efficiently degraded up to 8g/1 L-malic acid in synthetic grape must and 6.75 gil

L-malic acid in Chardonnay grape must. Furthermore, a strain of S. cerevisiae containing the mae}

and mae2 genes integrated in the genome efficiently degraded 5 gil of L-malic acid in synthetic and

Chenin Blanc grape must. The malo-ethanolic strains produced higher levels of ethanol during

fermentation which is important for the production of distilled beverages.

6.1 INTRODUCTION

Wine acidity and pH play an important role in the organoleptic quality and shelf life of wine.

L-Tartaric acid and L-malic are the most prominent grape acids, contributing to more than 90% of the

titratabie acidity in wine (Beelman and Gallander, 1979; Radler, 1993; Henick-Kling, 1993; Gao and

Fleet, 1995). The production of premium wines depends on the oenologist's skill to accurately adjust

wine acidity to obtain a balanced wine with optimum flavour and colour profile. In the warmer wine

regions of Australia, South Africa, California and southern Europe, acidulating agents such as

L-tartaric acid and o/t-mahc acid are routinely added prior to fermentation to increase the titratable

acidity of must (Beelman and Gallander, 1979; Boulton et al., 1996). However, in the cooler wine

regions of northern Europe, eastern United States and Canada, cold stabilisation and malolactic

fermentation are necessary to decrease the levels of L-tartaric and L-malic acid in the final product.
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Strains of the lactic acid bacterium Oenococcus oeni are used to perform the malolactic fermentation

in wine during which L-malic acid is converted to L-lactic acid and CO2 (Wibowo et al., 1985; Van

Vuuren and Dicks, 1993). Malolactic fermentation sufficiently decreases the acidic taste of wine,

improves the microbial stability and modifies the organoleptic profile of the wine. However, stuck or

sluggish malolactic fermentation often causes delays in cellar operations such as sulphiting, which

may result in the chemical oxidation and spoilage of wine as well as the production of biogenic

amines by spoilage organisms (Lonvaud-Funel and Joyeux, 1994; Straub et al., 1995). Even with the

use of starter cultures, malolactic fermentation may only be completed weeks or months after

alcoholic fermentation (Henick- Kling, 1995). Factors such as pH, sulphur dioxide, ethanol,

temperature, nutritional status of the wine and interactions with other wine flora synergistically

influence the onset and completion of malolactic fermentation (Beelman and Gallander, 1979;

Boulton et al., 1996; Davis et al., 1985; Henick-Kling, 1993). Furthermore, malolactic fermentation

is usually undesirable in the production of the fruity-floral cultivars such as Sauvignon Blanc,

Riesling and Gewurztraminer. The varietal flavours in these wines are essential to their aromatic

character and are adversely modified during malolactic fermentation (Radler, 1972; Wagner, 1974).

Yeast species capable of utilizing tricarboxylic acid (TCA) cycle intermediates, such as L-maJic acid,

are classified into two groups: K (+) yeasts utilize TCA intermediates as sole energy and carbon

source, while K (-) yeasts can only utilise TCA cycle intermediates when glucose or other

fermentable carbohydrates are present. The K (-) group includes yeasts such as Saccharomyces

cerevisiae, Schizosaccharomyces pombe and Zygosaccharomyces balii (Baranowski and Radler,

1984; Kuczynski and Radler, 1982; Rodriquez and Thornton, 1989). However, wine yeast strains of

S. cerevisiae cannot efficiently utilise L-malic acid during alcoholic fermentation (Subden et al., 1998;

Volschenk et al., 1997b). The inefficient degradation of L-malic acid by S. cerevisiae is ascribed to .

the slow uptake of L-malic acid by diffusion (Ansanay et al., 1996; Baranowski and Radler, 1984;

Volschenk et al., 1997a.b) and the low substrate affinity of its malie enzyme (Km = 50 mM) (Fuck et

al., 1973). Furthermore, transcriptional analysis of the S. cerevisiae malic enzyme gene (MAE]),

indicated the gene is expressed at relatively low but constitutive levels (Boles et al., 1998).

In contrast to S. cerevisiae, the fission yeast S. pombe can efficiently degrade up to 29 gil of L-malic

acid (Taillandier et al., 1988; Taillandier and Strehaiano, 1991). Cells of S. pombe actively transport

L-malic acid via a H'-symport system (Sousa et al., 1992) provided by the malate permease encoded

by the mae1 gene (Grobler et al., 1995). Intracellularly, S. pombe decarboxylates t.-malic acid to

pyruvate and CO2 by means of a cytosolic malic enzyme encoded by the mae2 gene (Viljoen et al.,

1994). Under fermentative conditions, pyruvate is further metabolised to ethanol and CO2 (Mayer and

Temperli, 1963; Osothsilp and Subden, 1986), resulting in the so-called malo-ethanolic fermentation.

Although strains of S. pombe have been used for the degradation of L-malic acid in grape must, it is

unsuitable for the fermentation of wine due to the production of off-flavours and the higher
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fermentation temperatures required (Beelman and Gallander, 1979; Carré et al., 1983;

Gallander, 1977; Radler, 1993).

We have cloned and co-expressed the mael and mae2 genes responsible for the malo-ethanolic

fermentation in S. pombe in a laboratory strain of S. cerevisiae. Since the native promoters of these

genes are not recognised by S. cerevisiae, the genes were expressed under control of the constitutive

3-phosphoglycerate kinase (PGK 1) promoter and terminator sequences of S. cerevisiae. The

recombinant yeast strain rapidly degraded L-rnalic acid in synthetic and Chardonnay grape must and

consistently produced higher levels of ethanol in the presence of malic acid, relative to the control

yeast strain. The mael and mae2 genes were also integrated in the ILV2 locus of S. cerevisiae

genome to overcome possible artefacts due to the instability of 211m plasmids. Recombinant strains of

S. cerevisiae containing a single genomic copy of the mael and mae2 genes effectively degraded

L-malic acid in synthetic and Chenin Blanc grape must and compared well with the malolactic yeast

strains previously reported (Volschenk et al., 1997").

6.2 MATERlALS AND METHODS

6.2.1 Strains and maintenance

The bacterial and yeast strains and plasmids used in this study are listed in Table 6.1. Cells of E. coli

JMI09 were transformed by electroporation and selected on LB medium supplemented with

ampicillin (Ausube1 et al., 1995). Cells of S. cerevisiae were cultured in liquid YPD media at 28°C

and competent cells (LiOAc method) were transformed or co-transformed with plasmids pHVX2,

pHV3 and pHV7 (Table 6.1). Transformants were isolated on selective YNB agar plates [Difco

Laboratories, Detroit, MI] supplemented with amino acids as required. The transformants were

cultured to high cell density in 50 ml selective YNB media (0.17% Yeast Nitrogen Base [Difco

Laboratories, Detroit, MI], 0.5% (N14hS04, 2% D-glucose, 0.13% of drop-out amino acid pool

[Ausubel et al., 1995] at 28°C, harvested by centrifugation and resuspended in 5 ml sterile grape juice

before inoculation into grape must.

6.2.2 Plasmid construction

Standard recombinant DNA techniques were performed essentially as described by Ausubel et al.

(1995). All subeloning and DNA manipulations, except the construction of the integration plasmid

pHVS2, were performed in the 2)..l-based plasmids YEplacl81 and YEplac 195 (Gietz and Sugino,

1988). The construction of the expression vectors pHVX2 and pHV3 (Table 6.1) were previously

described (Volschenk et al., 1997a•b). The PGKlp-mae2-PGKlt expression cassette from pHV4

(Volschenk et al., 1997b) was subeloned as aHindIII fragment into YEplac195, resulting in pHV7.
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Table 6.1. Strains and plasmids used in the genetic construction of malo-ethanolic strains of
S. cerevisiae.

Strains Description Reference

Plasmids Description Reference

E. coli JMI09 endA I, recA I,gyrA96, thi, hsdRI7 [rk-, mk+],
relA I, supE44, "A-, t':l.(lac-proAB), [F, traD36,
pro/CB", lacflZt':l.MI5]

MATa, ura3-52, lys2_80l·mbcr, ade2_JOlochr<,
uaszoo. leu2-t':l.l

S. cerevisiae YPR259

pRVX2 YEplacl81 (LEU2 marker gene) containing the
PGKl promoter and terminator sequences..

pHVX2 containing the mael ORF subeloned
between the PGKl promoter and terminator
sequences.

YEplacl95 (URA3 marker gene) containing the
mae2 ORF subeloned between the PGKI
promoter and terminator sequences.

pBluescript KS+ containing the SMRl-410 gene.
The PGKlp-mael-PGKlt and
PGKlp-mae2-PGKlt expression cassettes were
subeloned in the terminator region of the SMR 1
ene.

pRV3

pRV7

pRVS2

(Yanisch-Perron, 1985)

(Sikorski and Hieter,
1989)

(Volschenk et al., 1997
a.b)

(Volschenk et al.,
1997··b)

This study

This study

6.2.3 Integration ofmae] and mae2 genes in S. cerevisiae

Integration of the mael and mae2 genes into S. cerevisiae genome was obtained by selecting for

resistance to the herbicide sulfometuron methyl (SMM) via the SMRl-4JO gene (Casey et al., 1988).

The SMRl-4JO gene was subeloned from pWX509 (Casey et al., 1988) by KpnI-BamHI digestion into

pBluescript KS+ to yield pDLG42 (provided by Dr. DC la Grange, Dept of Microbiology, University

of Stellenbosch). The PGKlp-mae2-PGKlt cassette from pHV7 was subeloned as a HindIII fragment

into the SMRl terminator region in pDLG42 (Fig. 6.1), while PGKlp-mael-PGKlt was subeloned as

a Pvull fragment from pHV3 into the blunt-ended NdeI site of the SMRl terminator region in

pDLG42 to yield pHVS2 (Fig. 6.1). pHVS2 was linearised with ApaI and transformed into LiOAc

competent cells of S. cerevisiae YPH259. Transformants were selected on YNB agar plates [Difco

Laboratories, Detroit, MI] containing 200JLglrnl SMM and supplemented with all amino acids except

isoleucine and valine. Transformants were maintained on YPD plates for more than 200 generations.

6.2.4 Pulse-field gel electrophoresis and Southern blotting

S. cerevisiae YPH259 and the integrated malo-ethanolic strain of S. cerevisiae was grown in 200 ml

YPD overnight. Chromosomal DNA plugs were prepared by lyticase enzyme treatment (Boehringer

Mannheim, Germany) and the chromosomes separated by counter-clamped homogeneous electric

field (CHEF) electrophoresis as described by van der Westhuizen and Pretorius (1992). Standard
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procedures (Ausubel et al., 1995) were used to prepare the gel for Southern blotting and to transfer the

.DNA to a positively charged nylon membrane (Boehringer Mannheim, Germany). An internal 622 bp

XhoI DNA fragment of mae l , 864 bp EcoRVEcoRV DNA fragment of mae2 and a internal 900 bp

BglII DNA fragment of lLV2 was labelled with [a_32P]dCTP by using the random-primed DNA-

labelling kit (Boehringer Mannheim, Germany) and used as probes to detect the mae l , mae2 and lLV2

genes.

BamHI
Ec047III

HindIII
XhoI Pvull

KpnI
EcoRI
Ec047III
SMR-410

Pvull

EcoRI
pHVS2

(13508 bp)

HindIII ApaI

HindIII

EcoRI

Figure 6.1. Plasmid map of integration plasmid pHVS2. The PGKlp-mae2-PGKl( fragment was
cloned as a HindIII fragment into the SMRI terminator region in pDLG42. The PGKlp-mael-PGKl(
fragment was cloned as Pvull fragment in the NdeI site (blunt-ended) in the terminator region of
SMRI in pDLG42. Digestion with ApaI linearised the plasmid in the SMRI ORF region.

6.2.5 Malo-ethanolic fermentation in grape must

The synthetic grape must consisted of 0.17% YNB (without amino acids and ammonium sulphate),

0.5% (N~hS04, 10% glucose, 8 or 5 gil L-rnalic acid and amino acids supplemented as required.

The pH was adjusted to 3.3 with IN KOH. The recombinant strains of S. cerevisiae were inoculated

to a final concentration of 2 X 106 cells/ml in 100 ml synthetic grape must in 250 ml Erlenmeyer

flasks and incubated at 28°C while shaking.

Chardonnay must (6.75 gil L-malic acid, pH 3.29) and Chenin Blanc must (5 gil L-malic acid, pH

3.42) were also inoculated with 2 X 106 cells/ml into 800 ml must in 11 flasks and incubated at 22°C

without aeration. The Chardonnay and Chenin Blanc grape must were supplemented with 0.075%

diammonium phosphate before inoculation to ensure a sufficient nitrogen source during fermentation.

The concentration of t.-rnalic acid, D-glucose and ethanol were measured at regular intervals during

the fermentation using enzymatic assays (Roche Diagnostics, Germany).
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6.3 RESULTS AND DISCUSSION

Although both S. cerevisiae and S. pombe are classified as K (-) yeasts, their ability to degrade

t.-malic acid differs significantly. The method of L-malic acid uptake contributes largely to this

phenomenon: cells of S. cerevisiae rely on simple diffusion for the uptake of L-rnalic acid, whereas

S. pombe actively transports L-malic acid via a H'<malate symporter. The malic enzyme of

S. cerevisiae has strong homology with the malic enzyme of S. pombe, but they differ significantly in

their co-factor specificity, substrate affinity and subcellular localisation (Boles et al., 1998). The

malic enzyme of S. cerevisiae requires either NAOP+ or NAO+ as electron acceptor and is located in

the mitochondria whereas the cytosolic malic enzyme from S. pombe is NAO+-specific (Fig. 6.2).

Furthermore, the affinity (Km = 50 mM) (Fuck et al., 1973) of the S. cerevisiae malic enzyme is much

lower for the substrate L-malic acid than the malic enzyme from S. pombe (Km = 3.2 mM) (Temperli

et al., 1965).

Ethanol

Biosynthetic
Pathways..

NADH
py

NADPH~

MAEl

NADP+ MA~,r TeA J
'+"

--- .... AA

Mitochondrion

Figure 6.2. A schematic representation of the pathway for L-rnalic acid degradation in S. cerevisiae
with the newly introduced rnalo-ethanolic pathway from S. pombe. MAE}, malic enzyme gene of S.
cerevisiae; mael, S. pombe malate permease gene and mae2, S. pombe malic enzyme gene. MA =
malic acid, py = pyruvic acid, AA = acetaldehyde, TCA = tricarboxylic acid cycle.
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These data strongly suggest that the malic enzyme of S. cerevisiae plays an entirely different

physiological role than that of S. pombe. In S. cerevisiae; malic acid is mainly metabolised through

malate dehydrogenase and the oxidative reactions of the TCA cycle. It has been suggested that the

S. cerevisiae malic enzyme plays a role in providing intra-mitochondrial NADPH or pyruvate for

biosynthetic pathways under anaerobic conditions (Fig. 6.2) (Boles et al., 1998). The role of the

highly efficient degradation of L-malic acid by the yeast S. pombe is somewhat enigmatic, since

t.-rnalic acid is not incorporated into biomass, but stoichiometrically converted to ethanol and CO2

under anaerobic conditions (Taillandier et al., 1988; Taillandier and Strehaiano, 1991; Subden et al.,

1998). Analysis of the transcriptional regulation of the malic enzyme gene of S. pombe suggests that

this enzyme may help to maintain the redox potential under fermentative conditions (Viljoen et al.,

1999).

Winemakers rely on malolactic fermentation to balance the acidity levels of wine after alcoholic

fermentation. However, the malolactic fermentation is often erratic and difficult to manage. The use

of genetically improved strains of S. cerevisiae with the ability to reduce L-malic acid levels during

alcoholic fermentation could be of great benefit to winemakers. We previously reported the

construction of a malolactic strain of S. cerevisiae able to efficiently carry out malolactic fermentation

by co-expressing the malate permease gene tmael i of S. pombe and the malolactic enzyme gene

(mleS) of Lactococcus laetis (Volschenk et al., 1997a). Since malolactic fermentation is, however, not

always desired in certain cultivars we investigated an alternative pathway to reduce the levels of

ï.-malic acid in these wines. This pathway uses the S. pombe malate permease and malic enzyme to

perform a so-called malo-ethanolic fermentation.

Recombinant strains of S. cerevisiae containing both the S. pombe mae] and mae2 genes were

constructed by co-transformation of plasmid pHV3 and pHV7 into S. cerevisiae YPH259. The

malo-ethanolic fermentation by the recombinant S. cerevisiae strain (MEF) was completed within 3

days in synthetic grape must containing 8 gil of L-malic acid; while 6.75 gil of L-malic acid was fully

degraded within 11 days in Chardonnay grape must (Fig. 6.3). In contrast, the control yeast strain

containing only the PGKI-expression cassette (plasmid pHVX2) was not able to degrade the malic

acid present in the media. Furthermore, the recombinant strain containing only the mae2 expression

cassette (plasmid pHV7) had no effect on the levels of L-malic acid (results not shown). This

confirmed the essential contribution of the S. pombe malate permease for the effective degradation of

malic acid in S. cerevisiae.
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Figure 6.3. Malo-ethanolic fermentation in (A) synthetic grape must containing 8 gil L-malic acid, or
(B) Chardonnay grape must containing 6.75 gil L-malic acid. The recombinant strain of S. cerevisiae
(MEF) contained the S. pombe mae} and mae2 genes (.), whereas the control yeast contained only
the pHVX2 expression vector (.).

In S. pombe, the malic enzyme catalyses the oxidative decarboxylation of L-malic acid to L-pyruvate.

Under fermentative conditions, pyruvate is further metabolised to ethanol and CO2 by alcohol

dehydrogenase (Maconi et al., 1984). The malo-ethanolic strain of S. cerevisiae (MEF) containing

the malate transport imael ï and malic enzyme (mae2) genes from S. pombe, consistently produced

higher levels of ethanol, relative to the control strain (Fig. 6.4). This confirmed that the two S. pombe

genes enabled cells of S. cerevisiae to metabolise the extracellular L-malic acid to ethanol under

fermentative conditions. The S. pombe mae} and mae2 expression cassettes were successfully

integrated in the S. cerevisiae genome.

Figure 6.4. Ethanol production by the malo-ethanolic strain of S. cerevisiae containing the S. pombe
mae} and mae2 genes (0) in a Chardonnay grape must, compared to the control yeast strain
containing only plasmid pHVX2 (.).
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Southern analysis of the CHEF gel confirmed that the mae} and mae2 genes are located on the same

chromosome (Chr.xIII) as the }LV2 gene (Fig 6.5). Cells of S. cerevisiae (MEF) containing the

integrated mae} and mae2 genes efficiently degraded 5g/1 L-malic acid within 34 hours and 10 days

in a synthetic and Chenin Blanc grape must, respectively (Fig. 6.6). Cells of S. cerevisiae containing

single copies of the mae} and mae2 genes compared well with those containing multiple copies of the

same genes. Results suggest that single copy expression of the mae} and mae2 genes of S. pombe

under the control of the S. cerevisiae PGK} promoter and terminator is sufficient for rapid

degradation of ï.-malic acid and have the potential to be applied in commercial wine yeast strains.

1 2 3 4

mael ILV2
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Figure 6.5. Chromosomal blotting of the mae}, mae2 and ILV2 genes. The chromosomes of
S. cerevisiae YPH259 (lane 2, 4) and the integrated malo-ethanolic strain of S. cerevisiae (MEF) (lane
1,3) were separated on a CHEF gel and probed with the internal622 bp XhoI DNA fragment of mae},
an internal 864 bp EcoRI/EcoRV DNA fragment of mae2 and a internal 900 bp BglII DNA fragment
ofILV2.

Figure 6.6. Malo-ethanolic fermentation in (A) synthetic grape must or (B) Chenin Blanc grape must
containing 5 gil L-malic acid. The recombinant strain of S. cerevisiae (MEF) contained the integrated
S.pombe mae} and mae2 genes (.), whereas the control yeast is the parent strain (S. cerevisiae
YPH259) (.).
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We have successfully introduced a malo-ethanolic pathway into a strain of S. cerevisiae on multicopy

plasmids enabling this yeast to degrade -7 gil of L-malic acid during fermentation of grape must. The

degradation of L-malic acid by the malo-ethanolic yeast was as efficient as the conversion of L-malic

acid to L-Iactic acid by the malolactic yeast strain previously reported (Volschenk et al., 19973
).

Stable expression of the malo-ethanolic genes in S. cerevisiae was also obtained by integration in the

ILV2/SMR 1 locus. Strains of S. cerevisiae containing a single copy of the malo-ethanolic genes could

efficiently degrade -5g/1 L-malic acid during grape must fermentation.

Strains of S. cerevisiae able to conduct the malo-ethanolic fermentation in grape musts will be

well-suited for the production of aromatic wines such as Sauvignon Blanc, Riesling and

Gewurztraminer where the reduction of malic acid is required, without the negative effects that the

malolactic fermentation has on the organoleptic profile of these wines.

Strains of S. cerevisiae with the capacity to produce higher levels of ethanol during vinification are of

particular importance to the distilled beverage industry for the production of a higher-alcohol rabate

wines for distillation purposes. To ensure stable expression of the genes under the non-selective

conditions associated with wine, current research is focused on the integration of the mae} and mae2

genes into the genomes of selected commercial wine yeast strains. Once industrial malo-ethanolic

strains of S. cerevisiae are obtained, we will determine their fermentation kinetics and evaluate the

organoleptic quality of wines produced by the recombinant yeasts.
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ADDENDUl\Il B

B.l OPTIMISED HETEROLOGOUS EXPRESSION OF THE S. POMBE MAEl AND MAE2

GENES S. CEREVISIAE

To create efficient genetically engineered industrial wine yeast strains, the functional expression of

the malo-ethanolic genes (maeI and mae2) of S. pombe was first evaluated on multicopy plasmids in a

laboratory strain of S. cerevisiae. Once the functionality of the genetic constructs and the efficacy of

the malo-ethanolic phenotype in a laboratory strain of S. cerevisiae are satisfactory, the heterologous

genes can be integrated into the genomes of commercial strains of Saccharomyces.

B.l.l ADHlIPGKl expression cassettes

The main objective for subeloning the mae} and mae2 open reading frames (ORF's) of S. pombe was

to over-express these open reading frames (ORP's) in S. cerevisiae to ensure a strong malo-ethanolic

phenotype. The native S. pombe promoters of the maeI and mae2 genes were shown to be

non-functional in S. cerevisiae (Viljoen et al., 1999). A combination of expression vectors (Table

B.I) containing either the 3-phosphoglycerate kinase (PGKI) or alcohol dehygrogenase (ADRI)

expression cassettes was used to subclone the maeI and mae2 ORP's through a series of DNA

manipulations to form an ensemble of multicopy expression vectors for transformation into

S. cerevisiae (Table B.1) (Volschenk et al., 1997a•b; Volschenk et al., 2001).

Expression from the maeI and mae2 genes under the regulation of the ADRI promoter was not

optimal (Volschenk et al., 1997a) and the recombinant strains showed a very weak malo-ethanolic

phenotype (8 gil malic acid degraded in 19-22 days under aerobic conditions) (Volschenk et al.,

19973
). A hypothesis for the weak expression from the ADRI expression cassette was formulated

based on Western blot results that indicated a possible glucose inactivation of the ADRI promoter. In

addition, we suspect that the tandem configuration of the PGKI and ADRI expression cassettes in

plasmid pRVS and pRV6 might contribute to the weak expression from the ADRI promoter. Strong

constitutive expression from the PGKI promoter correlates with a high rate of transcriptional

initiation by RNA polymerase machinery and might lead to the channelling of the RNA polymerase

initiation complex away from the ADRI promoter, resulting in lower levels of expression from the

ADRI expression cassette. The heterologous expression strategy was therefore modified to overcome

these obstacles, rather than to unravel the fundamental aspects of promoter disfunctioning in

heterologous expression systems.
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Table B.l. Summary of strains and plasmids used in the genetic construction of malo-ethanolic
strains of S. cerevisiae.

Strains Description Reference

E. coli JM 109 endAI, recAl, gyrA96, thi, hsdR17 [rk-, mk+], Yanisch-Perron, 1985
relAl, supE44, A_-, l1(lac-proAB), [F, traD36,
proA+B+, lac['lZI1M15]

MATa, ura3-52, lys2_80rmt-er, ade2_lOIochre, Sikorski and Hieter, 1989
his311200, lell2-I1I

S. cerevisiae YPH259

Plasmids Description Reference

pHVXl Shuttle vector YEp lac 181, containing the Volschenk et al., 1997a

ADH 1p-ADH I, expression cassette

pHVX2 Shuttle vector YEplacl81 (LEU2 marker gene), Volschenk et al., 1997a

containing the PGKIp-PGKl, expression cassette

pHVI pHVXI with mael ORF (ADHlp-mael-ADHI,) Volschenk et al., 1997a

pHV2 pHVXl with mae2 ORF (ADHlp-mae2-ADHI,) Volschenk et al., 1997a

pHV3 pHVX2 with mael ORF (PGKlp-mael-PGKl,) Volschenk et al., 1997"' b

pHV4 pHVX2 with mae2 ORF (PGKlp-mae2-PGKI,) Volschenk et al., 1997a

pHV5 YEp lac 181-based vector containing the Volschenk et al., 1997a

ADHlp-maeI-4.DHI,.- PGKlp-mae2-PGKI,
expression system

pHV6 YEp lac 181-based vector containing the Volschenk et al., 1997a

ADHlp-mae2-ADHI,.- PGKlp-mael-PGKI,
expression system

pHV7 YEplac 195-based vector containing the PGKI p- Volschenk et al., 2001
mae2-PGKI, expression cassette

R1.2 Double plasmid PGKI expression cassettes

The strategy for improved expression of the S. pombe mael and mae2 genes in a laboratory strain of

S. cerevisiae required that both the mael and mae2 ORF's are expressed under the regulation of the

PGKl promoter on two independent multicopy plasmids (also referred to as the double plasmid or co-

transformation strategy). The co-transformation of two plasmids into a laboratory strain of

S. cerevisiae requires the use of two different auxotrophic marker genes to select for transformants.

The previous strategy only involved the YEplac18l plasmid backbone, which contains the LEU2

auxotrophic marker gene. Subsequently, the PGKlp-mae2-PGKlt expression cassette was subeloned

as a HindIII fragment from plasmid pHV4 (Table B.l) into YEplac195 (a URA3-based vector) to

create plasmid pHV7 (Fig. B.1) (Volschenk et al., 200 1). S. cerevisiae strain YPH259 was

subsequently transformed by both plasmids (pHV3 and pHV7) using the lithium acetate procedure

(Ausubel et al., 1995) in two consecutive transformation steps and the transformants were analysed

for their ability to degrade L-malic acid.
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pHV3
(8968 bp)

EcoRl

HindIII

XhoI
HindIII
HindIII
BgIII

_'"G..__ XhoI

EcoRI

AatII
NdeI

EcoRV

pHV7
(8883 bp)

PvuII

Figure B.l. Plasmid pHV3 and pHV7 contain the PGKlp-maeI-PGKlt and PGKlp-mae2-PGKlt
expression cassettes, respectively. The construction of pHV3 was previously described in Volschenk
et al. (997). pHV7 was obtained by subeloning the HindIII fragment from pHV4 into YEplacl95.

Malic acid degradation by these engineered strains of S. cerevisiae containing both the mae] and

nzae2 genes under control of the PGKI-promoter and terminator sequences, was more effective _

compared to the previously results obtained with the ADH I-promoter (Volschenk et al., 1997b).

Efficient degradation of 8 gil malic acid was obtained in a 10% glucose synthetic grape must in less

than three days (see Fig. 6.3), indicating that the malo-ethanolic fermentation in S. cerevisiae can be

as efficient as malolactic fermentation in S. cerevisiae.

B.2 MALO-ETHANOLIC FERMENTATION IN VIDAL GRAPE MUST

In addition to the fermentations in synthetic and Chardonnay grape must, the recombinant strain of

S. cerevisiae containing the S. pombe maeI and mae2 genes on plasmid pHV3 and pHV7 (Table B.l)

was also evaluated in a Vidal grape must from a cool viticultural region (Ontario, Canada). Grapes

from cool climate regions characteristically contain higher concentrations of L-malic acid due to the

slower rate of acid respiration during the ripening stages of the grape berry. The Vidal grape must

(8.4 gil L-malic acid, pH 3.12) was inoculated with 2 X 106 cells/ml into 200 ml must in 250 ml flasks

and incubated at 20°C without aeration. The Vidal grape must was also supplemented with 0.075%

diammonium phosphate before inoculation to ensure a sufficient nitrogen source during fermentation.

The concentration of L-malic acid, D-glucose and ethanol were measured at regular intervals during

the fermentation using enzymatic assays (Roche Diagnostics, Germany).

Malic acid degradation by the recombinant S. cerevisiae strain in the Vidal grape must was rapid and

efficient with complete degradation of extracellular L-malic acid in less than 7 days (Fig ..B.2. A). In .

contrast, the control yeast strain containing only the PGKI-expression cassette (plasmid pHVX2) was

not able to degrade the malic acid present in the media. Furthermore, the recombinant S. cerevisiae

strain also produced higher levels of ethanol compared to the control yeast strain (Fig. B.2 B).
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Figure B.2. CA) Malo-ethanolic fermentation in Vidal grape must containing 8.4 gil L-malic acid. The
recombinant S. cerevisiae strain contained the integrated S. pombe mae} and mae2 genes C.),
whereas the control yeast is the parent strain, S. cerevisiae YPH259, containing pHVX2 (e). (B)
ethanol production by the malo-ethanolic strain of S. cerevisiae containing the S. pombe mae} and
mae2 genes (0) compared to the control yeast strain containing only plasmid pHVX2 (e).

The effective malo-ethanolic fermentation by the recombinant S. cerevisiae strain in a high-acid Vidal

grape must demonstrates the importance of a malic acid degrading yeast strain in cool climate regions

where acid imbalances are regularly found in grapes and wine.

B.3 INTEGRATION WITH SMRl-410 GENE AS DOMINANT SELECTABLE MARKER

Sulfometuron methyl (SM), N-[ (4,6-dimethyl-pyrimidin-2-yl) aminocarbonyl]~2-methoxycarbonyl-

benzenesulfonamide, is the active compound of the sulfonylurea herbicide, Oust (Dupont), and a
. ... ... - .

powerful inhibitor of growth of several species of bacteria, yeasts and higher plants (Chauleff and

Mauvais, 1984; Falco and Dumas, 1985; Falco et al., 1995; LaRossa and Schloss, 1984; Ray, 1984;

Xie and Jiménez, 1996). SM inhibits the enzymatic activity of the acetolactate synthase enzyme (EC

4.1.3.18), encoded by the ILV2 gene (Chromosome XIII) in S. cerevisiae, which catalyses the first

step in the biosynthesis of the branch chain amino acids isoleucine and valine (Falco and Dumas,

1985).

Genetic analyses of several phenotypically distinct mutations of the ILV2 gene of S. cerevisiae

(named SMRI) that confer resistance to SM have been previously characterised. The SMR}-4lO

mutation was found to be dominant in heterozygous diploids and has been applied successfully as a

dominant selectable marker in S. cerevisiae (Casey et al., 1988; Gasent-Ramïnez et al., 1995;

Kitamoto et al., 1991; Marin et al., 2001; Xiao and Rank, 1989, 1990). Sequence comparison
. ;.

between SMR}-4lO and the wild-type ILV2 genes has shown that SMRI-4lO carries a single C to T

transition mutation at nucleotide position 1086 (nucleotide 574 of the ILV2 open reading frame) of the
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coding sequence of ILV2, which results in a proline to serine exchange at amino acid 192 (Fig B.3)

(Xie and Jamfnez, 1996; Yadav et al., 1986).

(A)
Kprlt Promoter SHR-410 Tenninator Banti!

I

(B)

3090
Mutated ILV2 subclone in pDLG42

1 GGTACCGGCTTGGCTTCAGTTGCTGATCTCGGCGCGGAAAAATCAGCGCCCCACGCCAAA
61 .~GGTTCGTATTTTTTCTTTTTTTTTCTAATCTTCC.~TCTATTCGGTAGCGATG.~TTCATT
121 TCTCTGAAAAAAAAAAAAAAATGAAAAAGAATATTTTTTTGATGAACTTGTA
181 TTTCTCTTATCTGGTTGATATATATGCTATCATTTATTTTCTTATCAAGTTTr::CAAATTT
241 CTAATCCTTTCTCCACCATC,CCTAATTAATAATTCAGATCTACGTCACACCGTAATTTGT
301 ATTGTTTTTTTCCTTCATTGTCTAAAACCGAAGAATTCATCAGCCACAGTT~.CTAGTTC;A
361 TTTG~AGCGAAATTACACACATTTTCCCTGTTAC.~;TAGk~GTATTTTAC~~~\TCTAA
466 ACCCTTTGAGCTAAGAGGAGATAAATAC.~CAGAATCAATTTTCAA

512 ATGATCAGACAATCTACGCTAAAAAACTTCGCTATTAAGCGTTGCTTTCAACATATAGCA
M R Q S T L K N FAK R C F Q H I A

572 TACCGCAACACACCTGCCATGAGATCAGTAGCTCTCGCGCAGCGCTTTTATAGTTCGTCT
21 Y R N T PAM RSV A L A Q R F Y S S S
632 TCCCGTTATTACAGTGCGTCTCCATTACCAGCCTCTAAAAGGCCAGAGCCTGCTCCAAGT
41 S R Y Y SAS P L PAS K R PEP A P S
692 TTCAATGTTGATCCATTAGAACAGCCCGCTGAACCTTCAAAATTGGCTAAGAAACTACGC
61 FNV D P L E Q P A E P S KLA K K L R
752 GCTGAGCCTGACATGGATACCTCTTTCGTCGGTTTAACTGGTGGTCAAATATTTAACGAA
81 A E P D MDT S F VGL '1' G G Q I F N E
812 ATGATGTCCAGACAAAACGTTGATACTGTATTTGGTTATCCAGGTGGTGCTATCCTACCT
101 MMS R Q N V D '1' V F GYP G GAL P
872 GTTTACGATGCCATTCATAACAGTGATAAATTCAACTTCGTTCTTCCAAAACACGAACAA
121 V Y D A I H N SDK F N F V L P K H E Q
932 GGTGCCGGTCACATGGCAGAAGGCTACGCCAGAGCTTCTGGTAAACCAGGTGTTGTCTTG
141 GAG H MAE G Y A RAS G K P G V V L
992 GTTACTTCTGGGCCAGGTGCCACCAATGTCGTTACTCCAATGGCAGATGCCTTTGCAGAC
161 V T SGP GAT N V V T P MAD A FAD
1052 GGGATTCCAATGGTTGTCTTTACAGGGCAAGTCtCAACTAGTGCTATCGGTACTGATGCT
181 G I P M V V F T G Q V S '1' SAG T D A
1112 TTCCAAGAGGCTGACGTCGTTGGTATTTCTAGATCTTGTACGAAATGGAATGTCATGGTC
201 F Q E A D V V GIS R S C T K W N V M V

1892
481
1952
501
2012
521
2072
541
2132
561
2192
581
2252
601
2312
621
2372
641
2432
661
2492
681
2552
2612
2672
2732
2792
2852
2912
2972
3032

TCCAAGGTTGCCAACGACACAGGAAGACATGTCATTGTTACAACGGGTGTGGGGCAACAT
S K V AND '1' G R H V I V '1' '1' G V G Q H

CAAATGTGGGCTGCTCAACACTGGACATGGAGAAATCCACATACTTTCATCACATCAGGT
Q M W A A Q H W '1' W R N P H '1' F '1' S G

GGTTTAGGTACGATGGGTTACGGTCTCCCTGCCGCCATCGGTGCTCAAGTTGCAAAGCCA
G'L G ''1' M G' Y G L P A A I' G' A Q V A K P

GAATCTTTGGTTATTGACATTGATGGTGACGCATCCTTTAACATGACTCTAACGGAATTG
E S L V I DID G DAS F N M T L '1' E L

AGTTCTGCCGTTCAAGCTGGTACTCCAGTGAAGATTTTGATTTTGAACAATGAAGAGCAA
S S A V Q AGT P V KIL I L NNE E Q

GGTATGGTTACTCAATGGCAATCCCTGTTCTACGAACATCGTTATTCCCACACACATCAA
G MVT Q W Q S L F Y E H RYS H T H Q

TTGAACCCTGATTTCATAAAACTAGCGGAGGCTATGGGTTTAAAAGGTTTAAGAGTCAAG
L N PDF I KLA E A M G L K G L R V K

AAGCAAGAGGAATTGGACGCTAAGTTGAAAGAATTCGTTTCTACCAAGGGCCCAGTTTTG
K Q EEL DAK L KEF V S T KG' P V L

CTTGAAGTGGAAGTTGATAAAAAAGTTCCTGTTTTGCCAATGGTGGCAGGTGGTAGCGGT
LEV EVD K K V P V L P M V A G G S G

CTAGACGAGTTCATAAATTTTGACCCAGAAGTTGAAAGACAACAGACTGAATTACGTCAT
L D E FIN FDP EVE R Q Q TEL R H

AAGCGTACAGGCGGTAAGCACTGAATTTCAAAAACATTTATTTCAAAAGCATTTTCAGTA
K R TGG K H

AAAAATGCAGAC'l'TTATTATTA'l"l'TAATCGTGCTTCTTATATATGACATTCTACCAAATC

GGTAGTCATGTATA'l"l'TTTTTCGTATATAC'l'TTATATAll •• l.rcTAAAAAACTAATGA
CGGCTAAAATTAAGTCATAGATGAATAATAAGTTCAATTCAAGTGAGTTGGTAGTATTTG
ATAAATCTAAAGTGGATACGTAGCATATGTATTCAAATGGTGTGTTTTAACTCGTCGGAC
ACGACTTC'l'TTCTCGT'l'T'l'GTCAATCATCAAAAATATTTCTCGAAAAGGGGCCGTCAAAA

ATTGCAAGCTTGGAAAATACAAACTGGACTATGTA'l"l'TAAAGGTTATAGTTTATAATAAA
GCATAAGAACAGTGGCCAATACGAA'l"l'TAACCGC'l"l'TATAGAAATGGCTATCTTAAAAAG

AGGAGCTAGAAAAAAGGTACATCAGGAGCCAGCTAAACGCTCTGCGAATATCAAGAAAGC
TACTTTTGATTCCTCGAAGAAGAAAGAAGTTGGTGTGTCTGATC-3076

Figure B.3. Schematic representation (A) and nucleotide sequence (B) of the SMRl-4/O allele of the
S. cerevisiae ILV2 gene. The SMRl-4/O point mutation is indicated on the sequence at nucleotide
1086. The promoter, open reading frame and terminator regions are also indicated (adapted from
Yadav et al., 1986).
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For the purpose of integrating the S. pombe mae] and mae2 genes into S. cerevisiae, the SMR]-4JO

gene was subeloned from pWX509 (Casey et al., 1988) by KpnI-BamHI digestion into pBluescript

KS+ to yield pDLG42 (Dr. D.C. la Grange, Dept. of Microbiology, Stellenbosch University) (Fig.

B.4). The PGKlp-mae2-PGKlt cassette from pHV7 was subeloned first as a HindIII fragment into

the SMRI terminator region in pDLG42 to yield pHVSl (Fig. B.4), while PGKlp-mael-PGKlt was

subeloned as a Pvull fragment from pHV3 into the blunt-ended NdeI site of the SMR] terminator

region of pHYS I to yield pHYS2 (Fig. B.4, see also Fig. 6.1). pHVS2 was linearised with ApaI

digestion, purified and concentrated with the High Pure PCR Purification Kit (Roche Diagnostics,

Germany) and transformed into LiOAc competent cells of S. cerevisiae YPH259 (Ausubel et al.,

1995).

The use of SM as a dominant selectable marker in S. cerevisiae requires the use of minimal media or

the absence of either valine or isoleucine, which acts as feedback inhibitors on the expression of [LV2

and ultimately leads to restored growth on SM if present (Chauleff and Mauvais, 1984; Falco et al.,

1985; Falco and Dumas, 1985). SM was dissolved in N'N' -dimethyl formamide at a concentration of

2mg/ml and added to minimal media (at a final concentration of 200 /lg/ml) containing 0.17% Yeast

Nitrogen Base [Difco Laboratories, Detroit, MI], 0.5% (NH4hS04, 2% D-glucose and 0.13% of a

drop-out amino acid pool without valine and isoleucine (Ausubel et al., 1995). Transformants were

isolated after 3-4 days of incubation at 28°C in the dark.

After 4 days, 30-40 transformants appeared on the SM plates. Transformants were picked and

cultured in rich media (YPD) for 2 days and spotted onto fresh SM selection plates to confirm stable

integration of PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt cassettes into the genome of

S. cerevisiae YPH259.
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(9900 bp)
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HindIII (5069)
NdeI (4968)

Digest pHVSl with NdeI, blunt-end with Klenow
and sub-clone PGKlp-mael-PGKlt cassette as a

Pvull fragment into pHVSl

EcoRI

.'

pHVS2
(13508 bp) SMR-410

Pvull

EcoRI

Figure B.4. Subeloning strategy of the PGKlp-mae2-PGKlt and PGKlp-mael-PGKlt cassettes into
the terminator region of the SMRI-41O gene in pDLG42 to yield pHVS2.
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ABSTRACT

The optimal ratio of L-malic and L-tartaric acid in relation to other wine components is one of the

most important aspects that ultimately determine wine quality during winemaking. Winemakers

routinely rely on the judicious use of malolactic fermentation (MLF) after alcoholic fermentation to

deacidify and stabilise their wines. However, due to the unreliability of the process and unsuitable

sensory modifications in some cultivars, especially fruity-floral wines, MLF is often regarded

problematical and undesirable. Alternative methods for reducing L-malic acid in wine will contribute

to the production of quality wines in the future, especially in cool-climate regions. Most wine yeast

strains of Saccharomyces are unable to effectively degrade L-malic acid, whereas the fission yeast

Schizosaccharomyces pombe efficiently degrades high concentrations of L-malic acid by means of

malo-ethanolic fermentation. However, strains of S. pombe are not suitable for vinification due to the

production of undesirable off-flavours. The S. pombe malate permease (mael) and malic enzyme

(mae2) genes were previously successfully expressed under the 3-phosphoglycerate kinase (PGKl)

regulatory elements in S. cerevisiae, resulting in a recombinant laboratory strain of S. cerevisiae with

an efficient malo-ethanolic pathway. Stable integration of the S. pombe malo-ethanolic pathway

genes has now been obtained through the construction of a unique integration strategy in a

commercial wine yeast strain. Co-transformation of the linear integration cassette containing the

mael and mae2 genes and PGKl regulatory elements and a multi-copy plasmid containing the

phleomycin-resistance marker into a commercial Saccharomyces bayanus strain resulted in the

successful transformation and integration of the malo-ethanolic genes. The recombinant S. bayanus

strain was successfully cured of phleomycin-resistance plasmid DNA in order to obtain

malo-ethanolic yeast containing only yeast-derived DNA. The integrated malo-ethanolic genes were

stable in S. bayanus and during synthetic and grape must fermentation, L-malic acid was completely

fermented to ethanol without any negative effect on fermentation kinetics and wine quality.

7.1 INTRODUCTION

The conversion of L-malic acid to lactic acid and CO2 during MLF is one of the four possible

metabolic conversions found for L-malic acid in nature. L-Malic acid can also serve as a carbon
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source for yeast, which can transform L-malic acid into one of three other compounds, i.e. oxaloacetic

acid (via malate dehydrogenase enzyme), fumaric acid (via reverse reaction of fumarase enzyme) and

pyruvic acid (via malic enzyme). Based on yeasts' ability to utilise L-malic acid and other TCA cycle

intermediates as sole carbon or energy source, yeasts are divided into a K (-) or K (+) group (Barnett

and Kornberg, 1960). Strains of Saccharomyces sensu stricto, including commercial wine yeast

strains, as well as Schizosaccharomyces pombe and Zygosaccharomyces bailii, are all classified as K

(-) yeasts that can utilise TCA cycle intermediates only in the presence of glucose or other assimilable

carbon sources (Barnett and Kornberg, 1960).

Strains of Saccharomyces, cannot degrade L-malic acid completely in grape must during alcoholic

fermentation, resulting in relatively minor modifications in total acidity during vinification (Rankine,

1966; Radler, 1993; Subden et al., 1998). A number of reasons for the weak degradation of L-malic

acid in S. cerevisiae have been postulated. Firstly, S. cerevisiae lacks the machinery for active

transport of L-malic acid found in S. pombe and relies on rate-limiting simple diffusion for the uptake

of extracellular L-malic acid. Secondly, the malic enzyme of S. cerevisiae has a significantly lower

substrate affinity for L-malic acid (Km = 50 mM) than that of S. pombe (Km = 3.2 mM), which

contributes to weaker metabolism of this acid in S. cerevisiae (Fuck et al., 1973; Temperli et al,

1965). Lastly, the compartmentalisation of the malic enzyme in mitochondria may contribute to the

weak L-malic acid degradation in S. cerevisiae. The mitochondrial location of the malic enzyme of

S. cerevisiae, in contrast to the cytosolic location of the S. pombe malic enzyme, suggests that this

enzyme is inherently subject to the regulatory effect of glucose (Redzepovic et al., 2002).

Furthermore, mitochondrial deterioration a well-documented phenomenon in Crabtree-positive yeast

may amplify the already weak L-malic acid metabolism of S. cerevisiae.

The ability yeast to efficiently degrade extracellular L-malic acid depends on an efficient .uptake

system for L-malic acid, i.e. active transport via a malate permease, and an effective L-malic acid

converting enzyme, such as the malic enzyme. The malate permease gene tmae Iï and the malic

enzyme gene (mae2) of S. pombe were therefore cloned (Grobler et al., 1995; Viljoen et al., 1994)

and co-expressed in multi-copy and single copy under the S. cerevisiae constitutive

3-phosphoglycerate kinase (PGK1) promoter and terminator sequences in a laboratory strain of

S. cerevisiae (Volschenk et al., 2001). A strong malo-ethanolic phenotype was introduced in

S. cerevisiae where t.-malic acid was rapidly and efficiently degraded in synthetic and Chardonnay

grape must with the concurrent production of higher ethanol levels (Volschenk et al., 2001).

Functional expression of the malo-ethanolic pathway genes of S. pombe in a laboratory strain of

S. cerevisiae paved the way for the genetic modification of industrial wine yeast strains of

Saccharomyces for commercial winemaking application.
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Stable integration of the malo-ethanolic pathway genes into the genome of industrial wine yeast

strains is a prerequisite for becoming an inherited component of yeast genome. Genetic engineering

of wine yeasts strains of Saccharomyces is, however. complicated by the homothallic, multiple ploidy

and prototrophic nature of industrial strains of Saccharomyces (Pretorius, 2000). Transformation and

integration of heterologous genes into industrial strains of Saccharomyces require the use of dominant

selectable markers, i.e. antibiotic or toxic compound resistance markers that when integrated into the

yeast genome, are not acceptable for commercial application mainly due to the absence of long-term

risk assessment and consumer disapproval.

In this study, we report on a unique integration strategy for the S. pombe mael and mae2 expression

cassettes without incorporation of any non-yeast derived DNA sequences. The malo-ethanolic

cassette, containing only the S. cerevisiae PGKI promoter and terminator regions together with the

S. pombe mae l and nzae2 open reading frames. was integrated into the URA3 locus of an industrial

strain of S. bayanus EC 1118 during co-transformation with a phleomycin-resistance plasmid. After

initial screening for phleomycin resistance, S. bayanus EC 1118 transformants were cured of the

phleomycin-resistance plasmid, resulting in the loss of any non-yeast derived DNA sequences. After

correct integration of the mae I and mae2 expression cassettes was verified, small-scale vinification in

synthetic and actual grape must with stable transformants resulted in rapid and complete degradation

of L-malic acid and increased ethanol production during the early stages of alcoholic fermentation.

Integration and expression of the malo-ethanolic genes in S. bayanus EC 1118 had no adverse effect

on the yeasts fermentative ability, while sensory evaluation and chemical analysis of Chardonnay

wine indicated an improvement in wine flavour perception compared to the control wines, without the

production of any off-flavours.

7.2 MATERIALS ANDMETHODS

7.2.1 Strains and maintenance

The bacterial and yeast strains and plasmids used in this study are listed in Table 7.1. Cells of E. coli

JM109 were transformed by electroporation and selected on LB agar medium supplemented with

200 mg/l ampicillin (Ausubel et al., 1995). S. bayanus ECll18 was maintained on YPD agar, while

transformants were plated onto YEG media containing 0.5 % yeast extract, 2% glucose, 3 % Pastagar

B (Difco Laboratories, Detroit, MI) and 250 ug/ml phleomyc.

7.2.2 Plasmid Construction

.. . Standard recombinant DNA techniques were employed essentially as described by Ausubel et al.

(1995). Restriction enzymes, modification enzymes and DNA purification kits were used as
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prescribed by the manufacturer (Roche Diagnostics, Germany). All peR reactions were executed

with Takara Ex Taq (Takara Bio Inc, Japan). All subeloning and DNA manipulations were performed

in the 2J..lm-based plasmid YEp352 (Hill et al., 1986). Prior to any subcloning, the KpnI restriction

site located in the multiple cloning region of YEp352 was eliminated by KpnI digestion, filled to

blunt-ends with Klenow enzyme and religated to yield pHV9. A 944 bp upstream URA3 fragment

was peR amplified from S. bayanus Ee 1118 genomic DNA using primer set 5' -XBASFRURA3 and

3'-URA3KPN (Table 7.2), while a 959 bp downstream URA3 fragment was peR amplified using

primer set 5'-KPNNOTURA3 and 3'-URA3SFRXBA.

Table 7.1. Strains and plasmids used for the integration of the S. pombe malo-ethanolic genes into
industrial strains of Saccharomyces

Strains Description Reference

E. coli JMI09
endAl, recAl. gyrA96, thi, hsdR17 [rk-, mk+],
relAl, supE44, A.:,t:J.(lac-proAB), [F, traD36,
proA+B+, lad'Zt:J.Ml5]

Yanisch-Perron, 1985

S. bayanus ECll18 Lallemand Lalvin®Commercial wine yeast

-.- -Plasmids Description Reference

YEp352 YeastJE. coli shuttle vector with a URA3 marker Hill et al., 1986

pUT332 Yeast episomal plasmid containing the Tn5ble Gatignol et al., 1990;
gene for selection of phleomycin resistance Wenzel et al., 1992

pHVX2 containing the mael ORF subeloned
Volschenk et al., 1997"' bpHV3 between the PGKI promoter and terminator

sequences.

YEplac195 (URA3 marker gene) containing the
Volschenk et al" 2001pHV7 mae2 ORF subeloned between the PGKI

promoter and terminator sequences.

pHV9 YEp352 without the Kpnl restriction site This study

pHVJHl pHV9 containing the mutated URA3 gene This study

pHVJHl containing the PGKI p-mael-PGKl,
pHVll expression cassette subeloned into the Kpnl site in This study

the mutated URA3 gene
pHV 11 containing the PGKI p-mae2-PGKlt

pHV13 expression cassette subeloned into the Notl site in This study
the mutated URA3 gene

Both the upstream and downstream URA3 fragments were digested with KpnI and fused by T4 DNA

ligation. The resulting linear product, which was isolated after 1% agarose gel electrophoresis and

purified by the High Pure Gel Extraction Kit, served as template for peR amplification with primer

set 5'-XBASFRURA3 and 3'-URA3SFRXBA. The modified VRA3 fragment containing unique

.:>:;. ':::.: "0 cloning sites (Kpnl, NotI) and excision sites (SrfI and Xbal) was subeloned in the XbaI restriction site

of pHV9, resulting in pHV JH 1 (Fig. 7.1).



142

Table 7.2. List of peR primers used in this study to construct the linear integration cassette containing
the PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt expression cassettes flanked by URA3 sequences

Primer name Primer sequence

5' -XBASFRURA3 5' -GATCTCTAGAGCCCGGGCAACGGTTCATCA TCTCA TGGA TCTGC-3'

3' -URA3KPN 5' -GATCGGT ACCT ACTTCTTCCGCCGCCTGCTTCAAACCGCT -3'

S'-KPNNOTURA3 5'-GATCGGTACCGCGGCCGCACAAAGGAACCTAGAGGCCTTTTGATGTTAG-3'

3'-URA3SFRXBA 5'-GATCTCTAGAGCCCGGGCTACACCAGAGATACATAATTAGATAT-3'

S'-KPNPGK 5'-GATCGGTACCAACCTTTCTAACTGATC-3'

3'-PGKKPN 5' -GATCGGTACCAAGCTTT AACGAACGCA-3'

S'-NOTPGK 5'-GATCGCGGCCGCAACCTTTCTAACTGATCTATCCAAAACTG-3'

3'-PGKNOT 5'-GATCGCGGCCGCAAGCTTT AACGAACGCAGAA TTTTCG-3'

S'-mae! 5'-GATCGAATTCATGGGTGAACTCAAGGAAAT-3'

3'-mae! 5'-GATCAGATCTTTAAACGCTTTCATGTTCACT-3'

S'-mae2 5'-GATCGAATTCATGCCTGCAGGAACCAAAGAA-3'

3'-mae2 5'-GATCCTCGAGTTATACAAAAGGCTTGTATTC-3'

S'-mae!DIG 5'-CTTTCAATATCCACGTTCATCGACA-3'

3'-mae!DIG 5'-GAGACAGTAACACCAAGCAGCAAGA-3'

S'-mae2DIG 5'-GAACCAAAGAACAAATCGAGTGTCC-3'

3'-mae2DIG 5'-GAGAACAATGGGCAAGAATCGA TTA-3'

TCTAGA = Xbal, GCCCGGGC = Srfl, GGTACC = Kpnl, GCGGCCGC = Notl

The construction of the expression vectors and pRV3 and pRV7 (Table 7.1) was previously described

(Volschenk et al., 1997a
,b, Volschenk etal., 2001). The PGKlp-mael-PGKlt expression cassette was

PCR amplified using primer set 5'-KPNPGK and 3'-PGKKPN with plasmid pRV3 as template, while

primers 5'-NOTPGK and 3'-PGKNOT was used for peR amplification of the PGKlp-mae2-PGKlt

expression cassette from plasmid pRV7 (Volschenk et al., 2001). The PGKlp-mael-PGKlt PCR

product was subeloned as a KpnI fragment into pRVJRI to yield pRVll (Fig. 7.2). Similarly, the

PGKlp-mae2-PGKlt peR product was subeloned as a NotI fragment into pRVll to yield pRV13.

Srfl digestion of pRVI3 resulted in the excision of a linear PGKlp-mael-PGKlt -PGKl p-mae2-PGKlt

fragment flanked by ca. 500-600 bp URA3 sequences, which excludes any vector-derived DNA

sequences.

6.2.3 Phleomycin and geneticin resistance of industrial wine yeast strains

The minimum inhibition concentration (MIe) of phleomycin and geneticin for S. bayanus Eell18

was determined. Yeast cells were cultured overnight in 10 ml YPD broth and plated with or without

electroporation (in the absence of any DNA) onto YPD plates with Pastagar B (Difco Laboratories,
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Detroit, MI), containing a range of 5 JLg/ml to 500 JLglml phleomycin or geneticin. A minimum

concentration of 100 JLg/ml geneticin was required for complete inhibition S. bayanus ECllt8 prior

to electroporation. However, electroporated cells of S. bayanus EC 1118 cells gave rise to background

colonies (false positives) even at a concentration of 500 JLg/ml geneticin. The minimum inhibitory

concentration of phleomycin was determined at 250 JLg/ml for electroporated cells of S. bayanus

ECtl18.

7.2.4 Adaptation of GMIA media for optimised malo-ethanolic phenotype selection

A plate assay method was developed to simplify the selection of positive transformants with a

malo-ethanolic phenotype after electroporation and integration. The Glucose-Malate-Indicator Agar

(GMIA) selection media was previously developed for the malo-ethanolic yeast S. pombe (Osothsilp

et al., 1986). The plates produce blue colonies with a surrounding blue halo when L-malic acid in the

media is degraded by S. pombe due to a shift in pH (pH 3.3 to 5.2) when L-malic acid is converted to

pyruvic acid. Initial attempts with a recombinant strain of S. cerevisiae containing the malo-ethanolic

genes on a multi-copy plasmid (Volschenk et al., 200t), did not produce a clear phenotype for L-malic

acid degradation on the GMIA plates. The original GMIA media was therefore modified to contain

0.17 % Yeast Nitrogen Base (Difco Laboratories, Detroit, MI), 0.5 % (NH4hS04, 10 % glucose

(simulate glucose levels in grape must), l O % L-malic acid, 0.01 % bromocresol green and 2 % Noble

agar (Difco Laboratories, Detroit, MI, instead of the Bacto-agar). The pH of the optimised GMIA

media was adjusted to 3.3 with KOH.

The optimised GMIA media allowed for the effective screening of the transformants with the

integrated malo-ethanolic cassette after the initial screening of transformants on

phleomycin-containing medium. Phleomycin-resistant transformants were transferred. to GMIA

plates and screened accordingly for the malo-ethanolic phenotype. The antibiotic resistance-plasmid,

pUT332. was lost during subsequent non-selective growth of transformants, resulting in recombinant

yeast containing only the integrated malo-ethanolic cassette without the requirement of integrating the

antibiotic marker. Genetically engineered yeasts produced in this manner should be more acceptable

for industrial application, since no antibiotic markers are present in the recombinant yeast strain.
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Figure 7.2. Plasmid maps of pHVll containing the PGKlp-mael-PGKlt expression cassette and
plasmid pHV13 containing both the PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt expression
cassettes. Srfl. digestion of pHV13 yielded a linear integration cassette without any vector, bacterial or
other foreign DNA sequences that were used for co-transformation with plasmid pUT332.

7.2.4 Co-transformation and integration ofmael and mae2 genes in S. bayanus ECl118

Integration of the mael and mae2 genes into the genome of commercial wine yeast strains was

obtained by co-transformation of the linear URA3-flanked PGKI p-mael-PGKI t-PGK1 p-mae2-PGKl t

integration cassette and plasmid pUT332, which contains the Tn5ble gene for selection of phleomycin

resistance (Gatignol et al., 1990; Wenzel et al., 1992). Initial screening on phleomycin-containing

media was required to select for successful transformation and to minimise the amount of colonies to

be screened for the malo-ethanolic phenotype.

An adapted electroporation method was used in this study for the transformation of industrial wine

yeast strains. Yeast cells were precultured overnight in 10 ml YPD at 30°C followed by 500 ml YPD

in a 2 I flask to an OD6oo = 0.1. The culture was shaken vigorously at 30°C until an OD6oo of 1.3 - 1.5

was reached. Yeast cells were harvested by centrifugation at 4000 x g at 4°C and resuspended in

80 ml sterile ddll-O. While swirling, 10 ml10 X TE buffer (pH7.5) was added, followed by 10 ml

1M LiOAc. After incubation for 45 minutes at 30°C with gentle agitation, 2.5 ml fresh 1M DTT was

added to the yeast suspension while swirling, with a continued incubation for 15 minutes at 30°C with

gentle agitation. The yeast suspension was subsequently diluted to a volume of 500 ml with ddlf-O,

washed and concentrated three times at 4000 x g, 4°C. Cell pellets were resuspended first in 250 ml

ice-cold ddfl-O, then in 30 ml ice-cold 1M Sorbitol and finally in 0.5 ml ice-cold 1M Sorbitol. This

yielded a final volume of 1 - 1.5 ml cells with an approximate OD6oo of 200. After the cell pellet was

resuspended, 40 f.!1of the concentrated yeast cells was mixed with 5f.!1DNA in a sterile, ice-cold

1.5 ml tube. A10: 1 molar ratio oflinear : plasmid DNA was used, with ideally 50 ng of pUT332 and
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an appropriate lO-fold molar increase of linear DNA. After the cell-DNA mixtures were transferred

to an ice-cold 0.2 em gap electroporation cuvette (Biorad, South Africa) and subjected to a pulse of

1.5kV, 25 IlF and 200 ohms (Gene Pulser II Electroporator, Biorad, South Africa). Immediately after

the pulse was administered, lrnl ice-cold YPD (l% yeast extract, 2% peptone and 2% glucose) was

added to the cuvette followed by a gentle mix for 2-4 hours at 30°C. Aliquots of 250 III yeast

suspension were spread directly onto YEG plates containing 250 f..l.g/mlphleomycin. Transformants

were incubated for 3-4 days at 30°C. Putative transformants were inoculated in l O ml YPD

(non-selective conditions) and cultured successively for> 200 generations at 300e to cure the yeast of

plasmid pUT332. After the loss of plasmid pUT332 was confirmed on phleomycin media (data not

shown), transformants were streaked onto modified GMIA plates.

7.2.5 Pf'R confirmation of integration and Southern blotting

Initial proof of the integration of the linear PGKlp-mael-PGKlt -PGKlp-mae2-PGKlt fragment was

obtained through peR amplification of the entire mae} and mae2 open reading frames using primer

sets 5'-mae1l3'-mael and 5'-mae2/3'-mae2, respectively (Table 7.2). Integration of the linear

PGKlp-mael-PGKlt-PGKlp-mae2-PGKlt fragment in the genomic URA3 locus was confirmed

through Southern blot analysis. Standard procedures (Ausubel et al., 1995) were used to prepare the

gel for Southern blotting and to transfer the DNA to a positively charged nylon membrane (Roche

Diagnostics, Germany). Genomic DNA was isolated from S. bayanus (Hoffman and Winston, 1987),

digested with HpaI and separated on a 1% agarose gel. An internal 944 bp URA3 fragment

corresponding to the upstream URA3 region used for construction of the linear integration cassette,

was DIG-labelled (peR Probe Synthesis Kit, Roche Diagnostics, Germany) using primer set

5'-XBASFRURA3 and 3'-URA3KPN. The presence of the URA3 gene was visualised with the

Chemiluminescent Detection Kit (Roche Biochemicals, Germany).

7.2.6 Malo-ethanolic fermentation in grape must

Synthetic grape must. The parental yeast strain S. bayanus ECll18 and three transformants

containing the integrated mae1 and mae2 genes were inoculated at 2 x 106 cells /ml into duplicate sets

of 200 ml synthetic grape must in 250 ml Erlenmeyer flasks (Denayrolles et al., 1995). The synthetic

grape must contained 0.94% L-malic acid (Sigma, St. Louis, MO) and the pH was adjusted with KOH

to 3.3. Fermentations were carried out at 20oe, without shaking and sealed with fermentation caps

filled with 2.5% S02 solution, for approximately 15 days. Yeast cell growth was monitored

spectrophotometrically at OD600•

Small-scale grape must fermentation. Small-scale fermentations were also performed in Chardonnay

(3 gil L-malic acid, pH 3.40), Cabernet Sauvignon (2.5 gil L-malic acid, pH 3.77), Colombard (4.5 gil

L-malic acid, pH 3.42) and Ruby Cabernet (3.5 gil t-malic acid, pH 354) grape must, which were

inoculated at 2 x 106 cells/ml into 400 ml must in 500 ml flasks and incubated at 20oe, without
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shaking and sealed with fermentation caps filled with 2.5% S02 solution for approximately 5 days.

White and red grape must were supplemented with 50 ppm and 30 ppm S02, respectively, while

0.075% diammonium phosphate was added to all flasks before inoculation to ensure a sufficient

nitrogen source during fermentation. The weight of the fermentation flasks was measured at regular

intervals as an indication of fermentation speed by indirectly measuring CO2 production and

evaporation.

Large-scale vinification for sensory evaluation. Chardonnay grapes (23.7°8) were harvested during

the 2001 season, destemmed, crushed and pressed. The must was treated with 50 mgll S02 and

allowed to settle overnight. Chemical analysis indicated that the Chardonnay juice contained 2.97 gil

L-rnalic acid, a pH of 3.53 and total acidity of 6.27 gil. Similarly, the Cabernet Sauvignon grapes

(21.8°8) were destemmed and crushed, treated with 30 mgll S02 and divided into 12 lots of 15 1each,

followed by direct inoculation with yeasts as described above. The Cabernet Sauvignon must

contained 3.5 gil L-malic acid, a pH of 3.77 and total acidity of 7.16 gil. After three days of skin

contact, the must was pressed and returned to fermentation flasks for further alcoholic fermentation.

The Chardonnay and Cabernet Sauvignon juice was divided into 12 lots of 151 each for three

repetitions of two different treatments, i.e. (1) inoculation with the parental yeast strain, S. bayanus

Ee1ll8 as a control fermentation, or (2) three positive transformants containing the integrated malo-

ethanolic genes to a final concentration of 2 X 106 cellslml. Fermentations in Chardonnay were

carried out at 15°C, while Cabernet Sauvignon must was fermented at 23°C. After alcoholic

fermentation was completed, one set of control wines (S. bayanus EC1lI8) from both Chardonnay

and Cabernet Sauvignon was inoculated with Viniflora Oenos (Chris Hansen, Denmark) for MLF _

according to the manufacturers recommendations, while the rest of the wines were decanted and

treated with 30 mgll S02 and stored at O°C for seven days for cold stabilisation. An experienced

panel of 15 judges performed organoleptic evaluation of the Chardonnay wine six months after

bottling. A ranking method was used to determine quality differences between the treatments and

statistical significance was determined according to Amerine and Roessler (1983).

7.2.7 Chemical analysis

The concentrations of t-malic acid, n-glucose, glycerol and ethanol were determined using enzymatic

assays (Roche Diagnostics, Germany). In-depth analysis of large-scale fermented wines were done by

Capillary Electrophoresis (HP3D CE system, Hewlett-Packard) and GrapeScan 2000 (FOSS Electric

AIS, Denmark) to determine glucose, fructose, glycerol, ethanol, tartaric, malic, citric, succinic, acetic

and lactic acid concentrations. CE analysis was carried out with a diode array detector. The CE

detector wavelength was fixed at 200 nm with 350 nm as the reference wavelength. A bare silica

capillary with an internal diameter of 50 Jlm (total length = 80.5 cm and effective length = 72 cm) was
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used for wine analysis and samples were injected hydrodynamically (50 mbar for 2 seconds). A

constant voltage of -25 kV was applied during the separation run and the temperature of the column

was set at 25°C. The "HP organic acid buffer" was used as the separation buffer. Wine samples were

centrifuged (8 minutes x 12 000 rpm) before diluting them 20-fold in MilliQ water. A standard

solution of L-tartaric acid (60 mg/I), L-malic acid (40 mgll), citric acid (20 mg/I), succinic acid (20

mg/l), acetic acid (20 mgll) and lactic acid (20 mg/I) was prepared freshly and were run between

samples to create valid calibration curves for each component. HP Chemstation Software was used to

calculate the concentrations of L-tartaric, L-malic, citric, succinic, acetic and lactic acids in the wine

using data obtained from the standard and sample runs. The commercial calibration for the Grapescan

2000 was verified and adjusted to South African wines and conditions to ensure the correct intercepts.

Standard methods were used to confirm the results obtained for residual sugar, final ethanol content,

pH, total and volatile acidity of the fmished wines (Ough and Amerine, 1987).

7.3 RESULTS AND DISCUSSION

7.3.1 Transformation ofS. bayanus ECl118 with integration cassette

Electroporation of competent cells of S. bayanus with the linear rnalo-ethanolic integration cassette

and pUT332 resulted in 100-200 phleomycin resistant transformants/ug of linear DNA. The

transformants were individually picked and cultured in non-selective conditions (YPD broth) for more

than 200 generations to obtain a phleomycin sensitive phenotype that corresponded to the loss of

pUT332 carrying the resistance marker gene, Tn5ble. Transforrnants cured of pUT332 were

subsequently spotted onto GMIA media to screen for the presence of a rnalo-ethanolic phenotype

(Fig.7.3).

negative

positive

Figure 7.3. Transformants of S. bayanus ECltt8 contairung the PGKlp-mael-PGKlt and
PGKlp-mae2-PGKlt expression cassettes (blue colonies) showed a clear malo-ethanolic phenotype on
GMIA plates and could be distinguished from transformants lacking the PGKlp-mael-PGKlt and
PGKlp-mae2-PGKlt expression cassettes (yellow/brown colonies).
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Transformants with the ability to degrade L-malic acid appeared as blue-coloured colonies that could

be easily distinguished from transformants lacking the malo-ethanolic phenotype (yellow/brown

colonies). Colonies with a positive malo-ethanolic phenotype were re-inoculated into non-selective

media and repeated in triplicate on GMIA media to determine the stability of the malo-ethanolic

phenotype. The malo-ethanolic phenotype was considered to be stable in transformants if less than

1/10000 revertant colonies appeared after each round of non-selective growth.

7.3.2 peR amplification and Southern blot analysis of integration

The presence of the mae1 and mae2 open reading frames in the genome of S. bayanus ECl118

transformants (MEF) was confirmed by PCR amplification of a 1317 bp and 1698 bp fragment,

corresponding to the complete open reading frame of the mae1 and mae2 genes, respectively

(Fig. 7.4A). The parent strain (wt) did not produce any PCR products under the same conditions.

(A)

(B)

wt MEFl MEF2

IHIRA3: :Malo-ethanolic Cassette

fJRA3

Figure 7.4. (A) PCR amplification of the mae1 (1317 bp) and mae2 (1698 bp) open reading frames
using genomic DNA from S. bayanus ECll18 and selected transformants as template. (B) Southern
blot results showing single (MEF2) or multiple (MEFl) integration of the malo-ethanolic cassette in
the URA3 locus. wt = parent strain S. bayanus ECll18.
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The PCR product yield was significantly higher in transformants where multiple integrations of the

malo-ethanolic cassette has occurred (MEFI), compared to the single integration events (MEF2).

Integration of the malo-ethanolic cassette in the VRA3 gene was also confirmed with Southern blot

analysis that clearly demonstrated single (MEF2) or multiple integration (MEF 1) events into the

VRA3 locus (Fig. 7.4B). MEF2 transformants containing a single integration of the malo-ethanolic

cassette were used for subsequent fermentation and sensory evaluation experiments.

7.3.3. Malo-ethanolic fermentation in synthetic and actual grape must

Rapid and efficient degradation of ca. 9.5 gil L-malic acid within 5 days was obtained in synthetic

grape must during small-scale fermentations by a recombinant strain of S. bayanus EC 1118 (MEF2),

which contains a single integrated copy of the PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt

expression cassettes (Fig. 7.5A). The parental strain (S. bayanus EC 1118) showed no significant

degradation of L-malic acid during the first 5 days of fermentation, but after 15 days, almost 32% of

the total L-malic acid was degraded by this strain. This reduction in L-malic acid concentration by the

control yeast strain is not ascribed to the active metabolism of L-malic acid by the yeast cells, but

rather to the release of intracellular enzymes, i.e. malate dehydrogenases and the native malic enzyme

during yeast autolysis at the late stationary phase of fermentation. Comparison of the growth rate and

the rate of glucose consumption between the MEF2 and parental strain, showed no significant

aberrations (Fig. 7.5B and C). This suggested that the introduction of the heterologous genes had no

adverse effect on the recombinant yeast's growth ability and fermentation capacity.

During fermentative sugar metabolism, pyruvic acid is further decarboxylated to acetaldehyde by

pyruvate decarboxylase and subsequently reduced to ethanol by the alcohol dehydrogenase enzyme in

yeast. Theoretically, the introduction of an efficient malo-ethanolic pathway in yeast should

contribute additional pyruvic acid to the existing intracellular pool, promoting the production of

elevated levels of ethanol. As previously reported for laboratory strains (Volschenk et al., 2001), the

MEF2 strain consistently produced higher levels of ethanol relative to the parental strain (Fig. 7.5 B),

confirming that the two S. pombe genes enabled cells of S. cerevisiae to metabolise the extracellular

L-malic acid to ethanol under fermentative conditions.

The ability of the malo-ethanolic MEF2 wine yeast strain to degrade L-malic acid during alcoholic

fermentation was also investigated during small-scale fermentations in Cabernet Sauvignon,

Chardonnay, Colombard and Ruby Cabernet grape must (Fig 7.6 A). Rapid and complete degradation

of extracellular L-malic acid degradation was observed for MEF2 within I, 1.5, 2 and 5 days in

Cabernet Sauvignon, Ruby Cabernet, Colombard and Chardonnay grape must, respectively. The

parental yeast strain did not contribute significantly to the degradation of L-malic acid in the

corresponding control fermentations. Furthermore, the fermentation rate measured as the loss of

weight (C02 evaporation) was almost identical for MEF2 and the parental yeast strain (Fig. 7.6 B),
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confirming that the expression of integrated mae1 and mae2 genes did not adversely affect the

alcoholic fermentation capacity in the recombinant yeast.

Figure 7.5. (A) L-Malic acid degradation by MEF2 compared to the control yeast (S. bayanus
ECIII8, wt); (B) Glucose utilisation and ethanol production by the MEF2 strain compared to the
control yeast during alcoholic fermentation, and (C) growth curve of the malo-ethanolic yeast (MEF2)
and control strain in synthetic grape must as measured by cell density at OD600•
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Figure 7.6. (A) Malo-ethanolic fermentation in (i) Cabernet Sauvignon, (ii) Chardonnay, (iii)
Colombard and (iv) Ruby Cabernet grape must by MEF2 and the control yeast strain S, bayanus
EC1118. (B) Fermentation rate of MEF2 and the control yeast strain in Chardonnay grape must as
measured by the loss of CO2 during alcoholic fermentation.

7.3.4. Effect of malo-ethanolic fermentation on organoleptic quality of wine

The ability of the MEF2 recombinant strain to produce a wine of quality was also evaluated during

larger scale vinification of Chardonnay and Cabernet Sauvignon grape must. Standard winemaking

practices were employed during the vinification, including the inoculation of the malolactic
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bacterium, O. oeni, after alcoholic fermentation with S. bayanus ECll18 was completed. The

malo-ethanolic yeast (MEF2) efficiently degraded all the L-malic acid in both Chardonnay and

Cabernet Sauvignon grape must, whereas the parental strain, S. bayanus EC1118, had little effect on

the L-malic acid concentration (Fig.7.7). The decrease in L-malic acid concentration also correlated

with the decrease in total acidity (Table 7.3). In the wine fermented with MEF2, total acidity

decreased by 2.3 gil, in agreement with complete L-malic acid decomposition.

(A) (B)

4 4
_._ Control _._ Control
-MEF2 -MEF2

::::::- 3 3-Cl.....
"C
'0 2 2RI

~
RI
~
I 1 1_,

0 0
0 1 2 3 4 0 1 2

Time (days) Time (days)

Figure 7.7. L-Malic acid degradation during larger scale fermentation of (A) Chardonnay and (B)
Cabernet Sauvignon grape must with the recombinant MEF2 yeast containing the integrated
malo-ethanolic expression cassette. The control fermentation was performed using the parental yeast
S. bayanus EClll8.

Total acidity was decreased by 1.34 gil in the wine that underwent MLF after alcoholic fermentation

by S. baya~us ECll18,-and by 0.54 gil for wine produced by S. bayanus ECll18 without MLF. The

decrease in acidity was also reflected in the pH of the different wines: the pH of the wine fermented

with MEF2 increased with 0.46 units, whereas fermentation with S. bayanus ECll18 with and

without MLF resulted in a pH increase of only 0.28 and 0.16 units, respectively. Chemical analysis of

the final wines indicated no significant changes to the other organic acids in the wine fermented with

MEF2 and the control yeast. The tartaric, citric and succinic acid concentrations remained relatively

unchanged for the ~!J~erent treatments (Table 7.3). The concentration of lactic acid remained

relatively constant for the control and MEF2 wine, while a significant increase in lactic acid could be

seen in the wine that underwent MLF. Furthermore, volatile acidity as measured by the acetic acid

concentration, was slightly increased in the wine fermented with MEF2, compared to the control yeast

fermentation, but still within the threshold value for acetic acid in wine.
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L- Tartaric Citric Succinic Acetic Lactic Residual Residual TotalMalic acid acid acid acid acid Glycerol Ethanol Glucose Fructose acidity pHacid

(gil) (gil) (gil) (gil) (gil)
(gil) (gil)

(gil) (gil) (gil)
9g11)

Prior to 2.97 115 n.d. 6.27 3.53
fermentation ±O.03 ±0.6 ±0.02 ±0.01
S. bayanus 2.82 1.26 0.36 0.26 0.38 0.09 6.5 14.3 0.44 3.13 5.73 3.69
ECIH8 ±0.2 ±0.01 ±0.01 ±O.02 ±0.01 ±0.1 ±0.1 ±0.1 ±0.6 ±0.3 ±0.6 ±0.01
S. bayanus 0.29 1.16 0.24 0.27 0.38 1.32 6.4 14.48 1.31 1.75 4.93 3.81ECHI8+

±0.2 ±0.2 ±0.1 ±0.01 ±0.02 ±0.2 ±0.1 ±0.1 ±0.5 ±0.5 ±0.4 ±0.06MLF

MEF2 0.22 1.47 0.44 0.27 0.56 0.13 7.2 14.6 1.24 2.64 3.97 3.99
±0.1 ±0.02 ±0.18 ±0.01 ±0.01 ±0.2 ±0.2 ±0.2 ±0.4 ±0.2 ±O.2 ±O.2

n.d. = not determined
± = standard deviation

Table 7.4 Results of the organoleptic evaluation of Chardonnay wine

Treatment Aroma order Palate order

S. bayanus ECH18 3* 1**

S. bayanus ECHI8 + MLF 22

MEF2 1** 3*

* -significant at p<O.05
** signficant at p<O.OI

..-
Ul
.j:>.
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Comparison of the final ethanol values of the wines indicated an insignificant increase in ethanol

concentration of the wine fermented with MEF2 in relation to the control wine fermented with

S. bayanus ECll18. Glycerol production in yeast acts as a mechanism to rectify any possible

NAD+/NADH imbalances during yeast metabolism. Therefore, changes in the redox balance in yeast

metabolism, for example during oxidative or osmotic stress conditions, is associated with changes in

the amounts of glycerol produced by yeast (Larson et al., 1998; Nordstrom, 1968; Oura, 1977; Van

Dijken and Scheffers, 1986). Since the conversion of L-malic acid to pyruvic acid by the malic

enzyme involves the reduction of NAD+ to NADH, the level of glycerol in wine was also determined

after alcoholic fermentation. Wine fermented by the MEF2 strain showed an increase of ca. 1 gil

glycerol relative to the wine fermented by the control yeast.

Organoleptic evaluations of the fermented Chardonnay wine indicated a significant difference

between wines produced with S. bayanus ECl118, the MEF2 recombinant strain and wines that

underwent MLF (Table 7.4). Based on the perceived aroma of the wines, the lowest score was

obtained for the wine fermented by S. bayanus ECll18, while wine made by MEF2 scored the

highest, even higher than the wine that underwent MLF. No off-flavours were detected, while an

increase in fruitiness was noted. These results indicate that the malo-ethanolic strain was more

successful in producing fruity-floral aromas in wine, a definite advantage in the production of

cultivars such as Muscat, Riesling, Sauvignon Blanc and Gewiirztrarniner. However, based on the

perceived palate of the wine, the best results were obtained with wine fermented by the control yeast,

S. bayanus EC1118, while wine produced with MEF2 scored the lowest. The taste panel detected an

imbalance in the acid: sugar ratio in the wine made by the malo-ethanolic yeast (MEF2). This could

be expected, since all the L-malic acid was completely removed from the wine and resulted in a

sub-optimal final total acidity (Table 7.3). The Chardonnay and Cabernet Sauvignon wines, used .in

this study were harvested from a warm-climate viticultural region and contained low levels of L-malic

acid in the grape must, i.e. 2.97 and 3.5 gil L-malic acid, respectively. Future evaluation of the

malo-ethanolic yeast in high-acid wines from a cool-climate viticultural region will be required to

determine the actual organoleptic influence of this recombinant yeast on wine.

In this study, the commercial wine yeast S. bayanus ECIII8 was successfully transformed through

integration of a malo-ethanolic cassette containing the PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt

linear integration cassette flanked by large URA3 homologous sequences. A single genomic copy of

the malo-ethanolic cassette in S. bayanus ECll18 was sufficient to yield a strong malo-ethanolic

phenotype, i.e. the conversion of L-malic acid to ethanol, in the recombinant yeast in synthetic and

grape must fermentations. Sensory evaluation and chemical analysis of a Chardonnay wine produced

by the malo-ethanolic yeast indicated an improvement in wine aroma compared to the traditional

MLF. Commercial availability of malo-ethanolic wine yeast will be especially beneficial in the
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production of fruity-floral wines and the deacidification of high-acid wines in the cool-climate

viticultural regions of the world.
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AddendumC

C.l INITIAL STRATEGIES INTEGRATION OFDEVELOPED FOR

MALO-ETHANOLIC CASSETTE IN SACCHAROMYCES

C.l.l Linear URA3- PGKlp-mael-PGKlt - PGKlp-mae2-PGKlt-URA3 cassette

During the course of this study, the integration strategy for the malo-ethanolic cassette has evolved

through several steps of development. The initial strategy involved the PCR amplification of the

PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt expression cassettes from plasmid pHV3 and pHV7 as

two separate cassettes, which were ligated to form a linear integration cassette of 7500 bp after

digestion at the KpnI-site (Fig. C.l). Based on homology to the URA3, PGKI promoter and

terminator regions, PCR primers were designed (Table C.I) to add a 50 bp upstream URA3 sequence

at the 5'-end and a KpnI restriction site at the 3'-end of the PGKlp-mael-PGKlt expression cassette

(5'-PGKURA50 and 3'-PGKKPN). Similarly the PGKlp-mae2-PGKlt expression cassette was PCR

amplified with primer set 5'-PGKKPN and 3'-PGKURA50 to create a KpnI restriction site at the

5'-end and a 50 bp downstream URA3 sequence at the 3'-end.

Figure C.l. PCR amplification of the linear integration cassettes containing the PGKJp-maeJ-PGKlt
and PGKJp-mae2-PGKlt expression cassettes. The PCR primers added a URA3 flanking region on
one side of the linear construct in such a way that when the fragments were joined together by ligation
at the KpnI site, the URA3 sequences flanked the cassette on both sides.

PCR conditions were optimised by changing the Taq DNA polymerase enzyme (Expand

High-fidelity, Roche Diagnostics, Germany), primer and MgCh concentrations, as well as the

annealing temperature and extension time to obtain sufficient amounts of PCR product for KpnI

digestion and T4 DNA ligation. However, ligation of the two individual cassettes yielded low

amounts of DNA that had to be amplified again to generate sufficient quantities of the 7.5 kb linear

integration cassette for transformation of industrial strains of Saccharomyces.
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Several co-transformations of industrial wine yeast strains, including S. bayanus EC 1118, with the

purified 7.5 kb linear fragment together with ether phleomycin-resistance plasmid pUT332 or the

0418 geneticin-resistance plasmid pKX34 (Lang-Hinrichs et al., 1989), were attempted by using

electroporation. This yielded 200-300 transformants/ag linear DNA with phleomycin and large

amounts of background colonies with 0418 geneticin. The use of geneticin selection in combination

with electroporation of the yeast cells always resulted in undesirable high levels of background

colonies, but not when the LiOAc transformation method was used. However, all transformants

generated via the LiOAc or electroporation methods yielded a negative malo-ethanolic phenotype on

OMIA agar. Since the transformation efficiency with electroporation of the linear integration cassette

was relatively high, the absence of a malo-ethanolic phenotype in the transformants was ascribed to a

lack of integration events. A possible explanation for unsuccessful integration of the malo-ethanolic

cassette could be that the 50 bp VRA3 flanking regions were insufficient for homologous

recombination in the genome of the industrial wine yeast strains.

Table C.1. PCR primers used for the amplification of the VRA3 and LEV2 flanking regions and KpnI
restriction site in the PGKI p-mael-PGKI tand PGKI p-mae2-PGKl t expression cassettes

Primer • Sequence

Bold sequences correspond to the PGKI promoter and terminator regions
Underlined sequences correspond to the KpnI restriction site

5'-PGKURA50

3' -PGKURA50

5'-PGKKPN

3'-PGKKPN .

5'-PGKURAIOO

3'-PGKURAIOO

5'-PGKLEUIOO

3'-PGKLEUIOO

5'-CCCAOTATTC TTAACCCAAC TGCACAGAAC
AGGAAACGAA GAAAGCTTTC TAACTGATCT ATCC-3'

AAAAACCTGC

5' -TTTTGCTGGC CGCATCTTCT CAAATATGCT TCCCAGCCTG CTTTTCTGT A
ACGTTCACCC AAGCTTTAAC GAACGCAGAA TTTTCG-3'

5'-GATCGGTACC AACCTTTCTA ACTGATC-3'

5'-GATCGGTACC AAGCTITAAC GAACGCA-3'

5'~CTTAGATTGG TATATATACG CATATGTAGT GTTGAAGAAA
CATGAAATTG CCCAGTATTC TTAACCCAAC TGCACAGAAC AAAAACCTGC
AGGAAACGAA GAAAGCTTTC TAACTGATCT ATCC-3'

5'-TAATTTGTGA GTTTAGTATA CATGCATTTA CTTATAATAC AGI I I I I lAG
TTTTGCTGGC CGCATCTTCT CAAATATGCT TCCCAGCCTG CTTTTCTGTA
ACGTTCACCC AAGCTTTAAC GAACGCAGAA TTTTCG-3'

5'-GAGAAGCGTT CATGACT AAA TGCTTGCATC ACAATACTTG
AAGTTGACAA TATTATTTAA GGACCTATTG I I I I I I'CCAA TAGGTGGTTA
GCAATCGTCT GAAAGCTTTC TAACTGATCT ATCC-3'

5'-CCCTATGAAC ATATTCCATT TTGTAATTTC GTGTCGTTTC TATTATGAAT
TTCATTTATA AAGTTTATGT ACAAATATCA TAAAAAAAGA GAATCIIIII
AAGCAAGCTT TAACGAACGC AGAATTTTCG-3'



160

In an attempt to increase the homologous URA3 flanking regions, new PCR primers were designed

which contained 100 bp URA3 extensions (Table C.l, 5'-PGKURAlOO and 3'-PGKURAlOO). The

new PCR primers were used to amplify the PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt expression

cassettes using a similar strategy as for the 50 bp URA3 flanking regions (Fig C.l). Transformation of

the new 7.7 kb linear cassette in combination with the phleomycin resistance plasmid (PUT332) again

did not result in integration of the malo-ethanolic cassette into the genome of the industrial strains.

Similar to the 50 bp URA3 flanking integration strategy, efficient transformation efficiency was

obtained based on phleomycin resistance selection, but no malo-ethanolic phenotype was observed on

GMIA media. It was concluded that the molecular size of the linear integration cassette (7.5 -7.7 kb)

might be responsible for the inability to integrate the cassette into the genomes of the industrial wine

yeast strains.

C.l.2 Linear URA3-PGKlp-mael-PGKlrURA3 and LEU2-PGKlp-mae2-PGKlt-LEU2 cassettes

A second integration strategy was therefore designed for the integration of the malo-ethanolic cassette

in industrial strains of Saccharomyces. This strategy involved the PCR amplification of shorter linear

integration cassettes containing the individual PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt

expression cassettes with PCR primers (Table C.l) that added 100 bp flanking sequences of either the

S. cerevisiae URA3 or LEU2 genes (Fig. C.2). PCR amplification of the individual expression

cassettes was accomplished by using previously optimised conditions for long-template amplification,

resulting in high product yields. The linear PCR fragments were purified using the High-Pure PCR

purification kit (Roche Diagnostics, Germany) and co-transformed with the phleomycin resistance

plasmid, pUT332, by electroporation into industrial yeast strains of Saccharomyces. Transformants

were selected on phleomycin-containing medium at the optimum concentrations of the antibiotic as

previously determined. Phleomycin-resistant transformants were selected and transferred to GMIA

plates and non-selective liquid medium (YPD).

Figure C.2. PCR-amplification of the URA3-PGKlp-mael-PGKlt-URA3 and
LEU2-PGKI p-mae2-PGKI t-LEU2 expression cassettes for transformation into wine yeasts.
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Analyses of transformants by PCR indicated that the mael and mae2 genes were not retained, which

implied that stable integration of the linear expression cassettes did not occur. Typically, the mael

and mae2 genes could be detected by PCR amplification during the first few generations after growth

in non-selective media, but would subsequently disappear. It was concluded that the problem lies

with the ineffective homologous recombination of the linear integration cassette into the yeast genome

and not the transformation efficiency, since an average transformation frequency of 100 to 300

colonies/ug of DNA was be obtained.

C.1.3 Sub-cloning of the PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt expression cassettes into

a mutated VRA3 gene

The next strategy was therefore developed to increase the VRA3 flanking regions to ca. 500-600 bp to

enhance homologous recombination of the PGKlp-mael-PGKlt and PGKlp-mae2-PGKlt expression

cassettes in industrial yeast genome. Furthermore, this strategy will ensure a high degree of fidelity

and integrity of the original PGK} pt. mae} and mae2 sequences, since one of the disadvantages of

the above PCR-based strategies is the inevitable introduction of random mutations in the DNA

sequence of the expression cassettes due to repetitive amplification cycles. The VRA3 gene was PCR

amplification and subsequent cloning yielded a mutated VRA3 gene containing unique restriction sites

for subeloning of the PGKl p-mael-PGKlt and PGKl p-mae2-PGKlt expression cassettes and excision

restriction sites for generation of a linear integration cassette (see research results, Chapter 7).
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General Discussion and Conclusions

The production of good quality wines often requires the proper adjustment of wine acidity in relation

to the other wine components to create a well-balanced bottled product. The traditional method to

deacidify wine involves the conversion of L-malic acid to t-lactic acid and CO2 during malolactic

fermentation by strains of Oenococcus oeni. The complexities associated with traditional malolactic

fermentation in wine, however, necessitate alternative approaches to reduce wine acidity. Although

wine yeast strains of Saccharomyces have different abilities to utilise extracellular L-malic acid, they

are generally regarded as weak degraders of L-malic acid in grape must during alcoholic fermentation.

A number of reasons for the weak degradation of L-malic acid in Saccharomyces cerevisiae have

been postulated, of which the most significant is the lack of active transport of L-malic acid, the low

substrate affinity of its malic enzyme, and the fact that the malic enzyme is located in the

mitochondria.

The aim of this study was in part to obtain a better understanding of the fundamental differences

between strains of Saccharomyces with diverse malic acid-degrading abilities, and ultimately to

develop a genetically engineered industrial strain of Saccharomyces with the ability to efficiently

degrade L-malic acid to ethanol during alcoholic fermentation.

8.1 REGULATION OF THE NATIVE MALIC ENZYME GENE IN SACCHAROMYCES
SPP.

In this study, we investigated the underlying mechanisms in three different strains of Saccharomyces

showing varying aptitudes to degrade extracellular L-malic acid during alcoholic fermentation.

Saccharomyces paradoxus strain R088, an indigenous strain isolated from Zagreb vineyards, was

able to degrade 28% and 38% L-malic acid in a synthetic and Chardonnay must, respectively.

S. cerevisiae strain 71B, although marketed as a malate-degrading strain, and Saccharomyces bayanus

strain EC1118, a commercial wine yeast strain known for its poor malic acid degradation, degraded

only 17% and 8 % of the malic acid during alcoholic fermentation, respectively.

The reason(s) for the varying degrees of malic acid degradation by Saccharomyces strains are not

known and has not yet been described on a molecular level. Since Saccharomyces strains do not have

a transport system for the uptake of malic acid, the answers are most likely to be found inside the cell,

i.e. the intracellular enzymes involved in the degradation of malic acid. In Saccharomyces,

intracellular malic acid is usually degraded via the malic enzyme or malate dehydrogenase, with the

malic enzyme playing the major role. The focus of our further investigations was therefore the malic
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enzyme gene and its regulation in the three Saccharomyces strains, i.e. S. paradoxus R088,

S. cerevisiae 7lB and S. bayanus ECll18.

The highly conserved amino acid sequence of the malic enzyme proteins from the three

Saccharomyces strains suggested that the difference in malic acid degradation by these strains was

most likely due to transcriptional regulation rather than enzyme activity. Sequence analysis of the

promoter region of the malic enzyme genes from the three strains indicated that the malic enzyme

promoter sequence of S. paradoxus R088 differs significantly from that of S. cerevisiae 71B and

S. bayanus ECl118 (see Chapter 5). This suggested that the ability of S. paradoxus R088 to degrade

malic acid more efficiently could possibly be ascribed to a higher rate of transcription of its malic

enzyme gene.

An mRNA expression profile of the malic enzyme (MAE]) genes from S. paradoxus, S. bayanus and

S. cerevisiae during alcoholic fermentation in a synthetic grape must was used to determine possible

divergent regulation scenarios (Chapter 5). The results suggested that the malic enzyme may play an

important role in enabling the yeast to respond to different physiological conditions, such as the

available carbon source. Preliminary transcriptional regulation studies indicated that expression of the

malic enzyme genes from S. paradoxus R088 and S. cerevisiae 71B increased towards the end of

fermentation once glucose was depleted, whereas the level of transcription in S. bayanus EC 1118, a

non-degrading strain, decreased towards the end of fermentation. Only S. paradoxus R088 showed

increased degradation of malic acid in response to the increase in malic enzyme expression,

suggesting that it was able to utilise the malic acid as a secondary carbon source.

These results implicate the native malic enzyme gene as one of the 'pivotal role players involved in the

differential ability of Saccharomyces strains. to .degrade malic acid. The study clearly showed

different expression patterns for the three Saccharomyces malic enzyme genes that could be ascribed

to different regulatory mechanisms employed by the strains. Given the different promoter sequences

observed for S. paradoxus and the other two Saccharomyces strains, it is plausible that different

transcription regulatory mechanisms exist in S. paradoxus that could explain this yeast's higher

aptitude to degrade L-malic acid.

8.2 INTEGRA TION AND EXPRESSION OF THE MALO-ETHANOLIC GENES OF
S. POMBE IN AN INDUSTRIAL WINE YEAST STRAIN OF SACCHAROMYCES

In contrast to S. cerevisiae, the fission yeast Schizosaccharomyces pombe can effectively degrade

extracellular L-malic acid via the rnalo-ethanolic pathway due to the presence of a malate permease

for the active transport of malic acid, as well as a malic enzyme with a high substrate affinity. In our
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search for an alternative approach to deacidify wine, we investigated the expression of the S. pombe

malate-permease (maeTï and malic enzyme (mae2) genes in strains of Saccharomyces.

A strong malo-ethanolic phenotype was introduced into a S. cerevisiae laboratory strain when the

S. pombe mae] and mae2 genes were functionally co-expressed under the constitutive regulation of

the S. cerevisiae 3-phosphoglycerate kinase (PGK]) promoter and terminator elements (Chapter 6).

Although the regulatory elements of the S. pombe mae] and mae2 genes were not functional in

S. cerevisiae, the results clearly showed that the malate transport protein and malic enzyme was

active in S. cerevisiae when expressed under the PGK] promoter and terminator elements. This

approach allowed us to introduce two new enzymatic activities into S. cerevisiae to yield recombinant

strains with the ability to (1) actively transport L-malic acid into the cell, and (2) convert the malic

acid to pyruvic acid and CO2. The effective functioning of the malo-ethanolic pathway was

confirmed when higher levels of ethanol were produced by the malo-ethanolic strains during

fermentation. This is of particular importance to the distilled beverage industry where an improved

ethanol yield is highly desirable.

The introduction of a heterologous malo-ethanolic pathway in a laboratory strain of S. cerevisiae was

regarded as a major biotechnological breakthrough in the wine industry. However, the stable

integration of the S. pombe malo-ethanolic genes into the genome of commercial wine yeast strains of

Saccharomyces was essential to provide a recombinant yeast strain that can be used for commercial

wine fermentation. Several integration strategies were developed during the course of this study with

the underlying principle being the generation of linear fragments containing the mae] and mae2

expression cassettes flanked by URA3 regions (Chapter 7) .

.Initial efforts to generate the linear integration cassettes were based on a peR amplification procedure

whereby 50 to 100 bp of flanking URA3 sequences are added, proved to be unsuccessful. To increase

the odds of homologous recombination at the URA3 locus, the mae] and mae2 expression cassettes

were sub-cloned into a modified URA3 fragment that provided 500-600 bp URA3 flanking regions on

the linear fragment. Integration of the mae] and mae2 genes was achieved in S. bayanus ECll18 and

verified with Southern blot analysis as being a single copy integration in the URA3 locus of the

recombinant yeast (Chapter 7). The initial problems associated with the integration of the malo-

ethanolic cassette in industrial strains of Saccharomyces suggested that, although 50-100 bp flanking .

regions are sufficient for homologous recombination in laboratory strains of S. cerevisiae, the same

process requires much larger homologous flanking regions for efficient integration in industrial strains

of Saccharomyces.

The single integrated copy of the malo-ethanolic genes in S. bayanus EC 1118 was sufficient to yield a

strong malo-ethanolic phenotype, i.e. the conversion of 9.5 gIl of L-malic acid to ethanol within 5
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days (Chapter 7). The efficiency of the malo-ethanolic phenotype in the recombinant S. bayanus

industrial strain also compared well with that obtained for the laboratory strain of S. cerevisiae,

suggesting that the copy number of the genes had little effect on the efficiency of the malo-ethanolic

phenotype. Sensory evaluation and chemical analysis of a Chardonnay wine produced by the malo-

ethanolic yeast indicated an improvement in wine aroma compared to the traditional malolactic

fermentation. These results underline the prediction that the newly introduced malo-ethanolic

pathway should not have any negative influence on the fermentation capacity and metabolic activities

of the yeast, since the malo-ethanolic pathway is an electro-neutral process, i.e. all the NADH

produced during the oxidative decarboxylation ofï.-malic acid is re-oxidised to NAD+ during the final

conversion to ethanol. However, a slight increase in glycerol and acetic acid concentrations indicate

that the recombinant yeast is under some degree of metabolic stress due to the over-expression of the

mae} and mae2 genes.

8.3 GENERAL CONCLUSIONS

It has been well documented that strains of Saccharomyces display different abilities to degrade

extracellular L-malic acid, but the underlying reasons for the phenomenon were unknown. This study

has provided insight into the regulation of the malo-ethanolic pathway in strains of Saccharomyces

with different abilities to degrade t-malic acid. It is the first report on the possible role of

transcriptional regulation of the malic enzyme (MAEl) gene in the differential degradation ï.-malic

acid by different strains of Saccharomyces during wine fermentation. However, a further in-depth

analysis of the molecular machinery and physiological effectors governing the regulation of malic

acid metabolism in Saccharomyces is required to fully elucidate this phenomenon._____ __ _: _

The deacidification of wine can be achieved through one of several physiochemical or biological

methods. Physiochemical deacidification of wine is, however, often time-consuming, requires

increased labour and capital input and is regularly associated with reduced wine quality. For these

reasons, biological deacidification of wine with malolactic fermentation is the method of choice for

most winemakers as it is a perceived to be a natural or spontaneous process. However, due to

inherent problems associated with malolactic fermentation and its unsuitability in some fruity-floral

cultivars, alternative biological methods for the deacidification of wine will be of great benefit to the

wine industry. The commercial availability of a malo-ethanolic wine yeast will be especially

beneficial to the production of fruity-floral wines, such as Gewurtzraminer and Riesling, as well as the

deacidification of high-acid wines in the cool-climate viticultural regions of the world.

Deacidification of wine with a malo-ethanolic yeast strain will eliminate the use-of bacterial starter

cultures for malolactic-fermentation, which in tum will reduce the risk of the production of hazardous

compounds such as biogenic amines and ethyl carbamate. Furthermore, use of the rnalo-ethanolic
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yeast is expected to eliminate delays in cellar operations due to the simultaneous completion of

alcoholic fermentation and deacidification, which in turn will minimise the risk of spoilage by

oxidation and the proliferation of spoilage microorganisms. Another potential benefit of the malo-

ethanolic wine yeast is in the production of distilled beverages for distilling purposes since higher

levels of ethanol are produced during fermentation with the malo-ethanolic yeast.

8.3.1 Commercial application of genetically engineered wine yeast: Ethical Perspectives

Genetic engineering of wine yeast is considered an expansion of modern biotechnology where new

and improved yeast strains are constructed in a highly regulated and specific fashion as opposed to the

arduous process of artificial selection and breeding employed by humans for more than 10 000 years.

Although genetic engineering by definition harnesses the basic power of natural selection and

breeding, it has not gained worldwide acceptance due to stigmatisation by lobbying groups, consumer

mistrust, obvious regulatory oversights and mistrust in government bureaucracies. All these factors

fueled debates for over 20 years about the environmental and public health safety of genetically

modified organisms (GMO's).

One of the foremost consumer concerns is the human and environmental safety aspect of GMO' s, and

whether or not GMO's are safe in the immediate and long-term. Some of the prerequisites include a

complete and exact knowledge of the function(s) of the incorporated or modified genetic material.

Substantial proof must be provided that this new function is correctly expressed and the complete

nucleotide sequence of the incorporated DNA has to be determined. Unwanted spreading of the

inserted DNA to other organisms' genomes through horizontal gene transfer should be evaluated and

controlled. The performance of recombinant yeast strains in beverages and in the environment should

be anticipated and eventually evaluated. Lastly, the absence of any toxicity or pathogenicity must be .

proved.

One of the negative effects from genetically modified food and beverages could be the risk of

increasing potential sources of allergies in various products. However, there is no reliable method of

foreseeing potential allergic reactions that may be introduced by a newly acquired enzyme activity.

Most of the public health risks essentially revolve around antibiotic resistance, since many GMO's

contain bacterial plasmid elements which may include genes encoding for resistance to ampicillin.

In complying with consumer safety concerns, a unique strategy was developed in this study for the

stable integration of an efficierit malo-ethanolic pathway in a commercially used Saccharomyces wine

yeast strain that would adhere to the above consumer safety requirements. The genes that were

integrated into the commercial wine yeast strain, have a known enzymatic function and were

introduced into the yeast in a judicious manner, i.e. only yeast-derived DNA was integrated at a

known chromosomal location. Any possible toxicity or pathogenicity associated with foreign or non-
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yeast DNA elements, such as antibiotic resistance markers, were therefore avoided. The commercial

production of wine with a malo-ethanolic yeast strain will in fact have a tendency to enhance the

health benefits of wine, since the risk of the production of biogenic amines and carcinogenic ethyl

carbamate will be significantly reduced. Furthermore, evaluation of the recombinant yeast during

wine fermentation indicated that the recombinant yeast did not deviate from the parental yeast strain

in terms of fermentation performance or metabolic activities. The integration strategy developed in

this study could therefore serve as a model technique for future construction of genetically engineered

strains of Saccharomyces.

Commercial application of the recombinant malo-ethanolic yeast will require further characterisation

and performance evaluation under large-scale fermentation conditions. Specific care should be taken

to determine the complete sequence of the integrated fragment to account for every single base pair

introduced into the yeast. DNA micro-array analysis could be used to determine the effect of the two

integrated malo-ethanolic genes on the transcription of other yeast genes on a genomic scale. In

addition, a long-term study on the potential environmental consequences of the recombinant malo-

ethanolic yeast strain in a vineyard and winery environment will be required to determine the stability

of the malo-ethanolic phenotype in terms of "horizontal gene transfer" to other yeasts via the natural

process of mating.
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