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Abstract

Heuristics for obtaining upper bounds on crossing numbers of small graphs in the plane, and a
heuristic for obtaining lower bounds to the crossing numbers of large graphs in the plane are
presented in this thesis. It is shown that the two—page book layout framework is effective for
deriving general upper bounds, and that it may also be used to obtain exact results for the
crossing numbers of graphs.

The upper bound algorithm is based on the well-known optimization heuristics of tabu search,
genetic algorithms and neural networks for obtaining two—page book layouts with few resultant
edge crossings.

The lower bound algorithm is based on the notion of embedding a graph into another graph,
and, to the best knowledge of the author, it is the first known lower bound algorithm for the
crossing number of a graph. It utilizes Dijkstra’s shortest paths algorithm to embed one graph
into another, in such a fashion as to minimize edge and vertex congestion values.

The upper bound algorithms that were developed in this thesis were applied to all non—planar
complete multipartite graphs of orders 6-13. A catalogue of drawings of these graphs with low
numbers of crossings is provided in the thesis. Lower bounds on the crossing numbers of these
graphs were also computed, using lower bounds that are known for a number of complete mul-
tipartite graphs, as well as the fact that lower bounds on the crossing numbers of the subgraphs
of a graph G, are lower bounds on the crossing number of G.

A reference implementation of the Garey—Johnson algorithm is supplied, and finally, it is shown
that Székely’s algorithm for computing the independent—odd crossing number may be converted
into a heuristic algorithm for deriving upper bounds on the plane crossing number of a graph.

This thesis also provides a thorough survey of results known for the crossing number of a graph
in the plane. The survey especially focuses on algorithmic issues that have been proposed by
researchers in the field of crossing number research.
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Opsomming

Bogrensheusristieke vir die benadering van kruisingsgetalle van klein grafieke in die vlak, en 'n
heuristiek vir die benadering van ondergrense vir groot grafieke in die vlak word in hierdie tesis
ontwikkel. Daar word getoon dat tweeblad boekuitlegte 'n doeltreffende raamwerk bied vir die
afleiding van algemene bogrense, en dat dit ook gebruik kan word om eksakte kruisingsgetal-
waardes van grafieke te vind.

Die bogrensalgoritmes berus op die welbekende optimeringsheuristieke uit die metodologieé
van tabu-soektogte, genetiese algoritmes en neurale netwerke vir die verkryging van tweeblad
boekuitlegte wat min kruisings realiseer.

Die ondergrensalgoritme berus op die begrip van die inbedding van een grafiek in 'n ander grafiek,
en is, na die beste wete van die outeur, die eerste ondergrens algoritme vir die kruisingsgetal van
'n grafiek. Die algoritme maak gebruik van Dijkstra se kortste pad metode om ’n grafiek in 'n
ander in te bed sodat die lyn— en puntbelading geminimeer word.

Die bogrensalgoritmes wat in hierdie tesis ontwikkel is, is toegepas op alle nie-planére volledige
veelledige grafieke van ordes 6-13. 'n Katalogus van tekeninge van hierdie grafieke met 'n lae
aantal kruisings word in die tesis verskaf. Ondergrense vir die kruisingsgetalle van hierdie grafieke
is ook bereken met behulp van ondergrense wat bekend is vir sommige volledige veelledige grafieke
asook die feit dat ondergrense vir die kruisingsgetalle van subgrafieke van 'n grafiek G dien as
ondergrense vir die kruisingsgetal van G.

'n Verwysingsimplementasie van die Garey—Johnson algoritme word ook verskaf, en laastens
word daar getoon dat die algoritme van Székely vir die bepaling van die onafthanklike—onewe
kruisingsgetal omgeskakel kan word na 'n heuristiese algoritme wat bogrense vir die kruisingsgetal
van 'n grafiek in die vlak benader.

'n Omvattende literatuurstudie oor bekende resultate vir die kruisingsgetal van 'n grafiek in die
vlak word ook in die tesis verskaf. Die literatuurstudie fokus spesifiek op algoritmiese kwessies
wat deur navorsers in die kruisingsgetalveld bestudeer is.
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Terms of Reference

The study of the crossing number problem had its genesis in a brick factory in Budapest during
the Second World War. In the factory, there were a number of kilns that were connected to
several storage yards by means of railway tracks, and bricks were transported via small trucks
that ran on the rails. Paul Turan [Tur77|, who worked in the factory, noticed that the trucks
were often derailed where two rails crossed one another. This led him to consider the problem
of minimizing the number of rail crossings in the system. In the brick factory, every kiln was
joined by rail to every storage yard. A bipartite graph may be used to model this configuration,
and Turan’s problem is then equivalent to asking what the minimum number of pairwise edge
crossings is over all drawings of the graph.

Turan postponed his study of the problem until after the war. In 1952 he met Zarankiewicz in
Poland, to whom he relayed the problem. Two years later, Zarankiewicz published a paper, “On
a problem of P. Turén concerning graphs” [Zar54], in which he gave a solution to the problem
for the class of bipartite graphs. Unfortunately a flaw in his proof was discovered, as described
by Guy [Guy69].

Much of the subsequent research into the problem has focussed on establishing bounds — and
in the cases of smaller graphs, exact results — for particular classes of graphs. The problem of
determining acceptable upper bounds for the crossing numbers of large graphs was addressed by
Leighton [Lei83|.

Leighton’s methods, however, do not guarantee good bounds for small graphs. Research done
by Nicholson [Nic68] and Cimikowski [Cim02] dealt with the problem of finding upper bounds
for the crossing numbers of small graphs. Unfortunately, Nicholson’s heuristic does not always
produce solutions of high quality, and Cimikowski only addressed part of the problem in the sense
that he largely ignored the issue of the placement of vertices relative to one another. Finally, the
problem of determining lower bounds algorithmically has largely been ignored.

A thorough survey of the results known for the crossing number of a graph in the plane is given
in this thesis. The topic of the thesis was proposed by Jan van Vuuren, who was the supervisor
of the study, whilst Paul Grobler acted as advisor at various stages of the study. Work for this
thesis commenced in February 2002 and was completed in December 2004.
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Glossary

2—cell A surface S is said to be 2—cell if it has the property that every point in S has an open
neighbourhood that may be continuously deformed to an open disc.

adjacent edges An edge e in a graph G is said to be adjacent to an edge f € E(G) if e and f
are incident to a common vertexr in G.

adjacent vertices A vertez u in a graph G is said to be adjacent to a verter v € V(G) if there
exists an edge {u,v} € E(G).

algorithm An ordered sequence of operations for solving a problem in a finite number of steps.

alternating A pair of edges e = {v;, v} and f = {v;, v} are said to be alternating if the relative
order of their incident vertices on the spine of a book is either v;, vj, vy, ve, or v;,v;, Vg, V.
The four incident vertices are also said to be alternating.

arc An edge of a directed graph. An arc has an orientation towards one of its two incident
vertices. An arc incident to vertices v; and v;, and oriented towards v;, is denoted (v;, v;).

aspiration criterion An aspiration criterion is a condition under which a tabu search algorithm
will override the tabu value of a move. For example, a tabu search algorithm might choose
to perform a tabu mowe if the move will result in an improvement of its current solution.

asymptotic bound f(n) = O(g(n)) if there exist a ¢ € RT and an ng € N such that 0 <
f(n) < cg(n) for all n > ng. The function O denotes the order of magnitude of g(n).
f(n) = Q(g(n)) if there exist a ¢ € RT and an ng € N such that 0 < cg(n) < f(n) for all
n > ng. The function g is said to be an asymptotic lower bound for f.

attribute based memory A type of memory structure employed by a tabu search algorithm.
The attribute based memory is used to mark moves as tabu for a given number of iterations
in a tabu search algorithm.

bijection A function that is both an injection and surjective.
bipartite graph A multipartite graph with two partite sets.

bisection The process of the removal of a set of edges from a graph G such that the wver-
tex set V(G) of G is partitioned into two sets V1(G) and V2(G) with the properties that
Vi@, [V2(9)| = (1/3)[V(G)I-

bisection width The minimum number of edges, denoted b(G), in a graph G whose removal
causes G to be bisected.

book An n—page book is the union of n half-planes, called pages, that intersect each other on
their finite boundaries. The intersection line is called the spine of the book.

xx1
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(combinatorial) book drawing A graph drawing in which the vertices of the graph are placed
at distinct positions on the spine of a book, and where each edge is drawn wholly on a single
page of the book.

book crossing number The smallest number of edge intersections in a book drawing of a graph
G, denoted v, (G) for an n—page book.

boolean A boolean variable may assume either the boolean value “TRUE,” or the boolean value
“FALSE.” A boolean expression has the property of evaluating to a boolean value.

cardinality The number of elements in a set S, denoted |S].

Cartesian product The Cartesian product of two graphs G and H, denoted G x H, is the graph
with vertez set V(H) x V(G), two vertices (u1,us) and (v1,v2) being adjacent in G x H if
and only if either u; = vy and {ug,v2} € E(H) or ug = vy and {uj,v1} € E(G).

C—component For a cycle C in a graph G, a C—component is the union of a maximally connected
component in G that results from the removal of C from G, and the set of edges incident
to the component and to C. This structure is used in the proof of Kuratowski’s theorem,
presented in Appendix A.

chromosome An individual in a population of candidates employed by a genetic algorithm.
clasp vertex A vertex of a C—component that intersects the cycle C that defines the C—components.
clique An induced subgraph of a graph, with the property of being complete.

clique number The largest order of a cligue in a graph G, denoted w(G).

circular drawing A type of drawing in which wertices are drawn, equi-spaced, around the
circumference of an imaginary circle, and edges are drawn either wholly in the interior,
or wholly in the exterior of the circle. Circular drawings are equivalent to 2—page book
drawings.

class NP The class of all decision problems that may be verified in polynomial time if provided
with a certificate to the problem at hand.

class NP—complete A decision problem L is in the class NP—complete if L € NP and if
Ly < L for all L, € NP.

class NP—hard A problem L is in the class NP-hard if Ly < L for all L; € NP. L need not
necessarily be in NP.

class P The class of all decision problems that may be solved in polynomial time.

closed neighbourhood The closed neighbourhood of a vertex v in a graph G, denoted Ng[v],
is the union Ng(v) U {v}, where Ng(v) is the open neighbourhood of v.

compact 2—-manifold A surface that may be constructed by the addition of handles or of
crosscaps to the sphere.

complement The complement of a graph G, denoted G, is a graph with the property that
V(G) = V(G) and that contains an edge {u,v} if and only if {u,v} ¢ E(G).

complete graph The complete graph of order n, denoted IC,,, has the property that every pair
of wvertices are joined by an edge.
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component A subgraph H of a graph G is said to be a component of G if H has the property of
being maximally connected (i.e., if there is no verter u € V(G) \ V(H) for which a u — v
path exists where v € V(H)).

connected A graph G is said to be connected if G contains a v — v path for every pair vertices
u,v € V(G).

k—connected A graph G is said to be k—connected, if the removal of any set of j vertices, j < k,
does not disconnect G.

constant time An operation that executes in O(1) time is said to be constant time operation,
or is said to run in constant time.

coset For a subgroup S of a group B with the group operator ®, and for an element = € B,
define the set t @S as {x ©d : d € S}. Then 2 ©® S is said to be a left coset of S, or simply
a coset of §. There is the corresponding concept of a right coset S ® z, that is defined as
the set {d® x : d € S}. If ©® is commutative, the left and right cosets are equal.

crosscap A crosscap is created by removing the interior of a disc in a surface, and by associating
opposite ends on the disc, so that a line entering a point on the disc will leave a diametrically
opposed point, on the disc.

cross—coboundary For a drawing ¢, an initial cross—coboundary is a crossing chain corre-
sponding to the action of “pulling” an edge {v;,v;} over a vertez vy in ¢. A general cross—
coboundary is a crossing chain expressible as a finite sum of initial cross—coboundaries. A
cross—coboundary is denoted c(ij, k).

crossing chain An algebraic structure that describes the crossing configuration of a drawing
¢ of a graph G. A crossing chain is constructed as the sum of indeterminates of the form
[ij, k1], that correspond to pairs of edges {v;,v;} and {vy,v,} in E(G). An indeterminate
has a coefficient A(ij, k¢) that is congruent to the number of crossings between the edges
{vi,v;} and {vg, v} in ¢. Arithmetic may be performed on crossing chains in much the
same way as on polynomials.

crossing number The crossing number of a graph G in the plane, denoted v(G), is the minimum
number of pairwise edge crossings that can exist in a drawing ¢ of G in single—cross normal
form.

crossing set A set of pairs of edges of a graph G containing those pairs of edges in G that cross
one another.

cycle A walk in a graph in which the begin— and end—vertices coincide, and in which no vertez
is otherwise repeated.

decision problem A problem that may be interpreted as a binary question, and may therefore
be answered either “yes” or “no.”

degree The degree of a vertez v in a graph G, denoted degg(v) is the number of vertices adjacent
toving.

density The ratio between the size of a graph G, and the size of the complete graph of the same
order as G.
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directed graph A graph, in which each edge is considered oriented towards one of its incident
vertices. An edge e of a directed graph G, with incident vertices v; and vj, is called an arc,
and is denoted (v;,v;) if it is oriented towards v;, and otherwise (vj,v;) if it is oriented
towards v;. Therefore, (v;,v;) # (v;,v;), and both may be present in G.

disconnected A graph that is not connected.

drawing A drawing ¢ of a graph G, is an injection ¢(*) of the vertices of G to points in a surface
S, and a function d)(e)(g) mapping edges of G to continuous curves in S.

edge A subset of the vertex set of a graph G with two elements, belonging to the possibly empty
set of edges E(G) of G.

edge congestion In a graph-to—graph embedding v of a graph G into a graph H, the edge
congestion of an edge ¢ € E(H), denoted ¢(® (¢, 1)), is defined as the number of edges in
G that map to paths in H containing €.

edge contraction A procedure in which the wvertices incident to an edge e = {u,v}, as well
as the edge itself, are replaced by a single vertez v’ that is adjacent to all vertices in the
neighbourhoods of v and v.

edge induced subgraph Any subgraph H of a graph G is an edge induced subgraph of its
constituent edges.

edge layout A function mapping edges of a graph to page numbers of a book. An edge layout
and a vertex arrangement specify a book layout.

edge set partitioning A technique for deriving analytical lower bounds, or exact results on
the crossing number of a graph G. The edge set of G is partitioned into two subsets
E(G) = AU B, such that the graph induced by one of the subsets, say (A)g, is a graph
of which the crossing number is known. Combinatorial arguments are then used to derive
lower bounds to crossing number of the graph induced by the set B, that in turn provides
bounds to the crossing number of G.

embedding A drawing of a graph G in a surface with the property that no two edges in G
intersect. Embeddings are generalizations of plane drawings.

end—vertex A vertex v of a graph G with degree one; i.e., degg(v) = 1.

field A set of elements W, along with two binary operators ® and & and identity elements 1 and
0 corresponding to the two binary operators respectively, is said to be a field M, denoted
M=W,0,3,1,0),if (1) ® forms a group over W~ {0} with 1 as the identity element and
where © is, in addition, commutative, (2) @ forms a group over VW with 0 as the identity
element, and distributivity for © over @ is defined — i.e., x® (y®z) =xQy dx O z.

frequency based memory A type of memory structure employed by a tabu search algorithm.
The frequency based memory normally records the number of times that certain mowves have
been performed in the execution of a tabu search algorithm, thereby allowing frequently
executed moves to be penalized, or moves that have been executed seldom to be favoured.

fully triangulated A planar graph G is said to be fully triangulated if each region in a plane
drawing of G is bounded by exactly three edges of G.

genetic algorithm A heuristic optimization technique designed with the intention of simulating
the natural process of evolution.
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(orientable) [(non—orientable) genus| The (orientable) [(non—orientable)] genus of a graph
G, denoted Y(G) [Y(G)] is equal to the minimum genus for which an orientable (non—
orientable) compact 2—manifold has an embedding of G.

girth The shortest cycle of a graph G, denoted ¢(G). If G contains no cycles, then g(G) = oo.
graph See undirected graph.

graph—to—graph embedding A graph—to—graph embedding of a graph G into a graph H is a
pair of injections ¥(G) = (¥, (&) where (¥ : V(G) — V(H) and (¢ : E(G) — {p :
pis a path in H}. An edge mapping ¥(¢({u,v}) is subject to the constraint of being a
D@ (u) — ) (v) path in H.

greedy algorithm A simple heuristic optimization technique whereby a the action leading to
the largest improvement in the solution quality, is selected at every step. The neighbourhood
search technique is an example of a greedy algorithm.

group A set W, along with a binary operator ® and an identity element 1 is said to constitute
a group if ® is associative over the elements of W, if W is closed with respect to the
application of @, if there is an identity element for ® in VW, and if each element in W has
an inverse under ©.

Hamiltonian cycle A cycle C in a graph G with the property that C contains every wverter of

g.

hypercube The hypercube of dimension n, denoted Q,, has 2" wertices, each of which are
labelled by a unique n—bit binary string, and two vertices are adjacent if their labels differ
only in a single position.

independent crossing subgraph A subgraph of crossing edges which may be viewed as a
“black box,” by contracting all crossings into a single artificial vertez.

independent—odd crossing number The smallest number of non—adjacent pairs of edges that
intersect an odd number of times in a drawing of a graph G in normal form, denoted u(z)(g).

induced subgraph See vertex induced subgraph and edge induced subgraph.

injection A function f: D — R with the property that it maps each element from its domain
D, to a unique element in its range R — i.e., for an element x € R such that f(z) = vy,
there is no other element 2’ € R, 2’ # z such that f(2’) = y. Injective functions are also
referred to as “one-to—one” functions.

intersection graph (book drawings) A graph X constructed from a given werter arrange-
ment of a graph G on the spine of a book, containing a verter for every edge in E(G). A
pair of vertices in X are adjacent if the corresponding edges in G alternate on the spine.

intersection graph (Garey—Johnson algorithm) The graph X used to obtain independent
crossing subgraphs for a given crossing configuration in a graph G. Each edge in G is
represented by a verter in A and a pair of vertices in X are adjacent if the corresponding
pair of edges in G is present in the crossing configuration. The components in X that are
not isolated vertices specify the independent crossing subgraphs in G.

intractable problem A decision problem for which no polynomial time algorithm is known to
solve the problem.
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isolated vertex A wertez v of a graph G with degree zero; i.e., degg(v) = 0.

isomorphic Two graphs G and H are said to be isomorphic if there exists a bijection ¢ : V(G) —
V(H) such that {u,v} € E(G) if and only if {¢(u), #(v)} € E(H).

isomorphism A bijective function showing that two graphs are isomorphic.
join An edge {u,v} € E(G) of a graph G is said to join the vertices u,v € V(G).

layered drawing In a k—layered drawing of a graph G, the vertices of G are placed on k distinct
levels, such that vertices on level ¢ are only adjacent to vertices on layers ¢ — 1 and 7 + 1.

leaf An end-vertezr of a tree.
length The number of edges in a walk of a graph.

lexicographic ordering An ordering of sequences of elements, in which sequences are compared
starting with their respective leftmost elements, such that the significance of elements in
sequences decrease as comparison moves from the left to the right of the sequences. Entries
in language dictionaries are sorted lexicographically.

manifold See compact 2-manifold.

maximally planar A graph G is said to be maximally planar if for any e € E(G) the graph
(E(G) Ue) is non—planar.

maximal planar subgraph A subgraph H of a graph G is a graph with the properties that
V(H) =V(G), E(H) C E(G) and such that H is planar, but for any edge e € E(G)\E(H),
(HU{e}) is non—planar.

minor A graph M obtained from a graph G by means of a series of edge contractions and/or
edge deletions.

move A well defined mechanism by which a candidate solution in a neighbourhood search or tabu
algorithm is transformed into a new candidate solution. For example, this might entail the
swapping of two elements in a permutation, or the changing of a binary bit in a string of
such bits.

multipartite graph A multipartite graph with n partite sets, also known as an n—partite graph,
is a graph G = (V, E), of which the vertex set may be partitioned into n partite sets
V=ViuWVU---UV, such that for any u,v € V;, 1 < i < n there does not exist an edge

{u,v} € E(G).

mutate A procedure employed by a genetic algorithm to perturb a candidate solution (chromo-
some) with the purpose of escaping local optima.

neighbourhood See open neighbourhood.

neighbourhood search A simple heuristic optimization technique whereby a the most improv-
ing candidate solution reachable from the current candidate solution is continually selected,
until no improvement is possible.

neural network A heuristic optimization technique that bases its functioning on a simplified
model of the functioning of the human brain.
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normal form A drawing ¢(G) of a graph G is said to be in normal form if (1) every pair of
curves in ¢ intersect a finite number of times, (2) curves in ¢ are nowhere tangential and
(3) no three curves in ¢ have a common intersection.

non—orientable A compact 2-manifold is said to be non—orientable if it may be generated from
the sphere by the addition of a number of crosscaps.

NP See class NP, class NP—complete and class NP-hard.

odd crossing number The smallest number of pairs of edges that intersect an odd number of
times in a drawing of a graph G in normal form, denoted v/(°) (G).

(open) neighbourhood The open neighbourhood of a vertex v in a graph G, denoted Ng(v),
is the set of vertices that are adjacent to v in G. See also closed neighbourhood of a vertex.

order The number of vertices in a graph G = (V, E), denoted |V (G)|.

orbit An orbit P C S of a bijection f: S — S on a set S is a minimal subset of S that is closed
under the application of f. Minimality requires that no subset of P is an orbit, and closure
requires that if z € P then f(x) € P.

orientable A compact 2-manifold is said to be orientable if it may be generated from the sphere
by the addition of a number of handles.

outerplanar graph A graph is said to be outerplanar if it is planar and if it permits the
construction of an outerplane drawing.

outerplane drawing A plane drawing of a graph G in the plane with the property that every
vertex is present in the same region in the drawing.

overlap A pair of C-components overlap either if they have three clasp vertices in common, or
if each has at least two clasp vertices and the clasp vertices from the C-components are
alternating.

overlap graph For a cycle C in a graph G, the overlap graph with respect to C contains a
vertexr for each C-component of C, where a pair of vertices are joined by an edge if their
corresponding C—components overlap.

P see class P.
page half plane intersecting the spine of a book on its closed boundary.

pairwise crossing number The smallest number of pairs of edges that intersect in any drawing
of a graph G in normal form, denoted v(P)(G).

n—partite graph See multipartite graph.
path A walk in a graph G in which no vertex is repeated.
planar A graph is said to be planar if it permits a plane drawing.

n—planar crossing number The minimum, over all partitionings of a graph G into n edge—
disjoint subgraphs, of the sum of the crossing numbers of the subgraphs.

plane The space R2.
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plane drawing A drawing of a planar graph G in the plane with the property that no pair of
edges in G intersect.

polynomial time algorithm An algorithm of which the time complerity may be asymptoti-
cally bounded by a polynomial function with respect to its input size.

polynomial time reducible A decision problem Li is polynomial time reducible to a deci-
ston problem Lo if a polynomial time mapping, from problem instances of L, to problem
instances of Ly exists.

product of graphs See Cartesian Product.

rectilinear drawing A drawing of a graph G in which the edges of G are drawn as straight
lines.

region The disjoint subsets of plane that are not part of the vertex or edge drawings of a graph,
are called regions of the drawing.

simple curve A simple curve c in R? is a continuous injection c: [0,1] — R2,

single—cross normal form A drawing in normal form with the additional properties that ad-
jacent edges never cross, and that no pair of non—-adjacent edges cross each other more
than once, is said to be in single—cross normal form.

single—edge graph—to—graph embedding A restricted type of graph—to—graph embedding. If
a graph G is single-edge graph—to-graph embedded into a graph H, then edges in G do not
map to paths in H, but instead to edges in H. A single-edge graph—to—graph embedding is
usually denoted by the symbol 4.

size The number of edges in a graph G = (V, E), denoted |E(G)|.
source The verter u incident to an arc (u,v) from which the arc is oriented.

spanning subgraph A subgraph H = (V' E’) of a graph G = (V, E) is said to be a spanning
subgraph if V' = V.

spine The intersection of the half planes that form the pages of a book.

standard counting method A method for bounding the crossing number of a graph G whereby
lower bounds to the crossing numbers of subgraphs of G are added, and crossings that are
counted multiple times, due to the intersections of subgraphs, are subtracted appropriately.

star A bipartite graph of the form Ky ,,.

subdivision A graph H is said to be a subdivision of a graph G, if H is obtained from G by
inserting wvertices of degree two into the edges of G.

subcover A subcover of a cover U of a set S, is a subset U’ of U, that covers S.

subgraph A subgraph H = (V', E’) of a graph G = (V, E) is a graph with the properties that
V! CV and E' C E. The subgraph relation is denoted H C G.

subgroup A subgroup S of a group B contains a subset of the group elements of B and satisfies
the group axioms over this subset.

surface A locally 2—dimensional space, such as the plane, the sphere or the torus.
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surjective function A function f : D — R with the property that for every element y € R,
there exists an = € D, such that f(z) = y. Surjective functions are also said to be “onto.”

tabu A move of a tabu search algorithm is said to be tabu if it has a non—zero tabu value.

tabu search A heuristic optimization technique that may be seen as a generalization of the
neighbourhood search technique, whereby a change in solution attributes resulting in a
move from one candidate solution to the next is classified as tabu for a number of steps, so
that any moves that would introduce the same changes are in attributes are also classified
as tabu and such moves would be avoided whilst the tabu status for the given change in
attributes holds. This behaviour may be overridden via a number of aspiration criteria if
a tabu classified move will lead to a desirable candidate solution.

tabu tenure The number of iterations for which a move will have a non—zero tabu value in a
tabu search algorithm.

tabu value A move with a non—zero tabu value is not considered by a tabu search algorithm,
unless it satisfies the set of aspiration criteria of the algorithm.

target The vertezr v incident to an arc (u,v) towards which the arc is oriented.

thickness The thickness of a graph G, denoted 6(G), is the minimum number of planar edge
disjoint subgraphs into which G may be partitioned.

toroidal grid graph The Cartesian product of a pair of cycles.

tractable problem A decision problem for which a polynomial time algorithm is known to solve
the problem.

tree An acyclic graph. A tree of order n has size n — 1. A tree has the property that each of
its edges is a bridge.

tuple An ordered set of elements, s1, S2,. .., s,, denoted (s1,S2,...,8,).

underlying graph The underlying graph of a directed graph D = (V, E) is the undirected graph
G = (V, E') obtained from D by replacing all arcs by edges. If E contains both the arcs
(vi,v;) and (vj,v;), only a single edge {v;,v;} is added to E'.

undirected graph A graph, G (sometimes indicated by G = (V, E)) consists of a non—empty
finite set V' = V(G) called the vertex set, as well as a (possibly empty) finite set £ = E(G)
of 2—element subsets of V(G), called the edge set.

vector An element of a vector space.

vector space For a field M with operators @ and ®, and a set VW of elements, if, for any
u,v,w € W and for any k,¢ € M, the following axioms are satisfied, then W constitutes
a vector space over M, and the elements from W are called wvectors, whilst the elements of
M are called scalars.

1. Closure of W under ¢: If u and v are elements in W, then u® v € W.
2. Commutativity of VW under ®: uév =v du.

3. Associativity of W under @: (u@v)dw=ud (vaew).

4.

Existence of an identity element in W under @: There is an element 0 in W, called a
zero vector of W, such that 0 @u=u® 0 =u for all u e W.
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5. Existence of inverse elements in VW under @: For each u € W, there is an element
—u € W, called a negative of u, such that u® (—u) = (—u) u=0.

6. Closure under scalar multiplication: If k£ is a scalar in M and u is an element of W,
then k@ ue W.

7. Distributivity of vectors sums: k@ (u®v) = (k@u) ® (k @ v).

8. Distributivity of scalars sums: (k@ /{)@u=(k®@u)® ({Qu).

9. Associativity of scalar multiplication: £k ® ({®@u) = (k ® {) ® u.
10. Scalar multiplication identity: 1 ® u = u.

vertex An element of the non-empty vertezr set V(G) of a graph G.
vertex arrangement The order of vertices on the spine of a book in a book drawing of a graph.

vertex congestion In a graph—to—graph embedding 1 of a graph G into a graph H, the vertex
congestion of a vertex v' € V(H), denoted ¢(¥)(¢/,1)), is defined as the number of edges in
G that map to paths in ‘H containing v'.

vertex induced subgraph A verter induced subgraph H = (V',E') of a graph G = (V, E) has
the property that for a pair of vertices u,v € V', the graph H contains the edge {u,v} if
G contains the edge {u,v}.

VLSI design Very Large Scale Integration design — the design of electronic circuits requiring
large numbers of transistors, such as, for example, computer processor design.

walk A walk in a graph G is an alternating sequence of vertices and edges
Vo, €1,V1,€2,V2,...,Vi—1,€4 Vi, ..., Un—1,€n, Un,

also called a vy — v, walk, such that e; = {v;_1,v;} fori =1,2,...,n.
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non—planar
NP-complete
NP-hard

odd crossing number
orientable
outerplanar
outerplanar crossing number
pairwise crossing number
partite set
permutation
planar

planar graph
rectilinear
rectilinear drawing
region

n—regular

rotation scheme
space

sphere

subgraph
subdivision

tabu algorithm
topology

torus

toroidal

tractable
undirected graph
vector

vertex

vertex set

nie-oriénteerbaar
nie—planér
NP-volledig
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onewe kruisingsgetal
oriénteerbaar
buiteplanér
buiteplanére kruisingsgetal
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planér
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uitvoerbaar
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{Uivvj}
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Binomial coefficient given by b!(aa—ib)! when a > b, and 0 otherwise.

The relation H; C Ho between two sets states that H; is a subset of, or equal
to the set Ho. When applied to graphs, C is interpreted as meaning that H;
is a subgraph of Hs.

The operation G; x Gy generates the Cartesian product of G; and Gs.
Set of elements a, b, etc.

Edge joining vertices v; and v;.

Arc with source vertex v; and target vertex v;.

Induced subgraph within the graph G for a set S of either edges or of vertices.
The subscript may be omitted if the graph G is clear from the context.

The relation L7 < Lo, defined between two decision problems, states that the
decision problem L; is polynomially transformable to the decision problem Ls.
In other words, L is no harder to solve than L.

Indeterminate used to distinguish edge crossings in crossing chains.
Bisection width of a graph G.

Maximum edge congestion of an edge in a graph—to—graph embedding 1.
Maximum vertex congestion of a vertex in a graph—to—graph embedding .
Edge congestion of the edge €’ in a graph—to—graph embedding .

Vertex congestion of the vertex v’ in a graph—to—graph embedding .
Cycle of length n.

Generic directed graph.

Maximum degree of any vertex of a graph G.

Degree of a vertex v € V(G) in a graph G.

Minimum degree of any vertex in a graph G.

Edge with label .

Edge set of a graph G.

Set of edges incident to the vertex v.

Girth of a graph G.

Graphs are identified by capital letters typeset in calligraphy starting with G.
Complement of the graph G.
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GF(n) Galois field of order n.

K Complete graph on n vertices.

Km.n Complete bipartite graph with partite sets of cardinalities m and n.

A(ij, k0) Parameter that is congruent to the parity of the number of crossings between
{vi,v;} and {vg,ve} — used in Tutte’s theory.

N Set of natural numbers {1,2,3,...}

No Set of natural numbers including 0, i.e., NUO0

Na Non-orientable compact 2-manifold of genus n.

NP Class of decision problems for which solutions may be verified in polynomial
time, given additional information in the form of a certificate.

v(G) Crossing number of a graph G.

u(i)(g) Independent—odd crossing number of a graph G.

v9(G) Odd crossing number of a graph G.

vP)(G) Pair crossing number of a graph G.

vn(G) n—page crossing number of a graph G.

ur(LB)(g) n—planar crossing number of a graph G.

vg(G) Number of crossings in a drawing ¢ of a graph G.

O(f(x)) | Asymptotic (upper—bound) complexity behaviour of order f(z).

P Class of decision problems that may be solved in polynomial time.

P Path of length n.

10} Isomorphism, or drawing of a graph, depending on the context in which it is
used.

o(e) Drawing of the interior of the edge e.

»(9) Drawing of a graph G.

P Graph—to—graph embedding.

»(G) Single—edge graph—to—graph embedding of a graph G into another graph.

Y(e) Mapping of an edge to a path in another graph in a graph—to—graph embedding.

»(G) Graph—-to—graph embedding from a graph G to into another graph.

»(v) Mapping of a vertex to a vertex in another graph in a graph—to—graph embed-
ding.

Q4 Hypercube of dimension d.

R Region in a drawing of a graph.

R Set of real numbers.

R+ The set of positive real numbers.

R™ Euclidean space of dimension n; R! = R.

Sn Orientable compact 2-manifold of genus n.

0(G) Thickness of a graph G.

Orientable genus of a graph G.
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Vi Vertex with label i.

V(9) Vertex set of a graph G.

V(n,q) Vector space of dimension n with vector components from Z,; ¢ is prime and
arithmetic is performed modulo q.

L, The set of residue classes of the integers modulo n.

7z The set Z,, ~ {0}.

x(¢) Crossing chain corresponding to a drawing ¢.

Q(f(z)) | Asymptotic lower-bound complexity behaviour of order f(x).
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Chapter 1

Introduction

Almost all questions that one can ask about crossing num-
bers remain unsolved.
— Paul Erdds (1913-1996)

1.1 The brick factory problem

In the 1977 volume of the Journal of Graph Theory [Tur77|, the experiences of the Hungar-
ian mathematician, Paul Turan, during the second world war in his facist home country were
described, in his words, as follows:

In July 1944 the danger of deportation was real in Budapest, and a reality outside
Budapest. We worked near Budapest, in a brick factory. There were some kilns where
the bricks were made and some open storage yards where the bricks were stored. All
the kilns were connected by rail with all the storage yards. The bricks were carried on
small wheeled trucks to the storage yards. All we had to do was to put the bricks on
the trucks at the kilns, push the trucks to the storage yard, and unload them there.
We had a reasonable piece rate for the trucks, and the work itself was not difficult;
the trouble was only at the crossings. The trucks generally jumped the rails there,
and the bricks fell out of them; in short, this caused a lot of trouble and loss of time
which was rather precious to all of us (for reasons not to be discussed here). We were
all sweating and cursing at such occasions, I too; but nolens—volens the idea occured
to me that this loss of time could have been minimized if the number of crossings
of the rails had been minimized. But what is the minimum number of crossings? I
realized after several days that the actual solution could have been improved, but
the exact solution of the general problem with m kilns and n storage yards seemed
to be very difficult and again I postponed my study of it to times when my fears for
my family would end. (But the problem occurred to me again not earlier than 1952,
at my first visit to Poland where I met Zarankiewicz. I mentioned to him my “brick
factory” problem ...). This problem has ...become a notoriously difficult unsolved
problem.

Turan really described a graph theoretic problem, where the kilns and storage yards are vertices
in a graph, and where the rails are its edges. The minimum number of crossings that he referred to

1
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YARD YARD YARD

Figure 1.1: A layout for the brick factory problem

has become known as the crossing number of a graph (or more precisely in the view of topological
variations of the problem, the plane crossing number of a graph).

An example of two different layouts for a simple brick factory with three kilns and three storage
yards may be seen in Figure 1.1. In part (a), there are a total of 9 crossings, whereas the layout
in part (b) displays only a single crossing. This latter layout also achieves the crossing number
for the graph.

The theory of the crossing number of a graph has proven to be useful for far more than brick fac-
tory design. Probably its most important application to date has been in the design of electronic
circuits (|Lei83, SV94, BL84, Lei84, Cim98, Cim96]). The theory of more restricted versions of
the crossing number problem for graphs, has also proved useful in methods for reordering sparse
matrices' [CCDG82] and the implementation of parallel sorting algorithms [Tar72).

1.2 A short history of the crossing number problem

Most of the initial research on the crossing number problem, concentrated on finding analytical
bounds (and preferably exact values) for crossing numbers of specific classes of graphs. See, for
example, the survey by Guy and Erdés [EG73|. Prior to the 1980s the algorithmic aspect of the
problem was somewhat neglected; Nicholson [Nic68] was probably the first to develop a heuristic
algorithm for the problem in 1968.

In 1983, Garey and Johnson |[GJ83| proved that the problem of determining whether the crossing
number of a bipartite graph is smaller than or equal to a given k, is NP—complete. From the
increasing body of work dedicated to the crossing number problem, it could hardly be said that
this served to discourage research in the field.

The academic community that concerns itself with the design of electronic processors (VLSI
design), developed a framework for approximating upper bounds on the crossing numbers of
graphs with fixed maximum degrees (this is because electronic circuits are typically modelled
by graphs where the maximum vertex degree is four). This theory plays an important role in
some of the current best approximation algorithms for bounding the crossing number of a general
graph. Leighton’s work [Lei83] is seminal in this regard.

It seems that for a period of time, researchers who were involved in pure graph theory and those
who were involved in VLSI design, were unaware of each other’s efforts (or at least, the former
was ignorant of the work done by the latter). For example, in [SSV95], Shahrokhi, Székely,

Tt is an important problem to find means of reducing the total number of operations needed to solve very
large matrix systems, since the O(n?) time required for full Gaussian elimination is prohibitive for such systems.
Reordering rows and columns in sparse matrices often makes it possible to reduce the amount of required work
significantly.
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Sykora and Vrfo state? that “a recently published paper in graph theory [Mad91] announced
the lower bound of (2(2’1”0'21510g2 k) for the crossing number of the k-dimensional cube, where
the lower bound of Q(4%) is easily achievable by standard VLSI techniques [Lei83]”. Largely
owing to work done by these four researchers, this situation has changed, and a number of
recent papers have gone some way to adapting VLSI techniques for computing upper bounds
to the crossing numbers of arbitrary graphs, and for graph layouts on different surfaces — see
[SSV95, Szé04, SSSV96a, SSSVI4, SSSV9Ta, SV94] for but a few examples of original work and
surveys in this area.

In recent years, many ingenious combinatorial techniques have been developed to attack the
analytical side of the crossing number problem. Some problems that seemed intractable just a
few years ago, are all but solved now. An example of this is the crossing number of the toroidal
grid graph (normally denoted C,, x C,,) — the problem of proving that the upper bound value for
the crossing number of this graph class is in fact equal to its crossing number, has frustrated the
best of minds, and an entertaining survey [Mye98] was devoted to it: “The crossing number of
Cm %X Cy: a reluctant induction.” Yet, a recent paper by Glebsky and Salazar [SG04] proves that,
for a given m, this is true for all but a finite number of cases (for which it is still conjectured).
Similar impressive results have been established in recent years.

The crossing number problem remains one of the most difficult problems in graph theory to
date. But, as Paul Erdés noted, the problem shows its worth by fighting back, and the crossing
number problem has proven to be a worthy opponent, but an opponent that rewards those who
persevere.

1.3 Scope and objectives of this thesis

The scope of this thesis is in combinatorial approaches to the problem of approximation of the
plane crossing number of a graph. In particular, combinatorial frameworks for use in computer
algorithms are considered. The objectives for this thesis are:

1. to give precise definitions of the concepts of graph drawings, and of the crossing number,

2. to provide the reader with a thorough survey of the state of the art in crossing number
research as it stands in 2004, as well as a brief overview of other, related parameters that
have been defined for non—planar graphs,

3. to supply a concrete, computer implementation for the Garey—Johnson [GJ83] algorithm
for finding exact crossing number results,

4. to develop and implement a lower bound algorithm, based on the notion of graph embed-
ding,

5. to implement heuristic methods based on two—page book embeddings for obtaining upper
bounds to the plane crossing numbers of graphs,

6. to apply the implemented upper bound algorithms so as to compute bounds for small
complete multipartite graphs, and to catalog the results in the thesis.

2(Citations updated to reflect citations for this thesis
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1.4 Thesis overview

Apart from this introductory chapter, this thesis comprises a further 7 chapters. A brief overview
of some basic concepts from graph theory and complexity theory are given in Chapter 2. As part
of this graph theoretical framework, the theory of planarity is also described in this chapter.

Chapter 3 is devoted to giving precise definitions of the various terms related to the graph crossing
number problem. There are many types of crossing numbers in the literature, and only those
that are considered in this thesis are given a rigorous treatment. The other types of crossing
numbers are mentioned at the end of the chapter, and a brief bibliography is given for these
related problems. Due to a lack of precise and widely accepted terminology in some of these
areas, some new terminology was adopted for this thesis, and hence it is recommended that the
reader at least peruse this chapter.

The existing literature for problems related to the graph crossing number problem is surveyed in
Chapter 4. The main focus of the chapter is on the general problem of minimizing the number of
crossings of edges when graphs are drawn in the plane (R?). Some related problems are mentioned
in passing, although it would have taken the chapter too far afield if the myriad specializations
of the problem had been considered. A bibliography of results for some more specialized variants
of the problem may be found at the end of this chapter.

Chapters 5 and 6 detail novel contributions of this thesis. Chapter 5 deals with theory related
to the exact computation of the crossing number of a graph, and on means of pruning the total
number of computations in such an exact algorithm. Chapter 6 is concerned with heuristic
algorithms for approximating the crossing number of a graph. A lower bound algorithm is given,
followed by several variants of upper bound algorithms.

Results from the computational trials of algorithms implemented from Chapter 6 are deliberated
upon in Chapter 7. Convergence properties of the algorithms used are also considered.

Finally, Chapter 8 concludes the thesis with a summary of contributions of this thesis, and with
some open questions emanating from the work contained in this thesis.



Chapter 2

Prerequisites

— The graphs K5 and K33

The purpose of this chapter is to introduce those basic notions from graph theory (§ 2.1), topology
(§ 2.2), abstract algebra (§ 2.3) and complexity theory (§ 2.4), that will be required in later
chapters of this thesis.

2.1 Basic graph theoretic concepts

An undirected graph, or simply, a graph G = (V, E) is a finite, nonempty set V(G), together with
a (possibly empty) set F(G) of unordered two—element subsets of V(G). The elements of V are
called wvertices, while those of E are called edges. The number of vertices in a graph G is called
the order of G, denoted by |V (G)|, while the number of edges in G is called the size of G, denoted
by |E(G)|. If the unordered pair e = {u, v} is an edge of the graph G, it is said that the vertices u
and v are adjacent in G and that the edge e joins u and v in G. The edge e is said to be incident
with the vertices v and v. The vertex u is also said to be a neighbour of v and wvice versa.

A graphical representation of an order 7 graph G; of size 8 is shown in Figure 2.1. The vertex
set is V(Gy) = {v1,v2, v3,v4, 05,06, v7} and the edge set is E(G1) = {{v1,vs}, {v1,v7}, {ve,v4},
{vs,vs}, {vs,ve}, {vs,v7}, {va,v5}, {vs,v6}}. The vertices v; and vg are adjacent in Gy, while
v, and vy are not.

U1

(%4 V2
U3

Vg

Vs V4

Figure 2.1: A graphical representation of the undirected graph G; of order 7 and size 8.
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2.1.1 Neighbourhoods

The open neighbourhood® of a vertex v in a graph G is defined as the set Ng(v) = {u : {u,v} €
E(G)}. For any vertex v in a graph G, the number of vertices adjacent to v, i.e., |[Ng(v)l, is
called the degree of v in G, denoted by degg v. If the degree of a vertex is 0, it is called an isolated
verter, while if the degree is 1, it is called an end-vertex. The minimum degree of vertices in
G is denoted by 6(G), while the maximum degree of the vertices is denoted by A(G). The edge
neighbourhood? of a vertex v in a graph G is the set Eg(v) = {e : e is incident to v in G}. When
the reference to the graph G is clear from the context, the subscripts are often omitted, and one
only writes N(v), degv and E(v).

Referring to the graph G; in Figure 2.1, the open neighbourhood of the vertex vs is Ng, (vs) =
{vs, v4,v6}, while its edge neighbourhood is Eg, (vs) = {{vs,vs},{v4,v5}, {vs,v6}}. The graph

has no isolated vertices, but vy is, in fact, an end—vertex. The minimum degree of G is therefore
0(G1) = 1, while the maximum degree is A(G;) = 3.

2.1.2 Graph complements, isomorphisms, subgraphs, cliques and minors

The complement G of a graph G is the graph for which V(G) = V(G) and {u,v} € E(G) if and
only if {u,v} ¢ E(G). A graph Gs is shown in Figure 2.2(a), while its complement Gs is the
graph shown in Figure 2.2(b).

U1 U1

Vs () Vs (%)

(a) Ga. (b) Go.

Figure 2.2: Nlustration of Go and its complement.

Two graphs G and H are called isomorphic, denoted by G = H, if there exists a one—to—one
mapping ¢ : V(G) — V(H) such that {u,v} € E(G) if and only if {¢(u),p(v)} € E(H). The
function ¢ is called an isomorphism. If ¢ maps G onto itself, it is called an automorphism. A
graph G is said to be vertez—transitive if for every pair u,v € V(G) there is an automorphism that
maps u to v. The graph G4 shown in Figure 2.3(b) is isomorphic to Gs, shown in Figure 2.3(a).

A graph H is called a subgraph of G if V(H) C V(G) and E(H) C E(G), and is called a spanning
subgraph of G if V(H) = V(G) and E(H) C E(G). For a non-empty vertex subset S C V(G)
of a graph G the so—called vertez induced subgraph of S in G, denoted by (S)g, is the subgraph
of G with vertex set V({(S)g) = S and edge set E((S)g) = {{u,v} € E(G) : u,v € S}. For a
set of edges T in G, the edge induced subgraph of T in G, denoted by (T)g, is the subgraph of

!There is the corresponding concept of a “closed neighbourhood” of v in G, defined as Ng[v] = Ng(v) U {v}.
However, this concept is not used in the thesis.
2This term is not widely used.
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U1 Uy

Us U2 Us U2

(2 U3 Uy us3

(a) Gs. (b) Ga4.

Figure 2.3: Nlustration of isomorphism between graphs. Here Gs = G4.

G with the vertex set V((T)g) = {v : v is incident to an edge in T'} and edge set E({(T)g) = T.
When the reference to the graph G is clear from the context, the subscript G is omitted. Also,
when it is clear from the context that an induced subgraph is either a vertex or an edge induced
subgraph, it will simply be called an induced subgraph.

A cligue C in a graph G, is a vertex induced subgraph of G with the property that each vertex
in C' is joined to every other vertex in C. The order of the largest clique in G, denoted w(G), is
known as the clique number of G.

U1 U2 V1 V2 U1 U2 U1 V2

LA, | L
Sl

Vs V4 Vs V4 Vs V4 Vs V4
(a) Gs. (b) A subgraph of Gs. (¢) A spanning sub- (d) An induced sub-
graph of Gs. graph ({v1, v2,v4,vs5})
Of 95.

Figure 2.4: Illustration of a subgraph, spanning subgraph and induced subgraph.

The graph shown in Figure 2.4(b) is an example of a subgraph of G5, shown in Figure 2.4(a), while
the graph in Figure 2.4(c) is a spanning subgraph of Gs. Lastly, the vertex induced subgraph
({v1,v2,v4,v5})g; is illustrated in Figure 2.4(d). This subgraph is a clique in G5 of order 4. It is,
however, not the largest clique in the graph — the G5 is itself a clique, and therefore w(Gs) = 6.
All three subgraphs in Figures 2.4(b)—(d) are edge induced subgraphs of their respective edge
sets.

A minor M of a graph G, is a graph G’ obtained from G by a number of edge contractions
and/or edge deletions in G. An edge contraction on an edge e € E(G) is an operation by which
the two incident vertices, v; and vj, of e = {v;,v;} are “joined” to form a single new vertex v,
so that if {v;,v;} € E(G), then {v},vx} € E(G’) and if {v;,v;} € E(G), then {v}, v/} € E(G) —
this introduces the possibility of parallel edges emanating from v,. The edge e is itself removed
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completely. An edge deletion is simply the removal of an edge from E(G).

Uy
el ) u)
us u9 us Uus
U4 us U4 us U4 us
(a) Ge. (b) A minor M of Gs. (c) A minor M’ of M,

and therefore of Gg.

Figure 2.5: Forming a minor from M by contracting the edge e;, and by deleting parallel edges.

An example of an edge contraction is shown Figures 2.5(a)-(c). The graph Gg, shown in Fig-
ure 2.5(a) has the edge labelled e; contracted to form the graph M shown in Figures 2.5(b).
The parallel edges are removed to give the minor M’ in Figure 2.5(c).

2.1.3 Connectedness

A walk in a graph G is an alternating sequence of vertices and edges
V0,€1,V1,€2,V2,...,Vi—1,€E;,V;i5...,Un_-1,€En,Un,

also called a vy — v, walk, such that e; = {v;—1,v;} for i = 1,2,...,n. The number of edges
in the walk defines its length, while the number of vertices defines its order. When referring to
a walk, the edges are often omitted. An example of a walk in the graph G5 in Figure 2.4(a) is
v1, V3, V5,01,04. A walk in which no vertex is repeated is called a path. A cycle is a walk of
length n > 3 in which the begin— and end-vertices, vg and v,, are the same, but in which no
other vertices repeat. The girth of a graph G, denoted ¢(G), is the length of the shortest cycle in
G. Considering the graph Gs in Figure 2.4(a), the walk vy, v3,v5 is a path of order 3 and length
2, while vy, v3,v5,v1 is a cycle of length 3.

For vertices u and v of a graph G, u is said to be connected to v if G contains a u — v path.
The graph G is called a connected graph if the vertices u and v are connected for any pair
u,v € V(G). A graph that is not connected is said to be disconnected. A subgraph H of G is
called a component of G if H is a maximally connected subgraph of G.

2.1.4 Special graphs

A graph solely consisting of a path of order n is so called and denoted by P,,. Similarly, a graph
consisting of a single cycle of length n is so called and denoted by C,,. Paths and cycles are called
odd [or even] if they have odd [or even]| lengths.

The Cartesian product of two graphs G and H, denoted by G x H, is the graph with vertex set
V(H) x V(G), two vertices (u1,us) and (v1,v2) being adjacent in V(G x H) if and only if either

up = v1 and {ug,v2} € E(H),
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N

(a) Cs and P-. (b) C3 X Pa.
Figure 2.6: Ilustration the Cartesian product of the graphs C3 and Ps.

or
ug = vg and {uy,v1} € E(G).

From the symmetry in the definition it follows that G x H = H x G. This concept is illustrated
in Figure 2.6(b) for the graphs C3 and Ps, which are shown individually in Figure 2.6(a). A
Cartesian product of paths is sometimes called a grid graph, whilst a Cartesian product of cycles
is also known as a toroidal grid graph.

A graph G is called r—regular if each vertex of G has degree r. A graph is referred to as regular if
it is 7—regular for some r € Ng. A complete graph of order p, denoted by Cp, is a graph in which
every distinct pair of vertices are adjacent. The complete graph K, is therefore (p — 1)-regular.
As an illustration of the concept, the complete graphs K5 and Kg are shown in Figure 2.7.

U1

U1 V2
Us V2
Ve U3
V4 V3 vs V4
(a) The complete graph Ks. (b) The complete graph K.

Figure 2.7: Illustration of the concept of a complete graph.

A graph G is called n—partite, n > 2, if the vertex set may be partitioned into n subsets
Vi, Va, ..., V,, such that no edge of G joins two vertices from the same subset. For n = 2,
G is called bipartite, otherwise it is called multipartite. If a vertex in a partition set V; of a
multipartite graph G is adjacent to every vertex in the other sets {V} : j # i} for any vertex in g,
then G is called complete n—partite. Such a graph G with |V;| = p;, i = 1,2,...,n, is denoted by
Kpi,po,...pn- The bipartite graph K;, = K, 1 is a popular graph, called an n—star. Illustrations
of multipartite and bipartite graphs are shown in Figure 2.8.

The following theorem, a proof of which may be found in [CO93], pp. 2627, relates bipartiteness
to the occurrence of cycles in a graph.

Theorem 2.1.1 A graph G is bipartite if and only if it has no odd cycles. |
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U1 V2 m V9 V2
Vs 1 V3
Vg U3
U5 Uy U3 U4 U5 Uy
(a) ]C272,2. (b) IC2,3. (C) ]C174.

Figure 2.8: Illustrations of multipartite and bipartite graphs.

2.1.5 Subdivision, planarity and thickness

A subdivision of a graph G is a graph H that is obtained by replacing the edges of G with paths.
The vertices in the path which are not end—vertices, are called subdivision vertices. Clearly, each
subdivision vertex has a degree of 2. The graph G, a drawing of which is shown in Figure 2.9(b),
is a subdivision of the graph K5, which is shown in Figure 2.9(a).

=) 5

(a) A drawing of s with one crossing. (b) A drawing of a subdivision Gz, of Ks.

Figure 2.9: Illustration of graph subdivision.

A graph G is said to be planar if it is possible to draw G in the plane (i.e., R?), so that no
curves representing edges of G in the drawing intersect or cross one another, and such that no
curves intersect the points representing the vertices of G. An intersection of a pair of edges is
called a crossing. A drawing of K5 with one crossing is shown in Figure 2.9(a). A drawing of a
planar graph G that achieves no edge crossings is called a plane drawing of G. The graph Ky is a
planar graph; a drawing of 4y containing one crossing is shown in Figure 2.10(a), whilst a plane
drawing of K4 is shown in Figure 2.10(b).

The disjoint mazimally connected subsets of the plane that are not part of the vertex or edge
drawings (i.e., the white areas in a drawing) in a plane drawing of a (planar) graph, are called
the regions of the drawing. There are four regions in the plane drawing of Iy, which are labelled
Ry, Ro, R3 and Ry in Figure 2.10(c).

A graph G is said to be outerplanar if it is possible to construct a plane drawing of G in which
all vertices of G are present in a single region of the drawing. Such a drawing is said to be an
outerplane drawing of G. This property is far more restrictive than the property of planarity,
and many graphs that are planar fail to be outerplanar. It may be seen from the drawing in
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Ry

/R

(a) A drawing of K4 with a (b) A drawing of 4 with no (c) A plane drawing of K4
single crossing. crossings. has four regions.

Figure 2.10: A planar graph permits plane drawings (drawings with no crossings), although such
a graph may still be drawn with crossings.

>
Ry
Ry
Ry
J
(a) K4 is not outerpla- (b) A drawing of Ks—{e} (c) An outerplane drawing
nar. with no crossings. of K4 — {e} has three re-

gions.

Figure 2.11: An outerplanar graph permits the construction of a plane drawing in which all
vertices are present in the same region.

Figure 2.11(a) that K4 does not permit an outerplane drawing and is therefore not outerplanar.
The removal of a single edge from K4 renders an outerplanar graph K4 — {e}, which is shown in
Figure 2.11(b). The regions for this drawing are shown in Figure 2.11(c), from which it is clear
that all of the vertices are present in the region Rs.

Whilst working in the context of convex polyhedra (whose corresponding graphs are planar
graphs), Leonhard Euler realized that there is a fixed relation between the number of regions
in a drawing of a polyhedron, and the number of vertices and edges in the polyhedron — a
drawing of a polyhedron is equivalent to a plane drawing of its corresponding graph. Euler did
not provide a complete proof of the following theorem, since he tried to prove it geometrically,
which is far more difficult than in the context of graphs; a proof of this theorem may be found
in [CO93].

Theorem 2.1.2 In a plane drawing of a connected graph G with R regions, it holds that
|E(G)| —|V(G)] =R —2. (2.1)

A planar graph G is said to be fully triangulated if each of the regions in a plane drawing of G is
bounded by exactly three edges. The addition of an edge to a fully triangulated graph, renders
the resulting graph non—planar, hence the fact that a fully triangulated graph is also referred to
as a mazimally planar graph. The graph Gg shown in Figure 2.12, is a fully triangulated graph.

Euler’s formula (2.1) may be used to compute the number of edges present in a maximally planar
graph.

Theorem 2.1.3 If a graph G is maximally planar, then
[E(G)] = 3|V(9)| - 6. (2.2)
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Figure 2.12: Tllustration of a maximally planar graph Gs.

Proof: A maximally planar graph is fully triangulated, since if any region is bounded by four
or more edges, additional edges may be drawn within the the region to ensure full triangulation.
In a fully triangulated graph, every region is bounded by three edges. By summing the number
of edges bounding each region, each edge will be counted twice (since an edge has “two sides”
each of which must be in a different region). Therefore, there are exactly 3R/2 edges in a fully
triangulated graph. By using (2.1), it follows that

R=2[V(G)| -4 (2.3)

Replacement of the variable R in (2.1) by the right hand side of (2.3), renders the result (2.2).
|

It follows that a graph of order n which is not fully triangulated, must contain fewer edges than
a fully triangulated graph of order n.

Corollary 2.1.1 If a graph G is planar and |V(G)| > 3, then

[E(9)] < 3[V(9)] - 6. (2.4)

Proof: A graph which is not fully triangulated, may be rendered so by the addition of the
appropriate edges. Thus, it contains fewer edges than a fully triangulated result. |

(a-) Ks. (b) ]C373.

Figure 2.13: Two non—planar graphs.

The cornerstone of the theory of planarity is Kuratowski’s theorem. This theorem characterizes
all planar graphs in terms of the non—existence of subdivisions of K5 or K3 3, representations of
which may be seen in Figures 2.13(a) and (b) respectively.

Theorem 2.1.4 (Kuratowski [Kur30], 1930) A graph is planar if and only if it contains no
subgraph isomorphic to a subdivision of K5 or to K3 3.

Proof: The proof of the first part of the theorem, namely that a non—planar graph contains
a subdivision of either s or of K33, is tedious, and may be found in Appendix A. It is a
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simple matter to prove the second part of Theorem 2.1.4, namely that a graph is non—planar if
it contains a subdivision of either s, or of K3 3. |

In the proof of Theorem 2.1.4, it must be shown that both K5 and K3 3 are non—planar, and that
a subdivision of a non—planar graph is itself non—planar.

Theorem 2.1.5 The graphs K5 and K33 are non—planar.

Proof: s has 5 vertices and 10 edges. Using (2.4), one obtains |E(K5)| = 10 > 9 = 3|V (K5)| —
6. By the contra—positive of Corollary 2.1.1, K5 is therefore non—planar.

Now, suppose that a plane drawing of K33 exists. In such a drawing, every region must be
bounded by 4 or 6 edges (because, according to Theorem 2.1.1, a bipartite graph contains no
cycles of odd length). By summing the number of edges over all R regions, one obtains 4R <
2|E(Ks,3)| (since, each edge is counted in two regions). Letting R = (1/2)|E(K33)| in (2.1), the
inequality |E(K33)| < 2|V (K33)| — 4 results. Finally, K33 has 6 vertices, but this implies, from
the above equation, that |E(K33)| < 8, which contradicts the fact that |E(K33)| = 9. |

If an edge that is crossed by another edge is subdivided in a graph, then it seems obvious that
some of the sub—edges in the subdivided edge will be crossed. This is proved in the following
proposition.

Proposition 2.1.1 A subdivision H of a non—planar graph G, is non—planar.

Proof: Let H be a subdivision of a graph G and suppose that H is planar. In a drawing of H,
let every vertex of degree two, as well its incident edges, be replaced by a single edge, joining its
adjacent vertices. This renders a drawing of G without any crossings, which is a contradition. H

Kuratowski’s theorem does not directly lead to an efficient algorithm for ascertaining the pla-
narity of a graph. The most efficient algorithm for planarity testing is due to Hopcroft and
Tarjan [HT74]. This remarkable algorithm runs in O(|V(G)|) time. The basic ideas used in the
implementation of the algorithm rest on the concepts used in the proof of Kuratowski’s theorem.

The thickness of a graph G, denoted 0(G), is the smallest number of subsets into which E(G) may
be partitioned, such that each of the subgraphs on the vertex set V(G) and a subset of edges is
planar. Therefore, it follows that 0(G) = 1, if G is planar.

Vg U5 V2 V4

U1 Vg Us V6

(%) U3 U1 V3

(a) Go. (b) Gio.
Figure 2.14: A decomposition of Kg into two planar graphs, Gy and Gio.

The graph g is non—planar, since it contains the graph K5 as a subgraph, which has been shown
to be non—planar in Theorem 2.1.5, and therefore 6(Ks) > 1. A decomposition of K¢ into two
planar subgraphs Gg and G is shown in Figure 2.14, and this suffices to prove that 0(Ks) = 2.
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2.1.6 Directed graphs

An arc is an edge of a graph that is directed towards one of the vertices with which it is incident.
A directed graph, or simply, a digraph D, is a nonempty set of vertices V(D) and a (possibly
empty) set F(D) of ordered pairs from V (D), which are the arcs of D. The arcs (u,v) and (v, u)
in a digraph are different, and each is said to be the opposite of the other. The underlying graph
G of a digraph D, is the graph that is obtained if all arcs are replaced by edges. A directed graph
may not contain both the arcs (u,v) and (v,u). If (u,v) is an arc of a digraph D, then u is said
to be adjacent to v, and v is said to be adjacent from u. The vertex u is said to be the source
of (u,v), and the vertex v is said to be its target.

A variation of the concept of a directed graph, is that of a bidirected graph, whose definition is
the same as that of a directed graph, except for the fact that where a pair of vertices in a directed
graph may only be joined by a single arc, a pair of vertices « and v in a bidirected graph must
be joined either by the pair of opposite facing arcs (u,v) and (v,u) or by no arcs at all. The
underlying graph of a bidirected graph is obtained by replacing each pair of arcs (u,v) and (v, u)
by a single edge {u,v}.

A graphical representation of an order 7 digraph, Gi; of size 8 is shown in Figure 2.15(a), whilst a
graphical representation of an order 7 bidirected graph, Gy of size 16 is shown in Figure 2.15(b).
The vertex set for the digraph is V(Gi1) = {v1, ve,vs,v4,v5,v6,v7} and the vertex set for the
bidirected graph is V(Gi2) = {v1,v2,vs3,v4,v5,06,v7}, whilst the edge set for the digraph is
E(G11) = {(v1,v6), (v2,v4), (v3,05), (v3,06)y (v3,07), (V5,v4), (v5,06), (v7,v1)} and the edge set
for the bidirected graph is E(Gi2) = {(v1,vs), (vg,v1), (v2,v4), (v4,v2), (vs,v5), (v5,v3), (V3,V6),
(ve,v3), (v3,v7), (v7,v3), (vs,v4), (v4,v5), (Vs,06), (V6,V5), (v7,v1), (v1,v7)}. In the digraph Gii,
the vertex vy is adjacent to the vertex vg and wvg is adjacent from vy in Gi;. In the bidirected
graph Gpo, the vertex v is both adjacent to and adjacent from the vertex vg and likewise for vg.
The graph G; shown in Figure 2.1 is the underlying graph of both Gi; and Gis.

U1 U1
V7 / Vg vy Vg
U3 U3
V6 o\’—/ V6
Vs .’U4 (5 (2
(a) G11. (b) Gia.

Figure 2.15: A graphical representation of the directed graph Gii, of order 7, and size 8 and of
a bidirected graph G2, of order 7 and size 16.

Most of the definitions in this chapter may be amended easily to apply to directed graphs and
bidirected graphs; in general, the definitions follow almost immediately. Since these concepts are
not required for the way in which directed graphs are used in this thesis, the interested reader
may find the appropriate definitions in [Har69, CO93|.

The simplest connected graph structure is known as a tree, which is an acyclic connected graph.
A leaf of a tree T' is an end-vertex of 7. A tree of order 10 is shown in Figure 2.16(a), in which
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V6 Vs (%] n
V10
V2
vg v
Vg 8 7
V4 U3
(a) A tree of order 10 and size 9, with 5 leaves. (b) A tree with directed edges of order 15 and

size 14, with 8 leaves.

Figure 2.16: Illustrations of trees, with leaves indicated as white vertices.

the 5 leaves are indicated as white vertices. At a conceptual level, trees serve as a useful model
for reasoning about decision and recursive sub—partitioning problems. In this case, the edges
are considered as directed (i.e., an edge is directed towards one of its incident vertices). In a
decision problem, a vertex corresponds to a configuration resulting from prior choices. All choices
that may be made given the current configuration, are modelled as edges directed towards new
configurations (i.e., vertices), and away from the current vertex. There is normally one vertex
that represents the initial configuration, before any choices have been made. In a partitioning
problem, where a set is partitioned into x subsets, and where each of the = subsets is, in turn,
partitioned into a number of subsets, a vertex v represents a subset, and the edges directed away
from v are directed towards vertices which are subsets of a partition of v (or technically, of the
subset represented by v). A tree of order 15, containing directed edges, is shown in Figure 2.16(b).
The vertex r represents an initial configuration of a decision problem represented by the binary
tree.

2.2 Basic concepts in topology

The crossing number problem has been studied in the context of other types of “surfaces” (more
specifically, other types of topological spaces) apart from the plane. The so—called orientable and
non-orientable compact 2-manifolds (or simply compact 2-manifolds as they are often called),
which are well understood concepts from the field of topology, have been a natural and popular
choice. This is especially true because the plane as a surface for graph drawing is equivalent to
the sphere, which is an orientable 2-manifold.

This equivalence of the plane and sphere in this regard may be seen from a projection shown in
Figure 2.17(a), known as the stereographic projection. Let N and S be two opposing points on
a sphere ¥, such that S is the only point on X that intersects the plane II. Let ¢ be a ray from
N to a vertex v of a graph drawn in II. There is only one point on ¥ which intersects ¢, and this
is the projected position of v on Y. This projection is performed for every vertex, and the same
process is repeated for each edge, where the edges are “traced” out on ¥, along their paths in II.

The properties that render a topological space a compact 2-manifold are not discussed here; the
interested reader is referred to Lee’s [Lee00] introduction on the subject. For the purposes of this
thesis, it suffices to know that such spaces are locally 2-dimensional (they are therefore plane—
like at a local level) and due to a theorem by Brahana [Bra21]|, these spaces may be constructed
by attaching a number either of handles, or a number of crosscaps to the sphere.
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2

Figure 2.17: An illustration of a plane to sphere stereographic projection.

(a) A surface with a crosscap repre- (b) The sphere and cylinder (c) The surface formed from the
sented by a black disc. are both orientable. sphere and cylinder is orientable.

Figure 2.18: Methods of generating 2-manifolds.

Non-orientable surfaces: To obtain a non-—orientable surface, crosscaps are added to the
sphere. A crosscap may be created by removing the interior of a disc in the sphere and by
associating opposite ends on this disc, so that any line entering a point on the disc will leave a
diametrically opposed point on the disc. This is shown in Figure 2.18(a), with the black disc
representing the removed interior. The number of crosscaps that characterize a non—orientable
surface is called its genus, and the non—orientable surface of genus n is denoted N,,.

With this construction, the meaning of “non—orientability” may be qualified. The region R in
Figure 2.18(a) moves through the crosscap, and is an ideal candidate for illustration. A region in
a graph drawing is given an orientation when the edges are considered as being directed, so that
the target of an edge meets the source of the edge following it around the region. In a normal
plane drawing of a graph, this results in an orientation that is either clockwise, or anti—clockwise.
Contrast this with the orientation of the region R shown in Figure 2.18(a) — when it moves
through the crosscap, its orientation changes to the opposite direction. For this reason, it is said
to be non-orientable.

Orientable surfaces: From the previous definition of non—orientable surfaces, orientable sur-
faces are defined as those surfaces for which consistent orientations may be defined for each
region. To obtain an orientable surface, handles are added to the sphere. To add a handle, two
disjoint discs are chosen in the sphere, and their boundaries are oriented in the same direction
(Figure 2.18(b)). Next a (truncated) cylinder is taken, and its ends are oriented so that the
orientations of each of its two “lids” correspond to the orientations of the two respective discs in
the sphere. The “lids” of the cylinder with the borders of the discs in the sphere are matched
such that the orientations agree (Figure 2.18(c)). The result is a new orientable surface, which is
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homeomorphic (i.e. may be deformed) to the torus. This procedure may be repeated an arbitrary
number of times to obtain a sphere with n handles. Denote this surface as S,,. The number, n,
is referred to as the genus of the surface.

2.3 Basic concepts in abstract algebra

A group B= (W,®,1) is a set of elements W, called the group elements, a binary operation ©®,
called the group operator, and an identity element 1 € VW. The operator ©® is applied to two
group members, and one writes * ® y to denote the application of ® to the elements z,y € W.
The following four axioms characterize a group in terms of the properties of the operator ®, and
the identity element 1. For an element x € VW, one may also write x € B. For all x,y, z € B,

1. Associativity: (zQy)©z=20 (y© 2).
2. Closure: x ® y € B. The group is said to be closed under the operation ©.
3. Identity element: there is an identity element, 1 € B such that 1Oz =201 = z.

4. Existence of Inverses: for each element x € B, there is an inverse element in B, denoted
71, suchthat 02 =zt oz=1.

The group B is said to be finite, if W is finite, and conversely, it is said to be infinite, if W
is infinite. If the additional axiom of commutativity — ¢.e., for all z,y € B, it is true that
r @y =1y ®ax — is added, the resulting group is said to be an Abelian group.

An example group, denoted (Z!, x,1), has the set of group elements {1,2,...,n — 1}, integer
multiplication modulo n (where n is a prime number) as the group operator, and 1 as the identity
element. Associativity is guaranteed by the operation of multiplication, the group is closed under
multiplication, because operations are taken modulo 7, and all elements have inverses, which is
proven by noting that 2 x 4 =1 (mod 7),3x5=1 (mod 7) and 6 x 6 =1 (mod 7).

A subgroup S of a group B, contains a subset of the group elements of 3, and satisfies the group
axioms. It is therefore required to contain the identity element of B. The subgroup relation is
denoted S C B.

The group S; with the set of group elements {1,6} is a subgroup of (Z%, x, 1), and it may be
verified that it satisfies all the group axioms. Another subgroup of (Z%, x, 1), is the group So,
which has the group elements {1,2,4}. As opposed to this, a subgroup of (Z3, x, 1) cannot, for
example, be formed from the set {1,2,3}, since 2 x 2=4 ¢ {1,2,3} (mod 7).

For a subgroup S of a group B, and for an element z € B, define the set * ® S as the set
{r ®d:d e S}. Then z © S is said to be a left coset of S, or simply a coset. There is the
corresponding concept of a right coset S ® x, which is defined as the set {d ® z : d € S}.
This latter notion, is however, not used in this thesis. A coset of S; is, for example, the set
3 x 81 = {3,4}. As another example, consider the coset 5 x Sy = {5, 3,6} of Ss.

A field M = (W,0,@,1,0) is a set of elements W, called the field elements on which two binary
operations ® and @, called the field operators, are defined. The first field operator, ®, has the
element 1 as its identity element, whilst the second field operator, &, has the element 0 € W
as its identity element. For an element z € W, one may also write x € M. The following ten
axioms characterize a field in terms of the properties of its field operators and their corresponding
identity elements. For all x,y,z € M,
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1. Closure under ®: x ® y € M. The field is said to be closed under the operation ©.

2. Associativity of @: (z @ y) ®2z2=20 (y® 2).

3. Commutativity of ©®: z Oy =y © z.

4. Identity element for @: there is an identity element, 1 € M such that 1 ©x =2 ©® 1 = «.

5. Existence of inverses under @: for each element x € M ~\ {0}, there is an inverse element
in M, denoted 2!, such that r Oz ' =2 'Oz =1.

6. Closure under @: z ® y € M. The field is said to be closed under the operation &.

7. Associativity of ®: (z @ y)Bz=2® (y B 2).

8. Commutativity of ®: Dy =y D x.

9. Identity element for @: there is an identity element, 0 € M such that 0@ x =2 $ 0 = x.

10. Existence of inverses under @: for each element x € M, there is an inverse element in M,
denoted —z, such that * & (—z) = (—z) &z = 0.

11. Distributivity: 2© (y@2)=(z0y)® (z®z)and (z@y)©z= (20 2)® (y© 2).

If W is finite, then M is known as a Galois field and is denoted GF(|W|). It can be shown (see
|[Rot84|) that a Galois field must contain either a prime number of elements, or a prime power
number of elements.

To extend the group example above, consider the field GF(7) = (Z7, x, +, 1,0) with field elements
0,1,...,6, and multiplication and addition modulo n. It has already been shown that all the
positive elements in Z7 form a group under the operation x. It is shown similarly that the
elements in Z; form a group under the operation +. Distributivity is ensured by the normal
distributive semantics of multiplication over the sum of elements.

For a field M with operators @ and ®, and a set W of elements, if, for any u,v,w € W and for
any k, ¢ € M, the following axioms are satisfied, then WV constitutes a vector space over M, and
the elements from W are called wvectors, whilst the elements of M are called scalars.

1. Closure of W under ¢: If u and v are elements in W, then u® v € W.

2. Commutativity of VW under @: u®v =v & u

3. Associativity of W under &: (uédv)dw=ud (véw).

4. Existence of an identity element in W under &: There is an element 0 in W, called a zero
vector of W, such that 0 Pu=u® 0 =u for all u e W.

5. Existence of inverse elements in W under &: For each u € W, there is an element —u € W,
called a negative of u, such that u® (—u) = (—u) u=0.

6. Closure under scalar multiplication: If k is a scalar in M and u is an element of W, then
Ek@ueW.

7. Distributivity of vectors sums: k@ (u®v) = (k@u) ® (k ® v).

8. Distributivity of scalars sums: (k& /) @u=(k®@u)® ({Qu).
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9. Associativity of scalar multiplication: £ ® ({®@u) = (k ® {) ® u.

10. Scalar multiplication identity: 1 ® u = u.

A common type of vector space V over a field M, has component—based vectors, which have the
form [x1, 9, ..., 2z, | where x1, 9, ..., 2z, € M. Vector addition is defined as the component-wise
application of @ to a pair of component—based vectors — i.e., [21,22,...,Tn |D[Y1,Y2, -, Yn]| =
[21 @ y1,22 D Y2y ..., Ty D yn| — and scalar multiplication is defined as the application of ® to
each component with the given scalar — i.e., k® [x1,22,...,2n ] = [k Q@ x1, kR z2,..., kR xy ]
The dimension of such a component—based vector space is the number of components in its
vectors, which is n in this case. The component—based vector space of dimension n over the field
M is denoted M™. To verify that such spaces are indeed vector spaces, it may be verified that
the first five axioms are guaranteed by the properties of the field operator & (due to the fact
that it is applied in a component—wise fashion). Axiom 6 follows directly, because for a vector
[21,%2,...,2,] and a scalar k € M, k @ 21,k @ z9,..., f @ x, € M. Axiom 7 follows because

E® ([x1,22,..., 20| D [Y1,Y2,-- - yn]) = k(21D y1, 22D Y2, ., Tn DYn])
(k@ (21 B Y1), k@ (22 B y2),. ., kR (Tn ® yn)]
= [k@z1)®(k@y1),...,(kQ@2n) ® (k@ yn)]
= (k®[x1,29,...,2,]) D (kR [y1,Y2,---,Yn])-

Conformance to axioms 8 and 9 is shown similarly. Finally axiom 10 follows due to the component—
wise application of ©.

The Euclidean space of dimension n, R", is a classic example of a component—based vector space
over R. An important class of component—based vector spaces are those spaces over the Galois
fields. The vector space of order n over the Galois field GF'(q) is denoted V(n, q).

Consider the space V(3,3), where vectors have three components, and each component is in the
set {0,1,2}. Examples of operations are [1 2 1]4-[01 2] = [1 0 0] (mod 3), 2[0 1 2] = [0 2 1] (mod 3)
and 0[0 1 2] =10 0 0] (mod 3).

2.4 Basic concepts in complexity theory

Algorithmic complexity is measured by a time complexity variable and a space complezity variable,
usually expressed in terms of the input size n of the algorithm in question. These variables
measure respectively the number of basic operations performed, and the memory required by the
algorithm. The order of magnitude of a function, denoted by means of the symbol O, is defined as
follows: Let f and g be two real-valued functions. Then f(n) = O(g(n)) if there exist a ¢ € RT
and an ng € N such that 0 < f(n) < cg(n) for all n > ng. Informally, the order of magnitude
is given by the term growing the fastest as the input size n of the algorithm increases. The
function ¢ is said to be an asymptotic upper bound for f. In the same way that the O notation
denotes an asymptotic upper bound for a function, the €2 function denotes an asymptotic lower
bound for a function. It is defined as follows: Let f and g be two real-valued functions. Then
f(n) = Q(g(n)) if there exist a ¢ € Rt and an ng € N such that 0 < cg(n) < f(n) for all n > ny.
The function g is said to be an asymptotic lower bound for f.

An algorithm for which the order of magnitude of its time complexity is of the form O(n*), for
some k € R in terms of its input size n, is called a polynomial time algorithm. If a problem
cannot (with current knowledge) be solved by a polynomial time algorithm, it is referred to
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as an intractable or hard problem, otherwise it is called a tractable problem. While the term
complexity usually refers to the time complexity of an algorithm, the importance of the space
complexity should not be disregarded in practical algorithm implementations.

Decision theory is the branch of complexity theory where the problems to be solved are inter-
preted as binary questions, that may be answered “yes” or “no.” Since any computational problem
may be reduced to a decision problem, it is possible, without loss of generality, to consider deci-
sion theory only in the theoretical analysis of complexity issues. The class P is defined as the set
of decision problems that can be solved by way of a polynomial time algorithm. The class NP
constitutes the set of decision problems of which a solution can be verified in polynomial time,
given some additional information. This additional information used to verify the correctness of
a solution is called a certificate. It is clear that P C NP. As an example, consider the following
decision problem.

CLIQUE NUMBER
INSTANCE: A graph G and k£ € N.
QUESTION: Does G have clique number w(G) > k?

The following proposition shows that the decision problem CLIQUE NUMBER belongs to the
class NP, by using a clique of G of order k, say (vi,vs,...,vx), as certificate.

Proposition 2.4.1 CLIQUE NUMBER € NP.

Proof: The following algorithm verifies whether the induced graph (v, ve,...,v;)g is a clique
in G, a graph of order n, say.

Input: The graph G and vertex subset S = {v1,v2,...,vx}.
Step 1: Test whether |E((S))| = $k(k — 1).
Step 2: If true, return TRUE. Otherwise, return FALSE.

Note that Step 1 may be completed in O(k?) time. It is therefore concluded that the algorithm
will produce an output in polynomial time. |

Let L; and Lo be two decision problems. The problem L, is polynomial time reducible to Lo,
denoted L; =< Lo, if there exists a mapping f from the instances of L; to the instances of Lo,
such that:

(a) f is computable (deterministically) in polynomial time, and

(b) I is a solution to an instance of L if and only if f(I) is a solution to an instance of Ls.

In other words, L.y = Lo means that an algorithm exists for solving L by performing a polynomial
time reduction of an instance of L; to an instance of Ly and by solving Lo, thereby solving L.
Informally, the algorithm that solves Ly may be seen as a “subroutine” of an algorithm that
solves Lq; Lo is therefore at least as difficult to solve as Li. There are two classes of problems
that may be defined in terms of polynomial time reductions, namely the class NP—hard and the
class NP—complete. The class NP—complete is considered first.

Definition 2.4.1 A decision problem L € NP—complete if
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(a) L € NP, and

(b) Ly < L for all L1 € NP. [

In the class NP, the NP—complete problems may be seen as computationally the most difficult,
since they are at least as difficult to solve as any other problem in NP. Although it is not
currently known whether the classes P and NP are distinct, the definitions imply that, if a
decision problem L exists for which L € NP—complete and L. € P, then P = NP. The well-
known satisfiability (SAT) problem serves as an example of an NP—complete problem. In order
to describe this problem, the following terminology is introduced.

A clause is a boolean expression involving one or more boolean variables (variables with values
0 or 1) conjoined by means of the boolean operation OR. This operation is denoted by V, as in
the example x1 V Tg V T3 V x4, where T denotes the complement of the boolean variable z. A
boolean expression is said to be in conjunctive normal form, called a cnf-formula, if it comprises
several clauses conjoined with the AND operation, denoted by A. Definitions of the two boolean
operations OR and AND, as well as the complement of a variable, are shown in Tables 2.1 and 2.2

0
1

1
0

Table 2.1: Definition of the boolean complement.

Table 2.2: Definition of the binary operators OR (V) and AND (A).

An example of a cnf-formula is x1 A (z2 V T3) A (T1 V x3). A boolean expression in conjunctive
normal form is called a 3cnf-formula if each clause consists of exactly 3 variables, for example

(1 VT Vas) A (T1 VT3 Vag) A(x1 Ve Vag) A (T3 VsV Tg).

A boolean expression is said to be satisfiable if an assignment of values for the boolean variables
exists for which the expression evaluates to 1. Two satisfiability problems are stated below, and
are known to be NP—complete. The reader is referred to [Coo71, Lev73], or [Sip97| pp. 254-260,

for proof of these results.

Satisfiability (SAT)

INSTANCE: A cnf-formula f(z1,...,2,), n € N.

QUESTION: Does an assignment of values to the boolean variables x1, ..., z, exist
for which f evaluates to 17
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3-Satisfiability (3SAT)

INSTANCE: A 3cnf-formula f(xy,...,zy,), n € N.

QUESTION: Does an assignment of values to the boolean variables x1, ..., z, exist
for which f evaluates to 17

The following result follows immediately from the definition of NP-completeness, stated in
Definition 2.4.1.

Proposition 2.4.2 If Ly € NP-complete and L1 < Lo, with Lo € NP, then Lo € NP-complete.

Proof: Due to the fact that L, is NP—complete, L' < L1, for all L’ € NP. The reduction
L' < L1 < Ly, occurs in polynomial time, because its algorithmic complexity is the sum of the
complexities of the reductions between L’ < L; and between L; < Lo. Therefore, according to
the definition of NP-completeness, Lo is NP—-complete. |

The problem CLIQUE NUMBER will be used as example, to illustrate how a decision problem
may be proved to be NP—complete, by mapping an instance of SAT (a known NP-complete
problem) in polynomial time to the decision problem in question.

Let ¢ be the cnf-formula

1 1 1 2 2 2 k k k
(b:(xl\/xQ\/---prl)A(m1Vx2v---pr2)/\---/\(mlvguzv---vg:pk),

consisting of k clauses. The mapping f from ¢ to a graph f(¢) is defined as follows. The
graph f(¢) is a multipartite graph with k partite sets of cardinalities pi, po, ..., p respectively.
The vertices of the partite set of cardinality p; are labelled x%, 2%, . .. ,xli,i. The edge set of the
graph f(¢) is the same as that of the corresponding complete multipartite graph, except for
the edges between contradictory labels, ¢.e., labels of which the representative variables in ¢ are
complements of each other. For example, if p = (x Vy) AT A (T V 2V z), the mapping f would

result in the graph f(¢) shown in Figure 2.19.

5]

<

T Z

Figure 2.19: The graph f(¢) attained from the mapping f, with ¢ = (z Vy) AT A (TV 2V z).

The following lemma shows that the mapping f is sufficient to solve an instance of SAT as an
instance of CLIQUE NUMBER. The proof is similar to that in [Sip97], pp. 251-253.

Lemma 2.4.1 Let ¢ be a cnf-formula with k clauses and let f be the mapping defined above.
Then the graph f(¢) contains a k—clique (i.e., w(G) > k) if and only if ¢ is satisfiable.

Proof: Suppose ¢ has a satisfying assignment of boolean variables for f. In that satisfying
assignment, at least one variable in each clause is assigned the value 1. In each clause of ¢, select
a variable with an assignment of 1 and consider the vertices of G corresponding to these variables
under the mapping f. The number of vertices selected is k, since ¢ consists of k clauses. Each
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vertex—label is in a different clause and no two of these are complements of each other, since
all have an assignment of 1. Therefore every pair of these selected vertices are adjacent. This
selection forms a clique in G of order k and hence w(G) > k.

Suppose w(G) > k. Then G contains a clique of order k. Consider the variables in ¢ corresponding
to the vertices of such a clique. It follows that no two of these variables are in the same clause
and no two are complements of each other, since otherwise the corresponding vertices would not
be adjacent in G. Therefore each clause contains exactly one of the selected variables. Consider
an assignment to the boolean variables in ¢ where every variable corresponding to the clique-
vertices are assigned the value 1, and the others 0. Such an assignment is always possible, since
none of the clique—variables are contradictory, and f evaluates to 1 for such an assignment. It
follows that ¢ is satisfiable. |

The following theorem may now be used to show that the decision problem CLIQUE NUMBER
is NP—-complete.

Theorem 2.4.1 SAT < CLIQUE NUMBER

Proof: A polynomial time algorithm outline is presented to solve SAT for cnf-formulas with k
clauses, k € N, which employs CLIQUE NUMBER as a subroutine.

Input: A cnf-formula, ¢, with k clauses.

Step 1: Determine the corresponding multipartite graph f(¢) with k partite sets,
where f is as defined in the above discussion.
Step 2: If f(¢) contains a k-clique, return TRUE. Otherwise, return FALSE.

It is known that SAT € NP-complete [Sip97]. From Theorem 2.4.1 it now also holds that
SAT < CLIQUE NUMBER, with CLIQUE NUMBER. € NP, according to Proposition 2.4.1.
Note that Step 1 in the proof of Theorem 2.4.1 may be completed in polynomial time, since a

cnf-formula ¢ with k clauses may be determined by searching the edges of the graph as each
vertex is considered. It follows from Proposition 2.4.2 that CLIQUE NUMBER € NP—complete.

The definition of the class NP—hard is more relaxed than the definition of the class NP—complete.
In fact, all NP—complete problems are also NP-hard.

Definition 2.4.2 A problem L is NP-hard if L1 < L for all L; € NP. [ |

Multidimensional optimization problems are often NP—-hard. In such problems, a function f
must be minimized over a vector of variables v. One can construct a decision problem by asking
whether a v exists such that f(v) < k, where k is given as an input. Of course, this does
not convert the optimization problem as a whole into a decision problem, since the problem of
determining the smallest k& for which a v exists cannot be phrased as a decision problem. If the
above-mentioned decision problem is NP—complete, a solution to the optimization problem will
provide a solution to any problem in NP.

This section has only skimmed the surface of complexity theory. The reader is referred to [Sip97],
pp- 223-270, for a more extensive discussion on the topic.
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2.5 Chapter summary

In this chapter, the basic concepts of graph theory, group theory and complexity theory, relevant
to this thesis, were introduced for the benefit of the reader. The appropriate graph theoretic
concepts were discussed in § 2.1.1-2.1.6 and the relevant notions in topology were described in
§ 2.2. Algebraic definitions were given in § 2.3, and the last section, § 2.4, familiarised the reader
with the most basic concepts in complexity theory.



Chapter 3

Crossing Numbers

...a good notation has a subtlety and suggestiveness which
at times make it seem almost like a live teacher.
— Bertrand Russell (1872-1970)

The study of the crossing number of a graph in the plane forms part of a larger field of study
known as topological graph theory. This field is primarily concerned with the representation
of graphs in spaces that are locally 2—dimensional. All discussions in this thesis will, however,
centre around the plane, R?, for simplicity; although the text has been written so that the reader
may substitute any locally 2-dimensional space for R2.

The basic operation of interest, is a formalization of the notion of a drawing of a graph, which is
a mapping of its vertices to points in R?, and of its edges to continuous curves in R?, so that (a)
images of edges intersect a finite number of times, and (b) they are nowhere tangential. This is
the topic of § 3.1.1 and § 3.1.2.

Certain commonly used notions, derived from the notion of a graph drawing, such as embeddings
(drawings of graphs without intersecting edges) and book drawings (drawings of graphs where
vertices fall on the “spine of a book,” and each edge is drawn on only a single page) are also
considered, as they are important in the modern theory of the crossing number of a graph. They
may be found in § 3.1.3.

It is in the context of these definitions of drawings, that precise definitions of the various kinds
of important crossing numbers of a graph are given.

3.1 Drawings and embeddings

The concept of a graph drawing must be made precise, if one is to investigate the crossing
number problem. It cannot be overstated just how important it is to be completely specific and
unambiguous about the definition of a graph drawing, since various researchers have apparently
considered a number of subtly different interpretations, due to a lack of consensus of what exactly
constitutes a “valid” graph drawing.

3.1.1 From vertices to points, and edges to curves

The simplest way to map a vertex into the plane, is to associate it with a single point in R2.
Associating a vertex with a set (such as a disc) in R? gives no advantage over the single point

25
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definition, and certainly places restrictions over the exterior bounds into which the vertex may
be embedded.

(a) (b)

Figure 3.1: Crossings in self—crossing edges can always be removed. The graph in (a) contains
an edge e that crosses itself. This self-crossing has been removed in (b).

If a curve representing an edge (of a graph) crosses itself (in a drawing of the graph) as does
the edge e in Figure 3.1(a), such a self-crossing may be removed without introducing additional
crossings into the drawing. This may be achieved by “cutting off” the loop that forms at the
crossing, as is shown in Figure 3.1(b).

Therefore, it makes sense to require that the (curve) image of an edge does not cross itself in
what will be considered valid graph drawings. Thus the notion of a simple curve.

Definition 3.1.1 A simple curve ¢ in R? s a continuous injection c : [0,1] — R2. In the
terminology of topology, it is homeomorphic to [0,1]. The set of all simple curves in R? is
denoted Lp2. |

3.1.2 Definitions of graph drawings

The notion of a graph drawing may be formalized as follows.

Definition 3.1.2 A drawing ¢p2(G) = (qb]gg)(g),gb]gg(g)) of a graph G = (V,E) in R? is an
injection qS]gQ) : V(G) — R? and a function ngQ) : E(G) — Lg2. For every e = {v;,vj} € E(G) and
gbgg(e) = ¢, it is either the case that c¢(0) = gb]g;) (vi) and c¢(1) = qb]g;) (vj), or that c(0) = qb]g;) (vj)
and ¢(1) = @gg (v;). Finally, the interior of the edge e is defined as ¢]§§2) (€) = ¢~ {c(0),e(1)}.
For each edge e € E(G) and for each verter v € V(G), it must hold* that qﬁ]%) (v) N ¢]§§2) (e) = 0.
A mazimally connected subset of R \ ¢g2(G) is called a region of p2(G). |

As a matter of convenience and at the cost of being somewhat imprecise, vertices and edges of
a graph G will be identified and referred to by their images under ¢g2(G), when no ambiguity
results. Furthermore, when it is necessary to qualify a drawing of a vertex or of an edge, the
superscripts (v) and (e) differentiating the drawing functions will be discarded when it is clear
what the type of the operand is.

The subscript R? used in the notation introduced above makes it explicit that drawings may
be defined for topological spaces that are locally 2-dimensional, other than R?. However, since

!This means that only interiors of edges may intersect one another. Because the topic of this thesis is about
edge intersections, it will be understood that a crossing between a pair of edges will, in fact, be a crossing between
the interiors of the edges. In the same vein the notation will be abused, and the tilde above the edge will be
omitted after this chapter.
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this thesis focuses on drawings in R?, the subscript R? will be omitted from the notation in the
remainder of the thesis, unless the resolution of ambiguity demands its presence. As a further
abuse of notation, a drawing ¢(G) will simply be denoted ¢, when it is clear from the context
that the drawing is of a graph G.

The definition of a drawing of a graph still leaves much to be desired. It allows for edges to
have pairwise arbitrarily many mutual intersections, and these intersections need not necessarily
lead to what might be considered true “crossings.” For this reason, a far narrower definition
than Definition 3.1.2 is required, in order for drawings to be useful. Székely [Sz&04] gives such a
definition for what is called a drawing in “normal form:”

Definition 3.1.3 A drawing ¢(G) of a graph G is said to be in normal form if, for any three
curves c1, co and c3 in R? corresponding to edges in E(G),

1. any pair of edges cross each other a finite number of times, so that the number of disjoint
mazimal subsets in c1 N ce (and also, ca N ey and c1 Ne3) is finite,

2. curves are nowhere tangential — if one side of a curve is seen as “left” and the other as
“right”, then if c1 and co share a point, ¢ is present both on the left and right of co; more
formally, if c1 and co share a point, then for any € > 0, the disc U with centre p and radius
€ 18 such that U ~ co has two connected components, both intersecting c1,

3. no three edges share a crossing point, or ¢c; Ncy Neg = 0. [ |

This definition is well justified, as it accommodates almost all the definitions of graph drawings
used by researchers in the field. For example, some researchers additionaly assume that either

i. adjacent edges do not cross or that,
ii. no pair of edges cross more than once,

ili. or both.

Garey and Johnson [GJ83] did not impose (i), although they assumed (ii). On the other hand,
Tutte [Tut70]| assumed (i), but he assumed that edges may cross multiple times (this is, in fact,
integral to the theory developed in [Tut70]; his theory is discussed in the next chapter).

The significance of graph drawings in normal form is that all graph drawings with a finite number
of edge intersections (i.e., all drawings for which the first property in Definition 3.1.3 holds) may
be converted to drawings in normal form without increasing the total number of pairwise edge
Crossings.

1. If ¢y N ¢y is not finite, then ¢; and ¢; must share subsections of curves. For each such
shared subsection, this violation can be avoided by letting ¢; run close alongside co where
they would have intersected and then having only a single point of intersection, as shown
in Figure 3.2. A shared curve subsection is present in part (a) of the figure, whilst this has
been removed in part (b).

2. Since the number of intersections of two curves ¢; and co must be finite, ¢; and co can
only be tangential by sharing single points. Since they then violate the requirement that
they should be present on each other’s left— and right—hand sides respectively, the inter-
sections can be removed by simply shifting ¢; away from co at the point of intersection, as
shown in Figure 3.3. The tangential intersections in Figure 3.3(a) have been removed in
Figure 3.3(b).
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(a) (b)

Figure 3.2: Edge intersections that involve subsections of edges may be removed by letting edges
run close to one another. The edges ¢; and co intersect one another at an infinite number of
points in (a), whilst they only intersect each other at one point in (b).

(a) (b)

Figure 3.3: Tangential edge intersections may be removed simply by moving curve sections at
the intersections far enough apart. The edges ¢; and co have a tangential intersection in (a).
This intersection has been removed in (b) by moving the edges away from one another.

3. If three or more curves have a mutual crossing, as is the case for the four curves ¢y, ¢, ¢3
and ¢4 in Figure 3.4(a), then the construction in Figure 3.4(b) can be applied to remove the
mutual crossing. Four crossings were chosen to show that this method is easy to generalise
— just as ¢4 is “looped” around the crossing of ¢; and cg, and c3 around ¢y, other edges
may be “looped” around cs.

(2) (b)

Figure 3.4: Removal of more than a single crossing point at the same point of R?. The edges ci,
2, c3 and ¢4 intersect at a common point in (a), whilst the edges ¢35 and ¢4 have been redrawn
in (b), so as to “loop around” the intersection of ¢; and c;.

A deficiency of the methods described above, is that it has not been shown how the drawings of
edges may be adjusted so that no crossings with other edges are inadvertently introduced. Some
basic definitions relating to sets in R? are reviewed here, before a formal technique for ensuring
that the above mentioned problem does not arise, is given.
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Open sets, closed sets and borders

The concept of a closed set in R? is a generalization of the concept of a closed interval in R. A
closed interval [a,b] in R is the set {z : a <2z <b, a,z,b € R}. An example of an closed set in
R? is a closed rectangle of the form [a,b] x [c,d], where a < ¢ and b < d, and where x denotes
the Cartesian product of the two sets.

Analogous to the way in which the concept of a closed set in R? generalizes the concept of a
closed interval in R, the concept of an open set in R? is a generalization of the concept of an
open interval in R. An open interval (a,b) in R is the set {x : a < < b, a,z,b € R}. An open
rectangle in R? has the form (a,b) x (c,d), where a < ¢ and b < d.

Note that the definitions above imply that it is possible to construct a set that is neither open
nor closed. Consider, for example, the set (a, b, which is defined as {z : a < x < b, a,z,b € R}.

For a closed set V € R?, let U be the largest open set contained in V — i.e., let U be such
that there does not exist a set U’ € R? satisfying U C U’ C V. The border of a closed set V,
denoted 0V, is the set V ~ U. More informally, the border of a closed set is the closed curve
surrounding its largest contained open set. The border of the closed rectangle above may be
obtained by the removal of its contained open rectangle (also described above) and consists of
the union of the four lines that are described by the sets {(z,b) : a <z < ¢}, {(z,d) : a <z < ¢},
{(a,y) : b <y <d}and {(c,y) : b <y < d}.

Adjusting the drawings of edges

Now, in a drawing ¢ of a graph, suppose that the images of n edges, ¢(e1),d(e2),...,d(en)
intersect one another. The types of intersections possibly include all three types of intersections
described above — shared subsections of edges, tangential intersections and multiple crossings
at a single point. Each of the drawings ¢(e;), i € {2,...,n} will be replaced by drawings ¢'(e;),
i € {2,...,n}, so that the final graph drawing ¢’ will be in normal form. Let z; ; = ¢(e;) Np(e;),
then the set C' = |J, <i<j<n Ti,j contains a number of disjoint subsets. Let ¢ be such a maximal
(connected) subset of C' and suppose, without loss of generality, that each of the n images of
edges intersects c. Note that ¢ may be a larger set than the intersection ¢(e1)Np(ea)N---Ne(ey)
of all n edge images.

Consider a collection Us,Us, ..., U, of n — 1 closed sets with the property that ¢ C Us; C
Us C --- C U, and with the property that U, does not intersect any images of edges besides
o(e1), p(e2),...,d(e,) and that it also does not intersect any of the other disjoint subsets in
C. This is always possible, because it is always possible to find a point p between any pair of
points in R?. Thus, the border of U, may be drawn in such a fashion as to fall between all
points comprising ¢ and all the forbidden surrounding points (of images of other edges and other
subsets in C'). Likewise, the border of U,,_; may be drawn so as to fall between ¢ and the border
of U, and so on. To render this method functional, it is also important to ensure that the border
of U; intersects ¢(e;) at only two points (i.e., where ¢(e;) “enters” U; and where it “leaves” U;;
¢(e;) should not run along the border of U;).

For each edge e; in the set of n edges, let L; = ¢(e;) ~ U; and P; = ¢(e;) N oU;. The set L; U P,
corresponds to the drawing ¢(e;) truncated at the two points in P; on the border of U;. There
are two paths, p1 and ps, in 0U; that may be used to join the points in P, — these are the
two maximal disjoint subsets in §U; \. P;. One path corresponds to a path followed clockwise
“around” U; and the other path followed anti—clockwise “around” U;. The path p;, i € {1,2},



- 30 - Chapter 3. Crossing Numbers

whose selection will cause the fewest number of crossings in the edge drawing L; U P; U p;, is
chosen, and ¢'(e;) is defined to be this drawing.

An example of the application of this method may be seen in Figure 3.5. In Figure 3.5(a),
the edges e1, es and e4 cross one another and they also share subsections of curves in their
intersections. The edge e3 intersects e, es and e4 in a tangential fashion. All of the invalid
intersections have been removed by the transformation, as may be seen in Figure 3.5(b).

(a) e1, e2 and es4 cross one another (b) All invalid intersections have been
and e3 is involved in tangential inter- removed.
sections.

Figure 3.5: An illustration of the general technique for the removal of invalid edge intersections.

The appeal of graph drawings in normal form with the additional requirements (i) and (ii) is
that, for all drawings achieving the minimum total number of crossings of their graphs, these
properties do, in fact, hold. Furthermore, from a computational point of view, they reduce the
number of operations required to find or approximate the crossing number of a graph (since it is
not necessary to keep track of multiple crossings between pairs of edges).

Thus, again a definition from Székely [Szé04]:

Definition 3.1.4 A drawing ¢ of a graph G is said to be in single—cross normal form (nice in
Székely’s terminology) if, in addition to being in normal form, it satisfies the following properties
for any two edges e, f € E(G):

1. [o(@)Noé(f)|=0ife, f € E(G) are adjacent — Adjacent edges never cross.

2. |oe)No(f)| <1 foralle, f € E(G) — Edges cross each other at most once. [ |

Multiple crossings between two non—adjacent edges may be removed using the following proce-
dure:

Suppose two edges e and f, that do not share an end vertex, cross each other ¢ times. View
each edge as the union of ¢ + 1 curves, where each curve is a section between two crossing
points, or between a vertex and a crossing point. Hence e = a1 UaoUagU---Ua;Uapq and f =
by UbgUbs - - -UbUby 1. By exchanging every second curve between e and f (leaving a;41 and b1
intact, since these curves are incident to different vertices) to obtain e = a3 UbsUasU- - -UbUaziq



3.1. Drawings and embeddings -31 -

and f =byUagUbsU---UagUbyy when ¢t is even and e = a3 Uby Uag U---Uay Uagyp and
f=b1UasUbsU---Ub Ubiy1 when tis odd, and by ensuring that tangential intersections are
removed, the total number of crossings between e and f will be reduced to 0 and 1 respectively.
This is true, because the configurations axUayy1 and by Ubg41 cause a crossing, which is removed
by swapping either a; and by, or axy1 and bgyq.

A visual representation of this method is shown in Figure 3.6. In part (a) of the figure there are
three crossings between e and f, and this is reduced to a single crossing in part (b).

If e and f share an end vertex, then all mutual crossings may be removed, since, unlike the
previous case, the curves a;11 and b,y may also be swapped if necessary, since they share an
end vertex.

(a) (b)

Figure 3.6: A procedure for reducing the number of mutual crossings between a pair of non—
adjacent edges. The edges e and f cross each other multiple times in (a). The reassignment
of subsections of the curves representing e and f results in a situation where e and f cross one
another at most once, as shown in (b).

This procedure may be applied repeatedly, until there are no more opportunities for improvement.
It is guaranteed to converge, since it always reduces the total number of crossings, and so the
end result will always be a drawing in single—cross normal form.

3.1.3 Important variants of drawings

Besides drawings in normal form and in single—cross normal form, which still permit a large
degree of freedom with respect to the placement of vertices and formation of edges, a number of
other, restricted types of drawings occur in the literature.

3.1.3.1 Book drawings

An n-page book is the union of n half-planes. The half—planes intersect exactly on their finite
boundaries, and this line is called the “spine” of the book. The half—planes are the “pages” of the
book.
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(a) (b)

Figure 3.7: A topological and a combinatorial book embedding.

There are two variants of book drawings — combinatorial and topological book drawings. In
both, the vertices of a graph are placed on the spine of a book. In a topological book drawing,
edges are allowed to cross over the spine (although they may not be tangential with the spine),
but in combinatorial book drawings, each edge must be drawn wholly on a single page of the
book. Both topological and combinatorial book drawings are in normal form. A three—page
topological book drawing of K¢ may be seen Figure 3.7(a), and a two—page combinatorial book
drawing of an arbitrary graph on six vertices may be seen in part (b) of the figure.

It follows that one—page topological and combinatorial book drawings are equivalent, and that
two—page topological drawings are merely drawings in normal form in R?. Furthermore, a topo-
logical book drawing of a graph G may be converted to a combinatorial book drawing of a
subdivision of G by inserting artificial vertices of degree two into edges where they cross over the
spine.

The appeal of combinatorial book drawings stems from the fact that books provide a simple com-
binatorial framework for computing the crossing number of a graph, but what is more compelling,
is that it is very easy to emumerate the different book drawings of a graph.

e / =
: f :
spine [l [ ¢~ . __ .\, __sSpine
v; Vi Uj (% 'j Vi

v; Vp

(a) (b)

(c) (d)

Figure 3.8: The possible configurations of two edges in a book.
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Computation of the crossing number for a given drawing

For a graph G, and a vertex v; € V(G), let i be the index of v;, and let the vertices be placed
in increasing order of their indices on the spine of a book. Any four vertices v;, v;, vy and v,
are said to be alternating on the spine if i < j < k < ¢, and they are said to be non-alternating
otherwise.

For two edges e = {v;,vi}, f = {vj,v} € E(G), where i < k, j < £ and i < j, the crossing
possibilities are shown in Figure 3.8. In parts (a) and (b) of the figure, the four vertices are
not alternating, and it is clear that the edges e and f can never cross. In part (c), although
they alternate, the edges e and f are on different pages, and consequently, they cannot cross.
However, if the vertices are alternating, and the edges e and f are on the same page, then a
crossing must occur, and this configuration is shown in part (d) of the figure. As a matter of
convenience, when the vertices of e alternate the vertices of f, the edges are themselves said to
be alternating.

Enumeration of different book drawings for a given graph
Clearly, the only factors that have an impact on whether two edges cross, are:

1. the relative orderings of their end vertices — alternating or not,

2. and the pages on which the edges are drawn.

Thus, by permuting the vertices on the spine, and by choosing different pages for edges, different
drawings may be generated easily.

Since no such benefit is provided by the topological variant, only combinatorial book drawings
will be considered in this thesis. Hence, n—page combinatorial book drawings will simply be
called n—page book drawings, as the distinction is no longer important. It should be noted
that combinatorial drawings are always in single—cross normal form, but that the topological
drawing arrived at by removing the artificial subdivision vertices (that were inserted to convert
a topological drawing to a combinatorial drawing) from a graph is not necessarily in single—cross
normal form, since each subdivision edge may be crossed, resulting in possibly more than a single
crossing on the unsubdivided edge.

Some interesting results regarding the approximation of the crossing number of a graph in R?,
in terms of one—page layouts have been found, and these results have also been improved for
two—page layouts (as will be discussed in the next chapter). Therefore, book drawings play an
important role in the approximation of the crossing number of a graph in R2.

3.1.3.2 Circular drawings

Circular drawings (the author’s terminology) are sometimes used in the literature, and it is
important to note that such drawings are equivalent to two—page book layouts. To illustrate
the equivalence, in the former, vertices are drawn around the length of the circumference of a
circle in the order given by the spine of a book layout, and edges are drawn either wholly inside
the circle, or wholly outside of it (the inside of the circle corresponds, say to the upper page,
and the outside to the lower page). It is shown in Figure 3.9 how this equivalence may be seen
by “folding” out a circular arrangement. A point worth observing is the irrelevance of the side
around which an edge on the outside of the circle is drawn (i.e. whether it passed around the left
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oy

(a) (b) (c) (d)

Figure 3.9: A book layout on two pages is equivalent to a circular layout.

or around the right of the circle) — this is true, because logically, two alternating edges must
cross, and two non—alternating edges need never cross. However, when this “folding” out occurs,
all edges which are drawn on the outside of the circle need to be drawn underneath the circle,
since by the “folding” operation, they become the edges on the lower page. Hence, the edge e in
Figure 3.9(a) is drawn around the other side of the circle in Figure 3.9(b), where it remains for
the rest of the transformation.

3.1.3.3 Embeddings

An embedding is simply a drawing of a graph in which no pair of edges contains any mutual
intersections. The simplest example is a plane drawing of a planar graph. The theory of em-
beddings is important, since it provides a vocabulary within which to describe certain types of
drawings, or qualities of drawings.

It is often convenient, for example, to refer to regions of a graph drawing, as defined in Definition
3.1.2, although strictly, a region is bounded only by vertices and edges, and not by intersections of
edges. However, since any drawing of a graph in normal form can be converted to an embedding
(of another graph), by inserting artificial vertices of degree four at intersections of edges, it is
convenient to loosen the definition of a region in this way.

Therefore, embeddings are not studied in their own right in this thesis, but they will be used for
convenience when necessary, without explicit mentioning.

3.1.3.4 Other types of drawings

Other types of restricted drawings are considered in the literature. These drawings lead to new
crossing number problems, which have produced large bodies of work. For this reason they are
mentioned, but not discussed at length, so as to remain within the scope of this thesis.

Rectilinear drawings require that all drawings of edges are straight lines. This gives the crossing
number problem a more combinatorial flavour, making it in some cases more manageable, and
may lead to easily implementable algorithms (be they exact or heuristic). Since all edges are
required to be straight, it is only possible for a pair of edges to have a single mutual crossing.
Therefore, rectilinear drawings are necessarily drawings in single—cross normal form.

Layered drawings, or more specifically, k—layered drawings are such that all vertices may be
placed on k distinct levels, where the vertices on level ¢ are only adjacent to vertices on layers
1—1 and 7+ 1. Edges may only be drawn as straight lines. Of course, a graph requires a certain
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structure to be drawn in a layered fashion, and it is called a k—layered graph if it permits a k—
layered drawing. According to this definition, bipartite graphs are 2-layered (2-layered drawings
are sometimes called bipartite drawings). An example of a 3-layered drawing, of a graph with
15 vertices, and 5 vertices on each layer, may be seen in Figure 3.10. However, there is no
requirement that the same number of vertices be located on each layer.

Figure 3.10: A 3-layered drawing of a graph on 15 vertices.

3.2 Defining the crossing number of a graph

The crossing number of a graph in R? is the smallest number of crossings with which the graph
can be drawn, when considering all drawings in single-cross normal form of the graph in R2.
Formally, this is defined as follows.

Definition 3.2.1 For any drawing ¢ in single—cross normal form, of a graph G, define an indi-
cator function

x(e,f,@z{ 1 i |6@NS(F)| =1 and e # f,

0 otherwise.
The crossing number of G, realized by the drawing ¢, is

@) =3 3 Xlef.9) (3.1)

e,f€E(G)
whilst the crossing number of G in R? is defined as
vr2(G) = min{ v4(G) L.
(9) = min {15(9)} =

The factor of 1/2 in (3.1) is due to the fact that the sum is taken over all ordered pairs of edges,
and therefore each is counted twice.

Again, since the focus in this thesis is on the crossing number of a graph in R?, the crossing
number of G in R?, vg2(G) will be denoted simply by v(G). This is consistent with the notation
in much of the literature on crossing numbers, although some authors use the notation cr(G)
instead of v(G).

3.2.1 Crossing numbers based on other types of drawings

Pach and Toth [PT98] have noted that the crossing number of a graph G is often just defined
as “the minimum number of edge crossings in any drawing of G in the plane” (|[BL84]). As Pach
and Téth emphasise, this may be interpreted in a number of ways. Clearly, it does not stipulate
whether adjacent edges may cross each other. Even worse, it may be interpreted to mean either:
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e The minimum number of pairs of edges that are involved in crossings at all, although the
number of times two edges cross each other is irrelevant, or

e The minimum number of pairs of edges that are involved in crossings, where a pair of edges
may cross each other at most once.

At first, these objections seem to be without merit, since the method discussed in § 3.1.2 may be
used to transform any drawing in normal form to a drawing that is in single—cross normal form.
However, this method does not guarantee that edges which did not cross before the operation, will
not cross afterwards (although, of course, edges that had no crossings to start with cannot have
any crossings after the operation). This implies that the number of crossings counted after the
operation might be more than when the number of pairwise edge crossings are counted without
multiplicity before the operation. Of course, this should only be a problem in cases where some
researchers have actually counted in this way. Székely [Szé04] demonstrated how such different
interpretations may have been made.

In [PT98|, Pach and Téth define two new crossing numbers?. The pairwise crossing number3,

u(P>(g), counts the total number of pairs of edges which cross each other in a graph drawing,
without considering the multiplicity of the crossings between a pair of edges. The odd crossing
number?, u(o)(g), is the total number of pairs of edges which cross each other an odd number of
times (again without consideration for the multiplicity of crossings between any two edges).

Definition 3.2.2 For a graph G,

1. define an indicator function for a pair of edges e, f € E(G) and a drawing ¢(G) of G in
normal form as

X(p)(e,f,gf)):{ L ifl¢@) neé(f)| >0 ande # f,

0 otherwise.

Then the pairwise crossing number of G, realized by ¢, is

1
v@ =5 > xPleto).
e,fEE(G)

whilst the pairwise crossing number of G is

— i (p)
VP (G) = fﬁlgr)l { y(f G}

2. define an indicator function for a pair of edges e, f € E(G) and a drawing ¢ of G in normal
form as

X0 r,9)={ 1 100NN i odd and e £ 1

0 otherwise.

*Recently, Pach and Téth [PT00] defined three rules which may be applied to any crossing number definition
S0 as to obtain a variant crossing number definition. The first rule, denoted by a subscript plus sign requires
that drawings be in single—cross normal form. The second rule, denoted by a subscript zero, stipulates that the
crossings of adjacent edges in normal drawings must be counted, and the third rule, denoted by a subscript minus
sign, stipulates that crossings between adjacent edges are not counted. It is a straightforward task to adapt the
crossing number definitions in this chapter for these rules.

3Pach & To6th [PT98] use the notation CR — PAIR(G) instead of vP)(G).

4Pach & To6th [PT98] use the notation CR — ODD(G) instead of v(?(G).
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Then the odd crossing number of G, realized by ¢, is

whilst the odd crossing number of G is

v°)(G) = min { uf;)(g) }.

?(9) |

Székely notes further in [Szé04| that another definition of the crossing number of a graph is
implicitly present in Tutte’s algebraic theory of graph crossing configurations [Tut70]. This
crossing number is called the Tutte crossing number, and is defined in the next section. Székely
defined a restricted version of the Tutte crossing number, called the independent—odd crossing
number®, v (G). This parameter is the same as the odd crossing number, except that adjacent
edges are assumed not to cross, and so only crossings between non-adjacent edges are counted.

The motivation for this definition arises from the fact that Tutte quite mysteriously claims
that “lhe is| taking the view that crossings of adjacent edges are trivial, and easily got rid of”
(p. 47, [Tut70]). Székely’s view that “[he interprets the| sentence as a philosophical view and
not a mathematical claim” (p. 341, [Szé04]) is also the preferred view in this thesis, since the
problem of removing crossings between adjacent edges, is just a special case of the removal of
crossings between non-adjacent edges.

Definition 3.2.3 For a graph G, define an indicator function for a pair of edges e, f € E(G)
and a drawing ¢ of G in normal form as

1 if |o(e)Né(f)| is odd and if e is not adjacent to f and e # f,
0 otherwise.

X e, f,0) = {
Then the independent—odd crossing number of G realized by ¢ is
W@ =5 > s
o) 2 X v d )
e,fEE(G)

whilst the independent—odd crossing number of G is

(@) S (@)
v (g)—g(lg;{% (9) }- -

These definitions imply the inequality chain

vi(G) <v9(G) <v(G) <u(G). (32)

It is very interesting, yet at the same time somewhat disquieting to note that a fair number
of lower bounds to v(G) are also lower bounds to v(?)(G). Is it possible that some researchers
might have had these alternative crossing number definitions in mind when carrying out their
work? Pach and To6th [PT97] seem to think so, and Székely (p. 339, [Szé04]) gave a plausible
explanation: “the conjectured optimal drawings are usually [in normal form| and [in single—cross
normal form|, and the lower bounds ... usually also apply for all kinds of crossing numbers.”

5Székely [Sz£04] introduces vV (G) as CR — IODD(G).
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It is, of course, quite possible that
v@(G) = v1(G) = vP(G) = v(9). (3.3)

Pach considers this one of the most exciting open problems in the area (p. 271 [Pac00]). This
claim is certainly strengthened by the fact that Pach and T6th [PT98] give a clever combinatorial
rephrasing of v(°) in the form of three linear programs®. The algorithm is discussed later in
this thesis. Székely [Szé04] also applies a combinatorial approach to the determination of 0N
which turns out, quite interestingly, to operate very similarly to the two—page layout algorithms
presented in this thesis — so much so, that an hybrid algorithm based on Székely’s ideas and
two—page layouts was developed for this thesis, and will be demonstrated later.

The following theorems present strides in the direction of proving equality for (3.2). The first
remarkable theorem, was proved independently by Tutte [Tut70] and Hanani (alias Chojnacki)
[CAH34.

Theorem 3.2.1 If a graph G may be drawn in R?, so that any two non-adjacent edges cross an
even number of times, then G is planar. |

Pach and To6th proved the following result in their article in which they introduced the concepts
of the pairwise crossing number and the odd crossing number [PT98].

Theorem 3.2.2 For any graph G, v(G) < 2[1(9(G)]%. |

Recently, Kolman and Matousek [KMO04] established a fairly tight relationship between the pair-
wise crossing number and the crossing number of a graph.

Theorem 3.2.3 For any graph G,

v(@) = O(llogn2(vP (@) + > [degg(v)]*)):

veV(G)
3.2.2 The book crossing number

Using the results from § 3.1.3.1, the definition of the crossing number of a graph in R? can
easily be amended for this special case, by replacing the indicator function y, with a more easily
computed combinatorial variant x(5).

It is implicit that drawings are generated by the method described in § 3.1.3.1, but it is important
to keep this in mind, as it makes the problem far more tractable: A book drawing ¢ of a graph
G simply contains information on the order of the vertices of G on the spine of a book, and on
which edges are drawn on which pages.

Definition 3.2.4 For any combinatorial book drawing ¢ of a graph G, define an indicator func-
tion
1 if e and f are alternating
X(B)(e, fi0) = and if e is on the same page as f in ¢,
0 otherwise.

SThis is contained within their proof of the NP—completeness of computing /().
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Then the n—page book crossing number of G, realized by the drawing ¢, is

ven(@) = Y xPle f,0), (3.4)

e,fEE(G)

whilst the n—page crossing number of G is defined as

1
vn(9) = 3 min{ven(G)}- -

It trivially follows that v(G) < 1»(G), and it is shown later in this thesis that there exists a
subdivision H of any graph G so that v(G) = va(H).

3.2.3 Variants of crossing number parameters

There are a number of interesting variations on the plane crossing number of a graph. The first
class of variations deals with crossing number results for restricted types of drawings. Of these
types, book drawings have already been described in § 3.1.3.1, and the book crossing number in
§ 3.2.2. Crossing number parameters have also been defined for rectilinear and layered drawings
(§ 3.1.3.4). The definitions of the crossing number parameters for these types of drawings are
almost the same as that of the plane crossing number defined in § 3.2; the only difference being
that the drawing types are restricted to the drawing type under consideration. Because of the
fact that both of these types of drawings require edges to be drawn as straight lines, they are
not subject to the possible confusion in interpreting the minimum number of crossings that was
noted by Pach and Téth [PT98] (§ 3.2.1).

The second class of variations generalizes the crossing number problem to surfaces other than
the plane. The most studied surfaces have been the orientable and non—orientable compact
2-manifolds, which are natural generalizations of the plane. These surfaces have been studied
in [Ru96, SSSV, SSSV96¢c, SSSV94|. Because these spaces are locally 2-dimensional, Defini-
tion 3.1.2 holds if R? is replaced by the space in question. Thus, the classical crossing number
definition (§ 3.2) holds for locally 2—-dimensional spaces. Due to the generality, the crossing
number definitions for these spaces are subject to Pach and Téth’s alternative interpretations of
the crossing number (§ 3.2.1).

The third and final class contains miscellaneous other variations. A graph G is said to be biplanar,
if it may be partitioned into two subgraphs G; and G, such that both G; and G- are planar.
This parameter is closely related to the graph thickness parameter, denoted 6(H) for a graph H.
It follows that 6(G) < 2 for a biplanar graph G. The biplanar crossing number is to the concept
of biplanarity as the crossing number is to planarity. The biplanar crossing number, denoted”

yéB)(g) for a graph G, is defined as

(B) :
12 = min 1V +v .
P(0) = _min_{1(0)) +v(G2)}
It has already been noted in § 3.2.2 that v(G) < 1»(G) for a graph G — that is, the crossing
number of a graph G is at most the total number of crossings counted in a two—page book layout
of G. Now, a four—page book layout of G is equivalent to two, separate two—page layouts of two

"Czabarka, Sykora, Székely and Vrto [CSSV04] use the notation cr2(G) to denote the biplanar crossing number
of a graph G, which when written in the notation of this thesis would be v2(G). Since this notation is already
used to denote the book crossing number of G in a two—page book, the superscript (B) was added in this thesis
to the notation used for the biplanar crossing number.
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subgraphs G; and Go where G = G; U G5. These two facts together imply that yéB)(g) < y(G).
A survey of results for the biplanar crossing number has been done by Czabarka, Sykora, Székely
and Vrto [CSSV04].

The concept of biplanarity, and the biplanar crossing number readily generalize to cases beyond
the partitioning of a graph into two sets. A graph G may be said to be n—planar if it can be
partitioned into n planar subgraphs. The n—planar crossing number of a graph, denoted l/r(LB) (G),
is then defined as

= 1 + + o+ .

60, 0., (VD) T 11(G2) v(Gn)}
The n—planar crossing number of a graph G is related to the book crossing number of G on 2n
pages, so that u,(LB)(g) < von(G).

3.3 Chapter summary

The concept of a graph drawing in R? was formalized in this chapter, and it was shown that
all graph drawings in R? may be transformed to drawings in so—called normal form. Important
restricted variants of drawings in normal form were discussed, and finally the drawing definitions
that have been developed were used to define the crossing number of a graph in the plane, as
well as variants of this classical crossing number parameter. The definitions of drawings are dealt
with in § 3.1.1 — § 3.1.3. The crossing number of a graph in the plane is defined in § 3.2, whilst
variants of the crossing number are defined and discussed in § 3.2.1 — § 3.2.3.



Chapter 4

Literature review

In most sciences one generation tears down what another
has built and what one has established another undoes. In
mathematics alone each generation adds a new story to the
old structure.

— Hermann H. Hankel (1839-1873)

This chapter provides an overview of parameters that are related to the crossing number, to
analytical results and techniques from the literature, and to existing algorithms for finding an
exact or approximate solution to the crossing number problem for a graph.

The crossing number problem itself has a number of variations (as mentioned in Chapter 3), all
of which are interesting in their own right. However, this thesis concerns itself only with the
crossing number in the plane, and with methods that aid in the determination of bounds on this
crossing number. Restrictions of the crossing number problem (for example to layered drawings,
or to rectilinear drawings) are ignored, since these are well studied topics that deserve to be
studied further in their own right.

4.1 Parameters related to the crossing number

Since the crossing number of a graph is a measure of its non—planarity, one may ask whether
other non—planarity measures might be of aid when studying the crossing number problem. A
number of planarity related parameters have been defined, and the most well-known are dealt
with here. Incidentally, the problems of determining any of these parameters for a general graph
are in NP. The interested reader is referred to a complete survey by Liebers [Lie01].

4.1.1 The maximum induced planar subgraph problem

The maz. induced planar subgraph problem is considered first.

Definition 4.1.1 Given a graph G = (V,E) and a positive integer k < |V|, the maximum
induced planar subgraph problem may be formulated as: “Is there a subset V' C V so that
|V'| > k, with the property that (V') is planar?” For a lack of agreed upon notation, the largest
value of k for which the maximum induced planar subgraph problem may be answered in the
affirmative for the graph G is denoted m,(G). |

41
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The maximum induced planar subgraph problem has not received much attention, and this is
probably because for many graphs, induced planar subgraphs are very small. For example, the
maximum planar subgraph for IC,,, n > 4 is K4. and consequently m,(KC,) = 4, n > 4. The best
general lower bound (see [WB78]) for the crossing number v(/C,,) is

V) n(nzg( 35”6)_(5)5"7} 3) {(n - G)J {(n - 7)J :

which clearly suggests that there is no general relationship between the maximum induced planar
subgraph problem and the graph crossing number problem.

4.1.2 The skewness of a graph

The skewness of a graph G gives a measure of the minimum number of edges that would have to
be removed from G in order to obtain a planar graph.

Definition 4.1.2 A maximum planar subgraph of a graph G = (V, E), is a planar graph G, =
(V, Ey) with the property that Eo C E, and such there exists no planar subgraph graph Gs =
(V,E3) of G such that |Es| < |E3|. The number |E| — |Es| is known as the skewness of G, and
for a lack of standard notation, is denoted here as s(G). |

The maximum planar subgraph problem is related to the crossing number problem in the sense
that, by removing appropriate edges from a drawing realizing the crossing number of a graph,
one obtains a mazimal planar subgraph — that is, a graph that will become non—planar with the
addition of any removed edges. Unfortunately, it is not known whether drawings realizing the
crossing number for a graph necessarily contain a maximum planar subgraph at the removal of
the appropriate edges. If this were true, then the maximum planar subgraph problem would make
it possible to determine the crossing number for a graph G, by first finding a maximum planar
subgraph H of G, and then by attempting all possible insertions of remaining edges F(G)~\ E(H)
into H. It trivially follows that s(G) < v(G), and for dense graphs such as K, K and Cp,
that s(G) < v(G), since at most O(|E(G)|) edges can be removed from G, whilst the crossing
numbers for such graphs are typically O(|V (K,)|*) = O(|E(K,)[?).

4.1.3 The vertex splitting number

The operation of vertex splitting is a dual (in a very loose sense) of the operations of edge
contraction and edge deletion, which are performed when constructing a minor of a graph.

Definition 4.1.3 A vertex splitting is an operation on a graph G = (V, E), where a vertex
v € V(G) is replaced by two vertices vy, va, such that, for all edges e = {v,u} € E(G), there must
at least be one edge {vy,u} or {vy,u}, although both may exist. Further, the edge {v1,v2} may be
present. Clearly the vertex splitting creates a new graph G' = (V' E'), and the following holds:

vV (V' Avr,v}) U {v}
E = (B~ {{u,v1},{u,v2} : ue V' and {u,v1} € E' or {u,vo} € E')
U {{u,v} : ue V~{v} and {u,v1} € E' or {u,v2} € E'} m

Application of the correct splitting operations to a non—planar graph may be used to obtain a
new planar graph.
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Definition 4.1.4 The splitting number o(G) of a graph G is the smallest number of vertex
splittings, starting with G, that will produce a planar graph G'. |

Vertex splitting is interesting in its own right, but it is difficult to see whether it may be related
to the crossing number in any practical way. It has generated a considerable amount of research,
and some impressive analytical results have been obtained. For example, Jackson and Ringel

[JR85, JR84] showed that
—2)(n—2
o) = [ (22202,
2
and Hartsfield, Jackson and Ringel [HJR85] showed that

{%1 forn >3 and n & {6,7,9}
o(Kn) = (n—3)(n—4)
{?w +1 forne{6,7,9}.

4.1.4 The genus of a graph

As mentioned in Chapter 3, the crossing number problem has been studied in the context of
general compact 2—-manifolds. Given a graph G, another question that may be asked about
compact 2-manifolds, is what the minimum genus for an orientable or non—orientable 2—-manifold
S should be, in order that G may be embedded (i.e., drawn such that no edges are crossed) in S.

Definition 4.1.5 The orientable genus' of a graph G may be defined as
T(G) = m}jn{h : h is the genus of an orientable surface in which G has an embedding},

and similarly, the non—orientable genus of G may be defined as

T(G) = mhin{h : h is the genus of a non—orientable surface in which G has an embedding}. g

All planar graphs have orientable and non—orientable genera zero, since they may be embedded
on the sphere. Ringel and Youngs [RY68| proved that

1
T(Kn) = 15 (n = 3)(n —4),
whilst Ringel [Rin65] showed that
1
YT(Kmn) = Z(m —2)(n —2).

White and Beineke [WB78]| give several results for the orientable and non—orientable genera of
graphs.

There is a tenuous connection between the genus of a graph and the crossing number, since there
exist classes of graphs with a bounded genus, but an unbounded crossing number. For example,
the grids on the torus, C,, x C,, all have Y(C,, x C,) = 1 but v(Cp, X Cy) > (1/2)(m — 2)n,
where m < n [JSO01]. In general, for a graph G, it is true that T(G) < v(G) and T(G) < v(G),
since every crossing may be eliminated by the addition of a handle (in the orientable case) or
a crosscap (in the non—orientable case) that acts as a bridge, allowing one edge to pass over
another, thereby avoiding an intersection between the edges.

"The genus of a G is often denoted +(G), but since this symbol is far more commonly used to denote the
so—called (lower) domination number of a graph (see [Har69| for a definition), T will be used instead.
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4.1.5 The thickness of a graph

Like the crossing number problem of the graph, the graph thickness problem also has applications
in the design of electronic circuits. In the graph thickness problem, a graph has to be subdivided
into as few as possible partitions, each of which is planar. In this way, an electronic circuit
may be designed to be laid out on multiple layers, which are stacked upon each other. Mutzel,
Odenthal and Scharbrodt [MOS98] have compiled a thorough survey of results on the graph
thickness problem.

Definition 4.1.6 The thickness 0(G) (outerplanar thickness 0*(G)) of a graph G is the least
number of sets into which E(G) = E1 U Ey U ... U E,, may be partitioned such that each (Ej)
i€1,...,n is planar (outerplanar). [ |

It trivially follows that for any non-planar graph that 6*(G) > 6(G) > 1. The thickness problem
has been solved for some restricted classes of graphs. Beineke and Harary [BH65] found the
thickness for I, in most cases. Alekseev and Gon¢akov [AGT6] completed their results and
showed that

n+7
6

0(K,) = { J L forn#9,10  and  0(Ky) = (K1) = 3.

Beineke, Harary and Moon [BHM64] largely solved the problem for the bipartite graphs. They

proved that
mn
6 m,n) = )
(Konin) [2(m+n—2)-‘

except if m and n are both odd, m < n, and if there exists an integer k satisfying

n:{Qk(m—2)J'

m — 2k

Finally, Jiinger, Mutzel, Odenthal and Scharbrodt [JMOS98| proved the very interesting result
that if a graph G is without Ks—minors, then #(G) < 2. This is vaguely reminiscent of Kura-
towski’s theorem (§ 2.1.5).

4.1.6 The page number of a graph

The page number problem (or book thickness problem), which is the problem of determining
the minimum number of book pages required for a crossing—free book drawing of a graph, has
applications in the field of electronic circuit design — see [CLR87]. This problem is analogous
to the problem of determining the minimum genus required in a 2-manifold S, so that a graph
embedding may be realized in S.

Definition 4.1.7 The page number, also called the pageness or book thickness, p(G) of a graph
G s the fewest number of pages that a book drawing of G can have such that no edge crossings
are present on any page. [

Bernhart and Kainen [BK79] proved that

p6) = [2]  and p(un) =m. m<n nmiom .
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A book embedding of a graph G realizing p(G) induces embeddings of disjoint subgraphs of G
on each of the p(G) pages. This is equivalent to outerplanar drawings of these subgraphs on
p(G) separate planes such that the order of the vertices in each plane drawing corresponds to
the order of the vertices on the spine of the book. Therefore, this parameter is more restrictive
with regards to allowable embeddings than the outerplanar thickness 8*. Using this observation,
it trivially follows that 6(G) < 6*(G) < p(G) for any graph G.

4.1.7 The coarseness of a graph

Liebers [Lie01] provides only a passing mention of the courseness of a graph in her survey, and
notes that according to Harary’s book [Har69] (p. 121), Paul Erdés introduced the notion of
graph courseness by accident.

Definition 4.1.8 The coarseness £(G) of a graph G, is the largest number of pairwise edge
disjoint non—planar subgraphs contained within G. |

It is interesting to note that where, for the thickness of a graph, one seeks to minimize the
number of edge disjoint planar subgraphs; one does almost the opposite for the coarseness of a
graph.

4.2 Analytical results for the crossing number problem

Some ingenious analytical techniques for studying the crossing number of a graph have been
developed. In spite of this, few exact results for the crossing number have been found, and where
for some of the other parameters mentioned in the previous section, the cases relating to the
complete graph, and sometimes the bipartite graph have been resolved, no such success has been
achieved with the crossing number problem.

4.2.1 Tutte’s algebraic formulation of crossings in graph drawings

A rather thorough overview of Tutte’s algebraic theory of crossings in graph drawings is given
in this section. This is necessary, as the algorithms of Pach and To6th [PT98| and of Székely
[Szé04], presented later in this chapter, both use ideas from the theory.

In [Tut70], Tutte developed an elegant algebraic structure which may be used to represent graph
drawings. He defined a general transformation on graph drawings, expressible as the sum of
elements in the algebraic structure, which may best be described (informally) as the process
whereby edges are “pulled” over vertices — in Figure 4.1(a) the edge {v;,v;} is “pulled” over the
vertex vy, in this fashion.

For the purposes of the theory, edges are considered as arcs (i.e., edges are assigned orientations).
Thus, arbitrary orientations for the edges of a given graph are chosen, and fixed. Any point on
an arc e; has a “left” and a “right” side. Another arc e, which passes through a point in e;, does
so either from left to right, or from right to left. If e; crosses e; from left to right, then e; crosses
e; from right to left. An illustration of arc crossings is given in Figure 4.1(b).
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(a) The effect of the addition of the (b) The crossing of two arcs.
initial cross—coboundary c(ij, k).

Figure 4.1: Illustrations of ideas in Tutte’s theory.

The following important parameter was defined by Tutte (it should also be clear from this
definition that his focus was on drawings of graphs in normal form):

, if (vi,v;) crosses (vg,ve) m times from the left
and m/ times from the right,
0 if (vi, vj) or (vg,v) does not exist.

m—-m

A(ij, k) =

The value of A(ij,k¢) is clearly not necessarily the same as the number of crossings between
(vi,vj) and (vg,ve), but it is congruent to the number of crossings between these edges modulo 2.
In other words, A(ij, kl) gives an indication of whether (v;,v;) and (vg,v,) cross an odd or even
number of times. It follows from the definition of A(ij, k¢), that its value may also be expressed
as

4.2.1.1 The algebraic structure — crossing chains

For a graph G, define a set Q(G) of symbols [ij, kl]:

Q(G) ={[ig, k] 1 <i<j<|V(G)|,1<i<k<l<|V(G)}. (4.2)

A new structure, called a chain is defined. It contains symbols from Q(G), and a chain C has
the form
C= Z Nijrelig, k2], (4.3)
Q(9)

where Njjie € N. The symbols [ij, k¢] are treated as indeterminates. Chains may be added,
subtracted and multiplied by integers in exactly the same way as polynomials, and they therefore
constitute the group R(G) of all chains. As with polynomials, when Njjr, = 1, the coeflicient in
(4.3) is omitted altogether, and one only writes [ij, k¢].

A drawing ¢ of a graph G in the plane may be used to construct a corresponding chain. The
integers A(ij, k¢) satisfy the requirements for the symbols from Q(G) (as long as the indices i, j, k, ¢
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are in the correct order, but application of the identities (4.1) always renders this possible). This
prompts the following definition.

Definition 4.2.1 The crossing chain? x(¢) corresponding to a drawing ¢ of a graph G is

2(¢) = > A(ij, ke)[ij, kL]. n
Q(9)

In the same vein as the identities for A(ij, k¢), it is useful to write [ij, k] also as

so that the requirements in (4.2) for the indices 4, j, k, £ in the symbol [ij, k¢] are met. For example
(i, kO)[ij, k¢] may be rewritten as A(k¢,ij)[kl,ij] if k < ¢ and k <i < j. When (v;,v;) € E(G)
or (vg,ve) € E(G) or when i, j, k, ¢ are not distinct, it is convenient to write [ij, k¢] = 0.

4.2.1.2 Transformations on drawings by cross—coboundaries

Referring to Figure 4.1(a), if the edge e = (v;,v;) is to be “pulled” across the vertex vy, then an
arbitrarily small gap is made at some point along (v;,v;), which in the figure is the gap between
A and B; a line is drawn from A to the vicinity of vy so that it does not intersect the drawings
of any vertices; the line is circled around wvg, and returns along the same path to B, crossing
exactly the same edges it crossed on its way from A to vy, again not intersecting any vertices.

It is possible that an edge, like (v, vy) may be crossed twice, but since it is crossed once from the
left, and once from the right, the crossings cancel in the crossing chain. The crossing situation
around the vertex vy, is disallowed, according to the transformation. Thus, only edges incident
to v will contribute to changes in the crossing chain.

Formally, the crossings introduced by the transformation are accounted for in the chain c(ij, k),
defined as

Q

V)l
c(ij, k) = [ig, kL]

~
Il
-

According to the definitions in the previous subsection, it follows that

C(ij, k) = —C(ji, k)
Tutte called the chains c(ij, k) initial cross—coboundaries®, and chains expressible as a finite
sum of initial cross—coboundaries, general cross—coboundaries. Clearly cross—coboundaries form
a group, which is denoted R.(G), and it is also a subgroup of R(G). Note that R.(G) obviously
contains the zero chain, which just leaves the graph as it is.

If z(G) is the crossing chain of a drawing before the transformation, then the crossing chain of
the drawing after the transformation is either z(G) + ¢(ij, k) or x(G) — c(ij, j), depending on the
orientation of (v;,v;).

*Tutte chose to denote a crossing chain by x in [Tut70], but this symbol already denotes the indicator function
used to calculate the crossing number for a graph (§ 3.2) in this thesis.

3Tutte denoted an initial cross-coboundary c(ij, k) as K (ij, k), but considering that K, or even k is too easily
interpreted as the complete graph, the symbol ¢ is used in this thesis.
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4.2.1.3 A lower bound to the crossing number

Tutte noted that the sum of the absolute values of the parameters A(ij, k¢) is less than or equal
to the total number of crossings in the corresponding drawing of a graph. It is not necessarily
less than or equal to the crossing number of a graph (as defined in § 3.2), since the drawing under
consideration need not be in single—cross normal form. But if one can show that |A(ij, k¢)| < 1,
one arrives at Székely’s definition of the independent-odd crossing number (§ 3.2.1), which is
certainly at most equal to the crossing number of a given graph.

Definition 4.2.2 For a graph G, the Tutte crossing number is defined as

YOG = min % [A(ij, kO] (4.4)
normal form <j,k</

i<k .

In the case where |A(ij,k¢)| < 1, the right-hand side of (4.4) is simply the independent—odd
crossing number, and so the chain of inequalities ) (G) < v®(G) < v(G) is evident. Székely
asserts that “in Tutte’s work, another kind of crossing number is implicit: the independent—odd
crossing number...” (p. 333, [Szé04]). This is true under the particular interpretation that
Székely makes (i.e., the independent—odd crossing number, § 3.2.1), although he is aware of this,
as he states in § 7.1 of [Szé04|, when he concludes that his own algorithm for the computation
of () uses a “mod 2 version of Tutte’s theory” (ibid.). That is, the A coefficients are assumed
to be either 0 or 1 for the independent—odd crossing number.

Székely’s intepretation is quite valid: for any sequence of cross—coboundaries ¢, ca, ..., ¢, that
transform a crossing chain x(¢) it follows, for any term A(ij,k¢) in ¢; + c2 + -+ + ¢, that
|A(ij, k¢)| < 1. This is true, since if an edge is “pulled” across a vertex v,,, it crosses all edges
incident to vy, in directions that are opposite to the directions in which these edges were crossed
before the “pull.” Moreover, since the original chain x(¢) may be seen as a drawing where
certain edges are initially “pulled” over particular vertices, by the same reasoning it follows
that, if for every term A(ij, k¢) in x(¢), it holds that |A(ij, k¢)| < 1, then |[A(ij,k¢)] < 1 in
x(p)+c1+ea+ -+

It is always possible to construct a drawing ¢ of a graph G so that |A(ij, k¢)| < 1 for all unordered
pairs of edges (v;,v;), (vg,v¢) € E(G) where (v;,vj) # (vg,ve) — simply place the vertices of G
equi-spaced on an imaginary circle, and connect the vertices by straight lines (if three or more
lines meet at a common point, this may be corrected by the method described in § 3.1.2). Clearly
the total number of crossings between any pair of edges is at most one in such a drawing.

4.2.1.4 Tutte’s main result

Clearly, for a graph G and a drawing ¢, R.(G) + x(¢) is a coset of R.(G). Tutte showed, if every
A term in the crossing chain z(¢) of a drawing is even, that z(¢) € R.(G). Thus, since the zero
chain is in R.(G), it is possible to find elements in R.(G) so as to remove all crossings in ¢,
meaning that G must be planar.

4.2.2 Bounding techniques

The most obvious approach towards finding bounds on the crossing number of a particular graph,
is to use an analytical lower bound (which is typically quite weak, since it is likely to be a general
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bound), and to find a drawing of the graph with as few crossings as possible to bound the crossing
number from above. This strategy is quite limited, and consequently some other methods have
been used with some success — for example, the graph—to—graph embedding method described in
this section has been used to determine bounds for the crossing numbers of hypercubes (defined
later in the chapter) so that the upper and lower bounds are asymptotically equal.

4.2.2.1 Standard counting method

Given a graph G, the standard counting method for bounding v(G) may be described as finding
a number of distinct subgraphs S = {G1,Ga,...,G;}, so that G = Gy UGy U--- UG, and such that
for any G;,G; € S,G;NG; ¢ S; and adding up the best available lower bounds on the crossing
numbers of each graph in S. The subgraphs need not be pairwise disjoint with respect to their
vertex sets nor with respect to their edge sets — in fact, better results are obtained when the
subgraphs are chosen as large as possible. If the subgraphs are not pairwise disjoint in their edge
sets, then some crossings will be counted more than once wherever two subgraphs intersect. This
must be accounted for and subtracted from the final result.

In the simplest case, which is typically how this method is applied in the literature, the graph
G is highly symmetric, and the subgraphs are all of the same size. For example, for G = IC,,, the
subgraphs may be chosen to be isomorphic to IC,,_;. The procedure described here is greatly
simplified: There are n copies of IC,,_1 in IC,,. Every crossing is between two edges, and therefore
four distinct vertices (the standard definition of the crossing number requires single crossing
drawings in single—cross normal form, as defined in § 3.1.2) are involved in every crossing. For a
given set of four vertices, it is found that (Z:g) = n — 4 subgraphs contain the four vertices —
therefore, every crossing is counted n — 4 times, and the lower bound

(K1) (4.5)

is obtained. Application of this bound to Kg yields v(Kg) > (6/2)v(K5) = 3. A drawing of Kg
is shown in Figure 4.2(a) (this also shows that v(Kg) < 3, and consequently, the two bounds
imply that v(Kg) = 3), and the six different subgraphs which are isomorphic to 5 are shown in
Figures 4.2(b)—(g). It may be seen that the same crossing will be counted in the constructions
in Figures 4.2(b) and (c). This is also true for the two constructions in Figures 4.2(d) and (e),
and finally also for the pair of constructions in Figures 4.2(f) and (g).

Lo

(a) (b) (c) (d) (e) (f) (8)

Figure 4.2: Kg has 6 distinct subgraphs isomorphic to K5, where each crossing in g is shared
by two subgraphs.
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4.2.2.2 Graph—to—graph embedding

Leighton [Lei83] introduced the ingenious method of graph-to-graph embedding* for deriving
both upper and lower bounds on the crossing number of a graph. Shahrokhi, Sykora, Székely
and Vrto include graph—to—graph embedding in their survey [SSSV97a|, which includes much of
their own work on the subject. Many ideas presented in this section also derive from their work.

Definition 4.2.3 For two graphs G and H where |V (G)| < |V (H)|, a graph—to—graph embedding
V(G) = (M, 9©) of G into H is a pair of injections

v 1 V() = V(H) and (4.6)
v© . E(G) — {p:p is a path in H}, (4.7)
where edge mappings w(e)(e), e € E(G), are subject to the constraint that
v (e) = 0 ({vi,0;}) = p € {all ) (v3) = 1) (vy) paths in H}. u
Uq U1

us (5

v3

Uyq us

(a) (b) (c)
Figure 4.3: A graph-to-graph embedding of K5 into Ky 3.
As an example, consider a graph-to—graph embedding of K5 into K3 4. The vertices of K5 are
labelled as V(K5) = {u1,...,us} and the two partite sets V3 UVa = V(K3 4) of K34 are labelled

as V1 = {v1,v9,v7} and Vo = {v3, v4,v5,v6}. Define the graph—to—graph embedding ¢'(K5) by
mapping the vertices as

P (wr) = va, PV (ug) = v, ¥V (ug) =v7, YO (us) = v, PV (us) = vs,
and the edges as

O ({ug, u}) = [va,v6], ¥ ({ur, us}) = [v2,v5,v7]
O ({ur, ug}) = [va,v4], YO ({ur,us}) = [v2,v3]

1 ({ug, uz}) = [vg,v7], P ({uz,us}) = [vg,v1,v4]
1 ({ug, ug}) = [va,v7], PO ({uz,us}) = [vg,v1, 3]
O ({ug, us}) = [vs,v7], @ ({ua, us}) = [vs, v7,v4].

From the example it may be seen that paths in K34 corresponding to mappings of edges from
K5 may intersect, so that a single vertex or edge in K3 4 may “route” a number of edges from K,
as is the case for v; € V(K3 4).

“In the crossing number literature, this is typically only called graph embedding, but in order to avoid confusion
of this method with graph drawings which are themselves embeddings, the given terminology will be used.
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Obtaining upper bounds

In order to obtain an upper bound on the crossing number of a graph G, using a graph—to—graph
embedding ¢ of G into H, a drawing ¢ of H is required. To construct a drawing ¢o for G, the
following simple procedure is followed:

1. Draw the vertices of G onto the positions of the vertices in H corresponding to their
mappings.

2. For every edge e € F(G), draw a curve along the path p = 1(®)(e), so that it does not pass
through any intermediate vertex on p and so that it does not intersect any other drawings
of edges along p, unless the intersection is within a distance € > 0 from a vertex, where
€ is an arbitrarily small positive real number. The drawings of edges are “looped” around
vertices (this is similar to the transformation which ensures that every crossing point in-
volves only two edges, as described in § 3.1.2), where the “loop” is within distance € of the
vertex, and where consecutive edges are “looped” outwards around the vertex.

This action may be seen in Figure 4.4(b), which is a section of a drawing for an embedding
obtained from the drawing in Figure 4.4(a).

@ X

(a) (b) (c) (d)

Figure 4.4: The first two figures show how graph—to—graph embeddings may cause crossings
at vertices, whilst the last two figures show that multiple crossings may be caused at a single
crossing in the graph into which the embedding has been done.

By constructing a drawing ¢» of G in this way, it is straightforward to count the number of
crossings in ¢o. Crossings can only occur either at

1. crossings in ¢ — that is, if edges from G map to paths in H, which contain edges that
cross in ¢, then of course the drawing ¢o will contain crossings at those points (there may
be multiple crossings in ¢9, since multiple paths may be routed through an edge which
contains a crossing, as is shown in Figure 4.4(d), where the original drawing is shown in
Figure 4.4(c)),

2. wertices, or more correctly, the vicinities within a distance ¢ of vertices — if two paths p;
and po (corresponding to edges in G) both contain a vertex v € V(H), then it is possible
that a crossing will be caused in ¢2. Denote the two edges from p; adjacent to v by e, and
ep, and the two edges from po adjacent to v by e. and ey4. If, in the drawing ¢, it is found
that e, is not followed or preceded by e, when considering a clockwise ordering of edges
around v, it means that they are separated by e. and e, (e. and e4 are also separated by e,
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and ep) — this forces a crossing, as shown in Figure 4.5(c). If this is not the case, then a
crossing can be avoided, as shown in Figures 4.5(a) and (b). Of course, if p; and p, share a
vertex v only by virtue of both ending at v, then no crossing needs to occur between them.

| |
1 1 1
| | |
b1\p2 €q = € € P \€a
|
Co P
1 ea I D2 Cd I eC
\‘eb = €4 ed\‘ \‘eb
| | |
i i i
| | |

Figure 4.5: Graph—to—graph embeddings may cause crossings at vertices.

Since the total number of crossings in ¢o depend on the number of edges that are mapped to
particular edges or vertices in H, two new quantities (both of which are defined in terms of the
edge mapping 1,!)(9)), called respectively the edge congestion of an edge and the verter congestion
of a vertex in H are defined.

Definition 4.2.4 For two graphs G and H and a graph—to—graph embedding v of G into H,
define

1. the edge congestion c(®)(¢/, 1)) of an edge € € E(H) as
e, p) = [{f € E(G) : ¢ € ¢)(f)},
2. the vertex congestion ¢c(V)(v/ 1)) of a vertez v' € V(H) as

MW ) = [{f € EG) : v € p@(f)}. ]

At each point where there is a crossing between two edges e;,e; € E(H), it is found that
there are c(® (e;, 1)) x c(®)(e;,1)) crossings in the drawing ¢o. This is represented graphically in
Figure 4.4(d), where multiple edges are mapped through the two original edges in Figure 4.4(c).
Shahrokhi, Sykora, Székely and Vrto [SSSV97a| made the conservative assumption that at every
vertex v € V(H), every path p that is routed through v may cross every other path that is so
routed. This renders the upper bound® (C(V) (zv,w)) for the number of crossings that occur at a

vertex v.

Combining these two types of crossings, it follows, for a particular embedding ¢ and a particular
drawing ¢ of H, that

c™ (v
10) < X Oest) x ey + 3 (), (18
)

ei,ejEE‘(H) UEV(H

€; crosses e; in ¢

5Shahrokhi, Sykora, Székely and Vrto used a factor of [c(*)(v,1))]?/2 in [SSSV96a, SSSV94] which, although
correct, could render a slightly larger upper bound.
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Obtaining lower bounds

Shahrokhi, Sykora, Székely and Vrto’s [SSSV96a, SSSV94| innovation was to turn the upper
bound into a lower bound. They considered how the right-hand side of (4.8) could be made
independent of a particular drawing of H and, in particular, how it could be expressed in terms
of v(H). If the first term,

> e, 1) x c(ej, ),

ei,eJ'EE('H)
e; crosses ej in ¢

in (4.8) is to be attained for any drawing ¢ of H, then the possibility exists that the edge ey
with the highest edge congestion will be crossed by every other edge in H. By letting

c(e)(lb) = max {C(e)(€a¢)}v

e€E(H)

) _ < fe®
V() Ug/f%(m{c (v, 1)},

the first term of (4.8) may be approximated as

(@)D e (e, ). (4.9)

e; EE(H)
e; is crossed in ¢

However, it is not known which edges in H will cross e;, — the route that Shahrokhi, Sykora,
Székely and Vrto took was to assume that each crossing occurs between two edges with the
highest edge congestion ¢(©) (1) (this is a very strict assumption, and a more relaxed, albeit more
complex assumption is given in later in this thesis), which simplifies the summation (4.9) to
c(®) (4)]2v4(H), since there are v4(H) terms within the summation (one for each crossing in ¢).
If this is to be realised for any drawing ¢ of H, it must also be realised for optimal drawings of
H, leading to the final form of [¢(®) (¢)]?v(H).

Due to Shahrokhi, Sykora, Székely and Vrto’s conservative assumption regarding crossings caused
at vertices, the second factor is attained for any drawing of H. For their lower bound method
however, they replaced the term

which results in a potentially somewhat weaker upperbound. From the foregoing discussion, the
inequality

o
10) < v kO + ool (7).

is evident, which when rewritten to make v(H) the subject, yields

U(G) — [V (H)| (<)
N TP L.

(4.10)

giving a method to compute a lower bound to v(H). Obviously the quality of the bound depends
on the maximum values of the edge and vertex congestion values.
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Graph—to—graph embeddings into K,

In a restricted version of the graph—to—graph embedding method, which has been used by Székely,
Shahrokhi, Sykora and Vrto, the edge mappings 1) of a graph—to—graph embedding ¢ from a
graph G to a graph H maps edges from G only to edges in H, and not to paths in H as with
the general version. This requirement has the effect that edge mappings ¢(®) are automatically
determined by the vertex mappings (), since an edge e = {u,v} € E(G) maps to the edge
f =" (u), v (v)} € B(H). In this restricted version, it is also required that |V (G)| = [V (H)],
which means that (") is a bijection — this restriction is not strictly necessary, but this is how
the graph—to—graph embedding method was studied by Shahrokhi, Székely, Sykora and Vrto.
For the purposes of this thesis, this restricted graph—to—graph embedding is called a single—edge
graph—to—graph embedding. Also, since a single—edge graph—to—graph embedding ¢ = (w(v), Q,Z)(e))
is entirely determined by the bijection ©(*) of the vertices from G to the vertices of K,,, a single—
edge graph—to—graph embedding is simply denoted 1.

The only way to ensure that an edge f = {¢(V)(u),v")(v)} € E(H) exists, for an edge {u,v} €
E(H), and for any mapping ), is to choose the graph H to be isomorphic to the complete graph
K, where |V (H)| = n. This restriction may be relaxed, but this will place constraints on how
1) can be chosen. For the purposes of this thesis, H = IC,, will be assumed.

Since edges may no longer be routed through vertices, crossings can only occur at crossings in
K. Also the edge congestion can only be equal to one in this scheme, and it follows thus that

V(g) < Z cl® (ei7¢) X C(e)(eﬁw)'

e,L',eJ'GE(H)
e; crosses e; in ¢(Kn)

The point of single—edge graph—to—graph embeddings, is that for a random mapping ¢ of the
vertices of a graph G to the vertices of /C,,, the expected number of crossings that will be present
in the drawing ¢2(G) obtained from a drawing ¢ of K, and the graph—to—graph embedding 1, can
be determined. This property is exploited by Shahrokhi, Székely, Sykora and Vrto’s probabilistic
embedding algorithm, which is described later in this chapter.

4.2.2.3 Using graph minors

Garcia—Moreno and Salazar [GMS01] proved that the following result holds for the crossing
number of a graph G in a compact 2—-manifold (§ 4.1.4). It is stated here only in the form of the
plane crossing number.

Theorem 4.2.1 For a graph G, and a minor M of G with A(M) < 4,

v(G) > (1/4)r(M). =

No significant bounds for the crossing number of any graph in the plane have yet been obtained
by using this method (although Garcia—Moreno and Salzar successfully obtained lower bounds
for all graphs with respect to their so called “representativity” on the Klein bottle in [GMS01]),
and in the cases where graphs are symmetrical, the standard counting method and the graph—
to—graph embedding method seem to fare better.
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Figure 4.6: C,,, X Cy.

4.2.2.4 The method of graph bisection

The bisection width b(G) of a graph G is the minimum number of edges whose removal partitions
the vertex set V(G) into two sets Vi(G) and V2(G) such that |Vi(G)[, |[Va(G)| > (1/3)|V(G)|. The
problem of determining the bisection width of a graph is known to be NP—complete [GJS76].
Leighton [Lei83| showed that

v(G) +n=Q(b(G)?). (4.11)

This result in itself is not immediately useful. However, it may be used recursively to establish a
provably good upper bound to the crossing number of a graph, as will be discussed later in this
chapter.

A more general version of this result, which is known by researchers in the field of VLSI design
([SSSV97al, p.10), and which is immediately applicable, is

V@) > %(2(—5@) — Y o) (4.12)

veV(G)

for which proofs may be found in [PSS96| and in [SV94].

This method is only useful for classes of graphs where the bisection width is a function of the
number of vertices. This is, for example, not true of the product of cycles C,, x C,, and it is easy
to show that b(C,, x C,) < 2m, when m < n. A drawing construction for the graph C,, x C,,
m < n, is shown in Figure 4.6. The m n—cycles are the large circles, labelled B; through B,,,
and the n m—cycles are the smaller ellipses, which are distributed around the circumference of
the larger n—cycles. The m—cycles are labelled R; through R,. The removal of the m edges,
belonging to the m n—cycles, between any pair of adjacent m—cycles, say R; and R;11, will break
the n—cycles. If the m edges between another pair of adjacent m-cycles (of which neither is
adjacent either to R; nor to R;;1), say R; and R, is removed, then two graph components
will result. Thus, for a fixed m < n, the bisection width is fixed. If n is therefore large enough,
the right-hand side of (4.12) will be negative.

Another important aspect that prevents this method from being applied easily, is that the bi-
section width of the graph in question needs to be known, and unless this quantity is easily
computed, other bounding techniques should rather be considered.
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4.2.2.5 Edge set partitioning

Strictly speaking, the edge set partitioning method is used in the literature as a bounding tech-
nique only insofar as it may be used to prove that for an upper bound U(G) to the crossing
number v(G) of a graph G, v(G) > U(G). This is normally achieved by the method of proof
by contradiction. The upper bound value U(G) may as well be replaced by any value x, and
therefore, this method may be used to prove the validity of lower bounds to the crossing number
of a graph. In order to understand how to apply this method, some notation is necessary.

Definition 4.2.5 For a graph G, let A, B C E(G), then for a drawing ¢ of G, let

ve(A,B) = ) [¢(@) N ().

acA
beB

Also, let vy(A, A) = vy(A). [ |

Informally, v4(A, B) denotes the number of crossings between every pair of edges where one edge
isin A, and the other in B.

For three mutually disjoint subsets A, B,C' C E(G), the identities

vo(AUB) = wy(A)+ vs(B) + vo(A, B) and (4.13)
I/¢(A,BUC) = I/¢(A,B)+V¢(B,C) (4.14)

are noted.

Applying the edge partition method to find the crossing number of a graph

To show that an upper bound U(G) is equal to the crossing number, v(G), of G, the edge set
E(G) may be partitioned so that AU B = E(G), followed by an assumption that v(G) < U(G).
Since, for a drawing ¢,

v$(G) = vy (A) + vy(B) + vs(A, B),

it follows that if ¢ is an optimal drawing of G (i.e., realizes the crossing number of G), then
Vd)(A, B) < U(g) — V¢(A) — I/d)(B). (415)

To complete the proof by contradiction, it remains to be shown that v (A, B) > U(G) —vg(A) —
vg(B) for every optimal drawing ¢ of G.

Unfortunately, the set of optimal drawings is unknown (since otherwise the crossing number
problem would have been solved), which makes the problem of proving the converse of (4.15) as
difficult as the original problem. If ®(A) denotes the set of all drawings of A, and ®(B) the set
of all drawings of B, then as many as |®(A)| x |®(B)| different right-hand sides in (4.15) might
have to be considered, which is clearly impractical.

To reduce the number of cases to a handful, it is normally assumed that the subgraph (A) is
large and varies in size as G varies, and that the subgraph (B) is small and constant in size (an
upper bound drawing construction which realises U(G) is typically a good guide as to how to
choose A and B). For example, in Asano’s [Asa86| proof for the crossing number of K 3, he
chose (A) = K4, and (B) = Ky 3. In the proof for the crossing number of i 1 1.1, which will be
presented later in this thesis, the subsets were chosen so that (4) = K4, and (B) = K4. This, in
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itself, does not change the nature of the problem, but if v(A) is known, then, since v(A) < v4(A)
for any drawing ¢ of (A), it follows that

vg(A,B) < U(G) —v(A) — vy(B), (4.16)

where the drawing of (A) is unspecified, and is determind by the choices of drawings of (B) and
the ways in which edges from A and B cross when considering the term v4(A, B).

This reduces the problem to enumeration of drawings of (B) and showing that (4.16) is violated
for every such drawing. Since (B) is small, |®(B)| should hopefully be relatively small. Of
course, for a given drawing of (B), it might still be very difficult to prove that v4(A4,B) >
U(G) — v(A) — vy(B), since it might be difficult to enumerate the different ways in which edges
from A cross edges from B when considering the term v4(A, B). When this is the case a method
which seems first to have been employed by Asano [Asa86] may be useful, as described in the
next section.

Using vertex set partitioning to ease proof by contradiction

The inequality (4.16) constrains the way in which edges from A may be added to a drawing ¢ of
(B). If the subgraph (B) has the property that (V((B))) = (B) — that is, if the vertex set of
(B) induces the subgraph (B) itself — the identity (4.14) may be used, so that one may write

vo(A,B) = 3" (B Epy(v)), (4.17)
vEV(G)~V((B))

where Eyr(v) = {e : e joins v with some u € V(U)}.

In the sum on the right-hand side of (4.17), edges joining pairs of vertices that are both in
V(G) \ V((B)) are not considered. It is worth noting that in the proof for the crossing number
of K11,1,1,n, Presented later in this thesis, it does not occur that there are such edges, since the
set V(G)~\ (B) in that case is exactly the partite set with n vertices. Therefore, equality in (4.17)
is attained, since all of the edges in A are considered. For the same reasons, equality in (4.17) is
reached in both of Asano’s proofs [Asa86]. Combination of (4.17) with (4.16), yields

S ve(BEg ) < UG) - v(A) - vy(B).

veV(G)NV((B))

For n = |V ({A))|, the right—hand side typically has the form an+ (3, where 5 < n, and «, 3 € N.
Ideally, in every drawing ¢ of (B), the addition of a single vertex v € V(G) \. V((B)) will render
the inequality vy (B, E(py(v)) > a, which immediately leads to the desired result.

If, for some drawing ¢((B)), this is not the case, then there is at least one vertex v, whose
addition will cause at most « crossings. Every drawing obtainable from ¢((B)) by the addition
of v may be considered. Let By = BU E(py(v) and Ay = E(G) \ Baz. Then,

> Vg(B2, Ep,y(v)) <U(G) — v(A2) — v4(Ba).
veEV(G)NV ((Bz2))

Now, the right—-hand side has the form as(n — 1) + (2, and one proceeds by the same argument
as before, by attempting to show that the addition of any vertex from V(G) \ V((B2)) to every
drawing of By will cause more than asy crossings. Clearly this method may be applied as many
times as necessary.
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Figure 4.7: Construction for an upper bound to v(Cy, X Cp,).

4.2.2.6 A sparse graph technique: bounding v(C,, x C,) from below

From the drawing of C,, x C, in Figure 4.7, it may be seen that if the coordinate m is fixed,
the number of smaller m-cycles (marked Ry through R, in Figure 4.7) would vary with n,
and conversely, if n is fixed, the number of larger cycles (marked B; through B,, in Figure 4.7)
would vary with m. These n small cycles and m large cycles are called the principal cycles of
Cm X Cp, and it is normally interactions between principal cycles that are studied when studying
the crossing number properties of C,, x C,. Following the idea of Beineke and Ringeisen [BR80]
to render the conceptual task of differentiating between the different types of principal cycles
manageable, the edges of the n principal small cycles are coloured red, and the edges of the m
principal large cycles are coloured blue. The naming of the labels in Figure 4.7 were chosen to
reflect this colouring.

The fact that C,, x C, is 4-regular, and the fact that crossings in a graph are conveniently
modelled as artificial vertices of degree 4, makes it possible to obtain a different perspective of
a drawing ¢ of C,, x C,, — ¢ is a drawing of two families of closed curves, say R and B, where
R has n red curves, and B has m blue curves, and where each red curve in R crosses each blue
curve in B at least once. In this perspective, mn of the crossings of the curves, are not, in fact,
crossings, but correspond to vertices in C,, x C,. This was the idea of Richter and Thomassen
[RT'95], who introduced the notion of a curve system, and used a particular type of curve system,
called an (m,n)-mesh to provide proofs for the crossing numbers of C4 x C4 and C5 x Cs.

Definition 4.2.6 An (m,n)—mesh is a pair (R, B) of families of respectively red and blue closed
curves (i.e., the beginning of the curve meets its end), where R contains n such curves, and B
contains m such curves, so that

1. every curve in R intersects every curve in B,

2. no point in the plane is covered thrice or more, although a curve may cover a single point
twice. |

The number of crossings in an (m,n)-mesh is denoted i*(R, B), and crossings are counted for

1. the number of crossings between R and B, where, for every two curves R; € R and B; € B,
|R; N B,| crossings are counted,
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2. the number of crossings of curves over themselves, i.e., where a single curve crosses a point
twice.

From the preceding discussion, mn of the crossings in a drawing of an (m,n)-mesh, correspond
to vertices in a drawing of C,, X C,. Thus, if i*(R, B) > mn + «, then v(C,,, X Cp,) > a.

The advantage gained from the curve system perspective is that vertices and edge crossings
are treated uniformly. This allows for more elegant toplogical arguments in the proofs of the
crossing numbers of C,,, X C,,. As an example of why this works, a common technique, which was
first employed by Ringeisen and Beineke [RB78] in the context of toroidal grid graphs (although
they considered graphs, and not curve systems), will be considered. Let H; be the subgraph of
Cm x Cp, induced by the vertices of two red principal cycles R; and R;1 (indices are modulo n),
and define the force f(H;) of H; as the sum of crossings that are caused by

1. self intersections of R;,

N

. crossings between blue edges in H; with red edges in H,,

w

. crossings between blue edges in H;,

~

crossings of blue edges in H; and blue edges in H;1.

From this it may be seen that a crossing between a pair of edges is counted exactly once, and

that 1" | f(Hi) > mn+v(Cp % Cy).

Shahrokhi, Sykora, Székely and Vrto [SSSV| have applied this concept to obtain some good lower
bounds for C,, x C, in the plane, the projective plane, and the Klein bottle.

4.2.2.7 Obtaining bounds for other sparse graphs

Finding a general method of bounding sparse graph crossing numbers is quite difficult. The
standard counting method (§ 4.2.2.1) mostly fails, because it is hard to find subgraphs with a high
crossing number. The graph—to—graph embedding method (§ 4.2.2.2) may be considered, but a
large vertex congestion would impact negatively on the quality of the lower bound. This problem
would be mitigated by embedding a sparse graph into the sparse graph under consideration. The
problem with application of the graph bisection method, is that a given class of sparse graphs
typically has a constant bisection width with respect to variation of its size in certain ways —
this was already discussed in § 4.2.2.4 for C,, x C,. A priori, there is no reason why the graph
minor method cannot work for some cases, but of course, the crossing numbers of subgraphs may
often provide better lower bounds than the minor method.

Although the idea of a mesh does not generalise well to other classes of sparse graphs, some ideas
from the proofs of the crossing numbers of toroidal grid graphs have been applied successfully to
finding the crossing numbers of other products of graphs. See, for example, the proof of Beineke
and Ringeisen [BR80|, showing that v(K4 x C,,) = 3n, and the technique that is described in
the next section. For products of graphs, principal cycles are generalised to principal subgraphs
(K4 and C, in the case mentioned). For many other interesting sparse graphs, one finds that
the maximum vertex degrees are larger than 4. One could, in principle, define a new type of
mesh, say for graphs with maximum degree six, where up to three curves in the mesh may cover
a particular point, since a vertex with degree six may be modelled as the intersection of three
lines. It soon becomes apparent that this approach has the disadvantage that a lower bound for
the total number of crossings in such a mesh might count only one crossing where three curves
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intersect, although the particular intersection might correspond to the intersection of three edges
(thus, three crossings should actually be counted), or it might correspond to an edge drawn over
a vertex with degree four (thus, at least a single crossing, and at most four crossings are not
counted).

4.2.2.8 A typical proof technique demonstrated for the result v(C,, x C,) = m(n —2)

Nothing more than a very quick sketch of the proof techniques used for the proofs of the crossing
number results for the products of cycles is provided in this section.

For a fixed value of m, the main idea is to use induction on n, where the base case of v(C,, X Cp,)
is known. From the drawing in Figure 4.7, it may be seen that every curve R; is crossed a total
of m — 2 times, and although this is an upper bound construction, the question of whether at
least one red edge is crossed at least m — 2 times is central in the proof technique.

By the induction hypothesis, v(C,, X C,—1) = (m — 2)(n — 1), and if there exists at least one
red cycle R; which is crossed at least m — 2 times, then deletion of its edges from C,, x C, gives
a subdivision of C,, x C,_1. Thus, it follows that the drawing of C,, x C,, must have at least
(m—2)(n—1)+m— 2= (m — 2)n crossings.

If every red cycle is crossed fewer than m — 2 times, it must be shown for such a drawing ¢, that
vg(Cpy x Cp) > (m — 2)n. First it is shown that if some red cycles are drawn inside other red
cycles, or if some red cycles cross each other, that one of the red cycles involved will be crossed
at least m — 2 times. This implies that all the red cycles are disjoint in ¢. Now, the notion of the
force of a the subgraph induced by the vertices of two consecutive (with respect to their indices)
red cycles (as defined in § 4.2.2.6) may be used to perform that v4(C,, x Cp) > (m — 2)n.

A very useful result due to Juarez and Salazar [Sal99], allows one to avoid having to show the
last part of the proof. A proper crossing in a principal cycle is a crossing not caused by two
edges from the cycle itself.

Theorem 4.2.2 (Juarez and Salazar [Sal99|) Let m,n be integers such that m > n > 3. Then
every drawing of Cp, X C, such that either the principal n m—cycles are pairwise disjoint or the
principal m n-cycles are pairwise disjoint, has at least (m — 2)n crossings. ]

4.2.3 Crossing number bounds

This subsection contains bounds on the crossing numbers of various classes of graphs, expressed
in terms of analytical functions.

4.2.3.1 General crossing number bounds

In the functions provided here, the crossing number bounds for general graphs are expressed in
terms of easily computable graph parameters. As such, the bounds cannot be expected to be
very good.

FEGP/IV(G) if |[E(G)| 2 c[V(G)], >3 (
() > s [ EG)P/|V(G))? if [E(G)| > 4|V (G)| (
) |EG)| —19(G)/(g(G) —2)](|V(G)| —2) where g(G) is the girth of G E

0 otherwise
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Figure 4.8: K¢, bipartite construction.

The lower bound (a) was independently proved by Leighton [Lei83] and by Ajtai, Chvatal,
Newbron and Szemerédi [ACNS82|. They were unaware that this bound was already conjectured
by Erdés and Guy [EG73]. The maximum factor of 1/64 in (a) is obtained by setting ¢ = 4.
Pach and Toth [PT97| improved the coefficient for ¢ = 4 to 1/33.75 in (b).

The lower bound (c) is due to Kainen® [Kai72]. His result is a generalization of the case where
9(G) = 3, and where each crossing is viewed as an artificial vertex of degree 4.

As a general upper bound, it is obvious, for a graph G on n vertices, that v(G) < v(K,). An
upper bound for K, may be found in the following subsections.

4.2.3.2 Multipartite graphs
Bipartite graphs

This problem probably has the longest and one of the most interesting histories of all the crossing
number problem special cases. In fact, it is exactly a question posed by P. Turan (see § 1.1)
about the crossing number of bipartite graphs that spawned the field of research on crossing
numbers. Let

Lim,n) = %(m)(m -1 3] V - 1J , (4.18)
L'(m,n) = %(m)(m —1) L%J V‘ _ 1J +9.9 x 10"%m2n? and (4.19)
v (2125231 |5 a0
Then
/ =0 m<2andm<n
s ) £ ) U 3 m S <t <m <1

where s and ¢ on the left-hand side are values for which v(KCs¢) is known, and s < ¢, s <m &
t<n.

Zarankiewicz [Zarb4]| originally proved the case for m = 3 as the base case for his inductive proof,
to show equality to the upper bound in (4.20). An uncorrectable flaw was later discovered in the

5Kainen actually proved in [Kai72], that vv(G) > |E(G)| — 9(G)/(g(G) — 2)(|V(G)| — 2 + 2T) where T is the
genus (§ 4.1.4) of G.
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inductive part of his proof (which was still valid for the inductive base case where m = 3) — this
is discussed in Guy [Guy69]. The case for m = 4 follows from the standard counting method
when finding copies of K3, in K4, — the lower bound then meets the upper bound. The cases
for m = 5,6 were proved by Kleitman [Kle70]. Woodall [Wo093| employed the help of computers
to show that v (K, ) is equal to (4.20) for 7 < m <n < 10.

The upper bound is due to Zarankiewicz [Zar54]|. This upper bound may be realised as follows:
For a bipartite graph K, ., the vertices of the partite set with cardinality m are placed on the
x—axis of a two-dimensional Cartesian system of axes, so that there are [m/2] vertices on the
positive side of the axis, and |m /2] vertices on its negative side. The same is done for the other
partite set (i.e., the partite set with cardinality n), but the vertices are placed on the y—axis.
Finally, the edges are drawn as straight lines. An example of a drawing of K¢ ¢ using this method
may be seen in Figure 4.8.

The first lower bound, L'(m,n), is true if m and n are sufficiently large. This result is due to
Nahas [Nah03], who did not provide bounds on m and n; such bounds would be valuable for
improving the lower bound on v(ICp, ).

The second lower bound L(m,n), which is only valid for m > 6, follows from the standard
counting method (Kleitman’s [Kle70| version is followed): There are m copies of Kp—1,, in
Kmn, m < n. Each crossing is counted in m — 2 copies of K,,—1 ,, since for each crossing there
are two subgraphs isomorphic to K,,—1,, each of which will lack a vertex incident to an edge
involved in the crossing. Thus it follows that

m,n_’l: 2 V(K:m—l,n)

I, iG-2)
[l i <2)

iy e
- m(ms_ : LgJ V;J

Kleitman also showed in [Kle70], that the crossing number of K, 5, follows immediately if the
crossing number of Xy, ,, is known, for m odd. Thus, the minimum counter example for equality
in (4.20) must have m odd.

De Klerk, Maharry, Pasechnik, Richter and Salazar [dIKMP™04] have shown that for a fixed value
of m > 9,

V(,Cmm) >

> V(’CG,n)

V(Kumn) 0.83m

li > . 4.21
im > 080 (a.21)

oo 3] (25 3] [P
It may be verified that if v(K,,,,) is replaced by L(m,n
0.83m/(m — 1) is obtained.

) in (4.21), that a smaller fraction than

Multipartite graphs, and derivative graphs

Relatively little is known about the crossing number of multipartite graphs. The only general
results for non-bipartite multipartite graphs are due to Asano [Asa86|, who showed that

n

v(Kign) = v(Kan) + bJ )
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v/

(a) K1,3,n. (b) Ka2,3,n. (c) Ki,1,1,1,m-

Figure 4.9: Optimal drawings of K13, K23, and Ki1,1,1,n-

and that
V(ICQ’&n) = V(’C57n) + n.

He used the edge set partitioning method, and partitioned K3, into K13 & K4,, and he
partitioned Ko 3, into Ko 3 & K5 ,. Drawing constructions of Ky 3, and Kj 3, which realize the
crossing numbers of those graphs may be seen in Figures 4.9(a) and (b) respectively. The thick
lines in Figure 4.9(a) belong to the subgraph ICy 3 — only one of the thick lines is crossed, and
it is crossed by edges that are joined to the right half (with respect to the drawing, and the
vertical dotted line) of the black vertices. It may be drawn to fall on the side with fewest black
vertices (which is the right in this case), and therefore, an extra L%J crossings are incurred by
its presence. The thick lines in Figure 4.9(b) are the edges which belong to the subgraph ICs 3.
A total of n edges which are joined to all n black vertices are crossed in total by the two thick
curved edges. Therefore, n crossings are incurred by their presence. His method may be applied
generally, but the number of cases to consider for larger graphs quickly become impractical to
accommodate by hand — perhaps a computer implementation may be suitable for the larger

cases. It will be shown later in this thesis that

n?+1
2 7

v(IKiiiim) = {

by the method used by Asano in [Asa86|, where the graph KCq 11,1, is partitioned into Ky and

K4, The optimal drawing for this graph is shown in Figure 4.9(c), and the thick lines show the
Ky.

Kles¢ [Kle01b] found the crossing numbers of two graphs H; and Hz, which are obtained from
K1,1,1,1,1,n respectively by deletion of a single edge from the K5 subgraph, and deletion of two
adjacent edges from the K5 subgraph. The result follows as:

V(H1) = v(Ha) = v(Ksn) + 2 [gJ .

4.2.3.3 Results for K,

Let

L(n) = n(nzg(;)in&_(i)inn_ 3) V" 5 G)J V” 5 7)J and (4.22)

ver = 3l51 [ =) 1) 42
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Then,
=0 n <4
max{L(n),U(10)} <v(K,)¢ =U(n) 5<n<10 (4.24)
< U(n) otherwise.

Saaty [Saa69] showed that equality holds in (4.24) for 6 < n < 10, using a series of ad hoc
arguments. The upper bound derives from a well-known drawing construction of C,, due to
Blazek & Koman [BK64]| and Guy [Guy69]. It seems rather uncertain as to whom actually
originally found the upper bound, and it is probably folklore.

The upper bound construction is based on a drawing of I, on a cylinder, or a “soupcan” —
|n/2] vertices are placed, evenly spaced around the rim on one lid, and [n/2]| vertices on the
other. All vertices on both lids are joined pairwise by means of straight lines. To join vertices
from one lid to the other, the shortest distance around the perimeter of the soupcan is chosen.
An example of such a drawing of Kjp may be seen in Figure 4.10(a), and a plane version where
the “soupcan” has been folded flat is shown in Figure 4.10(Db).

(a) Kio drawn on a cylinder. (b) K10 drawn in the plane.
Figure 4.10: An upper bound construction for v(K,,).

The lower bound is due to White and Beineke [WB78]. They used the standard counting method
by finding copies of K¢,—6 in K,,. They actually used a general method by finding copies of
Krn—r, but since r = 6 is the best known exact result for the crossing number of K, j,, the lower
bound is limited by it.

It follows that as n — oo, L(n) — gsn?, U(n) — &;n?, and therefore g5 < limy, o0 v(Ky)/n* < &,
if the limit exists. Kainen [Guy69] showed that if v(/C;, ) is known for all m,n € N, then
limy, oo v(Ky) /0t = 6L4' Recently, De Klerk, Maharry, Pasechnik, Richter and Salazar [dKMP*04]
showed that

lim v(Kn)

oo g (3] ] 1552 [

which implies that g5 < 0.012968 < lim,, o0 v/(K,)/n%.

> (.83,

4.2.3.4 Progress on crossing numbers of products of graphs

The best—known crossing number problem in the class of products of graphs, relates to the
toroidal grid graph, or product of cycles. However, much research has also been done for products
of small graphs with paths, cycles and stars.
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Bounds and exact results for C,, x C,, and variations of C,, x C,

This particular class of graphs has received a fair amount of attention in the literature of the past
few years. The fact that some of the most experienced researchers have not had much success in
obtaining anything more than a few results, is testimony to the difficulty of the crossing number
problem for even very special classes of graphs. Meyers [Mye98]| gives an entertaining survey on
this particular problem. The best known results for this problem are shown in Table 4.1.

‘ m ‘ n ‘ v(Cpm x Cp) ‘ Proved by ‘
3 13| = 3 Ringeisen and Beineke [RB78]
3 |(n| = Ringeisen and Beineke [RB78]
4 14| = 8 Dean & Richter [DR95]; Eggleton & Guy [EG70]
4 |n| = 2n Beineke & Ringeisen [BR8(]
5 15| = 15 Richter and Thomassen [RT95]
5 | n| = 3n Kles¢, Richter, Stobert [KRS96]
6 |6| = 24 Anderson, Richter and Rodney [ARR96]
6 |n| = 4n Richter and Salazar [RS01]
TIT| = 35 Anderson, Richter and Rodney [ARR97]
m|n| ~ ; ;”7(7’;(;1%2 ) Glebsky and Salazar [SG04]
m|n| > (1/2)ym(n —2) Juarez and Salazar [JS01]
> (0.8 —e)mn
m | n e>0 Salazar and Ugalde [SU04|
m sufficiently large
m|n| = £ S(?é?gréfn _ 1) Shahrokhi, Sykora, Székely and Vrto [SSSV]
m|n| < m(n — 2) Harary, Kainen and Schwenk [HKS73]

Table 4.1: Crossing number results for the product of cycles C,, x Cy,.

(a) The twisted toroidal grid (b) The crossed toroidal grid
graph 73 . graph X3 .

Figure 4.11: Two variations on the toroidal grid graph Cs x C,.

Two variations to the product of cycles C,, x C,, are the so—called twisted toroidal grid graph
T, and the crossed toroidal grid graph X, ,. Analytical descriptions of these graphs would
be rather cumbersome, and since the only known analytical results for the crossing numbers of
these graphs are for 73, and for X3, only drawings of these graphs are shown in Figure 4.11.
Proofs for the results

v(Tz3n) =n and v(Xz,) =n

are due to Foley, Krieger, Riskin and Stanton [FKRS02].
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Bounds and exact results for miscellaneous products

G 1 G =P ] VG xC) /(G x 5n)

a || o n>0 0 nz0 2| o3| [172159111]
ol o | » | e [l g
G |N) -1 [172139111] " [gP%Sg] 2 VM)QJ + 3] [172159‘11]
NI
G5 |8 n—1 [ﬁfgjq 2n [g§8é] 2255 ] + 131 [;159411]
G B 2 | oy i T I S N Y
Gr ﬁi 0 n>0 0 n=0

s |1 2(n — 1) [Elfg(l)] 2n [?(129?]

o Q n—1 [1?1;103] X [1?1:()15&1]

G1o ﬁi n—1 [I?l;loa] A [I?lez()loa]

gn ﬁi n—1 [I?lezt)loa] L [Iq(llez()loa]

Gi2 & 2(n—1) [I?lj)loa] 2n [I?l;)fa]

Gi3 fi n—1 [Iglj)loa] 2n [I?le>()13a]

G4 ﬁ 0 n2=0 3n [I?R>S;6]

Table 4.2: Crossing number results for products with small graphs.

The results in this section are numerous. Most of the results in Table 4.2 have relatively long,
ad hoc proofs, and again, one is left with an impression of the difficulty of the crossing number
problem.

Note that G X P,, and G7 X P,, are just grid graphs, and they are consequently planar. The graphs
G1 X Cp, G7 X Cp, G4 X Py, and Gy4 X P, may be drawn with no crossings, by the construction
shown in Figure 4.12. Furthermore, it should also be noted that the crossing number results
for some graphs in the table follow directly from the crossing number results of subgraphs, if a
drawing of the graph in question can be made from the subgraph, without causing any crossings
— see for example Goo and Goy.
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G T vG <P ] v(G; % C) | v(G; % Sn) |
G1s ﬁ 2(n—=1)] n=>0 2n [I?lei)lSa]
RIE [17211592] < ?l;z n> . [1721?0;1] sl 42 [;1392]
61z |5 20— 1) [Igjofa] n(n—1) [1?1;1?@]
Gis ﬁi 2(n — 1) [Irélfgg] 2n [1?15)10&]
Gig ﬁ n—1 [I?lj)loa] 3n [I?le?)li]
G20 ﬁ 2(n—1) [Iz;loa] 3n [I?l;)li] nin—1) [I?IQZOSD]
Go 5| 301 [Inafgg]
| 18] a1 | w20 a2 | 20
G| C0| 20 [1?15()1021] 413] ") +2n [1?1501031
G |20 3n -1 [Iangg]
G5 %) 301 [I?lj)loa]
G| B2 am [I?lez()loa]
Gor B on [I?leZQQOa]

Table 4.2 (continued): Crossing number results for products with small graphs.

4.2.3.5 The hypercube and interconnection graphs

Parallel computation has become an important topic in recent times. The hypercube, which has
been used as the basis of interconnection schemes, has a well understood structure — networks
designed according to this structure have a high level of fault tolerance, since the hypercube
is a highly connected graph, and because it has a highly symmetrical structure. Hypercube—
like networks, and a host of other graphs which also offer recursive structures are of particular
interest in parallel computation. The interested reader is referred to Leighton’s book [Lei92],
and the proceedings on hypercube multicomputers [Hea87|. Cimikowski [Cim02]| approximated
the crossing numbers for a host of these interconnection graphs (amongst others) by means of
his two—page layout algorithms, which are described later in this chapter.

The hypercube of dimension d is denoted Qg, and it is a d-regular graph such that [V (Qy)| = 2¢
and |E(Qq)| = d2?7!. Every vertex is labelled with a unique d-bit binary string, and two
vertices are adjacent if their respective labels differ in a single bit. A more intuitive method
of constructing the hypercube Qg is to “extrude” the hypercube Q4 ;1. This “extrusion” effect
may be seen clearly for Q4 in Figure 4.13(d), which is an extruded version of the cube Qs in
Figure 4.13(c), which, in turn, is an extruded version of the square Qs.
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Figure 4.12: P,,, x C,, is planar.

(a) Qs. (b) Q4. (C) CCCs. (d) CCCy4.

Figure 4.13: Drawings of hypercube and cube connected cycle networks.

Sykora and Vrto used the embedding technique in [SV93], to find a lower bound to Q4. The
previously known best lower bound, due to Madej [Mad91], was q2¢+0-215 log?d v(Qq) for
o > 0. This improvement is a good example of the power of the graph—to—graph embedding
method. The results known for the crossing number of the hypercube may be seen in Table 4.3.

Other interconnection graphs

It is interesting to note that virtually all of the graphs presented in this section have a highly
recursive structure. Only the first class, the so—called class of “cube—connected—cycle” graphs, is
a derivative of the hypercube.

Cube—connected—cycle graphs: The cube—-connected—cycles CCC,4 of dimension d is obtained
from the hypercube Qg , by replacing every vertex v € V(Qy ) with a cycle Cy4_1 (i.e., a cycle with
d vertices), so that every vertex in the cycle is adjacent to a unique edge that was adjacent to v.
If the vertices in one of the above-mentioned cycles (i.e., the a cycle that corresponds to a vertex
of Q) are indexed according to the order of their appearance in a walk along the cycle, then, if
there is an edge joining a vertex in one cycle C' to a vertex in another cycle C’; the vertices have
the same indices. Two examples, CCC3 and CCCy, are shown respectively in Figures 4.13(c) and
(d). These examples were chosen so that it may be seen, by comparing them to Figures 4.13(a)
and (b), that they are derived from Q3 and Q4 respectively. Sykora and Vrto [SV93| proved the
lower bound to v(CCCy4) in

1 1

%M —(9d + 1247t < w(CCCy) < %M +3d%2%3 (4.25)
by means of the graph—to—graph embedding method, whilst the upper bound in (4.25) was
obtained from considering the maximum number of crossings that may be caused when replacing
vertices in a drawing of Q4 with cycles.



4.2. Analytical results for the crossing number problem - 69 —

L d | v(Qa) | Proved by
1,23 | = 0 This is easily seen from drawings
4 = 8 Harary, Hayes and Wu [HHW8§|
5 < 56 Harary, Hayes and Wu [HHW8S]
d>6| < (165/1024)47 — (2d®> — 11d + 34)29=3 | Faria and Herrera de Figueiredo [FAF00]
d > (1/20)47 — (d? 4 1)29-1 Sykora and Vrto [SV93]
d <? (5/32)4 — [(d? + 1)/2]291 Conjectured by Eggleton and Guy [EGT70]
Table 4.3: Crossing number results for the hypercube Qg4
NN
\ N XN ]
N/ l
< \Y4
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(a) BFs. (b) BF . (c) WBFi. (d) Ba.

Figure 4.14: Drawings of butterfly, wrapper butterfly and Bene§ graphs.

Butterfly graphs: The butterfly graph is also referred to as the “FFT network,” because it
was originally designed for the electronic implementation of Fast Fourier Transform algorithms.
The butterfly graph of order n is denoted BF,. There is a recursive structure in that the
graph BF, 1 is built by attaching two BF,, graphs by a “cross—switch.” For example, the BF3
graph shown in Figure 4.14(a) is isomorphic to the subgraph highlighted by the gray block in
Figure 4.14(b), which depicts the graph BF,. The “cross—switch” is constituted by the first
two columns of vertices in Figure 4.14(b), and all the lines between these vertices. It may also
be seen in Figure 4.14(a) that BF3 is constructed by the attachment of two BF, graphs via a
“cross—switch” — one of the BF subgraphs is highlighted by the gray block. Cimikowski [Cim96]

showed that r
AL R U

v(BF,) <

Wrapped Butterfly graphs: With reference to the Figure 4.14(b), the wrapped butterfly
graph of order n is constructed from the butterfly graph of order n by merging the first column
(i.e., the leftmost column) of vertices with the last column (i.e., the rightmost) of vertices. The
wrapped butterfly graph of order n is denoted WBF,,, and an order 3 wrapped butterfly graph
is shown in Figure 4.14(c). It was shown by Cimikowski [Cim96] that

4n
3XAT g on pon,

vWBF,,) <

Bene§ graphs: Like the wrapped butterfly graph, the Benes graph may be defined in terms of
the butterfly graph. The Bene§ graph of order n, denoted B, is formed by placing two copies of
the butterfly graph of order n, BF,,, back to back. This is illustrated in Figure 4.14(d), where it
may be seen that a horizontal mirror image of the butterfly graph (which falls in the right—hand
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side of the figure) in Figure 4.14(b), is attached to another (unmirrored) version of BF4 (which
falls on the left-hand side). Cimikowski [Cim96] found the upper bound

v(B,) <3x 4" =5 x 2" — 202" + 2.

(a) May. (b) RMy.

Figure 4.15: The mesh of trees, and the reduced mesh of trees.

Mesh of trees, and the reduced mesh of trees: The n x n mesh of trees, denoted M,,,
has its vertices placed in a regular n x n grid. In each row, there are n vertices, and these form
the leaves of a complete, balanced binary tree. The same is true for each column. Therefore,
there are a total of 2n complete binary trees. The mesh of trees is only defined for powers of two
(since otherwise not all of the binary trees would be balanced). An example of M, may be seen
in Figure 4.15(a).

The reduced n x n mesh of trees, denoted RM,, is defined as the mesh of trees, except that only
logy n of the rows, and logy n of the columns are the leaves of binary trees. Specifically, binary
trees are added to the (ilogyn + 1)th rows and columns respectively, where 0 < i < n/logyn.
The reduced 4 x 4 mesh of trees is shown in Figure 4.15(Db).

Cimikowski [Cim96] showed that

(n—2)°

v(Mp) < (n—2)> and v (RM,) < oz
2

4.2.3.6 Petersen graphs

The Petersen graph is famous for having served as the counter example to numerous propositions.
This gives it a certain appeal for use in the crossing number problem, and some good results
have been obtained for the general version of this graph.

Definition 4.2.7 The generalised Petersen graph P(n, k) = (V, E) has the verter and edge sets

V = {xl,yl 11 € Zn};
E = {{zi,ziv1} {x, vt {vi visn ) - @i i1, Y, Yier € V3 ]

Fiorini [Fio86| originally provided bounds and exact results for v(P(3n,3)) and v(P(4n,k)).
Unfortunately a flaw was found in his paper (according to Richter and Salazar [RS02]), which
invalidated his results. The known results for the Petersen graph are shown in Table 4.4.
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‘ n | k| v(P(n,k)) | Proved by ‘
Exoo0, Harary and
2n,3 2= 0 Kabell [EHKS1]
5 9 _ 9 Exoo0, Harary and
Kabell [EHK81]
n 9 = 3 Exoo, Harary and
if n > 7 and n odd Kabell [EHK81]
10 3 > 5 McQuillan and
< 6 Richter [MR92]
10 4 = 4 Lovreti¢ Sarazin [LS97]
3n 3 = n .
T o
3n +2 3 = n+2
3n k = k Fiorini and Gauci [FG02]
n k < (2-2/k)n+k2/2+Kk/2+1 Salazar [Sal04]
n k > 2/5[(1 —4/k)(n — k*)] + 4k? + 1 — k3 | Salazar [Sal04]

Table 4.4: Crossing number bounds for generalized Petersen graphs.

4.2.3.7 Complements of cycles

The complement of a cycle C,, is equivalent to the complete graph, with a cycle deleted. It is
denoted C,,. Guy and Hill [GH73] proved the results

=0 3<n<6
n " i =&(n—=32n-5?2 n="1,9
<5>(n —15)(n — 17)/4( 5 ) <v(Cp)q =gnn—4)(n—6)? n=238,10
< &(n—=3)2%n->5)?2 nodd,n>9
< 6i4n(n —4)(n—6)? neven,n > 10

using relatively ad hoc arguments for the exact cases, which gives little hope for a general method
of finding general values. The upper bounds follow from drawings, and the lower bound is derived
by using the standard counting method to find copies of K5, in C,,.

4.3 Computational methods

Although some of the analytical results and techniques discussed in § 4.2 may be applied to find
or approximate the crossing number of an arbitrary graph, the task becomes unmanageable for
large graphs which do not share enough structure with the graphs for which analytical results are
known. Furthermore, graphs that are highly asymmetrical may pose problems to the techniques
in the foregoing section. This gives impetus to the case for using computer algorithms to find or
approximate the crossing number of a graph.

As with most NP—-complete graph parameters, algorithms for the crossing number problem
come in two flavours: brute force exact algorithms, and heuristic approximation algorithms. The
former is typically of theoretical importance, and for application to small graphs, whilst the
latter is the only viable solution for all but the smallest graphs.
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4.3.1 Brute force (exact) algorithms

Only two brute force algorithms have been devised to date. For both algorithms, finding the
asymptotic running time has proven to be very difficult indeed — it is likely that this running
time depends not only on the number of vertices and/or edges of the input graph, but on the
structure of the graph itself.

4.3.1.1 The Garey—Johnson algorithm

This algorithm derives its name from Garey and Johnson who demonstrated that determining
the crossing number for a bipartite graph in the plane is an NP—complete problem [GJ83]. It
follows that, since most graphs contain relatively large bipartite subgraphs, determining their
plane crossing numbers is, in general, an NP—complete problem. Their algorithm is implicit in
their article, and it is rather simple as is typically the case with brute force algorithms.

In order to test whether v(G) < k for a graph G and a number k£ € N, the algorithm enumerates
every set P of k unordered pairs of edges in G. An unordered pair of edges corresponds to
a crossing between the two edges. When considering a set P of pairs of edges, the algorithm
must also enumerate all possible permutations X, of crossings with each edge e. For example,
Figure 4.16 represents the case where in a particular choice of edge pairs, the pairs {eg, €.},
{es,ep} and {es, e.} are present. Two permutations Xél) and Xe(z) of the order of e4, e, and e,
over e, are shown, corresponding to the orderings (eq,ep, e.) and (e, eq, ep) in Figures 4.16 (a)

and (b) respectively.

€a €p €c €c €a €p
€s €s

(a) (b)

Figure 4.16: Two different crossing configurations where e, e, €. cross es.

To determine whether a chosen set P of edge pairs, and a set of permutations X = {X, :
e is an edge involved in some crossings}, correspond to a graph drawing with at most & crossings,
the crossings are modelled as vertices of degree four. If the resulting graph is planar, then a planar
drawing of the resulting graph is a drawing of G with at most k crossings. If this occurs, then
the algorithm returns succesfully, otherwise if no set P produces a planar configuration, the
algorithm returns a failure, indicating that v(G) > k.

There is a subtlety here: it is easy to assume that the Garey-Johnson algorithm could be
sped up by having it avoid cases where adjacent edges cross — that is, by considering only
drawings in single—cross normal form. Archdeacon and Richter [AR88| showed that v(K,) =
v(KCpq) =1 (mod 2) where n,p,q are all odd, when all drawings of these graphs are considered
to be in single—cross normal form. Therefore, the Garey—Johnson algorithm would incorrectly
report, that the crossing number is, for example, larger than or equal to k, when k is even and
n is odd, for the graph IC;, when it is the case that v(IC,,) < k. This is because it would not be
able to find a drawing in single—cross normal form with an even number of crossings. That said,
there is no reason why the algorithm couldn’t be made to avoid adjacent edge crossings, as long
as these details are kept in mind.
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Garey and Johnson provided no details on how to implement this algorithm, but it is a relatively
simple exercise, and an implementation is given later in this thesis. Given a set of edge pairs P,
where the edge permutations are given by Xe(l), Xe(z), ceey Xe(g), the time required to enumerate
all such permutations is O(Xél) x XP x o x Xe(é)). However, the total running time of the
algorithm is difficult to estimate, since there seems to be no simple way of determining an
expression that will represent the cumulative running time of all edge sets P. In the worst case,
all k crossings occur on a single edge, resulting in a running time of O(k!) for enumeration of all
configurations in a set P. Now, k pairs of edges are chosen for each set P, and there are therefore
(Z) such choices, where ¢ = ('E (2g)|). The running time of the algorithm may then be expressed
as O(k!(g)) for the worst case. This does give a slightly distorted view of the real algorithmic
performance, since the average running time for the enumeration of crossing configurations in a
set P might be much smaller than k!, although it will almost certainly still be of an exponential
order.

4.3.1.2 The Harris—Harris algorithm

This algorithm is named after F.C. Harris Jr. and C.R. Harris, for their proposal [HH99| of
a brute force method for finding the crossing number of a graph. Their idea was to choose a
clockwise ordering II(G) = (71, 72,...,my(gy) of the edges around the vertices of a graph g,
where m; = (eq, €p,. .. ,€) corresponds to the ordering of the edges indicent to v; € V(G).

Due to a theorem by Heffter [Hef91|, there exists an orientable surface S (see § 4.1.4), so that G
has an embedding in S for which the clockwise ordering of the edges of G around its vertices in .S
is given by the orderings in II. The embeddings of subgraphs of G are of course also determined
by II (or technically by subsets of II, or subsets of the constituent sets m; € II), and there
certainly exists a spanning subgraph H of G, so that H may be embedded in the plane whilst
satisfying II (one may say that H is a planar spanning subgraph of G with respect to II).

Suppose that, in a drawing ¢ of G which realises v(G), the orderings of the edges of G around
its vertices is given by II'. Then, without any knowledge of ¢, one can draw a planar spanning
subgraph H of G with respect to II', so that it matches the drawing of H in ¢. Unfortunately,
there is no easy way to insert the remaining edges C' = E(G) \ E(H) into H to arrive at ¢ — in
order to achieve this, every possible way of inserting an edge e € C' must be attempted. However,
one at least knows the order of e on its indicent vertices, which constrains the way in which e
may be drawn.

Of course, it is in general also not possible to determine IT’, since this would require a drawing
realising the crossing number of G, which is not known. This means that the algorithm must
painstakingly enumerate all possible orderings IT'.

Description of the algorithm

The algorithm is divided into two parts. For each set of edge orderings II of a graph G, the
algorithm

1. draws G as far as possible according to II, without causing any crossings; then it

2. attempts to insert all remaining edges into the drawing of G by attempting each possible
way of inserting each edge.
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It remains to be described how the algorithm accomplishes each step. The solution to the first
part is to use the theory of rotational embedding schemes, which provides a way of constructing
a drawing of a graph in an orientable surface from the ordering II of its edges around its vertices.
The solution to the second part is a branch and bound search.

Rotational embedding schemes

)

Vs () () V2
.’U4 e U3 vy e U3 N (%}
(a) (b) (c)
V2 V2 ' v2
U3 U3 U3

(d) (e) ()

Figure 4.17: A step by step example of how the Harris—Harris algorithm proceeds with KCs.

Heffter [Hef91] introduced the notion of a rotational embedding scheme for the algebraic descrip-
tion of graph embeddings in orientable surfaces. The concept was extended to non—orientable
surfaces by Stahl [Sta78]. White and Beineke’s description of this notion will be adopted here
[WBT8].

For a graph G, and a vertex v; € V(G), let E(v;) denote (as before) the edges adjacent to v;.
Consider the edges in E(v;) as being directed away from v;. Let m; be a cyclic permutation of
the edges in E(v;). Hence, every edge e = {v;,v;} results in the two arcs (v;,v;) € E(v;) and
(vj,v;) € E(vj). Also, define m; as an operator, so that m;(v;,v;) = (v, vi), where (v;,v;) is
followed by (v;,vg) in ;.

An embedding of a graph into a surface is said to be 2—cell if it has the property that every region
may be deformed to a disc. For example, in the embedding of K4 into the torus in Figure 4.18(a),
all three regions, Ry, Re and R3 may be deformed to discs; this embedding is therefore a 2—cell
embedding. However, in the embedding of K4 in Figure 4.18(b), the region labelled R4 cannot
be deformed to a disc; consequently, this embedding is not a 2—cell embedding. Embeddings of
connected” graphs into the sphere are always 2—cell. This is also the only surface to which the
Harris—Harris algorithm is applied.

"If a graph is disconnected, then the region into which all of the components are drawn will not be deformable
to a disc.
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Ry
e (R

(a) A 2—cell embedding. (b) An embedding that
is not 2—cell.
Figure 4.18: An illustration of two embeddings of K4 into the torus. The first embedding is
2—cell, whilst this is not true of the second embedding, since the region R4 cannot be deformed
to a disc.

The following theorem shows that, for an arbitrary graph G and for any ordering II of the edges
of G around its vertices, an embedding of G may be found on some orientable surface, such that
the orderings of the edges around the vertices of G correspond to II. A proof of the theorem, by
White and Beineke, may be found in [WBTS].

Theorem 4.3.1 Each choice of permutations 1(G) = (m1,72,..., Ty (g)) uniquely determines
a 2—cell embedding of G in an orientable surface S, which itself is specified by the embedding; S
may be so oriented that, at every vertex v;, the arc (v;,v;) is followed by m;(vi,v;) = (vi, vg).
Conwersely, for any 2-cell embedding of G in an orientable surface S’, there ezists a unique
corresponding set of permutations (71, 7o, ... ,7T|V(g)|) which yields the embedding. |

As a running example for the description of the Harris—Harris algorithm, an embedding of /5 will
be considered, where the edge orderings II correspond to a drawing of K5 realising its crossing
number. The vertices are numbered v; through vs. The edge orderings II = (71, w9, 3, T4, T5)
are given as:

™ (v1,v2), (v1,v3), (v1,v4), (v1,05) ~ (v2,v3,04,V5)
T (1)2,1)1),(1)2,?)5),(02,1)3),(02,1)4) ~ (1)171)5,1)3,1)4)
w3 (v3,v1), (v3,v2), (v3,v5), (V3,v4) ~ (v1,v2,v5,04)
T4 (1)4,1)1),(1)4,?)2),(1)4,1)3),(1)4,1)5) ~ (01702,1)371)5)
5 (’1)5,’01),(’U5,U4),(U5,U3),(U5,’UQ) ~ (vl,v4,v3,v2)

For a finite set S, let f be a bijection f : S — S. Now for an element z € B, a sequence
x, f(z), f(f(x)),... of successive applications of f to its previous applications must eventually
arrive at an answer equal to z, due to the fact that f is a bijection. Such a sequence is closed
under the application of f, and is called an orbit of f in S. A bijection f is said to generate its
orbits, and the orbits of f partition S.

Define the mapping on directed edges II* (v;,v;) = 7;(vj,v;). The orbits of IT* (v, v;) = 7 (v, v;)
define the different regions. Using this result, the regions for K5 may be filled in one by one.

The region shown in Figure 4.17(a) may be mapped out in the following way. Starting with
(v1,v2), it is seen to be followed by II*(v1, v2) = (ve, v5), which in turn is followed by IT*(ve,v5) =
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(vs,v1). Since IT*(vs,v1) = (v1,v2), it may be seen that the orbit of IT*(vy,v2) corresponds to
the mapped out region.

In the same fashion, the regions in Figures 4.17(b)—(d) are mapped out respectively by the orbits
of IT*(vy,vs), IT*(ve,v1) and IT*(vy, vs).

U1 l U1 U1

V6 V9 Vg V9o Ve () Ve (%)

Us U3 Us U3 U5 U3 U5 U3

Vg Vg Vg Vg

(a) (b) (c) (d)

Figure 4.19: In general, there are multiple ways to insert crossing edges.

Insertion of edges

All edges which have to be inserted into G after the first part will cause crossings in G, and for
the purposes of this section, they are called crossing edges of II.

From Figure 4.17(e), it may be seen that one cannot draw K5 any further without incurring a
crossed edge. According to II, the crossing edge {v2,v4} must be drawn so that it has one end
in the region marked R; and its other end in the region marked Rs. In this case {ve,v4} must
cross {v1,v3} in order to leave Ry, since it is adjacent to both {vy,vs} and {vs,v3}, and drawings
are required to be in single cross normal form. Also, it cannot leave Ry other than by crossing
{v1,v3}, for the same reason. In this case, the way that {ve,v4} should be drawn is completely
specified, and Figure 4.17(f) shows the action of inserting the edge.

In general, however, the way in which the crossing edges have to be inserted is not specified to such
an extent as for the previous example. Consider a partial drawing of K¢ shown in Figure 4.19(a),
which is a drawing of a largest planar subgraph of g with respect to the ordering I1(K¢) given
by the full drawing of K¢ in Figure 4.19(b). In this partial drawing, the edge {v1,vs} may be
inserted in a number of ways, two of which are shown in Figures 4.19(c)—(d). Now, for each of
the possible ways that {v1,vs5} may be inserted, the total number of ways in which {vq,v3} and
subsequently {vs,vg} may be inserted must also be enumerated. At each insertion of a crossing
edge, the total number of regions increases, and therefore the remaining edges have an increasing
number of placement options.

The insertion of crossing edges is easily modelled as a branch and bound algorithm, since the
branches of the search tree correspond to the different ways in which crossing edges may be
inserted. The bounding is achieved by storing the minimum number of crossings found so far,
and terminating a search on a branch of the search tree when it becomes apparent that the
current configuration will result in more crossings than the best configuration found so far.

General remarks

Although the first part of the algorithm, which creates planar drawings corresponding to a given
ordering II, reduces the total amount of work that the algorithm must do, by and large, most
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work is done in the branch and bound phase with the insertion of crossing edges. It should not
be underestimated that this leads to a combinatorial explosion of the worst case complexity, even
for small graphs like Kyp.

Furthermore, the procedure has to be repeated for every possible ordering II. The total number of
these permutations is of the order O(|V(G)||V (G)[!) for complete and bipartite graphs, since the
degree of each vertex in such a graph is of order O(|V(G)|), meaning that there are O(|V(9)|!)
orderings of edges around each vertex. Doubtless, many of these orderings will be equivalent
under symmetry considerations, but this is hardly an easy observation to exploit in general.

Thus, the Harris—Harris algorithm has the problem of worst case complexity explosions at two
levels, and it seems, at least at a superficial level, that the Garey—Johnson algorithm does
less work. The Garey—Johnson algorithm also lends itself to some easily exploitable symmetry
considerations as will be demonstrated later (although there are also many cases for the Garey—
Johnson algorithm where it would take more work to discover symmetries than just to let the
algorithm run its course).

4.3.1.3 The Pach & Toth odd crossing number algorithm

Pach and Toth [PT98] developed an algorithm for determing the odd crossing number of a graph
as part of their proof that the odd crossing number problem is NP—complete.

The algorithm rests heavily on Tutte’s crossing algebra discussed in § 4.2.1. Pach and Téth
considered two types of transformations on graph drawings. The first transformation is Tutte’s
edge “pulling” transformation, but for the second transformation, they noted that since Tutte’s
transformations do not account for any crossings between adjacent edges, a transformation was
needed to facilitate this.

They defined a transformation which only alters drawings of adjacent edges where the edges are
in regions that are very close to the vertices of a graph. In these regions, the order of the edges
as they leave the vertex may be permuted to force crossings between pairs of edges incident to
the vertex. This is illustrated in Figure 4.20, and is described in more detail later in the section.

As with Tutte, Pach and T6th took an algebraic view of crossing configurations and the transfor-
mations thereupon. Firstly, they adopted a seemingly superficial shift from Tutte’s approach, by
viewing his crossing chains as vectors (this is achieved in the same way that a polynomial would
be represented in vector form). More importantly, since only the parity of the number of cross-
ings between a pair of edges is of relevance for the odd crossing number problem, they considered
all operations between vectors corresponding to crossing configurations and transformations to
occur modulo 2. This converted Tutte’s crossing chain groups, and the groups resulting from
Pach and T6th’s own transformation, into subspaces of the vector space V(g, 2), where ¢ denotes
the total number of pairs of edges.

The algorithm commences with a vector T representing the odd crossing configuration of a given
drawing. Transformations are applied by the addition of vectors (corresponding to crossing
chains) to &, modulo 2. The resulting odd crossing configuration completely specifies a drawing,
and therefore, the algorithm only considers vector operations, and explicit drawings do not have
to be taken into consideration.

Of course, it still remains to show how the algorithm enumerates all possible crossing configu-
rations. Pach and To6th’s important result was to show that the odd crossing configuration of
any drawing of a graph in normal form is expressible as the sum of any other crossing configura-
tion and the appropriate transformations on that configuration (or in the terminology of vector
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spaces, any odd crossing configuration of a graph is in the span of all transformations applied to
any other crossing configuration).

Crossing transformations

As has been stated, the approach of Pach and Téth is very close to that of Tutte [Tut70], except
that they viewed crossing chains (§ 4.2.1.1) as vectors, where the vector components correspond
to the A(ij, kf) coefficients in the crossing chains (this is virtually the same method by which
a polynomial is represented as a vector). Therefore, for a graph G, and a drawing ¢ of G, the
crossing chain
2(¢) = > A(ij, ke)[ij, kf] (4.26)
Q(9)

corresponds to a vector
i‘(gﬁ) = [/\1 Ao ... )\q],

where ¢ = (|E(2g)|)7 and where the terms \;, 1 < i < g are the coefficients of the terms in (4.26).
By the same method, a crossing coboundary c(ij, k) (§ 4.2.1.2) may be written as a vector ¢(ij, k).
Clearly, using this notation, the crossing chain x(¢) + ¢(ij, k) may be interpreted as the vector
Z(¢) + ¢(ij, k) under vector addition.

For the odd crossing number problem, it is only relevant whether a pair of edges cross an even
or odd number of times. Therefore Pach and T6th take the vectors Z(¢) and ¢&(ij, k) modulo 2,

to form, respectively, the vectors X4 and Yvk’{%vj} (using their notation). Hence

Xy, = (¢) (mod 2) and (4.27)
Yo foiv;} - = €(ig, k) (mod 2). (4.28)

Denote the set of all crossing coboundary vectors Y, as Vg, that is
Vg ={Yye:v€V(G), e € E(G) and v is not adjacent to e}.

The set of vectors 37g is a vector space under addition and scalar multiplication modulo 2. This
vector space is a subspace of the vector space of vectors with length ('E (2g)|)’ and vector operations
modulo 2, and it describes all possible transformations that are due to the action of “pulling”
edges over vertices. It cannot, however, change the number of crossings that occur between two
adjacent edges.

Crossings between adjacent edges

To change the number of crossings between a pair of adjacent edges, Pach and Téth define a
transformation, which may best be described as “twisting” the edges around each other in the
vicinity of their shared vertex. In a drawing ¢ of a graph G, for a given vertex v € V(G),
the edges leaving v induce a natural clockwise ordering — for example, in Figure 4.20 (a), the
ordering is e, eg, e3, €4, €5 and eg (or any cyclic shift of this ordering). Should one wish to
change the crossing situation between two edges, this change should not affect the way in which
edges that are not incident to v, are crossed. For this reason, any changes should occur within
a distance ¢ from v, leaving the edges unchanged beyond the distance €, where ¢ is a small real,
positive constant — this ensures that the original clockwise ordering of the edges remain intact
for distances greater than e.
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Figure 4.20: “Twisting” a pair of adjacent edges, causes a crossing between the pair.

The only way to change the number of crossings between two edges that are adjacent to v, is to
change their ordering, relative to one another, as they leave v. For example, the original relative
order had e; followed by es, but in Figure 4.20(b), es is followed by ey, which forces a crossing
between the two edges. In the same way, crossings are caused for the pairs e; & es, es & e3, e4
& eg and for e5 & eg. Since the relative order of e4 and es; did not change, there is no crossing
between these edges.

For a vertex v; € V(G), with degree d, the edges incident to v; are labelled as {e}, €}, ..., ek},
where the labels are assigned in increasing clockwise order of the edges around v; (i.e., the first
edge is e}, the second is e}, and so on until the last, which is labelled eil). Now, for a particular
permutation o; of the labels of the edges around v;, it is found, if the labels of the two edges,
labelled ¢! and e}, a < b are swapped relative to one another by o;, that o;(a) > ;(b), as
otherwise o;(a) < 0;(b). Therefore it can easily be determined whether a pair of adjacent edges
e, f with common vertex v;, cross each other an odd number of times. The indicator function
z(e, f,i) is defined as 1 when e crosses f an odd number of times due to o;, and 0 otherwise.
That is , .

1 ife=e,, f=¢€jand (o — B)(oi(a) —0i(3)) <0

0 otherwise.

(et = {

The total change that a permutation ¢; has on the odd crossing configuration is expressed by
the vector Z,, ,, (Pach and T6th’s notation), where the components are the indicator functions
z(e, f,i) for all e, f € E(G), e # f. Using standard vector notation, one may write

Zvso; = (2(6,f))e.feB(G) e

Denote the set of all “edge twist” transformations Z,, ,, as Zg, that is

Zg ={Zy, 0, vi € V(G) and any permutation o; of edges incident to v;}.

Relating the odd crossing configurations of different drawings

From the preceding discussions, the vector space which describes all distinct odd crossing con-
figurations obtainable from the given drawing ¢, is the space

\I’:X¢+5}g+2g.

In order for Pach and T6th’s algorithm to compute the odd crossing number for a graph G, it
must be shown, for any drawing ¢’ of G distinct from ¢, that X¢/ € V. This is true, because the
algorithm will commence with the drawing ¢, and it must be able to generate the odd crossing
configuration of any other drawing, if it is to find the odd crossing number of G.
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Pach and Téth showed that the odd crossing configuration of any drawing of G may be related
to the odd crossing configuration of a so—called convex drawing of G. A convex drawing in this
context is a drawing of a graph where all of its vertices are placed equi—spaced on a unit circle,
and all edges are drawn as straight lines (except for where three or more edges cross at a single
point, which is corrected by the procedure described in § 3.1.2). An example of a convex drawing
of K5 is shown in Figure 4.21(f).

() (e) ()

Figure 4.21: Transformations of the Pach—T6th algorithm to render a graph drawing convex.

The following steps are followed to transform the odd crossing configuration of an arbitrary
drawing of a graph into the odd crossing configuration of a convex drawing of that graph. The
graph K5 is used as an example:

1. Given a drawing ¢ of K5, a topological transformation may be applied to ¢ which will place
the vertices of K5 equi—spaced on the unit circle, without affecting the way that edges cross
each other in ¢. This transformation is shown for a drawing of 5 in Figure 4.21 (a), which
is transformed to the drawing ¢9 in Figure 4.21(Db).

2. The next step towards transforming ¢- into a convex drawing, is to change the order of
the edges around the vertices, so as to reflect the order of the edges in the convex drawing
¢c shown in Figure 4.21(f). This may be achieved by a suitable number of edge twist
transformations from the space Zi,, from which the drawing ¢3, shown in Figure 4.21(c),
results.

3. Some sections of edges in the graph may run along the outside of the unit circle. As may
be seen from Figure 4.21(d), the edge e runs outside the unit circle, and passes only the
vertex v. A Tutte transformation, is applied to e and v, as is also shown in Figure 4.21(d).
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It may be verified that the odd crossing configuration after the application of a Tutte
transformation from the space )i, is the same as the odd crossing configuration when
“pulling” the entire edge within the unit circle, as shown in Figure 4.21(e). This is applied
to every edge — a number of Tutte transformations may be required for a single edge,
depending upon how many vertices it passes as it runs outside the unit circle.

General remarks

Since a crossing configuration is represented as a binary vector V' where each component in V

corresponds to the parity of the number of crossings between a pair of edges, there are no more
[E(9)] .. . . . . . C .
than O(2( 2 )) distinct configurations in V' crossing configurations. Given an existing odd

crossing number configuration, based on transformations Y from )g and Z from Zg, a certain
amount of computation time is required to generate a new transformation. The time required
for both cases is considered.

1. The transformations in )g correspond to general cross-coboundaries, i.e., transforma-
tions based on the addition of a number of initial cross—coboundaries. The initial cross—
coboundaries correspond to the way in which each edge that is not adjacent to a vertex is
drawn around that vertex, so as to cross its adjacent edges in a certain manner. Therefore,
inspection of an initial cross-coboundary for a vertex v and edge e takes O(degg v) time. A
class of dense graphs (for example the complete graphs or the complete bipartite graphs) has
the property that >, .y/(g) degg v = Q(|V(G) 2), and the number of edges to which a vertex
is not adjacent is O(|E(G)|). Therefore, consideration of the cross—coboundaries for all ver-
tices takes Q(|E(G)||V(G)|?) time in the worst case. Updating of the cross-coboundaries
of all vertices to a new cross—coboundaries can be achieved in O(|E(G)||V (G)|?) time.

2. The transformations in Zg correspond to “edge twists” of the edges incident to a vertex.
Computing a new permutation from an existing permutation may be performed in an
amount of time that is linear to the number of elements. Therefore, this process takes
O(degg v) time for a vertex v. In a class of dense graphs, >, .y (g deggv = QUV(9)?)
and therefore this step takes Q(|V(G)|?) time at worst. The time required for this step is
also bounded from above, so that it may run in O(|V(G)|?) time.

The possibility exists that both of these transformations are applied at the same time, but the
running time of the former transformation generally dominates the running time of the latter.

Thus, each transformation may be performed in O(|E(G)||V (G)|?) time, which results in a worst
E
case running time of 0(2(‘ ) |E(G)||V(G)|?) for the entire algorithm.

4.3.1.4 Székely’s independent—odd crossing number algorithm

Székely’s algorithm [Szé04] computes the independent odd crossing number of a graph, combining
some ideas from Pach and To6th’s algorithm, and from two—page book layouts. Like Pach and
Téth’s algorithm, it maintains a vector of binary values, which corresponds to whether a pair of
non-adjacent edges cross each other an even or odd number of times, and like in two—page book
layouts, it obtains crossing information by determining whether a pair of edges are alternating
or not.

Székely considered drawings of graphs in which vertices are placed equi—spaced on the unit circle
(i.e., he considered circular drawings, except that edges are allowed to cross the imaginary circle
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in his drawings). As may be seen from Pach and T6th’s algorithm (§ 4.3.1.3), any drawing ¢
of a graph G may be transformed to a drawing ¢’ of G in which the vertices of G are drawn
equi-spaced on the unit circle, without changing the way that edges of G cross each other (in
other words, the two drawings ¢ and ¢’ are topologically equivalent).

Using this model, Székely showed that the parity of the number of crossings between a pair of
non—adjacent edges e and f depends only on two binary combinatorial properties. The first
property is whether the vertices of e and f alternate each other or not. The second property
relates to the way that edges are drawn. A pair of vertices may be “separated” by an edge, or
not.

Vertex separation

For the purpose of understanding the notion of vertex separation, rays are drawn from each
vertex, outwards from, and perpendicular to the unit circle, stretching out into infinity. This is
shown in Figure 4.22(a). For a vertex v;, denote the ray emanating from it by r,,. These rays
are not part of the graph drawing — they are merely an explanatory tool.

(a) A depiction of how rays (b) Rays connected to an (c) An edge may cross rays
are drawn from vertices. edge splits the plane. to split the plane into more

than two regions.

Figure 4.22: Vertex separation described by means of imaginary rays emanating from the vertices.

When an edge e = {v;,v;} is drawn, the line r,, U ¢(e) U 7, denoted pg(e), partitions the plane
into at least two regions. This is shown in Figure 4.22(b). The edge e is allowed to cross r,
and 7,; multiple times, and in this case the plane is partitioned into three or more regions, as
shown in Figure 4.22(c). The line p,(e) always induces a two—colourable map of the plane. This
is true, since where py(e) crosses itself, the “loops” that form, fall entirely within either a gray or
white region. Since they are only adjacent to that region (from the perspective of a map), they
may be coloured using the opposite colour to that with which the region is coloured. This may
be seen in Figure 4.22(c).

The bicolouring of the plane by py(e) forms a bipartition of the vertices V(G) \ {v;,v;}, since
vertices cannot intersect any edges nor any rays (and they must each therefore fall wholly within
a gray or white region). A drawing of e is said to separate a pair of vertices, if one vertex is in a
gray region, and the other within a white region.

Let f be another edge of G, with end vertices vy and vy. Suppose that e separates vi and vy,
where v is in a gray region, and vy in a white region. A Tutte transformation, whereby e is
“pulled” across, say v, will cause vy and vy not to be separated anymore, since v; will now be
in a white region. The transformation also changes the number of crossings between e and f by
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exactly one, and hence the parity, since it crosses both f and r,, once due to the transformation,
but only the former has any impact (recall that the ray is not really present). Now, v, and vy
may again be separated by another Tutte transformation. From this, it may be concluded that
the separation that the edges e and f induce on each other’s incident vertices, determines the
parity of the number of crossings between the pair of edges.

Calculating the parity of the number of crossings between two edges

If the vertex separation is kept constant, then the only other variable which has an effect on the
parity of the number of crossings between a pair of edges is whether or not the incident vertices
of the edges are alternating. For a pair of edges e and f, this makes for a total of 6 different
configurations based on vertex alternation and vertex separation, that determines the parity of
the number of crossings between them.

The configurations are easy to describe: for each of the two possible ways in which the vertices
of e and f can be made to either alternate each other or not, it can happen that either

1. e and f both separate each other’s vertices,

2. e separates the vertices of f, but f does not separate e’s vertices (or the reverse of this
situation),

3. neither e nor f separate each other’s vertices.

In order to implement an algorithm which employs the concepts of vertex alternation and of
vertex separation, some additional notation must be introduced. Vertex alternation of four
vertices v;, v, v, and vy is indicated by the function A(ij, k¢), defined as

1 if v; and v; alternate v;, and vy

4.2
0 otherwise. (4.29)

Atii.vt) = {
Clearly it follows that A(ij, k¢) = A(k¥,ij). Vertex separation obviously does not possess this
symmetric property. For an edge e = {v;,v;}, its vertex separation of the vertices v;, and vy is
expressed as

1 if vy and vy are separated by {v;,v;}
(k) = ’ 4.
Sij (kL) { 0 otherwise. (4.30)

For convenience, S;;(kf) is taken to be zero when the edge {v;,v;} does not exist.

Using the above notation, the six possible crossing configurations for two edges {v;,v;} and
{vk,v¢} are shown in Figures 4.23(a)—(f) (recall that there is an infinity of equivalent configura-
tions, for each depicted configuration — this is easy to see from the way that Tutte transforma-
tions generate different drawings, but equivalent configurations). From these considerations, a
parameter A% (ij, k¢), which is similar to Tutte’s A(ij, k¢) parameter (§ 4.2.1), is defined as

A (g ko) = A(if, k0)Si; (k0)Ske(if)
+A(ij, k€)[1 — Sij(kO[1 — Ske(ij)]
+[1 — A(ig, kO))[1 — Si;(k€)] Ske(if)
+[1 — A(ig, k€)]Si; (kO)[1 — Ske(ig)]- (4.31)

The parameter \(9) (ij,kC) describes the parity of the number of crossings between the edges
{vi,v;} and {vy,v,}. Since vertex separation simply defines a bipartition of vertices of G other



-84 — Chapter 4. Literature review

ﬂvl
A O

“’I)J “’I)J
(a) A(ij.k0) = 1, (b) A(ijkt) = 1,
Sij(kl) = 1, Ske(ij) = Sij(k0) = 1, Ske(ij) =
1. 0.

(d) Az, kt) = 0, (e) A(ij,kt) = 0, (f) A(ig, k) = 0,

Sij(kl) = 1, Ske(ij)
1.

Sij(kl) = 1, Ske(ig) Sij (k) = 0, Ske(ij)

0. 0.

Figure 4.23: All configurations which affect the parity of the number of crossings between two
edges.

than those of the edge which partitions them, one may simply discard the notion of drawings,
and associate such a bipartition of vertices with each edge of G. Denote the set of bipartitions
corresponding to a drawing ¢ by B(¢). It may be seen that each possible bipartition corresponds
to a drawing (since edges may be woven around vertices in the desired manner). Thus, for a
given drawing ¢ of a graph G, the independent—odd crossing number of G corresponding to ¢ is
given by
Vil (@) = > A (ij, ko).
{vi.0;} {vg v} EE(G)
{viv;}#{vg,ve}

The independent—odd crossing number of G may now be defined simply as

V9(g) min  {v)(G)}.

" All bipartitions B

A point worth examining is that different orderings of vertices around the unit circle need not
be considered. This is true, because given the correct topological transformation, any drawing
may be transformed with its vertices in some desired sequence on the unit circle, so that the
configuration of edge crossings remain unaffected (i.e., not just the parity remains unaffected,
but the exact number of crossings remains unaffected). Thus, an implementation of Székely’s
algorithm need only choose an initial arbitrary ordering of the vertices of a given graph around
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the unit circle, and keep it fixed. The running time of the algorithm is determined by the number
of bipartitions of vertices for each edge, and the time complexity of computing the number of
independent—odd crossings that result from a configuration of bipartitions. Each term A(®) (ij,k0)
in (4.31) may be computed in constant time. The function S;;(k¢) defined in (4.30), depends on
the partitioning of vy and v, by the edge {i,j}, and since this information is explicitly stored
(perhaps as a vector of elements), computation occurs in constant time; the same holds for the
function Ske(ij). Because the vertex alternation is fixed throughout the algorithm, it is possible
to construct a lookup matrix, indexed by edges of G, which (say) contains 1 if the two index edges
alternate and 0 otherwise — this could be used to determine A(ij, k¢), as defined in (4.29), in

constant time. There are at most ('E (2g)|) such terms. Therefore, the computation of ng 6) (G) for

a set of bipartitions takes O(('E (29)|)) time. For each edge there is a corresponding bipartition of
[V (G)| — 2 vertices. There are therefore 2!V (9)1=2 configurations for a given bipartition. In total,
there are therefore |E(G)[2IV(9)I=2 bipartition configurations for all edges. The total running
time of the algorithm is thus O((|E(2g)|)|E(g)’2\v(g)|_2)‘

4.3.2 Heuristic methods

One may see from the exact algorithms discussed in § 4.3.1, that their application to all but
the smallest graphs (where small certainly means a graph with fewer edges than, say, Kjo) is
computationally impractical. This situation has naturally led to the development of heuristic
algorithms.

4.3.2.1 Recursive graph bisection

Leighton [Lei83] pioneered the idea of recursive graph bisection — that is, given a graph G, one
bisects G into two components G; and Gs, each of which is again bisected, and so on at each step,
until only isolated vertices remain. Bhatt and Leighton [BL84] used this notion to develop an
algorithm for graph layout that provides a drawing with the number of crossings within a factor
of order log(|V (G)|)? from the crossing number of the graph. Their methods were all aimed at the
design of electronic circuits, and consequently, due to the restrictions that such designs impose,
they only considered graphs with a maximum degree of four. Their ideas were later generalised
by Shahrokhi, Székely, Sykora and Vrto [SSSV96b] for graphs with arbitrary maximum degrees.

The approach discussed in this section is based on Shahrokhi, Székely, Sykora, and Vrto’s work.
A central notion to recursive graph bisection, is that of a decomposition tree, with which to
represent the recursive bisection.

Definition 4.3.1 A recursive bisection of a graph G leads to the notion of a decomposition
tree, which is a binary tree Tg, whose leaves correspond to isolated vertices of V(G), and where
the interior vertices of Tg correspond to the sets of edges from E(G) whose removal bisected its
corresponding subgraph (of G) into two smaller subgraphs. |

An example of a decomposition tree, Tk, ,, corresponding to a decomposition of K4 may be
seen in Figure 4.24. The bold edges represent the edges whose removal bisects the components
at each level, and these bold edges are associated with the vertices of the decomposition tree
within which the subgraphs are drawn.

For a graph G let Gy and G, be components obtained from a bisection of G. Now, a one page
drawing ¢ of G may be constructed by creating disjoint (in the sense that the drawings do not
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Figure 4.24: A bisection tree for Ky 4.

intersect one another) one—page drawings ¢; of G; and ¢o of G2, and then by inserting the b(G)
edges that were removed to bisect G. Let /4, represent the maximum number of edges that will
be crossed in ¢; when drawing an edge from G; to Gz. Similarly, let /4, denote the maximum
such number of edges in Gs. It must be true that

b(G)

vs(G) < 5, (Gr) + V5, (G2) + < 2

) + (loy + £g,)b(9),

since every one of the removed edges may cross every other, which accounts for (b(zg)) crossings,
and every removed edge may cross the maximum number of edges in G; and in Go, hence the
term (¢4, + £4,)b(G). Now, the fact that the bisection width of a graph may be used to bound
its crossing number from below, as may be seen from (4.12), allows for the bisection width terms
to be replaced by crossing number terms. Hence, the obtained crossing number v4(G) of G is
bounded by a function of its crossing number v(G). This idea is applied recursively from the
bottom up (i.e., beginning with isolated vertices) in the bisection tree.

The following theorem, due to Shahrokhi, Székely, Sykora and Vrto, is a generalization of
Leighton’s result for graphs with a maximum degree of four.

Theorem 4.3.2 With an approximation algorithm for bisecting an n—vertex graph G such that
the algorithm removes at most R(n)b(G) edges, where R(n) is a non—decreasing measure of error,
a one—page drawing ¢ of G may be constructed so that

vo(G) = O (logn? RM)PW(@) + 3 [degg(v)]?)). (4:32)

veV(G)

Proof: Construct a decomposition tree T' from G by recursive application of the bisection
algorithm to G. Since a one-page drawing ¢’ of G is to be constructed, all vertices are drawn
on the spine of a book, and for each component H which is partitioned into components H; and
Hy, draw all the vertices of H; before drawing the vertices of Hy. An edge {v;,v;} € E(G) is
drawn as a half circle, of which the diameter is equal to the distance from v; to v; on the spine.
From the preceding discussion, it is known that

V¢(H) < Vg, (Hl) + Vo (HQ) + <R(n)2b(H)> + (5(;51 + €¢2)R(n)b(7{), (433)

where (4, and {4, denote the maximum number of half circles (which are edges) that enclose any
vertex in H; and Ho respectively. The total number of half circles that enclose any vertex in ‘H
may also include the R(n)b(H) edges, and so

ly < max{ly,, Ly, } + R(n)b(H). (4.34)
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Since the decomposition tree has depth O(logn), the above recurrence relation (4.34) is easily
solved for G as
Ly = O(R(n)b(G)logn). (4.35)

Substitution of (4.35) into (4.33), yields
vs(H) < vg, (H1) + g, (H2) + O([R(n)b(H)]* log n). (4.36)

Further application of the bound (4.12), which when rewritten as

b(G))2 < 1.58<161/(g) + Y [dg(v)]Q), (4.37)
veV(G)
yields
vo(H) < vg, (M) + v, (Ha) + O([RM)PW() + S [drew)]?) logn). (438)
veV (H)

Now it remains a simple case of induction to show that:

vs(9) = O([R(M)P((G) + Y [dg(v)]?)llogn]?) (4.39)

veV(G)

(note the extra factor of log |V (G)|). ]

Chung and Yau [CY94] developed a bisection algorithm that finds solutions within a constant
factor of the optimal value of v(G). Therefore, the factor R(n) in the above theorem may be
replaced by a constant. The bisection has to be performed |V (G)| times for a graph G. If
a bisection algorithm runs in O(B(G)) time, then the entire process can be accomplished at
most in O(|V(G)|B(G)) time. This might be an over—estimation, since the time required to find
bisections diminishes as the algorithm progresses down the bisection tree (because the graph
components become smaller). The process of the construction of a drawing of K44 from its
bisection tree shown in Figure 4.24, is shown for the different recursive steps. Figure 4.25(a)
corresponds to the third level of the bisection tree, whilst Figures 4.25(b) and (c) correspond
respectively to the second and first levels of the bisection tree.

2NN N a A A RN AR @

(a) (b) (c)

Figure 4.25: The process of reconstructing a drawing of K4 4 from its bisection tree.

Finally, it should be noted that Bhatt and Leighton’s layout algorithm constructs a drawing of a

graph in a special type of binary tree with the same structure as the bisection tree. The layout

tree contains meshes instead of vertices, and for a graph G which must be drawn, the vertices of

G are embedded into the meshes which correspond to leaves of the tree, and all edges are routed
?

through the lines of the meshes. Bhatt and Leighton called this graph the “tree of meshes,” an
example of which is shown in Figure 4.26, and as may be seen, the meshes are halved along
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their longest sides for each step that is taken down towards the leaves, such that the leaves are
1 x 1 meshes. Because the leaves and meshes on levels just above the leaves do not have a high
number of edges emanating from them, it might not be possible to lay out a graph in a tree of
meshes with the number of levels that appear in the bisection tree of that graph. This problem
is avoided by using a tree of meshes with a larger number of levels, and by truncating it after n
levels, where n is the number of levels present in the bisection tree.

Therefore, the depth of the tree of meshes is O(log |V (G)|) and since the maximum number of
crossings in each mesh is easily computed (it cannot be more than the total number of points in
the mesh), to arrive at the results for this section. However, as has been stated, their results were
only valid for graphs with a maximum degree of four. Shahrokhi, Sykora, Székely and Vrto’s
method is easier to implement, and more general.

truncation line

MBI

Figure 4.26: Bhatt and Leighton’s tree of meshes.

4.3.2.2 Two—page layout algorithms

In principle, two—page layout methods are a generalization of one-page layouts. Therefore, any
algorithm which produces a one—page layout is, by virtue of this observation, also a two—page
layout algorithm (albeit a limited one). A new problem faced with two-page layouts, is to decide
upon which edges are placed on which pages. This is an NP-hard problem [MNKF90].

Nicholson’s heuristic

Nicholson’s heuristic [Nic68] is one of the oldest heuristics for obtaining graph layouts, and was
introduced in 1968. The algorithm creates an initial layout in a greedy fashion, followed by a
post—optimization phase.

In the initial phase, for an input graph G, the algorithm starts by first placing a vertex with
the maximum degree A(G) on the spine of the book. For each following placement, it finds
the vertex v with the highest connectivity to vertices already on the spine, and places v in a
position on the spine so that as few as possible crossings are caused (this means that at each
position which is attempted, the optimal placement of edges adjacent to v must be found).
In the worst case scenario, it takes |V(G)|O(A(G)) time to find the vertex with the highest
connectivity to the vertices already on the spine, since each vertex not on the spine must be
enumerated, and all vertices adjacent to each such vertex must be enumerated to determine the
level of connectivity to the vertices on the spine. For a dense graph, this time is O(|V(G)|?).
The selected vertex must be inserted into each position along the spine, and for each position,
it might be necessary to shift O(|V(G)|) vertices that are already on the spine, so as to open a
position for the placement of the vertex. Then determining the number of edges that are caused
by the insertion of a vertex v, requires the enumeration of its incident edges, and determining
the number of edges drawn on the same page, that alternate the edges of v. In the worst case,
each edge may be crossed O(|E(G)|) times, which translates into O(|E(G)||V(G)]|) crossings that
need to be counted for the inserted vertex. The vertex must be inserted in each of the |V (G)|
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positions along the spine, to ascertain the best placement. Thus, the time taken to map a
vertex is O(|V(G)|?) + O(|E(G)|IV(G)|?) = O(|E(G)||V(G)|?). Since |V (G)| vertices must be
mapped, the total time required for the initial phase is O(|E(G)||V(G)|?®). This is a rather loose
upper bound, which may be improved if the operation count is aggregated across a number of
operations, and where worse case counts are not assumed for every operation.

In the post—optimization phase, a vertex is found which has the maximum number of its incident
edges crossed. This vertex is moved to a position on the spine which offers the largest reduction
in the number of crossings of its adjacent edges. The process is repeated until no improvement
is possible (note that this means that some vertices may be moved multiple times). It is more
difficult to estimate the running time of this phase, than for the initial phase, because it is unclear
how many times vertices may be moved so that improved layouts result. However, as with the
placement of a vertex in the previous step, the total amount of time required to shift a vertex,
and to count the number of crossings that it would be involved in takes O(|E(G)||V (G)|) time.
Since each vertex has to be moved to every spine position to determine the best move, |V (G)|?
such moves will be performed. Therefore, the total running time required to find the best vertex
to be moved is O(|E(G)||V(G)[?).

Cimikowski’s results [Cim02] indicate that Nicholson’s method provides good approximations in
general. As with most other such heuristics, the algorithm can also be tailored, in the sense
that the post—optimization phase may be replaced by alternative post—optimization techniques
suitable for specific graph structures.

Cimikowski’s approach

A fairly straightforward possibility for computing a two—page layout of a graph G, is to apply
a one—page layout algorithm, such as the recursive graph bisection method (§ 4.3.2.1) to G, in
order to obtain a vertex arrangement, and then to apply an algorithm which determines a layout
of the edges on the two pages. The problem of determining an optimal edge layout, given a
vertex arrangement was shown by Masuda, Nakajima, Kashiwabara and Fujisawa [MNKF90] to
be NP-complete, meaning that this problem can only realistically be tackled by heuristic means.

Cimikowski [Cim02] studied this problem under the name of the “fixed linear crossing number
problem.” For the computation of vertex orderings, his algorithms searched for Hamiltonian
cycles in graphs, and placed the vertices in the order that they appear in such a cycle. The
rationale is that the edges of the Hamiltonian path will each lie between pairs of vertices which
are adjacent on the spine, and can therefore not be crossed. If a Hamiltonian cycle cannot be
found, then the fewest number of cycles that can be found in the graph may be used to obtain
edge orderings.

Several heuristic algorithms and an exact algorithm for obtaining two-page layouts were imple-
mented by Cimikowski. His most successful heuristic algorithm is based on a neural network,
and this is the only method that will be discussed here (according to his computational results,
this method outperforms the other methods by far). He published a separate article with Shope
[CS96] which elaborated on the neural network algorithm.

The regularity of Cimikowski and Shope’s neural network makes it possible to view it as a
system of non-linear ordinary differential equations in an independent variable ¢. The two pages
of the book on which a graph G is to be drawn are called the “upper” and “lower” pages. This
nomenclature describes a drawing of the book such that its spine lies on the z—axis, and edges are
drawn either above the z—axis or below it. For each edge e, there are “up” and “down” functions,
denoted UéT)(t) and Uél)(t) respectively. When Uem(t) > 0, e should be drawn on the upper
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page, and when vl (t) > 0, e should be drawn on the lower page. No ambiguity arises in the
placement of e, when Uem(t) > 0 and Uél)(t) < 0, or when UéT)(t) < 0 and Uél)(t) > 0, and it
is the task of the algorithm to find a value of ¢ so that these conditions are met for every edge
ing.

The functions Uem(t) and Ue(l)(t) are, of course, unknown (since otherwise the crossing number

problem would have been solved). The system of equations considered by Cimikowski and Shope
are

dUe(T)

T = Aal)+ B(=b(t) + b (8)) + Cce(t), (4.40)
dUe(l)

= Aa)+ B(=b(t) + bV (8)) + C e (). (4.41)

The dominating terms in the differential equations are the coefficients of B. The function bg)(t)

is defined as
by = > =),

FEE(9)
A f

where

2D (f) = 1 if the vertices of e and f are alternating and U}T)(t) > 0,
0 otherwise.

The function bgl)(t) is defined similarly. The value of bg)(t) is the total number of crossings in

which e would be involved if each edge f € E(G) for which U}T)(t) > 0 were to be mapped to
(1)

the upper page. Likewise, the value of be'/(¢) is the total number of crossings in which e would
be involved if each edge f € E(G) for which U ](cl) (t) > 0 were to be mapped to the lower page.

Thus, if the value —bg)(t) + bél)(t) in (4.40) is positive, then e would cross more edges on the
lower page than on the upper page, which is a good reason to keep it on the upper page. This
will be the case at a later time step (value of ) due to the positive slope. However, if the value
is negative, then it would be better to draw e on the lower page, and the fact that the term then
induces a negative slope will ameliorate this at a later time step ¢t. The same rationale holds for
the value of —bM () + b (¢) in (4.41).

The remaining two terms are rather easy to justify. It is undesirable for an edge e € G that both
Uem(t) > 0 and Ue(l)(t) > 0, or both Ul (t) <0 and Ue(l)(t) < 0, since these cases correspond
to the situations where respectively e is designated to be drawn on two pages, or otherwise
designated not to be drawn at all. The function a.(t) alleviates this problem, decreasing both in
the former case, since it is likely that one will change sign sooner than the other. The function
ae(t) increases both in the latter case for the same reason and is defined by

1 it >0, vy >0
act)=9 1 ituP@® <o, v <o
0 otherwise.

Finally, for an edge e € E(G), the term containing c.(¢) acts as a hill climbing function, which
forces the system of equations out of the situation where e is not drawn on any page (and thus
it steers the equations towards feasible solution sets). Its definition is rather simple, and is given
by
1 o) <o0and UP @) <o,
ce(t) = )
0 otherwise.
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This set of differential equations can almost certainly not be solved analytically, and it is most
easily solved by Euler’s first order forward integration method, although other methods could
conceivably be used. The constant §t specifies the size of the time steps in the discretized system

du)

UD(E+1) = UL + = —dt (442)
()

vV +1) = vO0+ S (443

For a graph G, the set of equations is said to converge at a time ¢, when for each edge e € E(G),
it holds that either UL (t) > 0 and Ue(l)(t) < 0, or that UéT)(t) <0 and Uél)(t) > 0. This is, of
course, by no means guaranteed to happen, but since the set of equations is solved iteratively, a
limit can be put on the maximum number of iterations that are acceptable.

The initial values Ue(T)(O) and Ue(l)(O) for each edge e € E(G) are randomly assigned values in

the range (—w,0). The randomness gives the set of differential equations the opportunity to
converge to different answers during repeated applications. If w is very large, convergence may
take unreasonably long, as the values of U@(T) and Ue(l) may vary slowly. The constants A, B
and C' and the time step 0t alter the convergence rate of the set of equations, and their values
should be determined through experimentation. Cimikowski and Shope recommended the values
A =10, B=20,C =20 and §t = 107°. They further limited the values UéT)(t) and UV (t)
to a range, such as [—1, 1], although they did not stipulate exactly how this should be achieved.
The running time of the algorithm is discussed in detail later in the thesis, where a concrete
implementation of the algorithm is provided.

4.3.2.3 Shahrokhi, Székely, Sykora and Vrto’s probabilistic embedding algorithm

The algorithm of Shahrokhi, Székely, Sykora and Vrto [SSSV96¢| is rather simple in principle. It
uses the notion of single—edge graph—to—graph embeddings (see § 4.2.2.2), and constructs such
an embedding v from an order n graph G into K, for which p > n, one vertex at a time. Given
a partial single-edge graph—to—graph embedding f — that is, an embedding for which some
vertices in G are not mapped to vertices in K, — the algorithm chooses an unmapped vertex
v € V(G), and a mapping 1 (v) of v, that minimizes the sum of

1. the crossings in ¢(K,) where both edges involved in a crossing are the images of edges in
G under f (including any crossings introduced by the image 1 (v) of v),

2. the expected value of the number of crossings that will be caused by a random mapping of
the remaining (unmapped) vertices into /C,.

This process is initiated with an empty mapping f (i.e., where every vertex of G is unmapped),
and it continues through a total of n iterations, where at each iteration, a unique vertex from G
is mapped, until after the n—th iteration, every vertex of G is mapped.

In order to construct the single-edge graph-to-graph embedding ¢ from G into Ky, a total of
n intermediate injections f : Uy — V(K,) must be considered, where |U;| =t, 0 <t < n, and
Ui_1 C U, 1 <t <n. The vertex set U; denotes the ¢ mapped vertices at the t—th iteration of
algorithm.

The process of determining the expected number of crossings due to a random single—edge graph—
to—graph embedding is the most involved part of the algorithm, but it follows from a number of
simple probabilistic arguments.
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For a crossing y, that is the intersection of two edges e; = {v;,v;},e2 = {vg, v} € E(K,) in a
drawing ¢ of KCp,, define the weight of y as w{ (y). This is a measure of how much y contributes
to the number of crossings in a drawing ¢, of G obtained from the drawing ¢ of IC,,, and a given

mapping f at iteration t of the algorithm.

If the incident vertices of e; and es are images of vertices from V(G) under f at iteration ¢,
then it is certain that y will contribute either no crossings or a single crossing, depending on
whether e; and ey are both images of edges in F(G). In these cases, the weight of y is defined

as w{ (y) =0or w{ (y) = 1, respectively for no crossings, and for a crossing.

On the other hand, if x of the vertices that are incident to ey, or to es, or both, are not images of
vertices in U; under f, then a random mapping of = vertices from Uy into f(U;) has a probability
of 1/ (p;t) to be mapped to all = of the vertices that are incident to e; and/or es. Suppose that
this is the case, then it does not follow that edges from G will necessarily be mapped to both
e1 and ey, since some of the z (unmapped) vertices in G may not be joined by edges to the
vertices of e; or es that have already been mapped. Let A denote the number of ways in which
x vertices may be selected from U; so that both e; and ey would be images of edges in G and
let B denote the total number of ways in which x vertices may be selected from U;. From these
considerations, the probability of e; and e both being images under a random mapping f, and
therefore that they will contribute to a crossing in the drawing ¢, of G obtained from ¢(kC,), is
A/B. Accordingly, the weight of the crossing y is defined to be w{ (y) = A/B in this case. The
expected number of crossings B{ in a drawing ¢o of G for the mapping f at the iteration ¢ is

given by
[ =2 vl

y is a crossing
in ¢(Kn)

For a graph G = (V, E), let U C V. Define the following sets of which the first is a set of pairs
of edges in G, and the second is a set of vertices in G:

=2(G9) = {{e,f}:e,f € E(G) and e is not adjacent to f} and
Ay(v) = {u:w € U and u is adjacent to v}.

For a set S C V(G), let Ay(S) = UuesAu(s). Now, the different weight cases for a pair of edges
may be computed. These cases depend on which of the vertices incident to the pair of edges
e1 = {vi,v;} and es = {vg, v} in IC, are images of vertices in G under a partial embedding f.

Case 1 v;,vj, v, 00 € f(U):

! 1 if e; and e are images of edges in G under f
Yo = { 0 otherwise.

Case 2 Vi, Vj, Vg, Vg € W:
If none of the four vertices incident to e; and ey are images under f, then any of the
unmapped edges in Z(U;) could potentially be mapped to a pair of edges with incident
vertices v;,v;, v and v,. Only a third of such mappings would translate into a crossing,
as illustrated in Figures 4.27(a)—(c). Therefore, there are a total of Z(U;)/3 different ways
in which to map four vertices from U; so that e; and ey will both be the images of edges
under the mapping. The probability of choosing v;, v, v, and vy is 1/ (p Zt), and therefore
the probability that two edges from G will be mapped to e; and ey is given by

_ E@1
3("")

wi;(y)
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U Ve Vg ) U Ve

. . <,

Figure 4.27: In case 2, only one in three mappings of a pair of edges to the vertices v;, v;, vy and
vg will result in a crossing.

V; Uy Uj V¢
o) FO) f(Ut>< 7T
Ve .—.Uj Vg, rUj

(a) (b)

Figure 4.28: For case 3, the particular mappings to the incident vertices v, and v; determine
whether a crossing occurs.

Case 3 v, v, € f(Up) and vj,vp € f(Uy):

If each of e; and ey are incident to a vertex in f(U;), then since f~'(v;) € Uy is adjacent to
the vertices Ag, (f ~1(v;)), any of which may be selected randomly to map to vj, and since
f~Y(vx) € Uy is adjacent to the vertices Aﬁt(f_l(vk)), any of which may be mapped to vy,
there is a total of |Ag, (f ()| |Ag, (f~*(vg))| ways in which to choose vertices from U, to
map to v; and v,. However, \Aﬁt(ffl(vi)) N AUt(ffl(vk))\ of these enumerated mappings
account for cases where the same vertex in U; is mapped to v; and vy, which is impossible
— therefore this term must be subtracted. If the vertex which is adjacent to f~!(v;) is
mapped to vy, and the vertex which is adjacent to f~1(v;) is mapped to v, then no crossing
results, as shown in Figure 4.28(a). The only other possibility is where the vertex adjacent
to f~1(v;) is mapped to v; and the vertex which is adjacent to f1(vg) to v; is mapped to
vy, as illustrated in Figure 4.28(b). In the latter case, a crossing certainly occurs. For this
reason, only a half of all mappings would result in crossings. The probability of selecting
vp and v; as images is 1/(”?) so that the weight of y is

A (P i)l A, (F o))| = [Ag, (F (i) 0 Ag (F (o))
wy (y) = 2(n—t) :

2

Case 4 v;,v; € f(Uy) and vg, vy € f(Uy):
There is a total of |E((U}))| unmapped edges whose incident vertices may be mapped, so
that an edge is mapped to es. For a crossing to occur at all, the edge {v;,v;} must exist
as an image under f. The probability of choosing vy and vy is 1/ (p ;t), and therefore the
probability that the crossing y contributes to the crossings in f is

¥ |E(U))| /(p;t) if {v;,v;} is the image of an edge in F(G) under f

otherwise.

Case 5 v;,vj,v; € f(Up) and vy € f(Uy):
If only vy is not the image of a vertex from U; under f, then any of the adjacent vertices
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Ag,( f~1(vg)) of the vertex f~!(vg) in U; may be selected randomly. The probability of
selecting v, from f(U) is 1/(P]"), and it therefore follows that

w :
v otherwise.

[ (y) = { |Ag, (f " (or))] /(P1Y) if {v;,v;} is the image of an edge in E(G) under f
0

) f(Uy) ) () W) f(Uy)
Vg Vg Uk

v; / Vyj (% \ Vj (% .—I_. Uy
./’ J ‘\. J J
Ve Ve Ve

(a) (b) (c)
Figure 4.29: The vertex adjacent to f~!(v;) must map to v; in for crossing to occur in case 6.

Case 6 v; € f(U;) and v;,vp, v, € f(Uy):

Since each vertex that is adjacent to the vertex f~!(v;) may be mapped to ensure that
the first edge is mapped to ;. For each such vertex in Ay (f~'(v;)), there is a total of
E((Uy~ u)) ways to select a pair of vertices to map to the other edge. Therefore, the total
number of ways in which to map two edges to the vertices v;, v;, v¢ and vy, is given by
the sum of all the edge terms taken over all vertices adjacent to f~!(v;) in Am(ffl(vi)).
Unless the vertex adjacent to f~'(v;) is mapped to v, no crossing will occur, as illustrated
in Figure 4.29. Therefore, only one of the three permutations of the mappings of v;, vy and
vy, will result in a crossing. The probability of choosing v, v, and vy, is 1/ (p gt), so that the
probability that y will contribute to a crossing is

wl (y) = ZHEAUt(f_l(’Ui)) [E(Us ~ u))]
v\Y) = -
3("")

Shahrokhi, Székely, Sykora and Vrto [SSSV96¢c| proved that the number of crossings in a drawing
¢2 of G, obtained by the embedding method from a drawing of ¢ of KC,, is subject to the inequality

8(?)%(/@;)
“plp-Dp-2)(p-3)

However, suppose that the drawing of K, realizes its crossing number, and that p < 10. In this
case (see § 4.2.3.3), v4(Kp) may be replaced by 1/4|p/2|[(p —1)/2]|(p — 2)/2][(p — 3)/2], so

that

8(3)1 lp/2] L —1)/2] [ —2)/2] (b —3)/2] (%)

pp—1)(p—2)(p—3) 8

The algorithm provides no guarantees with respect to the quality of its solutions in terms of the
crossing number of the input graph G, as the bisection algorithm (§ 4.3.2.1) does, except that
the minimum weight decreases monotonically as the algorithm progresses. What this algorithm
has in its favour is that if it can easily be determined which edges in the drawing of a complete
graph should cross each other, then the rest of the algorithm is fairly easily implemented. At
each step in the algorithm, all remaining unmapped vertices have to be considered, and each has
to be mapped to every vertex in K, to determine the best mapping. This process is repeated
|V (G)| times for an input graph G. Therefore, the algorithm runs in O(p|V(G)|?) time.
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4.4 Chapter summary

In the first section, § 4.1, a brief overview of graph parameters — which, like the crossing number
of a graph, may be seen as ways of measuring the non—planarity of graphs — was given. This
was followed by § 4.2, in which the crossing algebra of Tutte was discussed. Bounding techniques
and common proof techniques in crossing number theory were also described in this section, and
analytical bounds for various classes of graphs were catalogued. The last section of the chapter,
§ 4.3, was concerned with the computational perspective of the crossing number problem. Brute
force algorithms for determining the crossing number of a graph were first discussed in § 4.3.1,
of which the Garey—Johnson algorithm, and the independent—odd crossing number algorithm of
Székely are the most important. In the second half of the section on computational methods,
§ 4.3.2, various heuristic algorithmic approaches to the crossing number problem were discussed.
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Chapter 5

Exact methods and novel results

It is truly distasteful when authors fabricate their own quo-
tations, seemingly thinking them as wise as the words from
sages, which they proceed to attach to their own work, at-
tributing them to “anon” authors, as if the reader would be
foolish enough to be swindled into believing such obvious
deceptions.

— Anon (1979 - )

The main focus of this chapter is on computational methods for determining the crossing number
of a graph exactly. Firstly, it is shown that ¥(K1 1.1.1.n) = v(K4,) +n. Secondly, an implementa-
tion for the Garey—Johnson algorithm is given, and methods for exploiting symmetry information
in graphs are discussed so as to speed up the algorithm. Finally, it is proved that, for any graph,
the two—page crossing number of some subdivision of the graph is equal to the plane crossing

number of the graph.

5.1 The crossing number of K;;11,

In this section the method of edge set partitioning, as discussed in the previous chapter, is
employed to prove the following theorem.

Theorem 5.1.1

syt

v(Kiijgan) =v(Kapn) +n = VL 5 J

Proof: The graph K 1,11, has four partite sets of size one each. Denote the vertices in these
partite sets by aq, b1, ¢1 and dy. Denote the fifth partite set of size n by Z, and its elements
by Z = {z1,22,...,2,}. The proof is divided into two parts: in the first part it is shown that

v(Ki11,1n) < v(Kyap)+n and in the second part that v(Ki11,1,) > v(Kapn) + n.

Part 1 — v(Ki1110) < v(Kyp) +ne

yhytrty

First, create a drawing ¢ of Ky 11,1, so that the vertices from Z = {z : i € {1,...,n}} are
positioned at coordinates

v J (0, i) ifiisodd
(=) = { (0,—i) if i is even

97
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Figure 5.1: A drawing ¢ of Ky 1,1,1,, realising vg(Ki1,1,1,n) = v(Kapn) + n.

in the plane. Now, place the remaining vertices a1, b1, c1,d1, so that

¢lar) = (=[n/2]-1,0),
¢(b1) = (=1,-e),
¢(c1) = (1),

¢(d1) = ([n/2] +1,0),

where € > 0 is a real number.

Draw all edges as straight lines, except for the edge between a1 and d;, which should be drawn as
a half circle, with centre (0,0), and radius [n/2] + 1. This construction is depicted in Figure 5.1.

The removal of the edges between the induced subgraph K4 on the vertices a1, b1, ¢; and d; (these
edges are drawn as thicker lines in Figure 5.1), yields a drawing of K4, realising its crossing
number. The only edges between a;,b1,c; and d; which are involved in any crossings in the
construction, are {aj,c1} and {b1,d;}. By the construction, {aj,c1} is crossed [n/2] times, and
{b1,d1} is crossed |n/2] times. Summation of these terms gives the desired result.

Part 2 — V(’Cl 1.1 1n) Z V(’C47n) + ne

shytsty

(a) (b)
Figure 5.2: The two possible drawings of /4 in the plane.

Assume, for the purposes of a proof by contradiction, that

V(’CLLLLTL) < Z/(IC47n) “+ n. (51)
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Since the vertices a1, b1, ¢1,d; induce the graph K4, one may write
Vp(K1,1,1,1,n) = Vg (Ka) + v (Kan) + v4(Ka, Kan), (5.2)

using the edge set partitioning method (described in § 4.2.2.5). Together, (5.1), (5.2), and further
application of the edge set partitioning method on the term v4(KCy, K4,n) imply that

> ve(Ka, Eicy(2:) < n— vg(Ka). (5.3)
i=1

where Eyr(v) = {e : e joins v with some v € V(U)}. Now, there are exactly two distinct drawings
of K4 in the plane (up to isomorphism, where isomorphism is defined on graphs as usual, but
where crossings are represented as artificial vertices of degree four) in single—cross normal form,
which are shown in Figures 5.2(a) and (b). Consider the two cases separately.

Case A: v4(Ky) =1

For this case, ¢ is equivalent to the drawing which is depicted in Figure 5.2(b). The inequality
(5.3) implies that there is at least one z; € Z, such that v4(KCy, Ex,(2;)) = 0. Let i = 1 without
loss of generality. From the two types of regions in ¢ (the other regions are symmetrical to I),

shown in Figure 5.2(b), it may be seen that the only region in which z; may be drawn so that
none of its edges would cross Iy in ¢, is region /1.

Figure 5.3: F = K4 U (Ex,(21)).

Thus, place z; there, and let F = Ky U (Ex,(z1)). This drawing is shown in Figure 5.3. Re-
application of the edge partition method, with the edges of the graph F as one partition, gives

ve(Ki11,1m) = vo(F) + ve(Kan1) + > ve(F, Br(2)),
=2

and a combination with (5.1) yields
Z Vd)(j:, E]-'(ZZ)) < n—1+ V(Kj47n) — I/(K:4,n_1)

i=2
n—1
= —14+2
n + { 5 J

< 2(n-1).

This inequality implies that there exists at least one z; € Z ~\ {21}, such that vy(F, Erz;) < 1.
This is impossible, given the drawing in Figure 5.3.
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Case B: v4(K4) =0

The drawing in Figure 5.2(a) represents this case. The inequality (5.3) implies that there must
be at least one z; € Z, such that v4(K4, Ex,(2;)) = 0. This is not possible for the given drawing.

Thus it must be assumed that v(Ki1,1,1,n) > ¥(K4,n) + n, which completes the proof. [ ]

5.2 An implementation of the Garey—Johnson algorithm

As has been mentioned in § 4.3.1.1, the Garey—Johnson algorithm obtains its name from the
method used by Garey and Johnson [GJ83] to determine whether the crossing number of a graph
is smaller than or equal to a given number. An implementation of the algorithm is provided in
this section.

The algorithm itself is divided into three major parts, which are individually quite simple. Algo-
rithm 5.1 (GareyJohnson), which is the starting point, enumerates all k pairs of crossing edges
(where k is the number of crossings to test for). It launches Algorithm 5.2 (TestPlanar) for each
set of k pairs of edges, and TestPlanar enumerates all permutations of crossings over each edge
for the given set of k crossings. In its turn, for each set of permutations, it calls Algorithm 5.3
(ConstructGraph), which constructs a new graph from the input graph where the crossings
that are specified by the permutations of edges pairs are represented as artificial vertices. The
algorithm TestPlanar then determines whether this graph is planar.

Algorithm 5.1 GareyJohnson: The Garey-Johnson algorithm

Input: A graph G.
Output: The crossing number v(G) of G, and a drawing realising v(G) where crossings are
modelled as artificial vertices of degree 4.

1: for all C € {(p1,p2,..-,pk) : (P1,D2,...,pr) is & set of k pairs of edges of G} do

2: D290

3:  for all e € E(G) do
4: L, — 0

5: end for

6: for all (e, f) € C do
7: L.~ L.U {f}

8: Lf — Lf U {6}

9: D—~DU {6}
10: D—DuU{f}
11:  end for
12:  if TestPlanar(L, D, FirstElement (D), G) then
13: return TRUE
14:  end if
15: end for

16: return FALSE
Implementation: An implementation of an improved version of this algorithm, described later
in this chapter, is given in § B.4.1.
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5.2.1 Description of the GareyJohnson algorithm

Two data structures are created by the algorithm: A list of lists L, indexed by an edge e, records
all edges that cross e, and a list D contains the edges that are to be crossed for a given crossing
configuration®.

The algorithm enumerates all crossing configurations with &k crossings and the loop spanning
lines 1-15, is responsible for this. The list D is cleared at line 2, so that it may be filled with
the crossed edges for the current iteration of the loop. The same is done for every list in L in
lines 3-5. From line 6 to line 11, D and L are filled with the crossing information needed later in
the algorithm. It may be seen on lines 6 & 7, that a crossing between the edges e and f causes
e to be inserted into f’s list, and wice versa. Lines 9 & 10 insert both e and f into the list D, if
they are not already there.

All permutations of edge crossings for the given crossing configuration are enumerated by the
algorithm TestPlanar, which is called in line 12. The function FirstElement (D), as its name
suggests, returns the first element in the list D. If the TestPlanar algorithm finds a set of
crossing permutations for which G has k crossings, it returns the boolean value “TRUE”, in
which case the whole Garey—Johnson algorithm terminates and returns “TRUE” at line 13. If,
after enumerating all possible configurations of & crossings, it is not possible to draw G with k
crossings, then the boolean value “FALSE” is returned at line 16.

5.2.2 Description of the TestPlanar algorithm

Given sets L and D, the TestPlanar algorithm generates every possible permutation of crossings
for every edge, and determines whether such a configuration can manifest a drawing with k
crossings, by constructing a new graph, where crossings are represented as artificial vertices of
degree four, and by testing this graph for planarity (as is explained in § 4.3.1.1).

The distinct sets of permutations are generated recursively, which has the effect of producing a
lexicographical ordering of the sets of edges in L. Every permutation of the list L. for an edge
e in the list of crossed edges D is generated, and for each such step, all possible permutations of
crossings for all edges after e in D are generated (by the algorithm executing itself recursively)
and when no more edges remain, the feasibility of the crossing configuration is determined for
the set of permutations.

Permutations are themselves generated lexicographically. For an edge e, the loop spanning
lines 2-16 enumerates the permutations of crossings over e, by advancing the permutation stored
in L, on line 12. For each iteration of the loop, the algorithm first determines in line 3 whether
there are any remaining edges in the list D. If this is the case, it calls itself recursively (line 4).
Otherwise, e is the last edge to be considered in D and the algorithm executes ConstructGraph
in line 8, which constructs the graph G’ from G, such that the crossings given in L are present
in G’ as artificial vertices of degree four. A suitable planarity testing algorithm (for example the
Hopcroft-Tarjan algorithm [HT74]) is used for the planarity testing performed in line 9. If G’ is
planar, the algorithm on the current level of recursion returns the boolean value “TRUE.” The
execution of the algorithm on the previous recursion level would receive a value of “TRUE” on
line 4, prompting it to return “I'RUE” on line 5. This process will continue until the recursion
has “unrolled” into Algorithm 5.1, which itself will return a value of “TRUE,” indicating that a
drawing with the given number of crossings was found. If no set of crossing permutations can

!Technically, the information in D may be derived from L, but doing so would obfuscate the functioning of
the other algorithms.
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Algorithm 5.2 TestPlanar: The permutation enumeration algorithm

Input: A vector of edge sets L which encodes the edge crossing set, a list of crossed edges D,
the graph G of which L is the crossing set, and the current edge e of which the order
of edge crossings have to be permuted.

Output: TRUE if a set of permutations for the current edge crossings set was found, FALSE
otherwise.

1: L, «+ FirstPermutation(L,.)
2: loop

3:  if HasNextElement(D,e) then

4 if TestPlanar (L, D,NextElement(D,e),G) = TRUE then
5 return TRUE

6: end if

7. else

8 G’ « ConstructGraph(L,D,G)

9: if IsPlanar(G’) then

10: return TRUE

11: end if

12:  end if

13:  if L. # LastPermutation(L.) then
14: L. < NextPermutation(L,)

15:  else

16: return FALSE

17: end if

18: end loop

Implementation: An implementation of an improved version of this algorithm, described later
in this chapter, may be found in § B.4.3.

be found for which a planar graph G’ may be constructed, all permutations L, of crossings over
e will eventually be enumerated. When L. contains the last permutation in the lexicographic
order of crossings over e, the condition on line 13 will be false and the algorithm will terminate
by returning a value “FALSE” to the previous recursion level, indicating that no planar graph
G’ could be constructed. No “unrolling” process occurs when “FALSE” is returned, as occurs
when “TRUE” is returned. The next permutation of crossings for the edge f, corresponding to
the previous recursion level will simply be generated and the recursive process of examining all
crossing permutations for each edge following f in D will recommence. Of course, if no drawing
of G with the given number of crossings can be found, a value of “FALSE” will eventually be
returned to Algorithm 5.1.

5.2.3 Description of the ConstructGraph algorithm.

In order to test whether a given crossing configuration is feasible, a graph must be constructed
from G such that crossings are substituted for artificial vertices of degree four. If this graph is
planar, then a planar layout of this graph is a drawing of G with k crossings (where the vertices
representing crossings are again viewed simply as crossings).

The algorithm is very simple — k vertices for representing crossings are created, and associated
with every edge pair. This is done in line 1 of the algorithm. Every edge e in G that has any
crossings over it must be replaced by a path for which the end vertices correspond to the incident
vertices of e, and for which the interior vertices correspond to crossings in the order mandated
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Algorithm 5.3 ConstructGraph

Input: A graph G, a list of crossed edges D, and the crossing configurations for the edges L.
Output: The graph G, modified so that the crossings from D are present as artificial vertices of
degree four, in the order given for the edges in L.
1: ¢ < a bijection of the edge pairs in D to k new vertices in G
2: for all e = {u,v} € D do

3: T U

4:  for all {e, f} € L. do

5: w — o({e, f})

6: E(G) — E(G) U{{z,w}}
T T «—w

8: end for

9:  E(G) — E(G)U{{z,v}}

10 E(G) «— E(G) ~{e}
11: end for
12: return G

Implementation: An implementation of this algorithm may be found in § B.4.3.

by the current crossing configuration in L.. This process is performed for each edge e involved
in crossings by the loop between lines 2 and 11. The variable x (line 3) keeps track of the latest
vertex addition to the path that is to replace e in G. On line 3, x is assigned one of the vertices
incident to e, u (say), which becomes the first vertex of the path. All crossings in which e is
involved are looped over between lines 4 and 8 of the algorithm, and they are added to the path
in the order that they appear. Line 5 is used to obtain a reference to the artificial vertex (which
models a crossing) associated with the current edge pair (this vertex may already have some
adjacent edges due to the fact that the edge pair {e, f} may already have been examined when
the crossing list for f was examined). In line 6 of the algorithm, the path is extended, and z is
made to point to the new path end. The last edge is added to the path in line 9, and the edge e
is then removed in line 10. Finally, the new graph is returned in line 12 of the algorithm.

5.2.4 Reducing the number of cases

It should be clear that the Garey—Johnson algorithm would have a prohibitive running time, even
for very small graphs. The first graph property that requires consideration in order to exploit
any symmetry (so as to speed up the algorithm), is the degree of vertex—transitivity of a graph,
or rather, the transitivity of its partite sets. It is assumed that adjacent edges may not cross.

5.2.4.1 Symmetry considerations for multipartite graphs

vV W/

Figure 5.4: The star graphs induced by the edges from vy, v and v3 are all isomorphic, and this
symmetry allows for pruning the number of calculations in the Garey—Johnson algorithm.
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Let P be one of the partite sets of a complete multipartite graph G. For a vertex v € P, the edges
incident to v induce a star. If G is a complete multipartite graph, the induced stars containing
vertices in P, are pairwise isomorphic. Now, consider Figure 5.4 — suppose that edges of vy are
crossed = times and that the edges of vy are crossed y times. Since the two star graphs induced
by the edges incident to each of the two respective vertices are isomorphic, the vertices may
have their labels swapped, without any change in the structure of the crossing configuration.
Therefore, it is safe to consider only the cases where x > y. This generalizes to any number of
vertices in the same partite set, and it holds independently for every partite set.

When two or more partite sets have the same number of vertices, symmetry may be exploited
in a manner analogous to the above argument. Let n be the size of each partite set, then
denote by a tuple (x1,x9,...,x,) the numbers of crossings in which the n respective induced
stars in P are involved. Now, let two partite sets P;, P have crossings represented respec-
tively by the sets (z1,x2,...,2y) and (y1,92,...,yn). As before, a relabelling will result in a
crossing configuration that is unchanged, and so it suffices to consider only the cases where
(x1,22,...,Tn) > (Y1,Y2,--.,Yn), where tuples are compared lexicographically. Again, this gen-
eralizes to any number of partite sets of the same size.

5.2.4.2 Partial verification

In the basic implementation of the Garey—Johnson algorithm, all permutations of the orders of
crossings on edges are considered. However, when the permutations of only the first few edges
result in a non-planar configuration involving those edges, then there should be no need to
enumerate the permutations of the remaining edges.

Suppose that the permutations of crossings across the first  edges in the list D are enumerated,
whilst the orders of crossings for the rest are kept constant. When line 9 of the TestPlanar
algorithm is reached, then only the first = edges are constructed (the rest of the edges in the
edge crossing set for which crossing orderings are kept constant are not included in any way) into
the graph G’. If it transpires that G’ is non—planar, it is then obvious that the permutations of the
remaining edges need not be enumerated at all. Of course, if G’ is planar, then the permutations
of the rest of the edges need to be considered, and because these edges were omitted with the
construction of G’, it could mean that for all of the permutation sets of the remaining edges, only
non-planar configurations will result.

This scheme could be used to partition the search space. However, caution should be prac-
tised, since the extra work required to test for constructing such partial graphs, and for the
planarity tests may become acute when it happens often that a partial graph is planar, whereas
no permutation of its remaining edges would result in a planar graph.

5.2.4.3 Independent crossing subgraphs

Define a new graph Z¢, called the intersection graph of the crossing set C (i.e., a set of pairs of
crossing edges). For each edge e; in G, there is a corresponding vertex v; in Z¢, and a pair of
vertices v;,v; € V(Z¢) are adjacent only if the edge pair {e;,e;} is present in C.

An example of an intersection graph is shown in Figure 5.5(b) for the graph G* in Figure 5.5(a).
Only the pairs of bold edges corresponding to crossings occur in the set C of edge pairs. The
labels for edges that are not involved in crossings, have been omitted to render the figure less
cluttered.
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Figure 5.5: An illustration of how the intersection graph specifies the independent crossing
subgraphs, and how these subgraphs may be replaced by stars.

The componenets of the graph Z¢, that are not isolated vertices are called intersection compo-
nents. For the graph G* in Figure 5.5(a), it may be seen that the corresponding intersection
graph of G* in Figure 5.5(b) has two intersection components, indicated by the grey regions.

Each intersection component directly specifies a subgraph in the main graph, called an inde-
pendent crossing subgraph. The vertices from an intersection component map to edges in the
main graph which edge-induce an independent crossing subgraph (in the main graph). The two
subgraphs X; and X of G* in Figure 5.5(a) that are comprised of bold edges, were formed from
the intersection graph of G*, in Figure 5.5(b), by this method.

In the Garey—Johnson algorithm, a crossing set must be found that permits the appropriate per-
mutations of crossings in each of the resulting independent crossing subgraphs to be determined,
so that a planar graph, containing artificial vertices representing crossings, may be constructed.
It is possible that, regardless of whether each independent crossing subgraph may be planar
(when crossings are modelled as artificial vertices of degree four), the input graph in its entirety
may be non—planar.

To see how this may be possible, let all the artificial vertices (representing crossings) in an
independent crossing subgraph H be replaced by a single artificial vertex v, which is joined to
every remaining (non-artificial) vertex in H. One may think of the artificial vertices as being
“compressed” into v, so that v may be thought of as a “black box” that renders the details of the
permutations of crossings within the independent crossing subgraph hidden. The edges adjacent
to the vertex v induce a star. When an independent crossing subgraph is replaced by a star, it
is said to be contracted, otherwise it is said to be ezpanded. In Figure 5.5(c), both independent
crossing subgraphs, X; and Xo, of the graph G* in Figure 5.5(a) have been contracted, where
the white vertices are the single artificial vertices replacing the artificial vertices of X; and Xo,
respectively.

If each independent crossing subgraph in the input graph G is contracted, the graph G’, resulting
from the contractions, must be planar if the crossing set C' that yielded G’ is to permit a pla-
nar graph G”, with artificial vertices representing crossings, to be constructed from G (i.e., all
independent crossing subgraphs are expanded). Conversely, if G’ is non—planar, the crossing set
C' cannot possibly permit the construction of such a planar graph G”. Thus, the non—planarity
of G’ obviates the necessity of examining the permutations of crossings within the independent
crossing subgraphs of G. As an example, the graph in Figure 5.5(c), derived from G* by the con-
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traction of all independent crossing subgraphs corresponding to the crossing set C, is non—planar,
due to the presence of the subgraph that is isomorphic to Ks.

This technique may be used in conjunction with partial verification (described in the previous
section). For a given crossing set C, all independent crossing subgraphs of a graph G are initially
contracted. If G is non—planar in this state, then no independent crossing subgraphs need be
expanded (since G will be non-planar regardless of the permutations of crossing within any
independent crossing subgraph). However, if G is planar, an independent crossing subgraph H;
of G must be expanded, and all permutations of crossings within H; enumerated. If any of these
configurations permit the construction of a planar graph G’ from G, another crossing subgraph
Ho must be expanded, and all permutations within Ho must be examined and so forth. If, for
some crossing subgraph H;, no set of permutations of crossings of the edges within H; permit the
construction of a planar graph G” from G, H; is contracted, and the remainder of the crossing
permutations within the independent crossing subgraph H;_1, which was expanded prior to H;,
are enumerated. Again, if any of these configurations permit the construction of a planar graph
from G, H; is again expanded, and so on.

Thus, the recursive expansion and contraction of independent crossing subgraphs achieves the
goal of partial verification, although this scheme has the additional advantage that edges for
which crossing permutations are not enumerated, are not omitted, but the subgraphs in which
these edges appear, are replaced by stars. This is likely to indicate at an earlier stage that a
given crossing configuration of a graph cannot lead to a feasible drawing for G with the given
number of crossings, due to the fact that the graph G contains more edges at any stage, than
with the application of pure partial verification.

The Garey—-Johnson algorithm is only required to be modified slightly, in order to implement
the concept of partial verification combined with that of independent crossing subgraphs. The
independent crossing subgraphs partition the set of crossed edges, D, that is used in Algo-
rithms 5.1-5.3. In the modification, instead of the set D being examined in its entirety, the
edges of the most recently expanded independent crossing subgraph are examined in isolation of
the edges in other independent crossing subgraphs. As all independent crossing subgraphs are
expanded recursively, all of the crossing edges which constitute D are eventually examined.

Modifying Algorithm 5.1 (GareyJohnson)

The Garey—Johnson algorithm has to be modified to compute the independent crossing subgraphs
for a given crossing configuration before commencing the enumeration of the possible crossings
in the crossing configuration. This must occur in Algorithm 5.1 (GareyJohnson), which is ap-
propriately modified to produce Algorithm 5.4 (GareyJohnson’). In this algorithm, the set D is
removed, and therefore also the code for its initialization from the loop now only spanning lines 5—
8 (in Algorithm 5.4). The independent crossing subgraphs are constructed for the input graph
G, from the crossing configuration C, by the routine called in line 9. No explicit algorithm for
the computation of the independent crossing subgraphs is mentioned here, but the independent
crossing subgraphs may be obtained by selecting the components from the intersection graph
of G, that are not isolated vertices. Initially, all independent crossing subgraphs are contracted
(line 10), and G (or more correctly, the subgraph that derives from G by the contraction of the
independent crossing subgraphs) is tested for planarity by the conditional structure spanning
lines 11-17. If G is non—planar, the crossing configuration C' will always lead to a non—planar
configuration, and therefore, no set of permutations of crossings in C' will produce a feasible
drawing of G with the given number of crossings (where crossings are modelled as artificial ver-
tices of degree four). If, however, G is planar, a crossing subgraph is expanded, and Algorithm 5.5
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Algorithm 5.4 GareyJohnson’: The revised Garey—Johnson algorithm

Input: A graph G.
Output: The crossing number v(G) of G, and a drawing realising v(G) where crossings are
modelled as artificial vertices of degree 4.
1: for all C € {(p1,p2,..-,pk) : (P1,D2,...,pr) is & set of k pairs of edges of G} do
2. for all e € E(G) do
3 L,—0
4:  end for
5. for all (e, f) € C do
6: L.~ L., U {f}
7 Lf — Lf U {6}
8: end for
9:  ConstructCrossingSubgraphs(G,p)
10: ContractAllCrossingSubgraphs(G)
11:  if IsPlanar(G) then

12: D < FirstCrossingSubgraph(G)

13: ExpandCrossingSubgraph (G, D)

14: if TestPlanar’ (L, D, FirstElement (D), G) then
15: return TRUE

16: end if

17: end if

18: end for

19: return FALSE
Implementation: An implementation of this algorithm may is given in § B.4.1.

(TestPlanar’), which is a modified version of Algorithm 5.2 (TestPlanar), is executed with G
as input.

Modifying Algorithm 5.2 (TestPlanar)

All changes to Algorithm 5.2, occur in the “else” part of the conditional structure that starts
at line 3, from line 10 onwards. A graph G’ with artificial vertices representing crossings is
constructed on line 8, as in Algorithm 5.2. The difference (with respect to Algorithm 5.2) is that
the planarity of this graph cannot, of course, imply the feasibility of a drawing of G with the given
number of crossings, unless all independent crossing subgraphs have been expanded. Therefore,
a test is performed on line 10 to determine whether G contains any contracted independent
crossing subgraphs. If it does not, then G’ is indeed a feasible drawing with the given number
of crossings, and the algorithm returns the value “TRUE” on line 19 to signify this condition.
On the other hand, if contracted independent crossing subgraphs remain, one of them must be
selected (line 11) and expanded (line 12). Algorithm 5.5 (TestPlanar’) is invoked on line 13 by
the conditional structure that spans up to line 17. If the call returns the value “TRUE,” then it
means that the recursive process ended with all crossing subgraphs expanded and that this led
to a planar configuration of the graph constructed from G (with artificial vertices for crossings).
Therefore, this invocation of the TestPlanar’ algorithm returns “TRUE” in its turn, initiating
an recursion “unrolling” process, as described for Algorithm 5.2. However, if the call returns
“FALSE,” then all permutations of crossings in some independent crossing subgraph expanded
later in the recursion led to non—planar configurations. The crossing subgraph that was expanded
is therefore contracted on line 16, so that the next set of permutations for crossings in the current
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Algorithm 5.5 TestPlanar’: The revised permutation enumeration algorithm

Input: A vector of edge sets I which encodes the edge crossing set, a list of crossed edges D,
the graph G of which L is the crossing set, and the current edge e of which the order
of edge crossings have to be permuted.

Output: TRUE if a set of permutations for the current edge crossings set was found, FALSE
otherwise.

1: L, < FirstPermutation(L,.)
2: loop

3:  if HasNextElement(D,e) then

4 if TestPlanar’ (L, D, NextElement (D,e),G) = TRUE then
5 return TRUE

6: end if

7. else

8 G’ < ConstructGraph(L,D, )

9: if IsPlanar(G’) then

10: if HasContractedCrossingSubgraph(G’) then
11: D’ «— NextCrossingSubgraph(G’)

12: ExpandCrossingSubgraph(G’, D)

13: if TestPlanar' (L, D’, FirstElement(D’), ') then
14: return TRUE

15: else

16: ContractCrossingSubgraph(g’,D’)

17: end if

18: else

19: return TRUE

20: end if

21 end if

22:  end if

23:  if L, # LastPermutation(L.) then

24: L. <+ NextPermutation(L,)

25:  else

26: return FALSE

27 end if

28: end loop

Implementation: An implementation of this algorithm may be found in § B.4.3.

independent crossing subgraph may be considered.

5.2.5 Example execution of the Garey—Johnson algorithm

As an example of the execution of the algorithm, a single crossing configuration for the graph g
is examined. For this example, the Garey—Johnson algorithm has to determine whether g can
be drawn with five crossings. The concept of independent crossing subgraphs, combined with
partial verification, as described in the previous section, is employed in the example.

The example commences with an execution of Algorithm 5.4, where the set of edge cross-

ing pairs C' = {{{1}0,1}1},{1)0,1}2}}, {{v077}1}7{007v3}}’ {{0077}1}7{0271)3}}7 {{0077}2}7{0371)4}}7

{{v1,va},{v2,v5}}} is selected in line 1. After the execution of lines 5-8, the contents of L is
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L{’Uo,vl} = {{00702}7 {0071)3}7 {U27U3}}7 L{’Uo,vg} = {{00701}7 {03,’1)4}}, L{Uo,v3} = {{U()avl}}v
L{’U1,U4} = {{02705}}7 L{’Ug,v3} = {{00701}}7 L{U27v5} = {{'U(),’UQ}},
Lvs,0y = {{vo, v2}}-

There are two independent crossing subgraphs in this choice of crossings. The first subgraph,
H1 contains the set of edges E(H1) = {{vo,v1},{vo, v}, {vo,v3},{ve,v3}, {vs,v4}}, whilst the
second, Ho contains the set of edges E(Hz) = {{v1,v4}, {v2,v5}}. The subgraph H; is drawn in
Figure 5.6(a), with only the crossings mandated by the crossing configuration C', whilst Hs is
drawn in Figure 5.6(b), containing the single crossing required by C.

« V9 U1 (%)
_» U,
— ="
U1 V4 V2 V4
(a) Crossing subgraph with edges eo, €1, €2, €9 and e12. (b) Crossing subgraph with edges e1 and er.
Figure 5.6: Two independent crossing subgraphs corresponding to the choice of

edge crossings {{vo,v1},{vo,v2}}, {{vo,v1},{vo,vs}}, {{vo,v1},{ve,v3}}, {{vo,va},{vs,va}},
{{v1,v4},{v2,v5}} from Ks.

When the algorithm commences, all independent crossing subgraphs are contracted. The input
graph, G, in this state, is shown in Figure 5.7(a), where the artificial vertices of the contracted
independent crossing subgraphs are labelled according to the labels of expanded independent
crossing subgraphs they represent. Clearly this graph is planar, and an independent crossing
subgraph must therefore be expanded. The subgraph H; is selected for this purpose, and Algo-
rithm 5.5 (TestPlanar’) is called where D = {{vg,v2}, {vo,vs}, {va,vs}, {vs, va}, {vo,v1}}. The
order in which elements from D are selected by Algorithm 5.5 is arbitrary, but it must remain
fixed for the duration of the algorithm. Suppose that the order is given as {{vg,v2}, {vo,v3},

{v2,vs}, {v3,vs}, {vo,v1}}.

Figure 5.7: Steps in the execution of the Garey—-Johnson algorithm for the example.

The edge {vg,ve} is the first edge of H; to be considered by Algorithm 5.5. This edge is crossed
by the two edges {vo,v1},{vs,v4} and suppose that this order is the order generated by the
call to the function FirstPermutation on line 1 of Algorithm 5.5. The test HasNextElement
performed on line 3 evaluates to “TRUE,” since D contains four other edges besides {vg,v2}.
Algorithm 5.5 is invoked recursively (line 4), and the edge {vp,v3} is the next examined edge.
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The algorithm again determines that edges remain in D, and so it calls itself recursively again.
This process repeats itself until the last edge, {vo,v1}, in D is considered. This edge is crossed
by the three edges {vg,v2},{vo,vs3}, and {va,v3} and suppose that this order is generated by
the call to FirstPermutation on line 1 of Algorithm 5.5. The test HasNextElement evaluates
to “FALSE” in this case, since there are no remaining edges in the crossing set D to examine.
The “else” part of the conditional structure spanning lines 3-22, is now executed. A graph G’
containing artificial vertices of degree four, modelling the crossings corresponding to the current
permutations of edge crossings, is constructed on line 8. This graph is shown in Figure 5.7(b),
where the artificial vertices are coloured white. This graph is non—planar, which causes the
test on line 9 to evaluate to “FALSE.” The next line of code to be executed is line 23, which
evaluates to “TRUE,” since not all permutations of crossings over the edge {vp,v1} have yet
been considered. Thus, line 24 is executed, generating the next permutation order of edge
crossings over the edge {vg, v1 }, which is {{vg, va},{v2,v3}, {vo,vs3}}. The loop spanning lines 2—-
28 is repeated and again a graph G’ with artificial vertices modelling crossings is constructed
on line 8. This graph is shown in Figure 5.7(c). The graph G’ is non-planar and execution
moves to line 23. Permutations for crossings over {vg, v;} remain, causing the next permutation
order {{vg,v3},{vo,v2},{va,v3}} to be generated on line 24. The graph G’ corresponding to
this permutation is shown in Figure 5.7(d). This process continues for all permutation orders of
crossings over the edge {vg,v1} and it can be shown that no such permutation leads to a planar
graph G'.

If, however, there had been a configuration for which the constructed graph G’ had been planar,
it would have been determined on line 10 that G’ contained a contracted crossing subgraph,
namely Hy. This independent crossing subgraph would have been expanded, and Algorithm 5.5
would have been invoked recursively with the edges of H> as argument. The same operations as
described above would have been performed for the edges of Hs. If no set of permutations of
crossings in Hs yielded a planar configuration, Hs would have been contracted again on line 16,
so that the enumeration of crossing configurations in H; could be continued.

When all crossing permutation possibilities for the edge {vg,v1} have been exhausted, the Al-
gorithm 5.5 returns “FALSE” to the previous recursion corresponding to the edge {vs,v4}. This
causes the test on line 4 to evaluate to “FALSE,” and the next line of code to be executed is thus
line 23, which evaluates to “TRUE,” since {vs,v4} contains one more permutation of crossings.
The next permutation of crossings over {vs,vs} is generated, and when the loop repeats, the
algorithm will again call itself recursively on line 4, and enumerate all crossing permutations for
the edge {vg,v1}. Since the edge {vs,v4} is crossed by only two edges, it only has two crossing
permutations. After both of these permutations have been examined, the algorithm will fall
back one recursion level to the edge {vg,v2}. This edge is only crossed by a single edge, and its
only permutation has therefore already been examined. This causes the algorithm to fall back
yet another level in the recursion. In fact, both the edges {vg,v3} and {va,v3} are only crossed
once each, and the recursion therefore “unwinds” back into Algorithm 5.4, from whence the next
crossing configuration is generated. This whole process is then repeated, if such a next crossing
configuration exists.

5.3 All drawings may be transformed to two—page layouts

When an arrangement for the vertices on the spine are chosen via recursive graph bisection
(§ 4.3.2.1) in a two—page combinatorial book layout, one is guaranteed (due to the work of
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Shahrokhi, Székely, Sykora, and Vrto [SSSV96b]) of the bound

r<0(log V@IPWG) + Y [denge?)),

veV(G)

where x is the number of crossings that would result if G is drawn constructing its bisected
components as shown in Figure 4.25. However, a large constant may be hidden by the O notation.
It is shown in this section that although this may be the case, there exists a subdivision H of
G for which there exists a vertex arrangement, and for which an edge layout may be found that
renders the drawing obtained from this configuration is in single—cross normal form, with v(G)
crossings.

This result on its own is quite useless, due to the NP-complete nature of the problem (§ 4.3.2.2).
What it does, however, suggest, is that one may start with an initial solution generated by
recursive graph bisection, after which the graph could be subdivided, and the solution potentially
improved by the application of other optimization techniques. The construction of the proof of
the following theorem shows how a subdivision of a graph on a book may be achieved without
increasing the number of crossings.

Theorem 5.3.1 For a graph G and a subdivision H of G, vp,(H) < vp,(G).

spine _.‘. 04

(a) (b)

Figure 5.8: The insertion of subdivision vertices around a vertex.

Proof: The first step is to demonstrate a mechanical method of constructing a two—page layout
¢ of H from the layout ¢ of G, such that vy (H) < v4(G). For the purposes of this part of the
proof, consider the edges of G to be directed. Let the spine of the book run horizontally, so that
one page is at the top, and the other at the bottom when the book is completely folded open.

All arcs on the upper page are considered directed from left to right — that is, their source
vertices have smaller indices than their target vertices. All arcs on the lower page are considered
directed from right to left — their source vertices have larger indices than their target vertices.
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This is depicted in Figure 5.8(a) (individual arrow tips are not drawn, but the lines are directed
as shown by the arrows).

An arc (v;,v4), v; < vg is said to be higher than an arc (v;,v.), if v; < v. < vg — this choice of
terminology reflects the fact that the drawing of (v;, v4) passes over the drawing of (v;, v.), since
both must be on the upper page. In a similar fashion, an arc (v;,v,), v; > v, is said to be lower
than an arc (v, vp) if v4 < vp < v;, since both must be on the lower page.

Let a particular vertex, say v;, be isolated — a procedure for placing subdivision vertices around
v; with the property that no additional crossings are caused, will be applicable to all the other
vertices. All subdivision vertices of edges in ¢’ corresponding to arcs in ¢, with v; as the source,
are to be placed next to v; in ¢’ according to the following method:

Suppose each arc in ¢ is to be subdivided s times, and let a subdivision vertex of an edge e, (in
¢') be denoted vy, where 7 is the index of vy, in the list of subdivision vertices. For all arcs on
the upper page (i.e., those joining v; to vertices occurring further to the right of v; on the spine
in ¢), let the subdivision vertices {vh,,,Vn,,, - . Up,, } of the corresponding subdivided edge ej,, =
(vi,va) be placed to the right of v; (in ¢'). Next, let the subdivision vertices {vp,,, Unyy, - - - Uny, } Of
the next highest arc, corresponding to ey, , be placed to the right of the subdivision vertices of ey,
and so on. The subdivision edge (vp,,,v;) is placed on the lower page, as well as the subdivision
edge (Uhy,,i), and so on, so that all edges joining v; and the first subdivision vertices of the
various incident edges occur on the lower page. None of the subdivision edges can cross any
other subdivision edges, since the page crossing condition (§ 3.1.3.1) is not met. Next, let the
subdivision edges (vp,,;Vn,,,,), ¥ < s, be added to the upper page. Finally (vp, ,v;) is drawn
on the upper page. The same is done for the subdivided edge e, as well as for the rest of the
subdivided edges, leaving v; on the upper page.

The situation is completely symmetrical for the arcs on the lower page — let “right” be replaced
by “left,” “upper” by “lower,” “first” by “last” and “highest” by “lowest.”

The method described above is illustrated graphically in Figure 5.8(b). At (1) the subdivision
vertices of the arcs (around the given vertex) which is the highest amongst the low arcs are
placed, (2) is the lowest arc, (3) is the highest arc, and (4) represents the placement of the lowest
of the high arcs. Between (1) and (2) there may be any number of sets of subdivision vertices
belonging to other arcs, and same is true between (3) and (4).

€c

(a) Before subdivision. (b) After subdivision.

Figure 5.9: Subdividing a graph might lower its book crossing number.

Yannakakis showed in [Yan86] that four pages are necessary and sufficient for combinatorial book
embeddings of planar graphs so that no crossings occur. Therefore, there exists a planar graph
G for which vpg,(G) > 0, but for which vp,(H) = 0, where H is a subgraph of G.

An example of a configuration where the number of crossings is certainly decreased by the given
subdivision is shown in Figure 5.9. In Figure 5.9(a), the edge e. would be involved in a crossing,
whether on the upper or the lower page. The subdivision of e, into e., and e, in Figure 5.9(b)
clearly removes this possibility. |



5.3. All drawings may be transformed to two—page layouts - 113 -

The following theorem shows that all planar graphs may be drawn as rectilinear drawings. This
rigid drawing structure makes it a simple to generate drawings in which all vertices are placed
at distinct points on a straight line, such as, for example, a book drawing.

Lemma 5.3.1 For every planar graph G, a straight-lined drawing ¢ of G in R? emists, such that
the x-coordinates of the points representing vertices are all distinct.

Proof: It follows from Fary’s theorem [Far48| that any planar graph G may be drawn in the
plane using straight lines such that no line crossings are present. Let the remaining pairs of
vertices in the drawing that are not joined by edges be joined by straight lines. There is a
finite number of straight lines and consequently there exists a gradient g that is not equal to the
gradients of any of the lines. Let g be chosen so that the gradient that is perpendicular to it is
not equal to any of the gradients of the lines and let the xz-axis be chosen so that its gradient is
perpendicular to g. Then the x—coordinates of the vertices of G are all distinct. |

Now it is possible to give the main result, which justifies the emphasis that this thesis places on
the use of two—page algorithms for finding upper bounds to the crossing numbers of graphs.

Theorem 5.3.2 For a graph G, there exists a subdivision H of G, such that a two—page combi-
natorial book embedding ¢ of H exists, satisfying vy(H) = v(G). Furthermore, if an edge in G
cannot be crossed more than t times, then each edge has to be subdivided at most (t+1)(|V(G)|—2)
times.

Proof: Let ¢’ be a drawing of G, such that vy (G) = v(G). By inserting vertices of degree four
where there are crossings in ¢/, a planar graph is obtained.

Using Lemma 5.3.1, a straight line drawing ¢’ of G in R? may be obtained so that the z-coordinate
of each vertex is unique. For some vertices, there will be edges passing below, and /or above them,
where the concepts “below” and “above” refer to the y coordinates of the vertices. These vertices
are said to be “above” and “below” the edges respectively.

Now, set the y coordinates of all the vertices to 0, effectively projecting all vertices onto the
z-axis. Any edges that were below a vertex v must pass under v, and must thus be drawn below
the z-axis where they pass v. Likewise, edges that were above v must be drawn above the z-axis
where they pass v.

All edges must now either be drawn above the z-axis, below it, or they must be “woven” over
and under vertices (see Figures 5.10(c) and (d)). Where an edge passes over the x-axis, between
vertices, a subdivision vertex is inserted, subdividing the edge.

This is done for every edge. Note that no additional crossings are introduced, nor are any
removed. Thus, the final subdivided graph H has the same number of crossings as G. The only
difference is that H may be considered from a combinatorial book layout perspective.

Each edge can only be “woven” between a maximum of |V (G)| — 2 vertices (since it does not need
to do so for its own incident vertices). Any edge in G that is involved in z crossings would be
subdivided into x + 1 edges due to the insertion of vertices for crossings. Thus, an edge in G
would potentially “weave” a maximum of (¢t 4 1)(|V(G)| —2) times, and would therefore need no
more subdivisions in order to be drawn on a two-page book. |

The projection action technique of Theorem 5.3.2 may be seen in Figure 5.10. In part (a) of the
figure, there is only a single vertex, u; above the edge e, and thus in the projection, e need only
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Figure 5.10: Projection of a straight line drawing of a graph G onto the z-axis. Vertices of G are
denoted by black points, while subdivision vertices are denoted by white points.

pass under uj. In part (b) of the figure the situation is reversed. When it happens that e has
some vertices above and below it, as in part (c) of the figure, it must be subdivided to allow the
subdivided sections to pass under and over u; and us respectively. When groupings of vertices
appear consecutively with respect to their z-coordinates, on one side of e, then an edge need
only “stretch” over the whole grouping, as is illustrated in part (d) of the figure.

Theorems 5.3.1 and 5.3.2 together imply that the two—page crossing number of a graph ap-
proaches its plane crossing number, as the edges are increasingly subdivided. An important
question to pursue, is how many edge subdivisions are required to guarantee the existence of a
two—page layout of the graph in question, that will realise its crossing number. This, however,
is outside the scope of this thesis.

An implementation of an algorithm that employs the subdivisions, as described above, may
be found in § B.5.2. It should be noted that graph subdivision raises the possibility that two
“parent” edges (i.e., edges that are subdivided) may cross one another more than once, since the
subdivision edges are treated as distinct edges in a book layout. If it is important that a drawing
be in single—cross normal form, the method for the removal of multiple crossings between a pair
of edges, described in § 3.1.2 may be used for this purpose. Alternatively, an algorithm that
generates book layouts may be programmed to avoid introducing multiple crossings of this kind.
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5.4 Chapter summary

The application of the edge partitioning method was demonstrated in § 5.1 with the proof that
the crossing number of Ky 11,1, satisfies v(K1 1,1,1,n) = ¥(K4,) +n. A concrete implementation
of the Garey—Johnson algorithm was developed in § 5.2, and it was shown how certain types of
symmetry information may be exploited to reduce the total number of operations required to be
performed by the algorithm. It was shown in § 5.3 that every graph G has a subdivision for which a
book embedding exists that realises the crossing number of G. Furthermore, a mechanical method
for subdividing a graph in a book was demonstrated, to prove that superfluous subdivisions need

never increase the total number of crossings in a book layout.
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Chapter 6

Heuristic methods and novel results

One of the symptoms of an approaching nervous breakdown
is the belief that one’s work is terribly important
— Bertrand Russell (1872-1970)

The high computational complexity of the crossing number problem prompts one to consider
heuristic methods for bounding the crossing number of a given graph. This chapter is dedi-
cated to heuristic methods for finding lower and upper bounds on the crossing number of an
arbitrary graph. The first main section, § 6.1, focuses on a lower bound algorithm, based on
the graph—to—graph embedding technique (see § 4.2.2.2), whilst the second main section, § 6.2,
is dedicated to upper bound algorithms, and in particular, the computer implementations of
two—page algorithms, as well as an algorithm for generating drawings from two—page layouts.

6.1 A lower bound algorithm for the crossing number

In § 4.2.2.2, it was shown how Shahrokhi, Sykora, Székely and Vrto [SSSV96a, SSSV94| applied
the graph-to—graph embedding method to the problem of determining a lower bound for a graph
H, given a graph G with a known lower bound on its crossing number, and a graph—to—graph
embedding ¢ = (), 4(®)) of G into H.

Shahrokhi, et al. state no algorithmic method by which to generate the injection () or ¢(®,
meaning that the quality of the solution obtained by means of their technique depends on the
quality of a guess, which limits the general applicability of the method. Furthermore, they made
some overly strict assumptions with regards to how the crossing number bound is computed from
the edge and vertex congestion values.

This section firstly deals with the question of how the lower bound of Shahrokhi, et al. may be
improved analytically. After this, a heuristic algorithm for finding an edge embedding 1(®), given
a vertex embedding (V) is discussed. It is then shown how the ideas of the two sections may
be integrated for a complete and practicable lower bound algorithm, and finally, the problem of
determining an appropriate graph to embed into an input graph is considered.

117
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6.1.1 Theoretical improvements

Whilst algebraically compact, the lower bound of Shahrokhi, Székely, Sykora and Vrto’s lower
bound inequality (4.10), reproduced here as

v(G) — [V (H)| (<))
W2 o

does not take into account the facts that:

(6.1)

1. the vertex congestion values of some vertices may be somewhat smaller than c(*) (1),

2. there are cases when, even though two paths share a single vertex (and thus both contribute
towards the vertex’s congestion value), they need never cross one another,

3. the number of crossings between a pair of edges need not be as large as [c(®)(¢)]? in all
cases, and thus the lower bound could be improved in some cases.

This section is divided into two subsections, the first of which is dedicated to the problem of
improving the lower bound analytically (by examining how vertex congestion values influence the
bound) and the second of which is concerned with the problem of replacing the factor [c(®) ()]
in the denominator of (6.1) with a smaller value.

6.1.1.1 How does the vertex congestion relate to crossings at a vertex?

Firstly, a trivial observation regarding (6.1), is that unless the vertex congestion values of all ver-

tices in H are equal to one another, the term |V (H)| (C(V)z(w)) may be replaced by >,y () (C(V) (Qv’w))
for an improved lower bound. In [SSSV96a], [SSSV94| Shahrokhi, Székely, Sykora and Vrto were
mostly interested in the asymptotic behaviour of their lower bound, which is probably why they

substituted the factor ZveV(H) (C(V)(QU’W) by the factor |V (H)| (C(V)QW)).

They did, however, not consider whether situations arise from a graph—to—graph embedding
where one can be assured that when two paths share a vertex, they need never cross one another.
This means that for a vertex v with the congestion value ¢(¥) (v, 1)), the number of crossings that

may possibly occur at v might be much smaller than (C(V) (2”’”’)).

Now consider the way that vertex congestion influences the lower bound (6.1). From § 4.2.2.2
and Figure 4.4, it may be seen that when determining upper bounds, a high vertex congestion
value for a vertex does not necessarily imply that all edges passing through that vertex will cross
one another, thereby leading to a high crossing count at the vertex.

The ideas used for the upper bound method cannot be applied directly to the lower bound
method, since, in the upper bound method, some crossings are avoidable by virtue of the way
that edges are ordered around their incident vertices in the given drawing ¢ of H, into which
G is being embedded — such a favourable ordering of edges makes it possible to avoid an edge
crossing in Figure 4.4(b), whereas the edge crossing in Figure 4.4(c) forces a crossing. Of course,
no assumption about the order of edges around vertices may be made for the lower bound method,
since one is working with an unspecified drawing of H. Thus, when there is a possibility of a
crossing for the lower bound method, one must assume that it will be manifested.

Consider the case where two mapped paths p; = w(e)(el) and py = w(e)(eg) share an edge
{v1,v9}, as shown in Figures 6.1(a) and (b). Although no assumptions may be made concerning
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(2) (b) (c)

Figure 6.1: For each sub—path shared by a pair of paths, at most a single crossing need occur.

the orderings of edges around v; and ve, vi,ve € V(H), only at most a single crossing needs to
occur. This is true, because p; and po may always be drawn so that no crossing occurs at vy,
and at most a single crossing may occur at ve, as shown in Figure 6.1(b). A special case of this
scenario is where p; and ps share a single vertex, as shown in Figure 6.1(c) — this may be seen
as the case where the common edge in the paths p; and py in Figures 6.1(a) and (b) is contracted
to a single vertex; since the order of the edges is unknown, a crossing must be assumed possible.

yan
- - — ,V; ,,,,,,,,,
T
(a) (b) (c)

Figure 6.2: No crossings need occur at internal vertices of shared sub—paths.

In another configuration, observe that when the two mapped paths p; and ps share a sub—path,
then no crossings need occur at internal vertices of the path, as demonstrated in Figure 6.2(a).

By combining the configurations from the two previous paragraphs, one arrives at the more
general situation where p; and ps may share entire sub—paths, demonstrated in Figure 6.2(b).
Even in this general case, at most a single crossing need occur. Suppose that p; and ps cross
each other multiple times, as may be seen in Figure 6.2(c) — using the analogy of two steel wires
that are twisted around one another, p; and p, may be “unwound” as the wires would, to give
the situation depicted in Figure 6.2(b); the only property that cannot be guaranteed is that the
last crossing may be “unwound”, because this depends on the ordering of the edges around vo,
which is unknown.

It remains to consider what happens at the leaf vertices of a mapped path. In Figure 6.3(a),
it is shown that when two paths p; and po start at the same vertex vi, and share a common
sub—path which ends at a vertex wvo, then no crossings need occur on any vertex of the path
v1 — v9. This situation is very similar to the previously described situations where a sub—path
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(2) (b) (c)

Figure 6.3: Paths starting at the same vertex need never cross one another.

may be shared between two paths. Using the metaphor again of untwisting two wires, one may
start with any ordering of edges around vy, and then proceed to start drawing pi, parallel to ps,
from vy towards v; the order of p; and ps around v; is automatically determined, but of course,
it does not lead to a crossing. A special case of this situation is when p; and po only share a leaf
vertex. In this case, they share a path of length 0, and a crossing still need not be counted.

The above case is very simple, and a more convincing argument is required for the general case.
Inspection of the drawing in Figure 6.3(b) shows that none of the paths starting at v; cross one
another, and the same holds true for all paths starting at v, (although, as it may be seen, there
is no reason for the paths starting at v; not to cross those starting at v, except for the path
v1 — vg, which of course may not be crossed by any of these edges). It may be seen that the
paths p1, ps and p3 leave vy in that order, when moving clockwise around v;. It is no accident
that p; veers off left before po, and that ps veers off left before ps.

A vertex ¥()(u) = v € V(H) which is an image of a vertex v € V(G) under the graph-to-graph
embedding 1), must be the starting point for the paths which are the images of edges incident
to w. If, for each edge e that is incident to v, only a single path runs through e, then of course
no crossings can occur at v, as no edge leaving v shares an initial sub—path with any other edge
leaving v. Therefore, suppose that at least one edge, say e; € V(H), which is incident to v, has
two or more paths running through it in the embedding.

Now, referring to Figure 6.3(b), start a depth—first search down e;, with v; at the root. The
clockwise orders of the edges of H around its vertices (which are determined by the drawing
¢) determine the order in which edges are traversed in the depth-first search — the edges are
visited in clockwise order, and the first edge visited is the first edge in the clockwise order after
the edge that was used to enter the current vertex (in Figure 6.3(b), the vertex by is entered
by e; and thus the first edges of p; is the first edge to be visited in the depth-first search).
Suppose the depth—first search reaches the vertex b; in Figure 6.3(b), which is the last vertex
that p; has in common with the other paths shown — now p; splits off into an edge which is
left, relative to the edge through which the other paths proceed. Thus, p; must be the left—most
path to be drawn when starting all path drawings at e;. If p; had, however, split off to the right,
then it would have had to be drawn as the right—-most path. Now one continues the depth—first
search for the remaining paths, and the process continues in the same fashion. This method
completely specifies in which order the paths have to drawn from left to right, as they leave their
leaf vertices. This depth—first search need never be executed — it is simply used to prove the
assumption that sub—paths which originate at the same vertex need never cross one another.

A last issue to be addressed, is whether one may make any assumptions regarding the sides
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around which paths are drawn with respect to vertices in H. From Figure 6.3(c), it is apparent
that, depending on whether p; passes over the top or the bottom of the vertex, it will either cross
a number of paths that enter the vertex, or none. If, when a drawing of H is made, paths could
be drawn around vertices such that as few as possible crossings result, then these paths will each
in turn cross at most half of all the paths that enter that vertex. This could lead to a substantial
reduction in the maximum number of crossings in some circumstances, and the question remains
whether one may apply this in addition to the other improvement ideas mentioned above. The
answer seems to be that, in general, this is not possible, since when an algorithm is designed
to map paths around any side of a vertex the conditions mentioned earlier may be violated.
However, this remains to be proven. This concept of “side choosing” may be applied to some
special cases, when it is evident that the sides of vertices around which paths are to be drawn
may be chosen freely, such as when only a single path passes through a vertex, or more generally,
when a number of paths share a sub—path, “side choosing” may be applied for each vertex on the
sub—path through which no other paths pass.

6.1.1.2 Reconsidering the maximum number of crossings due to edge congestion

The denominator [¢(®)(t)]? in (6.1) derives from assumptions (which are reiterated in the next
paragraph) made with regards to the first term in the upper bound (4.8), which is reproduced
here for the sake of convenience as

< 3 (e, ) x (e, +Z<C(U) ) (6.2)

€i ]GE H) ’UEV(H)

ej crosses e; in ¢

This inequality is in terms of a graph—to-graph embedding 1, and a particular drawing of H.
When the right-hand side is made independent of a particular drawing of H, it must also be
valid for optimal drawings of H. This property means that one cannot assume that there may
be any more than v(H) crossings in total in a drawing of H. The number of crossings counted
on the right-hand side depends, in part, on the congestion values of edges that cross one another
in H. Shahrokhi, et al. [SSSV96a, SSSV94| (§ 4.2.2.2) reasoned that, since one is considering
unspecified drawings of H, one must assume that each crossing is between a pair of edges which
both have the maximum congestion value c(® (¢). Since at most v(H) crossings may be assumed
to be present in a drawing of H, Shahrokhi, et al. formulated the upper bound

V(G) < O Pr(H) + T (C(U) > (6.3)

veV (H)

Uunless the edges in the v(H) pairs of edges which cross one another all have the same edge
congestion values, this bound overestimates the number of crossings. Let ¢; denote an edge
congestion value for an edge under ¢, and let ¢; > ¢co > -+ > ClE(MH)| (thus ¢; = cle) (v)). Now if
the two edges e; and e with the highest and second highest edge congestion values respectively
(the values may be equal) cross one another, ¢; X ¢y crossings result. Since these edges may
cross one another at most once, the worst case crossing total for another pair of edges is ¢1 X c3.
The next worst case crossing total after that is ¢; X c4; when ey has been crossed by each edge,
the next worst case is ca X c3, and so on. Thus the first v(G) pairs of congestion values in a
lexicographical ordering of these pairs of values, give the worst case crossing values for the v(G)
crossings. Of course, since H must be in single—cross normal form, adjacent edges may not cross
one another, but for simplicity, it is assumed that any pair of edges may cross — this is still
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valid, if not ideal (better bounds may of course be obtained by taking into account that some
pairs of edges will never cross one another).

Denote a pair of edges by a tuple ¢ = (¢j,c;), where t; = ¢; and to = ¢;. For two tuples
s,t let s <t if s comes before ¢ in a lexicographical ordering. There are in total ('E (QH”) such
tuples, corresponding to the ('E (2H)|) pairs of edges in H. Attach indices to the tuples, so that

th <ty <--- < t(\E(H)\). Then, in the worst case, the number of crossings that will be counted,
2

is lejg) t;1 X tio. This leads to the upper bound

W (v
v(G) < ajv(H)+ Y ( (2”’”)>, (6.4)

where oy, = (Z;’igl) ti1 X ti2> /v(H). The value oy is called the mazimized average edge con-
gestion of H with respect to . Of all of the drawings of H that realize its crossing number, let
¢’ be such a drawing where the sum of products of the edge congestion value for edges involved
in crossings attains a minimum. Denote each tuple of crossing edges by s, and the set of such
tuples by S. Define v in a similar fashion to oy, namely

Q= <Z $1 X 32> /v(H).

SES

From this it may be seen that afb > ay. The value oy is called the minimized average edge
congestion of H with respect to 1. This value is important, since it gives the true reflection of
the average edge congestion of edges involved in crossings. When «, is substituted for oz:b, the
first term in (6.4) attains its minimum.

The bad news is that «,, cannot be computed, since one needs to enumerate all optimal drawings

of H in order to determine cv,;,. To make matters worse, not even a;z can be computed, since one

needs to know v(H) in order to do so. It is, however, possible to compute an approximation to
*

aw.

Note that, for any j < v(H), it is true that

v(9)

J
Byj = (Z ti1 X ti2) /3> Ztu X tig | JV(H) = ay,
=1 i=1

since the average of the first j largest tuples must certainly be larger than or equal to the
average of the first v(H) tuples. Paradoxically, it might seem, one needs a lower bound to v(H)
in order to compute a value 3, ;. Note, however, that any lower bound will do, and any of the
analytical techniques from § 4.2.2 may be employed. When j = 1, one has 8,1 = t1; X t19 =
c1 % ¢p < [el9(1)]?, which is a marginal improvement over the bound (6.3) by Shahrokhi, et
al. [SSSV96a, SSSV94|. An interesting aspect of this superficially circular argument, is that
the lower bound may be improved by consecutive feedback. That is, if j; is an initial (weak)
lower bound, which is used in the term [ ;, then the lower bound j which is obtained from
an inequality such as (6.4), may itself play the role of j; in a subsequent computation to obtain
yet a better lower bound. This process indeed plays an important role in the application of the
lower bound algorithm presented in the next section.

It is noted, that when the edge congestion values of all edges in H are equal, By ; = afp = Q.
This is exactly what one expects, and it shows again why it is beneficial to find graph—to-graph
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embeddings for which the edge congestion values are as equal as possible. However, since the
edge congestion values will not always be exactly equal, one could still benefit marginally from
using the approximation (3, ; for some j as opposed to the factor [c(e) ()]? for the denominator
of (6.1).

6.1.2 A heuristic for edge and vertex congestion computation

The problem of finding a graph—to—graph embedding ¢ from a graph G to a graph H with a
maximum edge congestion value of at most ke and a maximum vertex congestion value of at
most ky, is a decision problem in NP (since it may be verified in polynomial time whether the
maximum edge congestion value is smaller than or equal to ke and whether the maximum vertex
congestion value is smaller than or equal to ky). Finding the minimum values possible for ke
and k, is computationally more expensive; any algorithm for determining these values is likely
to have at least an exponential running time. There is no great advantage to be obtained from
an exact solution, because this would, in general, still not allow one to use this lower bound
method to find the crossing number of a graph, since the lower bound is never guaranteed to be
sharp. This provides a good case in favour of the development of heuristic methods for generating
graph—-to—graph embeddings.

In this section, such an algorithm is developed, that, when given a vertex mapping (") (some
ideas for generating () are given at the end of this section, although finding good embeddings is
by no means a trivial task), generates an edge mapping (). Like many heuristic algorithms, this
algorithm is a greedy algorithm — it starts with the empty edge mapping ¥® and sequentially
maps the edges from G to paths in H, whilst at each step it attempts to find a path in H
which minimizes the maximum vertex and edge congestion values. If the congestion values are
reinterpreted as weights, the problem of finding suitable paths is transformed to the problem of
finding shortest paths.

From (6.1), it seems fair to assume that the edge congestion has a greater impact on the final
lower bound, and the algorithm should thus first attempt to avoid finding a path which will
increase the maximum edge congestion before one that would increase the vertex congestion
values of some vertices. Thus, the edge weights for the shortest paths algorithm have to be
chosen in a way that satisfies this requirement.

The weight of an edge e = {v;,v;} € E(H) ought to be influenced by its congestion, but also
by the congestion values of its incident vertices v; and v;. This makes sense, since the vertex
congestion should also be minimized. One could simply compute the weight of e as the weighted
sum of ¢(®) (e, 1), ¢ (v;,10) and ¢V (v;,v)). However, consider Figure 6.4, in which v; has a high
vertex congestion relative to other vertices (not shown), v; has a relatively low vertex congestion,
and ¢(® ({v;,v;},v) is not the equal to c(®)(¢)). Suppose that whilst the shortest path algorithm
is embedding an edge from G into a path in H, it arrives at v; before it arrives at v; — in this case
(presuming that the vertex congestion values of all of the neighbours of v; which are not shown,
are high enough) it would make sense to choose {v;,v;} as its next edge, since the congestion of
v; is low. On the other hand, suppose that the shortest path algorithm arrives at v; first, then
unless the vertex congestion values of the neighbours of v; which are not shown, are higher than
that of v;, {v;,v;} should not be chosen.

The point is that desirability of an edge selection during the mapping procedure depends on the
endpoint of the edge at which a shortest path algorithm starts, because the congestion values of
the edge’s incident vertices may differ. This problem may be resolved by transforming H to a
directed graph, where an arc (v;,v;) is weighted by the weighted sum of the congestion of the
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undirected edge {v;,v;} and the congestion of v;. Its opposite, (v;,v;), is weighted in the same
way, except for the substitution of v; for v;.

Assuming that two possible paths p; and ps in H neither contain an arc with the maximum
edge congestion, their weights should be chosen so as to keep the possibility of crossings due
to vertex congestion values as low as possible. This may be achieved by choosing the vertex
congestion component of the arc weights on p; and ps simply as the vertex congestion values of
their target vertices, since the vertex congestion of a vertex is simply interpreted as the largest
number of crossings that may be caused when an arc is mapped through the vertex in question.
Since the edge congestion values of the arcs on p; and p2 are not equal to c(® (1), the vertex
congestion values of vertices in p; and ps are likely to have a more significant impact on the
quality of the lower bound than the edge congestion values could (besides, it is only when these
edge congestion values are included in the computation of 3;, 1 < j < v(H), that they will have
any impact at all, but even then, any gain here is likely to be offset by larger vertex congestion
values). Nevertheless, one wants to discriminate between paths that are equally favourable in
terms of vertex congestion values, but which have different edge congestion values — it makes
sense in this case to ensure that the sum of the edge congestion components for an entire path
remains smaller than 1, so that it cannot affect the choice of paths unless the paths have the
same sum total of vertex congestion values; this may be achieved by taking the edge congestion
component of the weight of an arc e to be ¢(® (e, 1) /(c(® (1) x [V (H)]|), since there are at most
|V (H)| vertices on any path in H, and since c(® (e, 1) < ¢( (¢)).

Figure 6.4: It is more desirable to move from v; to v; during the construction of a graph-to—graph
embedding, than wvice-versa, if v; has a high vertex congestion compared to that of v;.

The algorithm should aggressively attempt to keep the maximum edge congestion value as low as
possible. Thus, the arc weights are selected so that very long paths containing vertices with high
vertex congestion values are preferred to even a single arc of which the congestion value is equal
to the maximum, when the congestion of no arc on such a path achieves the maximum congestion
value. The largest congestion value that a vertex v € V(H) may attain is |E(G)| (which is, of
course, when each edge in G is mapped through v). The largest number of vertices that any
path in H may contain is, of course, |V (H)| vertices. This means, that, when taking only vertex
congestion values into account, the maximum weight for any path in H is |E(G)| x |V (H)|. Thus,
in order for the algorithm to avoid an arc with the maximum edge congestion, the arc should have
|E(G)| x |V(H)| added to its weight (which would push the arc weight beyond |E(G)| x |V (H)|,
as the congestion value of its target vertex must also be added to it), thereby ensuring that it
will be avoided in favour of arcs which do not attain the maximum edge congestion.

Finally, no arc should be assigned a weight of zero, since this would render any pair of paths for
which all arcs have zero weight equally favourable, regardless of the difference in the number of
arcs in the two paths. It is desirable that mapped paths should be as short as possible, because
this reduces the number of arcs of which the edge congestion has to be increased, improving the
chances of finding better mappings. For this reason, when, for an arc e = (u,v), both the edge
congestion and the vertex congestion of v are zero, e is weighted by a small positive constant ¢,
which should preferably be much smaller than 1, so as not to render a path on which e appears
undesirable.
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6.1.2.1 The implementation of the algorithm

In this subsection the algorithm is specified in its entirety. The algorithm sequentially embeds
the edges of G into the bidirected graph H. For each embedding of an edge e = {s,t} € E(G),
to a ¥V (s) — (M (t) path P, P is traversed, one vertex at a time from 1) (t) to 9(")(s). For
each vertex v in H, the algorithm maintains a set =, of paths (from prior mapped edges) which
map through v. This allows the algorithm to determine the paths in H with which P shares
sub—paths, and using this information, it can compute the number of crossings that P will cause.

A set 7 contains the paths considered by the algorithm at the previous vertex that it visited in
the path P.

When the algorithm considers a vertex v in P, the paths contained in =,, but not in 7, did not
map through the vertex that is prior to v in P, and therefore, P is not part of an intersecting
sub—path with any such path in Z,. At v, however, P commences shared sub—paths with the
paths in Z,. Because a crossing must be counted for each shared sub-path (except for those
sub—paths which terminate at one of the end vertices of P), crossings are counted at the first
vertex of such shared sub—paths (i.e., v in this case). After all paths in =, have been considered,
the list 7 is cleared, and filled with the paths in =,, so that the algorithm may again determine
the sub—paths in which P occurs at the next vertex after v in P. Special cases for this scheme
occur at the vertices 1/(¥)(s) and (") (¢) which are the end vertices of P:

o At ) (t), where the traversal of P commences, crossings are only counted for paths in
Eyp () which do not have 1()(t) as an end vertex. As an example of such a possible
crossing, consider the path ps which has v, as an end vertex, and crosses the path p; which
commences at v; in Figure 6.3(b). The paths in E (1) Which end at 1) (t), have already
been shown never to have to cause crossings in the sub—paths they share with P.

o At w(v)(s), which is the last vertex to be visited in P, it may happen that some other
paths in H with which P shares sub-paths, also have 1/(¥)(s) as an end vertex. These
are sub—paths for which no crossings need occur, but for shared sub—paths of length at
least 1 (i.e., not the special case sub—paths which are, in fact, single shared end vertices
of separate, otherwise non—intersecting paths), crossings would have been counted for the
vertices where these sub—paths joined P. This must be corrected by subtracting a crossing
for each of these paths.

Although crossings are counted at the vertices where two paths join into a common sub—path,
there is nothing special about these vertices. As has been noted before, the crossing between a
pair of paths may occur at any vertex that is part of a shared sub—path. For each vertex v in a
graph H, there is no running total that is kept for such crossings, which is then incremented when
a pair of paths join at v. If this were the case, it would create a situation where v itself would
become undesirable, due to an increased “congestion”; although the other vertices in the sub-
path of which it is an end—vertex, would seem relatively more desirable. This is not desirable,
because an entire sub—path should logically be treated as a crossing, which should preferably
be avoided if possible. The vertex congestion values are better indicators of the suitability of
vertices for shortest path routing, because all vertices in a common sub—path of two distinct
paths will receive increased congestion values as opposed to only a single vertex with the former
mechanism.

The variables 7 and = were said to maintain sets of paths, and this simplifies the algorithm
conceptually. It is, however, cumbersome to implement an algorithm which manipulates paths.
A path P is just the image of an edge e in G, and the edges of G may therefore be used
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Algorithm 6.1 ComputeWeights
Input: Graphs G and H, where G is being graph—to—graph embedded into H. The edge
congestion values ¢(® and the vertex congestion values ¢(¥) of H.
Output: A set of arc weights w for H.
1: for all e = (u,v) € E(H) do

2: We va

3 if cge) = MaX.c () cée) then

4: We — we + |E(G)]” x [V(H)]

5:  else

6: W — we + ¢ J(max e gy e x [V(H)))
7 end if

8 if cge) =0 and cgv) = 0 then

9: We < €

10: end if

11: end for

12: return w
Implementation: An implementation of this algorithm may be found in § B.3.

to represent the paths of H. This is exactly the method used by the implementation of the
algorithm. Therefore, 7 and Z,, are taken as sets of edges of G.

A variable C maintains the count of necessary crossings, and it is initialized to zero at line 1
of Algorithm 6.2. The main loop between lines 2 and 33 enumerates every edge in the input
graph G. Within this loop each edge is embedded into H. The arc weights, which are required
for the execution of Dijkstra’s shortest path algorithm, are computed at line 3 by the algorithm
ComputeWeights; this algorithm is described later. At line 4, Dijkstra’s shortest paths algorithm
is applied to M, with the source vertex 1(¥)(s) (although the vertex ©(*)(t) could equally well
have been used as the source vertex), and the weight vector w. Dijkstra’s algorithm returns a
parent vector w, where the vector component 7, is the parent of a vertex v in the shortest path
tree (where the source vertex 1)(V)(s) is at the root of the tree).

The parent vector is used to traverse the path P, which is the image of e in H. Before traversal
of P is initiated, the vertex 1)(")(t) must be handled as a special case (as described earlier) with
regards to the manner in which other paths which map through (") (t) might cause crossings with
P. All of the edges of G which map to paths that intersect the vertex () (t), are enumerated in
the loop between lines 6-10. These edges are added to 7 for use of the next vertex after ¢(¥) (t)
in P. As has been stated before, crossings are only counted for those paths that do not end at
¥ (t); this is verified at line 7, and a crossing for ¢)(*)(t) is added to C for each edge of which
the image in H does not have 1)(")(¢) as an end vertex.

The actual traversal of P is performed within the loop spanning lines 13-32. For each iteration,
the vertex v is moved along by one vertex in P, and a test is performed at the start of the loop
(line 13) to determine whether v has reached the source vertex ¢(V)(s). Before the position of v
is updated at line 16, the edge congestion values of the two opposite faces arcs (v, m,) and (7, v)
which join v and its parent, are updated (lines 14 and 15). Because these two arcs represent the
same undirected edge {v, 7, } in the underlying graph of H, they are assigned the same congestion
values; hence the assignment of line 15.

The loop spanning lines 1822, is responsible for finding the edges in G whose images in H initiate
common sub—paths with P at v. Each edge f € =, is enumerated, and it is determined at line 19
whether f € 7. If this is not the case, then there are two situations to consider:
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Algorithm 6.2 ComputeEmbedding

Input: A graph G, a bidirected graph M, and a vertex mapping ¥ : V(G) — V(H).
Output: An edge mapping (®.

1: C«0

2: for all e = {s,t} € E(G) do

3: w « ComputeWeights(G,H, c® c))
4. 7« Dijkstra(H,v(™(s),w)
5: UV — @D(V)(t)
6: forall f=(w,x) €=, do
7: if ) (w) # M (t) and V) (z) # V) (t) then
8: C—C+1
9: end if
10  end for
11: 7+« =,
12: cq()v) — cq(jv) +1
13:  while v # ¥ (s) do
14: cgfr)w) — cgfr)w) +1
15: cgf}?m — ngr)v,v)
16: V — Ty
17: cq(,v) — cq(,v) +1
18: for all f = (w,z) € E, do
19: if f&7and (v# M (s) or [V (2) # ¥ (s) and ) (w) # ¢V)(s)]) then
20: C—C+1
21: end if
22: end for
23: if v = ¢ (s) then
24: for all f = (w,z) € 7 do
25: if V) (w) =M (s) or p™V)(z) = V) (s) then
26: C—C-1
27: end if
28: end for
29: end if
30: T +— 2,
31: =y — = U {6}
32: end while
33: end for

Implementation: An implementation of this algorithm is given in § B.3.

1. the vertex v is not at the end of P, and therefore the boolean expression v # 1) (s) will

be true, which renders the entire boolean expression in line 19 true. A crossing will be
added for v in accordance with the prior explanation.

. the vertex v is at the end of P, and crossings only need to be counted for those edges in G

which map to paths in H that do not have ¢)(*)(s) as an end vertex. This is verified by the
boolean expression [ (z) # (V) (s) and ¥ (w) # ¥ (s)] where ¥ (z) and ) (w)
are the end vertices of the path corresponding to f.

The last portion of complex code may be found between lines 23-29. This code is only executed
when v is at the final vertex of the path P (i.e., the vertex () (s)). The crossings that were
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added for sub-paths that end at ¥(¥)(s) are corrected here. The edges of G for which the paths
end in 1(")(s), must be in 7, since by definition, T contains a list of edges whose paths are on
sub—paths with P. One of the two incident vertices of these edges must map to w(v)(s); hence
the test at line 25. For each such edge, a crossing is subtracted on line 26. Finally, the variable
7 is updated to reflect the edges of G whose paths share sub-paths with P (line 30), and the set
of edges =, that pass through v is updated (line 31).

The arc weights are computed by the algorithm ComputeWeights (Algorithm 6.1). The as-
signments correspond to the method given at the end of the previous section. The algorithm
enumerates each arc e = (u,v) € F(H), and it computes the weight of e as a weighted sum of
the congestion of the target vertex v of e, and of the edge congestion of e itself. Initially, w,. is
assigned the vertex congestion value of v (line 2). The added edge congestion component depends
on whether the edge congestion of e achieves the maximum edge congestion value or not. The
two possibilities in lines 4 and 6 correspond to previously described assignment strategy. The
only time when w, is assigned a predetermined value, is when the edge congestion of e and the
vertex congestion value of v are both zero, so as to favour the selection of shorter paths.

When all of the edges of G have been mapped to H, a lower bound for the crossing number of H
is

v(G)—-C

Buj

where C is the variable from Algorithm 6.2 which contains the total number of possible crossings,
and j > 1.

v(H) > (6.5)

When one chooses the graph G to be a simple graph (i.e., a graph in which each pair of vertices
is joined by at most a single edge), it may happen that the term C becomes almost as large as
v(G). This problem may be ameliorated by a result due to Kainen [Kai72]. Let kG denote the
graph that is obtained from a simple graph G by replacing each of the edges of G by k parallel
edges. The graph kG is an example of a multi-graph (i.e., a graph in which a pair of vertices
may be joined by multiple edges; it should, however, be noted that in a multi-graph in general,
it is not necessary that each pair of adjacent vertices be joined by the same number of edges as
the other pairs of vertices as in this case). Kainen [Kai72] proved that v(kG) = k*v(G). This
result has the effect of transforming the inequality (6.5) into the form

K v(G) - £(C)
v(H) = W)

where f and h are functions that give the number of crossings, C, and the edge congestion
component 3y ; under the transformation. In the worst case, all of the edges between a pair
of vertices v and v in kG are mapped to the same path in H to which the edge {u,v} in the
underlying graph G was mapped. Then each crossing will be replaced by k? crossings (k edges
crossing over k other edges). Also, in this case, the edge congestion values are exactly increased
k-fold. In this case, f(C) = k*C and h(By ;) = k* 3y, rendering (6.6) equivalent to (6.5).
However, in cases where the edges of the multi-graph kG are mapped differently, it is possible
that f(C) and h(8y,;) could be small enough to ensure an improvement.

(6.6)

6.1.2.2 Determining good vertex embeddings

A tabu search algorithm, which is based on the tabu search algorithm later in this chapter was
implemented with the goal of obtaining vertex embeddings from a graph G to a graph H, that
would permit good edge embeddings into G to be found. However, the computational complexity
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required for finding edge embeddings from G to H is in general so high, that it is more feasible to
simply attempt a number of edge embeddings from G to H, each with a different random vertex
embedding. An implementation of this algorithm has been included in § B.3.3 for completeness.

6.1.2.3 Complexity of the algorithm

First, if the crossing reduction techniques described in this chapter are ignored, the problem
of graph—to—graph embedding a graph G to a graph H, is the straightforward mapping of the
edges of G by means of Dijkstra’s method. For each edge in G, this takes O(|V (H)|?log |V (H)|)
time. The updating of the arc weights in H after the mapping of each edge in G takes con-
stant time, because the weight of an arc in H is simply the weighted sum of its edge congestion
and the vertex congestion of its target vertex. Summing this over all edges of G produces a
running time of O(|E(G)||V (H)|*log |V (H)|) + O(|E(G)|), where the terms correspond respec-
tively to the invocations of Dijkstra’s algorithm, and the updating of arc weights. The latter
term is insignificant with respect to the former, and therefore the running time is expressed as

O(IE(G)IIV ()| log [V (H)]).

6.2 Upper bound algorithms for the crossing number

Except for Shahrokhi, Székely, Sykora and Vrto’s probabilistic embedding algorithm (§ 4.3.2.3),
the upper bound approximation algorithms of Chapter 4 fall into the two—page combinatorial
layout paradigm. The main attraction of this paradigm derives from the fact that the data
structures required to represent two—page layouts are simple, and that the computations to
obtain the number of crossings in a given configuration may be achieved efficiently (see § 3.2.2).
For these reasons, the upper bound algorithms in this thesis have all been implemented in the
two—page combinatorial layout model.

For a two—page heuristic combinatorial layout algorithm to find a good upper bound on the
crossing number of a graph G, it has to find an arrangement of the vertices of G on the spine,
that will permit a layout of the edges of G with a low number of crossings. Since the prob-
lem of determining optimal arrangements is a permutation problem, its running time is O(n!)
for n elements. Furthermore (as mentioned in § 4.3.2.2), the problem of finding an optimal
layout of edges, given an arrangement of vertices is an NP-hard problem (Masuda, Nakajima,
Kashiwabara and Fujisawa [MNKF90]).

With these points in consideration, heuristics are applied within two conceptual levels for a
heuristic two—page layout algorithm (except for the approximation algorithm described later in
this chapter which is based on Székely’s algorithm; introduced in § 4.3.1.4). On the main level,
there is a vertexr arrangement heuristic that searches for good vertex orderings on the spine. This
heuristic normally “drives” an edge layout heuristic which is responsible for obtaining reasonable
edge layouts. For example, a local optimization algorithm for minimizing the number of crossings
in a graph drawing may continually scan every vertex on the spine and attempt to move it from
its position to another position in an attempt to improve the solution. For each such move, a good
layout of the edges must be computed, so as to ascertain whether the move is an improvement
with respect to the number of crossings. Thus, in effect, the edge layout heuristic is invoked by
the vertex arrangement heuristic.

First, the edge layout heuristics are described in § 6.2.1; an important concept for the un-
derstanding of the edge layouts algorithms in this thesis is that the edge layout problem may
be reinterpreted as a vertex partitioning problem of an auxiliary graph called the “intersection
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graph,” and this equivalence is described in this section. Section 6.2.2 is dedicated to the vertex
arrangement problem; the tabu search method is employed for this purpose, and the section
details the basic theory of the tabu search method, as well as an implementation of the method.

For a graph G, the symbol A indicates a vertex arrangement on the spine (i.e., a permutation of
the vertices of G). It is simply a vector, and is indexed by position, so that A; is the i—th vertex
in the vector. A is itself identified with the spine, and as such, will be referred to either as a
vertex arrangement, or as the spine.

6.2.1 Edge layout heuristics

Cimikowski (§ 4.3.2.2, [Cim02]) considered the problem of two—page layouts under the name of
the “Fixed linear crossing number problem.” Eight heuristic algorithms were developed by him
for this purpose. This section introduces two new heuristics — one is a simple, although effective
iterating greedy method, whilst the other is a hybrid genetic/local improvement algorithm, which
is effective, but computationally expensive.

An important (in the context of this thesis) reformulation of the problem of determining an edge
layout on the spine of a book is made in this section: it is shown that determining such a layout
for a given graph G and an arrangement A of the vertices of G is equivalent to the problem
of finding a particular vertex partition of the so—called “intersection graph” X 4 corresponding
to A. All of the edge layout algorithms in this thesis are actually implemented as partitioning
algorithms.

The intersection graph

For a given vertex arrangement on the spine of a book, an edge layout algorithm has to be able
to determine efficiently whether a pair of edges are alternating (since alternating edges cross).
For a given edge e = {u, v}, where say, u occurs before v on the spine, one way to discover the
set of edges that cross e, is to enumerate each vertex w that occurs between u and v on the
spine and to consider each edge f = {w,z} incident to w, for which the other incident vertex x
of f occurs either to the right of v, or to the left of u (in other words, f alternates e). This is
essentially the method employed by Cimikowski’s algorithms in [Cim02], and also by the neural
network algorithm of Cimikowski and Shope [CS96]. The main shortcomings of this method are
that

1. for the edge e = {u,v}, there may be a large number of edges for which both incident
vertices lie entirely between u and v, and which therefore do not alternate e,

2. the computations required to determine whether two edges e and f cross are performed
twice — once when e is under consideration, a the second time when f is under consider-
ation,

3. when only a single vertex ¢ is moved on the spine, the rest of the vertex arrangement
remains fixed. This means that all edges that were not incident to ¢, will still have the
same alternation structure with respect to one another. This may be exploited to reduce
the computation required, since it should only be necessary to determine anew how the
edges incident to ¢ alternate the other edges in the graph.

A simple solution to these issues exists in the form of the intersection graph. For a graph G and
a given arrangement A of the vertices of G along the spine, define the intersection graph Xg 4 so
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Figure 6.5: The intersection graph indicates which edges may possibly cross.

that there is a vertex in Xg 4 for every edge in G, and so that a pair of vertices in AXg 4 is joined
by means of an edge if the corresponding edges in G alternate one another. This is stated more
formally in the following definition.

Definition 6.2.1 The intersection graph Xg a of a graph G with respect to the verter arrange-
ment A has the verter and edge sets

V(Xg.a) = {vi:ei € E(G)},
E(Xg A) = {f = {'UZ‘,?)]'} % 7,f e; alternates €; mn A, €, €5 € E(g)} [ |

)

The graph shown in Figure 6.5(c) is an intersection graph for both two—page book layouts of the
same graph shown in Figures 6.5(a) and (b). This clearly illustrates that the intersection graph is
independent of a given edge layout (the drawings in Figures 6.5(a) and (b) differ only with regards
to edge layouts; they are otherwise identical), and only dependent on vertex arrangements.

Now, by using the intersection graph, it is a simple matter to determine the set of edges that cross
a given edge e; € E(G). This may be achieved by finding the vertex v; € V(Xg ) corresponding
to the edge e; € E(G) and by enumerating the neighbouring vertices of v; — an edge e; € E(G)
that crosses e; will have a corresponding incident vertex v; € V(&g 4), and is located on the
same page as e;. Thus, the pages on which edges are drawn may be used to partition the vertices
of Xg 4, so that vertices which are part of the same partition correspond to edges in G that are
drawn on the same page. Thus, shortcomings 1 and 2 described above are addressed by using
the intersection graph representation.

Now, suppose that a vertex v € V(G) is moved away from its position in the vertex arrangement
on the spine. To obtain an intersection graph representing the new vertex arrangement, only
the edges in X 4 that are incident to the vertices in Xg 4 which represent edges incident to v
need be deleted, and new edges must be inserted into Xg 4 in order to reflect the way in which
edges incident to v alternate the edges in G, based on its new position. This procedure addresses
shortcoming 3.

The observation that a vertex partition of the intersection graph corresponds to an edge layout,
obviates the necessity of keeping track of the input graph G and the intersection graph Xg 4 at
the same time — the latter maintains all the information necessary to obtain an edge layout.
The total number of crossings may be computed simply by enumerating each edge e € E(Xg ),
and by adding to the total number of crossings if the vertices incident to e occur in the same
partition.
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A major boon of using the intersection graph is that when operating with a subdivision of a
graph, the subdivision edges that are not crossed, show up as isolated vertices in the intersection
graph. Therefore, an algorithm using the intersection graph to determine whether edges cross,
pays no time complexity penalty for the subdivision edges that are not crossed. If the subdivision
vertices of a graph are placed in the manner described in the proof of Theorem 5.3.2, then all
the subdivision edges will be represented by isolated vertices in the intersection graph.

Although the graph G is disregarded, it is conceptually still useful to think in terms of the
placement of edges of G, instead of the partitioning of vertices of Xg 4. One could still think
about edges of G to mean the vertices of Xg 4, but this introduces an opportunity for ambiguity
when the edges of X5 4 themselves need to be considered (indeed as they are in the algorithms).
For this reason, the vertices and edges of Xg 4 are somewhat awkwardly respectively called
the intersection—vertices and the intersection—edges. As a slight abuse of terminology (for the
sake of convenience), intersection—vertices are identified with edges of G, and the terms are used
interchangeably. Thus, it is occasionally mentioned that a pair of intersection—vertices cross one
another — in this case it is obviously implied that their corresponding edges in G cross one
another.

As an aside, the intersection graph defined here is similar in spirit to the intersection graph used
in some proofs (including the one that may be found in Appendix A) of Kuratowski’s theorem.
It seems that this kind of structure is, in general, a useful conceptual tool in crossing number
theory.

Reinterpreting the edge layout problem as a vertex partitioning problem

Counsidering that crossings are only counted for edges in the intersection graph whose incident
vertices occur in the same vertex partition, it may be seen that the sum of the edges in the
two disjoint subgraphs induced by the vertices from the two partitions are counted. Thus, the
problem of finding an optimal edge layout is equivalent to the problem of minimizing the sum of
edges in the respective subgraphs induced by the vertex partitions of the intersection graph®.

6.2.1.1 An iterating greedy algorithm

The iterating greedy algorithm for the determination of edge layouts is conceptually very simple.
It enumerates the edges of an input graph G, and for each edge it determines whether the total
number of crossings will be reduced if the layout page of the edge is changed. If this is the case,
it repeats the process after the enumeration of the remaining edges has been completed. This
procedure is repeated until no more edges may be shifted to pages that are opposite to their
layout pages so as to lower the total number of crossings in the configuration. This process must
terminate, since the number of crossings is bounded from below by v(G).

The main while-loop spanning lines 2-12 of Algorithm 6.3 is executed until convergence (i.e., no
more edges may be shifted to opposite pages to improve the crossing number bound) is achieved.
The variable ¢ is consulted at each iteration to determine whether this has occurred. At line 1,
c is set to the boolean value “FALSE”, so that at least one iteration of the loop is completed —
after all, it must at least verify that no edges need be placed on alternative pages.

For an iteration, the variable v/ keeps track of the total number of crossings in which edges are
involved (because the total number of crossings for each edge is counted, crossings are counted

!This generalizes naturally to cases where there are more than two pages — there are simply as many partitions
as there are pages. However, such cases are not considered in this thesis.
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Algorithm 6.3 GreedySide

Input: An intersection graph A 4 and a vector p which maintains the pages assigned to
intersection—vertices.
Output: The number of crossings for the edge layout found, along with the updated vector p
which reflects the layout.
1: ¢ — FALSE
2: while ¢ # TRUE do
33 V0
¢ +— TRUE
for all v € V(X5 4) do
P =Py
V' «— v/ 4 ChooseBestPage (p, Xg, v)
if p’ # p, then
¢ — FALSE
10: end if
11:  end for
12: end while
13: return v//2

Implementation note: An implementation of this algorithm in C is given in § B.1.1.

twice). It is set to 0 at line 3, before enumeration of the edges starts (which occurs between
lines 5-11).

Once inside the main loop, it is assumed that convergence will occur, until proven otherwise.
Thus, c is set to “TRUE” at line 4 in accordance with this assumption. The vector p keeps track
of the pages to which intersection—vertices are assigned. The procedure ChooseBestPage returns
the number of crossings in which the intersection—vertex v is involved, although it modifies
the vector p if the number of crossings in which the intersection—vertex v is involved may be
reduced. The value that it returns is added to the total number of crossings counted in the current
iteration of the main loop at line 7. Due to the fact that it must be determined after the call
to ChooseBestPage whether v was moved to a different page (to ascertain whether convergence
will occur) the original page on which v occurs is stored into the variable p at line 6. The test
at line 8 verifies whether the page on which the intersection—vertex occurs has changed, and if
S0, it sets the variable ¢ to “FALSE” to indicate that convergence has not been achieved.

This algorithm produces good results, as will be demonstrated in the next chapter. Perhaps
part of the reason is due to the way that the tabu algorithm (which is responsible for vertex
arrangements, as will be described later) “drives” the layout algorithms. At each iteration, the
tabu search algorithm scans every vertex v on the spine, and it attempts to move v to every
other position on the spine in turn, evaluating the feasibility of each such move by means of
determining an edge layout for the resulting vertex arrangement. The vector p, containing the
pages assigned to intersection—vertices, is not modified between evaluations of such vertex moves.
One of the important properties of the intersection graph is exactly that when a single vertex is
moved on the spine, very little of the intersection graph itself needs to be altered, as described
earlier. This means that every time the tabu algorithm attempts to insert a vertex at a different
position on the spine, it only updates the intersection graph partially, and because it leaves the
page vector unmodified, most of the layout information remains intact. It seems that a previous
high quality layout improves the chances that a new layout of a high quality will be found (since
the layouts for the edges that are incident to vertices maintaining their positions on the spine
are presumably better than a random layout for these edges).
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This algorithm may be compared to some of Cimikowski’s [Cim02] simpler algorithms. However,

none of these simple algorithms iterate in this fashion to reach a point of convergence?.

Algorithmic complexity of the GreedySide algorithm

The computational running time of the procedure ChooseBestPage on line 7 depends on the
degree of the crossing—vertex v — in other words, on the number of edges that cross the edge e
corresponding to v. This is true, because all edges that cross e need to be considered in order to
determine on which page e should be placed. For an input graph G, in the worst case, an edge is
crossed by every other edge in G, so that the worst case complexity of ChooseBestPage may be
measured as O(|E(G)|), and since the loop (lines 5-10) in which this computation is located is
executed for every crossing—vertex of the intersection graph of G, the total worst case complexity
for the loop is O(|E(G)|?). Now, since not every edge in a graph can cross every other edge (after
all, adjacent edges never cross in book layouts), there is a possibility that the bound O(|E(G)|?)
is overly pessimistic. Thus, it must be shown that there exists a graph for which this bound is
attained. Consider a two—page layout of a complete graph KC,, — for every choice of four vertices
in IC,, a crossing may be obtained (since there will be a pair of alternating edges to which these
vertices are incident). The total number of alternating edges must therefore be counted as (Z)
Now, since the graph has (g) edges, the number of alternating edges expressed in terms of the
number of edges in KC,,, is O(|E(K,,)|?).

It is rather more difficult to put forth a bound on the number of times that the main loop
(lines 2-12) would be executed. In a worst case scenario, the number of crossings during each
iteration of this main loop would decrease only by 1. Furthermore in a worst case, the initial
crossing configuration would be such that it realises the maximum number of crossings for any

layout in the intersection graph Xg 4; denote this value by Vf,(max). Denote the minimum value
for the number of crossings that are permitted by Xg 4 as va, ,. Thus, at most l/fv max) _ VXg A

can be performed by the main loop, and therefore, the worst case running time of the algorlthrn
would be O((uf,(ma‘;‘) — v )| E(KC,)[2). Tt should be noted that (g Y vy, < (VO This
is because the maximum crossing number of the complete graph in standard one—cross form is
('Vg )|) this may be seen drawing all the pages of the complete graph on a single page of a
book, where, for every choice of four vertices, there is a pair of crossing edges.

With this said, the algorithm seems to perform quite well in practice. Empirical results for
the average number of iterations required for graphs of varying sizes may be found in the next
chapter. In the worst case layout, all edges are placed on the same page. In this situation, when
an edge is shifted to the opposite page, the number of crossings is likely to decrease by far more
than 1; this is especially true for dense graphs, where each edge is crossed by a number of other
edges. It is therefore unlikely that the worst case running time will become problematic.

6.2.1.2 The Cimikowski—Shope neural network algorithm

There is not much that needs to be said about the Cimikowski—Shope algorithm, since the theory
for the algorithm was discussed in § 4.3.2.2. This section merely provides a concrete reference
implementation® of the algorithm which also employs the notion of intersection graphs.

*His neural network algorithm does continue until convergence is reached. However, the intention is not to
compare this simple iterating algorithm to the neural network algorithm.

3This implementation ought to be more understandable than its C, or Python computer implementations, which
may be found in § B.1.2. References are made to the notation and concepts in § 4.3.2.2, and it is recommended
that this section is read before attempting to understand this algorithm.
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Algorithm 6.4 bg,l) or bg)

Input: An intersection graph X, a vertex v € V(X'), and a neural page configuration V.
Output: The number of crossings that v would be involved in, in a page layout corresponding
to V.

1: v* 0

2: for all incident edges {v,u} of v in X do
3 vi—v"+V,

4: end for

5: return v*

Implementation: An implementation of this algorithm may be found in § B.1.2.

The main algorithm is called Cimikowski-Shope; its main loop spans lines 6-33 in Algorithm 6.5.
This loop is executed until convergence is achieved, or until a specified maximum number of
iterations tmax have been completed. As with the GreedySide algorithm, the variable ¢ indicates
convergence, and as with GreedySide, it is initially set to “FALSE” at line 5, so that the main
loop will be executed at least once. Furthermore, for each iteration of the main loop, it is
initially assumed that convergence will occur, until a counter—example is found — hence, c is set
to “TRUE” at the start of the main loop, which is line 7. The variable ¢ maintains the iteration
count, and it is updated at line 8.

The vectors U1 and UW) represent the function values of the like-named functions in § 4.3.2.2;
since the boundary conditions require that these functions have random values at time t = 0
for all edges, they are thus assigned values in the first loop, which spans lines 1-4. The binary
valued vectors V(1) and V) indicate whether an edge should be drawn on respectively the
upper or lower page, by having the respective entries for the edge (intersection—vertex) set to
1 (which, of course, means that ambiguity over page on which the edge occurs arises when its
entries in both vectors are 1, or when both are 0). All of these vectors are indexed by means
of the intersection—vertices of the intersection graph. For each iteration of the main loop, the
vectors V(1) and V) have to be updated in accordance with the function values contained in
the vectors UM and UW. This is done in the loop spanning lines 9-20.

The heart of the algorithm is the loop spanning lines 22-32. It is here that the function values
contained in UM and UV are updated. The if statement between lines 23-25 is only executed
if there is an intersection—vertex that is not unambiguously assigned to a page. If this is the case,
then the algorithm has not yet converged, and the value of c is set to boolean value “FALSE.”
The function values are updated by Euler’s method at lines 27 and 28.

The values of a, and ¢, are computed as they are in § 4.3.2.2. The way in which bq(,l) and bg) are

computed deserves some attention. The definitions provided for these variables in § 4.3.2.2 do
not yield particularly efficient methods for computing their values; the method described here
instead uses the intersection graph. Essentially, the value of bg) is equal to the number of edges
that v would cross if it were to be drawn on the upper page. It will only cross those edges that
have their entries in the vector V(1) set to 1. Therefore, if all of the vertices adjacent to v are
enumerated, then taking the sum of their values in V() yields the number of crossings in which
v would be involved, if drawn on the upper page. The same reasoning holds for the vector v,

for drawings on the lower page.

Algorithm 6.4 is responsible for calculating either bq(,T) or bq()l). The input vector V corresponds

either to V(1) or to V), depending on whether respectively bg) or bq(,l) is being considered.
The loop between lines 2-4 enumerates the vertices adjacent to the intersection—vertex v under

consideration, and the variable v* maintains the sum of the crossings in which v is involved.
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Algorithm 6.5 Cimikowski-Shope

Input: An intersection graph Ay 4/, neural network parameters A, B, C, dt, tmax and random
initializer w.

Output: The variable ¢ to indicate convergence, and the vectors Vq()T) and Vq()l) from which the
page assignments for edges may be computed.

1: for all v € V(X5 4) do

2. UY" « random uniform value in [—w,0)

3 UY « random uniform value in [—w,0)

4: end for

5. ¢ — FALSE

6: while ¢ # TRUE and t < tyax do

7

8

9

c «— TRUE
t—t+1
for all v € V(X5 4) do
10 if U >0 then
11: VQ(,T) —1
12: else
13: VQ(,T) —0
14: end if
15: if Uq()l) > (0 then
16: Vf}) —1
17: else
18: Vq(,l) — 0
19: end if
20: end for

21:
22:  for all v € V(Xg 4) do

23: it VI = vV then

24: ¢ «— FALSE

25: end if

26:

o, UL — UM 4+ [apd + B(=b + ) + ¢,C ] dt
8. UM — UM +[a,4+ B(=bH + b)) + e, dt
29:

30 UW — Ul /max{1, uP)y

3. U — UM/ max{1, [uM |}

32: end for
33: end while
34: return ¢, VI, v

Implementation: An implementation of this algorithm may be found in § B.1.2.

The final two lines of importance are lines 30 and 31 in Algorithm 6.5. They simply ensure that
the values of U(N and UY) remain within the range of [—1, 1], by “capping” the maximum value
to 1, and the minimum to —1. Finally, upon completion at line 34, the algorithm returns the
variable ¢, along with the vectors V(I or V() from which the page values of intersection—vertices
may be computed (if convergence has occurred).

If convergence does not occur, then another simple optimization algorithm may simply be ap-
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plied after the execution of the neural algorithm. For this thesis, the GreedySide algorithm is
applied under such circumstances. In fact, it is always applied, since even if the neural algorithm
Cimikowski-Shope converges, local improvements might still be possible.

Algorithmic complexity of the Cimikowski-Shope algorithm

For an input graph G, the initial assignment of random function values to U1 and UW) takes
O(|V(Xg,a)|) time, or equivalently O(|E(G)|) time, since an assignment must be made for each
vertex in the intersection graph, and each assignment takes constant time.

The main loop, which spans lines 6-33 is executed at most O(tmax) times. Inside this main loop,
the first loop between lines 9 and 20 is executed for each crossing—vertex, but the operations
within it may be verified to require constant execution time. Thus, the time complexity of
this inner loop is O(|V(Xg,4)|). For the second loop inside of the main loop (lines 22-32), all
operations except for those on lines 27 and 28 execute in constant time. As with the procedure
ChooseBestPage in the algorithm GreedySide (Algorithm 6.3, § 6.2.1.1), the time taken for the
operations on lines 27 and 28 depends on the degree of each crossing—vertex v; this may be
seen in Algorithm 6.4 from the fact that the adjacent vertices of v all need to be considered
in order to compute the number of crossings that v would incur when it is to be drawn on
either the upper or lower page (depending on whether respectively b(1) or 5()). Thus as in the
algorithm GreedySide, the worst case computational running time for the second loop is of the

order O(|E(G)|?).

Within the main loop, the running time of the second loop (lines 22-32) dominates that of the
first loop (lines 9-20), and therefore each iteration of the main loop executes in O(|E(G)|?) time.
Therefore, the overall worst case running time of the algorithm is O(tmax |E(G)[?).

6.2.1.3 A hybrid genetic and local optimization algorithm

Darwin’s ground breaking book On the Origin of Species [Dar59], which was first published
in 1859, detailed what was to become the foundation for the modern theory of evolution. His
innovation was not the concept of evolution per se*, but the concept of natural selection. Natural
selection refers to the fact that certain individuals in a population are more likely to survive and
consequently to reproduce, than others, due to individual traits that work to their advantage, or
in the parlance of popular evolution theory, traits that make them fitter (from here the oft quoted
phrase “survival of the fittest”). Natural selection occurs when the following three properties are
present in a population of individuals:

1. individuals in the population can make copies of themselves (typically by means of the
“mating” of two individuals),

2. the process of copying is imperfect,
3. the copying errors influence the ability of offspring to survive and make copies of themselves.
Thus, the fittest individuals are more likely to survive, and to have their genes transferred to

the next generation. The errors that occur in the copying process, ensure that locally optimal
chromosomes are avoided. This process is not confined only to living entities. Sets of candidate

4 At least part of the academic community involved in biological research believed that a process of evolution
occurred in living species, although they lacked a mechanism with which to explain its action (page 25, [EH01]).
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solutions for optimization problems may be made to display the same properties, if a mechanism
for producing new offspring is provided. It is exactly this observation that led to the development
of genetic algorithms.

Algorithmic aspects

Not surprisingly, the terminology used for genetic algorithms is derived from the nomenclature of
biology. A set of solutions is called a population; its individuals are referred to as chromosomes,
which consist of genes. A genetic algorithm proceeds through successive generations of a popu-
lation. Offspring are created by means of either crossover or by mutation. The exact semantics
of these two operations may differ widely from problem to problem, but a basic description using
bit strings should serve as a sufficient example.

Let X = xzyx9---2¢ and Y = y1ys - - - y¢ represent two binary bit strings of length ¢ each. Two
offspring may be produced from the pair, using the traditional crossover operator, which works
as follows: a random index 4, called the crossover point, is chosen, such that 1 < ¢ < ¢, then the
two offspring are defined as O1 = x1 -+ - 2;y;4+1 - - - yr and Oy = yq - - - Y;Ti41 - - - ¥, This operation
is depicted in Figure 6.6, where the crossover point is ¢ = 4, and is depicted by the X between
the two strings.

Mutation is a transition that is applied to a single chromosome. In the case of bit strings, a
random point is chosen, and the bit is flipped to its opposite value. Mutation is typically applied
with a certain probability (say 0.2%) to the offspring generated by a crossover.

X=101101000—-001001000=0
X
Y=001011011—-101T1T1T1Q0T11=0,

Figure 6.6: An illustration of the operation of the crossover operator.

In the classical genetic algorithm, the population size is kept constant, and the entire population
is replaced at each iteration by the offspring born generally of the fittest genes. There are
a myriad of ways to achieve this goal, but only the method used in this thesis is discussed
here. The method of tournament selection is a popular and effective selection technique for
genetic algorithms. Consecutive (non—intersecting) sets of n individuals from the population are
considered at a time, and the best of each set is chosen. If the population has size p, then a
total of p individuals have to be selected for mating, since each pair of parents produces two
offspring. This means that n x p individuals will be selected during the course of choosing
parents, with the effect that selection will “wrap around” and recommence the with the selection
of the first individuals in the population. When such “wrapping around” occurs, it is therefore
beneficial to randomize the order of the chromosomes in the population, so that not all of the
same chromosomes will be chosen as in the previous enumeration. When the p desired parents
have been selected, they are mated sequentially with one another in pairs. After mating, the
children are mutated with a low probability.

Pseudo—code for the genetic algorithm described above is shown in Algorithm 6.6. The code in
the algorithm is admittedly quite vague, but this is due to the fact that many aspects of the
algorithm are highly dependent on the structure of the problem to be solved. The variable c*
maintains the best chromosome that has been found in all generations during the algorithm’s
course of execution, whilst the variable f contains the fitness value of the chromosome represented
by c¢*. Line 1 of the algorithm may translate into a host of different instructions; typically it will
consist of a simple loop enumerating the population and executing the fitness function for each
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of the constituent chromosomes. This initial computation is necessary, because the fitness values
must be known at the start of each generation of chromosomes. The main loop, of which each
iteration is a generation, spans lines 2-17. The condition that is tested by the loop at line 2 is
simply called “continue,” to reflect the fact that there are a variety of ways in which to terminate
a genetic algorithm. Probably the most common methods are to terminate

1. after a specified number of generations,

2. if, for a specified number of generations, no individuals of a higher fitness than the best
individual over all generations have been found,

3. when a certain fitness threshold has been achieved.

The first of these was used for the genetic algorithm implementation in this thesis, since it gives
an assurance of maximum running time, where the second may run for an arbitrarily long time,
and the third may never terminate (in fact, the third should in all sensibility be combined with
a condition such as the first in the list). At line 3, the |P| fittest individuals are stored in the
variable M (where the fitness depends on the manner of selection). The loop between lines 4-17
considers all chromosomes of M in consecutive pairs, as they are to be mated. The creation
of offspring only really occurs at lines 5 and 6. Again, the fitness of the individuals is required
at the next generation when parents of that generation are to be selected, and so their fitness
values® are computed at line 7. It may be seen from both conditional if structures, spanning
lines 815, that their function is only to determine whether the two respective new offspring are
fitter than the previously best found chromosome, and if so, to store whichever fitter offspring
into the variable c¢*, and its fitness into f. The new generation is stored into the population
variable P’, where the offspring are appended in turn to P’ at line 16, and finally after the
creation of all offspring, P is replaced by P’ at line 18.

Genetic algorithms are typically applied to difficult optimization problems, with solutions spaces
that are too large to enumerate sequentially. The preservation of good genes progressively leads
to the progressive improvement of good solutions whilst the mutation ensures that local optima
may be avoided, thereby driving the search into unexplored regions of the solution space. A
good balance between these two traits of “zooming in on good solutions” and “scouting for new
solutions” is the hallmark of a good heuristic algorithm, and it is also found in the form of
“aspiration” and “diversification” in the Tabu search method, described later.

Applying genetic algorithms to the edge layout problem

Genetic algorithms are the most effective for problems where the combination of sub-solutions
from two existing solutions may yield a new, better (fitter) solution. These problems display what
might be called the “good to near—optimal sub—solution trait”, which may loosely be thought of
as a relaxation of the optimal sub—solution trait for which dynamic algorithms are often useful.

Now consider the edge layout problem. A seemingly sensible encoding for the problem would be
to use the bit string scheme from the previous section, such that each gene (bit) corresponds to
the page layout for a unique edge in the input graph G (for example a value of 0 would indicate
that the corresponding edge would be drawn on the upper page, and a value of 1 that it would
be drawn on the lower page).

5The fitness values are generally stored in an associative array (the association being between chromosomes
and fitness values), or inside the structure which contains the chromosome.
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Algorithm 6.6 GeneticAlgorithm

Input: A population P of chromosomes.
Output: The updated population P and the fittest chromosome c*.

1: Evaluate the fitness of each chromosome in P

2: while continue do

M «— {|P| fittest parents selected from tournaments}
4:  for all consecutive pairs of elements p1, po in M do
5 c1, ¢y «— CrossOver(p1,ps2)

6 possibly mutate c; and ¢

7: compute Fitness(ci) and Fitness(co)

8

9

@

if Fitness(c;) > f then
f < Fitness(c¢1)

10: cF—

11: end if

12: if Fitness(cy) > f then
13: f < Fitness(c2)

14: c* — ¢y

15: end if

16: PIHPIU{Cl}U{CQ}

17:  end for

18 P« P

19: end while
Implementation: An implementation of this algorithm may be found in § B.1.3.

Unfortunately, this encoding scheme has the deficiency that sub—solutions cannot be isolated
effectively into sub-strings in the bit string, so that the mating of two chromosomes generally
would not yield a better chromosome. To understand why this is so, it must be noted that a
single edge e may be crossed by many other edges. Now, if the bits representing these other
edges (or rather the pages for these edges) are all placed adjacent to the bit representing e,
then this entire substring would need to be preserved if the crossing configuration for e is to be
preserved. But, of course, these edges generally will not cross only e, but also some other edges
in G. Clearly, it would not be possible to pack together bits of all edges that cross one another.
The solution is “dispersed” across the bit string, and the recombination of two substrings X and
Y generally will not yield an improvement, since the quality of the chromosome A of which X
is a substring is due to the way that some bits in X depend on the values of bits that are not in
X — these bits would probably be different in Y, causing new crossings, and wvice versa for Y.

It is not possible to find an encoding which would resolve this problem entirely, but its effect
may be minimized. In an encoding, edges that occur entirely to the right of some edge e should
preferably be placed to the right of the encoding of e in the chromosome; the same considerations
hold for edges to the left of e. As for edges that cross e, it would be preferable to keep them as
close to e as possible, whilst considering that this property should also hold for all other edges.

Consider the book layout of Kg shown in Figure 6.7(a) — for each edge e = {u,v} in the
drawing, one could assign a coordinate to e by taking the average of the positions of its two
incident vertices v and v — i.e., if u is at position z, and v at position y, then e is assigned the
coordinate (x + y)/2. If such coordinates are used to encode page numbers into a chromosome,
then edges which occur entirely to the right, or entirely to the left of an edge e (i.e., those edges
that do not intersect e) might be represented by bits in the chromosome which occur respectively
either to the right or to the left of the bit corresponding to e. Edges which are likely to cross e
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Figure 6.7: A change in perspective from a book layout to a circular layout enables a “cell”
encoding, which is more effective with the genetic crossover operator than a simple bit string
encoding of edge positions.

also occur “close” to e (although this may be seen more clearly in the circular encoding, which
is described in the following paragraphs). Clearly, a number of edges may occupy the same
coordinate — in this case they are treated as an entity, with the convention that a crossover
cannot be made in the middle of an entity.

A better encoding scheme will be presented presently, but first a change in perspective is required.
From the book layout depicted in Figure 6.7(a), it might be concluded that more crossings appear
in the middle, and one could assume that this would influence the encoding. However, since
book layouts are equivalent to circular layouts (§ 3.1.3.2); the layout depicted in Figure 6.7(b)
is equivalent to the layout in Figure 6.7(a); however in Figure 6.7(b), the crossings seem to be
“distributed” around the circle.

Now, instead of assigning the coordinates relative to the position of the midpoint of an edge on
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the spine, coordinates are assigned by taking the average of the minimum distance between two
vertices on the circle. In Figure 6.7(c), there are sixteen “cells,” labelled ¢g to c15; each of these
cells represents a unique coordinate (there are 8 vertices, and a total of 16 coordinates due to
the fact that an average of an even and an odd vertex position gives a position between two
vertices); edges which have the same coordinate are grouped together in a cell.

The cell units now represent genes, and this scheme is sufficient to avoid the problem of a crossover
occurring in the middle of a group of genes which represent edges with the same coordinate. In
Figure 6.7(c), the cells that are coloured gray are supposed to illustrate a section of another
chromosome that is mated with the white cells.

Issues surrounding circular encoding

The first problem that arises with such a circular chromosome encoding scheme is a relatively
minor one. When the input graph has an even number of vertices, as is the case for g shown in
Figure 6.7(c), then edges for which the incident vertices are equally far apart ({vg,v4}, {v1,v5},
{ve,v6} and {vs,v7}) will appear in two cells, since these edges may ambiguously have two
coordinates. A simple and pragmatic solution is simply to use only the smallest coordinate for
an edge. Another point to raise is that edges which span two vertices which occur adjacent to
one another on the circle have been included; however, they can never make a difference to an
edge layout, since they are not crossed, and they may therefore be ignored.

The second problem is rather more fundamental, and has to do with the fact that there is
still some “dispersion” of the solution present in circular encodings. For example, consider again
Figure 6.7(c), and let the greyed cells be a sub—solution to be mated with the white cells. Clearly
the edges in cells cig and cy4 in the greyed region, and the edges in the cells ¢9 and c;5 in the
white region also depend on edges outside of their regions for their crossing configurations.

It does not seem sensible to ignore this, since the values corresponding to these edges are not
really part of a good sub—solution. The approach taken for this thesis was to apply a simple
heuristic such as the GreedySide to the these “boundary” edges. Because of the application of
such a local optimization method, the algorithm is not a genetic algorithm in the purest sense.
Nevertheless, such a pragmatic approach is required to mitigate dispersion problems.

Implementation of the crossover operator

The implementations of most genetic algorithms are simple, and many follow the same general
structure as presented in the pseudo—code of Algorithm 6.6. However, it is important to give a
more precise specification of the crossover operator. The cell encoding described in the previous
sub—sections may be implemented as a list of lists — the main list is indexed by the cell coordinate,
and the contents of each list position is a list containing the crossing—vertices for that coordinate.
It is a simple matter to mate two such chromosomes — the only difference between this model
and the bit string model is that lists are copied to the offspring instead of bits.

The one point which deserves attention, is the fact that the edges of a chromosome that have
incident vertices occurring beyond the crossover point (i.e., the edges that cause the solution
“dispersion”) need to be identified, so that they may be assigned pages by a heuristic method. A
simple approach was taken for this thesis — in each list (i.e., each cell) of the list of lists, all the
crossing—vertices are enumerated, and those for which the corresponding edge has an incident
vertex occurring outside the crossover point, are marked. After they have all been marked, a
modified version of the algorithm GreedySide (Algorithm 6.3, § 6.2.1.1) is applied to all the
marked crossing—vertices.
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Algorithmic complexity of the genetic algorithm

From a population P, the time taken to select chromosomes for the purposes of mating is pro-
portional to the size of P, and thus of the complexity order O(|P|). For each offspring, the
crossover operation takes O(|E(G)|) time for an input graph G, since the list of lists constituting
a chromosome contains an entry for each edge, and the assembly of a new chromosome is by the
process of copying the various list entries from its parents. The time taken to identify edges which
straddle the two crossover points takes O(|E(G)|) time, since all entries in the list of lists are
enumerated. In the worst case, there will be O(|E(G)|) edges that straddle the crossover point,
and due to the fact that the algorithm GreedySide is used, the running time is O(c|E(G)|?),
where c is the difference between the maximum and minimum number of crossings realizable by
a two—page layout, using the current vertex arrangement. However, as noted in § 6.2.1.1, ¢ is
generally not very large, and in practice ¢ < |E(G)|. Finally, the time that it takes to compute
the fitness of the offspring is the time taken to compute the crossing number that would result
from a particular partitioning of the vertices of the intersection graph, which has been shown to
take O(|E(G)|?) time.

Thus, most time is likely to be spent in the crossover, which has a complexity of O(|E(G)|?) +
O(c|E(G)]?) = O(c|E(G)|?). Two crossover operations are performed for each pair of par-
ents, to produce two offspring. Therefore, the total time taken to create a new generation is
O(c|P||E(G)|?), and the total running time of the algorithm is O(tmax ¢ |P||E(G)[?).

6.2.2 Vertex arrangement heuristics

The vertex arrangement problem has not received quite as much attention in the literature as
the edge layout problem. The problem of vertex arrangements has been studied extensively for
the crossing minimization of k-layered drawings [MM97, BML00, Mut01, JLMO97, SSSV97b|,
because, as noted in § 3.1.3.4, the number of crossings depend only on the orderings of the
vertices on the various levels. Such solutions are, however, of little use for the general crossing
number problem, except for providing upper bounds to the crossing number values of layered
graphs. By using graph bisection (§ 4.2.2.4), it is possible to obtain a vertex arrangement for a
graph G that is within a log|V(G)| factor of its crossing number v(G), but one cannot be sure
of the constant factor involved in the bound, and it will almost certainly be possible to improve
such a layout afterwards.

The heuristic method known as the tabu search method due to Glover [Glo86], which is in-
troduced in this section, intelligently enumerates the search space by combining short—term
“osreedy,” or “aspiration” behaviour, with longer term “diversification.” This method may be seen
as generalization of the neighbourhood search method, which is an entirely greedy. In practice,
this method performs well with permutation based problems ([Ree93]), hence its choice for the
computation of vertex arrangements.

At the end of the section, pre—optimization methods for the generation of initial vertex ar-
rangements are discussed. The first method is based on Nicholson’s heuristic (§ 4.3.2.2) and
the second method is essentially the Hamiltonian cycle heuristic that was used by Cimikowski
[Cim02] (§ 4.3.2.2).

Neighbourhood Search

The terminology required for the methods of neighbourhood search and tabu search are intro-
duced in this subsection. Combinatorial optimization algorithms rarely peruse their search spaces
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randomly. Instead, it is typical to have a well defined transition by which a feasible solution A
may be altered in order to form another solution A’; the algorithms generally move from one
solution to the next by such transitions (in a genetic algorithm, this transition is defined as the
crossover of two chromosomes). For example, in permutation problems, such a transition might
be the swapping of a pair of elements. In the parlance of tabu search theory, a transition or
alteration is called a mowve. The set of solutions which may be obtained from a solution A by all
moves defined for such a solution, is called the neighbourhood of A, and is denoted N(A).

The neighbourhood search method is a local optimization method. The idea is quite simple
in the context of the crossing number problem: with a vertex arrangement A, the arrangement
A" € N(A) which permits the edge layout with the fewest crossings, is chosen; if A’ permits fewer
crossings than A, then A is replaced by A’ and the process is repeated; otherwise the search is
terminated. It is clear that this process will converge to a local optimum; the greedy behaviour
of this approach is manifested in the fact that it always makes the most improving move.

Algorithm 6.7 is an example of a simple neighbourhood search algorithm for the problem of
determining vertex arrangements in the context of crossing minimization of two—page layouts.
The solution in this case is the arrangement of vertices on the spine, and the only move that is
defined, is the shifting of a vertex from its position on the spine to a new position.

The loop spanning lines 5-20 enumerates each position ¢ on the spine A, and for each i it calls
the nested loop spanning lines 6-19. This second loop moves the currently examined vertex to
every other position j on the spine (if ¢ = j, then no movement will take place, and this case
is ignored; hence the if statement at line 7) and computes (line 10) the number of crossings
resulting from the application of an edge layout algorithm (line 9) — any edge layout algorithm
will suffice, where PageLayout would be replaced by the relevant algorithm. If it finds that the
current layout improves the best crossing number found thus far (line 11), it stores the position
from which vertex v is to move in ¢* and the position to which the vertex v should be moved as
the variable j* (lines 12-13), so that this move can be applied after the two loops terminate. It
also notifies the algorithm that it has found an improving neighbouring solution (line 15), and
that the search should thus continue for a better solution.

If an improving move was found, then the update is made in lines 21-23. Finally, lines 1-2 are
only responsible for computing the initial upper bound ¢’ on the crossing number. Clearly this
algorithm will terminate when a local optimum is found, since no neighbours would represent
improved solutions.

Algorithmic complexity of the neighbourhood search method

The two nested loops spanning respectively lines 5-20 and lines 6-19 together execute O(|V (G)|?)
times, for an input graph G. Inside these loops, the most time consuming operations are at lines 8,
9, 10 and 17 — the rest of the operations require constant execution time. The movement of a
vertex from one position on the spine to the next (lines 8 and 17) takes O(|V(G)|) time. This is
because the vertices are stored in a vector, and when a vertex is moved from its position ¢ to a
new position j, a number of vertices have to be shifted to make space at j, and to fill the position
i. The average distance between two randomly selected positions on the spine is O(|V(G)|), and
therefore, on average O(|V(G)|) vertices must be moved along on the spine. The complexity of
the two—page layout operation (line 9) depends on the layout algorithm used, but it certainly
takes at least time O(|E(G)|) (each edge must, after all, be considered at least once), although it
may be seen from the edge layout algorithms in this thesis (§ 6.2.1.1, § 6.2.1.2 and § 6.2.1.3) that
the running time is likely to be at least O(|E(G)|?). Denote the running time of the edge layout
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Algorithm 6.7 NeighbourhoodSearch

Input: A graph G, and a spine arrangement A of G’s vertices.
Output: The possibly updated spine arrangement A and number of crossings ¢’.

1: £ « PageLayout (X5 4)
2: ¢ « NumberOfCrossings(Xg 4, ()
3: while improving = TRUE do

4:  improving <+ FALSE

5. forallie{l,...,|V(G)|} do

6: for all j € {1,...,|V(G)|} do

T: if ¢ # j then

8: Move A; to position j in s

9: ¢ «— PageLayout (X 4)

10: ¢ < Number0fCrossings (&g 4,¢)
11: if ¢ < ¢ then

12: T —1

13: jr—g

14: d—c

15: improving «— TRUE

16: end if

17: Move A; back to position ¢ in s
18: end if

19: end for

20: end for

21:  if improving = TRUE then
22: Move A;+ to position j* in A
23:  end if

24: end while

25: return A, ¢ and ¢

Implementation: No implementation for this algorithm is given, since it may be seen as a
special case of the tabu search algorithm described later in the chapter.

algorithm by D. Finally, as has been stated before, the time taken to compute the number of
crossings in a two—page layout is O(|E(G)|). Thus, the time taken by the two nested loops is
O(D|V(G)|?). Tt is not possible to estimate how many times these nested loops will be executed,
since the neighbourhood search algorithm runs until no more improvement is possible.

Incorporating non—greedy behaviour

A major drawback of neighbourhood search, is that it might converge to a weak local optimum.
This occurs when it is initialized with the wrong choice of an initial solution (of course, it cannot
be known in advance whether an initial solution is “wrong”). The problem may be ameliorated
somewhat by performing a number of trials of the neighbourhood search algorithm with random
initial solutions, but the main problem is that, in general, good optima may not necessarily
be achievable only via moves which are most improving. Of course, this problem itself is not
entirely insurmountable, since the neighbourhood search algorithm could be designed to choose
randomly amongst a number of improving moves. Nevertheless, a more systematic exploration
of the search space is desirable, and this may be achieved by a method such as tabu search.

Tabu search has its antecedents in methods that were designed to violate feasibility barriers or
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optimal search directions by the strategic application or release of constraints, so as to permit
exploration of regions which would otherwise be forbidden/unreachable. In this thesis, a very
one-sided view of the tabu search method is taken, whereby the method may be seen as a gen-
eralization of the neighbourhood search method. A tabu search algorithm maintains a memory
structure H of attributes of moves that were performed in a number of previous iterations (an
example of such an attribute, is: vertex v; was moved to position 2 on the spine), and it employs
H to classify certain moves that would result from the current neighbourhood N(A), as tabu
(hence the name of the method). Such moves are not considered by the algorithm; therefore, cer-
tain solutions in N(A) will not be reachable, and therefore the neighbourhood is also a function
of H, and written as N (A, H). This avoidance of moves has the effect of occasionally forcing
the algorithm to make a number of non—-improving moves, thereby facilitating escapes from local
optima. An attribute (incorporated in H) is active for a number of steps, called its tenure and
may only play a role in classifying a move as tabu when it is active. An attribute is enabled
when its tenure is positive, and this tenure is decreased after every move. Another often used
technique is to store previously found local optima — otherwise called elite solutions — and to
make moves to such solutions available in N (A, H) when no improving moves have been found
for a certain number of prior moves.

Attribute based memory

As mentioned above, the memory of the tabu search algorithm is based on attributes of solutions.
In this context, an attribute is any aspect of a solution that may change during a move. The
set of attributes for a solution A is denoted a(A). When a move has one or more attributes
with positive tenure values, it might be classified as tabu, depending on how the algorithm was
designed — for some problems, a single active attribute would suffice to designate a move as tabu,
whereas in some other problems, a host of attributes need to be active for such a designation.
The property of being tabu, is not, in general, a binary property — that is to say, a move is not
merely tabu or not tabu, but instead, it is assigned a tabu walue which varies in proportion to
the tenure values of the move’s attributes.

As an example of how attributes might be defined, consider again the problem of finding good
vertex arrangements on the spine of a book. Two types of attributes are defined (without any
justification at the present moment). First, when a particular vertex v has been moved to a new
position 7 on the spine, it should maintain its position ¢ for a number of steps. The attribute for
this case is defined as being active when v might be moved away from its position. Second, once
vertex v has been moved to a certain position ¢ on the spine, that position should be “poisoned”
so that v will not be moved there again for a certain number of steps during future iterations.
This attribute is thus active when v is to be moved to position 1.

These two attribute types were chosen to highlight the two types of attributes that exist: from
attributes and to attributes. The former define moves that “cancel” attributes, and the latter
define moves that “activate” attributes. More technically, let A be some solution, and let A’ €
N(A, H). Then, from attributes of the move that will transform A to A, are defined as the set
a(A)~a(A’), i.e., all attributes that are considered to be active for A, but not for A’. Conversely,
to attributes of the move are defined as the set a(4’) \ a(A4).

It would be impossible to detail a general data structure for the storage of tenure values for
attributes, since this is very specific to the problem structure. Of the example attributes, the
first type may be stored in a vector, indexed by vertices, and of which the entries are the tenure
values (since it depends only on the vertex to be moved away). The second type may be stored
using a matrix where rows might specify spine positions, and the columns the vertices. The
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entries in the matrix positions contain the tenure values. This latter data structure is used in
the tabu search algorithm example below.

An important consideration for the efficiency of a tabu search algorithm, is the time complexity
of updating the tenure values of attributes after each iteration. The first of the two example
attributes requires a vector, and thus to enumerate the entire vector for decreasing the tenure
values is not a very expensive operation. In contrast, the second example attribute requires a
matrix, and clearly the enumeration of this structure requires O(|V(G)|?) time. This is normally
excessive, since such a matrix is likely to be relatively sparsely populated. In this case, it is better
to maintain a separate list, which contains the row/column index pairs of the entries which are
non—zero. This list is enumerated at each iteration of the tabu algorithm to find non—zero entries
in the matrix. When a tenure value of an entry reaches zero, its corresponding row/column pair
is removed from the list. Such a list is called a tabu active list, an example of which may be seen
in the tabu search algorithm example below.

The selection of solutions from a neighbourhood

In tabu search algorithms, the neighbourhood of a solution need not only contain moves that are
obtainable by applying normal moves to the solution. As mentioned above, a common strategy
is to maintain a list L of the best solutions reached so far, commonly called elite solutions, and
to define the neighbourhood N'(A, H) = N(A, H) U L for a solution A if, say, the tabu search
algorithm has not made any progress within a specified number of steps. This enables the tabu
algorithm to re—examine good solutions, and explore their direct neighbourhoods more closely.
In the implementation of tabu search used in this thesis, the list L is pruned from time to time
so that solutions which compare poorly with respect to the best solution encountered thus far
are removed, where a solution is regarded as poor if it achieves a number of crossings in excess
of 5% of the best known solution. The list is not pruned if L contains below a certain number
of elements, so that diversification is ensured. In the implementation, L must contain at least
two elements (the choice is arbitrary and may be varied). Another important property of a
tabu search algorithm, is that tabu values are normally overridden in favour of moves that may
reach particularly good solutions. The criteria by which this is decided, are called the aspiration
criteria, and allow the algorithm to “zoom in” on good local optima. The most common aspiration
criterion is to override the tabu status of a move which will lead to a solution that is better than
the best solution found at that point. This is also the only aspiration criterion that was used in
the tabu search algorithm described below.

A tabu search algorithm typically constructs a list (of maximum fixed length), called the tabu—
list, which contains potential next moves from the neighbourhood N (A, H) of a solution A and
attribute memory H. Moves are sorted in the list according to their quality (é.e., in the context of
two—page layouts, vertex arrangements which permit fewer crossings are higher quality solutions,
and moves towards such solutions are thus higher quality moves) and if a move is of lower quality
than that of the worst move in the list, it is simply not inserted into the list. Once the list has
been constructed, the tabu search algorithm picks a non-tabu move of the highest quality. If all
moves in the list are tabu, it chooses the move that is least tabu (i.e., the move with the lowest
tabu value).

In the implementation of tabu search used in this thesis, no actual tabu-list is maintained.
When the algorithm enumerates the neighbourhood N (A, H), then, until it encounters a non—
tabu move, it records moves that have the lowest tabu values, and it only discriminates between
a pair of tabu moves when their tabu values are equal, but the quality of their solutions differ.
Once it encounters a non-tabu move, it begins to discriminate between moves solely on the basis
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of their quality and it automatically ignores tabu moves. This is equivalent to a tabu list of
infinite length, and has the added advantage of avoiding the process of list manipulation.

An example of a tabu search implementation

To consolidate these concepts, a number of steps of a simplified tabu search algorithm for vertex
arrangements are presented here. The only attribute that is considered, is where, if a vertex v is
moved onto a position ¢, it avoids that position for 10 ensuing moves. The algorithm in illustration
is assumed to have executed a number of steps already, and thus some of the attribute memory
slots will have non—zero tenure values. A star next to a vertex label indicates that it was the
most recent move.

Best crossing value = 25

Spine: Memory:

Lva [ xvs [os [ wg [vr [os [or [w | | [Jon [wo [ wg[vafows|w[vr]os]
1 0 0 0J0[O0O]0|1010O0

Tabu Active List: 2l ol1w0]lolololol4]o0

(7}272)7(U373)7(0377)7(0478)7(7)574)7 3 0 0 5 0 0 6 0 0

(U6’3)7(1)7’4)?(’”7’5)?(’”8’8) 4 0 0 0 0 9 0 0 0
51 0 0 0|0 j0]O0|T7]0O0
61 O 0 00,01 0]07]O0
71 0 0 8100|0010
81 0 0 0120|0013

Figure 6.8: Step £ of the tabu illustration.

In step k of the algorithm (depicted in Figure 6.8), it may be seen that the last move was the
move of vy to position 2 on the spine. This may be verified from the tabu memory — the entry
for v at position 2 is 10, which is the highest tenure value. It is found that moving vs to position
2 on the spine would lead to an improvement of the total number of crossings from 25 to 24.
This move is performed, since the entry in cell (2,v5) of the memory structure is 0.

Best crossing value = 24

Spine: Memory:

[on [ v [ o2 [os [va [os [orJws | [ [Joafvs[vs]oafws|os[or]os]
140000} 0]0[0]O0

Tabu Active List: ol ol 9lololi0olol3Tlo

(1)2,2),(1)3,3),(1)3,7),(1)4,8),(1)5,4), 3 0 0 4 0 0 5 0 0

(v6,3), (v7,4), (v7,5), (vs,8), (v5,2) alofojolo[8]0[o0]0
51000 0]0 0|60
6000 ]0]O0O|0]O0]|O0
74100 T7]0]0|0]O0|O0
840|100 1]0]0]0]2

Figure 6.9: Step k + 1 of the tabu illustration.

In step k+1 (depicted in Figure 6.9), the rest of the tabu tenure values have all been decreased by
1, and it may be seen that vs now has a tenure of 10 for position 2 in the memory. The algorithm
cannot find an improving move for the next move, and so chooses the least non-improving move,
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which is to place vy at position 8. Again it may be verified that all of the tabu tenure values
have been decreased. The situation depicted in Figure 6.10 results.

Best crossing value = 24

Spine: Memory:

[vi [os [ [ws [wg [wr [ws [xoa | [ [[wa [wy [wg]vg s [ws[or]ouws]
1 010 0 0 0000

Tabu Active List: ol ols8lololo9lol 210

(U2’2)7(1)3’3)?('U3’7)3(U4’8)7(U5?4)7 3 0 0 3 0 0 4 0 0

(7)673)7(U774)7(0775)7(0878)7(7)572) 4 0 0 0 0 7 0 0 0
51 010 0 0 010510
61 010 0 0 0(0]0]O0
71 010 6 0 0(0]0]O0
81 0] 0 0(10)07]0 70 1

Figure 6.10: Step k + 2 of the tabu illustration.

Frequency based memory

The usual attribute based memory is relatively short—term, in that an attribute only has an effect
during its tenure. In order to avoid long—term cycling, and the repetition of particular types of
moves, a longer term memory is required. Frequency based memory is used in this regard, and as
the name suggests, it keeps track of the frequency with which individual moves are executed, and
penalizes those moves which have been executed frequently in the past. The exact semantics of
how moves are penalized is problem specific. For example, a move’s tabu value may be increased
by a factor which is a function of its frequency. Another possibility is to increase the tenure of
a move in accordance with its frequency. The definition of how the frequency itself is measured
is open to interpretation — that is, per which unit is frequency to be measured? Units that are
simple to compute, are the maximum number of times that any move has been performed, and
the total number of iterations already performed by the tabu algorithm. For a move s, denote
the total number of times that s has been performed by ts, and denote the value of the unit
(i.e., the denominator of the frequency term) by u. The advantage of letting u be the maximum
number of times that a move has been performed, is that it guarantees that 0 < t,/u < 1 for any
move s. This makes it fairly easy to design penalty functions that are large when ¢/u is close to
1 (for example ec(ts/4) where ¢ is a positive real number), thereby forcing lesser frequent moves
to be chosen. If u is chosen to be the number of iterations that have been performed, then it is
virtually guaranteed that ¢;/u will be much smaller than 1, unless a single move is repeatedly
performed; it is difficult to estimate what the maximum value of ¢4 /u is likely to be. In this case,
it is sensible to rely on average case behaviour, and to assume that in the long run, all moves
should be executed the same number of times; those moves which are more often executed are
then penalized, whilst those that are below the average are privileged. For this thesis, the former
mechanism was chosen.

The frequency based memory component of an attribute is likely to be stored in the same data
structure as the attribute’s tenure based memory, since it has to be indexed via the same means.
Thus, if the example tabu search algorithm above were to be augmented to include frequency
based memory, it would also have used a matrix as its data structure. Also, instead of storing
the frequencies with which moves are made in the frequency memory, only the total number of
times that the moves have been executed, is stored — the frequency may readily be computed
by dividing with the maximum frequency.
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A tabu search implementation for the vertex arrangement problem

The methods used for the implementation of the Tabu algorithm in this thesis have largely been
expounded, and all that remains is to pull together these concepts. The implementation used
for this thesis is fairly simple. It implements only a to attribute, which is similar to that of the
example given above: whenever a vertex v moves to a position ¢, then this position becomes
“poisoned”; such any vertex will avoid this position for a number of steps. This attribute is
stored as a vector. The algorithm also implements a frequency based component, as described
in the section on this type of memory. The actual implementation of the functions which update
the memory are omitted, although the reader may refer to the programs in § B.1.2 for the
implementations. This algorithm stores elite solutions (i.e., the local optima that led to improved
solutions), and the crossing number values achieved by these solutions, in a priority queue L,
from which solutions are revisited when the algorithm does not find any improving moves for a
number npa of moves. The reason that the crossing number values are also stored, is that it
allows the quality of elite solutions to be evaluated when they are extracted from L. The priority
queue prioritises solutions based on the number of times they have been revisited, with the least
revisited solutions receiving higher priorities.

Algorithm 6.8 is clearly an augmentation of the neighbourhood search algorithm which is dis-
played in Algorithm 6.7. The first change is that the termination criterion of the Tabu search
algorithm is based on it having reached the maximum number of iterations (as with a genetic
algorithm, it is possible to use any of a number of termination criteria); the variable 2 maintains
the number of steps, which is updated at line 5. At line 6, the number n is increased with the
assumption that the best crossing number bound ¢’ will not be improved in the current iteration;
if, however, the assumption turns out to be false, then n is set to 0 at line 16. The variables ¢
and t pertain to a current move and maintain, respectively, the crossing number bound for the
solution generated by the move and the tabu value of the move. Variables marked by an asterisk
relate to the neighbourhood: ¢* and t* maintain respectively the best crossing number and tabu
value over the all moves in the neighbourhood, and ¢*, j7* maintain respectively the from- and
to—positions on the spine for the best candidate move in the neighbourhood.

The code inside the conditional structure spanning lines 14-17 is executed when a current solu-
tion’s crossing number value improves upon the global best value (i.e., the aspiration criterion
is met); in this case the data structures pertaining to the solution are stored (line 15) and the
best crossing number value is updated (line 16). The tabu value for this move is overridden due
to the aspiration criterion, and thus ¢ becomes 0 (also at line 16); finally, the value of r is set
to “FALSE” to indicate that this solution is not in the elite solution list, and should therefore
be inserted along with the number of crossings ¢ that it achieved, into the priority queue L at
line 26 if it is a local optimum (if r is “TRUE”, then the optimum is being revisited, and should
not be reinserted into L). The value of the number of crossings achieved via the solution is also
stored, so that the quality of the solution may be compared to the best known solution when
it is extracted from L — if it is of a low quality, it will be discarded and another solution will
be extracted from L. The conditional structure between lines 18-20 is executed when a move
is a better candidate than the foregoing moves (and should therefore replace the previous best
move). The condition at line 18 requires some untangling to make its meaning clear. The two
main mutually exclusive clauses are ¢ = 0 and ¢ > 0. The former is true when there already
was a previous move which had a tabu value of 0; thus, moves are compared solely on the basis
of their quality, and hence the clause ¢ < ¢*. If t > 0, then no prior moves had non-zero tabu
values. Therefore, when the tabu value of the current move matches a prior tabu value, it is a
better candidate if its solution is of a higher quality, hence the clause (t = t* and ¢ < ¢*). If,
however, it has a lower tabu value than all previous moves, it is seen as a better candidate, hence
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Algorithm 6.8 TabuSearch

Input: A graph G, and a spine arrangement A of the vertices of G.
Output: The possibly updated spine arrangement s and number of crossings ¢’.

1: ¢ < PageLayout (X5 4)

2: ¢ < NumberOfCrossings(Xg 4, )
3: H « InitializeMemory(Xg 4, A)
4: for all x < xpax do

5 x—ax+1
6: n<—n+1
7. forallie{l,...,|V(G)|} do
8: for all j € {1,...,|V(9)|} do
o: if ¢ # j then
10: Move A; to position j in s
11: ¢ «— PageLayout (X5 4)
12: ¢ < Number0fCrossings(Xg 4, ()
13: t «— TabuValue(H, i, )
14: if ¢ < ¢ then
15: StoreResult (Xg 4, A, )
16: d—c,n—0,t—0,r— FALSE
17: end if
18: if(t=0andc<c*)or(t>0and ((t=1t"and t < ¢*) or (t < t*)) then
19: t" —t, " — i, jF— g, F—c
20: end if
21: Move A; back to position ¢ in A
22: end if
23: end for

24:  end for

25: if n =1 and r = FALSE then
26: Insert A, c into L

27:  end if

28: DecreaseTenure(H)

29:  if n > npax then

30: repeat

31: Extract a least revisited solution from L into A,c
32: if ¢ >1.05x cand |L| > 2 then

33: Discard A

34: end if

35: until ¢ <1.05 x cor |L| <2

36: Insert A, into L, increasing the revisit count of A
37: n <« 0, r — TRUE

38: else

39: MemoryInsert (H,:*, j*,n)

40: Move A;+ to position j* in A

41: end if

42: end for

43: return stored best solution
Implementation: An implementation of this algorithm is given in § B.2.2.
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the clause ¢ < t*. At line 19, all the details of a superior move are stored.

Now, moving outside of the two nested loops, consider the line 25. This case can only occur if
the previous move improved upon the overall best crossing number bound and was not achieved
by revisiting a solution, but if the current best move is does not — in other words, if the current
solution s (that is, before the application of the current move) is a newly found local optimum.
This solution is then stored in the list L of elite solutions at line 26.

The tenure values of all active attributes are decreased at line 28. It is determined at line 29
whether the algorithm has made any improving moves within the maximum number of nyax
steps. If it has, the solution is updated (line 40) and the memory is updated (line 39) to reflect
the move from of the vertex A;« to the position j on the spine A. On the other hand, If n > npyay,
a past elite solution is revisited from the priority L (line 31). If the extracted solution is of a
low quality (i.e., the number of crossings ¢ is in excess of 5% of the number of crossings for the
best known solution), it is discarded (line 33), and another solution is extracted from L. This
process is repeated (lines 30-35) until either a desirable solution is found, or until L contains less
than three elements. When a solution has been found, it is reinserted into L, with a higher visit
count (line 36). Finally, n is set to zero to indicate a new start and r is set to indicate that this
is a revisited solution.

Algorithmic complexity of the tabu search implementation

The computational complexity of actions performed within the main loop of the tabu algorithm,
which spans lines 4-42, is, in fact, the same as that of the neighbourhood search method. Inside
the two nested loops, spanning lines 724, the procedure TabuValue (line 13) requires a simple
lookup in the memory (i.e., the matrix which stores the attribute tenure values) for the tenure
value corresponding to the move from ¢ to j. This may be performed in constant time. The
procedure StoreResult (line 15) stores all information regarding the current move, including
the intersection graph. The time taken by the edge layout algorithm, depends on the number of
edges in the intersection graph, and therefore, the complexity of the storage of this graph cannot
be greater than the complexity of the edge layout algorithm. As in the case of the neighbourhood
search method, denote the time complexity expression of the edge layout algorithm by D. Then,
the time complexity of the two nested loops (lines 7-24) is O(D |V (G)|?) as in the case of the
two nested loops in the neighbourhood search method.

The priority queue L which maintains a list of elite solutions, may itself become very long. A
priority queue is normally implemented using a heap data structure, which permits the extraction
(line 31) and insertion (lines 26 and 36) of an element in O(logy |L|) time. It is, of course,
possible that L might become very large, but it is noted that local optima are typically few and
far between — indeed, in the unlikely situation that 512 local optima are visited, logs 512 = 10.
This value is, however, much smaller than the running time of O(D |V (G)|?) for the two nested
loops (lines 6-24). Therefore, in practice this is not a problem.

Finally, only the complexity of the procedure MemoryInsert (line 39) remains to be examined.
As with the memory lookup required to compute the tabu value (line 13), this may be achieved
in constant time, because only the tenure value of the current attribute value has to be updated,
and this is tantamount to the addition of a single value in a matrix.

Therefore, the time complexity of the two nested loops dominates the execution time of the main
loop (lines 4-42). This loop is executed xyax times, so that the resultant time complexity for
the tabu search algorithm is O(zyax D |V (G)[?).
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Pre—optimization techniques

An “undesirable” initial vertex arrangement may impact negatively on the total running time of
the tabu search method, and on its rate of convergence. For a graph G, a vertex arrangement A
is said to be “undesirable” when its corresponding intersection graph Xg 4 is dense (i.e., contains
a high number of edges relative to the number of vertices). It is very likely that the minimum
number of crossings achievable by an optimal edge layout for a dense intersection graph will be
larger than the number of crossing achievable by an optimal edge layout for a sparser intersection
graph. This larger number of edges forces an edge layout algorithm to run more slowly, since all
edges of the intersection graph need to be considered. Furthermore, a greater number of moves
has to be performed by the tabu search algorithm in order to locate vertex arrangements with
sparser corresponding intersection graphs. These problems may be mitigated by the application
of pre—optimization techniques which generate initial vertex arrangements of “reasonable” quality.

The first method proposed is the pre-optimization phase of Nicholson’s Heuristic (§ 4.3.2.2). In
this phase, a vertex arrangement is constructed one vertex at a time from an input graph G,
where at each step, an unplaced vertex from G with the highest connectivity to the vertices that
have already been placed, is selected, and inserted into a position in the arrangement where
it induces the lowest number of crossings (its edges are placed so as to achieve this number of
crossings). In the post—optimization phase of Nicholson’s heuristic, a vertex in the arrangement
which would cause the greatest decrease in the number of crossings is moved to a position in
the arrangement which would achieve this decrease, and the process is repeated, until no better
improvement is possible.

Because the tabu search method behaves like the neighbourhood search method up to the point
that the first local optimum is found, it fulfils the role of the post—optimization phase of Nichol-
son’s heuristic. Furthermore, where only the layouts of the edges of the vertex that has been
moved are adjusted in the post—optimization phase of Nicholson’s heuristic, a new edge layout
for the vertex arrangement is calculated in its entirety by the tabu search method. This generally
leads to greater decreases in the number of crossings for each such move.

For the second pre—optimization method proposed, the vertices are placed on the spine in the
order of the vertices of a Hamiltonian cycle of an input graph G, or otherwise in the order of
the vertices in the longest path that could be found in G. In the latter case, the vertices of G
that are not in the path are placed randomly on the remainder of the spine. The algorithm for
finding Hamiltonian cycles that was used for the programs in this thesis, is based on concepts
that were developed by Poésa [P76]. A description and an implementation of the algorithm are
discussed in § B.2.1.2.

6.3 A new Székely—esque upper bound algorithm

Székely’s algorithm, which is described in § 4.3.1.4, gives an elegant method for computing the
independent—odd crossing number of a graph. The algorithm is insensitive to a particular vertex
arrangement, although an arrangement must be fixed for the duration of the algorithm. The only
information of which the algorithm keeps track, is the manner in which each edge “separates”
the vertices that are not incident to it; this, in conjunction with the vertex ordering, specifies
the independent—odd crossing number for the given configuration.

Vertex separation really describes the way that an edge “weaves” around the various vertices to
which it is not incident. Consider the following mechanical procedure for constructing circular
drawings, given the vertex separation information for each edge: every edge is drawn so that if it
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Figure 6.11: A mechanical method for drawing construction from Székely’s algorithm.

does not pass over the (imaginary) circle between a pair of vertices u and v (which lie adjacent
to one another on the circle), then it “touches down” on the circle between u and v. This scheme
is depicted in Figure 6.11; in part (a) of the figure, the edge e “weaves” through the various
vertices, but in part (b), it only touches down on the circle on both sides of v.

- - —|-0- -0

ap c

(a) (b) (c) (d)

Figure 6.12: Edges need not touch the circle between every pair of adjacent lying vertices.

Whilst admittedly, this scheme hardly produces aesthetically pleasing results, it has the advan-
tage of partitioning edges into sections (each of which is between two points that touch down on
the circle) such that the shifting of such sections from the inside to the outside (or vice versa) of
the circle produces the various vertex separation configurations. This is exactly what happens
in Figure 6.11 — in part (a), the vertex v is separated from the other vertices, which are in the
gray region, but in part (b), it is no longer separated from those vertices.

From this figure it is clear that the edge that is incident to v does not touch down on the circle
between v and the vertex that lies just to the right of v. In fact, in a graph G, an edge separates
|V (G)| — 2 vertices, since it cannot separate its own incident vertices, which means that each
edge need only be separated into |V (G)| — 2 sections, and this may be achieved by letting an
edge touch |V(G)| — 1 points on the circle. If, however, in the mechanical drawing method, each
edge would have to touch down on the circle between every pair of vertices which lie adjacent
on the circle, then each edge would have a total of |V (G)| + 1 sections. Thus, at least three of
these sections are redundant. It is a simple matter to show that an edge requires only |V (G)|—2
sections when the vertices that are incident to the edge lie adjacent to one another on the circle.
Consider Figure 6.12(a), which is a flattened version of a circle. In this figure, the two white
vertices lie adjacent to one another on the circle, and the circle section a is the part of the
circle spanning between them. Now, starting with the leftmost white vertex, the edge may avoid
touching down on the circle in the segment labelled b, since it could have no impact on the
segmentation of any vertex. Likewise, for the segment labelled ¢. Now clearly, there would be
no purpose to let the edge touch down in the segment labelled a either. It may be verified that
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a single edge is dedicated to each of the remaining (black) vertices, and thus that the separation
of each vertex may be handled independently. Suppose now that the two white vertices do not
lie adjacent to one another one the circle. In this case, the configuration may be constructed
from the former construction (i.e., where the two white vertices lie adjacent to one another on
the circle). Let v be the first vertex on the circle that falls before the second white vertex, as
shown in Figure 6.12(d). Identify v with the vertex from the first scenario that falls on the same
position, so that one has the vertex v in Figure 6.12(b). Now, everything to the right of the bold
edge below v, which is marked by the gray block in Figure 6.12(b) is to be “swung around” to
the left under the bold edge. Imagine the right most point where the bold edge section touches
down on the circle to be a vertical pivot, and the gray section to be a door attached to the pivot.
Figure 6.12(c) suggests this “swinging” action, and finally Figure 6.12(d) results. Now it may still
be verified that each black vertex has an edge section. The bold edge section may now affect not
only v, but also the two vertices to the right of the second white vertex. However, the situation
where the bold vertex changes the separation of these two vertices may always be corrected by
their switching the sides upon which their own edge segments fall.

Clearly this partitioning of edges may be achieved by subdividing the edges of a graph, such that
the subdivision vertices are placed at the points where the edges would have touched down, or
passed over the circle. But this transforms the layout into a combinatorial two—page book layout
(since book layouts are equivalent to circular layouts — § 3.1.3.2). This is illustrated in full in
Figure 6.11(c) for the star graph /C 4.

Unfortunately, the edge layout algorithms cannot be applied directly to such a book layout,
since the way in which crossings are counted differs from that of the crossing number (afterall,
Székely’s algorithm determines the independent—odd crossing number). The number of crossings
that an edge e induces by being on a particular page, does not solely depend on the number of
edges which alternate it on that page. It must be kept in mind that e is part of some subdivided
edge E, and that when it crosses another edge f, it is also the case that f is itself part of a
subdivided edge F'. Thus, e may alternate the edge f, but due to the fact that other crossings
may be present between sections of F and F'; E and F' may cross an even number of times and
hence e and f’s crossing really has the effect of letting £/ and F' cross an even number of times.

Thus, the following adjustment has to be made to the edge-layout algorithms described this
chapter to make them usable as independent—odd crossing number algorithms: When an edge
FE is subdivided into a number of edges e, €9, ... e, then each of the edges e;, 1 < i < ¢ store
a reference to . Now, when considering whether a sub—edge e;, 1 < ¢ < t should rather be
drawn on the other page, it must first be determined how the number of crossings change with
the remowval of e; from its current page (it is quite possible that the number of crossings might
increase, since the removal of e¢; might suddenly cause F to have an odd number of crossings
with edges which were crossed by e;) — denote this difference by 7., (it is positive when the
number of crossings increase). Then, when e; is inserted into the other page, let pe, denote the
change in the number of crossings that result; an improvement occurs if r., + p, < 0.

To determine whether two alternating edges e and f indeed cause a crossing (i.e., whether they
cause their “parent” edges to cross an odd number of times), references to their respective “parent”
edges F and F' are obtained — the parity of the number of crossings between the edges may
be computed considering the total number of crossings that occur between the sub—edges of the
two “parent” edges. This seems an expensive operation, since each edge of E would have to be
considered in turn, and the number of times that edges from F' cross each such an edge has to
be computed. There is, fortunately an efficient method for computing the crossing parity that
an edge e would incur by drawing it on the other page. A two dimensional matrix, of which
the rows and columns are both indexed by “parent” edges, maintains the parity of the current
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number of crossings between each pair of parent edges. Suppose that, for £ and F, this is 1.
Now, if e is to be drawn on the other page, the set of edges B which alternate e on the current
page are first considered. For each edge g € B, the parent edge G is obtained, and the parity
of the entry corresponding to F and G in the parity matrix is changed (i.e., the bit is flipped).
This renders the parity situation after e has been removed from its current page, but before its
insertion on the opposite page. The updating of the parity information for the insertion of e on
the opposite page proceeds in the same manner as before — for each edge that alternates e on
the new page, the parent edge is found, and the parity matrix is updated. If P; is the parity
matrix before removing e from its original page, and P» the parity matrix after the removal of e
from its page, then the matrix P, — Py, obtained by normal subtraction (i.e., not over modulo
2 operations, as is the case for the prior operations on these matrices), will have entries of —1
where a crossing was rendered even by the removal of e, 1 where a crossing was rendered odd by
the removal of e, and 0 otherwise. Thus, by summing the entries, one obtains the change in the
number of crossings.

6.4 Constructing a planarized graph

So far, the issue of the generation of a drawing of a graph from a two—page layout solution has
been ignored. This is of course a very important, and often overlooked aspect of the problem.

6.4.1 Spine drawings

Fa 2

Figure 6.13: A normal spine drawing.

The simplest method by which to generate drawings, is to draw the vertices on a straight line in
the order in which they appear on the spine, and to draw edges as half—circles whose diameters
are equal to the distances of separation on the spine, between the vertices to which they are
incident. Such half circles are then drawn either above the spine, or below it. This method has
already been seen in this thesis, and is essentially that of Shahrokhi, Sykora, Székely and Vrto
[SSSV96b], and of Cimikowski [Cim02]. An example is shown in Figure 6.13.

This method has the advantage of being very easy to implement. However, its main drawback
is that drawings become hard to study when there are many edges, since crossings may lie close
together. Difficulties also arise when moving vertices, since the crossing configurations may easily
be disrupted. For this reason, it is more desirable to represent crossings as vertices, as may be
seen in the following section.

6.4.2 Planarizing drawings

The problems posed by spine drawings of the previous section are easily mitigated by graph
planarization. In such a planarization, crossings are represented as artificial vertices, making it
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possible to apply planar graph layout algorithms, and thus to obtaining graph drawings that are
less cluttered than would be the case with spine drawings.

If, for each edge, the order in which it is crossed by other edges is known, then Algorithm 5.3
(ConstructGraph) may be used to construct the planarized graph. The problem now remains to
determine the order in which edges cross each other. It would certainly be beneficial if the set
of lists of edge orderings could be computed as a function of the vertex arrangement.

First some basic nomenclature is required to reason about drawings. Let e = {u,v} be an
arbitrary edge in a graph G, and let A be a vertex arrangement of G. As per convention, let u
be the leftmost vertex in A, and v the rightmost. Each edge f = {w,z} € E(G) \ {e} has one
of four states with respect to e:

1. if x occurs between u and v, and w occurs to the left of u in A, then f is called left—going
with respect to e,

2. if w occurs between u and v, and x occurs to the right of v in A, then f is called right—going
with respect to e,

3. if x and w both occur between u and v in A then f is called inside of e,

4. if x and w both occur either to the left of u or to the right of v, then f is called outside of
e.

Of course the edges which are either right—going or left—going with respect to e are exactly those
edges which alternate e, and these are also the only edges of interest for the ensuing discussion.

L] L] L] W L]
V1 V2 V3 U4 V1 V2 V3 U4

(a) (b)

Figure 6.14: The ordering of vertices on the spine determines the order of edge crossings.

In Figure 6.14(a), if the two grayed edges are at first ignored, then the following simple pattern
may be observed: All edges which are left—going with respect to e, cross e before any of the edges
which are right—going with respect to e. In fact, the left—going edges all cross only the left half
of the arc which represents e, and vice-versa for the right—-going edges.

Furthermore, when considering only the left—going edges, it may be seen that all left—going edges
incident to v1 cross e before the left—going edges incident to vo. This is also true for v in relation
to v3. This same pattern is true for the right—going edges.

Finally, for each left—going edge f incident to v;, the order in which f crosses e in relation to the
other edges is determined by the distance of the opposite (to v1) incident vertex of f. The closer
the distance, the closer to the beginning of e the crossing occurs. In fact, this is again true for
all left—going edges of all vertices that lie between w and v. The situation is almost the same for
right—going edges; the only difference being that right—going edges whose rightmost vertices lie
further along the spine, cross before those whose rightmost vertices lie closer.
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This order may be obtained by sorting the edges that cross e in the following way: First group
together all left—going edges in one set, L, and group together all right—going edges in another
set, R. Sort the edges in L primarily in ascending order of the positions of their vertices which
fall between the vertices incident to e, and secondarily in descending order of the positions of
their vertices which fall outside of e. The edges in R are also primarily sorted in ascending order
of the positions of their vertices inside of e, but secondarily they are sorted in ascending order
of the positions of their vertices which fall outside of e.

The drawing in Figure 6.14(a) is made by drawing edges as half circles, as described in § 4.3.2.1.
Such drawings are used in the articles of Shahrokhi, Székely, Sykora, and Vrton [SSSV96b| and
of Cimikowski and Shope [Cim02, CS96].

Now, when the gray edges in Figure 6.14(a) are considered, the pattern just described, is broken.
The right—going gray edge crosses e before the left—going edge, and it crosses the arc representing
e on the left side of the arc. Fortunately, this pattern may be restored, if the edges are drawn in
a different manner. Instead of using half circles, arcs from larger circles are used (i.e., the arcs
are “flatter”), as shown in Figure 6.14(b). Here it may be seen that all right—going edges cross e
after all left—going edges — in fact, all left—going edges occur precisely in the left half of e and
the right—going edges in the right half. By choosing the arcs from “large enough” circles, it can
always be ensured that the desirable order is obtained — from this it can be deduced that the
wider the vertices of an edge is apart, the “flatter” its arc is likely to be. Another point worth
mentioning, is that due to this setup, no edges from a vertex v would ever cross e before the
edges of a vertex u which is situated before v on the spine. For example, consider v and v, in
Figure 6.14(b) — the only way in which any of the right—going edges of vy (say) could cross e
before edges of v3, would be if such an edge crossed one of the edges of vs in its left half. By
assumption, this is impossible, as the arcs were chosen exactly to avoid this situation.

Implementation of the algorithm

Now it is possible to construct an algorithm from these ideas. Again, the intersection graph is
used, since it readily provides the left—going and right—going edges for an edge e (which, as has
been said, are exactly the edges which alternate e). For an input graph G, the only purpose
of the algorithm is to construct the lists of alternating edges in the order that they cross each
edge in the graph; after this point the algorithm ConstructGraph may be used to obtain the
planarized drawing — the result is a very simple algorithm.

The procedure is called ComputePlanarOrderings and is shown in Algorithm 6.9. Essentially,
the algorithm steps through every edge e in the input graph G in the loop spanning lines 1-11.
Although the intersection graph A 4 is not shown, it is used in lines 1 and 2 to determine
respectively the left—-going and right-going edges of e, which are stored into the variables L and
R. In a computer implementation, both of these lines would expand to a number of lines of
computer code, which would include finding crossing-vertex v of e in Xg 4, the determination
of the crossing—vertices which are adjacent to and in the same partition as v, and the mapping
back of these crossing—vertices to edges in G. Both L and R are sorted according to the method
described in lines 4 and 5. These two ordered sets are then combined into the variable C' (line 6),
and this set is enumerated in the loop at line 7 to fill the crossing list L. of e (line 9) and the
general list of crossings D (line 8).
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Algorithm 6.9 ComputePlanarOrderings

Input: A graph G, a list of crossed edges D, and the crossing configurations for the edges L.
Output: The graph G, modified so that the crossings from D are present as vertices of degree
four, in the order given for the edges in L.

1: for all e € E(G) do

2: L« {f:fisa left—going edge of e}

32 R« {f:fisaright-going edge of e}

4:  sort L primarily in ascending order of the highest spine positions of the incident vertices
of its edges, and secondarily in descending order of its edges the lowest spine positions of
the incident vertices of its edges.

5:  sort R primarily in ascending order of the lowest spine positions of the incident vertices
of its edges, and secondarily also in ascending order of the highest spine positions of the
incident vertices of its edges.

6: C—LUR

7. for all f e (C do

8: D —DuU{{e f}}
9: L.~ L.U {f}

10: end for

11: end for

12: ConstructGraph(L,D,G)

Implementation: An implementation of this algorithm may be found in § B.5.2.

Algorithm complexity of the algorithm ComputePlanarOrderings

For an input graph G, in the worst case, each edge crosses O(|E(G)|) edges. The sorting of a set
of N items may be performed in O(V) time using a combination of Counting sort with Radix
sort, or by using Bucket Sort [CLR97]. The set of edges is split into the two sets L and R,
each of which will have O(|E(G)|) edges in the worst case scenario. The loop spanning lines 7—
10 is executed for each crossed edge; the operations within the loop both take constant time.
Therefore the loop is executed in O(|E(G)|) time. Thus, the computational complexity of the
operations within the main loop (lines 1-11) is O(|E(G)|), and because this is executed for each
edge, the total running time of the main loop is O(|E(G)|?). As may be seen from § 5.2, the
running time of the algorithm ConstructGraph is also O(|E(G)|?), and therefore, the running
time of the algorithm ComputePlanarOrderings is O(|E(G)[?).

6.5 Chapter summary

In the first section, § 6.1, of the chapter, an algorithm for approximating lower bounds to the
crossing numbers of graphs were developed, using the theory of graph—to—graph embedding, and
basic concepts from the theory of shortest paths in graphs. It was shown that this technique has
the peculiar property of improving solutions by feeding prior solutions back into itself.

The second section, § 6.2, is wholly concerned with the implementation of upper bound algorithms
for the crossing number of a graph, using the two—page book layout framework. It was shown
that the problem of determining edge layouts is equivalent to a vertex partitioning problem of the
so—called intersection graph, which offers benefits in terms of computational efficiency. The edge
layout algorithms in the section were all implemented to operate on the intersection graph. Two
new edge layout algorithms were developed, one being a simple iterating greedy heuristic, and
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the other being a more complex genetic algorithm. An implementation of the neural network
algorithm of Cimikowski and Shope [CS96] was also given in terms of the intersection graph.
The basic theory of the tabu search method was reviewed, and a tabu search algorithm for
determining vertex arrangements was developed. Finally, an algorithm for obtaining drawings
from given book layouts was developed.



Chapter 7

Computational Results

We think in generalities, but we live in details.
— Alfred North Whitehead (1861-1947)

This chapter is concerned with both the technical aspects of the algorithms that have been de-
scribed in this thesis, and the output generated by these algorithms. The first section, § 7.1,
focuses on the technical side, such as the convergence properties of the optimization algorithms
that were described in Chapters 5 and 6. The second section, § 7.2, is dedicated to the consid-
eration of outputs generated by the algorithms, and problem instances which cause some of the
algorithms to perform poorly are also considered. A large catalogue of drawings of non—planar
complete multipartite graphs with low crossing numbers is provided in this section.

7.1 Convergence of upper bound algorithms

In this section, the algorithmic complexity of the algorithm GreedySide is examined from a
statistical perspective. The effects of varying the parameters of the genetic edge layout algorithm,
and of the tabu search algorithm are also considered. The convergence properties of the neural
network algorithm are not discussed in this thesis, as this topic has already been dealt with
by Cimikowski and Shope [CS96], and their recommendation for the parameters of the neural
network algorithm has already been mentioned in the thesis.

7.1.1 Algorithmic complexity of the algorithm GreedySide

To determine the number of iterations that the algorithm GreedySide (Algorithm 6.3, § 6.2.1.1)
would perform in the best, worst and average cases for a graph G, the algorithm would have to
be applied to each vertex arrangement A of G, and for each A, all possible distinct edge layouts
would have to be considered (since the initial edge layout configuration influences the execution
of the algorithm). However, since there are a total of O((|V(G)|—1)!) vertex arrangements, and a
total of O(2‘E (g)|71) edge layouts for any given vertex arrangement, this approach is not feasible
for any but the smallest graphs. Therefore, only a relatively small number of vertex arrangements
and edge layouts for a graph G can be sampled, and the behaviour of the algorithm GreedySide
must be inferred from the statistical data obtained from such trials.

The first aspect of the GreedySide algorithm to be considered, is the growth of its complexity
as a function of the number of vertices of complete graphs, balanced bipartite graphs (i.e., both
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partite sets have the same cardinality) and balanced toroidal grid graphs (i.e., the Cartesian
product of cycles of equal order). With the first two classes of graphs, the number of edges
grow with the square of the number of vertices, whilst in the case of the toroidal grid graphs, the
number of edges increase linearly with respect to the number of vertices. The maximum, average,
and minimum numbers of iterations that the algorithm was observed to have executed when it
was applied to graphs from the three classes, are shown in Figure 7.1. For each graph to which
the algorithm was applied, it was applied at least 500 times with random vertex arrangements
and edge layouts.

The graphs seem to suggest that the average algorithmic complexity of the GreedySide algorithm
is sub-linear with respect to the number of vertices in all three cases (although, of course, this
does not mean that this behaviour may be extrapolated to infer the asymptotic running time of
the algorithm). Furthermore, as the number of vertices in each of the classes of graphs increases,
the observed maximum number of iterations that the algorithm would perform remains less than
the number of vertices.
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(a) Complexity for /C. (b) Complexity for Kn,n. (c) Complexity for C,, X Cp.

Figure 7.1: Increase in the algorithmic complexity of the GreedySide algorithm with respect
to the number of vertices in complete graphs /C,,, balanced bipartite graphs X, ,, and balanced
toroidal grid graphs C, x C,. The solid black lines indicate the observed maximum number
of iterations, the dotted lines indicate the observed average number of iterations performed by
the algorithm and the stippled lines indicate the observed minimum number of iterations to be
executed.

The density of a graph G is defined as the value |E(g)y/(“’(2g)|), i.e., the ratio between the size of
G, and the size of the complete graph on |V (G)| vertices. For a random graph G on n vertices, it
seems plausible that the complexity of the algorithm GreedySide would depend on the density
of G.

At least 500 random, connected graphs for each of the orders 20, 40 and 60 were generated,
and the GreedySide algorithm was applied to each of these graphs with numerous (> 50) initial
random vertex arrangements and edge layouts. The observed maximum, average and minimum
numbers of iterations required for convergence of the algorithm as a function of the numbers of
edges in the three classes of graphs are shown in Figure 7.2, where R(m,n) denotes a random
graph of order m, and size n.

The number of iterations required for convergence initially increases as the density increases.
However, the average number of required iterations decreases again beyond certain points. The
only (highly speculative) explanation that the author can offer for this algorithmic behaviour, is
that in a very dense graph, the movement of an edge from one page to another, generally causes
a large change in the number of crossings in the configuration. This leads to opportunities for
faster convergence. When a graph is less dense, the number of crossings in an edge layout might
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Figure 7.2: Increase in the algorithmic complexity of the GreedySide algorithm with respect
to the density of random graphs on fixed numbers of vertices. The solid lines indicate the
observed maximum number of iterations, the dotted lines indicate the observed average number
of iterations performed by the algorithm and the stippled lines indicate the observed minimum
number of iterations performed.

not be greatly affected by the movement of some edges to different pages, since these edges simply
might not alternate a large number of other edges. Again it should be noted that the maximum
number of observed iterations generally do not exceed the numbers of vertices in the three cases.

7.1.2 Convergence of the Genetic algorithm

Despite the issues of “solution diffusion” that were discussed in the previous chapter, the genetic
algorithm manages to obtain fairly reasonable solutions, even without utilizing local optimization.
The main point that counts against it, is that it is computationally far less efficient than both
the neural network algorithm, and the GreedySide algorithm. What does count in its favour, is
that it is less likely to get trapped in weak local optima than the GreedySide algorithm, due to
the fact that mutations on chromosomes facilitate escapes from such local optima. The genetic
algorithm is quite sensitive with respect to the settings of its parameters. The five parameters
that alter the behaviour of the genetic algorithm are

—

. the population size,
2. the total number of generations,
3. the number of chromosomes involved per tournament,

4. the probability of the mutation of a bit (i.e., the page on which the corresponding edge is
to be drawn),

5. the option of disabling local optimization.

Two hundred random, connected graph or order 20 and size 120 were generated for the pur-
pose of testing the effect of variations in the parameters of the genetic algorithm. In all of the
experiments, the average crossing number bound over all 200 graphs was plotted against the
generation number (i.e., the iteration of the genetic algorithm). In the initial parameter setup
for the experiments, the mutation rate was set to 0.2%, whilst the population size was 20, and the
tournament size was set to three competitors. The parameter with the most significant impact
on the rate of convergence of the genetic algorithm, was found to be the choice of whether local
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Figure 7.3: An illustration of the effects of the variation of the genetic parameters.

optimization should be applied or not. The difference between the two choices is illustrated in
Figure 7.3(a), where local optimization leads to convergence within a few steps, whilst the non
locally optimized version improves slowly. The mutation rate was also found to be an important
parameter, and if it is set too high, the algorithm may never converge, as may be seen for the
higher mutation probabilities in Figure 7.3(b), where m denotes the mutation probability. A mu-
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tation rate of 1% or 0.5% results in acceptable convergence rates. When no local optimization is
used, a large population size mitigates the solution diffusion properties of the genetic algorithm,
since there is, presumably, a better chance for fit individuals to be created. The plot in Fig-
ure 7.3(c) suggests that a population size of 200 is a good choice when local optimization is not
applied (P denotes the population, and |P| the size of the population). When local optimization
is used, only very small populations are required for acceptable convergence rates. Populations
as small as 5 members are sufficient for the genetic algorithm to converge. The impact of differ-
ent population sizes on the rate of convergence for the case where local optimization is used, is
shown in Figure 7.3(d), where again, P denotes the population. A population of size 20 to 50
provides a better safeguard against the algorithm becoming trapped in local optima than in the
case where the population is overly small. Finally, the number of competitors in a tournament
has an effect on the rate of convergence. Although larger tournament sizes have a beneficial effect
on convergence, it may be seen from Figure 7.3(e) that one soon reaches the point of diminishing
returns with an increase in tournament size. In general, larger groups of competitors lead to a
higher probability that high quality chromosomes will be selected (since the best chromosome in
a tournament is selected), but it will also result in an increase in computational complexity, since
the members of the population are considered more often in larger tournaments. The plot in
Figure 7.3(e), suggests that a tournament size of 7 is a good choice (where s denotes the number
of competitors involved in a tournament). The optimal parameter values were taken into consid-
eration when the genetic algorithm was applied to the random graphs. Local optimization was
used, with a populations of 50 members. Tournaments were between 7 competitors at a time,
and the mutation rate was set to 0.5%. The averages of the minimum, average, and maximum
fitness values (i.e., crossing numbers bounds) of chromosomes were plotted against the number
of generations. In general, only about seven generations were required for convergence, and it
seems that at most ten generations are necessary to ensure convergence.

7.1.3 Convergence of the tabu search algorithm

First, the efficacy of the preconditioning techniques was tested. In addition to Nicholson’s heuris-
tic, and the Hamiltonian cycle heuristic, a preconditioner which generates random vertex arrange-
ments was implemented. Each of these three methods were applied individually to the initial
solutions to tabu searches that were executed for the hypercube Qg of order 64, the balanced
toroidal grid graph Cg x Cg of order 64, and a random, connected graph G* of order 32 and size
80. The results of these trials are shown in Figure 7.4.
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Figure 7.4: An illustration of the effects of preconditioning methods on tabu searches.

As may be seen from Figure 7.4, it is hardly ever beneficial to commence a tabu search with a
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random vertex arrangement. As to the question of which of the other two heuristics is the best,
no definite answer can be given. The heuristic of Nicholson performed better on the hypercube in
Figure 7.4(a) than the Hamiltonian cycle heuristic. However, this situation is turned around for
the toroidal grid graph, as may be seen in Figure 7.4(b). Nicholson’s heuristic has the advantage
of being computationally quite efficient, as opposed to the Hamiltonian cycle heuristic, where
many trials might have to be performed before a satisfactory cycle is found.
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Figure 7.5: Illustration of the effect of the variation of tabu parameters on the convergence of
solutions of a random, connected graph of order 32, and size 80.

It is difficult to provide a general set of parameters for the tabu algorithm that will yield ac-
ceptable results for all inputs. This is really a matter of experimentation for different classes
of graphs. Denote the poison tenure of a position by p, the high frequency penalty as f, and
the number of non-improving steps after which the tabu search algorithm will revert to an elite
solution as e. Letting p =5, f = 5 and e = 10 works relatively well for small graphs. This pa-
rameter setup was mostly used in the enumeration of the drawings of the complete multipartite
graphs of the next section.

If positions are poisoned for too long, convergence was found to be hampered. This is clearly
visible in the different rates of convergence in Figure 7.5(a). The same occurs if the penalty
for high frequency moves is too severe, as illustrated in Figure 7.5(b), although the effect is less
pronounced than for position poisoning.

Elite solutions are revisited when no improving moves are found for a certain number of steps.
This number of steps should preferably be quite large, since otherwise, the tabu algorithm will
constantly be forced to return to old solutions, without having the chance to explore new regions
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of the search space. The spikes in Figure 7.5(c) are indicative of where the tabu algorithm reverted
to elite solutions. The fact that it performed relatively poorly for the cases where e = 20 and
e = 50, is probably not due to the choices of these parameters. In fact, the line representing the
case e = 50 seems to indicate that the algorithm was trapped in a local optimum. However, the
case where e = 5, almost certainly does not provide the algorithm with enough time to scout, and
hence the tiny oscillations that are due to constant reversions to elite solutions, that occurred in
this case after 50 iterations.

The convergence for the tabu algorithm, with the parameters p =5, f =5 and e = 10 is shown
in Figure 7.5(d). In this case, it converged quickly, and it spent the rest of the time revisiting old
solutions, which is evident from the fact that the spikes occur roughly at distances of 10 apart.

7.2 Algorithmic output

The output of the algorithms that were implemented, are considered in this section. The first
subsection demonstrates a type of problem case that causes the GreedySide algorithm to per-
form poorly. In the second subsection, the output of the lower algorithm is considered. The
third subsection provides an example of the output of the Garey—Johnson and finally, the last
subsection contains a catalogue of drawings of all non—planar complete multipartite graphs of
orders 6-13 realising upper bounds on their crossing numbers as determined by the tabu search
algorithm.

7.2.1 Difficult problem instances for the GreedySide algorithm

Figure 7.6: G**

Although the GreedySide algorithm performs just as well as the Cimikowski-Shope algorithm
in most instances, it performs very poorly on subdivided graphs. Consider the drawings in
Figures 7.6 and 7.7, which were generated by the layout algorithm — the drawing of Figure 7.6
is a two—page layout of a graph G**, and the drawing of Figure 7.7 is a subdivided version of the
graph G** which was generated according to the subdivision method, described in § 5.3. The
minimum edge layouts for each of these graphs will both contain the same number of crossings,
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since by the method of construction of the subdivided graph, it cannot contain any additional
crossings beyond those that were already present in G**.

Figure 7.7: A subdivision of G**

The edge layouts were randomized for both graphs, and the GreedySide and neural network
algorithm were each applied to both graphs. For the graph G**, the GreedySide algorithm
managed to find a layout with a single crossing, and neural network algorithm fared slightly
worse, obtaining a layout with three crossings. However, the GreedySide algorithm could only
find a layout for the subdivision of G** with 23 crossings. The neural network algorithm again
found a layout with 3 crossings for the subdivided graph.

This indicates that the GreedySide algorithm is unsuitable for obtaining edge layouts in cases
where it is possible that a subdivision of a graph G would permit a book layout with a lower
number of crossings than G may be drawn within a book.
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\ Dimension | 8 | 9 | 10 [ 11 |
Best known upper bound | 8,192 | 36,032 | 153,088 | 636,160
Algorithmic result 306 | 2,395 6,787 18,329
Best known lower bound | 597 1,536 3,840 84,787

Table 7.1: Lower and upper bound results for hypercubes.

7.2.2 Output of the lower bound algorithm

The lower bound algorithm was applied to the hypercubes of dimensions 8, 9, 10 and 11. Graph-
to—graph embedding of the complete graphs into the hypercubes did not yield much success. The
best results were achieved by repeated graph—to—graph embedding of bipartite graphs with 64—
300 vertices into the hypercubes, and by feeding back their crossing number results as they
improved, as explained in § 6.1.1.2. The results are shown in Table 7.1 and are compared to the
best known upper and lower bounds for the hypercubes. The upper bound values were computed
using the bound
v(Q,) < (165/1024)4¢ — (2d* — 11d + 34)2973,

due to Faria and Herrera de Figueiredo [FdF00]. The lower bounds on Qg and Qg were computed
using the bound

1
ﬁd(d - 1)2% < 1(Qy),

which is due to Madej [Mad91]. Finally, the lower bounds on Qg and Qg were computed with
the bound
(1/20)4% — (d*> +1)2¢71 < 1(Qy),

which was derived by Sykora and Vrto [SV93].

The results are not ground breaking by any means, but it must be remembered that, to the best
knowledge of the author, these are the first results obtained by a general algorithmic method for
bounding the crossing number of a graph from below. There are potentially many improvements
that could be made (i.e., improved edge mappings, better graphs for embedding into the hyper-
cubes, etc.), and the fact that the algorithm has improved the best known lower bounds for Qg
and Q¢ is hopefully proof that it has promise. Choosing an appropriate graph to graph—to—
graph embed into the graph of which a lower bound needs to be computed is difficult, since the
quality of the bound is highly sensitive to the graph that is embedded. For example, the graph
Kss,60 has worked well in obtaining lower bounds to Qg, whilst the graph Ks5p60 on the other
hand, has delivered more mediocre results.

7.2.3 Output of the Garey—Johnson algorithm

The Garey—Johnson algorithm was implemented using the concept of independent crossing sets,
and symmetry considerations for complete graphs. It was observed that the implementation of
the algorithm consumed large amounts of memory and the computer that was used for simulations
ran out of memory during the course of the execution of the algorithm for all but the smallest
graphs. It has, however, been verified that the algorithm can find a drawing of K4 realising its
crossing number; such a drawing may be seen in Figure 7.8.

The algorithm first lists the edges involved in a crossing configuration, followed by the individual
independent crossing subgraphs that may be constructed for the crossing configuration. Recall
that all independent crossing subgraphs are initially contracted (§ 5.2.4.3), and that a crossing
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Figure 7.8: A drawing of g generated by the Garey—Johnson algorithm

subgraph H is only expanded when the graph in which H is contracted, is found to be planar.
Once H is expanded, each of its edges are considered recursively, as described in § 5.2. The
recursion level of the algorithm at a given point is indicated by the number of full stops preceding
a line of output.

When the algorithm expands an independent crossing subgraph, it prints the line Expanding
independent crossing subgraph with edges, followed by a line that lists the edges in the
independent crossing subgraph. For each edge e, all permutations of crossings in which e is
involved, are enumerated, and for each permutation, the next edge in the independent crossing
subgraph is considered in the same fashion. For each permutation that is considered for an edge
e, the algorithm prints the line considering edge e with crossing permutation, followed
by the permutation of edges that cross e, on the next line. When the recursion process has
descended to its lowest level, a subgraph corresponding to the independent crossing subgraph,
as described in the previous paragraph, is constructed. The algorithm indicates this by print-
ing the line Constructing crossings for independent crossing subgraph with edges, fol-
lowed by a line containing the edges of the independent crossing subgraph.

An example of output from the Garey—Johnson algorithm, as applied to the graph Kg, is provided
below. In the example, the algorithm had to find a drawing of K¢ containing 5 crossing. The full
output of the algorithm spans several hundred pages; therefore only the output corresponding
to two crossing configurations is given.

The first example depicts a scenario where the given choice of edge crossings cannot lead to a
planar configuration. The output was truncated, due to its length. One may clearly see how the
different permutations of crossings of the edges e, e2 and eg with the edge eg is enumerated by
the algorithm. This occurs at a recursion depth of two, i.e., on lines which contain two full stops
at the beginning.

Edges crossed:

e_0 is crossed by e_1, e_2, e_9
e_1 is crossed by e_0, e_12

e_2 is crossed by e_0

e_7 is crossed by e_11

e_9 is crossed by e_0

e_11 is crossed by e_7

e_12 is crossed by e_1

constructing independent crossing subgraphs with edges
e 9e0e_le_ 12 e_2

constructing independent crossing subgraphs with edges
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e 7 e_11

Expanding independent crossing subgraph with edges
e9elele 12e.2
considering edge e_9 with crossing permutation

e_0
. considering edge e_0 with crossing permutation
.e_le2e9
considering edge e_1 with crossing permutation
e_0 e_12
considering edge e_12 with crossing permutation
. e_1
considering edge e_2 with crossing permutation
e_0

. Constructing crossings for independent crossing subgraph with edges
.e9ele.le_12e.2
. Search was unsuccessful.
.e9elele.12e.2
considering edge e_1 with crossing permutation

e_12 e_0
considering edge e_12 with crossing permutation
. e_1
considering edge e_2 with crossing permutation
e_0

. Constructing crossings for independent crossing subgraph with edges
.e9e0e_le_12e.2
. Search was unsuccessful.
.e 9 e 0e_1e_12 e _2
. considering edge e_O with crossing permutation
. e_l e 9e.2
considering edge e_1 with crossing permutation
e_0 e_12
considering edge e_12 with crossing permutation
. e_1
considering edge e_2 with crossing permutation
e_0
. Constructing crossings for independent crossing subgraph with edges
.e 9e 0e_1e_12 e 2
. Search was unsuccessful.
.. .e 9e0e_1e_12e_2
considering edge e_1 with crossing permutation

e_12 e_0
considering edge e_12 with crossing permutation
. e_1
considering edge e_2 with crossing permutation
e_0

. Constructing crossings for independent crossing subgraph with edges
.e9elele_12e.2
. Search was unsuccessful.
... .e9el0ele12e.?2
. considering edge e_0O with crossing permutation
. e 2e.1e9
considering edge e_1 with crossing permutation
e_0 e_12
considering edge e_12 with crossing permutation
. el
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. considering edge e_2 with crossing permutation
. e 0
. Constructing crossings for independent crossing subgraph with edges
.e9e0e_1le_12e.2
. Search was unsuccessful.
.. .e 9e0e_le_12e.2
. considering edge e_1 with crossing permutation

. e_12 e_0
. considering edge e_12 with crossing permutation
. e_1l
. considering edge e_2 with crossing permutation
. e_0

. Constructing crossings for independent crossing subgraph with edges
.e9e0e_le_12e.2
. Search was unsuccessful.

<« ... .e9e0e_1le.12e.2

(output truncated)

In the second example, the crossing configuration yields a set of edge crossings that permits a
planar graph G, containing artificial vertices modelling crossings, to be constructed from Kg. A
plane drawing of G then represents a drawing of g with 5 crossings. At the recursion depth of
five (i.e., the lines which start with five full stops), the second independent crossing subgraph
is expanded, after the algorithm found that the constructed subgraph corresponding to the first
independent crossing subgraph was planar.

Edges crossed:
e_0 is crossed by e_1, e_2, e_9

is crossed by e_0
is crossed by e_0
is crossed by e_11
is crossed by e_12
_9 is crossed by e_0
e_11 is crossed by e_3
e_12 is crossed by e_8

e_
e_
e_
e_

© 00w N -

constructing independent crossing subgraphs with edges
e_ 9 e 0e_1le.2

constructing independent crossing subgraphs with edges
e 8 e_12 e_3 e_11

Expanding independent crossing subgraph with edges
e 9 e 0e_1le.2
considering edge e_9 with crossing permutation
. e 0
. considering edge e_0 with crossing permutation
.e_l e 2e9
. considering edge e_1 with crossing permutation
. e 0
considering edge e_2 with crossing permutation
. e 0
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. Constructing crossings for independent crossing subgraph with edges
.e_9e0e_1e.2
. Expanding independent crossing subgraph with edges
. e_8 e_12 e_3 e_11
. considering edge e_8 with crossing permutation
. e_12
. considering edge e_12 with crossing permutation
. e_8
. considering edge e_3 with crossing permutation
e 11
. considering edge e_11 with crossing permutation
. e_3
. Constructing crossings for independent crossing subgraph
with edges
. e 8e_12 e 3 e_11

7.2.4 Results for complete multipartite graphs

All complete multipartite graphs of orders 6-13 were generated, with the exception of the com-
plete multipartite graphs that were isomorphic to the complete graphs. The tabu search algo-
rithm was used to determine the upper bounds on the crossing numbers of these graphs in the
plane, and it employed either the GreedySide algorithm, or Cimikowski and Shope’s neural net-
work algorithm [CS96] to compute the edge layouts for the graphs, given vertex arrangements.
After the initial application of the tabu search algorithm, the graphs were subdivided once (i.e.,
a single subdivision vertex was inserted into each edge), after which the tabu search algorithm
was applied again, except that it used only the neural network algorithm of Cimikowski and
Shope for the subdivided cases, due to poor handling by the GreedySide algorithm of such cases
(as demonstrated in § 7.2.1). Although the genetic algorithm is competitive with these two al-
gorithms in terms of solution quality, its prohibitive computational complexity caused it to be
deemed too inefficient for computations on this large data set. The graph layouts were computed
by the orthogonal layout procedure in the LEDA [LED]| software library.

With the exception of a single graph, K1 22992, the subdivided graphs did not yield drawings
with fewer crossings than their non—subdivided counterparts. In fact, for all of these graphs,
both the GreedySide algorithm and the neural network algorithm found layouts achieving the
stated bounds. In the case of K1 2222, the subdivision drawing improves upon the upper bound
of the non—subdivided counterpart only by a single crossing. The drawings were constructed

using Algorithm 6.9.

A lower bound on the crossing number of a graph has the property of being hereditary under
the supergraph relation. That is, if H is a supergraph of G (or equivalently, if G is a subgraph
of H), then a lower bound on v(G) is also a lower bound on v(H) — this is trivially true,
because a drawing of H must contain a drawing of G. The subgraph relations of all of the
generated complete multipartite graphs were computed using the method described in § B.5.3.
For a complete multipartite graph H, if a lower bound on v(H) was unknown, such a bound was
computed as

v(H) >

> max
G is a subgraph of H

{v(9)}-

This led to a recursive situation in cases where an analytical bound on v(G) was unknown.
The lower bounds for crossing numbers that were used, were those for bipartite graphs and
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for complete multipartite graphs in § 4.2.3.2, as well as the crossing number bounds for the
complements of cycles in § 4.2.3.7, since these graphs are subgraphs of complete multipartite
graphs that are obtained by the deletion of single edges.

In each of the drawings, vertices in the same partite set received the same label. Labelling always
commenced at zero and the partite sets were labelled in increasing order with respect to their
sizes, starting with the smallest partite sets.

The multipartite graph notation, in which a list of partite set cardinalities is written as the
subscript of the letter /C, becomes unwieldy for larger graphs. For example, the graph resulting
from the deletion of an edge from K¢ is a multipartite graph, denoted Xi 11,1,1,1,1,1,2. For this
reason, an alternative (non-standard) notation was employed in this thesis to ease readability.
For n > 3, the presence of n multipartite sets of order p in a multipartite graph was denoted
n X p in the list of partite set cardinalities. Using this notation, the graph Ki9 with an edge

deleted, is denoted Kgx1, 2.
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(2) V(’Cl,l,l,S) = 1. (3) I/(ICLLQQ) = 1.
L]
§ er
! 0 [T ]
L
In
L
(]
(4) V(’Cl_rgyg) = 1. (5) I/(]Cg’g) = 1F

Figure 7.9: Non-planar complete multipartite graphs of order 6.

|
=8
s

(1) 5 S Z/(K:5><1,2) S 6. (2) V(K:4><173) = b. (3) 3 S V(’Cl,171,2’2) S 4.

Figure 7.10: Non-planar complete multipartite graphs of order 7.
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Figure 7.10 (continued): Non-planar complete multipartite graphs of order 7.
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1 |
g | 0] 2 | 3
44[ ? ‘ 7 3 téﬁ 3[]
1 L 1
L T 3 3 T
0 —[4 4
| 2 TL 0
. . <"
(4) I/(IC4><174) = 8 (5) 7 < I/(]C11123) < 10 (6) I/(IC1711175) = 4
1
\%\ >
4 3
il
R 1
= ’

(M7 < v(Ki222)

IN

9. (8) V(’CLLQA) = 6. (9) 7 < V(IC171,373) < 8.
Figure 7.11: Non-planar complete multipartite graphs of order 8.
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(10) 7 S V(’Cl,gg,g) S 8.

(16) 1/(’(:375) = 4. (17) Z/(K:474) = 4.

Figure 7.11 (continued): Non-planar complete multipartite graphs of order 8.
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(3) 13 < v(Ksx1,22) < 25.

(8) 12 < v(Ki1,1,24) < 16.

Figure 7.12: Non-planar complete multipartite graphs of order 9.
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(16) 12 S V(K:l,273,3) S 16. (17) Z/(K:Lg,g) = 6. (18) Z/(K:l 3,5) = 10.

Figure 7.12 (continued): Non-planar complete multipartite graphs of order 9.
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(19) 8 S Z/(K:L4,4) S 12. (20) 12 S V(K2,272,3) S 15. (21) V(’CQ,275) = 8.

(22) V(K2,374) = 12. (23) 7 S V(K:g,373) S 15. (24) V(K:3,6) = 6.

(25) 1/(’(:475) = 8.

Figure 7.12 (continued): Non-planar complete multipartite graphs of order 9.
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— 1T

(7) 21 < v(Kaxi222) < 42.

‘ SLS q
[,

1

(8) 21 < v(Kyx124) < 34.

ﬁ 113 : Q:IJ_OF

Bl
=

9) 21 < v(Kaxi,33

Figure 7.13: Non-planar complete multipartite graphs of order 10.

) < 38.
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jj

4] 7 2
=
1
Lo n i
(12) 21 < V(K:l 1,172,5) < 26.

JES

(16) 21 S V(IC171,272,4) S 29.

(17) 21 S V(K171,273,3) S 34.

Figure 7.13 (continued): Non-planar complete multipartite graphs of order 10.
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(25) 15 S Z/(K:L3,373) S 30. (26) V(K:l,gﬁ) = 15. (27) 16 S V(IC174,5) S 20.

Figure 7.13 (continued): Non-planar complete multipartite graphs of order 10.
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e

—[1

!
i,

(34) 12 S V(K:3,374) S 25 (35) V(K:3,7) = 9 (36) V(K:4,6) = 12.

Figure 7.13 (continued): Non-planar complete multipartite graphs of order 10.
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(37) I/(IC575) = 16.

Figure 7.13 (continued): Non-planar complete multipartite graphs of order 10.
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(3) 36 S Z/(K:7><1,2’2) S 81. (4) 30 S V(IC7><1,4) S 69.

Figure 7.14: Non-planar complete multipartite graphs of order 11.
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— 1

FLI%*%
Tk

‘ "" ﬂgi‘
\ T;;F

e
SIS =
e

Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.

T

(9) 30 S Z/(K:5><1,3,3) S 70

(10) 30 S U(K:5><1,6) S 40.



- 188 - Chapter 7. Computational Results

@Di
]
=

H

|
E
o
—

T
IrS

L
=
s
e

]
i)
[

T |
sl sl
EjRE } B
‘tj—‘ \‘ LE; 2
: } HE L 4% T
H 3] /] )
[T
— s
(13) 30 S V(’C4><173,4) S 57. (14) I/(/C4><117) = 25.
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(15) 30 S V(’Cl,171,4><2) S 66. (16) 30 < U(K111224) S 56.
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Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.
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1L
e

4 \71 N . 3
J3 Aqﬁ 2| ] | 2 [ ]

4r o [ 7W ?
EEERmE 4 [ .
RN sl
] (‘) ‘ 1 4 ’—1 ‘ ‘7
(19) 30 S V(Kl,l,l,g,f)) S 47 (20) 24 g I/(]C1711174’4) S 48
3‘ [
3 {1 n

] N
ICapyuilB T%%q
b =]

(21) I/(K:LLLS) = 12. (22) 30 S V(K:1122’23) S 60.

aaaaa

Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.
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(23) 30 < v(Ki12.25) < 44. (24) 30 < v(K11234) < 51

=
Rt

2

ﬁ =i

FT e | ]2]
|

=

(27) 30 S Z/(K:Ll,gﬁ) S 33.

Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.
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|

B

(33) 30 < V(’Cl,273,5) < 41. (34) 24 < U(K172,4’4) < 44.

Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.
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| |
E | |
th QQJH 1 {7?
LT e
1 2 0 2 1 11 !
T T BRI
LT i 7}
2| 11 o
(35) l/(K:lgg) = 12 (36) 24 S V(K:l,373,4) < 47

(39) 24 S Z/(K:L5,5) S 32. (40) 30 S V(K:4><273) S 54.

Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.
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(41) 24 S Z/(K:272,275) S 39. (42) 30 S V(K2,273,4) S 46.

(43) V(’C27277) = 18. (44) 30 § Z/(IC2737313) S 51.

>

: o
Wﬂ
{_Jl |

12

(45) V(’Cg,gﬁ) = 30. (46) 24 S U(K274,5) S 34.

Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.
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I
4

(48) 18 < v(K344) < 40.

1
0
|

oI

.

m!
)
ry

(49) v(Kss) = 12. (50) v(Kyq) = 18.

(51) V(IC5,6) = 24.

Figure 7.14 (continued): Non-planar complete multipartite graphs of order 11.
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Il ‘
7‘7“7 ]

(2) 79 S V(K:ngg) S 130.

(1) 79 < v(Kiox1,2) < 140.

(4) 43 < v(Ksx14) < 114

(3) 79 S I/(Kgxlﬁgyz) S 130.

Krx15) < 96.

(

14

43

)

(6
Figure 7.15: Non-planar complete multipartite graphs of order 12.

(5) 43 < v(Krx1,23) < 121,
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il
)

(12) 43 S U(IC5><1,2,5) S 89.

B
;Lu

[
o]
|
[
(10) 43 S V(]C(sxlﬁ(;) S 75.
]
“F
UE@

(8) 43 < v(Kex1,2,4) < 105.

1ﬂ

 —
8 )

6
LO
(7) 43 < v(Kexi,2,22) < 120
|
7]
-
1 2
\{‘
4 u]
| ";ﬁ
7
|
1
(9) 43 < v(Kex1,33) < 112

(11) 43 S Z/(K:5><1,2’2,3) S 112
Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.



7.2. Algorithmic output

- 197 -
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(17) 43 S V(K:4><172,3’3) S 104

-

I

il
1

{
£
Il

e
B
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[
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il
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(16) 43 < v(Kax1224) < 96.

il

!

(].8) 43 S V(K:4><172,6) S 68.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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s 0 ) - Stﬂ
ljf“jr . | ' L*ﬂé 3 4] 11
' &4@ ( (LH—=1 ]
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T4 ‘ § ‘ \—
(21) V(’C4><178) = 32 (22) 43 S V(}C1711172,272’3) < 103

=

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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(27) 43 < v(Ky1,136) < 64. (28) 36 < v(K11145) < T72.
I
|
—
g if
30 Ir
— [t
1
0 —
I
L 3
| L3
1 3
1 l;
3
(29) V(ICLLLQ) = 16. (30) 43 S U(K171,5X2) S 103.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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(33) 43 < v(Ki1226) < 61 (34) 43 < v(K11235) < T76.
‘ | —
Urmimm] —
— 5 n [
;IJ%* ¥%E . fjj
2 4 [ |

¥}4%4

i L e | \; ;jjg
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¥

(35) 36 S V(’Cl,172,4’4) S 76. (36) V(’CLLQ,S) = 28.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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1
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(41) 43 S Z/(K:L4><2’3) S 94. (42) 43 S V(K:l,gg,g’g;) S 75.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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(43) 43 S Z/(IC172,273,4) S 82. (44) 43 S U(K172,277) S 46.

2L
i

201 {12

(48) v(Ky,2,9) = 16.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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‘\ | 5 |
R
Nillr
B (E;sz 1
Eﬁ nsfjinl|
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|2 e e=—=
[Ee=—=—"17]||"
i 3 iw
(53) 36 < v(Kis6) < 48. (54) 36 < v(Kgx2) < 94.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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(57) 36 < V(ICQQQ(‘) S 54 (58) 43 < V(]C2235) < 70
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(59) 36 S Z/(K:272,4’4) S 68. (60) V(’CQ,278) = 24.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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|
A#L — 2

\ I:QT

J

I

(65) 36 < V(’C4><3) < 82. (66) 36 < V(K:3,376) < 59.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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[T
I
° |
1 —L11
10— 0 11
101 L
0
T
(67) 36 S V(’C3,475) S 62. (68) V(K:379) = 16.

(71) V(IC5,7) = 36. (72) V(K:&@) = 36.

Figure 7.15 (continued): Non-planar complete multipartite graphs of order 12.
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(2) 79 S V(K:lOXl,g) S 200.

(]_) 118 S V(K:Hxlﬁg) S 210.
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110}

(4) 79 < v(Kox14) < 176.

(3) 79 S I/(IC9><11272) S 196.

I

7

4\\74}:

18

L

T

(6) 56 S V(K:SX175) S 156.

(5) 79 S Z/(K:8><1,2,3) S 186.

Figure 7.16: Non-planar complete multipartite graphs of order 13.
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(8) 56 S V(K:7><172,4) S 164.

()79 < v(Krxipzp22) < 183.

126.
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v(Krx1,6)
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(10)

(9) 56 S V(’C7><173,3) S 177.
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(11) 56 < v(Kexi,2,2,3) < 173.
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(12) 56 S V(K6X1,2’5) S 144.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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(15) 56 S I/(IC5><114><2) S 171 (16) 56 S Z/(IC5><172,274) S 153
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(17) 56 S V(’C5><172,3’3) S 164. (18) 56 S U(IC5><1,2’5) S 117.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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(23) 56 S Z/(K:4><1,2,2,5) S 133. (24) 56 S V(K:4><172,3’4) S 144.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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(25) 56 S V(’C4><172,7) S 90. (26) 56 S V(K:4><173,3’3) S 156.
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(29) V(K:4><179) = 41. (30) 56 S V(K1,171,5><2) S 161.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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(41) I/(IC171,1710) = 20. (42) 56 S V(K1,174><2’3) S 150.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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(47) 56 S V(’CLLQ,?)’@) S 102. (48) 54 S U(K171,2’4,5) S 110.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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- 218 - Chapter 7. Computational Results

\; ‘ } | |
T ——
,7ﬁ,;jp | HLL
e ——— B } \JTL — r
L] = L = '
! ] - IR rﬁ 3 [T il
| ¢ ‘ = | ’ iﬁim
0T | Gyt
IBES ‘ £ T
| ¢ 0 T
] L=
3]

(67) 54 S V(K:l,4><3) S 137. (68) 54 S U(K173,376) S 96.

1
L 1
7,7717 ‘ILLi ‘ |
L T nntis
31—+ W= ]
) || CEREEO
I qu
e
(69) 94 < V(K1,3,4,5) < 104. (70) I/(]Clygﬁg) = 36.
I -
e
UO_‘ L‘H 7T LE Wz 2
O =
EnS IRt miiEss
] ] 12
Lz | :Eﬂ N n 5
%?ij L773 o | 2 L 7;
[3F—— | ] (ﬁ LYD—'»
0— = |
(71) 48 S V(’C1,474,4) S 108. (72) 48 S V(’C1,478) S 56.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.



7.2. Algorithmic output - 219 -

I 1
11— I [ 4@? 2
1 2 - 7%
- : e
1 o T2 1T
| I
iHrofE%r* A !
i} spiiimy
7121 }!7* Tg;‘ 71
= ==
(73) 54 S V(K:l,577) < 66. (74) 54 S V(K:l,&ﬁ) < 72
3 ‘Li —g \ﬁ
= iEens
, H ] ol
pi==aRi |
mifl ﬂii‘” 4 ‘ 117\12 3 (]
gl ==t il
fj —h | 0 i%f ]
- i { | ﬁE |
] '
| TW ‘ W
(75) 56 < v(Ksx23) < 141. (76) 54 < v(Kaxas) < 114.
\ ]
L1 | — ] Ji[ —
o (=4 =
it ST
%ﬂi\ ‘T r;zf ,J 0 ‘ } =1
2 7<1j“ 17& i 2 ‘D"il : u
\O!ZF - ‘ 0|
= | S|
(77) 56 S V(’CQ,272,3’4) S 125. (78) 54 S V(K2,272,7) S 75.

Figure 7.16 (continued): Non-planar complete multipartite graphs of order 13.
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7.3 Chapter summary

In the first section of this chapter, § 7.1, the convergence properties of the upper bound algorithms
implemented in this thesis were discussed. It was shown that the rate of convergence of the
GreedySide algorithm is favourable in comparison to the Cimikowski—Shope [CS96] algorithm,
and especially to the genetic edge layout algorithm in § 6.2.1.3.

The output of the upper bound algorithms was considered in § 7.1. It was first shown that
the GreedySide algorithm performs poorly on subdivided graphs, whilst the Cimikowski-Shope
neural network algorithm seems to fare no worse with such graphs. In the next section, § 7.2.2,
the output of the lower bound algorithm, as applied to some hypercubes, was shown. It was
pointed out that the algorithm is very sensitive to the graph that is chosen to be graph—to—graph
embedded into the graph of which the crossing number is sought. It was found that certain
bipartite graphs are useful in this context, whilst the complete graphs do not seem to yield good
results when graph—to—graph embedded into hypercubes. The output of the Garey—Johnson
implementation was considered in § 7.2.3. An example of a crossing configuration that did not
lead to a planar graph (that contains artificial vertices modelling crossings) was demonstrated,
as well as an example of a crossing configuration that did lead to a planar graph. Finally, a
catalogue of drawings of all non—planar multipartite graphs of orders 6-13 was given realising
crossing number upper bounds as determined by the tabu search algorithm. It was seen that
the crossing number upper bound of only a single graph, namely Ky 2222, was improved after
subdivision.
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Chapter 8

Conclusions

Every human activity, good or bad, except mathematics,

must come to an end.
— Paul Erdés (1913-1996)

A brief summary of the results obtained during research for this thesis is presented in § 8.1. In
§ 8.2, a number of open questions (and reasons for their importance) are posed. It is hoped that
these questions will elicit further research.

8.1 Summary of work contained in this thesis

Chapter 3 was dedicated to finding precise and unambiguous definitions for the concepts of a
graph drawing and the crossing number of a graph, as vagueness about these concepts has led
to varying interpretations in the past.

The literature survey of Chapter 4 reveals that the graph crossing number problem has become a
widely researched topic. Several analytical techniques were introduced, and from an algorithmic
point of view, there are a number of proposed algorithms. Some heuristic algorithms have been
implemented, although some others still have not (such as the probabilistic embedding algorithm
of Shahrokhi, Székely, Sykora and Vrto [SSSV96¢]).

The first main aim of Chapter 5 was to provide an implementation of the Garey—Johnson [GJ83]
algorithm, and to consider methods by which the algorithm could exploit symmetries in graphs so
as to reduce the number of computations that it has to perform. The second aim of the chapter
was to make it clear that book drawings are not simply hobbled versions of plane drawings,
but that any plane drawing is representable as a book drawing, if the graph of which the book
drawing is to be made is subdivided sufficiently. It was also shown that a book drawing may be
subdivided without increasing the number of crossings in the drawing, thereby making it possible
to refine book drawings (i.e., reduce the number of crossings), by subdividing its edges, and by
shifting its subdivision edges around on the spine in order to decrease the number of crossings.

Chapter 6 dealt with heuristic methods for approximating the crossing number of a graph. A
lower bound algorithm was developed, which is believed by the author to be the first general
algorithm for finding lower bounds to graph crossing numbers in the plane. The theory behind
this algorithm was extended from the concept of graph-to—graph embedding. Later in this
chapter, a two—tier upper bound approximation framework was developed, where at the first
level, a tabu search algorithm searches for vertex arrangements and, in turn, “drives” an edge
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layout algorithm, which is responsible for finding good edge layouts. Two edge layout heuristics
were also developed. One is a simple iterating greedy algorithm, and the other is a more elaborate
genetic algorithm. Finally, it was shown how ideas from Székely’s independent—odd crossing
number algorithm may be merged with the two—page book layout framework so as to produce
an upper bound algorithm for the plane crossing number of the graph, in which the vertex
arrangement may remain static.

Finally, Chapter 7 dealt with the issues that surround the convergence of the heuristic methods,
as well as with the output produced by the algorithms that were programmed for this thesis.
A catalogue of drawings and upper bounds to the crossing numbers of non—planar complete
multipartite graphs of orders 6-13 was also given in this chapter. The question of the number of
iterations required for the GreedySide algorithm was studied, and statistical results regarding its
behaviour were presented, suggesting that it generally performs very well. Finally, lower bounds
on the crossing number for some hypercube graphs were provided, thereby improving upon best
known lower bounds for these graphs.

8.2 Possible future work and open questions

There is much potential in improving the two—page book layout algorithms. In this thesis,
all of the edges of a graph were subdivided simultaneously, which slowed down the tabu search
algorithm significantly, due to the usually large number of subdivision vertices that were added to
the spine. A technique which adapts by subdividing only a few edges at a time, and by removing
subdivisions for edges which do not require them, could achieve higher levels of efficiency, whilst
ensuring that the number of crossings decrease as far as possible.

The upper bound algorithm, discussed in § 6.3, which is based on ideas from Székely’s algo-
rithm and book layouts, only occurred to the author at a very late stage; hence the lack of an
implementation. This algorithm holds promise, because it removes the problem of having to
determine vertex arrangements. Furthermore, the author believes that algorithms such as the
neural network algorithm of Cimikowski and Shope [CS96] should be adaptable to this problem
without much trouble.

As for the lower bound algorithm, it has to be said that the mechanism for creating edge em-
beddings could be improved, since it is based on a simple idea. Perhaps a post—optimization
technique could be developed to fulfil this role. Another problem that was barely touched upon
in this thesis, is the determination of good vertex embeddings.

During the course of the author’s research for this thesis, a number of interesting problems
presented themselves. Most of these problems are difficult, but certainly warrant further in-
vestigation. A total of five have been selected to serve as possible starting points for brave
researchers.

Question 8.2.1 Given a graph G, what is the smallest number of edge subdivisions of G, which
would ensure that the resulting subdivided graph H has a two—page layout which could achieve a
total of v(G) crossings? Denote this value by z(G). Is it possible to bound z(G) in terms of an
easily computable parameter of G? |

If it is known that no edge in a graph G may be crossed more than ¢ times in a drawing
of G which realises its crossing number v(G), then according to Theorem 5.3.2, z(G) < (¢ +
1)(IV(G)| — 2). However, this bound is not of practical use, since most edges would be crossed
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a large number of times. In the hybrid two—page/Székely algorithm described in § 6.3, each
edge has to be subdivided at most |V (G)|— 3 times to ensure that all independent—odd drawings
would be enumerated. This is a much better bound, and it would possibly make the problem of
computing the exact crossing numbers of small graphs tractable when employing the two—page
layout paradigm.

From the results obtained by the algorithms, the author conjectures that z(XC,,) = 0 and that
z(Kp,n) = 0. This would trivially follow if it could be shown that the crossing numbers of these
graphs are equal to their upper bound constructed values (§ 4.2.3.3 and § 4.2.3.2), since these
constructions directly permit two—page layouts, without subdivisions. Furthermore, the author
conjectures that for any graph G, it holds that z(G) < |V(G)| — 3, in accordance with the number
of subdivisions required for the two—page/Székely algorithm.

Question 8.2.2 For an r—reqular graph in general, which symmetries may be exploited by the
Garey—Johnson algorithm (§ 4.8.1.1 and § 5.2) to reduce the total number of computations? W

In § 5.2, it was discussed how some symmetry information may be used to reduce the total number
of computations in complete multipartite graphs. For these graphs alone, there are invariably
a number of other symmetry considerations that could be taken into account. However, there
are many graphs with a degree of regularity, and the exploitation of this structure could render
the Garey—Johnson algorithm useful in determining the crossing numbers of a number of small
graphs.

If it is possible to identify a large number of symmetries in well-known classes of graphs, then
perhaps the Garey—Johnson algorithm could become a useful tool.

Question 8.2.3 In the lower bound algorithm (§ 6.1), when a graph G is graph—to—graph embed-
ded into a graph H, which other considerations could be taken into account to discount crossings
that would normally be counted because paths (which are the images of edges in G) share vertices
in H? |

It is shown in § 6.1, that when a pair of paths share a sub—path, it is not necessary to count
more than one crossing for the entire sub—path. A consequence of this observation is that when
a pair of paths start at the same vertex, they need not cross each other for the sub—path they
share, starting at that vertex.

The vertex congestion terms play a large role in determining the quality of the obtained lower
bounds. If it is possible to discount any other crossings, then the lower bound would improve.

Question 8.2.4 The standard counting method (§ 4.2.2.1) is generally used as an analytical
tool. In such a setting, when a lower bound for a graph G must be determined, copies of a single
type of subgraph for which the lower bound is known (where the number of vertices are fized) are
counted in G (for example, bipartite graphs have been used in this way — see § 4.2.3.3). There
is no reason why a number of heterogenous subgraphs could not be found in this way. This would
be necessitated by graphs which are not entirely symmetrical. However, it would only be sensible
to proceed algorithmically with such a scheme. Is it possible to formulate efficient algorithms for
this task, that would compete with, or outperform, the lower bound algorithm described in § 6.17

|
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This is certainly a field that requires more attention. The main problem is that generally,
the larger the subgraphs, the better the lower bound. However, the problem of matching of
subgraphs is really the problem of determining whether there are subgraphs that are isomorphic
to subgraphs for which lower bounds are known. This represents a major hurdle, since the general
subgraph isomorphism problem is an NP-complete problem. However, many techniques have
been developed to solve the isomorphism problem efficiently for certain classes of graphs. The
software library nauty, authored by McKay [McK90], implements a sophisticated algorithm that
is very time efficient in determining whether two arbitrary graphs are isomorphic. Thus, this
library represents a good starting point for the implementation of such a lower bound algorithm,
and may be downloaded from the Internet.

Question 8.2.5 It was noted in, § 3.2.83, that the n—planar crossing number of a graph is related
(B)

to the book crossing number on 2n pages, as vy ' (G) < v2,(G). Is there an integer ny, so that

u,(f)(g) < von, (G) for any graph G? If this is true, then for which value no < 2nq1 would it hold

that u,(f)(g) < Un,(G) for an arbitrary graph G? [ |

This question is not directly related to the work contained in this thesis. However, this seems
to be an interesting problem, since at least the greedy page layout algorithm (§ 6.2.1.1) and the
neural-network layout algorithm (§ 6.2.1.2) may readily be adapted to approximate the book
crossing number for an arbitrary number of pages.

First one has to note that the intersection graph (§ 6.2.1) for an n—page book layout, has n
possible vertex partitions. The edge layout algorithms therefore have to be designed to take
this into account. The greedy layout algorithm, GreedySide (§ 6.2.1.1) requires no modification.
For an edge e, when it has to decide on which page e is to be placed, it simply has a larger
number of pages to consider. The neural-network algorithm (§ 6.2.1.2) also requires very little
modification. It has up and down functions U(") and UW) for each edge in the input graph G,
and the values of these functions depend on whether an edge is to be drawn on the upper or
lower page (or both if the algorithm has not yet converged). In the generalized case of n pages,
page i has a set of functions U, and convergence of the neural network algorithm is reached
when for each edge e € E(G), there is only one function Uéj), 1 < j < n for which U >0 (i.e.
e may unambiguously be assigned to page 7).

An affirmative answer to this question would make it possible to implement generalizations of
the upper bound techniques considered in § 6.2 to bound the n—planar crossing number of a
graph.



Appendix A

Kuratowski’s Theorem

Mathematical proofs, like diamonds, are hard as well as clear,
and will be touched with nothing but strict reasoning.
— John Locke (1632-1704)

In 1930, Cazimir Kuratowski gave a proof to a theorem characterizing all planar graphs in terms
of subdivisions of only two forbidden subgraphs. It is one of the most significant and beautiful
results in Topological Graph Theory.

Theorem A.0.1 (Kuratowski [Kur30], 1980) A graph G is planar if and only if it contains no
subgraph isomorphic to a subdivision of K5 or K3 3.

This particular proof closely follows the proof of C. Thomassen [Tho81]. Proving that the
presence of a subdivision of either K5 or K3 3 in graph G renders G non-planar is straightforward.
By Theorem 2.1.5, K5 and K3 3 are both non-planar; furthermore, according to Theorem 2.1.1, a
subdivision of a non—planar graph is also non—planar. Combining these results yields the required
result. The rest of the argument is dedicated to proving the converse of this statement.

A number of auxiliary concepts used for this part of the proof are introduced first, with a
subsection dedicated to each concept. Firstly, a subgraph called a C-component, is defined. This
structure simplifies the study of crossing interactions between a pair of C—components, if the C—
components are assumed to be planar. Secondly, a graph derived from G, of which the structure
depends on the C—components of G is introduced. This structure, known as the overlap graph
of G, is shown to be non-bipartite, which implies certain configurations of the associated C—
components. Finally, it is shown that a configuration of C—components derived from the overlap
graph of G graph yields either a subdivision of K5 or a subdivision of K33 in G.

A.1 Connectedness

An important assumption of the proof is that each vertex be part of a cycle in G. If G violates
this assumption, the concept of graph connectedness may be used to partition G into subgraphs
for which the assumption is true. Kuratowski’s theorem may then be applied to the subgraphs.

Definition A.1.1 A graph G is said to be k—connected, if the removal of any set of j vertices,
where j < k, does not disconnect G.
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The following proposition follows directly from the definition of k—connectedness.

Proposition A.1.1 If a graph is k—connected, it is also (k — 1)—connected. |

A.2 Overview of the method of proof

This part of the proof is by the strong form of induction over the order of the graph. Let G be a 2—
connected non—planar graph of order n. As the induction hypothesis, assume that Kuratowski’s
theorem is true for all 2—connected graphs of order less than n. It will be shown by contradiction
that G necessarily contains a subdivision of K5 or K33 as subgraph. Therefore assume that this
is not the case — this implies that every subgraph of G of order less than n may not contain a
subdivision of K5 or K33 and must therefore be planar according to the induction hypothesis.

The contradiction assumption forces G to be a vertex critical non—planar graph; that is, G is
such, that the removal of any vertex from V' (G) renders G planar.

A.3 Handling 1-connected graphs and subdivided graphs

It is assumed that the graph G of which the planarity is under question is 2-connected. In
the case that G is 1-connected, but not 2-connected, it must contain at least one cut—vertex
(i.e., a vertex whose removal disconnects the graph into at least two components) as shown in
Figure A.1(a). Let v be a cut—vertex and let C' be a component that results from the removal
of v in G. Define a new subgraph C’' = (V(C) U {v}) — if such subgraphs are created for each
component that was created with the removal of v, then the new subgraphs will contain all edges
in G and they will have only the vertex v in common. An example of such subgraphs is shown
in Figure A.1(b). If each of these subgraphs is planar, then it will be possible to ensure that v is
drawn in the outer region for each of the plane drawings of the subgraphs. All of the subgraphs
may then be “glued” together by coalescing the vertex v in each of the subgraphs. This leads to
a planar configuration.

?
planar? planar? x
% Gl : @
G: —>» planar?
—>
-, w Gy :

(a) Removal of a cut- (b) Decomposing a 1- (¢) Removing vertices
vertex disconnects a graph connected graph with degree 2

Figure A.1: Transformations to handle 1-connectivity and vertices of degree 2 in the proof of
Kuratowski’s theorem.

Vertices of degree 2 may be regarded as subdivision vertices and as such, according to Propo-
sition 2.1.1, the replacement of paths containing only vertices of degree 2, with edges, does not
alter the planarity or non-planarity of a graph. This action is illustrated in Figure A.1(c) for a
path with a single subdivision vertex x.
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A.4 C—components

A C—component of a cycle C in a graph G is, loosely speaking, the maximally connected subgraphs
of G that are attached to C, but that are not part of C.

Definition A.4.1 Given a cycle C in a graph G, the union of a mazimally connected component
of the graph that results from the removal of C from G (the removal of the cycle might leave several
components) and the edges joining to the component to C, is called a C—component of G with
respect to C (or simply a C—component if the graph and cycle are clear from the context). The
vertices of a C—component c that are in the vertex set of the cycle C, are called the clasp vertices
(Thomassen [Tho81] called them vertices of attachment) of ¢, and the edges of c incident to the
clasp vertices are called the clasp edges of ¢ (they are called “feet” by some authors). |

To make this definition clear by means of a concrete example, consider Figure A.2. The various
C-components with respect to the cycle C, labelled By, Bs, ..., Bg, are shown in the grey regions.
The white vertices indicate clasp vertices and the edges adjacent to the clasp vertices located in
the grey regions are the clasp edges.

Note that each C-component is guaranteed to have at least two clasp vertices, due to the fact
that G is required to be 2—connected.

Figure A.2: An illustration of C-components.

C—components have also been called “bridges” by researchers such as Tutte [Tut77] — they should
not be confused here with the conventional graph theoretic meaning of the word “bridge,” which
is an edge whose removal separates a graph into two or more components.

Definition A.4.2 For a cycle C in a graph G, a pair of C-components By, and By of C are said
to overlap if either

1. two clasp vertices from By alternate with at least two clasp vertices from Bs on the cycle
C, in which case the C—components are said to be skew, or to overlap in a skew fashion —
for example let x1,x2 be clasp vertices of By and let y1,ys be clasp vertices of Bo; then, in
a walk around the cycle C, if the clasp vertices are encountered in the order x1,y1,T2,¥ys,
B1 and By are skew, or

2. if By and Bs have three of their clasp vertices in common, in which case they are said to
be C—equivalent, or to overlap in a C-equivalent fashion.

The relation of overlapping is symmetric — if A overlaps B, then B overlaps A. |
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From the definition of overlapping, it may be shown that the only type of overlappings between
C—components that are C—equivalent, but not skew, are the cases in which the C-equivalent
C—components have exactly three clasp vertices in common.

Proposition A.4.1 If two C-components By and Bs have more than three clasp vertices in
common, they are skew.

Proof: Four clasp vertices, say vi, ve, vs and vy4, are required for the property of skewness
in an overlapping of two C—components. Let the clasp vertices v; and vs be assigned to the
C—component By, whilst the the clasp vertices vy and vy are assigned to the C—component Bs.
According to the definition of overlapping, the respective C—components each contain two clasp
vertices that are alternating, and the overlapping is therefore skew. |

(a) B1 and Bs are C- (b) B3 and By are skew
equivalent

Figure A.3: The two types of C—component overlapping.

In Figure A.3(a) the C—components B; and Bj are C—equivalent with the common clasp vertices
ay, az and ag on C, whilst in Figure A.3(b) the C—components B3 and B, are skew. The clasp
vertices by and by of By are alternated by the clasp vertices co and c3 of B3 on C.

If two overlapping C—components are drawn on same side of the cycle, at least one line crossing
results. This is illustrated in Figure A.4, where a pair of C—equivalent C—components are drawn
in the exterior of the cycle in part (a) of the figure, and where a pair of skew C—components
are drawn in the exterior of the cycle in part (b) of the figure. The C-components could have
been drawn in the interiors of their respective cycles instead, without loss of generality. For both
Figures A.4(a) and (b), it is assumed, without loss of generality, that the C—components labelled
Bj were drawn first. In both drawings, the clasp edges of the C—components labelled Bs that
could be drawn without the introduction of crossings were drawn as solid lines. The dashed
edges emanating from the C—components labelled Bs in both figures indicate the possibilities for
drawing the single remaining clasp edges in each of the two figures. Regardless of the choices,
edge crossings are inevitable.

Two C—components By and Bs that only have two clasp vertices in common, and that are, in
addition, not skew, may be drawn so that no crossings result. This is achieved by drawing (say)
Bj in the interior of By (i.e., such that B; is drawn between the clasp edges of Bs). For this
reason, at least three common clasp vertices are required for overlapping.
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Figure A.4: Planar overlapping C—components that are drawn on the same side of a cycle cause
at least one crossing.

A.5 The overlap graph

The overlap graph' Oc(G) of a graph G with respect to a cycle C in G is an auxiliary graph of
which the vertices represent C—components of C, such that a pair of vertices is joined by an edge
if the corresponding C—components overlap. An example of a C—component configuration of a
graph G, and its corresponding overlap graph may be seen in Figures A.5(a) and (b) respectively.

X
N

(a) G (b) Oc(9)

Figure A.5: A graph and its corresponding overlap graph.

An overlap graph corresponding to any cycle C in G will by necessity be non—bipartite, as shown
by the following theorem. Note that the C—components corresponding to any cycle C of G are
planar, due to the assumption that any subgraph of an order less than the order of G, is planar.

Theorem A.5.1 If a graph G is non—planar, then for any cycle C of G with the property that
the C—components of C are planar, the overlap graph O¢(G) is non—bipartite.

Proof: Consider the case where the overlap graph O¢(G) for a non—planar graph G with a cycle
C is bipartite, with a bipartition of the vertex set V(O¢(G)) = AU B. Let C be represented as a
polygon in the plane. By drawing all of the C—components corresponding to vertices in A, say,

!As a point of interest, the definition of the overlap graph is quite similar to that of the intersection graph
defined in § 6.2.1.
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in the interior of the polygon, and all of the C—components of B in the exterior of the polygon,
the C—components may be drawn such that no edges between any pair of C—components that are
drawn on the same side of the polygon intersect, since the subgraphs (i.e., the C—components)
are themselves planar, and since C—components in the same partite set do not overlap. This
constitutes a contradiction, since G is assumed non—planar. Therefore O¢(G) is not bipartite. W

Because the overlap graph of a non—planar graph is not bipartite, it must contain a cycle of
odd length (Theorem 2.1.1). The following theorem shows that an overlap graph of G must, in
fact, contain a cycle of length 3. This implies that G contains three mutually overlapping C—
components, and by the pigeonhole principle, two of the three overlapping C—components must
be drawn on the same side of the cycle C, which forces a crossing.

Lemma A.5.1 In a non—planar graph G, and a cycle C of G with the property that all of the
C-components of C are planar, the minimal length of a cycle in Oc(G) is 3.

Proof: By Theorem A.5.1, it is known that O¢(G) contains a cycle C’ of odd length. Let the
vertices of C' be labelled as By, By, ..., Bo, (indices are expressed modulo 2n + 1), and let C’ be
chosen to minimize n.

Suppose first that n > 2. Since n is minimal, a C—component B; overlaps only the C—components
B;_1 and B;;1 on C’, and no other C—component Bj;, where j # i — 1,4 + 1. This is true,
since otherwise a shorter cycle could be constructed by using the edge between the vertices
corresponding to B; and B; in O¢(G), which would contradict the minimality of n. It is important
to note that no pair B; and B,y of overlapping C—components are C—equivalent, since then B;
would also overlap B;i2, again allowing a shorter cycle to be constructed in O¢(G), thereby
contradicting the minimality of n. Therefore, every pair of overlapping C—components B; and
Bj41 overlap in a skew fashion. This configuration is depicted in Figure A.6(a). Let xy,z9
(y1,y2) be clasp vertices of B;_1 (B;+1), such that the clasp vertices of B; intersect the curve
segments of the drawing of C’ between x; and x5 (between y; and ys). Since B;_1 and B;;1 do
not overlap, let it be assumed that x1,x2,¥y1,y2 occur in this order on C (with the possibility
that z1 = yo or z3 = y1).

Let 21 (22) be a clasp vertex of B; in the curve segment of C’ between x1 and x2 (y1 and y2) such
that z; (22) does not intersect x1 nor x5 (y1 nor y2). Let P be a path in B; with z; and z5 as end—
vertices. Since B; does not overlap any C-component B}, where j # i—1,i+1, it follows that the
union of P and the sub-path in C’ extending from z3 to 21 (in that cyclic order — the bold path
in Figure A.6(b) which commences at the vertex z5 and is drawn clockwise around C’, ending at
the vertex z1, represents P) is a cycle C* containing all the clasp vertices of every C—component
Bj, with j #i—1,i 4+ 1. Let B; = <V(Bl',1) U {.’xQ} U {yl} @] V(Bl'+1)> such that x1,2z1,20 and
Yy are its clasp vertices — in Figure A.6(c), B; is placed on the in the interior of C, and then in
Figure A.6(d), B] is formed by coalescing B;_; and B;;;. Finally, it is shown in Figure A.6(e)
that B; may be transformed to a C—component B* of the cycle C*, where the vertices of B; that
intersect C*, become the clasp vertices of B*. Now By, ... Bi_2, B}, Bi1o, ..., Ba, is an odd cycle
of Oc(G) of length 2n — 1, contradicting the minimality of n.

Therefore n = 1 and C contains exactly 3 mutually overlapping C—components. |

A.6 The coup—de—grace

Let C be a cycle in G — due to the fact that G is 2—connected, it is guaranteed to contain a
cycle. C contains three mutually overlapping C—components, due to Lemma A.5.1. Let these
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(d) (e)

Figure A.6: Finding the minimal cycle length on which C—components may be attached.

C—components be labelled By, B and Bjs respectively. The addition of any clasp vertices to one
of these C—components cannot alter the fact that it overlaps another C—component (it may only
transform the overlapping from a C—equivalent overlapping that is not skew, to an overlapping
that is skew). Therefore, if all edge and vertex minimal cases of mutual overlapping between
C—components are enumerated, all forbidden subgraphs which are present in non—planar graphs
may be found. There are four cases, which are listed in Table A.1 for By, By and Bs (the order of
the C—components is irrelevant, as a relabeling of the C—components will yield a desired order).

‘ ‘ B1 B ‘ By Bj ‘ B1 B3 |
Case 1 | C—equivalent, not skew | C—equivalent, not skew | C—equivalent, not skew
Case 2 | C—equivalent, not skew | C—equivalent, not skew Skew
Case 3 | C—equivalent, not skew Skew Skew
Case 4 Skew Skew Skew

Table A.1: Overlap possiblities

Case 1:

There is only one possibility, and this is illustrated in Figure A.7(a). Clearly, if any of the C—
components were to have an extra clasp vertex on any position of the cycle, some overlappings
would be rendered skew. A subdivision of K33 in may be found in Figure A.7(a) by selecting
vertices {a1, as, ag} from the C—components By, B2 and Bj respectively as the first partite set and
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by

bg®. #b

Figure A.7: Case 1.

by designating the vertices {b1,bs,b3} as belonging to the second partite set. Some care should
be taken in the selection of a1, a2 and a3 from the C—components, since not every vertex in a
C—component will be sufficient. Consider the selection of the vertex a; from the C-component
Bs. Firstly, there must be a path from the clasp vertex b; to the clasp vertex bs that passes
through By — this is guaranteed, since the C—component is connected and since both b; and
bs are adjacent to vertices in By. Such a path, labelled P, is shown in bold in Figure A.7(b).
Finally, there must be a path from the clasp vertex by to a vertex in P, due to the fact that Bs
is connected. Let this vertex in P be chosen as a;, as shown in Figure A.7(b). The vertices as
and a3 are chosen similarly.

Case 2:

It is not possible to construct the structure corresponding to this case, since the only way to
do so, would be to commence with Case 1, and to add an extra clasp vertex for one of the C—
components. This would, however, render the overlappings of two pairs of C—components skew,
resulting in Case 3.

Case 3:

2

1

Figure A.8: Case 3.

The only minimal construction that exists for this case, is shown in Figure A.8. The addition
of clasp vertices to Bs would not affect its overlapping status with respect to the other C—
components, as it already overlaps both of the other C—components in a skew fashion. However,
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the addition of a clasp vertex to either B; or to Bs would render their overlapping skew. In this
construction, a subdivision of K33 may be found, by selecting the vertices {a1, ag, ag} for the
first partite set and by selecting the vertices {b, by, b3} for the second partite set. The vertices
as and ag are selected according to the method described in Case 1.

Case 4:

(a) Sub—case A (b) Sub—case B (c) Sub—case C

Figure A.9: Case 4.

The three sub—cases shown in Figure A.9 represent all the minimal constructions for purely skew
overlappings. It is shown in each of the following sub—cases that these constructions are indeed
minimal.

Sub—case A: The removal of a clasp edge from a C—component B, would leave B with only
a single clasp edge. This violates the assumption of 2—connectivity of G. The construction is
therefore minimal with respect to the number of vertices and edges used. Since all overlappings
are skew, the addition of other clasp vertices will have no effect on the overlapping configurations.
A subdivision of K33 may be obtained in this construction by letting the vertices a1, az and a3
be members to the first partite set, whilst letting the vertices b1, b2 and b3 be members to the
second partite set.

Sub—case B: At least four clasp vertices are required to enable the possibility of a skew
overlapping between a pair of C—components. Therefore, the configuration in Figure A.9(b) is
minimal with respect to the number of vertices used. The C—components By and By have the
minimum number of edges. It may be verified that the removal of a clasp edge from Bs will
result in Bs not being overlapped by one of the other two C—components.

It may be seen from Figure A.9(b) that there must be path P from the clasp vertex vy to the
clasp vertex v4 that passes through the C—component B3 — this is guaranteed, due to the fact
that Bs is connected. There is also a path p; that joins the clasp vertex v; to a vertex in P and
a path po that joins the clasp vertex v to a vertex in P — note that all vertices of P, except for
its end—vertices vy and vy, are part of the C—component Bs. Now there are two sub—sub—cases
to consider:

i. If both p; and ps join P at a common vertex, as shown in Figure A.10(a), a subdivision of
K5 may be found by selecting all of the black vertices, labelled a1, as, as, a4 and a5, where
as is the common vertex described above.
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(a) Sub-sub—case i. (b) Sub-sub-case ii.

Figure A.10: Sub—case B.

ii. If p; and py join P at different vertices, as shown in Figure A.10(b), a subdivision of K5 3
may be found by letting the white vertices, a1, ao and a3 belong to one partite set, and by
letting the black vertices, b1, by and b3 belong to the other partite set. The vertices a; and
bs are the vertices at which p; and ps join P, respectively.

Sub—case C: The configuration in Figure A.9(c) results if a clasp edge of either By or of By
is “split off” and moved away from a clasp vertex shared with Bs. In this case, without loss
of generality, the clasp vertex labelled a3 of B; was “split off” and moved away from the clasp
vertex labelled b;. The clasp edge of B3 which was attached to the vertex a; in sub—case B
has no impact on the overlapping structure of the three C—components, and has therefore been
deleted from this configuration. A subdivision of K33 may be discerned by letting the placing
the vertices a1, as and as in the first partite set, and by placing the vertices b1, b2 and b3 in the
second partite set.

It is noted that in sub—case C, it is irrelevant whether or not the clasp edge of Bs, which is
attached to the clasp vertex bs, “splits off” and is moved away from bs (since the overlapping
configurations will remain unchanged). In fact, the only reason that there is a clasp edge of Bs
attached to bs, is to ensure that Bs overlaps By. Should the clasp vertex of By be “split off” and
moved away from by in an anti—clockwise direction, the clasp edge of Bs attached to by would
cause Bs to overlap Bj in a skew fashion, in which case the clasp edge attached to b3 would be
obviated. But if this happens, one arrives at sub—case A. Therefore, all minimal cases for Case
4 have been enumerated. u



Appendix B

Computer Implementations

The purpose of computing is insight, not numbers!
— Richard Hamming (1915-1998)

The purpose of this appendix is to provide the reader with access to the source code that was
used in the implementations of the algorithms described in Chapters 5 and 6. A mixture of the
programming languages Python, C and C++ was used in the implementations.

A number of the heuristic optimization techniques were first prototyped in Python and later
reprogrammed in C. Algorithms for which execution speed was not a critical factor were all
programmed only in Python. The overall framework for the software was programmed in Python.

For Python programming, version 2.3 of the CPython [Pyt| interpreter was used. Programs
written in C and in C++ were compiled using version 3.3.2 of Gnu Compiler Collection |[GCC].
The author found the software tool, SWIG 1.8 [SWI], invaluable for constructing modules that
allowed the CPython interpreter to access the compiled C and C++ code. Version 4.0 of the
LEDA [LED] library was used for the GUI component of the software and its planarity testing
procedures were used in the implementation of the Garey-Johnson algorithm.

A large number of the implementations in this chapter have been kept as faithful in form as
possible to the pseudo-code of the algorithms they implement. Where possible, the source codes
have been annotated with line numbers from the pseudo-code algorithms, to indicate how the
pseudo-code constructs map to constructs in C, C++ or Python, so as to facilitate understanding
of the implementations. The line number annotations were encoded as source comments for the
various languages.

A line number annotation in both C and C++ has the form /#n#*/, where n is the line number.
These annotations were inserted into the left margins of C/C++ constructs that relate to pseudo-
code constructs. Where margin space was insufficient, the line numbers were inserted into new
lines directly above the constructs they referenced. A Python line number annotation has the
form # n and all Python line number annotations were inserted as left justified lines, directly
above the constructs they referenced.

B.1 Edge layout heuristics

In all of the edge layout algorithms, cr_G is an intersection graph and the array page maps
vertices of cr_G to page numbers. Every algorithm in this section modifies page to the layout
solution, but the graph cr_G is never modified.

239
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B.1.1 The GreedySide algorithm

These algorithms are implementations of Algorithm 6.3 (GreedySide), that is described in
§ 6.2.1.1. Due to the almost one-to-one mapping of the pseudo-code of Algorithm 6.3 to the
implementations, the reader is referred to § 6.2.1.1 for a description of the algorithm.

Python implementation

def greedy_side( cr_G, page ):
iterations = 0

# 1
stabalised = False

while not stabalised:

# 3
no_crossings = 0
# 4
stabalised = True
iterations += 1
#5
for cr_v in cr_G.vertices():
# 6
current_page = pagel cr_v ]
#7
val, new_page = c_algorithms.choose_best_page( cr_G, cr_v )
# 8
if new_page != current_page:
stabalised = False
no_crossings += val
# 13

return no_crossings / 2

C implementation

int
greedy_side( graph *cr_G, GArray *page )
{

int no_crossings = 0;
/*1x/

bool stabilised = false;
/*2%/

while ( !stabilised )

{

vertices_itr v_itr = graph_vertices( cr_G );
vertex *cr_v;

/*3%/ no_crossings = 0;

/*4%/ stabilised = true;
int new_page;

/%5%/
while ( ( cr_v = vertices_itr_next( &v_itr ) ) != NULL )
{
/*%6%/ int current_page = g_array_index( page, int, idx( cr_v ) );
/*T*/ no_crossings += choose_best_page( &new_page, page, cr_G, cr_v );

/%8%/ if ( new_page != current_page )
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/%9%/ stabilised = false;
}
}
/%13%/
return no_crossings / 2;
}

B.1.2 The Cimikowski-Shope neural network algorithm

Implementations for Algorithm 6.4 and Algorithm 6.5 (Cimikowski-Shope) are given in this
section. The reader is referred to § 6.2.1.2 for a description of the algorithm. The algorithm
neural_crossing_11 (Algorithm 6.4) was employed by both the Python and C versions of
neural_layout (Algorithm 6.5), due to the fact that it is an often executed loop, and executes
in O(|]E(G)|) time. The reader is referred to § 6.2.1.2 for descriptions of the two algorithms.

C implementation of neural_crossing

int
neural_crossing_ll( int *page, graph *cr_G, vertex *cr_v )
{
/*1%/
int total_crossings = 0;
edges_itr e_itr;
edge *e;

e_itr = graph_out_edges( cr_G, cr_v );
/*2%/
while ( ( e = edges_itr_next( &e_itr ) ) )
{
/*3%/ total_crossings += pagel idx( graph_opposite( cr_G, e, cr_v ) ) 1;
}
/*4x/
return total_crossings;

}

Python implementation of neural_layout

def neural_layout( cr_G, page, A, B, C, dt, iterations, min_rand ):

U_up = {}
U_down = {}
# 1
for v in cr_G.vertices():
# 2
U_up[ v ] = random.uniform( min_rand, O )
#3

U_down[ v ] = random.uniform( min_rand, 0 )

V_up = c_data_types.GVertexArrayInt( cr_G.num_vertices() )
V_down = c_data_types.GVertexArrayInt( cr_G.num_vertices() )

t=20
#5

equilibrium = False
#6

while not equilibrium and t < iterations:
#7
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equilibrium = True
# 8
t +=1
#9
for cr_v in cr_G.vertices():
# 10
if U_upl cr_v 1 > 0.0:
# 11
Voupl crv] =1
else:
# 13
V_oupl cr.v] =0
# 15
if U_down[ cr_v ] > 0.0:
# 16
V_down[ cr_v ] =1
else:
# 18
V_down[ cr_v ] =0
# 22
for cr_v in cr_G.vertices():
# 23
if V_up[ cr_v ] == V_down[ cr_v ]:
# 24
equilibrium = False
# compute the hill climbing constant C
if V_upl cr_v ] == 0 and V_down[ cr_v ] ==
hill = C
else:
hill = 0
a_factor = V_up[ cr_v ] + V_down[ cr_v ] - 1
sum_V_up = c_algorithms.neural_crossing( V_up, cr_G, cr_v )
sum_V_down = c_algorithms.neural_crossing( V_down, cr_G, cr_v )
common = -A * a_factor + hill
# 27
U_up[ cr_v ] += ( common + B * ( -sum_V_up + sum_V_down ) ) * dt
# 28
U_down[ cr_v ] += ( common + B * ( sum_V_up - sum_V_down ) ) * dt
# 30
if abs( U_up[ cr_v ] ) > 1:
U_upl cr_v ] /= abs( U_up[ cr_v 1)
# 31

if abs( U_down[ cr_v 1 ) > 1:
U_down[ cr_v ] /= abs( U_down[ cr_v ] )

return equilibrium

C implementation of neural_layout

bool

neural_layout( graph *cr_G
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, GVertexArrayInt *page
, double A

, double B

, double C

, double dt

, int iterations

, double min_rand )

double U_up[ graph_num_vertices( cr_G ) 1;
double U_down[ graph_num_vertices( cr_G ) 1;
int V_up[ graph_num_vertices( cr_G ) 1;

int V_down[ graph_num_vertices( cr_G ) ];

int t = 0;
bool equilibrium = false;

vertices_itr v_itr;
vertex *cr_v;
int cr_i;

if ( !neural_preconditions( page, A, B, C, dt, iterations, min_rand ) ) return -2;

RANDOMISE() ;
/*1%/
for ( int i = 0; i < graph_num vertices( cr_G ); i++ )
{
/*2%/ U_upl i ]

= UNIFORM( min_rand, 0 );
/%3%/ U_down[ i ] =

UNIFORM( min_rand, O );

}
/%6%/
while ( !equilibrium &% t < iterations )
{
/*T*/ equilibrium = true;
/%8%/ t += 13

v_itr = graph_vertices( cr_G );
/*9%/ while ( ( cr_v = vertices_itr_next( &v_itr ) ) != NULL )
{

cr_i = idx( cr_v );

/*10%/ if ( U_up[ cr_i 1 > 0.0 )

/*11%/ V_up[ cr_i ] = 1;
/*12%/ else
/*13%/ V_upl cr_i 1 = 0;

/*15%/ if ( U_down[ cr_i ] > 0.0 )

/*16%/ V_down[ cr_i ] = 1;
/*17%/ else
/*18%/ V_down[ cr_i ] = 0;
}
v_itr = graph_vertices( cr_G );
/%22%/
while ( ( cr_v = vertices_itr_next( &v_itr ) ) != NULL )

{
double hill;
double sum_V_up, sum_V_down;
double common;

cr_i = idx( cr_v );



— 244 - Chapter B. Computer Implementations

/*23%/ if ( V_up[ cr_i ] == V_down[ cr_i ] )
/%24%/ equilibrium = false;

if ( ( V_up[ cr_i ] == 0 ) && ( V_down[ cr_i ] == 0) )

hill = C;
else
hill = 0.0;

common = -A * ( V_up[ cr_i ] + V_down[ cr_i ] - 1) + hill;

sum_V_up neural_crossing_11( V_up, cr_G, cr_v );
sum_V_down = neural_crossing_ll( V_down, cr_G, cr_v );

/*%27%/ U_up[ cr_i 1 += ( common + B # ( -sum_V_up + sum_V_down ) ) * dt;
/*28%/ U_down[ cr_i ] += ( common + B * ( sum_V_up - sum_V_down ) ) * dt;

/*30%/ if ( fabs( U_up[ cr_i 1) > 1.0)
/*30%/ U_upl cr_i ] /= fabs( U_upl[ cr_i ] );

/*31%/ if ( fabs( U_down[ cr_i 1 ) > 1.0 )
/*31%/ U_down[ cr_i ] /= fabs( U_down[ cr_i ] );

}

return equilibrium;

}

B.1.3 The genetic algorithm

The genetic algorithm code uses a small library, which was programmed to ease the implementa-
tion of such algorithms. For a new problem instance, functions for mutation, crossover, selection
and basic population control (i.e., creation of new genes and enumeration of genes) have to be
provided. The functions for the most important of these concepts, namely, mutation, crossover
and selection are discussed in this section.

B.1.3.1 The selection mechanism

The selection code in this section implements the selection behaviour discussed in § 6.2.1.3.
In a population P where n individual chromosomes compete per tournament, a total of n x
|P| individuals will be selected from |P| during the course of the selection process. Since the
population is enumerated in a sequential order, the selection will “wrap around” a number of
times, since there are only | P| individuals. When the “wrapping around” occurs, the order of the
individuals in the population is shuffled.

template < typename Population, typename Compare >
struct tournament_select
{

typedef typename population_traits< Population >::chromosome_iterator chromosome_iterator;

tournament_select ( Compare const& _cmp, int _no_contestants )
: cmp( _cmp )
, no_contestants( _no_contestants ) {}

template < typename Time > inline chromosome_iterator
operator() ( Population& p, Time iteration )
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typedef typename population_traits<Population>::chromosome_iterator chromosome_iterator;
typedef typename iterator_traits<chromosome_iterator>::iterator_category iterator_category;

// Create circular iterators that will wrap around upon
// completion of enumeration of p

circular_iterator< chromosome_iterator > last_contestant;
circular_iterator< chromosome_iterator > ret_value;

// Set the end iterator equal to the beginning iterator
last_contestant = first_contestant;
// For the number of competitors
for ( int i = 0; i < no_contestants; i++ )
{
++last_contestant; // advance the last contestant
// When the population has been enumerated entirely, perform a
// random shuffle on it
if ( last_contestant.base() == begin_iterator( p ) )
detail::shuffle_population( p, iterator_category() );

// Determine the fittest element in the set of contestants

ret_value = std::min_element( first_contestant, last_contestant, cmp );
// Shift first_contestant to the position of last_contestant so

// that selection will proceed from this point next time around
first_contestant = last_contestant;

// Return the population iterator for the best chromosome

return ret_value.base();

circular_iterator< chromosome_iterator > first_contestant;
Compare const& cmp;
int no_contestants;

B.1.3.2 The mutation mechanism

The algorithm object st1_bit_mutate_t, operates on any C++ STL-like container, and assumes
that the contents of the container are zeros or ones. It flips the bit of every element with a
probability of mutation_chance.

struct stl_bit_mutate_t

: public default_mutator

stl_bit_mutate_t( double _mutation_chance )

: mutation_chance( _mutation_chance ) {}

template < typename Population, typename Time >
inline bool
operator () ( Population& p

, typename population_traits< Population >::chromosome_iterator child
, const Time iteration )

typedef typename population_traits<Population>::chromosome_descriptor chromosome_descriptor;
typename chromosome_traits< chromosome_descriptor >::gene_iterator c_itr;

bool has_mutated = false;

// For each bit in the child chromosome. ..
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for (c_itr = begin_iterator(genes(*child)); c_itr !'= end_iterator(genes(*child)); ++c_itr)
{
// If the selected random number is smaller than the probability value
if ( ( (double) random() / (double) RAND_MAX ) < mutation_chance )
{
// flip the corresponding bit
*c_itr = ( *c_itr > 0 ) 2 0 : 1;
// and set the mutation flag, which will be returned
has_mutated = true;

}

return has_mutated;

}

double mutation_chance;

};

B.1.3.3 The crossover mechanism

The crossover code in this section employs the circular encoding described in § 6.2.1.3. There is
one important difference — in § 6.2.1.3, the edge layout data for edges that are grouped together
into a cell are stored within the cell, but in this implementation, the cell entries corresponding
to the edges contain indices into an array that stores the actual edge layout data for the edges,
or more specifically, the layout data for the crossing-vertices corresponding to the edges.

The rationale behind this scheme is that the edge layout data for the crossing-vertices of the
intersection graph is normally stored in the array page. Thus, if the edge layout data is stored into
page, the existing data structures may be used transparently with the genetic algorithm code.
For example, the mutation code from the previous section also expects to receive a sequence,
and it is very easy to provide the additional programming infrastructure to facilitate this.

The type that implements the circular encoding is called mate_template. The function build
_templates constructs an instance of this type that corresponds to a vertex arrangement of the
input graph G. The type e_map is a mapping from the edges of G to the crossing-vertices of the
corresponding intersection graph cr_G of G.

In this scheme, mt[ i ] provides a list of indices corresponding to cell i in the circular encoding.
For some list index j, mt[ i ][ j ] is an index into the array page, corresponding to one of
the edges in cell ¢ (or more correctly, one of the crossing vertices in cell 7). The edge to which
it corresponds is irrelevant, since it only matters that all edges within the same cell index are
treated as a unit in the crossover operation.

Note that in the code, not only the index of an edge is stored in the cell, but also the distance
between its incident vertices on the circle (of the circular encoding). This was only done for
debugging purposes and has no influence on the algorithm.

The crossover is performed by the algorithm object mate_template_cross. The two crossover
points on the circle are selected first. In the first for loop, the relevant genes from the first
parent are copied into the child. This process is repeated for the genes of the second parent in
the second for loop.

The list straddling_edges is constructed from all edges that straddle the crossover points. This
list is used by the local optimizer which is the last of the loops in the function. It can easily be
seen that this is an implementation of the GreedySide algorithm.
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void
build_templates( mate_template& mt
, graph *G
, const GArray *spine_inv
, const GArray *e_map )
{
edge *e;
int *spine_inv_11
vertex **e_map_ll

(int*) spine_inv->data;
(vertex**) e_map->data;

mt.resize( 2 * graph_num_vertices( G ) );

FORALL_EDGES( G, e )
{
// Is there a crossing-vertex for this edge?
// When e_map_11[ idx( e ) == NULL, it means that the corresponding
// crossing-vertex was isolated in cr_G, and thus deleted.
if ( e_map_11[ idx( e ) ] != NULL )

{
int spine_idx = 0;
int edge_dist = 0;
// src_idx = index of source( e ) on the spine (circle)
int src_idx = spine_inv_11[ idx( graph_source( G, e ) ) 1;
// tgt_idx = index of target( e ) on the spine (circle)
int tgt_idx = spine_inv_11[ idx( graph_target( G, e ) ) 1;
// Ensure that src_idx < tgt_idx by swapping if necessary
if ( src_idx > tgt_idx )
{
std: :swap( src_idx, tgt_idx );
}
// Get the distances between the two indices around the circle
int dist_1 = mod( tgt_idx - src_idx, graph_num_vertices( G ) );
int dist_2 = mod( src_idx - tgt_idx, graph_num_vertices( G ) );
// Let spine_idx be the index in the middle of the shortest space
// between the two indices
if ( dist_1 < dist_2 )
{
spine_idx = mod( 2 * src_idx + dist_1, 2 * graph _num vertices( G ) );
edge_dist = dist_1;
}
else
{
spine_idx = mod( 2 * tgt_idx + dist_2, 2 * graph_num_vertices( G ) );
edge_dist = dist_2;
}
// Add the index of the crossing-vertex corresponding to e to
// the cell. The distance between e’s incident vertices is
// also stored in the cell, but this is only used for debugging purposes.
mt[ spine_idx ].push_back( vertex_int_pair( e_map_11[ idx( e ) ], edge_dist ) );
}
} ENDFOR;

struct mate_template_cross
{
mate_template_cross ( mate_template& _mt, graph *cr_G, bool local_optimize )
: mt( _mt )



— 248 — Chapter B. Computer Implementations

{
this->cr_G = cr_G;
this->local_optimize = local_optimize;

}

template < typename Time >

inline bool

operator () ( EdgePopulation& p
, typename EdgePopulation::iterator parenti
, typename EdgePopulation::iterator parent2
, typename EdgePopulation::iterator child
, Time iteration )

int posl = UNIFORM_INT( O, mt.size() );
int pos2 = mod( posl + mt.size() / 2, mt.size() );
std::vector< vertex* > straddling_edges;

GArray* plg = genes( *parentl );
GArray* p2g = genes( *parent2 );
GArray* cg = genes( *child );
vertex_int_vec::const_iterator itr;

for ( int i = posl; i !'= pos2; i = (i + 1) ) mt.size() )
{
for ( itr = mt[ i ].begin(); itr !'= mt[ i J.end(); ++itr )
{

((int*) (cg->data))[ idx( itr->v ) 1 = ((int*) (plg->data))[ idx( itr->v ) ];
if (i - posl + itr->i > mod( pos2 - posl, mt.size() )
Il i - posl - itr->i < 0 )

{
straddling_edges.push_back( itr->v );
}
}
}
for ( int i = pos2; i !'= posl; i = (i + 1) % mt.size() )
{
for ( itr = mt[ i ].begin(); itr !'= mt[ i J.end(); ++itr )
{
((int*) (cg->data))[ idx( itr->v ) ] = ((int*) (p2g->data))[ idx( itr->v ) ];
if (i - pos2 + itr->i > mod( posl - pos2, mt.size() )
Il i - pos2 - itr->i < 0 )
{
straddling_edges.push_back( itr->v );
}
}
}

if ( local_optimize )
{
bool stabilised = false;
/* This algorithm is adapted from the GreedySide algorithm */
while ( !stabilised )
{
stabilised = true;
int new_page;

std::vector< vertex* >::const_iterator itr;
for ( itr = straddling_edges.begin(); itr != straddling_edges.end(); ++itr )
{

int current_page = ((int#*) (cg->data))[ idx( *itr ) ]1;
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choose_best_page( &new_page, cg, cr_G, *itr );

if ( new_page != current_page )
stabilised = false;
}
}
}

return true;
}
mate_template& mt;
graph *cr_G;
bool local_optimize;

};

B.1.3.4 The genetic algorithm driver

This algorithm is a “driver” in the sense that it steps through the various generations, applying
the functions for crossovers, mutation and selection at the right positions in the code. The
algorithm is modelled on the visitor design pattern. That is, it invokes particular methods of a
“visitor” (which is an algorithm object) at well defined points in the code. In the genetic context,
these points correspond to the selection of parents, crossovers, mutation and the beginnings
and ends of the generations. Each of the components that are provided as parameters may
provide optional “callbacks,” that are executed by a visitor. These callbacks provide information
regarding the points at which they have to be invoked.

The types generated by sga_callback< T >::type, where T is a type, are the callback types.
If a callback is not defined for a type, sga_callback< T >::type simply generates a basic type
that performs no actions. The callbacks from the various components are obtained by the call
get_callback. This call returns the same basic type as described above, if no callback is defined
for the type of object to which get_callback is applied. The callbacks are finally combined into
a list, which is passed to the a visitor.

The algorithm allows the user to provide a visitor in the parameter list. This visitor is combined
with the visitor constructed from the callbacks of the other components. The final combined
visitor is called “vis” in the code.

To aid efficiency, the algorithm was designed to alternate between two populations of equal size
as it proceeds through generations. For two populations A and B, if it selects parents from A in
a generation, then the offspring are copied into B. For the next generation, parents are selected
from B, and offspring are copied into A, and so forth.

template < typename Population
, typename Select
, typename Crosser
, typename Mutator
, typename Continuator
, typename Visitor >
void
simple_en_bloc_genetic_algorithm
( Population& population
, Select select
, Crosser cross
, Mutator mutate
, Continuator continue_
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, Visitor user_vis )

// Some typedefs to make the code easier to read.
typedef typename population_traits< Population >::chromosome_iterator chromosome_iterator;
typedef typename population_traits< Population >::chromosome_descriptor chromosome;

// Types may have callback associated with them, which need to be invoked at certain
// points in the algorithm to ensure that they work properly
typedef typename sga_callback< Population >::type PopulationVisitor;

typedef typename sga_callback< Select >::type SelectVisitor;
typedef typename sga_callback< Crosser >::type CrosserVisitor;
typedef typename sga_callback< Mutator >::type MutatorVisitor;

typedef typename sga_callback< Continuator >::type ContinuatorVisitor;

// This is a list of visitors that are invoked at various stages.
// They’re all obtained as callbacks from
typedef typename list5< PopulationVisitor

, SelectVisitor

, CrosserVisitor

, MutatorVisitor

, ContinuatorVisitor >::type VisitorList;

// Var definitions

sga_variables< Population, Select, Select, Crosser, Mutator, Continuator >
variables( population, select, select, cross, mutate, continue_ );

int iteration = 0;

PopulationVisitor population_visitor( get_callback( population ) );
SelectVisitor select_visitor( get_callback( select ) )
CrosserVisitor crosser_visitor( get_callback( cross ) )
MutatorVisitor mutator_visitor( get_callback( mutate ) )
ContinuatorVisitor continuator_visitor( get_callback( continue_ ) );

VisitorList algo_visitor_list
= make_list( population_visitor, select_visitor, crosser_visitor
, mutator_visitor, continuator_visitor );

// Combine the callbacks, along with the user-supplied visitor
// into a single visitor
combine_visitors< Visitor, spga_visitor< VisitorList > >

vis( user_vis, make_spga_visitor( algo_visitor_list ) );
Population auxiliary_population;
copy_population( population, auxiliary_population );

while ( continue_( variables, iteration ) )
{
// At each new era, it might be necessary to update the
// components of the algorithm. For example, the mutation
// rate may be pushed up if the population doesn’t change
// much etc etc.
vis.new_era( variables, iteration );

// Select two chromosome from the population to mate
chromosome_iterator offspring = begin_iterator( auxiliary_population )

while ( offspring != end_iterator( auxiliary_population ) )
{
// Select two parent chromosomes
variables.parentl = select( population, iteration );
variables.parent2 = select( population, iteration );
// Notify any visitors that we have selected our parents
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vis.choose_parent( variables, iteration );
vis.choose_parent( variables, iteration );

for (int i = 0; i < 2; ++i )

variables.child = offspring;
// Cross chromosomes for new offspring
if ( cross( population, variables.parentl, variables.parent2
, variables.child, iteration ) )
{
invalidate( *variables.child );
vis.cross( variables, iteration );

}

// Mutate the offspring
if ( mutate( population, variables.child, iteration ) )
{
invalidate( *variables.child );
vis.mutate( variables, iteration );

}

vis.new_child( variables, iteration );

++offspring;

if ( offspring == end_iterator( auxiliary_population ) ) break;
// Swap the two parents around

std: :swap( variables.parentl, variables.parent2 );

}
vis.end_era( variables, iteration );

std::swap( population, auxiliary_population );
++iteration;

}

B.2 Vertex arrangement heuristics

The algorithms in this section are concerned with the placement of vertices of a graph in the
spine of a book, so as to minimize the number of crossings in the resultant graph drawing.

B.2.1 Preconditioning algorithms

These algorithms are employed by the tabu search algorithm to precondition solutions, so as to
accelerate convergence.

B.2.1.1 Nicholson’s heuristic

The algorithm provided in this section is an implementation of the first part of Nicholson’s
heuristic (§ 4.3.2.2). It constructs a vertex arrangement by placing the vertices of the graph G
onto the spine sequentially. The first vertex to be placed, is the vertex with the highest degree in
G. For each new placement, the algorithm selects an unplaced vertex with the highest number of
adjacent vertices already on the spine. This vertex is then placed into a position that minimizes
the number of edge crossings caused by its addition.
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int
choose_best_pages_for_adjacent_edges( graph *G
, graph *cr_G
, GEdgeArrayVertex *e_map
, vertex *v
, GVertexArrayInt *page )

{
int total_crossings = 0;
edges_itr e_itr = graph_out_edges( G, v );
edge *e;
int page_no;
while ( ( e = edges_itr_next( &e_itr ) ) )
{
vertex *cr_v = g_array_index( e_map, vertex*, idx( e ) );
if ( vertex_exists( cr_v ) )
total_crossings += choose_best_page( &page_no, page, cr_G, cr_v );
}
return total_crossings;
}
vertex*

remove_vertex_with_highest_spine_connectivity( graph *G, int *v_selected, GArray *v_list )
{

int max_i = 0;

int max_degree = 0;

int i;

vertex *v;

/* For all vertex list indices */
for (i =0; i < v_list->len; i++ )
{

/* Let v be the vertex at index i */
v = ((vertex**) v_list->data)[ i 1;
vertex *u;
/* Get an iterator for the vertices adjacent to v */
adjacency_itr a_itr = graph_adjacent_vertices( G, v );
int connectivity_degree = 0;

/% Compute the number of adjacent vertices of v that
are selected

*/
while ( ( u = adjacency_itr_next( &a_itr ) ) != NULL )
{
connectivity_degree += v_selected[ idx( u ) 1;
}

/* If v has a higher connectivity than the highest,
store the index of v in the list, and the connectivity
*/
if ( connectivity_degree > max_degree )
{
max_degree = connectivity_degree;
max_i = i;

}

/* Let v be the vertex with the highest spine connectivity #*/
v = ((vertex**) v_list->data)[ max_i ];
/* Remove v from the vertex list */
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}

g_array_remove_index_fast( v_list, max_i );
/* return v */
return v;

void
nicholson( graph *G, graph *cr_G

, GArray *spine, GArray *spine_inv
, GArray *e_map, GArray *page )

int no_mapped_vertices = 0;
/* Boolean array that indicates whether a vertex has already been
mapped to the spine
*/
int v_selected[ graph_num_vertices( G ) 1;
/* construct a list of vertices from G, from which vertices will be drawn
by the algorithm as it sequentially embeds vertices.
*/
GArray *v_list = get_v_list( G );
vertex *v;

/* First set all vertices up as having been placed onto the spine, so
that the procedure remove_vertex_with_highest_spine_connectivity
will find a vertex attaining the maximum degree in G
*/
FILL_ARRAY( v_selected, graph_num_vertices( G ), 1 );
v = remove_vertex_with_highest_spine_connectivity( G, v_selected, v_list );

/* Then modify v_selected so that only the first vertex, v, is selected */
FILL_ARRAY( v_selected, graph_num_vertices( G ), 0 );
v_selected[ idx( v ) ] = 1;

/* Add v to the spine */
extend_intersection_graph( G, cr_G, spine, spine_inv, e_map, v, 0 );
no_mapped_vertices += 1;

/* while vertices remain in the vertex list */
while ( v_list->len > 0 )
{
int best_cr = INT_MAX;
int best_idx = 0;
int 1i;
v = remove_vertex_with_highest_spine_connectivity( G, v_selected, v_list );

/* For each position on the spine */
for (i =1; i< no_mapped_vertices + 1; i++ )
{

int cur_cr;

/* Add v to the spine at position i */
extend_intersection_graph( G, cr_G, spine, spine_inv, e_map, Vv, i )
/* Determine placements for the edges incident to v that
minimizes the number of crossings caused
*/

cur_cr = choose_best_pages_for_adjacent_edges( G, cr_G, e_map, v, page )

/* If the number of crossings for v at position i improves
upon the best known minimum, record the position i and

*/

if ( cur_cr < best_cr )

{
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best_cr = cur_cr;
best_idx = i;

}

/* remove v from the spine at position i */
prune_intersection_graph( G, cr_G, spine, spine_inv, e_map, v );

}

/* Insert v at the spine position that minimizes the number of
crossings caused by the insertion

*/
extend_intersection_graph( G, cr_G, spine, spine_inv, e_map, v, best_idx );
/* Place the edges incident to v such that best_cr crossings are caused
choose_best_pages_for_adjacent_edges( G, cr_G, e_map, v, page );

/* Note that the number of vertices was increased */
no_mapped_vertices += 1;

/* And that v has been mapped */

v_selected[ idx( v ) ] = 1;

B.2.1.2 Pésa’s heuristic probabilistic algorithm for finding Hamiltonian cycles

Pé¢sa [P76] proved that a random graph G, with |[E(G)| = O(log(|V(G)|)|V(G)|) contains a
Hamiltonian cycle with a high probability. A pivotal idea used by his proof is the concept of a
rotational transformation. It is this idea that allows the construction of a heuristic algorithm for
finding Hamiltonian cycles.

/// o m
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Figure B.1: An illustration of a rotational transformation with the vertex v;_; as a pivot.
In a graph G, a rotational transformation is simply a method by which a path P = vy, vs, ..., v;_1,
Vi, ...,Vg_1, V) in G may be transformed into a path P’ = vy, v9,...,v;_1,Vk, Vk_1, . . ., V;, if there

is an edge {v;_1,vx} in G. In other words, P’ is obtained by deleting the edge {v;_1,v;} from
P, and by adding the edge {v;_1,vx} to P. This transformation causes the order in which the
vertices vj,...,VL_1,v; appear in P to be reversed as they appear in P’, hence the name of
transformation. For the purposes of this section, the vertex v;_1, which is the last vertex in P
to occur before the set of rotated vertices, is known as a pivot. The transformation is illustrated
in Figure B.1.

The idea is for the algorithm to construct a path, one vertex at a time. Ultimately, this path
should contain all vertices of the graph, and the end-vertices of this path should be joined by an
edge in the input graph, rendering a Hamiltonian cycle.

Let P; denote the vertex at position ¢ in the path P, where Py and P,_1 are end-vertices, and
where Py is the initial vertex with which the algorithm commenced, and which is never moved
(since there is no potential pivot vertex placed before Py). Given a path of length n, n < |V(G)],
for an input graph G, a random neighbour v of the last vertex in the path, P,_1, is selected. If
v € P, then the path is extended by placing v at the index n in P. If, however, v € P, P is
searched until an index 4 is found such that P; is a pivot vertex. A rotational transformation is
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applied, which places the vertex P; 11 at position n — 1, which is the end-vertex of P. A random
neighbour v’ of P,,_; is again selected and if v’ € P, the process is repeated. Every vertex in
P may only be placed at the end index, n — 1, once, and if all vertices of P have been placed
at this position, and if P does not contain all the vertices of G, the algorithm terminates, and
reports that no Hamiltonian cycle could be found. Otherwise, if all vertices have been placed
into P, the algorithm attempts to join the end-vertices of P by an edge. If no such edge exists,
the algorithm searches the list P for a vertex P; that is joined to Py and for which the vertex
P;—1 can serve as a pivot (allowing P; to be placed at the end of P). If this is not possible, the
algorithm reports failure.

The Python implementation of the algorithm is fully annotated with source code comments,
as opposed to the C implementation which contains virtually no comments. It is therefore
suggested that the Python algorithm be studied first if the reader wishes to understand the C
implementation.

The array P represents the path that is constructed by the algorithm. The array P_inv maps
vertices to their corresponding indices in P. For a vertex v, the array P_processed records the
highest index at which a v has been placed in P, so that it may be determined whether v may
be shifted to the end of P via a rotational transformation.

Both implementations contain optimizations that may be enabled by setting the appropriate
flags. For the first optimization, when a neighbour of the last vertex in P must be selected, a
vertex is selected from the neighbours that are not in P. This avoids unnecessary rotational
transformations by extending a path as far as possible without performing any such transforma-
tions.

For the second optimization, neighbours that are not in P and that have vertex degrees equal
to two are selected in preference to any other neighbours. The justification for this optimization
is that such vertices may be viewed as subdivision vertices and the algorithm should therefore
attempt to traverse an entire subdivided edge before performing a rotational transformation.

Python implementation

def hamiltonian_posa(G, follow_unmapped_vertices=False, follow_unmapped_2_deg_vertices=False):
def random_element( seq ):

"""return a randomly selected element from the sequence seq

"y
if len( seq ) > O:

return seq[ random.randint( O, len( seq ) - 1) ]
else:

return None

start_v = random_element( list( G.vertices() ) )

# P is an array of vertices of G, representing the path that the algorithm
# constructs as it progresses.
P = [ start_v ]

# P_inv maps vertices in G to their indices in P
P_inv = dict( zip( G.vertices(), [ -1 for v in G.vertices() 1 ) )
P_inv[ start_v ] = 0

# P_processed[ v ] for a vertex is smaller than len( P ) if v has not
# yet been placed at the end of the path via a rotational transformation
# for a given path length, and P_processed[ v ] == len( P ) if it has
# already been placed there. Thus, if P_processed[ v ] == len( P ), it
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# is known that v must not again be placed at the end of P.
P_processed = dict( zip( G.vertices(), [ O for v in G.vertices() ] ) )

def rotate( P, P_inv, new_end ):
"""Perform a rotational transformation with new_end as the pivot

nnn

start_pos = P_inv[ new_end ] + 1

for i in xrange( 0, ( len( P ) - start_pos ) / 2 ):
P[ start_pos+i ], P[ -1-i ] = P[ -1-i ], P[ start_pos+i ]
P_inv[ P[start_pos+il] 1, P_inv[ P[-1-i] ] = P_inv[ P[-1-i] 1, P_inv[ P[start_pos+i] ]

def make_cycle( G, P, P_inv ):
"""Given a path P, try to find a rotational transformation that will
yield a path with end-vertices that may joined by an edge
nnn
# if there is no edge between the first and last vertices in P...
if G.spanning_edge( P[ 0 1, P[ -1 1 ) == None:
# for each adjacent vertex v to the last vertex in the path P
for v in G.adjacent_vertices( P[ -1 ] ):
# if the vertex following v in P (i.e. P[ P_inv[ v ] + 1 1)
# is joined by an edge to the first vertex in P then...
if G.spanning_edge( P[L 0 ], P[ P_inv[ v ] + 1 ] ) != None:
# perform a rotation which places this vertex at the end
# of the path, so that the sequence of the vertices corresponds
# to the sequence of vertices on the cycle.
rotate( P, P_inv, v )
return True
else:
return True

return False

while True:
next_vertex = None

# if vertices which have not been mapped to the path should be
# visited in preference to vertices already in the path...
if follow_unmapped_vertices:
# compute the list of unmapped vertices adjacent to end-vertex of P
# an unmapped vertex v has the property that P_inv[ v ] = -1
open_candidates = [ v for v in G.adjacent_vertices( P[ -1 ] ) if P_inv[ v ] == -1 ]

# if unmapped vertices with degree two should be visited in preference
# to other unmapped vertices...
if follow_unmapped_2_deg_vertices:
# compute the list of such vertices
open_2deg_candidates = [ v for v in open_candidates if G.degree( v ) == 2 ]
# and select a random element from the set
next_vertex = random_element ( open_2deg_candidates )

# if either unmapped vertices with degree two were not given preference,
# or if they were given preference, but there were no such vertices adjacent
# to the end-vertex, then...
if next_vertex == None:
next_vertex = random_element ( open_candidates )

# if unmapped vertices were given selection preference, but the end-vertex had no
# such vertex, or if no such preference was given, then...
if next_vertex == None:
# compute a list of vertices which have not yet been placed at the end of the path
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# via rotational transformations. Such a vertex v has the property

# that P_processed[ v ] < len( P )

candidates = [ v for v in G.adjacent_vertices( P[ -1 ] ) if P_processed[ v ] < len( P ) ]
next_vertex = random_element ( candidates )

# if no vertex could be found to extend the path any further
if next_vertex == None:

# try to create a cycle with the path we have

has_cycle = make_cycle( G, P, P_inv )

return P, len( P ), has_cycle

# if the selected vertex has not yet been mapped...
if P_inv[ next_vertex ] < O:
# it will be placed at the end of the path, since it must
# have been found to have been adjacent to the vertex at
# the end of the path.
P_inv[ next_vertex ] = len( P )
P.append( next_vertex )
# else if the selected vertex has been mapped but not yet
# placed at the end of the path via a rotational transformation...
elif P_processed[ next_vertex ] < len( P ):
# then place it there via such a rotation
rotate( P, P_inv, next_vertex )

# The selected vertex is marked as being at the end of the

# current path, so that it will not be placed there again via
# a rotational transformation.

P_processed[ next_vertex ] = len( P )

# if all vertices have been mapped to a path
if len( P ) == G.num_vertices():
# try to create a cycle with the path we have
has_cycle = make_cycle( G, P, P_inv )
return P, len( P ), has_cycle

C implementation

The C implementation contains one additional feature not present in the Python implementation.
In the Python implementation, the path P is constructed by always extending it only in one
direction. That is, no vertex is ever placed before P[0]. However, the algorithm may reach a point
where P can only be extended from P[0]. The C implementation takes this into consideration,
and reverses the array P when this occurs (so that path extension happens from the opposite
side), by calling the function reverse_path on P and by re-attempting path extension.

PRIVATE INLINE void
rotate( vertex **path, int *path_inv, int vertices_mapped, vertex *new_end )

{
int start_pos = path_inv[ idx( new_end ) ] + 1;
int end_pos = vertices_mapped - 1;

for ( int i = 0; i < ( end_pos - start_pos ) / 2; i++ )
{
SWAP( vertex*, path[ start_pos + i 1, path[ end_pos - i ] );
SWAP( int, path_inv[ idx(path[start_pos + i]) ], path_inv[ idx(path[end_pos - i]) ] );
}

#define IDX2( width, row, col ) ( (width) * (row) + (col) )
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#define NEXT_IN_PATH( path, path_inv, v ) path[ path_inv[ idx( v ) ] + 1]

PRIVATE void
reverse_path( vertex #**path, int *path_inv, int vertices_mapped )

{
for ( int i = 0; i < vertices_mapped / 2; it++ )
{
SWAP( vertex*, path[ i ], path[ vertices_mapped - 1 - i ] );
SWAP( vertex*, path_inv[idx(path[i])], path_inv[idx(path[vertices_mapped - 1 - il)] );
}
}
bool

make_cycle( graph *G, vertex **path, int *path_inv, int vertices_mapped )

{

vertex *last_in_path = path[ vertices_mapped - 1 ];

if ( graph_spanning_edge( G, path[ 0 1, last_in_path ) == NULL )
{
for (int i = 0; i < 2; i++ )
{
vertex *v;
adjacency_itr a_itr = graph_adjacent_vertices( G, last_in_path );
while ( ( v = adjacency_itr_next( &a_itr ) ) )
{
if ( graph_spanning_edge( G, path[ 0 ], NEXT_IN_PATH( path, path_inv, v ) ) )
{
rotate( path, path_inv, vertices_mapped, v );
return true;
}
}

reverse_path( path, path_inv, vertices_mapped );

}

return false;

}

else return true;

}

bool
hamiltonian_posa( int #vertices_mapped, graph *G, GArray *g_path, int flags )
{

int path_inv[ graph_num_vertices( G ) ];

int processed[ graph_num_vertices( G ) 1;

vertex **path = (vertex**) (g_path->data);

memset ( processed, ’\0’, sizeof( int ) * graph_num_vertices( G ) );
for ( int i = 0; i < graph_num_vertices( G ); it++ ) { path_inv[ i ] = -1; }

path[ 0 ] = graph_random_vertex( G );
path_inv[ idx( path[ 01 ) 1 = 0;
*vertices_mapped = 1;

while ( 1)
{
vertex *next_vertex = NULL;
vertex *last_in_path = path[ *vertices_mapped - 1 ];
vertex *v;
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for (int i = 0; i < 2; i++ )

{
if ( flags & FOLLOW_UNMAPPED_VERTICES )
{
vertex *open_candidates[ graph_num_vertices( G ) ];
int open_candidates_idx = 0;
adjacency_itr a_itr = graph_adjacent_vertices( G, last_in_path );
while ( ( v = adjacency_itr_next( &a_itr ) ) )
{
if ( path_inv[ idx( v ) 1 < 0)
open_candidates[ open_candidates_idx++ ] = v;
}
if ( flags & FOLLOW_UNMAPPED_2_DEG_VERTICES )
{
vertex *open_2deg_candidates[ graph_num_vertices( G ) ];
int open_2deg_candidates_idx = 0;
for ( int i = 0; i < open_candidates_idx; i++ )
{
if ( graph_degree( G, open_candidates[ i ] ) == 2 )
open_2deg_candidates [open_2deg_candidates_idx++] = open_candidates[i];
}
if ( open_2deg_candidates_idx > 0 )
next_vertex = open_2deg_candidates [UNIFORM_INT(0,open_2deg_candidates_idx)];
}
if ( next_vertex == NULL && open_candidates_idx > 0 )
next_vertex = open_candidates [UNIFORM_INT(O, open_candidates_idx)];
}
if ( ( flags & SWAP_PATH ) && next_vertex == NULL )
reverse_path( path, path_inv, *vertices_mapped );
else
break;
}

for (int i = 0; 1 < 2; i++ )
{
if ( next_vertex == NULL )
{
vertex *candidates[ graph_num_vertices( G ) 1;
int candidates_idx = 0;
adjacency_itr a_itr = graph_adjacent_vertices( G, last_in_path )
while ( ( v = adjacency_itr_next( &a_itr ) ) )
{
if ( processed[ idx( v ) ] < *vertices_mapped )
candidates[ candidates_idx++ ] = v;

if ( candidates_idx > 0 )
next_vertex = candidates[ UNIFORM_INT( O, candidates_idx ) ];

if ( ( flags & SWAP_PATH ) && next_vertex == NULL )
reverse_path( path, path_inv, *vertices_mapped )
else
break;
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if ( next_vertex == NULL )
return make_cycle( G, path, path_inv, *vertices_mapped );

if ( path_inv[ idx( next_vertex ) ] < 0 )
{
path_inv[ idx( next_vertex ) ] = *vertices_mapped;
path[ *vertices_mapped ] = next_vertex;
*vertices_mapped += 1;

}

else if ( processed[ idx( next_vertex ) ] < *vertices_mapped )
rotate( path, path_inv, *vertices_mapped, next_vertex )

processed[ idx( next_vertex ) ] = *vertices_mapped;

if ( *vertices_mapped == graph_num_vertices( G ) )
return make_cycle( G, path, path_inv, *vertices_mapped );

B.2.2 Tabu algorithm

The tabu search algorithm in this section implements Algorithm 6.8. The implementation is
quite faithful to the pseudo-code of Algorithm 6.8, and clarification of the code should therefore

be sought in § 6.2.2, where Algorithm 6.8 is described in detail.

The tabu memory is simply a vector indexed by spine position. When a vertex is moved to a
particular position on the spine, that position becomes poisoned for a number of steps. The tabu
active list (poison_q) simply maintains a list of indices that are poisoned.

PRIVATE void
tabu_memory_insert( tabu_memory *self, int from_pos, int to_pos )

{

}

/* It is inconvenient to work directly with GArray structures,

so obtain handles to the arrays */

int #poison = (int*) self->poison->data;
int *poison_freq = (int*) self->poison_freq->data;

/* If the position to be poisoned is not currently poisoned... */
if ( poison[ to_pos 1 == 0 )
/* insert it into the tabu list of poisoned items */
g_array_append_val( self->poison_q, to_pos )

/* Update the poison value for the position to be poisoned
poison[ to_pos ] += self->poison_length
+ ((double) poison_freql[to_pos] / self->max_poison_freq) #* self->freq_penalizer;

/* update the frequency with which the position to_pos has been poisoned */
poison_freq[ to_pos ] += 1;

/* update the maximum poisoning frequency */
self->max_poison_freq = MAX( poison_freq[ to_pos ], self->max_poison_freq );

PRIVATE INLINE int
tabu_memory_tabu_value( tabu_memory #*self, int from_pos, int to_pos )

{

/* The tabu value of move is simply the poison value of position to

which it will move the vertex */

Chapter B. Computer Implementations
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return g_array_index( self->poison, int, to_pos )

}

/**
* The result structure holds the best found configuration

*/

PUBLIC int
tabu( graph *G
, graph *cr_G
, GArray *spine
, GArray *spine_inv
» GArray *e_map
» GArray *page
, crossing_no_alg *cross_alg
, int iterations
, int poison_length
, int freq_penalizer
, int _max_steps_since_improvement )

{
/*1,2%/
int best_crossing_no = crossing_number( page, cr_G, 0 );
/*3%/
tabu_memory *memory = tabu_memory_new( G, spine, poison_length, freq_penalizer );
result *best_result = result_new( G, cr_G, spine, spine_inv, e_map, page )
int current_iteration;
prio_q *elite_solutions = prio_q_new();
int max_steps_since_improvement = _max_steps_since_improvement;
int steps_since_improvement = 0;
graph_maintain_vertex_array( cr_G, "page", page->data, sizeof( int ) );
/%4,5%/
for ( current_iteration = 0; current_iteration < iterations; current_iterationt++ )
{
int i, j;
int candidate_from = -1;
int candidate_to = -1;
bool revisit = false;
int candidate_tabu_value = INT_MAX;
int candidate_crossing_no = INT_MAX;
/%6%/
steps_since_improvement += 1;
/¥T%/
for (i =1; i < graph_num_vertices( G ); i++ )
{
/%8x/ for ( j = 1; j < graph_num_vertices( G ); j++ )
{
/%9%/ if (i == j ) continue;
/*10%/ move_vertex_on_spine( G, cr_G, spine, spine_inv, e_map, i, j );

/* Using the input page layout algorithm, cross_alg, compute a layout and
return the number of crossings in the layout */
/*11,12%/ int tst_crossing_no = crossing_no_alg_compute( cross_alg, cr_G, page );
/* Compute the tabu value of the move */
/*13%/ int tst_tabu_value = tabu_memory_tabu_value( memory, i, j );
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/*14x/ if ( tst_crossing_no < best_crossing_no )

{
/*15%/ result_store( best_result, cr_G, spine, spine_inv, e_map, page );
/*16%/ best_crossing_no = tst_crossing_no;
/*16%/ candidate_tabu_value = 0;
/*16%/ steps_since_improvement = 0;
/*16%/ revisit = false;

}
/*18%/ if ( ( tst_tabu_value == O && tst_crossing no < candidate_crossing no )

Il ( tst_tabu_value > 0 &&
( tst_tabu_value == candidate_tabu_value

&& tst_crossing no < candidate_crossing_no
|| tst_tabu_value < candidate_tabu_value ) ) )

{
/*19%/ candidate_tabu_value = tst_tabu_value;
/%19%/ candidate_from = i;
/*19%/ candidate_to = j;
/*19%/ candidate_crossing_no = tst_crossing_no;
}
/%21x/ move_vertex_on_spine( G, cr_G, spine, spine_inv, e_map, j, i );
}
}
/*25%/
if ( steps_since_improvement == 1 && revisit == false )
{
/*26%/ prio_q_insert( elite_solutions, (void*) result_new_copy( best_result ), 0 );
}
/*28%/

tabu_memory_decrease_tenure( memory );

/%29%/
if ( steps_since_improvement >= max_steps_since_improvement
&& elite_solutions->elements_in_heap > 0 )
{
int old_prio;
int elite_crossing_no;
int found_good_elite;
result *new_elite;

/*30%/ do
{
old_prio = prio_q_min_prio( elite_solutions );
/*31%/ new_elite = (result#*) prio_q_extract_min( elite_solutions );
/*31%/ elite_crossing_no
= crossing_no_alg_compute( cross_alg, new_elite->cr_G, new_elite->page );
found_good_elite = true;
if ( elite_crossing_no > (int) (1.05 * (float)best_crossing_no)
&& elite_solutions->elements_in_heap > 2 )
{
/*33%/ result_free( new_elite );
found_good_elite = false;
}
}

/*35%/ while ( ! found_good_elite );

result_extract( new_elite, cr_G, spine, spine_inv, e_map, page );
/*36%/ prio_q_insert( elite_solutions, (void*) new_elite, old_prio + 1 );
/*3T*/ revisit = true;
/*37%/ steps_since_improvement = 0;
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}
else
{
/*39%/ tabu_memory_insert( memory, candidate_from, candidate_to );
/*40%/ move_vertex_on_spine(G, cr_G, spine, spine_inv, e_map, candidate_from, candidate_to);
}
}
result *elite_result;
while ( ( elite_result = (result#*) prio_q_extract_min( elite_solutions ) ) )
{
result_free( elite_result );
}

prio_q_free( elite_solutions );

graph_forget_vertex_array( cr_G, "page" );
result_extract( best_result, cr_G, spine, spine_inv, e_map, page );
result_free( best_result );
tabu_memory_free( memory ) ;
/*43%/
return best_crossing_no;

}

B.3 The lower bound algorithm

Because the lower bound algorithm is really only effective for large graphs, the crossing number
of the graph G that must be embedded into the graph H might be much larger than the values
that can be stored in normal machine integers. For this reason, a variable precision number
library, called GMP [GMP]| was used in the calculation of the lower bound. The integer type in
the GMP library was used, and all arithmetic functions operating on numbers of this type start
with the text “mpz_."

B.3.1 Compute weights

The algorithm in this section is an implementation of Algorithm 6.1. It matches Algorithm 6.1
closely, and it is recommended that the reader refer to the description of Algorithm 6.1 in § 6.1
to understand this implementation.

PRIVATE INLINE void
compute_weights( graph *H
, double *weight
, int num_edges_G

, int max_edge_congestion
, int *vertex_congestion
, int *edge_congestion
, bool crossing_pruning )
{
edges_itr e_itr = graph_edges( H );
edge *e;
/*1%/
while ( ( e = edges_itr_next( &e_itr ) ) != NULL )

{
/*2%/ weight[ idx( e ) ] = vertex_congestion[ idx( graph_target( H, e ) ) 1;
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/*3*/ if ( edge_congestion[ idx( e ) ] == max_edge_congestion )
/*4x/  weight[ idx( e ) 1]

+= num_edges_G * num_edges_G * graph_num_vertices( H );
/*5%/ else
/*%6*/  weight[ idx( e ) ]

+= edge_congestion[ idx( e ) ]

/ ( max_edge_congestion * graph_num_vertices( H ) );

/*8%/ if ( vertex_congestion[ idx( graph_target( H, e ) ) ]
== 0 && edge_congestion[ idx( e ) ] == 0 )
{
/*9%/ weight[ idx( e ) ] = 0.0001;
}
}

/*12%/ weight is not returned, because it was passed in as a pointer

}

B.3.2 Lowerbound

This section provides an implementation of the lower bound algorithm, Algorithm 6.2. The
implementation is close enough in form to the pseudo-code of Algorithm 6.2, so that the best
way to understand it would be to refer to pseudo-code and description of the algorithm in § 6.1.

In this implementation, a list of edges of G, edge_array, is constructed. The edges of G are
selected from this list to be embedded into H. This list is permuted in a random fashion so that
two consecutive embeddings of G into H will not yield the same edge mappings.

PRIVATE INLINE int
compute_graph_to_graph_mapping( mpz_ptr C
, graph * G
, graph * H
, ptr_non_null_vertex * psi
, ptr_owned_GList * vertex_mapped_edges
, int * vertex_congestion
, int * edge_congestion
, bool crossing_pruning
, int do_min_embed )
{
int max_edge_congestion = 0;
/*1%/
mpz_set_ui( C, 0 );

int no_V_H = graph_num_vertices( H );
int no_E_H graph_num_edges( H );
int no_E_G = graph_num_edges( G );

double  *weight;

edge* *idx_to_edge;
edgex* *edge_array;
int *path_len;

fast_set *tau = fast_set_new( no_E_G );
edge* pred[ no_V_H ];

double dist[ no_V_H ];

GList* edge_at_vertex[ no_V_H ];

weight = NEW( double, no_E_H );
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edge_array = NEW( edge*, no_E_G );
idx_to_edge = NEW( edge*, no_E_G );

FILL_ARRAY( edge_at_vertex, no_V_H, NULL );
FILL_ARRAY( weight, no_E_H, 1.0 );

/* Construct two arrays that map edge indices of G to the edges of G.
The mapping is irrelevant for the first array, edge_array, since
this array is randomly permuted. However, the mapping of
idx_to_edge is significant, as may be seen later in the algorithm

*/

edge *e;

edges_itr e_itr = graph_edges( G );

while ( ( e = edges_itr_next( &e_itr ) ) )

{
edge_array[ idx( e ) ] = e;
idx_to_edgel idx( e ) ] = e;
}

/* Permute edge_array randomly */
ptr_array_random_shuffle( (ptr_void*) edge_array
, (ptr_void#) ( edge_array + graph_num_edges( G ) ) );

/*2%/
for ( int i = 0; i < no_E_G; i++ )
{
edge  *e = EDGE( edge_array[ i 1 );

vertex *psi_source = VERTEX( psi[ idx( graph_source( G, e ) ) ] );
vertex *psi_target = VERTEX( psi[ idx( graph_target( G, e ) ) 1)
vertex *v;

>

/*3%/ compute_weights( H, weight, no_E_G, max_edge_congestion
, vertex_congestion, edge_congestion
, crossing_pruning );

/*4%/ dijkstra_11( H, psi_source, weight, pred, dist );

v = psi_target;

/* set ’on_same_path’ for all edges of G that map through v \in V(H),
* which excludes any edges of G which start their path at v itself. */
/*6*/ for ( GList *list_itr = g_list_first( edge_at_vertex[ idx( v ) 1 );
list_itr != NULL; list_itr = g_list_next( list_itr ) )

{
edge * £ = EDGE( list_itr->data );
fast_set_insert( tau, idx( f ) );
/* A crossing between e and f is possible if f doesn’t start at the vertex v */
/*T%/ if ( psil[ idx( graph_source( G, £ ) ) ] !'= psi_target
&& psil idx( graph_target( G, £ ) ) ] != psi_target )
/%*8%/ mpz_add_ui( C, C, 1 );
}

/*11%/

edge_at_vertex[idx(psi_target)] = g_list_prepend( edge_at_vertex[ idx(psi_target) ], e );
/%12x%/

vertex_congestion[ idx( psi_target ) ] += 1;

/%13%/
while ( v != psi_source )
{

/* Climb the parent tree to get the edge pointing to v */
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edge *f = EDGE( pred[ idx( v ) ] );

/* Update the vertex and edge congestion arrays */
/*14%/ edge_congestion[ idx( £ ) ] += 1;
/*165%/ edge_congestion[ idx(graph_reverse( H, f )) ] = edge_congestion[ idx( f ) 1;
/*16%/ v = VERTEX( graph_source( H, f ) );
/*17%/ vertex_congestion[ idx( v ) ] += 1;
max_edge_congestion = MAX( edge_congestion[ idx(f) ], max_edge_congestion );

/*18%/ for ( GList *list_itr = g_list_first( edge_at_vertex[ idx( v ) ] );
list_itr != NULL; list_itr = g_list_next( list_itr ) )

{
edge *f = EDGE( list_itr->data );
/*19%/ if ( !fast_set_in( tau, idx( £ ) )
&& ( v != psi_source
[l ¢ psi[ idx( graph_source( G, £ ) ) ] != psi_source
&& psil idx( graph_target( G, f ) ) 1 != psi_source ) ) )
{
/%20%/ mpz_add_ui( C, C, 1 );
}
}

/* The following code differs slightly from Algorithm 6.2
Firstly, the code for line 30 entails that tau is filled
with entries from edge_at_vertex. This is never necessary

when v == psi_source, since this loop would terminate,
and the contents of tau constructed anew for the next
edge considered. Thus, tau is only filled when v != psi_source. */
/%*23%/ if ( v != psi_source )
{
/*30%/ fast_set_clear( tau );
/*30%/ for ( GList #list_itr = g_list_first( edge_at_vertex[ idx( v ) 1 );
list_itr != NULL; list_itr = g_list_next( list_itr ) )
{
/*30%/ fast_set_insert( tau, idx( EDGE( list_itr->data ) ) );
}
}
/%*23%/ else
{
/%24x/ for ( int i = 0; i < tau->size; i++ )
{
edge *f = idx_to_edge[ g_array_index( tau->items, int, i ) ]
/*25%/ if (psil idx( graph_source( G, f ) ) ] == v
|| psil idx( graph_target( G, £ ) ) ] == v )
/*26%/ mpz_sub_ui( C, C, 1 );
}

fast_set_clear( tau );

}

/* Add e to the list of edges mapped through v */
/*31%/ edge_at_vertex[ idx(v) ] = g_list_prepend( edge_at_vertex[ idx(v) ], EDGE(e) );
}

fast_set_free( tau );
FREE( weight );

FREE( edge_array ) ;
FREE( idx_to_edge );
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return 0;

}

B.3.3 LowerTabu

The algorithm in this section is an implementation of a tabu search algorithm for finding vertex
mappings in graph-to-graph embeddings (§ 6.1). Its conceptual structure is similar to that of
the tabu search algorithm implementation (§ B.2.2) and it is recommended that the reader first
understand how the upper bound tabu algorithm works, before attempting to understand the
lower bound tabu algorithm.

In order to understand the functioning of the algorithm, it is important to understand its move
types. Suppose a graph G is graph-to-graph embedded into a graph H. If |E(G)| = |E(H)], it is
possible to define a move in which the mappings of a pair of vertices in G to vertices in H, are
swapped. Let such a move be known as a “swap” move. If |E(G)| < |E(H)|, there are vertices in
‘H which are not the images of vertices in G, and it is possible to define an additional move in
which a mapping of a vertex in G is changed so as to map to a such a vertex in H. Such a move
is referred to as a “shift” move.

In the implementation, when a swap move occurs, the swapped vertices should maintain their
positions for a number of steps (to avoid erratic swapping behaviour by the algorithm, and to
encourage exploration of solutions containing the pair of vertices in a given order). This is
achieved by letting the pair of vertices in H, that are swapped by the move, define an attribute.
The attribute memory for this attribute is therefore a two-dimensional structure that is indexed
by a pair of vertices from H.

A simpler attribute scheme is used for shift moves — when a mapping of a vertex w in G is
shifted to a previously unmapped vertex v in H, the mapping should remain fixed for a number
of steps, unless it can be shifted to a better position. Other shift moves cannot change the fact
that « in G maps to v in H, since they can only reassign mappings of vertices from G to vertices
of H that are not images of vertices in G. However, swap moves can cause the mapping to be
reassigned. To guard against this, the vertex in H that becomes an image under a shift move
defines an attribute. This attribute is easily implemented as a vector.

At each iteration, the tabu algorithm enumerates all possible swap moves, and if possible, shift
moves, of its current vertex mapping. Each such move is performed, and for each move, the
function evaluate_tabu is called, which computes a lower bound of the crossing number of ‘H
using the given vertex mapping. This function also records the kind of move that led to the best
solution, so that it can be determined after the neighbourhood perusal how the vertex mapping
should be updated.

void
evaluate_tabu( tabu_vars *vars, int idx1l, int idx2, int tst_tabu_value, int enum_mode )
{

bool improving = true;

while ( improving )
{
improving = false;
lower_bound( vars->tst_crossing_no, vars->G, vars->H, vars->psi
, vars->lower_G, vars->lower_H, vars->crossing_pruning, vars->do_min_embed ) ;

if ( mpz_cmp( vars->tst_crossing_no, vars->lower_H ) > 0 )
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improving = true;
result_store( vars->best_result, vars->psi );

mpz_set ( vars->lower_H, vars->tst_crossing no );

vars->candidate_tabu_value = 0;

}
}
if ((tst_tabu_value == 0 && mpz_cmp(vars->tst_crossing_no, vars->candidate_crossing_no) > 0)
|l ( tst_tabu_value > 0 && tst_tabu_value <= vars->candidate_tabu_value ) )
{

vars->candidate_tabu_value = tst_tabu_value;

if ( enum_mode == DO_MOVE )

{
vars->from_vertex_idx = idx1;
vars->to_vertex_idx = idx2;
vars->improving_enum_mode = DO_MOVE;
}
else /* enum_mode == DO_SWAP */
{
vars->vertex_a_idx = idx1;
vars->vertex_b_idx = idx2;
vars->improving_enum_mode = DO_SWAP;
}
if (tst_tabu_value == 0 && mpz_cmp(vars—>tst_crossing_no, vars—>candidate_crossing_no) > 0)
mpz_set ( vars->candidate_crossing no, vars->tst_crossing no );
}
}
void

lower_tabu( mpz_ptr bound

, graph *G

, graph *H

, GArray *psi

, mpz_ptr lower_G

, mpz_ptr lower_H

, int iterations

, int min_avoid_pos
, int max_avoid_pos
, int min_xchge

, int max_xchge

» bool do_swap

, bool crossing_pruning
, int do_min_embed )

tabu_memory *memory = tabu_memory_new(H, min_avoid_pos, max_avoid_pos, min_xchge, max_xchge);

tabu_vars vars;

int

current_iteration;

GPtrArray *H_open_list;

vertices_itr v_itr;
vertex *v;

/* The following code maps V(G) to the first

|V(G) | vertices in V(H)



B.3. The lower bound algorithm

- 269 —

for each mapped vertex v H_open->datal idx( v ) ] == true. Then a
list, H_open_list, is constructed of all vertices in H for which
H_open->datal idx( v ) ] == false. H_open_list is used to find
vertices for which shift moves may be performed.

*/

{
int i;

int no_H_open_vertices;

/* The set of vertices in H which are not images of vertices in G */
GByteArray *H_open = g_byte_array_sized_new( graph_num_vertices( H ) );
g_byte_array_set_size( H_open, graph _num_vertices( H ) );

/* Initially no vertex in H is an image of a vertex in G */
for (i = 0; i < graph_num_vertices( H ); i++ )
{
H_open->datal i ] = false;
}

/* Note which vertices in H are images of vertices in G */
no_H_open_vertices = graph_num_vertices( H );
for (i = 0; i < graph_num_vertices( G ); it++ )
{
H_open->datal idx( g_array_index( psi, vertex*, i ) ) ] = true;
no_H_open_vertices -= 1;

}

/* Create the list for vertices which are not images */
H_open_list = g_ptr_array_sized_new( no_H_open_vertices )

/* Populate the list with vertices in H for which
H_open->datal idx( v ) ] == false
*/
v_itr =
while (
{

graph_vertices( H );
( v = vertices_itr_next( &v_itr ) ) != NULL )

if ( H_open->datal idx( v ) ] == false )
{
g_ptr_array_add( H_open_list, v );
}

g_byte_array_free( H_open, 1 );
}

/* Make H bidirected as required by Algorithm 6.2
graph_make_bidirected( H );

vars.G
vars.H

G;
H;
vars.psi = psi;

mpz_init_set( vars.lower_G, lower_G );
mpz_init_set( vars.lower_H, lower_H );
mpz_init( vars.tst_crossing_no );
mpz_init( vars.candidate_crossing_no );
vars.best_result = result_new( psi );
vars.crossing_pruning = crossing_pruning;
vars.do_min_embed = do_min_embed;

lower_bound(vars.tst_crossing_no, G, H, psi, lower_G, lower_H
, crossing_pruning, do_min_embed );
if ( mpz_cmp( vars.tst_crossing_no, vars.lower_H ) > 0 )
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mpz_set( vars.lower_H, vars.tst_crossing no );

for ( current_iteration = 0; current_iteration < iterations; current_iteration++ )

{

int tst_tabu_value;

vars.candidate_tabu_value = INT_MAX;
/* Set the candidate crossing number to a very low value */
mpz_set_str( vars.candidate_crossing_no, "-99999999999999999999999999999999999999", 10 );

vars.improving_enum_mode = -1;

/* For each vertex v in G */
v_itr = graph_vertices( G );
while ( ( v = vertices_itr_next( &v_itr ) ) != NULL )
{
int i;
/* Determine whether H has any vertices that are not images
of vertices in G, and enumerate this list
*/
for (i =0; i < H_open_list->len; i += 1)
{
/* Shift the mapping of v to the vertex at index i in H_open */
SWAP_PTR( g_array_index( psi, vertex*, idx( v ) ), H_open_list->pdatal i ] );

/* Compute the tabu value for this shift */
tst_tabu_value
= tabu_memory_tabu_value( memory, g_array_index( psi, vertex*, idx( v ) )
, (vertexx*) H_open_list->pdatal i ] );
/* Evaluate the quality of the vertex mapping, and
record its details if it improves upon the best known
lower bound
*/
evaluate_tabu( &vars, idx( v ), i, tst_tabu_value, DO_MOVE );

/* Reset the vertex mapping to its prior state */
SWAP_PTR( g_array_index( psi, vertex*, idx( v ) ), H_open_list->pdatal i ] );

if ( do_swap )
{

int i, j;

/* For all pairs of vertex indices in G */
for ( i = 0; i < graph_num_vertices( G ) - 1; i += 1)

{
for ( j =i+ 1; j < graph_num_vertices( G ); j += 1)
{
/* Avoid the case where a vertex is swapped with itself */
if (i == j ) continue;

/* Swap the mappings of v_i and v_j */
SWAP_PTR( g_array_index(psi, vertex*, i), g_array_index(psi, vertex*, j) );

/* Compute the tabu value for this shift */
tst_tabu_value =
tabu_memory_tabu_value( memory, g_array_index( psi, vertex*, i )
, g_array_index( psi, vertex*, j ) )
+ tabu_memory_tabu_value( memory, g_array_index( psi, vertex*, j )
, g_array_index( psi, vertex*, i ) );
/* Evaluate the quality of the vertex mapping, and
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record its details if it improves upon the best known
lower bound
*/
evaluate_tabu( &vars, i, j, tst_tabu_value, DO_SWAP );

/* Swap the mappings of v_i and v_j */
SWAP_PTR( g_array_index(psi, vertex*, i), g_array_index(psi, vertex*, j) );

}

tabu_memory_decrease_tenure( memory );

/* If the most improving move was a shift move... */
if ( vars.improving_enum_mode == DO_MOVE )
{
tabu_memory_insert( memory, g_array_index( psi, vertex*, vars.from_vertex_idx )
, (vertexx*) H_open_list->pdatal vars.to_vertex_idx ] );

/* Update the vertex mapping by shifting */
SWAP_PTR( g_array_index( psi, vertex*, vars.from_vertex_idx )
, H_open_list->pdatal vars.to_vertex_idx ] )

}
/* If the most improving move was a swap move... */
else if ( vars.improving_enum_mode == DO_SWAP ) /# vars.improving_enum_mode == DO_SWAP #*/
{
tabu_memory_insert( memory, g_array_index( psi, vertex*, vars.vertex_a_idx )
, g_array_index( psi, vertex*, vars.vertex_b_idx ) );
tabu_memory_insert( memory, g_array_index( psi, vertex*, vars.vertex_b_idx )
, g_array_index( psi, vertex*, vars.vertex_a_idx ) );
/* Update the vertex mapping by swapping */
SWAP_PTR( g_array_index( psi, vertex*, vars.vertex_a_idx )
, g_array_index( psi, vertex*, vars.vertex_b_idx ) );
}

tabu_memory_free( memory ) ;
g_ptr_array_free( H_open_list, 1 );

result_extract( vars.best_result, psi );
mpz_set( bound, vars.lower_H );

mpz_clear( vars.lower_G );

mpz_clear( vars.lower_H );

mpz_clear( vars.tst_crossing_no );
mpz_clear( vars.candidate_crossing_no )
result_free( vars.best_result );

B.4 Garey-Johnson

A C++ implementation of the Garey-Johnson algorithm is provided in this section. The algo-
rithm implements the concept of independent crossing sets, combined with partial verification,
as described in § 5.2.4.3.
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B.4.1 GareyJohnson

This algorithm is an implementation of Algorithm 5.4. It contains a rather great deal of code
before the line number annotation /*1*/. This code is concerned with the allocation of memory
on the stack for the various structures used by the algorithm. This scheme was used because
allocation of such memory occurs in constant time, as opposed to dynamic memory allocation,
which may sometimes be quite slow. The reader may wish to ignore most of the code before
the line number annotation /*1*/, since this will not hamper understanding of the code. The
Garey-Johnson algorithm is described in § 5.2, and it is recommended that the reader refer to
this section to clarify the code of this implementation.

bool
garey_johnson( leda_graph& G, int k, int cull_complete )
{
edge_pair_vec 1st_edge_pairs;
edge_pair_itr_vec selected_crossings;
L_vec L(G);
leda_node_array< carray< int > > v_deg_list( G );
bool result = false;
size_t no_edges = G.number_of_edges();
size_t no_vertices = G.number_of_nodes();
STACK_ALLOC( leda_edge, L_storage, SQR( no_edges ) );
STACK_ALLOC( int, v_deg_s, SQR( no_vertices ) );
STACK_ALLOC( leda_edge, out_edge_s, no_vertices );
STACK_ALLOC( crossing_set*, c_set_s, no_edges );
STACK_ALLOC( leda_edge, edges_s, no_edges );

crossing_set_vec c_sets( c_set_s, no_edges );
G.make_undirected();

/* Construct a list of all edge pairs of G, from which crossing
pairs will be selected */
for ( leda_edge e = G.first_edge(); e != G.last_edge(); e = G.succ_edge( e ) )
{
for ( leda_edge f = G.succ_edge( e ); f != leda_nil; f = G.succ_edge( f ) )
{
1st_edge_pairs.push_back( make_pair( e, f ) );
}

/* If the symmetry culling for complete graphs is enabled, memory
needs to be allocated for the structures used in the symmetry
testing */

if ( cull_complete )

{
size_t offset = 0;
leda_node v;
forall_nodes( v, G )
{
v_deg_list[ v ].init( v_deg_s + offset, no_vertices );
offset += no_vertices;

}

/* Initialize the memory to be used by the edge vector L */
size_t offset = 0;
forall_edges( e, G )
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// Assign a chunk of raw memory for each L[ e ]

L[ e ].init( L_storage + offset, no_edges );

// Adjust the offset of raw memory beyond the number
// of edges in L[ e ]

offset += no_edges;

selected_crossings.resize( k );
make_choose( selected_crossings.begin(), selected_crossings.end(), lst_edge_pairs.begin() );

/*1%/
do

{

/*2%/

/*3%/

/*5%/

/*6%/
/*T*/

leda_edge e;
forall_edges( e, G )
{
L[ e J.clear();
}

for ( edge_pair_itr_vec::iterator itr = selected_crossings.begin()

; itr != selected_crossings.end(); ++itr )
{
L[ (#itr)->first ].push_back( (*itr)->second );
L[ (#itr)->second ].push_back( (*itr)->first );
}

/* The following code implements the symmetry considerations for
multipartite graph discussed in 5.2.4.1, applied only to
complete graphs. Essentially what it does, is to construct a
list 1[v] for each vertex v, containing the degrees of its
outgoing vertices. All such lists are sorted in descending
order. For the list of vertices v_1, v_2, ..., v_n, it is
then determined whether 1[v_1] compares lexicographically
greater than or equal to 1[v_2], which must in turn compare
lexicographically greater than or equal to 1[v_3] and so
forth. If this condition is violated, the current loop is
simply skipped, so that the next crossing configuration may

be tested.

*/

if ( cull_complete )
{

bool continue_main = false;

carray< leda_edge > out_edges( out_edge_s, no_vertices )

// Clear the degree lists of each vertex in G
leda_node v;
forall_nodes( v, G )
{
v_deg_list[ v J.clear();
}

leda_edge e;
v = G.first_node();

// Construct the degree list for the first vertex ...

forall_adj_edges( e, v )
{
v_deg_list[ v ].push_back( L[ e ].size() );
}
// ... and sort the degree list

sort( v_deg_list[ v ].begin(), v_deg_list[ v ].end(), greater< int >() );
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// enumerate each vertex v beyond the first vertex
for (leda_node v = G.succ_node(G.first_node()); v != leda_nil; v = G.succ_node( v ))
{
leda_edge e;
// Construct the degree list for v...
forall_adj_edges( e, v )

{
v_deg_list[ v ].push_back( L[ e ].size() );
}
/// ... and sort the degree list

sort( v_deg_list[ v ].begin(), v_deg_list[ v ].end(), greater< int >() );

/* lexicographically compare the degree list of v to the
degree list of the predecessor vertex of v in G
*/
leda_node pred_v = G.pred_node( v );
if ( lexicographical_compare(v_deg_list[pred_v].begin(), v_deg_list[pred_v].end()
, v_deg_list[v].begin(), v_deg_list[v].end() ) )
{
// Note that the current iteration in main loop must be skipped
continue_main = true;
// and break out of this inner loop
break;

// 1If current iteration in main loop must be skipped, then do so
if ( continue_main )
continue;

// Clear the contents of c_sets
c_sets.clear();

/*9,10%/
construct_crossing_sets( G, L, c_sets );

/*11%/
if ( PLANAR(C G ) )
{
// Expand the first crossing set
/*12,13%/ c_sets.front()->expand();

/*14%/ if ( test_planar( L, c_sets.front()->edges.begin(), c_sets.front()->edges.end()
, c_sets.begin(), c_sets.end(), G, no_edges ) )
{
/*156%/ result = true;
/*165%/ break;
}

// Delete all crossing sets for current crossing configuration
for_each( c_sets.begin(), c_sets.end(), del_ptr< crossing_set > );
}

while(next_choose(selected_crossings.begin() ,selected_crossings.end() ,1st_edge_pairs.end()));

forall_edges( e, G )
{
if ( G.is_hidden( e ) )
G.del_edge( e );



B.4. Garey-Johnson - 275 —

return result;

}

B.4.2 ConstructGraph and TestPlanar

The algorithms in this section implement Algorithm 5.5 (TestPlanar’) and Algorithm 5.3
(ConstructGraph). However, the implementations have been “factored” in a different way, so
that the function construct_graph_and_verify_planarity contains the functionality of Algo-
rithm 5.3, as well as some functionality from Algorithm 5.5, whilst the function test_planar
performs part of the execution of Algorithm 5.5.

It is therefore indicated by large source comment headings that the first part of construct_graph
_and_verify_planarity implements Algorithm 5.3 and that the second part implements some
functionality from Algorithm 5.5. The source code of test_planar is annotated with the line
numbers of the functionality in Algorithm 5.5 that it implements.

bool
construct_graph_and_verify_planarity( L_vec& L
, crossing_set_vec::iterator c_set
, crossing_set_vec::iterator end_c_set
» leda_graph& G
, size_t no_edges )

size_t max_edges = SQR( (*c_set)->edges.size() );
leda_node cross_to_vertex[ no_edges ][ no_edges 1;

STACK_ALLOC( leda_node, cross_vertices_s, max_edges );
STACK_ALLOC( leda_edge, hidden_edges_s, max_edges );

carray< leda_node > cross_vertices( cross_vertices_s, max_edges )
carray< leda_edge > hidden_edges( hidden_edges_s, max_edges )

/* The execution of the following code has the effect of constructing
a subgraph with artificial vertices representing crossings in G.
Unlike the pseudo-code for the Garey-Johnson algorithm in Chapter
5, no new graph, G’, is constructed, instead, the graph G is itself
modified. To achieve this, the edges involved in the crossing are
hidden, and stored in a list hidden_edges, which will allow them to
be restored when construct_graph_and_verify_planarity terminates.
The vertices belonging to the subgraph to be
constructed within G are stored in the list cross_vertices, so that
they may be deleted when construct_graph_and_verify_planarity
terminates.

*/

II1111777707711177177771171117777
// Algorithm 5.3 (ConstructGraph)

II11117777777111771177717171177717

/*1%/
// This entire loop constructs the bijection of line 1
for (edge_list::iterator itr = (*c_set)->edges.begin(); itr != (*c_set)->edges.end(); ++itr)
{
for(carray<leda_edge>::iterator e_itr = L[#itr].begin(); e_itr != L[#itr].end(); ++te_itr)

{

if ( index( *itr ) < index( *e_itr ) )
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{
leda_node v = G.new_node();
cross_to_vertex[ index( *itr ) ][ index( *e_itr ) ] = v;
cross_to_vertex[ index( *e_itr ) ][ index( *itr ) ] = v;
cross_vertices.push_back( v );
}
}
}
/%2x/
for (edge_list::iterator itr = (*c_set)->edges.begin(); itr != (*c_set)->edges.end(); ++itr)
{

leda_edge e = *itr;

/*3%/ leda_node x

G.source( e );

/*4x/ for(carray<leda_edge>::const_iterator e_itr = L[e].begin(); e_itr != L[e].end(); ++e_itr)

{
/*5%/
/*6%/
/*T*/

}

leda_node w = cross_to_vertex[ index( e ) ][ index( *e_itr ) J;
G.new_edge( x, w );
X = W,

/*9%/ G.new_edge( x, G.target( e ) );

/*10%/

G.hide_edge( e );
hidden_edges.push_back( e );

}

[1771777777777717777777717/7777717777717177777
// Lines 9--21 of Algorithm 5.5 (TestPlanar’)
[17717771777777177777777777777717777717777177

/%9%/
if ( PLANAR( G ) )
{
/*11%/
++c_set;
/*10%/
if ( c_set != end_c_set )
{
/*12%/ (*c_set)->expand() ;
/*13%/ if ( test_planar( L, (*c_set)->edges.begin(), (*c_set)->edges.end()
, c_set, end_c_set, G, no_edges ) )
{
/*14x/ return true;
}
/*15%/ else
{
/*16%/ (*c_set)->contract();
goto false_result;
}
}
else
{
/*19%/ return true;
}
}

false_result:
/* Restore the edges that were hidden */
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for_each( hidden_edges.begin(), hidden_edges.end()
, bind( &leda_graph::restore_edge, &G, _1 ) );

/* Delete the artificial vertices that represented crossings */
for_each( cross_vertices.begin(), cross_vertices.end()

>

bind( &leda_graph::del_node, &G, _1 ) );

return false;

B.4.3 TestPlanar

bool
test_planar( L_vec& L
, edge_list::iterator current_edge
, edge_list::iterator end_edge
, crossing_set_vec::iterator current_crossing_set
, crossing_set_vec::iterator end_crossing_set
» leda_graph& G
, size_t no_edges )
{
/*1%/
sort( L[ *current_edge ].begin(), L[ *current_edge ].end(), cmp_edges );
/*2%/
do
{
/*3%/ if ( util::next( current_edge ) != end_edge )
{
/*4%/ if ( test_planar( L, util::next( current_edge ), end_edge
, current_crossing_set, end_crossing_set, G, no_edges ) )
{
/*5%/ return true;
}
}
/*¥T*/ else
{
/% Some of the code present in Algorithm 5.5 (TestPlanar’),
has been placed in the routine construct_graph_and_verify_planarity.
The following code is functionally equivalent to the actions
performed in lines 9--21 of Algorithm 5.5. */
if ( construct_graph_and_verify_planarity( L, current_crossing_set
, end_crossing_set, G, no_edges ) )
{
return true;
}
}
}

while (next_permutation( L[ *current_edge ].begin(), L[ *current_edge ].end(), cmp_edges ));

/*25%/

return false;

}
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B.5 Miscellaneous algorithms

This section contains implementations that do not fit into the other categories. Both of the
implementations in this section are in the Python language.

B.5.1 The spine subdivision algorithm

The function sub_divide_on_spine implements an algorithm which accomplishes the subdivi-
sion construction described in Theorem 5.3.1. The algorithm constructs a new spine, stored in
the list new_spine, from the existing spine. The spine is enumerated from left to right, and for
each vertex v in the spine, all subdivision vertices to the left of v (i.e., the subdivision vertices
of edges incident to v in G of which the opposite vertices occur to the left of v in the spine and
which are drawn on the lower page) are inserted into the list new_spine, followed by v itself and
finally by the subdivision vertices which occur to the right of v in the spine (i.e., the subdivision
vertices of edges incident v in G of which the opposite vertices occur to the right of v in the spine
and which are drawn on the upper page). The full operation of the algorithm is described in the
numerous source code comments.

def sub_divide_on_spine( G, cr_G, spine, spine_inv, page, e_map, n ):
G.make_undirected()
E = list( G.edges() )
card_V_G = G.num_vertices()
out_edges = {}
for v in G.vertices():
out_edges[ v ] = list( G.out_edges( v ) )

new_spine = []
new_page = {}

for v in spine:
def rev_outgoing_edge_order( e, f ):
return cmp( spine_inv[ G.opposite( f, v ) ], spine_inv[ G.opposite( e, v ) 1)

# First find all edges of which the opposite vertex occurs to the left of v in the spine.
left_down = [ e for e in out_edges[v] if spine_inv[ G.opposite( e, v ) ] < spine_inv[v] ]
# Then, filter out all edges that do not occur on the lower page

left_down = [ e for e in left_down if e_map[ e ] != None and pagel e_map[ e ] ] == 1]

# Sort the edges so that those joining vertices that are furthest away come first

# since the subdivision vertices for those edges must be placed on the spine first
left_down.sort( rev_outgoing_edge_order )

# First find all edges of which the opposite vertex occurs to the right of v in the spine.

right_up = [ e for e in out_edges[v] if spine_inv[ G.opposite( e, v ) ] > spine_inv[v] ]
# Then, filter out all edges that do not occur on the upper page
right_up = [ e for e in left_down if e_map[ e ] == None or pagel e_map[ e 1 1 == 01

# Sort the edges so that those joining vertices that are closest away come first
# since the subdivision vertices for those edges must be placed on the spine first
right_up.sort( rev_outgoing_edge_order )

# for each left going edge e
for e in left_down:
# subdivide e, obtaining the vertex list, v_list, and the edge
# list, e_list of the path generated from subdivision of e
v_list, e_list = do_sub( G, e, n )
# if the order of the vertex list, v_list is such that v is at
# the first entry, reverse both the vertex list and the edge list
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# so as to obtain a left-to-right order.
if v_1list[ 0 ] ==

v_list.reverse()

e_list.reverse()

# extend the new spine with the subdivision vertices of e
for u in v_list[ 1:-1 ]:
new_spine.append( u )

# set the pages of all subdivision edges to the upper page
for f in e_list:
new_page[ £ 1 =0

# except for the first subdivision edge, which should be
# drawn on the lower page
new_page[ e_1list[ 0] ] =1

# Add the vertex v to the new spine
new_spine.append( v )

# for each right going edge e
for e in right_up:
# subdivide e, obtaining the vertex list, v_list, and the edge
# list, e_list of the path generated from subdivision of e
v_list, e_list = do_sub( G, e, n )
# if the order of the vertex list, v_list is such that v is not at
# the first entry, reverse both the vertex list and the edge list
# so as to obtain a left-to-right order.
if v_1list[ 0 1 !'= v:
v_list.reverse()
e_list.reverse()

# extend the new spine with the subdivision vertices of e
for u in v_list[ 1:-1 ]:
new_spine.append( u )

# set the pages of all subdivision edges to the lower page
for f in e_list:
new_page[ £ ] =1

# except for the last subdivision edge, which should be
# drawn on the upper page
new_pagel[ e_list[ -1 ]1 1 =0

# remove the old non-subdivided edges of G
for e in E:
G.remove_edge( e )

# initialize space in the C data structure, spine, to accommodate all the
# new added subdivision vertices.

spine.resize( len( new_spine ) )

# re-initialize the vertex to spine index map, spine_inv, with G,

# meaning that it will contain a mapping for each vertex in G
spine_inv.init( G )

# fill the spine with the contents of new_spine and fill the entries
# in spine_inv
for i in xrange( 0, len( new_spine ) ):

spine[ i ] = new_spine[ i ]

spine_inv[ spine[ i ] ] = i
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# re-initialize the edge to vertex map, which is of the type e_map: E(G) -> V(cr_G)
e_map.init( G )

# clear the intersection graph cr_G

cr_G.clear()

# reconstruct the intersection graph, cr_G, to correspond to the

# vertex arrangement and edge layout of the new spine
c_algorithms.build_intersection_graph( G, cr_G, spine, spine_inv, e_map )

# re-initialize the crossing vertex to page map

page.resize( G.num_edges() )

# refill the entries in page, using the information from the construction
for e in G.edges():
# Crossing vertices with degree O are deleted from cr_G, so as to speed up
# the enumeration of V(cr_G), which is frequently performed by
# edge layout algorithms. When such a vertex does not exist, e_map[ e ] == None
if e_map[ e ] != None:
pagel e_map[ e 1 1 = new_pagel e ]

B.5.2 The graph planarization algorithm

The code in this section is an implementation of Algorithm 6.9 (ComputePlanarOrderings).
The utility function get_min_max returns a tuple containing the minimum and maximum indices
of the incident vertices of an edge in the spine, in that order. The second utility function,
edge_pair, returns a tuple of a pair of edges such that the first tuple element contains the edge
with the smallest index in G.

This implementation largely follows Algorithm 6.9, but there are a few points to clarify. Firstly,
the computation of the left-going and right-going edges is made explicit in this algorithm. The
left- and right-going edges for an edge e are computed by enumerating each vertex v that occurs
between the incident vertices of e in the spine, and by testing whether each edge incident to v is
left-going or right-going. The appropriate list, L or R is extended, depending on the situation.

Comparison functions were provided for the sorting that was applied to L and to R. In Python,
a comparison function returns -1 if its first argument is smaller than its second, 0 if they are
equal, and 1 otherwise.

An implementation of Algorithm 5.3 (ConstructGraph) is also present in the implementation
of Algorithm 6.9. Its start is marked with a prominent source code comment, and the line
number annotations correspond to the line numbers of Algorithm 5.3. The usage of the utility
function edge_pair is apparent here. The mapping phi should be indexed by unordered edge
pairs. These pairs were represented as tuples in Python. Tuples are however ordered and this
problem was avoided by ensuring that the same tuple order was always used, which was ensured
by edge_pair.

def construct_planar( G, spine, spine_inv, e_map, page ):
def get_min_max( e ):
left_e = spine_inv[ G.source( e ) ]
right_e = spine_inv[ G.target( e ) ]

if left_e > right_e:
left_e, right_e = right_e, left_e

return left_e, right_e

def edge_pair( e, f ):
if int( e ) > int( f ):
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return f, e
else:
return e, f

#1
for e in G.edges():
# This is true if the crossing vertex was isolated in the
# intersection graph - i.e. if e is not crossed
if e_map[ e ] == None:
continue

page_e = pagel e_mapl e 1 ]
left_index, right_index = get_min_max( e )

L={}
R ={}
# For each vertex in the spine between the incident vertices of e
for v in spine[ left_index + 1 : right_index - 1 ]:
# for all edges incident to v
for £ in chain( G.out_edges( v ), G.in_edges( v ) ):
if e_map[ £ ] !'= None and pagel e_map[ £ ] ] == page_e:
# if f is a left-going edge
if spine_inv[ G.opposite( f, v ) ] < left_index:

# 2
L.append( v )
# if £ is a right-going edge
elif spine_inv[ G.opposite( f, v ) ] > right_index:
#3

R.append( v )

# define the sorting order for edges in L, as in Algorithm 6.9
def sort_L( e, f ):

left_e, right_e = get_min_max( e )

left_f, right_f = get_min_max( f )

# Sort primarily in ascending order of the highest spine position
if right_e < right_f:
return -1
elif right_e == right_f:
# Sort secondarily in descending order of the lowest spine position
if left_e > left_f:
return -1
elif left_e == left_e:
return 0
else:
return 1
else:
return 0

# define the sorting order for edges in R, as in Algorithm 6.9
def sort_R( e, f ):

left_e, right_e = get_min_max( e )

left_f, right_f = get_min _max( f )

# Sort primarily in ascending order of the lowest spine position

if left_e < left_f:
return -1

elif left_e == left_f:
# Sort secondarily in ascending order of the highest spine position
if right_e < right_f:
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return -1
elif left_e == left_e:

return 0O
else:
return 1
else:
return 0O
# 4
L.sort( sort_L )
#5

R.sort( sort_R )

cross[ e ] = {}
# 6,7
for f in chain( L, R ):
#9
cross[ e ].append( £ )

HHHRBHRHRA R AR S
# ConstructGraph
FHERRH R

phi = {}
#1
# Construct a mapping by associating each vertex pair
# with an artificial vertex representing a crossing
for e in G.edges():
for f in cross[ e ]:
v = G.add_vertex()
phil edge_pair( e, £ ) 1]

1]
<

# 2
for e in G.edges():
# 3
x = G.source( e )
# 4
for f in cross[ e 1:
# 5
w = phil[ edge_pair( e, £ ) ]
# 6
G.add_edge( x, w )
¥ 7
x=w
#9
G.add_edge( x, G.target( e ) )
# 10

G.remove_edge( e )

B.5.3 A subgraph testing algorithm for complete multipartite graphs

The implementation described in this section determines whether a complete multipartite graph
G on n vertices is a subgraph of a complete multipartite graph H on n vertices. If G has n — 1
vertices, then each of the vertices of H may be suppressed, one at a time, and for each graph
H’ resulting from the suppression of a vertex, it may be tested whether G is a subgraph of H'.
Of course, if G has less than n — 1 vertices, this procedure may be generalized appropriately.
However, such a generalization was not necessary for the purposes of this thesis. This is true,
because all complete multipartite graphs of orders 6-13 were generated and for each graph of
order n > 6, all subgraphs of order n — 1 were found in addition to all subgraphs of order n.
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Thus, for a complete multipartite graph of order n, all subgraphs of orders less than n may be
found by considering the subgraphs of the subgraphs of the graph to the necessary depth.

A complete multipartite subgraph G on n vertices may be obtained from a complete multipartite
subgraph H on n vertices by choosing a pair of partite sets P, and P in H, and by deleting all
edges joining P; to P, so as to form a new partite set P = P; U P. If some, but not all edges
between P; and P are deleted, the resulting graph will not be a complete multipartite graph.
The operation of removing edges joining partite sets may be applied to various pairs of partite
sets in H to obtain different complete multipartite subgraphs. Clearly this is the only method to
generate complete multipartite subgraphs from a complete multipartite graph (since otherwise,
there will be some pair of partite sets of which not all joining edges will be deleted).

If the edges between the partite sets P, and P» above are deleted, it trivially follows that
|P| = |P1| + |P2|, and therefore if H =2 K|P1\,\P2\,...,\Pt\a then G = K\P1|+\P2\,...,|Pt71|' If the edges
joining multiple pairs of partite sets in H are deleted, then the cardinalities of the partite sets in
G are the sums of the cardinalities of the partite sets in H. More formally, if G = K, n, ... n, iS
a complete multipartite subgraph of a graph H = Ky, 1y, m;, then G may be obtained from H
by the deletion of edges joining j — ¢ pairs of partite sets in H and the partite set cardinalities

of H may be partitioned into sets My, Mo, ..., M; such that

Z m=ng, 1<k<i.
meM;,

Thus, the problem of determining whether a complete multipartite graph G is a subgraph of a
complete multipartite graph H is the same problem as determining whether a partitioning of the
cardinalities of the partite sets of H exists such the sum of the cadinatlities in each partition
corresponds to a distinct partite set cadinatlity in G. This problem may be reinterpreted as a bin
packing problem, where each of the partite set cardinatlities ms of G corresponds to a bin with
capacity mg, with 1 < s <4, and where each of the partite set cardinalities n; of H corresponds
to an item of size n;, with 1 <t < j. The question is then whether a packing of the j items into
the ¢ bins exists, such that each bin is filled exactly to capacity.

No efficient algorithm for solving this problem is known. It may be solved by a simple brute force,
recursive backtracking algorithm. The idea is simple: the first item n, is placed into the first bin
with sufficient capacity to hold it. All possible packings of the remaining items (besides n;) into
bins are considered. If no feasible packing is found, n; is placed into the next bin with sufficient
capacity, and all possible packings for the remaining items are attempted. The recursive nature
of the algorithm is due to the fact that the process performed for n, is performed for every item.

In the implementation, sub represents an array of bin capacities and super represents an array
of items. If an item at index i in super is placed into a bin at index j, the capacity of the bin
is updated by the code sub[i] -= super[j].

The algorithm is called recursively to consider each consecutive item — for each invocation, the
parameter super_pos is the index of the item to be examined. The parameter super_len is the
length of the array super — in other words, it is equal to the number of items to be packed
into bins. If super_pos >= super_len, as tested in the first line of the algorithm, then all items
were successfully packed into bins. Thus, the algorithm returns 1 (“TRUE”) when this occurs.
Otherwise, super [super_pos] is an item that has not yet been packed into a bin. All bins are
enumerated in the for loop, and if a bin with sufficient capacity for holding super [super_pos] is
found, it is placed into the bin. The algorithm is then called recursively. If no bin with sufficient
capacity for holding super[super_pos] can be found, the algorithm returns 0 (“FALSE”) to
indicate the situation. If an item before the current item was considered, it will be placed into
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another bin and the algorithm will again be called recursively. If, on the other hand, super_pos

== 0, then no feasible packing of items into bins could be found, and the algorithm returns
“FALSE.”

int rec_subgraph_of(int *sub, int sub_len, int *super, int super_len, int super_pos)
{

if (super_pos >= super_len) return 1;

for (i = 0; i < sub_len; i++) {
if (sub[i] >= super[super_pos]) {
sub[i] -= super[super_pos];

if (rec_subgraph_of(sub, sub_len, super, super_len, super_pos + 1)) {
sub[i] += super[super_pos];
return 1;

}
sub[i] += super[super_pos];
}
}

return 0;
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3cenf-formula, 21

adjacency, 5
algorithmic complexity, 19
CLIQUE NUMBER, 22
algorithmic complexity
3SAT, 21
polynomial time reducible, 20
SAT, 21
the class NP, 20
the class P, 20
arc, 14
aspiration criteria, 147
associativity, 17, 18

Benes graph, 69

bipartite, 9

biplanar crossing number, 39

bisection width, 55

book crossing number, 39

book drawings, 31

book thickness of a graph, 44

boolean expression
3cenf—formula, 21
cnf—formula, 21
conjunctive normal form, 21
satisfiable, 21

boolean expression
clause, 21

brick factory problem, 2

brute force algorithms, 72

butterfly graph, 69

C language, 239

C++ language, 239
C-component, 231
C—equivalent overlapping, 231
cartesian product, 8
certificate, 20

chains, 46
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chromosomes, 138
circular drawings, 33
circular encoding, 141
clause, 21
clique, 7
CLIQUE NUMBER, 22
closure, 17
cnf—formula, 21
coarseness of a graph, 45
commutativity, 18
complement, 6
complements of cycles, 71
complete

graph, 9

multipartite graph, 9
complexity, 19
component, 8
component-wise, 19
conjunctive normal form, 21
connected graph, 8

contracted independent crossing subgraph, 105

contraction, 7
convergence
Genetic, 163
GreedySide, 161
tabu, 166
convex drawing of a graph, 80
coset, 17
cross—coboundary, 47
crosscap, 15
crossed toroidal grid graph, 65
crossing, 10
crossing number
independent—odd, 37
crossing chain of drawing, 47
crossing chains, 46
crossing number
book, 39
odd, 37
pairwise, 36
Tutte, 48
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curve system, 58

cycle, 8

decision theory, 20
decomposition tree, 85
degree, 6
maximum, 6
minimum, 6
density, 162
Dijkstra’s shortest path algorithm, 126
dimension, 19
directed graph, 14
disconnected graph, 8
drawing
good, 30
graph, 26
nice, 30
normal form, 27
single-cross normal form, 30
drawings
book, 31
dynamic algorithms, 139

edge
congestion, 52
contraction, 7
layout, 129
neighbourhood, 6
twisting, 78
edge set partitioning, 56
edges, 5
elite solutions, 146, 166
embeddings, 34
end—vertex, 6
existence of inverses, 18
existence of inverses, 17
expanded independent crossing subgraph, 105

FFT network, 69

fixed linear crossing number problem, 89
force of a graph, 59, 60

frequency based memory, 149

from attributes, 146

Galois field, 18

Garey, Johnson, 72

general cross—coboundary, 47
genes, 138

genus of a graph, 43

GMP, 263
graph, 5
directed, 14
drawing, 26
planar, 10
subdivision, 10
underlying, 14
undirected, 5
graph thickness, 39
graph minors for lower bounds, 54
graph—to—graph embedding, 50, 53
greedy algorithm, 132
grid graph, 9
group, 17
Abelian, 17

Hamiltonian cycle, 254

handles sphere, 16

Harris algorithm, 73
Hopcroft-Tarjan algorithm, 101
hypercube, 67

identity element, 17, 18

imperfect copies, 137

independent crossing subgraphs, 104
independent—odd crossing number, 37
induced subgraph, 6

initial cross—coboundary, 47
intersection graph, 130
intersection—edges, 132
intersection—vertices, 132
intractable problem, 20

isolated vertex, 6

isomorphic, 6

isomorphism, 6

Johnson, Garey, 72

Kuratowski’s theorem, 12
Kuratowski, C., 229

layered drawings, 34

leaf, 14

LEDA, 239

left coset, 17

left—going edge, 157

lower bound algorithm, 117

make copies, 137
mating, 137
maximally planar, 11
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maximized average edge congestion, 122 Python, 239
maximum degree, 6
maximum induced planar subgraph problem, random graph, 162, 163
41 random mapping, 92
mesh of trees, 70 rays, 82
minimized average edge congestion, 122 reconsidering edge congestion, 121
minimum degree, 6 rectilinear drawings, 34
minor, 7 reduced mesh of trees, 70
move to solution, 144 region, 10
multipartite, 9 regular, 9
mutation, 138 right coset, 17
right—going edge, 157
natural selection, 137 rotational transformation, 254
nauty isomorphism testing library, 228 rotational embedding schemes, 74
neighbourhood, 6
neighbourhood of a solution, 144 satisfiable, 21
neighbourhood search, 144 scalar, xxix, 18
neural network layout algorithm, 89 scout for solutions, 139
Nicholson’s heuristic, 88 shortest paths, 123
non-orientable genus of a graph, 43 simple curve, 26
non-orientable surfaces, 15 single-edge graph—-to—graph embedding, 54
size, 5
odd crossing number, 37 skew overlapping, 231
odd crossing number algorithm, 77 skewness of a graph, 42
offspring, 137 soupcan construction of /C,,, 64
open neighbourhood, 6 source, 14
order, 5 spanning subgraph, 6
order of magnitude, 19 spine, 32, 129
orientable genus of a graph, 43 spine drawings, 156
orientable surfaces, 16 splitting number, 43
overlap graph, 233 standard counting method, 49
overlapping, 231 star, 9
STL, 245
Pésa’s algorithm, 254 subdivision, 10
page number of a graph, 44 subgraph, 6
pageness of a graph, 44 induced, 6
pairwise crossing number, 36 spanning, 6
partial verification, 104 subgroup, 17
path, 8 surfaces
Petersen graph, 70 non—orientable , 15
pivot, 254 survival of the fittest, 137
planar, 10, 229 survive, 137
planarity testing, 13 SWIG, 239
planarizing drawings, 156
plane drawing, 10 tabu, 146
polynomial time, 19 tabu attributes, 146
polynomial time reducible, 20 tabu tenure, 146
population, 138 target, 14
pre—optimization method, 153 tenure, 146

principal cycles, 58 thickness, 13
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thickness of a graph, 44
time complexity, 19
to attributes, 146
toroidal grid graph, 9
tournament selection, 138
tractable problem, 20
transform drawing to two—page layout, 110
tree, 14

leaf, 14
tree of meshes, 87
triangulated, 11
truncated tree of meshes, 88
Tutte crossing number, 48
Tutte, W., 45
twisted toroidal grid graph, 65
twisting, 78

underlying graph, 14
undirected graph, 5

vector, xxix, 18
vector space, xxix, 18
vertex
congestion, 52
degree, 6
vertex arrangement, 129
vertex separation, 82
vertex—transitive, 6
vertices, b

walk, 8
wrap around, 138
wrapped butterfly graph, 69

zoom in on solution, 139
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