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ABSTRACT 
 
Agricultural environments are usually contaminated with mixtures of antropogenically 

introduced chemicals as a result of pesticide spraying, which can affect beneficial, non-

target soil invertebrates, such as earthworms negatively.  Most studies on mixture toxicity 

have focused on interactions of chemicals with similar structures and mechanisms. 

However, chemical mixtures may occur as conglomerates of diverse structures and 

toxicological mechanisms in the environment.   

This study was aimed at assessing the effects of pesticides singly, and in a mixture, on 

earthworms, using lifecycle parameters (growth and reproduction) and biomarkers 

(neutral red retention (NRR) assay and acetylcholinesterase (AChE) inhibition) as 

endpoints. Thus, to determine whether any interactions occurred between the pesticides 

as shown by the measured endpoints. Another aim was to validate the use of the chosen 

biomarkers for assessing mixture toxicity.   

The pesticides used were from three groups: organophosphates, heavy metal-containing 

pesticides and pyrethroids.  From these three groups, four of the most commonly used 

pesticides in the orchards and vineyards of the Western Cape, South Africa, were chosen, 

namely chlorpyrifos (organophosphate), azinphos-methyl (organophosphate), copper 

oxychloride (heavy metal-containing fungicide) and cypermethrin (pyrethroid).  

Earthworms were exposed in the laboratory to a range of concentrations of chlorpyrifos 

and copper oxychloride singly, and in 1:1 mixtures of these pesticides in artificial soil, for 

four weeks.  After the exposure period, the biomass change was determined as measure 

of growth, and cocoon production, hatching success and number of hatchlings per cocoon 

were determined as measures of reproduction.   

Growth (biomass change) and reproduction (cocoon production) were affected by the 

highest concentration treatment (20mg/kg) of chlorpyrifos, but copper oxychloride and 

the mixture of the two pesticides showed no observable effects on lifecycle parameters. 

Dose related effects on NRR times were however determined for both pesticides and the 

mixture. Dose related effects on AChE activity were found for chlopyrifos and the 

mixture of the two pesticides, but not for copper oxychloride.   Short-term exposures (48 

hours) of earthworms to the following pesticides in artificial groundwater: chlorpyrifos, 
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copper oxychloride, azinphos-methyl, cypermethrin, chlorpyrifos-copper oxychloride, 

chlorpyrifos -azinphos-methyl and chlorpyrifos-cypermethrin, were done followed by the 

determination of AChE inhibition.  Dose related effects were exhibited on the AChE 

activity of earthworms exposed to chlorpyrifos, a mixture of chlorpyrifos and copper 

oxychloride, azinphos-methyl, and a mixture of azinphos-methyl and chlorpyrifos.  

Copper oxychloride, cypermethrin and the mixture of chlorpyrifos and cypermethrin had 

no effect on AChE activity.  Earthworms died at the highest exposure concentration of 

the mixture of chlopyrifos and cypermethrin.   

Results have shown that although the pesticides did not cause observable effects on 

lifecycle parameters, there were effects at subcellular and biochemical level, as shown by 

the biomarkers.  Mixtures of pesticides, in some instances, affected earthworms 

differently from their single components, indicating interactions between the pesticides in 

mixtures, as shown by the measured endpoints.  The NRR assay proved to be a good 

general biomarker of soil contamination, and the AChE activity could also be a valuable 

tool in assessing the effects of organophosphate mixtures and mixtures of 

organophosphates and pesticides from other groups. 
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OPSOMMING 
 
Nie-teiken organismes, soos erdwurms, word negatief beïnvloed deur mengsels van 

antropogeniese chemikalieë in landbou-omgewings. Die meeste studies wat handel oor 

die toksisiteit van chemiese mengsels het tot dusver gefokus op chemikalieë van dieselfde 

aard en met dieselfde meganismes van werking. Mengsels van chemiese stowwe kan 

egter as konglomerate van 'n verskeidenheid strukturele eienskappe en met verskillende 

toksiese meganismes in die omgewing aangetref word. 

 

Tydens die studie is gepoog om die effekte van enkel pestisiede sowel as mengsels 

daarvan op erdwurms te bestudeer, deur van lewensloop kenmerke (groei en 

voortplanting) en biomerkers (neutraalrooi retensietyd - NNR en inhibisie van 

asetielcholienesterase -AChE) as eindpunte gebruik te maak. 'n Verdere doel van die 

studie was om vas te stel of daar enige wisselwerkings tussen die verskillende pestisiede 

plaasvind, soos aangetoon deur die gemete eindpunte, en verder ook om die gebruik van 

die gekose biomerkers as maatstawwe van mengseltoksisiteit te evalueer. 

 

Die pestisiede wat gebruik is, is van drie verskillende groepe afkomstig: organofosfate, 

swaarmetale en piretroiede. Van hierdie drie groepe is vier van die pestisiede wat vry 

algemeen in boorde en wingerde in die Weskaap, Suid-Afrika, gebruik word, 

geïdentifiseer. Hierdie stowwe is chlorpyrifos (organofosfaat), azinphos-metiel 

(organofosfaat), koperoksichloried (swaarmetaalbevattende fungisied) en sipermetrien 

(piretroied).  

 

Erdwurms is in die laboratorium aan 'n reeks  konsentrasies van chlorpyrifos en 

koperoksichloried as enkel toksikante en as 1:1 mengsels in kunsmatige grond, vir vier 

weke blootgestel. Voor en na die blootstellingsperiode is die biomassa van die wurms, as 

maatstaf van groei, bepaal en kokonproduksie, uitbroeisukses en getal nakomelinge per 

kokon bepaal as maatstawwe van voortplantingsvaardigheid. Groei 

(biomassaverandering) en voortplanting (kokonproduksie) is beinvloed deur behandeling 

met die hoogste konsentrasie (20 mg/kg) chlorpyrifos, terwyl geen effek van 

koperoksichloried of die mengsel van hierdie twee pestisiede gevind is nie.  Daar is 
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gevind dat beide die pestisiede, enkel en in die mengsel, die NRR tye beinvloed het. Die 

AChE aktiwiteit is beinvloed deur chlorpyrifos en die mengsel, maar nie deur die 

koperoksichloried nie.  

 

Korttermyn blootstellings van erdwurms (48 uur), in kunsmatige grondwater, van 

erdwurms aan chlorpyrifos, koperoksichloried, azinphos-metiel en sipermetrien as enkel 

toksikante en mengsels van chlorpyrifos-koperoksichloried, chlorpyrifos-azinphos-metiel 

en chlorpyrifos-sipermetrien, is gedoen en gevolg deur die bepaling van AChE inhibisie. 

Koperoksichloried, cypermetrien en die chlorpyrifos-sipermetrien mengsel het geen 

waarneembare effek op die AChE aktiwiteit gehad nie ?????. Die erdwurms wat 

blootgestel is aan die hoogste konsentrasie in die mengsel van chlorpyrifos-sipermetrien 

het doodgegaan. 

 

Die resultate het getoon dat die pestisiede nie in die korttermyn die lewensloopkenmerke 

in enige waarneembare mate geaffekteer het nie maar daar was effekte op sellulêre en 

biochemiese vlakke soos aangetoon deur die biomerkers. Sommige mengsels van die 

pestisiede het die erdwurms verskillend van die enkelstowwe geaffekteer. Daar het dus 

wisselwerking tussen sommige van die pestisiede wat in mengsels aangewend is, 

plaasgevind, soos aangetoon deur die gemete eindpunte. Die NRR toets, as breë-spektrum 

biomerker was 'n goeie maatstaf van kontaminasie in grond  en daar is aanduidings dat 

die AChE aktiwiteit, as 'n spesifieke biomerker, 'n nuttige maatstaf kan wees om die 

effekte van organofosfaatmengsels en mengsels van hierdie chemiese groep en die van 

ander chemikalieë  aan te toon.  
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CHAPTER 1 
INTRODUCTION 

 

Agricultural environments are often contaminated with anthropogenically introduced 

chemicals. These chemicals rarely occur in isolation in agricultural soils due to various 

products that are sprayed. A large quantity of pesticides is sprayed to combat pests, and 

fertilizers used to nourish plants.  These chemicals entering the environment produce 

unwanted residues, which pose a great threat to non-target organisms. When a toxic 

substance is introduced into the environment, it interacts with other constituents of the 

environment and becomes more or less available to organisms.  The bioavailability and 

toxicity of chemicals depend on the species of the target organism, behaviour of the 

chemical and the conditions of the ambient environment.  Chemicals need to be taken up 

by the organism in order to be toxic.  If there is no uptake, there is no toxicity, regardless 

of the concentration of the chemical in the environment (Sheppard et al 1997).  When 

uptake by the organisms takes place, it is followed by interaction with receptors, and 

toxicity manifests (Tao et al 1999).   

 

The response of organisms exposed to several chemicals simultaneously requires 

consideration of the interactions between the chemicals inside and outside the organism.  

Effects of mixtures of toxic chemicals can be additive, synergistic (greater than additive), 

or antagonistic (smaller than additive). It is also possible for chemicals to act 

independently of each other, affecting different target sites in an organism.  Most 

toxicological data available to date are however related to single chemicals.  While this 

information might be sufficient for gaining knowledge of the characteristics of chemicals, 

it lacks the detail necessary for evaluating toxic effects of chemical mixtures (Malich et 

al 1998).  Predicting the toxicity of mixtures based upon the knowledge of individual 

chemicals only can lead to wrong conclusions. Mixture toxicity experiments reflect the 

actual hazard of contaminated environments better that experiments in which effects of 

single toxicants alone are tested.  Quantifying mixture effects, contributes to the 

improved extrapolation of laboratory data to the field, as the presence of toxicant 
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mixtures in the field is one of the factors determining differences between laboratory and 

field toxicity (Weltje 1998).   

 

Most studies available on chemical mixtures focus on the toxicological interactions of 

chemicals having similar structures and mechanisms.  For example, there is a number of  

studies done on mixtures of chemicals with fairly similar structures and mechanisms, 

such as heavy metals. Marino et al (1998) did a study on Cu-Cd interactions in 

earthworms and found that exposure of earthworms to Cd before exposure to copper 

increased the amount of copper taken up, while Tao et al (1999) determined the 

synergistic effect of copper and lead uptake by fish, and found lead to facilitate the 

uptake of copper.  Korthals et al (2000) determined the joint toxicity of Cu and Zn to a 

terrestrial nematode community in an acid sandy soil and found the combined effects of 

combined exposure to be additive or less than additive.  Kraak et al (1999) did a study on 

short-term ecotoxicity of a mixture of five metals (Cu, Zn, Ni, Cd and Pb) to the zebra 

mussel Dreissena polymorpha and found that the accumulation of each metal by the 

zebra mussel was not influenced by the presence of the other four metals.  In the study of 

Weltje (1998), of mixture toxicity and tissue interaction of Cu, Zn, Cd and Pb in 

earthworms in laboratory and field soils, it was found that toxic effects were mainly 

antagonistic for total soil concentrations.  

  

In the agricultural industry, it is common practice to apply more than one pesticide 

simultaneously or in sequence, to treat different pest species. This tendency to use a 

mixture of pesticides is also supposed to be a means of avoiding the development of  pest 

resistance to a single chemical (Scharf et al 1997). Some of these chemicals leach into the 

soil and may affect non-target organisms as single substances, but often also as mixtures 

(Lytle and Lytle 2002).  A few studies have been done on organic pesticide mixtures and 

their effects on non-target organisms.  Springett and Gray (1992) studied the effects of 

repeated low doses of the herbicide, glyphosphate, the fungicide Captan and the 

insecticide azinphos-methyl on the earthworm Aporrectodea caliginosa and found that 

there were interactions between pesticides in combination.  Glyphosphate and Captan had 

a lesser effect on growth and mortality than glyphosphate alone.  Azinphos-methyl and 
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Captan had an effect less than that of azinphos-methyl alone on growth and mortality.  

Marinovich et al (1996) also did a study of the effect of pesticide mixtures of dimethoate, 

azinphos-methyl, diazinon, primiphos methyl and benomyl, and found mixtures to be 

more toxic to protein synthesis of in vitro human nervous cells than single compounds.  

Steevens and Benson (2000) determined the interactions of chlorpyrifos and methyl 

mercury using the amphipod, Hyalella azteca, and found methyl mercury antagonized the 

effects of chlorpyrifos on acetylcholinesterase inhibition. Richardson et al (2001) also did 

a study analyzing the additivity of in vitro inhibition of cholinesterase by mixtures of 

chlorpyrifos-oxon and azinphos methyl-oxon on brain and serum of rats, and found that 

the compounds resulted in greater than additive effects at higher concentrations. Lytle 

and Lytle (2002) did a study on the uptake and loss of chlorpyrifos and atrazine by 

Juncus effuses in a mesocosm study with a mixture of the pesticides and found that the 

mixture affected the uptake of chlorpyrifos more than that of atrazine.  Jin-Clark et al 

(2002) evaluated the effects of atrazine and cyanazine on chlorpyrifos toxicity in 

Chironomas tentans, and found that these herbicides conferred synegystic effects on 

chlorpyrifos. 

 

Because of their numerous functions in terrestrial ecosystems, earthworms have often 

been chosen as experimental organisms for toxicity testing, representing the primary 

decomposers of the soil fauna (Lokke and Van Gestel 1998). These organisms were 

therefore also used in the present study. Through their action, earthworms have a major 

impact on the fragmentation of organic material.  They mix organic and inorganic 

fractions of the soil, which is of great importance for the soil fertility and stability.  While 

contributing to the process of decomposition, earthworms also affect soil aeration, water 

transport and soil structure (Reinecke and Reinecke 1998).  Often earthworms are 

referred to as the predominant component of the soil fauna, in terms of biomass, which 

makes them an important food source for many predatory soil organisms (Lokke and Van 

Gestel 1998). These organisms have been used extensively in environmental monitoring, 

especially as biological monitors of heavy metal and organophosphate pollution 

(Sheppard et al 1997). Impacts of pollutants in the soil environment can be evaluated 

either by measuring direct toxic effects or long-term effects on earthworm populations.  
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Earthworms are known to accumulate heavy metals when exposed to them (Marinussen 

et al 1997).  They are sensitive to many chemicals and tend to concentrate some 

chemicals inside their bodies (Reinecke and Reinecke 1998). 

 

Pesticides and other chemicals introduced into the soil may alter the behavior of 

earthworms.  Behavioral changes may have the effect that earthworms migrate to non-

contaminated areas in order to minimize contact with chemicals.  This can cause 

reduction in surface casting and an increase in leaf litter in the contaminated areas.  The 

changes in the environment caused by man’s industrial and agricultural activities have 

influenced earthworm populations in many parts of Southern Africa. As a result there is a 

general absence of indigenous species and a dominance of introduced species in 

cultivated areas (Reinecke 1983).   

 

Although there is no single species of earthworm that is sensitive to all chemicals, the 

European species Eisenia fetida Savigny, 1826 is widely considered a model species and 

is prescribed as a test organism by the Organization for Economic Co-operation and 

Development (OECD) in Europe, and the Environmental Protection Agency (EPA) in the 

USA (Lokke and Van Gestel 1998).  This species is commonly found in places where 

large concentrations of organic matter are decaying in the Northern Hemisphere and is 

frequently collected from compost heaps and manure piles. Individuals of this species 

have been studied as potential waste decomposers as well as a protein source in animal 

feed (Reinecke and Kriel 1980). 

 

The greatest advantage of using this species as a test organism is that it can easily be 

cultured in large quantities in the laboratory and because of its relatively short lifecycle 

and high reproductive rate, synchronized cultures can be obtained.  This allows for long- 

term studies of successive generations (Reinecke and Reinecke 1998).  Various studies 

have been conducted on the lifecycle parameters of E. fetida (Venter and Reinecke 1988, 

Viljoen and Reinecke 1988, Reinecke and Viljoen 1990, Reinecke and Viljoen 1991). 

This species has a great reproductive ability. Reproductive potential is influenced by 

environmental conditions, soil conditions, as well as the availability of food (Reinecke 
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and Viljoen 1990).  Cocoon production probably occurs for the largest part of the life 

span of the individuals.  The mean period of cocoon incubation at optimum temperature 

is 23 days, with an average of 2.7 offspring per cocoon (Venter and Reinecke 1988).  The 

cocoons are quite resistant to unfavorable temperature and moisture.  The offspring will 

attain sexual maturity within 40 to 60 days under favorable conditions (Venter and 

Reinecke 1988).   

 

Although pesticides are extensively used by the agricultural sector, little information is 

available about their sub-lethal effects on beneficial non-target organisms such as 

earthworms.  Many studies on the effects of pesticides to earthworms have focused on 

acute lethal effects (Cathey 1982, Robidoux et al 1999, Miyazaki et al 2002).  Mortality 

as a measure of a population’s sensitivity to a chemical is regarded as neither a sensitive 

nor a relevant ecological parameter (Vermeulen et al 2001).  Sublethal stress caused by 

the presence of a contaminant may not kill the organism, but may divert energy from 

growth and reproduction to ensure the survival of the organism.  Growth and 

reproduction may therefore be affected by exposure to contaminants before mortality 

occurs.  These parameters are therefore more relevant to measure as effects of 

contaminants on populations, as they can show detrimental effects long before mortality 

occurs.  An effect on the growth and reproduction may affect the population at a later 

stage (Maboeta et al 2003).  Other sublethal effects at the below individual level, such as 

effects at the sub-cellular and enzymatic levels, will show effects even earlier than 

lifecycle parameters and are also important tools for determining effects before they are 

manifested at organismal or population level.  The sustainable use of agrochemicals 

therefore requires that extensively used chemicals should be assayed for their effects on 

beneficial non-target organisms such as earthworms, using tests at different levels of 

organization.  

 

 

The fate and effects of pesticides in the environment are determined by a number of 

physical and chemical properties, such as temperature, pH and whether the environment 

is terrestrial or aquatic.  However, how these properties affect the interactions among 
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mixtures of pesticides and how that can influence uptake and toxicity are not clear (Lytle 

and Lytle 2002). The bioavailability of chemicals to earthworms in soil is largely 

determined by the soil pore water concentration (Lokke and Van Gestel 1998).  Belford 

et al (1995) determined the importance of different routes of uptake for earthworms, 

based on studies in which earthworms were exposed to a number of chlorobenzenes in 

soil, water, and via contaminated food.  They concluded that the relative importance of 

oral uptake compared to uptake from pore water increased with increasing lipophility of 

the chemical and increasing organic content of the soil.  The stronger a chemical is 

adsorbed to the soil, the more oral uptake contributes to the body burden of the chemical 

in earthworms (Lokke and Van Gestel 1998). Because earthworms are semi-aquatic, 

living in the soil water layers, uptake experiments can be done in aqueous media to 

exclude the influence of adsorption processes associated with the solid phase of the soil 

(Kiewiet and Ma 1991).  In this study earthworms were exposed in both media (soil and 

water). 

 

Toxicological testing of pesticide mixtures becomes difficult because of the great number 

of potential pesticide mixtures in the environment.  New chemicals for which no data is 

available are produced every day.  There is therefore need for more data on toxicity of 

pesticides to non-target organisms, in order to select chemicals that can do the least harm.  

There is also need for more general information about the mode of action of different 

pesticide types on organisms. 

 

Among the most commonly used pesticides, also in South Africa, are organophosphates, 

pyrethroids, carbamates, chlorinated phenols, and heavy metal pesticides. 

Organophosphates and carbamates are known to disrupt the central and peripheral 

nervous systems in vertebrates and invertebrates by inhibiting the activity 

acetylcholinesterase, an enzyme that is involved in the chemical transmission of impulses 

between neurons (Dembele et al 2000). Organophosphorous pesticides are used 

throughout the world to control a large variety of insects and other invertebrates, fungi, 

birds, mammals, and herbaceous plants.  These pesticides are usually short-lived under 
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most environmental conditions.  They are widely variable in toxicity to aquatic and 

terrestrial organisms (Hoffman et al 1995). 

 

Chlorpyrifos (C9H11Cl3NO3PS), also known, in South Africa, by the trade names Dursban® 

and Lorsban®, is a broad-spectrum organophosphate insecticide widely used for 

agricultural pest control, to combat pests such as ants, scale insects and cutworms.  It is 

also used for house hold and garden use to control pests such as mosquitos, flies and 

bedbugs. It is highly volatile with a high vapour pressure (Lytle and Lytle 2002).  It is 

one of the most commonly used insecticides in orchards and vineyards of the Western 

Cape, (Schulz 2001) and its effects were therefore examined during this study.  

Chlorpyrifos is toxic to freshwater fish, aquatic invertebrates, and estuarine and marine 

organisms.  It is reported to have an LC50 of 1077mg/kg in adult E. fetida (Eason et al 

1999).  Although this LC50 is high, chlorpyrifos might have adverse sub-lethal effects on 

these animals at lower concentrations 

 

As chlorpyrifos has been extensively used worldwide for nearly four decades and a 

considerable database on its toxicity exists.  It is known to inhibit acetylcholinesterase 

activity, along with many other organophosphates.  Richards and Kendall (2002) 

suggested that chlorpyrifos also inhibits DNA and protein synthesis.  It is also shown in 

some studies that uptake of chlorpyrifos by plants is influenced by the presence of other 

chemicals such as herbicides (e.g. atrazine) (Lytle and Lytle 2002).  Some studies have 

demonstrated that chlorpyrifos interacts additively with the organometal methyl mercury 

with survival as the endpoint, although in vivo, methyl mercury antagonizes the effects of 

chlorpyrifos on acetylcholinesterase activity of the amphipod Hyalella azteca (Steevens 

and Benson 2000). 

 

Azinphos-methyl (C10H12N3O3PS2), is another commonly used organophosphorous 

pesticide in the orchards and vineyards of the Western Cape.  It is a persistent broad 

spectrum insecticide, and its persistence in soil is quite variable (Schulz 2001).  It is fairly 

immobile in soil because it adsorbs to soil particles and has low water solubility.  It has a 

low leaching potential and therefore is unlikely to contaminate groundwater. It is used 
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primarily for foliar application against leaf feeding insects.  It is toxic by inhalation, 

dermal absorption and ingestion.  Springett and Gray (1992) studied the effects of 

azinphos-methyl on the earthworm Aporrectodea caliginosa in laboratory cultures, and 

found that it reduced the growth rate of the earthworms.  Marinovich et.al (1996) 

compared the effects of pesticide mixtures on nerve cells in vitro to single pesticides, 

with azinphos-methyl as one of the pesticides and found that it inhibited 

acetylcholinesterase activity and protein synthesis.  During the present study the short-

term effects of azinphos-methyl singly as well as in a mixture with chlorpyrifos on 

earthworms were investigated. 

 

Pyrethroids are pesticides that also represents an increasing proportion of the world’s 

pesticide sales.  Their lack of persistence in the terrestrial environment, coupled with the 

slow development of pest resistance, has made them popular for both agricultural and 

public health application (Ray and Forshaw 2000).  Pyrethroids are also neurotoxicants 

but they act on a target different to that of organophosphates.  Their major site of action 

has been shown to be the voltage-dependent sodium channels (Costa 1988).  While some 

neurotoxic substances have a specific action on a specific biochemical process, others 

such as pyrethroids, are likely to exert their effects by interacting with more than one 

biological site (Costa 1988).  Another target for pyrethroids is the voltage-dependent 

chloride channels, which are found in nerve, muscles, and salivary glands.  These 

channels are modulated by protein kinase C, and their function is to control cell 

excitability.  The decrease in chloride open channel state serves to increase excitability 

and therefore to synergize pyrethroid action on the sodium channels (Ray and Forshaw 

2000).  Some organophosphates can enhance pyrethroid toxicity and some 

organophosphates have a greater potential to synergize pyrethoids than others (Ray and 

Forshaw 2000).  Cypermethrin, a commonly used pesticide in South Africa, is highly 

toxic to non-target invertebrates, such as spiders (Araneae), true bugs (Heteroptera), and 

sawfly larvae (Moreby 2001).  Short-term effects of cypermethrin singly as well as in 

mixture with chlorpyrifos on earthworms were determined in this study. 
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Most studies on mixtures of organic pesticides have concentrated on mixtures of 

organophosphorus pesticides or chlorinated phenols (Marinovich et al 1996, Richardson 

et al 2001, Jin-Clark et al 2002).  Less information is available on mixtures of heavy 

metal containing pesticides and those of organophosphates and heavy metal containing 

pesticides (Steevens and Benson 2000).  Copper oxychloride is one of the most 

commonly used heavy metal containing fungicides in orchards and vineyards of the 

Western Cape region (Helling et al 2000), and its effects were examined during the 

present study singly and in combination with chlorpyrifos.  Environmental contamination 

of soils by copper, apart from natural occurrence, is caused by the use of agrochemicals, 

such as copper oxychloride.  Although copper is an essential metal, it is toxic to 

earthworms in high concentrations.  Earthworms do not accumulate very high body 

concentrations at high exposure levels of copper, but are still negatively affected by the 

metal (Helling et al 2000). Some authors have shown that copper causes mortality and 

sublethal injury to earthworms at lower concentrations than that of lead and zinc 

(Reinecke et al 2002).  

 

Copper oxychloride (ClCu2H3O3) is applied under the commercial name Virikop® at a 

rate of 1.25 to 7.5 kg/ha in South African vineyards, with several applications per season.  

Copper concentrations of as much as 50 µg/g, have been found in soil immediately after 

the spraying season (Reinecke et al 2002).  The mean soil copper content determined in 

19 vineyards in the Western Cape amounted to 9 mg Cu per kg in soil on average, with a 

maximum of 27 mg Cu per kg in soil (I. Van Huyssteen, personal communication, in 

Helling et al (2000)).  The monitoring of earthworm communities in orchards and 

vineyards revealed a very low earthworm abundance, which could probably be attributed 

partly to the intensive usage of the copper-based fungicide (copper oxychloride). 

 

The LC50 of Cu for E. fetida varies between 100 and 1000 mg Cu per kg of soil.  Copper 

oxychloride affects growth and reproduction of E. fetida, with considerable impact shown 

on reproduction at an exposure concentration of 15.92 mg Cu per kg substrate and higher 

(Helling et. al. 2000).  This fungicide is also known to affect earthworms at the 

subcellular level by affecting the lysosomal stability of the coelomocytes of the 
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organisms (Reinecke et al 2002). If beneficial organisms such as earthworms are to be 

protected from high Cu levels in soils, it is important to determine effects and toxic stress 

caused by this metal, before they manifest at the population level. 

 

The use of sensitive sub-organismal tests or biomarkers, which show effects early, is 

therefore important. According to Van Gestel and Van Brummelen (1995), a biomarker is 

defined as any biological response to an environmental chemical at the below individual 

level, measured inside an organism or in its products, indicating a departure from the 

normal status, which cannot be detected from an intact organism.  Biomarkers have been 

used extensively in the laboratory to document and quantify exposure to, and the effects 

of, environmental contaminants on organisms (Svendsen and Weeks 1997).  Because 

they measure effects at the sub-organismal levels which are targeted first by toxicants, 

they have the advantage of reacting rapidly to exposure and are able to show integrated 

effects of multiple stressors (Svendsen and Weeks 1997) 

 

A broad spectrum of xenobiotics can alter the normal functioning of the organism's body.  

Xenobiotically induced sublethal cellular pathology reflects perturbations of function and 

structure at molecular level.  Many toxic substances or their metabolites result in cell 

injury by reacting primarily with biological membranes (Moore 1985).  Examples of 

membrane damage include changes in cellular compartmentalization, such as injury to 

lysosomes or mitochondria.  Many xenobiotics induce alterations in the bounding 

membrane of the lysosome, leading to destabilization (Moore 1980).  

 

Injury resulting in destabilization of the lysosomal membrane bears a quantitative 

relationship to the magnitude of stress response.  Release of degradative hydrolytic 

enzymes from the lysosomal compartment into the cystol may result from destabilization 

of the lysosomal membrane, which may result in lysosomal fusion with other intracellular 

vacuoles leading to the formation of pathologically enlarged lysosomes (Moore 1988).  

Lysosomes are an ideal starting point for investigations of generalized cellular injury in 

organisms.  This role of lysosomes may be important as a detoxification system.  As with 

other detoxification systems, this process is effective until the storage capacity of the 
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lysosomes is overloaded, or lysosomes are damaged directly by the accumulated 

contaminant (Lowe et al 1995).  
 

 

Lysosomal responses have been used as a biomarker of stress, due to exposure of cells to 

metals, utilizing a method using the vital dye, neutral red.  This biomarker has also been 

employed for hemocytes of the common garden snail Helix aspersa (Snyman et al 2000), 

as well as the lysosomes of the coelomocytes of earthworms (Svendsen et al 1996, 

Svendsen and Weeks 1997, Reinecke et al 2002).  The neutral red retention assay is an 

assay based on the ability of viable cells to incorporate and bind neutral red and is used to 

determine lysosomal damage.   

 

Neutral red is a weak cationic, vital dye that penetrates cell membranes by non-ionic 

diffusion, accumulating intracellularly in the lysosomes.  When exposed to toxic stress, 

such as exposure to toxic heavy metals, the integrity of the lysosomal membrane is 

affected and, depending on the degree of damage to the membrane, the dye accumulated 

in the lysosomal vacuole diffuses out to the cystol, staining it light red.  The assay is 

based on the rate at which the leaking of neutral red takes place.  The neutral red 

retention time is calculated by determining the time needed for the dye to leak into the 

cystol of 50% of the cells observed (Reinecke and Reinecke 1999). It has proven to be 

reliable and practical in assessment of the adverse effects of anthropogenic heavy metal 

contamination at subcellular level for different earthworm species (Svendsen et al 1996, 

Svendsen and Weeks 1997, Reinecke et al 2002).  Therefore this biomarker was selected 

in the present study to measure the stress response of earthworm coelomocytes, 

especially to metal exposure.   

 

Earthworm coelomocytes, the cells used in this study, are contained primarily within the 

fluid in the coelomic cavity.  They play an essential role in cell-mediated immunity by 

reacting to invading pathogens or foreign material by phagocytosis.  They consist of five 

major types: basophils, neutrophils, acidophils, granulocytes and chloragogen cells.  

Neutrophils are highly adherent cells and tend to be flattened with a thinly spread and 
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nearly transparent cytoplasm, with irregular and indistinct cell margins.  Their sizes vary 

from 12-50 µm, depending on the degree of flattening.  The nucleus is large (8-10 µm). 

The cytoplasm of neutrophils reacts weakly with most cytoplasmic stains (Stein and 

Cooper 1978).   

 

Acidophils are highly granular cells comprised of two groups, Type I (20-30 µm) in 

diameter and Type II (10-15µm) in diameter.  The cytochemical reactions of the 

cytoplasm are often obscured by the granules.  Granulocytes are amoeboid in appearance 

with an irregular outline.  They contain numerous prominent granules which are more 

widely dispersed than those of acidophils.  The nucleus (5-9 µm) is randomly located 

within the cell.  Chloragogen cells are also highly granular, but markedly different from 

either acidophils or granulocytes. They usually occur in clusters and pseudopodia are 

inconspicuous or absent.  Nuclei are frequently obscured by the granules (Stein and 

Cooper 1978).    

 

Basophils are the most numerous of the coelomocytes, comprising approximately 60-

70% of the cell population.  The majority of the basophilic cells is 8-15 µm in diameter, 

but may vary between 5 µm and 30 µm.  The cytoplasm is not heavily granular and the 

nucleus is spherical to ovoid, (4-8 µm in diameter) and located centrally or peripherally.  

They have large petaloid pseudopodia, extending from the cell surface (Stein and Cooper 

1978).  These cells were selected for counting in this study, because they are abundant, 

and less granular.  They can also adhere to the glass of the microscope slides due to the 

amoeboidal characteristics, and therefore be observed easily. 

 

In the context of contaminant biomonitoring in earthworms, the neutral red assay cannot 

be used to measure effects of toxicants targeting the functioning of the systems, such as 

the nervous system, in exposed organisms. Cholinesterase inhibition is the primary mode 

of organophosphate toxicity and the measure of this inhibition has become a standard for 

determining organophosphate exposure (Richards and Kendall 2002). 

Organophosphorous pesticides (OP’s) therefore affect neurotransmission if 
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acetylcholinesterase is inhibited.  As the role of neurotoxins such as OP’s were 

investigated during the present study, this biochemical biomarker was also selected. 

 

Signal transmission in the nervous system involves electric transmission along the 

surface of the axon and chemical transmission of impulses between neurons.  

Acetylcholine is the major chemical transmitter between neurons.  It is discharged at a 

nerve synapse, moves across the synapse and binds to the acetylcholine receptor in the 

postsynaptic membrane.  The binding initiates an electric impulse in the next neuron, and 

the message is passed on (Moriarty 1999).  Termination of the signal transmission occurs 

when acetylcholine is rapidly hydrolyzed into acetate and cholin by acetylcholinesterase 

released from the post-synaptic membrane, immediately after signal transmission.  

Acetylcholinesterase activity can be inhibited by toxicants, such as organophosphates, 

when they bind irreversibly to the enzyme.  The binding (Moriarty 1999) removes 

functional acetycholinesterase molecules, thereby causing an accumulation of 

acetylcholine at the nerve synapses, and a continuous stimulation of the nerves and their 

target muscles (Peakall 1992). 

 

The method most commonly used to measure acetylcholinesterase activity is that of 

Ellman (1961).  This method consists of providing the enzyme, acetylcholinesterase, with 

a substrate, acetylthiocholine, which, if hydrolyzed, releases the thiocholine and acetic 

acid.  The quantity of thiocholine obtained is proportional to the enzyme activity of 

acetylcholinesterase (Ellman et al 1961) and is measured spectrophotometrically.  This 

method is therefore based on the coupling of following reactions: 

 

Acetylthiocholine      (enzyme)        thiocholine + acetate 

Thiocholine + dithiobisnitrobenzoate = yellow colour (Ellman 1961) 

 

Acetylcholinesterase inhibition has been used extensively as a biomarker in studies of 

effects of chlorpyrifos and mixtures of other insecticides with chlorpyrifos in vivo and in 

vitro on a number of different organisms. This biomarker has also been used to test a 

number of pesticides on different species of earthworms (Stenersen 1979).  Steveens and 
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Benson (2000) used it in assessing the interactions of chlorpyrifos and methyl mercury on 

the amphipod Hyalella azteca, and it was also used by (Richardson et al 2001) in 

analyzing the additivity of in vitro inhibition by mixtures of chlorpyirifos-oxon and 

azinphos-methyl-oxon on rat brain and serum. Jin-Clark et al (2002) also used the 

method in a study to determine the effects of atrazine and cyanazine on chlorpyrifos 

toxicity in Chironomus tentans, as also did Richards and Kendall (2002) in a study of 

biochemical effects of chlopyrifos on Xenopus laevis.  According to Scaps et al (1997), it 

is not a good biomarker for measuring the effects of heavy metals on E. fetida because 

unlike organophosphates, heavy metals do not seem to affect AChE activity. 

 

It is important to establish the relationship between these biomarkers and lifecycle 

parameters such as growth and reproduction of organisms, in order to provide some 

degree of ecological relevance (Reinecke et al 2002).    It is also important to use 

different biomarkers in mixed toxicity because an organism may be affected differently 

by different contaminants on different target sites.  For instance, acetylcholinesterase 

activity may be a good biomarker for measuring the effects of organophosphates, but not 

in measurements of heavy metal toxicity (Scaps et al 1997).  The question then becomes:  

what happens when an organism is exposed to a mixture of an organophosphate and a 

heavy metal and can biomarkers be used to determine interactions in a mixture? 

 

Because the chosen pesticides are commonly used in the orchards and vineyards of the 

Western Cape, South Africa, they are likely to occur as mixtures in the field. These 

mixtures can have devastating effects on the beneficial soil organism such as earthworms 

if synergistic interactions occur.  The null hypothesis in this study was that single 

pesticides and mixtures of pesticides from different groups would not have different 

effects on the lifecycle parameters of non-target soil invertebrates (earthworms), and that 

biomarker results would not be affected by the pesticide mixtures of different groups and 

their single components. The bioavailability and uptake of the pesticides studied would 

also not be affected by the presence of other pesticides in a mixture.  The simple additive 

model is therefore expected to apply. 
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The aim of this study was to determine whether binary mixtures of toxicants would affect 

earthworms differently than single substances.  The substances used in this study were 

from three different groups of pesticides, the organophosphate group, the pyrethroids and 

the heavy metal containing group.  The endpoints measured were lifecycle parameters 

and biomarkers.  The lifecycle parameters were biomass change, as a measure of growth, 

and cocoon production and hatching success, as measures of reproduction. The 

biomarkers used were the neutral red retention assay (measuring lysosomal integrity) and 

the acetylcholinesterase assay (measuring inhibition of acetylcholinesterase). 

 

The specific aims of this study therefore were:  

 

1. To assess the effects the pesticides singly and in a mixture on lifecycle parameters of 

non-target organisms (earthworms) 

 

2. To assess the effects of the pesticides at sub-organismal level on earthworms exposed 

singly and in a mixture using biomarkers 

 

3. To determine if there are any differences in results as a result of the different exposure 

media  

 

4. To determine if there are any interactions between the pesticides as shown by the 

measured endpoints 

 

5. To compare and validate the use of the chosen biomarkers in assessing mixture toxicity 
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CHAPTER 2 
 

MATERIALS AND METHODS 

 

2.1 Study species 

 

Eisenia fetida Savigny, 1826, was chosen for this study.  This species occurs naturally in 

northern Europe in places rich in organic matter (Lokke and Van Gestel (1998).   

The classification according to Simms and Gerard (1985) is as follows: 

Phylum: Annelida 

Subphylum: Clitellata 

Class:  Oligochaeta 

Order:  Haplotaxida 

Suborder: Lumbricina 

Superfamily: Lumbricodea 

Family: Lumbricidae 

Subfamily: Lumbricinae 

Genus:  Eisenia 

Species: Eisenia fetida (Savigny, 1826) 

 

It is usually found in damp rotting vegetation, wet decaying leaf litter and under sodden 

logs where pH ranges from 4.3-7.5.  It is also found, on standing manure heaps and 

sewage filter beds where it can tolerate low concentrations of ammonia (Sims and Gerard 

1985).  It is widely considered a model species and is prescribed as a test organism for 

toxicity testing by the Organization for Economic Co-operation and Development 

(OECD) in Europe and the Environmental Protection Agency (EPA) in the USA (Lokke 

and Van Gestel 1998).  E. fetida is cultured in our laboratory under controlled conditions 

(20oC and 60% RH) and originated from individuals brought from Europe.  All worms 

for the present study came originally from this stock culture.  Cocoons were collected 

from the stock culture, they were then hatched in distilled water in Petri dishes and 

hatchlings were reared in cow manure to obtain synchronized cultures of the same age.  
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Homogenic groups (with regard to weight) of adult (clitellate) worms of the same age, 

were selected for each treatment, and used for all exposure concentrations and replicates. 

 

2.2 Preliminary Experiments 

 

Preliminary experiments were done in soil to determine the range of concentrations to be 

tested in the final experiments. Ten clitellate worms were subjected to four 

concentrations (0.02 mg/kg, 0.2 mg/kg, 2 mg/kg and 20 mg/kg) of chlorpyrifos in 400g of 

artificial soil (OECD 1984), with a control.   The exposure period was four weeks, and 

worms were weighed at the beginning and the end of the exposure period, to determine 

biomass change as a measure of growth.  Cocoons were sorted from the substrate after 

four weeks and kept in multiwell plates in distilled water for four weeks.  The cocoons 

were checked daily for hatchlings. The number of cocoons, hatching success and number 

of hatchlings were determined for each treatment.  Four worms were removed from the 

substrate after the exposure period, and used for the neutral red retention assay.  Three 

worms were removed from each treatment and prepared for the determination of the 

acetylcholinesterase activity utilizing Ellman’s Method (Ellman 1961).  

 

Adult worms were also exposed to 4 different concentrations of chlorpyrifos (0.02 mg/kg, 

0.2 mg/kg, 2 mg/kg and 20 mg/kg) in artificial groundwater (Kiewiet and Ma 1991), and 

a control.  Worms were starved prior to exposure by putting them in Petri dishes on moist 

filter paper for 48hours.  Four worms were subjected to 400ml of the groundwater for 

48hours.  After the exposure period, acetylcholinesterase activity of whole worm 

homogenate was measured using Ellman’s Method. 

 

No preliminary experiments were done on the copper oxychloride exposures because 

lethal and sublethal concentrations of copper oxychloride are known for E. fetida from 

previous studies in our laboratory (Helling et al 2000, Reinecke et al 2002). 
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2.3 Exposures in soil 

 

Artificial soil was used as a medium of exposure in this part of the study.  This was 

prepared according to the method described by the OECD (1984).  It consisted of 70% 

washed silica sand, 20% kaolin clay and 10% peat moss thoroughly mixed by hand, and 

CaCO3 was added to give a pH of 6.0±0.5.  The pH was measured with a Crison micro 

pH meter 2001 (KCL electrode), by shaking the substrate sample in distilled water of 

known pH and measuring it directly.  The sand was obtained from the region of 

Kraaifontein (Cape Town, South Africa) in an open field at a depth of ±1.5m.  Before use 

the sand was rinsed thoroughly with water until the water that came out was clear.  The 

sand was then dried at 70°C and sieved to a particulate size of 850 ≤ 500 µm.  The 

koaline clay was obtained from T. REINDERSTM Potters supplies (Kraaifontein), and the 

peat moss used was SHAMROCKTM Irish peat moss, obtained from the Stodels nursery in 

Durbanville.  

 

Test pesticides used were dissolved in ± 240ml of distilled water, and thoroughly hand 

mixed with the substrate to give the desired concentrations per dry weight and a moisture 

content of 60-65%, determined by analyzing 1g of substrate with a Sartørius infrared 

moisture detector.  Ten clitellate worms were put in a cylindrical glass container (±3.6cm 

radius and ±16.5cm height) with 400g of this substrate.  Four replicates (done 

sequentially) were used for each treatment (two replicates for the copper oxychloride 

treatments).  A piece of black plastic was put on top of the substrate in the containers to 

avoid drying out of the substrate.  Each container was then covered with a piece of gauze 

to keep the worms from escaping.  Containers were kept in a climate room of 20oC and 

60% relative humidity for the exposure period of 4 weeks.  The containers were kept in 

the dark by covering them with black plastic.  Worms in each container were fed weekly 

with 2.5g of urine-free cattle manure that had been previously dried, ground and sieved to 

a particle size of between 100 and 500µm.  Concentrations used were, control (no 

pesticide), 0.02, 0.2, 2.0, and 20 mg kg-1 pesticide in the substrate.  Pesticides used were 

the organophosphate chlorpyrifos (480g/l active ingredient) and copper oxychloride 

(Virikop C®: copper oxychloride 850g/kg = 500g/kg Cu) singly. Binary mixtures of 
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chlorpyrifos and copper oxychloride in 1:1 ratios of the same concentrations were also 

used.   

 

2.4. Experiment using artificial groundwater 

 

Experiments were also carried out using artificial groundwater, which consisted of 

100mg NaHCO3, 20mg KHCO3, 200mg CaCl2.2H2O, and 180mg MgSO4 per liter of 

distilled water, as a medium of exposure (Kiewiet and Ma 1991). The artificial 

groundwater had a pH of ±8.2. Pesticides were dissolved in the groundwater to give the 

desired concentrations of, control (no pesticide), 0.002, 0.02, 0.2, and 2 mg/l of 

groundwater.  These concentrations were of a lower range than those used in the soil 

because the preliminary experiments showed the pesticides were more bioavailable in 

water than in soil and the exposed organisms could not tolerate higher concentrations.    

Four replicates of each treatment were used.  Worms were exposed singly to chlorpyrifos, 

copper oxychloride, azinphos-methyl and cypermethrin.  Exposures were also done in 

binary mixtures of 1:1 ratio of the same concentrations. Mixtures of chlorpyrifos-copper 

oxychloride (organophosphate/heavy metal), chlorpyrifos-azinphos-methyl 

(organophosphate/organophosphate) and chlorpyrifos-cypermethrin 

(organophosphate/pyrethroid) were used.    

 

Clitellate E. fetida of the same age of were used.  Prior to exposure they were kept on 

moist filter paper in Petri dishes at a temperature of 20oC for 48 hours so they could 

empty their gut contents.  This was done to avoid polluting the groundwater with fecal 

matter during the exposure period.  The Petri dishes were kept under black plastic to 

avoid light from negatively affecting the worms.  Earthworms were exposed in 400ml of 

aerated artificial groundwater in 500ml beakers in a climate room of 20oC for 48 hours 

under black plastic to avoid light. The water was acclimated by putting it in the climate 

room of 20°C for 24hours before exposing the worms.  Four worms were put in each 

beaker.  After exposure, two worms were taken from each replicate and prepared for 

acetylcholinesterase activity measurement. 
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2.5 Lifecycle parameters 

 

Each of the ten worms from each replicate of each treatment of the artificial soil 

exposures was washed, dried with a paper towel, put onto a weighing boat with water to 

avoid the drying out of the animal and weighed on a Sartørius balance.  The mean mass 

of the ten worms from each jar was determined at the beginning and the end of the 

experiment.  Percentage biomass change was calculated and used as a measure of growth.  

 

At the end of the four week exposure period, cocoons were hand-sorted from the 

substrate by emptying the substrate from each jar and spreading it onto a tray. A 

magnifying lamp was used to enhance the visibility of the cocoons.  The cocoons were 

then counted and put separately in wells of multiwell plates with distilled water.  The 

multiwell plates were incubated in the climate room at 20°C for four weeks, in the dark 

under black plastic.  Hatchlings were recorded daily and removed from the water during 

this period.  The total number of cocoons and number of hatchlings per cocoon were 

determined, and the hatching success calculated. These were used to determine the effects 

of pesticides and the pesticide mixtures on the reproduction of the worms. 

 

2.6. Biomarkers 

 

2.6.1 Neutral-red retention assay 

 

This biomarker was only measured in worms exposed in the artificial soil medium as the 

NRR assay measures stress response of the animals, and the artificial groundwater 

experiments also affected the worms with other stress factors (see discussion).  After the 

exposure period of four weeks, three worms were removed from the substrate of each 

replicate, thus 12 worms from each exposure concentration.  Each worm was washed in 

distilled water and blotted dry on filter paper.  20 µl of coelomic fluid containing 

coelomocytes was collected from each worm in a syringe containing 20 µl of earthworm 

Ringer solution (Appendix1A (1)).  This was done by inserting the needle into the 

coelomic cavity posterior to the clitellum, with the worm bent double to increase 
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pressure.  A stock solution (Appendix1A (2)) of the neutral red dye was prepared by 

mixing 20 mg of neutral red (Toluyne Red) with 1 ml of dimithylsulfoxide (DMSO) in an 

Eppendorf tube.  To make up a working solution, 10 µl of the stock solution was mixed 

with 2.5 ml of the earthworm Ringer solution.  20 µl of the cell suspension in ringer was 

placed onto a microscope slide and left for about 20 seconds for the cells to adhere to the 

surface.  20 µl of the working solution (Appendix1A (3)) was then added to the cell 

solution on the slide.  The slide was then covered with a cover slip and transferred to a 

microscope with 400X magnification, where observation was started immediately and 

divided into two minute intervals.   During these intervals the slide was scanned 

randomly and the number of basophilic cells with fully stained cytosols and the number 

with unstained cytosols counted.   After each 2 minute observation period the slide was 

put into a moisture chamber for 2 minutes to prevent it from drying out.  Observations 

were ended when the ratio of cells with stained cystols was over 50% of the total number 

of cells counted. This interval was noted as the neutral red retention time. 

 

2.6.2 Acetylcholinesterase activity 

 

This biomarker was measured in earthworms from artificial soil and groundwater 

exposures.  Because worms exposed in soil water had their gut contents eliminated before 

the exposure period, they could be used directly for the analysis.  However, worms 

exposed in artificial soil had to eliminate their gut contents after removal from the 

substrate and before the analyses.  This was done in order to get a clear sample of the 

homogenate without the unnecessary gut content probably also containing 

microorganisms, that could interfere with the analysis. At the end of the exposure period 

in soil, three worms were removed from the substrate of each container and put on moist 

filter paper in Petri dishes for 48 hours to allow them to empty their gut contents before 

analyzing them.  All worms collected and treated in this way were frozen in 2 ml plastic 

tubes with closed lids at -80°C until they could be homogenized.  

 

To obtain a suspension of worm material to be analyzed, each worm was defrosted and 

homogenized as follows:  A constant ratio of worm mass versus buffer volume was used 
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during the homogenization. Each worm was weighed and pH8 phosphate buffer 

(Appendix1B (1)) was added (4× w/v).  The worm was then put into a small Petri dish on 

ice and cut into small pieces using a scalpel and fine forceps.  The worm pieces were then 

transferred to a cold glass Kimble tube with the amount of buffer determined (4× w/v).  

The worm was homogenized for 1 minute at setting five with a Polytron homogenizer.  

The homogenate was divided into two equal quantities and transferred to two 1.5 ml 

Eppendorf tubes using a plastic Pasteur pipette.  The homogenate was then centrifuged in 

a microcentrifuge (Haraeus Biofuge fresco 1998) at 13.0G per minute at 4°C for 30 

minutes.  The supernatant was removed with a 100µl mircropippete and two aliquots of 

±300 µl put in two 0.6 ml microcentrifuge tubes and frozen at -80oC until 

acetylcholinesterase activity could be determined.  

 

Acetylcholinesterase activity was measured using a modified method of the Ellman assay 

(Ellman et al 1961).  Acetylthiocholine iodide (Appendix1B (2)) was used as the 

substrate with dithionitrobenzene (DTNB) as reagent (Appendix1B (3)). These, as well as 

the buffer were prepared and kept in ice to maintain a constant cold temperature. The 

homogenate was unfrozen and held on ice to keep it cold. 10 µl of the homogenate, 90 µl 

of pH 7 phosphate buffer (Appendix1B (1)), 50 µl of DTNB and 50 µl of 

acetylthiocholine iodide were mixed in each well of a 96 multiwell plate.  The 

absorbance was read on a Multiscan spectrophotometric plate reader at 405 nm. Readings 

were taken kinetically at two minute intervals over a period of 10 minutes.  A blank 

consisting of buffer, substrate and DTNB solutions was also read. (For the experiment 

chlorpyrifos, copper oxychloride and the mixture thereof in artificial groundwater, 25 µl 

of homogenate, 75 µl of buffer, 50 µl of DTNB and 50 µl of acetylthiocholine iodide 

were used; and readings were taken kinetically at four intervals over a period of 5 

minutes).  This was done because this experiment was treated as a preliminary 

experiment.  The absorbance over time was determined and referred to as relative 

acetylcholinesterase activity.   A standard was prepared by mixing a cocktail of different 

worm homogenates of the same species and this standard was used as a reference for the 

reading of each plate. An average of three readings was taken for each worm, as well as 

the standard.  A standard curve was plotted to ensure the stability of the enzyme substrate 
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and a linear curve meant that the enzyme assay was working.  Protein analysis was done 

on some of the samples as well as the standard using a single cell module Life Science 

UV/Vis Spectrophotometer (Beckman DU®530) to ensure that all samples were 

homogeneous (the ratio of buffer to homogenate was the same in all samples). The 

homogenate (75 µl) was mixed with pH7 phosphate buffer (325 µl) and 100 µl of the 

solution was transferred into a 1 ml cuvette in the spectrophotometer.  A blank, consisting 

of pH 7 phosphate buffer, was read before each run.   An average of the three readings 

was taken for each sample. 

 

2.7. Statistical analysis 

 

The data in this study were analyzed by using version 6 of STATISTICA data analysis 

software system, (StatSoft Inc. 2003).  Values were presented as the mean ± SD (standard 

deviation).  The probability levels used for statistical significance were p<0.05 for all 

tests. Differences between treatment groups were checked for significance by means of a 

one-way analysis of variance (ANOVA).  Differences between the different pesticide 

treatments were checked for significance by means of a factorial ANOVA, followed by 

an all pair-wise multiple comparison test (Student Newman-Keuls) (see Appendix 3). 
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CHAPTER 3 
RESULTS 

 

3.1 Preliminary exposures of E. fetida to chlorpyrifos 

 

3.1.1 In soil 

 

Worms from all the pesticide treatments and control survived but lost weight. There were 

no statistically significant differences in biomass change or reproduction between the 

different treatments. All the exposure treatments showed shorter mean neutral red 

retention times than the control, but there was no dose-response relationship.  The highest 

concentration treatment (20 mg/kg) had the lowest AChE activity of all the treatments. 

 

The chosen concentrations of chlorpyrifos (0.02 mg kg-1, 0.2 mg kg-1, 2.0 mg kg-1, and 20 

mg kg-1 in substrate) thus proved to be sublethal for E. fetida, as shown by these 

preliminary experiments, and it was decided that these concentrations would be used for 

the final experiments in soil.  Although there were no statistically significant differences 

observed between the different treatments with regard to lifecycle parameters, a number 

of repetitions were done during the final experiment to substantiate that. 

 

3.1.2. In artificial groundwater 

 

Some of the earthworms (50%) exposed to 20mg/l of chlorpyrifos in artificial 

groundwater died before the end of the exposure period of 48hours.  It was then decided 

that a lower range of exposure concentrations (0.002 mg/l, 0.02 mg/l, 0.2 mg/l and 2 

mg/l) would be used for the final experiment.  The neutral red retention times for all 

treatments, including the control were very short (see chapter 4.3.1), it was therefore 

decided that the neutral red retention assay would not be used as a biomarker in the 

artificial groundwater experiments.  Chlorpyrifos showed a dose related effect on AChE 

activity. 
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3.2 Final exposures of E. fetida to chlorpyrifos and copper oxychloride in soil 

 

3.2.1 Lifecycle parameters 

 

3.2.1.1 Growth (biomass change) 
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Figure 3.1 Mean percentage biomass change (weight loss) of E. fetida after 4 weeks of exposure to 

different concentrations of chlorpyrifos in soil (n=40). Different letters indicate that the means are 

significantly different among treatments (ANOVA; F=34.95, df=1,4; p<0.05). 

 

All the earthworms from all the concentration treatment groups survived, and all 

earthworms lost weight, including those of the control.  As illustrated in Figure 3.1, 

earthworms exposed to 20 mg/kg of chlorpyrifos lost more (22.4%) weight than the rest 

of the concentration treatment groups. The percentage weight loss of these earthworms 

was significantly different (p<0.05) to the 0.02 mg/kg and the 2mg/kg concentration 

treatments, and not significantly different to the control (Figure 3.1).  Earthworms 

exposed to 2 mg/kg had the least percentage weight loss (5.7%), but were not 

significantly different (p>0.05) to other treatment groups except the 20 mg/kg treatment.   
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Earthworms exposed to different concentrations of copper oxychloride also lost weight 

and showed no significant differences (p>0.05) in biomass change among all the 

treatments (Figure 3.2). 
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Figure 3.2 Mean percentage biomass change (weight loss) of E. fetida after 4 weeks of exposure to 

different concentrations of copper oxychloride in soil (n=20). 

 

Earthworms exposed to a binary mixture of chlorpyrifos and copper oxychloride also 

showed no significant differences (p>0.05) among all the treatment groups (Figure 3.3).  

In Figure 3.4 the biomass changes found in the three pesticide treatments are compared.  

There were no statistically significant differences (p>0.05) exhibited by biomass change 

as a measure of growth at any of the concentrations between the three pesticide 

treatments (see Tables 1(a.1 and a.2)). 
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Figure 3.3 Mean percentage biomass change (weight loss) of E. fetida after 4 weeks of exposure to 

different concentrations of a 1:1 mixture of chlorpyrifos and copper oxychloride (n=40). 
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Figure 3.4 Percentage biomass change (weight loss) of E. fetida exposed to different concentrations of 

chlorpyrifos (n=40), copper oxychloride (n=20) and 1:1 mixture of chlorpyrifos and copper oxychloride 

(n=40) (see Tables 1(a.1and a.2)).  
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3.2.1.2 Reproduction  

 

Figure 3.5 represents the mean number of cocoons produced by earthworms exposed to 

different concentrations of chlorpyrifos, copper oxychloride and a binary mixture of the 

two pesticides.  Earthworms exposed to the highest concentration treatment (20 mg/kg) 

of chlorpyrifos produced a significantly (ANOVA; F=676.67; df=1,4; p<0.05) lower 

mean number of cocoons, compared to the rest of the chlorpyrifos exposure treatments.  

Earthworms exposed to copper oxychloride showed no significant differences (p>0.05), 

in the number of cocoons produced, in the different concentration treatments.  The 

earthworms exposed to the mixture of chlorpyrifos and copper oxychloride also did not 

exhibit any significant differences (p>0.05) among the different concentration treatments 

in terms of the number of cocoons produced.  There were no significant differences 

(p>0.05) in the number of cocoons produced at any of the concentrations between the 

three pesticide treatments (see Tables 1(b.1 and b.2)). 
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Figure 3.5 Mean number of cocoons ±SD produced by E. fetida after 4 weeks of exposure to different 

concentrations of chlorpyrifos (n=40), copper oxychloride (n=20) and a 1:1 mixture of chlorpyrifos and 

copper oxychloride (n=40) (see Tables 1(b.1and b.2)). 

 

There were no significant differences in the hatching success of earthworms exposed to 

different concentrations of chlorpyrifos, copper oxychloride or the mixture of 

chlorpyrifos and copper oxychloride (p>0.05) (Figure 3.6 and Tables 1(c.1and c.2)).  
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Figure 3.6 Percentage hatching success (Mean ±SD) of cocoons produced by E. fetida after 4 weeks of 

exposure to different concentrations of chlorpyrifos (n=40), copper oxychloride (n=20) and a 1:1 mixture of 

chlorpyrifos and copper oxychloride (n=40) (see Tables 1(c.1 and c.2)). 

 

Figure 3.7 represents the mean number of hatchlings per cocoon produced by earthworms 

exposed to different concentrations of chlorpyrifos, copper oxychloride and a binary 

mixture of the two pesticides.  The number of hatchlings per cocoon showed no 

significant differences (p>0.05) among the concentrations of chlorpyrifos, copper 

oxychloride and the mixture, or between the different pesticide treatments.    
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Figure 3.7 Mean number of hatchlings per cocoon (±SD) produced by E. fetida after 4 weeks of exposure 

to different concentrations of chlorpyrifos (n=40), copper oxychloride (n=20) and a 1:1 mixture of 

chlorpyrifos and copper oxychloride (n=40) (see Tables 1(d.1 and d.2). 
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3.2.2 Biomarkers 

 

3.2.2.1 Neutral Red Retention Assay 

 

Figure 3.8 illustrates the neutral red retention times of earthworms exposed to different 

concentrations of chlorpyrifos.  Control worms had a significantly (p<0.05) high NRR 

time compared to the rest of the concentration treatments (see Table1(e.1)).  A slight 

dose-related effect was exhibited by the NRR times of cells from worms treated with 

different concentrations of the pesticide.  The decrease in retention time between the 

control and the 0.02 mg/kg treatment was significant (p<0.05).  The NRR times of the 

lowest concentration treatment (0.02 mg/kg) and the highest concentration treatment (20 

mg/kg) differed significantly (p<0.05) from each other.  The two middle concentration 

treatments (0.2 mg/kg and 2mg.kg) did not differ significantly from each other (p>0.05). 

These concentration treatments had significantly (p<0.05) lower NRR times than the 

control, but not significantly (p>0.05) lower times than the 0.02 mg/kg treatment, and 

also not significantly (p>0.05) higher times than the 20 mg/kg treatment. 
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Figure 3.8 Mean neutral red retention time (minutes) ±SD of E. fetida exposed to different concentrations 

of chlorpyrifos in soil for 4 weeks (n=12; different letters on the error bars indicate that the means are 

significantly different among treatments (ANOVA; F=604.12; df=1,4; p<0.05)). 
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Figure 3.9 Mean neutral red retention time (minutes) ±SD of E. fetida exposed to different concentrations 

of copper oxychloride in soil for 4 weeks (n=6; different letters on the error bars indicate that the means are 

significantly different among treatments (ANOVA; F=442.95; df=1,4; p<0.05)). 
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Figure 3.10 Mean neutral red retention time (minutes) ±SD of E. fetida exposed to different 

concentrations of a mixture of chlorpyrifos and copper oxychloride in soil for 4 weeks (n=12; different 

letters on the error bars indicate that the means are significantly different among treatments (ANOVA; 

F=372.74; df=1,4; p<0.05)). 
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Figure 3.9 illustrates the NRR times of the earthworms exposed to copper oxychloride.  

The control worms had significantly (p<0.05) higher NRR times than the exposed 

concentration treatments (see Table1(e.1)).  The highest concentration treatment (20 

mg/kg) had a significantly lower NRR time than the lowest concentration treatment (0.02 

mg/kg).  There was a dose response relationship shown by the NRR time.  The NRR time 

of the 0.2 mg/kg concentration treatment was significantly higher than 20 mg/kg 

treatment, but not significantly different from the 0.02 mg/kg and the 2 mg/kg treatments.  

The NRR time of the 2 mg/kg concentration treatment was significantly different from 

the control and the 0.02 mg/kg treatments, but not significantly different from the other 

concentration treatments.  The highest concentration treatment (20 mg/kg) differed 

significantly from all the concentration treatments, except the 2 mg/kg treatment. 
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Figure 3.11 Mean neutral red retention time (minutes) ± SD of E. fetida exposed to different 

concentrations of a Chlorpyrifos (n=12), copper oxychloride (n=6) and a 1:1 mixture of chlorpyrifos and 

copper oxychloride (n=12) (see Tables 1(e.1 and e.2)). 

 

The mixture of chlorpyrifos and copper oxychloride had an effect on the NRR time of the 

exposed worms (Figure 3.10).  The control worms had a significantly (p<0.05) higher 

NRR time than the rest of the concentration treatments (see Table 1(e.1)). The exposed 

treatment groups did not differ significantly (p>0.05) from each other.  Although there 

was no dose relationship exhibited by the NRR times of worms exposed to different 
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concentrations of a mixture of the two pesticides, the cells of the exposed worms were 

affected.  The dose related effect on NRR time exhibited by the earthworms exposed to 

single pesticide exposures was not shown by the earthworms exposed to the mixture 

(Figure 3.11). 

 

3.2.2.2 Acetylcholinesterase activity 
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Figure 3.12 A linear curve of three readings (at 405nm) of the standard solution of whole earthworm (E. 

fetida) homogenate. 

 

Table 3.1 Protein readings (Optical density) of 15 samples of whole worm homogenate of E. 

fetida as well as the standard. 

 

 

 

 

 

 

 

 

 

 

 

Standard 2.72 
Worm 1 2.81 
Worm2 3.16 
Worm 3 2.90 
Worm 4 3.05 
Worm 5 2.94 
Worm 6 3.08 
Worm 7 3.07 
Worm 8 3.00 
Worm 9 3.01 
Worm 10 2.78 
Worm 11 3.14 
Worm 12 3.06 
Worm 13 3.06 
Worm 14 2.89 
Worm 15 2.76 
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The three readings of the standard curve gave linear curves, which meant that the enzyme 

substrate was stable and the enzyme assay was working well (Figure 3.12).  The OD 

values for the protein analysis of 15 worm samples and a standard were close (mean = 

2.96 ± 0.14), and that meant that the samples were homogeneous (the ratio of buffer to 

worm mass was the same).  

 

Figure 3.13 illustrates the relative acetylcholinesterase activity at 405 nm in whole bodies 

of earthworms exposed to different concentrations of chlorpyrifos.  Control worms had a 

significantly (p<0.05) higher enzyme activity than the worms exposed to the highest 

concentration treatment (20 mg/kg) (see Table 1(f.2)).  The control worms did not differ 

significantly (p>0.05) to the other concentration treatment worms, although the 0.2 mg/kg 

treatment worms had a slightly lower (but not statistically significant) enzyme activity.  

There was a noticeable dose relationship between the highest and the lowest exposure 

groups, although the enzyme activity of the 0.02 mg/kg and 2 mg/kg concentration 

treatments was slightly higher than the control, and did not differ significantly (p>0.05) 

from the control.   As illustrated on Figure 3.14, earthworms exposed to different 

concentrations of copper oxychloride showed no significant differences (p>0.05) in 

acetylcholinesterase activity (see Table 1(f.2)).  This implies that copper oxychloride did 

not have any effect on the acetylcholinesterase activity of the exposed worms.   

 

Figure 3.15 represents the mean AChE activity of earthworms exposed to different 

concentrations of a binary mixture of chlorpyrifos and copper oxychloride.  There is a 

noticeable dose relationship with control worms having a significantly (p<0.05) higher 

enzyme activity than the highest concentration treatment worms (20 mg/kg).  The control 

worms did not differ significantly (p>0.05) from the other concentration treatments in 

enzyme activity.  The highest concentration treatment had a significantly (p<0.05) lower 

enzyme activity than the rest of the concentration treatments.  The 0.02 mg/kg 

concentration treatment had a slightly higher enzyme activity than the rest of the 

concentration treatments (even the control) although only significantly (p<0.05) different 

from the 20 mg/kg treatment. 
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Figure 3.13 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of chlorpyrifos in soil for 4 weeks (n=12; different letters on error bars indicate that the 

means are significantly different among treatment groups (ANOVA; F=832.74; df=1,4; p<0.05)). 
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Figure 3.14 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of copper oxychloride in soil for 4 weeks (n=6).  
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Figure 3.15 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of a 1:1 mixture of chlorpyrifos and copper oxychloride in soil for 4 weeks (n=12; different 

letters on error bars indicate that the means are significantly different among treatment groups (ANOVA;  

F=1677.98; df=1,4; p<0.05)). 
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Figure 3.16 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida after 4 weeks of 

exposure to different concentrations of chlorpyrifos (n=12), copper oxychloride (n=6) and a 1:1 mixture of 

chlorpyrifos and copper oxychloride (n=12) in soil (see Tables 1(f.1and f.2)). 
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When comparing the results of the three pesticide treatments (Figure 3.16 and Tables 

1(f.1 and f.2)) it can be seen that chlorpyrifos and the mixture had a noticeable dose-

related effect with the control having a higher enzyme activity than the highest treatment 

concentration (20 mg/kg).  No effect was found with the earthworms treated with copper 

oxychloride. 

 

3.3 Exposures of E. fetida in artificial groundwater 

 

3.3.1. Chlorpyrifos and copper oxychloride 

 

The control treatment group of the earthworms exposed to chlorpyrifos showed no 

significant differences (p>0.05) to the exposed treatment groups, except for the highest 

concentration treatment (2 mg/l) (Figure 3.17 and Table 2(a.1)).  The highest 

concentration treatment (2 mg/l) was also not significantly different (p >0.05) from the 

other exposed treatment groups (0.002 mg/l, 0.02 mg/l, 0.2 mg/l), which were not 

significantly different (p>0.05) from each other.  
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Figure 3.17 Mean relative acetylcholinesterase activity ±SD of E. fetida exposed to different 

concentrations of chlorpyrifos in artificial groundwater for 48 hours (n=6; different letters on error bars 

indicate that the means are significantly different among treatment groups (ANOVA; F=563; df=1,4; 

p<0.05)). 
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Earthworms exposed to different concentrations of copper oxychloride showed no 

significant differences (p>0.05) among all the concentration treatment groups, including 

the control (Figure3.18 and Table 2(a.1)). 

 

The results of the mixture exposure (Figure 3.19 and Table 2(a.1)) were similar to those 

of the chlorpyrifos exposure (Figure 3.17), with the control group differing significantly 

from the highest concentration treatment (2 mg/l), and the other exposure treatment 

groups (0.002 mg/l, 0.02 mg/l, 0.2 mg/l) not differing significantly from each other. 

 

The results of the exposure to chlorpyrifos, copper oxychloride and the mixture thereof, 

in artificial groundwater (Figure 3.20) were somewhat similar to the results obtained in 

the soil (Figure 3.16) exposure in this study, with chlorpyrifos and the mixture showing a 

dose related effect and copper oxychloride showing no effect on enzyme activity.  There 

was no interaction between copper oxychloride and chlorpyrifos in the mixture.  Copper 

oxychloride showed no effect on AChE activity on its own or in the mixture with 

chlorpyrifos.   
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Figure 3.18 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of copper oxychloride in artificial groundwater for 48 hours; n=6. 
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Figure 3.19 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of a 1:1 mixture chlorpyrifos and copper oxychloride in artificial groundwater for 48 hours 

(n=6; different letters on error bars indicate that the means are significantly different among treatment 

groups (ANOVA; F=456.31; df=1,4; p<0.05)). 

 

0

100

200

300

400

500

600

700

Control 0.002 0.02 0.2 2

Concentration (mg/l)

R
el

at
iv

e 
A

ch
E 

ac
tiv

ity
 (4

05
nm

)

Chlorpyrifos

Copper
oxychloride
Mixture

 
Figure 3.20 Mean relative acetylcholinesterase activity (at 405nm) of E. fetida exposed to different 

concentrations of chlorpyrifos (n=6), copper oxychloride (n=6), and a 1:1 mixture of the two pesticides 

(n=6) in artificial groundwater for 48hours (see Tables 2(a. 1 and a.2)). 
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3.3.2 Chlorpyrifos and Azinphos-methyl 

 

Figure 3.21 illustrates the relative AChE activity of earthworms exposed to different 

concentrations of chlorpyrifos in artificial groundwater.  The three lowest concentration 

treatments (control, 0.002 mg/l, and 0.02 mg/l) showed no significant differences 

(p>0.05) among each other.  These three concentration treatments were significantly 

different (p<0.05) from the highest concentration treatment (2 mg/l), but not significantly 

different (p>0.05) from the 0.2 mg/l treatment.  The 0.2 mg/l treatment was not 

significantly different from any of the other concentration treatments, including the 

control (see Table 2(b.2)).  

 

Earthworms exposed to the following concentration treatments of azinphos-methyl; 

control, 0.002 mg/l and 0.02 mg/l; showed no significant differences (p>0.05) in AChE 

activity (Figure 3.22 and Table 2(b.2)). The 0.002 mg/l and 0.02 mg/l concentration 

treatments had a slightly higher enzyme activity than the control (not statistically 

significant), and a significantly higher (p<0.05) enzyme activity than the highest 

concentration treatments (0.2 mg/l and 2 mg/l). The control treatment had a significantly 

higher (p<0.05) enzyme activity than the 2 mg/l treatment, but not significantly different 

(p>0.05) from the 0.2 mg/l treatment. The 0.2 mg/l treatment had a significantly higher 

(p<0.05) enzyme activity than the 2 mg/l treatment. 

 

The earthworms exposed to the lowest concentration treatments (control, 0.002 mg/l and 

0.02 mg/l) of the mixture of chlorpyrifos and azinphos-methyl showed no significant 

differences (p>0.05) in enzyme activity (Figure 3.23 and Table 2(b.2)).  These 

concentration treatments had significantly higher (p<0.05) enzyme activities than the 

highest concentration treatments (0.2 mg/l and 2 mg/l).  The highest concentration 

treatments (0.2 mg/l and 2 mg/l) did not show any significant differences (p>0.05) in 

enzyme activity.  There were therefore two distinct levels of enzyme activity, the high 

(control, 0.002 mg/l and 0.02 mg/l) and the low (0.2 mg/l and 2 mg/l), with the 2 mg/l 

treatment slightly lower in enzyme activity than the 0.2 mg/l treatment (although not 

statistically significant). 
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Figure 3.21 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E fetida exposed to different 

concentrations chlorpyrifos in artificial groundwater for 48 hours (n=6; different letters on error bars 

indicate that the means are significantly different among treatment groups (ANOVA; F=266.04; df=1,4; 

p<0.05)). 
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Figure 3.22 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of azinphos-methyl in artificial groundwater for 48 hours (n=8; different letters on error bars 

indicate that the means are significantly different among treatment groups (ANOVA; F=507.51; df=1,4; 

p<0.05)). 
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Figure 3.23 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of a 1:1 mixture of chlorpyrifos and azinphos-methyl in artificial groundwater for 48 hours 

(n=8; different letters on error bars indicate that the means are significantly different among treatment 

groups (ANOVA; F=350.82; df=1,4; p<0.05)). 

 

Earthworms exposed to the lowest concentration treatments (control, 0.002 mg/l and 0.02 

mg/l) of chlorpyrifos, azinphos-methyl and the mixture, showed no differences in enzyme 

activity.  Earthworms from the 0.2 mg/l exposure concentrations of chlorpyrifos and 

azinphos-methyl singly, had slightly higher AChE activity values (146±24 and 156±39 

(at 405 nm) respectively) than the mixture (93±38 (at 405 nm)), although this was not 

significantly different (p>0.05)(see Table 2(b.2)). Earthworms from the highest 

concentration treatment (2 mg/l) of chlorpyrifos showed a significantly higher  (p>0.05) 

AChE value (108±30 (at 405 nm)) than azinphos-methyl and the mixture (28±7 and 31±8 

(at 405 nm)) (see Table 2(b.2)).  Azinphos-methyl on its own showed a significant 

difference (p<0.05) in AChE activity between the 0.2 mg/l and the 2 mg/l treatment, 

which was not shown by chlorpyrifos and the mixture.  In all three pesticide treatments 

the dose relationship started showing from the 0.02 mg/l concentration treatment to the 2 

mg/l concentration treatment.   
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Figure 3.24 Mean relative acetylcholinesterase activity (at 405nm) of E. fetida exposed to different 

concentrations of chlorpyrifos (n=6), azinphos-methyl (n=8) and a 1:1 mixture of chlorpyrifos and azinphos 

methyl (n=8) in artificial groundwater for 48 hours (see Tables 2(b.1and b.2)).  

 

Earthworms exposed to azinphos-methyl had a higher enzyme activity than those 

exposed to chlorpyrifos in all exposure treatments except the 2 mg/l treatment (Figure 

3.24).  The enzyme activity of earthworms exposed to the mixture was lower than that of 

earthworms exposed to the single components in all concentration treatments, except the 

highest concentration treatment (2 mg/l), where the earthworms exposed to the mixture 

had a slightly higher enzyme activity than those exposed to azinphos-methyl (Figure 

3.24). 

 

3.3.3 Chlorpyrifos and Cypermethrin  

 

Earthworms exposed to chlorpyrifos singly showed some significant differences between 

concentration treatments (Figure 3.21 and Section 3.3.2).  Earthworms exposed to 

different concentrations of cypermethrin showed no significant differences (p>0.05) in 

AChE activity (Figure 3.25 and 3.27).  There were no significant differences in the AChE 

activity of earthworms exposed to different concentrations of a mixture of chlorpyrifos 
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and cypermethrin (Figure 3.26 and 3.27).  All earthworms died in the 2 mg/l exposure 

treatment of the mixture of chlorpyrifos and cypermethrin, therefore the AChE activity 

could not be measured at that exposure treatment (Figure 3.26 and Table 2(c.1)).   
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Figure 3.25 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of cypermethrin in artificial groundwater for 48 hours (n=8).  
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Figure 3.26 Mean relative acetylcholinesterase activity (at 405nm) ±SD of E. fetida exposed to different 

concentrations of a mixture of chlorpyrifos and cypermethrin in artificial groundwater for 48hours (n=8).  
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Figure 3.27 Mean relative acetylcholinesterase activity of E. fetida exposed to different concentrations of 

chlorpyrifos (n=6), cypermethrin (n=8), and a 1:1 mixture of chlorpyrifos and cypermethrin (n=8) (see 

Tables 2 (c.1and c.2)). 
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CHAPTER 4 

 

DISCUSSION 

 

4.1. Lifecycle parameters 

 

4.1.1 Growth 

 

With regard to biomass change as a measure of growth, earthworms from all pesticide 

exposure treatments survived, but lost weight (Figures 3.1-3.4).  These worms were taken 

from compost, an ideal environment for E. fetida, where they were fed with fresh cattle 

manure.  During the experimental period they were in artificial soil, which is a totally 

different substrate, and they were fed with moistened dry cattle manure.  This change in 

substrate material and the difference in organic matter content of the two substrates, 

coupled with the change in feeding material could have affected the biomass of the 

earthworms, as was shown by control worms also losing weight.  Spurgeon et al (1994), 

also found a decline in earthworm biomass in all their treatments (including the controls), 

and attributed that to the lack of suitable food in the OECD soil medium they also used.  

They then suggested that experiments should include animal manure in the test medium.  

However, even when manure is present, a large part of the diet in earthworms still 

consists of soil particles (Jager et al 2003).  

 

The highest concentration treatment (20 mg/kg) of chlorpyrifos (Figure 3.1 and 3.4) 

significantly affected the growth (biomass change) of the earthworms.  It is therefore 

evident that, although the LC50 of chlorpyrifos in adult E. fetida is reported to be 

1077mg/kg (Eason et al 1999), concentrations as low as 20 mg/kg have negative sub-

lethal effects on these organisms.   

 

With regard to copper oxychloride (Figure 3.2 and 3.4), there was a slight effect 

exhibited by growth of the worms because the biomass change of the exposed treatment 

groups was slightly higher than that of the control, although not statically significant. 
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Maboeta et al (In press) also found no significant effect of copper oxychloride on 

biomass of adult E. fetida at a concentration of 73 mg/kg, which is much higher than the 

concentrations used in the present study.  Where juveniles were however used for 

exposures, such as in the study of Helling et al (2000), growth of E. fetida was 

significantly reduced at a concentration of copper oxychloride as low as 3.3mg/kg. This 

could however be attributed to the differences in the ages of the exposed worms in the 

different studies.  Juvenile earthworms are somewhat more sensitive to toxicants than 

adults as shown by Spurgeon and Hopkin (1996).   

 

Another factor is that in the present study and that of Maboeta et al (In press), artificial 

soil was used as a substrate, instead of the cattle manure used in the other studies.  

Speciation of metals is influenced by soil characteristics such as organic matter content 

(Kiewiet and Ma 1991).  The route of uptake in these studies could also have been 

different.  In the previous studies, earthworms were fed on spiked cattle manure, while in 

the present study the cattle manure which was added as food for the worms was 

uncontaminated.  This emphasizes the importance of oral uptake versus uptake through 

the skin, which influence bioavailability of the toxicant (Belfroid et al 1995). These 

factors therefore prohibit direct comparison of the results of the present study with those 

of Helling et al (2000) because of the expected difference in the bioavailability of the 

pesticide.   

 

The mixture of chlorpyrifos and copper oxychloride (Figure 3.3 and 3.4) also did not 

have a statistically significant effect on biomass change (loss) compared to the control, 

although the exposed treatment groups had a slightly higher percentage biomass change 

than the control.  There was therefore an interaction between the two pesticides in the 

mixture, as shown by the effects on biomass, because chlorpyrifos on its own showed a 

significant effect at 20 mg/kg, while this effect was not exhibited in the mixture (Figure 

3.4).  The presence of Cu ions at this concentration could therefore have had an 

antagonistic effect on chlorpyrifos.  This indication would have to be followed up with a 

higher frequency of exposures at more concentrations, to come to a definite conclusion 

with regard to antagonism.  Biomass change was not a sensitive endpoint in measuring 
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the effects of copper oxychloride and the mixture of chlorpyrifos and copper oxychloride 

in this study.  The concentrations chosen for this study were probably too low to show 

effects on biomass change of adult E. fetida. Biomass change could be a sensitive 

parameter for measuring the effects of chlorpyrifos singly on these organisms, as is 

shown by the effect of the highest concentration treatment of this pesticide on this 

endpoint in this study.  Chlorpyrifos as a single substance had a different effect on 

biomass change than in a mixture with copper oxychloride. 

 

4.2.2 Reproduction 

 

Earthworms exposed to chlorpyrifos had a significantly reduced cocoon production at the 

highest concentration treatment (20 mg/kg) (Figure 3.5) compared to the control and 

other lower exposure groups.  Hatching success and number of hatchlings per cocoon 

were not affected by the presence of chlorpyrifos in the substrate (Figures 3.6 and 3.7).  

Cocoon production seemed to be more sensitive than other reproductive parameters for 

chlorpyrifos.  Spurgeon et al (1994), also found cocoon production of E. fetida to be a 

sensitive measure of reproduction for heavy metals.  Reinecke et al (2001), on the other 

hand, found effects of other substances on cocoon viability (hatching success and number 

of hatchlings per cocoon) to be a more sensitive endpoint for measuring sublethal effects 

than cocoon production.  That is in contrast with what is found for chlorpyrifos in the 

present study, but their study was on the effects of heavy metals.   

 

Copper oxychloride and the mixture of chlorpyrifos and copper oxychloride, had no 

effect on cocoon production, hatching success or the number of hatchlings per cocoon 

(Figures 3.5, 3.6 and 3.7).  This is again in contrast to findings by Helling et al (2000) 

and Reinecke et al (2002), where significant negative effects on cocoon production were 

exhibited at a concentration of 3.3mg/kg of copper oxychloride. They also found from 

their studies a considerable impact of copper oxychloride on reproduction at a 

concentration of 10mg/kg, as shown by a reduced hatching success and number of 

hatchlings per cocoon.  The impact of chlorpyrifos on cocoon production (at 20 mg/kg) 

was however not exhibited in the mixture of chlopryrifos and copper oxychloride. The 
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presence of copper oxychloride seemed to have inhibited the effect of chlorpyrifos.  This 

finding would also have to be investigated further to verify its validity.  Chlorpyrifos 

singly at the highest concentration showed an effect on cocoon production as a measure 

of reproduction, that was not shown by chlorpyrifos in a mixture with copper oxychloride 

(Figure 3.5). 

 

 

4.2 Biomarkers 

 

4.2.1 Neutral red retention assay 

 

Chlorpyrifos exerted a dose related response on the neutral red retention times of the 

exposed earthworms (Figure 3.8).  This is in agreement with the result found by Eason et 

al (1999) on the effect of chlorpyrifos on the lysosomal membrane integrity of the 

coelomocytes of E. andrei.  Copper oxychloride also exhibited a dose related effect on 

the neutral red retention time of the exposed earthworms (Figure 3.9), which is in 

agreement with finding from a study by Reinecke et al (2002) on the effect of this 

fungicide on the lysosomal membrane integrity of the coelomocytes of E. fetida.  The 

mixture of chlorpyrifos and copper oxychloride also exerted an effect on lysosomal 

membrane integrity as shown by the neutral red retention time, with the control having a 

significantly higher retention time than all the exposed groups, but in this case a dose 

related response was not found (Figure 3.10).  This difference in the result of exposure to 

the mixture in comparison to that of single substances suggests an interaction of some 

kind between the two pesticides, which manifested at the cellular (membrane) level.  The 

effect of the mixture of chlorpyrifos and copper oxychloride on NRR time was different 

from that of the single components. 

 

The neutral red retention times of earthworms exposed in artificial groundwater were 

between 2 and 10 minutes, even for the control. These times were very short compared to 

those of earthworms exposed in soil with control earthworms having retention times 

longer than 40 minutes.  According to Selgen (1985), the efficiency of NRR in the 
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lysosome is dependent on the efficiency of membrane bound proton pumps.  Any event 

impairing this proton pump system will result in a lowered NRR time according to 

Svendsen and Weeks (1995) who also stated that various stressors can possibly have this 

effect.  In the present study some steps, apart from the presence of pesticides, might have 

been stressful to the earthworms during the groundwater exposure.  Earthworms were 

first starved for 48 hours, and then exposed to an aqueous medium in a beaker with no 

substrate to which they could adhere.  Thus they were very active and were moving all 

the time, which probably cost them energy.  These factors alone might have affected the 

integrity of the lysosomal membrane of the earthworm coelomocytes.  As the NRR time 

for these worms were much shorter than the soil exposure worms, even for the control 

animals (no pesticide), it was decided not to use this biomarker for the artificial 

groundwater exposures. 

 

 

4.2.2. Acetylcholinesterase inhibition 

 

Compared to the control, copper oxychloride on its own had no effect on the AChE 

activity in both the soil and groundwater exposures (Figures 3.14 and 3.18).  This is in 

agreement with findings by Scaps et al (1997) who concluded that AChE activity was not 

a sensitive biomarker of metal toxicity in their study of the impacts of cadmium and lead 

on cholinesterase and metabolic pathway enzyme activity on E. fetida. Chlorpyrifos and 

the mixture of chlorpyrifos and copper oxychloride did show a dose related effect on the 

enzyme activity of the exposed worms in the soil and groundwater exposures (Figures 

3.16 and 3.20).  The similarity of the effect of chlorpyrifos and the mixture on AChE 

activity could mean that it was only chlorpyrifos that affected AChE activity in the 

mixture.  This implies that copper oxychloride in the mixture did not interact with 

chlorpyrifos to influence the effect on AChE activity in both exposure media.  The 

mixture of chlorpyrifos and copper oxychloride did not affect AChE activity differently 

from the single components, both in soil and in groundwater. 
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Chlorpyrifos (Figures 3.21) and azinphos-methyl (Figure 3.22), both organophosphates, 

had a dose-related effect and affected the acetylcholinesterase activity of the exposed 

worms.  The mixture of the two pesticides showed some interaction between the two 

pesticides, because at the highest concentration (2 mg/l) chlorpyrifos had a higher AChE 

activity than both azinphos-methyl and the mixture (Figure 3.24).  At this concentration 

there seemed to be an additive effect exhibited by these pesticides on enzyme inhibition.  

At all the other concentration treatments the AChE activity of the mixture was lower than 

that of the single pesticides (Figure 3.24).  Because these are both organophosphates, they 

act on the AChE enzyme as a target site, and in that way interact with each other in a 

mixture (Richardson et al 2001).  

 

Cypermethrin had no effect on the AChE activity of the exposed worms in comparison to 

the control (Figure 3.25), probably because this enzyme is not the target site for 

pyrethroids.  All the exposed earthworms died at the highest exposure concentration of 

the mixture of chlorpyrifos and cypermethrin (Figure 3.26).  This is probably because 

pyrethroids are highly toxic and organophosphates have the ability to enhance pyrethroid 

toxicity (Ray and Foreshaw 2000). The mixture of chlorpyrifos and cypermethrin at the 

other exposure concentrations had no effect on the AChE activity of the exposed 

earthworms (Figure 3.26); this is different from the effect of chlorpyrifos alone (Figure 

3.21) and means that cypermethrin could have antagonized the AChE inhibition effect on 

chlorpyrifos.  Although pyrethroids and organophosphates are neurotoxins, they act on 

different sites in the nervous system.  Pyrethroids act on voltage-dependent sodium and 

chloride channels in the axon while organophosphates act by inhibiting the AChE activity 

in the synapse of between the neurons (Costa 1988). These two target sites are both 

involved in the transmission of impulses (Schmidt-Nielsen 1990), and are possibly 

related in function.  Chlorpyrifos as a single substance affected AChE differently from 

the mixture of chlorpyrifos and cypermethrin. 
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4.3 Conclusion 

 

Growth and reproduction were not very sensitive parameters in measuring the effects of 

sublethal concentrations of copper oxychloride and the mixture of chlorpyrifos and 

copper oxychloride on adult E. fetida at the concentration range used for this study. In the 

present study there were only single applications of copper oxychloride and the mixture 

of chlorpyrifos and copper oxychloride.  It is possible that the organisms had sufficient 

time during the exposure period to recover from any effects on growth and reproduction.  

The situation in the field is different, because there are several consecutive applications 

of pesticides per season throughout the year (Helling et al 2000).  Chlorpyrifos as a single 

substance affected growth and reproduction slightly differently from the mixture of 

chlorpyrifos and copper oxychloride, by showing significant effects at the highest 

concentration treatment (Figures 3.4 and 3.5). 

 

The NRR time proved to be a sensitive biomarker for chlorpyrifos and copper 

oxychloride singly and in a mixture in soil exposures.  The mixture of the chlorpyrifos 

and copper oxychloride had a different effect on NRR time from the single components.  

The mixture of chlorpyrifos and copper oxychloride did not affect AChE activity any 

differently from single components, both in soil and in groundwater.  Results obtained for 

AChE activity of the lowest exposure concentrations of chlorpyrifos were similar in soil 

and groundwater, although the highest exposure concentration (2 mg/kg or 2 mg/l) had a 

higher enzyme inhibition in water than in soil (Figure 3.13 and Figure 3.21).  

 

Chlorpyrifos and azinphos-methyl in a mixture in groundwater showed an additive effect 

on AChE inhibition at the highest concentrations (Figure 3.24).  Chlorpyrifos in a 

mixture with cypermethrin did not have the effect on AChE activity that it had as a single 

component (Figure 3.27), therefore cypermethrin antagonized the AChE inhibition of 

chlorpyrifos.  Cypermethrin and chlorpyrifos singly were not toxic enough to kill the 
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earthworms at the highest concentration treatment, although in a mixture the earthworms 

died at this concentration.  The AChE inhibition, as a specific biomarker of 

organophosphate toxicity, can be a valuable tool in assessing the effects of 

organophosphates and mixtures organophosphates with other pesticides on non-target soil 

invertebrates.  It is also evident from the results of the present study that AChE inhibition 

cannot be used as a tool for assessing the effects of heavy metal containing pesticides. 

 

 

Studies by various authors have established links between biomarkers and lifecycle 

parameters in response to a range of chemical concentrations (Svendsen and Weeks 1997 

and Reinecke et al 2002).  The results of this study did not indicate any links between the 

biomarker responses and lifecycle parameters. Although there were no effects on the 

lifecycle parameters, there were effects exhibited by the biomarkers.  The results obtained 

in the present study support the use of biomarkers in assessing the pesticide effects on 

non-target soil invertebrates, and highlight the importance and the sensitivity of 

biomarkers in assessing effects at below organismal level.  Organisms may not seem to 

be affected by pesticides because there are no effects exhibited observable on lifecycle 

parameters, although these organisms are affected at sub-cellular and biochemical level.  

Effects at these levels could manifest at higher levels of organization with time (Maboeta 

et al 2003).   

 

It is recommended that in future experiments in OECD artificial soil medium, 

earthworms must be fed animal manure in excess, to take care of the weight loss 

problem, which could probably be due to inadequate amount of food, and lack of organic 

matter in the artificial soil medium.  Earthworms could then be weighed over time 

(maybe weekly), instead of the beginning and the end of experiment, to see if there is any 

change in biomass over time.  A higher range of concentrations could also be used to 

determine effects on lifecycle parameters.  Lastly, the pesticide mixtures done in artificial 

groundwater could also be done in soil, to see if there are any effects on lifecycle 

parameters and to see if those effects can be linked to biomarker results. 
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APPENDIX 1 
 
BIOMARKER TEST SOLUTIONS 
 

A. Neutral Red Retention Assay 
 

1. Earthworm Ringer Solution 

 

Sodium Chloride (NaCl2)    (0.414g) 

Potassium Chloride (KCl)    (0.036g) 

Calcium Chloride (CaCl2)    (0.042g) 

Magnesium Sulfate (MgSO4)   (0.027g) 

Potassium Hydrophosphate (KH2PO4)  (0.005g) 

Sodium Hydrophosphate (Na2HPO4)  (0.004g) 

Sodium Bicarbonate (NaHCO3)   (0.035g) 

 

Dissolve in 100ml of distilled water and manipulate pH to 7.3 

 

2. Stock Solution 

 

20 mg Neutral Red (Toluyne Red) [C15H17N4Cl] 

1 ml DMSO (Dimithylsulfoxide) [C2H6OS] 

Mix well in small container (Eppendorf tube) 

 

3. Working Solution 

 

2.5 ml Ringer Solution 

10 µl Stock Solution 

Mix well 
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B. Acetylcholinesterase Activity 

 

1. Phosphate Buffer 

Na2HPO4 141.96 g/mol = 14.196g in 1000ml of distilled water 

Set pH to 7 or 8 as desired with HCl and/or NaOH 

 

2. Acetylthiocholine Iodide 

10.835 mg of Acetylthiocholine iodide dissolved in 0.5ml of pH7 Sodium phosphate 

buffer. 

 

3. DTNB  

9.9 mg DTNB in 2.5 ml pH7 Sodium phosphate buffer. 

Dissolve and add 3.75 mg NaHCO3 
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APPENDIX 2 
 

EXPERIMENTAL DATA 

1. IN SOIL 

1.1 LIFECYCLE PARAMETERS 
 

1.1.1(b) Biomass change of earthworms exposed to chlorpyrifos 
Control n=40 

 Startmass Endmass Difference 
 0.5808 0.5219 0.0589
 0.8769 0.3765 0.5004
 0.7266 0.6008 0.1258
 1.0532 0.5422 0.511
 0.6955 0.662 0.0335
 0.6224 0.4594 0.163
 0.7031 0.4244 0.2787
 0.7043 0.4554 0.2489
 0.5226 0.4962 0.0264
 0.6387 0.4224 0.2163
 0.3891 0.3909 -0.0018
 0.3839 0.4259 -0.042
 0.2495 0.2697 -0.0202
 0.2343 0.5353 -0.301
 0.5204 0.3898 0.1306
 0.4002 0.3527 0.0475
 0.3152 0.2292 0.086
 0.3966 0.4164 -0.0198
 0.3709 0.4137 -0.0428
 0.3376 0.2275 0.1101
 0.2754 0.3459 -0.0705
 0.3218 0.4528 -0.131
 0.397 0.361 0.036
 0.4155 0.4303 -0.0148
 0.4104 0.5417 -0.1313
 0.2541 0.3351 -0.081
 0.5546 0.4464 0.1082
 0.2837 0.3001 -0.0164
 0.2914 0.2145 0.0769
 0.2335 0.3946 -0.1611
 0.44 0.3018 0.1382
 0.2596 0.2962 -0.0366
 0.3595 0.2462 0.1133
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 0.3716 0.2944 0.0772
 0.4955 0.3849 0.1106
 0.3488 0.4535 -0.1047
 0.3603 0.1757 0.1846
 0.6314 0.281 0.3504
 0.3689 0.5503 -0.1814
 0.2465 0.364 -0.1175

Mean 0.4510325 0.394568 0.056465
SD 0.1891174 0.11138 0.1686449
%biomass change  12.519054

 

Chlorpyrifos n = 40 

 

 

0.02 
mg/k
g    

0.2 
mg/k
g   

        

 
Startm
ass 

Endma
ss 

Differen
ce  

Startm
ass 

Endma
ss 

Differen
ce 

 0.3241 0.3757 -0.0516  0.5605 0.4762 0.0843 
 0.3245 0.2926 0.0319  0.4721 0.4749 -0.0028 
 0.3057 0.3053 0.0004  0.3894 0.4136 -0.0242 
 0.4069 0.2968 0.1101  0.4628 0.4217 0.0411 
 0.414 0.3287 0.0853  0.555 0.3645 0.1905 
 0.4447 0.3036 0.1411  0.5346 0.3507 0.1839 
 0.3129 0.4294 -0.1165  0.4318 0.3329 0.0989 
 0.4091 0.3379 0.0712  0.4428 0.4055 0.0373 
 0.345 0.3745 -0.0295  0.5286 0.468 0.0606 
 0.3387 0.3815 -0.0428  0.3888 0.4173 -0.0285 
 0.447 0.4053 0.0417  0.3854 0.4516 -0.0662 
 0.6103 0.3649 0.2454  0.5231 0.4895 0.0336 
 0.3139 0.3041 0.0098  0.3634 0.4495 -0.0861 
 0.4891 0.4376 0.0515  0.33 0.3055 0.0245 
 0.4617 0.434 0.0277  0.4425 0.4784 -0.0359 
 0.7738 0.4609 0.3129  0.5117 0.3851 0.1266 
 0.4074 0.4075 -1E-04  0.5075 0.4889 0.0186 
 0.3937 0.6922 -0.2985  0.4283 0.3252 0.1031 
 0.3987 0.409 -0.0103  0.6314 0.4106 0.2208 
 0.4224 0.0908 0.3316  0.5131 0.2856 0.2275 
 0.5674 0.4395 0.1279  0.5113 0.3318 0.1795 
 0.8598 0.5405 0.3193  0.4478 0.3875 0.0603 
 0.4122 0.4906 -0.0784  0.4942 0.3356 0.1586 
 0.437 0.6989 -0.2619  0.4151 0.3867 0.0284 
 0.3356 0.7481 -0.4125  0.5817 0.4121 0.1696 
 0.6514 0.4196 0.2318  0.3759 0.3959 -0.02 
 0.5229 0.4347 0.0882  0.4048 0.4571 -0.0523 
 0.5438 0.3638 0.18  0.4921 0.3334 0.1587 
 0.2981 0.3944 -0.0963  0.5449 0.2376 0.3073 
 0.4619 0.2629 0.199  0.3133 0.3753 -0.062 
 0.4353 0.4685 -0.0332  0.3554 0.5085 -0.1531    
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 0.7814 0.5089 0.2725  0.2783 0.2728 0.0055 
 0.4506 0.3353 0.1153  0.5012 0.3279 0.1733 
 0.536 0.3329 0.2031  0.4681 0.6292 -0.1611 
 0.3733 0.6995 -0.3262  0.4654 0.3905 0.0749 
 0.2887 0.4482 -0.1595  0.7078 0.3728 0.335 
 0.4179 0.8525 -0.4346  0.3863 0.4121 -0.0258 
 0.7118 0.3814 0.3304  0.4538 0.3261 0.1277 
 0.476 0.3033 0.1727  0.4943 0.3815 0.1128 
 0.495 0.2583 0.2367  0.3928 0.3517 0.0411 

Mean 
0.4599

93 
0.4203

53 0.03964 Mean 
0.4621

83 
0.3955

33 0.06665 

SD 
0.1387

23 
0.1473

41 
0.197137

2 SD  
0.0867

79 
0.0748

18 
0.113865

51 
%biomass 
change 

8.6175
32  

%biomass 
change 

14.420
71   

    
    

 

2 
mg/k
g    

20 
mg/kg   

        

 
Startm
ass 

Endma
ss 

Differen
ce  

Startm
ass 

Endma
ss 

Differen
ce 

 0.2234 0.3488 -0.1254  0.5596 0.3972 0.1624 
 0.5544 0.5019 0.0525  0.4735 0.3803 0.0932 
 0.2947 0.3449 -0.0502  0.4715 0.4241 0.0474 
 0.5079 0.4348 0.0731  0.5898 0.482 0.1078 
 0.521 0.6104 -0.0894  0.508 0.5173 -0.0093 
 0.6719 0.225 0.4469  0.4863 0.3384 0.1479 
 0.3839 0.4311 -0.0472  0.5424 0.4553 0.0871 
 0.2847 0.307 -0.0223  0.6873 0.3775 0.3098 
 0.5395 0.3343 0.2052  0.6218 0.464 0.1578 
 0.3576 0.3527 0.0049  0.4157 0.429 -0.0133 
 0.4885 0.4625 0.026  0.4152 0.3477 0.0675 
 0.3753 0.5052 -0.1299  0.3516 0.4621 -0.1105 
 0.5913 0.4097 0.1816  0.7672 0.394 0.3732 
 0.444 0.3984 0.0456  0.4395 0.5285 -0.089 
 0.2653 0.4227 -0.1574  0.6128 0.3705 0.2423 
 0.3839 0.5242 -0.1403  0.383 0.4852 -0.1022 
 0.5671 0.6086 -0.0415  0.5002 0.367 0.1332 
 0.4541 0.4038 0.0503  0.3609 0.3574 0.0035 
 0.3677 0.3588 0.0089  0.3761 0.3885 -0.0124 
 0.4395 0.2463 0.1932  0.4272 0.412 0.0152 
 0.4449 0.2867 0.1582  0.7153 0.3655 0.3498 
 0.3362 0.3231 0.0131  0.8385 0.3945 0.444 
 0.3731 0.3496 0.0235  0.7207 0.4786 0.2421 
 0.3668 0.4518 -0.085  0.553 0.436 0.117 
 0.4282 0.3868 0.0414  0.6746 0.4885 0.1861 
 0.2615 0.2689 -0.0074  0.576 0.564 0.012 
 0.3926 0.3692 0.0234  0.677 0.4924 0.1846 
 0.3289 0.3809 -0.052  0.6214 0.5053 0.1161 
 0.4636 0.3116 0.152  0.4945 0.4919 0.0026 
 0.3251 0.2646 0.0605  0.8002 0.47 0.3302    
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 0.3048 0.5951 -0.2903  0.6275 0.5211 0.1064 
 0.3597 0.2759 0.0838  0.6851 0.3363 0.3488 
 0.4169 0.4338 -0.0169  0.5974 0.5203 0.0771 
 0.2772 0.3876 -0.1104  0.4768 0.4037 0.0731 
 0.4538 0.2636 0.1902  0.7673 0.5022 0.2651 
 0.3427 0.3017 0.041  0.6721 0.4288 0.2433 
 0.2533 0.4171 -0.1638  0.5521 0.3524 0.1997 
 0.6166 0.3668 0.2498  0.7813 0.4812 0.3001 
 0.4606 0.3305 0.1301  0.5071 0.6775 -0.1704 
 0.4026 0.3939 0.0087  0.5007 0.4201 0.0806 

Mean 
0.4081

2 
0.3847

58 
0.02336

25 Mean 
0.57070

5 
0.4427

08 
0.12799

75 

SD 
0.1067

39 
0.0956

72 
0.13477

67 SD 
0.13120

3 
0.0720

39 
0.14481

1 
%biomass 
change 

5.7244
19  

%biomass 
change 

22.427
96   

    
 
1.1.1(c) Biomass change of earthworms exposed to copper 
oxychloride    
 
Control n=20 
 
 Startmass Endmass Difference 
 0.5136 0.3622 0.1514
 0.2703 0.4572 -0.1869
 0.4603 0.3056 0.1547
 0.3292 0.2698 0.0594
 0.3825 0.3156 0.0669
 0.6012 0.3701 0.2311
 0.497 0.3285 0.1685
 0.3665 0.3622 0.0043
 0.4991 0.3053 0.1938
 0.4767 0.5852 -0.1085
 0.3908 0.3965 -0.0057
 0.4649 0.408 0.0569
 0.4544 0.369 0.0854
 0.3876 0.3339 0.0537
 0.3943 0.4093 -0.015
 0.5034 0.3149 0.1885
 0.4041 0.3187 0.0854
 0.5055 0.2869 0.2186
 0.418 0.302 0.116
 0.4017 0.3397 0.062

Mean 0.436055 0.35703 0.079025
SD 0.075744 0.071391 0.107023
% biomass change  18.12271
 
Copper oxychloride n=20 
    

 
0.02 
mg/k    

0.2 
mg/k      
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g g 
        

 
Startm
ass 

Endma
ss 

Differen
ce  

Startm
ass 

Endma
ss 

Differen
ce 

 0.6218 0.4098 0.212  0.6785 0.3917 0.2868 
 0.3396 0.2608 0.0788  0.8264 0.259 0.5674 
 0.6647 0.5083 0.1564  0.8163 0.4767 0.3396 
 0.4851 0.4078 0.0773  0.4034 0.4196 -0.0162 
 0.5464 0.3769 0.1695  0.5683 0.6493 -0.081 
 0.4053 0.5155 -0.1102  0.5769 0.3664 0.2105 
 0.496 0.5881 -0.0921  0.4744 0.411 0.0634 
 0.4241 0.4366 -0.0125  0.4146 0.3518 0.0628 
 0.5198 0.3864 0.1334  0.3015 0.6069 -0.3054 
 0.8297 0.3682 0.4615  0.5293 0.3111 0.2182 
 0.5482 0.4266 0.1216  0.4627 0.3803 0.0824 
 0.7052 0.5026 0.2026  0.6111 0.6093 0.0018 
 0.412 0.3905 0.0215  0.5379 0.2331 0.3048 
 0.4722 0.4004 0.0718  0.3895 0.3789 0.0106 
 0.3798 0.5983 -0.2185  0.3385 0.3947 -0.0562 
 0.5549 0.533 0.0219  0.2975 0.2946 0.0029 
 0.4897 0.4477 0.042  0.3882 0.4363 -0.0481 
 0.4937 0.2813 0.2124  0.2728 0.3256 -0.0528 
 0.3471 0.3905 -0.0434  0.4494 0.4099 0.0395 
 0.5793 0.3225 0.2568  0.5053 0.2451 0.2602 

Mean 
0.5157

3 
0.4275

9 0.08814 Mean 
0.4921

25 
0.3975

65 0.09456 

SD 
0.1202

45 
0.0890

58 0.14678 SD 
0.1527

25 
0.1133

82 
0.18947

45 
%biomass 
change 

17.090
34  

%biomass 
change 

19.214
63   

    
    

 

2 
mg/k
g    

20 
mg/k
g   

        

 
Startm
ass 

Endma
ss 

Differen
ce  

Startm
ass 

Endma
ss 

Differen
ce 

 0.9649 0.3236 0.6413  0.7512 0.5467 0.2045 
 0.5085 0.4595 0.049  0.5258 0.3267 0.1991 
 0.4171 0.3162 0.1009  0.574 0.4528 0.1212 
 0.3665 0.48 -0.1135  0.4351 0.2757 0.1594 
 0.5494 0.5989 -0.0495  0.396 0.4116 -0.0156 
 0.4273 0.2676 0.1597  0.7968 0.4307 0.3661 
 0.5092 0.4289 0.0803  0.2979 0.5337 -0.2358 
 0.4803 0.3483 0.132  0.5023 0.3007 0.2016 
 0.6508 0.3632 0.2876  0.585 0.532 0.053 
 0.4996 0.328 0.1716  0.672 0.3828 0.2892 
 0.4395 0.279 0.1605  0.5306 0.3388 0.1918 
 0.3759 0.3796 -0.0037  0.2838 0.3522 -0.0684 
 0.333 0.3642 -0.0312  0.2703 0.2261 0.0442 
 0.3536 0.4207 -0.0671  0.3676 0.2107 0.1569 
 0.434 0.3771 0.0569  0.3452 0.456 -0.1108    
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 0.394 0.3327 0.0613  0.4504 0.4297 0.0207 
 0.3009 0.2809 0.02  0.2952 0.3915 -0.0963 
 0.3165 0.3227 -0.0062  0.4147 0.2433 0.1714 
 0.4533 0.2712 0.1821  0.385 0.3414 0.0436 
 0.357 0.2796 0.0774  0.3081 0.2686 0.0395 

Mean 
0.4565

65 
0.3610

95 0.09547 Mean 
0.4593

5 
0.3725

85 
0.08676

5 

SD 
0.1438

79 
0.0814

65 
0.15752

16 SD 
0.1517

62 
0.0995

2 
0.14332

01 
%biomass 
change 

20.910
49  

%biomass 
change 

18.888
65   

    
 
 
 
 
1.1.1(d) Biomass change of earthworms exposed to a mixture 
of chlorpyrifos and copper oxychloride    
 
Control n=40 
 
 Startmass Endmass Difference 
 0.3381 0.3125 0.0256
 0.3122 0.3479 -0.0357
 0.2908 0.2716 0.0192
 0.2132 0.6182 -0.405
 0.3109 0.4609 -0.15
 0.4625 0.3967 0.0658
 0.4078 0.3758 0.032
 0.4669 0.2894 0.1775
 0.3615 0.2958 0.0657
 0.3269 0.4304 -0.1035
 0.3289 0.3613 -0.0324
 0.2582 0.3642 -0.106
 0.2533 0.2737 -0.0204
 0.3077 0.352 -0.0443
 0.356 0.2152 0.1408
 0.3581 0.3944 -0.0363
 0.3818 0.4308 -0.049
 0.2433 0.2856 -0.0423
 0.2951 0.3925 -0.0974
 0.2732 0.3379 -0.0647
 0.4427 0.4767 -0.034
 0.5282 0.5132 0.015
 0.6732 0.4731 0.2001
 0.5945 0.5152 0.0793
 0.5239 0.4644 0.0595
 0.5808 0.4455 0.1353
 0.3777 0.3603 0.0174
 0.4382 0.3505 0.0877
 0.6345 0.5105 0.124
 0.6432 0.2888 0.3544    
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 0.8411 0.4951 0.346
 0.5669 0.5266 0.0403
 0.5371 0.3717 0.1654
 0.577 0.6339 -0.0569
 0.4469 0.4631 -0.0162
 0.4538 0.5308 -0.077
 0.5894 0.2743 0.3151
 0.8454 0.6772 0.1682
 0.5176 0.404 0.1136
 0.3166 0.3546 -0.038
Mean 0.441878 0.408408 0.03347
SD 0.156059 0.106416 0.140343
%biomass change  7.574497
 
Mixture: chlorpyrifos and copper oxychloride  n = 40 
    

 
0.02 
mg/kg    

0.2 
mg/k
g   

        

 
Startma
ss 

Endma
ss 

Differen
ce  

Startm
ass 

Endma
ss 

Differen
ce 

 0.376 0.2536 0.1224  0.4679 0.3749 0.093 
 0.5177 0.3003 0.2174  0.277 0.3446 -0.0676 
 0.3409 0.3703 -0.0294  0.2287 0.3363 -0.1076 
 0.3374 0.5839 -0.2465  0.3564 0.3158 0.0406 
 0.2713 0.3353 -0.064  0.366 0.4489 -0.0829 
 0.3092 0.4253 -0.1161  0.2512 0.3132 -0.062 
 0.3331 0.3882 -0.0551  0.3456 0.362 -0.0164 
 0.2884 0.309 -0.0206  0.2623 0.2876 -0.0253 
 0.2482 0.319 -0.0708  0.2741 0.2279 0.0462 
 0.3838 0.4161 -0.0323  0.4067 0.3047 0.102 
 0.541 0.2683 0.2727  0.221 0.2923 -0.0713 
 0.3243 0.5062 -0.1819  0.3238 0.347 -0.0232 
 0.3455 0.565 -0.2195  0.2778 0.3063 -0.0285 
 0.5803 0.3949 0.1854  0.2809 0.3385 -0.0576 
 0.2854 0.3693 -0.0839  0.4429 0.3872 0.0557 
 0.3688 0.341 0.0278  0.2792 0.3624 -0.0832 
 0.2695 0.3152 -0.0457  0.2492 0.4149 -0.1657 
 0.2628 0.3566 -0.0938  0.3007 0.2864 0.0143 
 0.2433 0.3476 -0.1043  0.3823 0.3198 0.0625 
 0.2585 0.2566 0.0019  0.2796 0.3705 -0.0909 
 0.5044 0.5105 -0.0061  0.6768 0.3645 0.3123 
 0.6775 0.656 0.0215  0.5511 0.5089 0.0422 
 0.6955 0.3428 0.3527  0.5912 0.2815 0.3097 
 0.7121 0.2815 0.4306  0.7065 0.4259 0.2806 
 0.284 0.3299 -0.0459  0.3295 0.3628 -0.0333 
 0.3796 0.3038 0.0758  0.4323 0.5168 -0.0845 
 0.7578 0.1925 0.5653  0.666 0.2595 0.4065 
 0.3908 0.2938 0.097  0.4045 0.4027 0.0018 
 0.4353 0.4787 -0.0434  0.4846 0.4698 0.0148    
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 0.395 0.571 -0.176  0.5126 0.3365 0.1761 
 0.4846 0.4546 0.03  0.62 0.3566 0.2634 
 0.5826 0.3849 0.1977  0.5034 0.3717 0.1317 
 0.6271 0.378 0.2491  0.405 0.5794 -0.1744 
 0.5383 0.4257 0.1126  0.5221 0.4558 0.0663 
 0.6282 0.3652 0.263  0.3352 0.4984 -0.1632 
 0.5575 0.4382 0.1193  0.6852 0.4317 0.2535 
 0.4645 0.4413 0.0232  0.4945 0.377 0.1175 
 0.4525 0.3691 0.0834  0.5646 0.3173 0.2473 
 0.948 0.4176 0.5304  0.6598 0.2637 0.3961 
 0.6632 0.2946 0.3686  0.5866 0.3681 0.2185 

Mean 
0.45159

8 
0.3837

85 
0.06781

25 Mean 
0.4251

2 
0.3672

45 
0.05787

5 

SD 
0.16919

7 
0.0997

96 
0.19542

24 SD 
0.1469

47 
0.0769

21 
0.15582

33 
%biomass 
change 

15.016
14  

%biomass 
change 

13.613
8   

    
    

 

2 
mg/k
g    

20 
mg/k
g   

        

 
Startm
ass 

Endma
ss 

Differen
ce  

Startm
ass 

Endma
ss 

Differen
ce 

 0.3574 0.3041 0.0533  0.5243 0.2565 0.2678 
 0.3164 0.2832 0.0332  0.3318 0.5804 -0.2486 
 0.2897 0.4498 -0.1601  0.3806 0.4273 -0.0467 
 0.2939 0.2985 -0.0046  0.2839 0.382 -0.0981 
 0.2014 0.6068 -0.4054  0.3398 0.4092 -0.0694 
 0.299 0.2425 0.0565  0.3352 0.386 -0.0508 
 0.3836 0.3277 0.0559  0.2551 0.4186 -0.1635 
 0.3237 0.2944 0.0293  0.4039 0.396 0.0079 
 0.2904 0.2976 -0.0072  0.3266 0.3077 0.0189 
 0.3733 0.4053 -0.032  0.336 0.3293 0.0067 
 0.2715 0.339 -0.0675  0.3681 0.3926 -0.0245 
 0.2822 0.3958 -0.1136  0.3099 0.3739 -0.064 
 0.3093 0.3268 -0.0175  0.3406 0.2843 0.0563 
 0.2303 0.2789 -0.0486  0.438 0.409 0.029 
 0.2571 0.2656 -0.0085  0.3674 0.4506 -0.0832 
 0.4253 0.3051 0.1202  0.2895 0.3229 -0.0334 
 0.2953 0.4579 -0.1626  0.345 0.4352 -0.0902 
 0.3047 0.2638 0.0409  0.2268 0.3471 -0.1203 
 0.2089 0.2087 0.0002  0.2084 0.2237 -0.0153 
 0.3195 0.3072 0.0123  0.3137 0.2472 0.0665 
 0.5632 0.3264 0.2368  0.6173 0.4242 0.1931 
 0.2696 0.3422 -0.0726  0.4307 0.201 0.2297 
 0.3975 0.3488 0.0487  0.4178 0.3123 0.1055 
 0.3071 0.3849 -0.0778  0.4849 0.4062 0.0787 
 0.4629 0.369 0.0939  0.6084 0.3666 0.2418 
 0.2742 0.3639 -0.0897  0.4373 0.423 0.0143 
 0.5152 0.2378 0.2774  0.4382 0.5068 -0.0686 
 0.4556 0.2386 0.217  0.3363 0.2885 0.0478    
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 0.469 0.2921 0.1769  0.6255 0.2932 0.3323 
 0.2351 0.2161 0.019  0.5264 0.284 0.2424 
 0.7141 0.5386 0.1755  0.3968 0.4078 -0.011 
 0.6695 0.4214 0.2481  0.8552 0.382 0.4732 
 0.56 0.5147 0.0453  0.3109 0.2503 0.0606 
 0.5735 0.3741 0.1994  0.5031 0.523 -0.0199 
 0.4614 0.295 0.1664  0.4488 0.315 0.1338 
 0.4569 0.2065 0.2504  0.3754 0.2854 0.09 
 0.6032 0.4595 0.1437  0.3919 0.2966 0.0953 
 0.6856 0.3764 0.3092  0.6979 0.5834 0.1145 
 0.6702 0.4672 0.203  0.438 0.2795 0.1585 
 0.7876 0.2942 0.4934  0.5208 0.2528 0.268 

Mean 
0.4041

08 
0.3431

53 
0.06095

5 Mean 
0.4146

55 
0.3615

28 
0.05312

75 

SD 
0.1562

38 
0.0922

96 
0.15886

44 SD 
0.1315

31 
0.0916

23 
0.14557

5 
%biomass 
change 

15.083
86  

%biomass 
change 

12.812
46   

    
    
1.1.2(a) Reproduction of earthworms exposed to chlorpyrifos    
    
Chlorpyrifos    
    

 
no. of 
cocoons 

no. 
hatched 
cocoons 

% hatching 
success 

no of 
hatchlings 

hatchlings/co
coon 

Contr
ol 32 19 59.375 49 2.578947368 
 39 26 66.66666667 47 1.807692308 
 34 17 50 36 2.117647059 
 34 22 64.70588235 50 2.272727273 
Mean
s 34.75 21 60.18688725 45.5 2.194253502 

SD 
2.9860788

11 
3.915780

041 7.457450207 6.454972244 0.321167458 
      
0.02 
mg/k
g 27 18 66.66666667 37 2.055555556 
 30 19 63.33333333 41 2.157894737 
 29 16 55.17241379 35 2.1875 
 42 23 54.76190476 41 1.782608696 
Mean
s 32 19 59.98357964 38.5 2.045889747 

SD 
6.7823299

83 
2.943920

289 5.95252628 3 0.184398953 

      
0.2 
mg/k
g 33 15 45.45454545 38 2.533333333 
 40 22 55 49 2.227272727 
 45 27 60 51 1.888888889 
 42 19 45.23809524 36 1.894736842 
Mean
s 40 20.75 51.42316017 43.5 2.136057948 

SD 
5.0990195

14 
5.057996

968 7.308336666 7.593857167 0.30847814    
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2 
mg/k
g 43 23 53.48837209 52 2.260869565 
 35 17 48.57142857 39 2.294117647 
 42 28 66.66666667 61 2.178571429 
 47 25 53.19148936 55 2.2 
Mean
s 41.75 23.25 55.47948917 51.75 2.23338966 

SD 
4.9916597

11 
4.645786

622 7.790458521 9.287087811 0.053425779 

      
20 
mg/k
g 17 8 47.05882353 22 2.75 
 11 5 45.45454545 7 1.4 
 28 18 64.28571429 49 2.722222222 
 26 10 38.46153846 26 2.6 
Mean
s 20.5 10.25 48.81515543 26 2.368055556 

SD 
7.9372539

33 
5.560275

773 10.96834805 17.3781472 0.64865126  
    
    
1.1.2(b) Reproduction of earthworms exposed to copper 
oxychloride    
    

 
no. of 
cocoons 

no. hatched 
cocoons 

% hatching 
success 

no of 
hatchlings 

hatchlings/c
ocoon 

Contr
ol 35 16 45.71428571 37 2.3125 
 36 19 52.77777778 37 1.947368421 
Mean 35.5 17.5 49.24603175 37 2.129934211 

SD 
0.707106

781 2.121320344 4.994643137 0 0.258187015 

      
0.02 
mg/kg 38 26 68.42105263 49 1.884615385 
 35 12 34.28571429 25 2.083333333 
Mean 36.5 19 51.35338346 37 1.983974359 

SD 
2.121320

344 9.899494937 24.13732922 
16.970562

75 0.140514809 

      
0.2 
mg/kg 45 25 55.55555556 47 1.88 
 32 16 50 24 1.5 
Mean 38.5 20.5 52.77777778 35.5 1.69 

SD 
9.192388

155 6.363961031 3.928371007 
16.263455

97 0.268700577 

      
2 
mg/kg 45 22 48.88888889 49 2.227272727 
 32 13 40.625 31 2.384615385 
Mean 38.5 17.5 44.75694444 40 2.305944056 

SD 
9.192388

155 6.363961031 5.843451872 
12.727922

06 0.11125806 

      
20 
mg/kg 46 19 41.30434783 41 2.157894737    
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 28 8 28.57142857 18 2.25 
Mean 37 13.5 34.9378882 29.5 2.203947368 

SD 
12.72792

206 7.778174593 9.003533549 
16.263455

97 0.065128256  
   

    
1.1.2(c) Reproduction of earthworms exposed to a mixture of 
chlorpyrifos and copper oxychloride    
    

 
no. of 
cocoons 

 hatched 
cocoons 

% hatching 
success 

no of 
hatchlings 

hatchlings/c
ocoon 

Contr
ol 22 14 63.63636364 31 2.214285714 
 12 6 50 12 2 
 33 20 60.60606061 44 2.2 
 24 6 25 10 1.666666667 
Mean 22.75 11.5 49.81060606 24.25 2.020238095 

SD 
8.6168439

7 6.806859286 17.54323663 
16.2147052

6 0.255206555 

      
0.02 
mg/k
g 21 10 47.61904762 20 2 
 14 7 50 17 2.428571429 
 28 21 75 53 2.523809524 
 37 17 45.94594595 28 1.647058824 
Mean 25 13.75 54.64124839 29.5 2.149859944 

SD 
9.8319208

03 6.396613687 13.67405746 
16.3401346

4 0.405292219 

      
0.2 
mg/k
g 16 12 75 22 1.833333333 
 21 10 47.61904762 20 2 
 33 18 54.54545455 44 2.444444444 
 26 8 30.76923077 18 2.25 
Mean 24 12 51.98343323 26 2.131944444 

SD 
7.2571803

52 4.320493799 18.30679789 
12.1106014

2 0.269673442 
      
2 
mg/k
g 19 11 57.89473684 21 1.909090909 
 19 8 42.10526316 11 1.375 
 28 19 67.85714286 38 2 
 36 19 52.77777778 34 1.789473684 
Mean 25.5 14.25 55.15873016 26 1.768391148 

SD 
8.1853527

72 5.6199051 10.72065534 
12.3558353

3 0.276067716 

      
20 
mg/k
g 15 5 33.33333333 7 1.4 
 24 10 41.66666667 22 2.2 
 36 17 47.22222222 34 2 
 34 20 58.82352941 42 2.1 
Mean 27.25 13 45.26143791 26.25 1.925    
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SD 
9.7082439

19 6.782329983 10.69231905 
15.2397506

5 0.359397644  
    
    
    
    
    
1.2. BIOMARKERS 

 
1.2.1(a) Neutral red retention time of earthworms exposed to 
chlorpyrifos (n = 12)    
    
   

 

 Contol  
0.02 
mg/kg 0.2 mg/kg 2 mg/kg 

20 
mg/kg 

 37 14 18 21 13
 40 28 20 13 9
 45 17 18 21 9
 45 21 10 13 9
 41 12 10 9 13
 37 17 9 9 9
 29 5 14 13 5
 33 24 26 13 5
 37 13 14 21 5
 41 5 14 5 5
 41 26 10 21 25
 40 25 14 5 9
Mean 38.83333 17.25 14.75 13.66667 9.666667
SD 4.60895 7.7942286 5.0294587 6.110101 5.613836

 

 

 

 

 

1.2.1(b) Neutral red retention time of earthworms exposed to copper oxychloride 

(n = 6) 
 

 Control 
0.02 
mg/kg 

0.2 
mg/kg 2 mg/kg 

20 
mg/kg 

 43 26 15 14 6
 44 28 16 16 6
 45 29 17 9 5
 53 29 21 9 5
 43 9 21 17 5
 45 11 9 9 2
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Mean 45.5 22 16.5 12.33333 4.833333
Stdev 3.781534 9.380832 4.460942 3.777124 1.47196

 
 

1.2.1(c) Neutral red retention time of earthworms exposed to a mixture of 
chlorpyrifos and copper oxychloride (n = 12) 

 

 Control 
0.02 
mg/kg 

0.2 
mg/kg 2 mg/kg 

20 
mg/kg 

      
 56 22 10 13 17
 37 16 9 5 5
 46 16 6 5 5
 53 16 8 22 6
 28 20 32 6 11
 48 14 26 8 8
 39 29 13 26 13
 44 5 17 36 9
 41 17 13 24 16
 40 25 9 8 12
 41 20 9 9 9
Mean  43 18.18182 13.81818 14.72727 10.09091
SD 8.530989 6.457124 8.183131 10.53652 4.134115

 
 
 
 
 
 
 
 
 
 
 
 
 
1.2.2(a)Acetycholinesterase activity of earthworms exposed to chlorpyrifos 
(n=12) 
 

 

 Contol  
0.02 
mg/kg 

0.2 
mg/kg 2 mg/kg 

20 
mg/kg 

 269 231 173 258 101
 221 134 176 186 110
 194 205 179 204 111
 229 219 127 177 148
 296 209 211 239 106
 272 232 196 278 137
 183 343 231 169 102
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 186 372 149 217 110
 150 264 90 213 136
 310 244 192 187 125
 138 194 137 208 112
 241 262 196 251 124
Mean 224.0833 242.4167 171.4167 215.5833 118.5
SD 53.32988 61.34799 37.77005 32.9759 15.28219

 
 
1.2.2(b) Acetycholinesterase activity of earthworms exposed to copper oxychloride 
(n = 6) 
 

 Control 
0.02 
mg/kg 

0.2 
mg/kg 2 mg/kg 

20 
mg/kg 

 207 142 262 274 285
 179 250 181 235 257
 176 247 271 211 261
 184 170 248 205 230
 217 267 207 270 177
 219 212 218 255 192
Mean  197 214.6667 231.1667 241.6667 233.6667
SD 19.58571 49.62929 34.9137 29.51384 42.16001

 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.2.2(c) Acetycholinesterase activity of earthworms exposed to a mixture of 
chlorpyrifos and copper oxychloride (n = 12) 
 

 Control 
0.02 
mg/kg 

0.2 
mg/kg 2 mg/kg 

20 
mg/kg 

 220 194 201 156 161
 136 276 164 178 121
 136 250 126 142 145
 208 247 169 122 91
 252 247 156 221 112
 222 280 250 145 124
 196 259 251 253 157
 224 248 216 172 108
 159 152 220 222 152
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 202 201 196 184 127
 200 229 248 149 111
 216 212 203 194 142
Mean  197.5833 232.9167 200 178.1667 129.25
SD 36.06423 37.17638 40.17688 38.8279 22.05829

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. IN ARTIFICIAL GROUNDWATER 
 
2.1 Acetylcholinesterase activity of earthworms exposed to chlorpyrifos and copper 
oxychloride (5 minute readings) 
 
(a) Chlorpyrifos: n = 6 

 

 Control 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 537 335 438 474 316
 513 322 360 382 196
 398 407 424 295 337
 458 422 514 313 275
 295 397 162 271 162
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 451 349 363 357 206
Mean 442 372 376.8333 348.6667 248.6667
StDev  87.11831 41.82822 119.5063 73.58442 70.90181

 
 
(b) Copper oxychloride: n = 6  

 

 Control 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 432 451 336 506 104
 372 389 377 344 237
 443 422 347 424 464
 470 429 430 517 476
 373 408 445 486 391
 301 412 430 432 528
Mean  398.5 418.5 394.1667 451.5 366.6667
StDev 61.76326 20.98333 47.02092 65.02846 163.6187

 
(c) Mixture (chlorpyrifos and copper oxychloride): n = 6 

 

 Control 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 563 534 437 396 318
 444 588 421 436 300
 522 352 285 302 259
 560 448 170 235 228
 392 211 295 304 326
 385 343 451 403 270
Mean 477.6667 412.6667 343.1667 346 283.5
StDev 81.34535 138.5029 111.5176 77.29166 37.76639

 
 

 
 
 
 
 
2.2. Acetylcholinesterase activity of earthworms exposed to chlorpyrifos and 
azinphos-methyl (10 minute readings) 

 
(a) Chlorpyrifos: n = 6 

 

 0mg/l 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 161 308 312 147 121
 345 197 185 105 99
 181 209 234 157 157
 245 213 315 160 115
 240 248 68 172 79
 137 174 154 135 76
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Mean 218.1667 224.8333 211.3333 146 107.8333
StDev 75.52593 47.33462 95.83249 23.64741 30.21534

 
(b) Azinphos-methyl: n = 8 

 

 0mg/l 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 208 297 110 128 22
 178 363 240 139 22
 248 290 293 175 29
 251 226 305 181 38
 191 263 210 119 29
 173 174 387 128 24
 305 205 289 235 26
 238 256 254 140 40
Mean 224 259.25 261 155.625 28.75
StDev 44.91897 59.13121 80.63321 39.11133 6.902381

 
(c) Mixture (chlorpyrifos and azinphos-methyl): n = 8 
 

 0mg/l 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 133 167 176 79 23
 117 134 125 58 33
 178 153 108 77 30
 149 184 138 43 50
 196 253 223 130 26
 262 176 233 90 25
 245 326 241 156 29
 230 201 199 113 31
Mean 188.75 199.25 180.375 93.25 30.875
StDev 53.76603 62.29825 51.72437 37.6516 8.408117

 
 
 
 
 
2.3.  Acetylcholinesterase activity of earthworms exposed to chlorpyrifos and 
cypermethrin (10 minute readings) 

 
(a) Cypermethrin: n = 8 

 

 0mg/l 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 263 283 184 281 231
 344 179 165 180 228
 288 181 228 157 223
 215 192 222 240 227
 149 245 183 168 173
 231 219 273 251 187
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 260 317 216 162 228
 236 145 196 230 295
Mean 248.25 220.125 208.375 208.625 224
StDev 56.70412 58.0823 33.97031 47.48515 36.05947

 
 
(b) Mixture (chlorpyrifos and cypermethrin): n = 8 

 

 0mg/l 
0.002 
mg/l 

0.02 
mg/l 0.2 mg/l 2 mg/l 

 337 157 212 194  
 292 251 201 159  
 155 177 164 175  
 190 172 169 178  
 218 338 220 163  
 212 186 261 311  
 306 227 226 352  
 283 213 301 309  
Mean 249.125 215.125 219.25 230.125  
StDev 63.96972 58.6404 45.41161 79.49921  
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APPENDIX 3     STATICTICAL TABLES  FOR THE FACTORIAL ANOVA TEST (Shaded cells: p<0.05) 
 
1. EXPERIMENTS IN SOIL 
 
1(a) Factorial ANOVA test for differences in biomass change 
 
Table 1(a.1) Newman-Keuls test for Biomass change 
Approximate Probabilities for Post Hoc Tests 
Pesticide Concentr.                

Chlorpyrifos Control  0.966 0.980 0.908 0.796 0.988 0.991 0.988 0.993 0.983 0.867 0.996 0.982 0.958 0.989 
Chlorpyrifos 0.02mg/kg 0.966  0.986 0.689 0.613 0.979 0.974 0.960 0.969 0.965 0.784 0.993 0.895 0.985 0.740 
 Chlorpyrifos 0.2mg/kg 0.980 0.986  0.939 0.804 0.950 0.985 0.984 0.992 0.960 0.889 0.977 0.996 0.889 0.997 
Chlorpyrifos 2mg/kg 0.908 0.689 0.939  0.360 0.910 0.887 0.845 0.864 0.869 0.792 0.959 0.832 0.941 0.745 
Chlorpyrifos 20mg/kg 0.796 0.613 0.804 0.360  0.836 0.761 0.690 0.424 0.850 0.228 0.758 0.824 0.779 0.797 
Cu oxychl. Control 0.988 0.979 0.950 0.910 0.836  0.973 0.981 0.994 0.849 0.833 0.783 0.995 0.970 0.996 
Cu oxychl. 0.02mg/kg 0.991 0.974 0.985 0.887 0.761 0.973  0.875 0.982 0.973 0.787 0.959 0.996 0.985 0.995 
Cu oxychl. 0.2mg/kg 0.988 0.960 0.984 0.845 0.690 0.981 0.875  0.982 0.980 0.725 0.965 0.993 0.982 0.991 
Cu oxychl. 2mg/kg 0.993 0.969 0.992 0.864 0.424 0.994 0.982 0.982  0.997 0.746 0.984 0.996 0.990 0.994 
Cu oxychl. 20mg/kg 0.983 0.965 0.960 0.869 0.850 0.849 0.973 0.980 0.997  0.768 0.887 0.992 0.970 0.992 
Mixture Control 0.867 0.784 0.889 0.792 0.228 0.833 0.787 0.725 0.746 0.768  0.914 0.800 0.899 0.752 
Mixture 0.02mg/kg 0.996 0.993 0.977 0.959 0.758 0.783 0.959 0.965 0.984 0.887 0.914  0.999 0.984 0.999 
Mixture 0.2mg/kg 0.982 0.895 0.996 0.832 0.824 0.995 0.996 0.993 0.996 0.992 0.800 0.999  0.997 0.907 
Mixture 2mg/kg 0.958 0.985 0.889 0.941 0.779 0.970 0.985 0.982 0.990 0.970 0.899 0.984 0.997  0.997 
Mixture 20mg/kg 0.989 0.740 0.997 0.745 0.796 0.996 0.995 0.991 0.994 0.992 0.752 0.999 0.907 0.997  
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Table 1(a.2) Univariate tests of significance for biomass change 
 

 
 
 
 
 
 
 
 
 
 
 

 
1 (b) Factorial ANOVA test for differences in the number of cocoons 
 
Table 1(b.1) Univariate tests of Significance for the number of cocoons  
 
Effect  Degr. of 

Freedom MS F p 

Intercept 45984.05 1 45984.05 805.9298 0.000000
Pesticide 1285.08 2 642.54 11.2613 0.000167
Concentration 279.08 4 69.77 1.2228 0.318839
Pesticide*Concentration 788.72 8 98.59 1.7279 0.126408
Error 1997.00 35 57.06   

 
 
 
 
 
 
 

Effect SS Degr. of 
Freedom MS F p 

Intercept 2.05143 1 2.051433 82.50316 0.000000
Pesticide 0.09578 2 0.047890 1.92600 0.146821
Concentration 0.07827 4 0.019567 0.78691 0.534019
Pesticide*Concentration 0.21232 8 0.026539 1.06735 0.384652
Error 12.30813 495 0.024865   
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Table1(b.2) Newman-Keuls test for the number of cocoons  
Approximate Probabilities for Post Hoc Tests 
 

Pesticide Concentra
tion                

Chlorpyrifos Control  0.659 0.977 0.944 0.317 0.904 0.957 0.990 0.973 0.983 0.466 0.519 0.514 0.449 0.452 
Chlorpyrifos 0.02mg/kg 0.659  0.894 0.808 0.516 0.838 0.885 0.937 0.896 0.926 0.667 0.671 0.695 0.549 0.447 
Chlorpyrifos 0.2mg/kg 0.977 0.894  0.778 0.134 0.977 0.979 0.809 0.968 0.962 0.248 0.377 0.321 0.384 0.510 
Chlorpyrifos 2mg/kg 0.944 0.808 0.778  0.080 0.948 0.955 0.859 0.952 0.938 0.158 0.260 0.214 0.270 0.384 
Chlorpyrifos 20mg/kg 0.317 0.516 0.134 0.079  0.299 0.258 0.198 0.178 0.252 0.718 0.885 0.838 0.926 0.880 
Cu oxychl. Control 0.904 0.838 0.977 0.948 0.299  0.872 0.988 0.961 0.968 0.455 0.539 0.516 0.494 0.546 
Cu oxychl. 0.02mg/kg 0.957 0.885 0.979 0.955 0.258 0.872  0.988 0.944 0.936 0.410 0.516 0.480 0.489 0.570 
Cu oxychl. 0.2mg/kg 0.990 0.937 0.809 0.859 0.198 0.988 0.988  1.000 0.968 0.342 0.483 0.424 0.485 0.609 
Cu oxychl. 2mg/kg 0.973 0.896 0.968 0.952 0.178 0.962 0.944 1.000  0.809 0.310 0.434 0.384 0.430 0.542 
Cu oxychl. 20mg/kg 0.983 0.926 0.962 0.938 0.252 0.968 0.936 0.968 0.809  0.408 0.531 0.485 0.516 0.616 
Mixture Control 0.466 0.667 0.248 0.158 0.718 0.455 0.410 0.342 0.310 0.408  0.930 0.841 0.970 0.948 
Mixture 0.02mg/kg 0.519 0.671 0.377 0.260 0.885 0.539 0.516 0.483 0.434 0.531 0.930  0.872 0.936 0.930 
Mixture 0.2mg/kg 0.514 0.695 0.321 0.214 0.838 0.516 0.480 0.424 0.384 0.485 0.841 0.872  0.968 0.952 
Mixture 2mg/kg 0.449 0.549 0.384 0.270 0.926 0.494 0.489 0.485 0.430 0.516 0.970 0.936 0.968  0.778 
Mixture 20mg/kg 0.453 0.447 0.510 0.384 0.880 0.546 0.570 0.609 0.542 0.616 0.948 0.930 0.952 0.778  
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1(c) Factorial ANOVA test for differences in hatching success 
 
Table 1(c.1) Newman-Keuls test for hatching success 
Approximate Probabilities for Post Hoc Tests 
 
Pesticides Concentration                

Chlorpyrifos Control  0.983 0.983 0.877 0.987 0.986 0.991 0.971 0.935 0.394 0.984 0.978 0.978 0.954 0.934

Chlorpyrifos 0.02mg/kg 0.983  0.972 0.644 0.983 0.980 0.985 0.944 0.925 0.379 0.977 0.945 0.960 0.872 0.923

Chlorpyrifos 0.2mg/kg 0.983 0.972  0.998 0.999 0.996 0.994 0.989 0.992 0.682 0.985 0.987 0.954 0.995 0.987

Chlorpyrifos 2mg/kg 0.878 0.644 0.998  0.999 0.999 0.999 0.992 0.992 0.645 0.999 0.996 0.996 0.974 0.991

Chlorpyrifos 20mg/kg 0.987 0.983 0.999 0.999  0.965 0.994 1.000 0.907 0.485 0.994 0.999 0.999 0.999 0.715

Cu oxychl Control 0.986 0.980 0.996 0.999 0.965  0.974 0.999 0.966 0.580 0.954 0.998 0.999 0.999 0.911

Cu oxychl 0.02mg/kg 0.991 0.985 0.994 0.999 0.994 0.974  0.999 0.983 0.620 0.874 0.997 0.998 0.999 0.969

Cu oxychl 0.2mg/kg 0.971 0.944 0.989 0.992 1.000 0.999 0.999  0.995 0.702 0.998 0.848 0.935 0.967 0.993

Cu oxychl 2mg/kg 0.935 0.925 0.992 0.992 0.907 0.966 0.983 0.995  0.316 0.984 0.989 0.995 0.990 0.959

Cu oxychl 20mg/kg 0.394 0.379 0.682 0.645 0.485 0.580 0.620 0.702 0.316  0.641 0.623 0.703 0.629 0.539

Mixture Control 0.984 0.977 0.985 0.999 0.994 0.954 0.874 0.998 0.984 0.641  0.996 0.996 0.998 0.965

Mixture 0.02mg/kg 0.978 0.945 0.987 0.996 0.999 0.998 0.997 0.848 0.989 0.623 0.996  0.959 0.958 0.986

Mixture 0.2mg/kg 0.976 0.960 0.954 0.996 0.999 0.999 0.998 0.934 0.995 0.703 0.996 0.959  0.988 0.992

Mixture 2mg/kg 0.954 0.871 0.995 0.974 0.999 0.999 0.999 0.967 0.990 0.629 0.998 0.958 0.988  0.989

Mixture 20mg/kg 0.934 0.923 0.987 0.991 0.715 0.911 0.969 0.993 0.959 0.539 0.965 0.986 0.992 0.989  
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Table 1(c.2) Univariate Tests of Significance for hatching success 
 
Effect SS Degr. of 

freedom MS F p 

Intercept 117294.8 1 117294.8 839.1921 0.000000
Pesticides 499.7 2 249.9 1.7877 0.182286
Concentrations 798.5 4 199.6 1.4282 0.245155
Pesticides*Concentrations 323.1 8 40.4 0.2890 0.965116
Error 4892.0 35 139.8   
 
 
1(d) Factorial ANOVA test for differences in the number of hatchlings per cocoon 
 
Table 1(d.1) Univariate Tests of Significance for the number of hatchlings per cocoon  
 
Effect SS Degr. of 

freedom MS F p 

Intercept 195.7738 1 195.7738 1869.369 0.000000
Pesticides 0.3954 2 0.1977 1.888 0.166474
Concentrations 0.1632 4 0.0408 0.390 0.814652
Pesticides*Concentrations 1.0030 8 0.1254 1.197 0.328931
Error 3.6655 35 0.1047   

 
 
 
 
 
 
 
 



 85

 
Table 1(d.2) Newman-Keuls test for the number of hatchlings per cocoon  
Approximate Probabilities for Post Hoc Tests 
 

Pesticides Concentration                

Chlorpyrifos Control  0.993 0.974 0.988 0.964 0.999 0.992 0.708 0.974 0.971 0.994 0.868 0.995 0.834 0.981 
Chlorpyrifos 0.02mg/kg 0.993  0.986 0.996 0.964 0.752 0.970 0.757 0.985 0.997 0.923 0.995 0.943 0.830 0.968 
Chlorpyrifos 0.2mg/kg 0.974 0.986  0.996 0.974 1.000 0.992 0.749 0.987 0.994 0.992 0.959 0.988 0.855 0.984 
Chlorpyrifos 2mg/kg 0.988 0.996 0.996  0.867 1.000 0.994 0.691 0.785 0.912 0.996 0.989 0.999 0.828 0.982 
Chlorpyrifos 20mg/kg 0.964 0.964 0.974 0.867  0.992 0.943 0.424 0.816 0.925 0.960 0.961 0.985 0.586 0.891 
Cu oxychl Control 0.999 0.752 1.000 1.000 0.992  0.945 0.643 0.997 1.000 0.910 1.000 0.994 0.745 0.936 
Cu oxychl 0.02mg/kg 0.992 0.970 0.992 0.994 0.943 0.945  0.684 0.976 0.995 0.892 0.995 0.980 0.696 0.825 
Cu oxychl 0.2mg/kg 0.708 0.757 0.749 0.691 0.424 0.643 0.684  0.545 0.724 0.723 0.766 0.704 0.769 0.651 
Cu oxychl 2mg/kg 0.974 0.985 0.987 0.786 0.816 0.997 0.976 0.545  0.921 0.984 0.976 0.994 0.705 0.946 
Cu oxychl 20mg/kg 0.971 0.997 0.994 0.912 0.925 1.000 0.995 0.724 0.921  0.997 0.977 0.999 0.850 0.986 
Mixture Control 0.994 0.923 0.992 0.996 0.960 0.910 0.892 0.723 0.984 0.997  0.996 0.974 0.777 0.931 
Mixture 0.02mg/kg 0.868 0.995 0.959 0.989 0.961 1.000 0.995 0.766 0.976 0.977 0.996  0.998 0.873 0.989 
Mixture 0.2mg/kg 0.996 0.943 0.988 0.999 0.985 0.994 0.980 0.704 0.994 0.999 0.974 0.998  0.811 0.969 
Mixture 2mg/kg 0.834 0.830 0.855 0.828 0.586 0.745 0.696 0.769 0.705 0.850 0.777 0.873 0.811  0.557 
Mixture 20mg/kg 0.981 0.968 0.984 0.982 0.891 0.936 0.825 0.651 0.946 0.986 0.931 0.989 0.969 0.557  
 
 
 
 
 
 



1(e) Factorial ANOVA test for differences in the neutral red retention time 
 
         P1= chlorpyrifos  C2=0.02mg/kg 
Table 1(e.1) Newman-Keuls test for neutral red retention time  P2=Cu oxychloride C3=0.2mg/kg 
Approximate Probabilities for Post Hoc Tests    P3=Mixture  C4=2mg/kg 
         C1=control  C5=20mg/kg 
                 

P1 C1  0.000008 0.000020 0.000010 0.000018 0.181844 0.000022 0.000032 0.000026 0.000015 0.082664 0.000009 0.000017 0.000012 0.000020 
P1 C2 0.000008  0.702358 0.861095 0.267487 0.000017 0.765270 0.806813 0.850553 0.296749 0.000020 0.280518 0.810100 0.698193 0.002797 
P1 C3 0.000020 0.702358  0.985641 0.663558 0.000026 0.689749 0.952047 0.994194 0.668879 0.000032 0.137506 0.574973 0.938043 0.032076 
P1 C4 0.000010 0.861095 0.985641  0.574614 0.000012 0.776195 0.961283 0.938325 0.485878 0.000015 0.131718 0.894007 0.669209 0.037493 
P1 C5 0.000018 0.267487 0.663558 0.574614  0.000020 0.162163 0.672276 0.584165 0.891881 0.000023 0.003754 0.357936 0.669038 0.121456 
P2 C1 0.181844 0.000017 0.000026 0.000012 0.000020  0.000008 0.000010 0.000032 0.000018 0.423100 0.000022 0.000020 0.000015 0.000023 
P2 C2 0.000022 0.765270 0.689749 0.776195 0.162163 0.000008  0.728194 0.802995 0.189515 0.000017 0.221164 0.852133 0.568921 0.000986 
P2 C3 0.000032 0.806813 0.952047 0.961283 0.672276 0.000010 0.728194  0.770832 0.630440 0.000012 0.119385 0.825781 0.882723 0.046023 
P2 C4 0.000026 0.850553 0.994194 0.938325 0.584165 0.000032 0.802995 0.770832  0.571870 0.000010 0.181800 0.837137 0.869300 0.025578 
P2 C5 0.000015 0.296749 0.668879 0.485878 0.891881 0.000018 0.189515 0.630440 0.571870  0.000020 0.005300 0.380726 0.472434 0.211048 
P3 C1 0.082664 0.000020 0.000032 0.000015 0.000023 0.423100 0.000017 0.000012 0.000010 0.000020  0.000008 0.000026 0.000018 0.000026 
P3 C2 0.000009 0.280518 0.137506 0.131718 0.003754 0.000022 0.221164 0.119385 0.181800 0.005300 0.000008  0.291650 0.050639 0.000020 
P3 C3 0.000017 0.810100 0.574973 0.894007 0.357936 0.000020 0.852133 0.825781 0.837137 0.380726 0.000026 0.291650  0.765456 0.005796 
P3 C4 0.000012 0.698193 0.938043 0.669209 0.669038 0.000015 0.568921 0.882723 0.869300 0.472434 0.000018 0.050639 0.765456  0.076448 
P3 C5 0.000020 0.002797 0.032076 0.037493 0.121456 0.000023 0.000986 0.046023 0.025578 0.211048 0.000026 0.000020 0.005796 0.076448  
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Table 1(e.2) Univariate Tests of Significance for neutral red retention time 
 
 
Effect SS Degr. of 

Freedom MS F p 

Intercept 51107.12 1 51107.12 1192.585 0.000000
Pesticides 54.23 2 27.12 0.633 0.532739
Concentrations 18726.03 4 4681.51 109.243 0.000000
Pesticides*Concentrations 414.73 8 51.84 1.210 0.298245
Error 5571.03 130 42.85   
 
 
1(f) Factorial ANOVA test for differences in acetylcholinesterase activity 
 
Table 1(f.1) Univariate Tests of Significance for AChE activity  
 
Effect SS Degr. of 

Freedom MS F p 

Intercept 5240747 1 5240747 3158.624 0.000000
Pesticides 26839 2 13420 8.088 0.000491
Concentrations 60993 4 15248 9.190 0.000001
Pesticides*Concentrations 67768 8 8471 5.106 0.000016
Error 214035 129 1659   
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       P1= chlorpyrifos  C2=0.02mg/kg 
Table1(f.2) Newman-Keuls test for AChE activity P2=Cu oxychloride C3=0.2mg/kg 
Approximate Probabilities for Post Hoc Tests  P3=Mixture  C4=2mg/kg 
       C1=control  C5=20mg/kg 
 
P1 C1  0.938405 0.129656 0.665745 0.000016 0.741278 0.881424 0.718860 0.899373 0.962007 0.661787 0.894877 0.611542 0.227834 0.000058 
P1 C2 0.938405  0.018754 0.821151 0.000026 0.428035 0.852870 0.979177 0.969597 0.896744 0.403006 0.962934 0.435046 0.050403 0.000024 
P1 C3 0.129656 0.018754  0.271568 0.020588 0.395026 0.238483 0.060508 0.018497 0.058989 0.543798 0.056021 0.593393 0.731566 0.032114 
P1 C4 0.665745 0.821151 0.271568  0.000039 0.879484 0.962846 0.707961 0.770859 0.889681 0.796947 0.814773 0.707961 0.401023 0.000326 
P1 C5 0.000016 0.000026 0.020588 0.000039  0.000689 0.000060 0.000015 0.000023 0.000021 0.000897 0.000018 0.000745 0.013678 0.596524 
P2 C1 0.741278 0.428035 0.395026 0.879484 0.000689  0.805945 0.591339 0.408674 0.639105 0.976367 0.602608 0.987272 0.338482 0.003232 
P2 C2 0.881424 0.852870 0.238483 0.962846 0.000060 0.805945  0.836068 0.816787 0.928786 0.660378 0.886338 0.456031 0.341948 0.000302 
P2 C3 0.718860 0.979177 0.060508 0.707961 0.000015 0.591339 0.836068  0.950892 0.991144 0.527182 0.929136 0.507679 0.124372 0.000021 
P2 C4 0.899373 0.969597 0.018497 0.770859 0.000023 0.408674 0.816787 0.950892  0.684314 0.379200 0.896744 0.403316 0.048699 0.000021 
P2 C5 0.962007 0.896744 0.058989 0.889681 0.000021 0.639105 0.928786 0.991144 0.684314  0.596755 0.969597 0.608587 0.129354 0.000024 
P3 C1 0.661787 0.403006 0.543798 0.796947 0.000897 0.976367 0.660378 0.527182 0.379200 0.596755  0.550905 0.902257 0.585211 0.004699 
P3 C2 0.894877 0.962934 0.056021 0.814773 0.000018 0.602608 0.886338 0.929136 0.896744 0.969597 0.550905  0.549810 0.120416 0.000021 
P3 C3 0.611542 0.435046 0.593393 0.707961 0.000745 0.987272 0.456031 0.507679 0.403316 0.608587 0.902257 0.549810  0.683585 0.004391 
P3 C4 0.227834 0.050403 0.731566 0.401023 0.013678 0.338482 0.341948 0.124372 0.048699 0.129354 0.585211 0.120416 0.683585  0.034513 
P3 C5 0.000058 0.000024 0.032114 0.000326 0.596524 0.003232 0.000302 0.000021 0.000021 0.000024 0.004699 0.000021 0.004391 0.034513  
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2. ARTIFICIAL GROUNDWATER EXPERIMENTS 
 
2(a) Factorial ANOVA test for differences in AChE activity (Chlorpyrifos and copper oxychloride) 
       P1= chlorpyrifos  C2=0.002mg/l 
Table 2(a.1) Newman-Keuls test for AChE activity P2=Cu oxychloride C3=0.02mg/l 
Approximate Probabilities for Post Hoc Tests  P3=Mixture  C4=0.2mg/l 
       C1=control  C5=2mg/l 
 
P1 C1  0.814898 0.796498 0.663040 0.017231 0.829122 0.646574 0.881436 0.852910 0.817437 0.764883 0.833981 0.691467 0.681270 0.100156 
P1 C2 0.814898  0.924887 0.891383 0.206185 0.954266 0.942514 0.901414 0.773210 0.917131 0.500653 0.930766 0.979740 0.956648 0.513951 
P1 C3 0.796498 0.924887  0.945800 0.206735 0.905589 0.924809 0.735164 0.765280 0.978440 0.504644 0.895960 0.985773 0.974064 0.533127 
P1 C4 0.663040 0.891383 0.945800  0.295774 0.924015 0.868455 0.899171 0.591331 0.725391 0.305709 0.870156 0.993686 0.958553 0.580312 
P1 C5 0.017231 0.206185 0.206735 0.295774  0.113855 0.056567 0.118002 0.011027 0.202138 0.002310 0.066397 0.160073 0.233759 0.497060 
P2 C1 0.829122 0.954266 0.905589 0.924015 0.113855  0.918977 0.932637 0.836620 0.970864 0.632545 0.782173 0.958214 0.945717 0.383191 
P2 C2 0.646574 0.942514 0.924809 0.868455 0.056567 0.918977  0.964034 0.794865 0.948873 0.654088 0.909390 0.897209 0.886302 0.245074 
P2 C3 0.881436 0.901414 0.735164 0.899171 0.118002 0.932637 0.964034  0.870130 0.949285 0.659543 0.930254 0.952634 0.933683 0.382261 
P2 C4 0.852910 0.773210 0.765280 0.591331 0.011027 0.836620 0.794865 0.870130  0.766799 0.609706 0.871707 0.608418 0.603431 0.070842 
P2 C5 0.817437 0.917131 0.978440 0.725391 0.202138 0.970864 0.948873 0.949285 0.766799  0.482458 0.945004 0.967414 0.913714 0.483433 
P3 C1 0.764883 0.500653 0.504644 0.305709 0.002310 0.632545 0.654088 0.659543 0.609706 0.482458  0.707958 0.308292 0.309447 0.018684 
P3 C2 0.833981 0.930766 0.895960 0.870156 0.066397 0.782173 0.909390 0.930254 0.871707 0.945004 0.707958  0.908287 0.893665 0.269413 
P3 C3 0.691467 0.979740 0.985773 0.993686 0.160073 0.958214 0.897209 0.952634 0.608418 0.967414 0.308292 0.908287  0.955965 0.246063 
P3 C4 0.681270 0.956648 0.974064 0.958553 0.233759 0.945717 0.886302 0.933683 0.603431 0.913714 0.309447 0.893665 0.955965  0.442437 
P3 C5 0.100156 0.513951 0.533127 0.580312 0.497060 0.383191 0.245074 0.382261 0.070842 0.483433 0.018684 0.269413 0.246063 0.442437  
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Table 2(a.2) Univariate Tests of Significance for AChE activity in chlorpyrifos and copper oxychloride 

 
Effect SS Degr. of 

Freedom MS F p 

Intercept 12907232 1 12907232 1652.443 0.000000
Pesticides  36571 2 18286 2.341 0.103225
Concentrations 189048 4 47262 6.051 0.000283
Pesticides*Concentrations 85594 8 10699 1.370 0.223678
Error 585825 75 7811   

 
 
 
 
 
 
 
 
 
 

 
 
2(b) Factorial ANOVA test for differences in AChE activity (chlorpyrifos and azinphos methyl) 
 
Table 2(b.1) Univariate Tests of Significance for AChE activity in chlorpyrifos and Azinphos 
methyl 
 
Effect SS Degr. of 

Freedom MS F p 

Intercept 3070712 1 3070712 1102.044 0.000000
Pesticides  52918 2 26459 9.496 0.000174
Concentrations 469281 4 117320 42.105 0.000000
Pesticides*Concentrations 37699 8 4712 1.691 0.110455
Error 264706 95 2786   
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       P1= chlorpyrifos  C2=0.002mg/l 
Table 2(b.2) Newman-Keuls test for AChE activity P2=Azinphos methyl C3=0.02mg/l 
Approximate Probabilities for Post Hoc Tests  P3=Mixture  C4=0.2mg/l 
       C1=control  C5=2mg/l 
 
P1 C1  0.968933 0.806609 0.139596 0.003514 0.834482 0.455577 0.539671 0.226171 0.000171 0.716209 0.775807 0.655580 0.000752 0.000159 
P1 C2 0.968933  0.962277 0.119412 0.002403 0.976270 0.219189 0.398799 0.213576 0.000132 0.786037 0.888753 0.683931 0.000529 0.000119 
P1 C3 0.806609 0.962277  0.185560 0.006100 0.892237 0.425434 0.480183 0.272910 0.000159 0.696774 0.665163 0.682659 0.001378 0.000133 
P1 C4 0.139596 0.119412 0.185560  0.173431 0.106410 0.003783 0.003658 0.730262 0.000644 0.419981 0.317186 0.435384 0.145474 0.000550 
P1 C5 0.003514 0.002403 0.006100 0.173431  0.002168 0.000187 0.000134 0.203917 0.027707 0.035798 0.017458 0.051050 0.601480 0.018636 
P2 C1 0.834482 0.976270 0.892237 0.106410 0.002168  0.417338 0.546391 0.186992 0.000119 0.711963 0.810304 0.621429 0.000492 0.000171 
P2 C2 0.455577 0.219189 0.425434 0.003783 0.000187 0.417338  0.950063 0.009711 0.000134 0.159148 0.268029 0.098654 0.000121 0.000132 
P2 C3 0.539671 0.398799 0.480183 0.003658 0.000134 0.546391 0.950063  0.009658 0.000141 0.170084 0.295152 0.102330 0.000134 0.000134 
P2 C4 0.226171 0.213576 0.272910 0.730262 0.203917 0.186992 0.009711 0.009658  0.000328 0.461712 0.401761 0.376043 0.119542 0.000298 
P2 C5 0.000171 0.000132 0.000159 0.000644 0.027707 0.000119 0.000134 0.000141 0.000328  0.000123 0.000133 0.000127 0.058132 0.939360 
P3 C1 0.716209 0.786037 0.696774 0.419981 0.035798 0.711963 0.159148 0.170084 0.461712 0.000123  0.706838 0.764166 0.011227 0.000123 
P3 C2 0.775807 0.888753 0.665163 0.317186 0.017458 0.810304 0.268029 0.295152 0.401761 0.000133 0.706838  0.776671 0.004555 0.000121 
P3 C3 0.655580 0.683931 0.682659 0.435384 0.051050 0.621429 0.098654 0.102330 0.376043 0.000127 0.764166 0.776671  0.019233 0.000128 
P3 C4 0.000752 0.000529 0.001378 0.145474 0.601480 0.000492 0.000121 0.000134 0.119542 0.058132 0.011227 0.004555 0.019233  0.027379 
P3 C5 0.000159 0.000119 0.000133 0.000550 0.018636 0.000171 0.000132 0.000134 0.000298 0.939360 0.000123 0.000121 0.000128 0.027379  
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2(c) Factorial ANOVA test for differences in AChE activity (chlorpyrifos and cypermethrin) 
       P1= chlorpyrifos  C2=0.002mg/l 
Table 2(c.1) Newman-Keuls test for AChE activity P2=cypermethrin C3=0.02mg/l 
Approximate Probabilities for Post Hoc Tests  P3=Mixture  C4=0.2mg/l 
       C1=control  C5=2mg/l 
 
P1 C1  0.999514 0.971925 0.166304 0.007280 0.952295 0.997720 0.997565 0.988895 0.997446 0.968392 0.919620 0.971401 0.998731  
P1 C2 0.999514  0.999403 0.221620 0.008356 0.716302 0.986607 0.999796 0.999445 0.978019 0.850038 0.999564 0.997767 0.860588  
P1 C3 0.971925 0.999403  0.138009 0.007667 0.947691 0.998447 0.994742 0.928414 0.998304 0.960009 0.899886 0.993603 0.998483  
P1 C4 0.166304 0.221620 0.138009  0.207040 0.043744 0.222613 0.040730 0.098661 0.202514 0.046097 0.153928 0.194825 0.174623  
P1 C5 0.007280 0.008356 0.007667 0.207040  0.000828 0.009535 0.003487 0.006376 0.007672 0.000845 0.007458 0.008375 0.005499  
P2 C1 0.952295 0.716302 0.947691 0.043744 0.000828  0.881808 0.961289 0.946407 0.850687 0.976914 0.954507 0.927462 0.547677  
P2 C2 0.997720 0.986607 0.998447 0.222613 0.009535 0.881808  0.999732 0.998949 0.897692 0.927462 0.998415 0.976914 0.987249  
P2 C3 0.997565 0.999796 0.994742 0.040730 0.003487 0.961289 0.999732  0.993468 0.999564 0.968452 0.996029 0.999210 0.999328  
P2 C4 0.988895 0.999445 0.928414 0.098661 0.006376 0.946407 0.998949 0.993468  0.998682 0.957051 0.974569 0.996646 0.998494  
P2 C5 0.997446 0.978019 0.998304 0.202514 0.007672 0.850687 0.897692 0.999564 0.998682  0.918437 0.998369 0.986370 0.977389  
P3 C1 0.968392 0.850038 0.960009 0.046097 0.000845 0.976914 0.927462 0.968452 0.957051 0.918437  0.967595 0.953842 0.802517  
P3 C2 0.919620 0.999564 0.899886 0.153928 0.007458 0.954507 0.998415 0.996029 0.974569 0.998369 0.967595  0.989733 0.998853  
P3 C3 0.971401 0.997767 0.993603 0.194825 0.008375 0.927462 0.976914 0.999210 0.996646 0.986370 0.953842 0.989733  0.996329  
P3 C4 0.998731 0.860588 0.998483 0.174623 0.005499 0.547677 0.987249 0.999328 0.998494 0.977389 0.802517 0.998853 0.996329   
P3 C5                
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Table 2(c.2) Univariate Tests of Significance for AChE activity in chlorpyrifos and cypermethrin 
 
 
Effect SS Degr. of 

Freedom MS F p 

Pesticides 27761.0 1 27761.00 8.617716 0.004247
Concentrations 21064.2 3 7021.40 2.179621 0.096073
Pesticides*Concentration 43416.2 7 6202.31 1.925355 0.074857
Error 283482.1 88 3221.39   
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