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Summary
This study comprises the preparation and characterization of various novel

organometallic complexes of palladium(ll) which contain symmetric and

unsymmetric (heteroatom-containing) r..-dicarbonyl-type ligands, T]3-heteroallyl

ligands and T]3-coordinated trimethylsilyl-containing ligands.

With the ultimate objective of preparing potential catalytic precursors similar to

known catalytic precursors which exhibit hemilabile activity, the main goals of

this study were the following: -

• Investigate the coordination mode of the aforementioned ligand-types to

the palladium of the starting compound, trans-[Pd(CeHs)CI{P(CeHshhl (1),

by physical measurements.

• Carry out single crystal structure determinations where possible.

• Investigate the influence of the properties of the ligands on the stability of

the prepared complexes.

• Investigate the existence of hemilability (if any) in the prepared complex.

The deprotonated symmetric and unsymmetric f!,-dicarbonyl-type ligands

readily bind to the palladium of the starting compound in a bidentate fashion

through the oxygens by displacing a triphenylphosphine group and producing

easily removable sodium chloride. These complexes show that a negative

charge can be accommodated in a delocalized fashion by the -S=O and -

P=O groups of these acac--type ligands in a similar manner to the carbonyl

groups of acetylacetonate. However, no evidence of hemilabile activity was

found in this series of complexes.

In a similar fashion, the deprotonated T]3-heteroallyl ligands, L = [PhzPS£],

[PhCOz-], [PhC{NSi(CH3hhl [(Ph)zP{NSi(CH3hh-], were linked to palladium

in the same starting complex, in T]3-fashion by triphenylphosphine substitution.

No evidence of hemilabilty was evident in this series of complexes, but when

L = [PhzPSz-], an exchange of the coordinated triphenylphosphine group with

the free triphenylphosphine group was observed in the reaction mixture.
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Finally, the preparation, isolation and spectroscopic characterization of

several T\3-allyl paliadium(lI) complexes with ligands of the type

R-TeCH2CH2CQQCH3, (R = isopropyl, t-butyl ,ethyl) were attempted with the

compound bis-( T\3-allyl )-di-~ -iodo-dipalladium( II), [T\3 -( CH2CHCH2J2Pd212J,

which had also now been crystallographically characterized. Chelate

formation by TeAQ coordination seemed possible by halide precipitation with

silver tetrafluoroborate. Unfortunately the resulting compounds were too

unstable to be isolated in the pure form for characterization.
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Qpsomming

Die studie behels die bereiding en karakterisering van verskeie nuwe

palladium(lI) organometaalkomplekse met inbegrip van simmetriese en

onsimmetriese (heteroatoom bevattende) ~-dikarboniel-tipe ligande, 113-

heteroallielligande en 113_gekoordineerdetrimetielsiliel bevattende ligande.

Met die beoogde einddoel die bereiding van potensiele katalitiese

voorgangers soortgelyk aan bekende katalitiese voorgangers met hemilabiele

aktiviteit, sluit die hoof mikpunte van die studie die volgende in: -

• 'n Ondersoek na koordinasie-wyse van die bogenoemde ligand tipes aan

die palladium van die uitgangstof, trans-[Pd(C6Hs)CI{P(C6Hshhl (1), met

behulp van fisiese bepalings.

• Enkel kristal struktuur bepalings waar moontlike.

• 'n Ondersoek na die invloed van die einskappe van die ligande op die

stabilitiet van die komplekse.

• 'n Ondersoek na die bestaan van hemilabiele aktiwiteit (indien enige) in die

voorbereide complekse.

Die gedeprotoneerde simmetriese en onsimmetriese ~-dikarboniel-tipe

ligande het geredelik, bidentaat deur middel van die suurstowwe gebind aan

die palladium van die uitgangstof deur die verplasing van die trifenielfosfien

group en die vorming van verweiderbare natriumchloried. Hierdie komplekse

dui aan dat 'n negatiewe lading wei geakkommodeer kan word deur

delokalisasie by die -S=O- en -P=O-groepe van hierdie acac"-tipe Iigande,

soortgelyk aan die karbonielgroep van asetielasetonaat. Geen hemilabiliteit is

waargeneem in hierdie reeks komplekse nie.

Die gedeprotoneerde 113-heteroalliel Iigande, L = [Ph2PS£), [PhCO£),

[PhC{NSi(CH3h}£), [(PhhP{NSi(CH3hhl is op 'n soortgelyke wyse 113-

gekoppel aan palladium van dieselfde uitgangstof met trifenielfosfien

verplasing. Geen hemilabiliteit is waargeneem in hierdie reeks komplekse nie,
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maar wanneer L = [Ph2PS£], is 'n uitruiling van 'n gekoordineerde

trifenielfosfien met 'n vrye trifenielfosfien in die reaksiemengsel waargeneem.

Die bereiding, isolasie en spektroskopiese karakterisering van Tj3-alliel

paliadium(lI) komplekse met ligande van die tipe R-TeCH2CH2COOCH3, (R =

isopropiel, t-butiel ,etiel) is gepoog met die uitgangstof bis-(Tj3-alliel)-di-ll-iodo-

dipaliadium(II), [Tj3-(CH2CHCH2hPd2b], wat volledig gekarakteriseer was.

Chelaat-vorming deur TeAO-koordinasie het moonlik blyk te wees deur halied

presipitasie met behulp van AgBF4. Die komplekse is baie onstabiel en is dit

gevolglik nie moontlik am die komplekse suiwer te isoleer en te karakteriseer

nie.
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Chapter 1 1

Catalysis - A General

Introduction and Research Aims.

1.1 General Background.

In the preparation of approximately 60-70% of all industrial chemicals, a

catalytic process forms part of the procedure.' The catalysts used in these

processes can be divided broadly into three classes, namely homogeneous

catalysts, supported catalysts and heterogeneous catalysts. The role of

homogeneous catalytic processes has become increasingly important in

recent years with 10-15% of all industrial catalytic reactions currently applying

homogeneous catalytic processes.

One of the greatest advantages of homogeneous catalytic processes over

heterogeneous processes is that the reaction conditions are generally much

milder. A second advantage is that the homogeneous processes generally

offer a greater degree of selectivity with respect to catalytic products.2, 3

Transition metal organometallic complexes in particular have been proven to

be very useful as homogeneous catalysts. The catalysts sought from the

transition metals must have a high degree of selectivity, high activity and high

durability .

A great variety of chemical reactions are currently catalysed by nickel

compounds. A few of these reactions include hydrogenation, hydrocyanation

and carbonylation. The most prominent application of homogeneous nickel

catalysis is found in the oligomerisation of olefins. This application is used in

the Shell Higher Olefin Process (SHOP) and the Dimersol@ process of the

Institut Francais du Petrole. The products of oligomerisation and dimerisation

are of great commercial importance e.g. co-monomers in polymerisation,

starting materials for plasticisers, detergents and enhancers of the octane

number.
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The name Wilhelm Keim is always connected with much of the ground-

breaking work that has been done in the field of homogeneous catalysis with

particular reference to nickel and palladium catalysts. His work in the

development of the Shell Higher Olefin Process has set milestones in the

understanding of the role of ligands within catalyst precursors4

Homogeneous catalysis in organometallic processes is thought to involve

several reaction steps, for example:

• Coordination of the substrate molecules to the catalyst metal;

• Insertion of olefin/etc. into a metal-carbon or metal hydride bond;

• Insertion of carbon monoxide in metal-carbon bonds (where

applicable);

• Attacks on coordinated ligands;

• Oxidative addition or reductive elimination.

In an attempt to understand the above processes, the design and

development of better catalysts has been done through 'ligand tailoring'.

The development of the concept of hemilability in homogeneous catalysis in

the 1970's created the possibility of achieving higher catalytic activity and

stability than previously thought possible. The role of hemilability of the

ligands chela ted to metals has to a large degree become a prime focus within

Keim's research group in the investigation of catalyst customization, catalytic

activity, efficiency and steroselectivity. An example of a complex with this kind

of characteristic is illustrated in Figure 1.1 below.
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P1f\O
(CH2)/ "N/

" Ip/ 'Ph
Ph/ .Ph

n= 1 -6

3

-I

Figure 1.1 : An example of a nickel catalyst complex with a hemilabile pApAO

ligand system.

The terminal P2-donor atom takes over a hemilabile function similar to that of

a windscreen wiper by alternately blocking or vacating a coordination site on

the nickel metal allowing a solvent or reactant molecule to coordinate.

The successful application of hemilability within catalysis has sparked much

research in this field. Many novel homogeneous catalysts with hemilabile PAO

chelating ligands exhibiting a high degree of selectivity and activity have been

prepared from various transition metals. Most of this research focused on

complexes with well known hemilabile PAO ligands while other possible

hemilabile ligands were largely neglectedS

First mentioned by Ewers6 and Jones7 in the 1960's, chelating p-diketonates

were later systematically investigated by Keim and co-workers8 They have

established an almost linear relationship between the pKa-value of the p-

diketone and the catalyst activity. The hydride (Figure 1.2 below) was

accepted as being the active species within the oligomerisation processes in

which these catalysts were applied. Wilke et alB did much of the pioneering

work in the field of characterization of homogeneous catalyst precursors and

active catalyst species. Sulphur- and hemisulphur analogue catalysts of p-

diketonates were published by Cavell et al. in 1994.10
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PCY3

G,I
"'Ni-H--I
PCY3

OAO = hFacac

4

Figure 1.2 : An example of a nickel hydride species postulated as being the

active species within the catalytic cycle.

The investigation into the preparation of 'tailored' complexes that contain

ligands with potential hemilabile activity could be of vital importance in the

further development of catalysis and its application in industryn The present

study involved the preparation and characterization of novel palladium and

tellurium complexes containing potential catalytic activity in view of them being

coordinated by hemilabile ligand systems.

1.2 Current Study - outline and objectives.

In 1998, work conducted in our laboratory showed that the thallium salts of

alkylthioethercarboxylic acids react with trans-[PdCI(Ph)(PPh3hJ to form

paliadium(ll) complexes with SAO ligands that exhibit hemilabile properties.12

This hemilability of the SAO ligand was directly observed by NMR

spectroscopy. The equilibrium that occurs within this group of complexes

investigated is illustrated in figure 4.3 below.

Ph
I

Ph3P-Pd-PPh3
I9 S_Ro.c'6

Ph R
I I

P~P-~d S~ +

I~--oo

R = ipr (dt-chloroform),
IBu (dt-chloroform, d6-benzene)

PPh3

Figure 4.3 : Observed equilibrium of paliadium(lI) complexes containing

hemilabile SAO ligands.
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In the light of the complexes previously prepared and characterised within our

group, it was decided to prepare and characterise the palladium and

palladium/tellurium bimetallic complexes described in this study. The

complexes have been divided into three groups namely: -

>- Neutral palladium complexes with l1-diketonate type ligands -

Chapter 2.

>- Neutral T)3-heteroallyl paliadium(ll) complexes - Chapter 3.

>- T)3-Allyl paliadium(II)-teliurium(lI) bimetallic complexes - Chapter 4.

Unfortunately due to their instability, the products could not be

isolated in pure form. The preparation attempts of these products

are not described in this thesis.

Each chapter begins with an overview of previously reported work and trends

with respect to complexes of a similar nature. This is followed by a brief

description of the general synthetic methodology used for the preparation of

complexes within that chapter. The NMR, infrared and MS (where available)

spectroscopic data as well as crystallographic data (where available) are then

tabulated and discussed for each complex prepared. The chapter closes with

a detailed experimental section that describes in detail the synthesis of each

ligand and complex prepared. A summary and conclusion section describes

trends and characteristics observed within the spectroscopic data of the

complexes prepared in the chapter.

Chapter 2.

The work described in this chapter was embarked upon to answer the

question whether a negative charge could be accommodated in a delocalised

fashion by an -S=O or-P=O end-group in the same manner in which it is

accommodated by the carbonyl groups in acetylacetonate when it is

bidentately coordinated to a transition metal through the oxygens of both

carbonyl groups. For comparative purposes, acetylacetonate was reacted with

trans-[PdCI(Ph)(PPh3)2] to yield a bidentate complex by phosphine and halide

substitution. This complex was fully characterised (including a crystal structure
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analysis) and used as a model for new complexes which contained the -S=O

group and the -P=O groups respectively.

Chapter 3.

The work described in this chapter was undertaken to prepare and fully

characterise neutral 113-heteroallyl paliadium(lI) complexes. Such complexes

have not yet been successfully utilized in catalytic reactions involving olefins.

Of prime interest, apart from the synthetic methodology development, was to

investigate the influence of the different atom types within the 113-coordination

sphere on the stability of the complex. The possible steric effect of

trimethylsilyl groups bonded to nitrogen donor atoms upon the stability of the

resulting 113-complexes,was also investigated. An impoertant goal of the study

was to characterize one or more of the products by single crystal structure

determination.

Chapter 4.

Although sulphur and selenium donor ligand systems are well established in

coordination chemistry, this is not true for the more metallic tellurium-based

Iigands.12 Unfortunately the goal of preparing such complexes that are

potentially hemilabile could not be achieved due to the instability of the

products obtained. Nevertheless, an excellent crystal structure determination

of prepared starting material, bis-(1l3-allyl)-di-~-iodo-dipaliadium(II), could be

carried out.
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Neutral Palladium Complexes

with B-diketo we ligands

This chapter is concerned with the preparation and

spectroscopic studies of several pal/adium(lI) complexes of

symmetric and unsymmetric f!,-dicarbonyl-type compounds.

The goal of this study was to synthesize and characterize

these complexes by means of melting point, IR, MS (where

possible), NMR spectroscopy and X-ray crystal structure

determination.

2.1.1 Introduction.

General Background.

The presence of j3-dicarbonyl groups with at least one proton on the carbon

between the carbonyl groups allows keto-enol tautomerism. Under

appropriate conditions, the enolic proton can be removed. Complexes, which

form when the proton is replaced by a metal, are the subject of this

investigation.

The ligands that give "wings to metals' have now been studied for almost a

hundred years,1 yet very much still remains to be understood.2

New complexes with j3-dicarbonyl-type ligands are useful not only for

comparative studies with various other metal ions, but also as starting

materials for the preparation of other organometallic compounds and as

catalysts for organic synthesis. As a result, numerous papers have been

published which discuss behavioral characteristics of complexes containing f!,-

dicarbonyl compounds as ligands.3
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Recent structural studies of inorganic derivatives of acetyl acetone render

these compounds cogent and fascinating examples of linkage isomerism and

related structural phenomena arising from variable metal-ligand interactions4

Several distinct bonding and structural types involving acetylacetone and its

enolate anion are known. The two resonance forms of the enol ate anion of

acetylacetone are shown in Figure 2.1 below.

CH3, 0.
0
-C-

H~ fl.C-O
/CH3

•• ••
CH3,C~

H~r;;_C-O
/CH3

Figure 2.1 : Enolate anion equilibrium of acetylacetone.

By far the most frequently occurring acetylacetonate derivatives are those in

which the enolate anion is coordinated to a central metal atom through Doth

oxygen atoms. The ubiquity of oxygen-chelated acetylacetonate complexes

can be appreciated from the fact that such complexes have been reported for

all the main group transition elements (except technetium), and lanthanide

elements (except promethium) as well as numerous main group and acitinide

elements.

A second type of oxygen-chelated complex is formed when the acetylacetone

does not lose its acidic proton to form an enolate ion. Rather the neutral keto

tautomer donates electrons from the oxygens of each carbonyl to an acceptor

or acidic species. An example of this type of coordination is illustrated in

Figure 2.2 below.

~<\1SBIB
t.,' "(-~ "0'" -- ~;.!: ••••'" ..•

II. S.
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CI

CII .O-C,CH3
" /'-, /'/
//'Ti / /<Hy \'

CI-----I.o'=C, H

CI CH3

10

Figure 2.2 : Neutral keto tautomer coordination mode of acetylacetone to a

metal.

Far less numerous than oxygen-chelated acetylacetonate derivatives are

those in which the metal atom is bonded directly to the central carbon of the

enolate anionic ligand rather than through the two oxygen atoms. Metal

complexes of this type were first characterized in 1962.5

In another boding mode that has been characterized for the acetylacetonate

complexes, the anionic ligand bonds through one of the two terminal carbons

and not simultaneously through both of the two terminal oxygens or the

central carbon. However, this bonding mode of the ligand is rares' A tellurium

compound illustrating such bonding mode is shown in Figure 2.3 below.

O.-H,O
II H I
C I C H/ .....c~, 2

H3C C, ,CI
Te

C" 'CIH3C, "C, 'HC" I C 2
I H II
O"H"O

Figure 2.3 : Mono-carbon bonding mode of acacH to a metal ion

A final class of acetylacetonate derivatives contains bridging enolate ligands

giving rise to oligomeric or polymeric complexes. Within this class, three types

of complexes may be distinguished: J
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a) oxygen-chelated oxygen bridged complexes

b) oxygen-bonded two center jJ-diketonato complexes

c) bridge-bonded complexes

11

2,4-Pentanedione (acacH) and other l3-dicarbonyl compounds (l3-dikH) mostly

react with a wide variety of metal ions to form the (0,0') chelates of the [M(I3-

dik)nl type which are usually soluble in organic solvents8 Apart from the basic

bonding modes described above, these types of ligands are also eapable of

various reversible inter-conversions that will be briefly described here.

Due to the various bonding modes of l3-diketone ligands such as

acetylacetone to metals, various linkage isomerisms result.9. 10For example,

the reversible rearrangement of an acetylacetonate (aeac) ligand from a

bidentate a-bonded structure in dimethyl(acetylacetonato)gold(llI) to a

unidentate C-bonded adduct, dimethyl(acetylacetonato)phosphinegold(III).11 It

would appear as if steric factors play a role in the rearrangement from 0-
bonded acetylacetonate to C-bonded acetylacetonate.

There are however, only a few examples of the interconversion of a-bonded

and C-bonded aeac complexes. Rearrangement of one of the a-bonded aeac

ligands in Pd(acach to the C-bonded ligand is induced by phosphines and

nitrogen bases, L, during the formation of the adduct, Pd(aeac)zL.12

The formation of the C-bonded aeac-complexes can be likened to the

formation of alkyl metals, in which the most stable transition metal complexes

are generally found among the heavier elements with the highest

electronegativities e.g. platinum-, palladium-, Rh- and Ir l3-diketonate

complexes.13

Since interest in the inorganic and organometallic derivative chemistry of jJ-

diketones shows no sign of diminishing, it is likely that additional unusual

bonding and structural phenomena will be uncovered.



Chapter 2 12

Work stems from the question, "How will heteroatom-containing acac-

analogue complexes (3 and 4 in Figure 2.4 below), behave in comparison with

acac.," (as described in the discussion above). It was not known whether the

potentially delocalized negative charge will be accommodated by the sulphur

or phosphorous atom in the same manner as it is by the carbon atoms in

deprotonated acacH.

R
/

Ph P=-f;
'Pd )CH

PH3P' 'o~CI
'R'

R
/

Ph O~$
,I ,
Pd ,CH

" \ ,1PH3P O~"C
'R'

RR
1/

Ph 0_1',
, I 'to
Pd ,CH

Ph3P' 'o~CI
'R'

2 3 4

Figure 2.4

Target complexes to be prepared.

General background for the use of deprotonated acacH as an anionic ligand

for complexation with starting complex 1, trans-[(Ph3PldPh)PdCI/.

For the undeprotonated free ligand, acacH, used to prepare complex 2,

[(Ph3P)(Ph)pd(acac)), the following equilibrium and resonance forms must be

considered prior to deprotonation of the central -CH2 group: _14

H+ '" ' .•• -0: :0:
II I

OIl •• C C
",'\./",'\.

H3C C CH3
I
H

,,/ Hydrogen bond

H/" ~...~9::~
-.•~- •.- C,... C

'" ~-.,'\.
H3C C CH3

I
HEnol form

H
0/ 0
I IIC C

,/ ~ ' '\.

H3C CH CH3

Keto form

o 0
II IIC C ~

..... '\. ' "
H3C CH2 CH3

Figure 2.5 : Keto-enol tautomerization equilibrium of the free ligand precursor,

acacH, with the resulting hydrogen bonding resonance.
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The surface of ordinary laboratory glassware is able to catalyze and establish

the equilibrium between the two constitutional isomers illustrated in Figure 2.5

above. As illustrated in Figure 2.5 above, in compounds with two carbonyl

groups separated by one -CHz- group, the amount of enol present at

equilibrium is higher. The greater stability of the enol form of l3-dicarbonyl

compounds can be attributed to stability gained through resonance

stabilization of the conjugated double bonds and through the hydrogen

bonding.

The sulphur-containing acac-- analogue.
There are many reported cases in the literature where a sulphur atom has

been used to replace one of the oxygens in the aeac--type ligand and has

been coordinated or bonded directly to a transition metal. There are however,

no reported examples where it has been used to coordinate to a transition

metal through a delocalized [aeacr-type bond as indicated in Figure 2.4.15

Reference is made in the literature to an -8=0 group within a ligand which is

coordinated to a metal through the oxygen (see Figure 2.6 below).16

+ C104-
H3C CH3 CH

3\ I /

N 0=8
H
3
C, /"" 'JPd,

l,
Ph Ph

Figure 2.6 : Dative covalent bonding of an -8=0 group to palladium.

In this study, ligands of the type [R8(0)CHzC(0)R'] were prepared, de-

protonated on the central -CHz group with NaH and bidentately coordinated to

paliadium(lI) to form six-membered chelate rings. The resulting experimental

data were compared to that of complex 2 and to that of related complexes

reported in the literature.
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The phosphorus-containing acac--ana/ogue.

Examples exist wherein there has been a direct coordination of the neutral

[R2P(O)]CH2n[R2P(O)]. or analogous ligand types, to a metal see Figure 2.7.17

Interest in complexes such as those illustrated in Figure 2.7 was generated as

a result of its potential catalytic activity and biological activity. Biological

activity arises from the O-Sn coordination bonds within such molecule.

CH2CH3 R

CI I O=p~R
\ ~ \
Sn CH2dl b=P;-R

RCH2CH3

Figure 2.7 : Neutral phosphorus-containing acacH-type ligand coordination to

a metal.

As far as can be ascertained, phosphorus has never been used in hetero-

acac--type ligands in the same manner as carbon.18

The reported complexes produced using the [R2P(O)CH21rtype ligands are

monomers as well as complexes wherein the bidentate ligand behaves as a

bridge in producing polymeric or binuclear complexes.19 Many complexes

have been produced using these types of ligands with iron(lI) or iron(llI) as the

central metal ion.20

For the present investigation, ligands of the type R2P(O)CH2C(O)R' were

prepared, de-protonated on the central CH2-grouP and coordinated to

palladium to form 6-membered chelates. The resulting experimental data was

compared to that of complex 2 and to that of similar complexes reported in the

literature. The probable structures of the complexes produced in this manner

are illustrated in Figure 2.8 below.
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RR
1/

Ph O::-..P
, I '~
Pd 'CH
'\ f

Ph3P O~C
'R'

Figure 2.8 : Phosphorus-containing acac"-analogue complexes.

15

Application of acac"-type complexes in catalysis.

Transition-metal alkyl complexes are believed to be intermediates in a variety

of catalytic processes such as carbonylation and 0ligomerisation21

Paliadium(lI) forms a variety of alkyl complexes of varying stability and hence

is often employed in model systems for studying important steps in these

catalytic reactions. In most cases it is believed that a metal hydride species is

formed as an active intermediate in the catalytic pathway. Little is known

about how the chelating ligand directs individual steps during the catalytic

process.

The insertion of small molecules such as carbon monoxide into four

coordinate dB metal-carbon bonds is an important step in homogenous

catalysis. The influence of ligands on this process is a major consideration in

catalyst design. Few studies on the mechanism of carbon monoxide insertion

in complexes have been done using chelating ligands,22.23.24and even fewer

on complexes of the r..-diketone (r..-dik) type ligands,25 which is surprising

considering the significance of the ligands in the various catalytic processes.

These carbonylation studies also represent an important addition to the limited

studies carried out on complexes containing dissimilar coordinating atoms.28

For future study, it would be interesting to attempt to correlate the nature of

the chelate ligand with the activity of carbonylation process as well as other

catalytic processes. An investigation into the influence of the coordinating

atoms of these ligands, as well as that of the other alkyl groups on the chelate

ring, on these catalytic processes would also be of interest.
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Palladium and platinum acac--type complexes, related to complex 2, have

been extensively reported. However, complex 2 was primarily synthesised in

order to help monitor, predict and characterize the other complexes

synthesised in the series of this chapter as it proved problematic to obtain

crystals suitable for single crystal structure determination.

2.1.2 Goals and scope of this section of the project.

There has been some interest in the role of the chelating phosphine ligands in

directing the mechanism for carbon monoxide insertion during the

carbonylation of palladium- and platinum-heterocarbonyl complexes.27, 28, 29

No references describing complexes as illustrated in Figure 2.9 below have

been found.3o

R
/

Ph ?=.~
'Pd 'CH
•• \ 'I

PH3P O=-c
'R'

RR
1/

Ph ?:=-~\
'Pd 'CH
"\ ~

Ph3P O~C
'R'

Figure 2.9 : Sulphur- and phosphorus-containing acac--analogue complexes

prepared.

The main goal of this study was to prepare and characterize complexes of the

type illustrated in Figure 2.9 and to obtain suitable crystals for structure

characterization. Structure characterization enables the investigation of the

metal ligand bonding in these types of complexes in an attempt to correlate

structural parameters with ligand influences. Future studies should include the

correlation of these structural parameters with complex reactivity in catalytic

reactions e.g. carbon monoxide insertion. The investigation of the catalytic

activity of these types of complexes however falls outside the scope of this

investigation.

The synthetic route used to prepare complex 2 is illustrated in Scheme 2.1

below and is applicable to all the complexes prepared in this chapter. It finally

involves the reaction of the deprotonated ligand with starting complex 1 by
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displacement of a triphenylphosphine group. Readily removable sodium

chloride forms as a byproduct.

o 0
II II

CH3-C-CHrC-CH3 + NaH

o 0
II II

• CH3-C-CH-C-CH3 + H2(g)
I
Na

o 0
II II

CH3-C-CH-C-CH3 +
I
Na

Ph
I

Ph3P-Pd-PPh3
I
CI

CH3
-PPh Ph O~_C/

3 ,I '\~-N~a=CI~. Pd 'CH
P '\ '
h3P O-:tl,

CH3
2

Scheme 2.1 : General synthetic route used to prepare complexes described

in chapter 2.
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2.2 Results and Discussion

2.2.1 Complex 1! trans-[(Ph3Pb(PhIPdCI1.

I) Preparation of complex 1, trans-[CPh3P12(Ph)PdCll

Trans-[(Ph3Pl2(Ph)PdCI] was synthesised according to the method described

by Herrmann and his co-workers and is illustrated in Scheme 2.2 below.31 It

involved the reaction of palladium chloride with triphenylphosphine to deliver

palladium tetrakis triphenylphosphine. The final step of preparation involved

an oxidative addition of phenyl chloride to produce complex 1. The clean

product was obtained by crystallization from a 1:1 mixture of anhydrous

dichloromethane and pentane.

PdCI2
4PPh3

•• Pd(PPh3)4
CsHs-CI ¥

Ph3P-Pd-PPh3
I
CI

1

Scheme 2.2 : Preparation of complex 1.

Trans-[(Ph3Pl2(Ph)pdCI] as synthesised according to Scheme 2.2, was used

as the starting complex for all the neutral palladium complexes prepared.

II) NMR Spectroscopic analysis of complex 1. trans-[(Ph3EUPh)PdCll

The lH and 13CNMR data for complex 1 are summarised in Table 2.1 below.

The lH and 13C spectra for complex 1, are reported in both d2_

dichloromethane and if-benzene. The complexes that were synthesised from

complex 1 were recorded in both of the above solvents in order to enable all

proton and carbon groups present to be individually assignable.
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Starting Complex 1. h

Q:
Ph3P-Pd-PPh3
del a b

CI

Solvent : CDzClz (TMS used as Solvent : C6D6 (TMS used as
internal standard) internal standard)

Proton (~values)

a: --- ---

b: 7.19 - 7.88 (m, 30H) 6.99 - 7.82 (m, 30H)
c: --- ---
d: 7.19 - 7.88 (m, 30H) 6.99 - 7.82 (m, 30H)
e: --- ---
f: 6.59 (d, 2H, JH-H = 6.6Hz); 6.91 (d,2H)
g: 6.19 (t, 2H)' 6.34 (t, 2H)
h: 6.34 (t, 1H)i 6.31 (t, 2H)

Carbon 13 tH} (~values)

b: 122.5 -155.5 (m) 122.3 - 137.8
d: 122.5 - 155.5 (m) 122.3 - 137.8
e: 155.5 156.7

f, g, h: 122.5 -155.5 (m) 122.3 -137.8

Phosphorus 31 tH} (~valuesJ1

a: 24.41 24.62
c: 24.41 24.62

Table 2.1

lH and 13Cdata for complex 1.

, Peak assigmnents donc largely on the groWlds of signal multiplicity and integration values for the Pd-
Ph group. It is virtually impossible to assign specific peaks for the triphenylphosphine groups duc to
the complex multiplet that these triphenylphosphine groups deliver.
i' ii-values are relative to H,PO, used as an external standard.
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III) Single crystal structure determination of complex 1.

Although the synthesis of complex 1 has been known for some time, the

crystal structure has now been solved.32

Suitable crystals for crystal structure determination were obtained by

crystallization of complex 1 from a solution of dichloromethane layered in a

1:1 ratio with pentane.

A colourless crystal of trans-[(Ph3Ph(Ph)pdCI] was mounted on a glass fiber

and transferred to a Phillips PW1100 diffractometer. All data were collected at

room temperature with graphite monochromated Mo-Ka radiation with 28 = 23°

and corrected for Lorentz and polarization effects. Absorption corrections

were applied by the empirical method. Unique sets of data with intensities

greater than two times the standard deviation were used to solve the structure

by the heavy atom (Patterson) method. Refinements were done using least

squares refinement. All non-hydrogen atoms were refined anisotropically. For

structure solution and refinement the She1X-97 software package was used33.

Structure figures were generated using Ortep_334

Selected crystallographic bond lengths and angles are listed in Tables 2.2 and

2.3 respectively. The crystal structure is illustrated in Figure 2.12 below and

the unit cell is illustrated in Figure 2.13. All other crystallographic information

is available Dr. C. Esterhuysen Department of Chemistry, Stellenbosch

University, Private Bag X1, 7602 Matieland, South Africa.
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Selected bond lengths(A).

Pd-C31 2.005 (5) C134-C135 1.375 (9)

P1-P2 2.3177 (13) C135-C136 1.376 (8)

P1-P1 2.3233 (13) C211- C212 1.367 (8)

Pd-CI 24064 (13) C211-C216 1.389 (8)

P1-C111 1.818 (5) C212-C213 1.399 (10)

P1-C131 1.825 (5) C213-C214 1.350 (12)

P1-C121 1.827 (5) C214-C215 1.349 (12)

P2-C221 1.821 (5) C215-C216 1.384 (9)

P2-C231 1.822 (6) C221-C222 1.398 (7)

P2-C211 1.827 (5) C22-C223 1.372 (8)

C111-C112 1.376 (8) C223-C224 1.362 (10)

C111-C116 1.389 (7) C224-C226 1.375 (10)

C112-C113 1.388 (9) C225-C226 1.367 (9)

C113-C114 1.352 (10) C231-C236 1.354 (9)

C114-C115 1.366 (10) C231-C232 1.375 (9)

C115-C116 1.379 (8) C232-C233 1.384(11)

C121-C122 1.382 (8) C233-C234 1.323 (16)

C121-C126 1.384 (8) C234-C235 1.367 (16)

C122-C123 1.387(10) C235-C236 1413 (11)

C123-C124 1.357(13) C31-C32 1.388 (8)

C124-C125 1.353 (12) C32-C36 1.393 (8)

C125-C126 1.372 (9) C32-C33 1.378 (9)

C131-C136 1.375 (8) C33-C34 1.376 (12)

C131-C132 1.391 (7) C34-C35 1.359 (12)

C132-C133 1.379 (9) C35-C36 1.387 (9)

C133-C134 1.342 (10)

Table 2.2

Selected bond lengths (A) with e.s.d's. in parenthesis for complex 1.
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Selected bond angles(O).

C31-Pd-P2 90.30 (14) C221-P2-C211 102.2 (2)

C31-Pd-P1 91.59 (14) C231-P2-C211 104.2 (2)

P2-Pd-P1 17720 (5) C221-P2-Pd 116.51 (17)

C31-Pd-CI 179.93 (13) C231-P2-Pd 107.94 (19)

P2-Pd-CI 89.68 (5) C211-P2-Pd 119.75 (17)

P1-Pd-CI 88.43 (5) C112-C111- 118.3(5)
C116

C111-P1-C131 104.5 (2) C122-C121- 117.0(6)
C126

C111-P1-C121 102.7(2) C136-C131- 117.8 (5)
C132

C131-P1-C121 1076 (2) C212-C211- 118.1 (6)
C216

C111-P1-Pd 117.69 (16) C225-C221- 117.0 (5)
C222

C131-P1-Pd 109.84 (16) C236-C231- 119.1 (7)
C232

C121-P1-Pd 113.72 (18) C32-C31-C36 117.2 (5)

C221-P2-C231 104.7 (3) --- ---

Table 2.3

Selected bond angles (0) with e.s.d's. in parenthesis for complex 1.
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C35

Pd

Cl
c226

23

C224

Figure 2.11 : Ortep-3 plot of the molecular structure of complex 1, trans-

[(Ph3P)2(Ph)pdCI), at 50% ellipsoid probability showing the numbering

scheme used. Hydrogen atoms have been omitted for clarity.
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Figure 2.12 : Ortep-3 plot of the unit cell of complex 1, trans-

[(Ph3P)2(Ph)Pd(CI)], at 50% ellipsoid probability. Hydrogen atoms have been

omitted for clarity.
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IV) Discussion of the structure and bonding in complex 1.

Most organa-palladium complexes are square-planar3S This means that in an

ideal molecule, the four atoms surrounding the palladium will lie at right angles

to each other in a plane with the palladium. The average deviation in angles

around the palladium atom in complex 1 from the ideal square-planar

molecule was found to be 1.11° with a maximum deviation value of 2.80°.36

The average was calculated by taking the absolute value of the differences

between the experimental angle and the ideal angle (180° or 90°) and taking

the average of the four resulting values, while the maximum was the largest of

the six numbers. The root mean square (RMS)iii for complex 1 was found to

be 0.021 while the maximum deviation from planarity was found to be 0.026A.

It is clear from the square-planar angle and planar deviation values that

complex 1 conforms to the typical square planar geometry of four co-ordinate

complexes of palladium(lI) with the two triphenylphosphine groups being trans

to each other. This conformation to square planar configuration is clearly

illustrated in Figure 2.12.

Bond Angles: -

The two trans triphenylphosphine ligands can take on one of three possible

configurations relative to one another. These are eclipsed, staggered and

skew. These possible conformations can be identified by inspection of the

torsion angle as defined in Figure 2.14 below.

[
1 ( -)2]Y,"' RMS deVIatIOn= N LX, - X N = number of observations, Xi = value of observation i and

X = mean.
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CC ~/

'<...... p'- P d - P
C
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Figure 2.14 :Definition of the torsion angle describing possible conformations

of triphenylphosphine groups in complex 1.

The torsion angles for the eclipsed conformation would thus be (0°, 120°, -

120 0), (60 0, 180 0, -60 0) for the staggered conformation and (90 0, -30 0,

-150°) for the skew conformation. The torsion angles for complex 1 were

found to be [131.9(3)°, 13.7(3)°, -111.5(3)"]. Thus with a distortion of 10°, the

triphenylphosphine groups of complex 1 can be classified as being eclipsed.

As the overall structure is close to square planar, the C31-Pd-P2 angle is

close to 90° (90.30°), but C31-Pd-P1 is greater than 90° and is at 91.59°.

These small differences in angle are most likely due to the slightly different

spatial arrangement of the bulky phenyl rings in each of the two triphenyl

phosphine groups. As this difference in spatial arrangement is small, the two

triphenylphosphine groups are sitting close to 180° from each other. The P2-

Pd-P1 angle being 177.2°.

In spite of the small differences in the individual spatial arrangement of each

phenyl ring in the two triphenylphosphine groups, the opening angles of each

phenyl ring within each triphenylphosphine group are equivalent to each other

and to those of the opposing triphenylphosphine group.

As illustrated in Figure 2.12, the phenyl group lies at 75.42(16)° to the plane

containing Pd, P1, P2, C31. The chlorine atom is a fairly bulky ligand and lies

trans to the phenyl ligand. It lies in the molecular plane interacting equally with

the two triphenylphosphine groups. Since the triphenylphosphine ligands are

similarly arranged, these groups do not allow any bending of the phenyl group

only twisting. The C34-C31-Pd angle measured in complex 1 is 179.8°
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Bond lengths: -

If the bonds from the central palladium atom to the two phosphorus atoms are

compared, it can be seen that the bond lengths are almost equivalent. The

Pd-P1 bond length being 2.3233 (13) A while the Pd-P2 bond length is 2.3177

(13) A.

The bond lengths from the phosphorus atoms to the ipso-carbon atoms of the

respective phenyl rings within each triphenylphosphine group are, as

expected, equivalent to each other and equivalent to the P-Cipsobonds in the

opposing triphenylphosphine group. The mean carbon-carbon bond lengths

within each of the triphenylphosphine rings of each triphenylphosphine group

are similar in length.

As can be seen from both Figure 2.12 and the e.s.d's values in Table 2.2, the

phenyl rings of P2 have a slightly higher degree of thermal disorder than those

of P1.
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V) Thermogravimetric analysis of complex 1.

The thermal decomposition of complex 1 was studied to investigate the

possible existence of stable intermediate species. No thermogravimetric

analysis reference could be found in the literature for similar paliadium(lI)

complexes.

Figure 2.1S is a graphic representation of the thermogravimetric temperature

programwhich involved a 0 - SOOoCtemperature range at SoCmin" .
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Figure 2.15 : Thermogravimetric analysis temperature program.

Figure 2.16 below is a plot of TG and DTG versus temperature for the

thermogravimetric decomposition of complex 1, while Figure 2.17 is a plot of

TG and DTA versus time for the same thermogravimetric decomposition.
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Figure 2.16 : TG and OTG versus temperature plot of the thermogravimetric

analysis for complex 1.
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Figure 2.17 : OTA and TG versus time plot of the thermogravimetric analysis

for complex 1.
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Based on Figures 2.16 and 2.17 above, Scheme 2.3 below illustrates the

suggested decomposition of complex 1. It is evident from Figures 2.16 and

2.17 that the decomposition occurs in three distinct stages.

Ph
I

Ph3P-~d-PPh3

CI

Ph
- CI I
- Ph3P-Pd-PPh3
1

-PPh~

2

Ph
I

Ph3P-Pd
-PPh~

3

Ph
I
Pd

Scheme 2.3 : Suggested thermogravimetric decomposition route of complex

1.

The decomposition process starts at about 200°C and ends at 350°C. Step

one occurs at ca. 200°C, step two at ca.250°C and step three at ca. 300°C.

The three steps occur in relatively quick succession and the ideal

decomposition curve with distinct individual plateaus is not obtained.

From the above graphs it can be seen that with initial decomposition the

chloride is lost followed by the subsequent loss of the two triphenylphosphine

groups. The intermediates formed during this decomposition do not appear to

be very stable. This lack of stability of the intermediates is evident in Figure

2.16 by the relative rapid sequence of decomposition and lack of plateau

definition with particular reference to the third stage. The final fragment

obtained is Pd-Ph, which is stable over the following ca. 20° up to 500°C.
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2.2.2 Complex 2, [(PhaP)(PhIPd/acac)).

I) Preparation of complex 2, [(Ph3P)(Ph)Pd/acaclJ.

Complex 2 was synthesised according to Scheme 2.4 below, 2,4-

Pentanedione was deprotonated under anhydrous, inert conditions with

sodium hydride. The sodium acetylacetonate was reacted with complex 1 to

substitute a triphenylphosphine group and produce complex 2 with sodium

chloride and triphenylphosphine as a by-products.

o 0
II II

CH3-C-CH2-C-CH3 + NaH

o 0
II II

•. CH3-C-CH-C-CH3 + H2(g)
I
Na

o 0
II II

CH3-C-CH-C-CH3 +
I
Na

Ph
I

P~P-Pd-PPh3
I
CI

CH3
/

Ph O=C
I '\-PPha ~ 'Pd :CH

-NaCI / \ ,I

Ph3P 0-1:
'CH3

2

Scheme 2.4 : Synthesis of complex 2.

II) NMR Spectroscopic analysis of aeetylacetone and complex 2.

The 'H and l3C NMR data for acetylacetone is summarised in Table 2.4

below, The 1Hand l3C data for the free ligand is reported for d2_

dichloromethane. The NMR data in Table 2.4 lists the shifts in ppm for both

the keto- and enol-form of the free ligand. The keto-enol equilibrium of

acetylacetone is described in detail in the introduction to this chapter.
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Free Ligand Precursor
O.....H••O0 0 I IIII II - C. .CCH3-C-CHrC-CH3 , CH ......b.CH d'CH

abc d a a3 c a3

Keto form Eno form

Solvent: CD2CI2 (TMS as internal standard).

Proton (o-values)

a: 2.02 (s, 9H) (two CH3 groups from ketone & one CH3 group
from enol form)

b: 2.19 (s, 3H) (One CH3 group of enol) form
c: ---

5.52 ( s, 2H) (ketone form)
3.57 (s, 1H) (enol form)

Carbon 13 /m (o-values)

a: 32.5 (ketone form)
26.5 (enol form)

b: 204.0 (ketone form)
193.2 (enol form)

c: 60.3 (ketone form)
102.1 (enol form)

Table 2.4 : lH and 13CNMR data for acetylacetonate.

The 1H and 13CNMR data for complex 2 are summarised in Table 2.5 below.

The lH and 13C data are reported for both d2-dichloromethane and cf-

benzene.
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Complex

tH3
/

Ph O:::Cd
c' / '",':'HPd ,C

P~P' \ 'I
O:':Cd

f 'CH3
c

Solvent : CD2Cb (TMS used as Solvent : C6D6 (TMS as internal
internal standard). standard

Proton (8-values)

a: 1.91 (s) or 1.67 (s) (3H) 1.75 (br s) (6H)
b: 5.36ppm (s, 1H) 5.34 (s) (1H)
c: 1.91 (s) or 1.67 (s) (3H) 1.75(br s) (6H)
d: --- --
e: 6.67 - 7.03 (m) (5H) 6.85 - 7.84ppm (m) (20H)
f: 7.51 - 7.30 (m) (15H) 6.85 - 7.84ppm (m) (20H)

Carbon 13 /H} (8-values)

a: 27.9 27.9
b: 99.9 100.0
c: 27.9 27.9
d: 188.2 and 187.5 187.7
e: 123.7-136.r (m) 123.7 -136.9iv (m)
eipso: 149.8 v

f: 123.7-136.r; (m) 123.7 _136.9vi (m)
fiDso 150.0 ---

Phosphorus 31 /H} (8-values)

f: 33.13ppm Not measured

Table 2.5: 1H and 13Cdata for complex 2.

" Signal obscured by lhc signal of protons f
'Impossible to unambiguously assign ipso signal due to overly of phenyl triphenylphosphine signals.
" Signal obscured by the signal of protons e.
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The proton and carbon-13 shifts of the {3-dicarbonyl compounds complexed to

metals are known to show a variety of different shifts in different NMR

solvents due to solvent interaction with the complex. It is known that cf-

benzene has a remarkable effect on the 1H NMR spectra of most measured

palladium [l,-dicarbonyl complexes37. Most signals show a substantial upfield

shift in cf-benzene as compared to those in other solvents. When the NMR of

complex 2 is measured in d2-benzene, a single broader signal for the two

terminal -CH3 groups was found in the middle of the ppm shift of the signals

produced by the -CH3 groups when analysed in d2-dichloromethane. The

upfield shift in benzene may be attributed to the diamagnetic anisotropy of the

solvent molecule interacting with the complex.

Table 2.6 below lists the NMR data of Pd(acach as reported in the literature

for various solvents.38 It illustrates the solvent effect that is reported for these

types of complexes in different NMR solvents.

Proton NMR Data

Solvent -CH3 -CH-

in CDCIz 2.07 5.43

in C6D6 1.65 4.94

H3C CH3 in (CD3)2CO 1.97 5.49" /C;-=O O_-=;-C
in (CD3hSO 1.97 5.53J~ , / •••

HC: Pd "CH
\\ / \ 'I
C'~-O 0=-'"6 Carbon 13 {'H} NMR Data
/ "H3C CH3

Solvent -CH3 -CH- CH3CO

in CDCb 25.4 101.6 187.2

in C6D6 24.9 101.1 186.8

in (CD3hCO 25.0 101.4 vii

Table 2.6 : Reported NMR spectral data of Pd(acach as collected in various

solvents.
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When the NMR spectral data of acetylacetone and that of complex 2 are

compared, it is evident that deprotonation of the free ligand did occur as well

as co-ordination of the free ligand to the palladium. The following

characteristics of the spectrum are of note: -

~ It is evident from the NMR data that the coordination of the ligand to the

palladium took place through the two oxygen atoms and not through the

central carbon atom as was a possibility. This can be seen by the

difference in shifts for the carbonyl carbons (Ocomplex - Ofree ligand, 16.5 and

15.8ppm respectively) in the carbon-13 spectrum. The shifts with respect

to these groups, as well as to those compared to the -CH group and the

two-CH3 groups, are in line with that for similar complexes found in the

Iiterature.39,40, 41

~ The position of the central -CH- group in both the carbon-13 (100.0ppm)

and proton (5.34ppm) data, relative to its position prior to deprotonation is

also consistent with bonding through the carbonyl groups.

~ Since co-ordination with palladium is square planar, and the other two

subsituents are triphenylphosphine and a phenyl group, the two carbonyl

groups are not chemically equivalent. This is substantiated by the two

different signals that are evident in the carbon-13 data for the two carbonyl

groups when measured in d2-dichloromethane namely 191.6ppm and

187.8ppm. This is in line with the same phenomenon reported in the

literature42. However, only one signal is evident in the carbon-13 spectrum

when measured in if-benzene namely 187.7ppm

~ Due to the square planar geometry of the complex and the resulting

relatively high symmetry, the two terminal -CH3 groups of the acac"-ligand

are also not equivalent. Two signals are observed for these groups in the

proton NMR data, namely 01.78 (s) and 01.76 (s) .

•" Signalindiscernible because of poor solubility of the complex.
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» An overall downfield shift in the phosphorus-31 spectrum of complex 1,

compared to that of complex 2 is further evidence in support of the

suggested co-ordination of the deprotonated acac"-ligand.

» When analysed in d2-dichloromethane, the proton NMR signals of the

phenyl rings of the two triphenylphosphine groups appear in the region

7.30-7.51 ppm as a complex multiplet. The Pd-Ph proton NMR signals are

well separated from the -PPh3 signals and can easily be distinguished in

the region 6.67 - 7.03ppm. However, when analysed in c.f-benzene, the

signals of the Pd-Ph group are obscured by the signals of the -PPh3 group

and visa versa thus only enabling the overall i)-assignment for both groups

as a whole (6.85 - 7.84ppm).

» It is important to note that two separate, well-defined proton signals are

evident for the two -CH3 groups when the sample is analysed in d2_

dichloromethane, but only one broad singlet is apparent for both groups

when analysed in c.f- benzene.

» Due to the non-separation of the signal of the phenyl group from those of

the triphenyl phosphine group, when analysed in c.f-benzene, it proved

impossible to unambiguously assign the carbon-13 signals for these

groups.

» When the NMR proton spectrum of complex 2 measured in c.f-benzene is

compared with the proton spectral data as collected in d2-dichloromethane,

an overall upfield shift is apparent in c.f-benzene. This is in line with the

literature-reported phenomenon for these types of complexes and is

probably due to the diamagnetic anisotropy interaction of c.f-benzene.43
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III) Infrared spectral data for complex 2, [(Ph3P) (Ph )Pd(acacJ/.

Infrared spectroscopy proves invaluable in the characterization of

acetylacetonate-type complexes, Extensive infrared studies have been carried

out in the characterization of acetylacetonate complexes,44 It was reported by

Collman et ai, that the central hydrogen atom of these complexes can be

replaced under electrophilic conditions. He reported that the unsubstituted

acetylacetonate complexes exhibit strong bands at -1570cm-1 and

-1520cm-1. Substituted acetylacetonate complexes show only weak

absorbtion at -1520cm-1 and the band at -1570cm-1 is shifted to -1550cm-'. It

was also reported by Collman that infrared vibrations of different chelate rings

in unsymmetrical substituted acetylacetonates in the same complex are nearly

independent of each another. It has also been reported that the infrared data

for analogous complexes with different metal centers e. g. Rh, Cr, Co are

nearly identical. 45

The infrared data for the free ligand acacH and complex 2 are reported in

Table 2.7 below. The infrared data obtained for the free ligand acacH is in

agreement with the data reported by Pretch et al.46

Acetylacetone Complex 2.

CH3
/

0 0 Ph O:::C
II II " I ,\

CH3-C-CHrC-CH3 Pd ~CH
PH3P'

\ /I
O::.:C

'CH3

1724 cm-1 (keto form) 1539.8 cm-1 (s)

1608 cm-1 (enol form) 1558.7 cm-1 (vs)

CO bond order = 2 CO bond order = 1%

Table 2.7 : Infrared spectral data for acacH and complex 2.

If the carbonyl groups of the deprotonated acetylacetone were to coordinate to

the palladium atom through a delocalized negative charge as proposed, the

double bond character of these carbonyl group groups would be decreased.
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This would cause the stretching frequency of the carbonyl groups to be

reduced47

As is evident in Table 2.7 above, there has been a decrease of -200cm-1 in

the v(C=O) stretching vibration. The reduction in the stretching vibration of

these carbonyl groups is further support of the NMR data that the coordination

of the acetylacetonate to the palladium has occurred through the carbonyl

groups and not though the central carbon atom.

IV. Mass Spectrum for complex 2.

The mass spectrum fragmentation pattern for complex 2 is illustrated in

Scheme 2.5 below. Relative intensities are given in parenthesis. The

molecular ion of the target complex was observed at m/z 546. The

subsequent fragmentation occurs primarily along two pathways:

• The first involves the initial loss of the acetylacetonate ligand followed by

the further fragmentation of the triphenylphosphine and phenyl groups.

• The second route involves the loss of the triphenylphosphine group

followed by the phenyl group. The second fragmentation path is

characterized by comparatively low intensities relative to the first.
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+

CH3!
"Ph O;-:C

, I '\
Pd :CH

PH3P' '0:':-6'
'CH3

546 [28.66]

- PPh3

39
I

[ , +]~
P~P-~d

445 [8.54]

1 -Ph

[ +]~
Ph2P-~d

368 [17.07]

1- Ph

[ +]~
PhP-~d

291 [20.73)

[
1 -Ph +

[~+]~]-P

P-~d •

213 [11.59] 183[53.66]

[
1- Ph 1- Ph

P-~+]
-P

~d+J•
107[15.85]

136[24.39]

Scheme 2.5 : Mass spectrum for complex 2.

Relative intensities are given in parenthesis.

+
CH31

O-e"Ph, I --,\
Pd :CH

, , I
O:.:-C

'CH3

282 [2.44]

1- Ph

+

CH3!
O-C"
I --"

Pd :CH, "O:.:-C
'CH3

205[3.65]

1- ocac
~d+J

107[15.85]
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v. Single crystal structure determination of complex 2.

Suitable crystals for crystal structure determination were obtained by

crystallization of complex 2 from a solution of dichloromethane layered in a

1:1 ratio with pentane.

A light yellow crystal of (Ph3P)(Ph)pd(acac) was mounted on a glass fiber and

transferred to a Phillips PW1100 diffractometer. All data were collected at

room temperature with graphite monochromated Mo-K, radiation with 26 = 23°

and corrected for Lorentz and polarization effects. Absorption corrections

were applied by the empirical method. Unique sets of data with intensities

greater than two times the standard deviation were used to solve the structure

by the heavy atom (Patterson) method. Refinements were done using least

squares refinement. All non-hydrogen atoms were refined anisotropically. For

structure solution and refinement the She1X-97 software package was used.48

Structure Figures were generated using Ortep_349

-
Selected crystallographic bond lengths and angles are listed in Tables 2.8 and

2.9 respectively. The crystal structure of complex 2 is illustrated in Figure 2.18

below while the unit cell is illustrated in Figure 2.19. All other crystallographic

information is available from Dr. C. Esterhuysen Department of Chemistry,

Stellenbosch University, Private Bag Xi, 7602 Matieland South Africa.
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Atoms bonded Bond length (A) Atoms bonded Bond length (A)

Pd1 -C41 1.990 (4) 01-C1 1.263 (4)

Pd1-02 2.086 (2) 02-C4 1.272 (4)

Pd1-01 2.095 (3) C1-C3 1.392 (6)

Pd1-P1 2.2325 (10) C1-C2 1.511 (6)

P1-C11 1.816(4) C3-C4 1.381 (6)

P1-C31 1.828 (4) C4-C5 1.515 (6)

P1-C21 1.843 (4) --- ---

Table 2.8 : Selected bond lengths (A) with e.s.d's. in parenthesis for complex

2, [(PPh3)(Ph)Pd(acac)]

Atoms bonded Bond angle (') Atoms bonded Bond angle (')

C41-Pd1-02 87.42 (12) C11-P1 C31 104.70 (19)

C41-Pd1-01 176.00 (12) C11-P1 C21 103.90(17)

02-Pd1-01 89.43 (10) C31-P1 C21 104.16 (17)

C41-Pd-P1 88.45 (10) C11-P1 Pd1 111.08 (12)

02-Pd1-P1 175.55 (8) C31-P1 Pd1 110.25(12)

01-Pd1-P1 94.62 (7) C21-P1 Pd1 121.32 (13)

Table 2.9 : Selected bond angles (0) with e.s.d's. in parenthesis for complex

2, (PPh3)(Ph)Pd(acac)J
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Figure 2.17 : Ortep-3 plot of the molecular structure of [(Ph3P)(Ph)Pd(acac)]

at 50% ellipsoid probability showing the numbering scheme used. Hydrogen

atoms have been omitted to make viewing easier.
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Figure 2.19 : Orlep32 plot of the unit cell of [(Ph3P)(Ph)Pd(acac)] at 50%

ellipsoid probability showing the molecular packing. Hydrogen atoms have

been excluded to make viewing easier.
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VI. Discussion of the structure and bonding in complex 2.

«PPh3) (Ph)Pd(acacJ/.

Bond angles and bond lengths for complex 2 are reported in the tables 2.8

and 2.9 above. The corresponding structure with respect to this data will be

discussed here.

Based on an analysis of the Cambridge Crystallographic Structural Database

(CCSD), most organo-palladium complexes are square planar. In the ideal

molecule the four atoms surrounding the palladium will lie at right angles to

each other in the plane with the palladium. The average angle of deviation

within complex 2 from the square-planar conformation is 2.96° with the

maximum being 4.62°. The average was calculated by taking the absolute

value of the difference between the experimental angle and the ideal angle

(180 ° or 90°) and taking the average of the four resulting values while the

maximum was the largest of the six numbers. The root mean square (RMS)viii

for complex 2 was found to be 0.017 while the maximum deviation from

planarity was found to be 0.027A. This maximum deviation from planarity is

very close to thatwhich was found for complex 1 (0.026A).

The above values indicate that complex 2 exhibits a typical square-planar

coordination with very slight deviation from the plane. In general the trends

described below for complex 2 are similar to and in line with similar Pd(lI) and

Pt(lI) complexes reported by Cavell et al.50

The C41-Pd-P1-C11 torsion angle for complex 2 is -168.20. This torsion angle

is in sharp contrast to the comparative torsion angle of 131.9° in complex 1.

The phenyl group, directly bonded to the palladium atom, lies almost

perpendicular to the plane containing the Pd, P1, 01 and 02. The phenyl is

rotated about the palladium-carbon bond and is being slanted against the

.. [I ( _),]Yz
."m RMS deviation = N LXi - X • N = nwnber of observations, Xi = value of observation i and

x = mean.
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square-planar plane with a torsion angle of 78.47(9)". The C41-Pd-P1-

C11/C12/C13 torsion angles are 76.2(2)°, -46.2(2) ° and -168.2(2)0.

respectively.

Since the phenyl group is aromatic, the Pd atom would thus be expected to lie

in the same plane as the phenyl ring. However, the phenyl ring has a distinctly

bent conformation with the C44-C41-Pd angle being 172.0°. A perfectly

straight phenyl ligand would have an angle of 1800. The phenyl ligand takes

up this bent conformation to minimize its interaction with the

triphenylphosphine group.

Where acetylacetonate bonds to a metal ion in the classical form though the

two oxygen atoms, the two chelate ring C-C bond distances and the two C-O

bond distances are reported as being equal.S1 This characteristic is present in

complex 2 with C1-01 = 1.263(4) A, C4-02 = 1.272(4) A and C1-C3 =

1.392(6) A, C3-C4 = 1.381 (6) A. The bond lengths between the palladium and

the two oxygen atoms are close enough in length [Pd-0(1) 2.095(3)A and Pd-

0(2) 2.086(2)A] to be considered equal.

The methyl groups of the ligand are equivalently bonded to their respective

carbons within the ligand ring with a bond length of 1.515(6)A and 1.511 (6) A

respectively.

This general equivalency in bond lengths is characteristic of a coordination of

the anion of 2,4-pentanedione through the two oxygen atoms to a metal with a

delocalization of charge through the resulting chelate ring.

Due to the bulky nature of the phenyl rings within the PPh3 group, the three

phenyl rings become constrained causing the P-C(phenyl) bond lengths within

the rings not to be equivalent. The P-C21 bond (1.843 (4)A) is longer in length

than the other P-C bonds.
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2.2.3 Complex 3, [(Ph3PllPh)Pd(CH3SCHC(O)Ph)).

I) Preparation of complex 3.

Complex 3 was prepared according to Scheme 2.6 below. The precursor for

the ligand, ro-(methylsufinyl)acetophone [CH3S(0)CH2C(0)Phl, was prepared,

de-protonated on the central -CH2 group with NaH and bidentately

coordinated in complex 1 through the two forming a six-membered chelate.

During the rea'ction one triphenylphosphine group of complex 1 was displaced

to furnish complex 3. Readily removable sodium chloride forms as a

byproduct.

o 0
II II

CH3-S-CHrC-Ph + NaH

o 0
II II

CH3-S-CH-C-Ph
I
Na

o 0
II II

CH3-S-CH-C-Ph
I
Na

••

¥
+ Ph3P-Pd-PPh3

I
CI

- PPH3
••• NaCI

CH3
/

Ph O-"""""S, I .••.\

Pd \CH
"\ 'I

Ph3P 0~6 ,
Ph

Scheme 2.6 : Preparation of complex 3, [(Ph3P)(Ph)Pd(CH3SCHC(0)ph)j.

II) Spectroscopic analvsis of the precursor of the free ligand, ro-

(methylsufinyllacetophone, and complex 3.

The 1Hand l3C NMR data for the precursor of the free ligand ro-

(methylsufinyl)acetophone, are summarised in Table 2,10 below, The lH and

l3C spectra for ro-(methylsufinyl)acetophone, are reported for both cf-

dichloromethane and if-benzene since the NMR data of complex 3,

synthesised from deprotonated ro-(methylsufinyl)acetophone, were recorded

in both solvents to enable all protons and carbons present in the synthesised

complex to be individually visible,
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Free Ligand Precursor
0 0
II II

CH3-S-CH2-C-Ph
abe d

Solvent : CD2CI2 (TMS as internal Solvent : CD2Ch (TMS as internal
standard). standard).

Proton (t5-values)

a: 2.73 (s, 3H) 2.11 (s, 3H)
b: 4.38 (dd, 2H) 3.74 (dd, 2H)
c: --- --
d: 7.54 - 8.05 (m, 5H) 7.02 - 7.84 (m, 5H)

Carbon 13 tHZ (t5-values)

a: 40.0 39.3
b: 62.8 62.2
c 193.2 192.8

dortho 129.2 - 129.6 (m) 27.8 - 129.7 (m)
dmeta 129.2 - 129.6 (m) 127.8 -129.7 (m)
dpara 134.9 134.3
dipso 136.9 137.3

Table 2.10 : NMR spectral data for the precursor of the free ligand, Ol-

(methylsufinyl)acetophone.

The hydrogen atoms of the central -CH2 group are diastereotopic and thus are

visible in the proton NMR spectrum as a doublet of doublets.

The 1Hand 13CNMR data for complex 3 are summarised in Table 2.11 below.

The 1H and 13C data are reported for both d2-dichloromethane and d'-
benzene.
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Complex a
e /CH3
Ph O_-=S b, I •••\

Pd \CH"\ I,
Ph3P O=-"(; d

f C 'Ph

Solvent : CD2CI2 (TMS as internal Solvent : CsDs (TMS as internal
standard). standard).

Proton (8-values)

a: 2.67 (s, 3H) 2.46 (s, 3H)
b: 5.72(s,1H) 5.90 (s, 1H)
c: --- ---
d: 6.70 - 7.63 (m) 6.89 - 7.52 (m)'X'
e: 6.70 - 7.63 (m) 6.89 - 7.52 (m)'X'
f: 6.70 - 7.63 (m) 6.89 - 7.52 (m)'X'

Carbon 13 tH} (8-values)

a: 43.3 44.3
b: 94.3 96.8
c: 178.4 179.78
d: 123.1-134.8(m) 124.2 - 138.8 (m)iXi
e: 123.1 -134.8 (m) 124.2 -138.8 (m) ix,
f: 123.1 -134.8 (m) 124.2 -138.8 (m)'X'

Phosphorus 31 rtH} (8-values)

f: 27.85 24.58

Table 2.11 : NMR spectral data for complex 3.

" Signals are obscured by the CJ)6 signal and it is impossible to unambiguously assign individual
phenyl group signals
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The characteristics of the NMR spectral data of complex 3 relative to that of

the free ligand precursor, ro-(methylsufinyl)acetophone, can be summarized

as follows: -

» A slight downfield shift occurs in the proton spectrum of the -CH3 group.

This shift is more evident in the carbon-13 spectrum where a downfield

shift of 3.5ppm has occurred.

» The position of the -CH- group in both the carbon-13 and proton data,

relative to it's position prior to de-protonation, suggests that significant de-

shielding (:t34ppm) has occurred. This is consistent with de-localized

bonding through the carbonyl- and sulphoxide group. This deshielding is

consistent with the deshielding of the central -CH group of acac. that

occurred upon its chelation with palladium in complex 1 which is in

opposition to the shielding that occurs due to the negative charge formed

as a result of the deprotonation of the neutral ligand. This downfield shift in

complex 3 is more dramatic in the carbon-13 spectrum where a shift of

31.5ppm in CD2CI2 has occurred.

» An overall upfield shift from free ligand to complex has occurred for the

phenyl group of the ligand in both the carbon -13 (6.1 ppm) and proton

(O.84ppm) spectra.

» A sharp upfield shift of 14.8pmm has occurred for the carbonyl signal. This

upfield shift is further support for coordination of the ligand to the

palladium. This marked upfield shift indicates that the carbonyl groups

have experienced a greater degree of shielding due to the anionic ligand

used in contrast to the neutral compound used as reference. This marked

upfield shift was also observed in the carbon-13 spectra of complex 2.

» Overall the trends exhibited here are similar to those observed for complex

2 whose molecular structure is confirmed by MS-, IR-, NMR spectroscopy

and X-ray crystal structure determination.



Chapter 2 50

III) Infra-red spectral data for the free ligand, ar(methylsufinylJacetophone,

and complex 3.

The infrared data for Ol-(methylsufinyl)acetophone and complex 3 is listed in

Table 2.12 below.

Free ligand Precursor Complex

CH3
/

0 0 Ph O--::S
, I ' \

II II Pd )CH
CH3-s-CHrC-Ph ' \ ,I I

PH3P O~C ,
Ph

v(C=O) : 1710.6 cm-1 v(C=O) : 1564.2 cm-1

CO bond order = 2 CO bond order = 1'h.

Table 2.12

complex 3.

Infrared spectral data for Ol-(methylsufinyl)acetophone and

There has been a decrease of 146.4 cm-1 in the v(C=O) stretching vibration.

This reduction is in-line with the reduction of double bond character that would

occur if deprotonated Ol-(methylsufinyl)acetophone were to coordinate to the

palladium atom through the carbonyl group by means of a delocalized charge.

This change is parallel to that in the infrared spectral data that was observed

for complex 2 relative to the ligand precursor whose structure was confirmed

by a single crystal x-ray structure determination (see Table 2.7).

Despite attempting various methods of crystallization, no crystals suitable for

crystal structure determination formed. Complex 3 may occur as two possible

isomers. NMR data indicated that only one is present. These isomers are

illustrated in Figure 2.19 below.
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Ph
/

Ph O---=C, I ••.\

Pd "CH
/ \ "

Ph3P 0=-"8,
CH3

structure 1
'cis-SO

CH3/
Ph O_--=S

, I \'

Pd 'CH
/ \ "

Ph3P O=-"C,
Ph

structure 2

'trans-S'

51

Figure 2.19 : Possible isomeric forms of complex 3.

In the first isomer, structure 1 above, the OS-CH3 unit is situated cis to the

triphenylphosphine group. In the second isomer, structure 2, the OS-CH3

group occurs trans to the triphenylphosphine group. Due to the relatively bulky

nature of both the phenyl and triphenylphosphine groups, it is proposed that

the cis configuration (structure 1, Figure 2.19 above) is preferred configuration

for complex 3.

IV) Mass Spectrum of complex 3, (Ph3P)(Ph1Pd (CH3S(Q)CH2C(Q)PhJl

The mass spectrum for complex 3 is illustrated in Scheme 2.7 below. Relative

intensities are given in parenthesis. The molecular ion was observed at m/z

630 with relative high intensity.

The fragmentation pattern illustrated in Scheme 2.7 is similar in many

respects to that in Scheme 2.5 for complex 2. Fragmentation of complex 3

also occurs primarily along two pathways:

• The first fragmentation pathway involves the loss of the triphenylphosphine

group followed by the loss of the phenyl group. Further fragmentation

involves the loss of the bonded sulphur-containing ligand.

• The second fragmentation pathway involves the initial loss of the sulphur-

containing ligand followed by further fragmentation of individual phenyl

groups.
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+

[PhJpJ
262 [19.51)

!-P:
[Ph3PJ
185 [10.98]

l-Ph

-P +

[Ph3PJ
107 [25.61J

- (Pd-Ph)

[p,Pdl

136 [49.39]

~ +~~cTI
107 [25.61]

+

[Ph'Pd]
183 [61.59J

- PhC(O)CHS(O)CH3

-+CH3/

Ph 0_""",,5
- PhC(O)CHS(O)CH3-PPh3 I ,I \\ I

Pd ]CH
/ \ , I

Ph3P O~C ,
Ph

630 [13.41]

! +
+

[ Ph:Pd]CH3
/

Ph O-""""f) PhJP
, I "
Pd ;CH 445 [14.63]\ Io~t !-2Ph,

Ph
368 [17.07]

l-Ph
[Ph, J
PhP,Pd

368 [16.46]+
CH3 - PhC(O)CHS(O)CH3 !-Ph/

0-""",,5
I \'

Pd ,'CH
\ , I +O~C

C:)d]

,
Ph

I288 [23.17]

-Ph I 213 [12.20]

Scheme 2.7 :Mass spectrum for complex 3.

Relative m/z intensities are in parenthesis.
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2.2.4 Complex 4, {(PPh3)(Ph)Pd{(CH3CH2012P(O)CHC(OICH(CH3h}1.

/JPreparation of complex 4.

The precursor of the free ligand, 1-diethyl-3-methyl-phosphino-2-butanone,

was prepared according to modified literature methods52 Complex 4 was

prepared according to Scheme 2.8 below. The precursor of the free ligand

was deprotonated on the central -CH2 group with a 1.1 mole equivalent of

sodium hydride. The resultant isolated sodium salt was re-dissolved and

bidentately coordinated to the palladium in complex 1 by substituting a

triphenylphosphine group forming a 6-membered chelate ring. Readily

removable sodium chloride is formed as a byproduct.

o 0
CH3CH20, II II. CH3

P-CH-C-CH
/ I •

CH3CH20 H CH3

CH3CH20 OCH2CH3
\ I

P~P O=E',
\ I \'\

Pd )CH
/ \ ~I

Ph O.=..-C
\
CH
/ .

CH3 CH3

4

+NaH ••-H2

- NaCI

o 0
CH3CH20, " II •CH3

P-CH-C-CH
/ I •

CH3CH20 Na CH3

¥
Ph3P-Pd-PPh3

I
CI

Scheme 2.6 : Formation of complex 4.
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II) Spectroscopic analvsis of the free ligand 1-diethvl-3-methyl-phosphino-2-

butanone, and complex 4.

The 'H and '3C NMR data for the free ligand 1-diethyl-3-methyl-phosphino-2-

butanone, are summarised in Table 2,13 below, while the 1Hand 13C NMR

data for complex 4 are reported in Table 2,14. The NMR data for both the

precursor to the free ligand and the prepared complex were measured in d2_

dichloromethane using TMS as an internal standard.

Complex 4 proved to be relatively unstable and decomposed in solution

during NMR analysis despite the inert, anhydrous conditions under which the

NMR solution was prepared. Due to the complex's unstable character, it

proved impossible to obtain perfectly clean NMR spectrums. This instability

resulted in the NMR spectra having several decomposition peaks in both the

'H and 13C spectrums that increased in intensity with time. In spite of this

decomposition, it was possible to assign prominent peaks and to identify

trends in the spectra that were also present in the NMR spectra for complexes

2 and 3.
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Free Ligand Precursor

o 0 e
CH3CH20, II II ,CH3
a b P-CHrC-CH

CH3CH20/ r c g d'CH3
a b e

Solvent: CD2Cb (TMS as internal standard)

Proton (~vafues)

a: 1.31 (t, 6H)
b: 4.13 (m, 4H)
CI 3.15 (br s,1H)
Cii: 3.07 (br s, 1H)
d: 2.85 (m, 1H)
e: 1.03 (d, 6H)

Carbon 13 {'H} (~values)"

a: 18.2
b: 63.0
e;: 39.8
Cii: 41.5
d: 42.2
e: 16.7
f: ---
q; 207.0

Phosphorus 31 tHl (~vafues).x

f: 20.71

Table 2.13: NMR spectral data for the precursor to the free ligand 1-diethyl-3-

methyl-phosphino-2-butanone.

The hydrogen atoms of the central -CH2 group are diastereotopic and are thus

visible in the proton NMR spectrum as two individual signals.

, (ii-values are relative to H,PO, which was used as an external standard.
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Complex 4.
a b b a
CH3CH20 OCH2CH3h \ I

Ph3P O=p'f
\ I ~ H
Pd 'C

i/ \ "I,
Ph O~-c g

C~eH / 'C 3 CH3

Solvent: CD2Cb (TMS as internal standard).

Proton (t5-values).

a: 1.21 (d,6H)
b: 3.89 (m, 4H)
c: obscured by peak b
d: peak not observed
e: 1.02 (d, 6H)
f: ---
g: ---
h, i: 6.64 - 7.71 (m, 20H)

Carbon 13 {'HI (t5-values).

a: 21.6
b: 60.6
c: 62.6
d: 40.6
e: 16.5
f: ---
g: 196.4
h, i: 123.4 -137.1

Phosphorus 31 {'HI (t5-values).Xi

f: 27.66
h: 30.37

Table 2.14: NMR spectral data for complex 4.

" (o-values are relative to H,Po., which was used as an e>.1emalstandard.
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The spectral shifts, characteristics and trends evident in the NMR spectral

data of the neutral precursor of the free ligand, 1-diethyl-3-methyl-phosphino-

2-butanone, versus that of complex 4 in the Tables 2.13 and 2.14 above can

be summarized as follows: -

:;. A slight upfield shift has occurred in the proton spectra for proton groups a

and b. This upfield shift is mirrored in the carbon-13 spectra for carbon

group b, but not for carbon group a where a small downfield shift occurred.

:;. Virtually no spectral shift changes were evident for proton or carbon

groups e.

:;. A sharp upfield shift of 10.6ppm from the precursor to the free ligand to

complex has occurred for the carbonyl group g in the carbon-13 spectrum.

This sharp upfield shift of the carbonyl group was observed in the carbon-

13 spectra of both complex 2 and 3.

:;. There has also been a dramatic upfield shift of 18.44ppm from free ligand

to complex in the phosphorus group of the original free ligand precursor.

This upfield shift takes place parallel to the shift that has occurred for the

carbonyl group g in the carbon-13 spectrum, This significant upfield shift in

the phosphorus-31 spectrum of the -P=O group suggests that the

coordination of this group to the palladium metal is stronger than the

coordination of the comparable carbonyl groups to the palladium metal in

complex 2, 3 and 4.

It is suspected that the steric hindrance imposed by the iso-propyl, phenyl and

triphenylphosphine groups along with the thermal lability of the ethoxide

groups are responsible for complex 4's instability despite the comparative

strong bonding of the -P=O group to the palladium. Due to the instability of

the complex, it proved impossible to obtain crystals suitable for X-ray crystal

structure analysis despite several methods of crystallization that have been

repeatedly employed.

Attempts at purification of complex 4: -

It is not possible to use column chromatography (Si02) for the separation of

our palladium complexes as they streak and decompose on these columns.

Extraction attempts with various solvents proved fruitless, as impurities
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appeared to be largely soluble in the same solvents as complex 4. The only

other possible purification technique available was crystallization. This

technique however, also proved to be fruitless since all the crystallization

attempts resulted in total decomposition. The crystallization techniques that

were attempted included solvent concentration, cooling, solvent layering and

solvent diffusion. The route of decomposition for complex 4 is not known and

attempts to assign NMR peaks to possible decomposition products proved

ambiguous and inconclusive. This was in-spite of attempts to monitor the

decomposition process with proton and carbon-13 NMR spectroscopy over

time.

III) Infrared spectral data for the precursor to the free ligand, 1-diethyl-3-

methyl-phosphino-2-butanone, and complex 4.

The infrared spectral data for the precursor to the free ligand, 1-diethyl-3-

methyl-phosphino-2-butanone and complex 4 is summarized in Table 2.15

below. The infrared samples were measured in liquid cells using anhydrous

dichloromethane with 16 scans at 4cm-1 resolution.

Free ligand Complex

o 0 CH3CH20 OCH2CH3
CH3CH20,11 II ,CH3 \ 1

Ph3P, O=P.P-CHrC-CH 1 ~
/ ' Pd 'CHCH3CH20 CH3

Ph
\ /1
O=-""C

\
CH
/ 'CH3 CH3

v(C=O) : 1710.6 cm-1 v(C=O) : 1564.2 cm-1

CO bond order = 2. CO bond order = 1'h.

Table 2.15 : Infrared spectral data for the precursor to the free ligand, 1-

diethyl-3-methyl-phosphino-2-butanone and complex 4.
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For the ligand to be coordinated to the palladium metal center through a

delocalized bond involving the P=O and -C=O groups, the double bond

character of these groups would have to be reduced. This reduction in double

bond character of the carbonyl group can easily be monitored by infrared

spectroscopy. As can be seen in the infrared data in Table 2.15, there has

been a reduction of 146.4cm-1 in the v(C=O) stretching vibration. This

supports the suggested bonding mode of the deprotonated ligand to the

palladium centre. 53

IV) Mass Spectrum of complex 4.

The mass spectrum for complex 4 is illustrated in Scheme 2.9 below. Relative

intensities are given in parenthesis. The molecular ion of the target complex

was observed with relatively high intensity at m/z 668.

The fragmentation pattern exhibited for complex 4 is similar to that of

complexes 2 and 3 in that the fragmentation, once again, occurs primarily

along two main routes.

>- The first involves the initial loss of the palladium-phenyl-triphenylphosphine

section of the complex followed by further fragmentation of the original

phosphorus ligand.

>- The second route of fragmentation involves the fragmentation of complex

4 as a whole with the initial loss of the ethoxy- and phenyl-groups. This

second route is characterized by relatively low intensities as compared to

the first.
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-[(Ph~PPdPhJ

I.
+ LE~O ~r(O)CHC(O)CH(CH3~ ,2(EI,O) : P(O)CHC(O)CH(CH3h

Et20

133 (16 OS) -ICHIC7 223(1231

[

Et20 ]+
>(O)CHC(O)

Et20
180(11.73]

L
EI20 j+:P(O)CHC(O)CH(CH3h
Et20

223 [51 ,23J

Et20 OEt2
\ ,

Ph,P, p~~,
Pd :CH
I' ,I

Ph O~'C
\
CH

/ .
CH3 CH3

668 [35.42] I
,oEt2

Ph,P, ,(1--\,
Pd :CH
I \ ,I

Ph O~'C
\
CH

/ .
CH3 CH3.

624 (6.'7)

1~h

•

-PPh, Ph-

1- [EI,o),CHICH,},

[
E~O ]+

'P(O)CHC(O)

136 [47.53J

l-[COI

[
Et20 ]''P(O)CH

105 [46.91)

Scheme 2.9 : Mass spectra for complex 4,

(Relative intensities are given in parenthesis),

Pd'
107 [58.021

,OEt2
p~P\ p-P,

Pd CH
I' ,

Ph O-C
\
CH

/ .
CH3 CH3

545 [3.70)

1~h
,cEt2

PhP, p-P,
Pd CH
I' ,

Ph O-C
\CH

CH( 'CH3

470 [6.17)

1-IC{O)cH(CH3hl,

[
OEI2]

PhP, ,o-p~
Pd CHPh
395 (17.281

l"(OE~)PIO)(CH}

[P:}d]
294 (8.64]
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2.3 Conclusion.

In conclusion, the structure of complex 2 was solved by single crystal X-ray

diffraction confirming that the target complex had been synthesised. The acac.

-ligand is bidentately coordinated by means of the oxygen atoms carrying a

delocalized negative charge resulting from two resonance structures as

illustrated in Figure 2.20 below. The NMR, infrared and MS spectroscopic

data were analysed, peaks assigned and trends described. Simiiar data

trends were observed in the NMR, infrared and MS spectra of complexes 3

and 4. Changes that occurred in the NMR spectral data from the precursor of

the free ligand to coordinated ligand of complexes 3 and 4 were also

compared to those of the model system in complex 2. Until conclusive crystal

structure data become available, it is concluded on the basis of MS, IR- and

NMR spectral data, that electron delocalization does take place through the -

S=O and -P=O groups of complexes 3 and 4 in a similar fashion to that which

occurs through the carbonyl groups of acac. in complex 2.

CH3/

Ph O=C,J{ \
Pd, C-H

/ " IIP~P O-C,
CH3

• •

CH3/

Ph O-C
'/ \\
Pd C-H

/ ~ I
Ph3P O=C ,

CH3

Figure 2.20 : Resonance structures of complex 2.
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2.4 Experimental.

2.4.1 Materials

Solvents:

High spectroscopic grade solvents were used during synthesis and were pre-

dried over 4A molecular sieves for at least 48 hours prior to use.

Diethyl ether, tetrahydrofuran (THF), benzene and hexane were distilled under

nitrogen over sodium using benzophenone as indicator. Dichloromethane was

distilled under nitrogen over calcium hydride. All alcohols were distilled under

nitrogen from magnesium shavings. Alkyl lithium reagents were standardized

by literature methods.54

All deuterated solvents, dichloromethane (d2-CD2Cb) and benzene (cf-C6D6),

that were used in the spectroscopic investigations for the complexes and

ligands in this series were purchased from Aldrich. All deuterated NMR

solvents were stored over 4A molecular sieves under argon in order to keep

them free from moisture and oxygen.

2.4.2 Physical Methods.

A. General:

Unless otherwise noted, all reactions and manipulations were carried out

under an inert atmosphere with a positive gas flow of argon or nitrogen using

standard vacuum line and Schlenk techniques. Solutions were stirred

magnetically with Teflon coated stirrer bars. Room temperature refers to about

22-24°C. Clean Glassware was taken from a drying oven at :t120°C,

assembled while hot and cooled under vacuum.

B. Instrumentation.

» Melting points.

Melting points were determined on a standard BOchi 535 apparatus and are

uncorrected.
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~ Mass Spectroscopy.

MS spectra were obtained by either one of the following techniques and the

applicable method is indicated: -

• FAB-MS (Fast Atom Bombardment Mass Spectra) spectra were

recorded on a Micromass DG 70170E double focussing mass

spectrometer coupled to an Ion Tech fast atom bombardment unit

using Xenon gas as bombardment atoms.

• Standard MS Spectra were obtained by means of the electron impact

mass spectrometry technique on an AMD INTECTRA GmbH 604

double focusing mass spectrometer.

~ Infrared Spectroscopy.

Infra red spectral data was obtained using either one of the following two

apparatus and the respective apparatus used is indicated in the relevant

section: -

• Perkin Elmer FT1600 series (4000 to 600cm-1) with samples prepared

as films between NaCI plates using hexachloro-1,3-butadiene or as

standard liquid cell solutions in anhydrous dichloromethane with 16

scans at 4cm-1 resolution.

• Perkin Elmer 841 IR spectrometer (4000 to 600cm-1) with samples

prepared as films between NaCI plates using hexachloro-1 ,3-butadien.

~ Nuclear Magnetic Resonance Spectroscopy

1H, 13C{'H}, 31p{'H}, 12sre{H} NMR data were recorded on a Varian VXR 300

FT spectrometers. NMR data are expressed as parts per million (ppm)

downfield from an internal (TMS) or external standard used. (See Table 2.16

for NMR conditions used for the respective nuclei).



Chapter 2

The respective nuclei were recorded under the following parameters: -

64

Nucleus Freauencv Standard
'H 300 MHz (CH3)4Si as internal standard
13C{1H} 75 MHz (CH3)4Si as internal standard
APT {lH} 75 MHz (CH3)4Si as internal standard
31p (lHl 121 MHz 85% H3P04 as external standard

Table 2.16 : NMR parameters.

~ X-ray crystallography.

Crystals that were suitable for use in diffraction intensity measurements at

room temperature were mounted on a glass fiber using fast adhesive. Crystal

structure data collection and correction procedures were carried out on a

Phillips PW1100 diffractometer by Dr. C. Esterhuysen Department of

Chemistry, Stellenbosch University, Private Bag X1, 7602 Matieland South

Africa. All systematic absences were consistent with the space groups

assigned in each case. The positions of the hydrogens were calculated by

assuming idealized geometries.

C. General preparation of starting materials and ligands:

Several of the starting materials and the ligands were synthesized directly

according to literature and have been referenced accordingly. However,

almost all of the literature methods used have been modified to varying

degrees since they refer to similar, but somewhat different products. For this

reason, detailed preparative methods are given for all the ligands and starting

materials used in this chapter.

D. General Preparation of Complexes.

For the preparation of the palladium l3-dicarbonyl-type complexes described in

this chapter, standard Schlenk techniques were employed throughout and all

manipulations were carried out under an inert atmosphere. All general

reagents, unless otherwise stated, were used as received.
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The complexes described in this series, apart from complex 1, were prepared

according to the general reaction scheme below: -

o 0
II IIX C

,/ .•. .. .•.
R CH2 R'

+ NaH

o 0
II I

THF X C
•. R' 'CH 'R'

I
Na

o 0
II II

R-Z C" .•. .. .•.
R CH R'

I
Na

THF
NaH+

o 0
II IIR-Z C

'" .•. .. "
R CH2 R'

Ph
I

Ph3P-Pd-PPh:J
I
CI

R
/Ph O_:.X

" I 'Pd 'CH
'" \ /1

PH3P O~-c
'R'

x= C, S

~ R
Ph O_I

, I '\
Pd CH + NaCI

"\ II
PH3P O=-c

'R'

Z=P

Scheme 2.10 : General preparation of complexes within this series

2.4.2.1 Preparation of complex 1! trans-[(Ph3.EhlPhlPdCI]

Complex 1 was prepared according to Scheme 2.11 below.

PdCI2
4PPh3

• Pd(PPh3l4 CeHs-CI
----00
¥

Ph3P-Pd-PPh3
I
CI

1

Scheme 2.11 : Preparation of complex 1.
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3.00g (1.69x1 0-2mol) of palladium chloride powder and 22.19g (8.46x10-2mol)

of triphenylphosphine was added to 180ml of DMSO. The solution was heated

to -150°C while stirring until all the reagents had fully dissolved.

3.30ml (0.11 mol) of hydrazin hydrate was added dropwise with vigorous

stirring of the solution. N2(g)was produced during the addition. After all the

hydrazin hydrate had been added the solution was placed into an ice bath and

allowed to cool. The reaction mixture was filtered and washed with ethanol (2

x 40 ml) followed by further washing with ether (2 x 50 ml).

Chlorobenzene (400 ml) was distilled under nitrogen and 20.30g of the

Pd(PPh3)4 synthesised above was added. The solution was refluxed

overnight.

Most of the remaining chlorobenzene was removed under reduced pressure

leaving enough to aid the transfer of the remaining solid to a sinter glass filter.

The product was washed with anhydrous ether until almost white.

The off-white product was re-dissolved in anhydrous dichloromethane and

filtered. The solution was concentrated under reduced pressure and layered in

a 1:1 ratio with anhydrous ether and left to crystallize at room temperature

overnight.

The following day the solvent was removed from the crystals with a syringe

and the remaining crystals were washed three trimes with anhydrous ether to

remove any remaining impurities leaving a white, crystalline product.

Yield = 92.3% (based on mole palladium chloride used).
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Molecular structure determination of complex 1.

Suitable crystals for crystal structure determination were obtained by

crystallization of complex 1 from a solution of dichloromethane layered in a

1:1 ratio with pentane.

A colourless crystal of trans-[(Ph3Ph(Ph)pdCI] was mounted on a glass fiber

and transferred to a Phillips PW1100 diffractometer. All data were collected at

room temperature with graphite monochromated Mo-Ka radiation with 28 = 23°

and corrected for Lorentz and polarization effects. Absorption corrections

were applied by the empirical method. Unique sets of data with intensities

greater than two times the standard deviation were used to solve the structure

by the heavy atom (Patterson) method. Refinements were done using least

squares refinement. All non-hydrogen atoms were refined anisotropically. For

structure solution and refinement the She1X-97 software package was used55.

Structure Figures were generated using Ortep-3.56 Important crystallographic

parameters and refinement details are given in Table 2.17 All other

crystallographic information is available from Dr. C. Esterhuysen Department

of Chemistry, Stellenbosch University, Private Bag X1, 7602 Matieland South

Africa.
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Table 2.17 : Crystal data, collection and refinement details for complex 1.

68

Structure

¥
Ph3P-~d-PPh3

CI

Empirical formula

Formula weight (g.mor1)
Temperature
Radiation wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Reflections for cell parameters
Absorption coefficient
Absorption correction method
F(OOO)
Crystal size
Crystal colour
Diffractometer type
Scan type
Theta range for collection
Index ranges

Reflections collected I unique
Refinement method
Data I restraints I parameters
Reflections observed [1>20(1)]
Goodness-of-fit on F2

Final R indices [1>20(1)]
R indices (all data)
Weighting scheme (calculated)

Maximum shiftlesd
Largest diff. peak and hole

C42H35CIP2Pd

743.49
293(2) K
Mo Ka, 0.71073 A
Orlhorhomic, P bca
a = 11.8828(2) A a = 90.00°
b = 23.7783(2) A 13= 90.00 °
c = 25.5420(1) Ay =90.00°
7216.9(11)N
8, 1.369 Mg/m3

42
0.705 mm-1

none
3040
0.40 x 0.30 x 0.18 mm3

Colourless
Philips PW11 00
(j)-28
2.34 to 24.00°
-5::; h 13
-4::; k::; 27
-1 ::;I ::;29
6086/5660 (R(int) = 0.0055]
Full-matrix least-squares on F2

566010/537
4023
1.182
R1 = 0.043, wR2 = 0.109
R1 = 0.081, wR2 = 0.143
W=1/(02(Fo2)=(0.0761 P)2]
where P=(Fo2+2Fc2)/3
0.014
0.981 and -0.547 eA3
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2.4.2.2 Preparation of complex 2, [(Ph3P)(Ph)Pd(acac)).

Complex 2 was prepared according to Scheme 2.12 below.

59

o 0
II II

CH3-C-CH2-C-CH3 + NaH

o 0
II II

• CH3-C-CH-C-CH3 + H2(g)
I
Na

o 0
II II

CH3-C-CH-C-CH3 +
I
Na

Ph
I

Ph3P-Pd-PPh3
I
CI

CH3
-PPh Ph 0 ::-.c/

3 ,1-)
',N=aC";I'-l••~ Pd CH

Ph p' \ -l3 O~C,
CH3

2

Scheme 2.12 : Preparation of complex 2.

NaH (1.05 x 10,2 mol) was added to acetylacetone (1.05x10.2 mol) dissolved

in anhydrous ether (5.00cm3) and stirred for 5 minutes. Gas evolution was

evident. The solvent was removed under reduced pressure. 57 The resulting

sodium salt was dissolved in 7ml of anhydrous tetrahydrofuran and 2ml of

anhydrous ethanol. Total solution was ensured before proceeding.

The palladium starting complex 1 was dissolved in 7ml of anhydrous

tetrahydrofuran and the dissolved Na(acac) ligand was added dropwise over

several minutes with vigorous stirring. The resulting mixture was stirred for a

further 48 hours at ambient temperature. The solution initially exhibited a milky

white colour, that gradually turned milky yellow during the 48 hours stirring

period.

An anhydrous magnesium sulphate packed sinter glass filter was prepared by

repeatedly washing the magnesium sulphate with anhydrous ether and

removing the remaining ether under reduced pressure. The resulting reaction

suspension was filtered and evaporated to dryness under reduced pressure.

To obtain crystal suitable for crystal structure determination, the product was

then re-dissolved in dichloromethane and layered with anhydrous pentane
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(1: 1.3) to afford very pale yellow, almost colourless, crystals. An NMR

analysis of the crystals was done using both cf-dichloromethane and cf-

benzene with TMS as an internal reference.

Yield:

Microcrystals obtained = 78% (based on mole complex 1 initially used)

Single crystals = 2% (based on mole complex 1 initially used)

Melting Point of complex 2, {(Ph3P)(Ph)Pd(acacJ/.

The melting point of the complex was measured on a standard BOchi 535

melting point apparatus and was uncorrected. The complex melts with total

decomposition at 176.9 -177.4°C.

Molecular structure determination of complex 2.

Suitable crystals for crystal structure determination were obtained by

crystallization of complex 2 from a solution of dichloromethane layered in a

1:1.3 ratio with anhydrous pentane.

A light yellow crystal of (Ph3P)(Ph)Pd(acac) was mounted on a glass fiber and

transferred to a Phillips PW1100 diffractometer. All data was collected at room

temperature with graphite monochromated Mo-I(. radiation with 28 = 23° and

corrected for Lorentz and polarization effects. Absorption corrections were

applied by the empirical method. Unique sets of data with intensities greater

than two times the standard deviation were used to solve the structure by the

heavy atom (Patterson) method. Refinements were done using least squares

refinement. All non-hydrogen atoms were refined anisotropically. For structure

solution and refinement the She1X-97 software package was used58 Structure

Figures were generated using Ortep_359. Selected crystallographic bond

lengths and angles are listed in Tables 2.8 and 2.9 respectively. Crystal data

and refinement details are listed in Table 2.18 below. All other crystallographic

information is available from Dr. C. Esterhuysen Department of Chemistry,

Stellenbosch University, Private Bag X1, 7602 Matieland South Africa.
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Table 2.18 : Crystal data and structure refinement for complex 2.

Structure

544.88
293(2) K
Mo Ka, 0.71073 A
Monoclinic, P 2,/c
a = 10.255(1) A a = 90°
b = 20.509(1) A [3 = 111.13°
c = 12.879(1) Ay =90°
2526.6(3) A3

4, 1.432 Mg/m3

50
0.821 mm-1

None
1112
0.375 x 0.35 x 0.275 mm3

Light yellow
Philips PW11 00
OJ-28
2.91 to 25.00°
-12,.;h11
0,.; k,.; 24
0,.; I ,.; 15
4436/4436 [R(int) = 0.0065]
Full-matrix least-squares on F2

4436/0/305
3423
1.178
R1 = 0.035, wR2 = 0.073
R1 = 0.064, wR2 = 0.089
W=1/[02(Fo2)=(0.0261 P)2]
where P=(Fo2+2Fc2)/3
0.007
0.377 and -0.344 e.A-3

CH3
/

Ph O:-:C" / "Pd ~CH
Ph P

/ \ __/1

3 O-C
"CH3
C29H2702PPd

Maximum shiftlesd
Laraest diff. peak and hole

Reflections collected I unique
Refinement method
Data I restraints I parameters
Reflections observed [1>20(1)]
Goodness.of.fit on F2

Final R indices [1>20(1)]
R indices (all data)
Weighting scheme (calculated)

Empirical formula

Formula weight (g.mor1)
Temperature
Radiation wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Reflections for cell parameters
Absorption coefficient
Absorption correction method
F(OOO)
Crystal size
Crystal colour
Diffractometer type
Scan type
Theta range for collection
Index ranges
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2.4.2.3 Synthesis of complex 3, [(PhJP/(Ph/Pd(CHJS(O/CHC(O/PhH.

I) Synthesis of m-(methvlsufinyl/acetophone, CHJS(O/CH?C(O/Ph,

a) Synthesis of Ethyl Benzoate. 60

The preparation of ethyl benzoate is illustrated in Scheme 2.12.

72

o
II

Ph-C-OH + CH3CHrOH

Scheme 2.12 : Synthesis of ethyl benzoate.

o
II

•. Ph-C-OCH2CH3

A mixture of 30.0g (0.246 mol) of benzoic acid, 80.0g (101ml, 2.50 mol) of

absolute methanol and 5.00g (2.70ml) of concentrated sulphuric acid was

placed in a 500ml round bottomed flask fitted with a reflux condenser. The

mixture was gently refluxed for 5 hours. The reaction mixture was refluxed for

a longer period of time to that reported in the literature to increase the overall

yield of the synthesis illustrated in Scheme 2.12 above. The excess ethanol

was distilled off with the aid of a rotary evaporator. The residue was

transferred into a separatory funnel and 1D-15ml of carbon tetrachloride was

added.

The carbon tetrachloride was added to aid the separation since there is only a

comparatively slight difference in the densities of the ester and water. The

ester separated sharply and was collected. A concentrated solution of sodium

hydrogen carbonate was added to destroy the remaining free acid. The

solution was washed with water and dried over anhydrous magnesium

sulphate and filtered.

The volatile solvents were removed under reduced pressure and the

remaining solution was distilled with the ethyl benzoate fraction being

collected at 80-83°C. (6mm Hg).

Yield ethyl benzoate = 96%.

(Yield based on mole benzoic acid used.)



Chapter 2 73

The synthesis of ro-(methylsufinyl)acetophone was completed according to

Scheme 2.13 below6'.

o
II

CH3-S-CH3

o
NaH II
--.- CHrS-CH2-Na

o
11

CH3-S-CH2-Na +

o
11

Ph-C-OCH2CH3
DMSO •-NaOCH,cH,

o 0
II II

CH3-S-CH2-C-Ph

Scheme 2.13 : Preparation of ro-(methylsufinyl)acetophone

The synthesis illustrated above requires anhydrous DMSO in order to allow

the formation of the sodium salt of the dimethyl sulphoxide from the sodium

hydride.

The DMSO solution was placed over calcium hydride and gently refluxed for

1Y, hours followed by distillation onto 4Ao molecular sieves under reduced

pressure.

b) Synthesis of methylsulfinyl carbanion.

2.00g (8.33x10"2mol) of sodium hydride (:t60% mineral oil suspension) was

placed in a three-necked round bottomed flask under a nitrogen atmosphere.

10.0 ml of light petroleum ether was added and the resulting suspension was

stirred vigorously for several minutes. The sodium hydride was allowed to

settle and the remaining solution was removed via syringe. This process was

repeated several times to remove the mineral oil. The resulting sodium

hydride paste was dried under reduced pressure.

The flask was immediately fitted with a reflux condenser and a rubber septum

through which 25-30ml of freshly distilled DMSO was introduced via

hypodermic syringe. The mixture was heated to 70-75°C with vigorous stirring

until the evolution of H2 ceases (:t45 minutes). Longer reaction time results in



Chapter 2 74

extensive decomposition of the desired product. Extensive decomposition also

appears to occur at temperatures higher than 75°C.

The product remaining is a somewhat cloudy pale yellow-grey solution of the

sodium salt. The solution was assayed by titration with formanilide using

triphenylmethane as indicator.

An equal volume (25ml) of anhydrous THF was added to the solution of the

sodium methylsulfinyl carbonyl as prepared above. The resulting mixture was

cooled in a NaCI-ice bath. The previously prepared ethyl benzoate (0.5 mole

equiv. based on 1 mole equiv. of carbanion) was added to the reaction

mixture over a period of several minutes. The ice bath was removed and the

reaction mixture was allowed to reach room temperature and stirred for a

further 30 minutes.

The reaction mixture was poured into three times its volume of water, acidified

with aqueous hydrochloric acid to a pH of 3-4 and extracted three times with

chloroform. The combined chloroform extracts were repeatedly washed with

water and dried over anhydrous sodium sulphate. The solution was filtered

and evaporated to dryness to yield the crude product as a pale yellow

crystalline solid. The crude product was then washed with cold ether and

filtered to give the pure product.

Yield: 73.2%.

(Yield based on mole methylsulfinyl carbanion initially used).
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II) Synthesis of complex 3. [(PhJP)(PhlPd{CHJS(O)CHC(O)Ph)l.

Complex 3 was prepared according Scheme 2.14 below.

75

o 0
II II

CH3-S-CHrC-Ph + NaH

o 0
II II

CH3-S-CH-C-Ph
I
Na

o 0
II II

CH3-S-CH-C-Ph +
I
Na

•

¥
P~P-~d-PPh3

CI

- PPH3
••- NaCI

CH3/
Ph O--;:S, I .••.\

Pd )CH
/ \ I

Ph3P O=-"C
'Ph

Scheme 2.14 : Preparation of complex 3.

0.088g (4.8x10-4mol) of (J)-(methylsufinyl)acetophone was dissolved in 7.0ml

of anhydrous THF. 0.012g (4.8x10.4mol) NaH was slowly added with vigorous

stirring and the reaction mixture was stirred for a further 30 minutes.

0.20g (2.7x10.4mol) of [(PPh3hPhPdCI] was dissolved in 7.0ml of anhydrous

THF and the (J)-(methylsufinyl)acetophone solution was added dropwise over

several minutes with vigorous stirring. The solution was left to stir for 36

hours.

After the addition of (J)-(methylsufinyl)acetoenone, the reaction solution initially

had a milky white colour which gradually became an intense milky yellow as

the reaction proceeded during the 36 hours of stirring. The reaction mixture

was filtered through an anhydrous celite@ packed sinter glass filter and

evaporated to dryness under reduced pressure to yield a yellow powder.

Yield = 73%

(yield based on mole (J)-(methylsufinyl)acetoenone initially used.)
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2.4.2.4 Synthesis of complex 4.

[(Ph3P) (Ph )Pd(CH3CH20 hP(O)CHC(O)CH(CH31ill.

I) Synthesis of DiethyI1,2-Epoxyalkanephosphonate.

a) Synthesis of Diethy/(Ch/oromethyl)phosphonate.52

The synthesis of diethyl(chloromethyl)phosphonate was carried out according

to Scheme 2.15 below.

o
CI'II

P-CHrCI
CI/

2EtOH

-2HCI
•

CH3CH20 0,II
CH3CH20f-CH2-CI

Scheme 2.15 : Synthesis of diethyl( chloromethyl)phosphonate

Chloromethylphosphonate dichloride was slowly added with stirring to

absolute ethanol kept at 5°C with a NaCI-ice bath. The mixture was left to stirr

overnight (24 hours) and the excess ethanol and HCI were removed at 50°C

under reduced pressure. The residue was neutralised with sodium carbonate

and extracted with ether. The ether was removed under reduced pressure.

Diethyl(chloromethyl)phosphonate was distilled off from the remaining

mixture.

Yield = 79% (yield based on mol chloromethylphosphonate initially used).

b.p. 75 - 79°C at 0.75 mmHg. Lit. 86 - 87°C at 2.5 mmHg.

b) Synthesis of 1-diethyl-3-methyl-phosphino-2-butanone. 53

The synthesis of 1-diethyl-3-methyl-phosphino-2-butanone was carried out

according to Scheme 2.16 below_

i)

oCH3CH20, II
P -CH2-CI + BuLi •

CH3CH20/ -BuH

o L-
CH3CH20, II I'

P-CH
CH3CH20/ 61
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ii)
o lCH3CH20, II II
P-CH +

CH3CH20/ 61
o 0 H OLi CHCH3, II CH3CH20, II I I I 3CH-C-H. P-C-C-CH

CH3/ CH3CH20/ 61 ~ 'CH3

iii)

CH CH 0 0 H OLi CH33 2 ,II I I I
P-C-C-CH + lOA •
/ I I 'CH3CH20 CI H CH3

iv)

o H OLi CHCH3CH20,1I I I I 3
P-C-C-CH
/ I I '

CH3CH20 CI Li CH3

CH 0 H OLi CH
3CH20, II I I I 3 !'>

P-C-C-CH ---
CH3CH20/ 61 ~i CH3 -liCI

o Oli
CH3CH20,1I I .CH3

P-CH=C-CH
/ 'CH3CH20 CH3

v)

o OLi
CH3CH20, II I ,CH3

P-CH=C-CH
/ 'CH3CH20 CH3

H2S04
o 0CH3CH20, II II ,CH3

• P-CH2-C-CH
/ 'CH3CH20 CH3

Scheme 2.16: Synthesis of 1-diethyl-3-methyl-phosphino-2-butanone.

A 1.45 molar solution of n-butyllithium in hexane (0.054 mol + 5%) was placed

in a three necked flask equipped with a stirrer, an addition funnel, a low

temperature thermometer and a nitrogen inlet tube. An equal volume of THF

(:t40 ml) was added to the cooled solution. Subsequently, diethyl

chloromethanephosphonate (10g, 0.054mol) in THF (10ml) was added

dropwise at - 70°C. After -10 minutes the clear reaction mixture becomes

turbid and the isopropyl aldehyde (0.054mol) in THF (10ml) was added while

keeping the solution at -70°C. The mixtures slowly became clear. After 30

minutes, previously prepared lithium diisopropylamide (0.054Mol + 5%xii) was

added at -70°C. (The lithium diisopropylamide was previously prepared by the

addition of n-butyllithium to diisopropylamine dissolved in THF at OOC).Stirring

'" The slight excess of LDA (5%), was to compensate for losses due to traces of moisture and oxygen.
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was continued for a further 3 hours at -70°C after which the mixture was

slowly allowed to warm to room temperature overnight.

At room temperature the mixture was slowly hydrolyzed with 2N H2S04 so

that it became neutral and the aqueous solution was further extracted with

dichloromethane (3 x 50ml). The combined organic extracts were dried over

magnesium sulphate, filtered and the solvent removed under reduced

pressure. The pure product was isolated by distillation.

Preparation of lithium diisopropylamide (LOA).

The preparation of LDA was carried out according to Scheme 2.17 below:64.65

i-C3H7/
HN
'i-C3H7

+ BuLi •
)-C3H7

Li-N
'i-C3H7

+ C4H1o

Scheme 2.17 : Preparation of lithium diisopropylamide.

4.9mmol butyllithium (1.6M solution) was added to 1.2ml (8.6mmol) of

diisopropylamine in 4ml hexane at -20°C. LDA started to precipitate out after

a few minutes. After having been warmed to room temperature, the mixture

was stirred for a further 15 minutes. The excess diisopropylamine and solvent

was removed under reduced pressure. The prepared lithium diisopropylamide

was used within a few minutes of synthesis.
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II) Synthesis of complex 4,

{(PPh3}(Ph}Pd{(CH3CH2012P(O)CHC(O)CH(CH31ill..

The synthesis of complex 4 was carried out according to Scheme 2.18 below.

o 0CH3CH20, II II ,CH3
P-CH-C-CH

/ I 'CH3CH20 H CH3

CH3CH20 OCH2CH3
\ I

Ph3P 0=-=[',
\ I "

Pd JCH
/ \ ~I

Ph O=-"C
\CH
/ 'CH3 CH3

4

+NaH---::--->
-H2

- NaCI

o 0CH3CH20, II II, CH3
P-CH-C-CH

/ I 'CH3CH20 Na CH3

¥
Ph3P-Pd-PPh3

I
CI

Scheme 2.18 : Synthesis of complex 4.

4.84x10-4 mole (0.108g) of [(CH3CH20hP(0)CH2C(0)CH(CH3hl was

dissolved in 40.0ml of anhydrous diethyl ether. A NaH suspension in mineral

oil was repeatedly washed with anhydrous pentane and reduced to dryness

under reduced pressure to remove the mineral oil. 0.013g (5.3x10-4 mole) of

the washed NaH was slowly added to the diethyl ether solution. Upon addition

of the NaH the evolution of gas was observed. Stirring was continued for 1

hour.

The reaction mixture was reduced to dryness under reduced pressure and re-

dissolved in 7ml of anhydrous THF. 0.200g (2.69x10.4 mole) of complex 1,

[(Ph3PhPd(ph)(CI)], was dissolved in 7.00ml of anhydrous THF. The THF

solution of Na+[(CH3CH20hP(0)CH2C(0)CH(CH3H that was previously

prepared was added dropwise with vigorous stirring over several minutes. The

solution was stirred for a further 48 hours. During this reaction time the

reaction mixture took on a strong yellow-orange colour and a fine white
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precipitate had become evident. The reaction mixture was filtered through an

anhydrous celiteill> packed filter and reduced to dryness to yield a yellow-

orange solid.

Yield = 65%

(Yield based on mole [(CH3CHzOlzP(O)CHzC(O)CH(CH3lzJ initially used).

Melting point of complex 4.

The melting point was recorded on a standard BCJchi535 apparatus and is

uncorrected.

Mp 127.3°-128.6°C (dec)
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Neutral n3-hetero AIlv.1

Palladium(1I) Complexes.

This chapter is concerned with the preparation and

spectroscopic studies of several pal/adium(lI) complexes with

,(coordinated ligands. The goal of this study was to

synthesize these complexes and characterize them by means

ofmelting point, IR spectroscopy, MS, NMR spectroscopy and

X-ray crystal structure characterization (where possible).

3.1.1 Introduction

[(Phl2PS2r, has been used for many years as a ligand in its capacity to

facilitate metal complex formation in both organic and inorganic media.

Several reviews describe the use of [(Phl2PS2r and its derivatives as ligands

in organometallic complexes 1,2.

The Chemistry of phosphorus sulfides:

The study of compounds formed from phosphorus and sulphur in general is

very old. The first report of phosphorus sulphides is estimated to have been in

about 1740 when A.S. Margg raff described a fused mixture of phosphorus

and sulphur.3 Since then, chemical formulae have been erroneously

formulated for many phosphorus-sulphur compounds ranging from P4S to

P2S124This continued until A. Stock showed that only three compounds can

be obtained from the thermal decomposition of phosphorus and sulphur,

namely P4S3.P4S7and P4SlO.

At present, all efforts in the synthesizing of novel phosphorus sulphur products

can be divided into three categories; -

i) thermal reactions

ii) abstraction of sulphur with phosphines

iii) construction of P-S bonds with sulphur precursors5.
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Due to their potential use in electrochemistry6, microelectronics,? catalysis,8

ion exchange,9 sensors,lO photochemistry11 etc., research phosphonate

chemistry in these circles has flourished. In contrast, research concerning

phosphor-1, 1-dithio type ligands has been disappointing little.

Four coordinate phosphorus(V) is present in most life-sustaining systems and

is also present in many toxic man-made nerve gasses. Despite this almost

omnipresence, the study of the dithiophosphinate [S2PR2r systems as

complexing agents for transition metals, with particular reference to palladium,

isn't as plentiful as one would expect. Only eight structures are listed on the

Cambridge Crystallographic Database where dithiophosphinate has been

used as ligand with coordination through both the sulphurs to the central

palladium atom.12 Figure A similar complex was prepared by Narayan et al. in

1998. This structure contained a methyl group in place of the phenyl group of

complex 6. Crystals were not obtained by Narayan et al. and the crystal

structure was not solved, only proposed.13

There are three reasons for the relative slow developent of dithiophosphinate-

type ligands as complexing agents with transition metals: -

i) commercial unavailability despite being the synthesis of these

compounds being relatively simple

ii) inherent reactivity (especially towards hydrolysis)

iii) relative high toxicity levels.

Deprotonated diphenyl-dithiophosphinic acid [S2PPh2r can coordinate to

virtually all main group and transition metals giving rise to a variety of

coordination patterns. The possible contributing resonance structures of the

anion are illustrated as in Scheme 3.1 below.
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Scheme 3.1 Resonance structures of deprotonated diphenyl-dithiophosphinic

acid.

Due to the symmetry present in diphenyl-dithio-phosphinate resonance

structure A is as important as structure B. The metal type to which the ligand

is coordinating, as well as the oxidation state of the metal determine which

resonance structure dominates during complexation. Resonance structures A

and B are applicable to complexes where the ligand binds in 11l-fashion with a

'dangling' second sulphur atom.

3.1.2 Goals and scope of this section of the project.

Chapter 2 involved palladium(ll) complexes comprising of acac.-type ligands

coordinating directly to the palladium through delocalized bonds forming 6-

membered rings. In this chapter, complexes formed by ll-coordinating ligands

bonded directly to palladium are described. Examples of the complexes

prepared are illustrated in Figure 3.1 below.

Ph >s PPh3
\ " I
P "-Pd
/ \\ \

Ph X Ph

x = S orO

Type 1

Si(CH3hN/
Ph '\" \Pd-,C-R

Ph3P' ~
'Si(CH3h

Type 2

Si(CH3hN/
Ph '\ R" \'Pd-'P , "

Ph3P' f..{ R
'Si(CH3h

Type 2

Figure 3.1 Typical complexes discussed in chapter 3.
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The complexes illustrated in Figure 3.1 above could exhibit hemilability in the

following manner: -

Open coordinatio
stte.

Ph >s PPh3
\ " IPt--Pd
/ \' \

Ph X Ph

-'-", 'pPh3
Pd
/ \

Ph X Ph
\ I•. P
/ \\

Ph X

Figure 3.2 : Potential hemilabile activity of complexes to be prepared here.

Due to the symmetrical nature of the ligand, and as a result of the l13-

coordination of the ligand, the ligand could potentially open up and become l11

coordinated, thereby freeing a coordination site on the palladium to allow the

coordination of the substrate species to be activated.

Complexes of type 1, 2 and 3 above both involve a ligand l13-coordinated to

the central palladium atom. These two types of complexes were chosen to

investigate the difference in stability that results due to the bulky -Si(CH3h

groups that are attached to the nitrogen atoms in type 2 and 3 versus the non-

encumbered sulphur and oxygen atoms in complexes of type 1. It was not

known whether these complexes would exhibit hemilability.

The main goal of this study was to prepare and characterize complexes of the

type illustrated in Figure 3.1 and attempt to obtain crystals for structure

characterization. Structure characterization enables the investigation of the

metal ligand bonding in these types of complexes and then serves to correlate

structural parameters with complex reactivity in catalytic reactions such as

carbon monoxide insertion. However, the investigation of the catalytic activity

of these types of complexes falls outside the scope of this investigation.

Despite employing many crystallization methods, it was difficult to obtain

crystals suitable for crystal structure determination.
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The general method of preparation of the complexes synthesised in this

chapter is very similar to the synthetic route used to prepare the complexes in

chapter 2. It involves the reaction of the applicable deprotonated ligand with

starting complex 1 to substitute a triphenylphosphine group. Readilly

removable sodium chloride is produced as a byproduct (see Scheme 3.2(a),

Scheme 3.2(b) and Scheme 3.3 below).

(a)

Na
I

(CH3hSi-N N-Si(CH3h +'C .
I
R

(b)

Na
I

(CH3hSi-N N-Si(CH3h +, "
,P,

R R

Si(CH3)Ph N'
I - NaCI Ph '\

PhJP-Pd-PPh3 -PPh
3
- 'Pd-)C-R

61 Ph3P' f..{
'Si(CH3)

Si(CH3)Ph N'
I - NaCI Ph '\ R

" "Ph3P-Pd-PPh3 PPh - Pd-'P,
I - 3 ..• ,'1
CI PhJP N R

'Si(CH3)

Scheme 3.2 : General reaction used for preparation.

Ql
P +

<Q)'~,
9

Ph3P-~d-PPh3

CI

_'""<0( ,~ !,Ph,-pp~d'rpb
x = S orO

Scheme 3.3 : General reaction used for preparation.
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,
3.2.1 Complex 1! trans-[(Ph3Pl2(PhIPdCI].

I) Preparation of complex 1, trans-{(Ph3Pj,(PhJPdCII.

Trans-[(Ph3P)2(Ph)PdCI] was synthesised according to the method described

by Hermann and his co-workers illustrated in Scheme 3.4 below.14 It involved

the reaction palladium chloride with triphenylphosphine to produce palladium

tetrakis triphenylphosphine. The final step of preparation involved an oxidative

addition of phenyl chloride to deliver complex 1. The clean product was

isolated by crystallization from a 1: 1 mixture of anhydrous dichloromethane

and pentane.

3.2 Results and discussion.

4PPh3
PdCI2 • Pd(PPh3)4

CsHs-CI ¥
Ph3P-Pd-PP~

I
CI

1

Scheme 3.4 : Preparation of complex 1.

Trans-[(Ph3Ph(Ph)PdCI] was synthesised according to Scheme 3.3 above

and was used as the starting complex for all the neutral palladium complexes

prepared in this chapter.

II) NMR Spectroscopic analvsis of complex 1, trans-{(ph3PMPh)PdCIl

The 1Hand 13CNMR data for complex 1 are summarized in table 3.1 below.

The lH and 13Cfor complex 1 are reported for both d2-dichloromethane and

if-benzene to enable all proton groups present in the synthesised complexes

to be individually assignable.
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Starting Complex. h

Q:
Ph3P-Pd-PPh3
del a b

CI

Solvent : CD2Cb (TMS used as Solvent : CeDe (TMS used as
internal standard) internal standard)

Proton (~values)

a: --- ---
b: 7.19 - 7.88 (m, 30H) 6.99 - 7,82 (m, 30H)
c: --- ---
d: 7.19 - 7.88 (m, 30H) 6.99 - 7.82 (m, 30H)
e: --- ---
f: 6.59 (d, 2H, JH-H = 6.6Hz); 6.91 (d,2H)
g: 6.19 (t, 2H)' 6.34 (t, 2H)
h: 6.34 it, 1H)i 6.31 it,2Hl

Carbon 13 tHi (~values)

b: 122.5 - 155.5 122.3 -137.8
d: 122.5 - 155.5 122.3 -137.8
e: 155.5 156.7

f, g, h: 122.5 -155.5 122.3-137.8

Phosphorus 31 tHi (~valuesl

a: 24.41 24.62
c: 24.41 24.62

Table 3.1 : 1Hand 13Cdata for complex 1.

, Peak assigrunents done largely on the grounds of signal multiplicity and integration values for the Pd-
Ph group. It is virtually impossible to assign specific peaks for the triphenylphosphine groups due to
the complex multiplet that these triphenylphosphine groups deliver.
"o-values are relative to H,PO,j used as an external standard,
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III) Single crystal structure determination of complex 1.

Suitable crystals for crystal structure determination were obtained by

crystallization of complex 1 from a solution of dichloromethane layered in a

1: 1 ratio with pentane.

The crystal structure for complex 1was solved by the heavy atom (Patterson)

method. Illustrations of the single crystal structure and unit cell as well as a

detailed discussion of the crystal structure of complex 1 can be found in

chapter 2. Selected crystallographic bond lengths and angles are listed in

Table 2.3 and Table 2.4 respectively.

3.2.2 Complex 5, [fnJ-((CH3hSiN!2C1PhlPdIPPh3)(Phll.

I) Preparation of complex 5, [n3-((CH313SiNhC(PhlPd(PPh3)(Phl)'
The free ligand, sodium-N'N'-bis(trimethylsilyl)benzaimidinate, was prepared

from synthesised hexamethyldisilazine,15 sodium amide16 and sodium bis-

trimethylsilylamide17 according to published literature methods as illustrated in

Scheme 3.5 below. 18



2(CH3hSi-CI + 3NH3

Chapter 3

(CH
3
h
Si
, H + 2NH

4
CI(s)N-

- I
(CH3hSi

93

2Na +2NH3 .2NaNH2 + H2

(CH3hSi, (CH3hSi,
N-H + NaNH2 - N-Na + NH3

(CH3hSi
l (CH3hs/

(CH3hSi
'N-Na + IQ\-

(CH3hSi
l ~C-N

Si(CH3h
I

--__ I<Q)-<~,
I
Si(CH3h

Na+

Scheme 3.5 : Preparation of sodium-N'N' -bis(trimethylsilyl)benzamidinate.

Complex 5 was prepared according to Scheme 3.6 below. The free ligand,

sodium-N'N' -bis(trimethylsilyl)benzamidinate, was reacted with the starting

complex 1, trans-[(Ph3P)z(Ph)PdCI], to substitute a triphenylphosphine group.

Readily removable sodium chloride is produced as a byproduct.

Si(CH3h
I
N<Q)-<~,
I
Si(CH3h

+Na + ¥Ph3P-~d-PPhJ

CI

- PPH3-- NaCI

Si(CH3h

~ Ph
IQ\C/~Pd~
~ 'N PPh

I
Si(CH3h

Scheme 3.6 : Preparation of complex 5.
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II)NMR spectroscopic analysis of sodium-N'N'-bisrtrimethylsilyl)benzamidinate

and complex 5, fn3-rrCH;j}3SiNhCrPhlPdrpPh3HPhl]

The 'H and 13C NMR data for the free ligand, sodium-N'N'-

bis(trimethylsilyl)benzamidinate, is summarised in table 3.2 below. The lH and

13Cdata are reported for both d2-dichloromethane and if-benzene to enable

all proton signals to be assigned.

Free Ligand
- - -a

Si(CH3b
I

<O';-c/( Na+c\,
N'
I
Si(CH3b

- b _

Solvent: CD2CI2 Solvent: C6D6
Temperature (K) : 293 Temperature (K) : 293

Proton (~values)

a: -0,15 or-0.13 (m, 18 H) -0.427 or -0,27 (s, 9H)
b: -0.15 or- 0.13 (m, 18 H) -0.427 or -0.27 (s, 9H)
c: --- ---
d: 6.90 - 7.44 (m , 5H) 6.61 - 7.02 (m, 5H)

Carbon 13 ('H) (~values)

c: Not recorded 142,6
d: Not recorded 127.2 -129.6
d;pso: Not recorded 132.6

Table 3.2: 'H and 13Cdata for sodium-N'N'-bis(trimethylsilyl)benzamidinate
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The 1H and 13CNMR data for complex 5, are summarized in Table 3.3 below.

The lH and 13Cdata are reported for if-benzene.
'..

Complex a
Si(CH3b
I0- N Pho d I,' ,e

CI-Pd
c \ \... \
~ ~Ph3
Si(CH3b
b

Solvent: CeDe
Temperature (K) : 293

Proton (8-values)
a: 0.094 or 0.279 (s, 9H)
b: 0.094 or 0.279 (s, 9H)
c: ---
d: 6,60 - 7.68 (m, 25H)iii
e: 6,60 - 7.68 (m, 25H)
f: 6.60 - 7.68 (m, 25H)

Carbon 13tH} (8-values)
a: 0.3130r1.917
b: 0.313 or 1.917
c: 173.2
d: 131.5 -135.2

dipso: 157.1
e: 126.0 -129.7

eipso: 143.8
f: 126.0 -129.7

finso: 137.0 -137,5

Phosphorus 31tH} (8-values)iv

f: 29.69 (s)

Table 3,3 1H and 13Cdata for complex 5.

;" It proved to be impossible to unambiguously assign the separate proton NMR signals of the
respective phenyl protons due to their obscuring of one another as well as being obscured by the signal
produced by the CJ), NMR solven!.
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Since the majority of paliadium(ll) complexes are square planar, and the

triphenylphosphine and phenyl ligands on the palladium are not identical, two

signals in both the proton and carbon-13 spectra are observed for the

-Si(CH3hgroups.

There are few NMR 'handles' present in this complex due to the fact that it is

mostly comprised of phenyl rings. The signals of these phenyl rings obscure

each other in the proton and carbon-13 spectra.

The chemical shift of carbon 'c' has moved downfield by 30.6ppm. This is in

support of a 113-coordination through the N-C-N atoms of the ligand.

A free displaced triphenylphosphine group was resonated at ca. -4.5ppm in

the reaction mixture in a 1:1 ratio with the coordinated triphenylphosphine

group. This is further support for the formation of the target complex. No

hemilabile interaction or exchange was evident with the displaced

triphenylphosphine group.

iv c-valucs arc relative to H3PO-t used as an external standard.
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Ptl2PH + (CH3hSiN3

3.2.3 Complex 6, rn3-(PhhP(NSilCH31ili]Pd(PPh311Phll.

I) Preparation of complex 6, fn3-(PhI?P(NSi(CH31JhlPd(PPh3)(Phl]'

The synthesis of (CsHshSiN=P(CsHs)zNHSi(CsHsh was carried out according

to methods described by Scherer and Paciorek (Scheme 3.7 below).19,20

(CH3hSiCI + NaN3 • (CH3hSiN3 + NaCI

/.NSi(CH3h.Ph..P""
"L 'NSi(CH3h

I
H

Scheme 3.7 : Formation of (CsHshSiN=P(CsHs)zNHSi(CsHsh

The precursor of the free ligand was deprotonated with methyl lithium and

reacted with complex 1 to coordinate in a 113 manner by substituting a

triphenylphosphine group. Readily removable sodium chloride was produced

as a byproduct (Scheme 3.8 below).

/.NSiCH3 ",NSiCH3
Ptl2P':::: + Me-Li •• Ptl2P':::: + CH4

NSiCH3 NSiCH3
I I
H Li

+ LiCI
NSiCH3'l +Ptl2P'NSiCH3
I
Li

Ph
I

P~P-Pd-PPh3
I
CI

Si(CH3h
I

Ph N Ph
- PPhr \I,' /
-- pi -Pd
- NaC / \' ,

Ph N PPh3
I
Si(CH3h

6

Scheme 3.8 : Formation of complex 6.
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II) Spectroscopic analvsis of free ligand, CCsHshSiN=PCCsHs!2NHSiCCsHsh.

and complex 6, fn3-CPhhPCNSiCCH313lz1PdCPPh3)CPhl/.

The 1Hand 13C NMR spectral data for the precursor to the free ligand,

(CsHs)JSiN=P(C6HsJ2NHSi(C6Hsh, are summarized in Table 3.4 below.

Free Ligand a
Si(CH3b
I
N

PtQP("
c d N-H

I e
Si(CH3b
b

Solvent: C6Ds
Temperature (K) : 293

Proton (8-values)
a, b: 0.11 ppm (s, 18H)
c: 7.02 - 7.07ppm and 7.85 - 7.93ppm (m, 10H)
e: 2.97ppm (br s, 1H)

Carbon 13 tH) (8-values)
a: -2.1ppm
b: -2.1ppm
c: 125.1 -125.9ppm

Cioso: 134.3 and 134.9ppm
Phosphorus 31tH} (8-values) v

d: 21.38ppm

Table 3.4 : NMR spectral data for (C6HslJSiN=P(C6HsJ2NHSi(C6Hsh

, a-values are relative 10 H,PO, used as an ex1ernal standard.
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The 'H and BC NMR spectral data for complex 6, [rr

(Ph)2P(NSi(CH3)J)2]Pd(PPh3)(Ph)], are summarized in Table 3.5 below.

Complex 6 a
Si(CH3h
I

~h N Ph
\ ',' If
P'-Pd
I'd\', \

Ph N ~Ph3c I
Si(CH3h
b

Solvent: C6D6
Temperature (K) : 293

Proton (~values)

a: 0.23 (br s, 18H)
b: 0.23 (br s, 18H)
c: 7.68 - 8.06 (m, 10)
f: 6.96 - 7.08 (m, 20H)
g: 6.96 - 7.08 (m, 20H)

Carbon 13 /H) (~values)

a, b: 0.7ppm
c: 131.2 -136.7
f: 121.7-129.6
g: 121.7 -129.6

Phosphorus 31 /H) (~valuesyi

d: 21.88
g: 28.38

Table 3.5. : NMR spectral data for [1l3-(Ph)2P(NSi(CH3)J)2]Pd(PPh3)Ph].

Since the complex is primarily comprised of phenyl rings. This results in a

number of proton and carbon signals that obscure one another and cannot be

assigned unambiguously to a specific proton or carbon group.

" o-values arc rclabvc 10H,P04 used as an external standard.
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Very small differences exist in the NMR spectra of the initial ligand precursor

and the coordinated complex. This is due to the opposing effects that occur

upon deprotonation of the ligand and complexation of the deprotonated ligand

with the palladium metal. Deprotonation of the ligand precursor causes an

electron density increase on the ligand and an expected upfield shift is

expected. Coordination of the deprotonated free ligand precursor to the

palladium causes a downfield shift of 3.97ppm in the phosphorus-31 spectrum

for phosphorus atom g. This downfield shift for phosphorus atom g is

comparable to the downfield shift of 5.07ppm that was observed for the

analogous phosphorus atom in complex 5.

A free displaced triphenylphosphine group was present at ca. -4.5ppm. in a

1:1 ratio with the coordinated triphenylphosphine group. This is further support

that the target complex has been synthesised and the necessary

displacement of the original group had occurred as predicted. No exchange

was evident with the displaced triphenylphosphine group.

Complex 6 was unstable despite the inert anhydrous conditions. Various

methods of crystallization were attempted but decomposition occurred.

Crystals suitable for crystal structure determination were not obtained. Steric

hindrance and thermodynamic motion of the trimethylsilyl groups of the ligand

adjacent to the triphenylphosphine group could contribute to the instability of

the complex.

3.2.4 Complex 7, rn3-(PhhPSzHPd(PPh311Phll.
I) Preparation of complex 7, rn3-(PhJ2PS?lfPd(PPh3J(Phll.

Diphenyl-dithio-phosphinic acid was prepared according to literature methods

illustrated in Scheme 3,9 belo~l,

S
AICI3 I

4C6H6 + P2SS • 2(C6Hsl2P-SH + H2S

Scheme 3.9 : Preparation of diphenyl-dithio-phosphinic acid.
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Diphenyl-dithio-phosphinic acid was subsequently deprotonated with sodium

carbonate and the resulting sodium salt reacted with complex 1. [(PhhPS2r

became Tj3-coordinated to the palladium by substituting a triphenylphosphine

group in complex 1. Readily removable sodium chloride was produced as a

byproduct (Scheme 3.10).

Qz/~
d'~'Na2C03

.Qz "S
2 P + CO~\S 2 + H20

O~a

Qz liS

P +

<QS'~,
¥

Ph3P-~d-PPh3

CI

<0(" fPh,,-(6,[Pb
7

Scheme 3.10 : Preparation of complex 7.
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II) NMR spectroscopic analvsis of the precursor to the free ligand,

[(PhhPS2m and complex 7, fn3-(PhhPS2/{Pd(PPh3J(PhJ/,

Free Ligand

QC/~
Pd

<Q)'~"
Solvent: C6D6 (TMS internal Standard)
Temperature: 293K

Proton (a-values)

a: 2.46 ppm (br s, 1H)
b 6,95 - 7.94ppm (m, 10 H)"ii
c: 6.95 - 7.94ppm (m, 10 H)

Phosphorus31 {lH} (a-values) viii

d: 55.31 ppm (s)

Table 3.6 : NMR spectral data for the precursor to the free ligand [(PhhPS2H],

The phenyl rings of [(PhhPS2H] are in slightly different electronic

environments due to the presence of the proton on one of the sulphur atoms

thereby preventing the molecule from being symmetrical. This delivers a

complex multiplet for the phenyl rings in the NMR spectrum.

,;; Signal partially obscured by CJ)6 signal.

VIll B-valucs arc relative to H3P04 used as an ex1enml standard.
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Complex 7. k jq; b a

h ,f3 ,PPh:3

"~tPb.
0 I

Solvent: CDCb
Temperature: 293K

Proton (o-values)

a: 7.21 - 7.44 (m, 21H)"
d: 7.01 - 7.05 (complex m, 2H)'
e, f: 6.66 - 6.68 (complex m, 3H)'
i: 7.83 - 7.91 (complex m, 4H)

j, k: 7.21 - 7.44 (m, 21H)';
m: 7.83 - 7.91 (complex m, 4H)

n,o: 7.21 - 7.44 (m, 21H)vi
Carbon 13 ('H} (o-values)

aipso: 136.0 (d, Jc.p - 4.1 Hz) .

aortho 134.4 (d, Je-p= 11.7Hz)
amela 128.3 (d, Je-p= 13.1Hz)
apara 128.1 (d, Je-p= 7.9Hz)
c: 130.6
d: 131.0
e: 127.4
f: 122.7
h: 130.2 (d, Je-p = 2.4Hz) or 131.2 (d, Je-p = 3.1Hz)
i: 130.0 (d, Je-p = 11.7Hz)
j: 128.2 (d, Je-p = 10.3Hz)
k: 130.4
I: 130.2 (d, JC-P = 2.4Hz) or 131.2 (d, Jc.p = 3.1 Hz)
m: 130.0 (d, Jc-p= 11.7Hz)
n: 128.2 (d, Je-p= 10.3Hz)
0: 130.4

Phosphorus 31 ('H} (o-values) XII

b: 30.12 (d, 1P) (J - 6.8Hz)
g: 77.29 (d, 1pi iJ = 7.3Hz)

Table 3.7 : NMR spectral data for complex 7.

~ The signal is made up of signals from both the triphenylphosphine group as well as signals from the
meta- and para-protons from the two phenyl groups of Ihe [(Ph),PS,Hjligand.
x TIle endo- and exo-protons of this phenyl group are not equivalent due to the different adjacent groups
(triphenylphosphine and ligand). As a result, these protons give a complex signal with the endo- and
exo-proton signals obscuring each other.
xi The signal region includes signals from the two triphenylphosphine groups as well as being obscured
by the signal from the d-chlorofonn (CDC I,).
xii Ii-values are relative to H3PO, used as an external standard.
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Again, as with previous complexes discussed in this chapter, there are few

'handles' present in this complex due to the fact that it is mostly comprised of

phenyl rings. In the 1H NMR spectra, the signals from the phenyl groups

obscure each other and it proves to be virtually impossible to unambiguously

assign the respective peaks to the individual groups.

Very small differences exist in the NMR spectra of the initial ligand precursor

and the coordinated complex. The NMR shifts that are evident in the spectra

from the free ligand to precursor are due to the opposing effects that occur

upon deprotonation of the ligand and complexation of the deprotonated ligand

to the palladium metal. Deprotonation of the ligand precursor causes an

electron density increase. As a result of coordination of the deprotonated

ligand precursor to the palladium, a downfield shift is expected. Both

phosphorus atoms band g in complex 7 experience an overall downfield shift

of and 5.50ppm and 21.98ppm respectively in the phosphorus-31 spectrum.

This downfield shift of phosphorus atom b is comparable to the magnitude of

downfield shift that was observed for complex 5 (5.07ppm).

When the reaction mixture of complex 7 is analysed, an exchange is observed

between the coordinated and substituted triphenylphosphine groups. The

exchange kinetics of this exchange was studied qualitatively by means of

variable temperature 31 P NMR spectroscopy as described later.

Figure 3.3 shows a typical room temperature 31p{lH} NMR spectra of the

crystals of complex 7 dissolved in CD2CI2. The two-bond P-P coupling can

clearly be seen in this spectrum. This phosphorus-phosphorus coupling is not

evident in the 31p spectrum of the reaction mixture even when analysed at low

temperatures (Figure 3.4). This is due to the fact that the phosphorus signals

in the reaction mixture are broader than the phosphorus signals in the spectra

of the crystals. The phosphorus signals of the reaction mixture are broader,

even at -90°C, due to the exchange of the coordinated triphenylphosphine

group with the substituted triphenylphosphine group, (Figure 3.3 and Figure

3.4 below).
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complex 7 dissolved in CD2Ch_
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III) Variable temperature NMR study of comolex 7.

m3-(Ph i?PS?/fPd(PPh3)(Ph) /

Introduction

Nuclear magnetic resonance (NMR) spectroscopy has long been known as an

extremely powerful tool in the study of the dynamic behavior of non-ridged

organometallic compounds.22 Due to the relatively slow response rate of this

technique, the slow rates of exchange, rearrangement and intramolecular

reactions are especially suited for study by means of variable temperature

NMR spectroscopy.

The suitability of any spectroscopic method to the study of any dynamic

behavior depends on the response time of that specific technique to molecular

movement,23 This time scale is loosely related to the reciprocal of the

frequency of electromagnetic radiation utilized by the technique in question.

When measured on this scale, it can be seen from the table below that NMR

spectroscopy is a relatively slow technique when compared to other available

techniques such as IR spectroscopy and UV-visible spectroscopy. Table 3.8

below gives a detailed comparison of these techniques relative to one other.
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Technique Approx. Time Scale (5)
--

Electron diffraction 10-"u

Neutron diffraction 10-10

X-ray diffraction"''' 10-18

Ultraviolet 10-15

Visible 10-1•

Infrared-Raman 10-lJ

Electron spin resonanceXIV 10-14 to 10-<>

Nuclear magnetic resonanceXl
! 10-1 to 1O-~

Quadrupole resonanceXl
] 10:' to 10-<>

Mossbauer (iron) 10-7

Molecular beam 10-20

Experimental separation of isomers > 10"

Table 3.8 : Time scale for structural techniques

This means that NMR spectroscopy is responsive to relatively slow rates of

change such as those involved in molecular rearrangements and

intramolecular reactions. Comparatively fast techniques such as IR- or UV-

visible spectroscopy will show 'static' species despite dynamic behavior being

present. NMR will reveal either a static species or time averaged signals

depending on the rate of the particular dynamic behavior involved. These

dynamic processes are usually temperature dependent and can thus be

controlled, allowing one to move from a slow exchange (separate well-defined

signals) to the fast exchange which delivers time-averaged signals. It can thus

be said that signal shape, as well as the particular chemical shift of these

signals, are temperature dependent for NMR spectra.

Variable temperature NMR studies allow one to examine the effects of

temperature on specific reaction equilibria, allowing the calculation of

,;" Individual measurements of this duration are collected over a long time span and multiple
measurements arc collected to give a final structure. A time-averaged signal is thus the net result.
'" Time scale sensitivity is defined by the specific chemical system under investigation.
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approximate L\Go (Gibbs standard free energy) and Ea (activation energy)

values24

The dynamic reaction, which is observed for complex 7, is one in which a non-

coordinated triphenylphosphine group exchanges with a triphenylphosphine

group that is coordinated to the palladium (Scheme 3.11). This exchange is

obviously only observed in the reaction mixture, which contains the non-

coordinated triphenylphosphine.

The deprotonated diphenyl-dithio-phosphinic acid ligand remains 113-

coordinated at all times. This exchange between the triphenylphosphine

groups can be easily observed in the 31p{'H} spectra. It is difficult to see this

exchange in the lH NMR spectra due to the fact that the non-coordinated

triphenylphosphine group signals are similar in ppm shift value to those of the

coordinated triphenylphosphine group (7.01 -7.44ppm). No hemilability was

observed for the bidentate ligand.

<O( ,f3 ,pp~

dtP'(g + PPh3'
<O(,~ 'pP,"-d'~Pb+PP~

A B

Scheme 3.11 : Exchange between the uncoordinated and coordinated

triphenylphosphine groups.

Since each relevant species involved in the exchange illustrated in Scheme

3.11 above, exhibited sufficiently different chemical shifts in the 3'P{'H} NMR

spectra at the slow exchange limit, the equilibrium constant, K, and the rate

constant, k, could be determined. Calculations to determine L\Go and Ea could

also be carried out. These values are approximation only.
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As the concentration of nuclei measured in 3' P{' H} NMR spectra is directly

proportional to the integrated signal intensities, the equilibrium constant, K, for

the exchange reaction at a specific temperature was calculated according to

the following equations: -

A--tB

K = [A]
[B]

... equation 1.

... equation 2

The Gibbs standard free energy, t.Go, is given by equation (3) below. The t.Go

values of the exchange reaction was determined by the slope of In K plotted

against 2- according to equation (4) below which is derived from equation (3).
T

Equation (4) is of the form, y = m.x, with the slope being equal to _ t.Go with
R

R = 8.314 JK'.mor'.

t.Go = -RTln K

t.Go I
InK=---.-

R T

... equation 3

... equation 4

The activation energy, Ea, values for the equilibria were calculated from

equation (6), which is derived from the Arrhenius equation (5), The rate

constants (k) at a specific temperature were determined by applying the

following formula which is defined for slow exchange reactions:25

k = 1t(h - ho)

where h = the peak width at half height in the NMR spectrum at the specific

temperature (T).

ho = is the peak width at half height with no exchange taking place. For these

reactions studied by 31p{'H} spectroscopic techniques at 121 MHz, ho was

estimated as 1.5Hz26
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Ea = -RTlnk ...equation 5

EolInk = _. - ...equation 6
R T

This method of studying dynamic systems has been successfully applied in

our research group to similar compounds27

Variable temperature NMR study of complex 7, results and discussion.

The equilibrium illustrated in Scheme 3.11 was monitored very successfully

with variable temperature (VT) 31p{lH}, NMR techniques in two different

solvents. The resonances of the 31p {lH} NMR at the various temperatures in

both ds-benzene and dz-dichloromethane are shown in Figure 3.4 and Figure

3.5 respectively. These resonances show the time-averaged signals of the

two species involved in the equilibrium.

At room temperature the signals are very broad and poorly defined. This is

more accentuated in the spectra measured in dz-dichloromethane. It is evident

from the comparison of the spectra in the two different solvents that the

exchange is much faster in d2-dichloromethane. Upon cooling, the signals

become sharper and more defined in both solvents. At the poorly defined

signals closer to room temperature, the experimental error for the calculation

of k and K for the determination of Ea and toGo becomes greater.

The variable temperature 'H NMR spectra yielded very little useful information

as the signals from the respective phenyl groups obscure each other and it is

virtually impossible to unambiguously distinguish between the signals of the

phenyl- and coordinated triphenylphosphine groups from the free

triphenylphosphine groups. For this reason the lH NMR spectra are not

included in the calculations or shown here.

Figure 3.4 below is the 3'p{'H} resonances in benzene of the phosphine

ligand and the uncoordinated triphenylphosphine group that are exchanging

with each other. The signals are given at room temperature (20°C), OOCand at

10° intervals down to --60DC.
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-60°C
Jb.l"

Figure 3.4 : Resonances of the phosphine ligand and exchanging

triphenylphosphine group in do-benzene.

Figure 3.5 below is the 31p{lH} resonance of the phosphine ligand in

dichloromethane and the uncoordianted triphenylphosphine group that are

exchanging with each other. The signals are given at room temperature

(20°C), O°C and at 10° intervals down to -90°C.
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Figure 3.5 : Resonances of the phosphine ligand and exchanging

triphenylphosphine group in d2-dichloromethane.

TrC) T(K) 11T(K) k(A)" In k(A) k(B)" In k(B)
20 293.15 0.0034 b b b b

0 273.15 0.0037 778 6.7 778 6.7
-10 263.15 0.0038 721 6.6 675 6.5
-20 253.15 0.004 606 6.4 721 6.6
-30 243.15 0.0041 461 6.1 549 6.3
-40 233.15 0.0043 492 6.2 453 6.1
-50 223.15 0.0045 377 5.9 415 6.0
-70 203.15 0.0049 243 5.5 224 5.4
-80 193.15 0.0052 205 5.3 224 5.4
-90 183.15 0.0055 243 5.5 148 5.0

Table 3.9 : Measured approximate rate constant data for the calculation of E"

of complex 7 in CD2Cb.

" Determined by k = n(h - hoY where

h = peak width at half height and

ha = 1.5Hz28

b Resolution of NMR too low to measure accurate width at half height.
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Oichloromethane

---.-.;" ~ .. .. .•. .. ..•
~

y = -O.2092x + 7.0493
R2 = 0.9263

8

7

6

5
x
.5

4

3 ,

F-- .. .. .. ...•. :
;=-----;;;"

• ? ••••••

y = -O.114x + 6.8946
R2 = 0.9286

:1-
0.00550.00520.00490.00450,00410.0040 0.0043

1fT (11K)

I-+-CompleX Free PPh3 --linear (Complex)" .•.• linear(FreePPh3) I

0.00380.0037

Figure 3.6 : Arrhenius plot for calculating the Ea of complex 7 in CD2Cb.

T(OC) T(K) 11T(K) k(A)a In k(A) k(B)a In k(B)
20 293.15 0.0034 1358 7.2 1637 7.4
0 273.15 0.0037 1175 7.1 1045 7.0
-10 263.15 0.0038 1050 7.0 855 6.8
-20 253.15 0.004 778 6.7 682 6.5
-30 243.15 0.0041 530 6.3 537 6.3
-40 233.15 0.0043 442 6.1 446 6.1
-50 223.15 0.0045 392 6.0 308 5.7
-60 213.15 0.0047 320 5.8 358 5.9

Table 3.10 : Measured approximate rate constant data for the calculation of

Ea of complex 7 in C6D6.

a Determined by k = :r(h - ho) where

h = peak width at half height and

ho = 1.5Hz
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Benzene

0.0047

y = -o.2255x + 7.4681
R' = 0.9521

0.00450.00430.00410.00400.00380.0037

- ....• '

1 y =.().2213x + 7.4957
R2= 0.9793

• <::::::::::: =;;I

8

I ..•7

6

5

~
S 4

3

2

1 -

01
00034

1fT 111K)

t-+-Complex ~Free PPh3 --ljnear (Compl~x) ••• Unear (FreePPh3) I

Figure 3.7: Arrhenius plot for calculating the Ea of complex 7 in CeDe.

T(Oe) T(K) 11T(K) Integration Integration Ka In K
Value for value for
species A spesies B

20 293.15 0.0034 25.06 26.22 1.05 0.05
0 273.15 0.0037 27.90 24.72 0.89 -0.12
-10 263.15 0.0038 19.34 23.42 1.21 0.19
-20 253.15 0.004 24.48 26.55 1.08 0.08
-30 243.15 0.0041 31.50 36.68 1.16 0.15
-40 233.15 0.0043 37.33 38.43 1.03 0.03
-50 223.15 0.0045 45.32 44.63 0.98 -0.02
-60 213.15 0.0047 35.12 36.18 1.03 0.03

Table 3.11 : Equilibrium constant data for the calculation of I'1Go of complex 7

in CeDe.
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T(OC) T(K) 11T(K) Integration Integration K" In K
value for value for
species A species A

20 293.15 0.0034 14.89 13.01 0.87 -0.14
0 273.15 0.0037 26.80 18.60 0.69 -0.37
-10 263.15 0.0038 22.01 24.31 1.10 0.10
-20 253.15 0.004 26.77 35.34 1.32 0.28
-30 243.15 0.0041 38.89 35.20 0.90 -0.10
-40 233.15 0.0043 29.35 27.30 0.93 -0.07
-50 223.15 0.0045 32.19 30.62 0.95 -0.05
-70 203.15 0.0049 29.64 27.00 0.91 -0.09
-80 193.15 0.0052 33.59 30.56 0.91 -0.09
-90 183.15 0.0055 48.25 43.58 0.90 -0.10

119

Table 3.12: Equilibrium constant data for the calculation of fiGo of complex 7

in CD2Cb.

0.4

0.3

y = -o.0349x + O.2€B9

0.2

~
E 0.1

o
0.0049 0.0052 0.0055

-~::;;~::;;-;;;;-;----------:;:::::~""'~'====::::::::~'====~'~--.........:::::,-...•",..==--====,-0.1~ y - -o_OO25x. 0.067;:::::> •

-C.2 J
11T

I--+-Dichloromethane _Benzere --Unear (Dichloromethane) --linear (Benzene) I

Figure 3.8 : Plot to calculate fiGOvalues for complex 7 in dobenzene and dz-

dichloromethane.
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Solvent Species Ea (k.J.mor') ~Go (x10.2 k.J.mor1)
ds-Benzene A 1.84 ---
ds-Benzene B 1.880 ---

drDichloromethane A 1.45 ---
drDichloromethane B 1.74 ---

do-Benzene A&B --- 29.02
d2-Dichloromethane A&B --- 2.09

Table 3.13 : Summary of calculated Ea and ~Go values of complex 7 in both

d6-Benzene and d2-Dichloromethane.

It is evident in Figure 3.8 above, that there is a large deviation in both solvents

from the linear line shape expected. This deviation from linearity is due to

several factors. Firstly, the relaxation time of a free triphenylphosphine group

differs from that of a coordinated triphenylphosphine group. This in itself can

lead to a relatively large deviation from the required 1:1 integration ratio in the

31p{1 H} NMR spectrum. Although there is a deviation from the 1:1 ratio in

these spectra, the deviation is within acceptable experimental limits.

Secondly, the broadness of the peaks becomes so large close to room

temperature that it becomes very difficult to clearly define and integrate the

applicable peaks. It thus becomes difficult to clearly define the applicable

integration region. This is more accentuated in the spectra obtained in dr

dichloromethane.

Due to these strong deviations from linearity close to room temperature, the

first four data points of the d2-dichloromethane data series, and the first two

data points in the ds-benzene series of In K vs. 1rr, were excluded from

calculation of ~Go (Figure 3.8).

Complex 7 has a square planar geometry as shown by single x-ray crystal

structure analysis. Square planar da-transition metal complexes are known to

almost exclusively undergo associative ligand substitution reactions by means

of two parallel pathways29 It is known that the 4pz orbitals are not heavily

utilized in metal-ligand a-bonding and are therefore available for the addition
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of a fifth ligand to the square planar coordination sphere.3D Based on these

arguments, the following substitution-elimination mechanism is proposed in

Scheme 3.12 below for the equilibrium between complex 7 and the free

triphenylphosphine group: -

Ph S Ph
\ II~ I

Pt--Pd
/ \\ \

Ph S PPh3

Reagent

+PPht

PPh'. 3
S : Ph

Ph / "'-",,! /, 0.' ..•
P Pd

Ph/ '" / "-S PPh3

1
PPh3'

,/,Ph
S-Pd'
/ ."Ph_p __ S "

I PPh3
Ph

1

+ solvent

solvent
S i Ph

Ph / ". I :-
'p ""~d/'

Ph/ '" / \.
S PPh3

1
solvent

,/,Ph
S-Pd'
/ ."Ph_p __ S "

I PPh3
Ph

l,PPh3

S 'ph
Ph, / ~"""'Pd.-f

Ph/P",s/ \.solvent

1 +PPh3'

S Ph
Ph, / ~"""'Pd'-/

P, /' "-Ph/ 'oS i PPh
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'
I

PPh3

\ solvent

Ph S Ph
\ 1/ I
Pt-- Pd ..••.---

I \\ \
Ph S PPh3
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\ I ~ /

P!-Pd
I \\ \

Ph S PP~

1 PPh3'

/,Ph
S-Pd'
/ . '"

Ph_f--S solvent
Ph

Product
Figure 3.9 : Proposed substitution-elimination mechanism for complex 7.
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In the first pathway, the PPh3 attacks the palladium complex and the reaction

passes through a five coordinate transition state and intermediate that has a

trigonal bipyramidal structure. The second pathway also involves the

formation of a trigonal bipyramidal transition state, except the solvent is the

entering group.

It can be seen that the calculated rate constants for the interchanging of the

two triphenylphosphine groups differ greatly in the two different solvent

systems analysed. The interchanging of the triphenylphosphine groups in the

two different solvent systems was observed and monitored as described

above, but a more in-depth investigation is required in order to be able to fully

explain the observed solvent effect on a quantitative scale. In summary, the

exchange illustrated in scheme 3.12 above occurs faster in benzene than in

dichloromethane.

IV) Mass spectrum for complex 7, fn3-(PhIzPS?/[pdrPPh3J(PhJ/.

The fragmentation pattern for complex 7 is illustrated in Scheme 3.14 below.

Relative intensities are given in parenthesis. The molecular ion of complex 7

was observed at m/z 695. Subsequent fragmentation occurs along two

pathways. One route, like many of the complexes in chapter 2, involves the

immediate and total loss of the ligand followed by the further fragmentation of

the original palladium-phenyl-triphenylphosphine section of the complex. The

second route of fragmentation is, however, more complex. It involves the

initial loss of a phenyl group followed by a further loss of sulphur. This

fragmentation route then further splits into two parallel pathways, each of

which is characterised by relatively high intensities of the ions formed.
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[
p/"'" ] .. (Ph,Ps,)[Q,;1 1'Ph']' .Ph [Q,7 1'p"'j'<g - d'rPd<o> - d'rPd<o>
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. \:::::'(S-Pd I
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p/Ph ] d <0> .3Ph
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Scheme 3.14 : Mass spectrum fragmentation patterns for complex 7.

[Relative intensities are given in parenthesis]

123



Chapter 3 124

V) Thermogravimetric analysis of the free ligand. diphenyl-dithio-phosphinic

acid. and complex 7.

The thermal decomposition of the free ligand precursor, diphenyl-dithio-

phosphinic acid, and that of complex 7 were studied to compare the thermal

stability of the ligand precursor versus the complex as well as to investigate

the possible existence of stable intermediates. In the available literature of

similar complexes and ligands no indication of thermogravimetric analysis was

found. In this manner the differences in the thermal decomposition curves that

occur as a result of the complexation of the free ligand to the palladium

starting complex could be highlighted.

Figure 3.9 is a graphic representation of the temperature program used to

follow the thermal decomposition of ligand 7. The program involved a 0 -

700°C-temperature range. Initially the temperature was increased from 0 -

30°C at a rate of SoCmin'1and maintained at 30°C for 6 minutes followed by a

further SoCmin" temperature increase to 700°C.

"o__ n__ ._N _
uo _.,

:', .....;'--'~:~";::;Z:=
n~_ ..•. .•... -- --•. ~.----- --~~.~~.•.::-:~~--........ . .. -. . . -.

•••_ ---- ---- -- ,'.,_... ~ ~OOQ.

: -1i:: ::: :::: ::.~~.~;-::<~~:~.~~-:.:.:::::::::,:::: ::__lD~---.. " .~.... I I
.-.'--- 1 - 10 nl I.. ,co "'I"

J' .: '" .~

Figure 3.9 : Thermogravimetric analysis temperature program
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Figure 3.10 below is a plot of TG and dif. TG versus temperature for ligand 7

while Figure 3.11 is a plot of DTA and TG versus time for the

thermogravimetric decomposition analysis of ligand 7_

--r ~.100

20.0 Temperatur - re~~G I dif. TG

mglmin

~.300

~.200

0.000

0.100

r-- ~--:--..-t
I •

I

I

B~:nlhenno
anaJYSe

f .....---.".;':'~."";"'''''':-'':'.,.~
~--'\ . : ". ,.,
~ . I , .

"'\. ", i'\'\'. '1-- ._--.-----~-~~\/ \.... \ I
\ I '"\... I ,

"-j • I'l I -.;- , '- . I
I • •.••••.••. I ,.

I I '- ~.....•.1 • '. I
11 ~ J'I l
1 I t\ I I i

t\ .,..~ r
I \ I I
" '. I I I\t I t

I, I'" \.1'
\.. ) - \,

\
\

%

~.O

0.0

-40.0

-20.0

\'--~-

-30.0,--o 100 200 300 .00 500 600 . ~.400
700 'C

Figure 3.10 : TG and DTG versus temperature plot of the thermogravimetric

decomposition analysis of ligand 7_
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Figure 3.11 : DTA and TG versus time plot of the thermogravimetric

decomposition analysis of ligand 7,

Scheme 3.15 illustrated below is a suggested decomposition route of ligand 7.

It involves four main decomposition steps,

Ph S Ph S Ph S Ph S
\ I,

- Na
\ I, -s \ 'I - Ph \ 'I -s Ph

P P P P \

I \ ~ I \ ~
Phi

~ ~ P
Ph S-Na Ph S

(I) (II) (III) (IV)

Scheme 3.15: Thermal decomposition of ligand 7.

The decomposition process starts at 30°C and ends at 540°C. Step 1 in

Scheme 3.15 above occurs at - 30°C, step 2 at -270°C, step 3 at -442°C and

the final step at -500°C. The four steps are well separated from one another.

The plateaus that are evident in the integration curve in Figure 3.11 above

indicate the existence of intermediates. The final P-Ph species formed

appears to be thermally stable up to 700°C.
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Figure 3.12 below is a plot of TG and dif. TG versus temperature while Figure

3.13 is a plot of DTA and TG versus time for the thermal decomposition of

complex 7.
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Figure 3.12 : TG and DTG versus temperature plot of the thermogravimetric

decomposition analysis of complex 7.
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Figure 3.13 : OTA and TG versus time plot of the thermogravimetric

decomposition analysis of complex 7.

Complex 7 does not give distinct decomposition steps but rather a gradual

continuous decomposition curve in the region of 200°C - 340°C. All the

organic material of complex 7 is lost within this range leaving pure Pd that is

stable to temperatures of 400°C. No similarities of the thermal decomposition

trends were visible between that of the free ligand precursor (see Figure 3.10

and Figure 3.11) versus complex 7 (see Figure 3.12 and Figure 3.13).

VI) Single crystal structure determination of complex 7 without solvent

interaction,

Single crystals of complex 7 were obtained by crystallization from two different

solvent systems. This gave crystals with two different space groups.

A single colourless crystal of complex 7 was mounted on a glass fiber and

transferred to Siemens SMART system CCO area detector diffractometer. All

data were collected at room temperature with graphite monochromated Mo-Ka

radiation. The empirical (SAOABS) method of absorption correction was
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applied. Unique sets of data with intensities greater than two times the

standard deviation were used to solve the structure by the heavy atom

(Patterson) method. Refinements were done using least squares refinement.

All non-hydrogen atoms were refined anisotropically. For structure solution

and refinement the She1X-97 software package was used.31 Structure figures

were generated using Ortep-3. 32

Selected crystallographic bond lengths and angles are listed in Table 3.14. All

other crystallographic information is available from Dr. C. Esterhuysen

Department of Chemistry University of Stellenbosch, Private Bag X1, 7602

Matieland South Africa.

Selected bond lengths(A) Bond angles(O)

Pd1-C31 2.006 (4) C31-Pd-P2 87.5 (1)

Pd1-P1 2.956 (1) C31-Pd-S2 90.7 (1)

Pd1-P2 2.254 (1) C31-Pd1- S1 172.8 (1)

Pd1-S1 2.457 (1) P2-Pd1-S1 99.1 (4)

Pd1-S2 2.403 (1) P2-Pd1-S2 171.1 (4)

S1-P1 2.011 (1) S2-Pd1-S1 83.3 (3)

S2-P1 2.014(1) S2-P1-S1 106.8 (6)

P1-C111 1.810 (4) C31-Pd1-P1 132.5(1)

P1-C121 1.812(4) P2-Pd1-P1 137.0 (3)

P2-C211 1.815(4) S2-Pd1-P1 42.6 (3)

P2-C231 1.821 (4) S1-Pd1-P1 42.3 (3)

P2-C221 1.826 (4) P1-S1-Pd1 82.2 (4)

P1-S2-Pd1 83.5 (4)

C111-P1-S1 111.3(1)

C121-P1-S1 112.4(1)

Table 3.14 : Selected bond lengths (A) and angles (0) with e.s.d's. in

parenthesis for complex 7, without solvent interaction.
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Figure 3.14: Ortep-3 plot of molecular structure of complex 7 at 50% ellipsoid

probability and showing the numbering scheme used.33 Hydrogen Atoms have

been excluded to make viewing easier.

VII) Discussion of the structure and bonding in complex 7 (without solvent

interaction).

Bond angles and bond lengths for complex 7 are reported in Table 3.14

above. The crystal structure illustrated in Figure 3.14 above will be discussed

with respect to the data listed in Table 3.14

As can be seen from the Cambridge Crystallographic Structural Database

(CCSD), most organo-palladium complexes are square planar. In the ideal

molecule the four atoms surrounding the palladium will lie at right angles to

one another in the plane of the palladium. The average deviation from the

ideal bond angles around the palladium with a square planar configuration

was found to be 5.85° with the maximum being 9.07°. The average angle of

deviation was calculated by taking the absolute value of the difference



Chapter 3 131

between the experimental angle and the ideal angle (180° or 90°) and taking

the average of the four resulting values while the maximum was the largest of

the six numbers. The root mean square (RMS)XVof complex 7 was 0.111A

while the maximum deviation from planarity was 0.133A. This maximum

deviation from planarity for complex 7 is significantly greater than that of the

palladium starting complex 1 (complex 1, 0.026A). The planarity of complex 7

is lost to compensate for the deviation in the bond angles around the

palladium. Due to the bending of the complex, the phosphorus atom (P1) is

sitting o.sA above the plane allowing it to come within 3A of the palladium

atom.

The plane containing the palladium atom and the sulphur atoms S1 and S2 is

twisted by 10° with respect to the plane containing the Pd1, P2 and C31

atoms and by 23° compared to the plane containing the P1, S1 and S2 atoms.

The palladium-sulphur (Pd1-S1, Pd1-S2) and phosphorus-sulphur (S1-P1, S2-

P1) bond lengths similar, within O.OSA. The palladium-sulphur-phosphorus

(Pd1-S1-P1 and Pd1-S2-P1) bond angles are also identical.

VIII) Discussion of the structure and bonding in complex 7' with solvent

interaction.

Orange single crystals of complex 7' were obtained by crystallization from a

1:1 THF:benzene solution. The space group and unit cell of the crystals of

complex 7' is different from that of 7. THF crystallized in a 1:1 ratio with the

complex.

The data for these crystals was collected with a Siemens SMART system

CCD area detector diffractometer under the same conditions. The crystal

structure was solved in the same manner as complex 7.

[
I ( -v],Y,

" RMS deviation = N LX, -X) , N = Ilwllber or obsen'atiolls, x, = value of observation i and

x = mean
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Selected bond lengths and angles are listed in Table 3.15 below. The

structure of complex 7 with solvent interaction is illustrated in Figure 3.15. All

other crystallographic information is available from Dr. C. Esterhuysen

Department of Chemistry, Stellenbosch University, Private Bag X1, 7602

Matieland South Africa.

Selected bond lengths(A) Bond angles(O)

Pd1-C31 2.016 (7) C31-Pd1-P2 88.52 (19)

Pd1-P1 2.99 C31-Pd1-S2 170.33 (18)

Pd1-P2 2.2637 (18) C31-Pd1-S1 87.50 (19)

Pd1-S1 2.381 (2) P2-Pd1-S1 176.01 (7)

Pd1-S2 2.501 (2) P2-Pd1-S2 100.37 (7)

S1-P1 2.009 (3) S2-Pd1-S1 83.60 (7)

S2-P1 2.002 (3) S2-P1-S1 108.46 (11)

P1-C111 1.808 (7) P1-S1-Pd1 85.43 (9)

P1-C121 1.816(8) P1-S2-Pd1 82.43 (9)

P2-C211 1.834 (7) C111-P1-S2 112.9 (3)

P2-C231 1.820 (7) C121-P1-S1 111.0 (2)

P2-C221 1.841 (7) C111-P1-S1 110.1 (3)

Table 3.15 : Selected bond lengths (A) and angles (0) with e.s.d's. in

parenthesis for complex 7'.
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Figure 3.15 Ortep-3 plot of the molecular structure of complex 7' at 50%

ellipsoid probability, showing solvent interaction and the numbering scheme

used.34 Hydrogen Atoms have been omitted for clarity.

Bond angles and bond lengths for complex 7 are reported in Table 3.15. The

crystal structure is illustrated in Figure 3.15.

As with the structure of complex 7, there is a deviation from planarity within

this structure as well as a deviation from the ideal bond angles around the

palladium atom (Table 3.15). The average deviation from the ideal square

bond planar bond angles around the palladium was found to be 5.74° with the

maximum being 10.38°. The root mean square deviation (RM5) is 0.035A

while the maximum deviation from planarity is 0.047A. These values were

calculated in the same manner as before.

This constraint to planarity as compared to when there is no solvent

interaction affects the palladium sulphur bond lengths significantly with the Pd-

51 bond [2.381(2) A] being 0.120A shorter than the Pd-52 bond [2.501(2) A].

This constraint to planarity also appears to contribute to the slight difference in
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the palladium-sulphur-phosphorus bond angles (Pd-S1-P1 and Pd1-S2-P1)

which differ by 3°.

IX). Direct comparison between the crystal structures of complex 7 with and

without solvent interaction.

Before a direct comparison is made of the two crystal structures, it must be

borne in mind that the following data is characteristic of phosphorus-sulphur

bond lengths and angles35: -

Bond type Bond length and bond angle

P-S bond length 2.1A

P=S bond length 1.9A

S-P-S bond angle 93° _94°

S-P-S bond angle 116.1°-116.4°

Table 3.16 : Characteristic bond lengths and bond angles of phosphorus

sulphur bonds.

As can be seen from the table above, the P-S bond lengths in both the crystal

structure of 7 and the crystal structure of 7' compare well with the trends of

similar bond types published in the literature.

The two tables below summarize the distinct differences between the two

crystal structures of complex 7 (with and without solvent interaction). The

tables include bond lengths and bond angles that are the most distinct. These

bond angles and bond lengths listed below are not the only bond lengths and

bond angles that differ between the two structures. For a more detailed

comparison consult Table 3.14 and Table 3.15.

I
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Bond Lengths (A) Structure 7 Structure 7'

Pd1-P1 2.96 (1) 2.99 (1)

Pd1-S1 2. 457 (1) 2.381 (2)

Pd1-S2 2.403 (1) 2.501 (2)

Table 3.17 : Comparison of bond lengths between the two different crystal

structures of complex 7 and 7'.

Bond Angfes Structure 7 Structure 7'

P2-Pd1-S1 99.07 (4) 100.37 (7)

P2-Pd1-S2 171.08 (4) 176.01 (7)

Table 3.18 : Comparison of bond angles between the two different crystal

structures of complex 7 and 7'.

The most important differences between the two crystal structures can be

summarized as follows: -

(Jr There is a distinct and significant deviation from square planar geometry of

the central palladium atom in 7 while the structure 7' conforms closer to

the classic square planar conformation of palladium (II) complexes.

qr In the crystal structure of 7, the palladium sulphur bond lengths (Pd1-S1,

Pd1-S2) and the sulphur phosphorus (S1-P1, S2-P1) bond lengths are

similar in length while in the crystal structure of 7', there is a small yet

noticeable difference in the palladium sulphur bond lengths. The sulphur

phosphorus bond lengths in the second structure however remain similar

to each other.

The planarity of the Pd-S-P-S 4-membered rings in both 7 and 7' differ. As a

result of the aforementioned 4-membered ring in 7 being 'bent', the

phosphorus and palladium atoms are close enough to allow a Pd-P1

interaction (2.96(1) A). This Pd-P1 interaction is not evident in 7' (2.99 (1)A).
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These differences that are highlighted above become visibly evident when the

packing of the molecules within the unit cell of each structure are compared.

The crystal system in 7 is monoclinic while in 7' it is triclinic. In the case of 7',

the molecules pack in strings alternating with solvent molecules. The steric

influence of the solvent molecules constrains the Pd-S-P-S2 plane to be flat

and parallel to one another. However, in the case of 7 the ligand is able to

buckle to relieve the strain in the 4-membered ring that is aggravated by the

bulky triphenylphosphine group. The molecules pack together in an

interlocking network.

Figures 3.16 and 3.17 below show the different crystal packing of 7 compared
to 7'.
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Figure 3.17 : Ortep-3 plot of the unit cell of complex 7' at 50% ellipsoid

probability.37 Hydrogen atoms have been omitted for clarity.
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3.3 Experimental

3.3.1 Materials

Solvents:

High spectroscopic grade solvents were used and were pre-dried over 4A

molecular sieves for at least 48 hours prior to use. All solvents were freshly

distilled under nitrogen and used immediately.

Diethyl ether, tetrahydroforan (THF), benzene and hexane were distilled under

nitrogen over sodium with the formation of a benzophenone ketyl as indicator.

Dichloromethane was distilled over calcium hydried under nitrogen. All

alcohols were distilled over magnesium shavings under nitrogen or argon.

Alkyl lithium reagents were standardized by literature methods3S.

All deuterated solvents, dichloromethane (dz-CD2CI2) and benzene (ds-C6D6),

that were used in the spectroscopic investigations for the complexes and

ligands in this series were purchased from Aldrich. All these solvents were

stored over 4A molecular sieves under an inert atmosphere in order to keep

them free from moisture and oxygen.

3.3.2 Physical Methods.

A. General:

Unless otherwise noted, all reactions and manipulations were carried out

under an inert atmosphere with a positive gas flow of argon or nitrogen using

standard vacuum line and Schlenk techniques. Solutions were stirred

magnetically with Teflon coated stirrer bars. Room temperature refers to 22-

24°C. Glassware was oven dried at :t120°C, assembled while hot and cooled

under vacuum.

B. Instrumentation:

>- Melting points: -

Melting points were determined on a standard BCichi 535 apparatus and are

uncorrected.
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~ Mass Spectroscopy

MS spectra were obtained by one of the following techniques: -

• FAB-MS (Fast Atom Bombardment Mass Spectra) spectra were

recorded on a Micromass DG 70170E double focussing mass

spectrometer coupled to an Ion Tech fast atom bombardment unit

using Xenon gas as bombardment atoms.

• Standard MS Spectra were obtained by means of the electron impact

mass spectrometry technique on an AMD INTECTRA GmbH 604

double focusing mass spectrometer.

~ Infra Red Spectroscopy

Infra red spectral data was obtained using the following two instruments: -

• Perkin Elmer FT1600 series (4000 to 600cm") with samples prepared

as films between NaCI plates using hexachloro-1,3-butadien or as

standard liquid cell solutions in anhydrous dichloromethane with 16

scans with 4cm" resolution.

• Perkin Elmer 841 IR spectrometer (4000 to 600cm.1) with samples

prepared as films between NaCI plates using hexachloro-1 ,3-butadien.

~ Nuclear Magnetic Resonance Spectroscopy

• ' H, 13C{'H}, 3' p{' H} NMR data were recorded on a Varian VXR 300 FT

spectrometer at.

NMR data is expressed as parts per million (ppm) downfield from the internal

(TMS) or external standard used. The respective nuclei were recorded under

the following parameters: -

Nucleus Freauencv Standard
'H 300 MHz (CH3)4Si as internal standard
lOC(' Hl 75 MHz (CH3)4Si as internal standard
APT r Hl 75 MHz (CH3)4Si as internal standard
3'pflffi 121 MHz 85% H3P04 as external standard

Table 3.21 : NMR spectroscopy parameters used.
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~ X-ray crystallography:

Crystals that were suitable for use in diffraction intensity measurements at

room temperature were mounted on a glass fiber using fast adhesive. Crystal

structure data collection and correction procedures were carried out on an

Phillips PW1100 diffractometer or a Siemens SMART system diffractometer.

All systematic absences were consistent with the space groups assigned in

each case. The positions of the hydrogens in each case were calculated by

assuming idealized geometries.

C. General preparation of starting materials and ligands:

Several of the starting materials and the ligands were synthesized from

literature and have been referenced accordingly. However, almost all of the

literature methods that have been used to synthesise the ligands have been

modified to varying degrees since these literature methods most often refer to

different target complexes than those prepared here. For this reason, detailed

methods of preparation have been given for all the ligands and starting

materials used in this chapter.

D. General Preparation of Complexes.

In the preparation of the complexes synthesised here, standard Schlenk

techniques were employed throughout. All solvents were dried and purified by

standard methods. All other reagents, unless otherwise stated in the relevant

sections, were used as received.

The general methods of preparation of the complexes in this series were

according to Scheme 3.13 and Scheme 3.14 below: -
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Y
I
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'Si(CH3)

Ph
I

Ph3P-Pd-PPh3
I
CI

Y =C, P

Scheme 3.13
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3.3.2.1 Preparation of complex 5, [fnJ.((CH3hSiNhC(PhIPd(PPh3HPh)].

i) Synthesis of hexamethyldisilazine, ((CH3)JSihNH.

Hexamethyldisilazine was synthesised according to the reaction illustrated

below39.

143

2(CH3hSi-CI + 3NH3 (
CH
3h
Si
, H + 2NH4CI(s)N-. /

(CH3hSi

Reaction 3.1 : Synthesis of hexamethyldisilazine.

Trimethylchlorosilane (1 mol, 109g) was dissolved in 500ml of anhydrous

ether in a 1 liter round bottomed flask. The flask was fitted with an efficient

reflux condenser bearing a side arm fitted with a gas inlet tube through which

ammonia gas was bubbledxvi.

Upon the introduction of ammonia, a white precipitate of ammonium chloride

formed almost immediately. The solution was brought to reflux temperature

and the slow introduction of ammonia was maintained for six hours.

After six hours, the precipitate was allowed to settle and the ethereal solution

was decanted and filtered. The precipitate was washed with 3x50ml of ether.

The ethereal extracts were concentrated on a Buchi rotovap. The

concentrated solution was then transferred to flame dried distillation apparatus

and distilled under vacuum. The pure product, hexamethyldisilazine, was

collected at 118°C at 6mm Hg.

Yield: 10.5%

(Yield based on mole trimethylchlorosilane used.)

ii) Synthesis of NaNH2.

NaNH2was synthesised according to reaction 2 illustrated below40: -

XVI NOle: An effective reflux condenser must be used to avoid ,he neck o/the reflux condenser becoming
hlocked hy the ammonium chloride fha/fOrms during the re.fluxing process.
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2Na +2NH3

Reaction 2 : Synthesis of NaNH2.

•. 2NaNH2 + H2

Ammonia gas was liquefied in the following manner: -

A 1 litre three-necked round bottomed flask was fitted to a mechanical stirrer,

1 one-way bubbler and a gas inlet tap that was connected to a pre-cooler trap.

The pre-cooling trap was cooled to -30°C and the reaction flask was cooled to

-aO°C. A slow stream of ammonia gas was allowed to flow through the

system causing the ammonia gas to condense. Once :t500ml of liquid

ammonia was collected, the ammonia gas flow was terminated and the

system was flushed with nitrogen.

Iron nitrate (Fe(N03)J.9H20), 0.250g, and sodium metal, 25.00g, was added

to the liquid ammonia. The sodium metal lumps were previously rinsed with

anhydrous pentane to remove the mineral oil. Innitially the ammonia solution

turned blue, but once all the sodium was dissolved and had formed NH2Na,

the solution had a light gray appearance.

After the reaction was deemed to be complete (visual inspection), the solution

was allowed to reach room temperature and the liquid ammonia was allowed

to evaporate and escape through the oil bubbler over nigh!.

iii) Synthesis of sodium bis-trimethy/silylamide, ((CH3hSihN-Na.

Sodium bis-trimethylsilylamide was synthesised according to the reaction

illustrated below41.

(CH313Si,
N-H + NaNH2

(CH313S(

(CH313Si,
--~- N-Na + NH3

(CH313Si/

Reaction 3 : Synthesis of sodium bis-trimethylsilylamide.
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The previously synthesised hexamethyldisilazine, 10.00g, was added to

24.60ml of benzene and 2.160g of NaNH2 thereby creating a 30%

NaNH2/benzene solution. The solution was gently brought to reflux

temperature and refluxed for 4 - 5 hours. The solution was allowed to cool to

room temperature and evaporated to dryness under reduced pressure to yield

a white salt.

ivy Synthesis of sodium-N'N'-bis(trimethy/sily/)benzamidinate.

Sodium-N'N'-bis(trimethylsilyl)benzamidinate was synthesised based on

known literature methods42 as illustrated in reaction 4 below: -

(CH
3l3
Si
, IQ\-C=N
N-Na+ ~

.I
(CH3l3SI

Si(CH3b
I

<Q)- I~

c'e
• I 0 \~,

I
Si(CH3b

Na

Reaction 4 : Synthesis of sodium-N'N'-bis(trimethylsilyl)benzamidinate.

Sodium bis-trimethylsilylamide, 1.834g, was dissolved in :t10 ml of anhydrous

ether. Benzonitrile, 1.02ml, was added to the mixture and stirred vigorously for

24 hours. The solvent was removed under reduced pressure to yield a white

salt.

Yield: 2.664g (9.299x1 0-3mol), 92.9%

(Yield based on mole sodium bis-trimethylsilylamide used.)

v) Synthesis of complex 5, (rl-((CH3)JSiN)zC(Ph)Pd(PPh3)(Ph)].

Complex 5 was prepared according to scheme 3.15 illustrated below: -



Si(CH3b
I
N<Q)-<~~
I
Si(CH3b

+Na +
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¥
Ph3P-~d-PPh3

CI

- PPH3~
- NaCI
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Si(CH3b

~ PhIQ\--C~~Pd~"0dr 'N PPh3
I
Si(CH3b

Scheme 3.15 : Preparation of complex 5.

Sodium-N'N'-bis(trimethylsilyl)benzamidinate, 4.842 x 10-4mol (0.139g, 1.8

equiv.) was dissolved in 7.5ml of THF and added dropwise to 2.689 x 10-4mol

(0.200g) of (Ph3PhPd(Ph)(CI) previously dissolved in 7.5ml of anhydrous

THF. The reaction mixture was allowed to stir for 48 hours. At this time, a very

fine precipitate was evident. The reaction mixture was then filtered through a

celite packed filter and reduced to dryness under reduced pressure.

Yield = 68%

(Yield based on mole sodium-N'N' -bis(trimethylsilyl)benzamidinate initially

used.)

3.3.2.2 Preparation of complex 6, rn3.lPhhPINSilCH3hl21PdlPPh3llPhl
i) Synthesis of (CH313SiN=P(Phh-NHSi(CHu~

The synthesis of the ligand used in the preparation of complex 6 was carried

out according to scheme 3.15 which is based on a literature known method for

the synthesis of (C6H5)JSiN=P(C6H5)2NHSi(C6H5)J43,44:-

(CH3bSiCI + NaN3 ~ (CH3bSiN3 + NaCI

/NSiCH3
PtQPH + (CH3hSiN3 ~ PtQP'::::NSiCH3

I
H

Scheme 3.16 : Synthesis of (CH3)JSiN=P(Ph)2-NHSi(CH3)J.
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Synthesis of trimethylsilylazide (CH3hSiN3: -

NaN3, 16.2g, was dissolved in 70ml of anhydrous pyridine and refluxed under

an inert atmosphere for 8 hours. The pyridine was previously prepared by

refluxing it over CaH. The (CH3hSiN3 was then isolated by fractional

distillation.

Synthesis of (CH3hSiN=P(PhJ2-NHSi(CH3h

Ph2PH, 0.582g (3.126 x 10-3mol), and 0.971 g (8.430 x 10-3mol) of (CH3hSiN3

were heated under an inert atmosphere to 110 -115°C for 90 hours in a

Schlenk tube filled with a bubbler system. After the heating period the reaction

mixture was washed with anhydrous ether and crystallized from anhydrous

hexane.

Yield = 69%

(Yield based on mol Ph2PH used.

Literature reported yield = 71%)

ii) Synthesis of complex 6, [(r{(PhJ2P(NSi(CH3hJ2)Pd(PPh3)(Ph)].

The synthesis of complex 6 was carried out according to scheme 3.18: -

/.NSiCH3
Ph:1P'::::: + Me-Li ~

NSiCH3
I
H

'iNSiCH3 + CH
4Ph:1P'NSiCH3

I
Li

NSiCH3'i +Ph:1P'NSiCH3
I
Li

Ph
I

Ph3P-Pd-PPh3
I
CI

Si(CH3l3
I

Ph N Ph
\ I" I

• P (-Pd + LiCI
/ \' ,

Ph N PPh3
I
Si(CH3l3

Scheme 3.18 : Preparation of complex 6.

The deprotonation of the ligand in the first step in scheme 3.18 above was

carried out according to a known literature method4S
. 5.5g (15.2mmol) of

(CH3hSiN=P(Ph)2-NHSi(CH3h was dissolved in 20ml of anhydrous ether.
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15.23mmol of methyl lithium in 9ml of anhydrous ether was added dropwise to

the solution and the reaction mixture was stirred for a further 2 hours. The

solvent was then removed under reduced pressure.

The lithium salt, 0.186g, prepared in scheme 3.18 above was dissolved in

:t7ml anhydrous THF and added dropwise to 0.200g of (Ph3Ph(Ph)PdCI

dissolved in :t7ml anhydrous THF. The reaction mixture was vigorously stirred

at room temperature for a further 2 days. The reaction mixture was filtered

though an anhydrous celite packed filter and the solvent was removed under

reduced pressure to yield a yellow powder.

Yield = 89%
(Yield based on mole (CH3)JSiN=P(Ph)2-NSi(CH3)JLi initially used.)

3.3.2.3 Preparation of complex 7, [n3-lPhhPSz][Pd/PPh3)(Ph)].

i)Synthesis af diphenyl-dithia-phasphinic acid.

The synthesis of diphenyl-dithio-phosphinic acid used to prepare complex 7

was carried out according to known literature methods and is illustrated

below46.

S
AICI3 I

4C6H6 + P2SS • 2(C6Hsl2P -SH + H2S

Scheme 3.19 : Preparation of diphenyl-dithio-phosphinic acid.

A reaction mixture of 468g (6 mol) of benzene and 189g (0.85mol) phosphor-

(V)-sulphide is heated to 65°C and stirred for 4 hours with the addition of 457g

(3.4 mol) aluminiumchloride over this time period. While the aluminiumchloride

is being added, the temperature of the reaction mixture was brought to 90°C

and maintained at this temperature for a further 10 hours. The reaction

mixture was allowed to cool to room temperature followed by further cooling to

O°C in an ice bath for several hours. The cold solution is extracted with
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benzene. The combined extracts are reduced to dryness under reduced

pressure to yield the product in a high degree of purity.

Dissolving the product in a 10% sodium hydroxide solution, acidifying it and

extracting it with benzene further purified the raw product. The benzene was

removed under reduced pressure and the product was re-crystallized from

isopropanol.

Yield = 51%

(Yield based on mole phosphorus(V)sulphide initially used.)

Literature reported yield = 54%

ii) Synthesis of complex 7, [lr(Ph)2PS21Pd(PPh3)(Ph).

[y\3-(PhhPS2]pd(Ph3)(Ph) was synthesised according to the following reaction

scheme:

fQ,~
clf Na2C03

_.fQ,p
2 P + CO~\S 2 + H2

0

O~a

fQ 'IS
P +

<Q)'~,
~

Ph3P-~d-PPh3

CI

<O(,~ ,PP~
I~d'rpb

Scheme 3.20 : Synthesis of complex 7, [y\3-(PhhPS2]pd(PPh3)(Ph).
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Diphenyl-dithio-phosphinic acid, 0.1212g (4.845 x 10-4 mol), was dissolved in

10ml of methanol and 2ml of THF. 0.025g of sodium carbonate (Na2C03) was

added and the mixture was stirred for one hour. The solution was then

evaporated to dryness to deliver a white salt product that was placed under

high vacuum for several hours to ensure all the water formed was removed.

The sodium salt was dissolved in 7ml of anhydrous THF and added dropwise

to 0.2g (2.689 x 1O-4mol) of (PPh312Pd(Ph)(CI) and stirred vigorously for 36

hours. The reaction mixture developed a yellow colour during this period. The

solution was filtered through an anhydrous ceHte packed sinter glass filter and

evaporated to dryness.

Once the product was confirmed by NMR analysis to be in high yield, the

reaction mixture was further purified by crystallization. Two crystallization

solutions were attempted, namely 1:1 THF pentane and 1:1 benzene pentane

which yielded two different crystal systems with one showing unexpected

solvent effects.

Yield: 58%,

(Yield based on mole (Ph12PS2Hused.)

iii) Molecular structure determination of complex 7.

Suitable crystals for crystal structure determination were obtained by

crystallization of complex 7 from a solution of dichloromethane layered in a

1:1 ratio with pentane as well as from a solution of THF layered in a 1:1 ratio

with pentane. These two crystallization methods delivered two different crystal

systems, one with THF interaction one without any solvent interaction.

An orange crystal of (Ph12PS2Pd(PPh3)(Ph).THF and a colourless crystal of

(Ph12PS2Pd(PPh3)(Ph) were mounted on a glass fiber and transferred to a

Siemens SMART system diffractometer. All data was collected at room

temperature with graphite monochromated Mo-Ka radiation and corrected for

Lorentz and polarization effects. Absorption corrections were applied by the
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empirical method. Unique sets of data with intensities greater than two times

the standard deviation were used to solve the structure by the heavy atom

(Patterson) method. Refinements were done using least squares refinement.

All non-hydrogen atoms were refined anisotropically. For structure solution

and refinement the She1X-97 software package was used47. Structure Figures

were generated using Ortep-3.48

Selected crystallographic bond lengths and angles for both crystals are listed

in tables 3.16 and 3.17 respectively. All other crystallographic information is

available from Dr. C. Esterhuysen Department of Chemistry, Stellenbosch

University, Private Bag X1, 7602 Matieland South Africa.



Structure

Chapter 3

<O(,~ ,PPh3d't-Pb

152

Empirical formula

Formula weight (g.mor1)
Temperature
Radiation wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Reflections for cell parameters
Absorption coefficient
Absorption correction method
F(OOO)
Crystal size
Crystal colour
Diffractometer type
Scan type
Theta range for data collection
Index ranges

Reflections collected 1 unique
Refinement method
Data 1 restraints 1 parameters
Reflections observed [1>2a(I)]
Goodness-of-fit on F2

Final R indices [1>2a(l)]
R indices (all data)
Weighting scheme (calculated)

Maximum shiftlesd
Largest diff. peak and hole

C36H30P2PdS2

695.06
293(2) K
Mo Ku, 0.71073 A
Monoclinic, P 2,/c
a = 12.9199 (6) Au = 90.000

b = 16.2919 (8) A /3 = 103.777(1)0
c = 15.909218) Ay =90.000

3252.4 (3) A
4, 1.419 Mg/m3

16692
0.821 mm>'
Empirical (SADABS)
1416
0.38 x 0.32 x 0.25 mm3

Colourless
Siemens SMART system
Area detector
1.82 to 25.000

-15~h13
-19~k~19
-15~1~18
16692/5664 [R(int) = 0.0539)
Full-matrix least-squares on F2

5664/0/492
4282
1.103
R1 = 0.0463, wR2 = 0.0692
R1 = 0.0742, wR2 = 0.0759
W=1/[a2(F02)=(0.038P)2 + 2.9006P)
where P=(F02+2Fc2)/3
0.052
0.355 and -0.421 eA3

Table 3.22 : Crystal data and structure refinement for complex 7 with no

solvent interaction.
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!Q\ 0
~ ,f3 'pPh3

0
dtPb
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Empirical formula

Formula weight (g.mor1)

Temperature
Radiation wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Reflections for cell parameters
Absorption coefficient
Absorption correction method
F(OOO)
Crystal size
Crystal colour
Diffractometer type
Scan type
Theta range for data collection
Index ranges

Reflections collected 1 unique
Refinement method
Data 1 restraints 1 parameters
Reflections observed [1>2a(I)]
Goodness.of.fit on F2

Final R indices [1>2a(I)]
R indices (all data)
Weighting scheme (calculated)

Maximum shifUesd
Laraest diff. oeak and hole

C36H30P2PdS2.THF

765.15
293(2) K
Mo Ku, 0.71073 A
Triclinic, P 1
a = 10.9884 (6) Au = 88.534(1)°
b = 13.2742 (7) A ~ = 83.825 (1)°
c = 13.4552 (7) Ay =71.356 (1t
1848.74 (17) N
2, 1.375 Mg/m3

9866
0.731 mm-1

Empirical (SADABS)
784
0.35 x 0.35 x 0.25 mm3

Orange
Siemens SMART system
Area detector
1.52 to 25.00°
-13:<;h13
-15:<;k:<;15
-15:<;1:<;12
9866/6239 (R(int) = 0.0532]
Full-matrix least-squares on F2

6239/0/422
5439
1.115
R1 = 0.0731, wR2 = 0.1761
R1 = 0.0851, wR2 = 0.1862
W=1I(a2(Fo2)=(0.0662P)2 + 8.6715P]
where P=(Fo2+2Fc2)/3
0.036
02.904 and -0.606 e.A-3

Table 3.23 : Crystal data and structure refinement for complex 7 with solvent

interaction.



Chapter 3 154

3.4 Cited References.

1 I. Haiduc, D.B. Sowerby, S Lu, Polyhedron, 14, 1995, 3389

21. Haiduc, D.B. Sowerby, Polyhedron, 15, 1995, 2469

3 AS. Marggraff, Miscellanea Berlinensia, 6, 1740, 54

4 H. Hofman, M. Becke-Goehring, Topics in Phosphorus Chemistry, E.J.

Griffith, M. Grayson eds., Interscience Publishers, New York, vol. 8, 1976, 193

5 M.E. Jason, Inorg. Chem., 36, 1997, 2641

6 RW. Murray, Ace. Chem. Res., 13, 1980, 135

7 G.G. Roberts, Adv. Phys., 34, 1985,475

8 S. Cheng, G. Peng, A Clearfield, Ind. Eng. Chem. Prod. Res. Dev., 23,

1984,2

9 a) A Clearfield, New Developments in Ion Exchange Materials, M. Abe, T.

Kataoka, T. Suzuki Eds., Kodansha Ltd., Tokoyo, 1991

b) J.D. Wang, A. Clearfield, G. Peng, Mater. Chem. Phys., 35, 1993,208

10 G. Alberti, M. Casciola, R Palombari, Solid State lonics, 61, 1993, 241

11 a) LA Vermeulen, M.E. Thompson, Nature 358, 1992,656

b) LA Vermeulen, J.L. Snover, L.S. Sapochak, M.E. Thompson, J. Am.

Chem. Soc., 115, 1993, 11767

12 3D Search and Research using the Caimbridge Structural Database.

F.H. Allen, O. Kennard, Chemical Design Automation News, 1993, 8, 31 -37

IsoStar: A Library Of Information about Nonbonded Interaction, I.J. Bruno,

J.C. Cole, J.P.M. Lommerse, RS. Rowland, R Taylor, M. Verdonk, Jouranlof

Computer-Aided Molecular Design, 1997, 11-6, 525-537.

13 Narayan, Sanjay, Jain, K. Vimal, S. Chaudhury, J. Organomet. Chem.,

1997,530(1-2), 101-105.
14 ..
WA Herrman, C. Broner, . Priermeier, K. Ofele, J. Organomet. Chem.,

481, 1994, 97.

15 RO. Sauer, J. Am. Chem. Soc., 66,1944,1707.

16 Brauer, Handbuch der Praparativen Anorganischen Chemie, Bd. I, Ed. R

Steudel, P.w. Schenk, 449.

17 AR Sanger, Inorganic Nuclear Chemistry Letters, 9, 1973, 351.

18 M. Wedler, F. Knosel, M. Noltemeyer, F.T. Edelman, J. Organomet. Chern.

388, 1990,21.



Chapter 3 155

'9 O.J. Scherer, G. Schieder, Che. 8er., 101, 1968,4184.
20 K.L. Paciorek, R H. Kratzer, J. Org. Chem., 31,1966,2426.

21 Houben-Weyl, Methoden Der Organischen Chemie, Vierde Auflage,

Herausgegeben von Eugen Muller, K. Sasse : Phosphinsauren und deren

Derivate, 272.

22 W Kemp, NMR in Chemistry - A multinuclear introduction, 1986, McMillian

Education Ltd., London, 158.

23 K. Vrieze, Dynamic Nuclear Magnetic Spectroscopy, LA Jackman, FA

Cotton, Eds., Academic Press, New York, 1975,441.

24 KG. Orrell, Coord. Chem. Rev., 96,1989,1.

25 RJ. Abraham, J. Fisher, P. Loftus, Introduction to NMR Spectroscopy,

Wiley, New York, 1992, 21.

26 W.H. Meyer, R Brull. H.G. Raubenheimer, C. Thompson, G.J. Kruger, J.

Organomet. Chem., 553, 1998,83

27 W.H. Meyer, R Brull. H.G. Raubenheimer, C. Thompson, G.J. Kruger, J.

Organomet. Chem., 553, 1998,83

28 W.H. Meyer, R Brull, H.G Raubenheimer, C. Thompson, G.J. Kruger, J.

Organomet. Chem." 553, 1998,83.

29 KF. Purcell, J.C. Kotz, Inorg. Chem., 1977, WB. Saunders Company,

London, 697.

30 KF. Purcell, J.C. Kotz, Inorg. Chem., 1977, W.B. Saunders Company,

London, 694.

31 Sheldrick, G.; SHELX-97 Program for Crystal structure Determination and

Refinement; Institut fur Anorganische Chemie der Universitat, Tammanstrasse

4, 0-3400 Gbttingen, Germany.

32 Ortep-3 for windows; L.J. Farrugia; J. Appl. Crystallogr., 1997, 565.

33 Ortep-3 for windows; L.J. Farrugia; J. Appl. Crystallogr., 1997,565.

34 Ortep-3 for windows; L.J. Farrugia; J. Appl. Crystallogr.; 1997, 565.

35 W.E. Van Zyl, Low Nuclearity complexes of Gold, Copper and Iron with

organophosphor-1,1-dithiolato type ligands: Synthesis, Structure, Reactivity,

and luminescence Properties, PhD Thesis submition 1989, 36

36 Ortep-3 for windows; L.J. Farrugia; J. Appl. Crystallogr.; 1997, 565.

37 Ortep-3 for windows; L.J. Farrugia; J. Appl. Crystallogr.; 1997, 565.



Chapter 3 156

38 M.F. Lipton, C.M. Soreson, A.C. Sadler, R H Shapiro, J. Organometal.

Chem.,11980, 186, 155.

39 RO. Sauer, J. Am. Chem. Soc., 66,1944,1707.

40 Brauer, Handbuch der Praparativen Anorganischen Chemie, Bd. I, Ed. R

Steudel, P.W Schenk, 449.

41 A.R Sanger, Inorganic Nuclear Chemistry Letters, 9, 1973, 351.

42 M. Wedler, F. Knosel, M. Noltemeyer, F.T. Edelman, J. Organometal.

Chem., 388, 1990, 21.

43 O.J. Scherer, G. Schieder, Che. Ber.,101, 1968,4184.

44 K.L. Paciorek, R. H. Kratzer, J. Org. Chem., 31, 1966,2426.

45 H. Schmidbaur, K. Schwirten, H. Pickel, Chem. Ber., 102,1969,564

46 Houben-Weyl, Methoden Der Organischen Chemie, Vierde Auflage,

Herausgegeben von Eugen MOiler, K. Sasse : Phosphinsauren und deren

Derivate, 272.

47 G.M. Sheldrick, SHELX-97 Program for the determination and refinement of

crystal structures, Institute fOr Anorganische Chemie, Universitat Gottingen,

Tammans t rasse 4, 0-3400, Gottingen, Deutschland, 1997.

46 L.J. Farrugia, ORTEP-3 for Windows, J. Appl. Crystallogr., 1997, 565.



Chapter 4 157

n3-Allyl Palladium(JJl

Complexes Belongl!1IJ to a Family"

of Potential Catalytic Precursors

This chapter is concerned with the preparation and

spectroscopic characterization of several rl-hetero allyl

palladium (II) bimetallic complexes with tellurium(II)

containing ligands. The goal of this study was to

synthesize and characterize these complexes by means of

melting point, IR, MS (where possible), NMR spectroscopy

and X-ray crystal structure determination.

4.1 Introduction.

Although the first examples of metal complexes of selleno- (R2Se) and telluro-

ether (R2Te) were reported around the beginning of the 20th century, but

detailed studies of the their chemistry date only from the late 1970's. The

neglect of the study of these complexes stemmed from a variety of causes.

The reasons included the wide held view that seleno- (R2Se) and telluro-

ethers were weak donors with poor coordination chemistry except to soft

(class B) metals and, even in these cases, they were believed to be little

different from their thioether analogues. Being largely commercially

unavailable, a reputation for being toxic and extremely malodorous

compounds along with the apparent lack of applications, account for the very

limited interest and late development of research into tellurium chemistry in

general.

There has however recently been a growth in the interest of tellurium

chemistry that can be attributed to a number of factors. One being the fact that

tellurium has isotopes of half-integral spin with a reasonably high natural

abundance. Coupled with modern multinuclear FT NMR instrumentation, this
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provides a sensitive spectroscopic probe. In contrast, sulphur has only an

insensitive quadrupolar nucleus in 33S(1=3/2 0.76%, Rp = 1.71 x 10-5).

Practical applications of metal telluroether complexes (or of mixtures of metal

halides or alkyls and RzTe) include various types of chemical vapour

deposition processes for thin-film fabrication of new electronic materials such

as group II-VI semiconductors.

Although several complexes of RzTe ligands are reported in the older

literature, 1 reported data were often limited to a single melting point. Only in

the last 20 years has a reasonable body of spectroscopic data been collected.

However, the available data are still much more limited and fragmented than

that of other group 15 or 16 donor ligands. Structural data with less than 15

structures were reported at the time one of the latest reviews on tellurium

chemistry appeared2

A short overview of recent palladium-tellurium chemistry.

This section was included to give a brief overview of the tellurium chemistry in

general so as to illustrate to the reader the bigger picture of tellurium

chemistry in general along with its associated limitations and difficulties. It is

hope that by doing this it will be possible for the reader to see how the ligands

and complexes synthesised in this chapter fit into the greater scheme of

tellurium-palladium chemistry.

Tellurium's interaction with palladium is very often reported along with that of

tellurium-platinum complexes. Paliadium(II) and platinum(II) telluroether

complexes were amongst the earliest examples reported. A recent re-

examination of the [MLzXz] (M = Pd or Pt; L = TeMez, TePhz, TeMePh; X = CI,

Sr or I) by 1Z5Te and 195ptspectroscopy showed that in CHzClz solution both

the cis and trans isomers were present for all complexes except for the

[Pd(TePhz)zXz]. The structure of trans-[Pt(TeMePh)1z1 has been determined.3

Complexes of this unsymmetrical telluroether can exist in RRiSS or RS/SR

enantiomeric forms, which interconvert by pyramidal inversion at the tellurium

center. In the crystal studied the RRISS form was present.
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Ditelluroethers have recently been prepared and only a limited amount of their

chemistry has been explored. The largest number of complexes using these

types of ligands have been for palladium and platinum as central metals. The

first examples were the yellow or orange [M(RTe(CH2hTeR)X21 (R = Me, Ph;

X = CI, Br, I) complexes. Comparison of the 125Te NMR chemical shifts

(Ocomplex - Ofree ligand) in the complexes of the five and six membered chelate ring

complexes, reveal large high-frequency shifts in the former which are

characteristic of this ring size.

Palladium(lI) and platinum(ll) complexes [M(L-L)X2] (X = CI, Br) have been

prepared with long chain telluroethers (P-EtOC6H4)Te(CH2)nTe(p-EtOC6H4)

(n=6-10). The complexes with n = 6 are insoluble in common solvents and are

probably ligand bridged polymers. The other complexes appear to be a

mixture of isomers, although the systems are not und.erstood in detail4

A considerable number of complexes of telluroether-type ligands have been

reported, mostly with paliadium(II), platinum(lI) and mercury(II). In view of the

often-complicated coordination chemistry of hybrid ligands, it is unfortunate

that, with three exceptions, the structures are based on spectroscopic rather

than crystallographic data.

The reactions of the sodium salts of 2-R-telluroethanols (R = 4-MeOC6H4 or 4-

EtOC6H4) with paliadium(II), platinum(ll) or mercury(ll) give complexes

[{M(RTeCH2CH20)Clhl which are formulated as halide bridged dimers on the

bases of IR, 1H and 13CNMR dataS Halide-bridged dimeric complexes also

appear to be formed by the (2-hydroxy-5-methylphenyl)aryltellurides (aryl = 4-

MeOC6H4, 4-EtOC6H4 or Ph) with paliadium(II), platinum(lI) or mercury(lI)

chlorides, with the ligands acting as chelating mono-anions, via the

deprotonated phenol function and the tellurium.6 Complexes of telluroacetic

acid, RTeCH2C02H (R = Ph, 4-MeOC6H4, 4-EtOC6Hd, and tellurobenzoic

acids [o-(4-EtOC6H4Te)C6H4C02H]8 have been described. The complexes of
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RTeCH2CH2SMe (R = 4-MeOCsH4, 4-EtOCsH4) of type [M(L-L)Chl (M = Pd,

Pt) are square planar with TeSCh donor sets9

A variety of tellurium-nitrogen donor ligands have been studied. The

structures of the telluroethylamine complexes were suggested to involve

coordination via both nitrogen and telluriumw In palladium(lI) and platinum(lI)

complexes, the ligands behave as N"Te chelates giving planar [M(N"Te)CI2]

complexes.11 The ligand used in these complexes is illustrated in figure 4.1

below.

~NMe2

~Me Te

(R = Me, Et)

OR

Figure 4.1 : An example of an N"Te chelate ligand.

Although not directly applicable to the work covered in this project some

interesting observations have been reported for the potentially tridentate

ligand illustrated in Figure 4.2 below. The characteristics observed for

complexes with this ligand are worth noting here as they illustrate the dynamic

and often unexpected behavior of tellurium ligands in both the solid and liquid

phase.

Hr~lCTe
Teo

R'O .b (R' = Me, Et):::"" OR'

Figure 4.2 : An example of a tridentate ligand containing tellurium(lI)
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The paliadium(II) and platinum(II) complexes [M(Te"N"Te)Cbl are monomeric

and non-electrolytes in chloroform, but exhibit varying conductivity in more

polar solvents.12 The structures are suggested to be five coordinate with

Te2NCI2 donor sets. Since neither tellurium nor nitrogen are known to favour

five-coordination for these two metal centers, an alternative possibility is that

they are planar (TeNCI2), with fast exchange between free and bound

tellurium groups in solution, coupled with some ionisation (and partial

formation of a Te2NCI donor set) in polar solvents. An X-ray study coupled

with 125Teand 195ptNMR studies in solution could provide some interesting

results.

Crystal structure studies of tellurium complexes.

When the complex chemistry of tellurium is reviewed, the lack or scarcity of

solved X-ray crystal structures is a prominent feature of note. Based on a

structural search of the Cambridge Crystallographic Database,13 there are

twenty known structures containing palladium-tellurium bonds of which only

seven contain telluroether moieties as donor atoms. These seven structures

can further be broken down into the following groups: -

• Three with monodentate ligands

• Three with bidentate ligands

• 1 containing a heteronuclear bidentate (Te'N) ligand. See Figure 4.3

below.

Q
I

CI-Pd-CI
I
Teo

Monodenlale lelluroelher
lype ligand.

rl
Ph- Te Te-Ph

\ I

Pd
I \X X

Bidenlale lelluroelher
lype ligand.

<O)-~>x
X

Heleronuclear bidenlale
lelluroelher lype ligand

Figure 4.3 : Examples of known telluroether structures.14,15,16
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The other four known bidentate crystal structures of palladium with

heteronuclear bidentate tellurium ligands all have carborane structures.

The limited number of crystal structures that are known for palladium

complexes with tellurium-coordinated ligands, reflect two characteristics of this

field: -

• The relatively late development of this metal complex-type of chemistry.

• The inherent general unstable nature of these types of complexes (both

neutral and cationic.

The crystals of palladium-tellurium complexes that have been obtained by

members of our research group and that could be solved by X-ray diffraction

studies, were only obtained in extremely low yields along with a high degree

of decomposition of the remaining product. The crystals obtained were very

air and moisture sensitive and extremely unstable. This resulted in relatively

poor R factors for the crystal data. Unfortunately all attempts made in the

present work to obtain crystals suitable for crystal structure analysis failed.

NMR spectroscopic summery of Tellurium-125.

Early NMR spectroscopic studies for tellurium-125 relied upon indirect double

resonance methods, but with the advent of modern multinuclear FT

instruments, direct observation is straightforward. Although organotellurium

chemistry is a field of rapidly growing interest with many diverse applications,

the ligand properties of organotellurium species still lags well behind those of

its selenium and sulfur analogues and is mainly restricted to R2Te or RTe-

type species.1?

Coupled to this limited literature reported tellurium NMR spectroscopic data, it

must also be mentioned that the literature data of 13C{'H} chemical shifts of

the tellurium compounds is also rather sparse. However, a reported trend in

uncoordinated tellurium compounds is that the 13C chemical shifts of the

(allyl)Te groups appeared at a lower I) than TMS (-15 to -24ppm). This is a

general effect observed for 13C atoms bonded to heavy atoms, including
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iodine and lead, and is similarly as due to electron spin-orbit interactions in the

heavy atoms. IS

Even with 1H decoupling, Te-C coupling, JTe-C, is reported as being difficult to

measure accurately but is in the region of 30--40 Hz.

The essential properties of 125Te for NMR spectroscopic analysis are as

follows: -

Spin Natural Receptivity' Resonance Referencelll Shift

Abundance Frequencyii Range
y, 6.99 12.5 31.55 Neat Me2Te -7000ppm

Table 4.1 : NMR spectroscopic properties of 125Te.

125Tehas a large chemical shift change for a relatively small change in the

electronic environment of the tellurium nucleus. This illustrates how useful

125Te NMR spectroscopy may be in studying relative changes around a

tellurium atom in organo-tellurium complexes. This has led some research

groups to try to utilize tellurium as a NMR probe in various biological systems

where the tellurium atom would act as a reporter capable of giving information

regarding its surrounding environment.

Some interesting comparisons.

Intensive efforts have been devoted to studying the bonding of tertiary

phosphines to transition metals, and the subtle interplay of steric and

electronic factors have been reviewed on a number of occasions.19

Corresponding factors in neutral group 16 donor ligands have attracted

surprisingly little effort, and most of the limited work done is restricted to

thioethers. In their review published in 1981, Murray and Hartle~

, Relative to l3e
" Approximate resonance frequency when 'H frequency is IOOMHz
'" Due to the appreciable solvent dependence of the chemical shift, care should be taken to refer data to
UC.1! Me,Te
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summarized the relevant data on structures and bonding in metal thio-,

seleno- and telluroether complexes, but the data dealing with heavier donor

ligands was very limited (e.g. only four X-ray structures had been reported).

The past ten years has shown considerable improvement. Nonetheless, it is

true that our understanding of the M-SeR2 and M-TeR2 bonding is still very

limited, and also partly due to the scattered nature of much of the available

data.

Compared with group 15 ligands, steric effects are less important here as a

result of the group 16 donor carrying only two R groups. Although

telluroethers with very bulky R groups have been reported, their coordination

chemistry is largely unexplored. However, a second lone pair may potentially

take part in rc-donation, or may be a source of rc-repulsion. The difficulties in

establishing rc-acceptor behavior, so familiar in tertiary phosphine complexes,

are present in group 16 analogues. The acceptor orbital is usually assumed to

be S(SefTe)nd, but this proposal is open to the same criticism leveled against

it in group 15, namely that the nd orbital energy is too high for these orbitals to

contribute significantly to the bonding.21

Thermodynamic data for a variety of Pd(lI) and Pt(ll) complexes have been

compiled by Mortimer and co-workers.22. 23 Based upon the kinetics and

products of displacements, the effects of various ER2 groups upon the v(CO)

stretching frequencies, and the 13C NMR spectroscopic data, the relative

stability of the chalcogenether complexes are believed to be

TeR2>SeR2>SR2(>OR2), which may be compared with the usual order of

group 15 of PR3>AsR3>SbR3>NR3>BiR3. The results were also interpreted in

terms of the M-ER2 bonding having predominately a character with little or no

rccomponent.

The available X-ray studies of selenoether and telluroether complexes, show

that the coordinated chalcogenoethers have pyramidal geometries, and the

majority have ER2 groups coordinated to a single metal center. A small

number of examples have been reported where the chalcogenoether behaves
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as a four electron-bridging group (,/-), utilising both lone pairs24, 25 The

cautious conclusion has been made that the bond lengths are similar to, or

slightly shorter than, those expected for single bonds on the basis of the

appropriate radii. This is consistent with the ligands behaving as cr donors,

with small or negligible TC components.

Finally, the preparation and spectroscopic characterization of several 113-

heteroallyl paliadium(lI) complexes with ligands of the type R-

TeCH2CH2COOCH3, (R = isopropyl, tert-butyl ,ethyl) using teliurium(lI) and

oxygen as the donor atoms within these neutral ligands in a bidentate fashion

were investigated. Bis-( 113-allyl)-di-Il-iodo-dipalladium( II), [(CH2CHCH2)2Pd212],

was prepared and fully characterised to be used as the starting compound. It

was envisioned that the ligands of the type mentioned above would react with

the starting compound, bis-('l3-allyl)-di-ll-iodo-dipaliadium(II), thereby cleaving

the dimeric palladium starting compound followed by the removable of the

remaining iodide from the palladium and chelate ring closure upon treatment

of the reaction mixture with silver tetrafluoroborate. The prepared complexes

proved to be very unstable. As a result, it was not possible to fully

characterise these prepared complexes to conclusively determine whether the

target complexes had been prepared. All attempts to obtain crystals suitable

for crystal structure determination proved unsuccessful. Table 4.2 below lists

both the free ligands as well as the envisioned target complexes that were to

be prepared and characterized.
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Table 4.2 : Free ligand and corresponding target complexes attempted.

4.2 Results and Discussion

4.2.1 Complex 8, bis-rn3-allvl)-di-y-iodo-dipalladiumnll

aCH2CHCHU2Pd2/iL.

I) Preparation of complex 8, bis-(T/3-allyl)-di-ll-iodo-dipalladium(II)

Bis-(T]3-allyl)-di-~-iodo-dipaliadium(ll) was synthesised according to scheme

4.1 below based on a literature method used for the synthesis of the

analogous methallylpalladium chloride comple0,27. The synthesis outlined in

scheme 4.1 below includes the changes that were made from the published

method to adapt it to allow for the conversion to the allylpalladium iodide

analogue of the chloride complex.

CI

PdCI2 + ~CI • ~pictd-~

1 2Nal, acetone

tP<~Pd-~

Scheme 4.1 : Preparation of complex 8, bis-(113-allyl)-di-~-iodo-dipaliadium(II).
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Paliadium(lI) chloride was reacted with allyl chloride to produce the bis-(1l3-

allyl)-di-~-chloro-dipaliadium(lI) complex which was further reacted with

sodium iodide to deliver complex 8. The bis-(1l3-allyl)-di-~-iodo-dipaliadium(lI)

prepared above was purified and used as the starting complex for all the other

complexes prepared in this chapter. Crystals suitable for crystal structure

determination were obtained by layering a concentrated dichloromethane

solution of bis-(1l3-allyl)-di-~-iodo-dipaliadium(ll) with benzene in a 1:1 ratio.
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II) NMR spectroscopic analysis of complex 8, bis-(n3-allyJ)-di-u-iodo-

dipalladium{l/),

The lH and 13C{1H} data of bis-(1l3-allyl)-di-~-iodo-dipaliadium(lI) are

summarized in Table 4,3 below.

Palladium Starting Complex

a a

b<t-Pd~:~Pd1)b
a a

Instrument.' Varian VXR300

Spectrum: G8018/1006 Spectrum.' G8009/1004
Solvent.' C6D6(TMS as internal Solvent.' CD2CI2 (TMS as internal
standard) standard)

Proton (~values)

a1.anti: 2.43 (d, 2H JH-H 12,3 3,08 (d, 2H, JH-H 11.7Hz)
Hz)'V,V

a2-syn: 3.81 (d, 2H JH-H 6.8 Hz) iv,v 4.37 (d, 2H, JH-H 6.9 Hz) .

b: 4.36 (vt tr, 1H) 5.32 (vt tr, 1H)

Carbon 13 tH} (~values)

a,: 66,8 68,0
ai 66.8 68.0
b: 108,9 110,1

Table 4.3: 1Hand 13C{'H} NMR data for complex 8,

" There is an observed pair of doublets arising from the pairs of 'yn- and anti-hydrogens on the
tenninal carbons. This illustrates that these hydrogens of the n-allyl group are equivalent.
, Coupling constants of the ,IJI"- and anti-hydrogens in the proton spectra are in line with the first NMR
data published for the corresponding palladium chloride complex in 1960'.
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III) Single crystal structure determination of complex 8.

Although the crystal structure of the analogous bis-(T]3-allyl)-di-!l-chloro-

dipaliadium(lI)complex has been solved, the crystal structure of bis-(T]3-allyl)-

di-!l-iodo-dipaliadium(lI) is not known.

Selected crystallographic bond lengths and angles are listed in Table 4.4 and

Table 4.5 respectively. The crystal structure of complex 8 is illustrated in

Figure 4.4 and the unit cell is illustrated in Figure 4.5 below.

Selected Bond angles(O)

C2-Pd-C3A 38.5 (6) I-Pd-I' 92.20 (2)

C2-Pd-C1 66.9 (4) Pd-I-Pd 87.80 (2)

C3A-Pd-C1 34.2 (5) C3A-C1-C3B 48.9 (13)

C2-Pd-C3B 35.0 (6) C3A-C1-Pd 72.8 (8)

C3A-Pd-C3B 29.4 (7) C3B-C1-Pd 71.7 (7)

C1-Pd-C3B 36.9 (6) C3B-C2-C3A 47.2 (12)

C2-Pd-1 166.9 (3) C3B-C2-Pd 72.9 (9)

C3A-Pd-1 129.3 (6) C3A-C2-Pd 70.9 (7)

C1-Pd-1 100.0 (3) C1-C3A-C2 124.0 (19)

C3B-Pd-1 132.9 (6) C1-C3A-Pd 73.0 (8)

C3B-Pd-1 131.3 (6)1 C2-C3A-Pd 70.6 (8)

C2-Pd-1 100.9 (3) C2-C3B-C1 126.0 (17)

C3A-Pd-1 135.1 (5) C2-C3B-Pd 72.1 (8)

C1-Pd-1 167.8 (3) C1-C3B-Pd 71.4 (8)

Table 4.4 : Selected bond lengths (A) with e.s.d.s. in parenthesis for complex

8, bis-( T]3-allyl)-di-!l-iodo-dipalladium( II).
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Selected bond lengths(A).

Pd-C1 2.125 (B) Pd-I 2.64BB (7)

Pd-C2 2.120 (B) Pd-I' 2.6542 (6)

Pd-C3A 2.123 (15) C1-C3A 1.250 (19)

Pd-C3B 2.129 (16) C1-C3B 1.35 (2)

Pd... Pd' 3.70 C2-C3B 1.2B (2)

1...1' 3.90 C2-C3A 1.40 (2)

Table 4.5 : Selected bond angles (A) with e.s.d's. in parenthesis for complex

8, bis-( 113-allyl)-d i-wiodo-d ipalladiu m(II).

Figure 4.4 : An Ortep3 plot of the molecular structure of bis-(113-allyl)-di-J.!-

iodo-dipaliadium(lI) [(CH2CHCH2)2Pdb at 50% ellipsoid probability showing

the numbering scheme used. Hydrogen atoms have been omitted for clarity.
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Figure 4.5 : Ortep32 plot of the unit cell of bis-(113-allyl)-di-Wiodo-

dipalladium(II), [(CH2CHCH2l2Pdb, at 50% ellipsoid probability showing the

molecular packing. Hydrogen atoms have been omitted for clarity.

IV) Discussion of the structure and bonding in complex 8, bis-(n3-ally/J-di-u-

iodo-dipalladium(lil.

>- Previous theories, postulates and background:

In the past considerable speculation was made concerning the nature of

bonding of allylic metal systems. Although the n-allylic-palladium has been

considered to be of a non-classical nature,28 it has also conceptually be

viewed from a valence bond picture as involving the usual overlap of two dsp2

cr-type hybrid orbitals of each palladium with the delocalised n-type orbitals of

the allylic group.
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As can be seen from Figure 4.4 and Figure 4.5, the allyl group is disordered

and occupies two positions at a ration of 1:1. This shows that the difference in

energy between the two isomers is very small. This is expected as the

orientation of the allyl group is known to flip in solution. This disorder accounts

for the high standard deviation coefficient in both the bond angle and bond

length data tables given for the central carbon atom of the allyl group (carbon

3a and 3b). This disorder is visualised by the larger ellipsoids of these groups

as well as the 3a/3b dual representation of the central carbon of the allyl

groups in both the single crystal structure and unit cell diagrams, Figure 4.4

and Figure 4.5 above.

It must also be noted, that apparent configuration change was already

reported as early as 1960 for isostructural molecular compounds.29 This was

reported to occur upon dissolution in non-polar organic solvents which was

indicated by the relatively high observed dipole moments determined in

benzene for [(C3Hsl2Pd2CI2]3o These measurements indicated that, in

solution, [(C3Hsl2Pd2CI2] and presumably isostructural molecular compounds,

undergo considerable deformation from the centrosymmetric configuration in

the solid state.

>- Discussion of the structure of bis-(r/-allyl)-di-p-iodo-dipalladium(II).

The crystallographic data for this complex reveal that the plane of the three

allylic carbons is not perpendicular to the plane of the (Pdl)2 bridge system,

but intersects at a slight dihedral angel with the central carbon atom being

tipped away from the palladium.

The dimeric molecule is linked together by two bridged iodine atoms such that

the palladium and iodine atoms form a planar rhombus. The distance from the

palladium to the two terminal allylic carbons of each dimer is 2.125(8)A and

2.120(8)A, which shows that the palladium, within experimental error, is

symmetrically bonded to the allylic system. This is further shown by the fact

that that the carbon-carbon (C1-C3, C3-C2) bond lengths of the allyl group,

are equivalent, within standard deviation, to each other.
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The 13CNMR data alone for complex 8 also supports the conclusion that the

two terminal allylic carbons are equivalent and that the allylic group is

symmetrically bonded to the palladium in a delocalized fashion (Table 4.3).

The proposed overall molecular configuration based on NMR measurements,

with each palladium symmetrically linked to an allyl group, is in agreement

with the crystallographic data and the resulting structural configuration

deduced therefrom.

The relatively large allylic carbon bond angle, mean 1250 (C1-C3a/b-C2), may

be a stereochemical consequence of its function as a bidentate group. What

would be of interest, but however falls outside the scope of this project, would

be the effect of other transition metals with different valences on the geometry

of the allylic group.

~ Comparison of the crystal structure of complex 8 with the literature known

isomorphous palladium chloride complex.

The Cambridge Crystallographic Database indicates only four articles giving

crystallographic data of molecular compounds isostructural to bis-(113-allyl)-di-

j.!-iodo-dipaliadium(II). All four refer to the corresponding chloride complex31,32,

33,34with [34] not having any 3D coordinates available. The crystallographic

data published in [32] for this isomorphous palladium chloride complex is

listed in Table 4.6 below. A summary of the crystallographic data of complex 8

is listed in Table 4.6 for comparison.
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Crystal system monoclinic

Space group P211n

V/N 475.9

alA 7.46 (2)

b/A 7.43 (2)

cIA 8.61 (2)

R" R2 6.9%,8.8%

Table 4.6 : Crystallographic data of bis-(113-allyl)-di-ll-chloro-dipaliadium(II).

Crystal system monoclinic

Space group P2,ln

V/N 553.22 (4)

alA 9.3945 (6)

b/A 7.47604 (18)

cIA 7.8770 (2)

RI, R2 3.06%, 7.53%

Table 4.7: Crystallographic data of bis-(113-allyl)-di-ll-iodo-dipaliadium(II).

The following tables (Table 4.8 and Table 4.9) list selected bond lengths and

selected bond angles, as published by Oberhansli and Dahl [32], to enable

comparison with the obtained crystallographic structure data of bis-(113-allyl)-

di-ll-iodo-dipaliadium(lI) in Table 4.4 and Table 4.5 above.
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Selected bond lengths (A).

Pd.. Pd' 3.460 (7) Pd-C3 2.02 (37)

Pd-CI 2.403 (9) Pd-C2 2.17 (28)

Pd-CI' 2.398 (8) C1-C3 1.35 (45)

CI. ..CI' 3.328 (15) C3-C2 1.37 (40)

Pd-C1 2.14 (24)

Table 4.8 : Selected bond lengths (A) for of bis-(YJ3-allyl)-di-ll-chloro-

dipaliadium(II), [(CH2CHCH2)2PdCI2].

Selected Bond angelsr)

CI'-Pd-CI 87.8 (3) CI-Pd-C2 103.2 (8)

Pd'-CI-Pd 92.2 (3) Pd-C1-C3 66.4 (19)

CI-Pd-C1 172.4 (7) Pd-C2-C3 64.9 (19)

CI'-Pd-C2 168.7 (8) C1-Pd-C2 69.2 (10)

CI-Pd-C1 . '99.8 (7) C1-C3-C2 128.6 (33)

Table 4.9 : Selected bond angles (0) for of bis-('l3-allyl)-di-wchloro-

dipaliadium(II), [(CH2CHCH2)2PdCI2].

The unit cell of bis-(YJ3-allyl)-di-ll-chloro-dipaliadium(lI) has two dimeric

molecules, with each molecule lying on a crystallographic center of symmetry.

The asymmetric unit of one half molecule hence contained one palladium, one

chlorine and three carbons.

The two structures being compared here, as can be expected, exhibit many

similarities. The crystal systems are the same - that being monoclinic, as well

as the space groups, P21/n.The unit cell dimensions are also similar except

for side A being much longer in the bis-(YJ3-allyl)-di-ll-iodo-dipalladium(lI)

system, 9.3945(6) A. As a result, the unit cell volume of the chloride analogue
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is considerably smaller (475.9 N) than the volume of the unit cell of the iodide

complex (553.22 N)

If the bond lengths of bis-(rrallyl)-di-ll-iodo-dipaliadium(II),

[(CHzCHCHzl2Pdlz], and the analogous chloride complex are compared, the

following trends can be observed.

• The bond lengths of the allyl group in the iodide complex, as expected, are

in the same region as that of the chloride complex. The given standard

deviation coefficient for the chloride analogue is rather large in comparison

with respect to each analogous bond in the corresponding bond data for

the iodide complex as described in Table 4.5.

• The Pd-Pd', I-I' and Pd-I and Pd-I' interactions are considerably longer

than the corresponding interactions in the chloride complex. This is as

expected with the natural increased atomic radius or atomic size of

chlorine versus iodine with chlorine (;on=170and iodine (;on=212!i, 35

• In the structure of the chlorine analogue, the distance from the palladium

to the two terminal carbons of the allyl group was found to be equivalent

within experimental error (mean = 2.15 :t 0.02A). However, the distance t6

the central carbon of the allyl group was found to be considerably shorter

(2.02 :t 0.04A). This is not the case with the iodine analogue, Here the

distance from the palladium to all three carbons of the allyl group was

found to be the same within experimental error (mean = 2.124A).

In summary, the data for this structure is in agreement with the structure given

by Oberhansli and Dahl [32]. However, the structure of the iodide analogue,

as reported here, has been done with its atomic coordinates being more

precisely determined than the structure reported by Oberhansli and Dahl [32]

thereby giving this structure much better overall reliability factors,
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V) Thermogravimetric analysis of complex 8.

Thermal decomposition and the presence of potentially stable intermediates

was investigated for complex 8. In the available literature of similar complexes

and ligands, no indication of thermogravimetric analysis was found.

Figure 4.4 below is a graphic representation of the temperature program used

to follow the thermal decomposition of complex 8. The temperature program

involved a 0 - 700°C temperature range with an initial 5°C min-1 increase to

30°C, maintained at 30°C for 6 minutes, followed by a further 5°C min-1

increase to 700°C.
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Figure 4.4

complex 8.

Thermogravimetric analysis temperature program used for

Figure 4.5 below is a plot of TG and dif.TG versus temperature while figure

4.6 is a plot of OTA and TG versus time for the thermogravimetric

decomposition analysis of complex 8.

VI rion is the atomic radii ofa common ion of the respective element taken from its most typical crystal
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Figure 4.5 : TG and dif.TG versus temperature of the thermogravimetric

decomposition analysis of complex 8.
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Figure 4.6 : OTA and TG versus time of the thermogravimetric decomposition

analysis of complex 8.

lalice. Radii arc given in pm where IOOpm = IA.
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The thermal decomposition of complex 8 is rather simple with only two

separate decomposition steps. The decomposiotn can be visualised as

illustrated Scheme 4.2 below.

<~Pd~:~Pd1) ~~ (CH
2
:HCH

3
),

I,
I ,

Pd Pd
• I .•. 2Pd

Scheme 4.2 : Thermal decomposition of complex 8.

Step one of the decomposition above occurs at -150°C - 225°C and involves

the loss of both allyl groups as well as an iodide leaving a thermally stable

intermediate up to 350°C. The second decomposition stage occurs over the

350°C-465°C temperature range involving the loss of the remaining iodide.

4.3 Conclusion

I) AI/yl group fluctuation mechanism and the influence thereof on NMR

spectral data.

Fluxionality is characteristic of certain classes of organometallic compounds

and is found only sporadically in others. As a result of this f1uxionality, there

are normally several different carbon and hydrogen atoms that in the absence

of this f1uxionality would otherwise be equivalent. This can lead to complex

NMR spectra. Allyl complexes are characteristically fluxional with several

types of mechanisms whereby they can 'f1ip,36.This fluxionality explains the

broadness of the signals of the allyl group in the proton NMR spectra of the

complexes prepared in this chapter and is possibly a strong contributing factor

to the instability of the complexes of this chapter. The applicable mechanisms

with respect to the allyl complexes in this series will be discussed in detail

here.

The first of these fluctuation processes is the so-called T\3_T\1_T\3mechanism

as shown in scheme 4.19 below37. Atomic numbering in the scheme, and in

the discussion that follows, is as per the numbering that is used in the crystal

structure of bis-(T\3-allyl)-di-ll-iodo-dipaliadium(II).
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H3

M/X
Y

1l

H4

H4

etc .....

H4

Scheme 4.19 : 113-111-113Fluctuation mechanism.
H3

In this mechanism, fluctuation is enabled when the 113-coordination is broken

and a a-bond is formed between the palladium and the C1 atoms. As a result,

rotation is possible around the C1-C3 bond. The allyl group thus converts from

a 113-to 11'-bonded group and then back to 113again. This same mechanism is

also possible for the other side of the allyl group allowing for rotation around

the C2-C3 bond. While the ligand is in the 113form, obviously no rotation is

possible around the delocalised n-bond. This rotation route allows the syn-

and anti- protons to exchange positions with each other. In a symmetric

complex, (X = V), both the syn- and anti-protons will be equivalent thereby

giving a single 1H signal for all four protons in the NMR spectrum at the high

temperature limit

The exchange of carbons C1 and C2 in the allyl group is also possible as a

result of this kind of fluctuation because of the nature of how the of 11l-bound

intermediate is formed (scheme 4.19 above). It is not known whether this kind

of fluctuation exists in unsymmetrical 113-allylcompounds, (X * Y).
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If this kind of fluctuation was possible, as with the syn- and anti-protons, there

would be a single carbon-13 signal for the C1 and C2 in the carbon-13 NMR

spectrum at the high temperature limit. The resulting NMR spectra at the high

temperature limit would consist of a single proton signal for all four sin- and

anti-protons and a single carbon-13 signal for the C1 and C2 carbons of the

allyl group.

If the exchange of carbons C1 and C2 was not possible with unsymmetrical

allyl complexes, (X ~ Y, as is with this case), two signals would result in the

proton spectrum each with the same coupling constant. Two signals would

also result in the carbon-13 NMR spectrum, each for C1 and C2 respectively.

This is clearly not the case with the series of synthesised allyl palladium

complexes in this chapter. Here, two separate sets of 1H signals for the syn-

and anti-protons are evident, each with a different coupling constant, e.g. for

complex 8, the syn-signal is at 4.54ppm with coupling constant of JH-H = 6.6

Hz and the anti-signal is at 3.81ppm with a coupling constant JH-H = 12.6Hz.

If the proton and carbon-13 NMR spectra for the series of synthesised

complexes in this chapter are analysed in the light of the previous discussion,

the following trends become evident: -

:» A single carbon-13 signal is evident for C1 and C2 of the allyl group. This

could be explained by the mechanism in scheme 4.19 above and the

resulting exchange by these carbons.

:» Two separate signals are evident in the proton spectrum for the syn- and

anti-protons of the allyl group, each with a different coupling constant.

Therefore, the syn- and anti-protons are not equivalent. Since the two

coupling constants aren't equivalent, it affirms that C1 and C2 are not

exchanging even though there is a single signal for both carbons in the

carbon-13 spectrum.
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There is thus an exchange between the syn- and anti-protons of the allyl

group, but not between the C1 and C2 carbons of the same group. This

exchange is evident by the broad doublets in the proton spectrum. Therefore,

the f1uxionality that is obviously present is not explained by the mechanism

that is illustrated in scheme 4.19.

A second possibility for fluctuation of the 113-allyl group is based on the

possibility of rotation of the 113-allylgroup around the palladium-allyl axis38.

This method is illustrated in scheme 4.20 below.

H4

H5
I

3
1 H2 X

--0- U-H1-M /
2 YH4
H3 H2

X

_M
y
/

H5

Scheme 4.20: Palladium-allyl axis fluctuation mechanism.

In the process described above, the syn-protons (2 and 4) and the anti-

protons (1 and 3) change positions amongst themselves, but not amongst

each other. Syn-protons remain syn-protons and anti-protons remain anti-

protons. The expected signal as a result of such a process would be two

separate signals for the syn- and anti-protons, each with different coupling

constants. This would be the case for both symmetrical (X = Y) and

unsymmetrical (X '" Y) substituted 113-allyl complexes at both the fast and slow

exchange limits.

This mechanism described in scheme 4.20 above explains the NMR spectra

for all the complexes in the series of this chapter. It clearly explains the reason

for the two different signals for the syn- and anti-protons, each with different

distinct coupling constant.
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This mechanism also explains the broad multiplet that is seen for the lone

proton (Hs) on C2 of the allyl group at room temperature. In benzene, at lower

temperatures, the signal for this proton can be described as a doublet of

triplets. This signal is due to the coupling of this proton with two sets of two

different protons (2 syn- and 2 anti).

Although it has nothing directly to do with the f1uxionality of the complex itself,

it must be remembered that there was a definite solvent effect experienced by

all the complexes in the series of this chapter. This can be seen when the

spectra of the complexes when measured in ds-benzene are compared to the

spectra of those complexes when measured in d2-dichloromethane. Generally

a spectrum with much sharper peaks was obtained when measured in d2-

dichloromethane than in ds-benzene.
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4.4 Experimental.

4.4.1 Materials

Solvents:

High spectroscopic grade solvents were used during synthesis and were pre-

dried over 4A molecular sieves for at least 48 hours prior to use.

Diethyl ether, tetrahydrofuran (THF), benzene and hexane were distilled under

nitrogen over sodium with benzophenone as indicator. Dichloromethane was

distilled under nitrogen over calcium hydride. All alcohols were distilled under

nitrogen from magnesium shavings. Alkyl lithium reagents were standardized

by literature methods3B

All deuterated solvents, dichloromethane (d2-CD2CIz) and benzene (cf-C6D6),

that were used in the spectroscopic investigations for the complexes and

ligands in this series were purchased from Aldrich. All deuterated NMR

solvents were stored over 4A molecular sieves under argon in order to keep

them free from moisture and oxygen.

4.4.2 Phvsical Methods.

A. General:

Unless otherwise noted, all reactions and manipulations were carried out

under an inert atmosphere with a positive gas flow of argon or nitrogen using

standard vacuum line and Schlenk techniques. Solutions were stirred

magnetically with Teflon coated stirrer bars. Room temperature refers to about

22-24°C. Clean Glassware was taken from a drying oven at :!:120°C,

assembled while hot and cooled under vacuum.

B. Instrumentation.

>- Melting points.

Melting points were determined on a standard BClchi 535 apparatus and are

uncorrected.



Chapter 4 186

~ Nuclear Magnetic Resonance Spectroscopy

lH, 13C{'H}, 31p{'H}, '25Te{H} NMR data were recorded on a Varian VXR 300

FT spectrometer. NMR data are expressed as parts per million (ppm)

downfield from internal (TMS) or external standard used. The respective

nuclei were recorded under the following parameters: -

Nucleus Frequencv Standard
'H 300 MHz (CH3)4Si as internal standard
13C{'H} 75 MHz (CH3)4Si as internal standard
APT {'H} 75 MHz (CH3)4Si as internal standard
31p(1Hl 121 MHz 85% H3P04 as external standard

Table 4.27 : NMR parameters

~ X-ray crystallography.

Crystals that were suitable for use in diffraction intensity measurements at

room temperature were mounted on a glass fiber using fast adhesive. Crystal

structure data collection and correction procedures were carried out on a

Phillips PW1100 diffractometer by Prof. GJ. Kruger of the department of

Chemistry and Biochemistry, Rand Afrikaans University, Johannesburg, South

Africa. All systematic absences were consistent with the space groups

assigned in each case. The positions of the hydrogens were calculated by

assuming idealized geometries.

C. General preparation of starting materials and ligands:

Several of the starting materials and the ligands were synthesized directly

from literature and have been referenced accordingly. However, almost all of

the literature methods used have been modified to varying degrees since they

refer to similar, but somewhat different products. For this reason, detailed

preparative methods are given for all the ligands and starting materials used

in this chapter.

D. General Preparation of Complexes.

For the preparation of the n3-hetero allyl paliadium(II) complexes described in

this chapter, standard Schlenk techniques were employed throughout and all
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manipulations were carried out under an inert atmosphere. All general

reagents, unless otherwise stated, were used as received.

4.5.2.1 Preparation of complex 8, bis-(n3-ally/}-di-u-iodo-dipalladiumOlJ

{(CH2CHCHzl2Pd2/d:.

The synthesis of bis-(113-allyl)-di-~-iodo-dipaliadium(ll) was based on a

literature method used for the synthesis of the analogous methallylpalladium

chloride complex.40,41 The synthesis is outlined in Scheme 4.21 below and

includes the changes that were made from the published method to adapt it to

allow for the conversion to the allyl palladium iodide analogue of the chloride

complex.

CI
PdCI2 + ./VCI • to.~:Pd-~

, ,

!2Nal, acetone
tP(~Pd-~

Scheme 4.21

dipaliadium(II).

Preparation of complex 8, bis-(113-allyl)-di-~-iodo-

2.256 X 10-2 mol of palladium chloride and 4.517 x 10-2 mol of sodium chloride

was dissolved in 8 ml distilled water and stirred for 30 minutes. - 50ml of

methanol was added to dissolve the suspension and delivered a deep red

solution. The solution was stirred for a further 10 minutes.

5.6ml of allyl chloride was added dropwise, followed by the addition of a

further 30ml of methanol. CO was allowed to bubble slowly though the
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solution. This delivered a precipitate that dissolved when the CO flow was

increased along with vigorous stirring.

120ml of distilled water was added and the solution was filtered though a

celite packed sinter glass filter. The filtrate was extracted with 5 x 50ml

portions of dichloromethane. The combined extracts were dried over

anhydrous sodium sulfate and filtered. The dichloromethane was removed

under reduced pressure. The product was further dried under high vacuum for

1 hour.

The yellow bis-(113-allyl)-di-).l-chloro-dipaliadium(ll) product was dissolved in

80ml acetone aided by slight heating. While the stirring was continued, 32ml

of a saturated sodium iodide solution was added. The solution changes from a

yellow to a deep red colour and vigorous stirring was continued for 30

minutes. The acetone was almost totally removed under reduced pressure

causing the product to 'fallout' of solution.

The product was re-dissolved in 20m I of distilled water and 80ml of

dichloromethane. The solution was extracted with 6 x 20m I portions of

dichloromethane. The combined extracts were dried over sodium sulphate,

filtered and the solvent removed under reduced pressure. The yellow-brown

product was further dried under high vacuum for 1 - 2 hours to yield the

desired product bis-( 113-allyl)-di-).l-iodo-dipaliadium(II).

Crystals suitable for X-ray structure determination were obtained by layering a

concentrated anhydrous dichloromethane solution of bis-(113-allyl)-di-).l-chloro-

dipaliadium(lI) with anhydrous benzene in a 1:1 ratio.
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