
Complexity theory as a model for the
delivery of high value IT solutions

Baden Wehmeyer

Thesis presented in partial fulfilment of the requirements for the degree of

Master of Philosophy
(Information and Knowledge Management)

STELLENBOSCH UNIVERSITY

SUPERVISOR: Mr D F Botha

March 2007

 ii

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my

own original work and that I have not previously in its entirety or in part

submitted it at any university for a degree.

Signed: ……………………………… Dated: ……………………………..

 iii

Abstract

Many variations of Systems Development Life Cycle models have evolved over the last fifty

years of systems engineering and software science, yet not enough knowledge is available to

better understand these as Complex Adaptive Systems by studying chaos and complexity

theories. The primary application domain of the thesis is focused on the development of

electronic hardware and software products.

There is a great need for innovation to reach all corners of the development ecosystem;

however a large cognitive distance exists between the concept of systematic product

development and that of value creation. Instruments are needed to aid process agility, for

defusing imminent problems as they mount, and for making effective decisions to sustain

maximum productivity. Many of these objectives are neglected in systems development

practices. As with so many management fads, it appears that no single one of these models

lived up to all of the expectations and in many cases ended up being recipes for disaster.

The statistics available on failed projects are concerning but has not stopped the scientific and

engineering communities from trying over, and over again, to make progress. The goal of the

thesis is therefore to identify the most viable model that supports the sustainability of systems

development team performance. The research draws insights from extant literature, by

applying a knowledge management theory based analysis on the various models with specific

attention given to complexity theory.

The dominant metric discovered is to measure the Value Velocity of a Systems Development

Team. This metric is determined by two independent variables, being Value Created and

Delivery Delay.

Complex Adaptive Systems simply requires a guiding vision and a carefully selected set of

generative rules for increasing and sustaining the Value Velocity.

 iv

Opsomming

Menige variasies van stelselsontwikkelingsmodelle het ontwikkel oor die afgelope vyftig jaar

in stelselsingenieurswese en sagtewarewetenskap, en steeds is daar nie genoegsame kennis

beskikbaar om beter begrip te kry oor hoe hierdie stelsels as Komplekse Aanpassende

Sisteme bestudeer kan word nie, ten einde die bestuur daarvan te verbeter. Die primêre

toepassingsgebied in die tesis is gespits op die ontwikkeling van rekenaarhardeware en -

sagteware.

Die behoefte vir innovasie moet al die fasette van die ontwikkelingsekosisteem bereik. Die

bewusheidsgaping tussen sistemiese produkontwikkeling en waardeskepping, is te wyd.

Instumentasie word benodig om te help met ratsheid in prosesuitvoering, om dreigende

probleme te ontlont, en effektief besluitneming toe te pas, en sodoende produktiwiteit op ‘n

maksimum vlak te hou. Hierdie doelwitte word tot ’n meerdere mate in die huidige praktyk

verontagsaam. Net soos somige bestuursadvies oneffektief is, blyk dit dat daar nog steeds

geen stelselsmodelle is wat alle verwagtinge bevredig nie. In baie gevalle eindig die

toepassing daarvan in waan en mislukking.

Die statistiek beskikbaar op mislukte projekte is onrusbarend, tog het dit nie vooruitgang

gekelder nie, en die behoefte na verbetering bestaan steeds. Die doelwit van die tesis is dus

om die mees lewensvatbare model wat die voortbestaan van stelselsontwikkelingsgroepe sal

kan handhaaf, uit te sonder. Die navorsing neem insigte uit hedendagse literatuur en is

gebasseer op ’n analiese van verskeide kennisbestuursteorieё teenoor die bestaande

stelselsontwikkelingsmodelle. Die fokus is meer spesifiek toegespits op kompleksiteitsteorie.

Die hoofmaatstaaf is om die Waardesnelheid van ’n stelselsontwikkelingspan te bepaal.

Hierdie maatstaaf word gepyl deur twee onafhanklike veranderlikes, naamlik die Waarde

Geskep en die Afleweringsvertraging.

Ten slotte, vereis Kompleks Aanpassende Sisteme slegs die aanwesigheid van 'n leidende

visie tesame met 'n goeddeurdagte stel ontwikkelingsreëls, wat aanleiding sal gee tot die

verhoging en behoud van die Waardesnelheid.

 v

Contents
Chapter 1 Problem description .. 1

1.1 Introduction ... 1
1.2 Research objectives ... 2
1.3 Research methodology .. 3
1.4 Detailed problem description .. 4
1.5 Conclusion... 13

Chapter 2 Overview of SDLC methodologies .. 14
2.1 Introduction ... 14
2.2 Industrial Age .. 15
2.3 Information Age .. 22
2.4 Standards ... 28
2.5 General overview of the software development process... 36
2.6 Revolutionary Era.. 44
2.7 Extreme Programming (XP).. 50
2.8 Scrum... 54
2.9 Socialistic Era.. 62
2.10 Metamodels ... 65
2.11 Adoption and comparison.. 69
2.12 Conclusion... 70

Chapter 3 Proposed theoretical models ... 71
3.1 Introduction ... 71
3.2 Lifecycle models ... 75
3.3 Sensible leadership .. 80
3.4 Sensemaking in Organisations .. 85
3.5 Systems thinking ... 88
3.6 Cybernetics in Organisations... 90
3.7 Complex Adaptive Systems in Organisations ... 92
3.8 Sustaining an Innovative Development Ecosystem .. 103
3.9 Maximising Value Velocity .. 106
3.10 Conclusion... 108

Chapter 4 A case study of CI OmniBridge.. 109
4.1 Introduction ... 109
4.2 Sensemaking with Scrum .. 109
4.3 Quality Management System .. 111
4.4 Complex Adaptive Systems approach... 116
4.5 Survey.. 118
4.6 Values .. 119
4.7 Conclusion... 120

Chapter 5 Conclusion .. 121

 vi

Figures

Figure 1-1: Mathiassen’s reflective systems development research methodology 3
Figure 1-2: Exploring the problem domain by applying inductive analysis 3
Figure 2-1: Cybernetic model of a manager as empirical controller....................................... 16
Figure 2-2: SEI IDEAL Lifecycle Model.. 35
Figure 2-3: Evolutionary Software Lifecycle Model .. 41
Figure 2-4: RUP Hump Chart.. 43
Figure 2-5: XP Planning and Feedback diagram... 51
Figure 2-6: XP Project diagram... 51
Figure 2-7: XP Collective Code Ownership.. 52
Figure 2-8: Scrum Development Process .. 60
Figure 2-9: OPEN Process Framework meta-model (partial) ... 65
Figure 2-10: MSF Life Cycle Model... 67
Figure 2-11: Comparison of methodologies.. 70
Figure 3-1: Four knowledge dimensions... 75
Figure 3-2: Boisot's Agent-in-the-World model ... 77
Figure 3-3: Mathematical and scientific roots of emergence .. 78
Figure 3-4: A value-creating conduit for systems development ... 79
Figure 3-5: Greiner’s model of organizational evolution and revolution................................ 83
Figure 3-6: Cybernetics and emergence .. 90
Figure 3-7: An example of a Cybernetic System .. 91
Figure 3-8: Cynefin sensemaking framework ... 94
Figure 3-9: Boisot’s Evolutionary Production Function ... 97
Figure 3-10: Typical variable control charts ... 98
Figure 3-11: Social Learning Cycles for Waterfall and Agile SDLC models....................... 101
Figure 3-12: SDLC Technology S-Curves .. 107
Figure 4-1: QMS Overview... 112
Figure 4-2: Analysis Phase Flow Diagram.. 113
Figure 4-3: Non-conformance chart .. 115
Figure 4-4: Key Business Process Performance Chart.. 116
Figure 4-5: Project Dashboard... 117

 1

Chapter 1
Problem description

If a man would persist in his folly, he would become wise.

William Blake

The chapter defines the scope of the research and introduces the problems encountered by

systems development teams that are responsible for the reliable delivery of final valuable IT

solutions. The research objectives and methodology is described.

1.1 Introduction
The management of the development life cycle for complicated systems is a complex

endeavour. Some of the attributes that makes it so complex is the unknown requisite variety1

while these systems are still under development. The complexity is exacerbated by

unexpected events in the operational environment, changing expectations of the various

stakeholders as well as unforeseen interventions and factors such as ambiguity, excessive

workload, blockages in information flows, lack of essential innovation and disruptions in the

development ecosystem.2

Many systems development methodologies and models used are often too specific, not

future-proof and not well suited to provide teams with a competitive advantage at the leading

edge of progress. However, if the models are too abstract it renders itself equally useless to

be insightful and practical enough for general adaptation. Metaphors, models, typologies and

taxonomies, all impose certain limitations on the practice of making sense and being wholly

mindful of the problem domain.3

1 Ashby, W.R. 1958. Requisite Variety and Implications for Control of Complex Systems. Cybernetica,

Vol.1:83-99.
2 Heylighen, F. Joslyn, C. 2001. Principia Cybernetica Web. The law of requisite variety for Cybernetic

systems states that the controller must have a sufficiently large variety of actions in order to ensure a
sufficiently small variety of outcomes in the essential variables. The variety of influences a system can
potentially be confronted with is unlimited, and therefore the goal would be to maximise the internal variety
of the variables, so as to be optimally prepared for foreseeable or unforeseeable events.

3 Weick, K.E. 1995. Sensemaking in Organizations. According to Weick the discipline of making sense is one
of placing frames around problem situations, and seeing patterns, in the pursuit of mutual understanding.

 2

1.2 Research objectives
There are many System Development Life Cycle (SDLC) models and methodologies. These

models and methodologies are predominantly focused on process descriptions and

conformance to standards. There is however a great need for innovation to reach all corners

of the development ecosystem and to bridge the chasm that exists between the concept of

systematic product development and that of value creation.

Such a complex phenomenon is possibly best modelled as a black-box, by applying empirical

management style. The approach would however require various instruments for measuring

the performance of these black-box based systems. A management dashboard fitted with

several instruments is required for measuring process agility, for identifying and defusing

imminent problems as they occur, and for sustain maximum productivity.

The research objective is therefore to identify the most viable model that supports the control

of, and sustainability of, systems development performance. To measure performance would

require a clear definition of what performance is. Performance is a subjective concept that

requires a mutually acceptable definition that is measurable with achievable targets. A

proposed measure for performance is Value Velocity measured by the Value Created over a

Delivery Delay.

The hypothesis of the thesis is that satisfactory system development productivity is

achievable by modelling the system development team, the primary unit of production,

after that of Complex Adaptive Systems.

 3

1.3 Research methodology
The reflective research methodology applied is similar to that used by Cockburn as depicted

in Figure 1-1. A broad literature survey directed by a search for the required attributes of

extant SDLC methodologies and management theories that support the research hypothesis.

Figure 1-1: Mathiassen’s reflective systems development research methodology4

Figure 1-2 depicts the inductive approach to searching for a model that fits the problem

domain. The predicated solution will search the problem domain at various a priori levels

such as a) known formal models, b) intersections, and c) unexplored models.

Figure 1-2: Exploring the problem domain by applying inductive analysis

Lambda is used here in the same sense as used in lambda calculus as is commonly found in

mathematics and computer science language representations as a placeholder that

symbolically represents an extant and future concept. Robust solutions should be designed

with plausible future scenarios in mind. The aim is therefore to define a solution that can be

represented as a universal template that is validated through induction.5

4 Cockburn, Alastair. 2003. People and Methodologies in Software Development.
5 Inductive analysis is a qualitative approach to problem solving that places a specimen with the frame or

context of the proposed theoretical model.

 4

1.4 Detailed problem description
In his well-known paper No Silver Bullet,6 Frederick Brooks addresses the problem of missed

schedules, blown budgets, and flawed products. Brooks reasons that essential complexity

needs to be mastered to avoid conceptual errors as early as possible and that accidental

complexity is under control. Brooks warns that the extreme costs of not affording enough

time to designing architecture before construction commences.

Many past innovations in the software sciences such as structured programming languages,

object-oriented programming, artificial intelligence architectures, graphical code generation

tools and automatic programming created a certain amount of optimism amongst researchers

that they are getting close to the discovery of the ultimate solution. There however still exist

many desperate quests for the silver bullet that would ensure higher quality products at lower

cost and with much faster response to market demands.

Since Brooks let the proverbial cat out of the bag, a lot of research had been done by various

organisations such as IBM7, the Software Engineering Institute (SEI)8 and the Standish

Group. The SEI focused on analysing and grading larger government based projects while

the Standish Group focused more on commercial smaller scale projects. The results from the

Chaos Report9 were sampled on projects limited to six months and six people. These survey

results show a steady increase in the success rate of IT projects. However over the last

decade the measure for success has also changed from delivery focused to customer

satisfaction focused. The same changes are evident in the changes to the various

internationally accepted quality standards such as from International Organization for

Standardization (ISO). The Standish Group determined what factors would influence a

project to succeed and published their findings in the Chaos Report. The results indicate the

following factors in descending order of priority:

• Executive support;

• User involvement;

• Experienced project managers;

• Clear business objectives;

6 Brooks, Frederick P. 1987. No Silver Bullet. Essence and Accidents of Software Engineering.
7 International Business Machines (IBM).
8 The US Department of Defence (DoD) initiated the establishment of the Software Engineering Institute (SEI)

that is part of Carnegie Mellon University (CMU).
9 Standish Group. 2001. The Chaos Report. The Standish Group International.

 5

• Minimised scope;

• Standard software infrastructures;

• Firm basic requirements;

• Formal methodology; and

• Reliable estimates.

These results indicate that the more difficult items such as reliable estimates and formal

methodologies therefore appear to be not that important. Arguably it is not difficult to get

users involved and it is not difficult to provide executive support that would positively

influence the progress on projects. These factors are however not completely independent

and normalised. They have an inherent precedence.

Kast and Rosenzweig10 emphasised the need to study organisations and management, as a

pervasive part of existence that directly and indirectly affects society as a whole. They imply

that increased knowledge will somehow lead to better organisation and management. The

argument is valid, but the challenge is how to influence and measure performance. Kast and

Rosenzweig proposed the following equation:

 ()motivationabilityfePerformanc ,= 1-1

Inducing the findings of the Chaos Report into this equation, results in the profound

implication that there is a need to augment the abilities and motivation of management and

customers. That does not make sense since most of the current emphasis is internally focused

on improving the development processes and teams. The problem is assumed to be isolated

to the systems development departments while management and the customers have suffered

as the victims for many decades. In the Chaos Report this phenomena appears to be vu ja

de11.

Ability is comprised of human and technical capabilities that provide an indication of the

range of possible performance. Just how much of that latent capability is realised depends on

the degree to which individuals and groups are motivated to perform. For organisations,

performance results from the aggregation of individual and group efforts to achieve relevant

goals.

10 Kast, F. E., Rosenzweig, J. E. 1970. Organization and Management – A systems approach.
11 Karl Weick coined the phrase, vu da je, to describe the practice of seeing old things in new ways. Sutton, R. I.

2002. Weird Ideas That Work – 11½ practices for promoting, managing and sustaining innovation:11.

 6

Measuring and evaluating results is important in determining performance. Output per work-

hour, market-share and net profits are relatively straightforward indicators. However, most

organisations have multiple goals, some of which are not easily measured. Examples might

be customer satisfaction or sustainability. It is important to recognise multiple goals and

evaluate organisational performance on a variety of relevant dimensions. It is particularly

important to identify substantive functions that spell success or failure in order to give

priority attention to them.

Pfeffer and Sutton12 question why so many managers say so many smart things about how to

achieve performance, and work so hard, yet are trapped in firms that do so many things they

know will undermine performance.

Philippe Kruchten13 decrees that a grander vision for software design is required. The

process of designing software must be made to fit better with the surrounding engineering

processes. There is still a wide gap between users’ needs and the way users express

requirements on one hand, and the way developers design on the other. The various Standish

Group reports make it clear that the primary cause of failure is the inability to deal correctly

with users and their changing needs. Developers still struggle to analyse designs, to

demonstrate that they are correct and that they fulfil the requirements. Furthermore, there is

still a gap between the designs and the code that the programmer fills manually. All these

gaps have become narrower in the last 15 years, but they are still major obstacles to

consistently producing great products.

Kruchten maintains that design is and should be practiced much broader that what is

currently believed. Developers are continuously making design change decisions about the

system under construction. They design when they elicit and capture requirements, when

they program and test, and finally they design for deployment and disposal. He postulates

that software development in a more general framework of engineering design. Software

design is therefore a more integrated and more encompassing process. Kruchten concludes

that although the silver bullet is still elusive, clear progress in being made. It is establishing

foundations with current knowledge and exploring new avenues. The other engineering

disciplines have not found a silver bullet, either.

12 Jeffrey Pfeffer and Robert I. Sutton, 2000. The Knowing-Doing Gap.
13 Kruchten, P. 2005. Software Design in a Postmodern Era.

 7

1.4.1 The Software Developer’s Dilemma
Software development is possibly the most challenging and ambitious career of any.

Application domains are limitless, including such diverse fields as arts, biology, economics,

management, and weather forecasting. To this end it has been postulated that all science is

computer science.14 The more accurate disclosure here is that the computer is merely a tool

for general science.15 Each one of these various sciences is in itself complex and its

practitioners look towards information science to make it simpler to comprehend and more

productive.

To provide information processing solutions, software scientists need to become familiar

with these diverse domain areas. They need to acquire essential knowledge without

necessarily receiving formal education in any particular field of application. The domain

experts that commission these projects define the problem and expect the software developers

to find the ultimate solution. Software developers are in general very smart people, but they

are not omniscient. It is plausible that due to the augmentation qualities of computer

technologies these scientists have the potential to solve problems that are not solvable

without the use of software. In this sense computer science has an autopoietic quality that

encourages impossible thinking16 and hence the software developer becomes the epitome of

the knowledge worker or symbolic analyst. Software developers are codifying an artificial

virtual representation of the universe as scientists decode the universe.17 The need for

software developers will never seize because as Bill Bryson declares in A Short History of

Nearly Everything,18 now that the human species know what they know they have come to

realise that they still do not know that much now and the more they scratch the more they

discover and the more there is to scratch. It is an eternal golden braid.19 Glass and Vessey20

argues however that most computing researchers are masters of only one or a few domains

and therefore do not have the breadth of experience necessary to know what is needed by the

many varied domains whose problems are now being addressed. This dilemma forces

14 Johnson, George. 2001. All Science is Computer Science.
15 There is no guarantee that the silicon semiconductor based computers as it is known today will remain the

ultimate information processing tool.
16 Wind, Crook & Gunther. 2005. The Power of Impossible Thinking.
17 Castells, M. 2000. The Rise of the Network Society. Creating a real virtuality.
18 Bryson, B. 2003. A Short History of Nearly Everything.
19 Hofstadter, D.R. 1979. Godel, Escher, Bach – An eternal golden braid. Hofstadter’s dialogues portray this

incumbent complexity very well.
20 Glass, R.L., Vessey, I. 1998. Focusing on the Application Domain – Everyone Agrees It’s Vital, But Who’s

Doing Anything About It? IEEE Computer.

 8

software developers to become desperately dependant on external help from users, domain

experts, business analysts and management consultants. They need to have the aptitude to

partner with and seamlessly communicate with all the stakeholders.

1.4.2 Facts and fallacies
Software practitioners are asking software researchers for better advice on how and when to

use certain methodologies. The broader programming community are tired of hearing: "Use

the latest methodology out of the research labs."21 The promise of the one-size-fits-all22

universal solution that solves all of then problems is simply unattainable.23

Traditional development methodologies are treated primarily as a necessary fiction to present

an image of control. Alternative approaches that recognise the particular character of work

are required.24 Robert Glass25 warns that prescriptive information systems methodologies

are unlikely to cope and one should use approaches tailored to each project. Universal,

project-independent methodologies are characterised as weak in the field of problem solving,

while solution approaches focused on the problem at hand are considered strong. Glass

mocks that there seems to be believed that a universal elixir of some kind is right around the

corner, or even presently at hand, or in the latest concept to emerge from research.

Coincidently, at the time of Glass’ article in 2004, Coburn26 and Larman27 have already

completed their work to define the realm of applicability of the available methodologies,

albeit neither considered the entire spectrum and predominantly focus on the Agile domain.

Glass however acknowledges that some of the work done on Agile Development

Methodologies and Aspect Oriented Programming is moving in the right direction. It is not

enough to propose a new methodology without discussing when its use might be appropriate,

and until that happens, it will still be a discipline pretending to cover more than it really does.

Glass declared the following generally accepted facts and fallacies of software development.

Glass’ facts:

• The most important factor in software development is the quality of the programmers.

21 Glass, Robert L. 2004. Matching Methodology to Problem Domain.
22 Bereit, Mark. 2006. Escape the software development paradigm trap.
23 Cooper, M. 2001. Everyone is wrong.
24 Nandhakumar, J., Avison, D.E. 1999. The fiction of methodological development. A held study of

information systems development.
25 Glass, Robert L. 2004. Matching Methodology to Problem Domain.
26 Cockburn, A. 2003. People and Methodologies in Software Development.
27 Larman, C. 2004. Agile & Iterative Development – A Manager’s Guide.

 9

• The best programmers are up to 28 times better than the worst.

• Adding people to a late project makes it later.

• One of the most common causes of runaway projects is poor estimation.

• The other most common cause of runaway projects is unstable requirements.

• Requirements errors are the most expensive to fix during production.

• Maintenance typically consumes 40 to 80 percent of software costs.

• Enhancements represent roughly 60 percent of maintenance costs.

Glass’ fallacies:

• Software needs more methodologies.

• You teach people how to program by showing them how to write programs.

Even though an increasing number of large projects have been successful compared to

similar projects done in the 1980s, very large projects above 10,000 function points in size,

missed delivery dates, cost overruns, and outright terminations remain distressingly high

even in 2006. The industry is improving, but much more improvement is needed.28

1.4.3 Project delivery performance problems
Cockburn29 spent more than a decade studying what the secrets are to successful software

development in the real software business world. He did so by interviewing project teams,

participating directly on projects, and reviewing proposals and case studies. Cockburn’s

research addressed three questions relating to people and software development

methodologies.

• Do developers need yet another software development methodology, or can they

expect a convergence and reduction at some point in time?

• If convergence, what must be the characteristics of the converged methodology? If no

convergence, how can project teams deal with the growing number of methodologies?

• How does the methodology relate to the people on the project?

28 Jones, C. 2006. Social and Technical Reasons for Software Project Failures.
29 Cockburn, Alastair. 2003. People and Methodologies in Software Development.

 10

Perkins30 asserts that the cause of project failures is knowledge. Either managers do not have

the necessary knowledge, or they do not properly apply the knowledge they have. If project

performance is not as desired, even after consistent application of the project management

principle, the underlying principle should be analysed to determine the reason for the

continual shortfall. Perhaps the principle is not as sound as some would have you believe.

Evans31 persists that no matter all the early warning and desperate cries, many companies are

still facing some serious project delivery performance problems. These are the standing

problems and risks that projects are still facing today.

1.4.3.1 Poor requirements capture
Capturing requirements is arguably the most critical aspect of any project. Errors in the

requirements definitions are devastating and are often exacerbated by the following realities:

• Individual business stakeholders are anxious to incorporate all of their known

requirements into the first or next release.

• Analysts generate hundreds of detailed requirements that often bear little relationship

to the business problems that needs to be addressed.

• Most if not all requirements are given a high priority.

• The requirements themselves, at best, represent today’s view, which will certainly

have changed by the time the requirements are actually implemented.

1.4.3.2 Disconnected design
Given the sheer number of requirements, the design community finds itself spending most of

its time trying to figure out what they mean. Meanwhile:

• The requirements analysts move on to other projects, taking with them important tacit

knowledge.

• Some stakeholders become concerned that their requirements are not being

adequately addressed, and therefore refuse to sign off the designs.

• Other stakeholders unearth more requirements or raise change requests, diverting

scarce design expertise onto impact analyses.

30 Perkins, T.K. 2006. Knowledge:The Core Problem of Project Failure.
31 Evans, Ian. 2006. Agile Delivery at British Telecom:19.

 11

1.4.3.3 Development squeeze
With the design stage having slipped, development teams find themselves under intense

pressure to deliver components into the integration environment by the originally agreed

date. In fact, they often take the decision, reluctantly, to start development against an

unstable design, rather than do nothing or divert resources to other programmes. Inevitably,

system testing is cut short so that original timescales are met and the programme is seen to be

on target.

1.4.3.4 The integration headache
The integration team usually has a predefined period during which it needs to integrate what

it expects to be fully functional and stable code base. However, due to the instability of the

code, and the lack of predefined regression tests, effort is instead diverted to trying to resolve

elementary bugs in the delivered code, liaising with a development team that is now engaged

in the next major release. Actual integration therefore runs into months, creating a knock-on

effect on other programmes requiring the services of the integration team, not to mention

frustrations within the business community who had been busy preparing themselves for an

on-time delivery.

1.4.3.5 The deployment nightmare
The lapsed time since the requirements was defined and the solution needed nominally

extends to anything between 6 and 18 months. Compromises and oversights made during the

requirements and design phases, followed by de-scoping during development have resulted in

a solution that bears little relationship with what was originally envisaged. Besides, the

world has actually moved on in the meantime. The business then finds that the solution is not

fit-for-purpose and refuses to adopt it. Worse, they adopt it and soon find that it is slow,

error-prone and lacks key features, and eventually revert to the old system.

1.4.3.6 Herding cats in a quagmire
Unequivocally, people are the original ingredient necessary for success. However, getting

consensus on critical issues is often a political drama that requires parental perseverance.

Practitioners and their managers are easily trapped in a destructive tornado of despair caused

by autonomic arousal. These complex unexpected events can be fatal if it is not instantly

calmed.

 12

1.4.4 Uncontrolled versus uncontrollable processes
Phillip Su32 has managed developer teams in the Microsoft Windows development group for

five years, and has done some interesting reflection on his experience after a recent switch of

teams. Making the claim that Windows Vista could be the largest concerted software project

in human history, he argues that there is a critical difference between the project being

uncontrollable opposed to simply being uncontrolled. People say that the code is way too

complicated, and that the pace of coding has been tremendously slowed down by overbearing

process. There are cultural barriers hindering truthful disclosure when reporting schedule

slippage. He was interested in the emergent characteristics of failure to deliver. After some

discussion with other leaders that have left the group, he jotted down some points on his

blog:

It's certainly true in some sense that they genuinely want to know [the truth]. But

in a very important other sense, in a sense that you'll come to regret night after

night if you get it wrong, there's really only one answer you can give. After

months of hearing of how a certain influential team was going to cause the

release to slip, I, full of abstract self-righteous misgivings as a stockholder, had at

last the chance to speak with two of the team's key managers, asking them how

they could be so … ignorant as to proper estimation of software schedules. Turns

out they're actually great project managers. They knew months in advance that

the schedule would never work. So they told their VP. And he, possibly

influenced by one too many instances where engineering re-routes power to the

warp core, thus completing the heretofore impossible six-hour task in a mere

three, summarily sent the managers back to "figure out how to make it work."

The managers re-estimated … and still did not have a schedule that fit. The VP

was not pleased. "You're smart people. Find a way!" This went back and forth

for weeks, whereupon the intrepid managers finally understood how to get past

the dilemma. They simply stopped telling the truth. “Sure, everything fits. We

cut and cut, and here we are. You got it, boss." Every once in a while, Truth still

pipes up in meetings. When this happens, more often than not, Truth is simply

bent over an authoritative knee and soundly spanked into silence.

This is a common dilemma highlighting the irony in software development management

practices at large.

32 Su, Phillip. 2006. The World As Best As I Remember It.

 13

1.5 Conclusion
The software development industry remains littered with problems relating to delivering

products late and missing user expectations regarding functional and quality requirements.

Causes are thrown between project managers, analysts, architects, programmers, testers,

customers and executive management. The attention is directed towards the various

stakeholders whilst little emphasis is placed on technology limitations. Hence several

decades of searching for the silver bullet resulted in nothing of significance. What

management technique can be applied to a process that is uncontrollable? Does the answer

lie hidden in management science, social science, pure science, or computer science? How

did the Internet help? Will the next major technological revolution make things better?

 14

Chapter 2
Overview of SDLC methodologies

Traditional scientific method has always been at the very best 20-20 hindsight.

It’s good for seeing where you’ve been.

It’s good for testing the truth of what you think you know,

 but it can’t tell you where you ought to go.

Robert M. Pirsig, 1974

This chapter provides an overview of the SDLC methodology landscape with the aim to

define the reference disciplines and characteristics of a varied set of models and

methodologies. The text therefore serves two primary causes. Firstly, it is a reference

framework for retrospective sensemaking or hindsight. Secondly, it is a departure point for

ongoing and future endeavours in this field of research.

2.1 Introduction
As introduced in the previous chapter, development lifecycles’ started with the origin of life

itself in an autopoietic quest for survival through endless cycles of cause-and-effect. This

quest developed in as far that man started inventing tools to aid in his survival and earned

him the distinction as an intelligent being. However it was not only physical tools. Man also

acquired social tools such as complex biokinetical, audible and visual expressions. These

were the ancient beginnings of complex adaptive organisational, communications, learning

and control systems.33 These ancient tacit characteristics are encoded into physiological and

cultural fabric. Explicit scientific knowledge is relatively young since formally documented

systems development knowledge started in the industrial age.

The term methodology is more commonly used today while SDLC appears to have become an

old-fashioned idea. Literature typically uses one or the other. While the term methodology

could be incorrectly interpreted as too prescriptive, it does however represent a discipline

expressed by a set of principles and strategies for analysis and the methods for teaching the

33 Stacey, R.D. 2001. Complex Responsive Processes in Organizations – Learning and knowledge creation.

 15

discipline itself.34 The use of the term originated in consulting firms and its interpretation

leans towards a holistic and reflective behaviour.35 The phrase Agile Methodology is widely

dispersed in literature. It is however not a specific methodology in its own, but instead

represents an entire family of SDLC methodologies that obey the principles of the Agile

Alliance Manifesto.36

Most of the recent developments in SDLC methodologies focus on the software development

domain.37 The thesis research reaches beyond the software development domain in order to

acquire holistic insights that may have otherwise been overlooked. Conversely, other

domains may benefit greatly from the accelerated progress in the software development

domain.38 Imposing a limited view of what lies in the problem domain would create an

environment in which it is difficult to serve customers more effectively.39

2.2 Industrial Age
In 1776 with his seminal paper titled, An Inquiry into the Nature and Causes of the Wealth of

Nations, Adam Smith recognised that when a firm is organised around processes based on the

specialised content of knowledge, it will gain efficiencies in producing physical product. In

1890 Alfred Marshall, in Principles of Economics, wrote that knowledge is the most

powerful engine of production. In 1911 Frederick Winston Taylor published The Principles

of Scientific Management wherein he created a licence for the knowledge worker by writing

that managers assume the burden of gathering together all of the traditional knowledge which

in the past has been possessed by the workmen, and then by classifying, tabulating, and

reducing this knowledge to rules, laws, and formulae which are immensely helpful to the

workmen in doing their daily work.40

Shapiro41 reasons that before Taylorism, organisations mostly relied on the workers’

initiative to come up with better methods, and that this way of doing things were flawed in

several respects. It failed to systematise the improvements and there was no organisational

34 Derived from Random House Webster’s College Dictionary 2000.
35 Cockburn, Alastair. 2003. People and Methodologies in Software Development.
36 This topic is expanded in detail in the second chapter of the thesis.
37 This reason for this change in focus will be explored in the second chapter of the thesis.
38 Baskerville and Dove has done significant research and work in extending software based methodologies and

applying it to other fields. Baskerville, R.L. Myers, M.D. 2002. IS as a Reference Discipline. Dove, R.
2006. Engineering Agile Systems: Creative-Guidance Frameworks for Requirements and Design.

39 Frame, J. Davidson. 2002. The New Project Management.
40 Truch, E. 2004. Knowledge Orientation in Organizations:1.
41 Shapiro, S. 2002. The Evolution of Innovation. The 24/7 Innovation Group.

 16

learning. Taylor did away with reliance on private knowledge and self-training. He

redefined the role of management as follows:42

• Develop a science for each element of every person’s work, which replaces the old

rule-of-thumb method;

• Scientifically select and then train, teach and develop the workers, whereas in the past

they chose their own work and trained themselves as best they could;

• Cooperate with the workers to ensure that all the work would be done in accordance

with scientific principles; and

• Divide responsibility between management and workers, but management will take

over all functions for which they are better at doing than the workers.

Taylor realised that by rationalising processes it is possible to optimise production. The

assumption and constraint being that the processes are completely defined and therefore

repeatable. The role of the worker defined as a production engine and that of the manager

being defined as the empirical controller, monitoring output and taking corrective action on

unwanted variations as illustrated in Figure 2-1.

Figure 2-1: Cybernetic model of a manager as empirical controller

Building on the work of Smith, Marshall and Taylor, the Frenchman Henri Fayol defined his

fourteen core principles of general management theory in 1916. Fayol’s principles however

included elements of fair labour practice and gave recognition to the dependency of initiative

at all levels of the organisation. These principles have relevance later in the thesis and are

therefore enumerated below: 43

42 Kast, F. E., Rosenzweig, J. E. 1979. Organization and Management 3rd Edition – A systems and contingency

approach:56.
43 Kast, F. E., Rosenzweig, J. E. 1979. Organization and Management 3rd Edition – A systems and contingency

approach:60.

 17

• Division of work. Specialisation of labour in order to concentrate activities for more

efficiency.

• Authority and responsibility. The right to give orders and the power to exact

obedience.

• Discipline. Essential for the smooth running of business.

• Unity of command. Receive orders from one superior only.

• Unity of direction. One head and one plan for a group of activities having the same

objectives.

• Subordination of individual interests to general interests. The interest of one

employee or a group should not prevail over that of the organisation.

• Remuneration. Fairness and satisfaction for both personnel and the firm.

• Centralisation. A natural consequence of organising.

• Scalar chain. The chain of superiors ranging from the ultimate authority to the lowest

rank.

• Order. Provide an orderly place for every individual.

• Equity. Fairness and justice pervade the organisation.

• Stability of tenure. Time is needed for the employees to adapt to their work and to

perform it effectively.

• Initiative. Zeal and energy are augmented by initiative at all levels of the

organisation.

• Esprit de corps. Emphasise the need for teamwork.

Leaping forward in time through two major world wars during which enormous accelerated

progress was made in science and technology at a mammoth price, society arrives at a point

where they have developed numerous formal methods for systems development that is

grounded in the pursuit of military dominance. According to Kast and Rosenzweig,44 these

formal methods flow from a systemic analysis and recognition of a natural order of activities

during the life cycle of complicated systems. The classical development phases as then

44 Kast, F. E., Rosenzweig, J. E. 1970. Organization and Management – A systems approach:460-465.

 18

defined are formulated around the external interfaces between government departments and

private sector suppliers. The phases are:

• Conceptual Phase. Conceiving the proposed solution that will satisfy the mission

requirements and objectives.

• Definitions Phase. Identifying all the elements or subsystems to be integrated.

• Acquisition Phase. Detailed development, production and testing of subsystems.

• Operational Phase. Delivering and supporting the system in is operational

environment.

The focus was on developing large scale systems that involved multiple parties. Each of

these four top-level phases unfolds into sub-phases such as for example in the definitions

phase would have: a) request for information, b) request for proposals, c) evaluation and

contracting. These classical phases had rigid gates whereby the next phase could not start

unless the previous phase is completed and signed-off by the acquisition committee or system

owner. During the USA ballistic missile programs in the 1950s the need for urgency resulted

in the emergence of concurrent engineering. Each subsystem had to undergo its own

systems development life cycle resulting in a recursive divide-and-concur approach to

systems development. This in turn leads to higher complexity as it introduces more

interfaces, more subcontractors, and hence more external influences and interdependencies.

For concurrent engineering to succeed, it requires excellent programme management to

facilitate timely communication, coordinate activities, configuration and resources amongst

diverse engineering teams. Emphasis was on the ramp-up stages that preceded the actual

development and commissioning of the systems. It made sense to afford care and attention to

details during the analysis and design of these systems. For example NASA’s adaptation of

the model had three definition phases and the last phase was for the actual development and

operations.

It is not possible to anticipate all risks on paper models alone. The Apollo program applied

eleven incremental development cycles in order to put the first man on the moon. Ten major

learning cycles each building on the experience of the former. Within each cycle was four

primary phases and within each phase was several sub-phases within which several planned

scale models and prototypes were build. Multiple Apollo programmes ran concurrently,

overlapping at different stages of its lifecycles. Lessons learned were fed forward into

subsequent programmes without holding up the current launch schedules. The finer details

 19

and in many cases the larger details only emerged when the scientists and engineers saw what

they were thinking.45 The end-users, the Astronauts themselves, were highly involved during

all the phases. USA was racing the USSR to the moon and hence their model also had to

comply with the concurrency requirements forced by this sense of urgency. In essence

NASA invented very practical SDLC model in the 60s that had many winning attributes that

many modern approaches lack. This was extreme engineering delivering high-tech high-

reliability real rocket science. The engineering was groundbreaking albeit effective and

reasonably economical. The motivation was clear and simple.46 Kennedy promised the

world that America would put a man on the moon before 1970. The vision was clear and

simple.47 They had a common enemy.48 The engineers had to devise the best means possible

to win the challenge. The product was not any of the numerous vessels designed and built,

but the end goal of putting man on the moon and bringing him back to earth safely, and by

doing so delighting millions of people. The Space Programme was specifically interesting in

that its success depended on a wide variety of fields of practice ranging from medical science

through to the civil engineering used to lay the gravel-stone roads to transport the huge rocket

to its launch-pad. The thousands of people that formed part of that programme were

fortunate to have had the opportunity to be involved in, and contribute to such a unique

project. Many other application domains also depend on a unique and diverse mix of science

and engineering, but the common most demanded field is software engineering. The fatal

accident of Apollo 1 caused NASA to get ready for the unexpected. They trained themselves

to expect the unexpected and what to do when the unexpected happens. This is what High

Reliability Organisations need to do to survive.49 So when things suddenly started going

wrong during the Apollo 13 mission, the team was ready to take action and to improvise. It

was a collective effort involving the entire mission support crew to remote their instincts

through the three Astronauts. They successfully executed actions that were never planned.

They had to improvise to conserve power and to filter carbon dioxide using a contraption that

looked like a primary school art project. This was astronomical cybernetics.

45 Weick, K.E. 1995. Sensemaking in Organizations.
46 Motivation is provided by a common enemy, an impossible vision and is driven by passion and the need to

win.
47 Purpose is defined by the mission objectives and milestones that together form the winning strategy.
48 Immelman, R. 2003. Great Boss Dead Boss – How to exact the very best performance from your company

and not get crucified in the process.
49 Weick, K. E., Sutcliffe, K. M. 2001. Managing the Unexpected.

 20

Many budgets were overrun and cost controls had to be tightened up leading to new cost and

schedule control mechanisms such as the popular Stage-Gate model.

2.2.1 Stage-Gate process model
Escalating commitment causes management to support projects long after its net value has

turned negative. The cost of pushing bad projects forward can be very high. To help avoid

this, many managers and researchers suggest implementing tough go/kill decision points in

the product development process. The most widely known development model incorporating

such go/kill points is the stage-gate process developed by Robert G. Cooper. The stage-gate

process provides a blueprint for moving projects through different stages of development.50

At each stage, a cross-functional team of people, led by a team leader, undertakes parallel

activities designed to drive down the risk of a development project. At each stage of the

process, the team is required to gather vital technical, market, and financial information to

use in the decision to move the project forward, abandon the project, hold, or recycle the

project.

The steps between these points can be viewed as a dynamic process. Stage-Gate divides this

process into a series of activities (stages) and decision points (gates).

Stages are:

• Where the action occurs. The project team completes key activities to advance the

project to the next gate.

• Cross-functional. There is no R&D or marketing stage, and each activity is

undertaken in parallel to accelerate speed.

• Where risk is managed. Vital information is gathered from technical, market,

financial, operations to manage risk.

• Incremental. Each stage costs more than the preceding one resulting in incremental

commitments. As uncertainties decrease, expenditures are allowed to rise and risk is

managed.

Gates are:

• Where the Go or Kill decision are taken and prioritization decisions are made.

50 Schilling, M. A. 2005. Strategic Management of Technological Innovation.

 21

• Where mediocre projects or tasks are culled out and resources are allocated to the best

projects.

• Focused on three key issues: quality of execution; business rationale; and the quality

of the action plan.

• Where scorecards and criteria are used to evaluate the project’s potential for success.

The Stage-Gate approach is very popular with New Product Development groups. However

it requires active participations from all the parties and a high management involvement at

the gates. Too often the unavailability of the key stakeholders results in delays at gates and

consequent stages are held up. IDEO51 has developed a more agile methodology.

2.2.2 New Product Development
Schilling52 emphasises that despite its large size, IDEO holds vigorously to its informal

culture that encourages playfulness, experimentation, and unfettered creativity. The

company’s motto is ‘fail often to succeed sooner,’ encouraging employees to use

brainstorming to rapidly generate ideas. The IDEO management believed in an innovation

funnel approach whereby a project would start with many ideas that would gradually be

filtered down to a single product design. Management also encouraged rapid and frequent

prototyping, believing that visual aids greatly enhanced the creativity process and facilitated

the transmission of ideas. Typically, prototypes were not carefully crafted, functional

devices, but instead were rough models quickly put together with such materials as cardboard

and foam that could be revised or scrapped as new ideas emerged. Though the company

emphasised a free-flowing approach to the innovation process, it also utilised a five-phase

system to provide structure to the development process. These phases are:

• Understand/Observe. Understand the new client and its business; research everything

about previous product models, cost structures and insights about the users and its

market.

• Visualize/Realize. Prototype models are created to visualize the direction a product

solution was heading; maintain close coordination with the client to ensure timely

feedback; outline the manufacturing strategy.

51 IDEO helps organisations innovate through design. Independently ranked by global business leaders as one of

the world's most innovative companies, IDEO uses design thinking to help clients navigate the speed,
complexity, and opportunity areas.

52 Schilling, M. A. 2005. Strategic Management of Technological Innovation.

 22

• Evaluate/Refine. Build fully functional prototypes to identify and resolve technical

problems and issues in the ways users interact with the product; the emphasis shifts

from human factors to engineering; complete product design with technical

specifications.

• Engineering. Verify the manufacturability and performance of the completed

product; engineers stayed in close contact with design team members; begin selecting

vendors.

• Implement. Coordinated release of the product design to the manufacturer; supervise

production of tooling, regulatory testing and approvals, and pilot runs of the

manufacturing process.

IDEO’s process is fit for tangible products of the Industrial Age, but may not be suited for

software products and services. A historical overview of information science will aid in the

interpretation and understanding of the domain, before delving deeper into more details of

SDLC methodologies for the Information Age.

2.3 Information Age
Information science as it is known today is entirely based on Logic53. On a more practical

level its implementation is based on a simple switch that is either on or off. Logic is discrete

and each state of the switch leads to a different consequence. This is the simplest possible

digital cause-and-effect model that was further developed by Charles Babbage with the

Difference Engine in 1822. Based on a designed production function and given stochastic

input, the machine would produce output that makes a difference that yields information.54

In 1847 George Boole derived the mathematics of logic that made it possible to program

machines to derive logical conclusions and ultimately make decisions. This consequence

gave rise to the possibility of creating Artificial Intelligence (AI)55 and robots56 that could

one day rule the human race. The Boolean switch became solid-state by means of the

53 Logic, from the ancient Greek word logos, is a field of philosophy rooted in truth theory that is used for the

analysis of inference. Today, Boolean Logic is a common term in electronic and information engineering,
which developed a collection of Logic building blocks from which inference can be made electronically
throw simple transistorised switches.

54 Bateson, G. 1973. Steps to an ecology of mind:5. Information consists of the differences that make a
difference.

55 In 1950 Alan Turing predicted intelligent machines within 50 years and defined the famous Turing Test.
56 Isaac Asimov, a biochemical expert and famous science fiction writer devices the universal laws of robotics

in 1942.

 23

transistor and the advent of the microprocessor silicon chip57. Moore’s law58 was sustained

as a result of computing power doubling every 18 months to two years. In 1948 Claude

Shannon published the mathematical laws of reliable binary encoded data transmission,

thereby giving birth to information networks that earned him the title of Father of

Information Theory. Engineers defined a few basic primitive machine instructions to soft-

wire logic processors59 to make sense of input-data and produce results. Computers with

software are nothing more than a production facility – a means to get things done. In essence

humans can transfer and defer some of their capacity to act to an intelligent machine. People

use computers as an extension of human being, by augmenting60 their capabilities and

competencies using computerised bionic peripherals. In this mode they extend their senses

so that they can more easily make sense of situations and take quicker action. These actions

are often enacted and communicated via the same or similar bionic peripherals. The

Difference Engine rapidly evolved over two centuries but it is essentially a machine

embedded with human intelligence and knowledge. The capacity to act is defined using

production rules. The Inference Engine61 acts on new data by applying the memorised

production rules to derive higher order facts that are recursively applied to more production

rules until decisions are made and actions are taken to satisfy its intended productivity.62

Meanwhile the code-and-fix student cult was growing strongly eventually evolving into the

invention of the Personal Computer and independent software technology such as MS-

DOS63. This gave birth to a huge wave of excitement around how computers could augment

human productivity and knowledge.64 This cult in return fuelled government funded AI

57 Reid, T.R. 2001. The CHIP – How Two Americans Invented the Microchip and Launched a Revolution.

William Shockley, Walter Brattain and John Bardeen invented the transistor in 1947 at Bell Labs. Just over a
decade later Robert Noyce helped Jack Kilby to build the first microchip at Texas Instruments.

58 In 1964 Intel’s Gordon Moore made this prediction in an article, but it has been refuted and altered
numerously. John Markoff noted that Douglas Engelbart made a similar prediction the same year.

59 Arithmetic Logic Units (ALU)
60 Vannevar Bush. 1945. As We May Think. Bush defined, MEMEX, his hope that machines would augment

human knowledge.
61 The term Inference Engine is most commonly used in Expert System technology. However, today it is

embedded in many commercial productivity tools such as word processors.
62 Giarratano, J., Riley, G. 1989. Expert Systems – Principles and Programming.
63 Microsoft Disk Operating System. Bill Gates and Paul Allen made the historically bold move with IBM to

keep ownership of the software and sell licenses independently. Their MS-DOS would thereafter be
licensed to run on non-IBM computers based on an open blueprint standard for Personal Computers, which
in turn is based on the Intel x86 microprocessor family. This cause in turn gave rise to a market place for
Independent Software Vendors (ISV).

64 Markoff, John. 2005. What the Dormouse Said – How the 60s Counterculture Shaped the Personal Computer
Industry.

 24

research at MIT65 and SAIL66. Powerful programming languages evolved such as Fortran67,

Lisp68, C69, Basic70 and Pascal71. However these languages were not making it easier for

developers to create good enough software72 and thereby causing management to put even

more focus on the process of developing code. The Independent Software Vendor (ISV)

industry was started by rebels that did not want to be controlled, told what to do, or when to

do it. This annoyed traditional management who wanted to measure productivity by counting

lines of code written per day.

In 1968 Edsger Dijkstra73 defined the first rule of Structured Software Development and in

that same year Friedrich Bauer coined the term Software Engineering.74 It is believed that

the term Software Engineering implies levels of rigor and proven processes. Many of the

best software developers are in fact university dropouts and promote the idea that software

development is more of a skilful art that can only be self-taught than a set of formal scientific

proofs and rules.

In stark contrast with Moore’s Law, Wirth’s Law75 states that Software gets slower faster

than hardware gets faster.

Winston W. Royce,76 Frederick Brooks77 and Barry Boehm78 laid the foundation for

Software Development practices by respectively addressing the human and systems

65 Massachusetts Institute of Technology (MIT).
66 Stanford Artificial Intelligence Laboratory (SAIL).
67 Formula Translation developed at IBM by John W Backus in the mid 50s.
68 LISt Processing (LISP) computer programming language invented by John McCarthy’s team, at SAIL, in the

late 50s.
69 Programming language invented by Dennis Ritchie, at Bell Labs, in the late 60s.
70 Beginner’s All-purpose Symbolic Instruction Code (BASIC) was invented by John George Kemeny and

Thomas Eugene Kurtz, at Dartmouth College, in 1963.
71 Nicklaus Wirth invented Pascal, at ETH, in the early 70s.
72 Bach, James. 1995. The Challenge of Good Enough Software. American Programmer Magazine.
73 Dijkstra, EW. 1968. GOTO Statement Considered Harmful. Communications of the ACM. Vol. 11(3):147-

148.
74 MacKenzie, Donald. 2000. A view from the Sonnenbichl: on the historical sociology of software and system

dependability. Proceedings of the international conference on History of computing: software issues.
Paderborn, Germany. Springer-Verlag:New York:97-122.

75 Niklaus Wirth, inventor of Pascal, made this statement in 1995.
76 Royce, W.R. 1970. Managing the development of large software systems. Proceedings IEEE WESCON.
77 Brooks, F.P. 1987. No Silver Bullet. Essence and Accidents of Software Engineering Computer. Vol. 20, No.

4.
78 Barry W. Boehm. 1979. Software engineering-as it is. Proceedings of the 4th international conference on

Software engineering. IEEE Press.

 25

perspectives. Brooks challenge managers to give recognition to great designers. Brooks

proposed some steps to put more emphasis on design:

• Systematically identify top designers as early as possible. The best are often not the

most experienced.

• Assign a career mentor to be responsible for the development of the prospect, and

carefully keep a career file.

• Devise and maintain a career development plan for each prospect, including carefully

selected apprenticeships with top designers, episodes of advanced formal education,

and short courses, all interspersed with solo-design and technical leadership

assignments.

• Provide opportunities for growing designers to interact with and stimulate each other.

Royce applied metaphors such as the Waterfall model and Boehm introduced iterative flows

between development stages with his Spiral model with multiple incremental lifecycles. The

eight stage Waterfall model was an attempt to combat the infamous code-and-fix or hacker

methodology that emerged naturally amongst students and amateurs of the 70s and early

80s.79 The inherent problem of the Waterfall approach was that not all information was

known at earlier planning and specification stages. The requirements were simply not known

in enough detail by any of the stakeholders. It was up to the developers to discover the

details as they go about coding a solution. This lead to the simpler incremental Spiral model

flowing quickly through all four phases of a smaller initial scope and then repeating the

spiralling cycles outwards until the complete system is build. Do-it-twice or throw-away

prototyping evolved and was encouraged by astute masters such as Brooks. Yet, the demand

for formality did not fade and an apposing camp was working on structured programming

and modelling techniques.

2.3.1 Unifying of Modelling Conventions
In the mid-1980s Ed Yourdon, Tim Lister and Tom DeMarco formalised techniques for

Structured Analysis and System Specification.80 In the early-1990s James Martin started the

field of Information Engineering (IE) and spurred the use of Computer Aided Software

79 Giarratano, J., Riley, G. 1989. Expert Systems – Principles and Programming:360.
80 Demarco, T. Plauger, PJ. 1979. Structured Analysis and System Specification.

 26

Engineering (CASE) tools while Coad and Yourdon published their books on Object-

Oriented Analysis81 and Design.82

This lead to the development of rapid prototyping tools and structured modelling techniques

such as ERD83, IDEF84, and OMT85 to help engineers to translate perceived requirements

into a visual model that could be verified and validated against the system requirements

before coding starts. CASE tools promised to be the silver bullet by automatically generating

the computer code directly from these visually designed models. During the same time

computer hardware advanced at the speed predicted by Moore’s law and many computer

languages evolved promising easier coding and that object-oriented programming (OOP)

would produce quality software products. The Object Management Group (OMG) promoted

a vision that any two independently developed software components would be able to

interface seamlessly across platforms, systems and networks using CORBA86 as the industry

standard for interoperability. Java87 made similar promises based on virtual runtime ports.

Microsoft developed COM88 and eventually their .NET framework as the silver bullet based

on the concept of managed code running inside a robust Common Language Runtime (CLR)

kernel.

All of this hype not only caused damage but put far too much emphasis on the wrong

development phase. Somehow it seems that the Software Engineering industry is fooled into

believing that the code and debug phase is flawed and that programmers are intentionally

developing the wrong products and doing it badly. Hence the SEI developed their five-step

CMMI metric for measuring the process maturity of teams. Three of the fathers of Object

Oriented Design notations, Grady Booch, James Rumbaugh, and Ivar Jacobson, unified their

ideas under the Rational89 umbrella and dominated the standardisation for UML90. Rational

then also continued refining the Rational Unified Process (RUP) SDLC model which is being

81 Coad, P. Yourdon, E. 1990. Object-Oriented Analysis.
82 Coad, P. Yourdon, E. 1991. Object-Oriented Design.
83 Entity Relationship Diagrams (ERD).
84 Integrated DEFinition Methods (IDEF). Level 0 is at the business process level, then iterative analysis

decompose the models down to the lowest ontological level 5. See www.idef.com
85 OMT – Object Modelling Technique.
86 CORBA – Common Object Request Broker Architecture.
87 Java is a programming languages invented by Sun Microsystems’ James Gosling in 1994.
88 COM – Component Object Model.
89 Rational is now owned by IBM Software Group.
90 Unified Modelling Language (UML).

 27

adopted as a standard Unified Process (UP). RUP is essentially a Spiral model91 with the

following four key phases: Inception, Elaboration, Construction and Transition. Each of

these phases incorporates requirements definition, design, implementation and deployment

artefacts.

Object-Oriented (OO) concepts in software development had no single origin. It evolved

synchronously and rapidly from the late-1960s with Simula-67 and Smalltalk in the early 70s.

Smalltalk was the first pure OO development language, but most of the existing

programming languages quickly adapted and C++ eventually overtook the Smalltalk market

in the late-90s. OO was already very useful for expert, control and real-time systems

development where the frameworks and blackboards were already developed around the

modelling of real-world objects.

OO provides design and construction mechanisms that are necessary for flexible open-ended

systems that can be changed at a component level without requiring complete system

refactoring and development. These loose coupled binding allow models to become dynamic

and takes advantage of technology evolution that extends interfaces across network

boundaries.92

In 1992 Ivar Jacobson93 wrote a book titled Object-Oriented Software Engineering in which

he introduced the concept of Use Case modelling that brought a more human oriented

systems analysis and design to a largely abstract domain. An equally important concept he

brought into software design is to draw conventional wisdom from other more mature

industries. Jacobson applied various industry metaphors to software development such as

creative design, construction and long-term support. Four years earlier Bertrand Meyer94

completed his book on a similar theme called Object-Oriented Software Construction, but his

approach was from a quality perspective that introduced the concepts of interfaces and

contracts to software development.

Formal methods were a prerequisite in financial, military and government institutions. Most

of the products developed was generally considered once-offs that took several calendar

years and hundreds of man-months to complete. Many projects are often cancelled. Angry

stakeholders started to call for industry standards whereby quality can be assured up front.

91 Boehm, B. 2000. Spiral Development – Experience, Principles, and Refinements. SEI special report.
92 Baresi, L. Di Nitto, E. Ghezzi, C. 2006. Toward Open-World Software: Issues and Challenges.
93 Jacobson, I. 1992. Object-Oriented Software Engineering.
94 Meyer, B. 1988. Object-Oriented Software Construction.

 28

2.4 Standards
Quality standards are important for the protection of consumers as much as it is for economic

growth and technological progress. Standards do however have a downside in that it

fossilises the capability and creativity for radical innovation that leads to enormous value.95

Standards are derived implicitly from dominant designs and explicitly by committees. Some

standards are very simple, practical, useful and essential, for example the international ‘Rules

of the Road’ for seafaring vessels. Another useful albeit more complicated standard is the

OSI 7-Layered Communications Reference Model96 that made the Internet possible. With

seafaring there should be no confusion and the rules are to be obeyed instinctively.

Reference models however need to be tailored and developed for its particular use. The

seafaring rules need to be obeyed by people whilst the communications protocols need to be

adhered to by electronic hardware and software systems.

Crosby97 recognised that Quality programmes are notoriously difficult to quantify. When an

organisation is measuring nothing, the only recourse it knows is to scrap and rework, and

often even these statistics are not being tracked effectively. Once a formal system is

introduced, much more accurate data starts to emerge and initial costs of quality often appear

to increase. The most concise and well-regarded statements of how to achieve quality is W.

Edward Deming's 14 principles in his Theory of Profound Knowledge. 98

Useful and enduring standards are those used for measurement and control. In the mid 1980s

the US Department of Defence needed a standard measure for determining whether

contractors could provide software on time, within budget and to specifications.

2.4.1 ISO 12207
The US Department of Defence (DoD) is a pioneer in defining software development life

cycles. The DoD undertook an effort to unify DoD-STD-2167A and MIL-STD-7935 to

create one life-cycle standard identified as MIL-STD-498. The policies however shifted

toward more reliance on commercial standards. The Institute for Electrical and Electronics

Engineers (IEEE) and the Electronics Industry Association (EIA) then initiated a joint project

to create a commercial replacement for MIL-STD-498, resulting in single standard titled the

95 Boisot, M. 1998. Knowledge Assets.
96 ISO/IEC. 1994. Information technology -- Open Systems Interconnection -- Basic Reference Model: The

Basic Model. International Standard 7498-1.
97 Crosby, P.B. 1979. Quality is Free. McGraw-Hill.
98 Anderson, David J. 2005. Stretching Agile to fit CMMI Level 3.

 29

IEEE Trial Use Standard 1498 and the EIA Interim Standard 640. The American National

Standards Institute (ANSI) designated the document as ANSI Joint Standard 016 (J-016).

International Organization for Standardization (ISO)99 standard 12207100 was also underway.

ISO 12207 offers a framework for software life-cycle processes from concept through

retirement. It is intended for two-party use where an agreement or contract defines the

development, maintenance, or operation of a software system. As is conventional to military

standards, it uses a language of "shall" to indicate mandatory provisions, "should" for

recommendations, and "may" for permissible actions. It provides a structure of processes

using mutually accepted terminology, rather than dictating a particular SDLC methodology.

Since it is a relatively high-level document, it does not specify the details of how to perform

the activities and tasks comprising the processes. Organizations adopting ISO12207,

therefore still need to use additional standards to fill in the details.

ISO 12207 describes five primary processes – acquisition, supply, development,

maintenance, and operation. It then divides the five processes into activities, and the activities

into tasks, while placing requirements upon their execution. It also specifies eight supporting

processes – documentation, configuration management, quality assurance, verification,

validation, joint review, audit, and problem resolution – as well as four organizational

processes – management, infrastructure, improvement, and training.

In 1992, the Institute of Electrical and Electronics Engineers (IEEE) had completed its own

life-cycle process standard 1074, providing detailed descriptions of development and

maintenance activities as well as their connections. In principle, one could use IEEE 1074 to

construct processes that would comply with the requirements of either J-016 or ISO 12207.

Traditionally these standards require organisations to tailor the appropriate processes to fit

the scope of their particular projects. Compliance is attained by the performance of the

selected processes, activities, and tasks.

2.4.2 ISO 9000
The ISO 9000101 family of standards listed below has been developed to assist organisations,

of all types and sizes, to implement and operate effective quality management systems.

99 International Organization for Standardization Website http://www.iso.org
100 Moore, James. 2006. ISO 12207 and Related Software Life-Cycle Standards
101 ISO. 2000. SABS ISO 9000:2000 edition 2. ISBN 0-626-12810-2

 30

• ISO 9000 describes fundamentals of quality management systems and specifies the

terminology for quality management systems.

• ISO 9001 specifies requirements for a quality management system where an

organisation needs to demonstrate its ability to provide products that fulfil customer

and applicable regulatory requirements and aims to enhance customer satisfaction.

• ISO 9004 provides guidelines that consider both the effectiveness and efficiency of

the quality management system. The aim of this standard is improvement of the

performance of the organisation and satisfaction of customers and other interested

parties.

Together they form a coherent set of quality management system standards thus facilitating

mutual understanding. These standards promotes that to be successful it is necessary to direct

and control processes in a systematic and transparent manner, and that success can result

from implementing and maintaining a management system that is designed to continually

improve performance while addressing the needs of all interested parties. Managing an

organisation encompasses quality management amongst other management disciplines.

ISO 9000:2000 proposes the following quality management principles that can be used by

top management in order to lead the organisation towards improved performance:

• Customer focus. Understand current and future customer needs, meet customer

requirements and strive to exceed customer expectations.

• Leadership. Establish unity of purpose and direction for the organisation; create and

maintain the internal environment in which people can become fully involved in

achieving the organisation's objectives.

• Involvement of people. Involvement of people at all levels enables their abilities to be

used for the organisation's benefit.

• Process approach. Manage activities and related resources as a process.

• System approach to management. Identifying, understanding and managing

interrelated processes as a system contributes to the organisation's effectiveness and

efficiency in achieving its objectives.

• Continual improvement. Improve performance on a permanent, continual basis.

• Factual approach to decision making. Effective decisions are based on the analysis

of data and information.

 31

• Mutually beneficial supplier relationships. Interdependent and mutually beneficial

relationships enhance the ability to create value.

Whereas these standards apply to processes in general, there exist more specific standards for

project management processes.

2.4.3 ISO 10006
ISO 10006 gives guidance on the application of quality management in projects and

according to ISO, it is applicable to projects of varying complexity, small or large, of short or

long duration, in different environments, and irrespective of the kind of product or process

involved. It necessitates some tailoring of the guidance to suit a particular project. ISO claims

that the standard provides guidance on quality system elements, concepts and practices for

which the implementation is important to and has an impact on the achievement of quality in

project management.

Pither and Duncan102 however believes that the application of this document is more likely to

have the opposite effect, and warns that if attention is given to the items identified in the

standard at the expense of others critical to project management, the result could very well be

a poorly managed and unnecessarily costly project that is compliant with the standard. They

argue further that there is no project execution process. There is however a lot of planning

and controlling processes, but no place to actually do the work of the project. This omission

regrettably reinforces the notion that project management is limited to planning and

controlling. The standard recognises that project phases and project life cycles exist, but it

provides no guidance on how the identified project processes relate to project phases. Work

breakdown structure, critical path, project objectives, project life cycle, project network

diagram, project scope and many other project management terms are used without being

defined. Since many of these terms are understood differently in different application areas,

the absence of agreed definitions may cause considerable confusion.

2.4.4 ISO/IEC 15288
Since October 2002 ISO/IEC 15288103 became the grand new Systems Life Cycle Process

standard that embodies ISO 12207. It establishes a common framework for describing the

life cycle of systems created by humans. It defines a set of processes and associated

terminology. These processes can be applied at any level in the hierarchy of a system’s

102 Pither, R., Duncan, W. R. 2006. ISO 10006 : Risky Business. Project Management Partners.
103 Magee, S. 2002. ISO/IEC 15288 marketing presentation.

 32

development. ISO/IEC 15288 primarily concerns those systems that are man-made and may

be configured with one or more of the following: hardware, software, humans, or processes.

In general terms it is a generic life cycle process standard providing:

• A holistic view of software and systems engineering;

• A basis for stage-based life cycle models;

• A process framework that can be tailored to suit its application;

• A framework that reduces development risk; and

• A basis for communicating.

2.4.5 ISO/IEC 19759
ISO/IEC 19759 is a guide to the software engineering body of knowledge (SWEBOK). It

identifies and describes that subset of the body of knowledge that is, according to ISO,

generally accepted, even though software engineers must be knowledgeable not only in

software engineering, but also, of course, in other related disciplines. SWEBOK is an all-

inclusive term that describes the sum of knowledge within the profession of software

engineering.

2.4.6 CMMI
Carnegie Mellon University's Software Engineering Institute established the Capability

Maturity Model as a way to assess and describe the quality of an organisation's software

development. First released in 1991, it was largely associated with the government

contracting, aerospace and defence industries focused on large, long duration programs of life

critical systems with government requirements for auditability and traceability. The model

was eventually extended to incorporate 25 process areas and by 2000 many of the disparate

elements were brought together into a single framework known as the Capability Maturity

Model Integration (CMMI).104

CMMI is a way to assess and describe an organisation's software development process,

compare it against industry standards and help the organisation refine and improve that

process. It combines a carefully chosen set of best practices based on experience in a variety

of disciplines, including systems analysis and design, software engineering and management.

With CMMI, an organisation can simultaneously tackle a range of improvements that would

otherwise be addressed as free-standing initiatives. This, in turn, encourages improvement

104 Kay, Russell. 2005. CMMI.

 33

throughout the enterprise and helps organisations consider the full product development life

cycle.105

CMMI provides two basic models: staged and continuous. Staged CMMI is the better known,

with its five levels of maturity:

• Level 1: Initial. Chaotic, ad hoc, heroic;

• Level 2: Repeatable. Project management, process discipline;

• Level 3: Defined. Institutionalised, defined & confirmed standard business processes;

• Level 4: Managed. Quantified process management and measurement takes place;

and

• Level 5: Optimising. Predictable, process improvement, deliberate process

optimisation.

The model enables comparisons between organisations and offers a proven sequence for

improvement. Continuous representation of CMMI lets an organisation select a set of

specific improvements that best meet its business objectives and minimise risk, while perhaps

making it easier to compare processes across projects and to transition from other quality

standards. Within each of the CMMI maturity levels, key processes are defined in five areas:

goals, commitment, ability, measurement and verification.

SEI has developed a rigorous instrument, the Standard CMMI Appraisal Method for Process

Improvement (SCAMPI), which provides detailed ratings of strengths and weaknesses

relative to the CMMI models. SCAMPI helps organisations improve their processes by

setting priorities and focusing on improvements that match business goals.106

The main difference between CMMI and ISO 9001 is that ISO 9001 specifies a minimal

acceptable quality level for software processes, while CMMI establishes a framework for

measuring continuous process improvement and is more explicit in defining the means to that

end. Due to origin and centre of influence the ISO is favoured in Europe and CMMI in North

America. Economic development agencies in India and Ireland, have praised CMMI for

allowing them to compete for U.S. outsourcing contracts. This has had a very positive effect

on the employment of software engineers in Third World economies, but it has also adversely

affected the high-tech job market in developed countries.

105 Kay, Russell. 2005. CMMI.
106 Kay, Russell. 2005. CMMI.

 34

Luxoft107 was the first European software company to achieve a Level 5 CMMI-certification,

which means a high-level description of (and control over) software processes. In achieving

this certification, Luxoft increased its tool dependence by adopting a number of tools.

CMMI models are not process descriptions and it does not guide organisations on how to

implement improvements in software development. It merely indicates where improvements

are required. The traits CMMI needs to measure are easy to recognise, but difficult to

cultivate and often rare. CMMI however has rigid requirements for documentation,

measurement and step-by-step progress. This makes it better suited to large organisations

than to small. But even most large ISVs such as Apple and Microsoft rarely manage their

requirements documents as formally as CMMI requires. Since documentation is a

requirement for Level 2, most ISVs are stuck at Level 1.

To help organisations to climb the CMMI ladder, SEI developed the IDEAL108 life-cycle

model for software process improvement. Recognising that the model had great potential

outside of the process arena, the SEI revised the IDEAL Model for broader application.109

IDEAL provides a practical approach to continuous improvement by outlining the steps

necessary to establish a successful improvement program. Following the phases, activities,

and principles of the IDEAL model has proven beneficial in many improvement efforts. The

model provides a disciplined engineering approach for improvement, focuses on managing

the improvement program, and establishes the foundation for a long-term improvement

strategy.

107 Pries-Heje, J., Baskerville, R. L., Hansen, G. I. 2005. Strategy Models For Enabling Offshore

Outsourcing:13.
108 IDEAL is an acronym derived from the five lifecycle phases which it describes.
109 Gremba, J. Myers, C. 1997. The IDEAL Model: A Practical Guide for Improvement.

 35

Figure 2-2: SEI IDEAL Lifecycle Model110

The IDEAL lifecycle model shown in Figure 2-2 consists of five phases from where the

acronym is derived:111

• Initiating. Laying the groundwork for a successful improvement effort.

• Diagnosing. Determining where you are relative to where you want to be.

• Establishing. Planning the specifics of how you will reach your destination.

• Acting. Doing the work according to the plan.

• Learning. Learning from the experience and improving your ability to adopt new

technologies in the future.

In the Initiating phase the focus is put on the understanding of business goals and objectives.

During the diagnosing phase two characterisations of the organisation are developed: the

current state and the desired future state. The purpose of the Establishing phase is to deliver a

detailed work plan for process improvement. The main activities include: setting priority,

developing approach, and planning action. The purpose of the Acting phase is to implement

the work that is conceptualised and planned in the previous three phases. The main activities

include creating, piloting, testing, refining, and implementing. In the Learning phase, the

entire IDEAL experience is reviewed to determine what was accomplished, whether the

110 Gremba, J. Myers, C. 1997. The IDEAL Model: A Practical Guide for Improvement.
111 Gremba, J. Myers, C. 1997. The IDEAL Model: A Practical Guide for Improvement.

 36

effort accomplished the intended goals, and how the organisation can implement change

more effectively and efficiently in the future. CMMI and IDEAL is grounded in the

PDCA112 principles defined by W. Edwards Deming.

2.5 General overview of the software development process
Paul Bleicher113 uses a Home Renovation metaphor for explaining the software development

process. The language of software development derives from the oldest engineering field

with phrases such as designing the architecture and building the foundation. Despite the

similarities between construction and software development, the one difference which is

important to note is that in construction, the design and testing processes are relatively short

compared with the construction itself, while in software engineering this is reversed. The

traditional design process is typically quite long and involved compared to the final

development stage. Extreme Programming114 challenges this traditional approach and

encourages less emphasis on a big upfront design and documentation. Traditional SDLC

methodologies are therefore inherently flawed when applied to the software development

domain. This traditional approach is detailed in the following paragraphs to define a

reference background for the modern methods that will be discussed in the subsequent text.

2.5.1 Requirements analysis and design phase
As with the building of a house the development of software begins with a requirements

phase. Those responsible for the development of requirements must listen carefully to real

users of the products, understand, and even observe the workflow of the process being

automated. Often the end users will not understand how to translate their needs into a

systematic requirement, nor will they have fixed ideas about how they want the software to

work. The requirement gatherer must sift through much of the information and develop

requirements that are specific enough to base the design of a system on, but not too

prescriptive. The requirements must be checked and tested with the end-users for feasibility,

completeness, ambiguity, and consistency. A final document should be the agreed upon

requirements for the software and to be used for checking against the end result. This

document is similar to the high-level design drawings of the architect. Although these

requirements may change during the software building process, changes come at a cost of

time and increased expense. Again, the later in the process a change occurs, the greater the

112 Plan-Do-Check-Act (PDCA).
113 Paul Bleicher. 2003. Software Life Cycles and Kitchen Sinks.
114 Extreme Programming is one of the various Agile software development methodologies which is detailed in

paragraph 2.7 on page 50.

 37

cost. Once the requirements are complete, the software team will begin a detailed design

specification, much as the construction architect went from high-level drawings to detailed

wiring, plumbing, and cabinetry plans. In developing a specification, the software architect

makes many decisions about what functionality will be contained in each of the different

software modules and how these modules interact. The specification document will form the

basis of the test plan for unit and final testing of the software.

2.5.2 Development and implementation phases
Following the agreed upon design, the software will be implemented. The actual software

code will be written and the various modules will then be integrated together. Each individual

unit or module will be tested, and the overall integrated product will be tested to make sure

that it works as specified. Once the project is completed it must be accepted by the end users,

often through another series of practical tests. It will then be installed and deployed in

production. Over time the software will require continued maintenance during operation,

which may be as simple as changing an installation parameter, or as complex as rewriting

some of the code. Finally, the software will eventually reach an end of its usable life, at

which point it will likely be replaced by a new product. The life span of software may be

brief, like that of Web browsers, or very long, as in the case of some COBOL-based banking

systems from the 1960’s that are still in use today.

2.5.3 Waterfall model
The SDLC model described above is commonly referred to as the Waterfall model. Each step

takes input from the previous step and produces output that is used by the next step. The

development of the software flows from step to step like a waterfall. The typical steps are:

• Requirements Definition;

• Analysis and design;

• Coding and testing;

• Acceptance testing;

• Installation and deployment; and

• Maintenance and support.

Although the Waterfall model is quite straightforward it doesn’t work well in the current

world of rapid application development of complex projects. Waterfall development works

best when the user starts the process specifying requirements, but isn’t involved thereafter

 38

until final testing. It is a relatively inflexible model that limits the ability to predict timing of

a project and resource requirements. The Waterfall method only works in an environment

where change occurs rarely, so that portions or stages of a project can be completed, closed,

not reopened. For this reason, a number of other theoretical models have been developed.115

2.5.4 Alternatives to the Waterfall model
One commonly used alternative to the Waterfall method is Rapid Prototyping as originally

proposed by James Martin.116 Using languages and tools that make it possible to quickly

assemble an application, the programmers can develop one or many prototypes to test

requirements and specifications. Users interact with the prototypes, suggesting modifications

and improvements. When all prototyping is completed the prototypes are set aside and the

code is completely rewritten in a more robust environment, often using a version of the

Waterfall methodology. A risk of rapid prototyping is that some aspects of the prototype

may be too difficult or expensive to build as part of the final system. The user may have to

accept less functionality from the final system than the prototyped one.

Prototypes can be illustrative prototypes, which can be nothing more than a mocked-up Web

page or even storyboard. Other prototypes are functional, which can actually deliver part or

all of a working system or part of a system. A major risk of functional prototypes is the

temptation to incorporate the rapidly developed prototype into the final system, thus

sacrificing quality and integrity of the process and product. An even bigger risk is that

management and end-users perceive the development progress to be further than it actually

is.

There are two types of prototypes: throwaway and evolutionary.117 Throwaway prototypes

are built in a quick and dirty manner, are given to the customer for feedback, and are thrown

away once the desired information is learned. The desired information is captured in a

requirements specification for a full-scale product development. Evolutionary prototypes are

built in a quality manner, are given to the customer for feedback, and are modified once the

desired information is learned to more closely approximate the needs of the users. This

process is repeated until the product converges to the desired product.

115 Paul Bleicher. 2003. Software Life Cycles and Kitchen Sinks.
116 James Martin. 1991. Rapid application development. Macmillan Publishing.
117 Davis, A. 1992. Operational Prototyping: A New Development Approach. IEEE Software. Vol.9. No.5:70-

78.

 39

Throwaway prototypes should be built when critical features are poorly understood.

Evolutionary prototypes should be built when the critical functions are well understood but

many other features are poorly understood. Build a throwaway prototype followed by a from-

scratch evolutionary prototype if most functions are poorly understood. When the risks are

high it calls for a Concept Evaluation with throwaway bread-board prototyping to tackle the

nasty risks and proof concepts are practical and economical. The second type of prototype is

not really prototyping but iterative chunks of real high quality product development.

The SDLC methodology known as the Incremental model assigns requirements to a

particular section of the software. The sections are each built to completion and tested

individually, beginning with the highest priority module. As each module is added on, the

product takes on more and more functionality. Microsoft manages huge projects with a

related methodology using a Synchronize and Stabilize method whereby the entire project is

built each night from the currently completed modules. Incremental models allow for

adaptation to changing requirements through user interaction with the partially completed

software.

Another methodology that is related to the Incremental methodology is the Spiral model,118

whereby the modules that have the highest risk inherent in them are prototyped. As these are

completed, the risk is reassessed and the next highest risk module is prototyped. As more and

more of the software get completed, the process becomes more straightforward and carries

much less risk, until the final software is built from the increments.119 Think of it as having a

large rock, some pebbles, sand and water. One needs to get all these ingredients into a jar

that has just enough volumetric capacity. One must start with the largest objects and finish

by carefully pouring the water into the jar.

There are many more models of SDLC methodologies, including the V model, Sawtooth,

Shark’s tooth, and others. The most radical to date is Extreme Programming (XP) wherein

the software is rapidly built through an iterative process from user stories without the need

for formal documentation and planning. Programmers work in teams of two on discrete parts

of the software, providing rapid and high quality development. This form of SDLC requires a

highly committed team with collective ownership and knowledge. XP works well for first-

118 Boehm, B. 2000. Spiral Development:Experience, Principles,and Refinements.
119 Paul Bleicher. 2003. Software Life Cycles and Kitchen Sinks.

 40

time products in start-up companies.120 XP is just one of many recently developed

methodologies which falls under a category called Agile Development Methologies.

In simple terms, all of the SDLC models are different variations on making sure that software

is well defined at the beginning, properly built, extensively tested, and smoothly

implemented. In the end, the use of any SDLC methodology creates a process that ideally is

predictable, repeatable, measurable, and efficient. The SDLC provides a high-quality process

for the development of high-quality products that can achieve regulatory compliance, in

software development and in general the discipline of a fixed process can bring order, but can

also suppress innovation, value and sustainability. It is essential that everyone involved

consider what they are doing, and for whom, throughout the project. Despite the many

pressures to complete the product on time and on budget, each participant must be ready to

question, re-examine and modify the process and product to deliver the best possible

results.121

2.5.5 Evolutionary model
Independent software vendors, such as Microsoft, are focused on making their software better

by continuously supporting and improving it to keep pace with user demands. These

software products evolved and new feature rich versions were released almost annually to the

delight of their customers. Software engineers have traditionally considered any work after

initial delivery as simply software maintenance. Some researchers have divided this work

into various tasks, including making changes to functionality (perfective), changing the

environment (adaptive), correcting errors (corrective), and making improvements to avoid

future problems (preventive).

120 Paul Bleicher. 2003. Software Life Cycles and Kitchen Sinks.
121 Paul Bleicher. 2003. Software Life Cycles and Kitchen Sinks.

 41

Figure 2-3: Evolutionary Software Lifecycle Model122

This gave rise to a versioned staged model as shown in Figure 2-3 by extending the Spiral

model into the following stages:

• Initial development. Develop the system’s first functioning version.

• Evolution. Extend the capabilities and functionality of the system to meet user needs,

possibly in major ways.

• Servicing. Engineers make minor defect repairs and simple functional changes.

• Phaseout. Do not undertake any more servicing, seeking to generate revenue from

the system as long as possible.

• Closedown. Withdraw the system from the market and directs users to a replacement

system, if one exists.

Rajlich and Bennett123 warns that managers should watch for situations in which software

maintenance is considered one homogeneous phase and handed over to second-rate

programmers or outside contractors. Retaining highly skilled staff from initial development

122 Rajlich, V. T., Bennett, K. H. 2000. A Staged Model for the Software Life Cycle.
123 Rajlich, V. T., Bennett, K. H. 2000. A Staged Model for the Software Life Cycle.

 42

through evolution is crucial because it is often impossible to codify and make explicit the

tacit knowledge of these experts.

2.5.6 Unified Process (UP)
The Unified Process (UP) is a use-case-driven, architecture-centric, iterative and incremental

development process framework that leverages the Object Management Group's (OMG)

UML and is compliant with the OMG's Software Process Engineering Metamodel (SPEM).

The UP is broadly applicable to different types of software systems, including small-scale

and large-scale projects having various degrees of managerial and technical complexity,

across different application domains and organizational cultures.

The UP emerged as the unification of Rational Software Corporation's Rational Approach

and the Objectory process in 1995 when Rational Software Corporation acquired Objectory.

Rational Software Corporation developed the Rational Approach as a result of various

customer experiences, and Ivar Jacobson created the Objectory process primarily as a result

of his experience with Ericsson in Sweden.

Today, the IBM Rational Unified Process (RUP) is a widely adopted, well known, and well-

defined system development process. It provides several mechanisms, such as relatively

short-term iterations with well-defined goals and go/no-go decision points at the end of each

phase, to provide management visibility into the development process.

The UP defines the following four phases:

• The Inception phase, concluding with the Objective milestone, focuses on establishing

the project's scope and vision; that is, establishing the business feasibility of the effort

and stabilising the objectives of the project.

• The Elaboration phase, concluding with the Architecture milestone, focuses on

establishing the system's requirements and architecture; that is, establishing the

technical feasibility of the effort and stabilising the architecture of the system.

• The Construction phase, concluding with the Initial Operational Capability

milestone, focuses on completing construction or building of the system.

• The Transition phase, concluding with the Product Release milestone, focuses on

completing transitioning or deployment of the system to the user community.

 43

Figure 2-4: RUP Hump Chart124

Figure 2-4, commonly referred to as the hump chart diagram, depicts the typical project

lifecycle attention span. The horizontal humps for each discipline give a rough estimate of the

relative effort for each throughout the four phases. For example you can see that a large

portion of Business Modelling takes place in Inception, although it does continue through to

early Transition. Work on deployment usually does not start until Elaboration and doesn’t

really kick into high gear until the middle of Construction.125

Alhir126 advises however not to standardise and enforce the Unified Process, but empower

people to leverage of it. Focus on teams because when teams succeed, their projects succeed

using their process. Likewise, the Unified Process is scientifically defined, but artistically

applied.

The Enterprise Unified Process (EUP)127 is an extension to the Rational Unified

Process (RUP) that include two new phases, Production and Retirement, and several new

disciplines: Operations and Support and the seven enterprise disciplines: Enterprise Business

Modelling, Portfolio Management, Enterprise Architecture, Strategic Reuse, People

Management, Enterprise Administration, and Software Process Improvement.

The Agile Unified Process (AUP)128 is a simplified version of the Rational Unified Process.

It describes a simple, easy to understand approach to developing business application

124 Eeles, P. 2005. RUP for Successful J2EE Projects.
125 Ambler, S.W. 2005. A Manager’s Introduction to The Rational Unified Process (RUP).
126 Alhir, Sinan S. 2002. Understanding the Unified Process.
127 Ambler, S.W. 2005. A Manager’s Introduction to The Rational Unified Process (RUP).
128 Ambler, S.W. 2005. A Manager’s Introduction to The Rational Unified Process (RUP).

 44

software using agile techniques and concepts yet still remaining true to the RUP. Where the

RUP is described in 3000+ HTML pages, the AUP is described in less than 30.

The EUP and AUP adaptations are steered by Scott Ambler, while the Essential Unified

Process (EssUP)129 is an adaptation by Ivar Jacobson that combines several of the Agile

methodologies with CMMI into a practical reference card metaphor approach.

2.6 Revolutionary Era
Brooks130 broke several myths, created an important awareness and also left the industry

somewhat naked, without having had any remedies at hand. Many resorted to his Mythical

Man-Month Methodology131 defined as the set of guidelines listed below:

• Tar Pits. Software projects are perhaps the most intricate and complex of all man-

made things. The tar pit of software engineering will continue to be sticky for some

time to come.

• Creative Slowness. More projects have gone awry for lack of calendar time than for

all other reasons combined. Programming is a creative process, like art and music. It

is a creative process as opposed to a mechanical, productive process.

• Brooks' Law. Adding manpower to a late software project makes it later. People and

time are not interchangeable. There are certain processes that can't be hurried along.

Adding more people increases inter-communication and training overhead, as well as

disrupts progress.

• The Second System Effect. The second is the most dangerous system a person ever

designs; the general tendency is to over-design it.

• The Tower of Babel. Schedule disaster, functional misfit, and system bugs all arise

because the left hand does not know what the right hand is doing. Teams drift apart in

assumptions.

• Natural Decay. System entropy rises over a lifetime. Repairs tend to destroy

structure and increase disorder.

129 Jacobson, I. Wei Ng, P. Spence, I. 2006. The Essential Unified Process.
130 Brooks, F.P. 1975. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley.
131 Aron Trauring. 2003. Software Methodologies – Battle of the Gurus.

 45

In the advent of the Information Age, as management gurus slowly came to realise the

various shortcomings of their mechanical and hierarchical views of organisations, an uprising

started amongst the expanding network society.132

In 1999 a quartet wrote The Cluetrain Manifesto as a revolt against the impersonal abstract

trend in electronic commerce.

Online Markets...

Networked markets are beginning to self-

organize faster than the companies that

have traditionally served them. Thanks to

the web, markets are becoming better

informed, smarter, and more demanding of

qualities missing from most business

organizations.

...People of Earth

The sky is open to the stars. Clouds roll

over us night and day. Oceans rise and fall.

Whatever you may have heard, this is our

world, our place to be. Whatever you've

been told, our flags fly free. Our heart goes

on forever. People of Earth, remember.

 The Cluetrain Manifesto (http://www.cluetrain.com/#manifesto)

The declaration is further qualified with 95 theses. In 2001 more than a dozen software

industry experts came together to make a pledge with the world whereby they acknowledge

the mistakes of following hard problem solving methods as opposed to focusing more on soft

methods133.

We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:

• Individuals and Interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

The Agile Manifesto (www.agilemanifesto.com)

The Agile Alliance is spreading the human-centric approach far and wide, while adding

additional depth and understanding to the human issues behind software development in

132 Castells, M. 1999. The Rise of the Network Society.
133 Flood. Jackson. 1991. Creative Problem Solving.

 46

general. Highsmith134 uses the concept of an Agile Ecosystem to stress the bigger picture of

what software development is about. The Agile Development Methodology as it is often and

commonly referred to, is actually not a methodology in itself. It is a family of methodologies

that underwrites the following common set of Agile principles:

• The highest priority is to satisfy the customer through early and continuous delivery

of valuable software.

• Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals.

• Give them the environment and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development.

• The sponsors, developers, and users should be able to maintain a constant pace

indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity, the art of maximizing the amount of work not done, is essential.

• The best architectures, requirements, and designs emerge from self-organising teams.

• At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behaviour accordingly.

By the time that the Agile Manifesto was signed, there already existed many supporting

methodologies such as Extreme Programming (XP) and Scrum. Unlike the monolithic

heavyweight RUP approach, they acknowledge that one size does not fit all, and so they

instead provide a variety of lightweight methods that fit under the unifying Agile umbrella.

134 Highsmith, J. 2002. What Is Agile Software Development? CrossTalk.

 47

The Agile Project Management Declaration of Interdependence followed early in 2005.

We …

increase return on investment by

-- making continuous flow of value our focus.

deliver reliable results by

-- engaging customers in frequent interactions and shared ownership.

expect uncertainty and manage for it through

-- iterations, anticipation and adaptation.

unleash creativity and innovation by

-- recognizing that individuals are the ultimate source of value, and

creating an environment where they can make a difference.

boost performance through

-- group accountability for results and

shared responsibility for team effectiveness.

improve effectiveness and reliability through

-- situationally specific strategies, processes and practices.

Declaration of Interdependence (http://pmdoi.org)

The title Declaration of Interdependence (DOI) has multiple meanings. It means that project

team members are part of an interdependent whole and not a group of unconnected

individuals. It means that project teams, their customers, and their stakeholders are also

interdependent. Project teams who do not recognize this interdependence will rarely be

successful.

These six values also form an interdependent set. While each is important independent of the

others, the six form a system of values that provides a modern view of managing projects,

particularly the complex, uncertain ones. The six statements -- value, uncertainty, customers,

individuals, teams, and context -- define an inseparable whole. It is difficult to deliver value

without a customer who values something. It is difficult to have viable teams without

recognising individual contributions. It is difficult to manage uncertainty without applying

situational specific strategies.

 48

Each of the value statements has a distinct form -- why the item is important precedes the

description of the value. So, "increasing return on investment" is why focusing on continuous

flow of value is important. The value statements emphasize the importance of delivering

reliable results, managing uncertainty, unleashing creativity and innovation, boosting

performance, and improving effectiveness.

Each of the means statements conveys what this group thinks are the most important aspects

of modern project management, and they also attempt to differentiate an agile-adaptive style

of project management. For example, in the last value statement, the phrase "situationally

specific strategies, processes, and practices," indicates that these items should not be overly

standardized and static, but dynamic to fit the needs of projects and teams. Other styles of

project management are more prone to standardization and prescriptive processes.

In order to consistently deliver successful results, great project leaders should embrace the

following core principles:

• Relentlessly Focus on Value. Focus efforts on generating organisational value rather

than managing tasks.

• Be Situational Specific. Use situationally specific strategies, not a one-size-fits-all

approach.

• Manage Uncertainty. Manage uncertainty through client focused collaborative

exploration and proaction.

• Continuously Align to Changing Situations. Choose strategies for leading within a

dynamic environment.

• Lead with Courage. Confront reality with conviction and a dedication to purpose.

• Build Strategies that Leverage People. Challenge team members with opportunities

to grow professionally.

• Design Strategies Based on Teamwork. Develop and sustain a collaborative team

environment.

• Communication Through Immediate and Direct Feedback. Maintain control through

feedback, not prescriptive plans.

 49

None of these principles are new to software development management literature.135 These

value statements and principles seem to answer most of the concerns to date, but can it be

done? How do successful software companies do it today? Google’s leaders say that they

uphold innovation through small, highly motivated groups of bright people who are given

access to immense resources.136

Anderson137 claims that it is possible to be an agile project manager and be running a CMMI

compliant process. He found that the DOI is fully compatible with CMMI and there is

nothing in any of the 25 process areas in the CMMI which is incompatible with the DOI.

The problems seem to arise at the interpretation of the specific process guidelines. The DOI

was borne out of observation that general project management practices were leading to

undesirable behaviour and unfavourable results. The DOI seeks to reset the mindset or

framework of how people think about projects so that they adopt the correct behaviour that

leads to good results.

Many modern development methodologies that sprouted over that last decade complement

various aspects of the Agile Manifesto. A partial list of methods that support the Agile

Manifesto is:

• Extreme Programming (XP)

• Dynamic Systems Development Method (DSDM)

• Scrum

• Feature-Driven Development (FDD)

• Crystal Clear

• Adaptive Software Development (ASD)

• Lean Software Development

• Agile Unified Process (AUP)

The various agile methods are focused on different aspects of the software development life

cycle. For example, Extreme Programming is more focused on practices, while Scrum

focuses on managing the software projects. DSDM and AUP provide full coverage over the

development life cycle.

135 Davis, Alan M. 1995. 201 Princples of Software Development.
136 Vise, David. 2005. The Google Story:287.
137 Anderson, D.J. 2006. CMMI DOI Comparison.

 50

For the purpose of the thesis, the focus will however be on XP and Scrum as these

complement one another well.138

2.7 Extreme Programming (XP)
When Extreme Programming was made public knowledge it caused excitement and

resistance. XP is not a sequential process methodology. Since the early 1990s Kent Beck

was working together with Ward Cunningham,139 who devised Class-Responsibility-

Collaboration Cards (CRC Cards). Using CRC Cards is a simple yet effective software

design technique that is still widely practiced today. At that time Beck and Cunningham

gained experienced in an approach to software development that made everything seem

simple and more efficient. Beck spearheaded a project at DaimlerChrysler in 1996, where

they applied their radically new concepts in software development.

Originally they identified four values and the fifth was added more recently: Communication;

Simplicity; Feedback; Courage; and Respect. These are the values sought out by XP team

members.

Extreme Programming demands a high discipline and commitment, despite its emphasis on

flexibility and human-centeredness. It brings the whole team together with simple practices at

a sustainable pace, with enough feedback to enable the team to learn effectively and act

efficiently. The general attributes of XP are:

• Small whole teams. Only 3 to 10 active team members.

• Coached. A team led by a coach.

• Onsite domain experts. One or several customers providing ongoing expertise.

• Minimal documentation. The unit of specification is a user story.

• Short iterations. Two, three or four-week iterations, with a demonstrated working

integrated system, and a working system build delivered to customers at the end of

every two to five iterations.

The details are defined by the twelve XP practices that follow.140

138 Mar, K. Schwaber, K. 2002. Scrum with XP.
139 Beck, K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.
140 Beck, K. Fowler, M. 2002. Planning Extreme Programming.

 51

2.7.1 Planning game
The planning process shown in Figure 2-5 allows the customer to define the business value of

desired features, and uses cost estimates provided by the programmers, to choose what needs

to be done and what needs to be deferred. The effect of the planning process is that it is easy

to steer the project to success. Beck uses driving a car as a metaphor for explaining the

planning game. Software development is a process. It can go well, or it can go badly. To keep

it going well managers must continually direct it. To direct it they must frequently assess the

direction it is going, compare this to the direction they want it to go, and then make careful

adjustments.141

Figure 2-5: XP Planning and Feedback diagram142

2.7.2 Small releases
The team puts a simple system into production early, and update it frequently on a very short

cycle as shown in Figure 2-6.

Figure 2-6: XP Project diagram143

141 This behaviour is well defined and described in the field of Cybernetics as expanded in paragraph 3.6 on

page 90.
142 Wells, J.Donovan. Extreme Programming Website http://www.extremeprogramming.org
143 Wells, J.Donovan. Extreme Programming Website http://www.extremeprogramming.org

 52

2.7.3 Metaphor
Teams use a common system of names and a common system description that guides

development and communication. It provides project vision.

2.7.4 Simple design
Seek the simplest solution that meets the current requirements. The focus is on providing

business value now, opposed to future proofing.

2.7.5 Testing
Teams focus on continuous validation of the software using test driven approach to designing

systems, by writing tests first, then solutions that meets the requirements reflected in the

tests. In addition, customers provide acceptance tests that enable them to be certain that the

features they need are provided.

2.7.6 Refactoring
Teams continuously improve the design and implementation of the system by keeping the

code neat and optimised without compromising completeness.

2.7.7 Pair programming
Programmers program in pairs, working together at one machine. Pair programming has been

shown by many experiments to produce better software at similar or lower cost than

programmers working alone.

2.7.8 Collective ownership
Whole team responsibility resolves many delays and conflicts as shown in Figure 2-7.

Figure 2-7: XP Collective Code Ownership144

144 Wells, J.Donovan. Extreme Programming Website http://www.extremeprogramming.org

 53

2.7.9 Continuous integration
Teams integrate and build the software system as often as possible. This keeps everyone’s

work synchronised. Integrating more frequently eliminates integration problems that plague

teams who integrate less often.

2.7.10 40-hour weeks
People make more mistakes when they are overworked.

2.7.11 Onsite customer representative
The project is steered by a dedicated individual who is empowered to determine

requirements, set priorities, and answer questions as needed. The effect of being onsite is that

communication improves, with less hard-copy documentation - often one of the most

expensive parts of a software project.

2.7.12 Coding standards
Consistency is essential for a team to work effectively in pairs, and to share ownership.

The quality of the software produced is considered to be the highest priority of an XP

development team. However the compromise for constantly achieving high quality is scope.

Table 2-1 illustrates the variance of the four key project variables.145

Variable Traditional Projects XP Projects

Scope Fixed Variable

Time Fixed Fixed

Cost Fixed Fixed

Quality Variable Fixed

Table 2-1: Project variables

The Theory of Constraints (TOC)146 and Six Sigma (6σ)147 methods could be applied to

ensure these variances are controlled. However these methods rely on repeatable and

predicable processes such as rated at CMMI level 5. XP achieves it by applying its five core

values and based on the assumption that quality, fixed-cost and on-time delivery is more

critical than scope. Software is often bloated with unnecessary features and by adding code

145 Rooney, D. Martin, N. 2003. Enabling Software Quality with Extreme Programming.
146 Theory of Constraints is a thinking process for the effective management of organisations and systems

developed by Eliyahu M. Goldratt.
147 Six Sigma is a quality management control technique used to measure process and output deviations in order

to drive it towards expected normal deviation. George, M. Rowlands, D. Kastle, B. 2004. What is Lean Six
Sigma? McGraw-Hill.

 54

one puts the overall product quality at risk. The XP approach therefore seems the natural

choice.

The quality of the code is maximized through test driven development and unit testing. The

quality of the overall system is maximized through continuous integration. The quality of the

system from the business perspective is maximized through iterative development and

frequent small releases, which allows for functional testing at much smaller intervals. All of

these aspects of XP provide feedback in very short cycles to the development team and

business clients, providing a clear picture of the progress of the system's development and

allowing for adaptation to changes in the business environment.148

Theunissen149 confirmed via a case-study and survey that Equinox Financial Solutions had

successfully adopted XP and investigated the possibilities for Telkom SA to turn from its

Rational Unified Process adoption towards a more agile methodology.

2.8 Scrum
The root of the Scrum and Rugby metaphors goes back to 1982 when Takeuchi and Nonaka’s

wrote an article for the 75th Anniversary Colloquium of the Harvard Business School on the

unique features of the new product development process within Japanese companies.150 In

their later article in the Harvard Business Review of 1986, The New New Product

Development Game, they argued that the rugby-style approach has tremendous merit in terms

of speed and flexibility151 – in a single word agility. The article became the cornerstone of the

agile approach to software development developed by Ken Schwaber and Jeff Sutherland

developed during the mid 1990s.152

The Rugby ball being passed around represents a shared understanding of the vision and

mission. It embraces highly subjective insights, intuitions and hunches. Unlike a baton being

passed in a predetermined sequence from one runner to the next in a relay race, if one had to

trace the movement of the Rugby ball throughout the game it would seem to move in an

unpredictable chaotic manner, leaning towards the theories of Brownian motion, Artificial

Life and Complex Adaptive Systems. The ball movement is determined on the spot, here and

now, by the team members’ inner-game experiences, micro-tactics and skills. For this reason

148 Rooney, D. Martin, N. 2003. Enabling Software Quality with Extreme Programming.
149 Theunissen, W.H.M. 2003. A case-study based assessment of Agile software development.
150 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company.
151 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company:93.
152 Schwaber, K. 2001. Agile Software Development with SCRUM. Prentice-Hall

 55

Nonaka and Takeuchi also warns that this approach has an over-reliance on the complexity of

socialization which becomes inefficient as the number of team players increase.153

Scrum offers an empirical approach, which allows team members to work independently and

cohesively in a creative environment. It recognises the importance of the social aspect in

software engineering: the name derives from the game of rugby, and refers to a rugby play in

which the forwards of each side come together in a tight formation and struggle to gain

possession of the ball when it is tossed in among them. The process is quick, adaptive, and

self-organizing, and it represents a significant change from sequential development

processes. The Scrum proponents believe that software should not be developed according to

well defined repeatable processes used in typical manufacturing. This repetition makes the

input and output parameters more predictive and descriptive, but this is not a helpful goal in

today's software engineering. Time to market, return on investment, and the need to build a

vision alongside the customer are among the major challenges in modern software

engineering.154

Scrum is an Agile Software Development process designed to add energy, focus, clarity, and

transparency to project teams developing complex systems. It leverages Artificial Life

research by allowing teams to operate close to the edge of chaos to foster rapid system

evolution by enforcing a simple set of rules that allows rapid self-organisation of software

teams to produce systems with evolving architectures. According to Sutherland a properly

tuned Scrum team will:155

• increase speed of development;

• align individual and organisation objectives;

• create a culture driven by performance;

• support shareholder value creation;

• achieve stable and consistent communication of performance at all levels; and

• enhance individual development experience and quality of life.

Scrum uses similar practices as Extreme Programming, including short daily stand-up

meetings, time-boxed iterations called sprints, and the 40-hour week. While Extreme

153 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company:118.
154 Krebs, Joe. 2005. RUP in the dialogue with Scrum.
155 Sutherland, J. Viktorov, A. Blount, J. 2006. Adaptive Engineering of Large Software Projects with

Distributed/Outsourced Teams.

 56

Programming is very specific in how the work should be conducted with pair-programming

and continuous integration, Scrum leaves it up to each team to decide the best way to

accomplish the required work. It should therefore be combined with more process

prescriptive methodologies such as XP to provide a more complete and defined approach to

systems development.156

The primary philosophy of Scrum is to manage detailed complexity157 by dividing the project

into smaller and more manageable parts. This strategy is similar to the practice of Getting-

Things-Done158 by creating prioritised lists and then moving swiftly, quickly adjusting focus

and tackling each item one-by-one.

Scrum is an iterative methodology in which each iteration is called a Sprint. The prioritised

list of product requirements is called a Product Backlog. Items is carefully selected from the

Backlog and allocated to a Sprint. The tasks in the Sprint are then to be completely finished

at the Sprint Review Meeting at the end of the Sprint when the result of the work is presented

to the customers. For the code to be considered finished, it has to be written, implemented,

thoroughly tested and ready for shipping to the customer.

2.8.1 Scrum roles
There are only three different roles in a Scrum project, the Product Owner, the Scrum Master

and the Team. These three roles are described below:

• Product Owner – this is the customer representative responsible for listing the

requirements in the Product Backlog and to prioritize them. With the help of the

Team he chooses the requirements that will be implemented during the Sprints and

during the sprint it is a benefit if he is available for further questions from the Team.

He is not however allowed to contact the Team and ask them to sneak in another task

in the sprint unless he is willing to remove another.

• Scrum Master – the coach that guides the Team in the right direction so that it

concentrates at the tasks committed to the Sprint and follows the guidelines of Scrum.

He is responsible for protecting the Team from outside disturbances during the sprint

such as other commitments both in the other projects as well as in the Scrum project.

156 Schwaber, K. Mar. K. 2002. Scrum with XP.
157 Senge, P. 1994. The Fifth Discipline – The Art & Practice of the Learning Organization.
158 Allen, David. 2002. Getting Things Done – The art of stress-free productivity.

 57

The Scrum Master is also in charge of conducting Daily Scrum meetings with the

Team.

• The Team – is the developers that work on the project. They are self-managed and

independent. They help the Product Owner to sort out the requirements for the sprints

and then they break down the requirements into manageable tasks that are introduced

into the Sprint Backlog. They meet every day at Daily Scrum meetings and inform the

others of what they have done, what they are going to do next and possible problems

they have encountered so far. A well organised team should not consist of more than

seven developers. If the project is larger than this it is better to divide the developers

into several teams and have them work on different functionality.

2.8.2 Scrum artifacts
There are only three small work products defined in Scrum, the Product Backlog belongs to

the Product Owner, the Sprint Backlog to the Team and the Scrum Master is responsible for

the Burn-down Chart. In addition to this every project is welcome to use whatever

documentation they want.

• Product Backlog - this is the document that contains all of the requirements. It

belongs to the Product Owner and he is responsible for keeping the Product Backlog

up to date during the project; changing or deleting requirements that are out of date

and adding new requirements when such are found. The Product Owner is the only

one who has a right to change anything in the Product Backlog but it is the Team that

estimates the work-time needed on each requirement. In the Product Backlog the

requirements should not be very detailed and the estimations for the requirements are

in workdays.

• Sprint Backlog – when the Product Owner and the Team have decided what is going

to be included in the sprint the Team breaks down the chosen requirements into

smaller tasks and estimates the time needed for each one. These tasks should be small,

no more than 4-16 man-hours, in order to be manageable for the developers assigned

to it. These tasks are recorded in a document called at Sprint Backlog and during the

sprint it is the Team’s responsibility to keep it up to date with the remaining time on

the task and who is assigned to it. The Team should also insert new tasks that are

found during the sprint that are required to be done before another task in the sprint.

 58

• Burn-down Chart – this daily graph is a visual aid to show how much work remains

in the Sprint or in the project. It is a graph with the estimated time of the remaining

work versus the time left in the sprint. It is a way for all of the stakeholders to see

how the work is progressing and it implies if the Team is going to be able to keep

their goal or if they have to contact the Product Owner and redo the prioritizing. It can

be compared to a visual graph in Extreme Programming over estimated time

remaining versus time left in the sprint.

2.8.3 Scrum meetings
Scrum advocates the principle that different projects need different approaches for the work.

It is up to the Team if they want to practice pair programming or how they want to test their

products. Scrum does however advocate the 40-hour week explained under the practices of

Extreme Programming and also the four meetings explained below, to be able to organize the

work. All meetings in Scrum are time-boxed so as to not stray from the subject.

• Sprint Planning Meeting – this meeting consists of two parts and both parts are time-

boxed to four hours each. During the first part the Product Owner explains all of the

entries in the Product Backlog, what they mean and why they are necessary. After that

the Team gives a rough estimate of how much time each entry will take in days. Then

the Product Owner will have to choose what is most important to produce during the

sprint. Here the Product Owner and the Team have to compromise some, the Product

Owner thinks about what is important from a sales view and the Team looks at what

has to be done first from a technical view. During the second half of the meeting the

Team breaks down the requirements in smaller tasks, about 4-16 ideal man-hours, and

estimates the work time on each task. All of the tasks are entered into the Sprint

Backlog and the Team members decide what they want to start to work on. The

Scrum Master often works as a documenter while the Team discusses the tasks and

time-estimation.

• Sprint Review Meeting – during this meeting the Team presents the work they have

been working on during the last sprint. Everything that is presented has to be finished,

i.e. it should be ready to be used by the customer. They should not just finish coding

but they should also have finished testing the product and have verified that it works

correctly. This meeting is also time-boxed to four hours so as not to get into

discussions that do not have anything to do with the work during the sprint.

 59

• Sprint Retrospective Meeting - during this very important meeting the Team discusses

the work during the last sprint. What worked well, what did not, what should have

been done differently and what can be done not to make the same mistakes again? It

gives the Team a chance to decide how they can do to make the next sprint work

better and to not make the same mistake twice. The Sprint Retrospective Meeting is,

just as all the other meetings, time-boxed as not to stray from the issue at hand. In this

case the meeting should not be more than three hours long.

• Daily Scrum Meeting – every day the Scrum Master and the Team have a 15 minute

long stand-up meeting. All of the team members answer these three questions:

o What was done since the last Daily Scrum?

o What is planned to get done between now and the next Daily Scrum?

o What is in the way that is preventing work from getting done?

The purpose is that the Team should discuss the answers with each other and not

report to the Scrum Master. The Scrum Master is responsible for calling the meeting

and for making sure that everyone participates but The Daily Scrum Meeting is for

the Team. In order to keep the meeting to 15 minutes you do not discuss solutions in

the Daily Scrum. If someone is having a problem that someone else can help with you

decide to meet after the meeting and discuss it then.

Several organisations have reported success with Scrum. Teleca, Sweden, has started to use

Scrum in two of their projects and the intermediate results are positive.159 Sun Space &

Information Systems, South Africa, has helped his company and other to adopt Scrum

successfully.160 Schwaber161 states that it is straight forward and simple to implement

Scrum. When implementing Scrum management with some Agile processes, satisfactory

releases is eminent, everyone will enjoy working with each other, overtime will be

eliminated, customers will be pleased, the competition will be vanquished, and bonuses will

flow. Schwaber however also warns that it is still No Silver Bullet.

159 Linder, G. 2006. Evaluation of Software Development Projects using the Agile Method Scrum.
160Confirmed via formal discussions and e-mail correspondence with Jaco van der Merwe, Head of Information

and Software Systems division, Sun Space & Information Systems, Stellenbosch South Africa.
161 Schwaber, K. Martin, R. C. Best Practices in Scrum Project Management and XP Agile Software

Development.

 60

Figure 2-8: Scrum Development Process

The Scrum process flow that is summarised in Figure 2-8 is a process of change. Change

within the engineering organisation, in the tools employed, practices followed, sociology of

interaction, workspace, and ongoing collaboration in creating increments. Change between

the engineering organisation and marketing organisation in how work is planned and changes

are handled. Change in the way progress is perceived, as it is tracked by requirements rather

than tasks.162

Looking at release plans more as forecasts allows people to consider adjustments due to

various circumstances and make better decisions about moving forward. It is more a roadmap

for knowing where the team is and looking ahead to what is coming next. The hardest

change is backsliding. Letting others figure out how to work together rather than telling them

how to work together is a major shift in management philosophy. This shift requires the

Scrum Master to continuously observe and coach his staff to adopt the self-management

approach. Every team member does the best that can be done. And by understanding and

seeing that the product at the end of each Sprint is only as good as everyone’s cooperative

effort is also a humbling experience in a profession where people try to be heroes. All of

162 Schwaber, K. Martin, R. C. Best Practices in Scrum Project Management and XP Agile Software

Development.

 61

these changes are gradual. As soon as the changes appear to have taken place, some stress

occurs and everyone reverts back to form. Regaining the progress each time causes strain.163

Schwaber and Schatz realized that the problems would never end and that the core of Agile

processes is unearthing problems so that they can be solved; and in a changing, complex

development environment, these problems would only end when changes ended, and that

would be never. Making the decision to adopt Agile is a commitment to change the team

culture. Someone has to be willing to be the champion and take risks in order to improve the

organisation. It must start with a vision, a realization of the pain, and a willingness to

question everything in your development process. 164

Toyota’s success has been attributed to fourteen clearly identified principles. Boris Gloger165

shows that Scrum is fully compatible with these principles as outlined in The Toyota Way166.

Toyota rejected ISO 9001 and reverted to their preferred way defined by their principles as

follows:

• Decisions are based on a long-term philosophy even at the expense of short-term

financial goals.

• Continuous process flow brings problems to the surface.

• A pull or demand driven system avoids overproduction.

• Workload should be levelled out.

• The culture must foster a drive for fixing problems to get quality right the first time

and minimise work stoppages.

• The foundation for continuous improvement and employee empowerment is driven by

standardising tasks.

• Problems are made transparent through the use of visual controls.

• Reliable technology that serves the teams objectives and processes will be adopted.

• Leaders should thoroughly understand the work, live the philosophy, and teach it to

others.

163 Schwaber, K. Martin, R. C. Best Practices in Scrum Project Management and XP Agile Software

Development.
164 Schwaber, K. Martin, R. C. Best Practices in Scrum Project Management and XP Agile Software

Development.
165 Gloger, Boris. 2006. Comparison of Methodologies.
166 Liker, Jeffrey K. The Toyota Way.

 62

• Exceptional people and teams will be developed to follow the company's philosophy.

• Thorough understanding of every situation.

• Decisions are carefully taken by consensus, with thorough consideration of all

options, and implemented rapidly.

• A learning organisation is build through relentless reflection and continuous

improvement.

Scwaber predicts that only about one-third of companies that try to use Scrum will succeed.

Those companies that do succeed with it are often those for whom technology is their

lifeblood, and if they don't succeed with it, they risk going out of business.167

Managing even a single Scrum team can be difficult at times; managing multiple Scrum

teams presents an even greater challenge. Siemens Communications believes they found a

way to make it easier. They established several Scrum teams to work collaboratively in

creating one software system and then soon recognised that this collection of Scrum teams

formed its own Agile Development System. Because the Theory of Constraints (TOC) works

so well on optimising value-creating systems, they wondered if it would have a similar effect

on the Agile development system and found it extremely powerful and valuable in increasing

their system’s velocity.168

2.9 Socialistic Era
Unlike most other Agile methods, free software and open-source development does not have

methodology gurus (they have gurus of other sorts). What emerged was community-owned

open-source software products of outstanding quality. These communities are strung

together by a passion for developing solutions for which the requirements never existed. Eric

S. Raymond’s famous essay, and later his book, titled The Cathedral and the Bazaar,169

explained that open-source development was so successful by being human-centric, iterative,

incremental working systems and build with pride. It is not resource-limited. There is no

budget and no deadlines. Nonetheless, the enormous success of projects like the GNU toolset,

Linux, Apache, Mozilla Firefox, and so on confirms the open-source phenomena’s value and

robustness in large complex and mission critical software projects. Very valuable and

167 Baxter, Andrew. 2005. Rapid results without a rugby scrum.
168 Pichler, Roman. 2006. Agile Gets Lean – How we optimized our Agile Development System using the

Theory of Constraints and Scrum.
169 Raymond, E. S. 2001. Cathedral and the Bazaar – Musings on Linux and Open Source by an Accidental

Revolutionary.

 63

successful companies such as Thawte170, Google and Amazon build their businesses on these

foundations. Today even financial institutions are turning towards open-source solutions. A

host of very active and valuable open-source ERP and CRM projects such as Compeire171,

Sequoia172, and the MIT Open for Business173 project are competing with large commercial

packages such as SAP R/3, Oracle, Sage and Microsoft Dynamics. Telecoms platforms such

as Asterisk174 are powering more and more businesses. Open Source Software is now being

adopted by corporations much faster than a decade ago.

The following is a selection of CatB175 lessons that map closely with Agile principles:

• Commitment. Every good work of software starts by scratching a developer's personal

itch. If you have the right attitude, interesting problems will find you. When you lose

interest in a program, your last duty to it is to hand it off to a competent successor.

• Refactoring. Good programmers know what to write. Great ones know what to

rewrite and reuse. Perfection in design is achieved not when there is nothing more to

add, but rather when there is nothing more to take away. Plan to throw some away;

you will, anyhow.176

• Customer on-site. Treating your users as co-developers is your least-hassle route to

rapid code improvement and effective debugging. The next best thing to having good

ideas is recognising good ideas from your users. Sometimes the latter is better. Often,

the most striking and innovative solutions come from realising that your concept of

the problem was wrong.

• Small releases. Release early. Release often. And listen to your customers.

• Continuous Integration and Testing. Given a large enough beta-tester and co-

developer base, almost every problem will be characterised quickly and the fix

170 Mark Shuttleworth created a huge global success from a small team in Cape Town using open source

software. Today his UK based company called Canonical is fuelling several open-source initiatives and
boldly taking on giants such as Microsoft.

171 See www.compeire.org
172 See www.sequoiaerp.org
173 See www.ofbiz.org
174 See www.asterisk.org
175 CatB is short for The Cathedral and the Bazaar. The lessons are taken from the Raymond’s book. See

www.catb.org
176 Taken directly from Fred Brooks’ The Mythical Man-Month.

 64

obvious to someone. If you treat your beta-testers as if they're your most valuable

resource, they will respond by becoming your most valuable resource.

Provided the development coordinator has a communications medium at least as good as the

Internet, and knows how to lead without coercion, many heads are inevitably better than one.

Raymond believes that the future of open-source software will increasingly belong to people

who know how to play Linus's game177, people who leave behind the cathedral and embrace

the bazaar.

The social character and philosophy of the open-source community is possibly best described

by the African concept of Ubuntu symbolising humanity towards others.178 In order for

members of the Ubuntu179 community to work together effectively, they laid down some

ground rules for cooperation and behaviour to considerate, respectful, collaborative, open-

minded, inquisitive, and graceful.

In contrast with the information technology giants such as Microsoft, IBM and Oracle, the

open-source organisations base their predominant resource on free-spirited social networks of

passionate people. The social contracts do not differ and people come and go like bees in a

hive. The primary difference between the old Goliaths and the young Davids is adopting a

closed-system versus open-system approach. This cultural shift has already occurred to IBM,

while Microsoft is desperately trying to catch on to the socialistic era dominated by the forces

of contingent labour180. It is a much different economic playground to compete in, where the

rules are open and the actors are uniquely competitive.

Canonical and Google’s successes sprouted around communities of developers as users and

matured into mass market acceptance. It is an enormous achievement made possible by a

passion for the impossible. In a turbulent sea of abundant rapid changes it is tough to invent

in silos and survive. Instead, it is essential to nurture a community that sprout new cultures

and innovations.

177 Raymond gives all credit for CatB to Linus Torvalds the creator of Linux.
178 Archbishop Desmond Tutu. 2000. No Future Without Forgiveness. Tutu describes Ubuntu as follows: A

person with ubuntu is open and available to others, affirming of others, does not feel threatened that others
are able and good, for he or she has a proper self-assurance that comes from knowing that he or she belongs
in a greater whole.

179 Ubuntu is a version of Linux being developed and marketing by Canonical, a young UK based company
founded by a South African, Mark Shuttleworth. See www.abuntu.com and www.canonical.com

180 Barley, S.R. Kunda, G. 2004. Gurus, Hired Guns, and Warm Bodies – Itenerant Experts in a Knowledge
Economy. Contingent labour is a term economists and sociologists use for an array of short-term
arrangements including part-time work, temporary employment, self-employment, contracting, outsourcing,
and home-based work.

 65

2.10 Metamodels
A process metamodel is a model that describes process models. It must therefore have the

flexibility to describe all common development methods ranging from the traditional linear

models to large and complex development methodologies. The metamodel defines a

reference system from models in a consistent standardised way in terms of common concepts

and associated terminology. Thus, the key to a good process metamodel is the ability to

provide an optimal compromise between flexibility and standardisation.

The primary benefit of metamodels is its adaptability to changes in real-world process

implementations. The cultures and structures within and amongst organisations are different.

Any two companies that may have adopted the same specific standard work practices and

reached comparative maturity levels would typically have tailored their processes within the

context of their cultural, geographical and economical position. Furthermore as the external

and internal situation changes it needs to occasionally alter its processes. These alterations

could typically be done as continuous improvement programmes or radical restructuring.

Commercial tools that have to support the general landscape of SDLC methodologies need to

do so as a customisable process framework. There are many such tools around today and

many more that has come and gone. These tools offer development teams process guidance

and integrated workflow management.

Figure 2-9: OPEN Process Framework meta-model (partial)

 66

The more elaborate model for SDLC design shown in Figure 2-9 is part of the Henderson-

Sellers OPEN Process Framework Metamodel181 which is a free online repository. The

purpose of the metamodel is to define the abstract elements and associations that are common

to all methodologies. These are for example elements such as Team, Role, Milestone,

Component, Task, and Project. Associations are for example that a Project is associated with

many Milestones and several Tasks is allocated to each Milestone. The metamodel would

also be decoupled from any specific dialect or language. Hence for some the concept of

Milestone would be named Iteration, and for others it is called Sprint.

Microsoft evolved and embedded its so-called Microsoft Solutions Framework (MSF) into a

viable commercial offering called Visual Studio Team System (VSTS). MSF provides the

infrastructure for maintaining a set of software engineering processes, principles, and

practices that empower developers to achieve more success during each step of the software

development life cycle. As a metamodel, MSF provides a baseline for adaptable guidance. It

is based upon experiences and best practices from inside and outside of Microsoft, to increase

the chance of successful delivery of information technology solutions to the customer by

working fast, decreasing the number of people on the project team, averting risk, while

enabling high quality results. The MSF philosophy therefore holds that there is no single

structure or process that optimally applies to the requirements and environments for all sorts

of projects. Therefore MSF supports multiple process approaches, so that it can be adapted to

support any project, regardless of size or complexity. This flexibility means that it can

support a wide degree of variation in the implementation of software engineering processes

while retaining a set of core principles and mindsets.182

181 Firesmith, D. 2006. OPEN Process Framework Metamodel.
182 Sridharan, P. 2004. Visual Studio 2005 Team System: Microsoft Solutions Framework.

 67

Figure 2-10: MSF Life Cycle Model183

Figure 2-10 shows that the Microsoft Solutions Framework Process Model consists of series

of short development cycles and iterations. The Knowledge dimension shows that the

lifecycle practices are grounded in a set of disciplines and the various overlapping lifecycle

phases correlates well with RUP. Along the Time dimension the model embraces rapid

iterative development with continuous discovery and adaptation, driven by regular

interfacing with the various project stakeholders. The overlapping phases and incremental

iterations ensure a healthy, tangible flow of value defined a focused, stable portion of the

overall envisioned solution.

Microsoft originally supported very limited variation of its internal SDLC practices with

supporting documentation for its process compliance with ISO 9001. With the redevelopment

of their development tool chain they shifted focus in support of the two dominant industry

variations. MSF provides a high-level framework of guidance and principles which can be

mapped to a variety of prescriptive process templates. It is structured in both descriptive and

prescriptive methodologies. The descriptive component is the MSF metamodel, which is a

theoretical description of the SDLC best practices for creating SDLC methodologies.

Microsoft provides two prescriptive methodology templates that provide specific process

guidance, named MSF for Agile Software Development and MSF for Capability Maturity

Model Integration Process Improvement. 184 A third template for Scrum was developed by

another ISV. These three variants will be briefly elaborated on.

The MSF Agile uses the principles of the Agile Software Development approach formulated

by the Agile Alliance. It provides a process guidance which focus on the people and changes.

183 Source: MSDN Library article. Microsoft Corporation.
184 Sridharan, P. 2004. Visual Studio 2005 Team System: Overview.

 68

It includes learning opportunities by using iterations and evaluations in each iteration. The

MSF CMMI model provides additional formality, reviews, verification and audit. It has more

mandatory documents and reports than the agile version, and this more formal development

process reduces risk on large software projects and provides a measurable status.

Agile practitioners pride themselves on highly productive, responsive, low ceremony,

lightweight, tacit knowledge processes with little waste, adaptive planning and frequent

iterative delivery of value. It is often assumed that CMMI compliant processes need to be

heavyweight, bureaucratic, slow moving, high ceremony and plan driven. Agile developers

often sceptically perceive formal process improvement initiatives as management generated

inefficiency that gets in the way of productivity. Anderson and his team at Microsoft adopted

the teachings of W. Edwards Deming and stretched the MSF for Agile Software

Development method to fit the requirements for CMMI Maturity Level 3. The resultant MSF

for CMMI Process Improvement is a highly iterative, adaptive planning method, light on

documentation, and heavily automated through tooling. It enables management and

organisation of software engineering through use of agile metrics such as velocity and

cumulative flow but with an added dimension of an understanding of variation – adapted

from Deming’s teachings.185

Hamel and Highsmith186 recommend that, as with the ISO standards, the CMMI process

should be tailored for the organisation and then tailored for each project. Few achieve CMMI

Level 5, not only because they lack the resources for continuous process improvement, but

because they have a false impression of what a software process is. To reach a CMMI level,

an organisation does not have to do everything described in each of the Key Process Areas

(KPA) for that level; however, the goals of the KPAs must be satisfied.

Scrum for Team System187 is a free Agile Software Development Methodology add-in for

Microsoft Visual Studio Team System, developed by Conchango, in collaboration with the

Scrum co-inventor, Ken Schwaber, and the Microsoft Technology Centre UK. It provides

development teams with deep support for the use of Scrum, when running projects using

Visual Studio Team System’s integrated suite of lifecycle tools.

185 Anderson, David J. 2005. Stretching Agile to fit CMMI Level 3 - the story of creating MSF for CMMI

Process Improvement at Microsoft Corporation.
186 Hamel, S. Highsmith, J. 2000. Optimize — or Adapt. Software Development.
187 See www.scrumforteamsystem.com

 69

2.11 Adoption and comparison
Ambler’s survey188 on Agile SDLC adoption in March 2006 showed that:

• 65 percent have adopted one or more Agile development techniques.

• 41 percent have adopted one or more Agile methodologies.

• 60 percent report increased productivity.

• 66 percent report increased quality.

• 58 percent report improved stakeholder satisfaction.

The survey respondents ranged from small teams with less than ten members to large IT

organisation with thousands of

developers.

Table 2-2: Adoption of agile techniques (multiple answers allowed)

Table 2-2 indicated that the most popular methodologies are XP by far, followed by FDD and

Scrum. It took three decades since Brooks’ initial cries to have reached this milestone. This

is a short period in human lifetime and a long period in computer lifetime. Nevertheless the

milestone marks significant progress regarding our understanding of efficiency when it

comes to the development of computerised systems. Even though Brooks identified the same

difficulties that are still plaguing the practice today, he did not offer any concrete solutions at

the time. It has now come to pass that what originally seemed insipidly unprofessional at the

turn of the millennium, has now unequivocally been proven to contain components of a

Silver Bullet for the management and practice of System Development Life Cycles.

188 Ambler, S.W. 2006. Survey Says Agile Works in Practice.

 70

Figure 2-11: Comparison of methodologies

Ambler189 provides various comparisons of most of the known methodologies as illustrated

in Figure 2-11. All the development of prescriptive and complete methodology standards

were moving further and further away from the evasive Silver Bullet.

2.12 Conclusion
Traditional software development methodologies are based on a closed-world assumption

that the boundary between system and environment is well defined and static. This

assumption is flawed. Software systems need to keep pace with its unpredictable open-world

environment allowing it to quickly react to changes by self-organising its structure and self-

adapting its behaviour.190 The problem domain is therefore not bound by the methodologies

of software construction alone. It has to address the architectural domain of how software

systems must be designed to endure change.

189 Ambler, S.W. 2006. Choose the right software method for the job.
190 Baresi, L. Di Nitto, E. Ghezzi, C. 2006. Toward Open-World Software: Issues and Challenges. IEEE

Computer. Vol.39. No.10.

 71

Chapter 3
Proposed theoretical models

The more precisely the position is determined,

the less precisely the momentum is known.

 The path comes into existence only when we observe it.

Werner Heisenberg, 1927

This chapter expands on the various organisational and knowledge management theories that

have had some influence on SDLC methodologies described in the previous chapter. It will

focus on emergent theories and factors that would most likely have positive influence in

delivering more satisfactory systems. It will be seen that systems development has less to do

about the specifics of the systems being developed, but more to do with the management of

the workforce that develop these systems. Specific attention will be given to Sensemaking

and Complex Adaptive Systems theories. In the context of the thesis the predominant means

of production is human capital and more specifically teams. It will be shown that it is

essential that the development manager understand the working of teams as complex adaptive

organisms.

3.1 Introduction
Albert Einstein proclaimed that a theory should be as simple as possible, but no simpler. The

topic dealt with here is one of complexity. Managers can deal with chaos by forcing it to

order. However when the system you need to control is complex by nature it places higher

demands on management practices. The elegance and precision of physics have long been

the envy of life scientists, social scientists, businesspeople, and ordinary, literate citizens.

Physics has served as the model of how knowledge should be handled.191

Physics is both real and abstract, but at least it seems to conform to a set of universal laws

commonly known as the laws of nature. These are the laws of physical things. The simple

well known powerful equation derived by Einstein,

191 Frame, J. Davidson. 2002. The New Project Management.

 72

 3-1 2mcE =

reveals the stark linear contrast between energy (E) and matter (m). It hints that an enormous

amount of energy can be produced from a little amount of matter. It does however not

describe the dynamics and constraints of this transformation. Neither does it explain life and

the laws of nature for living organisms. This seems to be a much more challenging but

evasive frontier of scientific discovery, perhaps only to discover that

 3-2 2kcV =

whereas enormous value (V) can be produced from a little knowledge (k). Yet again the

formula does not yield how this transformation occurs. There are no universal units of

measure for knowledge or value. These dimensions are in the subjective domain.

3.1.1 Seeing
Complex systems thinking emerged as man started dancing around a fire, casting imaginative

monsters on the cave walls192 where the children sheltered, and spurred a parallel universe of

belief. Carlos Castaneda193 wrote a series of books on what he calls Becoming a Man of

Knowledge. He was a scholar of anthropology at UCLA gathering information on various

medicinal herbs used by the Indians in Sonora, Mexico, when he met the old Yaqui Indian on

which the books are based. Castaneda writes:

We were talking about my interest in knowledge; but, as usual, we were on

two different tracks. I was referring to academic knowledge that transcends

experience, while he was talking about direct knowledge of the world.

Don Juan's method of teaching required an extraordinary effort on the part of

the apprentice. In fact, the degree of participation and involvement needed was

so strenuous that by the end of 1965 I had to withdraw from the

apprenticeship. I can say now, with the perspective of five years that have

elapsed that at the time Don Juan's teachings had begun to pose a serious threat

to my 'idea of the world'. I had begun to lose the certainty, which all of us

have, that the reality of everyday life is something we can take for granted.

192 Morgan, G. 2001. Images of Organization:216. Morgan presents a metaphorical analysis bases on Plato’s

cave story in The Republic. This has common ground with Gestalt theory which explores the virtual reality
creative ability of brain and mind.

193 Castaneda, Carlos. 1971. A Separate Reality.

 73

Apparently in this system of knowledge there was the possibility of making a

semantic difference between seeing and looking as two distinct manners of

perceiving. 'Looking' referred to the ordinary way in which we are accustomed

to perceive the world, while 'seeing' entailed a very complex process by virtue

of which a man of knowledge allegedly perceived the 'essence' of the things of

the world.

Castaneda refers to concepts such as sensible interpretation, units of meaning and

practitioners, which in today’s terms refers to knowledge workers. These statements are

quite relevant to the subject of Sensemaking. When dealing with models of Complex

Adaptive Systems one has to avoid looking too deeply and rather start seeing what it really is.

The dawn of the twentieth century revealed the heydays of scientific discovery and the revolt

against belief systems. Scientific enlightenment provided a new hope in objectivity and

reductionism. Science demonstrated that the mastering of control over matter and spurred a

belief that all systems are closed non-living systems.194 Be therefore forewarned to

acknowledge the importance of an open systems approach that is inclusive of order and

disorder, control and chaos, knowable and unknowable, expected and unexpected. As

scientific knowledge increases it helps to see the natural order in what was previously

labelled as chaos. It furthermore helps to make sense of novel events,195 and thereby reduces

complexity and entropy.196 Scientific knowledge of cybernetics is critical to maximise the

economic productivity of embedded knowledge production through innovation. All of the

elements are complex and abstract. Metaphors are powerful thinking aids that lies peppered

across the SDLC literature landscape. Metaphors and models help to simplify complex

systems and amplify understanding of the various phenomena. Morgan however warns that

metaphors also become a way of not seeing.197

3.1.2 Embedding knowledge and complexity reduction
Through embedding complex knowledge into innovative tools, inventors catapult future

generations forward without the need for them to know everything.198 Google’s co-founder,

Sergey Brin, envisions a little stylish brain plug-in appliance that will make the world’s

194 Flood, R. L. 1999. Rethinking the Fifth Discipline. Chapter 9. Towards systemic thinking.
195 Weick. K.E., Suttcliffe, K.M. 2001. Managing the Unexpected:80.
196 Boisot, M. 1998. Knowledge Assets:11.
197 Morgan, G. 1997. Images of Organization:5.
198 Cox, Brad. 1995. No Silver Bullet Revisited. Cox argues that the essential complexity of software goes away

once it is properly encapsulated.

 74

knowledge immediately available on demand.199 Gadgets such as Apple’s iPods could be the

embryo of such a fantastic achievement. This is certain future reality as the cost and density

of persistent storage and processor power continues to obey Moore’s law; and as text-to-

speech and voice recognition reach the same error rate as the average human. Personal

search, tagging and electronic notebook technologies would create a localised cache of the

personified Internet while keeping itself in sync through global wireless Internet access. The

point here is that humans no longer have to know everything if they can embed the

knowledge into these kind of tools. Every time someone drives her car, she relies on a lot of

embedded knowledge that she does not need to know unless she had to build her car from

raw materials each time she wanted to get somewhere. Bryson200 reaches the same insight

that humans do not yet fully know how they came to be and how every cell and organ

functions, yet they instinctively201 know enough to make a living. Not all toolmakers are as

profound as Ford, Nokia, Google and Apple. They distribute knowledge-power202 through

the discipline of simplicity. It is a lot easier to succeed when the environment is designed to

help you get in; get what you need; and get out.203 Understanding data, information,

knowledge, knowledge embedding and the diffusion of knowledge-power has been studied

by many philosophers, psychologists, neurologists, mathematicians, physicists and computer

scientists. Boisot204 went beyond the classical epistemology and discovered that the

productive use of knowledge lies in the knowledge lifecycle model what he calls the Social

Learning Cycle (SLC). Only by exchanging information do people create value especially if

that information leads to the conservation of energy.

3.1.3 Knowledge-power
Modern day man’s preoccupation of getting things done is believed to be critical for survival.

Like mice trapped in a rat-race business men and women live in a growing economic crisis of

maximising their busyness205 opposed to creating value. Robert Flood206 draws an insightful

199 Vise, David A. 2005. The Google Story:292.
200 Bryson, B. 2003. A Short History of Nearly Everything.
201 Instinctive know-how is a form of tacit knowledge that is embedded into living creatures and transferred by

heredity. It is known, but not learned, and not taught.
202 Flood, R. L. 1999. Rethinking the Fifth Discipline.
203 Jensen, W.D. 2000. Simplicity – The New Competitive Advantage in a World of More, Better, Faster:173.
204 Boisot, M. 1998. Knowledge Assets.
205 Mackay, Hugh. 2005. Mind your own busyness.
206 Flood, R. L. 1999. Rethinking the Fifth Discipline – Learning within the unknowable:95.

 75

classification of his impression on the literature volume of books on management and

organisation as illustrated in Figure 3-1.

Figure 3-1: Four knowledge dimensions207

Flood hypothesises that the knowledge society has invested knowledge mostly on process,

less on structure and meaning, and very little on what he labels knowledge-power.

Knowledge-power essentially focuses on the development of actionable self-reliant people.

3.2 Lifecycle models
Lifecycle modelling draws developmental patterns from various life-forms, from its inception

to its decay. At the physical level, a lifecycle is the sequence of developmental changes

undergone by an organism from one primary form to the recurrence of a similar form in the

next generation. On a sociological level, it is a series of stages that characterise the course of

existence of an individual, group or culture.208 These systems interact and transact with its

environment in order to survive. It takes from the environment and gives to the environment,

leaving itself and its environment in an altered state. This is its autopoietic209 nature.

Ultimate survival however requires subsequent mutations to include incremental and radical

improvements opposed to defects. Applying this frame of reference to the context of man-

made systems development, it is necessary to acknowledge all of the following aspects and

contrasts:

207 Adapted and synthesised from Flood's four windows and bookshelf metaphors for deepening systemic

appreciation. Flood, R.L. 1999. Rethinking the Fifth Discipline. Chapter 12.
208 Definition derived from the Random House Webster’s College Dictionary. 2000.
209 Autopoiesis was introduced by biologists Maturana and Valera in 1973.

 76

• Economic environment and domain analysis are inseparable;

• Domain analysis and project management are inseparable;

• Project management and engineering are inseparable;

• Systems engineering and analysis are inseparable;

• Systems analysis and design are inseparable;

• Systems design and development are inseparable;

• Systems development and implementation are inseparable;

• Systems implementation and support are inseparable;

• Systems support and improvement are inseparable; and

• Systems improvement and sustainability are inseparable.

At all of these interwoven spars lie various artefacts such as strategies, principles, patterns,

goals, risks, standards, practices and constraints. A small change to an artefact could have an

enormous impact on the survival of the whole as defined in Complexity Theory. These

critically important artefacts are created and manipulated by small teams of people or agents.

They are symbolic analysts210 with the explicit and tacit knowledge and skills necessary to

conduct information flows and create innovative systems. Cybernetics211 embroiders all

these elements together into a protean model known as the Systems Development Life Cycle

(SDLC).

The word organisation comes from the Greek word organon, meaning a tool or

instrument.212 Organisation management experts such as Senge, Nonaka, Boisot, Morgan,

Weick, Snowden, and Marchand provide numerous instruments for perceiving data. The data

is conceptually and perceptually filtered in context of the environment. Managers use these

tools or instruments to amplify and accelerate their understanding of the data in order to take

good decisions that lead to desired outcome. Figure 3-2 shows Boisot’s Agent-in-the-World

model that provides a comprehensible framework for understanding cybernetics and the

dynamics of Sensemaking.

210 Robert Reich used the term symbolic analysts to classify well educated people who can earn very good

wages in the global market.
211 Norbert Weiner coined Cybernetics in 1947 as the science of control and communication in and between

animal and machine. Norbert Wiener. 1954. The Human use of Human Beings:16.
212 Morgan, G. 1997. Images of Organization:15

 77

Figure 3-2: Boisot's Agent-in-the-World model213

The first chapter describes software development as being more of a skilled trade than an

exact science.214 Constructing complicated systems is however a complex process that needs

to be executed with competitive agility. When such work needs to be performed quickly, it

must mostly rely on intuition215. How does one characterise, model and represent intuition

and common sense in a productive framework that is scientifically defensible? How does

one solve the Software Developer’s Dilemma?

The Management Consultants and Business Analysts fields have grown tremendously to

close this expansive gap. These analysts are responsible for knowledge acquisition, analysis,

codification and transfer. This process is most accurately modelled by Boisot’s Social

Learning Cycle.216 With the increase in computer processing power, the decrease in

computing and telecommunications costs, the speed of the learning is improving. This gives

hope for capturing more accurate and complete requirements.

As discovered in Chapter 2, in effective systems development models such as developed by

Highsmith, Cunningham, Beck, Schwaber and Sutherland, a paradigm shift gradually

emerged hinting that the silver bullet lies somewhere within what Nonaka and Takeuchi

called The New New Product Development Game.

213 BOISOT, M. CANALS, A. 2004. Data, information and knowledge: have we got it right?
214 See paragraph 1.4.1 The Software Developer’s Dilemma.
215 Intuition is proposed here as a form of tacit knowledge that is performed with high agility.
216 Boisot, M. 1998. Knowledge Assets.

 78

Figure 3-3: Mathematical and scientific roots of emergence217

The goal in this chapter is to identify and understand the characteristics of the Self-

Organising Systems Development Teams. As illustrated in the systems diagram in Figure 3-3

these characteristics would emerge from a study of the team dynamics and behaviour with

regards to the following main topics:

• Self-management. Setting goals, objectives and milestones;

• Self-configuration. Structural design, composition and dismantling;

• Self-healing. Discovery and counteracting of issues;

• Self-optimisation. Monitoring and control of resources to ensure the optimal

functioning with respect to the defined objectives; and

• Self-protection. Securing its survival by proactive identification and protection from

arbitrary attacks.

Practical and pleasing models are simpler to understand, simpler to communicate and simpler

to implement. Simpler models do not deny chaos and complexity; it however contains,

nourishes and protects it. Like the essence of blood, it forms a dynamic value creation

ecosystem through free flowing cells that clog together temporally, detaches, frisky exchange

of information, delivering essential resources and removing harmful barriers. Placing the

product development process into a complete context it could be envisioned that an all

217 Goldstein, J. 1999. Emergence as a Construct: History and Issues.

 79

embracing view is considered where all the elements is transported in a dynamic free-flowing

value-creating conduit as illustrated in Figure 3-4.

Figure 3-4: A value-creating conduit for systems development

Each of these living cells is represented by teams with unique roles and goals with the

context of the corporation’s economic activity. Changes within each cell may have some

effect on other cells and in extreme cases even small changes could have extraordinary

effects. This is the predicate of chaos and complexity theory. Turning the conduit or vessel

sideways presents a dynamic perspective wherein the various cells move and interact. The

metaphor of blood is particularly useful in that it symbolise many of the essential attributes

such as clogging, immunity, cloning, transformation, transportation, healing, supporting,

adapting, and redundancy.

The goodness-of-fit will be determined between the characteristics of SDLC methodologies

as described previously and that of new knowledge management theories with specific

attention given to organisational sensemaking, systems thinking and cybernetics before

delving more deeply into complexity theory.

 80

3.3 Sensible leadership
What constitutes good sensible leadership? Drucker218 argued that the conductor of the

orchestra is probably the acme of good sensible leadership. The conductor is a highly

specialised and skilled individual, works effectively with a broad spectrum of diverse and

talented artists, and is hyper-focussed on the sensemaking and sense-giving cues while

conducting the orchestra. Hammer219 disagrees with the orchestra model and proposes the

football team model instead. Football is played in a constant state of flux. He argues that the

project strategy resembles a game plan much more than it does a musical score does.

Moreover, a football team’s organisation and management structure bear an uncanny

resemblance to those of a process-centred company.

Drummond220 focuses on what goes wrong with organisational decision making. She is

highly critical of decision making as a science filled with technical sophistication, but devoid

of feeling. Her work represents the Achilles’ heel of management with the characteristics

that managers should be cognisant of when leading teams. Factual data is typically devoid of

intuition, feeling and sense, and is often inappropriate, incomplete, inaccurate, misleading

and concealing, thereby clouding the situation by causing ambiguity and doubt. Too often

numerous biases, such as anchoring, frequency, vividness and emotion, causes distortion of

the reality in favour of a priori unrealistic, unachievable, and unsustainable outcomes.

Managers subconsciously disguise their emotions, with false rationality with regard to

planning, while faithfully going along with their intended plans. They gamble with repeated

optimism and ignoring other possibilities. The innovator’s dilemma221 is the curse of

ingenuity by getting trapped in continuity and the unfortunate trust in achieving the ultimate,

but unattainable future. Managers blindly walk into these ambushes, keeping to their status

quo, and naively trusting their corrupted common sense. Instead they should not accept this

flawed destiny, without challenging and assessing all options.

These lessons are relevant to Phillip Su’s222 satirical story, when developers are asked for

delivery time estimates. Drummond makes a very important distinction that knowing is not

the same as understanding. Managers too often draw conclusion from what is known,

218 Drucker, P. 1988. The Coming of the New Organization. Harvard Business Review, Vol: 66 Iss: 1 Date:

Jan/Feb 1988
219 Hammer, M. 1996. Beyond Reengineering.
220 Drummond, H. 2001. The Art of Decision Making:81-213.
221 Christensen, C.M. 1997. The Innovator’s Dilemma. Christensen’s book is entirely focussed on this trap and

how to get out of it.
222 See paragraph 1.4.4 on page 12.

 81

without having acquired enough understanding and sense to make good decisions. Dreams,

fantasy and myth-making are collectively important, because they hold the potential to create

the social cohesion, the sense of belonging and commitment necessary to move people to act.

That is the essence of progressive, organisational leadership.

The analysis of the extreme leadership traits of Ernest Shackleton223 is summarised in ten

leadership strategies which have direct and compelling relevance to the contemporary

business world and to that of Agile Systems Development. They are:

• Vision and quick victories. Never lose sight of the ultimate goal, and focus energy on

short-term objectives.

• Symbolism and personal example. Set a personal example with visible, memorable

symbols and behaviour.

• Optimism and reality. Instil optimism and self-confidence, but stay grounded in

reality.

• Stamina. Take care of yourself – maintain your stamina.

• The Team Message224. Constantly reinforce the team metaphor.

• Core team values. Minimise staff differences and insist on courtesy and mutual

respect.

• Master conflict. Deal with anger in small doses, engage dissidents, and avoid

needless power struggles.

• Lighten up. Find something to celebrate and something to laugh about.

• Risk. Be willing to take big risks.

• Tenacious creativity. Never give up – there is always another move.

Even though Shackleton never reached many of his ultimate goals, he instinctively new how

best to lead small teams in reaching their short-term goals. He produced unprecedented

productivity with his teams in the face of unforgiving circumstances.

223 Perkins, D. N. T., Holtman, M. P., Kessler, P. R., McCarthy, C. 2000. Leading at the Edge – Leadership

Lessons from the Extraordinary Saga of Shackleton's Antarctic Expedition.
224 This is similar to the Agile use of a project Metaphor.

 82

In an extensive study of more than 200 firms, Immelman225 discovered that many of these

ancient values are still common in today’s organisational cultures. Immelman identified five

dimensions and twenty-three attributes that describe tribal behaviour in organisations.

Immelman’s dimensions extends Maslow’s motivational model by looking at individual as

well as team226 security and values. He provides a strong argument that leaders should

realise that these instinctive traits can not be changed and that the secrets to effective

leadership is working a strategy that cuts and moulds organisations along this grain.

Wheatley,227 one of the original thinkers of complexity science in management, returns to the

days of leaders sitting around the campfire in deep disciplined cycle of stages for solving

complex problems. Her description of the five stages adds a rich colour of humility with

attributes such as curiosity, patience, generosity, respect, discipline and discernment.

Richardson228 draws further insights for the ancient Chinese philosophy based on the five

seasons and five essential elements. Her advice is also that managers must work with the

direction of the natural, ancient feedback cycles rather than against it.

Binney and Willams229 reach the same conclusion in their synthesis of top-down and bottom-

up leadership styles. Individuals shape the future by combining clear intention with respect

and understanding for people and organisations. They encourage leaders to work with the

grain, not across it, by acknowledging and supporting individuals’ hopes and fears.

What metrics exist for understanding how leaders make sense of what conditions facilitate

good performance? A model for pre-empting barriers and enablers for organisational growth,

adaptation, and development can be found in Greiner’s evolutionary model230 shown in

Figure 3-5.

225 Immelman, R. 2003. Great Boss Dead Boss – How to exact the very best performance from your company

and not get crucified in the process.
226 Immelman prefers to use the word tribe to embrace the ancient origin of the team concept. The use of an

unique language and set of symbols are all part of the tribal attributes he identified.
227 Wheatley, M.J. 2005. Finding Our way: leadership for an uncertain time.
228 Richardson, J. 2005. Ancient insights into the modern organization.
229 Binney, G. Williams, C. 1996. Leaning into the Future. Changing the way people change organizations.
230 Pries-Heje, J., Baskerville, R. L., Hansen, G. I. 2005. Strategy Models For Enabling Offshore Outsourcing.

 83

Figure 3-5: Greiner’s model of organizational evolution and revolution

3.3.1 Creative phase.
The small founding team is informal, long work hours are normal, and the feedback from the

market is immediate. As it grows in size and matures, the organisation reaches the leadership

crisis when informal communication is no longer sufficient. The dedication, long hours, and

small salaries are no longer sufficient motivation. New procedures are needed to exploit

efficiencies of size and to provide better financial control. To solve the leadership crisis, a

strong manager is needed. Often the owner or founders lack the necessary skills and

knowledge, and hate to step aside even though they are unsuited to be managers. If the

organisation survives the leadership crisis, it will embark on a period of sustained growth

under able and directive leadership.

3.3.2 Direction phase.
Communication becomes more formal as a hierarchy is built and the upper levels take

responsibility for the direction of the organisation. It is also in this phase that formalised

systems for accounting, incentives, work practice, and job specialisation emerge before it hits

the autonomy crisis. Middle-level managers see the centralised decision structure as a

burden, and the more autonomous middle managers start acting independently.

3.3.3 Delegation phase.
Often top management reacts by attempting to return to centralised management. The

solution to the autonomy crisis is a more decentralized organisational structure where middle

managers have greater responsibility and autonomy. The delegation phase ends in the

 84

control crisis where top managers realise that they have lost control over a highly diversified

operation.

3.3.4 Coordination phase.
The control crisis is overcome by the use of coordination techniques such as formal planning,

the creation of product groups treated as investment centres, and by the initiation of staff

functions that control and monitor leading to the crisis of red tape. Line managers are

suspicious of staff functions and distrust grows between dispersed groups.

3.3.5 Collaboration phase.
In this last phase, strong interpersonal collaborations are established to overcome the red-tape

crisis. A more flexible and behavioural approach to management is implemented through the

use of teams. The staff functions are reduced in number. The motivational structure

becomes more geared to team performance than to individual achievements.

Fishman231 notes that teamwork is a harder way of doing the work, but when it clicks, the

result is a seamless experience. Fishman draws this conclusion from his observations of a

leading British design company, Imagination. Imagination’s interdisciplinary approach puts

it more on a par with a theatre troupe or a circus than with a traditional design company. The

official Imagination brochure lists 26 disciplines used to attack projects -- a range of talent

that gives Imagination's work its special texture. He agrees that creative people are

notoriously independent and notoriously difficult to manage.232 How does Imagination herd

its extraordinary collection of talent into fast-working, high-performance teams? Their

advice is as follows:

• Start the project before there is a project. Projects are often only loosely defined at

the start. Teams are assembled early, often before the company and the client have

reached a final agreement about the goals of the project. In that way, the team often

defines the project, rather than the project defining the team.

• Make the brief brief and share it. Even for the most complicated projects, team

members ultimately know exactly what the goal of the project is. All members use

the same words and phrases to express that goal, and the goal is usually boiled down

to a sentence or two. Every idea can be tested against what the team and the client are

trying to accomplish.

231 Fishman, C. 2000. The Total Teamwork Agenda.
232 Berkun, S. 2005. The Art of Project Management. The notion of managing talented individuals has often

been described as that of herding cats.

 85

• Everyone comes to the table. Projects are managed through weekly meetings --

meetings in which ideas are batted around, problems are raised, and progress on

deadlines is assessed. Involve everyone in a project by inviting everyone to all

meetings. Production people and client-contact people are just as much a part of the

team as creative types. The result reduces production problems, and client-service

representatives have the information that they need to keep clients informed and

satisfied.

• Disperse responsibility. On project teams, no one is actually in charge. The result is

not chaos, but just the opposite. Dispersing the power also disperses the

responsibility.

The various approaches described here and in the preceding paragraphs correlates very well

with many of the Agile Development Methodology principles such as project vision,

metaphor, customer on-site, open face-to-face communication and self-organising teams.

3.4 Sensemaking in Organisations
Leedom233 noted that research must build from qualitative description toward quantitative

prediction of performance, using a range of investigation methods such as:

• Observation (non-intrusive);

• Subjective investigation (ethnography, knowledge elicitation);

• Storytelling and anecdotes (knowledge building);

• Metaphor (pattern matching);

• Scientific method (controlled, empirical hypothesis testing); and

• Mathematical analysis (baseline modelling, sensitivity analysis).

Weick and Sutcliffe234 elaborate on the five qualities of mindfulness and the organisational

processes and leadership practices that contribute to a mindful infrastructure. The five

qualities are grouped under two broad headings. This first is anticipating the unexpected by

having a preoccupation with failure, reluctance to simplify, and sensitivity to operations. The

second grouped as containing the unexpected when it occurs by having a commitment to

resilience, and deference to expertise. Teams that have these capabilities counteract traps

233 Leedom, D. K. 2001. Sensemaking Symposium Final Report.
234 Weick, K.E. Sutcliffe. K.M. 2001. Managing the Unexpected.

 86

that are built into expectations, detect the unexpected sooner, contain the unexpected more

fully, and learn from these local and contingent responses.

Weick and Sutcliffe further claim that plans and operating procedures have effects that run

exactly counter to the processes of mindfulness. Plans, for example, embody expectations

and thus narrow perceptions by reducing the range of things that people notice. The typical

organisation’s emphasis on routine and contingency planning embodies assumptions that

weaken the ability to respond to the unexpected and foster new learning. This is the

antithesis to the processes of mindfulness essential to achieving reliable outcomes in an

increasingly complex and volatile world. The reason these qualities are not more visible and

influential is that most organisations look for lessons on how to survive from organisations

like themselves. They should look instead to organisations that, on the surface, look quite

different; high reliability organisations that have, of necessity, learned how to manage the

unexpected.

Weick provides the following properties of Sensemaking:235

• Grounded in identity construction. Making sense of the environment influences, and

is influenced by one’s self-concept and personal identity.

• Retrospective. Making sense of the present is always grounded in past experience,

including past decisions to adopt certain plans and goals.

• Enactive of sensible environment. Making sense involves the construction of reality

by assigning authority to events and cues vis-à-vis a specific context, activity, or

ontology.

• Social. Making sense involves the creation of shared meaning and shared experience

that guides organisational decision-making.

• Ongoing. Making sense is a continual process of refining understanding, taking

action, and restoring equilibrium within the context of a specific project.

• Focused on and by extracted cues. Sensemaking involves the process of people

noticing and extracting specific cues from the environment and then contextually

interpreting those cues according to certain held beliefs, mental models, rules,

procedures, stories, and so forth.

235 Weick, K.E. 1995. Sensemaking in Organizations.

 87

• Driven by plausibility rather than accuracy. Sensemaking is driven by the need for a

workable level of understanding that guides action, rather than by a search for

universal truth.

Jelinek236 noted that traditional organisations are designed to produce stable, predictable

performance by eliminating ambiguity and unauthorised behaviour. Such organisations use

task decomposition and specialisation to narrow participant focus; a practice that is common

in most command and control organisations. Emphasis is placed on control and managerial

intent, while other cognitive resources are generally ignored. Attention tends to be limited to

the managers of such organisations; the result being consistency and rigidity of thinking. By

contrast, these same organisations do not respond well to crisis and ambiguity. If such

organisations are to successfully adapt, they must organise for innovation by emphasising

organisational change and learning, facilitating shared cognition, and embracing ambiguity as

opportunity.

Addressing cognition and decision-making from an overall systems perspective, Jelinek has

identified three cognitive elements that contribute to the ability of organisations to respond

effectively to crisis and ambiguity. These elements include:

• Shared management. Everyone in the organisation (down to the lowest levels) is

responsible for overall system performance.

• Mindful alertness to anomalies. Because data takes on meaning only in context,

subordinates should be alert to patterns, anomalies, and change and push this

information upward in the organisation.

• Ambiguity absorption. Organisational design should attend to who deals with

ambiguity in the organisation, how data is matched up with those who provide context

and interpretation, what are the attentional resources within the organisation, and

where does there need to be shared interpretation.

Jelinek therefore puts emphasis on data-based organisations that focus on real causes and real

results, that emphasise learning and improvement, that facilitate information sharing in order

to empower all participants, and that require decision-makers to listen down to subordinates

who have more direct access to situation awareness of the environment.

236 Leedom, D. K. 2001. Sensemaking Symposium Final Report.

 88

The concept of sensemaking is difficult to fully comprehend. Weick presents several

anecdotes and stories to ease the learning, but the theory demands a fundamental shift in

management’s perception of organisational learning.

It is an important topic and it is important to read as many stories on how good leaders make

sense of their situations. Stories about self-deception237 are another important aspect of

sensemaking that is cancerous towards organisational performance if not counteracted.

Storytelling is an effective tool to break up fossilised mental pathways and establish new

frames for holistic systems thinking.

3.5 Systems thinking
Senge238 popularised organisational learning through his pragmatic approach to systems

thinking. Senge enumerated several management blind spots which he calls the seven

learning disabilities such as people being tied to their positions, blaming external factors,

waiting for others to take decisions, dominated by recent events, not seeing gradual

changes239, reliance on experience240, and the myth of the management team241. Senge’s

work influenced several of the Agile Manifesto founders and supporters.242 It is therefore

appropriate to briefly recap on Senge’s five disciplines:243

• Personal mastery is the discipline of continually clarifying and deepening personal

vision, of focusing energies, of developing patience, and seeing reality objectively.

• Mental models are deeply ingrained assumptions, generalizations, and pictures that

influence the understanding the world and how to take appropriate action. The

discipline of working with mental models starts with learning to unearth internal

models, to expose individual thinking and to open it to the influence of others.

• Building shared vision of the future that fosters genuine commitment and enrolment

rather than compliance.

• Team learning starts with dialogue that draws on the capacity of members to think

together. Where the intelligence of the team exceeds that of the individuals, and

237 Arbinger Institute. 2002. Leadership and Self Deception – Getting Out of the Box.
238 Senge, P. 1990. The Fifth Discipline.
239 The parable of the boiled frog.
240 This complements Weick and Sutcliffe’s quality of difference to expertise.
241 Chris Agryris coined this as skilled incompetence – teams of people who are incredibly proficient at keeping

themselves from learning.
242 At least, Anderson, Highsmith, and Sutherland cited Senge.
243 Senge, P. 1990. The Fifth Discipline.

 89

where they develop extraordinary capacities for coordinates action and exceptional

productivity.

• Systems thinking is a conceptual framework, a body of knowledge and tools that has

been developed to make full patterns clearer and to help seeing how to change them

effectively.

Senge244 defines participative openness as the ability of speaking out; while reflective

openness is the willingness to challenge ones own thinking by developing the skills of

inquiry, reflection, and dialogue. People learn most rapidly when they have a genuine sense

of responsibility for their actions. Helplessness, the belief that people cannot influence the

circumstances under which they live, undermines the incentive to learn, as does the belief

that someone somewhere else dictates their actions. Conversely, if they know their fate is in

their own hands, then their learning matters. Senge defines the metaphor of localness as

being the ability to decentralise control to localised organisations where it matters most.

Localness thus unleashes people’s commitment by giving them the freedom to act, to try out

their own ideas and be responsible for producing results.

Flowchart style designs address what Senge refers to as detail complexity. Detail complexity

arises due to the sheer volume of tasks to be done and is the forte of classical management

practices. However with dynamic complexity the variables of cause and effect are subtle and

not obviously noted over a time period. To him the real leverage in most management

situations lies in understanding dynamic complexity, not detail complexity. He uses Systems

Diagrams to model dynamic complexity with positive and negative influences, and delays.

Wells’ models245 for explaining Extreme Programming address detail complexity by showing

the possible multi-path transitions between inside-the-box processes. Scrum246 on the other

hand addressed dynamic complexity with a much simpler outside-the-box model of monthly

cycles and daily cycles.

Once the systems thinking models are defined, then the need is to learn how to effectively

manage according to these models. This is the domain of Cybernetics.

244 Senge, P. 1990. The Fifth Discipline:277.
245 See Figure 2-5, Figure 2-6 and Figure 2-7.
246 See Figure 2-8: Scrum Development Process.

 90

3.6 Cybernetics in Organisations
Cybernetics247 enhances understanding of communication and control theories. It is

concerned with directed information flow in complex systems. Although the practice of

cybernetics originated in nautical navigation, and its scientific use was primarily applied to

mechanical and electrical engineering problems, its model of feedback, control, and

regulation has also proven to be valuable to the understanding of biological and social

systems. The example of the helmsman maintaining a course towards a goal, as illustrated in

Figure 3-6 provides a practical yet accurate model of the role and function of the team leader

or Scrum Master in the context of Agile Systems Development.

Figure 3-6: Cybernetics and emergence

Setting oneself on a predetermined course in unknown waters is the perfect way to sail

straight into an iceberg.248 Mintzberg argues that it is dangerous to articulate strategies

because explicit strategies are blinders designed to focus direction and block out peripheral

vision. This argument relates with Schwaber’s249 discussion of two types of systems, the first

is the envisioned system, a system as initially foreseen and described by customers to deliver

needed business value, and the second is the essential system, a system with that minimum

set of functionality, architecture and design that delivers the envisioned system’s business

value. Business value is defined as capability that provides business advantage for a certain

cost delivered by a specified date with adequate quality.

247 Cybernetics is a word stems from the Greek kubernetes, or helmsman, and relates to the control and

feedback behaviour required for steering or piloting a vessel.
248 Mintzberg, H. 1987. The Strategy Concept II: Another Look at Why Organizations Need Strategies.
249 Schwaber, K. 2001. Agile Software Development with SCRUM.

 91

The envisioned system is a starting point for a development project. However, it is not a

sufficient or correct description of the system that will deliver the business value. One cause

of insufficiency is that the business environment changes during the project lifespan. A

system that would provide business value at the start of the project often is insufficient by the

end of the project. Another reason is communications. When the development team

translates the envisioned system into working software, misunderstandings and lack of

knowledge cause inaccuracies. Applying the helmsman metaphor, the effects of currents,

crosswinds, compass error and strange attractors leads to a certain amount of drift or

deviation.

Still another reason the envisioned system is insufficient is that customers change their

minds. Schwaber250 defines Scrum’s Uncertainty Principle as, “customers don’t know what

they want until they see it, and they always reserve the right to change their mind.” When the

customer sees the envisioned system actually working, they often have different ideas about

how this functionality could have best delivered the business value.

Figure 3-7: An example of a Cybernetic System

The example of a simple control system in Figure 3-7 illustrates how the response reacts to

the changing request using negative feedback as commonly applied in control systems

theory. A healthy system would exhibit efficiency and effectiveness. Efficiency in that it

reacts responsively and effectiveness in that it conserves energy in reaching the goal. A

practical and common example of a control system is the everyday elevator. As an elevator

pod approaches the desired level it is most efficient and effective when it reaches its precise

position in the shortest time without vacillating.

250 Schwaber, K. 2001. Agile Software Development with SCRUM.

 92

Kast and Rosenzwieg251 identified three dimensions of organisational performance as being

effectiveness, efficiency, and participant satisfaction. An explanation of their third

dimension in the context of the elevator example is that the customer may have not explicitly

stated how pleasantly the elevator should function, but would have focussed on more

quantitative metrics such as number of levels and load capacity. Engineers and customers

reach satisfaction when explicit and implicit goals are achieved. The key point is that agile

approaches plan for features (not tasks) as the first priority because features are what

customers understand.252

It is possible to be effective but inefficient, thus squandering human and material resources.

Similarly, it is possible to be efficient and ineffective. Peter Drucker often said that

organisations sometimes emphasise doing things right at the expense of doing the right

things. An important relationship is that good task performance typically leads to satisfaction

so that people can work on participant satisfaction by being both effective and efficient.

Maintaining the balance between efficiency, effectiveness and satisfaction requires agile

complex adaptive behaviour. Highsmith253 supports a world view that organisations are

Complex Adaptive Systems, stating that decentralised, independent individuals interact in

self-organising ways, guided by a set of simple generative rules, to create innovative

emergent results.

3.7 Complex Adaptive Systems in Organisations
Coleman254 defines complexity theory in organisations as Complex Adaptive Systems that co-

evolve with the environment through the self-organising behaviour of agents navigating

fitness landscapes of market opportunities and competitive dynamics.

Stacey’s255 study of the complex response processes in organisations is modelled after that of

Complex Adaptive Systems where individuals in a group communicate through gestures to

elicit a desired response within the collaborative organisation or group. Gestures are

symbolic representations of meaning. Stacey is a strong proponent that tacit knowledge

cannot be transformed into explicit knowledge and in the context of Complex Adaptive

Systems gestures is the only effective means of organisational communication.

251 Kast, F. E., Rosenzweig, J. E. 1970. Organization and Management – A systems approach: 21.
252 This explains the popularity of Coad’s Feature Driven Development (FDD) methodology as evident in the

survey results shown in paragraph 2.11on page 72.
253 Highsmith, J. Cockburn, A. 2001. Agile Software Development: The Business of Innovation.
254 Coleman, H.J.Jr. 1999. What Enables Self-Organizing Behavior in Businesses.
255 Stacey, R. D. 2001. Complex Responsive Processes in Organizations – Learning and knowledge creation.

 93

Phelan256 describes complexity science as simple causes for complex effects. At the core of

complexity science is the assumption that complexity in the world arises from simple rules.

Generative rules typically determine how a set of agents will behave in their environment

over time, but it can not predict an outcome for every state of the world. Instead, generative

rules use feedback and learning algorithms to enable the agent to adapt to its environment

over time. The application of these generative rules to a large population of agents leads to

emergent behaviour that may bear some resemblance to real world phenomena. Finding a set

of generative rules that can mimic real world behaviour may help researchers predict, control,

and explain hitherto unfathomable systems.

Kurtz and Snowden257 believe that the modelling of complex systems are valuable tools in

certain contexts, but are of more limited applicability when it comes to managing people and

knowledge. They identified at least three important contextual differences between human

organisations and those of natural Complex Adaptive Systems such as ant colonies. These

differences make it significantly more difficult to simulate these systems using computer

models. The differences are:

• Humans are not limited to one identity;

• Humans are not limited to acting in accordance with predetermined rules; and

• Humans are not limited to acting on local patterns.

Complexity theory is a way of explaining how patterns emerge through the interaction of

many agents. There are cause and effect relationships between the agents, but both the

number of agents and the number of relationships defy categorisation or analytic techniques.

Emergent patterns can be perceived but not predicted. This phenomenon is known as

retrospective coherence. Structured methods appose retrospectively coherent patterns and

codifying them into procedures will only elicit new and different patterns for which the

system is ill prepared. Once a pattern has stabilised, its path appears logical, but it is only

one of many that could have stabilised, each of which would have also appeared logical in

retrospect. Patterns may repeat for a time, but one can never be sure that they will continue

to repeat, because the underlying sources of the patterns are not open to inspection (and

observation of the system may itself disrupt the patterns). Thus relying on expert opinions

256 Phelan, S.E. 1999. What is complexity science, really? Emergence. A Journal of Complexity Issues in

Organizations and Management. The New England Complex Systems Institute.
257 Kurtz, C. F. Snowden, D. J. 2003. The new dynamics of strategy: Sense-making in a complex and

complicated world.

 94

based on historically stable patterns of meaning will insufficiently prepare managers to

recognise and act upon unexpected patterns.258

Figure 3-8: Cynefin sensemaking framework259

Pelrine260 claims that people do not make rational decisions. The human brain evolved to

make first fit (not best fit) pattern matches with prior experience and then retrospectively

justify them as rational. For him this is not the way to run a systems development team

effort. This fact means that you either have to convey a new message in such a way that it

resonates with an existing prior pattern of success, or disrupt those patterns so that people see

things from a different perspective, with a disposition to act. The Cynefin261 sensemaking

framework show in Figure 3-8 provides an unbiased, pre-hypothetical basis for analysing

situations, issues and problems, and serves as a basis for discovering novel, oftentimes

optimal solutions to them. Pelrine applies the Cynefin framework for problem-solving in the

Agile Systems Development domain.

Flood262 makes a similar argument regarding the nature of what he labels human systems.

Human systems are not ultimately predictable and cannot be dealt with in any commonly

258 Kurtz, C. F. Snowden, D. J. 2003. The new dynamics of strategy: Sense-making in a complex and

complicated world.
259 Kurtz, C. F. Snowden, D. J. 2003. The new dynamics of strategy: Sense-making in a complex and

complicated world.
260 Pelrine, J. 2006. Cynefin - Making Sense of Agile.
261 Cynefin is a Welsh word analogous to heritage but with a wider scope, essentially "everything which makes

us what we are”. The Cynefin framework was developed by Kurtz and Snowden at the IBM Cynefin Centre
for Organisational Complexity. In 2006 it was renamed Cognitive Edge <http://www.cognitive-edge.com>

262 Flood, R. L. 1999. Rethinking the Fifth Discipline:87.

 95

used sense of the term predict-and-control. People are not supreme planners and masters

over their own lives or anybody else’s. Complexity is the source of great uncertainty that

mainly prevents this. Flood thereby confirms the effectiveness of Scrum’s daily meetings to

resolve issues by stating that the management of interrelated issues is considered to be far

more relevant than any other problem-solving technique. Problems, issues and dilemmas is

however inherently recurring. Systemic awareness leads to the importance of understanding

of boundary judgements at the edge between chaos and complexity. Leaders need to develop

formal social teams and harness energy from its members through recurring spontaneous self-

organising that generates novelty and creativity in a managed dynamic full of tension. This is

fully embodied within Scrum.

Highsmith263 believes that the sweet spot for agile practices lies in the exploratory projects

category. He further believes that there are increasing levels of unpredictability in the

turbulent economy and that the goal of repeatable processes is unattainable. He agrees with

Dee Hock that a chaordic264 style of adaptive management is needed for creating an

ecosystem with the requisite variety to meet the challenges of extreme projects that exhibit

high change. Highsmith advocates that one needs to seek a level of barely sufficient

prescriptive processes. The desirable objective is to execute a systems development project

that:

• focuses and delivers the essential system only, since anything more is extra cost and

maintenance;

• takes into account that the content of the essential system may change during the

course of the project because of changes in business conditions;

• allows the customer to frequently view working functionality, recommend changes,

and have changes incorporated into the system as it is built; and

• delivers business value at the price and cost defined as appropriate by the customer.

The customer steers the cost, date, and business value continuously. By increasing the cost,

the customer can cause the delivery of business value sooner. By changing priorities in the

product backlog, the customer can change the order in which business value is created.

263 Highsmith, J. 2002. What is Agile Software Development? CrossTalk.
264 Hock, D. 2000. Back to Nature. Hock defines Chaordic as 1) the behaviour of any self-governing organism,

organization or system that harmoniously blends characteristics of chaos and order; 2) patterned in a way
dominated by neither chaos nor order; 3) characteristic of the fundamental organisational principles of
evolution and nature.

 96

Highsmith265 further recognised that while emergence is the most important part of Complex

Adaptive Systems theory from a management perspective, and the need for adaptive systems

development arises when there are many independent agents such as developers, customers,

suppliers, and competitors, all interacting with each other, fast enough those linear cause-

and-effect rules are no longer sufficient for success. Highmith eloquently remarks that:

Size and technological complexity are less important factors and planning is a

paradox in a complex environment where following a plan produces the product

you intended, just not the product you need.

He concludes that if Microsoft had succumbed to deterministic quality measures, it probably

would not survive as they would fail to meet the demands of an unstable, complex and messy

world.

Closed systems cannot evolve and is defeated by its inherent entropy. Autopoietic systems,

on the other hand, have the ability to evolve and make use of entropy to grow. Entropy is the

only quantity in the physical sciences that picks a particular direction for time, sometimes

called an arrow of time. Moving forward in time, the Second Law of Thermodynamics states

that the entropy of an isolated system can only increase or remain the same; it cannot

decrease. The equation for entropy as defined by Rudolf Clausius uses the symbol S after the

Greek word for transformation. 266 The equation for entropy is:

T
QS ∂

=∂ 3-3

where Q is the amount of heat absorbed at an absolute temperature T. Two laws therefore

describe the energetic state of a system. The first law states that energy is conserved. The

second law states that in a closed system entropy increases until a state of equilibrium is

reached for a particular transfer of heat into the environment.

Society and technology base its developmental prosperity on the scientific discoveries and

explanations of the various world phenomena. Boisot267 recognised that these discoveries

emerge in what he calls the Chaotic Regime. Each discovery is based on the gradual,

practical research focusing on the preceding discoveries. Boisot’s Evolutionary Production

Function, as shown in Figure 3-9, can therefore be explained in the following terms:

265 Highsmith, J. 1997. Messy, Exciting, and Anxiety-ridden: Adaptive Software Development.
266 Gillispie, C.C. 1960. The Edge of Objectivity.
267 Boisot, M. 1998. Knowledge Assets: Chapter 4.

 97

• Energy cannot be created or destroyed.268

• Knowledge can however be created and destroyed.269

The gradual upswing of the curve is based on natural creative chaos or entropy. New

discovery occurs in an instant and therefore reduce the complexity for society at large by

providing a new model or framework of understanding of complex phenomena.

Figure 3-9: Boisot’s Evolutionary Production Function270

Boisot claims that knowledge and entropy production stand in inverse relationship to each

other. Thus by creating new knowledge one reduces entropy in some way. In this context

entropy is to be associated with the unexpected or unknown order, or as Kurtz and

Snowden271 calls it unorder. This is also what Weick and Sutcliffe272 argues in terms of

preparing for the unexpected. Boisot argues that organisations operating predominantly in

the Complex Regime and at the edge of chaos273 would require greater data processing

capacities for its effective management. In the context of system development teams,

entropy is the creative force. Entropy can therefore be equated with creativity. Creativity

has a forward arrow that seeks to grow in an open system and evens out in a closed system.

268 This is based on the well known laws of thermodynamics.
269 For example, the world is no longer flat, but it also is not exactly round either.
270 Boisot, M. 1998. Knowledge Assets.
271 Kurtz, C. F. Snowden, D. J. 2003. The new dynamics of strategy: Sense-making in a complex and

complicated world.
272 Weick, K.E., Sutcliffe, K.M. 2001. Managing the Unexpected – Assuring High Performance in an Age of

Complexity.
273 Kaufmann, S.A. 1993. The Origins of Order. Self-Organization and Selection in Evolution.

 98

Boisot274 recommends having an entropy budget whereby the rate of entropy production is

kept at a sustainable level in order to survive as a Complex Adaptive Enterprise.

Figure 3-10: Typical variable control charts

In Figure 3-10, Meyer and Davis275 illustrate two graphs that resemble Six-Sigma-like

variance charts. Chart A looks much more predictable and stable compared to chart B. The

graphs are heart-rate charts and patient A died eight days later, while the heart of patient B is

a typical healthy heart that adapts to inputs from its environment. Tight control and stability

is not a trait for survival. During their analysis of what makes systems alive, Meyer and

Davis found the following principles of an adaptive enterprise:

• Self-organise. Create a community of contributors for product development; manage

the rules, not the people; establish rules for people that enable flexible processes and

drive adaptive behaviour.

• Recombine. Use reusable modules and standards to rapidly refine and customise

products; seek diversity and encourage free, frequent interaction among people,

partners, and communities.

• Sense and respond. Install feedbacks loop in every product and service for real-time

maintenance and upgrade information; create markets for talent.

• Learn and adapt. Establish institutional learning mechanisms; exploit the learning

value of failure; make knowledge management work.

• Seed, select, and amplify. Actively test diverse options and roll out the winners; use

agent-based simulations to test rules and governance structures; keep your line-up

fresh by introducing new people often.

274 Boisot, M. 1998. Knowledge Assets:16.
275 Meyer, C. Davis. S. 2003. It’s Alive – The coming convergence of information, biology and business:.216

 99

• Destabilise. Exploit the opportunities of short product lifecycles; establish a policy of

turnover to continually refresh the idea pool.

• Monetising molecules. Look for opportunities of physical transformation in your

business, searching for improvements to reduce costs and add value by shrinking

mass.

Underneath these concepts, there is a lot of overlap with what is known from the Agile

principles. The molecular metaphor maps well to the principle of maintaining small teams

and frequent small releases. Similarly, Morgan276 defines the brain as metaphor for a viable

organisation. He defines five principles of holographic design to be:

• Fractal. Build the whole into the parts. Establish the vision, values, and culture as a

recursive corporate code. Establish a networked intelligence with structures that

reproduce itself into holistic yet diversified teams.

• Redundancy. Build redundancy into information processing, skills and work.

Leverage equifinality277 to achieve optimal performance.

• Requisite variety. Internal complexity must match that of the environment through

continuous differentiation and integration. Avoid silos and atrophy by responsively

adapting and becoming agile.

• Minimum specifications. Define no more than is absolutely necessary.

• Double-loop learning. Learning to learn. Scan and anticipate environmental change.

Leverage emergence.

Organisational systems designed according to these principles are highly robust and fit for

survival. Many living systems such as ant colonies, bees, butterflies, fish, penguins and

dolphins have survived in this way. These are Complex Adaptive Systems which Morgan

studies from in his Flux and Transformation metaphor. He cites an example of a self-

organising team involved in the development of a new product and as well as an autonomous

team in a Just In Time flexible factory. Morgan278 goes on to emphasise that the fundamental

role of managers should be to shape and create contexts in which appropriate forms of self-

276 Morgan, G. 1997. Images of Organization:102.
277 Morgan, G. 1997. Images of Organization:41. This principle defined that there will be many ways to reach a

given state.
278 Morgan, G. 1997. Images of Organization:267-269.

 100

organisation can occur. Morgan uses the Lorenz attractor as a metaphor for managing

change by creating instability that will help new attractor patterns of behaviour to emerge.

According to Stacey,279 Complex Adaptive Systems requires a large number of individuals to

resonate and cause emergence. However in the context of teams the team productivity starts

breaking down when the size exceeds double digits. This is however not the case with

Complex Adaptive Systems where critical mass and redundancy is a prerequisite for fitness

and ultimate survival. With only two interconnected network nodes there is only one

connection at play. With three it becomes three connections, and with four nodes it shoots up

to six. The mathematical equation for this interconnectivity is: 280

()

2
1−

=
NNK 3-4

Kauffman describes it as an NK Boolean network in which N represents the number of nodes

and K the average interconnectivity, assuming that some nodes may not be directly linked.

This linking behaviour could be manipulated via a control parameter. Kaufmann

demonstrates how the network can be made to exhibit order, chaos, or the transition between

the two domains, which he calls the edge of chaos.281

Schwaber282 recommends seven plus minus two people in a Scrum team. With seven people

there are 21 interconnections. Adding one more player adds 7 more interactions. Adding

two more adds 15 more interactions. In classical management this complexity is managed

quite simply by breaking the whole into smaller teams and thereby creating a hierarchical

order. In traditional management systems communication is passed down the ranks

introducing delays and corruption. However, in Complex Adaptive Systems communications

happen in parallel and is synchronised.

Sutherland283 recently published results on exceptional productivity increases by establishing

a multi-national geographically dispersed large scale project employing a Scrum-of-Scrums

model. This massively distributed project was almost as productive as the small Scrum

project with a co-located team. For a globally dispersed team, it is one of the most

279 Stacey, R.D. 2001. Complex Responsive Processes in Organizations – Learning and knowledge creation.
280 Kaufmann, S.A. 1993. The Origins of Order. Self-Organization and Selection in Evolution.
281 Boisot, M. 1998. Knowledge Assets:203.
282 Schwaber, K. 2001. Agile Processes and Self-Organization.
283 Sutherland, J. Viktorov, A. Blount, J. 2006. Adaptive Engineering of Large Software Projects with

Distributed/Outsourced Teams.

 101

productive projects ever documented at a run rate of five times industry average. These

results show that the Scrum methodology is scalable to large teams.

Nichols284 did a similar study also claiming a team cluster size of around seven with an upper

limit of twelve. Nichols illustrated a similar structure to Sutherland’s Scrum-of-Scrums with

team clusters interconnected via Team Leads and Role Managers. Teams of role managers

not only make the network a small world, but also serve to make the network searchable,

greatly shortening the average communications path. The results from Sutherlands Scrum-of-

Scrums study are countering the mythical man-month theory by showing that it is possible to

add more people to large complex projects and achieve surprisingly high productivity.

Boisot285 lures companies to take advantage of technology that allows for delocalising teams

without much loss of collaboration. The delocalisation and internationalisation of trust will

enhance the ability to operate Social Learning Cycles in the lower regions of the I-Space

independently of spatial and cultural constraints. It also allows development of systems

round the clock.

Figure 3-11: Social Learning Cycles for Waterfall and Agile SDLC models

The aim of the traditional waterfall and spiral lifecycles models was to follow a deep

Scrumpeterian learning cycle as plotted in the I-Space above in Figure 3-11. However these

284 Nichols, W. R. 2006. Building Successful Software Development Teams Using TSP and Effective

Communication Networks.
285 Boisot, M. 1998. Knowledge Assets:225.

 102

cycles tended to progress too slowly and would over various product iterations gradually

move upper and out of the E-max region. 286

The I-Space depicted on the right is representative of an Agile lifecycle model. The

movement shapes like a tornado with the eye anchored inside the E-Max region. It is a very

fast Scrumpeterian cycle that harvests creative destruction and rapidly creates value through

abstraction and codification towards V-max.287 The Agile Development principles

complements Boisot’s six SLC phases very well:

• Scanning. Individuals and small groups identify threats and opportunities in available

data and thereby turning such data into insights. Scanning may be very rapid when the

data is well codified and abstract and very slow and random when the data is

uncodified and context specific.

• Problem Solving. The process of giving structure and coherence to such insights.

• Abstraction. Generalising the application of newly codified insights to a wider range

of situations. This involves reducing them to their most essential features and

conceptualising them. Problem solving and abstraction work in tandem.

• Diffusion. Sharing the newly created insights with a target population. The diffusion

of well codified and abstract data to a large population will be technically less

problematic than that of data which is uncodified and context-specific.

• Absorption. Applying the new codified insights to different situations in a learning-

by-doing fashion.

• Impacting. The embedding of abstract knowledge in concrete practices. The

embedding can take place in artefacts, technical or organisational rules, or in

behavioural practices. Absorption and impact work in tandem.

Boisot288 defines teams as small groups drawn from the community and operating in a

focused problem-solving mode in response to threats and opportunities. As teams progress

through their life cycles and as both the problems they face and the solution they explore

286 The E-Max region is in the bottom, right region of the I-Space cube where entropy is at its maximum. This

is also known as the Chaotic Regime. The region is associated with high emergence and innovation.
287 The V-Max region is in the opposite corner from E-Max and represents the maximum Value possible. This

is also the area known as the Ordered Regime. Emergence and innovation is worthless if not codified,
abstracted and first-to-market (early stage of diffusion). The need for being in both the E-Max and V-Max
regions is what Boisot calls the Paradox of Value.

288 Boisot, M. 1998. Knowledge Assets:228.

 103

become better structured and understood, so team processes become more formalised and

bureaucratic.

Agile teams require skills in integrating team and organisational processes in a seamless

learning cycle. Agility can therefore be defined by capacity to harvest and transform entropy

into economic value at a sustainable velocity within an innovative development ecosystem.

3.8 Sustaining an Innovative Development Ecosystem
Nonaka and Takeuchi’s289 five phases of organisational knowledge-creation as applied to

system development practices could be defined as follows:

• Sharing. The team members’ shares their mental models, perspectives, intuition,

motivations and builds mutual trust and unity. The self-organizing team share their

interpretations of their intentions. Management injects creative chaos by setting

stretch goals and endows a high degree of autonomy. This is also a socialisation

phase where the team gets to know one another to establish a boundary-spanning unit.

• Creating concepts. The shared mental model is formed when the team articulates it

through continuous dialogue to formulate it into crystallised explicit concepts. The

team autonomy allows for cooperative creative reflection, flux, chaos, and

destruction. Rethinking their assumptions and converging their shared mental model

through multiple reasoning methods such as deduction, induction and abduction.

• Justifying concepts. The team determines if the concepts are truly worthwhile and

justified against the criteria determined collaboratively with top management.

• Building archetypes. The team creates a tangible model or prototype of the product

concept as well as the blueprint. Attention to detail and dynamic cooperation of

various departments is the key to managing this complex build process.

• Cross-levelling of knowledge. The team now needs to mobilise their creation to

affiliated companies, customers, and other parties outside the company through

dynamic interaction. Depending on the reaction or feedback, a new round of

development is initiated.

Japanese car manufacturers have been overlapping these development stages in what is called

the rugby-style to compress their new product introduction lead time. The approach also

involved the production department from an early stage of the project, which leads to the

289 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company:85-89.

 104

development of designs amenable to manufacturing. This also results in short production lead

times and higher product quality. However since the approach depends on an

interdepartmental pool of personnel who share the same space and time, the process is liable

to give to much importance to preserving overall unity and conformance. In the European

approach there is an intrinsic trade-off between stretched performance criteria and lead time,

which is not the case in the Japanese approach where they manage to achieve both targets.290

Once the product concept is determined, all the functional departments move simultaneously,

as in the rugby-style, running together to meet the targeted cost, performance level, and

launch date. First, large-scale socialisation takes place, during which project members visit

foreign markets to gain tacit knowledge. Second, and interdepartmental collaboration takes

place to implement the overall business strategy, with departments sharing a common goal

and a common information base. Third, all project members engage in evaluating or testing

the prototype to judge whether the product concept has been realised.291

Many of the principles defined point to the creating and sharing of knowledge amongst all

the team members. Nonaka and Takeuchi292 defined five conditions for promoting the

knowledge-creation. These conditions are essential in context of the establishment of a

healthy Agile Development Ecosystem:

• Intension. Individual and collective commitment to the vision of what is to be

achieved for the team and project to succeed.

• Autonomy. At the individual level all the members should be allowed to act

autonomously as far as possible, thereby increasing the change of unexpected

opportunities. Autonomy also increases the possibility that individuals will motivate

themselves to be creative. It develops a holographic structure in which the whole and

each individual share the same information. It is a system in which Morgan’s

minimum specification principle293 is met as a pre-requisite for self-organising and

autopoietic teams.

• Fluctuation and creative chaos. The team should foster an open and robust attitude to

changes in the external environment that exploits ambiguity, redundancy and noise.

Japanese companies often resort to the purposeful use of ambiguity and creative

290 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company:210.
291 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company:212.
292 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company:76-82.
293 Morgan, G. 1997. Images of Organization:102.

 105

chaos. Top management often employs ambiguous visions or so-called strategic

ambiguity and intentionally creates flux with the team setting. Reflection-in-action is

a required attribute to create order from chaos.

• Redundancy. This rugby-style redundancy that develop different approaches to the

same project and then argue over the advantages and disadvantages of their proposals.

Internal competition encourages the team to consider a variety of perspectives and

with the guidance of a leader the team eventually develops a common understanding

of the best approach. This style is also evident in natural reproductive systems where

only the fittest survive.

• Requisite variety. According to Ashby,294 the internal diversity must match the

variety and complexity of the environment. Members can cope with many

contingencies if they possess requisite variety, which is enhanced by combining

information differently, flexibly, and quickly, and by providing equal access to

information throughout the organisation.

Japanese brainstorming camps295 are informal meetings for detailed discussions to solve

difficult problems in development projects. The meetings are not limited to project team

members but are open to any employees who are interested in the development project under

way. In these discussions, the qualifications or status of the parties are never questioned, but

there is one taboo: criticism without constructive suggestions. These camps are a medium for

sharing experience and enhancing mutual trust amongst participants. It re-orientates the

mental models of all individuals in the same direction, but not in a forceful way.

According to Larsen and Pixton296 to lead an organisation through the change, senior leaders

need a collaborative leadership style that encompasses the Agile principles. A collaborative

leader convenes the right people and creates an environment of openness and trust. The

leader lets team members decide on what to do and by when, and then steps aside and lets the

team perform and produce. Begin with the right team members. Ensure that team members

bring the necessary talent, the communication skills to interact on the team, and the ability to

work interdependently. All team members must be open to collaboration. Build trust by

294 Ashby, W.R. 1958. Requisite Variety and Implications for Control of Complex Systems. Cybernetica,

Vol.1:83-99.
295 Nonaka, I. Takeuchi, H. 1995. The Knowledge-Creating Company:63. The Japanese term for brainstroming

camps is ‘tama dashi kai’.
296 Larsen, D. Pixton, P. 2006. Team Collaboration for Senior Leadership. Agile Project Management Advisory

Service.

 106

believing team members will bring their best talents to the team efforts and work for success

for all team members and themselves. Let the team decide what to do and by when. Working

together, teams define goals, strategies, and measures of success, and determine by

themselves how to hold each other accountable. Maintain an open environment that

encourages the unencumbered flow of ideas, interactions, and discussions. Bring challenges

and difficult topics to the table. Ensure a trusting environment that is non-judgemental. Work

together to find solutions going forward, rather than looking back to place blame. Pause at

the end of iterations or milestones to allow the team to incorporate learning and

understanding, before re-evaluating goals and objectives. Create a place where people want

to work.

3.9 Maximising Value Velocity
Christensen297 derived a model for tracing the evolution of technology innovation that he

names the technology S-Curve. When plotting a single innovation the curve takes on an S

shape. The foot of the curve is the incubation period that consumes resources for little or no

noticeable outcome. As an innovative disruptive technology or product concept emerges it

suddenly shoots up in value. As the technology is diffused and incorporated into the

mainstream of society its incremental innovative value flattens out as it fossilises over time.

To sustain maximum innovation is not easy. It is difficult to predict when emergence is due.

It is difficult to plan for it. It is however possible to analyse and measure it. This

measurement is defined by the rate of adding value. The control parameter for maximising

productivity is complex as it relates to the various conditions for establish a healthy

development ecosystem. A model that supports this empirical management style is be the

Complex Adaptive Systems approach.

297 Christensen, C.M. 1992. Exploring the Limits of technology S-Curve.

 107

Figure 3-12: SDLC Technology S-Curves298

Christensen’s S-Curve model provides another perspective on Boisot’s Evolutionary

Production Function and his Social Learning Cycle model. Figure 3-12 shows the three

regions of complexity theory on the technology S-Curve as well as examples of the three

popular SDLC models. The Waterfall model is a slow cycle that consumes the most

resources. The Agile model has a higher frequency of adding bursts of value close to the

edge-of-chaos. In between these two extremes one would find a more manageable even

ground. The productivity measure can be derived as the mean angle of the curve by

maximising value and reducing delivery times. This angle is the speed at which value is

delivered.299 It is clear that the Agile principles supports maximum velocity by increasing

value and decreasing delivery time.

Christensen300 discovered that principles such as better management, harder work and

reduction in faults do not help to sustain innovation. The best management techniques have

led their firms to failure. He argues that sustainable innovation depends on the emergence of

disruptive technology breakthroughs. The conditions and rules that incubate these

breakthroughs are very different to what is understood to be good management practices.

Many other authors301 concur.

298 Adapted from the technology S-Curve. Christensen, C.M. 1992. Exploring the Limits of technology S-

Curve.
299 Value Velocity = Value Created / Delivery Delay.
300 Christensen, C.M. 1992. Exploring the Limits of technology S-Curve.
301 Sutton. 2002. Weird Ideas That Work – 11½ Practices for Promoting, Managing, and Sustaining Innovation.

Davila, Epstein & Shelton. 2005. Making Innovation Work. Wind & Crook. 2005. The Power of Impossible

 108

3.10 Conclusion
There exists a strong correlation between the principles of the SDLC methodologies that

subscribe to the Agile Alliance and that of the new management approaches formulated

around complexity theories and models, in particular the characteristics of Scrum and

Complex Adaptive Systems.

Sketching the SLC curves of the Waterfall and Agile methodologies in I-Space provides a

better understanding of the dynamic information flows and why Agile methods outperforms

the Waterfall methods in velocity and value creation.

Plotting the technology innovation S-Curves of the Waterfall and Agile methodologies gives

another perspective on these dynamics and shows how Agile methods yields frequent bursts

of increasing value creation over reduced delivery times.

Thinking. Larsen & Pixton. 2006. Team Collaboration for Senior Leadership. Binney & Williams. 1995.
Leaning into the Future.

 109

Chapter 4
A case study of CI OmniBridge

Simple, clear purpose and principles give rise to complex, intelligent behaviour.

Complex rules and regulations give rise to simple, stupid behaviour.

Dee Hock, 1999

The purpose of the case study is to analyse the systems development life cycle methodologies

employed by CI OmniBridge in order to measure a goodness-of-fit against the research

described in the preceding chapters.

4.1 Introduction
CI OmniBridge is a global302 company that develops information service delivery

infrastructures that comprise of embedded computer hardware and firmware303, multi-media

communication middleware304, and Internet service based information management software

systems for fleet owners and fleet managers world-wide. Subsequent to a decade of

exponential growth fuelled by exceptional product innovation and strategic market focus, the

company has positioned itself as the potential echelon in its market segment. However, as is

common in the information technology industry, the company’s development department, the

heart of its intellectual capital, is struggling to uphold its good reputation of delighting its

various stakeholders with satisfactory systems delivery.

4.2 Sensemaking with Scrum
The original product development team was relatively small with a few embedded systems

engineers focusing on hardware design (vehicle onboard computer platform), firmware

design (embedded operating system and device drivers) and wireless communications

middleware software design. The software development was done by another small team

responsible for database design, backend server-side subsystems, desktop configuration and

reporting software interfaces as well as web-based online interface software.

302 The company has significant operations throughout Africa, Europe, Australasia and the Americas.
303 Firmware is an industry term used to distinguish between desktop computer software and embedded device

software, the firmware, as one would for example find running in mobile phones.
304 Middleware is an industry term used to classify the software systems that coordinates and transports data

communications between various distributed systems.

 110

During one specific period, the project management attempts had not worked out well and

the projects were running very late. The team was burning the midnight oil at least three

nights a week with extensive system-wide testing, problem investigation and correction.

Management did all they could to support the team. After thirteen test cycles the product was

finally released to the market by a very exhausted team.

In their attempt to restore some vigour, the management team presented the next project

proposal on which they spend a considerable effort in gathering detailed customer

requirements. The development team however saw the requirements as completely

unrealistic and unachievable scope within the given deadlines. The meeting was adjourned

without any objectives or decisions taken. Both sides were silently aroused.305

Management then called a small task group together to resolve the tense climate. A new

team leader was selected from the peer group and asked to spearhead the new project by

forming a small team and driving the project forward. The user requirement was taken as

input but dissected and prioritised into more realistically attainable work baselines. This

process achieved immediate complexity reduction and restored sense and re-established

anchors for the team to refocus on the work to be done.

The approach was to breakdown the unattainable scope into smaller, simpler components.

Initial estimates were still difficult to determine but the team could at least predict effort by

looking at each component in isolation. Critical milestones were pegged like planned stops

along a journey. The interdependence of components and total effort determined what was

possible by when. At that time it was the most practical approach to prioritise requirements.

The main focus was to establish the core, critical, essential functionality. The team leader

demonstrated personal commitment by taking on highest risk development component while

entrusting the other team members to do the best possible work as a tightly knit team.

Individuals outside of the project team were only subcontracted when it was absolutely

necessary. The project was reasonably complicated and involved new hardware, firmware

and software components to be developed. The following simple rules were defined:

• Each component is assigned to an owner who will be responsible for its on-time

delivery.

• Break down the work into goals that can be achieved in a weekly demonstrable

deliverable.

305 Weick defines autonomic arousal as a sensemaking opportunity wherein the role of management is to

reduce cues in order to restore organizational order.

 111

• Conduct daily meetings of 5 minutes to check the alignment with the goal of reducing

external interferences and focusing on achieving the goal.

• Maintain a log of issues that needs to be addressed during development.

• Work on shrinking the logs.

• Reduce ambiguity and ignorance – coach one another.

• Follow this lifecycle:

o Envision (ideation);

o Involve (knowledge sharing);

o Enable (get things done); and

o Deliver (close out and move on).

The strategy was to move the team forward step-by-step and getting work done smartly and

resolving detail on the fly. Various internal demonstrations to management ensured visibility

of the progress being made and provided an opportunity for gathering critical feedback on the

emerging design direction.

Risk management was achieved by making a simple list of possible issues, accessing its

impact, assigning an owner, estimating the probability of occurrence, and formulating a

strategy to avert the risk.

A very important milestone was met on time at an international symposium. The final project

was delivered slightly overdue. The productivity was the best ever experienced before and

the project became a landmark success story in the department’s history.

This approach to project management and systems development was borne in Scrum and XP

principles. The development team itself has organised itself into various Scrum teams and a

Scrum-of-Scrums meeting is held weekly. The approach was permanently adopted and

incorporated into the Quality Management System based on ISO standards.

4.3 Quality Management System
CI OmniBridge formally defined its processes and values to establish a Quality Management

System (QMS) based on the ISO 9001:2000 which it maintains through regular internal and

external audits. The QMS has proven to be very effective by enforcing a discipline for

recording decisions and metrics, as well as for general record keeping and configuration

management.

 112

Figure 4-1: QMS Overview306

Figure 4-1 gives a high-level overview of the various process areas as defined in accordance

to the ISO 9001 numbering scheme. Systems development processes primarily falls under

the Service Realisation area and is concerned with the design and development of integrated

hardware, firmware and software products.

Hardware, firmware and software are seen as three essential aspects of the company’s Final

Valuable Products (FVP). The SDLC embodied by the QMS is called Flows as it is drawn up

as classical process flow charts containing processes with inputs and outputs, and decision

points for redirection and guidance. Since hardware design and development contains the

most process blocks and decision gates it is the predominant development flow from which

the firmware and software branches out and meets during testing and integration phases.

The QMS primarily focuses on what processes and artefacts exists, but it does not focus on

how these processes are to be performed. It provides standard templates for the artefacts with

prompts for process guidance. The key business processes are broken into steps; each with

required and recommended inputs and outputs. Decision points are recorded with review

forms with applicable authorities and approvals as required by the QMS.

The Analysis Phase is conducted in conjunction with the customer, prior to starting a project

and results in a decision regarding the start of a new project.

306 Source: CI OmniBridge Quality Manual.

 113

Figure 4-2: Analysis Phase Flow Diagram307

In accordance with Analysis Phase Flow, Figure 4-2, the project requirements are reviewed

and the Technical Specification, Estimated Costing and Milestone Project Plan are

developed. Project requirements are defined either, internally or externally by the Marketing

Department on behalf of the customer. The requirements are reviewed and analysed to

initiate a new project or amend an existing project. A Technical Specification is developed to

meet the defined project requirements, and contains details of functionality to be developed.

The customer representative, typically the product manager, approves the Technical

Specification and Milestone Project Plan.

307 Source: CI OmniBridge Quality Manual

 114

Products are developed to meet the requirements of the Technical Specification.

Development is conducted according to the relevant process flows. Any deviation from the

agreed Technical Specification requires the customer’s approval.

The Innovation Committee meets quarterly to review the Project Schedule. This team

reviews progress of current projects against due dates and prioritises projects due to start,

assigning desired start and end dates. Projects which have become current are assigned

refined due dates based on current progress. Project teams are assigned to projects due to

start, comprising developers from the three relevant disciplines. Team members are chosen

on basis of current workload and specific skills or experiences required by project. A total of

42 business requirement concepts were presented at the Innovation Committee Meeting

earlier in 2006. These concepts were categorized as follows:

• Category A: New business need – unlocks new untapped markets.

• Category B: Major enhancement – extends existing business need.

• Category C: Minor enhancement – enhancements to existing features.

Some of these concepts could be rationalized and normalized, albeit all are verified as real

business needs that need to be delivered in about six weeks to six months. The category C

concepts are fine-grain enough to be time-boxes. Categories A and B concepts would

however require further in-depth analysis and breakdown.

During the Analysis Phase of each project, a Milestone Project Plan is developed. The

project plan is split into two sections. The first indicates key development components that

need to meet the requirements of the Technical Specification and estimated duration of work

for each component. The second section shows deliverable milestones and target dates.

Where a project consists of sub-projects, separate Milestone Project Plans are created for the

parent project and for each sub-project. The Milestone Project Plan for the parent project

shows the associated sub-projects. The completions of sub-projects are shown, as

milestones, on the parent project plan. Project plans are reviewed at all reviews held during

the development process to track progress and ensure due dates are met. If delivery dates are

compromised, the customer is notified before resource cross-levelling and the planning is

revised. Following each review, or at least weekly, the project leader updates the Milestone

Project Plan, recording start and completion dates for all components, as well as any

significant comments. These comments may indicate delays, early delivery and amendments

to project. The Milestone section is also updated to show when a milestone was achieved

 115

and any significant comments regarding the status of the deliverables. If a review results in

backtracking to an earlier review in the process flow, the milestones must be amended

accordingly, indicating what additional reviews are required. The revised target date will

then be recorded for all remaining milestones.

The Hardware Development Flow is the most elaborated flow with 28 steps, followed by the

8 steps of the software flow and 5 steps of the firmware flow. Apart from the three reviews

A, B, and C defined in the Analysis Phase, the Design and Development Flows adds another

14 steps labelled from D to Q. Each step is iterative and the flow should not continue until

all conditions are met at the review meeting. The steps are both necessary and straight

forward. Typically a detailed design is followed by developing test records, unit testing,

integration, integration testing, system testing and field trials.

One of the primary benefits of the QMS is that it makes performance quantifiable and

transparent, albeit at a high-level and mostly based on subjective measures. The chart in

Figure 4-3 illustrates non-conformance statistics over a particular period of review and

clearly shows areas in need of improvement.

Figure 4-3: Non-conformance chart

In general more software projects results in non-conformances (defects) as well as being

released very late and not to the satisfaction of the customer, as illustrated for a typical

software project in Figure 4-4.

 116

Figure 4-4: Key Business Process Performance Chart

The development capability capacity has not increased to reach the growing demand of

customer requirements. Change in the business model was not managed well enough to

envolve and grow the development department with the business growth. Informal silos form

keeping the teams from knowledge sharing and serving the whole business. In such an

environment even top achievers could lose their anchoring and slide into a reactive

production mode.

4.4 Complex Adaptive Systems approach
The QMS provided mechanisms to maintain multiple current projects. The resource

allocation and tasks of each project was however not aggregated onto a single perspective for

driving resource utilisation and task prioritisation. Dee Hock’s Dirty Coffee Cup System308

was adopted to provide a simple solution to the problem on an experimental basis. A large

white board was marked with vertical lines indicating calendar weeks and horizontal lines for

each of the numerous current projects. Each project had an owner who was made responsible

to identifying the project tasks and allocating resources to it. Each task was written on a

small coloured square paper and stuck on the board. A piece of string with two magnets on

each end was vertically positioned on the board to indicate the current date. As tasks are

completed, the pieces of paper is taken off and put in a small paper bag. Tasks falling behind

were clearly visible to the left of the date line. Ideally as people finish tasks and get freed up

they should work on ad-hoc tasks that has fallen behind, before working on future tasks.

The system swiftly became chaotic as many of the projects started to fall too far behind and

people did not even have the time to maintain their planning tasks.

308 Hock, D. 1999. Birth of the Chaordic Age. Berret-Koehler.

 117

According to Hock and his team at VISA, they had enormous success. The difference was

that they had critical mass and only one project with many tasks. Hock notes that the few

people who could not adjust to the diversity, complexity and uncertainty of the processes,

were replaced with dozens of new people.

Complex Adaptive Systems require that most of the requirements for sustainability are met.

It would have been more successful with more people and fewer projects; and with more

focus and less peripheral distractions.

The project dashboard shown in Figure 4-5 provides a highly visual impact of all the critical

factors of projects that are underway. The respective Scrum burn-down charts are also

shown.

Figure 4-5: Project Dashboard

 118

4.5 Survey
A short survey identified some common barriers, needs and comforts amongst the

developers. The questions were similar to those asked during the daily Scrum meetings:

• Barriers: What stops you most from getting your work done as you intended, that if

taken away would make you happy?

• Needs: What would help you most to get stuff done and find bigger challenges, that if

given would make you happy?

• Comforts: What is currently your most valuable tool or help, which if taken away

would make you angry?

The survey questionnaire gave examples to guide the thinking process; and it was intended to

be stimulating and fun. The summary of the results are:

• Barriers: Unsolicited distractions. Lack of communication on perceived progress and

management expectations. Long meetings. Lengthy documentation. High level of

non-work related distractions in office. Excessive paperwork. Being micromanaged.

Stress. Inappropriate e-mails. Meetings without agendas. Micromanaging others.

Crisis management.

• Needs: More developers. Better upfront modelling of the problems and ideas.

Individual white boards. More successes that build confidence and trust, which results

in more successes. Training on tools and processes. Testing tools. Detailed single

document specifications and centralized access to it. Dual displays. More test

equipment. More recognition for delivering quality output. Better time management.

Allowing more time for refactoring. More time to focus on new design.

• Comforts: The Internet. Google. Verbal idea sharing. Dual displays. Flexitime. Test

equipment and productivity tools.

The team is steadily gaining critical mass. The project management team is doing their best

to define priorities between the primary stakeholders and scheduling the projects onto a

Product Development Roadmap, while removing barriers, satisfying essential needs and

maintaining privileged comforts of the team.

 119

4.6 Values
CI OmniBridge has been, and still is, undergoing tremendous changes. The company started

off as a product design, manufacture, marketing and support organisation. The business is

now undergoing an ambitious strategic shift towards becoming the biggest, global

information service provider for managing commercial fleets. Whereas its predominant staff

complement of a few years ago was a few dozen engineers, it has now grown to a couple of

hundred customer facing staff members with new roles such as operations managers,

customer relationship managers, helpdesk operators, key account managers, regional sales

managers, product managers, and fleet consultants.

For the company’s pioneers and veteran staff, a strange new culture is emerging with

emphasis on service delivery and customer satisfaction. This dissonance matches with the

model Greiner defined for organisational evolution. It has established itself in the Fleet

Management market through relatively small innovative steps and thereby earned a dominant

market position.

More recently the company harvested the insights of Clive Howe309 to align the whole

company using his compass aligned performance system. CI OmniBridge is set out to

become the leader in global information services for the management of commercial fleets by

instilling the following values into the team:

• Accountability – being accountable for getting things done with a sense of urgency

while taking the company’s best interests into account.

• Creativity – encouraging innovation and listening to new and creative ideas and

different ways of doing things whilst avoiding negative or dismissive behaviour.

• Trustworthy – display and encourage honesty, dependability and reliability in others.

• Work smart – always applying mindfulness to all tasks to ensure the desired outcome

is achieved in an optimal manner.

• Integrity – being open and honest with each other and conduct all business in an

ethical manner.

• Service culture – delivering excellent service in a customer focused way.

309 Clive Howe, C. 2003. Simple solutions to strategic success – the one-page c@ps planning process.

Knowledge Resources Publishing.

 120

• Entrepreneurial spirit – seeking new commercial opportunities and being prepared to

change to take advantage of them, without deviating from the core business.

The vision, values and critical success factors are written into its Quality Management

System and promulgated throughout its various geographically dispersed locations around the

globe. These values complement those of the Agile Development community.

4.7 Conclusion
CI OmniBridge has successfully adopted Extreme Programming and Scrum principles and

practices. The Quality Management System conforms to ISO standards and although it does

not specifically prescribe Agile methodologies, the processes were influenced by the prior

successful experience based on XP and Scrum. The teams are motivated and driven by a set

of shared values that complement the Agile Manifesto values. The Complex Adaptive

Systems approach will only work if a comfortable critical mass is reached.

 121

Chapter 5
Conclusion

Speaking and writing is an ever renewed struggle to be both apposite and intelligible,

and every word that is finally uttered is a confession of our incapability to do better.

M. Polanyi, 1958

The preceding chapters are partially representative of extant research underway to find the

evasive silver bullet. All of the many SDLC methodologies had in its time been effective in

the context of its time and application.

For the last fifty years project managers had designed models of how they think systems

development should work by imposing formal phases, rules and standards. The various

stages of the lifecycle where bounded and isolated to different and disparate workgroups such

as analysts, designers, coders, and testers. These groups were socially and geographically

separated as much as they were functionally separated. Their primary means of interaction

was through formal written documentation. In large corporations and government agencies,

systems development projects failed more often that it succeeded. Stakeholders wanted

answers. The frantic search for the silver bullet has not subsided since.

The Chaos Report does not make any sense. Instead it presents a list of external sources of

blame such as drawing attention on the lack of executive support, user involvement and

experienced project managers. They add little more awareness to what Brooks published

three decades ago. Product development departments are instead suffering from Senge’s

Learning Disabilities.

Companies that made Information Technology their life-blood seemed to have found the

secrets of success, constantly innovating and delivering final valuable software products.

Several veteran and incumbent experts joined forced to discover how systems development

actually works inside these successful super-productive teams.310

310 Jeff Sutherland and Charles Schwaber reported average productivity differences in software teams to be

600%. The most successful team to date, Borland Quatro Project, reported to be 3000 times more
productive. Source: http://jeffsutherland.com.

 122

As the incumbent Information Age is being interwoven with the more mature Industrial Age

both are being interwoven with the ancient Biological Age. The proliferation of wireless

interconnected devices and accelerated progress in nanotechnology is made possible by these

interwoven threads of technological innovation.

The system development lifecycle is a complex process of incremental iterative moments of

creativity. Each moment determines the path of for future moments. The attributes of good

systems development lifecycle management are dominated by that of sensible leadership. It

is a healthy, cognitive process, acting out as it would during a rugby game. A strategy is

executed, tested and adapted, moving the ball vigorously forward.

The last decade has seen an increasing interest in knowledge management as a consequence

of the rapid development of information systems and technologies, which enable both private

and public sector organisations to leverage their knowledge assets far more effectively than

was hitherto possible. Given the rapid emergence of cost-effective Internet-powered

technologies, it is now possible for global enterprises to effortlessly and instantaneously

communicate and share information across their geographical and functional structures. This

collaboration across organisational boundaries has become a critical success factor and

source of competitive advantage.

Information Technology has helped managers with the augmentation, classification, filtering,

visualisation, extrapolation, analysis, and forecasting of data. As the Information Age is

being woven into the Industrial Age, organisations start shifting its measure of value away

from the physical world toward the meta-physical world. Thinking of teams and

organisations as living Complex Adaptive Systems essentially acknowledges the past

mistakes of treating it as closed mechanical systems.

Apart from briefly citing Nonaka, Takeuchi, Senge, and Argyris there is little in-depth study

of new management thinking being incorporated into SDLC methodologies. However, what

emerged from the search for models and principles is a potential explanation and

characterisation of the super-productive development teams as Complex Adaptive Systems.

Conversely, acknowledging that the theory of Complex Adaptive Systems started in

computer science, new management thinking at large has only recently shown interest in it

and would probably adopt the lessons to be learned from future SDLC methodology research.

The systems design process relies on the importance of drawing pictures as a way of seeing.

One should literally ask oneself the following sensemaking question: How can you know

what you need to build if you can not see what you are designing? This is especially true

 123

with difficult, complicated, and cognitive dissonant problems which are common in the

Information Technology industry.

As with Shackleton’s expedition team, systems development often calls for the use of

multidisciplinary teams. This team must include representatives from the various scientific,

engineering, and business specialties, such as electronic and mechanical design, software

engineering, manufacturing, reliability engineering, maintainability, logistic support, life

cycle cost analysis, human factors, quality assurance, marketing, and management. All of

these disciplines have unique views of product and process design that are constructed from

their individual past experiences. These views are expressed in different ways that often use

specialised notations and languages. These must however be shared by all of the team

members. This requires an increase in the communication of product and process

information among the members of the multidisciplinary teams. Without the constant flow of

ideas, information, and analysis data, system development will not be effective. For the team

members to be able to share other points of view, scientific collaboration requires

communication beyond that of information alone to provide complete sensory integration.

Establishing a large web or interconnected nodes does not ensure that the system can handle

high volumes of requests. In the same sense that the human brain is constructed it can only

handle a steady rate of up to a dozen impulses per second. Creativity is however only

possible at much lower clock speeds. The brain quickly becomes inefficient when

overloaded. It is critical to maintain a steady drumbeat and establish an optimal rhythm for

maximum productivity. However, in the context of Einstein’s Brownian movement theory,

particle-count also does not matter. Collaboration occurs in temporal moments of contact

between two particles or, in terms of the Complex Adaptive Systems model, between two

agents. Seldom more than two agents would be instantly involved in a singular collaborative

moment.

The answer is not combating detailed complexity but instead the management of dynamic

complexity. This is done through simple parameters such as Kaufmann’s interconnection

control parameter and through simple yet effective performance indicators such as the burn-

down charts and sprint velocity as proposed by the Agile Scrum approach.

Another valuable insight made possible by the decreasing costs of computing and

communication capacity is that systems developers reap the benefit of rich multimedia

artefacts in order to maintain velocity closer to the maximum entropy region. In less

technical terms this implies for example that the real voice-of-the-customer could actually be

 124

recorded as opposed to lengthy written technical specifications. Technologies such as online

text, voice and video chatting or blogging enhances the customer-on-site experience. Digital

still and video cameras can capture instant customer details. Conversely developers could

capture and release sneak previews of the system-under-development to delight the customer

with progress without having to endure the costs of supporting Beta311 software installations.

Each bird in a flock knows how to fly and is fit to fly. It also knows the rules of behaviour

and how to communicate effectively while in flight. These lessons are taught in the nests and

during playtime as juveniles. Once the flock is airborne it knows how to act and there is little

time for study. It maximised on every opportunity to achieve its goal with least dispersed

energy. The flock however does not reach its destination in a single flight. It needs to take

rests and recharge on potential energy levels.

The development of complex systems requires a certain incubation period in order for

emergence to occur. The occurrence of emergence stimulates spontaneous eruptions of

subsequent emergence in a fractal tree chain reaction pattern. For example, the first

emergence entices two more occurrences, which in turn each triggers another pair of

emergent products, and so forth. In open systems this entropic behaviour could be identified

as creativity, but this could also lead to nothing or even destruction. It is necessary to

measure emergence in order to direct it towards an end goal.

For example, when a developer is given a task to accomplish, it is expected that she would

produce the best possible solution. However it is not possible to know what is possible until

one sees the result of a first deliverable. This deliverable must however be useful and

valuable albeit not final or perfect. This emergence is manifested in artefacts. Artefacts that

can be interacted with are the only measure of production in such creative accomplishment.

The reason why traditional management finds knowledge management so difficult is because

of this missing link between the mechanical manufacturing of tangible artefacts and the artful

knowledge that creates other types of tacit value. Implicit knowledge works in tandem with

its complementary explicit knowledge. There is an abundance of extant explicit knowledge

in the world. Aspiring to gain a complete understanding is fatal. Mastering the knowledge

through small learning cycles is more achievable, yielding efficiency, effectiveness and

311 Beta is a label given to a specific prerelease version of a system that is ready for external testing and

evaluation, but has not yet been fully qualified as the final product release. The primary purpose of the Beta
release is to get early customer feedback before giving them the final solution only once the project is
complete. As can be guessed Beta is preceded with an internal Alpha release. Using remoting technologies
it would be possible to expose external stakeholders to Alpha releases as well.

 125

satisfaction. Social networks such as newsgroups, blogs, forums and Communities of

Practices, are only really valuable if the knowledge worker is an active contributing member.

At least one member of the team working in a specific domain needs to reach this switched-

on level of mastery.

Innovation impacting is more effective than the hard driven need for urgency. Avoid

psychological disposition of ownership and control causing staff to feel like physical assets

with little or no leverage and control over the destiny and success of the company. Domain

knowledge grows during the development stages and is not known upfront. In many cases

the important domain knowledge is only discovered once the first version is installed and

being used. Focus on the skill of managing product creation with creative people opposed to

telling them how and what to do, in a recipe like manner.

Make a clear distinction between manufacturing and crafting. Systems development is

essentially an act of crafting. It is the mindful312 creation of useful artefacts. An artefact may

however be the end-to-end procedure for manufacturing of a product or a recipe for soup.

The process of manufacturing of physical motor vehicles is much different to that of

designing a new motor vehicle model. However the manufacturing needs to conform to strict

discipline and standards to produce reliable quality vehicles as the designers intended it to be.

As such the designers are the creators, not of cars, but of models, such as the original Ford

Model T. A century of management science was invested into manufacturing processes.

Software manufacturing on the other hand is relatively simple to accomplish as it is easily

automated. Software products can be transported and replicated with much less effort and

costs than any other kind of product. It obeys the laws of knowledge opposed to the laws of

physics.

Software is seen by law as a copyrightable intellectual artefact alongside books, music and

paintings. There exist many schools for acquiring these skills and learning about the

technicalities of these art forms. They do not, however, prescribe a set of standard formulas

or recipes for authoring a bestseller novel. At the very best students would gain some

insights, principles and guidelines. Many of these artistic talents can only be developed from

within.313 For example, to learn to dance or fiddle requires one to observe what other

scholars have mastered and then to reflect upon ones own enactments. In software design

312 Weick, Snowden and Stacey use the term ‘mindful’ to represent a holistic attentiveness in the process of

Sensemaking in organisations.
313 Satori - the Zen Buddhist term for enlightenment means ‘to understand’.

 126

this is achieved by pair-programming and should not be confused with peer-programming.

Pair-programming ideally requires an experienced developer alongside a junior developer,

not two equally competent peers.

Make time for that what needs to occur naturally. As breathing is essential to performing

ones work; so are many other social distractions. Accept this and build it into the SDLC. For

example, allot one hour per day for playful distraction. The benefits are important in terms of

stress relief, creating a playful and fun loving ecosystem and most important to stimulate

creativity.

Reliable delivery of final valuable products is a realistic business objective that is too often

compromised by overcomplicated rigid processes. Reliable systems delivery can however be

assured by applying a strategic management methodology that is focused on adroit

autonomous team innovation and an integrative body-of-knowledge framework that is

influenced by the new Knowledge Management theories such as Complex Adaptive Systems

theory.

Change prevails and conquers society and technology. Abstract meta-models have longer

lifetimes since it is not restricted to a specific instance and can be tailored to fit almost any

requirement. Meta-models are however not very practical otherwise. The most appropriate

model is that of Complex Adaptive Systems which only requires a certain critical mass and a

practical set of rules for guidance. In Complex Adaptive Systems, the goal is not reaching

the planned destination, but instead making the most of the moments towards getting there

whilst guided by a clear vision.

The thesis traversed full circle from modelling lifecycles and returned to the realisation that it

is living systems that is in need of nourishment. The recent attention given to biotechnology

may once again open the eyes of practitioners and researchers to embark on a scientific

expedition to discover the secrets of how life itself has endured its inherent complexities and

resulted into such profound beauty.

 127

Bibliography
ALHIR, S. 2002. Understanding the Unified Process. Methods & Tools Newsletter. March.

ALLEN, D. 2002. Getting things done – the art of stress-free productivity. Penguin Books.

AMBLER, S.W. 2006. Survey Says Agile Works in Practice. Dr. Dobb's Journal. 3 August.

AMBLER, S.W. 2005. A Manager’s Introduction to The Rational Unified Process (RUP).

<www.ambysoft.com/downloads/managersIntroToRUP.pdf>.

Accessed 30/10/06.

AMBLER, S.W. 2006. Choose the right software method for the job.

<http://www.agiledata.org/essays/differentStrategies.html>

ANDERSON, D.J. 2006. CMMI DOI Comparison. <http://www.apln.org/cmmi.html>.

Accessed 30/10/06.

ANDERSON, D.J. 2005. Stretching Agile to fit CMMI Level 3 - the story of creating MSF

for CMMI Process Improvement at Microsoft Corporation. Agile

Conference.

ARBINGER INSTITUTE. 2002. Leadership and Self Deception – Getting Out of the Box.

Berrett-Koehler.

ASHBY, W.R. 1958. Requisite Variety and Implications for Control of Complex Systems.

Cybernetica, Vol.1:83-99.

BACH, J. 1995. The Challenge of Good Enough Software. American Programmer Magazine.

BARESI, L. DI NITTO, E. GHEZZI, C. 2006. Toward Open-World Software: Issues and

Challenges. IEEE Computer. Vol.39. No.10.

BARLEY, S.R. KUNDA, G. 2004. Gurus, Hired Guns, and Warm Bodies – Itenerant

Experts in a Knowledge Economy. Princeton University Press.

BASKERVILLE, R.L. MYERS, M.D. 2002. IS as a Reference Discipline. MIS Quarterly

Vol.26 No.1.

BATESON, G. 1973. Steps to an Ecology of Mind. Granada Publishing.

BAXTER, A. 2005. Rapid results without a rugby scrum. Financial Times London. 27 July.

BECK, K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.

 128

BECK, K. FOWLER, M. 2002. Planning Extreme Programming. Addison-Wesley.

BEREIT, M. 2006. Escape the software development paradigm trap. Dr. Dobb's Journal.

29 May.

BERKUN, S. 2005. The Art of Project Management. O’Reilly.

BINNEY, G. WILLIAMS, C. 1996. Leaning into the Future – Changing the Way People

Change Organizations. Nicholas Brealey.

BLEICHER, P. 2003. Software Life Cycles and Kitchen Sinks. Applied Clinical Trials

Magazine. October.

BOEHM, B.W. 1979. Software Engineering - As it is. Proceedings of the 4th International

Conference on Software Engineering. IEEE Press.

BOEHM, B.W. 2000. Spiral Development: Experience, Principles, and Refinements. Spiral

Development Workshop. CMU/SEI-2000-SR-008.

BOISOT, M. 1998. Knowledge Assets – Securing Competitive Advantage in the Information

Economy. Oxford.

BOISOT, M. CANALS, A. 2004. Data, information and knowledge: have we got it right?

Online Working Paper. IN3: UOC. (Working Paper Series; DP04-002)

<http://www.uoc.edu/in3/dt/20388/index.html>. Accessed 30/10/06.

BROOKS, F.P. 1975. The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley.

BROOKS, F.P. 1987. No Silver Bullet - Essence and Accidents of Software Engineering

Computer. Vol.20 No.4.

BRYSON, B. 2003. A Short History of Nearly Everything. Doubleday.

BUSH, V. 1945. As We May Think. The Atlantic Monthly.

CASTANEDA, C. 1971. A Separate Reality. Penguin Books.

CASTELLS, M. 2000. The Rise of the Network Soceity. Blackwell Publishing.

CHRISTENSEN, C.M. 1992. Exploring the Limits of technology S-Curve. Production and

Operations Management Journal.

CHRISTENSEN, C.M. 1997. The Innovator’s Dilemma – The revolutionary book that will

change the way you do business. HarperBusiness Essentials.

 129

COAD, P. YOURDON, E. 1990. Object-Oriented Analysis. Prentice Hall

COAD, P. YOURDON, E. 1991. Object-Oriented Design. Prentice Hall

COCKBURN, A. 2003. People and Methodologies in Software Development. PhD

dissertation. University of Oslo.

COLEMAN, H.J. Jr. 1999. What Enables Self-Organizing Behavior in Businesses.

Emergence. Vol.1.Issue.1.

COOPER, M. 2001. Everyone is wrong. Technology Review. June.

COX, B. 1995. No Silver Bullet Revisited. American Programmer Journal. November.

CROSBY, P.B. 1979. Quality is Free. McGraw-Hill.

DAVILA, T. EPSTEIN, M. J. SHELTON, R. 2006. Making Innovation Work, How to

manage it, measure it and profit from it. Wharton School Publishing.

DAVIS, A.M. 1992. Operational Prototyping: A New Development Approach. IEEE

Software. Vol.9. No.5.

DAVIS, A.M. 1995. 201 Principles of Software Development. McCraw-Hill.

DIJKSTRA, E.W. 1968. GOTO Statement Considered Harmful. Communications of the

ACM. Vol. 11(3):147-148.

DOVE, R. 2006. Engineering Agile Systems: Creative-Guidance Frameworks for

Requirements and Design. 4th Annual Conference on Systems

Engineering Research (CSER).

DRUCKER, P. 1988. The Coming of the New Organization. Harvard Business Review.

Vol.66 Iss.1

DRUMMOND, H. 2001. The Art of Decision Making – mirrors, of imagination, masks of

fate. Wiley.

EELES, P. 2005. RUP for Successful J2EE Projects. Rational Software. IBM Software

Group.

EVANS, I. 2006. Agile Delivery at British Telecom. Methods & Tools. Summer.

FIRESMITH, D. 2006. OPEN Process Framework.

<http://www.opfro.org/Overview/Metamodel.html>. Accessed 30/10/06.

FISHMAN, C. 2000. The Total Teamwork Agenda. F@st Company. Issue 33.

 130

FLOOD, R.L. 1999. Rethinking the Fifth Discipline. Routledge.

FLOOD, R.L. JACKSON, M. 1991. Creative Problem Solving. Wiley.

FOWLER, M. HIGHSMITH, J. 2001. The Agile Manifesto. Dr. Dobb's Journal. July.

FRAME, J.D. 2002. The New Project Management. Jossey-Bass.

GEORGE, M. ROWLANDS, D. KASTLE, B. 2004. What is Lean Six Sigma? McGraw-Hill.

GIARRATANO, J. RILEY, G. 1989. Expert Systems – Principles and Programming. PWS-

Kent.

GILLISPIE, C.C. 1960. The Edge of Objectivity. Princeton Paperbacks.

GLASS, R.L. VESSEY, I. 1998. Focusing on the Application Domain – Everyone Agrees

It’s Vital, But Who’s Doing Anything About It? IEEE Computer.

GLASS, R.L. 2003. Facts and Fallacies of Software Engineering. Addison-Wesley.

GLASS, R.L. 2004. Matching Methodology to Problem Domain. Communications of the

ACM. Vol.47. No.5.

GLOGER, B. 2006. Comparison of Methodologies.

<http://www.scrumalliance.org/index.php/content/download/6306/6510

9/file/ComparisonofMethodologies.pdf>. Accessed 30/10/06.

GOLDSTEIN, J. 1999. Emergence as a Construct: History and Issues. Emergence. Vol.1.

Issue.1.

GREMBA, J. MYERS, C. 1997. The IDEAL Model: A Practical Guide for Improvement.

Software Engineering Institute (SEI) publication. Bridge. Issue 3.

HAMEL, S. HIGHSMITH, J. 2000. Optimize - or Adapt. Software Development. April.

HAMMER, M. 1996. Beyond Reengineering – How the process-centered organization is

changing our work and our lives. HarperBusiness.

HEYLIGHEN, F. JOSLYN, C. 2001. Principia Cybernetica Web (Principia Cybernetica,

Brussels). <http://pespmc1.vub.ac.be/reqvar.html>. Accessed 30/10/06.

HIGHSMITH, J. 1997. Messy, Exciting, and Anxiety-ridden: Adaptive Software

Development. American Programmer. Vol.10.No.1.

HIGHSMITH, J. 2002. What Is Agile Software Development? CrossTalk. The Journal of

Defense Software Engineering. October.

 131

HIGHSMITH, J. COCKBURN, A. 2001. Agile Software Development: The Business of

Innovation. IEEE Computer.

HOCK, D. 1999. Birth of the Chaordic Age. Berret-Koehler.

HOCK, D. 2000. Back to Nature. CIO Magazine. 15 January.

HOFSTADTER, D.R. 1979. Gödel, Escher, Bach – An eternal golden braid. Vintage Books:

New York.

HOWE, C. 2003. Simple solutions to strategic success – the one-page c@ps planning

process. Knowledge Resources Publishing

IMMELMAN, R. 2003. Great Boss Dead Boss – How to exact the very best performance

from your company and not get crucified in the process. Phaice.

ISO. 2000. SABS ISO 9000:2000 edition 2. SABS. ISBN 0-626-12810-2

ISO/IEC. 1994. Information technology -- Open Systems Interconnection -- Basic Reference

Model: The Basic Model. International Standard 7498-1.

JACKSON, M. C. 2003. Systems Thinking – Creative Holism for Managers. Wiley.

JACOBSON, I. 1992. Object-Oriented Software Engineering. Addison-Wesley.

JACOBSON, I. WEI NG, P. SPENCE, I. 2006. The Essential Unified Process. Dr. Dobb's

Journal. 2 August.

JENSEN, W.D. 2000. Simplicity – The New Competitive Advantage in a World of More,

Better, Faster. Perseus Publishing.

JOHNSON, G. 2001. All Science is Computer Science. New York Times. March 25.

JONES, C. 2006. Social and Technical Reasons for Software Project Failures. CrossTalk -

The Journal of Defense Software Engineering. June.

KAST, F. E., ROSENZWEIG, J. E. 1970. Organization and Management – A systems

approach. McGraw-Hill.

KAST, F. E., ROSENZWEIG, J. E. 1979. Organization and Management 3rd Edition – A

systems and contingency approach. McGraw-Hill.

KAUFMANN, S.A. 1993. The Origins of Order - Self-Organization and Selection in

Evolution. Oxford University Press.

KAY, R. 2005. CMMI. Computerworld. 24 January.

 132

KREBS, J. 2005. RUP in the dialogue with Scrum. IBM Rational Edge.

KRUCHTEN, P. 2005. Software Design in a Postmodern Era. IEEE Software.

KURTZ, C. F. SNOWDEN, D. J. 2003. The new dynamics of strategy: Sense-making in a

complex and complicated world. IBM Systems Journal. Vol. 42. No 3.

LARMAN, C. 2004. Agile & Iterative Development – A Manager’s Guide. Addison-Wesley.

LARSEN, D. PIXTON, P. 2006. Team Collaboration for Senior Leadership. Agile Project

Management Advisory Service Executive Update. Vol. 7, No. 6

LEEDOM, D. K. 2001. Sensemaking Symposium Final Report. Command and Control

Research Program Office of the Assistant Secretary of Defense for

Command, Control, Communications and Intelligence.

LIKER, J.K. 2003. The Toyota Way - 14 Management Principles From The World's Greatest

Manufacturer. McGraw-Hill.

LINDER, G. 2006. Evaluation of Software Development Projects using the Agile Method

Scrum. Masters Thesis. Software Engineering Research Group. Lund

University.

MACKAY, H. 2005. Mind your own busyness. The Age. 17 September.

MACKENZIE, D. 2000. A view from the Sonnenbichl: on the historical sociology of

software and system dependability. Proceedings of the International

Conference on History of Computing: Software Issues. Springer-Verlag.

New York.

MAGEE, S. 2002. ISO/IEC 15288 The System Life Cycle Process standard for the 21st

century. <http://syseng.omg.org/_ISOIEC15288.pdf>.

Accessed 30/10/06.

MAR, K. SCHWABER, K. 2002. Scrum with XP. Book chapter in Agile Software

Development with Scrum. Informit.

MARKOFF, J. 2005. What the Dormouse Said – How the 60s Counterculture Shaped the

Personal Computer Industry. Viking.

MARTIN, J. 1991. Rapid Application Development. Macmillan Publishing.

MEYER, B. 1988. Object-Oriented Software Construction. Prentice Hall.

 133

MEYER, C. DAVIS. S. 2003. It’s Alive – The coming convergence of information, biology

and business. Crown Business.

MINTZBERG, H. 1987. The Strategy Concept II: Another Look at Why Organizations Need

Strategies. California Management Review. Vol 30. No 1.

MOORE, J. 2006. ISO 12207 and Related Software Life-Cycle Standards.

<http://www.acm.org/tsc/lifecycle.html>. Accessed 30/10/06.

MORGAN, G. 2001. Images of Organization. Second Edition. SAGE.

NANDHAKUMAR, J. AVISON, D.E. 1999. The fiction of methodological development. A

field study of information systems development. Information.

Technology and People (ITP). Vol.12. No.2.

NICHOLS, W.R. 2006. Building Successful Software Development Teams Using TSP and

Effective Communication Networks. CrossTalk. The Journal of Defense

Software Engineering. January.

NONAKA, I. TAKEUCHI, H. 1995. The Knowledge-Creating Company. Oxford University

Press.

BLEICHER, P. 2003. Software Life Cycles and Kitchen Sinks. Applied Clinical Trials

Magazine.

PELRINE, J. 2006. Cynefin - Making Sense of Agile. Agile 2006 Conference Programme.

<http://www.agile2006.org/program>. Accessed 30/10/06.

PERKINS, D.N.T. HOLTMAN, M.P. KESSLER, P.R. MCCARTHY, C. 2000. Leading at

the Edge – Leadership Lessons from the Extraordinary Saga of

Shackleton's Antarctic Expedition. AMACOM.

PERKINS, T.K. 2006. Knowledge: The Core Problem of Project Failure. Crosstalk. The

Journal of Defense Software Engineering. June.

PFEFFER, L. SUTTON, R.I. 2000. The Knowing-Doing Gap. HBS Press.

PHELAN, S.E. 1999. What is complexity science, really? Emergence. A Journal of

Complexity Issues in Organizations and Management. The New

England Complex Systems Institute.

PICHLER, R. 2006. Agile Gets Lean – How we optimized our Agile Development System

using the Theory of Constraints and Scrum. AgileDevelopment. Spring.

 134

PITHER, R. DUNCAN, W.R. 2006. ISO 10006 : Risky Business.

<http://www.pmpartners.com/resources/iso10006.html>.

Accessed 30/10/06.

PRIES-HEJE, J. BASKERVILLE, R.L. HANSEN, G.I. 2005. Strategy Models for Enabling

Offshore Outsourcing. Information Technology for Development.

Vol. 11. Wiley Periodicals.

RANDOM HOUSE. 2000. Webster’s College Dictionary. Random House Publishing.

RAJLICH, V.T. BENNETT, K.H. 2000. A Staged Model for the Software Life Cycle. IEEE

Computer.

RAYMOND, E.S. 2001. Cathedral and the Bazaar – Musings on Linux and Open Source by

an Accidental Revolutionary. O’Reilly.

REID, T.R. 2001. The CHIP – How Two Americans Invented the Microchip and Launched a

Revolution. Random House.

RICHARDSON, J. 2005. Ancient insights into the modern organization. Chapter 20 in:

Managing Organizational Complexity: Philosophy, Theory, and

Application. A Volume in Managing the Complex:345-360.

ROONEY, D. MARTIN, N. 2003. Enabling Software Quality with Extreme Programming.

Statistics Canada Conference. Quality in IT – From Theory to Reality.

ROYCE, W.R. 1970. Managing the development of large software systems. Proceedings

IEEE WESCON. IEEE Press:1-9.

SCHILLING, M. 2005. Strategic Management of Technological Innovation. McCraw-

Hill/Irwin.

SCHWABER, K. 2001. Agile Processes and Self-Organization.

<http://www.controlchaos.com/download/Self%20Organization.pdf>.

Accessed 30/10/06.

SCHWABER, K. 2001. Agile Software Development with SCRUM. Prentice-Hall.

SCHWABER, K. MARTIN, R.C. 2005. Best Practices in Scrum Project Management and

XP Agile Software Development. <www.controlchaos.com/download/

Primavera%20White%20Paper.pdf>. Accessed 30/10/06.

 135

SENGE, P. 1994. The Fifth Discipline – The Art & Practice of the Learning Organization.

Currency and Doubleday.

SHAPIRO, S. 2002. The Evolution of Innovation. <http://www.24-7innovation.com/

evolution.pdf>. Accessed 30/10/06.

SRIDHARAN, P. 2004. Visual Studio 2005 Team System. MSDN Library. Microsoft.

STACEY, R.D. 2001. Complex Responsive Processes in Organizations – Learning and

knowledge creation. Routledge.

STANDISH GROUP. 2001. The Chaos Report. The Standish Group International.

SU, P. 2006. The World As Best As I Remember It. <http://blogs.msdn.com/philipsu/archive/

2006/06/14/631438.aspx>. Accessed 30/10/06.

SUTHERLAND, J. VIKTOROV, A. BLOUNT, J. 2006. Adaptive Engineering of Large

Software Projects with Distributed/Outsourced Teams. Proceedings of

the International Conference on Complex Systems.

SUTTON, R.I. 2002. Weird Ideas That Work – 11½ practices for promoting, managing and

sustaining innovation. The Free Press.

THEUNISSEN, W.H.M. 2003. A case-study based assessment of Agile software

development. Masters thesis. University of Pretoria.

TRAURING, A. 2003. Software Methodologies – Battle of the Gurus. Info-Tech Research

Group. <http://www.fourm.info/MyArticles/SoftMeth.pdf>.

Accessed 30/10/06.

TRUCH, E. 2004. Knowledge Orientation in Organizations. Ashgate Publishing.

TUTU, D. 2000. No Future Without Forgiveness. Image.

VISE, D. 2005. The Google Story. Macmillan.

WEICK, K.E., SUTCLIFFE, K.M. 2001. Managing the Unexpected – Assuring High

Performance in an Age of Complexity. Wiley/Jossey-Bass.

WEICK, K.E. 1995. Sensemaking in Organizations. SAGE.

WELLS, J.D. 2006. Extreme Programming. <http://www.extremeprogramming.org>.

Accessed 30/10/06.

WHEATLEY, M.J. 2005. Finding our way: leadership for an uncertain time. Berrett-

Koehler

 136

WIENER, N. 1954. The Human use of Human Beings. Houghton Mifflin Company.

WIND, Y. CROOK, C. GUNTHER, R. 2005. The Power of Impossible Thinking. Wharton

School Publishing.

---- o O o ----

	Chapter 1 Problem description
	1.1 Introduction
	1.2 Research objectives
	1.3 Research methodology
	1.4 Detailed problem description
	1.4.1 The Software Developer’s Dilemma
	1.4.2 Facts and fallacies
	1.4.3 Project delivery performance problems
	1.4.3.1 Poor requirements capture
	1.4.3.2 Disconnected design
	1.4.3.3 Development squeeze
	1.4.3.4 The integration headache
	1.4.3.5 The deployment nightmare
	1.4.3.6 Herding cats in a quagmire

	1.4.4 Uncontrolled versus uncontrollable processes

	1.5 Conclusion
	Chapter 2 Overview of SDLC methodologies
	2.1 Introduction
	2.2 Industrial Age
	2.2.1 Stage-Gate process model
	2.2.2 New Product Development

	2.3 Information Age
	2.3.1 Unifying of Modelling Conventions

	2.4 Standards
	2.4.1 ISO 12207
	2.4.2 ISO 9000
	2.4.3 ISO 10006
	2.4.4 ISO/IEC 15288
	2.4.5 ISO/IEC 19759
	2.4.6 CMMI

	2.5 General overview of the software development process
	2.5.1 Requirements analysis and design phase
	2.5.2 Development and implementation phases
	2.5.3 Waterfall model
	2.5.4 Alternatives to the Waterfall model
	2.5.5 Evolutionary model
	2.5.6 Unified Process (UP)

	2.6 Revolutionary Era
	2.7 Extreme Programming (XP)
	2.7.1 Planning game
	2.7.2 Small releases
	2.7.3 Metaphor
	2.7.4 Simple design
	2.7.5 Testing
	2.7.6 Refactoring
	2.7.7 Pair programming
	2.7.8 Collective ownership
	2.7.9 Continuous integration
	2.7.10 40-hour weeks
	2.7.11 Onsite customer representative
	2.7.12 Coding standards

	2.8 Scrum
	2.8.1 Scrum roles
	2.8.2 Scrum artifacts
	2.8.3 Scrum meetings

	2.9 Socialistic Era
	2.10 Metamodels
	2.11 Adoption and comparison
	2.12 Conclusion

	Chapter 3 Proposed theoretical models
	3.1 Introduction
	3.1.1 Seeing
	3.1.2 Embedding knowledge and complexity reduction
	3.1.3 Knowledge-power

	3.2 Lifecycle models
	3.3 Sensible leadership
	3.3.1 Creative phase.
	3.3.2 Direction phase.
	3.3.3 Delegation phase.
	3.3.4 Coordination phase.
	3.3.5 Collaboration phase.

	3.4 Sensemaking in Organisations
	3.5 Systems thinking
	3.6 Cybernetics in Organisations
	3.7 Complex Adaptive Systems in Organisations
	3.8 Sustaining an Innovative Development Ecosystem
	3.9 Maximising Value Velocity
	3.10 Conclusion

	Chapter 4 A case study of CI OmniBridge
	4.1 Introduction
	4.2 Sensemaking with Scrum
	4.3 Quality Management System
	4.4 Complex Adaptive Systems approach
	4.5 Survey
	4.6 Values
	4.7 Conclusion

	Chapter 5 Conclusion

