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SUMMARY 
Skeletal muscle adapts to stimuli by modifying structural and metabolic protein expression. 

Furthermore, a muscle group may vary within itself to accommodate specialisation in regions. 

Structural and metabolic characteristics of an individual are regulated partly by genotype, but 

contraction duration and intensity may play a greater role in muscle phenotype. The aims of this 

dissertation were to investigate: structural and metabolic regionalisation in a muscle group, possible 

relationships between training volume and intensity and hybrid fibres, muscle characteristics of 

athletes from two different ethnic groups, and muscle adaptation in already well-trained athletes 

subjected to high intensity interval training. 

Myosin heavy chain (MHC) isoform content and citrate synthase (CS) activities were measured in 

the Quadriceps femoris (QF) muscle of 18 female rats. Muscle was divided into superficial, middle 

and deep, distal, central and proximal parts. MHC IIb and IIx were more abundant in superficial 

regions (P < 0.05) with low CS activities compared to deeper parts. Isoform content varied along the 

length of deep regions. This study showed that the QF has regional specialisation. Therefore, 

standardisation of sampling site is important. 

Hybrid fibre proportions in muscle biopsies of 12 middle distance runners and 12 non-runners were 

investigated. MHC IIa/IIx correlated with training volume/week in runners (r = -0.66, P < 0.05) and 

MHC IIa/IIx correlated with exercise hours/week in non-runners (r = -0.72, P < 0.01). Average 

preferred racing distance (PRDA) correlated better with MHC IIa/IIx in runners (r = -0.85, P < 

0.001). MHC IIa/IIx may therefore be more closely related to exercise intensity than previously 

thought. 

Fibre type characteristics and performance markers were investigated in 13 Xhosa and 13 Caucasian 

distance runners, matched for performance, training volume and PRDA. Xhosa runners had less 

MHC I and more MHC IIa fibres in muscle biopsies than Caucasian runners (P < 0.05). Xhosa 

runners had lower plasma lactate at 80% peak treadmill speed (PTS) (P < 0.05), but higher lactate 

dehydrogenase (LDH) (P < 0.01) and phosphofructokinase (P = 0.07) activities in homogenate 

muscle samples. LDH activities in MHC I (P = 0.05) and IIa (P < 0.05) fibre pools were higher in 

Xhosa runners. Xhosa athletes may thus have a genetic advantage or they may have adapted to 

running at a higher intensity.  

Six weeks of individually standardised high intensity interval treadmill training (HIIT) were 

investigated in 15 well-trained runners. PTS increased after HIIT (P < 0.01), while maximum 

oxygen consumption (VO2max) only showed a tendency to have increased as a result of HIIT (P = 
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0.06). Sub-maximal tests showed lower plasma lactate at 64% PTS (P = 0.06), with lower heart 

rates at workloads from 64% to 80% PTS (P < 0.01) after HIIT. No changes were observed for 

cross-sectional area, capillary supply and enzyme activities in homogenates muscle samples. LDH 

activity showed a trend (P = 0.06) to have increased in MHC IIa pools after HIIT. Higher HIIT 

speed was related to decreases in MHC I fibres, but increases in MHC IIa/IIx fibres (r = -0.70 and r 

= 0.68, respectively, P < 0.05). Therefore, HIIT may alter muscle fibre composition in well-trained 

runners, with a concomitant improvement in performance markers. 
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OPSOMMING 
Skeletspier kan adapteer deur strukturele en metaboliese protein ekspressie te verander as gevolg 

van stimulante. ‘n Spiergroep kan ook intern verskil om spesialisering in spierdele toe te laat. 

Strukturele en metaboliese karaktereienskappe van ‘n individu word deels gereguleer deur gene, 

maar kontraksie tydperk en intensiteit mag ‘n groter rol speel in spierfenotipe. Die doelwitte van 

hierdie tesis was om ondersoek in te stel in: strukturele en metaboliese eienskappe in 

spiergroepstreke, moontlike verhoudings tussen oefeningsvolume of intensiteit en baster vesels, 

spier eienskappe in atlete van twee etniese groepe, en spier adaptasie in goed geoefende atlete 

blootgestel aan hoë intensiteit interval oefening. 

Miosien swaar ketting (MSK) isovorm inhoud en sitraat sintase (SS) aktiwiteite is gemeet in die 

Quadriceps femoris (QF) spier van 18 wyfie rotte. Spiere was opgedeel in oppervlakkig, middel en 

diep, asook distaal, sentraal en proksimale dele. MSK IIb en IIx was meer oorvloedig in 

oppervlakkige dele (P < 0.05) met lae SS aktiwiteite in vergelyking met dieper dele. Isovorm 

inhoud het ook verskil oor die lengte van diep dele. Dus bevat die QF gespesialiseerde streke en is 

die area van monsterneming belangrik. 

Baster vesel proporsies is ondersoek in spiermonsters van 12 middel afstand hardlopers en 12 nie-

hardlopers. MSK IIa/IIx van hardlopers het met oefeningsvolume/week gekorreleer (r = -0.66, P < 

0.05), asook MSK IIa/IIx van nie-hardlopers met oefeningsure/week (r = -0.72, P < 0.01). 

Gemiddelde voorkeur wedloop afstand (VWAG) het beter met MSK IIa/IIx gekorreleer in 

hardlopers (r = -0.85, P < 0.001). MSK IIa/IIx mag dus meer verwant wees aan oefeningsintensiteit. 

Veseltipe eienskappe en prestasie merkers was ondersoek in 13 Xhosa en 13 Caucasian langafstand 

atlete, geëweknie vir prestasie, oefeningsvolume en VMAG. Xhosa hardlopers het minder tipe I en 

meer tipe IIA vesels in hul spiermonsters gehad as die Caucasian hardlopers (P < 0.05). Xhosa 

hardlopers het laer plasma laktaat by 80% van hul maksimale trapmeul spoed (MTS) (P < 0.05), 

maar hoër laktaat dihidrogenase (LDH) (P < 0.01) en fosfofruktokinase (P = 0.07) aktiwiteite in 

homogene spiermonsters gehad. LDH aktiwiteite in MSK I (P = 0.05) en IIa (P < 0.05) 

veselbondels was hoër in Xhosa hardlopers. Xhosa atlete mag dus ‘n genetiese voorsprong geniet, of 

hulle het geadapteer om by hoër intensiteite te hardloop. 

Ses weke van geïndividualiseerde gestandardiseerde hoë intensiteit interval trapmeul oefening 

(HIIT) was ondersoek in 15 goed geoefende hardlopers. MTS het verhoog na HIIT (P < 0.01), en 

maksimale surrstof verbruik (VO2max) het ‘n neiging getoon om te verhoog het na HIIT (P = 0.07). 

Submaksimale toetse het laer plasma laktaat by 64% MTS getoon (P = 0.06), met laer harttempos 
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by werkladings 64% tot 80% MTS (P < 0.01). Geen veranderings was gemerk vir deursnit area, 

kapillêre toevoer en ensiem aktiwiteite in homogene spiermonsters nie. LDH aktiwiteit het ‘n 

neiging getoon om te verhoog het (P = 0.06) in MSK IIa veselbondels na HIIT. Hoër HIIT snelhede 

was verwant aan ‘n daling in MSK I vesels, maar ‘n verhoging in MSK IIa/IIx vesels (r = -0.70 en r 

= 0.68, respektiwelik, P < 0.05). HIIT mag dus spier veseltipe verander in goed geoefende 

hardlopers, met gevolglike verbetering in prestasie merkers. 
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PREFACE 

I “Are you born great, or made great?” 

In the field of sport performance, the above question can be rephrased. “What determines if an 

individual will be the best in their chosen event?” For the past few decades, sport scientists have 

tried to answer this question by approaching it from various angles.  

Considering the importance of individual determination and motivation, it could be speculated 

that many persons should be able to perform at Olympic level if they chose to apply themselves 

to this goal. Why then are there so few elite athletes in the world? Some favour the view that 

genetic factors influence performance significantly. Bouchard et al. (1992) speculated that up to 

40% of endurance performance may be related to genetic factors, but that this value may in fact 

be lower. Scientists are currently seeking for those genes that influence sports performance.  

Since the requirements for excellent performance are different in different sports, a genetic basis 

for Olympic success must be approached from the point of view of searching for genotypes 

related to specific phenotypes. Some gene polymorphisms have been found to be associated with 

certain phenotypes that are advantageous to exercise performance (Rankinen et al., 2004; Rivera 

et al., 1997a; Rivera et al., 1997b). However, many experiments have indicated that the human 

body is very adaptable to exercise stimuli. Muscle is the machinery that generates motion, and is 

also one of those tissues that adapts very well to exercise. Structural and metabolic adaptations 

have been investigated in various animal and human exercise intervention studies, which include 

diverse stimuli e.g. from weight training to ultra endurance training. Therefore, where the search 

for exercise performance continues, it is still important to have a thorough understanding of the 

extent of adaptability of the intramuscular phenotype, as well as what effect this might have on 

whole body performance. 

Specialisation in running (either sprinting, middle distance running or endurance) may be 

influenced by genetics. A few years ago, an article published in a local South African newspaper 

(Arlidge, 2000) claimed that East African black runners have a genetic advantage compared to 

others across the world when it comes to endurance events. The journalist quoted studies 

conducted by Saltin and co-workers (Saltin et al., 1995b; Saltin et al., 1995a). His interpretation 

of the scientific studies was that Kenyans are better at running events because of their slender 

build. Furthermore, studies comparing South African black runners with white runners also 

stated that black runners have better running economy, are more resistant to fatigue, have some 

different muscle characteristics as well as the ability to perform better at high environmental 

temperatures (Bosch et al., 1990; Coetzer et al., 1993; Marino et al., 2004; Weston et al., 1999). 

Does this mean that other nations will not be able to perform well or win the gold medal in 

endurance running events? 



 10

At the recent Olympic Games (Athens, Greece, 2004), very few of the final events from 800 m 

to the marathon were won by Kenyan runners. In fact, the 800 m and the marathon were won by 

a Russian and an Italian, respectively. Furthermore, the 5000 m and 10 000 m finals were won 

by a Moroccan and an Ethiopian, respectively. However, despite the poor performances of 

Kenyan endurance runners at the Olympic Games, they have dominated World Championship 

events in cross-country, where the depth of talent is important, for the past decades. Once again, 

the circumstantial evidence seems to justify on the one hand a genetic basis for elite athletic 

performance, and on the other hand that training may be the key to becoming a champion. Some 

gene polymorphisms have been found to be associated with certain phenotypes that are 

advantageous to exercise performance (Rankinen et al., 2004; Rivera et al., 1997a; Rivera et al., 

1997b). On the other hand, these genes that are associated with performance, may only be 

activated as a result of extreme training – training representing an environmental factor. This 

latter statement represents gene-environment interaction. While the search for exercise 

performance genotypes continues, it is still important to have a thorough understanding of the 

extent of adaptability of the intramuscular phenotype, as well as what effect this might have on 

whole body performance. 

In the present dissertation, four studies are presented, focusing on structural and metabolic 

characteristics in skeletal muscle. Furthermore, emphasis is also placed on relationships between 

performance, whole body physiology and these characteristics, in the quest to unravel whether 

athletes are  

born great ... or made great. 
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             CHAPTER 1 

Literature review 

1.1 Introduction 

Adaptation is defined as modification or alteration to enhance or inhibit functionality of a 

system, either directly or indirectly. Many systems in living organisms can undergo adaptation 

as a result of the effects of signalling molecules and pathways activated by internal or external 

stimuli. This may involve the regulation of enzyme activities with almost immediate effect or 

longer term regulation, or both. Longer term regulation occurs by transcription of DNA to 

messenger RNA, followed by translation to protein with a concomitant change in protein 

concentration. One system in mammalian species particularly prone to adaptation is skeletal 

muscle. This plasticity can be attributed to the fact that skeletal muscle is the only system that 

can produce movement, and the latter is crucial to the survival of humans and animals. Up- and 

down-regulation of genes resulting in activation or inhibition of protein expression, respectively, 

are both directly responsible for changes in muscle structure and metabolism. Changes include 

on the one hand the contractile properties and on the other hand the supply and utilisation of fuel 

by muscle. 

The two main proteins responsible for contraction are actin and myosin. This latter protein is a 

dimer constructed of two myosin heavy chains (MHC), with two myosin light chains bound to 

each MHC monomer (reviewed by Cooke (1995). The MHC is the most important contractile 

protein in determining contraction speed of the muscle, as it contains the ATPase activity 

responsible for ATP hydrolysis, a crucial step for contraction. The faster hydrolysis occurs, the 

faster the velocity of contraction (He et al., 2000). Anatomical position of skeletal muscle plays 

an important role in endogenous muscle protein expression, giving rise to specialised muscle 

groups, such as eye muscles compared to leg muscles (Staron, 1997). Furthermore, the same 

muscle at birth may vary substantially in structural and metabolic characteristics compared to 

the adult form (Swynghedauw, 1986). However, both of these aforementioned are closely 

related to function, and can adapt to physical requirements (Punkt, 2002). This adaptation 

contributes to muscle fibre type.  

Muscle fibre type is also characterised by a capacity to supply ATP that must parallel the 

demand thereof. Therefore, with a change in contraction properties, there is usually a parallel 

change in metabolic properties. For example, with an increase in contraction frequency, the 

demand for ATP is increased. In order to maintain the ATP supply and prevent contraction 

failure, metabolic pathways adapt by increasing the flux of substrates through the pathway by 
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mass action, direct activation of key enzymes in the pathway and/or increasing enzyme 

concentrations (increase in protein expression) in relevant pathways.  

This dissertation is aimed at investigating the adaptation of particular proteins influencing 

muscle contraction, namely the MHC and selected metabolic enzymes in pathways responsible 

for ATP supply. A second aim is to investigate these biochemical factors in the context of whole 

body physiological functioning during movement. 

In order to generate motion under any circumstance requires some sort of a motility system. 

Bacteria, invertebrates and vertebrates all have some sort of motility or contractile (muscular) 

system, each designed to serve a specific function. Mammals have three types of muscle tissue, 

namely cardiac, smooth and skeletal muscle. Each of these has distinct properties and locations 

in the body related to functionality. However, these functions are interlinked in higher 

organisms.  

Cardiac muscle is only found in the heart and does not have the ability to contract voluntarily. 

The cells are 50 to 100 µm in length, 14 µm in diameter, striated (have sarcomeres) and 

branched, with a single nucleus in each cell (Ross et al., 1989). The main function of cardiac 

muscle is to line the chambers of the heart, to contract in order to drive blood through the body, 

which in turn delivers oxygen and nutrients to organs and transports carbon dioxide and waste 

products to locations where they can be disposed of. The heart can also adapt in the short term 

and the longer term in response to an increased demand for blood flow, by increasing 

contraction rate (heart rate) or by cellular hypertrophy, respectively.  

Smooth muscle, found in most visceral organs and blood vessels, is unable to contract 

voluntarily. The cells are between 30 and 200 µm in length, have diameters between 3 and 8 

µm, have no sarcomeres and are spindle shaped with a single central nucleus (Ross et al., 1989). 

Contraction is very slow compared to cardiac muscle and hence the demand for ATP is low 

(Sieck and Regnier, 2001). The main function is to regulate blood flow within the circulatory 

system to alter supply to a specific tissue. This regulation is a short term adaptation and is 

achieved by vasoconstriction and vasodilatation in a coordinated fashion and in response to local 

tissue demands (Joyner and Thomas, 2003). Parts of this muscular system are also subject to 

longer term adaptation e.g. the capillaries (Hudlicka, 1985). 

Muscle attached to the skeleton is termed skeletal muscle and allows for voluntary contraction 

and relaxation. Because of the macroscopic and microscopic structure of skeletal muscle, such 

contraction and relaxation can result in movement around the bony joints. Demand for such 

movement results in short- and long term regulation of skeletal muscle itself, as well as of the 

functionally linked cardiac muscle and closely related aspects of smooth muscle.  
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1.2 Skeletal Muscle 

1.2.1 Macroscopic composition 

In the mammalian species, skeletal muscle is the only tissue that allows the organism to generate 

work, in the form of locomotion. Skeletal muscle is structurally organised into distinct sections, 

each section consisting of numerous muscle cells, with extracellular matrix and connective 

tissue culminating in tendons on each end of the whole muscle. The tendons attach the muscle 

cells to the skeleton. Muscle groups contract or relax in a coordinated fashion to allow the 

skeleton to perform rotations, extensions or flexions.   

Muscle cells are innervated by motor neurons, which allow for voluntary contractions. A single 

nerve axon is usually branched and interacts with many single muscle cells, forming a motor 

unit. When this single neuron fires, only those fibres innervated by the neuron, will contract. 

However, especially in larger muscles, those cells may not necessarily be directly situated next 

to each other and can be distributed within the muscle (Saltin and Gollnick, 1983). Depending 

on the nerve firing frequency, nerves play a significant role in determining if the fibre will 

eventually resemble a slow twitch or fast twitch fibre (Pette, 2001). This will be discussed in 

more detail in section 1.6.2. 

In order for the muscle cells and consequently the muscle (as a whole) to function properly, a 

constant supply of nutrients and oxygen, as well as the capacity to remove waste products and 

carbon dioxide are needed. These functions are maintained by a capillary network surrounding 

each muscle fibre. This network sprouts from arteries and ends in veins. The number of 

capillaries surrounding a muscle fibre may vary in relation to the muscle fibre type and depends 

on muscular demand for oxygen (Hepple, 2000). Section 1.6 will focus more on the detail of 

capillarisation in muscle and the significance in active muscle.  

1.2.2 Microscopic composition 

Skeletal muscle fibres can vary in length from as little as 100 µm up to 50 cm depending on the 

muscle group and species (Ross et al., 1989). On the other hand, the diameter of fibres is much 

smaller, ranging between 60 to 100 µm (Ross et al., 1989). Visualising muscle fibres under the 

light microscope can be accomplished in longitudinal- or cross-sections by utilising different 

histological staining methods (discussed in section 1.4.2 and Appendix B). 

The most common characteristics in the longitudinal view (excluding the length of the fibres) 

are that fibres lie parallel to each other and have a striated appearance. This latter characteristic 

is due to the organisation of the myofibrils that lie parallel to each other with a strict pattern that 

more or less overlap of different fibrillar proteins. Myofibrils (with a diameter ranging between 

1 to 2 µm) are constructed of serially joined sarcomeres, with the latter being constructed of 
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actin and myosin, two proteins that are the contraction “hardware” of muscle fibres. Section 1.3 

will elaborate on the proteins forming a sarcomere and the myofibrils.  Another characteristic is 

multiple nuclei and multiple mitochondria, dispersed across the length of the fibre. Nuclei are 

arranged to have control over a specific range called the nuclear domain (Pavlath et al., 1989), 

whereas the mitochondria may be situated just under the sarcolemma or within the myofibrillar 

spaces (Brooks et al., 1999). These structural characteristics combined with the long length of 

skeletal muscle fibres result in heterogeneity within single cells. 

Muscle fibres are most commonly viewed in cross-sectional sections. Characteristics of this 

view are large cells and nuclei situated close to the sarcolemma. The latter characteristic is very 

important in identifying myopathy such as central core disease and certain types of muscular 

dystrophy in which the nucleus is abnormally situated amongst the myofibrils (Bornemann and 

Goebel, 2001). Cross-sectional views also allow the visualisation of the capillary supply of each 

muscle fibre. The significance of the cellular diameter in muscle function will be discussed in 

more detail in section 1.4.4. 

Other organelles situated in muscle fibres are the sarcoplasmic reticulum (responsible for Ca2+ 

release and re-uptake) and mitochondria. The former will not be discussed in this dissertation, 

although it is acknowledged here that it is integrally important to contraction and relaxation 

(Carroll et al., 1997), is different between fibre types and is subject to adaptation (Green et al., 

2003). The number of mitochondria in muscle fibres may vary substantially, depending on the 

fibre type and the frequency and duration of activation of the muscle (Saltin and Gollnick, 

1983). In addition, muscle fibres also have large glycogen stores, capable of providing substrates 

at a rapid pace. Although not strictly speaking an organelle, recent information implies structural 

complexity in glycogen macromolecules (Marchand et al., 2002). Figure 1.2.1 depicts the 

structure and organisation of a muscle from the muscle group to myofibrils. Section 1.4.3 will 

discuss mitochondria and metabolism of muscle fibres in more detail. 

1.2.3 Fibre types 

Early in the 1900s, scientists already noticed that there was a difference in contraction speed of 

muscle groups. In addition, they also found that some muscle groups were darker in colour than 

others. Later it was discovered that the darker muscle groups had a higher concentration of 

myoglobin, a protein similar to haemoglobin found in red blood cells, than those appearing 

lighter and even white. Ranvier, in 1874, showed that the contraction speed of a dark red muscle 

was significantly slower than those of paler colour and that the latter type of muscle had a lower 

blood capillary supply. These characteristics led to the division of muscle groups into red slow 

twitch muscle and white fast twitch muscle. Since then, methods of identifying fibre type have 

advanced, using histological staining, antibodies and biochemical separation techniques (see 

section 1.4.2). Contraction characteristics of muscle fibres will be discussed in sections 1.4.1.  
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Figure 1.2.1  Schematic diagram of skeletal muscle organisation from a muscle group to 
filament level. From Bloom and Fawcett (1975).   

1.3  Muscle proteins 

1.3.1 Proteins characteristic of muscle cells 

Muscle cells consist of unique proteins, many of which are not commonly found in other types 

of cells, or are found, but in another isoform. They may serve more than one purpose, such as 

providing structural support, hydrolysing ATP and producing force. This section will focus on 

some of the major proteins identified in skeletal muscle cells. 
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Examples of proteins important for contraction or metabolism, but not associated with the 
myofibrils 
Dystrophin 
Dystrophin is a 3685-residue protein (~427 kDa) and may have numerous isoforms. The protein 

is associated with the inner sarcolemma and may serve the purpose of anchoring specific 

membrane glycoproteins. Although it has a low concentration in muscle (approximately 

0.002%), mutations in the gene coding for dystrophin result in muscular dystrophy, such as the 

lethal Duchenne muscular dystrophy (DMD) (Betto et al., 1999). It was shown that adult 

chicken muscle with this disease, lacks the ability to completely mature to adult muscle, and 

expresses a mixture of adult and neonatal myosin heavy chain isoforms (Rushbrook et al., 

1987). Not only do mutations in the dystrophin gene result in DMD, but recently, transgenic 

mice over-expressing the signal transduction protein, caveolin-3, had inhibition of dystrophin 

expression and had typical DMD characteristics in their muscle (Galbiati et al., 2000).  

One characteristic of DMD muscle is that force production capacity declines. Dystrophin has 

been highlighted to indicate that, although the focus of this dissertation will be on the force-

producing myofibrillar protein myosin, the latter cannot be considered to function in isolation.    

Myoglobin 
As was previously mentioned, myoglobin is analogous to haemoglobin. The general function of 

myoglobin was thought to be a reserve for oxygen molecules to be used when muscle was 

deprived of oxygen either by blood flow restriction, or very early in intense contractions before 

short-term increases in circulatory oxygen supply. A study conducted by Terrados et al. (1990) 

showed that myoglobin content increased in response to training under hypobaric conditions, but 

that it stayed the same when the intervention was performed under normobaric conditions. 

However, it was recently shown that myoglobin -/- knockout mice had a normal ventilatory 

response to hypoxic conditions, normal heart function and could maintain the same level of sub-

maximal exercise compared to wild type mice. The only difference was that the heart and 

skeletal muscle of the knockout mice were colourless (Garry et al., 1998). This finding raises 

new questions on the function of myoglobin in muscle and needs further investigation. This 

protein has been highlighted to indicate that, although the metabolic focus of this dissertation 

will be on oxidative enzyme capacity, the latter cannot be considered to function in isolation 

(and also that the mitochondria in which they are situated, do not provide the red colour 

typically associated with oxidative fibre types). 

Proteins responsible for contraction – the myofibrils 
In Figure 1.3.1 the main proteins found in a single contractile unit, namely the sarcomere, are 

depicted. Each of these proteins has two or more isoforms. Some isoforms are specific to certain 

fibre types as well as tissue specific, e.g. only found in skeletal muscle and not in cardiac 

muscle. It must also be noted that there are species variations in the amino acid sequences of 
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some of the protein isoforms. Table 1.3.1 summarises the molecular mass and functionality of 

these proteins (Schiaffino and Reggiani, 1996). Because these proteins have multiple isoforms, 

each isoform may have a distinct impact on the structure, contractile and metabolic properties of 

a muscle fibre. Myosin is directly involved in generating motion and is the essential protein in 

determining fibre type. In the next section, the myosin molecule will be discussed in detail.  

 

Figure 1.3.1 Structural scheme of a sarcomere and its main proteins. From Schiaffino & 
Reggiani (1996). 
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Table 1.3.1 Summary of the molecular mass and functionality of the main proteins found in 
thick- and thin filaments and the Z-disk. Subunit proteins are listed in italics 
underneath the complex protein name. From Schiaffino & Reggiani (1996). 

Protein or complex Mw (kDa) Functionality 

Thick filament   

Myosin heavy chain ~200 - 230 Contains myosin ATPase enzyme; binds to 
actin; protein responsible for motility generation 

Myosin essential light chain ~17 - 25 Essential for actin binding and myosin ATPase 
activity 

Myosin regulatory light chain ~16 - 25 May increase force production at low Ca2+ 
concentrations 

Titin ~3000 Determines the thick filament length; Protein-C 
binding sites; binds M-protein and myomesin 

C-Protein ~140 Binds to myosin; probable stabilising protein 

H-Protein ~74 Interacts with myosin 

M-Protein ~100 Interacts with titin 

Thin filament   

Actin ~41 Contains binding site for myosin; attached to Z-
disks and pulls two Z-disks closer together 

Tropomyosin ~34 - 36 Protein that shields the actin binding sites from 
myosin 

Troponin ~72 Globular protein consisting of three subgroups 

   TnC ~17 Binds Ca2+ ions 

   TnI ~27 - 31 Binds actin and inhibits actomyosin ATPase 
activity 

   TnT ~36 - 39 Binds tropomyosin 

Nebulin ~700 - 900 Absent in cardiac muscle; determines thin 
filament length 

Z-disks  Binds thin filaments in a barbed fashion forming 
the Z-disk 

kDa, kilo Daltons; Mr, molecular weight; Tn, troponin 

1.3.2 More about the myosin proteins  

Biochemical structure 
Presently, there are 18 classes of myosin molecules identified in eukaryotic cells, falling under 

the global term of molecular motor proteins. Mammalian skeletal muscle myosin forms a small 

part of this classification and falls under the class II myosins (Schiaffino and Reggiani, 1996). In 

this section, emphasis will be placed on the myosin from mammalian skeletal muscle. 

Myosin is a globular hexamer protein consisting of two heavy chain subunits (~200 - 230 kDa 

each) and four light chain subunits (~16 - 25 kDa each) (Moss et al., 1995). The number and 

sizes of these subunits make myosin one of the largest known protein complexes. The heavy 

chain consists of a globular head, neck and a long tail region. The head region contains the actin 

binding site, which is in the form of a cleft, the ATP binding site and ATPase enzyme. This 
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ATPase enzyme forms part of the heavy chain and is not an enzyme which covalently binds to 

the heavy chain. Two types of light chains exist, namely an essential (alkali) light chain and a 

regulatory (phosphorylatable) light chain.   

Figures 1.3.2 and 1.3.3 show a ball model and a simplified schematic drawing of the myosin 

molecule, respectively.  

 

 

Figure 1.3.2 Biochemical structure of subfragment-1 of the myosin molecule. From Rayment 
et al. (1993). 

 



 21

Figure 1.3.3 A simplified drawing of the myosin molecule based on Figure 1.3.2 and 
Schiaffino & Reggiani (1996) showing the head, neck and tail region and the 
locations of the heavy chains, light chains, ATPase pocket and cleft. 

Myosin light chains – isoforms and genes 
The various myosin light chain (MLC) and myosin heavy chain (MHC) isoforms are of great 

importance in determining the contractile properties of a muscle. However, isoforms also exist 

of the other muscle proteins, such as troponin and tropomyosin, which can also contribute 

significantly to the muscle fibre properties. 

The light chains are located close to the neck region of the MHC with the essential light chain 

attached to the neck region and in direct contact with the head region of the MHC. The 

regulatory light chain is located on the neck region in close proximity to the essential light 

chain. Both essential and regulatory light chains play no role in the activity of the ATPase, but 

may play a significant role in determining the contractile properties of muscle fibres (Barton and 

Buckingham, 1985) by regulating interactions of myosin and actin (reviewed by Cooke (1997)). 

For instance, phosphorylation of the regulatory light chain has been shown to increase the force 

production of the actin-myosin complex in an environment of low Ca2+ concentrations (reviewed 

by Schiaffino and Reggiani (1996)).  

Various isoforms have been identified for the MLCs in mammalian skeletal muscle and are 

classified in Table 1.3.2. Each isoform differs in molecular mass which may range between ~16 

to 25 kDa. These isoforms were detected in muscle groups having distinct contractile properties, 

hence the nomenclature fast and slow isoforms (Barton and Buckingham, 1985; Moss et al., 

1995; Schiaffino and Reggiani, 1996; Staron and Johnson, 1993). Two further isoforms were 

detected, the MLC1emb found in embryonic muscle (which has also been identified in adult 

masseter muscle) and a second isoform, MLC2m, expressed in carnivorous mandibular muscles, 

which is similar to a light chain expressed in monkey skeletal muscle (Schiaffino and Reggiani, 

1996). All these isoforms are not restricted to a specific muscle and may be expressed in other 

muscle types (Schiaffino and Reggiani, 1994). The role of these isoforms in determining 

contractile speed of fibres will be discussed in section 1.4.1. 

Table 1.3.2 Summary of the myosin light chain isoforms identified in mammalian skeletal 
muscle. Compiled from Schiaffino & Reggiani (1994) and Staron (1993). 

Type of MLC Developmental muscle Fast fibres Slow fibres 

Essential light chains MLC1emb MLC1f MLC1sa 

  MLC3f MLC1sb 

Regulatory light chains  MLC2fa MLC2sa 

  MLC2fb MLC2sb 

  MLC2m  
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Myosin light chain genes 
All the MLCs of human skeletal muscle, except MLC1f and MLC3f, are coded by distinct genes 

located on different chromosomes (Schiaffino and Reggiani, 1994). The MLC1f and MLC3f gene 

is located on chromosome 2q33-q34 and these isoforms are derived from two distinct promoter 

regions and alternative splicing of the first four exons. The MLC1f transcript contains exons 1 

and 4, while the MLC3f transcript contains exons 2 and 3 (Schiaffino and Reggiani, 1996). The 

light chain isoform expression is not determined by the heavy chain isoform expression, which 

means that e.g. slow isoforms as well as fast isoforms may be expressed in slow fibres and visa 

versa (Barton and Buckingham, 1985). 

Myosin heavy chains – isoforms and genes 
There are a number of MHC isoforms identified in mammalian muscle and the number is still 

increasing (Table 1.3.3). Of these, only a few are actively expressed in adult skeletal muscle. 

Most of these isoforms have been identified using gel electrophoresis, with antibodies directed 

at the specific isoforms, or by mRNA analysis of e.g. single muscle fibres (Pereira Sant'Ana et 

al., 1997). 

Of the nine isoforms, only MHCs Iβ, MHC IIa, MHC IIx and MHC IIb are predominantly 

expressed in adult skeletal muscle (Schiaffino and Reggiani, 1996). However, Galler et al.  

(1997) identified that the MHC Iα isoform, usually found in cardiac muscle, is also expressed in 

rabbit skeletal muscle. 

In human skeletal muscle, three isoforms are commonly expressed, namely MHC I, MHC IIa 

and MHC IIx. Previously it was thought that no MHC IIb isoform was expressed in human 

skeletal muscle. However, recently, Andersen and co-workers (2002) showed with Western 

blotting and immunohistochemistry that the MHC IIb isoform does indeed exist in human 

skeletal muscle, but that it is mostly restricted to specialised muscles of the eye and larynx.  

Most animals from the large animal kingdom express the MHC I, MHC IIa and MHC IIx 

isoforms (Duris et al., 2000; Kohn et al., 2005). Recently it was shown, using nucleotide 

sequencing, that bovine skeletal muscle indeed only expressed MHC I, MHC IIa and MHC IIx 

and no MHC IIb isoforms in large muscle groups known to be used for meat production 

(Chikuni et al., 2004). Kohn et al. (2005) also showed that the three MHC isoforms 

corresponding to MHC I, MHC IIa and MHC IIx are expressed in impala (Aepyceros melampus) 

skeletal muscle, a non-domesticated animal.  

Smaller animals such as rats, rabbits, guinea pigs and mice, commonly express the MHC IIb 

isoform in conjunction with the other three (Lucas et al., 2000). However, recently, Lefaucheur 

et al. (2002) showed that fast pig muscle also expresses MHC IIb in conjunction with the other 

three. This raises the possibility that all four isoforms may be found in the large muscle groups 
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of large animals. Figure 1.3.4 shows examples of the MHC isoforms, separated by gel 

electrophoresis, of human, rat and impala skeletal muscle. 

The significance of expressing different isoforms in muscle is that each isoform differs in 

myosin ATPase activity and gives specific properties to muscle fibres (Rivero et al., 1999). This 

topic will be further elaborated on in section 1.4. 

Table 1.3.3 Myosin heavy chain isoforms expressed in mammalian muscle. From Schiaffino & 
Reggiani (1996).  

Isoform Location of expression 

MHC Iα Mandible muscle; extraocular muscle; heart muscle 

MHC Iβ Slow skeletal muscle; heart ventricles 

MHC IIa Fast skeletal muscle 

MHC IIx Fast skeletal muscle 

MHC IIb Fast skeletal muscle 

MHCemb 
Developing skeletal muscle; mandible muscle; extraocular 
muscle 

MHCneo 
Developing skeletal muscle; mandible muscle; extraocular 
muscle 

MHCeo Extraocular muscle 

MHCm Mandible muscle (carnivores) 
 

Previously, the human MHC IIx isoform was mistakenly classified as MHC IIb, but recent 

evidence suggested that this isoform is 94% homologous to the rat MHC IIx isoform and less 

homologous to rat MHC IIb, and was renamed thereafter (Schiaffino and Reggiani, 1996). 

 
Figure 1.3.4 Myosin heavy chain isoforms in skeletal muscle of three species separated by 

gel electrophoresis (SDS-PAGE). a. Human (Andersen et al., 1994b) b. Rat 
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(Talmadge and Roy, 1993) c. Impala (Kohn et al., 2005). Note that the 
separation order of the various isoforms from different species may differ. 

Myosin heavy chain genes 
The MHC genes in mammalian muscle originate from multigene families. In human muscle, the 

MHC Iα, MHC Iβ, MHC IIa, MHC IIx, MHC IIb, MHCemb, MHCneo and MHCeo isoform genes 

are found on chromosomes 14 and 17, whereas mouse and rat genes are found on chromosomes 

11 and 14, and 10 and 14, respectively (Weiss et al., 1999). Some lower species, like the scallop 

and Drosophila melanogaster, derive their isoforms from alternative RNA splice variants 

(Nyitray et al., 1994).  

Sequence analyses of the genes show that there is more conservation between specific isoforms 

of different species than between the isoforms within a specie. According to Weiss et al. (Weiss 

et al., 1999), it is suggested that the MHC isoforms do not tolerate vast sequence mutations and 

this was supported by Vikstrom & Leinwand (1996) who showed that more than fifty different 

residue mutations (occurring as point mutations) in the human MHC Iβ isoform each correlated 

with hypertrophic cardiomyopathy. Therefore, the sequence conservation of the genes 

responsible for the MHC isoforms is crucial for proper muscular function. The MHC isoforms 

also play a significant role in determining an organisms overall phenotype. Acakpo-Satchivi et 

al. (1997) showed that MHC IIb and MHC IIx knockout mice had different physiological 

characteristics compared to wild type, such as kyphosis (hunch back), muscle weakness and a 

decreased body mass. However, the MHC IIx knockout mice showed the most phenotypic 

change in whole body and muscular characteristics. On account of this study, new insights were 

revealed regarding the importance of the expression of the various MHC isoforms. 

The genes coding for the various MHCs are homologous to one another, with some being more 

homologous than others. High homology was found between the MHC Iα and MHC Iβ sequences 

(collectively termed MHC I isoforms), with similar trends for the MHC IIa, IIx and IIb isoforms 

(collectively MHC II isoforms). However, between the MHC I and II isoforms there seems to be 

a variation of ~20% in the sequence. These findings by Weiss et al. (1999) may indicate that the 

isoforms share a common ancestral gene and sub-isoforms may be to optimise the sequential 

MHC isoform functionality. Figure 1.3.5 shows the homology of the different isoforms in 

human skeletal muscle.  
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Figure 1.3.5  Homology in gene sequences between MHC Iα and MHC Iβ (α vs β), MHC Iα 
and the MHC II isoforms (α vs II), MHC Iβ and the MHC II isoforms (β vs II) 
and within MHC IIa, IIx and IIb isoforms (II). From Weiss et al. (1999).  

Regulation of the MHC genes and what may influence expression will be discussed in sections 

1.5 and 1.6. 

1.3.3 The mechanism of protein-protein interaction of cross-bridge cycle 

Although Figure 1.3.6 is a simplified model of the cross-bridge cycle (and this cycle is much 

more complex than depicted), it is necessary to briefly discuss this model in order to relate the 

different components to the properties of muscle fibre types. 

In short, the myosin (M) is strongly bound to the actin (A) binding site and forms the myosin-

actin complex (AM). When ATP (1, Figure 1.3.6) binds to the ATP pocket on the myosin head, 

the head is released from the actin site (2, Figure 1.3.6). ATP is still bound to the head (M.ATP) 

and the myosin head is free to bind with any other actin site available. The ATPase enzyme 

hydrolyses the bound ATP to ADP and Pi (3, Figure 1.3.6), which are still bound to the myosin 

head (M.ADP.Pi). This hydrolysis results in a conformational change in the myosin head, 

swinging the head away from the tail region. Once this isomerisation has occurred, the myosin 

head weakly attaches itself to a new actin binding site (4, Figure 1.3.6) forming a new complex 

(AM.ADP.Pi). The release of the bound Pi (5, Figure 1.3.6) initiates the power stroke, dragging 

the actin filament closer to the M-line. When ADP is released from the AM.ADP complex (6, 

Figure 1.3.6), it once again forms a strong binding between myosin and actin (AM)(Cooke, 

1995; De la Cruz and Ostap, 2004). 
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Figure 1.3.6  Schematic representation of the cross-bridge cycle in skeletal muscle. Steps 1 – 
5 are described in the text. From De la Cruz & Ostap (2004).  

The cross-bridge cycle is under stringent regulatory control. Troponin and tropomyosin aid in 

this regulation (Voet and Voet, 1995). The tropomyosin molecule forms an elongated chain 

along actin and shields the myosin binding sites. Troponin C (part of the troponin complex) is 

bound to tropomyosin and contains Ca2+ binding sites. Once a nerve impulse stimulates the 

release of Ca2+ from the sarcoplasmic reticulum, Ca2+ binds to troponin C. Troponin C 

undergoes a conformational change and this changes the orientation of tropomyosin, revealing 

the myosin binding sites on actin and the cross-bridge cycle may be initiated (Voet and Voet, 

1995). In living cells, the Ca2+ is rapidly removed from the cytosol by ATP driven transporters 

back into the sarcoplasmic reticulum (Cooke, 1995; De la Cruz and Ostap, 2004). Both the force 

and distance produced by one cross-bridge cycle have been determined and were calculated as 3 

– 5 pN and 12 nm, respectively (Cooke, 1995). 
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To relate this section to those that follow, it is clear that for normal contraction to occur, many 

molecules of ATP are required for cross-bridge cycling and active re-uptake of Ca2+. Further, 

ATP is also required for the Na+-K+ ATPase to restore the resting membrane potential for the 

following activation to commence. This process requires metabolic pathways that will endure 

the supply of ATP to meet the demand of ATP consumption. Section 1.4.3 will focus more on 

this scenario.  

Ca2+ is not only the initiator of the cross-bridge cycle, but also plays an important role in cell 

signalling, being an important upstream signal for activating specific proteins responsible for 

gene transcription, that may regulate both structural and metabolic components of muscle cells. 

More on cell signalling will be discussed in section 1.5.  

1.4  Muscle fibre types 

The classification of muscle into various fibre types can be dated back by almost a hundred 

years when it was first observed that a colour difference between muscle groups existed. 

However, over the past years it was shown that it is the myosin molecule itself that plays an 

important role in determining fibre type. In conjunction with this, the adaptation of various 

metabolic pathways supplying ATP to the muscle fibres also plays a significant role. In a later 

section (1.4.2), the various ways of expressing muscle fibre types will be summarised.     

1.4.1 Role of myosin in fibre types 

Myosin has been discussed on the basis that it binds to actin and with ATP hydrolysis via the 

myosin ATPase enzyme, brings forth contraction. Classic work done by Michael Barany and his 

co-workers in 1965 and 1967 showed that the ATPase activity of myosin extracted from fast and 

slow muscles was different with fast muscle myosin having the highest activity (Barany et al., 

1965; Barany, 1967). This discovery was the foundation for linking fibre contractile velocity 

and other parameters to the chemical properties of the myosin molecules. Two components of 

myosin have the main influence on contractile properties and will be discussed in this section, 

namely the MHC isoforms and myosin essential light chain isoforms.  

Myosin heavy chain isoforms  
The MHC isoforms have been shown to be the main determinant of the myosin ATPase activity 

and contractile speed. Each heavy chain isoform has a unique ATPase activity, and is ranked 

from slowest to fastest in contractile activity: MHC I, MHC IIa, MHC IIx and MHC IIb. 

However, it may not only be the hydrolysis speed of the ATPase enzymes that is important. 

Studies on fast and slow muscle showed that MHC I binds ATP twice as fast as those with fast 

isoforms, but that the dissociation of myosin from actin is six times higher in fast muscle 

compared to slow muscle (Schiaffino and Reggiani, 1996). Recently, Han et al. (2003) showed 

that there is a difference in ATP consumption rate within distinct fibre types of the diaphragm 
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muscle of rats. This research group also showed that the ATP consumption rate is dependent on 

the MHC isoform expressed and follows the same pattern as the ATPase activity. All four these 

properties have a direct influence on the contraction velocity (Larsson and Moss, 1993); 

however, the MLCs may also play a role (see below).  

Two studies by independent groups (Harridge et al., 1996; Larsson and Moss, 1993) showed 

that maximum shortening velocity (V0) was four times lower in human single muscle fibres 

expressing pure MHC I compared to those expressing pure MHC IIa. Larsson and Moss (1993) 

also showed that the V0 of single fibres containing pure MHC IIx was three and eleven times 

greater than pure MHC IIa and pure MHC I fibres, respectively. 

It is possible for a single muscle fibre to express more than one myosin heavy chain isoform 

simultaneously. These fibres are commonly referred to as hybrid fibres and the most common 

combination found in adult skeletal muscle is that of MHC IIa and MHC IIx isoforms (MHC 

IIa/IIx hybrid) (Andersen et al., 1994b; Stephenson, 2001). These hybrid fibres differ from pure 

fibres in contractile properties. In the same two studies, Larsson et al. (1993) and Harridge et al. 

(1996) showed that the V0 of MHC IIa/IIx hybrid fibres lay between those of pure MHC IIx and 

MHC IIa fibres. The next most common hybrid fibre is the I/IIa hybrid (Andersen et al., 1994b; 

Stephenson, 2001). The same pattern was observed for the V0 of MHC I/IIa hybrids (i.e. 

between the V0 of each pure fibre type), but the mean V0 values of MHC I/IIa hybrids did not 

correspond between the two authors. This can be explained by the percentage expression of each 

isoform, which may have a significant effect on the V0. Larsson and Moss (1993) clearly 

showed in their experiment that the V0 follows an exponential increase with an increase in the 

percentage MHC IIx in MHC IIa/IIx hybrid fibres (see Figure 1.4.1). 
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Figure 1.4.1  Relationship between maximum shortening velocity (V0) and the proportion of 
MHC IIx in MHC IIa/IIx hybrid fibres. From Larsson & Moss (1993). 

Myosin light chains 
In 1982, Sivaramakrishnan and Burke (1982) showed that removal of the MLCs from the S1 

sub-fragment of the myosin molecule had no effect on the actin activated ATPase activity of the 

MHC. This was shown at a physiological ionic strength, but at a low ionic strength, the 

influence was evident (Schiaffino and Reggiani, 1996).  

Over the years, many isoforms of the MLCs have been identified in both human and animals 

(Schiaffino and Reggiani, 1996) and various combinations are evident, which may not be 

restricted to the fibres expressing a certain MHC isoform (Schiaffino and Reggiani, 1996; Staron 

and Pette, 1987). Evidence suggested that the light chain isoforms played a significant role in 

modifying the myosin ATPase kinetics. However, this has been questioned in a recent review by 

Timson (2003), who suggested that ATPase activity itself may not be affected but that the 

transduction of the force may be altered, thus altering the contractile properties.  

The role of the MLCs seems to be more focussed on regulating the contractile velocity of a 

fibre. Studies conducted on rat MLC isoforms and the influence on V0 showed that V0 is 

proportional to the relative content of the MLC3f isoform in fast fibre types (Bottinelli et al., 

1994). This can be explained by the fact that myosin with the MLC1f isoform binds actin more 

strongly than those with the MLC3f isoform (Schiaffino and Reggiani, 1996; Timson, 2003), 

thus slowing the cross-bridge cycle. It can also be argued that with a stronger binding of the 
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myosin molecule to actin (evident from the MLC studies), longer time can be spent generating 

tension and force. However, this statement is still under investigation.  

To conclude this section, it is mostly the MHC isoforms that determine how fast a single fibre 

will contract. Contraction velocity is also influenced by the co-expression of these isoforms. 

However, the function of the hybrid fibres is still being debated e.g. whether they are functional 

adaptations or merely transitional from one pure isoform to another, or even both (Stephenson, 

2001). The MLCs do play a role, but mainly in modulating the shortening velocity of a fibre. In 

this dissertation, Chapter 3 will focus specifically on hybrid fibres. An aspect that will not be 

addressed, is that other proteins may contribute to the muscle fibre characteristics, such as the 

troponins and myosin binding protein C (Bottinelli, 2001).   

With the variations in the myosin ATPase activities, the supply of ATP to the motor head and to 

other ATPases, especially with sarcoplasmic reticulum ATPase used to actively remove Ca2+ 

from the cytoplasm, is crucial. The muscle cells must therefore have metabolic systems that can 

endure ATP hydrolysis (section 1.4.3). 

1.4.2 Experimental classification of skeletal muscle fibre types 

During the past few decades, many fibre type classifications have been developed using 

contractile speed of the fibres, ATPase stability, oxidative potential of fibres, antibodies directed 

against the various MHC isoforms, probes directed against MHC mRNA and using methods that 

analyse whole muscles, muscle sections or single fibres. All these systems have different 

advantages and disadvantages. Some are very time consuming, whereas other techniques only 

give a moderate indication of the fibre type. For the past ten years, identifying the exact fibre 

type has become crucial in understanding skeletal muscle phenotype and various regulatory 

mechanisms, its capacity to adapt as well as e.g. the identification of hybrid fibres and the 

proportions of the different MHC isoforms expressed within that fibre. In this dissertation, two 

classification techniques was used to determine the fibre type of human muscle, namely myosin 

ATPase staining (utilising the stability of the ATPase at acidic and alkaline pH) and separation 

of the MHC isoforms of homogenates or single fibres using SDS-PAGE. The latter technique is 

very time consuming, but results in exact quantification of the relative proportions of the MHC 

isoforms expressed in hybrid fibres, whereas the former technique has the advantage that it 

allows for morphometric assessment and co-analysis of e.g. capillary supply. The nomenclature 

that will be followed in this dissertation is that of Andersen et al. (1994b), namely that fibres 

typed histochemically will be referred to as e.g. types IIA or IIX, whereas equivalent fibres 

typed using SDS-PAGE will be referred to as types IIa or IIx. Furthermore, conventional 

ATPase fibre type classification in humans refer to the type IIX fibre as type IIB, but because 

the type IIB fibre type is more related to the rat type IIX, this dissertation will refer to human 
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type IIB fibres as type IIX (Schiaffino and Reggiani, 1996). Table 1.4.2 summarises the fibre 

type classification identifiable with ATPase histochemistry and SDS-PAGE of single fibres. 

Table 1.4.2  Classification of fibre types in human skeletal muscle. Note that the rat has an 
extra MHC IIb isoform, not included in this table, which will be referred to as 
type IIB. From Andersen et al. (1994b). 

 Pure fibres  Hybrid fibres 

ATPase I IIA IIX  IC IIC IIAC IIAX 
         

SDS-PAGE MHC I MHC IIa MHC IIx  MHC I/IIa MHC IIax 
 

1.4.3 Metabolism and fibre types 

As mentioned before, for contraction and relaxation to occur in muscle fibres, a vast amount of 

ATP is required. It is required for the active transportation of Ca2+ back into the sarcoplasmic 

reticulum and for the restoration of the resting membrane potential by active sarcoplasmic 

reticulum SERCA pumps and Na+/K+, ATP-dependent membrane pumps, respectively. The 

maximal rate of ATP consumption varies greatly between fibre types. Therefore, the muscle 

fibre must have metabolic systems that can adequately supply ATP molecules equal to the 

demand for ATP. If this co-adaptation did not occur (taking into consideration the low quantity 

of stored ATP), muscle would go into a state of rigor within seconds of exercise. 

Substrates and products 
The fed state or activity patterns of the organism, or both, influence the concentrations of 

various substrates and metabolites in any tissue, especially in muscle. Mammalian species have 

five common substrate sources for ATP production, with some stored in high quantities within 

the muscle and/or other organs. These substrates are phosphocreatine (PCr), glucose, glycogen 

and triglycerides (TG) (including free fatty acids (FFA)). The fifth substrate is protein from 

which amino acids are mobilised in order to provide fuel, or to replenish carbon skeleton 

substrates in particular pathways, but protein oxidation occurs in substantial amounts only in 

extreme cases of low nutrition. Glucose is either obtained from dietary intake or produced de 

novo in the liver and circulates in the blood stream, whereas glycogen is stored in the liver and 

muscle cells. Fat or TG is stored in adipose tissue, is mobilised to FFA and glycerol which can 

then enter the muscle cells and be metabolised. Muscle cells also have TG stores in the form of 

droplets, but the content in the muscle cells is much less than in adipose tissue (Hoppeler, 

1999a).  

PCr is a “high energy” phosphate mainly found in skeletal muscle. The transfer of a phosphate 

from PCr to ADP is the fastest ATP replenishment compared to the other fuel sources, but PCr 

is also the substrate with the lowest concentration in muscle. Concentrations of PCr may vary 
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between species and also in muscles from the same species (Snow et al., 1998). Brannon et al. 

(1997) showed that rat Plantaris muscle, consisting mainly of type IIX and IIB fibres, had 2.5 

times more PCr than rat Soleus muscle, containing mostly type I fibres. In a recent human study, 

it was shown that type I fibres had significantly less PCr stores than type IIAX hybrid fibres, 

with no difference between the type I and type IIA fibres (Karatzaferi et al., 2001). They also 

showed that PCr stores are nearly depleted in all fibres during a 25 second all-out power test, but 

after 1.5 minutes of rest, the PCr stores were already two thirds replenished. The creatine 

content of muscles can be increased by supplementation with exogenous creatine products, but 

only to a certain extent (~ 25% more) (Greenhaff et al., 1994). Furthermore, creatine 

supplementation improves recovery between high intensity exercise bouts (Brannon et al., 

1997).    

Full oxidation of glucose and glycogen (following the glycolytic, tricarboxylic acid cycle (TCA) 

and electron transport chain (ETC) route) is the second fastest replenishment system of ATP. 

However, oxidation of carbohydrates only through glycolysis (end product being lactate), is the 

faster, but depletes this substrate source more rapidly with less ATP generation (refer to the 

section on metabolic pathways in muscle fibres). Glycogen stores are larger than those of PCr, 

with quickly available glucose being “stored” as blood glucose. Glycogen stores are tightly 

regulated and muscle does not preferentially mobilise stored glycogen under non-exercising 

conditions. For instance, in the muscle of 27-hour fasted humans there was no change in 

glycogen content (Nieman et al., 1987). There are also concentration differences in glycogen 

storage between species and even fibre types. In a review by Karlsson et al. (1999), the authors 

pointed out that laboratory animals, such as rats and mice, contain more glycogen in the type IIX 

and IIB fibres compared to type IIA and I fibres, but that type IIA fibres of the sheep contain 

more glycogen than their type IIX fibres. This is likely a result of differences in fibre type 

recruitment pattern. Humans also may vary in resting glycogen content in either type I and II 

fibres, which depends mainly on physical activity habits. Ingestion of carbohydrates prior to 

exercise, have also shown to improve endurance performance, increasing blood glucose 

availability (Hargreaves et al., 2004).  

The last major source of ATP replenishment, namely fat, is the slowest system, but there is an 

abundance of fat stores (Hoppeler et al., 1999). Fat is also mobilised during periods of fasting or 

long duration exercise when it is released from adipose tissue into the blood as free fatty acids 

(FFA). For instance, in 27-hour fasted humans, blood FFA concentration was approximately 

three times higher than in non-fasted individuals (Nieman et al., 1987). Similarly, four hours of 

endurance cycling increased blood FFA concentration 40-fold (Meyer et al., 2003). 

Protein and amino acids are not considered to be fuels, but do play an important role in the 

maintenance of cellular process systems, such as maintenance of the enzyme pathways for 
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breakdown of the four aforementioned substrates. Low intensity exercise does not increase 

overall protein breakdown in muscle, but at higher intensities, amino acids derived from protein 

degradation have been shown to aid in the synthesis of TCA cycle intermediates and glutamine 

(Shimomura et al., 2004). This increase is needed especially during exercise in order to increase 

the flux through the TCA pathway. Only leucine and part of the isoleucine molecule can be 

converted to acetyl-CoA to be oxidized (Wagenmakers, 1998), but other amino acids can enter 

the TCA cycle (e.g. the malate – aspartate shuttle).  

All these substrates play significant roles in supplying energy to the muscle. In the next section, 

focus will be on the enzyme pathways and selected representative enzymes reflecting that 

pathway, and recent advances in the regulation of these pathways, specifically during an 

increase in muscular activity.  

Metabolic pathways in muscle fibres  
Utilising the various substrates discussed above, requires pathways in order to transfer the 

chemical energy stored in them to fulfil the ATP demand. Each pathway has unique 

characteristics and therefore the demand for ATP in the muscle will determine substrate 

utilisation during muscle contraction. Firstly, each pathway varies in the rate at which the 

breakdown of the substrates take place (mostly enzyme activity dependent), as well as the 

number of enzyme steps. However, with a decrease in steps, there is also a decrease in the 

number of ATP molecules produced. The next section on enzymatic pathways will focus on 

their substrates, selected enzymes and the number of ATPs produced. In addition, this will be 

brought into the context of the various fibre types found in skeletal muscle, thus relating 

metabolic ATP provision capacity to the MHC ATPase activity. It should be mentioned that all 

the pathways and substrates exist in each fibre type, but may vary both in substrate 

concentration and reaction capacity. Figure 1.4.2 shows a simplified schematic representation of 

the four substrates and their association with the various pathways. 

The enzyme creatine kinase (CK) catalyses the transfer of the phosphate group from PCr to 

ADP in order to produce one molecule of ATP. There are two isoforms present in muscle cells, 

namely a cytosolic and mitochondrial CK. The former is concentrated at the M-line of the 

sarcomere as well as associated with the Ca2+ pumps of the sarcoplasmic reticulum, whereas the 

latter is situated in the inter-membrane space of mitochondria (Bruton et al., 2003). The 

replenishment of ATP from PCr is very fast compared to the other pathways (partly because of 

the few steps required) and quickly depletes the PCr stores. Fibres expressing mostly MHC IIx 

and MHC IIb are commonly associated with a high capacity in this pathway and exhibit a 

greater CK activity than slow type I fibres (Saltin et al., 1977). Recently it was speculated by 

Bruton et al. (2003) that this pathway may not be as important in generating ATP as previously 

believed. Comparing CK knockout (CK -/-) with wild type mice, the authors showed that the 
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knockout mice had normal muscular function, but that the knockout was associated with a 

possible compensatory adaptation, namely an increase in mitochondrial Ca2+ concentration 

(Bruton et al., 2003). The increase in mitochondrial Ca2+ concentration stimulates mitochondrial 

respiration, and overshadows the lack of CK. Greenhaff (2001) proposed the following three 

functions for the PCr system: first, it functions as a temporal energy buffer for the myofibrils; 

second, it acts as an energy carrier between the mitochondria and the cytosol and third, it 

maintains [ATP]/[ADP] ratios within the mitochondrial membrane. 

 
Figure 1.4.2  Simplified schematic representation of the major substrates, their metabolic 

pathways in skeletal muscle, and the number of ATPs produced per molecule of 
substrate.  TG, triglycerides; FFA, free fatty acids; TCA, tricarboxylic acid 
cycle; ETC, electron transport chain; PCr, phosphocreatine. Anaerobic 
metabolism: yellow (glycolysis) and orange block; aerobic metabolism: blue 
block. Model adapted from Voet and Voet (1995). 

Glycolysis and glycogenolysis are the starting points of carbohydrate catabolism to produce 

ATP. Glucose and glycogen are metabolised through various steps to pyruvate, where the latter 

can either enter the TCA cycle, located in the mitochondria, or be metabolised to lactate. 

Generating ATP with the end product as lactate, only produces 2 to 3 ATPs, depending on 

which substrate was used. However, when pyruvate is metabolised to ATP through the TCA 

cycle and ETC, 36 ATPs are generated from one glucose molecule. This latter pathway is slow 

compared to that of glycolysis (Hochachka, 1985), but has a greater capacity to adapt (see 

section 1.6).  
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β-oxidation is responsible for the metabolism of FFA to acetyl coenzyme A (acetyl CoA) 

molecules, takes place in the mitochondria and requires a number of enzymes. Although this 

pathway is the slowest in generating ATPs, it nevertheless produces the highest number of ATPs 

from one molecule of substrate (FFA). 

Determining fuel preference at rest or during activity can be accomplished using a non-invasive 

technique that requires the measurement of the volume of CO2 produced and the volume of O2 

utilised during muscle activity. The respiratory exchange ratio (RER: VCO2/VO2) supplies an 

estimate of the percentage of carbohydrate and fat utilised at a given intensity of muscle 

contraction and has been used for many years in exercise physiology. Oxidising 100% 

carbohydrate at a given intensity results in an RER value of 1.00. This is because the complete 

metabolism of a glucose molecule results in utilisation of 6 O2 molecules and a production of 6 

CO2 molecules. However, during the metabolism of fat, more O2 is used by the mitochondria 

than CO2 produced, resulting in a RER value of less than 1.00. For example, biochemical 

calculation (not shown) reveals that an RER value of 0.80 gives rise to a utilisation of 33% 

carbohydrate and 67% fat by the body at a particular intensity (Bergman and Brooks, 1999). 

RER values greater than 1.00 are associated with excessive lactate production, but are actually 

due to an increase in expired CO2, as a result of the carbonate buffering mechanism in the blood 

required to neutralise the increased H+ formation that occurs during very high intensity exercise 

(Cox and Jenkins, 1994; Kowalchuk and Scheuermann, 1995). Therefore, the RER value is a 

useful measurement to indirectly determine fuel preference during exercise (Chapters 4 and 5).  

There are a large number of enzymes taking part in glycolysis, β-oxidation, the TCA cycle and 

ETC. Measuring all the activities can be expensive and some enzyme activities are 

experimentally difficult to measure. Through the years, researchers in muscle biochemistry have 

identified enzymes that are reliable in giving an estimate of the capacity of the various pathways 

and are summarised in Table 1.4.1. A variety of cross-sectional studies have provided insight 

into how the enzyme capacities may vary depending on factors such as species, muscle 

regionalisation and fibre type (Essen-Gustavsson and Henriksson, 1984; Kernell, 1998; Kohn et 

al., 2005; Punkt, 2002).  

Enzyme activities and the number of mitochondria can vary substantially between species, 

between individuals within a species, between muscle groups, between fibre types and even 

along the length of the fibres. Most of these differences are related to the type of muscular 

activity for which the muscle is used most, as power generator or for endurance, which will have 

a direct influence on the fuel preference and a concomitant influence on the metabolic pathways. 

For instance, the cheetah, known to be the fastest land animal over short distances, but having 

poor endurance capability, has very low muscle oxidative enzyme activities and low 

mitochondrial numbers, but very high glycolytic capacities (Williams et al., 1997). On the other 
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hand, animals known to be able to sustain longer periods of distance running, such as antelope, 

and those known for extreme endurance capability (horses), have been shown to contain both 

high glycolytic and oxidative capacity in their muscles (Essen-Gustavsson and Rehbinder, 1985; 

Kohn et al., 2005; Lopez-Rivero et al., 1992). Muscle groups also tend to have variations in 

enzyme activities, but this can be explained mainly by their functionality which is also highly 

correlated with the muscle fibre type (Bass et al., 1969; Spamer and Pette, 1977; Spamer and 

Pette, 1979).  

Table 1.4.1  Summary of the key enzymes commonly measured in skeletal muscle of each 
metabolic pathway. Abbreviations of each enzyme are given in parenthesis. 
TCA, tricarboxylic acid cycle; ETC, electron transport chain. Enzymes 
measured in the present dissertation are underlined.  

Creatine 
system 

Glycolysis TCA β-oxidation ETC 

Creatine 
kinase (CK) 

Hexokinase 
(HK) 

Citrate synthase 
(CS) 

3-hydroxyacetyl CoA 
dehydrogenase (3HAD) 

Cytochrome 
oxidase (COX) 

 Phosphofructo-
kinase (PFK) 

Malate dehydro- 
genase (MDH) 

  

 Lactate dehydro- 
genase (LDH) 

Succinate dehydro-
genase (SDH) 

  

 Pyruvate kinase 
(PK) 

   

 Pyruvate dehydrogenase complex 
(PDC) 

  

 

Single fibre studies confirmed that fast twitch fibres have lower oxidative capacities and less 

mitochondria compared to slow twitch fibres (Chi et al., 1983; Essen et al., 1975; Essen-

Gustavsson and Henriksson, 1984). However, sometimes it may occur that the enzyme activities 

of the fibre types overlap. The concept that variation in enzyme activities along muscle fibres 

may exist, was first discarded when Pette et al. (1980) found no difference. However, Lowry’s 

group did find variations along the fibres (Hintz et al., 1984), which was later confirmed by 

Reichmann (1992) who showed variations in enzyme activities in patients suffering from a 

mitochondrial myopathy. There has been renewed focus on this issue regarding localisation of 

enzyme activities and muscle fibre type (Korfage and Van Eijden, 1999; Punkt et al., 1998). In 

short, there exists a large variation in enzyme activities within a muscle group (e.g. the Vastus 

muscle) with concomitant contractile variations. These regional differences may indicate muscle 

specialisation, and therefore contribute significantly to the overall functionality of the muscle 

(see Chapter 2 for further detailed literature review).     

Three substrate transport proteins in skeletal muscle fibres may also indirectly affect the 

functionality of the pathways and they are: glucose transporters (GLUT 4), monocarboxylate 

transporters (MCT 1 and MCT 4), and carnitine palmitoyltransferase (Coles et al., 2004; 
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Hildebrandt and Neufer, 2000; Ryder et al., 1999), but they were not measured in this 

dissertation.    

Each pathway contributes in providing energy in the form of ATPs to the working muscle. 

Figure 1.4.3 shows a schematic hypothesis of the contribution of the various pathways during 

exercise at a moderate intensity over time. This clearly shows that the activation and 

contribution of the pathways are time dependent. However, an increase in contraction intensity 

may change the way this graph looks, as muscular fatigue may set in before the later pathways 

are activated (Hawley and Hopkins, 1995). For example, adaptation of the muscular and cardio-

respiratory system to training may also have a large impact on the outlook of this graph and will 

be brought into context in section 1.6. Training intensity (directly related to the speed of muscle 

contraction) has been shown to shift fuel preference, e.g. glycolytic and oxidative enzyme 

activities were higher after high intensity training compared to endurance training, since the 

latter only showed an increase in TCA cycle enzymes (Tremblay et al., 1994). However, 

controversy still remains on these adaptation of the pathways when looking at various training 

regimes and intensities, but will be further discussed in section 1.6 and Chapters 4 and 5. 

   

Figure 1.4.3  Graph representing the contribution of the four pathways in providing energy. 
From Hawley and Hopkins (1995). 

Consequence of contraction on metabolism 
Regulation of the pathways can be mediated by a change in enzyme concentration, allowing for 

a greater or reduced flux through the pathways, but also by other mechanisms. Scientists have 

investigated exogenous substrate supplementation such as carbohydrate, protein and fat, as well 

as hormonal influences and the effect of drugs. However, the main factor governing metabolism 

in skeletal muscle is contraction itself, with the aforementioned mechanisms playing a 

modulating role.  
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It is well established that training of previously untrained subjects or animals results in an 

increase in mitochondria, therefore increasing the oxidative enzyme concentration in the muscle 

fibres, which is directly responsible for the enhanced oxidative capacity (Gollnick and Saltin, 

1982; Saltin and Gollnick, 1983; Tonkonogi and Sahlin, 2002). Increasing the concentration of 

the enzymes results in a typical Michaelis–Menton increase in reaction velocity, which results in 

a higher flux of substrate through the pathways allowing for an increase in product before the 

reaction is saturated (Gollnick and Saltin, 1982). Similarly, inhibition of the various pathways 

by substrates or products has been determined and may be exerted directly on the enzyme in 

question or on enzymes up– or downstream from it.  

Although the topic of this dissertation is not focussed on the regulation or activation of 

metabolic pathways, but rather on differences in the potential of pathways associated with 

endurance training (Chapters 4 and 5), it seems necessary to mention some aspects of muscle 

metabolism. 

Activation of metabolic pathways goes hand in hand with mass action. However, it is not supply 

but rather demand that influences flux (Hochachka, 1985). A decrease in product usually shifts 

the reaction towards the end product, resulting in a greater demand for the substrate. Skeletal 

muscle has intracellular carbohydrate and fat stores, but during prolonged exercise, also uses 

circulating supplies. The transportation and uptake of blood glucose and FFA are crucial for 

maintaining relatively high intramuscular substrate levels as long as possible. For example, the 

main transporter for glucose in skeletal muscle is GLUT4, but the GLUT1 transporter is also 

expressed in skeletal muscle. During exercise, stored GLUT4 transporters are translocated to the 

sarcolemma, where they assist in the uptake of blood glucose (Furtado et al., 2003). GLUT4 

expression is more related to activity level of the muscle, rather than the muscle fibre type, as 

was shown by Daugaard  et al. (2000). Activation and translocation of GLUT4 transporters may 

be under separate control. It is suggested that GLUT4 activation is mediated by the activation of 

mitogen-activated protein kinase (MAPK), with the latter being activated by muscle contraction 

(Furtado et al., 2003). Furthermore, AMP-activated protein kinase (AMPK) has also been shown 

to be involved in an increase in glucose uptake during exercise, with the level of AMPK 

activation directly proportional to the intensity of the exercise (Musi and Goodyear, 2003). 

However, the mechanism for increased translocation to the sarcolemma is still unknown. 

Interestingly, it seems that the GLUT4 protein is not essential for post-exercise glucose uptake, 

as Ryder et al. (1999) showed that in GLUT4-deficient mice, muscle glycogen was restored 

after 24 hours, similar to wild-type mice. More research needs to be done to evaluate the 

importance of this transporter protein.  

Fat is the most economical fuel in producing large quantities of ATP. With an increase in 

mitochondria within the cells as a result of exercise training, an increase in carnitine 
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palmitoyltransferase, β-oxidation and TCA cycle enzymes occurs. These increases result in the 

ability to increase FFA substrate utilisation, and therefore have a sparing effect on muscle 

glycogen (Gollnick and Saltin, 1982).  

However, the complexity of the regulatory mechanisms involved in carbohydrate and fat 

metabolism at rest and as a result of endurance exercise is not well understood (Smekal et al., 

2003). Most of the controversy in fat metabolism in animals and humans arise from 

methodological differences. For example, when measuring fat oxidation in animals, nutritional 

state is important. Whether the animals (or humans) were fasted or not prior to the tests, changes 

hormonal influences on fuel preference and can change the overall outcome of the results 

(Smekal et al., 2003; Watt et al., 2002). More controlled research needs to be done to elucidate 

the controversy. 

Another controversy that is important in muscle metabolism (and will be discussed in greater 

detail in Chapter 4), especially during intense exercise, is the fate of lactate. Brooks and his 

research group (2000) have proposed the now controversial lactate shuttle system. This involves 

a mechanism where lactate may be re-converted to pyruvate and subsequently metabolised by 

the TCA cycle, therefore reusing the lactate as a substrate to produce ATP (van Hall, 2000). It 

has been proposed that this shuttle may be found within the fibre producing the lactate, or 

between adjacent muscle fibres. However, new evidence suggests that the proposed 

mitochondrial LDH responsible for the conversion of lactate to pyruvate, does not exist 

(Rasmussen et al., 2002; Sahlin et al., 2002), but this topic needs more research.   

There exist many more regulatory aspects or proposed mechanisms regulating muscle 

metabolism, such as cellular signalling pathways that regulate or activate metabolism. However, 

the aim of this section was to show that, despite the fact that this dissertation will focus on the 

required enzyme pathways and their adaptations due to exercise training, muscle metabolism is 

not that simple (more detail in section 1.6).  

1.4.4 Fibre size 

It is well known that muscle fibres can increase (hypertrophy) or decrease (atrophy) in size, 

depending on the contraction frequency. Furthermore, a direct relationship exists between force 

generation and cross-sectional area (CSA) (Widrick et al., 1996). Hypertrophy is associated with 

an increase in individual muscle fibres both in area and diameter by incorporation of more 

myofibrils (actin and myosin). However, the opposite effect, namely atrophy, results in a loss in 

myofibril content of cells, also reducing power output and is mostly observed in inactive muscle 

(or spaceflight) (Baldwin, 1996). CSA of a fibre type may also respond differently to different 

stimuli (Wilmore and Costill, 1999), e.g. the stimulus frequency. The average CSA of fibre 

types in the Vastus lateralis muscle of sedentary men between the ages of 23 and 30 years are 
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5310 ± 1210, 6110 ± 1200 and 5600 ± 1450 µm2 for type I, type IIA and type IIX fibres, 

respectively (Saltin et al., 1977). In Chapters 4 and 5, CSA was measured to determine whether 

this have a significant effect on performance in already well-trained athletes. 

1.5 Cellular signalling pathways – regulation of muscle characteristics 

Modification in gene transcription requires some sort of signal. These signals are usually the 

result of a shift in homeostasis, such as muscle contraction or hormonal influence. From the 

previous sections and later in section 1.6, it is clear that muscle structure and metabolism, 

directly influencing contractile properties, can be influenced by signals, whether it is during 

contraction itself or leading to adaptation. This section briefly discusses recent advances in 

cellular signals related to muscle adaptation. Although a multitude of signalling proteins exist, 

only a few are focussed on, merely for relevance to the chapters following in this dissertation. 

Intracellular Ca2+ has been proven to mediate a vast number of cellular processes in addition to 

its role in regulation of skeletal muscle contraction (Stull, 2001). Calcium rarely acts on its own, 

and usually binds to mediator proteins, such as calmodulin (CaM). CaM has four Ca2+ binding 

sites and can regulate other signal transduction proteins such as calcineurin and CaM-dependent 

protein kinase (CaMK) I, II and IV.  

Calcineurin (also known as protein phosphatase 2B) is located in the cytoplasm and has a CaM 

binding site, as well as Ca2+ binding sites. Once Ca2+/CaM binds, calcineurin itself can then bind 

directly to other molecules such as Nuclear Factor of Activated T cells (NF-AT)c, and allowing 

dephosphorylation of the latter molecule, which renders it active (Olson and Williams, 2000). 

This activated form can then translocate to the nucleus to allow transcription (Ikura et al., 2003), 

by binding directly to DNA, or to other transcription factors such as myocyte-specific enhancer 

factor 2 (MEF2) and AP1 (Crabtree, 2001; Musaro et al., 1999; Olson and Williams, 2000; 

Rothermel et al., 2003). The localisation of calcineurin may also be an important factor. The 

protein calsarcin binds calcineurin and targets it to the Z-disk of the sarcomere. Three calsarcin 

isoforms have been identified, namely calsarcin 1, expressed only in slow skeletal muscle fibres 

and cardiac muscle, and calsarcin 2 and 3, which is only expressed in fast skeletal muscle fibres 

(Rothermel et al., 2003; Schiaffino and Serrano, 2002). This seems to indicate that calsarcins 

directly link calcineurin to the contractile apparatus, which in turn implies that muscle fibre 

activation may influence calcineurin activation, and may therefore have a direct influence on 

fibre type.  

To maintain activated NF-ATc in the nucleus, there must be a persistent elevation of 

intracellular Ca2+ levels, therefore mediating continuous calcineurin activity. This is because 

NF-ATc proteins are rapidly exported from the nucleus by re-phosphorylation of the same 

residue on that molecule (Crabtree, 2001). Therefore, this is a good mechanistic explanation for 
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why the duration of exposure to training (volume) might influence gene expression, 

consequently altering fibre type and metabolism. Whether intensity of contraction plays a role, 

still needs to be elucidated. It was, however, recently proposed that another signalling protein, 

namely mammalian target of rapamycin (mTOR), is responsible for muscle fibre size, 

independent of calcineurin activity (Schiaffino and Serrano, 2002). This increase in muscle fibre 

size may be directly influenced by the intensity of muscle contraction.  

The activated the NF-AT complex, already translocated to the nucleus, may also activate the 

expression of modulatory calcineurin interacting protein (MCIP), specifically MCIP1, which has 

4 variants MCIP1.1 to 1.4 (Rothermel et al., 2003). MCIP1 proteins bind directly to the 

calcineurin A subunit and inhibit phosphatase activity. It has been postulated that it might only 

bind to the activated form of the calcineurin A subunit. This proposes a negative feedback 

regulatory mechanism for calcineurin (Rothermel et al., 2003). MCIP1.4 is preferentially 

expressed in muscle groups containing slow muscle fibres and it is also reported that endurance 

exercise may increase MCIP1.4 transcription in skeletal muscle (Norrbom et al., 2004; 

Rothermel et al., 2003). Figure 1.5.1 depicts a schematic representation of the activation and 

inhibition of calcineurin activity. 

 
Figure 1.5.1 Calcineurin activation and inhibition pathway in skeletal muscle. From 

Rothermel et al. (2003). See text for abbreviations.  

In contrast to calcineurin that dephosphorylates target proteins, CaMK belongs to a family of 

proteins that phosphorylates a target protein. There are three types of CaMKs, namely CaMKI, 

CaMKII, and CaMKIV. An extra upstream protein, CaMK kinase (CaMKK) is also included in 

this family. CaMKK is activated by Ca2+/CaM binding and subsequently may phosphorylate 

CaMKI and CaMKIV. CaMKI expression is found in all types of cells, whereas CaMKIV is not 

expressed in skeletal muscle, but is found in cardiac muscle (Chin, 2004; Corcoran and Means, 

2001). The role of CaMKII has only recently been investigated in skeletal muscle and has been 

found to be down-regulated in atrophying skeletal muscle (Chin, 2004) and up-regulated in 

response to muscle contraction (exercise) (Rose and Hargreaves, 2003). Similarly, these kinases 
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have also been shown to be involved in mitochondrial biogenesis. However, more research is 

needed in order to show the specific mechanisms involved, whether it plays a significant role in 

muscle fibre type switching and metabolism. 

Besides the calcium-activated signal transduction pathways, three other possible mechanisms 

have been proposed: cell surface receptor activation by extracellular signalling molecules 

released from the motor nerve, direct sensing of mechanical forces generated by loading 

conditions, and sensing of intracellular metabolite concentrations that change as a consequence 

of muscle contraction (Olson and Williams, 2000).  

Mechanical factors influencing gene expression 
Studies done on muscle that was electrically stimulated with repeated contractions, showed that 

this intervention led to the expression of type I fibres. This was also true for the passive stretch 

of muscle, where type I sarcomeres were added to the type II fibres. This led to the identification 

of the mechano growth factor (MGF) that has the ability to activate the expression of MHC I. 

This factor has no effect on switching of MHC IIx to MHC IIa. What the specific pathway of 

this factor is, is still unclear and whether exercise plays a role, still needs to be investigated. 

However, it may be postulated that MGF may be influenced by exercise, as this involves 

contraction and stretching of the muscle (Goldspink, 2003). 

Motoneuronal activity and sensing 
Studies conducted on increased calcineurin activity or the inhibition of calcineurin and Ca2+, led 

to the conclusion that calcineurin activity promotes type I fibre expression (Serrano et al., 2001). 

It has been shown that different patterns of motoneuronal activity can alter the fibre type. Type I 

fibres usually have an almost continuous basis of activation, resulting in an oscillation of 

intracellular Ca2+ concentration ranging between 100 to 300 nM. This continued activity might 

just be necessary for continuous calcineurin activation to activate NF-ATc. On the other hand, 

motoneurons that innervate type IIA and IIX fibres, fire only intermittently (Olson and 

Williams, 2000). However, it has been shown that calcineurin activity played no role in the 

conversion of IIX to IIA fibre types in both cultured muscle cells and in vivo rat and mouse 

muscle (Schiaffino and Serrano, 2002; Serrano et al., 2001), indicating another mechanism or 

signalling protein involvement. 

NF-AT activation by calcineurin also appears to be involved in gene activation in subsets of fast 

muscle fibres. It was shown that calcineurin controls the amount of e.g. myoglobin content in 

both type I and IIA fibres. In cultured muscle cells, NF-AT over-expression or constitutively 

active calcineurin preferentially activated MHC IIa, but not MHC IIx or MHC IIb genes in mice 

(Schiaffino and Serrano, 2002). 
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Calcineurin inhibition by Cain (also known as Cabin) down-regulates MHC I and MHC IIa gene 

expression, but up-regulates MHC IIx and MHC IIb expression in adult slow skeletal muscle. 

This suggest that calcineurin controls the induction and maintenance of fibre type specific gene 

expression programmes (Schiaffino and Serrano, 2002). However, Cain is only found in very 

low quantities in skeletal muscle compared to the brain (Olson and Williams, 2000) and whether 

this molecule plays a significant role in adaptation due to muscle contraction, still needs to be 

investigated. Because inactive calcineurin promotes slow to fast muscle fibre type transitions, it 

may also explain why paralysis and detraining result in fibre type switching to faster isoforms, 

as intracellular Ca2+ is required to activate calcineurin. 

Mitochondrial biogenesis 
Many studies have focused on mitochondrial biogenesis mechanisms not only in muscle, but 

also in other tissues (for a review see Lee and Wei (2005)). Since this dissertation is directed at 

analysis on protein level rather than the mechanisms involved, only a few transgenic studies will 

be highlighted. 

It has long been known that mitochondrial density increases with muscle activity, for instance 

endurance exercise increases the amount of mitochondria per fibre, but also stimulates fibre 

transitions. Recently, the focus of signalling protein research has shifted to the peroxisome 

proliferator-activated receptors (PPAR). One of the major effects of these proteins is the up-

regulation of fat oxidation in adipose tissue and skeletal muscle. Specifically, the delta (δ) form 

is the predominant isoform found in skeletal muscle (Luquet et al., 2004). The role of PPAR δ 

was further elucidated when Wang et al. (2004) showed that transgenic mice over-expressing 

this protein, could run twice the distance than wild type mice, therefore having a greater 

resistance to fatigue – typical scenario when comparing trained with untrained individuals. 

Furthermore, these mice had an abundance of type I fibres and an increase in mitochondrial 

numbers in their skeletal muscle (Luquet et al., 2003). The data suggest that new ways or drugs 

may be developed to control obesity. However, this also opens the door for drugs to enhance 

performance in sport, but whether this will be effective, still needs to be investigated. 

The few signalling proteins mentioned above are only the tip of the ice berg of cellular signals 

involved in fibre type maintenance and mitochondrial biogenesis. Many more exist and may be 

activated by hormones, such as thyroid hormone, which may be independent of muscle 

activation. However, these signals may play important roles during exercise. Furthermore, 

specific exercise (e.g. endurance vs. resistance exercise) may activate other signals, and may 

therefore also have different effects on skeletal muscle, but more research needs to be performed 

to elucidate specificity. 
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1.6 Adaptation of muscle fibres 

For adaptation to occur, tissue’s homeostasis must first be perturbed. Voluntary contraction (e.g. 

exercise) is one of the main factors that perturbs skeletal muscle’s homeostasis and drives 

changes in MHC isoform expression and alters metabolism, causing adaptation in fibre type. 

Other factors that can modulate or mediate adaptation are genetics, circulating agents, such as 

hormones and cytokines, alterations in the usual muscular activation which include paralysis, 

detraining, added physical training or electrical stimulation. External factors that could be called 

environmental factors that have a direct effect on the organism, including the muscular system 

are altitude, temperature, nutritional status and socio-economic status. Furthermore, these factors 

or stimuli trigger internal cellular signals that transfer the external stimuli to the nuclei where 

transcription of specific genes are up- or down regulated.   

1.6.1 Search for genes contributing to muscle characteristics 

The influence of genetics on skeletal muscle is a very broad field. In animals, there are large 

variations in genetic makeup between species and this contributes extensively to the overall 

structure and function of skeletal muscle. For example, studies have shown that hind limb 

muscles of the cheetah and antelope varies significantly in structural and metabolism, therefore 

affecting functionality (Essen-Gustavsson and Rehbinder, 1985; Kohn et al., 2005; Williams et 

al., 1997). Comparing the MHC isoform distribution in hind limbs of a larger variety of animals, 

it is clear that smaller animals (such as rats, mice and rabbits) regularly express the fast MHC 

IIb isoform, whereas in larger animal species (horses and cattle), including humans, the MHC 

IIb isoform is a rare phenomenon and is restricted to specialised muscle groups (Allen et al., 

2001; Andersen et al., 2002; Lucas et al., 2000; Rivero et al., 1997; Talmadge and Roy, 1993). 

Heritability of muscle characteristics 
Heritage may be defined as the transfer of phenotypic characteristics from parent to descendent. 

In living organisms, including bacteria, this is accomplished through the genes inherited from 

both parents that will comprise the genotype of the organism and eventually influence the 

phenotype. Typical examples of phenotypic variation in mammals are hair and eye colour. 

Humans have a much broader phenotype influenced by genotype that includes i.e. body stature, 

skin colour, the amount of fat around the eyes, or nose length. An organism’s genotype also 

influences the phenotype of internal tissues such as its muscular characteristics, as muscle 

usually comprises a large proportion of the total organism. 

Throughout the years, researchers have tried to identify genetic determinants of muscle 

characteristics. Most of these studies have related muscular characteristics to performance such 

as the ability to perform work in the form of exercise. In a review by Bouchard et al. (1986), 

they made the statement, based on the findings in previous studies and other studies on 
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characteristics of mono- and dizygotic twins and brothers, that 45% of the variability of type I 

fibres may be attributed to genotype. The remaining percentage would be attributed to muscular 

activity and environmental influences. Simoneau and Bouchard (1989) further investigated the 

variability in muscle fibre type and enzyme activities in 418 non-related human muscle biopsy 

samples, concluding that the coefficient of variation of the parameters measured ranged between 

21 to 71%, indicating a large inter-individual variation. Bouchard and his group have thereafter 

been involved in the Familial Heritage study, focussing on several aspects of inheritance and 

how this may influence muscle characteristics and overall performance (Bouchard et al., 1995). 

Some of the findings will be discussed here.  

Bouchard’s group focussed on the muscle-specific creatine kinase (CKMM) genes in elite 

endurance runners and found that there was no association between the genes and VO2max (a 

measurement of physical fitness level) of the athletes (Rivera et al., 1997b). However, when 

they endurance trained 160 unrelated sedentary parents and 80 unrelated adult offspring for 20 

weeks, a significant association was observed between the CKMM polymorphism and the 

change in VO2max (Rivera et al., 1997a). However, the authors were sceptical about whether 

there was a direct connection between the two measurements, or if CKMM only co-varied with 

another parameter, or other parameters not measured. This scenario was strengthened by a 

recent publication by Bruton and co-workers (2003) where they showed that CK knockout mice 

had normal muscular function, and in some cases, more superior contractile properties, 

compared to wild type mice. Therefore, a knockout of a specific gene may be compensated for 

by another not assessed. Recently, the Bouchard group published a gene map relating 109 

autosomal genes to specific performance markers (Rankinen et al., 2004). Furthermore, 15 

mitochondrial genes had been identified where sequence variants may influence fitness and 

performance phenotypes. Since this thesis deals more with phenotype than specific genotypes, 

these will not be discussed here. The search for polymorphisms in putatively key protein genes 

is not the only way to study the influence of genetics on skeletal muscle and exercise 

performance. Bouchard himself describes the “bottom-up vs. top-down” approaches as both 

being relevant and necessary (Bouchard et al., 1992). Indeed over the past 15 years, whilst gene 

mapping was progressing, population and familial studies were also making progress in 

delineating what phenotypes can be described as different in distinct populations. These studies 

were generally performed in small laboratory animals and in human subjects, although in the 

latter case, with fairly small sample sizes. 

The genetic effects in small animals were first investigated in 1989 by a group investigating 

voluntary running in rats. The authors divided the animals in three categories, high, medium and 

low activity (km/day), but could not find any difference in cytochrome oxidase and HK 

activities (Rodnick et al., 1989). The group of Sieck selectively bred mice for 10 generations 
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with high voluntary running capability and the authors postulated a significant genetic effect on 

activity level and aerobic capacity (VO2max) (Swallow et al., 1998), and activity and body mass 

(Swallow et al., 1999). However, no relationship was found between muscle characteristics 

(fibre type and SDH enzyme activity in the medial Gastrocnemius) and aerobic capacity, 

indicating that performance is not necessarily reflected in muscle composition (Zhan et al., 

1999). However, Houle-Leroy et al. (2000) showed that there were significant differences in 

enzyme activities between mice from a 14 generation inbreeding programme and randomly 

selected control mice, but that the enzyme response to training was similar in both lines. To 

complicate matters more, the authors suggest that gender plays an important role in the activities 

of enzymes. This is somehow contradictory to the literature, where it is commonly accepted that 

fibre type is influenced and oxidative capacity is enhanced by training. However, possible 

explanations for the poor relationships may be large inter-individual variations. Furthermore, it 

may be that gene transcription varies significantly between individuals, as was discussed in the 

CK knockout mice (Bruton et al., 2003). This implies that other gene products not measured 

may be activated and may therefore contribute to the poor relationships found. 

Finally, Harrison et al. (2002) compared two strains of mice lacking either the MHC IIb gene or 

the MHC IIx gene. In both groups, voluntary running performance was reduced significantly, 

but CS activity was increased in MHC IIb null mice. The latter result can be explained by the 

fact that the MHC isoform distribution differed significantly in the muscle analysed. MHC IIx 

fibres tend to have similar or higher oxidative capacity than MHC IIb fibres and in this study, 

MHC IIb null muscle had a compensatory higher expression of MHC IIx and therefore gained in 

overall CS activity, whereas MHC IIx null mice showed lower CS activity and a higher 

expression of MHC IIb. 

Scientists, however, are gradually closing in on finding at least some of the specific genes and 

activators responsible for enhanced performance and muscle characteristics by investigating the 

role and regulation of cellular signalling pathways in muscle (section 1.5). However, as it was 

proposed by Andersen et al. (2000), it may be that an individuals’ genes are not the only 

important factor in determining muscular characteristics for enhanced performance, and that the 

external factors, including trainability, may indeed play a crucial role. 

Do some human populations have a genetic advantage? 
It is well known that East African runners dominate the world of endurance running and 

African-American athletes the sprinting events. Recent world road running rankings for 2005 

listed 77 and 8 Kenyan and Ethiopian athletes, respectively, under the top 100 in the world 

(source: International Association of Athletics Federations). This led scientists to explore the 

possibility that these athletes might have a genetic advantage. But not only in the elite athletes 
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per se, but that ethnic background plays a role in performance and that physiological and 

biochemical differences may exist between races. 

Few studies have investigated both physiological and biochemical parameters between races, 

specifically between black/African and white/European groups, but it must be kept in mind that 

cultural and social influences may also play significant roles. In 1986, Ama et al. (1986) 

compared white (North American) and black (originating and living in West and Central Africa) 

sedentary subjects and found that black subjects had a higher proportion of fast twitch fibres 

with concomitant higher glycolytic enzyme activities (CK, HK, PFK and LDH). This led the 

authors to conclude that black subjects from West African origin may have an advantage when 

competing in short sprinting events. This finding can be brought into context when results of the 

previous Olympic Games in Athens (2004) are considered. Taking the first 3 positions in the 

100 m, 200 m and 400 m final male sprinting events, only one out of the nine athletes was from 

white European descent, with the remainder from black African descent. For women competing 

in the same events, three were from white European descent, with the remaining six from black 

African populations. Furthermore, Hickner et al. (2001) showed that lean black African-

American women had lower fat oxidation capacity compared to their white counterparts. One 

possible explanation for lower fat oxidation in the black women may be the influence of lower 

levels of thyroid stimulating hormone (TSH). TSH activates the release of thyroid hormone 

resulting in an up-regulation of resting metabolism, and therefore fat oxidation. This was 

confirmed in a study by Schectman et al. (1991), who found that black subjects had significantly 

lower TSH levels than white subjects. However, the results of these aforementioned studies 

should be interpreted with caution, as cultural influences, such as diet and physical habits (i.e. 

recreational activities, means of transportation, or type of work) may have a significant 

influence on physiological parameters.  

Ama et al. (1990) showed that maximal force production, peak power output (PPO), and total 

work output during a 10, 30 and 90 second maximal voluntary knee extensor test was not 

different between black subjects from West and Central Africa compared to their white 

counterparts. However, the authors did show that the black subjects had a lower resistance to 

fatigue during the same tests compared to their white counterparts. These findings could 

therefore not strengthen the hypothesis for an advantage in sprinting events in black athletes 

originating from the Western parts of Africa. However, one aspect that may have had an 

influence on the findings is that the black subjects were significantly older than their white 

counterparts, although they were matched for body height and weight. This suggests that the 

black subjects may have been subjected to a longer period of inactivity than their white 

counterparts, which may have had a direct influence on fatigue resistance. Similarly, it was 
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reported that the subjects were sedentary at the time of testing, but previous sporting encounters 

(e.g. at school level) were not reported.  

In contrast to the finding of higher type II fibre proportions in black subjects than white subjects 

in the study by Ama et  al. (1986), Duey et al. (1997) found no difference between fibre type 

proportions and capillary density in muscle biopsies in black and white recreationally active 

subjects (born and living in the USA). However, once again, methodological problems may have 

contributed to the outcome of the results as the white subjects were older and heavier than their 

black counterparts.  

If a genetic advantage exists in population groups, then the possibility may arise that some 

populations may respond differently to training. However, Skinner et al. (2001) showed no 

difference in the response (VO2 and VO2max) to a training regime between black and white 

subjects, with both groups including individuals with a low, medium or high response to 

training. It may be that individual responses may have an influence, as Bouchard (1995) 

commented that large variations exist between subjects subjected to the same training regime.   

Results from these studies do not specifically indicate whether a significant genetic influence for 

performance exist in the populations in question. The studies discussed so far have been 

conducted in groups of sedentary individuals. Therefore, on the one hand, the confounding 

influence of physical activity / training was not present. On the other hand, any genotype-

environment interaction such as trainability was also not assessed.    

The lay press has sensationalised the success of African athletes by ascribing it to a racial 

advantage, when scientists are not clear about this issue. A newspaper article in the South 

African Mail and Guardian (Arlidge, 2000), quoting papers by Saltin’s research group (Saltin et 

al., 1995b; Saltin et al., 1995a), stated that black runners are genetically programmed to run 

faster than their white counterparts. Saltin’s group investigated Scandinavian and Kenyan 

runners who trained and lived together during a training camp in Kenya. During this time, the 

researchers performed physiological exercise tests, as well as muscle biopsies for analysis of 

fibre type and enzyme activities. No differences were found for fibre type, capillary density, and 

VO2max, but the marker enzyme for fat oxidation, 3HAD activity, was significantly higher in 

Kenyan runners. Also, Kenyans were more economical when running, and had lower plasma 

ammonia concentrations during sub-maximal and maximal exercise tests. However, Saltin et al. 

(1995b) reported that the average diet of the Kenyan runners were high in protein content, but 

higher dietary protein is also associated with higher ammonia production during exercise 

(MacLean et al., 1994). The lower ammonia concentration may therefore be related to the higher 

fat metabolism in Kenyan muscles.  
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Similarly, plasma lactate concentrations at the same absolute workloads were lower in the 

Kenyan compared to the Scandinavian runners, and may be related to the higher fat metabolism 

of the Kenyan runners. Although total LDH activity was not different between the two groups, it 

was found that Kenyan runners had a higher ratio of LDH1-2/LDH4-5 in their Gastrocnemius 

muscle compared to the Scandinavian runners prior to the training camp. The LDH1-2 isoforms, 

predominantly found in heart muscle, favours the conversion of lactate to pyruvate, whereas the 

LDH4-5 isoforms favour pyruvate to lactate conversion (van Hall, 2000). After the training camp 

at altitude, the LDH ratio increased in the Scandinavian runners to similar values to the Kenyan 

runners (Saltin et al., 1995a). Similarly, plasma lactate concentrations after the training camp 

was also significantly reduced (Saltin et al., 1995b). Whether the decrease in plasma 

concentration was because of the altitude effect or because of an increase in training intensity, 

was not established, but both may have had an influence. However, these results do not imply 

that Kenyans’ phenotypic differences are based on a genetic advantage. Life style (daily walking 

and running from a young age) may also have played a significant role in setting phenotypic 

differences (Larsen, 2003). 

Work by Bosch et al. (1990), Coetzer et al. (1993) and Weston et al. (1999) also investigated 

the physiological and biochemical characteristics in South African black and white athletes. 

These studies were more controlled as in each study, both groups came from the same area at or 

close to sea level, eliminating altitude exposure as a confounding factor. Bosch et al. (1990) 

showed that there was no difference in VO2max between black and white athletes, but that black 

athletes ran a simulated marathon at a higher percentage of their VO2max. Similarly, black 

athletes ran at a higher RER, which is an indication of preference for carbohydrate above fat as 

fuel. No muscle biopsies were taken, thus it is difficult to determine of the higher RER was 

related to the higher intensity at which they ran, or to differences in muscle enzyme activities. 

Nonetheless, the finding of higher fractional utilisation of their maximal oxygen consumption 

capacity, was significant. Fractional utilisation of VO2max is related to training volume, but 

whether it is related to training intensity, is still unclear (Scrimgeour et al., 1986). However, this 

may be related to muscle fibre type and oxidative enzyme capacity of the muscle.  

Coetzer et al. (1993) found that, although both black and white groups had similar training 

volumes per week, the same VO2max values and percentage type I fibres, black athletes trained 

at a higher intensity than white athletes. However, the training intensity was assessed from 

questionnaires and may be questionable whether this method was adequate. Plasma lactate 

concentrations were also lower in black athletes during a sub-maximal exercise test. During a 

maximal voluntary force production test of the quadriceps muscle, although lower force 

production, black athletes could withstand the test for a longer time until isometric force was 

reduced to 70% of maximal voluntary contraction. However, it could be argued that, because the 
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force produced in this test was lower in the black athletes, they would have been able to 

withstand the test for a longer period of time, therefore, once again, may have been more related 

to a methodological problem with the test itself.  

Weston et al. (1999) found similar results to the above two studies, but in addition showed that 

CS and 3-HAD activities were elevated significantly in muscle biopsies from the black athletes 

compared to the white athletes. On the other hand, though not significant, black athletes also 

tended to have a lower percentage of type I fibres (therefore more type II fibres), as well as a 

tendency to have higher PFK activity in their muscle. This is in accordance with the literature 

that shows that fast twitch fibres have higher PFK activities (Essen et al., 1975). However, since 

type II fibres are also associated with a lower CS activity than type I fibres, it is interesting that 

the black runners had the higher CS and PFK activities as well as type II fibres. It therefore 

would have been valuable to have determined exact fibre type proportions, dividing the type II 

fibres into the type IIA and IIX sub-populations. Furthermore, it has also been reported that the 

oxidative potential of type IIA fibres may be equal or even higher than type I fibres (Saltin and 

Gollnick, 1983), and that this may be related to external factors, such as training intensity (more 

adaptable), or because of genotype.  

In a recent study, Marino et al. (2004) reported that black endurance runners could run a self-

paced 8 km time trial in a shorter duration at 35 °C than their white counterparts, with no 

difference observed at cooler (15 °C) conditions. Sweat rate was also lower in these black 

runners. The authors attribute these findings to the smaller body size of the black runners, thus 

indicating an advantage when running at higher temperatures. There may be a possibility that 

living conditions (socio-economic) and training intensity may contribute significantly to the 

better running capability of the black runners in the heat.  

The studies above could not determine exact racial differences on muscle characteristics and 

lacked statistical power in subject numbers. However, one possible explanation did arise from 

these studies that training intensity may be a more crucial determinant of muscle characteristics 

and performance than racial genetic variation. Therefore, Chapter 3 investigates specialisation 

distance (as a measure of training intensity) on muscle fibre type in endurance trained athletes as 

well as recreational active subjects. Furthermore, Chapter 4 continues the search for racial 

genetic variation, and has been structured to include extensive muscle fibre type characterisation 

and enzyme analyses, as well as analyses of enzyme activities in pools of type I and type IIA 

fibres. Table 1.6.1 summarises selected studies involving black and white endurance runners, 

most importantly, those on whom muscle biopsies were performed. 
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Table 1.6.1 Selected studies on black and white endurance runners and possible factors that 
may have influenced the overall outcome of the results. 

 Subject no.  Selection    
References White Black criteria Muscle biopsies Possible confounding factors 

Bosch et al., 
1990 

10 9 Recent marathon 
time matched 
between groups 
(<165 min) 

None Training volume and intensity 
may have been different; age 
difference not reported 

Saltin et al., 
1995a 

5 4 None reported Yes, type I, IIA, 
IIX fibres and 
enzyme activities 
determined 

Altitude, diet, training volume & 
intensity, preferred racing 
distance. Kenyan athletes were 
older than the Scandinavians. 
Low subject numbers. 

Coetzer et al., 
1993 

5 6 1 mile (<4 min), 
3 km (<8,3 min), 
5 km (<14 min) 

Yes, type I fibres 
determined, no 
enzyme activities 

Black athletes were smaller in 
stature and lighter, reported faster 
10 and 21.1 km times; age not 
reported; only percentage type I 
fibres measured; not matched for 
performance; low subject 
numbers 

Weston et al., 
1999 

5 7 Performance 
matched 

Yes, type I fibres 
and enzymes 
activities 
determined  

Blacks were smaller in stature and 
lighter; tended to be younger; no 
preferred racing distance 
reported; low subject numbers    

1.6.2 Muscle activation  

In order for muscle to adapt to the various external or internal signals, the relative genes must be 

activated and transcribed to mRNA, where after translation follows of the mRNA to protein. 

Andersen and Schiaffino (1997) compared two techniques for determining fibre type, the one 

utilising RNA probes directed at the three MHC isoforms (therefore investigating gene 

activation) and the other, the use of antibodies directed at the slow and fast isoforms. The 

samples used were from pre- and post-trained subjects. In some of the fibres analysed, there was 

a mismatch between the specific MHC mRNA and its resultant protein. The effect was more 

pronounced after the training period. The same authors proposed a model between mRNA and 

protein expression that, during the early stages of fibre type transition, mRNA of both MHC 

isoforms may be present, with only the existing protein being expressed, but during the later 

stage, the mRNA of the existing MHC isoform is switched off with no detection there after, but 

that both isoforms will be found on protein level. This hypothesis may therefore explain the 

construction and existence of hybrid fibre types in skeletal muscle in response to stimuli. 

Neural input including electrical stimulation and re-innervation 

Muscular activity in itself is probably the most important factor contributing to muscle 

adaptation, both structurally and metabolically. This might even overshadow genetics and 

environmental conditions for some muscle characteristics, i.e. paralysis and electrical 

stimulation (see section below). 
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Muscular activity is dependent on neural input, e.g. the neurons that innervate a specific muscle 

group. Neural input, chronic activation or lack thereof, may therefore change fibre type 

expression and metabolism. The most classic examples of the influence of neural input are 

electrical stimulation, de- and re-innervation. Studies showed that by electrically stimulating 

skeletal muscle, muscle fibre type switches can be accomplished (Pette and Vrbova, 1992). By 

applying high frequency electrical stimulation, fibres can be stimulated to undergo shifts from 

type I to type IIA fibres, where low frequency stimulation resulted in the transformation of 

fibres from type IIA to type I (Martin et al., 1992a). In addition, the duration of electrical 

stimulation may also play a key role in which direction fibre type will transform. For instance, 

eight hours per day of electrical stimulation (20 Hz pulses) in spinal chord injured subjects for 

24 weeks resulted in a significant increase in type I fibre proportions of the TA muscle (Martin 

et al., 1992b). Greve et al. (1993), on the other hand, although showing a transformation of type 

IIB to type IIA fibres, showed no change in type I fibre proportions after 3 months of 30 minutes 

per day (at 20 Hz) electrical stimulation in the Quadriceps femoris muscle of spinal chord 

injured patients. Therefore, the duration of stimulation time may be crucial for an increase in 

type I fibre proportions. Endurance runners are usually associated with a high proportion of type 

I fibres (Saltin et al., 1977), and part of this reason may be because of the time spent running 

(e.g. completing a marathon requires continuous running of up to two and a half hours in well-

trained endurance runners). 

In contrast to electrical stimulation duration at low frequencies, higher frequencies may elicit 

different results, as Andersen et al. (1996) showed in a year long electrical stimulation of the 

Vastus lateralis muscle of paralysed subjects. The stimulation was carried out three times per 

week for 30 minutes per day at a frequency of 60 Hz. After a year, no increase in type I fibres 

were observed, but a significant decrease in type IIB and IIA/IIB hybrid fibres with a 

concomitant increase in type IIA fibre proportions occurred. This type of stimulation is typical 

in sports requiring fast contraction and relaxation of muscles, such as in sprinting events. In a 

three month study on sprint training adaptation in sprint runners, it was shown that type IIA 

fibres significantly increased after the training period (Andersen et al., 1994b). However, what 

the effect of an increase in contraction intensity will be in already trained endurance athletes, has 

not yet been investigated. Based on the findings reported above, it may be hypothesised that a 

further conversion to type IIA fibres will be observed, but that the CSA of the fibres may also 

increase.    

Some extreme conditions of muscular activation and immobilisation will be discussed below, 

each having a significant influence on muscle morphometry and metabolism. Paralysis, 

spaceflight, and training, specifically low intensity endurance, high intensity endurance, 
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resistance and sprint training also significantly alter neural activity patterns. In each case, 

sedentary models will be used as comparison.  

Paralysis 
The inability of signals from the brain and spine reaching the muscles via the neurons to 

stimulate muscle contraction may be caused by neuronal degenerative diseases or from spinal 

chord injury. This results in paralysis or the inability to voluntarily contract muscle. Although 

paralysis itself is not studied in this thesis, it is a good extreme model to illustrate and discuss 

control of muscle protein expression in addition to contraction.  

One of the main phenotypic observations of muscle in response to paralysis is the reduction in 

CSA of the fibres (atrophy) (Talmadge et al., 2002b). It seems clear that the quantity of the two 

most abundant proteins, actin and myosin (which are directly involved in the cross-bridge 

cycle), decrease in response to paralysis. The latter loss was also shown by Matsumoto et al. 

(2000), where they found a significant decrease in the MHC / actin ratio in response to acute 

quadriplegic myopathy (AQM). However, it seems that neural input plays an even more 

important role, as it was recently shown by Di Giovanni et al. (2004), that the activation of 

signalling pathways are different between AQM and neurogenic atrophy (NA). For instance, the 

MAPK cascade was activated in AQM, but not in NA. Therefore, more research needs to be 

conducted in order to elucidate the mechanisms involved in protein catabolism in these two 

extreme cases. 

It has been reported by various authors that there is also a slow to fast transformation in fibre 

types, especially all the way on the continuum to type IIx fibres as a result of no nerve 

stimulation (Andersen et al., 1996; Furnsinn et al., 1999; Talmadge et al., 2002a). Overall 

analysis of fibres also showed a substantial increase in hybrid fibres containing two or more 

isoforms (Andersen et al., 1996). These two facts indicate, in the case of proteins with various 

isoforms, muscle activation and the exposure to mechanical strain will also affect fibre type. In 

addition, another signal may be the absence of neurally derived factors that influence gene 

expression. For instance, calcineurin has been associated with the expression of MHC I isoforms 

(section 1.5). Because calcineurin is readily inhibited by MCIP, in order to induce a large 

calcineurin response, a long duration of constant elevation of intracellular Ca2+ is required. 

Therefore, with no neural activation of the muscle fibres, calcineurin activity is inhibited and do 

not stimulate MHC I expression.  

However, electrical stimulation of paralysed muscle showed that this process of slow to fast 

fibre type conversion can be reversed (see section under Neural Input), therefore indicating that 

neural enervation and activity is important in regulating muscle fibre type.  
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The above discussion indicates that paralysis alters both the quantity and isoform content of 

myosin and this has distinct effects on the whole muscle. With the increase in fast twitch fibre 

types, Talmadge et al. (2002b) showed that spinal chord injury resulted in a significant decline 

in fatigue resistance in rat Soleus muscle. In addition, muscle enzyme activities, especially the 

oxidative enzymes, may decrease in activity. After only 7 days of paralysis, rat Soleus muscle 

showed a significant decline in SDH activity, resulting in a decline in fatigue resistance (Jasmin 

et al., 1995). It is therefore possible that the same factors controlling contractile protein quantity 

and myosin isoform expression also control the genes regulating the quantity of mitochondria. In 

section 1.5, it was discussed that activated PPAR δ resulted in an increase in mitochondria and 

type I fibres in transgenic mice. However, the mechanisms involved in both these phenotypes 

are not yet well understood. Whether PPAR δ alone can modulate both, or whether it also 

activates calcineurin needs to be elucidated. Furthermore, it is well known that type I fibres 

contain more mitochondria than type IIa fibres, the latter also known to exhibit high oxidative 

potential, but whether type IIa fibres may be stimulated to contain more mitochondria than type 

I fibres, still needs to be investigated.  

Spaceflight and detraining 
Two less extreme models, compared to paralysis, are detraining and spaceflight. These two 

models go hand in hand in that they both reflect a decrease in muscle activity and work. 

However, they cannot be considered the same, since during spaceflight there is an added major 

lack of mechanical stimulus from gravity, even at rest. Nevertheless, significant changes have 

been observed for both spaceflight and detraining on muscle morphometry and metabolism. 

Eleven days of spaceflight revealed a significant decrease in CSA of all fibre types in human 

Vastus lateralis muscle, and a shift from slow to fast twitch fibre types (Baldwin, 1996; 

Edgerton et al., 1995). The number of capillaries per fibre also decreased for all the fibre types 

measured. Although not statistically significant, it was noted that oxidative enzyme capacity 

decreased. These data seem to indicate that gravity requires the constant activation of muscle 

groups (e.g. stabilisers), or specific motor units in most muscle groups, therefore being able to 

induce muscle fibre type transformation and adaptation of metabolism. 

Detraining has been suggested to have similar effects as spaceflight on fibre type and oxidative 

capacity in trained athletes. For instance, three months of detraining, after a high intensity 

training period of three months, showed a significant increase in MHC IIx and a decrease in 

MHC IIa expression in the Vastus lateralis muscle of humans (Andersen and Aagaard, 2000). 

These authors did not investigate enzyme activities, but a number of studies have been 

performed on both humans and animals. Detraining may result in decreases in oxidative enzyme 

capacities and these effects can be observed within six weeks (Chi et al., 1983; Henriksson and 
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Reitman, 1977). Changes in the glycolytic capacity are not evident, but may be related to the 

fitness level of the subject (Chi et al., 1983).  

The relevance of these observations discussed in this section to studies on athletes, is the effect 

illness or injury might have on the muscle characteristics. The risk of injury in sport is much 

greater than in a sedentary / recreationally active life style. Therefore, athletes in Chapters 3, 4 

and 5 were carefully screened for injury or illness before included in the studies. 

Continuous sub-maximum, intermittent high intensity endurance or sprint training 
This section will focus on three topics, namely muscle structural and metabolic differences 

between trained and untrained individuals, adaptations of muscle to various types of exercise in 

untrained subjects and added training effects in already well-trained athletes. 

For the past four decades, scientists have investigated fibre type and enzyme activities in muscle 

samples of untrained and trained subjects. These cross-sectional studies have revealed that there 

is a distinct difference between the two groups. For instance, the pioneering study by Gollnick et 

al. (1973) showed that skeletal muscle of trained subjects have significantly more type I fibres 

and higher oxidative capacity, especially those that are endurance trained (cycling or running) 

compared to untrained subjects. Other studies have confirmed these findings, but have also 

incorporated other types of training, such as athletes performing resistance training or runners 

with different specialisation distances (e.g. Essen-Gustavsson and Henriksson, 1984; Harber et 

al., 2002; Harber et al., 2004; Jurimae et al., 1997; Williamson et al., 2001). These studies 

further showed that the less active the individual, the more the occurrence of type IIX fibres.  

Not only does the fibre type of these athletes differ, but metabolic enzyme activities and 

VO2max may vary substantially. Figures 1.6.1, 1.6.2 and 1.6.3 represent the VO2max, fibre type 

proportions and enzyme activities relative to untrained individuals, respectively, in various 

sports, ranging from sprinters to extreme endurance athletes and will be discussed subsequently. 

VO2max has for years been a measure of fitness level, especially for endurance type sports. 

Events requiring little endurance capability (e.g. weight lifting and sprinting), indicate that these 

athletes have a low VO2max, and may even be similar to untrained individuals. On the other 

hand, events requiring muscular activity over extended periods of time (e.g. endurance runners, 

cyclists and skiers), requires additional energy sources and is usually derived from the oxidative 

metabolism of carbohydrate and fat. The muscle therefore requires a large amount of oxygen to 

allow these metabolic pathways to properly function. Figure 1.6.1 shows that athletes requiring 

short, but powerful muscle contractions have a low VO2max, whereas athletes performing 

exercise over an extended period of time, have a high oxygen consumption rate. These findings 

were further strengthened by the investigation of the muscle fibre type and selected enzymes 
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representing each metabolic pathway (recall from section 1.4.3) and are presented in Figures 

1.6.2 and 1.6.3. 
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Figure 1.6.1 Maximal oxygen consumption (VO2max) of athletes and untrained individuals. 

Data compiled from Chi et al., 1983; Coggan et al., 1990; Duey et al., 1997; Essen-
Gustavsson and Henriksson, 1984; Evertsen et al., 1999; Gollnick et al., 1972; Green et 
al., 1991; Harber et al., 2002; Jansson and Kaijser, 1977; Klitgaard et al., 1990; Prince 
et al., 1976; Proctor et al., 1995; Saltin et al., 1995a; Shepley et al., 1992; Weston et al., 
1997; Weston et al., 1999. 
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Figure 1.6.2  Muscle fibre type in untrained and trained athletes. Data compiled from Ama et 

al., 1986; Andersen et al., 1994a; Andersen et al., 1994b; Coggan et al., 1990; Duey et 
al., 1997; Essen-Gustavsson and Henriksson, 1984; Evertsen et al., 1999; Green et al., 
1991; Harber et al., 2002; Jansson and Kaijser, 1977; Klitgaard et al., 1990; Prince et 
al., 1976; Proctor et al., 1995; Saltin et al., 1995a; Tesch et al., 1989. 

There are large variations in muscle fibre type between trained and untrained individuals, with 

some studies showing that these differences are statistically significant. Type I muscle fibres 

have large oxidative capacities, with concomitant high oxidative enzyme concentrations, are the 

predominant fibre type in endurance trained athletes and range between 55 – 85% of the fibre 
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proportions (Figure 1.6.2). On the other hand, athletes requiring power have lower type I and 

higher type IIA and IIX fibre proportions (refer to Figure 1.6.2 for references).  

On enzymatic level, the four enzymes that are markers for glycolysis (PFK), lactate production 

(LDH), the TCA (CS) and fat oxidation (3HAD), all vary substantially. Sprinters have low 

oxidative, but higher glycolytic and lactate production capacities than untrained subjects (Figure 

1.6.3). On the other hand, endurance runners and cyclists both have large oxidative, but lower 

lactate production capacities. Both fibre type and metabolism are therefore related to one 

another, but it seems more that the choice of metabolism will be largely dependent on neural 

activity, and consequently muscle activation and contraction speed. 

 

Figure 1.6.3  Variation in enzyme activities in trained athletes from various events, 
normalised to untrained values. CS, citrate synthase; 3HAD, 3-hydroxyacetyl 
Co-enzyme A dehydrogenase; PFK, phosphofructokinase; LDH, lactate 
dehydrogenase. Data compiled from Chi et al., 1983; Essen-Gustavsson and 
Henriksson, 1984; Gollnick et al., 1972; Harber et al., 2002; Jansson and Kaijser, 1977; 
Proctor et al., 1995; Weston et al., 1999. 

Whole body physiology (i.e. VO2max), muscle fibre type and metabolism are different between 

untrained and trained individuals, each of these characteristics contributing to the performance 

of the athlete. Furthermore, the intensity of contraction (i.e. the sporting event) must have a 

direct influence on these characteristics. The alternative is also that an individual’s fibre type is 

pre-programmed, meaning that the genetic composition of the athlete plays a more crucial role. 

To determine whether fibre type and metabolism can be altered, training interventions of both 

endurance and short duration contractions were conducted on untrained individuals. A summary 

of selected studies are presented in Table 1.6.2. Important factors that may play crucial roles in 
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muscle and whole body adaptation, are training duration (e.g. 6 weeks), session duration (e.g. 1 

hour) and the intensity at which the session was performed (e.g. 67% VO2max). 

For many years it was believed that man was born with a set fibre type, which will directly 

affect performance ability, as was discussed above. However, this hypothesis has been discarded 

as a result of longitudinal training studies, investigating muscle fibre characteristics and 

metabolism (for example Andersen and Henriksson, 1977; Gollnick et al., 1973; Holloszy and 

Coyle, 1984). Therefore, exercise indeed stimulates muscle adaptation, but the intensity and 

duration of exercise may play a significant role in regulating to what extent the muscle adapts. 

Fibre type and metabolic adaptations seen in these studies are comparable to those obtained 

from electrical stimulation. Many training intervention studies exist on both humans and 

animals, but for the purpose of this dissertation, only selected human studies will be highlighted.  

Using untrained volunteers to participate in training interventions has shed light on fibre type 

transformations and metabolism. Common traits in sprint training (powerful muscle contractions 

for short durations) are that type I fibre proportions seem to reduce, with a concomitant increase 

in type II fibre types (Dawson et al., 1998; Liljedahl et al., 1996). Similarly, a clear tendency is 

that LDH and PFK increase in activities as a result of this type of training. However, the latter 

may only occur because of a larger proportion of type II fibres in the muscle. Essen-Gustavsson 

and Henriksson (1984) have shown that type II fibres have a higher glycolytic capacity than type 

I fibres, but that type I fibres have a higher oxidative capacity than type II fibres. On the other 

hand, the possibility arises that the CSA of type II fibres may increase as a result of the training 

with no change in the CSA of type I fibres, resulting in the higher glycolytic enzyme activities 

and the reduced oxidative activities. Two of the listed studies (Linossier et al., 1997; 

Macdougall et al., 1998) have shown an increase in CS and 3HAD activities, as well as an 

increase in LDH and PFK activities, as a result of sprint training. No fibre type proportions were 

determined and therefore make discussion limited. On the contrary, all these studies listed show 

an increase in VO2max, thus pointing out that sprint training (running and cycling) may also 

have an endurance component. 

The differences between endurance and the above sprinting events are two-fold: muscle 

contractions last longer and the intensity of contractions is lower in endurance activities. To 

illustrate the above statement, two extreme examples would be the speed at which a 100 m 

sprint and a 10 km endurance event take place. The world’s fastest 100 m (9.9 seconds) sprints 

and 10 km (26.5 minutes) races are run at an average speed of 36.5 and 22.7 km/h, respectively.  

All the studies presented in Table 1.6.2 reported a significant increase in VO2max after 

endurance training. Even as little as 10 days of cycling for two hours per day elicited a 

significant increase (Green et al., 1991). Consistent in these studies (with some not statistically 
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significant) were a reduction in the glycolytic type IIX fibres, with a concomitant increase in the 

more oxidative type IIA fibres. The main finding in these studies, however, is that none showed 

a significant change in type I fibre proportions. In fact, four studies show a reduction with only 

one showing an increase (5%). CS, the enzyme in the TCA, is the only enzyme that showed a 

consistent increase in activity after endurance training in all the presented studies. LDH activity 

did not change as a result of endurance training, but the tendency was to have decreased. The 

remaining two enzymes, 3HAD and PFK, despite one study showing the opposite (although not 

significant) tend to increase and decrease in activity, respectively. One shortcoming of the 

presented endurance studies was the lack of reporting performance changes, either as a measure 

of endurance or fatigue resistance at a specified workload. An increase in performance is usually 

the end goal of all training protocols. Only one reported a decrease in 4 km race time after 

training, but the remaining seven failed to report it. 

Resistance training usually involves training muscle groups with weights (added load). By 

increasing the load, the demand for more power is required. Many resistance training protocols 

are based upon the one repetition maximum (RM) of an individual. In other words, it is the load 

(in kg) that could be lifted only once. Depending on the load (which will evidently determine the 

number of repetitions accomplished) should therefore have different effects on the muscle. The 

studies presented in Table 1.6.2 all involved weight training, each varying in load, the number of 

repetitions and the duration of the training intervention. Only three of the studies reported an 

improvement in power output / strength after 8 to 12 weeks of resistance training (Andersen and 

Aagaard, 2000; Masuda et al., 1999; Williamson et al., 2001). Reported VO2max seems to 

decrease as a result of weight training. This attribute may be explained by the fact that muscle 

hypertrophy may occur, which may increase total body mass and hence decrease VO2max 

expressed relative to body mass. Interestingly, all the studies showed a tendency for an increase 

in the proportion of type I fibres. Williamson et al. (2000) have shown that after 12 weeks of 

resistance training in older men (~74 years old), a 33% increase in type I fibre proportions were 

observed (P < 0.05), with no statistical significant change in type IIa (+24%) and type IIx (-

15%) fibre proportions. On the other hand, two studies showed a significant increase in type IIA 

fibre proportions after 12 weeks of resistance training (Andersen and Aagaard, 2000; 

Williamson et al., 2001). Three of the five studies that determined fibre type, showed a 

significant decrease in the type IIX fibre type after 8 to 12 weeks of resistance training 

(Andersen and Aagaard, 2000; Campos et al., 2002). Although the type IIX fibre proportions 

were not changed in the two studies by Williamson et al. (2000; 2001), the authors did show a 

significant decrease in the type IIA/IIX hybrid fibre proportions, indicating a switch to type IIA. 

The activities of the enzymes determined showed a significant reduction only in CS activity 

(Masuda et al., 1999). In the study by Green et al. (1999), 3HAD, PFK and LDH activity 

showed a tendency to increase. Although fibre type was not measured in this study, the resulting 
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fibre type of the previous studies may explain these findings, but accurate conclusions cannot be 

drawn. 

To summarise the findings of the presented training intervention studies (Table 1.6.2) on 

untrained individuals, the main conclusions are that both sprint and endurance training increases 

VO2max, whereas resistance training has no effect on this parameter. No clear cut picture could 

be drawn for fibre type and oxidative enzyme changes as a result of sprint training, but the 

glycolytic enzyme activities (LDH and PFK) seem to increase. Studies conducted on untrained 

subjects subjected to endurance training have indicated that a decrease in type IIX fibres is 

evident, with a possible increase in type IIA fibres. Oxidative capacity (CS and 3HAD) 

increases, while the glycolytic capacity may or may not change. Resistance training may elicit a 

decrease in VO2max (as a result of an increase in body weight), but may also increase the 

proportion of type I fibres, with a concomitant decrease in type IIX fibre types. In contrast to the 

fibre type change, glycolytic capacity may increase.  

Few studies have investigated the effect of additional training, whether it is resistance, 

endurance or interval training, on the muscle characteristics of already well-trained athletes 

(Table 1.6.3). Andersen et al. (1994b) showed that the inclusion of high resistance strength 

training in already well-trained sprinters resulted in a significant increase in PPO, with 

significant muscle fibre type adaptations, increasing the proportion of type IIA fibres, with a 

concomitant decrease in type I and IIX fibre types. Although no controls were used in this study, 

it may be speculated that the sprint training has contributed to these results.  

Army recruits may fall into the same category as athletes, as endurance and strength training 

forms a substantial portion of their physical preparation. Twelve weeks of weight training 

resulted in an increase and decrease in type IIA and type IIX fibre proportions, respectively in 

these recruits (Kraemer et al., 1995). This study made use of army control subjects, and the 

effect was therefore directly a result of the added training.  

Increasing the volume of endurance training may increase VO2max, improve economy and 

muscle enzyme activities in already well trained subjects. Sjodin et al. (1982) showed that PFK 

activity was significantly reduced after 14 weeks of treadmill training at the speed associated 

with the onset of blood lactate accumulation in well-trained runners. These athletes only trained 

once a week in the laboratory, and continued with their normal daily training throughout the 

intervention. Although not significant, CS activity showed a tendency to have increased by 11%. 

On the other hand, Neary et al. (1995) showed that 8 weeks of endurance cycling increased 

VO2max and power output at the same percentage of VO2max in already well-trained cyclists. 

Incorporating high intensity interval training (HIIT) has for a long time been used by coaches 

around the world to improve performance, especially in runners (Martin and Coe, 1997). HIIT 
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usually consist of intervals at a relatively high intensity, with small rest periods in between. One 

such study by Shepley et al. (1992) showed that only one week of HIIT (at 115-120% VO2max) 

performed by endurance runners improved their time to fatigue (22%) at a relative high speed, 

but also that CS activity was significantly increased. Weston et al. (1997), on the other hand, 

showed no change in CS or 3HAD activity in well-trained cyclists after four weeks of HIIT (at 

80-85% PPO), but that PFK activity tended to have increased by 13% (not significant). The 

studies by these authors and Acevedo and Goldfarb (1989) all showed that performance can be 

increased by incorporating HIIT in the training schedule of already well-trained athletes. 

However, determining the correct intensity and duration of the intervals may become 

problematic.  

Hill and Rowell (1997) were the first authors to investigate training at the velocity associated 

with VO2max (Vmax). Later, work by Billat and her research group (Billat, 2001a; Billat, 

2001b; Billat et al., 1999), as well as Smith et al. (1999; 2003) showed that performance of elite 

athletes can be improved at this velocity proposed by Hill and Rowell (1997). In an initial 

investigation, Smith et al. (1999) showed that running intervals at Vmax are dependent on the 

duration of the intervals. The authors concluded that setting the interval time to 60% of the 

maximal time spent by each individual at Vmax (Tmax), was optimum to elicit improvements in 

performance after four weeks of the programme. Therefore, this method also allows for a 

scientific approach to increase performance in already well-trained runners. Unfortunately, none 

of the authors who used this approach investigated possible muscle adaptations. Therefore, 

Chapter 5 focussed on muscle and physiological adaptations in already well-trained runners 

utilising the protocols proposed by Smith et al. (1999; 2003). 

One aspect that is certainly very difficult to control for, and may influence the outcomes of 

training intervention studies or even cross-sectional comparative studies, is the amount of 

baseline training performed by athletes prior to the intervention. Similarly, no two studies are 

alike in subject recruitment and methodological approach. These two factors make comparisons 

between groups as well as between studies, very difficult. However, most of the studies 

conducted on humans have shown similar findings for both changes in fibre type and 

metabolism, regardless of baseline training or training type, and points out that training induces 

adaptation of muscle. In the three studies on human athletes (Chapters 3 to 5), baseline training 

was always reported in order to either explain physiological or biochemical characteristics, or 

during the matching process.  

Another factor contributing to possible physiological and muscular adaptations is the intensity of 

exercise. Harber et al. (2002) compared distance runners (3 000 m to 10 000 m) and middle 

distance runners (800 m – 1 500 m) and showed that the latter group had more type IIA fibres 

compared to distance runners. No differences were found between the oxidative enzyme 
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capacities. The difference between the athletes’ fibre type may be attributed to the selected 

specialisation distance of athletes and is also further investigated in Chapter 3. 

To conclude this section, muscle activation, the duration and intensity of contraction plays a 

significant role in determining muscle characteristics, and may be seen as the primary 

contributing factors. However, the next section will focus on external factors / stimuli that may 

also contribute to the overall phenotype. 
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Table 1.6.2 Effect of sprint, resistance and endurance training on performance, maximal oxygen consumption (VO2max), fibre type and muscle enzyme 
activities in untrained human subjects. Fibre type was primarily determined histologically (ATPase). 

      Fibre type Enzymes 

 N Intensity Description of training Performance VO2max I IIA IIX CS 3HAD PFK LDH 

SPRINT TRAINING           
Liljedahl et al., 1996 11xM 0.75N/kg C: 3x30 sec, 20 min rest, 3 x wk, 4 wks nc PPO  -10% +3% +75% -3% +2% +14% +17%* 

Allemeier et al., 1994 11xM NR C: 3x30 sec, 20 min rest, 2-3 x wk, 6 wks nc PPO +13% -5% +6% -44%     

Dawson et al., 1998 9xM 90-100% PS R: 4-8x30-80 m, 1:6 rest, 3 x wk, 6 wks ↓ 40 m time +6%* -21%*   -32%*  +2%  

Harridge et al., 1998 7xM 6% BW C: 3x8-16-3 sec, 30 sec rest, 4 x wk, 6 wks ↑ PPO  -8% +23% +36%     

Macdougall et al., 1998 12xM 100% Effort C: 4-10x30 sec, 4 min rest, 3 x wk, 7 wks ↑ PPO +8%*    +36%* +39% +49%* +7% 

Linossier et al., 1997 8xM 8% BW C: 2x15x5 sec(55 sec rest), 15 min rest, 4 x wk, 9 wks ↑ PPO +3%*    +7% +1% +17%* +31%* 

RESISTANCE TRAINING           
Campos et al., 2002 9xM RM W: 4x3-5RM, 3 min rest, 2-3 x wk, 8 wks nc PPO -4% +12% -7% -61%*     

Campos et al., 2002 11xM RM W: 3x9-11RM, 2 min rest, 2-3 x wk, 8 wks nc PPO -5% +5% +3% -51%*     

Masuda et al., 1999 6xM 90% 1 RM W: 5x6-10 reps, 3 min rest, 2 x wk, 8 wks ↑ PPO  +5% -5% +7% -9%*    

Green et al., 1999 9x RM W: 3x6-8RM, 2 min rest, 3 x wk, 12 wks NR -7%     +8% +15% +27% 

Andersen and Aagaard, 2000 9xM High W: 3-4x6-15 reps, 3 x wk, 12 wks ↑ PPO  +4% +23%* -60%*     

Williamson et al., 2001† 6xM 80% 1RM W: 3x10 reps, 2-3min rest, 3 x wk, 12 wks ↑ Strength +34%* +9% +85%* ND     

ENDURANCE TRAINING           
Green et al., 1991 8xM 59% VO2max C: 2 hours, 10-12 days NR +4%* -1% +5% -11% +23% +7% -12% -6% 

Andersen and Henriksson, 
1977 

12xM 81% VO2max C: 30 min, 4 x wk, 8 wks NR +18%* +5% +14%* -26%*     

Baumann et al., 1987 4xM ~90% HRmax C: 30 min, 5 x wk, 8 wks NR +13%* -1% +13% -38%*     

LeBlanc et al., 2004 8xM 75% VO2max C: 1 hours, 5 x wk, 8 wks NR +15%*    +40%*    

Bylund et al., 1977 20xM 80-90% HR V: Running, jogging, basket ball, X-country, 8 wks ↓ 4 km time +13%* -3%   +45%* +3% +4% -6% 

Green et al., 1999 7xM 68% VO2max C: 2 hours, 6 x wk, 11 wks NR +15%*     +66%* -6% -7% 

Tremblay et al., 1994 17xM&F 60-85% HRmax C: 30-45 min, 4 x wk, 20 wks NR +32%*     +18% -10%  

Bylund et al., 1977 20xM 80-90% HR C: Running, jogging, basket ball, X-country, 24 wks ↓ 4 km time +26%* -1%   +46%* -13% -4% -3% 

3HAD, 3-hydroxyacetyl Co A dehydrogenase; BW, body weight; C, cycle; CS, citrate synthase; F, females; HR, heart rate; LDH, lactate dehydrogenase; M, males; nc, no change; ND, not detected; NR, not reported; PFK, phosphofructokinase; PPO, peak power output; 
PS, peak speed; R, run; RM, repetition maximum; V, various; VO2max, maximum oxygen consumption; W, Weights; wk, week. †, fibre type determined from MHC content of single fibres, * indicates significant training effect (P < 0.05). 
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Table 1.6.3 Effect of sprint, resistance, endurance, high intensity interval and combination training on performance, maximal oxygen consumption 
(VO2max), fibre type and muscle enzyme activities in already well-trained athletes. Fibre type was primarily determined histologically 
(ATPase). 

      Fibre type  Enzymes 

  N  Athletes  Description of training  VO2max  Performance I IIA IIX CS 3HAD PFK LDH 

SPRINT TRAINING             

Andersen et al., 1994b 6xM Sprinters Sprint, resistance, uphill sprints, interval running, 6 x wk, 12 wks   ↑ PPO* -15%* +50%* -44%*      

             

RESISTANCE TRAINING           

Kraemer et al., 1995 9xM Army males Weight training, 4 x wk, 12 wks -1% ↑ Strength* 0% +74%* -90%*     
             

ENDURANCE TRAINING           

Sjodin et al., 1982 8xM Runners 20 min @ VOBLA, 1 x week, 14 wks +2%         +11%   -30%* -3% 

Neary et al., 1995 8x  Cyclists 80-85% VO2max, 60 min, 5 x wk, 8 wks +12%* ↑ sub-max PO*               
             
HIGH INTENSITY INTERVAL TRAINING           

Shepley et al., 1992 9xM Runners 5 x 500 m @ 115-120% VO2max,  5 x wk, 1 wk 0% ↑ TTF*       +22%*    

Weston et al., 1997 6xM Cyclists 6-8 min @ 80% PPO, 1 min rest, 6 sessions in 4 wks   ↑ PPO & ↓ 40 min 
TT* 

      +3% +2% +13%   

Kraemer et al., 1995 8xM Army males (Max distance in 40 min @ 80-85% VO2max + 200-800 m intervals @ 
95-100+% VO2max 1:4-0.5 rest)x2 x wk, 12 wks 

+12%* nc in PPO* +1% +32%* -54%*         

Smith et al., 2003 9xM Runners 60% Tmax @ Vmax, 6 intervals, 1:2 rest, 2 x wk, 4 wks +6% ↓ 3000 m time*               

Acevedo and Goldfarb, 
1989 

7xM Runners (intervals @ 90-95% HRmax, 2xFartlek sessions), 3 x wk, 8 wks +1% ↓ 10 km time & 
TTF* 

              

Smith et al., 1999 5xM Runners 6 x intervals @ 60-75% Tmax + 30 min @ 60% Vmax, 3 x wk, 4 wks nc ↓ 3000 m time,  
↑ Peak Vmax* 

              

COMBINATION TRAINING           

Kraemer et al., 1995 9xM Army males Combined interval, endurance and resistance, 4 x wk, 12 wks +8%* ↑ Strength* +4% +39%* -87%*     
             
M, males; nc, no change; PPO, peak power output; TT, time trial; TTF, time to fatigue; Vmax, initial velocity associated with VO2max; VOBLA, velocity at onset of blood lactate accumulation; VO2max, maximal oxygen consumption; wk, 
week; * indicates significant training effect (P < 0.05).  
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1.6.3 Environmental factors 

Temperature 
Environmental temperature has a significant influence on mammalian physiology, but it may 

also have an influence on fibre type and metabolism of skeletal muscle. Although no study has 

investigated the influence of environmental temperature on muscle fibre type in humans, there 

are a vast number of studies that investigated the effects of temperature in different species of 

animals, both hibernating and non-hibernating. In rat Soleus muscle, 19 weeks of cold exposure 

significantly increased type IIA fibres with a concomitant decrease in type I fibres (Walters and 

Constable, 1993). However, pigs exposed to 12 °C revealed an increase in type I fibres, with a 

concomitant decrease in type IIA and IIB fibres in the Semispinalis muscle (Lefaucheur et al., 

1991). Rats exposed to 4 – 5 °C for 8 weeks, showed no change in fibre type in the TA muscle, 

whereas the hamster showed a reduction in type I fibres (Deveci and Egginton, 2002). Also in 

the latter study, maximal oxygen consumption increased in rats after cold acclimation.  

Acclimation may also be muscle specific. It was reported by Walters and Constable (1993) that 

the EDL muscle of the rat showed no change in fibre type after cold exposure. The same was 

observed in pig muscle, where the Longissimus muscle showed no change in fibre type 

(Lefaucheur et al., 1991). Other components of the muscle may also change, such as capillary-

to-fibre ratio, mean cross-sectional areas of the fibres, and oxidative and glycolytic enzyme 

activities as a result of variations in temperature (Deveci and Egginton, 2002; Lefaucheur et al., 

1991). 

Thyroid hormone has been proposed as the main regulator of metabolic rate and is directly 

influenced by environmental temperature. The study by Lefaucheur et al. (1991) showed that 

pigs acclimatised to cold had a larger thyroid gland than controls. Studies mostly on rats have 

shown that hypothyroidism or hyperthyroidism may have significant influences on muscle fibre 

type and metabolism (Caiozzo et al., 1998; Li and Larsson, 1997; Winder et al., 1975). Briefly, 

hyperthyroidism has been shown to up-regulate fast MHC II mRNA, but chronically low thyroid 

levels were associated with an increase in MHC I expression (Moss et al., 1995). 

Altitude 
With an increase in altitude, barometric pressure decreases, and the direct effect is a decrease in 

oxygen diffusion across the alveolar membrane of the lungs into the blood. This results in a 

lower oxygen concentration in arterial blood. Ambient oxygen concentration is ~21% at sea 

level, and remains the same with an increase in altitude. In the laboratory, altitude can be 

simulated by the inspiration of a lower oxygen concentration or by decreasing the pressure in a 

hypobaric chamber, or both. 
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Many studies have investigated the effect of exercise at altitude on the whole body and muscle, 

both in animals and humans residing at altitude (Hochachka et al., 1992; Jackson et al., 1987; 

Matheson et al., 1991; Rosser and Hochachka, 1993; Young et al., 1984). However, there are 

some methodological problems when comparing studies. The most important factor is that the 

altitudes at which the various studies have been conducted, varies considerably and the results 

obtained from these studies makes interpretation difficult (Terrados, 1992). However, some 

conclusions may be drawn. Increases in haemoglobin content of red blood cells, as well as an 

increase in hematocrit have been shown in humans exposed to hypoxic conditions (Vogt et al., 

2001). Maximal oxygen uptake decreases significantly even in well-trained athletes at altitudes 

higher than 900 meters above sea level (Terrados, 1992). Therefore, altitude or hypoxia has a 

significant influence on the physiology of mammalian organisms.  

Altitude also has a significant effect on muscle morphometry and metabolism. There seem to be 

discrepancies regarding myoglobin content of muscle in subjects subjected to altitude (Terrados, 

1992). According to Terrados (1992), some researchers have showed an increase in myoglobin 

content of muscle, with others showing no increase or even a decrease. 

Guinea pigs subjected to 5 days of hypoxia (13% oxygen) showed a decrease in type IIA fibres 

and an increase in type IIB fibre proportions compared to controls (Jackson et al., 1987). 

Humans, on the other hand, may respond differently. However, most of the studies conducted on 

humans also included training (Parolin et al., 2000b; Terrados, 1992; Vogt et al., 2001), but 

studies conducted on humans residing at altitude showed that muscle and physiological 

parameters are significantly influenced by altitude (Hochachka et al., 1982; Rosser and 

Hochachka, 1993). Cross-country skiers who trained at 2 700m above sea-level for two weeks 

showed a significant increase in type IIA fibres in the Triceps brachii with no changes in the 

Gastrocnemius muscle (Mizuno et al., 1990). Therefore, fibre type and metabolism is influenced 

by exposure to altitude and may be a consequence of a direct or indirect effect on muscle. The 

exact mechanism is still under investigation. 

Capillary supply may also be altered by altitude due to the lack of oxygen supply. Altitude 

training showed an increase in the number of capillaries around type IIA fibres in the Triceps 

brachii muscles of cross-country skiers, but no change for type I fibres (Mizuno et al., 1990). 

However, studies conducted in the Himalayas on sea level subjects showed a decrease in muscle 

mass and muscle fibre size, with a concomitant increase in capillary density (Hoppeler, 1999b). 

The latter finding could be explained by the loss in fibre cross-sectional area, therefore no new 

capillaries developed. It was however found that the hypoxia inducible factor 1 (HIF-1), a 

downstream activator of vascular endothelial growth factor (VEGF) was elevated in muscle 

subjected to training at altitude, independent of training intensity (Hoppeler, 1999b; Vogt et al., 

2001).  
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Because altitude results in a decrease in oxygen carrying capacity in arterial blood, a definitive 

effect is also observed on metabolism in muscle. Various studies have shown changes in 

metabolic enzyme activities for both oxidative and glycolytic pathways. However, once again, it 

should be stressed that there are discrepancies with regards to these findings. Table 1.6.4 

summarises selected investigations of the effects of altitude on muscle enzyme activities.  

The findings of these studies show the controversy regarding altitude exposure. The differences 

observed in the response to altitude might be attributed to study design and methodology in 

enzyme analysis. Hypoxia may also be muscle specific such as in the case of cold acclimation. 

The other factor might be that hypoxia only have an influence on muscle in the presence of 

muscle contraction (such as exercise). For instance, the heart is constantly stimulated to undergo 

contraction. Daneshrad et al. (2000) showed that exposure to 10% hypoxic conditions of rats for 

three weeks, significantly increased HK and LDH activities, and a decrease in 3HAD activity in 

both the left and right ventricle, with no change in enzyme activities in the Soleus. 

The concentration of muscle metabolites for the enzymes may also be influenced by the altitude 

effect. A study conducted by Parolin et al. (2000a) showed that pyruvate production, pyruvate 

oxidation and lactate accumulation was significantly increased under hypoxic (11% oxygen) 

conditions compared to the same intensity under normoxic conditions. Therefore, taking into 

account the effects that temperature and altitude may have on both muscle biochemistry and 

physiology, both of these factors were controlled for in Chapters 2 to 5. 

Table 1.6.4  Comparison of enzyme activities from longitudinal studies investigating the 
influence of altitude acclimation with or without training.  

Description Muscle Training HK CS 3-HAD LDH PFK Reference 

Human: X-country 
skiers. Altitude: stay at 
2100m, train at 2700m 

Gastrocnemius 2 weeks  ↓ ↓ ↔ ↓ Mizuno et al., 
1990 

Human: X-country 
skiers. Altitude: stay at 
2100m, train at 2700m 

Triceps 2 weeks  ↔ ↔ ↔ ↔ Mizuno et al., 
1990 

Human: Hypobaric 
simulating 2 300m 
above sea-level. 
Training 

Vastus lateralis 4 weeks  ↑ ↑ ↓ ↔ Terrados et al., 
1990 

Rat: Hypoxia (10%), no 
training Soleus 3 weeks  ↔ ↔ ↔ ↔ Daneshrad et 

al., 2000 

Rat: Hypoxia (10%), no 
training Gastrocnemius 3 weeks ↑ ↔    Daneshrad et 

al., 2000 
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Socio-economical environment 
All living creatures must obtain energy from food sources. In the animal kingdom, this usually is 

not a persistent problem. However, humans are different. The aspect of socio-economic impact 

is a much debatable issue. In some animals, it can be seen that once they have fed, they will not 

be bothered about where their next meal will come from. On the other hand, humans rely on 

money to purchase their daily meals. Poverty in South Africa and the African continent, 

especially in the black communities, may exist in more than three quarters of the population. 

With the lack of funds, these people may not be able to improve their education or experience in 

order to uplift themselves from poverty. Participating in sport on a professional level is one way 

of uplifting oneself from poverty. The motivation for participating in a certain field of sport may 

be due to status, financial needs or the mere glory thereof. However, each of these mentioned 

has a psychological impact on performance, and may also have an impact on the physiology of 

the body. The motivation to train harder to eventually obtain that goal may vary between people. 

The same may be justified for the Kenyan athletes, where it is more valuable to run well and 

train hard to gain honour, than for mere pleasure. However, assessment of motivation can be a 

difficult task, but cannot be excluded as a factor that may influence the physiological and 

biochemical outcome of the results in Chapters 4 and 5.   

1.7 Study objectives 

The objectives of this dissertation are as follows: 

Chapter 2  –  to determine the MHC isoform distribution and CS activities in different 

sections of the Quadriceps muscle of the rat and relate the two parameters to 

one another. 

Chapter 3  –  to determine the occurrence of hybrid fibres in muscle biopsies from well-

trained and sedentary humans. 

Chapter 4  –  to investigate whole body physiology and muscle characteristics in muscle 

biopsy samples from well-trained endurance athletes of two distinct ethnic 

descents.  

Chapter 5  –  to investigate whole body physiology and biochemical adaptations in muscle 

biopsy samples from well-trained endurance athletes subjected to a six week 

HIIT protocol. 

Each chapter is presented as a separate entity (Chapters 2 – 5) and summarised in Chapter 6. 
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 CHAPTER 2  

Myosin heavy chain isoforms and citrate synthase activity in different 

sections of rat Quadriceps muscle 

2.1 Introduction 

Skeletal muscle is heterogeneous with respect to fibre types and enzyme activities, both of 

which have been investigated in various muscle groups from various species (Elder et al., 1982; 

Hitomi et al., 2005; Kohn et al., 2005; Maltin et al., 1989). A large variation exists between 

some of these muscle groups, e.g. the Soleus vs. the Gastrocnemius muscle. A muscle group 

itself may also vary substantially in fibre type and metabolic capacity in different areas, an 

observation researchers have termed muscle regionalisation (Kernell, 1998; Punkt, 2002). This 

variation within a muscle may allow the muscle to function as a slow or a fast contracting 

muscle, depending on the motor units utilised. Furthermore, a single muscle fibre may, or may 

not, vary in myosin heavy chain (MHC) isoform expression and metabolic characteristics, which 

would also affect the contractile properties of that fibre (Edman et al., 1985; Reichmann, 1992; 

Staron and Pette, 1987). 

Contractile speed of fibres is mainly determined by the type and relative quantities of MHC 

isoforms expressed, but may also be further modulated by other factors such as the myosin light 

chain isoform content (Larsson and Moss, 1993; Moss et al., 1995; Schiaffino and Reggiani, 

1994). Four MHC isoforms, namely MHC I, MHC IIa, MHC IIx and MHC IIb have been 

identified in rat skeletal muscle (Talmadge and Roy, 1993) with the first mentioned having the 

slowest ATPase activity and the last mentioned, the fastest (Schiaffino and Reggiani, 1994). The 

contractile property of fatigability is influenced by oxidative enzyme capacity (Nemeth et al., 

1981). Citrate synthase activity (CS) has been used as an indicator of oxidative potential in 

skeletal muscle (Bouchard et al., 1992; Gollnick and Saltin, 1982) and is associated with fatigue 

resistance in single muscle fibres (Essen-Gustavsson and Henriksson, 1984; Nemeth et al., 

1981). These properties seem to be associated with the MHC isoforms expressed in the muscle, 

as fast contracting fibres have lower oxidative enzyme activities and vice versa (Pette, 1985). 

However, oxidative capacity can increase or decrease depending on the stimulus, without a 

change in the MHC isoform content (Gollnick et al., 1985). 

In the rat, the Quadriceps femoris (QF) muscles, which consist of the Vastus lateralis, Vastus 

medialis, Vastus intermedius and Rectus femoris, play an important role in both sprinting and 

endurance type behaviour, thus serving a dual purpose. Delp and Duan (Delp and Duan, 1996) 

characterised seventy-six rat muscle groups according to both fibre type and CS activity and 

found that deep regions of the Vastus lateralis and Vastus medialis had significantly higher CS 
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activities and type I fibre proportions than superficial regions, thus clearly indicating muscle 

regionalisation. Although clear differences in contractile and metabolic properties exist when 

comparing fibres far from each other on the fibre type continuum (e.g. type I vs. IIB), how 

closely these properties are regulated is not that clear since both fibre types expressing pure 

MHC I and IIa are associated with high oxidative capacity (Pette and Staron, 1993), and even 

fibre types expressing pure MHC IIb from different regions may vary in oxidative capacity 

(Larsson et al., 1991). 

Nakatani et al. (2000) investigated both fibre type distribution and succinate dehydrogenase 

(SDH) activity in cross-sections of the Plantaris and Tibialis anterior (TA) muscles of the rat at 

levels ranging from superficial to deep. They concluded that type IIB fibres had much higher 

SDH activity in deep parts compared to superficial parts. Furthermore, although it is generally 

accepted that slow twitch fibres have greater oxidative capacity than fast twitch fibres (Chi et 

al., 1986; Essen et al., 1975), Nakatani et al. (2000) found that in rat Soleus muscle, the type IIA 

fibres had a higher SDH activity than the type I fibres. Therefore, the heterogeneity of skeletal 

muscle is not as predictable as previously thought (Bass et al., 1969; Pette, 1985). 

A number of studies have investigated the distribution of fibre types in a specific muscle group, 

not only superficial to deep, but also along the length of the muscle. Recently, Wang and 

Kernell (2000) investigated the proximal to distal organisation of fibre types in five muscle 

groups of the rat hind limb (Extensor digitorum longus (EDL), Flexor digitorum and Hallucis 

longus, Gastrocnemius medialis (GM), Peroneus longus (PE) and TA) and concluded that there 

is a significant difference in the distribution of the type of fibres along the length of the muscle. 

They further concluded that in most of the muscles analysed, type I fibres were predominantly 

located in the proximal vicinity of the muscles analysed. However, Lexell et al. (1994), in a 

study investigating the fibre type proportions in rabbit TA and EDL muscles, found that EDL 

muscle contained significantly more type I fibres in the distal parts. Therefore, muscle 

regionalisation may also be related to species. Wang and Kernell (2001a; 2001b) also concluded 

that fibre type regionalisation in muscle groups follows a general and graded pattern from 

superficial to deep, and from proximal to distal, but may vary between species e.g. rat, rabbit 

and mouse. Furthermore, Torrella and co-workers (2000) showed that lateral to medial 

differences in fibre type exist in rat TA muscle, but that a large inter-individual variation exists. 

None of these studies investigated the regionalisation of metabolic properties. 

As mentioned earlier, enzyme activities may vary from superficial to deep regions of a muscle, 

but recent studies also indicate that they may vary along the length of the muscle (Punkt et al., 

1998; Reichmann, 1992), although not all studies are in agreement (Pette et al., 1980). In a 

review, Punkt (2002) discussed how the regions of the EDL and the Soleus muscles differed for 

both metabolic enzyme profiles and fibre type distribution. For EDL, a decrease in slow 
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oxidative and fast oxidative fibre types was observed, with a concomitant increase in fast 

glycolytic fibre types from proximal to distal. The opposite was observed for the Soleus muscle. 

Similarly, Sakuma et al. (1995) compared fibre types in proximal, middle and distal regions of 

rat Soleus and Plantaris muscles and found that these muscles differed in regionalisation. 

Therefore, it seems necessary to characterise regionalisation of each specific muscle or muscle 

group of interest, since general conclusions may not apply.   

Finally, although several studies have been performed on rats (Table 2.1), rat skeletal muscle 

expresses four MHC isoforms, and in most of the studies, inadequate identification of the 

isoforms was performed. Of these studies, only one (Delp and Duan, 1996) did not focus 

exclusively on the lower hind limb muscle, despite the fact that the upper hind limb is frequently 

used to assess other properties that could be influenced by fibre type. Furthermore, only a few 

studies have investigated enzyme activities in different regions of the muscle groups. Therefore, 

the purpose of the present study was: 

(1) to characterise the QF in terms of distribution of all four MHC isoforms and CS 

activity,  

(2) to determine if, in addition to differences from superficial to deep, there are also 

differences from proximal to distal regions, and  

(3) to assess whether or not there was an association between a specific MHC isoform 

and CS activity within the different regions of the QF. 

2.2 Methodology 

2.2.1 Animals 

The ethics committee of sub-committee B of Research Administration at the University of 

Stellenbosch approved the study. Eighteen healthy female Sprague-Dawley rats, four months of 

age, were selected randomly from litters and were given normal rat chow and water ad lib. Rats 

were sacrificed by decapitation and the QF (Vastus lateralis, Vastus medialis, Vastus 

intermedius and Rectus femoris) muscles were carefully dissected out as a whole group. A small 

piece of string was tied with the knot located at the superficial distal region to identify in vivo 

orientation of the muscles. Muscle was frozen in liquid nitrogen and stored at -87 °C. 

2.2.2 Division of muscle 

The muscle was allowed to thaw briefly at 4 °C. The QF was divided into three regions 

(superficial, middle and deep), and each of these regions was divided into three parts (distal, 

centre and proximal) as depicted in Figure 2.1.  
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2.2.3 Homogenisation of samples 

A small piece from each section was weighed and transferred to a glass homogeniser. A 1:19 

ratio of a 100 mM phosphate buffer, pH 7.4, containing 0.02% bovine serum albumin was 

added. The section was thoroughly homogenised with a glass rod on ice and sonicated with an 

ultrasound disintegrator (Virtis Sonicators, USA) three times for ten seconds on ice. After 

sonication, any connective tissue was removed, patted dry, weighed and subtracted from the 

original muscle weight. Homogenates were stored at -87 °C until analyses. 

2.2.4 MHC isoform determination 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried out 

according to the method of Talmadge and Roy (1993). β-mercaptoethanol was added to the 

upper running buffer to a final concentration of 0.16%. The homogenate sample was diluted 

with a sample buffer containing 10% glycerol, 5% β-mercaptoethanol, 2.3% SDS and 8 mM 

Tris base. Samples were heated for ten minutes at 60 °C and stored at -87 °C until 

electrophoresis. Before electrophoresis, samples were briefly boiled for two minutes, allowed to 

cool and loaded on to the gels. Gels were run for 28 hours at constant 70 volts at 4 °C, stained 

with Coomassie R250 and scanned using a computer scanner. Band densities were analysed 

using a software package (CREAM 1-D, KEM-EN-TEC, Denmark). Values are expressed as a 

percentage of the total number of bands distinguishable for each sample (see appendix B for 

details). 

2.2.5 Citrate synthase activity 

CS activity was measured using a modified Srere (1969) protocol. Briefly, the assay reagent 

contained 85 mM Tris buffer, pH 8.3, 0.1 mM 5,5’-dithio-bis(2-nitrobenzoic acid) (DTNB), 0.2 

mM acetyl-coenzyme A, 0.5 mM oxaloacetate and 10 µL of the homogenate sample. CS activity 

was measured for five minutes at 412 nm in a spectrophotometer (Cary-50) at room temperature 

and expressed as µmol/min/g wet weight (see appendix B for details). 

2.3.6 Statistical analysis 

All values are presented as mean ± standard deviation (SD). Data were analysed using a 

repeated measures ANOVA with a Bonferroni correction for unequal variance for each MHC 

isoform in all nine sections. The P < 0.05 confidence level was used to indicate statistical 

significance. Correlation coefficients between each MHC isoform and CS activity were 

calculated using the two-tailed Pearson's correlation test.   
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2.3 Results 

MHC isoform contents and CS activities of nine sections of the QF muscle of the rat were 

determined. The nine sections were named S, M or D according to superficial, middle or deep 

region, and d, c or p from distal through central to proximal parts. 

Figure 2.2 shows an example of the MHC isoforms separated by SDS-PAGE in three different 

sections (dS, cM and pD). Qualitatively, this figure indicates that superficial regions expressed 

mostly MHC IIb and IIx, whereas MHC IIa began to appear in middle regions and was more 

abundant in deep regions. The expression of MHC I was only clearly detected in the deep 

region, in this example. Where no trace was found of an isoform, the value was included in the 

statistical analysis as zero.  

The percentages of each of the MHC isoforms expressed in the different sections are reported in 

Figure 2.3 (panels A, B, C) and Figure 2.4 (panels A, B, C). In Figure 2.3, the comparison is 

specifically made from superficial to deep in the proximal (A), central (B) and distal (C) 

regions, separately. In all three regions from proximal to distal, the MHC IIb decreased 

significantly from superficial to middle and more significantly from superficial to deep parts. 

However, even in the deep portion, the quantity of MHC IIb expression was approximately 

30%. The concomitant increase was not in MHC IIx, but in MHC IIa and MHC I expression 

(Figure 2.3). The increase in the latter two isoforms was more pronounced in the proximal part 

and less in the distal part. Although the MHC IIx isoform expression was significantly different 

in some parts, there was no pattern from superficial to deep regions in all three parts. 

No difference was observed between the percentages of any particular MHC isoform in any part 

of the superficial region of the QF muscle (proximal, centre or distal) (Figure 2.4A). In the 

middle region of the muscle, section dM expressed significantly more MHC IIb than sections 

cM and pM (P < 0.05), but again the concomitant lower expression was not MHC IIx, but MHC 

IIa (P < 0.05) (Figure 2.4B). For MHC IIx, expression was similar from the proximal through 

the centre to the distal parts of the superficial, middle and deep regions. However, the deep 

region showed the most variation in MHC I isoform expression (Figure 2.4C). MHC I, MHC IIa 

and MHC IIb were significantly different between all three parts of the deep region with less 

MHC I and MHC IIa in the distal-deep part than either the central-deep (P < 0.01) or the 

proximal-deep (P < 0.001) parts. However, MHC IIb isoform expression had the opposite 

distribution: higher in the distal-deep part than the central-deep part (P < 0.001), which in turn 

was higher than the proximal-deep part (P < 0.05). On the contrary, no difference in MHC IIx 

expression was observed between any of the parts of the deep region. 

CS activities were determined as a marker for oxidative capacity in the different regions and 

parts of the QF. The CS activities were similarly low in the three superficial regions but 
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increased in both middle and deep regions (Table 2.2). The deep region had approximately twice 

the activity of the superficial region. Statistical analysis revealed that middle and deep regions, 

with the exception of the distal-middle section, had significantly higher CS activities than the 

corresponding part of the superficial region (all P < 0.05), with no differences in activity 

between the middle and deep regions. 

Figure 2.5 illustrates the relationship between MHC IIb proportions and CS activities of the 

proximal-middle section (r = -0.54, P < 0.05). No relationships were observed between any of 

the remaining isoforms and CS activities of the remaining 8 sections (e.g. Figures 2.6 and 2.7). 

In some parts, this was because of an absence of the isoform (e.g. Figure 2.6) and in other parts, 

there was simply no relationship (e.g. Figure 2.7), despite a range in MHC I expression from 5 

to 30% and in CS activity from ~15 to 30 µmol/min/g ww. 

2.4 Discussion 

Comparison of the expression of four MHC isoforms and CS activities in nine sections of the 

QF in rat skeletal muscle was studied by investigating these parameters from superficial to deep 

regions, and within each region from proximal to distal parts. The main finding was that MHC I, 

MHC IIa and MHC IIb expression was significantly different across the length of the deep 

region with the proximal portion having more slow twitch MHC and the distal portion more fast 

(P < 0.05, Figure 2.4C). A similar finding was also apparent in the middle region, but only for 

MHC IIa and MHC IIb (proximal, central and distal, Figure 2.4B). In contrast, no difference in 

CS activities was observed across the length of the muscle in any region (Table 2.2). However, 

from superficial to deep, both the MHC isoform expression and CS activities were significantly 

different (P < 0.05). Although the change in MHC isoform showed a graded pattern, with a high 

expression of MHC IIb in the superficial region (with low CS activities), and as the level of 

depth increases, MHC IIb expression decreased gradually with a concomitant increase in MHC 

IIa and I expression, the CS activities already increased markedly in the middle region (Figures 

2.3 and Table 2.2). 

Previous studies indicated that a muscle group could have large differences both in fibre type 

and oxidative capacity (Punkt, 2002). In addition, some fibre types may also be absent, such as 

type IIb in the rat Soleus muscle (Delp and Duan, 1996; Talmadge and Roy, 1993). In the 

present study, all four MHC isoforms commonly expressed in rat skeletal muscle were found in 

the QF. However, when different sections were investigated, it was found that some isoforms 

were not present. The two most commonly expressed isoforms were MHC IIb and MHC IIx and 

were detected in all nine sections, including those in the deep region (Figure 2.3). 

The pattern of MHC isoform expression showed a gradual increase in MHC I and IIa from 

superficial to deep, with a concomitant decrease in MHC IIb expression. However, the MHC IIx 



 94

isoform only showed an increase in expression in the central superficial and middle sections. 

This finding of more type I fibres in deeper sections correlates with the fact that this is a 

common phenomenon in other muscle groups of the rat (Delp and Duan, 1996; Punkt, 2002). 

Despite these patterns of decreasing MHC IIb expression, the deep region still had substantial 

proportions of this fast isoform.  

The current data confirm the observation of Wang and Kernell (2000) in terms of the increased 

expression of type I fibres in the deep region, but that in the middle region, the significant 

difference was actually found in the MHC IIa fibres rather than the MHC I fibres. The present 

study, however, expands on their findings by indicating which of the subdivisions of the type II 

fibres show the concomitant opposite tendency (i.e. a decrement). This was not distributed 

between the fast isoform types, but was restricted to the MHC IIb isoform (Figures 2.3 and 2.4). 

Significant differences in MHC isoform content were observed from proximal to distal in the QF 

muscle. Specifically, the regions closer to the hip had more oxidative fibre types whereas closer 

to the knee, there were more fibres expressing MHC IIb. However, this significance was more 

pronounced in the deep than the middle region and was not apparent in the superficial region. 

Although the fastest fibre type’s MHC expression differed significantly, the variation along the 

length of the deep region was not observed for the MHC IIx isoform, the second fastest of the 

isoforms (Figure 2.4).  

Sakuma et al. (1995) also compared fibre types in proximal, central and distal regions of rat 

Soleus and Plantaris muscles and found higher proportions of type I fibres in the proximal 

region of the Soleus, but higher proportions of type I and IIA in the middle region of the 

Plantaris. In the present study, the QF muscle followed a similar pattern to that reported by the 

latter authors. However, it may be that these patterns vary between muscle groups of various 

species and should not be taken as a general phenomenon (Wang and Kernell, 2000; Wang and 

Kernell, 2001b). For example, two studies have attempted to determine the mechanisms 

underlying such regional differences in fibre type. Campbell et al. (1996) determined that the 

proximity of a region to the synapse may influence SDH activity. These authors showed that 

there are large differences in SDH activities between regions at the motor endplate, 

subsarcolemmal and inter- myofibrillar portions. However, they also showed that the activities 

of SDH in these regions remained the same in muscle subjected to six weeks of muscle 

overload, despite a significant increase in overall muscle mass and cross-sectional area of the 

Soleus muscle. Thus, a coordinated adaptation of both cell size and oxidative capacity was 

observed, without the relatively higher expression of oxidative capacity usually seen with 

endurance training (Sugiura et al., 1992). Maturation may also influence muscle fibre type in 

muscle groups, as was shown by Maltin et al. (1989), where nine muscle groups were 

investigated in rats from the ages of 19 (postnatal), 50 (young), 100 (adult) and 360 days (aged). 
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Fibre type in those muscles analysed varied significantly, but most of the variation occurred 

between the ages of 19 to 100 days, whereafter no further variation was observed. Therefore, it 

may be concluded that neuromuscular activity after birth plays an important role in determining 

muscle fibre type in adulthood.    

In a study by Torella et al. (2000), significant differences in fibre type distribution were found 

not only for superficial to deep and proximal to distal, but also lateral to medial in rat TA 

muscle. These authors also reported that large variations in fibre type distribution exist between 

rats. In the present study, the question of whether such variations are mirrored by variations in 

CS activities was investigated. The activities of CS did not follow a graded increase from 

superficial to deep, except in the distal region. In the proximal and central parts, there were no 

differences in CS activity between middle and deep regions. However, no differences in 

activities were observed from proximal to distal, despite the observed differences in fibre type. 

Only the proximal-middle section showed an inverse relationship between MHC IIb proportions 

and CS activities (Figure 2.5). No relationships were observed between any of the remaining 

isoforms and CS activities in any of the remaining eight sections. This could be explained, only 

in part, by the lack of expression of e.g. MHC I in superficial regions (Figure 2.6 for central-

superficial). In the central-deep region, where both CS activity and MHC I expression was high, 

there was also no correlation, despite variation in both parameters between different rats (Figure 

2.7).  

It is generally accepted that slow twitch fibres have greater oxidative capacity than fast twitch 

fibres. However, Nakatani et al. (2000) found that in rat Soleus muscle, the type IIA fibres had a 

higher SDH activity than the type I fibres. Similarly, the authors also reported higher SDH 

activity in type IIB fibres from deep regions of the Plantaris and TA muscles compared to more 

superficial parts. Pette (1985) claimed that a large variation in enzyme activities exists between 

and within fibre types. Therefore, the possibility arises that in rodents, anatomical position has a 

stronger influence on fibre type than physical activity, which is reflected in CS activity, and that 

this contributes to the poor relationships between the MHC isoforms and CS activities of the 

present study. A question that remains unanswered from this study is whether fibre type is more 

closely related to postural activation (or lack thereof) or a pre-programmed anatomical position. 

 2.5  Conclusion 

This investigation revealed that there is high diversity in MHC isoform expression across the QF 

muscle of the rat. The QF is an important muscle in any activity concerning mobility of 

mammals. In the case of the rat, it seems that the QF muscle has a much greater variety of uses 

than e.g. the Soleus because of the diversity of fibre type distribution and oxidative capacity. It 

was observed that vertical levels of the muscle show the most differences concerning MHC 



 96

isoform expression and oxidative potential, but a novel finding is that these differences also 

appear horizontally. The biochemical data also seem to imply that the superficial part is the 

centre for short exploding bursts, using anaerobic metabolism as the main fuel source. Moving 

deeper and more proximal, it appears that these regions would be the most active in endurance 

activities, with high oxidative capacities and the expression of slow MHC I. It is not clear 

whether these activities are related to posture (frequent, low power activation) or physical 

activity (less frequent, but more powerful). Possibly, the deep region closest to the hip may be 

involved in postural activities (having both the highest CS activity and high MHC I content). 

Differences in exercise habits between these laboratory rats only seemed to co-influence the 

MHC IIb content and CS activities in the mid-region closest to the knee and hip. In other regions 

it is not clear whether CS activities were related to exercise and fibre type to posture or pre-

programmed anatomical position, or not. 

The findings of this study stress the concern for accurate reporting of exact sampling site when 

investigating muscle characteristics, or adaptations to stimuli. Many researchers do not report 

exact sampling site, or merely distinguish between “red” or “white” Vastus or “superficial” or 

“deep”, where there may be, in fact, a significant variation between adjacent regions. 
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Table 2.1 Summary of selected literature that investigated muscle regionalisation in 
various species and muscle groups.  

Authors Species Muscles Regions Fibre types Enzymes  

Rat TA SO, FOG, FG None Torrella et al., 
2000   

Proximal, equatorial, 
distal, anterior, posterior, 
medial, lateral   

Punkt et al., 
1998 

Rat Soleus, EDL Insertion, middle, origin, 
deep, central, superficial 

SO, FOG, FG SDH, GPDH, 
ATPase 

Sakuma et al., 
1995 

Rat Soleus, 
Plantaris 

Proximal, middle, distal I, IIC, IIA, IIB None 

Delp and Duan, 
1996 

Rat 76 muscle  
groups 

Various I, IIA, IIX, IIB CS 

Wang and 
Kernell, 2001a 

Rat, 
rabbit, 
mouse 

Soleus, EDL, 
FD, GM, PL, 
TA 

Proximal, middle, distal I None 

Wang and 
Kernell, 2000 

Rat EDL, FD, GM, 
PL, TA 

Proximal, middle, distal I None 

Nakatani et al., 
2000 

Rat Plantaris, TA Superficial, middle, deep I, IIA, IIB SDH 

ATPase, adenosine triphosphatase; CS, citrate synthase; EDL, Extensor digitorum longus; FD, Flexor digitorum; 
FG, fast glycolytic; FOG, fast oxidative glycolytic; GM, Gastrocnemius medialis; GPDH, glycerol-3-phosphate 
dehydrogenase; PL, Peroneus longus; SO, slow oxidative; SDH, succinate dehydrogenase; TA, Tibialis anterior 

 
 

Table 2.2 Citrate synthase activities of nine sections in rat Quadriceps muscle (µmol/min/g 
wet weight) (N = 18).  

 p c d 

S 12.0 ± 3.4 12.4 ± 3.0 12.2 ± 2.3 

M 23.5 ± 9.6* 23.1 ± 4.9* 18.8 ± 4.9 

D 28.0 ± 9.5* 24.8 ± 8.0* 22.5 ± 5.2* 

Data are presented as mean ± SD. Statistical analysis was performed using repeated measures ANOVA 
with a Bonferroni post-hoc test. * Different from S (P < 0.05). 
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Figure 2.1 Layout of nine sections of Quadriceps muscle of rat upper hind limb. 

 

 
Figure 2.2 An example of the MHC isoforms expressed in three different sections of the 

Quadriceps muscle of rat upper hind limb. 
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Figure 2.3 Myosin heavy chain (MHC) isoform distribution in the nine sections of rat 

Quadriceps muscle. Panel A. proximal (p), panel B. central (c), panel C. distal 
(d) regions, each ranging from superficial (S) to middle (M) to deep (D) 
portions (N = 18). Data are presented as mean ± SD. Statistical analyses were 
performed using repeated measures ANOVA with a Bonferroni correction. 
Different (P < 0.05): * from section S; † from sections S and M. 
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Figure 2.4 Myosin heavy chain (MHC) isoform distribution in rat Quadriceps muscle. 

Panel A. superficial (S), panel B. middle (M), panel C. deep (D) region, each 
ranging from proximal (p) to central (c) to distal (d) portions (N = 18). Data are 
presented as mean ± SD. Statistical analyses were performed using repeated 
measures ANOVA with a Bonferroni correction. Different (P < 0.05): * from 
section d; † from sections d and c. 
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Figure 2.5  Relationship between MHC IIb and citrate synthase activity within the 

proximal, mid-portion of rat Quadriceps muscle (section pM). Pearson’s r and 
significance: r = -0.54, P < 0.05). 
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Figure 2.6  Relationship between MHC I and citrate synthase activity within the superficial 

mid-portion of rat Quadriceps muscle (section cS). Pearson’s r and significance: 
r = 0.13, non-significant). 
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Figure 2.7 Relationship between MHC IIb and citrate synthase activity within the 

proximal, mid-portion of rat Quadriceps muscle (section cD). Pearson’s r and 
significance: r = 0.04, non-significant). 
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CHAPTER 3  

Single fibre analysis of human skeletal muscle 

3.1 Introduction 

Human skeletal muscle mainly expresses three myosin heavy chain isoforms, namely MHC I, 

MHC IIa and MHC IIx, with each isoform giving rise to special and various contractile 

properties for the individual fibres and the muscle as a whole, respectively (Larsson and Moss, 

1993). Fibres may express only one isoform (pure fibres) or multiple combinations of the three 

isoforms, with the latter commonly referred to as hybrid fibres (Staron, 1997). 

It is accepted that endurance athletes have a predominance of fibres expressing mostly MHC I 

and MHC IIa (Gollnick et al., 1972; Saltin and Gollnick, 1983). However, both the type and 

volume of training may play significant roles in determining how many hybrid fibres exist. Few 

studies have thoroughly investigated the effect of specific exercise types and volumes on muscle 

hybridicity in humans. Harber et al. (2002) showed that distance runners (3000 – 10 000 m) had 

6% MHC I/IIa and no MHC IIa/IIx hybrid fibres. In contrast, cross-country skiers had a high 

incidence of MHC I/IIa hybrid fibres (~36%) (Klitgaard et al., 1990). It is at present unclear 

why these two studies, both of endurance athletes, differ so much in the incidence of type I/IIa 

hybrid fibres. Track and field athletes participating in events not longer than 400 m had 34% 

hybrid fibres of which 12% were MHC I/IIa and 6% MHC I/IIa/IIx hybrid fibres (Parcell et al., 

2003). There are two ways to interpret the findings in this study. It is possible that the volume of 

a particular type of training was not sufficient for fibres to convert to the required phenotype, or 

that the overall volume of training was too low. An alternative interpretation is that the fibres 

were responding to different stimuli (different intensities) and that this aspect of training 

promotes the existence of hybrid fibres. 

The role of hybrid fibres in skeletal muscle is still unclear. In a recent review, Stephenson 

(2001) suggested that a hybrid fibre might be a “fine tuned” fibre to optimise levels of 

endurance, power output or fatigue resistance within a broad range and a continuum. However, 

other researchers still support the idea of hybrid fibres being transitional and influenced by 

training interventions (Andersen et al., 1994; Putman et al., 2004; Williamson et al., 2001). 

The purpose of this study therefore was to investigate the occurrence of hybrid fibres in human 

subjects who varied in training volume and type. In the study design, both endurance athletes 

and recreationally active subjects, with a wide variety of preferred racing distances or 

recreational sports participation, respectively, were included. Given the above, it is also 

hypothesised that hybrid fibre occurrence may be directly related to both training volume and 

intensity. 
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3.2  Methodology 

3.2.1 Subjects 

Twelve healthy male middle distance runners (age, 22 ± 3 years; weight, 62 ± 9 kg; height, 174 

± 10 cm) and 12 healthy male recreationally active subjects, performing no systematic running 

(non-runners) (age, 24 ± 2 years; weight, 68 ± 13 kg; height, 179 ± 9 cm), were recruited, and 

signed an Informed Consent Form. The study was approved by the University of Stellenbosch 

ethics committee for research on human subjects (Sub-Committee C). Inclusion criteria for 

runners were as follows: ability to complete a 10 km road race in under 35 minutes (mean 10 km 

personal best in previous 3 months: 32.8 ± 1.5 min); training more than 50 km per week; no 

additional sport participation; must not race distances less than 1 500 m as preferred track 

distance or longer than 21.1 km as preferred off-road racing distance.  

Each individual completed a detailed questionnaire on the amount of training or exercise 

performed in a typical period of four weeks. Other questions included e.g. preferred racing 

distance (runners) and type of exercise for non-runners. Runners were requested to report 

preferred racing distances for track, cross-country and road races. In case of two or more 

preferred racing distances reported, the average was calculated and reported as average preferred 

racing distance (PRDA) (refer to Table 3.1). Exercise quantity was calculated per week and the 

4-week average was expressed either as kilometres per week (runners) or hours of exercise per 

week (non-runners).  

3.2.2 Procedures 

Subjects completed an incremental test on a treadmill (RunRace, Technogym, Italy) until 

exhaustion. The initial speed of 14 km/h and 7 km/h for runners and non-runners, respectively, 

was increased every 30 seconds with 0.5 km/h. Breath-by-breath samples were analysed for 

volume, oxygen and carbon dioxide contents (Jaeger OxyCon Pro, Germany) and heart rate was 

monitored throughout the test (Polar, Finland) (see appendix A for details). 

A medical doctor experienced in the technique, performed the muscle biopsies. Local anesthetic 

(Xylotox, Adcock Ingram) was administered to the Vastus lateralis and a small cut was made 

using a scalpel blade. A sterile trephine needle (Stille, Sweden) was inserted into the mid-

portion of the muscle and with the addition of suction, ± 100 – 150 mg tissue was removed with 

a quick cutting action of the needle (Bergström, 1962). Muscle specimens were rapidly frozen in 

liquid nitrogen and stored at -87 °C until single fibre analysis (see appendix A for details). 

Muscle samples were freeze-dried overnight and individual muscle fibres dissected in a 

humidity controlled room. A total of 2608 fibres (mean 109 ± 38 per subject) were dissected. 

Each fibre was transferred to a capillary tube containing 30 µL of a denaturing buffer (10% 
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glycerol, 5% β-mercaptoethanol, 2.3% sodium dodecyl sulphate (SDS) and 62.5 mM Tris-HCl, 

pH 6.80). Fibres were allowed to denature overnight at room temperature (Biral et al., 1988). 

Gel electrophoresis was carried out according to the method of Talmadge and Roy (1993), with 

β-mercaptoethanol added to the upper running buffer to a concentration of 0.03 M prior to 

electrophoresis (Blough et al., 1996). Electrophoretic conditions were constant 70 V for 24 

hours at 4 °C. Gels were subsequently silver stained (PlusOne silver stain kit, Amersham, 

Sweden). Bands were identified according to Pereira Sant'Ana et al. (1997). For details, see 

legend to Figure 3.1. 

3.2.3 Statistics 

All values are reported as mean ± standard deviation. The Mann-Whitney U test was applied for 

statistical comparison between runners and non-runners. The P < 0.05 confidence level was used 

to indicate statistical significance. Correlations were performed using the Pearson’s correlation 

coefficient, in each group, separately. Where appropriate, one phase exponential curve-fitting 

was applied using non-linear regression analysis that minimized the sum of squares of actual 

distance of points from the curve (not weighted; not forced through 0). Goodness of fit is 

reported as R2 values. Iterations proceeded until the change in the sum of squares between two 

consecutive iterations was less than 0.01%. 

3.3 Results 

3.3.1 Training data and maximum oxygen consumption 

Runners trained a distance of 82.9 ± 23.9 km/wk (range 55 – 120 km/wk) and non-runners 

exercised on average 4.1 ± 4.5 h/wk (range 0 – 13 h/wk). Runners had a PRDA of 11.8 ± 6.4 km 

(range 2.3 – 21.1 km). Furthermore, runners had a significantly higher peak treadmill velocity 

(21.6 ± 1.1 vs. 13.7 ± 0.8 km/h, P < 0.05) and maximum oxygen consumption capacity (68.7 ± 

4.7 vs. 42.6 ± 3.6 mL/min/kg, P < 0.05) than non-runners. (See Table 3.1 for details) 

3.3.2 Single fibre electrophoresis 

Clear distinctions were evident in the mobility of the MHC isoforms of each single fibre (Figure 

3.1). Fibres expressing pure MHC I, MHC IIa and MHC IIx, as well as hybrid fibres expressing 

both MHC I and MHC IIa (MHC I/IIa) and MHC IIa and MHC IIx (MHC IIa/IIx) in both 

groups, were identified and expressed as a percentage of total number of fibres (Figure 3.2). 

Runners had more fibres expressing pure MHC I than non-runners (P < 0.01) and no significant 

difference in fibres expressing pure MHC IIa. Fibres expressing pure MHC IIx and MHC IIa/IIx 

hybrids were higher in non-runners than in runners (P < 0.01). The percentage total hybrids 

were higher in non-runners compared to runners (P < 0.05).  
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The amount of pure fibres did not correlate, using Pearson’s correlation, with the volume of 

exercise in either group and also not with preferred racing distance in runners (Table 3.2). 

However, significant correlation coefficients were observed between the amount of training 

(Figure 3.3A: r = -0.66, P < 0.05) or exercise (Figure 3.3C: r = -0.72, P < 0.01) performed per 

week and MHC IIa/IIx proportions. Exponential curve fitting showed a better relationship 

between the MHC IIa/IIx hybrids and volume of exercise (Figures 3.3B and 3.3D). Exponential 

curve fitting (Figure 3.4) of MHC IIa/IIx hybrids and PRDA in runners showed an exponential 

decrease in the hybrids with an increase in racing distance (Pearson’s correlation r = -0.85, P < 

0.001) whereas no relationship was observed for MHC I/IIa hybrid fibres and PRDA.   

The highest PRDA for the athlete group was 21.1 km. This value was halved in order to separate 

athletes with short and long PRDAs. This value was rounded off to 12 km in order to include 

enough subjects per group for statistical power. Figure 3.5 shows that runners who preferred 

racing distances on average less than 12 km had significantly more MHC IIa/IIx hybrids (P < 

0.01) than those preferring to race on average over distances more than 12 km. These two sub-

groups of runners also differed significantly for training distance (67 ± 19 km/wk vs. 94 ± 21 

km/wk) although less significantly (P < 0.05) than for the proportion of MHC IIa/IIx hybrids. 

The proportion of MHC I/IIa hybrid fibres did not differ between these two sub-groups of 

runners. 

3.4 Discussion 

The present study agrees with other studies showing that distance runners have more fibres 

expressing pure MHC I and fewer fibres expressing pure MHC IIx and both MHC IIa and IIx 

than recreationally active subjects (Essen-Gustavsson and Henriksson, 1984; Harber et al., 

2002). However, the novel issue that the current study addressed is the question of what type 

and amount of exercise is required to decrease these MHC IIx-containing fibres. For this 

purpose, endurance runners with varying training distances and varying preferred racing 

distance, as well as a second group of subjects ranging from sedentary to recreationally active in 

a variety of sports, were recruited. Despite significant differences between runners and non-

runners for the mean proportions of MHC IIx fibres and MHC IIa/IIx hybrid fibres, the main 

finding of this study was that exercise volume (km/wk and h/wk) of both groups correlated with 

MHC IIa/IIx hybrid fibre proportions as well as the total proportion of hybrid fibres. However, 

PRDA of runners also correlated with MHC IIa/IIx hybrid fibre proportions and the proportion 

of total hybrid fibres. This study also showed that there was no correlation between training / 

exercise volume and MHC I/IIa hybrid fibre proportions in either of the groups.  

In the present study, single fibre classification with SDS-PAGE was used rather than the 

conventional ATPase histochemical method and showed that, despite significant differences in 
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the proportion of type I fibres in runners compared to non-runners, runners only had 50 ± 14% 

slow twitch fibres. This is less than previously reported for distance runners (Gollnick et al., 

1972; Harber et al., 2002; Tesch and Karlsson, 1985), but is similar to the findings reported by 

Weston et al. (1999) for runners recruited from the same geographical region. This latter 

difference may be attributed to large variations in running and specialisation distance. 

An important finding from the relation between the proportions of MHC IIa/IIx hybrid fibres to 

exercise volume was that a number of data points fell outside the 95% confidence limits of the 

linear regression line (runners: Figure 3.3A; non-runners: Figure 3.3C). However, reanalysis of 

the data showed that with an increase in exercise volume, there was an exponential decrease in 

MHC IIa/IIx hybrid fibre proportions in both runners and non-runners (Figures 3.3B and 3.3D, 

respectively). R2 values for the exponential fits were much higher than those for the poorer 

fitting linear regressions (although there were statistically significant correlations with the 

latter). The data suggested that there is a critical volume of exercise necessary to induce hybrid 

fibres to decrease, but only for MHC IIa/IIx hybrid fibres within the volumes of exercise 

performed by the subjects in the current study. The data further suggests that MHC IIa/IIx 

hybrid fibres may only exist due to inactivity, which can be supported by the effect of paralysis, 

weightlessness and detraining (Andersen et al., 1996; Andersen and Aagaard, 2000; Baldwin, 

1996; Oishi et al., 1998). However, the current data shows an even better exponential fit with 

PRDA than with training volume in runners, and this finding is more in support of “fine tuning” 

through multiple expression of MHC isoforms to accommodate both endurance and high 

intensity demands. The present study provides indirect evidence that hybrid fibres might not be 

transitional. 

Another finding in this study was that both runners and non-runners had similar proportions of 

MHC I/IIa hybrid fibres, which may also suggest that these fibres might serve a functional 

purpose (Figure 3.2). For runners identified as sub-elite, the runners in the present study had a 

personal best for a 10 km road race of 32.8 ± 1.5 minutes. This may, in part, explain the 

relatively low proportion of type I fibres, if it is considered that a more elite level may have 

higher type I proportions. But, as was shown in various interventions using different training 

methods, training intensity may shift fibre proportions to type IIA (Andersen et al., 1994; 

Williamson et al., 2001). These two studies used extreme intensities (resistance training), but 

may be extrapolated to high intensity endurance events differing in time. 

3.5 Conclusion 

On evaluation of the current literature and the present study, we hypothesise that hybrid fibres 

might have a dual function: being both transitional and “fine tuning” fibres for effectiveness. 

The latter part of this statement is supported by the significant correlation between MHC IIa/IIx 



 110

hybrid fibres and preferred racing distance (Figure 3.4A), whereas the first is supported by the 

relationship with training volume (Figures 3.3A and C). This study is the first to show an 

exponential decrease in MHC IIa/IIx hybrids as exercise volume increases irrespective of 

exercise type (running vs. non-running) (Figures 3.3B and D). It is also the first to use average 

preferred racing distance as an indirect indication of training intensity and a direct indication of 

racing intensity and the first to show that runners also have an exponential relationship with 

MHC IIa/IIx hybrids (Figures 3.4A). In addition, runners that preferred a racing distance of less 

than 12 km, showed higher MHC IIa/IIx hybrid fibre proportions than runners preferring more 

than 12 km (Figure 3.5). However, no relationship was found between MHC I/IIa hybrid fibre 

proportions and PRDA, or exercise volume in either group (Figure 3.4B). These observations 

suggest that exercise volume, at least within the range of the subjects in the present study, will 

decrease MHC IIa/IIx hybrid fibre proportions, but not MHC I/IIa hybrid fibres. More research 

needs to be conducted to determine the relative influence of training volume vs. intensity of 

training on hybrid fibre proportions.   
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Table 3.1  Total training and participation in specific categories of exercise in runners (R) 
and non-runners (NR). 

 Exercise Categories of participation PRD PRDA 

 km/week   km 

R1 80 Track & road 5 000 m, 21.1 km 13.1 

R2 110 Road 21.1 km 21.1 

R3 60 Track & road 800 m, 10 km 5.8 

R4 80 Road 10 km, 21.1 km 15.6 

R5 60 Track 3 000 m, 5 000 m 4.0 

R6 75 Cross-Country & road 4 km, 21.1 km 12.6 

R7 60 Track & Cross-country 3 000 m, 12 km 7.5 

R8 120 Road 10 km, 21.1 km 15.5 

R9 100 Track & road 800 m, 21.1 km 11.0 

R10 55 Track 1 500 m, 3 000 m 2.3 

R11 120 Road 21.1 km 21.1 

R12 75 Track & road 5 000 m, 21.1 km 13.1 

 hours/week    

NR1 1 Active walking   

NR2 0 None   

NR3 2 Recreational soccer   

NR4 8 Gymnastics & coaching   

NR5 0 None   

NR6 13 Gymnastics & coaching   

NR7 0 None   

NR8 0 None   

NR9 10 Recreational soccer   

NR10 5 Recreational volleyball   

NR11 7 Recreational soccer   

NR12 3 Recreational soccer   

PRD, preferred racing distance; PRDA, average preferred racing distance 
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Table 3.2 Relationships between pure fibre type (%) and training volume, average preferred 
racing distance (PRDA) and exercise in runners and non-runners.  

  Type I Type IIa Type IIx 

Runners     

  Training volume (km/week) r 0.24 0.18 -0.43 

 P ns ns ns 

  PRDA (km) r 0.40 0.01 -0.39 

 P ns ns ns 

Non-runners     

  Exercise (hours/week) r 0.30 0.41 -0.34 

 P ns ns ns 

Pearson’s correlation was applied to the data. Values are correlation coefficients.  
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Figure 3.1 Myosin heavy chain isoform mobility in single muscle fibres. A homogenate 

muscle sample containing all three MHC isoforms was run as the control. 
 

  
Figure 3.2  Muscle fibre type percentages (%) determined by single fibre electrophoresis 

of runners and non-runners. Values are means ± SD. Tot Hyb, Total hybrids. 
Different from runners: * P < 0.05; † P < 0.01. 
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Figure 3.3 Relationships between percentage MHC IIa/IIx hybrid fibres and training volume (runners, A and B) and exercise volume (non-runners, C 

and D). Graphs A and C represent linear regression analysis with 95% confidence limits. Graphs B and D represents exponential curve 
fitting: B: y = 342200e-0.18x + 1.8, R2 = 0.92; D: y = 11.8e-1.2x + 9, R2 = 0.67. 

 

A 

C 

B 

D 



 117

 
 

 
 
 

 
Figure 3.4  Relationship between (A) MHC IIa/IIx hybrid fibres and average preferred 

racing distance (PRDA), (B) MHC I/IIa hybrid fibres and PRDA. Exponential 
curve fitting for A: y = 33.4e0.22x + 0.47, R2 = 0.95. 

 
 

A 
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Figure 3.5  Percentage hybrid fibres in runners preferring a racing distance < 12 km and > 

12 km. Values are means ± SD. Statistical analysis was performed using the 
unpaired Mann-Whitney U test. * Different from > 12 km (P < 0.01). 
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 CHAPTER 4  

Do Xhosa and Caucasian endurance athletes really differ? 

4.1 Introduction 

The search for genetic promoters for human sporting performance and health-related fitness 

phenotypes is still continuing (Scott et al., 2005). Genes that are potential markers for exercise 

performance have been linked to either a population group, or groups tending to have the same 

phenotype, such as body size and proportions or high oxygen consumption (for recent reviews see 

Rankinen et al. (2004) and Beunen and Thomis (2004)). Some genes have been linked to endurance 

performance, others to sprinting events (Calvo et al., 2002) and it has been found that genes may be 

involved in the response of an individual (Bouchard, 1995) or population to training (Chagnon et 

al., 2001). 

Exercise performance capacity is usually determined by standardised tests, such as those for 

maximal oxygen consumption (VO2max), fatigue resistance at a specific workload, heart rate and 

economy of movement (to name but a few). Studies on the effect of heritage on most of these 

parameters are currently in progress and it seems that certain genes may only contribute in specific 

populations (Chagnon et al., 2001; Rankinen et al., 2004). For example, blood pressure was related 

to the angiogenin gene (AvaII) polymorphism in black but not white individuals (Rivera et al., 

2001). Similarly, in populations specified by exercise phenotype, the creatine kinase gene 

polymorphisms (CK-NcoI and CK-TaqI) have been associated with the change in VO2max in 

sedentary subjects who underwent training, but these polymorphisms were not related to 

performance in elite endurance athletes (Rivera et al., 1997a; Rivera et al., 1997b). Other genes 

have been shown to be related to both endurance capacity and body composition, such as 

peroxisome proliferator activated receptor delta (PPAR δ), the over expression of which has a direct 

influence on both phenotypes in mice (Wang et al., 2004). 

Other phenotypes previously associated with exercise performance include biochemical markers in 

skeletal muscle and blood. Muscle fibre type, enzyme activities and plasma lactate concentrations 

have been shown to vary significantly between sedentary individuals and endurance runners (Essen-

Gustavsson and Henriksson, 1984; Gollnick et al., 1972; Hurley et al., 1984). For example, 

endurance runners generally have a high proportion of type I fibres, and a high oxidative potential in 

their skeletal muscle, compared to sedentary subjects (Gollnick et al., 1972). These parameters may 

be even more enhanced in competitive and elite endurance athletes (Costill, 1967). Unless genotypic 

variability contributes to a phenotype known to be related to performance, it may not be relevant. 
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Hence, the identification of phenotypic and genotypic variability between individuals and even 

populations should both continue to be the focus of research. Several investigators have searched for 

phenotypic differences, especially between black and white endurance athletes (Bosch et al., 1990; 

Coetzer et al., 1993; Saltin et al., 1995a; Weston et al., 1999; Weston et al., 2000). 

Running events from middle distances (800 to 10 000 m) to long distances (half and full marathon) 

are dominated by East African black runners (Larsen, 2003; Weston et al., 2000). Recent world road 

running rankings for 2005 listed 77 and 8 Kenyan and Ethiopian athletes, respectively, under the top 

100 in the world (source: International Association of Athletics Federations). The possibility 

therefore may exist that these populations have a genetic advantage when it comes to endurance 

running. For the past ten years, researchers have investigated the physiological and biochemical 

markers, as well as the training habits in Kenyan and South African black distance runners and their 

counterparts of European descent. However, whether the dominance of African runners is due to 

genetic inheritance or is as a result of other factors, still remains unanswered. Even whether or not 

phenotypic differences appear consistently, is still a matter of debate (Saltin et al., 1995a; Weston et 

al., 1999). 

The study by Bosch et al. (1990) was one of the first to show that black marathon runners were 

smaller in body size and ran at a higher percentage of their VO2max during a simulated treadmill 

marathon compared to their white counterparts. No differences were observed for VO2max and 

respiratory exchange ratio (RER). On the other hand, Coetzer et al. (1993) showed that black 

endurance runners, who had longer preferred racing distances than their white counterparts, had a 

lower RER at maximum intensity, but no difference in running economy assessed as oxygen 

consumption during sub-maximal tests at absolute velocities (17 and 21 km/h). A consistent finding 

of both Bosch et al. (1990) and Coetzer et al. (1993) was that black endurance runners had lower 

blood lactate concentrations during the sub-maximal tests. The lower blood lactate was not related 

to the “typical” fibre type profile of endurance runners, as Coetzer et al. (1993) showed that black 

runners, although specialising in longer distances, tended to have a lower proportion of type I 

muscle fibres (not significantly different), compared to white endurance runners (white: 63 ± 13.3; 

black: 53 ± 5).  

Weston et al. (1999) expanded on the phenotypic assessment of the previous two studies by 

incorporating the analysis of enzyme activities in the muscle biopsies. The authors also developed a 

different approach to the sub-maximal testing, incorporating more workloads at relative intensities 

(72, 80, 88 and 92% of peak treadmill speed (PTS)) and a time to fatigue test (at 92% of PTS). 

Black athletes could run longer at the 92% workload, but plasma lactate concentration was lower 
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only at 88% with no statistically significant differences at the other workloads. This was attributed 

to the higher citrate synthase (CS) and 3-hydroxyacyl CoA dehydrogenase (3HAD) activities found 

in the muscle biopsies of the black endurance runners. On the other hand, although not statistically 

different because of low subject numbers, black endurance runners, once again, showed that there 

was a tendency to have less type I fibres compared to white endurance runners (17% difference, P 

value not reported). This finding seemed difficult to explain given the literature showing that type I 

fibres are associated with higher CS and 3HAD activities (Essen-Gustavsson and Henriksson, 

1984). In all three the aforementioned studies, black endurance runners were significantly shorter 

and lighter than their white counterparts. Although these studies advanced our scientific 

understanding of differences in the endurance phenotype of black and white distance runners, they 

were each flawed in some respect. For example, they did not properly characterise the various 

distance events in which the black and white endurance runners competed. Similarly, both training 

volume and intensity were parameters poorly assessed. Coetzer et al. (1993) reported no difference 

in training volume between black and white endurance runners, but suggested that black athletes 

might have been training longer at a level greater than 80% of their VO2max. However, their 

method for assessment of these aspects was not described.  

In another study by Weston et al. (2000), the authors compared the running economy at a fixed 

workload and the fractional utilisation of VO2max at race pace of 8 black and 8 white endurance 

runners who preferred 10 km races, but who matched fairly well for body mass. Unfortunately, the 

black endurance runners were still shorter in stature compared to their white counterparts, and 

although not statistically different, the mean body mass was 3.5 kg lighter. The black endurance 

runners had lower VO2max and PTS values (not significant) than their white counterparts, and this 

might explain the higher fractional utilisation of VO2max at their 10 km race pace assessed on the 

treadmill. No difference was found for plasma lactate concentrations at sub-maximal intensity.  

Lactate dehydrogenase (LDH) is an enzyme that produces lactate from pyruvate. There are several 

isozymes of LDH (van Hall, 2000). LDH is a tetramer protein, consisting of either the M (muscle) 

or H (heart) type subunits. These subunits may combine in different ratios to form five LDH 

isozymes, numbered from 1 to 5. LDH1 and LDH2 are predominantly found in heart muscle, 

whereas LDH4 and LDH5 are found in skeletal muscle and liver. The heart isozymes (LDH1-2) 

favour conversion of lactate to pyruvate, whereas skeletal muscle isozymes (LDH4-5) favour 

pyruvate to lactate conversion. All five isozymes may be expressed in skeletal muscle in various 

amounts, but it has also been suggested that the LDH isozymes may be compartmentalised with 

those favouring lactate to pyruvate conversion situated close to the mitochondria (van Hall, 2000). 
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Lactate is no longer considered to be merely an end product of anaerobic glycolysis, rather 

consensus is that lactate can be utilised as a fuel by other muscles or organs during exercise 

(Gladden, 2004; van Hall, 2000). Brooks and his research group (2000) have proposed an 

intracellular lactate shuttle that allows lactate produced during glycolysis to be shuttled immediately 

to the mitochondria in the same fibre where it can be converted back to pyruvate and subsequently 

metabolised. However, the existence of this intracellular shuttle is still under debate and data from 

other laboratories do not confirm that a mitochondrial LDH exists (Rasmussen et al., 2002; Sahlin et 

al., 2002). However, it may be that the problem is more related to methodological irregularities (i.e. 

sample preparation) between research groups and that this topic needs further investigation (Brooks, 

2002). 

Saltin et al. (1995a) investigated muscle and performance characteristics in 13 Kenyan and 12 

Scandinavian runners. Kenyans had higher mean 3HAD activity in their Gastrocnemius muscle 

biopsies and the ratio of LDH isozymes was different between the two groups. Kenyans had a 

higher ratio of LDH1-2:LDH4-5, but after the Scandinavians trained for 14 days at altitude, the 

difference between the groups for these ratios became non-significant. However, these findings 

might have been complicated by the low subject numbers (5 Kenyans and 6 Scandinavians) as some 

athletes were unwilling to freely give a muscle biopsy. Also, women were included in the 

Scandinavian group and the Kenyan subject group consisted of senior and junior runners. In 

addition, the effects that altitude may have on the physiology and biochemistry could also have 

complicated this study. Nevertheless, in a separate report by the same authors, it was shown that the 

Kenyans had lower plasma lactate levels at sub-maximal intensities compared to Scandinavian 

runners (Saltin et al., 1995b). No differences were found between the two groups for VO2max and 

haemoglobin concentrations, suggesting a peripheral, rather than a central cause, for the lower 

lactate accumulation during exercise. Once again, there may have been difficulties matching the 

subjects for prior altitude exposure.     

Two crucial factors which have been linked to both physiological and biochemical adaptations in 

many studies, are training volume and the intensity of training. Although these variables are difficult 

to quantify in the field setting (Hopkins, 1991), studies using electrical stimulation on rats have 

shown that both fibre type and enzymes may respond differently to different stimulating frequencies 

(Pette and Vrbova, 1992; Windisch et al., 1998). These data suggest that differences in cross-

sectional studies of endurance vs. sprint athletes may be related not only to a natural selection into 

the events based on pre-training phenotype, but are also related to training-induced adaptations. In 

contrast to the well known endurance training-induced shift in type IIX to type IIA fibres (Baumann 

et al., 1987; Jansson and Kaijser, 1977), Andersen et al. (1994) showed that short distance athletes 
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undergoing three months of sprint and strength training significantly reduced their type I fibres with 

a concomitant increase in the proportions of type IIA fibres. Therefore, the studies conducted on 

black and white athletes might have been complicated by training volume and intensity, both of 

which may be directly related to preferred racing distance.  

The aim of the present study was to do a comprehensive phenotypic comparison between black 

endurance runners from distinct ethnic origin (Xhosa) and white endurance runners of Caucasian 

descent who were closely matched for average preferred specialisation distance (PRDA), training 

volume and recent best 10 km race time. This study investigated possible differences in whole body 

physiology and muscle biopsy characteristics, including fibre type and single muscle fibre analyses. 

Focus was also placed on increasing the sample size compared with previous studies.  

4.2 Methodology 

4.2.1 Subject recruitment and training volume assessment 

The Stellenbosch University Sub-Committee C for research on human subjects approved this study. 

Twenty-six healthy male athletes (13 Caucasian and 13 ethnic Xhosa) were recruited from local 

athletic clubs. Each athlete signed a written informed consent. Athletes were informed about all the 

tests and possible risks involved. Where a subject was unfamiliar with the language, an interpreter 

was used.  

Subjects were excluded if they were not competing in races, if they had a 10 km road race time of 

more than 37 minutes, if they had experienced any illness or injury for the previous six months, or if 

they trained less than 45 km per week. To ensure Xhosa ethnic origin, all athletes had to report 

familial heritage of both parents and grandparents. Caucasian athletes were defined as being from 

European descent excluding Scandinavian and Latin countries, and Xhosa athletes were from Xhosa 

speaking family lineage. South Africa has two major, large black ethnic groups, namely Xhosa and 

Zulu. For centuries, these populations lived in distinct regions of South Africa. Cultural differences 

result in these tribes rarely intermarrying with each other. The Xhosa ethnicity of the subjects was 

based on the stated first language reported and for both parents and grandparents although, for the 

latter, it should be acknowledged that blacks of Sotho origin lived geographically close to the 

majority of the Xhosa population for centuries. Grandchildren may not be fully aware of the 

ethnicity of the grandparents, especially not the grandmothers who take on the cultural identity of 

the group into whom they marry. However, from an anthropological perspective, it is regarded that 

Xhosa people do not actively intermarry with other African tribes, and this is supported by genetic 

evidence from Lane et al. (2002). 
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Each athlete completed a detailed questionnaire reporting favourite race distance for road, track and 

cross-country competitions, recent 10 km personal best time (PB) and typical training volume per 

week specifically for the previous three months. PRDA was calculated for each athlete by taking the 

average of the three favourite racing distances, one for each of the three disciplines mentioned 

above. In some cases, athletes participated in only two of these disciplines, but no athletes competed 

in only one. Athletes were matched for weekly training volume, 10 km PB and PRDA (Table 4.1).  

4.2.2 Laboratory exercise testing 

Exercise tests and muscle biopsies were performed on separate days, allowing recovery from 

previous running tests for at least two days. Athletes were encouraged to be well rested and to 

abstain from races and only perform very low intensity training the day prior to testing. All athletes 

were thoroughly familiarised on the treadmill (including exposure to low and high intensity running 

on the treadmill) prior to running tests. 

VO2max testing and peak treadmill speed 
Athletes performed two incremental maximal exercise tests to fatigue on a treadmill (RunRace, 

TechnoGym, Italy), with continuous measurement of heart rate (Polar, Finland), oxygen 

consumption (VO2), RER and minute ventilation (VE) (Jaeger Oxycon Pro, Germany) throughout 

the test. Athletes were allowed a 5 minute warm-up on the treadmill. All athletes started the test at 

14 km/h (flat gradient) for 30 seconds, whereafter the intensity was increased by 0.5 km/h every 30 

seconds until fatigue set in. Athletes were said to have attained their maximal ability when two of 

the following criteria were fulfilled: (a) heart rate within 5 beats/min of theoretical maximum heart 

rate (220 – age) (b) RER value greater than 1.10 and (c) a plateau in VO2 (Staab et al., 2003). 

Whenever these criteria were not fulfilled, athletes had to perform the same test on the next visit and 

were encouraged verbally during the test to perform better (see appendix A for details). PTS in km/h 

was calculated as follows taking every second into account:  

km/h 0.5    
seconds30

intensity) finalat  (seconds   (km/h)intensity fullCompleted    PTS ×+=  

Sub-maximal exercise test and blood sampling 
Prior to the sub-maximal test, athletes were fitted with an intravenous catheter (Jelco 22G, Johnson 

& Johnson) and a three-way stopcock, which were flushed with saline containing 0.04% heparin 

(Heparin Novo, Novo Nordisk, South Africa). Athletes were then allowed a 5 minute treadmill 

running warm-up and brief stretching. 

The sub-maximal workloads corresponded to 64, 72 and 80% of each individual’s PTS (the highest 

attained during one of the two maximal tests). Athletes ran for 5 minutes at each workload and 

breath-by-breath measurements were recorded as described for the incremental test. After each 
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workload, the athlete used the railings to lift himself off the treadmill and placed his feet on opposite 

sides of the belt. Three millilitres of blood were collected in a sealed test tube containing fluoride 

oxalate (Vacutainer, BD, UK), mixed and stored on ice. After a period of 1 minute of rest, the 

intensity was increased to the next workload and the athlete commenced running. Blood was 

centrifuged directly after the test at 3 000 rpm and the plasma stored at -87 °C until analysis (see 

appendix A and B for details). Running economy was determined for the speed, 16.1 km/h, by 

plotting VO2 and treadmill speed. 

Muscle biopsy 
A needle biopsy was obtained from the Vastus lateralis muscle using the suction-assisted technique 

described by Evans et al. (1982). The biopsy site was at the same depth (2 cm) and in a similar 

position for all athletes, corresponding to one third along the total length of the upper leg, distal to 

the hip joint. The biopsy was split into three parts, two were frozen in liquid nitrogen for subsequent 

homogenate and single fibre analyses, and the third was mounted in embedding medium (Jung 

Tissue Freezing Medium, Leica Instruments, Germany) and rapidly frozen in iso-pentane, pre-

cooled with liquid nitrogen. All biopsy samples were stored at -87 °C (see appendix A for details).   

4.2.3 Biochemical analyses 

Plasma lactate concentration 
Plasma lactate concentrations (mmol/L) were determined using a commercially available kit 

(Lactate PAP, bioMérieux sa, France) and a spectrophotometer (Bio-Tek Instruments, USA) set at 

505 nm. The kit relies on the principle of an enzymatic conversion of plasma lactate, resulting in a 

detectable colour that is concentration dependent. Values are expressed as mean ± SD (see appendix 

B for details). 

Morphology of fibres 
Fibre typing of muscle samples was based on the method by Brooke & Kaiser (1970). Three serial 

cross-sections (10 µm) were cut onto glass slides and placed into pre-incubation medium set at 

exactly pH 4.30, 4.60 and 10.30, whereafter the samples were visualised and photographed (Nikon 

CoolPix Microscope system, Japan). Fibres were identified as either types I, IC, IIC, IIAC, IIA, 

IIAX or IIX according to the staining intensities described by Staron (1997), and expressed as a 

percentage of the total number of fibres counted. In this study, fibre types IC, IIC and IIAC numbers 

were pooled and termed type I/IIA because of low counts in each of the aforementioned subgroup.  

Cross-sectional area (CSA, µm2) and fibre diameter (FD, µm) were determined using a computer 

software programme (SimplePCI ver 1.0, Nikon, Japan) on the same slides photographed for the 
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fibre typing. Fibres were divided into two groups, namely type I (pure type I fibres only) and II, the 

latter comprising of fibre types I/IIA, IIA, IIAX and IIX. 

Enzyme activities and myosin heavy chain composition in homogenate samples 
Muscle biopsy samples, previously frozen in liquid nitrogen, were freeze-dried overnight. A small 

piece was weighed, crushed in a test tube and a ratio of 1 mg:400 µL, chilled 100 mM potassium 

phosphate buffer, pH 7.30, was added. Samples were kept on ice and sonicated (Virtis Sonicators, 

USA) three times for ten seconds on ice, with a ten second delay between intervals. 

Phosphofructokinase (PFK), CS, LDH and 3HAD activities were determined using the fluorometric 

methods described by Essen-Gustavsson and Henriksson (1984), with slight modifications. Reagent 

and sample volumes were decreased to accommodate the microplate reader (Bio-Tek instruments, 

USA). The enzyme reagent was always 250 µL and sample volumes for PFK, CS and 3HAD were 5 

µL, and 3 µL for the LDH assay. The emission at 460 nm was recorded for 5 minutes with 30 

second intervals using an excitation wavelength of 340 nm. (Refer to appendix B for protocols and 

calculation details). Enzyme activities are expressed as µmol/min/g dry weight (dw). 

Myosin heavy chain (MHC) isoform contents of homogenate samples were determined using 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) according to the method of 

Talmadge and Roy (1993) with β-mercaptoethanol added to the upper running buffer to a 

concentration of 0.03 M prior to electrophoresis (Blough et al., 1996). Electrophoresis was carried 

out using a mini-gel system (Bio-Rad, USA) for 16 hours at constant 70 volts at 4 °C. Gels were 

stained with Coomassie Blue R250 and subsequently scanned using a computer scanner. Relative 

percentages of the bands were quantified using a software package (CREAM 1D, KEM-EN-TEC, 

Denmark). (Refer to appendix B for details on SDS-PAGE, staining and relative band intensity 

quantification.)  

Single fibre identification and enzyme activities. 
Single muscle fibres were dissected from freeze-dried samples in a humidity controlled room (40% 

humidity, 20 °C). A total of 2857 (mean of ~130 fibres per sample) fibres were dissected. A small 

piece of each fibre was cut off, transferred to a capillary tube containing SDS denaturing buffer and 

left overnight to dissolve. The remaining piece was sealed and stored in a labelled glass capillary 

tube at -87 °C. Identification of the fibre types was carried out electrophoretically on the dissolved 

fragment, using the same protocol as described for the determination of MHC content in 

homogenates. However, gels were silver stained (Amersham, Sweden) and fibres identified as 

expressing either pure fibres containing MHC I, IIa or IIx, or hybrid fibres expressing both MHC I 

and MHC IIa (I/IIa), or MHC IIa and MHC IIx (IIa/IIx).  
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LDH activities in pools of type I and pools of type IIa fibres were determined for each subject. The 

pooled fibres were weighed on a microbalance (to 3 decimals of a milligram), calibrated with 

known weights. Pool weights ranged between ~40 and ~100 µg. After weighing on a Cahn 25 

electro-balance, the sample was transferred to a micro tube, and 400 µL chilled 100 mM potassium 

phosphate buffer (pH 7.30) was added per 1 mg sample. Sonication was only carried out once for 10 

seconds to prevent enzyme activity loss. Enzyme activity determination was carried out in the same 

way as for the homogenate samples. Enzyme activities are expressed as µmol/min/g dw. (Refer to 

appendix B for detail on the single fibre dissection, determinations of fibre type and enzyme 

activities.) 

4.2.4 Statistical analysis 

Statistical comparisons between population groups were performed using the Wilcoxon signed rank 

test for non-parametric matched pair data. However, due to lower sample numbers in the enzyme 

pools, statistical significance was determined with the Mann-Whitney U test for non-parametric 

unpaired data. Significance for all was set at P < 0.05. Correlation coefficients were calculated using 

the two-tailed Pearson's correlation test to assess specific associations. 

4.3 Results 

Good matching of athletes for training volume, 10 km PB and PRDA was obtained. As can be seen 

in Table 4.1, athletes were coded according to matching pairs and for matching, none of the three 

variables considered was given first priority; rather all three were taken into account. A final 

consideration was whether or not the muscle biopsies of the pairs contained complete data sets for 

both physiological and biochemical analyses (see ‡, Table 4.1).  

Table 4.2 reports the subject characteristics as well as the maximal exercise test results, the latter 

taken from the highest PTS of the two tests. Xhosa athletes were lighter and shorter than their 

matched counterparts (P < 0.01). VO2max expressed relative to body weight was similar in the 

recruited athletes. However, when values were not corrected for body weight, significant differences 

were apparent (see VO2max and VEmax expressed in L/min, Table 4.2). These differences are seen 

because of both height and weight that directly influence oxygen consumption and hence also 

minute ventilation. Both groups reached similarly high peak treadmill speeds and RERmax, as 

would be expected for subjects matched for performance and indicated that both groups were 

similarly familiar with treadmill running at maximal capacity. 

At all the sub-maximal workloads, no differences were observed for RER, heart rate and VO2 

expressed relative to body mass (Table 4.3), with the exception of VO2 at 80% PTS, which showed 
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a trend to be higher in Xhosa compared to Caucasian athletes (P = 0.09). VE was significantly lower 

in Xhosa athletes at 64 and 72% PTS workloads, but became non-significant at the higher workload 

(80% PTS). Economy at 16.1 km/h expressed relative to body mass and relative to body mass scaled 

to 0.75 (kg0.75), was similar for both groups. 

During the sub-maximal test, there were no differences in the mean plasma lactate concentrations 

between the groups at the 64 and 72% PTS workloads (Figure 4.1). However, at 80% PTS, the 

Xhosa athletes had lower mean plasma lactate concentrations than their Caucasian counterparts (P < 

0.05).   

Morphometry of type I and type II muscle fibres of nine pairs of Caucasian and Xhosa biopsies was 

compared. No differences in CSA (µm2) and FD (µm) were observed for either fibre type between 

groups (Table 4.4). A large variability is apparent for both fibre types in both groups. 

Muscle fibre type proportions, determined with ATPase histochemistry in nine pairs, and using 

MHC isoform content in homogenate samples in 13 pairs, are reported in Figure 4.2. Xhosa athletes 

had less type I fibres with a concomitant higher proportion of type IIA fibres than their Caucasian 

counterparts (P < 0.05). This was further confirmed with the MHC isoform analysis that showed 

lower MHC I and higher MHC IIa expression in Xhosa athletes (P < 0.05). However, there was no 

difference between Xhosa and Caucasian athletes for the proportions of type I/IIA, IIAX and IIX 

fibres. 

The four enzymes, PFK, CS, 3HAD and LDH, were selected to represent the capacity of glycolysis, 

the Kreb’s cycle, β-oxidation and the capacity to produce lactate from pyruvate, respectively. 

Enzyme activities were analysed in homogenate muscle samples of nine pairs and were similar in 

range to those reported by Essen-Gustavsson and Henriksson (1984). No differences were observed 

for CS, PFK and 3HAD activities (Figure 4.3). However, LDH activity was higher in Xhosa athletes 

compared to Caucasian athletes (P < 0.01), with PFK activity showing a trend to be higher in Xhosa 

athletes (P = 0.07).  

LDH activities in distinct typed fibre pools and homogenate samples are represented graphically in 

Figure 4.4. Only subjects with activities for both pools and homogenates were used in this figure 

(Caucasian: N = 6; Xhosa: N = 7). The homogenate LDH activity was higher in Xhosa compared to 

Caucasian athletes. The range of activities between the two fibre types were similar in range to that 

reported by Essen-Gustavsson and Henriksson (1984). Statistical analysis between fibre types 

within each group showed that the mean LDH activity of type I fibre pools was significantly lower 

than the mean for the type IIa pools for both Caucasian and Xhosa athletes (P < 0.05). However, the 
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mean LDH activities in type I and type IIa pools of Caucasian athletes were significantly lower than 

the mean for type I and type IIa pools in Xhosa athletes (P < 0.05).  

Relationships were observed between LDH activity and either the MHC I or MHC IIa contents of 

muscle samples (MHC I: r = -0.57, P < 0.05; MHC IIa: r = 0.63, P < 0.01, Figure 4.5A) and PFK 

(MHC I: r = -0.63, P < 0.01; MHC IIa: r = 0.58, P < 0.05) in homogenate samples.  No relationship 

was observed between plasma lactate at 80% PTS and LDH (r = -0.31, ns, Figure 4.5B), or MHC IIa 

(r = 0.23, ns, Figure 4.5C) content of muscle samples. However, there was a significant relationship 

between the ratio of LDH activity and MHC IIa in homogenate and plasma lactate at 80% PTS (r = -

0.56, P < 0.05, Figure 4.5D).  

4.4 Discussion 

The present study confirms the main finding of previous related studies, namely that there were 

lower plasma lactate concentrations during the sub-maximal exercise tests in black endurance 

athletes compared to white athletes, particularly at higher relative intensities. Furthermore, this is 

the first study comparing the phenotypes of athletes from two distinctly different groups that 

included comprehensive analysis of skeletal muscle. Specifically, the present study is the first to do 

complete fibre type analyses using two separate methods and to measure enzyme activities in 

homogenate samples and in pools of pure type I or pure type IIa fibres. A major finding was that 

Xhosa athletes had lower type I fibre proportions, something that had been suggested before but not 

conclusively proved. The most novel finding was that Xhosa athletes had higher LDH activities in 

muscle samples analysed as homogenates, but also in pools of both type I or pools of type IIa fibres, 

indicating that the higher activity in the homogenate sample was not simply a result of higher 

proportions of fast twitch fibres. Finally, unlike other studies, running economy did not differ and 

neither did oxidative enzyme activities, findings that possibly confirm the close matching of the 

athletes. 

Athletes’ physical and physiological characteristics 
Past research on black and white athletes was not able to match the two groups of athletes for body 

size. Studies on South African black runners (Bosch et al., 1990; Coetzer et al., 1993; Marino et al., 

2004; Weston et al., 1999) all reported that black athletes are shorter and lighter than their 

Caucasian counterparts. Body size does play a significant role in lung volume and has been shown 

to differ extensively between population groups (Yap et al., 2001). Correcting for weight should 

balance out the size effect, but according to Svedenhag (1995) it is more correct to express oxygen 

uptake as mL/min/kg0.75 than mL/min/kg. Both calculation methods were applied, but neither 

resulted in a difference in maximal oxygen consumption between Xhosa and Caucasian athletes. 



 130

This is in accordance with previous studies on South African black and white athletes, as well as 

Caucasians and Kenyan runners (Coetzer et al., 1993; Saltin et al., 1995a; Weston et al., 1999). 

However, VO2max is only one of many factors contributing to elite endurance performance capacity 

(Myburgh, 2003). 

Muscle fibre type, CSA, FD and MHC 
One factor proposed by Costill (1967) that may contribute to elite endurance performance on the 

road, is a high percentage of type I fibres. However, Xhosa athletes had less type I fibres and more 

type IIA fibres (Figure 4.2A) than their Caucasian counterparts. This was confirmed by MHC 

isoform content analysis (which also takes into account any MHC I or IIa co-expression in hybrid 

fibres) which showed that they had lower MHC I and higher MHC IIa expression (Figure 4.2B). In 

the studies by Coetzer et al. (1993) and Weston et al. (1999), black runners also showed tendencies 

to have less type I fibres, but those findings were not statistically significant. This might have been 

because of low subject numbers or less stringent matching. However, even in the present study with 

higher subject numbers and more accurate matching, two possible explanations arise for the low 

type I fibre proportions in Xhosa athletes. First, Xhosa athletes may have trained longer at a higher 

intensity than their Caucasian counterparts as was suggested by Coetzer et al. (1993) who reported 

that black South African runners trained for a longer period of time per week above 80% of their 

VO2max. Higher training intensity (as well as high frequency electrical stimulation in models) may 

convert type I fibres to faster fibre types (Andersen et al., 1994; Pette and Vrbova, 1992). 

Alternatively, it may be that Xhosa athletes genetically have more type II fibres. Ama et al. (1986) 

reported that black sedentary people from Central and West Africa had less type I fibres (33 vs. 

41%) than sedentary Caucasians and speculated that this finding may explain why the sprinting 

events are dominated by African-American black people originating from that part of Africa. In 

contrast, Klitgaard et al. (1990) showed that Scandinavian elite cross-country skiers had less type I 

fibres than recreationally active subjects, suggesting that the type of training may affect fibre type 

proportions. Unfortunately, the present study did not include any sedentary subjects, and should be 

considered for future investigation. 

However, fibre type composition in elite Kenyan runners was not different from elite Scandinavian 

runners with both groups having a large proportion of type I fibres (± 70%) (Saltin et al., 1995a). 

Saltin et al. (1995a) did not report any specialised racing distances for either the Kenyan or 

Scandinavian runners and this therefore may have played an important role in the observed fibre 

type distribution. While the Kenyans had a small range in type I fibre proportions (62 – 76%), the 

Scandinavians had a very large variation (43 – 84%). The Xhosa and Caucasian athletes in the 

present study both had large variations in type I fibre distribution within the groups (Xhosa: 31 to 68 
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%; Caucasian: 48 to 81%), but this was still shown to be significantly different because the subjects 

were well matched for PRDA. Similar ranges were observed for the MHC I isoform distribution 

within homogenate muscle samples of the Xhosa and Caucasian groups (Xhosa: 34 to 66 %; 

Caucasian: 43 to 85%).  

The present study had the advantage that it also reports more fibre type subdivisions than the 

previous studies performed on South African athletes. Interestingly, both the current data and the 

Kenyan-Scandinavian study by Saltin et al. (1995a) indicate the presence of some pure type IIX 

fibres within the fibre type distribution in the muscles of both groups. This finding is surprising as it 

is commonly accepted that endurance athletes convert their type IIX fibres fairly easy into type IIA 

(Andersen and Henriksson, 1977; Baumann et al., 1987).  

The fibre type proportions of the Xhosa and Caucasian athletes seem to differ from other studies, 

specifically investigating endurance runners. Harber et al. (2002) analysed the muscle fibre type in 

middle distance (800 m – 1 500 m) and distance runners (3 000 m to 10 000 m). On comparing the 

findings of Harber et al. (2002) to those of the Kenyan athletes by Saltin et al. (1995a), the Kenyan 

athletes had similar fibre type distribution to the longer distance runners of Harber et al. (2002) 

(mean type I fibre proportion ± 72%). However, the type I fibres of Xhosa athletes in the present 

study were more related to that of the middle distance runners of Harber et al. (2002) with the 

Caucasian athletes ranging between middle and distance runners, despite the PRDA of both groups 

averaging 11.6 ± 5.2 km. However, the Xhosa and Caucasian athletes were matched for PRDA and it 

may be that the difference in fibre type distribution between these athletes might be partly related to 

training intensity, which was not assessed directly.  

Another factor playing an important role in power generation is the CSA of muscle fibres (Gollnick 

et al., 1972; Trappe et al., 2003). No differences in CSA and FD were observed between Xhosa and 

Caucasian athletes, which is similar to the findings of Saltin et al. (1995a). Neither were the CSA of 

the fibres associated with PRDA (r = 0.16 and r = 0.23 for type I and II, respectively). 

Lactate and the contributing enzymes 
Two of the main findings in the present study both involved observed differences in variables 

related to lactate metabolism. During the sub-maximal test, Xhosa athletes had lower plasma lactate 

concentrations at 80% PTS. Weston et al. (1999) and Coetzer et al. (1993) both reported lower 

plasma lactate concentrations during sub-maximal exercise tests (~88% of PTS) in black runners 

compared to their white counterparts. Bosch et al. (1990) also showed lower plasma lactate levels 

for black athletes during a simulated marathon on the treadmill, but questioned the physiological 

importance of that finding due to the relatively low values. Saltin et al. (1995b) showed similar 
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observations in Kenyan runners during sub-maximal exercise tests, but proposed that this finding 

may be more related to the effect of altitude, despite the higher fat oxidation capacities in the 

Gastrocnemius muscle of Kenyans that could have explained this. Weston et al. (1999) explained 

the lower plasma lactate in their study by correlations with the higher CS activity found in the 

muscle samples of the black runners compared to white runners. No relationship was found for the 

aforementioned parameters in the present study. 

Enzyme analysis of the Xhosa and Caucasian muscle samples in homogenates revealed higher mean 

LDH activity in Xhosa athletes with no difference in the activities of CS or 3HAD (Figure 4.3). PFK 

activity only tended to be higher in the Xhosa athletes compared to their Caucasian counterparts. 

Furthermore, LDH activity was significantly higher in type I and IIa fibre pools of Xhosa athletes 

compared to the Caucasian athletes, indicating that this was not a fibre type related phenomenon 

(Figure 4.4). The Xhosa athletes did have more type IIA fibres (which in general have higher LDH 

and PFK activities than type I fibres), and this may therefore partly explain the higher LDH and 

PFK activities observed in homogenates (Essen-Gustavsson and Henriksson, 1984). However, as 

mentioned before, the LDH activity in both the pools was higher in Xhosa athletes, thus showing 

that the higher LDH activity in the homogenate samples is not only due to the fibre type. Regression 

analysis revealed that the proportion of MHC IIa could explain only approximately 36% of the 

variation in LDH activity (Figure 4.5A). Because only total LDH activity was measured, it can only 

be speculated that the Xhosa athletes may have different ratios of LDH isozymes, which may 

influence total LDH activity. An increase in isozymes 1 and 2 favours lactate oxidation (van Hall, 

2000) and these were also the isozymes shown to be higher in Kenyan athletes (Saltin et al., 1995a). 

Despite not having analysed the LDH isozyme ratios, plasma lactate at 80% PTS was inversely 

related to LDH activity corrected for fibre type (LDH/MHC IIa). Hence, these muscle 

characteristics influenced the whole body phenotype, although only by approximately 30% (Figure 

4.5D). 

Weston et al. (1999) found that the CS and 3HAD activities were higher in black runners compared 

to whites, and Saltin et al. (1995a) showed higher 3HAD activity in Kenyan runners. These 

enzymes may explain part of the remaining unexplained variability in lactate accumulation, as CS 

and 3HAD promote the oxidation of carbohydrates and FFA, respectively, and theoretically, lower 

lactate production (van Hall, 2000). However, the current data showed no consistent differences in 

CS and 3HAD activities between Xhosa and Caucasian runners in homogenates, and these enzyme 

activities did not correlate with plasma lactate accumulation at 80% PTS. The tendency for the PFK 

activity to be higher in Xhosa athletes suggests a greater carbohydrate flux capacity through the 

glycolytic pathway. This could support the notion that more plasma lactate should be produced at 
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higher exercise intensities in the Xhosa athletes, as the CS activities did not differ between the two 

groups. In contrast to this, plasma lactate concentrations at the same relative intensity (at 80% PTS) 

was lower in the Xhosa athletes compared to Caucasian. Therefore, the data strongly suggest that 

Xhosa athletes utilised their carbohydrate fuel in a better way at high intensity sub-maximal 

workloads. A possible mechanism is that lactate could be metabolised in another fashion (such as 

the proposed lactate shuttle system Brooks (2002)) or that a greater control over the glycolytic 

pathway may exist. One interesting finding was that neither the MHC IIa nor LDH activity showed 

a relationship with plasma lactate at 80% PTS (Figures 4.5B and C). However, once the LDH 

activity and the MHC IIa content were expressed as a ratio (LDH/MHC IIa), a significant 

relationship was observed (P < 0.05, Figure 4.5D), indicating that the higher the LDH activity, 

despite normalised for fibre type, the lower the accumulation of plasma lactate. This may indicate 

indirectly that the function of LDH might be more complex than merely a non-oxidative enzyme 

producing lactate in fast twitch fibres. It also implies that any additional LDH activity, over and 

above that explained by fibre type, may reduce the plasma lactate concentration (at least at 80% 

PTS) (Figure 4.1). Therefore, the only possible mechanism would be promoting lactate oxidation.  

Despite the discussion above providing a plausible explanation for the observed lower lactate 

accumulation in African athletes of East and South African origin, it does not explain whether the 

higher LDH activity is a genetically determined trait or not. The cumulative data of the previous 

studies may support the notion that intensity of training is a factor influencing this and possibly 

other muscle characteristics. Unfortunately, no studies have compared the response of Xhosa and 

Caucasian sedentary subjects during sub-maximal exercise. Recently, Billat et al. (2003) compared 

male Kenyan runners’ training and found that those performing training at higher speeds had a 

significantly higher VO2max and better 10 km performance time than athletes training at lower 

speeds. Similarly, Coetzer et al. (1993) reported that the training per week of black runners 

consisted of more high intensity training than their white counterparts (~40% vs. 20%). Although 

these two studies, particularly that of Billat et al. (2003), quantified training intensity, neither could 

relate it to muscle enzyme characteristics. To fully explain the origin of phenotypic differences 

between populations, it would be necessary in the future to assess training intensity in detail.  

4.5 Conclusions 

In conclusion, Xhosa athletes had higher type IIA- and lower type I fibre proportions and lower 

plasma lactate concentrations at a high sub-maximal exercise intensity than their Caucasian 

counterparts. Furthermore, Xhosa athletes had no difference in muscle oxidative capacity, but had 

higher LDH activities in homogenate samples and in type I and IIa fibre pools. These data support 
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the formulation of two hypotheses: 1) that Xhosa athletes may have a genotypic advantage 

influencing their phenotypic intramuscular profile and racing ability when it comes to the current 

speeds at which distance running events (such as 5 – 15 km races) are run or 2) that Xhosa athletes 

may train at a higher intensity than their Caucasian counterparts, explaining both the low lactate 

phenotype and the dominance of black runners in endurance running events over these distances. 

Whether fibre type and enzymatic differences in skeletal muscle are genotype- or training-

dependent, remains to be proven. Furthermore, another question that arises, is how lower plasma 

lactate concentrations during exercise can be beneficial to enhance performance. 

More studies need to be conducted to elucidate the effect of high intensity training on already well-

trained athletes’ muscle characteristics to determine definitively if the findings of this study are 

related to inherent fibre type differences or a difference in training response in black and white 

athletes. Although only LDH activity differed significantly in the present study, both PFK and LDH 

activities correlated with fibre type, but LDH activity was still higher in pools of type I or IIa fibres 

of Xhosa athletes, which suggest that either training intensity or genotype may have an influence on 

muscle characteristics. 
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Table 4.1  Matching of Caucasian (C) and Xhosa (X) athletes according to usual training volume, 
recent 10 km personal best race time (PB), and average preferred racing distance 
(PRDA). 

Subjects Training 10 km PB PRDA  Subjects Training 10 km PB PRDA 

 km/wk min km   km/wk min km 

C1§ 120 33.5 15.6 ‡ X1§ 110 32.3 7.9 

C2§ 110 30.1 15.5 ‡ X2§ 115 31.6 16.6 

C3 110 32.5 15.6  X3§ 100 34.1 11.0 

C4 110 31.8 15.0  X4 120 30.4 21.1 

C5§ 100 36.2 15.6 ‡ X5 75 34.3 13.1 

C6 100 32.1 7.5 ‡ X6§ 120 31.5 13.1 

C7 80 31.2 11.0  X7§ 65 30.8 15.6 

C8§ 70 34.0 21.1 ‡ X8§ 65 33.3 15.0 

C9§ 60 33.2 10.0 ‡ X9§ 60 33.5 7.50 

C10 60 33.7 5.8 ‡ X10 50 33.5 6.8 

C11§ 60 36.5 5.8 ‡ X11§ 60 36.4 5.4 

C12 60 33.6 1.5  X12 60 33.0 3.0 

C13 45 34.0 15.6 ‡ X13§ 60 33.7 10.0 

Mean ± SD 83 ± 26 33.3 ± 1.8 12.0 ± 5.5   82 ± 27 33.0 ± 1.6 11.2 ± 5.1 

Significance      ns ns ns 

Values are presented as mean ± SD. Statistical analyses were performed using the Wilcoxon signed rank test for 
non-parametric paired data. Racing times in minutes and seconds were converted to minutes and decimals.  
‡ indicates a pair with a complete data set of all subsequent physiological tests and muscle biopsy analyses 
(excluding pools of enzymes). § indicates a subject for whom pools of single fibres were analysed. ns, not 
significant; PB, personal best; PRDA, average preferred racing distance  
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Table 4.2  Subject characteristics and maximal exercise test results of Caucasian and Xhosa 
athletes.  

 Caucasian Xhosa Significance 

Age (years) 21.9 ± 2.0 22.3 ± 2.9 ns 

Weight (kg) 67.8 ± 6.6 59.6 ± 7.4 P < 0.01 

Height (cm) 182 ± 8 172 ± 6 P < 0.01 

BMI (kg/m2) 20.5 ± 1.1 20.1 ± 1.5 ns 

VO2max (mL/min/kg) 68.2 ± 4.5 68.7 ± 5.9 ns 

VO2max (mL/min/kg0.75) 144.3 ± 9.6 145.5 ± 12.5 ns 

VO2max (L/min) 4.6 ± 0.4 4.1 ± 0.3 P < 0.01 

VEmax (L/min) 158 ± 14 145 ± 17 P = 0.07 

VE/VO2 at max 34.4 ± 2.2 35.7 ± 4.4 ns 

RERmax 1.17 ± 0.06 1.17 ± 0.05 ns 

HRmax (beats/min) 192 ± 8 191 ± 9 ns 

PTS (km/h) 22.0 ± 0.9 21.6 ± 1.1 ns 

Values are presented as mean ± SD (N = 13). Statistical analyses were performed using the Wilcoxon 
signed rank test for non-parametric paired data. BMI, body mass index; HR, heart rate; PTS, peak 
treadmill speed; RER, respiratory exchange ratio; VE, minute ventilation; VO2, oxygen consumption  
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Table 4.3 A comparison of Caucasian and Xhosa athletes’ physiological parameters, including 
running economy and metabolic profile relative to peak treadmill speed (PTS).  

 Caucasian Xhosa Significance 

 Economy at 16.1 km/h  

VO2 (mL/min/kg) 55.5 ± 3.8 56.9 ± 3.1 ns 

VO2 (mL/min/kg0.75) 118 ± 8 120 ± 7 ns 

 64% of PTS  

Treadmill speed (km/h) 13.9 ± 0.6 14.0 ± 0.8 ns 

VO2 (mL/min/kg) 49.8 ± 3.0 50.0 ± 2.9 ns 

RER 0.91 ± 0.02 0.91 ± 0.04 ns 

HR (beats/min) 156 ± 8 159 ± 11 ns 

VE (L/min) 83 ± 7 72 ± 9 P < 0.05 

 72% of PTS  

Treadmill speed (km/h) 15.7 ± 0.7 15.8 ± 0.9 ns 

VO2 (mL/min/kg) 54.7 ± 3.5 55.8 ± 2.6 ns 
RER 0.94 ± 0.02 0.96 ± 0.04 ns 
HR (beats/min) 169 ± 8 170 ± 13 ns 
VE (L/min) 98 ± 8 86 ± 10 P < 0.05 

 80% of PTS  

Treadmill speed (km/h) 17.4 ± 0.8 17.5 ± 1.0 ns 

VO2 (mL/min/kg) 58.6 ± 3.4 61.6 ± 3.1 ns 
RER 0.99 ± 0.04 1.00 ± 0.05 ns 
HR (beats/min) 180 ± 5 183 ± 13 ns 
VE (L/min) 116 ± 13 106 ± 14 ns 
Values are means ± SD (N = 10). Statistical analyses were performed using the Wilcoxon signed rank test for 
non-parametric paired data. HR, heart rate; RER, respiratory exchange ratio; VE, minute ventilation; VO2, 
oxygen consumption 

 

 Table 4.4 Cross-sectional area and fibre diameter of Caucasian and Xhosa muscle biopsy 
samples. 

 Caucasian Xhosa Significance 

Cross-sectional area (µm2)      

 Type I 5316 ± 1610 5588 ± 1592 ns 

 Type II 6233 ± 2646 6722 ± 1420 ns 

Fibre diameter (µm)      

 Type I 80.2 ± 11.4 81.2 ± 13.1 ns 

 Type II 86.2 ± 18.0 91.1 ± 9.2 ns 

Values are means ± SD (N =9). Statistical analyses were performed using the Wilcoxon signed rank test 
for non-parametric paired data.  
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Figure 4.1  Plasma lactate concentration during the sub-maximal exercise test in Caucasian and 

Xhosa athletes. Values are means ± SD (N = 12 pairs). Statistical analyses were 
performed using the Wilcoxon signed rank test for non-parametric paired data. * 
different from Caucasian (P < 0.05).  
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Figure 4.2  Fibre types (A, N = 9 pairs) and myosin heavy chain (MHC) isoform content (B, N = 

13) in homogenate muscle samples of Caucasian and Xhosa athletes. Values are means 
± SD. Statistical analyses were performed using the Wilcoxon signed rank test for non-
parametric paired data. * different from Caucasian (P < 0.05).  
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Figure 4.3 Enzyme activities in homogenate samples (N = 9 pairs) of Caucasian and Xhosa 
athletes. Values are means ± SD. Statistical analyses were performed using the 
Wilcoxon signed rank test for non-parametric paired data. * different from Caucasian (P 
< 0.01); † different from Caucasian (P = 0.07). CS, citrate synthase; PFK, 
phosphofructokinase; 3HAD, 3-hydroxyacyl-Co A dehydrogenase; LDH, lactate 
dehydrogenase.   
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Figure 4.4 LDH activities in pools of single fibres and homogenates of Caucasian and Xhosa 
athletes who could not be paired for this analysis. Values are means ± SD. Mann-
Whitney U test for non-parametric unpaired data were used for statistical comparison 
between Xhosa and Caucasian groups. * different from Caucasian (P < 0.05); † 
different from Caucasian (P = 0.05). Sample size is indicated within each bar. LDH, 
lactate dehydrogenase.  
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Figure 4.5  Relationships between homogenate LDH activity and MHC IIa (panel A), 
homogenate LDH activity and plasma lactate concentration at 80% PTS (panel B), 
MHC IIa and plasma lactate concentration at 80% PTS (panel C) and LDH/MHC IIa 
and plasma lactate concentration at 80% PTS (panel D). Relationships were 
determined using the two-tailed Pearson’s correlation test (see text). Pearson’s r: A: r 
= 0.63, P < 0.01; D: r = -0.56, P < 0.05).  
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 CHAPTER 5  

High intensity training intervention in endurance trained athletes 

5.1 Introduction 

High intensity training has been used in conjunction with endurance training for almost a hundred 

years (Billat, 2001a). The world’s best endurance runners and cyclists all have some sort of high 

intensity session incorporated in their weekly training schedule. However, there is little consistency 

in the structure of these sessions. Coaches around the world tend to develop their own programmes 

from experience rather than using scientific backing (Martin and Coe, 1997). High intensity sessions 

could be continuous e.g. short time trials, or could consist of high intensity interval training (HIIT), 

but the latter is more popular among top athletes.  

What is HIIT? 
According to Saltin et al. (1976), a HIIT session consists of five basic characteristics, namely the 

intensity of the intervals (e.g. speed), the time-ratio for high and low intensities (e.g. 3:2 HIIT: rest 

or low intensity recovery), the duration (or distance) at high and low intensities, the difference 

between these intensities (amplitude), and finally, the number of repetitions. Scientists have 

investigated the effects of various HIIT protocols on performance, physiological and biochemical 

markers (for a recent review, see (Kubukeli et al., 2002)). The HIIT protocols for research studies 

are set up according to the aforementioned characteristics, but still vary from moderate to high 

intensity (70 to 100% of maximal oxygen consumption (VO2max)) to supra-maximal intensity (> 

100% VO2max) (Billat, 2001a). Part of the reason for the variation in protocols is because of the 

various types of sporting events that may have different demands, but also because the scientists 

may have proposed that a particular intensity could affect a particular physiological or biochemical 

parameter of interest (i.e. VO2max or fibre type, respectively) (Acevedo and Goldfarb, 1989; Smith 

et al., 2003; Stepto et al., 2002; Weston et al., 1997).  

Typical training protocols of endurance athletes 
Interval training has been studied in endurance runners and cyclists (Billat, 2001a; Neary et al., 

1995; Smith et al., 1999; Weston et al., 1997). It has been suggested that HIIT protocols should be 

developed around the initial velocity associated with VO2max (Vmax) in order to improve the 

resistance to fatigue of already well-trained athletes performing at their VO2max (Billat, 2001a; Hill 

and Rowell, 1997). The maximum time (Tmax) that can be sustained at Vmax before the 

intervention begins was also suggested to be an important parameter in setting up the interval 

duration in an individualised way (see below for test). Smith et al. (1999) investigated the effect of 
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the duration of intervals at Vmax on performance of five middle distance runners who performed 

individualised HIIT on a treadmill for four weeks. Athletes were required to complete six intervals 

per day, twice a week with the interval times varying on a daily basis. The time of each running 

interval was set between 60 and 75% of Tmax, with the rest interval at half the running interval 

time. After the training, all athletes significantly improved their 3000 m time (from 616.6 to 599.6 

seconds, P < 0.05). Furthermore, there was also an improvement in VO2max, Vmax and Tmax. It 

was further concluded, in another generalised, statement that setting the interval time between 60 

and 75% of Tmax at an intensity of Vmax was sufficient to elicit improvements in performance. 

Later, Smith et al. (2003) improved on their previous study by comparing two specific interval 

durations rather than using a range. Well-trained runners performed HIIT on the treadmill for four 

weeks. One group was required to run 6 intervals lasting 60% of Tmax, and a second group five 

intervals lasting 70% of Tmax. The rest:work ratio was set at 1:2. Only the group training at 60% 

Tmax improved overall 3000 m time after the four weeks with no change in VO2max or Vmax in 

either of the groups. It was further suggested by the authors, that the 70% Tmax interval duration 

was too long for their athletes to maintain, since athletes were prone not to finish the training 

sessions. It was therefore suggested that 60% Tmax was the maximum required interval time for a 

HIIT programme associated with Vmax. In the present study, this training protocol was applied, but 

Vmax was set at 94% of maximal treadmill speed achieved during the VO2max test. 

Physiological and biochemical differences between trained and untrained individuals 
It is well known that there are distinct differences between trained and untrained individuals, in 

performance and at the physiological and muscular levels (Gollnick et al., 1972; Holloszy and 

Coyle, 1984; Jansson and Kaijser, 1977; Jurimae et al., 1997; Klitgaard et al., 1990; Parcell et al., 

2003; Prince et al., 1976; Saltin et al., 1977; Simoneau, 1995; Tesch and Karlsson, 1985). Not only 

do untrained individuals have a lower VO2max (Saltin et al., 1977), worse economy during sub-

maximal exercise (Maughan et al., 1986) and highly fatigable (MacRae et al., 1992), they also may 

have less type I fibres with a concomitantly higher proportion of type IIA and IIX fibres (Saltin et 

al., 1977), with low oxidative potential in their muscles compared to trained individuals (Bylund et 

al., 1977). 

Training effects on untrained individuals 
The effects of endurance, sprint, resistance and HIIT training on the physiological and muscular 

adaptations in untrained humans and animals have been well documented. Both cycling or running 

endurance training have been shown to result in an increase in oxidative potential of muscle (e.g. 

citrate synthase (CS) activity, malic enzyme activity, succinate dehydrogenase (SDH) activity and 

cytochrome c concentrations) (Dudley et al., 1982; Gollnick et al., 1973; LeBlanc et al., 2004; Mole 
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et al., 1973; Siu et al., 2003; Stone et al., 1996) with a concomitant increase in VO2max (Bylund et 

al., 1977; Gollnick et al., 1973; MacRae et al., 1992), a decrease in lactate production at the same 

absolute intensity of exercise (Favier et al., 1986; Hurley et al., 1984; MacRae et al., 1992; Spina et 

al., 1996) and improved economy (Franch et al., 1998). Hexokinase, an enzyme responsible for the 

phosphorylation of glucose before it can be metabolised by the glycolytic pathway, has been shown 

to increase in activity after endurance training in both humans and rats, therefore increasing the 

ability to metabolise carbohydrates from the circulating pool (Baldwin et al., 1973; Bylund et al., 

1977; Spina et al., 1996). However, controversy still remains whether glycolytic enzyme activities 

in muscle change due to endurance training (such as phosphofructokinase (PFK) or lactate 

dehydrogenase (LDH) activity) (Baldwin et al., 1973; Bylund et al., 1977; Gollnick et al., 1973; 

Mole et al., 1973). For example, Sjodin et al. (1982) showed that, in already well-trained runners, 

14 weeks of endurance training at an intensity related to the onset of blood lactate accumulation 

resulted in a significant decrease in PFK activity, with no change in LDH activity. Most of the 

literature shows no change in glycolytic capacity (PFK and LDH activities) as a result of endurance 

training (Bylund et al., 1977; Green et al., 1999; Green et al., 1991; Tremblay et al., 1994).  

On the other hand, short sprint exercise or resistance training may have different effects on muscle 

enzyme activities because of a greater need to produce energy very quickly. MacDougall et al. 

(1998) concluded that both glycolytic and oxidative enzyme capacities may increase or remain the 

same with sprint training. However, Dawson et al. (1998) reported a decrease in CS activity with no 

change in PFK activity after six weeks of ten second sprints performed in sets of four to eight, three 

times per week. Although these findings remain unexplained, a weakness of training studies is 

sometimes that the subjects’ pre-study training status is not well described and poorly controlled, 

which may result in differences between studies in muscle adaptation. 

Both sprint and endurance training have significant effects on the muscle fibre type composition in 

untrained individuals, especially on the proportions of fast oxidative type IIA vs. very fast glycolytic 

type IIX fibres. It has been shown that endurance training results in a significant decrease in type 

IIX fibres, with a concomitant increase in type IIA fibres (Andersen and Henriksson, 1977b). 

However, some studies that investigated the effect of endurance training have reported a significant 

decrease in type IIX fibres, with a statistically insignificant change in either type I or type IIA fibre 

proportions (Baumann et al., 1987; O'Neill et al., 1999; Putman et al., 2004). This could be 

explained if subjects responded differently, with some increasing in type IIA and others in type I 

fibres. Studies on chronic low frequency electrical stimulation of rat muscle (stimulation duration > 

3 months) have shown that it is possible to increase type I fibre proportions (Pette and Vrbova, 

1992; Windisch et al., 1998). It may therefore be that the training duration (exposure per week and 
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training weeks) in most human studies was too short for significant conversion of type IIA to type I 

fibres. Sprint training may cause similar changes in fibre type as the aforementioned endurance 

training studies because of the oxidative requirements during the recovery phases between sprints. 

Studies showed that progressive resistance training or sprint cycling decreased type IIX fibres, with 

a concomitant increase in type IIA fibres (Allemeier et al., 1994; Andersen and Aagaard, 2000; 

Williamson et al., 2001). Other studies even showed a significant increase in type I fibres with 

resistance training (Trappe et al., 2000; Williamson et al., 2000). However, change in training may 

result in no change in all the fibre types (Harridge et al., 1998; Trappe et al., 2001; Trappe et al., 

2004). Once again, subject selection and pre-study training regime may be the cause of these 

differing results. Furthermore, an increase in cross-sectional area and capillary supply have also 

been associated with greater power output and oxidative capacity of muscle, respectively, as a result 

of training (Dawson et al., 1998; Gollnick et al., 1973; Green et al., 1991; Jensen et al., 2004; 

Putman et al., 2004; Trappe et al., 2001).  

Effect of HIIT in already well-trained athletes 
Despite the well-established adaptations in performance, physiological and biochemical markers of 

previously untrained individuals exposed to systematic training, the literature is still unclear what 

the effects of HIIT may be in already well-trained endurance runners, both physiological and 

biochemical (the latter including fibre type and metabolism). More studies exist on physiological 

adaptations in runners, than muscle adaptations. Hence, the former will be discussed only from 

results of studies in runners whereas the latter will be discussed from results of studies in other well-

trained athletes. 

In well-trained runners, HIIT resulted in improved economy and reduced plasma lactate 

concentrations at the same absolute sub-maximal intensity (Acevedo and Goldfarb, 1989). Acevedo 

and Goldfarb (1989) only performed whole body physiological assessment, and no muscle biopsies 

were obtained. Only a few studies have investigated the effect of HIIT on muscle adaptation of 

already well-trained athletes, but with large variation in results. Andersen et al. (1994) showed that 

in elite sprinters, three months of heavy resistance training in conjunction with normal sprint 

training improved power output, and significantly decreased both type I and type IIX fibre 

proportions, with a concomitant increase in type IIA fibres. Evertsen et al. (1999), on the other 

hand, showed no change in fibre type proportions in well-trained cross-country skiers after five 

months of HIIT, but showed that SDH activity and performance were increased and PFK activity 

was reduced after the intervention. In contrast, four weeks of HIIT in well-trained cyclists resulted 

in an increase in performance, but no change in enzyme activities (Weston et al., 1997). An 

interesting finding by Sjodin et al. (1982) was that 14 weeks of an additional 20 minute HIIT 
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training per week at an intensity associated with the onset of blood lactate accumulation in well-

trained distance runners, decreased PFK activity, but increased the ratio of the heart specific LDH 

isoform relative to skeletal muscle LDH isoform. This change in LDH isoform expression promotes 

lactate to pyruvate conversion (van Hall, 2000), which may be indirect support for the lactate shuttle 

(Brooks, 2000). In a recent review by Kubukeli et al. (2002), the authors suggested that more 

training intervention studies need to be performed on already well-trained athletes to understand the 

biochemical adaptations in muscle and changes in whole-body physiology. Furthermore, no study 

has thoroughly investigated the effect of HIIT intervention on both muscle fibre type and enzyme 

activities in already well-trained endurance runners.  

Therefore, the aim of the present study was to thoroughly investigate physiological markers of 

performance and muscle characteristics, which included enzyme activities in homogenates and 

pools of single fibres before and after a six week HIIT training intervention in well-trained 

endurance runners. The HIIT intervention was based on the training programmes described by Billat 

(2001a) and Smith et al. (2003) (see methods section for a discussion of the HIIT protocol). 

Furthermore, this study aimed to shed light on the controversies in the literature regarding 

adaptations in physiology and muscle in already well-trained athletes by including a larger group of 

athletes than typically used in previous studies.  

5.2 Methodology 

5.2.1 Subject recruitment and training volume assessment 

The study was approved by the Ethics committee of Sub-Committee C of Research Administration 

of the University of Stellenbosch. Fifteen endurance runners were recruited from local athletic 

clubs. Athletes were informed about the possible risks of the study. Each athlete signed a written 

informed consent. Athletes were excluded if they were not actively competing in races, had a 10 km 

road race personal best time (PB) of more than 39 minutes, and any illness or injury for the past six 

months. 

Each athlete completed a detailed questionnaire including various subject characteristics and 

reported favourite race distance for the following three running disciplines: road, track and cross-

country. A recent 10 km PB was reported for the previous three months before testing commenced. 

An average preferred race specialisation distance (PRDA) was calculated for each athlete by taking 

the average of the three favourite distances, one for each of the three disciplines mentioned above. 

In some cases, athletes participated in only two of these disciplines, but no athletes competed in 

only one.  
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Athletes recorded race distances and times, the type of training, total distance run and the duration 

of training sessions in training diaries provided. The recording period started two weeks before the 

training intervention (before HIIT) and included the laboratory exercise tests. Training was also 

recorded during the HIIT programme and after HIIT until the end of the testing period, and included 

laboratory training and testing. The average training for the two training periods was calculated and 

expressed as distance per week.  

All athletes took part in a 10 km field test prior to the commencement of the HIIT programme. All 

athletes performed the field test on the same day to assess their current 10 km performance status 

under the same racing conditions. The simulated race was run in the evening and athletes were 

verbally encouraged to perform their best. Water was supplied during the race. Due to a staggered 

entry into the actual laboratory training phase (with up to 4 weeks between subjects, no 10 km field 

test was held after the HIIT intervention. Within 4 weeks, the first subjects may have started to 

detrain and the last subjects would have had a different level of tapering compared to the subjects 

who started in the middle. 

5.2.2 Laboratory exercise testing 

All athletes were familiarised with treadmill running before any testing was performed. Exercise 

tests and muscle biopsies were performed on separate days, allowing recovery from previous testing 

for at least two days. Athletes were encouraged to be well rested and to abstain from races and only 

perform short duration low intensity training prior to the day of testing.  

VO2max testing and peak treadmill speed 
A maximal exercise test was performed before and after the HIIT programme. Athletes performed 

an incremental exercise test to fatigue on a treadmill (RunRace, TechnoGym, Italy), with continuous 

measurement of heart rate (Polar, Finland), oxygen consumption (VO2), respiratory exchange ratio 

(RER) and minute ventilation (VE) (Jaeger Oxycon Pro, Germany) throughout the test. Athletes 

were allowed a five minute warm-up on the treadmill before testing started. All athletes started the 

test at 14 km/h (flat gradient) for 30 seconds, whereafter the intensity was increased by 0.5 km/h 

every 30 seconds until fatigue set in. Athletes were said to have attained their maximal ability when 

two of the following criteria were fulfilled: (a) heart rate within 5 beats/min of theoretical age-

predicted maximal heart rate (220 – age) (b) RER value greater than 1.10 and (c) a plateau in VO2 

(Staab et al., 2003). Whenever two of these criteria were not fulfilled, athletes had to perform the 

same test on the next visit and were encouraged verbally to perform better. (Refer to appendix A for 

details.) Peak treadmill speed in km/h (PTS) was calculated as follow taking every second into 

account:  
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Sub-maximal exercise test and blood sampling 
Prior to the sub-maximal test, athletes were fitted with an intravenous catheter (Jelco 22G, Johnson 

& Johnson) and a three-way stopcock that were flushed with saline containing 0.04% heparin 

(Heparin Novo, Novo Nordisk, South Africa). Athletes were then allowed five minutes of treadmill 

running warm-up and brief stretching. 

The sub-maximal workloads corresponded to 64, 72 and 80% of each individual’s baseline PTS and 

were termed workload 1, workload 2 and workload 3, respectively. An absolute workload 4 was 

added to the test, where all athletes ran at 20 km/h. Athletes ran for five minutes at each workload 

and breath-by-breath measurements were recorded. After each workload, the athlete used the 

railings of the treadmill to lift himself off the treadmill and placed his feet on opposite sides of the 

belt. Three millilitres of blood were collected in a sealed test tube containing fluoride oxalate 

(Vacutainer, BD, UK), mixed and stored on ice. After a period of 1 minute of rest, the intensity was 

increased to the next workload and the athlete commenced running. Directly after the final workload 

was completed and the blood sample taken, additional blood samples were collected at 3, 6, 12, 15 

and 18 minute time-points, post running. Blood was centrifuged directly after the test at 3 000 rpm 

and the plasma stored at -87 °C until analysis. The same absolute workloads were used for the sub-

maximal test after the HIIT programme. (Refer to appendix A for details.) 

Muscle biopsies 
A needle biopsy was obtained from the Vastus lateralis muscle in a rested condition using the 

suction-assisted technique described by Evans et al. (Evans et al., 1982) at baseline and after the 

HIIT programme. The biopsy site was at the same depth (2 cm) and in a similar position for all 

athletes, corresponding to one third along the total length of the upper leg, distal to the hip joint. The 

biopsy was split into three parts, two frozen in liquid nitrogen for homogenate and single fibre 

analyses, and the third was mounted in embedding medium (Jung Tissue Freezing Medium, Leica 

Instruments, Germany) and rapidly frozen in iso-pentane, pre-cooled with liquid nitrogen. All 

biopsy samples were stored at -87 °C. 

5.2.3 High intensity training intervention 

The HIIT programme was based on those described by Billat (2001a; 2001b) and Smith et al. (1999; 

2003), with some modifications. Interval training speed (ITS) was calculated as 94% of the PTS 

from the maximal exercise test of each athlete, instead of the initial speed associated with the onset 

of maximal VO2, as PTS has been shown to correlate better with 10 km performance than VO2max 
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(Noakes et al., 1990). To determine the duration of intervals, athletes visited the laboratory on a 

separate day from testing and warmed up at a low intensity on the treadmill for five minutes. After 

adequate rest was allowed, athletes were instructed to run as long as possible at their calculated ITS. 

Athletes were verbally encouraged to run as long as possible and the time was recorded (Tmax). Tmax 

at 94% PTS was 290 ± 58 seconds, with a mean speed at 94% PTS of 20.1 ± 0.7 km/h. 

Training interval duration was calculated as follows: 60% x Tmax. The minimum interval duration 

was 114 seconds and the maximum was 213 seconds. The duration of the recovery interval was set 

at half of the calculated high intensity interval time. Therefore, the HIIT programme was defined as:  

6 x intervals at ITS for 60% Tmax with ½ (60% Tmax) as recovery 

Athletes visited the laboratory twice a week (minimum one day rest in between sessions) for six 

weeks and performed the HIIT programme on a treadmill. No adjustments were made to the ITS or 

the recovery duration. The projected number of intervals to be completed per athlete was 6 intervals 

per session x 2 sessions per week x 6 weeks = 72 intervals.  

5.2.3 Biochemical analyses 

Plasma lactate concentration 
Plasma lactate concentrations (mmol/L) were determined using a commercially available kit 

(Lactate PAP, bioMérieux sa, France) and a spectrophotometer (Biotek Instruments, USA) set at 

505 nm. The kit relies on the principle of an enzymatic conversion of plasma lactate, resulting in a 

detectable colour that is lactate concentration dependent. Values are expressed as mean ± SD. 

Muscle morphology 
Fibre typing of muscle samples was based on the method by Brooke & Kaiser (Brooke and Kaiser, 

1970). Three serial cross-sections (10 µm) were cut onto glass slides and placed into pre-incubation 

medium set at exactly pH 4.30, 4.60 and 10.30, whereafter the samples were visualised and 

photographed (Nikon CoolPix Microscope system, Japan). Fibres were identified as either types I, 

IC, IIC, IIAC, IIA, IIAX or IIX according to the staining intensities described by Staron (1997), and 

expressed as a percentage of the total number of fibres counted. In this study, fibre types IC, IIC and 

IIAC proportions were pooled and termed type I/IIA because of low counts in each of the 

aforementioned subgroups. An average of 271 ± 113 fibres were analysed per sample. Values are 

expressed as mean percentage ± SD. 

Cross-sectional area (CSA, µm2) and fibre diameter (FD, µm) were determined using a computer 

software programme (SimplePCI ver 1.0, Nikon, Japan) on the same slides photographed for fibre 
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typing. Fibres were divided into two groups, namely type I (pure type I fibres only) and II, the latter 

comprising of fibre types I/IIA, IIA, IIAX and IIX. An average of 87 ± 40 type I and 68 ± 27 type II 

fibres were analysed per sample.  

Capillary count 
A capillary count for each biopsy was determined on histological slides using the amylase-PAS 

stain of Andersen and Henriksson (1977a). Slides were photographed and capillaries surrounding an 

average of 82 ± 32 fibres were counted. Values are expressed as the average number of capillaries 

around a fibre without taking into account fibre type or size.  

Enzyme activities in homogenate muscle samples 
Muscle biopsy samples previously frozen in liquid nitrogen, were freeze-dried overnight. A small 

piece was weighed, crushed in a test tube and 400 µL chilled 100 mM potassium phosphate buffer 

(pH 7.30) was added per 1 mg sample. Samples were kept on ice and sonicated (Virtis Sonicators, 

USA) three times for ten seconds on ice, with a ten second delay between intervals. 

LDH and CS activities were determined in homogenate using the fluorometric methods described by 

Essen-Gustavsson and Henriksson (1984), with slight modifications. These modifications were 

mainly a reduction in reagent and sample volumes to accommodate the microplate reader (Biotek 

Instruments, USA). The enzyme reagent was always 250 µL and the sample volume 5 µL and 3 µL 

for the CS and LDH assay, respectively. Enzyme assay reactions were performed for five minutes at 

room temperature with readings taken at 30 second intervals (refer to Appendix B for protocol and 

calculation details). Enzyme activities are expressed as µmol/min/g dry weight (dw). 

Single fibre identification and enzyme activities 
Single muscle fibres were dissected from freeze-dried samples in a humidity controlled room (40% 

humidity, 20 °C). A total of 3009 (mean of 150 ± 26 fibres per sample) fibres were dissected. A 

small piece of each fibre was cut off, transferred to a capillary tube containing sodium dodecyl 

sulfate (SDS) denaturing buffer and left overnight to dissolve. The remaining piece was sealed and 

stored in a labelled glass capillary tube at -87 °C. Identification of the fibre types was carried out 

electrophoretically. Myosin heavy chain (MHC) isoform content of each fibre was determined using 

SDS polyacrylamide gel electrophoresis (SDS-PAGE) according to the method of Talmadge and 

Roy (1993) with β-mercaptoethanol added to the upper running buffer to a concentration of 0.03 M 

prior to electrophoresis (Blough et al., 1996). Electrophoresis was carried out using a mini-gel 

system (Bio-Rad, USA) for 16 hours at constant 70 volts at 4 °C. Gels were silver stained 

(Amersham, Sweden) and fibres identified as expressing either pure MHC I, IIa or IIx, or hybrid 

fibres expressing both MHC I and MHC IIa (I/IIa), or MHC IIa and MHC IIx (IIa/IIx).  
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LDH activities in pools of type I and pools of type IIa fibres were determined for each subject. The 

pooled fibres were weighed on a microbalance (Cahn 25 electro-balance), calibrated with known 

weights. Pool weights ranged between ~40 and ~100 µg. After weighing, the samples were 

transferred to a micro tube, and 400 µL chilled 100 mM potassium phosphate buffer (pH 7.30) was 

added per 1 mg sample. Sonication was only carried out once for 10 seconds to prevent enzyme 

activity loss. Enzyme activity determinations were carried out in the same way as for the 

homogenate samples. (Refer to Appendix B for detail on the single fibre dissection, determination 

of fibre type and enzyme activities.) Enzyme activities are expressed as µmol/min/g dw. 

5.2.5 Statistical analyses 

Statistical comparisons between data from before and after the HIIT programme were performed 

using the Wilcoxon signed rank test for non-parametric paired data. A one-way ANOVA with a 

Bonferroni correction was performed on the plasma lactate results obtained during the recovery 

phase after the sub-maximal exercise tests. Significance for all analyses was set at P < 0.05. 

Correlation coefficients were calculated using the two-tailed Pearson's correlation test. 

5.3 Results 

The number of intervals completed varied during the initial weeks of the HIIT intervention, as 

athletes found it difficult to complete all six intervals. However, as the weeks progressed, the 

athletes were able to complete all intervals. The athletes completed 55 ± 15 intervals (average 

interval time lasting 2.7 ± 0.8 minutes) at an average ITS of 20.1 ± 0.7 km/h. Both total running 

time and total distance for the HIIT intervention were calculated and means were 160 ± 46 minutes 

and 54 ± 17 km, respectively. 

Body mass and BMI did not change after the HIIT programme (Table 5.1). Training distance per 

week was also unchanged between the two testing periods. HIIT replaced certain daily training 

sessions of the total training performed per week, but amounted to only ~17 % of the total training.  

PTS increased significantly (P < 0.01), and VO2max expressed relative to body mass, only showed a 

trend to have increased (P = 0.07) after the HIIT intervention (Table 5.2). No changes in RERmax, 

HRmax, VO2max (expressed as mL/min) or VEmax were observed. 

Table 5.3 and Figures 5.1 and 5.2 report the sub-maximal exercise testing before and after the HIIT 

programme at workloads 1, 2 and 3. Before HIIT, workloads 1 to 3 were set relative to individual 

PTS. After the HIIT intervention, the same absolute speeds were used despite a change in PTS in 

order to assess improvement in physiological measurements at the same workloads. VO2 (mL/min) 
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and VO2 expressed per body mass (mL/min/kg) did not change after the HIIT intervention, but VO2 

expressed as percentage of VO2max was significantly reduced at all three workloads (Table 5.3 and 

Figure 5.1). Similarly, heart rate at each workload was also significantly reduced after the HIIT 

intervention (Figure 5.2). Plasma lactate showed a trend to be lower at workload 1, but was 

significantly increased at workload 2, with no change at workload 3. No changes in RER or VE were 

observed after the intervention. 

Some athletes (N = 6) were able to complete 20 km/h (workload 4) before and after the HIIT 

programme, whereas the remaining nine athletes were unable to finish this workload before the 

training intervention. Therefore, the six athletes’ results at workload 4 were analysed separately 

from the remaining nine. Those who completed both time periods, showed a significant decrease in 

their heart rate and VE, with no change in RER, VO2 (mL/min/kg) or plasma lactate concentration 

(Table 5.4A). However, this group of athletes showed a reduction in their plasma lactate at 3 and 6 

minutes during the recovery phase, with no change at the later time points (Figure 5.3A).  

The remaining nine athletes had no change in VO2, heart rate or RER, but VE and the duration at 

workload 4 were significantly higher after the HIIT intervention (Table 5.4B). No change in 

recovery plasma lactate was observed after the HIIT intervention (Figure 5.3B). 

Analyses of histological sections revealed that only the proportion of type I/IIA fibres significantly 

decreased after the HIIT intervention (P < 0.05) (Table 5.5). No change was observed for the 

remainder of the fibre types. CSA, FD and capillary counts were not altered by the HIIT 

programme.  

The fibre type proportions calculated from single fibres identified by electrophoresis were slightly 

different from those identified in histological sections (Table 5.6). No statistical difference was 

observed between the proportions of these fibre types before and after the intervention. The change 

in fibre type proportion (After – Before HIIT) determined from MHC content of single fibres was 

calculated for each athlete and is presented in Figure 5.4 as delta values reported as mean ± SD.  

Figures 5.5 and 5.6 show the significant relationships (P < 0.05) between training speeds of the 

HIIT programme and the change in type I fibres and change in type IIa/IIx hybrid fibres, 

respectively. Although there was a linear correlation between delta I and training speed, the 

relationship may be more closely described as a threshold effect, which decreases in type I 

proportions occurring only with ITS > than 20 km/h. There was a clearer continuum for the delta 

IIa/IIx. 
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No change in CS activity was observed before (28 ± 6 µmol/min/g dw) and after (22 ± 9 

µmol/min/g dw) the HIIT intervention. The activity of LDH in pools of type I and IIa fibres, as well 

as in homogenate, is reported in Figure 5.7. A trend was observed for LDH activity to have 

increased after the HIIT intervention in type IIa fibre pools (P = 0.06), with no change in type I 

pools or homogenate samples. 

5.4 Discussion 

The main findings of this study were that systematic, supervised HIIT in already well-trained 

athletes altered performance, metabolism and some intramuscular characteristics. The most 

significant changes were increased maximum performance (PTS and time to fatigue at 20 km/h) and 

lower heart rate at sub-maximal exercise intensities after the HIIT programme. Although neither 

VO2max nor economy improved significantly, the VO2 as a percentage of maximum at sub-maximal 

workloads declined significantly. Significant adaptations in skeletal muscle were not seen for the 

whole group, however type I/IIa hybrid fibres declined in histological samples. Furthermore, a 

tendency was observed for LDH activity to have increased in type IIa fibre pools after the HIIT 

intervention. 

Smith et al. (1999) showed that four weeks of HIIT significantly increased VO2max in trained 

runners. Similar increases in VO2max were observed in runners after six weeks (Franch et al., 1998) 

and four months (Tanaka et al., 1986) of HIIT. HIIT significantly increased the PTS, with VO2max 

only showing a trend to have increased after the HIIT intervention in the current study (Table 5.2). 

The weight of the athletes did not change (Table 5.1), indicating that the effect of HIIT was directly 

on oxygen consumption. In contrast, other studies have shown that HIIT may not improve VO2max 

or PTS, but may only improve field test performance as was shown by Acevedo and Goldfarb 

(1989), Billat et al. (1999) and Sjodin et al. (1982). Differences between studies may be due to pre-

intervention training status. Demarle et al. (2003) showed that VO2max and PTS only increased in 

subjects who had a relatively low training volume, whereas no change was observed in well-trained 

athletes. The fitness level of the athletes in the present study varied and there was also a wide 

variety of 10 km times during the field test (range between 31.0 to 39.0 minutes). This may partly 

explain why VO2max did not increase significantly, but PTS did. 

Although maximal heart rate showed no change (Table 5.2), the sub-maximal exercise tests revealed 

that after the HIIT programme, athletes were able to run at a lower heart rate at the same absolute 

workload (Figure 5.2). Franch et al. (1998) and Billat et al. (1999) both showed a reduced heart rate 

at sub-maximal intensity after HIIT, and this may therefore be one of the major physiological 

adaptations associated with HIIT. Similarly, since VO2max showed a tendency to have increased, 
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the %VO2max values at workloads 1 to 3 were lower after HIIT. Sjodin et al. (1982) also showed 

that after 14 weeks of HIIT, athletes ran at a lower percentage of their VO2max at the same speed. 

These adaptations to HIIT in the current study may have contributed to the improved performance at 

20 km/h and to the higher PTS. 

Plasma lactate concentration is known to decrease in response to training (Acevedo and Goldfarb, 

1989; MacRae et al., 1992). However, in the present study, the plasma lactate concentration was 

only reduced at the lowest workload, but was higher at workload 2 with no difference at workload 3 

(Table 5.3). It may be that the fitness level and training distance per week of the athletes were too 

widespread. As a result of this possibility, the athletes from the present study were divided into two 

groups: those who were able to finish workload 4 at both time points (Table 5.4A) and those who 

could not (Table 5.4B). The group who were able to finish both time points at workload 4, showed a 

significant decrease in their heart rate and VE after the training intervention. Plasma lactate 

concentration after this workload, although not statistically different, seemed to be lower (7.1 ± 1.5 

vs. 5.3 ± 1.9; P = 0.21) and lack of significance may be attributed to the low subject number. 

However, during the recovery phase, plasma lactate was significantly reduced at 3 and 6 minutes 

(Figure 5.3A). These findings indicate that the training intervention in these athletes elicited a 

significant change in lactate disappearance.  

On the other hand, the group that was unable to finish workload 4, showed no change in heart rate. 

VE was higher after the training intervention, with plasma lactate concentrations showing a trend to 

have increased. The explanation for this may merely be a result of the significantly longer time 

spent at this workload. Plasma lactate concentrations were also not reduced during the recovery 

phase (Figure 5.3B).  

Overall, no change in fibre type proportions were observed for type I, IIA, IIAX and IIX, with the 

exception of type I/IIA hybrid fibres (Table 5.5). It is possible that the latter finding may be merely 

a methodological error, as no change was observed when using fibre proportions identified by the 

single fibre method (Table 5.6). However, more fibres are counted during histological analysis and 

there is evidence for decreases in hybrid fibre proportions with training interventions. Recently, 

Putman et al. (2004) investigated the effect of 12 weeks of combined strength and endurance 

training in humans and found that fibres co-expressing more than one isoform (hybrid fibres) 

decreased for type I/IIa and type IIa/IIx hybrid fibres. Also, the MHC isoform IIa was increased and 

MHC IIx was decreased. It may therefore be argued that the training period of the current study was 

too short to elicit significant fibre type alterations. However, the training speed itself may also have 

played a role in determining whether fibre types switched or not (from slow to fast or vice versa), as 
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was shown in Figures 5.5 and 5.6. Although not measured, the possibility also arises that the mRNA 

transcripts for the switch in MHC isoforms were already present, but that on protein level, the 

transformation was not detected yet. Andersen and Schiaffino (1997) reported that a large variation 

in mRNA and the relevant protein levels exist as a result of training or detraining. Although not 

significant, a pattern was observed when considering the change in fibre type (after – before) 

(Figure 5.4). The resultant picture gives the impression that with HIIT, a possible pattern for fibre 

type switch may be a decrease in type I with a concomitant increase in type IIa and IIa/IIx fibres. 

This pattern is similar to those found in studies investigating resistance or sprint training (Andersen 

et al., 1994; Putman et al., 2004). Progressive resistance and sprint training for three months have 

both resulted in an increase in the number of type IIA fibres with a concomitant decrease in type IIX 

fibres (Andersen et al., 1994; Williamson et al., 2001). 

The function of hybrid fibres is not yet established, but in a review by Stephenson (Stephenson, 

2001), it was proposed that these fibres may be transitional (caught in the act of converting to a pure 

fibre type) or that they may serve a purpose of “fine tuning” for optimal muscle performance. 

Andersen et al. (1994) reported that after three months of intense strength and interval training, both 

pure type I and type IIa/IIx hybrid fibres showed a tendency to convert to type IIa. The same pattern 

was observed by Williamson et al. (2001) and Putman et al. (2004) after the same period of 

progressive resistance training. The present data, however, suggest that, in trained endurance 

runners, the speed of the interval training is crucial for predicting the change in type I and type 

IIa/IIx fibres (Figures 5.5 and 5.6). These data show that with an increase in training intensity, type I 

fibres may be converted to a faster type. Similarly, with an increase in training intensity, type IIa/IIx 

hybrid fibre populations might increase. These latter findings strengthen the possible fibre type 

conversion pattern proposed in Figure 5.4. Careful consideration of data in Figures 5.5 and 5.6 

shows that the actual speed of interval training may be more important in determining the direction 

of fibre type change than a speed set relative to capacity. Athletes for whom 94% of PTS fell below 

20 km/h tended toward no change in type I and a decrease in type IIa/IIx proportions, whereas the 

clearer changes occurred in those athletes who performed HIIT at ≥ 20 km/h. No relationships were 

found between the remaining fibre types. 

Fibre CSA and capillary supply can improve muscle power and the supply of oxygen to the muscle, 

respectively (Jensen et al., 2004; Putman et al., 2004). These adaptations were recently 

demonstrated in response to high intensity strength training. Putman et al. (2004) showed a 

significant increase in CSA after 12 weeks of strength training in both type I and IIA fibres, but only 

in type IIA fibres of subjects performing a combination of strength and endurance training. Jensen et 

al. (2004) showed an increase in muscle capillary to fibre ratio after four weeks of two high 
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intensity interval training programmes at workloads corresponding to 90% and 150% VO2max. 

However, the present study showed no change in CSA or capillary supply as a result of HIIT (Table 

5.5). The reason for this may be that the studies by Putman et al. (2004) and Jensen et al. (2004) 

used untrained subjects, whereas in the present study, the subjects were already well-trained. The 

CSA and the number of capillaries around a fibre in the current study were high when compared to 

data from previous studies (Coggan et al., 1990; Saltin et al., 1977). The possibility arises that well-

trained athletes already have adapted their CSA and capillary supply. 

Similarly, CS activity was not altered after the HIIT intervention. The present study is the first to 

have investigated LDH activity in pools of identified fibre types before and after HIIT. LDH activity 

in type IIa fibre pools showed a tendency to have increased in response to the HIIT intervention, 

with no change in either type I fibre pools or homogenate LDH activities. Sjodin et al. (1982) found 

no change in LDH activity in homogenate samples after 14 weeks of HIIT in well-trained marathon 

runners. The present data suggest that as a result of the HIIT, more type IIa fibres need to be 

recruited, therefore increasing the demand for ATP production. However, as no relationships were 

found between LDH activities and plasma lactate, it is not clear what the physiological effect might 

be of this adaptation. For example, it is not clear if the much debated lactate shuttle system was 

affected (Brooks, 2000; Brooks, 2002; van Hall, 2000). The lactate shuttle system is based on the 

hypothesis that lactate, produced in muscle fibres may be re-converted to pyruvate, either within the 

same fibre or by adjacent fibres (Brooks, 2000). This pyruvate may then enter the tricarboxylic acid 

cycle to be metabolised.  

5.5 Conclusion 

Six weeks of HIIT elicited significant enhancements in both performance, physiological and 

biochemical variables in trained endurance athletes. It is proposed that HIIT of high enough absolute 

speed might significantly decrease the number of type I fibres, and even increase type IIa/IIx hybrid 

fibres. Furthermore, training at high intensity relative to each athlete’s capacity may result in a 

decrease in type IIa/IIx fibre proportions if the absolute speed is not sufficient for the opposite 

effect. HIIT may also enhance metabolic pathways, especially the metabolism of lactate. However, 

longer training periods are proposed with larger subject numbers. Moreover, more studies are 

needed to elicit the finding of higher LDH activity in type IIa fibres, focussing on the metabolic 

adaptations associated with HIIT. 

Recent studies on the cellular signalling pathways responsible for muscle adaptations may elicit 

more information on the adaptation to HIIT in future studies. Schiaffino and Serrano (2002) have 

suggested that fibre type may be regulated by calcineurin activity, whereas the cell size is regulated 
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by mTOR, the latter being a crucial required signalling step for the activation of protein synthesis. 

Similarly, other pathways involving peroxisome proliferator-activated receptor δ (PPAR δ) have 

been shown to be actively involved in fibre type, metabolism and overall improvement in endurance 

performance albeit in rodents (Suwa et al., 2003; Wang et al., 2004). It may therefore be that some 

of these activators are enhanced because of HIIT, and needs to be included in future studies. 
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Table 5.1  Subject characteristics of athletes: before and after high intensity interval training 
(HIIT).  

 Before HIIT After HIIT Significance 

Age (yrs) 22.3 ± 2.1    

Height (cm) 177.4 ± 8.2    

Weight (kg) 65.0 ± 9.5 64.6 ± 9.1 ns 

BMI 20.5 ± 1.7 20.4 ± 1.5 ns 

PRDA (km)* 10.4 ± 4.2    

10 km time field test (min) 35.2 ± 2.7    

      

Average training (km/wk) 50.7 ± 23.8 52.7 ± 25.8 ns 

 HIIT (km/wk)   9.0 ± 2.7  

Data are presented as mean ± SD (N = 15). Statistical analyses were performed with the Wilcoxon signed 
rank test for non-parametric paired data. BMI, body mass index. Training per week before the HIIT 
programme was for two weeks, which also included the exercise tests. Training during the HIIT intervention 
included both treadmill training and exercise tests. * average preferred racing distance: average of the two or 
three race distances, one for each discipline (track, road, cross-country) in which each athlete competed.  

 

 

Table 5.2  Maximal exercise tests: before and after high intensity interval training (HIIT). 
 Pre HIIT Post HIIT Significance 

PTS (km/h) 21.2 ± 0.7 22.3 ± 1.1 P  < 0.01 

VO2max (mL/min/kg) 67.2 ± 4.9 69.5 ± 2.6 P = 0.07 

VO2max (mL/min) 4327 ± 491 4461 ± 575 ns 

RERmax 1.15 ± 0.03 1.15 ± 0.03 ns 

HRmax (beats/min) 190 ± 7 187 ± 7 ns 

VEmax (L/min) 155 ± 17 159 ± 20 ns 

Data are presented as mean ± SD (N = 15). Statistical analysis was performed with the Wilcoxon signed 
rank test for non-parametric paired data. HR, heart rate; RER, respiratory exchange ratio; PTS, peak 
treadmill speed; VE, minute ventilation; VO2, oxygen consumption  
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Table 5.3 Sub-maximal exercise tests: before and after high intensity interval training (HIIT).  
 Before HIIT After HIIT Significance 

 Workload 1: 13.5 ± 0.5 km/h  

% VO2max 75.0 ± 5.1 71.4 ± 4.3 P < 0.01 

VO2  (mL/min) 3243 ± 397 3190 ± 488 ns 

RER 0.90 ± 0.03 0.90 ± 0.02 ns 

VE (L/min) 81 ± 11 81 ± 11 ns 

Plasma lactate (mmol/L) 2.0 ± 0.7 1.7 ± 0.6 P = 0.06 

 Workload 2: 15.2 ± 0.5 km/h  

% VO2max 82.8 ± 5.6 79.7 ± 4.8 P < 0.05 

VO2  (mL/min) 3582 ± 470 3557 ± 514 ns 

RER 0.94 ± 0.03 0.94 ± 0.03 ns 

VE (L/min) 97 ± 12 98 ± 13 ns 

Plasma lactate (mmol/L) 2.1 ± 0.9 2.5 ± 1.0 P < 0.05 

 Workload 3: 16.9 ± 0.6 km/h  

% VO2max 89.7 ± 5.5 86.9 ± 5.3 P < 0.05 

VO2  (mL/min) 3879 ± 481 3874 ± 542 ns 

RER 0.98 ± 0.04 0.96 ± 0.03 ns 

VE (L/min) 115 ± 15 114 ± 17 ns 

Plasma lactate (mmol/L) 4.6 ± 1.8 4.2 ± 2.0 ns 

Data are presented as mean ± SD (N = 15). Statistical analysis was performed with the Wilcoxon signed rank 
test for non-parametric paired data. Each data point (except lactate) was calculated as the average from the 
last minute data set at each workload. HR, heart rate; RER, respiratory exchange ratio; VE, minute 
ventilation; VO2, oxygen consumption; % VO2, percentage of maximum oxygen consumption  
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Table 5.4A Physiological response during a set absolute workload in athletes who were able to 
complete 5 minutes: before and after high intensity interval training (HIIT). 

 Workload 4: 20 km/h  

 Before HIIT After HIIT Significance 

VO2 (ml/min/kg) 65.2 ± 4.7 66.6 ± 4.3 ns 

HR (bts/min) 187 ± 11 178 ± 10 P < 0.05 

RER 1.06 ± 0.03 1.03 ± 0.03 ns 

VE (l/min) 146 ± 20  138 ± 20 P < 0.05 

Plasma lactate (mmol/L) 7.1 ± 1.5 5.3 ± 1.9 ns 

Data are presented as mean ± SD (N = 6). Statistical analysis was performed with the Wilcoxon signed rank 
test for non-parametric paired data. Each data point (except lactate) was calculated as the average from the 
last minute data set at each workload. HR, heart rate; RER, respiratory exchange ratio; VE, minute 
ventilation; VO2, oxygen consumption  

 

Table 5.4B Physiological response during a set absolute workload in athletes who were unable to 
complete 5 minutes: before and after high intensity interval training (HIIT). 

 Workload 4: 20 km/h  

 Before HIIT After HIIT  

Time (min) at workload 1.8 ± 0.8 3.3 ± 1.2 P < 0.05 

VO2 (ml/min/kg) 61.2 ± 6.7 65.6 ± 2.2 ns 

HR (bts/min) 189 ± 8 186 ± 6 ns 

RER 1.02 ± 0.10 1.08 ± 0.03 ns 

VE (l/min) 135 ± 29 148 ± 16 P < 0.05 

Plasma lactate (mmol/L) 7.4 ± 2.6 8.5 ± 2.4 P = 0.07 

Data are presented as mean ± SD (N = 9). Statistical analysis was performed with the Wilcoxon signed rank 
test for non-parametric paired data. Each data point (except lactate) was calculated as the average from the 
last minute data set at each workload. The time parameter includes 3 x 5 minute workloads performed prior 
to the workload at 20 km/h. Only two athletes were able to complete the 5 minute workload after the HIIT 
intervention. HR, heart rate; RER, respiratory exchange ratio; VE, minute ventilation; VO2, oxygen 
consumption  
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Table 5.5 Histological analyses of skeletal muscle biopsies for fibre type, cross-sectional area, 
fibre diameter and the number of capillaries around a fibre: before and after high 
intensity interval training (HIIT).  

 Before HIIT After HIIT Significance 

Fibre type (%)      

 Type I 55.5 ± 15.9 52.1 ± 15.3 ns 

 Type I/IIA 8.5 ± 10.4 1.3 ± 1.6 P < 0.05 

 Type IIA 31.7 ± 8.6 36.1 ± 15.3 ns 

 Type IIAX 2.4 ± 2.3 3.6 ± 4.1 ns 

 Type IIX 1.9 ± 2.3 6.8 ± 11.4 ns 

CSA (µm2)      

 Type I 4463 ± 1125 3893 ± 870 ns 

 Type II 5366 ± 1579 4643 ± 1165 ns 

FD (µm)      

 Type I 73.9 ± 8.7 69.1 ± 8.1 ns 

 Type II 80.6 ± 11.6 75.5 ± 9.5 ns 

Number of capillaries 
around a fibre  5.9 ± 0.9 5.6 ± 1.2 ns 

Data are presented as mean ± SD. Statistical analysis was performed with the Wilcoxon signed rank test for 
non-parametric paired data. Sample size for all was N = 12, except capillaries with N = 13. CSA, cross-
sectional area; FD, fibre diameter 

 
Table 5.6 Fibre type determined from MHC isoform content in single fibres: before and after 

high intensity interval training (HIIT).  
Fibre type Before HIIT After HIIT Significance 

Type I 49.0 ± 19.7 41.6 ± 13.4 ns 

Type I/IIa 7.3 ± 4.7 6.9 ± 4.2 ns 

Type IIa 32.6 ± 15.0 35.7 ± 17.8 ns 

Type IIa/IIx 6.3 ± 5.7 10.6 ± 8.9 ns 

Type IIx 3.8 ± 6.1 4.3 ± 5.7 ns 

Type Iax 0.5 ± 0.8 0.6 ± 0.7 ns 

Type Ix 0.9 ± 2.1 0.3 ± 0.8 ns 

Total Hybrids 14.9 ± 7.5 18.4 ± 9.5 ns 

Data are presented as mean ± SD (N = 10). Statistical analysis was performed with the Wilcoxon signed rank 
test for non-parametric paired data.  A total of 3009 fibres were dissected. MHC, myosin heavy chain 

 



 171

  

 

45

47
49

51
53

55

57
59

61
63

65

64% 72% 80%
Percentage of PTS

V
O

2 
(m

L/
m

in
/k

g)

Before HIIT
After HIIT

 
Figure 5.1 Oxygen consumption during the sub-maximal exercise test: before and after high 

intensity interval training (HIIT). Data are presented as mean ± SD (N = 15). 
Statistical analysis was performed with the Wilcoxon signed rank test for non-
parametric paired data. * Different from Before HIIT (P < 0.05).  
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Figure 5.2  Heart rate during the sub-maximal exercise test: before and after high intensity 

interval training (HIIT). Data are presented as mean ± SD (N = 15). Statistical 
analysis was performed with the Wilcoxon signed rank test for non-parametric paired 
data. * Different from Before HIIT (P < 0.01). 
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Figure 5.3  Plasma lactate concentration during the recovery phase after the sub-maximal 
exercise test in: A. athletes that completed 5 minutes at 20 km/h before and after HIIT 
(N = 6), B. athletes that was unable to complete 5 minutes at 20 km/h before HIIT (N 
= 9). Data are presented as mean ± SD. Statistical analysis was performed by one-
way ANOVA with a Bonferroni correction. * Different from Before HIIT (P < 0.05). 
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Figure 5.4 Change in fibre type composition due to the effect of high intensity interval training. 

Data are presented as mean ± SD (N = 10). Change (delta) was calculated by 
subtracting the before values from the after HIIT for each athlete. Connection line 
only included for visual aid. 
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Figure 5.5 Relationship between change in fibre type I distribution and speed of training on the 

treadmill. Pearson’s r and significance: r = -0.70, P < 0.05.  
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Figure 5.6 Relationship between change in fibre type IIa/IIx distribution and speed of training on 

the treadmill. Pearson’s r and significance: r = 0.68, P < 0.05.  
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Figure 5.6  Lactate dehydrogenase activities in pools of single fibres and homogenate muscle 
samples: before and after high intensity interval training (HIIT). Data are presented 
as mean ± SD. Values in white boxes represent sample number. Statistical analysis 
was performed with the Wilcoxon signed rank test for non-parametric paired data. † P 
= 0.06. dw, dry weight. 
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Chapter 6 

Final conclusion and future studies 

6.1  Summary, general interpretation and conclusions 

The main focus of this study was on the plasticity of skeletal muscle enzyme activity and MHC 

isoforms in the context of normal physiological activity, as opposed to extreme models such as 

paralysis or 24 hour stimulation which assess the boundaries of plasticity. It was therefore necessary 

to link the tissue characteristics to functional performance in order to investigate associations and 

possible adaptations. 

The main finding of Chapter 2 was that there are large regional variations in the muscle 

characteristics, of representative proteins involved in contraction (MHC) and metabolism (CS 

activities) within a muscle group localised in one area of the body (upper hind-limb Quadriceps). 

When analysing the three middle sections (superficial, middle and deep), as expected, the superficial 

regions were more associated with fast contracting fibres, with a concomitantly low oxidative 

potential. However, the deep region of the QF muscle contained both fast and slow contractile 

capabilities, reflected by the expression of all four MHC isoforms, despite high CS activity. 

Longitudinal variation is seldom investigated, especially not assessing both MHC and CS activity to 

determine the extent of co-adaptation. A novel finding for this muscle group was that the variation 

in MHC isoform expression also varied significantly across the length of the muscle, but that CS 

remained the same, also indicated by the poor relationships observed between oxidative capacity 

and the MHC isoforms. These findings highlight the importance of proper standardisation of the 

sampling site for comparative studies, and indicate that CS activity is not tightly linked to slow 

contractile protein expression. The latter statement could be explained that mitochondria content of 

fibres is partly independent of fibre type, and may largely be influenced by muscle activity. It may 

also imply that the regulation of slow twitch MHC expression is independent of mitochondrial 

biogenesis. The two signalling proteins, namely calcineurin and PPAR δ have been discussed in 

section 1.5. An increase in calcineurin activity has been shown to elicit MHC I isoform expression. 

Whether this signalling protein is involved in mitochondrial biogenesis, is still under investigation. 

The muscle of transgenic mice over expressing PPAR δ revealed a high quantity of type I fibres as 

well as the number of mitochondria compared to wild type mice (Wang et al., 2004). Whether they 

function independently or in conjunction with each other, are still under investigation. However, 

these molecules may also play a significant role in fibre type regionalisation.  
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Chapter 3 focused on comparing the muscle characteristics of human recreationally active subjects 

to those of runners. This study was specifically designed so that each group consisted of subjects 

with a range of habitual activities to enable the assessment of relationships. As expected, there was a 

negative relationship between the number of hybrid fibres co-expressing MHC IIa and IIx and 

training volume in runners. Similarly, training hours in recreationally active subjects also showed 

the same relationship. Although linear relationships might have been expected, a novel finding was 

that exponential curve fitting resulted in a higher R2 value than linear regression. This indicates that 

a critical amount of training (volume) or intensity level (PRDA) is required to be sufficient to 

activate or inhibit MHC IIa or MHC IIx gene transcription in the same fibre. Another main finding 

was that the exponential relationship between MHC IIa/IIx hybrid fibres and PRDA in runners was 

even better than training volume. These relationships were not found for the hybrid fibres co-

expressing MHC I and MHC IIa in either of the groups. It therefore seems that the intensity of 

exercise and the volume of contraction both play an important role in the occurrence of MHC IIa/IIx 

hybrid fibres, whereas the proportion of the MHC I/IIa hybrid fibres remains unexplained. This 

finding indicates that MHC IIx or MHC IIa gene regulation is more sensitive to muscle contraction 

intensity, rather than the duration of muscle activation at a lower intensity. In order for calcineurin 

activation to promote MHC I gene expression, it is required that a constant concentration of Ca2+ be 

present in the fibres (Olson and Williams, 2000). It may therefore be argued that high intensity force 

contractions, with longer periods of relaxation, do not have the ability to activate calcineurin, but to 

rather promote fast isoform expression. 

The genotype of an individual has been proposed to play a significant role in the phenotypic 

characteristics of skeletal muscle. Chapter 4 focussed on athletes from two distinct ethnic 

backgrounds (Xhosa and Caucasian athletes). Matching closely for training volume, performance 

and relative exercise intensity (PRDA), it was found that Xhosa athletes had significantly more type 

IIa fibres, with concomitantly lower type I fibre proportions. Plasma lactate was lower in the Xhosa 

athletes at 80% of their peak treadmill speed, but muscle analysis showed higher LDH activity in the 

Xhosa athletes, a finding that was confirmed by single fibre pool enzyme analyses. This can be 

partly explained by the lactate shuttle model proposed by Brooks (Brooks, 2000). Three hypotheses 

have been proposed namely: (1) that lactate produced in the muscle is transported to other organs or 

tissues and metabolised, or (2) that lactate produced in i.e. type II muscle fibres is transported to 

adjacent type I fibres who may have the ability to process the acquired lactate, or (3) that the fibre 

has the ability to metabolise its own lactate during contraction. All three hypotheses can be applied 

to the results obtained in Chapter 4, but additional analyses of i.e. monocarboxylate transporters 

would be required. Alternatively, Xhosa athletes may have a genetic advantage in fuel metabolism, 
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resulting in the lower plasma lactate accumulation, secondary to enhanced muscle adaptation despite 

similar training. However, an alternative hypothesis is that the Xhosa athletes trained at a higher 

intensity and that the findings are an adaptive response. Therefore, the case is not closed regarding 

black and white athletes. The following chapter therefore investigated the effect on muscle of an 

increase in the intensity of training.  

High intensity interval training (HIIT) has previously been shown to increase performance, but also 

to elicit distinct adaptations in muscle and metabolic fuel utilisation. In Chapter 5, the main findings 

were that the training resulted in an improvement of physiological markers for performance, such as 

peak treadmill speed and VO2max. Similarly, sub-maximal indicators of significant adaptations 

included a plasma lactate decrease at the lowest workload of the sub-maximal exercise test, with 

heart rate that decreased at all sub-maximal workloads after HIIT. Muscle fibre type did not change 

significantly after the HIIT programme. However, the general pattern for the change in fibre type 

indicated that a possible switch from type I to type IIa may become evident with more subjects or a 

longer intervention duration at the higher HIIT speeds. This was confirmed by a significant negative 

relationship between the change in type I fibre proportions and absolute interval training speed, as 

well as a positive relationship between interval training speed and type IIa/IIx hybrid fibres. Enzyme 

activities in pools of single fibres also showed only a trend to have increased in LDH activity in type 

IIa fibre pools (P = 0.06), with no significant increase in the homogenate LDH activity or the type I 

pools. This adaptation indicates that the capacity to produce lactate from carbohydrate may be 

increased only in type IIa fibres as a result of HIIT. This finding does not shed light on the higher 

LDH activity found in homogenate samples and type IIa and type I fibre pools of Xhosa athletes, 

which may indicate a gene-environment interaction influencing LDH expression in black endurance 

runners. Alternatively, training intensity was responsible for the difference in Chapter 4, but Chapter 

5 could not prove this conclusively. 

Final thought... 

One aspect that distinguishes humans from animals is competitive motivation, outside of the areas 

of mating, nutrition or life-and-death situations. This aspect is very difficult to quantify, but is very 

important. In fact, the human brain is so powerful that it may override pain or let muscles generate 

great power. Legend has it that a man was able to lift an 800 kg steel door from his child’s leg – 

afterwards it took 10 men to lift that same door! Of course, in this example, stress hormones may 

inhibit pain receptors, and the signal for hormone release came from the external situation which 

was unlike sporting competition. What drives the human to ultimate sporting performance may also 

not be based only on genetic, physiological or biochemical advantage, but may start in the athlete’s 

head. As Kayser (Kayser, 2003) stated – “Exercise starts and ends in the brain”. Nonetheless, 
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despite current trends to study e.g. neurobiology in sport, it remains relevant to have a full 

understanding of muscle adaptations to modern training methods, and even to influence training 

methods based on scientific evidence. 

6.2 Limitations 

There are various methods of identifying the exact fibre type of muscle samples, e.g. ATPase 

histochemistry, antibodies directed against the MHC isoforms, homogenate and single fibre SDS-

PAGE. Each method has limitations and advantages, but the most crucial for all these methods is the 

question of “how much is enough”? How many total fibres need to be counted to represent an 

accurate measure of the fibre type of a muscle? At a recent workshop on muscle analytical 

techniques (ECSS 2003, Salzburg, Austria), J.L. Andersen commented that counting 200 ± 20 fibres 

per biopsy sample for ATPase histochemistry and immunohistochemistry, should give an 

appropriate account of the fibre type in humans. However, it was also pointed out that these 

methods mentioned do not correspond to each other when two or more methods were used on the 

same biopsy. This problem mainly seems to occur when hybrid fibres are misclassified. Harber et 

al. (Harber et al., 2002) showed that by using only 80 – 85 single fibres per sample (identified by 

single fibre gel electrophoresis), the fibre type proportions resembled similar proportions to those 

calculated from ATPase histochemistry in long distance endurance athletes. However, the 

relationships between the two methods started to decline, especially in type IIX / MHC IIx 

proportions, as the preferred racing distance of the athletes decreased. Similar comparisons were 

made by Andersen et al. (Andersen et al., 1994) in well-trained sprint athletes. It almost seems that 

the more hybrid fibres and IIX fibres are expected, the more fibres should be counted and this may 

become a problem as the sample sizes of human biopsies are very small (± 50 – 80 mg).  

Single fibre dissection and electrophoresis are extremely time-consuming. Dissecting of 100 – 150 

fibres may take up to 8 hours (for the experienced hand). Furthermore, many gel electrophoresis 

systems are necessary to analyse many samples simultaneously and to complicate matters further, 

adequate separation of the MHC isoforms requires an electrophoresis time of at least 16 hours. 

However, this technique allows multiple experiments to be performed on the same fibre, such as 

subsequent analysis of the enzyme activities in identified pure pools. The enzyme activities in pools 

of identified fibre type may be a more accurate way of assessing metabolic capacity, as homogenate 

samples may contain more connective tissue, which can be misleading when analysing the end 

results. The influence of fibre type may also obscure the influence of training.  

The variation between these two methods is depicted in Figure 6.1. The data was compiled from 

those in Chapters 4 and 5 and clearly shows a significant difference between fibres identified as type 
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I and the two hybrid fibre populations. Emphasis is once again placed on the misclassification of 

fibre populations using the ATPase method, but low fibre numbers (single fibre SDS-PAGE 

method) can also contribute to these variations. Biopsy samples may also vary substantially in the 

number of fibres it contains, and would generally result in a Type II error. Staron (Staron, 1997) 

pointed out that this type of error may contribute as much as 10% of overall analyses.  
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Figure 6.1.  Comparison of fibre type proportions obtained from ATPase histochemistry vs. single 

fibre electrophoresis. Graphic was compiled from the data of Chapters 4 and 5. 
Different: * P < 0.05; ** P < 0.01. 

One of the major limitations investigating training models in humans is the number of subjects. 

Investigating already well-trained athletes, fulfilling specific criteria and willing to participate, can 

be a major challenge even before the experiment commences, especially when the population of 

these athletes are low. Training individuals under the same controlled conditions and at a specific 

intensity may also be limited by the training equipment available. One of the possible explanations 

for the small variations in muscle fibre type and enzyme activities (Chapter 5) can be attributed to 

the duration of the training intervention. Six weeks may have been insufficient to elicit significant 

adaptations in the muscle. Therefore, a longer training period is suggested. However, performance 

markers did change significantly, which shows that the protocol itself was successful. Furthermore, 

** 

** 

* 
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a control sedentary group in Chapter 4, consisting of Xhosa and Caucasian subjects, would have 

strengthened the results found the enzyme and fibre type profiles. Therefore, it is strongly 

recommended that a control group be included in future studies.  
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APPENDIX A 

Physiological assessment 

A.1  Maximal oxygen consumption in humans 

Maximum oxygen consumption (VO2max) is performed using a treadmill (TechnoGym, Italy), heart 

rate monitor (Polar, Finland), oxygen (O2) and carbon dioxide (CO2) analyser (Jaeger OxyCon Pro, 

Germany). Before any treadmill test, subjects must be familiarized with treadmill running. This 

usually occurs on a separate day. Subjects are allowed a warm up period of 5 minutes and a 5 

minute stretching session before commencing the test. Subjects must be instructed to always give 

their best and during the test, they must be verbally encouraged in order to reach their absolute 

maximum.  

A.1.1 VO2max test 

The method was adapted from Weston et al. (1999). Thirty minutes prior to the test, the OxyCon 

must be switched on to allow the machine to warm up. This step is crucial as the internal 

components are sensitive to heat and can lead to errors in the concentration calculations of O2 and 

CO2. Ambient conditions (air pressure and ambient temperature) are calibrated using the automatic 

function provided by the OxyCon software. A set volume of air is calibrated by using the automatic 

function. Because ambient air contains ± 21% O2 and the expired air of an individual contains less 

O2, calibrating with a known O2 is not recommended (manufacturer’s instructions). However, 

expired CO2 of an individual is always more than ambient air, and a calibration gas containing 5% 

CO2, balanced with nitrogen (Afrox, South Africa) is used to calibrate for CO2. However, the CO2 

concentration is very important for accurate measurement and it is recommended that the calibration 

gas be analysed to two decimal places (e.g. 4.96% CO2). 

Before the test is initiated, the subject is fitted with a heart rate monitor (Polar, Finland) to measure 

heart rate and a mask fitted with a turbine. The mask should fit comfortably with no air leakage 

between the mask and skin. Connected to the turbine are infrared sensors which allows for the 

registration of the fins of the turbine to calculate the volume of air. The sensors relay the signal to 

the OxyCon. Also connected to the turbine is a small tube that allows expired air to be collected by 

the OxyCon for analyses of O2 and CO2 content.  

The starting velocity for all subjects is set to 14 km/h. The subjects must be instructed to stand with 

their feet straddled over the treadmill, and when instructed to start, the subject must lower himself 
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on to the treadmill and start running. This is to ensure that the subject still has control over his 

movement. Similarly, the OxyCon software is started to record the data. After 30 seconds of 

running, the speed of the treadmill is increased with 0.5 km/h. This cycle continues until exhaustion 

sets in. Expired gas concentrations and volume are measured every 10 seconds throughout the test. 

Peak treadmill speed (PTS) and VO2max, respiratory exchange ratio (RER), minute ventilation (VE) 

and heart rate are calculated automatically by the OxyCon. 

A.1.2 Criteria for obtaining VO2max  

 The following criteria are used to obtain a true estimate of VO2max for each subject: (Staab et al., 

2003) 

1)  was the RER greater than 1.10? 

2)  did the VO2 plateau?  

3)  and was the heart rate at maximum for the subject within 5 beats per minute of the 

theoretical maximum heart rate (220 – age)?  

At least two of the above criteria must be fulfilled to obtain a true VO2max. If this is not the case, 

the test must be repeated on a separate day. 

A.2  Sub-maximal exercise test in humans 

The purpose of this test is to determine the efficiency of utilising fuel at sub-maximal running 

intensities of each athlete. The parameters include VO2, RER, heart rate, VE and plasma lactate 

concentrations. The method was adapted from Coetzer et al. (1993) and Weston et al. (1999; 2000). 

For each subject, intensities are calculated according to the PTS obtained during the VO2max test 

(see section A.1). The intensities are 64%, 72% and 80% of the PTS. An additional workload was 

added during the HIIT programme (Chapter 5) of 20 km/h. 

Prior to the warm-up and test, a venous catheter is inserted into the forearm and a resting blood 

sample obtained (see section B.2). Subjects are allowed a 5 minute warm up and 5 minute stretching 

period whereafter the mask, oxygen analyser and heart rate monitor are fitted. The mask should fit 

comfortably with no air leakage between the mask and skin. Subjects start the test at 64% and run 

for 5 minutes. After the intensity, a blood sample is collected in a fluoride oxalate test tube 

(Vacutainer, BD, UK) and stored on ice. For more details on blood sampling and lactate analyses, 

see section B.2. The procedure is repeated until the final workload has been completed.  
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A.3  Training logs and questionnaires  

Subjects supplied the type of training completed over a period of 7 months in a normal diary 

(Chapter 5). This included races performed, kilometres and time during training and relative 

intensities. In order to asses in the analyses of the muscle biopsies and fitness level of the subject, 

training history assessment was also included (Chapters 3 and 4).   

A.4  10 km field test 

For recruitment of subjects for the study in Chapter 5, a 10 km field test was conducted. All 

potential subjects participated in this race. The route was carefully measured using a standard 

measuring wheel and markings were placed at each kilometre. Subjects ran together and during the 

race, they were verbally encouraged. Water was supplied at the 3, 5 and 7 km mark. Race times 

were recorded and logged. 

A.5  High intensity interval training (HIIT) programme 

The training intervention programme is based on studies conducted by Smith et al. (1999; 2003), 

Hill and Rowell (1997) and Billat (2001a; 2001b), but with modifications. The principle is as 

follows: each subject has a distinct speed where maximum VO2 is reached, but the subject may 

increase the speed with no further increase in VO2. The initial speed associated with the VO2max, is 

termed Vmax. However, this value was found to correspond to ± 94% of the subjects PTS. 

Therefore, the intensity of the training was set at 94% PTS for each athlete. 

In order to determine training time, the subject must perform an additional test on a separate day and 

run as long as possible at Vmax. This is termed Tmax. Smith at al. (2003) determined that 60% of 

Tmax is the minimal interval training time, with a session containing 6 intervals per day. Therefore, 

a session was: 

 6 x 60% Tmax at 94% PTS, with ½(60% Tmax) as recovery period 

This is performed twice a week for 6 weeks. 

A.6  Muscle biopsy – site, cutting and freezing 

Each human subject underwent a muscle biopsy. The method was based on those from Bergström 

(1962) and Evans et al. (1982).  A qualified medical practitioner must perform the biopsies. Local 

anesthetic (Xylotox: Lignocaine HCl 2% (m/v) containing Noradrenaline 1:80 000, Adcock Ingram) 

is injected at the site of the biopsy whereafter a cut is made with a sterile scalpel blade. A sterilised 

biopsy needle (Stille, Sweden) is inserted into the cut; suction applied and with a quick thrust of the 
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inner part of the biopsy needle, a piece of muscle is removed. The wound is attended to by the 

doctor and subjects must be advised not to train for at least 2 consecutive days. Applying a quick 

thrust ensures that the piece of muscle do not slip out from the needle. Cutting too slow also causes 

internal bruising and delays the healing process.  

The specific site of each biopsy is determined by allowing the subject to stand up straight with arms 

adducted down the side. A mark is made on the Vastus lateralis muscle, directly beneath the thumb. 

This ensures that the site for each subject was always at the same ratio. 

Part of the muscle sample is mounted on a wetted piece of cork marked with the sample 

identification and date on the opposite side. The muscle piece is covered with tissue embedding 

medium (Jung Tissue Freezing Medium, Leica Instruments, Germany) and frozen in iso-pentane 

pre-cooled by liquid nitrogen. The remaining piece of muscle is divided into two parts and frozen in 

liquid nitrogen. Samples must be stored at -87 °C until analyses.  

A.7  Muscle sampling and processing of rat skeletal muscle 

Rats are decapitated and the quadriceps muscle excised. The muscle is then oriented to reveal 

proximal, distal, superficial and deep regions. A string is tied around the base with the knot facing 

towards the superficial-distal part. The whole muscle is then submerged into liquid nitrogen for at 

least 2 minutes to allow complete freezing and stored at -87 °C until analyses.  

To divide the muscle into the 9 sections, allow the muscle to thaw slightly (see Figure 2.1 of 

Chapter 2). This makes cutting easier. Divide the muscle into the 9 sections, whereafter processing 

the muscle for enzyme analyses and SDS-PAGE can be performed. 
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A.8  Examples 

Example A.8.1 Partial table of a maximum oxygen consumption exercise test (VO2max) results 
obtained from the Jaeger OxyCon Pro.  

Mpho Yanah  VO2max Pre-Training      
Identification: MYX200301 Date of Birth: 16/04/1983        

Last Name: Yanah First Name: Mpho        
Race: Xhosa Sex: male        

Height: 171  cm Weight: 56  kg        
Age: 20  Years Rel. Weight: 78%        
BSA: 1.65  m2 Date: 13/08/2003        

FEV 1: 4.14  l FVC: 4.86  l        
Temperature: 21  °C Baro. pressure: 1009  hPa                 

PTS: 21.7          
Time  
 [min] 

V'E   
[l/min] 

BF   
[1/min] 

VO2/kg   
[ml/min/kg] 

V'O2  
 [ml/min] 

V'CO2  
 [ml/min] RER   

HR   
[1/min] 

FEO2 
[%] 

FECO2 
  [%] PTS 

00:10 32 51 19.3 1073 932 0.87 90 17.16 3.39 13.5 
00:20 42 40 29.7 1646 1336 0.81 126 16.36 3.88  
00:30 41 31 38.5 2135 1427 0.67 136 15.05 4.24 14.0 

.... .... .... .... .... .... .... .... .... .... .... 
07:20 131 66 75.8 4207 4934 1.17 190 16.83 4.65 20.8 
07:30 129 67 74.6 4140 4891 1.18 190 16.85 4.66 21.0 
07:40 138 67 76.1 4222 5069 1.20 190 17.01 4.53 21.2 
07:50 141 68 75.8 4209 5105 1.21 187 17.09 4.47 21.3 
08:00 141 69 75.4 4184 5125 1.22 190 17.12 4.47 21.5 
08:10 142 69 75.4 4185 5174 1.24 196 17.12 4.50 21.7 
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Example A.8.2 Graph showing the oxygen consumption per kilogram (mL/min/kg) of a sub-

maximal exercise test (Chapters 4 and 5). Arrows indicate the time points where 
blood withdrawal took place for lactate analyses. Each workload was set to 64, 72 
and 80% PTS with the final workload set to 20 km/h. 
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Appendix B 

Biochemical analyses of muscle and blood samples 

B.1  Myosin heavy chain (MHC) isoform separation of human and rat 

skeletal muscle with SDS-PAGE 

B.1.1 Introduction 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is an effective protein 

separation technique. SDS contains a hydrophobic tail and a polar head region. The principle of this 

technique is that combining SDS with proteins, the quaternary structure of proteins is disrupted and 

proteins denature. Because of the hydrophobic tail of SDS, it incorporates itself into the 

hydrophobic parts of the denatured protein. Furthermore, the polar negative head region gives the 

protein an all over negative charge allowing the protein to migrate according to size when loaded 

onto a polyacrylamide gel subjected to an electric current.  

The MHC is a large protein (± 220 kD) and conventional electrophoresis is unable to separate the 

isoforms into distinct bands. Through the years, the compositions of the gels and electrophoresis 

conditions have changed in order to successfully separate the isoforms. The procedure below was 

adapted from Andersen et al. (1994), Talmadge and Roy (1993) and Blough et al. (1996) and were 

used in Chapters 2 to 5. 

B.1.2 SDS-sample preparation 

Muscle samples are placed in a sample buffer containing 10% glycerol, 5% β-mercap-toethanol, 

2.3% SDS, 62.5 mM Tris buffer pH 6.80, and 0.02% bromophenol blue. Samples are mixed and 

heated for 10 minutes in a water bath at 60 °C. After heating, the samples are allowed to cool down 

and stored at -87 °C. Prior to loading onto the gel, thaw and boil the samples again for 2 minutes at 

100 °C.  

In order to save on human tissue, muscle homogenates prepared for enzyme analysis may be used 

for MHC isoform determination (see section B.3). The protein content of each sample is first 

measured in the homogenate samples using the Bradford method (see section B.7). For the proper 

band intensity on the gels, samples are then diluted with SDS-buffer according to the staining 

intensity table in section B.1.8.   

To prepare single fibres for SDS-PAGE, see section B.6. 
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B.1.3 Chemicals and solutions used 

Separating gel stock solutions Stacking gel 

100% Glycerol 100% Glycerol 

30% Acrylamide-bis-acrylamide (50:1) 30% Acrylamide-bis-acrylamide (50:1) 

1.5 M Lower Tris buffer pH 8.80  0.5 M Upper Tris buffer pH 6.80 

10% SDS 10% SDS 

1 M Glycine 0.1 M EDTA pH 7.0 

10% Ammonium persulfate (APS) 10% Ammonium persulfate (APS) 

TEMED TEMED 

  
Electrophoresis running buffer 

Inside running buffer Outer running buffer 

150 mM Glycine 75 mM Glycine 

100 mM Tris 50 mM Tris 

0.1% SDS 0.05% SDS 

 

B.1.4 Gel electrophoresis equipment 

All equipment was purchased from Bio-Rad Laboratories (USA).  

B.1.5 Separating gel 

The separating gel had a final concentration of 8% acrylamide, 0.16% bis-acrylamide, 0.4% SDS, 

0.2 M Tris (pH 8.8), 0.1 M glycine and 30% glycerol. The table below depicts the volumes of stock 

solutions used to make the separating gel for one large (16 cm in length, 1 mm spacers) or two mini 

gels (0.75 mm spacers). 

Solution 1 x Large gel 2 x Mini gels 

100% Glycerol 7.50 mL 3.00 mL 

30% Acrylamide-bis-acrylamide (50:1) 6.70 mL 2.70 mL 

1.5 M Lower Tris buffer pH 8.8 3.35 mL 1.33 mL 

10% SDS 1.00 mL 0.40 mL 

1 M Glycine 2.50 mL 1.00 mL 

dH2O 3.75 mL 1.50 mL 

* 10% APS 250 µL 100 µL 

* TEMED 20 µL 5 µL 

Total volume 25.07 mL 10.05 mL 
* Should be added last after degassing of solution 
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Procedure: 

1. Clean the glass plates and spacers with dH2O followed ethanol. 

2. Assemble gel sandwich as described in the manufacturer’s manual. 

3. Use a permanent marker to indicate the top of the separating gel (use the comb as a guide). 

4.  Add the stock solutions together in a glass beaker and add the glycerol last. 

5.  Mix well. 

6.  Degas the separating gel solution for 10 minutes. 

7.  Add the APS and stir for 30 seconds. 

8.  Add TEMED and stir for 10 seconds 

9.  Rapidly transfer the separating gel solution between the glass plates using a pipette. 

10. Add iso-butanol on top of the separating gel and allow polymerisation for 30 minutes.  

B.1.6 Stacking gel 

The stacking gel has a final concentration of 4% acrylamide, 0.08% bis-acrylamide, 0.46% SDS, 

0.125 M Tris (pH 6.8) and 4 mM EDTA. The maximum number of wells per gel for adequate MHC 

separation is a 20-well comb for a large gel and a 15-well comb for a mini gel. The table below 

depicts the volumes of stock solutions used to make the stacking gel for one large gel and two mini 

gels.  

Solution 1 x Large gel 2 x Mini gels 

100% Glycerol 1.50 mL 500 µL 

30% Acrylamide-bis-acrylamide (50:1) 667 µL 220 µL 

0.5 M Upper Tris buffer pH 6.8 700 µL 235 µL 

10% SDS 200 µL 65 µL 

0.1 M EDTA pH 7.0 200 µL 65 µL 

dH2O 1.68 mL 560 µL 

* 10% Ammonium persulfate (APS) 50 µL 15 µL 

* TEMED 10 µL 3 µL 

Total volume 5.01 mL 1.66 mL 
* Should be added last 

 Procedure: 

1. Add the stock solutions to a beaker (or test tube) and mix well. 

2. After the 30 minutes polymerisation time for the separating gel, remove the iso-butanol and 

rinse with dH2O. Remove excess water with strips of filter paper. 
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3. Clean the combs with dH2O followed by ethanol and pat dry. Insert the combs between the two 

glass plates. 

4. Add the APS to the stacking gel solution and mix for 30 seconds. 

5. Finally, add the TEMED and mix for 10 seconds. 

6. Using a pipette, transfer the stacking gel solution between the glass plates. Make sure that no 

bubbles form under the well. 

7. Allow to set for 1 hour. 

8. Prepare the electrophoresis running buffers as follow: 

 

 Final concentration gram / 1 000 mL 

Inside running buffer 150 mM glycine 11.25 g 

 100 mM Tris 12.1 g 

 0.1% SDS 1 g 

   

Outer running buffer Dilute 1 part inside running buffer with 1 part dH2O 
 Cool buffers to 4 °C. The pH of the buffers can be disregarded. 

9.  After 1 hour, gently remove the combs.  

10. Number the bottom of the wells with a permanent marker. If more than one gel is to be run, 

mark each gel too. 

11. Clamp the gel sandwiches to the cooling core of the electrophoresis apparatus (as shown in the 

manual). 

12. Fill the inside buffer dam with inside running buffer. 

B.1.7 Loading and electrophoresis 

Prepare samples as described under SDS-sample preparation. 

1. Use a syringe (e.g. Hamilton), and transfer the required volume to each well. NB. Use the guide 

in section B.1.8 for a reference of MHC band intensities. For single fibres, use the following 

volumes: 

System No of wells / gel Volume 

Large gel system 15 25 µL 

 20 20 µL 

Mini gel system 10 15 µL 

 15 10 µL 

2. Between each sample loading, rinse the syringe three times with dH2O. 
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3. After all samples have been loaded, fill the outer running buffer chamber with outer running 

buffer and gently insert the gel core into this chamber. 

4. Add 400 µL (for large gel system) or 150 µL (for mini gel system) β-mercaptoethanol to the 

inside running buffer and fill completely to the top with inside running buffer. 

5. Close the lid and place the gel unit in a cold room (4 °C). Alternatively, a Styrofoam box filled 

with ice can be used.  

6. Apply constant 70 V and run the mini gels for 16 hours (or over night) and large gel system for 

not less than 24 hours. 

B.1.8 Staining and analysis 

Gels are stained using a silver staining kit (PlusOne, Pharmacia) in the case of single fibres or 

Coomassie Brilliant Blue R250 in the case of homogenate samples. After staining, the gels are 

scanned using a transparency scanner (or densitometer) and images stored on a computer. For 

adequate scanning, resolution of the scanning software should be set between 400 and 600 dots per 

inch (dpi).  

The following chart was developed in order to project good band resolution and to avoid under- or 

overloading of the SDS-samples (Kohn et al., unpublished data) 

Total Protein (ng) loaded Silver stain Coomassie R250 

5   

10   

15   

20   

100   

500   

1 000   

5 000   

15 000   

Key to table 1 
Not detected Seen with eye, but not 

detected by scanner 
Relatively 
scanned 

Perfect 
intensity 

Relatively 
overloaded 

Overloaded 
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B.1.9 MHC content of homogenate samples 

Homogenate samples containing two or three isoforms (showing two or three distinct bands), are 

further analysed using a densitometry software package (Cream 1D, KEM-EN-TEC, Denmark). The 

bands are expressed as a percentage of the total of two or three bands. For further detail, see the 

example in section B.1.11. 

B.1.10 Factors influencing MHC separation 

Because of the long electrophoresis duration, two issues arise that may influence band resolution, 

namely denaturing of proteins and heat generation. The first problem is overcome by the addition of 

β-mercaptoethanol to the inside running buffer prior to electrophoresis (Blough et al., 1996). 

Uneven heat distribution across the thickness of the gel results in slanted bands (also known as 

ghost bands or the Venetian blind effect). Because of the MHC IIa and MHC IIx bands that are 

close together, this effect may result in misinterpretation of the overall MHC distribution in the 

sample. Figure B.1.10.1 illustrates the Venetian blind effect. 

 
Figure B.1.10.1  The Venetian blind effect (also known as ghost bands) 

A final remark on MHC separation is that enough time must be allowed for adequate polymerization 

of the separating gel. It was observed that if polymerization occurs too fast, the separation of all the 

MHC isoforms are poor. 

B.1.11 Examples 

Example B.1.11.1 shows a human muscle sample containing all three isoforms after electrophoresis 

and silver staining. The lower band represents MHC I, the middle band MHC IIa and the top band 

MHC IIx, as confirmed by Pereira Sant'Ana et al. (1997). 
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Example B.1.11.1   A muscle homogenate (a. human; b. rat) sample containing all the MHC 
isoforms, and indicating the location of the isoforms. 

Single muscle fibre (section B.6) and homogenate MHC isoform content are shown in example 

B.1.11.2. These gels were scanned and analysed using the CREAM 1D software package. Example 

B.1.11.3 and 4 shows the histogram of relative band intensities and the percentage of each isoform, 

respectively. 

 Well 1 Well 2 Well 3 Well 4 

 

Example B.1.11.2  Example of a gel containing 4 lanes, each with varying amounts of MHC 
isoforms. 

 
 Well 1 Well 2 Well 3 Well 4 

Example B.1.11.3  Histogram of the bands in Example B.1.11.2. analysed with the CREAM 1D 
software package. 
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Example B.1.11.4 Results calculated by the CREAM 1D software package. Area % is taken as 
the percentage of MHC content. 

Date  : 11 Nov 2000 
Time  : 1:22:20 PM 
Sample Name : c:\mydocu~1\tertius\experi~1\labora~1\myosin~1\gel1.bmp 
No. Lanes : 4 
Unit  : [RF] 
 
Lane Band Height Area  Area % RF  
1  1 152  1338  19.19  30.51 MHC IIx 
1  2 240  2952  42.33  49.15 MHC IIa 
1  3 242  2683  38.48  74.58 MHC I 
 
2  1 200  2861  69.42  28.81 MHC IIx 
2  2 133  1260  30.58  44.07 MHC IIa 
 
3  1 244  4245  58.10  44.07 MHC IIa 
3  2 243  3061  41.90  74.58 MHC I 
 
4  1 245  4304  100.00 67.80 MHC I 

 

 

B.2  Micro assay for plasma lactate concentration determination  

B.2.1 Blood sampling and preparation 

Blood is obtained from a sterile intravenous catheter (Jelco 22G, Johnson & Johnson). A sterile 3-

way stop cock (Brittan Healthcare, South Africa) is attached to the catheter (refer to section B.2.3 

for sequence of catheterisation). To avoid blood clotting after sampling, the catheter is flushed with 

a saline solution containing 0.04% heparin (Heparin Novo, Novo Nordisk, South Africa). Blood (3 

mL per sample) is collected in pre-marked fluoride oxalate (as anti-coagulant) test tubes 

(Vacutainer, BD, UK) and stored on ice. After all blood samples are obtained, centrifuge the blood 

at 3 000 rpm for 10 minutes, decant plasma into clean micro-tubes and store at -87 °C. 

B.2.2 Micro assay in determining plasma lactate concentration 

The plasma lactate concentration of blood is determined with the aid of a kit (Lactate PAP, 

bioMérieux sa, France). However, the protocol was slightly modified so that samples could be 

analysed using a micro-plate reader. This consisted of reducing the final volume of reagent from 1 

mL to 300 µL. A pilot study showed that accurate results are obtained when 3 µL of sample is used 

and if the reagent is diluted twice (examples B.2.3.2 and 3). The table below shows the protocol and 

modifications. 
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 Original assay Modification 

Lactate standard volume 10 µL 3 µL 

Unknown sample volume 10 µL 3 µL 

Reagent - Diluted twice 

Reagent volume 1000 µL 300 µL 
 

B.2.3 Examples 

B.2.3.1 Catheterisation procedure  
A qualified nurse, medical doctor or a qualification in phlebotomy is necessary to perform this 

procedure. 

1.  Make sure that all consumables and tubes are ready. Keep the saline-heparin solution on ice and 

wear gloves at all times. 

2.  Make sure the subject is in a comfortable position. In cold weather, it is advisable to place the 

forearm in a bucket of warm water for 10 minutes to dilate the veins. Dry the arm after water 

submersion.   

3.  Tie the tourniquet around the arm and tighten slightly. Search for a suitable vein and avoid 

valves. Also keep in mind that the veins higher up in the arm are more stable and do not 

constrict as much as in the lower part of the arm. 

4. Shave the area where the catheter will be inserted and wipe with an alcohol swab. 

5. Remove the stop cock and catheter from its sterilised wrapper. Make sure the stop cock is 

closed by turning the tap. 

6.  Gently insert the catheter into the vein and allow for the blood to flush back. Slightly pull the 

needle backwards, gently push the remaining part of the catheter into the vein, and place a clean 

piece of gauze under the catheter-end. Undo the tourniquet.  

7.  Tie the catheter to the forearm with a strip of TransPore, remove the needle and attach the stop 

cock. Fasten the stop cock to the forearm with TransPore. 

8. Draw a blood sample with a clean syringe and inject ± 1 mL saline-heparin solution. Example 

B.2.3.1 shows the catheterisation procedure graphically. 

9. Repeat step 8 until the end of the testing procedure.   

10. When blood sampling is very poor, three factors might be playing a role. The first might be 

vasoconstriction and to overcome this problem, allow the subject to make slow fist contractions 

with the catheterized arm. The second factor might be that the stop cock has not been opened 

completely. The third factor might be that the wall of the vein might be blocking the catheter. 

Slightly pull back on the catheter without applying suction from the syringe.  
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Example B.2.3.1 Main steps in catheterization. A. Insertion, blood back flush and tying of 

catheter to forearm, B. Attaching the stop cock, C. Tying the stop cock to the 
forearm. 

11. When all blood sampling is completed, cut the TransPore with scissors and gently remove the 

catheter. Quickly wipe the site of the needle penetration with an alcohol swab and apply pressure 

with clean gauze. 
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Example B.2.3.2 Volume curves of standard lactate concentrations using 300 µL undiluted 

enzyme reagent from the Lactate PAP kit. Volumes 2.5 and 3.0 µL resulted in a 
straight line across the concentration gradient (Kohn et al., unpublished data). 

A B C 
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Example B.2.3.3 Standard curves of 3 µL standard lactate concentrations using 300 µL 

undiluted and twice diluted enzyme reagent of the Lactate PAP kit. (Kohn et al., 
unpublished data). 

 

B.3  Miniaturisation of enzyme assays for fluorometer 

B.3.1 Introduction 

Two different approaches were followed to determine the enzyme activities in muscle samples. In 

the rat study (Chapter 2), citrate synthase (CS) activity was determined spectrophotometrically, and 

the activity expressed as µmol/min/gram wet weight. In the human studies, activities of four 

enzymes were measured namely CS, phosphofructokinase (PFK), 3-hydroxyacetyl CoA 

dehydrogenase (3HAD) and lactate dehydrogenase (LDH) activities. These enzymes were measured 

fluorometrically and their activities expressed as µmol/min/gram dry weight. 

B.3.2 Sample preparation 

The homogenising buffer for the preparation of the muscle was the same for the rat and human 

muscle.  

Homogenising buffer stock solutions (store at +4 °C): 

 Chemical Mw (mol/g) Final concentration 

A KH2PO4 136.1 0.1 M 

B K2HPO4 228.2 0.1 M 

1.  Add 30 mL of buffer B to a small beaker and place the pH probe into that solution.  

2.  Use buffer A and adjust the buffer to pH 7.30. This buffer can be stored at –20 °C  
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Rat muscle 
1. Dissect the sample free of any remaining connective tissue or blood. This should preferably be 

done at –20 °C. 

2. Weigh the sample. 

3. Chop sample fine with scalpel and add homogenising buffer: 

  1:19 for wet weight (e.g. 25 mg x 19 = 475 µL) 

4. Homogenise by hand using a glass homogeniser on ice. 

5. Sonicate the sample 3 x 10 seconds on ice. 

6. Decant into micro-tubes. These may be stored at -87 °C. 

7. If connective tissue is detected in the sample, carefully remove it, pat dry and weigh. This value 

should be subtracted from the original weight. 

Human muscle 
Frozen biopsy samples are freeze dried overnight in a freeze dryer. Samples are stored in a 

vacuumed bottle at -87 °C. 

The same sample is used for all four fluorometric assays listed below. The samples are prepared as 

follow: 

1.  The freeze dried sample is allowed to reach room temperature in a temperature (+ 21 °C) and 

humidity (40% humidity) controlled room.  

2. Under a stereo microscope, cut a small piece off from the cross-sectional side of the biopsy in 

order to include all the fibres. 

3. Before weighing, turn the scale on and allow warming up for at least 30 minutes. After this 

period, calibrate the scale using the appropriate calibration weights. During the weighing 

process, recheck the calibration. 

4. Place the sample in a weighing pan and record the weight as mg dry weight.  

5. Transfer this piece to a micro-tube. Crush the sample with a steel needle and store at -20 °C 

until further use. 

6. Use a dilution ratio of 1:400, thus for every 1 mg of tissue, add 400 µL chilled 0.1 M potassium 

phosphate buffer, pH 7.30. 

7. Centrifuge for 30 seconds in a bench centrifuge. 

8. Sonicate sample for 3 x 10 seconds while keeping the sample on ice. 

9. Vortex sample for 5 seconds and keep the sample on ice. 

 NB: For the PFK assay, samples can not be frozen. For the remaining three, samples may be stored 

at -87 °C until use. 
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B.3.3 Citrate synthase assay – spectrophotometrically 

B.3.3.1 Principle 
The assay incorporates the binding of a chemical DTNB (5,5’-dithio-bis(2-nitrobenzoic acid)) to co-

enzyme A, which in turn undergoes a conformational change and is detectable at 412 nm. The 

formula below shows the reactions, which was based on the method by Srere (1969): 

 CS 
oxaloacetate  citrate 
 
 Acetyl-CoA CoA + DTNB CoA-DTNB (412 nm) 
B.3.3.2 Enzyme reagent solutions 

Stock solution Comments 

0.1 M Tris buffer pH 8.30  

1 mM DTNB (Sigma D8130) Make up with 0.1 M Tris buffer. Light sensitive – store dark 

4 mM Acetyl CoA (Roche 101 907) Make up with dH2O. Can be stored at -87 °C 

10 mM Oxaloacetate (Sigma O 4126) Make up with Tris buffer. Can be stored at -87 °C 
 

B.3.3.3 Conduct of assay 
1. Add 10 µL sample, 50 µL acetyl CoA, 100 µL DTNB and 795 µL Tris to a cuvette. 

2. Add 50µL oxaloacetate, invert cuvette, and read every 30 seconds for 5 min at 412 nm. 

3. Determine slope as absorption per minute. 

4. Calculation: A = εcl where  A = absorption / minute 

  ε = Extinction coefficient of 13 600 M-1.cm-1 

  l = path length (1 cm) 

Thus  

  ΔAbs / min x 100 = mol/min/g wet weight 

  ε x [muscle]g/L 

 

B.3.4 NADH standard and standard curve generation - fluorometric 

In order to use the fluorometric procedures, a standard NADH curve must be generated on the 

specific day of the assay.  The following procedures explain how to prepare an NADH standard, 

how to determine the true concentration using a spectrophotometer and to generate the standard 

curve: 

B.3.4.1 NADH standard 
1. Make a sodium carbonate buffer (0.85 g Na2CO3 + 0.17 g NaHCO3; make up to 100 mL with 

dH2O). 
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2. Weigh off ± 36 mg NADH in a test tube with a screw top, add 10 mL sodium carbonate buffer, 

and mix well. 

3. Heat the NADH solution for 10 minutes in a water bath at 60 °C to destroy NAD+. 

4. Aliquot NADH into micro-tubes and store at -87 °C (Do not store at -20 °C). 

 

B.3.4.2 Standardisation of NADH 
1. Add 2 mL 0.1 M Tris buffer pH 8.0 to 4 quarts cuvettes (use the stock solution from the 

fluorometric CS method). 

2. Zero the spectrophotometer at 340 nm using one of the cuvettes. 

3. Pipette 40 µL of the NADH standard to the remaining cuvettes, mix well and read at 340 nm. 

4. Determine the true NADH concentration by using the following equation: 

  NADH absorption x Total volume x 1 000 = mM NADH 

   6 270 M-1 Volume NADH 

 

B.3.4.3 Generating NADH standard curve 
1. Use black or white plates, depending on the sensitivity of the assay (determined by the 

concentration of the muscle sample used). Make sure the fluorometer is switched on for at least 

20 minutes. Set the excitation wavelength to 340 nm and the emission wavelength to 460 nm. 

2. Read the background fluorescence of each well. 

3. Dilute the original NADH standard 11 times (1:10) with dH2O. 

4. By using the table below, pipette the required volumes in duplicate into each well. The table is 

marked according to the micro-plate: 

 Well 1 

 NADH (µL) dH2O (µL) 

A 0 10 

B 2 8 

C 4 6 

D 6 4 

E 8 2 

F 10 0 
 

5. Add 250 µL 0.1 M Tris buffer pH 8.0 to each well and read. 

6. Subtract each background value from each NADH read. 

7. Subtract the blank value from the rest of the measurements. 
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8. Draw a graph with the fluorescence values on the Y-axis and NADH concentration (µM) on the 

X-axis. 

9. Determine the slope, expressed as fluorescent units / µM 

10. See sections B.3.5 to B.3.8 for the assays and examples.  

B.3.5 Citrate synthase – fluorometric 

B.3.5.1 Principle 
With fluorometry, the fluorescence is measured which comes from reduced forms of NAD and 

NADP. The reaction can either in itself cause the increase or decrease in fluorescence e.g. NADH + 

H+, or be coupled to a multiple enzyme reaction, as in this case. During analysis, the fluorescence is 

measured at known time intervals and the difference per minute is calculated. Knowing the weight 

of the sample and its dilution, the enzyme activity, expressed as µmol/min/g dry weight, is 

calculated. The method below is based on the methods by Essen-Gustavsson and Henriksson (1984) 

and Essen et al. (1975). 

                                           
 MDH CS 

L-malate                          oxaloacetate citrate 
 
          NAD+          NADH + H+  Acetyl-CoA 
 
B.3.5.2 Enzyme reagent solution 

Stock solution Company Volume Final concentration 

1 M Tris buffer pH 8.0  Sigma T-1503 5 mL 100 mM 

0.1 M EDTA  Sigma ED 2 SS 1.25 mL 2.5 mM 

0.1 M NAD+ Roche 127 965 0.25 mL 0.5 mM 

0.1 M L-Malate  Sigma M-1125 0.5 mL 1 mM 

5 mg/mL MDH  Roche 127 256 80 µL 8 µg/mL 

Make up to 50 mL with dH2O and keep on ice. 

* 3 mM Acetyl CoA  Roche 101 907 1 mL 0.06 mM 
* Add just before use 

B.3.5.3 Conduct of assay 
1. Set-up fluorometer software and spreadsheets before commencing the assay. (Excitation 

wavelength: 340 nm; emission wavelength: 460 nm)   

2. Perform an NADH standard curve as described in section B.3.4. 

3. Thaw the muscle homogenate samples, mix and keep on ice. Allow enzyme reagent solution to 

reach room temperature. 
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4. Pipette 5 µL sample in duplicate into the corner of each well of a black fluorescence plate 

(FluoroNunc plates).  

5. After completion of sample transfer, add 250 µL of enzyme reagent solution to each well, using 

a multi-channel pipette. 

6. Rapidly transfer the plate to the fluorometer and read for 3 minutes with 15 second intervals. 

Determine the slope of the reaction in fluorescence units / minute. 

7. Repeat until all samples are completed. 

8. Use the following equation to determine the enzyme activity of citrate synthase (keep in mind 

that the dilution factor may vary between assays). 

 Slope of enzyme activity:  Fluorescence / minute  

 Slope of standard NADH curve: Fluorescence / µM 

 Muscle concentration: grams / litre dry weight or protein 

 Thus 

   Slope of enzyme activity   

  Slope of standard NADH curve x Muscle concentration 

 (in units) 

  Fluorescence x µmol x dilution factor x liter 

  Fluorescence x liter x gram x minute 

  = µmol/min/g muscle (dry weight) 

9. Refer to section B.3.9 for an example of the calculations. 

B.3.6 Phosphofructokinase – fluorometric 

B.3.6.1 Principle 
The principle of this assay is the same as the citrate synthase assay. This assay uses a multiple 

combination of enzymes linked to each other in order to generate a fluorescence signal. However, 

during the reaction, one molecule of the substrate generates two NAD+ molecules from NADH, 

therefore the final reading should be divided by two. The method below is based on the methods by 

Essen-Gustavsson and Henriksson (1984) and Essen et al. (1975). 
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 PFK aldolase 
F-6-P F-1-6-BP Glyceraldehyde-3-phosphate  
       
 ATP ADP TPI 
 Mg2+ 2 Dihydroxyacetonephosphate 
               
  
 GDH     PO4

2- 
2 Dihydroxyacetonephosphate 2 Glycerophosphate 
 
 2 NADH + H+ 2 NAD+ 
 

B.3.6.2 Enzyme reagent solution 

Stock solution Company Volume Final concentration 

1 M Tris buffer pH 8.0 Sigma T-1503 2.5 mL 50 mM 

0.1 M ATP Sigma A-5394 500 µL 1 mM 

0.1 M AMP Sigma A-1877 500 µL 1 mM 

1 M MgCl2 Merck 5833 100 µL 2 mM 

0.25 M Na2HPO4 Merck 6580 250 µL 1.25 mM 

0.1 M F-6-P Sigma F-3627 500 µL 1 mM 

0.1 M NADH Roche 107 735 5 µL 10 µM 

10% BSA Sigma A-2153 250 µL 0.05% 

14.3 M β-mercaptoethanol Sigma M-6250 4 µL 1 mM 

10 mg/ml Aldolase Roche 102 644 60 µL 12 µg/mL 

10 mg/ml TPI / G-3-P-dh Roche 127787 40 µL 8 µg/mL 

Make up to 50 mL with dH2O and keep on ice.  

 
B.3.6.3 Conduct of assay 
1. Set-up fluorometer software and spreadsheets before commencing assay. (Excitation 

wavelength: 340 nm; emission wavelength: 460 nm)   

2. Perform an NADH standard curve as described in section B.3.4. 

3. Prepare the homogenate muscle samples. Allow the enzyme reagent solution to reach room 

temperature. 

4. Pipette 3 µL sample in duplicate into the corner of each well of a black fluorescence plate 

(FluoroNunc plates).  

5. After completion of sample transfer, add 250 µL of enzyme reagent solution to each well, using 

a multi-channel pipette. 

6. Transfer the micro-plate to the fluorometer and read for 3 minutes with 15 second intervals. 

Determine the slope of the reaction in fluorescence / minute. 
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7. Repeat until all samples are completed. 

8. To determine enzyme activity, refer to section B.3.5.3 point 8. Remember to divide the enzyme 

activity for PFK by 2. 

9. Refer to section B.3.9 for an example of the calculations. 

B.3.7 3-Hydroxyacyl CoA dehydrogenase – fluorometric 

B.3.7.1 Principle 
The principle of this assay is the same as the citrate synthase assay. This assay uses only one 

reaction with 3HAD as the enzyme to generate a fluorescence signal. The method below is based on 

the methods by Essen-Gustavsson and Henriksson (1984) and Essen et al. (1975). 

 3HAD 
 Acetoacetyl-CoA 3-hydroxyacetyl-CoA 
 
                                   NADH + H+      NAD+ 
 

B.3.7.2 Enzyme reagent solution 

Stock solution Company Volume Final concentration 

1 M Tris buffer pH 8.0 Sigma T-1503 2.5 mL 50 mM 

0.1 M EDTA Sigma ED2SS 2 mL 4 mM 

0.1 M NADH Roche 107 735 15 µL 30 µM 

Make up to 50 mL with dH2O and keep on ice. 

*1 mM Acetoacetyl-CoA Sigma A-1625 1 mL 20 µM 

B.3.7.3 Conduct of assay 
1. Set-up fluorometer software and spreadsheets before commencing the assay. (Excitation 

wavelength: 340 nm; emission wavelength: 460 nm)   

2. Perform an NADH standard curve as described in section B.3.4. 

3. Thaw the muscle homogenate samples, mix and keep on ice. Allow the enzyme reagent solution 

to reach room temperature. 

4. Pipette 5 µL sample in duplicate into the corner of each well of a black fluorescence plate 

(FluoroNunc plates).  

5. After completion of sample transfer, add 250 µL of enzyme reagent solution to each well, using 

a multi-channel pipette. 

6. Transfer the micro-plate to the fluorometer and read for 3 minutes with 30 second intervals. 

Determine the slope of the reaction in fluorescence / minute. 

7. Repeat until all samples are completed. 
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8. To determine enzyme activity, refer to section B.3.5.3 point 8. 

B.3.8 Lactate dehydrogenase – fluorometric 

B.3.8.1 Principle 
The principle of this assay is the same as the citrate synthase assay. This assay uses only one 

reaction with LDH as the enzyme to generate a fluorescence signal. This is a rapid assay and it is 

advisable that the sample be diluted twice. The method below is based on the methods by Essen-

Gustavsson and Henriksson (1984) and Essen et al. (1975). 

 LDH 
 Pyruvate Lactate 
 
 NADH + H+       NAD+ 
 

B.3.8.2 Enzyme reagent solution 

Stock solution Company Volume Final concentration 

1 M Tris buffer pH 8.0 Sigma T-1503 2.5 mL 50 mM 

0.1 M EDTA Sigma ED2SS 2.5 mL 5 mM 

0.1 M NADH Roche 107 735 15 µL 30 µM 

Make up to 50 mL with dH2O and keep on ice. 

*1 mM Sodium pyruvate Sigma P-2256 1 mL 20 µM 

B.3.8.3 Conduct of assay 
1. Set-up fluorometer software and spreadsheets before commencing assay. Excitation wavelength: 

340 nm; emission wavelength: 460 nm)   

2. Perform an NADH standard curve as described in section B.3.4. 

3. Thaw the muscle homogenate samples, mix and keep on ice. Allow the enzyme reagent solution 

to reach room temperature. 

4. Pipette between 2 to 3 µL sample in duplicate into the corner of each well of a black 

fluorescence plate (FluoroNunc plates).  

5. After completion of sample transfer, add 250 µL of enzyme reagent solution to each well, using 

a multi-channel pipette. 

6. Transfer the micro-plate to the fluorometer and read for 3 minutes with 15 second intervals. 

Determine the slope of the reaction in fluorescence / minute. 

7. Repeat until all samples are completed. 

8. To determine enzyme activity, refer to section B.3.5.3 point 8. 

9. Refer to section B.3.9 for an example of the calculations. 
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B.3.9 Examples 

B.3.9.1 NADH Standard curve 
In order to generate a standard curve for NADH, the following procedures should be followed (must 

be assayed in duplicate as in example below): 

1.  Read the background fluorescence of the wells where the standard NADH will be transferred to. 

(Readings T1 and T2) 

2.  Pipette 0, 2, 4, 6, 8 and 10 µL of NADH into each well followed by 250 µL of 0.1 M Tris 

buffer, pH 8.0. Record the readings (Rd 1 and Rd 2) 

3.  Subtract the background fluorescence from the NADH readings (Rd 1 – T1; Rd 2- T2). 

4.  Average the values (Average). 

5.  Subtract the blank reading (containing no NADH) from the rest of the averaged values (Avg – 

blk). 

6.  Calculate the concentrations of the NADH standards as follow:  

 Original NADH concentration that was diluted 11x: 467 µM 

 thus 467 µM x 2 µL = final concentration x 252 µL 

 final concentration = (467 µM x 2 µL)/252 µL = 3.71 µM NADH 

 Repeat calculations for all. 

 

µl NADH T1 T2 Rd 1 Rd 2 Rd 1 - T1 Rd 2 - T2 Average Avg - blk NADH µM 

0 383 360 3003 3053 2620 2693 2657 0 0 

2 379 350 9356 9651 8977 9301 9139 6483 3.71 

4 345 348 15602 14728 15257 14380 14819 12162 7.35 

6 381 333 21138 20520 20757 20187 20472 17816 10.95 

8 367 345 27172 25889 26805 25544 26175 23518 14.48 

10 386 349 32275 33100 31889 32751 32320 29664 17.96 

       Slope 1631  
The slope has units that are fluorescence/µM (Fl/µM). 
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NADH Standard curve
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Example B.3.9.1  NADH standard curve 

Time Read 1 Read 2 

0.0 37205 37268

0.5 35108 35533

1.0 33405 33407

1.5 32085 32149

2.0 30290 30267

2.5 28727 28435

3.0 26974 26797

Fl/min -3326 -3482 

 -3404  

 156  

%Error -4.57  

NADH Standard curve Fl/µM 1631 1631 

Muscle g/l 2.5 2.5 

dilution 51 51 

µmol/min/g dw -41.61 -43.55 

Average 42.58  
Example B.3.9.2  Enzyme activity calculations (3HAD) 
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B.4  ATPase histochemistry and cross-sectional area of fibres 

B.4.1 Principle of method 

The myosin heavy chain consists of a tale and a head region. The latter contains the ATPase enzyme 

and the actin binding site. Human skeletal muscle has the ability to express three myosin ATPase 

isoforms, each differing in enzyme activity. These different activities are directly related to the 

speed of muscle fibre contraction. Each ATPase isoform posseses the ability to be active or inactive 

under acidic or alkaline conditions. This characteristic of the myosin ATPases are utilised by prior 

pre-incubation of cryosections at various pH levels, followed by ATP exposure, and histochemical 

visualisation. Fibres containing active ATPases after pre-incubation at a specific pH will stain black, 

whereas those containing inactive ATPases, will remain unstained. The method is based on Brooke 

and Kaiser (1970a; 1970b) and Staron (1997). However, fibres termed IIB has been shown to be 

more closely related to the rat IIX and in this dissertation, fibres will be termed Type I, IC, IIC, 

IIAC, IIA, IIAX and IIX (Schiaffino and Reggiani, 1996). Figure B.4.1 indicates the various pH 

values and staining profile characteristics of human skeletal muscle. 

Figure B.4.1  Schematic representation of the colour intensities produced by the different 
stabilities of the myosin ATPase enzymes. 
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B.4.2 Working solutions 

Chemical Weight Final concentration 

Solution 1 pH 10.30 

Glycine 2.25 g 100 mM 

CaCl2 2.40 g 54 mM 

NaCl 1.76 g 100 mM 

NaOH 1.08 g 90 mM 

Make up to 270 mL with dH2O. Adjust pH with 32% HCl or 5 M NaOH to pH 10.30. Fill to 300 
mL. 

Solution 2 

Sodium acetate 3.90 g 100 mM 

KCl 3.70 g 100 mM 

Fill to 500 mL with dH2O. 

Solution 2A (pH 4.30) Adjust 100 mL of solution 2 to pH 4.30 with glacial acetic acid 

Solution 2B (pH 4.60) Adjust 100 mL of solution 2 to pH 4.60 with glacial acetic acid 

Solution 3 

ATP (Sigma A-5394) 0.10 g 3.1 mM 

Add ATP to 60 mL of Solution 1. Adjust pH with HCl to 9.40 

B.4.3 Procedure 

1.  In order to perform the ATPase staining, three muscle cryosections of 10 µm mounted on glass 

slides are needed. Mark each with the sample code and the pre-incubation pH. To save on 

muscle and time, cut 6 slides for each sample, saving the slides at 4 °C until use. 

2. Pre-incubate the cryosections as follow: 

 Solution 1 pH 10.30 9 minutes in a shaking water bath at 37 °C 

  Solution 2A pH 4.30 1 minute at room temperature 

  Solution 2B pH 4.60 1 minute at room temperature 

3. Rinse in dH2O ten times. 

4. Incubate all slides for 30 minutes at 37 °C in Solution 3. 

5. Rinse in dH2O ten times. 

6. Incubate all the slides for 3 minutes at room temperature in a 1% CaCl2 solution. 

7. Rinse in dH2O ten times. 

8. Incubate all the slides for 3 minutes at room temperature in a 2% CoCl2 solution. 

9. Rinse in dH2O ten times. 

10. Incubate all the slides for 1 minute at room temperature in a 1% (NH4)2S solution. 

11. Rinse well in dH2O and mount with glycerine gelatine mounting medium. 



 210

12. Identify the areas in each slide using a microscope which show the same fibre patterns. pH 

10.30 should be a negative image of pH 4.30 (see example B.4.4). When available, take pictures 

of each slide. 

13. Cross-sectional area is determined on the same slides using the SimplePCI software (Nikon 

Instruments, Japan). 

 B.4.4 Example 

 
Example B.4.1  An example of the staining intensities acquired by the ATPase staining method. 

(Photographs were taken with the Nikon CoolPix Microscope system, Japan.) 
Values below each photograph indicate the pre-incubation pH. The circle in each 
photograph indicates an area of identical representation of the muscle, but with 
different staining intensities, thus different fibre type. 

 

B.5 Visualising capillaries 

The protocol listed below utilises the periodic acid Schiff’s reaction and was adapted from Andersen 

(1975). 

B.5.1 Amylase PAS staining 

B.5.1.1 Working solutions 

Carnoy’s fixing solution  Periodine acid solution  

Acetic acid 0.5 mL Periodine acid (Merk 524) 0.1 g 

Chloroform 1.5 mL dH2O make up to 10 mL 

95% Ethanol 8 mL *Coleman’s Feulgen reagent  

Amylase solution  Fuchsin (Merck 15937) 5 g 

α-amylase (Sigma A-6880) 50 mg K2SO4 10 g 

dH2O make up to 10 mL 1 M HCl 50 ml 

  dH2O make up to 1 litre 
* This substance is carcinogenic. 
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B.5.1.2 Procedure  
1. Cut 20 µm thick slices and place on glass slides. 

2. Place the slides overnight in fixing solution at -20 °C. 

3. The following day, allow the slides to equilibrate to room temperature for 10 minutes. 

4. Wash the slides well with dH2O. 

5. Incubate the slides for 10 minutes in amylase solution in a shaking water bath (37 °C). 

6. Rinse with dH2O. 

7. Incubate at room temperature in periodine acid solution for 12 minutes. 

8. Rinse with dH2O. 

9. Incubate the slides in Coleman’s Feulgen reagent for 12 minutes in a shaking water bath (37 

°C). After this period, make sure to discard the reagent in the proper manner for carcinogenic 

substances.  

10. Wash the slides under running water for 10 minutes. 

11. Dehydrate slides and mount with DPX (BDH, UK). 

Refer to Example B.5.2.   

B.5.2  Example 

 

 
Example B.5.2.1  Amylase PAS staining for capillaries in human skeletal muscle. Black arrows 

indicate capillaries. 
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B.6 Single fibre preparation 

B.6.1 Dissection of single fibres 

The process of dissecting single fibres is very delicate and time consuming. It is therefore crucial 

that the muscle sample be adequately freeze-dried and had no exposure to thawing during that 

process. Single muscle fibres are dissected under a stereo microscope, situated in a temperature (21 

°C) and humidity (< 40% relative humidity) controlled room. These conditions are essential so that 

freeze-dried samples absorb the minimum amount of water. Dissect using scalpel blades or 

dissection needles. 

B.6.2 Preparation for SDS-PAGE 

After an adequate number of fibres have been dissected, start transferring pieces of the fibres to 

capillary tubes (Vitrex, Denmark), which one end is fused and filled with SDS-sample buffer. Allow 

the piece of fibre to dissolve into the solution and after ± 20 minutes, cover the end with a piece of 

Parafilm. After repeating this process for all the fibres, store at -87 °C until gel electrophoresis.   

B.6.2 Pools of single fibres 

During the preparation of the fibres for SDS-PAGE, the other half of the fibre is stored in a fused 

capillary tube, and closed with Parafilm. Store these fibres at -87 °C. After classification of each 

single fibre by SDS-PAGE, pool the fibres of the same type. Carefully weight the pools on a balance 

that is capable of recording 7 decimal places. Transfer the pools to 0.5 mL micro-tubes. Add 

homogenising buffer (ratio 1:400) to the pools using the same buffer as described in section B.3.2. 

Allow the pools to absorb the buffer for at least an hour, therefore keep the pools on ice. Briefly 

centrifuge the pools for 30 seconds to allow the pools to move to the bottom of the tube. Sonicate 

the pools on ice at a low frequency for 10 seconds, twice. Check if the pools have dissolved, and if 

not, re-sonicate. Pools can be stored at -87 °C, but not for measuring PFK activity. This enzyme 

needs to be measured directly after homogenisation.  

B.7  Muscle protein concentration determination 

B.7.1 Principle of assay 

The protein assay is based on the Bradford dye binding procedure Bradford (1976), measuring the 

colour change of Coomassie Brilliant Blue G-250 dye, when binding to proteins. When the dye 

binds to protein, it undergoes a conformational change and shifts its absorption maximum to 595 

nm. These bindings can be quantified and by using a standard curve, concentrations of protein can 
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be measured. For the assay described below, the protein concentration range is accurate between 

0.05 – 0.5 g/L protein.   

B.7.2 Bradford reagent 

The reagent to conduct the protein assay is commonly known as Bradford reagent and is 

commercially available. Alternatively, it can be prepared in the laboratory. The following section 

describes the preparation of 500 mL of this reagent: 

1.  Weigh off 0.1 g Coomassie Brilliant Blue G-250 in a 200 mL beaker. 

2.  Add 25 mL 100% ethanol and stir. 

3.  Slowly add 50 ml 85% phosphoric acid and stir with a glass rod. 

4.  Transfer the above solution to a 500 mL volumetric flask containing approximately 100 mL 

dH2O. 

5. Make up to 500 mL with dH2O. 

6. Filter through Whatman no 1 filter paper and store. 

B.7.3 Conduct of assay 

B.7.3.1 BSA Standard curve 
The Bradford assay requires the generation of a standard protein curve and a 0.5g/L BSA standard is 

used for this purpose. Standard volumes of the BSA standard are transferred to a micro-plate in 

duplicate according to table B.7.1. Add 250 µL Bradford reagent to each and allow 5 minute 

incubation before measuring the absorbance at 595 nm in a micro-plate reader. For more details on 

calculations, see section B.7.4. 

 0.5 g/L BSA dH2O  Bradford reagent [BSA] g/L 

Blank – 10 µL 250 µL 0.0 

Standard 1 2 µL 8 µL 250 µL 0.1 

Standard 2 4 µL 6 µL 250 µL 0.2 

Standard 3 6 µL 4 µL 250 µL 0.3 

Standard 4 8 µL 2 µL 250 µL 0.4 

Standard 5 10 µL – 250 µL 0.5 
Table B.7.1  Standard volumes added to a micro-plate to generate the standard curve for the 

Bradford assay. 

B.7.3.2 Unknown sample 
Pipette 10 µL sample in duplicate followed by 250 µL Bradford reagent. When it is suspected that 

the protein concentration might be above the allowed range, dilute the sample (e.g. 5x).  
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B.7.4 Example 

Standard curve 
[BSA] g/L Absorption reading 1 Absorption reading 2 Average 

0.0 0.00 0.00 0.00 

0.1 0.13 0.15 0.14 

0.2 0.24 0.28 0.26 

0.3 0.38 0.38 0.38 

0.4 0.47 0.47 0.47 

0.5 0.55 0.55 0.55 
 

Standard Cruve : Bradford assay
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Equation: y = -0.75x2 + 1.48x 

Use the following equation to calculate the concentration of the unknown sample:  

a
acbbx

2
42 −

±−=  

 
Read 1 Read 2 Average SQRT(b2 - 4ac) (-b±X)/2a dilution 1x [Protein] g/L 

0.325 0.330 0.328 1.78 0.42 1 2.2 
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