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ABSTRACT
A standard fuzzy logic controller is not robust enough to guarantee consistent closed-loop

performance for highly non-linear plants. A finely tuned closed-loop response loses relevance as

the system dynamics change with operating conditions. The self-adaptive fuzzy logic controller can

track changes in the system parameters and modify the controller parameters accordingly. In most

cases, self-adaptive fuzzy logic controllers are complex and rely on some form of mathematical

plant model.

The multi-mode fuzzy logic controller extends the working range of a standard fuzzy logic

controller by incorporating knowledge of the non-linear system dynamics into the control rule-base.

The complexity of the controller and difficulty in finding control rules have limited the application

of multi-mode fuzzy logic controllers.

An automated design algorithm is proposed for the design of a multi-mode control rule-base using

qualitative plant knowledge. The design algorithm is cost function-based. The closed-loop

response, local to a domain of the non-linear state space, can be tuned by manipulation of the cost

function weights. Global closed-loop response tuning can be done by manipulation of the controller

input gains. Alternatively, a self-learning or self-adaptive algorithm can be used in a model

reference adaptive control architecture to optimise the control rule-base. Control rules responsible

for unacceptable closed-loop performance are identified and their consequences modified.

The validity of the proposed design method is evaluated in five case studies. The case studies

illustrate the advantages of the multi-mode fuzzy logic controller. The results indicate that the

proposed self-adaptive algorithm can be used to optimise a rule-base given a required closed-loop

specification. If the system does not conform to the model reference adaptive architecture then the

intuitive nature of the cost function based design algorithm proves to be an effective method for

rule-base tuning.
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OPSOMMING
Standaard wasige logika beheerders is nie noodwendig robuust genoeg om goeie geslote lus

werkverrigting vir hoogs nie-liniere aanlegte te waarborg nie. In Perfek ge-optimeerde beheerder se

geslote lus werkverrigting mag verswak indien die aanleg-parameters weens bedryfstoestande

verander. Self-aanpassende beheerders kan die verandering in die aanleg-parameters volg en die

beheerder dienooreenkomstig optimeer. As In reël is In self-aanpassende beheerder kompleks en

afhanklik van Inwiskundige model van die aanleg.

Die multi-modus wasige logika beheerder vergroot die werksbereik van die standaard wasige logika

beheerder deur kennis aangaande die stelsel se bedryfstoestand en stelselparameters in die reël-basis

in te bou. Die aanwending van die multi-modus beheerder word tans beperk deur die struktuur

kompleksiteit en moeilike optimering van die reël-basis.

In Ge-outomatiseerde multi-modus reël-basis ontwerps-algoritme wat gebruik maak van

kwalitatiewe kennis van die aanleg en In kostefunksie word in hierdie proefskrif voorgestel. Die

geslote lus gedrag beperk tot In gebied in die toestands-ruimte kan ge-optimeer word deur die

kostefunksie gewigte te manipuleer. Die globale werkverrigting kan ge-optimeer word met die

beheerder intree aanwinste. In Self-aanpassende algoritme in In model-verwysings aanpassende

argitektuur word as altematieftot reël-basis optimering voorgestel. Reëls verantwoordelik vir swak

werkverrigting word ge-identifiseer en verbeter deur modifikasie van die reëls se gevolgtrekkings.

Die voorgestelde ontwerps-metode word deur middel van vyf gevallestudies ondersoek. Die studies

dui die voordele van die multi-modus struktuur aan. Die self-aanpassende argitektuur is In kragtige

hulpbron om In reël-basis te optimeer vir In gegewe geslote lus spesifikasie. Hierdie proefskrif toon

aan dat indien die stelsel nie aan die vereistes van In model verwysingstelsel voldoen nie, is die

kostefunksie benadering tot reël-basis ontwerp In aantreklike en intuïtief verstaanbare opsie om die

reël-basis te optimeer.

iii
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1 INTRODUCTION
At present control system engineers and designers are confronted with highly complex plants

requiring stringent closed-loop control without the benefit of good mathematical models. Plants in

the chemical process industry are of a high-dimensional order and non-linear, and the fundamental

physics poorly understood. In certain fields, such as the aerospace industry, control systems

engineers have a good understanding of plant structure and dynamics which allows mathematical

models to be derived. These models are often non-linear, with system dynamics changing

substantially as a function of the operating domain. The lack of analytical plant models and the

complexity of available models limits the application of model-based controller design techniques.

Fuzzy logic systems were developed to model and mimic human linguistic reasoning. Fuzzy logic

systems are rule-based and thus easy to interpret and understand. In many plants expert control

knowledge is available in the form of heuristic control rules or operator handbooks that can be

implemented in a fuzzy system and used for closed-loop control. This non-model-based approach

to controller design provides a solution to complex control problems if expert knowledge is

available and it has led to the application of fuzzy logic systems in a wide variety of industrial

plants and consumer products.

1.1 MOTIVATION FOR RESEARCH AND
PROBLEM STATEMENT

Plant dynamics are generally a function of operating conditions. A controller optimised for a

specific operating condition may not perform acceptably for all operating conditions encountered.

Gain scheduling and self-adaptive controllers have traditionally been used to modify controller

parameters and ensure acceptable performance for the variations in operating conditions [4]. The

application of these techniques requires accurate mathematical models of the plant dynamics in all

the operating domains. A fuzzy logic controller (FLC) does not require a mathematical plant model

for its design and is thus ideally suited to application in systems with complex, unmodelled non-

linear dynamics.

Although a standard FLC has proven to be extremely robust, a standard PID-type FLC may not

perform acceptably for all operating conditions. Various self-adaptive fuzzy logic control schemes

have been proposed [54, 87, 89]. The adaptive mechanism is required to run online to track

changes in operating domain. These schemes are often complex and rely on plant knowledge in the

Stellenbosch University http://scholar.sun.ac.za



form of inverse models or parameter sensitivity functions. Fuzzy inverse models can suffer from

identical infinite bandwidth and non-causality as linear inverse models. The derivation of accurate

parameter sensitivity functions is complex and limited to special types of fuzzy system such as

systems using radial basis function.

Control system designers can often gam valuable qualitative information regarding system

parameters, states or domains influencing plant dynamics from plant experts or knowledge of the

plant structure. A typical example is asking a pilot how rapidly or sluggishly a high-performance

aircraft reacts at various mach/altitude numbers. Knowledge about the system states or domains

affecting system dynamics can be incorporated into the control rule-base. This will allow the

controller to change its control strategy according to the system state, similar to a gain-scheduling

controller. This type of controller is termed a multi-mode fuzzy logic controller (MMFLC). Multi-

mode control rule selection is difficult and tedious for high-dimensional rule bases. The lack of

non-model-based design methods and tools for multi-mode rule-base design has limited the

application of the multi-mode structure.

The Takagi-Sugeno-Kang control structure is a multi-mode structure with a clearly defined design

technique [54, 87]. A Takagi-Sugeno-Kang model is a fuzzy state space model combining linear

state space dynamics from different operating domains. A Takagi-Sugeno-Kang state space

controller can be designed from the derived models. The design procedure relies on the derivation

of accurate mathematical models. However, once accurate mathematical models have been derived,

model-based non-linear and robust controller design techniques can be used. The resultant

controllers should take preference to fuzzy logic-based controllers if they deliver acceptable

performance or have a lower complexity than fuzzy logic-based systems.

Genetic algorithms have been used to optimise complex control problems. The application of

genetic algorithms is limited by the availability of fast simulation models, fast computational

platforms and adequate optimisation time.

1.2 SUGGESTED SOLUTION

In this dissertation it is postulated that non-model-based design methods can be found for designing

MMFLCs for plants with complex, unmodelled non-linearities. The design methods should

incorporate qualitative knowledge of the plant, as described in the previous paragraph, without

resorting to accurate mathematical plant models. Due to the high dimensionality of the MMFLC

rule base, the design process must be automated to ensure a fast design tum-around time. The

following advantages of using a multi-mode fuzzy logic control structure are clearly shown.

2
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1. The operating domain of the MMFLC is larger than that of standard non-adaptive

controllers and similar to that of self-adaptive controllers.

2. Generally, MMFLCs are mathematically less complex than existing self-adaptive

control techniques.

3. MMFLCs do not lose the intuitive simplicity of the fuzzy system associated with some

existing techniques.

4. It is possible to automate design procedures for MMFLC rule-base design.

5. The optimised MMFLC can easily be implemented as a look-up table in low-cost

control platforms, reducing the cost of mass-produced products.

Two automated methods of multi-mode rule-base design are proposed. These methods form

powerful tools in assisting the control system designer in finding and implementing appropriate

control rules. In this dissertation the term automated design method does not imply an autonomous

or automatic design method. The designer still forms an integral part of the design loop and

requires expert knowledge to determine the structure of the proposed controller and in tuning the

design algorithm input parameters. The automated design tools assist the designer in finding rules

to implement a chosen control strategy.

The first method proposed is a cost-function-based approach, using qualitative plant knowledge.

The designer uses expert knowledge regarding the comparative small-signal gain and bandwidth

between various operating domains in selecting cost function weights. The cost function weights

determine the equivalent controller gain and damping. The closed-loop performance of the

controller can be tuned globally using the input gains to the controller, or locally using the cost

function weights.

In the second method the rule-base performance is evaluated and improved in a model reference

adaptive architecture. The dominant rules responsible for poor closed-loop performance are

identified by means of the rule firing strengths. The conclusions of these rules are modified by the

selection of an alternative output membership function and then tested. The designer must select

appropriate reference models, tuner gains and terminating conditions.

In this dissertation the application of the controllers is for set point tracking and disturbance

rejection. The controller set points are thus assumed to form part of the problem definition. In

multiple control loop systems these set points become control or manipulated variables in a higher-

dimensional control loop with new specifications to be satisfied. Although the application of the

design approach is valid for multiple control loops, this investigation falls beyond the scope of this

study.
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The main contribution made in this dissertation is disproving the traditional criticism of structure

complexity and design difficulty against the multi-mode fuzzy logic control structure. It is shown

that the multi-mode structures have superior closed-loop response performance over the single-

mode control structure. It is further shown that the design process can be facilitated by using the

proposed automated design algorithms and plant structure knowledge. The proposed methods do

not rely on the determination of accurate mathematical plant models.

1.3 CHOICE OF CASE STUDIES

Testing of the proposed design approach was done on five simulation studies, characteristic of

various types of systems. The choice of case study systems was influenced by the availability of

fast and accurate simulation models. The plants chosen in this dissertation all show a non-linear

dynamic behaviour dependent on system states or external parameters. As far as possible literature

examples were chosen to allow for direct comparison of results.

Small-signal, linear transfer functions can be determined from the non-linear model in most of the

case studies. These linear models are used to illustrate the change in dynamic behaviour between

operating conditions and gain valuable qualitative process information normally obtained from

experts. In the design process it was assumed that accurate dynamic models are not available and

the small-signal model parameters were not used in the design of the presented controllers.

The first three case studies were used to illustrate the validity of the proposed design approach and

to compare the performance of the cost-function based and the self-adaptive designs. The cargo

ship steering system is a published benchmark case study for self-adaptive control. The advantage

of the system is its low-dimensional complexity. The primary influence on the non-linear

behaviour is the ship forward velocity. This allows for the precise design of controllers for specific

forward velocities. In addition, this type one system does not require PID control. The results from

this problem are ideal for presentation in a research paper currently being written. The two

hypothetical second-order plants were developed to illustrate the ability of the MMFLC to control

plants with dynamic responses dependent on system states. In the second case study, the effective

damping of the second-order plant is modified as an exponential function of position illustrating

large variations in plant damping. In the third case study, the velocity feedback is a non-linear

function of the velocity. The non-linear velocity feedback is similar to the non-linear drag force

encountered by high-performance aircraft approaching the sound barrier.

The fourth and fifth case studies were chosen to illustrate the application of the two proposed design

methods on systems from the chemical process industry. The fourth case study is on the
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temperature control of a homogenous, azeotropic distillation column subjected to disturbances in

input feed flow. This process was included primarily as an example of applying the proposed

design approach to complex, high-order system. In this example the SMFLC delivers an acceptable

transient response but excites unacceptable steady-state oscillations in certain domains, prevented

with the use of the MMFLC. The dynamic modelling of this process formed part of a masters

project at the University of Stellenbosch currently nearing completion. A detailed model of the

distillation column and process knowledge in the form of distillation experts was available to help

in the definition of the control objectives and controller structure. The disturbance rejection

problem does not conform to the model reference adaptive control architecture required by the self-

adaptive design approach and is thus used to illustrate the cost-function-based design method. The

fifth case study is on the control of the reactant concentration of an exothermic CSTR system. This

system is a well-known literature example and the plant dynamics have been investigated in detail.

The concentration control problem is used to illustrate the application of the self-adaptive design

technique. As in the distillation column, this reaction was included to illustrate the ability of the

MMFLC in preventing steady-state oscillation or limit cycles excited by the SMFLC.

1.4 DISSER TATION LAYOUT

A literature review, as motivation for the proposed design approach, is presented in Chapter 2.

Paragraph 2.1 presents a summary of the basic fuzzy system properties with an explanatory

example. The standard FLC structures and the fuzzy sliding mode controller (FSMC) are presented

in paragraph 2.2. An FLC design procedure is presented in paragraph 2.3. The traditional rule-base

design methods are reviewed in paragraph 2.4. Self-adaptive fuzzy logic control (SAFLC) is

presented in paragraph 2.5. The problem definition and suggested solution are detailed in paragraph

2.6.

The proposed design and adaptive algorithms are presented in Chapter 3. The general assumptions

for the application of the algorithm are defined in paragraph 3.1. A general approach and guidelines

to MMFLC design using a cost function method of rule-base generation are detailed in paragraph

3.2. The model reference adaptive architecture and rule-base adaption algorithm is presented in

paragraph 3.3.

The performance of the proposed MMFLC design method is evaluated and compared to the single-

mode fuzzy logic controller (SMFLC) in Chapter 4. Controllers are designed for a cargo ship

(paragraph 4.1), a second-order plant with exponential non-linearity (paragraph 4.2) and a second-

order plant with non-linear velocity feedback (paragraph 4.3). The controller rule-bases are
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optimised by gam and cost function weight manipulation and usmg the proposed adaptive

architecture. Paragraph 3.4 ends the chapter with the conclusions drawn from the three case studies.

Chapter 5 explains the application of the proposed design method for temperature regulation of an

azeotropic distillation column. A short introduction to distillation and the simulation model is given

in paragraph 5.1 and paragraph 5.2. A state space observer for estimation of the error rate of

change is presented in paragraph 5.3.1. The system architecture does not allow for the use of the

model reference adaptive algorithms and the SMFLC (paragraph 5.3.2) and the MMFLC (paragraph

5.3.3) is optimised by adapting the controller input gains and cost function weights. The

performance of the SMFLC is compared to the MMFLC in paragraph (5.4).

Chapter 6 explains the application of the rule-base adaptive algorithms in designing a concentration

controller for a CSTR system. The plant and simulation model is presented in paragraph 6.1. The

design of the SMFLC is presented in paragraph 6.2.1 and the MMFLC in 6.2.2. The performance

of the controllers is compared in paragraph 6.3.

The conclusions drawn from the work presented in this dissertation and suggested future research

are presented in Chapter 7.
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2 FUZZY SYSTEMS
Fuzzy logic systems are based on fuzzy set theory, as suggested by Lotfi Zadeh in 1965, and are a

generalization of the first theory on sets by Georg Cantor (1845-1918) [21, 80, 89, 95]. In an

attempt to model and simulate human linguistic reasoning, Zadeh suggested that humans think in

terms of fuzzy sets [61, 95]. Zadeh defines a fuzzy algorithm as an ordered set of fuzzy instructions

to yield an approximate solution to a specific problem [95]. A fuzzy logic algorithm makes

decisions based on imprecise, non-numerical data and can thus be thought of as a continuously

valued state machine [10, 60, 61]. Numerous discussions on fuzzy systems exist and only a short

summary of the basic principles and properties as applicable to this work will be given in paragraph

2.1 [3,21,34,36,37,42,54,80,87,89,95].

2.1 Fuzzy LOGIC SYSTEMS

The inputs and outputs of a fuzzy logic system are called linguistic variables [10, 54, 95]. A

linguistic variable can be defined as a variable that takes a word or a sentence, called a fuzzy

variable (as defined by a fuzzy set and taken from a term set), as its value [21,36,42,54,87,89].

Elements of a fuzzy set are taken from a universe of discourse of all the considered elements [21].

A fuzzy set gives a qualitative measure of the membership of its elements. The gradual transition in

membership between zero and one is defined by a membership function [36, 45, 80, 89, 95].

Elements of a fuzzy set that have non-zero membership values are called the support of a fuzzy set

[21, 36, 89, 95]. A fuzzy set with a single point as support is called a fuzzy singleton [36, 89, 95].

A fuzzy set can be thought of as a collection of ordered pairs or a union of constituent singletons

[21, 95]. A fuzzy set A, with elements x from the universe of discourse X in which A is defined and

characterized by a membership function p(x), can be represented by Equation 1.

A = {(x,jJ(X ))}

Equation 1

Consider two fuzzy sets A and B, defined by membership functions PA(X) and PB(X), on a single

universe of discourse. The standard fuzzy set operations of complement, intersection and union are

defined as given by Equation 2 a, Equation 2 b and Equation 2 c [21,42,45,54,87].
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,uAx)= 1- ,uJx)
,uAnB(x) = T(,u A(X ),,uB (X)) = ,uA(X)® ,uB(X) = min[u A(X ),,uB (x)]
,uAUB(X) = T(,uAx ),,uB(X)) = ,uAx)ffi ,uB(X) = max[u Ax ),,uB (x)]

Equation 2

The intersection operator corresponds to a fuzzy logic AND operation and can be implemented by

taking the minimum (Equation 2 b) or the algebraic product, while the union operator corresponds

to the fuzzy logic OR operation and can be implemented by taking the maximum (Equation 2 c) or

the bounded algebraic sum of the two membership functions [21, 42,45, 54, 87, 94]. The defined

fuzzy set operations of compliment, intersection and union have standard distributive and

associative properties, allowing for the operation on more than two fuzzy sets [45]. In the literature

the fuzzy intersection operator is also referred to as the T-Norm while the union operator is referred

to as the T-Conorm or S-Norm operator, with various suggested implementations [20, 21, 37, 42,

45,54,87,89].

The fuzzy Cartesian product, or fuzzy relation, is used to implement fuzzy operators on fuzzy sets

from different universes of discourse [21 , 54, 87]. A fuzzy relation R is a fuzzy set in product space

UxV with membership function J1R(U,V) with UEU and VEV [21, 54, 87, 89, 95]. The fuzzy

composition of fuzzy relation R in Ux Vand S in Vx W that share a common set (V) is a fuzzy

relation defined by Equation 3.

Equation 3

The Sup-Min and Sup-Product composition methods are the popular forms of implementing the

relational operator [21,37,87,89].

Fuzzy logic system are based on fuzzy rules or fuzzy implications and vanous methods of

implementation have been proposed [21, 53]. Fuzzy implication functions are used to quantify

fuzzy rules [54]. The three types of fuzzy implication functions of importance to this work are:

fuzzy conjunction (logical AND), disjunction (logical OR) and implications (logical THEN) and are

normally implemented using T-Norms and T-Conorms [37, 42, 87]. Based on the specific method

of T-Norm and T-Conorm implementation, different implication methods have been suggested by

various authors [21, 87]. Consider the fuzzy rule:

IF (Fuzzy condition) THEN (Fuzzy implication).
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The condition is defined as a fuzzy relation in U and the fuzzy implication defined as a fuzzy

relation in V, with x and y linguistic variables in U and V. According to the implication method

proposed by Zadeh, the fuzzy rule is interpreted as a fuzzy relation with membership function as

given by Equation 4 a. The subscripts Cond and lpl refers to the condition and implication

membership functions respectively. Mamdani's implication is a fuzzy relation with membership

function as given by Equation 4 b. The simplicity of the Mamdani-type implication accounts for its

popularity amongst control system designers. Mamdani inference engines were thus chosen for all

the systems studied in this dissertation.

fiQ/X,y) = max [min [flCOnd{x ),fiIPI{Y )11- ficond{X)]
fiQMM(x,y) = min[flcond {x ),fi lpi (Y )]

Equation 4

In order to draw a single conclusion from a set of fuzzy rules, an inference operator is required [21,

87]. In individual rule-base inference, each rule in the rule-base qualifies an output fuzzy set. The

consequences of all the rules are combined with the union or intersection operator to form a single

output fuzzy set [54, 87]. Of the various proposed inference methods, the minimum inference

engine is used in this work [42, 87]. In the minimum inference method individual rule-base

inference with union combination is used in conjunction with Mamdani's implication method as

given by Equation 5 for the case of M rules in the rule-base [87].

fiB' (y) = Il}!x[min[flcond (X ),fiIPI (y)]

Equation 5

The structure of a typical fuzzy logic system and the application of the above equations is best

explained using a simple example. For the sake of simplicity consider a two-input, one-output

fuzzy logic system that maps the inputs x and y, in their universes of discourse X and Y, to output z

in universe of discourse Z. The structure and elements of the fuzzy logic system are shown in

Figure 1.

I:>EFl_TZ-ZIFIER

Figure 1 Structure of a two-input, one-output (MISO) fuzzy logic system.
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Assume that the linguistic variable TOP is associated with x, BOTTOM with y and OUT with z. In

this example, as in all the fuzzy systems in this work, the minimum operator is used to implement

the T-Norm, the maximum operator implements the T-Conorm, while Mamdani's implication and

inference methods are used. Assume that each linguistic variable has three fuzzy sets in each term

set, called Low, Medium and High, described by triangular membership functions as indicated in

Figure 2.

IF (TOP is ... ) AND IF (BOTTOM is ... )

z

Figure 2 Mamdani inference for a two-input, one-output fuzzy logic system.

The four rules indicated in Figure 2 are:

Rule 1: IF (TOP is Meel)AND (BOTTOM is Low) THEN (OUT is Low)

Rule 2: IF (TOP is Meel) AND (BOTTOM is Meel) THEN (OUT is Meel)

Rule 3: IF (TOP is High) AND (BOTTOM is Low) THEN (OUT is Meel)

Rule 4: IF (TOP is High) AND (BOTTOM is Meel) THEN (OUTis High)

The crisp inputs (x and y) to the fuzzy logic system are processed by the fuzzifier (Figure 1) [10].

The fuzzifier calculates the grade of membership for each fuzzy set using the associated

membership function (Figure 2) [20].

The knowledge base (Figure 1) consists of the fuzzy IF - THEN rules and is referred to as the

fuzzy associated memory (FAM) [9, 10]. Each fuzzy IF - THEN consists of an antecedent and
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consequence. The antecedent is the input condition in the application domain and forms an input

space, defined by the combined fuzzy relation, in the input universe of discourse [36]. The

consequence is an output action in the output universe of discourse, as determined by the fuzzy

inference engine [36].

The inference engine uses fuzzy logic principles and inference operators to draw a conclusion from

the rule-base [20, 21, 36]. The inference engine thus combines the fuzzy implications from the rule-

base into a mapping from the input fuzzy sets to an output fuzzy set [36, 89]. The first step is to use

the T-Norm and T-Conorm to resolve the support or firing strength of each rule according to the

rule antecedent. In the example of Figure 2, this is done by taking the minimum of the membership

values as indicated [21]. The next step is to use the individual rule support to shape the fuzzy

output membership function [21]. In Figure 2 the output fuzzy sets are limited to the rule support

value as proposed by Mamdani. The last step is to aggregate all the output fuzzy sets to determine a

single fuzzy set as output, specifying possible output actions [21, 36]. According to Mamdani's

method, this is done by taking the logical OR of the individual output fuzzy sets as shown in Figure

2.

A defuzzifier (Figure 1) is used to determine a crisp output from the output fuzzy set [10]. One of

the most popular methods is to calculate the centroid of the resulting output fuzzy set [20]. The

centroid method is sensitive to the consequence of all the rules activated, while other methods are

biased towards the most dominant rules (rules with higher truth values or firing strengths) [10].

Various other defuzzification methods have been proposed in the literature [10, 21,42, 54, 93]. In

this work the centroid method is used in all the examples.

2.2 Fuzzy LOGIC CONTROLLER STRUCTURES

The first application of fuzzy logic theory in the control of dynamic systems was reported by

Mamdani in 1974 with the control of a model steam engine [46]. In 1976 Kickert and van Nauta

Lemke reported the application of fuzzy logic control to a process control problem, with the control

of a laboratory-scale warm water plant [26]. The first significant industrial application of fuzzy

logic was the control of a cement kiln in Denmark [60, 87]. Since then, fuzzy logic controllers have

found application in industrial processes and consumer products as wide-ranging as nuclear

reactors, cement kilns, railway train control, automotive engine and transmission control, machine

centres, auto-focus cameras, high-performance aircraft and household washing machines [7, 17,21,

36,60,61,65,83,87]. Fuzzy logic controllers have successfully been used when [10]:
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1. Mathematical models of the plant are complex or lacking;

2. Inexpensive or noisy sensors are used in state measurements;

3. Low-precision micro-controllers are used as control platforms; and

4. Expert knowledge is available to specify the control rule-base.

Various structures and implementations of the non-adaptive FLC have been proposed in the

literature. A short survey of the more popular control structures will now be given, while the

methods of designing these controllers will be explained in paragraphs 2.3 and 2.4. The structure of

the adaptive FLC is reported in paragraph 2.5.

The structure ofa simple form of the FLC is shown in Figure 3.

FUZZY
LOGIC

CONTROLLER

y
PLANT

Figure 3 Structure of a PD-type FLC.

The plant output (y) is compared to the set point (r) to generate a tracking error (e) [17]. The

tracking error, henceforth just called the error (e), and error rate of change (de/dt) are amplified

through the controller input gains and fed to a two-input, one-output fuzzy systems as indicated in

Figure 3. The fuzzy system has rules of the form:

IF (ERROR is Ek) AND (ERROR RATE OF CHANGE is Rl) THEN (OUTPUT is Ukl).

The output from the fuzzy system is amplified with the controller output gain and fed to the plant

input. Since the fuzzy system maps the error and error rate of change to the output, it forms a non-

linear proportional and derivative (PD) controller. Since the output of the fuzzy system directly

specifies the control value to be applied to the plant, without any dynamic filtering, it is termed an

absolute-type controller [21]. The addition of the derivative information helps to limit overshoot at

the expense of noise, due to the numerical derivative process [21]. Due to its simplicity this form of

FLC is quick to implement and intuitively understandable. This form of control does not allow for

perfect set point tracking if the plant is not a type 0 system.

The incremental PD-type FLC overcomes the perfect set point tracking limitations of the PD-type

FLC by adding a pure integrator to the plant as shown in Figure 4 [26, 30, 94].
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FlJZZY
LOGIC

CONTROLLER
PLANf v..

Figure 4 Structure of an incremental PD-type FLC.

For this type of controller the form of the rule-base is identical to the standard PO-type FLC. A

different approach is to incorporate the integral action into the rule-base by changing the rule form

to

IF (ERROR is Ek) AND (ERROR RATE OF CHANGE is Rl) THEN (CHANGE IN OUTPUT is Ukl).

The fuzzy system suggests a change or increment to the current control action and is termed an

incremental fuzzy system [21]. This control structure has proven to be a popular choice with

designers following the successful application of this structure by Mamdani, King, Ostergaard,

Assilian and others [70, 78, 80]. A combination of the absolute and incremental PO-type controller

has been proposed by Tong in which absolute control is used for large errors and incremental

control for small errors [80]. The addition of the integral action effectively changes the controller

from a PO type to a Proportion and Integral (PI) type of controller [77, 88]. This type of controller

is simple to implement and easy to understand intuitively. Experiences with this type of controller

have shown this author that the bandwidth reduction caused by the additional integrator severely

limits the speed of closed-loop response. Higher loop gains used to increase closed-loop speed of

response often caused large overshoot and unacceptable oscillations close to the set point.

The linear augmented PO controller is shown in Figure 5.

PLANT
FlJZZY
LOGIC

CONTROLLER
v

Figure 5 Structure of a linear augmented PD-type FLC.

The output from a fuzzy system, identical to that of the PO-type FLC, is added to a scaled integral

of the error signal. This effectively forms a non-linear proportional, integral and derivative (PlO)
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type controller. This form of controller does not suffer from the bandwidth reduction problems of

the incremental type PD controller and is still able to attain perfect set point tracking for type one

plants.

It is possible to incorporate the integral contribution of the linear augmented type PD controller

directly into a PID-type controller as shown in Figure 6.

FUZZY
LOGIC

CONfROLLER
PLANT

Figure 6 Structure of a PID-type FLC.

This form of controller maps the error integral (Je.dl), error and error rate of change to the controller

output using rules of the form

IF (ERROR INTEGRAL is Ij) AND (ERROR is Ek) AND (ERROR RATE OF CHANGE is Rl)

THEN (OUTPUT is Chkl).

An alternative form of the PID-type controller uses the error, error rate of change and error

acceleration as inputs and an incremental output structure [1, 75]. The format of the control rules

would then be

IF (ERROR is Ij) AND (ERROR RATE OF CHANGE is Ek) AND (ERROR ACCELERATION is Rl)

THEN (CHANGE IN OUTPUT is Chk/).

The disadvantages of the PID-type of controller are the added complexity of the additional input

expanding the rule-base dimensions and the difficulty of effectively adding the error integral

information to the rule-base [21]. Control system engineers normally have a better intuitive

understanding of PD type rule composition than PID-type composition.

Although the FLC has been proven to be extremely robust in the control of non-linear plants, the

control structures explained above use the same rule-base throughout the non-linear state space.

Large variations in the dynamic model of the plant due to changing operating conditions will cause

a finely tuned closed-loop behaviour to lose relevance as the plant dynamics change [7, 48]. A rule-

base optimised in one domain may lead to unacceptable or even unstable performance in other

domains. One method of solving this problem would be to incorporate non-linear domain

knowledge into the rule-base and design an optimised controller for each domain. The structure of

such a multi-mode controller is illustrated in Figure 7.
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FUZZY
LOGIC

CONfROLLER

x
PLANT y

Figure 7 Structure of a multi-mode PID-type FLC.

The control rules would then be of the form

IF (STATE is Xï) AND (ERROR INTEGRAL is lj) AND (ERROR is Ek) AND (ERROR RATE OF

CHANGE is Rl) THEN (CONTROL is Uijkl).

The linguistic variable STATE is indicative of the non-linear domains or operating conditions of the

plant. The big disadvantage of such a controller is the added complexity caused by the higher

dimensionality of the rule-base and the difficulty in finding suitable control rules [48].

A variable structure or sliding mode FLC is an FLC designed on sliding mode principles [87]. It

has been shown that sliding mode control (SMC) gives consistent performance for non-linear and

uncertain processes [79, 87]. The properties and design methods of SMC have been thoroughly

documented and what follows is just a short explanation of SMC without a boundary condition [52,

68, 82]. Consider an nth order, non-linear, dynamic SISO system as described by Equation 6.

x = f{x)+u

[ ]

T
. .. ... n-I

X = x,x,x,x ,...,X
A

f{x)~ f{x)+ F{x)

Equation 6

Assume that the non-linear function f(x) is unknown, but can be approximated with a known

maximum error bound F(x). The object is to determine a control signal u, so that the system states x

track a desired system state Xd. Define the state tracking vector e as given by Equation 7.

e = x-xd

[ ]

T
. .. ... n-I

= e,e,e,e ,...,e

Equation 7
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Further, define a scalar function S as a linear combination of the elements of the state tracking

vector, as defined by Equation 8, where A is a positive constant.

S(X,I)= (:1+ ,t)e
= n-l + Cl Aen-2 +c: A2 n-2 +e3 A3 n-3 + + An-le n-l n-2 e n-3 e ... e

Equation 8

It is clear that our tracking problem is equivalent to keeping the system states on the time-varying

surface in the non-linear state space, as defined by S(x,t) = O. The surface defined by S(x,t) = 0 is

referred to as the sliding surface. When the system states are on the sliding surface the stability of

the closed-loop system can be investigated by considering the candidate Lyapunov stability function

of Equation 9 a.

v = Yz STS s 17ISI
V =ST S~O

Equation 9

Closed-loop stability is assured if the first derivative of the Lyapunov stability function, Equation 9

b, is smaller than O. This implies that, if the states move away from the sliding surface, the control

action will force the state trajectory back towards the sliding surface. For example, a second-order

system having a linear sliding surface is defined by Equation 10.

S(x,t)= e+ Ae = ~+ Ax - Xd- Axd

Equation 10

The sliding conditions of Equation 9 a are then given by Equation 11.

Equation 11

Now choose the control signal as defined in Equation 12, where sgnï) refers to the saturation

function.

u = - f(x)+ s.: Ae- K(X,~ )sgn(s)

Equation 12
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The sliding condition is now defined by Equation 13.

Equation 13

The sliding condition is guaranteed if we choose the saturation function gain K, according to

Equation 14.

Equation 14

Due to the discontinuous or switching characteristics of the saturation function in the control signal

(Equation 12), the closed-loop system exhibits high-frequency chatter, caused by the large changes

in control signal value across the switching surface. This chatter can be eliminated by the inclusion

of a boundary layer as explained in the references [68, 82, 87].

The fuzzy sliding mode controller allows for various forms of implementation. The base of the

FSMC is realising that the FLC is an extension ofa SMC with boundary layer [43, 87]. The FSMC

uses a composite state defined by the sliding surface for control action, thus requiring fewer rules to

implement [14].

Choosing the FSMC for a second-order system as given by Equation 15 guarantees the sliding

condition and thus closed-loop performance [87].

UfUZzy(S,X)::;-17-[f(X)+A~-~d 1ifsgn(s»O

ufuzzy(s,x) ~ 17- [f(x)+ A ~- ~d1if sgn(s) < 0

Equation 15

As indicated in the references, an FLS can be used as a smooth approximation of a sliding control

rule with a boundary layer eliminating the undesirable chatter of a standard SMC [25, 43, 63, 68,

82, 87]. The advantage of the FSMC is that clear analytical design methods exist [87]. All the

proposed design methods rely on the availability of an approximation of the system and therefore

the FSMC and the adaptive FSMC will not be investigated further in this work [63, 79].
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2.3 Fuzzy LOGIC CONTROLLER DESIGN
METHODS

An FLC is difficult to design since no theoretical base exists to aid in the design of controllers for

high-order systems which ensure their stability [14, 44]. Some analysis and design techniques

assume plant knowledge and contradict the fuzzy logic control system objectives [88]. The author

shares the opinion that linear, or non-linear, model-based design techniques should be used if plant

models are available [88]. From paragraphs 2 and 2.2 it is clear that the design of an FLC entails

the determination of: the input and output variables, membership functions, fuzzification strategy,

the rule-base, inference engine logic and the defuzzification strategy [1, 36, 74]. In this study, it is

assumed that no mathematical model of the plant is available and a model-based design approach

cannot be used. In this paragraph an FLC design method, based on the general method advocated

by Jantzen, is proposed and used in the subsequent work [21]. Some of the existing methods of

rule-base design are evaluated in paragraph 2.4.

The first step is to define the structure of the required FLC. Since it is assumed that no

mathematical plant model is available, the SFMC and variants cannot be used. This author suggests

the use of a multi-mode PID-type controller and the automated rule-base design algorithms

proposed in Chapter 3. The FLC inputs and output are as defined in paragraph 2.2.

The second step is to define the membership functions for the input and output fuzzy sets. The

shape of the membership function is subjective and depends largely on user preference [40].

Experience has shown that the closed-loop performance is not very sensitive to the shape of the

membership functions [21]. Due to its simplicity of implementation and speed of calculation,

symmetrical triangular membership functions are recommended [7]. Some authors preferred

asymmetrical triangular membership functions, crowded closer to origin, to give a rapid response

far from the set point and smooth, precision control close to steady state set point [48, 53, 70, 75].

The membership functions should be sufficiently wide to ensure that the whole universe of

discourse is covered and ensure a margin of noise immunity [36]. A smooth control action is

established by allowing for enough overlap in membership functions so that at least two rules fire

for any input [16]. Jantzen recommends starting with three fuzzy sets per linguistic variable on a

normalised universe of discourse and then to increase the amount of sets as required.

The next step is to choose a fuzzy inference engine and design the rule-base. The simplicity and

intuitive understandability of the Mamdani-type fuzzy system account for its popularity amongst

fuzzy system designers. The rule-base characterises the control rules and is fundamental in

18

Stellenbosch University http://scholar.sun.ac.za



determining the closed-loop performance [36]. A complete rule-base has at least one active rule for

each possible input combination and will thus produce a valid output for any input in the input

universe of discourse [36]. A consistent rule-base implies that the rules do not contradict each other

by mapping to multiple peaks in the output universe of discourse [1]. The standard methods of

obtaining a good rule-base is expert knowledge, modelling of operator control actions, a fuzzy

inverse model, genetic algorithms and self-learning [1]. These methods are detailed in paragraphs

2.4 and 2.5.

The last step in the design process is choosing a defuzzifier. The centre of area method is a popular

choice for use with Mamdani-type systems and is used in all case studies reported in this

dissertation [40].

The final controller is the result of an iterative design or tuning process to obtain a desired closed-

loop response. The controller input and output gains, membership functions, rules, inference

method or defuzzification method can be modified [1, 9,30, 64, 80]. Various methods have been

proposed to tune the closed-loop response by adjusting the high degree of free parameters [21, 54].

Membership function tuning is ineffective due to the low sensitivity of the control policy to changes

in membership function shapes and parameters [64]. Closed-loop response tuning by controller

gain adjustment, analogous to classical PID tuning, are effective in obtaining a better closed-loop

response but not robust enough to deal with incorrect rules [30, 64, 98]. Since the character of a

fuzzy system is determined primarily by its rule-base, a modification of the rules is the most

effective way of controller tuning [64, 79, 80, 86,92].

A lookup table implementation of the fuzzy logic control system by off-line generation of the

control rules for discrete inputs provides a controller with minimum overheads and calculation time

[30,36, 64]. Abdelnour et al. have shown how a PID-type controller can be implemented as a two-

dimensional lookup table by using an offset into a PD-type lookup table [1]

2.4 RULE-BASE DESIGN METHODS

The choice of control rules is crucial in the determination of the closed-loop system response and

therefore the most difficult aspect of FLC design [3, 53]. A short review of FLC rule-base design

by using expert knowledge, modelling of operator control action and genetic algorithms is given.

FLC rule-base design by means of self-learning can be classified as a self-adaptive fuzzy logic

controller (SAFLC) or self-learning fuzzy logic controller (SLFLC) and is reviewed in paragraph

2.5.
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Designing an FLC rule-base by means of expert knowledge is based on the intuition and experience

of experts for the determination of heuristic rules of thumb for control [17, 26,40, 70, 74, 85]. The

source of expert knowledge can be a control engineer's intuition, the expert knowledge of a person

familiar with the plant dynamics or the experience of a skilled plant operator [42]. Expert

knowledge normally indicates that large errors require the largest possible control for fast response,

while small errors require almost linear control. This results in a time-optimal control approach for

large errors combined with a robust control approach for small errors [16]. The MacVicar-Whelan

meta rules of incremental PD-type rule-base design recommend that the present control setting

should be maintained for zero errors or errors diminishing at an acceptable rate [77]. If the error is

not diminishing at an acceptable rate, the existing control setting should be modified in proportion

to the error and error rate of change [77]. The system response far from the set point can be

improved by imposing damping close to the set point only, which will prevent an overdamped

response [7]. In the case of the control of industrial processes, such as cement kilns, operator

handbooks provide a vital source of expert knowledge. Heuristic design of an FLC rule-base is a

difficult and error-prone optimisation technique that may result in a stable but not always optimal

controller [7, 31]. Since the manual coding of expert knowledge into a rule-base is a tedious

process, the application of this method has been limited to small rule-base system [21, 65,69]. An

added disadvantage is that operator actions are often erratic, inconsistent and not based on a single

measurement [30,44].

Fuzzy logic modelling is a qualitative modelling technique that describes the process to be modelled

in linguistic terms [74]. It has been shown that an FLS can be used as a universal approximator [13,

96]. A fuzzy model provides a smoothly connected approximation, in contrast to a piece-wise

linear approximation [76]. An FLS can thus be tuned to model a skilled plant operator by observing

appropriate input/output data associated with certain control actions [42, 73, 76]. Various methods

have been developed for dynamic system modelling by means of an FLS [2, 32,33,42, 72, 76, 87,

92,96]. These techniques are beyond the scope of the work included in this dissertation.

An FLC may be regarded as an inverse model of the plant to be controlled [21]. A fuzzy model of

the plant to be controlled may be inverted to supply control rules [21]. A number of heuristic

design methods based on linear control, optimal control methods and feedback linearization

techniques have been proposed [19, 23, 42, 53]. The Takagi-Kang-Sugeno method of modelling

provides a fuzzy model based on localised, linear state space models, suitable for the design of a

fuzzy state space controller [44, 87]. The method requires an accurate dynamic model and will not

be considered further in this work.
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A genetic algorithm (GA) can be used for the offline optimisation of an FLC by artificial evolution

of the fittest controller. Gradient-based search methods cannot be relied upon to find a global

optimum in a multi-parameter search space with discontinuity, multi-modality and non-linear

constraints [27]. The genetic algorithm is an optimisation or search technique based on the

mechanics of biological selection, genetics and evolution [42, 54]. The algorithm attempts to

simulate Darwin's theory of natural selection and Mendel's theory on genetic inheritance to seek an

optimum for a fitness function J(O), where 0 is the parameter vector to be optimised [54]. The GA

performs a stochastic but directed search to evolve the fittest members in a population of

chromosomes by searching many local optimum peaks in parallel [42, 54]. The exchange in

information between peaks prevents trapping at a local optimum by forcing the search to jump to a

new region of the search space that could contain a global optimum [42, 54].

A population is formed by taking a collection of chromosomes formed by the stringing together of

genes [54]. A gene is thus a location in a chromosome that can take on various values from a

number system, determined by an encoding mechanism that codes the parameters to be tuned into

chromosomes [42, 54]. It has been shown that binary coding is the optimum coding scheme [42].

The genetic operators are used to produce a new generation from a previous generation [54].

Normally the number of chromosomes is kept constant from generation to generation [42].

According to Darwin's theory on natural selection, the first operator selects parent members for the

next generation based on a fitness value determined for each individual chromosome, according to

how close to an optimum it is. Members with a high fitness value have a higher probability of

survival to "mate" and form the next generation compared to unfit members [54]. The selection

process is done with a roulette wheel parent selection algorithm [42]. Selection directs the search

towards the best existing individuals but does not create new individuals [42]. The crossover

operation is a swap in genetic material, identical to the process in which a child inherits genes from

both parents [42, 54]. Parents are paired off at random and a random crossover site is selected at

which the genes are separated and crossed to produce children [42]. After the crossover operation,

the mutation process inverts or change randomly selected genes in the population [42, 54]. The new

generation is now tested against the fitness value. Optimisation stops when some predetermined

fitness value or a set number of generations are reached.

In FLC design a population of chromosomes is built up where each chromosome represents a

controller with the parameters to be optimised coded into genes [24, 27]. Using a pre-selected

fitness function and computer simulations, a fitness value is determined for each controller. The

fitness value quantifies the success of the closed-loop response in terms of the key performance

indicators (KPIs) such as rise time, overshoot, settling time, etc. [24, 54]. The genetic operators are
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then applied to form a new generation that can be tested. The genetic algorithm provides a

powerful tool for FLC development and has been successfully used to optimise controllers for

systems as wide-ranging as pH neutralisation, space-based oxygen production systems and inverted

pendulum stabilisation [24, 27, 28]. The algorithm can be used to optimise the membership

function parameters or the rule-base, or both simultaneously [18, 24, 27, 28]. The disadvantage of

the GA is that it requires a fast and accurate simulation model and is computationally intensive.

The author does not consider the GA suitable for complex controller design, due to its numerical

intensity.

Various design methods based on cell mapping and gradient parameter modification algorithms

have been proposed and successfully applied to various systems [69, 83]. These techniques are

computationally intensive and require accurate mathematical models. These methods are not

considered further in this study.

2.5 SELF-ADAPTIVE FUZZY CONTROL

An adaptive control system can be defined as a non-linear controller that tracks slow changes in the

system parameters and updates the controller parameters in an attempt to extend the working range

of the control system [4]. Adaptive fuzzy systems can modify the system input scaling factors, the

characteristics of the rules, the topology of the fuzzy sets and the method of fuzzification and

defuzzification [9, 48, 62, 98]

The first adaptive FLC was proposed by Procyk and Mamdani in 1979 and was termed a self-

organising controller (SOC) [21, 55]. The SOC uses a combination of system identification and

control experience to automatically develop and improve rules by monitoring the process

performance [53, 62]. The SOC uses a control decision table in conjunction with an output

correction signal to modify the previously active rules responsible for the present poor performance

[55, 75, 78]. The output correction is determined by a performance index table, similar to the

control decision table, and a small signal, linear dynamic model of the plant [9, 55, 62]. The

performance index table contains the minimum tolerable response [78]. The SOC can be adapted to

modify the control surface directly, preventing the recalculation of the lookup table following a rule

adaption [62, 64].

Since the advent of the theory of adaptive control and the SOC, the proposed SLFLC architectures

have been divided into two classes according to the structure of the parameter adaption mechanism

[4,54,87].
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2.5.1 INDIRECT ADAPTIVE CONTROL

The structure of an indirect adaptive controller is shown in Figure 8.

CONTROLLER -- SYSTEMDE~'IGN ,.IDENITF1CAnON 14-
ALGORITHl\f

L

~

FUZZY y
LOGIC 4- PLANT

CONTROLLER

Figure 8 Indirect adaptive fuzzy logic control architecture.

In this method, the plant parameters are updated using an online system identification algorithm and

the controller parameters are determined by solving a design algorithm [4, 54, 87]. This structure is

also referred to as the self-tuning regulator [4].

One approach is based on the online tuning of fuzzy models approximating the non-linear plant

dynamics and cancelling the plant non-linearity in a state feedback scheme [87]. Consider an nth

order non-linear system defined by Equation 16.

(n) _ ( ... (n-I)) ( ... (n-I))
X - f x, x, x, x, ,x +g x, x, x, x, ,x U

Equation 16

The state feedback linearisation control law is given by Equation 17.

Equation 17

The online identification algorithm supplies the approximation function parameter vectors Bfand Bg.

The reference or required state performance is given by Ym and the tracking error vector bye. The

gain vector k is chosen so that the polynomial formed by s" + k1sn-1 + ... + k; = 0 has stable roots in

the left half s-plane.

The underlying design problem is that of finding a controller design algorithm that guarantees

closed-loop stability and allows for automated implementation. Since the direct adaptive method is

the preferred method for use in this work, no further detail will be given on the indirect adaptive

techniques.
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2.5.2 DIRECT ADAPTIVE CONTROL

The structure of a direct adaptive controller is shown in Figure 9.

PERFORMANCE
- EVALUATION AND r-

UPDATE MECIIANL"IM

~

Fl.lZZY y
LOGIC -. PLANT

CONTROLLER

Figure 9 Direct adaptive fuzzy logic control architecture.

The performance evaluation and update mechanism implements a direct change in the controller

parameters without estimating the model parameters [4, 51, 54, 87].

In the model reference adaptive system (MRAS) the closed-loop specifications are given in terms of

a reference model, with the adaptive mechanism adjusting the controller parameters to reduce the

response error as indicated in Figure 10 [4].

REFERENCE YUF
MODEL

PARAMETERS ADJUSTMENT
~I:IHECIIANI&'M

~

FUZZY ~.."
LOGIC ~ PLANT

CONTROLLER

Figure 10 Model reference adaptive control system architecture.

The adjustment or learning mechanism adjusts the controller parameters (0) and has been

implemented in various ways. The gradient-based parameter modification algorithm is a popular

method and is generally based on the MIT rule given by Equation 18 [4].

dB aeRES-=-ye --
dt RES aB

Equation 18
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The sensitivity-based fuzzy self-learning scheme can only be applied if the fuzzy input-output

mapping is analytical and differentiable [31]. A popular method based on fuzzy basis functions and

Lyapunov functions uses a modification rule similar to the MIT rule as given by Equation 19.

dBTt = -reREsPn~(X)

Equation 19

The P« vector is the last column of the chosen Lyapunov weight matrix, eRES the closed-loop system

error dynamics and ,(x) the fuzzy basis function. The fuzzy basis functions are defined for fuzzy

systems using singleton fuzzifiers, product inference and center average defuzzifier [87, 88]. This

approach has been used successfully to tune the centers of the output membership function [88].

The method is limited to the specified form of fuzzy system for which the fuzzy basis function can

be defined and will not be considered further in this work.

Learning methods based on a neuro-fuzzy architecture, with reinforced learning employing

stochastic controller output variations and the approximated Jacobian, have been proposed [6, 84].

Learning methods based on reinforcement are complex, lack an intuitive feel and will not be

considered further in this study [22].

The method proposed by Passino et al. uses a fuzzy inverse model that suggests the required change

in the plant input. A knowledge-base modifier changes the active output membership function

centers to ensure the controller output will be modified by the suggested amount [54]. This

approach has been successfully used to design controllers for cargo ships, flexible link robots and

high performance-aircraft [54]. A sensitivity function-based learning scheme can replace the fuzzy

inverse model as shown in [31]. It is the opinion of this author that the proposed methods suffer

from the following disadvantages:

1. The fuzzy inverse model generally has the same dimension as the controller, thus

doubling the controller complexity.

2. The inverse model requires fundamental plant knowledge to suggest the appropriate

amount of modification.

3. The sensitivity-based learning method requires an analytical and differentiable model of

the fuzzy system and plant.

4. Since the knowledge-base modifier changes the centres of the output membership

functions, it is possible to degrade the performance of a rule that uses the same output

membership functions presently under modification. Online retuning is required to prevent
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the possible degradation of non-active rules sharing consequences with active rules. An

alternative would be to define a separate membership function for every rule raising the

calculation burden of the defuzzifier.

The method proposed in Chapter 3 is based on the model reference adaptive architecture. A scheme

to modify the consequence of rules responsible for poor closed-loop performance based on the

response error and response error rate of change is proposed. The learning mechanism is modelled

on the process a human would use to change the consequence of rules responsible for extreme

overshoot or a response that is too slow.

2.6 PROBLEM DEFINITION AND SUGGESTED
SOLUTION

From the preceding literature survey it is apparent that the design of an appropriate rule-base is

critical in the determination of the closed-loop behaviour of complex non-linear plants with no or

ill-defined mathematical models. The complexity of designing an FLC is influenced by the

dimensions of the rule-base and the difficulty of obtaining the appropriate control rules.

The design problem addressed in this work is best explained considering a simple example.

Assume that an FLC has to be designed for a non-linear, type zero, second-order plant. Assume

that the small signal, linear dynamics differ substantially over the non-linear state space. Assume

further that the FLC has to be implemented in a cheap hardware platform, typically a micro-

controller or programmable logic controller-based system. Due to the hardware limitations

imposed, the controller structure should be as simple as possible.

The two problems encountered in the design of an FLC are the selection of an appropriate control

structure and finding the optimum control rules that will satisfy the required closed-loop

specifications in the absence of expert control knowledge. The simplest form of FLC is a PID-type

controller with error integral, error and error rate of change as inputs.

At present no simple method of rule-base design exists that uses qualitative plant knowledge. Of

the existing methods of control rule-base design, the genetic algorithm seems to be the ideal

solution. The application of a genetic algorithm requires a fast and accurate simulation model and

many simulation runs to cover the search space. The practical application of the GA is limited and

will thus not be considered further in this work. A direct adaptive controller is a good alternative

for optimising ofa rule-base. The self-adaptive algorithm can be used to tune a controller online (at

the risk of system instability) or offline using a simulation model. If the hardware allows for the
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implementation of a direct adaptive algorithm in addition to the proposed controller, assume a rule-

base can be found that performs well for a section of the non-linear state space. As the system

states move away from the optimum zone, the closed-loop performance deteriorates. For example,

if the system moves to a zone with a smaller open-loop bandwidth and lower damping than the

optimum zone, the closed-loop response may become oscillatory with unacceptable overshoot due

to high controller gain. A self-adaptive controller would be able to compensate for the

unsatisfactory performance by adapting the rule-base. After an initial period of poor performance,

the controller would converge to the new optimum. If the system states move back to the old

domain, the controller would clearly have to re-adapt. This approach suffers from the following

limitations:

1. The necessity of running a directly adaptive algorithm, in addition to the control algorithm

to optimise the controller from domain to domain requires a more complex and costly

hardware platform.

2. Due to limits placed on the hardware, it may not be possible to implement a self-adaptive

algorithm, resulting in a controller with poor performance in certain domains of the state

space.

3. In the time it takes to re-adjust the control rules, the closed-loop system may enter an

unstable zone, or the plant can be damaged due to unacceptable closed-loop performance.

This would suggest the incorporation of non-linear domain knowledge into a non-adaptive multi-

mode control structure. This knowledge can take the form of system states or variable system

parameters. The addition of domain knowledge increases the rule-base dimensions and complexity

of design. A method of rule-base design using qualitative plant information is thus required to

automate the design of these complex rule-bases. In this dissertation it is shown how measurable

plant parameters (such as the system states in the previous example) can be used to construct multi-

mode controllers. A cost function approach is suggested to automate the process of the multi-mode

rule-base design. The designed rule-base is then tested and modified using a model reference

adaptive architecture to improve the closed-loop performance. The optimised controller

incorporates sufficient control knowledge to allow for a simple lookup table implementation on

most hardware platforms.
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3 AUTOMATED RULE-BASE
DESIGN ALGORITHM

In this chapter the automated rule-base design and rule-base modification algorithms are explained.

A fuzzy logic controller design method is then proposed.

3.1 INTRODUCTION

Consider a time invariant, non-linear SISO plant where some measurable system state or external

variable gives an indication of the system's non-linear modes. Assume that the plant is

asymptotically stable in the large, according to the definitions of Lyapunov and that for any steady-

state input there exists a unique steady state output [50].

3.2 Fuzzy LOGIC CONTROLLER DESIGN
ALGORITHM

The design problem can be defined as designing a stable MMFLC for the plant that will give a

stable response over the non-linear domain.

For rapid response the FLC should react to the error and error rate of change signals (PD rule-base).

For zero steady-state tracking error, error integration action should be included (PID rule-base).

Most control engineers have a good feel for the design of a good PD rule-base, but inclusion of the

integral information is complex. In the proposed method the integral action is incorporated into the

rule-base. The control philosophy is to use the error and error rate of change to dominate control

action far from the set point and the integral information closer to the set point. If the plant is

highly non-linear, a PID rule-base that works well in one domain of operation may not work well in

another. Therefore the concept followed in this work is to use different rules in different domains.

This is similar to the concept of gain scheduling.

The structure of a PID type MMFLC, as proposed in this study, is shown in Figure II.
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Figure 11 PlD-type MMFLC block diagram.

The inputs to the PID-type MMFLC are the system state (x.), error integral (.[b.dt), error (e) and

error rate of change (de/dt). Assume that the number of fuzzy terms and corresponding membership

functions have been defined for each input. In the work that follows the membership functions are

chosen according to the following principles [21]:

1. The triangular membership functions are evenly spaced and symmetrical on the error

integral, error and error rate of change universe of discourse. Triangular membership

functions are used to define the fuzzy sets of the state input.

2. The membership functions overlap 100%. This implies that a membership function reaches

zero at its neighbour's apex. Each value of the universe of discourse will thus always be a

member of two sets.

3. There should be at least five sets for the error input, error integral and error rate of change

with two sets for the state input. More sets can be added as required.

The form of the PID rules is:

IF (STATE is Xi) AND (ERROR INTEGRAL is lj) AND (ERROR is Ek) AND (ERROR RATE OF

CHANGE is Rl) THEN (CONTROL is Uijkl).

The error integral term can be ignored for PD control of type 0 systems.

3.2.1 AUTOMATED RULE-BASE DESIGN ALGORITHM

The automated rule-base design algorithm must design a complete rule-base using information

regarding the speed of response and the small signal gain in the different non-linear state domains.

The non-linear domains are defined by the fuzzy sets chosen for xs. In domains where the plant

responds rapidly or with a large gain, the control action should be less severe (lower control gain

due to higher bandwidth or plant gain) compared to a section where the response is slow or small.

The rule-base design algorithm generates a PD-type rule-base, based on the gain and speed

information in the various system domains. The rule-base is then augmented with the integral term.
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The augmented rule-base consequences are clustered and normalised. Finally, the output fuzzy sets

are defined to correspond to the generated rule-base.

The rule-base generation is based on the sum of weights assigned to each fuzzy set in the /é.dt, e

and de/dt universe of discourse. Assume there are J fuzzy sets defined in the /é.dt universe of

discourse with corresponding weights in the lW vector (dimension 1xJ). Similarly define for the K

fuzzy sets in the e universe of discourse the EW weight vector (dimension 1xI<) and for the L fuzzy

sets in the de/dt universe of discourse the RW weight vector (dimension 1xL). The elements of the

weight vectors correspond to the fuzzy sets defined by the membership functions, in order from left

to right in the universe of discourse. The choice of weights can be done in an arbitrary fashion as

long as it conforms to the following guidelines:

6. The zero fuzzy set has a weight of zero.

7. The sign of the weight corresponds to the negative or positive side of the universe of

discourse where the defining membership function is located.

8. The size of the weight indicates the distance of the defining membership function from

zero.

9. The distribution of weights can be linear or non-linear.

In this study the membership functions are distributed evenly over the universes of discourse and a

linear distribution of weights is used.

The choice of the gain (Gj) and speed (Sj) information vectors should reflect the relative small

signal gain and bandwidth of the plant in the various non-linear domains as defined by the state

input fuzzy sets. Assume that I fuzzy sets are defined in the Xs universe of discourse. The Gain and

Speed information vectors can be chosen based on information obtained from small signal linear

models, physical plant properties or operator knowledge of the plant. The algorithm normalises the

G, and Sj vector relative to its minimum and maximum elements as shown by Equation 20. This

allows for a relative comparison in gain and bandwidth of the various non-linear domains.

GW = min(Gj)

o,
SW = Sj

max(Sj)

Equation 20

The PD rule-base is generated so that the error will give a fast initial drive towards the desired state

while the derivative information will anticipate possible overshoot and start reducing the drive
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signal close to the set point. The algorithm generates a rule-base with higher proportional gain in

domains where the system small signal gain is low. The addition of anticipation with the derivative

term is not as simple and various approaches can be developed. The assumption is made that

system domains with a lower bandwidth and damping could be more prone to overshoot due to

rapid transient responses and are therefore closer to instability than domains with a higher

bandwidth and damping. A larger penalty should thus be imposed on derivative information in the

lower bandwidth and damping domains in an attempt to limit overshoot caused by a high

proportional gain. In cases where this initial choice of SI does not deliver acceptable results, the

rule-base damping could be modified experimentally.

The normalised gain weight (Gw) and speed weight (Sw) vectors are used with the EWand RW

vectors to form a control weight indicative of the sign and amount of control energy to be used. Let

the control weight associated with a given rule be Uun, where the subscript i refers to a specific

fuzzy set in Xs, j in Ie.dl, k in e and I in de/dl. The control weight is determined according to

Equation 21.

Equation 21

In a given system domain a larger error would thus increase the control weight as determined by

EW
. System domains with a large gain would thus reduce the control weight. In a similar fashion

the control weight is increased or decreased according to RW and SW.

The next step is to augment the control rule weight with an integral term to eliminate any steady-

state errors. The proposed method is to add a term to the control rule weight proportional to the

weight associated with fuzzy set j in lW. The added term is proportional to the difference between

the control rule weight and the maximum control rule weight as shown in Equation 22.

(l-IU.k!l)x rtr: = U + I] )

ijk! ijk! max(lw)

Equation 22

This ensures a saturation of the controller for small errors and large error integrals and vice versa.

The augmented control rule weight is indicative of the required control energy. This weight should

thus be associated with a fuzzy set in the output universe of discourse. It is clear that the proposed

algorithm can generate an arbitrarily large number of weights and thus proposed consequences.
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Some of the control weights could be sufficiently close together to be grouped. The next step is to

cluster the control rule weights and associate each cluster with a separate control output fuzzy set.

The consequence of a rule is then the fuzzy set associated with the cluster closest to the control rule

weight. To allow for precise control in different dynamic regions, care should be taken not to

reduce the amount of clusters beyond the limits required for proper control. The fuzzy c-means

clustering method was chosen for reduction [21].

3.2.2 Fuzzy LOGIC CONTROLLER DESIGN RULES

The proposed design algorithm reduces the design complexity to an appropriate choice of GI and SI.

The design process can now be summarised as follows.

1. Define controller inputs and output: Determine what type of controller is required (PO or

PlO). Find a measurable system state or external variable that reflects the non-linearity of the

plant. Define the universe of discourse for each of the inputs and the output.

2. Define fuzzy sets: Choose fuzzy sets and define the corresponding membership functions

for each input as suggested in paragraph 3.2. For each fuzzy set, choose a weight according

to the rules defined in paragraph 3.2.

3. Choose gain and speed information: Choose the GI and SI vectors. The elements should

describe the relative gain, bandwidth and damping for each domain defined by a fuzzy set in

the x, universe of discourse.

4. Run automated design algorithm: Choose the required number of fuzzy sets in the output

and run the automated design algorithm as detailed in paragraph 3.2.1

5. Test controller performance: Choose the controller input gains (Kj, Kp and Kd). The

controller can be tested online or with computer simulation.

6. Design modification. Evaluate the closed-loop response. Modify the controller input

gains to shape the closed-loop response in all the non-linear domains as required (global

tuning) [21]. Response modification limited to individual domains can be done by

modification of GI and SI (local tuning) [21 ].

The rule-base generation algorithm as described in paragraph 3.2.1 can be fully automated. The

automation of the process allows for the fast design of complex controllers. The process is

intuitively understandable and user modification of the controller structure and rule-base can be

eliminated. The MATLAB® file implementation of the proposed algorithm is given in Appendix I.
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3.3 RULE-BASE TUNING ALGORITHM

The structure of a PID-type SAFLC, as proposed in this study, is shown in Figure 12.

Gain5 DerivativeSaturation3

ResErr

Ref

Figure 12 SAFLC block diagram.

The rule-base tuning algorithm is based on the concept of evaluating the effect of the firing rules on

the closed-loop response. The consequences of rules with unsatisfactory behaviour are modified.

The closed-loop response is evaluated against a reference response defined by a reference model.

The rule-base update is based on the difference between the reference response and the actual

closed-loop response (response error).

Model Reference Adaptive Control (MRAC) has traditionally been used to tune the control

parameters of linear controllers when used with non-linear, time varying plants [4]. In the

following work the rule-base update signal (eu) is composed of the sum of the response error (er)

and response error rate of change (de/dt) as shown in Equation 23.

e = K
RE

(e + KREd x der)
u p r dt

Equation 23

The addition of the derivative term anticipates possible improvements in the response and limits

unnecessary rule modifications. This allows for faster rule-base update with less overshoot. The

block diagram implementation of this procedure is shown in Figure 13.

RefErr
To Workspace8

Figure 13 Reference model and response update block diagram.
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Assume that a change in the plant output at time tx is the response to a control action at time tx - i\T.

Due to the overlap in the membership functions defining the fuzzy sets, a number of rules are

activated at any given time. The controller output is determined primarily by rules with a high

firing strength. Blame for poor response should be assigned to active rules proportional to their

firing strengths. A negative response error at time tx is caused by the activation of rules at time tx -

i\T with too much control energy. The faulty rules should be modified by changing their

consequences to the left of their present ones. A positive response error requires a shift in

consequence to the right. The consequence of a rule is confined to being an element of the term set

defined to the output universe of discourse. A decision mechanism is required to control the

switching in rule consequence based on rule performance.

Consider a SAFLC at time tx with eu as defined by Equation 23. Assume that er is caused by a

control action at tx - AT, and that rules Rx-.d were the active rules with firing strengths ax-.d > O.

Define an integrator for each rule in the rule-base with input the product of eu at t, and the rule

firing strength (a) at tx - AT. Only rules participating in an unsatisfactory control action will show a

change in integrator output. The dominant rules will show a larger change in integrator output than

non-dominant rules. As soon as the output of an integrator exceeds a set limit (F or -I) the rule

consequence is changed one membership function to the right for a positive integrator output, or to

the left for a negative output. The integrator output is then reset to zero, and the performance of the

modified rules is evaluated.

From Equation 23 it is clear that the tuning speed of the SAFLC is determined by r, KREp and KREd.

In this work F was arbitrarily set to the average distance between output fuzzy set membership

function centers. The tuning speed was controlled with the constants defined in Equation 23. It

was found that choosing KREd so that the maximum value of devdt is almost the same as the

maximum value of er delivers good tuning performance. KRep can then be tuned experimentally to

deliver fast tuning, but prevent fast switching in the consequence of a specific rule (rule

consequence limit cycling).

From the finite choices available for a rule consequence, it may not be possible to find a perfect

solution to the problem. A certain rule consequence may react with too little control energy, while

the next consequence may respond too strongly. The user must thus define a philosophy to

determine when a rule-base can be considered as giving satisfactory performance and the tuner

switched off. One possible solution would be to study the RMS value of the response error and

terminate the tuning procedure as soon as the RMS value has been reduced by a set percentage. If

rule consequence limit cycling is detected and the termination criteria not reached, more output

fuzzy sets may be required in the output term set.
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3.4 CONCLUSIONS

An automated rule-base design algorithm is proposed in paragraph 3.2.1. Design rules for

MMFLCs are given in paragraph 3.2.2. A model reference adaptive scheme for evaluating and

improving the performance of the controller by modifying the rule-base is proposed in paragraph

3.3. This work suggests the following approach to fuzzy logic controller design.

Based on the non-linearity of the plant, decide if a linear or fuzzy logic controller is required. Due

to its simplicity (smaller rule-base) a SMFLC should initially be tested. The SMFLC can be

designed using the proposed rule-base design algorithm. If the control objectives do not allow for

the use of the model reference adaptive architecture, iterate on the rule-base design by tuning the

controller input gains and the cost function weights until a satisfactory response is obtained. If

model reference adaptive control is possible, choose a reference model based on a realistic

performance specification and apply the self-adaptive scheme as proposed in paragraph 3.3. If the

SMFLC provides satisfactory performance, this controller can be implemented or a MMFLC can

then be tried and tested for performance improvement.
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4 AUTOMATED RULE-BASE
DESIGN ALGORITHM

EVALUATION
The performance and working of the automated rule-base design algorithm and rule-base adaptive

algorithm are tested by application to three highly non-linear plants: a cargo ship auto-pilot, a

hypothetical second-order plant with exponential non-linear position feedback and a hypothetical

second-order plant with non-linear velocity feedback similar to the non-linear drag force

encountered by high-performance aircraft. For each plant a single mode fuzzy logic controller

(SMFLC) and multi-mode fuzzy logic controller (MMFLC) are designed and tested. Both

controllers are designed using the method proposed in paragraph 3.2.2. The SMFLC input gains are

determined experimentally to improve the closed-loop performance. The MMFLC uses identical

input gains with performance tuning accomplished by experimental modification of the gain and

speed information vectors. The non-adaptive controller rule-bases form the initial conditions for the

single mode adaptive fuzzy logic controller (SMAFLC) and the multi-mode adaptive fuzzy logic

controller (MMAFLC).

The performance of the non-adaptive controllers is based on the closed-loop step responses. The

10% to 90% rise time (Tr(1O%-90%), maximum overshoot (Mp) and steady-state error (Ess) are used as

Key Performance Indicators (KPIs). The performance of the self-adaptive controllers is based on

the RMS values of the response errors. The RMS values of the tuning controller and final controller

response error are compared to those of the initial controllers. The RMS values of the response

error for individual step changes are used to determine the speed of convergence. The point

midway between the maximum and minimum RMS values is taken as the critical point. Since the

RMS value is indicative of the energy in a signal, this form of measurement corresponds to a -3dB

point in response error energy.
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4.1 PLANT I: CARGO SHIP STEERING

The cargo ship steering problem is a literature case study [35,54]. The authors report on the

performance of a self-learning fuzzy logic controller (SLFLC) for the 161m-long cargo ship. A

comparison is made between the SLFLC and standard self-adaptive techniques. Passino et al.

tested the ship heading response to ±45° heading reference step changes at a forward velocity of

5.0mls. A second-order, critically damped system with poles at SI,2 = -0.05 formed the reference

model. This closed-loop performance specification, relative to the open-loop system response,

forms the benchmark for this study.

4.1.1 PLANT AND SIMULATION MODEL

The simulations conducted here assume the ship is big enough to ignore motion in the vertical

plane. The motion of the ship is defined in a coordinate system fixed to the ship as shown in Figure

14.

Figure 14 Plant I - Cargo ship.

Define the ship forward velocity as u, the rudder deflection angle as 0 and the ship heading relative

to a fixed coordinate system as If/. Note the directions of the rudder deflection angle and the

heading response angle. The approximate heading dynamics as a function of u and 0 are given by

Equation 24 [35,54].

lp = -kl ip- k2H( 'ti) + k3ó +k, s

H(V' )=a(V')' +bV'
Equation 24

The ship length (L) and u determines the system gain and time constants as given by Equation 25.
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Equation 25

The ship parameters as determined by the spiral tests are shown in the parameter list below [35].

The maximum rudder angle deflection is given as ±80° [35].

• L=161m

• TIO = 5.66s

• T20 = 0.38s

• T30 = 0.89s

• Ko = -3.86

• A = 1.0

• B = 1.0

For the simulation studies, the third-order non-linear differential equation (Equation 25) needs to be

transformed into a non-linear state space system. Equation 26 gives the non-linear state space

equation with the assumed state definitions [54].

. ..

Xl = '1', X2 = 'I' , X3 = '1'- k4J

Equation 26
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The constants are identical to those defined in Equation 25. In the simulation study the system is

regarded as a two-input (u and b), two-output system (Ij/ and dlj/ldt). For simulation purposes, the

maximum rudder deflection angle was constrained to ±60°. Extracting small signal linear models

from Equation 26 is achieved by assuming X2 to be small and approximating H(X2J by only the

linear part. Table 1 summarises the small signal models obtained at three steady state operating

points of u. The faster the forward velocity, the larger the small signal gains and quicker the

response times.

&J XlO X20 uo Poles Zero G

0 0 0 2.5m/s 0 -0.0027 -0.0409 -0.0174 -0.0599

0 0 0 5.0m/s 0 -0.0055 -0.0817 -0.0349 -0.1199

0 0 0 7.5m/s 0 -0.0087 -0.1226 -0.0523 -0.1798

Table 1 Plant I - Small signal linear model properties.

The open-loop heading response of the cargo ship to a 60° step change in 0 is shown in Figure 15.

The response is shown at three forward velocities (2.5m/s, 5.0m/s and 7.5m/s). As u increases, the

system response time decreases and turning speed increases. The cargo ship requires 80s, 40s and

28s to make 45° of turn at the respective velocities. The reference model responses used in the

SMAFLC and MMAFLC, at the three forward velocities, are also shown. At 5.0m/s the required

closed-loop settling time is given as lOOs [35,54]. The closed-loop settling time specification at

2.5m/s and at 7.5m/s is accordingly taken as lOOs and 70s. This gives the ratio of closed-loop

settling speed relative to the maximum possible response speed as 2.5.

The SIMuLINK simulation S-Function file is listed in Appendix HU.
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PLANT I - OPEN-LOOP STEP RESPONSE
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Figure 15 Plant I - Open-loop step response.

4.1.2 Fuzzy LOGIC CONTROLLER DESIGN AND
PERFORMANCE

The block diagram ofthe SMFLC and MMFLC is shown in Figure 16.

Heading
To Workspace

'--t--+I TurnSpeed
To Workspace1

Figure 16 Plant I - Non-adaptive fuzzy logic control.

Since the ship is a type one system, a PD-type FLC is used. The inputs to the FLC is u, the heading

error (e) and heading error rate of change (de/dl). The controller output is rudder deflection angle

(b). The ship's forward velocity (u) is an independent parameter allowing the separate investigation

of the different system domains. The heading response was tested at 2.5m/s, 5.0m/s and 7.5m/s.

The simulation is divided into three time zones. In zone 1 (Os - 1800s) the forward velocity is
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2.5m/s, in zone 2 (1800s - 3600s) 5.0m/s and in zone 3 (3600s - 5400s) 7.5m/s. The Tr(IO%-90%), Mp

and Essare used as KPIs for controller evaluation.

In accordance with the references [35, 54], the SMFLC and MMFLC implements 11 fuzzy sets for

e, de/dt and 8. The SMFLC implements one fuzzy set for u and the MMFLC three fuzzy sets. A

normalised universe of discourse was chosen for e and de/dt. The SMFLC and MMFLC structures

are summarised in Table 2.

Input SMFLC MMFLC

Minimum Maximum Sets Minimum Maximum Sets

State 2.5 7.5 1 2.5 7.5 3

Error -1 1 11 -1 1 11

Rate 1 1 11 1 1 11

Control -1.047 1.047 11 -1.047 1.047 11

Table 2 Plant 1- SMFLC and MMFLC structure summary.

Since the integrator dominates the system dynamics, the initial SI vector was chosen to be the unity

vector and the initial GI vector the linear small signal model transfer function gains. The final SI

and GI vectors were determined experimentally and are given by Equation 27.

GI = [0.0599 0.1198 0.1798 x 0.75]

SI = [0.4 1 1]

Equation 27

The maximum 0of ±600 constrained the output universe of discourse. The controller input gains

(Kp and Kd) were determined experimentally to map the corresponding universes of discourse to e E

[-10° 10°] and de/dt to E [-O.Olradls O.Olradls]. The gains were chosen to give a strongly damped

response at 5.0m/s. The MATLAB® design files are listed in Appendix HUI for the SMFLC and

Appendix lIUlI for the MMFLC.

The closed-loop response of the SMFLC and MMFLC is shown in Figure 17 and Figure 18.
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PL...\NT I - S1\rfFLC - CLOSED-LOOP RESPONSE
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Figure 17 Plant I - SMFLC - Closed-loop response.

PLANT I - MMFLC - CLOSED-LOOP RESPONSE
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Figure 18 Plant 1-MMFLC - Closed-loop response.
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The KPIs for the SMFLC and MMFLC are compared in Table 3.

Velocity (u) SMFLC SMFLC

T; (10% - 90%) Mp e; T,(10% - 90%) Mp s;

2.5m/s 118s 10.07% 0% 177s 2.1% 0%

5.0m/s 90s 1.69% 0% 173s 0.0% 0.8%

7.5m/s 85s 0.28% 0% 174s 0.0% 2.24%

Table 3 Plant I - Performance comparison of SMFLC vs MMFLC.

The SMFLC responded faster but with more overshoot than the MMFLC. As the ship's forward

velocity increased, the response time of the SMFLC decreased significantly (Figure 17). The

response time of the MMFLC is not affected by the change in forward velocity (Figure 18). The

longer response time of the MMFLC is due to the decreased gain of the rule-base due to the

automated design algorithm. Since the controller gain is reduced in certain domains of the multi-

mode rule-base, retuning of the controller input gains are required to reach a speed of response

equal to that of the SMFLC.

4.1.3 SELF-ADAPTIVE CONTROLLER DESIGN AND
PERFORMANCE

The block diagram of the SMAFLC and MMAFLC is shown in Figure 19.

t---r-~ Heading
To Workspace

'--I-~ TurnSpeed
I---------!----------------'' ToWorkspacel

Figure 19 Plant I - Adaptive fuzzy logic control.

The structures of the SMAFLC and MMAFLC are identical to those given in paragraph 4.1.2. The

reference models are three critically damped, second-order systems with time constants t-: = 200,

'r2 = 100 and 'r3 = 70 at 2.5m/s, 5.0m/s and 7.5m/s respectively, as discussed in paragraph 4.1.1.
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The controller input gains (Kp and Kd) were chosen to map the maximum encountered values to the

normalised universes of discourse. The tuner gain parameters were determined experimentally to

give good tuning speed without starting limit cycle oscillations in the rule-base. The values of the

SMAFLC and MMAFLC parameters are Kp = 1.273, Kd = 0.01, KREp = 0.1 and KREd = 25. The

closed-loop position response to 45° step changes was used as test conditions.

The closed-loop performance of the SMAFLC and MMAFLC is shown in Figure 20 and Figure 25.

The simulation period can be divided into three time zones. In zone 1 (Os - 8000s) the forward

velocity is 2.5m/s, in zone 2 (8000s - 12000s) 5.0m/s and in zone 3 (12000s - 14800s) 7.5m/s. The

detailed response of the SMAFLC and MMAFLC is shown in Figure 21 and Figure 26. The

response of the initial controller is shown in Figure 22 and Figure 27. The final controller response

is shown in Figure 23 and Figure 28. The RMS value of the response error for each step during the

tuning operation is shown in Figure 24 for the SMAFLC and in Figure 29 for the MMAFLC. The

RMS values of the response error for the SMAFLC and the MMAFLC are compared in Table 4.

Zone SMAFLC MMAFLC

Initial Tuning Final Initial Tuning Final

I 0.0830 0.0076 0.0741 0.2126 0.0094 0.0181

(Os - 8000s)

2 0.1730 0.0398 0.0680 0.3023 0.0660 0.0119

(8000s - 12000s)

3 0.2104 0.0606 0.1447 0.3020 0.1348 0.0252

(12000s - 14800s)

Table 4 Plant 1- RMS error comparison of SMAFLC vs MMAFLC.

In zone 1 the SMAFLC response (Figure 21 a) improved the initial controller response (Figure 22 a)

to almost perfect tracking, with a reduction of 90% in the RMS value of the response error. The

tuning process converged in three step changes (Figure 24 a). The final controller response (Figure

23 a) showed excessive overshoot with a reduction in the RMS value of the response error of only

10%. In zone 2 the SMAFLC response (Figure 21 b) showed good tracking compared to the initial

controller response (Figure 22 b), with a reduction in the RMS value of the response error of 76%.

The tuning operation shows convergence to an oscillating rule-base in six step changes (Figure 24
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b). The final controller response (Figure 23 b) shows an improvement in the RMS value of the

response error of 60%. In zone 3 the SMAFLC response (Figure 21 c) reduced the RMS value of

the response error by 71% compared to the initial controller response (Figure 22 c). The tuning

operation converged after one step change to an oscillating rule-base (Figure 24 c). The final

controller response (Figure 23 c) showed a reduction of 31% in the RMS value of the response

error. A detail investigation of the modified rules indicated large oscillations in the conclusions of

rules active in the initial period of the step response of zone 2 and zone 3. This is caused by a too

high tuning speed gain (selected for fast convergence in zone 1) in the two domains and results in

the unexpected poor performance of the final controller in zone 3.

The MMAFLC allows for the selection of different tuning speed gains for the various domains of

the rule base. To prevent the large limit cycles in rule conclusions in zone 2 and zone 3 the local

tuning speed gains were reduced by factor 7.5 and 17.5 in the respective zones. In zone 1 the

MMAFLC response (Figure 26 a) improved the initial controller response (Figure 27 a) to almost

perfect tracking, with a reduction of 95% in the RMS value of the response error. The tuning

process converged in four step changes (Figure 29 a). The final controller response (Figure 28 a)

showed very good tracking, with a reduction in the RMS value of the response error of 91%. In

zone 2 the MMAFLC response (Figure 26 b) showed good tracking compared to the initial

controller response (Figure 27 b), with a reduction in the RMS value of the response error of 78%.

The tuning operation shows convergence after five step changes (Figure 29 b). The final controller

response (Figure 28 b) shows an improvement in the RMS value of the response error of 96%. In

zone 3 the MMAFLC response (Figure 26 c) reduced the RMS value of the response error by 55%

compared to the initial controller response (Figure 27 c). The tuning operation converged after ten

step changes (Figure 29 c). The final controller response (Figure 28 c) showed a reduction of 91%

in the RMS value of the response error.

45

Stellenbosch University http://scholar.sun.ac.za
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Figure 20 Plant I - SMAFLC - Closed-loop response.

PLANT I - S~1AFLC - TUNING CONTROLLER DETAILED RESPONSE
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Figure 21 Plant I - SMAFLC - Tuning controller detailed response.
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PLANT I - StvlAFLC - INITIAL CONTROLLER DETA1LED RESPONSE
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Figure 22 Plant 1- SMAFLC - Initial controller detailed response.

PLANT I - SMAFLC - FINAL CO~'l"TROLLER DETAILED RESPONSE
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Figure 23 Plant I - SMAFLC - Final controller detailed response.
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PLANT I - S}Vl~LC - RlvIS ERROR RESPONSE
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Figure 24 Plant I - SMAFLC - Response error RMS value for each step change.
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Figure 2S Plant 1-MMAFLC - Closed-loop response.
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PLANT I - .MMAFLC - TUNING CONTROLLER DETAILED RESPONSE
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Figure 26 Plant 1- MMAFLC - Tuning controller detailed response.
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Figure 27 Plant I - MMAFLC - Initial controller detailed response.
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PL.-'\NT I - Mtv1AFLC - FINAL CONTROLLER DET_AlLED RESPONSE
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Figure 28 Plant I - MMAFLC - Final controller detailed response.
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Figure 29 Plant 1- MMAFLC - Response error RMS value for each step change.
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4.1.4 PERFORMANCE EVALUATION AND COMPARISON

The non-adaptive SMFLC results in unacceptable performance (excessive overshoot) in domains

with a lower bandwidth than where it has been tuned. The MMFLC achieves a uniform response in

all the domains at the expense of increased reaction time for the same error input scaling.

The adaptive algorithm is successful in reducing the RMS values of the response error for both the

SMAFLC and MMAFLC. The performance of the final MMAFLC controller obtained after tuning

in all domains is far superior to that of the SMAFLC. When the system transfers between domains

the SMAFLC tunes for the new domain and de-tunes for old domains. The SMAFLC would thus

have to be re-tuned should the system go back into the old domain. The MMAFLC will require

less, if any, re-tuning.

4.2 PLANT II: SECOND-ORDER PLANT WITH
EXPONENTIAL NON-LINEARITY

The non-linear second-order plant presented in 4.2.1 does not correspond to a specific physical

system, but is used to illustrate the SMFLC and MMFLC of a system with exponential non-

linearity.

4.2.1 PLANT AND SIMULATION MODEL

The non-linear second-order plant is shown in Figure 30.

1~----------------~I~~----------~
:Matb

IvIath
FIUlCtioul

:Math
Fuuctieul

Pos
r-----r--.jl/s f----+---o(1_)

Integrator

Vel

Gaiul

Figure 30>Plant II - Second-order plant with exponential non-linearity.

The velocity feedback gain and input gain are non-linear functions of the position. The system is

described by the non-linear state space equation given in Equation 28.
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Equation 28

Using standard techniques [12], small signal linear models can be extracted at fixed operating

points in the system domain. Equation 29 gives the small signal linear state space model.

Jy = [1

Equation 29

The fixed operating points are given by [XlO X20 u 0]. The steady-state relation between uo and XlO is

determined by solving Equation 28 equals zero. This result is shown in Equation 30.

Equation 30

Real solution of Equation 30 requires that Uo E (-0.5;0.5) with XlO E (-1;1). The small signal

dynamic model properties extracted at four fixed working points (using Equation 29 and Equation

30) are listed in Table 5.

Uo XlO X20 Poles G l4J 8

0 0 0 SI,2 = -0.50±0.8660j 1.0000 1.0000 0.5000

±0.2353 ±0.25 0 SI,2 = -0.44±O.8293j 1.2042 0.9393 0.4697

±O.4 ±0.5 0 SI,2 = -0.30±0.7141j 2.0833 0.7746 0.3873

±0.48 ±0.75 0 SI,2 = -0.14±O.5103j 5.5804 0.5292 0.2646

Table 5 Plant U - Small signal linear model properties.
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Due to the quadratic terms, the non-linearity is symmetrical for positive and negative xi and u. As

the system is driven away from the equilibrium position, the small signal dynamics become slower,

more oscillatory and the small signal gain increases.

The system open-loop step response is shown in Figure 31. The response to large (..du = ±0.95) and

small step changes (..du = ±0.5) is shown. The response of the reference model used in paragraph

4.2.3 to the same driving signal is included to illustrate the system's non-linearity. The increased

overshoot for the larger step changes (Mp = 18.746% vs. Mp = 15.584%) confirms the reduced

system damping as Xl increases. The sudden increase in steady state transfer gain (Equation 30) is

also apparent. The steady-state output to Uo = 0.45 is XlO = 0.63 and for Uo = 0.25, XlO = 0.27.

As in the work on the cargo ship, the SMFLC and MMFLC are designed using the proposed

automated design algorithm. These controllers are used as the initial conditions for the self-

adaptive algorithm. Due to its strong influence on the small signal dynamics, x, is chosen as the

state parameter for the MMFLC. Due to the symmetrical nature of the system non-linearities, the

state information input needs only to evaluate the absolute value xi. Due to the non-linear

dependency of the plant dynamics on the system's states, it is not possible to investigate the

performance of the MMFLC and the MMAFLC separately in the various sections of the non-linear

state space, as was the case for the cargo ship.

The SIMuLINK S-Function implementation of the plant is given in Appendix IV.1.

PLANT II - OPEN-LOOP STEP RESPONSE
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Figure 31 Plant II - Open-loop step response.
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4.2.2 Fuzzy LOGIC CONTROLLER DESIGN AND
PERFORMANCE

The block diagram of the SMFLC and MMFLC is shown in Figure 32.

To Workspace2
To Workspace4

To Workspace
Sum

To Workspace 1

Figure 32 Plant II - Non-adaptive fuzzy logic control.

Since the plant is a type ° system, a PID-type FLC is implemented. The inputs to the controllers are

the state (Ixli), error integral (k.dt), error (e) and error rate of change (de/dt). The closed-loop

position response to a square wave reference signal at 0.0166Hz, with amplitude switching between

0.75 and 0.25, is used as test condition for both the SMFLC and MMFLC. The T; (10%-90%), Mp and

Ess are used as KPIs for controller evaluation.

The SMFLC and MMFLC have seven fuzzy sets defined by triangular membership functions

placed on normalised universes of discourse for k.dt, e and de/dt. A single fuzzy set, defined by a

trapezium membership function, was placed on the SMFLC state input spanning the universe of

discourse defined by the interval [0,0.75]. The MMFLC state input have four fuzzy sets defined by

triangular membership functions placed on the state universe of discourse. The centres of these

membership functions coincide with the operating points defined in Table 5. The output universe of

discourse was constrained to the interval [-0.5,0.5] with 21 fuzzy sets. This implies a complete

rule-base with 343 rules for the SMFLC and 1372 rules for the MMFLC. The SMFLC and

MMFLC structure is summarised in Table 6. The automated rule-base design algorithm was used

to design the rule-base for the SMFLC and MMFLC.
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Input SMFLC MMFLC

Minimum Maximum Sets Minimum Maximum Sets

State 0 0.75 1 0 0.75 4

Integral -1 1 7 -1 1 7

Error -1 1 7 -1 1 7

Rate -1 1 7 -1 1 7

Control 0.5 0.5 21 0.5 0.5 21

Table 6 Plant 11- SMFLC and MMFLC structure summary.

The SI and GI vectors for the MMFLC was chosen based on the data obtained from the small signal

linear models at the centres of the four state membership functions (0, 0.25, 0.5, 0.75), as

summarised in Table 5. The GI vector reflects the small signal gain and the SI vector the undamped

natural frequency. The vectors are given in Equation 31.

G[ = [1 1.2 2.0 5.0]
S[ = [1 0.95 0.8 0.6]

Equation 31

The control input gains were determined experimentally to give a strongly damped, non-oscillatory

response with the MMFLC. The gains used are Kp = 40, Kd = 2.5 and K; = 0.75. The MATLAB®

design files are given in Appendix IV.II for the SMFLC and in Appendix IV.III for the MMFLC.

The closed-loop response of the SMFLC and MMFLC is shown in Figure 33 and Figure 34. The

KPIs for the SMFLC and MMFLC are compared in Table 7.

dRef SMFLC MMFLC

Tr (10"10 - 90"10) Mp Ess Tr (10"10 - 90"10) Mp Ess

±1.5 4.7s 1.76% 0.0% 9.2s 0.0% 0.90%

±O.5 2.7s 2.59% 1.16% 3.3s 0.25% 2.24%

Table 7 Plant II - Performance comparison of SMFLC vs MMFLC.
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The T, (10% _ 90%) of the MMFLC to large step responses is almost double that of the SMFLC. The

faster response of the SMFLC comes at the expense of excessive overshoot compared to the

MMFLC. The slower response of the MMFLC is due to the increased damping and reduced gain of

the rule-base in the domains of larger position. The MMFLC control signal does not show the

steady state oscillations of the SMFLC (Figure 33 b vs Figure 34 b). The low pass filtering

characteristics of the plant suppress the limit cycle amplitude of the SMFLC significantly, as shown

in Figure 33 a. The significant decrease in the overshoot of the MMFLC compared to that of the

SMFLC comes at the expense of the slightly longer response times and larger steady-state errors.

The longer response time is caused by the general decrease in controller gain in some of the non-

linear domains. The response time of the MMFLC could be improved by increasing the controller

input gains and manipulating the speed and gain information vectors to limit overshoot and

oscillations.

PLANT II - S:f\1FLC- CLOSED-LOOP RESPONSE
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Figure 33 Plant II - SMFLC - Closed-loop response.
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PLANT II - 'MMFLC - CLOSED-LOOP RESPONSE
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Figure 34 Plant 11- MMFLC - Closed-loop response.

Ref
To Workspace4

SELF-ADAPTIVE CONTROLLER DESIGN AND
PERFORMANCE

The block diagram of the SMAFLC and MMAFLC is shown in Figure 35.

,----~ Con
To Workspace2

,------------------+--Ilull+---------,
Abs'----+I State

1----+lError
Sum ResErr Controlt--~--~_--,

1-+----------+----+tRef
L-- --'

Subsystem1

Figure 35 Plant II - Adaptive fuzzy logic control.

A single reference model was chosen for all the domains. The structures of these controllers are

identical to those given in paragraph 4.2.2. The reference model used (Equation 32) is a critically

damped system with a bandwidth (G.Srad/s) equal to that of the slowest part of the system. The
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SAFLC would thus give a uniform response over the non-linear domain by decreasing the

overshoot and bandwidth.

G (s)- 0.25
Ref - 2 025S +s+ .

Equation 32

The controller input gains K, = 0.25, Kp = 0.5, and Kd = 5 were selected to map the maximum

encountered values to the normalised universe of discourse. The tuner gain parameters were

determined experimentally as KREp = 0.05 and KREd = 5. The closed-loop position response to a

square wave reference signal at 0.0166Hz, with amplitude switching between 0.75 and 0.25, was

used as test conditions for both the SMAFLC and MMAFLC.

The closed-loop performance of the SMAFLC and MMAFLC is shown in Figure 36 and Figure 41.

The simulation period can be divided into three time zones of 900s each. In zone 1 (Os - 900s) and

zone 3 (1800s-2700s) the reference input amplitude is 0.75, while the reference input amplitude is

0.25 in zone 2 (900s - 1800s). The detailed responses of the SMAFLC and MMAFLC are shown

in Figure 37 and Figure 42. The response of the initial controller is shown in Figure 38 and Figure

43, with the final controller response shown in Figure 39 and Figure 44. The RMS value of the

response error for each step during the tuning operation is shown in Figure 40 for the SMAFLC and

in Figure 45 for the MMAFLC. The RMS values of the response error for the SMAFLC and the

MMAFLC are compared in Table 8.

Zone SMAFLC MMAFLC

Initial Tuning Final Initial Tuning Final

1 0.3107 0.0798 0.0169 0.3759 0.1257 0.0444

(Os - 900s)

2 0.1025 0.0338 0.0766 0.0968 0.0234 0.0349

(900s - 1800s)

3 0.3114 0.0619 0.0154 0.3728 0.0547 0.0447

(1800s - 2700s)

Table 8 Plant U - RMS error comparison of SMAFLC vs MMAFLC.
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In zone 1 the SMAFLC response (Figure 37 a) improved the initial controller response (Figure 38 a)

to almost perfect tracking with a reduction of 74% in the RMS value of the response error. The

tuning process converged after 12 step changes (Figure 40 a). The final controller response (Figure

39 a) showed a reduction in the RMS value of the response error of 94%. In zone 2 the SMAFLC

response (Figure 37 b) showed good tracking compared to the initial controller response (Figure 38

b) with a reduction in the RMS value of the response error of 66%. The tuning operation shows

convergence after one step change (Figure 40b). The final controller response (Figure 39 b) shows

an improvement in the RMS value of the response error of only 25%, due to the limit cycle

oscillations. In zone 3 the SMAFLC response (Figure 37 c) reduced the RMS value of the response

error by 80% compared to the initial controller response (Figure 38 c). The tuning operation

converged to an oscillating rule-base after 14 step changes (Figure 40 c). The final controller

response (Figure 39 c) showed a reduction of 95% in the RMS value of the response error and

delivers almost perfect tracking.

In zone 1 the MMAFLC response (Figure 42 a) improved the initial controller response (Figure 43

a) with a reduction of 66% in the RMS value of the response error. The tuning process converged

after 11 step changes (Figure 45 a). The final controller response (Figure 44 a) showed very good

tracking with a reduction in the RMS value of the response error of 88%. In zone 2 the MMAFLC

response (Figure 42 b) showed good tracking compared to the initial controller response (Figure 43

b) with a reduction in the RMS value of the response error of 75%. The tuning operation shows

convergence after one step change (Figure 45 b). The final controller response (Figure 44 b) shows

an improvement in the RMS value of the response error of 63% with a reduced and decaying

oscillation compared to the SMAFLC. In zone 3 the MMAFLC response (Figure 42 c) reduced the

RMS value of the response error by 85% compared to the initial controller response (Figure 43 c).

The tuning operation converged after 14 step changes (Figure 45 c). The final controller response

(Figure 44 c) showed a reduction of88% in the RMS value of the response error.

The final SMAFLC performed better in zones 1 and 3 than the final MMAFLC. The overall

performance of the final MMAFLC is better in terms of the final 11% reduction of the RMS value

of the response error in all three zones (0.08 for the SMAFLC vs 0.07 for the MMAFLC). The

larger RMS values of the final MMAFLC response error are due to the initial peak in the response

error.
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4.2.4 PERFORMANCE EVALUATION AND COMPARISON

The non-adaptive MMFLC responds more slowly, but with less overshoot than the SMFLC. This is

to be expected due to the proportional gain and increased damping realised by the automated design

algorithm. The self-adaptive MMFLC forces the system to exhibit a uniform response over the

non-linear domain investigated. The amount of de-tuning caused by overlap into the different

domains is markedly less with the MMAFLC than with the SMAFLC.

PLANT II - Sl\LA.FLC- CLOSED-LOOP RESPONSE
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Figure 36 Plant U - SMAFLC - Closed-loop response.
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PLANT II - SIvfAFLC - TUNING CONTROLLER DET.AJLED RESPONSE
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Figure 37 Plant II - SMAFLC - Tuning controller detailed response.

PLANT II - S.rvIAFLC- INITIAL CONTROLLER DETAILED RESPONSE

0.5
~
Z
0
N

-0.5

0 100 200 300 400 500 600 700 800 900

0.5
('-'
t.Il
Z 0
0
N -05

1000 1200 1400 1600 1800 1000 1200 1400 1600 1800

0.5 ..··V·..·l/ ~!! ~ V V ....l/ ....V·+{1 ·V ..··V····V \(I..; V l-
~ 0 ..· ~ ... [\ 1\ ;·t (\ N ~ .. r\ ..· (\ .~(\ G ...G ... (\ 1\ ït (\ r~
2 V V i V \{ V 1V V i V ti; V :V V i V vr V
-05 ~ .... (S 1"'~ .... tG .... ~ '''jtS ....~ [..·tJ ....tt ....·~ ....[~ ....·~ t..~....~....~..

1800 1900 1000 2100 2200 2300 2400 2500 1600 2'700
TIME (s)

Ref. Resp. Response Resp. En.

Figure 38 Plant II - SMAFLC -Initial controller detailed response.
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PLANT II - S.MAFLC - FINAL CONTROLLER DETAILED RESPONSE
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Figure 39 Plant n- SMAFLC - Final controller detailed response.
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Figure 40 Plant II - SMAFLC - Response error RMS value for each step change.
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PLANT II - .tv1.MAFLC- CLOSED-LOOP RESPONSE
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Figure 41 Plant II - MMAFLC - Closed-loop response.

PLANT II - MMAFLC - TUNING CONTROLLER DET_AILED RESPONSE
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Figure 42 Plant U - MMAFLC - Tuning controller detailed response.

63

Stellenbosch University http://scholar.sun.ac.za



PLANT II - r"Uvil\FLC - INITIAL CONTROLLER DETAILED RESPONSE
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Figure 43 Plant II - MMAFLC - Initial controller detailed response.

PL.<\NT II - Mt-.1AFLC - FINAL CONTROLLER DETAILED RESPONSE
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Figure 44 Plant II - MMAFLC - Final controller detailed response.
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PLANT II - tvUvLA.FLC- Rtv{S ERROR RESPONSE
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Figure 45 Plant II - MMAFLC - Response error RMS value for each step change.

4.3 PLANT III: SECOND-ORDER PLANT WITH
NON-LINEAR VELOCITY FEEDBACK

The second-order plant used in this section is non-linear in the velocity feedback coefficient. The

non-linearity is similar to the non-linear drag force coefficient encountered in aircraft flight

dynamics.

4.3.1 PLANT AND SIMULATION MODEL

The second-order plant with non-linear velocity feedback is shown in Figure 46,

Sum

VELOCITY
~-;:====;!!l-----------~lls 1--------------+-+1

Integrator Integrator 1

DRAG

~---------------------Q-K~----------------~
Wn

Figure 46 Plant III - Second-order plant with non-linear velocity feedback.
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The non-linear velocity feedback gain, or drag force coefficient, is implemented as a lookup table

and is shown in Figure 47.

PLANT III - DRA.G FORCE COEFFICIENT

0.9 ···..r· ']'............ .. r ..

~::lil I i
u : : : : :

~:: L j t ••t····· ••J
~ i : : :&:: 0.4 .. ·1· · , ······: .
tJ : :g 0.3 ···· ·r·· ·····..r..············T···· · ·····j · ·····..T······ .

0.2 ··..··· ·· ·····l·······················f············ -r , ···r····· ········..
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SPEED
0.8

Figure 47 Plant III- Drag force coefficient as a function of velocity.

The drag force increases non-linearly from 0.25 at 0 to reach a maximum at 0.6. For velocities

higher than 0.6, the drag force coefficient decrease non-linearly. The saturation element (Figure 46)

ensures that the drag force coefficient remains at a constant value for velocities higher than 1.8.

The non-linear model of the plant is shown in Equation 33.

1.5(1.667 X x2 Y + 0.25

f(x2) = -1.5(1.667 X x2 Y + 31x21- 0.5
22.87 e -2.411.667xxzl

o ~ Ix21 < OJ

OJ ~ Ix21 < 0.6

0.6 ~ Ix21

Equation 33

The determination of linear small signal models at steady-state operating points is straightforward

but tedious, and will not be presented here [12]. In this work small signal models are derived at
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four values of velocity. The fixed work point is given by [XIO X20 uo]. The pole positions, damping

ratio (~ and natural frequency ( ~) of the small signal linear models are shown in Table 9.

Uo XIO X20 Poles G ~ ,
0 0 0 -0.6250±0.7806j 1 1 0.6250

0 0 0.4 -0.1358 -7.3623 1 1 3.6811

0 0 0.8 2.0155 0.4981 1 1 -1.2250

0 0 1.2 3.2702 0.3058 1 1 -1.7825

Table 9 Plant 111-Small signal linear model properties.

The open-loop step response is shown in Figure 48. The destabilising effect of the non-linear drag

force coefficient at high velocities is clearly seen as large overshoot and very lightly damped

oscillations for large step changes. For smaller step changes, the velocity does not go beyond the

critical point (0.6) and the step response is overdamped.

PLANT III - OPEN-LOOP STEP RESPONSE
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Figure 48 Plant III - Open-loop step response.
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4.3.2 Fuzzy LOGIC CONTROLLER DESIGN AND
PERFORMANCE

The block diagram of the SMFLC and MMFLC is shown in Figure 49.

Figure 49 Plant III - Non-adaptive fuzzy logic control.

Since the plant is a type 0 system, a PID-type FLC is implemented. The inputs to the controllers are

the state (lx21), error integral (Jé.dt), error (e) and error rate of change (de/dt). The closed-loop

position response to a square wave reference signal at 0.02Hz, with amplitude switching between

5.0 and 1.0, was used as test condition for both the SMFLC and MMFLC. The T; (10",,6-90%), Mp and

Ess are used as KPls for controller evaluation.

Input SMFLC MMFLC

Minimum Maximum Sets Minimum Maximum Sets

State 0 1.2 1 0 1.2 4

Integral -1 1 9 -1 1 9

Error -1 1 9 -1 1 9

Rate -1 1 9 -1 1 9

Control -5 5 21 -5 5 21

Table 10 Plant III - SMFLC and MMFLC structure summary.

The SMFLC and MMFLC implement nine fuzzy sets for Jé.dt, e and de/dt. The MMFLC

implements four fuzzy sets for the state input and the one for the SMFLC. The universes of

discourse for Jé.dt, e and de/dt are the normalised interval [-1, 1]. The state input universe of

discourse is the interval [0 1.2]. The four sets are defined by triangular membership functions with

centers at 0, 0.4, 0.8 and 1.2. The SMFLC and MMFLC structure is summarised in Table 10.

68

Stellenbosch University http://scholar.sun.ac.za



The speed and gain information vectors for the MMFLC are taken from the information obtained

from the small signal models defined in Table 9 (4.3.1). The gain in the various domains remains

constant at one. The gain information is thus the same for all four domains. The problem is

choosing the speed information for the unstable section of the state space. The initial choice was

that of the slowest system pole. In the domains of high velocity the system is lightly damped,

requiring increased derivative gain. The final values of GI and SI are given in Equation 34.

G[ = [1 1
SI = [0.62

1 1]
0.13 0.1x 0.49 0.1x 0.3]

Equation 34

The control output universe of discourse is constrained to the interval [-5, 5]. The SMFLC and

MMFLC have 21 sets in the output universe of discourse. The control gains were determined

experimentally as Kj = 0.1, Kp = 2 and Kd = 0.2. The MATLAB® design files are given in Appendix

V.I for the SMFLC and in Appendix V.U for the MMFLC.

The closed-loop response of the SMFLC and MMFLC is shown in Figure 50 and Figure 51. The

KPIs for the SMFLC and MMFLC are compared in Table Il.

Mej SMFLC MMFLC

T,(10% - 90%) Mp s; T,(10% - 90%) Mp s;

±5.0 2.4077s 20.1311 % 4.7% 20.8332s 0.0% 0.0%

±1.0 7.0069s 26.8000% 0.0% 5.1805ss 43.45% 0.0%

Table 11 Plant ill - Performance comparison of SMFLC vs MMFLC

The SMFLC responded very quickly to a large step change. The light system damping at high

velocities resulted in 20% overshoot. Although the MMFLC responded much more slowly (21s),

the system showed no overshoot and a smaller steady-state error. Due to the oscillations of the

SMFLC the settling time of the SMFLC is comparable to that of the MMFLC (Figure 50 a vs

Figure 51 a). For small step changes, the rise time of the SMFLC and MMFLC differed by about

2s, while the MMFLC exhibited twice the overshoot of the SMFLC. Attempts to limit the

overshoot of the MMFLC in this domain by manipulation of SI failed due to the normalisation of SI

in the design algorithm.
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PL..<\NTIII - SMFLC - CLOSED-LOOP RESPONSE

: : : :
5 ~ ::..::.:::.:..:.:.:..:..:..:.:::..::.:::j::jt. v==;:;:::~==i:-"::':":':""'':'':'':'':':'"''::''::':'''''::':'':':''''_::_:_:;'''';''''''''''''''''''' - 1 -

.1\ ' . ~
...................... ·····························::-::··············1\····· +/ .

: '---'"

. ........ __ _--- ,_._----_ _--_ _-,.-------------_ -_---, , ,· . .· . .· . .· . .· . .
o 50 100 150 200 250 300

Reference Response
6r-------~---------r--------._------_,---------.--------,
4 . , .---------_.-_--- _----_ _--_ _----------------_._-------_ _-_ _ .. _ ..------_ __ ., ,, ,

-4 .. ............ __ -_ .._-------_ - .... _-_ ----------_ _---------+-------_ _--_ ~--------_._-------_ ., ., ., ., ,
, .-6 '-- --L. --'- ......___ _J'-- --'- --'

o 50 100 150
TUdE (s)

200 250 300

Figure 50 Plant III - SMFLC - Closed-loop response.

PLANT III -MlvlFLC - CLOSED-LOOP RESPONSE
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Figure 51 Plant ill -MMFLC - Closed-loop response.
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4.3.3 SELF-ADAPTIVE CONTROLLER DESIGN AND
PERFORMANCE

The block diagram ofthe SMAFLC and MMAFLC is shown in Figure 52.

,.-------.! Con

ToWor!<spaca2

VELOCITY
f----'---+lTORQUE POSITIONf--..---==----+I Pos ToWorkspace

IT__""lr~~-,---:,J DRAG ToWorkspace1
Subsystem ToWorkspace3

Figure 52 Plant III - Adaptive fuzzy logic control.

The structures of these controllers are identical to those given in paragraph 4.3.2. The reference

model was taken as a critically damped second order system with álJ = 1rad/so The closed-loop

performance specifications thus have the same bandwidth as the open-loop plant, but with improved

damping. The controller input gains were chosen to map the maximum encountered values to the

normalised universes of discourse. The tuner gain parameters were determined experimentally to

give good tuning speed without starting limit cycle oscillations in the rule-base. The values of the

SMAFLC and MMAFLC parameters are K = 0.05, Kp = 0.1, Kd = 5, KREp = 0.025 and KREd = 4.

The closed-loop position response to a square wave reference signal at 0.02Hz, with amplitude

switching between 5.0 and 1.0, was used as test condition for both the SMAFLC and MMAFLC.

The closed-loop performance of the SMAFLC and MMAFLC is shown in Figure 53 and Figure 58.

The simulation period can be divided into three time zones of 600s each. In zone 1 (Os - 600s) and

zone 3 (1200s-1800s) the reference input amplitude is 5.0, while the reference input amplitude is

1.0 in zone 2 (600s - 1200s). The detailed responses of the SMAFLC and MMAFLC are shown in

Figure 54 and Figure 59. The response ofthe initial controller is shown in Figure 55 and Figure 60,

with the final controller response shown in Figure 56 and Figure 61. The RMS value of the

response error for each step during the tuning operation is shown in Figure 57 for the SMAFLC and

in Figure 62 for the MMAFLC. The RMS values of the response error for the SMAFLC and the

MMAFLC are compared in Table 12.
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Zone SMAFLC MMAFLC

Initial Tuning Final Initial Tuning Final

1 2.1898 1.1858 1.0118 5.3939 1.6166 0.9946

(Os-600s)

2 0.6010 0.3877 0.4642 0.9395 0.3057 0.4484

(600s-1200s)

3 2.2200 1.0478 1.3207 5.4088 1.0448 1.0477

(1200s-1800s)

Table 12 Plant III - RMS error comparison of SMAFLC vs MMAFLC.

The SMAFLC improved the initial response in zone 1 (Figure 54 a) significantly compared to the

initial controller (Figure 55 a), with a reduction in the RMS value of the response error of 45%.

After about five step changes the tuning operation converged (Figure 57 a). The final controller

(Figure 56 a) responded smoothly with a reduction of 53% in the RMS value of the response error

compared to the initial controller. The best reference model tracking occurred in zone 2 (Figure 54

b vs. Figure 55 b) with a reduction of 35% in the RMS value of the response error. Convergence

required just one step change (Figure 57 b). The final controller performed poorly with a reduction

of 22% in the RMS value of the response error (Figure 56 b). At the start of zone 3 the SMAFLC

response (Figure 54 c) was degraded due to tuning in zone 2. The tuning operation required six step

changes for convergence. The RMS value of the response error is reduced by 52% compared to that

of the initial controller response. The final controller response (Figure 56 c) showed a reduction of

40% in the RMS value of the response error.

The MMAFLC reduced the response error at the end of zone 1 to an almost perfect response

(Figure 59 a). The RMS value of the response error is 70% relative to the slow response of the

initial controller in zone 1 (Figure 60 a). The tuning operation required six step changes to

converge (Figure 62 a). The final controller response (Figure 61a ) showed a reduction of 81% in

the RMS value of the response error. The MMAFLC reduced the large overshoot of the initial

controller in zone 2 (Figure 59 b vs Figure 60 b) with a reduction in the RMS value of the response

error of 67%. The MMAFLC converged after one step change (Figure 62 b). The final controller

response (Figure 56 b) was slightly degraded compared to the MMAFLC with a reduction in the
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RMS value of the response error of only 52%. In zone 3 the MMAFLC (Figure 59 c) showed a

reduction of 80% in the RMS value of the response error compared to the initial controller (Figure

60c). The final controller response (Figure 61 c) showed a reduction of 80% in the RMS value of

the response error. Convergence required three step changes (Figure 62 c).

Overall, the final controller obtained from the MMAFLC performed better than the SMFLC with

the RMS value of the response error of the final MMAFLC 12% lower than the final SMAFLC.

PLANT III - StvlAFLC - CLOSED-LOOP RESPONSE
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Figure 53 Plant III - SMAFLC - Closed-loop response.
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PLANT III - S.lvlAFLC - TUNING CONTROLLER DETAILED RESPONSE
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Figure 54 Plant III - SMAFLC - Tuning controller detailed response.

PLANT III - SMAFLC - INITIAL CONTROLLER DETAILED RESPONSE
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Figure 55 Plant III - SMAFLC - Initial controller detailed response.
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PLANT III - SMAFLC - FINAL CONTROLLER DETAILED RESPONSE
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Figure 56 Plant III - SMAFLC - Final controller detailed response.
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Figure 57 Plant III - SMAFLC - Response error RMS value for each step change.
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PLANT III - MNV\FLC - CLOSED-LOOP RESPONSE
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Figure 58 Plant UI - MMAFLC - Closed-loop response.
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Figure 59 Plant III - MMAFLC - Tuning controller detailed response.
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PLANT III - Mtv1AFLC - INITIAL CONTROLLER DETAILED RESPONSE
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Figure 60 Plant III - MMAFLC - Initial controller detailed response.

PLANT III - tvHvlAFLC - FINAL CONTROLLER DETA1LED RESPONSE
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Figure 61 Plant III - MMAFLC - Final controller detailed response.
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PLANT III - !vL!v1AFLC- RlvIS ERROR RESPONSE

OL-------~--------~------~------~~------~------~o

3 ' . , , I- --------- ------------ ---- -----------------1"----------------------T-----------------------;-----------------------1----------------------

~2 ----------------------r---------------------+-----------------------j------------------------I------------------------t----------------------
8 1 -----------------------:-----------------------1"----------- ----- ---- -----------i------------------------f----------------------

. .. .
100 100 300 400 500 600

('1 3 -----------------------r-----------------------l------------------------1"----------------------1------------------------:----------------------
~ "\ -----------------------~-----------------------~------------------------i------------------------:------------------------~----------------------
Z - : : : : :o : : : : :
N 1 ~-----------t-----------------------1------------------------j-----------------------_!_---- ----------~-----!------------- ---------
o600 700 800 900 1000 1100 1100

OL_------~--------~-------L------~L--------L------~1100 1300 1400 1500
THv1E (s)

1600 1700 1800

Figure 62 Plant nl - MMAFLC - Response error RMS value for each step change.

4.3.4 PERFORMANCE EVALUATION AND COMPARISON

As shown in paragraph 4.3.2, the MMFLC responded more slowly and with less overshoot than the

SMFLC to large step changes. For small step changes the SMFLC exhibited lower overshoot with

a slight increase in rise time compared to the MMFLC. The poor performance of the MMFLC to

small step changes is due to the similarity in the rule-base in the slowest velocity domain to that of

the SMFLC. This similarity is caused by the normalisation process of the SI and GI vectors in the

automated design algorithm.

As shown in paragraph 4.3.3 the MMAFLC showed overall better performance than the SMAFLC

based on the RMS values of the response errors. The final multi-mode controller showed smaller

response errors than the final single-mode controller. The oscillations of the final single-mode

controller to small step changes have been eliminated by the final multi-mode controller. Both the

SMAFLC and MMAFLC showed high-frequency noise in the control signal (Figure 53 c and

Figure 58 c). The frequency of the oscillations was higher than the plant bandwidth, resulting in an

essentially clean response (Figure 53 b and Figure 58 b). The cause of the noise can be attributed to

differentiation noise and plant excitation due to rule switches.
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4.4 CONCLUSIONS

As shown in paragraphs 4.1.2, 4.2.2 and 4.3.2 the automated rule-base design algorithm sacrifices

speed of response in an attempt to limit overshoot and establish a more homogenous closed-loop

response in the non linear domains. The choice of gain and speed information used in the design

algorithm is critical and may require experimental modification. The design method thus greatly

reduces the amount of manipulated parameters from the rule-base entries to the intuitively

understandable SI and GI vectors.

The rule-base adaptive algorithm (paragraphs 4.1.3, 4.2.3 and 4.3.3) can greatly improve the

performance of a fuzzy logic controller by adapting the rule-base to give a required tracking. Since

a rule has a discrete number of consequences, based on the fuzzy sets defined for the output

universe of discourse, perfect tracking may not always be possible. Care should be taken to avoid

oscillation in the rule-base.

In general the addition of the extra state input to the fuzzy logic controller allowed more knowledge

to be incorporated into the controller and improved performance across the whole non-linear system

domain. The performance improvement and ease of design with the proposed method offsets the

complexity disadvantage.
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5 TEMPERATURE CONTROL OF
HOMOGENEOUS AZEOTROPIC

DISTILLATION COLUMN

5.1 INTRODUCTION

The control of the reaction front temperature of a heterogeneous azeotropic distillation column with

SMFLC and MMFLC is investigated.

The distillation process is used to split a mixture of fluids based on their relative volatility [8]. A

binary fluid mixture at a steady temperature will reach an equilibrium condition between the vapour

and the fluid. The vapour will be richer in the more volatile component and the fluid richer in the

less volatile component, leading to a separation in components [8, 66]. The principles of distillation

have been thoroughly investigated and documented [8, 66]. Various control structures and

strategies have been reported, with robust and non-linear control techniques slowly finding

applications in different fields of distillation control [5, 11, 15,29,39,49,66,67, 71, 91, 97]. For

the purpose of this work, an investigation of the distillation process and the various control

strategies is not required.

The phase diagram ofa binary azeotropic or constant boiling point mixture is shown in Figure 63.

VAPOUR

,
I

LIQUID :
Xl: Yl

CO~1POSITION

Figure 63 Phase diagram of a binary, azeotropic mixture.

In an azeotropic mixture like water and ethanol, the vapor and fluid have the same composition

during equilibrium conditions, as indicated by the touching of the two-phase boundaries shown in

80

Stellenbosch University http://scholar.sun.ac.za



Figure 63. This mixture can thus not be separated with normal distillation techniques [8, 66]. The

separation of water and ethanol requires the addition of an entrainer. Benzene is added to form an

unstable ternary minimum azeotrope that splits into two liquid phases in the decanter: a light

benzene-rich phase (the Ldo fraction) and a heavy water-rich phase (the Lda fraction) [8, 58, 66, 90].

The addition of the entrainer thus adds a degree of freedom to the system [56].

The homogenous azeotropic distillation column studied in this work is shown in Figure 64.

#1
LdaF

#22

#26
#27

B

Q

Figure 64 Homogeneous azeotropic distillation column with 27 stages.

The column has 26 trays with the reboiler forming the 27th stage. The column is fed with an ethanol

and water mixture at a feed rate of F mol/min. The benzene entrainer is added at the top of the
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column, at a flow of Fe mol/min. Energy input to the column is manipulated with the reboiler input

Q J/min. The distillate is extracted from the top of the column, condensed and fed to a decanter,

where it splits into a top organic phase (Ldo) and bottom aqueous phase (Lda). The complete organic

phase is refluxed, while a fraction of the aqueous phase is refluxed with reflux ratio (a). The

distillate product is drawn from the aqueous phase. The purified ethanol is drawn from the bottom

of the column, at a flow rate of B mol/min. Ethanol quality is traditionally controlled by

manipulation of the reaction front temperature profile indicated by the sharp temperature break in

the lower sections of the column [56,58]. The reaction front temperature profile before and after an

input flow disturbance is shown in Figure 65.
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Figure 65 Distillation column: Reaction front temperature profile before and after a 5% input flow
disturbance.

The position of the sharp temperature break can be regulated by controlling the temperature of a

single tray, as shown in Figure 64. Alternatively, the average ofa number of tray temperatures can

be regulated [56, 57, 58, 59].
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5.2 PLANT AND SIMULATION MODEL

The column used in this work is a literature example [90] and the SIMuLINK® model was adapted

from a master's project currently nearing completion. The SIMuLINK® S-Function file is given in

Appendix VI.1. For the purpose of this work, the simulation model of the azeotropic distillation

column is seen as a black box model. The SIMuLINK® block diagram of the azeotropic distillation

column, as studied in this work, is shown in Figure 66.

FeedComp.l

0.0 I---------~
FeedComp.2

0.89 I-------------t>!
Feed Comp. 3

1.65I----------.j
Entrainer Flow

0.01-----------+1
Entramer Comp 1

1.0I----------.j
Entrainer Comp 2

0.0 1-----------+1
EntrOlner Comp 3

0.7671----------.j

dQ

MUl<

MUl<

Figure 66 Distillation column - Input and output structure.

The ten inputs with their nominal values are shown. For the purpose of this work, the reflux ratio

and the compositions of all the input flows are kept constant at their nominal values. The input feed

flow rate (Fe) is regarded as the disturbance input. The boil-up rate (Q) is manipulated around its

nominal values as the controlled system input. The temperature on tray 22 is extracted from the 164

element output vector and is used to regulate the position of the reaction temperature front. The

output vector consists of the following elements with only the Lda fraction and the tray 22

temperature of importance in this study.

• Z = y(1:108)

• T = y(109:135)

• v= y(136:162)

• Ldo = y(163)

• Lda = y(164)
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The Z output vector gives the composition ratios of the water, benzene and ethanol on the 26

column trays. The temperature on each stage of the column is given by T. The V output vector is

the vapour flow on the 26 trays. The last two elements in the output vector are the Ldo and Lda

fractions.

For test purposes the column is subjected to a disturbance in input feed flow rate between 100

mol/min and 105 mol/min. The response to a 5 mol/min increase in feed flow at 0 min and a 5

mol/min decrease at 180 min is shown in Figure 67.
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Figure 67 Distillation column - Open-loop temperature and Lda fraction response to input flow step
change.

As the feed flow increases, the Lda fraction and the temperature increase. The temperature exhibits

a non-minimal phase response. The RMS value of the temperature error relative to its nominal

value of 349.22K is 1.997K. The non-linear characteristics of the plant are evident from the non-

symmetric temperature response. The reaction front temperature profile at the start and end of the

5% increase in feed flow is shown in Figure 65.
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5.3 TEMPERATURE CONTROL

The control objective is to eliminate disturbances in the reaction front temperature, as measured on

tray 22 (T22), caused by fluctuations in the feed flow rate (Fe) by manipulation of the boil-up rate

(Q). All the distillation column inputs are modified around their nominal values as given in Figure

66. The block diagram of the SMFLC and MMFLC is shown in Figure 68

To Workspace5

Figure 68 Distillation column - Non-adaptive fuzzy logic control.

Since the plant is of type zero, a PID-type controller is required. The error integral (fe.dt), error (e)

and error rate of change (de/dl), via gains K;, Kp and Kd, are used as controller inputs. Initial

controller designs indicated high system sensitivity to high-frequency noise generated by direct

differentiation of the error signal. A linear state observer estimating the error signal (ê) supplies the

estimated error rate of change (dê/dt) for the controller. The deviation of the Lda fraction from its

nominal value was chosen for the state input. The Lda fraction is indicative of the amount of water

in the column. The water content influences the thermodynamic and chemical process and thus the

plant dynamics. The rule-base design algorithm and gain optimisation technique are used to design

an initial SMFLC and finally a MMFLC. The rule-base adaptive technique cannot be applied to

this problem since the structure does not conform to the model reference adaptive control structure.

5.3.1 OBSERVER DESIGN

A linear state observer estimating the error (ê) and error rate of change (dê/dt) eliminates injected

high-frequency noise created by a discrete differentiating element. The observer is based on a small

signal, linear, state space model, determined from the response of the temperature error to a step

change in boil-up. The structure of a second-order observer with bias estimation is shown in Figure

69 [12, 50].
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Gain!

Gain2

Figure 69 Distillation column - Linear observer with bias estimation.

The temperature response of the distillation column to a 2.5% step change in boil-up is shown in

Figure 70.
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Figure 70 Distillation column - Open-loop temperature and Ld. fraction response to boil-up step change.

The non-linearity of the system is clear from the unsymmetrical response in T22 and Lda to boil-up

changes. The linear observer thus clearly requires the addition of a state for bias estimation. A

second-order model with, = 0.8 results in the minimal overshoot and fast initial response. Based

on the rise time, OJn = 0.8. The linear model poles are located at SI,2 = -0.64 ± 0.48j. The error

dynamics were chosen as five times the plant dynamics with poles selected at SI = -3, S2 = -3.5 and

S3 = -4. The state space model, augmented with the bias state, is shown in Equation 35. The error

feedback gain matrix is also given.
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Xl

=[ -~64
1

H~l+mdQx2 -1.28

W 0

Y = [- 3.61X 10-6 o O{~l
L= [-4.0083x106 -1.7441x107 -1.1634x107

]

Equation 35

The performance of the observer is shown in Figure 71.
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Figure 71 Distillation column - Observer response to boil-up step change.

The feed flow rate was increased at 10 minutes and decreased at 180 minutes. The estimated error

(ê) tracks the true error very accurately. The observer tracking error (e-ê) shows a small error

directly following the step change. The estimated error rate of change (dê/dt) shows a little high-

frequency noise in the steady state. Both controllers were subjected to 5% step change in feed flow

rate.
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5.3.2 SINGLE-MODE FUZZY LOGIC CONTROL

The universe of discourse and number of fuzzy sets for each input and output are listed in Table 13.

Input Minimum Maximum Sets

State 0 2 1

Integral -60 60 9

Error 6 6 9

Rate 0.025 0.025 9

Control -173400 173400 21

Table 13 Distillation column - SMFLC structure summary.

As suggested by the design algorithm, triangular membership functions define all the fuzzy sets.

The gain information vector is chosen as GI = [1] and the speed information matrix, SI = [1]. The

controller input gains (Kj = 200, Kp = 200 and Kd = 0.01) were determined experimentally. The

MATLAB® design file for the SMFLC is listed in Appendix VUL

The closed-loop response of the SMFLC is shown in Figure 72.
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Figure 72 Distillation column - SMFLC - Closed-loop response.
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The amplitude of the temperature disturbance is reduced to less than 0.005K. The RMS value of

the temperature error is 0.0016. The temperature response shows a small, high-frequency

oscillation for values of Lda close to the nominal value. Simulation work has shown that the system

is sensitive to oscillations at the nominal operating point at high controller gain values, suggesting

the possibility of employing a MMFLC.

5.3.3 MULTI-MODE FUZZY LOGIC CONTROL

The universe of discourse and number of fuzzy sets for each input and output are listed in Table 14.

Input Minimum Maximum Sets

State 0 2 2

Integral -60 60 9

Error 6 6 9

Rate 0.025 0.025 9

Control -173400 173400 21

Table 14 Distillation column - MMFLC structure summary.

The structure and type of membership functions were chosen to be identical to those of the SMFLC

given in 5.3.2. To limit the complexity of the MMFLC only two fuzzy sets were chosen for the Lda

fraction, supplying information regarding the water content of the column. Based on qualitative

thermodynamic reasoning, distillation experts thought the plant to have a lower small signal gain at

a high water content. The gain information vector, GI = [1 0.75] and the speed information matrix,

SI= [1 1] were determined experimentally to limit the oscillations at low values of Lda exhibited by

the SMFLC without degrading closed-loop performance. The controller input gains (K = 200, Kp =
200 and Kd = 0.01) were chosen as identical to the SMFLC. The MATLAB® design file for the

MMFLC is listed in Appendix Vl.III.

The closed-loop response of the MMFLC is shown in Figure 73. The maximum amplitude of the

temperature disturbance is less than 0.006K, with the RMS value of the temperature error

0.000913K. The temperature shows a smaller sensitivity to high-frequency oscillations at small

values of Lda than the SMFLC.
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Figure 73 Distillation column - MMFLC - Closed-loop response.

5.4 CONTROLLER COMPARISON AND
CONCLUSIONS

The closed-loop temperature response of the SMFLC and MMFLC is compared in Figure 74. The

reduction in sensitivity (amplitude and duration) to high-frequency oscillations of the MMFLC

compared to the SMFLC is clear. This reduction in sensitivity is caused by the lower controller

gain at low Lda fractions and is responsible for the slightly larger peak amplitudes of the temperature

error between 30s and lOOs and 250s and 300s. As soon as the Lda fraction increases to start firing

the second domain rules, the higher system gain decreases the error. The larger overshoot of the

MMFLC compared to the SMFLC at 180s indicates that the system has less damping at higher

values of Lda. An increase in the damping of the MMFLC in the high Lda fraction zone should

reduce the overshoot peak.

Considering the small increase in error due to the overshoot, compared to the already significant

reduction in the RMS value of the temperature error of the MMFLC relative to the SMFLC, this

was not regarded as important and not investigated.
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Figure 74 Distillation column - SMFLC vs MMFLC performance comparison.
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6 CONTROL OF EXOTHERMIC
CSTR

In this chapter the proposed design method is used to implement a SMAFLC and a MMAFLC for

direct concentration control of an exothermic chemical reaction in a continuously stirred tank

reactor (CSTR). Various authors have investigated the non-linear behaviour of the CSTR system

and indicated that in certain domains of the non-linear state space the system exhibits multiple

steady states, limit cycles or non-linear dynamics [38, 41, 81]. Non-linear feedback and predictive

control schemes have been implemented successfully for temperature control [38, 41].

6.1 PLANT AND SIMULATION MODEL

An excellent discussion on the non-linear dynamic behaviour of the exothermic CSTR can be found

in [81]. The two non-linear state equations for the CSTR are given in Equation 36 with the

parameters as defined in the parameter list below [41].

dC = -k Ce-%T+ Q (C -C)
dl 0 V f

dT = -L1H kCe-%T+Q(T -T)+ UA (T -T)
dl C 0 V f CVePpP p

Equation 36

• A - Heat exchange surface area (m2)

• C - Reactant concentration (mol/m')

• Cf- Feed concentration (mol/mi)

• Cp - Specific heat capacity (Jrkg.K)

• E - Activation energy (Jlmol)

• ko - Arrhenius pre-exponential constant

• Q - Volumetric flow rate (m3Is)

• R - Gas constant (Jlmol.K)

• T - Reactor temperature (K)

• Tj-: Feed temperature (K)

• Tc - Coolant temperature (K)

• U - Heat transfer coefficient (JI(s.K.m2))
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• V-Reactor volume (m3
)

• JH - Heat of reaction (J/mol)

• p- Reactant density (kg/m')

Assume that the reactor volume (V) is kept constant and that the reactant temperature and coolant

temperature are directly measurable. Assume further that the reactant concentration is directly

measurable or can be determined from direct measurements.

Define the dimensionless parameters of Equation 37, with Qo and Tja defined as the nominal

concentration and volumetric flow-rate variables. Equation 36 can now be transformed into the

dimensionless state space system of Equation 38. [38, 41, 81]. The parameters and variables of

Equation 37 and Equation 38 are defined in the parameters lists given.

jJ = (- L1H)Cf Y
pCpTfO

ó= UA
pCpQo
E

y=-
RTfO

V _
(/J = Qo koe Y

q=f!_o,
Equation 37

• p - Dimensionless heat of reaction.

• i) - Dimensionless activation energy

• y - Dimensionless heat transfer coefficient

• lp - Damkohier number
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dx( = -lpx(K(xJ+ q(l- xJ
dt

dX2 = {Jlpx(K(xJ- (q + b)x2 + U + v
dt

)'X2

K(x2) = eY+X2

r= Qo t
V

u=~(T -T )T c fa
fa

Equation 38

• r - Dimensionless time.

• u - Dimensionless process input

• Xl - Dimensionless reactant concentration

• X2 - Dimensionless reactant temperature

From Equation 38 the non-linear dynamic behaviour of the plant is clearly a function of

temperature. The different types of dynamic behaviour and corresponding domains of the state

space are given in [81]. The steady state characteristics of the plant can be calculated for various

values of u by solving for Equation 38 equal to o. The nominal values of the parameters used in

this study are given in the parameter list below [38].

• P = 8.0

• ~= 3.0

• Y = 20

• (/J = 0.072

The steady state temperature curve of the CSTR is shown in Figure 75 for three values of ~ [38].

For small values of ~ the plant shows multiple steady states, of which the middle state is unstable

[81]. For compliance with the initial assumptions of the design method, ~ = 3.0 was chosen. The

steady-state concentration curves are shown in Figure 76. At ~ = 3.0 the steady-state temperature
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curve IS almost linear, with the steady-state concentration curve showing stronger non-linear

deviation. The non-linear dynamics of the concentration and temperature are evident in the open-

loop step response, as shown in Figure 77. According to [38] the system dynamics are first-order.

It is the opinion of the author that the system is second-order, as is evident from the overshoot in

concentration and temperature in certain domains. The MATLAB® S-Function implementation of

the plant is given in Appendix VII.!.

: ~~/""':""""':""'···········1.~.···········::··'·.... 1.~..··~J
.': : ~ : : . :
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Figure 75 CSTR - Steady-state temperature.
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Figure 76 CSTR - Steady-state concentration.
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Figure 77 CSTR - Open-loop step response.
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6.2 CONCENTRATION CONTROL

The control objective is to implement a stable concentration control system to track step changes in

the concentration reference with a realistic closed-loop performance specification. This system is

suitable for application of the self-adaptive algorithm. According to the proposed design algorithm

a SMAFLC was initially tested. Although the final SMFLC showed a substantial improvement

over the initial SMFLC, a MMAFLC was implemented with superior results. The design and

performance results for the SMAFLC are reported in paragraph 6.2.1 and the MMAFLC in

paragraph 6.2.2.

The block diagram of the SMAFLC and MMAFLC is shown in Figure 78.

Subsystem6 Sum~r------------r--~
Control ~-.t

~--+lRes
ErrL_----~Ref

Ref Mod

Figure 78 CSTR - Adaptive fuzzy logic control.

The MMAFLC uses the temperature for non-linear state information. Small signal step responses

around a nominal control input of 1.5 indicated a plant bandwidth of ron::::: 1.7. As a realistic closed-

loop specification, the closed-loop bandwidth was chosen as 1.414, approximately 80% ofthe open-

loop bandwidth. The reference model was chosen as the overdamped second-order system given by

Equation 39.

2
GRef (S) = -s2-+-4-s-+-2

Equation 39

Both controllers were subjected to the same amplitude-modulated input signal. According to the

amplitude of the 0.05Hz square wave input, the simulation period can be divided into three time

zones of 400s each. In zone I (Os- 400s) and zone 3 (800s-1200s) the reference input amplitude is

0.2, while the reference input amplitude is 0.1 in zone 2 (400s - 800s). The RMS value of the

response error is used as the KPl for controller comparison.
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6.2.1 SINGLE-MODE ADAPTIVE FUZZY LOGIC
CONTROLLER

The automated rule-base design algorithm was used to design the initial rule-base. The universe of

discourse and number of fuzzy sets for each input and output are listed in Table 15.

Input Minimum Maximum Sets

State 0 6 1

Integral -1 1 9

Error -1 1 9

Rate -1 1 9

Control -1 1 21

Table 15 CSTR - SMFLC structure summary.

As suggested by the design algorithm, triangular membership functions define all the fuzzy sets.

The gain information vector is chosen as G, = [1] and the speed information matrix, Os = [1]. The

controller input gains (Kj = 1.25, Kp = 1.667 and Kd = 10) were chosen to map the maximum

encountered values to the normalised universes of discourse. The output gain (Ou = 3) maps the

output universe of discourse to u E [-3,3]. The tuner gains were determined experimentally as KREp

= 0.1 and KREd = 1.0. The MATLAB® design file for the SMAFLC is given in Appendix VIl.lI.

The closed-loop response of the SMAFLC is shown in Figure 79. The system exhibits high-

frequency switching in the control signal (Figure 79 c) for lower reference values of the

concentration. The bandwidth reduction of the plant limits the noise in the plant output

significantly (Figure 79 a). The SMAFLC significantly improved the initial response in zone 1 and

3 (Figure 80 a and Figure 80 c) compared to the initial controller (Figure 81 a and Figure 81 c). The

first step change shows a dramatic decrease in the RMS value of the response error (Figure 83 a),

with a slower improvement for subsequent step changes (Figure 83 a and Figure 83 c). The final

controller (Figure 82 a and (Figure 82 c) shows a reduction of 81% from 0.0964 to 0.0175 in the

RMS value of the response error compared to the initial controller (Figure 81 a and Figure 81 c). In

zone 2 the final controller (Figure 82 b) shows an improvement of 70% from 0.0408 to 0.0121 in

the RMS value of the response error compared to the initial controller (Figure 81 b). The tuning

operation converged after one step change (Figure 83 b).
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Figure 79 CSTR - SMAFLC - Closed-loop response.
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Figure 80 CSTR - SMAFLC - Tuning controller detailed response.
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CSTR - SMFLC - INITIAL CONTROLLER DETAILED RESPONSE
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Figure 81 CSTR - SMAFLC - Initial controller detailed response.
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Figure 82 CSTR - SMAFLC - Final controller detailed response.
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CSTR - SMFLC - Rt\lS ERROR RESPONSE
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Figure 83 CSTR - SMAFLC - Response error RMS value for each step change.

6.2.2 MULTI-MODE ADAPTIVE FUZZY LOGIC
CONTROLLER

The automated rule-base design algorithm is used to design the initial rule-base. Except for the

three fuzzy sets defined on the state universe of discourse, the structure of the MMAFLC as given

in Table 16 is identical to the SMAFLC of paragraph 6.2.1.

Input Minimum Maximum Sets

State 0 6 3

Integral -1 1 9

Error -1 1 9

Rate -1 1 9

Control -1 1 21

Table 16 CSTR - MMFLC structure summary
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The gain information vector is chosen as GI = [1 1 1], based on the almost linear steady-state

temperature and concentration curves. The speed information matrix, SI = [0.5 1 2], was

determined by investigating Equation 38. For high temperatures, the non-linear function K would

give a larger value than with a small temperature. The amount of feedback thus increases with high

temperatures. For linear systems the bandwidth increases with the feedback. The SI vector reflects

the increase in bandwidth relative to temperature as indicated. The entries in the vector were

chosen arbitrarily. The controller input gains (K, = 1.25, Kp = 1.667 and Kd = 10) were chosen to

map the maximum encountered values to the normalized universes of discourse. The output gain

(Gu = 3) maps the output universe of discourse to u E [-3, 3]. The tuner gains were determined

experimentally as KREp = 0.1 and KREd = 1.0. The MATLAB® design file for the MMAFLC is given

in Appendix VII.III.

The closed-loop response of the SMAFLC is shown in Figure 84. The MMAFLC improved the

initial response in zones 1 and 3 (Figure 85 a and Figure 85 c) significantly compared to the initial

controller (Figure 86 a and Figure 86 c). The first step change shows a dramatic decrease in the

RMS value of the step change (Figure 88 a) with a slower improvement for subsequent step changes

(Figure 88 a and Figure 88 c). The final controller (Figure 87 a and Figure 87 c) shows a reduction

of 90% (0.0986 vs. 0.0095) in the RMS value of the response error compared to the initial controller

(Figure 86 a and Figure 86 c). In zone 2 the final controller (Figure 87 b) shows an improvement of

85% (0.0415 vs. 0.0058) in the RMS value of the response error, compared to the initial controller

(Figure 86 b). The tuning operation converged almost instantaneously after one step change (Figure

88 b).
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CSTR - MlviFLC - CLOSED-LOOP RESPONSE
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Figure 84 CSTR - MMAFLC - Closed-loop response.
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Figure 85 CSTR - MMAFLC - Tuning controller detailed response.
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CSTR - 1fMF1..C - INITIAL CONTROLLER DETA1LED RESPONSE
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Figure 86 CSTR - MMAFLC - Initial controller detailed response.

CSTR - MMF1..C - F1NAL CONTROLLER DETAILED RESPONSE

, I , , , I, . . , . .
I , • , , I ,

-----------------r-----··-··-··----t···_------··-·····~··---·-···-··_··-1--------_····-----r-----·--------·--1------··---·------r--···---_·_-----

50 100 150 200 250 300 350 400

('10.6
w
~OA(,_"
NO.2

0
400 500 600 700 800 400 500 600 700

~~.: ················1··················:··················[·················1··················[··········:·::·::1'::'::::'::':::'::1:::':::':::'::':
NO.2 ·················(···············j··················t· j :-- :.·················i················

O~~~~~~~~~~~~~~~~~~~~~~~cd
800 850 900 950 1000

TIlvlE (3)
1050 1100 1150 1200

Ref. Resp. Response Resp. En.

Figure 87 CSTR - MMAFLC - Final controller detailed response.
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Figure 88 CSTR - MMAFLC - Response error RMS value for each step change.

6.3 COMPARISON AND CONCLUSIONS

The RMS values of the response errors are compared in Table 17. Based on the RMS value of the

response error, it was found that the final multi-mode controller performs 45% better than the

single-mode controller to the large step changes of zones 1 and 3. During the small step changes of

zone 2, the final multi-mode controller shows 51% better performance than the single-mode

controller. The response of the final controllers to the large and small step changes is compared in

Figure 89.

The final MMFLC shows better transient performance and a smaller tendency to steady-state

oscillations than the final SMFLC. The added complexity of the final MMFLC is offset by the

better transient response and superior reference model tracking.
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Zones SMAFLC MMAFLC

Initial Final Initial Final

1 0.09647 0.01754 0.09860 0.00958

(Os - 400s)

2 0.04089 0.01215 0.04158 0.00589

(400s - 800s)

3 0.09647 0.01754 0.09560 0.00958

(800s - 1200s)

Table 17 CSTR - RMS error comparison of SMAFLC and MMAFLC.
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Figure 89 CSTR - Comparison of final MMAFLC vs final SMAFLC.
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7 CONCLUSIONS
The closed-loop performance of a single-mode fuzzy logic controller (SMFLC) may become

unacceptable if the plant dynamics change as a function of the operating conditions. The multi-

mode fuzzy logic controller (MMFLC) proposed in paragraph 1.1 incorporates knowledge of the

system operating conditions into the control rule-base. This allows the controller to modify its

control strategy according to the operating conditions and ensures acceptable performance over the

whole operating domain. The complexity of the MMFLC and the difficulties encountered in

finding appropriate control rules have traditionally favoured the application of self-adaptive control

techniques and led to the MMFLC being considered unsuitable for practical application. The work

presented in this dissertation has shown that the MMFLC is capable of controlling complex, high-

order plants with unmodelled non-linearities. The MMFLC is very effective in controlling plants

with large variations in dynamics between operating domains without the relearning required by

standard self-adaptive techniques. The MMFLC can also be used in cases where a SMFLC excites

unacceptable limit cycles in certain operating domains.

The objective of this dissertation, stated in paragraph 1.2, was to develop automated tools for

assisting the designer in the design and implementation of multi-mode rule-bases. Two methods for

multi-mode rule-base design are proposed.

1. The proposed cost-function based method is suitable for application in set-point tracking and

disturbance rejection problems. This method requires an iterative optimisation of the rule-

base by modification of the design weights and controller input gains. Qualitative insight into

the system structure is required in selecting and modifying the design weights.

2. The self-learning controller is based on the model reference adaptive architecture. This

technique is suitable for applications where a stringent time domain specification exists for

the closed-loop set-point response.

The five case studies investigated in this dissertation prove that the proposed automated design

methods are effective in designing and optimising a MMFLC that can be implemented as look-up

tables in low-cost hardware platforms.

In the dissertation it was assumed that reliable measurements are available. If the system is

subjected to measurement noise, the design algorithms can be used in conjunction with a state

observer or Kalman filter as shown in paragraph 5.3.1. Due to the integral action in the self-

adaptive algorithm, the rule modification mechanism is insensitive to high-frequency measurement
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noise, The closed-loop system measurement noise robustness is similar to that of the standard

Mamdani type fuzzy controller.

Process noise causing slow parameter changes modifying the system dynamics in certain domains

will cause errors in the closed-loop response. In the design of controllers using the proposed

methods, it is assumed that the plant is stationary. If the system uses on-line tuning, the appropriate

rules will be modified to reduce the response error. If the cost-function-based design method is

used, or the controller is implemented as a look-up table, redesign and implementation may be

required. The robustness measure of any closed-loop system will have to be determined as required

for each individual case.

As stated in paragraph 1.2, the investigation of the proposed methods for multi-loop systems is

beyond the scope of this dissertation. The aim of this dissertation was to develop compensators for

dynamics systems and not high level supervisory systems. In multi-loop systems, the set points of

inner control loops are the manipulated variables in higher-dimensional, outer control loops. The

proposed methods are applicable to the design of controllers for these higher dimensional systems.

A higher level of structure knowledge may be required in selecting the parameters and states

influencing the system dynamics. Process KPIs may supply valuable information in the selection of

controlled variables and state information variables.

7.1 SUMMARY

Unless the plant is known to have operating domains or regions of the state space with large

variations in system dynamics, a SMFLC should initially be tested due to its simplicity as a result of

its smaller rule-base. The general rules of design presented below apply to both SMFLC and

MMFLC.

1. Define controller inputs and output: Determine what type of controller is required (PD or PID).

Find a measurable system state or external variable that reflects the non-linearity of the plant.

Define the universe of discourse for the state input equal to its physical domain. The universes

of discourse for the error integral, error and error rate of change can be chosen for simplicity as

the normalised universes of discourse.

2. Define fuzzy sets: Based on the complexity of the plant non-linearity, choose at least seven

fuzzy sets for the error integral, error and error rate of change and at least two fuzzy sets for the

state input. Define the fuzzy sets membership functions and associated weights, as suggested in

paragraph 3.2.
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3. Choose gain and speed information: Choose the GI and SI vectors. The elements should

describe the relative gain and bandwidth for each domain defined by a fuzzy set in the state

input universe of discourse.

4. Initial rule-base design: Choose the required number of fuzzy sets in the output and run the

automated design algorithm as detailed in paragraph 3.2.1.

5. Run the self-adaptive rule-base modification algorithm: Choose the controller input gains to

map the maximum encountered values of the error integral, error and error rate of change to

their normalised universes of discourse. Apply the model reference adaptive control

architecture and proposed rule-base adaptive algorithm to reduce the RMS value of the closed-

loop step response to an acceptable level. Add fuzzy sets to the controller inputs and outputs as

required.

6. Gain optimisation: If it is not possible to apply the model reference adaptive control

architecture, the closed-loop response must be optimised by manipulation of the controller input

gains and the gain and speed information vectors (cost function weights). This will require

redesigning and testing of the rule-base until an acceptable response is obtained.

The self-adaptive design algorithm, based on model reference adaptive control, has proven to be a

very powerful tool in the automated design process. The case studies presented have proven that it

is possible to automatically tune a rule-base, designed according to the proposed scheme, to satisfy

a realistic closed-loop response time domain specification. The modification of rule consequence

based on the integral of the response error has proven to be simple yet effective. Integration of the

product of the response error and rule firing strength ensures that only rules participating in the

control action are candidates for modification. Resetting the individual integrators after rule

modification allows for a performance evaluation period for the modified rule-base. The addition

of the derivative of the response error in the model reference adaptive architecture improves the

general performance of the rule-base tuner by anticipating sudden changes in the response error. A

rapid reduction in response error will thus delay the modification of the firing rules. Rule-base

convergence can be gauged by the RMS value of the response error of successive reference step

changes. In systems where it is not possible to use the model reference adaptive architecture, the

closed-loop response in all the non-linear domains can be manipulated by modification of the

controller input gains Kj, Kp and Kd. The performance localised to individual domains can be

modified with the gain and speed information vectors. The complexity of the rule-base design

problem has thus been reduced to selection of the controller input gains (Kj, Kp and Kd) and the gain

and speed information vectors.
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7.2 FUTURE WORK
At present the design method applies only to SISO problems conforming to the initial assumptions

of paragraph 3.1. The application of the automated design method to MIMO problems is a

challenging problem warranting future investigation. The addition of an algorithm for the

automated determination of the gain and speed information vectors, from qualitative plant

knowledge or response data, will greatly simplify the design process and increase the possible

sphere of application of MMFLC. One method that seems promising to investigate is the variation

in linear PlO controller gains as linear plant damping, bandwidth and gain change. An expert

system to modify the cost function weights based on such a study would greatly enhance the design

power of the rule-base design algorithm. The robustness of the proposed design techniques for non-

stationary systems in the presence of measurement noise should also be investigated.
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I RULE-BASE GENERATION
ALGORITHM

The MATLAB® file listing of the automated rule-base design algorithm based on the linear cost

function Approuch is detailed in this Appendix. The inputs and outputs of the function are detailed

in the help section of the file.

function [ruzzy_System,RuleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres]
pidrbgen(ruzzy_System,Gain,Speed,Srror_Weight,Rate_Weight, Int_Weight, Dims)
% function [ruzzy_System,RuleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres]
pidrbgen(ruzzy_System,Gain, Speed, Srror_Weight,Rate_Wei ght, Int_Weight, Dims)
%
% PIDRBGSN.M
% This function generates a general PID rule-base for a fuzzy control system using the
% proposed method.
%
%
%
%
%
%
%
%
%
%
%
%
%
%

ruzzy_System
RuleBase
RuleBaseClusters

Output: Complete fuzzy system.
Output: Rule-base. Before clustering

Output: Rule-base. After clustering
Output: Rule-base. Normalized

Rule-base Matrix. As used in standard MATLAB~ format
RuleBaseNorm
RBM
Centres -
ruzzy_System
Gain
Speed

Output:
Output: Centres of clusters

Input: ruzzy system.
Gain information vector.
Speed information vector.
Input: Weight vector.
Input: Weight vector.
Input: Weight vector
Vector defining rule-base dimensions.

Input:
Input:

Srror_Weight
Rate_Weight
Int_Weight
Dims Input:

%
% Stienne M.Hugo - 90 1969 3
% Process Control Group - University of Stellenbosch
% 09/04/98
% Modifications
% Ver 1.0: 22/02/1999: Modify to work with arbitrary dims
% Ver 1.2: 03/05/1999: Modify the speed and gain wieght calculations to be normalised;
% Ver 1.3: 23/06/1999: Modify the initial speed and gain weight normalization
% Declare the required variables
State_Num = Dims(l);
Srr_Int_Num = Dims(2);
Srr_Num = Dims(3);
Srr Der_Num = Dims(4);
U_Num = Dims (5);
Gain_Weight = zeros(l,State Num);
Speed_Weight = zeros(l,State_Num);
U_MBr_Num = zeros(l,U_Num);
Data = zeros(State_Num*Srr_Int_Num*Srr_Num,Srr Der Num,l);
RuleBase = zeros(State Num*Srr Int Num*Srr Num,Srr Der Num);
RuleBaseClusters = zeros(State=Num*Srr_Int=Num*Srr=Num~Srr_Der_Num);
RuleBaseNorm = zeros(State_Num*Srr_Int_Num*Srr_Num,Srr_Der_Num);
RBM = zeros(State Num*Srr Int Num*Srr Num*Srr Der Num,7);
% Determine the fuzzy rules _ _ _
Min_Gain = min(Gain);
Max_Speed = max(Speed);
for q = l:State_Num

Gain Weight(q) = (Min Gain/Gain(q));
Speed_Weight(q) = (Speed(q)/Max_Speed);

end
for q = l:State_Num

qq = q-l;
for t = l:Srr Int Num

tt = t-1;
for w = l:Srr Num

for e = l:Srr Der Num
r = qq*Srr Int Num*Srr Num+tt*Srr Num+w;
RuleBase(r~e) _ Gain Weight(q)*Srror Weight(w)+Rate Weight(e)/Speed Weight(q);end _ _ _

end
end

end
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Max_Control_Weight = max(max(abs(RuleBase)));
Max_Int_Weight = max(abs(Int_Weight));
Int_Weight = Max_Control_Weight * Int_Weight / Max Int_Weight;
for q = l:State_Num

qq = q-l;
for t = l:Err Int Num

tt = t-l;
for w = l:Err Num

for e = l:Err Der Num
r = qq*Err Int Num*Err Numttt*Err Numtw;
Aug = (1 --abs(RuleBas~(r,e))/Max Control_Weight)*(Int_Weight(t));
RuleBase(r,e) = RuleBase(r,e) t Aug;

end
end

end
end
% Reduce the rule-base by using fuzzy c means clustering
% Firts cluster the negative section and then the positive section.
t = 1;
for q = l:State_Num*Err_Int_Num*Err_Num

for w = l:Err Der Num
Data(t,l) = RuleBase(q,w);
t = ttl;

end
end
Data = sort(Data);
Index = find(Data>O);
Start = Index(l);
Stop = max(size(Data));
Data_Neg = Data(l:Start-1);
Data Pos = Data(Start:Stop);
%Centres Neg = sort(fcm(Data Neg', (U Num-l)/2));
Centres Pas = sort(fcm(Data_Pos', (U_Num-1)/2));
Centres_Neg = -Centres Pos;
Centres [Centres_Neg;O;Centres Pas];
Centres = sort(Centres);
t = 1;
for t = l:U Num

U_MBF_Num(t) = t;
end
for q = l:State Num*Err Int Num*Err Num

for w = l:Err Der Num
Rule = RuleBase(q,w);
Difference = abs(Rule*ones(U Num,l)-Centres);
[Min_Diff,Index] = min(Difference);
RuleBaseClusters(q,w) = Centres(Index);
RuleBaseNorm(q,w) U_MBF_Num(Index);

end
end
% Generate the fuzzy rule-base matrix
u=l;
for q = l:State Num

qq = q-1;
for t = l:Err Int Num

tt = t-1;
for w = l:Err Num

for e = l:Err Der Num
r = qq*Err Int Num*Err_Numttt*Err_Numtw;
rule = [q , t , w , e , RuleBaseNorm(r,e) , 1 , 1 ];
RBM(u,:) = rule;
u = utl;

end
end

end
end
% Add the rule-base to the system
Fuzzy_System addrule(Fuzzy_System,RBM);
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II RULE-BASE MODIFICATION
ALGORITHM

The proposed self-adaptive algorithm fuzzy logic controller algorithm is implemented as a

SIMuLINK S-Function. The S-Function is implemented in the standardM-File format. The inputs

to the block are the standard fuzzy logic controller inputs (error integral, error and error rate of

change), the response error (determined by the model reference adaptive architecture) and the

reference signal. The simulation time step, simulation end time, gain and delay information are

entered as block parameters in SIMuLINK.

function [sys,xO,str,tsJ =
FuzTune(t,x,u,flag,GP,DP,TransSpeed,FinSpeed,TransWin,FinWin,dT,FinTime, ...

IntCond,SaveCond)
%---------------------------------------------------------------------------------------------------
% Workspace Globals
global FuzzyController Taboo RulesIntOut FrStr SugMod Rules GainHis
%---------------------------------------------------------------------------------------------------
% S-Function Globals
global Numln NumOut RuleBase AndMeth OrMeth NumRules StepTime Cnt RulesIntIn LastMove NumU RangeU
%---------------------------------------------------------------------------------------------------
switch flag,

case 0,

[sys,xO,str,tsJ=mdllnitializeSizes(t,x,u,GP,DP,TransSpeed,FinSpeed,TransWin,FinWin,dT,FinTime, ...
IntCond,SaveCond);

case 1,
sys=mdlDerivatives(t,x,u);

case 2,
sys=mdlUpdate(t,x,u);

case 3,
sys=mdlOutputs(t,x,u,GP,DP,TransSpeed,FinSpeed,TransWin,FinWin,dT,FinTime, ...

IntCond,SaveCond);
case 9,

sys=mdlTerminate(t,x,u);
otherwise

error(['Unhandled flag = ',num2str(flag)J);
end

%---------------------------------------------------------------------------------------------------
function [sys,xO,str,tsJ=mdllnitializeSizes(t,x,u,GP,DP,TransSpeed,FinSpeed,TransWin,FinWin,dT, ...

FinTime,IntCond,SaveCond)
%---------------------------------------------------------------------------------------------------
% Workspace Globals
global FuzzyController Taboo RulesIntOut FrStr SugMod Rules GainHis
%---------------------------------------------------------------------------------------------------
% S-Function Globals
global Numln NumOut RuleBase AndMeth OrMeth NumRules StepTime Cnt RulesIntIn LastMove NumU RangeU
%---------------------------------------------------------------------------------------------------

sizes = simsizes;
sizes.NumContStates 0;
sizes.NumDiscStates 1;
sizes.NumOutputs 1;
sizes.Numlnputs 6;
sizes. DirFeedthrough 0;
sizes.NumSampleTimes 1;
sys simsizes(sizes);
xO [OJ;
str [J;
ts [0 OJ;
Numln = getfis(FuzzyController, 'NumInputs');
NumOut = getfis(FuzzyController,'NumOutputs');
RuleBase = getfis(FuzzyController, 'rulelist');
AndMeth = getfis(FuzzyContro11er,'andMethod');
OrMeth = getfis(FuzzyController, 'orMethod');
NumRules = getfis(FuzzyController, 'numRules');
NumU = getfis(FuzzyController,'numoutputmfs');
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RangeU = getfis(FuzzyController, 'outrange');
RulesIntIn = zeros(l,NumRules);
if IntCond == 0

RulesIntOut = zeros(l,NumRules);
Taboo = ones(l,NumRules);

else
RulesIntOut = RulesIntOut;
Taboo = Taboo;

end
NumRows = l+(FinTime/dT);
GainHis = zeros(NumRows,l);
FrStr = zeros(NumRows,NumRu1es);
if SaveCond == 1

SugMod = zeros(NumRows,NumRules);
Rules = zeros(NumRows,NumRules);

else
SugMod = [li
Rules = [li

end
Cnt = 1;
StepTime 0;
RulesIntIn = zeros(1,NumRu1es);
LastMove = zeros(l,NumRules);
%---------------------------------------------------------------------------------------------------
% end mdllnitializeSizes
%---------------------------------------------------------------------------------------------------
function sys=mdlOutputs(t,x,u,GP,DP,TransSpeed,FinSpeed,TransWin,FinWin,dT,FinTime, ...

IntCond,SaveCond)
%---------------------------------------------------------------------------------------------------
% Workspace Globals
global FuzzyControl1er Taboo RulesIntOut FrStr SugMod Rules GainHis%---------------------------------------------------------------------------------------------------
% S-Function Globals
global Numln NumOut RuleBase AndMeth OrMeth NumRules StepTime Cnt RulesIntIn LastMove NumU RangeU
%---------------------------------------------------------------------------------------------------
RulesIntOut = RulesIntIn + RulesIntOut;
RefDiff = (u(6)-x(1))/dT;
if RefDiff -= 0

StepTime t;
else

StepTime StepTime;
end
Gain = polyva1(GP,u(1));
Delay = po1yval(DP,u(1));
DelCnt = fix(Delay/dT);
[y,tv,otv,dcl = evalfismex(u(1:4),FuzzyContro11er,101);
RuleStr = getrulestr(tv,AndMeth,OrMeth,RuleBase,Numln,NumOut);
if ((t-De1ay) > StepTime) & (t < (StepTime + TransWin)) % Tune in transient
window

RulesIntIn (FrStr(Cnt-DelCnt,:) .*Taboo)*(TransSpeed*u(5)/GainHis(Cnt-DelCnt));
UThresh = (RangeU(2)-RangeU(1))/NumU;
Update = fix(RuleslntOut/UThresh);
RuleBase(:,5) = RuleBase(:,5) + Update';
TooSmall = find(RuleBase(:,5) < 1);
RuleBase(TooSmall,5) = 1;
TooBig = find(RuleBase(:,5) > NumU );
RuleBase(TooBig,5) = NumU;
RulesIntOut = RulesIntOut - UThresh*Update;
if -isempty(Update)

FuzzyController = setfis(FuzzyController, 'ruleList',RuleBase);
Tuned = find(Update -= 0);
NumTuned = length(Tuned);
for ChkCnt = l:NumTuned

ChkRule = Tuned(ChkCnt);
ChkOsc = LastMove(l,ChkRule) + Update(ChkRule);
LastMove(1,ChkRu1e) = Update(ChkRule);
if ChkOsc == 0

Taboo (ChkRule) 1;
end

% if ChkOsc == 0
end

% for ChkCnt = l:NumTuned
end

elseif (t > StepTime + TransWin) & (t < (StepTime + TransWin + FinWin))
fin window

RulesIntIn = (FrStr(Cnt-De1Cnt,:) .*Taboo)*(FinSpeed*u(5)/GainHis(Cnt-DelCnt));
UThresh = (RangeU(2)-RangeU(1))/NumU;
Update = fix(RuleslntOut/UThresh);
Ru1eBase(:,5) = Ru1eBase(:,5) + Update';
TooSmal1 = find(RuleBase(:,5) < 1);

% Tune in
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RuleBase(TooSmall,5) = 1;
TooBig = find(RuleBase(:,5) > NumU );
Ru1eBase(TooBig,5) = NumU;
RulesIntOut = RulesIntOut - UThresh*Update;
if -isempty(Update)

FuzzyController = setfis(FuzzyController, 'ruleList',RuleBase);
Tuned = find(Update -= 0);
NumTuned = length(Tuned);
for ChkCnt = I:NumTuned

ChkRule = Tuned(ChkCnt);
ChkOsc = LastMove(I,ChkRule) + Update(ChkRule);
LastMove(I,ChkRule) = Update(ChkRule);
if ChkOsc == 0

Taboo(ChkRule) 1;
end

% if ChkOsc == 0
end

% for ChkCnt = l:NumTuned
end

% if -isempty(Update)
else

% No Tuning
RulesIntIn = zeros(l,NumRules);
Update = zeros(l,NumRules);

end
GainHis(Cnt,l) = Gain;
FrStr(Cnt,:) = RuleStr';
if SaveCond == 1

SugMod(Cnt,:) = RulesIntOut;
Rules(Cnt,:) = RuleBase(:,5) I;

end
sys = [yJ;
Cnt = Cnt+l;
%---------------------------------------------------------------------------------------------------
% end mdlOutputs%---------------------------------------------------------------------------------------------------%---------------------------------------------------------------------------------------------------
function sys=mdlDerivatives(t,x,u)
sys = [J;
function sys=mdIUpdate(t,x,u)
sys = [u(6)J;
function sys=mdITerminate(t,x,u)
sys = [J;
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III PLANT I: M-FILES
The MATLAB® M-Files pertaining to the cargo ship are given in this appendix. The cargo ship

simulation model is implememted as a standard SIMuLINK S-Function with three continuous

dynamic states as given in paragraph IIU. The design of the single-mode controller is given in

paragraph 111.11,while the multi-mode controller is detailed in paragraph111.111.

111.1 SIMULATION MODEL

function [sys,xO,str,ts)
switch flag,

CargoShip(t,x,u,flag)

case 0,
[sys,xO,str,ts)=mdllnitializeSizes;

case 1,
sys=mdlDerivatives(t,x,u);

case 2,
sys=mdlUpdate(t,x,u);

case 3,
sys=mdlOutputs(t,x,u);

case 4,
sys=mdlGetTimeOfNextVarHit(t,x,u);

case 9,
sys=mdlTerminate(t,x,u);

otherwise
error(['Unhandled flag = ',num2str(flag)));

end
%===================================================================================================
=======%
function [sys,xO,str,ts)=mdllnitializeSizes
sizes = simsizes;
sizes.NumContStates 3;
sizes.NumDiscStates 0;
sizes.NumOutputs 2;
sizes.Numlnputs 2;
sizes. DirFeedthrough 0;
sizes.NumSampleTimes 1; % at least one sample time is needed
sys simsizes(sizes);
xO [0; 0 ; 0 );
str [);
ts [0 0);
%===================================================================================================
=======%
function sys=mdlDerivatives(t,x,u)
1 = 161;
KO = -3.86;
Taul0 5.66;
Tau20 = 0.38;
Tau30 = 0.89;
a = 1;
b = 1;
MaxRud 60*2*pi/360;
MinVel 2.5;
MaxVel 7.5;
if u (1) > MaxVel

u(l) = MaxVel;
elseif u(l) < MinVel

u(l) MinVel;
else

u (1) u(l) ;
end
if u(2) > MaxRud

u(2) MaxRud;
elseif u(2) < -MaxRud

u (2) -MaxRud;
else

u(2) u (2);

124

Stellenbosch University http://scholar.sun.ac.za



end
K = KO*u(l)/l;
Tau1 Tau10*1/u(1);
Tau2 = Tau20*1/u(1);
Tau3 = Tau30*1/u(1);
Kl (1/Tau1)+(1/Tau2);
K2 1/(Tau1*Tau2);
K3 (K*Tau3)/(Tau1*Tau2);
K4 K/(Tau1*Tau2);
H = a*(x(2)A3) + b*x(2);
xdot1 x(2);
xdot2 = x(3) + K3*u(2);
xdot3 = -K1*(x(3)+K3*u(2)) - K2*H + K4*u(2);
sys = [xdot1,xdot2,xdot3];
%===================================================================================================
=======%
function sys=md1Update(t,x,u)
sys = [];
%===================================================================================================
=======%
function sys=md10utputs(t,x,u)
sys = [x(l) , x(2)];
%===================================================================================================
=======%
function sys=md1GetTimeOfNextVarHit(t,x,u)
% sampleTime = 1; % Example, set the next hit to be one second later.
% sys = t + sampleTime;
%===================================================================================================
=======%
function sys=mdlTerminate(t,x,u)
sys = [];
%===================================================================================================
=======%

111.11 SINGLE-MODE FUZZY LOGIC
CONTROLLER DESIGN

II!.I!.I CONTROLLER DESIGN FILE

% FUZ DESIGN.M
% Designs a fuzzy controller for the cargo ship.
% Etienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 13/01/1999
% Setup
cIc;
close all;
clear all;
% Define the size of the controller
Ni = 11;
Nc = 11;
% Define the universe of discourse
U = [-60*2*pi/360 60*2*pi/360];
Err = [-1 1];
Rate = [-1 1];
State = [2.5 7.5];
% Define the fuzzy system
FuzCon newfis('FuzzyController', 'mamdani');
FuzCon setfis(FuzCon, 'andMethod', 'min');
FuzCon setfis(FuzCon, 'orMethod', 'max');
FuzCon setfis(FuzCon, 'impMethod', 'min');
FuzCon setfis(FuzCon, 'aggMethod', 'max');
FuzCon setfis(FuzCon, 'andMethod', 'min');
FuzCon setfis(FuzCon, 'defuzzmethod', 'centroid');
% Set the fuzzy system inputs and outputs
FuzCon addvar(FuzCon, 'input', 'State',State);
FuzCon addvar(FuzCon,'input', 'Err',Err);
FuzCon addvar(FuzCon,'input', 'Rate',Rate);
FuzCon addvar(FuzCon,'output', 'Control',U);
% Auto design of membership functions;
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Names = namegen(Ni,'Sym');
U Names = namegen(Nc, 'Sym');
Overlap = 1;
FuzCon symbfgen(FuzCon, 'input',1,1,State,Over1ap, 'Z');
FuzCon = symbfgen(FuzCon, 'input',2,Ni,Err,Overlap,Names);
FuzCon = symbfgen(FuzCon,'input',3,Ni,Rate,Over1ap,Names);
% Auto design the rulebase according to the wikkel method
Error_Weight = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5];
Rate_Weight = [-5, -4, -3 -2, -1, 0, 1, 2, 3, 4, 5];
Gain = [ 1 ];
Speed = [ 1 ];
Dims = [ 1 , Ni , Ni , Nc ];
[FuzCon,RuleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres]
FuzCon,Gain,Speed,Error_Weight,Rate_Weight,Dims);
% Generate the output membership functions
Centres Scaled = max(U)*Centres/(max(Centres));
MidPoints = sort(Centres Scaled);
FuzCon = mbfgen(FuzCon, 'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
writefis(FuzCon,'sys_con.fis');
global FuzzyController
Kp = 1;
Kd = 1;
StateLim = State;
ErrLim = Err;
ErrRateLim = Rate;
FuzzyContro1ler = FuzCon;
OldFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrRateLim Kp Kd

pdrbgen (...

111.11.11 GAIN DESIGN FILE

% GAIN DESIGN.M
% Gain design for fuzzy controller
% Etienne M. Hugo 9019693
% University of Stellenbosch Process Control Group
% 05/04/1999
% Setup
cl c ,
close all;
clear all;
% Load the system parameters
load con_param.mat;
% Set the limits of the universes of discourse
ErrMax = 10*2*pi/360;
RateMax = 0.01;
% Get the implementation gains
Kp l/ErrMax;
Kd l/RateMax;
Gu 1.1163;
save CON PARAM.MAT FuzzyControl1er OldFuzzyController StateLim ErrLim ErrRateLim Kp Kd Gu

111.111 MULTI-MODE FUZZY LOGIC
CONTROLLER DESIGN

111.111.1 CONTROLLER DESIGN FILE

% FUZ DESIGN.M
% Designs a fuzzy controller for the cargo ship.
% Etienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 13/01/1999
% Setup
cIc;
close all;
clear all;
% Define the size of the controller
Ni = 11;
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Nc = 11;
% Define the universe of discourse

U = [-60*2*pi/360 60*2*pi/360];
Err= [-11];
Rate = [-1 1];
State = [2.5 7.5];
% Define the fuzzy system
FuzCon newfis('FuzzyContro11er', 'mamdani');
FuzCon setfis(FuzCon, 'andMethod', 'min');
FuzCon
FuzCon
FuzCon
FuzCon

setfis(FuzCon, 'orMethod', 'max');
setfis(FuzCon, 'impMethod', 'min');
setfis(FuzCon, 'aggMethod', 'max');
setfis(FuzCon, 'andMethod', 'min');

FuzCon setfis(FuzCon, 'defuzzmethod', 'centroid');
% Set the fuzzy system inputs and outputs
FuzCon addvar(FuzCon, 'input', 'State',State);
FuzCon addvar(FuzCon, 'input', 'Err',Err);
FuzCon addvar(FuzCon, 'input','Rate',Rate);
FuzCon addvar(FuzCon, 'output', 'Control',U);
% Auto design of membership functions;
State_Names = namegen(3, 'Sym');
Names = namegen(Ni, 'Sym');
U_Names = namegen(Nc,'Sym');
Overlap = 1;
FuzCon symbfgen(FuzCon, 'input',1,3,State,Overlap,State Names);
FuzCon = symbfgen(FuzCon, 'input',2,Ni,Err,Overlap,Names);
FuzCon = symbfgen(FuzCon, 'input',3,Ni,Rate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Error_Weight = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5];
Rate_Weight = [-5, -4, -3 -2, -1, 0, 1, 2, 3, 4, 5];
% Gain = [ III ];
% Speed = [ 0.5 0.66 1];
Gain = [ 0.0599 0.1198 0.1798*0.75 ];
Speed = [ 0.4*1 1 1 ];
Dims = [ 3 , Ni , Ni , Nc ];
[FuzCon,RuleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres] pdrbgen( ...
FuzCon,Gain,Speed,Error_Weight,Rate_Weight,Dims);
% Generate the output membership functions
Centres_Scaled = max(U)*Centres/(max(Centres));
MidPoints = sort(Centres Scaled);
FuzCon = mbfgen(FuzCon,'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
writefis(FuzCon, 'sys_con.fis');
global FuzzyController
Kp = 1;
Kd = 1;
StateLim = State;
ErrLim = Err;
ErrRateLim = Rate;
FuzzyController = FuzCon;
OldFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrRateLim Kp Kd

111.111.11 GAIN DESIGN FILE

% GAIN DESIGN.M
% Gain design for fuzzy controller
% Etienne M. Hugo 9019693
% University of Stellenbosch Process Control Group
% 05/04/1999
% Setup
cIc;
close all;
clear all;
% Load the system parameters
load con_param.mat;
% Set the limits of the universes of discourse
ErrMax = 10*2*pi/360;
RateMax = O. Ol;
% Get the implementation gains
Kp l/ErrMax;
Kd l/RateMax;
Gu 1.1163;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrRateLim Kp Kd Gu
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IV PLANT II: M-FILES
The MATLAB® M-Files pertaining to the second-order plant with exponential damping is given in

this Appendix. The plant simulation model is implemented as a standard SIMuLINK S-Function

with two continuous dynamic states as given in paragraph IV.1. The design of the single-mode

controller is given in paragraph IV.!!, while the multi-mode controller is detailed in paragraph

IV.IlI.

IV.I SIMULATION MODEL

function [sys,xO,str,ts]
switch flag,

Plant(t,x,u,flag,XO)

case 0,
[sys,xO,str,ts]=mdllnitializeSizes(t,x,u,XO);

case 1,
sys=mdlDerivatives(t,x,u);

case 2,
sys=mdlUpdate(t,x,u);

case 3,
sys=mdlOutputs(t,x,u);

case 9,
sys=mdlTerminate(t,x,u);

otherwise
error(['Unhandled flag = ',num2str(flag)]);

end
% end sfuntmpl
%=============================================================================
% mdllnitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
function [sys,xO,str,ts]=mdllnitializeSizes(t,x,u,XO)
sizes = sirnsizes;
sizes.NumContStates 2;
sizes.NumDiscStates 0;
sizes.NumOutputs 2;
sizes.Numlnputs 1;
sizes. DirFeedthrough 0;
sizes.NumSampleTimes 1; % at least one sample time is needed
sys = simsizes(sizes);
% initialize the initial conditions
xO XO;
% str is always an empty matrix
str = [];
% initialize the array of sample times
ts = [0 0];
% end mdllnitializeSizes
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
function sys=mdlDerivatives(t,x,u)
ifu>0.5

u = 0.5;
elseif u < -0.5

u = -0.5;
end
xl dot = x(2);
x2 dot = -x(l) - ( 0.1 + exp(-1*(x(1)A2)))*x(2) + (1 + x(1)A2)*u;
sys = [xl_dot;x2_dot];
% end mdlDerivatives
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
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function sys=mdlUpdate(t,x,u)
sys = [];
% end mdlUpdate
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
function sys=mdlOutputs(t,x,u)
sys = x;
% end mdlOutputs
%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
function sys=mdlTerminate(t,x,u)
sys = [];
% end mdlTerminate

IV.II SINGLE-MODE FUZZY LOGIC
CONTROLLER DESIGN

% FUZ DE:SIGN.M
% Designs a fuzzy controller for the 3'rd order plant
% E:tienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 21/07/1999
% Setup
clc;
close all;
clear all;
% Design a fuzzy control system using the wikkel method
% Define the size of the controller
Ni = 7;
Nc = 21;
% Define the universe of discourse
U = [-0.5 0.5];
X = [-1 1];
Xdot = [-1 1];
State = [0 0.75];
E:rror = X;
E:rrlnt = E:rror;
E:rrRate = Xdot;
% Define the fuzzy system
FuzCon newfis('FuzzyController','mamdani');
FuzCon setfis(FuzCon, 'andMethod','min');
FuzCon
FuzCon
FuzCon
FuzCon

setfis(FuzCon, 'orMethod','max');
setfis(FuzCon, 'impMethod', 'min');
setfis(FuzCon, 'aggMethod', 'max');
setfis(FuzCon, 'andMethod','min');

FuzCon setfis(FuzCon, 'defuzzmethod', 'centroid');
% Set the fuzzy system inputs and outputs
FuzCon addvar(FuzCon, 'input', 'State',State);
FuzCon addvar(FuzCon, 'input','Int',E:rrlnt);
FuzCon addvar(FuzCon, 'input', 'E:rror',E:rror);
FuzCon addvar(FuzCon, 'input','Rate',E:rrRate);
FuzCon addvar(FuzCon, 'output','Control',U);
% Auto design of membership functions
Names = namegen(Ni, 'Sym');
StateNames = ['Sl'];
Overlap = 1;
FuzCon symbfgen(FuzCon,'input',l,l,State,Overlap,StateNames);
FuzCon symbfgen(FuzCon,'input',2,Ni,E:rrlnt,Overlap,Names);
FuzCon symbfgen(FuzCon,'input',3,Ni,E:rror,Overlap,Names);
FuzCon symbfgen(FuzCon,'input',4,Ni,E:rrRate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
E:rror_Weight = [-3, -2, -1, 0 , 1 , 2, 3];
Int_Weight = [-3, -2, -1, 0 , 1 , 2, 3];
Rate_Weight = [-3, -2, -1, 0 , 1 , 2, 3];
Gain = [1];
Speed = [ 1 ];
Dims = [ 1 , Ni*ones(1,3) , Nc ];
[FuzCon,RuleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres] pidrbgen( ...
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FuzCon,Gain, Speed, Srror_Weight, Rate_Weight, Int_Weight, Dims);
% Generate the output membership functions
Centres Scaled = max(U)*Centres/(max(Centres));
MidPoints = sort(Centres_Scaled);
U Names = namegen(Nc, 'Sym');
F~zCon = mbfgen(FuzCon, 'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
global FuzzyContro1ler
Ki 1;
Kp = 1;
Kd = 1;
StateLim = State;
SrrLim = Srror;
SrrlntLim = Srrlnt;
SrrRateLim = SrrRate;
FuzzyController = FuzCon;
OldFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim SrrLim SrrlntLim SrrRateLim Ki Kp Kd

IV.III MULTI-MODE FUZZY LOGIC
CONTROLLER DESIGN

multi-mode fuzzy logic controller design
% FUZ DSSIGN. M
% Designs a fuzzy controller for the 3'rd order plant
% Stienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 13/01/1999
% Setup
clc;
close all;
clear all;
% Design a fuzzy control system using the wikkel method
% Define the size of the controller
Ni = 7;
Nc = 21;
% Define the universe of discourse
U = [-0.5 0.5];
X = [-1 1];
Xdot = [-1 1];
State = [0 0.75];
Srror = X;
Srrlnt = Srror;
SrrRate = Xdot;
% Define the fuzzy system
FuzCon newfis('FuzzyController', 'mamdani');
FuzCon setfis(FuzCon, 'andMethod', 'min');
FuzCon setfis(FuzCon, 'orMethod', 'max');
FuzCon
FuzCon
FuzCon
FuzCon
% Set
FuzCon
FuzCon

setfis(FuzCon, 'impMethod', 'min');
setfis(FuzCon, 'aggMethod', 'max');
setfis(FuzCon, 'andMethod', 'min');
setfis(FuzCon,'defuzzmethod', 'centroid');

the fuzzy system inputs and outputs
addvar(FuzCon, 'input','State',State);
addvar(FuzCon, 'input', 'Int',Srrlnt);

FuzCon addvar(FuzCon, 'input', 'Srror',Srror);
FuzCon addvar(FuzCon, 'input', 'Rate',SrrRate);
FuzCon addvar(FuzCon, 'output', 'Contro1',U);
% Auto design of membership functions;
Names = namegen(Ni,'Sym');
StateNames = ['Sl '; 'S2' ; 'S3' ; 'S4 '1 ;
Overlap = 1;
FuzCon symbfgen(FuzCon, 'input',1,4,State,Overlap,StateNames);
FuzCon symbfgen(FuzCon, 'input',2,Ni,Srrlnt,Overlap,Names);
FuzCon symbfgen(FuzCon, 'input',3,Ni,Srror,Overlap,Names);
FuzCon symbfgen(FuzCon, 'input',4,Ni,SrrRate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Srror_Weight = [-3, -2, -1, 0 , 1 , 2, 3];
Int_Weight = [-3, -2, -1, 0 , 1 , 2, 3];
Rate Weight [-3, -2, -1, 0 , 1 , 2, 3];
Gain-= [1; 1.2 ; 2 ; 5];
Speed = [ 1 ; 0.95 ; 0.8 ; 0.6];
Dims = [ 4, Ni*ones(1,3) , Nc ];
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[FuzCon,~uleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres] = pidrbgen( ...
FuzCon,Gain, Speed,Error_Weight, Rate_Weight, Int_Weight, Dims);
% Generate the output membership functions
Centres Scaled = max(U)*Centres/(max(Centres));
MidPoints = sort(Centres Scaled);
U_Names = namegen(Nc,'Sym');
FuzCon = mbfgen(FuzCon, 'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
global FuzzyController
Ki 1;
Kp = 1;
Kd = 1;
StateLim = State;
ErrLim = Error;
ErrlntLim = Errlnt;
ErrRateLim = ErrRate;
FuzzyController = FuzCon;
OldFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrlntLim ErrRateLim Ki Kp Kd
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V PLANT III: M-FILES
The MATLAB® M-Files pertaining to the second-order plant with non-linear velocity feedback are

given in this Appendix. The plant simulation model is implemented directly using standard

SIMuLINK blocks. The design of the single-mode controller is given in paragraph V.I, while the

multi-mode controller is detailed in paragraphV.II.

V.I SINGLE-MODE FUZZY LOGIC
CONTROLLER DESIGN

% FUZ DESIGN.M
% Designs a fuzzy controller for the 3'rd order plant
% Etienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 21/07/1999
% Setup
clc;
close all;
clear all;
% Design a fuzzy control system using the wikkel method
% Define the size of the controller
Ni = 9;
Nc = 21;
% Define the universe of discourse
U = [-1 lJ;
X = [-1 lj;
Xdot = [-1 lj;
State = [0 1.2J;
Error = X;
Errlnt = Error;
ErrRate = Xdot;
% Define the fuzzy system
FuzCon newfis('FuzzyContro1ler', 'mamdani');
FuzCon setfis(FuzCon, 'andMethod', 'min');
FuzCon setfis(FuzCon, 'orMethod', 'max');
FuzCon
FuzCon
FuzCon

setfis(FuzCon, 'impMethod', 'min');
setfis(FuzCon, 'aggMethod', 'max');
setfis(FuzCon, 'andMethod', 'min');

FuzCon setfis(FuzCon,'defuzzmethod','centroid');
% Set the fuzzy system inputs and outputs
FuzCon addvar(FuzCon,'input', 'State',State);
FuzCon addvar(FuzCon, 'input', 'Int',Errlnt);
FuzCon addvar(FuzCon, 'input', 'Error',Error);
FuzCon addvar(FuzCon, 'input', 'Rate',ErrRate);
FuzCon addvar(FuzCon, 'output', 'Control',U);
% Auto design of membership functions
Names = namegen(Ni, 'Sym');
StateNames = ['Sl'J;
Overlap = 1;
FuzCon symbfgen(FuzCon, 'input',l,l,State,Overlap,StateNames);
FuzCon symbfgen(FuzCon, 'input',2,Ni,Errlnt,Overlap,Names);
FuzCon symbfgen(FuzCon, 'input',3,Ni,Error,Overlap,Names);
FuzCon symbfgen(FuzCon, 'input',4,Ni,ErrRate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Error_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4J;
Int_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4J;
Rate_Weight = [-4, -3, -2, -1, 0 r 1 , 2, 3, 4J;
Gain = [1 J;
Speed = [ 1 J;
Dims = [ 1 , Ni*ones(1,3) , Nc J;
[FuzCon,RuleBase,RuleBaseC1usters,RuleBaseNorm,RBM,CentresJ = pidrbgen( ...

FuzCon, Gain, Speed, Error_Weight, Rate_Weight, Int_Weight, Dims);
% Generate the output membership functions
Centres Scaled = max(U)*Centres/(max(Centres));
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MidPoints = sort(Centres_Scaled);
U_Names = namegen(Nc,'Sym');
FuzCon = mbfgen(FuzCon,'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
global FuzzyController
Ki 1;
Kp = 1;
Kd = 1;
StateLim = State;
ErrLim = Error;
ErrlntLim = Errlnt;
ErrRateLim = ErrRate;
FuzzyController = FuzCon;
OldFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrlntLim ErrRateLim Ki Kp Kd

V.II MULTI-MODE FUZZY LOGIC
CONTROLLER DESIGN

% FUZ DESIGN.M
% Designs a fuzzy controller for the 3'rd order plant
% Etienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 21/07/1999
% Setup
clc;
close all;
clear all;
% Design a fuzzy control system using the wikkel method
% Define the size of the controller
Ni = 9;
Nc = 21;
% Define the universe of discourse
U = [-1 1);
X = [-1 1);
Xdot = [-1 1);
State = [0 1.2);
Error = X;
Errlnt = Error;
ErrRate = Xdot;
% Define the fuzzy system
FuzCon newfis('FuzzyController','mamdani');
FuzCon setfis(FuzCon,'andMethod', 'min');
FuzCon setfis(FuzCon, 'orMethod', 'max');
FuzCon setfis(FuzCon, 'impMethod','min');
FuzCon setfis(FuzCon, 'aggMethod', 'max');
FuzCon setfis(FuzCon, 'andMethod', 'min');
FuzCon setfis(FuzCon, 'defuzzmethod', 'centroid');
% Set the fuzzy system inputs and outputs
FuzCon addvar(FuzCon, 'input','State',State);
FuzCon addvar(FuzCon, 'input','Int',Errlnt);
FuzCon addvar(FuzCon, 'input','Error',Error);
FuzCon addvar(FuzCon, 'input', 'Rate',ErrRate);
FuzCon addvar(FuzCon, 'output','Control',U);
% Auto design of membership functions
Names = namegen(Ni, 'Sym');
StateNames = ['Sl '; 'S2 '; 'S3' ; 'S4 ');
Overlap = 1;
FuzCon symbfgen(FuzCon, 'input',1,4,State,Overlap,StateNames);
FuzCon symbfgen(FuzCon, 'input',2,Ni,Errlnt,Overlap,Names);
FuzCon symbfgen(FuzCon,'input',3,Ni,Error,Overlap,Names);
FuzCon symbfgen(FuzCon,'input',4,Ni,ErrRate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Error_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4);
Int_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4);
Rate Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4);
Gain-= [1 1 11);
Speed = [0.62 0.13 0.1*0.49 0.1*0.30 );
Dims = [ 4 , Ni*ones(1,3) , Nc );
[FuzCon,RuleBase,RuleBaseC1usters,Ru1eBaseNorm,RBM,Centres) = pidrbgen( ...

FuzCon,Gain,Speed, Error_Weight, Rate_Weight, Int_Weight, Dims);
% Generate the output membership functions
Centres Scaled = max(U)*Centres/(max(Centres));
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MidPoints = sort(Centres Scaled);
U_Names = namegen(Nc,'Sym');
FuzCon = mbfgen(FuzCon, 'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
global FuzzyController
Ki 1;
Kp = 1;
Kd = 1;
StateLim = State;
ErrLim = Error;
ErrlntLim = Errlnt;
ErrRateLim = ErrRate;
FuzzyController = FuzCon;
01dFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrlntLim ErrRateLim Ki Kp Kd
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VI DISTILLATION COLUMN: M-
FILES

The MATLAB® M-Files pertaining to homogenous, azeotropic distillation column are given in this

appendix. The simulation model is implemented as a standardSIMuLINK S-Function as detailed in

paragraph VI.I. The block have 10 inputs, 164 outputs and 423 discrete states. The block

implements a multi-step Runge-Cutta integration method to predict the response of the state vector.

The design of the single-mode fuzzy logic controller is detailed in paragraph VIJl, while the multi-

mode fuzzy logic controller is detailed in paragraphVl.III.

VI.I SIMULATION MODEL

Simulation model S-Function M-File
function [sys,xO,str,ts]
I = eye(107);
k1 0.4358662;

distco12(t,x,u,flag)
% 107by107 Unity matrix

%
k2 0.75; %
k3 0.63020209; % Runge-Kutta
k4 0.24233789; % constants
k5 1.037609496; %
k6 0.83493048;
% Dispatch the flag
switch flag,

case 0,
[sys,xO,str,ts]=mdllnitializeSizes(I,k1,k2,k3,k4,k5,k6);

case 1,
sys=mdlDerivatives(t,x,u,I,k1,k2,k3,k4,k5,k6);

case 2,
sys=mdlUpdate(t,x,u,I,k1,k2,k3,k4,k5,k6);

case 3,
sys=mdlOutputs(t,x,u,I,k1,k2,k3,k4,k5,k6);

case 4,
sys=mdlGetTimeOfNextVarHit(t,x,u,I,k1,k2,k3,k4,k5,k6);

case 9,
sys=mdlTerminate(t,x,u,I,k1,k2,k3,k4,k5,k6);

otherwise
error(['Unhandled flag = ',num2str(flag)]);

end % end sfuntmpl
function [sys,xO,str,ts]=mdllnitializeSizes(I,k1,k2,k3,k4,k5,k6)
sizes = simsizes;
sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.Numlnputs
sizes.DirFeedthrough
sizes.NumSamp1eTimes
sys = simsizes(sizes);
global dyn_factor WA liqC WH
global Cpvint Cplcon Cplint Tfeed
global dt liqC Zra Tcrit Pcrit T reb dvrref Lreb SS
global bubtol stop
global U eta fugC W TS S H Zconst G E
global elipstol
global TAU RU QU QP RL
global dec logger dec_logstatus T_aqu T_org dvaref dvoref Lda SS Ldo SS
load LdaO

0;
423;
164;
10;
0;
1; % at least one sample time is needed

load LdoO
load VO
load ZO
load xadO
load xodO
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load dvaO
load dvoO
load dvrO
load MadO
load ModO
load aquctrl.txt
load orgctrl.txt
load rebctrl.txt
load inmat.txt
dt = inmat(8,1);
tsample = inmat(8,2);
dyn_factor = inmat(8,3);
stabtest = inmat(8,4);
dvaref = aquctrl(l);
T_aqu = aquctrl(2);
Lda_SS = aquctrl(3);
dvoref = orgctrl(l);
T_org = orgctrl(2);
Ldo_SS = orgctrl(3);
dvrref = rebctrl(l);
T reb = rebctrl(2);
Lreb_SS = rebctrl(3);
U = [0, 115.13, 573.61; 2057.42, 0, 1131.13; -163.72, -149.34, OJ; % UNIQUAC binary interaction
parameter constants of Prausnitz
RL [-2.32; 1.76; -4.1e-1J;
RU [0.92; 3.19; 2.11J;
QU [1.40; 2.40; 1.97J;
QP [1.00; 2.40; 0.92J;
% Non-polar acentric parameters
W = [1.1316e-002 0

9.0766e-002 1.7022e-001

% Liq-Liq Flash parameters from Prausnitz
% Appendix C-1, ref.10

%
%

o
o

5.7712e-002 1.3716e-001 1.0411e-00lJ;
% Energy parameters
TS = [221.1344 0

326.9346 507.5722
o
o

274.1875 416.1372 344.9629J;
% Calculate temp-independant terms in virial coefficients for
% PC's and pairs
% Molecular size parameter
S [56.3522 0 0

98.3811 171.7564 0

H
86.3498

[3.1967
1.9900
2.2751

150.7519 132.3161J;
o 0

1. 9900 0
1. 9900 2.0554 J;

o 0
o

-0.3286J;
o
o

0.3219J;

Zconst = [-0.4228
-0.3000 -0.3000

G
-0.3597

[2.2064
o

0.9439

-0.3000
o
o
o

% Energy terms for non-associating pairs (for terms with positive ETA)
E [-3.0227 0 0

o 0 0
-3.1380 0 -3.2622J;

eta = [1.7000; 000; 1.550 1.40J;
Tcrit = [647.37; 562.16; 516.26J; % Critical params for use with Hayden &
O'Connell correllation for
Pcrit = [221.20; 48.98; 63.80J;
Zra = [0.2380 0.2696 0.2520J;
fugC = [5.7042el -7.0048e3 3.5888e-3 -6.668geO
referance fugacity eqn.

9.720gel -6.9761e3 1.9082e-2 -1.4212el
-9.0910el -3.465ge3 -6.2301e-2 2.0486e1

Cplcon = [18.2964 4.72118e-l -1.33878e-3 1.31424e-6;
-7.27329 7.70541e-1 -1.64818e-3 1.89794e-6;

% virial coefficients - ref.l0
% Rackett compressability factor - ref.l0
-8.5054e-7; % Constants for zero-pressure

-6.7182e-6; % ref.l0
2.0664e-5J;

% Liq. Heat capacity correlation
constants

-3.25l37e2 4.13787 -1.40307e-2 1.70354e-5J;
Cplint = Cplcon*diag([l 0.5 (1/3) 0.25J);
heat capacity

% by Reklaitis - ref.14
% Constants for integrating liq.

% to liquid enthalpy
Cpvcon = [34.0471 -9.65064e-3 3.29983e-5 -2.04467e-8 4.30228e-12; % Same as above for vapor

18.5868 -1.1743ge-2 1.27514e-3 -2.07984e-6 -1.0532ge-9;
17.6907 1.49532e-l 8.94815e-5 -1.97384e-7 8.31747e-llJ;

Cpvint = Cpvcon*diag([l 0.5 (1/3) 0.25 0.2J);
splinepol = [2.553438952e9 -4.818800201e9 4.0189686031e9 -1.948239037e9 6.071029437e8

-1.269128763e8 1.800492176e7 -1.71039504ge6 1.041105423e5 -3.672003074e3
57. 850421156J;

% Spline-fitted polynomial describing
heterogeneous liquid envelope
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% Predicted by UNIQUAC eqn. with Prausnitz
parameters
%-----------------------------------------------------------------
% Thermodynamical subroutine tolerances
bubtol = 1e-4;
fbtol = 1e-3;
elipstol = 1e-4;
%-----------------------------------------------------------------
% Fixed column parameters
WA = 2300;
WH = 2.54*ones(1,26);
liqC = 6.53e-4;
Wynkle]
Tfeed = 351.3; % Saturated feed
%-----------------------------------------------------------------

% ACTIVE tray area [cm~2]
% Weir height [cmJ
% Scaling factor for tray hydraulics [van

temperature

% Set up initial profiles and column variables
PO = 1.013: ((1.216-1.013)/26) :1.216;
xfe= [O;l;OJ;
Fe = 1.65;
alpha = 0.767;
[rm,xom,xam,yrn,TO,K_OJ = bub(ZO,PO); % Initial temperature profile & equilibrium
constants
[M_0,pO,ppO,LrebO,d1J = molhold(rm,xom,xam,TO,ZO,VO(27),dvrO); % Initial molar hold-up for column
& reboiler
[rdO,d1,d2,d3,status,errJ = elips(ym(:,1),298.15);
compositions
clear rm xom xam yrn xa xo Td Zdec dl d2 d3
Z = ZO;
V = VO;
K = K 0;
M = M_O;
Mod = ModO;
Mad = MadO;
Lreb = LrebO;
P PO;
T = TO;
P = pO;
ppure ppO;
Ldo LdoO;
Lda LdaO;
xod xodO;
xad xadO;
rd = rdO;
dva dvaO;
dvo dvoO;
dvr dvrO;
L 1 Ldo + alpha*Lda + Fe;
x_I_temp = (xod*Ldo + xad*Lda*a1pha + xfe*Fe)/L 1;
x 1 = x 1 temp/([l 1 1J*x 1 temp);
Statel = [Z;V' ;K_(l,:)' ;K=:(2,:)' ;K_(3,:)' ;M_' ;Mod;Mad;Lreb; P' ;T' ;p' J;
State2 = [ppure(:,1);ppure(:,2);ppure(:,3);Ldo;Lda;xod;xad;rd;dva;dvo;dvr;L_1;x IJ;
State = [State1;State2];
xO = State;
str = [];
ts =[OOJ;
% end mdlInitializeSizes
function sys=mdlDerivatives(t,x,u,I,k1,k2,k3,k4,k5,k6)
sys = [J;
% end mdlDerivatives
function sys=mdlUpdate(t,x,u,I,k1,k2,k3,k4,k5,k6)

% Initial organic- and aqueous phase

global dyn factor WA liqC WH
global Cpvint Cplcon Cplint Tfeed
global dt 1iqC Zra Tcrit Pcrit T reb dvrref Lreb SS
global bubtol stop
global U eta fugC W TS S H Zconst G E
global elipstol
global TAU RU QU QP RL
global dec_logger dec logstatus T_aqu T_org dvaref dvoref Lda SS Ldo SS

Z = x(1:107);
V = x(108:134) ';
K = [x(135:161)';x(162:188)';x(189:215)'J;
M = x(216:242)';
Mod = x(243);
Mad = x(244);
Lreb = x(245);
P x(246:272)';
T = x(273:299) ';
p = x(300:326) ';
ppure = [x(327:353),x(354:380),x(381:407)J;
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Ldo x (408);
Lda x (409);
xod x(410:412);
xad x(413:415);
rd = x (416);
dva x (417);
dvo x(418);
dvr x(419);
LI x(420);
x 1 x(421:423);
F = [zeros(1,4) u(l) zeros(1,22)];
z = [u(2);u(3);u(4)];
zmat = [zeros(3,4) z zeros(3,22)];
Fe = u (5);
xfe = [u(6);u(7);u(8)];
alpha = u(9);
Q = [zeros(1,26) u(10)];
%-----------------------------------------------------------------------------------------------
%
% MAIN LOOP STARTS HERE

[a1,a2,a3,a4,b1,b2,b3,b4,b5,d1,e1,e2,e3,e4,e5] = abde(Z,V,K_,M_,F,zmat,L_l,x_l,p,ppure);
[Jac1,zp1] = azf(1,Z,V,L_1,x_1,a1,a2,a3,a4,b1,b2,b3,b4,b5,dl,e1,e2,e3,e4,e5);
dZ1 = inv(I - k1*dt*Jac1)*dt*zpl;

%-----------------------------------------------------------------------------------------------

-- STEP 1

% -- STEP 2 --
% 1st update of state vector & normalize component mole fractions

Z old = Z;
Z = Z + k2*dZ1;
sum molefrac = Z(1:27) + Z(28:54) + Z(55:81);
Z(1:81) = Z(1:81) ./[sum_molefrac; sum_molefrac; sum_molefrac];
dZ = [(Z(1:27) - Z old(1:27)), (Z(28:54) - Z_old(28:54)), (Z(55:81) - Z_old(55:81))]';
nz = nnz(-dZ);
if nz,

dZ = augzero(dZ); % Non-zero dZ needed to calculate vapour flow
end

%-----------------------------------------------------------------------------------------------
% -- STEP 3 & 4 --
% Liquid-liquid flash and bubble point temperature calculation for stages 1-27

Told = T;
[rm,xom,xam,ym,T,K_] = bub(Z,P);
T=real(T);

dT = T - Told;
nz = nnz(-dT);
if nz,

dT = augzero(dT); % Non-zero dT needed to calculate vapour flow
end

%-----------------------------------------------------------------------------------------------
% -- STEP 5 & 6 --
% Calculates vapor flow (V) for stages 1-27 and liquid flow for stage 27 (Lreb)

delta = (ones(3,1)*dT)./dZ;
V = v1enth(zmat,F,Z,T,delta,K ,rm,xom,xam,ym,x_l,L_l,Q);%-----------------------------------------------------------------------------------------------

% -- STEP 7 --
% Calculates molar hold up for stages 1-26; hold up for reboi1er stays constant

[M_,p,ppure,Lreb,dvr] = molhold(rm,xom,xam,T,Z,V(27),dvr);%-----------------------------------------------------------------------------------------------
% -- STEP 8
% 2nd correction in Z

[a1,a2,a3,a4,b1,b2,b3,b4,b5,d1,e1,e2,e3,e4,e5] = abde(Z,V,K_,M_,F,zmat,L_l,x l,p,ppure); %
Updated values for Z,V,K,M

[dummy,zp2] = azf(O,Z,V,L 1,x 1,a1,a2,a3,a4,b1,b2,b3,b4,b5,d1,el,e2,e3,e4,e5); % !NB!
Jacobian stays unchanged over iteration

dZ2 = inv(I - k1*dt*Jac1)*dt*zp2;
%-----------------------------------------------------------------------------------------------
% -- STEP 9
% 3rd correction in Z

dZ3 = inv(I - k1*dt*Jac1)*(-k3*dZ1 - k4*dZ2);%-----------------------------------------------------------------------------------------------
% -- STEP 10 --
% Total correction in Z & normalize component mole fractions

Z old = Z;
Z = Z + k5*dZ1 + k6*dZ2 + dZ3;
sum_molefrac = Z(1:27) + Z(28:54) + Z(55:81);
Z(1:81) = Z(1:81)./[sum molefrac; sum molefrac; sum_molefrac];
dZ = [(Z(1:27) - Z_old(1:27)), (Z(28:54) - Z_old(28:54)), (Z(55:81) - Z_old(55:81))]';
nz = nnz(-dZ);
if nz,

dZ = augzero(dZ); % Non-zero dZ needed to calculate vapour flow
end

%-----------------------------------------------------------------------------------------------
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% -- STBP 11 --
% Update r(j), xo(ij), xa(ij), T(j), K_(ij), M_(j), V(j) and L_(27) for next iteration (k+l)
% Repeat steps 3-7 with new state vector Z

Told = T;
[rm,xom,xam,ym,T,K_] = bub(Z,P);
T = real(T);
dT = T - Told;

nz = nnz(-dT);
if nz,

dT = augzero(dT);
end
delta = (ones(3,1)*dT)./dZ;

% Non-zero dT needed to calculate vapour flow

V = vlenth(zmat,F,Z,T,delta,K_,rm,xom,xam,ym,x_l,L_l,Q);
[M_,p,ppure,Lreb,dvr] = molhold(rm,xom,xam,T,Z,V(27),dvr);

%-----------------------------------------------------------------------------------------------
% -- STBP 12
% Calculate reflux flowrate and -composition
[rd,Mod,Mad,Ldo,Lóa,xod,xad,L_l,x_l,dva,dvo] =
decanter(ym(:,l),V(l),Mod,Mad,Ldo,Lda,xod,xad,alpha,Fe,xfe,dva,dvo);
Statel = [ZiV' ;K_(l,:)' ;K_(2,:)' ;K_(3,:)' ;M_' ;Mod;Mad;Lreb; P' ;T' ;p'];
State2 = [ppure(:,1);ppure(:,2);ppure(:,3);Ldo;Lda;xod;xad;rd;dva;dvo;dvr;L_l;x_l];
State = [State1;State2];
State = real(zeros(423,1)+State);
sys = State;
% end mdlUpdate
function sys=mdlOutputs(t,x,u,I,kl,k2,k3,k4,k5,k6)
Z = x(1:107);
V = x(108:134) ';
K = [x(135:161)';x(162:188)';x(189:215)'];
M = x(216:242) ';
Mod = x(243);
Mad = x(244);
Lreb = x(245);
P x(246:272)';
T = x(273:299)';
p = x(300:326)';
ppure = [x(327:353),x(354:380),x(381:407)];
Ldo x(408);
Lda x(409);
xod x(410:412);
xad x(413:415);
rd = x (416) ;
dva x (417) ;
dvo x (418);
dvr x(419);
L1 x(420);
x 1 x(421:423);
Output = [ Z ; Lreb
sys = Output;
% end mdlOutputs
function sys=mdlGetTimeOfNextVarHit(t,x,u,I,k1,k2,k3,k4,k5,k6)
sampleTime = 1; % Bxample, set the next hit to be one second later.
sys = t + sampleTime;
function sys=mdlTerminate(t,x,u,I,k1,k2,k3,k4,k5,k6)
sys = [li
% end mdlTerminate

T' V' Ldo Lda ];

VI.II SINGLE-MODE FUZZY LOGIC
CONTROLLER DESIGN

% FUZDBS.M
% Fuzzy design program.
% Btienne M. Hugo 90-1969-2
% University of Stellenbosch
% 07/04/1998
clc;
clear all;
close all;
% Give design parameters
Dims = [1,9,9,9,21];
Lda = [0,3];
Brr_Int = [-60,60];
Brr = [-6,6];

Process Control Group
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Err_Rate = [-0.025,0.025];
dQ = [-30,30];
Overlap = 1;
% Set the fuzzy system parameters
tfront 1 newfis('fuz', 'mamdani');
tfront 1 setfis(tfront_l, 'andMethod', 'min');
tfront 1
tfront 1
tfront 1
tfront 1
tfront 1
% Set the

setfis(tfront_l, 'orMethod', 'max');
setfis(tfront_l, 'impMethod', 'min');
setfis(tfront_l, 'aggMethod', 'max');
setfis(tfront_l, 'andMethod', 'min');
setfis(tfront_l, 'defuzzmethod', 'centroid');
fuzzy system inputs and outputs

tfront 1 addvar(tfront_l,'input', 'State',Lda);
tfront 1 addvar(tfront_l, 'input', 'Integral',Err_Int);
tfront 1 addvar(tfront_l,'input', 'Error',Err);
tfront 1 addvar(tfront_l,'input', 'Rate',Err_Rate);
tfront 1 addvar(tfront_l, 'output', 'Control',dQ);
% Auto design of membership functions;
Names = namegen(9, 'Sym');
tfront 1 symbfgen(tfront_l, 'input',l,Dims(l),Lda,Overlap, ['L']);
tfront 1 symbfgen(tfront_l, 'input',2,Dims(2),Err_Int,Overlap,Names);
tfront 1 symbfgen(tfront_l, 'input',3,Dims(3),Err,Overlap,Names);
tfront 1 symbfgen(tfront 1, 'input',4,Dims(4),Err Rate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Int_Weight = [-4 -3 -2 -1 0 1 2 3 4];
Error_Weight = [-4 -3 -2 -1 0 1 2 3 4];
Rate_Weight = 1.0*[-4 -3 -2 -1 0 1 2 3 4];
Gain = [1];
Speed = [1];
[tfront_1,RuleBase,Ru1eBaseClusters,RuleBaseNorm,RBM,Centres] pidrbgen(tfront l,Gain,Speed, ...

Error_Weight,Rate_Weight,Int_Weight,Dims);
% Generate the output membership functions
Centres Scaled = max(dQ)*Centres/(max(Centres));
MidPoints = sort(Centres Scaled);
U_Names = namegen(Dims(5),'Sym', 'U');
tfront_l = mbfgen(tfront 1, 'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
writefis(tfront_l,'tfront 1.fis');

Vl.III MULTI-MODE FUZZY LOGIC
CONTROLLER DESIGN

% FUZDES.M
% Fuzzy design program. Uses the Wikkel method of design.
% Etienne M. Hugo 90-1969-2
% University of Stellenbosch Process Control Group
% 07/04/1998
clc;
clear all;
close all;
% Give design parameters
Dims = [2,9,9,9,21);
Lda = [0,2];
Err_Int = [-60,60];
Err = [-6,6];
Err_Rate = [-0.025,0.025];
dQ = [-30,30];
Overlap = 1;
% Set the fuzzy system parameters
tfront 1 newfis('fuz', 'mamdani');
tfront 1 setfis(tfront 1, 'andMethod', 'min');
tfront 1 setfis(tfront=l, 'orMethod','max');
tfront 1 setfis(tfront_l, 'impMethod', 'min');
tfront 1 setfis(tfront_l,'aggMethod', 'max');
tfront 1 setfis(tfront_l,'andMethod', 'min');
tfront 1 setfis(tfront 1,'defuzzmethod', 'centroid');
% Set the fuzzy system inputs and outputs
tfront 1 addvar(tfront_l,'input', 'State',Lda);
tfront 1 addvar(tfront 1,'~nput', 'Integral',Err_Int);
tfront 1 addvar(tfront 1,'input', 'Error',Err);
tfront 1 addvar(tfront_l, 'input', 'Rate',Err_Rate);
tfront 1 addvar(tfront_l, 'output', 'Control',dQ);
% Auto design of membership functions;
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Names = namegen(9, 'Sym');
tfront 1 symbfgen(tfront 1, 'input',l,Dims(l),Lda,Overlap, ['L';'H']);
tfront 1 symbfgen(tfront 1, 'input',2,Dims(2),Err Int,Overlap,Names);
tfront 1 symbfgen(tfront=1,'input',3,Dims(3),Err~Overlap,Names);
tfront 1 symbfgen(tfront 1,'input',4,Dims(4),Err_Rate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Int_Weight = [-4 -3 -2 -1 0 1 234];
Error_Weight = [-4 -3 -2 -1 0 1 234];
Rate_Weight = 1.0*[-4 -3 -2 -1 0 1 234];
Gain = [1 0.75];
Speed = [1 1];
[tfront_l,RuleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres] pidrbgen(tfront_l,Gain,Speed, ...

Error_Weight,Rate_Weight,Int_Weight,Dims);
% Generate the output membership functions
Centres_Scaled = max(dQ)*Centres/(max(Centres));
MidPoints = sort(Centres_Scaled);
U_Names = namegen(Dims(5), 'Sym', 'U');
tfront_l = mbfgen(tfront 1,'output',1,MidPoints,Overlap,U_Names);
% Save the fuzzy system
writefis(tfront_l, 'tfront_l.fis');
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VIICSTR: M-FILES
The MATLAB® M-Files pertaining to the CSTR system are given in this appendix. The simulation

model is implemented as a standard SIMuLINK S-Function as detailed in paragraph VII.!. The

block have a single input, two outputs and two dynamic states. The design of the single-mode

fuzzy logic controller is detailed in paragraph VILlI, while the multi-mode fuzzy logic controller is

detailed in paragraphVILlIL

VII.I SIMULATION MODEL

function [sys,xO,str,ts] Plant(t,x,u,flag,XO)
switch flag,

case 0,
[sys,xO,str,ts]=mdllnitializeSizes(t,x,u,XO);

case 1,
sys=mdlDerivatives(t,x,u);

case 2,
sys=mdlUpdate(t,x,u);

case 3,
sys=mdlOutputs(t,x,u);

case 9,
sys=mdlTerminate(t,x,u);

otherwise
error(['Unhandled flag = ',num2str(flag)]);

end
% end sfuntmpl
%
%=============================================================================
% mdllnitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,xO,str,ts]=mdllnitializeSizes(t,x,u,XO)
sizes = simsizes;
sizes.NumContStates 2;
sizes.NumDiscStates 0;
sizes.NumOutputs 2;
sizes.Numlnputs 1;
sizes. DirFeedthrough 0;
sizes.NumSampleTimes 1;
sys = simsizes(sizes);
%

% at least one sample time is needed

% initialize the initial conditions
%
xO XO;
%
% str is always an empty matrix
%
str = [];
%
% initialize the array of sample times
%
ts [0 0];
% end mdllnitializeSizes
%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
function sys=mdlDerivatives(t,x,u)
q 1. 0;
a 0.072;
b 8;
d 3.0;
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g = 20;
x1f=1.0;
x2f = 0;
Kl = x(2)/(1+x(2)/g);
K2 = exp (Kl );
xl dot = -a*x(1)*K2 + q*(x1f-x(1));
x2-dot = b*a*x(1)*K2 - (q+d)*x(2) + q*x2f + d*u;
sys = [x1_dot;x2_dot];
% end md1Derivatives
%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
function sys=mdlUpdate(t,x,u)
sys = [li
% end mdlUpdate
%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function sys=mdlOutputs(t,x,u)
sys = x;
% end mdlOutputs
%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
%
function sys=mdlTerminate(t,x,u)
sys = [li
% end mdlTerminate

VII.II SINGLE-MODE FUZZY LOGIC
CONTROLLER DESIGN

% FUZ DESIGN.M
% Designs a fuzzy controller for the cstr
% Etienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 13/01/1999
% Setup
cIc;
close all;
clear all;
% Design a fuzzy control system using the wikkel method
% Define the size of the controller
Ni = 9;
Nc = 21;
% Define the universe of discourse
U = [-1 1];
X = [-1 1];
Xdot = [-1 1];
State = [0.5 3.0];
Error = X;
ErrInt = Error;
ErrRate = Xdot;
% Define the fuzzy system
FuzCon newfis('FuzzyController', 'mamdani');
FuzCon setfis(FuzCon, 'andMethod','min');
FuzCon setfis(FuzCon, 'orMethod', 'max');
FuzCon setfis(FuzCon,'impMethod', 'min');
FuzCon setfis(FuzCon, 'aggMethod', 'max');
FuzCon setfis(FuzCon, 'andMethod', 'min');
FuzCon
% Set
FuzCon
FuzCon

setfis(FuzCon, 'defuzzmethod', 'centroid');
the fuzzy system inputs and outputs

addvar(FuzCon, 'input','State',State);
= addvar(FuzCon, 'input', 'Int',ErrInt);
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FuzCon addvar(FuzCon,'input', 'Error',Error);
FuzCon addvar(FuzCon, 'input', 'Rate',ErrRate);
FuzCon addvar(FuzCon, 'output', 'Control',U);
% Auto design of membership functions;
Names = namegen(Ni, 'Sym');
StateNames = ['Sl');
Overlap = 1;
FuzCon symbfgen(FuzCon,'input',l,l,State,Overlap,StateNames);
FuzCon symbfgen(FuzCon,'input',2,Ni,Errlnt,Overlap,Names);
FuzCon symbfgen(FuzCon, 'input',3,Ni,Error,Overlap,Names);
FuzCon symbfgen(FuzCon,'input',4,Ni,ErrRate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Error_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4);
Int_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4);
Rate_Weight [-4, -3, -2, -1, 0 , 1 , 2, 3, 4);
Gain = [1);
Speed = [ 1 );
Dims = [ 1, Ni*ones(1,3) , Nc );
[FuzCon, Ru1eBase,RuleBaseClusters,RuleBaseNorm, RBM,Cen tres) pidrbgen( ...
FuzCon,Gain, Speed, Error_Weight, Rate_Weight, Int_Weight, Dims);
% Generate the output membership functions
Centres Scaled = max(U)*Centres/(max(Centres));
MidPoints = sort(Centres Scaled);
U_Names = namegen(Nc, 'Sym');
FuzCon = mbfgen(FuzCon,'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
global FuzzyController
Ki 1;
Kp = 1;
Kd = 1;
StateLim = State;
ErrLim = Error;
ErrlntLim = Errlnt;
ErrRateLim = ErrRate;
FuzzyController = FuzCon;
OldFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrlntLim ErrRateLim Ki Kp Kd

VII.IIIMuLTI-MODE FUZZY LOGIC
CONTROLLER DESIGN

% Designs a fuzzy controller for the cstr
% Etienne M. Hugo 90-1969-3
% University of Stellenbosch 90-1969-3
% 13/01/1999
% Setup
cIc;
close all;
clear all;
% Design a fuzzy control system using the wikkel method
% Define the size of the controller
Ni = 9;
Nc = 21;
% Define the universe of discourse
U = [-1 1);
X = [-1 1);
Xdot = [-1 1);
State = [0.5 3.0);
Error = X;
Errlnt = Error;
ErrRate = Xdot;
% Define the fuzzy system
FuzCon
FuzCon
FuzCon
FuzCon
FuzCon
FuzCon
FuzCon
% Set
FuzCon
FuzCon
FuzCon

newfis('FuzzyController','mamdani');
setfis(FuzCon, 'andMethod', 'min');
setfis(FuzCon, 'orMethod', 'max');
setfis(FuzCon, 'impMethod', 'min');
setfis(FuzCon, 'aggMethod','max');
setfis(FuzCon, 'andMethod', 'min');
setfis(FuzCon, 'defuzzmethod','centroid');

the fuzzy system inputs and outputs
addvar(FuzCon, 'input', 'State',State);
addvar(FuzCon, 'input', 'Int',Errlnt);
addvar(FuzCon, 'input', 'Error',Error);
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FuzCon = addvar(FuzCon, 'input', 'Rate',ErrRate);
FuzCon = addvar(FuzCon, 'output', 'Control',U);
% Auto design of membership functions;
Names = namegen(Ni, 'Sym');
StateNames = ['Sl';'S2';'S3'];
Overlap = 1;
FuzCon symbfgen(FuzCon, 'input',1,3,State,Overlap,StateNames);
FuzCon symbfgen(FuzCon, 'input',2,Ni,Errlnt,Overlap,Names);
FuzCon symbfgen(FuzCon, 'input',3,Ni,Error,Overlap,Names);
FuzCon symbfgen(FuzCon, 'input',4,Ni,ErrRate,Overlap,Names);
% Auto design the rulebase according to the wikkel method
Error_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4];
Int_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4];
Rate_Weight = [-4, -3, -2, -1, 0 , 1 , 2, 3, 4];
Gain = [1; 1 ; 1 ];
Speed = [ 0.5 ; 1 ; 2 ];
Dims = [ 3, Ni*ones(1,3) , Nc ];
[FuzCon,RuleBase,RuleBaseClusters,RuleBaseNorm,RBM,Centres]
FuzCon,Gain, Speed, Error_Weight, Rate_Weight, Int_Weight, Dims);
% Generate the output membership functions
Centres Scaled = max(U)*Centres!(max(Centres));

pidrbgen( ...

MidPoints = sort(Centres Scaled);
U_Names = namegen(Nc, 'Sym');
FuzCon = mbfgen(FuzCon,'output',l,MidPoints,Overlap,U_Names);
% Save the fuzzy system
global FuzzyController
Ki 1;
Kp = 1;
Kd = 1;
StateLim = State;
ErrLim = Error;
ErrlntLim = Errlnt;
ErrRateLim = ErrRate;
FuzzyController = FuzCon;
OldFuzzyController = FuzCon;
save CON PARAM.MAT FuzzyController OldFuzzyController StateLim ErrLim ErrlntLim ErrRateLim Ki Kp Kd
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